

i

Automated Application Profiling and Cache-Aware

Load Distribution in Multi-Tier Architectures

Rizwan Maredia

School of Computer Science

McGill University, Montréal

August 2011

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of the degree of

Master of Science in Computer Science

Copyright © 2011 Rizwan Maredia

i

 Abstract

Current business applications use a multi-tier architecture where business processing

is done in a cluster of application servers, all querying a single shared database server

making it a performance bottleneck. A prevalent solution to reduce the load on the

database is to cache database results in the application servers as business entities.

Since each of the in-memory application cache is small and independent of each other,

a naïve load balancing algorithm like round-robin would result in cache redundancy

and lead to cache evictions. By clustering these caches, we get a distributed cache

with a larger aggregate capacity, where an object is retrieved from the remote cache if

it is not found in local cache. This approach eliminates redundancy and reduces load

on the database by a great extent. However, accessing remote objects incurs network

latency affecting response time.

In this thesis, we transform the distributed cache into a hybrid one that supports

replication so that popular requests could be served locally by multiple application

servers. We take advantage of this hybrid cache by developing a holistic caching

infrastructure. This infrastructure is comprised of an application monitoring tool and

an analysis framework that work continuously alongside live application to generate

content-aware request distribution and caching policies. The policies are generated by

request-centric strategies that aim to localize popular requests to specific servers in

order to reduce remote calls. These strategies are flexible and can be adapted easily

for various workloads and application needs. Experimental results show that we

indeed derive substantial gain in performance using our infrastructure. Our strategies

resulted in faster response time under normal workload and scaled much better with

higher throughput than existing approaches under peak workload.

ii

Résumé

Les applications commerciales courantes utilisent une architecture multi-tiers où le

traitement logique est effectué en un groupe de serveurs qui accèdent à une seule

base de données partagée, ce qui la rend un point d'encombrement. Une solution

répandue qui réduit la charge sur la base de données est la sauvegarde des résultats

de requetes à la base de données au niveau des serveurs d'applications comme des

entitiés logiques. Tandis que chaque cache local de chaque serveur est limité et est

indépendant des autres, un algorithme naïve de balancement de la charge, comme

round-robin, résultera en des duplications de copies dans les différents caches et

mènera à des explusions de ceux-ci. En regroupant ces caches, nous formons un seul

cache distribué avec une large capacité, où un objet est extrait à partir d'un cache

distant s'il n'est pas trouvé localement. Cet approche élimine la redondance et réduit

considérablement la charge sur la base de données. Cependant, accéder à des objets

distants encours une latence au niveau du réseau ce qui affecte les temps de

réponses.

Dans cette thèse, nous transformons le cache distribué en un cache hybride qui

supporte la duplication ce qui permet de servir les requêttes les plus populaires

localement par plusieurs serveurs d'applications. Nous prenons avantage de cette

structure hybride du cache en developpant une infrastructure holistique du cache.

Cette infrastrcuture comprend un outil de surveillance et une infrastructure d'analyse

qui fonctionne d'une façon continue et parallèle avec l'application afin de générer un

contenu qui prend en considération la distribution de requêtes et les politiques du

cache. Les politiques sont générées par des stratégies orientées requêtes qui visent à

localizer les requêtes populaires à des serveurs spécifiques et ce pour réduire les

appels distants. Ces stratégies sont flexibles et peuvent être ajustées facilement pour

iii

different charges de travail et besoins d'applications. Des résultats expérimentaux

montrent qu'effectivement nous dérivons un gain substantial en utilisant notre

infrastructure. Nos stratégies ont resulté en des temps de réponses rapides sous une

charge de travail normale et donnent des bons résultats lors d'un débit élevé

comparativemnt à d'autres approches sous des charges de travail de pointe.

iv

Acknowledgements

I am exceedingly grateful to my supervisor Prof. Bettina Kemme for her continuous

guidance and financial support. Her deep knowledge of the domain has always been

inspirational while her insightful ideas have kept me motivated throughout my

research.

I was very fortunate to have the support of talented researchers around me. I am

especially thankful to Kamal Zellag, Sanket Joshipura and M. Yousuf Ahmed for our

thoughtful discussions and collaborations. I would like to thank Andrew Bogecho and

Kailesh Mussai for their technical support.

And last but not the least I am thankful to my parents and siblings for their

encouragement, affection, and moral support.

v

Table of Contents

Abstract i

Résumé ii

Acknowledgement iv

Table of Contents v

List of Figures viii

1 Introduction.. 1

1.1 Contribution ... 3

1.2 Thesis Outline ... 4

2 Background and Related Work .. 5

2.1 Introduction ... 5

2.2 Web Application Architectures .. 5
2.2.1 3-Tier Architecture ... 7
2.2.2 N-Tier Architecture .. 9

2.3 Object Relation Mapping ... 12

2.4 Performance and Scalability .. 16
2.4.1 Clustering .. 18
2.4.2 Load Balancing .. 20
2.4.3 Caching .. 22

2.5 Caching in Java Application Servers ... 25
2.5.1 Distributed Application Cache .. 28

2.6 Related Work ... 29

3 Holistic Caching Architecture ... 33

3.1 Introduction ... 33

3.2 Holistic Cache Component ... 35

vi

3.2 Policy-Based Request Distribution and Caching .. 38
3.2.1 Policy-based Load Balancing .. 40
3.2.1 Policy-based Caching on Application Servers .. 41
3.2.1 Caching Scenarios... 43

3.3 Monitoring System ... 44
3.3.1 Remote Logging.. 45
3.3.2 Request Interception ... 45
3.3.3 Cache Monitoring ... 46
3.3.4 Request Tracing .. 47

3.4 Log Processing .. 48
3.4.1 Request Log Processing .. 48
3.4.2 Cache Log Processing ... 48
3.4.3 Request-Cache mappings ... 49

3.5 Analysis Engine ... 50

5 Dynamic Request Centric Analysis ... 51

4.1 Introduction ... 51

4.2 Data Structures and Configurations ... 53

4.3 Basic Distribution Algorithm .. 55

4.4 Replication Strategy ... 58

4.5 Compact Assignment Strategy ... 62

4.6 Supplementary Load Balancer Assignment ... 66

4.7 Complexity .. 67

4.8 Simplified Policy Setup ... 68

5 Experimental Results .. 70

5.1 Introduction ... 70

5.2 Experimental Test Bed ... 70
5.2.1 Implementation Details ... 71
5.2.2 Benchmarking Suite .. 72

5.3 Methodology .. 73

5.4 Motivation .. 74

5.5 Experimental Results .. 75
5.5.1 General Comparison .. 76

vii

5.5.2 Compact vs. Round-Robin Assignment ... 78
5.5.3 Cache Capping for Assignment ... 80
5.5.4 Scalability ... 82
5.5.5 Replication ... 84
5.5.6 Total Database Cacheability .. 85

6 Conclusions and Future Work .. 87

6.1 Conclusions .. 87

6.2 Future Work ... 89

Bibliography ... 90

viii

List of Figures

Figure 2.1: Shift from desktop to client-server application ... 6

Figure 2.2: 3-Tier architecture ... 7

Figure 2.3: Java EE n-tier architecture ... 10

Figure 2.4: Database tables showing primary-foreign key relationship 12

Figure 2.5: Entities class diagram ... 14

Figure 2.6: Clustering .. 18

Figure 2.7: Caching sequence diagram .. 22

Figure 2.8: 2-Level caching architecture .. 26

Figure 3.1: Holistic caching component diagram ... 34

Figure 3.2: Caching scenarios ... 43

Figure 4.1: Analysis Engine ... 52

Figure 4.2: Basic distribution algorithm initialization ... 56

Figure 4.3: Basic distribution algorithm .. 57

Figure 4.4: Cache partitioning for policy assignments ... 58

Figure 4.5: Replication strategy initialization .. 60

Figure 4.6: Replication Strategy .. 61

Figure 4.7: Compact assignment strategy ... 65

Figure 4.8: Load Balancer-Only assignment .. 67

Figure 5.1: Comparison of local and remote cache access latency 74

Figure 5.2: Average response time for different caching schemes 75

Figure 5.2: Throughput for different caching schemes ... 76

Figure 5.3: Response time of strategies for different clients .. 77

Figure 5.4: Round-Robin vs. Compact Assignment Strategy ... 79

Figure 5.5: Avg. response time variation because of cache capping 80

Figure 5.6: Ratio of local to remote cache hits .. 81

Figure 5.7: Avg. response time for 3 and 5 servers ... 82

Figure 5.8: Effect of cache capacity on response time .. 83

Figure 5.9: Popular replicated strategy against distribution only strategy 84

Figure 5.10: Strategy vs. Cooperative Cache on smaller database 85

file:///D:/disl/thesis/mythesis.docx%23_Toc300096695
file:///D:/disl/thesis/mythesis.docx%23_Toc300096696
file:///D:/disl/thesis/mythesis.docx%23_Toc300096697
file:///D:/disl/thesis/mythesis.docx%23_Toc300096700
file:///D:/disl/thesis/mythesis.docx%23_Toc300096701
file:///D:/disl/thesis/mythesis.docx%23_Toc300096702
file:///D:/disl/thesis/mythesis.docx%23_Toc300096703
file:///D:/disl/thesis/mythesis.docx%23_Toc300096704
file:///D:/disl/thesis/mythesis.docx%23_Toc300096705
file:///D:/disl/thesis/mythesis.docx%23_Toc300096706
file:///D:/disl/thesis/mythesis.docx%23_Toc300096707
file:///D:/disl/thesis/mythesis.docx%23_Toc300096708
file:///D:/disl/thesis/mythesis.docx%23_Toc300096709
file:///D:/disl/thesis/mythesis.docx%23_Toc300096710
file:///D:/disl/thesis/mythesis.docx%23_Toc300096711
file:///D:/disl/thesis/mythesis.docx%23_Toc300096712

1

Chapter 1

1 Introduction

Internet applications have seen a tremendous growth in the last decade, and have

become overly complex. E-commerce applications such Amazon and EBay have all

faced common challenges like performance, reliability and scalability as the user base

grew. To overcome some of these challenges internet applications are be broken

down into multiple tiers, mainly consisting of the client tier, the application tier and

the data tier. Each tier interacts with the next tier in line and sends result back to its

previous tier, which makes application more flexible and manageable. However, a

multi-tier architecture is not always robust and scalable to an unpredictable workload.

Some of the concerns of today’s internet applications are to be up and running 24/7

serving millions of customers and managing terabytes of data. For example, CNN on

Election Day had a record 276 million page views and 27 million unique visitors [1].

Thus, it is clear that manual optimization of internet application is not easy.

To cater to increasing web traffic administrators can either update existing hardware

components or add another server to share load. The later approach, commonly

known as clustering, is becoming a norm, where a load balancer distributes the load

(requests) to multiple servers. Usually, the application tier is clustered using

2

commodity machines while the data tier is not as data consistency is more complex.

The data driven applications tend to query the database more frequently. This creates

a bottleneck at the database server, and adversely impacts application throughput.

Increasing cluster size cannot solve this problem because application scalability is

curtailed by an overloaded database.

To reduce the load on the database server, the application server caches database

results in memory so that subsequent requests for the same data can be served

quickly from the cache saving trips to the database. This works out for smaller and

consistent workloads but if the workload is big and is accessing a large data set the

cache fills up quickly. This problem is more imminent when the load balancer sends

requests to the servers in a round-robin way causing each application server cache to

have nearly the same popular objects. Once the cache is full, requests which cannot be

served from the cache, have to go to the database, and then are stored in cache

causing evictions of previously stored objects. This poor utilization of valuable memory

for a standalone cache got the research community thinking and led to the emergence

of a distributed cache, where objects are transparently stored and retrieved from local

or remote caches. Hence, the aggregate capacity of a distributed cache grows as

nodes are added to the cluster. This solution also eliminates redundancy in caches.

Distributed caching allows applications to scale easily but does not always result in

optimal performance. This is mainly due to the latency involved in retrieving objects

from remote cache. In this thesis, we propose a solution that can reduce remote calls

greatly. Adhering to the principles of separation of concerns our solution is designed to

be highly decoupled and independent of the particular web application. We have

developed a caching infrastructure that transparently monitors the application,

performs periodic analysis and generates content-aware load distribution and caching

policies with the intent to maximize the local cache hit-rate. When the load balancer is

3

equipped with our rule-based distribution algorithm, it chooses the server that can

serve the request mostly if not entirely from the local cache.

Another important concern that we deal with in this thesis is distribution of popular

content. News and e-commerce websites often receive more requests for some

content than others. Thus, we prioritize requests on their access frequency and

generate policies for the most frequent ones. Assigning a popular request to a specific

server can create imbalance in load distribution where a server that caters to popular

request gets saturated while others are underutilized. We alleviate this imbalance by

adding replication support to our caching infrastructure so that popular objects are

accessible from multiple servers. The top most popular requests can now be assigned

to multiple servers for better load distribution.

1.1 Contribution

The noteworthy contributions of this thesis are:

 We design and implement a flexible infrastructure that transparently logs

application and cache accesses to a remote server for processing and analysis.

 Leveraging the analysis framework, we design and implement of a set of

request-centric strategies that find popular requests and assigns them to

specific servers to maximize local cache hit-rate.

 We provide an extensive evaluation of our strategies and comparison with

other caching schemes.

4

1.2 Thesis Outline

The rest of the thesis is organized into the following chapters:

 In Chapter 2, we provide the background information related to our research,

specifically on multi-tier architectures and caching. We also discuss some

related work that has been an inspiration towards this research.

 Chapter 3 deals with the infrastructure of our monitoring and analysis

framework.

 In Chapter 4, we present the essential strategies that consume processed logs

to produce content-aware policies for the application.

 In Chapter 5, we demonstrate the effectiveness of our infrastructure and

strategies using a popular benchmark.

 We finally draw conclusions in Chapter 6 and propose future enhancements to

the framework.

5

Chapter 2

2 Background and Related Work

2.1 Introduction

In this chapter we give an overview of related technologies, architectures and

frameworks upon which our thesis is based on. We start by explaining the architecture

of web applications, and then we explore how to scale and improve performance of

these applications using clustering, load balancing and caching. Lastly, we discuss

distributed caching and other related work that are closely related to our research.

2.2 Web Application Architectures

A web application (aka Internet Application) is an application that runs on a web

server and is accessed through a web browser (such as Internet Explorer or Firefox)

over the Internet. In contrast, a desktop application is a self-contained program that

runs in one’s own computer and does not require Internet connection. The key

difference here is the machine where the core business logic is executed. Desktop

applications have to be installed on local hard drives before they can be run where as

web applications are merely accessed by typing the application URL (like

www.example.com/do/this/). Figure 2.1 illustrates this difference.

