
0

MRDSC Project Report

Submitted As An M. Se. (Applied) Double Project

by

Charles Snow

(7611565)

22 Decemeber, 1986

.--~. ~-

0

c

0

CONTENTS

1: Databases And Relations 1

1.1 Databases And Data Models .. 1

1.2 Relations ... 2

1.3 Operations on Relations ... 2

1.4 Relational Calculus .. 6

1.5 Databases and Data Organization ... 7

2: The McGill Relational Database System o
2.1 Overview .. 0

2.2 Design and Implementation ... g

2.3 System Design: Features and Goals 11

3: Implementation Manual .. 13

3.1 Overview 13

3.2 MRDSc System Elements ... 13

3.2.1 Data and Domains .. 13

3.2.2 Relations ... 15

3.2.3 Databases
3.3 General Implementation Notes

18

10

10 3.3.1 Speed
3.3.2 Memory Utilization ... 20

3.3.3 Portability .. 21

3.4 Program Organization .. 22

3.5 System Startup And Execution ... 23

3.5.1 User Authorization Check .. 25

3.5.2 Session Logging ... 26

3.5.3 Database Selection .. 26

3.5.4 Consistency Check .. 27

3.5.5 System Relations At Run Time ... 28

3.6 Input/Output .. 31

3.6.1 Byte Interface .. 31

3.6.2 Tuple Interface: Bottom Layer .. 32

3.6.3 Tuple Interface: Top Layer .. 34

3.6.4 Relation Interface ... 34

3.7 Sort/Merge .. 36

3.8 Z.Order ;.. 37
• 3.9 B -Trees ·... 41

3.9.1 File Organization 41

3.9.2 Branch Nodes ,. ,..,. .. " .. , ·.·.•.-.·.····
3.9.3 Leaf Nodes

' ' ' "' ' ,.

3.9.4 Procedures .. _ .. _. ... , ... _._ ~.;.; ,
3.10 Error and Exception Handling ,. ... ,. : ... :,, .. , .. ;.'
3.11 Implemented Relational Operations ,..,. .. _.

. . . 3.12 Useful Tools .. ~- ,. ·.:
·'*= MRDSc Programmer's Manual ~ ~.:

41

43

44

51

53

56

58

58

61

63

65

66

68

',-'

• l

General Notes .. .
ABEND .. , .. .

.ADTUPLE .. .

OLOSEREL ... ~,. ,_ .. _ ... ,.._.
CMPSEPTUP : .. ,

DB_:ERR

DBCK .. .-.......... 70

FIND ,._ ~ , ... ,.,. .. ;· .• ;:;.................. 72

FIND.J)B _ ... ::;.~...................... 74

FINDBRO ,. .. ·,,................... 76

FINDDOM : ... ; ·.·.·.·...................................... 78

FINDRD ~ _ _ c ... : ,

FINDREL .. .

FLU~~ AGE :·•": ; , : .. :.: ;.; r-: : ... ·.,; •. ':.;. .. ~ •. .:. ... : •• .-.... :
FREEOLIST ,. .. :, •. {\: •... ,, .. ·: .. ,;

FREELLIST ... _. .. _ ... ,.

GETDBNAME .. ,. :!; :. .. _
GETRELNAM ... ,. " ~;:,

79

81

82

83

84

85

86

GETUPLE .. , ~................ 87

GOODUSER ·: .. ;... 89

INSERT , ... :;~;:· ...•.. : ... :...... 90

LOADDOM ... :; ::_................. 92

LOAD PAGE 94

LOADRD .. ; ,· .. : ... :...................... 96

LO<?ENT .. ,,.,,, , ,......................... 100

MERGE _. ... _....... 102

MKINDEX ,. ... _,_.f •• ,,,, .. , ... ,...................... 104

MKREL .. :~'.:~:_................................ 107

Ml(SEP ... ·tJ ,. •• • • .. • • • 109

Ml(WRKLIST ... : :;.................... 111

OPENREL ... ~ ... ~..................... 112

.'114

0

0

OUTREL .. ,.

PRINTREL ;; , : : .. :: · ... ,.;...................... 116 ()

ii MRDS Contents

I

0

0

PROJECT · · ·.· ~ .. ~, · : .. '.; .. ~:· . .'· .. .
'

RDTUPLE , ... · .. ·.· : : '.:.::

REPLACE ·.· :.· ·., · : ... :
. ~.. . t_~~ ::·.J:) ., ;' ,1

,• t
RESTORECLIST ·

SEARCH ·.· ... · >.' .. ;:;':~::·.-....... ; .: .. ·· ; .. ~ .: ... :.: .. · .. : ... :

::~:~:L~~···:::::::::::::::·::.::::::::::::::::·::::::~:~:r::::::::::7:::~:~~::.:~~~::::::::::::::::::::::::~~~::··:::·:::::~ A .
SETUP · : .. : ·: :

SIIUFFLE ... · · ... ~ : : ~ :.:~.'
SORTREL ·.· .. · .. : : :: :; .. ? .. : ... :
SPLIT , ... :.: :• ::.·.: ·

SYNCREL · .. : :· :·: .. :

TIMER "''"''''""'· · .. · · .. : : .. ::: .. :.J
TPLCMP .. : · · ... : ~ :·

. ''
UNSIIUFFLE · · · : · : : :. ·. ::·

UPD.,.:PARENT-.............. :·: ;,;·.· •. : .. .'

WRTUPLE · :· ~ ; .. :.: : · ~

YESNO · .. · ... · : · ... : . .-.·.-.-................ :.· : : ... : :· .. :.'.::.:
·,: f

z ;; ; .. : ' .. :

118

120

122

124

125

127

129
130

132

134

136

139

141

142

144

146

148

150

152

z , .. · ; ... : :: .. : : ' : .. ::........... 154

5: Two Useful Development Tools: cmd and nikdff ':... 156

5.1 Overview·of cmd · ~ -........ :.-: :' ' .. :~ : .. :.... 156

5.2 BYE -.............. · · · :.:· ... : ~.:.~·.... 156

5.3 CONVERT-............ · :.· · :: ~ .. : •....... ::.~.:....... 157

5.4 EXIT .. , : ;;:f ... ~ .. :-:.~:~; :).... 157

5.5 HELP .. ·-................................. :.: .. :::.·.~...... 157

5.6 LIST · .. · ... ' :: ... : .. :.-.'.'........... 157

5.7 PRINTREL · · .. : :.::; .. ~.... 157

5.8 PROJECT · · :.: .. :~......... 158

5.0 QUIT .. :-............. : 1
••• ;.: • •••• ;.... 158

5.10 SELECT ... : : : ... ·::: :.... 158

5.11 SHOWDOM, SHOWRD, SHOWREL : :;.......... 158

5.12 Adding to cmd-... · : '. 158

5.13 mkdh · ... :: ... : .. :......... 159

5.14 Source.Listing .. : .. : .. ; ... ' .. :.... 160

6: Concluding Notes-... :............... 161

6.1 Restrictions and Shortcomings' ... :.'.':..... 161

6.2 A Different Approach .. : :':..... 162

'_!Bibliography ... : · : : .. · .. .-.... 16.q

· Appendices · .. : · .. : ... ~...... 166

t: '1: Effect On Storage Utilization & Performance Of Data Alignmen't' :.:'.... 166

Contents MRDS

4

toyeol amercol amertoy

toy colour colour toy
ball blue blue ball
ball green red shovel

~
red

I white

whi.te

pail red
pail yellow
shovel blue
shovel . green
shovel red
shovel white

pail yellow
shovel blue
shovel green
shovel red
shovel white

Figure 1.2 Example of Relation Division

Name Function Description

:J-join division L includes R; output relation is a vector of at­
tribute values from the non-join domains of L
and R which appear with all values of the vec­
tor R in the join domain

C-join

101-join

:J-join

R includes L; output relation is a vector of at­
tribute values from the non-join domains of L
and R which are entirely contained in the vec­
tor R

L and R do not intersect; output relation is a
vector of attribute values from the non-join
domains of L taken from tuples which have no
values from vector R in the join domain

L is a subset of R; output relation is a vector
of attribute values from the non-join domain
of L which appear with more than all values
of the vector R in the join domain

Databases And Relations

•

•

0

c

0

::z>~join

=-join equality

L is not a subset of R; (the complement of the
above) output relation is a vector of attribute
values from the non-join domains of L which
appear with all or fewer of the values of the
vector R in the join domain

L is R; output relation is a vector of attribute
values from the non- join domains of L which
appear with exactly (no more and no fewer)
the values of the vector R in the join domain

The 8-joins provide the means to actually 'join' tuples of two source relations to produce
'wider' output relations. Output tuples are formed by concatenation of source tuples (the join
domain is not replicated) subject to the join constraint which requires the values of the attri­
butes in the join domain to be equal to, less than or greater than each other. The table below
summarizes this family for the example L 8-join R:

Name Function

equi-join equality

less-than-join less~ than

Description

output relation contains tuples which result
from concatenation of tuples in L with those
in R whose attribute value in the join domain
equals the attribute value in L in the join
domain

output relation contains tuples which result
from concatenation of tuples in L with those
in R whose attribute value in the join domain
is less than the attribute value in L in the
join domain

greater-than-join greater~than output relation contains tuples which result
from concatenation of tuples in L with those
in R whose attribute value in the join domain
is greater than the attribute value in L in the
join domain

User requests directed at a relational databases ultimately are performed as a sequence of
the relational operations described above. Typically users are provided with some high-level
language with which to express requests to retrieve or modify the database. The user interface
they see supports the translation of these requests into a sequence of basic operations which,
applied to the relations in the database, provide the desired results. Much effort has been spent
in the design of thet:~e interfaces and optimization of the translation from user request to data­
base action (see, for example, [Blas77]).

Databases And Relations 5

1.4 Rela.tiona.I Calculus

The relational calculus, also proposed by Codd [Codd7lb], provides the same power for
manipulating relations as does the relational algebra, but does so in a different fashion. As a
result of its origins, the essence of the relational calculus is non-procedurality. That is, a 'pure'
expression of a query in the relational calculus contains no indication in terms of the abovemen­
tioned relational operations as to how the query is to be satisfied. Producing from the relational
calculus a usable query language required a limited re-introduction of procedurality, at least to
the point of introducing verbs such as ~ .I2J.ll, etc.

Queries expressed in the relational calculus can be very elaborate while at the same time
being very terse. This expressive power arises from quantifiers, quotas, Boolean operators (and,
QL not) and comparative operators (=, <. >). Some examples illustrate the expressive power
of the relational calculus compared to the relational algebra:

(1) On relation toycol, ftnd red toys.

The relational calculus expression is
{(toycol.toy) : toycol.colour = 'red'}

stating that a set, {}, an output relation, is to be made from tuples in mQQl on domain
colour subject to the predicate (that following the colon) that the attribute in ~·s
toy domain be equal to red.

Codd's ALPHA data sublanguage, with syntax used by Date[Date77], would express the
query as:

get W (toycol.toy): toycol.colour =red 0
where the verb, get, and named destination, w, are the only differences from the above ·
set definition. w denotes the user's workspace into which the relation satisfying the
predicate is to be placed.

The corresponding relational algebra expression of the query would be:

redtoys- select toycol colour= 'red'
result- project redtoys on toy

(2) Find blue toys other than balls.

get w (toycol.toy): toycol.colour = 'blue' A toycol.toy =/= 'ball'
where the Boolean and (A) is used to concatenate predicates . .As a relational algebra
expression,

blutoys - select toycol where colour = blue
result - select blutoys where toy != ball

(3) Find any one yellow toy.

get w (1) (toycol.toy): toycol.colour = yellow

The (1) imposes a quota on the number of tuples to be accepted; i.e., stop 'getting' as
soon as any yellow toy is found. C)

6 Databases And Relations

0

c

0

1.5 Da.ta.ba.ses and Data. Organization

Databases typically manage an underlying collection of files which can be very large
(several hundreds or thousands of megabytes). While the processing of operations on the data·
base could be made fast if the entire database were kept in memory, this is almost never possi··
ble. The files of the database reside on direct access storage devices, and relevant portions of
them are loaded into main memory as required. The cost of processing database operations
increases with the database size because (1) more disk operations are required in order to pro.
vide (2) more data to be manipulated. Shortcuts have to be taken.

An obvious shortcut is to reduce the amount of data which must be stored using compres·
sion techniques: e.g., front/end compression, multiple character suppression. Such compression
usually provides a saving only when applied to character strings (often the majority of the
database's contents), but is not particularly advantageous for binary fixed or fioating point
representations.

Other shortcuts aim at reducing the number of costly disk look-ups performed. These disk
operations pose the greatest expense to database performance. Disks are expensive because they
are slow compared to the speed of main memory in access time. The slowness arises from the
mechanics of disk storage technology, i.e., an access arm must be moved from one place to
another over the surface of the disk, and await the correct portion of that surface to be rotated
to a point where it is positioned directly beneath the arm. The final accepting of data to be
written or providing of sought data being read may involve multiple arm movements and rota­
tional delays owing to [os, not database] index lookups, block remapping, etc. Each such delay
is typically 35 milliseconds on a reasonably fast disk, with the result that disk bandwidth can be
as small as 20 Kbytesjsec on a medium sized minicomputer [McKu83]. An example to use in
comparisons: for a moderately sized relation of 10 mbytes, a sequential search which, on aver­
age, would require reading half the relation, would require four and one half minutes to com­
plete.

There are several ways to reduce this unacceptable sequential processing time. The sim­
plest is to ensure that the data is ordered and a binary search can then reduce accesses to
nearly logn . Such an ordering is advantageous so long as most accesses are made via values of
the key attribute. Queries which are concerned with attribute values other than that of the key
do not benefit from the ordering.

An ordering scheme which does not favour one attribute over another and provides full
advantage of ordering to all attributes equally was proposed by Orenstein (Oren82]. By cycli­
cally interleaving the bits representing the attribute values one remaps the tuple to an n­
attribute space in an ordering, z-order. The interleaving of bits represents, effectively, a decision
as to which half (the 0 or 1 half) of the remaining unpartitioned space to pursue, thereby
further partitioning the space. For example, the tuple from ~which is "ball red" becomes,
in z-ordert, 320C30233070105000 in hexadecimal. Searches for individual tuples or entire ranges,
based on any attribute or combination of attributes, are performed by constructing a z..ordered
'mask' and examining the subset of z..ordered space it isolates.

A logarithmic organization introduced by Bayer and McCreight [Baye72]is the B-tree, con­
sisting of nodes of the form:

t The bit numbering a.nd byte ordering within a. word produce ma.chlne dependent ;.orderings. The one shown a.bove Is for a.
DEC VAXll computer. The a.ttrlbute strings a.re terminated with nun bytes.

Data.bases And Relations 7

Po, (xl,al,p 1) 1 • • ·, (xl ,at ·Pt)
where Pi are pointers to nodes lower in the tree, Xi are keys, and ai are the indexed items.
Searches through the tree involve comparison of a search value with the xi on a page until some
xi is greater than or equal to the search value. If equal, the search stops, otherwise the pointer
Pi-l is followed to another node and the search continues there. Thus searching the tree requires
at most h accesses. The authors mention that a tree of height four accommodates over 200 mil-
lion entries.

An early modification to the B-tree design was the B *-tree wherein all data (the ai of the
B-tree) is moved to the leaves of the tree, and branch nodes take the form:

P o , (x 1•P 1) 1 • • • 1 (xl ·PI)
This has the desirable etrect of making the tree flatter by permitting more indexing entries per
branch node, and facilitating sequential access to the data.

A way to further increase the flatness of the B •-tree was presented by Bay er and
Unterauer [Baye77]. By replacing a key with a separator, a string which distinguishes the previ­
ous from the current entry, the entire key value need not appear in the branch nodes (now
denoted by (si ,pi)). The separator will be the most significant portion of the key which distin­
guishes two entries, i.e., a prefix, and thus is the minimal length string capable of distinguishing
the entries. A B*-tree making use or prefix separators in this way is known as a simple prefix
B* -tree.

0

The simple prefix B *-tree can provide a fast access index for a relation at the [relatively
cheap and tunable] price of maintenan~' overhead. When insertions of data entries cause a leaf
node to overflow, a new leaf node is generated, and the entries in the original leaf distributed
evenly across the two leaves, an event called a split. The split also requires a separator/pointer
pair to be inserted into a parent branch node to index the new leaf. This insertion may cause 0
the branch node to overflow, and it is similarly split, propagating an (si ,pi)) insertion into its ·.·
parent, etc. In the worst case the insertion causes the root to be split with the result that the
tree grows in height.

An enhancement to the split algorithm suggests that upon overflow, before performing a
split with its attendant overhead, we should attempt to redistribute node entries between the
overflowed node and one of its siblings.

The B*·tree, while providing quick access to entries, sutrers from the same favoritism for
which simple ordering of tuples in a tabular organization was criticized. To provide equally
rapid access on any attribute requires a separate B*-tree index for each such attribute, or a full
inversion index as suggested by Wedekind [Wede74]. To solve this, one could build the B*-tree
using the tuples' z-order representation.

All of the preceding deals witb. ways to reduce disk accesses at tb.e level of the database
programs. A lower level strategy can be employed when tb.e hosting environment of the data­
base system allows the database to physically organize its disk files in a way better suited to its
needs than is the more general purpose organization used by the hosting system for its work.
Database systems which implement this strategy tend to otrer better performance, albeit at the
expense of more ditricult implementation (Blas81, Ston80]

8 Databases And Relations

0

0
Chapter 2

2: The McGill Relational Database System

2.1 Overview

The McGill Relational Database System, MRDS, implements a relational database, supports
an ever growing family of relational algebra operators, and provides batched and interactive
access. Originally implemented in PL/I for MVS, it has evolved to versions in Pascal for MVS and
the Apple II microcomputer (Stanford and UCSD Pascals respectively). A partial implementation
in C to run under UNIX is described in chapter 3 of this report.

Access to a relational database is provided from a high level language (PL/I or Pascal) via
calls to a library of MRDS user callable routines. In addition, a high level query language, ALDAT

[Merr77], is supported.

Relations contain fixed length tuples of fixed length attributes, and only the character data
type is supported. Users receive workspaces into which they may write new relations, either the
output of transactions or copies of existing relations. The entire database (called in MRDS ver­
nacular the permanent database) resides in a separate space and is unmodifl.able by users,
thereby simplifying concurrency problems. Relations created in the user's workspace may not be
modified or deleted during sessional or program use. Workspaces may be deleted at session or
program termination.

C 2.2 Design a.nd Implementation

0

The permanent database is stored as a single file (as a direct access data set member in
MVS versions) divided into pages. Relations must be page aligned and tuples may not cross page
boundaries. MRDS performs its own page management using a fixed sized set of page frames and
least recently used page replacement. No indexes or file maps are maintained. All user and con­
trol data are kept as relations.

A database is managed by means of its three system relations:

rel holds data on each relation in the database (including, of course, the system rela­
tions): name of relation, tuple width, upper limit on size of relation, pointers (tuple
numbers) reflecting current read and write positions within the relation, and page
number where relation starts,

dom holds data on all domains known in the database: domain name, and ,length of attri­
butes in this domain,

rd has tuples which, for each relation, indicated by order of appearance, list the
sequence of domains within a tuple of the relation, and the byte offset from the start
of a tuple at which the attribute from the domain appears.

Tight upper limits are imposed on the system relations so that they can be kept resident in
main memory while the database is active, occupying the first two to four pages of memory.

MRDS g

Only upon termination of activity, normal or otherwise, on the database are the memory
resident relations flushed to disk.

Relations are of two types: general and constant. The general relation is what one usually
associates with the term relation. A constant relation is a vector (unary relation) of small size
which is to be kept memory resident. Constant relations are invariant following creation and are
kept in separate pages from general relations. Typically, constant relations find use in u-joins.

Early MRDS implementations used external sort/merge programs (SYCSORT in the MVS ver­
sions). As families of join became more clearly defined it became more attractive to have a
sort/merge resource internal to MRDS since the p.-, u-, families can each be implemented by a
'clever' sort/merge.

Error handling is performed by a central handler which understands four severities of error
from warning to "catastrophe", and issues an error message, an indication of the severity, and
an additional string passed to it by whatever code detected the error. The handler provides
MRDS with a reasonably fault tolerant attitude; control is usually passed back to the error
handler's caller, and MRDS execution resumed. A parameter in the handler keeps a severity
weighted tally on the number of errors, and causes the handler to abend MRDS execution upon
exceeding a preset threshold.

Exception handling is essentially non-existent. About the only run time exception recog­
nized is an excess number of I/O operations, resulting in forced termination . .. ~

MRIOS provides a library of user callable routines which may be invoked from any program-
ming language whose object modules can be linked with MRDS, i.e., that support the parameter
passing mechanism understood by MRDS. The advantage of this style of interface is that it gives
database access to programmers without their having to become acquainted with a query •
language.

At present, the user callable routine library contains the following routines:

eonrel(name,on_domain,size, value)
create the constant relation name on the domain on_domain whose absolute size is size.
value is either the address of a list containing the tuples of is the list itself

merjoin(rnamel,rname2,domlistl,domlist2,sizeof_domlists,outranme,mu)
perform a merge join {p-join) joining relations rnamel and rname2 on their respective
domains domlistl and domlist2, each domain list being of length sizeof_domlists, creating
the new relation outrname. The last parameter, mu, identifies which member of the p-join
family is desired

project(rname,on_domains,sizeof_domlist,outrname)
project relation rname on the domain list of length sizeof_domlist contained in on_domains
producing new relation outrname

printrel(rname,title,dest)
produce a 'formatted' listing of the relation rname's contents, printing the string title at
the top of every page. dest is a parameter which can be used to specify an output device or
file to which the listing is to be directed. Printrel makes no particularly insightful effort at
formatting, and tuples exceeding line length are simply truncated.

setup(dbname,disp)

10

always called before any other MRDS routine to initialize the database d bname; disp
identifies whether the database is old (already exists) or new (being created).

MRDS

0

c

0

sigjoin(rnamel,rname2,domlistl,domlist2,sizeof_domlists,outrname,sigma)
as merjoin, but with sigma specifying which of the u·joins to perform. The former divide
function is absorbed by sigjoin.

qtexpr(rname,attrib_val,qt_expr,num_or_syms,funtion,qt_pred,qt_eount,outrname)
produce the new relation outrname from rname by evaluating qt_expr on tuples in rname.
In addition, qt_count will return the quantity (or proportion, depending upon the
quantifier) of tuples satisfying the qt selector.

save(rname_list,sizeof_list)
provides way for user to add relations named in rname_list, currently in user workspace, to
the permanent database. The system relations are also updated to reflect new additions;
this routine is meant to be called last in an 'MRDS run.

'MRDS is an evolving system, hence the above list, while being correct at some point in
time, cannot be expected to remain so long.

The above user callable functions rely upon a lower level collection of routines in the 'MRDS
internal library. Routines at this level provide relations and tuples as output using database and
lower level objects.

2.3 System Design: Features and Goals

The current system began as a straight translation of the 'MRDS implementation written in
PL/1 and run under MVS, and hence reflected its two layered design of user callable and internal,
system level, routines. This has remained the dominant organization, despite a potentially more
attractive one which surfaced recently (see chapter 6). The layering, as in the original version,
assures that users see only relational entities.

'MRDSc does not at present support the permanent database and temporary workspace
organization of 'MRDS. Any relations created by a user during a run are kept in the database's
directory. However, and unfortunately, MRDSc is true to the original in providing no way to
delete a relation. This introduces the possibility of concurrency conflicts when more than one
person uses a database. Generally speaking, 'MRDSc is not a multi-user database system: it has
no facility for concurrency read or write control.

MRDSc is implemented under UNIX and is organized as shown in Figure 3.2. The choice of
UNIX as a hosting operating system brought about several changes. Firstly, individual relations
were separated out into individual files. A database now consists of several files, one per rela·
tion, and is contained within a single directory.

A second change occurred as a result of the way the UNIX I/O system performs file
buffering. For all that UNIX is touted as having a byte-stream I/O system, disk reads and writes
are inherently blocked at sizes ranging from 512 to 8192 bytes per transfer. UNIX will read the
entire disk block containing so little as a single user requested byte, first loading the block into
a system buffer, then satisfying the user request with a copy into user memory. Newer versions
of UNIX have more clever strategies than this, e.g., Masscomp's RTU bypasses the system data
space buffering, reading from disk directly into user memory. Because individual relations are
now held in separate files and because of the "double buffering" still in widespread use, the
buffer frame with LRU page replacement subsystem of 'MRDS is not implemented in 'MRDSc; it was
judged more efficient to let UNIX look after the buffering of its disk pages, rather than have both

MRDS 11

UNIX and MRDSc doing the same work.

UNIX does not support multiple storage volume files or directories (yet). This limits the size
of a database to that which can physically be stuffed onto a particular disk type. This
effectively constricts MRDSc to databases smaller than 600 Mbytes. By relaxing the constraint
that all database flies must reside within a directory, one could bypass this restriction at the
cost of some performance.

This implementation contains some new features not found in previous implementations.

The original version supported only character string data; MRDSc supports arbitrary data­
types: six primitive built-in types (character: string and individual byte, floating point [single
precision], and various sized integers), plus user definable ones. Character strings may be of any
length, but within an attribute, must always be the same length (as in MRDS).

Another new feature is the introduction of different data organizations. Relations may be
kept in the traditional tabular form (ordered or unordered), or with tuples in z-order, or as sim­
ple prefix B * trees, or any [sensible] combination of these. The actual data organization is tran­
sparent to the user level relations (beyond, of course, any effect that organization may have on
performance). Further, different relations may have different data organizations, and, in the case
of z..ordering, not all attributes in a tuple need participate in the ordering.

Beyond the specific objectives of supporting multiple data types and organizations, there
were four underlying goals. Foremost was speed, bought at the price of expending memory. In
tradeoff decisions, speed almost always won out over saving memory. Secondly was the view
that 'memory is cheap', and most computers now have it (both virtual and real) in abundance.
Tables, buffers, etc., are allocated with little regard for memory consumption. As much as possi-

0

ble, allowance for machines living in the 16-bit dark ages (e.g., PDPll's) was made: both compile •.
time and dynamically allocated structures can be downsized to assure fitting within 64K seg-
ments. Third was portability of code. As mentioned, data structures can be scaled to fit within
16 bit architectures, and operands are machine independent. Both portability and the fourth
design goal, open endedness, are served by extensive use of the C preprocessor's macro facility
to reduce the appearance of 'magic numbers' in the code to nil.

0
12 MRDS

c Chapter 3

3: Implementation Manual
This chapter describes how each major component of :MR.Dsc has been assembled, beginning

with an overview of the implementation, synopsis of its relational system elements, followed by
a detailed discussion of how each component works. The information here, with references to
the source code, should enable any systems programmer to modify, extend, or correct the code.

3.1 Overview

:MRDSc is an implementation of a subset of the full :MRDS described previously. It is writ­
ten in C for use under the UNIX operating system. Target machines for which this implementa­
tion is intended should have virtual memory as well as at least 1 Mbyte of directly addressable
real user memory: no attempt has been made to make the system or its run-time memory usage
small. Implemented is a subset of the system layer of 'standard' :MRDS, hereinafter called
MRDSc, with the introduction of support for simple prefix B*-trees and z-ordered data organiza­
tions, and multiple data types for relational data. Figure 3.1 shows the relationship of MRDSc to
its hosting UNIX system.

The reader is assumed to be familiar with systems programming under UNIX in C. Should
this not be the case, two of the references in the bibliography are recommended (particularly
Horspool): [Hors86] and [Kern84].

C 3.2 MRDSc System Elements

0

3.2.1 Da.ta. a.nd Domains

Data stored in :MR.Dsc relations is uncompressed, unaligned, and is one of the following types:

Type

string

integer

char
float

short

N a.me Length

DT_STRING var

DTJNT 2/4

DT_CHAR 1
DT_FLOAT 4

DT_SHORT 2

Implementation Manual

Description

a. string of ASCII valued bytes of
undetermined length, terminated
by a. null byte
a fixed point binary integer, 16 or
32 bits long depending on host
machine. (In reality, this data­
type is merely a.n alias for which­
ever of short or long is appropri­
ate)
a single ASCII valued byte
a single precision floating point
number
a 16 bit fixed point binary integer

13

long DT_LONG

I OAT ABASE INTERFACE
MRDSc I

I RELATION INTERFACE

.
I

I
I
I

I
I
I
I
I
I
j

I
I
I

I
I

CPU

1
L

TUPLE INTERFACE
.. -

BYTE INTERFACE

~

~~

SYS BUS

MEMORY

CTRLR

1/0 BUS

-' l
1:

J J L_ J
L-------------·--~---------

i UNIX
I

~
I :
I :
f :

!

I
I I
I

I
I
I
I
I
I

I . .
.
.
.

I
~
l --

Figure 3.1: How MRDSc Fits Into UNIX

4 a 32 bit fixed point binary integer

t

!

or is a. user defined data. type which is some simple combination of the above types. For exam­
ple, a. data type 'course number• would, at McGill, be described as being of type DT_STRING
The 'name' appearing in the table for these da.tatypes is the name by which they are known to
MRDSc source code (as defined in the header file mrds.h).

All data. in relations takes the form of attribute values drawn from some domain. The
information needed to manage all domains is contained in the system relation QQ.m., whose
tuples are of the form:

J domname X domtype length I

14 Implementation Manual

0

•

0

c

c

0

where:

Attribute

domname
X

width

length

Length

11
1

2

2

Description

a 10 byte domain name plus terminating null byte
a spare byte allocated for alignment of the follow­
ing attribute values; it is at present unused
a short integer identifying the data type (0 to 5,
or, DT_STRING to DT_LONG in the table
above) of the domain
an unsigned short integer specifying the length in
bytes of values in this domain (thus a maximum
length of 65,535 bytes)

The current implementation allows 128 distinct domains per database (committing 2K of
memory: 128 tuples X 16 bytes per tuple = 2048 bytes).

3.2.2 Relations

Relations consist of fixed width attribute values concatenated to compose tuples. There are
no delimiters demarking the position of attributes within a tuple, nor are there tuple delimiters.
A tuple may have up to 32 attributes in any combination of data types.

Each relation is stored as a separate UNIX file having the same name as the relation. All
relation files pertaining to a particular database must reside within one UNIX directory. Most
current versions of UNIX restrict individual files to be less than 4 Gbytes in length (the limit of a
32 bit address), hence no one relation may exceed this size. In practice, since UNIX also requires
files to reside entirely within one physical storage volume, a more realistic upper limit on rela­
tion size becomes 500 Mbytes. MRDSc will allow relations up to the maximum file size supported
by the host UNIX system.

The system relations rei and r.Q. control the relations. rel is concerned with the particulars
of a relation and rd with the organization of tuples therein. Tuples in rel are structured as:

I relname I mode I width I fd I Zmap I cursize I maxsize I rindx I windx I

where:

Attribute Length

relname 11
mode 1

Implementation Manual

Description

a 10 byte relation name plus terminating null byte
identifies the type of relation: constant, general,
flat, ordered, B •- tree organized, z-ordered

15

domtype 2

fd 2

Zmap 4

cursize 4

maxsize 4

rindx 4

windx 4

unsigned short integer giving width of tuple in
bytes (thus maximum tuple width is 65,535)
short integer holding the UNIX file descriptor for
the relation file; is -1 if relation file is not current­
ly open
bit map of attributes which are z.ordered (thus
limit of 32 distinct attributes per tuple)
current size, in bytes, of the relation. If relation is
organized as a B"'-tree then cursize represents
current size in tuples.
maximum size, in bytes (tuples for a B"'-tree or­
ganized relation), relation is allowed to become
current position within the relation of the read
pointer, implemented as byte offset from top of
file
as for Iirul.x, but for write pointer

A maximum of 85 different relations (including the three system relations) may be defined
per database, committing another 3K of memory (85 tuples X 36 bytes per tuple = 3060
bytes).

Tuples in rd are structured as:

where:

I relname domname I pos I

Attribute Length Description

relname 11 a 10 byte relation name plus terminating null byte
domname 11 a 10 byte domain name plus terminating null byte
pos 2 unsigned short integer offset within a tuple at

which attribute from domain 'domname' starts,
counting from 0

A maximum of 340 distinct m entries are allowed per database, committing a further 8K ·
of memory (340 tuples X 24 bytes per tuple = 8160 bytes).

Just as the system relations appear as entries in ID, so too are their corresponding entries
present in~ and m. Thus no database can have less than the following minimal content:

16 Implementation Manual

0

•

c rel:

rel 8 36 -1 OL 108 3060 OL 108L
do m 8

~
-1 OL 208 2048 OL 208L

rd 8 -1 OL 360 8160 OL 360L

do m:

relname X 0 11

mode X 2 1

width X 4 2

fd X 4 2
Zmap X 5 4

cursize X 5 4

maxsize X 5 4

rindx X 5 4

windx X 5 4
domname X 0 11

domty~X 4 2

len X 4 2

pos X 4 2

rd:

rel relname 0

rel mode 11

rei width 12

rei fd 14

rel Zmap 16

rel cursize 20
rel maxsize 24

rel rindx 28

rel windx 32

do m domname 0

do m domtype 11
do m len 13

rd relname 0

rd domname 11

rd pos 22

0
Implementation Manual 17

The table below compares total allocated space (in tuples) with space available for user relations
following installation of the system relations:

Relation Name

do m
rd
rel

3.2.3 Da.ta.ba.ses

Total Allocated Space

128
340

85

Available Space

115
325

82

MRDSc relations forming a database are grouped together in one UNIX filesystem directory
and are given a database name. The actual name of the directory is independent of the data­
base name, unlike the relationship between files and the relations they contain. A database is
further characterized by having an owner, who must be an authorized UNIX system user.

MRDSc keeps track of all the databases under its control by means of a special relation hid­
den in a directory reserved for MRDSc administration. The term 'relation' applies loosely; entries
in the file are not true tuples in the MRDSc sense and the file is more a table than a relation.

The 'relation' is named~ (called DBLIST in the source code) and is structured as:

where:

l dbs owner I dbs ident I dbs stat I dbs_dfitmode I dbs name I dbs homedir I

Attribute Length

dbs_owner 2

dbsJdent 2

dbs_stat 1
dbs_dfitmode 1

dbs_name 16
d bs_homedir 255

Description

UNIX system's user ident for the owner of the
database
a unique identifying unsigned short integer as­
sociated with the database (possibly its 'tuple'
number within~
current state of the database (see below)
flag bit map of default modes used to set up the
database for use (see below)
name of the database plus terminating null byte
null terminated full path specification to the
directory holding the database. The last charac-
ter of the path must be a '/'

The dbs stat flag is provided so that a pass through dblist will, at any time, provide an
overall picture of MRDSc activity on each of its databases. Currently defined values for dbs stat
mark a database as inactive (not in use and not known to be corrupted), active (in use), new
(being created), check (undergoing a consistency check before being made available for active
use) and corrupted (failed the consistency check). A database remains corrupted until either

18 Implementation Manual

0

0

0

0

c

restored to health under :MRDSc control (for which there Is at present no implemented support)
or fixed by hand.

The dbs dfitmode allows a database which is being set up for active use to be initialized to
a particular state depending on the fiag bits. At present no use is made of this value.

3.3 General Implementation Notes

3.3.1 Speed

Summarized here are some seemingly 'obvious' but often missed aspects of programming.
Underlying all considerations of speed, at some point, is a price to be paid in memory usage;
:MRDSc nearly always trades memory for speed.

The basic programming building block used in constructing systems is the procedure, func­
tion or subroutine. The organizational advantages to the program of breaking a complex opera­
tion into many interconnected simpler pieces are manifest. Such 'proceduralization' exacts a
noticable toll on performance, however (see Appendix 1 for a striking example). Parameters are
passed by value in C, with the merciful inconsistency that arrays are always passed by refer­
ence. The overhead of the actual context switch is not insignificant, particularly if the invoked
procedure has elaborate storage requirements in terms of automatically allocated variables. Gen­
erally, and especially in short procedures (which tend to be called often), emphasis should be
placed on (1) minimizing storage requirements and (2) maximizing the use of register variables.
This latter action reduces allocationjdeallocation of automatic storage and provides greater
speed outright. Since the number of registers available is highly limited (6 on a V AX), one must
'rank' register declarations so as to ensure the assignment of a register to variables which most
need them. Great gains In run time can be realized by using register pointers into arrays rather
than subscripted lockups.

In many cases a procedure is written to perform a simple action which is frequently
required. A common example is that of a .!ll.H function, which might be written as:

int ma.x(a,b)
{

return((a > b) 1 a : b);
}

Macros, supported by the C pre-processor, can yield faster running programs. The .!ll.H macro
appears much the same as the procedure:

#define MAX(a,b) ((a > b)? a: b)

but saves the stack overhead of parameter passing/returning and a context switch at the rela­
tively insignificant expense of a few additional bytes of memory. The improvement in run-time
performance is generally 10% or more.

As expensive as procedure calls are, a much more costly change of context is the use of
fill:k. followed by ~ in the child process. This involves system overhead associated with ini-0 tiating a new process and duplication of the current memory image of the process. In the child

Implementation Manual 19

this duplication is instantly made obsolete by the ~. involving swap and load overhead. 0
Such control flow changes can make certain problems easy to solve, but are very expensive with
respect to time and memory activity; the decision to use them should be made carefully.

Two common pitfalls with loops are (1) placing expressions which always yield the same
result within the body of the loop (some optimizers, not including C's, are clever enough to
correct this), and (2) use of an expression which does not change its value during loop execution
for testing the stopping condition. For example:

while (j < 3 * relcore[thisrel].width)
/* 'thisrel' not changed in loop *I

register int i;
i = j < 3 * relcore[thisrel].width;
while (j < i)}

The right loop uses one more word of memory, yet performs much more quickly than that
on the left (at least twice as fast) where the array lookup (itself involving a multiply) and a
multiply must be performed to yield the same result upon each iteration of the loop.

3.3 .2 Memory Utilization

This implementation makes no attempt to be conservative in its use of memory except when it
has reason to believe that the hosting environment cannot satisfy its greed. In such a case, allo­
cation at run time is as conservative as is reasonable. No attempt was made to use bytes and 16
bit short integers to conserve space; in an implementation where memory is 'tight', some modest
saving might be realized by doing this. An approximate breakdown of MRDSc memory utilization
is:

System support structures
Character strings, messages
Statically allocated workspaces
Executable binary
Total

13.6 K
11.3 K

1.0 K
41.5 K
67.4K

Not reflected here are (1) automatic storage allocation upon entry to procedures (but the
most demanding of these uses only llK, and is for a procedure called only once, dbck) and (2)
dynamic allocation at run time. The only component of MRDSc which makes large dynamic
storage demands is sortrel which at present asks for a sort/merge buffer of 200K. The most any
other component asks for is on the order of 1 - 2K (in z..order support), with most components
content with fewer than 100 bytes .

. A comparison of these figures with the size of the ~load module shows a tremendous
discrepancy. This can be attributed to the way the 'includes' have been set up. Had there been
separate, smaller '.h' files for separate components, then not every procedure would have had to
include the one, huge, mrds.h header. It is this one, all-encompassing header file organization
which inflates the load module by over 380K!

20 Implementation Manual

0

c

0

Some structures used in :rMRDSc have been carefully designed so as to use as little excess
space as possible. Wastage occurs in structures when bytes must be 'skipped' in order to ensure
that a. subsequent element will be correctly aligned. Compare, for example, these possible
declarations for the structure holding tuples in the rei system relation:

char relna.me[ll]; char relna.me[ll]; long Zma.p;
char mode; unsigned short width; char mode;
unsigned short width; char mode; long cursize;
short fd; short fd; char relna.me[ll];
long Zma.p; long Zma.p; long ma.xsize;
long cursize; long cursize; unsigned short width;
long ma.xsize; long ma.xsize; long rindx;
long rindx; long rindx; short fd;
long windx; long windx; long windx;

Size: 36 bytes Size: 40 bytes Size: 44 bytes

all contain the same fields of the same size, yet they vary in total size by as much as 22%.

There are two components in :rMRDSc into which memory management code was introduced.
Both z-ordering and B *-trees use complicated structures during the processing of a. particular z­
ordering or tree. Typically, some routine is operating on a. relation and at the tuple-at-a-time
level calls a. procedure to deliver or process the next tuple. The latter procedure refers to these
structures in order to understand the particular zc-ordering or tree involved. For one operation,
this routine may be needed several times per tuple (e.g., a. join on two z-ordered relations pro­
ducing a. third). The structures, particularly in the case or z-ordering, are costly to build and ini­
tialize. The solution was to build into these routines a fixed number of slots to hold the struc­
tures and to allocate to each execution of the routine on a. new target one slot using least
recently used replacement. The number of slots for each case is fixed at system generation time
in the header ftle mrds.h; currently there are six slots (see sections 3.8 and 3~Q).

3.3.3 Portability

No point is so contentious about C programs under UNIX as is their portability: code which
is assured to port effortlessly always requires effort. :rMRDSc makes a valiant (but undoubtedly
not totally successful) attempt at being portable to any UNIX system. This claim is not idly
made: the current implementation is well-traveled, having originated on a. PDP 11/45, it has
spent various stages of its life on an Amdahl 5850 running UTS under VM, a Masscomp 5500DP
running RTU, and lastly on a VAX 11/780 running 4.3BSD. Its gypsy upbringing has brought
about the removal of the more common portability pitfalls, summarized below. It must be
pointed out, though, that its wanderings have been confined chietly to 32· bit architectures
offering virtual memory.

There are some differences in the way different C compilers view the language. These are
generally innocuous, with one annoying exception being the way an array of strings, received as
a parameter, is to be declared. Some compilers absolutely required

char *parm 0;

Implementation Manual 21

whereas others were content with
char parm[J[];

Beyond dialectic differences, the next stumbling block concerns operand sizes, chiefly of
integers. Some UNIX implementations like those for the PDP 11 (understandably) and Cadmus
(not-understandably) still use 16 bit integers. In procedures where integers are ·casually' used
(e.g., loop counters) :tvmDSc declares variables to be integers without regard for what size
operand it gets. For parameters, and especially in structure declarations, it is vital that short
and long are used exclusively since these are universally understood as 16 and 32 bit operands
respectively. Much MRDSc code depends on structures being of a particular size: were elements
declared as int a ported version might produce structures of a different size.

:tvmDSc does have a rather cavalier attitude towards assigning ws to shorts and va"ce versa.
A C compiler is assumed to generate automatically the appropriate conversion code. A more
conscientious attempt has been made in more recently developed code to use explicit casts in
such assignments, but the bulk of :tvmDSc is free of such casting clutter.

Other operand data types are not so susceptible to these problems. Characters are 'univer­
sally' represented as individual bytes, and while :tvm.Dsc believes in ASCII characters, it is not
dependent upon character set, beyond requiring that a character which is iexicographically
greater than another be represented by a bit pattern which is greater.

0

The most difficult portability issue concerns UNIX library and system calls which are highly
variable from one system to another. In particular, :tvmDSc is largely dependent upon Berkeley
UNIX implementations. System V compilers/loaders may well have nervous breakdowns attempt­
ing to generate a load module. The macro definition feature of the C preprocessor can be used
to direct translation according to the version of UNIX. In some instances this produces nearly
unreadable source code (see timer.c), but is worth its weight in gold when routines end up port- •
ing effortlessly and correctly. An implementer is also directed to use older, often lower level, rou-
tines, rather than exploit newer ones available in new releases. For example, one is reasonably
assured that the r.e..ru! and write system calls will behave identically across UNIX versions; higher
level, potentallly more sophisticated ones, may not.

A serendipitous consequence of extensive use of the pre-processor to ease portability is ease
of extension. Concentration of 'global' variables and definitions of 'magic numbers' in header
files makes it much easier to extend existing features or add new ones by eliminating witch­
hunts through old code for occurrences of values which must be changed to accommodate new
code.

3.4 Program Organization

:tvmDSc is approximately 8000 lines of C organized as roughly 40 separate routines and one
"all inclusive" header file. Users can access it by plugging some interactive interface into it, or
by calling its user level procedures from a program in some programming language, and linking
with the mrds.a archive library.

Virtually all the source code is contained in a single directory with some supporting code in
adjacent ones. The price of this is hugely inflated symbol tables in object files; something later
versions may correct.

The header file includes system include files (like stdio.h and svs/types.h) required for any
of the procedures, and declares all global variables and #defines. The large number of these ()

22 Implementation Manual

c

c

0

latter definitions (approximately f!OO) arises from the desire to facilitate portability and expan­
sion.

Logically, MRDSc is built from the following major components:

• system relations and routines which maintain them,

• input/output subsystem which interfaces directly with the host UNIX system,

• the Tuple Access Method component which understands the different data organizations of
relations (e.g., z-ordered) and acts as a filter to provide data organization independence to
components logically 'higher' in the system,

• a small family of relational operators and the support procedures needed to implement
them,

• the error and exception handling component which deals with the unexpected,

• relational sort/merge required to support some relational operators, but is a self-contained,
hence separate, component,

• a test user interface: an interactive command interpreter of very limited sophistication
designed to facilitate testing of completed components (and not to serve as a general pur­
pose user in terrace)

The components are connected as shown in Figure 3.2. Generating the system is con­
trolled by a makefl.le which is straightforward to use. Standard flags which should be set when
compiling are: BSD if on a Berkely system (otherwise define OLDUNIX and hope for the best),
and one of VAX, Mesooo or AMDAHL depending on the family of CPU being used. XTRACE can be
defined if one wants to enable compilation of :#lfdefed debugging and trace code. The state­
ments print messages upon entry to, and usually upon normal exit from, a procedure. Be
warned: these debugging messages are all on or off, and if enabled, produce voluminous output.
Some procedures include further print statements which have to be explicitly un-commented to
provide further details of the procedure's workings.

The following guidelines are observed by MRDSc procedures:

• all have an explicitly declared type

• procedures of type .inli. return a negative value to indicate failure: FAIL (-1) indicates an
irrecoverable failure, other negative values imply that the procedure was partly, but not
totally, successful in performing its task; otherwise they return a non-negative value
whose meaning is peculiar to the procedure and the context in which it was used

• procedures of type *some type return (*some type)(NULL) to indicate failure to their call­
ers; otherwise they return a value whose meaning is peculiar to the procedure and the con­
text in which it was used

• a procedure always has a return statement; none 'falls off' the closing brace bracket

3.5 System Startup And Execution

The first order of business when MRDSc begins running is a startup sequence in which the
following occurs:

Implementation Manual 23

0
USER LEVEl/INTERFACE

I

I I I TEST USER INTERFACE I -
I

I I
TUPLEIRELATION SYSTEM ERROR&
OPERATORS& r-- RELATIONS& ,.._ EXECEPTION
SUPPORT PROCS MAINTOPS HANOLER

I J
TIMER I

~I=EI
TUPLE· ACCESS METHODS

I FLAT H ORO~ED H :;EE I
1_

• I 1/0 SUBSYSTEM I • f ! • UNIX

Figure 3.2: MRDSe Organization

0
24 Implementation Manual

0

c

0

EVENT LOGGER

RlltLm to caller
signalling IIITOI'

Locate
database

Figure 3.3: MRDSc System Sta.rtup Sequence

3.5.1 User Authorization Check

The checking performed to verify a user's access privileges is very simple minded. An
MRDSc system file maintains a list of UNIX user idents (as found in '/etcjpa.sswd') of authorized
users. The format of the file is simple: one uid per line, terminated by a colon. :tvfRDSc performs
a sequential read of this file in gooduser(), attempting to match the effective uid with one of
those in the file. Failure to match results in immediate termination of the program.

This authorization scheme serves only to deny access to unauthorized UNIX users. It does
not, nor is it intended to, provide security amongst authorized users. The current implementa­
tion of :tvfRDSc does not have any notion of selective access permissions; i.e., any authorized user
would be able to see any database. A partial solution to this, and one currently implemented, is
that only a database's owner may access it {but see below).

Implementation Manual 25

3.5.2 Session Logging

MRDSc maintains a log file (known in the source code as LOGFILE) wherein are recorded
startup and finishing times, along with the user ident and database name involved. The con­
sistency checking procedure also records its findings here. The log file is provided so that an
MRDSc administrator can monitor session and database activity, and in the event of crashes,
receive early notice of potential problems with a database.

The log file is a plain .ASCU file with entries time stamped to the nearest second, and con­
sisting of two fields: an event and an explanatory message. For a normal session, there will
appear four entries in the log file:

Event

INVOKED
CHECK
ACTIVE

CLOSED

Accompanying Message

the l!i.d of the user
database name and its owner's uid
database name and owner's uid; the presence of this event and mes­
sage implies that all consistency checks were successfully passed
database name

Should the consistency check . fail, rather than the event ACTIVE, CONFUSED will be
reported, followed by a TERM (for 'terminated') event.

More MRDSc activity may be logged in this file by adding calls to logent(l as desired. In •
particular, added calls to ~ would make it possible to obtain performance timings for rela-
tional operations to resolutions of one second. Such added logging could also facilitate con-
sistency recovery following a crash.

3.5.3 Database Selection

Upon successful user authorization, MRDSc tries to establish the identity of the database to be
worked on. If the database name was provided on the command line (via the '-n' option), lv.IRDSc
begins looking immediately. Otherwise it fails to~ a database and signals its invoking pro­
gram (such as an interactive user Interface) to this etfect. The invoker can then respond
appropriately, for example, by interactively soliciting the name of a database.

find db is used to determine if the name received corresponds to that of any known data­
base. The list of such databases is maintained in another MRDSc system file (known as DBLIST)
with one line corresponding to one database {see section 3.2.3). The lv.IRDSc administrator main­
tains this file by hand. MRDSc has a naive view of access permissions, allowing access only to
the database's owner. A way in which a database may be shared is to repeat its entry in DBLIST,
changing the uid ('owner') field on each line, leaving the name, path, and other information
unchanged; access control is then governed by regular UNIX file permissions.

If the database is located, a pointer to a structure containing its entry from DBLIST is
returned; otherwise (DATABASE *XNULL) is returned.

26 Implementation Manual

0

0

0

3.5.4 Consistency Check

Whenever a UNIX system is booted-up a check is performed on the tl.lesystems to assure
that they are consistent. On a medium sized system, 25 to 40 thousand files (or approximately
800 Mbytes), these checks take about 15 minutes. The consequences of attempting to run with
corrupt ftlesystems {partially or wholly lost tiles or directories, system panics and crashes) make
the performing of such checks worthwhile.

The consequences of running a database program on an inconsistent database can, on a
relative scale, be similarly disastrous. For this reason MRDSc ftrst performs a check on the data­
base upon which it has been asked to work. These checks were particularly valuable during
development of the system, since undebugged code frequently crashed leaving the test database
in a shambles. The fact that inconsistencies were reported prevented further damage and the
actual inconsistency reports were helpful in isolating the source of the failure.

The procedure ~ performs the consistency check after ftrst calling procedures to load
the three system relations into their respective memory resident structures. The routines loadrd,
loadrel and loaddom load the corresponding system relations and return the number of entries
encountered during the load (e.g., loadrel returns n, the number of relations in that database).
These load procedures check to ensure that the minimal quantity of system relation information
is present (currently, 3 relations, 13 domains and 15 rd entries, or, MINRELS, MINDOMS and
MINRDS in the header mrds.h). Failure to locate all system relation entries will abort the run of
MRDSC.

Assuming the system relations are intact, dbck itself begins examining them and any user
relations. The checks are limited to assuring that:

• for each relation encountered in ill there in fact exists a ftle corresponding to that relation,

• the ftle is the same size as the entry in rei suggests,

• the number of relations known in rei is the same as the number of relations mentioned in
rd and indicates where there are mismatches (i.e., total number of relations could be
correct, but 'distribution' might be wrong),

• every domain name appearing in m also appears in 42m,

All checks are run to completion and a count of the number of errors detected is returned
by ~. Normally the work is done silently, but by passing a non-zero (hence 'true') value for
the second parameter, dbck will issue an error message each time an error is detected, as well
informatory messages about what it is doing. A sample of an unsuccessful dbck appears below (
~was called with a 'true' second parameter value):

dbck: checking db 'plas'
Checking rel

**** Missing relation 'redparts '
**** Expected 7 but found 6 relations

Checking rd
End of check on database 'plas' : 2 errors detected

Upon reaching the point of having a consistent database with system relations resident,
dbck signals success to its caller. MRDSc continues to execute until: (1) the user requests termi­
nation, (2) the value of RUN has exceeded a preset threshold as a result of an excess of errors, or

Implementation Manual 27

(3) an irrecoverable error occurs. A fourth condition, present in MRDS but not implemented in O
MRDSc is to abend after too many 1/0 operations have been performed. If execution terminates
because of either of the first two reasons, the memory resident image of the system relations is
flushed back to disk and MRDSc exits. If an irrecoverable error occurred but MRDSc still has con"
trol, it will attempt the same graceful termination; otherwise it exits and the state of the data--
base usually becomes inconsistent.

Should the consistency check prove to be objectionable (presumably by taking too long), it
can be excised from the setup phase. If it is removed, then some mechanism must be made
available to setup with which it can determine whether the last time the target database was
'closed' it was done so in a controlled way, and hence may be assumed to be consistent upon
subsequent opening. This approach has been applied to UNIX fi.lesystems by Masscomp for their
RTU operating system and has been found to be not altogether reliable, i.e., RTU will occasion­
ally believe it has 'clean' fi.lesystems when it does not.

3.5.5 System Relations At Run Time

~ loads the system relations w, runn. and m into the arrays relcore, domcore and
rdcore. The arrays are statically allocated at compile time of size MAXRELS, MAXDOMS and
MAXRDS respectively. Once loaded into memory no further reference is made to the files contain­
ing the relations until syncrel ip called when MR.Dsc ends execution.

ru is updated by botn rdtuple() and wrtuple(l which adjust the read index rindx or write
index ~ following a read or write to point at the 'next' tuple to be read or written. In the
case of wrtuple. if the write action is appending to a relation, then cursize is also updated to •
reftect the increased size of the relation. ru is updated by mkrel() when a user level procedure
(e.g., select) which creates as output a relation runs. ~fills in the next available element (as
reported by the structure sysrelstat) in relcore with particulars on the new relation, then fills in
the appropriate entries in new elements of rdcore.

When a procedure needs particulars on a relation but only has the relation's name (as
would be the case for any user level procedure) w is consulted by ftndrel() which returns a
pointer to the appropriate array element, or (REL *)(NULL) if no such relation name exists.

Since there is no way to create new domains under the current implementation dom is a
read-only system relation, consulted by ftnddom() to confirm the existence of a domain and
obtain its datatype and length. ftnddom returns a pointer to an element in domcore. or (DOM

*)(NULL) when a sought entry cannot be found.

m is updated by ~ as described above, and is consulted by fi.ndrdO to answer ques­
tions about "what is where" in a relation. !lru!.r.!1 is designed to provide the m entries for one or
more relation/domain combinations, possibly all of them, for any relation. It returns a pointer
to the first m entry matching what it was asked to find, and sets a global integer rdents to
reflect the total number of m entries for the relation.

When MRDSc is shutting down, the memory resident version of each system relation is wri~
ten back to its disk file (in syncrel). Until that moment, the only current version of the system
relations is that in memory; future versions might wish periodically to flush these memory
images to disk during run time. A side effect of being memory resident is that access to the sys-
tem relations is restricted exclusively to the procedures described above. Thus, for example, one
cannot perform project or select on them.

28 Implementation Manual

0

c

c

0

In summary, there are three system relations (Till, dom and rd) containing all particulars
on relations, domains and tuple layouts (themselves included). They appear in the directory con­
taining the database as the hidden files ·.rel', • .dom' and '.rd'. The files are loaded (by loadrel.
loaddom and loadrd called from dbck) at startup into arrays of structures, and only the arrays
are used during run time. At the end of execution the arrays are flushed back to their fi.les.

The system relations are accessible only to MRDSc internal procedures. rei is updated by
.IIl.kll rdtuple, and wrtuple and is consulted by flndrel. ~is never updated and is consulted
by tlnddom. m is updated by mkrel and consulted by tlndrd. All are written by syncrel. Note
that by Till, s1Q.m and m above is meant "the memory resident images of".

Relevant Entries in header file:

#define Rei ".rel"
#detlne Dom ".dom"
#detlne Rd ".rd"

#define l\IIINRDS 15
#detlne l\IIINDOMS 13
#detlne l\IIINRELS 3

#detlne MAXRELS 85
#define MA.XDOMS 128
#detlne MAXRDS 340

mode bits

#define CONREL Ox01
#define ZORD OX02
#define PZREL Ox04
#define FLAT Ox08
#define ORDER Ox10
#define BTREE Ox20
#define APONL Y Ox40
#define WRINH Ox80

Implementation Manual

tlle names of the system relations used by loadrel. load­
dom, and loadrd. Changing these defines allows the
names of the system relation tlles to be changed since the
only reference to the fi.les by name occurs in the 'load'
procedures.

These reflect the minimum number of relations, domains
and m entries which must be present in the system rela­
tions. Any change to the composition of the system rela­
tions which would affect the minimal number of entries
must be reflected here; e.g., adding another attribute to
w would require changes to MINRDS and possibly also to
MINDOMS.

impose limits on the size of a database and composition of
its relations. Changes to these values have a small effect
on the overall size of the system: the size of the statically
allocated arrays increases by sizeof(REL) (now 36 bytes)
for each additional relation allowed, and similarly by 16
bytes for each added domain and 24 bytes for each new
m entry. There are some z-order procedures which allo­
cate arrays ·or these dimensions, hence automatic storage
requirements would change.

The byte field mode in the w struct conveys data organi­
zation and read/write access information as follows:
0 if general relation, 1 if constant relation
0 if not z..orderd, 1 if is
0 if not, 1 if is partially z-ordered
0 if data organization not flat, 1 if is
0 if not ordered, 1 if is
0 if not, 1 if is organized as B *-tree
0 if writable anywhere, 1 if append only
0 if writable, 1 if read only

29

#define MA.XRNMLEN 11
#define MAXDNMLEN MAXRNMLEN

sta.tic int relfd;
sta.tic int domfd;
sta.tic int rdfd;

typedef struct relrcrd {
cha.r relna.me[MAXRNMLEN];
cha.r mode;
unsigned short width;
short fd;

MRDSc does not necessarily ha.ve code to support a.ll •
modes, e.g., the current implementation does not under-
stand constant relations

maximum length for a relation or domain name, including
the null byte terminator. Changing these will have very
widespread e1fects {such as changing sizeof(REL)). Pro­
cedures directly a1fected include: ~ findrel, mkrel. and
onenrel (change to MAXRNMLEN) a.nd .z.. dbck, finddom,
ftndrd. mkrel, project, select. and £ (change to
MAXDNMLEN).

file descriptors for the system relations used (set) in the
respective load procedures. These are essentially redun­
dant; the member f.Q. of the w structure for each system
relation should be used for this, and these variables elim­
inated

structure used to hold one ill entry. For details on
members, see section 3.2.2; see also section 3.3.2 regarding
arrangement of members for alignment and minimal size
of structure if planning to add, remove or cha.nge struc­
ture.

long Zma.p,cursize,maxsize,rin dx, windx;
} REL; • typedef struct domrcrd {

cha.r domna.me [MAXDNMLEN];
cha.r spa.re;
short domtype;
unsigned short len;

} DOM;

typedef struct rdrcrd {
cha.r relna.me[MAXRNMLEN],

domna.me[MAXDNMLEN];
short pos;

} RD;

struct rsta.t {
in t n umrelen ts;
int numdoments;
int numrdents; } sysrelsta.t;

int rdents;

30

structure used to hold one ggm entry. For details on
members, see section 3.2.1; see a.lso section 3.3.2 regarding
a.rra.ngement of members for alignment and minimal size
of structure if planning to a.dd, remove or change struc­
ture.

structure used to hold one rd entry. For details on
members, see section 3.2.2; see also section 3.3.2 regarding
arrangement of members for alignment and minimal size
of structure if planning to add, remove or change struc­
ture.

structure holding current number of relations, domains,
and rd entries in a. da.ta.base. These values a.re used as
subscripts into the arrays of relcore. domcore, and rdcore.

globally used integer holding the number of m entries of
the relation for which 1llli!r.Q. was most recently ca.lled
(this variable is set as a side-e1fect; see section 3.5.5)

Implementation Manual

0

-

0

3.6 Input/Output

MRDSc performs input/output on several fronts. Firstly, it communicates with a user by
reading standard input and writing to both standard output and standard error. This makes it
possible to operate MRDSc "interactively" from script ftles, and to save output using script or
simple redirection.

The bulk of MRDSc lfO operations involve ftles (relations, to the user). The user is never
aware of an I/O entity except as a relation, while MRDSc internals must be concerned with rela­
tions, tuples, and bytes, and at the same time, the different data organizations supported. This
section concentrates on the implementation of the byte, tuple and relation interfaces shown in
Figure 3.1. The way in which procedures at the different layers connect is illustrated below for
reading a tuple from a z-ordered relation:

3.6.1 Byte Interface

·~
HIGHEST LEVEL READ (OUTPUT FROM getuple(} J
(DATA ORGANIZATION I RED ! BALL I INDEPENDENT }

I getuple() I

LOWEST LEVEL READ (OUTPUT '""" rdtuploCl ~
COAT A ORGANIZATION I320C3023307010SOOOX
PRESERVED)

I rdtuple() . I

(Z-oROERED TUPLE]

J' 1320C302330701osoooxl.

r

Figure 3.4: Read Access On a. z-ordered Relation

Implementation Manual 31

All relations under MRDSc are UNIX files, hence this lowest I/O level is appropriately embed- •
ded within UNIX and is implemented by its~ read, write. lseek, and close system calls.

Invariably one first issues an open call, providing a UNIX file name and a fiag wherein the
intended mode of access is specified. In response, UNIX returns a file descriptor which is the ele­
ment of the .JQ!l array assigned to the now open file. Typically UNIX imposes a limit of 20 simul­
taneously open files; the new 4.3BSD imposes no restriction. The file now opened is a stream
upon which direct access is provided by the !seek call. A single pointer to the current position in
the file is kept; it can be moved by a ~ or write to the first byte following that which was
just read or written, or by an ~ to an arbitrary byte.

MRDSc routines above this level avoid using ~ and write directly (except loadrel, load­
_ __.d...,o,.m..,.,, loadrd, and syncrel for obvious reasons). All procedures wanting to read/write a relation

must pass the request down until, at this level, the actual I/O operations are performed. The
UNIX lseek call does appear in higher MRDSc routines, up to the level of adtuple(see below).

The UNIX read and write system calls are surreptitious in their operation. A call to read or
write does not necessarily result in a disk I/O operation as UNIX performs read-ahead and write­
behind caching. And while UNIX documentation implies that reads and writes can be performed
on data of arbitrary size, the actual amount of data transferred to/from disk by UNIX is invari­
ably a multiple of the device's blocksize, irrespective of the user specified size. Further, most
implementations of UNIX perform 'double buffering' of read/written data. That is, a user
requested read causes some number of disk blocks to be read into a buffer in UNIX system data
space, then the actual data requested is copied into the user's specified buffer location
(Masscomp's RTU does not do this, but works with user data space directly).

Owing to the way UNIX implements its file I/O and the design decision to implement a •
database as a collection of separate UNIX: files, MRDSc does not perform any buffer management
in the style of the original MRDS where a database was a single paged file. Rather, the buffer
space allocated for each opened file/relation is minimal (see below).

3.6.2 Tuple Interface: Bottom Layer

This layer of MRDSc code translates relation/tuple I/O requests into 'tHe/record' I/O requests
understandable to the byte interface and the UNIX system calls it uses. The procedures closereL
ftushpage, ~ loadpage, openrel. rdtuple, §P.ltt, and wrtuple implement this layer.

openrel receives a pointer to a relcore entry and an access mode, and attempts to 'open'
the relation for input/output. It must first fiddle with the relation name obtained from the rei­
core entry since the latter may have trailing spaces to force it to MAXRNMLEN, but the filename
does not have these spaces, and, it must prepend the path to the database's directory. Follow­
ing this openrel uses a plain UNIX QIUU! on the file. If the open succeeds, the file descriptor is
saved in the f.d member of the relcore entry and a buffer is allocated for use with the relation.
Since UNIX is performing disk caching, attempting to minimize asynchronous read faults caused
by, e.g., read requests for uncached datat, the buffer allocated by openrel is one tuple wide.

The address of this tuple butrer is kept in the global array :b.Y.!kr.; the element of the array
used is that indexed by the file descriptor. Since many of the MRDSc procedures which request a

t 4.3BSD UNIX ma,y perform tills even better since a. user ca.n speei(Y the expected a.ctlv!ty pattern ror llle a.ecesses on the open,
e.g., sequential, random, etc.

