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Abstract 

Road transport is a major contributor to world energy consumption and emissions. The 

validity of models developed for environmental assessment of transport projects when 

used out of their origins is questionable as they are only validated for the prevailing 

conditions at their origin. This study starts by the validation of one of the most popular 

transportation environmental assessment models, MOVES, for use in non-U.S. regions 

such as Canada through performing on-road measurements. Distinct differences between 

the ground-truth and MOVES predictions are revealed. MOVES underestimates fuel and 

CO2 rates by 17% and 35%, respectively. Nitrogen Oxides (NOx) and Particulate Matters 

(PM) predictions set overestimation records of up to +420%. Furthermore, MOVES output 

is biased for vehicle groups with specific attributes.  

The results of MOVES validation emphasized the need for using alternative local 

fuel and emission models. However, many of the existing vehicular fuel and emission 

modeling methodologies are criticized in aspects such as ignoring real-world training 

data, low diversity of test fleet, impracticality in real-world applications (such as 

instrument-independent eco-driving or use alongside with traffic microsimulation), and 

low prediction power in the non-linear multi-dimensional space of fuel consumption and 

emission generation. Hence, a machine learning modeling methodology relying on on-

road data from a fleet of 35 vehicles is proposed. The accuracy of the proposed 
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instrument-independent models is tried to be improved by introducing estimates of 

influential engine variables to the feature set through a cascaded modeling procedure. As 

a result, the R-squared metric reached 83%, while score improvements as high as 37% are 

achieved depending on the vehicle class and the machine learning technique used. 

Despite the considerable scores achieved by utilizing fully-connected neural 

networks architectures, use of techniques compatible with the serially-correlated nature 

of vehicular operation seems more promising in achieving higher accuracy and 

robustness. Moreover, generalizing the models developed for particular vehicles to more 

aggregate levels is a need for diversifying models’ use cases. To this end, a two-stage 

ensemble learning methodology based on vehicle-specific Recurrent Neural Network 

(RNN) models is proposed. 

Long Short-Term Memory (LSTM) cell architecture resulted in the best lag-specific 

modeling scores (compared to the other RNN cell types). Vehicle-specific ensemble 

models developed by combining predictions from lag-specific RNN models showed 

score improvement records of up to 28% compared to the best component model (4% on 

average). In addition, the category-specific ensembles developed on top of metamodels 

achieved score improvements of up to 32% compared to the best component metamodel 

(6% on average). Linear regression dominantly resulted in the best score improvements 

for NOx and PM rates at both forecast combination stages, while random forests and 

gradient boosting methods dominantly worked the best for fuel and CO2 rates. 
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Résumé 

Le transport routier est un contributeur majeur à la consommation d'énergie et aux 

émissions mondiales. La validité des modèles développés pour l'évaluation 

environnementale des projets de transport lorsqu'ils sont utilisés hors de leurs origines 

est discutable car ils ne sont validés que pour les conditions prévalant à leur origine. Cette 

étude commence par la validation de l'un des modèles d'évaluation environnementale 

des transports les plus populaires, MOVES, pour une utilisation dans des régions non 

américaines comme le Canada en effectuant des mesures sur route. Des différences 

distinctes entre la vérité terrain et les prédictions MOVES sont révélées. MOVES sous-

estime les taux de carburant et de CO2 de 17% et 35%, respectivement. Les prédictions 

sur les oxydes d'azote (NOx) et les particules (PM) établissent des records de 

surestimation allant jusqu'à + 420%. De plus, la sortie MOVES est biaisée pour les groupes 

de véhicules avec des attributs spécifiques. 

Les résultats de la validation MOVES ont souligné la nécessité d'utiliser des modèles 

locaux de carburants et d'émissions alternatifs. Cependant, de nombreuses 

méthodologies existantes de modélisation des émissions et des carburants des véhicules 

sont critiquées pour des aspects tels que l'ignorance des données de formation du monde 

réel, la faible diversité du parc d'essai, l'impossibilité pratique dans les applications du 

monde réel (telles que l'éco-conduite indépendante des instruments ou l'utilisation en 
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parallèle avec microsimulation du trafic) et une faible puissance de prédiction dans 

l'espace multidimensionnel non linéaire de la consommation de carburant et de la 

production d'émissions. Par conséquent, une méthodologie de modélisation 

d'apprentissage automatique reposant sur des données routières d'une flotte de 35 

véhicules est proposée. On essaie d'améliorer la précision des modèles proposés 

indépendants de l'instrument en introduisant des estimations des variables influentes du 

moteur dans l'ensemble de fonctionnalités grâce à une procédure de modélisation en 

cascade. En conséquence, la métrique R-carré a atteint 83%, tandis que des améliorations 

de score allant jusqu'à 37% sont obtenues en fonction de la classe de véhicule et de la 

technique d'apprentissage automatique utilisée. 

Malgré les scores considérables obtenus en utilisant des architectures de réseaux de 

neurones entièrement connectés, l'utilisation de techniques compatibles avec la nature 

corrélée en série du fonctionnement des véhicules semble plus prometteuse pour obtenir 

une précision et une robustesse plus élevées. De plus, la généralisation des modèles 

développés pour des véhicules particuliers à des niveaux plus agrégés est nécessaire pour 

diversifier les cas d’utilisation des modèles. À cette fin, une méthodologie 

d'apprentissage d'ensemble en deux étapes basée sur des modèles de réseaux neuronaux 

récurrents (RNN) spécifiques au véhicule est proposée. 

L'architecture de cellule de mémoire à long terme (LSTM) a abouti aux meilleurs 

scores de modélisation spécifiques au décalage (par rapport aux autres types de cellules 
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RNN). Les modèles d'ensemble spécifiques au véhicule développés en combinant les 

prédictions des modèles RNN spécifiques au décalage ont montré des records 

d'amélioration du score allant jusqu'à 28% par rapport au meilleur modèle de composants 

(4% en moyenne). En outre, les ensembles spécifiques à la catégorie développés en plus 

des métamodèles ont obtenu des améliorations de score allant jusqu'à 32% par rapport 

au meilleur métamodèle composant (6% en moyenne). La régression linéaire a 

principalement abouti aux meilleures améliorations de score pour les taux de NOx et de 

PM aux deux étapes de combinaison de prévisions, tandis que les forêts aléatoires et les 

méthodes de renforcement de gradient ont principalement fonctionné le mieux pour les 

taux de carburant et de CO2. 

  

Mots clés: consommation de carburant des véhicules, émissions des véhicules, éco-

conduite, mesures sur route, validation de modèle, MOVES, apprentissage automatique, 

apprentissage en profondeur, régression vectorielle de soutien, réseaux de neurones 

artificiels, modélisation en cascade, réseaux de neurones récurrents, apprentissage 

d'ensemble. 
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Chapter 1 

Introduction 
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1.1 Background 

The overall quality of life, household economy, and the environment are profoundly 

influenced by the transportation sector. Constituting to about 20% of the total Greenhouse 

Gas (GHG) emissions [1] and being a major contributor to fine Particulate Matters (PM) 

and other toxic compounds such as Nitrogen Oxides (NOx) in Canada [2], the 

transportation sector is at the epicenter of the environmental controversies. GHG 

emissions such as CO2 play a major role in global warming phenomenon, while 

particulate matters are identified as a main cause of respiratory and cardiovascular 

diseases. On the other hand, NOx are influential elements in forming the photochemical 

smog during summer and have negative impacts on plants growth. 

Mobile sources contributed to about 54% of NOx emissions in 2014, 65% of which 

from on-road mobility [3]. Besides, Canadians paid an amount of $55 billion to fuel up 

their vehicles in 2017 [4]. This means that even a 1% reduction in annual vehicular energy 

consumption would lead to the saving of millions of dollars for the country as well as 

saving the environment and many lives due to less emission levels. Given such significant 

impacts and due to increasing worldwide environmental concerns and the growing 

attention to energy efficiency, transportation external costs have become a key priority at 

all government levels. Strategies and projects to improve road network efficiency, eco-

driving behaviors, fleet efficiency, and maintenance routines towards environmentally-

friendly directions are all being conducted as an answer to the aforementioned concerns.  
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The environmental impact assessments of projects and strategies requires accurate 

emission modeling and estimation tools. The current state of the practice relies on 

emission modeling software tools that can estimate emissions at different levels (link, 

city, or regions). The most commonly used tool by practitioners in the U.S. and Canada 

is the Motor Vehicle Emission Simulator (MOVES) developed by the United States 

Environmental Protection Agency (USEPA). The model is widely used for environmental 

assessment of projects at different scales, ranging from small-scale network treatment 

scenarios to large-scale policy implementations. MOVES covers a broad range of 

pollutants and estimates energy consumption at national/county (macro) and project 

(link-level) scales. Hence, it has the potential to be used for eco-driving purposes as well.  

The major drawback of deploying MOVES in countries rather than where its core 

models are designed and calibrated (the U.S.) is the unreliability of estimations. The 

model provides adjustment options to adapt it to the prevailing conditions of the area 

under study (in terms of fleet distribution, vehicle types, fuel formulation, and even 

meteorology); however, it leaves the user limited to the range of conditions existing in 

the U.S. states and counties. But the U.S. fleet used for the estimation of MOVES core 

models is significantly different from the Canadian vehicle fleet [5,6]. Canadian fleet is 

composed of a higher proportion of smaller-size vehicles with lower Fuel Consumption 

Rates (FCR). Even with the increasing global demand for SUV vehicles in recent years, 

there has been a surge in Canadian’s interest in crossovers over full-size SUVs 
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considering their better fuel economy [7]. Another crucial difference lies in harsh weather 

during winter (and even fall) in Canada which is not comparable to the U.S. states. 

Furthermore, the average annual mileage varies significantly among different countries, 

which in combination with the meteorological conditions, leads to different depreciation 

rates even for cars of the same model and age and could result in different FCR and 

Emission Rates (ER) [8]. 

Additionally, the type of experiments conducted for collecting raw data to estimate 

MOVES core models is a matter of consideration. For this purpose, in-lab chassis 

dynamometer tests are performed by EPA through the FTP-75 (Federal Test Procedure) 

driving cycles for urban driving simulation in addition to the supplementary US06 test 

procedure [9]. The latter is used to address the FTP-75 shortcomings in representing 

combined high-speed and/or high-acceleration driving behavior, rapid speed 

fluctuations, and driving behavior following start-up [10]. But controlled test 

environments could affect the quality of energy consumption and emissions estimates 

significantly [11]. Several factors including pavement quality, tire friction due to its type, 

age, and pressure, wind direction, rainfall, snowy/icy road conditions, and even complex 

driving patterns due to the topology of the transportation network are disregarded in lab 

experiments. 

Whether the popular models such as MOVES are adequately reliable for the local 

needs in the environmental assessment of transport projects or if they could be trusted 
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for incorporation in microsimulations or eco-driving services in Canada (and generally, 

regions other than the models’ country of origin) is a matter of question which requires a 

thorough validation analysis.  

An alternative approach to tackle the uncertainties corresponding to available 

models is developing region- and fleet-specific models. Nevertheless, due to the common 

perception that the similarities between the U.S. and Canadian transportation sectors 

outweigh the impact of differences, no significant effort has been put into developing 

alternatives so far. 

Developing local vehicular fuel and emission models is itself a challenging task. To 

develop reliable and efficient real-time eco-driving assistance services, design 

smartphone-based energy and emissions quantification procedures, equip existing traffic 

simulation models with energy and emissions assessment modules, and assess the 

environmental impact of transport/urban development plans before or after the 

implementation, models for estimation of FCR and ER at the meso (link-level) and micro 

(second-by-second) scales are required.  Meso-scale models provide an overall picture of 

eco-friendliness of the driving operation per link (or road segment), whilst the micro-

scale models focus on understanding instantaneous correlations between the state of the 

vehicle and the FCR and ERs. Although much more difficult to estimate, micro-scale 

models provide richer information for analysis and they could be converted to lower-
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resolution models (even to macro levels) through aggregation and extrapolations over 

the whole fleet. 

Using estimates of power as proxy variables, multi-variate linear/nonlinear 

regression, and basic Machine Learning (ML) solutions [12–19] are examples of techniques 

used for micro-/meso-scale modeling fuel consumption and emissions since the mid-

1990s. However, there exist seven major issues with the available models usable for eco-

driving. First, the majority of previously proposed models rely on simulated lab data 

instead of on-road measurements [14,17,20,21]. Earlier in this section, the drawbacks of 

dependence on lab simulations are explained. Second, there are many studies and models 

which have used a low-diversity test fleet [14,16,18,22–28]; as a result, the generalizability 

of their conclusions is questionable. Third, traditional statistical modeling techniques are 

incapable of capturing complex non-linear dependencies corresponding to fuel 

consumption and emissions generation mechanisms. Fourth, many of the existing models 

depend on Internal Engine Variables (IEVs) to achieve acceptable accuracy levels 

[17,18,21,27,29–34]. Such dependence eliminates the models’ usefulness for developing 

universally-applicable and instrument-independent eco-driving services. It avoids their 

incorporation into traffic simulation software for conducting environmental assessment 

of different scenarios as well, as no knowledge regarding IEVs is retrievable from traffic 

microsimulation. In other words, there is a need for models founded upon smartphone 

sensors’ readings (such as GPS, accelerometer, and gyroscope measurements) or simple 
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kinematic instantaneous variables (such as speed, acceleration, and road grade) extracted 

from simulation software instead of IEVs recorded using specialized logger devices. 

Regarding eco-driving, drivers’ smartphones are the only means of providing such 

service for many vehicles moving on roads which are still not equipped with on-board 

eco-driving systems while having a considerable share of current vehicle fleet. Fifth, some 

of the popular comprehensive energy and environmental assessment models such as 

MOVES [35] and Comprehensive Modal Emission Model (CMEM) [36] require heavy 

processing steps that do not allow real-time use. Sixth, the serially-correlated nature of 

instantaneous FCR and ER measurements is rarely addressed in the literature. The 

temporally extended impact of past driving events (a few seconds before time !) on 

current FCR and ERs is either left unobserved [14,27,29,32–34], acknowledged but 

disregarded and considered effectless [37], or at best is spread through time as an error 

using moving average techniques to improve instantaneous predictions [17,18]. Seventh 

and the last, majority of the existing microscale models are developed with a vehicle-

oriented approach [14,16,17,25,37–39], while more general models (for instance, models 

that work acceptably for categories of vehicle rather than particular ones) are preferred 

to expand their domain of use cases. 

This research work aims to provide some insights in each of these literature gaps. 

For this purpose, a large set of field experiments is conducted using vehicles 

representative of the most popular vehicles in Montreal (and other selected regions) to 
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provide sufficient and proper data for evaluating existing popular models such as 

MOVES for use in non-U.S. regions as well as developing methodologies for estimation 

of alternative localized, fleet-specific, microscale fuel and emission models for Canada. 

Through the steps taken, the seven aforementioned issues with the existing models are 

considered. By using state-of-the-technology portable fuel and emission measurement 

sensors, on-road tests are conducted to collect as realistic as possible data instead of using 

lab simulations. Through testing on 35 passenger cars, increasing the diversity of data to 

boost the robustness of analyses and inferences is targeted. By utilizing powerful ML 

techniques, difficult-to-formulate and nonlinear dependencies between input variables 

and dependents are captured. Simple kinematic variables such as speed, acceleration, and 

road grade (or alternatively, GPS altitude) are used as input variables to eliminate 

models’ dependency on IEVs. Straightforward, light and easily deployable procedures 

are defined to avoid computationally expensive execution processes of models. Special 

ML algorithms are used for addressing the serially-correlated nature of vehicular fuel 

consumption and emission generation. Finally, forecast combination methods are 

utilized to develop general category-specific models on top of vehicle-specific ones. 

1.2 Motivations 

Heedless use of MOVES in Canada despite the obvious signs of its unsuitability for use 

in non-U.S. regions (based on its core characteristics as well as validation studies 

conducted in other countries such as Mexico, India, and China [40–42]) is a matter of 
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concern. Founding environmental assessment of transport projects or eco-driving 

guidance on erroneous forecasts causes irreparable damages to the environment in long 

term. Thus, it is important to make the transport consultants and authorities in Canada 

aware of the necessity of either taking additional adjustment steps or alternatively 

transitioning to locally-estimated energy and emissions models to come up with refined 

and more realistic interpretations and conclusions in their projects. 

When rejecting an existing tool, it is crucial to propose alternative solutions. By 

making all fuel consumption and emission modeling efforts in this research, it is hoped 

that avenues be opened to the development of smartphone-based real-time eco-driving 

services usable by passenger car fleet (especially, the older vehicles which are the major 

energy consumers and pollutant emitters, while they are mostly not equipped with on-

board eco-driving options), trucking industry, and even the public transit. In addition to 

eco-driving, microscale fuel and emission models could be incorporated into traffic 

microsimulations for environmental assessment of different transportation/urban 

development projects before or after the implementation. 