6

During the 1990s most of the enterprise applications were built as desktop

applications but since 2000 companies are moving towards web applications even for

private applications because of the following advantages.

 Web applications enable multi-tenancy (i.e. a single application is accessed by

users all over the world).

 The user requires only a thin client like a browser to access a web application;

so even an outdated machine or a low-end device can access them.

 Any upgrades to web applications are transparent to the end user. The user

simply sees new functionality as it becomes available.

These advantages come with certain challenges for the application provider.

Architecting a web application is not as easy as a desktop application because it

follows the request-response model as opposed to an event-based model of a desktop

application. When a user enters a URI the request goes to the web server, where it is

processed, and results are shown back to the user as response. This approach, which is

commonly known as the client/server model, starts as a 2-tier architecture but can

extend up to multiple tiers.

Desktop Application Client – Server Application

Figure 2.1: Shift from desktop to client-server application

7

2.2.1 3-Tier Architecture

To enable multi-user tenancy on the Internet, web applications need to recognise each

user and provide services based on his preferences, personal information and the

request itself. For this, a web server maintains a web session for each user keyed

through a unique session id. This session id is then passed along in each subsequent

request/response pair for identification. The session itself may store data such as

shopping cart items. Moreover, applications also need to store and retrieve data from

a data store such as a relational database. Just the way a client makes calls to a web

server, the web server makes calls to the database. Our simple 2-tier now becomes a

widely popular 3-tier architecture illustrated in Figure 2.2.

The client tier remains intact, but we split the server tier into an application tier and

data tier. These tiers can be described as follows

 Client Tier: The client tier comprises all remote clients having access to the

web tier over the internet. This is not just limited to web browsers, but any

application, deployed in any form factor such as PDA or smart phones that is

able to send requests to the web tier using the HTTP protocol is considered a

client or more specifically, a web client. In today’s service oriented web

environment, Internet protocols have evolved and are not restricted to basic

Client Tier Application Tier Data Tier

Figure 2.2: 3-Tier architecture

8

HTTP for communication. Protocols such as SOAP (Simple Object Access

Protocol), REST (Representational State Transfer), RSS (Really Simple

Syndication) and RPC (Remote Procedural Calls) have extended the capabilities

of web communication, and thus, web clients have become richer in the way

they consume and represent information to the user.

 Application Tier: The application tier (aka business tier) processes the client’s

request and then responds to it over the same communication channel

established by the client. Conceptually, it contains a web server that processes

http requests. To the application tier, each request is considered unique. Thus,

as discussed earlier, modern web servers provides cookie and session

management features to recognize clients. This tier executes business logic on

the request and composes a response (sometimes specifically tailored for each

client’s display capabilities and protocol involved). Request to static resources

such as images and binary files are served without any business processing.

Requests that do require processing are considered dynamic requests. Usually,

the web application contacts the data tier to retrieve request pertinent

information.

 Data Tier: The web application stores user specific or business specific data in

the data tier. Most commonly a relational database management system

(RDBMS) is used to store and retrieve information from the database – the

persistent storage component of a data tier. XML, native files, persistent maps

and registries could also be used for the data tier. The data tier also exposes

high level APIs (or low level driver interfaces) to the web application. For

example, ODBC (Open database connectivity) and JDBC (Java database

connectivity) are APIs to communicate with the relational database using the

SQL query language.

9

2.2.2 N-Tier Architecture

The 3-tier architecture presented above was fundamentally constructed to reduce the

complexity of Business-to-Consumer (aka B2C) applications. Here, the consumer is the

client and the business corresponds to the web application and its data. Soon the need

for a Business-to-Business (B2B) application appeared, involving service level

agreements (SLA) and demanding complex interactions between businesses, not

sufficiently addressable by a B2C system. These requirements and more paved the

way for web-services which eventually evolved into a Service Oriented Architecture

(SOA). In SOA, requests from clients (users or applications) are directed to web-

services that will verify the client’s credentials before accessing enterprise data. The

B2B systems that catered to other businesses as well as general consumer popularly

became known as Enterprise Information Systems.

Technically, the architecture of an Enterprise Information System is very complex and

varies for each enterprise, but conceptually it simply extends the 3-tier architecture

into n-tier architecture by:

 Separating the application tier into web tier and business tier. The web tier

interacts with the client, maintains user’s sessions, and dynamically generates

content from the results processed by the business tier. The business tier

comprises several business components to do business processing on given

inputs. It is oblivious of the web environment and therefore, provides flexibility

for other systems to connect to it.

 Incorporating legacy systems, databases, ERP systems into an Enterprise

Information tier. These data sources are accessed by specialized components in

the business tier.

10

Several venders now offer enterprise frameworks that are typically modelled after

such n-tier architectures. One of the popular frameworks is Java Enterprise Edition

(JEE) [2], whose specification provides APIs (and reference implementations) of

various components to rapidly build enterprise applications. Figure 2.3 illustrates the

Java EE n-tier architecture which adheres to this approach.

The web tier and the business tier form the application server and are typically run on

the same Java virtual machine (JVM). In Java EE parlance, an application server

provides managed environments for different components through specific

containers. The container is responsible for a component's lifecycle (from instantiation

to destruction), request delegation, cross component interaction, and other things.

For example, the web container is the interface between web components (Servlets,

JSPs) and the web server. An EJB container manages enterprise java beans (EJB) [3],

which provide the business logic. The EJB container makes it easier for enterprise

Client Tier Web Tier Business Tier EIS Tier

Figure 2.3: Java EE n-tier architecture

Application Server

11

beans to handle cross-cutting concerns such as persistence, transactional integrity,

and security – the discussion of which is beyond the scope of this thesis.

Since web tier and business tier are part of the application server some architects

consider this separation as a Multi Layer Architecture. In this approach they view an

application as separate layers of functionality performing a dedicated task in request

processing. The typical layers in an application are:

 Presentation Layer: This layer simply corresponds to the web tier in our n-tier

architecture, and is responsible for content generation.

 Business Logic Layer (BLL): It contains an application’s core business logic, and

it exposes services for B2B interactions. It includes Session EJBs which

encapsulates business logic, web services for interfacing, and other utility

modules.

 Domain Layer: It represents the business data model and therefore it is

sometimes called the model layer. For example, a customer, account, and

customer-account objects are part of the domain model of a financial

application. The business logic layer performs its operations on the data in the

domain layer.

 Data Access Layer: This layer provides connectivity to data residing in the

Enterprise Information System (EIS Tier). It also conceals boilerplate code such

as connection management, transaction management, and caching from the

business layer. Hibernate, TopLink, and Java Persistence API (JPA) are examples

of the data access layer. These frameworks provide a high level view of

business data and are described in the next section.

12

2.3 Object Relation Mapping

As we have discussed before, the database is an integral part of a data driven

application. The database provides mechanisms to create, read, update and delete

(CRUD) data which is stored in a database table. A table is a collection of records

where each record is represented by a row in the table. Each row has a fixed number

of attributes addressable by their column names. A record in a table is identified by a

unique key, called primary key. Relational databases go a step forward and allow

database designers to specify relationship between data elements using key

constraints. A primary key in one table becomes the foreign key in another table to

establish a relationship between two tables. For example, the tables in Figure 2.4

illustrate the relationship between Categories and Items in an e-commerce store.

Categories

id name

1 Sports

2 Electronics

Items

id category_id name

1 1 Football

2 1 Basketball

3 2 IPod

Figure 2.4: Database tables showing primary-foreign key relationship

The Category id appears in the Items table as foreign key category_id. It essentially

captures a business relation that an item has an associated category. The application

can now retrieve items in a given category using an SQL query like

select * from Items where category_id = 1

13

The database vendor provides programmers with an API to perform CRUD operations

using SQL statements. The business logic then has to extract each row from the result

set, map each column into an appropriate data type, perform the operation, and

perhaps execute several other queries to complete a business transaction. This leads

to bloated application code, where simple business logic gets convoluted in chunks of

database operations. More importantly, the application is not able to visualize the

business operation as an interaction between business entities.

As most of the web applications are designed and implemented using object oriented

languages (and architectures), there seemed great disparity between the relational

view of data and the object-oriented view of business entities. To overcome this

problem, Object Relational Mapping was introduced, which essentially translates

(maps) relational data into real world business entities. Thus, an application can now

concentrate more on domain models and their interaction using object-oriented

language features. The domain layer now reflects database tables, and business layer

can easily manipulate models without caring for intricate low level details.

The ORM transformations are done in the following way:

 For each table in the database an associated Entity Class is created.

 The columns in the table becomes the instance variable of the entity class.

These variables are generally kept private and are accessed/modified using

GET/SET methods. The data types of variables are language specific native or

object types (Integer, Double, String, Date), and are type compatible with

database data types. Usually, the length constraints of VARCHAR data types are

ignored and enforced by validation rules.

14

1 n

 The primary key variable is explicitly identified. The foreign key variable is

actually the reference of the entity class in case of one-to-one relationship, or a

set of entity classes in case of one-to-many relationship. The inverse

relationship is also created.

The UML class diagram in Figure 2.5 depicts how the Categories and Item tables in

Figure 2.4 are mapped to business entities.

Category

Id : Integer

Name : String

Items : Set<Items>

getId() : Integer

setId(value:Integer) : Void

getName() : String

setName(value:String) : Void

getItems():Set<Items>

setItems(value:Set<Items>) : Void

Item

Id : Integer

Name : String

Category : Category

getId() : Integer

setId(value:Integer) : Void

getName() : String

setName(value:String) : Void

getCategory():Category

setCategory(value:Category) : Void

Figure 2.5: Entities class diagram

As you can see the Category class now has a reference to Items even though the

Categories table does not. This is a really powerful feature which explicitly creates

strong relationships, making it easier to access associated entities and children. Now

we can access all items for a particular category using simple method calls:

Category category = Session.load(Category.class, 1);

Set<Items> items = category.getItems();

15

The ORM framework does the heavy lifting of generating SQL queries when needed.

Each ORM framework comes with a set of tools that allows programmers to generate

Entity Classes from database tables. It also generates associations based on SQL

schemas. The metadata for the object-relation mapping can be specified in XML files

or embedded right into Java classes using Java Annotations.

There are two widely used ORM frameworks in Java EE, namely the Java Persistence

API (JPA) [4] and Hibernate [5]. JPA itself is a persistence framework that specifies how

entity classes are stored and retrieved from the database. JPA 1.0 offers the Java

Persistence Query Language (JPQL), which resembles SQL but operates on entities

rather than database tables. JPA 2.0 also supports type safe Criteria Query which is an

object oriented query language that avoids incorrect query construction. JPA comes

with a reference implementation of TopLink Essentials. Hibernate, on the other hand,

has its own framework and query language - Hibernate Query Language (HQL) and

Criteria Query. As of version 3.2 it also provides an implementation for JPA.

ORM frameworks also optimize database accesses. For example, when reading an

entity Hibernate avoids fetching its associated entities unless explicitly accessed by the

program. Hibernate also keeps track of changes made to an entity so that only

modified entities are persisted to the database. Many ORM frameworks maintain a

pool of active database connections to avoid connection setup latency for each

database access. Moreover, these frameworks provide extensive support for entity

caching which is discussed in Section 2.5.

The downsides of ORM frameworks are: slightly slower performance due to query

translation and a little bit more memory requirement. Nonetheless, the advantages

and optimizations provided by these frameworks far outweigh minor drawbacks.

16

2.4 Performance and Scalability

Performance of a system is a subjective matter and cannot simply be put in numbers

without taking into account user expectations. A system that is responding

unnoticeably faster compared to the one responding slightly slower may be

considered performing equally well by the user. Thus, a system that meets user

expectation is deemed well performing. System performance plays a key role in terms

of web applications. There are several interrelated metrics that can define application

performance such as:

 Response Time: How quickly an application responds to requests. Request

time could be measured at each component level or from the beginning of the

request to the completion of the response. Generally the faster the better.

 Latency: Latency affects the response time and is considered an undesirable

feature of any hardware or software component. Some hardware components,

such as network switches, have a predetermined latency which cannot be

avoided. Software components however, can be optimized to minimize

latency.

 Throughput: Throughput denotes the number of successful events achieved

per unit of time. For example, the throughput of a network switch is the

number of packets successfully routed per second, and the throughput of a

web application is the number of requests successfully served per second.

Throughput is often measured under peak load to achieve an upper bound

value, what is called Maximum Throughput.

17

The ideal system would like to maximize throughput, and minimize latency and

response time. Under stressful conditions (peak load), throughput could degrade and

affect response time as component latency is increased. Usually throughput is limited

by what we call the Bottleneck. Wikipedia defines bottleneck as

“Bottleneck is a phenomenon by which the performance or capacity of an

entire system is severely limited by a single component. Formally, a bottleneck

lies on a system's critical path and provides the lowest throughput. As such,

system designers will try to avoid bottlenecks and direct effort towards

locating and tuning existing bottlenecks. Some examples of possible

engineering bottlenecks are: processor, a communication link, a data

processing software, etc”

Once a bottleneck is reached the system reaches a saturation point where

performance can no longer be improved with the existing software and hardware

configuration. With the widespread use of the Internet in the 21st century, web

applications have encountered serious problems with regard to ever increasing web

traffic. The applications that were designed to serve 500 requests per seconds started

to choke or even fail (e.g. Denial of Service attacks) when the number of request goes

beyond its serving capacity. Applications in such situation could discard additional

requests - a case of unavailability - to maintain response time and throughput, or

suffer performance issues. In either case, the system has failed to scale properly.

One approach to scale an existing system is to increase system resources, especially

the ones being bottlenecked. This approach is called Vertical Scaling, as it involves

scaling up of resource capacities at a single node (such as application server). This

solution is very simple and only requires investment in high performing high capacity

hardware such as additional RAM modules, hard disks, network switches. An

18

application can also achieve better performance using multi-core processors. The

advantage of vertical scaling is that it does not require changes in application and

system architecture. Moreover in virtual box environments it allows proper provision

of resources, such as dedicating a processor core per virtual operating system.

However, high-end hardware is expensive and failure of any hardware component

leaves the system unavailable.

