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ABSTRACT 

This thesis uses multiscale computational modelling to find the fundamental 

principles that govern defects forming during the operation of new electro-optical 

devices and the processing of spider silk fibers. The generalized approach developed 

in this thesis bridges engineering devices and biological pro cesses based on liquid 

crystalline materials. 

Three types of defects are encountered: inversion walls, lines and points. In

version wall defects are found in the electro-optical device when a nematic thin 

film undergoes a temperature-induced surface anchoring transition. Point defects 

naturally occur in the tubular extrusion duct of spiders, while Hne defects present 

close topological connections with point defects and are widespread in many high

performance industrial fibers. Three models are used in this thesis and their usage 

is dependent on the characteristics of the defects studied. 

In the case of inversion wall defects, computational modelling is used to verify, 

complement and analyze experimental measurements made with fluorescence confo

cal polarizing microscopy by our collaborator at the Georgia Institute of Technology. 

The various simulation results agree and explain very well experimental observations 

and provide a thorough understanding of the wall defects behavior. A computational 

technique is developed to en able the precise determination of the interaction between 

the liquid crystal and the device substrate. Understanding the behavior of wall de

fects and estimating interfacial properties are indispensable to the development and 

optimization of the electro-optical device as they affect properties like temperature 
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of operation, switching voltages and response time. 

Computational modelling is also used to investigate the behavior of nematic 

point defects confined in cylindrical cavities as observed along spiders' spinning ap

paratus, and to examined texturaI connections with other well know structures seen 

in industrial fibers. The various scenarios investigated include: interactions between 

point defects, topological transformations between point, line and ring defects as well 

as interactions between ring defects. The simulation results agree and complement 

previous investigations but also oirer a new fundamental understanding on the na

ture and stability of defects in cylindrical cavities. Understanding the behavior of 

nematic point and line defects in cylindrical geometries is important as they play a 

fundamental role in the processing of natural and industrial high-performance fibers. 
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ABRÉGÉ 

Cette thèse emploie la modélisation multi-échelles par ordinateur pour trouver 

les principes fondamentaux qui gouvernent les défauts se formant durant l'utilisation 

de nouveaux appareils électro-optiques et le traitement de fibres de soie d'araignées. 

L'approche généralisée développée dans cette thèse connecte les dispositifs d'ingénierie 

et les procédés biologiques au travers des matériaux liquides cristallins. 

Trois types de défauts sont rencontrés: parois d'inversions, lignes et points. 

Les parois d'inversions sont retrouvés dans les dispositifs électro-optiques quand un 

fin film nématique subie une transition de température à sa surface. Les défauts 

points surviennent naturellement dans le canal d'extrusion tubulaire des araignées 

tandis que les défauts lignes, présentent de proches connexions topologiques avec 

les défauts points et sont répandus dans de nombreuses fibres industrielles à hautes 

performances. Trois modèles sont utilisés dans cette thèse et leur usage dépend des 

caractéristiques des défauts étudiés. 

Dans le cas des défauts parois d'inversions, la modélisation par ordinateur est 

utilisée pour vérifier, complémenter et analyser des mesures expérimentales faite en 

microscopie confocale à fluorescence polarisée par nos collaborateurs à l'institut de 

Technologie de Géorgie. Les différents résultats de simulations sont en accord et ex

pliquent très bien les observations expérimentales et fournissent une compréhension 

approfondie du comportement des défauts parois. Une nouvelle technique de cal

cul est développée pour permettre la détermination précise de l'interaction entre le 

cristal liquide et le substrat du dispositif. Comprendre le comportement des défauts 
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parois et estimer les propriétés interfaciales sont indispensable au développement et 

à l'optimisation du dispositif électro-optique tandis qu'ils affectent des propriétés 

tel que la température d'usage, les tensions de changement d'états et les temps de 

réponses. 

La modélisation par ordinateur est aussi utilisée pour étudier le comporte

ment des défauts points confinés dans des cavités cylindriques tel qu'observé le 

long de l'appareil de filage des araignées, et pour examiner les connections textu

raIes avec d'autres structures observées dans les fibres industrielles. Les différents 

scenarios étudiés comprennent: les interactions entre défauts points, les transfor

mations topologique entre les défauts points, lignes et annulaires ainsi que les in

teractions entre les défauts annulaires. Les résultats de simulations sont en ac

cord et complémentent les investigations précédentes mais offrent aussi une nouvelle 

compréhension fondamentale sur la nature et la stabilité des défauts dans les cavités 

cylindriques. Comprendre le comportement des défauts points et lignes dans les 

géométries cylindriques est important étant donné que ces derniers jouent un rôle 

fondamentale dans le traitement des fibres haute-performances naturelles et indus

trielles. 
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1.1 Scope of the thesis 

CHAPTER 1 
General introduction 

Nematic liquid crystals are functional materials used in various electro-optical 

devices such as displays and light valves whose functionality depends on the substrate

liquid crystal interface [1,2]. Continuous demand to increase the performance-to

price ratio drives the intense research to unravel the princip les that control the inter-

actions between the devices' substrate and the liquid crystal. These interactions can 

be regulated by temperature, chemistry, and interface topography [1,2]. In many in-

stances, temperature changes in interfacial conditions lead to changes in the nematic 

liquid crystal molecular orientation and to the concomitant generation and trapping 

of defects and textures [3,4]. These defects and textures in turn change the opti-

cal characteristics of the electro-optical device and hence predicting when and how 

they nucleate and behave is an integral part of development and optimization. In 

addition, when generated under certain controlled conditions, these defects and tex-

tures can be used to characterize the physical interactions between the liquid crystal 

and the substrate [5-10]. Knowing these interactions is necessary to tune the various 

characteristics of the device (e.g. functioning voltage, response time, etc.). The mea-

surement of these interactions usually requires the determination of an experimental 

signal in conjunction with an accurate model equation. Inaccurate model equations 

lead to inaccurate interaction values. In this thesis, we use computer modelling and 

1 



2 

simulations to study defects and textures occurring in a nematic liquid crystal-based 

system whose geometry, boundaries, temperature and material conditions, replicate 

an experimental setup aimed at the development of a new nematic thin film used 

in an electro-optical device. The simulation results are validated with experimental 

data through an external collaboration. Additionally, a new accurate computational 

technique to quantify the liquid crystal-substrate interaction is proposed. 

N ematic liquid crystals are also widely used as structural precursor materials in 

the manufacturing of high performance fibers, such as Kevlar and carbon fibers [11-

14]. Continuous incentive due to environmental restrictions as weIl as the evolution of 

green manufacturing has fueled the search for material production systems that avoid 

high temperature and corrosive solvents. Biomimetics, or systematic technology 

transfer from nature to engineering, is being used around the world to search for 

new technologies and processing methods to manufacture super-fibers like Kevlar 

using aqueous solvents and room temperature. Spider silk biospinning has been 

considered for sorne time a natural material manufacturing system that provides the 

basis for green fiber manufacturing [15-21]. Large efforts to understand, mimic, and 

use the protein chemistry of the spider silk precursors have been made [17,22]. On 

the other hand, the engineering fiber manufacturing princip les embedded in the silk 

biospinning pro cess remain poorly understood [15,18,23,24]. It is well-known that the 

spider silk precursor becomes a liquid crystalline material during the early extrusion 

process [11,15,16,19-30]. The emergence of the liquid crystalline state is considered 

to be an essential feature that leads to a super-tough and strong silk fiber. The 

liquid crystal silk precursor forrns under the severe constraints of narrow and highly 
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curved micron-sized capillary ducts that feed the fiber spinning apparatus. The 

interactions between the liquid crystal and the wall of the narrow capillary lead to 

characteristic defects and textures, detectable by optical microscopy [18,21,23,24,27, 

28]. These optical measurements provide significant additional evidence on the state 

of the spider silk precursor. It is widely believed that the presence of these defects and 

textures play a crucial role in delaying premature solidification due to high alignment 

in the liquid crystal state. Currently, the emergence, char acter and stability of these 

spider silk's textures in the capillary duct remain poorly understood. This thesis 

presents a systematic computational study of the nature, emergence, and stability 

of these textures arising in spider silk precursors. In addition, various topological 

transformations occurring between the textures observed in other nematic-based high 

performance fibers are examined. The simulations are validated through the open 

biological, physical, chemical, and mathematical literature. The results offer new 

knowledge on nematic texturing in cylindrical capillaries and should be useful to 

synthetic fiber spinning technology. 

Overall, this thesis offers an integrated view of how defects and textures play 

a crucial role in the operation and processing of systems involving nematic liquid 

crystals, in fiat and curved interfaces as weIl as in melt and in solution states. 
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Figure 1-1: Sehematic arrangements of moleeules in an isotropie liquid (A), a liquid 
crystal (B) and solid crystal (C). 

1.2 Background on liquid crystals 

1.2.1 What are liquid crystals? 

The term liquid erystals may at first sound both intriguing and confusing. While 

it appears somehow self-contradictory, the designation is really an attempt to de-

scribe particular states or phases of matter that are of great scientific and techno-

logical importance today. 

The differenee between crystals and liquids, the two most eommon condensed 

matter phases, is that the mole cules in a crystal are ordered whereas in a liquid they 

are not. The order in a crystal is usually both positional and orientational, in that 

the molecules are constrained both to occupy specifie lattice sites and to point their 

molecular axes in specifie directions. The molecules in liquids, on the other hand, 

do not display any long range order. Interestingly, many phases with more order 

than present in liquids but less or der than in crystals also exist in nature. Sorne of 

these intermediate phases or mesophases are called liquid crystals, since they share 

properties normally associated with both liquids and crystalline solids [2-4]. 
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The molecules in all liquid crystal mesophases fiow much like the molecules of 

a liquid, but they maintain some degree of orientational order and sometimes sorne 

positional order too. Figure 1-1 illustrates the order in the liquid, liquid crystal and 

solid phases. The amount of order in a liquid crystal is quite small as compared to a 

crystal. Indeed, there is only a slight tendency for the molecules to point more in one 

direction rather than others or to spend more time in various positions than others. 

Yet this small amount of order renders liquid crystal mesophases anisotropie (their 

physical properties differ from one direction to another). It is this combination of 

liquid-like fiuidity and solid-like anisotropy that makes liquid crystal mes op hases an 

important phase of matter both scientifically and technologieally [2-4]. 

1.2.2 Discovery of liquid crystals 

The discovery of liquid crystals is usually attributed to the Austrian Scientist 

Friederich Reinitzer. In 1888, he experimented with a substance related to choles

terol and noted that it had two melting points. At 145.5°C it melted from a solid 

to a cloudy liquid and at 178.50°C it turned into a clear liquid. He also observed 

some unusual color behavior upon cooling; first a pale blue col or appeared as the 

clear liquid turned cloudy and a second bright-blue violet col or was present as the 

cloudy liquid crystallized. Reinitzer sent samples of its substance to Otto Lehmann, 

a professor of natural philosophy (physies) in Germany. Lehmann was one of the 

people studying the crystallization properties of various substances and Reinitzer 

wondered whether what he observed was related to what Lehmann was reporting. 

Lehmann had constructed a polarizing microscope with a stage on which he could 
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precisely control the temperature of his samples. This instrument aUowed him to 

observe the crystallization of the sample under controUed conditions. Lehmann ob

served Reinitzer's substance with his mieroscope and noted its similarity to sorne of 

his samples. He first referred to them as soft crystals; later he used the term crys

taUine fluids. As he became more convinced that the opaque phase was a uniform 

phase of matter sharing both properties of liquids and solids, he began to caU them 

liquid crystals [2-4]. 

1.2.3 The different type of liquid crystals 

Many different types of liquid crystals have been identified since the discovery of 

the first mesophase by Reinitzer and Lehmann and their classification is itself a field 

of research in constant evolution. Liquid crystals can however be classified according 

to i) what triggers their emergence, ii) to the nature of their building-blocks, caUed 

mesogens, and Iii) to their organizations or structures. 

Liquid crystals are generally classified as either thermotropies or lyotropics. 

Thermotropie liquid crystals emerge from pure chemieal systems and their order is 

primarily affected by changes in the temperature. On the other hand, lyotropic liquid 

crystals are multi-component systems whieh exhibit their mesomorphie behaviour as 

the concentration of one or more of their components is varied. 

Various types of mole cules can form liquid crystal phases. What they aU have 

in common is that they are anisotropie. Either their shape is such that one of 

their molecular axis is very different from the other two or in sorne cases differ

ent parts of the mole cules have different solubility properties. In either case, the 
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Figure 1-2: Typical rod-like mesogens. (A) p-pentyl-p'-cyanobiphenyl (5CB) and 
(B) n-(p-methoxybenzylidene)-p-butylaniline (MBBA). 

interactions between these anisotropie molecules promote orientational order and 

sometimes positional or der in an otherwise fiuid phase. Basically, liquid crystal 

phase-forming systems may be composed of small organic molecules, of polymers or 

of amphiphiles [2-4]. 

Liquid crystals made from small organic molecules. Systems of small 

organic molecules forming liquid crystal phases usually belong to the class of ther

motropics. The most common type of mole cules that form liquid crystal phases 

is a rod-shaped molecule (Le., one molecular axis is much longer than the other 

two). Such rod-like compounds are called calamitic liquid crystals. It is important 

that the molecules be fairly rigid for at least sorne portion of their length, since 

they must maintain an elongated shape in order to produce interactions that fa-

vor alignment [2,31,32]. Figures 1-2(a) and 1-2(b) give the chemical structures of 

two common rod-like molecules called p-pentyl-p'-cyanobiphenyl (5CB) and n-(p

methoxybenzylidene )-p-butylaniline (MBBA), respectively. 

Thermotropic systems composed of small rod-like organic molecules generally 

form two different families of organizations, known as nematic and smectic phases. 

The nematic phase is the simplest liquid crystal phase. In this phase the mole cules 

maintain a preferred orientational direction but have no positional or der. The other 
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Figure 1-3: Organizations of rod-like molecules in nematic (A) and smectic-A (B) 
mesophases. 

organization common to systems of rod-like mole cules is the smectic phase. In this 

phase, there is one dimensional positional order in addition to orientational order. 

Molecules are grouped on a series of equidistant parallel layers where they are free 

to move. Smectic liquid crystals with their layered structure are the most ordered 

and viscous mesophases. Twelve different types of smectic mesophases have been 

identified to this day. They usually bear the labels A, B, C, ... , L according to 

their chronological order of discovery [2,31, 32J. Figure 1-3 provides a schematic 

representation of nematic and smectic-A organizations of rod-like structural units. 

Generally, if the molecules that form a liquid crystal phase are chiral (Le., lack 

inversion symmetry or mirror image) then macroscopic chiral phases exist. They 

are chiral versions of nematic and smectic phases. The essential organizational dif-

ference between ordinary (non-chiral) and chiral phases, is that in chiral phases, 
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Figure 1-4: The discotic mole cule C60TP. 

the molecules' preferred direction rotates throughout the sample. The distance re

quired for a full rotation is the pitch of the phase. Chiral nematic mesophases are 

often called cholesterics since these organizations were first observed in cholesterol 

derivatives, however the historical term is misleading since many other materials can 

exhibit chiral or twisted nematic phases [2,31,32]. 

Disc-like mole cules (Le., mole cules with one molecular axis much shorter than 

the other two) also form liquid crystal phases. Such compounds are called discotic 

liquid crystals, and again rigidity in the central part of the molecules is essential 

[2-4, 32]. Figure 1-4 provides the chemical structure of a typical discotic mesogens 

by the name of 2,3,6,7,10, ll-hexakishexyloxytriphenylene (C60TP). 

Thermotropic systems constituted of small disc-like organic mesogens also form 

nematic and smectic arrangements. In nematic discotic phases, the molecules move 

about quite randomly, but on an average, the axis perpendicular to the plane of each 

mole cule tends to orient along a preferred common direction. In smectic discotic 

phases, often called colurnnar phases, the rnolecules exhibit sorne degree of positional 
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Figure 1-5: Molecular arrangements III the nematic discotic and columnar 
mesophases. 

order as most of the molecules tend to position themselves in columns. In addition, 

those columns tend to arrange into hexagonallattices [2-4,32]. Figure 1-5 illustrates 

the arrangement of the mole cules in the nematic discotic and columnar phases. Chiral 

nematic discotic phases may also be found in nature. Finally, it is worth noticing 

that while sorne compounds exhibit only one liquid crystal mesophase (e.g., PAA) 

others dis play several (e.g., cholesteryl myristate). 

Liquid crystals made from polymers. Polymers are macramolecules that 

form when chemical reactions link shorter molecules together. Essentially two main 

types of polymers may give rise to liquid crystal phases. The first type is main chain 

polymers which are composed of fairly rigid mono mers resembling the previously 

discussed rad and disc-like mesogens and connected end to end by flexible segments. 

Although these long polymers may move around and collide with each other in the 

liquid crystal phases, the rigid rod and disc-like units tend to remain pointing in one 

common direction. The second type of polymers forming liquid crystal phases are side 

chain polymers which are composed of one single completely flexible polymer with 

rigid mesogenic units attached as side chains along its length by other short flexible 
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Figure 1-6: Different types of polymers forming liquid crystals. (A) Main-chain 
polymer made of rod-like units; (B) Main-chain polymer made of disc-like units; (C) 
Side-chain polymer made of rod-like units; (D) Side-chain polymer made of disc-like 
units. 

segments. In liquid crystal phases, the long flexible parts of these polymers wind 

by however, the rigid mesogenic units attached to them tend to show orientational 

order [2,11,12]. Figure 1-6 illustrates types of polymers capable of forming liquid 

crystal mesophases. 

As in the case of liquid crystal phases formed from small organic molecules, 

polymer-based liquid crystal phases can be either thermotropic or lyotropic. Ther

motropic liquid crystals are often referred as polymer melts whereas lyotropic poly

mer liquid crystals are denoted as polymer solutions [11,12,33]. In addition to these 

similarities with small mesogens systems, polymer liquid crystals also form similar 

arrangements namely: nematic and smectic phases (possibly chiral). 
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Figure 1-7: (A) Spherical, (B) rod-like and (C) plane-like amphiphilic units. 

Liquid crystals made from amphiphiles. Amphiphiles are molecules that 

combine a hydrophobic (water-fearing) group at one end and a hydrophilic (water

loving) group at the other end. Amphiphilic or amphipathic molecules also known 

as surfactants (i.e., surface active agents) may form ordered structures in both polar 

and non-polar solvents. These types of liquid crystals belong to the class of lyotrop

ics. Soaps and phospholipids are two important examples of amphiphiles leading to 

liquid crystal phases [2-4]. Amphiphilic molecules form liquid crystal phases that 

are slightly different from the liquid crystals formed by small organic mole cules and 

polymers. When dissolved, at low concentration, in a polar solvent such as water, 

the hydrophobic 'tails' assemble together and present the hydrophilic 'heads' to the 

solvent. The resulting structure for soap molecules is called a micelle and for phos

pholipids it is called a vesicle (inverted-micelle). There is orientational and sometimes 

positional order of the molecules within these structures, but there is no ordering 

of the micelles or the vesicles themselves. At higher concentrations, the spherical 

micelles and vesicles may transform into rod-like or even disc-like amphiphilic units 
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Figure 1-8: Hexagonal (A) and lameUar (B) phases of rod-like and plane-like am
phiphilic units, respectively. 

or else in fiat bilayers [2-4]. Figure 1-7 gives the representations of some possible 

amphiphilic arrangements. At very high concentration ("-'50%), these various am

phiphilic units combine to form larger liquid crystal phases. One example is the 

hexagonal phase, which possesses a hexagonal arrangement of long cylindrical rods 

of amphiphilic molecules. Other examples include the lamellar and cubic phases of 

bilayers and spherical units, respectively [2-4]. Figure 1-8 provides schematics of 

the hexagonal and lameUar phases. 

1.2.4 Where are liquid crystals involved? 

Even though liquid crystals are fluids, the existence of orientational order en-

sures that aU directions in the material are not equivalent. This anisotropy has a 

profound effect on the mechanical, electrical, magnetic and optical properties of the 

various phases making them useful structural and functional materials. lndeed liquid 
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crystaIline phases play a significant role in our everyday life; not only they are becom

ing an increasing part of our high-tech environment but also they are indispensable 

to any biological systems. 

Displays. U ndoubtedly, liquid crystals are best known for their successful 

electro-optical applications whieh started in the mid-1960s and whieh now represent 

a multi-billion US-$ global market. Though initially appeared in wrist-watches, 

calculators and clocks, liquid crystals are now being used for aIl kinds of advanced 

domestie applications, like cell phones, cameras, automobile dashboards, switchable 

window panels, laptops and other fiat panel displays [2]. Their advantage was first 

their low power consumption and small size; now they are competitive with other 

technologies for attractiveness, eaSe of viewing, cost and durability. 

Electro-optical applications may USe nematie or smectie liquid crystal phases as 

weIl as their twisted counterparts. These applications are based on the fact that the 

liquid crystal mesogens can be oriented by low external electric fields (a phenomenon 

known as Freederieksz transition) and therefore can disrupt the anisotropie optieal 

property of the mesophases [2]. 

Sensors. Liquid crystals are also used in various sensors, mostly tempera

ture sens ors [2]. Applications include: fever thermometers, hot warning indieators, 

monitoring deviees for packaging of child food, portable battery tester, mood rings, 

color changing jewelry, decorative wall coverings, etc. Temperature sensitive films 

have also been developed to detect local heating due to the preSence of radiation or 

certain vapors, or due to the poor electrical connections on circuit boards. Medi

cal thermography remains the most important liquid crystal sens or application as it 
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provides an aid in the diagnosis of circulatory problems and cancerous growths while 

being able to map the local temperature variations of the skin. These thermo-optical 

devices are usually based on chiral nematic liquid crystals and their associated capa

bility to reflect different colors as the length of their pitch varies with temperature. 

The pitch can also vary with concentration and pressure that provides the basis for 

other sensors. 

Fibers. One of the best examples of fiber formed from a liquid crystal phase 

is the ultra-high strength polyamide Kevlar [2,11,12]. Although slightly denser than 

nylon, Kevlar is roughly thirty times stronger. In fact pound per pound, Kevlar is 

st ronger than steel (steel is five times denser). A few of Kevlar's applications include 

ropes and cables; tires; protective and performance apparels; friction products and 

gaskets; composites; adhesives and sealants. 

Kevlar is formed from a lyotropic liquid crystal phase that is produced by dis

solving a polyamide in sulphuric acid. The solution is then extruded in such a way 

that the polymer chains acquire significant orientational order. FinaIly, the fluid 

is solidified by removing the solvent. The orientational order of the main chain is 

'frozen in' during this last step providing the fiber its ultra-high strength. 

Surfactants. Surfactants are wetting agents that lower the surface tension of 

a liquid, allowing easier spreading, and lower the interfacial tension between two 

liquids. Surfactants play an important role in many practical applications and prod

ucts, including detergents and emulsifiers. The detergent industry produces soaps, 

powders, creams, and foaming agent of aIl kinds. On the other hand, in the food 

industry, emulsifiers serve to maintain texture, color, flavor or viscosity. Emulsifiers 
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are used in mayonnaise, salad dressings, marshmaIlow, whipped cream, beer, cheese, 

ice cream, and jeIly. Another use of surfactants is in the oil recovery industry. Sur

factants are used to trap the oil located in porous rocks prior pumping. There are 

also medical applications like surfactant-assisted drug release strategies. In aIl those 

applications the surfactants form a lyotropic liquid crystal phase at sufficiently high 

concentrations [2-4]. 

Biology. Living organisms are composed of cells which constitute the various 

organs and perform varied fun ct ions of life. Clearly, for these functions to occur 

the cells must have a form and a structure and there must be mechanisms by which 

materials enter and leave the cells. The medium which provides the cell a struc-

ture and allows the selective transportation of materials between cells is the plasma 

membrane. The cells utilize the properties of the plasma membrane to organize the 

environment and appropriate interactions between the cells. Plasma membranes are 

made of phospholipids that have a structure resembling soaps and detergent surfac-

tants where the molecules are amphiphilic. Biological membranes are lyotropic liquid 

crystals generated by the dissolution of phospholipids in water [2-4]. Many biologi

cal polymers also form lyotropic phase, including cellulose, polypeptides, DNA, and 

linear viruses like tobacco mosaic virus. 

1.3 Background on the modelling and simulations of nematic defects and 
textures 

The importance of nematic liquid crystals in the realm of science and engineering 

has grown remarkably fast in view of the fact that even their existence as a phase 

of matter was not recognized until the end of the 19th cent ury. Due to their unique 
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combinat ion of fluidity and partial orientational ordering, nematic liquid crystals are 

used in a number of technological applications and are omnipresent in nature. 

As any ordered media nematic liquid crystals often contain sharp, localized 

distortions called defects that are of various dimensionality [2-4,11,31,32]. The 

distribution of these defects, called texture, usually has a profound impact on the 

structure and therefore on the physical properties of a given system. In some cases 

they can be rather detrimental while in other cases they are desirable. Due to the 

liquid character of the medium, nematic defects can move under the effect of elastic 

forces until they reach some equilibrium position that minimizes their associated 

distortion free energy. 

In order to eventually remove or more generally control these defects and hence 

optimize the performances of a nematic-based system, it is imperative to thoroughly 

understand their static and dynamic properties. In this thcsis modelling and simula-

tions of nematic defects and textures is performed to achieve that goal and therefore, 

this section gives an overview of the invoked theoretical background. 

1.3.1 Basic description of orientationai order in terms of the director 
field n(r) 

Order in nematic liquid crystals is purely orientational. Considering a micro-

scopic region of a nematic sam pie containing a sufficiently large number of molecules, 

orientational order is materialized by the tendency that mesogens have to roughly 

orient their long axis in parallel along a common direction while keeping their centers 

of mass randomly distributed as in ordinary liquids [31,32]. This average preferred 

orientation, along which the mole cules point, is commonly referred as the director 
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Figure 1-9: The basic order parameter of nematics: the direct or n. The director is 
a headless unit vector giving the average preferred orientation of the molecules in 
microscopic region of the sample. 

of the mesophase and is often denoted by the unit vector n. The direct or n is 

the basic order parameter used to model orientational order in a nematic phase. 

A quintessential property of ordinary, non-ferroelectric, nematic mesophases is that 

their constituent molecules are non-polar and therefore there is no physical difference 

between the states -n and n. As it will be soon apparent this equivalence has pro-

found impact on the symmetry of the defects and their associated textures. Figure 

1-9 illustrates the concept of director in a microscopie region of a nematic sample 

constituted of rod-like molecules. 

Defining a director at every spatial position r of the nematic system (i.e. defining 

the director field n(r)), leads to a macroscopic description of orientational order 

[31,32]. In absence of any perturbing external forces (electric, magnetic or fiow 

fields), the orientational order in a nematic sample is completely determined by the 

shape of its container and its anchoring (Le. surface-imposed molecular orientation) 

[3,4]. When, for example, a nematic sample is sandwiched between two parallel fiat 

plates with identical anchoring conditions and forms a thin film, the orientation of 



19 

5' 

A B c 
Figure 1-10: Homeotropic (A), planar (B) and bended (C) configurations. The short 
black segments represent headless local directors. (A) and (B) are homogeneous 
direct or fields while (C) is heterogeneous. 

the molecules at equilibrium is homogeneous and solely determined by the surface

imposed molecular orientation. This phenomenon is due to the fact that the nematic 

orientational or der is long-range. 