1.3 Objectives 

The main objectives of this study could be summarized as follows: 
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• Conducting a comprehensive literature review over the history of research about 

vehicular fuel and emissions modeling at different scales and identifying the gaps and 

major shortcomings of previously-proposed modeling methodologies. 

• Introducing and practically evaluating on-road data-collection methodologies using 

state-of-the-technology portable activity, fuel, and emission sensors as an alternative 

to in-lab experiments. 

• Evaluating the magnitude of error as well as the bias direction when using MOVES 

model for estimating project-level (link-level) energy and emissions rates in Canada 

(or other non-U.S. regions). In addition, assessing the sensitivity of MOVES output to 

fleet attributes as well as road network and environmental conditions to discover the 

impacting regional aspects which need to be addressed in developing adjustment 

procedures or even independent local models. 

• Reducing the complexity of the vehicular fuel and emission models and increasing 

their practicality by limiting their feature set to instrument-independent and simply-

retrievable variables. Moreover, proving that the ML techniques, if used in an 

appropriate combination, are capable of shouldering the burden of extracting the 

hidden impact of IEVs (which usually possess significant correlations with FCR and 

ERs) without the need to directly including IEVs in the models’ feature sets. 
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• Introducing proper ML methodologies for addressing the serial correlation and the 

lagged impact of features on instantaneous FCR and ERs. Furthermore, building up a 

realistic foundation for developing category-specific models using well-recognized 

forecast combination techniques. The goals would be achieving an additional level of 

independence as well as expanding models’ use cases (as with generalized models, 

there would be no need for detailed information about the technical specifications of 

vehicles for predicting FCR and ERs anymore). 

1.4 Structure of the Thesis 

This thesis is structured as follows: In Chapter 2, first, the most recent pieces of research 

conducted on evaluating the accuracy of MOVES output and the attempts on developing 

local models with the help of MOVES are reviewed. Then, the history of research about 

vehicular microscale fuel consumption and emissions modeling, from the use of 

traditional statistical methods to the rare recent attempts on using ML techniques, is 

briefly reviewed.  

The experimental procedure and the proposed methodology of research for the 

MOVES validation as well as microscale fuel and emission modeling are explained in 

Chapter 3. To be more precise, this chapter elucidates data requirements of the research, 

data collection process and the equipment, preparation of field-measured data, execution 

of different MOVES scenarios, and the novel, simple, but efficient ML-based procedures 
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introduced in this research for modeling local and fleet-specific fuel and emission models. 

In Chapter 4, the results of the validation study over MOVES predictions are presented 

and discussed. Then, in Chapter 5 and Chapter 6, outcomes of alternative modeling ideas 

(a cascaded ML modeling approach as well as a multi-stage forecast combination 

procedure for improving vehicle-specific Recurrent Neural Network (RNN) models and 

generalizing them to categories) will be visually and statistically discussed. Several 

sensitivity analyses are conducted in these chapters, mainly based on the fleet, region, 

and road attributes. Finally, in Chapter 7, conclusions are drawn and possible future 

research topics following this study are explained. 
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2.1 On the Validity of MOVES predictions 

MOVES is the U.S. Environmental Protection Agency's (EPA) Motor Vehicle Emission 

Simulator. It is used to create emission factors or emission inventories for both on-road 

motor vehicles and non-road equipment. The purpose of MOVES is to provide an 

accurate estimate of emissions from cars, trucks, and even non-highway mobile sources 

under a wide range of user-defined conditions.  

In MOVES modeling process, the user specifies vehicle types, time periods, 

geographical areas, pollutants, vehicle operating characteristics, and road types to be 

modeled. The driving profile including second-by-second changes of speed and grade 

should be provided to the model as well. The model first calculates the second-by-second 

Vehicle Specific Power (VSP) based on the corresponding vehicle operating parameters. 

Using a combination of calculated VSPs and the vehicle speed, the calculation process 

then finds the appropriate operating modes from an operating mode bin table. This is 

followed by another table lookup with the vehicle emission rate table based on operating 

mode, vehicle type, and age. The emission and fuel consumption are accumulated and 

corrected with base cycle emission rates calibrated previously using MOVES [35,43]. 

A few studies have tried to validate MOVES output either at national/county levels 

or for the project-scale scenarios for use in non-U.S. regions or the conditions not included 

in MOVES development experiments. The scarcity of such studies, despite the passage of 
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more than a decade since the public availability of MOVES, could be the result of over-

trusting the model’s generalizability and unawareness about the significant sensitivity of 

MOVES predictions to regional/case-specific conditions.  

Findings of Chinese researchers, through a sensitivity analysis over MOVES 

outputs concerning model year, age group, and speed intervals showed that despite 

describing the relative changes between categories well, the absolute values of MOVES 

estimations are noticeably different from the ground-truth (such differences are linked to 

the regional regulations and fuel quality) [44]. 

The NOx emissions from vehicles in the Environmental Protection Agency’s 

National Emissions Inventory (NEI), prepared using MOVES, are found to be 

overestimated by up to a factor of two [45,46]. Following the discovery of such error, 

EPA’s Review Workgroup conducted a study focusing on NOx emission by Light-Duty 

Vehicles (LDV) using Inspection/Maintenance (I/M) test data which showed that MOVES 

estimates are higher than I/M data for pre-2000 LDVs while lower for 2010+ LDVs [3,47]. 

MOVES NOx estimation error of up to 24% is confirmed by EPA. The overpredictions are 

assumed to be linked to multiple compounding errors such as the time-space allocations 

of mobile emission sources. 

Distrustful of solely using MOVES for local vehicular emission estimation, the study 

conducted in Beijing, China [48] used MOVES to fill the gaps that a locally developed 



16 

model (using limited test data) was unable to cover, particularly, for ERs corresponding 

to high-power operating modes. Although still partially dependent on MOVES, this 

study was one of the first efforts in adjusting MOVES output for local use.  

Near-road ambient air pollutant data collected in urban sites in Texas [49] revealed 

that despite the inclusion of local characteristics such as wind, MOVES consistently 

underestimates ambient CO and NOx ratios, a finding in total alignment with that of 

Fujita et al. [46]. Up to 24% difference in estimated rates was observed even when best 

available local data was used as MOVES input. Nevertheless, the use of stationary 

ambient emissions sensors for validating mobile-source emission predictions (in other 

words, conducting a non-homogenous comparison) introduces a level of error to the 

conclusions. 

The dramatic difference observed between the true CO, Hydro Carbons (HC), and 

NOx rates and MOVES predictions for Indian cities, where MOVES underestimated the 

emissions around 9 times lower, encouraged researchers to revamp the model for Indian 

cities using alternative driving cycles reflecting the dominant driving conditions and 

traffic in India [41]. Their study confirmed that countries are not only different in terms 

of fleet distribution and general traffic and driving conditions, but also the deterioration 

rate of vehicles is different which disrupts MOVES assumptions and coefficients when 

including the impact of vehicle age on energy consumption and emissions. 
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A recent study conducted in mountainous parts of China questions the validity of 

MOVES predictions for use in similar regions [42]. It has been observed that within each 

of the MOVES operating modes, defined based on VSP ranges, statistically different 

emission levels are generated across different road grades. The study confirms the 

shortcomings of operating-mode methodology in correctly capturing influential factors 

that exclusively exist in non-U.S. regions. 

The validity of MOVES output has been a matter of concern in literature for both 

light-duty as well as heavy-duty vehicles. An assessment of MOVES predictions for 

heavy trucks’ FCR [50] showed that the model overestimates the rate during deceleration 

and cruising while producing inconsistent outputs for acceleration. Whether a similar 

condition applies to light-duty vehicles as well is not yet assessed in the literature. 

Updated evaluations conducted by EPA researchers to particularly assess the 

impact of vehicles’ age on accuracy of MOVES NOx estimates at the national level, report 

an increasing level of overestimation projected to reach 21% and 30% in 2028 and 2045, 

respectively [51]. Based on this report, no adjustment solution at any scale is still 

proposed by EPA.  

In one of the most recent attempts on adjusting MOVES for special conditions, high-

resolution GPS data is used to adapt the VSP formula for requirements of an intersection 

control study, where emissions need to be analyzed at the microscopic level and 
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separately for acceleration, cruising, deceleration, and idling parts of turn/through 

movements [52]. Taking such an approach, MOVES error in estimating CO2 and NOx 

emissions reduced by around 40% and 45%, respectively. 

Finally, on-road fuel consumption and emissions measurements, conducted using 

portable emission sensors in Montreal [53], as a part of a traffic-control impact study, 

showed that MOVES underestimates fuel consumption and CO2 rates by an average 

factor of two, while over-estimating NOx emissions significantly (predictions equal to 

one-fifth of true observations are reported). However, the test fleet of only three vehicles 

in this study is too small for concrete conclusions. 

The interesting perception after reviewing the literature regarding the validity of 

MOVES predictions is the diversity of findings. Some studies have reported 

overestimation, while some others have observed opposite biases for particular 

emissions. This emphasizes the importance of evaluating MOVES output for use in new 

regions, in special conditions (such as microscopic traffic studies), and for vehicles with 

specific attributes. 

2.2 A Transition from 0D/1D Simulation to Data-driven Modeling 

In addition to the commercial models capable of estimating vehicular energy and 

emission rates at different scales, there have been several attempts in the literature 

targeting exclusively the development of microscale FCR and ER estimation modelling. 



19 

A major part of studies focus on 0D/1D simulation, which delve into detailed mechanical, 

thermodynamic, and chemical interactions inside the engine. Use of traditional statistical 

modeling techniques such as multivariate linear/nonlinear regression is another 

significant segment in the literature. Finally, in recent years, there has been a divergence 

towards use of emerging ML techniques such as Support Vector Machines (SVM) and 

Artificial Neural Networks (ANN). A well-known classification of models proposed in the 

literature is done based on their transparency by which there would be three categories 

of white-box, grey-box, and black-box models [54,55]. 

White-box models (known as first principle models or 0D/1D simulations) are 

highly deterministic and developing them requires a thorough understanding of 

underlying mechanical, thermodynamical, and chemical mechanisms that affect energy 

consumption and emission generation [32,56–64]. Even though the first-principle models 

are the most complete information source, they are too complex for real-time use. Besides, 

they require access to IEVs which makes them instrument-dependent. Such a 

characteristic limits the model deployment to offline eco-driving studies or at best, to 

onboard eco-driving services available on some vehicles. Thus, the model will not be 

applicable in third-party smartphone-based eco-driving services which solely rely on 

GPS data and user-provided information. Moreover, although providing accurate 

predictions, the sensitivity of the performance of white-box models to the accuracy of 

features is a matter of concern. 
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Combining the 0D/1D perspective with data-driven modeling is a trick to avoid the 

complexity of physics-based emission models for real-time use by correcting data-based 

estimations using engine readings as a complementary step. Such an approach is known 

as grey-box modeling as well. For instance, Falcone et al. [65] combined mechanical and 

thermodynamics attributes of torque generation inside the engine with data collected 

through the New European Driving Cycle (NEDC) test procedure to develop their 

combustion model for diesel-engine vehicles. In another study, Hirsch et al. [55] took a 

similar approach to estimate emissions. In their model, the Zeldovich-formation principle 

[66,67] takes the impact of temperature on NOx and PM formation into account, while 

the main emissions estimation is handled by a data-based model including other 

impacting factors. 

Alternatively, cascaded techniques are utilized in the literature to develop less-

complex models while still considering internal engine interactions in modeling. For 

instance, Frey et al. [18] calculated equilibrium concentrations of oxygen and nitrogen 

during NOx formation in the combustion chamber using the Zeldovich model based on 

IEVs and used the resulting estimates to predict the NOx rate as they were highly 

correlated with the target ERs. 

Contrary to first-principle models are the black-box models (data-driven or input-

output models) which lack physics or chemistry in their structure. They require large 

quantities of data to compute the optimal model parameters. As a drawback, they are 
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only valid for the range of observations and have unknown extrapolation properties. 

Thus, to be valid for eco-driving, they require large training datasets covering all the 

dominant driving situations. 

Multi-variate nonlinear regression has been the most popular traditional statistics 

method used in black-box modeling of vehicular energy consumption. However, 

capturing the nonlinearity while keeping the model simple is a challenge when training 

multi-variate regression models. Rakha et al. [17,60] and Saerens et al. [21] both focused 

on engine power as a proxy variable for estimating FCR. Relying on almost noise-free in-

lab observations and incorporating RPM and other internal engine parameters, they used 

simple polynomial functional forms in the development of their models. Duarte et al. [68] 

used Vehicle Specific Power (VSP) as a proxy variable. Although providing a good fit using 

a piecewise polynomial functional form, the signs of biased experiment settings (in fleet 

diversity, selection of route and time of the experiment, etc.) are visible in their 

observations. 

2.3 First Steps into Machine Learning 

Stepping into ML modeling in the past few years, simple neural network architectures 

are widely used in literature to estimate FCR and ERs for the cold-start, hot-start, and 

hot-stabilized engine conditions [26,39,69,70]. Parlak et al. [71] used a single-layer 

perceptron to predict specific fuel consumption of a non-vehicular diesel engine. 



22 

However, the use of accurate readings of internal engine variables as input compensated 

for the simplicity of the ANN architecture they used. Amer et al. [19] used a wider single-

layer ANN architecture (with more activation nodes in the hidden layer) to estimate fuel 

consumption for an eco-routing purpose. Nevertheless, their variable set included only 

two dynamic variables (speed and distance) and three constants which make their 

modeling results questionable. Logically, distance cannot affect engine operation and 

constants do not help the model training. Çapraz et al. [33] tried to evaluate ANN and 

Support Vector Regression (SVR) techniques to model FCR. They relied on data from on-

road experiments conducted in highways using three test vehicles. Incautious selection 

of input variables (such as distance traveled, latitude, and longitude) is a common 

mistake in statistical modeling repeated by Wickramanayake and Bandara [72] who 

compared the prediction power of the random forest, gradient boosting, and neural 

networks methods in fuel consumption estimation. 

A common drawback of these models is disregarding the assessment of deeper 

neural networks as well as more sophisticated ML techniques capable of capturing 

serially correlated and lagged effects. A popular method of dealing with lags and 

autocorrelation in literature has been time alignment of input data beforehand [25,73], a 

method utilized for preprocessing the data used for estimating sub-models of MOVES 

model. Nevertheless, the approach arises criticism as the lagged effects might not occur 

with a constant order. 
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The time-series forecasting of the vehicular FCR and ERs is a challenging problem 

due to the dynamic nature of data [74–76]. Additionally, volatility in features leads to 

increased forecasting error and when combined with lagged effect, the majority of the 

traditional statistical modeling techniques fail to perform acceptably. RNNs are gaining 

renewed interest among researchers as they provide promising results for modeling time-

series and serially-correlated phenomena [77–79]. The study conducted by Kanarachos et 

al. [16] is the most recent and a rare example of using the RNN technique for modeling 

the instantaneous FCR in the literature. Although achieving outstanding prediction 

scores, their modeling procedure is founded upon data collected from a single 

vehicle prone to bias which makes the generalization of the developed model 

questionable. To the best of our knowledge, no research has been done yet in utilizing 

RNNs for ER modeling. 
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Chapter 3 

Methodology 
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3.1 Data Requirements 

Based on the defined objectives of the research (in Section 1.3), two categories of data 

from vehicles are required. First, data regarding real-world fuel consumption and 

emission generation in the finest possible units of time or distance should be collected. If 

time is selected as the basis, the measurements could be converted to the distance basis 

and vice versa. In this study, time (per-second basis) is selected; however, conversions 

will be conducted when needed. As the gasoline-engine vehicles are chosen to be studied, 

collecting data regarding their dominant emissions [80,81], including Carbon Dioxide 

(CO2), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO2), and Particulate Matters (PM), is 

targeted.  

To execute MOVES scenarios (for validation of its outputs) and to develop 

microscale fuel and emission models, complementary data, including important IEVs in 

addition to positional state of the vehicle, in a second-by-second manner is required as 

well. Fuel Consumption Rate (FCR) will be calculated with the help of engine variables, 

while positional variables provide information regarding instantaneous speed, 

acceleration, and road grade will be obtained. 

3.2 On-road Experiments 

Thirty-five different passenger cars in total were selected for on-road experiments in 

three cities of Montreal (Canada), Bucaramanga (Colombia), and Tehran (Iran). The 
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selection criterion was the popularity of different makes and models in each region to 

keep the test fleet as a representative of the local fleet. Moreover, although Canadian cities 

such as Montreal were the main target, tests in Colombia and Iran were conducted due 

to having physical access to those regions as well as our desire to increase the diversity 

of experiment conditions (as a requirement for achieving the study goals) in terms of fleet, 

weather, network topology, etc. In total, 6493 minutes of on-road data (by traversing 2350 

kilometers) was collected through the experiments conducted in three cities.  

