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ABSTRACT

This thesis uses multiscale computational modelling to find the fundamental
principles that govern defects forming during the operation of new electro-optical
devices and the processing of spider silk fibers. The generalized approach developed
in this thesis bridges engineering devices and biological processes based on liquid
crystalline materials.

Three types of defects are encountered: inversion walls, lines and points. In-
version wall defects are found in the electro-optical device when a nematic thin
film undergoes a temperature-induced surface anchoring transition. Point defects
naturally occur in the tubular extrusion duct of spiders, while line defects present
close topological connections with point defects and are widespread in many high-
performance industrial fibers. Three models are used in this thesis and their usage
is dependent on the characteristics of the defects studied.

In the case of inversion wall defects, computational modelling is used to verify,
complement and analyze experimental measurements made with fluorescence confo-
cal polarizing microscopy by our collaborator at the Georgia Institute of Technology.
The various simulation results agree and explain very well experimental observations
and provide a thorough understanding of the wall defects behavior. A computational
technique is developed to enable the precise determination of the interaction between
the liquid crystal and the device substrate. Understanding the behavior of wall de-
fects and estimating interfacial properties are indispensable to the development and

optimization of the electro-optical device as they affect properties like temperature

Xvi



of operation, switching voltages and response time.

Computational modelling is also used to investigate the behavior of nematic
point defects confined in cylindrical cavities as observed along spiders’ spinning ap-
paratus, and to examined textural connections with other well know structures seen
in industrial fibers. The various scenarios investigated include: interactions between
point defects, topological transformations between point, line and ring defects as well
as interactions between ring defects. The simulation results agree and complement
previous investigations but also offer a new fundamental understanding on the na-
ture and stability of defects in cylindrical cavities. Understanding the behavior of
nematic point and line defects in cylindrical geometries is important as they play a

fundamental role in the processing of natural and industrial high-performance fibers.
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ABREGE

Cette theése emploie la modélisation multi-échelles par ordinateur pour trouver
les principes fondamentaux qui gouvernent les défauts se formant durant 1'utilisation
de nouveaux appareils électro-optiques et le traitement de fibres de soie d’araignées.
L’approche généralisée développée dans cette thése connecte les dispositifs d’ingénierie
et les procédés biologiques au travers des matériaux liquides cristallins.

Trois types de défauts sont rencontrés : parois d’inversions, lignes et points.
Les parois d’inversions sont retrouvés dans les dispositifs électro-optiques quand un
fin film nématique subie une transition de température a sa surface. Les défauts
points surviennent naturellement dans le canal d’extrusion tubulaire des araignées
tandis que les défauts lignes, présentent de proches connexions topologiques avec
les défauts points et sont répandus dans de nombreuses fibres industrielles a4 hautes
performances. Trois modeles sont utilisés dans cette thése et leur usage dépend des
caractéristiques des défauts étudiés.

Dans le cas des défauts parois d’inversions, la modélisation par ordinateur est
utilisée pour vérifier, complémenter et analyser des mesures expérimentales faite en
microscopie confocale a fluorescence polarisée par nos collaborateurs & 'institut de
Technologie de Géorgie. Les différents résultats de simulations sont en accord et ex-
pliquent tres bien les observations expérimentales et fournissent une compréhension
approfondie du comportement des défauts parois. Une nouvelle technique de cal-
cul est développée pour permettre la détermination précise de 'interaction entre le

cristal liquide et le substrat du dispositif. Comprendre le comportement des défauts

xviil



parois et estimer les propriétés interfaciales sont indispensable au développement et
a l'optimisation du dispositif électro-optique tandis qu’ils affectent des propriétés
tel que la température d’usage, les tensions de changement d’états et les temps de
réponses.

La modélisation par ordinateur est aussi utilisée pour étudier le comporte-
ment des défauts points confinés dans des cavités cylindriques tel qu’observé le
long de ’appareil de filage des araignées, et pour examiner les connections textu-
rales avec d’autres structures observées dans les fibres industrielles. Les différents
scenarios étudiés comprennent: les interactions entre défauts points, les transfor-
mations topologique entre les défauts points, lignes et annulaires ainsi que les in-
teractions entre les défauts annulaires. Les résultats de simulations sont en ac-
cord et complémentent les investigations précédentes mais offrent aussi une nouvelle
compréhension fondamentale sur la nature et la stabilité des défauts dans les cavités
cylindriques. Comprendre le comportement des défauts points et lignes dans les
géométries cylindriques est important étant donné que ces derniers jouent un réle
fondamentale dans le traitement des fibres haute-performances naturelles et indus-

trielles.
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CHAPTER 1
General introduction

1.1 Scope of the thesis

Nematic liquid crystals are functional materials used in various electro-optical
devices such as displays and light valves whose functionality depends on the substrate-
liquid crystal interface [1,2]. Continuous demand to increase the performance-to-
price ratio drives the intense research to unravel the principles that control the inter-
actions between the devices’ substrate and the liquid crystal. These interactions can
be regulated by temperature, chemistry, and interface topography [1,2]. In many in-
stances, temperature changes in interfacial conditions lead to changes in the nematic
liquid crystal molecular orientation and to the concomitant generation and trapping
of defects and textures [3,4]. These defects and textures in turn change the opti-
cal characteristics of the electro-optical device and hence predicting when and how
they nucleate and behave is an integral part of development and optimization. In
addition, when generated under certain controlled conditions, these defects and tex-
tures can be used to characterize the physical interactions between the liquid crystal
and the substrate [5—10]. Knowing these interactions is necessary to tune the various
characteristics of the device (e.g. functioning voltage, response time, etc.). The mea-
surement of these interactions usually requires the determination of an experimental
signal in conjunction with an accurate model equation. Inaccurate model equations

lead to inaccurate interaction values. In this thesis, we use computer modelling and



simulations to study defects and textures occurring in a nematic liquid crystal-based
system whose geometry, boundaries, temperature and material conditions, replicate
an experimental setup aimed at the development of a new nematic thin film used
in an electro-optical device. The simulation results are validated with experimental
data through an external collaboration. Additionally, a new accurate computational
technique to quantify the liquid crystal-substrate interaction is proposed.

Nematic liquid crystals are also widely used as structural precursor materials in
the manufacturing of high performance fibers, such as Kevlar and carbon fibers [11-
14]. Continuous incentive due to environmental restrictions as well as the evolution of
green manufacturing has fueled the search for material production systems that avoid
high temperature and corrosive solvents. Biomimetics, or systematic technology
transfer from nature to engineering, is being used around the world to search for
new technologies and processing methods to manufacture super-fibers like Kevlar
using aqueous solvents and room temperature. Spider silk biospinning has been
considered for some time a natural material manufacturing system that provides the
basis for green fiber manufacturing [15-21]. Large efforts to understand, mimic, and
use the protein chemistry of the spider silk precursors have been made [17,22]. On
the other hand, the engineering fiber manufacturing principles embedded in the silk
biospinning process remain poorly understood [15,18,23,24]. It is well-known that the
spider silk precursor becomes a liquid crystalline material during the early extrusion
process [11,15,16,19-30]. The emergence of the liquid crystalline state is considered
to be an essential feature that leads to a super-tough and strong silk fiber. The

liquid crystal silk precursor forms under the severe constraints of narrow and highly
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curved micron-sized capillary ducts that feed the fiber spinning apparatus. The
interactions between the liquid crystal and the wall of the narrow capillary lead to
characteristic defects and textures, detectable by optical microscopy [18,21,23,24,27,
28]. These optical measurements provide significant additional evidence on the state
of the spider silk precursor. It is widely believed that the presence of these defects and
textures play a crucial role in delaying premature solidification due to high alignment
in the liquid crystal state. Currently, the emergence, character and stability of these
spider silk’s textures in the capillary duct remain poorly understood. This thesis
presents a systematic computational study of the nature, emergence, and stability
of these textures arising in spider silk precursors. In addition, various topological
transformations occurring between the textures observed in other nematic-based high
performance fibers are examined. The simulations are validated through the open
biological, physical, chemical, and mathematical literature. The results offer new
knowledge on nematic texturing in cylindrical capillaries and should be useful to
synthetic fiber spinning technology.

Overall, this thesis offers an integrated view of how defects and textures play
a crucial role in the operation and processing of systems involving nematic liquid

crystals, in flat and curved interfaces as well as in melt and in solution states.
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Figure 1-1: Schematic arrangements of molecules in an isotropic liquid (A), a liquid
crystal (B) and solid crystal (C).

1.2 Background on liquid crystals
1.2.1 What are liquid crystals?

The term liquid crystals may at first sound both intriguing and confusing. While
it appears somehow self-contradictory, the designation is really an attempt to de-
scribe particular states or phases of matter that are of great scientific and techno-
logical importance today.

The difference between crystals and liquids, the two most common condensed
matter phases, is that the molecules in a crystal are ordered whereas in a liquid they
are not. The order in a crystal is usually both positional and orientational, in that
the molecules are constrained both to occupy specific lattice sites and to point their
molecular axes in specific directions. The molecules in liquids, on the other hand,
do not display any long range order. Interestingly, many phases with more order
than present in liquids but less order than in crystals also exist in nature. Some of

these intermediate phases or mesophases are called liquid crystals, since they share

properties normally associated with both liquids and crystalline solids [2—4].



The molecules in all liquid crystal mesophases flow much like the molecules of
a liquid, but they maintain some degree of orientational order and sometimes some
positional order too. Figure 1-1 illustrates the order in the liquid, liquid crystal and
solid phases. The amount of order in a liquid crystal is quite small as compared to a
crystal. Indeed, there is only a slight tendency for the molecules to point more in one
direction rather than others or to spend more time in various positions than others.
Yet this small amount of order renders liquid crystal mesophases anisotropic (their
physical properties differ from one direction to another). It is this combination of
liquid-like fluidity and solid-like anisotropy that makes liquid crystal mesophases an

important phase of matter both scientifically and technologically [2—4].

1.2.2 Discovery of liquid crystals

The discovery of liquid crystals is usually attributed to the Austrian Scientist
Friederich Reinitzer. In 1888, he experimented with a substance related to choles-
terol and noted that it had two melting points. At 145.5°C it melted from a solid
to a cloudy liquid and at 178.50°C it turned into a clear liquid. He also observed
some unusual color behavior upon cooling; first a pale blue color appeared as the
clear liquid turned cloudy and a second bright-blue violet color was present as the
cloudy liquid crystallized. Reinitzer sent samples of its substance to Otto Lehmann,
a professor of natural philosophy (physics) in Germany. Lehmann was one of the
people studying the crystallization properties of various substances and Reinitzer

wondered whether what he observed was related to what Lehmann was reporting.

Lehmann had constructed a polarizing microscope with a stage on which he could



precisely control the temperature of his samples. This instrument allowed him to
observe the crystallization of the sample under controlled conditions. Lehmann ob-
served Reinitzer’s substance with his microscope and noted its similarity to some of
his samples. He first referred to them as soft crystals; later he used the term crys-
talline fluids. As he became more convinced that the opaque phase was a uniform
phase of matter sharing both properties of liquids and solids, he began to call them

liquid crystals [2-4].

1.2.3 The different type of liquid crystals

Many different types of liquid crystals have been identified since the discovery of
the first mesophase by Reinitzer and Lehmann and their classification is itself a field
of research in constant evolution. Liquid crystals can however be classified according
to i) what triggers their emergence, ii) to the nature of their building-blocks, called
mesogens, and iii) to their organizations or structures.

Liquid crystals are generally classified as either thermotropics or lyotropics.
Thermotropic liquid crystals emerge from pure chemical systems and their order is
primarily affected by changes in the temperature. On the other hand, lyotropic liquid
crystals are multi-component systems which exhibit their mesomorphic behaviour as
the concentration of one or more of their components is varied.

Various types of molecules can form liquid crystal phases. What they all have
in common is that they are anisotropic. Either their shape is such that one of
their molecular axis is very different from the other two or in some cases differ-

ent parts of the molecules have different solubility properties. In either case, the



Figure 1-2: Typical rod-like mesogens. (A) p-pentyl-p’-cyanobiphenyl (5CB) and
(B) n-(p-methoxybenzylidene)-p-butylaniline (MBBA).

interactions between these anisotropic molecules promote orientational order and
sometimes positional order in an otherwise fluid phase. Basically, liquid crystal
phase-forming systems may be composed of small organic molecules, of polymers or
of amphiphiles [2—4].

Liquid crystals made from small organic molecules. Systems of small
organic molecules forming liquid crystal phases usually belong to the class of ther-
motropics. The most common type of molecules that form liquid crystal phases
is a rod-shaped molecule (i.e., one molecular axis is much longer than the other
two). Such rod-like compounds are called calamitic liquid crystals. It is important
that the molecules be fairly rigid for at least some portion of their length, since
they must maintain an elongated shape in order to produce interactions that fa-
vor alignment [2,31,32]. Figures 1-2(a) and 1-2(b) give the chemical structures of
two common rod-like molecules called p-pentyl-p’-cyanobiphenyl (5CB) and n-(p-
methoxybenzylidene)-p-butylaniline (MBBA), respectively.

Thermotropic systems composed of small rod-like organic molecules generally
form two different families of organizations, known as nematic and smectic phases.
The nematic phase is the simplest liquid crystal phase. In this phase the molecules

maintain a preferred orientational direction but have no positional order. The other
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Figure 1-3: Organizations of rod-like molecules in nematic (A) and smectic-A (B)
mesophases.
organization common to systems of rod-like molecules is the smectic phase. In this
phase, there is one dimensional positional order in addition to orientational order.
Molecules are grouped on a series of equidistant parallel layers where they are free
to move. Smectic liquid crystals with their layered structure are the most ordered
and viscous mesophases. Twelve different types of smectic mesophases have been
identified to this day. They usually bear the labels A, B, C, ..., L according to
their chronological order of discovery [2,31,32]. Figure 1-3 provides a schematic
representation of nematic and smectic-A organizations of rod-like structural units.
Generally, if the molecules that form a liquid crystal phase are chiral (i.e., lack
inversion symmetry or mirror image) then macroscopic chiral phases exist. They
are chiral versions of nematic and smectic phases. The essential organizational dif-

ference between ordinary (non-chiral) and chiral phases, is that in chiral phases,



Figure 1-4: The discotic molecule C60TP.

the molecules’ preferred direction rotates throughout the sample. The distance re-
quired for a full rotation is the pitch of the phase. Chiral nematic mesophases are
often called cholesterics since these organizations were first observed in cholesterol
derivatives, however the historical term is misleading since many other materials can
exhibit chiral or twisted nematic phases [2,31,32].

Disc-like molecules (i.e., molecules with one molecular axis much shorter than
the other two) also form liquid crystal phases. Such compounds are called discotic
liquid crystals, and again rigidity in the central part of the molecules is essential
[2-4,32]. Figure 1-4 provides the chemical structure of a typical discotic mesogens
by the name of 2,3,6,7, 10, 11-hexakishexyloxytriphenylene (C60TP).

Thermotropic systems constituted of small disc-like organic mesogens also form
nematic and smectic arrangements. In nematic discotic phases, the molecules move
about quite randomly, but on an average, the axis perpendicular to the plane of each
molecule tends to orient along a preferred common direction. In smectic discotic

phases, often called columnar phases, the molecules exhibit some degree of positional
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Figure 1-5: Molecular arrangements in the nematic discotic and columnar
mesophases.

order as most of the molecules tend to position themselves in columns. In addition,
those columns tend to arrange into hexagonal lattices [2-4,32]. Figure 1-5 illustrates
the arrangement of the molecules in the nematic discotic and columnar phases. Chiral
nematic discotic phases may also be found in nature. Finally, it is worth noticing
that while some compounds exhibit only one liquid crystal mesophase (e.g., PAA)
others display several (e.g., cholesteryl myristate).

Liquid crystals made from polymers. Polymers are macromolecules that
form when chemical reactions link shorter molecules together. Essentially two main
types of polymers may give rise to liquid crystal phases. The first type is main chain
polymers which are composed of fairly rigid monomers resembling the previously
discussed rod and disc-like mesogens and connected end to end by flexible segments.
Although these long polymers may move around and collide with each other in the
liquid crystal phases, the rigid rod and disc-like units tend to remain pointing in one
common direction. The second type of polymers forming liquid crystal phases are side
chain polymers which are composed of one single completely flexible polymer with

rigid mesogenic units attached as side chains along its length by other short flexible
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Figure 1-6: Different types of polymers forming liquid crystals. (A) Main-chain
polymer made of rod-like units; (B) Main-chain polymer made of disc-like units; (C)
Side-chain polymer made of rod-like units; (D) Side-chain polymer made of disc-like
units.

segments. In liquid crystal phases, the long flexible parts of these polymers wind
by however, the rigid mesogenic units attached to them tend to show orientational
order [2,11,12]. Figure 1-6 illustrates types of polymers capable of forming liquid
crystal mesophases.

As in the case of liquid crystal phases formed from small organic molecules,
polymer-based liquid crystal phases can be either thermotropic or lyotropic. Ther-
motropic liquid crystals are often referred as polymer melts whereas lyotropic poly-
mer liquid crystals are denoted as polymer solutions [11,12,33]. In addition to these
similarities with small mesogens systems, polymer liquid crystals also form similar

arrangements namely: nematic and smectic phases (possibly chiral).
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Figure 1-7: (A) Spherical, (B) rod-like and (C) plane-like amphiphilic units.

Liquid crystals made from amphiphiles. Amphiphiles are molecules that
combine a hydrophobic (water-fearing) group at one end and a hydrophilic (water-
loving) group at the other end. Amphiphilic or amphipathic molecules also known
as surfactants (i.e., surface active agents) may form ordered structures in both polar
and non-polar solvents. These types of liquid crystals belong to the class of lyotrop-
ics. Soaps and phospholipids are two important examples of amphiphiles leading to
liquid crystal phases [2-4]. Amphiphilic molecules form liquid crystal phases that
are slightly different from the liquid crystals formed by small organic molecules and
polymers. When dissolved, at low concentration, in a polar solvent such as water,
the hydrophobic ‘tails’ assemble together and present the hydrophilic ‘heads’ to the
solvent. The resulting structure for soap molecules is called a micelle and for phos-
pholipids it is called a vesicle (inverted-micelle). There is orientational and sometimes
positional order of the molecules within these structures, but there is no ordering
of the micelles or the vesicles themselves. At higher concentrations, the spherical

micelles and vesicles may transform into rod-like or even disc-like amphiphilic units
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Figure 1-8: Hexagonal (A) and lamellar (B) phases of rod-like and plane-like am-
phiphilic units, respectively.

or else in flat bilayers [2-4]. Figure 1-7 gives the representations of some possible
amphiphilic arrangements. At very high concentration (~50%), these various am-
phiphilic units combine to form larger liquid crystal phases. One example is the
hexagonal phase, which possesses a hexagonal arrangement of long cylindrical rods
of amphiphilic molecules. Other examples include the lamellar and cubic phases of
bilayers and spherical units, respectively [2-4]. Figure 1-8 provides schematics of

the hexagonal and lamellar phases.

1.2.4 Where are liquid crystals involved?

Even though liquid crystals are fluids, the existence of orientational order en-
sures that all directions in the material are not equivalent. This anisotropy has a
profound effect on the mechanical, electrical, magnetic and optical properties of the

various phases making them useful structural and functional materials. Indeed liquid
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crystalline phases play a significant role in our everyday life; not only they are becom-
ing an increasing part of our high-tech environment but also they are indispensable
to any biological systems.

Displays. Undoubtedly, liquid crystals are best known for their successful
electro-optical applications which started in the mid-1960s and which now represent
a multi-billion US-$ global market. Though initially appeared in wrist-watches,
calculators and clocks, liquid crystals are now being used for all kinds of advanced
domestic applications, like cell phones, cameras, automobile dashboards, switchable
window panels, laptops and other flat panel displays [2]. Their advantage was first
their low power consumption and small size; now they are competitive with other
technologies for attractiveness, ease of viewing, cost and durability.

Electro-optical applications may use nematic or smectic liquid crystal phases as
well as their twisted counterparts. These applications are based on the fact that the
liquid crystal mesogens can be oriented by low external electric fields (a phenomenon
known as Freedericksz transition) and therefore can disrupt the anisotropic optical
property of the mesophases [2].

Sensors. Liquid crystals are also used in various sensors, mostly tempera-
ture sensors [2]. Applications include: fever thermometers, hot warning indicators,
monitoring devices for packaging of child food, portable battery tester, mood rings,
color changing jewelry, decorative wall coverings, etc. Temperature sensitive films
have also been developed to detect local heating due to the presence of radiation or
certain vapors, or due to the poor electrical connections on circuit boards. Medi-

cal thermography remains the most important liquid crystal sensor application as it
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provides an aid in the diagnosis of circulatory problems and cancerous growths while
being able to map the local temperature variations of the skin. These thermo-optical
devices are usually based on chiral nematic liquid crystals and their associated capa-
bility to reflect different colors as the length of their pitch varies with temperature.
The pitch can also vary with concentration and pressure that provides the basis for
other sensors.

Fibers. One of the best examples of fiber formed from a liquid crystal phase
is the ultra-high strength polyamide Kevlar [2,11,12]. Although slightly denser than
nylon, Kevlar is roughly thirty times stronger. In fact pound per pound, Kevlar is
stronger than steel (steel is five times denser). A few of Kevlar’s applications include
ropes and cables; tires; protective and performance apparels; friction products and
gaskets; composites; adhesives and sealants.

Kevlar is formed from a lyotropic liquid crystal phase that is produced by dis-
solving a polyamide in sulphuric acid. The solution is then extruded in such a way
that the polymer chains acquire significant orientational order. Finally, the fluid
is solidified by removing the solvent. The orientational order of the main chain is
‘frozen in’ during this last step providing the fiber its ultra-high strength.

Surfactants. Surfactants are wetting agents that lower the surface tension of
a liquid, allowing easier spreading, and lower the interfacial tension between two
liquids. Surfactants play an important role in many practical applications and prod-
ucts, including detergents and emulsifiers. The detergent industry produces soaps,
powders, creams, and foaming agent of all kinds. On the other hand, in the food

industry, emulsifiers serve to maintain texture, color, flavor or viscosity. Emulsifiers
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are used in mayonnaise, salad dressings, marshmallow, whipped cream, beer, cheese,
ice cream, and jelly. Another use of surfactants is in the oil recovery industry. Sur-
factants are used to trap the oil located in porous rocks prior pumping. There are
also medical applications like surfactant-assisted drug release strategies. In all those
applications the surfactants form a lyotropic liquid crystal phase at sufficiently high
concentrations [2—4].

Biology. Living organisms are composed of cells which constitute the various
organs and perform varied functions of life. Clearly, for these functions to occur
the cells must have a form and a structure and there must be mechanisms by which
materials enter and leave the cells. The medium which provides the cell a struc-
ture and allows the selective transportation of materials between cells is the plasma
membrane. The cells utilize the properties of the plasma membrane to organize the
environment and appropriate interactions between the cells. Plasma membranes are
made of phospholipids that have a structure resembling soaps and detergent surfac-
tants where the molecules are amphiphilic. Biological membranes are lyotropic liquid
crystals generated by the dissolution of phospholipids in water [2-4]. Many biologi-
cal polymers also form lyotropic phase, including cellulose, polypeptides, DNA, and

linear viruses like tobacco mosaic virus.

1.3 Background on the modelling and simulations of nematic defects and
textures

The importance of nematic liquid crystals in the realm of science and engineering
has grown remarkably fast in view of the fact that even their existence as a phase

of matter was not recognized until the end of the 19*® century. Due to their unique
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combination of fluidity and partial orientational ordering, nematic liquid crystals are
used in a number of technological applications and are omnipresent in nature.

As any ordered media nematic liquid crystals often contain sharp, localized
distortions called defects that are of various dimensionality [2—4,11,31,32]. The
distribution of these defects, called texture, usually has a profound impact on the
structure and therefore on the physical properties of a given system. In some cases
they can be rather detrimental while in other cases they are desirable. Due to the
liquid character of the medium, nematic defects can move under the effect of elastic
forces until they reach some equilibrium position that minimizes their associated
distortion free energy.

In order to eventually remove or more generally control these defects and hence
optimize the performances of a nematic-based system, it is imperative to thoroughly
understand their static and dynamic properties. In this thesis modelling and simula-
tions of nematic defects and textures is performed to achieve that goal and therefore,

this section gives an overview of the invoked theoretical background.

1.3.1 Basic description of orientational order in terms of the director
field n(r)

Order in nematic liquid crystals is purely orientational. Considering a micro-
scopic region of a nematic sample containing a sufficiently large number of molecules,
orientational order is materialized by the tendency that mesogens have to roughly
orient their long axis in parallel along a common direction while keeping their centers
of mass randomly distributed as in ordinary liquids [31,32]. This average preferred

orientation, along which the molecules point, is commonly referred as the director
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n=-n

Figure 1-9: The basic order parameter of nematics: the director n. The director is
a headless unit vector giving the average preferred orientation of the molecules in
microscopic region of the sample.

of the mesophase and is often denoted by the unit vector n. The director n is
the basic order parameter used to model orientational order in a nematic phase.
A quintessential property of ordinary, non-ferroelectric, nematic mesophases is that
their constituent molecules are non-polar and therefore there is no physical difference
between the states —n and n. As it will be soon apparent this equivalence has pro-
found impact on the symmetry of the defects and their associated textures. Figure
1-9 illustrates the concept of director in a microscopic region of a nematic sample
constituted of rod-like molecules.

Defining a director at every spatial position r of the nematic system (i.e. defining
the director field n(r)), leads to a macroscopic description of orientational order
[31,32]. In absence of any perturbing external forces (electric, magnetic or flow
fields), the orientational order in a nematic sample is completely determined by the
shape of its container and its anchoring (i.e. surface-imposed molecular orientation)
[3,4]. When, for example, a nematic sample is sandwiched between two parallel flat

plates with identical anchoring conditions and forms a thin film, the orientation of
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Figure 1-10: Homeotropic (A), planar (B) and bended (C) configurations. The short
black segments represent headless local directors. (A) and (B) are homogeneous
director fields while (C) is heterogeneous.

the molecules at equilibrium is homogeneous and solely determined by the surface-
imposed molecular orientation. This phenomenon is due to the fact that the nematic
orientational order is long-range.

However, if the same nematic sample is now sandwiched between two parallel
flat plates imposing mutually different molecular orientations, the bulk orientational
order cannot be any longer homogeneous. In such a case, the molecules must pro-
gressively vary their orientation throughout the sample in order to satisfy the differ-
ent orientational constraints imposed by the top and bottom surfaces. Accordingly,
all the local directors undergo smooth progressive orientational variations in space.

Figure 1-10 exemplifies the different situations described above by means of director

fields.