However, if the same nematic sam pIe is now sandwiched between two paraIlel 

fiat plates imposing mutually different molecular orientations, the bulk orientational 

order cannot be any longer homogeneous. In such a case, the molecules must pro-

gressively vary their orientation throughout the sample in order to satisfy the differ-

ent orientational constraints imposed by the top and bottom surfaces. Accordingly, 

aIl the local directors undergo smooth progressive orientational variations in space. 

Figure 1-10 exemplifies the different situations described above by means of direct or 

fields. 

1.3.2 Nature of defects and textures in nematics 

The generic term defect usuaIly designates a local imperfection that breaks the 

order of the molecular arrangement in an ordered medium. In nematic liquid crystals, 

defects break the rotation symmetries and can be simply seen as local, small-scale, 
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sharp distortions of the orientational order [34, 35]. Much like as in the case of 

global, large-scale, gentle deformations considered in the previous section, defects 

often originate from an incompatibility between geometric and anchoring constraints 

as weIl as from the possible presence of orientationally disturbing external forces. 

Defects often also show up during phase transition-related phenomena such as the 

nucleation and growth of isolated nematic domains in an isotropie phase or in the 

front propagation of a nematie phase in an isotropie phase. 

Nematie liquid crystals exhibit an extremely rich variety of defects which can 

occur in the bulk as weIl as at the surface of the material (only bulk defects are dis

cussed in this thesis). These defects are generaIly classified according to their di men

sionality and to the nature of their core. Nematie defects can be zero-dimensional, 

one-dimensional or two-dimensional and consequently be in the form of points, lines 

or walls, respectively. Then depending on whether or not a director field n(r) can 

be defined in their core, they are termed singular or non-singular [31,32,34-37]. 

Line defects. The most common type of defect found in nematies is the line 

defect and nearly aIl of them are singular. Singular line defects are often referred 

as disclinations [31,32,34-36]. Various types of disclinations are found in nematic 

samples. Of particular interest in this thesis are the so-caIled wedge disclinations. 

Wedge disclinations are planar director field configurations which, away from 

their singular core, can be described by the director field n = (cos <P, sin <P, 0) with 

<P = M8+<po and 8 = arctan(~). In these expressions <p is a function giving the angle 

made by the direct or field with respect to the x-axis while M and <Po are constants 
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Figure 1-11: Director configurations around vanous wedge disclinations (singular 
line defects). (A) M = +1, (B) M = +1/2, (C) M = +1/2 & CPo = 7r/4, (D) 
M = -1, (E) M = -1/2 and (F) M = -1/2 & CPo = 7r/3. Note that no director can 
be defined in the core of the various disclinations. 

corresponding to the strength of the disclination and the angle made by the tangent 

of the director when cp = 0, respectively [31,32,35,37]. 

The magnitude of the strength M corresponds to the number of 7r rotation made 

by the direct or when encircling the core of the disclination anticlockwise. The values 

taken by the strength IMI are multiples of ~. The sign of the strength M is positive 

or negative according to anticlockwise or clockwise rotation of the direct or when 

encircling the defect core [31,32,35]. Figure 1-11 gives schematic representations of 

the most common wedge disclinations found in nematics in terms of their director 

fields. 
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The study of defects has played an important role in understanding the structure 

and physieal properties of liquid crystals. In fact the observation and identification of 

defects in a polarizing microscope enabled Friedel to elucidate the different structures 

of liquid crystals and to classify them [3,4,31, 38J. 

The generic term texture was initially coined to denote a partieular signature 

left by an arrangement of defects in a nematic sample observed under polarized 

light [31,32,34-36]. Today, the term texture is however also often employed in a 

broader sense to designate the particular direct or field adopted by a liquid crystal in 

a given geometry, which can be ironically defect-free sometimes [l1J. 

The two textures that have permitted the identification of the nematic mesophase 

are the Threaded and Schlieren textures [3,4,31,38]. In the Threaded texture that 

can be observed in thick nematic samples, the wedge disclinations are roughly par

allel to the surfaces and appear as freely floating flexible filaments. The visibility of 

the filaments or threads in polarized and unpolarized transmitted light microscopy 

is due to their high phase contrast with respect of the rest of the bulk material 

(i.e. the threads scatter light strongly). The Threaded texture is the one that gave 

the nematic phase its name, from VT}fJ,Œ (nema), the Greek word for thread. The 

Schlieren texture also known as Nuclei texture is usually observed in rather thin ne

matie samples using polarized light mieroscopy. In this texture, the signature of the 

wedge disclinations, which are roughly perpendieular to the sample surfaces, consists 

of dark brushes connected to points called nuclei. The black stripes (extinctions of 

light) correspond to the regions where the nematic directors are either parallel or per

pendicular to the plane of the analyzer or polarizer. Moreover, the number of black 
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(A) (B) (C) (D) 

Figure 1-12: Computed Schlieren texture for different orientations of the ensemble 
polarizer-analyzer (indicated by the cross). The foUowing disclination strengths can 
be identified: (1) M = -1, (2) M = +1, (3) M = -1/2, (4) M = -1, (5) M = +1/2 
and (6) M = -1/2. AU the disclinations are running out-of-the visualization plane 
going through the nuclei. 

brushes emanating from the nuclei and their sense of rotation as the polarizer and 

analyzer are rotated at unison gives the strength of the line defect [39]. The magni

tude of the disclination strength is given by the relation: IMI = Number ~f brushes. The 

sign of the strength is then determined to be positive or negative according to the ro-

tation of the brushes with or against the direction of the ensemble polarizer-analyzer, 

respectively. The nuclei or meeting points of the brushes remain unaffected by the 

rotation of the polarizer-analyzer ensemble [3,4,31,32,36,39]. Figure 1-12 shows a 

Schlieren texture computed from a given director field for different orientations of 

the ensemble polarizer-analyzer. 

The sum over aU disclination strengths (including their sign) of a very large 

sample usuaUy tends to vanish. TypicaUy, two connected disclinations have opposite 

signs. Note that due to the mobile character of their medium, disclinations may 

move within the sample and therefore their overaU distribution is generally not a 
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static feature. Disclinations of opposite signs attract each other while those of equal 

signs repel [3,4]. 

If two disclinations of opposite signs but same strength eventually merge they 

annihilate to yield a uniform defect-free sample area. However, if two disclinations 

have opposite signs but different strengths they form a new defect whose strength 

is equal to the sum of the strengths of the two original defects (i.e. the sum of the 

strength is always conserved). Furthermore, a disclination of strength IMI > 1/2 

can, under certain conditions, dissociate into two disclinations [3,4,39]. 

Now more specifically, depending on its energetic cost to the system, a IMI = 1 

singular line defect can: a) remain as disclination, b) dissociate into two IMI = 1/2 

singular line defects or c) can transform into a non-singular IMI = lline defect. The 

latter process is known as escape into the third dimension and is of particular interest 

in this thesis. It consists in the progressive bending of the direct or field out-of-the 

plane perpendicular to the original disclination line [40-42]. The resulting director 

configuration or texture is easily recognized in nematic-filled cylindrical capillaries 

with cavity walls imposing a radial anchoring. In such a case the direct or field 

can be parametrized in cylindrical coordinates as: n = (cos <P, 0, sin <p) with <P = 

±2 arctan (~) =f ~ and R standing for the radius of the cavity. Figure 1-13 provides 

the direct or fields corresponding to the singular and non-singular IMI = 1line defects 

that can be found in a cylindrical cavity. 

Point defects. In addition to li ne defects, nematic liquid crystals can also ex

hi bit point defects. These defects often referred as hedgehogs but also sometimes as 

monopoles or umbilics are always singular [3,4]. There are two types of point defects 
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B 

Figure 1-13: Director fields corresponding to the planar radial with line defect 
(PRLD) and escape radial (ER) textures. The PRLD texture (A) contains a singular 
line defect running along the cavity axis while the ER texture (B) is continuous. In 
both cases the strength of the line defect is however M = + 1. The head-nail con
vention, where the head of the nail is farthest from the reader, is used to show the 
tilting of the directors. 

1 1 

0} 0} 
1 1 

(A) (B) 

Figure 1-14: Schematics of the M = +1 radial (A) and M = -1 hyperbolic (B) 
hedgehogs using flux lines. The flux lines are everywhere tangent to the director 
field. Note that the origin points are singular. 
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that are of interest in this thesis: the radial hedgehog and the hyperbolic hedgehog. 

The direct or fields corresponding to the radial and hyperbolic hedgehogs can be de

fined, away from their singular cores, by the expressions: n = (x, y, z)j Jx2 + y2 + Z2 

and n = (-x, -y, z) j J x2 + y2 + z2, respectively. Figure 1-14 shows schematic of 

the two type of hedgehogs using the flux lin es. The flux lines are everywhere tan

gent to the direct or field [43]. The radial point defect has a pure radial structure 

and any cross section containing the central singularity exhibits the direct or pattern 

of the M = + 1 wedge disclination line previously described. On the other hand, 

the hyperbolic point defect has a mixed nature since its direct or field in the plane 

z = 0 also corresponds to the M = + 1 wedge disclination configuration, its x = 0 

and y = 0 planes correspond to the M = -1 wedge disclination pattern. Like the 

wedge disclinations, the point defects carry a strength M. The radial and hyperbolic 

hedgehogs respectively carry the strength M = + 1 and M = -1 [3,4]. 

An intuitive way to create a radial hedgehog is to place a nematic sample in a 

sphere whose surface is enforcing a radial anchoring. This occurs naturally when a 

nematic forms small droplets in a non-miscible fluid, for example. Another possible 

occurrence of point defects is when two non-singular defect lines meet in a cylindrical 

capillary and they have opposite escape directions. In such a situation, both the 

radial and hyperbolic hedgehogs are formed. The texture formed by an alternative 

distribution of point defects in a cylindrical cavity is called escape radial with point 

defects (ERPD). This texture presented in figure 1-15 is offundamental importance 

to this thesis (see Chapter 4 ta 7) as it has been observed along the spinning extrusion 

duct of spiders [18,25,27,44]. 
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Figure 1-15: The escape radial with point defects (ERPD) texture occurring in 
nematic-filled cylindrical cavities with sidewalls enforcing homeotropic anchoring. A 
singular point defect is formed at every junction of two oppositely oriented escaped 
domains. 

When two point defects of IMI = 1 strengths but opposite signs merge together, 

they annihilate and give a non-singular M = + 1 line defect or escape line defect. 

Another interesting feature of point defects that is of particular interest to this 

thesis is their connection to IMI = 1/2 wedge disclinations. Indeed, IMI = 1/2 

wedge disclination loops or rings can emerge out of IMI = 1 point defects [45-48]. In 

such a pro cess the total strength or charge of the defect is conserved. This intimate 

relationship between point and loop singularities rais es the question: Do point defects 

exist or are they loops which are sim ply too small to be discerned as such? This 

puzzling question is studied in this thesis and answers are presented in chapters 6 

and 7. Figure 1-16 pictures the broadening of singular point defects into disclination 

loops of half-integer strength. 

Wall defects. The last class of defects encountered in nematics and encoun-

tered in this thesis is the wall defects (Chapters 2 & 3). In the field of nematic 

defects, the term wall is often used to describe a steep but continuous re-orientation 

of the direct or field by an angle of 7f radians involving a plane and hence wall de-

fects are often referred as inversion walls [4,6,8,34,49]. Inversion walls alone are 

non-singular defects but their structures may involve singular wedge disclinations 
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Figure 1-16: Broadening of singular point defects into disclination rings or loops of 
strength M = ±1/2. (A) the M = +1 radial hedgehog splits into a M = +1/2 
disclination loop and (B) the M = -1 hyperbolic hedgehog splits into a M = -1/2 
disclination loop. 
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Figure 1-17: Schematic of a typical inversion wall defect between two 1 M 1 = 1/2 
disclinations (running out of the drawing plane). The plane of wall is perpendicular 
to the drawing plane. On crossing the wall the direct or continuously rotates by 7r 

radians. 

of various strengths. Despite that wall defects can occur strictly in the bulk of a 

nematic sample, they often occupy the entire cross section reaching the top and 

bottom surfaces (This is the case of wall defects studied in this thesis). Given the 

close relationship to surfaces and disclinations, a particular wall defect is often given 

several different names throughout the literature [4,6,36,49,50]. An example of an 

inversion wall defect is given in figure 1-17. 

1.3.3 Free energy minimization 

In a homogeneous nematic mesophase, all the local direct ors are aligned in 

parallel. This equilibrium configuration of the system corresponds to a state of 

minimum free energy. However, in most circumstances, the shape of the container, 

the anchoring as weIl as the possible presence of external disturbing forces are such 

that the orientational order of the nematic phase is distorted and the orientation 

of the local directors are no longer spatially invariant. In order to determine the 
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orientation taken by the local direct ors in such case, one needs to minimize the free 

energy of the system [3,4,43, 51J. 

The total free energy F of a bounded nematic system is given by the sum of 

bulk and surface terms: F = J fbdV + J fsdS. In its simplest form, the functional 
v S 

fb relating the bulk elastic free energy of the system to the nematic director field 

gradients reads: fb = !f(Vn) : (Vnf, where K is a positive material dependent 

elastic constant. This last expression is known as the Ftank-Oseen elastic free energy 

[3,4,43,51]. The standard expression used for surface free energy density, ls, is due 

to Rapini and Papoular and reads: ls = ~ [1 - (n . e )2], where W is the surface 

anchoring strength and e is a unit vector representing the easy axis or preferred 

orientation of the nematic direct or at the surface [3,4,52]. 

The basic system of equations leading to the equilibrium configuration of the 

direct or field is obtained from variational calculus (i.e. Euler-Lagrange equation) 

and reads: 

(Model 1) { 
8fb _ V' . .Ê.i.!L = -KV'2n = Àbn 8n 8'i7n 

~ + N· Nb = - W (n . e) e + N . KV'n = À n & ~n s 

Onn 

Onan 
(1.1) 

In this system of equations, Àb and Às are Lagrange multipliers introduced to fulfill 

the unit length constraint of the nematic director n in the bulk and at the surface; N 

is a unit vector representing the surface normal while n and an respectively represent 

the computational domain and its boundary. Model l, given by system 1.1, is used 

in chapter 2 and 3 to simulate and analyze the continuous structure of inversion wall 

defects occurring in a nematic thin film. 
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As explained in the previous section, no director field can be defined in the core 

of a singular nematie defect. If in su ch case it is still possible to do various analytical 

calculations excluding the core region of the defect, it is however not practieally 

possible to perform any serious computer simulations. The reason for this is that 

trying to assign a director in the singular region leads to infinite direct or gradients 

and therefore an infinite elastic energy. One simple way to remedy this problem 

is to allow the direct or field to relax from its unit length constraint in the singular 

region [53,54]. Assuming that anchoring strength is infinite and that therefore surface 

molecular orientation is fixed, the dynamic evolution of the direct or field toward its 

equilibrium configuration can be written using this approach as: 

{ 

'Yân = \7 . 2.h.. _ âfb = K [\72n _ (n
2
-1)n] 

(Model II) ât âV'n ân 8
2 

n=no 

Onn 

Onan 
(1.2) 

In this equation, 'Y is a constant related to the rotational viscosity of the director 

and J is a penalty parameter related to the size of the defect core. This approach is 

used in chapter 5 to simulate the collective interaction between point defects along 

a nematic cylindrieal capillary. 

1.3.4 Continuous description of orientational order in terms of the tensor 
order parameter field Q (r) 

So far the arder parameter use to describe the arientatianal arder in the ne-

matie phase has been a unit vector called director and denoted by n. Using this 

approach however may present two serious problems depending on the nature of de-

fects involved in the texture. The first potential fiaw is, as mentioned in the previous 
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section, that the direct or field cannot be defined when modelling a texture containing 

singular defects. The second problem with this vectorial approach is that M = ±1/2 

line defects cannot be described as the n(r) = -n(r) restriction on the direct or field 

is not retained after discretization of the Laplacian operator appearing in the gov

erning equations. [Model l (cf. system 1.1) and II (cf. system 1.2).] A simplistie 

approach to palliate the former problem consists of abandoning the Lagrange mul

tipliers and add a penalty term instead so that the unit norm of the director field is 

only satisfied away from singular regions. This technique is particularly useful when 

dealing with singular defect where a detailed analysis of the defect core structure 

and energy is not necessary. The technique is however not applicable when dealing 

with M = ±1/2 line defects. 

A more physically sound approach to treat nematic defects and textures is to 

use the tensar arder pammeter Q(r) [3,4,31,33,55,56]. Using the Q(r)-tensor as the 

order parameter presents several advantages: the first being that it is continuous in 

any type of defect; the second is that it automatically retains the head-tail invari

ance of the direct or (n(r) = -n(r)); finally in contrast to the director n(r) that can 

only describe uniaxial ordering, the tensor order parameter Q(r) can also describe 

isotropie as weIl as biaxial symmetries. The fact that Q can describe isotropie states 

is partieularly use fui when one is, for example, interested in investigating ordering 

evolution during phase transitions. On the other hand biaxial states are common in 

the vicinity of defect cores as they help lower the free energy of the system. The ten

sor order parameter Q(r) is a real symmetric and traceless tensor and has therefore, 

in the most general situation, five independent degrees of freedoms (in contrast, the 
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Figure 1-18: Non-continuous (A) vs. continuous (B) description of orientational 
order around a M = +1/2 wedge disclination. Orientation and amplitude of boxes 
are given by the eigenvectors and corresponding eigenvalues, respectively. The inner 
core of the defect as well as its periphery are uniaxial (boxes with one distinct edge) 
while the circular transition region is biaxial (boxes with two distinctive edges). 

direct or n(r) has only two). It can be represented, in terms of its eigensystem as 

eigenvectors forming an orthogonal triad and J1n, JLm and JLI are their correspond-

ing eigenvalues. The eigenvalues JLi (i = 1,2,3) of the tensor order parameter are 

restricted by: -1/3 :::::; JLi :::::; 2/3 and JLn + JLm + JLI = o. The director triad and the 

eigenvalues characterize the orientation and the strength of alignment of the phase 

respectively. The largest eigenvalue in magnitude or absolute value, JLn, gives the 

strength of ordering along the uniaxial direct or n. The second JLm and third JLI eigen-

values correspond respectively to the biaxial directors m and 1 (1 = n x m). Figure 

1-18 compares representations of orientational order around a typical disclination 

line using the vectorial (n(r)) and tensorial (Q(r)) approaches. 

In the case of strong anchoring conditions, surface orientation is fixed as any de-

viations can cause a disproportionate energy penalty to the system. Therefore surface 
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free energy does not need to be taken into account in the free energy minimization 

process. The bulk free energy density of a nematic system expressed in terms of the 

tensor order parameter, which is commonly referred as the Landau-de Gennes free 

energy, is given by the sum of a homogeneous fh and a gradient fg contribution (Le. 

fb = ih + fg) [3,4,31,56]. The homogeneous free energy density describes short-

range or de ring effects and it penalizes any deviations from the equilibrium uniaxial 

ordering and reads: fh = 4QijQji - ~QijQjkQki + ~ (QijQji)2, where A is a function 

of the thermodynamic driving force (Le temperature or concentration), and Band 

C are positive thermodynamic constants describing the equilibrium nematic order. 

The gradient free energy density is an analogue to the Frank-Oseen bulk free energy 

which penalizes the long-range variations of the tensor order parameter Q. In its 

simplest form it is given by: fg = ~"\hQij,hQij, where L is an elastic constant. 

The dynamic equation describing the relaxation of the tensor order parameter 

Q(r, t) towards an equilibrium value that minimizes the total free energy under the 

different constraints (shape and size of the container, anchoring at its surface, etc.) 

is then given by [3,4,31,56]: 

onn 
(1.3) 

onôn 

In the above equation, 7] is a constant related to rotational viscosity. Model III is 

employed in chapters 4, 6 and 7 to analyze textures composed of singular line and 

point defects. 
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1.4 Motivation and objectives 

Two different problems involving defects and textures in liquid crystal-based 

applications are examined in this thesis. Both the problems involve nematic phases 

of rod-like mesogens in confined geometries. The first problem deals with a polymer

dispersed liquid crystal (PDLC) film that forms the basis for electro-optical applica

tions such as displays or smart windows (light shutters). 

PDLC systems are liquid crystal-polymer composites where in general 50-80 

wt% of low molecular weight liquid crystalline material is dispersed in a continuous 

polymer matrix. The liquid crystalline domains normally have a droplet-like mor

phology but larger cellular (polygonal shape) morphology may also be found instead. 

PDLC applications are based on the ability that the mesogens of a nematic phase 

have to align under an electric field. In a typical application, a thin PDLC film (few 

microns thick) is deposited between clear plastic covers coated with a very thin layer 

of conducting material. 

Transmission of light through a PDLC thin film depends primarily on scatter

ing which in turn depends upon the difference in refractive index between the liquid 

crystal dispersed phase and their environment. In the 'field-on' state the dispersed 

liquid crystal phase is forced to orient uniformly and therefore there is very little 

difference in the refractive indexes and consequently the material appears transpar

ent. However, in the 'field-off' state, the dispersed liquid crystalline material is not 

constrained to orient in a particular direction and therefore there is a considerable 
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Figure 1-19: Cartoon giving the basic functioning of a PDLC film design for electro
optical applications. 

difference in the refractive indices and hence strong scattering. The film in the field-

off state therefore looks milky. Figure 1-19 illustrates the basic functioning of a 

PDLC-based electro-optical device. 

Anchoring or the surface preferential orientation adopted by the mesogens plays 

a significant role in the preparation and the operation of these electro-optical devices. 

Indeed, in the absence of any external electric field, the bulk orientation of the 

mesogens is completely determined by their anchoring at the confining boundaries. 

This anchoring may be perpendicular (homeotropic), parallel (planar) or tilted with 

respect to the surface. Various mechanical and chemical techniques are available to 

control the orientation of the mole cules at the surface [9,10,32,39]. Transitions from 

one anchoring condition to another may occur when certain parameters of the systems 

are changed. In this first part of the thesis (Chapters 2 and 3), the focus is on a 
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Figure 1-20: Cartoon illustrating the apparition of wall defects in the PDLC film 
and subsequent ill-functioning of the device due to a temperature driven anchoring 
transition. 

defect structure known as inversion wall that frequently arises during a temperature-

driven anchoring transition in a polymer composite film destined for new electro-

optical applications (cf. figure 1-20). The objective of the work is to explain various 

experimental observations made by confocal polarizing microscopy and provide a 

fundamental understanding of interface-induced defect formation pro cesses of direct 

impact to electro-optical materials and devices. 

The second defect-centered problem examined in this thesis concerns the bio-

spinning of spider silk. Spider silk has mechanical properties that are comparable 

or even superior to the best man-made superfiber: Kevlar. However, in contrast 

to this industrial high-performance aramid-based fiber, spider silk is ecological and 

biodegradable. It is manufactured in an aqueous environment (Kevlar is dissolved in 

sulphuric acid) under benign processing conditions, including ambient temperature 

and pressure. Accordingly, there is a considerable interest in understanding the 

design and processing details of silk-precursor materials. Doing so may eventually 
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Figure 1-21: Cartoon comparing the spinning technologies of industry and nature 
for high-performance liquid crystal based-fibers. 

lead to the development of environmentally friendly pro cesses for the fabrication 

of new high-performance fibers. Figure 1-21 show a pictorial comparison between 

Kevlar and silk fibers. 

The spinning apparatus of spiders basically consist of three major regions: a tail 

where the silk precursor material is synthesized, a central bag where it is stored in 

a concentrated solution, and a spinning extrusion duct from which the silk fiber is 

drawn. Spider silk, like Kevlar fiber, is spun from a lyotropic nematic liquid crys-

talline precursor. The emergence of this mesophase is due to the high concentration 

of rod-like molecules or aggregates in the watery dope solution. The processing of silk 

is also known to involve strong changes in orientational order of the nematic liquid 

crystal phase. These changes are extremely important as they affect the processabil-

ity of the silk precursor as weIl as they determine the microstructural details of the 

solidified fiber and hence its remarkable mechanical properties. Of particular inter-

est is the presence of a series of point defects in the tubular extrusion duct [18,27]. 

These defects seem to disappear on approaching the very end of the spinning duct to 

give a predominantly axial structure. This structure is then retained in the solidified 
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Figure 1-22: Schematic view of the spider silk spinning apparatus. 

fiber. Whether the presence of point defects along the extrusion duct of the spin-

ning apparatus of spiders is an 'accident of nature' or a 'necessary ingredient' of the 

bio-spinning process is unknown at this time. Nevertheless, a better understanding 

of the overall process is required to improve the actual industrial spinning technique 

that is unable to pro duce synthetic fibers with mechanical properties as competitive 

as the one produced by spiders. In the second part of the thesis (Chapters 4 to 7, 

the focus is on the static and dynamic properties of nematic point defects confined in 

cylindrical geometries as they arise along spider extrusion duct. Figure 1-22 provides 

a diagram of the silk spinning gland. 

The unifying theme of this thesis is emergence, stability, and interaction of de-

fects with other defects and with the confining substrates, in engineering devices 

(PDLCs) and biological proeesses (silk bio-spinning). In PDLC, the defects of in-

terest are 2D continuous inversion walls, and in the spider spinning proeess they 

are singular and non-singular disclination lines and point defects. Henee this thesis 

covers aIl the possible defects found in nematic media: OD, ID, 2D, singular and 
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non-singular. The role of substrate-liquid crystal interactions and substrate curva

ture in the engineering device and in the biological pro cess is also important. In 

the electro-optical device, the substrate geometry is flat and the defect-nucleation 

pro cess is driven by a transient re-orientation driven by changes at the interfaces. 

In the bio-spinning process, the substrate is highly curved and the defect-nucleation 

pro cess is due to a permanent strong anchoring on a curved interface. 

1.5 Methodology and organization 

In this thesis, modelling and simulations are used to investigate the behavior of 

defects and textures in two different nematic-based systems. With the availability 

of affordable computer power, this approach is becoming increasingly popular and 

is regularly used to explain and complement available experimental results. One of 

the forces of the modelling and simulation approach is that it can overcome length 

and time sc ales issues that often render experimentations difficult or even impossible 

to realize. Modelling and simulations is also able to predict scenarios not (yet) 

realizable in experiments and allow to formulate new hypotheses relatively fast and 

easily. In the specifie study of nematic defects and textures, analytical and numerical 

solutions are often indispensable to interpret experimental results obtained from 

complicated visualizing techniques such as nuclear magnetic resonance (NMR) or 

fluorescence confocal polarizing microscopy (FCPM). Three different models are used 

to simulate the behavior of defects and textures. The choice of model is motivated 

by the singularity, strength and details of the defect core to be analyzed. 



l Nematic defects and textures 

Point and line defects in a nematic cylindrical cavity 
subjected to homeotropic onchoring in fiber processing 

/ 

Chopters IV - VII 

Interactions between two 
point defects 

Chapter IV 

MODI?LIII 

Chopter V 

MODELII 

Stobility of ring defects in 
3D (Static) 

Chopter VI 

MODI?LIII 

Interactions between ring 
defects in 3 D (Dynamics) 

Chapter VII 

MODELIII 

Figure 1-23: Thesis organization. 