3.2.1 Set of Sensors and Equipment 

On-Board Diagnostics (OBD-II) loggers, shown in Figure 1, are installed on all the vehicles 

to collect engine-state parameters. Instantaneous GPS coordinates and accelerometer 

measurements are added to the records in real-time using a tablet that wirelessly receives 

and saves the Engine Control Unit (ECU) data. The logged OBD-II parameter set includes 

Engine Speed (RPM), Manifold Absolute Pressure (MAP), Mass Air Flow rate (MAF), 

Barometric Pressure (P), Fuel-Air Equivalence Ratio ("), and Intake Air Temperature (IAT).  

Engine parameters are monitored in real-time to better understand the microscopic 

reactions of engine operation to the driving behavior, road, and environmental 

conditions through modeling. 
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(a) (b) 

 

Figure 1: (a) Wireless OBD Scanner and (b) OBD-II port under the steering wheel 

In recent years, the advent of Portable Emissions Measurements Systems (PEMS) has 

dramatically changed the state of on-road emissions monitoring as more and more 

studies across the globe are being conducted using these light-weight, small-size, and 

ultra-portable sensors [24,82]. A state-of-the-technology PEMS is installed on the tailpipe 

of 17 vehicles under study in Montreal to monitor the instantaneous CO2, NO, NO2, and 

PM concentrations. CO2 measurement is done using Non-Dispersive Infra-Red (NDIR) 

absorption technology with a measurement range of 0-20% and an accuracy of ±70 ppm. 

For NOx, 3-electrode electrochemical sensors are incorporated in the unit capable of 

measuring up to 5000 ppm for NO and 300 ppm for NO2. The measurement resolution 

for NO and NO2 are 1-5ppm and 0.1ppm, respectively. Regarding PM, the unit measures 

undiluted emissions through the response of three dissimilar particulate sensors. 

Ionization is used for ultra-fine/fine particulates usually between 0.01 to 1 micron, while 

a combination of opacimeter and laser scattering is deployed for coarse particulates up 
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to 10 microns. Figure 2 shows the details of the PEMS installation on one of the test 

vehicles. 

An intake probe is clamped into the tailpipe which collects exhaust samples at a 2.5 

#$!%&'/)$*+!% rate with the help of an internal pump. As there is no dilution, no 

extrapolation of the sensor values to the full concentrations is required. A chiller unit 

condenses and removes the water vapor present in the exhaust. An additional water trap 

completes the water-removal process before sending the sample to the main unit. 

  

Figure 2: Details of the PEMS setup on a test vehicle 

3.2.2 Planning for Experiments 

Cold-start emissions are disregarded in this study as the sensing process was started after 

reaching the hot-stabilized engine operation. Pre-test and post-test Zero-out processes are 

Tablet 

Chiller 

Intake Hose 

Exhaust Outlet 

Tailpipe Probe 

Sensor Module 

Water Trap 
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conducted for all the field experiments to capture the ambient emission levels as a 

reference for calculating the net emission concentrations. 

The maintenance quality of the vehicles is evaluated through short interviews with 

the volunteer car owners participating in the experiments and the vehicles with 

uncertain/unacceptable conditions are ignored and not included in the tests. A single 

person drove all the cars in each of the three cities, while the three drivers are coordinated 

in advance in terms of driving style to mitigate the chance of bias in collected data. The 

drivers are all asked to avoid aggressive driving and keep their speed coordinated to that 

of traffic flow. It is noteworthy that the impact of the traffic flow and traffic control 

systems would be implicitly captured in time-series logs of speed and acceleration.  

A driving plan is set in advance to guide the drivers to drive approximately 30% of 

the time in highways, 30% in arterials, 30% in local roads, while dedicating the remaining 

10% of the time to uphill and downhill driving. The equivalent distance for the above 

shares varies in each test. However, as the FCR and ERs are time-based, time is selected 

as the reference for scheduling the trip chains’ plans. For the 10% uphill and downhill 

driving time-window, special road segments with grades beyond normal road design 

thresholds (higher than 7% or less than -7%) are targeted. Taking the aforementioned 

approach, the randomness of data in terms of speed, road grade, and diversity of 

acceleration/deceleration patterns is preserved. 
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3.2.3 A Visual and Statistical Look at the Experiments 

Figure 3 represents the aggregated view of GPS trajectories for experiments conducted in 

Montreal and Bucaramanga, in addition to a part of experiments conducted in Tehran. 

(a) 

 
(b) (c) 

 

Figure 3: Trajectories of experiments in (a) Montreal, (b) Bucaramanga, and (c) Tehran 
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Figure 4 shows histograms of link average speeds and grades (slopes) for the road experiments 
performed in three cities. Moreover,  

Table 1 and Table 2 provide descriptive statistics regarding experiments and the 

collected data. 

(a) (b) 

 

Figure 4: Histograms of (a) average link speeds and (b) average link grades 

 

Table 1: Summary of the field experiments 

Attribute 
Numbers and Quantities 

Montreal Bucaramanga Tehran 

Total Trip Length (km) 1804 291 255 

Total Trip Time (Minutes) 5224 825 444 

Number of Test Vehicles 22 7 6 
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Table 2: Characteristics of the test fleet 

Attribute Category Quantity 

Vehicle Segments 

Compact SUV 7 

Subcompact SUV 1 

Midsize Sedan 7 

Compact Sedan 9 

Subcompact Sedan 3 

Compact Van 1 

Compact Hatchback 1 

Subcompact Hatchback 6 

Engine Types 
Regular 31 

Turbocharged 4 

Transmission Types 

Manual 6 

Automatic 19 

Dual-Clutch (Auto) 2 

CVT * (Auto) 8 

Vehicle’s Age (years) - 0 ~ 13 

* Continuous Variable Transmission 

3.3 Data Preparation 

As the raw data logged by the set of sensing devices includes minor outliers (due to 

sensor errors) and some missing values (due to instantaneous malfunctioning of sensors 

or analog data-link interruptions), and more importantly, because there is a need for 

converting measurements to desired units and scales, a post-processing procedure is 

applied on raw measurements. 
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3.3.1 Outlier Filtering and Smoothing 

The most significant number of outliers are observed in GPS altitude measurements, 

mainly caused by temporary loss of signals from GPS satellites when the vehicles passed 

through the tunnels or the underpasses (less than 1% of the duration of each experiment). 

To treat them, the Savitzky-Golay smoothing algorithm is used [83]. It generates more 

satisfying results compared to other available algorithms such as moving average, 

exponential, and convolutional smoothing methods. Note that wheel speed retrieved 

from ECU is prioritized over GPS speed due to relatively higher accuracy. Hence, no 

outlier filtering (and smoothing) is applied to instantaneous speed data. Figure 5 

demonstrates the results of applying the Savitzky-Golay algorithm on raw GPS altitude 

data. 

 

Figure 5: Efficiency of the Savitzky-Golay smoothing algorithm shown for a fraction of an experiment 



34 

Although rare, missing values should be fixed in data either by removal of the 

whole corresponding record or by substituting them with appropriate values. As in this 

study, the data is assumed to be time-series and one of the main goals of the study is 

addressing the serial correlation in data, no record is eliminated. Instead, missing values 

are filled out by the average of the neighboring data points. The process is applied to 

variables measured by both the OBD-II logger as well as the PEMS measurements. 

3.3.2 Measure Extraction 

Internet-synced timestamps were used to align and join data tables provided by the 

sensors. As almost no vehicle is equipped with direct fuel flow metering (using flow 

meters between the fuel pump and the engine), FCR has to be calculated indirectly using 

other internal engine observations. It could be done with the help of observed (Eq. 1) or 

estimated (Eq. 2) value of MAF, representing the flow of air entering a fuel-injected 

internal combustion engine. All modern vehicles are equipped with a MAF sensor, but 

not all of them report the MAF level through the OBD-II interface. In that case, MAF 

could be roughly estimated based on MAP as well. 
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In Equations 1 and 2, index ! indicates the instantaneous nature of observations, 

,-. and 01, are both in >/', and 1,."!#$%& denotes the air-to-fuel mixture ratio at the 

stoichiometric level. 2 is the ratio of the actual air/fuel ratio (AFR) to its stoichiometric 

level [84], .40 is in revolutions per minute, 014 is the pressure at the intake air manifold 

in kPa, and :; is the volumetric efficiency, which is around 65% for regular gasoline 

engines and goes up to 85% and even higher for turbocharged models. ;< denotes engine 

displacement in Liters, 00 is the average molecular mass of air (28.97 grams/mole), 819 

is the intake air temperature in Kelvin, and . is the ideal gas constant equal to 8.314 

?/∘@/)A#%. 

Energy Consumption Rate (ECR) predicted by MOVES is reported in temporal or 

distance-based units of ?/' or ?/)$#%. Thus, Equation 3 is used to convert FCR 

observations to proper energy units. Having second-by-second temporal ECRs in hand, 

the distance-based rates are calculated by aggregating temporal rates and dividing the 

result by the corresponding distances. 

;-.! = ,-.! ∗ 31,536,000 ∗ ;FF%#()*"!$#+ (3) 

;FF%#()*"!$#+ = G100%,					.%>+#I&	JI'A#$*%96.7%, ;10	JI'A#$*% 	  

Each liter of regular gasoline generates approximately 31,536,000 joules of energy. 

However, the combustion efficiency is different for other gas formulations. E10 gasoline 

(which has 10% ethanol content) has lower combustion efficiency, whereas it generates 
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less pollution and is eco-friendlier. All the gas stations used for fueling up the test vehicles 

in Montreal provided E10 fuel. But, in Tehran and Bucaramanga, regular gasoline is used 

during the tests. 

The PEMS setup reports instantaneous emission concentrations in percentage for 

CO2, ppm for NOx, and N>/), for particulate matters. But the second-by-second 

concentrations should be converted to temporal rates. The challenge with this conversion 

is the absence of exhaust flow rate data. But with an all-in all-out assumption (ignoring 

the existence of minor leakage from the engine or the exhaust pipe), the MAF rate could 

be used as an alternative to the exhaust flow rate. The exhaust pipe lag, however, could 

introduce errors to the calculations. This lag refers to the time it takes for the exhaust to 

traverse the exhaust pipe from the engine to the tailpipe. Presence of resonator and 

catalytic converter in addition to the length of the pipe influence on this lag. Later in this 

research, different modeling approaches (by including lagged variables in the models or 

by use of sequence modeling techniques) are described and evaluated as solutions for 

capturing such lagged effects. To lessen the impact of such error only for use in the 

MOVES validation, a 6-second moving average of the MAF rate is considered instead. 

The 6-second threshold is selected based on the longest time lag observed when visually 

comparing engine RPM and emission fluctuations. For this purpose, peaks and valleys 

are traced for randomly selected time-windows from all 17 vehicles included in emission 

tests. 
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Equations 4 and 5 are used first to unify concentration units and adjust the 

concentrations for prevailing temperature and pressure. The concentrations are then 

converted to instantaneous emission rates using Equation 6. 

,A&	-O2:		-A*Q--( = 10. ∗ -A*Q% (4) 

-A*Q(0/(! = -A*Q--( ∗ R
0A#%Q+#I&	S%$>ℎ!	AF	JI'

22.4 V ∗ R
273

273 + 9V ∗ R10 ∗
4

1013V	
(5) 

;.! = -A*Q(0/(! ∗ 102. ∗ 01,! ∗ X
102,

1$&	<%*'$!YZ	
(6) 

In Equation 5, 9 is the intake air temperature in °- and 4 is the ambient barometric 

pressure in \4I. In Equation 6, 01,! is the mass air flow in >/' and the air density is 

equal to 1.2929	\>/),. The molecular weight of emissions is 44.01, 46.01, and 30.01 

>/)A# for CO2, NO2, and NO, respectively. 

3.3.3 Feature Scaling 

During the modeling stages, Mean Normalization is applied for feature scaling on five 

target features of speed, acceleration, grade, GPS altitude, and RPM as well as the 

dependent variable (either the FCR or one of the ERs). The features will be rescaled so 

that they will have the properties of a standard normal distribution. Feature scaling is 

recommended in ML to avoid attributes in greater numeric ranges (such as speed or 

RPM) dominating those in smaller numeric ranges (such as acceleration and grade). 
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Furthermore, feature scaling speeds up the gradient descent convergence during the 

training process of the ML models, especially when the data has high variance. 

3.4 Executing MOVES Scenarios 

MOVES is developed based on the MOBILE6 model to satisfy several use cases such as 

national and local inventory development, project-level analysis, and sensitivity analysis 

or policy evaluation in travel-demand or microscopic traffic studies. MOVES is founded 

upon several sub-models that are assigned to categories of source bins and operating 

mode bins of the fleet under study. Energy and emission rates are then assigned to each 

category by a direct lookup in predetermined databases. 

In this study, a total of 214 hourly MOVES scenarios are set up and executed for all 

the 35 vehicles. The simulation is conducted at the project level domain. Regarding the 

geographical bounds, Oklahoma county, Los Angeles county, and Chittenden county in 

Vermont state are chosen to represent Tehran, Bucaramanga, and Montreal, respectively, 

as they had the most analogous meteorological conditions to the target cities. Hourly 

changes of ambient temperature and humidity are considered in scenarios based on 

weather records of the target cities [85]. 

A reverse-geocoding process using Google API is conducted for converting GPS 

coordinates to road names and define links. The speed and grade profiles of each link in 
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addition to aggregate attributes of them are then injected to MOVES for having distance-

based link-level energy and emission rates as a result. 

The age of test vehicles is included in scenarios. It affects the choice of engine 

technology by MOVES. Furthermore, regular gasoline (and its corresponding chemical 

formulation) is input to the MOVES for tests conducted in Tehran and Bucaramanga 

while ethanol-based (E10) gasoline is considered for Montreal. 

Regarding the emissions, cold-start, and crankcase emissions are disregarded and 

only the running exhaust (with warmed-up engine) is considered for MOVES simulation. 

As the equipment is designed for tailpipe emission testing, brake wear and tire wear 

particulate matters are ignored from the MOVES output options as well. 

3.5 Cascaded Machine Learning Modeling 

3.5.1 Proposed Feature Sets (Model Structures) 

To initiate the modeling procedure in this study, the relationship of FCR and the 

parameters simply retrievable by a smartphone such as instantaneous speed (]), 

acceleration (I), and road grade (>) is in focus. Note that for the modeling, wheel speed 

reported by ECU and acceleration from the tablet/smartphone accelerometer sensor are 

used instead of GPS speed and GPS-based acceleration due to higher accuracy and 

reliability. At the model deployment time, GPS variables could be used, although they 

will add minor errors to the model prediction. For the instantaneous road grade 
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calculation, the most precise available source of information is GPS altitude 

measurements, in combination with wheel speed, and wheel diameter of each car. Such 

a procedure is easily reproducible at the deployment stage of the model. Other sources 

such as Google’s Elevation API are available for retrieving road elevation at any desired 

point as well; however, they are not as accurate as GPS-based calculations, based on an 

exclusive assessment conducted as a part of this study on around 300 random GPS points 

in Montreal as well as published articles in this regard [86]. 

Binary and triple combinations of features (including speed, acceleration, and 

grade), 6 in total, are examined as model inputs. The acceleration is instantaneous in 

nature; however, the changes in speed and road grade occur less abruptly. It is suspected 

that the changes in speed and road grade have an extended temporal impact on FCR. To 

evaluate this hypothesis, lagged speed and grade features (1st order) are added to the 

feature set. It is noteworthy that the lagged speed and grade variables are calculated 

ahead of the random sub-setting of samples. 

Two widely used ML techniques of Support Vector Regression (SVR) and Artificial 

Neural Networks (ANN) are evaluated and compared for modeling FCR in the following 

subsections. We focused on these two techniques as they have already shown acceptable 

results in different regression problems in other fields. In addition, alternative well-

recognized ML methods such as Random Forests or Gradient Boosting are mainly designed 

for classification or forecast combination problems. 
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3.5.2 Support Vector Regression 

When modeling a nonlinear feature space, taking the traditional statistical approaches 

usually lead to a time-consuming search for complex functional forms for the model. SVR 

is an extension of the widely deployed classification technique of Support Vector Machines 

(SVM) [87,88]. It is commonly used in ML as a powerful alternative to the traditional 

linear/nonlinear regression models. The ^-SVR variation is selected here, in which the 

observations with a distance further than ^ from the nonlinear regression curve (or in 

higher-dimensional problems, from the regression plane or hyperplane) are penalized 

using a weight parameter - to preserve a soft margin and regularize the objective 

function. 