2.4.1 Clustering

The single point of failure and other drawbacks of vertical scaling have lead to a fault-

tolerant, highly available and scalable scheme known as Horizontal Scaling. In this

approach, more nodes are added to a particular tier to scale it out horizontally,

forming a cluster. As computer prices have dropped, it is very inexpensive to create

large clusters by adding cheap commodity machines. In case of web applications, more

nodes could be added to the application tier or the data tier or both. Figure 2.6 depicts

a widely preferred architecture where only the application tier is clustered.

Load
Balancer

Data tier

Application
Tier (Cluster)

Figure 2.6: Clustering

Web

Clients

19

Application Tier Clustering:

Clustering the application tier into several nodes (application server instances)

provides the system the much needed scalability. It reduces load on individual nodes

and increases system throughput. The entire cluster is meant to run the same

application, and if one node fails the others can continue to provide service. As the

cluster size grows the system becomes more fault-tolerant and available. One problem

of clustering is that the application sometimes needs to be modified to take advantage

of aggregate cluster resources. This is particularly true for distributed applications

where one node communicates with other nodes, for example to replicate user

sessions or application state. Because of the popularity of clustering application

servers vendors now provide distributed session management capabilities.

Data Tier Clustering:

The data tier could also be clustered. However, this approach is rarely used as it

requires RDBMS servers to actively keep their database state consistent with others.

This also complicates transaction management and increases data integrity issues in

the business tier as it will have to connect to many database servers. The other

approach is to use one RDBMS server and several replicas of databases, of which one

is the master (used for writing) while others are slaves (used for reading). This

approach has its overhead too, as the master has to continuously replicate any

changes to the slaves. If lazy replication is used then the slave state may get stale

while eager replication inhibits request processing during the replication phase.

Moreover, if the database size is big then replication increases disk requirements

proportionally to the number of slave instances. Hence, many web applications refrain

from both approaches.

20

2.4.2 Load Balancing

Another problem of clustering is that now a client needs to be aware of multiple

servers instead of one. And whenever a node is added or removed the client somehow

should know about it. To hide the intricacies of a clustered application tier a load

balancer is introduced in between the cluster and the client, and the client merely

needs to know the web address of the load balancer to whom it sends web requests.

The task of the load balancer is to distribute client requests to different application

servers and then return the response back to the client. The load balancer also sends

heart beat messages to servers, so that it can identify failed nodes.

The load balancing algorithm could be implemented in hardware but software-based

load balancers are prevalent because they are cheap and provide the flexibility to

choose or even write new load balancing algorithms. The two broad categories of load

balancing are described next.

Content-blind Approach:

In this case, the load balancer distributes requests without looking at the content of

the request. However, the load balancer may consider system resources such as IO

and CPU load to avoid bottlenecks at one or more server. The following content-blind

approaches are very common and provided by almost all vendors

 Round Robin: The requests are distributed in round robin fashion, so the first

request goes to node-1, the second request goes to node-2, and so on.

Sometimes, nodes may have different hardware configurations and thus,

different serving capacities. In this case, a weighted round-robin algorithm

21

could be used where a node with twice the weight of another node is selected

twice as often as the other.

 Least Connection: The server with the least number of open connections is

chosen. Again this could be weighted or not.

 Least Loaded: This approach periodically monitors each server for CPU, IO, and

Network loads and selects the one with least load.

 Random: This is the naïve strategy where a server selection is random. Good

pseudo numbers could provide uniform load distribution.

Content Aware Approach:

Contrary to content blind algorithms this approach peeks into requests in order to

decide on a suitable server. For example, a cookie based load balancer would look at

the ServerID cookie in the request header and would send it to that server. This cookie

could be injected in the response header by the load balancer or the application server

to create persistent connections. This approach is used when a user session is not

replicated to all servers, and consecutive requests of the same client have to be served

by the same server.

Content aware load balancing could also be application aware. For example [6]

proposes an application-aware load balancing solution where different application

transactions are predetermined and mapped to different servers. The request

parameter contains the transaction type from which the load balancer can get the

appropriate server to maximize cache hit. In this thesis we propose a request-aware

but application-unaware load balancing solution.

22

2.4.3 Caching

One way to improve application performance is caching. Caching is a process that

improves application performance by storing the data in a cache so that it can be

retrieved comparatively faster in subsequent requests. The data to be cached is either

the result of a complex computation (function) or a copy of original values read from

another component. If the requested data is found in the cache it can be quickly

served from the cache rather than fetching it from the original component. This

constitutes a Cache Hit. If the data is not found in the cache we have a Cache Miss, and

the data has to be recomputed or fetched again, and then stored in the cache (Cache

Put). Figure 2.7 illustrates caching through a sequence diagram.

Cache Miss

Cache Put

Cache Hit

Figure 2.7: Caching sequence diagram

23

Each GET request is directed to the cache first, and if the key is not found in the cache

then it is fetched from the data source. The object is put as key-value pair in the cache.

The second request for the same object results in a cache hit. As evident from Figure

2.7 caching also reduces the work load on the original component as it bypasses it in

case of cache hit (see second get request). Thus, if application scalability is restricted

because of a bottlenecked component, placing a cache in front of it would reduce the

bottleneck and allow scalability. The more a cache is able to serve requests the better

the performance. The percentage of requests that can be served from the cache is

called hit ratio.

Despite being a scarce resource the cache plays an important role in an application

because of data access patterns. The data which is recently accessed is likely to be

accessed again in the near future and constitutes temporal locality of reference. For

example, product categories in an e-commerce website exhibit temporal locality as

they are accessed in each request. Another type of reference locality is spatial locality

where the data which is stored close to recently accessed data is likely to be accessed

in the future. For example, a paginated list of items exhibits spatial locality as pages

may be accessed in tandem. An intelligent application would identify spatial locality

and prefetch related objects into the cache.

Caching has become an indispensible component in multi-tier web application. A

dynamic request originating from the client browser has to go all its way through the

web servers, the application servers, and the database server which takes

considerable amount of time. Introducing appropriate caches along this route before

any tier can decrease the response time. We now briefly discuss different types of

caching in internet applications.

24

Page Caching at the Web Server:

Web servers can cache pages generated by application servers. This caching is for

dynamic requests and is different from any browser caching which caches static html

pages and images. Usually, the web server is part of the application server (such as in

JBoss, Glassfish) but sometimes a high performing standalone web server (like Apache)

is placed in front of the application server to serve static pages. In either case, some of

the dynamically generated pages or page fragments (in a web portal) could by cached

if these are not frequently updated. These pages are mapped to request URLs which

may or may not include query parameters, and stored in the cache with an expiry after

which they are regenerated. For example, weather reports for a city could be cached

every 30 minutes. Thus, any request for this page would be served immediately by the

web server saving trips to the application servers and backend data services. Apache

uses several interlinked modules such as mod_cache, mod_disk_cache,

mode_file_cache, etc, that can be added to the web server to enable page caching [7].

Object Caching at the Application Server:

Object caching is done in the application server, specifically at the data access layer.

An object here represents a business entity which is loaded from the database server

and stored in the application server cache. Having an entity cache not only improves

processing at the application server but also spares the database of frequent requests.

This is very effective if the application tier is clustered because nodes querying the

database simultaneously increase the load on the database server. Under peak load

the database becomes the bottleneck as requests starts to queue at its end, which

indirectly impacts the application servers’ performance as they are blocked on

network IO.

If the application server does dynamic caching it has to deal with the volatility of data.

25

For many business applications the cache cannot afford to have stale entries, which

are inconsistent with the database. A general approach to avoid such a scenario is to

tag each cache entry with a time-to-live (TTL) and then the cache automatically evicts

those objects upon expiration. If the database could be changed by another

application then TTL based eviction is a good solution. In this thesis we primarily deal

with object caching, therefore it is further discussed in Section 2.5.

Caching at the Database Server:

The database server, which is the backend of our Internet architecture, is very

important for application performance. The application server, during its request

processing, usually calls the database server more than once. The processing at the

database server is also resource intensive and takes considerable time. To improve

performance, database systems employ indexes to avoid sequential table scans and

speed up queries. They also load blocks (or pages) of the database into memory

buffers to reduce disk IO which also enables spatial locality of reference. Some

databases, such as Oracle [8] and MySQL [9], also cache query result set to avoid

query compilation and execution costs.

2.5 Caching in Java Application Servers

We focus in this section on object caching in Java web applications as our

implementation is based on it. However, the concepts presented here are very general

and applicable to other frameworks as well. As discussed in Section 2.3, Java

application servers support ORM frameworks such as JPA, Hibernate and Toplink.

These frameworks have the capability to cache database rows as entities in the

application server. The entity caching is done at two levels: session and application,

the architecture of which is shown in Figure 2.8.

26

Session Cache:

Session Cache is the first level cache and has a request scope. When an application

server begins a database transaction for a particular user request, Hibernate creates a

session level cache. Any query executed during this transaction is temporarily cached

in this session cache until the transaction is over. This cache is created per user

transaction and is mutually exclusive from any other transaction running concurrently

in the application server, and hence, it is sometimes referred to as transactional cache.

However, depending on the ORM framework used, this can also persist at thread level

DB

Application Cache

Session
Cache

Session
Cache

User 1
Txn

User 2
Txn

App Server 2

Application Cache

Session
Cache

Session
Cache

User 1
Txn

User 2
Txn

App Server 1

Level 1

Level 2

Figure 2.8: 2 Level caching architecture

27

where multiple transactions (executed serially) all share this cache. This cache is

embedded in the ORM framework and generally cannot to be disabled as it buffers

user modifications and batches them for final commit.

Application Cache:

Application Cache is the 2nd level cache and has application scope. The key

characteristic of the second-level cache is that it is used across sessions, which

differentiates it from the 1st level cache. Just like other multi-level caches, the 2nd level

cache has more capacity than the 1st level caches. Hibernate reads from the

application cache if there is a miss in the session level cache, and writes (puts) to the

application cache after querying the database. Any intermediate changes to the

entities during transaction are not propagated to the application cache; however, final

updates to database are (write-through approach). Because of its global scope any

transaction - be it from the same user or others - has access to this cache. The

application cache does not span multiple servers and each server has its own

application cache which limits cacheability of the system.

Hibernate provides a flexible concept to exchange cache providers for the second-level

cache. We have used Ehcache [10] as cache provider. However other caching

implementation like OS Cache, Swarm Cache or JBoss Cache can be used.

Query Cache:

In addition to entities, the 2nd level cache also keeps recently executed queries in a

separate cache called a Query Cache. It is treated slightly differently than the entity

cache by the framework, although the storage mechanism is exactly the same as the

entity cache. When a query is executed it is stored in the query cache as <query, result

set> pair. The result set only contains the identifiers (primary keys) of the fetched

28

records. Hibernate then queries each entity in the result set and stores them in the

entity cache. In order to use the query cache with Hibernate each query that needs to

be cached has to be explicitly marked cacheable.

2.5.1 Distributed Application Cache

Even though the application level cache improves performance of the system it does

not help to scale the system in a clustered environment. Each application cache is

oblivious of other application caches in the cluster. Hence, there is a high probability

of redundancy in all the caches. This probability is much higher if the load balancer

distributes requests in a round-robin fashion as each application server will be caching

the same entities. This redundancy entails the following critical problems:

 Since application level cache is usually in-memory it is limited, and redundancy

reduces the overall cache capacity of the system. Hence if each of the N nodes

has 1 GB of available memory, then the utilization of the entire cache would be

much less than N GB because of duplicates.

 The application caches fill up quickly as each individual server has access to its

own limited cache. Now, if a request is sent to a server which does not have

the corresponding objects cached while other server have, then it will still be

fetched from the database. This not only results in a database hit but also in

the eviction of some entities from the application server cache which may be

queried next resulting in further evictions.

 Cache redundancy can lead to inconsistency. If one node inserts or updates a

row in database, its cache would be updated while other nodes would contain

a stale cache entry. Requests for these objects on other servers would be

29

served from the cache which does not represent the data’s current state. Many

financial and e-commerce application cannot afford this anomaly.

All of these problems can be solved using an in-memory distributed application cache

which exploits the memory capacities of all servers to give a transparent view to the

application. A distributed caching layer conceals access to and from other application

caches. If the data is not found in the local cache it is fetched from a remote cache

rather than the database. Pinpointing the location of a remote cached object can be

done either by maintaining a cache directory at each server or using consistent

hashing. The cache directory is replicated across the cluster and contains the mapping

of cache keys to server locations. In consistent hashing, cache keys are hashed (using

modulo) to server ids.

Distributed caching is getting popular because an application can simply be scaled by

adding cheap commodity machines and memory. Also, the network cards and

switches are getting faster, with 1 GB the norm while 10 GB getting traction allowing

low latency remote fetching. Some of the well-known distributed cache frameworks

are further discussed in the following related work section.

2.6 Related Work

A lot of research effort has been put to improve the performance of web applications

and make them scalable. While some approaches concentrate more on scalability than

performance, we have tried to tackle both issues in this research by allowing users to

choose from various distribution and replication strategies that fit best for their

application-hardware configuration. Our approach is more holistic in a sense that it

analyzes the application workload and applies policy based tuning at the load balancer

and application tier.

30

Some of the existing research relies on offline simulation and benchmarking of

application to derive useful metrics for system tuning. For example, in [11] and [12]

the authors measure performance characteristics of different tiers in an Internet

application, and compare predicted performance with test bed application

performance. They extended their model to capture load imbalances using replication,

caching and resource provisioning. The motivating factor of their research was an

experiment where they were able to predict the response time within 95% confidence

intervals of the observed response time. Similar studies in [13] and [14] assert that

queuing models can be very useful in measuring and predicting performance

characteristics for 3-tier web applications. In this model, they specifically discuss the

architecture of each tier on prevailing open-source servers, and were able to

demonstrate how precisely analytical models could mimic real time performance. Our

analysis is differentiated from them in that it is not based on offline queuing models

but rather on live application feed. We contend that application workload may change

and it is best to adapt to varying workloads periodically without taking applications

offline.

Instead of analytical modeling, some researchers have forayed into different

strategies, such as caching and replication, to scale web applications [15]. For

example, content delivery networks like Akamai employ Edge Computing to reduce

latency by replicating application logic and part of the database on edge caches. In

[15], the authors also evaluate content-aware and content-blind caching strategies on

edge servers and conclude that no approach is suitable for every workload. They put

the onus on administrators to manually choose a desired caching/replication strategy

for their workload. Although we do not deal with performance tuning on the edge,

however, we do focus on latency reduction using content-aware request distribution.

Moreover, our framework reduces complexity involved in manual configuration by

31

exposing only required tuning parameters (such as cache replication factor) to the

administrators.