./ 

./ 

41 



42 

The organization of this thesis is summarized in figure 1-23. Chapters 2 and 3 

treat the problem of inversion wall defects in a polymer-liquid crystal composite thin 

film intended for a new PDLC-based optical device using the director model 1. Chap

ter 2 presents the published work stemming from a collaboration with the research 

group of Professor Mohan Srinivasarao at the Georgia Institute of Technology in 

Atlanta [57]. In this work, the Georgia Tech group contributes the visualization and 

characterization of the inversion wall defect using fluorescence confocal polarizing 

microscopy while the computational analysis is my work. Chapter 3 is based on an

other publication [58] and presents a deeper, more detailed modelling and simulation 

analysis of the inversion wall problem. An new analytical expression is provided to 

estimate the anchoring strength at liquid crystal-polymer interfaces. Chapt ers 4 to 7 

concern nematic point and line defects in a cylindrical cavity enforcing homeotropic 

(i.e. radial) anchoring and is motivated by the need for a better understanding 

of the texturing undergone by the spider silk precursor throughout a micron-sized 

tubular extrusion duct. The content of chapter 4 originates from publications [59] 

and investigates the interactions between two oppositely charged point defects using 

the Landau-de Gennes tensor approach (Model III). Chapter 5 from [60] considers 

the interactions between many point defects randomly distributed along the axis 

of cylindrical cavity subjected to homeotropic anchoring using the direct or model 

II. Chapter 6 presents a detailed three-dimensional static study of nematic point, 

line and ring defects confined in a cylindrical geometry using the Landau-de Gennes 

model III. This work appears in [61]. The content of chapter 7, which appears in [62], 

provides a three-dirnensional dynarnic analysis of ring and point defects using tensor 
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model III. Finally, chapter 8 summarizes the conclusions and offers the contributions 

to original knowledge of the thesis. Recommendations for future investigations are 

also proposed. 
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CHAPTER 2 
Microscopie Observations and Simulations of Bloch Walls in Nematic 

Thin Films 

2.1 Summary 

We study Bloch walls defects formed by quenching nematic thin films from 

planar anchoring to homeotropic anchoring through a temperature-driven anchoring 

transition. The direct or profiles of the walls are directly visualized using fluorescence 

confocal polarizing microscopy, and shown to agree well with the simulation based on 

the Frank elasticity theory. A pure twist wall exists if the ratio of sample thickness, 

to surface extrapolation length, p, is smaller than or close to 1; while a diffuse Bloch 

wall is obtained if p is much greater than 1. 

2.2 Introduction 

A nematic liquid crystal (LC) possesses long range orientational order along a 

direction n, known as the direct or. A wall defect in a nematic phase is a two dimen-

sion al defect that separates regions with different director orientation, which usually 

forms during a fast realignment process. One such example is the Freedericksz tran-

sition, where the LC director is realigned by an external field perpendicular to the 

original alignment [1]. The direct or can rotate in two opposite directions (n = -n) in 

response to the applied field, thus leading to a 1800 inversion wall [1,2]. Fig. 2-1(a) 

shows a schematic direct or configuration of the so-called I3loch wall [3] consisting of 
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Figure 2-1: (a): A pure twist Bloch wall with the wall thickness d (parallel to x), in a 
nematic film of thickness h (parallel to z). The head of the nail sign, T, represents the 
end of the nematic direct or below the paper plane. (b) and (c): Microscope images 
(under crossed polarizers and at 45° to the incident polarization) of a Bloch wall in a 
film of TL205 (h=15 J.Lm) in the xy-plane with (b) white light and (c) monochromatic 
(532 nm) illumination. The scale represent 10 J.Lm. (d): Wall thickness dmid at z = 0 
as a function of temperature near the homeotropic-to-planar anchoring transition 
(Tt = 21°C). 
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1800 twist deformation along the x direction. In this figure, d is the Bloch wall thick

ness and h is the sample thickness. Helfrich first theoretically described the director 

configuration of inversion walls formed due to the application of a magnetic field [4]. 

Such wall defects are usually unstable and collapse on themselves in a short time, can 

be stabilized by the bounding surfaces. Ryschenkow and Kleman first reported that 

Bloch walls were formed in nematic thin films due to temperature-driven anchoring 

transitions and remained stable due to weak homeotropic or tilted anchoring [5]. 

They proposed that the polar anchoring strength (Wp ) can be estimated from the 

geometry of the wall: Wp rv K2h/d2, where K 2 is the twist elastic constant of the 

nematics. They predicted and experimentaIly demonstrated that when the surface 

extrapolation length b (defined as K 2 /Wp ) is ;::: h, a pure twist wall is obtained, 

while a diffuse Bloch wall is obtained when b «h,. In practice, the wall thickness 

d, instead of b, may be compared with h to judge which regime the wall belongs to, 

because dis easily obtained from a microscopic observation. We know of no instances 

where such a diffuse Bloch wall has been observed. 

With the help of fluorescence confocal polarizing microscopy (FCPM), one is 

able to observe three-dimensional nematic direct or configuration [6-8]. In the first 

part of this letter, we show direct visualization of two types of Bloch walls, pure twist 

walls and diffuse walls, using FePM technique. This is followed by a simulation of the 

evolution of the Bloch waIls with varying anchoring strengths using Frank elasticity. 

These simulations agree remarkably weIl with the experimental PCPM observation. 
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2.3 Materials and methods 

Nematic fluids we used were TL205 (birefringence !ln = 0.22) and MLC6608 

(!ln = 0.083) from EMerck Industries. Acrylate monomers, n-octyl acrylate, isobonyl 

acrylate, isooctyl acrylate, and l,l,l-trimethylol propane triacrylate (Scientific Poly

mer Products) were used without further purification. The amount of triacry

late was about 10 wt% of the total monomer, which provides the rigidity of LC

polymer composite films through crosslinking reaction. The films were prepared by 

photopolymerization-induced phase separation reported previously [9]. Such films 

contain polygonal LC domains of 30-50 J-lm in width. The film thickness was con

trolled by glass microbeads of standard sizes (Duke Scientific, 5 and 15 ""m in diam

eter). Bloch walls were formed by quenching a film with a planar alignment from 

relatively high temperature to homeotropic alignment through a temperature driven 

transition [8-11]. 

About 0.003 wt% of a fluorescent dye, pyrromethene 546 (Exciton), was also 

added to the pre-polymerization mixtures to help the characterization of the direct or

field using FCPM. The fluorescence transition dipole of the dye was found to align 

parallel to the local nematic direct or [7]. The intensity of the fluorescence is maxi

mum when the polarization of the excitation beam, E, is parallel to n, and minimum 

when E is perpendicular to n, with the ratio of 2.2. The dye was excited using Ar+ 

laser at 488 nm and the fluorescence was collected at 520-560 nm. 
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2.4 Results an discussions 

A Bloch wall in a composite film of TL205 and poly(isooctyl acrylate) between 

crossed polars, shows symmetric and parallel color bands with respect to the center 

yz plane of the wall [Fig. 2-1(b)J when a white light source is used. The color 

sequence from either edge of the wall to the central plane follows that of the Michel

levy birefringence chart [5, 12J. In monochromatic light, the wall between crossed 

polarizers shows interference fringes parallel to the wall [Fig. 2-1(c)]. When the 

wall is perpendicularjparallel to the polarizer, it shows no (best) imaging contrast 

on removal of the analyzer. This is due because the largest variation in refractive 

index is obtained when the polarization of light is parallel to the wall. A structure 

with such a refractive index variation functions as a lens [13] and generates a thin 

bright line. AIl of the above observations confirm that the defect is a Bloch wall. 

In addition, when the films with Bloch walls are heated close to the homeotropic

to-planar anchoring transition temperature (Tt), the thickness of wall d continuously 

expands [Fig. 2-1(d)], indicating a decrease in the anchoring strength near Tt. 

We choose the low birefringence MLC6608 LC to avoid or minimize optical aber

rations in confocal imaging [7,11, 14J and Bloch walls in MLC6608 + poly(isooctyl 

acrylate) were imaged using FCPM. By controlling the film thickness relative to the 

width of the wall, the two types of Bloch walls proposed by Ryschenkow and Kleman 

were realized, Fig. 2-2. 

Fig. 2-2(a) presents the xy and xz optical sections of a pure twist Bloch wall 

in a 8 pm thick film. The fluorescence emission of the dye is proportional to its 

absorbance, which in turn depends on the average orientation of the absorption 
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Figure 2-2: Confocal fluorescence images (xy and xz sections) oftwo Bloch walls: (a) 
with the extrapolation length (c.a. 4.5 /-lm) comparable to the sample thickness (8.0 
/-lm); and (b) with the extrapolation length much smaller than the sample thickness 
(18/-lm). The xz section is along the dashed line shown in the xy section which was 
located 1 /-lm below the top LCjpolymer interface. (c): The fluorescence intensity 
profiles across the wall in (a) at a depth of 1 /-lm (.) and 4 /-lm (0) respectively below 
the top interface. (d): The fluorescence intensity profiles across the wall in (b) were 
taken at 1 /-lm (.) and 5 /-lm (0) below the top interface. The excitation polarization 
in (a) and (b) is along y axis. The scale bars shown in (a) and (b) represent 10 /-lm. 
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dipoles of the dye molecules with respect to the polarization of the excitation E. Since 

the absorption dipole of the dye is parallel to the local Le director, the measured 

fluorescence intensity provides us information on the director orientation. The spatial 

orientation of a nematic direct or can be specified by two angles: tilt angle cP (cP = 

o along the substrate normal direction), and azimuthal angle 0 (0 = 0 along the 

orientation of the wall projection in xy plane). Since the azimuthal angle of the 

director within a Bloch wall is zero, the angle between the director (or the absorption 

dipole of the dye) and E equals 7r /2 - 0 in Fig. 2-2. This simplified relation between 

the fluorescence intensity of the dye and the orientation of the direct or , n(O) is 

described by [15], Ifluor(O) ex: Iem(O) ex: A(O) ex: sin2 (0) where Ifluor is the fluorescence 

intensity collected by the detector,Iem is the emission intensity of the dye, and A is 

the dye absorbance. 

As shown in Fig. 2-2(c), the profiles of the fluorescence intensity across the 

wall at different depths of the film (open and filled circles) almost overlap with each 

other, which suggests that the director variation along z axis, 80/8z, is negligible [5]. 

The wall therefore contains only twist deformation, i.e. it is a pure twist wall. Here 

the wall thickness d (ca. 6 /-lm) is comparable with the thickness h (8 /-lm). 

Fig. 2-2(b) shows the confocal images of a Bloch wall in a 18 /-lm-thick film 

which was made from the same film recipe as Fig. 2-2(a). However, dis a function 

of z, smallest near both top and bottom substrates, and largest at the middle depth 

of the film, i.e., showing a barrel-like profile in the xz optical section. The difference 

between the fluorescence intensity profiles across the wall at different depths (Fig. 

2-2( cl)) suggests that oB/oz =1= O. In this case, d near either of the substrate is 
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much smaller than h. Therefore, our result is consistent with Kleman's prediction: 

a diffuse wall is more stable when the surface extrapolation length b is much smaller 

than the thickness h. 

We now proceed to the simulations of our experiments based on Frank elasticity 

of the nematic fluid which is expressed as F = Iv fbdv + 18 l~ds. According to 

Frank's coming formalism, the bulk elastic free energy density, in the one constant 

approximation, can be written as [1] fb = ~(\7n) : (\7nf, where k is a material

dependent elastic constant. The surface free energy density can be derived from 

Rapini-Papoular expression and reads: fs = ~[1 - (n . e)2] [16], where w is the 

surface anchoring strength and e a unit vector giving sorne preferred orientation of 

the nematic director at the surface also called easy axis. Any deviation of the direct or 

n from e leads to a free energy penalty proportional to w. 

A key length scale for this problem is b which is defined as the ratio of bulk 

to surface energy densities b = kjw. According to the continuum theory, the ther

modynamically stable states of a system are the ones characterized by free energy 

minima [17]. In order to study the effect w on the equilibrium structure of Bloch 

walls, we therefore need to seek director fields that minimize the total free energy. 

The equations governing this problem are derived using variational calculus [18]. 

The computational domain considered is a simple 2D slice taken along the thick

ness of the nematic thin film in the x - z plane. The Euler-Lagrange equation 

associated with the variational problem is [1]: 

(2.1) 
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Where, Àb is a Lagrange multiplier introduced to fulfill the unit length constraint of 

n. This equation is numerically solved subject to general boundary conditions: 

(2.2) 

where v is the outward unit normal to the surface and Às is the surface Lagrange 

multiplier [18,19]. In order to facilitate the analysis of the simulation results, the set 

of equations are non-dimensionalized. The reference length scale in this problem is 

the thickness of the film and therefore we define the dimensionless position vector as 

r = r j h. The key parameter in this problem then becomes the dimensionless surface 

anchoring strength defined as p = hjb = (hw)jb. 

The boundaries conditions on the sides of the computational domain are con-

sidered to be of the Neumann type to emulate an infinitely wide sample and remove 

or neglect any lateral surface torques. On the upper and lower surfaces, Eqs. (2.1) 

and (2.2) are solved with different dimensionless surface anchoring strengths and an 

easy direction normal to the surfaces. 

We examine the structure of an 1800 twist wall when the dimensionless surface 

anchoring strength is p = 1. Fig. 2-3(a) shows that for this value of p, the direct or 

orientation in the wall is almost independent of the nematic film thickness. The 

structure of this quasi pure Bloch wall is more easily seen from Fig. 2-3(b), which 

shows the profiles of ny, at surface and middle depth of the sample. The profiles of ny 

found in Fig. 2-3(b) agree very weIl with the fluorescence intensity profiles obtained 

experimentally (Fig. 2-2(c)), where the surface anchoring strength was close to 1. 
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Figure 2-3: (a) Surface plot of the component ny, when the surface anchoring 
strength p is equal to 1. The direct or field is nearly uniform throughout the sample 
thickness. (b) Profiles of ny at the surface (z/h = 0.5) and midplane (z/h = 0) when 
p = 1. (c) and (d) same type of plots for the case p = 10 under a strong anchoring. 
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Figs. 2-3(c) and 2-3(d) present director configurations obtained with for p = 10, 

i.e. strong anchoring. Fig. 2-3( c) illustrates that, as the deviation from the easy axis 

becomes more costly, the wall deforms in a barrel-like fashion. The wall is clearly 

wider at middle depth than at surfaces and is referred as diffuse. Fig. 2-3(d) presents 

two profiles of ny through the thickness of the film illustrating the net variations of 

the wall width. Results in Fig. 2-3(d) are consistent with the fluorescence intensity 

profile shown in Fig. 2-2(d). In the case of p < 1, the simulation reveals that there 

are no variations of the direct or orientation through the thickness of the nematic 

film. The 1800 twist wall is accordingly a pure Bloch wall and the profiles of ny com

ponent at the top surface and the middle plane perfectly coincide as no variations of 

e occur. The Bloch wall thickness was much larger than that of the case of p = 1, 

confirming its increase with the anchoring strength decrease. 

2.5 Conclusions 

In summary, we have shown using FCPM and numerical simulation that when 

d rv h, a pure twist wall results and when d < h a diffuse wall with a barrel-like 

profile results. This behavior can be easily understood by looking at the free energy 

expressions at the surface and in the bulk. The surface energy is minimized as the 

thickness of the wall becomes smaller, while the bulk elastic energy decreases with 

decreasing gradients of the direct or orientations and therefore extends the thickness 

of the wall. These conflicting mechanisms for the minimization of the system free 

energy leads to the diffuse Bloch wall structure experimentally observed. 
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CHAPTER 3 
Modelling of Bloch inversion wall defects in nematic thin films 

3.1 Summary 

We study the influence of anchoring strength on the structure of Bloch inversion 

wall defects occurring in nematic thin films during fast temperature-driven anchoring 

transitions. N umerical simulations show that when the surface extrapolation length 

b is greater than or comparable to the film thickness h, the wall is homogeneous 

with a pure twist structure. On the other hand, when the extrapolation length b 

is smaller than the sample thickness h, the wall is heterogeneous with a barrel-like 

structure. These results are in very good agreement with recent experimental ob-

servations made with fluorescence confocal polarizing microscopy. Additionally, we 

derive a simple analytical relation to predict the structure of the inversion wall defect 

in the homogeneous, pure twist, regime. This relation can be used along with optical 

measurements to sim ply estimate surface anchoring strengths. 

3.2 Introduction 

The long range orientational order of nematic liquid crystal systems can be 

described by a unit vector n, called director, which define the local mean molecular 

orientation [1]. The structure of nematic films primarily result from a competition 

between intrinsic ordering and induced surface or interfacial effects but can also 

be further affected by external applied forces such as electric, magne tic and flow 
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fields [2]. Given their high sensitivity, nematic liquid crystal systems have structures 

that are rarely perfect and that often contain defects [3]. Defects, which cause 

distortions in the director distribution, can be in the form of points (OD), lines (ID) 

or walls (2D) [1-3]. 

For example, nematic thin films may exhibit non-singular wall defects called 

inversion walls in which the direct ors rotate continuously by 7r radians or less over a 

small distance [4]. These inversion walls can cross the depth of the film and emerge 

on both bounding surfaces. The origin of inversion wall defects is usually a fast 

reorientation pro cess [4]. Such phenomena can be induced by an external electric or 

magnetic field [2,5] but also by a temperature-driven anchoring transition [6-9]. It 

is stressed that because li ne and wall defects appear respectively as points and lines 

in two-dimensional polarized light optical pictures, a confusion is often made in the 

literature [4,7]. 

Most of the nematic liquid crystal applications are based on the fact that, the in

terfacial direct or orientation, which is called anchoring, can be controlled by physico

chemical treatments [10-14]. When interfacial torques are sufficiently strong, the 

director orientation at the bounding surfaces is fixed as function of temperature and 

is independent of the intrinsic bulk ordering effects. The surface direct or orientation 

corresponding to this strong anchoring state is known as easy axis [1,2]. However, 

wh en interfacial torques are not strong enough to impose a well-defined orientation 

at the surfaces, that is the anchoring is weak, the surface direct or orientation deviates 

from the easy axis to allow the relaxation of bulk distortions and the lowering of the 

overall system free energy. The energy priee paid by the system for this deviation 
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of the interface direct or orientation from the easy axis is called anchoring energy or 

anchoring strength and it is a function of temperature [14]. 

During a temperature-driven anchoring transition, the preferred director ori

entation at the surface is quickly modified; since the director is apolar, i. e. n is 

equivalent -n, it has two opposite ways of rotating to orient parallel to the new easy 

axis and therefore an inversion wall defect can be trapped between two adjacent 

domains with opposite senses of rotation [6-9J. Because of their analogy with wall 

defects found in ferromagnetic materials, the inversion walls found in nematic liquid 

crystals are also called Bloch or Néel inversion wall defects depending on the type of 

elastic curvature involved [3J. 

Recently, the structure of Bloch inversion wall defects in nematic thin films has 

been studied using fluorescence confocal polarizing microscopy [15,16]. This tech

nique allow a true three-dimensional investigation of the director distribution unlike 

conventional polarizing microscopy [17J. The experimental results have revealed that 

in the regime where the extrapolation length b is smaller than the film thickness h, 

the wall tend to acquire a barrel-like structure. In this chapter, we verify, confirm 

and explain these experimental observations using simple modelling and simulations. 

Also, we derive an analytical expression characterizing the structure of the wall as 

function of the anchoring strength. This expression can be used in conjunction of 

experimental data to get a direct estimation of the anchoring energy. 

The chapter is organized as follows: Section 3.3 presents the theoretical ingre

dients of the nematic liquid crystal model; Section 3.4 outlines the computational 
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modelling aspects; Section 3.5 reports the numerical results and analysis of the vari

ational problem; finally Section 3.6 provides conclusions. 

3.3 Governing nematostatics equations 

In this section we present the necessary theoretical background to study the 

staties of a nematie liquid crystal thin film. Since the inversion wall defects of 

interest are non-singular, the direct or , i. e. vector, approach to the nemato-elasto-

dynamics is used; we emphasize that for the objectives of this chapter, the scalar 

order parameter [1] that measures molecular alignment along the direct or plays no 

role. The total free energy F of such bounded system is the sum of bulk and surface 

terms: 

F = J fb dV + J fsdS (3.1) 
v s 

According to Frank's formalism, the bulk elastic free energy density can be written, 

in the isotropic elasticity approximation as [12]: 

K T 
fb = 2 (\ln) : (\ln) (3.2) 

where K is the Frank elastie constant [1]; the isotropie elasticity approximation as

sumes that the splay, twist, bend, and saddle-splay elastic constants are all equal; 

as shown below this approximation captures the main features of the experimental 

results; we emphasize that elastic anisotropy [1] is not the driving force of the phe-

nome na we wish to model and only contribute to unimportnat small deviations. The 



surface free energy density due to Rapini-Papoular [18] reads: 

W(T) 2 Is = - [1 - (n . e) ] 
2 
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(3.3) 

where W(T) is the temperature-dependent surface anchoring strength and e is unit 

of vector representing the easy axis, i. e. the preferred orientation of the nematic 

director at the surface as it minimizes the free energy. More general expressions for 

Is are found in the literature [1,2,14], but equation (3.3) is able to describe weIl the 

experimentaIly observed phenomena. As shown below, the minimum model given 

by equations (3.1) and (3.2) captures the main experimental features [15] and more 

detailed anisotropie or mesoscopic models are unnecessary. 

Any deviation of the director n from the easy axis e leads to a free energy penalty 

proportional to the surface anchoring strength W. The ratio of bulk to surface energy 

densities defines an internaI length scale known as the surface extrapolation length 

b: 

b= K 
W 

(3.4) 

In a sample of characteristic bulk size h it follows that when h » b, H is negligible 

when compared to Fs and the surface director is aligned along the easy axis (n = e). 

Otherwise the surface director is oriented along a direction that minimizes F; here 

Fb and Fs are the first and second integral in equation (3.1). 

The equilibrium director field is the one that minimizes the total free energy [19]. 

The nematostatics governing equations are derived from a variation of the direct or 
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[20] and read: 

J (Ofb Ofb ) J (Ofs Ofb ) 6F = on - V . oVn - Àbn 6ndV + on + N . oVn - Àsn 6ndS (3.5) 
v s 

where N is a vector representing the unit normal to the surface; Àb and Às are 

Lagrange multipliers introduced to fulfill the unit length constraint on the nematic 

direct or n in the bulk at the surface on the system respectively. Minimization of 

the variations leads to the condition 6F = 0 and the corresponding Euler-Lagrange 

governing equations for the problem read [20]: 

Ofb _ V. Ofb = -KV2n = Àbn 
on oVn 

(3.6) 

ofs Ofb 
on +N· oVn =-W(n·e)e+N·KVn=Àsn (3.7) 

Equations (3.6) and (3.7) are known as the bulk and surface torque balance equa

tions, respectively [1]. 

3.4 Computational modeling 

In order to study the effect of the temperature dependent surface anchoring 

strength W on the equilibrium structure of an inversion wall, we solve equations 

(3.6) and (3.7). The geometry considered for the study of this problem is a simple 

rectangular domain representing a slice of nematic material of thickness h confined 

between two parallel plates where nematic mole cules are weakly anchored. The 

width of the computational domain is varied in function of the surface anchoring 

strength value (Top and bottom boundaries). Figure 3-1 defines the geometry and 

the coordinate system. In this figure, we have also represented the direct or field of a 
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Figure 3-1: Schematic of the computational domain along with the dot-nail repre
sentation of the director field in a pure homogeneous Bloch wall. In this figure the 
segments and the dots indicate in-plane and out-of-plane direct ors respectively. The 
nails represent intermediate orientations. 

pure twist Bloch wall using the dot-nail convention. Directors being normal to the 

figure plane are drawn as points, direct ors parallel to the plane are shown as segments 

of constant length and direct ors with intermediate orientations are represented as 

nails [3]. 

To adimensionalize the problem we scale distances with the gap thickness h and 

the computational domain is then a rectangle of unit height (in z-direction) and 

whose width (in x-direction) is chosen so as to eliminate lateral effects. The reduced 

position vector is hence: 
r 

r= -
h 

(3.8) 

The key parameter in this problem is the dimensionless surface anchoring strength 

defined as: 
h hW 

p=-=-
b K 

(3.9) 
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where b is the previously identified surface extrapolation length. The governing 

dimensionless equation is: 

(3.10) 

where the bar over the N abla symbol indicates that the operator is dimensionless. 

The corresponding boundary condition at nematic thin film surfaces (upper and 

lower boundaries of the rectangular computational domain) is: 

-p (n . e) e + N . '\ln = Àsn (3.11) 

On the sides of the computational domain we have employed Neumann boundaries so 

as to emulate an infinitely wide sample and get rid of any undesired lateral torques. 

This boundary condition reads: 

N· '\ln = Àsn (3.12) 

AIso, for sim pli city we shall consider 7r radians inversion walls and accordingly the 

easy direct or axis is chosen to be parallel to the unit normal of the film surface, 

i.e. e = N. We remind the reader that the total rotation of the direct or across an 

inversion wall can be however less than 7r radians [8]. 

3.5 Results and discussions 

3.5.1 Anchoring strength-structure relationship in Bloch walls 

Equations 3.10 and 3.11 were solved using the standard Galerkin finite element 

method. The solutions are classified into two asymptotic regimes: 
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Figure 3-2: Director plot of a Bloch inversion wall for p = 0.1 using the dot-nail 
convention. The inversion wall is a homogeneous twist wall as the director orientation 
only varies along the wall width: n = n(x). 

1. Homogeneous wall regime (p ::; 1): here the bulk energy dominates and the 

director field is practically one dimensional: n = n(x). The weak anchoring 

results in a surface direct or dictated mainly by bulk distortions. 

2. Heterogeneous wall regime (p> 1): here the surface energy dominates and the 

director field is two dimensional: n = n(x, z). The st ronger anchoring results in 

a surface direct or dictated by a competition between surface and bulk torques. 

Homogeneous wall regime (p ::; 1). We first report the computed structure 

of a Bloch wall defect in the homogeneous regime, i. e. the film thickness h is smaller 

or equal to the surface extrapolation length b. As observed experimentally [8,15], in 

this regime, the structure of the inversion wall is uniform throughout the thickness 

of the film. The wall defect presents mainly twist deformation and we shall referred 

it to as pure twist wall. Figure 3-2 shows the structure of a pure twist wall obtained 

with a dimensionless anchoring strength p = 0.1. Figure 3-3 presents a contour plot 

of the out-of-plane component of the direct or field ny- Parallel levels of gray scale 
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Figure 3-3: Contour plot of the out-of-plane component of the direct or ny, when 
the dimensionless surface anchoring strength p is equal to 0.1. The direct or field 
is uniform through out the thickness of the film forming a pure homogeneous twist 
wall. 

readily indicate that the direct or distribution is constant across the depth of the slab. 

Figure 3-4 shows the director's out-of-plane component ny at the mid-plane (z = 0) 

and at the surface (z = 1) as a function of the dimensionless position x/ho The 

two profiles perfectly superimpose and are in accordance with fluorescence intensity 

signaIs recently obtained trough confocal polarizing microscopie observations [15]. 

