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 Abstract  

 

Current business applications use a multi-tier architecture where business processing 

is done in a cluster of application servers, all querying a single shared database server 

making it a performance bottleneck. A prevalent solution to reduce the load on the 

database is to cache database results in the application servers as business entities. 

Since each of the in-memory application cache is small and independent of each other, 

a naïve load balancing algorithm like round-robin would result in cache redundancy 

and lead to cache evictions. By clustering these caches, we get a distributed cache 

with a larger aggregate capacity, where an object is retrieved from the remote cache if 

it is not found in local cache. This approach eliminates redundancy and reduces load 

on the database by a great extent. However, accessing remote objects incurs network 

latency affecting response time. 

 

In this thesis, we transform the distributed cache into a hybrid one that supports 

replication so that popular requests could be served locally by multiple application 

servers. We take advantage of this hybrid cache by developing a holistic caching 

infrastructure. This infrastructure is comprised of an application monitoring tool and 

an analysis framework that work continuously alongside live application to generate 

content-aware request distribution and caching policies. The policies are generated by 

request-centric strategies that aim to localize popular requests to specific servers in 

order to reduce remote calls. These strategies are flexible and can be adapted easily 

for various workloads and application needs. Experimental results show that we 

indeed derive substantial gain in performance using our infrastructure. Our strategies 

resulted in faster response time under normal workload and scaled much better with 

higher throughput than existing approaches under peak workload. 
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Résumé 

 

Les applications commerciales courantes utilisent une architecture multi-tiers où le 

traitement logique est effectué en un groupe de serveurs qui accèdent à une seule 

base de données partagée, ce qui la rend un point d'encombrement. Une solution 

répandue qui réduit la charge sur la base de données est la sauvegarde des résultats 

de requetes à la base de données au niveau des serveurs d'applications comme des 

entitiés logiques. Tandis que chaque cache local de chaque serveur est limité et est 

indépendant des autres, un algorithme naïve de balancement de la charge, comme 

round-robin, résultera en des duplications de copies dans les différents caches et 

mènera à des explusions de ceux-ci. En regroupant ces caches, nous formons un seul 

cache distribué avec une large capacité, où un objet est extrait à partir d'un cache 

distant s'il n'est pas trouvé localement. Cet approche élimine la redondance et réduit 

considérablement la charge sur la base de données. Cependant, accéder à des objets 

distants encours une latence au niveau du réseau ce qui affecte les temps de 

réponses. 

 

Dans cette thèse, nous transformons le cache distribué en un cache hybride qui 

supporte la duplication ce qui permet de servir les requêttes les plus populaires 

localement par plusieurs serveurs d'applications. Nous prenons avantage de cette 

structure hybride du cache en developpant une infrastructure holistique du cache. 

Cette infrastrcuture comprend un outil de surveillance et une infrastructure d'analyse 

qui fonctionne d'une façon continue et parallèle avec l'application afin de générer un 

contenu qui prend en considération la distribution de requêtes et les politiques du 

cache. Les politiques sont générées par des stratégies orientées requêtes qui visent à 

localizer les requêtes populaires à des serveurs spécifiques et ce pour réduire les 

appels distants. Ces stratégies sont flexibles et peuvent être ajustées facilement pour 
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different charges de travail et besoins d'applications. Des résultats expérimentaux 

montrent qu'effectivement nous dérivons un gain substantial en utilisant notre 

infrastructure. Nos stratégies ont resulté en des temps de réponses rapides sous une 

charge de travail normale et donnent des bons résultats lors d'un débit élevé 

comparativemnt à d'autres approches sous des charges de travail de pointe. 
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Chapter 1 

1 Introduction 

 

Internet applications have seen a tremendous growth in the last decade, and have 

become overly complex. E-commerce applications such Amazon and EBay have all 

faced common challenges like performance, reliability and scalability as the user base 

grew. To overcome some of these challenges internet applications are be broken 

down into multiple tiers, mainly consisting of the client tier, the application tier and 

the data tier. Each tier interacts with the next tier in line and sends result back to its 

previous tier, which makes application more flexible and manageable. However, a 

multi-tier architecture is not always robust and scalable to an unpredictable workload. 

Some of the concerns of today’s internet applications are to be up and running 24/7 

serving millions of customers and managing terabytes of data. For example, CNN on 

Election Day had a record 276 million page views and 27 million unique visitors [1]. 

Thus, it is clear that manual optimization of internet application is not easy. 

 

To cater to increasing web traffic administrators can either update existing hardware 

components or add another server to share load. The later approach, commonly 

known as clustering, is becoming a norm, where a load balancer distributes the load 

(requests) to multiple servers. Usually, the application tier is clustered using 
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commodity machines while the data tier is not as data consistency is more complex. 

The data driven applications tend to query the database more frequently. This creates 

a bottleneck at the database server, and adversely impacts application throughput. 

Increasing cluster size cannot solve this problem because application scalability is 

curtailed by an overloaded database.  

 

To reduce the load on the database server, the application server caches database 

results in memory so that subsequent requests for the same data can be served 

quickly from the cache saving trips to the database. This works out for smaller and 

consistent workloads but if the workload is big and is accessing a large data set the 

cache fills up quickly. This problem is more imminent when the load balancer sends 

requests to the servers in a round-robin way causing each application server cache to 

have nearly the same popular objects. Once the cache is full, requests which cannot be 

served from the cache, have to go to the database, and then are stored in cache 

causing evictions of previously stored objects. This poor utilization of valuable memory 

for a standalone cache got the research community thinking and led to the emergence 

of a distributed cache, where objects are transparently stored and retrieved from local 

or remote caches. Hence, the aggregate capacity of a distributed cache grows as 

nodes are added to the cluster. This solution also eliminates redundancy in caches. 