1.3.2 Nature of defects and textures in nematics
The generic term defect usually designates a local imperfection that breaks the

order of the molecular arrangement in an ordered medium. In nematic liquid crystals,

defects break the rotation symmetries and can be simply seen as local, small-scale,
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sharp distortions of the orientational order [34,35]. Much like as in the case of
global, large-scale, gentle deformations considered in the previous section, defects
often originate from an incompatibility between geometric and anchoring constraints
as well as from the possible presence of orientationally disturbing external forces.
Defects often also show up during phase transition-related phenomena such as the
nucleation and growth of isolated nematic domains in an isotropic phase or in the
front propagation of a nematic phase in an isotropic phase.

Nematic liquid crystals exhibit an extremely rich variety of defects which can
occur in the bulk as well as at the surface of the material (only bulk defects are dis-
cussed in this thesis). These defects are generally classified according to their dimen-
sionality and to the nature of their core. Nematic defects can be zero-dimensional,
one-dimensional or two-dimensional and consequently be in the form of points, lines
or walls, respectively. Then depending on whether or not a director field n(r) can
be defined in their core, they are termed singular or non-singular [31,32,34-37].

Line defects. The most common type of defect found in nematics is the line
defect and nearly all of them are singular. Singular line defects are often referred
as disclinations [31,32,34-36]. Various types of disclinations are found in nematic
samples. Of particular interest in this thesis are the so-called wedge disclinations.

Wedge disclinations are planar director field configurations which, away from
their singular core, can be described by the director field n = (cos ¢, sin ¢, 0) with
¢ = MO+ ¢o and 0 = arctan(Z). In these expressions ¢ is a function giving the angle

made by the director field with respect to the xz-axis while M and ¢ are constants
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Figure 1-11: Director configurations around various wedge disclinations (singular
line defects). (A) M = +1, (B) M = +1/2, (C) M = +1/2 & ¢ = w/4, (D)
M=-1,(E) M =-1/2and (F) M = —-1/2 & ¢¢ = 7/3. Note that no director can
be defined in the core of the various disclinations.

corresponding to the strength of the disclination and the angle made by the tangent
of the director when ¢ = 0, respectively [31,32, 35, 37].

The magnitude of the strength M corresponds to the number of « rotation made
by the director when encircling the core of the disclination anticlockwise. The values
taken by the strength |M| are multiples of 7. The sign of the strength M is positive
or negative according to anticlockwise or clockwise rotation of the director when
encircling the defect core [31,32,35]. Figure 1-11 gives schematic representations of
the most common wedge disclinations found in nematics in terms of their director

fields.
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The study of defects has played an important role in understanding the structure
and physical properties of liquid crystals. In fact the observation and identification of
defects in a polarizing microscope enabled Friedel to elucidate the different structures
of liquid crystals and to classify them [3,4, 31, 38].

The generic term terture was initially coined to denote a particular signature
left by an arrangement of defects in a nematic sample observed under polarized
light [31,32,34-36]. Today, the term texture is however also often employed in a
broader sense to designate the particular director field adopted by a liquid crystal in
a given geometry, which can be ironically defect-free sometimes [11].

The two textures that have permitted the identification of the nematic mesophase
are the Threaded and Schlieren textures [3,4,31,38]. In the Threaded texture that
can be observed in thick nematic samples, the wedge disclinations are roughly par-
allel to the surfaces and appear as freely floating flexible filaments. The visibility of
the filaments or threads in polarized and unpolarized transmitted light microscopy
is due to their high phase contrast with respect of the rest of the bulk material
(i.e. the threads scatter light strongly). The Threaded texture is the one that gave
the nematic phase its name, from }/nya (nema), the Greek word for thread. The
Schlieren texture also known as Nuclei texture is usually observed in rather thin ne-
matic samples using polarized light microscopy. In this texture, the signature of the
wedge disclinations, which are roughly perpendicular to the sample surfaces, consists
of dark brushes connected to points called nuclei. The black stripes (extinctions of
light) correspond to the regions where the nematic directors are either parallel or per-

pendicular to the plane of the analyzer or polarizer. Moreover, the number of black
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Figure 1-12: Computed Schlieren texture for different orientations of the ensemble
polarizer-analyzer (indicated by the cross). The following disclination strengths can
be identified: (1) M = -1, 2} M =+1,3) M =-1/2, () M = -1, (5) M =+1/2
and (6) M = —1/2. All the disclinations are running out-of-the visualization plane
going through the nuclei.

brushes emanating from the nuclei and their sense of rotation as the polarizer and
analyzer are rotated at unison gives the strength of the line defect [39]. The magni-
tude of the disclination strength is given by the relation: |A/| = Numberofbrushes The
sign of the strength is then determined to be positive or negative according to the ro-
tation of the brushes with or against the direction of the ensemble polarizer-analyzer,
respectively. The nuclei or meeting points of the brushes remain unaffected by the
rotation of the polarizer-analyzer ensemble [3,4,31,32,36,39]. Figure 1-12 shows a
Schlieren texture computed from a given director field for different orientations of
the ensemble polarizer-analyzer.

The sum over all disclination strengths (including their sign) of a very large
sample usually tends to vanish. Typically, two connected disclinations have opposite

signs. Note that due to the mobile character of their medium, disclinations may

move within the sample and therefore their overall distribution is generally not a
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static feature. Disclinations of opposite signs attract each other while those of equal
signs repel [3,4].

If two disclinations of opposite signs but same strength eventually merge they
annihilate to yield a uniform defect-free sample area. However, if two disclinations
have opposite signs but different strengths they form a new defect whose strength
is equal to the sum of the strengths of the two original defects (i.e. the sum of the
strength is always conserved). Furthermore, a disclination of strength [M| > 1/2
can, under certain conditions, dissociate into two disclinations (3,4, 39].

Now more specifically, depending on its energetic cost to the system, a |[M| =1
singular line defect can: a) remain as disclination, b) dissociate into two |M| = 1/2
singular line defects or ¢) can transform into a non-singular |M| = 1 line defect. The
latter process is known as escape into the third dimension and is of particular interest
in this thesis. It consists in the progressive bending of the director field out-of-the
plane perpendicular to the original disclination line [40-42]. The resulting director
configuration or texture is easily recognized in nematic-filled cylindrical capillaries
with cavity walls imposing a radial anchoring. In such a case the director field
can be parametrized in cylindrical coordinates as: n = (cos ®,0,sin ®) with & =
+2arctan (%) F 7 and R standing for the radius of the cavity. Figure 1-13 provides
the director fields corresponding to the singular and non-singular |M| = 1 line defects
that can be found in a cylindrical cavity.

Point defects. In addition to line defects, nematic liquid crystals can also ex-
hibit point defects. These defects often referred as hedgehogs but also sometimes as

monopoles or umbilics are always singular [3,4]. There are two types of point defects
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Figure 1-13: Director fields corresponding to the planar radial with line defect
(PRLD) and escape radial (ER) textures. The PRLD texture (A) contains a singular
line defect running along the cavity axis while the ER texture (B) is continuous. In
both cases the strength of the line defect is however M = +1. The head-nail con-
vention, where the head of the nail is farthest from the reader, is used to show the
tilting of the directors.
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Figure 1-14: Schematics of the M = +1 radial (A) and M = —1 hyperbolic (B)
hedgehogs using flux lines. The flux lines are everywhere tangent to the director
field. Note that the origin points are singular.
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that are of interest in this thesis: the radial hedgehog and the hyperbolic hedgehog.
The director fields corresponding to the radial and hyperbolic hedgehogs can be de-
fined, away from their singular cores, by the expressions: n = (z,y, z)/ \/m
and n = (—z, -y, 2)/\/22 + 42 + 2%, respectively. Figure 1-14 shows schematic of
the two type of hedgehogs using the flux lines. The flux lines are everywhere tan-
gent to the director field [43]. The radial point defect has a pure radial structure
and any cross section containing the central singularity exhibits the director pattern
of the M = +1 wedge disclination line previously described. On the other hand,
the hyperbolic point defect has a mixed nature since its director field in the plane
z = 0 also corresponds to the M = +1 wedge disclination configuration, its z = 0
and y = 0 planes correspond to the M = —1 wedge disclination pattern. Like the
wedge disclinations, the point defects carry a strength M. The radial and hyperbolic
hedgehogs respectively carry the strength M = +1 and M = —1 [3,4].

An intuitive way to create a radial hedgehog is to place a nematic sample in a
sphere whose surface is enforcing a radial anchoring. This occurs naturally when a
nematic forms small droplets in a non-miscible fluid, for example. Another possible
occurrence of point defects is when two non-singular defect lines meet in a cylindrical
capillary and they have opposite escape directions. In such a situation, both the
radial and hyperbolic hedgehogs are formed. The texture formed by an alternative
distribution of point defects in a cylindrical cavity is called escape radial with point
defects (ERPD). This texture presented in figure 1-15 is of fundamental importance
to this thesis (see Chapter 4 to 7) as it has been observed along the spinning extrusion

duct of spiders [18,25,27,44].



27

\\\\i////i\\\\i////i\\\
////I\\\\I//III\\\\III/

—\17

AN
\
N
\

Figure 1-15: The escape radial with point defects (ERPD) texture occurring in
nematic-filled cylindrical cavities with sidewalls enforcing homeotropic anchoring. A
singular point defect is formed at every junction of two oppositely oriented escaped
domains.

When two point defects of |A/| = 1 strengths but opposite signs merge together,
they annihilate and give a non-singular M = +1 line defect or escape line defect.
Another interesting feature of point defects that is of particular interest to this
thesis is their connection to |M| = 1/2 wedge disclinations. Indeed, |M| = 1/2
wedge disclination loops or rings can emerge out of |[M| = 1 point defects [45-48]. In
such a process the total strength or charge of the defect is conserved. This intimate
relationship between point and loop singularities raises the question: Do point defects
exist or are they loops which are simply too small to be discerned as such? This
puzzling question is studied in this thesis and answers are presented in chapters 6
and 7. Figure 1-16 pictures the broadening of singular point defects into disclination
loops of half-integer strength.

Wall defects. The last class of defects encountered in nematics and encoun-
tered in this thesis is the wall defects (Chapters 2 & 3). In the field of nematic
defects, the term wall is often used to describe a steep but continuous re-orientation
of the director field by an angle of 7 radians involving a plane and hence wall de-
fects are often referred as inversion walls [4,6,8,34,49]. Inversion walls alone are

non-singular defects but their structures may involve singular wedge disclinations
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)

Figure 1-16: Broadening of singu

(B)

lar point defects into disclination rings or loops of

strength M = +1/2. (A) the M = +1 radial hedgehog splits into a M = +1/2
disclination loop and (B) the M = —1 hyperbolic hedgehog splits into a M = —1/2

disclination loop.
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NS

Figure 1-17: Schematic of a typical inversion wall defect between two |M| = 1/2
disclinations (running out of the drawing plane). The plane of wall is perpendicular
to the drawing plane. On crossing the wall the director continuously rotates by =
radians.

JII // (

of various strengths. Despite that wall defects can occur strictly in the bulk of a
nematic sample, they often occupy the entire cross section reaching the top and
bottom surfaces (This is the case of wall defects studied in this thesis). Given the
close relationship to surfaces and disclinations, a particular wall defect is often given
several different names throughout the literature [4,6,36,49,50]. An example of an

inversion wall defect is given in figure 1-17.

1.3.3 Free energy minimization

In a homogeneous nematic mesophase, all the local directors are aligned in
parallel. This equilibrium configuration of the system corresponds to a state of
minimum free energy. However, in most circumstances, the shape of the container,
the anchoring as well as the possible presence of external disturbing forces are such
that the orientational order of the nematic phase is distorted and the orientation

of the local directors are no longer spatially invariant. In order to determine the
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orientation taken by the local directors in such case, one needs to minimize the free
energy of the system [3,4,43, 51].

The total free energy F of a bounded nematic system is given by the sum of
bulk and surface terms: F = [ f,dV + [ f,dS. In its simplest form, the functional
f» relating the bulk elastic fr(;/e energy i)f the system to the nematic director field
gradients reads: f, = £(Vn) : (Vn)”, where K is a positive material dependent
elastic constant. This last expression is known as the Frank-Oseen elastic free energy
[3,4,43,51]. The standard expression used for surface free energy density, fs, is due
to Rapini and Papoular and reads: f, = %5 [1 —(n- e)2], where W is the surface
anchoring strength and e is a unit vector representing the easy axis or preferred
orientation of the nematic director at the surface [3,4,52].

The basic system of equations leading to the equilibrium configuration of the

director field is obtained from variational calculus (i.e. Euler-Lagrange equation)

and reads:
(Model I) (1.1)
%%+N.%:_W(n-e)e+N-KVn=)\sn On 00

In this system of equations, A\, and s are Lagrange multipliers introduced to fulfill
the unit length constraint of the nematic director n in the bulk and at the surface; N
is a unit vector representing the surface normal while 2 and 0f2 respectively represent
the computational domain and its boundary. Model I, given by system 1.1, is used
in chapter 2 and 3 to simulate and analyze the continuous structure of inversion wall

defects occurring in a nematic thin film.
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As explained in the previous section, no director field can be defined in the core
of a singular nematic defect. If in such case it is still possible to do various analytical
calculations excluding the core region of the defect, it is however not practically
possible to perform any serious computer simulations. The reason for this is that
trying to assign a director in the singular region leads to infinite director gradients
and therefore an infinite elastic energy. One simple way to remedy this problem
is to allow the director field to relax from its unit length constraint in the singular
region [53,54]. Assuming that anchoring strength is infinite and that therefore surface
molecular orientation is fixed, the dynamic evolution of the director field toward its

equilibrium configuration can be written using this approach as:

dVn on
n=ng On 0Q

1R =V 2 -9 =K |[vn- ] ong

(Model II) (1.2)

In this equation, 7 is a constant related to the rotational viscosity of the director
and ¢ is a penalty parameter related to the size of the defect core. This approach is
used in chapter 5 to simulate the collective interaction between point defects along

a nematic cylindrical capillary.

1.3.4 Continuous description of orientational order in terms of the tensor
order parameter field Q(r)

So far the order parameter use to describe the orientational order in the ne-
matic phase has been a unit vector called director and denoted by n. Using this
approach however may present two serious problems depending on the nature of de-

fects involved in the texture. The first potential flaw is, as mentioned in the previous
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section, that the director field cannot be defined when modelling a texture containing
singular defects. The second problem with this vectorial approach is that M = +1/2
line defects cannot be described as the n(r) = —n(r) restriction on the director field
is not retained after discretization of the Laplacian operator appearing in the gov-
erning equations. [Model I (cf. system 1.1} and II (cf. system 1.2).] A simplistic
approach to palliate the former problem consists of abandoning the Lagrange mul-
tipliers and add a penalty term instead so that the unit norm of the director field is
only satisfied away from singular regions. This technique is particularly useful when
dealing with singular defect where a detailed analysis of the defect core structure
and energy is not necessary. The technique is however not applicable when dealing
with M = £1/2 line defects.

A more physically sound approach to treat nematic defects and textures is to
use the tensor order parameter Q(r) [3,4,31,33,55,56]. Using the Q(r)-tensor as the
order parameter presents several advantages: the first being that it is continuous in
any type of defect; the second is that it automatically retains the head-tail invari-
ance of the director (n(r) = —n(r)); finally in contrast to the director n(r) that can
only describe uniaxial ordering, the tensor order parameter Q(r) can also describe
isotropic as well as biaxial symmetries. The fact that Q can describe isotropic states
is particularly useful when one is, for example, interested in investigating ordering
evolution during phase transitions. On the other hand biaxial states are common in
the vicinity of defect cores as they help lower the free energy of the system. The ten-
sor order parameter Q(r) is a real symmetric and traceless tensor and has therefore,

in the most general situation, five independent degrees of freedoms (in contrast, the
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Figure 1-18: Non-continuous (A) vs. continuous (B) description of orientational
order around a M = +1/2 wedge disclination. Orientation and amplitude of boxes
are given by the eigenvectors and corresponding eigenvalues, respectively. The inner
core of the defect as well as its periphery are uniaxial (boxes with one distinct edge)
while the circular transition region is biaxial (boxes with two distinctive edges).

director n(r) has only two). It can be represented, in terms of its eigensystem as
follows: Qi; = pnning + pmmim; + ylil;. In this expression, n, m and 1 are unit
eigenvectors forming an orthogonal triad and py,, u, and y; are their correspond-
ing eigenvalues. The eigenvalues u; (i = 1,2,3) of the tensor order parameter are
restricted by: —1/3 < p; < 2/3 and py, + i + 4 = 0. The director triad and the
eigenvalues characterize the orientation and the strength of alignment of the phase
respectively. The largest eigenvalue in magnitude or absolute value, u,, gives the
strength of ordering along the uniaxial director n. The second p,, and third y; eigen-
values correspond respectively to the biaxial directors m and 1 (1 = n x m). Figure
1-18 compares representations of orientational order around a typical disclination
line using the vectorial (n(r)) and tensorial (Q(r)) approaches.

In the case of strong anchoring conditions, surface orientation is fixed as any de-

viations can cause a disproportionate energy penalty to the system. Therefore surface
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free energy does not need to be taken into account in the free energy minimization
process. The bulk free energy density of a nematic system expressed in terms of the
tensor order parameter, which is commonly referred as the Landau-de Gennes free
energy, is given by the sum of a homogeneous fj, and a gradient f, contribution (i.e.
fo = fu+ fy) [3,4,31,56]. The homogeneous free energy density describes short-
range ordering effects and it penalizes any deviations from the equilibrium uniaxial
ordering and reads: f, = %QUQﬁ — %QUQ]-;CQM + %(QijQﬂ)2, where A is a function
of the thermodynamic driving force (i.e temperature or concentration), and B and
C are positive thermodynamic constants describing the equilibrium nematic order.
The gradient free energy density is an analogue to the Frank-Oseen bulk free energy
which penalizes the long-range variations of the tensor order parameter Q. In its
simplest form it is given by: f, = %VinijQU, where L is an elastic constant.
The dynamic equation describing the relaxation of the tensor order parameter
Q(r,t) towards an equilibrium value that minimizes the total free energy under the
different constraints (shape and size of the container, anchoring at its surface, etc.)

is then given by [3,4,31,56]:

n% - ——(AQU - BQik’ij + CleleQij) =+ LV2Q1,’J' On Q
Qi = ?j On 0Q

(Model III) (1.3)

In the above equation, 7 is a constant related to rotational viscosity. Model III is
employed in chapters 4, 6 and 7 to analyze textures composed of singular line and

point defects.
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1.4 Motivation and objectives

Two different problems involving defects and textures in liquid crystal-based
applications are examined in this thesis. Both the problems involve nematic phases
of rod-like mesogens in confined geometries. The first problem deals with a polymer-
dispersed liquid crystal (PDLC) film that forms the basis for electro-optical applica-
tions such as displays or smart windows (light shutters).

PDLC systems are liquid crystal-polymer composites where in general 50-80
wt% of low molecular weight liquid crystalline material is dispersed in a continuous
polymer matrix. The liquid crystalline domains normally have a droplet-like mor-
phology but larger cellular (polygonal shape) morphology may also be found instead.
PDLC applications are based on the ability that the mesogens of a nematic phase
have to align under an electric field. In a typical application, a thin PDLC film (few
microns thick) is deposited between clear plastic covers coated with a very thin layer
of conducting material.

Transmission of light through a PDLC thin film depends primarily on scatter-
ing which in turn depends upon the difference in refractive index between the liquid
crystal dispersed phase and their environment. In the ‘field-on’ state the dispersed
liquid crystal phase is forced to orient uniformly and therefore there is very little
difference in the refractive indexes and consequently the material appears transpar-
ent. However, in the ‘field-off’ state, the dispersed liquid crystalline material is not

constrained to orient in a particular direction and therefore there is a considerable



36

Clear plastic cover

/o Light

Polymer matrix  Liquid \crysml Transmitted
Off state On state
LC not oriented - PDLC film opaque LC oriented - POLC film clear

Figure 1-19: Cartoon giving the basic functioning of a PDLC film design for electro-
optical applications.
difference in the refractive indices and hence strong scattering. The film in the field-
off state therefore looks milky. Figure 1-19 illustrates the basic functioning of a
PDLC-based electro-optical device.

Anchoring or the surface preferential orientation adopted by the mesogens plays
a significant role in the preparation and the operation of these electro-optical devices.
Indeed, in the absence of any external electric field, the bulk orientation of the
mesogens is completely determined by their anchoring at the confining boundaries.
This anchoring may be perpendicular (homeotropic), parallel (planar) or tilted with
respect to the surface. Various mechanical and chemical techniques are available to
control the orientation of the molecules at the surface [9,10,32,39]. Transitions from
one anchoring condition to another may occur when certain parameters of the systems

are changed. In this first part of the thesis (Chapters 2 and 3), the focus is on a
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Figure 1-20: Cartoon illustrating the apparition of wall defects in the PDLC film
and subsequent ill-functioning of the device due to a temperature driven anchoring
transition.

defect structure known as inversion wall that frequently arises during a temperature-
driven anchoring transition in a polymer composite film destined for new electro-
optical applications (cf. figure 1-20). The objective of the work is to explain various
experimental observations made by confocal polarizing microscopy and provide a
fundamental understanding of interface-induced defect formation processes of direct
impact to electro-optical materials and devices.

The second defect-centered problem examined in this thesis concerns the bio-
spinning of spider silk. Spider silk has mechanical properties that are comparable
or even superior to the best man-made superfiber: Kevlar. However, in contrast
to this industrial high-performance aramid-based fiber, spider silk is ecological and
biodegradable. It is manufactured in an aqueous environment (Kevlar is dissolved in
sulphuric acid) under benign processing conditions, including ambient temperature
and pressure. Accordingly, there is a considerable interest in understanding the

design and processing details of silk-precursor materials. -Doing so may eventually
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Figure 1-21: Cartoon comparing the spinning technologies of industry and nature
for high-performance liquid crystal based-fibers.

lead to the development of environmentally friendly processes for the fabrication
of new high-performance fibers. Figure 1-21 show a pictorial comparison between
Kevlar and silk fibers.

The spinning apparatus of spiders basically consist of three major regions: a tail
where the silk precursor material is synthesized, a central bag where it is stored in
a concentrated solution, and a spinning extrusion duct from which the silk fiber is
drawn. Spider silk, like Kevlar fiber, is spun from a lyotropic nematic liquid crys-
talline precursor. The emergence of this mesophase is due to the high concentration
of rod-like molecules or aggregates in the watery dope solution. The processing of silk
is also known to involve strong changes in orientational order of the nematic liquid
crystal phase. These changes are extremely important as they affect the processabil-
ity of the silk precursor as well as they determine the microstructural details of the
solidified fiber and hence its remarkable mechanical properties. Of particular inter-
est is the presence of a series of point defects in the tubular extrusion duct [18,27].
These defects seem to disappear on approaching the very end of the spinning duct to

give a predominantly axial structure. This structure is then retained in the solidified
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Nematic point defects

Figure 1-22: Schematic view of the spider silk spinning apparatus.

fiber. Whether the presence of point defects along the extrusion duct of the spin-
ning apparatus of spiders is an ‘accident of nature’ or a ‘necessary ingredient’ of the
bio-spinning process is unknown at this time. Nevertheless, a better understanding
of the overall process is required to improve the actual industrial spinning technique
that is unable to produce synthetic fibers with mechanical properties as competitive
as the one produced by spiders. In the second part of the thesis (Chapters 4 to 7,
the focus is on the static and dynamic properties of nematic point defects confined in
cylindrical geometries as they arise along spider extrusion duct. Figure 1-22 provides
a diagram of the silk spinning gland.

The unifying theme of this thesis is emergence, stability, and interaction of de-
fects with other defects and with the confining substrates, in engineering devices
(PDLCs) and biological processes (silk bio-spinning). In PDLC, the defects of in-
terest are 2D continuous inversioniwalls, and in the spider spinning process they
are singular and non-singular disclination lines and point defects. Hence this thesis

covers all the possible defects found in nematic media: 0D, 1D, 2D, singular and
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non-singular. The role of substrate-liquid crystal interactions and substrate curva-
ture in the engineering device and in the biological process is also important. In
the electro-optical device, the substrate geometry is flat and the defect-nucleation
process is driven by a transient re-orientation driven by changes at the interfaces.
In the bio-spinning process, the substrate is highly curved and the defect-nucleation

process is due to a permanent strong anchoring on a curved interface.

1.5 Methodology and organization

In this thesis, modelling and simulations are used to investigate the behavior of
defects and textures in two different nematic-based systems. With the availability
of affordable computer power, this approach is becoming increasingly popular and
is regularly used to explain and complement available experimental results. One of
the forces of the modelling and simulation approach is that it can overcome length
and time scales issues that often render experimentations difficult or even impossible
to realize. Modelling and simulations is also able to predict scenarios not (yet)
realizable in experiments and allow to formulate new hypotheses relatively fast and
easily. In the specific study of nematic defects and textures, analytical and numerical
solutions are often indispensable to interpret experimental results obtained from
complicated wisualizing techniques such as nuclear magnetic resonance (NMR) or
fluorescence confocal polarizing microscopy (FCPM). Three different models are used
to simulate the behavior of defects and textures. The choice of model is motivated

by the singularity, strength and details of the defect core to be analyzed.
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The organization of this thesis is summarized in figure 1-23. Chapters 2 and 3
treat the problem of inversion wall defects in a polymer-liquid crystal composite thin
film intended for a new PDLC-based optical device using the director model I. Chap-
ter 2 presents the published work stemming from a collaboration with the research
group of Professor Mohan Srinivasarao at the Georgia Institute of Technology in
Atlanta [57]. In this work, the Georgia Tech group contributes the visualization and
characterization of the inversion wall defect using fluorescence confocal polarizing
microscopy while the computational analysis is my work. Chapter 3 is based on an-
other publication [58] and presents a deeper, more detailed modelling and simulation
analysis of the inversion wall problem. An new analytical expression is provided to
estimate the anchoring strength at liquid crystal-polymer interfaces. Chapters 4 to 7
concern nematic point and line defects in a cylindrical cavity enforcing homeotropic
(i.e. radial) anchoring and is motivated by the need for a better understanding
of the texturing undergone by the spider silk precursor throughout a micron-sized
tubular extrusion duct. The content of chapter 4 originates from publications [59]
and investigates the interactions between two oppositely charged point defects using
the Landau-de Gennes tensor approach (Model III). Chapter 5 from [60] considers
the interactions between many point defects randomly distributed along the axis
of cylindrical cavity subjected to homeotropic anchoring using the director model
II. Chapter 6 presents a detailed three-dimensional static study of nematic point,
line and ring defects confined in a cylindrical geometry using the Landau-de Gennes
model III. This work appears in [61]. The content of chapter 7, which appears in [62],

provides a three-dimensional dynamic analysis of ring and point defects using tensor
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model III. Finally, chapter 8 summarizes the conclusions and offers the contributions
to original knowledge of the thesis. Recommendations for future investigations are

also proposed.
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CHAPTER 2
Microscopic Observations and Simulations of Bloch Walls in Nematic
Thin Films

2.1 Summary

We study Bloch walls defects formed by quenching nematic thin films from
planar anchoring to homeotropic anchoring through a temperature-driven anchoring
transition. The director profiles of the walls are directly visualized using fluorescence
confocal polarizing microscopy, and shown to agree well with the simulation based on
the Frank elasticity theory. A pure twist wall exists if the ratio of sample thickness,
to surface extrapolation length, p, is smaller than or close to 1; while a diffuse Bloch

wall is obtained if p is much greater than 1.