Heterogeneous wall regime CP > 1). We now discuss the structure of the 

Bloch wall defect in the heterogeneous regime where the sample thickness h is greater 

than the surface extrapolation length b. Recent observations made with fluorescence 

confocal polarizing microscopy have shown that the wall defects tend to adopt a 

barrel-like structure in this regime [15]. Numerical solutions confirm that this type 

of solution can be in fact predicted with a simple nematic liquid crystal director 
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Figure 3-4: Profiles of the out-of-plane plane component of the direct or ny at the 
surface (z/h = 0.5) and middle plane (z/h = 0), for p = 0.1. The result is represen
tative of the homogeneous wall regime (p ~ 1). The profiles perfectly coincide as the 
director field is independent of the sam pIe thickness. 

model without the need of using tensor models or molecular order parameter mod-

els. Simulations show that as p becomes greater than 1, the pure twist homogeneous 

wall evolve into a diffuse heterogeneous wall. In contrast to the pure homogeneous 

twist wall, the diffuse heterogeneous wall does not have a constant structure across 

its thickness. The wall is thinner at the bounding surfaces than at middle depth. 

Figure 3-5 shows the computed structure of the Bloch wall when the dimensionless 

anchoring strength parameter p = 10. The figure clearly illustrates that the distance 

required by the direct or to rotate by 1r radians varies along the thickness of the 

film. This particular distribution of the direct or across the wall defect is responsible 

for the typical barreling pattern experimentally observed in microscopy images [15]. 

Figure 3-6 shows the barrel-like pattern of the diffuse heterogeneous wall though the 

contour plot of the out-of-plane component of the diredor field. The profiles of the 



73 

0.5 11111 , , · .l.1.1..L.L..I. Il 

Il Il TTTTTT' "1111111 1 1 1 1 
0.4 1 1 ITTTTTTT· 11111111 Il 1 1 

1 1 ITTTTTTT· "1111111 Il 1 1 
0.3 Il TTTTTTTT '"1111111 1 1 Il 

1 1 TTTTTTTT · L1111111 1 Il 
0.2 1 1 TTTTTTTT · .L1111111 1 Il 

1 1 TTTTTTTT . .L1111111 1 Il 
0.1 1 1 TTTTTTTT. i1111111 1 Il 

1 1 TTTTTTTT' .L1111111 1 Il 

'" 0 1 1 TTTTTTTT' .L1111111 1 1 1 "i;-
l 1 TTTTTTTT. i1111111 1 1 1 

-0.1 1 Il TTTTTTTT. i11111111 1 1 1 
1 Il 1 TTTTTTTT' .L11111111 1 Il 1 

-0.2 1 Il IITTTTTTTT·.L11111111 1 Il 1 
Il 1 Il TTTTTTTT' .L11111111 1 III 

-0.3 Il 1 Il TTTTTTTT· .L11111111 1 III 
1 1 1 III TTTTTTT' "1111111 1 1 Il 1 

-0.4 1 1 1 III TTTTTTT' "1111111 1 1 Il 1 
1 1 1 III 1 TTTTTT· 11111111 1 1 1 1 1 

-0.5 
-3 -2 -1 0 

x/h 

Figure 3-5: Director plot of a twist inversion wall for p = 10. The inversion wall is 
here a heterogeneous diffuse twist wall, and the director field is now two-dimensional: 
n = n(x, z). 

out-of-plane component across the wall at the middle depth and surface levels are 

shawn in figure 3-7. It is seen from this figure that the inversion of the directors 

is not uniform throughout the thickness of the sample and that the rotation of the 

direct or are more localized at the surface than in the bulk. This can be understood 

by observing that the surface energy gets minimized as the wall width shrinks, while 

the bulk energy minimization requires the opposite; these competing orientational 

mechanism lead to this distorted twist wall structure. 

3.5.2 Theoretical analysis of the homogeneous wall regime 

The purpose of this section is to present a simple non-linear model that can be 

solved analytically and that captures the steady state direct or structure of the pure 

twist inversion wall shown in figure 3-1. The analytical model sheds light inta the 

competing surface and bulk mechanisms and offer a direct view of the parametric 
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Figure 3-6: Contour plot of the out-of-plane component of the director ny, when 
the dimensionless surface anchoring strength p is equal to 10. The director field is 
clearly varying along the thickness of the nematic film and displays the barrel-like 
pattern characteristic of heterogeneous twist inversion walls. 
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Figure 3-7: Profiles of the out-of-plane plane component of the director ny at the 
surface (z/h = 0.5) and middle plane (z/h = 0) when p = 10. The barreling of the 
wall is clearly visible; the wall is larger at the middle plane than at the surface. 
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dependence. Numerical solutions of the variational problem (equations (3.10) and 

(3.11)) shows that, when the film thickness h is smaller or comparable to the surface 

extrapolation length b, it is reasonable to assume that the structure of the wall is 

homogeneous along the film thickness (the z-direction); in other words: n = n(x). 

U nder such assumption we can write the total free energy per unit length along the 

y-direction as: 
00 00 

F= J fdx= J (hfb+ 2fs)dx (3.13) 
-00 -00 

Parameterizing the unit vector with the director angle e: 

n (x) = cose (x) 6z + sine (x) 6y (3.14) 

the bulk energy density becomes: 

(3.15) 

For a 1r radian inversion wall parallel to the y - z plane with the easy axis along the 

z-direction (e = 6z ) the surface free energy density takes the following simple form: 

f w. 2e 
s = 2 SIn (3.16) 

Using the fact that the integrand f (defined in equation (3.13)) does not depend 

explicitly on x, a simple variational calculation leads to [19]: 

,af Kh '2 . 2 
Cl = e - - f = -e - W sm e = const ae' 2 

(3.17) 

The constant Cl can be determined from the boundary conditions; at x = -00, e = 0 

and e' = 0 while at x = 00, e = 1r and e' = O. These conditions equivalently lead to 



Cl = 0 and therefore the director angle obeys: 

e/2 _ 2W . 2 e 
- Kh sm 
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(3.18) 

Sinee e', sine and the constants are aU greater than zero in the interval of interest, 

it is possible to write the foUowing ordinary differential equation: 

e' V2W
. e = Kh sm 

Integration of this differential equation gives: 

(3.19) 

(3.20) 

Given that at x = 0, e = 1["/2, the constant of integration C2 is also found to be 

zero. Therefore, the final solution for the profile of direct or angle in the 1[" radians 

inversion wall reads: 

(3.21) 

In terms of our dimensionless anchoring strength p this expression reads: 

e = 2atan [exp ( viiPx ) ] (3.22) 

Figure 3-8 shows the profiles of the out-of-plane component of the direct or ny cor

responding to the numerical solution of equations (3.10) and (3.11) and to the ana

lytical solution given through equation (3.22). It can be seen from this figure that 

the approximate analytical solution give a pretty accurate description of the wall 

structure in the homogeneous regime (p < 1). Consequently, if one has experimen

tal data characterizing the structure of the wall obtained with the help of confocal 
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Figure 3-8: Profiles of the out-of-plane component of the direct or ny obtained 
through the approximate analytical and exact numerical solutions for two values 
of the dimensionless anchoring strength in the regime p ~ 1. 

polarizing microscopy, one can use equation (3.22) along with a standard non-linear 

least square fitting procedure and estimate the corresponding anchoring strength. 

Despite the development of new sophisticated methods [14], anchoring strength is 

still regularly estimated using inversion wall-based methods [21-23] and therefore 

the ab ove describes method may found sorne practical applications. 

3.6 Conclusions 

We have investigated the influence of anchoring strength on the structure of 

a Bloch inversion wall using numerical simulations and simple variational analysis. 

It was shown that when p ~ 1, the width of the wall is uniform throughout the 

thickness of the film. As the dimensionless anchoring strength increases toward unit y, 

the width of the wall globally decreases. In the regime where p > 1, the structure of 

the inversion wall becomes two-dimensional; the barreling of the wall, experimentally 

observed using fluorescence confocal polarizing microscopy [15] is confirmed by the 
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numerical simulations of a simple model. The barrel-like structure solution can be 

understood by noticing the antagonist director field minimizing the surface and bulk 

energies. The surface energy is minimized as the width of the wall becomes thinner 

while the bulk elastic energy reduces with gradients of the direct or orientations and 

therefore by expanding the width of the wall. In addition, we have shown that in the 

regime p :::; 1, a simple expression can be obtained to describe the structure of the 

inversion wall as a function of the anchoring strength. This equation can be, in turn, 

be used for a direct estimation of anchoring strength using a standard data fitting 

procedure given experimental data describing the structure of the wall. 
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CHAPTER 4 
Dynamic interactions between nematic point defects in the spinning 

extrusion duct of spiders 

4.1 Summary 

Spider silk fibers have remakable mechanical properties as a result of an ultra-

optimized spinning process. Silk fibers are spun from a lyotropic nematic liquid 

crystalline anisotropie fiuid phase which undergoes significant structural changes 

throughout the spinning pathway. In the silk extrusion duct, those structural changes 

are expected to be driven by elastic mediated interactions between point defects. In 

this work, the interaction between two point defects of opposite topological charges 

located on the axis of a cylindrical cavity is studied using a tensor order parameter 

formalism. Distinct regimes leading to defect annihilation and structural transitions 

are described in details. The driving force setting the defects in motion is also ex

amined. The different results suggest that the tensorial approach is primordial in 

describing the complicated physics of the problem. The phenomenon described is 

important to the understanding of the process-induced structuring of silk fibers and 

to defect physics in a more general context. 

4.2 Introduction 

Spider silks enjoy mechanical properties that are comparable or even superior to 

the best man-made superfibers such as Kevlar or Twaron [1-3]. However, in contrast 
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to industrial high-performanee fibers, silks are ecological: they are biodegradable 

while manufactured in an aqueous environment under benign processing conditions, 

including ambient temperature and pressure [4-6]. Accordingly, there is a consid

erable interest in understanding the design and processing details of silk-precursor 

materials. Doing so may eventually lead to the development of environmentally 

friendly pro cesses for the fabrication of new high-performance fibers [7-11]. 

Spider silks, like the majority of high-performance industrial fibers, are spun 

from a lyotropic nematic liquid crystalline precursor [2,7,8,12,13]. The emergence 

of this mesophase (i. e., intermediate phase) is due to the high concentration of rod

like molecules or aggregates in the watery dope solution. A nematic mesophase can 

flow as a liquid while possessing at the same time sorne degree of orientational order 

as a crystal [14, 15]. This orientational order is characterized by the tendency that 

have neighboring rod-like mole cules to spontaneously orient their long axis approx

imately in parallel along a common direction. This preferred molecular orientation 

is usually local, varying from subregion to subregion in the medium due to elastic 

effects cou pied with geometrical and interfacial constraints. Henee, the orientational 

order of nematic liquid crystals is often described in terms of a unit vector field n(r), 

called direct or field (where r is the position vector), giving the local average preferred 

orientation of the mole cules [14,15]. 

The orientational order of the liquid crystalline dope is known to significantly 

change along the silk spinning pathway and particularly in the tubular extrusion 

duct just before the draw down of the fiber [2,16-19]. This evolution of orientational 

order is extremely important because it determines the micro-structural details of the 
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solidified silk fiber, and hence its remarkable mechanical properties. The structural 

changes are also important with respect to the processability of the material as they 

affect its viscosity [2,12,13, 16-19]. 

Observations made by polarized light microscopy in the spider tubular extrusion 

duct indicate the presence of a stable escaped radial structure with point defects 

(ERPD) [2,16-20]. The ERPD configuration consist in an array of point defects of 

alternating type periodically distributed along the axis of the cylindrical cavity [21]. 

N ematic defects can generally be thought as singular regions where the direct or field 

n(r) cannot be uniquely defined and where ordering melts. The two type of point 

defects found in the ERPD texture are the radial and hyperbolic hedgehogs. These 

point defects bear topological charges of strength + 1 and -1 respectively. The 

magnitude and sign of the topological charge indicates respectively the amount and 

sense of director rotation on encircling the defect. On approaching the very end of 

the spinning duct this ERPD structure is evolving into a defect-free predominantly 

axial structure corresponding, presumably, to an escaped radial (ER) structure [16]. 

This later configuration is retained in the solidified fiber [16]. Figure 4-1 shows the 

typical direct or fields corresponding to (a) the ERPD and (b) ER structures. Note 

that the pattern of the ERPD structure can be found periodically repeated in the 

extrusion duct. 

The (meta)stability of the ERPD structure as weIl as its transition to the ER 

structure are governed by the interactions between the point defects. [14] These 

interactions, that are mediated by elastic deformations of the material and affected by 

geometry, anchoring orientation and strength, as weIl as external fields (in particular 
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Figure 4-1: Schematic of the direct or fields n(r) corresponding to the ERPD (a) 
and ER (b) structures. In (a), the left and right point defects are respectively 
corresponding to the hyperbolic and radial hedgehogs. Note that the direct or is 
undefined in the core of each point defects. 

flow field), can cause the point defects to move along the aXIS of the cavity. It is 

well known that when two defects of opposite topological charges are sufficiently 

close one another they usually attract until they coalesce and finally annihilate, 

leaving no trace of their previous existence. When, on the other hand, defects are 

weIl separated they usually do not feel any mutual attraction and stay immobile. 

It is therefore crucial to elucidate the properties of the elastic-distortion-mediated 

interactions between the point defects in order to better understand the pro cess-

induced structural transition occurring in the extrusion duct of spiders. 

The problem of nematic point defect interactions in cylindrical capillaries has a 

long history [22-24]. Nematic hedgehogs and their corresponding ERPD configura-

tion are regularly observed wh en nematic liquid crystals are confined in cylindrical 

tubes with lateral surfaces en forcing strong radial anchoring (i. e., the molecules are 
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forced to orient radially at the surface). Generally theoretical and computational 

studies have considered a pair of oppositely charged point defects rather than a whole 

array. The annihilation of two nematic point defects of opposite charge consist of 

three distinct regimes: the pre-collision, the collision, and the post-collision stages. 

So far studies have been mostly focusing on the pre-collision regime where the defect 

are weIl separated [25]. It has been shown both, experimentally and theoretically, 

that the defects annihilate if their separation is approximately less than the diameter 

of the tube. The situation is however far less clear when the defects are separated 

by more than a diameter. Some experimental and theoretical works [26-29] seem to 

indicate that the defects tend to stay immobile at large separating distance (i.e., the 

interaction force vanishes) while other studies rather support the defect repulsion 

hypothesis [30-32]. 

The collision and post-collision regimes and more generally the dynamics of 

point defects annihilation has been very little studied so far [25,33]. Moreover, the 

analytical and numerical studies using the continuum theories have been generally 

using a vectorial description of the orientational order. As we will explained in more 

details in the next section this type of approach present significant drawbacks in 

the description of defect dynamics and defect-defect interactions. To overcome these 

limitations, we investigate the dynamic interaction/annihilation of two nematic point 

defects using a tensorial continuum approach. 

This chapter is organized as follows. Section 4.3 gives the theoretical background 

necessary for modeling structural dynamics relevant to spider silk processing. Sec

tion 4.4 presents the numerical results. Finally, section 4.5 draws conclusions on the 
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4.3 Modeling 

4.3.1 Geometry 
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In order to study the problem of process-induced structuring and structure evo

lution in the extrusion spinning duct of spiders, the interaction between two nematic 

point defects of opposite topological charges confined in a cylindrical capillary is con

sidered. The problem presents an obvious rotational symmetry around the axis of the 

cavity which allows to considerably reduce the computational space. The dynamic 

interaction between the point defect pair is therefore investigated in a simple two 

dimensional rectangular domain representing the upper half part of a longitudinal 

cross section through the tube and accordingly a cylindrical coordinate system (z, r) 

is considered. The width and height of the domain correspond respectively to the 

length Z and radius R of the cylindrical cavity. 

4.3.2 Tensor order parameter Qij 

The continuum nemato-dynamics equation describing the structure evolution 

of a nematic liquid crystal is typically derived from the minimization of a (visco)

elastic free energy equation. In the simplest continuum approach (Frank theory), the 

orientational order parameter appearing in the (elastic) free energy of the nematic 

liquid crystal phase is the unit vector field n(r). This director field gives an average 

preferred orientation of the rod-like molecules in each subregion of the nematic liquid 

crystal phase. This approach works generally weIl except close to defect cores where 
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the nematic ordering suffers important distortions and melts. lndeed, one important 

restriction of the vectorial description of the nematic ordering is that the director field 

is singular (not uniquely defined or undefined) or discontinuous in the core of defects. 

This generally causes the gradients of the director field and therefore the (elastic) free 

energy of the system to diverge and become infinite in those regions. Nevertheless, 

the structure evolution of nematic phases is customarily studied using this approach, 

and to bypass the above mentioned problem, small volumes of system including the 

singularities are usually excised and approximate energetic contributions for the core 

of defects are provided. 

However a better way to treat this problem is to describe the nematic ordering 

in terms of a tensor field Q(r), called tensor order parameter field. With the use 

of this second order tensor, defects do not have to be treated as singularities and 

reliable cstimatc of the free energy can be obtained. Nevertheless this is at the cost 

of an increase complexity of the governing equations. The tensor order parameter is 

symmetric traceless (i.e., Qij = Qji and Qii = 0) and can be represented, in terms 

of its eigensystem. A spectral decomposition gives the following linear combination: 

(4.1) 

The unit eigenvectors (n, m, 1) form a local orthogonal triad characterizing the orien

tation of the phase while the corresponding eigenvalues (Pn, Pm, Pl) gives the strength 

of alignment along those directions (Pn + Pm + Pl = 0). The largest eigenvalue in 

magnitude or absolute value, Pn, gives the strength of or de ring along the uniaxial 
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director n previously defined. The second /-Lm and third /-LI eigenvalues correspond 

respectively to the biaxial direct ors m and 1 (1 = n x m). 

It is also often useful to represent the tensor order parameter Q in the following 

alternative, but equivalent, format: 

(4.2) 

In this expression, 8 and Pare referred as uniaxial and biaxial scalar order param-

eters. They describe the amount of order (or strength of alignment) around the 

uniaxial direct or n and biaxial director m and are given by 8 = 3/2(niQijnj) and 

P = 3/2(miQijmj -liQijlnj) respectively. The Kronecker 6 stands for the unit ten-

sor. The correspondence between the scalar order parameters and the eigenvalues is 

as follow: J-Ln = 2/38, /-Lm = -1/3(8 - P) and /-Lm = -1/3(8 + P). 

According to these definitions, the ordering states described by the tensor order 

parameter are: isotropie (/-Ln = /-Lm = /-LI = 0; Q = 0), uniaxial (/-Ln > /-Lm = J-Ll; 

8 =1= 0, P = 0) and biaxial (/-Ln =1= /-Lm =1= /-LI; 8 =1= 0, P =1= 0). Biaxial ordering is 

likely to arise around defect cores where 8 and P generally exhibit sharp changes. 

Since the eigenvalues /-Li (i = 1,2,3) of the tensor order parameter are restricted by: 

-1/3 ~ J-Li ~ 2/3, the uniaxial and biaxial scalar order parameters must obey the 

following limits: -1/2 ~ 8 ~ 1 and -3/2 ~ P ~ 3/2 respectively. 

Finally it is stressed that the employment of the tensor or der parameter Q, with 

its quadrupolar symmetry, is consistent with head-tail invariance of the nematic di-

rector, that is: n = -no 
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4.3.3 Landau-de Gennes free energy 

The dimensionless total free energy of a nematic liquid crystal system can be 

generally written as the sum of bulk and surface terms: 

(4.3) 

In this work, only strong/fixed anchoring conditions are considered and therefore 

the surface term does not need to be considered. The bulk free energy density term, 

when expressed in ter ms of the tensor order parameter Q, consist of an homogeneous 

A and a gradient J9 contribution (lb = A + J9 )· The homogeneous contribution 

describes the short-range ordering effects/interactions related to the amplitude of 

the scalar order parameters (more generally, the amplitude of Q). This expression 

permits to describe the first order isotropic-nematic phase transition but also the 

variation of ordering in the vicinity of defects. This contribution is often referred as 

the Landau-de Gennes free energy; in this work, Doi's formalism [34] is employed 

and, in dimensionless form, the expansion reads: 

(4.4) 

In this expression U is a dimensionless phenomenological parameter called nematic 

potential which controls the magnitude of the equilibrium tensor order parameter; 

in other words, the values of the scalar order parameters. In general the nematic 

potential U can be assigned a dependence on either temperature or concentration 

depending on the nature of the nematic liquid crystal (i. e., thermotropic or lyotropic). 

In our study U is taken to be proportional to concentration and according to Doi's 
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theory, U = 3G /G* where Gand G* are the number and critical number density 

of rod-like molecules, respectively [34]. Within this format, the first order phase 

isotropic-nematic phase transition occurs at nematic potential U1N = 2.7. AIso, in 

this model, the system is isotropic for U < UIN and nematic for U > UIN . The 

limit of metastability for the isotropic and nematic phase are U* = 3 and U** = 8/3, 

respectively [34]. 

At equilibrium and away from distorted regions, the tensor order parameter Q 

given by Eq. 4.4 is uniaxial. The value of the scalar order parameter is given by the 

relation: 

(4.5) 

The gradient h contribution, represents the energy density variation due to 

long-range or de ring effects/interactions which corresponds to the energy penalty as-

sociated with the elastic distortions of the phase or tensor order parameter Q. This 

term is an analogue to the Frank elastic free energy and can be expressed in dimen-

sionless form as: 

(4.6) 

In this equation [ represents the reduced nematic coherence length which gives a 

characteristic scale for the variation of the tensor amplitude/scalar or der parameters 

and the size of defect core (or the thickness of the nematic-isotropic interface). 
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4.3.4 Governing nemato-dynamic equation 

The dynamic equation describing the relaxation of the tensor order parameter 

Q(r, t) towards an equilibrium value that minimizes the total free energy follows 

from variational principles and is given in dimensionless format by: 

(4.7) 

The right-hand si de of this expression corresponds to the functional derivative of the 

total free energy. From variational calculus it can be shown that: 

(4.8) 

Only the symmetric traceless part of this expression is retained in order to satisfy 

the constraints of the tensor order parameter. 

4.3.5 Dimensionless quantities 

In this work, dimensionless equations are used to reduced the number of param-

eters and facilitates analysis as well as comparisons with other studies. The relation 

between dimensional and dimensionless quantities is as follows: r = r / R; 'V' = RV; 

ë = f;,/R with f;, = JL/A; lb = lb/A; F = A~3; f = ~t. In these expressions, Ais 

an energy density scale (A = C*kT, where k and T are the Boltzmann constant and 

the temperature respectively), L a material-specific elastic constant, R the radius of 

the cavity and 'Y a kinetic constant associated with rotational viscosity. 
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4.3.6 Auxiliary conditions 

The boundary conditions are as follows: at the wall of the cylindrical cavity 

(upper part of the rectangular domain), the tensor order parameter is assumed to 

be uniaxial and to describe a rigid radial anchoring condition so that Qij(r = R) = 

Se (ei ej - 8;; ), where eT is the unit vector along the radial direction. A rotational sym

metry boundary condition is considered on the z-axis (lower part of the rectangular 

domain). Finally, on the sides ofthe domain, Neumann conditions are enforced so as 

to emulate an infinitely long cavity; this condition does not introduce any spurious 

effects as tested by using different computational grids. 

Initially, the systems contains a hedgehog pair whose cores are separated by 

a distance fJ = D / R = 2.4. The hyperbolic and radial hedgehog are respectively 

located at z = -1.2 and z = 1.2. The corresponding initial tensor field Q(r, t = 0) 

is obtained by taking a few time steps starting from a trial configuration satisfying 

all the boundary conditions. Other initial defect configurations do not change the 

essential features of the results. 

The model used in this work contains two parameters: the nematic potential U 

and the reduced nematic coherence length { For all the simulation results presented, 

the nematic potential is set to U = 6 which corresponds to a deep nematic phase 

with an equilibrium scalar or der parameter of Se = 0.809. Other values of U in the 

stable nematic range do not change the underlying pro cess under study. The value of 

the reduced coherence is varied in order to analyze its effect on the defect interactions. 
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4.3.7 Numerical procedure 

The governing dynamic equation for the tensor order parameter Q(r, t) is solved 

using the standard numerical method of lines (under the constraints imposed by the 

boundary conditions). The space discretization is achieved using the finite element 

method. The time integration of the resulting differential equations is obtained using 

an adaptive stable implicit scheme. The density of element is higher in the region 

describing the trajectories of the defects along the z-axis. The independence of so

lutions on mesh density was verified using standard procedures. The size of the 

triangular elements is al ways smaller than the reduced coherence length t (smallest 

length in the problem) to accurately capture the amplitude variations of the tensor 

order parameter. The computational domain is a rectangle of reduced width Z = 6 

and reduced height il = 1. 

4.4 Results and discussions 

This section presents representative results of the interaction dynamics between 

a pair of point defects located along the axis of a nematic cylindrical cavity such as 

found in the spinning extrusion duct of spiders. 

Figure 4-2 shows a typical evolution for the direct or n and scalar order param

eter S fields during the annihilation of two point defects of opposite charge for a 

reduced coherence length t = 1/30 and nematic potential U = 6. The pre-collision 

[Fig. 4-2(a),(b)], collision [Fig. 4-2(c),(d)] and post-collision [Fig. 4-2(e),(f)] stages 

are shown. In this figure, white and black respectively indicate or der and dis or der 

while the segments represent the local directors. The initial distance separating the 
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hyperbolic (left) and radial (right) hedgehogs, D, is 1.2 times the diameter of the 

capillary tube [Fig. 4-2(a)J. At dimensionless time t = 39750 [Fig. 4-2(b)], the 

two point defects move doser and the distortions of director field between them in

crease. However this evolution of the direct or field do es not affect significantly the 

variations of the uniaxial scalar order parameter in the vicinity of the defects. This 

confirms that in the pre-collision regime the structural changes are mainly governed 

by direct or field distortions [25]. At dimensionless time [ = 40585 [Fig. 4-2(c)], the 

system is in the collision stage. The two point defects are still distinct but their 

cores now touch each other and the director distortions are accompanied by varia

tions of the scalar order parameter. The drop in the scalar order parameter occurs 

principally between the defects but also extends in the r-direction in contrast to 

the previous steps. At dimensionless time [ = 40599 [Fig. 4-2(d)], the scalar order 

parameter field indicates that the cores of the two defects are indistinguishable. The 

collision of the defects result into the creation of a single defect. At dimensionless 

time [ = 40613 [Fig. 4-2(e)], the system is in the post-collision regime and tries to 

get rid of the defect. The scalar or der parameter field reveals that the size of the 

defect diminished while the direct or map remain almost unchanged with respect to 

the previous time frame. This indicates that in this regime the structural changes 

are mainly governed by the variation of the scalar order parameter rather by the di

rector distortions. This result is in agreement with a previous study that has used a 

Brownian molecular dynamics approach of a similar problem [25J. Finally, in the late 

stage of the post-collision regime, at dimensionless time [ = 40914 [Fig. 4-2(e)], the 
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Figure 4-2: Evolution of the orientation (n)and alignment (S) fields during 
the pre-collision (a)-(b), collision (c)-(d) and post-collision (e)-(f) regimes of 
two nematic point defects along the axis of cylindrical capillary. The frame 
( a), (b), (c) and ( d) correspond respectively to the dimensionless time t 
0,39750,40585,40599,40613,40914. The small segments represent the directors and 
thus the local preferred orientation of the rod-like molecules. The grayscale corre
sponds to S. The white regions are ordered while black ones, around defects, are 
disordered. U = 6, ~ = 1/30. 

system completes its relaxation and the defect disappear. The defect-free structure 

thus obtained corresponds to the classical escaped radial solution. 