 

Distributed caching allows applications to scale easily but does not always result in 

optimal performance. This is mainly due to the latency involved in retrieving objects 

from remote cache. In this thesis, we propose a solution that can reduce remote calls 

greatly. Adhering to the principles of separation of concerns our solution is designed to 

be highly decoupled and independent of the particular web application. We have 

developed a caching infrastructure that transparently monitors the application, 

performs periodic analysis and generates content-aware load distribution and caching 

policies with the intent to maximize the local cache hit-rate. When the load balancer is 
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equipped with our rule-based distribution algorithm, it chooses the server that can 

serve the request mostly if not entirely from the local cache. 

 

Another important concern that we deal with in this thesis is distribution of popular 

content.  News and e-commerce websites often receive more requests for some 

content than others. Thus, we prioritize requests on their access frequency and 

generate policies for the most frequent ones. Assigning a popular request to a specific 

server can create imbalance in load distribution where a server that caters to popular 

request gets saturated while others are underutilized. We alleviate this imbalance by 

adding replication support to our caching infrastructure so that popular objects are 

accessible from multiple servers. The top most popular requests can now be assigned 

to multiple servers for better load distribution. 

 

 

1.1 Contribution 

 

The noteworthy contributions of this thesis are: 

 

 We design and implement a flexible infrastructure that transparently logs 

application and cache accesses to a remote server for processing and analysis. 

 

 Leveraging the analysis framework, we design and implement of a set of 

request-centric strategies that find popular requests and assigns them to 

specific servers to maximize local cache hit-rate. 

 

 We provide an extensive evaluation of our strategies and comparison with 

other caching schemes. 



 

4 

 

1.2 Thesis Outline 

 

The rest of the thesis is organized into the following chapters: 

 In Chapter 2, we provide the background information related to our research, 

specifically on multi-tier architectures and caching. We also discuss some 

related work that has been an inspiration towards this research. 

 Chapter 3 deals with the infrastructure of our monitoring and analysis 

framework. 

 In Chapter 4, we present the essential strategies that consume processed logs 

to produce content-aware policies for the application. 

 In Chapter 5, we demonstrate the effectiveness of our infrastructure and 

strategies using a popular benchmark. 

 We finally draw conclusions in Chapter 6 and propose future enhancements to 

the framework. 
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Chapter 2 

2 Background and Related Work 

 

2.1 Introduction 

 

In this chapter we give an overview of related technologies, architectures and 

frameworks upon which our thesis is based on. We start by explaining the architecture 

of web applications, and then we explore how to scale and improve performance of 

these applications using clustering, load balancing and caching. Lastly, we discuss 

distributed caching and other related work that are closely related to our research. 

 

2.2 Web Application Architectures 

 

A web application (aka Internet Application) is an application that runs on a web 

server and is accessed through a web browser (such as Internet Explorer or Firefox) 

over the Internet. In contrast, a desktop application is a self-contained program that 

runs in one’s own computer and does not require Internet connection. The key 

difference here is the machine where the core business logic is executed. Desktop 

applications have to be installed on local hard drives before they can be run where as 

web applications are merely accessed by typing the application URL (like 

www.example.com/do/this/). Figure 2.1 illustrates this difference. 
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During the 1990s most of the enterprise applications were built as desktop 

applications but since 2000 companies are moving towards web applications even for 

private applications because of the following advantages. 

 Web applications enable multi-tenancy (i.e. a single application is accessed by 

users all over the world). 

 The user requires only a thin client like a browser to access a web application; 

so even an outdated machine or a low-end device can access them. 

 Any upgrades to web applications are transparent to the end user. The user 

simply sees new functionality as it becomes available. 

 

These advantages come with certain challenges for the application provider.  

Architecting a web application is not as easy as a desktop application because it 

follows the request-response model as opposed to an event-based model of a desktop 

application. When a user enters a URI the request goes to the web server, where it is 

processed, and results are shown back to the user as response. This approach, which is 

commonly known as the client/server model, starts as a 2-tier architecture but can 

extend up to multiple tiers. 

 

Desktop Application Client – Server Application 

Figure 2.1: Shift from desktop to client-server application 
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2.2.1 3-Tier Architecture 

 

To enable multi-user tenancy on the Internet, web applications need to recognise each 

user and provide services based on his preferences, personal information and the 

request itself. For this, a web server maintains a web session for each user keyed 

through a unique session id. This session id is then passed along in each subsequent 

request/response pair for identification. The session itself may store data such as 

shopping cart items. Moreover, applications also need to store and retrieve data from 

a data store such as a relational database. Just the way a client makes calls to a web 

server, the web server makes calls to the database. Our simple 2-tier now becomes a 

widely popular 3-tier architecture illustrated in Figure 2.2. 

 

 

The client tier remains intact, but we split the server tier into an application tier and 

data tier. These tiers can be described as follows 

 Client Tier: The client tier comprises all remote clients having access to the 

web tier over the internet. This is not just limited to web browsers, but any 

application, deployed in any form factor such as PDA or smart phones that is 

able to send requests to the web tier using the HTTP protocol is considered a 

client or more specifically, a web client. In today’s service oriented web 

environment, Internet protocols have evolved and are not restricted to basic 

Client Tier Application Tier Data Tier 

Figure 2.2: 3-Tier architecture 
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HTTP for communication. Protocols such as SOAP (Simple Object Access 

Protocol), REST (Representational State Transfer), RSS (Really Simple 

Syndication) and RPC (Remote Procedural Calls) have extended the capabilities 

of web communication, and thus, web clients have become richer in the way 

they consume and represent information to the user. 