32 Implementation Manual

0

http:Interla.ce

c tuple to be read/written already have their own buffer space allocated, particularly those sup·
porting B * trees, the buffer provided by openrel need not always be used. Thus, a procedure can
be assured that there will always be a buffer available for I/O should it not wish to create its
own.

closerel is used when work is finished on, or it is necessary to change the access modes (by
a close and r~open) of, an opened relation. The file is closed using a standard UNIX close system
call, the M member of the relation's relcore entry set to ·1, and the buffer space allocated by
openrel is released.

rdtuple asks UNIX to read tuple·width bytes from the file containing the relation. The
bytes read are placed in the default buffer for the relation, as provided by openrel. or in the
caller's specificed location. If rdtuple is invoked on a closed relation (not considered an error) it
calls openrel before continuing, opening the relation as read·only. rdtuple consults the relcore
entry for the relation being read to find the value of the read index, rindx. It then uses the
UNIX Iseek system call to ensure the file pointer will be at position rindx within the file. Finally,
it issues a read UNIX system call. Following a successful read, rindx is incremented by the width
of one tuple for all data organizations except BTREE in which case the pointer to the next leaf
entry is read from the relation and put into rindx. The intention is to leave rindx pointing to
the logically next tuple in the relation. Any operation for which such sequential reading is inap·
propriate will have to change the value of rindx before issuing its next rdtuple call.

wrtuple is precisely analogous, except that it has more checking to do before issuing a UNIX

~call. Specifically, it must determine if an illegal write operation is being attempted, and if
so, return failure to its caller. A write is illegal if it occurs anywhere on a read·only relation
(mode of which is WRINH), or if it fails to be an append to an APONLY mode relation, or, if by
appending to the relation, it's size would exceed maxsize. Beyond this, wrtuple performs the
same sequence of actions as rdtuple. leaving the write index incremented by the width of a tuple
in all cases.

That rdtuple takes into account the possibility of a B*tree organized relation and wrtuple
does not is one unorthogonal feature of the MRDSc I/O system. A B *tree may be read by a prg.
cedure as naive as rdtuple, but it cannot be updated so simply as wrtuple would have it.
Adding a tuple to a B *tree requires linked list manipulation, searches for the correct insertion
point to maintain ordering, and may involve node splits. For this reason, writing to a relation
organized as BTREE is handled by insert and mill. rather than by wrtuple.

iD.§ill relies on search to locate the point in the B*tree at which the new tuple should be
added (search is described in section 3.0.4). Unless search indicates that the tuple being added
is already present, !n§.W simply plugs the new tuple into the linked list or tuples in the
appropriate leaf page. The updated memory copy of the leaf page is then written back to the
file using fl ushpage.

fiushpage (and the companion loadpage for input} are to B *trees what wrtuple and rdtuple
are to fiat organized relations. Instead of reading or writing a single tuple from the relation,
these read or write single nodes, either leaves or branches. They are highly analogous to the
simple single tuple I/O routines they resemble: each performs a seek to the start position of the
target node and then issues a read/write call of 'nodesize' on the file.

Implementation Manual 33

3.6.3 Tuple Interface: Top Layer

This layer of the I/O system, implemented by getuple and adtuple, is the first layer seen by
user invoked procedures, e.g., printrel reads a relation by issuing repeated getuples. These two
routines do little else than issue calls to their counterparts in the next layer down, rdtuple and
wrtuple. The distinction is that, at this level, tuples are viewed independently of their underly­
ing data organization (see Figure 3.4). Thus, a printrel on a zr.ordered or B *tree organized rela­
tion can be performed without printrel being aware of that data organization. orintrel calls
getuple which, seeing a z-ordered relation, unshutnes the tuple it received from rdtuple. In the
case of BTREE organization, getuple behaves as if it is accessing a flat relation, but adtuple calls
insert rather than wrtuple.

3.6.4 Relation Interface

This is chiefly an output layer whose responsibility is to produce new output relations from
user invoked operations like oroject or ~. The procedures mklli and replace implements
this layer .

.mk!:.d begins by verifying that it can work with the parameters it has received and that
there is still space to accommodate more relations in the database. The verification process
includes checking that one is not trying a create a duplicate relation and that all requested
domains exist and are not duplicated within a tuple. The properties of the relation created by

•

ll'!.k..W, e.g., ~ ~ maxsize are determined from parameters sent by the caller. cursize. •
rindx. and~ are initialized to 0, td to -1, and~ is calculated by J.n.lwtl from the lengths
of the individual domains which appear in tuples of the new relation. The next available posi-
tions in w and m are updated to contain the necessary data. on this new relation and the file to
hold the relation is created .

.lllkul stoops to using a UNIX system call to create the file entry, rather than passing a
request down to the byte interface level, for expediency's sake, and because calls to Q.Pm at the
byte interface level expect the file to exist already. The file so created is closed upon mkrel's
return.

The ability to replace an existing relation is provided by replace. This need arises when
the data organization of a relation is changed, thus replace is called by sortrel and mkindex to
replace a current relation with a sorted or B*tree organized form. Each of sortrel and mkindex
perform their own file I/O on intermediate files used during their operation, and when finished
replace the previous relation file with the last of their temporary tlles. replace truncates the 'old'
relation file, then copies the replacement file into it. Upon successful completion of the copy
both tlles are closed and the temporary tlle is removed. It might be faster to rename the tlle
received from sortre1 or mkrel rather than perform a copy, but since these temporary flies are
not generated in the database's directory, a file copy of some description is unavoidable.

In summary, the I/O system of 'MRDSc refers primarily to its file/relational I/O (as opposed
to 'terminal' I/O with a. user) and is implemented in layers, as shown below in Figure 3.5

34 Implementation Manual

0

http:tempora.ry

c

RELATION INTERFACE:

mkreiO
replace()

TUPLE INTERFACE:

TOP:
adtt.pfe()
glllt.pfe()

I

I
DATA ORGANIZATION I
INDEPENDENCE:

zo
I

BOTTOM:

c1osere10 openraiO
flushpage() rdluple()
Insert() split()
loadpage() wrtupleQ

BYTE INTERFACE:

c1oseo
lseekQ
open()
read()
wrle()

Figure 3.5: The MRDSc 1/0 System

Relevant Entries in header file:

#define MAXOPNFILES 16

#define APONL Y Ox40

#define WRINH oxso

#define READMODE 0
#define WRITMODE 1
#define RDWRMODE 2

#define FROMTOP 0
#define FROMCUR 1
#define FROMEND 2

#define BLOCK 512

Implementation Manual

maximum number of simultaneously active files; used to
control number of elements in buffer array (see below)

relation mode bit indicating that any writing done to the
relation must be an append; overwriting existing tuples is
not permitted. This bit is checked in wrtuple

relation mode bit indicating that no writing is allowed on
this relation; it is write inhibited.

mode values to use with UNIX QP.!m. system call. Newer
MRDSc code uses mode names taken from <sys/file.h>;
any new code should stick to these latter names rather
than those in mrds.h (except that use of the names at left
assure portability by reason of self containment)

origin values to use with UNIX lseek system call. The same
observation applies regarding names in <sys/flle.h>.

35

static in t IOCOUNT = 0;

char *buffer[MAXOPNFILESJ;

3.7 Sort/Merge

size of an I/O block used in replace when performing its
copy, and in printrel as a liberal size to use for a work
buffer for one print line. The value 512 was selected when
MRDSc was still on a PDP-11; the value should be changed
to something like 4K (or whatever is returned in
st blksize in the stat struct for the file) and printrel
should use a separate value for a work buffer length

set upper bound on number of allowed I/O operations; not
used in current implementation.

an array of pointers to the buffers allocated by openrel;
the opened relation's file descriptor is used as the sub­
script into the array at which its buffer pointer is found

The need to sort relations arises in MRDSc most often to facilitate the elimination of dupli­
cate tuples from relations. It may also be used when converting a 'flat' unordered relation into a
flat ordered one.

•

The sort is organized around the UNIX qsort routine which, given a pointer to a memory
area containing the entries to be sorted, the quantity and length of each entry (i.e., entries must
be of fixed length) and a compare function, will quicksort the data. The compare function must •
expect pointers to two of the data to be sorted and return a value which is negative (first is less
than second), zero (first is equal to second), or positive (first is greater than second). MRDSc uses
as its compare function tnlcmp which uses information from .illml and m to compare tuples,
attribute by attribute until a determination can be made.

After convincing itself that its input parameters are acceptable, sortrel allocates a memory
region of size SORTLIM Kbytes for use.t The present implementation gives up immediately if it
cannot allocate the required buffer; future versions should iteratively try smaller sizes down to
around 32K before bailing out. sortrel determines how many tuples flt in the sort buffer and
decides whether a single sort or multiple sort/merge iterations will be needed. In either case it
allocates a string to contain the name of the temporary merge file, and sets the name therein to
a null string. sortrel enters a loop reading bufsize (if all is well; SORTLIM * 1024) bytes and cal­
ling .9§Qll.. and ~if needed, until all tuples have been sorted.

The merge subcomponent is slightly non-standard. It is designed to merge one file with an
'in core' buffer to save extraneous writes of temporary merge files. Upon ~·s return, an
attempt is made to open the previously used merge temporary file. If there was no such file, one
~ opened now and the current in core buffer written to it, with duplicate tuple suppression done
during the write and the file closed. If there was such a flle, ~ is called to perform a
straightforward merge, eliminating duplicate tuples. The output is written to a new merge tem­
porary file and the previous one is deleted. When all tuples have been sorted, the last merge
temporary flle replaces the flle containing the unsorted relation and sortrel returns.

t currently, SORTLIM =- 200 except on 16 l>lt machlnea, where lt c&nnot ever exceed 64

36 Implementation Manual

0

C Relevant Entries in header file:

c

0

#define l4ERTElvf.P "ftmpjsaQQQCOOC' template string used to generate unique names for merge
temporary files used with the UNIX mktemp routine

#define SORTLIM 200 size of memory region to be allocated for sort buffer; it is
in units of K, and, in the even of machines with 16 bit ad­
dressing (maximum segment size of 64K), must be less
than or equal to 64

#define DT_STRING 0
#define DTJNT 1

#defl.ne DT_CHAR 2
#define DT..,.FLOAT 3
#define DT_SHORT 4
#define DTJ,.ONG s

union UJhort {
short sval;
char cl,c2;

} short_coerce;

union u.Jnt {
int iva.l;

#ifdef INT16
char cl,c2;

#endif
#ifndef INT16

char cl,c2,c3,c4;
} int_coerce;
#end it

union uJI.oa.t {
tloa.t fva.l;
char cl,c2,c3,c4;

} fit_coerce;

union uJong {
long lva.l;
char cl,c2,c3,c4;

} long_coerce;

REL *reltosort;

3.8 Z-Order

names of datatypes used in tplcmp to identify which com­
parison to used for an attribute compare; see section 3.2.1

structures used in tplcmp to 'convert' values pointed at
by the char * pointers it receives to the necessary data.
type, without regard to alignment. This coercion is neces­
sary since tplcmp receives only a pointer to the tuple,
which may have any mix of different data types.

global variable containing pointer to ill entry for the relar­
tion to be sorted

Two entries in thew descriptor for a. relation contain information pertinent to z-ordering.
The byte~ may contain ZORD,PZREL, or 0 to indicate that all, some but not all, or none of
the attributes participate in the z-ordering. The long integer Zmap is a bit map denoting

Implementation Manual 37

attributes appearing in the ordering with a one bit corresponding to the attribute's position •
within a tuple. For example, if the third attribute in a tuple is the only one participating in z- ·
order, Zmap would equal 4.

The support for z..ordering is concentrated in ~ which performs both shuffling and
unshuffling of tuples. More precisely, z. only performs reshuffling: reshuffling a z..ordered tuple to
a non z..ordered tuple achieves the effect of unshuffling. z. receives tuples of one Zlillm value and
produces tuples represented by a new Zlillm value. It does this by first completely unshuffling
the tuple (new ~ = 0) and then, if required, shuffling the now unshuffled tuple according to
the new~.

z. relies on a somewhat involved collection of dynamically allocated structures to do its
work efficiently. Allocating these structures each time a tuple is to be reshuffled is prohibitively
expensive, so z. maintains a pool of 'slots' (which should never be fewer than three) holding the
necessary structures. Thus, the cost of reshuffling the first tuple is high, but subsequent tuples
can be processed cheaply. The slots are recycled using a least recently used policy.

The shufflingjunshuffling process is inherently circular: to shuffle j attributes of a tuple,
begin with bit 0 of attribute 1, then bit 0 of attribute 2, · · · , to bit 0 of attribute j, then
increment the bit number and return to attribute 1. This continues until all required bits have
been interleaved. If, at some point, one attribute runs out of bits, it is skipped over for the
remainder of the shufiling process.

This circularity prompts the allocation in z. of a circular list (zclist) which contains, for
each attribute in the z-ordering, the number of bits in the attribute and the bit position within
the tuple at which this attribute begins in a completely non z..ordered tuple (i.e., the position as
reported in m). plus pointers to the next and previous entries in the circular list.

The implemented z-ordering has the property that should not all of the attributes be •
involved in the ordering, the z..ordered bits are placed in the most significant bit positions of the
tuple, and the non z..ordered bits are pushed towards the least significant positions. For exam-
ple, in a tuple of 8 equal length attributes where only even numbered attributes are to be z..
ordered, the interleaved bit string representing attributes 2, 4, 6, and 8 appears in the bit posi-
tions formerly held by attributes 1, 2, 3, and 4; attributes 1, 3, 5 and 7 are concatenated into
attribute positions formerly occupied by attributes 5, 6, 7, and 8.

To accommodate relocated non-z-ordered attributes, z. uses a linked list (zllist) which, for
each such attribute, contains the byte positions where that attribute is supposed to begin and
where it does now begin, plus the pointer to the next list entry.

Since z. first unshuffles a tuple and then may need to shuffle it to produce a different z­
ordering, one would expect two circular lists to be needed. In fact, four circular lists are used:
two hold the abovementioned particulars (masters), and the other two serve as working copies.
The working copies are initialized from the masters each time a tuple is reshuffled.

The sequence of events is as follows (it is recommended that one follow the source code
when reading through these steps):

(I) locate the slot containing the structures corresponding to this relation and input/output
Zm.a.P. values. It is necessary but not sufficient that the relation names match since a relation
may have been used previously with different Zmaps.

38

If no slot is found, pick the least recently used one and initialize its time stamp, set up the
particulars for this new reshuffling (pointer to ill entry, 'to' and 'from' ~ values,
number of attributes per tuple). Free any previously allocated list structures associated with
this slot, set pointers to NULL and begin building new lists. 0

Implementation Manual

c

0

(2)

To build the lists proceed attribute by attribute, from most significant to least. If the bit
position in the 'from' ZJnru2. corresponding to the current attribute is set, attach another
entry to the circular list, initializing its data members to the length and starting position (in
bits) within the unshuffled tuple. Otherwise, attach another entry to the linked list, initializ­
ing its 'to' member; the 'from' member must be done later.

Having now generated the circular and linked lists needed to unshuffle the tuple, repeat the
exercise to generate corresponding lists for use in producing the new z:.ordered output tuple,
if ne.ce.ssary.

The 'from' positions in the linked list(s) can now be initialized in a single pass through each
list.

Finish setting up the slot by allocating a work buffer to hold one tuple, and the working
copies of the circular lists.

Given a slot for the current relation and its reshuffling, unshuffle It. Unshuffling is done in a
loop which iterates once per bit now participating in the z-ordering. The unshuffling uses the
tuple-width work buffer in the slot by first clearing every bit therein. Subsequently, for each
set bit in the z-ordered tuple, set a bit in a byte-sized mask, and shift it by the current out­
put bit position mod 8. For example, if the current bit is bit 3 in the third attribute which
began at bit position 32 in the tuple, set bit 11 mod 8 in the mask then circular shift the bit
by 35 mod 8 and OR the byte mask with the byte in the work buffer determined by divid­
ing the output bit position by 8. Continue going around the circular list, each time decre­
menting the count for that attribute of the number of bits participating in the z-order.
When the count becomes zero, this entry in the list is skipped, until all shuffled bits are
unsh uffled.

Now, any bits which were not involved in the z-order must be relocated to their correct
attribute positions through a straightforward byte copy using the 'from' and 'to' values in
the linked list.

(3) Now the tuple is completely unshuffled: if the 'to' ZJnru2. is 0, return the tuple as it now is.
Otherwise begin shuffling it following the same operation as above, by going through the cir­
cular and, if necessary, linked list(s).

(4) before returning, re-initialize the working versions of the circular lists.

There is room for some refinement to A. in terms of its execution speed. For clarity of code
the principal variable names should be changed from their current cryptic, but meaningful,
values.

Relevant Entries in header file:

#define ZORD Ox02
#define PZREL Ox04

#define ZSLOTS 6

typedef struct zcirclist {
long numzbits;
long outposn;

hnplementation Manual

masks used to test a relation's mode to determine if all
(ZORD) or some (PZREL) of its attributes participate in z:.
ordering

the number of slots for structures

89

Beginning with the z-ordered tuple from Figure 3.4,
320C30233070 I OSOOOX, and knowing that there are two attributes per
tuple, write out the tuple In binary, distinguishing alternate bits:

3 2 0 c 3 0 3 0 7

00 11 00 I 0 0000 11 00 00 11 0000 00 I 0 00 11 00 11 0000 0 tl 1 ...

By cyclically recombining 'like' bits, one arrives at the unshuffled
attribute values:

0101 0010 0100 0101 0100 0100 ...
R E 0

0100 0010 0100 0001 0100 1100 ...
B A L

Figure 3.6: Unshuffling A Tuple

struct zcirclist *next;
struct zcirclist *prev;

} ZCLIST;

typedef struct zlinklist {
int tounz;
int fromz;
struct zlinklist •next;

} ZLLIST;

typedef struct Zordslot {
REL *zrptr;
long zactime;
long tomap;
long frommap;
ZCLIST *fromz;
ZCLIST *toz;
ZCLIST *Wkfrom,*wkto;
ZLLIST *from). *tol;
char *tbut;
int fromzbits;
int tozbits;
int zrdents;

} Zslot;

40

circular list member used in shuffling/unshuffling;
members contain pointers to 'previous' and 'next'
members, as well as the length of the attribute in bits,
nymzbits. and the starting position of the attribute as a
bit offset from beginning of tuple, outposn.

linked list member used in shuffiing/unshuffiing; members
contain pointer to 'next' member, the positions (measured
as bit offset from start of tuple) from which the tuple is
ta.ken, fromz. and to which it is shifted, toz.

structure of a slot member; members are: pointer to the
w entry for the relation occupying the slot, *zrptr. the
time of most recent access used by the LRU code, zactime,
the frommap and tomap ~values to guide reshuffling,
pointers to the circular lists used in unshuffiing, fromz
and shuffling, toz. and their corresponding working copies
wkfrorn and wkto. pointers to the linked lists froml, and
!Ql, a pointer to the working tuple buffer, tbuf, how many
bits are now in ~order, fromzbits, and how many are to
be in the output z-order, tozbitS, and the number of n1
entries for this relation, zrdents

Implementation Manual

•

0

c

c

Zslot zslot[ZSLOTS]; the array of slots used by z.

3.9 B* -Trees

B *trees are supported by a collection of procedures as well as a totally different file organi­
zation from that used for 'flat' relations. Tuples appear only in leaf nodes and are linked into
one linked list to allow rapid sequential processing. The sizes of leaf and branch nodes can be
determined by the user for a particular tree and are independent of each other. For best perfor­
mance, they should be chosen as multiples of the storage device's blocksize. Similarly, the load
on leaf and branch pages is user selectable, and independent for leaves and branches. That is,
the amount of used space within a node is selectable, as a percentage: when a node is split,
tuple distribution between the overflowed node and the newly created one will leave the
overflowed node as full as has been requested. The usual fill percentage is 50.

3.9.1 File Organization

A B*tree has three types of entries: leaf and branch nodes, and a first-block which contains con­
trol information for that tree (see typedef struct Xflrstblock, below). It records the size and per­
centage fill for branch and leaf nodes, the name of the relation and several addresses. In the
context of B*trees, addresses may refer to the offset from the start of the file (disk address), or,
a memory location at which a node page has been stored for manipulation (memory address).
The addresses kept in the first block include the disk addresses of the root node, first logical
tuple in the relation, and of the current branch and leaf nodes. The first block is a fixed 512
bytes, not all of which are used. The size is chosen as being a convenient block or fragment size
for rapid handling under a 4.1BSD or higher ftlesystem.t

3.9.2 Branch Nodes

Branch nodes are structured as shown in Figure 3.7.

The node has an 8 byte header which identifies the page as being of type branch, possibly
the root (STATUS byte), an unsigned short indicating how many bytes remain free for use
(SPACE), thus no node can be larger than 64 Kbytes, and a pointer to the node's predecessor
(which is NULL if this is the root). It is absolutely essential that this header on branch nodes
have a size which is a multiple of 4 since the p 0 pointer, a long integer, is concatenated to it
and must be on a 32 bit boundary.

Following the node header begins a linked list of entries which is entirely contained within
the node {i.e., the list links only those entries in this node). Each entry has a NEXT member
which is an unsigned short holding the offset from the starting location of the node to that of
the next entry, or 0 for end of list. 0 is assured to be a safe terminator since no entry can start
at an offset smaller than the size of the node header.

t For best results, the llrst-bloek really should be the blockslze ror the device on which the Die resides. Unfortunately this can
be quite wasteful as only about 60 bytes a.re used, and some devlees, e.g., OSX:::RM:lS, under UNilC'. have 8K block sizes.

Implementation Manual 41

a byte page neader
__.,..,_

PREDECESSOR I

)
I •

~
P
0

entry

<S. P) entry

Figure 3.7: Layout of a Branch Node

The p 0 entry consists only of a .lml..g_ holding the disk address at which a child node begins,
and the abovementioned NEXT pointer.

The (si ,pi) entries are somewhat more involved. Since the separator is of variable length,
and ;ordered data must be accommodated, the first member (an unsigned short integer) of an
(si ,pi) entry specifies the length in bits (thus maximum separator length is 8 Kbytes). The
separator begins immediately after the length indicator, and is aligned to the nearest byte by
padding, if necessary, with zero bits on the right. The next member of import is the pointer
which, being a lQn.g, must start at a. 32 bit boundary. The location at which the separator ends
may or may not satisfy this requirement, thus a variable number (0 · · · 3) of alignment padding
bytes is appended to the separator. By thus guaranteeing that the pointer is correctly aligned,
one also guarantees that both the NEXT member of this (si ,pi) entry and the SEPLEN member of
the physically next one will also be aligned. It has been observed that the cost in disk space of
this alignment padding is acceptable when weighed against increased processing time necessi­
tated by unaligned data (see Appendix 1).

A related alignment consideration is that the determination of how many alignment pad­
ding bytes will be necessary is made based on the disk address (within the node) mod 4. When

•

•

these disk pages are loaded into memory buffers it will have to be the case that the memory o
42 Implementation Manual

c

c

0

address within the buffer mod 4 has the same value. This condition is guaranteed by dynami­
cally allocating buffers with the UNIX malloc call, which assures that the requested memory
begins at a 32 bit boundary. This assumes that the disk pages always start on a 32 bit boun­
dary, which seems assured.

Another vital property of branch nodes is that they must contain no holes. This is impera­
tive since the way space on the node is allocated for new entries is by appending, starting at the
node address + (nodesize- header_length- space).

A branch node grows as entries are added to its linked list by insert or §Iill.!i. until an
attempt to add another entry would require more space than is available. At that point §Iill.!i. is
called (possibly recursively) to resolve the overflow. The root of the B *-tree will initially appear
512 bytes into the file, i.e., immediately after the first-block. Following that node will be as
many leaf nodes as the root can index. When the root must be split, two new branch nodes are
appended to the file, one becoming the brother of the now former root, with the other becoming
the new root. It is debatable whether there is a significant advantage to keeping the root at the
same physical location within the file, particularly given the small number of accesses which are
made to the file during a search (see Table VII, Appendix 1). Moreover, the current implementa­
tion does not attempt to enforce any particular control over where branch and leaf nodes
appear physically within the file. This is justified by, as mentioned, an expected small number
or access to 'pinpoint' a particular tuple, and, by the constraint of having to live within a gen­
eral purpose, mult-userjmulti-tasking filesystem. Were :MRDSc to have direct control over its
own physical I/O devices, more effort would be directed towards optimal disk layouts for B *tree
files.

3.9.3 Leaf Nodes

Leaf nodes are structured as shown in Figure 3.8.

In addition to the status, space and predecessor information found in a branch node's
header, leaves have a pointer to their 'successor', i.e., the node at which the linked list of all
tuples in the relation continues from this node. This may be used in order to know what page
to read next during sequential processing of tuples. Since the first physical entry in a leaf node
need not be the first logical one (as is occurs with branch nodes), an offset to the first logical
entry in the node appears in the header.

Data entries in a leaf consist of a tuple followed by a long pointer to the next logical tuple
in the relation, which may or may not be on the same leaf page. As was the case with branch
nodes, the pointer must be assured of being aligned on a 32 bit boundary; the way this is imple­
mented is different for leaves. Since the length of each tuple is knowable (either they are of fixed
length as required by this MRDSc implementation, or they are variable and the length can be
determined), and the length of the pointer is fixed, the starting location of the tuple within the
leaf is chosen so that the pointer, which begins immediately after the tuple, will begin on a 32
bit boundary. While t.his introduces 'holes' in the leaves, since the entries are linked by pointers,
the holes are transparent. This alignment scheme is considerably simpler than that used on
branch nodes and should perform slightly better. Future implementations should retrofit it to
branch nodes.

Implementation Manual 43

I STATUS X SPACE PRED succ OFFSET

HEADER

Figure 3.8: Layout of a Leaf Node

3.9.4 Procedures

Manipulation of relations in B"'trees is as different from that of fiat relations as are their
respective file organizations. The positioning of the software components within MRDSc attempts
to make these differences transparent to components higher in the system.

For any component of MRDSc wanting a tuple from a B"'tree organized relation, the stan­
dard getuple will provide the tuple currently indicated by the rindx member of the relation's ill
entry. Repeated calls to getuole provide logically sequential tuples.

0

0

To get a particular tuple, the procedure search is used. search uses the best strategy it
believes can be applied to the relation in question, and for B"'trees will set-up several dynami­
cally allocated structures needed for a search through the index. As with the structures required
to perform z-order reshuffling, these structures are allocated to an available entry in a pool of
slots, using LRU replacement. The slot holds the first-block for the B "'tree, and the memory
regions to be used as buffers for branch and leaf nodes (1 each) are allocated and assigned to the
slot. Following this set up work, references to the B"'tree occur via pointers to its ill and Xl:Q.
entries. This overhead for a first access on a B "'tree is slight compared to that involved in 0
44 Implementation Manual

c

c

0

setting up Zslot entries since there are no complex structures to generate and initialize. search
returns the disk address of the sought tuple, if it exists, and this can be used to set rindx for a
subsequent call to getuple.

Adding tuples to a B *tree organized relation is performed by insert, which uses search to
locate the insertion point; insert works only on leaves. Its operation is straightforward, involving
the linking in to the list of tuples the new entry and updating the SPACE entry in the modified
node's header. The node targeted for the insertion is loaded into the leaf buffer allocated in the
Xfb slot for the relation using loadpage and is rewritten by flushpage after modification. UNIX

disk write-behind caching ensures that insertions do not become bogged down needlessly waiting
for updated disk writes.

If insert discovers there is insufficient space on the leaf, it calls split to resolve the space
shortage and complete the insertion, i.e., the entire insertion becomes split's responsibility. §P.ill.,

in the current implementation, is not as clever as it might be, in that it always performs a page
split. split allocates three memory buffers the size of the node it has been asked to split. Two
will become the buffers of the new sibling pages: one 'brand new', the other a new version of the
node now being split. Apart from ease of implementation, this arrangement offers the security
advantage that should something go wrong within split, the original page's contents remain
undisturbed, so that split can return FAIL to its caller without corrupting the B *tree. t

The entry which causes the overflow is linked into the list of the overflowed page by set­
ting the 'pointer to next' of its logical predecessor in the list to a "magic" value which is under­
stood by split to mean that the next entry in the list appears in a dynamically allocated struc­
ture, and not in the memory buffer containing the node. split then begins generating the buffers
for the new siblings by copying the list from the overflowed node. Upon encountering the magic
pointer, the new entry is written into the node buffer. When the replacement node buffer
reaches its prescribed flU percentage, copying of the linked list continues in the node buffer
corresponding to the newly generated node, until the list is exhausted.

At the point of switchover from one node buffer to another, split must ensure that an
(si ,pi) entry is available for later insertion into the split node's parent. If a leaf page is being
split, split must generate a new separator, for which it calls mksep. Otherwise, a branch node is
being split, and the (si •Pi) entry is generated by taking the separator from what will become
the first entry of the new branch node (the corresponding pointer becomes the p 0 pointer) and
placing it, with the disk address of the new branch node (at this point unknown), in the parent.
The disk address will be determined after the linked list has been completely copied and the
node buffers are ready to be written.

The node buffers are written out, one replacing the formerly overflowed node, the other
occupying hitherto unused disk space in the file. Now the parent node must be updated. If the
root has just been split, then another branch-node-sized buffer is set up and the relevant header,
p 0 , and (si ·Pi) entries are installed and this buffer written out, becoming the new root. Other­
wise, upd parent is called to insert the new (si •Pi) entry into the parent node. This insertion
will fail if the parent page cannot accommodate the new entry, and §P.ill. will be called to resolve
this insertion. This recursion can continue to the point of splitting the root of the tree.

Upon eventual return from a split, the caller can then itself return knowing the insertion
has been completed.

t There Is still one situation where a rauure In ~ might corrupt the tree; see source listing for details. This case should be
easy to correct.

Implementation Manual 45

There are some lower level routines used by search. ~. and split which are part of· •..
MRDSc B *tree support.

cmpseptup compares a separator in a branch node with a given tuple and returns a value
indicating the separator is greater than, less than or equal to the tuple. It uses a pool of slots
holding information about the relation being worked on, e.g., number of m entries, domain type
and length of each attribute. These vital statistics are easy to obtain at the expense of pro­
cedure calls; if a relation is to be worked on extensively it will be faster to make a 'local' copy of
these particulars. Unlike the z-order and X& slots, these slots are not essential to its operation,
but simply save time.

cmpseptup continues its comparison until a determination has been made which occurs at
the first difference or when the separator is exhausted implying "equality". Equality of separator
and tuple has to be understood in a restricted context: for as much tuple as appears in a separa­
tor, there was equality. Procedures which use cmpseptup must so understand what it reports.
cmpseptup can accept both z-ordered (completely or partially), or plain tuples and separators.

When splitting a leaf, an (si ,pi) entry must be generated for the leafs' parent. mksep is
responsible for making the separator. In the current implementation, only z-ordered tuples are
guaranteed minimal length separators; otherwise the separator will include the fewest complete
attributes (except strings) needed to differentiate entries. That is, if an attribute is not a string,
it will either appear in its entirety, or not at all, in the separator. For example, in a tuple of
two attributes (a floating point value followed by a string), mksep will produce a. separator in
which all of the floating point value appears, followed by (if necessary) as much of the string as
is needed to differentiate the two entries. For a z..ordered tuple, only as many bits (padded on
the right with zero bits to the next byte boundary) as are required for differentiation appear in
the separator. If a tuple is partially z-ordered, and two entries cannot be differentiated by inclu­
sion of all z..ordered bits, then the remaining non-z..ordered attributes are added one by one
until an effective separator is generated.

flndbro was written for split to use in order to locate a node's sibling(s). split could then
examine them to determine if a split was avoidable. While the current implementation does not
support split avoidance, flndbro remains for use when this feature is implemented. Given
pointers to theW and Xfb entries for the relation, and a pointer to the node whose siblings are
sought and that node's mode {leaf, branch, root), tlndbro will return in two longs the disk
addresses of the nodes, or zero for non-existent siblings.

sepentlen determines the complete separator length of an s entry in an (si ,pi) pair. That
is, it returns the length of the actual separator, plus any alignment pad bytes, plus the length of
the unsigned short integer which precedes the separator. It is used when one knows the address
at which an (si •Pi) entry begins, and wants the offset thence to the Pi pointer within that
entry.

•

uod parent is used by split following a successful split and redistribution of entries to
insert a new (si ,pi) entry in the parent node. The parent node is updated by loading into a
local buffer the parent of the page which has just been split. The entry for the split page is then
sought by a linear search along the linked list in the node and when found, the (si ,pi) entry for
the child node's new brother is linked into the list. If there is not enough space for the new
(si ,pi) entry, upd parent rearranges some buffered pages (notably the branch page buffer in the
x.t12, slot is copied then overwritten with the parent page which has now overflowed) thereby
'faking' parameters for a recursive call to ~. Following a successful split, the page originally
being split must be reloaded from disk to get its parent (which may have changed). That
parent page, whether the same or different, is reloaded and upd parent iterates. Should it still 0
46 Implementation Manual

find insufficient space for the needed insertion it gives up, rather than enter a loop; such a situa-
,_.. tion is indicative of a problem. After successful updating of the parent page, that page is rewrit-
~ ten and upd parent returns.

c

Not directly used by the B *tree supporting routines, but part of the overall B *tree sup­
port is a procedure which converts a flat relation into a tree. mkindex receives a pointer to the
target relation's rel entry and parameters specifying sizes and fill percentages for branch and
leaf nodes. From these, in a temporary file, it creates the B *tree to contain the relation. Firstly,
mkindex builds the appropriate first block entries, then root and leaf pages. These pages are
written out, and then a loop performing rdtuples (to keep the tuples in z-order if they already
are) and inserts is entered. When the loop exits after all tuples have been read, the original file
containing the flat relation is replaced using replace (see section 3.6.4), and the rei entry
updated to reflect the new organization of the relation.

Relevant Entries in header file:

#define ZORD OX02

#define PZREL Ox04

#define BTREE Ox08

#define XFBSLOTS 6
#define SEPSLOTS 6

#define BTEMP "B::xxxxxx''

#define XLEAF Ox01

#define XFRSTLF OX04

#define XROOT OX02

#define XBRANCH oxoo

#define XHDRLEN 8
#define XLFHDRLEN 14

#define x::tv1ASK 00600

#define XPGMINFIL 5
#define XPGMAXFIL 99
#define XPGDFLTFIL 60
#define LPGMINFIL 5
#define LPGMAXFIL 99
#define LPGDFLTFIL 85

#define LSPLITFILL 10

#define XPGMINSIZE 512

hnplementation Manual

masks used to test a relation's mode to deter­
mine if all (ZORD) or some (PZREL) of its attri­
butes participate in z-ordering

the number of slots for structures

template string for use in generating tem­
porary file name using UNIX mktemp for use in
mkindex

masks used to test a node's status to identify
it as a leaf (XLEAF) or a branch (XBRANCH); if
a leaf, is it the first logical leaf (XFRSTLF) or if
a branch, is it the root (XROOT)

express the size of the node header structures
for branch (XHDRLEN) and leaf (XLFHDRLEN)

nodes. These should be done away with and
where now referenced in code be replaced with
appropriate sizeof()s. Note that XHDRLEN
must be a multiple of 4.

file creation mask used when B *tree files are
created

mm1mum, maximum allowed and default fill
factors for branch (XPG ...) and leaf (LPG ...)

nodes

47

#defl.ne XPGMAXSIZE 8192
#define XPGDFLTSIZE 4096
#define LPGMINSIZE 512
#define LPGMA..XSIZE 32768
#define LPGDFLTSIZE XPGDFLTSIZE

#define XFBSIZE 512

#define X..SPCOFF 2
#define X_?REDOFF 4

#define L_SUCCOFF 8
#defl.ne L_.FLEOFF 12

#define MAGICLINK oxtttr

#define DT..J;TRING o
#define DTJNT 1
#defl.ne DT_CHAR 2
#defl.ne DT_.FLOAT 3
#defl.ne DT_SHORT 4
#define DTJ.,ONG 5

typedef struct Xflrstblk {
long rootpos;
long first_tpl;
long xpga.t;
long lpgat;
char *xbutat;
char *lbufa.t;
long xa.ctime;
in t xpgflll;
int lpgfill;
int xpgsize;
int lpgsize;
char mame[M.AXRNMLEN];

48

minimum, maximum allowed and default sizes
of branch (XPG ...) and leaf (LPG ...) nodes

size of the first block of the B *tree which
holds characteristic and status information for
each tree (see Xftrstblk below)

offsets beyond start address of a branch node
at which the unsigned short indicating space
remaining on the page (X_SPCOFF) and the
long pointing to this node's predecessor
(x.....PREDOFF) begin

offsets beyond the start address of a leaf node
at which the unsigned short indicating space
remaining on the page (L_SPCOFF), the long
pointers to this node's predecessor
(L_?REDOFF) and successor (L_SUCCOFF) and
the unsigned short with the offset into the
page where the first logical entry appears
(L_.FLEOFF}

used to signal ~ when copying the linked
list from the overflowed node to the new node
buffers, that the next entry in the linked list
comes from a dynamically allocated structure
holding the entry to be inserted, and not from
the node buffer currently being read

datatype indicators used in cmnseptup and
mksep to identify which comparison to be
used for an attribute compare; see section
3.2.1

Implementation Manual

0

0

0

c

0

char filler[XFBSIZE • (44+ MAJrn.NMLEN)];
} Xfb;

Xfb xfb[XFBSLOTS];

typedef struct xbra.nchpgbdr {
char *status;
char *spare;
u_short *space;
long *pred;

} Xpghdr;

typedef struct leatpghdr {
char *status;
char *spare;
u_short *space;
long *pred;
long *succ;
u_short *offset;

} Xlfhdr;

typedef struct SepS!ot {
REL *rptr;
long actime;

Implementation Manual

first block structure of a B *tree holding
characteristics of the tree. These are: the disk
addresses at which the following begin: root
node, rootpos. first logical tuple in the rela.
tion, first tpl, most recently examined branch
and leaf nodes, XP.W and ~ the memory
addresses of buffers for leaf and branch nodes,
~ and xbufat; time of last access, xactime,
fill factors for branch and leaf nodes, ~
and .1P.gfiJl, sizes of branch and leaf nodes,
xpgsize and lpgsize, and the name of the rela­
tion stored in this tree, relname. The final
member of the structure is an unused array of
characters used to 'round out' the size of the
structure to force it to be of exactly XFBSIZE2.

statically allocated pool of slots used by
B*tree handling routines

structure of the header of a branch page, con­
taining the status of the node, status, an
unused byte, ~ needed to assure align­
ment of the subsequent short integer, space
which reports the number of bytes remaining
on the page, and the pointer to this node's im­
mediate predecessor, pred.
WARNING: the size of Xpghdr typedef must
guarantee that an instance of the type ends on
a 32;.bit boundary since the p 0 ptr appears
immediately following the hdr on a branch
page.
Note that the defined constant XIIDRLEN must
be equal to sizeof(Xpghdr).

structure of the header of a leaf page, contain­
ing the status of the node, status, an unused
byte, spare, needed to assure alignment of the
subsequent short integer, ~ which reports
the number of bytes remaining on the page,
and the pointers to this node's immediate
predecessor, pred and successor, succ. and the
offset into the page at which the first logical
entry starts, offset.
Note that the defined constant XHDRLEN must
be equal to sizeof(Xlfhdr).

40

int rdentries;
int Zdomlen;
short domtype[MAXATTSJ;
ushort domlen(MAXATTS);

} Sepslot;

Sepslot sepslot[SEPSLOTS];

typedef struct tree_ent {
char *te_item;
ushort te_Jen;
ushort te_bnext;
long te_ptr;

} Bentry;

union UJhort {
short sva.l;
char cl,c2;

} short_coerce;

union u_int {
int ival;

#ifdef INT15
char cl,c2;

#endif
#ifndef INT16

char cl,c2,c3,c4;
} int_coerce;
#endif

union u_noat {
noat rva.I;
char cl,c2,C3,c4;

} nt_coerce;

union u_Jong {
long lval;
char cl,c2,C3,C4;

} long_coerce;

50

slot structure used by searcl;! containing a
pointer to the rel entry for the relation being
searched, .r.lllr. the time this slot was last
referenced, actime, total length of domains
now in z~order (in bytes), Zdomlen. the data
type of each domain, domtype, and the length
of each attribute, domlen.

statically allocated pool of slots used by
cmpseptup.

type of dynamically allocated structure used
in !m.l,tt to hold the item being inserted. It is
from this structure that the new item is linked
into one or the other of the 'replacement' node
buffers when, during its copy of the linked list
from the overflowed node !m.l,tt encounters a
'next' pointer value of MAGICLINK. The struc­
ture contains a pointer to the where the entry,
tuple or separator, is stored, te item, its
length in bits, te len, pointer to next item in
linked list (used only when inserting onto a.
branch node}, te bnext. and the pointer to the
next entry (leaves only) or the child page
(branch only), te ptr.

used for type coercion of unaligned tuple data
in cmpseptup and mksep.

Implementation Manual

•

•

0

c

c

3.10 Error and Exception Handling

An error condition arises when, in performing some operation, an expected event fails to
occur or an unexpected one occurs -- situations for which MRDSc was prepared. The error usu­
ally results in the termination of the operation, under MRDSc control. An exception is an unex­
pected event for which MRDSc was unprepared, and may be of such a nature that MRDSc loses
control of the operation, usually followed by UNIX intervention resulting in MRDSc termination.

Error conditions are of different severities:

warning a minor error condition, which MRDSc can correct. The
warning serves to notify the user that some corrective ac­
tion was taken on his/her behalf in order that a requested
operation continue; the action may or may not have been
what the user in tended.

error the error condition, often involving an underlying UNIX
system call, has caused some component of MRDSc to fail
to perform what was asked of it and is not MRDSc correct­
able. The operation encountering the error usually fails,
signalling failure its caller, but MRDSc continues operating.

severe

fatal

the error condition causes an uncorrectable failure within
MRDSc of such a nature that the current line of activity
(possibly involving many operations) cannot continue
(e.g., work on a particular database cannot continue).

the error condition causes an uncorrectable failure in so
critical an area of MRDSc that no further processing is pos­
sible, and MRDSc terminates

Exceptions arise from the hardware and UNIX system software upon which MRDSc is built.
They range from user generated interrupts (e.g., use of the in.1r. key on the user's terminal), to
hardware events such as floating point traps, or processes dying on swap errors. Most, but not
all, of these exceptions ('signals' in UNIX vernacular) are delivered to the affected process should
it wish to deal with it.

Procedures within MRDSc perform a large number of self consistency checks in their opera­
tion in order to catch error conditions. If an error is detected, a centralized error handler imple­
mented by db err is called. db err prints an error message, and then determines whether execu­
tion should continue. The global variable RUN is a severity weighted counter incremented with
each error or severe. If RUN's value exceeds a maximum limit, MRDSc terminates.

db err receives four parameters from its callers:

Implementation Manual 51

Parameter Type

error number int

ersect int

unix err int

ermsg char[]

Description

identifies both the particular error and its
severity. Error numbers are used as subscripts
into an array of strings to locate the appropri­
ate error number. The error number div 25
determines the severity of the error, which,
from 0 to 3, are fatal, severe, error and warn­
ing, respectively.

an index into a table of strings containing pro­
cedure names, used so the appropriate pro­
cedure name appears with the error message

in many cases the error condition originates
from a failed UNIX system call; in such cases
this parameter contains the global ru:r.n.Q. which
reports the operating system's idea of what
caused the error. The convention of passing
-1 as the value of this parameter was adopted
when there is no associated UNIX error.

character string containing some additional in­
formation to appear in the error message. Its
content should be directly related to the par­
ticular instance of the error since anything
more general will simply repeat what is al­
ready expressed by the message selected by
the error number. The string may be null.

A typical error message appearing on ~ has the form:
>>Error<< procname: [ernum,unix err] error_message ermsg

In the eventuality that MRDSc terminates, the last procedure entered, often called by
db err to mediate the termination, is ~. abend distinguishes values of its abend code
parameter, abcode, always less than zero, to determine if the call represents an abnormal end or
a controlled termination (as opposed to a normal MRDSc exit). Like db err. the abend code acts
as an index into a message table. The appropriate termination message, accompanied by an 'obi­
tuary' string parameter are printed, and ~performs an exit(abcode).

At present, db err errors are not written to the LOGFILE whereas~ messages are.

MRDSc has no implemented exception handling code (except in cmd: see chapter 5). The
proper installation of such code is not a trivial exercise as many signal handlers would need to
be tailored to specific MRDSc procedures, and one signal type may require several different
handlers. Originally it was intended that exceptions would be dealt with by a centralized facility
as are errors. It remains true that some measure of control over exceptions could be installed

0

centrally (e.g., for SIGSEGV and SIGBUS), but no simple central handler could provide a fiexible O··
enough mechanism. for recovery from all exception types. For example, a· divide by zero

52 Implementation Manual

0
exception in printrel should be dealt with locally by a handler within printrel where it is a situa­
tion from which recovery is easy. The same exception arising in z. or split involves a much more
difficult recovery, nor would the technique used for recovery in printrel be appropriate here.
Thus while a centralized handler could provide minimal insurance, it could not be made flexible
enough to give MRDSc an acceptable level of recovery capability. For a production quality ver­
sion of MRDSc this significant shortcoming would have to be remedied.

Relevant Entries in header file:

#define ABEND 1
#define ABORT 2
#define ADTUPLE 3

#define WRTUPLE 43
#define YESNO 44
#define Z_ORD 45

#define MAXERR so

static int RUN = o;

names for error section numbers to be passed to db err,
which are used to index its table of procedure names; see
source code for complete list

default maximum value of RUN; if RUN > MAXERR, db err
calls abend to terminate execution

global severity weighted error count, initially 0

c 3.11 Implemented Relational Operations

0

The current MRDSc implementation supports very few user callable relational operators:
only the monadic select. project, and prin trel exist.

printrel is a simple minded routine to display a relation on paper. It performs very rudi­
mentary formatting, generating columns for attributes and printing on each page a caller sup­
plied title, page number and attribute column headings. Attribute values are printed left
justified within these columns. Tuples which are wider than the maximum line length are trun­
cated. A companion procedure, outrel. is identical except that it is intended for output directed
to a crt terminal, thus has different ideas about line and page lengths. outrel stops after every
'page' (twenty lines, a value hardcoded into it, not, as should be the case, a value obtained from
the TERMCAP environment variable) and waits for a carriage return before continuing. The pro­
cedure was implemented for use with cmd. A more satisfying solution would be to dispose of
printrel altogether and adopt ~ to direct its output to either the terminal via some paging
mechanism, e.g., /usr/ucb/more, a line printer via lru:, or to a user specified file. printrel will
produce 'normal' appearing output without regard to the datatype of an attribute or the data
organization of the relation since it acquires tuples from the operand relation through getuple.

Implementation Manual 53

Relevant Entries in header file:

#define LINELEN 130

#define PGNUMLEN 5

#define PGNUMHDR "Page "

#define P AGELINES 55

#define PGNUMFMT "o/0"'4d"

static char *DATAFMTQ = {
"%s", I* char strings *I

};

"%d", I* integer, free format *I
"%c", I* single char *I
"%f", I* single precision ftoa.t */
"%d", I* short integer, tree fmt */
"%Id" I* long int, free fmt */

length of line from line printer

length of string holding page number string

string appearing in page number message atop each page

maximum number printed lines per page

print format to use when printing page numbers

formats to use in printing attributes of different data
types

0

project may be -'used to make new relations which are an improper attribute subset of the
input relation. Following checks that the operand relation exists, that all its requested domains
can be found, and that all needed m entries exist, project allocates a work buffer of the size 0
required to hold the tuples it will be generating.

Upon successful return from mkrel to make the output relation, tuples are read by getuple
from the input relation, requested attributes excised, positioned as directed by the user (by the
sequence of domain names in the parameter domlist), and written out with adtuple. This loop
continues, independent of possible failures in adtuple. until all tuples in the relation being pro­
jected have been read.

When all input tuples have been read, project calls sortrel to sort the projection and elim­
inate duplicates, and then returns to its caller.

The newly created relation inherits from the one being projected its ~ and maxsize
characteristics.

Relevant Entries in header file:

int rdents; global integer holding number of entries in rd for current
relation, set as side effect of calling tlndrd

Other related header entries may be found in the sections covering the procedures used by pro­
ject.

~produces an output relation, created with m.kl:.!tl, containing all tuples from the input rela­
tion which satisfy a user specified constraint or selector. The current implementation of select

54 Implementation Manual

0

0

c

accepts only one selector, thus a query involving a conjunction of multiple constraints will
require multiple calls to select.

A selector is of the form:
domain cmp value

where cmp is an understood comparison operator (some meaningful combination of '<', '=',
and '> '), value is a constant [as opposed to a an expression which yields a] value of an attribute
in domain. select conftrms that it understands the selector, although it does not posses the con­
cept of type checking, and isolates the indicated domain.

select will attempt to use the fastest strategy that can be applied to the input relation. For
example, ·if the domain in the selector is the primary key of an ordered relation, select will call
search to locate the point in the input relation from which sequential processing should begin
and/or end. For a z-ordered relation, a bit mask representing the attributes and value would be
generated and used to restrict the amount of the relation which must be examined.

The current implementation does not support strategy selection, but allows for its intro­
duction into the next version. If nothing better can be used, ~performs a purely sequential
read on the input relation using getuple. Each tuple is subjected to a comparison of the attri­
bute in the selector domain to the value appearing in the selector. The comparison generates an
intermediate result of less than, equal to or greater than zero; its meaning in the context of the
selector's operator is then established.

For example, if the selector was "colour < red" and the colour attribute in the current ..,
tuple were green, then the intermediate re~ult would be -1, which in the context of a 'less than'
constraint, directs select to call adtuple since the current tuple satisftes the selection criterion.

Once all tuples from the input relation have been read, ~calls sortrel to sort the newly
created relation and remove any duplicates; it then returns. The new relation inherits its Zmap
and maxsize characteristics from the relation upon which the select is performed.

Relevant Entries in header file:

#define CMP _OPS 3

#define CMPATT....EQ 1
#define CMP ATT_GT 2
#define CMPATT_LT 4

#define CMPV ALID 7

static int C:MPATT[) = {
CMP ATTJ;Q.
CMPATT_GT,
CMPATTJ.,T };

Implementation Manual

number of recognized comparison operators used in select

names for recognized compare attribute operators used in
switch statement in select

mask used to test for valid compare operators.

array of known attribute operators

ss

union u_short {
short sva.l;
cha.r cl,c2;

} short_coerce;

union u_jnt {
illt iva.l;

#ifdef INT16
cha.r c1,c2;

#endif
#ifndef INT16

cha.r cl,c2,c3,c4;
} int_coerce;
#endif

union u.Jtoa.t {
.!l.oa.t tva.l;
cha.r cl,C2,c3,c4;

} flt_coerce;

union uJong {
long lva.l;
cha.r cl,C2,C3,C4;

} long_coerce;

3.12 Useful Tools

used for type coercion of una.ligned tuple data in attribute
comparisons with selector value

A small set of useful procedures was developed during the course of MRDSc implementation
which serve as 'helpful' auxiliary programs - none is part of the MRDSc system.

cmd is a. simple interactive command interpreter which is a test tool only. It is not, nor is it
intended to be, the basis for a general purpose user interface. It allows a. user to select a data­
base and, following successful completion of ~ to choose from a small set of commands to
perform, e.g., projects or selects. Complete directions on its use are found in chapter 5.

cmd's structure is a simple loop of getting and executing user commands. The loop is bro­
ken only when the user chooses the 'exit' command, or, after generating a SIGINT or SIGQUIT
from the terminal, replies negatively to cmd's query "resume?".

The command loop issues a prompt then reads a line from standard input. The string
which begins that line, up to the first space or tab, is assumed to be a command name. If recog­
nized, a routine which drives that specific command is invoked and passed the entire command
line.

The driver routines perform very simple minded parsing of command line arguments, and
use the result to generate a call to the MRDSc procedure which implements the user requested
command.

gruL is completely open-ended, and while it could be turned into a 'real' user interface with
modest effort, its raison d'etre is to assist MRDSC system developers test new code, without being
ambitious.

56 Implementation Manual

0

0

c

c

c

mkdb is an interactive program which facilitates the construction of relational databases.
It assumes the existence of a plain text flle for each relation in the intended database. This
allows the data which is to become a relation to be typed in with an editor, or to be generated
by some program. The flies must have the property that, as with fields in /etc/passwd, attri­
bute strings are separated by a colon (:). The interactive part of mkdb is required first to soli­
cit from the user the name and home directory for the intended database. It then asks for rela­
tion names until the user provides a null name. For each relation, the maximum number of
tuples must also be provided. Within each relation, .m.k.d..Q builds a 'tuple template' by asking for
domain name, type and length of attribute. A null domain name signals the end of a tuple,
hence of input for the current relation.

When a null relation name, signalling 'no more relations in the database', has been
received, .m.k.d..Q inquires for each user relation the name of the text flle to use to generate the
relation. When all relations have thus been generated, mkdb updates the system relations and
rewrites them. The database has now been created, and following its addition to the MRDSc
master database list (which must be done separately by hand), is ready for use.

sizeor is useful when porting MRDSc to a new environment; it reports not only the sizes of
standard primitive data types (int, float, etc), but also of all structures declared in the header
mrds.h.

Implementation Manual 57

Chapter 4

MRDSc Programmer's Manual

General Notes

This chapter provides reference information on the use of routines provided in the library
archive mrds.a for both user and systems level programmers.

Procedures in MRDSc are generally either of type iJl.1 or "pointer to something". In cases
where the routine acts as a procedure, i.e., its return value is irrelevant to what it does, the
return value will be sucCEss (0) for complete success in performing its task.

Failure of int routines is signaled by negative return values (i.e., <SUCCESS) with FAlL (-1)
being the commonest. Some routines return specific negative integers to signal particular
failures: these are described in the entry for the particular routine. Pointer valued routines
return (tvpe *){NULL) to indicate failure.

In the following descriptions of MRDSc routines, the 'Action Taken' for each 'Error Condi­
tion' described distingUishes immediate from delayed returns caused by errors. Upon encounter­
ing an error condition which precludes further activity in the routine, the usual course of action
is (possibly) to issue an error message via db err, and then to return FAlL immediately. For less
severe error conditions, an error message may still be issued, but execution continues in the rou­
tine. At some later point a return value different from FAlL but indicative of unsuccessful perfor­
mance is returned.

The 'Call Table' entry for each routine lists alphabetically all external routines called by a
particular routine, and identif!.es each as an MRDSc routine. or a UNIX system/library call with a
single letter, 'M' or 'U' respectively, appearing beside the name.

User callable procedures differ from system level ones in that relational entities are refer­
enced by name only; the latter use pointers to structures related to the entities.

Relation and domain names must be of exactly the correct length and always terminated
by a null byte. Under the current implementation, relation and domain names are the same
f!.xed length, 11 bytes (10 characters plus 1 terminating null byte). In the programming exam­
ples shown, the appearance of the character 'I' in a string indicates that a blank must appear in
that position. Thus the string "relnamelll" is a valid relation name. since it is of length 10
bytes, a length reached by adding three trailing blanks.

Below appears a cross reference of the procedures described in this chapter with relevent
section numbers from Chapter 3 and/or other entries in this chapter.

MRDS

Procedure Name

ab end
a.dtuple
closerel
cmpseptup

Related Entries

3.10
3.2.2, 3.6.3, 3.9.1, insert, wrtuple
3.2.2,3.6.2
3.9

58

0

0

0

http:identif!.es

c db_err 3.10
dbck 3.2, 3.5.4, setup
find 3.9, mkindex, search
find_db 3.2.3, 3.5.3, getdbname
findbro 3.6.2, 3.9
ftnddom 3.2.1
ftndrd 3.2.2
findrel 3.2.2
flush page 3.6.2, 3.9
freeclist 3.8
freellist 3.8
getdbname 3.2.3, 5, ftnd_db
getrelnam 3.2.2, openrel
getuple 3.6, 3.8, 3J:J, openrel, rdtuple
good user 3.5.1, Appendix 2
insert 3.6.2, adtuple, search, split
load dam 3.2.1, 3.5.4, 3.5.5, dbck, syncrel
load page 3.6.2, 3.9, ftushpage
loadrd 3.2.2, 3.5.4, 3.5.5, dbck, syncrel
load rei 3.2.2, 3.5.4, 3.5.5, dbck, syncrel
I agent 3.5.2, setup, syncrel
merge 3. 7, sortrel
mkindex 3.9
mkrel 3.2.2, 3.5.5, 3.6.4 ,.......
mksep 3.2.2, 3.6.2

'-' mkwrklist 3.8, restoreclist
open rei 3.6, closerel, rdtuple, wrtuple
outrel 3.11, printrel
printrel 3.11, outrel
project 3.11
rdtuple 3.2.2, 3.6.2, 3.6.3, openrel, getuple
replace 3.6.4
restoreclist 3.8, mkwrklist
search 3.9, tplcmp
select 3.11, sortrel
sepentlen 3.9
setup 3.5, dbck, ftnd_db
shuffle 3.8, z
sortrel 3.7, merge, replace,tplcmp
split 3.9, insert, upd_parent
syncrel 3.5.5
timer 3.5.2, 3.8, 3.9
tplcmp 3. 7, search, sortrel
unshuft'le 3.8, z
upd_parent 3.9, split
wrtuple 3.2.2, 3.6.2, 3.6.3, adtuple, openrel, rdtuple
yes no
z 3.8, getuple, adtuple, Z
z 3.8, shuffle, unshuffle, z

MRDS 59

A programmer would follow these steps in order to use the MRDSc routines from a C program:

(1) include in the C program the header file <mrds.h>,

(2) declare the MRDSc procedures in the invoking program according to the type of the pro­
cedure,

(3) compile the C program using a command line resembling:
cc myprog.c -DCPU -DUN/X -o myprog -lmrdsc

The CPU define identifies the type of processor for which object code is being generated:
this is important in determining the size of some data structures at run time. The UNIX define
identifies the version of the operating system under which the load module will be run: this
affects some of the system calls and include files used in generating executable code.

While the example above is for a C program, any language which can co-exist with the C
preprocessor should have little difficulty calling MRDSc procedures.

Everything shown above assumes that the library and header file have been properly
installed -- see Appendix 2.

Find below a sample C program which performs some work on a previously established
database named 'plas'.

#include 11mrds.h"
main {)
(

register int i;
int find_db{),select();
DBSTATUS mydb;

J?rintf("Re~ular C program finding db \"plas\" ... ");
~ == setup ('plas" , &mydb, 1) ;
J?rintf("setup returned %d\n 11 ,i);
~f (i ===FAIL) exit(-1);
printf("Let us be really brave and make black parts ... ");
select("partcol ","colour 11 ,"Black ",CMPATT_EQ,"blackparts")
printf("finished select\n");

}

60

printf("Regular C program calls syncrel on \ 11 plas\" ... \n");
syncrel();

0
MRDS

c

c

0

ABEND(S)

int abend(abcode,obit)

int abcode;
char *obit;

DESCRIPTION

MRDSc Programmer· s Manual ABEND(S)

Abend is called to exit MRDSC when, as the result of an irrecoverable error or exception,
further processing is not possible.

Abend prints a. message on stderr indicating an ABEND or TERMINATION, followed by the
negative of abcode, and the obituary string, if one is provided. After this it writes an entry
to the log file indicating an event of ABEND or TERM, a message chosen from an array of
abend/termination messages indexed by -a.bcode, and then closes the logfile. Finally, it per­
forms an exit(abcode).

a.bcode should always be negative, and if less than ABENDCODE (-50) implies a genuinely
abnormal end of MRDSc execution. If greater, a.bend was called in response to a request to
terminate execution prematurely (e.g., in response to a user SIGINT).

EXAMPLE:

ab end(-20, "example use");

results in the message:
MRDSC TERMINATED 20

on standard error, a. timestamped TERM message appearing in the logfile, and an exit(-20)
from MRDSc

ERROR CONDITION

none

RETURN VALUE(S)

does not return; exits with value of abcode.

CALL TABLE

exit U
fclose U
iflush U
fprintf U
logent M

MRDS

ACTION TAKEN

61

ABEND(S)

SEE ALSO

Section 3.10

82

MRDSe Programmer~ s Manual ABEND(S)

0

0

0
MRDS

0

c

0

ADTUPLE{S) MRDSe Programmer • s Manual ADTUPLE(S)

int adtuple(rel,tpl,x)
REL *rei; /* rel being appended to *I
char *tpl; /* tuple to be added *I
Xfb *x; /* Xfb ptr if BTREE *I

DESCRIPTION
Adtuple is used to write a tuple into a relation. The tuple is written at the position in the
relation indicated by the relation's write index (rei-> windx) which must be set before
calling adtuple. Adding tuples to read only relations or overwriting a tuple in an append
only relation is an error. The tuple to be added is pointed at by 1P1 and will be converted
automatically to the data organization appropriate for the operand relation, e.g., if adtuple
is adding to a z-ordered relation, the tuple received by adtuple will be shuffled as neces­
sary. Input tuples are assumed to be 'flat' i.e., not in z-order, and not in the form of a leaf
entry. Adtuple is intended for used directly with the code implementing the user callable
procedures, e.g., project uses it to build its output relation.

Adtuple does not support constant relations at present.

The parameter x points to the XfQ. entry holding the tree's first-block and is required if the
data organization of the relation is BTREE; it can be ignored otherwise. The m_ entry for a
relation is assigned only in search() which must therefore have been called at least once
before attempting to add to the B*-tree relation t.

EXAMPLE:

rptr = openrel("exampleiii",READ);
rptr - > windx = rptr - > cursize;

adtuple(rptr ,tuple);

appends the tuple pointed at by tuple to the relation example; since the relation is not
organized as a B • -tree the third parameter can be ignored.

ERROR CONDITION ACTION TAKEN

relation pointer rel is NULL error 58;return NULL

tuple pointer 1:Pl is NULL return NULL

t Future versions should assign Xlll. slots to each B *-tree relation upon opening them.

MRDS 63

ADTUPLE(S) MRDSc Programmer's Manual

target relation is a. constant rela.- warn 83; return NULL

tion

relation is z..ordered and attempt return NULL

to shuffle tuple as required has
failed

relation is B*-tree and attempt to return NULL

insert tuple has failed

actual writing of tuple has failed (return NULL

wrtuple failed).

RETURN V ALUE(S)

NULL

n > 0

CALL TABLE

db_err
insert

M
M

wrtuple M
z M

SEE ALSO

failure to add tuple

number of bytes successfully written

Sections 3.2.2, 3.6.3, 3.9.1; wrtuple, insert

84

ADTUPLE(S)

0
MRDS

c

c

CLOSEREL(S) MRDSc Programmer·s Manual CLOSEREL(S)

int closerel(rptr)
REL *rptr;

DESCRIPTION
C1oserel is used to close the relation holding a now opened relation, mark the fd member of
the relation's ill system relation entry invalid, and release dynamically allocated buffer
space associated with the relation. It is intended for use by outer level system and user
called routines, i.e printrel uses it close the relation when it has finished printing it.

EXAMPLE:

rptr = openrel("exampleiii",READ);

closerel(rptr);

closes the relation example previously opened for processing.

ERROR CONDITION ACTION TAKEN

could not close the file holding the error 50; return FAIL
relation

RETURNVALUE(S)

FAIL

ofd

CALL TABLE

close U
db_err M
free U

SEE ALSO

Sections 3.2.2, 3.6.2

MRDS

if UNIX close call fails to close relation's file

for successful closure, return the UNIX file descriptor which
was used to reference the file containing the relation.

65

CMPSEPTUP(S) MRDSe Programmer • s Manual CMPSEPTUP(S)

int cmpseptup(rel,sep,tup)
REL *rel;
char *sep;
char *tup;

DESCRIPTION
Compare a tuple pointed at by E!J2. with a separator pointed at by §.[Q. in the B *·tree
organized relation pointed at by rel. It returns < ·1, 0, or > 0 reflecting a less than, equal
to, or greater than relationship between the separator and the tuple. The procedure is use
during searches of a tree to select which child pointer to follow from the current node, and
is intended for used with search and similar lower level internals.

cmpseptup compares the tuple, attribute by attribute, with the separator until the separa­
tor is exhausted (implying 'equality') or until a distinction is made.

EXAMPLE:

66

For the tuple:

I ball I red I
pointed at by E!Jl., in the relation whose entry in w is pointed at by relptr, with §!m. point­
ing at 'b', the call

cmpseptup(relptr,sep,tup)
returns < -1 ('b' < "ball").