The kernel trick in SVR helps us to implicitly map the lower-dimensional feature 

space into a higher dimensional space and address the nonlinearity and complexity of 

vehicular fuel consumption. Several kernel functions are introduced in the literature and 

many more could be defined through the composition of the base kernels (as long as the 

new kernel functions satisfy Mercer conditions [88]). However, the Radial Basis Function 

(RBF) kernel is mainly used when there is no prior knowledge about the data. 

Its stationarity attribute makes it invariant to translation. It looks at the differences of 

observations not their absolute values, which could help with improving model 

structures that include lagged speed and grade. Moreover, the smoothness of the RBF 

kernel adds a desirable level of smoothing to the data. 
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3.5.3 Artificial Neural Networks 

Since the introduction of a single-layer perceptron [89] up until the recent advancements 

in recurrent network architectures [77,90,91], there have been several attempts at 

modeling time-series data using the concept of the neural networks. In contrast with the 

conventional statistical methods, ANNs are adaptive. Data is passed through the layers 

many times such that each pass of data results in a prediction that is compared to a 

corresponding observation. The adaptivity attribute, use of nonlinear activation units 

such as Sigmoid or Rectified Linear Unit (ReLU), and multi-layered architecture of ANNs 

make them great candidates for modeling complex unknown phenomena. 

In addition to a comparison between the general quality of SVR and ANN in FCR 

estimation, it is desirable to understand how the wideness or the deepness of the neural 

network’s architecture impact the prediction power. The hypothesis here is that deeper 

and narrower architectures work better for some vehicles (depending on the 

characteristics) compared to the shallower and wider architectures. Figure 6 presents the 

four candidate architectures evaluated. 
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Figure 6: Graphical representation of the four candidate ANN architectures 

To come up with an initial hidden-layer size for the base architecture, a trial and 

error is done using random sample sub-sets of data and by testing different single-layer 

architectures (starting from 4 neurons and increasing it in base-2 logarithmic scale up to 

256). Based on the results, the base architecture is formed with 3 features as input layer 

(], I, and >), 128 neurons for the hidden layer, and a single neuron for the output layer. 

Deeper and narrower architectures are generated using a similar base-2 logarithmic scale. 

ReLU activation function seems appropriate here as it boosts gradient descent 

convergence time (computationally efficient) and reduces the likelihood of vanishing 

gradient descent. However, as regression (not classification) is being performed, a linear 

activation function is used for the output neuron. 



44 

3.5.4 Estimates of IEVs for Improving the Models 

The RPM is one of the internal engine variables that unlike other influential variables 

such as the throttle position, is available through the OBD-II interface of “all” the vehicles. 

As RPM represents the pace of the iterative combustion process inside the engine, one 

might expect that a linear correlation exists between FCR and RPM. However, the 

existence of the transmission system with various technologies and settings in the 

powertrain results in a complex and nonlinear relationship between these two. 

(a) (b) 

 
(c) (d) 

 

Figure 7: Diversity of FCR-RPM relationship concerning transmission technologies 
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As shown in Figure 7, the relationship becomes more linear (and less noisy) when 

moving from manual transmission (Figure 7-a) to CVT (Figure 7-d). Thus, a higher 

influence of RPM in modeling FCR for CVT-transmission vehicles could be expected. 

To make use of RPM as a complementary feature to improve the estimation power 

of the ML models, two steps are taken. First, by adding RPM to the existing input feature 

set (]!, ]!23, I!, >!, >!23), new model structures are generated. Estimating SVR and ANN 

models is repeated for the new structures to understand the maximum possible 

improvement compared to the structures without RPM (108,000 SVR and 4,320 ANN 

additional training). Second, as RPM is inaccessible in practice without the use of 

specialized equipment, it should be estimated with an acceptable level of error. It is a 

requirement for developing smartphone-based eco-driving assistance services. Many 

vehicles currently on the roads (especially, the older ones which are the main fuel 

consumers and air pollutants), are not equipped with on-board eco-driving options. The 

drivers’ smartphone is the only tool available and models are needed that are instrument-

independent (by instrument, a tool that provides access to internal engine variables such 

as RPM, throttle position, etc. is meant). The traditional models for estimating the RPM 

require detailed knowledge of the transmission systems’ operation mechanism and its 

technical specifications. Such models need the pre-programmed pattern of gear shifting 

at different speeds and throttle positions (transmission shift points) in addition to the 

internal gear ratios for each vehicle as input. In absence of such information, the base 
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easily-observable features are considered for completing the cascaded modeling 

approach (demonstrated as a part of Figure 8). Eight ANN architectures are assessed and 

the two most promising structures (based on the results of the primary models for FCR 

estimation) are chosen to find the best RPM estimates. Four additional wider 

architectures (by doubling the number of neurons of each layer) are examined as well to 

provide flexibility for the ANN in learning the true underlying relationships.  

 

Figure 8: Representation of experimental and cascaded modeling procedures 



47 

 ANN is used for the RPM estimation (not the SVR) because even with the same 

architecture, the result of training an ANN with a new dependent variable (and similar 

features) could lead to different weights representing different underlying interactions 

between features. While with SVR, this could only be achieved through switching the 

kernel function which is not easy to do in a data-driven modeling approach. Results of 

30,240 training (including 2,160 ANN training for RPM prediction, and 1,080 ANN and 

27,000 SVR training to finalize the cascaded modeling process), are presented and 

discussed in Chapter 5. 

3.5.5 Model Training and Validation 

For SVR, a 5-fold cross-validation approach is taken as a preventative measure against 

overfitting. For each model structure and each vehicle, the sample data is first shuffled 

and then split into five same-size segments. The training process is repeated five times, 

each time using four segments (80% of the data) as the training set and the remaining 

segment (20% of the data) as the test/validation set. The models’ training and test scores 

would be the average of cross-validation results. 

For each cross-validation process, a grid search is performed to find the best 

combinations of the three ^-SVR parameters, ^, -, and _, which give us the best average 

cross-validation score. - is the regularization parameter to control the well-known bias-

variance trade-off (to avoid overfitting). The _ parameter is the inverse of the standard 
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deviation of the RBF kernel (Gaussian function), which is used as a similarity measure 

between two data points. A large _ value defines a Gaussian function with small variance 

and in this case, two points are considered similar just if they are close to each other (note 

that the distances in a multidimensional space is in focus here). When _ is very small, the 

model cannot capture the complexity or the shape of the data. The resulting model would 

behave like a linear model as two points can be considered similar even if they were far 

from each other. The value of ^ defines a margin of tolerance where no penalty is given 

to errors. By tuning the epsilon value, the boundary of support vectors is defined and the 

regression curve/plane in *-dimensional space is guided towards the best fit. Note that 

no physical meaning, related to the vehicle operation or fuel consumption process, could 

be defined for these three parameters.  

To minimize the computation time, first, valid ranges for each parameter are found 

through trial and error on a few sample sub-sets. Choosing a base-10 log scale, ^, -, and 

_ are selected from ranges of [0.0001: 1], [0.1:	100], and [0.001: 10], respectively. A total 

number of 81,000 SVR training has to be performed to find the best parameter set 

corresponding to each of the vehicles and each model structure. The R-squared metric is 

used as the evaluation metric. The SVR computations are done in Python using the scikit-

learn library. The results are discussed later in Chapter 5. 

For ANN, a similar train/test splitting and cross-validation strategy is deployed. 

RMSprop is used as the optimizer. The stopping criterion for the iterative training process 
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is based on the Mean Squared Error (MSE) metric. Regularization is done using the drop-

out technique. Ten percent of the neurons of each layer is turned off randomly in each 

pass of the forward/backward propagation process. A total number of 3,240 neural 

network training is conducted at this step and the TensorFlow library [92] is used for 

training the ANN models. 

3.6 Sequential Modeling to Address Lagged Dependencies 

3.6.1 Different Sources of Lag 

Earlier in Section 3.3.2, possible sources of lag in tailpipe emission measurements were 

described when the estimation of the exhaust flow rate based on MAF readings was done. 

It is noteworthy that the exhaust pipe lag is one of the several lag types which the 

modeling approach should be able to capture altogether. The other sources could be listed 

as follows: 

• Sensor Response Lag, which is a fraction of a second for a pre-heated NDIR or 

electrochemical sensor (like the CO2 and NOx sensors included in the PEMS units). 

• Engine Response Lag, which refers to the time between the moment a driver takes an 

action due to the power demand, road geometry, or network interruptions (for 

example, pushing the gas pedal, braking, shifting gears, performing a maneuver) and 

the time the engine responds. This time lag is impossible to be measured without 

additional specialized sensors. 
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• Kinematic Distributed Lag, which represents the delay between the moment a driver 

decides to increase speed and the time the change in speed to the desired level occurs. 

In other words, an amount of fuel is consumed (and consequently, a volume of 

emissions is generated) immediately after the driver’s action to generate the required 

force for acceleration, but the corresponding impact on kinematic variables, which 

forms the feature set in modeling, is observed gradually and with delay. 

3.6.2 Recurrent Neural Network Architectures 

Recurrent neural networks are a special type of artificial neural network designed to 

recognize patterns and temporally-distributed effects on the dependent variable in 

sequences of data, such as time-series. The technique is widely used for Natural Language 

Processing (NLP), where it has shown its exceptional power in memorizing the past 

attributes of the sentences and reflecting their impacts on current predictions. 

Nevertheless, RNNs have been seldom used in vehicular fuel and emission rate 

modeling, and in the majority of studies in this field, data points are assumed random 

samples rather than time-series. 

A fully-connected neural network takes in a fixed-size vector and gains no 

knowledge about temporal interactions of features and the dependent through the model 

training process, while an RNN model not only takes the features’ vector at time ! but 

also takes the measurements from the previous moments up to b lag steps (! − 1, ! − 2, 
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…, ! − b), assuming lagged (or distributively lagged) impact of features on the dependent 

variable exists. Figure 9 depicts the general architecture of a many-to-one RNN model 

which is applicable in vehicular fuel and emission rates modeling. Note that d4 =

ef!2-, … , f!25, f!23, f!h is the input matrix corresponding to time !. Each f$ element 

defines a columnar vector holding the instantaneous values of the main model features. 

Hence, in our case, f$ would be equal to []$ , I$ , i$]6, where ]$ is speed in \)/ℎ	, I$ is 

acceleration in )/'5, and i$ is the GPS altitude in ) all at time $ for each vehicle selected 

for modelling. The measured instantaneous FCR or one of the ER values at time ! could 

be used as output j! while training the model. 

 

Figure 9: Many-to-one RNN architecture with lag order of p (RNN cells are in green) 

Three different internal mechanisms are introduced in ML literature for RNN units. 

Although the non-gated simple RNN unit is powerful in including short-term 

dependencies, the mechanism is weak in capturing long-term effects due to the 

vanishing/exploding gradients phenomenon during the training (backpropagation) 

process. To deal with such problem, Long Short-Term Memory (LSTM) units are 

introduced, with proven effectiveness during the last two decades [76–78,90,93]. The 
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complex internal gated structure of an LSTM unit allows the memorization of long-term 

dependencies in data. The gates manage the intensity as well as the temporal extent of 

past changes of features on the current output of the model. In recent years, a simplified 

version of LSTM, called Gated Recurrent Unit (GRU) has gained interest among ML 

modelers [94,95]. GRUs possess only two internal gates (compared to three gates of LSTM 

unit) and training/running a GRU-based sequence model is less computationally 

expensive, while providing comparably accurate results. Whereas, due to the existence 

of dedicated control over the memory in LSTM, rather than fully exposing the hidden 

content like what GRU does, LSTM is theoretically supposed to remember longer lagged 

effects. As the order of lag is unknown for us at first and is assumed to be dependent on 

the type of emission, type of vehicle, and even as it could change through time in different 

driving conditions, all three RNN unit types would be assessed in this study. 

The prediction power of RNNs could be boosted by deepening them through 

stacking RNN layers over each other. In stacked many-to-one RNN architecture, each 

layer (except the last one) outputs a sequence of vectors which will be used as an input 

to a subsequent layer. The additional hidden layers are understood to recombine the 

learned representation from prior layers and create new representations at high levels of 

abstraction. 
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3.6.3 RNN Modeling Settings 

As a foundation for developing category-based models, vehicle-specific RNN models for 

both fuel as well as emission rates are estimated. The input vectors consist of speed (]!) 

in \)/ℎ, acceleration (I!) in )/'5, and GPS altitude (k!) in ). One hundred hidden RNN 

units are considered inside each cell of the network after performing a few warm-up 

training procedures and evaluation of the impact of the lower and higher number of 

hidden units. In addition, all three types of RNN units (Simple, LSTM, and GRU) as well 

as single-, double-, and triple-layer stacked architectures are assessed (deeper structures 

are disregarded due to exponentially increasing processing time). Depending on the lag 

order, data is converted into p-length sets of vectors, and 5-fold cross-validation (with 

70% of data for training and 30% for validation) is used to achieve robust modeling 

results. Regularization is applied through the dropout technique with a drop probability 

of 50%. Besides, MSE is used as the loss function, and the Adam algorithm is considered 

for the neural network’s optimization (as it resulted in acceptable accuracies much faster 

than other popular alternatives, Momentum, RMSprop, and Stochastic Gradient Descent 

(SGD), during the warm-up modeling attempts). Moreover, the iterative training process 

(forward and backward propagation through time) is continued until the validation error 

got stabilized. It is noteworthy that for all different types of modeling, Python 

programming language and two popular libraries of TensorFlow [92] and Scikit-Learn [96] 

are deployed. 
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3.7 Primary Forecast Combination of Models with Different Lag Orders 

The capacity of the modeling methodology to allow generalization to more aggregate 

levels (such as categories of vehicles) is an important factor when developing vehicular 

fuel consumption and emission models either for eco-driving purposes, use in traffic 

simulations, or even for macro-scale transportation analyses. To achieve this goal, an 

appropriate forecast combination technique is required which results in ensemble models 

that perform at least as good as the component models. Consequently, the ensemble will 

represent the category and is assumed to perform acceptably for any vehicle with the 

same shared attributes. 

3.7.1 Popular Forecast Combination Methods 

Several forecast combination techniques are introduced in the traditional statistics 

literature. The most basic method, Simple Averaging, assumes the component models (also 

called Weak Learners) contribute at the same level to the ensemble forecast [97]. Trimmed 

and Winsorized means are samples of developments in averaging techniques [98]. But 

these methods work efficiently only when adequately accurate predictions by component 

models are available. Moreover, they underperform significantly when data with skewed 

distribution exists [74]. The more sophisticated method of Ordinary Least Squares (OLS) 

regression has been frequently used in the literature [99–101] for ensemble forecasting. 

But as the world is transitioning from the age of the traditional statistics to the machine 
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learning era, ensemble learning algorithms are evolving accordingly.  Methods founded 

upon the concepts of Decision Trees (DT), Gradient Boosting (GB) and its extensions such 

as AdaBoost (AB), Random Forests (RF), SVM, and even recently ANN have come into focus 

of ensemble modelers and have proved their capability in generating significantly 

improved ensemble predictions [102,103]. 

3.7.2 Finding the Extent of Lagged Effects 

Due to the existence of different sources of lag, the true lag order in data is completely 

unknown and it is possibly dynamic. To deal with this uncertainty, first, vehicle-based 

RNN modeling is repeated for lag orders from 1 to 10 to find out the best range of lag 

orders to be considered for the next steps (the upper bound is selected based on the 

engineering judgment of the author after visually inspecting the overlapped curves of 

speed, FCR, and ER for different vehicles and the notion that 10 seconds is long enough 

for dissipation of temporally distributed effects in vehicles). The average normalized Root 

Mean Squared Error (RMSE) resulting from training RNN models is presented in Figure 

10 for fuel, CO2, and PM rates. Note that the simple RNN modeling results are 

disregarded here as they showed weaker validation scores by a significant margin. 
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Figure 10: Average Norm. RMSE for RNNs regarding (top) FCR, (middle) CO2, and (bottom) PM 

The best results obtained using each of the RNN types corresponds to a range of lag 

orders from 1 to an average of 6. Considering the proven capability of RNNs in capturing 

serially-correlated as well as lagged phenomena, it is concluded that the extent of lagged 

effects does not last for more than 6 seconds. This is compatible with the findings from 

the visual inspection of overlayed speed and fuel/emissions curves in literature [53,104]. 

The results of RNN modeling for lag orders of 1 and 6 for a randomly selected time-

window for three of the vehicles under study are presented in Figure 11. The prediction 

curves clearly show that L1 and L6 models compete with each other at different ranges 

in terms of accuracy. An interesting understanding is that RNNs with lower lag order 

predict better the extreme and sudden peaks and valleys (see regions highlighted in 
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magenta), while those with higher lag orders perform better at ranges with smaller/no 

variations (see regions highlighted in yellow). The observation brings the idea that 

combining forecasts conducted by RNN models of different lag orders might lead to a 

single but more accurate model. 