 

 Application Tier: The application tier (aka business tier) processes the client’s 

request and then responds to it over the same communication channel 

established by the client. Conceptually, it contains a web server that processes 

http requests. To the application tier, each request is considered unique. Thus, 

as discussed earlier, modern web servers provides cookie and session 

management features to recognize clients. This tier executes business logic on 

the request and composes a response (sometimes specifically tailored for each 

client’s display capabilities and protocol involved). Request to static resources 

such as images and binary files are served without any business processing. 

Requests that do require processing are considered dynamic requests. Usually, 

the web application contacts the data tier to retrieve request pertinent 

information. 

 

 Data Tier: The web application stores user specific or business specific data in 

the data tier. Most commonly a relational database management system 

(RDBMS) is used to store and retrieve information from the database – the 

persistent storage component of a data tier. XML, native files, persistent maps 

and registries could also be used for the data tier. The data tier also exposes 

high level APIs (or low level driver interfaces) to the web application. For 

example, ODBC (Open database connectivity) and JDBC (Java database 

connectivity) are APIs to communicate with the relational database using the 

SQL query language. 
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2.2.2 N-Tier Architecture 

 

The 3-tier architecture presented above was fundamentally constructed to reduce the 

complexity of Business-to-Consumer (aka B2C) applications. Here, the consumer is the 

client and the business corresponds to the web application and its data. Soon the need 

for a Business-to-Business (B2B) application appeared, involving service level 

agreements (SLA) and demanding complex interactions between businesses, not 

sufficiently addressable by a B2C system. These requirements and more paved the 

way for web-services which eventually evolved into a Service Oriented Architecture 

(SOA). In SOA, requests from clients (users or applications) are directed to web-

services that will verify the client’s credentials before accessing enterprise data. The 

B2B systems that catered to other businesses as well as general consumer popularly 

became known as Enterprise Information Systems. 

 

Technically, the architecture of an Enterprise Information System is very complex and 

varies for each enterprise, but conceptually it simply extends the 3-tier architecture 

into n-tier architecture by: 

 Separating the application tier into web tier and business tier. The web tier 

interacts with the client, maintains user’s sessions, and dynamically generates 

content from the results processed by the business tier. The business tier 

comprises several business components to do business processing on given 

inputs. It is oblivious of the web environment and therefore, provides flexibility 

for other systems to connect to it. 

  

 Incorporating legacy systems, databases, ERP systems into an Enterprise 

Information tier. These data sources are accessed by specialized components in 

the business tier. 
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Several venders now offer enterprise frameworks that are typically modelled after 

such n-tier architectures. One of the popular frameworks is Java Enterprise Edition 

(JEE) [2], whose specification provides APIs (and reference implementations) of 

various components to rapidly build enterprise applications. Figure 2.3 illustrates the 

Java EE n-tier architecture which adheres to this approach. 

 

 

 

The web tier and the business tier form the application server and are typically run on 

the same Java virtual machine (JVM). In Java EE parlance, an application server 

provides managed environments for different components through specific 

containers. The container is responsible for a component's lifecycle (from instantiation 

to destruction), request delegation, cross component interaction, and other things. 

For example, the web container is the interface between web components (Servlets, 

JSPs) and the web server. An EJB container manages enterprise java beans (EJB) [3], 

which provide the business logic. The EJB container makes it easier for enterprise 

Client Tier Web Tier Business Tier EIS Tier 

Figure 2.3: Java EE n-tier architecture 

Application Server 
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beans to handle cross-cutting concerns such as persistence, transactional integrity, 

and security – the discussion of which is beyond the scope of this thesis. 

 

Since web tier and business tier are part of the application server some architects 

consider this separation as a Multi Layer Architecture. In this approach they view an 

application as separate layers of functionality performing a dedicated task in request 

processing. The typical layers in an application are: 

 

 Presentation Layer: This layer simply corresponds to the web tier in our n-tier 

architecture, and is responsible for content generation. 

 

 Business Logic Layer (BLL): It contains an application’s core business logic, and 

it exposes services for B2B interactions. It includes Session EJBs which 

encapsulates business logic, web services for interfacing, and other utility 

modules. 

 

 Domain Layer: It represents the business data model and therefore it is 

sometimes called the model layer. For example, a customer, account, and 

customer-account objects are part of the domain model of a financial 

application.  The business logic layer performs its operations on the data in the 

domain layer. 

 

 Data Access Layer: This layer provides connectivity to data residing in the 

Enterprise Information System (EIS Tier). It also conceals boilerplate code such 

as connection management, transaction management, and caching from the 

business layer. Hibernate, TopLink, and Java Persistence API (JPA) are examples 

of the data access layer. These frameworks provide a high level view of 

business data and are described in the next section. 
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2.3 Object Relation Mapping 

 

As we have discussed before, the database is an integral part of a data driven 

application. The database provides mechanisms to create, read, update and delete 

(CRUD) data which is stored in a database table. A table is a collection of records 

where each record is represented by a row in the table. Each row has a fixed number 

of attributes addressable by their column names. A record in a table is identified by a 

unique key, called primary key. Relational databases go a step forward and allow 

database designers to specify relationship between data elements using key 

constraints. A primary key in one table becomes the foreign key in another table to 

establish a relationship between two tables. For example, the tables in Figure 2.4 

illustrate the relationship between Categories and Items in an e-commerce store. 