ERROR CONDITION

w pointer is null

bad separator length: separator
length was negative, or, for a non
z-ordered relation was not a multi­
ple of 8 (byte aligned)

beyond end of separator but still
have not determined <.=,or>

have gone beyond end of com­
parison code, but failed to make
determination. (i.e have reached a
point which should be unreach­
able)

ACTION TAKEN

return FAIL

error 66; return FAIL

warn 90; return 0 (separator presumed 'equal'
to tuple)

error 65; return FAIL

MRDS

0

CMPSEPTUP(S) MRDSc Programmer· s Manual CMPSEPTUP(S)

c RETURN VALUE(S)

>0 separator greater than tuple

=0 separator 'equals' tuple

=-1 failure

< -1 separator less than tuple

CALL TABLE

db_err M
ftnddom M
ftndrd M
sprintf u
timer M

SEE ALSO

Section 3.g '-"-"'

0
MRDS 67

DB_ERR(U ,S) MRDSc Programmer's Manual DB_ERR(U,S)

int db_err(ernum,ersect, unix_err,erstring)
in t ern um,ersect, unix_err;
char *erstring;

DESCRIPTION

68

db err is used to notify a user of a detected error; it writes a message on standard error
and adjusts the value of RUN depending on the severity of the error. If RUN has exceeded
the ceiling established for this run, or the error was fatal, db err performs as controlled an
abend as is possible, exiting through ~-

The error message printed is of the form:

where:

severity

procname

ernum,
unix_ err

ermsg

erstring

> > severity < < procname: [ernum,unix_err] ermsg erstring

reflects the class of error, one of: fatal, severe, error or warn­
ing

is the name of the MRDSc procedure from which this error
originates

are the values of the corresponding parameters passed

is an error message identifying the error; it is selected from
an array of such messages using the ernum parameter as a
subscript

is an optional string passed by the caller; if present, it should
provide specific information pertinent to this instance of the
error, since ~ will contain a general purpose message
about the type of error

The value of ernum identifies both the error and its severity, according to the quotient of
an integer divide of ernum by 25:

ernum/25 severity range of ernums

0 fatal 0 .. 24
1 severe 25 . .49
2 error 50 .. 74
3 warning 75 .. 100

Should more than 25 messages of a class be needed, add 100, e.g., the 26th 'error' number
would be 150.

Error handlers wishing to add entries to the log file must do so separately as db err does

MRDS

0

0

0

c

0

DB_ERR(U ,S) MRDSc Programmer • s Manual DB_ERR(U,S)

not report errors there.

Symbolic names for procedures for use with ersect are in the file db err.c.

The convention of passing -1 as the value of unix err in situations where the detected error
does not arise from failure of a UNIX system call is obeyed by all :MRDSc procedures.

EXAMPLE:

If an attempt to open a relation named *rname has failed in printrel one might issue:
db_err(51,PRINTREL,errno,rname)

which prints on standard error:
> > Error < < printrel: [51,9] Cannot open rname

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)
none

CALL TABLE

fprintf U

SEE ALSO

Section 3.10

MRDS 69

DBCK(S) MRDSe Programmer· s Manual DBCK(S)

int dbck(ptr,report)
DBSTATUS *ptr;
int report;

DESCRIPTION
dbck checks the database indicated by Qll for inconsistencies and reports anything amiss.
It also updates the MRDSc system log file at the beginning and ending of its check, the
latter entry reporting success or failure of the check.

The following checks are performed:

• verify existence of directory containing the database
• verify existence of and load into memory all three system relations
• for each system relation, confirm that it has the minimum required number

of entries
• verify that there are no relation (domain) names in rd which are absent

from ru (slQm).
• verify that all system and user relations are of the correct size as recorded

in rei

Any instance of a failure in the check signals an inconsistent database which should be
repaired before any further work is done.

~is silent about its operation and findings if the parameter report is zero; otherwise it
will report its progress and findings on standard output. Any non-zero return value is indi­
cative of problems: FAIL implies a serious problem, a positive value is the number of incon­
sistencies found between/within system and user relations.

EXAMPLE:

70

To check on a database named fred: (the required pointer parameter is set by find db)

find_db("fred ",myuid,&d bstruct);
good_db = dbck(&dbstruct,l);

which, if successful, sets good db to 0 and prints on standard output:

checking db 'fred'
Checking rel
Checking rd

End of check on database 'fred' : no errors detected

MRDS

0

0

c

c

0

DBCK(S) MRDSc Programmer's Manual DBCK(S)

ERROR CONDITION ACTION TAKEN

m is null, no database to check error 74; return FAlL

directory alledged to contain data- error 25; return FAlL

base does not exist

directory alledged to contain data- error 26; return FAlL

base 'exists' but is a file, not a
directory

RETURN V AL UE(S)

FAlL

0

n > 0

CALL TABLE

db_err M loadrel
getrelnam M logent
loaddom M printf
loadrd M qsort

SEE ALSO

Sections 3.2, 3.5.4

MRDS

a serious error, usually that the database does not exist
where it is supposed to (possibly not at all)

successful check: no errors of any kind detected

the number of inconsistencies detected during the last three
types of check performed (see list above)

M sprintf u
M stat u
u strcmp u
u strcpy u

71

FIND(S) MRDSe Programmer's Manual FIND(S)

long find(tpl)
char *tpl; /* tuple to look for *I

DESCRIPTION
flnd. part of mkindex. looks through the B*-tree representation of a relation for the tuple
pointed at by lli returning its offset from the beginning of the file if found, or the offset to
the tree entry immediately after which lli should be inserted. In doing this it is indistin­
guishable from search except that its implementation makes different assumptions about
ill and Xf!l information. These assumptions made it possible to shorten ftnd and speed its
operation. It was necessary to have find as a separate procedure since, during mkindex,
there is no complete tree to which to apply search.

find is a specialized B *-tree search procedure, not intended for use outside mkindex.

EXAMPLE:

From the code of mkindex. the loop which builds the B *-tree from the fiat organized input
relation begins:

while(!(rdtuple(rel,OL) <= 0)) {
i = find(buffer[rel- > fdj);

ERROR CONDITION ACTION TAKEN

loadpage cannot read a node from error 53; return FAIL

the file containing the B *-tree

space reported to remain in a node fatal 12; return FAIL

is not what actually remains there

RETURN V ALUE(S)

>o

=-1

72

tuple was· found; value is the offset beyond beginning of tile
containing the B *-tree at which the tuple starts (suitable for
use with ~ for example [but use loadpage])

.fi.n.d fails because of some error condition

MRDS

0

0

0

c

0

FIND(S)

< -1

CALL TABLE

cmpseptup M
db_err M
loadpage M
tplcmp M

SEE ALSO

MRDSc Programmer's Manual FIND(S)

tuple was not found; if -2, then tuple should have appeared
before first tuple now in relation; if less, then tuple should
have appeared just after (abs(return value) + 3) B*-tree file
to start of tuple which is !ill's logically immediate predeces­
sor. For example, if return value is -2, !ill's predecessor be­
gins at offset 1.

Section 3.9; search. mkindex

MRDS 73

FIND_DB(S) MRDSe Programmer's Manual FIND_DB(S)

int find_db(name,owner,ustruct) /* determine whether a database exists * 1
char *name; I* if so return pointer to struct holding *I
int owner; I* status of db, else return null ptr * 1
DBSTATUS *ustruct; /* addrs of user structure to return entry in *I

DESCRIPTION
Given the ~ of a database and the UNIX uid of its owner, find db searches the MRDSc
master list of known databases, DBLIST, to isolate the pertinent entry. DBLIST entries are
matched on both database name and owner uid, thereby allowing different users to have
databases of the same name and each user to have several, differently named, databases. If
located, the DBSTATUS structure pointed at by ustruct is initialized to the entries from
the list. If not found, all fields in ustruct are zeroed. Provided in ustruct is information for
the user of the database; MRDSc works with its own separate copy of the DBLIST entry.

EXAMPLE:

To find my database named 'fred',
typedef struct dbsrcrd { /* database status structure *I

short dbs_owner; /* db owner's uid *I
char dbs_name[MAXNAMLEN]; /*name of db */
char dbs_homedir[FILESTRING]; I* path to home dir of db *I
short dbs_tdent; I* db's ident number */
short dbs_dfitmode; I* db modes to use *I
char dbs_stat; I* db current status *I

}DBSTATUS fredstat;

got_db = find_db("fred",getuid(),&fredstat);

ERROR CONDITION ACTION TAKEN

cannot open master list DBLIST return FAlL

ustruct is a null pointer return FAlL

RETURN V ALUE(S)

FAlL

SUCCESS

74

not found, either due to an error or because DBLIST has no
matching entry (members of* ustruct are zeroed)

an entry in DBLIST matches the name and owner; members of
* ustruct contain information from DBLIST

MRDS

()

0

c

0

FIND_DB{S)

CALL TABLE

fclose U
fopen U
fscanf U
strcmp U
strcpy U
strlen U

SEE ALSO

MRDSc Programmer's Manual

Sections 3.2.3, 3.5.3; getdbname

MRDS

FIND_DB{S)

75

FINDBRO(S) MRDSc Programmer • s Manual FINDBRO(S)

int findbro(rptr,pg,x,mode,lbro,rbro)
REL *rptr; /* ptr to REL entry for this relation */
long pg; /* addrs of page whose brothers are sought*/
Xfb *x; /* Xfb ptr for this tree *I
char mode; /* fiag: leaf or branch type of page *I
long *lbro,*rbro; /* addrs of left/right brother pages*/

/*NULL ptr ==> no such brother */

DESCRIPTION
findbro finds the left and right 'brother' nodes of a given node in a B *-tree. It provides
the disk address (offset from the start of disk file) at which the brother nodes begin, or 0 if
there is no corresponding brother. The M parameter is the disk address of the node whose
siblings are sought; the node is identified as a branch or leaf by mode. The first-block of
the tree is passed via pointer x; lbro, and rbro are the addresses of two long integers which
will hold the sibling addresses.

ftndbro reads the parent of node M and performs a linear search for M therein. Upon
locating it, it returns the starting addresses of the previous and subsequent entries in the
parent (i.e., pointer to left and right brothers, respectively).

EXAMPLE:

With thisrel pointing to the rel entry for the relation in question, thisnode. a leaf, holding
the disk address at which the node whose siblings are sought begins, thisnode's left and 0
right siblings are found by:

76

long thisleft, thisright;
find bro(thisrel, this node, thisx,XLEAF ,&thisleft,&thisrigh t);

ERROR CONDITION ACTION TAKEN

cannot allocate buffer space to error 52; return FAIL; * lbro = * rbro = OL
hold parent page

bad address for parent (currently free buffer; return FAlL; * lbro = * rbro = OL
tests for < o, but should test for
< filesize && aligned)

cannot load parent node from disk free buffer; return FAlL; * lbro = * rbro = OL

MRDS

0

FINDBRO(S)

0 RETURN V ALUE(S)

FAlL

SUCCESS

CALL TABLE

db_err M
free u
load page M
malloc u
sepentlen M

SEE ALSO

c Sections 3.6.2, 3.g

0
MRDS

MRDSc Programmer· s Manual FINDBRO(S)

unable to determine existence of brothers because of some er­
ror condition; * lbro = * rbro = OL

succeeded in determining existence of brothers. If either of *
lbro or * rbro is zero, then the node in question does not
have a left or right brother; a non-zero value is the disk ad­
dress of that brother node.

77

FINDDOM(S)

DOM *ftnddom(dname)
char *dname;

DESCRIPTION

MRDSe Programmer· s Manual FINDDOM(S)

ftnddom performs a linear search through the dom system relation for the domain name
pointed at by dname and returns a pointer to the tuple in !!gm. if the domain is found,
(DOM *){NULL) otherwise.

* dname must be a string MAXDNMLEN In length t.

EXAMPLE:

To find domain 'thisdomain':
DOM *hereitis;
hereitis = ftnddom("thisdomain");

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

(DOM *)(NULL) no domain of * dname was found in !!gm.

non- NULL pointer to tuple in !!gm. where domain of name * dname is
found (containing name, datatype and length).

CALL TABLE

strcmp U

SEE ALSO

Section 3.2.1

t 10 bytes ln current lmplementa.tton

78 MRDS

0

0

c

0

FINDRD(S) MRDSe Programmer· s Manual FINDRD(S)

RD *findrd(rname,domlist,num,rdptr)
char *rname,domlist[][MAXDNMLEN]; /* was domlist[][] on masscomp *I
short num;
RD *rdptr[];

DESCRIPTION
.tln.ru:!i performs a linear search through the rd system relation for occurrences of domain
names in domlist within relation of name *rname, or all rd entries corresponding to the
relation, depending upon whether m is non-zero (the number of domains in domlist), or
zero (implying no names in domlist). For each match, a pointer to the m tuple is added to
the array rdptr. If a specific list of domains is provided, the sequence of entries in rd
matches that in domlist; otherwise, rdptr entries correspond to the order of appearance of
domains within a tuple of *rname. For any name in domlist which cannot be located in
m, the rdptr entry is set to (RD *)(NULL).

findrd performs its search by first establishing the first and last tuples in rd representing
the relation in question, and confining searches to that range. A global integer, ~. is
set to the size of that range as a side effect of calling findrd.

EXAMPLE:

Find all rd entries for relation 'getallrds':
RD *rdtab[MAXATTS];
findrd("getallrdsj",(char *)(O),O,rdtab);

To get rd entries for only attributes 'attrl' and 'attr2' in relation 'getsomerds':
char domnmlist[2][MAXDNMLEN];

MRDS

RD *rdtab[2];
strcpy(domnmlist[O], "attrljjjjj");
strcpy(domnmlist[l], "attr2jjjjj");
findrd("getsomerds" ,domnmlist,2,rd tab);

ERROR CONDITION

relation name pointer is null

relation name not found in m

while establishing number of rd
entries for current relation, quanti­
ty found exceeds MAXATTS (this
generally implies corruption in rd
as something will have been
overwritten)

ACTION TAKEN

return (RD *)(NULL)

error 62; return (RD *)(NULL)

error 63; set number found to M&"CA.TTS and
continue

79

FINDRD(S)

RETURN VALUE(S)

(RD *)(NULL)

non- NULL

CALL TABLE

db_err M
strcat U
strcmp U
strcpy U

SEE ALSO

Section 3.2.2

80

MRDSe Programmer's Manual FINDRD(S)

unable to successfully match rd entries with requested
domain names due to some error condition

always the pointer to the flrst tuple in rd for relation
*rname, irrespective of num

MRDS

•

0

0

0

FINDREL(S) MRDSe Programmer's Manual FINDREL(S)

REL *findrel(rname)
char *rname;

DESCRIPTION
findrel performs a linear search through the rel system relation for the relation name
pointed at by rname and returns a pointer to the tuple in rel if the relation is found, (REL
*)(NULL) otherwise.

* rname must be a string MAXRNMLEN in length t.

EXAMPLE:

To find relation 'thisrel':
REL *hereitis;
hereitis = ftndrel("thisrellll");

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

(REL *)(NULL) no relation of * rname was found in rei

non- NULL

CALL TABLE

strcmp U

SEE ALSO

Section 3.2.2

t 10 bytes In current Implementation

MRDS

pointer to tuple in rel where relation of name * ~ is
found

81

FLUSHPAGE(S) MRDSe Programmer's Manual FLUSHP AGE(S)

int fiushpage(from,fd,at,len)
char *from; I* page starting addrs *I
in t fd; I* fd of file to fi ush to *I
long at; I* position in file at which to write *I
int len; I* length of page to write *I

DESCRIPTION
fiushpage performs a seek on file fQ. to position at, then writes len bytes from memory loca­
tion from. It is used to write out a node (branch or leaf), from memory back to the file
containing aB *-tree organized relation.

EXAMPLE:

To write a leaf node now residing in memory, with treefd holding the appropriate UNIX file
descriptor, and X pointing to the first-block of the B*-tree,

fiushpage(x -> lbufat,treefd,x -> lpgat, x -> lpgsize)

ERROR CONDITION ACTION TAKEN

cannot seek on file fQ. to position error 54; return FAIL
at

failed to write len bytes error 54; return FAIL

RETURNVALUE(S)

FAIL

n > 0

CALL TABLE

db_err M
!seek U
write U

SEE ALSO

Sections 3.6.2, 3.9

82

wrote none or some of, but not all of, the node due to some
error condition

number of bytes written out by fiushpage; can be compared
with known page size for the node by caller to confirm
correct writing of node

MRDS

•

•

0

'-

0

FREECLIST(S) MRDSc Programmer's Manual FREECLIST(S)

unsigned freeclist(cptr)
ZCLIST *cptr;

DESCRIPTION
freeclist releases all space dynamically allocated to accommodate circular list entries in a
Zslot; it is used to release the old list before allocating and initializing a new one when
such a slot is being re-used. The space is released entry by entry until the list is empty,
and the number of free'd entries returned.

EXAMPLE:

To fully free up space now held by the list pointed at by thiscirclist:
freeclist(thiscirclist);

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

>0 number of list entries for which storage was released

CALL TABLE

free U

SEE ALSO

Section 3.8

MRDS 83

FREELLIST{S) MRDSe Programmer·s Manual FREELLIST(S)

unsigned freellist(lptr)
ZLLIST *lptr;

DESCRIPTION
freellist releases all space dynamically allocated to accommodate linked list entries in a
Zslot; it is used to release the old list before allocating and initializing a new one when
such a slot is being re-used. The space is released entry by entry until the list is empty,
and the number of free'd entries returned.

EXAMPLE:

To fully free up space now held by the list pointed at by thislinkedlist:
freellist(thislinkedlist);

ERROR CONDITION ACTION TAKEN

none

RETURN V .ALUE(S)

>O number of list entries for which storage was released

CALL TABLE

free U

SEE ALSO

Section 3.8

84 MRDS

•

•

0

C·

~-

GETDBNAME(U) MRDSc Programmer's Ma.nua.l GETDBNAME(U)

char *getdbname()

DESCRIPTION
getdbname interactively solicits from a user the name of a database on which to work. It
writes on standard output and reads from standard input, asking the user to type in the
name of a database to use. Names which exceed MAXN.A:.MLEN in length are truncated to
that length, and the user warned (on standard error) of the truncation. The string is
returned in a global character array (which other procedures also use), and thus should be
copied to 'safe' storage.

EXAMPLE:

To get a database name from a user:
strcpy(safedbname,getdbname());

usually followed something akin to:
if (strlen(safedbname) == 0) {/*no name */

ERROR CONDITION

name too long

ACTION TAKEN

warn 84; truncate to acceptable length, con~
tinue

'-" RETURN VALUE(S)

0

pointer to global character array into which user typed database name has been placed.

CALL TABLE

db_err M
fprintf U
getc U (used by macro READLN)
strlen U

SEE ALSO

Section 3.2.3, Chapter 5 (cmd); find db

MRDS 85

GETRELNAM(S) MRDSc Programmer· s Manual GETRELNAM(S)

char *getrelnam(relp)
REL *relp;

DESCRIPTION
getrelnam looks into the tuple in ill pointed at by m to dig out the relation name. Any
trailing blanks added for padding the name to length MAXRNMLEN-1 are removed, and the
result is appended to a copy of the path to the database's home directory, thereby generat­
ing the full path to the file containing the relation. The string is returned in a global char­
acter array used exclusively by getrelnam and is overwritten with each call.

EXAMPLE:

To generate the full path to the file holding the relation whose tuple in rel is pointed to by
thisrel.

strcpy(relfilename,getrelnam(thisrel));

ERROR CONDITION ACTION TAKEN

.none

RETURN VALUE(S)

pointer to global character array into which the filename string has been placed

CALL TABLE

strcat U
strcpy U

SEE ALSO

Section 3.2.2; ooenrel

88 MRDS

•

•

0

-

GETUPLE(S)

char *getuple(rptr,mode)
REL *rptr;
char mode;

DESCRIPTION

MRDSc Programmer· s Manual GETUPLE(S)

getuple reads the 'next' tuple from the relation whose tuple in the system relation rei is
pointed at by rptr and places the tuple in the pre-allocated buffer array (see openrel). getu-

__ p=l..,.,e handles relations of any data organization, as identified by mode, automatically
unshuffling and/or 'tree walking' as is needed. Tuples returned by getuple are of FLAT data
organization and completely unshuffled, e.g., suitable for display. getuple does no reading
of the relation itself, but calls rdtuple for the actual read.

The 'next' tuple which will be read by getuple is that whose address (offset into the file
containing the relation) is in the read index (rptr - > rindx) attribute of the tuple in the
system relation rel. getuple leaves the read index set to the address of the physically next
tuple in non B *-tree relations, thus by setting (rntr -> rindx) to zero, before the first call
to getuple, one can sequenttally get each tuple simply by repeated calls to getuple. In B*­
tree relations, rptr -> rindx is left holding the address of the logically next tuple, thus one
can similarly access tuples sequentially with repeated getuples.

EXAMPLE:

To sequentially get each tuple in a non B*-tree relation from beginning to end:
rptr -> rindx = OL;
while (getuple(nontreerelptr,FLAT)) {

/*stay in loop until end of rel or error*/
}

Similarly, for a B*-tree relation, with x pointing at its first-block:
rptr -> rindx = x - > first_tpl;
while (getuple(nontreerelptr,FLAT)) {

/*stay in loop until end of rel or error*/
}

ERROR CONDITION ACTION TAKEN

I.P.1I: pointer is NULL error 58; return (char *)(NULL)

failure during attempt to unshuffle return (char *)(NULL)

failure in reading the tuple (rdtu- return (char *)(NULL)
-~ol~e fails)

MRDS 87

GETUPLE(S)

RETURN V ALUE(S)

{char *){NULL)

non- NULL

CALL TABLE

db_err M
rdtuple M
z M

SEE ALSO

MRDSc Programmer~ s Manual GETUPLE(S)

failed to get another tuple because of an error or end of rela­
tion has been reached

pointer to buffer containing tuple just 'got'

Sections 3.6, 3.8, 3.9; rdtuple, openrel

88 MRDS

•

•

0

0

-

0

GOODUSER(U,S) MRDSc Programmer's Manual GOODUSER(U tS)

int gooduser ()

DESCRIPTION
gooduser determines if a current UNIX user is an authorized MRDSc user by ftrst getting the
user's effective uid then looking through the MRDSc list of known users. If found, the euid
is returned; otherwise FAIL is returned.

EXAMPLE:

To check if a user is authorized to use MRDSc
if (good user < SUCCESS) { /* not allowed *I

ERROR CONDITION ACTION TAKEN

cannot open MRDSC user list ftle error 61; return FAIL

RETURNVALUE(S)

FAlL

>o

CALL TABLE

atoi U
db_err M
fgets U
fopen u
geteuid U
index U

SEE ALSO

cannot read user list ftle or user is not authorized

user is authorized, return value is euid. Note that this may
cause problems on 4.3BSD systems where negative valued
user idents are valid.

Section 3.5.1; Appendix 2 (Installation)

MRDS 89

INSERT(S) MRDSc Programmer's Manual INSERT(S)

int insert(rel,tpl,x,mode)
REL *rel; /* ptr to rei into which insertion occurs*/
char *tpl; /* ptr to entry being inserted (tpl or (s,p)) *I
Xfb *x; /* ptr to Xfb entry for this tree*/
char mode; /*insertion of tuple or (s,p) */

DESCRIPTION
insert is used to add tuples to B •-tree organized relations (thus is concerned only with leaf
nodes). It searches the tree for the correct point at which to insert the tuple pointed at by
!Jll, and if necessary, will split the leaf node in order to accommodate the insertion.

insert writes out the updated leaf node upon completion of the insertion.

EXAMPLE:

To insert a tuple pointed at by thistuple into thisrel whose first-block structure is pointed
at by X!1U:

insert(thisrel,thistpl,xrel,BTREE);

ERROR CONDITIO~

not a B*-tree

search or relation fails

search succeeded in finding the tu­
pie being inserted (i.e., already
there)

leaf node lost from memory buffer

split fails to split and add tuple

cannot write node back to file fol­
lowing insertion

ACTION TAKEN

warning 97; return FAIL

error 61; return FAIL

warn 91; do not insert tuple, return number of
bytes added as 0

error 60; return FAIL

error 61; return FAIL

error 60; return FAIL

RETURN VALUE(S)

FAIL

0

90

unable to insert tuple into tree because of some error condi­
tion

tuple to be inserted is already present in tree

MRDS

0

•

0

0

c

INSERT(S)

>O

CALL TABLE

db_err
flush page
load page
openrel
search
split

SEE ALSO

M
M
M
M
M
M

MRDSc Programmer • s Manual INSERT(S)

number of bytes successfully written; should be same as size
of leaf node

Sections 3.6.2, 3.9; adtuple, search. §.Pill.

MRDS 91

LOADDOM(S) MRDSc Programmer· s Manual LOADDOM(S)

int loaddom(ptr)
DBSTATUS *ptr;

DESCRIPTION
loaddom is used by dbck at system startup to load tuples from the file containing the .!lQm.
system relation into the array domcore to which all references to dom are directed when
:MRDSc is running. The file is opened while loaddom works and is closed once all tuples are
loaded, remaining closed throughout :MRDSc execution until shutdown (see syncre~.

Returned is the number of tuples loaded, which is guaranteed to be not less than MINDOMS

(the minimum number of domain entries needed to support an empty database containing
only system relations).

EXAMPLE:

During system startup, with DBSTAUTS *thisdb initialized by find db, the .!lQm. tuples
are loaded by

found_doms = loaddom(thisdb);
where found_doms can be compared with the quantity expected.

ERROR CONDITION ACTION TAKEN

cannot open file holding system re- fatal 3; abend
lation .!lQm.

number of domains found is less fatal 9; abend
than the minimum needed to sup-
port the system relations

RETURN V ALUE(S)

> MINDOMS

CALL TABLE

02

abend M
close U
db_err M
read U
strcat U
strcpy U

number of tuples loaded from fl.2m.

MRDS

0

•

0

LOADDOM(S) MRDSc Programmer's Manual LOADDOM(S)

0
SEE ALSO

Sections 3.2.1, 3.5.4,3.5.5; dbck, syncrel

0
MRDS 93

LOADP AGE(S) MRDSe Programmer; s Manual LOADP AGE(S)

int loadpage(file,x,from,to)
in t file;/* descriptor for file *I
Xfb x; I* hdr info for this index *I
long from; I* position in file from which to read* I
char *to; I* buffer pointer: put page 'to' there* I

DESCRIPTION
Joadpage performs a seek on file to position from, then reads 'pagesize' bytes from the file
into memory beginning at location to. The 'pagesize' is determined by reading the first
byte at offset from into the file, the status byte for the node, which identifies it as a leaf or
a branch whose sizes are indicated by x - > lpgsize and x - > xpgsize (in the first-block)
respectively. It is used to read an entire node, branch or leaf, into memory from a file con­
taining a B*-tree organized relation. loadpage can read a node into the user specified
buffer *to, or, if .1iQ. is null, into whichever of x -> xbufat or x -> lbufat is appropriate for
the node type.

EXAMPLE:

To read in a leaf node at position leafhere in file thisrelfd. whose first-block is pointed at
by thisrelXfb into a buffer at location puthere:

load page(thisrelfd, thisrwlXfb,leafhere,pu there);

0

Note that the area set aside beginning at puthere must, in this case, be at least of size •
thisrelXfb- > lpgsize.

ERROR CONDITION ACTION TAKEN

cannot seek on file to position error 54; return FAIL

!mm.

failed to read status byte of node error 54; return FAIL

cannot rewind to beginning of error 54; return FAIL

node

failed to read 'pagesize' bytes error 54; return FAIL

RETURN VALUE(S)

FAIL

04

read none or some of, but not all of, the node due to some
error condition

MRDS

0

0

c

0

LOADP AGE(S)

>O

<-1

CALL TABLE

db_err M
lseek U
read U

SEE ALSO

MRDSc Programmer~ s Manual

number of bytes read from branch page

number of bytes read from leaf page

Sections 3.6.2, 3.9; ftushpage,

MRDS

LOADP AGE(S)

95

LOADRD{S) MRDSc Programmer's Manual LOADRD(S)

int loadrd(ptr)
DBSTATUS *ptr;

DESCRIPTION
loadrd is used by dbck at system startup to load tuples from the file containing the rd sys­
tem relation into the array rdcore to which all references to m are directed when MRDSc is
running. The file is opened while loadrd works and is closed once all tuples are loaded,
remaining closed throughout :MRDSc execution until shutdown (see syncrel). Returned is the
number of tuples loaded, which is guaranteed to be not less than MINRDS (the minimum
number of rd entries needed to support an empty database containing only system rela­
tions).

EXAMPLE:

During system startup, with DBSTAUTS *thisdb initialized by find db, the rd tuples are
loaded by

found_rds = loadrd(thisdb);
where foundJds can be compared with the quantity expected.

ERROR CONDITION ACTION TAKEN

cannot open file holding system re- fatal 3; abend
lation rd

number of rds found is less than fatal 10; abend
the minimum needed to support
the system relations

RETURN V AL UE(S)

> MINRDS

CALL TABLE

96

abend M
close U
db_err M
read U
strcat U
strcpy U

number of tuples loaded from m

MRDS

0

•

0

0

c

0

LOADRD(S)

SEE ALSO

MRDSc Programmer#s Manual

Sections 3.2.2, 3.5.4,3.5.5; ~ syncrel

MRDS

LOADRD(S)

97

LOADREL(S) MRDSe Programmer • s Manual LOADREL(S)

int loadrel(ptr)
DBSTATUS *ptr;

DESCRIPTION
loadrel is used by dbck at system startup to load tuples from the file containing the rei
system relation into the array relcore to which all references to ill are directed when
:MRDSc is running. The file is opened while loadrel works and is closed once all tuples are
loaded, remaining closed throughout :MRDSc execution until shutdown (see syncrel).
Returned is the number of tuples loaded, which is guaranteed to be not less than MINRELS

(the minimum number of rei entries needed to support an empty database containing only
system relations).

EXAMPLE:

During system startup, with DBSTAUTS *thisdb initialized by find db, the rei tuples are
loaded by

found_rels = loadrel(thisdb);
where found_rels can be compared with the quantity expected.

ERROR CONDITION ·ACTION TAKEN

cannot open file 'holding system re· fatal 3; abend
lation rei

number of rels found is less than fatal 10; abend
the minimum needed to support
the system relations

RETURN VALUE(S)

> MINRELS

CALL TABLE

98

abend M
close U
db_err M
read U
strcat U
strcpy U

number or tuples loaded trom rel

MRDS

0

0

0

c

LOADREL(S)

SEE ALSO

MRDSe Programmer~ s Manual

Sections 3.2.2, 3.5.4,3.5.5; dbck, synerel

MRDS

LOADREL(S)

99

LOGENT(S) MRDSc Programmer's Manual LOGENT(S)

int logent(event,msg)
char *event, *msg;

DESCRIPTION
~ records the string *event with accompanying *msg in the :MRDSc system log file,
along with a time stamp. The logfile is selected at :MRDSc generation time (see LOGFILE in
mrds.h). logent is used by various :MRDSc routines (Including dbck and ~) to report on
the progress of activity on a database; the entries are intended primarily for the use of
database administrators.

The format of a logent entry is:
time: *event *msg

Note that the log file being written into must be open before calling logent (normally
opened in setup).

EXAMPLE:

When dbck begins its consistency check on a database it calls~ to update the log to
show the database entering the CHECK state. (fQ.lQ.g is a global FILE * pointer to the
opened log file):

if (fplog) logent("CHECK",LOGBUF);
where LOGBUF is a string generated by dbck containing the database name and owner. An
entry resulting from the above call appears as:

525389949: CHECK: testdb (owner 59): begin dbck

ERROR CONDITION ACTION TAKEN

log flle is not opened for writing error 54; return FAIL

RETURN V ALUE(S)

FAlL

SUCCESS

CALL TABLE

100

db_err M
fprintf U

log entry failed due to an error condition

log entry successfully completed

MRDS

0

c

c

LOGENT(S)

SEE ALSO

Section 3.5.2

MRDS

MRDSe Programmer· s Manual LOGENT(S)

101

MERGE(S) MRDSc Programmer· s Manual MERGE(S)

int merge(file,core,out,rel,num)
int file; /* fd of file containing previous merged output*/
char *core; /* ptr to start of memory area *I
char *out; /* name of new output file *I
REL *rei; /* ptr to system rei en try for rei being merged * /
int num; /* number of tuples in mem to be merged */

DESCRIPTION
~ is part of the :MRDSc sort/merge component and is not intended for standalone use.
It expects to receive from sortrel a memory address containing num most recently sorted
tuples and a file descriptor of a previously generated merge output file. The contents of the
file and memory buffer are merged with duplicate tuple elimination into the new output
file whose name is returned in string *out. Upon return to sortrel. the old merge file is
removed. Buffer space in merge is dynamically allocated and released with each invocation
and is at most 2K bytes.

For a complete description, see Section 3.7.

EXAMPLE:

The call to merge in sortrel merges the contents of file merfd with memory region sortbuf
into the new merge file newmer for relation ill; there are tpb tuples in sortbuf:

merge(merfd,sortbuf,newmer,rel, tpb);

ERROR CONDITION ACTION TAKEN

cannot allocate memory for input, in each case, error 52 followed by return FAIL

output or working tuple buffers

cannot open new merge output file error 55; free allocated buffers and return FAIL

failed to write full buffer out to error 54; free allocated buffers and return FAIL
new merge file

RETURNVALUE(S)

FAIL

SUCCESS

102

failed to merge file and memory buffer because of some error
condition

successfully merged file and memory buffer into new merge
file

MRDS

•

0

MERGE(S) MRDSe Programmer· s Manual MERGE(S)

0 CALL TABLE

creat u read u
db_err M sprintf u
free u strcpy u
malloc u tplcmp M
mktemp u write u

SEE ALSO

Sections 3.7; sortrel

c

MRDS 103

MKINDEX(S) MRDSc Programmer· s Manual MKINDEX(S)

in t mkindex(rel,xsize,xftll,lsize ,lfi.ll)
REL *rei;
int
int
int
int

xsize;
xftll;
lsize;
lftll;

/* size of internal nodes *I
/* % fill internal nodes *I
/* size of leaf nodes *I
/* % fill leaf nodes *I

DESCRIPTION
mkindex is used to convert an existing non- B"'-tree organized relation into a B*-tree
organized one. It creates a new file in which it builds the tree, and when finished, removes
the original file, giving the new one the name of the old one. The rei system relation tuple
for the relation undergoing the conversion is pointed at by rel. The parameters xsize and
lsize control the size of branch and leaf nodes, and xfill and !fill the extent to which
branch/leaf nodes are to remain full following a split.

mkindex first generates the entries needed in the tree's first-block, then builds the root and
first leaf nodes, placing one ;data' entry in each. These three B *-tree entries are then writ­
ten out, and the remainder of the conversion is performed by a rdtuple/ insert loop until
all tuples have been read. Then, the tuple in rel for this relation is updated to reflect the
new data organization, and the file containing the tree replaces the file formerly holding
the relation. Note that the use of rdtuple instead of getuple ensures preservation of any z­
ordering the non- B*-tree form had.

mkindex returns SUCCESS immediately if the relation is already organized as a B"-tree.

EXAMPLE:

104

To convert a relation thisfiatrel to a B"-tree organized one:
mkindex(thisfiatrel,4096,60,8I 92, 70);

The resulting B *-tree will have branch nodes of size 4 Kbytes which remain 60% full after
a split, and leaf nodes of size 8Kbytes which remain 70% full after a split.

ERROR CONDITION ACTION TAKEN

ill pointer is (REL *)(NULL) return FAIL

cannot open new file to contain error 53; return FAIL
tree

xfill and or lfill are not within the
allowed range (typically between 5
and 95 %)

in each case: warning 83; set to default fill
(XPGDFLTFILL/ LPGDFLTFILL); continue

MRDS

0

•

0

0

MKINDEX(S) MRDSc Programmer~ s Manual MKINDEX{S)

xsize and/or !size are not within
the allowed range (typically 512
bytes to 8K bytes for branches,
512 bytes to 32 Kbytes for leaves)

cannot allocate memory for branch
or leaf node work buffer

cannot read first tuple in relation
to put onto leaf page

tlushpage fails to write out first­
block, root, or leaf node

failed to insert tuple

in each case: warning 83; set to default size
(XPGDFLTSIZE/ LPGDFLTSIZE); continue

in each case: error 52; close and unlink output
tlle; return FAIL

error 53; close and unlink output file; return
FAIL

in each case: error 54; close and unlink output
tlle; return FAIL

increment count of insert failures; at end of
rdtuple/ insert loop, warning 81, reporting
numoer of failed insertions; continue. Upon
return, return -2

replace failed to replace old rela- error 59; return FAIL

tion with new one

RETURN V ALUE(S)

-2

FAIL

SUCCESS

CALL TABLE

MRDS

none of, or some of, but not all of, the tuples in the input re­
lation were inserted into the B *-tree; the relation is not re­
placed, and the file containing the stunted tree is left as is

conversion to B*-tree organization failed due to some error
condition

conversion was successful

closerel M malloc u sprintf u
db_err M mktemp u strcpy u
tlnd M open u timer M
flush page M rdtuple M.
insert M replace M

105

MKINDEX(S) MRDSc Programmer· s Manual MKINDEX(S)

SEE ALSO

Section 3.9

0
106 MRDS

0

c

MKREL(S) MRDSc Programmer· s Manual MKREL(S)

REL *mkrel(rname,mode,newZmap,numofdoms,doms,sizelim)
char *rname; I* name of new relation *I
char mode; I* boolean set ==> conrel *I
long newZmap; I* bit map of Z ord atts *I
int numofdoms; I* num of doms in dom list *I
char doms[] [MAXDNMLEN]; /* list of domain names *I
long sizelim; /* max number of tuples */

DESCRIPTION
mkrel is used to build the system relation framework needed when creating new relations
by building the appropriate tuples in ill and rd.

mkrel performs a variety of checks on the parameters, and if all are in order, updates m
creates a flle in the directory holding the database of the appropriate name (which is closed
before returning), and then updates rd. Typically a relational operation, e.g., project. will
call mkrel to create the output relation, then use adtuple to flll it.

The parameters provide the name of the relation, its mode and Zmap, the number of
domains per tuple, an array containing the domain names for each attribute, ordered from
most significant to least (left to right) and the maximum size (measured in tuples) that the
relation is allowed to become.

EXAMPLE:

The call
mkrel(newre !,FLAT ,OL,5,domnames,50L);

creates an empty new relation whose name is pointed at by *newrel, which is flat (i.e., not
a B *-tree) and not z-ordered, as the Zmap reflects (OL). Tuples have flve attributes; the
name of the i th domain is in domnames[l]. The relation is not allowed to have more than
50 tuples.

MRDS

ERROR CONDITION

database is full: cannot add more
relations

*rname points to a null string

*rname points to a name which is
too long

target relation already exists

ACTION TAKEN

error 70; return (REL *)(NULL)

error 58; return (REL *)(NULL)

warning 84; truncate to MAXRNMLEN (10 bytes
in current implementation), continue

warning 76; return (REL *)(NULL)

107

' ,

MKREL(S) MRDSe Programmer • s Manual MKREL(S)

bad number of domains (less than error 71; return (REL *)(NULL)
1 or more than 32)

a domain in domnames cannot be
found in Q.Qm.

a domain appears more than once
in domnames

warning 79; continue until end of list, then re­
turn (REL *)(NULL)

warning 78; excise it from list, continue

rd relation is too full; not enough error 71; return (REL *)(NULL)
room to contain rd entries for new
relation

cannot create file for new relation error 55; return (REL *)(NULL)

RETURN V ALUE(S)

FAIL

>O

CALL TABLE

SEE ALSO

Sections 3.2.2, 3.5.5,3.6.4

108

unable to make entries/file for new relation because of some
error condition

number of rd entries added for new relation; implies success­
ful creation

ere at u strcat u
db_err M strcmp u
findrel M strcpy u
getrelnam M strlen u
sprintf u

MRDS

0

0

0

0

c

0

MKSEP(S) MRDSe Programmer's Manual MKSEP(S)

long mksep(rptr,old,new,sep) I* return separator length in BITS *I
REL *rptr; I* ptr to REL *I
char *old; I* ptr to tpl in old page *I
char *new; I* ptr to tpl in new page *I
char *sep; I* ptr to space for separator *I

DESCRIPTION
mksep generates 'minimum' length separators to distinguish an entry pointed at by old
from the one pointed at by new: the separator is returned in space pointed at by sep.
Returned is the separator length in bits. §IDl should point to at least as many bytes as the
tuples are wide.

mksep guarantees true minimal length separators only for z-ordered and pure string data.
In building a separator, mksep proceeds attribute by attribute until a separator is pro­
duced or it is clear one cannot be made, i.e., *old == *new. For z-ordered data, only as
many bits as are needed will appear in the separator. If necessary, the separator will be
padded with zero bits on the right (least significant positions) to align it to the next byte
boundary. For string data, the separator contains the minimum length string which distin­
guishes *old from *new. For other data types, e.g., integer, the entire attribute value will
appear in the separator.

mksep is used by split when adding entries to B *-tree (splitting leaves); it is not needed
when splitting branch nodes (in a simple prefix B *-tree).

EXAMPLE:

Where k!1 is a pointer to the last tuple in an old leaf node, ~ is a pointer to the first
tuple in a new leaf node. newsep points to an array whose length is that of thisrel ->

____ w""'i..,.d..,.th.:.; following
i = mksep(thisrel,left,right,newsp);

it contains a separator of length i bits.

ERROR CONDITION ACTION TAKEN

tuples are found to be identical error 65; return FAIL

RETURN V ALUE(S)

FAlL could not produce separator: both tuples were identical, an
error condition)

>O length of generated separator, in bits

MRDS 109

MKSEP(S)

CALL TABLE

db_err M
flnddom M
flndrd M

SEE ALSO

Sections 3.2.2, 3.6.2

110

MRDSe Programmer· s Manual MKSEP(S)

0

0
MRDS

c
MKWRKLIST(S) MRDSe Programmer's Manual MKWRKLIST(S)

ZCLIST *mkwrklist(size)
int size;

DESCRIPTION
mkwrklist builds an empty circular list used by z-order support code containing ele­
ments. The elements are allocated and properly linked into a ZCLIST; returned is the
address of the 'bead' of the list. The z-order code uses this procedure to generate a work­
ing copy of the master circular list for use when reshutning tuples; the actual contents or
the list are filled in by copying from the master into the newly created working copy using
restoreclist.

EXAMPLE:

To generate and initialize a working copy of the master circular list,
ZCLIST *worklist;
int lots;
if ((worklist = mkwrklist(lots)) != (ZCLIST *)(0)) {

if ((restoreclist(masterclist,worklist,O)) ...

ERROR CONDITION ACTION TAKEN

cannot allocate any elements return (ZCLIST *)(0)

RETURN V ALUE(S)

(ZCLIST *)(0) allocated no elements for list due to some error condition

>0 pointer to 'head' or newly allocated list

CALL TABLE

malloc U

SEE ALSO

Sections 3.8; restoreclist

MRDS 111

OPENREL(S)

REL *rptr;
int mode;

DESCRIPTION

MRDSe Programmer· s Manual OPENREL(S)

openrel will open the file containing the relation whose w entry is pointed at by r:l2!!:. The
name of the file is obtained through rptr ·> relname and getrelnam. ~controls the
access to the opened relation and may be RONLY (read only), RDWR (read/write), or
APONLY (append only). The UNIX file descriptor for the opened file is saved in the rei tuple
for the relation { rotr -> fd) and is returned by openrel.

Buffer space, sufficient to hold one tuple from the relation, is allocated by ooenrel so that
procedures which access the relation are assured of buffer space (see rdtuple, wrtuple)
should they not wish to provide their own. A pointer to the start of the buffer is stored in
the global array buffer, in the element subscripted by the opened file's UNIX file descriptor.
It is not an error to attempt to open an already opened relation, however one cannot
change the access mode of a relation by an openrel call on an already opened relation; to
do that, the relation must first be closed using closerel. then opened again with the new
mode.

EXAMPLE:

If rptr -> relname points at 'thisrellll', and
i = openrel(rptr,RONL Y);

returns 6 in i, then the file in the database's directory called 'thisrel' has been successfully 0
opened as read only, w:ith UNIX file descriptor 6; a one tuple buffer is pointed at by
buffer[6J.

ERROR CONDITION ACTION TAKEN

file containing relation could not return FAIL

be opened

could not allocate any buffer space error 52; close the file and return FAIL

for tuples

unable to close file during recovery error 50; return FAIL

from above error condition

0
112 MRDS

OPENREL(S)

c RETURN VALUE(S)

FAIL

>O

CALL TABLE

close U
db_err M
getrelnam M
malloc U
open U

c SEEALSO

MRDSc Programmer· s Manual OPENREL(S)

could not open relation due to some error condition; caller
should check errno for further information regarding open
failure

file descriptor of successfully opened relation flle; usually > 2
as descriptors 0, 1 and 2 are used. The descriptor value may
be used as a subscript into array buffer to locate the pointer
to buffer space allocated to the opened relation

Section 3.6; closerel, rdtuple, wrtuple

MRDS 113

OUTREL(U) MRDSc Programmer· s Manual OUTREL(U)

int outrel(rname,title)
char *rname; /* name of relation to print *I
char *title; /* a page heading/title */

DESCRIPTION
outre! will print the relation whose name is pointed at by rname on standard output. If
*title is not a null string, it is printed atop each 'page' as well. Tuples are printed one per
line, left justified in columns under attribute name headings. Tuples longer than outrel's
idea of screen width are simply truncated.

Since its output is intended for display terminals, ~ contains hard coded ideas about
line length and lines per 'page' {80 and 22, respectively, defined in header mrds.h).

outrel uses getuple to access tuples from the relation being printed, hence can be used to
print z-ordered and/or B *-tree organized relations without the need to 'convert' the rela­
tion to flat, printable form.

To print a relation on paper, the procedure printrel should be used as it is more attuned to
the characteristics of a line printer.

EXAMPLE:

114

To print the relation 'thisrel ' with the message 'Test of outre!' appearing at the top of
each screen:

outrel("thisreliii","Test of outrel");

ERROR CONDITION ACTION TAKEN

relation named *rname cannot be error 58; return FAIL

found

failed to locate all rd entries for re- error 62; return FAIL

Iation

more rd entries found for *rname
than are allowed for a relation

cannot find a domain referenced in
m

tuple length exceeds maximum line
length

warning Q6; set number of rd entries to MAX­

ATTS (32 in the current implementation), con­
tinue

warning 7Q; continue

warning 88; truncate tuples for printing, con­
tinue

MRDS

0

0

OUTREL(U) MRDSc Programmer • s Manual OUTREL(U)

0
RETURN V ALUE(S)

FAlL unable to print relation because of some error condition

>O number of tuples successfully printed

CALL TABLE

close rei M printf u
db_err M sprintf u
finddom M strcat u
findrd M strcpy u
findrel M strlen u
getuple M

SEE ALSO
Section 3.11; printrel

c

MRDS 115

http:Programm.er

PRINTREL(U) MRDSe Programmer· s Manual PRINTREL(U)

int printrel(rname,title)
char *rname; /* name of relation to print *I
char *title; /* a page heading/title *I

DESCRIPTION
printrel will print the relation whose name is pointed at by rname on standard output. If
*title is not a null string, it is printed atop each page as well. Tuples are printed one per
line, left justified in columns under attribute name headings. Tuples longer than printrel's
idea of page width are simply truncated.

Since its output is intended for line printers, printrel contains hard coded ideas about line
length and lines per page (132 and 55, respectively, defined in header mrds.h).

printrel uses getuple to access tuples from the relation being printed, hence can be used to
print z-ordered and/or B *-tree organized relations without the need to 'convert' the rela­
tion to fiat, printable form.

For 'viewing' a relation on a terminal the procedure Q.!!1r.d should be used as it is more
attuned to the characteristics of a display terminal.

EXAMPLE:

118

To print the relation 'thisrel • with the message 'Test of outrel' appearing at the top of
each page:

printrel("thisrellll ","Test of ou trel");

ERROR CONDITION ACTION TAKEN

relation named *rname cannot be error 58; return FAIL

found

failed to locate all rd en tries for re- error 62; return FAIL

lation

more rd entries found for *rname
than are allowed for a relation

warning 96; set number of rd entries to MAX­
ATTS (32 in the current implementation), con­
tinue

cannot find a domain referenced in
rd

tuple length exceeds maximum line
length

warning 79; continue

warning 88; truncate tuples for printing, con­
tinue

MRDS

0

0

PRINTREL(U) MRDSc Programmer· s Manual PRINTREL(U)

c RETURN V ALUE(S)

FAIL unable to print relation because of some error condition

>O number of tuples successfully printed

CALL TABLE

close rei M printf u
db_err M sprintf u
fl.nddom M strcat u
fl.ndrd M strcpy u
fl.ndrel M strlen u
get up le M

SEE ALSO
Section 3.11; outre!

c

MRDS 117

PROJECT(U) MRDSe Programmer's Manual PROJECT(U)

int project(rel,domlist,ndoms,newrel)
char *rei; I* rei to be projected *I
char domlistO [MAXDNMLEN]; I* list of domain names *I
short ndoms; I* number of domains in projection * 1
char *newrel; I* name of new (output) relation *I

DESCRIPTION
project produces a domain ('column') subset of relation ~ in the new output relation
*newrel. domlist is a list of ndoms domains now in *rel which are to appear in tuples in
the output relation. The sequence of appearance of attributes in the output relation is the
sequence in which they appear in domlist. If ndoms is 0, the domlist parameter is ignored
and all domains are projected in the order that they appear in *rei, i.e., a copy of the rela­
tion is made.

domlist should have ndoms entries, each a domain name of length MAXDNMLEN (in the
current implementation, 11 bytes [10 characters + terminating null byte]).

EXAMPLE:

118

The code below produces the new relation tcols containing the projection of the relation
~. on its~ attribute:

strcpy(projdom [0], "colour!!!!");
project("toycolllll" ,projdom,l, "tcolslllll");

ERROR CONDITION ACTION TAKEN

input relation rei cannot be found error 58; return FAIL

in system relations

ftndrd fails to locate all rd entries error 58; return FAIL

for rei

number of domains in ndoms is warning 77; assume ndoms is 0 and continue
negative or exceeds the number
found in rd

cannot allocate temporary work error 52; return FAIL

buffer to use in construction of
output tuples

mkrel cannot make new relation error 57; return FAIL

*outre! (possibly because *outre!
already exists)

MRDS

0

0

0

.~

'-"

PROJECT{U) MRDSc Programmer· s Manual PROJECT(U)

project fails to add tuples to the continue processing until all tuples read; then
output relation issue warning 81 and report number of failed

additions; continue processing and ultimately
return -2

sortrel fails to sort/eliminate du- warning 82; continue, ultimately returning -3
plicates from the projected entries
in *outrel

RETURN VALUE(S)

-3

-2

FAlL

SUCCESS

CALL TABLE

SEE ALSO

Section 3.11

MRDS

projection occurred but intermediate output relation was not
sorted successfully

projection occurred unsuccessfully; some, possibly all, pro­
jected tuples were not added to output relation

projection could not be performed because of some error con­
dition

projection successfully completed

adtuple M getuple M
close rei M malloc u
db_err M mkrel M
finddom M sortrel M
ti.ndrd M sprintf u
find rei M strcpy u

119

RDTUPLE(S) MRDSc Programmer· s Manual RDTUPLE(S)

int rdtuple(rptr,to)
REL *rptr;
char *to;

DESCRIPTION
rdtuple is a low level relational read routine which will read the 'next' tuple from the rela­
tion whose ill entry is pointed at by r.P!r., placing the tuple either in a caller requested
buffer (*to) or in the buffer allocated by openrel (if to == (char *)(NULL)).

rdtuple's idea of 'next' is based on the read index rptr -> rindx. which may be manipu­
lated to cause the next tuple read to come from anywhere in the relation.

rdtuple simply scoops up rtpr -> width bytes from the current read index position, thus
preserving z-ordering. It is intended for use by procedures which require tuples in 'raw'
form. Procedures needing unshuffled, flat tuples should use getuple (which calls rdtuple
and then automatically performs any unshuffling before returning a tuple to its caller).

If the file containing the relation is closed, not an error condition, rdtuple will first open it
as read only (using openrel).

EXAMPLE:

120

To read the next tuple from the relation whose ill entry is pointed at by thisrelptr and
put the tuple into mybuf:

rdtuple(thisrptr,mybuf);

ERROR CONDITION

m1r. is a null pointer

cannot open file containing the re­
lation (openrel failed)

attempt to get a non-existent tu­
pie (read index does not point any­
where inside relation)

cannot seek to position in relation
file indicated by read index

failed to read tuplewidth bytes
from position indicated by read in­
dex

ACTION TAKEN

return FAIL

error 51; return FAIL

return FAIL

error 60; return FAIL

error 60; reset read index to start of tuple on
which read attempt failed, return FAIL

MRDS

0

0

0

c

RDTUPLE(S) MRDSe Programmer's Manual RDTUPLE(S)

in a B*-tree organized relation,
could not update read index be­
cause failed to get 'pointer to next'
from leaf linked list

RETURN V ALUE(S)

warning 92; reset read index to start of just
read tuple, continue

FAlL could not read all of tuple because of some error condition

>O

CALL TABLE

db_err M
lseek M
openrel M
read U

SEE ALSO

number of bytes successfully read; should be same as tuple
width

Sections 3.2.2, 3.6.2, 3.6.3; openrel, getuple

MRDS 121

REPLAOE(S) MRDSe Programmer#s Manual REPLAOE(S)

int replace(oldrel,newfile)
REL *oldrel; /* ptr to sysrel entry for rei being replaced * f
char *newfile; /* name of file becoming the relation *I

DESCRIPTION
replace is used to change the file containing a relation to another file. It first truncates the
file holding the relation old rei - > relname then copies the contents of *newfile to the trun­
cated file. When copying is complete, *newftle is unlinked.

replace is used by processes which generate an output relation one tuple at a time (e.g.,
project) and then sort the new output relation to produce the final result. Such procedures
first open an output relation into which they write using adtuple. When finished, sortrel is
used to order the output relation and eliminate duplicate tuples (except if result relation
was of B*-tree organization). The final output from sortrel is a temporary file which
should now become the file holding the output relation; replace is used to cause that tem­
porary file to replace the originally created (before sortrel) file and update the system rela­
tions (e.g., concerning new size of output relation).

EXAMPLE:

122

A new output relation, newoutrel, has just been generated and is being sorted (primarily to
facilitate elimination of duplicate tuples). When sortrel finishes sorting the file sortedrel
contains the final form of the newly generated output relation. To cause sortedrel to
become the file holding the relation,

replace(newoutrel,sortedrel);

ERROR CONDITION

file containing *oldrel is not closed

cannot open *newfile

cannot truncate file containing old
relation

during copy, failed to write as
many bytes as read

could not unlink *newfile

ACTION TAKEN

error 65; return FAIL

error 51; return FAIL

error 51; return FAIL

severe 25; close files, do not unlink *newfile
and return -2

warning 83; return SUCCESS

MRDS

0

0

REPLACE(S)

RETURN VALUE(S)

-2

FAIL

SUCCESS

CALL TABLE

0 SEE ALSO

Section 3.6.4

Q
MRDS

MRDSc Programmer's Manual REPLACE(S)

relation file partially replaced when an error occurred; the
source file from which the replacement comes is left in tact
for consultation (since it now represents the only complete
version of the relation)

could not replace relation file because of some error condition

successful replacement

close u read u
creat u sprintf u
db_err M strcpy u
getrelnam M unlink u
!seek u write u
open u

123

RESTORECLIST(S) MRDSc Programmer· s Manual RESTORECLIST(S)

unsigned restoreclist(from,to,mode)
ZCLIST *from, *to;
short mode;

DESCRIPTION
restoreclist is used to initialize a Z circular list *to to the values currently found in the
'master list', *from. The ~ determines whether the numzbits member of the list
(number of bits in this attribute participating in z-order) is set to 0 (mode = 0) or to the
value in the list *from.

EXAMPLE:

The working copy of the circular list used when reshuffling a tuple must be initialized for
each tuple processed. The procedure mkwrklist is used to generate an empty Z circular list
of the required size, then restoreclist is called each time a tuple needs to be processed:

· restoreclist(masterzclist, wrkcllist,l);

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

1 successful initialization of list

CALL TABLE

SEE ALSO

Section 3.8; mkwrklist

124 MRDS

0

0

0

c

SEAROH{S) MRDSe Programmer· s Manual SEAROH{S)

long search(rptr,tpl)
REL *rptr; /* rel to look through *I
char *tpl; /* for this tuple *I

DESCRIPTION
search looks through the relation whose entry in ill is pointed at by .r.J2!.r. for the tuple
pointed at by LQL and returns the offset into the file where the tuple starts (suitable for
assigning to rptr -> rindx prior to a call to getuple or rdtuple). If the tuple is not found
in the relation, then search returns the offset to the tuple just after which the sought tuple
would have appeared. If found, a positive valued offset is returned. If not found, the tuple's
predecessor's offset is adjusted, negated and returned. The adjustment is necessary to
ensure that FAIL (-1) is not returned as an offset; the largest negative offset returned is -2L,
which would imply that the tuple being sought belongs before the first tuple now in the
relation; -3L would indicate that it belongs after the first tuple, -4L after the second, etc.

search can deal with any data organization, and will [in future implementations] use the
best strategy known to be applicable, e.g., for a B*-tree it uses the index in the branch
nodes, for fiat but ordered searches tuple by tuple until tuple is found or known to be
absent t If no better technique is available, search looks through the relation tuple by
tuple until a determination is made. Tuple comparisons are performed by t;plcmp.

EXAMPLE:

To look through the relation indicated by thisrelptr for a tuple pointed at by lookfor:
position = search(thisrelptr,lookfor);

ERROR CONDITION ACTION TAKEN

pointer rptr is NULL return FAIL

cannot get mtime for file contain- warning sg; set mtime to -1, continue
ing B *-tree

failed to read tlrst-block from B*- error 53; return FAIL

tree

unale to allocate memory to hold
one branch and/or one leaf node

in each case: error 52; in former case return
FAIL; in latter, release branch node buffer,
then return FAIL

t Although a. blna.ry sea.reh should be employed on a. rela.tlon so ordered.

MRDS 125

SEARCH(S) MRDSe Programmer • s Manual SEARCH(S)

failed to read a node from ftle error 53; free dynamically allocated buffer
space and return FAIL

a branch node has been found to
be corrupted (size mismatches)

severe 28; free dynamically allocated buffer
space and return FAIL

RETURN V ALUE(S)

<-3L

-2L

FAIL

>o

CALL TABLE

SEE ALSO

Section 3.9; tplcmp

126

tuple not found but should have appeared just after the tu­
pie which starts at offset return value + 3.

tuple not found but should have appeared before first tuple
now in relation

search could not be performed because of some error condi­
tion

offset into ftle containing relation at which sought tuple was
found

cmpseptup M rdtuple u
db_err M read M
free u stat u
getrelnam M strcmp u
malloc u timer M
rdpage M tplcmp M

MRDS

0

•

0

c

SELECT(U) MRDSe Programmer's Manual SELECT(U)

int select(rnam,domname,value,cmp,out)
char *rnam; I* name of input relation to select from *I
char domname0; I* domain of selection *I
char *value; I* value to compare against: TYPE UNKNOWN *I
short cmp; I* type of comparison to be done *I
char *out; I* name of output relation *I

DESCRIPTION
select performs selection on a relation: it creates a new relation .!Q..u1 consisting of tuples
from relation *rnam which satisfy the constraint

attribute in domname cmp *value
cmp may be any meaningful combination of <. =, or >, comparing the constant *value
with an attribute of *rnam's tuples drawn from domain domname. *value can be of any
datatype, hence is passed via a char * pointer which is interpreted during comparison as a
pointer to the datatype of domain domname.

To specify a comparison, use the built-in names for the compare operators:

CMPATT_EQ 1
CMPATT_GT 2
CMPATTJ,..T 4

which may be combined to give, e.g., a < comparison.

EXAMPLE:

From the relation toycol produce a relation in which all toys are green in colour. The call
to select would be:

select("toycolllll", "colour! Ill", "green",CMPATT_EQ, "green toys!');
resulting in the creation of greentovs.

ERROR CONDITION ACTION TAKEN

relation name, *rnam is a null error 58; return FAIL
string, or, the relation cannot be
found

unrecognized compare operation warning 83; return FAIL

cannot find domain domname error 79; return FAIL

failed to get all rd entries for rela- error 58; return FAIL

tion *rnam

MRDS 127

SELECT(U) MRDSe Programmer's Manual SELECT(U}

domain domname not in relation error 62; return FAIL

*rnam

cannot make new relation *out error 57; return FAIL

not all tuples processed were ad- warning 81; indicate total number of failed ad-
ded to new relation ditions, continue. Upon return, return -2

tailed to sort/eliminate duplicates warning 82; continue; upon return, return -3
from newly created relation *out

RETURNVALUE(S)

-3

-2

FAIL

SUCCESS

CALL TABLE

SEE ALSO

Section 3.11; sortrel

128

performed select but failed to sort/eliminate duplicates from
output

performed select but failed to add all selected tuples to out­
put relation due to some error condition

could not perform select due to some error condition

successful select

close rei
db_err
flnddom
flndrd

M flndrel
M getuple
M mkrel
M sortrel

M sprintf
M strcmp
M strcpy
M

u
u
u

MRDS

0

0

0

c

c

0

SEPENTLEN(S)

int sepentlen(s)
char *s;

DESCRIPTION

MRDSc Programmer· s Manual SEPENTLEN(S)

/* ptr to sin (s,p) entry */

sepentlen returns the length, in bytes, of the s part of an (s,p) entry in a B*-tree. This
length, added to the location s, where the separator begins, yields a pointer to the p part:

(5, P) entry

ATORIPAD
n1;

sepentlen .. I

EXAMPLE:

For an (s,p) entry with a separator 3 bytes long, the length of a separator entry:
i = sepentlen(thissepent);

where thissepent is on a longword boundary, would be returned as 8 (2 for seplen
(unsigned short) + 3 for the separator + 3 for alignment pad).

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

>O

CALL TABLE

SEE ALSO

Section 3.g

MRDS

length of separator entry, in bytes, or, offset from start of
(s,p) entry top part

129

SETUP(U) MRDSc:: Programmer· s Manual SETUP(U)

int setup(dbname,db,verbose)
char *dbname; /*name of database*/
DBSTATUS *db;
int verbose;

DESCRIPTION
setup is used to make a database ready for use by MRDSc procedures. It will load the sys­
tem relations into memory, perform a consistency check on the database using dbck, begin
session logging and check a user's access privileges to a database.

The name of the database to set up is passed via dbname. db must point at a previously
allocated occurrence of DBSTATUS which setup will fill in with the particulars of the data­
base. The verbose parameter is passed on to dbck to control the extent to which it issues
messages during its consistency check.

In normal MRDSc use, this should be the first MRDSc procedure called.

EXAMPLE:

Following determination of the name of a database name,
i = setup(thisdb,dbinfo,l);

will set up the database for use. Note that verbose is set to 1, which will cause dbck to
issue several messages as it performs its consistency check.

ERROR CONDITION ACTION TAKEN

the string *dbname or the pointer return FAIL
dbname is NULL

cannot open MRDSc system logfile warning 95; continue
for session logging

cannot locate database *dbname return DB.flOFND (-2)

consistency check failed return DBJ'UBAR (-3)

RETURN V ALUE(S)

DBJ'UBAR (-3)

130

during setup, the database was found to be inconsistent, i.e.,
unsafe for use

MRDS

•

•

0

SETUP(U)

c DB_NOFND (-2)

FAIL (·1)

SUCCESS (0)

CALL TABLE

SEE ALSO

Section 3.5; dbck. find db

0

MRDS

MRDSc Programmer's Manual SETUP(U)

the database could not be located in the MRDsc master list
(DBLIST) of known databases, hence could not be set up

the database could not be set up because of some error con­
dition

database successfully set up

db_err
dbck
fclose
find_db

M fopen U
M gooduser M
U logent M
M sprintf U

131

SHUFFLE(U) MRDSc Programmer's Manual SHUFFLE(U)

int shuffle(rname,domlist,outname)
char *rname; /*name of relation to shuffle*/
char domlist[][MAXDN.MLEN]; /*list of domains to shuffle */
char *outname; /* name of output relation * f

DESCRIPTION
shuffle allows the creation of a new z-ordered relation, *outname. from an existing relation,
*rname, which may or may not already be z:-ordered. Only the domains appearing in dom-

-.....t.li6:os~t will participate in the new z-ordering. If the domlist parameter is null, then all domains
in *rname will be z-ordered to produce *outname. If domlist contains an actual list of i
domain names, then the i + 1 ' 1 entry must be a null string to signal 'end-of-list'. If rela­
tion *rname is already (partially or totally) z:-ordered, its tuples are first completely
unshuffled, then re-shuffled according to domlist. If the output relation would have the
same z-ordering as the input relation, shuffle does no work (not even copying *rname to
*outname), but signals this condition through its return value.

shuffle is essentially a front end to the MRDSc system procedure z. which performs the
actual re-shuffling.

EXAMPLE:

132

To shuffle relation toycol into ztoycol:
i = shuffle("toycolllll",(char *)(O),"ztoycollll");

Any non-zero value of i indicates a not completely successful shuffle.