Figure 4-3 illustrates the evolution of the scalar order parameter S, along the 

z-axis, during the annihilation of the two point defects for the same choice of pa-

rameters as Fig 4-2. AIso, as in the Fig. 4-2, the pre-collision [Fig. 4-3(a and b)], 
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collision [Fig. 4-3(c and d)] and post-collision [Fig. 4-3(e and f)] stages are repre

sented. In the pre-collision regime the two mutually approaching defects are single 

solitons. Clearly, in this stage, the two defects approach one another at the same 

speed [See also Fig. 4-4 and Fig. 4-5] without any amplitude changes in structure as 

indicated by the lateral translation of the single solitons. The scalar order parameter 

quickly reach an equilibrium value on each side of the two defects. In the collision 

stage, the two defects first collide (c), keeping their cores distinct, subsequently they 

strongly overlap (d) and become indistinguishable thus creating a single defect with 

an elongated core (In contrast to the circular nature of the individual defect cores). 

The profile of the scalar order parameter in the core of this resulting defect is fiat 

( d). This is because the system lowers the ordering, in the inter-defect region, to 

the level of the surrounding defect cores. In the post-collision stage the profile of 

the scalar order parameter show an opposite behavior as the system relaxes (e) and 

the size of the defect gradually reduces before finally vanishing (f). During this step, 

ordering in the defect core progressively increases toward the equilibrium value of 

the bulk surroundings. 

Figure 4-4 shows the displacement of the two point defects as a function of 

time during the annihilation process. Two cases are represented: (a) U = 6, ~ = 

1/20; (b) U = 6, ~ = 1/30. The position of the point defects is determined by 

finding the minima of the corresponding uniaxial scalar order parameter profiles. 

The trajectories show that the displacement of the two defects are symmetric and 

that their speed increase dramatically on approaching each other. On comparing 

the two profiles one can easily concludes that the time required for the defects ta 
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Figure 4-3: Evolution of the scalar order parameter S profile, along the z-axis, 
during the pre-collision(a)-(b), collision (c)-(d) and post-collision (e)-(f) regimes. The 
dimensionless sampling times (a)-(f) are t = 0,39750,40585,40599,40620, 40920.U = 
6, t = 1/30. 

collide and annihilate reduces as t increases (i.e., the diameter of the capillary tube 

decreases). To complement this result, Fig. 4-5 shows the reduced speed of the 

point defects as a function of the inter-defect distance jj corresponding to Fig. 4-4. 

The trends show clearly that the speed of the point defects increases exponentially 

as the hedgehogs approach each other and collide to form a single defect. AIso, in 

accordance to Fig. 4-4, the defects travel faster as the reduced coherence length t 
increases. 

The force exerted on the nematic point defects and which set them into motion 

is usually called elastic because it is mediated by the surroundings direct or field 

distortions. One simple way of estimating this interaction force is by differentiating 

the bulk free energy corresponding to the minimized order parameter field with 

respect to the distance separating the two defects. In this work, the tensor order 
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the reduced time during the annihilation process. (a) U = 6, ~ = 1/20; (b) U = 6, 
~ = 1/30. 

·1 

10,~ o::L 
! 10. ~o 05 1 15 , 

1::. · (., .. ~ 
(b) • ••• . , .,. 

10.
5 

""" 

o 0.5 1.5 2 
Reduced inter-deteet distance 

Figure 4-5: Reduced speed of the point defects as a function of their separating 
distance D during the annihilation pro cess expressed in semi-log and linear scales. 
The speed of the point defects in the pre-collision and early collision regimes fol
lows an exponential law. The trends for the (a) and (b) cases can be fitted with 
0.03800 exp ( -3.11D) and 0.01391 exp( -3.11D), respectively. (a) U = 6, ~ = 1/20; 
(b) U = 6, [ = 1/30. 



99 

parameter formalism is employed and the reduced total bulk free energy can be 

evaluated by computing the following integral: 

l' = 211" 11'=1 r=3 hrdrdE 
1'=0 )2=-3 

(4.9) 

The corresponding reduced force of interaction between the point defect pair h is 
computed according to: 

- al' 
fi=-~ aD (4.10) 

Figures 4-6 and 4-7 show the profiles of the reduced total free energy l'and cor

responding reduced interaction force h acting on the defects as a function of the 

reduced inter-defect distance for reduced coherence lengths ~ of 1/30 and 1/20 re

spectively. The profiles of the total reduced free energy and corresponding force of 

interaction exhibit very similar behaviors. The only noticeable difference between 

these profiles is the location of the inflexion points in the free energy curves. It is 

found that the abscissa of the inflection point increases with { This lateral shift 

in the inflexion point location is indeed related to the size of the defect cores which 

reduces with { Defects with smaller cores collide later in the annihilation process. 

As discussed in Ref. [31,32], the profile of the interaction force between the point 

defects is still a matter of dispute. Different experimental and theoretical approaches 

have been taken to study the problem. Sorne studies [30-32] tend to indicate that 

the interaction force is attractive at short separating distance and repulsive at large 

separating distance while other works (including ours) favor the idea of a purely 
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Figure 4-6: Evolution of reduced total free energy P (a) and corresponding reduced 
interaction force h (b) as a function of the reduced inter-defect distance for U = 6, 
~ = 1/30. The circles and squares denote respectively the linear (0.01564D+ 7.521e-
5) and exponential (0.01386 exp ( -2.42D)) fits. 

attractive force [26-29]. The discrepancies found in the theoretical works is believed 

to be due to boundary condition differences [32]. 

The difference between our computational approach and the previous ones is 

essentially the employment of a tensor order parameter which allows a continuous 

description of defect dynamics. This is particularly important in the collision stage 

governed by nematic ordering rather than direct or distortions as shown in Fig. 4-2 

and Fig. 4-3. The force of interaction between the point defects is found to be strictly 

attractive. As previously demonstrated analytically in Ref. [26], the interaction 

force decay exponentially as the distance between the defect increases and becomes 

essentially negligible as defects separate by more than a diameter [28,29]. However, 

in contrast to Refs [28,29] the force is found to steeply reduce in a linear manner 

in the late stage of the collision rather than reaching a plateau. This behavior is 

attributed to the variation of the scalar order parameters. It is noticed, to the degree 
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Figure 4-7: Evolution of reduced total free energy F (a) and corresponding reduced 
interaction force h (b) as a function of the reduced inter-defect distance for U = 6, 
~ = 1/20. The circles and squares denote respectively the linear (0.01695.o+8.836e-
5) and exponential (0.03898 exp ( -2.684.0)) fits. 

of resolution of the computational scheme and mesh density used in this work, that 

as the defect separating distance shrinks to zero the force remains finite although 

small. Figure 4-8 shows the time frame corresponding to the structural transition 

from the ERPD to the ER structures in the time evolution of the reduced total free 

energy for U = 6 and ~ = 30. Three zones are identified: zone (a) corresponds to 

the pre-collision and collision stages previous identified in which to defect cores can 

be identified; zone (b) corresponds to the post-collision regime in which the system 

relaxes and defect gradually disappear; in zone (c) the system is the stable ER 

configuration and no trace of the ERPD structure can be found. It can be seen once 

again from this graph that the scalar order parameter relaxation plays a significant 

role in the defect pair annihilation and structural transition to the ER structure. 
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Figure 4-8: Time frame of the reduced total free energy during which the nematic 
system undergoes its structural transition from the ERPD to the ER configuration 
through the annihilation of two point defects of opposite topological charges. U = 6, 
~ = 30. In zone (a), the system presents two defects with distinct cores; in zone (b), 
the two defects have collapsed into a single defect which gradually disappear; in zone 
(c) the system is in defect-free ER configuration. 

4.5 Conclusions 

Motivated by the experimental observation of ERPD and ER structures in the 

extrusion duct of spiders spinning apparat us we have investigated numerically the 

dynamic interaction between two nematic point defects of opposite topological charge 

confined in cylindrical cavity. In contrast to previous analytical and numerical stud-

ies we employed the tensor order parameter formalism to describe the orientational 

order of the nematic phase, which allows for an unambiguous description of defects 

and reliable estimation of energies. Three distinct regimes leading to the annihilation 

of the antagonist point defect pair were described. The importance of the scalar or

der parameter S in the collision and post-collision regimes was demonstrated. Defect 

trajectories and corresponding speeds were reported for two different radius of the 

cylindrical cavity. It was found that the point defect travel faster in smaller cavities. 

The trends of defect trajectories agrees very weIl the one found in theoretical [26] 
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and experimental [27] studies. The absence of asymmetry in the defect trajectories 

as reported in Ref. [35] is attributed to the absence of backfiow effects as well as by 

the isotropy of the elastic constant. Those effects will be investigated in future work 

and will be reported. The reasons of the point defect annihilation were also inves

tigated. In particular, the dependence of the total free energy and corresponding 

interaction force on the inter-defect distance was analyzed for two different values 

of the cylindrical capillary radius. It was shown that the interaction force between 

the defect, which set them into motion, is decreasing exponentially at large defect 

separating distance. As predicted theoretically in Ref. [26] and shown experimen

tally if the point defects are separated by a distance greater than a diameter, the 

interaction force is shielded and the defects pinned. In contrast to previous studies 

having reported explicitly the force of interaction, we have found that at short sepa

rating distance, the interaction force was decreasing very steeply in a linear way. We 

show that this distinctive behavior is due to the significant variation of the scalar 

order parameter in the late stage of the collision regime. During the whole pro cess 

the interaction force was found to be strictly attractive. Finally we would like to 

emphasize that des pite that the context of our study is the biospinning pro cess of 

spider silk, the obtained results should be useful to the field of defect physics. 
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CHAPTER 5 
Structure evolution of spider silk liquid crystalline precursor material 

5.1 Summary 

Spiders pro duce silk fibers with remarkable mechanical properties using an ultra-

optimized spinning process. The fluid precursor material used to draw the silk 

threads is a lyotropic nematic liquid crystal. The mechanical properties of the silk 

fibers as weIl as their processability are strongly affected by the complex structural 

transitions undergone by the nematic liquid crystal precursor along the spinning line. 

Our work focuses on the particular structure adopted by the nematic precursor in 

the extrusion duct of the spinning apparatus. This structure is characterized by a 

succession of weIl defined point defects located on the axis of the cavity and inter-

acting on each other through elastic mediated forces. The phenomenon described is 

both important in understanding the process-induced structuring of spider silk fibers 

and to defect physics. 

5.2 Introduction 

Spiders' ultra-optimized and ecological spinning pro cess produces a fiber with 

mechanical properties comparable or even superior to the best man-made super-

fibers, which use corrosive solvents and cause significant environmental degradation 

[1,2]. Renee, there is a great deal of interest in understanding the intricacy of their 

design and processing routes. Many environment friendly exciting applications are 
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envisaged upon the suc cess fuI replication of spiders' fibers and complex spinning 

line [3-5]. 

Spider silk fibers are known to be spun from a lyotropic nematic liquid crystal 

emerging from a highly concentrated water-based solution of rod-like molecules or 

aggregates [6-8]. A quintessential property of this silk precursor is its capacity to 

maintain sorne degrees of orientational order while still flowing as a liquid. This 

orientational order is characterized by the tendency that have neighboring rod-like 

units to align their long axis in parallel along a common direction [9,10]. This 

preferred molecular orientation usually varies from subregion to subregion in the 

mesophase (i. e., intermediate phase) due to elastic effects coupled with geometrical 

and interfacial constraints [9]. The evolution of orientational order or molecular 

orientation along the spinning pathway is crucial as it affects the processability of the 

silk prccursor mesophase and determines the microstructural details of the solidified 

fiber and therefore its remarkable physical properties [6-8]. 

Spiders' spinning line basically consist in a tail where the silk precursor material 

is synthesized, a central bag where it is stocked in a very concentrated solution, 

and an extrusion duct from which the silk fiber is drawn [8,11]. Observations made 

by polarized light microscopy in the extrusion duct have revealed the presence of a 

complex orientation structure known as escaped radial with point defects (ERPD) [8, 

12-14]. The point defects, referred as hedgehogs or monopole, are located where the 

direction of bending distortions changes. At those particular locations, orientational 

order melts. Two types of point defects are alternatively found in the cylindrical 

cavity of the extrusion duct: the radial and the hyperbolic hedgehogs. Figure 5-1 
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Figure 5-1: Structure of the radial (a) and hyperbolic (b) point defects found along 
the spinning duct of spiders in terms of the director field n(r). 

shows the characteristic structures of the radial and hyperbolic hedgehogs in term of 

a director field n(r) giving the local average preferred orientation of the molecules. 

The unit direct ors are drawn arrowhead-free as there is no physical difference between 

the vector field n(r) and -n(r) [9,10]. 

Whether this complex molecular structure is an accident of Nature or a necessary 

ingredient of the spider biospinning pro cess is unknown at present. Nonetheless, one 

my hypothesized that this configuration with its orientational defects may play an 

important role in the control of material crystallization along with water pumping, 

ions exchanges and pH reduction phenomena [8]. lndeed, a premature crystallization 

of the silk may indeed cause the permanent blockage of the extrusion system and 

ultimately lead to the death of the animal [8,15]. 

N ematic point defects confined in cylindrical geometries have been first exper-

imentally observed and explained in the early seventies [16-19]. They are typically 

observed when a nematic mesophase is confined in cylindrical capillary with lateral 
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walls enforcing strong radial anchoring (i. e. mole cules are forced to orient radially 

at the surface). Point defects with opposite topological charges are known to an

nihilate by pairs. This has been experimentally observed [16-21] and theoretically 

described [20,22-26]. Results have shown that when two defects are separated by 

less than a tube diameter they usually attract until they eventually annihilate. As 

the two defects come closer their speed increases exponentially. At large separat

ing distance the situation is far less clear as sorne studies support the hypothesis 

of a total screening of the attraction force [23-25] while others support a repulsion 

force [22,27]. Recent experiments have also shown a possible speed anisotropy be

tween the point defects [28] but the role played by elastic anisotropy and back-flow 

in this phenomenon has not been clearly established yet. 

Obviously these phenomena become even further involving when considering 

not two point defects but rather a whole a array of them. Sorne studies have in 

fact touched this problem in a statistical manner but no experimental data have yet 

corroborated them [29]. During their evolution arrays often splits into sub-arrays of 

few interacting defects with alternating signs. This work aims at describing what can 

possibly happen inside those sub-arrays. These results should be use fuI in improving 

the understanding of arrays of nematic point defects and therefore of their behavior 

along the spinning duct of spiders, and hence contributing to the on-going efforts to 

develop systematic technology transfer from Nature to fiber engineering. 
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5.3 Modeling 

In this section we briefly present the necessary theoretical background to study 

the dynamics of nematic point defects that is essential to silk bio-spinning. 

The continuum dynamic equation describing the structure evolution of a nematic 

liquid crystal is typically derived from the minimization of a free energy functional 

depending on sorne orientational order parameter that characterizes molecular order 

and macroscopic texture [9]. In the simplest continuum approach, the orientational 

order of parameter is a unit vector n(r), called director, giving the average pre

ferred orientation of the molecules at a point r. The energy cost associated with the 

distortions of the director field is then given by the Frank distortion energy [9]: 

(5.1) 

where KI, K2' K3 are elastic constants for the three modes of orientational distortions 

occurring in nematic: splay, twist and bend. It is useful and moreover appropriate to 

adopt the so-called one constant approximation: K = Kl = K 2 = K3' Within this 

approximation, no speed anisotropy can be attributed to elastic effects. The Frank 

free energy simplifies to: 

K 
fb = 2 V'n : (V'nf· (5.2) 

This vectorial approach is generally well suited to study small and continuous defor

mations of the nematic liquid crystal. However, this approach generally fails in the 

vicinity of defects where the direct or field may be discontinuous causing, in turn, the 

distortion free energy to become infinite. However, this problem can be overcome 
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in a rather straightforward manner by allowing the director to deviate from its unit 

length constraint and act as an additional order parameter measuring the degree 

of molecular alignment along itself. In this work we employed a regularized Frank 

elastic free energy of the form [30,31]: 

f = K [~V'n . (V'n)T + (In12 - 1)2] 
Jb 2' 462' (5.3) 

where 6 is a penalty parameter related to the size of the defect core. The second term 

on the right-hand side of Eq. 4.3 is the penalty function that allows the direct or to 

deviate from unit y in orientational defects and the distortion energy to be bounded. 

The time dependent equation for the rotation of the direct or is determined by 

the balance between a viscous and an elastic torque. The latter, which is usually 

refereed as molecular field, is given by the variational derivative of the Frank elastic 

free energy. The transient director equation is then: 

an = K [V' . V' _ (n2 - 1)n] 
"Y Ot n 62 ' 

(5.4) 

where "Y is a constant associated with the rotational viscosity of the direct or. 

In order to reduce the number of parameters and facilitate the analysis of the 

results we non-dimensionalize the governing equation by introducing the character-

istic time and length scales of the problem. Lengths are measure in terms of the 

capillary radius and therefore: f = r / R. The time scale is determined by the typical 

relaxation time of the direct or field and is given by: t = t/T with T = 1ft. 
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Given that the solutions to our problem have an obvious rotational symmetry 

around the axis of the cylindrical cavity we consider a two dimensional computa

tional space representing half of a longitudinal cross section and we accordingly 

employ cylindrical coordinates (r, z). The width Land height R of the computa

tional domain are set to 5 and 1, respectively. Finally, the boundary conditions on 

the outer wall and end caps are respectively strong radial anchoring and no flux. 

5.4 Results 

This section gives sorne representative results on the collective behavior of sub

arrays of nematic point defects lying on the axis of a cylindrical capillary and in

teracting between each other. We consider scenarios involving three and then four 

nematic point defects. 

5.4.1 Interactions between three point defects 

In this case we examine the influence of a point defect on the interaction between 

a neighboring pair. Note that the global charge of the system does not alter the 

results presented. As we mentioned earlier, when two defects of opposite charges are 

sufficiently close one another (i. e., when their separating distance is smaller or equal 

to the tube diameter) they usually attract and finally annihilate living no trace of 

their previous existence. Furthermore when no back-flow or anisotropic elastic effects 

are considered, the two defects travel at the same speed and therefore meet at the 

midpoint between their initial positions. This behavior can be however significantly 

affected by the presence of an additional defect inter acting with the pair. 
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Figure 5-2 shows the trajectories of three nematic point defects as a function of 

time for three different scenarios. In all three cases, two defects, forming a pair, were 

initially he Id at the same separating distance di = 0.95 while a third perturbing de

fect was placed at different distances dp = 1.05,1.55,2.05 away from that pair. It can 

be se en from fig. 5-2 that as dp inereases, the effeet of the perlurbing defect becomes 

weaker. For the case dp = 2.05 (the separation tends to the screening length), the 

pair is annihilating practically at midpoint and roughly unaware of its presence. The 

reverse is also obviously true for the perturbing defect which is just weakly initially 

attracted by the pair. When dp = 1.05 (the distances between the three defects are 

comparable), the trajectories become distorted as the system tries to globally reduce 

the distance separating the defects, including dp . One can see that the pair do es 

not annihilate at midpoint anymore indicating speed anisotropy between the two 

defects. Furthermore, the time required for the pair annihilation is found to increase 

as dp decreases. Figure 5-3 illustrates the dynamic structural changes occurring in 

the case dp = 1.05. In this figure, the small segments give the director field while 

the gray seale provides and indication of its length thereby providing an alignment 

scalar order parameter. 

5.4.2 Interactions between four point defects 

We now turn to cases where all defects can potentially annihilate by pair and 

disappear from the system. The system has now two pairs and therefore an additional 

important length to take into account. We denote by dj this distance separating the 

second pair of defects. As for the previous cases of three defects, one pair is held at 
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Figure 5-2: Position of the point defects along the cavity axis as a function of time 
for three different cases (dp = 1.05,1.55,2.05) 

constant initial separation. One of the defects of the second pair (the exterior one) is 

also he Id at the same initial position while the remaining defect (inner one) is moved 

at different initial positions thus varying the lengths dj and dp at the same time. 

Figure 5-4 shows the trajectories of the four defects as a function of time for 

different initial positions of one defect. It can be seen that when dp is large and 

approaching the screening distance, the two pairs annihilate unaware of each other. 

The pair whose initial interdefect separating distance is the smallest annihilates the 

fastest. In the second case di ~ dj ~ dp and the two pairs annihilate in the same time 

frame. The trajectories of the defects in each pair are asymmetric as the two exterior 

defects are traveling faster than their inner counterpart. It is also important to note 

that the two inner defects do not collapse together despite being separated by the 

same distance with respect to the exterior defects. This provides evidence that each 

defect is affected by all the remaining ones and the attraction felt is proportional to 
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Figure 5-3: Evolution of structure in the cylindrical capillary as the point defects 
move along the axis. Segments indicate the orientation of directors while the gray 
scalar gives the degree of alignment along the directors. Black=no alignment=defect 
core, white=alignment. [= O.Ol(a), O.6(b) and l(c). 
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Figure 5-4: Position of the point defects along the cavity axis as a function of time 
for three different cases. 

the separating distances. In the third and last case, dp < dj and the inner defect is 

more attracted by the other inner defect rather by the closet exterior defect so that 

three defects tend to go in the same direction. Unfortunately for the rebelling defect, 

it is still slowed down enough by the attraction of the closet exterior defect so that 

it cannot reach the other pair on time and it is forced to change direction once the 

first pair has collapsed. This change of direction considerably lengthens the anni

hilation pro cess of the second pair. As observed from the case of three defects the 

annihilation time scale increases as dp decreases. Figure 5-5 illustrates the dynamic 

structural changes occurring in the case di ~ d j ~ dp . 

5.5 Conclusions 

We have presented a simple model to study the interactions between nematic 

point defects lying on the axis of a cylindrical capillary. This work was motivated 
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Figure 5-5: Evolution of structure in the cylindrical capillary as the point de
fects move along the axis. Black=no alignment=defect core, white=alignment. 
f = O.01(a), O.81(b), O.99(c), 2(d) and 2.2(e). 
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by the reported experimental observation of those types of liquid crystal defects and 

related structures along the spinning extrusion duct of spiders. The cases of sub

arrays of three and four mutually interacting defects were presented. Despite the 

absence of back-flow and elastic anisotropy effects, strong anisotropy were put in 

evidence due to the sole effect of collective interactions. As for the much studied 

case of two interacting point defects, the screening distance after which the defects 

were unaware of each other and pinned was found to be around one diameter. A 

phenomenon of direction change that cannot be observed when considering only two 

defects was also featured. The different simulations have shown that defects are 

always attracted by their closet complementary neighbor but still affected by aIl 

the other defects below the screening distance. The results presented here should 

be useful in both improving the understanding of point defects in the context of 

the process-induced structuring of spider silk and to the more universal physics of 

defects. 
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CHAPTER 6 
Ring-like cores of cylindrically confined nematic point defects 

6.1 Summary 

Nematic liquid crystals confined in a cylindrical capillary and subjected to 

strong homeotropic anchoring conditions is a long-studied fundamental problem that 

uniquely incorporates nonlinearity, topological stability, defects and texture physics. 

Observed and predicted textures that continue to be investigated include escape ra-

dial, radial with a line defect, planar polar with two line defects, and periodic array 

of point defects. This paper presents theory and multiscale simulations of global 

and fine scale textures of nematic point defects, based on the Landau-de Gennes 

tensor order parameter equations. The aim of this paper is to further investigate the 

ring-like nature of point defect cores and its importance on texture transformation 

mechanisms and stability. The paper shows that the ring-like cores can be oriented 

either along the cylinder axis or along the radial direction. Axial rings can partially 

expand but are constrained by the capillary sidewalls. Radial rings can deform into 

elliptical structures whose major axis is along the capillary axis. The transforma-

tion between several families of textures under capillary confinement as well as their 

stability is discussed in terms of defect ring distortions. A unified view of nematic 

textures found in the cylindrical cavities is provided. 
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6.2 Introduction 

Nematic liquid crystals are intermediate phases found in materials composed 

of rigid and highly anisotropie molecules, favoring parallel packing either through 

excluded volume effects and/or molecular forces. [1,2] These mesophases share sorne 

common properties with isotropie liquids and fully ordered crystalline solids and 

combine fluidity and order. Because of this unique combination, nematic liquid crys

tal mesophases are often referred as ordered or anisotropie fluids. Order in nematic 

liquid crystals is orientational. Due to this order, nematic fluids display material 

properties such as permittivity, refractive index, elasticity and viscosity that are 

anisotropie (i.e. their magnitude differs from one direction to another). [1,2] In 

absence of any constraints, orientational order in a nematic liquid crystal is homoge

neous to minimize bulk elastic energy and therefore neighboring rod-like mole cules 

tend to spontaneously orient their long axis approximately parallel along a common 

preferred direction. However, geometry (shape and size of the container), surface 

anchoring (molecular orientation imposed by the surface of the container) and pos

sibly external fields (electric, magnetic, flow) results in heterogeneous orientational 

order. [2,3] Technological applications of nematic liquid crystals (e.g. displays, sen

sors, high-performance fibers) are invariably based on the fact that the structure and 

therefore the systems physical properties (e.g. optical, mechanical and rheological) 

can be tuned by external fields and geometric constraints. 

As any other ordered materials, nematic liquid crystals may contain defects. [1,3] 

The presence of these defects can be detected either directly by means of optical 

methods or indirectly through the variations of physical properties of the system. [1,3] 
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From the strict topological point of view, defects in an ordered media are configura

tions in which sorne arder parameter cannot be transformed continuously. In nematic 

mesophases, the order parameter is typically a unit vector field n(r) (where r is the 

position vector), called direct or field, giving the local average preferred orientation 

of the molecules; n is a headless vector since the states n and -n are physically 

indistinguishable. [1,3] Within this framework, a defect generally corresponds to a 

regian in the form of a point (OD) or a line (lD) in which the local direct or field 

exhibit a discontinuous change in orientation. In such a singular region, the direc

tor n(r) cannot be uniquely defined. Therefore, within the director description, a 

singular region is considered to be isotropic while a non-singular region is uniax

ial nematic. N ematic defects are conventionally characterized by a strength (M) 

whose magnitude (usually 1/2 or 1) and sign (±) denote respectively the amount 

and the sense of director rotation when encircling the defect. [1,3] [Note that sorne 

direct or field configurations, despite presenting no singularity, are still considered as 

defects (e.g. walls (2D) or escaped line (lD)), since they still involve large/sharp 

deformations.] To appropriately describe a defect one needs to employa tensorial 

order parameter field rather than a vectorial one. This tensorial order parameter 

conventionally denoted by Q(r) is, unlike n(r), everywhere continuous including in 

the core of defect. Q can describe smooth changes between the isotropie, uniaxial 

and biaxial nematic states (in contrast to n(r) whieh can only describe the uniaxial 

nematic state). [1,3-6] Properties of nematic-based systems are strongly afIected by 

defects and their associated textures. In sorne cases defects are highly undesirable 

while in others they are essential. [2J In order to eventually reduce, remove or more 
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generally control them and hence optimize the performances of the nematic liquid 

crystal-based system one invariably needs to understand static and dynamic defect 

properties. [2] 

The most widely found geometries for nematic-based systems are: planar (film, 

i.e. a mesophase sandwiched between to two parallel plates), cylindrical (ordered fiuid 

filling a tube) and spherical (droplet). Among those systems, nematics in cylindrical 

capillaries exhibit a rich diversity of structures. The possible (equilibrium) configu

rations of a nematic fiuid in a cylindrical capillary depend primarily on the molecular 

orientation (i.e. anchoring) imposed by the sidewalls of the cavity. The imposed ori

entation at the surface can be anywhere from parallel to perpendicular to the surface 

unit normal. Cylindrical cavities with sidewalls imposing a homeotropic anchoring 

(molecules forced to align their long axis parallel to the surface unit normal) have 

attracted the most experimental and theoretical interest to date, in part because this 

configuration possesses various orientational textures which are common in fiber man

ufacturing and in-situ composites. [7-13] There are basically four different types of 

nematic structures found in a cylindrically cavity with homeotropic anchoring, known 

as: (1) planar radial with line defect (PRLD), (2) planar polar with two line defects 

(PPLD), (3) escape radial (ER) and (4) escape radial with point defects (ERPD), 

shown in figure 6-1. While the first three configurations are two-dimensional (the 

system is homogenous in the third direction, collinear with the capillary axis), the 

fourth is completely three-dimensional. The stability of these structures depends on: 

(i) the size of the capillary, (ii) the nematic potential which is temperature for ther

motropic nematic liquid crystals (TNLCs) and concentration for lyotropic nematic 
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liquid crystals (LNLCs), (iii) the elastic properties of the particular nematic liquid 

crystal considered. The variations of elastic properties from one nematic material 

to another essentially modify the (meta)stability limits/envelopes of the phase dia

gram. [14-16] Therefore, far from phase transitions that introduce pre-transitional 

elastic constant divergences, such as nematic-smectic A [1], the qualitative features 

of the configurations can be appropriately studied within the approximation of elas

tic isotropy. [17] In addition, when the nematic potential is high enough and that 

the material is far from the isotropic-nematic phase transition, the (meta)stability 

of the different configurations is only dictated by the size of the capillary. 