 

Categories 

id name 

1 Sports 

2 Electronics 
 

Items 

id category_id name 

1 1 Football 

2 1 Basketball 

3 2 IPod 
 

Figure 2.4:  Database tables showing primary-foreign key relationship 

 

The Category id appears in the Items table as foreign key category_id. It essentially 

captures a business relation that an item has an associated category. The application 

can now retrieve items in a given category using an SQL query like 

 

select * from Items where category_id = 1 
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The database vendor provides programmers with an API to perform CRUD operations 

using SQL statements. The business logic then has to extract each row from the result 

set, map each column into an appropriate data type, perform the operation, and 

perhaps execute several other queries to complete a business transaction. This leads 

to bloated application code, where simple business logic gets convoluted in chunks of 

database operations. More importantly, the application is not able to visualize the 

business operation as an interaction between business entities.  

 

As most of the web applications are designed and implemented using object oriented 

languages (and architectures), there seemed great disparity between the relational 

view of data and the object-oriented view of business entities. To overcome this 

problem, Object Relational Mapping was introduced, which essentially translates 

(maps) relational data into real world business entities. Thus, an application can now 

concentrate more on domain models and their interaction using object-oriented 

language features. The domain layer now reflects database tables, and business layer 

can easily manipulate models without caring for intricate low level details. 

 

The ORM transformations are done in the following way: 

 

 For each table in the database an associated Entity Class is created. 

 

 The columns in the table becomes the instance variable of the entity class. 

These variables are generally kept private and are accessed/modified using 

GET/SET methods. The data types of variables are language specific native or 

object types (Integer, Double, String, Date), and are type compatible with 

database data types. Usually, the length constraints of VARCHAR data types are 

ignored and enforced by validation rules. 

 



 

14 

1                     n 

 The primary key variable is explicitly identified. The foreign key variable is 

actually the reference of the entity class in case of one-to-one relationship, or a 

set of entity classes in case of one-to-many relationship. The inverse 

relationship is also created. 

 

The UML class diagram in Figure 2.5 depicts how the Categories and Item tables in 

Figure 2.4 are mapped to business entities. 

 

Category 

Id : Integer 

Name : String  

Items : Set<Items> 

getId() : Integer 

setId(value:Integer) : Void 

getName() : String 

setName(value:String) : Void 

getItems():Set<Items> 

setItems(value:Set<Items>) : Void 

 

Item 

Id : Integer 

Name : String  

Category : Category 

getId() : Integer 

setId(value:Integer) : Void 

getName() : String 

setName(value:String) : Void 

getCategory():Category 

setCategory(value:Category) : Void 

 

 

Figure 2.5:   Entities class diagram 

 

As you can see the Category class now has a reference to Items even though the 

Categories table does not. This is a really powerful feature which explicitly creates 

strong relationships, making it easier to access associated entities and children. Now 

we can access all items for a particular category using simple method calls: 

 

  

 

Category category = Session.load(Category.class, 1); 

Set<Items> items  = category.getItems();  
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The ORM framework does the heavy lifting of generating SQL queries when needed. 

Each ORM framework comes with a set of tools that allows programmers to generate 

Entity Classes from database tables. It also generates associations based on SQL 

schemas. The metadata for the object-relation mapping can be specified in XML files 

or embedded right into Java classes using Java Annotations.  

 

There are two widely used ORM frameworks in Java EE, namely the Java Persistence 

API (JPA) [4] and Hibernate [5]. JPA itself is a persistence framework that specifies how 

entity classes are stored and retrieved from the database. JPA 1.0 offers the Java 

Persistence Query Language (JPQL), which resembles SQL but operates on entities 

rather than database tables. JPA 2.0 also supports type safe Criteria Query which is an 

object oriented query language that avoids incorrect query construction. JPA comes 

with a reference implementation of TopLink Essentials. Hibernate, on the other hand, 

has its own framework and query language - Hibernate Query Language (HQL) and 

Criteria Query. As of version 3.2 it also provides an implementation for JPA. 

 

ORM frameworks also optimize database accesses. For example, when reading an 

entity Hibernate avoids fetching its associated entities unless explicitly accessed by the 

program. Hibernate also keeps track of changes made to an entity so that only 

modified entities are persisted to the database. Many ORM frameworks maintain a 

pool of active database connections to avoid connection setup latency for each 

database access. Moreover, these frameworks provide extensive support for entity 

caching which is discussed in Section 2.5. 

 

The downsides of ORM frameworks are: slightly slower performance due to query 

translation and a little bit more memory requirement. Nonetheless, the advantages 

and optimizations provided by these frameworks far outweigh minor drawbacks. 
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2.4 Performance and Scalability 

 

Performance of a system is a subjective matter and cannot simply be put in numbers 

without taking into account user expectations. A system that is responding 

unnoticeably faster compared to the one responding slightly slower may be 

considered performing equally well by the user. Thus, a system that meets user 

expectation is deemed well performing. System performance plays a key role in terms 

of web applications. There are several interrelated metrics that can define application 

performance such as: 

 

 Response Time: How quickly an application responds to requests. Request 

time could be measured at each component level or from the beginning of the 

request to the completion of the response. Generally the faster the better. 

 

 Latency: Latency affects the response time and is considered an undesirable 

feature of any hardware or software component. Some hardware components, 

such as network switches, have a predetermined latency which cannot be 

avoided. Software components however, can be optimized to minimize 

latency. 