2.2 Introduction

A nematic liquid crystal (LC) possesses long range orientational order along a
direction n, known as the diréctor. A wall defect in a nematic phase is a two dimen-
sional defect that separates regions with different director orientation, which usually
forms during a fast realignment process. One such example is the Freedericksz tran-
sition, where the LC director is realigned by an external field perpendicular to the
original alignment [1]. The director can rotate in two opposite directions (n = —n) in
response to the applied field, thus leading to a 180° inversion wall [1,2]. Fig. 2-1(a)

shows a schematic director configuration of the so-called Bloch wall [3] consisting of
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Figure 2-1: (a): A pure twist Bloch wall with the wall thickness d (parallel to ), in a
nematic film of thickness & (parallel to z). The head of the nail sign, T, represents the
end of the nematic director below the paper plane. (b) and (c): Microscope images
(under crossed polarizers and at 45° to the incident polarization) of a Bloch wall in a
film of TL205 (h=15 pm) in the zy-plane with (b) white light and (c¢) monochromatic
(532 nm) illumination. The scale represent 10 um. (d): Wall thickness d,,;4 at 2 =0
as a function of temperature near the homeotropic-to-planar anchoring transition
(T; = 21°C).
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180° twist deformation along the z direction. In this figure, d is the Bloch wall thick-
ness and h is the sample thickness. Helfrich first theoretically described the director
configuration of inversion walls formed due to the application of a magnetic field [4].
Such wall defects are usually unstable and collapse on themselves in a short time, can
be stabilized by the bounding surfaces. Ryschenkow and Kleman first reported that
Bloch walls were formed in nematic thin films due to temperature-driven anchoring
transitions and remained stable due to weak homeotropic or tilted anchoring [5].
They proposed that the polar anchoring strength (W,) can be estimated from the
geometry of the wall: W, ~ Kyh/d?, where K, is the twist elastic constant of the
nematics. They predicted and experimentally demonstrated that when the surface
extrapolation length b (defined as Ky/W,,) is > h, a pure twist wall is obtained,
while a diffuse Bloch wall is obtained when b < h,. In practice, the wall thickness
d, instead of b, may be compared with h to judge which regime the wall belongs to,
because d is easily obtained from a microscopic observation. We know of no instances
where such a diffuse Bloch wall has been observed.

With the help of fluorescence confocal polarizing microscopy (FCPM), one is
able to observe three-dimensional nematic director configuration [6-8]. In the first
part of this letter, we show direct visualization of two types of Bloch walls, pure twist
walls and diffuse walls, using FCPM technique. This is followed by a simulation of the
evolution of the Bloch walls with varying anchoring strengths using Frank elasticity.

These simulations agree remarkably well with the experimental FCPM observation.



52

2.3 Materials and methods

Nematic fluids we used were TL205 (birefringence An = 0.22) and MLC6608
(An = 0.083) from EMerck Industries. Acrylate monomers, n-octyl acrylate, isobonyl
acrylate, isooctyl acrylate, and 1,1,1-trimethylol propane triacrylate (Scientific Poly-
mer Products) were used without further purification. The amount of triacry-
late was about 10 wt% of the total monomer, which provides the rigidity of LC-
polymer composite films through crosslinking reaction. The films were prepared by
photopolymerization-induced phase separation reported previously [9]. Such films
contain polygonal LC domains of 30-50 pym in width. The film thickness was con-
trolled by glass microbeads of standard sizes (Duke Scientific, 5 and 15 ym in diam-
eter). Bloch walls were formed by quenching a film with a planar alignment from
relatively high temperature to homeotropic alignment through a temperature driven
transition [8-11].

About 0.003 wt% of a fluorescent dye, pyrromethene 546 (Exciton), was also
added to the pre-polymerization mixtures to help the characterization of the director-
field using FCPM. The fluorescence transition dipole of the dye was found to align
parallel to the local nematic director [7]. The intensity of the fluorescence is maxi-
mum when the polarization of the excitation beam, E, is parallel to n, and minimum
when E is perpendicular to n, with the ratio of 2.2. The dye was excited using Ar*

laser at 488 nm and the fluorescence was collected at 520-560 nm.
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2.4 Results an discussions

A Bloch wall in a composite film of TL205 and poly(isooctyl acrylate) between
crossed polars, shows symmetric and parallel color bands with respect to the center
yz plane of the wall [Fig. 2-1(b)] when a white light source is used. The color
sequence from either edge of the wall to the central plane follows that of the Michel-
levy birefringence chart [5,12]. In monochromatic light, the wall between crossed
polarizers shows interference fringes parallel to the wall [Fig. 2-1(c)]. When the
wall is perpendicular/parallel to the polarizer, it shows no (best) imaging contrast
on removal of the analyzer. This is due because the largest variation in refractive
index is obtained when the polarization of light is parallel to the wall. A structure
with such a refractive index variation functions as a lens [13] and generates a thin
bright line. All of the above observations confirm that the defect is a Bloch wall.

In addition, when the films with Bloch walls are heated close to the homeotropic-
to-planar anchoring transition temperature (7}), the thickness of wall d continuously
expands [Fig. 2-1(d)], indicating a decrease in the anchoring strength near T;.

We choose the low birefringence MLC6608 LC to avoid or minimize optical aber-
rations in confocal imaging [7,11,14] and Bloch walls in MLC6608 + poly(isooctyl
acrylate) were imaged using FCPM. By controlling the film thickness relative to the
width of the wall, the two types of Bloch walls proposed by Ryschenkow and Kleman
were realized, Fig. 2-2.

Fig. 2-2(a) presents the zy and zz optical sections of a pure twist Bloch wall
in a 8 ym thick film. The fluorescence emission of the dye is proportional to its

absorbance, which in turn depends on the average orientation of the absorption
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Figure 2-2: Confocal fluorescence images (zy and zz sections) of two Bloch walls: (a)
with the extrapolation length (c.a. 4.5 um) comparable to the sample thickness (8.0
pm); and (b) with the extrapolation length much smaller than the sample thickness
(18 pum). The zz section is along the dashed line shown in the zy section which was
located 1 um below the top LC/polymer interface. (c): The fluorescence intensity
profiles across the wall in (a) at a depth of 1 um (e) and 4 um (o) respectively below
the top interface. (d): The fluorescence intensity profiles across the wall in (b) were
taken at 1 um () and 5 pm (o) below the top interface. The excitation polarization
in (a) and (b) is along y axis. The scale bars shown in (a) and (b) represent 10 pm.
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dipoles of the dye molecules with respect to the polarization of the excitation E. Since
the absorption dipole of the dye is parallel to the local LC director, the measured
fluorescence intensity provides us information on the director orientation. The spatial
orientation of a nematic director can be specified by two angles: tilt angle ¢ (¢ =
0 along the substrate normal direction), and azimuthal angle # (§ = 0 along the
orientation of the wall projection in xy plane). Since the azimuthal angle of the
director within a Bloch wall is zero, the angle between the director (or the absorption
dipole of the dye) and E equals /2 — 8 in Fig. 2-2. This simplified relation between
the fluorescence intensity of the dye and the orientation of the director, n(f) is
described by [15], I fiuor(0) o< Iem(8) ox A(8) ox sin?(#) where Ifp,r is the fluorescence
intensity collected by the detector,l,,, is the emission intensity of the dye, and A is
the dye absorbance.

As shown in Fig. 2-2(c), the profiles of the fluorescence intensity across the
wall at different depths of the film (open and filled circles) almost overlap with each
other, which suggests that the director variation along z axis, 90/9z, is negligible [5].
The wall therefore contains only twist deformation, i.e. it is a pure twist wall. Here
the wall thickness d (ca. 6 pum) is comparable with the thickness A (8 pm).

Fig. 2-2(b) shows the confocal images of a Bloch wall in a 18 pm-thick film
which was made from the same film recipe as Fig. 2-2(a). However, d is a function
of z, smallest near both top and bottom substrates, and largest at the middle depth
of the film, i.e., showing a barrel-like profile in the xz optical section. The difference

between the fluorescence intensity profiles across the wall at different depths (Fig.

2-2(d)) suggests that 80/8z # 0. In this case, d near either of the substrate is
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much smaller than h. Therefore, our result is consistent with Kleman’s prediction:
a diffuse wall is more stable when the surface extrapolation length b is much smaller
than the thickness h.

We now proceed to the simulations of our experiments based on Frank elasticity
of the nematic fluid which is expressed as F' = [ fydv + [, fyds. According to
Frank’s coming formalism, the bulk elastic free energy density, in the one constant
approximation, can be written as [1] f, = £(Vn) : (Vn)7, where k is a material-
dependent elastic constant. The surface free energy density can be derived from
Rapini-Papoular expression and reads: f; = %[1 — (n - €)?] [16], where w is the
surface anchoring strength and e a unit vector giving some preferred orientation of
the nematic director at the surface also called easy axis. Any deviation of the director
n from e leads to a free energy penalty proportional to w.

A key length scale for this problem is b which is defined as the ratio of bulk
to surface energy densities b = k/w. According to the continuum theory, the ther-
modynamically stable states of a system are the ones characterized by free energy
minima [17]. In order to study the effect w on the equilibrium structure of Bloch
walls, we therefore need to seek director fields that minimize the total free energy.
The equations governing this problem are derived using variational calculus [18].

The computational domain considered is a simple 2D slice taken along the thick-
ness of the nematic thin film in the x — z plane. The Euler-Lagrange equation

associated with the variational problem is [1]:

Fn =V o = A (2.1)
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Where, ), is a Lagrange multiplier introduced to fulfill the unit length constraint of

n. This equation is numerically solved subject to general boundary conditions:

afs afb _
on TV oV - " (22)

where v is the outward unit normal to the surface and ), is the surface Lagrange
multiplier {18,19]. In order to facilitate the analysis of the simulation results, the set
of equations are non-dimensionalized. The reference length scale in this problem is
the thickness of the film and therefore we define the dimensionless position vector as
7 = r/h. The key parameter in this problem then becomes the dimensionless surface
anchoring strength defined as p = h/b = (hw)/b.

The boundaries conditions on the sides of the computational domain are con-
sidered to be of the Neumann type to emulate an infinitely wide sample and remove
or neglect any lateral surface torques. On the upper and lower surfaces, Eqs. (2.1)
and (2.2) are solved with different dimensionless surface anchoring strengths and an
easy direction normal to the surfaces.

We examine the structure of an 180° twist wall when the dimensionless surface
anchoring strength is p = 1. Fig. 2-3(a) shows that for this value of p, the director
orientation in the wall is almost independent of the nematic film thickness. The
structure of this quasi pure Bloch wall is more easily seen from Fig. 2-3(b), which
shows the profiles of n,, at surface and middle depth of the sample. The profiles of n,
found in Fig. 2-3(b) agree very well with the fluorescence intensity profiles obtained

experimentally (Fig. 2-2(c)), where the surface anchoring strength was close to 1.
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Figure 2-3: (a) Surface plot of the component n,, when the surface anchoring
strength p is equal to 1. The director field is nearly uniform throughout the sample
thickness. (b) Profiles of n, at the surface (z/h = 0.5) and midplane (z/h = 0) when
p=1. (c) and (d) same type of plots for the case p = 10 under a strong anchoring.
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Figs. 2-3(c) and 2-3(d) present director configurations obtained with for p = 10,
i.e. strong anchoring. Fig. 2-3(c) illustrates that, as the deviation from the easy axis
becomes more costly, the wall deforms in a barrel-like fashion. The wall is clearly
wider at middle depth than at surfaces and is referred as diffuse. Fig. 2-3(d) presents
two profiles of n, through the thickness of the film illustrating the net variations of
the wall width. Results in Fig. 2-3(d) are consistent with the fluorescence intensity
profile shown in Fig. 2-2(d). In the case of p < 1, the simulation reveals that there
are no variations of the director orientation through the thickness of the nematic
film. The 180° twist wall is accordingly a pure Bloch wall and the profiles of ny com-
ponent at the top surface and the middle plane perfectly coincide as no variations of
0 occur. The Bloch wall thickness was much larger than that of the case of p = 1,

confirming its increase with the anchoring strength decrease.

2.5 Conclusions

In summary, we have shown using FCPM and numerical simulation that when
d ~ h, a pure twist wall results and when d < h a diffuse wall with a barrel-like
profile results. This behavior can be easily understood by looking at the free energy
expressions at the surface and in the bulk. The surface energy is minimized as the
thickness of the wall becomes smaller, while the bulk elastic energy decreases with
decreasing gradients of the director orientations and therefore extends the thickness
of the wall. These conflicting mechanisms for the minimization of the system free

energy leads to the diffuse Bloch wall structure experimentally observed.
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CHAPTER 3
Modelling of Bloch inversion wall defects in nematic thin films

3.1 Summary

We study the influence of anchoring strength on the structure of Bloch inversion
wall defects occurring in nematic thin films during fast temperature-driven anchoring
transitions. Numerical simulations show that when the surface extrapolation length
b is greater than or comparable to the film thickness h, the wall is homogeneous
with a pure twist structure. On the other hand, when the extrapolation length b
is smaller than the sample thickness h, the wall is heterogeneous with a barrel-like
structure. These results are in very good agreement with recent experimental ob-
servations made with fluorescence confocal polarizing microscopy. Additionally, we
derive a simple analytical relation to predict the structure of the inversion wall defect
in the homogeneous, pure twist, regime. This relation can be used along with optical

measurements to simply estimate surface anchoring strengths.

3.2 Introduction

The long range orientational order of nematic liquid crystal systems can be
described by a unit vector n, called director, which define the local mean molecular
orientation [1]. The structure of nematic films primarily result from a competition
between intrinsic ordering and induced surface or interfacial effects but can also

be further affected by external applied forces such as electric, magnetic and flow
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fields [2]. Given their high sensitivity, nematic liquid crystal systems have structures
that are rarely perfect and that often contain defects [3]. Defects, which cause
distortions in the director distribution, can be in the form of points (0D), lines (1D)
or walls (2D) [1-3].

For example, nematic thin films may exhibit non-singular wall defects called
inversion walls in which the directors rotate continuously by 7 radians or less over a
small distance [4]. These inversion walls can cross the depth of the film and emerge
on both bounding surfaces. The origin of inversion wall defects is usually a fast
reorientation process [4]. Such phenomena can be induced by an external electric or
magnetic field [2,5] but also by a temperature-driven anchoring transition [6-9]. It
is stressed that because line and wall defects appear respectively as points and lines
in two-dimensional polarized light optical pictures, a confusion is often made in the
literature [4,7].

Most of the nematic liquid crystal applications are based on the fact that, the in-
terfacial director orientation, which is called anchoring, can be controlled by physico-
chemical treatments [10-14]. When interfacial torques are sufficiently strong, the
director orientation at the bounding surfaces is fixed as function of temperature and
is independent of the intrinsic bulk ordering effects. The surface director orientation
corresponding to this strong anchoring state is known as easy axis [1,2]. However,
when interfacial torques are not strong enough to impose a well-defined orientation
at the surfaces, that is the anchoring is weak, the surface director orientation deviates
from the easy axis to allow the relaxation of bulk distortions and the lowering of the

overall system free energy. The energy price paid by the system for this deviation
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of the interface director orientation from the easy axis is called anchoring energy or
anchoring strength and it is a function of temperature [14].

During a temperature-driven anchoring transition, the preferred director ori-
entation at the surface is quickly modified; since the director is apolar, i.e. n is
equivalent —n, it has two opposite ways of rotating to orient parallel to the new easy
axis and therefore an inversion wall defect can be trapped between two adjacent
domains with opposite senses of rotation [6-9]. Because of their analogy with wall
defects found in ferromagnetic materials, the inversion walls found in nematic liquid
crystals are also called Bloch or Néel inversion wall defects depending on the type of
elastic curvature involved [3].

Recently, the structure of Bloch inversion wall defects in nematic thin films has
been studied using fluorescence confocal polarizing microscopy [15,16]. This tech-
nique allow a true three-dimensional investigation of the director distribution unlike
conventional polarizing microscopy [17]. The experimental results have revealed that
in the regime where the extrapolation length b is smaller than the film thickness h,
the wall tend to acquire a barrel-like structure. In this chapter, we verify, confirm
and explain these experimental observations using simple modelling and simulations.
Also, we derive an analytical expression characterizing the structure of the wall as
function of the anchoring strength. This expression can be used in conjunction of
experimental data to get a direct estimation of the anchoring energy.

The chapter is organized as follows: Section 3.3 presents the theoretical ingre-

dients of the nematic liquid crystal model; Section 3.4 outlines the computational



65

modelling aspects; Section 3.5 reports the numerical results and analysis of the vari-

ational problem; finally Section 3.6 provides conclusions.

3.3 Governing nematostatics equations

In this section we present the necessary theoretical background to study the
statics of a mematic liquid crystal thin film. Since the inversion wall defects of
interest are non-singular, the director, i.e. vector, approach to the nemato-elasto-
dynamics is used; we emphasize that for the objectives of this chapter, the scalar
order parameter [1] that measures molecular alignment along the director plays no
role. The total free energy F of such bounded system is the sum of bulk and surface

terms:

F=JﬁW+Zﬁw (3.1)

According to Frank’s formalism, the bulk elastic free energy density can be written,

in the isotropic elasticity approximation as [12]:
K
ﬂ:iwmwwf (3.2)

where K is the Frank elastic constant [1]; the isotropic elasticity approximation as-
sumes that the splay, twist, bend, and saddle-splay elastic constants are all equal;
as shown below this approximation captures the main features of the experimental
results; we emphasize that elastic anisotropy [1] is not the driving force of the phe-

nomena we wish to model and only contribute to unimportnat small deviations. The
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surface free energy density due to Rapini-Papoular [18] reads:
——[1-(n-e) (3.3)

where W(T) is the temperature-dependent surface anchoring strength and e is unit
of vector representing the easy axis, i.e. the preferred orientation of the nematic
director at the surface as it minimizes the free energy. More general expressions for
fs are found in the literature [1,2,14], but equation (3.3) is able to describe well the
experimentally observed phenomena. As shown below, the minimum model given
by equations (3.1) and (3.2) captures the main experimental features [15] and more
detailed anisotropic or mesoscopic models are unnecessary.

Any deviation of the director n from the easy axis e leads to a free energy penalty
proportional to the surface anchoring strength W. The ratio of bulk to surface energy
densities defines an internal length scale known as the surface extrapolation length
b:

In a sample of characteristic bulk size h it follows that when h > b, F} is negligible
when compared to F; and the surface director is aligned along the easy axis (n = €).
Otherwise the surface director is oriented along a direction that minimizes F'; here
F;, and F; are the first and second integral in equation (3.1).

The equilibrium director field is the one that minimizes the total free energy [19].

The nematostatics governing equations are derived from a variation of the director
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[20] and read:
[ (% o O | [ (2. of
SF = / (8_n —Vsoe - Abn> ondV + 0 +N om Asn | 6ndS (3.5)
v s

where N is a vector representing the unit normal to the surface; A, and A, are
Lagrange multipliers introduced to fulfill the unit length constraint on the nematic
director n in the bulk at the surface on the system respectively. Minimization of
the variations leads to the condition § F' = 0 and the corresponding Euler-Lagrange

governing equations for the problem read [20]:

0fp O _ o2 _

S -V o2t = —KV’n=\m (3.6)
8fs afb - —
8n—FN-aVn— Wn-ee+N: -KVn=J\n (3.7)

Equations (3.6) and (3.7) are known as the bulk and surface torque balance equa-

tions, respectively [1].

3.4 Computational modeling

In order to study the effect of the temperature dependent surface anchoring
strength W on the equilibrium structure of an inversion wall, we solve equations
(3.6) and (3.7). The geometry considered for the study of this problem is a simple
rectangular domain representing a slice of nematic material of thickness A confined
between two parallel plates where nematic molecules are weakly anchored. The
width of the computational domain is varied in function of the surface anchoring

strength value (Top and bottom boundaries). Figure 3—1 defines the geometry and

the coordinate system. In this figure, we have also represented the director field of a
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Figure 3-1: Schematic of the computational domain along with the dot-nail repre-
sentation of the director field in a pure homogeneous Bloch wall. In this figure the
segments and the dots indicate in-plane and out-of-plane directors respectively. The
nails represent intermediate orientations.
pure twist Bloch wall using the dot-nail convention. Directors being normal to the
figure plane are drawn as points, directors parallel to the plane are shown as segments
of constant length and directors with intermediate orientations are represented as
nails [3].

To adimensionalize the problem we scale distances with the gap thickness h and
the computational domain is then a rectangle of unit height (in z-direction) and

whose width (in z-direction) is chosen so as to eliminate lateral effects. The reduced

position vector is hence:

T = 7 (3.8)

The key parameter in this problem is the dimensionless surface anchoring strength
defined as:
= — (3.9)
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where b is the previously identified surface extrapolation length. The governing

dimensionless equation is:

—V?n = \n (3.10)

where the bar over the Nabla symbol indicates that the operator is dimensionless.
The corresponding boundary condition at nematic thin film surfaces (upper and

lower boundaries of the rectangular computational domain) is:
-p(n-e)e+N.-Vn=)\n (3.11)

On the sides of the computational domain we have employed Neumann boundaries so
as to emulate an infinitely wide sample and get rid of any undesired lateral torques.

This boundary condition reads:
N-Vn=\n (3.12)

Also, for simplicity we shall consider 7 radians inversion walls and accordingly the
easy director axis is chosen to be parallel to the unit normal of the film surface,
i.e. € = N. We remind the reader that the total rotation of the director across an

inversion wall can be however less than 7 radians [8].

3.5 Results and discussions
3.5.1 Anchoring strength-structure relationship in Bloch walls
Equations 3.10 and 3.11 were solved using the standard Galerkin finite element

method. The solutions are classified into two asymptotic regimes:



70

059 v v e O R I I B I A )
{1 T T A A e e S v Y Y Y A I A O O I O

044 1 L LTI I TTTTTTT -2 Ll LAl bbbt
{1 e A e e T U A A A A Y I O I |

O34 1 L L LI TTTTTT T - as il liytr vl
T T e A e Y T O Y O A |

024 1 1 H I I TTTTTTT - Lllrgt bt
1 T T T A A e e A e N S A A A A I I O A A

C14 1 1 1L 1Y T I TTTTTT T -ab L Ligtb b1l
P A I TTTTT T oLl at et

'% o4 I LI 1T I I TTTTTTT -2l L1l b1l
| T A e e e NG v A A I T O A A

A4 PP I TTTTTT T bbbt i
PP LR P TETTTT T - Ll it bl

024 T FI T ERITTTTITT T -1l i
FIA PP TTTTTT s v Ll b1}

034 it ITITTTTT T oL L Ll
CHLi L TTTTT T T vl il bttt

044 LA EIETTTTTTT vl lidLLr b1t
[T T T A e e oS Y A I Y I B O

Ot L T T T T w4 Ay
-20 -15 -10 -5 [} 5 10 15 20

z/h

Figure 3-2: Director plot of a Bloch inversion wall for p = 0.1 using the dot-nail
convention. The inversion wall is a homogeneous twist wall as the director orientation
only varies along the wall width: n = n(z).

1. Homogeneous wall regime (p < 1): here the bulk energy dominates and the
director field is practically one dimensional: n = n(z). The weak anchoring
results in a surface director dictated mainly by bulk distortions.

2. Heterogeneous wall regime (p > 1): here the surface energy dominates and the
director field is two dimensional: n = n(z, z). The stronger anchoring results in
a surface director dictated by a competition between surface and bulk torques.

Homogeneous wall regime (p < 1). We first report the computed structure
of a Bloch wall defect in the homogeneous regime, i.e. the film thickness h is smaller
or equal to the surface extrapolation length b. As observed experimentally [8,15], in
this regime, the structure of the inversion wall is uniform throughout the thickness
of the film. The wall defect presents mainly twist deformation and we shall referred
it to as pure twist wall. Figure 3-2 shows the structure of a pure twist wall obtained
with a dimensionless anchoring strength p = 0.1. Figure 3-3 presents a contour plot

of the out-of-plane component of the director field n,. Parallel levels of gray scale
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Figure 3-3: Contour plot of the out-of-plane component of the director ny, when
the dimensionless surface anchoring strength p is equal to 0.1. The director field
is uniform through out the thickness of the film forming a pure homogeneous twist
wall.

readily indicate that the director distribution is constant across the depth of the slab.
Figure 3—4 shows the director’s out-of-plane component n, at the mid-plane (z = 0)
and at the surface (2 = 1) as a function of the dimensionless position z/h. The
two profiles perfectly superimpose and are in accordance with fluorescence intensity
signals recently obtained trough confocal polarizing microscopic observations [15].
Heterogeneous wall regime (p > 1). We now discuss the structure of the
Bloch wall defect in the heterogeneous regime where the sample thickness h is greater
than the surface extrapolation length b. Recent observations made with fluorescence
confocal polarizing microscopy have shown that the wall defects tend to adopt a
barrel-like structure in this regime [15]. Numerical solutions confirm that this type

of solution can be in fact predicted with a simple nematic liquid crystal director
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Figure 3-4: Profiles of the out-of-plane plane component of the director n, at the
surface (2/h = 0.5) and middle plane (2/h = 0), for p = 0.1. The result is represen-
tative of the homogeneous wall regime (p < 1). The profiles perfectly coincide as the
director field is independent of the sample thickness.

model without the need of using tensor models or molecular order parameter mod-
els. Simulations show that as p becomes greater than 1, the pure twist homogeneous
wall evolve into a diffuse heterogeneous wall. In contrast to the pure homogeneous
twist wall, the diffuse heterogeneous wall does not have a constant structure across
its thickness. The wall is thinner at the bounding surfaces than at middle depth.
Figure 3-5 shows the computed structure of the Bloch wall when the dimensionless
anchoring strength parameter p = 10. The figure clearly illustrates that the distance
required by the director to rotate by = radians varies along the thickness of the
film. This particular distribution of the director across the wall defect is responsible
for the typical barreling pattern experimentally observed in microscopy images [15].
Figure 3—6 shows the barrel-like pattern of the diffuse heterogeneous wall though the

contour plot of the out-of-plane component of the director field. The profiles of the
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Figure 3-5: Director plot of a twist inversion wall for p = 10. The inversion wall is
here a heterogeneous diffuse twist wall, and the director field is now two-dimensional:
n = n(z, ).

out-of-plane component across the wall at the middle depth and surface levels are
shown in figure 3-7. It is seen from this figure that the inversion of the directors
is not uniform throughout the thickness of the sample and that the rotation of the
director are more localized at the surface than in the bulk. This can be understood
by observing that the surface energy gets minimized as the wall width shrinks, while
the bulk energy minimization requires the opposite; these competing orientational

mechanism lead to this distorted twist wall structure.