Distributed caching in web application holds a key to performance and scalability, as

discussed earlier. This problem was addressed by Memcached [16] which is a

distributed memory cache that exploits available memory on any node by running a

Memcached instance on it. Memcached offers a dictionary interface where the cache

key is first hashed to identify the servers and then hashed again to retrieve the object.

Memcached was originally implemented for LiveJournal.com with 30GB of aggregate

memory, which resulted in 92% cache hit rate. Memcached servers run separately as

different processes. Hence accessing them is slower than accessing an embedded

cache in the application server. And because of key hashing, Memcached is purely

distributed and does not allow for replication. Also, no control is given on what to

store where. Similar to Memcached is Terracotta Server Array (TSA) [17] which acts as

a distributed level 3 cache in web applications (level 2 in non-JPA environment). The

2nd level cache in the web application replicates 100% of data, which limits scalability

but provides data consistency and cache coherency.

In [18], a distributed cooperative cache is built on top of EhCache which runs in the

application JVM. Its distributed directory maps cache keys to other application server,

which, unlike hashing in Memcached, avoids unnecessary remote lookups if the entity

is not even cached. It is also more flexible than Memcached in regard to where to put

each object. In our implementation we have enhanced the distributed cache to

support replication, so that popular objects could be retrieved much faster from

multiple application servers sacrificing some cache space for performance.

Content-aware load balancing presented in [19] logically partitions web content into

different servers, and creates policies for accessing them at the load balancer. This

32

load balancer is thus content aware, and sends a request to the server that has a high

probability of hitting the cache. Similarly, authors in [20] propose memory-aware load

balancing where a transaction is sent to a particular replica that has the required

working set to execute it completely in memory. In general, by localizing requests to a

given server the caches can now hold on to partitioned content much longer by

avoiding frequent evictions. In [6], the author takes this approach to dynamic

database content by logically partitioning different types of transactions and assigning

them to servers. Similarly to [19], the load balancer sends request of one type to the

same server, thus maximizing cache hit rate. In [6], the web application has to be

manually profiled to identify all types of web transactions, and a static policy file is

generated for the load balancer. Researchers in [21] and [22] argue on separating

architectural concerns, like caching, from the implementation of internet services.

They show that some level of automation could be incorporated into multi-component

web services. They analyze bottlenecks along a chain of linked service components

and rewire them with appropriate cache capacities. We follow the same level of

automation in our infrastructure but at the macro level of application tiers. Our

system can trace requests and their resources for any web application on fly, which

removes the need for manual profiling. This technique also aids us in generating

content-aware but application-unaware distribution strategies.

33

Chapter 3

3 Holistic Caching Architecture

3.1 Introduction

The performance of any software application relies heavily on its hardware

infrastructure and software architecture. It is important that application components

are loosely coupled with extensibility support. Keeping this in mind we have

developed a holistic caching architecture that is robust and adds no overhead to the

actual application but rather improves it end-to-end. The first step to achieve holistic

caching is to augment and enhance the infrastructure of the 3-tier architecture.

Although the request processing still follows the classical path (i.e., load balancer to

application server to database server), we have added another server for runtime

statistics collection and processing. This server should ideally be on a separate

machine to avoid resource stealing from the main servers. The web application is

oblivious of this additional server. Our main objective is to keep the application as-is

and unaware of optimizations. This allows us to build one optimization framework that

is readily applicable to other applications. Figure 3.1 shows our infrastructure with its

high level components.

34

In a nutshell, to perform optimization we need to gather runtime statistics which are

mainly collected from the application servers at two critical components, the

request/response interceptor (i.e. the filter) and the cache component. These

components log fine grain information to a separate log server. The log server receives

logs from all application servers and processes it through an analytics engine which

will generate optimization policies for request distribution and cache replication and

distribution.

In the next section we briefly discuss the distributed cooperative cache presented in

[18], and our enhancements to it. Next we give an overview of how our Policy-Based

Request Distribution and Caching transparently improves application performance.

The remaining sections discusses major component of our system and their

interactions. Part of this framework was built in collaboration with S. Joshipura [23].

Figure 3.1: Holistic caching component diagram

35

3.2 Holistic Cache Component

Clustering application servers also clusters application server caches. Since caches in

the cluster are totally unaware of each other, there is a high probability that at a given

point in time there are duplicate cached objects in the cache cluster. This redundancy

not only leads to cache inconsistency but also affects application scalability. The

impact is more if caching is done only in main memory, which is an expensive

hardware with limited capacity.

The application performance can be easily improved if all these distributed caches

somehow add up to give a uniform single large cache. To achieve this, caches have to

be aware of each other, so as to not cache things already cached on other servers.

Moreover, they should be able to retrieve objects stored on remote caches. This

scheme not only removes redundancy but also increases cache hit rate because of

overall increased capacity, which further reduces the load on the database.

This collaborative caching termed as ‘Distributed Cooperative Cache’ in [18] is

achieved by way of a cache directory which knows the whereabouts of each cached

object in the whole cluster. The cache directory is replicated across all application

servers and kept consistent as cache objects are stored and removed from the cache.

When an application server needs an object not found in its local cache, the cache

directory resolves the cached object’s location from the cache key, and hence, the

object is fetched from the remote cache.

Our work is build upon this cooperative cache component which uses EhCache as an

underlying application level cache. We have done a few enhancements to this caching

component essential to achieve better caching, such as:

36

Object Replication Support:

The cache directory now supports object replication. That is, if an object X is replicated

on N servers to improve availability, all cache directory replicas contain the list of

these N servers for this object X. Any request for object X can now be served from any

of these N servers if not found locally. This redundancy not only adds fault tolerance

and availability to the caching system but also increases local cache hits at the cost of

cache space.

As discussed in the last chapter, replication creates consistency issues when there are

updates. Consistency could be achieved by invalidation where updated objects could

be invalidated and thus, removed from the cache. But since our focus in this thesis is

on read-only workload we have not implemented consistency mechanisms.

Singleton Cache instead of Disjoint Region Based Cache:

The default implementation of EhCache (for Hibernate) creates unique caches per

database table called Region Caches. Thus, if there are hundreds of tables in a

database then there will be as many cache instances. Each of these cache instances -

usually named after the table - only stores objects of its associated table. This

approach, although if achieves better concurrency for update heavy traffic, has

obvious disadvantages such as

 Each cache region has to be specifically configured and adjusted on constant

basis. For example, when a certain table grows or its access frequency

increases then the system administrator needs to increase the cache capacity

for this region and perhaps penalize some other region caches by decreasing

their capacity. Performing such manual tuning on all application servers is very

time consuming. Not doing so could lead to cache inefficacy.

37

 Not only objects are stored and retrieved from an associated region cache, but

also evicted from the same cache instance. This has two undesirable effects.

First, the cache eviction policy is forced to choose an object for eviction from

this cache when its capacity reaches its limit, even though other region caches

have free space. This puts a hard cap on region caches. Second, the eviction

policies can only evict from the given cache (for which there is a put request).

Hence, eviction policies such as LRU are oblivious of least recently used objects

in other region caches (than the candidate chosen from this cache). Finally, not

only the inactive region caches waste valuable cache space but also increases

thrashing for popular regions.

To overcome all these drawbacks we have created a singleton cache shared by all

regions. When Hibernate requests for a region cache the same singleton instance is

returned. This makes it easier to setup cache capacity based on available memory,

gives eviction policies full view of the application cache, and makes automation tool

like ours to generate cache policies effectively.

Popularity Aware Eviction Policy:

The LRU eviction policy works best most of the time. However, web requests follow

patterns where there is a likelihood that a naïve LRU policy would evict an object

blindly which is about to be requested. This is particularly true when cache capacity is

small compared to the database size, and many random requests interleave popular

ones.

To alleviate this phenomenon we have introduced cache object stickiness

implemented through a Time-To-Live (TTL) cached object property. TTL is the time

after which the object expires from the cache and becomes a candidate for eviction.

By increasing the TTL for popular objects we reduce their chances of eviction, thereby

38

letting them stick to the cache a bit longer than less popular objects. We propose

three different levels of TTL:

 Short TTL: This is the base TTL set for any object in the cache. Objects are very

rarely accessed within a timeframe should be assigned short TTL. Objects with

short TTL are more likely to be evicted from the cache.

 Long TTL: Long TTL has a longer life (TTL value) than short TTL but still the

object could be evicted if it is not accessed for a long time, thus evicted

through expiration or as an eviction candidate. Popular objects could be

cached with Long TTL.

 Stable TTL: Objects which are always meant to be kept in the cache are stored

with a stable TTL. Depending on the application, stable TTL could be set in

terms of hours or even days. Examples of objects to be stored with stable TTL

are dictionary tables and catalogues that are accessed extremely frequently.

These little refinements on the existing open-source software give us the flexibility to

better tune the application for various workloads. In the next section we describe the

fundamental components of our infrastructure, the Policies, and how and where do

they fit in our distributed multi-tier web application.

3.2 Policy-Based Request Distribution and Caching

Expert Systems are software that mimics human reasoning to solve a problem. A more

prevalent type of expert system known as Rule-Based Expert System constructs a set

of procedural rules to solve a problem. The rule here is a trigger that fires when a

given condition is met, to partially or fully solve a problem. Having a large set of rules

not only increases rule trigger-rate, but also allows an expert system to come up with

39

the best possible solution. Many scientific and diagnostic systems are built as rule-

based expert systems.

Our proposition is similar to a rule-based system, where rules are created to efficiently

serve a user request. We call our rules policies and hence, our approach ‘policy-based’

approach. It is also important to understand the distinction between a strict rule-

based approach and our policy-based approach. In a strict rule based system, requests

(inputs) are ignored if none of the rules are able to comprehend it. Contrary to this our

policy-based approach is assistive and improves system performance if the policy is

applicable to the user request. If it is not, then, the default system functionality is

performed and we still achieve a response, but perhaps not in the optimal way. Thus,

our goal is to maximize policy hit-rate, which in turns increases system performance

and throughput.

Our intention is to improve system performance by offloading the database. We do

this by increasing the cache hit-rate, especially the local cache hit-rate. Having a

distributed clustered cache offloads the database considerably. It does not, however,

necessarily improve response time. This is because a remote cache request involves

network latency. A random or even a round robin distribution of user requests to

different application server spreads objects all over our cache cluster. Therefore, a

request which might be accessing merely 3 objects, each from a different remote

cache, could be much slower than one accessing 30 objects from a local cache.

To alleviate this problem inherent in a blind distributive cache, we silently profile

application requests and resources, and observe access patterns in them. As the web

application runs and users start querying the servers, we collect all this information on

a continuous basis. The collected requests and resources, their associated data, and

their mappings collectively form our knowledge base. We then analyse this structured

40

data set and generate request distribution policies for the load balancer and the

corresponding cache policies for the application servers. These policies are defined

next.

3.2.1 Policy-based Load Balancing

As discussed in the last chapter, basic load balancing schemes are content-blind - that

is, they distribute requests across a cluster without looking at the request. Our

approach to load balancing is content-aware in that it peeks at the request and knows

in advance where this request would be served faster. This distribution by the load

balancer takes advantage of the cache present on the application servers. For

example, when a dynamic request X is sent to application server AS1, then the object

accessed by it would get cached on this server so that subsequent requests are served

immediately without going to the database. Since our load balancer is content-aware

it would send the next request X to AS1 which would then be served from the cache.

This sticky distribution is achieved through Load Balancer Policies. These policies are

generated by the analytics server and the load balancing algorithm takes advantage of

these policies and performs efficient distribution.

The load balancer policy is a collection of request to application server mappings. The

structure of this policy is very simple as shown below.

www.example.com/req1/ -> {Application Server 2}

www.example.com/req1?id=1 -> {Application Server 1}

www.example.com/req1?id=2 -> {Application Server 3}

www.example.com/req2 -> {Application Server 1, 2}

The first mapping maps req1 to application server 2. The second and third mappings

41

are for the same request but with different parameters (a.k.a. Query String). Hence,

these are treated as two different requests and can be mapped to two different

servers. This brings us to the concept of URL processing in an application server. In

web applications, all the first three requests are served by the same server side script

req1 (or an equivalent Servlet in Java-based application servers). The server side script

may in fact behave differently and access different resources based on query

parameters. Therefore, we incorporate fine grained URLs in our mappings. Although

this increases the size of our structure, the load balancing algorithm works upon a

large set of URLs and achieves better and uniform request distribution.

As evident from the last mapping, one request can be mapped to multiple servers, in

which case the load balancer would send the request to any one of these server. The

provision to have a single request being served by different servers opens up dynamic

replication possibilities on application servers provided each server locally caches the

objects it accesses rather than fetching it from a remote location. Under peak

workload, where a few requests are frequently accessed, mapping them to only one

server could overload it. This multiple server configuration helps us balance load on

each server.

3.2.1 Policy-based Caching on Application Servers

To efficiently utilize the distributed cache we generate caching policies which work

well in tandem with our load balancer policies. As discussed in Section 3.2 we have

devised a new mechanism to caching where objects could be cached with different

TTL. This enables our analytical engine to assign different life time to each object

based on its popularity. Moreover, a clustered distributed cache needs a tighter

control over what objects are cached and what are not when they are fetched from a

local cache or a remote cache.

42

Before describing different caching scenarios in our holistic cache environment, it is

imperative to understand a typical cache policy. A cache policy looks like

com.example.User#100 -> { Server 1 (Long TTL) }

com.example.User#200 -> { Server 1 (Long TTL), Server 2 (Long TTL) }

com.example.Country#Canada -> { Server 1 (Stable TTL), Server 2 (Long TTL) }

com.example.Country#USA -> { Server 3 (Short TTL) }

Here ‘com.example.User’ is the ORM entity for the database table User, and ‘100’ is

the identity of the object representing the primary key of the corresponding row in the

User table. Thus, User 100 is destined to be cached on application server 1 with a Long

TTL. Analogous to the load balancer policy, objects could be cached on different

servers with same or different TTL values, again giving the analytics server flexibility to

create complex cache assignments. For example, during the Winter Olympics in

Vancouver, a website could encounter more traffic for Canada, and may increase the

priority of Entity-Canada to Stable on one server and replicate it as Long on another,

while reducing that of Entity-USA to short.

The cache policies are created for individual application servers and may include

duplicate entries to support object replication. Thus, the above cache assignment

translates to this equivalent server-to-objects cache policy.