 

 Throughput: Throughput denotes the number of successful events achieved 

per unit of time. For example, the throughput of a network switch is the 

number of packets successfully routed per second, and the throughput of a 

web application is the number of requests successfully served per second. 

Throughput is often measured under peak load to achieve an upper bound 

value, what is called Maximum Throughput. 
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The ideal system would like to maximize throughput, and minimize latency and 

response time. Under stressful conditions (peak load), throughput could degrade and 

affect response time as component latency is increased. Usually throughput is limited 

by what we call the Bottleneck. Wikipedia defines bottleneck as 

 

“Bottleneck is a phenomenon by which the performance or capacity of an 

entire system is severely limited by a single component. Formally, a bottleneck 

lies on a system's critical path and provides the lowest throughput. As such, 

system designers will try to avoid bottlenecks and direct effort towards 

locating and tuning existing bottlenecks. Some examples of possible 

engineering bottlenecks are: processor, a communication link, a data 

processing software, etc” 

 

Once a bottleneck is reached the system reaches a saturation point where 

performance can no longer be improved with the existing software and hardware 

configuration. With the widespread use of the Internet in the 21st century, web 

applications have encountered serious problems with regard to ever increasing web 

traffic. The applications that were designed to serve 500 requests per seconds started 

to choke or even fail (e.g. Denial of Service attacks) when the number of request goes 

beyond its serving capacity. Applications in such situation could discard additional 

requests - a case of unavailability - to maintain response time and throughput, or 

suffer performance issues. In either case, the system has failed to scale properly. 

 

One approach to scale an existing system is to increase system resources, especially 

the ones being bottlenecked. This approach is called Vertical Scaling, as it involves 

scaling up of resource capacities at a single node (such as application server). This 

solution is very simple and only requires investment in high performing high capacity 

hardware such as additional RAM modules, hard disks, network switches. An 
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application can also achieve better performance using multi-core processors. The 

advantage of vertical scaling is that it does not require changes in application and 

system architecture. Moreover in virtual box environments it allows proper provision 

of resources, such as dedicating a processor core per virtual operating system. 

However, high-end hardware is expensive and failure of any hardware component 

leaves the system unavailable.  

 

2.4.1  Clustering 

 

The single point of failure and other drawbacks of vertical scaling have lead to a fault-

tolerant, highly available and scalable scheme known as Horizontal Scaling. In this 

approach, more nodes are added to a particular tier to scale it out horizontally, 

forming a cluster. As computer prices have dropped, it is very inexpensive to create 

large clusters by adding cheap commodity machines. In case of web applications, more 

nodes could be added to the application tier or the data tier or both. Figure 2.6 depicts 

a widely preferred architecture where only the application tier is clustered. 

 

 

Load 
Balancer 

Data tier 

Application 
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Figure 2.6:  Clustering 
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Application Tier Clustering: 

 

Clustering the application tier into several nodes (application server instances) 

provides the system the much needed scalability. It reduces load on individual nodes 

and increases system throughput. The entire cluster is meant to run the same 

application, and if one node fails the others can continue to provide service. As the 

cluster size grows the system becomes more fault-tolerant and available. One problem 

of clustering is that the application sometimes needs to be modified to take advantage 

of aggregate cluster resources. This is particularly true for distributed applications 

where one node communicates with other nodes, for example to replicate user 

sessions or application state. Because of the popularity of clustering application 

servers vendors now provide distributed session management capabilities. 

 

Data Tier Clustering: 

 

The data tier could also be clustered. However, this approach is rarely used as it 

requires RDBMS servers to actively keep their database state consistent with others. 

This also complicates transaction management and increases data integrity issues in 

the business tier as it will have to connect to many database servers. The other 

approach is to use one RDBMS server and several replicas of databases, of which one 

is the master (used for writing) while others are slaves (used for reading). This 

approach has its overhead too, as the master has to continuously replicate any 

changes to the slaves. If lazy replication is used then the slave state may get stale 

while eager replication inhibits request processing during the replication phase. 

Moreover, if the database size is big then replication increases disk requirements 

proportionally to the number of slave instances. Hence, many web applications refrain 

from both approaches. 
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2.4.2  Load Balancing 

 

Another problem of clustering is that now a client needs to be aware of multiple 

servers instead of one. And whenever a node is added or removed the client somehow 

should know about it. To hide the intricacies of a clustered application tier a load 

balancer is introduced in between the cluster and the client, and the client merely 

needs to know the web address of the load balancer to whom it sends web requests. 

The task of the load balancer is to distribute client requests to different application 

servers and then return the response back to the client. The load balancer also sends 

heart beat messages to servers, so that it can identify failed nodes.  

 

The load balancing algorithm could be implemented in hardware but software-based 

load balancers are prevalent because they are cheap and provide the flexibility to 

choose or even write new load balancing algorithms. The two broad categories of load 

balancing are described next. 

 

Content-blind Approach: 

In this case, the load balancer distributes requests without looking at the content of 

the request. However, the load balancer may consider system resources such as IO 

and CPU load to avoid bottlenecks at one or more server. The following content-blind 

approaches are very common and provided by almost all vendors 

 

 Round Robin: The requests are distributed in round robin fashion, so the first 

request goes to node-1, the second request goes to node-2, and so on. 

Sometimes, nodes may have different hardware configurations and thus, 

different serving capacities. In this case, a weighted round-robin algorithm 
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could be used where a node with twice the weight of another node is selected 

twice as often as the other. 