 

 

 

Figure 11: Best RNN predictions for lag orders of 1 and 6 on three vehicles 
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3.7.3 Developing the Ensemble of Lag-specific Models 

As a complementary step to develop vehicle-specific RNN predictions, forecast 

combination techniques are utilized to combine predictions of best RNN models trained 

for each vehicle-dependent pair for the 6 lag orders (called lag-specific models). Taking 

such an approach, a Metamodel (or Meta-Regressor) is aimed to be trained for each vehicle-

dependent pair which is expected to perform at least as good as the best lag-specific 

model, if not outperforms it. These primary metamodels will be used later for building 

higher-level ensembles for the categories of vehicles. The approach taken here is inspired 

by the Stacking method in the Ensemble Learning (EL) paradigm, as shown in Figure 12, 

where the component models are trained based on a complete dataset, and then their 

outputs are used as input features to train an ensemble function. 

 

Figure 12: A Stacking EL architecture to develop vehicle-specific models 

The performance of 8 widely used EL algorithms as the Meta-Regressor (two settings 

for each) to combine lag-specific RNN models is evaluated. Then, the best algorithm-
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setting combination for each vehicle is handpicked. The algorithms and the 

corresponding major settings are described in Table 3. 

Table 3: Major details of EL algorithms evaluated for developing lag-specific models 

Algorithm 
Settings 

Attribute Value 

Linear Regression Feature Normalization Active 

Ridge Regression 
Feature Normalization Active 

Regularization Strength ! = {0.1, 1.0} 

Support Vector Regression 

Kernel RBF 

Gamma Scale 

Epsilon 0.1 

Regularization Parameter C = {1.0, 10.0} 

Decision Tree 

Splitting Criterion MSE 

Splitting Strategy at Nodes {Best, Random} 

Maximum Tree Depth Unbounded 

Gradient Boosting 

Loss Function Least Squares Regression 

Splitting Criterion MSE 

Learning Rate 0.1 

Number of Boosting Stages {10, 100} 

AdaBoost 

Base Estimator Decision Tree Regressor 

Loss Function Linear 

Learning Rate 1.0 

Number of Boosting Stages {10, 100} 

Random Forest 
Number of Trees {10, 100} 

Splitting Criterion MSE 
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Algorithm 
Settings 

Attribute Value 

Maximum Forest Depth Unbounded 

Multi-Layer Perceptron (MLP) 
or 

Fully-Connected ANN 

Number of Hidden Layers {1, 2} 

Layer Size (No. of Neurons) 100 

Activation Function ReLU 

Optimizer Adam 

Learning Rate 0.001 

Maximum No. of Iterations 200 

 

For all the ensemble models trained at this stage, the same train-test splitting 

strategy (70% of data for training and the rest for testing) is followed. A diverse spectrum 

of modeling techniques was tried. The sophisticated types (such as Random Forests or 

ANN) are not directly targeted because if acceptable results are achievable with simpler 

algorithms, at the time of deployment (for example, in an eco-driving assistance service), 

much lower processing power would be required. The results of the vehicle-specific 

forecast combination are visually presented and statistically discussed later in Chapter 6. 

3.8 The Generalization to Category-specific Models 

Having the vehicle-specific ensemble predictions in hand, the final step towards 

modeling category-specific models could be taken. Vehicle-specific modeling is naturally 

susceptible to bias; hence, generalizing and using such models for other vehicles could 

always be criticized. Furthermore, smartphone-based eco-driving services should be 
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usable for different types of vehicles even with unknown detailed technical 

specifications. Appropriate microscale fuel and emission models should be easily 

adjustable to the new vehicles based on simple and general information retrieved from 

the driver or the car owner, such as vehicle class, age, engine type, engine size, 

transmission type, weight, payload, etc.  

To fulfill the aforementioned requirement, higher-level metamodels (or 

Supermodels) are trained for categories by combining forecasts already conducted by 

vehicle-specific metamodels. However, making a heavy assumption is required that all 

the vehicles in a category possess important common attributes affecting their powertrain 

operation which result in similar fuel consumption and emission generation patterns. 

Furthermore, it is assumed that the data used for training lag-specific models and vehicle-

specific ensembles for each category member is a subset of a hypothetical larger 

homogenous dataset dedicated to the category. Nevertheless, before training the 

category-specific models based on different categorization criteria, it is not clear which 

common attributes lead to categories with such homogenized members. The 

categorization criteria could be ranked only after comparing the modeling scores 

corresponding to category-specific supermodels. Figure 13 shows the comprehensive 

architecture of the two-stage EL approach for generalizing the basic RNN models to 

supermodels generalized to categories of vehicles.  
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Figure 13: The architecture of the two-stage EL for category-specific modeling 

Because the vehicle-specific metamodels are trained for each vehicle’s dataset 

separately, the predictions regarding their test input data will not be valid for the second-

level forecast combination. To deal with this issue and to avoid violating the heavy 

assumption regarding the homogeneity of category members, a special n-fold cross-

validation approach (n is the category size) is taken in which after categorizing the 

vehicles based on the desired criterion, one member of each category as Validation Vehicle 

is pulled out. The validation vehicle’s data is then injected into vehicle-specific 

metamodels (of the rest of the category members) and their predictions are used for 

developing the category-specific supermodel through EL. The average cross-validation 

scores are then used for evaluating the supermodels’ performance. 
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The same set of EL algorithms and settings described in Table 3 are assessed for 

developing category-specific models as well. Like the previous steps, a similar train-test 

splitting strategy is deployed to prepare the metamodel predictions as input for the 

category-specific supermodels and keep a part of that data for validation (5-fold cross-

validation is applied as well). Vehicles are categorized based on 6 criteria of Age Range, 

Class, Engine Type, Engine Size Range, Transmission Type, and Weight Range. Vehicle weight 

is calculated as the sum of curb weight and live/dead payload at the time of 

experimenting. All the modeling steps are repeated for FCR and each of the ERs. RMSE 

has been used in all three modeling steps (lag-, vehicle-, and category-specific modeling) 

as the evaluation metric. Results of EL modeling attempts (for both stages) are presented 

visually and discussed in Chapter 6. 
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Chapter 4 

MOVES Validation using Real-World Measurements 
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4.1 Introduction  

Following a major concern regarding the validity of using MOVES predictions for 

environmental assessment of transport projects or eco-driving purposes in non-U.S. 

regions (such as Canada), several MOVES scenarios are run based on the methodology 

described in Section 3.4 and the results are compared to the emission rates captured by 

the Portable Emissions Measurement System (PEMS) and the Energy Consumption Rates 

(ECR) calculated based on On-Board Diagnostics (OBD-II) readings in this chapter. 

Through this comparison, we target evaluating the magnitude of error as well as the bias 

direction when using MOVES model for estimating project-level (link-level) energy and 

emissions rates. In addition, the sensitivity of MOVES output to fleet attributes as well as 

local road network and environmental conditions can be assessed. Such sensitivity 

analysis helps us identify the regional aspects which should be addressed in developing 

independent local models or adjustment procedures. 

4.2 Energy Consumption 

The first comparison is for link-based ECRs (in Joules per mile). Figure 14 presents the 

ground-truth ECR observations versus MOVES predictions. The dashed red line in 

Figure 14 shows the expected (ideal) condition where ground-truth and predictions are 

in full compliance. The black solid line represents the existing correlation between 
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observations and predictions. A linear regression model is applied to data to find the 

goodness-of-fit as a metric representing the accuracy of MOVES predictions. 

 

Figure 14: ECR observations vs. MOVES predictions 

Thus, in general, MOVES shows low prediction power for energy consumption 

despite all the adjustments applied at the input stage to simulate the prevailing 

conditions regarding test fleet, fuel types, weather conditions, or road network attributes. 

The slope of 2.54 of the fitted line (while having a small negative intercept) shows that 

MOVES is underestimating energy consumption in general. 

A significant unusual branch is visible in Figure 14 (highlighted with a green dashed 

line). The majority of data points in that branch is dedicated to three vehicles from the 

tests in Bucaramanga. All three vehicles have a manual transmission, regular engines, 
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. − 56780 < 0.0001 
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and used regular gasoline during the tests. But these are not the only manual-

transmission vehicles among the test fleet in Bucaramanga (and the other two cities). 

Several tests in Bucaramanga as well as Tehran conducted on vehicles with manual 

transmission, which have shown normal behavior. Regular gasoline has been used in 

Tehran as well and several vehicles from the same age range exist in the test fleet; thus, 

the anomaly could not be linked to fuel type or age-related conditions. Moreover, the 

driving style has been regulated before the tests and the set of roads that drivers were 

supposed to traverse were almost similar for tests in each city. Nevertheless, none of the 

other vehicles have shown abnormal behavior. As the magnitude of the ground-truth 

ECRs for these three vehicles is significantly higher than observations regarding the rest 

of the test fleet, the anomaly could have roots in wrong vehicle engine settings, use of 

lower quality fuel, or extraordinary congestion at the time of experimenting on these 

three vehicles. Thus, those three vehicles are put aside from the sensitivity analysis of 

MOVES outputs conducted through the categorization of comparison results for different 

vehicle, trip, and location attributes (such as vehicle segment, age, weight, link average 

speed, link average grade, temperature, and humidity). It is important to note that by 

removing the data regarding three outlier vehicles, the R-squared score decreased to 0.24 

as there is still high variance around the ideal line. 

In Figure 15, the energy consumption data for manual-transmission vehicles is 

separated from those with automatic transmission (of any type) excluding the 3 outlier 
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vehicles mentioned earlier. Although the slope of the fitted regression line is close to 1, 

the R-squared values are still low for both groups. 

 

Figure 15: ECR observations vs. MOVES predictions for transmission-type categories 

MOVES slightly underestimates ECR for automatic transmissions, whereas there is 

a minor over-estimation for manual transmissions. There is no option in MOVES to input 

information regarding the transmission type of vehicle fleet; thus, in general, it treats 

vehicles with different transmissions in the same way. However, as at the project level, 

second-by-second link drive schedules are used as part of the input, the impact of the 

transmission system (as means of converting generated power by the engine to the wheel 

speed) is considered implicitly in the model. But it is mixed with other influential factors 

such as road congestion or aggressive driving. Regarding fuel type, no significant 
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difference between ground-truth ECR and predictions was observed for regular and E10 

fuel. 

Figure 16 takes the engine type as the categorization criterion. Compared to the 

regular-engine vehicles, MOVES performs exceptionally in the prediction of ECR for 

turbocharged ones with an R-squared of 0.74 and a slope of 0.91 for fitted lines. It is clear 

from the figure that the magnitude of ECR is considerably lower for turbocharged 

engines which was expectable. The significant difference between a turbocharged engine 

and a traditional naturally aspirated gasoline engine is that the air entering the engine is 

compressed before the fuel is injected. When air is compressed, the oxygen molecules are 

packed closer together. The increase in the air means that more fuel can be added for the 

same size naturally aspirated engine. This then generates increased mechanical power 

and leads to overall efficiency improvement of the combustion process. Therefore, the 

engine displacement can be reduced for a turbocharged engine leading to an overall 

improved fuel economy. The reason MOVES predicts much better for turbocharged 

vehicles could be linked to the fact that data collected for estimating MOVES are mainly 

results of in-lab simulations of the EPA’s standard driving cycles on chassis 

dynamometers in controlled environments on perfectly maintained vehicles. 
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Figure 16: ECR observations vs. MOVES predictions for engine-type categories 

In the lab, many external factors affecting the fuel economy of vehicles are ignored. 

Therefore, as the turbocharging pushes the engine towards working more ideally with 

less energy waste, the ground-truth for that type of engine would be more similar to the 

MOVES experiment conditions. 

In Figure 17, age has been chosen as the grouping criterion. The significance of 

goodness-of-fit for vehicles aged between 5 to 8 years is interesting. Every year, vehicles 

with more advanced technologies and more efficient engines are introduced to the 

market. The last update to MOVES dates back to 2014. Thus, the majority of newly 

introduced vehicles are absent in MOVES’ source fleet. MOVES has predicted ECR for 5-
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8 years-old vehicles well as its core models are mainly estimated and calibrated for 

technologies of that era. 

 

Figure 17: ECR observations vs. MOVES predictions for vehicle-age categories 

Deepening the sensitivity analysis, the vehicle segment is targeted in Figure 18. The 

ECR for compact and subcompact hatchback vehicles are predicted with an R-squared 

score of 0.71. MOVES slightly over-estimates ECR for this category. For the rest of the 

segment groups, high variation is evident in comparison charts and the prediction 

accuracy is unacceptable. A concrete conclusion is not possible to be made unless the 

sensitivity analysis is performed based on vehicle weight as well (see Figure 19) because 

an average hatchback vehicle is smaller and lighter compared to vehicles from other 

segments.  
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Figure 18: ECR observations vs. MOVES predictions for vehicle-segment categories 

 

Figure 19: ECR observations vs. MOVES predictions for vehicle-weight categories 
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MOVES performs acceptably in predicting ECR for light (less than 1250kg) and 

medium-weight (1500 to 1750 kg) vehicles with R-squared values of 0.66 and 0.58, 

respectively. However, it noticeably underestimates ECR for the heavy-weight group. 

Therefore, it is confirmed that MOVES predicts much better for smaller/lighter vehicles 

like the hatchbacks. Usually, compact and subcompact hatchbacks are equipped with 

weaker engines less capable of high acceleration; therefore, lower Vehicle Specific Power 

(VSP) values are observed in their tests. It has already been proved (through studies by 

Jiménez-Palacios [105] and Wu et al. [44]) that the variation of observed emissions 

increases significantly for higher VSP values. Thus, it is expected that MOVES predictions 

include more errors for heavier vehicle segments. 

No sensitivity was observed when investigating the results based on average-speed 

bins. However, a side-by-side comparison of observations/predictions against link 

average speeds in Figure 20 reveals interesting compliance of patterns between the 

ground-truth and MOVES output. It is visible that in the real world, there is a higher 

probability of deviation and noise in ECR which relates to influential factors ignored by 

MOVES. 
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Figure 20: ECR observations and MOVES predictions against link average speed 

Regarding grade, MOVES prediction power is exceptionally high for the positive 

grades from 5 to 20 percent (see Figure 21). 

 

Figure 21: ECR observations vs. MOVES predictions for link-grade categories 
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In negative grades, the vehicle moves downhill while usually cruising or 

decelerating. As the need for power decreases in these conditions, lower VSP values (even 

negative) will happen. It is expected that MOVES predict with more accuracy as ECR at 

small/negative VSPs has less variation. But the current observation shows that the VSP 

formulation might not be capable of completely capturing the impact of grade on power 

demand. 

MOVES ECR predictions are insensitive to ambient temperature changes. But, on 

the other hand, MOVES was quite accurate for ECR prediction in dry weather conditions 

(humidity lower than 50%). This finding is in accordance with the fact that MOVES core 

models are estimated and calibrated for the U.S. meteorological conditions.  

 

Figure 22: ECR observations vs. MOVES predictions for ambient-humidity categories 
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The U.S., on average, has much drier weather compared to Canada, Colombia, and 

even some parts of Iran. Thus, the reliability of MOVES is low for being used for All-year 

humid weather of Colombia or wet winters of Canada. 

4.3 Carbon Dioxide (CO2) 

Before starting to take a deeper look into MOVES capability in Greenhouse Gas (GHG) rate 

prediction, it is good to validate the PEMS measurements based on known facts from 

literature. Burning one liter of regular gasoline generates approximately 2.29kg of CO2 

(the rate is 2.21 for E10 gasoline) [106]. Figure 23 represents a correlation analysis between 

the PEMS-based CO2 observations and the calculated CO2 rates based on the FCR. 

 

Figure 23: Directly-measured vs. indirectly-calculated CO2 rate 

Except for a few outlier values where the PEMS unit has reported close to zero rates, 

the majority of the measurements show great agreement with the previously published 
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finding regarding fuel-to-CO2 conversion rates. The outliers could be the result of the 

instantaneous malfunction of the PEMS unit or instantaneous discontinuity of the 

exhaust stream which sometimes happens due to engine coughing phenomenon [107]. 

For the rest of the analysis, the above-mentioned few outliers are removed from the data. 

As expected, all the CO2-related comparisons conducted between MOVES 

predictions and PEMS observations are in agreement with that of ECR. However, in all 

the observations, the goodness-of-fit is considerably higher. It could be linked to the 

minor cumulative errors (approximations) produced while indirectly calculating the ECR 

based on engine attributes and Mass Air Flow (MAF) rate (refer to Section 3.3.2). 