ERROR CONDITION

relation *rname cannot be found

more than maximum allowed attri­
butes in a relation said to be parti­
cipating in z:-ordering (i.e., likely
missing NULL domain name in
domlist to signal end of list)

no change in z-ordering: *outname
would have same z-ordering as
*rname

a domain in domlist cannot be
found

ACTION TAKEN

error 58; return FAIL

warning 77; set number of domains participat­
ing in z-ordering to all domains in the relation,
continue.

warning 98; return -2

warning 79; continue checking domlist, then
issue another warning 79 indicating number of
missing domains encountered, and return FAIL

MRDS

0

0

0

0

c

SHUFFLE(U) MRDSc Programmer • s Manual SHUFFLE(U)

a domain name is duplicated in warning 78; ignore duplication, continue
do m list

RETURN V ALUE(S)

-2

FAIL

SUCCESS

>O

CALL TABLE

db_err M
flndrd M
flndrel M
sprintf U
z M

SEE ALSO

Section 3.8; Z.

MRDS

output relation would have had same z-ordering as input re­
lation; shuiDe not done, and no new relation made

shuiDe did not succeed because of some error condition

successful shuiDing of input relation

number of errors during shuffle which has been only partially
successful

.

133

SORTREL(S) MRDSe Programmer ·s Manual SORTREL(S)

int sortrel(rel)
REL *rei;

DESCRIPTION
sortrel uses quicksort to sort the relation whose rel tuple is pointed at by the parameter
.uti, eliminates duplicate tu pies, and replaces the file originally containing rei - > relname
with the newly sorted version, updating rei - > cursize as necessary. It is used by pro­
cedures which produce relations as output, e.g., project and select to produce the final
form of their output relation.

sortrel has integrated sort and merge components, and will iteratively sort and merge if the
relation is too large to sort in one pass. sortrel passes its output to ~ via a pointer,
i.e., merge is constructed to merge a file (previous merge output) with a memory buffer
(sort output) to produce a new output merge file. When all input tuples have been sorted,
the last merge output file replaces the file holding the relation (using replace).

EXAMPLE:

134

In performing a select on relation inputrel creating selrel. whose rei tuple is pointed at by
selreiptr, the last step is to sort and eliminate any duplicate tuples. This is done with

if (sortrel(selrelptr) != succEss) ...
in select.

ERROR CONDITION ACTION TAKEN

w pointer is null error 58; return FAIL

attempting to sort a B*-tree return -2

cannot allocate sort buffer memory error 52; return FAIL

failed to get all needed rd entries error 62; release buffer space; return FAIL

could not find a domain, i.e., one warning 70; set domain's datatype to -1 (for
or more is missing 'unknown'); continue

could not allocate string buffer for warning SI; release buffer space; return FAIL

old merge temp file name

failed read on input relation error 60; release buffer space; return FAIL

merge pass failed error 55; release buffer space; return FAIL

MRDS

0

•

0

0

c

0

SORTREL(S) MRDSc Programmer· s Manual SORTREL(S)

unable to create a new merge tern- error 51; release buffer space; return FAIL

porary file

write failed while writing out error 54; release buffer space; return FAIL

merge temporary file

unable to open a previously writ- error 51; release buffer space; return FAIL

ten merge temporary file

unable to replace original relation error 59; free buffer space; return FAIL

file with new sorted file

RETURN V ALUE(S)

-2

FAIL

SUCCESS

CALL TABLE

close
close rei
creat
db_err
finddom

SEE ALSO

attempted to sort a B'"-tree

sort failed, totally or partially, because of some error condi­
tion

relation successfully sorted

u findrd M open u sprintf u
M free u openrel M strcpy u
u malloc u qsort u strlen u
M merge M read u unlink u
M mktemp u replace M write u

Sections 3.7; merge, replace, tplcmp

MRDS 135

SPLIT(S) MRDSe Programmer· s Manual SPLIT(S)

int split(rptr,tpl,pos,x,mode,sptr)
char *tpl; I* ptr to entry causing split: may be tpl or (s,p) *I
REL *rptr; I* ptr to rei whose page is being split *I
long pes; I* position at which to insert new entry *I
Xfb *x; I* ptr to Xfb for this relation *I
char mode; /* flag: split branch or leaf page *I
long sptr; /* 'p' in (s,p) pair*/

DESCRIPTION
split is used to split a leaf or branch node during an insertion into a B*-tree. When insert
realizes that a leaf must be split to accommodate a new entry, it calls split, passing the
pointer to the relation's tuple in rei (in rptr), the tuple which could not be inserted (in
~ and other particulars of the B *-tree: both the split and completion of the insertion
become the responsibility of split. This version of split will always perform a split, i.e., it
does not attempt to avoid splits by redistributing entries between adjacent nodes.

pas is the location returned by search to insert as the position after which the insertion
should occur. x. is a pointer to the memory area holding the first-block of the B*-tree; the
node being split must already be loaded into whichever of x - > lbufat or x - > xbufat is
appropriate. mode identifies the node being split as a leaf or a branch (XLEAF,XBRANCH).
If the node is a branch, then §.l2!t points to the p part of the (s,p) pair at which the split is
occurring. For leaf nodes, this parameter is ignored.

split is recursive so that if, following successful insertion of *tpl into one of the two new
sibling leaves, the parent cannot be updated without being split, split calls itself. In this
way, liPli! may need to split branch nodes up the tree, possibly including the root.

A successful return from liOli! implies that the tuple originally being inserted is now in the
B *-tree and all necessary updates to any affected branch nodes have been made.

EXAMPLE:

136

When ln§m realizes there is insufficient space on a leaf node to hold the tuple being
inserted, it calls liOli!:

if (split(rel,tpl,pos,x,XLEAF) ==FAIL)
Note that since this is a leaf split, the parameter §.l2!t is absent.

When updating a branch node requires it to be split, the call is
if (split(rptr,&(sp.te_ltem),posn,nodemode,sp.te_ptr) ==FAIL)

where the §J2.!l: entry is present, as part of a structure called §.P. (which includes as its
member te item the separator part of the (s,p) pair).

MRDS

0

0

http:split(rptr,&(sp.te_ltem),posn,nodemode,sp.te

SPLIT(S)

0

0
MRDS

MRDSe Programmer's Manual SPLIT(S)

ERROR CONDITION ACTION TAKEN

pos is >0 implying that *tpl is al- warning 91; return SUCCESS

ready present in the relation

cannot allocate buffers for nodes in each case: error 52, free any previously allo­
cated buffers and return FAlL

cannot allocate buffer for backup warning Q5; continue
copy of node being split

failed to write out updated node error 59; release buffer space; return FAlL

passed to split

could not seek in file holding B *- error 56; release buffer space; return FAlL

tree to location where new sibling
node should be written

failed to write out new node error 5Q; release buffer space; return FAlL

could not allocate buffer for error 52; release buffer space; return FAlL

branch node (for update of parent)

could not seek to position in file at error 56; release buffer space; return FAlL

which new root should be written

failed to write out new root node

failed to update parent node of
now split node

could not seek to position in file at
which to write updated child node

failed during write of updated
child node

could not seek to position in file at
which to write new leaf node

error 59; release buffer space; return FAlL

error 61; release buffer space; return FAlL

error 56; release buffer space; return FAlL

error 59; release buffer space; return FAlL

error 56; release buffer space; return FAlL

failed to write updated sibling
nodes (replacement of original
node, or new one)

for each case: error 59; release buffer space; re­
turn FAlL

failed to make separator between
two new leaf nodes

failed to update parent

error 68; release buffer space; return FAlL

error 68; relea.se buffer space; return FAlL

137

http:relea.se

SPLIT(S)

RETURN V ALUE(S)

FAlL

SUCCESS

CALL TABLE

db_err M
flush page M
!seek u
malloc u
mksep M
upd_parent M
write u

SEE ALSO

MRDSc Programmer's Manual SPLIT(S)

split and subsequent insertion failed because of some error
condition

successful split and completed insertion

Sections 3.g; insert, upd parent

138 MRDS

0

0

0

c

c

SYNCREL(U,S) MRDSc Programmer • s Manual SYNCREL(U,S)

int syncrel()

DESCRIPTION
syncrel is used at the end of an MRDSc session to flush the current memory resident ver·
sions of the system relations out to their respective disk files and close the session log file
prior to exiting. It updates only the system relations and returns. If it is undesirable to
save updated system relations, MRDSc should be exited without calling syncrel thus leaving
the system relations exactly as they were when the current session started.

EXAMPLE:

When winding up a session, to save the updated system relations:
syncrel();

ERROR CONDITION ACTION TAKEN

cannot open the file holding a rela­
tion for writing

error 51; return value depends on which file
could not be opened: -4 for rei, -2 for dom,
and -1 for m.

error during write to file holding
relation

error 54; return value depends on which file
could not be written: -4 for m -2 for .Q.Qm,
and -1 for rd.

RETURN VALUE(S)

<O

SUCCESS

CALL TABLE

close U
db_err M
logent M
open U
sprintf U
write U

MRDS

update of system relations failed due to an open or write
failure. Absolute value of return value is a bit string in
which bits conveying the values 4, 2, and 1 are OR'ed imply­
ing failure in m do m, or rd respectively.

successful update of disk file holding system relations

139

SYNCREL(U,S) MRDSe Programmer's Manual SYNCREL(U,S)

SEE ALSO 0
Sections 3.5.5

0
140 MRDS

c

c

TIM:ER(S) MRDSc Programmer's Manual TIM:ER(S)

long timer()

DESCRIPTION
.ll!n.tl returns the host UNIX system's idea of the current time of day as the number of
seconds since "the epoch". It is used by the logging procedure logent to timestamp its
entries and by the procedures using LRU replacement to establish time of last use.t

EXAMPLE:

To get the current time,
1 =timer();

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

>O long integer containing time, in seconds, since "the epoch"

CALL TABLE

gettimeofday U (on BSD Unix systems)
time U (on old Unix systems)

SEE ALSO

Sections 3.5.2, 3.8, 3.9

t Although these should get nner resolution time sta.mps

MRDS 141

TPLCMP(S) MRDSe Programmer· s Manual

int tplcmp(a,b) /* kludgey but quick*/
char *a,*b;

DESCRIPTION

TPLCMP(S)

tplcmp compares two tuples by basically returning *a - *b. It returns <-1 if *a < !!2, 0 if
*a = !!2, or >1 if *a > *b. It is used by sortrel and any other procedure which must
determine the relationship between two tuples.

Since tuples can consist of a combination of one or more possibly different data types, they
must be passed via char * pointers. tplcmp uses the datatype information in dom and the
domain positioning information in m to determine how to perform its comparison. If given
an unknown datatype for a domain, tplcmp silently ignores that domain in its comparison.
Only as much of the tuples as is needed to establish their relationship is examined (thus
equality is worst case). tplcmp begins comparing the tuples' first attributes, using whatever
comparison is appropriate to that attribute's datatype, and continues, attribute by attri­
bute, until a determination is made. Coercion of individual attributes to their correct
datatypes is handled automatically by tplcmp, by rather ugly code, since tuple attributes
are not guaranteed to be correctly aligned.

EXAMPLE:

0

To compare tuplel with tuple2, which are stored in memory areas pointed at by the char *
pointers tlptr and ~ respectively:

i = tplcmp(tlptr,t2ptr); 0
ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

<-1 tuple *a is less than tuple *b

0 tuple ~ is equal to tuple !b.

>I tuple ~ is greater than tuple *b

CALL TABLE

0
142 MRDS

TPLCMP(S) MRDSe Programmer*s Manual TPLCMP(S)

0 SEE ALSO

Section 3.7; sortrel, search

c
MRDS 143

UNSHUFFLE(U) MRDSe Programmer • s Manual UNSHUFFLE(U)

int unshutne(rname,domlist,outname)
char *rname; /*name of relation to shutne */
char domlistO[MAXDNMLEN]; /*list of domains to shutrle */
char *outname; /* name of output relation *I

DESCRIPTION
unshutne allows the creation of a new z..ordered relation, *outname. from an existing rela­
tion, *rname, which may or may not already be z..ordered. Only the domains appearing in
domlist will participate in the new z..ordering. If the domlist parameter is null, then all
domains in *rname will be unshuffled to produce *outname. If domlist contains an actual
list of i domain names, then the i + 1 ' 1 entry must be a null string to signal 'end-of-list'.
If relation *rname is already (partially or totally) z-ordered, its tuples are first completely
unshuffled, then re-shutned according to domlist. If the output relation would have the
same z-ordering as the input relation, unshutrle does no work (not even copying *rname to
*outname), but signals this condition through its return value.

unshuffle is essentially a front end to the MRDSc system procedure z. which performs the
actual re-shuffling.

EXAMPLE:

144

To unshutl'le relation ztoycol into toycol:
i = unshuffle("toycolllll",(char *)(O),"ztoycoljl!");

Any non-zero value of i indicates a not completely successful unshuffle.

ERROR CONDITION

relation *rname cannot be found

more than maximum allowed attri­
butes in a relation said to be parti­
cipating in z-ordering (i.e., likely
missing NULL domain name in
domlist to signal end of list)

no change in z..ordering: *outname
would have same z-ordering as
*rname

a domain in domlist cannot be
found

ACTION TAKEN

error 58; return FAIL

warning 77; set number of domains participat­
ing in z-ordering to all domains in the relation,
continue.

warning 98; return -2

warning 79; continue checking domlist, then
issue another warning 70 indicating number of
missing domains encountered, and return FAIL

MRDS

0

0

0

c

UNSHUFFLE{U) MRDSc Programmer's Manual UNSHUFFLE(U)

a domain name is duplicated in warning 78; ignore duplication, continue
domlist

RETURN VALUE(S)

-2

FAIL

SUCCESS

>O

CALL TABLE

db_err M
ftndrd M
ftndrel M
sprintf U
Z M

SEE ALSO

Section 3.8; Z

MRDS

output relation would have had same z-ordering as input re­
lation; unshutile not done, and no new relation made

unshutile did not succeed because of some error condition

successful unshuffling of input relation

number of errors during unshuffle which has been only par­
tially successful

145

UPD.J? ARENT(S) MRDSc Programmer • s Manual

int upd_parent(rptr,sp,parent,x)
REL *rptr;
Bentry sp;
long parent;
Xfb *x;

DESCRIPTION

UPD_PARENT(S)

upd parent is used when splitting a leaf or a branch node and the parent of the node being
split must be updated, i.e., a new (s,p) pair must be inserted into it. rptr points at the
relation's rei tuple, m contains the actual s and p en tries to be inserted into the parent,
parent holds the disk address of the split node's parent and x points at the B "-tree's first­
block.

upd parent searches the parent node for the split node's entry and attempts to insert the
new (s,p) immediately after it in the linked list of (s,p) entries in the parent. Should there
be insufficient space in the parent to accommodate such an insertion, upd parent will set
up the necessary parameters for a call to ~ to split the parent, following which it retries
the insertion.

EXAMPLE:

When split has completed its split of a leaf node and has the (s,p) pair ready for insertion

into the parent of the now sibling nodes, it calls: 0··.· ..
if (upd_parent(rptr,upward,*(lf.pred),x) ==FAIL)

where upward is a Bentrv structure containing the (s,p) values to insert, and lf.pred is a
pointer to the parent of the node received by~.

146

ERROR CONDITION ACTION TAKEN

parent pointer is null return FAIL

could not allocate space for branch error 52; return FAIL

node work buffer

failed to load parent page into error 60; free buffer space; return FAIL

memory (loadpage fails)

could not find pointer to current severe 2Q; free buffer space; return FAIL

node in its parent

failed to write out updated parent error 59; free buffer space; return FAIL

page (fiushpage fails)

no room on parent page after split severe 30; free buffer space; return FAIL

0
MRDS

0

j~

\.....

UPD _PARENT(S} MRDSc Programmer's Manual UPD _P ARENT(S)

could not allocate space for branch error 52; free buffer space; return FAIL

node

split failed to split parent error 68; free buffer space; return FAIL

unable to load split child following error 60; free buffer space; return FAIL

parent split (loadpage fails)

RETURN V ALUE(S)

FAIL unable to update parent node because of some error condi­
tion

SUCCESS successful update of parent node

CALL TABLE

db_err M
ftushpage M
free u
load page M
malloc u
split M

SEE ALSO

Section 3.9; §I!.ill.

MRDS 147

WRTUPLE(S) MRDSe Programmer • s Manual WRTUPLE(S)

int wrtuple(rptr,from)
REL *rptr;
char *from;

DESCRIPTION
wrtuple is a low level relational write routine which will write the 'next' tuple from the
relation whose rei entry is pointed at by rptr, getting the tuple from the caller designated
buffer (*from). Note that this differs from rdtuple in that *from must point at a valid
buffer location, either &;bufferfrptr -> fd] or some user defined one; in rd tuple, the buffer
pointer is allowed to be NULL to indicate use of the buffer space allocated by openrel.

wrtuple's idea of 'next' is based on the write index rptr - > windx, which may be manipu­
lated to cause the next tuple written to come from anywhere in the relation.

wrtuple simply spits out rtpr -> width bytes at the current write index position, thus
preserving z..ordering. It is intended for use by procedures which use tuples in 'raw' form.
Procedures writing flat tuples into z..ordered or B *-tree organized relations should use
adtuple (which first performs any shuffling and then calls wrtuple to write the tuple}.

If the file containing the relation is closed, not an error condition, wrtuple will first open it
as read/write (using openrel).

EXAMPLE:

148

To write the next tuple into the relation whose rei entry is pointed at by thisrelptr from
mybuf:

wrtuple(thisrptr,mybuf);

ERROR CONDITION ACTION TAKEN

I.Iill: is a null pointer return FAlL

write attempt which is not an ap- error 59; return FAlL

pend on an append-only relation

cannot open file containing the re- error 51; return FAlL

lation (openrel failed)

attempt to add to 'too full' rela- warning 85; return FAlL

tion

cannot seek to position in relation error 59; return FAlL

file indicated by write index

MRDS

0

0

0

0

c

c

WRTUPLE(S) MRDSe Programmer· s Manual WRTUPLE(S)

failed to write tuplewidth bytes to
position indicated by write index

error 5Q; reset write index to start of tuple on
which write attempt failed, return FAIL

RETURN VALUE(S)

FAIL

>O

CALL TABLE

db_err M
lseek U
open rei M
write U

SEE ALSO

could not write all of tuple because of some error condition

number of bytes successfully written; should be same as tu­
pie width

Sections 3.2.2, 3.6.2, 3.6.3; openrel. adtuple

MRDS 149

YESNO(U,S) MRDSe Programmer· s Manual YESNO(U,S)

int yesno(string)

DESCRIPTION

~is used by interactive procedures to test whether *string is an affirmative or negative
response from a user. If *string begins with upper or lower case 'y' ~ returns 2. 1 is
returned for *string starting with upper or lower case 'n'; otherwise 0 is returned. Beware:
in a simple-minded approach to leading blank suppression, characters which are neither 'y'
nor 'n' are skipped over until a 'y' or 'n' is encountered or end-of-string is reached (thus,

. "maybe" would always be taken to mean yes).

EXAMPLE:

A user's response to some interactive question is contained in the string useransw. The fol­
lowing determines action based on what the user indicated:

switch (yesno(useransw)) {
case 2: I* said yes *I

case 1: I* said no *I

default: I* prompt again; don't grok user answer *I
}

ERROR CONDITION ACTION TAKEN

none

RETURN V ALUE(S)

2 user 'said' yes

1 user 'said' no

0 user did not 'say' either of yes or no

CALL TABLE

150 MRDS

0

•

0

YESNO(U,S) MRDSc Programmer • s Manual YESNO(U,S)

0
SEE ALSO

c

MRDS 151

z(S) MRDSe Programmer· s Manual

lnt z(rptr,fromZmap,toZmap,tplptr)
REL *rptr;
long fromZmap;
long toZmap;
char *tplptr;

z(S)

DESCRIPTION
z. reshuffles one tuple from the relation whose rel entry is pointed at by rptr. Tuples with
z..order expressed by the bitmap fromZmap (where set bits positionally represent attributes
now participating in z-order, bit 0 being most significant attribute [on a VAX, bits go left­
ward as domains go rightward across a tuple]) are shuffled into new tuples whose z­
ordering is expressed by toZmap. 1Ill.lU!: points at the tuple which is to be reshuffled.
When both fromZmap and toZmap are non-zero and different, z. automatically unshuffles
the tuple (to a Zmap of OL) then shuffles it to toZmap. The reshuffled tuple is returned in
*tplptr.

z. implements a tuple-at-a-time reshuffling mechanism used by e.g., getuple and adtuple,
whereas .z. provides a relation-at-a-time mechanism.

EXAMPLE:

152

When getuple has just received a raw tuple read by rdtuple, it calls z. to unshuffle it:
if (z(rptr,rptr -> Zmap,OL,buffer[rptr -> fd])) ==FAIL)

ERROR CONDITION

!ln..W:s1 fails to get all I!! en tries for
relation

finddom cannot find a domain

cannot allocate memory for a
needed list or working tuple buffer

attempt to change Zmap in mid­
relation (all tuples in a relation
must have same Zmap value)

ACTION TAKEN

return FAIL

warning 7Q; set the domain's length to o, con­
tinue

in each case: error 52; increment error count,
release any already allocated space and return
FAIL

warning 87; use for toZmap already esta­
blished map value for relation

MRDS

0

0

.z(S) MRDSc:: Programmer's Manual z(S)

0 RETURN V ALUE(S)

FAIL tuple was not reshufi'led because of some error condition

SUCCESS tuple successfully reshufi'led

CALL TABLE

db_err M freellist M
fl.nddom M malloc u
fl.ndrd M mkwrklist M
free u restoreclist M
freeclist M timer M

SEE ALSO

Section 3.8; getuple. adtuple, z.

MRDS 153

Z(S)

int Z(rptr,map,rds,out)
REL *rptr;
long map;
RD *rds[];
char *out;

MRDSe Programmer's Manual Z(S)

DESCRIPTION
z reshuffles entire relations from their current z..ordering to the new ordering specified in
map. Each bit in map represents a domain of the relation whose rei tuple is pointed at by
rnlr.; the leftmost attribute corresponds to bit 0, the next attribute (towards right) to bit
1, etc. Each bit which is set identifies a domain which is to participate in the new z..
ordering of the output relation whose name is *out (which may be same as rptr -> rel-

_____ n.=am~e i.e., the intent is to replace a relation, which may already be partially or totally z­
ordered, with a differently z-ordered version). If map is the same as rptr - > Zmap i.e., no
change in z..ordering, z returns without doing anything.

This procedure implements a relation-at-a-time reshuffling mechanism, whereas z. provides
a tuple-at-a-time mechanism. z is largely obsoleted by the newer z. which achieves the
same effect by iteratively reading/z/writing albeit more slowly.

EXAMPLE:

To change the data organization of the relation wa,sftatrel with 6 attributes per tuple to z-
ordered on all attributes, one would call shuffle which ultimately calls z to do the shuffling •
work with

154

Z(rptr,63L,rdtab,outname)
where rdtab is the result of a call to ~ to get all rd entries for the relation being re­
organized.

ERROR CONDITION ACTION TAKEN

performing an in-place reshuffling error 51; return FAIL
of a relation, but cannot open the
relation as writable

output relation is new, but cannot error 57; return FAIL
make a new relation (mkrel fails)

a domain in m cannot be found in warning 7g; set length of missing domain to 0,
dom (finddom fails) continue

cannot allocate memory for a in each case: error 52; release already allocated
needed list or working tuple buffer space and return FAIL

MRDS

0

0

0

Z{S) MRDSc Programmer· s Manual Z(S)

failed to add a tuple to output re­
lation (adtuple fails)

RETURN V ALUE(S)

increment count of add failures; when finished
getting tuples from input relation issue warn­
ing 81 and report quantity of failures; ulti­
mately return FAlL

FAIL shuffled relation was not completely successfully generated
because of some error condition

SUCCESS successful generation of new z-ordered relation

CALL TABLE

close rei M freellist M
db_err M malloc u
fl.nddom M mkwrklist M
findrd M restoreclist M
free u strcpy u
freeclist M timer M

SEE ALSO

Sections 3.8; shuffle, unshuffle, z.

MRDS 155

Chapter 5

5: Two Useful Development Tools: cmd and mkdb

5.1 Overview of cmd

During the development of h.1RDSc it became necessary to have a quick and easy way to
test various components. Originally it was sufficient to add specific code to main, recompile and
reload, and run the new test code. This rapidly became unrealistic as the system grew.

A different approach was to provide a bare minimal interactive driver, analogous to the
simple interactive monitor programs by which a console operator can control a VAX or an
Amdahl. Such a driver is cmd; it allows a user to open, work on, and close a database. As new
operators are implemented, code can be added to £!ill! to make it available to a user. cmd has
no frilis, few amenities, and is in no way intended to be a general purpose user interface.

cmd is implemented as a simple one-line command processor which expects the first blank
or tab terminated string ('word') to be a command. Upon encountering a recognized request, it
calls a routine which examines the line and therefrom generates a call to the MRDSc routine(s)
which implement the requested action. This approach was adopted because of the extreme ease
with which one can add code to test new routines.

'
The only 'amenity' offered by tm.!1 is interrupt control from the terminal. In response to a

0

SIGINT or SIGQUIT·, £!ill! ceases its current activity, asks the user whether to continue the (now •
interrupted) action, to return 'to command mode, or to quit altogether. This allows an individual ·
operation to be terminated without ending the cmd session.

cmd is invoked under the current implementation when a UNIX user types mrds as a com­
mand to the shell. Invoked in this way, the user is first prompted for a database name upon
which to work. If invoked from the shell with

mrds -n db name
database dbname will be opened and the user placed immediately into cmd's command loop, sig­
nalled by the prompt "mrds> ".

The following commands are understood by £!ill!:
hR, ~. ~ auit: cmd control commands;
finddom, ftndrd, findrel. list: database commands;
convert, printrel. project, select: relational commands; each is described separately below, in
alphabetical order.

5.2 BYE

request to terminate interactive session.

Following user confirmation of intent to exit, the system relations ill, nL and dom are updated
to reflect the new state of the database, and mrds exits to the invoking program, usually the
UNIX shell.

156 MRDS

c

c

The commands exit and quit are identical to bye.

5.3 CONVERT

convert current_rel to new_rel

convert the existing relation current rei to the new relation new rei where to determines the
type of conversion and is one of:

b convert to B*-tree organization
z convert to z-ordered organization
f convert tree to fiat organization

Example: To convert the relation toycol to a z-ordered relation ztoycol:
convert toycol z ztoycol

5.4 EXIT

see 'BYE'

5.5 HELP

prints a list of known commands, the syntax for their use, 'one line' descriptions of what they
do, and a few basic rules for using cmd.

5.6 LIST

produces a summary of the current database, naming all relations and giving their current sizes
(in bytes and tuples).

5.7 PRINTREL

printrel rel_to_print hdg

Displays the contents of rei to print on a terminal, with optional heading hdg atop each output
'page'. The named relation is roughly formatted to fit on a crt display and printed out, stop­
ping after each screenful awaiting a carriage return to continue. t The data organization of the

t This should be changed so that the output produced by l!.I.1lW:d actually goes through the UNIX utility .ru: and thence to a.
UNIX page-at·a.·tlme display program, e.g., .lllQtt.)

MRDS 157

relation is immaterial; any extra work to unshuffle or traverse a tree is automatically performed.

5.8 PROJECT

project cur_rel domname out_rel

Produce in relation out rei the projection of relation cur rel on domain domname. The cmd
driver for project supports only a single domain name on which to project; the actual project
procedure supports more than one.

Example: To produce the relation colours from toycol (having domains 'toyname' and 'colour')
containing colours in which toys are available:

project toycol colour colours

5.9 QUIT

see 'BYE'

5.10 SELECT

select cur_rel domname cmp value out_rel

Produce in relation out rel the selection from relation cur rei of tuples having attributes in
domain domname related to the constant ~(i.e., a value of an attribute in domname) ac·
cording to cmp. cmp may be any one of'<','=','>','<=','>=', or'<>'. value is an ac·
tual attribute value and must contain no embedded blanks or tabs.

Example: To build the relation trucks containing all tuples from toycol which correspond to
truck toys:

select toycol toyname = truck trucks

5.11 SHOWDOM, SHOWRD, SHOWREL

These commands produce a formatted display of the contents of the system relations, so they
may be inspected during a session. The system relations exist only in main memory while MRDSc
is running, thus a conventional command like printrel cannot be used to display their contents.

5.12 Adding to cmd

To add a command to cmd's repertoire, the following steps are necessary (refer to cmd.c in
source listing):

158 MRDS

0

0

0

0
(1) Add an entry to the table struct cmd tab containing [a] the exact string by which the

command will be known, [b] a unique integer which identifies position in the switch at
which the code for this command will appear.

The procedure command will examine user typed lines, comparing the first space or tab
terminated string to those in struct cmd tab, returning -1 for an unrecognized command
or the integer tagged in the command name in l.b above. This number selects a case in a
switch which will execute the command.

(2) Update the constant KNOWN CMDS to reflect any addition(s) just made to struct
cmd tab.

(3) Add an entry in cmd's switch statement, at the position indicated in lb above, which
will invoke a driver for the command.

(4) Add a procedure to generate a call to the new code from the user typed command line.
The procedure should return no value (hence be of type void), declarations in cmd.

5.13 mkdb

mkdb is a simple interactive utility designed to facilitate the construction of relational data­
bases suitable for use with :MRDSc. It interactively solicits information concerning each relation
and the construction of its tuples, and from these queries builds the appropriate system relation
entries. The files which make up individual user relations are created independently (e.g., by vi)
and are converted into relations by .m.lill.b.. There must be one file for each relation, and in each,
attributes must be distinguished from each other by a delimiter (the colon, ':'). Thus files suit­
able for 'conversion' by mkdb resemble the UNIX /etc/passwd or /etc/termcap files.

In order to create a database for use with :MRDSc

(1) Produce, through whatever means is convenient, text files of the needed format (see
above).

(2) In file mkdb.c, define DBHOMEPIR to be the directory under which the new database is to
be created. Recompile mkdb.c into .m.k..dJ2.

(3) Run mkdb answering its questions (see below).

(4) Add an entry to the MRDSc master database list so that the existence of this new data­
base will be recognized.

mkdb first requests the name of the new database. Given this, it tries to make a directory in
DBHO:MEDIR of that name, within which it creates the files .rei, .dom, and .rd. These system
relation files are then initialized to the minimal content required to support a relational data­
base.

The next phase of mkdb is a pair of (nested) fQr loops. The outer loop asks for relation particu­
lars (name, maximum number of tuples). For each new relation, the inner loop solicits domain
information (name, datatype, length). The order in which domains are supplied determines the
order in which they appear in tuples. Entering a null domain name exits the inner loop. Simi­
larly, a null relation name terminates the outer loop.

MRDS 159

The final stage of mkdb is a loop wherein the user is asked for the name of a UNIX file which is
to be used to generate a relation, for each of the relation names entered previously.

If all goes well, m.k.dll exits after successfully building the relations from the supplied files and
updating the relevant ill entries to reflect the current sizes of the user relations.

Wa.rning: As with cmd, mkdb is a quickly implemented utility created to fuUill a particular
need during system implementation. It is not rigorously built, not particularly intelligent (it's
downright dim), but does work as advertised. It is not intended for general use.

5.14 Source Listing

On the following pages are the listings for cmd.c and mkdb.c.

160 MRDS

0

0

0

Dec 22 00:07 1986 cmd.c Page 1

linclude "mrds.h"

ldefine MAXCMDLEN 10
fdefine KNOWN CMDS 12
struct cmd_tao (

char crnd name[MAXCMDLEN];

} ;

int cmd-ident;
CMD_NAMES[KNOWN_cMDS] ,. (

"bye",O,
"convert",9,
"exit",O,
"showdom",1,
"showrd",2,
"showrel",3,
"help",6,
"list",8,
"printre1",4,
"project",S,
"quit",O,
"select",?

char cmdstr[MAXCMDLEN + 1];
jmp_buf cmd_cont;

void cmd(db)
char *db;
(

getname:

extern int errno;
register int i;
DBSTATUS mydb;
char dbname[MAXNAMLEN],*getdbname();
void do exit(), do showdom(),do showrd(),do showrel();
void do:Printrel()7do_project()7do help(),do select();
void do~list(),do_convert(),usr_int(); -

/* This is a quickly patched together, simple-minded
command interpreter designed to facilitate testing
of pieces built into MRDSc. It is NOT meant to be

*I

a general purpose user interface, although it could
be grown into one with a modest amount of effort.

See the project report (sections on "cmd" and section
6.2) for more details on user interfaces.

if (strlen(db) ;,. 0)

else
strcpy(dbname,getdbname());

strcpy(dbname,db);

i = setup(dbname,&mydb,l);
if (strlen(dbname) == 0) abend(-2, "user quit");

Dec 22 00:07 1986 crnd.c Page 2

switch (i)
case FAIL:

printf("XXX Can't set up database \"%s\"\n",dbname);
break;

case -2:
printf("XXX Can't find database \"ls\" (new?)\n" ,dbname);
break;

case -3:
printf("<ixxx Database is inconsistent:");
break;

default:
break;

]
if (i < SUCCESS) (

*db = '\0' i
goto getname;

I* set up interrupt control *I
if (setjmp(crnd_cont) == 0) (

signal(SIGQUIT,usr int);
signal(SIGINT,usr_Tnt);

l I* put prompt onto stdout and read from stdin */
crnd_loop:

printf(11 %s ",PROMPT);
READLN
if (strlen(inbufr) == 0) goto cmd_loop;
switch (command(inbufr)) (
case CMD BYE:

ao_exit();
break;

case CMD FINDDOM:
ao_showdom();
break;

case CMD FINDRD:
ao_showrd{) i
break;

case CMD FINDREL:
ao_showrel();
break;

case CMD PRIN'l'REL:
<Jo_printrel();
break;

case CMD PROJECT:
ao_project();
break;

case CMD HELP:
ao_help() i
break;

case CMD SELECT:
ao_select() i
break;

case CMD LIST:
ao_list();

0 • Q

Dec 22 00:07 1986 cmd.c Page 3

break;
case CMD CONVERT:

cro_convert();
break;

default:

()

printf("\tXXX unknown command: \"ifis\"\n",cmdstr);

goto cmd_loop;

int command(buf)
char *buf;
(

)

register int i;
int strcmp();

I* identify the command, if possible *I
i = 0;
for (i = 0; i < MAXCMDLEN; i++) {

cmdstr(iJ = buf(i];
if {(buf[iJ =•' ') 11 (buf(i] == '\t'))

break;

cmdstr(i] = '\0'; I* terminate string, or truncate it if too long *I
for(i = 0; i < KNOWN_CMDS; i++)

if (lstrcmp(cmdstr,CMD NAMES(i].cmd name))
return(CMD_NAMES(i].cmd_ident);

return(-1);

void do_exit()
(

printf("Exit (Y or n)? ");
READLN
if (yesno(inbufr) == 2) {

I

I* do exit code ... closeup shop *I
printf("Updating relations .•. (wait)");
syncrel();
printf(" .·:done. \nBye. \n");
exit(); ·

printf("\t ... continuing ... \n");

void do_abort()
(

)

syncrel();
exit();

void do_showdom()
(

0

Dec 22 00:07 1986 .cmd.c Page 4

extern DOM domcore[];
extern struct rstat sysrelstat;
register int i;
static char *dtypes[] = ("string","int","char","float","short","long"];
for(i = 0; i < sysrelstat.numdoments; i++)(

printf("%4d l%4d ",i + l,sysrelstat.numdoments);
printf("\"%s\"" ,domcore[i] .domname);

void do_showrd()
(

printf("\Us\t" ,dtyp,es [domcore(i] .domtype]);
printf("\tlen: %7d\n ',domcore(i).len);

extern RD rdcore(];
extern struct rstat sysrelstat;
register lnt i;
printf{ "\f relname domname \t pos\n");
for(i = 0; i < sysrelstat.numrdents; i++){

printf("%4d l%4d ",i + l,sysrelstat.numrdents);
printf("\"%s\'"' ,rdcore[i] .relname);
printf ("\t\"%s\'"' ,rdcore[i] .domname);
printf("\t%7d\n" ,rdcore[i]. pos);

void do_showrel()
(

extern REL relcore{];
extern struct rstat sysrelstat;
register int i;

for(i = 0; i < sysrelstat.numrelents; i++)(
printf("\fDump system relation REL:");
printf("%4d of %4d entries\n\n",i + l,sysrelstat.numrelents);
printf{"Relation \"%s\"\n",relcore[i).relname);
printf("mode %x~n", ((long)(relcore[i) .mode) & 255L));
printf ("tplwidth: %6d\n", (int) {relcore [i) • width));
printf ("fd: %5d\n" 1 (int) (relcore (i]. fd));
printf("Zmap: %lx~n" ,relcore(i) .Zmap);
printf("cursize: %7d" ,relcore[i) .cursize);
printf ("\t('ld tuples)\n" ,relcore[i].cursize 1 relcore(i] .width);
printf("maxsize: %7d" ,relcore(i] .maxsize);
printf ("\t(%d tuples)\n" ,relcore(i].maxsize I relcore[1] .width);
printf("rindx: %7d" ,relcore[i] .rindx);
printf("\t{tpl number %d)\n" ,relcore[i] .rindx I relcore[i] .width);
printf ("windx: %7d" ,relcore [i). windx);
printf ("\t(tpl number %d}\n" ,relcore[i]. windx 1 relcore[i] .width);
printf ("\n\n\nMORE ... (hit return)");
getc(stdin);

void do_printrel()
(

I* set up call to printrel: take next two parms as *I

0 0 0

0 0
Dec 22 00:07 1986 cmd.c Page 5

/* "rname" (name of relation to print) and */
/* "title" (optional string to appear as title on each page of */
I* printed relation *I
char rname[MAXRNMLEN],ttl[MAXSUBSTR];
register int i;
register char *c,*d;
int strlen();

c = inbufr;
d = rname;
I* skip command name *I
while (*c != 1 1 && *c != 1\t')

++c;

while (*c == 1 1 11 *c '\t 1
)

++c;

/* now pointing at next arg: it becomes rname *I
for(i = 0; i < MAXRNMLEN; i++)

*d = *c;
if (*c == 1 1 11 *c '\t 1 11 *c == 1 \0 1

) (

*d= 1 \0 1
;

break;

c++; d++;

*d 1 \0 1
;

I* adjust name length *I
i = strlen(rname);
while(i++ < (MAXRNMLEN - 1))

*d++ = I I}

*d "' 1 \0 I j

d = ttl;
while (*c 1 1 11 *c == '\t 1

)

*c++;

I* now pointing at next arg: it becomes ttl */

for(i 0; i < MAXRNMLEN; i++)
*d = *c;
if (*c == ' 1 11 *c '\t 1

)(

*d= 1 \0 1
;

break;
}
c++; d++;

*d++ '\0';

outrel(rname,ttl);

Dec 22 00:07 1986 cmd.c Page 6

void do_help()
(

printf ("\f\tKnown commands and their syntax\n");
printf ("\t\targuments are separated by spaces or tabs ONLY");
printf("\n--- \n");
printf(" I CMD NAME I ARGS I DESCR l\n");
printf("+---------------+------------------------+----------------------------+\n");
printf("l bye I (none) I leave the command 1\n");
printf(" interpreter. \n");
printf("+---------------+------------------------+----------------------------+\n");
print!(" I help I (none) I display this help page. 1\n");
printf("+---------------+------------------------+----------------------------+\n");
printf(" I printrel I rel {title) I print relation \"rel\0 with j\n");
printf(" \"title\" atop each page of \n");
printf(" listing. l\n");
printf("+---------------+------------------------+----------------------------+\n");
printf("l project I rel attr newrel I make new relation \"newrel\" 1\.n")
printf(" · from projection of '\"relV on \n")
printf(" attrs in \"attrlist\11 (>• 1) \n")
printf("+---------------+------------------------+----------------------------+\n");
printf(" select rel attr cmp const out from relation \"rel\" select \n")
printf (" tuples with \"attr\11 related \n")
printf (" to constant valued \"const\11 \n")
printf (" as expressed by \"cmp\" \n")
printf (" and put into newrel \"out\". \n")
printf("+---------------+------------------------+----------------------------+\n");

void usr_int()
(

/* interrupt handler for user generated interrupt from */
/* keyboard */

printf("\n--- Interrupt: resume (Y or n)? ");
READLN
if (yesno(inbufr) == 1) (

void do_select()
(

printf{"\n--- return to prompt {Y or n)?");
READLN
if (yesno(inbufr) == 1)

do abort();
longjmp(cma_cont,1);

extern int errno;
register int i,j;
register char *c,*d;
short cmp,cerrs=O;
char args(6)(35];
int strlen();
OOM *cdom;

0 0 0

Dec 22 00:07 1986 cmd.c Page 7

c = inbufr;
for (i = 0; i < 6; i++) (

d = args(i];
while (*c != 1 1 && *c I= '\t' && *c != '\0')

*d++ = *c++;
*d = '\0';

while((*c != 1 \0') && (*c == 1 1 I I *c
c++;

I* adjust size of each argument individually *I
I* 1 is relname *I
c args[l];
i = strlen(c);
c += i;
while (i++ < (MAXRNMLEN- 1))

*C++ = I I;

*c = 1 \0';

I* 2 is domain name *I
c args[2);
1 strlen(c);
c += i;
while {i++ < (MAXDNMLEN- 1))

*C++ = I I j

*c = '\0';

I* 3 is comare operator *I
c = args[3];
i = strlen(c);
switch (i) (
case 1:

case 2:

switch(*c)
case '=':

cmp = CMPATT_EQ;
break;

case 1 < 1 :

cmp = CMPATT_LT;
break;

case 1 >':

}
break;

cmp CMPATf_G'f;
break;

switch (*c) {
case 1 >':

'\t'))

if (*(c + l) == '=')
cmp = CMPATf_GT I CMPATT_EQ;

else

()

printf("XXX unknown comparison \"%c%c\"\n",c,(c + 1));
++cerrs;

I
break;

0

Dec 22 00:07 1986 crnd.c Page 8

case 1 (1 :

if (*(c + 1) == '=')
cmp = CMPATT_LT I CMPATT EQ;

else
printf("XXX unknown comparison \"%c%c\11\n",c,(c + 1));
++cerrs;

J
default:

}
break;

printf ("XXX unknown comparison \"%s\ 11\n",c);
++cerrs;

I* 4 is attribute value *I
c ~ args[4];
cdom = finddom(args[2]);
if (cdom != (DOM *)(0)) {

J
else

i = strlen(c);
c +=o i;
while (i++ < ((cdom -> len) -1))

*c++ ~ ' •;
*c "' '\0 1

;

printf("XXX cannot find domain \"%s\"\n",args(2]);
++cerrs;

I* 5 is output
c args(S];

relation name *I
i = strlen(c);
c += i;
if (li)

}
else

(
printf("XXX missing output relation name\n");
++cerrs;

while (i++ < (MAXRNMLEN - 1})
*c++ I I/

*c = '\0';

if (lcerrs)
select(args[l],args[2],args[4],cmp,args[S]);

void do_project()
{

extern int errno;
register int i,j;
register char *c,*d;
short cerrs=O;
char args(4](3S],domlist(l}(MAXDNMLEN];
int strlen();

0 0

0
Dec 22 00:07 1986 cmd.c Page 9

c = inbufr;
for {i = 0; i < 4; i++) (

d a args[i];
while (*c != 1 1 && *c I= '\t' && *c != '\0 1

)

*d++ = *c++;
*d = 1 \0' J

while((*c I 1 \0') && (*c ==' ' I I *c == '\t'))
c++;

I* adjust size of each argument individually *I
I* 1 is relname *I
c = args[l];
i = strlen(c);
c += i;
while (i++ < (MAXRNMLEN - 1))

*C++ = I I i
*c = '\0';

I* 2 is domain name *I
c = args[2];
i = strlen(c);
c += i;
while (i++ < (MAXDNMLEN- 1))

*C++ = I I J
*c = '\0 1

;

strcpy(domlist[O],args[2]);

I* 3 is output
c"' args[3];

relation name *I
i = strlen(c);
c +,. 1;
if (li)

}
else

(
printf("XXX missing output relation name\n");
++cerrs;

while (i++ < (MAXRNMLEN- 1))
*c++ I I i

*c = 1 \0 1
;

if (!cerrs)
project(args[l],domlist,l,args[3]);

void do_list()
(

register int i,j;
extern DBSTATUS sys_db;
extern struct rstat sysrelstat;
extern REL relcore[];

printf{ "\fDatabase \"%s\" [",sys_db.dbs_name};

0

Dec 22 00:07 1986 cmd.c Page 10

printf("\d relations, %d domains)\n",sysrelstat.numrelents,
sysrelstat.numdoments);

printf("\n\nRealtions:\n");
for (i = 0; i < sysrelstat.numrelents; i++)

printf("\U10s\t%5d tuples\n",relcore[i).relname,
(relcore{i].cursize I relcore[i].width));

void do_convert()
{

extern int errno;
register int i,j;
register char *c,*d;
int strlen(),shuffle();
char args[5](35];
short cerrs,.O;
REL *thisrel,*findrel();

c = inbufr;
for (i = 0; i < 4; i++) (

d = args[i];
while (*c != ' 1 && *c

*d++ = *c++;
*d =o I \0 I}

'\t' && *c != '\0 1
)

while((*c != 1 \0') && (*c == 1 1 11 *c == '\t 1
))

c++;

I* adjust size of each argument individually *I
I* 1 is relname *I
c = args[lJ;
i = strlen(c);
c += i;
while (i++ < (MAXRNMLEN 1))

*C++ = I I J
*c='\0';

I* 3 is output
c = args[3];
i = strlen(c);
c += i;
if (!i) (

relation name *I

printf("XXX missing output relation name\n");
++cerrs;

]
else

while (i++ < (MAXRNMLEN - 1))
*c++ I I/

*c = 1 \0 1
;

if ((thisrel = findrel(args[l))) FAIL) {

0 0 0

0
Dec 22 00:07 1986 cmd.c Page 11

++cerrs;

if (lcerrs)
switch (args[2][0])
I*
case 'f':

break;
*I
case 'z':

shuffle(args[l),(char *)(O),args[J]);
break;

case 'b':

default:

mkindex(thisrel,4096,60,4096,70);
break;

0

printf("XXX unknown conversion mode \"%c\"\n",*c);

0

Aug 30 12:00 1986 mkdb.c Page 1

#include <errno.h>
#include <signal.h>
#include <setjmp.h>
#include <stdio.h>
#include <math.h>
#include <syslfile.h>
Ufdef BSD
Jinclude <sysltypes.h>
#include <sysltime.h>
linclude <sysldir.h>
#include <syslstat.h>
llendif
tifdef OLDUNIX
Jinclude <sysltypes.h>
linclude <sysltimeb.h>
linclude <dlr.h>
#include <stat.h>
lend if

ldefine DBHOMEDIR "lu41charleslmrds"
#define MAXRNMLEN 11
tdef ine MAXDNMLEN MAXRNMLEN
ldefine XMASK 00600
ldefine DMASK 00700
ldefine FAIL -1
#define MAXTYPES 9
ldefine MAXRELS 85
ldefine MAXDOMS 128
ldefine MAXRDS 340

char inbufr(512),outbufr(512],*inptr;

tdefine READLN inptr = inbufr; \
while (((*inptr = getc(stdin)) I= EOF) && \

(*inptr I= OxOa)) inptr +=1; \
*inptr = '\0';

typedef struct relrcrd (I* rel record structure *I
char relname(MAXRNMLEN]; I* relation name *I
char mode; I* flag for const rels *I
unsigned short width; I* parms of rel *I
short fd; I* filedes if open *I
long Zmap,cursize,maxsize,rindx,windx; I* more parms of rel *I

REL;

typedef struct domrcrd {
char domname [MAXDNMLEN];
char spare;
short domtype;
unsigned short len;

DOH;

typedef struct rdrcrd (
char relname[MAXRNMLEN],

domname[MAXDNMLEN];
short pos;

I* dom record structure
I* name of domain
I* spare byte : speed!
I* data type of domain
I* length of domain bytes

I* rd record structure

I* name of rel and dorn
/* position within tuple

*I
*I
*I
*I
*I

*I
*I
*I

0

0
Aug 30 12:00 1986 mkdb.c Page 2

} RD;

REL relcore[50];
DOM domcore[SO];
RD rdcore(150];
int rel,dom 1 rd 1 cur rel,cur dom,cur rd;
main() - - -
(

extern int errno;
register int i1j;
register char *c,*d,*e;
int line,numofdoms[SO],rmxsize;
int filemask,errs=O,doms,curpos,thisrel,k,out;
int spintf(),open(),close(),strlen(),mkdir(),domlen();
char dbname[MAXNAMLEN],rname[MAXRNMLEN],dname(MAXDNMLEN];
char *krfgets(),*index(),*strcpy();
FILE *fp,*fopen();

I* get dbname */

printf("Enter name of database to create: 11);

READLN
if ((i = strlen(inbufr)) > MAXNAMLEN) {

inbufr[MAXNAMLEN] = '\0';
printf("XXX too long; truncated to \"%s\"\n",inbufr);

strcpy(dbname,inbufr);

sprintf(inbufr~"%sj%s",DBHOMEDIR,dbname);
if ((mkdir(inbufr,DMASK))== FAIL) {

printf("XXX (%d] cannot make home directory \"%s\"\n",errnolinbufr};
exit();

/* create system relations in home directory */

filemask = 0 CREAT I O_RDWR;
sprintf(inbuir,"%sj%sj.rel",DBHOMEDIR,dbname);
if ((rel = open(inbufr,filemask,XMASK)) == f'AIL) (

printf("XXX (%d) open fail on \"%s\"\n",errno,inbufr);
++errs;

sprint!(inbufr, "%sj%s/ .dom" ,DBHOMEOIR,dbname);
if ((dom = open(inbufr, filemask 1XMASK)) c= f'AIL) {

printf ("XXX [%d] open fail on \" %s\"\n", errno, inbufr);
++errs;

sprintf (inbufr 1 "%sj%sj. rd" 1 DBHOMEDIR, dbname);
if ((rd = open(inbufr 1filemaskiXMASK)) ==FAIL) (

printf("XXX [%d) open fail on \"%s\"\n",errno1inbufr);
++errs;

0

Aug 30 12:00 1986 mkdb.c Page 3

if {errs) exit();

mksysrels();

I* begin interactive section *I
cur_rel = 3; cur_dom = 13; cur_rd 15;

while(!) { I* get relations *I
printf("Enter relation name %2d: ",cur_rel- 2);
READLN
j = strlen(inbufr);
inbufr(MAXRNMLEN- 1} = '\0';
if {j == 0) break; I* no more rels *I
if (j > MAXRNMLEN)

printf("XXX too long; trunc to \ 11 %s\"\n",inbufr);

I* adjust to precise length *I
while (j < MAXRNMLEN - 1)

inbufr[j++] = • ' ;
inbufr[j] = '\0'; I* paranoia check *I

gettplcnt:
strcpy(relcore{cur_rel].relname,inbufr);

gtyp:

gtlen:

0

printf(11 \tmax number of tpls? 11
);

READLN
if ({(i = atoi{inbufr)) < 0) 11 (i > 65535))

printf ("XXX bad num tpls %d\n 11
, i);

goto gettplcnt;

rmxsize = i;
doms = 0; curpos = 0;
while (1) { I* get domains *I

printf (11\tEnter domain name %d: 11 ,doms + 1);
READLN
j = strlen{inbufr);
if (j == 0) break; I* no more doms *I
inbufr(MAXDNMLEN- 1) '\0';
if (j > MAXDNMLEN)

printf("XXX too long; trunc to \"%s\ 11\n 11 ,inbufr);
I* adjust to precise length *I
while (j < MAXDNMLEN- 1)

inbufr(~++) =' ';
inbufr[j] = '\0 ;
strcpy(domcore(cur_dom).domname,inbufr);

printf (11 \t\ttype? ");
READLN
if (((i = atoi(inbufr)) < 0) 11 (i > MAX'l'YPES))

printf("XXX unknown type %d\n",i);
goto gtyp;

domcore[cur_dom}.domtype = (short)(i);

printf ("\t\tlen? ");

0 0

0 0
Aug 30 12:00 1986 mkdb.c Page 4

READLN
if (((i = atoi(inbufr)) < 0) 11 (i > 65535))

printf("XXX bad len %d\n", i);
goto gtlen;

domcore[cur dam] .len = (short)(i);
domcore(cur=dom].spare 7; /*temp*/

strcpy(rdcore[cur_rd].re1name,relcore[cur_re1].relname);
strcpy(rdcore[cur_rd].domname,domcore[cur_dom].domname);
rdcore[cur rd).pos = curpos;
curpos += domcore[cur_dom).1en;
++cur dam;
++cur-rd;
++dams;
++numofdoms(cur rel);

} /* end getting domains loop */

relcore[cur rel).mode = '\0';
relcore[cur=rel).width = (short)(curpos);
relcore[cur rel].fd = -1;
relcore[cur-rel].Zmap = 01;
relcore[cur-rel).maxsize • (long)(rmxsize * curpos);
relcore[cur-rel).rindx = OL;
relcore(cur=rel].windx = OL;

++cur_rel;

} /* end getting relations loop */

printf("\nMaking database \"%s\" with %d user relations\n",dbname,cur_rel- 3);

/* now build it! */

errs 0;
for (thisrel = 3; thisrel < cur rel; thisrel++) {

printf("Filename for reTation \"%s\" ? ",relcore(thisrel].relname);
READLN
inbufr[MAXNAMLEN] = 1\0';
if ((fp = fopen(inbufr,"r")) == 0)(

printf("XXX [%d) open fail \"%s\"\n",errno,inbufr);
++errs;
continue;

/* open output file */

strcpy(outbufr,relcore(thisrel].relname);
if ((c = index(outbufr,• ')) != 0)

*c='\0';
sprintf(inbufr,"%s/%s/%s",DBHOMEDIR,dbname,outbufr);
if ((out= open(inbufr,filemask,XMASK)) ==FAIL) {

printf("XXX [%d) open fail for output rel file \"%s\"\n",errno,inbufr);
fclose(fp);
++errs;

0

http:relcore[cur_rel].fd

Aug 30 12:00 1986 mkdb.c Page 5

continue;

line 1;
while (*krfgets(inbufr,(2 * relcore[thisrel].width),fp)) {

i = 0;
d = inbufr;
e = outbufr;
*e = '\0';
while (i < numofdoms[thisrel])

if ((c = index(d, 1
: •)) O) (

printf("XXX missing field mark, line %d\n",line);
continue;

1
k = domlen(relcore{thisrel].relnarne,i);
strncat(e,d,(c -d));
j = strlen(e);
e += j; --k;
while (j < k) (

*e++ = 1
'; /* UGH! only good for char dorntypes */

++j;
J
*e++ = 1 \0 1

; *e = 1 \0 1
;

d = c + 1;
++i;

) /* done this line */

if (1 /*!errs */) /* temp */
if (write(out,outbufr,relcore[thisrel].width) I= relcore[thisrel].width){

printf("XXX [%d) write fail: out tpl\n",errno);
++errs;

++line;
} /* end this file: another relation is done */
relcore[thisrel].cursize = relcore[thisrel].width *--line

) /* end for each relation find a file */

/* write out in core system relations */

lseek(rel,OL,O);
lseek(dom,OL,O); /* rewind system rels */
lseek(rd,OL,O);

relcore[O] .cursize += (cur rel- 3) * relcore[O).width;
relcore(1].cursize += (cur=dom- 13) * relcore(1].width;
relcore(2] .cursize += {cur_rd- 15) * relcore(2].width;

for (i = 0; i < cur rel; i++)
if (write(rel,&relcore[i],sizeof(REL)) != sizeof(REL))(

printf ("XXX write fail rei. %s\n" ,relcore[i].relname);
++errs;

for (i = 0; i < cur dom; i++)
if (write(dom,&domcore[i],sizeof(DOM)) I= sizeof(DOM))(

0 0

Aug 30 12:00 1986 mkdb.c Page 6

printf("XXX write fail dom.%s\n" ,domcore[i] .domname);
++errs;

for (i ~ 0; i < cur rd; i++)
if (write(ra,&rdcore[i),sizeof(RD)) != sizeof(RD)){

printf("XXX write fail rd.%s\n",rdcore[i].relname);
++errs;

printf("Database \"%s\" created\nBye.\n",dbname);
J /* end main */
mksysrels()
(

register int i,j,errs~O;
int write();

strcpy(relcore[0] .relname, "rei ");
relcore{O].mode = '\0';
relcore(O).width = sizeof(REL);
relcore[O].fd = -1;
relcore[O}.Zmap OL;
relcore[O].cursize 108L;
relcore[O).maxsize (long)(MAXRELS * sizeof(REL));
relcore[O].rindx = OL;
relcore[O].windx = OL;

strcpy(relcore[l].relname,"dom ");
relcore[l].mode = '\0';
relcore[1].width = sizeof(DOM);
relcore[1}.fd = -1;
relcore[l}.Zmap = OL;
relcore[l].cursize 208L;
relcore[l).maxsize = (long)(MAXDOMS * sizeof(DOM));
relcore(1].rindx ~ OL;
relcore[1].windx = OL;

strcpy(relcore(2].relname,"rd ");
relcore[2].mode = '\0';
relcore[2].width = sizeof(RD);
relcore(2].fd -1;
relcore[2].Zmap = OL;
relcore(2].cursize = 360L;
relcore[2].maxsize = (long)(MAXRDS * sizeof{RD));
relcore(2].rindx = OL;
relcore[2].windx = OL;

strcpy(domcore(0] .domname, "relname ");
domcore[O].domtype = 0;
domcore(O].len = MAXRNMLEN;

strcpy(domcore(1] .domname, "mode ");
domcore(l].domtype = 2;
domcore[l).len = 1;

0 u 0

http:relcorel2}.fd
http:relcore[l}.fd
http:re1core(0].fd

0 0
Aug 30 12:00 1986 rnkdb.c Page 7

strcpy(domcore[2] .dornnarne, "width ");
domcore[2).dorntype = 4;
dorncore[2].len = 2;

strcpy(domcore(J) .domname, "fd 11
);

domcore(J].domtype = 4;
dorncore[J).len = 2;

strcpy(domcore(4] .domname, "Zmap ");
domcore(4].domtype = 5;
domcore(4).len = 4;

strcpy(domcore(5] .domname,"cursize 11
);

domcore[5].domtype = 5;
domcore(S].len = 4;

strcpy (domcore (6) . domname, "maxs i ze ") ;
domcore(6].domtype = 5;
domcore(6].1en = 4;

strcpy(domcore(7}.dornname, "rindx ");
domcore[7).domtype = 5;
domcore(7).1en = 4;

strcpy(domcore(8) .domname, "windx ");
domcore{8].domtype = 5;
domcore(8].1en = 4;

strcpy(domcore [9) .domname, 11dornname ");
domcore[9).domtype = 0;
domcore(9).len MAXDNMLEN;

strcpy(domcore(lO] .domname, "domtype 11
);

domcore(lO].dorntype = 4;
domcore(lO].len = 2;

strcpy (domcore (11) • domname, "len " } ;
dorncore(1l].dorntype = 4;
domcore(ll).len = 2;

strcpy (domcore [12] . domname, "pos 11
) ;

domcore[l2).domtype = 4;
domcore[l2).len = 2;

strcpy(rdcore(Oj.relnarne,"rel ");
strcpy (rdcore [0) . dornname, "relname ") ;
rdcore[O].pos = 0;

strcpy(rdcore(l] .re1name, "re1 ");
strcpy(rdcore(l) .domname, "mode ");
rdcore[l].pos = 11;

strcpy(rdcore{2).relname,"rel ");
strcpy(rdcore[2} .domname, "width ");
rdcore(2].pos = 12;

Aug 30 12:00 1986 mkdb.c Page 8

strcpy (rdcore (3] . relname, 11 rel 11
) ;

strcpy(rdcore(3].domname,"fd 11
);

rdcore(J).pas = 14;

strcpy(rdcore(4] .relname 1 "rel ");
strcpy(rdcore(4) .domname, 11 Zmap 11

);

rdcore(4].pas = 16;

strcpy (rdcore [5] . relname 1
11 rel ") ;

strcpy(rdcore[S] .domname, "cursize ");
rdcore[S).pas ~ 20;

strcpy(rdcore[6) .re1name 1 "rel ");
strcpy(rdcore(6) .domname, "maxsize ");
rdcore(6].pas = 24;

strcpy{rdcore[7] .relname 1
11 rel ");

strcpy(rdcore[7] .domname, "rindx ");
rdcore[7].pas = 26;

strcpy(rdcore(8] .relname 1
11 rel ");

strcpy(rdcore(S] .domname,"windx ");
rdcore(S].pas = 32;

strcpy(rdcore(9] .relname, "dam 11
);

strcpy(rdcore[9) .domname, 11 domname "};
rdcore(9].pas = 0;

strcpy(rdcore [10} .relname1 11 dom ");
strcpy(rdcore[10] .domname, 11domtype ");
rdcore(10].pas = 11;

strcpy(rdcore[11].re1name111 dom 11
);

strcpy(rdcore(ll] .domname1 "len ");
rdcore[ll].pas = 13;

strcpy(rdcore[12] .relname,"rd 11
);

strcpy (rdcore I 12] . domname 1
11 relname ") ;

rdcore[l2).pas = 0;

strcpy (rdcore (13] . relname 1 "rd 11
) ;

s trcpy (rdcore [13 J • domname 1 "domname "} ;
rdcore(13] .pas = 11;

strcpy (rdcore (14 I . re1name, "rd ") ;
strcpy(rdcore(H] .domname1 "pas ");
rdcore(l4] .pas = 22;

/* write out the entries */

()

for (i 0; ,i < 3; i++)
if (write(rel,&relcore(i],sizeof(REL)) != sizeof(REL))

printf("XXX (%d} write fail: rel\n"1errno);
++errs;

0

Aug 30 12:00 1966 mkdb.c Page 9

for (i = 0; i < 13; i++)
if (write(dom,&domcore[i],sizeof(DOM)) != sizeof(DOM))

printf("XXX [%d) write fail: dom\n",errno);
++errs;

for (i = 0; i < 15; i++)
if (write(rd,&rdcore[i],sizeof(RD)) != sizeof(RD))

printf("XXX (%d) write fail: rd\n",errno);
++errs;

if (errs) (
printf("XXX giving up.\nBye.\n");
exit();

char *krfgets(s,n,iop)
char *s;
int n;
FILE *lop;
(

]

register int c;
register char *cs;

CS = s;
while (--n > 0 && (c = getc(iop)) != EOF)

if ((*cs++ =c)== '\n')
break;

*cs = '\0';

return((c == EOF && cs == s) ? NULL s);

int domlen(rel,domnum)
char *rel;
int domnum;
{

I*

*I

register int i,j;
register char *a,*b;
int strcmp(),cumlen=O;

j = 0;
for (i

0

= 15; i < cur rd; i++) (
j = strcmp(rel,rdcore[i].relname);
if (!j) (

J
j = i;break;

else j = 0;

if(! strcmp(rel,rdcore[i].relname)){
j = i;
break;

0 0

0
Aug 30 12:00 1986 mkdb.c Page 10

if(lj) (

i = 0;

printf("XXX missing entry in rd for rel \"%s\"\n",rel);
return(O);

while(i <= domnum) {
j += i ;
cumlen = rdcore{j].pos;
++i;

I* find len of domain rdcore[j].domname */

for (i = 13; i < cur dom; i++)
if(! strcmp(rdcore[j].domname,domcore(i].domname})

return(domcore[i].len);

printf("XXX missing entry in dom for domain \"%s\"\n",rdcore(jJ.domname);
return(O);

0

0

0

c

c

Chapter 6

6: Concluding Notes

6.1 Restrictions and Shortcomings

Considerable effort was expended in the design and implementation of MRDSc to introduce
few restrictions. The few inevitable restrictions that are present are not felt to be constraining,
e.g., no tuple may have more than 32 attributes, a tuple cannot be longer than 8 Kbytes and a
relation no larger than 232 tuples.

One implementation restriction which is potentially constrictive is the requirement of all
tuples to be of the same length within a relation. Support for variable length tuples is not
difficult to integrate into MRDSc ,but will be labour intensive. rd will no longer be able to pro­
vide offsets to attribute starting positions within a tuple, hence each tuple must be preceded by
an array of 16 bit unsigned integers containing these offsets. This increases the size of the rela­
tion by at least 2mn, (m = attributes per tuple, n = number of tuples). Byte offsets will be
inadequate since a tuple may exceed 256 bytes in length before the beginning of its last attri­
bute. Since each attribute is now pointed at, it can be correctly aligned for its datatype, thereby
simplifying and expediting procedures like search and tplcmp. In addition, each tuple must now
begin on a 16 bit boundary. Thus the relation will grow further because of space lost to align­
ment padding.