Server 1 -> { User#100 (Long TTL), User#200 (Long TTL), Country#Canada (Stable TTL) }

Server 2 -> { User#200 (Long TTL), Country#Canada (Long TTL) }

Server 3 -> { Country#USA (Short TTL) }

43

3.2.1 Caching Scenarios

The flow chart below illustrates how the cache components perform when an object

‘Obj’ is requested by a data access layer (such as Hibernate).

Obj Found
in Local
Cache

Obj Found
in Remote

Cache

Policy
Exists for

Obj

Data Access Layer

Get Obj Obj

Put Obj in cache
with Policy TTL

Put Obj in cache
with Short TTL

Get Obj from
Database

Policy
Exists for

Obj

F

T

T

T

T
F

F

F

Obj

Obj

Figure 3.2: Caching scenarios

44

The GET request for an object is intercepted by our cache wrapper which first checks

the local cache for the object. If it is found there, it is immediately returned.

Otherwise, we look into our cache directory for a remote presence. If the object is

found in a remote cache it is retrieved from there. Depending on whether a policy

exists at the local application server for this newly retrieved object it is stored in the

local cache with a policy-based TTL, else, the object is returned without being put in

the local cache. This allows us to only cache objects from remote caches which are

meant to be replicated according to the policies generated by the analytics engine. If

the object is not found in the clustered wide application cache, then it is fetched from

the database and put into the local cache. Again, if the policy exists for this object it is

stored with a given TTL otherwise with the base short TTL. The directory structure is

kept consistent across all servers when objects are stored and evicted from the cache.

3.3 Monitoring System

We have developed a monitoring system that extracts useful information from the

user’s HTTP requests and the cache accesses. We, however, do not monitor

application business logic and internal communication which allows our monitoring

system to be deployed along with pre compiled web applications. This is a really

important aspect of any automation tool where non-invasive components are

seamlessly integrated with a functional system. These components can also be

detached from the application with ease, which makes it ideal to do application

profiling and data mining for experimentation purposes. However, we have aimed to

keep the overhead of monitoring to a minimum so that the system performs equally

well with the additional monitoring layer. Now, we discuss high level concepts about

our monitoring system, the implementation aspects of which are presented in

Chapter 5.

45

3.3.1 Remote Logging

The crucial aspect of any monitoring solution is logging of information. An inefficient

logging could sabotage the whole monitoring system. Keeping in view our need for

dynamic policy generation, we chose remote server logging over traditional local file

system logging. Although File based-logging is robust, in a clustered environment it

does not prove to be feasible for the following two reasons.

 Each server logs records in its local disk, which then need to be merged based

on timestamps or other mechanisms to get the global view of application logs.

This usually cannot be done for active log files as it’s been constantly written

to.

 The processing of file logs is resource intensive and cannot be performed on

the application servers. Also, in this arrangement, one application server needs

to be a master log processor reading files from other servers which could hog

the network during log processing cycles.

Remote logging addresses both concerns seamlessly. By virtue of remote logging we

are able to output the log directly at the log server, a separate machine in the server

cluster, where the analysis tool is running. Thus, the analysis tool is fed with the

logging data in real-time as it is produced. This makes the policy generation more

dynamic. Moreover, the raw log events are never materialized to the file system

saving valuable IO cost.

3.3.2 Request Interception

Requests are intercepted using the Interceptor Pattern. According to [24]

46

“In the field of software development, an interceptor pattern is a

software design pattern that is used when software systems or frameworks want to

offer a way to change, or augment, their usual processing cycle”

In web applications, we just augment the usual request processing by adding

interceptors to collect request statistics. This interceptor is really fast as it does not

change requests or its processing, but merely monitors and logs http access details. A

sample entry in an access log looks like

REQ 1233453464 GET /rubis/cateogries?id=10 200 150

The first value identifies the log type which is the request. The second value is the

timestamp of the incoming request. The third value is the HTTP method. The fourth

value is the requested resource along with any query string. The fifth value is the

response code and lastly the total time taken in millisecond for this request to

complete.

3.3.3 Cache Monitoring

We monitor cache accesses analogous to HTTP requests. Both GET and PUT accesses

are logged. A log entry for a GET request contains the timestamp, request type which

is GET, and the object key. The key is composed of Entity Type and its primary key. A

sample log entry is shown below

 1233453464 GET com.example.User#100

The PUT request is made after an object is fetched from the database. Usually a GET

request precedes a PUT but if the data access layer is sure that the object cannot be in

47

the cache, such as for Inserts and Update queries, a 2nd level cache PUT is done. The

PUT log entry is similar to GET with an additional object’s size parameter, and it is

shown below

 1233453464 PUT com.example.User#100 300

It is worth mentioning that we do not log the objects value here, because a value is

usually big. This would slow down the remote logging considerably. Also, for

application unaware tools, like ours, performing analysis on values is much harder.

Therefore, we only store object size, which is a reasonably accurate estimate on

entity’s caching and network bandwidth needs.

3.3.4 Request Tracing

Request tracing is the most important part of our analysis. Simply put, request tracing

is a way to identify all objects accessed by a request. In web applications, the data

access layer is oblivious of web requests and is only concerned with data objects or

entities. Thus, to overcome this barrier, we include a unique global id (GUID) with each

log message sent. One GUID is created per thread, and since a request is processed in

one thread all cache logs get the same GUID as sent along with the request log. This is

essential because as the log server receives interleaved logs from concurrent request,

a GUID is needed to recollect and identify them as part of one request. This helps us to

determine data access patterns of requests. Furthermore, using this information we

can direct the load balancer to send specific requests to the application server that

contains the cache objects so that local cache hits are maximized. In addition to GUID,

we also send the host machine name with each log message to distinguish logs from

different servers.

48

3.4 Log Processing

As logs arrive at the Logging server, they are processed by different processors. We

called them ‘Log Processors’ and their purpose is to collect log messages of interest

and structure them in a meaningful way. Log messages from different servers are

maintained in separate structures. This gives us the flexibility to analyse load on

different servers. But for a global view of application we also merge them into one

structure. The data structures produced by log processors are then fed to the analysis

engine which then generates policies.

3.4.1 Request Log Processing

HTTP access logs are processed by the Request Log Processor. This processor identifies

popular requests by their access frequency. In addition, it also maintains the first and

last access time for each different type of request, and the average time taken for this

request. All these structures are maintained in time buckets (say 10 min each), so that

during analysis we can pick the last X buckets and merge them, to observe more

recent trends and discard older analysis.

3.4.2 Cache Log Processing

Cache log events are processed by the Cache Log Processor. The cache objects are

maintained in their lowest granularity, i.e., at the database row level. These objects

can also be accessed at higher granularity (at table level) by just dropping the primary

key from the cache key. For each object, we maintain its frequency, the number of

GETs and PUTs, and first and last access time. Again, data structures are segmented

into equally spaced time buckets.

49

3.4.3 Request-Cache mappings

One log processor in our framework maps cache objects to request. It processes both

the request log and cache log streams and ties them together on the basis of GUID.

Sample Request-to-Objects mappings are like

/req1 -> { a, b }

/req2 -> { b, e }

/req3 -> { x }

If the same request is encountered again during processing with different objects,

then the previous mapping is updated with new objects, as shown below

 /req1 -> { a, c, x} => /req1 -> { a, b, c, x }

Thus, we only store one mapping for the request as union of all objects. This allows us

to identify a set of all possible objects that can be accessed by a given request. We

also generate inverse mappings during processing from object to requests, enabling us

to see object overlaps in different requests. The Object-to-Requests for the first 3

mappings are shown below

a -> { /req1 }

b -> { /req1, /req2 }

e -> { /req2 }

x -> { /req3 }

50

3.5 Analysis Engine

The analysis engine is the brain of our system. It contains the algorithms and

procedures which generate the policies for the application server and the load

balancer. It uses different statistics which have been extracted from the log processors

to make decisions about the policies. The analysis is not performed continuously as log

processing is, but at preconfigured time intervals. Since this is little application

dependent, the system administrator can choose an interval on the basis of the

workload.

We have kept our analysis engine as open as possible so different algorithms could be

configured with different workload and application characteristics. The algorithms

which we call Strategies work on the same set of structures, but use different

heuristics and parameters to come up with unique request distributions and cache

assignments. The generated policies are sent to all the application servers and the load

balancer where they are applied instantly without requiring them to be restarted.

Policies are usually generated for both load balancer and application server, but

sometimes generating one and not the other is sufficient to improve performance.

Since policies are generated and applied at regular time intervals we are better able to

manage variations in workload than a static configuration.

51

Chapter 4

5 Dynamic Request Centric Analysis

4.1 Introduction

This chapter focuses on core algorithms and strategies that enable us to improve

application performance and overall system throughput. Here, we discuss a broad

range of analysis on various factors to generate load distribution and caching policies

for our multi-tier web application system. The caching subsystem of our multi-tier

infrastructure is a distributed one. One of the important reasons of implementing a

dynamic request centric caching and load balancing algorithm on top of a distributed

cache is to minimize remote calls, both to the remote cache and backend database.

Our analysis is performed on metrics collected from the application server and the

distributed cache. The distributed cache in consideration here is the persistent in-

memory application level cache. In our analysis, we do not consider the session level

cache, and neither have we done any monitoring at this level.

Our solution is implemented on Java Enterprise Edition (Java EE) application servers

52

and Apache Http Server because of its worldwide acceptance and open-source

production quality implementation. Nonetheless, this does not restrict our approach

to only Java based application servers. The whole infrastructure could be ported to

any web application platform with minimal changes. This was another reason to keep

the analytics engine separate from the application server; the policies generated by

the analytics engine could be serialized into XML or another network friendly protocol

with ease, making it a plug-and-play solution.

The analytical engine, although an add-on, then becomes the integral part of the

whole system. Figure 4.1 shows the system with analysis engine, and the essential

data input and output.

The data flow diagram shows how the analysis engine processes the performance

metrics collected from the application server cluster and produces policies. The

configurations are application specific properties such as cluster size and cache

capacity, and algorithm tuning properties such as replication factor. The diagram does

not refer to particular policy but shows Policies in general as an output. This is because

the policies generated by the analysis engine effect the web application as a whole,

even though in some cases a desirable performance could be achieved by applying

Figure 4.1: Analysis Engine

53

policies at either load balancer or application servers (see Section 4.8).

In this thesis we pursue a dynamic request centric analysis. The nature of our analysis

is dynamic because it is done online with running servers, albeit on a dedicated

machine, and the analysis adapts itself to changing workload. Our focus is on

application unaware but request aware analysis (i.e. our analysis is oblivious of

business application but aware of user requests). We term it a Request Centric

Analysis. Having said that, we do consider cache statistics in our analysis, and we have

used request tracing abilities of our system to build more controlled, uniform, and

efficient request distribution policies. The cache policy more often plays an adjunct

role to the load balancer policy because the default caching behavior of our system is

distributed which minimizes backend database queries. The request distribution policy

further improves on the default system by maximizing local cache hit thereby avoiding

cache indirection. By virtue of this, we reduce network latency involved in fetching

remote objects, thus improving response time. By localizing requests to servers, we

virtually partition our cached data on different servers based on application needs,

thus maximizing cacheability without incurring the network IO cost involved in remote

fetching.

The rest of this chapter is organized as follows. In the next section we describe the

important data structures and configurations which are used in nearly all algorithms.

After that we discuss our base distribution and caching algorithm. Then we extend it

to support replication. Finally we present a more complex assignment strategy that

reduces cache redundancy.

4.2 Data Structures and Configurations

In our thesis, algorithms rely on performance metrics and data structures processed

54

by log processors as discussed in last chapter. These data structures are maintained

separately for each application server, and even further segmented into time intervals.

The first thing our analyser does is to merge each individual data structure taking into

account only the more recent segments. Choosing the appropriate segment size is the

key; in our approach, we neither disregard all structures processed in the last policy

generation phase nor include all. Instead we include few segments from the last run.

Once all these data structures are merged we feed them to our algorithm (aka

Strategy). Below we outline the structures that are most important and used by every

strategy.

 HTTP Request List:

 Since our analysis is request centric we maintain a list of all requests that

access at least one resource. We only consider cache objects as resources.

Thus, requests which access static html pages or images are not processed and

are ignored. This is desirable as static resources are usually served faster.

Moreover, not apportioning these requests gives the load balancer the

opportunity to distribute such requests as evenly as possible. We also discard

requests which are erroneous (whose responses are not OK; HTTP 200). The

http request lists maintained for each server is merged, and then sorted on

popularity. Our metric to identify request popularity is request frequency,

which is a very good estimate. The list goes from most popular request to least

one (sorted descendingly).

 Request to Resource Map

All accessed objects are mapped to their requests at each server. These

mapping are then merged from all servers to obtain an application wide

Request-to-Resource Map. We need this structure so that we can create cache

policies for the most frequent requests.

55

In addition to the prepared structures, the algorithms depend on the following basic

parameters

 CacheSize: Capacity per server

 NumServers: Number of application servers

 TotalCapacity: CacheSize * NumServers

4.3 Basic Distribution Algorithm

Our first algorithm, the Basic Distribution Algorithm, addresses the following concern

in multi-tier applications:

 A distributed caching system can relieve the database server from constant

barrage of requests, by serving some requests from the local cache or a remote

cache. However, the network cost of retrieving an object from a remote cache

increases response time.

To minimize remote calls our first algorithm applies the following reasoning:

 Identify the popular requests which are accessing the database (or cache) most

frequently.

 Assign a subset of these popular requests to specific application servers. By

partitioning requests to server we maximize local cache hit rate.

 Allocate the objects accessed by theses requests to the corresponding server

with a longer TTL.

We implement this simple policy by considering certain workload characteristics. First,

the observed pattern is not always going to repeat, thus we cannot force all popular

objects into the cache. Hence, we only consider the most popular ones depending on

aggregate cache capacity. Second, we keep a portion of the cache unallocated so

56

objects for other requests could be cached. To do so, we put a cap on the number of

cache assignments per application server. We also put a cap on total cache

assignments by similar proportions. Figure 4.2 shows the algorithm setup while Figure

4.3 depicts the algorithm.

The basic distribution approach simply pops the most popular request from the list

(line 15) and maps it onto one application server (line 24). It also generates cache

policies for this application server (line 28-32) so the objects accessed by this request

(line 18) stick longer in cache than less popular objects. The next popular request is

then mapped to a different application server. Application servers are chosen in a

round robin fashion (line 40). We continue generating policies until either the request

list is exhausted, or we have reached the threshold set for popular requests (line 9-10).

It is important to note that the cutoff on popular requests is reached when the cap on

aggregate cache capacity is touched, controlled by MAX_ALLOC_DIVISOR factor (line

9); bigger values lead to fewer assignments while a value of 1 uses the whole cache for

assignment.