Moreover, less overall over/underestimation by MOVES is seen in the different 

categorizations (see examples in Figure 24). Nevertheless, an approximate 0.1 kg/mile 

initial bias (shift) in MOVES predictions is evident in the charts in low ranges of CO2 rate. 

This could be linked to the fuel cut-off technology available in some vehicles in situations 

where there is no power demand (i.e., downhill cruising), the fuel stream to the engine 

stops to avoid waste of energy. 
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(a) (b) 

 
 

(c) (d) 

 

Figure 24: CO2 rate observations vs. MOVES predictions for (a) all links and categorized based on (b) 
engine type, (c) vehicle segment, and (c) vehicle transmission 

VSP formulation used by MOVES (Equation 7) does not simulate such conditions 

as it is always positive while cruising (zero acceleration and positive speed). The VSP 

formula as presented first by Jiménez-Palacios [ref] is as follows: 
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Where ] is speed, I is acceleration, the grade is in percentage, gravity is equal to 

9.81 )/'5, -7 is rolling resistance coefficient, -9 is the drag coefficient, 1: is the vehicle’s 
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frontal area, ]; is wind speed, ^$ addresses internal engine friction, and ) represents the 

dead weight of the vehicle. 

4.4 Nitrogen Oxides (NOx) 

Around 95% of NOx in exhaust gas from a gasoline-engine vehicle is nitrogen monoxide 

(NO). The rest includes N2O and NO2 molecules. Figure 25 shows NOx-rate predictions 

against sensor observations for both NO and NO2 side by side. 

(a) (b) 

 

Figure 25: (a) NO- and (b) NO2-rate observations versus corresponding MOVES predictions 

The most significant observation regarding MOVES NOx-rate predictions is the 

evident overestimation, with NO predictions possessing much higher variance. This 

could be due to the larger scale at which NO is emitted by gasoline-engine vehicles; 

especially, by the older ones. Evaluation studies by EPA workgroups [3,51] confirm this 
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observation as the error in MOVES NOx estimates are projected to increase through time. 

NO2 is the dominant NOx emission in diesel-engine vehicles and a limited amount of it 

is observed in the measurements. A possible root cause of this overestimation lies in the 

catalytic converters’ technology. Although the three-way catalytic converters are 

designed to reduce NOx levels (in addition to oxidizing carbon monoxide and unburnt 

hydrocarbons), their best efficiency only occurs in a narrow band around the 

stoichiometric air-to-fuel mixture level. Conversion efficiency falls very rapidly when the 

engine is operated outside of this band. If MOVES fails to capture the impact of catalytic 

converters, its predictions could become inaccurate like the observations above. 

When categorizing NOx comparison charts by engine type, it is revealed that 

MOVES accuracy is lower for turbocharged engines. The increase in breathing capacity 

of the engine due to turbo-charging provides more oxygen for combustion, leading to 

more complete combustion. This effect leaves less oxygen in the exhaust, which results 

in a significant dropdown in oxidation/reduction reactions in catalytic converters. In 

general, it has been proved that turbocharged engines generate higher NOx, CO, and 

CO2 emissions compared to naturally-aspirated engines [108]. Thus, MOVES low 

prediction power, in this case, could be linked both to its weakness in simulating the 

effect of catalysts and the lower number of vehicles with turbocharged engines in its test 

fleet. 
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No other significant category-based finding for NOx emissions is achieved. The 

dominance of error levels in MOVES NOx-rate predictions does not allow extracting 

meaningful category-based insights. Nonetheless, a glance at Figure 26, presenting the 

sensor observations for NOx rates compared to MOVES predictions sorted by link 

average speed, reveals two important points. Although the pattern of true changes in 

NOx rates (by speed) is roughly similar to that of MOVES predictions, the MOVES 

overestimation is significant. In reality, the NOX rate converges to zero, whereas MOVES 

preserves a lower bound for its predictions. 

(a) (b) 

 

Figure 26: (a) NO- and (b) NO2-rate observations and MOVES predictions against link average speed 

Moreover, even in MOVES predictions (which somehow simulate ideal conditions), 

much higher variance in NOx rates is observed for different link average speed values 
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when compared to similar graphs for ECR or CO2. This indicates the nature of NOx 

generation in gasoline engine vehicles is relatively complex. Therefore, when modeling 

for the NOx rate, many more influential variables should be considered in addition to 

average speed. 

4.5 Fine Particulate Matters (PM) 

MOVES has the option to predict differently-sourced PM rates separately. However, our 

comparisons address the running-exhaust PM rates as the PEMS device we used is 

mainly designed for tailpipe measurement (hence, tire wear and brake wear particulate 

matters are disregarded in this study). 

 

Figure 27: Tailpipe PM rate observations vs. MOVES predictions 
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Two anomalies are visible in Figure 27 both showing a high goodness-of-fit of 

around 0.8. However, for the blue part, corresponding to Mazda 3, underestimation is 

observed. For the cyan part, corresponding to 4 vehicles (Toyota Corolla, Kia Rio, Jeep 

Patriot, and Toyota Yaris), a good agreement with the bisector line and high R-squared 

score is evident. But for the rest of the vehicles, MOVES predicts with huge errors and 

generally overestimates PM rates. As all the PEMS measurements are conducted in 

Montreal, the observed segregation could not be linked to location differences. All four 

vehicles in the cyan area have regular engines with automatic transmission. But they are 

from different vehicle segments and have different total weights. They all used the same 

E10 fuel. They have had ages from zero to nine years and even the ambient humidity and 

temperature have been different while doing experiments on them. Therefore, the 

inconsistency in MOVES prediction accuracy could only be linked to the incapability of 

MOVES in simulating real-world conditions (especially, in regions rather than the U.S.) 

even though many adjustment options are incorporated in it. 
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Figure 28: PM rate observations vs. MOVES predictions for (a) engine-type; (b) age; (c) ambient-
temperature categories 
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The black regression lines show the over-estimation of PM rates by MOVES in 

different categorizations. Just like NOx, MOVES shows a slight initial bias of around 102. 

kg/mile in predictions; possibly, as a result of omitting fuel cut-off in models. Although 

predicting proportionally better for turbocharged engines (Figure 28-a), an R-squared of 

less than 0.5 is statistically insignificant. As shown in Figure 28-b, similar to the ECR and 

CO2 rates, MOVES has predicted acceptably for the age range of 5 to 8 years with an R-

squared score of 0.85 while having negligible over-estimation. For the younger vehicles, 

MOVES core models are not adapted. Improvements in technology make the models 

estimated over older fleet less valid. Regarding the older vehicles, the physical 

depreciation of powertrain elements affects the normal behavior and efficiency of the 

vehicle. It is expected that predictions become unreliable as a result. 

4.6 The Next Step 

The knowledge regarding the level of MOVES predictions’ validity for use in Canada 

(and other non-U.S. regions) sheds light on our way towards developing alternative local 

models. The sensitivity analysis conducted on MOVES output provided us with a 

valuable insight about how a model could lose its robustness due to changes in the fleet 

specifications, the road network characteristics, and the environmental conditions. 

Furthermore, the categorical analysis highlighted the need for category-based modeling 

of FCR and ERs, as such breakdown could dramatically simplify the modeling procedure 

by eliminating some of the impacting variables from the feature set. 
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In the following chapter, the results of a Machine Learning (ML) methodology for 

developing local microscale fuel models applied on data from a diverse fleet of 35 

vehicles will be discussed. By limiting the feature set to the simple and easily retrievable 

kinematic variables (disregarding IEVs), improving the models’ accuracy through a 

cascaded approach, and utilizing emerging ML algorithms capable of capturing complex 

and nonlinear interactions of variables, outperforming most popular commercial and 

academic models in terms of robustness, accuracy, and practicality is targeted. 
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Chapter 5 

The Cascaded Approach to FCR Modeling 
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5.1 Introduction 

All the modeling methodologies introduced in this study are oriented towards reducing 

the complexity of the vehicular fuel and emission models and increasing their 

practicality. Moreover, developing models capable of predicting Fuel Consumption Rate 

(FCR) with acceptable accuracy without the need to directly include Internal Engine 

Variables (IEV) in the feature sets is a major goal of the research. Hence, ML algorithms 

are assessed and a cascaded Machine Learning (ML) modeling procedure (explained in 

Section 3.5) is proposed which is expected to shoulder the burden of extracting the hidden 

impact of IEVs which usually possess significant correlations with FCR. 

Choosing between Support Vector Regression (SVR) and Artificial Neural Networks 

(ANN) algorithms, primary evaluations are done first through the use of the 

combinations of the base features (speed, acceleration, and grade) as feature set. The 

impact of introducing engine speed directly to the feature set is then assessed. Finally, 

the engine speed is substituted by its estimations to shape and train a more accurate 

instrument-independent model. 

Each modeling effort is followed by a category-based sensitivity analysis (similar to 

what was done in Chapter 4) to assess the possible limitations of the proposed 

methodology with respect to fleet, environment, or road-network attributes and to 

identify the combination of attributes which result in the highest prediction accuracies. 
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5.2 Primary SVR and ANN Modeling 

Figure 29 demonstrates the magnitude and the variance of the best achievable scores for 

different vehicles, regarding each model structure evaluated (at different steps) and for 

both of the SVR and ANN methods. The first six rows (in green) correspond to the 

primary FCR modeling attempts. The next 8 rows (in red) correspond to finding the best 

achievable improvements in the model’s prediction power when direct RPM 

observations are included in the feature set. The last 4 rows (in blue) show the results 

corresponding to the cascaded modeling step. 

The experiment conditions (while collecting data) is kept as as constant as possible 

for all the vehicles through the use of the same measurement equipment, deployment of 

drivers with coordinated driving habits, and the same combination of road types 

traversed. Therefore, the significant variation of the scores most likely corresponds to the 

variety of the vehicles’ technical specifications. This proves the necessity of avoiding the 

development of general models for FCR estimation and focusing on vehicle-/category-

specific models. 

The SVR scores for the primary FCR models range from 0 to 0.78, while the range is 

0.08 to 0.79 for ANN. The combination of speed (]!), acceleration (I!), and grade (>!) as 

input features result in the best SVR and ANN scores (comparing the median values for 

different structures). By including the lagged variables (]!23 and >!23) different outputs 
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from the two techniques are observed. SVR is not capable of capturing the lag effect. The 

best score improvement is only 0.01, whereas for most of the vehicles the scores drop 

dramatically. In contrast, the addition of lagged variables to the ANN feature set results 

in game-changing improvements up to 0.37 (i.e., from 0.32 to 0.69 for Hyundai Elantra 

GT 2019). Such improvement turns non-acceptable predictions of the model into much 

more reliable ones. 

Comparing the median scores for the 1st, 2nd, 4th, and 6th structures (see Figure 29), 

the lagged grade (>!23) contributes much more than lagged speed (]!23) to the models. 

Despite all the exceptional cases of improvement, the median score for 5th and 6th 

structures are almost identical (1% difference). Nevertheless, the hypothesis regarding 

the extended temporal impact of speed and grade values on FCR could not be easily 

rejected. 
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SPD = Speed | ACC = Acceleration | GRADE = Road Grade | RPM = Engine Speed | RPM_PRED = Predicted RPM | L1 = 1st-Order Lag 

< Primary models < with-RPM models < RPM predictor models and Cascaded models 

Figure 29: Score variation achieved for different model structures and vehicles 
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Comparing the scores corresponding to 1st, 3rd, and 5th structures (both for SVR and 

ANN), improvements of around 25% in the median score is observed, while the grade 

improves this score only by 9%. A part of this considerable difference could be the result 

of GPS measurement errors. The accuracy of the altitude measurements is highly affected 

by the number of satellites found by the GPS receiver [109]. Even though the outliers are 

filtered out and a smoothing algorithm on altitude data is applied prior to grade 

calculation and modeling, a residual error could still exist which makes the grade values 

less accurate and disrupts its true impact. 

5.3 Optimum Model Settings 

A majority of the best SVR results are achieved using ! value of 0.1, " values equal to 1 

and 10, and # values equal to 0.1, 1, and 10. Note that no penalty is associated in the 

training loss function with points predicted within a distance ! from the actual value. " 

is the regularization parameter to control overfitting and # controls the level of 

nonlinearity (curvature) of the multidimensional hyperplane fitted on data. The optimum 

! value of 0.1 guarantees a reasonable soft margin compared to observed FCR values, 

which are mainly ranging from ~1 L/H to 10 L/H in our experiments. More than 80% of 

the best results are achieved using average regularization (parameter "). This indicates 

that the choice of the Radial Basis Function (RBF) as the kernel has been appropriate, 

avoiding extreme overfitting. Nonetheless, diversity of optimal # values (as a parameter 

controlling the way SVR treats the similarity of pairs of observations) is a sign of diversity 
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in energy consumption procedures among different powertrains (as a result of 

technology differences). 

On the ANN side, dominancy is neither with the wide and shallow nor with the 

deep and narrow neural network architectures. 58% of the best scores are associated with 

an ANN with two hidden layers each having 64 ReLU-activated neurons and only a 

negligible share of 0.2% are the results of our deepest alternative architecture. Thus, in 

general, there is a limit for internally estimating and using the unobserved influential 

variables by increasing the depth of ANNs. 

5.4  Introduction of Engine Speed to the Feature Set 

By adding RPM to the feature set a dramatic increase in model scores for all the vehicles 

(except one) is observed, either with SVR or ANN. As shown in Figure 30, the only vehicle 

showing a decrease in model score by the introduction of RPM to the feature set is IKCO 

Dena. Although it is a 2016 model, it is built on an old Peugeot platform from the early 

1990s and many manufacturing flaws are reported about this model. Driving with full 

gas, heavy braking, and inappropriate gear selection with a manual-transmission vehicle 

or overall malfunctioning of the car could lead to such results. However, strict control 

was applied to the driving styles of drivers and the good maintenance of vehicles before 

tests was ensured. There were no tangible issues with the power transmission elements 
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such as clutch plates, differential, axles, etc. Thus, this could only be linked to a 

technological flaw or faulty gear-ratio settings in the manual gearbox.  

The levels of improvement for the rest of the vehicles are not in harmony for SVR 

and ANN. For example, for Kia Rio 2013, the SVR score increases only by 7%, while a 

significant increase of 47% is observed with ANN. On the contrary, for Honda Civic 2014, 

the improvements for SVR and ANN are 36% and 2%, respectively. As the two vehicles 

are almost the same age, the only observable differences between the vehicles (among the 

variables observed in this study) are vehicles’ segment (compact sedan vs. compact 

hatchback), engine displacement (1.8L vs. 1.6L), and transmission type (Continuous 

Variable Transmission or CVT vs. Regular Automatic). While focusing on modeling score 

improvement due to the addition of RPM to the feature set, the most probable root cause 

would be the transmission system differences. Thus, a possible conclusion is that SVR 

performs better with CVT-equipped vehicles and ANN is the right choice for non-CVT 

vehicles. This is a reasonable judgment as CVT eliminates the sudden shifts between gear 

regimes occurring in manual or regular automatic gearboxes. CVT’s pully-based 

mechanism changes seamlessly between a continuous range of effective gear ratios. It 

synchronizes the kinematic state of the vehicle and the RPM, and reduces the complexity 

of fuel consumption relationship with features. Moreover, this smoothness/coordination 

is compatible with what the RBF kernel virtually applies to feature interactions inside the 
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SVR model. Many of the top record holders are equipped with the CVT transmission. 

Later in this chapter, a categorical analysis is performed over the transmission type. 

 
Figure 30: Best improvements by including original RPM to SVR/ANN models for the top model 

structure 

To complete the cascaded modeling procedure, we estimate the RPM using separate 

models (with an acceptable level of error) and then use the estimations instead of real-

world observations. The 15th and 16th rows in Figure 29 show the best RPM estimation 

scores using the 8 alternative ANN architectures used. The change in the range of the 

scores compared to that of FCR estimations (only using the base feature set) is noticeable. 

This proves the flexibility of ANN in capturing underlying multi-variate interactions. The 

scores top at 0.88, while the median score is about 0.73. Interestingly, all the best results 
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are achieved by the original four ANN alternative architectures and not by any of the 

newly added alternatives (the wider ones). 