In the PRLD configuration, which arises in small capillaries or very close to the 

isotropic-nematic phase transition, the molecular orientation is everywhere radial 

and a line defect of strength M = + 1 runs along the capillary axis. [10-12] In larger 

capillaries or at higher ncmatic potential, the PRLD becomes unstable with respect to 

the PPLD structure. The PPLD structure exhibits a broken rotational symmetry and 

is characterized by two line defects of strength M = + 1/2. Due to the combination 

of their mutual repulsion and a repulsion from the bounding curve surface, the two 

defect lines stabilize at a finite distance. The equilibrium defect-defect separation 

distance has been shown to be ~ O.66D, where D is the capillary diameter. [15, 

16] In large capillaries, theoretical studies predict that the energetically favorable 

configuration is the continuous ER. [7-9] The three-dimensional ER deformation 

can be seen as a PRLD configuration which has avoided the central line defect by 

uniformly escaping in the third dimension. This is explained by the topological 

instability of integer line defects, which is based on the notion that on the unit 
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PRLD PPLD 

ER 

ERPD 

Figure 6-1: The four typical textures found in nematic capillaries subjected to 
homeotropic anchoring: PRLD, PPLD, ER and ERPD. Lines are everywhere tangent 
to the direct or field. Singular regions are indicated by black dots 
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orientation sphere, a M = + 1 integral defect is an equatorial loop that can be 

smoothly and continuously eliminated by translating the loop towards one of the 

equators. [1,3] In practice, the ER configuration is seldom observed, as nematic-filled 

cylindrical capillaries usually exhibit instead the more complicated three-dimensional 

ERPD configuration. [7-12] The ERPD consists of partially escaped domains with a 

distribution of alternating radial and hyperbolic point defects along the capillary axis. 

Point defects are often referred as hedgehogs. The emergence of these point defects 

is not weIl understood. Generally the hypothesis is that since escape directions 

along the tube axis are energetically equivalent, they spontaneously form due to 

intrinsic fluctuations near the isotropic-to-nematic phase transition or due to surface 

irregularities. [10,12,18] It has been also suggested that they result from the presence 

of impurities in the cavity. [19] 

Nematic liquid crystals in circular capillaries subjected to strong anchoring are 

model systems for non-linearity and multi-scales in soft material science. The non

linearities are expressed by the multiple solutions that include the above-mentioned 

difTerent types of textures: PRLD with a single M = + 1 line defect, PPLD with two 

M = +1/2 li ne defects, ER with no defects, and ERPD with alternating M = ±1 de

fects. The multi-scale nature of the problem arises from the disparity between the size 

of the capillary (micrometer scale) and the defect cores (nanometer scale). A com

plete static description of nematic filled cylindrical cavities subjected to homeotropic 

conditions involves the texture phase diagram as a function of the material elastic 

properties, nematic potential, and capillary radius, where the (meta)stability ranges 

are defined, as well as the nano-scale ordering and geometry of the defects. 
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Although the topic of nematic defects and textures in cylindrical capillaries has 

been the subject of many experimental [7-9,12,20,21] and theoretieal [10,11,15-18, 

22-24] works over the last thirty years, a complete detailed pieture is still lacking. 

As a contribution to the on-going characterization of the multi-scale ordering and 

non-linearity (multi-stability) in nematic-filled cylindrieal cavities, this chapter focus 

on the exact nature of the point defects found in the ERPD texture and examines 

possible transformation paths to the PPLD configuration. In contrast with the basic 

director field description [9,18,20], the core of cylindrically confined point defects are 

not necessarily points in the isotropie state. [25] Indeed, orientational order in the core 

of hedgehogs has been shown, both experimentally [26,27] and theoretieally [28-32], 

to adopt a more complex but yet topologically equivalent ring-like configuration due 

to a core splitting mechanism. A unique contribution of this chapter is to establish 

the role of the ring geometry on texturaI transformations and texture stability, thus 

showing that point defects lack the dimensionality to explain texturaI changes. 

A detailed description of orientational order in the core of cylindrically-confined 

nematie point defects has been given in recent theoretieal studies. [33-35] According 

to these works, the core of a point defect splits into a uniaxial ring disclination 

whose axis is aligned along the axis of the cylindrical capillary. The uni axial ring 

is in turn surrounded by a biaxial torus in which the degree of biaxiality attains its 

maximum. However, recent molecular dynamie computational studies dealing with 

the annihilation of nematie point defects in cylindrical capillaries have suggested that 

the orientation of the ring disclinations in the core of the point defects could be along 
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the radial direction rather than along the axial one. [36-38] No precise description 

of this alternate ring-like configuration is available yet to the best of our knowledge. 

To eventually fully understand and characterize the ERPD texture and its con

nections to the other textures found in nematic cylindrical cavities, particularly the 

PPLD configuration, a better understanding of point defect cores is required. The 

first objective of this chapter is to investigate the possible ring configurations in the 

cores of nematic point defects confined into a cylindrical cavity. In contrast with 

previous studies [33-35], we use three-dimensional simulations and therefore do not 

assume a cylindrical symmetry of the defect structure. In addition, we consider the 

original Landau-de Gennes expansion and do not constrain the tensor order param

eter Q to avoid isotropie states by using the Lyuksyutov constraint as in previous 

studies. [33-35] The configurations obtained are therefore entirely self-selected. The 

second objective of this chapter is to investigate the effect of the confinement on the 

geometry of the ring-like structure of the point defect core. This is do ne by sim

ulating a spherically confined point defect and compared with the results obtained 

in the capillary. The third and last objective is to investigate the structural rela

tionships/transitions between the point defects and the PPLD structure. Texture 

transformations from, say, PRLD to PPLD have been described using defect split

ting of a M = + 1 line defect into two M = +1/2 line defects, driven by changes in 

the capillary radius. [39] Similarly, one would expect that certain (i.e. properly ori

ented within the capillary) ring defects may exp and and coalesce with each other and 

give rise to the texture transformation between ERPD and PPLD. The chapter is 

organized as follows: in section 6.3 we introduce the mathematical model employed, 
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in section 6.4 we present our computational results and in finally in section 6.5 we 

present our conclusions. 

6.3 Modelling 

6.3.1 Tensor order parameter Qij 

As we mentioned earlier, defect cores in nematic liquid crystals cannot be de

scribed by a direct or field because of their discontinuous nature, their inherent biax

iality and steep order parameter changes. [17] An appropriate description of orienta

tional ordering in the presence of defects therefore requires a tensor order parameter 

field Q (r ). This tensor is symmetric traceless (i. e., Q ij = Q ji and Q ii = 0) and 

therefore possesses five degrees of freedom. It can be represented, in terms of its 

eigensystem as follows: [35] 

(6.1) 

In this expression, n, m and 1 are unit eigenvectors forming an orthogonal triad and 

J-Ln, J-Lm and J-Ll are their corresponding eigenvalues. The eigenvalues J-Li (i = 1,2,3) of 

the tensor order parameter are restricted by: -1/3::; J-Li ::; 2/3 and J-Ln + J-Lm + J-Ll = O. 

The direct or triad and the eigenvalues are characterizing the orientation and the 

strength of alignment of the phase respectively. The largest eigenvalue in magnitude 

or absolute value, J-Ln, gives the strength of ordering along the uniaxial director n 

previously defined. The second Mm and third Ml eigenvalues correspond respectively 

to the biaxial directors m and 1 (1 = n x m). At equilibrium, an undistorted 

nematic phase is uniaxial; however, in distorted regions like defect cores the phase 
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is likely to exhibit biaxiality. The possible ordering states that can describe the 

tensor order parameter are: isotropie (/-LI = /-L2 = /-L3 = 0; Q = 0), positive uniaxial 

(/-LI> /-L2 = /-L3), negative uniaxial (/-LI = /-L2 > /-L3) and biaxial (/-Ln #- /-Lm #- /-LI)' In 

the negative uniaxial phase, the mole cules spread orthogonally to the director. [35] 

When the tensor order parameter Q is uniaxial, it is often useful to represent it 

in the following format: 

(6.2) 

In this expression, Sis referred as the uniaxial scalar order parameter. It describes 

the amount of order (or strength of alignment) around the uniaxial direct or n and 

is given by S = 3/2(niQijnj) = 3/2/-Ln. The Kronecker i5 stands for the unit tensor. 

The uniaxial scalar order parameter is in the range: -1/2 ::;: S ::;: 1. 

Biaxiality plays an important role in the type of solutions computed. A conve

nient parameter to represent it is the degree of biaxiality defined as: [35] 

(6.3) 

whieh is found in the interval [0,1]. In positive and negative uniaxial states (32 = 0, 

while a state of maximum biaxiality corresponds to (32 = 1. 

6.3.2 Governing equation 

The total free energy of a nematie liquid crystal system under strong anchoring 

conditions (i. e., when the molecular ordering at the boundary is fixed) is written 
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as: [1] 

(6.4) 

In this expression, fb, fh and fg represent the total bulk, homogeneous bulk and gra

dient bulk free energy densities, respectively. The homogeneous free energy describes 

the short-range ordering effects related to the amplitude of the tensor order param-

eter. This expression can describe the first order isotropic-nematic phase transition 

but also, and more importantly in our work, the variations of the nematic order

ing in the vicinity of defects. This contribution is often referred as the Landau-de 

Gennes free energy. According to Doi's formalism [4,5], this expansion of the order 

parameter may be written as: 

(6.5) 

In this expression A is an energy density scale (unit of energy per cubic meter), U is 

a dimensionless phenomenological parameter called nematic potential which controls 

the magnitude of the equilibrium tensor order parameter. In general the nematic 

potential U can be assigned a dependence on either temperature or concentration 

depending on the nature of the nematic liquid crystal considered (i. e., thermotropic 

or lyotropic). In our study U is taken to be proportional to concentration and accord

ing to Doi's theory, U = 3C /G* where C and C* are the number and critical number 

density ofrod-like molecules, respectively. [4,5] Accordingly, the energy density scale 

A = C* kT where k and T are the Boltzmann constant and the temperature of the 

system, respectively. 
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At equilibrium and away from distorted regions, the tensor order parameter Q 

given by Eq. 6.5 is uniaxial. Under these conditions, the value of the scalar order 

parameter is given by the relation: 

(6.6) 

Within this framework, the first or der phase isotropic-nematic phase transition occurs 

at nematic potential UIN = 2.7. AIso, in this model, the system is isotropie for 

U < UIN and nematic for U > UIN. The limit of metastability for the isotropie and 

nematie phase are U* = 3 and U** = 8/3, respectively. [4,5] 

The gradient fg contribution in Eq.(6.4), represents the energy density penalty 

associated with the long-range variations of the tensor order parameter Q in the 

nematic phase. As mentioned in the introduction, the elastie anisotropy of nematic 

essentially modifies the limits/envelopes defining the domain of (meta)stability of 

the different defect configurations but not their qualitative features. Since exploring 

the entire parametric space is beyond the scope of this chapter we therefore consider 

the case of elastie isotropy. In the one constant approximation, the gradient energy 

expressed in terms of Q reads: [4,40] 

(6.7) 

In this equation, L is a material-dependent elastie constant (unit of energy per unit 

length). 

The equilibrium tensor order parameter field is the one that minimizes the total 

free energy under the different constraints (shape and size of the container, anchoring 



136 

at its surface, etc ... ) and is obtained from variational calculus principles. Under 

strong anchoring conditions, the Euler-Lagrange equation associated with the free 

energy of the nematic liquid crystal reads: 

(6.8) 

Solving directly the non-linear steady state equation (6.8) iteratively is difficult 

given that the problem present multiple solutions which aIl depend on the initial 

guess. In addition, convergence to one of the many stable solutions is only insured if 

the initial guess is close enough to a basin of attraction. To palliate this problem it 

is customary to introduce a fictitious time dependency to the problem and therefore 

obtain a physical evolution of the solution. The pseudo-transient or false-transient 

problem we solve in or der to obtained the different solution families follow from 

variational principles and reads: [4, 13,40-42] 

(6.9) 

In this equation "( is a kinematic constant known as rotational viscosity. [4,40] 

6.3.3 Geometries and auxiliary conditions 

In contrast to previous studies [33-35] on the ring-like core of point defects, we 

use three-dimensional simulations which allow the emergence of additional possible 

ring-like core configurations. In order to assess our objectives we used cylindrical 

and spherical computational volumes. Nevertheless, in order to reduce the high 
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computational cost of the simulations we have considered 1/8 of the computational 

volumes using the (mirror) symmetry properties of the expected solutions. 

Furthermore, we use non-dimensionalization in order to reduce the number of 

parameters and facilitate the analysis of the results. Using the energy scale A, 

we define the dimensionless bulk free energy density lb = !b/ A where the overbar 

indicates the dimensionless quantity. The dimensionless position vector is defined 

as r = r / R where R stands for the radius of the cylindrical or spherical cavity. 

Accordingly, we define the dimensionless nabla operator V = R\l and dimensionless 

total energy ft = A~3' The fixed, reference length scale in the problem is the nematic 

coherence length defined as ~ = J L / A. This length gives a characteristic scale for the 

amplitude variations of the tensor order parameter and the size of defect cores. The 

ratio R/ ~, corresponding to the dimensionless nematic coherence length reciprocal, 

therefore represents the relative size of the cavity. 

The boundary conditions are as follows: at the wall of the cavity, the tensor 

or der parameter is assumed to be uniaxial and to describe a rigid radial anchoring 

condition so that Qij(r = R) = Se(eiej - ~), where e r is the unit vector along the 

radial direction. The interior boundary conditions insure the mirror symmetries. In 

the case of the cylindrical cavity, a no flux condition is used on the exterior face so as 

to emulate an infinitely long cavity; this condition does not introduce any spurious 

effects as tested by using different computational grids. 

The model used in this work contains two parameters: the nematic potential U 

and the reduced cavity size R/~. Exploring the entire parametric space is beyond 

the scope of this chapter and is le ft for future work. For an the simulation results 
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presented, the nematic potential is set to U = 6 which corresponds to a deep nematic 

phase with an equilibrium scalar order parameter of Se = 0.809. Note that other 

values of U in the stable nematic range do not change the structures under study. 

This chapter finds and analyzes solutions for different cavity sizes RIf" in the range 

[17.5,30]. This choice is motivated by the fact that the point defects are only stable 

in large cavities; the upper bound is dictated by our memory limitation while the 

lower bound corresponds to the limit of stability of the point defect. A previous 

two dimensional computational study has used a similar range of cavity radii for the 

exploration of spherically confined point defects. [14] 

6.3.4 Computational procedure and post-processing tools 

The governing partial differential equation for the tensor order parameter Q(r), 

Eq. (6.9) is solved using a standard iterative method. The space discretization is 

achieved using the Galerkin finite element method. A pseudo-transient continuation 

method was used to explore the parametric range. The density of element is higher 

in the regions describing steep changes in the tensor order parameter amplitude. In 

those delicate regions, the size of the triangular elements is always smaller than the 

ratio f,,1 R. 

The order parameter fields Q(r) corresponding to each computed solutions are 

visualized by means of cuboids built from the eigensystem of the tensor. [17] The 

axes of the cuboids are aligned with the eigenvectors while the size of each side is 

proportional to the eigenvalues. Given that the eigenvalues of Q(r) can be negative, 
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we use instead the shifted tensor M = Q + <5/38. [33] Using this technique, it is pos

sible to distinguish between isotropie (aU edges of the cuboid are equal), uni axial 

(two edges are equal) and biaxial (aU three edges are different) states. 

6.4 Results and discussions 

6.4.1 Ring-like disclination cores of nematic point defects 

This subsection present actual numerical results obtained by solving Eq.(6.9). 

Within our 3D computational space, two different types of ring-like core structures 

are found for the cylindricaUy-confined point defects depending on the type of initial 

configuration considered. Dependence to initial configuration is the haUmark of non

linearity, [43] which is here introduce by the homogenous part of the free energy 

density. In the first type of configuration, the ring axis is aligned along the axis of 

the cylindrical cavity whereas in the second type of configuration, the ring axis is 

aligned along the normal of the capillary surface, that is, along the radial coordinate. 

We denote the former and latter configurations as the z-ring and r-ring core solutions, 

respectively. Schematics of the two ring-like core configurations in the case of radial 

and hyperbolic point defects are shown in figure 6-2. 

Z-ring core. We first examine the computed z-ring core configuration which is 

obtained using an approximate z-ring like initial guess. The family of solutions of this 

configuration has only one member. Within the z-ring arrangement, the cylindrical 

symmetry of the far director field is transferred to the inner-core structure of the 

point defect. The z-ring core solution is found for both the radial and hyperbolic 

point defects. Figure 6-3 shows the two computed configurations in ter ms of a 
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Figure 6-2: Ring-like cores of radial and hyperbolic nematic point defects embedded 
in a cylindrical cavity. Lines are tangent everywhere to the direct or field. (A) 
represents a longitudinal cross-section through the radial and hyperbolic z-rings. 
(B) corresponds to the transversal cross-section through the center of each defect 
as denoted by the arrows. (C) and (E) are mutually orthogonal longitudinal cross
sections through the radial and hyperbolic r-rings. (D) shows the transversal cross
section through the center of each defect as indicated by the arrows. 
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Figure 6-3: Z-ring cores of the cylindrically confined radial and hyperbolic point 
defects. The cuboid fields are represented on three faces of the computational volume 
for the ease of visualization. 

cuboid field for the reduced cavity radius RIE, = 25. The left (A) and right (B) plots 

correspond ta the radial and hyperbolic form of the point defect, respectively. 

The figure shows that the structures are, in both cases, entirely cylindrically 

symmetric and that the order is essentially uniaxial except in a narrow circular 

region close to the z-axis of the cavity where it becomes biaxial. Along the cross 

section defined by the plane z = 0, the smooth shape evolution of the cuboids shows 

that the preferred molecular orientation goes from radial, at the wall, to tangential, 

in the biaxial ring, to axial, along the cavity axis. 

Complementarily, figure 6-4 gives the variations of tensor order parameter eigen-

values along the radial direction at z = 0 in the case of the radial configuration for 
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Figure 6-4: Eigenvalues of the Q tensor along the radial direction at z = O. 

RIE, = 25. Note that given the elastic isotropy considered, the profiles are identical 

in the radial and hyperbolic forms of the point defects. 

The eigenvalue profiles shown in this figure are qualitatively analogous to the 

ones found in the cases of ring disclination-like core occurring in spherically confined 

nematic subjected to homeotropic anchoring. [14J They attest that the z-ring solution 

is effectively uni axial away from the eigenvalue exchange region corresponding to the 

ring disclination and in which order is biaxial with a negative scalar order parameter. 

Biaxiality is clearly a distinctive feature in the ring-like core of the point defect since 

no isotropie state is ever found. Another representation of the biaxiality variation 

in the defect core is given in figure 6-5 which is an iso-surface plot of the biaxial 

parameter f32 as a function of the (x, y, z) coordinates; in this graph, which clearly 

shows the toroidal variations of biaxiality, the iso-Ievel is f32 = 0.5. In this figure, 

the f32 envelopes describe a torus. The evolution of biaxiality in the z-ring defect 

is in qualitative agreement with the theoretical predictions obtained in previous 
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Figure 6-5: Toroidal variations of biaxiality within the z-ring like core disclination. 
The iso-Ievel is (32 = 0.5 while the (A) and (B) plots correspond to the original and 
enlarged view of the torus, respectively. 

works. [33-35] However, in contrast to these studies, no (Lyuksyutov) constraint is 

applied to the degree of biaxiality of the tensor order parameter Q, and the evolution 

of biaxiality inside the ring disclination is completely self-selected. This suggests that 

it is not necessary to apply such constraint in our work. 

In our simulations we find that the cross section of the biaxial torus (distance 

separating the peaks of maximum biaxiality) is always perfectly circular. As in pre

vious studies, [33-35] we note that there is a uniaxial line embedded in the center 

of a biaxial torus. Along this uniaxial sheath the scalar order parameter S is nega-

tive as indicated by figure 6-4, meaning that the nematic mole cules tend to spread 

perpendicularly to a director field everywhere tangent to the ring. 
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Figure 6-6: Profiles of biaxiality of z-ring like core disclination along the radial 
direction. Cases (A), (B) and (C) corresponds respectively to the capillary sizes 
RIf;, = 30,25,20, respectively. 

Given its cylindrical symmetry and circular nature, the biaxial structure of the 

z-ring defect core can be characterized by plotting the variation of the degree of 

biaxiality 132 along the radial direction on the z = 0 plane. Figure 6-6 illustrates the 

variations for the capillary sizes RIf;, = 30,25,20. It appears from figure 6-6 that the 

cross section of the torus increases with a decreasing capillary radius. Additionally, 

the radius of torus (distance from the origin of the coordinate system to the uniaxial 

sheath) follows the same trend. The growth of the z-ring is restricted by sidewall 

forces so that the maximum radius of the z-ring is found to be around rc ro..J 0.12 for 

RIf;, ro..J 18. 

R-ring core. The other core configuration obtained for cylindrically confined 

point defects is the r-ring disclination which is obtained using an approximate point 

defect structure with an isotropic core (see fig. 6-2). In contrast to the z-ring 

configuration previously described the r-ring solution does not possess cylindrical 
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Figure 6-7: R-ring cores of the cylindrically confined radial and hyperbolic point 
defects. The cuboid fields are represented on three faces of the computational volume 
for the ease of visualization. 

symmetry as the ring axis is now positioned parallel to the radial direction of the 

cavity. To date, studies [33-35] have assumed that the ring axis was aligned with the 

cavity and that the configuration was consequently cylindrically symmetric. How-

ever, recent molecular dynamic simulations [36-38] suggest that the ring could be 

instead oriented along the radial direction and therefore break the symmetry. No 

description of the r-ring solution has been however proposed. As for the z-ring, the 

r-ring solution can be equivalently found for the radial and hyperbolic point defects. 

Figure 6-7 shows the tensor field corresponding to radial and hyperbolic solutions 

for the reduced cavity radius RIf, = 25. The left (A) and right (B) plots correspond 

to the radial and hyperbolic form of the point defect, respectively. 
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Figure 6-8: Eigenvalues of the Q tensor along the x and z-directions at y = O. 

In these plots, the biaxial r-ring lies on y = 0 plane and is parallel to the y-axis. 

At this point one can note that in contrast to the z-ring configuration which possesses 

a single ring axis (i.e. the z-axis), the r-ring configuration may take any orientation 

along the radial direction and therefore possess an infinity of possible equivalent 

orientations. In our simulations, the orientation of the ring is self-selected along the 

y-axis but it could be also equivalently oriented along the x-axis. As for the z-ring, 

in figure 6-7, smooth orientation transitions occur from the periphery to the core 

of the point defect through biaxial states. Despite their difference of orientations, 

the z- and r-ring configurations display similar characteristics. Figure 6-8 provides 

the tensor order parameter eigenvalue variations along the x and z-directions for the 

same parameter used in figure 6-7. 

The profiles vary in a manner similar to that of the z-ring core (See fig. 6-4). 

There are, however, two essential differences: (1) the radius of the biaxial torus is 
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significantly larger than that found in the case of the z-ring core for equivalent para

metric conditions, and (2) the torus is not circular (at least for this set of parametric 

values, as further discussed below) but rather elliptical with the major axis along 

the axial z-direction and the minor axis along the radial r-direction. 

To get a better visual representation of the r-ring core, figure 6-9 provides an 

iso-surface plot of the degree of biaxiality [32 for the iso-Ievel 0.5 in the parametric 

conditions of fig. 6-7. Figure 6-9 attests that the distribution of the biaxial envelopes 

in the z-ring and r-ring cores is qualitatively similar with the difference however that 

r-ring configuration breaks the cylindrical symmetry. Given this lack of symmetry, 

two axes belonging to the r = 0 plane must be taken to describe the r-ring core 

configuration. 

Figure 6-10 illustrates the evolution of the degree of biaxiality [32 along the ra

dial and axial direction for the relative capillary sizes RIf, = 30,25,22.5. As noticed 

in the case of the z-ring core, the torus of the r-ring cores are essentially circular. 

One can see that for equivalent parametric and geometric conditions, the radii of 

the ring-disclinations are substantially larger in the r-ring configurations than in the 

z-ring ones. More importantly, our simulations tend to indicate that in large cavities 

(i.e. for RIf, » 30), the biaxial torus is essentially circular (like the z-ring core) but 

that in small cavities, it is elliptical with major axis along the cavity axis. Moreover, 

as the cavity diameter decreases, the torus tends to deform faster in the axial than 

in the radial direction. The sensitivity of the torus geometry on the cavity radius is 

noticeably more significant in the r-ring core than in the z-ring core. 
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Figure 6-9: Toroidal variations of biaxiality within the r-ring like core disclination. 
The iso-level is {32 = 0.5 while the (A) and (B) plots correspond to the original and 
enlarged view of the torus, respectively. 
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Figure 6-10: Profiles of biaxiality of r-ring core disclination along the radial and 
axial directions. Cases (A), (B) and (C) corresponds respectively to the capillary 
sizes RIt;, = 30,25,22.5, respectively. 

6.4.2 Confinement effects 

In order to assess the role of confinement on the structure of the ring-core discli-

nations, we have additionally computed the fine structure of a point defect in a 

spherical droplet. Figure 6-11 illustrates the biaxial ring-like configuration adopted 

by the core of a radial hedgehog for U = 6 and RIt;, = 25. This result is in qualita

tive agreement with the results obtained in previous two-dimensional simulations. [14] 

There is an infinite possibility of ring orientation in the sphere. While the far-director 

field exhibits the spherical symmetry of the confinement, the ring-like core displays a 

cylindrical symmetry. As for the z-ring structure found in the core of a cylindrically 

confined point defect, both characteristic cross section of the torus are circular. 