Some of the problems to overcome in adding support for variable length tuples include: (1)
replacing all instances of tuple width determination, now taken from rptr -> width, with a
macro which calculates the length from the array preceding the tuple, (2) buffer management,
since a tuple's size is unknown before it is read, (3) new data structure(s) to hold, e.g., the array
preceding the tuple, (4) changes to the data type support to accommodate variable length attri­
butes (e.g, introduction of a new data length of 0 to indicate variable length).

While the fiexibility made possible with variable length tuples is attractive, it is expensive.
Except in situations where it is genuinely valuable, fixed length tuples will provide better perfor­
mance without necessarily using more disk space. MRDSc should not forget how to deal with
fixed length tuples as it learns how to handle variable length ones.

If speed is truly a consideration, then there are some parts of MRDSc which should be
implemented in assembler. Portions of tplcmp, cmpseptup, and support for z-ordering could be
speeded up tremendously were they written at a lower level, since much of what they do is low
level.

A major weakness of the current implementation is its concept of user access control.
There is room for much improvement in the support for database/relation ownership,
sharable/unsharable databases and relations and views and integrity checking at run time.

Finally, the dearth of dyadic operators renders the current implementation impotent-- it is
in desperate need of code to implement joins.

MRDS 161

6.2 A Different Approach

Stonebraker [Ston80] points out in his INGRES retrospective that he feels it would have
been better to have implemented the system using special purpose hardware and file systems.
While the os underlying both INGRES and MRDSc provides an excellent development environ­
ment, it cannot simultaneously provide the full power of which the hardware is capable to the
application.

The types of operations typically performed on relational databases can be adequately han­
dled by general purpose hardware/instruction set combinations, but would be more effectively
performed by a processor whose architecture is tailored specifically to relational operations.
Similarly, file system layouts suited to general purpose computing manage relations adequately,
but specialized file systems can do much better. Further, associative memory is clearly going to
outperform conventional RAM on many relational operations.

While special purpose hard ware and file systems are attractive from a performance stand­
point, their cost and the unavailability of commonplace software (e.g., operating systems, com­
pilers) often preclude their use in a development environment. A compromise is to design a
modularized relational virtual machine, RVM (Figure 6.1), wherein each module can be developed
as a virtual component on a conventional timesharing system. A virtual component can be
replaced at any time with real hardware performing the same function, without affecting other
parts of the RVM which remain virtual.

•

•

•

The major components of the RVM are:

Relational Processing Unit (RPU) which is a special purpose processor architecturally
tailored to relational operations, having its own relational instruction set (RIS),

Relational Memory Unit (RMU) containing ordinary RAM and a multi-way associative
memory, with access control logic,

Relational File System (Relfs) on the Relational I/0 Bus to which may be attached various
physical storage volumes supporting different access strategies {logarithmic, direct, etc.).

User access, interactive or batched, takes place through user interfaces which connect to
the RPU and issue to it a stream of RIS instructions. The results of action so initiated are com­
municated back through the invoking interface. Embodied within the typical user interface
would be a terminal driver, e.g., support for bit mapped screens, a query language processor and
error /exception handling facilities.

This high degree of modularization is the primary theme of this alternative implementation
scheme. It makes possible a versatile, elegant, and open-ended implementation of a relational
database system. User interfaces can be anything from simple personal computers to large
mainframes attached through any kind of communications method, and located anywhere. The
components of the RPU and RMU can be distributed across several machines without affecting
the appearance of the RVM to outside users.

Further study of the idea of implementing a relational database system on a modularized,
distributed virtual machine lies beyond the scope of the current project, but should be pursued.

162 MRDS

0

0

0

Instruction
Processor

(")
0 ::;, c:
::;, Ill User

Memory ~~ User Interface
RMU Interconnect RPU (/)::l Terminal

c ar
0'::1..

~ s ar
3

I
110

I Subsystem

I I
Rl/0 BUS

I I
Direct Access Logarithmic Acoess

Method Method

Figure 6.1: Organization of the Relational Virtual Machine

MRDS 163

Bibliography

Bayer, R., and E. McCreight, "Organization and Maintenance of Large Ordered Indexes", Acta
lnformatica, 1, 173-189, 1972 ·

Bayer, R., and K. Unteraur, "Prefix .8-Trees", AGM Transactions on Database Systems, Vol 2
No 1, 11-26, 1977

Blasgen, M. W., and K. P. Eswaran, "Storage and Access in Relational Data Bases", lBi\tl Sys­
tems Journal, Vol16 No 4, 363-377, 1977

Blasgen, M. W., R. G. Casey and K. P. Eswaran, "An Encoding Method for Multifleld Sorting
and Indexing", Communications of the AGM, Vol 20 No 11, 874-878, 1977

Blasgen, M. W. et. al., "System R: An Architectural Overview", IBM Systems Journal, Vol 20
No 1, 42-62, 1981

Chiu, G., "MRDSA User's Manual", School of Computer Science Technical Report SOCS82.9,
McGill University, 1982

Codd, E. F., "A Relational Model Of Data For Large Shared Data Banks", Communications of
the AGM, Voll3, No 6, 377-87, 1970

Codd, E. F., [197la], "Relational Completeness of Data Base Sublanguages", in Data Base Sys­
tems, R. Rustin, editor, Prentice-Hall Publishing Co., 34-64, Englewood Cliffs, N.J., 1972

Codd, E. F., (1971b], "A Data Base Sublanguage Founded On The Relational Calculus", SIGFJ­
DET 71, 35-68

Date, C. J., An Introduction to Database Systems, second edition, Addison Wesley Publishing
Co., 1977

Horspool, R. N. S., C Programming in the Berkely UNIX Environment, Prentice Hall Canada
Inc., 1986

Joy, W., et. al., "4.2BSD System Manual (Revised July 1983)", documentation accompanying the
4.2BSD UNIX Release, 1983

Kerninghan, B. W. and R. Pike, The UNIX Programming Environment, Prentice Hall Inc., Hl84

McKusick, M. K., et. al., "A Fast File System for UNIX (Revised July 27, 1983", documentation
accompanying the 4.2BSD UNIX Release, Hl83

McKusick, M. K., "Fsck- The UNLX File System Check Program (Revised July 28, 1983)", docu­
mentation accompanying the 4.2BSD UNIX Release, 1983

Merrett, T. H., Relational Information Systems, Reston Publishing Co. Inc., 1984

164 MRDS

•

0

0

0
Orenstein, J. A., "Algorithms and Data Structures for the Implementation of a Relational Data­

base", School of Computer Science Technical Report SOCS8217, McGill University,
1982

Scheuermann, P., and M Ouksel, "Multidimensional BwTrees For Associative Searching In Data­
base Systems", Information Systems Vol 7 No 2, 123-137, 1982

Stonebraker, M., et. al., "The Design and Implementation of INGRES", AGM Transactions on
Database Systems Vol 1 No 3, 189-222, 1976

Stonebraker, M., "Retrospection on a Database System", AGM Transactions on Database Sys­
tems Vol 5 No 2, 225-240, 1980

Wedekind, H., "On The Selection Of Access Paths In A Data Base System", in Proceedings of
the IFIP Working Conference On Database Management, J. W. Klimbie and K. L.
Koffeman, editors, North-Holland Publishing Co., 385-397, Amsterdam, 1974

MRDS 165

Appendix 1

Effect On Storage Utlllzatlon & Performance

Of Data Allgnment

An inherent characteristic of current digital computers is a data bus of a particular bit width
(currently popular sizes are 16, 32 and more). Data transfers on these buses, usually synchro­
nous, occur between two bus addresses, or a bus address and a CPU register, and range in size
from a single byte up to full bit-width per bus cycle. The bus control and arbitration hardware,
along with the bus itself, provide optimal transfer speeds only when the data unit being
transferred has as both origin and destination an address which is an integral multiple of the
data unit's width. Indeed, most processors, including VAX and Motorola, are incapable of data
transfers where this condition is not met.

The index portion of a simple prefix B* tree contains pages of fixed size containing:
P o•(s 1•P 1), · · · ,(s 2k ,p 2k)

In supporting various data types, the separators (si) may have varying lengths. Further, in a
dynamic index accommodating insertions and deletions, it is reasonable for the (si ,pi) to be
maintained in a linked list within each page. Thus, a single (si ,pi) entry takes on the form:

struct spentry {

}

unsigned short
char
long
unsigned short

sep_len;
sep[varying];
ptr_to_child;
nxt_ent;

I* num bits in separator *I
I* actual separator *I
I* ptr to node in lower level *I
I* next m em on linked list *I

. Separators are aligned to the nearest byte boundary by right padding with 0 bits.

In reading such an index to locate a datum (e.g. a tuple), it may be necessary to examine many
(si ,pi) entries. To examine a single entry requires being able to extract the fields correctly, i.e.
successfully to extract two short integers and a long integer (2 bytes and 4 bytes on most
machines). If a branch page contains (si ,pi) entries "streamed" into the linked list, that is
appearing exactly as shown above, the address alignment of the short and long integers is not
predictable. Hence, processing an entry entails consecutive byte-by-byte accesses and subsequent
type coercion manipulated as, for example, to get the value for ptr_to_child:

166

char *a;
long ptr_to_child;

union tolong {
long l_val;
char cl,c2,c3,c4;

} long_coerce;

long_coerce.cl = *a;
*(&(long_coerce.cl) + 1) = *(a + 1);

MRDS Appendix 1

0

http:lonLcoerce.c1
http:10ng_coerce.c1

0

Effect On Storage Utilization & Performance Of Data Alignment

*(&{long_coerce.cl) + 2) = *(a.+ 2);
*(&(long_coerce.cl) + 3) = *(a. + 3);
a += sizeof{long);
ptr_to_child = long_coerce.lva.l;

The alternative to this type coercion overhead is to guarantee that the three integer fields of
(si ,pi) are always aligned; this can only be accomplished by introducing pad bytes into the
entry. Thus, from 0 to 3 additional bytes per entry are introduced, appended to the separator,
so that the long integer ptr_to_child will always appear on a +byte boundary. Aligning this one
field assures that both short integer fields are also correctly aligned.

Thus, to the problem associated with the data type alignment there are two solutions: one cost­
ing in processing overhead, the other in disk space. In the course of investigating theses costs
and their associated benefits, other interesting points came to light concerning procedure call
overhead and compiler code generation.

To test the two access strategies (referred to hereafter as "unaligned" and "aligned") two test
flies were constructed, each containing 10,000 (si ,pi) entries. For the purpose of these tests only
branch pages were considered, and each such page contained (si ,pi) entries exclusively (no p 0 ,

no header information). A page size of 4K bytes was used throughout, chosen as being both a
typical branch page size and the optimal block size for Unibus disk data transfers (from an
Ampex Q300 disk drive) on a VAX 11/780 running 4.2BSD UNIX. ·

The (si ·Pi) entries were generated using random{} to generate separators of varying length.
Attention' was focused on test flies with average separator lengths of 3, 5, 6, 10, 15, and 20
bytes. In each test, two data files were generated using the same separator length sequences: one
file containing pad bytes to assure data alignment, the other having entries streamed across the
page without regard to alignment. No entry was permitted to cross a page boundary, thus in
each file pages contained unused space 'at the ends'.

On the two test files a series of read tests was performed, consisting of block by block reads and
processing of each (si ,pi) entry on the page. Observed for each read test were the user and sys­
tem CPU times and the I/O count (blocks read). The data flies were compared for overall
difference in size. Based on these observations, the processing and disk performance of the two
access strategies are assessed.

Table I shows, for the case of each different separator length, the relative file sizes and amount
of "wasted space". For table columns containing two columns of numbers, the left column is for
the aligned file, the right for the unaligned.

Appendix 1 MRDS 167

http:IonLcoerce.cl
http:long30erce.cl

Effect On Storage Utilization & Performance Of' Data Alignment

Avg. Sep. Filesize End-Of-Block Alignment Padding Page
length (pages) Padding (% totl) bytes % Capacity

3 33 29 1.0 1.5 16,735 12.4 306 349
5 38 34 2.4 3.0 16,790 10.8 269 303
6 40 36 1.0 0.2 15,057 9.2 252 278

Effect On Storage Utilization & Performance Of Data Alignment

assuming N is large,

(ax)h+I = 1-N(1-ax)

h _ log(ax -1)+log(N) _
1

log (ax)

for a= 1, and x reasonably large, this reduces to

h -
log (N)
log (x)

Ratio
0.877
0.888
0.906

From this it is apparent that log (N) will overshadow the effect of log (ax - 1) since ax is
almost never as large as 1000, whereas N is seldom as small as 1000.

One way to compare tree flatness between aligned and unaligned data is to look for cases where
the former case requires a higher tree than does the latter to contain the same number of
indices. For the average separator lengths examined, in very few cases did aligned data necessi­
tate a tree of one level more than unaligned data:

Avg Sep Len log10N r halign 1 r hunalign 1
3 10 5 4

10 7 4 3
10 14 7 6

20 15 8 7

Table VI: Cases Where Aligned Data Required Higher Tree

Table VII shows the effect on tree capacity for various values of h for an average separator
length of 6:

Nodes In Tree
h Aligned Unaligned Ratio
1 253 279 0.907
2 63,757 77,563 0.822
3 16,066,765 21,562,515 0.745
4 4,048,824,781 5,994,379,170 0.675
5 1.020 X 1012 1.666 X 1012 0.612
6 2.571 X 1014 4.633 X 1014 0.555

Table VTI: Aligned/ Unaligned Tree Capacity

Figure 1 shows the effect on tree capacity for varying h for each of thP niff,..,..,nr ., A~A .. ~-

0

c

Effect On Storage Utilization & Performance Of Data Alignment

From Table II average system and user processing times, in seconds, per page can be esta-
blished as:

Avg Sep Aligned Unaligned Aligned Unaligned
Len utime utime stime stime

3 0.008939 0.013517 0.007000 0.008966

5 0.008079 0.011676 0.006105 0.008147

6 0.007750 0.011333 0.005950 0.007000

10 0.006163 0.009733 0.008143 0.006400

15 0.004113 0.007814 0.007419 0.006153

20 0.002689 0.006657 0.008689 0.006529

Table VIIT: User and System Processing Times Per Page

As one would expect, for increased separator size, user CPU time decreases as each page contains
fewer entries to process and system CPU time increases as more pages are required to accommo­
date the entries.

For trees of varying heights, the times to process every entry in the tree are (average separator
length= 6):

Aligned Una.liged Aligned Una.ligned
h utime utime stime stime

1 1.96 3.16 1.51 1.95

2 494.12 879.05 370.35 542.94

3 124,517.43 244,375.17 95,597.25 150,937.61

4 31,378,392.05 67,936,297.27 24,090,507.46 41,960,654.20

5 7,007,354,707.30 18,386,290,641.44 6,070,807,876.64 11,665,061,866.77

6 1,992,653,408.~110.80 5,250,388,798,320.89 1,529.843,584,912.62 3,242,387,198,962.90

Table IX: User and System Tree Processing Times For
Aligned and Unaligned Data

Comparing the times shown above indicates that aligned data was processed more quickly than
unaligned data. But conftated in such a comparison is the fact that aligned data contained fewer
entries per page to process. To produce times which are comparable, i.e. reflecting equivalent
processing work, the times for aligned data have been 'corrected' as shown below for the case of
average separator length 6, h = 1:

I. d d X 7.75 X 10-3 seconds 253 a 1gne no es
block

l.Q6 seconds

entries
253 aligned nodes X 252 --­

node

A tree of unaligned nodes of same height contains:

. entries 279 aligned nodes X 278 ---
node

63,756 entries

77,562 entries

Thus, the time that would have been required for an equivalent number of entries to be pro-
cessed had they been aligned is:

Appendix 1 MRDS 111

http:3,242,887,198,962.90
http:1,529.843,584,912.62
http:5,250,388.798,320.89
http:1,992,653,408,~1l9.80
http:11,665,061,866.77
http:6,070,807.876.64
http:18,886,290,641.44
http:7,007,354,707.30
http:41,960,654.20
http:24,090.501.46
http:61,936,291.27
http:31,378,392.05
http:150,937.61
http:95,597.25
http:244,375.17
http:124,517.43

Effect On Storage Utilization & Performance Of Data Alignment

77 562
l.Q6 X ' = 2.39 corrected seconds

62,756

Profiled execution of the read programs showed that over 98% of the reported system time, in
either the aligned or unaligned cases, was spent in the read(} system call. This being the case,
the procedure for correcting system times deals only with read times: multiply the system time
per block for aligned data by the quotient of number of unaligned data entries divided by block
capacity of aligned data blocks:

3 seconds X 77,562 data entries 5.95 X 10- - 1.83 corrected seconds
aligned block entries

252-----
aligned block

Combining the user and system times to give total processing times, the corrected aligned vs.
unaligned comparison becomes (for an average separator length of 6):

Corrected
Aligned Unaligned

h Total Total Ratio

1 4.22 5.12 0.82
2 1,172.25 1,421.99 0.82
3 325,884.90 395,312.78 0.82
4 90,596,002.03 109,896,951.47 0.82

Effect On Storage Utilization & Performance Of Data Alignment

idefine FILEl "/ul/charlesjmrdsjtest/filel"
#define MEMSIZE 4096
idefine REPS lOO
iinclude <stdio.h>
#include <sys/trpes.h>
#include <sys/flle.h>

main()
(

extern int errno;
register int i,fd,j,k,m;
char mem[MEMSIZE],*sep,out[SO],strncpy();
unsigned short len,next;
long ptr,lseek();
int open(),close(),read();

/* open file for reading */

if ((fd = open{FILEl,O RDONLY)) < 0) (
printf("Open tail [%d]\n",errno);
exit(-1);

}

/* do some reading */

for (i = 0; i < REPS; i++) {
fprintf{stdout,"%3d ... ",i);fflush(stdout);
while{read(fd,mem,MEMSIZE)) {