The best results achieved through training SVR and ANN models using the new 

feature set (including the predicted RPM) are presented in Figure 31. Apparently, SVR 

shows extreme weakness in capturing complex interactions due to the introduction of the 

estimated variable. Improvements are either negligible or at most covering one-fourth of 

the score difference between non-RPM and with-RPM models. For some of the vehicles, 

the addition of the predicted RPM has led to a reduction of model score, which could be 

associated with SVR limitations. Observations regarding vehicles like VW Jetta 2016 or 

Hyundai Elantra GT 2019 with RPM prediction scores higher than 0.8 support this claim. 
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Figure 31: Score comparison between models with base feature set (blue), cascaded models (red), and  

ideal models including true RPM observations (orange) for 10 vehicles with best results 

On the other hand, ANN shows more promising results than expected. For all the 

vehicles with a corresponding RPM prediction score of 0.75 or higher, a considerable 

improvement towards the ideal outputs has occurred. Chevrolet Cruze 2011 and Kia Rio 

2013 have had the best improvement records, compatible with their corresponding RPM 

prediction accuracy which are among the highest. Nevertheless, there are still a few 

vehicles with RPM prediction accuracy of lower than 0.75. As a result, ANN has not been 

able to improve their corresponding model scores (and even the results have been 

worsened) compared to the base model. 
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  Results of this limited attempt to separately model RPM indicates that neural 

networks have much higher potential to be used in the cascaded modeling procedure. 

However, lower degrees of prediction error (less than 20%) seem to be a prerequisite for 

guaranteed improved results for the majority of the vehicles. This could be achieved 

either by increasing the size of training data, testing more complex ANN architectures, 

or switching to more sophisticated neural networks techniques such as 1-D Convolutional 

Neural Networks (CNN) or Recurrent Neural Networks (RNN). 

5.5 Comparison to the State-of-the-Practice Models 

To compare and universally validate the cascaded model, two state-of-the-practice 

models, Virginia Tech’s Comprehensive Power-based Fuel Model (VT-CPFM) [17] and 

USEPA’s MOVES [35] are selected. The two benchmark models are applied to the same 

input data. VT-CPFM provides outputs at the same resolution of the cascaded model 

(second-by-second rates). However, MOVES output at its highest resolution is in form of 

energy consumption per unit of distance (or time) per link. In Figure 32, true FCR values 

are shown alongside the cascaded model and the VT-CPFM (Type I) output. This figure 

clearly shows how close the cascaded model predictions are to the true FCR values, how 

the real underlying trends and variations are being followed by the model, and how it 

outperforms the VT-CPFM Type I. 
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By doing aggregation and some post-processing, the ground-truth, the cascaded 

model output, and VT-CPFM (Type I) output are re-scaled to the same resolution of 

MOVES output (Joules per miles per link). Then, an additional comparison between 

model accuracies is conducted and results are visually presented in Figure 33. The 

superiority of the cascaded model is evident in this new comparison as well. The 

cascaded model still outperforms both MOVES and VT-CPFM (Type I) despite the 

aggregation being conducted over the instantaneous predictions.   

It is important to note that to run the VT-CPFM model, vehicle mass, drag 

coefficient, frontal area, number of cylinders, engine size, number of gears, gear ratios, 

and final drive ratio were retrieved from the manufacturer online records. Regarding the 

rolling coefficient, c1, c2, driveline efficiency, and wheel slippage, the general information 

presented in Rakha et al. publication [17] is used. For the fuel-related parameters (idling 

fuel mean pressure and the fuel lower heating value), adjustments are done depending 

on the type of fuel, especially because the E10 gasoline has lower energy efficiency 

compared to regular gasoline. Moreover, some parameters such as the idling engine 

speed are extracted from the measurements of each vehicle. 

Table 4 compares the R-squared score of VT-CPFM (Type I) with that of the 

cascaded model for second-by-second predictions. R-squared scores regarding the 

comparison between link-level distance-based ECR predicted by the cascaded model, 

MOVES, and VT-CPFM (Type I) are shown in Figure 33 next to each chart. 
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Table 4: Score comparison between VTCPFM and the cascaded model 

 R-squared Score 

 VT-CPFM (Type I) Cascaded ANN 

Hyundai Elantra GT 2019 0.57  0.72 

Chevrolet Captiva 2010 0.26 0.77 

Chevrolet Cruze 2011 0.51 0.78 

 
 

 

 

 
Figure 32: Time-series visualization of true FCR, cascaded, and VT-CPFM outputs 
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Figure 33: Link-level ECR predictions by cascaded model, MOVES, and VT-CPFM 

$! = 0.92 $! = 0.85 $! = 0.89 

$! = 0.87 $! = 0.33 $! = 0.71 

$! = 0.97 $! = 0.89 $! = 0.92 
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MOVES has inconsistently predicted the ECR for different vehicles. As shown in 

Figure 33, although generating reasonable estimates for Hyundai Elantra GT 2019 and 

Chevrolet Cruze 2011, it has significantly underestimated ECR for Chevrolet Captiva 

2010. Interestingly, even VT-CPFM predictions are more accurate than that of MOVES. 

Overall, a higher dispersion (from the ground-truth) exists in MOVES as well as VT-

CPFM outputs when compared to the cascaded model. 

5.6 Categorical Sensitivity Analysis of the Cascaded Model 

In this section, an investigation is conducted on the modeling results by categorizing 

them based on car segment, transmission type, engine type, engine displacement, and 

age. It is hoped that such a categorical analysis helps developing category-specific models 

with less prediction error in the future. In Figure 34, an almost identical pattern of scores 

is observed between the two modeling methods. The only minor differences are that SVR 

results in higher scores for compact hatchbacks (compared to ANN), while ANN shows 

more power with compact vans.  
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Figure 34: SVR/ANN median best score per car segment for different model structures 
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The superiority of with-RPM and cascaded models in comparison with the six base 

structures is visible in this figure. Compact SUVs (crossovers) and subcompact 

hatchbacks show the most dependence on RPM. However, compact hatchbacks have had 

the most significant cascaded modeling scores both with SVR and ANN. On the other 

hand, there is a significant difference between SVR and ANN scores for the subcompact 

hatchbacks. Compact and subcompact sedans, despite showing high dependency on 

RPM (in with-RPM models), have shown disappointing cascaded modeling results. In 

general, the cascaded modeling approach could be declared successful with the following 

three segments: compact hatchbacks, midsize sedans, and subcompact SUVs, as they 

have the least difference between average with-RPM and cascaded modeling results. 

Making a robust inference is impossible about the compact vans as there exists only one 

vehicle (Chevrolet N300) from that segment. 

Vehicles with turbocharged engines show higher modeling scores compared to the 

vehicles of the same segment with regular engines. Compact SUVs have the best scores 

among the turbocharged vehicles examined (both with SVR and ANN), while compact 

sedans and subcompact hatchbacks show better results among regular-engine vehicles. 

Turbocharged engines have higher fuel efficiency as extra compressed air is fed into the 

combustion chamber avoiding unburnt or incompletely burnt fuel during the combustion 

process. That is exactly the reason why the trained models show more success with 

turbocharged engines. The FCR values used for modeling are indirectly calculated based 
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on the intake air flow rate (logged using the MAF sensor). MAF variable does not account 

for losses due to incomplete combustion. Turbocharging technology reduces this 

unobservable natural error and helps the models gain a higher score and better prediction 

power. 

A closer look at the modeling results for different engine displacements (engine 

volume) shows that vehicles with high engine displacement (>2.4L) have a relatively 

lower best score from both modeling techniques. Furthermore, the best results 

correspond to vehicles with average-size engines. It is important to note that two out of 

the three vehicles with the highest engine displacements are older than 10 years and the 

low scores could be associated with age-related efficiency losses rather than engine 

displacement. 

FCR in vehicles with CVT transmission shows high dependence on RPM and this is 

apparent in with-RPM modeling results shown in Figure 35. Almost the same 

dependency is observed for the vehicles with dual-clutch automatic transmission. 

However, ANN seems more successful in capturing RPM's impact on FCR for dual-clutch 

ones. Rather than conventional automatic transmission systems, CVTs use a combination 

of chain/belt and pulley instead of gears for power transmission. There is no fixed number 

of gears in CVT and a pulley’s diameter could continuously change on demand. As a 

result, there would be no RPM surge/drop such as when conventional automatic 

transmissions shift gears. This leads to a much better fuel economy. The cascaded models 
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show acceptable results for manual (with ANN only), automatic, and dual-clutch 

transmissions. Nonetheless, they show up weak for the CVT vehicles. As the RPM 

predictions score (using ANN) for the four vehicles with CVT has been on average 0.7, 

this weakness could be interpreted as the need for much higher RPM prediction accuracy 

for such vehicles. This is compatible with the RPM-dependent nature of FCR in these 

vehicles. 

 

Figure 35: Median best score for different transmission technologies and different model structures using 
SVR and ANN 

No significant trend is visible in model best scores as the vehicle age increases. This 

emphasizes the impact of maintenance quality and the need for quantifying it if including 

this attribute as a feature in the model is desired. The maintenance quality could be 

included in the model in the form of a correction factor as well. However, to extract such 

a measure, a thorough investigation of each car is required. 
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5.7 The Next Step 

The promising results of the developed cascaded model confirmed the potential of ML 

not only in improving the prediction accuracies, but in simplifying practical use of the 

models. The RPM was only one of the influential IEVs and the prediction power of the 

cascaded procedure could be improved by inclusion of other variables such as Throttle 

Position and Engine Torque. Our basic effort in addressing the lagged effects of variables 

through direct inclusion of 1st-order lagged variables in SVR and ANN architectures did 

not result in a significant outcome. Hence, evaluation of other ML algorithms developed 

specifically for time-series modeling should be done in future steps. 

The categorical analysis results, especially the findings regarding the role of 

transmission type and vehicle class on the accuracy of model predictions, emphasized 

the necessity of category-based modeling. By having models calibrated for particular 

categories, it is expected that the variance in predictions would reduce and categorical 

models move towards the optimal trade-off between bias and variance. 

In the next chapter, we first try to assess the possibility of simultaneously capturing 

the instantaneous as well as the lagged impact of variables on both FCR and ERs using 

more sophisticated ML algorithms. Then, forecast combination techniques are evaluated 

and compared for developing category-specific models using previously developed 

vehicle-specific models as building blocks.   
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Chapter 6 

An RNN-based Two-stage Ensemble Learning 
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6.1 Introduction 

Although achieving significant forecasting scores, having simple structures, and relying 

on instrument-independent variables as input, the Fuel Consumption Estimation (FCR) 

estimation models developed in Chapter 5 could at best be deployed in practice for 

vehicles with a similar make, model, and age. An alternative method, would be reverting 

to the use of complex parametric models which try to tune themselves based on vehicles’ 

technical information. But such information might not be available for every vehicle 

when incorporating fuel and emission models into traffic micro-simulator software or if 

they were to be used for eco-driving purposes. Moreover, the compatibility of the models 

with the serially-correlated nature of the vehicular fuel consumption and emission 

generation and capturing the theoretically-proved lagged impact of variables (refer to 

Section 3.6.1), is not addressed yet.  

In this chapter, the results of using Recurrent Neural Network (RNN) technique, a 

Machine Learning (ML) algorithm exclusively designed for time-series modeling and 

capable of capturing short and long dependencies in data, along with a forecast 

combination step for maximizing the prediction power of vehicle-specific FCR and 

Emission Rate (ER) models will be discussed. Then the outputs of a bottom-up procedure 

for combining the forecasts of RNN-based vehicle-specific models in search for 

generalized category-specific models is presented and discussed. Similar to the previous 

chapters, the discussion is followed by a complementary categorical analysis to identify 
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the criteria which categorizing vehicles based on them lead to the highest improvements 

in modeling scores. 

6.2 Lag-specific RNN Models 

Figure 36 shows the share of different RNN settings (including RNN type and the depth 

of recurrent architecture) leading to the best modeling scores for the vehicles at each lag 

order. 

 

Figure 36: Share of different RNN settings leading to best RNN scores for each Lag-Dependent pair 

Long Short-Term Memory (LSTM) mechanism worked the best for a significant 

number of the vehicles and almost at all the lag orders. Nevertheless, Gated Recurrent Unit 

(GRU) mechanism will not be disregarded from the next steps of modeling as it has 

outperformed LSTM for some vehicles. This observation emphasizes that for some 

powertrains, the extent of lasting dependencies is meaningfully shorter. Besides, keeping 

GRU models is reasonable as they execute faster than LSTM and are appropriate for 



111 

smartphone-based eco-driving services due to the lower computation resources it 

requires.  

Except for Nitrogen Monoxide (NO), having more than one layer of RNN (2 or 3) 

seems desirable. Based on the observations, the level of NO emissions has low volatility 

which lets less-complex modeling architectures predict its rate acceptably. Interestingly, 

the pattern of shares seems quite repetitive for FCR models, where at all lag orders the 

majority of best models are achieved using LSTM with 3 stacked layers. A possible 

inference is that the sources of lag influencing the FCR have complex, nonlinear, and 

lasting impacts, but are not from diverse roots. On the other hand, the absence of repeated 

patterns and the diversity in the distribution of best settings for the emissions could be 

linked to the combined impact of different sources of lag mentioned earlier in Sections 

3.3.2 and 3.6.1. There is a proven significant correlation between FCR and CO2 rate [110]; 

thus, it seems reasonable that they possess similar lagged dependencies and have 

similarities between shares reported in Figure 36. But the differences confirm the 

disturbance which different sources of lag impose on CO2 rate observation patterns 

(especially, the impact of the exhaust pipe, resonators, and catalytic converter). 

6.3 Vehicle-specific Metamodels 

The exceptional power of forecast combination algorithms was revealed during our 

metamodel development stage. In only 10 out of 103 metamodels, no improvement was 
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observed when comparing the Root Mean Squared Error (RMSE) scores with that of the 

best lag-specific models trained for each vehicle-dependent pair. For the rest of the 

metamodels, improvements up to 28% and on average 4% were obtained. Figure 37 

shows the frequency distribution of improvements among the 103 metamodels. The 

notion that the ensembles always perform better than the component models is not 

guaranteed. However, it highly depends on the type of ensemble estimator as well as the 

level of the weakness of the component model. 

 

Figure 37: Score improvement rate histogram for best vehicle-specific metamodels 

For example, none of the averaging methods evaluated in this study resulted in the 

best vehicle-specific metamodels. In addition, for the vehicle-dependent pairs where the 

lag-specific models performed quite well, the level of improvement by the ensemble 

estimator has been negligible. 

Average = 4% 
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Figure 38: Share of best metamodel estimators for different dependents 

Figure 38 shows the segregation between fuel consumption and CO2 generation 

mechanisms on one hand and that of other emissions on the other hand. The Random 

Forest algorithm has been the dominant metamodeling ensemble technique (leading to 

best scores) for FCR and CO2 rate, whereas the much simpler method of Linear Regression 

has resulted in the best results for Nitrogen Dioxide (NO2), NO, and Particulate Matter (PM) 

rates. Two facts could be deduced in this regard. First, small differences exist between 

the predictions of different lag-specific models (as inputs of the EL models) for FCR and 

CO2 rates. Hence, only sophisticated EL algorithms could extract underlying nonlinear 

dependencies and achieve considerable improvements. It is noteworthy that the 28%, 

23%, and 16% improvement records are all dedicated to FCR and CO2 rate metamodels 

(an average of 6% improvement resulted in this group of metamodels). Such high 

improvements confirm the existence of higher-level nonlinear dependencies the lag-
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specific RNNs were incapable of capturing. Second, the lag-specific RNN predictions for 

NO, NO2, and PM are varied enough and as inputs to metamodels, they possess linear 

correlations with the dependent letting simple unregularized linear regression algorithm 

combine them and achieve improvements. Furthermore, it is important to note that the 

average improvement for these three emissions is equal to 2%. Interestingly, this could 

be due to the dominant effect of one lag-specific model on the metamodel performance. 

Therefore, a possible interpretation is that for NOx and PM emissions, the existence of a 

relatively constant lag order is feasible, while for fuel and CO2, distributively lagged 

effects exist. 

Predictions of vehicle-specific metamodels regarding 3 sample vehicles are 

presented in Figure 39. The Ensemble Learning (EL) algorithms show undeniable 

effectiveness for FCR and CO2 rate. It is interesting how the EL algorithms have corrected 

some of the wrong local trends predicted by lag-specific RNN models (see regions 

highlighted in yellow). Moreover, metamodels have compensated component models’ 

weakness in predicting sudden spikes (see regions highlighted in magenta). Even for the 

NO2 (as well as PM and NO), despite the higher level of prediction error, the metamodel 

outperforms the lag-specific component models. In Figure 40, the true observations are 

compared to the metamodel predictions for all datapoints corresponding to the same 

three vehicles discussed in Figure 39. 
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Figure 39: Random time-windows showing the prediction power of metamodels 
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Figure 40: Comparison between true observation and metamodel predictions for the three vehicles 

6.4 Category-specific Supermodels 

The average score improvement of 6% is achieved as a result of developing category-

specific supermodels, with a record of 32% improvement. The frequency distribution of 

improvement rates is shown in Figure 41.  
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Figure 41: Score improvement rate histogram for best category-specific supermodels 

Although the same set of EL algorithms has been used for developing the 

supermodels, relatively higher improvements have occurred. The diversity of the 

datasets corresponding to different category members, is one of the important root causes 

of this notable difference, despite the heavy assumption that was made about considering 

category member’s datasets as homogenous subsets of a hypothetical large dataset. 