3.5.2 Theoretical analysis of the homogeneous wall regime

The purpose of this section is to present a simple non-linear model that can be
solved analytically and that captures the steady state director structure of the pure
twist inversion wall shown in figure 3-1. The analytical model sheds light into the

competing surface and bulk mechanisms and offer a direct view of the parametric
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Figure 3-6: Contour plot of the out-of-plane component of the director n,, when
the dimensionless surface anchoring strength p is equal to 10. The director field is
clearly varying along the thickness of the nematic film and displays the barrel-like
pattern characteristic of heterogeneous twist inversion walls.
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Figure 3-7: Profiles of the out-of-plane plane component of the director n, at the
surface (z/h = 0.5) and middle plane (z/h = 0) when p = 10. The barreling of the
wall is clearly visible; the wall is larger at the middle plane than at the surface.
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dependence. Numerical solutions of the variational problem (equations (3.10) and
(3.11)) shows that, when the film thickness h is smaller or comparable to the surface
extrapolation length b, it is reasonable to assume that the structure of the wall is
homogeneous along the film thickness (the z-direction); in other words: n = n(z).
Under such assumption we can write the total free energy per unit length along the

y-direction as:

Fe /fdxz/(hfb+2fs)da: (3.13)

Parameterizing the unit vector with the director angle 6:
n(z) =cosf (z)d, +sind (z) 4, (3.14)

the bulk energy density becomes:

K (d0\®> K
fb:?(@) :?9'2 (3.15)

For a 7 radian inversion wall parallel to the y — z plane with the easy axis along the

z-direction (e = 4,) the surface free energy density takes the following simple form:

fo= % sin® § (3.16)

Using the fact that the integrand f (defined in equation (3.13)) does not depend

explicitly on z, a simple variational calculation leads to [19]:

of Kh
Y _ 2 12
cp =0 3 =5 6” — Wsin® 0 = const (3.17)
The constant ¢; can be determined from the boundary conditions; at £ = —o00, § =0

and ¢ = 0 while at x = 00, # = 7 and ¢ = 0. These conditions equivalently lead to
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¢1 = 0 and therefore the director angle obeys:

02 = % sin” 0 (3.18)

Since ¢, sinf and the constants are all greater than zero in the interval of interest,

it is possible to write the following ordinary differential equation:

;2w
¢ = *h sin @ (3.19)

Integration of this differential equation gives:

0 [2W
In tan —2- = ECB + Co (320)

Given that at x = 0, § = 7/2, the constant of integration ¢, is also found to be

zero. Therefore, the final solution for the profile of director angle in the 7 radians

6 = 2atan [exp ( %x)] (3.21)

In terms of our dimensionless anchoring strength p this expression reads:

= 2atan [exp (\/51—9')] (3.22)

inversion wall reads:

Figure 3-8 shows the profiles of the out-of-plane component of the director n, cor-
responding to the numerical solution of equations (3.10) and (3.11) and to the ana-
lytical solution given through equation (3.22). It can be seen from this figure that
the approximate analytical solution give a pretty accurate description of the wall

structure in the homogeneous regime (p < 1). Consequently, if one has experimen-

tal data characterizing the structure of the wall obtained with the help of confocal
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Figure 3-8: Profiles of the out-of-plane component of the director n, obtained
through the approximate analytical and exact numerical solutions for two values
of the dimensionless anchoring strength in the regime p < 1.

polarizing microscopy, one can use equation (3.22) along with a standard non-linear
least square fitting procedure and estimate the corresponding anchoring strength.
Despite the development of new sophisticated methods [14], anchoring strength is

still regularly estimated using inversion wall-based methods [21-23] and therefore

the above describes method may found some practical applications.

3.6 Conclusions

We have investigated the influence of anchoring strength on the structure of
a Bloch inversion wall using numerical simulations and simple variational analysis.
It was shown that when p < 1, the width of the wall is uniform throughout the
thickness of the film. As the dimensionless anchoring strength increases toward unity,
the width of the wall globally decreases. In the regime where p > 1, the structure of

the inversion wall becomes two-dimensional; the barreling of the wall, experimentally

observed using fluorescence confocal polarizing microscopy [15] is confirmed by the
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numerical simulations of a simple model. The barrel-like structure solution can be
understood by noticing the antagonist director field minimizing the surface and bulk
energies. The surface energy is minimized as the width of the wall becomes thinner
while the bulk elastic energy reduces with gradients of the director orientations and
therefore by expanding the width of the wall. In addition, we have shown that in the
regime p < 1, a simple expression can be obtained to describe the structure of the
inversion wall as a function of the anchoring strength. This equation can be, in turn,
be used for a direct estimation of anchoring strength using a standard data fitting

procedure given experimental data describing the structure of the wall.
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CHAPTER 4
Dynamic interactions between nematic point defects in the spinning
extrusion duct of spiders

4.1 Summary

Spider silk fibers have remakable mechanical properties as a result of an ultra-
optimized spinning process. Silk fibers are spun from a lyotropic nematic liquid
crystalline anisotropic fluid phase which undergoes significant structural changes
throughout the spinning pathway. In the silk extrusion duct, those structural changes
are expected to be driven by elastic mediated interactions between point defects. In
this work, the interaction between two point defects of opposite topological charges
located on the axis of a cylindrical cavity is studied using a tensor order parameter
formalism. Distinct regimes leading to defect annihilation and structural transitions
are described in details. The driving force setting the defects in motion is also ex-
amined. The different results suggest that the tensorial approach is primordial in
describing the complicated physics of the problem. The phenomenon described is
important to the understanding of the process-induced structuring of silk fibers and

to defect physics in a more general context.

4.2 Introduction
Spider silks enjoy mechanical properties that are comparable or even superior to

the best man-made superfibers such as Kevlar or Twaron [1-3]. However, in contrast

81
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to industrial high-performance fibers, silks are ecological: they are biodegradable
while manufactured in an aqueous environment under benign processing conditions,
including ambient temperature and pressure [4-6]. Accordingly, there is a consid-
erable interest in understanding the design and processing details of silk-precursor
materials. Doing so may eventually lead to the development of environmentally
friendly processes for the fabrication of new high-performance fibers [7-11].

Spider silks, like the majority of high-performance industrial fibers, are spun
from a lyotropic nematic liquid crystalline precursor [2,7,8,12,13]. The emergence
of this mesophase (i.e., intermediate phase) is due to the high concentration of rod-
like molecules or aggregates in the watery dope solution. A nematic mesophase can
flow as a liquid while possessing at the same time some degree of orientational order
as a crystal [14,15]. This orientational order is characterized by the tendency that
have neighboring rod-like molecules to spontaneously orient their long axis approx-
imately in parallel along a common direction. This preferred molecular orientation
is usually local, varying from subregion to subregion in the medium due to elastic
effects coupled with geometrical and interfacial constraints. Hence, the orientational
order of nematic liquid crystals is often described in terms of a unit vector field n(r),
called director field (where r is the position vector), giving the local average preferred
orientation of the molecules [14,15].

The orientational order of the liquid crystalline dope is known to significantly
change along the silk spinning pathway and particularly in the tubular extrusion

duct just before the draw down of the fiber [2,16-19]. This evolution of orientational

order is extremely important because it determines the micro-structural details of the
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solidified silk fiber, and hence its remarkable mechanical properties. The structural
changes are also important with respect to the processability of the material as they
affect its viscosity [2,12,13,16-19].

Observations made by polarized light microscopy in the spider tubular extrusion
duct indicate the presence of a stable escaped radial structure with point defects
(ERPD) [2,16-20]. The ERPD configuration consist in an array of point defects of
alternating type periodically distributed along the axis of the cylindrical cavity [21].
Nematic defects can generally be thought as singular regions where the director field
n(r) cannot be uniquely defined and where ordering melts. The two type of point
defects found in the ERPD texture are the radial and hyperbolic hedgehogs. These
point defects bear topological charges of strength +1 and —1 respectively. The
magnitude and sign of the topological charge indicates respectively the amount and
sense of director rotation on encircling the defect. On approaching the very end of
the spinning duct this ERPD structure is evolving into a defect-free predominantly
axial structure corresponding, presumably, to an escaped radial (ER) structure [16].
This later configuration is retained in the solidified fiber [16]. Figure 4-1 shows the
typical director fields corresponding to (a) the ERPD and (b) ER structures. Note
that the pattern of the ERPD structure can be found periodically repeated in the
extrusion duct.

The (meta)stability of the ERPD structure as well as its transition to the ER
structure are governed by the interactions between the point defects. [14] These
interactions, that are mediated by elastic deformations of the material and affected by

geometry, anchoring orientation and strength, as well as external fields (in particular
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Figure 4-1: Schematic of the director fields n(r) corresponding to the ERPD (a)
and ER (b) structures. In (a), the left and right point defects are respectively
corresponding to the hyperbolic and radial hedgehogs. Note that the director is
undefined in the core of each point defects.
flow field), can cause the point defects to move along the axis of the cavity. It is
well known that when two defects of opposite topological charges are sufficiently
close one another they usually attract until they coalesce and finally annihilate,
leaving no trace of their previous existence. When, on the other hand, defects are
well separated they usually do not feel any mutual attraction and stay immobile.
It is therefore crucial to elucidate the properties of the elastic-distortion-mediated
interactions between the point defects in order to better understand the process-
induced structural transition occurring in the extrusion duct of spiders.

The problem of nematic point defect interactions in cylindrical capillaries has a
long history [22-24]. Nematic hedgehogs and their corresponding ERPD configura-
tion are regularly observed when nematic liquid crystals are confined in cylindrical

tubes with lateral surfaces enforcing strong radial anchoring (i.e., the molecules are
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forced to orient radially at the surface). Generally theoretical and computational
studies have considered a pair of oppositely charged point defects rather than a whole
array. The annihilation of two nematic point defects of opposite charge consist of
three distinct regimes: the pre-collision, the collision, and the post-collision stages.
So far studies have been mostly focusing on the pre-collision regime where the defect
are well separated [25]. It has been shown both, experimentally and theoretically,
that the defects annihilate if their separation is approximately less than the diameter
of the tube. The situation is however far less clear when the defects are separated
by more than a diameter. Some experimental and theoretical works [26-29] seem to
indicate that the defects tend to stay immobile at large separating distance (i.e., the
interaction force vanishes) while other studies rather support the defect repulsion
hypothesis [30-32].

The collision and post-collision regimes and more generally the dynamics of
point defects annihilation has been very little studied so far [25,33]. Moreover, the
analytical and numerical studies using the continuum theories have been generally
using a vectorial description of the orientational order. As we will explained in more
details in the next section this type of approach present significant drawbacks in
the description of defect dynamics and defect-defect interactions. To overcome these
limitations, we investigate the dynamic interaction/annihilation of two nematic point
defects using a tensorial continuum approach.

This chapter is organized as follows. Section 4.3 gives the theoretical background
necessary for modeling structural dynamics relevant to spider silk processing. Sec-

tion 4.4 presents the numerical results. Finally, section 4.5 draws conclusions on the
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work presented.

4.3 Modeling
4.3.1 Geometry

In order to study the problem of process-induced structuring and structure evo-
lution in the extrusion spinning duct of spiders, the interaction between two nematic
point defects of opposite topological charges confined in a cylindrical capillary is con-
sidered. The problem presents an obvious rotational symmetry around the axis of the
cavity which allows to considerably reduce the computational space. The dynamic
interaction between the point defect pair is therefore investigated in a simple two
dimensional rectangular domain representing the upper half part of a longitudinal
cross section through the tube and accordingly a cylindrical coordinate system (z,r)
is considered. The width and height of the domain correspond respectively to the

length Z and radius R of the cylindrical cavity.

4.3.2 Tensor order parameter Q;;

The continuum nemato-dynamics equation describing the structure evolution
of a nematic liquid crystal is typically derived from the minimization of a (visco)-
elastic free energy equation. In the simplest continuum approach (Frank theory), the
orientational order parameter appearing in the (elastic) free energy of the nematic
liquid crystal phase is the unit vector field n(r). This director field gives an average

preferred orientation of the rod-like molecules in each subregion of the nematic liquid

crystal phase. This approach works generally well except close to defect cores where
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the nematic ordering suffers important distortions and melts. Indeed, one important
restriction of the vectorial description of the nematic ordering is that the director field
is singular (not uniquely defined or undefined) or discontinuous in the core of defects.
This generally causes the gradients of the director field and therefore the (elastic) free
energy of the system to diverge and become infinite in those regions. Nevertheless,
the structure evolution of nematic phases is customarily studied using this approach,
and to bypass the above mentioned problem, small volumes of system including the
singularities are usually excised and approximate energetic contributions for the core
of defects are provided.

However a better way to treat this problem is to describe the nematic ordering
in terms of a tensor field Q(r), called tensor order parameter field. With the use
of this second order tensor, defects do not have to be treated as singularities and
reliable estimate of the free energy can be obtained. Nevertheless this is at the cost
of an increase complexity of the governing equations. The tensor order parameter is
symmetric traceless (i.e., Q;; = @Q;; and Qi = 0) and can be represented, in terms

of its eigensystem. A spectral decomposition gives the following linear combination:
Qij = Mninj + mmimy + pll; (4.1)

The unit eigenvectors (n, m,1) form a local orthogonal triad characterizing the orien-
tation of the phase while the corresponding eigenvalues (u,, tim, ;) gives the strength
of alignment along those directions (u, + ftm + i = 0). The largest eigenvalue in

magnitude or absolute value, u,, gives the strength of ordering along the uniaxial
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director n previously defined. The second u,, and third g eigenvalues correspond
respectively to the biaxial directors m and 1 (1 =n x m).
It is also often useful to represent the tensor order parameter Q in the following

alternative, but equivalent, format:

i P
Qij = S(ninj - —) + g(m,m] - lzl]) (42)

In this expression, S and P are referred as uniaxial and biaxial scalar order param-
eters. They describe the amount of order (or strength of alignment) around the
uniaxial director n and biaxial director m and are given by S = 3/2(n;Qi;n;) and
P = 3/2(m;Q;;m; — 1;Q;jln;) respectively. The Kronecker § stands for the unit ten-
sor. The correspondence between the scalar order parameters and the eigenvalues is
as follow: p, = 2/3S, pm = —1/3(S — P) and p,, = —1/3(S + P).

According to these definitions, the ordering states described by the tensor order
parameter are: isotropic (i, = pm = i = 0; Q = 0), uniaxial (un, > pm = w;
S # 0, P = 0) and biaxial (un, # pm # w; S # 0, P # 0). Biaxial ordering is
likely to arise around defect cores where S and P generally exhibit sharp changes.
Since the eigenvalues p; (i = 1,2, 3) of the tensor order parameter are restricted by:
—1/3 < p; < 2/3, the uniaxial and biaxial scalar order parameters must obey the
following limits: —1/2 < .S <1 and —3/2 < P < 3/2 respectively.

Finally it is stressed that the employment of the tensor order parameter Q, with
its quadrupolar symmetry, is consistent with head-tail invariance of the nematic di-

rector, that is: n = —n.
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4.3.3 Landau-de Gennes free energy
The dimensionless total free energy of a nematic liquid crystal system can be

generally written as the sum of bulk and surface terms:
F= / fod?® + / fod?® (4.3)
1% s

In this work, only strong/fixed anchoring conditions are considered and therefore
the surface term does not need to be considered. The bulk free energy density term,
when expressed in terms of the tensor order parameter Q, consist of an homogeneous
fn and a gradient f, contribution (f, = f, + f,;). The homogeneous contribution
describes the short-range ordering effects/interactions related to the amplitude of
the scalar order parameters (more generally, the amplitude of Q). This expression
permits to describe the first order isotropic-nematic phase transition but also the
variation of ordering in the vicinity of defects. This contribution is often referred as
the Landau-de Gennes free energy; in this work, Doi’s formalism [34] is employed

and, in dimensionless form, the expansion reads:

= 1 U U U
fo=35(1=3)Qu@s — 5QuyQu@ri + Z(Qiiji)z (4.4)

In this expression U is a dimensionless phenomenological parameter called nematic
potential which controls the magnitude of the equilibrium tensor order parameter;
in other words, the values of the scalar order parameters. In general the nematic
potential U can be assigned a dependence on either temperature or concentration
depending on the nature of the nematic liquid crystal (i.e., thermotropic or lyotropic).

In our study U is taken to be proportional to concentration and according to Doi’s
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theory, U = 3C/C* where C and C* are the number and critical number density
of rod-like molecules, respectively [34]. Within this format, the first order phase
isotropic-nematic phase transition occurs at nematic potential Ury = 2.7. Also, in
this model, the system is isotropic for U < Uy and nematic for U > Ury. The
limit of metastability for the isotropic and nematic phase are U* = 3 and U** = 8/3,
respectively [34].

At equilibrium and away from distorted regions, the tensor order parameter Q
given by Eq. 4.4 is uniaxial. The value of the scalar order parameter is given by the

relation:

8

= (4.5)

1 3
— 4241
Se 4+4

The gradient fg contribution, represents the energy density variation due to
long-range ordering effects/interactions which corresponds to the energy penalty as-
sociated with the elastic distortions of the phase or tensor order parameter Q. This
term is an analogue to the Frank elastic free energy and can be expressed in dimen-

sionless form as:

2
fo= %kaijkaij (4.6)

In this equation € represents the reduced nematic coherence length which gives a
characteristic scale for the variation of the tensor amplitude/scalar order parameters

and the size of defect core (or the thickness of the nematic-isotropic interface).
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4.3.4 Governing nemato-dynamic equation
The dynamic equation describing the relaxation of the tensor order parameter
Q(r,t) towards an equilibrium value that minimizes the total free energy follows

from variational principles and is given in dimensionless format by:

0Qus  OF

Ot 0Qap (4.7)

The right-hand side of this expression corresponds to the functional derivative of the
total free energy. From variational calculus it can be shown that:
oF ofy = Ofy

= - - 4.8
0Qap  0Qup OV, Qag (48)

Only the symmetric traceless part of this expression is retained in order to satisfy

the constraints of the tensor order parameter.

4.3.5 Dimensionless quantities

In this work, dimensionless equations are used to reduced the number of param-
eters and facilitates analysis as well as comparisons with other studies. The relation
between dimensional and dimensionless quantities is as follows: T = r/R; V = RV}
£ =¢/Rwith € = \/L/A; f, = fu]A; F = it = %t. In these expressions, A is
an energy density scale (A = C*kT', where k and T are the Boltzmann constant and
the temperature respectively), L a material-specific elastic constant, R the radius of

the cavity and v a kinetic constant associated with rotational viscosity.
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4.3.6 Auxiliary conditions

The boundary conditions are as follows: at the wall of the cylindrical cavity
(upper part of the rectangular domain), the tensor order parameter is assumed to
be uniaxial and to describe a rigid radial anchoring condition so that Q;;(r = R) =
Se(efel— %), where e” is the unit vector along the radial direction. A rotational sym-
metry boundary condition is considered on the z-axis (lower part of the rectangular
domain). Finally, on the sides of the domain, Neumann conditions are enforced so as
to emulate an infinitely long cavity; this condition does not introduce any spurious
effects as tested by using different computational grids.

Initially, the systems contains a hedgehog pair whose cores are separated by
a distance D = D/R = 2.4. The hyperbolic and radial hedgehog are respectively
located at Z = —1.2 and Z = 1.2. The corresponding initial tensor field Q(r,t = 0)
is obtained by taking a few time steps starting from a trial configuration satisfying
all the boundary conditions. Other initial defect configurations do not change the
essential features of the results.

The model used in this work contains two parameters: the nematic potential U
and the reduced nematic coherence length £. For all the simulation results presented,
the nematic potential is set to U = 6 which corresponds to a deep nematic phase
with an equilibrium scalar order parameter of S, = 0.809. Other values of U in the
stable nematic range do not change the underlying process under study. The value of

the reduced coherence is varied in order to analyze its effect on the defect interactions.
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4.3.7 Numerical procedure

The governing dynamic equation for the tensor order parameter Q(r, t) is solved
using the standard numerical method of lines (under the constraints imposed by the
boundary conditions). The space discretization is achieved using the finite element
method. The time integration of the resulting differential equations is obtained using
an adaptive stable implicit scheme. The density of element is higher in the region
describing the trajectories of the defects along the z-axis. The independence of so-
lutions on mesh density was verified using standard procedures. The size of the
triangular elements is always smaller than the reduced coherence length & (smallest
length in the problem) to accurately capture the amplitude variations of the tensor
order parameter. The computational domain is a rectangle of reduced width Z = 6

and reduced height R = 1.

4.4 Results and discussions

This section presents representative results of the interaction dynamics between
a pair of point defects located along the axis of a nematic cylindrical cavity such as
found in the spinning extrusion duct of spiders.

Figure 4-2 shows a typical evolution for the director n and scalar order param-
eter S fields during the annihilation of two point defects of opposite charge for a
reduced coherence length £ = 1/30 and nematic potential U = 6. The pre-collision
[Fig. 4-2(a),(b)], collision [Fig. 4-2(c),(d)] and post-collision [Fig. 4-2(e),(f)] stages
are shown. In this figure, white and black respectively indicate order and disorder

while the segments represent the local directors. The initial distance separating the
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hyperbolic (left) and radial (right) hedgehogs, D, is 1.2 times the diameter of the
capillary tube [Fig. 4-2(a)]. At dimensionless time ¢ = 39750 [Fig. 4-2(b)], the
two point defects move closer and the distortions of director field between them in-
crease. However this evolution of the director field does not affect significantly the
variations of the uniaxial scalar order parameter in the vicinity of the defects. This
confirms that in the pre-collision regime the structural changes are mainly governed
by director field distortions [25]. At dimensionless time ¢ = 40585 [Fig. 4-2(c)], the
system is in the collision stage. The two point defects are still distinct but their
cores now touch each other and the director distortions are accompanied by varia-
tions of the scalar order parameter. The drop in the scalar order parameter occurs
principally between the defects but also extends in the 7-direction in contrast to
the previous steps. At dimensionless time ¢ = 40599 [Fig. 4-2(d)], the scalar order
parameter field indicates that the cores of the two defects are indistinguishable. The
collision of the defects result into the creation of a single defect. At dimensionless
time ¢ = 40613 [Fig. 4-2(e)], the system is in the post-collision regime and tries to
get rid of the defect. The scalar order parameter field reveals that the size of the
defect diminished while the director map remain almost unchanged with respect to
the previous time frame. This indicates that in this regime the structural changes
are mainly governed by the variation of the scalar order parameter rather by the di-
rector distortions. This result is in agreement with a previous study that has used a
Brownian molecular dynamics approach of a similar problem [25]. Finally, in the late

stage of the post-collision regime, at dimensionless time ¢ = 40914 [Fig. 4-2(e)], the
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Evolution of the orientation (n)and alignment (S) fields during

the pre-collision (a)-(b), collision (c)-(d) and post-collision (e)-(f) regimes of

Figure 4-2:

The frame
correspond respectively to the dimensionless time t =

two nematic point defects along the axis of cylindrical capillary.

(a), (b), (c) and (d)

0, 39750, 40585, 40599, 40613, 40914. The small segments represent the directors and

thus the local preferred orientation of the rod-like molecules. The grayscale corre-

1/30.

sponds to S. The white regions are ordered while black ones, around defects, are
disordered. U =6, &

system completes its relaxation and the defect disappear. The defect-free structure

thus obtained corresponds to the classical escaped radial solution.

Figure 4-3 illustrates the evolution of the scalar order parameter S, along the

z-axis, during the annihilation of the two point defects for the same choice of pa-

rameters as Fig 4-2. Also, as in the Fig. 4-2, the pre-collision [Fig. 4-3(a and b)],
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collision [Fig. 4-3(c and d)] and post-collision [Fig. 4-3(e and f)] stages are repre-
sented. In the pre-collision regime the two mutually approaching defects are single
solitons. Clearly, in this stage, the two defects approach one another at the same
speed [See also Fig. 4-4 and Fig. 4-5] without any amplitude changes in structure as
indicated by the lateral translation of the single solitons. The scalar order parameter
quickly reach an equilibrium value on each side of the two defects. In the collision
stage, the two defects first collide (c), keeping their cores distinct, subsequently they
strongly overlap (d) and become indistinguishable thus creating a single defect with
an elongated core (In contrast to the circular nature of the individual defect cores).
The profile of the scalar order parameter in the core of this resulting defect is flat
(d). This is because the system lowers the ordering, in the inter-defect region, to
the level of the surrounding defect cores. In the post-collision stage the profile of
the scalar order parameter show an opposite behavior as the system relaxes (e) and
the size of the defect gradually reduces before finally vanishing (f). During this step,
ordering in the defect core progressively increases toward the equilibrium value of
the bulk surroundings.

Figure 4-4 shows the displacement of the two point defects as a function of
time during the annihilation process. Two cases are represented: (a) U = 6, £ =
1/20; (b) U = 6, € = 1/30. The position of the point defects is determined by
finding the minima of the corresponding uniaxial scalar order parameter profiles.
The trajectories show that the displacement of the two defects are symmetric and
that their speed increase dramatically on approaching each other. On comparing

the two profiles one can easily concludes that the time required for the defects to
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1 1.5

Figure 4-3: Evolution of the scalar order parameter S profile, along the Zz-axis,
during the pre-collision(a)-(b), collision (c)-(d) and post-collision (e)-(f) regimes. The
dimensionless sampling times (a)-(f) are t =0, 39750, 40585, 40599, 40620, 40920.U =
6, £ =1/30.

collide and annihilate reduces as ¢ increases (i.e., the diameter of the capillary tube
decreases). To complement this result, Fig. 4-5 shows the reduced speed of the
point defects as a function of the inter-defect distance D corresponding to Fig. 4-4.
The trends show clearly that the speed of the point defects increases exponentially
as the hedgehogs approach each other and collide to form a single defect. Also, in
accordance to Fig. 4-4, the defects travel faster as the reduced coherence length £
increases.