 

 Least Connection: The server with the least number of open connections is 

chosen. Again this could be weighted or not. 

 

 Least Loaded: This approach periodically monitors each server for CPU, IO, and 

Network loads and selects the one with least load. 

 

 Random: This is the naïve strategy where a server selection is random. Good 

pseudo numbers could provide uniform load distribution. 

 

Content Aware Approach: 

Contrary to content blind algorithms this approach peeks into requests in order to 

decide on a suitable server. For example, a cookie based load balancer would look at 

the ServerID cookie in the request header and would send it to that server. This cookie 

could be injected in the response header by the load balancer or the application server 

to create persistent connections. This approach is used when a user session is not 

replicated to all servers, and consecutive requests of the same client have to be served 

by the same server. 

 

Content aware load balancing could also be application aware. For example [6] 

proposes an application-aware load balancing solution where different application 

transactions are predetermined and mapped to different servers. The request 

parameter contains the transaction type from which the load balancer can get the 

appropriate server to maximize cache hit. In this thesis we propose a request-aware 

but application-unaware load balancing solution. 
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2.4.3  Caching 

 

One way to improve application performance is caching. Caching is a process that 

improves application performance by storing the data in a cache so that it can be 

retrieved comparatively faster in subsequent requests. The data to be cached is either 

the result of a complex computation (function) or a copy of original values read from 

another component. If the requested data is found in the cache it can be quickly 

served from the cache rather than fetching it from the original component. This 

constitutes a Cache Hit. If the data is not found in the cache we have a Cache Miss, and 

the data has to be recomputed or fetched again, and then stored in the cache (Cache 

Put). Figure 2.7 illustrates caching through a sequence diagram. 

 

 

Cache Miss 

Cache Put 

Cache Hit 

Figure 2.7: Caching sequence diagram 
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Each GET request is directed to the cache first, and if the key is not found in the cache 

then it is fetched from the data source. The object is put as key-value pair in the cache. 

The second request for the same object results in a cache hit. As evident from Figure 

2.7 caching also reduces the work load on the original component as it bypasses it in 

case of cache hit (see second get request). Thus, if application scalability is restricted 

because of a bottlenecked component, placing a cache in front of it would reduce the 

bottleneck and allow scalability. The more a cache is able to serve requests the better 

the performance. The percentage of requests that can be served from the cache is 

called hit ratio. 

 

Despite being a scarce resource the cache plays an important role in an application 

because of data access patterns. The data which is recently accessed is likely to be 

accessed again in the near future and constitutes temporal locality of reference. For 

example, product categories in an e-commerce website exhibit temporal locality as 

they are accessed in each request. Another type of reference locality is spatial locality 

where the data which is stored close to recently accessed data is likely to be accessed 

in the future. For example, a paginated list of items exhibits spatial locality as pages 

may be accessed in tandem. An intelligent application would identify spatial locality 

and prefetch related objects into the cache. 

 

Caching has become an indispensible component in multi-tier web application. A 

dynamic request originating from the client browser has to go all its way through the 

web servers, the application servers, and the database server which takes 

considerable amount of time. Introducing appropriate caches along this route before 

any tier can decrease the response time. We now briefly discuss different types of 

caching in internet applications. 
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Page Caching at the Web Server: 

Web servers can cache pages generated by application servers. This caching is for 

dynamic requests and is different from any browser caching which caches static html 

pages and images. Usually, the web server is part of the application server (such as in 

JBoss, Glassfish) but sometimes a high performing standalone web server (like Apache) 

is placed in front of the application server to serve static pages. In either case, some of 

the dynamically generated pages or page fragments (in a web portal) could by cached 

if these are not frequently updated. These pages are mapped to request URLs which 

may or may not include query parameters, and stored in the cache with an expiry after 

which they are regenerated. For example, weather reports for a city could be cached 

every 30 minutes. Thus, any request for this page would be served immediately by the 

web server saving trips to the application servers and backend data services. Apache 

uses several interlinked modules such as mod_cache, mod_disk_cache, 

mode_file_cache, etc, that can be added to the web server to enable page caching [7].  

 

Object Caching at the Application Server: 

Object caching is done in the application server, specifically at the data access layer. 

An object here represents a business entity which is loaded from the database server 

and stored in the application server cache. Having an entity cache not only improves 

processing at the application server but also spares the database of frequent requests. 

This is very effective if the application tier is clustered because nodes querying the 

database simultaneously increase the load on the database server. Under peak load 

the database becomes the bottleneck as requests starts to queue at its end, which 

indirectly impacts the application servers’ performance as they are blocked on 

network IO. 

 

If the application server does dynamic caching it has to deal with the volatility of data. 
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For many business applications the cache cannot afford to have stale entries, which 

are inconsistent with the database. A general approach to avoid such a scenario is to 

tag each cache entry with a time-to-live (TTL) and then the cache automatically evicts 

those objects upon expiration. If the database could be changed by another 

application then TTL based eviction is a good solution. In this thesis we primarily deal 

with object caching, therefore it is further discussed in Section 2.5. 

 

Caching at the Database Server: 

The database server, which is the backend of our Internet architecture, is very 

important for application performance. The application server, during its request 

processing, usually calls the database server more than once. The processing at the 

database server is also resource intensive and takes considerable time. To improve 

performance, database systems employ indexes to avoid sequential table scans and 

speed up queries. They also load blocks (or pages) of the database into memory 

buffers to reduce disk IO which also enables spatial locality of reference. Some 

databases, such as Oracle [8] and MySQL [9], also cache query result set to avoid 

query compilation and execution costs. 