j ... 0·
while((j < MEMSIZE) && mem[j+l] != '&') {

len = *(u short *){&mem[j]); j += 2;
~~~ _ ~--=r~~ ~ 6 

http:109,896,951.47
http:90,596,002.03
http:395,312.78
http:325,884.90
http:1,421.99
http:1,172.25
http:10--1.83


Effect On Storage Utilization & Performance Of Data. Alignment 

r' 
~; Jul 14 l9, 56 1986 read4. c Page l 

c 

#define FtLE:2 • /ul/charles/mrds/test/file2" 
ldefine MEMSIZE 4096 
tdet:ine REPS 100 
tinclude <stdio.h> 

:t:~t~: ~=~~iii:~h~) 
uoion 11_long 

long lval, 
char cl,cl,cl,ct; 

I cvtlJ 

union u_.short I 
unsigned ahort sval; 
char cl,cl; 

) CVt$; 

main{) 
I 

extern int errno; 
register int i;fd;j,k,m; 
char mem[M£MSIZE],•sep,out(50],strncpy{); 
unsigned short len,next,getushort(); 
long ptr,lseek(),getlong(); 
int open(),close(),read(); 

1• open file for reading •/ 

if ((fd • open(FILE2,0_RDONLYjl < 0) ( 
~ii~~=i;~pen fail [\d \n•,errno); 

/• do aome reading */ 

. ,. ) { 

/• 

Ufdet TRACE 

len • getushortc•mem(j]); j +•2; •1 
sep • ~mem[j}; J +• len >> l1 

;:;:~~y(out,sep,((len>>ll 1• +((j \ 4)?(4~(j\4)):0) •1 ,,, 
/* if (j ' 4) 

1 +• (4 - <:l ' 4)); 
•; 
/* • getlong<•mem[j]); j +• 4; •1 

11; 
2), 
3] i 

Jul 14 19:56 1986 read4.c Page 2 

ptr • cvtl.lval, j+• 4; 
1• next • getu.short(,mem(j)); 1 +•2; •1 

cvts.cl • mam(j); 
*('(cvta.cl) + l) • mem(j + 1]; j +• l; 
Dext • CVtaasva1; 

k++; 
lifdef '!'RACE 
f~rintf(stdout,•lt2dl\20sl\4ld~\6dl\n",1en>>l,out,ptr,next); 
f.,!~t~<stdout),t:or(m • 0; m< O;m++)out{m) • '\0' 1 

) 

lseek(fd,OL,OJ; 

unsigned short <Jetushort(a) 
cbar *a; 
( 

cvts.cl • •a, 
•c•ccvt.s.cl) + lJ • •ea + 1); 
return(cvts.sval); 

long getlong(a) 
char •a; 
I 

ovtl.cl • •a1 
•<•ccvtl.cl) + ll • •(a + 1); 
•c•ccvtl.cJ) + l) • •ea + 2); 
•c•ccvtl.c4) + l) • •ea + J); 
retu:nccvtl.l•al); 

Appendix 1 MRDS 175 

http:C'ccTtl.04
http:C.(ovt.o.02


Appendix 2 

Installation of :MR.DSc 

Proper installation of MRDSc from tape requires following these steps: 

(1) Make a directory mrdsc in some fllesystem containing 5 Mbytes of available space. Not 
all of this space will be required following installation. 

(2) cd to this directory and extract all files: tar x. 

(3) The current directory should contain the subdirectories doe, ~. and §!ill.l2. m to the src 
subdirectory and edit the Makeftle. making any site specific changes to the CFLAGS: 

-DV AX define your CPU type as one of: AMDAHL, CADMUS, 

M68000, or VA.X. If yours is none of these, use VAX 

and hope for the best. 

-DBSD identify your hosting os: either a real BSD or else 
OLDUNIX · 

You may also remove the::..!!:. flag from both CLFAGS and loader commands if you do not 
foresee needing to use a symbolic debugger with the system. Do not run make yet! 

( 4) edit the file mrds.h adjusting the paths to these files to suit your site: 

USRFILE file containing list of authorized users by their • 
UNIX uids · 

DBLIST file containing list of databases known to exist 
(see section 3.5.3) 

LOGFILE file containing logged event reports of MRDSc ac­
tivity 

MERTEMP, file name templates used in mktemp() calls to 
BTEMP generate names for potentially large temporary 

files 

(5) run the Makeflle now. When finished, do make lib to generate the library archive of 
MRDSc routines. 



Dec 20 19:04 1986 mrds.h Page 1 

I************************************************************************ 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

HEADER F I L E F 0 R M R D S c 

This file contains all tdefines used for MRDSc procedures 
as well as many variable declarationslinltializations, and 
all relevant tincludes. 

It must be included in every module of MRDSc in order for 
compilation & linking to succeed. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* ************************************************************************I 

ldefine VERSION "0. 9 Oct 86" 

I* Files and filenames needed by MRDSc kernel 

tdefine USRFILE 
ldefine DBLIST 
#define LOGFILE 
#define MER'l'EMP 
ldefine BTEMP 

"lu4lcharleslmrdslsysfilesl.sysusrs" 
"lu4lcharleslmrdslsysfilesldblist" 
"lu4lcharleslmrdslsysfileslsyslog" 
"ltmplsmXXXXXX" 
"BXXXXXX" 

I* Jinclude needed by modules (kernel and library) 

#include <syslerrno.h> 
#include <slgnal.h> 
Jinclude <set1rnp.h> 
linclude <std1o.h> 
Jinclude <math.h> 
#include <syslfile.h> 
lifdef BSD 
#include <sysltypes.h> 
#include <sysltime.h> 
linclude <sysldir.h> 
linclude <syslstat.h> 
lend if 
lifdef OLDUNIX 
finclude <sysltypes.h> 
#include <srsltimeb.h> 
#include <d1r.h> 
#include <stat.h> 
lend if 

ldefine SORTLIM 200 
Ufdef CADMUS 
#define IN'l'l6 
ldefine MAXINT Ox7fff 
lend if 
lifdef VAX 
ldefine INT32 
ldefine MAXINT Ox7fffffff 
lend if 
I ifdef M68000 

0 

*I 

*I 

0 



• Dec 20 19:04 1986 mrds.h Page 2 

idefine INT32 
#define MAXINT Ox7fffffff 
lend if 
lifdef AMDAHL 
ldefine INT32 
ldefine MAXINT Ox7fffffff 
lend if 
ldefine MAXERR 25 
tdefine MAXSUBSTR 256 
ldefine MXLENUID 4 
lldefine MXLINUID 30 
#define RDMODE "r" 
#define APMODE "a" 
idefine CRMASK 00644 
#define BLANK " " 
idefine BLANKC 1 1 

tdefine NULLC 1 \0' 
Jdefine OOT "." 
lldefine SLASH "I" 
#define MAXARGS 6 
ldefine MAXIO 1000 
#define DELIM " I " 

• 
I* dflt maxI of'errs permitted*/ 
I* max length of a substinrg */ 
I* max length of a uid */ 
!* length of line in usrs file */ 
I* read mode for !open */ 
I* append mode for fopen */ 
I* file creation mask */ 
I* field delim on input lines */ 
/* char constant blank */ 
I* char constant null */ 
I* character period */ 
I* character slash (dir paths) */ 
I* max num args on cmnd line */ 
I* maxnum of page i/o reqs */ 
I* print field delimiter *I 

Jdefine READLN inptr = inbufr; \ 
while {{{ *inptr = getc(stdin)) != EOF) && \ 

(*inptr I= EOL)) inptr +=l; \ 
*inptr = NULLC; 

static int IOCOUNT = 0; 
static int RUN = 0; 
static char DIAGNOSE = OxOO; 
static char DBNAME[MAXNAMLEN); 
static int relfd; 
static int domfd; 
static int rdfd; 
static char OLD = OxOO; 
static char NEW = OxOl; 
static char STRBUF(MAXSUBSTR); 
static char EOL = OxOa; 
static char NOS~~ING = OxOO; 
ftdefine FAIL -1 
ldefine SUCCESS 0 
#define FILES'l'RING 64 
#define Rel ".rel" 
#define Dom ".dom" 
#define Rd ". rd" 
#define MAXRNMLEN 11 
#define MAXDNMLEN MAXRNMLEN 
#define PAGESIZE 2048 
#define MAXOPNFILES 16 
tdefine MINRDS 15 
idefine MINDOMS 13 
idefine MINRELS 3 
ldefine CONPGSIZE 256 
ldefine MAXCONPAGE 15 
fdefine MAXA~"l'S 32 

I* count i/o actions */ 
I* run mode setting & dflt */ 
/* dflt exec trace setting */ 
I* name of db; dflt is null$ */ 
I* file des for sysrel .rel *I 

!* file des for sysrel .dom */ 
!* file des for sysrel .rd */ 
I* flag for setup: old db */ 
I* flag for setup: new db *I 
I* array for substrs *I 
I* end of line char */ 
I* empty text string */ 
I* return code for failure *I 
I* return code for success *I 
I* max length of pathnames *I 
I* string form of filename rel *I 
I* string form of filename dom */ 
/* string form of filename rd */ 
I* max+1 len of relation name *I 
I* max+l len of domain name *I 
I* for 2K pages *I 
I* maxnum simult open files */ 
/* min num of rd entries *I 
I* min num of dom entries */ 
I* min num of rel entries */ 
I* size of pages for cons rels *I 
I* maxnum frames for cons rels */ 
I* max number of attributes *I 

0 



Dec 20 19:04 1986 mrds.h Page 3 

lldefine RONLY Oxl 

I* 
#define CONREL 
#define ZORD 
lldefine PZREL 
#define FLAT 
#define ORDER 
Udefine B'rREE 
#define APONLY 
#define WRINH 

bits in "rel" mode tag 

OxOl 
Ox02 
Ox04 
Ox08 
OxlO 
Ox20 
Ox40 
Ox80 

#define XLEAF OxOl 
#define XFRSTLF Ox04 
#define XROOT Ox02 
idefine XBRANCH OxOO 

#define ZSLOTS 6 
#define XFBSLOTS 6 
lldefine SEPSLOTS 6 
#define XHDRLEN 8 
#define XLFHDRLEN 14 

#define XMASK 00600 
#define XPGMINFIL 5 
#define XPGMAXFIL 99 
#define XPGDFLTFIL 60 
#define LPGMINFIL 5 
#define LPGMAXFIL 99 
#define LPGDFLTFIL 85 
#define LSPLITFILL 10 
#define XPGMINSIZE 512 
#define XPGMAXSIZE 8192 
#define XPGDFLTSIZE 4096 
#define XSPLITFILL 10 
#define LPGMINSIZE 512 
#define LPGMAXSIZE 32768 
#define LPGDFLTSIZE XPGDFLTSIZE 
idefine XFBSIZE 512 
#define X SPCOFF 2 
#define X-PHEOOFF 4 
#define L-SPCOFF 2 
#define L-PREOOFF 4 
#define L-SUCCOFF 8 
#define L=FLEOFF 12 
#define MAGICLINK Oxffff 
#define RIGH'l'_SPLIT Ox8000 

*abmsg[] = [ 

I* relation is read only *I 
*I 

I* relation is constant rel *I 
I* some domains are in z order *I 
I* some, not all, atts are z *I 
I* rel is flat, no tree *I 
I* rel is ordered *I 
I* rel is prefix B tree *I 
I* rel is append only *I 
I* rel is write inhibited *I 
I* xpage is a leaf *I 
I* xpage is first leaf pg *I 
I* xpage is root page *I 
I* xpage is a branch page *I 
I* num of slots for z codec *I 
I* num of slots for xfb hdrs *I 
I* num of slots for sep frames *I 
I* hdr len on internal nodes *I 
I* hdr len on leaf nodes *I 
/* file creat mask for BTREE */ 
/* min % fill internal node */ 
/* max % fill internal node */ 
/* dflt % fill intternal node */ 
I* min % fill leaf node */ 
/* max % fill leaf node */ 
/* dflt % fill leaf node */ 
/* % avail below which no split*/ 
/* min size internal node */ 
I* max size internal node */ 
/* dflt size internal node */ 
/* % avail below which no split*/ 
/* min size leaf node */ 
/* max size leaf node */ 
I* dflt size leaf node */ 
/* size of first block page */ 
I* offset to space on branch */ 
!* offset to pred ptr on branch*/ 
I* offset to space on leaf */ 
/* offset to pred ptr on leaf */ 
/* offset to ptr to successor */ 
I* offset to First Log Entry pt*/ 
/* tag ==> link off pg to mem */ 
I* direction of split is ---> *I 

static char 
"main: 
"main: 
"main: 
"setup: 

quit- bad arg count", 
quit- unauthorized user", 
quit- user entered null dbname", 
abort- inconsistent database" 

J i 

0 0 



• • Dec 20 19:04 1986 mrds.h Page 4 

= ( static char *DATAFMT[] 
"%s", I* char strings *I 

I* integer, free format *I 
I* single char *I 

"%d", 
"tc", 
"%f", 
"%d"' 
"%ld", 

I* single precision float *I 
I* short integer, free fmt *I 
I* long int, free fmt *I 

}; 

static char CONFRAME[MAXCONPAGE][CONPGSIZE]; I* con rel page array *I 
typedef struct dbsrcrd 

short dbs owner; 
char dbs name[MAXNAMLEN]; 
char dbs-homedir[FILES'l'RING]; 
short dos ident; 
short dbs ilfltmode; 
char dbs stat; 

}DBSTA'l'US; -

DBSTATUS sys_db; 

I* database status structure *I 
I* db owner's uid *I 
I* name of db *I 
I* path to home dir of db *I 
I* db's ident number *I 
I* db modes to use *I 
I* db current status *I 

typedef struct relrcrd [ I* rel record structure *I 
char relname[MAXRNMLEN]; I* relation name *I 
char mode; I* flag for const rels *I 
unsigned short width; I* parms of rel *I 
short fd; I* filedes if open *I 
long Zmap,cursize,maxsize,rindx,windx; I* more parms of rel *I 

REL; 

typedef struct domrcrd ( 
char domname [MAXDNMLEN}; 
char spare; 
short domtype; 
unsigned short len; 

DOM; 

typedef struct rdrcrd ( 
char relname[MAXRNMLEN], 

domname[MAXDNMLEN]; 
short pos; 

RD; 

struct rstat { 
int numrelents; 
int numdoments; 
int numrdents; 

sysrelstat; 

typedef struct zcirclist 
long numzbits; 
long outposn; 
struct zcirclist *next; 
struct zcirclist *prev; 

ZCLIS'l'; 

I* dom record structure 
I* name of domain 
I* spare byte : speed! 
I* data type of domain 
I* length of domain bytes 

I* rd record structure 

I* name of rel and dom 
I* position within tuple 

*I 
*I 
*I 
*I 
*I 

*I 
*I 
*I 

I* circ list in shuffles *I 
I* num of bits this attrib *I 
I* starting output bit posn *I 
I* ptr to next in list *I 
I* ptr to previous in list *I 



Dec 20 19:04 1986 mrds.h Page 5 

typedef struct zlinklist I* linked list in shuffles *I 
int tounz; I* where to put bits *I 
int fromz; I* where bits come from *I 
struct z1inklist *next; I* ptr to next in list *I 

ZLLIST; 

typedef struct Zordslot ( I* slots used bf zorder stuff *I 
REL *zrptr; I* rel in th1s slot *I 
long zactime; I* time of last access *I 
long tomap; I* map converting ~U *I 
long frommap; I* map converting FROM *I 
ZCLIST *fromz; I* circ list for current z *I 
ZCLIST *toz; I* circ list for result z *I 
ZCLIST *wkfrom,*wkto; I* working copies of above *I 
ZLLIST *froml,*tol; I* non-z attr lists *I 
char *tbuf; I* working tuple buffer *I 
int fromzbits; I* num of bits now in z ord *I 
int tozbits; I* num of bits to be in z *I 
int zrdents; I* num of rd ents this rel *I 

Zslot; 

Zslot zslot[ZSLOTS]; 

typedef struct Xfisrstblk 
long rootpos; I* addrs of root page *I 
long first_tpl; I* addrs of first tuple *I 
long xpgat; I* disk addrs of *xbufat *I 
long lpgat; I* disk addrs of *lbufat *I 
char *xbufat; I* addrs of intrnl node buf *I 
char *lbufat; I* addrs of leaf buffer *I 
long xactime; I* time of access for LRU *I 
int xpgfill; I* % fill internal nodes *I 
int lpgf~ll; I* % fill leaf nodes *I 
int xpgs1ze; I* size of internal nodes *I 
int lpgsize; I* size of leaf nodes *I 
char rname[MAXRNMLEN]; I* coly of this rei name *I 
char filler(XFBSIZE (44+MAXRNMLEN) ; I* fill out block size *I 

] Xfb; 

Xfb xfb[XFBS~'S]; 

I* the size of Xpghdr typedef ***MUST*** guarantee that an instance *I 
I* of the type ends on a 32-bit boundary since the PO ptr appears *I 
I* IMMEDIA~'ELY following the hdr on a branch page *I 
typedef struct xbranchpghdr ( 

char *status; I* status byte of page *I 
char *spare; I* unused: skip for align *I 
u short *space; I* space left on this page *I 
long *pred; I* back ptr to pred page *I 

Xpghdr; 

typedef struct leafpghdr 
char *status; I* status byte of page *I 
char *spare; I* unused: skip for align *I 
u short *space; I* space left on this page *I 
long *pred; I* back ptr to pred page *I 

(J (J 0 



0 
Dec 20 19:04 1986 mrds.h Page 6 

long *succ; 
u short *offset; 

Xlfhdr;-

Sepslot ( 
*rptr; 

typedef struct 
REL 
long 
int 
int 
short 
ushort 

actime; 
rdentries; 
Zdom1en; 
domtype[MAXATTS]; 
dom1en[MAXAi~S]; 

Sepslot; 

Sepslot sepslot[SEPSLOTS]; 

typedef struct 
char 
ushort 
ushort 
long 

Bentry; 

tree ent ( 
*te-item; 
te Ten; 
te-bnext; 
te=ptr; 

union u_short ( 
short sval; 
char c1,c2; 

J short_coerce; 

union u int ( 
-int ival; 

fifdef INT16 
char cl,c2; 

#end if 
lifndef INT16 

char c1,c2,c3,c4; 
] int coerce; 
lendir 

union u_float ( 
float fval; 
char cl,c2,c3,c4; 

J flt_coerce; 

union u_long ( 
long lval; 
char cl,c2,c3,c4; 

} long_coerce; 

typedef struct vmemrcrd ( 
long page; 
char wflg; 

J VMEM; 

I* apologies 

I* fwd ptr to successor pg */ 
/* offset to lst logical tpl*l 

/* rel being searched *I 
I* time of last reference */ 
/* num of rd entries in rel *I 
I* len of doms in Z order *I 
/* domtype of each att *I 
I* domlen of each att *I 

to Tolkien *I 
/* ptr to data item 
I* length in BITS of item 
/* offset to next ent list 
/* ptr to nxt pg or tpl 

*I 
*I 
*I 
*I 

/* what's in mem recrd struct */ 
I* what page num *I 
I* read/write flag for page *I 

/* defines for error 
#define ABEND 
#define ABOR'r 

handler "db_err" to identify procedures */ 
1 
2 

Bdefine AD'rUPLE 3 

0 



Dec 20 19:04 1986 mrds.h Page 7 

ldefine CLOSEREL 4 
ldefine CMPSEPTUP 5 
ldefine DB ERR 6 
ldefine DBCK 7 
fdefine FIND 6 
ldefine FIND DB 9 
ldefine FINDBRO 10 
ldefine FINDDOM 11 
#define FINDRD 12 
#define FINDREL 13 
ldefine FLUSHPAGE 14 
ldefine GETUPLE 15 
#define GOODUSER 16 
ldefine INSERT 17 
ldefine LOADDOM 18 
ldefine LOADPAGE 19 
ldefine LOADRD 20 
ldefine LOADREL 21 
ldefine LOGENT 22 
ldefine Mll:RGE 23 
ldefine MKINDEX 24 
ldefine MKREL 25 
#define MKSEP 26 
ldefine OPENREL 27 
ldefine PRIN'rREL 28 
ldefine PROJECT 29 
ldefine RDPAGE 30 
lldefine RD'rUPLE 31 
#define REPLACE 32 
ldefine SEARCH 33 
ldefine SELEC'l' 34 
#define SE'l'UP 35 
ldefine SORTREL 36 
ldefine SPLIT 37 
ldefine SPLITAT 38 
lldefine SYNCREL 39 
ldefine TIMER 40 
ldefine UPD PAREN 41 
ldefine VACANCY 42 
ldefine WRTUPLE 43 
ldefine YESNO 44 
fdefine z ono 45 
/******************* I'!NDS IU~HE *******************************/ 
/*static VMEM frame[MAXFRAMES); /*one record per frame */ 
static int freeframe; /* do I need this ?????? *I 
#define LINELEN 130 /* length of printed line */ 
#define PGNUMLEN 5 /* length of $ holding pgnum */ 
#define PGNUMHDR "Page " /* msg appearing in header */ 
Bdefine PAGELINES 55 /* maxnum printed lines I page */ 
ldefine PGNUMFM'l' "%-4d" /* printe format for pg nums */ 

#define READMODE 0 
ldefine WRI1~0DE 1 
#define RDWRMODE 2 
fdefine FROMTOP 0 
Jdefine FROMCUR 1 

0 

/* read mode for open */ 
/* write mode for open */ 
/* read/write mode for open */ 
/* 1seek indx:from top of file */ 
/* lseek indx:from cur in file */ 

0 0 



0 
Dec 20 19:04 1986 mrds.h Page 8 

ldefine FROMEND 2 
idefine ABENDCODE -SO 
#define ONE 1 
ldefine BLOCK 512 
ldefine RELWIDTH 36 
ldefine DOMWIDTH (MAXDNMLEN+1+4) 
idefine RDWIDTH (2*MAXRNMLEN+2) 
ldefine MAXRELS 85 
ldefine MAXDOMS 128 
ldefine MAXRDS 340 
ldefine BIGNUM 32767 

/* macros */ 

ldefine ACTIVE 'a' 
ldefine NEW 1 n 1 

ldeflne CHECK 1 c' 
ldefine CONFUSED '?' 
ldefine CLOSED '-' 
ldefine YES 2 
ldefine NO 1 

• 
/* lseek indx:from end of file */ 
/* distinguish abend/terminate */ 
/* for read/write: char count */ 
/* for read/write: char count */ 
/* record length for REL */ 
/* record length for DOM */ 
/* record length for RD */ 
/* maximum number of relations */ 
/* maximum number of domains */ 
/* maximum number of rds */ 
/* a big n~mber */ 

ldefine FALSE 0 
ldefine TRUE 1 
ldefine MAXCONRELS SO 
int rdents; /* number of entries matched in findrd */ 
/* define numeric constants for know mrds commands */ 
ldefine CMO BYE 0 
ldefine CMD-EXIT 0 
ldefine CMD-SHOWDOM 1 
ldefine CMD-SHOM~D 2 
#define CMD-SHOWREL 3 
#define CMD-PRINTREL 4 
ldefine CMD-PROJECT 5 
ldefine CMO-HELP 6 
#define CMO-SELECT 7 
ldefine CMD-LIS'l' 8 
ldefine CMD-CONVERT 9 
ldeflne PROMPT "mrds> " 

#define OT S~~ING 0 
#define DT-INT 1 
idefine DT-CHAR 2 
tdefine o·rFLOA'l' 3 
ldefine OT-SBOR'l' 4 
#define DT=LONG 5 

#define CMP OPS 3 
ldefine CMPA'l"l' EQ 1 
#define CMPA'l"l'-G'l' 2 
ldefine CMPATT-LT 4 
ldefine CMPVALIO 7 
static int CMPA~"l'[] (CMPA'l"l'_EQ,CMPA'l"l'_GT,CMPATT_L'l'); 

fdefine DB NOFNO -2 
#define DB=FUBAR -3 

0 



Dec 20 19:04 1986 mrds.h Page 9 

/* access modes */ 

ldefine ALLMODES Oxff 
ldefine IS_OWNER Ox04 

/* UNIX hooks: calls to UNIX specific user-level routines */ 
ldefine MORE ;usr/bin/more 

char inbufr[MAXSUBSTR],*inptr,LOGBUF[MAXSUBSTR]; 
char *buffer[MAXOPNFILES],*conrels[MAXCONRELS]; 
DBSTATUS *data base; 
REL relcore[MAXRELS]; 
OOM domcore [ MAXOOMS] ; 
RD rdcore[MAXRDS]; 
FILE *fplog; 
char names[4](MAXRNMLEN]; 
RD *entries[4]; 
REL *reltosort; 
static char filenm[FILESTRING + MAXNAMLEN]; 
static int maxerr ~ MAXERR; 

ldefine S'l'ARS "***********************************************************************" 

0 0 



Aug 29 13:25 1986 abend.c Page 1 

llinclude "mrds.h" 

int abend(abcode,obit) 

int abcode; 
char *obit; 

I* perform graceful exit from program when things *I 
I* have become hopeless *I 

extern char *abmsg[]; 
int !close( ) ; 

llifdef XTRACE 

llendif 
if 

] 

fprintf(stdout,"--> abend(%d,%s)\n",-abcode,obit); 
fflush(stdout); 

( abcode < ABENDCODE) ( 
fprintf(stderr,"\nMRDSc ABEND %d\n",abmsg[-abcode]); 
logent("ABEND",abmsg[-abcode]); 
if (fplog) (fflush(fplog); fclose(fplog);} 
exit ( abcode) ; 

else { 

• 

fprintf(stderr,"\nMRDSc TERMINATED %s\n",abmsg[-abcode]); 
logent( "'l'ERM", abmsg [ -abcode]); 
if (fplog) (fflush(fplog); fclose(fplog);} 
exit ( abcode) ; 



Oct 28 20:54 1986 adtuple.c Page 1 

linclude "mrds.h" 

I* 
* int adtuple(rel,tpl,x) 
* add the tuple pointed at by the char *tpl to the end of 

the relation whose .rel entry is pointed at by REL *rel. * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* *I 

return the number of bytes actually added (written) for 
comparison with rel->wldth: any value different from this 
is indicative of an error. 

will issue its own error messages if: 
(1) given a null pointer for rel 
(2) told to append to a constant relation 

(currently unsupported] 
{3) cannot open relation file for writing 
(4) write index is negative or exceeds size limit 
(5) cannot seek to write index offset in file 

int adtuple(rel,tpl,x) 
REL *rel; I* rel being appended 
char *tpl; I* tuple to be added 
Xfb *X; I* Xfb ptr if BTREE 
{ 

extern int errno; 
register int i; 
register char *from,*to; 
char *here; 

to *I 
*I 
*I 

int openrel(),closerel(),db_err(),wrtuple(),z(),loadpage(); 
int flushpage(); 
long pos,lseek(),pgnum,*nxtptr,next; 

lifdef XTRACE 
fprintf(stdout,"--> adtuple(%s,X%lx,%d)\n", 

rel->relname,tpl,rel->width); fflush(stdout); 
lend if 

I* good rel pointer? *I 
if { !rel) ( 

db err( SB,ADTUPLE,-1, "null"); 
return{NULL); 

if (I tpl) 
return(NULL); 

if (rel -> mode & CONREL) { 
db_err(B3,ADTUPLE,-l, "add to const rel"); 
return( NULL); 

I* ------------- G E N E R A L R E L --------------- *I 

0 0 0 



0 
Oct 28 20:54 1986 adtuple.c Page 2 

if (rel -> mode & ZORD) /* must shuffle */ 
if ((z(rel,OL,rel -> Zmap,tpl)) ==FAIL) 

return( NULL); 

if (rel -> mode & BTREE) /* insert into tree */ 
if (insert(rel,tpl,x,XLEAF) FAIL) 

return (NULL) ; 
else 

return(rel -> width); 

'!* otherwise, is just an ordinary tuple to write out */ 

if ((i = wrtuple(rel,tpl)) < SUCCESS) 
return (NULL) ; 

lifdef XTRACE 

!lend if 

fprintf(stdout,"<-- adtuple(%d)\n",i); 
fflush(stdout); 

return(i); 

0 0 .. , 



Oct 28 20:54 1986 adtuple.c Page 3 

int flushpage(from,fd,at,len) 
char *from; I* page starting addrs 
int fd; I* fd of file to flush to 
long at; I* position in file at which 
int len; I* length of page to write 

extern int errno; 
register int i; 
int write(); 
long lseek(); 

if (fd < 0) return(FAIL); 

*I 
*I 

to write *I 
*I 

if (lseek(fd,at,FROMTOP) != at) { 
db_err(56,FLUSHPAGE,errno,"seek"); 
return(FAIL); 

0 

I* should check that len is correct pagesize *I 
if ((1 = write(fd,from,len)) != !en) { 

db_err( 54,FWSHPAGE,"write"); 
return( FAIL); 

return(i); 

0 



Oct 28 20:10 1986 Btree.c Page 1 

#include "mrds.h" 

I* This file contains a "library" of utilities used by 
several MRDSc procedures to maintain and manipulate 
B*trees. [appearing in alphabetical order) 

*I 

• 
I******************************************************************* 
int findbro(rptr/pg,x,mode,lbro,rbro) 

Find left and right brother pages of "pg" page in a B*tree. 
Page whose brothers are sought MUST be in x -> xbufat. 
Return FAIL if failed during search, otherwise return SUCCESS. 
"lbro" and "rbro" will contain disk addresses of the respective 

brother pages; NULL implies no such brother 
exits. A failed "findbro" will return with both 
lbro and rbro NULL. 

*******************************************************************I 

int findbro(rptr,pg,x,mode,lbro,rbro) 
REL *rptr; /* ptr to REL entry for this relation */ 
long pg; /* addrs of page whose brothers are sought */ 
Xfb *x; /* Xfb ptr for this tree *I 
char mode; I* flag: leaf or branch type of page *I 
long *lbro,*rbro; I* addrs of left/right brother pages */ 

I* NULL ptr ~=> no such brother */ 

extern int errno; 
register long i; 
register char *left,*mid,*right; 
long parent; 
ushort onpage; 
char *pred,*malloc(); 

I* set initial value in return parms *I 
*lbro "' OL; 
*rbro "' *lbro; 

I* check if work to do *I 
if (*(x -> xbufat) & XROOT) I* no siblings */ 

return(SUCCESS); 

I* get space for parent page *I 
if ((pred ~ malloc(x -> xpgsize)) == (char *)(0)) ( 

db_err(52,FINDBRO,errno,"findbro: parent pg"); 
return(FAIL); 

/* get parent's address *I 
I* this check should be cleverer; addresses <= 0 could *I 
/* happen but are awfully unlikely *I 
if ((parent • *(long *){pg + X_PREDOFF)) <= OL) { 

0 



Oct 26 20:10 1986 Btree.c Page 2 

free{pred); 
return ( FAIL) ; 

/* get parent page */ 

if (loadpage(rptr -> fd,x,parent,pred) 
free(pred); 
return(FAIL); 

/* begin search */ 

left= (char *)(0); 

FAIL) ( 

mid = pred + XHDRLEN; /* ptr to PO */ 
onpage = *(ushort *)(pred + XHDRLEN + sizeof(long)); 
right pred + onpage; 
do { 

right += sepentlen(right); 
if (*(long *)(mid) == pg) { /* found */ 

J 

*lbro = (left ? (*(long *)(left)) OL); 
*rbro *(long *)(right); 
free(pred); 
return(SUCCESS); 

left = mid; 
mid = right; 
onpage = *(ushort *)(right+ sizeof(long)); 
right = pred + onpage; 

} while{onpage); 
free ( pred) ; 
return(SUCCESS); 

0 0 



• • 
Oct 28 20:10 1986 Btree.c Page 3 

/******************************************************************* 
int sepentlen(s) 

Return 

The "s 

where: 

length of 's' part of an (s,p) entry 
page. 

part" consists of: 
+--------+-----< >-----+-----+ 
I ushort I varying I PAD I 
+--------+-----< >-----+-----+ 

in a branch 

ushort is unsiged short containing length of 
separator in bits, 

varying is the actual separator itself, aligned 
to nearest byte address, 

PAD is a string of 0 to 3 bytes needed to align 
the pointer part of the (s,p) entry: it 
assures that next physical address is on 
a 32 bit boundary. 

*******************************************************************/ 
int sepentlen(s) 
char *s; /* ptr to s in (s,p) entry */ 

register int i,j; 

i = (int)((* (ushort *)(s)) >> 3); 
1 += sizeof(ushort); 
if (j - (long)(s) & Ox3) ' 

1 += 4 - j; 

return(i); 



Oct 28 20:10 1986 Btree.c Page 4 

/******************************************************************* 
int splitat(pg,x,mode,penult,ult,first) 

Find position on page at which a split should be performed. 
Splits may be to the left or the right, with the returned 

ptr values indicating: 
<----

last of entries from penult 
current page to be 
inserted onto left 
brother page. 

first of entries from ult 
current page to stay 
on current page 

entry from current first 
page which becomes 
first inserted onto 
left brother page. 

----> 
entry before last to stay 
on current page. 

last entry to stay on cur­
page 

entry from current page 
which becomes first added 
entry on right brother page. 

*******************************************************************/ 
int splitat(rptr,pg,x,mode,penult,ult,first) 
REL *rptr; /* ptr to this rel */ 
char *pg; /* mem addrs of page to be spilt */ 
Xfb *X; /* Xfb ptr for this index */ 
short mode; /* lo byte= mode (leaf/branch), 

hi byte direction (to left/to right) */ 
char **penult, /* ptrs to entries in index (see above) */ 

**ult, **first; 

register int i,j; 
register char *a,*b,*c; 
register int pgsize,k; 
short direction,oncurpg=O; 
extern Bentry newent; 

/* find split point on page */ 

if (mode & (short)(XLEAF)) { 
pgsize = x -> lpgsize; 

J 
i = (int)(pgsize * x -> lpgflll); 

else 
pgsize x -> xpgsize; 
i = (int)(pgsize * x -> xpgfill); 

/* i = num of bytes which should stay on current page */ 

direction = (mode & RIGHT_SPLIT); /* is 0 for left */ 
b = c = (char *)(0); · 
if (mode & (short)(XLEAF)) ( 

/* figure padding allowance for tuple entries */ 

0 0 0 



• 0 
Oct 28 20:10 1986 Btree.c Page 5 

J 
else 

I* this is constant for fixed width tuples, so *I 
I* do it here, outside loop *I 
k = ((k s (rptr ->width & Ox3)) ? (4 - k) : 0); 
~ = pg + *(ushort *)(pg + L_FLEOFF); 
J = XLFHDRLEN; 
while (1) ( 

c s b; 
b = a; 
if (a == (char *)(MAGICLINK)} 

else 
a= (char *}(newent.te_ptr); 

a= (char *)(*(long *)(a+ rptr -> width)); 
if (a I= (char *)(MAGICLINK)) 

a= ((long)(a) - x -> lpgat) + x -> xbufat; 
if ( b == (char *)(MAGICLINK)) { 
I* determine length of tuple here if variable *I 

++oncurpg; 
J 
j += rptr -> width + sizeof(long) + k; 
if (direction && (j > i)} {I*--> *I 

) 

*first = a; 
*ult = b; 
*penult = c; 
break; 

else if ((!direction) && ((pgsize- j) < i)) ( 
*ult = a; 
*penult = b; 
*first = pg + *(ushort *)(pg + L_FLEOFF); 
break; 

I* is a branch page *I 
a = pg + XHDRLEN; 
while (1) ( 

c = b; 
b = a; 
if (a == (char *)(MAGICLINK)) 

else 
a = (char *)(newent.te_bnext); 

a= (char *)(*(ushort *)(a+ sizeof(long))); 
if (a I= (char *)(MAGICLINK)) 

a - (char *)((unsigned long)(a) + (unsigned long)(pg)); 
b == (char *)(MAGICLINK)) ( if 

j += newent.te_len >> 3; 

J 
++oncurpg; 

else 
j += sepentlen(b); 

j += sizeof(long) + sizeof(ushort); 
if (direction && (j > i)) ( I*--> *I 

*first = a; 
*ult = b; 
*penult = c; 
break; 



Oct 28 20:10 1986 Btree.c Page 6 

J 

] 
else if ((!direction) && ((pgsize -j) < i)) { /* <-- */ 

*ult "' a; 
*penult = b; 
*first = pg + XHDRLEN; 
break; 

I* want to return number of bytes which remain on current page irrespective 
of direction of split. If value is poisitive then "linked in" new entry 
has NOT been encountered during traverse; otherwise is negative implying 
that the entry has been passed. 

*I 
if (direction) 

return(oncurpg? -j : j); 
else ( 

pgsize -= j; 
pgsize = ( (mode & (short)(XLEAF)) ? pgsize- XLFHDRLEN pgsize- XHDRLEN); 
return(oncurpg ? -pgsize : pgsize); 

0 0 0 



0 • OCt 28 21:07 1986 closerel.c Page 1 

I* Close the relation now opened, le. close the now open file *I 
I* for the relation, and make invalid the field in the rel *I 
I* holding the relation's file descriptor. Also, reclaim the *I 
I* buffer that was allocated by openrel and set appropriate *I 
I* buffer pointer to invalid value. *I 
I* Return fd of successfully closed rel or FAIL for failed close *I 
llinclude "mrds.h" 

int closerel(rptr) 
REL *rptr; 

( 
extern int errno; 
extern char *buffer[]; 
int oldfd,free(); 

Ufdef XTRACE 
fprintf(stdout,"--> closrel(%s [%d))\n", rptr -> relname, rptr -> fd); 
fflush(stdout); 
#end if 

I* close file *I 
if (close ((int)(rptr -> fd))) { 

db_err(50,CLOSEREL,errno,rptr -> relname); I* cannot close file *I 
return (FAIL) ; 

I* reclaim buffer space *I 
free(buffer[rptr -> fd)); 
oldfd = (int)(rptr->fd) ; 
buffer[oldfd] = OL; I* macdp: ng for 16 bit addrs *I 
I* invalidate rel's fd field *I 
oldfd = rptr -> fd; 
rptr -> fd = FAIL; 

I i fdef X'l'RACE 
fprintf(stdout, "<-- closerel(%d)\n" ,oldfd); fflush(stdout); 
lend if 

return(oldfd); 

• 



Nov 5 01:09 1986 db_err.c Page 1 

finclude "mrds.h" 

int db err(ernumlersect,unix err1erstring) 
int-ernum,ersect1unix err/ 
char *erstring; -

extern int maxerr; 
int abend(); 
static char *ermesg[] = ( 

11 "Permission denied I I* err 0 *I 
11 11 I* err 1 *I I 

" 11 I* err 2 *I I 

"Missing system relation", I* err 3 *I 
11 11 I* err 4 *I I 
11 11 I* err 5 *I f 
11 11 I* err 6 *I f 
11 11 I* err 7 *I I 

"Too few system relations", I* err 8 *I 
"Too few system domains "1 I* err 9 *I 
"Too few rd entries " 1 I* err 10 *I 
"Too many rd entries", I* err 11 *I 
11 11 I* err 12 *I I 
11 11 I* err 13 *I I 
11 " I* err 14 *I I 
11 11 I* err 15 *I I 
11 11 I* err 16 *I I 
11 11 I* err 17 *I I 
11 11 I* err 18 *I I 
11 11 I* err 19 *I I 
11 11 I* err 20 *I I 
11 11 I* err 21 *I I 
11 11 I* err 22 *I I 
11 11 I* err 23 *I I 
11 11 I* err 24 *I I 

"-Non-existant path 11
, I* err 25 *I 

"-Not a directory", I* err 26 *I 
"-Cannot setup database", I* err 27 *I 
"Corrupted internal node (xsize) 11

, I* err 28 *I 
"Parent missing ptr to its child", I* err 29 *I 
"No space after split", I* err 30 *I 
.. ti I* err 31 *I I 
11 n I* err 32 *I I 
11 11 I* err 33 *I I 
11 11 I* err 34 *I I 
11 11 I* err 35 *I I 
11 " I* err 36 *I I 
11 11 I* err 37 *I I 
11 11 I* err 38 *I I 
11 " I* err 39 *I I 
11 11 I* err 40 *I I 
11 11 I* err 41 *I I 
11 11 I* err 42 *I I 
11 " I* err 43 *I I 
11 11 I* err 44 *I I 
11 " I* err 45 *I I 

0 0 0 



0 
Nov 5 01:09 1986 db_err.c Page 2 

} i 

" "• I* 
" ", !* 
11 ", /* 
" ••, /* 
"Cannot close", /* 
"Cannot open", /* 
"Cannot allocate ", /* 
"Cannot read", /* 
"Cannot write", /* 
"Cannot create", /* 
"Cannot seek", /* 
"Cannot make relation", /* 
"Cannot find relation", /* 
"Cannot write relation", /* 
"Cannot read relation", /* 
"Cannot add to relation", /* 
"No match in rd", /* 
"Bad number of entries in rd", /* 
"Bad substring count", /* 
"Unexpected tuple match", /* 
"Bad separator length", /* 
"Missing index entry", /* 
"Cannot update index", /* 
" ", I* 
"No more rels", /* 
"No more rds", /* 
"Bad number of domains", /* 
11 ", /* 
"No database given", /* 
11 ", /* 
"Attempt to overwrite rel: ignored", /* 
11 ••, /* 
"Duplicate domain name", /* 
"Missing domain", /* 
"Non-existant database", /* 
"Failed to add tuple ( s)", /* 
"Failed to sort", /* 
"Unsupported operation", I* 
"Name too long, truncated", I* 
"Tuple overflow", /* 
"Unknown option ignored; using default",/* 
"Z map change mid relation - ignored", I* 
"Line too long, truncated", /* 
"Cannot stat relation" 1 /* 
"Bad ~~ determination in cmpseptup" 1 /* 
"Du~;>licate tpl insertion; not done" 1 I* 
"Fa1led to update rindx", I* 
"Unable to make backup copy -continue",/* 
"Duplicate relation name", I* 
"Open failed; ignored", /* 
"Excessive rd entries", /* 
"Insert on non B*tree: ignored", /* 
"No change to Zorder: ignored", /* 
" lt I I* 

static char *er_pnames(] ~ ( 

err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 
err 

0 

46 *I 
47 *I 
48 *I 
49 */ 
50 */ 
51 */ 
52 */ 
53 *I 
54 */ 
55 *I 
56 */ 
57 *I 
58 */ 
59 *I 
60 *I 
61 *I 
62 *I 
63 *I 
64 *I 
65 *I 
66 *I 
67 *I 
68 *I 
69 *I 
70 *I 
71 *I 
72 *I 
73 *I 
74 *I 
75 *I 
76 *I 
77 *I 
78 *I 
79 *I 
80 *I 
81 *I 
62 *I 
83 *I 
84 *I 
85 *I 
86 *I 
87 *I 
88 *I 
89 *I 
90 *I 
91 *I 
92 *I 
93 *I 
94 *I 
95 *I 
96 *I 
97 *I 
98 */ 
99 *I 



Nov 5 01:09 1986 db_err.c Page 3 

} ; 

I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 

ABEND *I 
ABORT *I 
ADTUPLE *I 
CLOSEREL*I 
CMPSEPTUP*I 
DB_ERR *I 
DBCK *I 
FIND *I 
FIND_DB *I 
FINDBRO *I 
FINDOOM *I 
FINDRD *I 
FINDREL *I 
FLUSHPAGE*I 
GETUPLE *I 
GOODUSER*I 
INSERT *I 
LOADOOM *I 
LOADPAGE*I 
LOADRD *I 
LOADREL *I 
LOGEN'l' *I 
MERGE *I 
MKINDEX *I 
MKREL *I 
MKSEP *I 
OPENREL *I 
PRINTREL*I 
PROJECT *I 
RDPAGE *I 
RDTUPLE *I 
REPLACE *I 
SEARCH *I 
SELEC'r *I 
SETUP *I 
SORTREL *I 
SPLI'r *I 
SPLITAT *I 
SYNCREL *I 
'riMER *I 
UPD PAREN*I 
VACANCY *I 
WH'l'UPLE *I 
YESNO *I 
Z_ORD *I 

"?unkown", 
"abend", 
"abort", 
"adtuple", 
"closerel", 
"cmpseptup", 
"db err" 
"dbck", ' 
"find", 
"find db", 
"findoro", 
"finddom", 
"findrd", 
"findrel", 
"flushpage", 
"getuple", 
"9ooduser", 
"1nsert", 
"loaddom", 
"loadpage", 
"loadrd", 
"loadrel", 
"logent", 
"merge", 
"mkindex", 
"mkrel", 
"mksep", 
"openrel", 
"printrel", 
"project", 
"rdpage", 
"rdtuple", 
"replace", 
"search'', 
"select", 
"setup", 
"sortel", 
"split", 
"splitat", 
"srncrel", 
"t1mer", 
"upd_parent", 
"vacancy", 
"wrtuple", 
"yesno", 
UzU 

static char *severity() 
( "Fatal ","Severe 11 , "Error ","Warning" J; 

static short RUN; 

fprintf(stderr,"\n» %s « %15s: (%3d,%3d] %s %s \n", 
severity(ernuml25],er_pnames[ersect],ernum,unix_err, 
ermesg(ernum],erstring); 

0 0 0 



0 
Nov 5 01:09 1986 db_err.c Page 4 

I* if ERRLOGON ( %* write ertrap to error log file *% 
} 

*I 
if (!RUN) 

switch (ernum I 25) { 
case 3 

break; 
case 2 RUN++; 

break; 
case 1 abend(-3); 
case 0 abend(-3); 

} 
else 
switch (ernum 1 25) ( 

case 3 
break; 

case 2 RUN++; 
break; 

case 1 RUN++; 
break; 

case 0 abend( -3); 

if (RUN > maxerr) 
abend(-3 1 "RUN over max err"); 

return; 
) 

0 • 



Oct. 7 21:13 1986 dbck.c Page 1 

tinclude "mrds.h" 

int dbck(ptr,report) 
DBSTATUS *ptr; 
int report; 

extern int errno; 
char rd doms [MAXRDS] [MAXDNMLEN], dam doms (MAXRDS] (MAXDNMLEN]; 
char reitmp(MAXRNMLEN],relnames(MAXRDS](MAXRNMLEN],*index(); 
char *getrelnam(); 
int expected[3],found(3],errors = 0; 
register int i,j,k; 
int fdr,rels,doms,strcmp{); 
struct stat stbuf; 

lifdef XTRACE 

lend if 

fprintf(stdout, "--> dbck(%s, %d)\n", ptr->dbs_name,report); 
fflush( stdout); 

if ( lptr) ( 
db err(74,DBCK,-l,BLANK); I* no db to check! *I 
return(FAIL); 

if (report) printf( "dbck:\tchecking db \' !lis\'\n" ,ptr->dbs_name); 
sprintf(LOGBUF,"%s (owner %d): begin dbck",ptr->dbs_name,ptr->dbs_owner); 
if (fplog) logent("CHECK",LOGBUF); 

I* check if home directory exits *I 
if (stat(ptr -> dbs_homedir,&stbuf) == FAIL) ( I* no path *I 

db_err(25,2,errno,ptr ->dbs_homedir); 
return(FAIL); 

if ((stbuf.st mode & S IFMT) I= S IFDIR) ( I* not a dir */ 
db_err(26,2,-l~ptr ->dbs_nomedir); 
return(FAIL); 

I* open system rels and load into memory */ 

expected[O] loadrel(ptr); 
expected[1] loaddom(ptr); 
expected(2] = loadrd(ptr); 

/* check consistency of REL *I 
if (report) printf("\tChecking rel\n"); 
found(O] = MINRELS; 
i • MINRELS; j sysrelstat.numrelents - i; 

<J 0 0 

http:Cstbuf.st


0 
Oct 7 21:13 1986 dbck.c Page 2 

while (j--) ( I* check each rel *I 
strcpy(LOGBUF,getrelnam(&relcore[i])); 
if ((stat(LOGBUF,&stbuf)) == FAIL) { 

if (report) printf("****\tMissing relation \'%s\'\n", 
relcore[i].relname); 

J 
else 

} 
++i; 

++errors; 

if (relcore[i].cursize != (long)(stbuf.st_size)) { 
++errors; 
if (report) printf("****\tWrong size: %s should be Ud but 
relcore[i].relname,relcore[i].cursize,stbuf.st_size); 

J 
++found[O]; 

if (expected[O] I= found [O]) {I* trouble ih Gotham city *I 
++errors; 
if {report) printf("****\tExpected %d but found id relations\n", 
expected[O],found[O]); 

I* check RD consistency *I 
if {report) printf("\tChecking rd\n"); 
rels = 0; 
doms = 0; 
j = 0; 

k "' 
for 

sysrelstat.numrdents; 
(l = 0; i < k; !++) { 

++doms; 
strcpy(rd doms[i],rdcore[i].domname); 
if(strcmp(reltmp,rdcore(i).relname)) { 

strcpy(reltmp,rdcore[i].relname); 
++rels; 
strcpy(relnames[j],rdcore{i].relname); 
++j; 

k sysrelstat.numdoments; 
for (i = 0; 1 < k; i++) 

strcpy(dom_doms[i],domcore{i].domname); 

qsort(dom doms,i,MAXDNMLEN,strcmp); 
qsort(rd_aoms,doms,MAXDNMLEN,strcmp); 

I* CHANGED 18 AUG 86: .windx BECOMES .cursize *I 
if ((relcore(O].cursize I ((long)(relcore[O].width))) I= rels) 

++errors; 
if (report) ( 

printf("****\tMismatch: num of rels in re! and rd 11 ); 

printf( "Ud I= Ud\n" ,relcore[ 0] .cursize I ( (long) (relcore [ O]. width)), 

• 



0, 
. I 

OCt 7 21:13 1986 dbck.c Page 3 

i = 0; 
k = 0; 
while ( 

i 0; 
k 0; 

rels); 

*(relcore(i].relname) && *(relnames[k])) ( 
if (j = strcmp(relcore(i].relname,relnames(k])) (/*not same*/ 

++errors; 

} 
else 

if(j > 0) ( 
if (report) printf("****\tMissing relname \'%s\' in rel\n",relnames(k]); 
++k; 

) 
else 

++1; 
++k; 

if (report) printf("****\tMisslng relname \'%s\' in rd\n",relcore[l].relname); 
++i; 

re1tmp(O] = NULLC; 
• while ( (dom doms(i] (O] != NULL) !I 

(rd domsTk](O] !=NULL) ) ( 
-if(strcmp(reltmp,rd_doms(k])) (/*new dom name*/ 

strcpy(reltmp,rd_doms[k]); 

} 

if (j = strcmp(dom_doms(i),rd_doms[k])) 
++errors; 

} 

if (j > 0) ( 

J 
else 

if (report) printf("****\tMissing domname \ 1 %s\' in dom\n",rd_doms[k)); 
++k; 

if (report) printf( "****\tMissing domname \ 1 %s\' in rd\n" ,dom_doms (i]); 
++i; 

else /* are same */ 
++i; 
++k; 

else /* same domain as last time */ 
++k; 

/* end of check */ 

if (report) { 

() \) () 



Oct 7 21:13 1986 dbck.c Page 4 

printf("End of check on database \'%s\' ",ptr->dbs name); 
if (terrors) printf( ": no errors detected\n"); -
else if (errors > 1) 

else 
printf(": %d errors detected\n",errors); 

printf(": %d error detected\n",errors); 

lifdef XTRACE 

lend if 

fprintf(stdout,"<-- dbck(%d)\n",errors); 
fflush(stdout); 

return(errors); 

• 



0 
1 ' 

Sep 30 21:00 1986 find_db.c Page 1 

#include "mrds.h" 

int find_db(name,owner,ustruct) /* determine whether a database exists */ 
char *name; /* if so return pointer to struct holding */ 
int owner; I* status of db, else return null ptr *I 
DBSTATUS *ustruct; I* addrs of user structure to return entry in *I 

FILE *fptr, *fopen(); 
extern DBSTATUS sys db; 
register int i,j; -
register DBSTATUS *dbt,*sysdbt; 
short search ~ 1; 
int kludge; I* needed because Masscomps can't put big integers */ 

I* like '8' into a short in fscanf *I 
I ifdef XTRACE 

lend if 

fprintf(stdout,"--> find_db(%s,%d,%lx)\n",name,owner,ustruct); 
fflush(stdout); 

if ((fptr ~ fopen(DBLIST,RDMODE)) ~=NULL) 
return(FAIL); 

else { I* look for the db *I 
if ((dbt = ustruct) == (DBSTATUS *)(0)) 

return(FAIL); /* nowhere to put it *I 
sysdbt = &sys db; 
while ((searcn) && 

fscanf(fptr,"%d %s %s %d %c",&(kludge), 
dbt->dbs_name,dbt->dbs_homedir,&(dbt->dbs_ident),&(dbt->dbs_dfltmode)) 

!= EOF) 

J 
fclose(fptr); 

if ((!strcrnp(name,dbt->dbs_name)) && I* names are equal *I 
(owner== (short)(kludge)) ) I* owners are same *I 

search = 0; 

dbt->dbs owner = (short)(kludge); 
#ifdef XTRACE -

fprintf(stdout,"find_db: 
fprintf{stdout," 
fprintf(stdout," 
fprintf(stdout," 
fprintf(stdout," 
fprintf(stdout,"<--

owner %d\n" ,dbt->dbs_owner); 
name %s\n",dbt->dbs_name); 
home %s\n" ,dbt->dbs_homedir); 
ident %d\n" ,dbt->dbs_ident); 
dflt %c\n 11 ,dbt->dbs dfltmode); 

find_db(\d)\n",search); -

lend if 
fflush(stdout); 

I* for better security should: 
zero the user's struct, 
use local struct as image of user's structure 
if found, copy local image to user's true struct 

*I 
if (search) ( I* unfound: 0 the user's struct before return *I 

j = strlen(dbt -> dbs_name); 

0 0 0 



Sep 30 21:00 1986 find_db.c Page 2 

) 
else 

for (i = O; i < j; i++) ( 

l 
j 
for 

J 

dbt -> dbs name(il = '\0'; 
sysdbt -> dbs_name[il = '\O'; 

strlen(dbt -> dbs homedir); 
(i • 0; i < j; i++)( 

dbt -> dbs homedir[i] = '\0 1
; 

sysdbt -> dbs_homedir[i] = '\0'; 

dbt -> dbs_owner = -1; sysdbt -> dbs_owner = -1; 
dbt -> dbs ident = -1; sysdbt -> dbs ident = -1; 
dbt -> dbs:dfltmode = '\0 1 ; sysdbt -> dbs_dfltmode 
return(FAIL); 

/* found: copy into system db entry */ 
strcpy(sysdbt -> dbs name,dbt -> dbs name); 
strcpy(sysdbt -> dbS:homedir,dbt -> abs_homedir); 
sysdbt -> dbs_owner = dbt -> dbs_owner; 
sysdbt -> dbs ident = dbt -> dbs ident; 
sysdbt -> dbs:dfltmode = dbt ->dos_dfltmode; 
return(SUCCESS); 

• 

= '\0'; 



Oct 28 21:32 1986 finddom.c Page 1 

iinclude "mrds.h" 

DOM *finddom(dname) 
char *dname; 

extern DOM domcore(]; 
int strcmp( ) ; 
register int i,found~TRUE; 

Ufdef XTRACE 

tend if 

fprintf(stdout,"--> finddom(%s)\n" ,dname); 
fflush( stdout); 

if (dname) /* there is a name */ 
for (i = 0; i < MAXDOMS; i++) { 

if(! *(dorncore[i].domname)) 
break; /* no more doms */ 

if (I (found= strcmp(dnarne,dorncore[i].domnarne))) 
break; 

llifdef XTRACE 

tend if 

fprintf(stdout, "<-- finddom(%d, %d)\n" 1 found, i); 
fflush(stdout); 

return(found ? (DOM *)(NULL) &domcore [ i] ) ; 

0 

( 

0 



Oct 28 21:36 1986 findrd.c Page 1 

finclude "mrds.h" 

RD *findrd(rname,domlist,num,rdptr) 
char *rname,domlist[)[MAXDNMLEN]; I* was 
short num; 

domlist[][] on masscomp *I 

RD *rdptr ( J ; 

register int i,j,rstart=FALSE,rend,domfound; 
extern int rdents; 
extern RD rdcore[]; 
int strcmp() ; 

#ifdef XTRACE 
fprintf(stdout,"-->findrd(%s,X%lx,%d,X%lx\n",rname,domlist,num,rdptr); 
fflush(stdout); 

fend if 

[ 

rdents ., 0; 
I* see if there is a name *I 
if ( I *rname) 

return((RD *)(NULL)); I* no name *I 
I* find first entry in rd for 'rname' *I 
for (i ., 0; i < MAXRDS; i++) 

if (!strcmp(rname,rdcore[i).relname)) 
rstart = i; 
break; 

if (rstart < 0) ( I* rname not in rd *I 
db_err(62tFINDRD.-l,rname); 
return((RD *)(NULL)); 

I* find last entry in rd for rname *I 
rend = rstart; 
while (lstrcmp(rname,rdcore[rend].relname)) 

++rend; 
rdents rend - rstart ; 

if (rdents > MAXA~~S) ( I* VERY dan?erous: something got clobbered *I 
strcpy(inbufr,rname); I* th~s should never happen (ha!) *I 
strcat(inbufr,"("); 
strcat(inbufr,itoa(rdents)); 
strcat(inbufr,")"); 
db_err(96tFINDRD,-1,inbufr); 
rdents = MAXATTS; 

if (num) I* lookup supplied domain names *I 

Hfdef X'l'RACE 

• 



OCt 28 21:36 1986 findrd.c Page 2 

fprintf(stdout," findrd: num = %d, rstart = %d , rend td\n", 
num,rstart,rend);fflush(stdout); 
iendif 

for (i = 0; i < num; i++) ( 
domfound = 0; 
j = rstart; 
while ((ldomfound) && (j <rend}) 

if(lstrcmp(domlist[i],rdcore[j].domname)) 
++domfound; 

else 

if (domfound) 

else 
rdptr{i) 

rdptr[i] 

]else /* get all the domains */ 

++j; 

&rdcore[j]; 

(RD *)(NULL); 

for (i = rstart; i <= rend; i++) 
rdptr[i- rstart] = &rdcore{i]; 

lifdef XTRACE 

#end if 

fprintf(stdout,"<-- findrd(td)\n",rdents); 
fflush(stdout); 

return(&rdcore[rstart]); 

() l) 0 



Oct 28 21:38 1986 findrel.c Page 1 

Unclude "mrds.h" 

REL *findrel(rname) 
char *rname; 

extern REL relcore(]; 
register int i,found=TRUE; 
int strcmp( ) ; 

Ufdef X'l'RACE 

fend if 

fprintf(stdout, "--> findrel(%s)\n" ,rname); 
fflush(stdout); 

if ( *rname) 
for (i 

/* if there is a name */ 
= 0; i < MAXRELS; i++) { 
if (l(*(relcore[i].relname))) 

break; /* no more rels */ 

0 

if(l(found = strcmp(rname,relcore(i].relname))) 
break; 

f ifdef X'l'RACE 

fend if 

fprintf(stdout,"<-- findrel(%d,%d)\n",found,i); 
fflush(stdout); 

return(found ? (REL *)(NULL) &relcore[i]); 

• 



Aug 29 13:0B 19B6 getdbname.c Page 1 

linclude "mrds.h" 

char *getdbname() 
{ 

register int i; 
int strlen(); 

while(l) { 
fprintf(stdout,"\nEnter name of db to use: "); 
READLN 
if ((i = strlen(inbufr)) > MAXNAMLEN) { 

db err(B4,1,-l,inbufr); 
infiufr(MAXNAMLEN - 1] = NULLC; 
break; 

} 
else if (i ~- 0) break; 
return(inbufr); 

} 
return(inbufr); 

0 0 0 



• 
Oct 30 19:49 1986 getup1e.c Page 1 

Unclude "mrds. h" 

char *getuple(rptr,mode) 
REL *rptr; 
char mode; 

extern char *conrels(],*buffer[]; 
extern int errno; 
int rdtuple(),db err(),z(); 
register int 1; -
long pos; 

Ufdef XTRACE 

lend if 

fprintf(stdout,"--> getuple(%s,X%lx)\n",rptr->relname,mode); 
fflush(stdout); 

if ( lrptr) { 
db_err(58,GETUPLE,-l,NOSTRING); 
return((char *)(NULL)); 

if (rptr->mode & CONREL) ( I* ------- C 0 N S T A N T R E L ------- *I 
if (rptr->fd == FAIL) ( 

db_err(70,GETUPLE,-l,rptr->relname); 
return((char *)(NULL)); 

if ((rptr->rindx +mode >• rptr->cursize + (long)(conrels[rptr->fd])) 11 
(rptr->rindx +mode< (long)(conrels[rptr->fd]))) ( 

db_err(83,GETUPLE,-l,rptr->relname); 
return((char *)(NULL)); 

lifdef XTRACE 
rptr->rindx += mode + rptr->width; 

lend if 

fprintf(stdout,"<-- getuple(con@ XUx)\n",rptr->rindx + mode + 
conrels(rptr->fd]); · 

fflush(stdout); 

I* -------- G E N E R A L R E L -------- *I 

if ((rdtuple(rptr,(char *}(NULL))) < SUCCESS) 
return((char *)(NULL)); 

if (rptr -> mode & ZORD) I* must unshuffle */ 
if ((z(rptr,rptr -> Zmap,OL,buffer(rptr -> fd])) ==FAIL) 

return((char *)(NULL)); 

• 



Oct 30 19:49 1986 getuple.c Page 2 

Ufdef XTRACE 

fend if 

0 

fprintf(stdout, "<-- getuple(gjn,X%lx)\n" ,buffer [rptr->fd]); 
fprintf(stdout," TUPLE= l%s \n",buffer[rptr->fd]); 
fflush( stdout); 

return(buffer(rptr->fd]); 

() 0 



OCt 30 19:49 1966 getuple.c Page 3 

int loadpage(file,x~from,to) 
int file; /* descriptor for file */ 
Xfb x; /* hdr info for this index */ 
long from; /* position in file from which to read*/ 
char *to; /* buffer pointer: put page 'to' there*/ 

extern int errno; 
register int i,j; 
register long pos; 
int read(); 
long !seek(); 
char pgtype,*To; 

Ufdef XTRACE 

0 

fprintf( stdout,"--> load page( %d, %lxX,%ld. 1 %lxX)\n", flle,x,from, to); fflush(stdout); 
lend if 

if (lseek(file,from,FROMTOP) I= from) ( 
db_err( 56, LOADPAGE, errno,"seek"); 
return (FAIL); 

if ((i = read(file,&pgtype,l)) != 1) ( 
db err (53 1 LOAD PAGE, err no, "1read" ) ; 
return(FAIL); 

if (!to) 
if (pgtype = (pgtype & XLEAF)) /* is a leaf page */ 

TO = x.lbufat; 
else To = x.xbufat; 

else TO = to; 

if ((pos = lseek(file,-lL,FROMCUR(.) != from) ( 
db_err(56,LOADPAGE,errno, 'backseek"); 
return(FAIL); 

1 (pgtype ? x.lpgsize : x.xpgsize); 

if ((j = read(file,To,i)) !• i) ( 
db_err( 53, LOADPAGE,errno, "read"); 
return(FAIL); 

/* update xfb particulars */ 

if (pgtype) /* is leaf */ 
x.lpgat = pos; 

else x.xpgat = pos; 

#ifdef XTRACE 
fprintf(stdout,"<-- loadpage(%d)\n",(pgtype? -j j)); fflush(stdout); 

• 



0 
l 

Oct 30 19:49 1986 getuple.c Page 4 

lend if 

return(pgtype ? -j j)i /* negative==> leaf was read */ 

0 (J 0 



Aug 29 10:07 1986 gooduser.c Page 1 

linclude "mrds.h" 

int gooduser ( ) 

char inbuf[MXLINUID],*index(),uidstr(lO],*substr(); 
int i = FAIL,uid,atoi(),db_err(),geteuid(); 
FILE *fptr, *fopen(); 

Ufdef XTRACE 

lend if 

fprintf( stdout,"--> gooduser( )\n"); 
fflush(stdout); 

if ((fptr = fopen(USRFILE,RDMODE)) == (FILE *)(NULL)) { 
db_err(61,GOODUSER,-1,"user list"); 
return(FAIL); 

uid = geteuid(); 
while (f9ets(inbuf,MXLINUID,fptr) != NULL) 

~f (uid == atoi(substr(inbuf,uidstr,O, 
((int)(index(inbuf,' : 1

)- inbuf))))) 
i = uid; 
break; 

llifdef XTRACE 

lend if 

fprintf(stdout,"<-- gooduser(%d)\n",i); 
fflush(stdout); 

return(!); 

0 • 



,r"""\ 
r ' 

Oct 30 20:30 1986 insert.c Page 1 

Unclude "rnrds.h" 

int insert(rel,tpl,x,mode) 
REL *rel; I* ptr to rel into which insertion occurs *I 
char *tpl; I* ptr to entry being inserted (tpl or (s,p)) *I 
Xfb *x; I* ptr to Xfb entry for this tree *I 
char mode; I* insertion of tuple or (s,p) *I 

extern int errno; 
register int i,j; 
register char *to,*from; 
char *here; 
long pos,next,*nxtptr; 
int pgnum; 

I* check that relation is a B* tree *I 
if (l(rel ->mode & BTREE)) (I* not a tree *I 

db err(97,INSERT,-l,rel -> relname); 
return(FAIL); 

I* locate insertion point *I 
if ((pos search(rel,tpl)) == FAIL) ( 

db_err(6l,INSERT,-1,rel -> relname); 
return(FAIL); 

if (pos > OL) ( 
db_err(9l,INSERT,-1,rel -> relname); 
return(O); 

pgnum = (-pos I x -> lpgsize); 
if (x -> lpgat != pgnum) I* lost leaf: should never happen *I 

if (loadpage(openrel(rel,RDMODE),x,pos,(char *)(0)) FAIL)( 
db_err(60,INSERT,errno,rel -> relname); 
return(FAIL); 

I* check space remaining on page: need to split? *I 
I* 3 is the maximum amount of skip bytes which could *I 
I* preceed a tuple *I 
if ((rel -> width + sizeof(long) + 3) > *(ushort *)(x -> lbufat + L_SPCOFF)) ( 

if (split(rel,tpl,pos,x,XLEAF) == FAIL){ 

J 
else 

} 

db err(6l,INSERT,-l,rel -> relname); 
return(FAIL); 

return((int)(rel ->width)); I* done *I 
else I* add to linked list on this leaf page *I 

I* find physical space on page *I 
here= X-> lbufat + ((X-> lpgsize XLFHDRLEN) - (*(ushort *)(X-> lbufat + L_SPCOFF))); 
from = tpl; to = here; 
for (i = 0; i < (int)(rel ->width); i++) 

0 0 0 



0 
Oct 30 20:30 1986 insert.c Page 2 

*to++ = *from++; 

/* link into list */ 
pgnum = pgnum + *(ushort *)(X-> lbufat + L_SUCCOFF); 
if (((-pos- 1) pgnum) == 1) { /*add before first*/ 

*(long *)(to) = (X-> lpgat) + (*{Ushort *)(X-> lbufat + L_SUCCOFF)); 
*(ushort *)(x -> lbufat + L_SUCCOFF) = (ushort)(here- x -> lbufat); 
if (*(X -> lbufat) & XFRSTLF) 

} 
else 

x -> first_tpl = (long)(here - x -> lbufat + x -> lpgat); 

nxtptr = (long *)(x -> lbufat + (-pos t x -> 1pgsize) + (rel ->width)); 
next = *nxtptr; 
*(long *)(to) = next; 
*nxtptr = (long)(here- x -> lbufat) + x -> lpgat; 

/* write out modified page */ 

if ((i = flushpage(x -> lpgat,rel ->fd,x -> lbufat,x -> lpgsize)) != x -> lpgsize) ( 
db_err(60,INSERT,errno,rel -> relname); 
return(FAIL); 

) 
return(i); 



Oct 30 20:30 1986 insert.c Page 3 

long mksep(rptr,old,new,sep) I* return separator length in BITS *I 
REL *rptr; I* ptr to REL *I 
char *old; I* ptr to tpl in old page *I 
char *new; I* ptr to tpl in new page *I 
char *sep; I* ptr to space for separator *I 

extern int errno; 
extern union u_short short_coerce; 
extern union u int int coerce; 
extern union u=long long_coerce; 
extern union u float flt coerce; 
extern short domtype[J;­
register int i,j,k; 
register char *a,*b,*c; 
RD *rd,*rdtab[MAXATTS],*findrd(); 
DOM *domain,*finddom(); 
ushort domlen[MAXATTS]; 
int seplen; 
long longl; 
float floatl; 
short shortl; 
char zmask; 

1i fdef XTRACE 
fprintf(stdout, "--> mksep( %s, %lx, %lx, %lx) 11 ,rptr->relname,old,new,sep); 
fflush(stdout); 
tend if 

a = old; 
b new; 
c • sep; 

for (i = 0; i < (int)(rptr ->width); i++) 
*c++ = '\O'; 

c = sep; 

I* get rd and dom particulars: expensive, but justifiable since 
this code is performed relatively infrequently *I 

rd = findrd(rptr -> relname,OL,O,rdtab); I* macdep: OL null ptr *I 
for (i = 0; i < rdents; 1++) { 

domain = finddom(rdtab(i] -> domname); 
if (domain){ 

domtype(i] = domain -> domtype; 
dornlen(i] =domain-> !en; 

I* build separator: only z order gets minimum length separator *I 
I* check for data organization: all except z order handled same way */ 

if(! rptr -> Zmap) 
seplen 0; 

I* no z ordering *I 

lifdef X'l'RACE 
for (i = 0; 1 < rdents; i++) { 

0 0 

() 

0 



• Oct 30 20:30 1986 insert.c Page 4 

fprintf(stdout,"III: attr %din %s of type %d\n",i,rptr->relname,domtype{i]); 
fprintf ( stdout, "se par len now %d\n", seplen); fflush( stdout); 
lend if 

lifndef INT16 

lend if 

lifdef INT16 

lend if 

switch (domtype(i)) ( 
case DT CHAR: 

-*c++ 
if (*a 

*b; 
- *b) 
return(seplen + 8); 

break; 

case DT S'l'RING: 
-while (*a) ( 

*c++ 
seplen 
if (*a 

else 

) 

*b; 
+= 8; 
- *b) 
return(seplen); 

++a; 
++b; 

*c++ '\0'; ++a; ++b; seplen += 8; 
break; 

case DT_LONG: 

case DT_INT: 

long coerce.cl • *a; 
*(&(Iong_coerce.c2) + 1) = *(a + 1) 
*(&(long_coerce.c3) + 2) = *(a + 2) 
*(&(long coerce.c4) + 3) = *(a + 3) 
longl = Tong coerce.lval; 
long coerce.cl = *b; 
*(&(Iong_coerce.c2) + 1) *(b + 1) 
*(&(long_coerce.c3) + 2) = *(b + 2) 
*(&(long_coerce.c4) + 3) = *(b + 3) 
*c++ = long coerce.cl; 
*c++ = *(&(Iong_coerce.c2) + 1); 
*c++ = *(&(long_coerce.c3) + 2); 
*c++ = *(&(long coerce.c4) + 3); 
seplen += sizeot(long); 
long coerce.lval = long_coerce.lval - long1; 
if (Iong_coerce.lval > OL) 

return(seplen); 
break; 

case D'l'_ SHORT: 

case DT_IN'r: 

short coerce.cl = *a; 
*(&(snort_coerce.c2) + 1) = *(a+ 1); 
short1 = short coerce.sval; 
short coerce.ci = *b; 
*(&(snort_coerce.c2) + 1) *(b + 1); 
*c++ = short_coerce.cl; 

• 

http:short_coerce.cl
http:snort_coerce.c2
http:coerce.cT
http:snort_coerce.c2
http:coerce.cl
http:coerce.c4
http:10ng_coerce.c3
http:Iong_coerce.c2
http:coerce.cl
http:long_coerce.c4
http:10ng_coerce.c3
http:Iong_coerce.c2
http:coerce.cl
http:coerce.c4
http:10ng_coerce.c3
http:Tong_coerce.c2
http:coerce.cl


Oct 30 20:30 1986 insert.c Page 5 

} /* 
else 

0 

} 

*c++ = *(&(short coerce.c2) + 1); 
seplen += sizeo{fshort); 
short coerce.sval = short coerce.sval - short1; 
if {sliort_coerce.sval > 0) 

return(seplen); 
break; 

case DT FLOAT: 
-flt coerce.c1 = *a; 

*(&(flt_coerce.c2) + 1) = *{a+ 1); 
*(&{flt_coerce.c3) + 2) • *(a+ 2); 
*{&{f1t coerce.c4) + 3) = *(a + 3); 
float1 ; flt coerce.fva1; 
flt coerce.cT = *b; 
*(&(flt_coerce.c2) + 1) • *(b + 1); 
*(&(flt_coerce.c3) + 2) = *{b + 2); 
*(&(flt coerce.c4) + 3) = *(b + 3); 
*c++ = tlt coerce.c1; 
*c++ = *(&(flt_coerce.c2) *· 1); 
*c++ = *(&(flt_coerce.c3) + 2); 
*c++ = *(&(flt coerce.c4) + 3); 
seplen += sizeof(float); 
flt coerce.fval flt coerce.fval - floatl; 
if (flt_coerce.fval >-0.0) 

return(seplen); 
break; 

I* entire tuple same: not good *I 
db_err(65,MKSEP,-l,rptr->relname); 
return(FAIL); 

if not zordered *I 
I* is some z-ordering *I 
if (l(rptr ->mode & PZREL)) (I* is all z order *I 

I* make separator: go through as many bytes as 
neccessary, bit by bit, from most significant 
bit to least significant bit 
*I 
for (i = 0; i < (int)(rptr -> width); i++) { 

zmask = Ox80; I* set bit 1 *I I* ?????????????????????? *I 
for (j = 7; j >= 0; j--) { 

*c I= (*b & zmask); 

} 
++a; 
++b; 
++c; 

seplen++; 
if ((*b & zmask) & l(*a & zmask)) 

return(seplen); 
zmask >>= 1; 

I* if here, tuples were equal ! *I 
db_err(65,MKSEP,-1,rptr->relname); 
return( FAIL); 

0 0 

http:flt_coerce.c4
http:flt_coerce.c3
http:Tflt_coerce.c2
http:coerce.c4
http:flt_coerce.c3
http:Tflt_coerce.c2
http:coerce.cl
http:fIt_coerce.c4
http:fIt_coerce.c3
http:TfIt_coerce.c2
http:coerce.cl
http:short_coerce.c2


• 0 
OCt 30 20:30 1986 insert.c Page 6 

U fndef IN'rl6 

#end if 

} 
else /* partial z ordering */ 

j = 0; 
for (i = 0; i < rdents; i++) 

for (i 

for (j 

} 
++a; 
++b; 
++c; 

if (rptr -> Zmap & (lL << i)) 
k += (int)(domlen(i]); 

= 0; i < k; i++) 
zmask = Ox80; /* set bit 7 */ 

- 7; j >= 0; j--) { 
*c I= *b & zmask; 
++seplen; 
if ((*b & zmask) & !(*a & zmask)) 

return(seplen); 
zmask »= 1; 

/* if here, continue building separator using 
repositioned un-zordered attributes */ 
for (i = 0; i < rdents; i++) { 

if (rptr -> Zmap & (lL << i)) 
continue; 

switch (domtype[i]) { 
case DT CHAR: 

case 

-*c++ = *b; 
if (*a - *b) 

return(seplen + 8); 
break; 

DT STRING: 
-while (*a) { 

*c++ = *b; 
seplen += 8; 
if (*a - *b) 

else 
return(seplen); 

++a; 
++b; 

) 
break; 

case DT_LONG: 

case DT_INT: 

long coerce.cl = *a; 
*(&(Tong_coerce.c2) + 1) = *(a + l) 
*(&(long_coerce.c3) + 2) = *(a + 2) 
*(&(long coerce.c4) + 3) = *(a + 3) 
longl = Tong_coerce.lval; 
long_coerce.cl = *b; 

) 

http:10n9_coerce.c1
http:coerce.c4
http:long_coerce.c3
http:Tong_coerce.c2
http:coerce.cl


Oct 30 20:30 1966 insert.c Page 7 

Ufdef INT16 

lend if 

0 

*(&(long_coerce.c2) + 1) = *(b + l); 
*(&(long_coerce.c3) + 2) *(b + 2); 
*(&(long_coerce.c4} + 3) = *(b + 3}; 
*c++ = long coerce.cl; 
*c++ = *(&(Tong coerce.c2) + 1); 
*c++ = *(&(long:coerce.c3) + 2); 
*c++ = *(&(long coerce.c4} + 3); 
seplen += sizeor(long); 
long coerce.lval = long coerce.lval - long1; 
if cTong_coerce.lval > OL) 

return(seplen); 
break; 

case DT_SHORT: 

case DT_INT: 

short coerce.cl = *a; 
*(&(snort_coerce.c2) + l) = *(a+ 1); 
short1 = short coerce.sval; 
short coerce.cT = *b; 
*(&(snort_coerce.c2} + 1) • *(b + 1); 
*c++ = short coerce.c1; 
*c++ = *(&(snort_coerce.c2) + l); 
sep1en += sizeof(short); 
short coerce.sval = short coerce.sval - shortl; 
if (snort_coerce.sval > 0) 

return(seplen); 
break; 

case DT FLOAT: 
-flt coerce.cl = *a; 

*(&(flt_coerce.c2) + l) = *(a + l); 
*(&(flt_coerce.c3) + 2) =*(a+ 2); 
*(&(flt_coerce.c4) + 3) = *(a + 3); 
float1 = flt_coerce.fval; 
flt_coerce.cl = *b; 
*(&(flt_coerce.c2) + 1) = *(b + 1); 
*(&(flt_coerce.c3) + 2) = *(b + 2); 
*(&(flt coerce.c4) + 3) *(b + 3); 
*c++ = rlt coerce.cl; 
*c++ = *(&(flt_coerce.c2) + 1); 
*c++ = *(&(flt_coerce.c3) + 2); 
*c++ = *(&(flt_coerce.c4) + 3); 