The force exerted on the nematic point defects and which set them into motion
is usually called elastic because it is mediated by the surroundings director field
distortions. One simple way of estimating this interaction force is by differentiating
the bulk free energy corresponding to the minimized order parameter field with

respect to the distance separating the two defects. In this work, the tensor order
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Figure 4-4: Reduced position of the point defects along the z-axis as a function of
the reduced time during the annihilation process. (a) U = 6, § = 1/20; (b) U = 6,
£ =1/30.
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Figure 4-5: Reduced speed of the point defects as a function of their separating
distance D during the annihilation process expressed in semi-log and linear scales.
The speed of the point defects in the pre-collision and early collision regimes fol-
lows an exponential law. The trends for the (a) and (b) cases can be fitted with
0.03800 exp(—3.11D) and 0.01391 exp(—3.11D), respectively. (a) U = 6, & = 1/20;
(b)y U =6, £ =1/30.
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parameter formalism is employed and the reduced total bulk free energy can be

evaluated by computing the following integral:
_ F=1 =3 _
F=2r / / fordrdz (4.9)
=0 Jz=-3

The corresponding reduced force of interaction between the point defect pair f; is

computed according to:

- OF

fi==35 (4.10)

Figures 4-6 and 4-7 show the profiles of the reduced total free energy F and cor-
responding reduced interaction force f; acting on the defects as a function of the
reduced inter-defect distance for reduced coherence lengths & of 1/30 and 1/20 re-
spectively. The profiles of the total reduced free energy and corresponding force of
interaction exhibit very similar behaviors. The only noticeable difference between
these profiles is the location of the inflexion points in the free energy curves. It is
found that the abscissa of the inflection point increases with £ This lateral shift
in the inflexion point location is indeed related to the size of the defect cores which
reduces with &. Defects with smaller cores collide later in the annihilation process.
As discussed in Ref. [31,32], the profile of the interaction force between the point
defects is still a matter of dispute. Different experimental and theoretical approaches
have been taken to study the problem. Some studies [30-32] tend to indicate that
the interaction force is attractive at short separating distance and repulsive at large

separating distance while other works (including ours) favor the idea of a purely
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Figure 4-6: Evolution of reduced total free energy F' (a) and corresponding reduced
interaction force f; (b) as a function of the reduced inter-defect distance for U = 6,
¢ = 1/30. The circles and squares denote respectively the linear (0.01564D+7.521e—
5) and exponential (0.01386 exp(—2.42D)) fits.

attractive force [26-29]. The discrepancies found in the theoretical works is believed
to be due to boundary condition differences [32].

The difference between our computational approach and the previous ones is
essentially the employment of a tensor order parameter which allows a continuous
description of defect dynamics. This is particularly important in the collision stage
governed by nematic ordering rather than director distortions as shown in Fig. 4-2
and Fig. 4-3. The force of interaction between the point defects is found to be strictly
attractive. As previously demonstrated analytically in Ref. [26], the interaction
force decay exponentially as the distance between the defect increases and becomes
essentially negligible as defects separate by more than a diameter [28,29]. However,
in contrast to Refs [28,29] the force is found to steeply reduce in a linear manner

in the late stage of the collision rather than reaching a plateau. This behavior is

attributed to the variation of the scalar order parameters. It is noticed, to the degree
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Figure 4-7: Evolution of reduced total free energy F (a) and corresponding reduced
interaction force f; (b) as a function of the reduced inter-defect distance for U = 6,
€ = 1/20. The circles and squares denote respectively the linear (0.01695D+8.836e —
5) and exponential (0.03898 exp(—2.684D)) fits.

of resolution of the computational scheme and mesh density used in this work, that
as the defect separating distance shrinks to zero the force remains finite although
small. Figure 4-8 shows the time frame corresponding to the structural transition
from the ERPD to the ER structures in the time evolution of the reduced total free
energy for U = 6 and £ = 30. Three zones are identified: zone (a) corresponds to
the pre-collision and collision stages previous identified in which to defect cores can
be identified; zone (b) corresponds to the post-collision regime in which the system
relaxes and defect gradually disappear; in zone (c) the system is the stable ER
configuration and no trace of the ERPD structure can be found. It can be seen once
again from this graph that the scalar order parameter relaxation plays a significant

role in the defect pair annihilation and structural transition to the ER structure.
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Figure 4-8: Time frame of the reduced total free energy during which the nematic
system undergoes its structural transition from the ERPD to the ER configuration
through the annihilation of two point defects of opposite topological charges. U = 6,
€ = 30. In zone (a), the system presents two defects with distinct cores; in zone (b),
the two defects have collapsed into a single defect which gradually disappear; in zone
(c) the system is in defect-free ER configuration.

4.5 Conclusions

Motivated by the experimental observation of ERPD and ER structures in the
extrusion duct of spiders spinning apparatus we have investigated numerically the
dynamic interaction between two nematic point defects of opposite topological charge
confined in cylindrical cavity. In contrast to previous analytical and numerical stud-
ies we employed the tensor order parameter formalism to describe the orientational
order of the nematic phase, which allows for an unambiguous description of defects
and reliable estimation of energies. Three distinct regimes leading to the annihilation
of the antagonist point defect pair were described. The importance of the scalar or-
der parameter S in the collision and post-collision regimes was demonstrated. Defect
trajectories and corresponding speeds were reported for two different radius of the

cylindrical cavity. It was found that the point defect travel faster in smaller cavities.

The trends of defect trajectories agrees very well the one found in theoretical [26]
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and experimental [27] studies. The absence of asymmetry in the defect trajectories
as reported in Ref. [35] is attributed to the absence of backflow effects as well as by
the isotropy of the elastic constant. Those effects will be investigated in future work
and will be reported. The reasons of the point defect annihilation were also inves-
tigated. In particular, the dependence of the total free energy and corresponding
interaction force on the inter-defect distance was analyzed for two different values
of the cylindrical capillary radius. It was shown that the interaction force between
the defect, which set them into motion, is decreasing exponentially at large defect
separating distance. As predicted theoretically in Ref. [26] and shown experimen-
tally if the point defects are separated by a distance greater than a diameter, the
interaction force is shielded and the defects pinned. In contrast to previous studies
having reported explicitly the force of interaction, we have found that at short sepa-
rating distance, the interaction force was decreasing very steeply in a linear way. We
show that this distinctive behavior is due to the significant variation of the scalar
order parameter in the late stage of the collision regime. During the whole process
the interaction force was found to be strictly attractive. Finally we would like to
emphasize that despite that the context of our study is the biospinning process of

spider silk, the obtained results should be useful to the field of defect physics.
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CHAPTER 5
Structure evolution of spider silk liquid crystalline precursor material

5.1 Summary

Spiders produce silk fibers with remarkable mechanical properties using an ultra-
optimized spinning process. The fluid precursor material used to draw the silk
threads is a lyotropic nematic liquid crystal. The mechanical properties of the silk
fibers as well as their processability are strongly affected by the complex structural
transitions undergone by the nematic liquid crystal precursor along the spinning line.
Our work focuses on the particular structure adopted by the nematic precursor in
the extrusion duct of the spinning apparatus. This structure is characterized by a
succession of well defined point defects located on the axis of the cavity and inter-
acting on each other through elastic mediated forces. The phenomenon described is
both important in understanding the process-induced structuring of spider silk fibers

and to defect physics.

5.2 Introduction

Spiders’ ultra-optimized and ecological spinning process produces a fiber with
mechanical properties comparable or even superior to the best man-made super-
fibers, which use corrosive solvents and cause significant environmental degradation
[1,2]. Hence, there is a great deal of interest in understanding the intricacy of their

design and processing routes. Many environment friendly exciting applications are
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envisaged upon the successful replication of spiders’ fibers and complex spinning
line [3-5].

Spider silk fibers are known to be spun from a lyotropic nematic liquid crystal
emerging from a highly concentrated water-based solution of rod-like molecules or
aggregates [6-8]. A quintessential property of this silk precursor is its capacity to
maintain some degrees of orientational order while still flowing as a liquid. This
orientational order is characterized by the tendency that have neighboring rod-like
units to align their long axis in parallel along a common direction [9,10]. This
preferred molecular orientation usually varies from subregion to subregion in the
mesophase (z e., intermediate phase) due to elastic effects coupled with geometrical
and interfacial constraints [9]. The evolution of orientational order or molecular
orientation along the spinning pathway is crucial as it affects the processability of the
silk precursor mesophase and determines the microstructural details of the solidified
fiber and therefore its remarkable physical properties [6-8].

Spiders’ spinning line basically consist in a tail where the silk precursor material
is synthesized, a central bag where it is stocked in a very concentrated solution,
and an extrusion duct from which the silk fiber is drawn [8,11]. Observations made
by polarized light microscopy in the extrusion duct have revealed the presence of a
complex orientation structure known as escaped radial with point defects (ERPD) 8,
12-14]. The point defects, referred as hedgehogs or monopole, are located where the
direction of bending distortions changes. At those particular locations, orientational
order melts. Two types of point defects are alternatively found in the cylindrical

cavity of the extrusion duct: the radial and the hyperbolic hedgehogs. Figure 5-1
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Figure 5-1: Structure of the radial (a) and hyperbolic (b) point defects found along
the spinning duct of spiders in terms of the director field n(r).

shows the characteristic structures of the radial and hyperbolic hedgehogs in term of
a director field n(r) giving the local average preferred orientation of the molecules.
The unit directors are drawn arrowhead-free as there is no physical difference between
the vector field n(r) and —n(r) [9,10].

Whether this complex molecular structure is an accident of Nature or a necessary
ingredient of the spider biospinning process is unknown at present. Nonetheless, one
my hypothesized that this configuration with its orientational defects may play an
important role in the control of material crystallization along with water pumping,
ions exchanges and pH reduction phenomena [8]. Indeed, a premature crystallization
of the silk may indeed cause the permanent blockage of the extrusion system and
ultimately lead to the death of the animal [8,15].

Nematic point defects confined in cylindrical geometries have been first exper-
imentally observed and explained in the early seventies [16-19]. They are typically

observed when a nematic mesophase is confined in cylindrical capillary with lateral
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walls enforcing strong radial anchoring (i.e. molecules are forced to orient radially
at the surface). Point defects with opposite topological charges are known to an-
nihilate by pairs. This has been experimentally observed [16-21] and theoretically
described [20,22-26]. Results have shown that when two defects are separated by
less than a tube diameter they usually attract until they eventually annihilate. As
the two defects come closer their speed increases exponentially. At large separat-
ing distance the situation is far less clear as some studies support the hypothesis
of a total screening of the attraction force [23-25] while others support a repulsion
force [22,27]. Recent experiments have also shown a possible speed anisotropy be-
tween the point defects [28] but the role played by elastic anisotropy and back-flow
in this phenomenon has not been clearly established yet.

Obviously these phenomena become even further involving when considering
not two point defects but rather a whole a array of them. Some studies have in
fact touched this problem in a statistical manner but no experimental data have yet
corroborated them [29]. During their evolution arrays often splits into sub-arrays of
few interacting defects with alternating signs. This work aims at describing what can
possibly happen inside those sub-arrays. These results should be useful in improving
the understanding of arrays of nematic point defects and therefore of their behavior
along the spinning duct of spiders, and hence contributing to the on-going efforts to

develop systematic technology transfer from Nature to fiber engineering.
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5.3 Modeling

In this section we briefly present the necessary theoretical background to study
the dynamics of nematic point defects that is essential to silk bio-spinning.

The continuum dynamic equation describing the structure evolution of a nematic
liquid crystal is typically derived from the minimization of a free energy functional
depending on some orientational order parameter that characterizes molecular order
and macroscopic texture [9]. In the simplest continuum approach, the orientational
order of parameter is a unit vector n(r), called director, giving the average pre-
ferred orientation of the molecules at a point r. The energy cost associated with the

distortions of the director field is then given by the Frank distortion energy [9]:
K K. K.
fo=5(V -0+ (- V xn)’ + 2 (n x V x n)?, (5.1)

where K1, K, K3 are elastic constants for the three modes of orientational distortions
occurring in nematic: splay, twist and bend. It is useful and moreover appropriate to
adopt the so-called one constant approximation: K = K; = Ky = K3. Within this
approximation, no speed anisotropy can be attributed to elastic effects. The Frank

free energy simplifies to:
K
fo= EVn : (Vn)T. (5.2)

This vectorial approach is generally well suited to study small and continuous defor-
mations of the nematic liquid crystal. However, this approach generally fails in the
vicinity of defects where the director field may be discontinuous causing, in turn, the

distortion free energy to become infinite. However, this problem can be overcome
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in a rather straightforward manner by allowing the director to deviate from its unit
length constraint and act as an additional order parameter measuring the degree
of molecular alignment along itself. In this work we employed a regularized Frank

elastic free energy of the form [30,31]:

(Inf? — 1)

— 1 . T
fo=K |5Vn: (V0)T + S|

(5.3)

where ¢ is a penalty parameter related to the size of the defect core. The second term
on the right-hand side of Eq. 4.3 is the penalty function that allows the director to
deviate from unity in orientational defects and the distortion energy to be bounded.

The time dependent equation for the rotation of the director is determined by
the balance between a viscous and an elastic torque. The latter, which is usually
refereed as molecular field, is given by the variational derivative of the Frank elastic

free energy. The transient director equation is then:

On (n? - 1)n
’YE——K V‘VH"T s

(5.4)
where 7 is a constant associated with the rotational viscosity of the director.

In order to reduce the number of parameters and facilitate the analysis of the
results we non-dimensionalize the governing equation by introducing the character-
istic time and length scales of the problem. Lengths are measure in terms of the

capillary radius and therefore: ¥ = r/R. The time scale is determined by the typical

relaxation time of the director field and is given by: t = t/7 with 7 = 7%2.
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Given that the solutions to our problem have an obvious rotational symmetry
around the axis of the cylindrical cavity we consider a two dimensional computa-
tional space representing half of a longitudinal cross section and we accordingly
employ cylindrical coordinates (r,z). The width L and height R of the computa-
tional domain are set to 5 and 1, respectively. Finally, the boundary conditions on

the outer wall and end caps are respectively strong radial anchoring and no flux.

5.4 Results

This section gives some representative results on the collective behavior of sub-
arrays of nematic point defects lying on the axis of a cylindrical capillary and in-
teracting between each other. We consider scenarios involving three and then four

nematic point defects.

5.4.1 Interactions between three point defects

In this case we examine the influence of a point defect on the interaction between
a neighboring pair. Note that the global charge of the system does not alter the
results presented. As we mentioned earlier, when two defects of opposite charges are
sufficiently close one another (i.e., when their separating distance is smaller or equal
to the tube diameter) they usually attract and finally annihilate living no trace of
their previous existence. Furthermore when no back-flow or anisotropic elastic effects
are considered, the two defects travel at the same speed and therefore meet at the
midpoint between their initial positions. This behavior can be however significantly

affected by the presence of an additional defect interacting with the pair.
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Figure 5-2 shows the trajectories of three nematic point defects as a function of
time for three different scenarios. In all three cases, two defects, forming a pair, were
initially held at the same separating distance d; = 0.95 while a third perturbing de-
fect was placed at different distances d, = 1.05, 1.55, 2.05 away from that pair. It can
be seen from fig. 5-2 that as d,, increases, the effect of the perturbing defect becomes
weaker. For the case d, = 2.05 (the separation tends to the screening length), the
pair is annihilating practically at midpoint and roughly unaware of its presence. The
reverse is also obviously true for the perturbing defect which is just weakly initially
attracted by the pair. When d, = 1.05 (the distances between the three defects are
comparable), the trajectories become distorted as the system tries to globally reduce
the distance separating the defects, including d,. One can see that the pair does
not annihilate at midpoint anymore indicating speed anisotropy between the two
defects. Furthermore, the time required for the pair annihilation is found to increase
as d, decreases. Figure 5-3 illustrates the dynamic structural changes occurring in
the case d, = 1.05. In this figure, the small segments give the director field while
the gray scale provides and indication of its length thereby providing an alignment

scalar order parameter.

5.4.2 Interactions between four point defects
We now turn to cases where all defects can potentially annihilate by pair and
disappear from the system. The system has now two pairs and therefore an additional

important length to take into account. We denote by d; this distance separating the

second pair of defects. As for the previous cases of three defects, one pair is held at
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Figure 5-2: Position of the point defects along the cavity axis as a function of time
for three different cases (d, = 1.05,1.55, 2.05)

constant initial separation. One of the defects of the second pair (the exterior one) is
also held at the same initial position while the remaining defect (inner one) is moved
at different initial positions thus varying the lengths d; and d,, at the same time.
Figure 5-4 shows the trajectories of the four defects as a function of time for
different initial positions of one defect. It can be seen that when d, is large and
approaching the screening distance, the two pairs annihilate unaware of each other.
The pair whose initial interdefect separating distance is the smallest annihilates the
fastest. In the second case d; = d; = d,, and the two pairs annihilate in the same time
frame. The trajectories of the defects in each pair are asymmetric as the two exterior
defects are traveling faster than their inner counterpart. It is also important to note
that the two inner defects do not collapse together despite being separated by the
same distance with respect to the exterior defects. This provides evidence that each

defect is affected by all the remaining ones and the attraction felt is proportional to
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Figure 5-3: Evolution of structure in the cylindrical capillary as the point defects
move along the axis. Segments indicate the orientation of directors while the gray
scalar gives the degree of alignment along the directors. Black=no alignment=defect
core, white=alignment. ¢ = 0.01(a), 0.6(b) and 1(c).
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Figure 5-4: Position of the point defects along the cavity axis as a function of time
for three different cases.

the separating distances. In the third and last case, d, < d; and the inner defect is
more attracted by the other inner defect rather by the closet exterior defect so that
three defects tend to go in the same direction. Unfortunately for the rebelling defect,
it is still slowed down enough by the attraction of the closet exterior defect so that
it cannot reach the other pair on time and it is forced to change direction once the
first pair has collapsed. This change of direction considerably lengthens the anni-
hilation process of the second pair. As observed from the case of three defects the
annihilation time scale increases as d, decreases. Figure 5-5 illustrates the dynamic

structural changes occurring in the case d; ~ d; = d,.

5.5 Conclusions
We have presented a simple model to study the interactions between nematic

point defects lying on the axis of a cylindrical capillary. This work was motivated
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by the reported experimental observation of those types of liquid crystal defects and
related structures along the spinning extrusion duct of spiders. The cases of sub-
arrays of three and four mutually interacting defects were presented. Despite the
absence of back-flow and elastic anisotropy effects, strong anisotropy were put in
evidence due to the sole effect of collective interactions. As for the much studied
case of two interacting point defects, the screening distance after which the defects
were unaware of each other and pinned was found to be around one diameter. A
phenomenon of direction change that cannot be observed when considering only two
defects was also featured. The different simulations have shown that defects are
always attracted by their closet complementary neighbor but still affected by all
the other defects below the screening distance. The results presented here should
be useful in both improving the understanding of point defects in the context of
the process-induced structuring of spider silk and to the more universal physics of

defects.
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CHAPTER 6
Ring-like cores of cylindrically confined nematic point defects

6.1 Summary

Nematic liquid crystals confined in a cylindrical capillary and subjected to
strong homeotropic anchoring conditions is a long-studied fundamental problem that
uniquely incorporates nonlinearity, topological stability, defects and texture physics.
Observed and predicted textures that continue to be investigated include escape ra-
dial, radial with a line defect, planar polar with two line defects, and periodic array
of point defects. This paper presents theory and multiscale simulations of global
and fine scale textures of nematic point defects, based on the Landau-de Gennes
tensor order parameter equations. The aim of this paper is to further investigate the
ring-like nature of point defect cores and its importance on texture transformation
mechanisms and stability. The paper shows that the ring-like cores can be oriented
either along the cylinder axis or along the radial direction. Axial rings can partially
expand but are constrained by the capillary sidewalls. Radial rings can deform into
elliptical structures whose major axis is along the capillary axis. The transforma-
tion between several families of textures under capillary confinement as well as their
stability is discussed in terms of defect ring distortions. A unified view of nematic

textures found in the cylindrical cavities is provided.
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6.2 Introduction

Nematic liquid crystals are intermediate phases found in materials composed
of rigid and highly anisotropic molecules, favoring parallel packing either through
excluded volume effects and/or molecular forces. [1,2] These mesophases share some
common properties with isotropic liquids and fully ordered crystalline solids and
combine fluidity and order. Because of this unique combination, nematic liquid crys-
tal mesophases are often referred as ordered or anisotropic fluids. Order in nematic
liquid crystals is orientational. Due to this order, nematic fluids display material
properties such as permittivity, refractive index, elasticity and viscosity that are
anisotropic (i.e. their magnitude differs from one direction to another). [1,2] In
absence of any constraints, orientational order in a nematic liquid crystal is homoge-
neous to minimize bulk elastic energy and therefore neighboring rod-like molecules
tend to spontaneously orient their long axis approximately parallel along a common
preferred direction. However, geometry (shape and size of the container), surface
anchoring (molecular orientation imposed by the surface of the container) and pos-
sibly external fields (electric, magnetic, flow) results in heterogeneous orientational
order. [2,3] Technologiéal applications of nematic liquid crystals (e.g. displays, sen-
sors, high-performance fibers) are invariably based on the fact that the structure and
therefore the systems physical properties (e.g. optical, mechanical and rheological)
can be tuned by external fields and geometric constraints.

As any other ordered materials, nematic liquid crystals may contain defects. [1,3]
The presence of these defects can be detected either directly by means of optical

methods or indirectly through the variations of physical properties of the system. [1,3]
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From the strict topological point of view, defects in an ordered media are configura-
tions in which some order parameter cannot be transformed continuously. In nematic
mesophases, the order parameter is typically a unit vector field n(r) (where r is the
position vector), called director field, giving the local average preferred orientation
of the molecules; n is a headless vector since the states n and —n are physically
indistinguishable. [1,3] Within this framework, a defect generally corresponds to a
region in the form of a point (0D) or a line (1D) in which the local director field
exhibit a discontinuous change in orientation. In such a singular region, the direc-
tor n(r) cannot be uniquely defined. Therefore, within the director description, a
singular region is considered to be isotropic while a non-singular region is uniax-
ial nematic. Nematic defects are conventionally characterized by a strength (M)
whose magnitude (usually 1/2 or 1) and sign (£) denote respectively the amount
and the sense of director rotation when encircling the defect. [1,3] [Note that some
director field configurations, despite presenting no singularity, are still considered as
defects (e.g. walls (2D) or escaped line (1D)), since they still involve large/sharp
deformations.] To appropriately describe a defect one needs to employ a tensorial
order parameter field rather than a vectorial one. This tensorial order parameter
conventionally denoted by Q(r) is, unlike n(r), everywhere continuous including in
the core of defect. Q can describe smooth changes between the isotropic, uniaxial
and biaxial nematic states (in contrast to n(r) which can only describe the uniaxial
nematic state). [1,3-6] Properties of nematic-based systems are strongly affected by
defects and their associated textures. In some cases defects are highly undesirable

while in others they are essential. [2] In order to eventually reduce, remove or more
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generally control them and hence optimize the performances of the nematic liquid
crystal-based system one invariably needs to understand static and dynamic defect
properties. [2]

The most widely found geometries for nematic-based systems are: planar (film,
i.e. a mesophase sandwiched between to two parallel plates), cylindrical (ordered fluid
filling a tube) and spherical (droplet). Among those systems, nematics in cylindrical
capillaries exhibit a rich diversity of structures. The possible (equilibrium) configu-
rations of a nematic fluid in a cylindrical capillary depend primarily on the molecular
orientation (i.e. anchoring) imposed by the sidewalls of the cavity. The imposed ori-
entation at the surface can be anywhere from parallel to perpendicular to the surface
unit normal. Cylindrical cavities with sidewalls imposing a homeotropic anchoring
(molecules forced to align their long axis parallel to the surface unit normal) have
attracted the most experimental and theoretical interest to date, in part because this
configuration possesses various orientational textures which are common in fiber man-
ufacturing and in-situ composites. [7—13] There are basically four different types of
nematic structures found in a cylindrically cavity with homeotropic anchoring, known
as: (1) planar radial with line defect (PRLD), (2) planar polar with two line defects
(PPLD), (3) escape radial (ER) and (4) escape radial with point defects (ERPD),
shown in figure 6-1. While the first three configurations are two-dimensional (the
system is homogenous in the third direction, collinear with the capillary axis), the
fourth is completely three-dimensional. The stability of these structures depends on:
(i) the size of the capillary, (ii) the nematic potential which is temperature for ther-

motropic nematic liquid crystals (TNLCs) and concentration for lyotropic nematic
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liquid crystals (LNLCs), (iii) the elastic properties of the particular nematic liquid
crystal considered. The variations of elastic properties from one nematic material
to another essentially modify the (meta)stability limits/envelopes of the phase dia-
gram. [14-16] Therefore, far from phase transitions that introduce pre-transitional
elastic constant divergences, such as nematic-smectic A [1], the qualitative features
of the configurations can be appropriately studied within the approximation of elas-
tic isotropy. [17] In addition, when the nematic potential is high enough and that
the material is far from the isotropic-nematic phase transition, the (meta)stability
of the different configurations is only dictated by the size of the capillary.

In the PRLD configuration, which arises in small capillaries or very close to the
isotropic-nematic phase transition, the molecular orientation is everywhere radial
and a line defect of strength M = +1 runs along the capillary axis. [10-12] In larger
capillaries or at higher nematic potential, the PRLD becomes unstable with respect to
the PPLD structure. The PPLD structure exhibits a broken rotational symmetry and
is characterized by two line defects of strength M = +1/2. Due to the combination
of their mutual repulsion and a repulsion from the bounding curve surface, the two
defect lines stabilize at a finite distance. The equilibrium defect-defect separation
distance has been shown to be = 0.66D, where D is the capillary diameter. [15,
16] In large capillaries, theoretical studies predict that the energetically favorable
configuration is the continuous ER. [7-9] The three-dimensional ER deformation
can be seen as a PRLD configuration which has avoided the central line defect by
uniformly escaping in the third dimension. This is explained by the topological

instability of integer line defects, which is based on the notion that on the unit
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Figure 6-1: The four typical textures found in nematic capillaries subjected to
homeotropic anchoring: PRLD, PPLD, ER and ERPD. Lines are everywhere tangent
to the director field. Singular regions are indicated by black dots
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orientation sphere, a M = 41 integral defect is an equatorial loop that can be
smoothly and continuously eliminated by translating the loop towards one of the
equators. [1,3] In practice, the ER configuration is seldom observed, as nematic-filled
cylindrical capillaries usually exhibit instead the more complicated three-dimensional
ERPD configuration. [7-12] The ERPD consists of partially escaped domains with a
distribution of alternating radial and hyperbolic point defects along the capillary axis.
Point defects are often referred as hedgehogs. The emergence of these point defects
is not well understood. Generally the hypothesis is that since escape directions
along the tube axis are energetically equivalent, they spontaneously form due to
intrinsic fluctuations near the isotropic-to-nematic phase transition or due to surface
irregularities. [10,12,18] It has been also suggested that they result from the presence
of impurities in the cavity. [19]

Nematic liquid crystals in circular capillaries subjected to strong anchoring are
model systems for non-linearity and multi-scales in soft material science. The non-
linearities are expressed by the multiple solutions that include the above-mentioned
different types of textures: PRLD with a single M = +1 line defect, PPLD with two
M = +1/2 line defects, ER with no defects, and ERPD with alternating M = +1 de-
fects. The multi-scale nature of the problem arises from the disparity between the size
of the capillary (micrometer scale) and the defect cores (nanometer scale). A com-
plete static description of nematic filled cylindrical cavities subjected to homeotropic
conditions involves the texture phase diagram as a function of the material elastic
properties, nematic potential, and capillary radius, where the (meta)stability ranges

are defined, as well as the nano-scale ordering and geometry of the defects.
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Although the topic of nematic defects and textures in cylindrical capillaries has
been the subject of many experimental [7-9,12,20,21] and theoretical [10,11,15-18,
22-24] works over the last thirty years, a complete detailed picture is still lacking.
As a contribution to the on-going characterization of the multi-scale ordering and
non-linearity (multi-stability) in nematic-filled cylindrical cavities, this chapter focus
on the exact nature of the point defects found in the ERPD texture and examines
possible transformation paths to the PPLD configuration. In contrast with the basic
director field description [9,18,20], the core of cylindrically confined point defects are
not necessarily points in the isotropic state. [25] Indeed, orientational order in the core
of hedgehogs has been shown, both experimentally [26,27] and theoretically [28-32],
to adopt a more complex but yet topologically equivalent ring-like configuration due
to a core splitting mechanism. A unique contribution of this chapter is to establish
the role of the ring geometry on textural transformations and texture stability, thus
showing that point defects lack the dimensionality to explain textural changes.