To see the effects of parametric conditions on the geometry evolution of the ring 

disclination core figure 6-12 illustrates the variations of the degree of biaxiality /32 

along the spherical radius p at the nematic potential U = 6 for three different cavity 
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Figure 6-11: Ring-like disclination core of a spherically confined radial point defect. 
The cuboid fields are represented on three faces of the computational volume for the 
ease of visualization. 

size RIf;, = 30,25,20. Comparison between these profiles and the profiles obtained 

for the z-ring core (in the cylindrical confinement) shows that the characteristic radii 

of the torus are significantly larger in the spherical confinement. 

6.4.3 Hedgehog-to-planar polar structural transition 

In this section we report the structural transitions we have observed between the 

point defects with ring-like cores and the planar polar texture. In our simulations, 

this transition is trigger by a decrease of the cavity's relative size. Indeed, below a 

certain cavity size, the stable equilibrium configuration is the PPLD structure. The 

threshold cavity radius is not the same when the point defect displays the r-ring vs. 

z-ring core. In the case of the r-ring core the critical radius at which the structural 
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Figure 6-12: Eigenvalues of the Q tensor along the radial direction p. 
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transition occurs is RIE. rv 21. We first examine the transformation from the r

ring core hedgehog to the PPLD. In order to see the transformation from the two 

structures we solve the false-transient problem given by Eq. (6.9). Figure 6-13 gives 

the time evolution of the biaxial torus during the transition from the point defect 

with r-ring core to the pl anar polar texture with two line defects. In this figure each 

branch corresponds to the iso-value 0.5 of the biaxial parameter (32. The critical 

radius of instability for the r-ring core is RIE. rv 21. 

As one can see from figure 6-13, the transformation causes the radius of the torus 

to increase progressively in both the radial and axial directions. The extension of the 

torus in the axial direction does not present any restriction and is therefore faster 

than in the radial direction. We hypothesize that the r-ring would expand toward the 

end-caps of the cylindrical cavity no matter what its size. In contrast, the extension of 

the torus in the radial direction is restricted by the capillary sidewall and associated 

force balance. As mentioned earlier, the equilibrium distance between the two lines' 

defects within the planar polar texture is dictated by the force balance between the 



0.8 
0.7 
0.6 

~ 0.5 
0.4 

0.3 

y/R 

152 

o 0 x/R 

Figure 6-13: Time evolution of the biaxial torus during the opening of the r-ring 
core. The labels (1)-(4) give the order of the sequence. 

mutual repulsion of the two line defects and the repulsion from the surface. [15,16] In 

fact, within the case of isotropie elastieity, the equilibrium defect-defect separation 

distance has been shown to be ;:::;; O.66D. [15,16] Renee the maximum extension of the 

torus along the radial direction is ;:::;; O.66R. This critical separation between the line 

defects is observed in our simulations (See figure 6-13). Due to our limited computer 

memory we have not been able to consider a long cylindrical cavity, we therefore 

observe an early the breakage of the loop which leads to the PPLD configuration. 

Despite this limitation, the simulation provides useful insights on the structural 

transformation phenomenon. Within a longer capillary, one can easily imagine that 

the ring would first reach its maximal radial extension then continue to grow in 

the axial direction until meeting the lateral limits of the cavity or meet another 

ring. Indeed experiments tend to show that point defects are usually found in series 

leading to the ERPD texture rather than isolated. Figure 6-14 give schematics 
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(A) 
R~------------------~ 

(B) 
R,~------------------~ 

Figure 6-14: Evolution of the ring core of a point defect in an unbounded cylindrical 
cavity (A) and in the presence of neighboring point defect with similar r-ring core 
(B). The critical radial extension of the ring is given by rc ~ 0.66. Arrows and 
numbers indicate the structure progression with time 

of the ring growing pro cess and the potential transformation into the planar polar 

texture with line defects in an unbounded cylindrical capillary (A) and in the presence 

of a neighboring point defect with an r-ring core (B). These results and scenarios 

are in agreement with the observations made in molecular dynamics studies on the 

annihilation of point defects within a cylindrical capillary and the possible ERPD to 

PPLD transition. [38] 
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Figure 6-15: Time evolution of the biaxial torus during the transformation from the 
z-ring to r-ring core. The labels (1)-(3) give the order of the sequence. 

ln the case of the point defect with a z-ring core the transformation is found to 

occur at lower critical cavity radius Rjç t'V 17.5. The transformation pro cess is also 

found to be significantly more involving than in the case of the r-ring core as the 

z-ring does not permit a direct transition to the PPLD texture. Indeed, the biaxial 

torus of the z-ring core is found to first shrink into a spherical envelope, before sub-

sequently changing into an r-ring core. This r-ring torus then eventually opens as 

previously described. Figure 6-15 illustrates the mutation of the torus of the z-ring 

core into an r-ring core as time evolves. 

6.5 Summary and conclusions 

ln this chapter we have investigated the fine ring-like structure of point defect 

cores occurring in cylindrical capillaries. Two types of core configurations are found 
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Figure 6-16: Summary of the texture connections investigated in this work. PD, 
PPLD and PRLD stand for point defect, planar polar with line defects and planar 
radial with line defect, respectively. 

and described: the z-ring core whose ring-axis is along the capillary axis and the 

r-ring core whose axis is aligned along the radial direction. In contrast to previous 

studies, [33-35] the z-ring core was obtained in a self-selected fashion, without forc

ing the tensor order parameter Q to be biaxial and no cylindrical symmetry was 

assumed as the simulations were three-dimensional. Despite sorne previous indica-

tions of its existence, [36-38] the r-ring core configuration has never been described 

before. In contrast to its axial counterpart, the r-ring core structure does not retain 

the cylindrical symmetry of the far-field director field. Despite displaying qualitative 

similarities, the two ring structures still present sorne distinctive features that are 

intimately connected to the nature of their confinement. The r-ring core possesses 

a higher probability of occurrence since the ring has an infinite possibility of axis 

orientations along the radial direction. In contrast, the equilibrium of the z-ring 

ring core is rather fragile as it possesses a single possible axis orientation, along the 

cavity axis. The cross section of the biaxial torus characterizing the ring-like core 

structure is found to always be circular. Given that it is restrained by the cavity 

sidewalls, the biaxial torus characterizing the z-ring core solution is always perfectly 
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circular. The radial extension of the z-ring core is restricted by the sidewall forces 

so that the maximum radius reached by the ring is rc rv 0.12. The situation is how

ever different in the case of the r-ring core, since in that case the ring can freely 

exp and along the axial direction. What we observed is that in the limit of large 

cavity radii, the torus tends to be circular. In smaller cavities however, one observes 

the expansion of the ring along the axial direction. When the radius becomes too 

small to insure the stability of the point defect, a transition towards the planar po

lar configuration is initiated. In the case that the point defect displays the r-ring 

core structure, the transformation consists in the expansion of the ring towards the 

end-caps of the capillary or towards another point defect with an r-ring structure in 

the ERPD texture (This last scenario was not numerieally explored in this chapter 

but should be reported in the next future). The transition from the ERPD to the 

PPLD by extension of the r-ring structure, predicted in previous work [38], has been 

described. When the z-ring core is involved, the transformation consists in a prior 

shrinkage of the ring into a spherical pellet followed by the subsequent creation of an 

r-ring core which finally enlarge along the axial direction. The r-ring core forming 

the point defect is therefore pivotaI. Figure 6-16 is summarizing the texture mul

tiplicity found in nematic-filled cylindrical cavities subjected to strong homeotropie 

anchoring we have studied in this work. We have additionally inspected the effect 

of confinement on the ring-like core of the point defect. In contrast to cylindrieally 

confined point defects, spherically confined hedgehogs have only one ring-like core 

structure but have the possibility of a uni axial isotropie core solution. The ring axis 

can be along any radial direction in the sphere with equivalent probability. Given 
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its symmetry features, the ring-like core in the sphere compares weIl with the z-ring 

core in cylindrical confinement. For an equivalent cavity radius, the biaxial torus 

in the droplet is nevertheless found to be significantly larger than in the cylindrical 

capillary. The computational results provide new and significant insights on ne

matic liquid crystal defect physics, textures, and topological transformation under 

cylindrical and spherical confinement. 
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CHAPTER 7 
Point and ring defects in nematics under capillary confinement 

7.1 Summary 

The textures exhibited by nematic liquid crystals confined to cylindrical capil-

laries under homeotropic anchoring have been studied for nearly thirty years. One 

of the reasons behind this maintained interest is that the processing of many high-

performance fibers including carbon fibers and spider silks involve these textures. 

Three of these textures, the planar radial with line defect (PRLD), the planar polar 

with two line defects (PPLD) and the escape radial (ER) are relatively weIl under

stood. A third one, the escape radial with point defects (ERPD) presents however 

sorne unresolved issues and recent studies have questioned the real nature and di-

mensionality of the defects involved in this texture. It seems that the defects are 

not in the form of points but rather in the form of closed lines or rings. This paper 

presents a detailed study on the connection between point and ring defects in a cylin-

drical cavity using three-dimensional simulations based on the continuum Landau-de 

Gennes theory. The results show that true point defects cannot exist in cylindrical 

cavities and that the merging of two ring-like defects may lead to two qualitatively 

different stable textures; namely the ER and PPLD textures. The various results 

are in qualitative agreement with recent molecular dynamic studies and with theo-

retical predictions based on experimental observations. The predictions provide new 
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insights on the structural connections between synthetic and biologie al super-fibers. 

7.2 Introduction 

Nematic liquid crystals are intermediate phases combining liquid-like fiuidity 

with solid-like orientational order forming in a wide variety of materials often com

prised of rigid rod-like molecules. [1-3] The orientational order of these anisotropie 

fiuids results from the spontaneous alignment of their constituent molecules along 

a common preferred direction called the director and described by a unit vector n. 

As mesogenic mole cules are generally apolar, the states n and -n are equivalent 

and therefore n should be thought of as a headless vector. The usefulness of ne

matic liquid crystals arises from the fact that their various physical properties (e.g. 

optical, rheologieal, mechanical) can be in principle tailored by adjusting their ge

ometric, interfacial and external constraints (i.e. shape of the nematic container, 

molecular orientation imposed by its surface and possibly electrie, magnetic or fiow 

fields). The average preferred molecular orientation in these materials is therefore 

usually only local and varying from subregion to subregion forming orientational 

textures. [1-3] An important feature of orientational textures is that they often con

tain defects. Nematic defects usually corresponds to regions in the form of points 

(zero-dimensional) or lines (one-dimensional) where a direct or field n( r) cannot be 

uniquely defined. [3,4] In addition to their dimensionality (point or line) , nematic 

defects are also conventionally given a strength (M) whose magnitude (usually 1/2 

or 1) and sign (±) denote respectively the amount and the sense of direct or rotation 

when encircling the defect. [3,4] In this work we focus on the various textures and 
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(a) (b) 

(c) 

Figure 7-1: Typical textures found in nematic-filled cylindrical capillaries with side
walls imposing a homeotropic anchoring. (a) Transversal view of the planar radial 
with a line defect texture (PRLD); (b) Transversal view of the planar polar with 
two line defects texture (PPLD); (c) Longitudinal view of the escape radial texture 
(ER). The (flux) lines are everywhere tangent to the director field n(r) while the 
black dots indicate the presence of line singularities perpendicular to the page. 

defects exhibited by nematic mesophases confined in cylindrical cavities with side-

walls imposing a radial molecular orientation. The motivation behind the study of 

these textures and defects is their occurrence and importance in the manufacturing 

of many high-performance fibers (e.g. carbon fibers, nematic-filled carbon nanotubes 

and spider's silks) formed from nematic precursors. [5-14J 

Nematic mes op hases confined in cylindrical capillaries whose walls impose homeotropic 

anchoring basically display three different types of stable texture known as: (i) planar 

radial with line defect (PRLD), (ii) planar polar with line defects (PPLD) and (iii) 

escape radial (ER). [15-17] These three textures, which are pictured in figure 7-1, 
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are homogeneous along the cavity axis and therefore purely two-dimensional. Their 

stability depends on: (a) the radius of the capillary, (b) the nematic potential (A 

function of temperature for thermotropic nematic liquid crystals or concentration for 

lyotropic liquid crystals), and (c) the elastic properties of the particular nematic fiuid 

considered. [18] The variations of elastic properties from one nematic mesophase to 

another essentially modify the (meta)stability limits/envelopes of the texture phase 

diagram. [19] Therefore, far from phase transitions that introduce pre-transitional 

elastic constant divergences, such as nematic-smectic A, [1] the essential qualitative 

features of the textures can be appropriately studied within the approximation of 

elastic isotropy. In addition, when the nematic potential is high enough and the 

material is far from the isotropic-nematic phase transition, the (meta)stability of the 

different textures is only dictated by the radius of the capillary. 

In the PRLD texture (Fig. 7-1(a)), which arises in small capillaries or very close 

to the isotropic-nematic phase transition, the molecular orientation is everywhere 

radial and a line defect of strength M = + 1 runs along the capillary axis. In larger 

capillaries or at higher nematic potential, the PRLD becomes unstable with respect 

to the PPLD texture. The PPLD texture (Fig. 7-1 (b )) exhibits a broken rotational 

symmetry and is characterized by two line defects of strength M = +1/2 parallel to 

the cavity axis. In large capillaries, theoretical studies predict that the energetically 

favorable texture is the ER (Fig. 7-1(c)). Unlike the PRLD and PPLD, the ER is 

continuous and do es not present any line singularity. The ER texture is similar to a 

PRLD texture, but which has avoided the central line defect by uniformly escaping 

in the third dimension. [20-22] 
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(c) 

Figure 7-2: Schematic of the escape radial with point defects texture (ERPD). The 
flux lines are everywhere tangent to the direct or field n(r) while the black dots 
indicate the presence of point singularities on the axis of the cavity. (a) The different 
elementary cross sections given through the ERPD texture; (b) transversal cross 
section (identical for the radial and hyperbolic point defects); (c) longitudinal cross 
section. The point defect on the le ft is said to be radial while bearing the topological 
charge M = + 1 and the one on the right is hyperbolic and has the charge M = -1. 
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Despite the fact that the stable texture in large nematic capillaries is theoreti

cally the ER texture, in practice it is sel dom observed. [17,21-25] What is instead 

commonly detected is a three-dimensional texture consisting of a periodic distribu

tion of point defects of alternating topological charge (i.e. M = ±1) known as escape 

radial with point defects (ERPD) (See Fig. (7-2)). [17,21-25] The ERPD texture 

can be seen as a bidirectional ER texture consisting of partially escaped domains 

leading to the distribution of alternating radial (M = + 1) and hyperbolic (M = -1) 

point defects. A noteworthy occurrence of the ERPD texture is found in the nematic 

dope flowing along the spinning apparatus of spiders. [8,9] Although the role of this 

texture is unclear, it is believed to play an essential function in the extrusion process, 

possibly delaying crystallization of the nematic silk precursor in the spinning duct, 

but also optimizing its rheology (back-flow phenomenon [26]) and pre-aligning the 

molecules. 

Although the ERPD texture (Fig. 7-2) has been known for about thirty years, 

[21,22,25] it is not yet completely understood. Its emergence is believed to be due to 

surface irregularity effects, fluctuations near the isotropic-to-nematic phase transition 

and possibly to impurities in the cavity. [15-17, 27] Experimental and theoretical 

works have shown that the ERPD texture is metastable because oppositely charged 

point defects may attract and annihilate each other leading to the more energetically 

favorable ER texture (cf. Fig. 7-1(c)). [15-17,21,22,25,27] 

On the other hand, recent three-dimensional Brownian molecular dynamic stud

ies on the ERPD texture have suggested that the defects found along the axis of 

cylindrical cavities may not be, in reality, in the form of points but rather in the 
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form of closed-lines or rings. [28-30] The splitting of point defects into ring defects 

in cylindrical cavities subjected to homeotropic anchoring has been verified in our 

previous contribution using three-dimensional Landau-de Gennes continuum simu

lations. [31J To avoid any confusions on the dimensionality of the singularity we 

therefore introduce the name escape radial with ring defects (ERRD) to designate 

the texture consisting of ring defects instead of point defects. The most probable 

orientation for ring singularities in cylindrical tubes is with their axis perpendicular 

to the cavity axis therefore breaking the cylindrical symmetry of the entire associated 

texture. A schematic of the described ERRD texture is given in Fig. (7-3). 

This paper is a contribution to the on-going effort to understand nematic texture 

transformations in fiber-like geometries and in particular transformations between 

point, ring and line defects and their associated textures. In this work we first ques

tion the existence and the stability of isolated point defects confined to cylindrical 

capillaries and consequently of the ERPD texture. We then study the (meta)stability 

of ERRD texture and show the representative annihilation of two ring defects lead

ing, in a continuous manner, to the well known ER and PPLD textures, depending 

on the radius of the capillaries. The paper is organized as follows: in section 7.3 we 

introduce the mathematical model employed, in section 7.4 we present the compu

tational results and finally in section 7.5 we present conclusions. 
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Figure 7-3: Schematic of the escape radial with ring defects texture (ERRD). The 
flux lines are everywhere tangent to the direct or field n(r). (a) The different cross 
sections taken through the ERRD texture; (b) the transversal cross section (identical 
for the radial and hyperbolic ring defects); (c) first longitudinal cross section (in (b) 
and (c) views, the big black dots indicate the passage of the ring singularity); (d) 
second longitudinal cross section (normal to the plane given in (c)) in which the dash 
lines correspond to the ring singularity. In (c) and (d), the defect on the left is the 
radial ring (M = 1/2) while the one on the right is the hyperbolic ring (M = -1/2). 
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7.3 Modeling 

7.3.1 Computational domain 

In order to study the ERRD texture and associated radial and hyperbolic ring 

defects we consider a three-dimensional cylindrical cavity of radius R and a total 

length up to H = 8R. In order to reduce the high cost of the three-dimensional 

calculations we do not consider the entire volume but rather a fourth of it and use 

the mirror symmetry properties of the envisioned solutions (cf. Fig. (7-3)). 

7.3.2 Tensor order parameter Qij 

The tensor order parameter Q is, unlike the director n, everywhere continuous 

including in the core of defects. [32] It is symmetric traceless (i.e., Qij = Qji and 

Qii = 0) and therefore possesses five degrees of freedom. In terms of its eigensystem, 

it is represented as follows: [33] 

(7.1) 

n, m and 1 are unit eigenvectors forming an orthogonal triad and /-ln, /-lm and /-lI are 

their corresponding eigenvalues. The eigenvalues /-li (i = 1,2,3) of the tensor order 

parameter are restricted by: -1/3 ::; /-li ::; 2/3 and /-ln + /-lm + /-lI = O. The director 

triad and the eigenvalues characterize the orientation and the strength of alignment 

of the phase respectively. The largest eigenvalue in magnitude, /-ln, gives the strength 

of ordering along the uniaxial director n. [34, 35] /-lm and /-lI eigenvalues correspond 

to the biaxial direct ors m and 1 (1 = n x m). At equilibrium, an undistorted nematic 

phase is uniaxial; however, at defect cores the phase is likely to exhibit biaxiality. 
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The ordering states that can describe Q are: isotropie (/-LI = /-L2 = /-L3 = 0; Q = 0), 

positive uniaxial (/-LI > /-L2 = /-L3), negative uniaxial (/-LI = /-L2 > /-L3) and biaxial 

(/-Ln i= /-Lm i= /-Ll). [33, 36] 

When the tensor order parameter Q is uniaxial, it is useful to represent it as: 

(7.2) 

s (-1/2 ::; S ::; 1) is referred to as the uniaxial scalar order parameter and char ac-

terizes the degree of alignment around the n. 1 stands for the standard unit tensor. 

Biaxiality plays an important role in the type of solutions we compute in this 

work and a convenient parameter to represent it is the degree of biaxiality defined 

as: [33] 

(7.3) 

whieh takes values in the interval [0,1]. In positive and negative uniaxial states 

{32 = 0, while maximum biaxiality states correspond to {32 = 1. 

7.3.3 Landau de-Gennes free energy 

The total free energy of a nematie liquid crystal system under strong anchoring 

conditions (i.e., wh en the molecular order at the boundary is fixed) is written as: [1] 

(7.4) 

In this expression, fb, fh and f9 represent the total bulk, homogeneous bulk and gra-

dient bulk free energy densities, respectively. The homogeneous free energy describes 
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the short-range ordering effects related to the amplitude of the tensor order param-

eter. This expression can describe the first order isotropic-nematic phase transition 

but also, and more importantly in our work, the variations of the nematic ordering in 

the vicinity of defects. This contribution is often referred as the Landau-de Gennes 

free energy. According to Doi's formalism [18,37,38], this expansion of the order 

parameter may be written as: 

(7.5) 

In this expression A is an energy density scale (unit of energy per cubic meter), U is 

a dimensionless phenomenological parameter called nematic potential which controls 

the magnitude of the equilibrium tensor order parameter. In general the nematic 

potential U can be assigned a dependence on either temperature or concentration 

depending on the nature of the nematic liquid crystal considered (i. e., thermotropic 

or lyotropic). In our study U is taken to be proportional to concentration and accord

ing to Doi's theory, U = 3C /C* where C and C* are the number and critical number 

density of rod-like mole cules , respectively. [18,37] Accordingly, the energy density 

scale A = C* kT where k and T are the Boltzmann constant and the temperature of 

the system, respectively. 

At equilibrium and away from distorted regions, the tensor order parameter Q 

given by Eq. (7.5) is uniaxial. Under these conditions, the value of the scalar order 

parameter is given by the relation: 

1 3;-:-S 
Se = 4: + 4: V 1 - 3U (7.6) 
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Within this framework, the first order phase isotropic-nematic phase transition occurs 

at nematic potential UIN = 2.7. AIso, in this model, the system is isotropie for 

U < UIN and nematic for U> UIN . The limit of metastability for the isotropie and 

nematic phase are U* = 3 and U** = 8/3, respectively. [18,37] 

The gradient f9 contribution in Eq. (7.4), represents the energy density penalty 

associated with the long-range variations of the tensor order parameter Q in the 

nematic phase. As mentioned in the introduction, the elastic anisotropy of nematic 

essentially modifies the limits/envelopes defining the domain of (meta)stability of 

the different defect configurations but not their qualitative features. Since exploring 

the entire parametric space is beyond the scope of this paper we therefore consider 

the case of elastic isotropy. In the one constant approximation, the gradient energy 

expressed in terms of Q reads: [37,39J 

(7.7) 

In this expression, L is a material-dependent elastic constant (unit of energy per unit 

length). 

7.3.4 Governing nemato-dynamic equation 

The dynamic equation describing the relaxation of the tensor order parameter 

Q(r, t) toward an equilibrium value that minimizes the total free energy under the 

different constraints (shape and size of the container, anchoring at its surface, etc.) 
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foUows from variational principles and is given by: [37,39-42] 

aQaf3 JF 
'Y--=---

at JQaf3 
(7.8) 

In this equation 'Y is a constant kinematic coefficient related to rotational viscosity. 

[37,39] The right-hand side of Eq. (7.8) corresponds to the functional derivative of 

the total free energy. From variational calculus it can be shown that: 

(7.9) 

Only the symmetric traceless part of this expression is retained in the calculations 

in order to satisfy the constraints of the tensor order parameter. 

7.3.5 Dimensionless quantities and auxiliary conditions 

In order to reduce the number of parameters, facilitate the analysis, and to 

compare with other studies, aU the calculations reported here are presented in di

mensionless format. Using the energy scale A, we define the dimensionless bulk free 

energy density lb = !b/A where the over-bar indicates the dimensionless quantity. 

The dimensionless position vector is defined as f = r / R where R stands for the 

radius of the cylindrical cavity. Accordingly, we define the dimensionless nabla oper

ator '\7 = R'V and dimensionless total energy P = A~3. The fixed, reference length 

scale in the problem is the nematic coherence length defined as ç = J L / A. This 

length gives a characteristic scale for the amplitude variations of the tensor order 
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parameter and the size of defect cores. The ratio RIf;, corresponding to the dimen

sionless nematic coherence length reciprocal, therefore represents the relative size of 

the cavity. 

The boundary conditions are as follows: at the curved surface representing the 

wall of the cavity, the tensor or der parameter is assumed to be uniaxial and to 

describe a rigid radial anchoring condition so that Qij(r = R) = Se(er ej - ~), where 

e r is the unit vector along the radial direction. On the two mutually perpendicular 

interior surfaces, boundary conditions ensure mirror symmetries. Finally at both 

ends of the tube a no flux condition (e~ a'ï1~~c>/3 = 0, where e~ is the unit normal to 

the cavity caps) is used to emulate an infinitely long cavity. 

In dimensionless format, the model contains two parameters: the nematic po

tential U and the reduced cavity size RIf;. Exploring the entire parametric space is 

beyond the scope of this paper and is left for future work. For an the simulation 

results presented in the next section, the nematic potential is set to U = 6 which 

corresponds to a deep nematic phase with an equilibrium scalar order parameter of 

Se = 0.809. In this contribution we analyze solutions for different cavity sizes RIf;. 

7.3.6 Computational procedure and post-processing tools 

The governing partial differential equation for the tensor or der parameter Q(r), 

Eq. (7.8) is solved using a standard time integration scheme. The space discretization 

is achieved using the Galerkin finite element method. The density of triangular 

element is higher in the regions describing steep changes in the tensor order parameter 
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amplitude. In those delicate regions, the size of the triangular elements is always 

smaUer than the ratio ç/ R whieh corresponds to the smaUest length of the problem. 

The order parameter fields Q(r) are visualized by means of cuboids built from 

the eigensystem of the tensor. [32] The axes of the cuboids are aligned with the 

eigenvectors while the size of each side is proportional to the eigenvalues. Given that 

the eigenvalues of Q(r) can be negative, we use the shifted tensor M = Q + 1/3 for 

the purpose of cuboid visualization. [36] Using this technique, it is possible to dis

tinguish between isotropie (aU edges of the cuboid equal), uniaxial (two edges equal) 

and biaxial (aU three edges different) states. 

7.4 Results and discussions 

7.4.1 Stability and existence of ring defects versus point defects in cylin
drical cavities 

In order to develop a better understanding of the ERRD texture (cf. Fig. (7-3)) 

and its connections with other fiber textures (cf. Fig. (7-1)), this section provides 

a study on the fine structure of isolated ring defects confined in cylindrical cavities, 

their stability and existence. 

Ring defects that have broadened out of cylindricaUy-confined point defects 

are most probably oriented with their axis perpendicular to the cavity axis. [28-31] 

Despite that this orientation of the ring defects might appear to be counter-intuitive 

sinee this breaks the overall cylindrical symmetry of the orientational order, it is 

most likely because it provides to the defect an infinite possiblility of orientations 

along the radial direction. 
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Figure 7-4: (a) Equilibrium R-ring defect in a cylindrical capillary subjected to 
homeotropic anchoring for the parameters U = 6 and RI ç = 22. (b) Enlarged view 
of the elementary cross-section cut through the defect. The surfaces in (a) and (b) 
correspond to the iso-level 0.5 of the biaxial parameter {32. 
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Given their inherent biaxial structure, li ne defects and consequently ring defects 

are conveniently visualized in terms of the biaxial parameter (32 defined in Eq. (7.3). 