seplen += sizeof(float); 
flt coerce.fval = flt coerce.fval - floatl; 
if (flt_coerce.fval >-0.0) 

return(seplen); 
break; 

db_err(6S,MKSEP,-l,rptr->relnarne); 
return(FAIL); 

0 0 

http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:coerce.c4
http:10ng:coerce.c3
http:coerce.c2
http:10n9_coerce.c4
http:10ng_coerce.c3
http:10ng_coerce.c2


Aug 25 15:21 1986 itoa.c Page 1 

I* itoa function from Kerninghan and Ritchie, page 60 */ 

int itoa(n, s) /* convert n to characters in s */ 
chars[]; 
int n; 
{ 

int i, sign; 

if ((sign~ n) < 0) /*record sign */ 
n = -n; /* make n positive */ 

i = 0; 
do ( /* generate digits in reverse order */ 

J 
s[i++] ~ n% 10 + 'O'; /*get next digit*/ 

while ((n /= 10) 
if (sign < 0) 

s[i++) ~ 
s[i) ~ '\O'; 
reverse(s); 

> 0); /*delete it */ 

·-·. I 
int reverse(s) 
chars(]; 

/* reverse string s in place */ 

register int i,j; 
register char c; 
int strlen(); 

for (i = 0, j = strlen{s)-1; i < j; i++, j--) { 
c=s(i]; 
s[i] = s[j]; 
s[j] ~ c; 

0 • 



Oct 28 22:07 1986 loaddom.c Page 1 

#include "mrds.h" 

I* NEW FASTER VERSION USING PACKED STRUCT AUGUST 1985 *I 
int loaddom(ptr) 
DBSTATUS *ptr; 

extern struct rstat sysrelstat; 
extern union u short short coerce; 
extern int domTd; -
extern DOM domcore(); 
register int i,j,k; 
char tplbufr(DOMWIDTH],string{FILESTRING + 5]; 
int numofdoms ~ O,abend(),open(),close(); 
long p; 

Ufdef XTRACE 

lend if 

fprintf(stdout,"--> loaddom(%s)\n",ptr->dbs_name); 
fflush(stdout); 

strcpy(string,ptr->dbs_homedir); 
strcat(string,Dom); 
if((domfd = open(string,RDWRMODE)) ==FAIL) ( 

db_err(3,LOADDOM,-l, "no dom"); 
I* abend(-99,"no .dom"); BAD subscript 99 *I 

for (i = 0; i < MAXDOMS; i++) 
if (!(j = read(domfd,&domcore(i],DOMWIDTH))) 

break; I* end of file *I 
else 

++numofdoms; 
I* 

fprintf(stdout, "dom[%d] .name = I %s l\n", i,domcore[i] .domname); 
fprintf(stdout, 11dom(%d] .domtype = %d\n",i,domcore(i] .domtype); 
fprintf(stdout, "dom[%d) .len "' %d\n", i,domcore( i] .len); 
fprintf(stdout,"numofdoms now= %d\n",numofdoms); 

*I 
sysrelstat.numdoments = numofdoms; 

if (numofdoms < MINDOMS) { 
db err(9,LOADDOM,-1,BLANK); 
l*-abend(-97,BLANK); BAD subscript 97 *I 

close(domfd); domfd = FAIL; 

Ufdef X'l'RACE 

fend if 

fprintf(stdout,"<-- loaddom(%d)\n",numofdoms); 
fflush(stdout); 

return(numofdoms); 

0 (,) 0 



0 

•• 



Oct 28 22:10 1986 loadrd.c Page 1 

llinclude "mrds.h" 

int loadrd(ptr) 
DBSTATUS *ptr; 

extern struct rstat sysrelstat; 
extern union u short short coerce; 
extern int rdfa; -
extern RD rdcore[); 
register int i,j,k; 
char string(FILESTRING + 5], tplbufr(RDWIDTH]; 
int numofrds,abend(),open(),close(); 

llifdef XTRACE 

lend if 

fprintf(stdout,"--> loadrd(%s)\n",ptr->dbs_name); 
fflush(stdout); 

strcpy(string,ptr -> dbs_homedir); 
strcat(string,Rd); 
if ((rdfd = open(string,RDWRMODE)) == FAIL) { 

db_err(3,LOADRD,-1,string); 
/* abend(-99t"no .rd"); BAD subscript 99 */ 

for (i = 0; i < MAXRDS; i++) 
if (l(j = read(rdfd,&rdcore[i],RDWIDTH))) 

break; /* end of file */ 

sysrelstat.numrdents = i; 
if ((numofrds = i) < MINRDS) ( 

db err(10 1 LOADRD,-1,BLANK); 
/*-abend(-96,BLANK); BAD subscript 96 */ 

close(rdfd); rdfd = FAIL; 

Ufdef XTRACE 

llendif 

fprintf(stdout,"<-- loadrd(%d)\n",numofrds); 
fflush(stdout); 

return(numofrds); 

0 u () 



• • 
oct 28 22:09 1986 loadrel.c Page 1 

Jinclude "mrds.h" 

int loadrel(ptr) 
DBSTATUS *ptr; 

extern struot rstat sysrelstat; 
extern int relfd,errno; 
extern REL relcore[]; 
extern union u short short coerce; 
extern union u-int int coerce; 
extern union u-long long coerce; 
register int i7j,k; -
char string[FILESTRING + S],tplbufr(RELWIDTH]; 
int nurnofrels=O,abend(),close(),open(); 

Ufdef XTRACE 

lend if 

I* 

*I 

fprintf(stdout,"--> loadrel(%s)\n",ptr->dbs_name); 
fflush(stdout); 

I* load rel struots for as many rels as there are *I 
I* MAKE SURE STRINGS END UP BEING NULL TERMINATED!!!!! *I 
strcpy(string,ptr ->dbs_homedir); 
strcat(string,Rel); 
if ((relfd = open(string,RDWRMODE)) ==FAIL) ( 

db_err(3,LOADREL,-l,errno,string); 
I* abend(-99~"no .rel"); BAD susbscript 99 *I 

1 
for (i = 0; i < MAXRELS; i++) ( 

if (!(j = read(relfd,&relcore(i],RELWIDTH))) 
break; I* eof on .rel *I 

else 
++numofrels; 

} 

fprintf(stdout1 "rel (%d].name = I %s l\n" 1 i1relcore(1] .relname) ;fflush(stdout); 
fprintf(stdout 1 "rell %d] .mode = X%x\n" 1 i 1relcore( i] .mode) ;fflush(stdout); 
fprintf(stdout,"rel (%d) .width = %d\n", i 1relcore( i]. width); fflush(stdout); 
fprintf( stdout, "rel (%d). Zmap = Ud\n", i,relcore[i] .Zmap) ;fflush(stdout); 
fprintf (stdout, "rel[%d] .cursize = Ud (X%lx)\n", i 1relcore( i) .cursize1relcore( 1] .cursize) ;fflush(stdout); 
fprintf (stdout, "rel(%d] .maxsize = Ud (X%lx)\n", i ,relcore( i} .maxsize,relcore( i) .maxsize); fflush(stdout); 
fprintf (stdout, "rel (%d] .rindx = Ud (XUx)\n", l,relcore(i] .rindx,relcore( i) .rindx); fflush(stdout); 
fprintf (stdout, "rel(%d]. windx = Ud (X%lx)\n", i,relcore( i]. windx,relcore ( i]. windx); fflush(stdout); 
fprlntf(stdout,"nurnofrels now= %d\n",nurnofrels); 
fflush{stdout); 

I* to get here (1) eof was reached or 
(2) null relname encountered, end of rels 

*I 
sysrelstat.numrelents = numofrels; 
if ((numofrels) < MINRELS) ( 

db_err(B,LOADREL,-l,BLANK); 
I* abend(-98,BLANK);D subscript 98 *I 



Oct 28 22:09 1986 loadrel.c Page 2 

close(relfd); relfd • FAIL; 

I ifdef XTRACE 

lend if 

fprintf(stdout,"<-- loadrel(%d)\n",numofrels); 
fflush(stdout); 

return(numofrels); 

0 <J 0 



OCt 28 22:14 1986 logent.c Page 1 

llinclude "mrds.h" 

int logent(event,msg) 
char *event, *msg; 

extern FILE *fplog; 

llifdef XTRACE 

llendif 

fprintf(stdout,"--> logent(%s,%s)\n 11 ,event,msg); 
fflush(stdout}; 

I* file must already be fopen with FILE pointer fplog */ 

if (fplog == (FILE *)(0)} ( 
db err(S4,LOGENT,-l,"log file not open"); 
return(FAIL}; 

J 
else fprintf(fplog,"%ld:\t%s:\t\s\n",timer(),event,msg); 

U fdef X'l'RACE 

llendif 

fprintf( stdout,"<-- logent(}\n"}; 
fflush(stdout); 

return(SUCCESS); 

0 



Aug 29 11:34 1986 main.c Page 1 

/******************************************************************** 
* * * MRDSc --> main <-- version of Jan 1986 * 
* * ********************************************************************/ 

Unclude "mrds.h" 

main(argc,argv) 

int argc; 
char *argv[]; 
( 

extern int errno; 
register int i; 
char *s; 
int abend(),strcpy(); 
void cmd(); 
int find db(); 
DBSTATUS-data base; 
REL *rptr; -
OOM *dptr; 
void cmd(); 

printf("MRDSc\tVersion %s\n",VERSION); 
/* check correct invocation from shell */ 

if (argc > MAXARGS) { /* too many args */ 
fprintf(stderr,"Usage: mrds [-r(OilJJ [-t] [-n xxx]\n"); 
abend(O,""); 

/* process command line arguments */ 

i = l; 
while c--argc ) 0) ( /* get next arg */ 

s = argv[i++]; 
if (*s == '-') 

switch(*++s) ( 
case 'r' : 

RUN atoi(*++s)· 
if ((RUN != 1) 11 (HUN ! 0)) [ 

db_err(BO,O,-l,"RUN"); 
RUN = 1; 

J 
break; 

case 't' : 
DIAGNOSE l; 
break; 

case 'n' : 
++s 
++s 
++i 
for (i 0; i < MAXNAMLEN; i++) [ 

DBNAME{i] = *s++; 

(j 0 



Aug 29 11:34 1986 main.c Page 2 

default 

if (I *s) break; 
] 
DBNAME [ MAXNAMLEN) - NULLC; 
if (*s) db_err(84,0,-1,DBNAME); 
break; 

e 

fprintf(stderr,"\nunknown parm: %s\n",s); 

J 

I* 11111111111111111111111111 GO INTERACTIVE HERE 111111111111111111 *I 
cmd ( DBNAME) ; 

I* E N D 0 F M A I N *I 



Oct 29 21:21 1986 mkindex.c Page 1 

linclude "mrds.h" 
ldefine MKXBOMB close(xfd);unlink(newname);if(l(x.lbufat))free(x.lbufat);if(l(x.xbufat))free(x.xbufat);return(FAIL); 

I* TO DO: 
+ add code to set bit for "first leaf" in status byte on first leaf 

*I 
Xfb X; I* global x struct pointer *I 
int xfd; 
REL *rptr; 

I* global file descriptor for Btree file *I 
I* global rel pointer *I 

int mkindex(rel,xsize,xfill,lsize,lfill) 
REL *rel; 
int xsize; 
int xfill; 
int lsize; 
int lfill; 

I* size of internal nodes *I 
I* % fill in~ernal nodes *I 
I* size of leaf nodes *I 
I* % fill leaf nodes *I 

extern int errno; 
extern char inbufr(],*buffer(); 
register int i,j; 
int filemask,read(),close(),mksep(); 
char newname(MAXNAMLEN],*mktemp(),*malloc(),*pgptr,*c; 
char test[3](12]; 
long timer(),newmax,newcur; 
Xpghdr xhd; 
Xlfhdr xlfhd; 

Ufdef XTRACE 
fprintf(stdout,"--> mkindex(%s,td,%d,%d,%d)\n",rel->relname,xsize,xfill,ls1ze,lf111); fflush(stdout); 
lend if 

if (lrel) return(FAIL); 

rptr = rel; 

if (rel -> mode & BTREE) return(SUCCESS); 

x.lbufat = (char *)(0); 
x.xbufat = (char *)(0); 
newmax = rel -> maxsize I rel -> width; I* max as num of tpls *I 
newcur = rel -> cursize 1 rel -> width; I* cur as num of tpls *I 
c = &x; 
for (i = 0; i < XFBSIZE; i++) c(i] = '\0'; 
strcpy(newname,BTEMP); 
mktemp(newname); 
filemask - o_CREAT I O_RDWR; 
if ((xfd = open(newname,filemask,XMASK)) < NULL) ( 

db_err(53,MKINDEX,errno,newname); 
return(FAIL); 

I* set up "first block" for this relation *I 
x.xactime =timer(); 
x.rootpos = XFBSIZE; 

0 () 



Oct 29 21:21 1986 mklndex.c Page 2 

if (xfill < XPGMINFIL I I xfill > XPGMAXFIL} ( 
sprintf(inbufr,"xfill in %s: %d",rel -> relname,xfill); 
db err(BJ,MKINDEX,-l,inbufr); 
xfill ~ XPGDFLTFIL; 

} 
x.xpgfill = xfill; 
if (lfill < LPGMINFIL I I !fill > LPGMAXFIL) ( 

sprintf(inbufr,"lfill in %s: %d",rel -> relname,lfill); 
db err(83,MKINDEX,-l,inbufr); 
lfill = LPGDFLTFIL; 

J 
x.lpgfill !fill; 
if (xsize < XPGMINSIZE 11 xsize > XPGMAXSIZE) ( 

sprintf(inbufr,"xsize in %s: %d",rel -> relname,xsize); 
db err(83,MKINDEX,-l,lnbufr); 
xsize = XPGDFLTSIZE; 

} 
x.xpgsize = xsize; 
if (lsize < LPGMINSIZE 11 !size> LPGMAXSIZE) { 

sprintf(inbufr,"lsize in %s: %d",rel -> relname,lsize); 
db err(BJ,MKINDEX,-l,inbufr); 
lsize = LPGDFLTSIZE; 

} 
x.lpgsize = !size; 
x.flrst_tpl = XFBSIZE + x.xpgsize + XLFHDRLEN; /*disk addrs of */ 
if ((x.Xbufat = malloc(x.xpgsize)) ==NULL) ( 

] 

db_err(52,MKINDEX,errno,"xpg buffer"); 
MKXBOMB 

for (i = 0; i < x.xpgsize; i++) *((x.xbufat) + i) = '\0'; 
xhd.status = x.xbufat; 
xhd.spare = (x.xbufat) + 1; 
xhd.space = (ushort *)((x.xbufat) + 2); 
xhd.pred = (long *)((x.xbufat) + 4); 

if ((x.lbufat = malloc(x.lpgsize)) ==NULL) ( 
db_err( 52,MKINDEX, err no, "xlf buffer"); 
MKXBOMB 

} 
for (i = 0; i < x.lpgsize; i++) *((x.lbufat) + i) '\0'; 
xlfhd.status = x.lbufat; 
xlfhd.spare = (x.lbufat) + 1; 
xlfhd.space = (ushort *)((x.lbufat} + 2}; 
xlfhd.pred = (long *)((x.lbufat) + 4); 
xlfhd.offset • (ushort *l((x.lbufat) + B); 

x.xpgat = -lL; 
x.lpgat = -lL; 

/* prepare first leaf page */ 

* ( xlfhd . status ) = XLEAF I XFRS'rLF ; 
*(xlfhd.space) = (ushort)(x.lpgsize- (XLFHDRLEN + rel -> width+ sizeof(long))); 
*(xlfhd.pred) = (long)(XFBSIZE); 
*(xlfhd.offset) = (ushort)(XLFHDRLEN); 
pgptr = x.lbufat + XLFHDRLEN; 



OCt 29 21:21 1986 mkindex.c Page 3 

I* 
*I 

rptr -> rindx = OL; /* ensure at start of relation */ 
if (rdtuple(re1,pgptr) <= 0) ( 

db_err(53,MKINDEX,errno,rel -> relname); 
MKXBOMB 

I* prepare root page */ 

*(xhd.status) = XROOT; 
*(xhd.space) = (ushort)(x.xpgsize (XHDRLEN + sizeof(long))); 
*(xhd.pred) = OL; 
pgptr = x.xbufat + XHDRLEN; 
*(long *)(pgptr) = XFBSIZE + x.xpgsize; 

I* pages are ready, write them out */ 

if (flushpage(x.lbufat,xfd,(long)(XFBSIZE + x.xpgsize),x.lpgsize) =• FAIL) { 
sprintf(inbufr,"%s: first leaf",rel -> relname); 
db_err(54,MKINDEX,errno,inbufr); 
MKXBOMB 

if (flushpage(x.xbufat,xfd,(long)(XFBSIZE),x.xpgsize) 
sprintf(inbufr,"%s: root",rel -> re1name); 
db_err(54,MKINDEX,errno,inbufr); 
MKXBOMB 

pgptr (char *)(&x); 
if (flushpage(pgptr,xfd,OL,XFBSIZE) == FAIL) { 

sprintf(inbufr,"%s: xfb",rel -> re1name); 
db_err(54,MKINDEX,errno,inbufr); 
MKXBOMB 

I* now begin real work! */ 

printf(":::testing \"find\": find first tuple returns"); 
i .. 0; 
while (! (rdtuJille(rel,OL) <= 0)) ( 

i = (lnt)(find(buffer{rel->fd))); 
printf("%d\n",i); 

FAIL) { 

Hfdef XTRACE 
rdtuple(rel,test[O]) ;fprintf(stdout, "I"); 

for(i=O;i<l2;i++)fprintf(stdout,"%c",test(O](i]);fprintf(stdout,"l\n"); 
rdtuple(rel,test(1]); 

for( i=O; i <12; i++) fprintf ( stdout, "%c", test [ 1] ( i]); fprintf (stdout, "1\n"); 
i = mksep(rel,test(O),test(l],test{2]); 
fprintf(stdout,"Separator len = %d l",i); 

for( i=O; i <12; i++) fprintf ( stdout, "%c", test [ 2] [ i] ) ; fprintf ( stdout,"l\n"); 
fprintf(stdout,"l\n"); fflush(stdout); 

lend if 

I* 

0 

/*TEMP*/ return(SUCCESS); 
if ((insert(xfd,buffer[rel->fd))) ==FAIL) { 

++i; 

\) 0 



• e 
Oct 29 21:21 1986 mkindex.c Page 4 

*I 
} 

if (i) ( 

else 

} 

sprintf(inbufr,"%s (%d) left in %s",rel -> relname,i,newname); 
db_err(6l,MKINDEX,-l,inbufr); 

/* replace original with temporary copy */ 
closerel(rel); 
if (replace(rel,newname) < SUCCESS) ( 

/* very bad news! */ 

J 
rel -> 
rel -> 
rel -> 
rel -> 

sprintf(inbufr,"%s replacing %s",newname1 rel->relname); 
db err(59,MKINDEX,errno,inbufr); 
return(-2); /* special ret val: replace failed */ 

mode I= BTREE I ORDER; 
mode &• -FLl\'r; 
maxsize = newmax; 
cursize = newcur; 

/* remember to trash page pointers */ 
} 



oct 29 21:21 1986 mkindex.c Page 5 

#define XNXTLL(a) ( (char*) ((long)((*(ushort *)(a+(*(ushort *)(a)>>J)+sizeof(long)))) + (long)(x.xbufat)) ) 
#define LNXTLL(a) (*(long *)((long)(a)+(long)(rptr->width))) 
#define XNXTPG(a) (*(long *)(a+(*(ushort"*)(a)>>J))) 

I* 
long find(tpl) (basically same code as "seach" uses) 

*I 

Look through index for the tuple pointed at by "tpl". Return: 
< -1 tuple not found. Absolute value plus 1 is relation 

address of tuple just after which sought tuple 
would have appeared. 

a -1 something caused find to fail 

>= 0 tuple was found. Return value is address of tuple 
within relation. 

Local macros: 
XNXTLL(a) 

XNXTPG(a) 

LNXTLL(a) 

find start of next entry in linked list 
on internal page; "a" must point at (s,p) 
pair (and NOT at (pO)). 

return the "p" value from an (s,p) pair 
pointed at by "a". 

find start of next tuple after current one 
pointed at by "a" in linked list of tuples. 
NOTE that tuple addrs returned may be off 
current leaf page. 

long find ( tpl) 
char *tpl; /* tuple to look for */ 

extern int errno; 
char ordered,*c,*malloc(),found,scanpg,*pgptr,*prevpgptr,*getrelnam(); 
register int i,j; 
int tplcmp(),cmpseptpl(),free(),stat(); 
struct stat fstatbuf; 
long pos,xpO,pgtoread; 

found = '\O'; 
pgtoread = x.rootpos; 

while { ! found) { 
if((i = loadpage(pgtoread)) ==FAIL) { /*read error*/ 

db_err(53,FIND,errno,rptr -> relname); 
return (FAIL); 

if (i > 0) ( /* internal node page */ 
xpO = *(long *)((x.xbufat) + XHDRLEN); /* get pO pointer */ 

0 t) 0 



e 
Oct 29 21:21 1986 mkindex.c Page 6 

pgptr • {x.xbufat) + XHDRLEN + sizeof(long); /* get s1 pointer */ 

/* are there separators on this page? */ 
i = *(ushort *)((x.xbufat) + 2) - (x.xpgsize - XHDRLEN- sizeof(long)); 
if (i > 0) ( /* corruption */ 

} 

db_err(12,FIND,-l,rptr -> relname); 
return (FAIL) ; 

if (i < 0) { /* ves, are separators */ 
scanpg = 1 t' ; 

J 
else 

} 

prevpgptr • xpO; 
while (scanpg) ( 

j • cmpseptup(pgptr,tpl); 
if (j > 0) ( /* sep > tpl */ 

pgtoread = prevpgptr; 

} 
else 

scanpg = '\O'; 

/* sep <= tpl; keep looking */ 
c = XNXTLL(pgptr); 
if (c) ( 

1 
else 

prevpgptr = XNXTPG(pgptr); 
pgptr .. c; 

pgtoread = XNXTPG{pgptr); 
scanpg = '\0'; 

I* no separators this page */ 
pgtoread = xpO; 

) /* end if was internal node page */ 
else { /* is a leaf page */ 

pgptr = (char *)((long)(x.lbufat) +(long) (*(ushort *)((x.lbufat)+8))); /*get first tpl */ 
scanpg • ' t' ; 
prevpgptr = (char *)(NULL); 
while (scanpg) { 

~ = tplcmp(pgptr,tpl); 
lf (j -= 0) /* hit */ 

return{(pgptr- x.lbufat) + x.lpgat); 
if (j < 0) ( /* don't know yet */ 

pos = LNXTLL( pgptr); 
if (pos && pos < {x.lpgat + x.lpgsize)) 

prevpgptr = pgptr; 

} 
pgptr = pas - x.lpgat + x.lbufat; 

else /* miss */ 
return(-(pgptr - (x.lbufat) + x.lpgat)); 

J 
else if {j > 0) ( /*miss */ 

#ifdef XTRACE . 
fprintf(stdout,"pgptr,x.lbufat,x.lpgat:?ilXX,%lxX,'tlxX\n",pgptr,x.lbufat,x.lpgat);fflush(stdout); 
lend if 

if (prevpgptr == (char *)(0)) /* goes before first*/ 



Oct 29 21:21 1986 mkindex.c Page 7 

1 /* end find() 

0 

return (-2L); 
else 

return(-((prevpgptr- x.lbufat) + x.lpgat) -3L); 

1 
) /* end while scanpg */ 

J /* end else is leaf pg */ 
) /* end while not found */ 
*I 

0 l) 



Oct 29 20:30 1986 mkrel.c Page 1 

Unclude "mrds.h" 

REL *mkrel(rname,mode,newZmap,numofdoms,doms,sizelim) 
char *rname; I* name of new relation *I 
char mode; I* boolean set ==> conrel *I 
long newzmap; I* bit map of z ord atts *I 
int numofdoms; I* num of doms in dom list *I 
char doms[](MAXDNMLEN]; I* list of domain names *I 
long sizelim; I* max number of tuples *I 

extern int errno; 
extern REL relcore(]; 
extern RD rdcore(]; 
extern struct rstat sysrelstat; 
extern char inbufr[]; 
extern DOM *finddom(); 
extern DBSTATUS *data base; 
register int i,j,k,m;-
DOM *domains[MAXA1~S]; 
int wldth=O,creat(),strlen(); 
char *relfile,*getre1nam(); 
REL *newrel; 

llifdef XTRACE 
fprintf(stdout,"--> mkrel(%s,%x,%d,domlist,%ld)\n", 

rname,mode,numofdoms,sizelim); fflush(stdout); 
lend if 

I* any room left? *I 
if (sysrelstat.numrelents > MAXRELS) ( 

db_err(70,MKREL,-l,"rel full"); 
return((REL *)(NULL)); 

I* verify rname *I 
if (I *(rname)) ( 

db_err(58,MKREL,-1,"null name"); 
return((REL *)(NULL)); 

if (strlen(rname) >= MAXRNMLEN) ( 
rname[MAXRNMLEN - 1] = NULLC; 
db_err(B4,MKREL,-ltrname); 

if (findrel(rname)) ( 

0 

db_err(76,MKREL,-1,rname); I* target rel already exists *I 
return((REL *)(NULL)); 

I* verify domains and list *I 
if ((nurnofdoms < 1) l I (numofdoms > MAXAT1'S)) ( 

sprintf(inbufr," %d",&numofdoms); 
db_err(1l,MKRI~L,-1,inbufr); I* bad number of domains *I 
return( (HEL *)(NULL)); 

• 



Oct 29 20:30 1986 mkrel.c Page 2 

I* check doms for duplicates and fix if any *I 
j = 0; 
m = 1; 
while (numofdoms > m) ( 

for (i = m; i < numofdoms; i++) { 
if (l(strcmp(doms[i),doms[j]))) 

--numofdoms; 
db err(78,MKREL,-l,doms[i]); I* this 
for (k = i; k < numofdoms; k++) 

--i; 

I* doms[k] = doms[k+l]; *I 
strcpy(doms[k],doms[k+l]); 

} I* if duplicated *I 
} I* for *I 
++m; 

J I* end while *I 
I* check that all these domains really exist *I 
j = 0; 
for (1 

if ( j) 

= 0; i < numofdoms; 1++) 
if ((domains[!] = finddom(doms[i])) == 

++j; 

J 
else 

db_err(79,MKREL,-l,doms[i)); 

width += domains[i]->len; 

NULL) 

return((REL *)(NULL)); I* try fix domlist? *I 
if {(numofdoms + sysrelstat.numrdents) > MAXRDS) 

db_err(71,-l,MKREL,"would oflow rd"); 
return((REL *)(NULL)); 

fifdef XTRACE 

should be warn not err *I 

fprintf(stdout,"*** tuple width in mkrel is %d\n",width);fflush(stdout); 
Jendif 

I* make entry for rel *I 
newrel = &(relcore[sysrelstat.numrelents]); 
strcpy(newrel -> relname,rname); 
newrel -> width = width; 
newrel -> mode = mode; 
newrel -> Zmap newZmap; 
newrel -> fd = FAIL; 
newrel -> cursize = OL; 
newrel -> maxsize = (long)(width) * sizel1m; 
newrel -> rindx OL; 
newrel -> windx = OL; 
++(sysrelstat.numrelents); 

I* make file for relation *I 
relfile = getrelnam(newrel); 

I* strcpy{inbufr,data_base -> dbs_homedir); 

0 t) \) 



e 
act 29 20:30 1986 mkrel.c Page 3 

strcat(inbufr,rname); */ 
if ((i ~ creat(relfile,CRMASK)) ==FAIL) { /* trunc trail blanks!! */ 

sprintf(inbufr," %d",&errno); 
strcat(inbufr," "); 
strcat(inbufr,rname); 
db_err(55,MKREL,-l,inbufr); /* cannot create file for */ 
--(sysrelstat.numrelents); 
return((REL *)(NULL)); 

J 
close(i); 

I* make entry for rd */ 
width - 0; 
for (i = 0; 1 < numofdoms; i++) { 

strcpy(rdcore[sysrelstat.numrdents).relname,rname); 
strcpy(rdcore[sysrelstat.numrdents).domname,doms[i]); 
rdcore[sysrelstat.numrdents].pos =width; 
width += (int)(domains[i]->len); 

1 
lifdef XTRACE 

++(sysrelstat.numrdents); 

fprintf(stdout,"<-- mkrel(X%lx)\n",newrel); fflush(stdout); 
lend if 

return(newrel); /* number of entries put in rd for this rel */ 



Aug 28 22:16 1986 openrel.c Page 1 

#include "rnrds.h" 

int openrel(rptr,mode) 

REL *rptr; 
int mode; 

extern int errno; 
extern char *buffer[]; 
register int fd; 

/* char fname[MAXNAMLEN],name[FILESTRING + MAXNAMLEN]; */ 
char *getrelnam(),fname[MAXNAMLEN],*name; 

lifdef XTRACE 
fprintf(stdout,"--> openrel(%s,%d)\n",rptr->relname,mode); 
fflush(stdout); 

lend if 

if (rptr -> fd I= FAIL) 
lifdef XTRACE 
fprintf(stdout,"<-- openrel(%d) AO\n",rptr -> fd);fflush(stdout); 
#end if 

return(rptr -> fd); 

/* was not already open, so open it */ 

fd = 0; 
name= getrelnam(rptr); 
fd = open(name,mode); 
if (fd == FAIL) 

return( FAIL); 

rptr -> rindx = OL; /* WRONG FOR BTREE FILES */ 
rptr -> fd = (short)(fd); 
if ((buffer[fd] = malloc(rptr ->width)) ==NULL) ( 

db_err(52,0PENREL,-l,"openrel"); /* no buffer space; bad news! */ 
if ( lclose(fd)) 

db_err(SO,OPENREL,errno,NOSTRING); 
return(FAIL); 

Jifdef X'rRACE 

lend if 

fprintf(stdout,"<-- openrel(%d)\n",fd); 
fflush(stdout); 

return ( fd) ; 

0 0 0 



Aug 28 22:16 1986 openrel.c Page 2 

char *getrelnam(relp) 
REL *relp; 

extern char filenm(]; 
extern DBSTATUS sys db; 
register int i ~ 0;­
char nm[MAXNAMLEN]; 

lifdef XTRACE 

lend if 

fprintf(stdout,"--> getre1nam(%s)\n",relp -> relname); 
fflush(stdout); 

0 

while ((relp->relname[i] I= BLANKC) && (i < (MAXRNMLEN- 1))) 
nm(i] • relp->relname(i++J; 

nm[i] = NULLC; 

strcpy(filenm,sys_db.dbs_homedir); 
strcat(filenm,nm); 

lifdef XTRACE 

lend if 

fprintf(stdout,"<-- getrelnam(%s)\n",filenm); 
fflush(stdout); 

return(filenm); 

• 



Aug 25 21:45 1986 outrel.c Page l 

#include "mrds.h" 
#define SCRNLEN 80 
#define SCRNLINES 22 

I* TO 00 
+ be sure relation is closed after printing 

*I 
int outrel(rname,title) 
char *rname; /* name of relation to print */ 
char *title; /* a page heading/title */ 

extern char *DATAFMT[],inbufr[]; 
extern int rdents; 
extern union u short short coerce; 
extern union u-int int coerce; 
extern union u-float fit coerce; 
extern union u-long long-coerce; 
int pgnum=l,lines=BIGNUM} 
char ttl(LINELEN),hdg(LINELENJ,uscore[LINELEN],*tuple,line(BLOCK]; 
register int i,j,cursor,k; 
int len, cols, tab[MAXATTS],delimlen,collen[MAXATTS],closerel(); 
int dtab[MAXATTS]; 
REL *reltoprint; 
RD *rds {MAXATTS) ; 
OOM *doments [MAXATTS] ; 

11 fdef XTRACE 
fprintf(stdout, "--> printrel( I %s 1, I %sI )\n" ,rname, title); 
fflush(stdout); 

lend if 

/* does this rel exist ? *I 
if ((reltoprint = findrel(rname)) ==NULL) 

db_err(58,PRINTREL,-l,rname); 
return(NULL); 

/* get the scoop on this relation */ 
if ((findrd(rname,OL,O,rds)) ==NULL) ( /* macdep: OL ng for 16 bit addrs */ 

db err( 62 ,PRIN'l'REL,-1 ,rname); 
return(NULL); 

} 
cols rdents; 
if (rdents > MAXATrS) ( /* VERY dangerous: something got clobbered */ 

strcpy(inbufr,rname); /*this should never happen (ha!) */ 
strcat(inbufr,"{"); 
strcat(inbufr,itoa(rdents)); 
strcat(inbufr,")"); 
db err(ll,PRINTREL,-l,inbufr); 
cols = MAXATTS; 

for (i = 0; i < cols; i++) 
if ((doments(i] = finddom(rds[iJ->domname)) NULL) 

0 t) 0 



0 • 
Aug 25 21:45 1986 outrel.c Page 2 

db_err(79,PRIN1REL,-1,rds[i]->domname); 

I* check line length *I 
len = 0; 
for (i = 0; i < cols; i++) 

Ufdef XTRACE 

if (doments{i]) I* don't lookup bad ones *I 
switch (doments[i]->domtype) ( 
case 1: I* integer *I 

len += 11; I* worst case + 
collen[i] = 11; 
break; 

case 2: I* single char *I 
++len; 
collen[i] = 1; 
break; 

case 3: I* float *I 

sign (macdep: 32 bit ints) *I 

len += 16; I* %g compromise *I 
collen[i] = 16; 
break; 

default: I* string *I 
len += doments(i]->len; 
collen[i) doments[i]->len; 
--len; I* don't count null terminator *I 

] I* end switch *I 
for (i = O;i <cols; i++) fprintf(stdout,"collen[\d] is \d\n",i,collen[i)); 

lend if 
if (len > SCRNLEN) ( 

sprintf(inbufr," %d",&len); 
db_err(88,PRINTREL,-l,inbufr); 

I* build centered title line with page number *I 
i = strlen(title); 
~ == SCRNLEN; 
J = (j » 1); 
i == (i » 1); 
j -a i; I* j is offset in SCRNLEN to start title at *I 
for (i 0; i < SCRNLEN;i++) ttl(i] = BLANKC; 
strcpy(&(ttl[j]),title); 
for (j = 0; ttl(j] !• NULLC; j++); 
ttl(J] = BLANKC; 
j = SCRNLEN - PGNUMLEN; 
strcpy ( & ( ttl [ j] ) , PGNUMIIDR); 

I* build domain header line *I 
delimlen = strlen(DELIM); 
for (i == 0; i < SCRNLEN; i++) hdg(i] = BLANKC; 
cursor = 0; 
for (i = 0; i < cols; i++) ( 

j = strlen(doments[i]->domname); 
if (j >= collen[i]) ( 

strcpy(&(hdg(cursor]),doments[i]->domname); 



Aug 25 21:45 1986 outrel.c Page 3 

} 
else 

tab[i) =cursor+ (((j >> 1) + 1) - ((collen[i] >> 1) + 1)); 
cursor +-= j; 
strcpy(&(hdg[cursor)),DELIM); 
dtab[i] -=cursor; 
cursor += delimlen; 

tab[i) = cursor; 
cursor+= (collen[i] >> 1) - (j >> 1); 
strcpy(&(hdg[cursor]),doments(l]->domname); 
cursor += j; 
dtab(i] = cursor; 
strcpy (&(hdg(cursor]),DELIM); 
cursor += delimlen; 

lifdef XTRACE: 
fprintf(stdout, "dtab(%d) is %d\n" ,i,dtab[i)); 
fprintf(stdout, 11domain is [%s], jlcollen is %dl%d; wrote at %d\n",doments(i]-> 
domname,j,collen[i),(cursor-delimlen-j)); 
fprintf(stdout,"HDG is >%s<\n",hdg); 
#end if 

for (i = 0; i < cursor; i++) 
if (hdg(i] == NULLC) 

hdg(i] = BLANKC; 
I* build underscore line *I 
for (i 0; i < SCRNLE:N; i++) 

if ((hdg[i] == BLANKC) 11 (hdg[i] == NULLC)) 
uscore[i] BLANKC; 

else 
uscore[i] = I I • - , 

uscore(SCRNLE:N -1 J = NULLC; 
I* begin printing: have to format each line separately *I 
while (tuple = getuple(reltoprint,OL)) { 

0 

for (i = 0; i < SCRNLEN; i++) line[i] = BLANKC; 
k = 0; 
cursor "' 0; 
for (i 0; i < cols; i++) { 

cursor = tab[i]; 
sprintf ( & ( line(dtab( i]] ) , "%s" ,DELIM); 
switch (doments[i]->domtype) { 
case DT STRING: 

-sprintf(&(line[cursor)),DATAFMT[DT_STRING),(tuple + k)); 
break; · 

case D'l' CUAR : 
-sprintf(&(line(cursor]),DATAFMT(DT_CHAR],(tuple + k)); 

break; 

case DT FLOAT: 
-flt_coerce.cl = *(tuple + k); 

*(&(flt_coerce.c2) + 1) *(tuple + k + 1) 
*(&(flt_coerce.cJ) + 2) *(tuple + k + 2) 
*(&(flt_coerce.c4) + 3) = *(tuple + k + 3) 

() 0 

http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:flt_coerce.cl


Aug 25 21:45 1986 outrel.c Page 4 

lifdef INT16 

lend if 

lifndef INT16 

lend if 

sprintf(&(line[cursor]),DATAFMT(DT_FLOAT],flt_coerce.fva1); 
k += 4; 
break; 

case DT_SHORT: 

case DT_INT: 

short coerce.c1 = *(tuple + k); 
*(&(short coerce.c2) + 1) m *(tuple + k + 1); 
sprintf(&(line(cursor]),DATAFMT(DT_SHORT],short_coerce.sval); 
k += 2; 
break; 

case DT_LONG: 

case DT_INT: 

long coerce.c1 = *(tuple + k); 
*(&(Iong_coerce.c2) + 1) = *(tuple + k + 1); 
*(&(long_coerce.c3) + 2) = *(tuple + k + 2); 
*(&(long_coerce.c4) + 3) = *(tuple + k + 3); 
sprintf(&(line[cursor)),DATAFMT[DT_LONG],long_coerce.lval); 
k +., 4; 
break; 

default: 
break; 

] /* end switch */ 
j • strlen(&line{cursor]); 
line(cursor + (j)] = BLANKC; 

} /* 

/*cursor+= collen[i]; */ 
k += doments[i]->len; /* former kludge */ 

] /* end for */ 

if (lines > SCRNLINES) ( /* need new page */ 

] 

printf ( "\nMORE ... "); 
getc(stdin); 
printf("\f\n\s%d\n\n%s\n%s\n",ttl,pgnum,hdg,uscore); 
lines = 1; 
++pgnum; 

for (i = 0; i < SCRNLEN; i++) /* assure no stray nulls */ 
if (I line[i}) 

line[i] = BLANKC; 
line[SCRNLEN - 1] = NULLC; /* assure end of line */ 
printf( "%s\n", line); 
/* for( j=O; j<SCRNLEN; j++)printf( "'lie" ,line( j]) ;printf( "\n") */ 
++lines; 

end while */ 

# ifdef X'rRACE 

lend if 

fprintf(stdout,"<-- printrel (%d)\n",((--pgnum * SCRNLINES) +lines)); 
fflush(stdout); 

• 

http:coerce.c4
http:10ng_coerce.c3
http:Iong_coerce.c2
http:coerce.cl
http:short_coerce.c2
http:coerce.cl


Aug 25 21:45 1986 outre1.c Page 5 

closere1(reltoprint); 
return ((--pgnum * SCRNLINES) + lines); /* num tup1es printed */ 

0 \) 0 



G e 
Oct 29 20:34 1986 printre1.c Page 1 

llinclude "mrds.h" 

I* TO 00 
+ be sure relation is closed after printing 

*I 
int printrel(rname,title) 
char *rname; /* name of relation to print */ 
char *title; /* a page heading/title */ 

extern char *DATAFMT[],inbufr[]; 
extern int rdents; 
extern union u short short coerce; 
extern union u-int int coerce; 
extern union u-float fit coerce; 
extern union u-long long-coerce; 
int pgnum=l,lines=BIGNUM7 
char ttl[LINELEN],hdg[LINELEN],uscore[LINELEN],*tuple,line[BLOCK]; 
register int l,j,cursor,k; 
int len, cols, tab(MAXATTS],delimlen,collen[MAXATTS),closerel(); 
int dtab[MAXATTS]; 
REL *reltoprint; 
RD *rds [MAXATTS]; 
OOM *doments[MAXATTS]; 

#ifdef XTRACE 
fprintf(stdout, "--> printrel( I %sI, l%s I )\n" ,rname, title); 
fflush(stdout); 

#end if 

I* does this rel exist ? *I 
if ((reltoprint = flndrel(rname)) == (REL *)(NULL)) { 

db_err(58,PRINTREL,-l,rname); 
return(FAIL); 

I* get the scoop on this relation */ 
if ((findrd(rname,(char *)(O),O,rds)) == (RD *}(NULL)) ( 

db_err(62,PRINTREL,-l,rname); 
return (FAIL) ; 

} 
cols rdents; 
if (rdents > MAXATTS) { /* VERY dangerous: something got clobbered */ 

strcpy(inbufr,rname); /*this should never happen (ha!) */ 
strcat(inbufr,"("); 
strcat(inbufr,itoa(rdents)); 
strcat(inbufr,")"); 
db err(96,PRIN~REL,-l,inbufr); 
cols = MAXAT'rS; 

for (i = 0; i < cols; i++) 
if ((doments[l] = finddom(rds[l]->domname)) == (OOM *)(NULL)) 

db_err(79,PRIN~REL,-l,rds[i]->domname); 



Oct 29 20:34 1986 printrel.c Page 2 

/* check line length */ 
len • 0; 
for (i n 0; i < cols; i++) 

if (doments[i]) /*don't lookup bad ones*/ 
switch (doments(i]->domtype) ( 
case 1: /* integer */ 

len += 11; /* worst case + sign (macdep: 32 bit ints) */ 
collen(i] = 11; 

11 ifdef XTRACE 

break; 

case 2: /* single char */ 
++len; 
collen(i) = 1; 
break; 

case 3: /* float */ 
len +- 16; /* %g compromise */ 
collen(i] = 16; 
break; 

default: /* string */ 
len += doments[i]->len; 
collen(i] = doments(i]->len; 
--len; /* don't count null terminator */ 

J /* end switch */ 

for (i = O;i < cols; i++) fprintf(stdout,"collen[%d) is %d\n",i,collen(i] ); 
tend if 

if (len > LINELEN) { 
sprintf( inbufr," %d" ,&len); 
db_err(88,PRINTREL,-1,inbufr); 

/* build centered title line with page number */ 
i = strlen(title); 
~ = LINELEN; 
~ = (j » 1); 
1 = (i » 1); 
j -= i; /* j is offset in LINELEN to start title at */ 
for (i = 0; i < LINELEN;i++) ttl(i] = BLANKC; 
strcpX(&(ttl[j]),title); 
for () = 0; ttl(j] I= NULLC; j++); 
ttl(j] = BLANKC; 
j = LINELEN - PGNUMLEN; 
strcpy(&(ttl[j]),PGNUMHDR); 

/* build domain header line */ 
delimlen = strlen(DELIM); 
for (i = 0; i < LINELEN; i++) hdg[i] = BLANKC; 
cursor = 0; 
for (i = 0; i < cols; i++) ( 

j = strlen(doments(i]->domname); 
if (j >= collen[i]) { 

strc~r(&(hdg[cursor]),doments[i]->domname); 
tab[1 =cursor+ (((j >> 1) + 1) - ((collen(i] >> 1) + 1)); 
cursor += j; 

0 l) 0 



• 
Oct 29 20:34 1986 printrel.c Page 3 

1 
else 

strcpf(&(hdg(cursor]),DELIM); 
dtab[l) cursor; 
cursor += delimlen; 

tab(i] = cursor; 
cursor+= (collen[i] >> 1) - (j >> 1); 
strcpy(&(hdg(cursor]),doments(i]->domname); 
cursor += j; 
dtab[i) = cursor; 
strcpy (&(hdg(cursor)),DELIM); 
cursor += delimlen; 

Ufdef XTRACE 
fpr1ntf(stdout,"dtab(%d) is %d\n",i,dtab[i]); 
fprintf(stdout, 11domain is (%s), jlcollen is %dl%d; wrote at %d\n",doments[i)-> 
domname,j,collen[i],(cursor-delimlen-j)); 
fprintf(stdout,"HDG is >%s<\n",hdg); 
lend if 

for (i = 0; i < cursor; i++) 
if (hdg[i) == NULLC) 

hdg[i) "' BLANKC; 
I* build underscore line *I 
for (i = 0; i < LINELEN; i++) 

if ( (hdg[i) == BLANKC) 11 (hdg(i) NULLC)) 

else 
uscore[i] = BLANKC; 

uscore[i] = I I • - , 
uscore[LINELEN -1 ] = NULLC; 

I* begin printing: have to format each line separately */ 
while (tuple = getuple(reltoprint,OL)) ( 

for (i = 0; i < LINELEN; i++) line[i) = BLANKC; 
k = 0; 
cursor = 0; 
for (i = 0; i < cols; i++) 

cursor = tab(i); 
sprintf ( &( line(dtab(i]) ) , 11 %s", DELIM); 
switch (dornents(i]->domtype} { 
case DT STRING: 

-sprintf(&(line[cursor]),DATAFMT(DT_STRING],(tuple + k)); 
break; 

case o•r CHAR : 
-sprintf( &( line[cursor]) ,DATAFM'l'(DT_CHAR) 1 (tuple + k}}; 

break; 

case DT FLOAT: 
-flt_coerce.cl = *(tuple + k); 

*(&(flt_coerce.c2) + 1) = *(tuple + k + 1); 
*(&(flt_coerce.c3) + 2) = *(tuple + k + 2}; 
*(&(flt_coerce.c4) + 3) = *(tuple + k + 3); 
sprintf( &{ line(cursor)) ,DATAF'M'l'[DT_FLOAT], flt_coerce. fval); 
k += 4; 

• 

http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:flt_coerce.c1


Oct 29 20:34 1986 printre1.c Page 4 

lifdef INT16 

tend if 

Jifndef INT16 

lend if 

break; 
case DT_SHORT: 

case DT_INT: 

short coerce.cl - *(tuple + k); 
*(&(short coerce.c2) + 1) = *(tuple + k + 1); 
sprintf(&(line(cursor]),DATAFMT[DT_SHORT],short_coerce.sval); 
k += 2; 
break; 

case o•r_LONG: 

case DT_INT: 

long coerce.cl = *(tuple + k); 
*(&(Tong_coerce.c2) + 1) = *(tuple + k + 1); 
*{&(long_coerce.c3) + 2) *(tuple + k + 2); 
*(&(long_coerce.c4) + 3) - *(tuple + k + 3); 
sprintf(&(line[cursor]),DATAFMT(DT_LONG],long_coerce.lval); 
k +"" 4; 
break; 

default: 
break; 

1 /* end switch */ 
j = strlen(&line[cursor)); 
line[cursor + (j)] = BLANKC; 

/*cursor+= collen[i); */ 
k += doments[i]->len; /* former kludge */ 

J /* end for */ 

if (lines > PAGELINES) ( /* need new page */ 
printf("\f\n%s%d\n\n%s\n%s\n",ttl,pgnum,hdg,uscore); 
lines = 1; 

) 
++pgnum; 

for (i • 0; i < LINELEN; i++) /* assure no stray nulls */ 
if (I line[i]) 

line{i] = BLANKC; 
line[LINELEN 1) = NULLC; /* assure end of line */ 
printf("%s\n",line); 
/* for(j=O; j<LINELEN;j++)printf("%c",line[j));printf("\n") */ 
++lines; 

} /* end while */ 
printf ( "\f"); /* eject last page */ 

Ufdef X'l'RACE 

lend if 

fprintf(stdout,"<-- printrel (%d)\n",((--pgnum * PAGELINES) +lines)); 
fflush(stdout); 

closerel(reltoprint); 
return ((--pgnum * PAGELINES) + lines); /* num tuples printed */ 

0 0 

http:10ng_coerce.c4
http:10ng_coerce.c3
http:Tong_coerce.c2
http:coerce.cl
http:coerce.c2
http:coerce.c1


1? 
rt 

tv 0 \0 

tv 
0 

w 
~ 

..... 
\0 
Q:) 
~ 

~ ...... 
::l 
rt ., 
(b ..... 
(.} 

"Cl 
Ill 

t.Q 
(b 

1.11 

• 



OCt 29 22:11 1986 project.c Page 1 

Jinclude "mrds.h" 

I* TO DO: 
+ 

*I 
be sure relation is closed after projection 

int project(rel,domlist,ndoms,newrel) 
char *rel; I* rel to be projected *I 
char domlist[][MAXDNMLEN]; I* list of domain names *I 
short ndoms; I* number of domains in projection *I 
char *newrel; I* name of new (output) relation *I 

register int i,j,k; 
extern int rdents,errno; 
extern char inbufr[]; 
int domlength[MAXATTS),n,m,outrelwidth; 
int db_err(),closerel(),sortrel(),adtuple(); 
long numoftpls,bitmap=OL; 
RD *rdtab[MAXATTS],*findrd(); 
REL *inrel,*outrel,*findrel(),*mkrel(); 
DOM *domptr,*finddom(); 
char *tplin,*tplout,domnames[MAXATTS][MAXDNMLEN); 
char *getuple(),*malloc(); 

lifdef XTRACE 
fprintf(stdout,"--> project(%s,domlist,%d,%s)\n",rel, 

ndoms,newrel); fflush(stdout); 
lend if 

I* find input relation *I 
if ((inrel = findrel(rel)) == (REL *)(NULL)) 

db_err(S8,PROJECT,-l,rel); 
return(FAIL); 

I* check number of domains supplied *I 
if ((findrd(rel,(char *)(O),O,rdtab)) (RD *)(NULL)) { 

db err(S8,PROJECT,-l,rel); I* diff ersect from above *I 
return( FAIL); 

1 
j rdents; 
numoftpls = inrel -> cursize I (long)(inrel -> width); 

if (ndoms > rdents I I ndoms < 0) ( 
sprintf(inbufr, "%s (%d)" ,rel,ndoms); 
db_err(77,PROJECT,-l,inbufr); 
ndoms = 0; 

if (ndoms) 
findrd(rel,domlist,ndoms,rdtab); 

else 
for (i = 0; i < rdents; i++) 

strcpy(domnames[i],rdtab[i] -> domname); 

I* for a subset of full tuple need individual domain lengths *I 

0 () 0 



0 0 
Oct 29 22:11 1986 project.c Page 2 

outrelwidth = 0; 
if (ndorns) { 

J 
else 

for (i = 0; i < ndorns; i++) ( 
if ((domptr = finddom(domlist(i))) == (DOM *)(NULL))( 

db_err(79,PROJECT,-1,domlist(i]); 
domlength(i] = 0; 

} 
else 

} 

domlength[i) = (int)(domptr -> len); 
bitmap I= lL << 1; 

outrelwidth += domlength[i]; 

outrelwidth = inrel -> width; 
bitmap = (lL << rdents) - lL; 

l 
Ufdef XTRACE 
fprintf(stdout, "*** tuple width in project is %d\n" ,outrelwidth); 
fflush(stdout); 
lend if 

if (ndoms) 
if (l(tplout = malloc(outrelwidth))) ( 

db_err(52,PROJECT,errno,"tplout11 ); 

return(FAIL); 

lifdef XTRACE 
fprintf(stdout,"\ttplout alloc@ UX\n",tplout);fflush(stdout); 
lend if 

I* set up new output relation *I 

bitmap &= inrel -> Zmap; 
if (ndoms) 

outrel = mkrel(newrel,inrel->mode,bitmap,ndorns,domlist,numoftpls); 
else 

outrel = mkrel(newrel,inrel->mode,bitrnap,j,domnames,numoftpls); 
if (outrel == (REL *)(0)){ 

db_err(57,PROJECT,-1,newrel); 
return(FAIL); 

I* project *I 
m = O; 
while (tplin = getuple(inrel,OL)) 

if (ndoms) { 
k = 0; 
for (i = 0; i < ndoms; i++) ( 

for (j = 0; j < domlength[l); 1++) 
tplout(k + j) = tplin[J + rdtab[l] -> pos]; 

I* fprintf(stdout,"tplout[%d] became !tcl\n",k+j,tplout(k+j]);fflush(stdout);*l 
k += ]I 

• 



Oct 29 22:11 1986 project.c Page 3 

else 
tplout = tplin; 

if ((adtuple(outrel,tplout)) l= (int)(outrel ->width)) ( 
++m; 
n = errno; 

I* did project work? */ 
if (m) { 

sprintf(inbufr, "%d" ,m); 
db_err(81,PROJECT,n,inbufr); 

if ((int)(outre1 -> fd) !=FAIL) 
closerel(outrel); 

if ((int)(inrel -> fd) !=FAIL) 
closerel(inrel); 

if ((j = sortre1(outrel)) < SUCCESS) 
db_err(82,PROJECT,-1,outrel -> relname); 

Ufdef XTRACE 
fprintf(stdout,"<-- project(1)\n");fflush(stdout); 
lend if 

if (m == 0) 
if (j == SUCCESS) return(SUCCESS); 
else return (-3); 

else return(-2); 

0 () 



0 0 
Aug 25 15:21 1986 rdpage.c Page 1 

#include "mrds.h" 

I* TO DO: 
+ make sure that the relevant xpgat or lpgat fields 

*I 
are correctly updated upon read. 

int rdpage(rptr,ptr,x) 
REL *rptr; 
long *ptr; 
Xfb *X; 

extern int errno; 
register int i,j; 
register long pos; 
int read(),openrel(),db_err(); 
long !seek() ; 
char leaf, *buf; 

Ufdef X'l'RACE 
fprintf(stdout,"--> rdpage(\s,X%lx)\n",rptr -> relname,ptr); 
fflush(stdout); 
lend if 

if (lrptr) return (FAIL); 

if (rptr->fd == FAIL) I* file holding rel not open yet *I 
if ((rptr->fd = openrel(rptr,READMODE)) ==FAIL) { 

db_err(70,RDPAGE,-l,rptr->relname); 
return( FAIL); 

I* conservatism since !seek check should catch this error *I 
if ((ptr < OL) 11 (ptr > rptr -> cursize)) (I* ptr not within rel *I 

db_err(85,RDPAGE,-l,rptr -> relname); 
return(FAIL); 

I* could add check to assure 'pos' is on a page boundary here *I 
I* go to that page *I 
if ((pos = lseek(rptr -> fd,ptr,FROMTOP)) != ptr) 

db_err(60,RDPAGE,errno,rptr -> relname); 
return(FAIL); 

if ((i = read(rptr -> fd, leaf, l) I= 1)) { 
db_err(60,RDPAGE,errno,rptr -> relname); 
return( FAIL); 

if ((pos = lseek(rptr -> fd,-lL,FROMCUR)) != ptr) ( I* cannot happen *I 
db_err(60,RDPAGE,errno,rptr -> relname); 



Aug 25 15:21 1966 rdpage.c Page 2 

return(FAIL); 

leaf &• XLEAF; 
if (leaf) /* is a leaf page */ 

buf • x -> lbufat; 
else 

buf = x -> xbufat; 

j = (leaf ? x -> lpgsize : x -> xpgsize); 

if ((i • read(rptr -> fd, buf, j)) I• j) [ 
db_err(60,RDPAGE,errno,rptr -> relname); 
return( FAIL); 

/* no pointers to update: rindx should only point at tuples */ 

fifdef XTRACE 
fprintf(stdout,"<-- rdpage(size = %d, leaf= %d)\n",i,(leaf? 1 : 0)); 
fflush(stdout); 
lend if 

return((int)(leaf)); 

() () 0 



0 
Oct 29 20:48 1986 rdtuple.c Page 1 

Unclude "mrds. h" 

int rdtuple(rptr,to) 
REL *rptr; 
char *to; 

extern int errno; 
extern char *buffer[]; 
register int i; 
register long pos; 
int read(),openrel(),db_err(); 
long lseek () ; 

lifdef XTRACE 
fprintf(stdout,"--> rdtuple(%s,X%lx)\n",rptr -> relname,to); 
fflush(stdout); 
tend if 

/* 

if (!rptr) return (FAIL); 

if (rptr->fd == FAIL) /* file holding rel not open yet */ 
if ((rptr->fd = openrel(rptr,READMODE)) == FAIL) 

db_err(51,RDTUPLE,-l,rptr->relname); 
return( FAIL); 

/* conservatism since lseek check should catch this error */ 

if (rptr -> rindx > (rptr -> cursize- (long)(rptr -> width))) 
db_err(85,RDiUPLE,-l,rptr -> relname); */ 
return(FAIL); 

if ((pos = lseek(rptr -> fd, rptr -> rindx,FROM1UP)) != rptr -> rindx)( 
db_err(60,RDTUPLE,errno,rptr -> relname); 
return(FAIL); 

to (to? to: buffer(rptr -> fd]); 
if ((i = read(rptr -> fd, to,(int)(rptr -> width))) I= (int)(rptr -> width)){ 

db_err(60,RDTUPLE,errno,rptr -> relname); 
rptr -> rindx = pos; /*reset to tuple start */ 
return (FAIL) ; 

/* read succeeded */ 
if (rptr -> mode & BTREE} { 

pos = rptr -> rindx; 
if (read(rptr -> fd,&(rptr -> rindx),sizeof(long)) != sizeof (long)) { 

db_err(92,RDi'UPLE,errno,rptr -> rindx); 

1 
rptr -> rindx = pos; 

J 
else rptr -> rindx += (long)(rptr -> width); 

U fdef XTRACE 



OCt 29 20:48 1986 rdtuple.c Page 2 

fprlntf(stdout,"<-- rdtuple(wldth = %d)\n",rptr ->width); 
fflush(stdout); 
lend if 

return(!); /* number of bytes read */ 

I~ 

0 0 



Oct 30 20:02 1986 replace.c Page 1 

finclude "mrds.h" 

int replace(oldrel,newfile) 
REL *oldrel; I* ptr to sysrel entry for rel being replaced *I 
char *newfile; I* name of file becomlng the relation *I 

extern int errno; 
extern char inbufr(); 
struct stat tmpstat; 
char oldrelfile(FILESTRING + MAXNAMLEN], block[BLOCK]; 
char *~etrelnam(); 
int i,J,k,m,n,badnews,open(),unlink(),stat(); 
long newsize,lseek(); 

U fdef XTRACE 
fprintf(stdout,"--> replace(!iis,!iis)\n",oldrel->relname,newfile); 
fflush(stdout); 
lend if 

I* 
I* get filename of existing relation *I 
oldrelfi1e ~ getrelnam(oldrel); *I 
strcpy(oldrelfile,getrelnam(oldrel)); 

I* check rel file not in use *I 
if (oldrel -> fd != FAIL) { 

I* get 
if ((i 

} 

db_err(65,REPLACE,-l,oldrel -> relname); 
return( FAIL); 

new relation size *I 
~ open(newfile,READMODE)) ==FAIL) 
db_err(Sl,REPLACE,errno,newfile); 
return(FAIL); 

newsize = lseek(i,OL,FROMEND); 
lseek(i,OL,FROM~DP); 

I* move the newfile to oldrelfile *I 
if ((j = creat(oldrelfile,CRMASK)) ==FAIL) ( 

db err(Sl,REPLACE,errno,oldrel -> relname); 

} 
return(FAIL); 

badnews = 0; 

while ((k = read{i,block,BLOCK)) > 0) ( 
m~ (k < BLOCK ? k : BLOCK); 
if ((n = write(j,block,m)) != k) ( 

sprintf(inbufr,"%d:td (%s)",k,n,newfile); 
db err(25,REPLACE,errno,inbufr); 
++oadnews; 

I* tidy up *I 

newsize lseek(j,OL,2); 
break; 

0 e 



Oct 30 20:02 1986 replace.c Page 2 

oldrel -> cursize a newsize; 
close(i); 
close(j); 
oldrel -> rindx • OL; 
oldrel -> windx • newsize; 
if ( I bad news ) 

fifdef XTRACE 

if (unlink(newfile) =a FAIL) 
db_err(B3,REPLACE,errno,newfile); 

fprintf(stdout,"<-- replace()\n");fflush(stdout); 
lend if 

if (badnews) return(-2); 
else return(SUCCESS); 

0 0 



Oct 29 21:43 1986 search.c Page 1 

finclude "mrds.h" 

#define SBOMB free(x->xbufat);free(x->lbufat);x->xbufat=(char *)(O);x->lbufat=(char *)(0) 
#define XNXTLL(a) ((char *)(*(ushort *)(a+sepentlen(a)+sizeof(long)))) 
idefine LNXTLL(a) (*(long *}(a+rptr->width)) 
ldefine XNXTPG(a) (*(long *)(a+sepentlen(a))) 

I* 
long search(rptr,tpl) 

*I 

Look through relation pointed at by "rptr" for the tuple 
pointed at by "tpl". Return: 

< -1 tuple not found. Absolute value plus 2 is relation 
address of tuple just after which sought tuple 
would have appeared. 

= -I something caused search to fail 

>= 0 tuple was found. Return value is address of tuple 
within relation. 

Local macros: 
XNXTLL(a) 

XNXTPG(a) 

LNXTLL(a) 

find offset to next entry in linked list 
on internal page; "a" must point at (s,p) 
pair (and NOT at (pO)). 

return the "p" value from an (s,p} pair 
pointed at by "a". 

find start of next tuple after current one 
pointed at by "a" in linked list of tuples. 
NOTE that tuple addrs returned may be off 
current leaf page. 

long search(rptr,tpl) 
REL *rptr; I* rel to look through *I 
char *tpl; I* for this tuple *I 

extern int errno; 
extern char *buffer(]; 
char ordered,*c,*malloc(),found,scanpg,*pgptr,*getrelnam(); 
char *prevtpl; 
register int i,j; 
int tplcmp(),cmpseptpl(),free(),stat(); 
Xfb *x,xfb(]; 
struct stat fstatbuf; 
long timer(),deltatm,now,etime,xpO,pgtoread,prevpgptr; 
ushort *space; 

if (lrptr) return(FAIL); 

if (rptr -> mode & FLAT) ( 
ordered = (rptr -> mode & ORDER); 

• 



Oct 29 21:43 1966 search.c Page 2 

} 

rptr -> rindx = OL; /* ensure relation is rewound */ 
while (rdtuple(rptr,OL)) { 

i ~ tplcmp(tpl,buffer[rptr -> fd]); 
if (li) /*got it*/ 

return(rptr -> rindx- (long)(rptr -> width)); 
else if (i > 0 && ordered) { /* have overshot */ 

pgtoread = rptr -> rindx- (long)(rptr ->width); 
if (pgtoread == OL) /* goes before first */ 

return(-2L); 
return (-pgtoread - 3L)r, 

else if (rptr -> mode & BTREE) { 
/* find slot for this relation */ 

0 

X = ( Xfb * ) ( 0 ) ; 
if (stat(getrelnam(rptr),&fstatbuf) ==FAIL) { 

} 
for (i 

db err(69,SEARCH,errno,rptr->relname); 
fstatbuf.st_mtime = Ox7fffffff; /* assumes 

= 0; i < XFBSLOTS; x++) 

times are always in longs */ 

if (!strcmp(xfb[i}.rname,rptr->relname) 
x = &xfb[i]; 

&& fstatbuf.st_mtime < xfb(i].xactime) 

xfb[i).xactime =timer(); 
break; 

if (x == (Xfb *)(0))[ /*set up new slot*/ 
/*find one to use */ 
deltatm = etime = OL; 
now = timer() ; 
for (i = 0; i < XFBSLOTS; i++) 

if ((deltatm =now xfb(i].xactime) > etime) { 
etime = deltatm; 
x = &xfb[i]; 

/* initialize slot */ 
if (( i = read(rptr -> fd, x,XFBSIZE)) != XFBSIZE) 

db_err(53,SEARCH,errno,rptr -> relname); 
return ( FAIL) ; 

x -> xactime = now; 
if (x -> xbufat == (char *)(NULL)) /* alloc internal node buf */ 

if ((x -> xbufat = malloc(x -> xpgsize)) == (char *)(NULL)) 
db_err(52,SEARCH,errno,rptr -> relname); 
return(FAIL); 

if (x -> lbufat == (char *)(NULL)) 
if ((x -> lbufat = malloc(x -> lpgsize)) == (char *)(NULL)) ( 

db_err(52,SEARCH,errno,rptr -> relname); 
free(x -> xbufat); 
x -> xbufat = (char *)(NULL); 

0 



OCt 29 21:43 1986 search.c Page 3 

J 
/* now begin search */ 

found= 1\0'; 
pgtoread = x -> rootpos; 
prevtp1 = x -> lbufat; 

return(FAIL); 

space= (ushort *)(x -> xbufat + x_SPCOFF); 

while ( I found) ( 
if((i = rdpage(rptr,pgtoread)) ==FAIL) ( I* read error *I 

db_err(53,SEARCH,errno,rptr -> relname); 
SBOMB; 

if (li) (I* internal node page *I 
xpO = *(long *)((x -> xbufat) + XHDRLEN); I* get pO pointer *I 
pgptr = (x -> xbufat) + XHDRLEN + sizeof(1ong); I* get s1 pointer *I 

J I* 
else 

I* are there separators on this page? *I 
i =*space- (x ->xpgsize- XHDRLEN- sizeof(long) - sizeof(ushort)); 
if (i > 0) ( I* corruption *I 

db_err(28,SEARCH,-1,rptr -> relname); 
SBOMB; 

J 
if ( i < 0) [ I* yes, are separators *I 

scanpg = 1 t 1 
; 

J 
else 

} 

prevpgptr = xpO; 
while ( scanpg) { 

j = cmpseptup(rptr,pgptr,tpl); 
if (j > 0) { I* sep > tpl *I 

pgtoread = prevpgptr; 

} 
else 

scanpg = 1 \0 1
; 

I* sep <= tpl; keep looking *I 
c = XNXTLL(pgptr); 
if (c) ( 

} 
else 

prevpgptr = XNXTPG(p9ptr); 
pgptr =(char *)((uns1gned long)(c) 

pgtoread = XNXTPG(pgptr); 
scanpg = 1\0'; 

I* no separators this page *I 
pgtoread = xpO; 

end if was internal node page *I 
( /* is a leaf page *I 

prevtp1 = (char *) ( 0) ; .. 

+ (unsigned long)(x -> xbufat)); 

pgptr = x -> lbufat + *(ushdrt *)(X-> lbufat + L_FLEOFF);I* get first tpl *I 



Oct 29 21:43 1986 search.c Page 4 

) /* 

scanpg = • t' ; 
while ( scanpg) ( 

j = tplcmp(pgptr,tpl); 
lf (j == 0) /* hit */ 

return((pgptr x -> lbufat) + x -> lpgat); 
if (j < O) { /* don't know yet */ 

c = LNXTLL(pgptr); 

J 

/* assumes logically "higher" pages 
are always physically higher 
as well */ 
if ( c && c < (x -> lpgat + x -> lpgsize)) 

prevtpl = pgptr; 

} 
else 

pgptr • c; 

pgtoread • *(long *)(x -> lbufat + L_SUCCOFF); 
scanpg = '\0'; 

else if (j > 0) { /* miss */ 

J 

if (prevtpl == (char *)(0)) /*goes before first*/ 
return (-2L); 

else 
return(-((prevtpl- x -> lbufat) + x -> lpgat) -3L); 

} /* end while scanpg */ 
} /* end else is leaf pg */ 

} /* end while not found */ 
) /* end BTREE search */ 

end search ( ) *I 

t) 0 



Oct 29 21:43 1986 search.c Page 5 

I* 
int cmpseptup(rel,sep,tup) 
REL *rel; 
char *sep; 
char *tup; 

*I 

Compare tuple ~inted at by 'tup' with separator pointed at by 
'sep' in relat~on pointed at by 'rel'. Possible return values 
are: 

> 0 
0 

-1 
< -1 

separator > tuple 
separator ~ tuple 
failure 
separator < tuple 

int cmpseptup(rel,sep,tup) 
REL *rel; I* ptr to rel *I 
char *sep; I* ptr to separator *I 
char *tup; I* ptr to tuple *I 
( 

extern int rdents; 
extern char inbufr[); 
register int i,j,seplen; 
Sepslot *sinfo; 
register REL *r; 
register char *s,*t; 
extern union u short short coerce; 
extern union u:long long_coerce; 
extern union u float flt coerece; 
long timer(),longcmp,deltatm,now,etime; 
int intcmp; 
short shortcmp; 
float floatcmp; 
char zmask; 
RD *rd,*findrd(),rdtab[MAXATTS]; 
DOM *domain,*finddom(); 

if (lrel) return (FAIL); 

I* find slot for this relation *I 
sinfo • (Sepslot *)(NULL); 
for (i = 0; i < SEPSLOTS; i++) 

if (rel •• sepslot[i].rptr) { 
sinfo = &sepslot[i); 
sepslot[i).actime • timer(); 
break; 

if (sinfo (Sepslot *)(NULL)) ( I* set up new slot *I 
deltatm = OL; now= timer(); etime = OL; 
for (i • 0; i < SEPSLOTS; i++) 

if ((deltatm =now- sepslot(i].actime) > etime) { 
etime = deltatm; 



Oct 29 21:43 1986 search.c Page 6 

sinfo &sepslot[i]; 

/* initialize slot */ 

rd = findrd(rel -> relname,OL,O,rdtab); /* macdep: OL null ptr */ 
sinfo -> rdentries = rdents; 
sinfo -> Zdomlen = 0; 
for (i = 0; i < rdents; i++) ( 

domain= finddom(rdtab[i].domname); 
if (domain) ( 

} 

sinfo -> domtype[i] = domain -> domtype; 
sinfo -> domlen[i] = domain -> len; 

if (rel -> Zmap & (lL << i)) 
sinfo -> Zdomlen += (int)(domain -> len); 

/*slot ready; go to work on comparison */ 

r = rel; s = sep; t = tup; 
/* get length of separator and fix 's' */ 

/* speed things up */ 

seplen = (int)(*(ushort *)(s)); s += 2; /*skip over short*/ 

if(! r -> Zmap) (/*no z ordered attributes: seplen% 8 must= 0 */ 
if ((seplen% 8) I I (seplen < 0)) ( 

] 

sprintf(inbufr,"%d% 8 I= 0 in %s (non Z)",seplen,rel->relname); 
db err(66,CMPSEPTUP,-l,inbufr); 
return ( FAIL) ; 

seplen >>= 3; /* convert length to bytes from bits */ 

for (i = 0; i < sinfo -> rdentries; i++) 
U fdef XTRACE 
fprintf(stdout,"CMP: attr %din %s of type %d\n",i,r->relname,sinfo->domtype[i]); 
fprintf(stdout,"separ len now %d\n",seplen);fflush(stdout); 
!lend if 

switch (sinfo -> domtype(i]) ( 
case DT CHAR: 

-if (intcmp = (int)(*s - *t)) 
return((intcmp < 0) ? -2 

++s; 
++t; 
--seplen; 
break; 

case DT S'l'RING: 
-while (*s && seplen) ( 

intcmp); 

if (intcmp = (int)(*s- *t)) 
return((intcmp < 0) ? -2 

else ( 
++s; 
++t; 
--seplen; 

() 

intcmp); 

0 



0 
Oct 29 21:43 1986 search.c Page 7 

lifndef INT16 

lend if 

lifdef INT16 

#end if 

} 
++s; ++t; 
if ( !seplen) 

/* --seplen; */ 
return(-2); /*string but no more sep */ 

break; 

case DT_LONG: 

case DT_INT: 

long coerce.c1 = *s; 
*(&(Tong_coerce.c2) + 1) = *(s + 1); 
*(&(long_coerce.c3) + 2) = *(s + 2); 
*(&(long_coerce.c4) + 3) = *(s + 3); 
longcmp = long_coerce.lval; 
long coerce.c1 = *t; 
*(&(Tong_coerce.c2) + 1) = *(t + 1); 
*(&(long_coerce.cJ) + 2) = *(t + 2); 
*(&(long_coerce.c4) + 3) = *(t + 3); 
if (longcmp -= long_coerce.lval) 

return(longcmp > OL? 1 : -2); 
seplen -= sizeof(long); 
break; 

case DT_SHORT: 

case DT_INT: 

short coerce.c1 = *s; 
*(&(snort_coerce.c2) + 1) = *(s + 1); 
shortcmp = short coerce.sval; 
short coerce.c1 ~ *t; 
*(&(snort coerce.c2) + 1) = *(t + 1); 
if (shortcmp -= short_coerce.sval) 

return((shortcmp < 0) ? -2 : (int)(shortcmp)); 
sep1en sizeof{short); 
break; 

case DT FLOAT: 
-flt coerce.c1 = *s; 

*(&(flt_coerce.c2) + 1) = *(s + 1); 
*(&(flt_coerce.c3) + 2) = *(s + 2); 
*(&(flt_coerce.c4) + 3) = *(s + 3); 
floatcmp = flt_coerce.fval; 
flt coerce.cl = *t; 
*(&(flt_coerce.c2) + 1) = *(t + 1); 
*(&(flt_coerce.c3) + 2) = *(t + 2); 
*(&(flt coerce.c4) + 3) = *(t + 3); 
if (floatcmp -= flt_coerce.fval) 

return(floatcmp > 0.0 ? 1 : -2); 
seplen -= sizeof(float); 
break; 

J 
if (seplen == 0) /* no more separator */ 

• 

http:coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:fIt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:long_coerce.c4
http:long_coerce.c3
http:Tong_coerce.c2
http:coerce.cl
http:Iong_coerce.c4
http:Iong_coerce.c3
http:Tong_coerce.c2
http:coerce.cl


Oct 29 21:43 1986 search.c Page 8 

return(O); I* sep = tup within seplen *I 
] 
/* seiarator must have been as long as tuple and was same */ 
I* th s should be unreachablel *I 
db_err(90,CMPSEPTUP,-I,r->relname); 
return(O); 

] /* if not zordered *I 
else { I* is some z-ordering */ 

0 

if (seplen < 0) { 

J 

sprintf(inbufr,"%d < 0 in %s (Z)",seplen,rel -> relname); 
db_err(66,CMPSEPTUP,-l,inbufr); 
return( FAIL); 

if {!(r ->mode & PZREL)) {/*is all z order*/ 

] 

for (i = 0; i < (int)(r ->width), seplen; i++) ( 
zrnask Ox80; I* set bit 7 *I 
for (j 7; j >= 0; j--) 1 

++s; 
++t; 

if ((*s & zrnask) (*t & zmask)) 
return((*s & zmask) ? I : -2); 

seplen--; 
zrnask »= 1; 

I* if here, sep = tpl within seplen *I 
return(O); 

else I* partial z ordering */ 
for (i = 0; i < sinfo -> Zdomlen; i++) 

zmask = Ox80; /* set bit 7 *I 
for (j = 7; j >= 0; j--) 1 

if (( *s & zmask) ( *t & zmask)) 
return((*s & zrnask) ? l : -2); 

--seplen; 

++s; 
++t; 

zmask »• 1; 

I* if here, continue comparing separator and tuple 
using repositioned un-zordered attributes *I 

for (i = 0; i < rdents; i++) { 
if (r -> Zmap & {lL << i)) 

continue; 
switch (sinfo -> domtype[i]) 
case DT CHAR: 

-if (intcmp = (int)(*s *t)) 
return((intcmp < 0) ? -2 intcmp); 

++s; 
++t; 
--seplen; 

0 0 



Oct 29 21:43 1986 search.c Page 9 

llifndef INT16 

#end if 

lifdef INT16 

lend if 

break; 

case DT STRING: 
-while (*s && seplen) ( 

if (intcmp = (int)(*s - *t)) 
return((intcmp < 0) ? -2 

else ( 

J 
++s; ++t; 

++s; 
++t; 
--seplen; 

if ( I seplen) 
/* --seplen; */ 
return(-2); 

break; 

case DT_LONG: 

case DT_INT: 

long coerce.c1 = *s; 
*(&(Tong_coerce.c2) + 1) = *(s + 1) 
*(&(long coerce.c3) + 2) • *(s + 2) 
*(&(long:coerce.c4) + 3) = *(s'+ 3) 
longcmp = long_coerce.lval; 
long coerce.cl • *t; 
*(&(Tong_coerce.c2) + 1) • *(t + 1); 
*(&(long_coerce.c3) + 2) = *(t + 2); 
*(&(long_coerce.c4) + 3) = *(t + 3); 
if (longcmp -= long_coerce.lval) 

return(longcmp > OL? l : -2); 
seplen -= sizeof(long); 
break; 

case DT_SHORT: 

case DT_INT: 

short coerce.c1 = *s; 
*(&(snort_coerce.c2) + 1) = *(s + 1); 
shortcmp = short_coerce.sval; 

intcmp); 

short coerce.c1 = *t; 
*(&(snort_coerce.c2) + 1) = *(t + 1); 
if (shortcmp -= short coerce.sva1) 

return((shortcmp < 0) ? -2 : (lnt)(shortcmp)); 
seplen -= sizeof(short); 
break; 

case DT FLOAT: 
-flt coerce.c1 = *s; 

*(&(flt_coerce.c2) + 1) = *(s + 1) 
*(&(flt_coerce.c3) + 2) = *(s + 2) 
*(&(f1t_coerce.c4) + 3) = *(s + 3) 
floatcmp • flt_coerce.fval; 

0 

http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:long_coerce.c3
http:Tong_coerce.c2
http:coerce.cl
http:long:coerce.c4
http:coerce.c3
http:Tong_coerce.c2
http:coerce.cl


Oct 29 21:43 1986 search.c Page 10 

} 

J 

J 

flt coerce.cl = *t; 
*(&(flt_coerce.c2) + 1) = *(t + 1); 
*(&(flt_coerce.c3) + 2) = *(t + 2); 
*(&(flt_coerce.c4) + 3) = *(t + 3); 
if (floatcmp -= flt_coerce.fval) 

return(floatcmp > 0.0 ? 1 : -2); 
seplen -= sizeof(float); 
break; 

if (seplen == 0) I* no more separator *I 
return(O); I* sep = tup within seplen *I 

I* separator must have been as long 
I* this should be unreachable! *I 
db_err(90,CMPSEPTUP,-2,r->relname); 
return(O); 

as tuple and was same *I 

I* this better be unreachable *I 
db_err(65,CMPSEPTUP,-l,r->relname); 
return (FAIL) ; 

0 0 . 0 

http:flt_coerce.c4
http:flt_coerce.c3
http:f1t_coerce.c2
http:coerce.cl


~· • 
Oct 29 22:00 1986 select.c Page 1 

#include "mrds.h" 

I* TO 00 
+ be sure relation is closed following selection 

*I 
I* 
* int select(rnam,domname,value,cmp,out) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* *I 

select from relation named ~rptr' tuples with 
attributes in ~domname' domain match 'value' according 
to the type of comparison specified by 'cmp' (currently 
must be equals, greater than or less than in any 
combination),and add those tuples to a new relation 
to be named out'. 

will issue its own error messages if: 
(1) given a null pointer for rel 
(2) type of comparison is unknown 
(3) cannot locate domain 'domname' in .dom 
(4) fails to get rd entries (rname not in rd) 
(5) domain ~domname' not in relation rptr 
(6) cannot create output relation 
(7) fails to sort output relation 

int select(rnam,domname,value,cmp,out) 
char *rnam; I* name of input relation to select from *I 
char domname I] ; I* domain of selection *I 
char *value; I* value to compare against: TYPE UNKNOWN *I 
short cmp; I* type of comparison to be done *I 
char *out; I* name of output relation *I 

extern int rdents,errno; 
extern char inbufr(]; 
extern union u short short coerce; 
extern union u:long long_coerce; 
extern union u float flt coerce; 
register char *a,*b; -
register int i,j,k; 
int m,n,dompos,closerel(),adtuple(); 
float floatcmp; 
long longcmp; 
char *nxtpl,Doms(MAXATTS](MAXDNMLEN],*strcpy(),*getuple(); 
DOM *dptr,*finddom(); 
REL *rptr,*newrel,*findrel(),*mkrel(); 
RD *rdtab(MAXATTS],*findrd(); 

ll ifdef XTRACE 

tend if 

fprintf(stdout,"--> select(%s,%s,%1X,%d,%s\n", 
rnam,domname,value,cmp,out); 
fflush(stdout); 



Oct 29 22:00 1986 select.c Page 2 

I* good input relation? *I 
if ( !rnam) ( 

db err( 58, SELECT,-1, "null"); 
return(FAIL); 

if (!(rptr = findrel(rnam))) ( 
db_err(58,SELECT,-l,rnam); 
return(FAIL); 

I* good compare operator? *I 
if ( (cmp & -CMPVALID) 11 (l(cmp & CMPVALID)) ) 

db_err(83,SELECT,-l, "unknown compare"); 
return(FAIL); I* or assume a default? *I 

I* good domain name? *I 
if (l(dptr ~ finddom(domname))) { 

db_err(79,SELECT,-l,dornname); 
return(FAIL); 

I* get domain list for new relation *I 
if ((findrd(rptr -> relname,OL,O,rdtab)) == (RD *)(NULL)) { 

db_err(58,SELECT,-l,rptr -> relname); 
return( FAIL); 

for (i = 0; i < rdents; i++) 
strcpy(Doms(i], rdtab[i] -> domname); 

I* isolate domain involved in selection *I 
dornpos = FAIL; 
for (i = 0; i < rdents; i++) 

if(! strcmp(domname,rdtab[i] -> domname)) 
dompos = i; 
break; 

] 
if (dompos FAIL) ( 