A detailed description of orientational order in the core of cylindrically-confined
nematic point defects has been given in recent theoretical studies. [33-35] According
to these works, the core of a point defect splits into a uniaxial ring disclination
whose axis is aligned along the axis of the cylindrical capillary. The uniaxial ring
is in turn surrounded by a biaxial torus in which the degree of biaxiality attains its
maximum. However, recent molecular dynamic computational studies dealing with
the annihilation of nematic point defects in cylindrical capillaries have suggested that

the orientation of the ring disclinations in the core of the point defects could be along
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the radial direction rather than along the axial one. [36-38] No precise description
of this alternate ring-like configuration is available yet to the best of our knowledge.

To eventually fully understand and characterize the ERPD texture and its con-
nections to the other textures found in nematic cylindrical cavities, particularly the
PPLD configuration, a better understanding of point defect cores is required. The
first objective of this chapter is to investigate the possible ring configurations in the
cores of nematic point defects confined into a cylindrical cavity. In contrast with
previous studies [33-35], we use three-dimensional simulations and therefore do not
assume a cylindrical symmetry of the defect structure. In addition, we consider the
original Landau-de Gennes expansion and do not constrain the tensor order param-
eter Q to avoid isotropic states by using the Lyuksyutov constraint as in previous
studies. [33-35] The configurations obtained are therefore entirely self-selected. The
second objective of this chapter is to investigate the effect of the confinement on the
geometry of the ring-like structure of the point defect core. This is done by sim-
ulating a spherically confined point defect and compared with the results obtained
in the capillary. The third and last objective is to investigate the structural rela-
tionships/transitions between the point defects and the PPLD structure. Texture
transformations from, say, PRLD to PPLD have been described using defect split-
ting of a M = +1 line defect into two M = +1/2 line defects, driven by changes in
the capillary radius. [39] Similarly, one would expect that certain (i.e. properly ori-
ented within the capillary) ring defects may expand and coalesce with each other and

give rise to the texture transformation between ERPD and PPLD. The chapter is

organized as follows: in section 6.3 we introduce the mathematical model employed,
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in section 6.4 we present our computational results and in finally in section 6.5 we

present our conclusions.

6.3 Modelling
6.3.1 Tensor order parameter ();;

As we mentioned earlier, defect cores in nematic liquid crystals cannot be de-
scribed by a director field because of their discontinuous nature, their inherent biax-
iality and steep order parameter changes. [17] An appropriate description of orienta-
tional ordering in the presence of defects therefore requires a tensor order parameter
field Q(r). This tensor is symmetric traceless (i.e., Qi = Q; and Q; = 0) and
therefore possesses five degrees of freedom. It can be represented, in terms of its

eigensystem as follows: [35]
Qij = pnminj + pmmimy + pulil; (6.1)

In this expression, n, m and 1 are unit eigenvectors forming an orthogonal triad and
Un, tm and gy are their corresponding eigenvalues. The eigenvalues p; (1 = 1,2,3) of
the tensor order parameter are restricted by: —1/3 < y; < 2/3 and pin+ i+ = 0.
The director triad and the eigenvalues are characterizing the orientation and the
strength of alignment of the phase respectively. The largest eigenvalue in magnitude
or absolute value, u,, gives the strength of ordering along the uniaxial director n
previously defined. The second u,, and third y; eigenvalues correspond respectively
to the biaxial directors m and 1 (1 = n x m). At equilibrium, an undistorted

nematic phase is uniaxial; however, in distorted regions like defect cores the phase
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is likely to exhibit biaxiality. The possible ordering states that can describe the
tensor order parameter are: isotropic (u1 = po = us = 0; Q = 0), positive uniaxial
(1 > po = p3), negative uniaxial (u; = pe > p3) and biaxial (un # pm # ). In
the negative uniaxial phase, the molecules spread orthogonally to the director. [35]

When the tensor order parameter Q is uniaxial, it is often useful to represent it

in the following format:
_ 9ij
Qij = S(ninj - ?) (62)
In this expression, S is referred as the uniaxial scalar order parameter. It describes
the amount of order (or strength of alignment) around the uniaxial director n and
is given by S = 3/2(n;Qi;n;) = 3/2p,. The Kronecker 4 stands for the unit tensor.
The uniaxial scalar order parameter is in the range: —1/2 < S < 1.
Biaxiality plays an important role in the type of solutions computed. A conve-

nient parameter to represent it is the degree of biaxiality defined as: [35]

2 _ (trQ3)2
g°=1- 6(trQ2)3 (6.3)

which is found in the interval [0, 1]. In positive and negative uniaxial states 32 = 0,

while a state of maximum biaxiality corresponds to 5% = 1.

6.3.2 Governing equation
The total free energy of a nematic liquid crystal system under strong anchoring

conditions (i.e., when the molecular ordering at the boundary is fixed) is written
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as: [1]
F= /V for® = /V (n+ f,)dr® (6.4)

In this expression, f;, fn and f, represent the total bulk, homogeneous bulk and gra-
dient bulk free energy densities, respectively. The homogeneous free energy describes
the short-range ordering effects related to the amplitude of the tensor order param-
eter. This expression can describe the first order isotropic-nematic phase transition
but also, and more importantly in our work, the variations of the nematic order-
ing in the vicinity of defects. This contribution is often referred as the Landau-de
Gennes free energy. According to Doi’s formalism [4, 5], this expansion of the order

parameter may be written as:

fn= —%1(1 - %)Qij@ji - éégQiijkai + —Ag(Qiiji)z (6.5)
In this expression A is an energy density scale (unit of energy per cubic meter), U is
a dimensionless phenomenological parameter called nematic potential which controls
the magnitude of the equilibrium tensor order parameter. In general the nematic
potential U can be assigned a dependence on either temperature or concentration
depending on the nature of the nematic liquid crystal considered (i.e., thermotropic
or lyotropic). In our study U is taken to be proportional to concentration and accord-
ing to Doi’s theory, U = 3C/C* where C and C* are the number and critical number
density of rod-like molecules, respectively. [4,5] Accordingly, the energy density scale
A = C*kT where k and T are the Boltzmann constant and the temperature of the

system, respectively.
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At equilibrium and away from distorted regions, the tensor order parameter Q
given by Eq. 6.5 is uniaxial. Under these conditions, the value of the scalar order

parameter is given by the relation:

8

S. = - o5

3
+ 71/ (6.6)

W

Within this framework, the first order phase isotropic-nematic phase transition occurs
at nematic potential U;y = 2.7. Also, in this model, the system is isotropic for
U < Uy and nematic for U > Uyy. The limit of metastability for the isotropic and
nematic phase are U* = 3 and U** = 8/3, respectively. [4, 5]

The gradient f, contribution in Eq.(6.4), represents the energy density penalty
associated with the long-range variations of the tensor order parameter QQ in the
nematic phase. As mentioned in the introduction, the elastic anisotropy of nematic
essentially modifies the limits/envelopes defining the domain of (meta)stability of
the different defect configurations but not their qualitative features. Since exploring
the entire parametric space is beyond the scope of this chapter we therefore consider
the case of elastic isotropy. In the one constant approximation, the gradient energy

expressed in terms of Q reads: [4,40]

L
fo = Ekaijkaij (6.7)
In this equation, L is a material-dependent elastic constant (unit of energy per unit
length).
The equilibrium tensor order parameter field is the one that minimizes the total

free energy under the different constraints (shape and size of the container, anchoring
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at its surface, etc...) and is obtained from variational calculus principles. Under
strong anchoring conditions, the Euler-Lagrange equation associated with the free

energy of the nematic liquid crystal reads:

OF Ofs

_ 0fs  _
00 50, 0 (6.8)

-V, 5.0 =

Solving directly the non-linear steady state equation (6.8) iteratively is difficult
given that the problem present multiple solutions which all depend on the initial
guess. In addition, convergence to one of the many stable solutions is only insured if
the initial guess is close enough to a basin of attraction. To palliate this problem it
is customary to introduce a fictitious time dependency to the problem and therefore
obtain a physical evolution of the solution. The pseudo-transient or false-transient
problem we solve in order to obtained the different solution families follow from

variational principles and reads: [4,13,40-42]

0Qu.s  OF

v 5 __5Qaﬂ (6.9)

In this equation + is a kinematic constant known as rotational viscosity. [4,40]

6.3.3 Geometries and auxiliary conditions

In contrast to previous studies [33-35] on the ring-like core of point defects, we
use three-dimensional simulations which allow the emergence of additional possible
ring-like core configurations. In order to assess our objectives we used cylindrical

and spherical computational volumes. Nevertheless, in order to reduce the high
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computational cost of the simulations we have considered 1/8 of the computational
volumes using the (mirror) symmetry properties of the expected solutions.

Furthermore, we use non-dimensionalization in order to reduce the number of
parameters and facilitate the analysis of the results. Using the energy scale A,
we define the dimensionless bulk free energy density f, = f,/A where the overbar
indicates the dimensionless quantity. The dimensionless position vector is defined
as T = r/R where R stands for the radius of the cylindrical or spherical cavity.
Accordingly, we define the dimensionless nabla operator V = RV and dimensionless
total energy F' = %. The fixed, reference length scale in the problem is the nematic
coherence length defined as £ = \/m This length gives a characteristic scale for the
amplitude variations of the tensor order parameter and the size of defect cores. The
ratio R/&, corresponding to the dimensionless nematic coherence length reciprocal,
therefore represents the relative size of the cavity.

The boundary conditions are as follows: at the wall of the cavity, the tensor
order parameter is assumed to be uniaxial and to describe a rigid radial anchoring
condition so that Qy;(r = R) = S,(efe} — 5—?), where €' is the unit vector along the
radial direction. The interior boundary conditions insure the mirror symmetries. In
the case of the cylindrical cavity, a no fluz condition is used on the exterior face so as
to emulate an infinitely long cavity; this condition does not introduce any spurious
effects as tested by using different computational grids.

The model used in this work contains two parameters: the nematic potential U
and the reduced cavity size R/£. Exploring the entire parametric space is beyond

the scope of this chapter and is left for future work. For all the simulation results
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presented, the nematic potential is set to U = 6 which corresponds to a deep nematic
phase with an equilibrium scalar order parameter of S, = 0.809. Note that other
values of U in the stable nematic range do not change the structures under study.
This chapter finds and analyzes solutions for different cavity sizes R/£ in the range
[17.5,30]. This choice is motivated by the fact that the point defects are only stable
in large cavities; the upper bound is dictated by our memory limitation while the
lower bound corresponds to the limit of stability of the point defect. A previous
two dimensional computational study has used a similar range of cavity radii for the

exploration of spherically confined point defects. [14]

6.3.4 Computational procedure and post-processing tools

The governing partial differential equation for the tensor order parameter Q(r),
Eq. (6.9) is solved using a standard iterative method. The space discretization is
achieved using the Galerkin finite element method. A pseudo-transient continuation
method was used to explore the parametric range. The density of element is higher
in the regions describing steep changes in the tensor order parameter amplitude. In
those delicate regions, the size of the triangular elements is always smaller than the
ratio £/R.

The order parameter fields Q(r) corresponding to each computed solutions are
visualized by means of cuboids built from the eigensystem of the tensor. [17] The
axes of the cuboids are aligned with the eigenvectors while the size of each side is

proportional to the eigenvalues. Given that the eigenvalues of Q(r) can be negative,
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we use instead the shifted tensor M = Q + §/3s. [33] Using this technique, it is pos-
sible to distinguish between isotropic (all edges of the cuboid are equal), uniaxial

(two edges are equal) and biaxial (all three edges are different) states.

6.4 Results and discussions
6.4.1 Ring-like disclination cores of nematic point defects

This subsection present actual numerical results obtained by solving Eq.(6.9).
Within our 3D computational space, two different types of ring-like core structures
are found for the cylindrically-confined point defects depending on the type of initial
configuration considered. Dependence to initial configuration is the hallmark of non-
linearity, [43] which is here introduce by the homogenous part of the free energy
density. In the first type of configuration, the ring axis is aligned along the axis of
the cylindrical cavity whereas in the second type of configuration, the ring axis is
aligned along the normal of the capillary surface, that is, along the radial coordinate.
We denote the former and latter configurations as the z-ring and r-ring core solutions,
respectively. Schematics of the two ring-like core configurations in the case of radial
and hyperbolic point defects are shown in figure 6-2.

Z-ring core. We first examine the computed z-ring core configuration which is
obtained using an approximate z-ring like initial guess. The family of solutions of this
configuration has only one member. Within the z-ring arrangement, the cylindrical
symmetry of the far director field is transferred to the inner-core structure of the
point defect. The z-ring core solution is found for both the radial and hyperbolic

point defects. Figure 6-3 shows the two computed configurations in terms of a
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Figure 6-2: Ring-like cores of radial and hyperbolic nematic point defects embedded
in a cylindrical cavity. Lines are tangent everywhere to the director field. (A)
represents a longitudinal cross-section through the radial and hyperbolic z-rings.
(B) corresponds to the transversal cross-section through the center of each defect
as denoted by the arrows. (C) and (E) are mutually orthogonal longitudinal cross-
sections through the radial and hyperbolic r-rings. (D) shows the transversal cross-
section through the center of each defect as indicated by the arrows.
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Figure 6-3: Z-ring cores of the cylindrically confined radial and hyperbolic point
defects. The cuboid fields are represented on three faces of the computational volume
for the ease of visualization.

cuboid field for the reduced cavity radius R/€ = 25. The left (A) and right (B) plots
correspond to the radial and hyperbolic form of the point defect, respectively.

The figure shows that the structures are, in both cases, entirely cylindrically
symmetric and that the order is essentially uniaxial except in a narrow circular
region close to the z-axis of the cavity where it becomes biaxial. Along the cross
section defined by the plane z = 0, the smooth shape evolution of the cuboids shows
that the preferred molecular orientation goes from radial, at the wall, to tangential,
in the biaxial ring, to axial, along the cavity axis.

Complementarily, figure 6—4 gives the variations of tensor order parameter eigen-

values along the radial direction at z = 0 in the case of the radial configuration for
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Figure 6-4: Eigenvalues of the Q tensor along the radial direction at z = 0.

R/¢ = 25. Note that given the elastic isotropy considered, the profiles are identical
in the radial and hyperbolic forms of the point defects.

The eigenvalue profiles shown in this figure are qualitatively analogous to the
ones found in the cases of ring disclination-like core occurring in spherically confined
nematic subjected to homeotropic anchoring. [14] They attest that the z-ring solution
is effectively uniaxial away from the eigenvalue exchange region corresponding to the
ring disclination and in which order is biaxial with a negative scalar order parameter.
Biaxiality is clearly a distinctive feature in the ring-like core of the point defect since
no isotropic state is ever found. Another representation of the biaxiality variation
in the defect core is given in figure 6-5 which is an iso-surface plot of the biaxial
parameter 3 as a function of the (z,y, 2) coordinates; in this graph, which clearly
shows the toroidal variations of biaxiality, the iso-level is 3 = 0.5. In this figure,
the (3% envelopes describe a torus. The evolution of biaxiality in the z-ring defect

is in qualitative agreement with the theoretical predictions obtained in previous
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Figure 6-5: Toroidal variations of biaxiality within the z-ring like core disclination.
The iso-level is 3? = 0.5 while the (A) and (B) plots correspond to the original and
enlarged view of the torus, respectively.

works. [33-35] However, in contrast to these studies, no (Lyuksyutov) constraint is
applied to the degree of biaxiality of the tensor order parameter Q, and the evolution
of biaxiality inside the ring disclination is completely self-selected. This suggests that
it is not necessary to apply such constraint in our work.

In our simulations we find that the cross section of the biaxial torus (distance
separating the peaks of maximum biaxiality) is always perfectly circular. As in pre-
vious studies, [33-35] we note that there is a uniaxial line embedded in the center
of a biaxial torus. Along this uniaxial sheath the scalar order parameter S is nega-
tive as indicated by figure 6—4, meaning that the nematic molecules tend to spread

perpendicularly to a director field everywhere tangent to the ring.
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Figure 6-6: Profiles of biaxiality of z-ring like core disclination along the radial
direction. Cases (A), (B) and (C) corresponds respectively to the capillary sizes
R/¢ = 30, 25, 20, respectively.

Given its cylindrical symmetry and circular nature, the biaxial structure of the
z-ring defect core can be characterized by plotting the variation of the degree of
biaxiality 42 along the radial direction on the z = 0 plane. Figure 6-6 illustrates the
variations for the capillary sizes R/¢ = 30,25, 20. It appears from figure 6-6 that the
cross section of the torus increases with a decreasing capillary radius. Additionally,
the radius of torus (distance from the origin of the coordinate system to the uniaxial
sheath) follows the same trend. The growth of the z-ring is restricted by sidewall
forces so that the maximum radius of the z-ring is found to be around r. ~ 0.12 for
R/¢ ~ 18.

R-ring core. The other core configuration obtained for cylindrically confined
point defects is the r-ring disclination which is obtained using an approximate point
defect structure with an isotropic core (see fig. 6-2). In contrast to the z-ring

configuration previously described the r-ring solution does not possess cylindrical
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Figure 6-7: R-ring cores of the cylindrically confined radial and hyperbolic point
defects. The cuboid fields are represented on three faces of the computational volume
for the ease of visualization.

symmetry as the ring axis is now positioned parallel to the radial direction of the
cavity. To date, studies [33-35] have assumed that the ring axis was aligned with the
cavity and that the configuration was consequently cylindrically symmetric. How-
ever, recent molecular dynamic simulations [36-38] suggest that the ring could be
instead oriented along the radial direction and therefore break the symmetry. No
description of the r-ring solution has been however proposed. As for the z-ring, the
r-ring solution can be equivalently found for the radial and hyperbolic point defects.
Figure 67 shows the tensor field corresponding to radial and hyperbolic solutions
for the reduced cavity radius R/¢ = 25. The left (A) and right (B) plots correspond

to the radial and hyperbolic form of the point defect, respectively.
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Figure 6-8: Eigenvalues of the Q tensor along the x and z-directions at y = 0.

In these plots, the biaxial r-ring lies on y = 0 plane and is parallel to the y-axis.
At this point one can note that in contrast to the z-ring configuration which possesses
a single ring axis (i.e. the z-axis), the r-ring configuration may take any orientation
along the radial direction and therefore possess an infinity of possible equivalent
orientations. In our simulations, the orientation of the ring is self-selected along the
y-axis but it could be also equivalently oriented along the x-axis. As for the z-ring,
in figure 6-7, smooth orientation transitions occur from the periphery to the core
of the point defect through biaxial states. Despite their difference of orientations,
the z- and r-ring configurations display similar characteristics. Figure 6-8 provides
the tensor order parameter eigenvalue variations along the x and z-directions for the
same parameter used in figure 6-7.

The profiles vary in a manner similar to that of the z-ring core (See fig. 6-4).

There are, however, two essential differences: (1) the radius of the biaxial torus is
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significantly larger than that found in the case of the z-ring core for equivalent para-
metric conditions, and (2) the torus is not circular (at least for this set of parametric
values, as further discussed below) but rather elliptical with the major axis along
the axial z-direction and the minor axis along the radial r-direction.

To get a better visual representation of the r-ring core, figure 6-9 provides an
iso-surface plot of the degree of biaxiality 8% for the iso-level 0.5 in the parametric
conditions of fig. 6-7. Figure 6-9 attests that the distribution of the biaxial envelopes
in the z-ring and r-ring cores is qualitatively similar with the difference however that
r-ring configuration breaks the cylindrical symmetry. Given this lack of symmetry,
two axes belonging to the r = 0 plane must be taken to describe the r-ring core
configuration.

Figure 6-10 illustrates the evolution of the degree of biaxiality 4% along the ra-
dial and axial direction for the relative capillary sizes R/¢ = 30, 25,22.5. As noticed
in the case of the z-ring core, the torus of the r-ring cores are essentially circular.
One can see that for equivalent parametric and geometric conditions, the radii of
the ring-disclinations are substantially larger in the r-ring configurations than in the
z-ring ones. More importantly, our simulations tend to indicate that in large cavities
(i.e. for R/€ > 30), the biaxial torus is essentially circular (like the z-ring core) but
that in small cavities, it is elliptical with major axis along the cavity axis. Moreover,
as the cavity diameter decreases, the torus tends to deform faster in the axial than
in the radial direction. The sensitivity of the torus geometry on the cavity radius is

noticeably more significant in the r-ring core than in the z-ring core.
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Figure 6-9: Toroidal variations of biaxiality within the r-ring like core disclination.
The iso-level is 32 = 0.5 while the (A) and (B) plots correspond to the original and
enlarged view of the torus, respectively.
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Figure 6-10: Profiles of biaxiality of r-ring core disclination along the radial and
axial directions. Cases (A), (B) and (C) corresponds respectively to the capillary
sizes R/¢ = 30,25, 22.5, respectively.
6.4.2 Confinement effects

In order to assess the role of confinement on the structure of the ring-core discli-
nations, we have additionally computed the fine structure of a point defect in a
spherical droplet. Figure 6-11 illustrates the biaxial ring-like configuration adopted
by the core of a radial hedgehog for U = 6 and R/¢ = 25. This result is in qualita-
tive agreement with the results obtained in previous two-dimensional simulations. [14]
There is an infinite possibility of ring orientation in the sphere. While the far-director
field exhibits the spherical symmetry of the confinement, the ring-like core displays a
cylindrical symmetry. As for the z-ring structure found in the core of a cylindrically
confined point defect, both characteristic cross section of the torus are circular.

To see the effects of parametric conditions on the geometry evolution of the ring

disclination core figure 6-12 illustrates the variations of the degree of biaxiality (3

along the spherical radius p at the nematic potential U = 6 for three different cavity
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Figure 6-11: Ring-like disclination core of a spherically confined radial point defect.
The cuboid fields are represented on three faces of the computational volume for the
ease of visualization.

size R/€ = 30,25,20. Comparison between these profiles and the profiles obtained
for the z-ring core (in the cylindrical confinement) shows that the characteristic radii

of the torus are significantly larger in the spherical confinement.

6.4.3 Hedgehog-to-planar polar structural transition

In this section we report the structural transitions we have observed between the
point defects with ring-like cores and the planar polar texture. In our simulations,
this transition is trigger by a decrease of the cavity’s relative size. Indeed, below a
certain cavity size, the stable equilibrium configuration is the PPLD structure. The
threshold cavity radius is not the same when the point defect displays the r-ring vs.

z-ring core. In the case of the r-ring core the critical radius at which the structural
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Figure 6-12: Eigenvalues of the Q tensor along the radial direction p.

transition occurs is R/§ ~ 21. We first examine the transformation from the r-
ring core hedgehog to the PPLD. In order to see the transformation from the two
structures we solve the false-transient problem given by Eq. (6.9). Figure 6-13 gives
the time evolution of the biaxial torus during the transition from the point defect
with r-ring core to the planar polar texture with two line defects. In this figure each
branch corresponds to the iso-value 0.5 of the biaxial parameter 32. The critical
radius of instability for the r-ring core is R/§ ~ 21.

As one can see from figure 6-13, the transformation causes the radius of the torus
to increase progressively in both the radial and axial directions. The extension of the
torus in the axial direction does not present any restriction and is therefore faster
than in the radial direction. We hypothesize that the r-ring would expand toward the
end-caps of the cylindrical cavity no matter what its size. In contrast, the extension of
the torus in the radial direction is restricted by the capillary sidewall and associated
force balance. As mentioned earlier, the equilibrium distance between the two lines’

defects within the planar polar texture is dictated by the force balance between the
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Figure 6-13: Time evolution of the biaxial torus during the opening of the r-ring
core. The labels (1)-(4) give the order of the sequence.

mutual repulsion of the two line defects and the repulsion from the surface. [15,16] In
fact, within the case of isotropic elasticity, the equilibrium defect-defect separation
distance has been shown to be ~ 0.66D. [15,16] Hence the maximum extension of the
torus along the radial direction is =~ 0.66 R. This critical separation between the line
defects is observed in our simulations (See figure 6-13). Due to our limited computer
memory we have not been able to consider a long cylindrical cavity, we therefore
observe an early the breakage of the loop which leads to the PPLD configuration.
Despite this limitation, the simulation provides useful insights on the structural
transformation phenomenon. Within a longer capillary, one can easily imagine that
the ring would first reach its maximal radial extension then continue to grow in
the axial direction until meeting the lateral limits of the cavity or meet another

ring. Indeed experiments tend to show that point defects are usually found in series

leading to the ERPD texture rather than isolated. Figure 6-14 give schematics
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(A)

Figure 6-14: Evolution of the ring core of a point defect in an unbounded cylindrical
cavity (A) and in the presence of neighboring point defect with similar r-ring core
(B). The critical radial extension of the ring is given by r. ~ 0.66. Arrows and
numbers indicate the structure progression with time

of the ring growing process and the potential transformation into the planar polar
texture with line defects in an unbounded cylindrical capillary (A) and in the presence
of a neighboring point defect with an r-ring core (B). These results and scenarios
are in agreement with the observations made in molecular dynamics studies on the

annihilation of point defects within a cylindrical capillary and the possible ERPD to
PPLD transition. [38]
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Figure 6-15: Time evolution of the biaxial torus during the transformation from the
z-ring to r-ring core. The labels (1)-(3) give the order of the sequence.

In the case of the point defect with a z-ring core the transformation is found to
occur at lower critical cavity radius R/ ~ 17.5. The transformation process is also
found to be significantly more involving than in the case of the r-ring core as the
z-ring does not permit a direct transition to the PPLD texture. Indeed, the biaxial
torus of the z-ring core is found to first shrink into a spherical envelope, before sub-
sequently changing into an r-ring core. This r-ring torus then eventually opens as
previously described. Figure 6-15 illustrates the mutation of the torus of the z-ring

core into an r-ring core as time evolves.