Initialization

1 numServers = 3 //number of servers

2 currentServer = 0 //server chosen for policy

3 reqIdx = 0 //Current Request index

4 CacheSize = 5000 //from configuration file

5 totalObjAlllocated = 0

6 objectAlloc[] = [0] //0 objects allocated initially on each server

7 maxObjectAlloc[] = [CacheSize] //maximum objects allowed per server

8 MAX_ALLOC_DIVISOR = 3 // cap total capacity by dividing this factor

Figure 4.2: Basic distribution algorithm initialization

57

Algorithm

9 while totalObjAllocated < totalCapacity/MAX_ALLOC_DIVISOR and

10 reqIdx < # of httpRequest

11

12 do

13

14 //pick the next most frequently access request

15 curReq = httpRequest[reqInd]

16

17 //get corresponding objects for this req

18 objects = reqToResMap[curReq]

19

20 //check if the current server has the capacity to cache all objects

21 if objAllocated[currentServer] + objects < maxObjAlloc[currentServer] then

22

23 //create loadbalancer rule for this request

24 LBPolicy [curReq] = {currentServer}

25

26 //create a cache policy for each object with LONG_TTL

27

28 foreach cacheKey in objects do

29

30 currentServerASPolicy [cacheKey] = LONG_TTL

31

32 end //for

33

34 // update counters

35 objAllocated[currentServer] += # of new objects assigned

36

37 totalObjAllocated += # of new objects assigned

38

39 //move to the next server

40 currentServer = (currentServer+1) % numServers

41

42 //move to next popular request

43 reqIdx++

44

45 else

46

47 //choose another server as currentServer has max-out

48 currentServer = (currentServer+1) % numServers;

49

50 end

51

52 end //main loop ends

Figure 4.3: Basic distribution algorithm

58

4.4 Replication Strategy

Our previous algorithm will work well if the processing power of the application

servers is not bottlenecked. However, it may not perform well if some popular

requests are directed to one particular server, which eventually gets saturated. This

could adversely affect system throughput as one server might be overloaded while

others remain underutilized. To overcome this problem we augment our basic

distribution algorithm with replication, where the most popular requests are assigned

to multiple servers. We term this algorithm Replication Strategy. Selecting the most

frequently accessed requests and assigning them across the cluster balances the load

on application servers under peak load. The load balancer policy generated for popular

requests contains multiple servers instead of one, allowing the load balancer to evenly

distribute such requests.

Finding the appropriate request set for replication is very important, because of the

limited cache capacity. We cannot simply replicate all popular requests until the cache

is filled. As mentioned in the pure distributed strategy, we reserve only a portion of

the cache for policies while keeping the rest of the cache available to other requests.

Now, we provision some cache for replication leaving the remaining cache till cut-off

for distribution. The Figure 4.4 shows how our virtual cache capacity is partitioned per

server.

25% for Replication

50% for cache assignment (MAX_ALLOC_DIVISOR)

Replicated
Objects

Distributed
Objects

Unassigned cache
space

Figure 4.4: Cache partitioning for policy assignments

59

The cache space provisioned for replication is configurable. However, as the workload

might vary, choosing a fixed value beforehand is not the best option. Therefore, we

adjust the replication factor dynamically. Below we outline the important steps to

compute an effective replication percentage.

 DesiredReplication (DR) is the percentage of cache reserved for replication,

configured at startup. For example, if 10,000 objects were accessed during the

last interval and this factor is 20%, then objects (associated with popular

requests) are replicated in the cluster until 20% of the capacity is filled. This value

is oblivious of workload and needs adjustments.

 UniqueResourcesCount is the number of unique cache object accessed during the

last interval.

 ObjectsPerSlot (OPS) is calculated as the ratio of UniqueResourcesCount to

TotalCacheCapacity. This factor is used to adjust replication. If OPS is less than 1

then the entire resource set (accessed objects) is cacheable, if the factor is

greater than 1 than we have more objects and less capacity. If OPS is

1/numServers then all objects could be replicated across cluster.

 EffectiveReplication (ER) is the normalized replication and is calculated as

ER = DR / OPS

For example if the desired replication is 20% but OPS is 2 then our effective replication

reduces to 10%. But if OPS is ½ then effective replication jumps up to 40% (or the limit

set for the caching policy). Hence, this heuristic tweaks replication factor so that under

random workload (resulting in more objects accessed) replication is reduced. On

contrary, if only popular requests are made, resulting in fewer objects than available

cache space, replication is increased to achieve uniform load distribution.

Figures 4.4 and 4.5 show the algorithm in action. This strategy starts in replication

mode (line 9), where one request is assigned to all servers. During the mode,

60

replication is achieved by only increasing request index (reqIdx) once a request is

assigned to all servers (line 57-59). If the cluster size is big then replication could be

reduced to k servers with a minor change in the algorithm. Objects assigned during

replication mode are given STABLE_TTL (line 33-38), so they tend to outlive other

cached objects stored with smaller TTL. The effective replication (ER) factor is

computed during initialization (line 11-13). Upon reaching the effective replication

threshold (line 51 - 54) the strategy switches to distribution mode (line 56). From here

on, the algorithm works just like our basic distribution strategy. This algorithm (Figures

4.5 and 4.6) with the replication ad-on is shown below. The enhancements are

highlighted.

Initialization

1 numServers = 3 //number of servers

2 currentServer = 0 //server chosen for policy

3 reqIdx = 0 //Current Request index

4 CacheSize = 5000 //from configuration file

5 totalObjAlllocated = 0

6 objectAlloc[] = [0] //0 objects allocated initially on each server

7 maxObjectAlloc[] = [CacheSize] //maximum objects allowed per server

8 MAX_ALLOC_DIVISOR = 3 // or whatever configured

9 repMode = true //replication mode or distribution mode

10 uniqueObjects = getUniqueObjects() //unique object count

11 OPS = uniqueObjects/totalCapacity // objects per slot

12 DR = .1 // desired replication (configurable)

13 ER = DR/OPS // effective replication

Figure 4.5: Replication strategy initialization

61

Algorithm

14 while totalObjAllocated < totalCapacity/MAX_ALLOC_DIVISOR and

15 reqIdx < # of httpRequest

16

17 do

18 //pick the next most frequently access request

19 curReq = httpRequest[reqInd]

20

21 //get corresponding objects for this req

22 objects = reqToResMap[curReq]

23

24 //check if the current server has the capacity to cache all objects

25 if objAllocated[currentServer] + objects < maxObjAlloc[currentServer] then

26

27 //create loadbalancer rule for this request

28 LBPolicy [curReq] = {currentServer}

29

30 //create a cache policy for each object

31 foreach cacheKey in objects do

32

33 // Stable TTL if in replication mode else long TTL

34 if repMode then

35 currentServerASPolicy [cacheKey] = STABLE_TTL

36 else

37 currentServerASPolicy [cacheKey] = LONG_TTL

38 end

39 end

40

41 // update counters and move to next server

42 objAllocated[currentServer] += # of new objects assigned

43

44 totalObjAllocated += # of new objects assigned

45

46 currentServer = (currentServer+1) % numServers

47

48 //update reqIdx based on repMode

49 if repMode then

50 //current replication factor

51 repNow = totalObjAllocated/totalCapacity

52

53 //if we have reached effective replication switch mode

54 if repNow >= ER then

55 repMode = false

56 reqIdx++;

57 else if replicated on all servers then

58 reqIdx++ //move to next popular request

59 end

60

61 else //not replication mode

62 reqIdx++ //move to next popular request

63 end

64 else

65 //choose another server as currentServer has max-out

66 currentServer = (currentServer+1) % numServers;

67

68 end

69

70 end //main loop ends

Figure 4.6: Replication Strategy

62

4.5 Compact Assignment Strategy

In the previous two strategies that we have discussed requests are assigned in a round

robin fashion to our application server cluster. This round-robin placement of requests

works really well since requests are sorted on frequency resulting in even load

distribution. Each server in this scheme gets a fairly equal proportion of total request

from the load balancer. However, since several requests could access an object, the

object is unintentionally replicated to different servers. For example, if request R1

accesses objects {a,b} and is assigned to application server A1, and request R2

accesses objects {a,c,d} and is assigned to application server A2, then we have it

redundantly replicated to two servers with the round-robin server selection.

To overcome the above unintended redundancy, we propose a novel method called

Compact Assignment Strategy where a request is assigned to a server that contains

the most objects for the new request. Therefore, in the above example, R2 and the

objects {c,d} are assigned to server A1. Hence, for the above case we save 1 unit of

cache capacity. This compaction is beneficial if the cache capacity is small and several

objects are accessed by many popular requests. Not employing this strategy for such

situation would spread the same objects to different servers, thereby considerably

reducing aggregate cache capacity.

Now instead of round robin, the server selection for a request R1 accessing objects in

Set O follows the following general rules:

 Find the number of overlapping objects each server has with O, and arrange

servers in descending order (i.e. server with the most overlap first).

 Pick the top server and check if it can accommodate non-overlapping objects. If

not, pick the next one in the list. This minimizes cache redundancy while at the

63

same time ensures that we don’t run over the cutoff set for allocation per

cache.

 If two or more servers have the same number of overlapping objects, pick the

one with the least number of assigned objects to break tie. This contributes to

more even assignment and prohibits a situation where one server is constantly

assigned all the requests (and objects).

 If no overlap is found then choose the one with the least number of assigned

requests. This follows the same reasoning as the previous rule, but instead we

choose request counter as a measure to even out the distribution.

This server selection scheme is only used in the distribution phase of assignment. For

the replication phase, we don’t care about compactness as the intent is redundancy,

and simple round robin suffices.

Figure 4.6 shows the enhanced algorithm with compact assignment strategy. The

initialization is pretty much the same except now we maintain counters of request

assigned per server (line 79). If we are in non-replication mode then we calculates the

object overlap for each server (line 17-21) and choose the candidate server with the

most overlap (line 24-28). We also tag objects (line 20) that are already assigned so

that we do not assign them again (line 71-73). During this step we also discard the

servers with not enough capacity for new objects. There is a high chance that more

than two servers have the same overlap because of the replication phase that

precedes distribution phase. We break such ties by selecting a candidate with fewer

overall objects (line 30-37). If there is no overlap then we simply choose the one with

least assigned request (line 44-53). The rest of the algorithm generates policies for the

selected server.

64

Algorithm

1 while totalObjAllocated < totalCapacity/MAX_ALLOC_DIVISOR and

2 reqIdx < # of httpRequest do

3

4 //next most popular request and its objects

5 curReq = httpRequest[reqInd]

6 objects = reqToResMap[curReq]

7

8 candidateFound = false

9

10 //only used in Non-Rep Mode
11 if not in repMode then
12 matches[] = [0] //initialize matches counter to 0

13 candidateServer = undef //candidate Server index

14 max = -1 //max overlap so far

15
16 foreach server in servers do

17 //check for overlap and tag matched objects

18 foreach cacheKey in objects do

19 if cacheKey found in server then

20 alreadyAssigned.put(cacheKey)
21 matches[server]++

22 end

23 end

24
25 //check if the server has enough space left

26 if matches[server] > max and objAllocated[server] +

27 objects - matches[server]) < maxObjAlloc[i] then

28
29 max = matches[server]

30 candidateServer = server

31
32 else if matches[i] = max then

33 // break ties by choosing least assigned objects
34 if cacheObjAllocated[server] <

35 cacheObjAllocated[candidateServer] then

36
37 candidateServer = server

38 end

39 end

40 end

41
42 if candidateServer is not undef then

43 candidateFound = true

44 currentServer = candidateServer

45 else

46 //find the least request-allocated server

47 candidateServer = 0

48 foreach server in servers do

49 if reqAllocated[server] <

50 reqAllocated[candidateServer] then

51
52 candidateServer = server

53 end

54 end

55 currentServer = candidateServer

56 end

57 end

65

Continues…

58 //check if the current server has the capacity to cache all objects

59 if candidateFound or objAllocated[currentServer] + objects <

60 maxObjAlloc[currentServer] then

61

62 //create loadbalancer rule for this request

63 LBPolicy [curReq] = {currentServer}

64

65 //create a cache policy for each object

66 foreach cacheKey in objects do

67

68 // Stable TTL if in replication mode else long TTL

69 if repMode then

70 currentServerASPolicy [cacheKey] = STABLE_TTL

71 else if cacheKey not in alreadyAssigned then

72 currentServerASPolicy [cacheKey] = LONG_TTL

73 end

74 end

75

76 // update counters and move to next server

77 objAllocated[currentServer] += # of objects assigned

78

79 totalObjAllocated += # of objects assigned

80

81 reqAllocated[currentServer]++

82

83 currentServer = (currentServer+1) % numServers

84

85 //update reqIdx based on repMode

86 if repMode then

87 //current replication factor

88 repNow = totalObjAllocated/totalCapacity

89

90 //if we have reached effective replication switch mode

91 if repNow >= ER then

92 repMode = false

93 reqIdx++;

94 else if replicated on all servers then

95 reqIdx++ //move to next popular request

96 end

97

98 else //not replication mode

99 reqIdx++ //move to next popular request

100 end

101 else

102 //choose another server as currentServer has max-out

103 currentServer = (currentServer+1) % numServers;

104

105 end

106

107 end //main loop ends

Figure 4.7: Compact assignment strategy

66

4.6 Supplementary Load Balancer Assignment

So far, our assignment algorithms stop when the aggregate cache assignment reaches

a given threshold. We do so to allow other types of request their fair share of cache,

and to handle the unpredictability of the workload. In case of the replication strategy,

the reserved cache space fills up much faster because of redundancy. This can be

problematic as we are not accommodating other popular requests in our policies

which may be queried frequently in the future. The load balancer treats any other

request, for which there exist no rule, as an unpopular request and distributes it

randomly or in round-robin fashion to all application servers. Subsequent requests,

whenever forwarded to servers other than the original one (where corresponding

objects were cached) are served much slowly because of remote fetching, which

increases response time and creates unnecessary overhead on application servers.

To remedy this situation we generate load balancer policies for unassigned but

frequent requests, with no corresponding cache policies. The load balancer will now

send all such requests to a particular server, thus avoiding remote calls. This

supplemental strategy (Figure 5.6) could be added to all our algorithms.

We introduce a new configurable variable LBUrlFreq (line 1) that specifies the

minimum request frequency for which we generate additional load balancer policies.