db err(62,SELECT,-l,domname); 
return(FAIL); 

I* make new relation *I 
long_coerce.lval = rptr -> maxsize I (long)(rptr ->width); 
if ((newrel = mkrel(out,rptr->mode,rptr->Zmap,rdents,Doms,long_coerce.lval)) == (REL *)(NULL)) [ 

db_err(57,SELECT,-l,out); 
return( FAIL); 

I* begin select *I 
i = (1 << dompos); 
if (0) ( I* used to check for Bindx, was changed to Zmap *I 

I* FIX THIS LA'rER *I 

0 0 



~· • 
Oct 29 22:00 1986 se1ect.c Page 3 

else ( /* have to do it sequentia1ly */ 
dompos = rdtab[dompos] -> pos; 

#ifdef XTRACE 
fprintf(stdout,"+++dompos 
tend if 

offset is %d\n" ,dompos) ;fflush(stdout); 

m "' 0; 

while (nxtpl = getuple(rptr,OL)) 
a "' nxtpl + dompos; 
b • value; 
switch (dptr -> domtype) 
case DT_STRING: 

Ufdef XTRACE 
fprintf(stdout,"+++ compare ltsl to J%sl\n",a,b);fflush(stdout); 
lend if 

llifdef INT16 

llendif 

while (*a) 
if (i = *a - *b) 

break; 
else 

case DT CHAR: 
-i • *a - *b; 

break; 

case DT FLOA'r: 

++a; 
++b; 

-flt coerce.cl "' *a; 
*(&(flt_coerce.c2) + 1) 2 *(a + 1); 
*(&(f1t_coerce.c3) + 2) = *(a+ 2); 
*(&(flt_coerce.c4) + 3) - *(a + 3); 
floatcmp = flt_coerce.fval; 
f1t coerce.c1 = *b; 
*(&(flt_coerce.c2) + 1) • *(b + 1); 
*(&(flt_coerce.c3) + 2) • *(b + 2); 
*(&(flt_coerce.c4) + 3) = *(b + 3); 
floatcmp -= flt_coerce.fval; 
if (f1oatcmp == 0.0) 

i - 0; 
else 

break; 

case DT_SHORT: 

case DT_INT: 

i = (floatcmp > 0.0 ? 1 -1) i 

short coerce.cl = *a; 
*(&(short coerce.c2) + 1) = *(a+ 1); 
i = {int)(short_coerce.sval); 
short coerce.c1 - *b; 
*(&(short coerce.c2) + 1) - *(b + 1); 
1 (int)(short_coerce.sva1); 
break; 

http:coerce.c2
http:coerce.cl
http:snort_coerce.c2
http:coerce.cl
http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl


Oct 29 22:00 1986 

lifndef INT16 

fend if 

0 

se1ect.c Page 4 

case DT_LONG: 

case DT_INT: 

long coerce.cl = *a; 
*(&(Iong_coerce.c2) + l) = *(a+ 1}; 
*(&(long_coerce.c3) + 2) = *(a+ 2); 
*(&(long_coerce.c4) + 3) = *(a+ 3); 
longcmp = long_coerce.lval; 
long coerce.cl = *b; 
*(&(Tong_coerce.c2) + 1) *(b + 1); 
*(&(1ong_coerce.c3) + 2) = *(b + 2); 
*(&(1ong_coerce.c4) + 3) = *(b + 3); 
longcmp -= long_coerce.lval; 
if (I longcmp) 

i = 0; 
else 

i 
break; 

(longcmp > OL ? 1 -1) i 

] /* end switch */ 

/* take action depending on 'cmp' and 'i' */ 
k = 0; 
for (j = 0; j < CMP OPS; j++) { 

switch (cmp-& CMPATT{j]) 
case CMPATT EQ: 

if (li) { 
++k; 
if (adtup1e(newrel,nxtpl) 

++m; 

J 
break; 

case CMPATT GT: 
if Ti > o> £ 

++k; 

n = errno; 

I= rptr -> width) ( 

if (adtuple(newrel,nxtpl) != rptr -> width) { 
++m; 

} 
break; 

case CMPATT LT: 
if Ti < 0) { 

++k; 

n = errno; 

if (adtuple(newrel,nxtpl) != rptr -> width) ( 
++m; 
n = errno; 

J 
break; 

} /* end switch */ 

u 



~· • 
Oct 29 22:00 1986 select.c Page 5 

if (k) 
break; 

} 
} /* end while getu~le */ 

} /* end else do it sequent1ally */ 

/* did all tuples get successfully added? */ 
if (m) { 

sprintf(inbufr,"%d",m); 
db_err(81,33,n,inbufr); 

/* close relations */ 
if (rptr -> fd I• FAIL) 

closerel(rptr); 
if (newrel -> fd l• FAIL) 

closerel(newrel); 

if ((j • sortrel(newrel)) <SUCCESS) 
db_err(82,SELECT,-l,newrel -> relname); 

# ifdef XTRACE 

#end if 

fprintf(stdout,"<-- select(l)\n"); 
fflush(stdout); 

if (m •= 0) 
if (j •= SUCCESS) return(SUCCESS); 
else return (-3); 

else return(-2); 



Oct 29 22:04 1986 setup.c Page l 

linclude "mrds.h" 

int setup(dbname,db,verbose) 
char *dbname; I* name of database *I 
DBSTATUS *db; 
int verbose; 

extern int errno; 
register int result=TRUE; 
int uid= -l,getuid(),geteuid(),fclose(); 
int yesno(),abend(),db_err(),logent(),gooduser(),find_db(); 
FILE *fopen ( ) ; 

Ufdef XTRACE 

lend if 

I* 

*I 

fprintf(stdout,"--> setup(%s)\n",dbname); 
fflush( stdout); 

if ((dbname ==(char *)(0)) I I (*dbname ==(char *)(0))) 
return( FAIL); 

I* start session logging *I 
if ((fplog = fopen(LOGFILE,APMODE)) == (FILE *)(NULL) 

db_err(95,SETUP,errno,"log file"); 

if ((uid = gooduser()) ==FAIL) { 
sprintf ( inbufr ,"%d %d \"%s\'"',getuid() ,geteuid() ,dbname); 
if (fplog) ( 

logent ( "ACFAIL", inbufr); 
fclose( fplog); 

) 
db_err(O,SETUP,-l,inbufr); 
return( FAIL); 

I* used to p,ut command line arguments into log entry when this was *I 
I* done in 'main"; should find some way to keep that feature *I 
sprint! ( LOGBUF, "user %d ", uid); 
for (i = 0; i < argc; i++) ( 

strcat(LOGBUF,argv(i)); 
strcat(LOGBUF,BLANK); 

logent( "INVOKED",LOGBUF); 

if ((find_db(dbname,uid,db)) ==FAIL) 
return(DB_NOFND); 

I* db found: do consistency check *I 
if (dbck(db,verbose) != 0) ( I* oh oh *I 

sprintf(LOGBUF,"%s (owner %d)",db -> dbs_name,db -> dbs_owner); 
logent( "CONI!"USED", LOGBUF); 

0 0 



Oct 29 22:04 1986 setup.c Page 2 

return(DB_FUBAR); 

sprintf(LOGBUF,"%s (owner %d)",db -> dbs_name,db -> dbs_owner); 
logent( "ACTIVE" ,LOGBUF); 

lifdef XTRACE 

lend if 

fprintf(stdout, "<-- setup(X%x)\n" ,db -> dbs_dfltmode); 
fflush(stdout); 

return(SUCCESS); 

• 



Dec 22 02:16 1986 sortre1.c Page 1 

Unc1ude "mrds.h" 

short domtype[MAXATTS]; 
char newmer I FILESTIUNG + MAXNAMLEN] ; 

int sortrel(rel) 
REL *rel; 

int i,j,npass,tpb,merfd,state,bufsize; 
int qsort(),creat(),open(),read(),write(),replace(); 
int strlen(),tplcmp(),openrel(),closerel(); 
char *strcpy(),*mktemp{),*sortbuf,*oldmer,*malloc(); 
DOM *domain,*finddom(); 
RD *rds [MAXATTS]; 
extern short domtype[]; 
extern int rdents,errno; 
extern REL *reltosort; 
extern char inbufr[]; 

I ifdef XTRACE 

#end if 

fprintf(stdout,"--> sortrel(%s)\n",rel->re1name); 
fflush(stdout); 

/* verify rel exists */ 
if (! rel) ( 

} 

db err(58,SORTREL,-l,"null"); 
return( FAIL); 

reltosort = rel; 

I* don't sort a B* tree */ 
if (rel -> mode & BTREE) 

return(-2); 

/*determine number of iterations & buffersize */ 
/* WARNING! IF SIZEOF(INT) == 2, SORTLIM MUST BE <= 64 */ 
bufsize = (int)(SORTLIM * 1024L); 
if (rel -> windx <= bufsize) { 

npass = 1; 
bufsize = (int)(re1 -> windx); 

1 
else /* need multiple sort/merge passes */ 

i = bufsize % (int)(rel -> width); 

] 
tpb 

bufsize -= i; /* align to nearest tuple */ 
npass = (int){rel -> cursize I (long)(bufsize)); 
if (rel -> cursize % {long)(bufsize)) 

++npass; 

bufsize 1 (int)(rel -> width); /* tup1es per buffer */ 
lifdef XTRACE 
fprintf(stdout, "~ tpb 
lend if 

now %d in %d passes\n",tpb,npass);fflush(stdout); 

/* get buffer space */ 
if ((sortbuf • malloc(bufsize)) NULL) ( /* not enough mem */ 

0 



0 • 
Dec 22 02:16 1966 sortrel.c Page 2 

db err( 52,SOR'l'REL,errno, "sortbuf"); 
/*-should have clever retry with smaller buffer */ 
return(FAIL); 

/*get particulars on rel for tuplcmp() */ 
/* determine number of attributes per tuple */ 
if(! findrd(rel -> relname, OL, O, rds)) ( 

db_err(62,SOR'l'REL,-l,rel -> relname); 
state "' FAIL; 
goto xsort; 

/* get domain datatypes */ 
for (i = 0; i < rdents; i++) ( 

domain= finddom(rds{i) -> domname); 
if (domain) 

else 
domtype(i) = domain -> domtype; 

db err(79,SOR'fREL,-l,rds[i) -> domname); 
domtype[iJ = -1; 

i strlen(MERTEMP); 
if ((oldmer = malloc(i)) ==NULL) ( 

db_err( 52,SOR'l'HEL, -1, "merfnms"); 
state "' FAIL; 
goto xsort; 

) 
*oldmer = NULLC; 

openrel(rel,READMODE); 

/* off to the races */ 
for (; npass > 0; npass--} ( 

I ifdef X'I'Hl\CE 

/*get next chunk to sort */ 
if ((i = read((int}(rel -> fd),sortbuf,bufsize)) <= 0) ( 

sprintf(inbufr,"(%d)",i); 
db_err(60,SORTREL,errno,inbufr); 
state = FAIL; 
goto xsort; 

/* sort new chunk */ 
if (i < bufsize) /* buf not full-- don't sort all */ 

tpb = i I (int)(rel -> width); 

fprintf(stdout, "~ tpb at qsort = td\n" ,tpb) ;fflush(stdout); 
tend if 

qsort(sortbuf,tpb,(int)(rel -> width),tplcmp); 

I* merge */ 
if ((strlen(oldmer) != 0) &&(merfd = open(oldmer1RDMODE)) > 0) ( 

if (merge(merfd,sortbuf,newmer,rel,tpb) == F'AIL) { 
db_err( 55 1 SOR'fREL, -1 1 ""); 



Dec 22 02:16 1986 sortrel.c Page 3 

J 
else 

J 

state = -1; 
goto xsort; 

unlink(oldmer); 
strcpy(oldmer,newmer); 

/* couldn't open a former merge file */ 
if (errno e ENOENT) { 

strcpy(oldmer,MERTEMP); 
mktemp(oldmer); 
if ((merfd = creat(oldmer,CRMASK)) FAIL) 

J 
if ( ( i 

J 
for (i 

db_err( 51, SORTREL, errno,"mertemp"); 
state = -1; 
goto xsort; 

= write(merfd,sortbuf,rel ->width)) != rel 
sprintf(inbufr,"%d:%d",rel -> width, I); 
db_err(54,SORTREL,errno,inbufr); 
state = -1; 
goto xsort; 

- l; i < tpb; i++) ( 
j ~ i * rel -> width; 
if (tplcmp(&sortbuf(j rel ->width], 
&sortbuf[j))) 

-> width) ( 

write(merfd,&sortbuf(j],rel -> width); 

xsort: 

] 

J 
close(merfd); 

else /* something is wrong */ 

closerel(rel); 

db err( 51, SORTREL, errno,"mertmp"); 
state = -1; 
goto xsort; 

/* replace unsorted relati~n with new relation */ 
if (replace(rel,oldmer) < SUCCESS) ( 

db_err(59,SOH'rHEL,-l,rel -> relname); 
state = -1; 
goto xsort; 

state 0; 

llifdef XTRACE 

lend if 

fprintf ( stdout," <-- sortrel(\d )\n" ,state); 
f flush ( stdout) ; 

free(sortbuf); 
free(newmer); 
free(oldmer); 
return (state) ; 

0 0 



~ a 
t..) 

0 t..) 

0 
N 

...... 
0'1 

,.... 
1.0 
CO 
0'1 

•(I) 

0 ., 
tT ., 
(I) 

!"""' 
0 

"0 
ilJ 

IQ 
Cl) .. 

0 

• 



Dec 22 02:16 1986 sortrel.c Page 5 

int tplcmp(a,b) /* kludgey but quick */ /* DOESN'T GROK Z-QRDER (YET) */ 
char *a,*b; 

extern REL *reltosort; 
extern int rdents; 
extern short domtype[]; 
extern union u short short coerce; 
extern union u-int int coerce; 
extern union u:long long_coerce; 
extern union u float flt coerce; 
register int 17 -
register char *aa,*bb; 
int skipped = 0; 

/* add here for more datatypes */ 
int intcmp = 0; 
long 1ongcmp = 0; 
float floatcmp = 0.0; 

llifdef XTRACE 

#end if 

fprintf(stdout,"$$$ tuplcmp(X%lx,X%lx)\n",a,b); 
fflush( stdout); 

aa = a; 
bb = b; 
for (i = 0; i < rdents; i++) ( 

switch (domtype(i)) { 
case DT CHAR: 

-if (intcmp (int)(*aa *bb)) 
return( intcmp); 

++aa; 
++bb; 
break; 

case DT FLOAT: 
-flt coerce.cl = *aa; 

*(&(flt_coerce.c2) + 1) = *(aa + 1) 
*(&(flt coerce.c3) + 2) = *(aa + 2) 
*(&(flt:coerce.c4) + 3) = *(aa + 3) 
floatcmp = flt coerce.fval; 
flt coerce.cl - *bb; 
*(&(flt_coerce.c2) + 1) = *(bb + 1); 
*(&(flt_coerce.c3) + 2) = *(bb + 2); 
*(&(flt_cocrce.c4) + 3) = *(bb + 3); 
if (floatcmp -= flt_coerce.fval) 

return {floatcmp > 0.0 ? l : -1); 
aa += sizeof(float); 
bb += sizeo((float); 
break; 

case DT_SHOR'!': 
lifdef INT16 

case DT_INT: 

0 0 0 

http:coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl
http:flt_coerce.c4
http:flt_coerce.c3
http:flt_coerce.c2
http:coerce.cl


0 
Dec 22 02:16 1966 sortrel.c Page 6 

lend if 

lifndef INT16 

lend if 

short coerce.c1 = *aa; 
*(&(short coerce.c2) + 1) = *(aa + 1); 
intcmp = Tint)(short coerce.sval); 
short coerce.cl = *bE; 
*(&(short_coerce.c2) + 1) = *(bb + 1); 
if (intcmp -= (int){short coerce.sval)) 

return(intcmp); -
aa += sizeof(short); 
bb += sizeof(short); 
break; 

case D'l'_WNG: 

case DT_INT: 

long coerce.cl = *aa; 
*(&(Iong_coerce.c2) + 1) = *(aa + 1); 
*(&(long_coerce.c3) + 2) = *(aa + 2); 
*(&(long_coerce.c4) + 3) = *(aa + 3); 
longcmp = long_coerce.lval; 
long coerce.cl = *bb; 
*(&(Iong_coerce.c2) + 1) = *(bb + 1); 
*(&(long_coerce.c3) + 2) *(bb + 2); 
*(&(long coerce.c4) + 3) = *(bb + 3); 
if (longcmp -= long_coerce.lva1) 

return(1ongcmp > OL ? 1 : -1); 
aa += sizeof(long); 
bb += sizeof(1ong); 
break; 

case D'I' STRING: 
-while(*aa) 

if (intcmp = (int)(*aa- *bb)) 
return( in temp); 

else 
++aa; 
++bb; 

++aa; ++bb; 
break; 

default: /* unknown domtype */ 
++skipped; 

return(NULL); /* tuples are equal */ 

0 • 

http:coerce.c4
http:10ng_coerce.c3
http:Tong_coerce.c2
http:coerce.cl
http:long_coerce.c4
http:10ng_coerce.c3
http:Tong_coerce.c2
http:coerce.c1
http:coerce.c2
http:coerce.cl
http:coerce.c2
http:coerce.cl


Dec 22 02:16 1986 sortrel.c Page 7 

int merge(file,core,out,rel,num) 
int file; /* fd of file containing previous merged output */ 
char *core; /* ptr to start of memory area */ 
char *out; /* name of new output file */ 
REL *rel; /* ptr to system rel entry for rel being merged */ 
int num; /* number of tuples in mem to be merged */ 

extern int errno; 
extern char inbufr[]; 
char *inbuf,*outbuf,*out,*malloc(),*strcpy(),*mktemp(); 
register int i,j,k; 
register char *lastpl,*in,*mem; 
int state,newfd,o~n(),close(),creat(),read(),write(),tplcmp(); 
unsigned int bufs1ze; 

fifdef X'l'RACE 

lend if 

fJ?rintf(stdout,"--> merge(%d,X%lx,%s,%s,%d)\n", 
flle,core,out,rel,num); 
fflush(stdout); 

I* set up block buffers for merge *I 
if ((i = (num * rel -> width)) > 1024) 

if (rel -> width < 1024) 
i 1024 (1024 % rel -> width); 

else 
i ~ rel -> width; 

lifdef X'fRACE 

lend if 

fprintf(stdout,"~ bufsize becomes %d\n",l); 
fflush(stdout); 

if ((inbuf = malloc(i)) NULL) ( 
db_err( 52,MERGE,errno,"merbufi"); 
return(FAIL}; 

if ((outbuf = malloc(i)) =~NULL) { 
free{ inbuf); 

} 

db err( 52,MERGE,errno,"merbufo"}; 
return( FAIL); 

bufsize i; 

if ({lastpl = malloc(rel -> width)) ==NULL) 
free(inbuf); 
free(outbuf); 
db err( 52,MERGE,errno, "merbufl"); 
return( FAIL); 

I* initialize *I 
in = inbuf; 

0 0 0 



0 0 
Dec 22 02:16 1986 sortrel.c Page B 

out = outbuf; 
mem = core; 
*lastpl = NULLc; 

/* make new file */ 
strcpy(out,MER'l'EMP); 
mktemp(out); 
if ((newfd = creat(out,CRMASK)) == FAIL) 

db_err(SS,MERGE,errno,out); 
state = FAIL; 
goto emerge; 

/* merge */ 
while ((i = read(file,inbuf,bufsize)) > 0) ( 

if (i < bufsize) 
bufsize = i; 

while (in < (inbuf + bufsize)) ( 

J 

if (!(j = tplcmp(in,mem))) /* tuples are equal*/ 
if ((k = tplcmp(in,lastpl})) /*but not same as previous*/ 

for (j = 0; j < rel -> width; j++) ( 

} 

*out++ = *in++; 
*(lastpl + j) = *mem++; 

) 
else /* same; discard from both */ 

in += rel -> width; 
mem += rel -> width; 

J 
else/* tuples not equal, write 'smaller' */ 

if (j < 0) 
for (j = 0; j < rel -> width; j++) 

*out++ = *in; 

else 

*(lastpl + j) = *in++; 

for (j = 0; j < rel -> width; j++) 
*out++ = *mem; 
*(lastpl + j} = *mem++; 

/* time to empty output buffer? */ 
if ((outbuf- out) >= bufsize) ( /* flush it*/ 

if ((j = write(newfd,outbuf,bufsize)) != bufsize) [ 
sprintf(inbufr, "%d:%d (%s) ",bufsize, j,out); 
db_err(54,MERGE,errno,inbufr); 
state = FAIL; 

} 
goto emerge; 

out = outbuf; 

in inbuf; 

state = SUCCESS; 

• 



Dec 22 02:16 1986 sortrel.c Page 9 

emerge: 
free(inbuf); 
free(outbuf) 
free(lastpl) 
close(newfd) 

Ufdef X'l'RACE 

lend if 

fprintf(stdout,"<-- merge(%d)\n",state); 
fflush(stdout); 

return(state); 

0 0 0 



0 0 
Oct 29 22:41 1986 split.c Page 1 

I* Early version of "split" written so that MRDSc can get done 
on time: ALWAYS does a split, even if a redistribution of entries 
would have been sufficient. Later versions can correct this shortcoming 

*I 
/*~==============~====================================================== 
PROBLEMS: 
FIXED size of padding alignment checks done wrong: value to & with Ox3 

is start addrs of separator PLUS LENGTH OF SEP · 

FIXED 

FIXED 

FIXED 

all child nodes whose P are moved to a new brother page at parent 
level must be "notified" that their PRED value needs changing 

when copying entries off 'old' node to its new image copy, should 
not be copying offsets from 'old', but rather installing new 
offsets, thereby straightening list into which insertions may 
have been made. 

in splitting branch pages, when initializing the status and 
space parms in the hdr, forgot to set the PRED of the new 
branch page. NOrE that this pred may be affected by splitting 
the grandparent pager 

?write nulls throughout newly allocated memory image of pages? 

FIXED make sure root branch node can be correctly split 

change new page flushing so that if a recursive call to split 
fails, the new versions of the originally split pages will not 
have been written out •.• then at least we can recover from the 
recursive split failure (eg. as when size > maxsize) 

======================================================================*/ 
#include "mrds.h" 

fdefine SPLBOMB free(dpg);free(epg);if(Epg)free(Epg); 

Bentry newent,upward; 

int split(rptr,tpl,pos,x,mode,sptr) 
char *tpl; I* ptr to entry causing s~lit: may be tpl or (s,p) *I 
REL *rptr; I* ptr to rel whose page 1s being split *I 
long pas; I* position at which to insert new entry *I 
Xfb *x; I* ptr to Xfb for this relation *I 
char mode; I* flag: split branch or leaf page *I 
long sptr; I* 'p' in (s,p) pair *I 
I* page being split ***MUS'l'*** currently be in xbufat or lbufat for *I 
I* branch or leaf page resp. BEFORE calling split *I 

extern int errno; 
register int i,j; 
register char *a,*b,*c; 
char *dpg,*epg,*rpg,*npg,*last,*first,*Epg,*b4last,*sepat; 
Xpghdr pg; 
Xlfhdr lf; 



Oct l9 ll:4l 1986 split.c Page l 

int entsize,used,pgsize,oldpad,k; 
long pred,posn,lbro,hbro,*left,*ri~ht,thispg; 
ushort *oldspace,*uslast,*usnext,d~rmode; 
char isnewent='\O',onleft='\O',b4fle='\O',*malloc(); 

if (pos > 0) ( 
db_err(9l,SPLIT,-l,"already present"); 
return(SUCCESS); 

if (mode) 

else 
entsize = (int)(rptr -> width) + sizeof(long); 

I* sizeof complete entry with worst case padding *I 
entsize = *(ushort *)(tpl) >> 3 + sizeof(long) + sizeof(ushort) + 3; 

I* allocate space for split work *I 
pgsize = (mode ? x -> lpgsize : x -> xpgsize); 

I* should check here to see if by adding "pgsize" to the *I 
I* relation it will exceed "maxsize"; can't do this now *I 
I* see bottom note in PROBLEMS above for reason why *I 
if ((dpg = malloc(pgsize)) == (char *)(NULL)) (I* if it doesn't want to play *I 

db_err(5l,SPLIT ,errno,"dpg"); 
return(FAIL); 

if ((epg = malloc(pgsize)) == (char *}(NULL}) 
free(dpg); 
db_err(5l,SPLIT ,errno, "epg"); 
return(FAIL); 

if ((Epg = malloc(pgsize)) == (char *)(NULL)) 
db_err(93,SPLIT,errno,"Epg"); 

I* set up values in space just allocated *I 
if (mode == XLEAF) { 

lf.status = dpg; 

} 
else 

lf.space = (ushort *)(dpg + 2); 
lf.pred = (long *)(dpg + 4); 
lf.offset = (ushort *)(dpg + 8); 

if (mode == XBRANCH) ( 
pg.status = dpg; 
pg.space = lushort *)(dpg + l); 
pg.pred = ( ong *)(dpg + 4); 

if (a = Epg) { I* make backup copy *I 

0 

b = (mode ? x -> lbufat : x -> xbufat); 
for (i 0; i < pgsize; i++) 

0 0 



() 
Oct 29 22:41 1986 split.c Page 3 

*a++ = *b++; 

I* install overflow entry and 'link' it into list*/ 

if (mode == XLEAF) ( /* on a leaf */ 

} /* 
else 

if ((-pos + 2) I= x -> lpgat) { /* in midst of list */ 
left= (long *)(-pos + 2 + (long)(rptr ->width)); 
newent.te_ptr = *left; 

1 
else 

*left = -lL; /* magic ptr */ 

/* before first tuple */ 
oldspace = (ushort *)(x -> lbufat + L_FLEOFF); 
newent.te_ptr = x -> lpgat + (long)(*oldspace); 
*oldspace = MAGICLINK; /* magic FLE value */ 

newent.te_item = tpl; 
end if was a leaf */ 
( /* is on a branch */ 

/* only special case here is if (-pos + 2) */ 
/* points at PO */ 
if (-pos + 2 == X -> xpgat + (long) (XHDRLEN)) ( 

1 
else 

oldspace = (ushort *)(x -> xbufat + XHDRLEN 
newent.te_bnext - *oldspace; 

/* pos pts at ordinary (s,p) entry */ 

+ sizeof(long)); 

) 

c = -pos + 2 - x -> xpgat + x -> xbufat; 
oldspace = (ushort *)(sepentlen(c) + sizeof(long)); 
newent.te_bnext = *oldspace; 

*oldspace = MAGICLINK; /* magic offset */ 
newent.te_len = *(ushort *)(tpl); 
newent.te_ptr = sptr; 
newent.te~item = tpl; 

J /* end if branch on new item insertion */ 

if (mode =• XBRANCH) ( /* split branch, may even be root */ 
a - x -> xbufat + XHDRLEN; 
b dpg + XHDRLEN; 
npg "' dpg; 

/*recycle some variables .•. */ 

lf.status epg; 
lf.space = epg + X_SPCOFF; 
lf.pred = epg + X_PREDOFF; 

*(pg.status) = XBRANCH; 
*(lf.status) = XBRANCH; 
*(pg.space) = x -> xpgsize XHDRLEN; 
*(lf.space) = *(pg.space); 
*(pg.pred) = *(long *)(dpg + X_PREDOFF); 
*(lf.pred) = *(pg.pred); 

0 

http:newent.te


;'\ 
! : 

OCt 29 22:41 1986 sp1lt.c Page 4 

0 

k = x -> xpgfill I 100.0 * x -> xpgsize; 

I* copy PO ptr into new copy of 'left' page *I 
*(long *){b) = *(long *)(a); 
a += slzeof(long); 
b += sizeof(1ong); 
*(pg.space) -= sizeof(1ong); 
a= (char *)(*(ushort *)(a)); 
*(ushort *)(b) = XHDRLEN + sizeof(long) + sizeof(ushort); 
b +• sizeof(ushort); 
*(pg.space) -= sizeof(ushort); 
while (a I= (char *)(0)) { 

I* is it time to switch frames? *I 
j = sizeof(long) + sizeof{ushort); 
if (a== (char *)(MAGICLINK)) 

else 

I* worst case approx *I 
j += {newent.te_len >> 3) + 3 + sizeof(ushort); 

j += sepentlen(a); 

if ({x -> xpgsize- *(pg.space)) > k) ( 

I* time to switch *I 
npg = epg; 
b = epg + XHDRLEN; 
pg.status = lf.status; 
pg.space = lf.space; 

I* install new PO, hold S for parent *I 
if (a== (char *)(MAGICLINK)) 

i = newent.te len; 
c = newent.te:item; 

] 
else 

i 
c -

(int)(*(ushort *)(a)); 
a + sizeof(ushort); 

) 
upward.te len = i; 
for (j = 0; j < i; j++) 

*(upward.te_item + i) = *c++; 

if (a== (char *)(MAGICLINK}} 
*(long *)(b) = newent.te_ptr; 

else ( 
a+= sepentlen(a); 
*(long *)(b) =*(long *)(a); 
a += sizeof{long); 

} 
b += sizeof{long}; 
*(pg.space) -= sizeof(long); 
k = MAXINT; 
i (int}(b + sizeof(ushort)) - (int)(npg); 
*(ushort *)(b) = (ushort)(i); 

0 0 

http:upward.te
http:newent.te


0 () 
oat 29 22:41 1986 split.c Page 5 

b += sizeof(ushort); 
*(pg.space) -= sizeof(ushort); 

I* PO now established on new brother *I 
if (a== (char *)(MAGICLINK)) 

else 
a= (char *)(newent.te_bnext); 

a= (char *)(*(ushort *)(a)); 
continue; 

if (a== (char *)(MAGICLINK)) ( 

J 
else 

I* copy in new item *I 
*(ushort *)(b) = newent.te_len; 
b += sizeof(ushort); 
*(pg.space) -= sizeof(ushort); 
c = b; 
for (i = 0; i < newent.te_len >> 3; i++) 

*b++ *(newent.te item + i); 
j = ((j = (long)(c + i) & Ox3) ? (4 - j) : 0); 
for (i = 0; i < J; i++) 

*b++ = Oxff; 
*(pg.space) -= newent.te_len >> 3 + j; 
*(long *)(b) = s~tr; 
*(pg.s~ace) -= s1zeof(long); 
b += s1zeof(long); 
i e (int)(b + sizeof(ushort)) - (int)(npg); 
*(ushort *)(b) = (ushort)(i); 
*(pg.space) -= sizeof(ushort); 
b += sizeof(ushort); 

a= (char *)((unsigned long)(a) + (unsigned long)(x -> xbufat)); 
I* Ill don't copy offset pointerslll *I 
I* rather than correct "pred" .ptrs in child nodes 

during this pass, which would require this 
now incomplete page to have been written out 
to disk (to claim its space), finish the work 
in memory, then write out the complete page 
then do a second pass to update child pred pointers. 

*I 
k = *(ushort *)(a); 
last = a; 
*(ushort *)(b) = (ushort)(k); 
a+= sizeof(ushort); 
b += sizeof(ushort); 
*pg.space -= sizeof(ushort); 
sepat = b; 
for (i = 0; i < (k >> 3); i++) 

*b++ = *a++; 
j = ((j = (long)(sepat + k) & Ox3) ? (4- j) 0); 
for (i = 0; i < J; i++) 

*b++ = Oxff; 
b += k + j; 

http:newent.te
http:newent.te
http:newent.te


Oct 29 22:41 1986 split.c Page 6 

*pg.space -= k + j; 
a+= sepentlen(last); 
*(long *)(b) =*(long *)(a); 
a+= sizeof(long); 
b += sizeof(long); 
*pg.space -= sizeof(long); 
i = (int)(b + sizeof(ushort)) - (int)(npg); 
*(ushort *)(b) • (ushort)(i); 
b += sizeof(ushort); 
*pg.space -= sizeof(ushort); 

a= (char *)(*(ushort *)(a)); 
} I* end else copy from *a *I 

} I* end while not done *I 

I* After finished with new brother page, write it out to new address *I 
I* in file, then go back to its beginning and load each referenced *I 
I* child page to update the PRED ptr. Can cheat and try just writing *I 
I* the new long value at know offset into file, but this will read *I 
I* one disk block anyway *I 

if (flushpage(dpg,rptr -> fd,x -> xpgat,x -> xpgsize) == FAIL) ( 
db err(59,SPLIT,errno,"rewr dpg"); 
SPLBoMB 

if ((posn = lseek(rptr -> fd,OL,FROMEND)) .. == FAIL){ 
db_err( 56,SPLIT,errno,"add epg"); 
SPLBOMB 

if (flushpage(epg,rptr -> fd,posn,x -> xpgsize) 
db_err( 59,SPLIT,errno, "wr epg"); 
SPLBOMB 

) 

FAIL) { 

I* put "upward" S into parent unless this was the root *I 
if (*(x -> xbufat) == XROOT) ( 

if ((rpg = malloc(x -> xpgsize)) == (char *)(NULL)) 
db_err( 52,SPLIT,errno, 11rpg"); 
SPLOOt-18 
return(FAIL); 

pg.status = rpg; 
pg.space = (ushort *)(rpg + X_SPCOFF); 
pg.pred = (long *)(rpg + X_PREDOFF); 
*(pg.status) = XROOT; 
*(pg.space) = x -> xpgsize - XHDRLEN; 
*(pg.pred) = OL; 

a = rpg + XHDRLEN; 
*(long *)(a) = x -> xpgat; I* PO *I 
a+= sizeof(long); 
*(ushort *)(a) = a+ sizeof(ushort); 

0 () 



Oct 29 22:41 1966 split.c Page 7 

a +a sizeof(ushort); 
*(pg.space) -= sizeof(ushort); 
*(ushort *)(a) = upward.te_len; 
a+= sizeof(ushort); 
*(pg.space) -= sizeof(ushort); 
b = a; 
j = u~ward.te len >> 3; 
for (1 = 0; 1-< j; i++) 

*a++ = *(upward.te_item + i); 
i =((i = (long}(b + j) & Ox3) ? (4 - i) 0}; 
for (k = 0; k < i; k++) 

*a++ = Oxff; 
*(pg.space} -= j + i; 
*(long *)(a) = posn; 
*(pg.space) -= sizeof(long); 

I* new root generated; find place on disk *I 
if ((posn = lseek(rptr -> fd,OL,FROMEND}) 

db_err(56,SPLIT,errno,"new root"); 
free(rpg); 
SPLBOMB 
return (FAIL) ; 

FAIL) ( 

if (flushpage(rpg,rptr -> fd,posn,x -> xpgsize) == FAIL) ( 
db err(59,SPLIT,errno,"new root"); 
free(rpg); 

} 

SPLBOMB 
return(FAIL); 

I* now patch ptr to root in Xfb *I 
x -> rootpos = posn; 
free(rpg); 

else I* regular branch update *I 
upward.te_ptr = posn; 
pred = *(long *}(X -> xbufat + X_PREDOFF); 
if (upd_parent(upward,pred,x) == FAIL) ( 

db_err(6l,SPLIT,errno,"upd parent"); 
SPLBOMB 
return( FAIL); 

I* now update the "pred" ptrs in children whose predecessor *I 
I* has now moved to brother node *I 
b = epg + XHDRLEN; 
if (lseek(rptr -> fd,*(long *)(b},FROMTOP) 

db_err( 56,SPLIT ,errno, "lost child"); 
FAIL) ( 

) 
else if(write(rptr -> fd,&posn,sizeof(long)) != sizeof(long)){ 

db_err(59,SPLI'l',errno,"child pred upd"}; 

• 

http:upward.te
http:upward.te


f"'., 

Oct 29 22:41 1986 split.c Page 8 

0 

} 
b += sizeof(long); 
b = (char *)(*(ushort *)(b)); 
while (b != (char *)(0)) { 

if (lseek(rptr -> fd,*(long *)(b),FROMTOP) == FAIL){ 
db err(56,SPLIT,errno,"lost child"); 

1 -
else if(write(rptr -> fd,&posn,sizeof(long)) != sizeof(long))( 

db_err( 59,SPLIT,errno, "child pred upd"); 
J ' 

] 
b = (char *)(*(ushort *)(b)); 

J I* end if s~litting branch page *I 
else { I* spl1tting leaf page *I 

pred = OL; 
npg = dpg; 
thispg = x -> lpgat; 
k = x -> lpgfill I 100.0 * x -> lpgsize; 
*(lf.status) = XLEAF; 
*(lf.space) = x -> lpgsize - XLFHDRLEN; 
a = x -> lbufat + *(ushort *)(x -> lbufat + L_FLEOFF); 
c = dpg + L_FLEOFF; 
*(ushort *)(c) = XLFHDRLEN; 
j = rptr -> width; 
i = ((i = (long)(dpg + XLFHDRLEN + j) & Ox3) ? (4 - i) 
b = dpg + XLFHDRLEN + i; 
*(ushort *)(c) += i; 
*(lf.space) -= 1; 
do ( 

I* time to switch frames? *I 
if ((pgsize - *lf.space) > k) { I* s:w *I 

if ((pred = lseek(rptr -) fd,OL,FROMEND)) 
db_err(S6,SPLIT,errno,"new lf"); 
SPLBOMB; 
return (FAIL) ; 

1 

0); 

FAIL) ( 

I* "fired" is disk addrs of new leaf page *I 
I* f1rst, fix last ptr already copied to point at *I 
I* this new page, then copy the rest *I 
c = b- sizeof(long); 
last = b - sizeof(long) - j; I* addrs of last tpl on old pg *I 
lf.status = epg; 
lf.space = (ushort *)(epg + L_SPCOFF); 
lf.pred = (long *)(epg + L_PREDOFF); 
*(lf.status) = XLEAF; 
*(lf.space) =X-> lpgsize- XLFHDRLEN; 
*(lf.pred) = *(long *)(X-> lbufat + L_PREDOFF); 
b = epg + L_FLEOFF; 
*(ushort *)(b) = *{ushort *)(dpg + L SPCOFF); 
I* this [j]ONLY works with fixed width tuples */ 
b = epg + *(ushort *)(epg + L_FLEOFF); 
*(long *)(c) = (long)(b- epg) + pred; 
k = MAXINT; 
thispg = pred; 

0 0 



0 
oct 29 22:41 1986 sp1it.c Page 9 

npg - epg; 
first = b; /* addrs of first tpl on new page */ 

for (i - 0; i < j; i++) 
*b++ = *a++; 

*(lf.space) -= j; 
posn • *{long *){a); 
l = {(i = (long)(b + sizeof(long) + j) & Ox3) ? (4 - i) : 0); 
*(long *)(b) = (long)(b + sizeof(long) + i -npg) + thispg; 
a+= sizeof(long); 
b += sizeof(long); 
*(lf.space} -= sizeof(long); 

} while ((posn < x -> lpgat + x -> lpgsize) && (posn > x -> lpgat)); 
I* write out the new leaves */ 

if (flushpage(dpg,rptr -> fd,x -> lpgat,x -> lpgsize) == FAIL) ( 
db_ err( 59, SPLIT,errno, "upd old"); 
SPLBOMB 
return(FAIL); 

if (flushpage(epg,rptr -> fd,pred,x -> lpgsize) == FAIL) { 
db_err(59,SPLIT,errno,"upd new"); 
SPLBOMB 
return(FAIL); 

/* now generate (s,p) entry to put into parent page */ 
I* "pred" is disk address of the new entry; use mksep() */ 
I* to determine new separator */ 

upward.te_ptr = pred; /* disk ptr to this new page */ 

/* need space for separator: scribble on dpg */ 

if ( ( i = mksep(rptr,last,first,dpg)) ==FAIL) { 
db_err(66,SPLIT,-1, "mksep fail"); 
SPLBOMB 
I* at this point, some recovery action should be */ 
I* undertaken, eg. to restore the now split pg */ 
/* to its original form, and report that the split */ 
/* failed, signalling to insert that the requested */ 
I* insertion could not be done, but the integrity */ 
I* of the relation is not lost */ 

return( FAIL); 

/* install (s,p} into parent */ 

if (upd_parent(rptr,upward,*(lf.pred),x) FAIL) 
db_err( 68,SPLIT,-1, "upd parent"); 
SPLBOMB 
/* same remarks as above re. recovery*/ 

• 



Oct 29 22:41 1966 split.c Page 10 

1 

SPLBOMB 

return(SUCCESS); 

return(FAIL); 

/* ================= GOT TO HERE: NEW VERSION ======================== */ 

0 0 0 



~ • 
Oct 29 22:41 1986 split.c Page 11 

int upd_parent(rptr,sp,parent,x) 
REL *rptr; 
Bentry sp; 
long parent; 
Xfb *x; 
( 

extern int errno; 
register int 1=0; 
register char *a,*b; 
register long son; 
register ushort *space; 
register int j; 
char *ppg,*xpg,*sepat,*malloc(),*goesafter,nodemode=XBRANCH; 
int sepentlen(),didsplit=O; 
long posn,oldxpgat; 

if (parent == OL) 
return(FAIL); 

I* get workspace for parent page *I 
if ((ppg = malloc(x -> xpgsize)) == (char *)(NULL)) ( 

db_err(S2,UPD_PAREN,errno 1 "ppg"); 
return(FAIL); 

getparent: 
if (loadpage(rptr -> fd,x,ppg,parent) == FAIL) { 

db_ err( 60,UPD_PAREN,errno, "get parent"); 
free(ppg); 

) 
return(FAIL); 

I* find entry in parent for curpg *I 
a = ppg + XHDRLEN; 
son = x -> xpgat; 

I* treat PO as a special case *I 
if (*(long *)(a) 

++i; 
son) 

) 
else 

goesafter = a; 

a +=sizeof(long); 
a= (char *l(*(ushort *)(a)); 
if (a== (char *)(0)) 

else ( 
--i; 

I* construct below required because the compiler *I 
I* is too FB to add two IDENTICALLY typed items *I 
I* note, however, that it **will** let you subtract them *I 
a= (char *)((unsigned long)(a) + (unsigned long)(ppg)); 
goesafter = a; 



Oct 29 22:41 1986 split.c Page 12 

a+= sepentlen(a); 

while( I i) ( 

if (i > 
else { 

if (*(long *)(a) == son) 
++i; 

else ( 
a +=sizeof(long); 
a= (char *)(*(ushort *)(a)); 
if (a== (char *)(0)) 

else { 
--i; 

a= (char *)((unsigned long)(a) + (unsigned long)(ppg)); 
goesafter = a; 
a += sepentlen(a); 

0) I* found it *I 
a+= sizeof(long); I* pt at offset to use in linking *I 

I~ error: not found *I 
db_err(29,UPD_PAREN,-l,"no P"); 
free(ppg); 
return(FAIL); 

I* is there space for the new entry? *I 
= (sp.te len >> 3) + 3; 
+= sizeot(long} + sizeof(ushort} << 1; 

f (i < (int)(*(ushort *)(ppg +X SPCOFF))) {I* insert now *I 
I* put the code here for now .•. change the inequality and *I 
I* move this to after the if later on *I 
I* PAGES MUST NOT HAVE HOLES ! *I 
space= (ushort *)(ppg + X_SPCOFF); 
b = ppg + *space; 
*(ushort *)(b) = sp.te_len; 
b += sizeof(ushort); 
*space-= sizeof(ushort); 
sepat = b; I* don't move this line *I 
for (i = 0; i < sp.te len >> 3; i++) 

*b++ = *(sp.te item+ i); 
j = ((j = (long)(sepat-+ i) & Ox3) ? (4- j) : 0); 
for (i = 0; i < J; i++) 

*b++ • Oxff; 
*space -• j + (sp.te_len >> 3); 
*(long *)(b) = sp.te ptr; 
*space-= sizeof(long); 
b += sizeof(long); 
*(ushort *)(b) • *(ushort *)(a); 
*space -• sizeof(ushort); 
*(ushort *)(a) = (ushort)((sepat - sizeof(ushort)) ppg); 

I* new entry linked into list on the page ... done! *I 

0 0 



0 
Oct 29 22:41 1986 split.c Page 13 

I* write out updated parent page *I 
if ((i = flushpage(ppg,rptr -> fd,parent,x -> xpgsize)) 

db_err(59,UPD_PAREN,errno, "upd parent"); 
FAIL) 

J 
else 

free(ppg); 
if (didsplit) free(xpg); 

return((! == FAIL) ? FAIL : SUCCESS); 

I* no room at the inn *I 
if (didsplit) ( I* something's very wrong *I 

db_err(30,UPD_PAREN,-l,"parent"); 
free(ppg); free(xpg); 
return (FAIL) ; 

I* fake parms for recursive call to split *I 
if ((xpg = malloc(x -> xpgsize)) == (char *)(NULL)) 

db_err(52,UPD_PAREN,errno,"xpg cache"); 
free(ppg); 

J 
return(FAIL); 

sepat = a; 
a = xpg; 
b = x -> xbufat; 
j = x -> xpgsize; 
for (i = 0; i < j; 1++) 

*a++ = *b++; 
a = x -> xbufat; 
b - ppg; 
for (i = 0; i < j; 1++) 

*a++ = *b++; 
oldxpgat = x -> xpgat; 
x -> xpgat = parent; 
~sn = -(((long)(goesafter- ppg) + oldxpgat) - 21); 
1f (split(rptr,&(sp.te_item),posn,nodemode,sp.te_ptr) 

db_err( 68,UPD_PAREN,-1, "split"); 
free(ppg); free(xpg); 
return(FAIL); 

J 
++didsplit; 
I* now have to re-load the child page to pick *I 
I* up its new predecessor pointer (may be same *I 
x -> xpgat = oldxpgat; 
if (loadpage(rptr -> fd,x,x -> xbufat,x -> xpgat) 

db_err(60,UPD_PAREN,errno, "get gparent"); 
free(ppg); free(xpg); 
return(FAIL); 

J 
parent = *(long *)(x -> xbufat + X_PREDOFF); 
goto getparent; 

FAIL){ 

FAIL) ( 

• 

http:split(rptr,&(sp.te


0 
0 
rt 

0 N 
~) 

"' j 
~ 
11\J 

""' 1-' 

1-' 

"' c:o 
~ 

(Jl 

'tl 
1-' ..... 
rt 

0 

'0 
$11 

IQ 
(11 

1-' 
,;. 

0 ) 

c ) 



. o 
Aug 25 15:21 1986 substr.c Page 1 

Jinclude "mrds.h" 

char *substr(s,z,b,t) 
char *s,*z; 
int t,b; 

register char *ptr = z; 
flifdef XTRACE 
fprintf(stdout, "--> substr( I %s 1, *z, %d, %d\n" ,s,b, t); fflush(stdout); 
#end if 

if (t <= 0 11 t > (MAXSUBSTR- 1)) 
( 

db_err(64,11,-1,ptr); 
return(NULL); 

for ( ; t > 0; t--,b++) 
*ptr++ = *(s + b); 

*ptr = NULLC; 
#ifdef XTRACE 
fprintf(stdout, "<-- substr( I %s l\n",z) ;fflush(stdout); 
#end if 

return(z); 

• 



Nov 5 00:08 1986 syncrel.c Page l 

finclude "mrds.h" 

int syncrel() 

extern int errno; 
extern DBSTATUS sys db; 
extern REL relcoreiT; 
extern DOM domcore[]; 
extern RD rdcore[); 
extern char inbufr[]; 
extern struct rstat sysrelstat; 
register int i,fd; 
register long size; 
long relsize,domsize,rdsize; 
int open(),close(),write(),logent(); 
int retval = 0; 
char *malloc(); 

Ufdef XTRACE 
fprintf(stdout, "--> syncrel( )\n"); fflush(stdout); 
lend if 

/* write out ~rel' entries */ 
sprintf(inbufr,"%s.rel",sys db.dbs homedir); 
if ((fd open(inbufr,WRITMDDE)) =~FAIL) ( 

relsize 
domsize 
rdsize 

db_err(Sl,SYNCREL,errno,inbufr); 
retval I= 4; 

RELWIDTH * sysrelstat.numrelents; 
DOMWI~rH * sysrelstat.numdoments; 
RDWIDTH * sysrelstat.numrdents; 

size relsize; 
relcore(O].cursize size; 
if (!(retval & 4)) 

if ((i = write(fd,relcore,(int)(size))) 
sprintf(inbufr,"%d:%d",size,i); 
db err(54,SYNCHEL,errno,inbufr); 
close(fd}; 
retval I= 4; 

close( fd); 

/* write out ~dom' entries */ 
sprintf( inbufr, "%s .dom" ,sys_db.dbs_homedir); 
if ((fd = open(inbufr,WRITMODE)) ==FAIL) { 

db_err(Sl,SYNCREL,errno,inbufr); 
retval I= 2; 

size domsi:z.e; 
if (!(retval & 2)) 

(int)(size)) ( 

0 0 



0 0 
Nov 5 00:08 1986 syncrel.c Page 2 

if ( ( i = write(fd,domcore,(int)(size))) != (int)(slze)) { 
sprintf(inbufr,"%d:%d",size,l); 
db err(54,SYNCREL,errno,inbufr); 
close(fd); 
retval I= 2; 

close(fd); 

/* write out 'rd' entries */ 
sprintf(inbufr,"%s.rd",sys_db.dbs_homedir); 
if ((fd = open(inbufr,WRITMODE)) ==FAIL) [ 

db err(Sl,SYNCREL,errno,inbufr); 
retval I= 1; 

size rdsize; 
if (I (retval & 

if ((i 
l)) 

write(fd,rdcore,(int)(size))) != 
sprintf ( inbufr, "%d: td", size, i); 
db_err(S4,SYNCREL,errno,inbufr); 
close( fd); 
retval I= 1; 

close( fd); . 
if (fplog) ( 

logent( "CI.OSED" ,sys_db.dbs_name); 
fclose(fplog); 

} 
Ufdef X'l'RACE 
fprintf(stdout,"<-- syncrel()\n");fflush(stdout); 
#end if 

return(retval ? -retval : SUCCESS); 

(int)(size)) { 

0 

http:inbufr,"%s.rd


-~ I . ' 

Aug 25 15:21 1986 timer.c Page 1 

#include "mrds.h" 

long timer() 

{ 
#ifdef BSD 

tend if 

struct timeval tp,*tptr; 
struct timezone tzp,*tzptr; 
int gettimeofday(); 

fi fdef OLDUIUX 
long time() ; 

fend if 

lifdef BSD 
tptr = &tp; tzptr = &tzp; 
gettimeofday(tptr,tzptr); 

iifdef XTRACE 
fprintf(stdout,"time = %d\n",tp.tv_sec); 
lend if 

return(tp.tv sec); 
lendif -

Jifdef OLDUNIX 
return(time(O)); 

fend if 

(~ 

0 

http:return(tp.tv


0 
Aug 25 15:21 1966 wrpage.c Page 1 

linclude "mrds.h" 

int wrpage(fd,ptr,len) 
int fd; 
long *ptr; 
long len; 

extern int errno; 
register int i,j; 
register long pos; 
int read(),openrel(),db_err{); 
long lseek(); 
char leaf, *buf; 

fifdef XTRACE 
fprintf(stdout,"--> wrpage(%d,X%lx,%ld)\n",fd,ptr,len); 
fflush(stdout); 
tend if 

I* if (lrptr) return (FAIL); *I 

0 

I* conservatism since lseek check should catch this error *I 
if ((ptr < OL) 11 (ptr > rptr -> cursize)) {I* ptr not within rel *I 

db_err(BS,WRPAGE,-l,rptr -> relname); 
return( FAIL); 

I* could add check to assure 'pos' is on a page boundary here *I 
I* go to that page *I 
if ((pos = lseek(fd,ptr,FROWrDP)) != ptr) ( 

db_err(60,WRPAGE,errno,rptr -> relname); 
return(FAIL); 

if ((i ~ write(fd, leaf, 1) != 1)) ( 
db_err(60,WRPAGE,errno,rptr -> relname); 
return(FAIL); 

if ((pos = lseek(rptr -> fd,-lL,FROMCUR)) I= ptr) (I* cannot happen *I 
db_err(60,WRPAGE,errno,rptr -> relname); 
return(FAIL); 

leaf &= XLFPG; 
if (leaf) I* is a leaf page *I 

buf = x -> lbufat; 
else 

buf x -> xbufat; 

j = (leaf ? x -> lpgsize : x -> xpgsize); 

• 



Aug 25 15:21 1986 wrpage.c Page 2 

if ((i = read(rptr -> fd, buf, j)) != j) { 
db_err(60,WRPAGE,errno,rptr -> relname); 
return(FAIL); 

/* no pointers to update: rindx should only point at tuples */ 

#ifdef XTRACE 
fprintf(stdout,"<-- rdpage(size = %d, leaf = %d)\n",i,(leaf ? 1 : 0)); 
fflush(stdout); 
lend if 

return((int)(leaf)); 

0 0 0 



0 
Aug 27 11:17 1986 wrtuple.c Page 1 

llinclude "mrds.h" 

int wrtuple(rptr,from) 
REL *rptr; 
char *from; 

extern int errno; 
register int i; 
register long pos; 
int read(); 
long lseek () ; 

11 ifdef XTRACE 
fprintf(stdout,"--> wrtuple(%s,X%lx)\n",rptr -> relname,from); 
fflush(stdout); 
lend if 

if (lrptr) return (FAIL); 

if (rptr -> mode & WRINH) ( 
db_err(S9,WRTUPLE,-l,rptr -> relname); 
return (FAIL) ; 

/* conservatism since lseek check should catch this error */ 

if (rptr -> windx > rptr -> maxsize) { 
db_err(85,WRTUPLE,-l,rptr -> relname); 
return( FAIL); 

/* appending or overwriting? check if overwriting allowed */ 

if ((rptr -> windx < rptr -> cursize) && (rptr ->mode & APONLY)) 
db_err(59,WRTUPLE,-l,rptr -> relname); 
return( FAIL); 

if (rptr -> fd == FAIL) /* file holding rel not open yet */ 
if ((rptr -> fd • openrel(rptr,O_RDWR)) ==FAIL) { 

db_err(Sl,WR'rUPLE,-l,rptr -> relname); 
return(NULL); 

J 
else (/* may be open, but for reading only: reopen as RDWR */ 

closerel(rptr); 
if ((rptr -> fd = openrel(rptr,O_RDWR)) FAIL) 

db_err(Sl,WHTUPLE,-l,rptr -> relname); 
return(NULL); 

if ((pos = lseek(rptr -> fd, rptr -> windx,FROMTOP)) 
db_err(60,WRTUPLE,errno,rptr -> relname); 
return(FAIL); 

rptr -> windx) ( 

• 



~ 
I ' 

Aug 27 11:17 1986 wrtuple.c Page 2 

if ((i write(rptr -> fd, from,(int)(rptr -> width))) != (int)(rptr -> width))( 
db err(60,WRTUPLE,errno,rptr -> relname); 
rptr -> windx = pos; /*reset to tuple start */ 
return(FAIL); 

I* write succeeded */ 
rptr -> windx += (long)(rptr ->width); 
/* if appended, then file grew */ . 
if (rptr -> windx == rptr -> cursize + (long)(rptr -> width)) 

rptr -> cursize = rptr -> windx; 

tifdef XTRACE 
fprintf(stdout,"<-- wrtuple(width = %d)\n",rptr ->width); 
fflush( stdout); 
lend if 

return(i); 

0 0 0 



.o 
Aug 25 15:21 1986 yesno.c Page 1 

int yesno(string) 

char *string; 

while (*string) ( /* wh}le not end of string */ 
if (*string== 'Y' I *string =='y') return(2); 
else if(*string =='N' 11 *string== 'n') return(!); 

else ++string; 
J 
return(O); 

0 • 



0 (\ 

Oct 29 22:52 1986 z.c Page 1 

finc1ude "mrds.h" 

int z(rptr,fromZmap,toZmap,tplptr) 
REL *rptr; 
long fromZmap; 
long toZmap; 
char *tplptr; 

extern char inbufr (]; 
extern int errno,rdents; 
register int i,j,k; 
register long n; 
char *getuple(),*mal1oc(),pdomlist[MAXDOMS][MAXDNMLEN],mode,*work,*tpl; 
char bitmask,*gtpl,*wtpl; 
int adtuple(),strcmp(),closerel(),openrel(),attcount[MAXATTS); 
int zatts=O,newzatts=O,goodadts=O,werr=O,numz,numnz,numnewz,numnewnz; 
int domlens[MAXATTS]; 
unsigned restoreclist(),freeclist(),freel1ist(); 
ZCLIST *mkwrklist(); 
long timer(),readat,writeat,zbits=OL,newzbits=OL; 
long etime,now,deltatm; 
RD *rds[MAXATTS],*findrd(); 
DOM *finddom(),*dptr; 
ZCLIST *zptr,*ztmp,*newzptr; 
ZCLIST *newztmp; 
ZLLIST *nzptr,*nztmp; 
ZLLIST *newnzptr,*newnztmp; 
Zslot *zsp; 

H fdef XTRACE 
fprintf(stdout,"--> z(ts,<map:%lxX,>map:%lxX,%lXX)\n",rptr->relname,fromZmap,toZmap,tplptr); 
fflush(stdout); 
lend if 

if (fromZmap == toZmap) 
return(SUCCESS); /* fast way to do them */ 

numz numnz = 0; 
numnewz = numnewnz = 0; 

/* find slot for this relation */ 

zsp (Zslot *)(NULL); 
for (i = 0; i < ZSLOTS; i++) 

if (zslot[i].zrptr == rptr && 
zslot[i] .frommap == fromZmap && 
zslot[i].tomap == toZmap) { 

zsp = &zslot[i]; 
zslot[i].zactime =timer(); 
break; 

Ufdef XTRACE 
if (zsp (Zslot *)(NULL)) 
fprintf(stdout,"ZZZ:\tneed new slot for %s\n",rptr->relname); 
else 

0 0 



0 
Oct 29 22:52 1986 z.c Page 2 

fprintf(stdout,"ZZZ:\tusing previous slot %d\n",i); 
fflush(stdout); 
tend if 

if (zsp (Zslot *)(NULL)) { I* LOTS of work to dol *I 
I* get rd and dom particulars *I 
if ((findrd(rptr -> relname,(char *)(O),O,rds)) (RD *)(NULL)) 

return (FAIL) ; 
for (i = 0; i < rdents; i++) 

if ((dptr = finddom(rds(i] -> domname)) (DOM *)(NULL)) 
db_err(79,Z_ORD,-l,rds[i] -> domname); 
domlens{i] = 0; 

) 
else domlens(i] = dptr -> len; 

I* find least recently used slot *I 
deltatm = OL; now= timer(); etime = OL; 
for (i = 0; i < ZSLOTS; i++) 

if ((deltatm =now- zslot[i].zactime) > etime) ( 
etime = deltatm; 
zsp = &zslot[i]; 

I* begin loading this slot *I 
zsp -> zrptr rptr; 
zsp -> tomap = toZmap; 
zsp -> frommap = fromZmap; 
zsp -> zrdents = rdents; 

I* free previous slot occupant's lists *I 
freeclist(zsp -> fromz); freeclist(zsp -> 
freeclist(zsp -> wkfrom); freeclist(zsp -> 
freellist(zsp -> froml); freellist(zsp -> 
free(zsp -> tbuf); 

toz); 
wkto); 
tol); 

zsp -> fromz = (ZCLIST *)(0); 
zsp -> wkfrom = (ZCLIST *)(0); 
zsp -> froml = (ZLLIST *)(0); 

zsp -> toz = (ZCLIST *)(0); 
zsp -> wkto = (ZCLIST *)(0); 
zsp -> tol = (ZLLIS'l' *)(0); 

I* build circular and linked lists if needed *I 
if (fromZmap) /* if there are now z-ordered domains *I 

for (i = 0; i < zsp -> zrdents; i++) · 
if (zsp -> frommap & (lL << i)) {/*circular list entry*/ 

if (zsp -> fromz) { /* attach another entry */ 
if ((ztmp = (ZCLIST *)(malloc(sizeof(ZCLIST)))) 

db_err(53, Z_ORD,errno,"zattrdnnd"); 
++werr; 
goto zbomb; 

) 
zptr -> pext ztmp; 
ztmp -> prev = zptr; 

• 

NULL) ( 



Oct 29 22:52 1986 z.c Page 3 

J 
else 

J 

J 
else 

zsp -> fromz -> prev = ztmp; 
ztmp -> next = zsp -> fromz; 
zptr = ztmp; 

I* make first entry into list *I 
if ((zsp -> fromz = (ZCLIST *)(malloc(sizeof(ZCLIST)))) 

db_err(53,Z_ORD,errno,"zattrnd"); 

J 

J 
zsp -> 
zsp -> 
zptr = 

++werr; 
goto zbomb; 

fromz -> next zsp -> fromz; 
fromz -> prev = zsp -> fromz; 
zsp -> fromz; 

zptr -> numzbits = (long)(domlens{i]) << 3L; 
zptr -> outposn ~ (long)(rds[i] -> pos) << 31; 
zbits += zptr -> numzbits; 
++numz; 

I* linked list entry *I 
if (zsp -> froml) { I* attach another item *I 

J 
else 

if ((nztmp = (ZLLIST *)(malloc(sizeof(ZLLIST)))) 
db_err(53,Z_ORD,errno,"nzattrnnd"); 
++werr; 

J 
goto zbomb; 

nztmp -> next = nzptr -> next; 
nzptr -> next = nztmp; 

I* make first entry *I 

NULL) { 

if ((zsp -> froml = (ZLLIST *)(malloc(sizeof(ZLLIST)))) 
db_err( 53, Z_ORD, errno, "nzattrnd"); 
++werr; 

J 
goto zbomb; 

nzptr = zsp -> froml; 

} 
nzptr -> next = (ZLLIST *)(0); 

nzptr -> tounz = rds[i] -> pos; 
nzptr -> fromz = i; 
++numnz; 

zsp -> fromzbits = zbits; 

I* build circular and linked lists if needed for new tuples *I 
if (zsp -> tomap) 

for (i = 0; i < rdents; i++) 

NULL) { 

NULL) { 

if (zsp -> tomap & (lL << i)) { I* circular list entry *I 
if (zsp -> toz) { I* attach another entry *I 

if ((newztmp = (ZCLIST *)(malloc{sizeof(ZCLIST)))) ==NULL) ( 
db err(5J,Z ORD,errno,"newzatnnd"); 
++werr; -
goto zbomb; 

} 
newzptr -> next = newztmp; 

0 0 



0 0 
Oct 29 22:52 1986 z.c Page 4 

) 
else 

newztmp -> prev = newzptr; 
zsp -> toz -> prev = newztmp; 
newztmp -> next = zsp -> toz; 
newzptr = newztmp; 

I* make first entry in circular list */ 
if ((zsp -> toz = (ZCLIST *)(malloc(sizeof (ZCLIST)))) == NULL) { 

db_err(53,Z_ORD,errno,"newzathd"); 

] 
else 

1 

++werr; 
goto zbomb; 

} 
zsp -> toz -> next = zsp -> 
zsp -> toz -> prev = zsp -> 
newzptr = zsp -> toz; 

toz; 
toz; 

newzptr -> numzbits = (long)(domlens[i]) << 3L; 
newzptr -> outposn = (long)(rds[i] -> pos) << 3L; 
newzbits += newzptr -> numzbits; 
++numnewz; 

I* linked list entry *I 
if (zsp -> tol) { I* attach another entry *I 

if ((newnztmp = (ZLLIST *)(malloc(sizeof(ZLLIST)))) 
db_err(53,Z_ORD,errno, "newnz"); 

== NULL) ( 

1 

} 
else 

} 

++werr; 

) 
¥ goto zbomb; 

newnztmp -> next = newnzptr -> next; 
newnzptr -> next = newnztmp; 

I* make fist linked list entry *I 
if ((zsp -> tol = (ZLLIST *)(malloc(sizeof(ZLLIST)))) 

db_err(53 ,Z_ORD,errno, "newnzhd"); 
++werr; 

) 
goto zbomb; 

newnzptr = zsp -> tol; 
newnzptr -> next= (ZLLIST *)(0); 

newnzptr -> tounz rds[i] -> pos; 
newnzptr -> fromz = i; 
++numnewnz; 

zsp -> tozbits = newzbits; 

I* now go through nzlist and fix up ~from z' values *I 
nzptr = zsp -> froml; 
~ = 0; 
J = 0; 
k (int)(zbits >> 3L); I* remainders?????? *I 
while ( nzptr) { 

i = nzptr -> fromz; 
nzptr -> fromz = j + k; 
j += domlens(i); 
nzptr = nzptr -> next; 

== NULL) ( 

• 



Oct 29 22:52 1986 z.c Page 5 

~ewn~ptr = zsp -> tol; 
1 = J = 0; 
while (newnzptr) { 

i = newnzptr -> fromz; 
newnzptr -> fromz = j + k; 
j += domlens(i1; 
newnzptr = newnzptr -> next; 

I* get work buffer for tuples */ 

if ((zsp -> tbuf = malloc((int)(rptr -> 
db_err(53,Z_ORD,errno, "zwork"); 
++werr; 

width))) ==NULL) ( 

1 
goto zbomb; 

wtpl = zsp -> tbuf; 
for (i = 0; i < rptr -> width; i++) *(wtpl + i) = NULLC; 

/* make working cppy of zolists */ 

if (zsp -> frommap) /* if any tuples now in z order */ 
if ((zsp -> wkfrom = mkwrklist(numz)) == (ZCLIST *)(0)) 

db_err(53,Z_ORD,errno,"wzat"); 
++werr; 

} 
goto zbomb; 

if (zsp -> tomap) 
if ((zsp -> wkto = mkwrklist(numnewz)) 

db_err(53,Z_ORD,errno,"newwzat"); 
++werr; 

== (ZCLIST *)(0)) ( 

goto zbomb; 

1 /* if have to add rel to new slot */ 

I* make sure not trying to change z map mid-relation */ 
if (toZmap I= zsp -> tomap) 

db_err(87,Z_ORD,-l,rptr -> relname); 

if {zsp -> frommap) 
restoreclist(zsp -> fromz,zsp -> wkfrom,(short)(l)); 

if (zsp -> tomap) 

gtpl = 
wtpl = 
for (i 

restoreclist(zsp -> toz,zsp -> wkto,(short)(O)); 

tplptr; 
zsp -> tbuf; 
= O; i < rptr -> width; i++) *(wtpl + i) = NULLC; 
if (zsp -> frommap)( I* must unshuffle */ 

zptr = zsp -> wkfrom; 
for (n = OL; n < zsp -> fromzbits; n++) ( /* 

bitmask = (*gtpl & (char)(lL << (n % 
ztmp = zptr; 
while (I zptr -> numzbits) ( 

for all participating bits */ 
8L)) ? 1 : 0); 

0 0 



• 
act 29 22:52 1986 z.c Page 6 

J 

zptr = zptr -> next; 
if (zptr == ztmp) 

break; I* should never happen; flakey *I 
bitmask = bitmask << (zptr -> out~sn% BL); I* put bit in its place *I 
*(wtpl + (zptr -> outposn I BL)) J= bitmask; 

llifdef XTRACE 
fprintf(stdout,"ZZZ: unbitmask = 

bitmask,zptr->outposn); 
fflush(stdout); 

tx using bit to posn %d\n", 

fend if 

I* 

--czptr -> numzbits); 
++(zptr -> outposn); 
zptr = zptr -> next; 
if (!((n + 1) % BL)) ++gtpl; 

I* now must reposition any unshuffled bits *I 
if (rptr -> mode & PZREL) ( 

J 

nzptr = zsp -> from!; 
for (i = 0; i < zsp -> zrdents; i++) 

if ((-(zsp -> frommap)) & (lL << i)) ( I* ith attr not in zatts *I 
I* where to put it *I 
wtpl = zsp -> tbuf + nzptr -> tounz; 
I* where from *I 
gtpl = tp1ptr + nzptr -> fromz; 
for (j = 0; j < domlens(i]; j++) 

*(wtpl +j) = *(gtpl + j); 
nzptr = nzptr -> next; 

restoreclist(zattrlist,wzattrlist,(short)(1)); *I 

I* tuple is now completely unshuffled; is there shuffling to do? *I 
if (zsp -> tomap) { I* shuffling to do *I 

gtpl = tplptr; 
wtpl = zsp -> tbuf; 
if (zsp -> frommap) I* if unshuffling happened *I 

for (i = 0; i < rptr -> width; i++) 
* ( gtp1 + i ) = * ( wtp1 +. i ) ; 

for (i = 0; i < rptr -> width; i++) *(wtpl + i) = NULLC; 

newzptr = zsp -> wkto; 
zptr = zsp -> toz; 
for (n = OL; n < zsp -> tozbits; n++) { I* for all pariticpating bits *I 

newztmp = newzptr; 
ztmp = zptr; 
while {newzptr -> numzbits >= zptr -> numzbits) { I* flakey *I 

newzptr = newzptr -> next; 

) 

zptr = zptr -> next; 
if (newzptr == newztmp) break; 

bitmask = ((*(gtpl + (newzptr -> outposn >> 31)) & 

• 



Oct 29 22:52 1986 z.c Page 7 

Ufdef XTRACE 

((char)(lL << newzptr -> numzbits % 8L))) ? 1 
bitmask = bitmask << (n % BL); 

*(wtpl + n I BL) I= bitmask; 

fprintf(stdout,"ZZZ: bitmask a %x using 
bitmask,newzptr->outposn); 

fflush(stdout); 

bit from posn %d\n", 

fend if 
++(newzptr -> numzbits); 
++(newzptr -> outposn); 
newzptr a newzptr -> next; 
zptr = zptr -> next; 

I* now reposition attributes not in z order *I 
if (rptr -) mode & PZREL) ( 

0); 

newnzptr = zsp -> tol; 
for (i = 0; i < rdents; i++) I* this attr not in newzatts *I 

if ( -(zsp -> frommap) & (lL << i)) ( 
I* where it goes *I 

I* 

zbomb: 

) 

wtpl = zsp -> tbuf + newnzptr -> fromz; 
I* where it is from *I 
gtpl = tplptr + newnzptr -> tounz; 
for (j a 0; j < domlens[i); j++) 

*(wtpl + j) = *(gtpl + j); 
newnzptr = newnzptr -> next; 

restoreclist(newzattrlist,newwzattrlist,(short)(O)); *I 

I* tuple ready to be added to output from 'work' *I 
wtpl = zsp -> tbuf; 
gtpl = tplptr; 
for (i = 0; i < rptr -> width; i++) 

*(gtpl + i) a *(wtpl + i); 

I*J UNMATCHED!!!!!! *I 
I* close up shop *I 
I* release dynamically allocated storage *I 
if (werr) { 

freeclist(zsp -> frornz); 
freeclist(zsp -> toz); 
freeclist(zsp -> wkfrom); 
freeclist(zsp -> wkto); 
freellist(zsp -> from!); 
freellist(zsp -> tol); 
free(zsp -> tbuf); 
werr = 0; 

} 
else ++werr; 

0 0 0 



() 
oct 29 22:52 1986 z.c Page 8 

fifdef X'l'RACE 
fprintf(stdout,"<-- z(%d)\n",(werr? werr FAIL)); fflush(stdout); 
fendif 

return(werr ? werr : FAIL); 

J /* end z */ 



Nov 5 01:09 1986 Z.c Page 1 

#include "mrds.h" 

int Z(rptr,map,rds,out) 
REL *rptr; 
long map; 
RD *rds[ 1; 
char *out; 

extern char inbufr [); 
extern int errno,rdents; 
register int i,j,k; 
register long n; 
char *getuple(),*malloc(),pdomlist[MAXDOMS)[MAXDNMLEN],mode,*work,*tpl; 
char bitmask,*gtpl,*wtpl; 
int adtuple(),strcmp(),closerel(),openrel(),attcount[MAXATTS]; 
int zatts=O,newzatts•O,goodadts=O,werr=Otnumz,numnz,numnewz,numnewnz; 
int domlens[MAXATTS]; 
unsigned restoreclist(),freeclist(),freellist(); 
ZCLIST *mkwrklist(); 
long readat,writeat,zbits=OL,newzbits=OL; 
DOM *finddom(),*dptr; 
REL *mkrel(),*outrel; 
ZCLIST *zattrlist,*zptr,*ztmp,*wzattrlistt*newzattrlist,*newzptr; 
ZCLIST *newztmp,*newwzattr1ist; 
ZLLIST *nzattrlist,*nzptr,*nztmp,*wnzattrlist,*newnzattrlist; 
ZLLIST *newnzptr,*newnztmp,*newwnzattrlist; 

Ufdef XTRACE 
fprintf(stdout,"--> Z(%s,%ld,%lxX,%s)\n",rptr->relname,map,rds,out); 
fflush(stdout); 
lend if 

outrel = (REL *)(0); 
numz = numnz = 0; 
numnewz = numnewnz = 0; 
zattrlist = newzattrlist 
wzattrlist = newwzattrlist 
nzattrlist = newnzattrlist 

(ZCLIST *)(0); 
= ( ZCLIS'l' *) ( 0) ; 
= (ZLLIST *)(0); 

/* make sure there is something to do */ 
if (map == rptr -> Zmap) ( /* no work */ 

return(SUCCESS); 

/* determine mode for output relation */ 
if (!map) ( 

mode = -coNREL I -zoRo 
newzatts = 0; 

1 
else if (((lL << rdents) - lL) 

mode = ZORD; 
newzatts = rdents; 

1 
else 

mode = ZORD I PZREL 

map)( 

0 \.) 



0 
Nov 5 01:09 1986 Z.c Page 2 

for (i = 0; i < rdents; i++) 
if (map & (IL << i)) 

newzatts++; 

I* in place replacement or new output relation ? *I 
if(lstrcmp(out,rptr->relname)) (I* in place *I 

I* badindex(rptr) *I 

] 
else 

if (rptr -> fd != FAIL) 
closerel(rptr); 

if ((openrel(rptr,RDWRMODE}) ==FAIL) { 
db_err(Sl,Z_ORD,errno,rptr->relname); 
return(FAIL}; 

J 
rptr -> rindx = OL; 
rptr -> windx = OL; 
outrel = rptr; 

I* output is a new relation *I 
I* build domain list *I 
for (i - 0; i < rdents; i++) 

strcpy(pdomlist[i],rds(iJ->dornname); 

e 

if ((outrel = mkrel(out,rnode,map,rdents,pdomlist, 
(rptr->maxsize I (long)(rptr ->width))))== NULL) 

db_err(S7,Z_ORD,-l,out); -

I* get 
for (i 

return( FAIL); 

lengths of each domain *I 
= 0; i < rdents; i++) 
if ((dptr = finddorn(rds[iJ -> domnarne)) ==NULL) 

db_err(79,Z_ORD,-l,rds[i] -> dornname); 
dornlens[i] = 0; 

J 
else domlens[i) = dptr -> len; 

I* how many domains now in z order ? *I 
if (rptr -> mode & ZORD) 

if (rptr -> mode & PZREL) { 
for (i = 0; i < rdents; i++) 

if (rptr -> Zmap & (lL « i)) zatts++; 
J 
else zatts = rdents; 

else zatts = 0; 

I* build circular and linked lists if needed *I 
if (zatts) I* if there are now z-ordered domains *I 

for (i = 0; i < rdents; i++) 
if (rptr -> Zmap & {lL << i)) ( I* circular list entry *I 

if (zattrlist) { I* attach another entry *I 
if ((ztmp = (ZCLIST *)(malloc(sizeof(ZCLIS'f)))) 

db_err( 53, Z_ORD,errno, "zattrdnnd"); 
goto zbomb; 

• 

NULL) ( 



Nov 5 01:09 1986 Z.c Page 3 

] 

) 

) 
zptr -> next = ztmp; 
ztmp -> prev = zptr; 
zattrlist -> prev = ztmp; 
ztmp -> next = zattrlist; 
zptr = ztmp; 

else /* make first entry into list */ 

} 

if ((zattrlist = (ZCLIST *)(malloc(sizeof(ZCLIST)))) 
db_err( 53, Z_ORD, errno, "zattrnd"); 
goto zbomb; 

] 
zattrlist -> next = zattrlist; 
zattrlist -> prev = zattrllst; 
zptr = zattrlist; 

zptr -> numzbits = {long)(domlens[i]) << JL; 
zptr -> outposn = (lon9)(rds{i] -> pos) << JL; 
zbits += zptr -> numzb1ts; 
++numz; 

NULL) ( 

else /* linked list entry */ 
if (nzattrlist) { /* attach another item */ 

if ((nztmp = (ZLLIST *)(malloc(sizeof(ZLLIST)))) ==NULL) ( 
db_err(53 ,Z_ORD,errno, "nzattrnnd"); 
goto zbomb; 

} 

} 
nztmp -> next = nzptr -> next; 
nzptr -> next = nztmp; 

else /* make first entry */ 

} 

if ((nzattrlist = (ZLLIST *)(malloc(sizeof(ZLLIST)))) 
db_err(SJ,Z_ORD,errno,"nzattrnd"); 
goto zbomb; 

) 
nzptr nzattrlist; 
nzptr -> next= (ZLLIST *)(0); 

nzptr -> tounz rds[i) -> pos; 
nzptr -> fromz = i; 
++numnz; 

NULL) ( 

/* build circular and linked lists if needed for new relation */ 

if (newzatts) 
for (i = 0; i < rdents; i++) 

if (map & (lL << i)) ( /*circular list entry */ 
if (newzattrlist) ( /* attach another entry */ 

if ((newztmp = (ZCLIST *)(malloc(sizeof(ZCLIST}))) 
db err(53,Z ORD,errno, "newzatnnd"}; 
goto zbornb;-

} 
newzptr -> next = newztmp; 
newztmp -> prev = newzptr; 
newzattrlist -> prev = newztmp; 

== NULL} { 

0 



Nov 5 01:09 1986 Z.c Page 6 

closerel(outrel); 
closerel (rptr); 

/* release dynamically allocated storage */ 

freeclist(zattrlist); 
freeclist(newzattrlist); 
freeclist(wzattrlist); 
freeclist(newwzattrlist); 
freellist(nzattrlist); 
freellist(newnzattrlist); 
free(work); 

return(werr ? werr : FAIL); 
] /* end z */ 



Nov 5 01:09 1986 Z.c Page 7 

unsigned freeclist(cptr) 
ZCLIST *cptr; 

register unsigned num u 0; 
register ZCLIST *a, *b; 
int free(); 

Ufdef XTRACE 
fprintf(stdout,"--> freeclist(%lxX)\n",cptr); fflush(stdout); 
#end if 

if ( lcptr) 
return(O); 

a = b = cptr; 
while (a -> next != cptr) 

free( a); 

} 

a = b -> next; 
b = a; 
++num; 

free( a); 
#ifdef XTRACE 
fprintf(stdout,"<-- freeclist(%d)\n",num + 1); fflush(stdout); 
lend if 

return(num + 1); 

unsigned freellist(lptr) 
ZLLIST *lptr; 

register unsigned num 0; 
register ZLLIST *a, *b; 
int free(); 

if ( !lptr) 
return(O); 

a b = lptr; 
while (a-> next != (ZLLIST *)(0)) ( 

free{a); 

} 

a = b -> next; 
b = a; 
++nu m; 

free(a); 
return(num + 1); 



• " Nov 5 01:09 1986 Z.c Page 12 

int unshuffle(rname,domlist,outname) 
char *rname; I* name of relation to shuffle *I 
char domlist(][MAXDNMLEN]; I* list of domains to unshuffle *I 
char *outname; I* name of output relation *I 

extern int errno,rdents; 
extern char inbufr[]; 
register int i,j,k; 
REL *findrel(),*rptr; 
RD *findrd(),*rdtab[MAXATTS]; 
long newmap=OL,maprnask; 
int strcmp(),domfnd,domerr=O; 

I* find relation to unshuffle *I 
if ((rptr findrel(rname)) =• NULL) 

db_err(56,Z_ORD,-l,rname); 
return (FAIL); 

if ((findrd(rname,(char *)(O),O,rdtab)) ==FAIL) 
return( FAIL); 

I* how many participating domains? 0 ==> all *I 
i = 0; 
while (*domlist[i] && i < {MAXATTS + 2)) ++i; 
if ( i > MAXAT'l'S ) ( 

db_err{77,Z_ORD,-l,rname); 
i = rdents; 

I* if rname is already non z and all domains are asked *I 
I* to participate here, no change is being asked for *I 
if l(rptr ->mode & ZORD) && li){ 

db~err(9B,Z_ORD,-l,"no change"); 
return{-2); 

if ( i) ( I* 
for 

;,, 

a list of participating domains was surplied *I 
(j = 0; j < i; j++) ( I* for each doma1n on list *I 

l*flnd jth item in domlist in rdtab *I 
domfnd = 0; 
for (k 7 0; k < rdents; k+t) 

lf (!strcmp(domlist(j],rdtab[k]->domname)) 
++domfnd; 
break; 

i ' ' 
if ( !domfnd) ( 

db err(.79.,Z_OR_I;),-l,domlist{j]); 

) 
++ao~err; . 

else 
· mapmask {lL « k); 

if {mapmask & newmap) 
~b...,~rrpe;~._ORD,-l,domlist[j] ); 

• 



Nov 5 01:09 1986 Z.c Page 13 

newrnap l=.maprnask; 
} I* for,eac~,dorn9in */ 

if ( domerr) { 
' sprintf(inbufr,"%d of %d rnissing",&dornerr,&rdents); 

db err(79,Z ORD,-l,inbufr); 
return(FAIL); I* for. now: safe way out *I 

} 
} I* if a dornHst was supplied *I 
else I* no list: unshuffle everything *I 
newrnap = (1L << rdents) - lL; 

I* newrnap is now set for all attributes 
I* is it worth it? *I · 
rnaprnask = newrnap; . 
if(! rnapmask & rptr -> Zrnap,> { • 

db_err(98,Z_ORD,-l, 'no change"); 

} 
return(-2); · · 

I* unshuffle *I · . . , 
return •(Z(rptr ,-newmap,rdtab,outnarne)); 

. , . . -, ,. 

0 

' ' ' . 

to appear unshuffled */ 

t} 



a 

I ! 