6.5 Summary and conclusions
In this chapter we have investigated the fine ring-like structure of point defect

cores occurring in cylindrical capillaries. T'wo types of core configurations are found
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Figure 6-16: Summary of the texture connections investigated in this work. PD,
PPLD and PRLD stand for point defect, planar polar with line defects and planar
radial with line defect, respectively.

and described: the z-ring core whose ring-axis is along the capillary axis and the
r-ring core whose axis is aligned along the radial direction. In contrast to previous
studies, [33—-35| the z-ring core was obtained in a self-selected fashion, without forc-
ing the tensor order parameter Q to be biaxial and no cylindrical symmetry was
assumed as the simulations were three-dimensional. Despite some previous indica-
tions of its existence, [36-38] the r-ring core configuration has never been described
before. In contrast to its axial counterpart, the r-ring core structure does not retain
the cylindrical symmetry of the far-field director field. Despite displaying qualitative
similarities, the two ring structures still present some distinctive features that are
intimately connected to the nature of their confinement. The r-ring core possesses
a higher probability of occurrence since the ring has an infinite possibility of axis
orientations along the radial direction. In contrast, the equilibrium of the z-ring
ring core is rather fragile as it possesses a single possible axis orientation, along the
cavity axis. The cross section of the biaxial torus characterizing the ring-like core
structure is found to always be circular. Given that it is restrained by the cavity

sidewalls, the biaxial torus characterizing the z-ring core solution is always perfectly
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circular. The radial extension of the z-ring core is restricted by the sidewall forces
so that the maximum radius reached by the ring is r. ~ 0.12. The situation is how-
ever different in the case of the r-ring core, since in that case the ring can freely
expand along the axial direction. What we observed is that in the limit of large
cavity radii, the torus tends to be circular. In smaller cavities however, one observes
the expansion of the ring along the axial direction. When the radius becomes too
small to insure the stability of the point defect, a transition towards the planar po-
lar configuration is initiated. In the case that the point defect displays the r-ring
core structure, the transformation consists in the expansion of the ring towards the
end-caps of the capillary or towards another point defect with an r-ring structure in
the ERPD texture (This last scenario was not numerically explored in this chapter
but should be reported in the next future). The transition from the ERPD to the
PPLD by extension of the r-ring structure, predicted in previous work [38], has been
described. When the z-ring core is involved, the transformation consists in a prior
shrinkage of the ring into a spherical pellet followed by the subsequent creation of an
r-ring core which finally enlarge along the axial direction. The r-ring core forming
the point defect is therefore pivotal. Figure 6-16 is summarizing the texture mul-
tiplicity found in nematic-filled cylindrical cavities subjected to strong homeotropic
anchoring we have studied in this work. We have additionally inspected the effect
of confinement on the ring-like core of the point defect. In contrast to cylindrically
confined point defects, spherically confined hedgehogs have only one ring-like core

structure but have the possibility of a uniaxial isotropic core solution. The ring axis

can be along any radial direction in the sphere with equiVvalent probability. Given
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its symmetry features, the ring-like core in the sphere compares well with the z-ring
core in cylindrical confinement. For an equivalent cavity radius, the biaxial torus
in the droplet is nevertheless found to be significantly larger than in the cylindrical
capillary. The computational results provide new and significant insights on ne-
matic liquid crystal defect physics, textures, and topological transformation under

cylindrical and spherical confinement.



REFERENCES

[1] P.G. de Gennes and J. Prost. The physics of liquid crystals. Oxford University
Press, New York, 1995.

[2] P.J. Collings. Liquid crystals: nature’s delicate phase of matter. Princeton
University Press, Princeton, NJ, 2001.

[3] M. Kleman and O.D. Lavrentovich. Soft Matter Physics: An Introduction.
Springer, New York, 2002.

[4] A.N. Beris and B.J. Edwards. Thermodynamics of Flowing Systems. Oxford
University Press, New York, 1994.

[5] M. Doi. The Theory of Polymer Dynamics. Oxford University Press, New York,
1998.

[6] R.G. Larson. The structure and rheology of complezx fluids. Oxford University
Press, New York, 1999.

[7] C. Williams, .P Pieranski, and P. E. Cladis. Nonsingular s=+1 screw disclination
lines in nematics. Phys. Rev. Lett., 29(2):90, 1972.

[8] C.E. Williams, P.E. Cladis, and M. Kleman. Screw disclinations in nematic
samples with cylindrical symmetry. Mol. Cryst. Lig. Cryst., 21(3-4):355-373,
1973.

[9] R.B. Meyer. Existence of even indexed disclinations in nematic liquid-crystals.
Philos. Mayg., 27(2):405-424, 1973.

[10] S. Kralj and S. Zumer. Saddle-splay elasticity of nematic structures confined to
a cylindrical capillary. Phys. Rev. E, 51(1):366-379, 1995.

[11] S.V. Burylov. Equilibrium configuration of a nematic liquid crystal confined to

a cylindrical cavity. J. Ezp. Theor. Phys., 85(5):873-886, 1997.

158



159

[12] G.P. Crawford, D.W. Allender, and J.W. Doane. Surface elastic and molecular-
anchoring properties of nematic liquid-crystals confined to cylindrical cavities.
Phys. Rev. A, 45(12):8693-8708, 1992.

[13] A.G. Cheong and A.D. Rey. Texture dependence of capillary instabilities in
nematic liquid crystalline fibres. Lig. Cryst., 31(9):1271-1284, 2004.

[14] S. Mkaddem and E.C. Gartland. Fine structure of defects in radial nematic
droplets. Phys. Rev. E, 62(5):6694-6705, 2000.

[15] J. Yan and A.D. Rey. Texture formation in carbonaceous mesophase fibers.
Phys. Rev. E, 65:031713-1-14, 2002.

[16] J. Yan and A.D. Rey. Theory and simulation of texture formation in mesophase
carbon fibers. Carbon, 40:2647-2660, 2002.

[17] A. Sonnet, A. Kilian, and S. Hess. Alignment tensor versus director - description
of defects in nematic liquid-crystals. Phys. Rev. E, 52(1):718-722, 1995.

[18] I. Vilfan, M. Vilfan, and S. Zumer. Defect structures of nematic liquid-crystals
in cylindrical cavities. Phys. Rev. A, 43(12):6875-6880, 1991.

[19] A.M. Donald and A.H. Windle. Liquid crystalline polymers. Cambridge Uni-
versity Press, Cambridge, 1992.

[20] P.E. Cladis and M. Kleman. Non-singular disclinations of strength s=+1 in
nematics. J. Phys. (France), 33(5-6):591, 1972.

[21] P.E. Cladis and H.R. Brand. Hedgehog-antihedgehog pair annihilation to a
static soliton. Physica A, 326(3-4):322-332, 2003.

[22] E.C. Gartland, P. Palffy-Muhoray, and R.S. Varga. Numerical minimization of
the landau-de-gennes free-energy - defects in cylindrical capillaries. Mol. Cryst.
Lig. Cryst., 199:429-452, 1991.

[23] Z. Bradac, S. Kralj, and S. Zumer. Molecular dynamics study of nematic struc-
tures confined to a cylindrical cavity. Phys. Rev. E, 58(6):7447-7454, 1998.

[24] A.M. Smondyrev and R.A. Pelcovits. Nematic structures in cylindrical cavities.
Lig. Cryst., 26(2):235-240, 1999.

[25] M. Kleman and O.D. Lavrentovich. Topological point defects in nematic liquid
crystals. Philos. Mag., 86(25-26):4117-4137, 2006.



160

[26] D. Melzer and F.R.N. Nabarro. Cols and noeuds in a nematic liquid-crystal
with a homeotropic cylindrical boundary. Philos. Mag., 35(4):907-915, 1977.

[27) O.D. Lavrentovich and E.M. Terentiev. Phase-transition with the change of
symmetry of topological point-defects (hedgehogs) in a nematic liquid-crystal.
Zh. Eksp. Teor. Fiz., 91:2084-2096, 1986.

[28] H. Mori and H. Nakanishi. On the stability of topologically non-trivial point-
defects. J. Phys. Soc. Japan, 57:1281-1286, 1988.

[29] E.M. Terentjev. Disclination loops, standing alone and around solid particles,
in nematic liquid-crystals. Phys. Rev. E, 51(2):1330-1337, 1995.

[30] O.D. Lavrentovich, T. Ishikawa, and E.M. Terentjev. Disclination loop in mori-
nakanishi ansatz: Role of the divergence elasticity. Mol. Cryst. Lig. Cryst.,
299:301-306, 1997.

[31] T.C. Lubensky, D. Pettey, N. Currier, and H. Stark. Topological defects and
interactions in nematic emulsions. Phys. Rev. E, 57(1):610-625, 1998.

[32] J.-I. Fukuda and H. Yokoyama. Stability of a hyperbolic disclination ring in a
nematic liquid crystal. Phys. Rev. E, 66:012703—4, 2002.

[33] S. Kralj and E.G. Virga. Universal fine structure of nematic hedgehogs. J. Phys.
A, 34:829-838, 2001.

[34] S. Kralj and E.G. Virga. Core hysteresis in nematic defects. Phys. Rev. E,
66:021703, 2002.

[35] S. Kralj, E.G. Virga, and S. Zumer. Biaxial torus around nematic point defects.
Phys. Rev. E, 60(2):1858-1866, 1999.

[36] Z. Bradac, S. Kralj, M. Svetec, and S. Zumer. Annihilation of nematic point
defects: Postcollision scenarios. Phys. Rev. E, 67(5):050702, 2003.

[37] M. Svetec, Z. Bradac, S. Kralj, and S. Zumer. Hedgehog annihilation in a
confined nematic liquid crystal. Mol. Cryst. Liq. Cryst., 413:2179-2187, 2004.

[38] M. Svetec, S. Kralj, Z. Bradac, and S. Zumer. Annihilation of nematic point
defects: Pre-collision and post-collision evolution. Fur. Phys. J. E, 20:71-79,
2006.



161

[39] D. Sharma and A.D. Rey. Simulation of texture formation processes in carbona-
ceous mesophase fibres. Lig. Cryst., 30(3):377-389, 2003.

[40] B.J. Edwards and A.N. Beris. Order parameter representation of spatial inho-
mogeneities in polymeric liquid-crystals. J. Rheo., 33:1189-1193, 1989.

[41] L.M. Pismen and B.Y. Rubinstein. Motion of interacting point-defects in ne-
matics. Phys. Rev. Lett., 69(1):96-99, 1992.

[42] L. M. Pismen. Vortices in Nonlinear Fields From Liquid Crystals to Superfluids,
from Non-equilibrium Patterns to Cosmic Strings. Clarendon Press, 1999.

[43] D. Walgraef. Spatio-Temporal Pattern Formation. Spinger-Verlag, 1997.



CHAPTER 7
Point and ring defects in nematics under capillary confinement

7.1 Summary

The textures exhibited by nematic liquid crystals confined to cylindrical capil-
laries under homeotropic anchoring have been studied for nearly thirty years. One
of the reasons behind this maintained interest is that the processing of many high-
performance fibers including carbon fibers and spider silks involve these textures.
Three of these textures, the planar radial with line defect (PRLD), the planar polar
with two line defects (PPLD) and the escape radial (ER) are relatively well under-
stood. A third one, the escape radial with point defects (ERPD) presents however
some unresolved issues and recent studies have questioned the real nature and di-
mensionality of the defects involved in this texture. It seems that the defects are
not in the form of points but rather in the form of closed lines or rings. This paper
presents a detailed study on the connection between point and ring defects in a cylin-
drical cavity using three-dimensional simulations based on the continuum Landau-de
Gennes theory. The results show that true point defects cannot exist in cylindrical
cavities and that the merging of two ring-like defects may lead to two qualitatively
different stable textures; namely the ER and PPLD textures. The various results
are in qualitative agreement with recent molecular dynamic studies and with theo-

retical predictions based on experimental observations. The predictions provide new
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insights on the structural connections between synthetic and biological super-fibers.

7.2 Introduction

Nematic liquid crystals are intermediate phases combining liquid-like fluidity
with solid-like orientational order forming in a wide variety of materials often com-
prised of rigid rod-like molecules. [1-3] The orientational order of these anisotropic
fluids results from the spontaneous alignment of their constituent molecules along
a common preferred direction called the director and described by a unit vector n.
As mesogenic molecules are generally apolar, the states n and —n are equivalent
and therefore n should be thought of as a headless vector. The usefulness of ne-
matic liquid crystals arises from the fact that their various physical properties (e.g.
optical, rheological, mechanical) can be in principle tailored by adjusting their ge-
ometric, interfacial and external constraints (i.e. shape of the nematic container,
molecular orientation imposed by its surface and possibly electric, magnetic or flow
fields). The average preferred molecular orientation in these materials is therefore
usually only local and varying from subregion to subregion forming orientational
textures. [1-3] An important feature of orientational textures is that they often con-
tain defects. Nematic defects usually corresponds to regions in the form of points
(zero-dimensional) or lines (one-dimensional) where a director field n(r) cannot be
uniquely defined. [3,4] In addition to their dimensionality (point or line), nematic
defects are also conventionally given a strength (M) whose magnitude (usually 1/2
or 1) and sign (+) denote respectively the amount and the sense of director rotation

when encircling the defect. [3,4] In this work we focus on the various textures and
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Figure 7-1: Typical textures found in nematic-filled cylindrical capillaries with side-
walls imposing a homeotropic anchoring. (a) Transversal view of the planar radial
with a line defect texture (PRLD); (b) Transversal view of the planar polar with
two line defects texture (PPLD); (c) Longitudinal view of the escape radial texture
(ER). The (flux) lines are everywhere tangent to the director field n(r) while the
black dots indicate the presence of line singularities perpendicular to the page.

defects exhibited by nematic mesophases confined in cylindrical cavities with side-
walls imposing a radial molecular orientation. The motivation behind the study of
these textures and defects is their occurrence and importance in the manufacturing
of many high-performance fibers (e.g. carbon fibers, nematic-filled carbon nanotubes
and spider’s silks) formed from nematic precursors. [5-14]
Nematic mesophases confined in cylindrical capillaries whose walls impose homeotropic

anchoring basically display three different types of stable texture known as: (i) planar
radial with line defect (PRLD), (ii) planar polar with line defects (PPLD) and (iii)

escape radial (ER). [15-17] These three textures, which are pictured in figure 7-1,
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are homogeneous along the cavity axis and therefore purely two-dimensional. Their
stability depends on: (a) the radius of the capillary, (b) the nematic potential (A
function of temperature for thermotropic nematic liquid crystals or concentration for
lyotropic liquid crystals), and (c) the elastic properties of the particular nematic fluid
considered. [18] The variations of elastic properties from one nematic mesophase to
another essentially modify the (meta)stability limits/envelopes of the texture phase
diagram. [19] Therefore, far from phase transitions that introduce pre-transitional
elastic constant divergences, such as nematic-smectic A, [1] the essential qualitative
features of the textures can be appropriately studied within the approximation of
elastic isotropy. In addition, when the nematic potential is high enough and the
material is far from the isotropic-nematic phase transition, the (meta)stability of the
different textures is only dictated by the radius of the capillary.

In the PRLD texture (Fig. 7-1(a)), which arises in small capillaries or very close
to the isotropic-nematic phase transition, the molecular orientation is everywhere
radial and a line defect of strength M = 41 runs along the capillary axis. In larger
capillaries or at higher nematic potential, the PRLD becomes unstable with respect
to the PPLD texture. The PPLD texture (Fig. 7-1(b)) exhibits a broken rotational
symmetry and is characterized by two line defects of strength M = +1/2 parallel to
the cavity axis. In large capillaries, theoretical studies predict that the energetically
favorable texture is the ER (Fig. 7-1(c)). Unlike the PRLD and PPLD, the ER is
continuous and does not present any line singularity. The ER texture is similar to a
PRLD texture, but which has avoided the central line defect by uniformly escaping

in the third dimension. [20-22]
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Figure 7-2: Schematic of the escape radial with point defects texture (ERPD). The
flux lines are everywhere tangent to the director field n(r) while the black dots
indicate the presence of point singularities on the axis of the cavity. (a) The different
elementary cross sections given through the ERPD texture; (b) transversal cross
section (identical for the radial and hyperbolic point defects); (c) longitudinal cross
section. The point defect on the left is said to be radial while bearing the topological
charge M = +1 and the one on the right is hyperbolic and has the charge M = —1.
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Despite the fact that the stable texture in large nematic capillaries is theoreti-
cally the ER texture, in practice it is seldom observed. [17,21-25] What is instead
commonly detected is a three-dimensional texture consisting of a periodic distribu-
tion of point defects of alternating topological charge (i.e. M = £1) known as escape
radial with point defects (ERPD) (See Fig. (7-2)). [17,21-25] The ERPD texture
can be seen as a bidirectional ER texture consisting of partially escaped domains
leading to the distribution of alternating radial (M = +1) and hyperbolic (M = —1)
point defects. A noteworthy occurrence of the ERPD texture is found in the nematic
dope flowing along the spinning apparatus of spiders. [8,9] Although the role of this
texture is unclear, it is believed to play an essential function in the extrusion process,
possibly delaying crystallization of the nematic silk precursor in the spinning duct,
but also optimizing its rheology (back-flow phenomenon [26]) and pre-aligning the
molecules.

Although the ERPD texture (Fig. 7-2) has been known for about thirty years,
[21,22,25] it is not yet completely understood. Its emergence is believed to be due to
surface irregularity effects, fluctuations near the isotropic-to-nematic phase transition
and possibly to impurities in the cavity. [15-17, 27] Experimental and theoretical
works have shown that the ERPD texture is metastable because oppositely charged
point defects may attract and annihilate each other leading to the more energetically
favorable ER texture (cf. Fig. 7-1(c)). [15-17,21,22,25,27]

On the other hand, recent three-dimensional Brownian molecular dynamic stud-
ies on the ERPD texture have suggested that the defects found along the axis of

cylindrical cavities may not be, in reality, in the form of points but rather in the
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form of closed-lines or rings. [28-30] The splitting of point defects into ring defects
in cylindrical cavities subjected to homeotropic anchoring has been verified in our
previous contribution using three-dimensional Landau-de Gennes continuum simu-
lations. [31] To avoid any confusions on the dimensionality of the singularity we
therefore introduce the name escape radial with ring defects (ERRD) to designate
the texture consisting of ring defects instead of point defects. The most probable
orientation for ring singularities in cylindrical tubes is with their axis perpendicular
to the cavity axis therefore breaking the cylindrical symmetry of the entire associated
texture. A schematic of the described ERRD texture is given in Fig. (7-3).

This paper is a contribution to the on-going effort to understand nematic texture
transformations in fiber-like geometries and in particular transformations between
point, ring and line defects and their associated textures. In this work we first ques-
tion the existence and the stability of isolated point defects confined to cylindrical
capillaries and consequently of the ERPD texture. We then study the (meta)stability
of ERRD texture and show the representative annihilation of two ring defects lead-
ing, in a continuous manner, to the well known ER and PPLD textures, depending
on the radius of the capillaries. The paper is organized as follows: in section 7.3 we
introduce the mathematical model employed, in section 7.4 we present the compu-

tational results and finally in section 7.5 we present conclusions.



169

Figure 7-3: Schematic of the escape radial with ring defects texture (ERRD). The
flux lines are everywhere tangent to the director field n(r). (a) The different cross
sections taken through the ERRD texture; (b) the transversal cross section (identical
for the radial and hyperbolic ring defects); (c) first longitudinal cross section (in (b)
and (c) views, the big black dots indicate the passage of the ring singularity); (d)
second longitudinal cross section (normal to the plane given in (c)) in which the dash
lines correspond to the ring singularity. In (c) and (d), the defect on the left is the
radial ring (M = 1/2) while the one on the right is the hyperbolic ring (M = -1/2).
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7.3 Modeling
7.3.1 Computational domain

In order to study the ERRD texture and associated radial and hyperbolic ring
defects we consider a three-dimensional cylindrical cavity of radius R and a total
length up to H = 8R. In order to reduce the high cost of the three-dimensional
calculations we do not consider the entire volume but rather a fourth of it and use

the mirror symmetry properties of the envisioned solutions (cf. Fig. (7-3)).

7.3.2 Tensor order parameter (;;

The tensor order parameter Q is, unlike the director n, everywhere continuous
including in the core of defects. [32] It is symmetric traceless (i.e., Qs = Qj and
Qi; = 0) and therefore possesses five degrees of freedom. In terms of its eigensystem,

it is represented as follows: [33]
Qij = kmTin; + pmmim; + pilil; (7.1)

n, m and 1 are unit eigenvectors forming an orthogonal triad and u,, u, and y,; are
their corresponding eigenvalues. The eigenvalues p; (¢ = 1,2,3) of the tensor order
parameter are restricted by: —1/3 < p; < 2/3 and iy + i + gy = 0. The director
triad and the eigenvalues characterize the orientation and the strength of alignment
of the phase respectively. The largest eigenvalue in magnitude, u,, gives the strength
of ordering along the uniaxial director n. [34,35] un, and y; eigenvalues correspond
to the biaxial directors m and 1 (1 = nxm). At equilibrium, an undistorted nematic

phase is uniaxial; however, at defect cores the phase is likely to exhibit biaxiality.
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The ordering states that can describe Q are: isotropic (u; = pe = pz = 0; Q = 0),
positive uniaxial (u; > po = ps), negative uniaxial (u3 = po > ps) and biaxial
(i # tm # 1) [33,36]

When the tensor order parameter Q is uniaxial, it is useful to represent it as:
Qij = S(nmj - % (7.2)
S (—=1/2 < § <1) is referred to as the uniaxial scalar order parameter and charac-
terizes the degree of alignment around the n. I stands for the standard unit tensor.
Biaxiality plays an important role in the type of solutions we compute in this
work and a convenient parameter to represent it is the degree of biaxiality defined
as: [33]

(trQ%)?

pr=1- 6 Qo

(7.3)

which takes values in the interval [0,1]. In positive and negative uniaxial states

B% = 0, while maximum biaxiality states correspond to 3% = 1.

7.3.3 Landau de-Gennes free energy
The total free energy of a nematic liquid crystal system under strong anchoring

conditions (i.e., when the molecular order at the boundary is fixed) is written as: [1]

F= /V fodr® = /V (fu + fy)dr® (7.4)

In this expression, f;, f, and f, represent the total bulk, homogeneous bulk and gra-

dient bulk free energy densities, respectively. The homogeneous free energy describes
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the short-range ordering effects related to the amplitude of the tensor order param-
eter. This expression can describe the first order isotropic-nematic phase transition
but also, and more importantly in our work, the variations of the nematic ordering in
the vicinity of defects. This contribution is often referred as the Landau-de Gennes
free energy. According to Doi’s formalism [18, 37, 38], this expansion of the order

parameter may be written as:
A U AU AU
fo=5 1= 3)QiQs — - QuQiQni + T(Qiiji)Q (7.5)

In this expression A is an energy density scale (unit of energy per cubic meter), U is
a dimensionless phenomenological parameter called nematic potential which controls
the magnitude of the equilibrium tensor order parameter. In general the nematic
potential U can be assigned a dependence on either temperature or concentration
depending on the nature of the nematic liquid crystal considered (i.e., thermotropic
or lyotropic). In our study U is taken to be proportional to concentration and accord-
ing to Doi’s theory, U = 3C/C* where C and C* are the number and critical number
density of rod-like molecules, respectively. [18,37] Accordingly, the energy density
scale A = C*kT where k and T are the Boltzmann constant and the temperature of
the system, respectively.

At equilibrium and away from distorted regions, the tensor order parameter Q
given by Eq. (7.5) is uniaxial. Under these conditions, the value of the scalar order

parameter is given by the relation:

1 3
Se=7+7\1- 35 (7.6)
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Within this framework, the first order phase isotropic-nematic phase transition occurs
at nematic potential Ury = 2.7. Also, in this model, the system is isotropic for
U < Uy and nematic for U > Uy. The limit of metastability for the isotropic and
nematic phase are U* = 3 and U** = 8/3, respectively. [18,37]

The gradient f, contribution in Eq. (7.4), represents the energy density penalty
associated with the long-range variations of the tensor order parameter Q in the
nematic phase. As mentioned in the introduction, the elastic anisotropy of nematic
essentially modifies the limits/envelopes defining the domain of (meta)stability of
the different defect configurations but not their qualitative features. Since exploring
the entire parametric space is beyond the scope of this paper we therefore consider
the case of elastic isotropy. In the one constant approximation, the gradient energy

expressed in terms of Q reads: [37,39]

fo = gkaijkaij (7.7)

In this expression, L is a material—depencient elastic constant (unit of energy per unit

length).

7.3.4 Governing nemato-dynamic equation
The dynamic equation describing the relaxation of the tensor order parameter
Q(r,t) toward an equilibrium value that minimizes the total free energy under the

different constraints (shape and size of the container, anchoring at its surface, etc.)
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follows from variational principles and is given by: [37,39-42]

0Qus  OF

= 00 (7.8)

In this equation 7 is a constant kinematic coefficient related to rotational viscosity.
[37,39] The right-hand side of Eq. (7.8) corresponds to the functional derivative of
the total free energy. From variational calculus it can be shown that:

5F  0f,

Ofp
= — 7.
5Qa,@ aQaﬁ v ( 9)

7 aanaﬁ

Only the symmetric traceless part of this expression is retained in the calculations

in order to satisfy the constraints of the tensor order parameter.

7.3.5 Dimensionless quantities and auxiliary conditions

In order to reduce the number of parameters, facilitate the analysis, and to
compare with other studies, all the calculations reported here are presented in di-
mensionless format. Using the energy scale A, we define the dimensionless bulk free
energy density f, = fo/A where the over-bar indicates the dimensionless quantity.
The dimensionless position vector is defined as ¥ = r/R where R stands for the
radius of the cylindrical cavity. Accordingly, we define the dimensionless nabla oper-
ator V = RV and dimensionless total energy F = %. The fixed, reference length
scale in the problem is the nematic coherence length defined as £ = \/L_/Z This

length gives a characteristic scale for the amplitude variations of the tensor order
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parameter and the size of defect cores. The ratio R/€, corresponding to the dimen-
sionless nematic coherence length reciprocal, therefore represents the relative size of
the cavity.

The boundary conditions are as follows: at the curved surface representing the
wall of the cavity, the tensor order parameter is assumed to be uniaxial and to
describe a rigid radial anchoring condition so that Q;(r = R) = Sc(ee] — %i), where

e’ is the unit vector along the radial direction. On the two mutually perpendicular

interior surfaces, boundary conditions ensure mirror symmetries. Finally at both

ends of the tube a no flux condition (e§ Bvigaﬁ = 0, where €7 is the unit normal to
the cavity caps) is used to emulate an infinitely long cavity.

In dimensionless format, the model contains two parameters: the nematic po-
tential U and the reduced cavity size R/€. Exploring the entire parametric space is
beyond the scope of this paper and is left for future work. For all the simulation
results presented in the next section, the nematic potential is set to U = 6 which

corresponds to a deep nematic phase with an equilibrium scalar order parameter of

Se = 0.809. In this contribution we analyze solutions for different cavity sizes R/€.

7.3.6 Computational procedure and post-processing tools

The governing partial differential equation for the tensor order parameter Q(r),
Eq. (7.8) is solved using a standard time integration scheme. The space discretization
is achieved using the Galerkin finite element method. The density of triangular

element is higher in the regions describing steep changes in the tensor order parameter
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amplitude. In those delicate regions, the size of the triangular elements is always
smaller than the ratio £/ R which corresponds to the smallest length of the problem.