Setting its value to -1 disables this phase. The unassigned requests in our popular list

having at least the LBUrlFreq frequency are assigned to application servers (line 12-

15). The least request-allocated server is chosen (line 9) to balance out any

unevenness in previous phases. For non-compact strategies we simply stick to round-

robin selection.

67

4.7 Complexity

The complexity of our algorithms is linear and all algorithms run in O(n) where n is the

number of popular requests. In the first two strategies, the Basic Distribution and the

Replication Strategy, the server selection is round robin which takes constant time.

Also, any lookup in algorithm is from a hash map which is constant. The Compact

Assignment Strategy, however, is a tad slower as it has to find the overlap. For S

Algorithm

1 if LbUrlFreq != -1 then

2
3 while reqIdx < # of httpRequest do
4

5 //pick current object
6 curReq = httpRequest[reqInd]

7
8 //chose the least request-allocated server

9 currentServer = getLeastAllocatedServer()

10
11 //only allocate if request frequency is more than LbUrlFreq

12 if frequency of curReq >= LbUrlFreq then

13
14 //create loadbalancer rule for this request
15 LBPolicy [curReq] = currentServer
16

17 //update request allocated counter

18 reqAllocated[currentServer]++

19

20 //move to the next request
21 reqIdx++

22
23 else
24 break;
25 end
26

27 end //while

28
29 end

Figure 4.8: Load Balancer-Only assignment

68

servers and O objects in the current request, this requires S * O hash lookups or

O(S*N). As the number of objects accessed in any given request is usually not large,

and the number of application servers is reasonably small, we contend that the

selection of a candidate server is of acceptable speed. It is also worth noting that we

don’t exhaust our full list of popular request, but only a limited subset.

4.8 Simplified Policy Setup

In some cases we may want to reduce complexity and overhead involved in managing

policies at the application server. There are several scenarios where we can totally

eliminate policy generation for the application server:

 Replication is not required. The basic distribution algorithm distributes

requests in a sticky manner, maximizing local cache hits.

 There is no need for differentiated TTL values. Without application server

policies all objects are stored with SHORT_TTL with equal chance of eviction.

 A different caching implementation is used, which is totally oblivious of policies

and thus a mere simplified load balancer-only strategy suffices.

 The request distribution policies don’t really need a complimentary distributed

cache environment. Even in non-distributed caching environment this would

yield benefits similar to cookie based sticky connection.

69

Also note that if replication is needed, we can’t have an oblivious application server as

our default behavior would not replicate objects retrieved from remote cache. Just

like above, we can have a setup where we only generate caching policies without

caring for request distribution. Possible scenarios could be

 Popular requests are replicated to all servers. Sending such requests to any

server would be served totally by the local server. Here, we keep the

replication threshold high enough so that most popular requests are replicated

leaving no space for the distribution.

 The application servers are running in a virtual environment hosted on the

same physical machine with close to none communication latency. The elastic

server setup in Amazon EC2 [25] is such a configuration. In this case remote

fetch would be nearly as fast as local fetch except for the indirection cost. We

can generate caching policies that would make full use of the aggregate cache

capacity.

70

Chapter 5

5 Experimental Results

5.1 Introduction

This chapter evaluates the request-centric strategies discussed in the last chapter. We

first describe the hardware and software environment used for the experiments. Then

we give a brief overview of the benchmark we used and the implementation details of

our infrastructure. After that we show and compare performance results obtained

from different strategies and test configurations.

5.2 Experimental Test Bed

We conducted our experiments on a cluster of 9 nodes. We used a dedicated machine

for each of our servers, namely, the load balancer, the application servers (from 3 to 5

instances), the database server, the analysis server, and the client. The hardware and

OS specification of all the nodes in our cluster is identical and is shown in Figure 5.1

71

CPU Intel(R) Core(TM)2 CPU 6700 @ 2.66GHz

RAM 8 GB 667MHz memory

Network card Intel 82540EM Gigabit Ethernet Controller

Network switch 3Com Baseline Switch 2948 SFP 1Gbps

Operating System Fedora Linux Distribution

All the nodes are diskless and access the same disk (Seagate Cheetah Ultra320 15K

RPM Hot-Plug Drive) over LAN. We have used JBoss 5.1 as our application server. Each

instance of the JBoss application server runs on its own separate node but accesses

the same disk (where instances are installed). The application servers run on the 64bit

version of Java Development Kit 1.6 (JDK 1.6) and Java Enterprise Edition 1.5 (Java EE

5). We have used PostgresSQL 8.4.1 (64 bit) as our database server.

5.2.1 Implementation Details

The load balancer is behind the application servers and is the only point of access to

the application for the clients. We have used Apache 2.0 web server with the load

balancing module. The default load balancing algorithm is weighted round-robin. Since

the serving capacity of each server is identical we have given each server the same

weight (i.e. 1:1:1 for 3 servers). When the load balancer server receives the policy it

uses the request counting algorithm [26], which works in the following way

 For each application server an lbstatus variable is kept, initialized to 0, for

request counting. The lbstatus of the chosen target server is decreased by

number of servers – 1, while lbstatus of all other servers is increased by 1.

 If there is a rule for the incoming request the load balancer sends the request
to the target server.

72

 If there is no rule for the incoming request, the candidate target server is

chosen with the highest lbstatus. This ensures that the server least requested is

chosen for an unassigned request.

The analysis server runs on a dedicated machine, configured to receive remote logs

from application servers. We have used the remote logging capability of the Log4J

logging library [27], which is very efficient. Log4J creates a persistent TCP connection

between each application server and the analysis server for remote logging.

5.2.2 Benchmarking Suite

To evaluate the performance of our algorithms we have used a RUBiS benchmarking

suite [28]. RUBiS is a prototype implementation of an auction site modeled after Ebay

(ebay.com), and is primarily used to measure application server performance and

scalability. This benchmark is comprised of the following two main components:

RUBiS Application

RUBiS comes with a web application built on the Java Servlet API for request

processing. This application is interactive and just provides basic auction site

functionality without cluttering the UI. Hibernate is used as data access layer, and is

plugged with our enhanced version of EhCache (with distribution and replication

support).

Client Emulator

To test the RUBiS application a benchmarking tool is provided, called Client Emulator.

It is a workload generation tool that emulates several clients’ sessions running

concurrently. We are only concerned with read-only requests, thus we use the

73

browsing mix workload for our experiments. In this workload a typical client session

starts with logging into the site, and then browsing different categories, regions,

items, bids, comments, and user profiles before logging out. The client emulator

parses the response it receives for a client request, finds all links that it can follow to

emulate the next user interaction. The emulated client waits for on average 7 seconds

before issuing another request. This wait time is called Think Time and it is kept to

mimic a human interaction on a website.

5.3 Methodology

We have done several experiments to analyze the performance of our strategies

against the simple cooperative cache and the standalone EhCache models. All our

experiments were run for about an hour using the client emulator for different client

and cache configurations. To get reasonably good approximation of performance

statistics we only present the results obtained during the stable runtime, which

excludes the initial 30% of time spent on cache warm-up and the last 20% of time on

cool down. The workload for our experiment only consists of read-only requests, and

hence the database remains unchanged throughout a run and for subsequent

experiments. The size of our database is about 1 GB while the default size of each

individual application level cache is 60MB.

For fair comparison among different caching systems and our strategies we have kept

the cache and client configuration the same. Our strategies are implemented on top of

cooperative cache. If the application server is running without any cache policy, it

behaves just like the cooperative cache and does not replicate anything. Moreover,

since we have used a singleton cache instance for all entity types in the cooperative

cache (and for strategy runs), we have modified the EhCache to use singleton cache,

too.

74

5.4 Motivation

The purpose of our experiments is to confirm our theoretical reasoning for strategies.

As we have discussed in the last chapters, the cooperative cache reduces backend

database calls but does not yield the optimal response time due to remote cache hits.

Before we move to runtime results it is important to know the factors that affect and

differentiate our algorithms from other basic approaches. First of all, we put emphasis

on cache hit-rate, and in particular the local cache hit-rate. Figure 5.1 illustrates this

point with the latency we obtained for a typical local and remote fetch operation.

Figure 5.1: Comparison of local and remote cache access latency

The difference between a local cache access and a remote one is quite large. In fact,

we can access about 8 objects from the local cache for the time it takes to access one

object from a remote cache. Thus, we have put emphasis on local cache access. It is

worth mentioning that under heavy network usage, the remote call latency would go

up as it is dependent on network IO, while local cache access latency would remain

pretty much constant. Similarly, the database access latency varies much like this.

Under minimal load on the database server, the database latency is comparable to

0

1

2

Local cache-hit Remote cache-hit

La
te

n
cy

 (
m

s)

75

that of a remote cache access. Under heavy load it is much higher. If the database

saturates, the response time could go up to tens of seconds.

5.5 Experimental Results

Our first experiment demonstrates the advantage of a clustered cache against

standalone cache. Figure 5.2 primarily illustrates how the cooperative cache performs

against EhCache on a cluster of 3 nodes with round-robin load balancing for 600 and

900 concurrent clients.

Figure 5.2: Average response time for different caching schemes

It is evident from the figure that clustering application server caches does help greatly

and gives the application an immediate performance boost. For smaller workload of

600 clients, both caching schemes result in less than 15ms response time with

cooperative cache approximately 36% faster. However, for 900 clients’ workload, the

average response time for a non-clustered EhCache is over 1.5sec, while it is under

16ms for the basic cooperative cache which is about 100 times faster. This

1

2

4

8

16

32

64

128

256

512

1024

2048

600 900

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Clients

EhCache

Cooperative Cache

76

performance gain is because of a much bigger application level cache (3 times) for the

cooperative cache because of cache clustering. The application with a standalone

EhCache saturates at this point because of frequent cache misses overloading the

database. The saturation is evident from Figure 5.3 which clearly shows lesser

throughput for EhCache compared to the cooperative cache for 900 clients.

Figure 5.2: Throughput for different caching schemes

5.5.1 General Comparison

We did experiments with different number of clients to see how our strategies

perform under various workloads. Figure 5.3 shows the average response time for

cooperative cache and our different strategies from 900 to 2000 clients. In this

comparison we have the basic distribution strategy with no replication (DistOnly), the

compact assignment strategy with 10% replication (CompactDistRep), and the

compact assignment strategy with no replication, which essentially makes it compact

distribution strategy (CompactDistOnly). In all these strategies, assignment was

capped to half of the cache.

0

20

40

60

80

100

120

140

600 900

Th
ro

u
gh

p
u

t
(r

e
q

/s
e

c)

Clients

EhCache

Cooperative Cache

77

Figure 5.3: Response time of strategies for different clients

The cooperative cache with its round-robin load balancing algorithm performed well

under 1500 clients, after which the average response time shot up. For 1800 clients,

the cooperative cache reached its highest throughput but couldn’t maintain it for 2000

clients where it saturated and response time went over 1.5 seconds. All our three

strategies performed better than the cooperative cache for all loads primarily because

of our content-aware load distribution. These strategies performed seamlessly well

under 1800 clients’ load but couldn’t maintain the same fast response time for 2000

clients when cache evictions increased resulting in increased database activity.

3

6

12

24

48

96

192

384

768

1536

900 1200 1500 1800 2000

av
g.

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

Clients

Cooperative Cache CompactDistRep (10% rep)

DistOnly CompactDistOnly

78

Nonetheless, the response times for all of the strategies remained faster than that of

cooperative cache for 1800 because of higher local cache-hits. The CompactDistRep

did fairly well but always underperformed compared to the other two strategies. This

is because with replication, the total number of popular requests that were being

assigned to application servers was less than non-replication strategies. Consequently,

when replication strategy came close to saturation its response time was about 30%

slower than distribution strategies.

The DistOnly strategy and the CompactDistOnly strategy performed equally well for

smaller number of clients, with average response time less than 16 milliseconds till

1800 clients. For 2000 clients load, the average response time jumped for both these

strategies. In this case, the CompactDistOnly strategy performed 10% better than

DistOnly strategy because the load balancer was able to send requests to a server with

a greater chance of local cache hits. However, we couldn’t see the anticipated

improvement from compact assignment because of the simplistic nature of the RUBiS

web application where not a lot of requests access common objects. But we still do

contend that with applications where there is a greater overlap of resources in

requests the compact assignment would be able to localize requests better.

5.5.2 Compact vs. Round-Robin Assignment

Next we did an experiment to see the benefits of the compact assignment over a naïve

round-robin assignment during policy generation (see Section 4.5 and 4.6 of Chapter

4). Our intent here is to show compactness by way of number of policies generated

with the same configuration. Figure 5.3 shows the number of load balancer rules

generated for each server with round-robin and compact assignment. With round-

robin assignment we reach the cache cap faster than compact assignment and the

algorithm stops further policy generation. This is because the round-robin assignment

79

overlooks already assigned objects and inadvertently replicates them to other servers,

while compact assignment avoids this redundancy resulting in the generation of 4.2%

more rules.

Figure 5.4: Round-Robin vs. Compact Assignment Strategy

Another insightful result of the policy distribution in Figure 5.4 data table is the

uniformity of compact assignment. The number of rules generated for each target

server is very close to each other with the standard deviation of 3.05 rules. This asserts

that compact assignment does a fairly good job at generating even yet compact

distribution. On contrary, the distribution from round-robin is ought to be even

because of its very nature. For 1800 clients, the average response time for compact

and round-robin assignment strategy was 21 and 24 milliseconds, respectively. Clearly,

the compact assignment strategy performed better, with about 12.5% faster response

time than the round-robin assignment. We can attribute this improvement to the 4.2%

0 500 1000 1500 2000 2500 3000

Round-robin

Compact

Round-robin Compact

Rules for AS1 855 895

Rules for AS2 855 889

Rules for AS3 855 891

Rules for AS1

Rules for AS2

Rules for AS3

80

additional rules that compact assignment was able to localize to specific servers

resulting in more local cache-hits.

5.5.3 Cache Capping for Assignment

To measure the behavior of capping the cache for assignment we performed another

experiment by varying the cap. This way, the assignment continued longer and

generated more policies. The Figure 5.5 illustrates the effect of a larger cap on

response time when benchmarked for 2000 clients.

Figure 5.5: Avg. response time variation because of cache capping

The compact assignment algorithm performed better when the cap was changed from

a quarter of the cache to half of the cache, by approximately 40%. This is mainly

because raising the cap generated twice as many policies per server which helped the

load balancer to localize more request to specific servers. Without any cap, we saw a

further improvement of 11% over half cache cap. The response time for the simple

cooperative cache was much higher, and is shown here to compare the effect of

0

200

400

600

800

1000

1200

1400

1600

Cooperative Cache Compact (1/4 cache
cap)

Compact (1/2 cache
cap)

Compact (no cap)

A
vg

. r
e

sp
o

n
se

 t
im

e
 (

m
s)

81

content aware load balancing against round-robin one. Figure 5.6 shows the

proportion of local to remote cache hits for each scenario.