Figure (7-4) shows an iso-surface plot of a typical ring defect oriented with its axis 

perpendicular to the cavity axis whieh has spontaneously emerged out of an initially 

enforced point defect with an isotropie core using the iso-Ievel (32 = 0.5. When 

considering a nematic material with elastie isotropy, as we do in this work, the 

geometry as weIl as the variations of ordering (Le. the eigenvalues of the Q-tensor) 

are identical in the hyperbolic and radial ring defects; the only difference is in the 

director fields (n(r)). [31] 

Figure (7-5) provides the variations of the Q-tensor order parameter eigenval

ues. One can see that a ring defect is characterized by a negative uniaxial ring 

surrounded by a biaxial torus with maximum biaxiality. Away from the torus, the 

ordering is positive uniaxial as prescribed by the boundary conditions. This result 

is in qualitative agreement with those obtain in previous two-dimensional analyti

cal studies considering ring defects co-linearly orientated with the cylindrieal cavity 

axis. [33,36,43] Careful examination of the (32 profiles and in particular the separating 

distance between the peaks along the x and z directions reveals that the cross-section 

of the torus is perfectly circular; we identified in our previous work that the radius 

of the cross-section is however decreasing as the size of the capillary increases. [31] 

It is also interesting to note that, for the size of capillary considered, the ring defect 

is not circular but, in fact, wider in the z-direction. 

In order to assess the stability of the ring defect we look at the variation of its 

geometry as a function of the confinement. Ta do sa, we define the ring radii bz and 



0.4 
, .. t' 
«'" 0.2 

«~ 0 

0.8 

0.6 
'h 

0.4 

0.2 

(a) 

0.1 0.2 

o ~~~--~~~~~-r~~ __ ~ 
o 0.1 0.2 0.3 0.4 0.5 

x/R. zlR 

179 

Figure 7-5: (a) Eigenvalues of the tensor order parameter Q along the x and z
directions for the same parametric conditions as in Fig. (7-4). (b) Corresponding 
variations of the biaxial parameter (32. 
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6r corresponding to the distance from the center of the biaxial torus to the negative 

uniaxial ring along the axial and radial direction, respectively. Figure (7-6) shows 

the evolution of the ring radii as a function of the cavity radius (the coherence length 

ç- is a fixed length). What can be seen first is that for large cavities (small ç-/ R), 

the ring defect is essentially circular (8z = 8r = 8). One can also observe that the 

evolution of this (unique) ring radius c5 follows the linear relation 8/ R ~ 4.083 ç-/ R. 

This results suggest that point defects, corresponding to 8 = 0 can only be obtained 

in the case of infinite cavity radius (i.e. in absence of confinement). Figure (7-6) 

also shows that as the radius of the cavity shrinks (as ç-/ R increases), the ring defect 

widens more in the axial direction than in the radial direction. This is understand

able since whereas in the radial direction the ring is restricted by the cavity waHs, 

it is not restricted by anything in the axial direction. FinaHy, we found that as the 

cavity radius continues to diminish, the radii of the ring defect diverge. The critical 

cavity radius at which the ring defect becomes unstable against transformation into 

the PPLD texture was evaluated to Rc/Ç- ~ 21.5. On the other hand the smallest 

ring Was computed for a cavity radius R/Ç- = 500. In each simulation, adaptive 

mesh refinement was set so as ta smoothly capture the gradients of the tensor order 

parameter. In the core of the defect, the size of the triangular elements is always 

smaller than the dimensionless coherence length Ç-/ R. In addition, each simulation 

started with an isotropie point defect. 
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Figure 7-6: Evolution of the radii of an isolated ring defect confined into a cylindrical 
capillary with homeotropic anchoring as a function of the cavity radius. 

7.4.2 Annihilation of a pair of ring defects in a cylindrical cavity 

We now consider the interaction between two ring defects of opposite types 

(Le. radial and hyperbolie) and examine, in detail, the topological transformations 

occurring in the course of the annihilation process. Three different stages can be 

identified during the annihilation pro cess of two antagonist defects: (i) the pre

collision, (ii) the collision and (iii) the post-collision. [31] Two qualitatively different 

post-collision scenarios are found in the simulations: in the first one the annihilation 

of the two ring defects leads to the ER texture while in the second one it leads to 

the PPLD texture. The ERRD to ER transformation is illustrated for a cavity of 

radius RIf;, = 25 while the ERRD to PPLD is shown for the case RIf;, = 22.5. In both 

situations, the computational procedure employed is as follows: first we enforced two 

point defects with isotropie cores separated by a distance d > 2R so that the system is 

in the early pre-collision regime. Then we take a couple of time steps until the points 
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Figure 7-7: Topologieal transformations between two interacting ring defects con
fined into a cylindrieal capillary of radius R/t;, = 25 leading to the ER texture. 
( a)- (b) (late) pre-collision regime; (c) end of collision regime and (d) post-collision 
regime. Surfaces are given by the iso-levels (32 = 0.5. Frames (a), (b), (c) and (d) 
correspond respectively to dimensionless time 0, 5500, 5700 and 6350, respectively. 

broaden into rings with quasi-stable radii (i.e. quasi-stable because despite that the 

rings' mutual interaction is fairly weak in the early pre-collision regime, it still exists 

and ring radii are therefore affected, even if infinitesimally). We consider time zero 

to be the instant when the two ring defects that have spontaneously emerged out 

of the isotropie point defects are separated by a distance do = 2R (i.e. the late 

pre-collision regime). The separating distance between the ring d is measured from 

the center/axis of each ring defect. 
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ERRD to ER transformation. Figure (7-7) illustrates the annihilation pro

cess between two ring defects in a cavity of size R/f, = 25 leading to the ER texture. 

In this figure the ring defects are represented by means of the biaxial parameter (32 

for an iso-level of 0.5. Figure 7-7(a) shows the ring defects at time zero when they 

are separated by a distance do = 2R and are therefore entering the late pre-collision 

regime. In Fig. 7-7(b), which corresponds to dimensionless time 5500, the two ring 

defects are in the late pre-collision regime; due to their mutual interactions, they 

have enlarged in both the axial and radial directions. Figure 7-7(c) corresponds to 

time 5700 and the end of the collision regime when the two rings have collided and 

merged so as to form a new single defect. This new defect is a chargeless ring defect 

whose longitudinal radius corresponds to the sum of the individual ring defects' axial 

radii. The collision regime occurs over a very short period of time as compared as to 

the pre-collision stage. Finally Fig. 7-7(d) illustrates the post-collision regime with 

the configuration of the chargeless ring defect at dimensionless time 6350. At that 

stage, the chargeless ring has considerably shrunk and is on the verge of disappearing 

to leave behind a strictly uniaxial ER texture. 

In order to get a better sense of the overall ordering in the cavity and in particular 

of the average molecular orientation, figure 7-8 provides three different cross sections 

(as given in Fig. 7-3) through the tensor order parameter field Q(r) at time zero 

and corresponding to the frame given in Fig. 7-7(a). The two types of ring defects: 

radial and hyperbolic can be clearly identified at positions z/ R = 1 and z/ R = -1, 

respectively. Biaxial or de ring in the vicinity of the ring defects is detected by the 

distinctive shape of the cuboids (cf. Fig. 7-8(a)). Note the continuous variations of 
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Figure 7-8: Different cross sections through the tensor order parameter field Q(r) 
corresponding to the frame shown in Fig. 7-7(a). The radial and hyperbolic ring 
defects are located at z/ R = 1 and z/ R = -1, respectively. Frames (a) and (b) 
correspond to the planes parallel and normal to the axis of the ring defects. Frame 
(c) corresponds to the transversal cross-section through the ring defect at z/ R = ±1. 
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Figure 7-9: Variations of the tensor order parameter eigenvalues (a) and corre
sponding biaxial parameter /32 (b) along the axial direction at time zero. The shifted 
coordinate z' / Ris centered on the ring defect at z/ R = ±1. 

the tensor order parameter Q(r) throughout the defects. To complete this picture 

of ordering in the nematic cavity, Fig. 7 -8( c) presents the transversal cross sectional 

view that is observed at z/ R = ±1. The ordering in this cross-section is similar 

to the one found in the PPLD texture (cf. Fig. 7-1 (b)); however the orientation 

transition along the y-direction at x = 0, which corresponds to the passage of the 

ring, does not occur at distance 0.666R as in the case of the PPLD texture but closer 

to the origin. [44,45] 

To complement the representation of ordering through cuboids, figure 7-9 gives 

the evolution of ordering along the axis of the cavity at time zero. Figures 7-9(a) 
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and 7-9(b) respectively provide the variations of the order parameter Q eigenvalues 

and biaxial parameter (32 as a function of the shifted coordinate z' / R centered on 

the ring defects. The profiles are in agreement with the one given in Fig. 7-5 for 

an isolated ring defect in a nematic-filled cylindrical cavity. One can verify that the 

radius of the ring defects along the axial direction is 8z / R ~ 0.24. This shows that 

for separation distances d equal to or greater than a capillary diameter, the loop 

defects are essentially unaffected by each other. 

Figure 7-10 shows the chargeless ring ordering in the late post-collision regime 

after it has significantly shrank. The molecular orientation away from the ring re

sembles that of the ER texture with the cuboids escaping toward a single direction. 

The orientation transition leading to the localized biaxiality of the defect is identi

fied by the characteristic shape of the cuboids along the cavity axis. Figures 7-1O(a) 

and 7-10(b) provide two mutuaIly orthogonal cross-sections through the tensor order 

parameter field. Figure 7-10(c) corresponds to the complementary transversal cross

section in the plane perpendicular to the cavity axis at z/ R = O. This transversal 

cross-section resembles the PPLD texture given in Figs. 7-1(b) as weIl as the cross 

section of the individual M = ± 1 ring defects (cf. Fig. 7 -8( c)). The essential differ

ence however is that in the case of the chargeless ring defect given in Fig. 7-10(c), 

the director is fl.ipping out of the plane. 

Figure 7-11 illustrates the variations ofthe Q-tensor eigenvalues and biaxial pa

rameter (32 in the chargeless ring defect along the cavity axis (The profiles correspond 

to dimensionless time 6350). The eigenvalues are, as in the case of the charged ring 

defects, exhibiting the typical eigenvalue exchange se en in line defects. As previously 
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Figure 7-10: Cross section through the tensor order parameter field Q at dimension
less time 6350 (cf. Fig. 7-7(d)) showing the ordering in the chargeless ring formed 
after the collision and merging of two oppositely charged ring defects. (a) and (b) 
correspond to two mutually orthogonal longitudinal cross-sections through the de
fect while (c) gives the transversal cut at z/ R = O. The field of cuboids show the 
mixed escape-planar polar-like nature of the chargeless ring formed at the end of the 
collision regime. 
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(a) 

Figure 7-11: Variations of the tensor order parameter eigenvalues (a) and corre
sponding biaxial parameter (32 (b) along the axial direction in the chargeless ring 
during the post-collision regime. 

mentioned this exchange corresponds to a change of average preferred molecular ori-

entation within the defect. The chargeless ring also consists of a negative uniaxial 

loop enclosed in a biaxial torus. 

Finally Fig. 7-12 is a longitudinal cross section through the tensor order param-

eter field showing the computed defect-free ER texture (cf. Fig. 7-1(c)) that remains 

once the chargeless ring defect has shrank and disappeared. The ER texture, which 

characterizes the end of the post-collision regime in this first scenario, is cylindrically 

symmetric and strictly uniaxial. 

ERRD to PPLD transformation. Figure (7-13) illustrates the process of 

annihilation of two ring defects in a cylindrical cavity of size RIf;, = 22.5 leading to 

the PPLD texture in the late post-collision regime. As in previous cases, the ring 

defects are represented by iso-surfaces of the biaxial parameter (32 for an iso-value 

of 0.5. Figure 7-13(a) shows the ring defects at time zero when they are separated 

by a distance do = 2R and are hence in the late pre-collision regime. At this time, 
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Figure 7-12: Longi tudinal cross section through the tensor order parameter field 
represented in terms of cuboids and showing the defect-free ER texture that results 
from the total shrinkage of the chargeless ring defect at the end of the post-collision 
regime. 
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Figure 7-13: Topological transformations between two interacting ring defects con
fined into a cylindrical capillary of radius R/f, = 22.5 leading to the PPLD texture. 
( a) corresponds to time zero and the late pre-collision regime. (b) shows the con
figuration in the early collision regime at dimensionless time 2800. The end of the 
collision regime in which a unique chargeless ring remains is given in (c) for time 
3150. Finally, (d) occurs at dimensionless time 11450; the chargeless ring defect has 
expanded to give the PPLD texture (at least locally). Surfaces are given by the 
iso-levels {32 = 0.5. 
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the rings are essentially circular and their geometry follows closely the one of the 

isolated rings (cf. Fig. 7-6). Fig. 7-13(b), shows the premise of the chargeless ring 

at dimensionless time 2800 in the early collision stage. At this point there is only 

one ring (with respect to the iso-surface of (32) but one can still distinguish the two 

centersjcores of the old charged ring defects on both sides of the cavity midway. 

Figure 7-13(c) corresponds to time 3150 and the end of the collision regime when 

the chargeless ring has resumed formation. The chargeless ring is in this case larger 

that the one formed in the cavity of size RIf, = 25 (cf. Fig. 7-7(c)). In fact, the size 

of the chargeless ring formed at the end of the collision regime and particularly its 

transversal radius seems to dictate whether there is going to be shrinkage or growth 

of the loop and therefore creation of the ER or PPLD texture, respectively. [30] 

The precise cavity critical radius at which the system goes from a shrinking (and 

vanishing) to a growing (and opening) chargeless defect has not been determined 

precisely yet but will be in our future work. At the present we know that the 

transition is within the narrow range 22.55 < RIf, < 25. Finally Fig. 7-13( d) 

illustrates the end of the post-collision regime at dimensionless time 11450 when 

the chargeless ring has opened to form the PPLD texture. It is important to note 

that, in the post-collision regime, the chargeless ring grows faster in the longitudinal 

direction then in the radial direction. The growth of the ring is however bounded in 

the radial direction as it stops once the PPLD critical radius of 0.666 is reached while 

iri the longitudinal direction, the growth does not present any limit except at the end 

caps of the cavity. In a very long capillary, the PPLD texture can therefore be local 



0.8 

0.6 

~ 
0.4 

0.2 

0 

1-.[--...... (a) 
1 1 1 1 rI··· ... 
1 1 1 1 / / / 1',_ 
1 1 1 1 / / / / II-, 
1///////1/1" 
11///////////' 
-,///////II//-, 
--.;////// ////.)\ 
--",.".....//////////\ 

--_....- ........ .,..,/////////\ 
-------..,....,...,....,.,.,.,.... ....... ",,.,., ....... ,.,..,..\ 
-------~~....-_~~--~ \ 
------~~~~~~~~~~ ----------------; ----------------\ ; 
----------------~ 
----------------~ 

o 0.2 0.4 0.6 0.8 
x/R 

~~J~i-, ln 
'6:,. 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
y'R 

0.8 

0.6 

004 

0.2 

O+---.--o-~~-t__o(.__.'........,,-.--+~ 

o 

192 

Figure 7-14: (a) Transversal cross section through the tensor order parameter field 
showing the PPLD texture that occurs when the chargeless ring defect opens at the 
end of the post-collision regime. (b) and (c) are the corresponding variations of 
the tensor or der parameter eigenvalues and biaxial parameter 132 along the radial 
direction. 

and the time required to reach the equilibrium PPLD texture from the chargeless 

ring varies with the length of the cavity. 

Figure 7 -14( a) provides a transversal cross section through the tensor order pa

rameter field at time 11450 wh en the cavity exhibits the PPLD texture (cf. Fig 

7-1(b)). The field of cuboids resembles that of the chargeless ring defect given in 

Fig. 7-8(c); the essential difference is that now the li ne defects running parallel to 

the cavity axis are separated by a fixed distance of ~ 1.333R. Finally Figs. 7-14(b) 

and 7-14( c) indicate the variation of the tensor order parameter eigenvalues and the 

corresponding biaxial parameter 132
. 
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7.5 Summary and conclusions 

We have investigated nematic ring defects occurring in cylindrical cavities with 

sidewalls imposing homeotropic anchoring (i.e. molecular orientation at the walls 

is radial) using three-dimensional Landau-de Gennes continuum type simulations. 

We have shown that ring defects, spontaneously emerging out of initially enforced 

isotropie point defects, most likely orient their axis perpendicular to the cavity axis. 

[31] The results agree with recent Brownian molecular dynamic simulations. [28-30]. 

It is also demonstrated that the size of the rings decreases as the radius of the 

cylindrical cavity increases. Isolated ring defects (i.e. rings separated by a distance 

greater than a cavity diameter from any other rings) are found to be stable in cavities 

of radius greater than 21.5(. In small cavities (radius between 21.5Ç- - 50Ç-), the 

radius of the ring defects is found to be wider in the axial direction than in the 

radial direction. In large cavitics (radius greater than 100Ç-) , the ring defects are 

perfectly circular and therefore characterized by a unique radius. In addition, our 

results indicate that in the large cavity regime, the radius of the ring defects adopt a 

finite value: r5 ~ 4.083 ç- (Le. the radius of the ring is roughly four times the nematic 

coherence length). This suggests that true point defects cannot exist in cylindrical 

cavities as they are unstable and al ways split into loops. The reason why these ring 

defects are not necessarily detected in experiments is their nanometer length scale, 

i.e. at the order of magnitude of the nematic coherence length. AIso, away from 

the defect core, molecular orientation is qualitatively identical in loops and points. 

Similar to point defects, both radial and hyperbolic ring-like defects exist. In the case 

of elastic isotropy, the degree of ordering ((32) varies the same way in both defects 
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and only their director fields differ. Finally, the cross section of the biaxial torus 

surrounding the negative uniaxial ring is found to be always perfectly circular but 

decreasing as the cavity radius increases. 

In addition to isolated ring defects, we have investigated the details of the an

nihilation pro cess between two oppositely charged ring defects. We have denoted 

the texture formed by a periodic distribution of ring defects: escape radial with ring 

defects or ERRD texture. Similar to the ERPD texture, the ERRD is metastable 

with oppositely charged rings that, like points, attract and eventually annihilate each 

other. We have shown that the annihilation pro cess of a representative ring pair may 

lead to two qualitatively different textures depending on the size of the cavity radius: 

the ER texture (as we would have expected from a metastable ERPD texture) and 

the PPLD texture. The latter texture cannot be nucleated from an ERPD texture 

as it lacks the necessary dimensionality (i.e. that of a line defect). A crucial inter

mediate step in the formation of the ER or PPLD textures is the merging of two 

oppositely charged rings into a single chargeless ring. Structural elements of both 

the ER and PPLD textures have been identified in the chargeless ring defect. The 

structure of the radial, hyperbolic and chargeless ring defects agree very well with 

the theoretical predictions made by Melzer and N abarro based on their experimental 

observations. [25] Depending on its size and particularly its radius along the radial 

direction, the chargeless ring either shrinks until it disappears thereby producing 

the ER texture or expands until it opens thereby giving the PPLD texture. The 

precise threshold in the chargeless ring radius leading to either one of the textures 

has not been determined precisely but is known to occur when the cavity radius is 
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Figure 7-15: Schematic phase diagram of the nematic textures found in cylindrical 
cavities with sidewalls imposing homeotropic anchoring. The textures indicated in 
parentheses are metastabie. 

in the range 22.55Ç- < R < 25';' Figure 7-15 provides a schematic phase diagram 

summarizing the different textures that can be observed in a cyIindrical cavity with 

sidewalls imposing radial anchoring. 

The new results presented in this contribution shouid enrich the generai und er

standing of nematic textures in cyIindrical capillaries. These results should aiso be 

use fuI in the comprehension of textures in new advanced nematic based fibers such 

as nematic-filled carbon nanotubes [7] and in nematic colloids [46-48] in which ring 

and point defects are prevalent. 
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CHAPTER 8 
General conclusions and original contributions to knowledge 

8.1 General conclusions 

This thesis explores the behavior of defects in engineering devices and biological 

pro cesses involving nematic liquid crystal phases and contributes to their fundamen-

tal understanding. Three different types of defects are encountered and studied in 

this work: inversion walls, lines and points. These defects are studied using three 

different computational models which differ by their ability to describe singular de-

fects as weIl as structural core details. 

The inversion walls investigated in thesis occur in a thin nematic film found in a 

new electro-optical device, where it undergoes a sudden temperature-induced surface 

anchoring transition. The presence of these wall defects perturbs the light transmis-

sion properties of the device and therefore significantly alters its performances. The 

first question explored on this problem is: ls the creation of inversion wall defects a 

reversible pro cess and is it possible to anneal them by tuning the temperature of the 

film? The answer is no. Our computational results and the experimental observations 

made in fluorescence confocal polarizing microscopy by our collaborators at Georgia 

Tech, which agree very weIl, show that once an inversion wall is created, modifying 

the temperature of the nematic film does modify the geometry of the defect but does 

not remove it from the system. Simulations clearly show that as the temperature of 

the film is raised and therefore anchoring strength decreased, the width of the wall 
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increases and extends throughout the film. On the other hand, when temperature is 

reduced and therefore anchoring strength increases, the width of the inversion wall 

shrinks and 'barrels' but do es not completely disappear. The initially pure twist wall 

becomes a diffuse inversion wall. This phenomenon attributed to an energy st orage 

mechanism is in agreement with previous theoretical predictions on the behavior of 

twist inversion wall defects by Ryschenkow and Kleman (1976). A practical impli

cation of these results is that the design of the electro-optical device requires a very 

precise determination of the range of operating temperatures to avoid the formation 

and concomitant trapping of those irreversible defect structures. On the other hand 

it is also shown that when produced under controlled conditions, inversion wall de

fects can provide valu able information on the interfacial property of the nematic film 

which in turn are related to operating parameters like response time and switching 

voltage. Using basic variational calculations under the assumption of weak anchor

ing strength, it is shown that the width of the wall can be directly connected to the 

surface anchoring strength of the film through a simple model equation. This new 

relation captures well the non-linear behavior of the wall geometry and represents a 

significant improvement with respect to previous relations that were based on linear 

behavior and therefore were leading to error estimates of an order of magnitude. 

The second type of defects studied in this thesis are points that are found pe

riodically distributed along cylindrical cavities with sidewalls imposing homeotropic 

anchoring, as observed in the tubular extrusion duct of spiders. The presence of 

these defects in the spinning apparatus is deemed very important to silk pro cess

ability and final mechanical praperties but their emergence, behaviar, and raIe is 
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unclear at present. Because in vivo observations of these defects in the spiders' ab

domen is not yet possible and studying point defects in a controlled environment 

such as nematic-filled capillaries is still tedious, computational modelling provides 

an appealing alternative approach. A question of fundamental importance arising 

from the experimental observation of periodic distribution of these point defects is: 

ls there an equilibrium separation distance between the defects? In order to find 

a partial answer to this question, various scenarios of defect interactions are inves

tigated. The first concerns the interaction between two point defects of opposite 

strength. Numerical results show that, in the absence of flow or geometrical effects 

(like capillary convergence), this interaction is always attractive. However, when 

the two defects are separated by more than a diameter, their speed of displacement 

is insignificant and they appear to be pinned to the capillary axis. On the other 

hand, when they are separated by less than a diameter and continue to approach 

each other their speed increases exponentially until they finally merge. The force of 

attraction follows a similar behavior. When two point defects of opposite strength 

eventually merge and annihilate they give rise to an escape structure free of any 

singularity. AlI these results are in agreement with experimental observations as weIl 

as the theoretical predictions reported in the literature. The second scenario investi

gated is the interactions between more than two defects. Here again, in the absence 

of external forces or geometrical effects or boundary effects it turns out that defects 

always attract and eventually mutually annihilate until producing an homogenous 

escape structure. These various results lead to the conclusion that if point defects 

effectively adopt an equilibrium distribution, external factors not taken into account 
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in the models used in this work must play a role. 

The last type of defects encountered in this thesis is line defects, found in various 

indus trial fibers involving nematic precursors. These line defects lead to various fiber 

textures and therefore various sets of mechanical properties. U nderstanding the way 

they form is crucial to control and optimize the product properties. Interestingly 

the textures found in industrial fibers never contain point defects as found during 

the processing of natural fibers. A question arising from this observation is: What 

are the possible topological connections between the textures found in industrial and 

natural fibers? In order to develop a partial answer to this question, the core de

tails of point defects embedded in a cylindrical cavity are investigated. Simulation 

results show that point defect may in fact be, in reality, closed line defects or ring 

defects. In fact, according to our calculations point defects do not exist in cylin

drical cavities if one considers core details. The far field molecular orientation of 

point and ring defects are however analogous. The importance of this detail resides 

in the fact that unlike point defects, ring defects offer the topological fiexibility to 

mutate into the various other textures observed in industrial fibers. The ring-like 

nature of a point defect core presents therefore a fundamental connection between 

industrial and natural fiber textures. A natural reason why ring defects are not fre

quently experimentally observed is that their relatively small sizes prevent them from 

being resolved by any current observation techniques. Our calculations show that 

ring defects can be oriented with their axis along or perpendicular to the cavity axis. 

Ring defects with axis perpendicular to the cavity axis seem to be the m?st probable. 
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8.2 Original contributions to knowledge 

The contributions of this thesis to original scientific knowledge are: 

• A computational framework is developed to accurately model the geometric 

behavior of twist inversion wall defects occurring in thin nematic films following 

temperature induced surface anchoring transitions. The fundamental behavior 

of the wall defect is elucidated from simulations and show excellent agreement 

with experimental observations. 

• A new, more accurate, model equation is derived to connect the geometry of 

the inversion wall defect to the surface anchoring strength of the nematic film. 

• A computational model based on the tensorial Landau-de Gennes theory is for 

the first time employed to investigate the interaction between two point defects 

in cylindrical capillaries. The different stage of the annihilation process: pre

collision, collision, and post collision are thoroughly described. 

• The interactions between multiple point defects along cylindrical tube are in

vestigated for the first time with a model based on Frank elastic continuum 

theory. 

• The prevalence of ring defects over 'true' point defects is demonstrated. 

• The detailed structures of ring defects in cylindrical capillary are for the first 

time computed using three-dimensional simulations based on the Landau-de 

Gennes continuum theory. 

• The topological transformations between the various structures found in indus

trial fibers and the one found along the spinning extrusion duct of spider are 

simulated and thoroughly described. 
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8.3 Recommendations for future work 

In the future, this research can take various directions based on the results, 

developments and questions that have come about during the complet ion of this 

thesis. 

With respect to the understanding of inversion wall defects in nematic thin 

films aimed at electro-optic devices, it would be, for example, interesting to develop 

a computational toolbox to complement the current computational model and be 

able to make direct comparisons with signaIs obtained from fluorescence confocal 

polarizing microscopy. Another interesting direction to be investigated would be the 

interactions between several inversion wall defects in the nematic film. The effect of 

elastic anisotropy on the geometry of the defect could also be interesting to explore. 

With respect to the understanding of point defects in the cylindrical cavity in 

the context of spider silk processing, it could be interesting to include flow effects and 

examine how it affects the distribution of many interacting point defects. Inspecting 

the effect of the cavity convergence could also be fruitful. Another exciting, related, 

problem would be to examine the mechanisms of the emergence of point defects along 

the cavity: do they appear through a front propagation mechanism or emerge from 

nucleation and growth? Elastic anisotropy effects could also be wise to investigate. 

Finally, a phase separation model could be added to the current model. 