 

2.5 Caching in Java Application Servers 

 

We focus in this section on object caching in Java web applications as our 

implementation is based on it. However, the concepts presented here are very general 

and applicable to other frameworks as well. As discussed in Section 2.3, Java 

application servers support ORM frameworks such as JPA, Hibernate and Toplink. 

These frameworks have the capability to cache database rows as entities in the 

application server. The entity caching is done at two levels: session and application, 

the architecture of which is shown in Figure 2.8. 
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Session Cache: 

Session Cache is the first level cache and has a request scope. When an application 

server begins a database transaction for a particular user request, Hibernate creates a 

session level cache. Any query executed during this transaction is temporarily cached 

in this session cache until the transaction is over. This cache is created per user 

transaction and is mutually exclusive from any other transaction running concurrently 

in the application server, and hence, it is sometimes referred to as transactional cache. 

However, depending on the ORM framework used, this can also persist at thread level 
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Figure 2.8: 2 Level caching architecture 
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where multiple transactions (executed serially) all share this cache. This cache is 

embedded in the ORM framework and generally cannot to be disabled as it buffers 

user modifications and batches them for final commit. 

Application Cache: 

Application Cache is the 2nd level cache and has application scope. The key 

characteristic of the second-level cache is that it is used across sessions, which 

differentiates it from the 1st level cache. Just like other multi-level caches, the 2nd level 

cache has more capacity than the 1st level caches. Hibernate reads from the 

application cache if there is a miss in the session level cache, and writes (puts) to the 

application cache after querying the database. Any intermediate changes to the 

entities during transaction are not propagated to the application cache; however, final 

updates to database are (write-through approach). Because of its global scope any 

transaction - be it from the same user or others - has access to this cache. The 

application cache does not span multiple servers and each server has its own 

application cache which limits cacheability of the system. 

Hibernate provides a flexible concept to exchange cache providers for the second-level 

cache. We have used Ehcache [10] as cache provider. However other caching 

implementation like OS Cache, Swarm Cache or JBoss Cache can be used. 

 

Query Cache: 

In addition to entities, the 2nd level cache also keeps recently executed queries in a 

separate cache called a Query Cache. It is treated slightly differently than the entity 

cache by the framework, although the storage mechanism is exactly the same as the 

entity cache. When a query is executed it is stored in the query cache as <query, result 

set> pair. The result set only contains the identifiers (primary keys) of the fetched 
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records. Hibernate then queries each entity in the result set and stores them in the 

entity cache. In order to use the query cache with Hibernate each query that needs to 

be cached has to be explicitly marked cacheable. 

 

2.5.1  Distributed Application Cache 

 

Even though the application level cache improves performance of the system it does 

not help to scale the system in a clustered environment. Each application cache is 

oblivious of other application caches in the cluster. Hence, there is a high probability 

of redundancy in all the caches. This probability is much higher if the load balancer 

distributes requests in a round-robin fashion as each application server will be caching 

the same entities. This redundancy entails the following critical problems: 

 

 Since application level cache is usually in-memory it is limited, and redundancy 

reduces the overall cache capacity of the system. Hence if each of the N nodes 

has 1 GB of available memory, then the utilization of the entire cache would be 

much less than N GB because of duplicates. 

 

 The application caches fill up quickly as each individual server has access to its 

own limited cache. Now, if a request is sent to a server which does not have 

the corresponding objects cached while other server have, then it will still be 

fetched from the database. This not only results in a database hit but  also in 

the eviction of some entities from the application server cache which may be 

queried next resulting in further evictions. 

 

 Cache redundancy can lead to inconsistency. If one node inserts or updates a 

row in database, its cache would be updated while other nodes would contain 

a stale cache entry. Requests for these objects on other servers would be 
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served from the cache which does not represent the data’s current state. Many 

financial and e-commerce application cannot afford this anomaly. 

 

All of these problems can be solved using an in-memory distributed application cache 

which exploits the memory capacities of all servers to give a transparent view to the 

application. A distributed caching layer conceals access to and from other application 

caches. If the data is not found in the local cache it is fetched from a remote cache 

rather than the database. Pinpointing the location of a remote cached object can be 

done either by maintaining a cache directory at each server or using consistent 

hashing. The cache directory is replicated across the cluster and contains the mapping 

of cache keys to server locations. In consistent hashing, cache keys are hashed (using 

modulo) to server ids. 

 

Distributed caching is getting popular because an application can simply be scaled by 

adding cheap commodity machines and memory. Also, the network cards and 

switches are getting faster, with 1 GB the norm while 10 GB getting traction allowing 

low latency remote fetching. Some of the well-known distributed cache frameworks 

are further discussed in the following related work section. 

 

2.6 Related Work 

 

A lot of research effort has been put to improve the performance of web applications 

and make them scalable. While some approaches concentrate more on scalability than 

performance, we have tried to tackle both issues in this research by allowing users to 

choose from various distribution and replication strategies that fit best for their 

application-hardware configuration. Our approach is more holistic in a sense that it 

analyzes the application workload and applies policy based tuning at the load balancer 

and application tier. 
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Some of the existing research relies on offline simulation and benchmarking of 

application to derive useful metrics for system tuning. For example, in [11] and [12] 

the authors measure performance characteristics of different tiers in an Internet 

application, and compare predicted performance with test bed application 

performance. They extended their model to capture load imbalances using replication, 

caching and resource provisioning. The motivating factor of their research was an 

experiment where they were able to predict the response time within 95% confidence 

intervals of the observed response time. Similar studies in [13] and [14] assert that 

queuing models can be very useful in measuring and predicting performance 

characteristics for 3-tier web applications. In this model, they specifically discuss the 

architecture of each tier on prevailing open-source servers, and were able to 

demonstrate how precisely analytical models could mimic real time performance. Our 

analysis is differentiated from them in that it is not based on offline queuing models 

but rather on live application feed. We contend that application workload may change 

and it is best to adapt to varying workloads periodically without taking applications 

offline. 