Figure 5.6: Ratio of local to remote cache hits

In the cooperative cache, we got 61% local cache-hit which is not as good as any of our

strategies. When the assignment was restricted to 1/4th of the cache the local cache

hit-rate improved to about 79%. We were able to squeeze out more local cache-hits

when the cap was doubled. In this case, local cache hit-rate got up to 85%. When we

removed the cap altogether the local cache-hit rate got up to 86%, a slight increase

but good enough to give us an 11% improvement in average response time. From

analysis log, we also found out that when the cap was set to half the strategy was able

to generate policies for all requests that were accessed 5 times or more thus removing

the cap resulted in little improvement.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cooperative cache Compact (1/4 cache
cap)

Compact (1/2 cache
cap)

Compact (no cap)

lo
ca

l v
s

re
m

o
te

 h
it

s

Local Hit Remote Hit

82

5.5.4 Scalability

Our next two experiments are geared towards scalability. In the first case, we ran our

experiment on a cluster of 3 application servers and then on 5 application servers with

identical cache and client configuration. As intended, the addition of 2 more nodes to

the application tier gave us smaller response time. Figure 5.5 shows this improvement

in average response time of the cooperative cache and the compact strategy for 1800

and 2000 clients.

Figure 5.7: Avg. response time for 3 and 5 servers

The response time fell for both the cooperative cache and the compact strategy. The

improvement is appreciable in case of cooperative cache, where response time

dropped by 93% and 97% for 1800 and 2000 clients, respectively. This plunge in

response time is because of the increase in aggregate cache capacity with the addition

of 2 nodes resulting in higher hit-rate and fewer evictions. And because of higher hit-

ratio the database was accessed less frequently in 5 servers than 3 servers, bumping

up the throughput by nearly 8% in case of 2000 clients. We also witnessed good

1

2

4

8

16

32

64

128

256

512

1024

2048

Cooperative Compact Cooperative Compact

av
g.

 r
e

sp
o

n
se

 t
im

e
(m

s)

3 Servers

5 Servers

1800 Clients 2000 Clients

83

improvement for our strategy, where response time for 5 servers was 96% faster than

that of 3 servers, and about 54% faster than that of cooperative cache for 5 servers,

for 2000 clients. The result clearly demonstrates scalability when cluster size was

increased and also shows that strategy performed better than cooperative cache

because of more local cache hits.

Since the addition of nodes essentially increased the aggregate cache size, we

performed another experiment by keeping the cluster size to 3 nodes and increasing

the cache size. We chose the basic distribution strategy for this one and ran

experiments for 2000 clients with 60MB and 110MB caches and 1/4th cache cap.

Figure 5.8 shows the average response time for the mentioned configuration. We

observed an improvement of 84% in case of the cooperative cache and about 94% in

case of our distribution strategy. We can clearly see that increasing the cache capacity

has a direct impact on the response time for both the cases. The cache statistics also

showed an increase of 27% in the local cache hit-rate and a decrease of 15% in remote

cache hit-rate for our distribution strategy which asserts that most of the request

were satisfied from the cache and particularly, the local cache.

Figure 5.8: Effect of cache capacity on response time

1

2

4

8

16

32

64

128

256

512

1024

2048

Cooperative Cache Distribution Strategy

av
g.

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

60MB Cache

110MB Cache

84

5.5.5 Replication

In Section 5.5.1 we found that Replication strategy didn’t perform that well compared

to distribution strategies because the application servers never got saturated as RUBiS

application has a very simple business logic. Therefore, we modified the RUBiS

application to perform some CPU intensive task. For this, we introduced a non

functional CPU task in BrowseCategories request to emulate complex business logic.

We also modified the workload so that this request was accessed more often making it

a popular request suitable for replication. Figure 5.9 shows the improvement when

popular requests were replicated, for 2000 clients with the modified workload. It is

evident that distributing a popular resource-hungry request to just one server

performs worse than replicating it on multiple servers. The total average response

time in the case of replication was 3 times faster than that of Distribution-Only

strategy.

Figure 5.9: Popular replicated strategy against distribution only strategy

0

20

40

60

80

100

120

140

Distribution Only Popular Replicated + Dist

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Avg. Response Time BrowseCategories Avg. Response Time

85

In the case of only distribution, the BrowseCategories request got assigned to

application server 1 while in the case of replication, it was assigned to all three

application servers (with corresponding objects replicated). The Distribution-Only

strategy resulted in saturation of application server 1, whose CPU became the

bottleneck, shooting up the average response time to 117 milliseconds for the

BrowseCategories request. Also in this case, other application servers were

underutilized. On contrary, when BrowseCategories requests were served by multiple

servers, none of the application servers got saturated resulting in a much faster

response time of 37 milliseconds. Hence, we argue that it is much better strategy to

replicate resource intensive popular requests to avoid imbalance in cluster

performance and utilization.

5.5.6 Total Database Cacheability

Sometimes the database is not big and there is enough aggregate cache capacity to

permanently store almost 100% of the database into the cache. For such a scenario,

we evaluate the performance of our strategy against the naïve cooperative cache. We

chose a smaller database that could be completely cached in approximately 105 MB of

aggregate cache (about 35MB per application server). Figure 5.10 shows the average

response for cooperative cache and compact strategy for different workloads.

Figure 5.10: Strategy vs. Cooperative Cache on smaller database

1

4

16

64

256

1024

4096

2000 2500 3000

A
vg

. R
e

sp
o

n
se

 T
im

e
 (

m
s)

Clients

Cooperative Cache

Compact Strategy

86

After the cache warm up the requests were mostly served from the cache, either local

or remote. In case of the cooperative cache, we observed an even hit-rate for local

and remote caches, while for the compact strategy the local hit-rate was more than 9

times the remote hit-rate, which explains why the compact strategy always trumped

the cooperative cache. For 2000 and 2500 client workloads, the compact strategy

resulted in an 82% and 89% faster response time, respectively. Nonetheless, the

cooperative cache was able to gracefully handle workload of 2500 concurrent clients

with the throughput of about 350 requests per second, nearly equal to that of the

compact strategy. The cooperative strategy saturated at 3000 clients while our

strategy was still able to handle this workload, which clearly underscores the

importance of local cache-hits. Since database access is almost none, the saturation of

the cooperative cache for 3000 concurrent clients is attributed to overwhelming

increase in remote cache accesses adversely affecting the network latency per remote

call. At this point the throughput fell by 15% for the cooperative cache while it jumped

to about 427 requests per seconds for our strategy, indicating that content-aware

request distribution is essential for achieving high throughputs.

87

Chapter 6

6 Conclusions and Future Work

6.1 Conclusions

Performance and scalability of multi-tier internet applications have been an active

research area as these applications are frequently overwhelmed by an ever increasing

user base. Since most of the requests are dynamic in nature and require frequent

access to the database, the throughput of a multi-tier application starts to suffer as

database becomes the bottleneck. In this thesis, we address these concerns with a

holistic caching infrastructure that seeks to improve application performance and

enables scalability.

We reduce the bottleneck on the database server by exploiting a distributed cluster-

wide application cache, having aggregate capacity much larger than the individual

cache, where objects are retrieved from the remote application server cache if they

are not found locally. In this thesis we added the support for object replication to this

distributed cache, so that popular objects could be accessed from multiple servers

88

enabling better cluster utilization in case of frequent popular requests. On top of it, we

built an application monitoring tool that transparently logs request and cache statistics

on a remote analysis server. These logs are processed and analyzed at the analysis

server which then generates request distribution policies for the load balancer and

caching policies for the application servers. These policies are intended to reduce

latency involved in remote cache access by mapping requests to servers in such a way

that maximizes local cache-hits. On one hand our monitoring and analysis framework

is application-unaware and requires no changes in the application, while on the other

it generates content-aware policies for better performance.

In this thesis we focused on request-centric analysis, where we identify popular

requests and assign them to specific application server. Our first algorithm, the basic

distribution algorithm, assigns popular requests to servers in a round-robin fashion.

Next we develop a replication and distribution strategy where the most popular

requests are assigned to multiple servers while the others are distributed. Finally, we

build a compact assignment strategy where a request is assigned to a server

containing the maximum number of associated objects, thereby avoiding unintended

object replication occurring with round-robin assignment. All our strategies are

extensible and can be easily configured for optimal policies.

We analyzed the benefits of our strategies with the RUBiS benchmark. All our

strategies were able to improve application performance under various workloads

when compared to the base cooperative cache environment. The application was also

able to scale much better under peak workload when policies were applied and

yielded a better throughput and response time than the cooperative cache.

89

6.2 Future Work

The holistic caching infrastructure is very extensible and amenable for a wide range of

analysis. For example, one could make use of the request tracing ability of our system

to identify user session activity from application access patterns for usability and

security analysis.

The analysis could also incorporate other parameters that we log such as average

request processing time to filter out requests which are executed faster while

prioritizing bottleneck requests during policy generation phase.

In this thesis we have focused on read-only workloads and have not looked at

consistency issues involved with object replication in a read-write workload. We

believe that consistency mechanisms could be enforced in our caching infrastructure

by cache invalidation or update propagation to other caches.

90

Bibliography

[1] Historic Election Day Sets Traffic Records. [Online].
http://newteevee.com/2008/11/05/historic-election-day-sets-traffic-
records/

[2] Ian Evans. (2011) An Introduction to the Java EE Platform. [Online].
http://download.oracle.com/javaee/6/firstcup/doc/

[3] Enterprise JavaBeans Technology. [Online].
http://www.oracle.com/technetwork/java/javaee/ejb/index.html

[4] Ed Ort Rahul Biswas. (2006) The Java Persistence API. [Online].
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html

[5] Hibernate. [Online]. http://www.hibernate.org/

[6] Neeraj Santosh Tickoo, "Cache aware load balancing for scaling of Multi-Tier
Architectures," McGill University, Montreal, QC, MSc. Thesis 2011.

[7] Caching Guide. [Online]. http://httpd.apache.org/docs/2.2/caching.html

[8] Oracle. query result cache in oracle 11g. [Online]. http://www.oracle-
developer.net/display.php?id=503

[9] MySQL. The MySQL Query Cache. [Online].
http://dev.mysql.com/doc/refman/5.1/en/query-cache.html

[10] EhCache. [Online]. http://ehcache.org/

[11] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and
Asser Tantawi, "An analytical model for multi-tier internet services and its
applications," in Proceedings of the 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, New York, NY,
USA, 2005, pp. 291-302.

[12] Bhuvan and Pacifici, Giovanni and Shenoy, Prashant and Spreitzer, Mike and

http://newteevee.com/2008/11/05/historic-election-day-sets-traffic-records/
http://newteevee.com/2008/11/05/historic-election-day-sets-traffic-records/
http://download.oracle.com/javaee/6/firstcup/doc/
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.hibernate.org/
http://httpd.apache.org/docs/2.2/caching.html
http://www.oracle-developer.net/display.php?id=503
http://www.oracle-developer.net/display.php?id=503
http://dev.mysql.com/doc/refman/5.1/en/query-cache.html
http://ehcache.org/

91

Tantawi, Asser Urgaonkar, "Analytic modeling of multitier Internet
applications," ACM Trans. Web, vol. 1, no. 1, May 2007.

[13] Ludmila Cherkasova, Ningfang Mi, Evgenia Smirni Qi Zhang, "A regression-
based analytic model for capacity planning of multi-tier applications," Cluster
Computing, pp. 197-211, 2008.

[14] Xue Liu, Jin Heo, and Lui Sha, "Modeling 3-Tiered Web Services," Computer
Science Research and Tech Reports, 2005.

[15] Guillaume Pierre, Maarten van Steen, Gustavo Alonso Swaminathan
Sivasubramanian, "Analysis of caching and replication strategies for web
applications," IEEE Internet Computing, pp. 60-66, 2007.

[16] Brad Fitzpatrick, "Distributed caching with memcached," , Seattle, WA, USA,
2004.

[17] Terracotta. Distributed Caching With Terracotta. [Online].
http://ehcache.org/documentation/distributed_caching_with_terracotta.html

[18] Shamir Sultan Ali, "Contquer: An optimized distributed cooperative query
caching architecture," McGill University, Montreal, QC, MSc. Thesis 2011.

[19] Vivek S. and Aron, Mohit and Banga, Gaurov and Svendsen, Michael and
Druschel, Peter and Zwaenepoel, Willy and Nahum, Erich Pai, "Locality-aware
request distribution in cluster-based network servers," in Proceedings of the
eighth international conference on Architectural support for programming
languages and operating systems, San Jose, CA, 1998, pp. 205-216.

[20] Sameh and Dropsho, Steven and Zwaenepoel, Willy Elnikety, "Tashkent+:
memory-aware load balancing and update filtering in replicated databases,"
in Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, Lisbon, Portugal, 2007, pp. 399-412.

[21] Alexander Rasmussen, Emre Kiciman, Benjamin Livshits, and Madanlal
Musuvathi, "Improving the responsiveness of internet services with
automatic cache placement," in Proceedings of the 4th ACM European
conference on Computer systems, New York, NY, USA, 2009, pp. 27-32.

[22] Emre and Livshits, Benjamin and Musuvathi, Madanlal Kiciman, "FLUXO: A
Simple Service Compiler," in Proceedings of the 12th conference on Hot topics
in operating systems, Berkeley, CA, USA, 2009, pp. 20-20.

[23] Sanket Joshipura, "Object Based Caching and Load Balancing Strategies for

http://ehcache.org/documentation/distributed_caching_with_terracotta.html

92

Multi-Tier Architectures," McGill University, Montreal, QC, MSc. Thesis 2011.

[24] Interceptor Pattern - Wikipedia. [Online].
http://en.wikipedia.org/wiki/Interceptor_pattern

[25] Amazon Elastic Compute Cloud. [Online]. http://aws.amazon.com/ec2/

[26] Apache Module mod_proxy_balancer. [Online].
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

[27] Log4J Services. [Online]. http://logging.apache.org/log4j/1.2/

[28] RUBiS. [Online]. http://rubis.ow2.org/

http://en.wikipedia.org/wiki/Interceptor_pattern
http://aws.amazon.com/ec2/
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://logging.apache.org/log4j/1.2/
http://rubis.ow2.org/