The order parameter fields Q(r) are visualized by means of cuboids built from
the eigensystem of the tensor. [32] The axes of the cuboids are aligned with the
eigenvectors while the size of each side is proportional to the eigenvalues. Given that
the eigenvalues of Q(r) can be negative, we use the shifted tensor M = Q + I/3 for
the purpose of cuboid visualization. [36] Using this technique, it is possible to dis-
tinguish between isotropic (all edges of the cuboid equal), uniaxial (two edges equal)

and biaxial (all three edges different) states.

7.4 Results and discussions

7.4.1 Stability and existence of ring defects versus point defects in cylin-
drical cavities

In order to develop a better understanding of the ERRD texture (cf. Fig. (7-3))
and its connections with other fiber textures (cf. Fig. (7-1)), this section provides
a study on the fine structure of isolated ring defects confined in cylindrical cavities,
their stability and existence.

Ring defects that have broadened out of cylindrically-confined point defects
are most probably oriented with their axis perpendicular to the cavity axis. [28-31]
Despite that this orientation of the ring defects might appear to be counter-intuitive
since this breaks the overall cylindrical symmetry of the orientational order, it is
most likely because it provides to the defect an infinite possiblility of orientations

along the radial direction.
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Figure 7-4: (a) Equilibrium R-ring defect in a cylindrical capillary subjected to
homeotropic anchoring for the parameters U = 6 and R/€ = 22. (b) Enlarged view
of the elementary cross-section cut through the defect. The surfaces in (a) and (b)
correspond to the iso-level 0.5 of the biaxial parameter 5.
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Given their inherent biaxial structure, line defects and consequently ring defects
are conveniently visualized in terms of the biaxial parameter 3% defined in Eq. (7.3).
Figure (7-4) shows an iso-surface plot of a typical ring defect oriented with its axis
perpendicular to the cavity axis which has spontaneously emerged out of an initially
enforced point defect with an isotropic core using the iso-level 32 = 0.5. When
considering a nematic material with elastic isotropy, as we do in this work, the
geometry as well as the variations of ordering (i.e. the eigenvalues of the Q-tensor)
are identical in the hyperbolic and radial ring defects; the only difference is in the
director fields (n(r)). [31]

Figure (7-5) provides the variations of the Q-tensor order parameter eigenval-
ues. One can see that a ring defect is characterized by a negative uniaxial ring
surrounded by a biaxial torus with maximum biaxiality. Away from the torus, the
ordering is positive uniaxial as prescribed by the boundary conditions. This result
is in qualitative agreement with those obtain in previous two-dimensional analyti-
cal studies considering ring defects co-linearly orientated with the cylindrical cavity
axis. [33,36,43] Careful examination of the 32 profiles and in particular the separating
distance between the peaks along the z and z directions reveals that the cross-section
of the torus is perfectly circular; we identified in our previous work that the radius
of the cross-section is however decreasing as the size of the capillary increases. [31]
It is also interesting to note that, for the size of capillary considered, the ring defect
is not circular but, in fact, wider in the z-direction.

In order to assess the stability of the ring defect we look at the variation of its

geometry as a function of the confinement. To do so, we define the ring radii §, and
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d, corresponding to the distance from the center of the biaxial torus to the negative
uniaxial ring along the axial and radial direction, respectively. Figure (7-6) shows
the evolution of the ring radii as a function of the cavity radius (the coherence length
€ is a fixed length). What can be seen first is that for large cavities (small £/R),
the ring defect is essentially circular (4, = §, = ). One can also observe that the
evolution of this (unique) ring radius ¢ follows the linear relation d/R =~ 4.083 ¢/R.
This results suggest that point defects, corresponding to § = 0 can only be obtained
in the case of infinite cavity radius (i.e. in absence of confinement). Figure (7-6)
also shows that as the radius of the cavity shrinks (as £/ R increases), the ring defect
widens more in the axial direction than in the radial direction. This is understand-
able since whereas in the radial direction the ring is restricted by the cavity walls,
it is not restricted by anything in the axial direction. Finally, we found that as the
cavity radius continues to diminish, the radii of the ring defect diverge. The critical
cavity radius at which the ring defect becomes unstable against transformation into
the PPLD texture was evaluated to R,/ =~ 21.5. On the other hand the smallest
ring was computed for a cavity radius R/¢ = 500. In each simulation, adaptive
mesh refinement was set so as to smoothly capture the gradients of the tensor order
parameter. In the core of the defect, the size of the triangular elements is always
smaller than the dimensionless coherence length £/R. In addition, each simulation

started with an isotropic point defect.



181

0.45 ;
w8 JR
0.4} 4 : : $
ue«-ﬁz/R
0.35 -
z ’d
0.2

0.151
0.1

0.05

Figure 7-6: Evolution of the radii of an isolated ring defect confined into a cylindrical
capillary with homeotropic anchoring as a function of the cavity radius.
7.4.2 Annihilation of a pair of ring defects in a cylindrical cavity

We now consider the interaction between two ring defects of opposite types
(i.e. radial and hyperbolic) and examine, in detail, the topological transformations
occurring in the course of the annihilation process. Three different stages can be
identified during the annihilation process of two antagonist defects: (i) the pre-
collision, (ii) the collision and (iii) the post-collision. [31] Two qualitatively different
post-collision scenarios are found in the simulations: in the first one the annihilation
of the two ring defects leads to the ER texture while in the second one it leads to
the PPLD texture. The ERRD to ER transformation is illustrated for a cavity of
radius R/¢ = 25 while the ERRD to PPLD is shown for the case R/§ = 22.5. In both
situations, the computational procedure employed is as follows: first we enforced two
point defects with isotropic cores separated by a distance d > 2R so that the system is

in the early pre-collision regime. Then we take a couple of time steps until the points
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Figure 7-7: Topological transformations between two interacting ring defects con-
fined into a cylindrical capillary of radius R/§ = 25 leading to the ER texture.
(a)-(b) (late) pre-collision regime; (c) end of collision regime and (d) post-collision
regime. Surfaces are given by the iso-levels 3> = 0.5. Frames (a), (b), (c) and (d)
correspond respectively to dimensionless time 0, 5500, 5700 and 6350, respectively.

broaden into rings with quasi-stable radii (i.e. quasi-stable because despite that the
rings’ mutual interaction is fairly weak in the early pre-collision regime, it still exists
and ring radii are therefore affected, even if infinitesimally). We consider time zero
to be the instant when the two ring defects that have spontaneously emerged out
of the isotropic point defects are separated by a distance dy = 2R (i.e. the late

pre-collision regime). The separating distance between the ring d is measured from

the center/axis of each ring defect.
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ERRD to ER transformation. Figure (7-7) illustrates the annihilation pro-
cess between two ring defects in a cavity of size R/¢ = 25 leading to the ER texture.
In this figure the ring defects are represented by means of the biaxial parameter 3
for an iso-level of 0.5. Figure 7-7(a) shows the ring defects at time zero when they
are separated by a distance dy = 2R and are therefore entering the late pre-collision
regime. In Fig. 7-7(b), which corresponds to dimensionless time 5500, the two ring
defects are in the late pre-collision regime; due to their mutual interactions, they
have enlarged in both the axial and radial directions. Figure 7-7(c) corresponds to
time 5700 and the end of the collision regime when the two rings have collided and
merged so as to form a new single defect. This new defect is a chargeless ring defect
whose longitudinal radius corresponds to the sum of the individual ring defects’ axial
radii. The collision regime occurs over a, very short period of time as compared as to
the pre-collision stage. Finally Fig. 7-7(d) illustrates the post-collision regime with
the configuration of the chargeless ring defect at dimensionless time 6350. At that
stage, the chargeless ring has considerably shrunk and is on the verge of disappearing
to leave behind a strictly uniaxial ER texture.

In order to get a better sense of the overall ordering in the cavity and in particular
of the average molecular orientation, figure 7-8 provides three different cross sections
(as given in Fig. 7-3) through the tensor order parameter field Q(r) at time zero
and corresponding to the frame given in Fig. 7-7(a). The two types of ring defects:
radial and hyperbolic can be clearly identified at positions z/R =1 and z/R = -1,
respectively. Biaxial ordering in the vicinity of the ring defects is detected by the

distinctive shape of the cuboids (cf. Fig. 7-8(a)). Note the continuous variations of
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Figure 7-8: Different cross sections through the tensor order parameter field Q(r)
corresponding to the frame shown in Fig. 7-7(a). The radial and hyperbolic ring
defects are located at z/R = 1 and z/R = —1, respectively. Frames (a) and (b)
correspond to the planes parallel and normal to the axis of the ring defects. Frame
(c) corresponds to the transversal cross-section through the ring defect at z/R = £1.
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Figure 7-9: Variations of the tensor order parameter eigenvalues (a) and corre-
sponding biaxial parameter 32 (b) along the axial direction at time zero. The shifted
coordinate 2’/ R is centered on the ring defect at z/R = +1.

the tensor order parameter Q(r) throughout the defects. To complete this picture
of ordering in the nematic cavity, Fig. 7-8(c) presents the transversal cross sectional
view that is observed at z/R = £1. The ordering in this cross-section is similar
to the one found in the PPLD texture (cf. Fig. 7-1(b}); however the orientation
transition along the y-direction at x = 0, which corresponds to the passage of the
ring, does not occur at distance 0.666 R as in the case of the PPLD texture but closer
to the origin. [44,45]

To complement the representation of ordering through cuboids, figure 7-9 gives

the evolution of ordering along the axis of the cavity at time zero. Figures 7-9(a)
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and 7-9(b) respectively provide the variations of the order parameter Q eigenvalues
and biaxial parameter 32 as a function of the shifted coordinate 2’'/R centered on
the ring defects. The profiles are in agreement with the one given in Fig. 7-5 for
an isolated ring defect in a nematic-filled cylindrical cavity. One can verify that the
radius of the ring defects along the axial direction is §,/R = 0.24. This shows that
for separation distances d equal to or greater than a capillary diameter, the loop
defects are essentially unaffected by each other.

Figure 7-10 shows the chargeless ring ordering in the late post-collision regime
after it has significantly shrank. The molecular orientation away from the ring re-
sembles that of the ER texture with the cuboids escaping toward a single direction.
The orientation transition leading to the localized biaxiality of the defect is identi-
fied by the characteristic shape of the cuboids along the cavity axis. Figures 7-10(a)
and 7-10(b) provide two mutually orthogonal cross-sections through the tensor order
parameter field. Figure 7-10(c) corresponds to the complementary transversal cross-
section in the plane perpendicular to the cavity axis at z/R = 0. This transversal
cross-section resembles the PPLD texture given in Figs. 7-1(b) as well as the cross
section of the individual M = +1 ring defects (cf. Fig. 7-8(c)). The essential differ-
ence however is that in the case of the chargeless ring defect given in Fig. 7-10(c),
the director is flipping out of the plane.

Figure 7-11 illustrates the variations of the Q-tensor eigenvalues and biaxial pa-
rameter 32 in the chargeless ring defect along the cavity axis (The profiles correspond
to dimensionless time 6350). The eigenvalues are, as in the case of the charged ring

defects, exhibiting the typical eigenvalue exchange seen in line defects. As previously
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Figure 7-10: Cross section through the tensor order parameter field Q at dimension-
less time 6350 (cf. Fig. 7-7(d)) showing the ordering in the chargeless ring formed
after the collision and merging of two oppositely charged ring defects. (a) and (b)
correspond to two mutually orthogonal longitudinal cross-sections through the de-
fect while (c) gives the transversal cut at z/R = 0. The field of cuboids show the
mixed escape-planar polar-like nature of the chargeless ring formed at the end of the
collision regime.
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Figure 7-11: Variations of the tensor order parameter eigenvalues (a) and corre-
sponding biaxial parameter 3% (b) along the axial direction in the chargeless ring
during the post-collision regime.
mentioned this exchange corresponds to a change of average preferred molecular ori-
entation within the defect. The chargeless ring also consists of a negative uniaxial
loop enclosed in a biaxial torus.

Finally Fig. 7-12 is a longitudinal cross section through the tensor order param-
eter field showing the computed defect-free ER texture (cf. Fig. 7-1(c)) that remains
once the chargeless ring defect has shrank and disappeared. The ER texture, which
characterizes the end of the post-collision regime in this first scenario, is cylindrically
symmetric and strictly uniaxial.

ERRD to PPLD transformation. Figure (7-13) illustrates the process of
annihilation of two ring defects in a cylindrical cavity of size R/ = 22.5 leading to
the PPLD texture in the late post-collision regime. As in previous cases, the ring
defects are represented by iso-surfaces of the biaxial parameter 32 for an iso-value
of 0.5. Figure 7-13(a) shows the ring defects at time zero when they are separated

by a distance dyp = 2R and are hence in the late pre-collision regime. At this time,
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Figure 7-12: Longitudinal cross section through the tensor order parameter field
represented in terms of cuboids and showing the defect-free ER texture that results
from the total shrinkage of the chargeless ring defect at the end of the post-collision

regime.
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Figure 7-13: Topological transformations between two interacting ring defects con-
fined into a cylindrical capillary of radius R/£ = 22.5 leading to the PPLD texture.
(a) corresponds to time zero and the late pre-collision regime. (b) shows the con-
figuration in the early collision regime at dimensionless time 2800. The end of the
collision regime in which a unique chargeless ring remains is given in (c) for time
3150. Finally, (d) occurs at dimensionless time 11450; the chargeless ring defect has
expanded to give the PPLD texture (at least locally). Surfaces are given by the
iso-levels 3% = 0.5.
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the rings are essentially circular and their geometry follows closely the one of the
isolated rings (cf. Fig. 7-6). Fig. 7-13(b), shows the premise of the chargeless ring
at dimensionless time 2800 in the early collision stage. At this point there is only
one ring (with respect to the iso-surface of 3%) but one can still distinguish the two
centers/cores of the old charged ring defects on both sides of the cavity midway.
Figure 7-13(c) corresponds to time 3150 and the end of the collision regime when
the chargeless ring has resumed formation. The chargeless ring is in this case larger
that the one formed in the cavity of size R/¢ = 25 (cf. Fig. 7-7(c)). In fact, the size
of the chargeless ring formed at the end of the collision regime and particularly its
transversal radius seems to dictate whether there is going to be shrinkage or growth
of the loop and therefore creation of the ER or PPLD texture, respectively. [30]
The precise cavity critical radius at which the system goes from a shrinking (and
vanishing) to a growing (and opening) chargeless defect has not been determined
precisely yet but will be in our future work. At the present we know that the
transition is within the narrow range 22.55 < R/{ < 25. Finally Fig. 7-13(d)
illustrates the end of the post-collision regime at dimensionless time 11450 when
the chargeless ring has opened to form the PPLD texture. It is important to note
that, in the post-collision regime, the chargeless ring grows faster in the longitudinal
direction then in the radial direction. The growth of the ring is however bounded in
the radial direction as it stops once the PPLD critical radius of 0.666 is reached while
in the longitudinal diréction, the growth does not present any limit except at the end

caps of the cavity. In a very long capillary, the PPLD texture can therefore be local
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Figure 7-14: (a) Transversal cross section through the tensor order parameter field
showing the PPLD texture that occurs when the chargeless ring defect opens at the
end of the post-collision regime. (b) and (c) are the corresponding variations of
the tensor order parameter eigenvalues and biaxial parameter 32 along the radial

direction.

and the time required to reach the equilibrium PPLD texture from the chargeless
ring varies with the length of the cavity.

Figure 7-14(a) provides a transversal cross section through the tensor order pa-
rameter field at time 11450 when the cavity exhibits the PPLD texture (cf. Fig
7-1(b)). The field of cuboids resembles that of the chargeless ring defect given in
Fig. 7-8(c); the essential difference is that now the line defects running parallel to
the cavity axis are separated by a fixed distance of =~ 1.333R. Finally Figs. 7-14(b)

and 7-14(c) indicate the variation of the tensor order parameter eigenvalues and the

corresponding biaxial parameter 2.
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7.5 Summary and conclusions

We have investigated nematic ring defects occurring in cylindrical cavities with
sidewalls imposing homeotropic anchoring (i.e. molecular orientation at the walls
is radial) using three-dimensional Landau-de Gennes continuum type simulations.
We have shown that ring defects, spontaneously emerging out of initially enforced
isotropic point defects, most likely orient their axis perpendicular to the cavity axis.
[31] The results agree with recent Brownian molecular dynamic simulations. [28-30].
It is also demonstrated that the size of the rings decreases as the radius of the
cylindrical cavity increases. Isolated ring defects (i.e. rings separated by a distance
greater than a cavity diameter from any other rings) are found to be stable in cavities
of radius greater than 21.5¢. In small cavities (radius between 21.5¢ — 50¢), the
radius of the ring defects is found to be wider in the axial direction than in the
radial direction. In large cavities (radius greater than 100£), the ring defects are
perfectly circular and therefore characterized by a unique radius. In addition, our
results indicate that in the large cavity regime, the radius of the ring defects adopt a
finite value: § =~ 4.083 £ (i.e. the radius of the ring is roughly four times the nematic
coherence length). This suggests that true point defects cannot exist in cylindrical
cavities as they are unstable and always split into loops. The reason why these ring
defects are not necessarily detected in experiments is their nanometer length scale,
i.e. at the order of magnitude of the nematic coherence length. Also, away from
the defect core, molecular orientation is qualitatively identical in loops and points.
Similar to point defects, both radial and hyperbolic ring-like defects exist. In the case

of elastic isotropy, the degree of ordering (42?) varies the same way in both defects
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and only their director fields differ. Finally, the cross section of the biaxial torus
surrounding the negative uniaxial ring is found to be always perfectly circular but
decreasing as the cavity radius increases.

In addition to isolated ring defects, we have investigated the details of the an-
nihilation process between two oppositely charged ring defects. We have denoted
the texture formed by a periodic distribution of ring defects: escape radial with ring
defects or ERRD texture. Similar to the ERPD texture, the ERRD is metastable
with oppositely charged rings that, like points, attract and eventually annihilate each
other. We have shown that the annihilation process of a representative ring pair may
lead to two qualitatively different textures depending on the size of the cavity radius:
the ER texture (as we would have expected from a metastable ERPD texture) and
the PPLD texture. The latter texture cannot be nucleated from an ERPD texture
as it lacks the necessary dimensionality (i.e. that of a line defect). A crucial inter-
mediate step in the formation of the ER or PPLD textures is the merging of two
oppositely charged rings into a single chargeless ring. Structural elements of both
the ER and PPLD textures have been identified in the chargeless ring defect. The
structure of the radial, hyperbolic and chargeless ring defects agree very well with
the theoretical predictions made by Melzer and Nabarro based on their experimental
observations. [25] Depending on its size and particularly its radius along the radial
direction, the chargeless ring either shrinks until it disappears thereby producing
the ER texture or expands until it opens thereby giving the PPLD texture. The
precise threshold in the chargeless ring radius leading to either one of the textures

has not been determined precisely but is known to occur when the cavity radius is
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Figure 7-15: Schematic phase diagram of the nematic textures found in cylindrical
cavities with sidewalls imposing homeotropic anchoring. The textures indicated in
parentheses are metastable.

in the range 22.55¢ < R < 25¢. Figure 7-15 provides a schematic phase diagram
summarizing the different textures that can be observed in a cylindrical cavity with
sidewalls imposing radial anchoring.

The new results presented in this contribution should enrich the general under-
standing of nematic textures in cylindrical capillaries. These results should also be
useful in the comprehension of textures in new advanced nematic based fibers such
as nematic-filled carbon nanotubes [7] and in nematic colloids [46-48] in which ring

and point defects are prevalent.
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CHAPTER 8
General conclusions and original contributions to knowledge

8.1 General conclusions

This thesis explores the behavior of defects in engineering devices and biological
processes involving nematic liquid crystal phases and contributes to their fundamen-
tal understanding. Three different types of defects are encountered and studied in
this work: inversion walls, lines and points. These defects are studied using three
different computational models which differ by their ability to describe singular de-
fects as well as structural core details.

The inversion walls investigated in thesis occur in a thin nematic film found in a
new electro-optical device, where it undergoes a sudden temperature-induced surface
anchoring transition. The presence of these wall defects perturbs the light transmis-
sion properties of the device and therefore significantly alters its performances. The
first question explored on this problem is: Is the creation of inversion wall defects a
reversible process and is it possible to anneal them by tuning the temperature of the
film? The answer is no. Our computational results and the experimental observations
made in fluorescence confocal polarizing microscopy by our collaborators at Georgia
Tech, which agree very well, show that once an inversion wall is created, modifying
the temperature of the nematic film does modify the geometry of the defect but does
not remove it from the system. Simulations clearly show that as the temperature of

the film is raised and therefore anchoring strength decreased, the width of the wall
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increases and extends throughout the film. On the other hand, when temperature is
reduced and therefore anchoring strength increases, the width of the inversion wall
shrinks and ‘barrels’ but does not completely disappear. The initially pure twist wall
becomes a diffuse inversion wall. This phenomenon attributed to an energy storage
mechanism is in agreement with previous theoretical predictions on the behavior of
twist inversion wall defects by Ryschenkow and Kleman (1976). A practical impli-
cation of these results is that the design of the electro-optical device requires a very
precise determination of the range of operating temperatures to avoid the formation
and concomitant trapping of those irreversible defect structures. On the other hand
it is also shown that when produced under controlled conditions, inversion wall de-
fects can provide valuable information on the interfacial property of the nematic film
which in turn are related to operating parameters like response time and switching
voltage. Using basic variational calculations under the assumption of weak anchor-
ing strength, it is shown that the width of the wall can be directly connected to the
surface anchoring strength of the film through a simple model equation. This new
relation captures well the non-linear behavior of the wall geometry and represents a
significant improvement with respect to previous relations that were based on linear
behavior and therefore were leading to error estimates of an order of magnitude.
The second type of defects studied in this thesis are points that are found pe-
riodically distributed along cylindrical cavities with sidewalls imposing homeotropic
anchoring, as observed in the tubular extrusion duct of spiders. The presence of
these defects in the spinning apparatus is deemed very important to silk process-

ability and final mechanical properties but their emergence, behavior, and role is
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unclear at present. Because in vivo observations of these defects in the spiders’ ab-
domen is not yet possible and studying point defects in a controlled environment
such as nematic-filled capillaries is still tedious, computational modelling provides
an appealing alternative approach. A question of fundamental importance arising
from the experimental observation of periodic distribution of these point defects is:
Is there an equilibrium separation distance between the defects? In order to find
a partial answer to this question, various scenarios of defect interactions are inves-
tigated. The first concerns the interaction between two point defects of opposite
strength. Numerical results show that, in the absence of flow or geometrical effects
(like capillary convergence), this interaction is always attractive. However, when
the two defects are separated by more than a diameter, their speed of displacement
is insignificant and they appear to be pinned to the capillary axis. On the other
hand, when they are separated by less than a diameter and continue to approach
each other their speed increases exponentially until they finally merge. The force of
attraction follows a similar behavior. When two point defects of opposite strength
eventually merge and annihilate they give rise to an escape structure free of any
singularity. All these results are in agreement with experimental observations as well
as the theoretical predictions reported in the literature. The second scenario investi-
gated is the interactions between more than two defects. Here again, in the absence
of external forces or geometrical effects or boundary effects it turns out that defects
always attract and eventually mutually annihilate until producing an homogenous

escape structure. These various results lead to the conclusion that if point defects

effectively adopt an equilibrium distribution, external factors not taken into account
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in the models used in this work must play a role.

The last type of defects encountered in this thesis is line defects, found in various
industrial fibers involving nematic precursors. These line defects lead to various fiber
textures and therefore various sets of mechanical properties. Understanding the way
they form is crucial to control and optimize the product properties. Interestingly
the textures found in industrial fibers never contain point defects as found during
the processing of natural fibers. A question arising from this observation is: What
are the possible topological connections between the textures found in industrial and
natural fibers? In order to develop a partial answer to this question, the core de-
tails of point defects embedded in a cylindrical cavity are investigated. Simulation
results show that point defect may in fact be, in reality, closed line defects or ring
defects. In fact, according to our calculations point defects do not exist in cylin-
drical cavities if one considers core details. The far field molecular orientation of
point and ring defects are however analogous. The importance of this detail resides
in the fact that unlike point defects, ring defects offer the topological flexibility to
mutate into the various other textures observed in industrial fibers. The ring-like
nature of a point defect core presents therefore a fundamental connection between
industrial and natural fiber textures. A natural reason why ring defects are not fre-
quently experimentally observed is that their relatively small sizes prevent them from
being resolved by any current observation techniques. Our calculations show that
ring defects can be oriented with their axis along or perpendicular to the cavity axis.

Ring defects with axis perpendicular to the cavity axis seem to be the most probable.
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8.2 Original contributions to knowledge
The contributions of this thesis to original scientific knowledge are:

e A computational framework is developed to accurately model the geometric
behavior of twist inversion wall defects occurring in thin nematic films following
temperature induced surface anchoring transitions. The fundamental behavior
of the wall defect is elucidated from simulations and show excellent agreement
with experimental observations.

e A new, more accurate, model equation is derived to connect the geometry of
the inversion wall defect to the surface anchoring strength of the nematic film.

e A computational model based on the tensorial Landau-de Gennes theory is for
the first time employed to investigate the interaction between two point defects
in cylindrical capillaries. The different stage of the annihilation process: pre-
collision, collision, and post collision are thoroughly described.

e The interactions between multiple point defects along cylindrical tube are in-
vestigated for the first time with a model based on Frank elastic continuum
theory.

e The prevalence of ring defects over ‘true’ point defects is demonstrated.

e The detailed structures of ring defects in cylindrical capillary are for the first
time computed using three-dimensional simulations based on the Landau-de
Gennes continuum theory.

e The topological transformations between the various structures found in indus-
trial fibers and the one found along the spinning extrusion duct of spider are

simulated and thoroughly described.



204

8.3 Recommendations for future work

In the future, this research can take various directions based on the results,
developments and questions that have come about during the completion of this
thesis.

With respect to the understanding of inversion wall defects in nematic thin
films aimed at electro-optic devices, it would be, for example, interesting to develop
a computational toolbox to complement the current computational model and be
able to make direct comparisons with signals obtained from fluorescence confocal
polarizing microscopy. Another interesting direction to be investigated would be the
interactions between several inversion wall defects in the nematic film. The effect of
elastic anisotropy on the geometry of the defect could also be interesting to explore.

With respect to the understanding of point defects in the cylindrical cavity in
the context of spider silk processing, it could be interesting to include flow effects and
examine how it affects the distribution of many interacting point defects. Inspecting
the effect of the cavity convergence could also be fruitful. Another exciting, related,
problem would be to examine the mechanisms of the emergence of point defects along
the cavity: do they appear through a front propagation mechanism or emerge from
nucleation and growth? Elastic anisotropy effects could also be wise to investigate.

Finally, a phase separation model could be added to the current model.