In Figure 42, a deeper look is taken at the improvements achieved by ensemble 

category-specific supermodels. The percentages, all positive with rare zero values, 

support the idea that EL algorithms could work as a unifying medium for developing 

higher-level (aggregate) microscale fuel and emission models. Ranking the average of 

resulted improvements for each criterion, Transmission Type seems to be the most efficient 

aggregation measure for FCR supermodels. The transmission system directly deals with 

the quality of power transmission from the engine to the wheels and has a significant 

impact on the efficiency of the combustion process. Hence, its importance regarding fuel 

Average = 6% 
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consumption and CO2 generation is expectable. However, this criterion does not seem 

appropriate for NO and PM emissions as limited improvements have been achieved for 

them. 

  
 

 

Figure 42: Score improvement concerning best metamodel for different criteria and corresponding 
categories 
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For the criteria in which a large difference is observed between the improvements 

achieved by category-specific supermodels, an inference is that possibly modifying the 

categorization thresholds or combining some of the categories could lead to more 

coordinated improvements among categories. For example, the low improvement 

achieved for the Compact SUV class brings the idea of merging this class with another one. 

Note that such low improvement (compared to other classes) is obtained despite the 

presence of 8 vehicles in the category which eliminates the chance of low diversity of data 

leading to inefficient forecast combination. 

The Age Range criterion seems to work best for the PM rate. The finding was 

expectable as the increase in vehicle age leads to physical degradation of the engine and 

adds to the inefficiencies of the powertrain. Moreover, in an aged vehicle, usually the 

catalytic converter and the particulate filters lose their effectiveness resulting in higher 

PM rates. Like some other criteria, the age thresholds considered in this study need to be 

tweaked to achieve better improvements for all the ranges. Although there have been 

small but positive improvements for all NO-related supermodels, the two-stage EL 

approach does not seem to be the perfect match for this emission. As mentioned earlier, 

the low volatility of NO rate observations makes predictions of much simpler nonlinear 

modeling algorithms (even single-stage and without EL) acceptable enough. Such weak 

results (with respect to other emissions and FCR), could be linked to the sensor 

measurement errors as well. Although the state-of-the-technology PEMS units utilized 
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provides unbeatable accuracies, as NOx emission rates are generally so low in gasoline-

engine vehicles, even minor sensor errors affect the readings considerably. 

A glance at Figure 43 shows that even for the supermodels, sophisticated algorithms 

(Gradient Boosting as well as Random Forest) outperform others for the majority of 

criteria/categories for FCR and CO2 rate. Similar to the case of metamodels, Linear and 

Ridge Regressions shoulder the forecast combination burden of NOx and PM supermodels 

better. 

 

Figure 43: Share of the best supermodel estimators for different dependents 

Gradient Boosting and Random Forest algorithms possess similar nature of using 

multiple Decision Trees and combining their forecasts to achieve better results, however, 

the former builds trees one at a time, where each new tree helps to correct errors made 

by the previously trained tree. Their difference could be better explained using the 

concept of bias and variance in the ML paradigm.  Boosting is based on weak learners 
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which basically have high bias and low variance (like the vehicle-specific metamodels in 

each category). Boosting reduces errors mainly by reducing bias. On the other hand, 

Random Forest uses fully grown decision trees with low bias and high variance (similar to 

lag-specific RNNs). It tackles the error reduction task by reducing variance. This 

explanation clarifies why Gradient Boosting and Random Forest algorithms have been the 

dominant best estimators for supermodel and metamodel development, respectively. 

Finally, in Figure 44, sample time-windows are randomly selected for 3 category-

dependent combinations to visually evaluate the performance of trained supermodels. 

Figure 45 depicts the impressive accuracy of our proposed two-stage EL approach is 

perceivable for FCR and CO2 rates with R-squared of 0.95 and 0.88, respectively. 

Although relatively lower, our method has still produced acceptable predictions for NO2, 

although it appears to be weak in capturing peaks. Nevertheless, as our categorization 

process still requires refinement, an R-squared score of 0.7 seems a satisfying score at this 

stage. 
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Figure 44: Random sample time-windows showing the prediction power of supermodels for 3 
criteria/categories 
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Figure 45: Comparison between true observation and metamodel predictions for three selected criterion-
category pairs 
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Chapter 7 

Conclusions and Future Research 
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This research contributed in various ways to the field of microscale vehicular fuel and 

emission modeling. In terms of data collection, we practiced transitioning from the in-lab 

simulation-based experiments to the realistic on-road activity, fuel, and emissions 

measurements. As a result, a replicable procedure including elaborate details about 

planning the field experiments, use of different sensors, and adjusting the sensor outputs 

for the needs of modeling was introduced. Such a transition provides the opportunity for 

the modelers to capture the impact of several influential factors in their measurements 

that simulating them in the lab is impossible or costly (such as rainfall and snow, icy road, 

low-quality pavements, real-world and local stop-and-go movement patterns in 

congested roads or grid networks). 

Questioning the validity of using existing commercial/academic models in regions 

rather than their country of origin, a methodology for evaluating MOVES output, one of 

the most popular environmental assessment models in North America, was proposed. 

The evaluation results would avoid consulting companies and the official transport 

authorities in countries like Canada from relying on erroneous energy and emissions 

assessment in projects. This could dramatically affect the transport policies, change the 

development strategies, and hopefully in long-term, save millions of dollars for fixing the 

environmental damages due to making wrong estimates.  

Several specific insights are concluded from the evaluation of MOVES. The model’s 

inaccuracies in predicting the fuel consumption and emission rates do not come as a 
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surprise. MOVES is created for use in the US and although it has been adjusted to the 

prevailing conditions of the test scenarios, the runs are still outside of the model’s 

intended use. Furthermore, MOVES is designed primarily for use in State Implementation 

Plan (SIP) conformity analysis and using it at the microscopic level (project level in 

MOVES) also likely decreases its accuracy. 

Regarding Energy Consumption Rate (ECR) and CO2 rate, an underestimation was 

observed with Mean Percentage Error (MPE) of -17% and -35%, respectively. The high 

variation which existed in predictions resulted in low goodness-of-fit scores (R-squared 

of 0.32 and 0.6, respectively). The deficiency of MOVES in simulating non-U.S. scenarios 

was revealed through detailed categorization of MOVES outputs based on vehicle-, road-

, and location-specific attributes. MOVES predicted ECR and CO2 better for automatic 

transmission vehicles compared to manual ones, and significantly better for 

turbocharged-engine vehicles and the light-weight/small vehicle segments (by R-squared 

margins of 19%, 51%, and 45%, respectively). Such attributes are either omitted in 

MOVES or are not directly included. The fact that MOVES predicts much better for 

turbocharged engines is in accordance with lab- and simulation-based (close-to-ideal) 

testing conditions for estimation of MOVES core models. Furthermore, the categorization 

based on age showed ECR and CO2 rate for vehicles with older ages are better predicted 

by MOVES (with 34% higher R-squared score). The finding was linked to MOVES core 

models not being updated for newer engine technologies and vehicle design factors. 
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For Nitrogen Oxides (NOx) and Particulate Matters (PM), the dominant finding was 

over-estimation of rates by MOVES (The MPE metric goes up to +420%), most of which 

could be linked to poor addressing of the impact of catalytic converters on emissions and 

disregarding fuel cut-off events. Moreover, age-based categorization for NOx and PM 

rate comparisons, confirmed the previous finding for ECR and CO2 rate that MOVES 

requires regular updating as it loses validity year by year due to fast-paced changes in 

vehicular engine and general design technologies. 

Due to the significant influential differences of the regions (in terms of fleet, road 

network, meteorology, etc.), a wise alternative for use in transportation studies or 

incorporation in simulations and eco-driving services seems to be developing local 

models. The advent and availability of ultra-portable emission measurement 

technologies for on-road monitoring of vehicle activities has now opened avenues for all 

the countries/provinces to achieve such goals with low investments. 

Independence from Internal Engine Variables (IEV) is a requirement for an eco-

driving system to work with equal quality either incorporated into the vehicle’s on-board 

information system or installed as a service on smartphone platforms. Besides, such 

systems should depend on a limited set of input variables as it provides a hassle-free and 

smooth experience for the users at the deployment time. The same requirement exists for 

fuel and emission models that work on top of traffic simulation models and are used for 

environmental assessment of transport projects or policies. Many of the state-of-the-
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practice models such as Virginia Tech’s Comprehensive Power-based Fuel Model (VT-CPFM) 

or Comprehensive Modal Emissions Model (CMEM) work oppositely and rely on many input 

variables. For example, VT-CPFM requires 14 technical parameters to perform the proxy 

estimations of resistance force and engine power beforehand, and finally get ready to 

estimate Fuel Consumption Rate (FCR) using nonlinear regression. As a part of this study, 

developing vehicle-specific models that only rely on speed, acceleration, road grade, and 

general attributes of the vehicle such as vehicle segment, engine type, engine size, 

transmission type, and age as their feature set was targeted. A methodology based on 

Machine Learning (ML) techniques, capable of capturing the complex underlying patterns 

of interactions between features and the dependent variable, was introduced. Using ML 

techniques for vehicular FCR and ER estimation, the models could automatically adjust 

themselves to the performance parameters of the powertrain. 

The kernel trick in Support Vector Regression (SVR) and the layered nature of Artigical 

Neural Networks (ANN) translate the lower-dimensional feature space into estimated 

impacts of unobserved but influential variables. An empowerment of the base SVR/ANN 

models was attempted through a cascaded approach and introduction of the estimate of 

RPM to their feature set. Similar median scores were achieved with SVR and ANN when 

modeling using base (no-RPM) structures. However, the superiority of ANN was 

apparent in cascaded modeling as we experienced improvements of up to 116% (for 

Hyundai Elantra GT 2019). Whereas the SVR received extremely weak benefits from the 



129 

addition of RPM estimates to the feature set (with 8% as the best improvement for Honda 

Civic 2014 and Jac J5 2015). Considering the modeling results, the flexibility of ANN due 

to the possibility of training over various architectures, and the requirements of a data-

driven modeling approach, ANN is found to be the more promising option for FCR 

modeling.  

Neither deep and narrow nor wide and shallow ANN architectures, but some 

settings in-between led to the best training/test scores with ANN (performing on average 

21% better than shallowest and 25% better than deepest architectures). We found that 

with a limited number of input features, there is an upper bound for increasing the ANN 

depth to achieve improved scores. Concerning the ANN architectures, although for most 

of the vehicles the best scores were achieved with an intermediary architecture, for some 

vehicles, deep and narrow, and for some others wide and shallow architectures worked 

the best. This observation suggests that modeling FCR for different vehicles might not be 

possible with a single functional form (which is the case for regression models such as 

VT-CPFM), even if they are designed in parametric form and some flexibility is added to 

them by adjusting parameters.  

The categorical sensitivity analysis conducted on cascaded modeling results was a 

first step towards improving the cascaded modeling results and generalizing the models 

from vehicle-scale to category- or even region-scales in future steps. It is necessary to 

understand the biases of the best-achieved results towards categories of vehicles or 
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vehicles with specific attributes. We found that the cascaded modeling approach could 

be applied to compact hatchbacks, midsize sedans, and subcompact SUVs with 

acceptable results (maximum cascaded modeling score of 0.83 was achieved for these car 

segments). However, an adjustment methodology is required for other car segments. 

Vehicles with turbocharged engines are perfect options for the cascaded modeling (with 

a maximum-achieved score of 0.75), while those with conventional engines need further 

elaborate investigation. Regarding the vehicle’s age, including a quantified measure for 

maintenance quality is a more promising approach. Moreover, the mileage could be a 

more reasonable alternative to the age. 

By taking the cascaded modeling approach instead of traditional nonlinear 

regression, the process of updating models with data collected from the newly 

introduced vehicles (in a way that the model stays valid for both the older vehicles as 

well as the new ones) would be straightforward and simple. Utilizing the Transfer 

Learning techniques enables researchers to build up models by taking a base model 

already trained on a fleet and continue training it for the vehicles which specifically exist 

in the new fleet. 

In addition to the goals we sought when developing the cascaded modeling 

methodology, the microscale FCR and Emission Rate (ER) models need to keep in 

accordance with the hybrid instantaneous/distributively-lagged nature of dependencies 

and interactions between features and the dependent variable. Moreover, they need to 
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gain generalizability to more aggregate levels as well (for instance, category-specific 

models instead of vehicle-specific ones). Only in such circumstances, microscale FCR and 

ER models reliable for incorporation in eco-driving services, traffic simulation 

procedures, and transportation impact studies could be developed. The trained ML-

based category-specific models would have less variance (as they are trained for a subset 

of data with a significant common attribute) and closer to the optimal bias-variance trade-

off point. 

By putting the burden of extracting complex and combined effects on sophisticated 

machine learning algorithms such as Recurrent Neural Networks (RNN) and popular 

forecast combination methodologies, the first abovementioned goal is tackled. Long Short-

Term Memory (LSTM) cell architecture was the dominant type of RNN leading to best lag-

specific modeling scores, while the impact of deepening RNN architectures (through 

stacking layers on top of each other) was found significant for fuel consumption and PM 

rates, almost negative for NOx rates, and negligible for CO2 rate. The vehicle-specific 

metamodels, trained by combining forecasts made by lag-specific RNN models, showed 

improvement records of up to 28% concerning RMSE score (with an average 

improvement of 4% among different vehicles and dependent types). The proposed 

solution for targeting the second goal, generalizing the vehicle-specific metamodels to 

more aggregate levels, was to apply another EL layer on top of previous layers. The 

category-specific supermodels developed not only could be used as representative 
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models for all the existing/new vehicles dedicated to the corresponding categories, but 

they achieved score improvements of up to 32% (with an average improvement of 6% 

among the criteria/categories). Besides, linear regression dominantly resulted in the best 

score improvements while developing both metamodels as well as supermodels for NOx 

and PM rates, while sophisticated methods of random forests and gradient boosting were 

the dominant algorithms for FCR and CO2 rate. 

This study opens avenues to use of ML techniques for rapid development of light, 

generalized, and localized microscale fuel and emission models. But it lacks in a few 

aspects which could be addressed in future works. Although our test fleet (including 35 

vehicles of different makes, models, and ages) is much larger compared to that of many 

other studies in this field, simultaneously increasing the size and diversity of the fleet 

could lead to more robust conclusions especially in the categorical analysis. A similar 

methodology could be taken for diesel vehicles, considering that NOx and soot 

(particulate matters) are generated in more significant amounts from diesel engines. 

Moreover, a question worth answering through further research is whether Vehicle 

Specific Power (VSP) as a proxy variable (used in MOVES core models) is capable of 

estimating correct power demand for manual transmission vehicles or not. The presence 

of so many manual-transmission vehicles, most of which older cars prone to generate 

significantly higher emissions and consume more fuel, on the roads around the globe 

emphasizes the importance of such investigation.   
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Expanding the size of the training dataset can definitely improve the modeling 

scores. Moreover, we had to limit the search ranges for the grid search in SVR modeling 

or the number of iterations in training ANN models because of time and computational 

limitations. Relaxing some of these constraints could result in improved model accuracy 

as well. 

In the categorical sensitivity analysis, the focus has been on general and available-

to-public attributes of the vehicle such as vehicle segment, engine size and type, 

transmission, weight, etc. Other factors such as frontal area, drag coefficient, tire 

characteristics, use of air conditioner, and vehicle mileage could be used for further 

categorical analysis in future research. If a dramatic increase happens to the number and 

diversity of test fleet, mixed categories could be defined as well which leads to richer 

sensitivity analysis as well as an overall improvement in the accuracy of the supermodels 

when deployed in practice (Ensemble supermodels developed for the mixed categories 

would be more reliable representatives of corresponding vehicles).  

A possible extension to the current methodology is to train ensemble models that 

could predict FCR and different emission rates simultaneously (by adding a soft-max 

layer to the models). Such an approach would make separate models unified and eases 

their incorporation process in eco-driving services or even traffic simulation software.  
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As transmission technologies play an important role in fuel consumption and 

emission generation patterns, a detailed look should be taken at existing transmission 

technologies and expand the number of categories corresponding to this criterion in hope 

of achieving improved results, especially, for the emission rates. 

Finally, a combination of the cascaded modeling and the two-stage RNN-based EL 

approach is expected to result in even more promising accuracies. Estimates of engine 

speed (or other influential IEVs) could be introduced to the feature set of the lag-specific 

models to give more flexibility to the modeling algorithms for accurately predicting FCR 

and ERs. 
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