 

Instead of analytical modeling, some researchers have forayed into different 

strategies, such as caching and replication, to scale web applications [15]. For 

example, content delivery networks like Akamai employ Edge Computing to reduce 

latency by replicating application logic and part of the database on edge caches. In 

[15], the authors also evaluate content-aware and content-blind caching strategies on 

edge servers and conclude that no approach is suitable for every workload. They put 

the onus on administrators to manually choose a desired caching/replication strategy 

for their workload. Although we do not deal with performance tuning on the edge, 

however, we do focus on latency reduction using content-aware request distribution. 

Moreover, our framework reduces complexity involved in manual configuration by 
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exposing only required tuning parameters (such as cache replication factor) to the 

administrators. 

 

Distributed caching in web application holds a key to performance and scalability, as 

discussed earlier. This problem was addressed by Memcached [16] which is a 

distributed memory cache that exploits available memory on any node by running a 

Memcached instance on it. Memcached offers a dictionary interface where the cache 

key is first hashed to identify the servers and then hashed again to retrieve the object. 

Memcached was originally implemented for LiveJournal.com with 30GB of aggregate 

memory, which resulted in 92% cache hit rate. Memcached servers run separately as 

different processes. Hence accessing them is slower than accessing an embedded 

cache in the application server. And because of key hashing, Memcached is purely 

distributed and does not allow for replication. Also, no control is given on what to 

store where. Similar to Memcached is Terracotta Server Array (TSA) [17] which acts as 

a distributed level 3 cache in web applications (level 2 in non-JPA environment). The 

2nd level cache in the web application replicates 100% of data, which limits scalability 

but provides data consistency and cache coherency. 

 

In [18], a distributed cooperative cache is built on top of EhCache which runs in the 

application JVM. Its distributed directory maps cache keys to other application server, 

which, unlike hashing in Memcached, avoids unnecessary remote lookups if the entity 

is not even cached. It is also more flexible than Memcached in regard to where to put 

each object. In our implementation we have enhanced the distributed cache to 

support replication, so that popular objects could be retrieved much faster from 

multiple application servers sacrificing some cache space for performance. 

 

Content-aware load balancing presented in [19] logically partitions web content into 

different servers, and creates policies for accessing them at the load balancer. This 
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load balancer is thus content aware, and sends a request to the server that has a high 

probability of hitting the cache. Similarly, authors in [20] propose memory-aware load 

balancing where a transaction is sent to a particular replica that has the required 

working set to execute it completely in memory. In general, by localizing requests to a 

given server the caches can now hold on to partitioned content much longer by 

avoiding frequent evictions. In [6], the author takes this approach to dynamic 

database content by logically partitioning different types of transactions and assigning 

them to servers. Similarly to [19], the load balancer sends request of one type to the 

same server, thus maximizing cache hit rate. In [6], the web application has to be 

manually profiled to identify all types of web transactions, and a static policy file is 

generated for the load balancer. Researchers in [21] and [22] argue on separating 

architectural concerns, like caching, from the implementation of internet services. 

They show that some level of automation could be incorporated into multi-component 

web services. They analyze bottlenecks along a chain of linked service components 

and rewire them with appropriate cache capacities. We follow the same level of 

automation in our infrastructure but at the macro level of application tiers. Our 

system can trace requests and their resources for any web application on fly, which 

removes the need for manual profiling. This technique also aids us in generating 

content-aware but application-unaware distribution strategies. 
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Chapter 3 

3 Holistic Caching Architecture 

 

3.1 Introduction 

 

The performance of any software application relies heavily on its hardware 

infrastructure and software architecture. It is important that application components 

are loosely coupled with extensibility support. Keeping this in mind we have 

developed a holistic caching architecture that is robust and adds no overhead to the 

actual application but rather improves it end-to-end. The first step to achieve holistic 

caching is to augment and enhance the infrastructure of the 3-tier architecture. 

Although the request processing still follows the classical path (i.e., load balancer to 

application server to database server), we have added another server for runtime 

statistics collection and processing. This server should ideally be on a separate 

machine to avoid resource stealing from the main servers. The web application is 

oblivious of this additional server. Our main objective is to keep the application as-is 

and unaware of optimizations. This allows us to build one optimization framework that 

is readily applicable to other applications. Figure 3.1 shows our infrastructure with its 

high level components. 
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In a nutshell, to perform optimization we need to gather runtime statistics which are 

mainly collected from the application servers at two critical components, the 

request/response interceptor (i.e. the filter) and the cache component. These 

components log fine grain information to a separate log server. The log server receives 

logs from all application servers and processes it through an analytics engine which 

will generate optimization policies for request distribution and cache replication and 

distribution.  

 

In the next section we briefly discuss the distributed cooperative cache presented in 

[18], and our enhancements to it. Next we give an overview of how our Policy-Based 

Request Distribution and Caching transparently improves application performance. 

The remaining sections discusses major component of our system and their 

interactions. Part of this framework was built in collaboration with S. Joshipura [23]. 

Figure 3.1: Holistic caching component diagram 
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3.2 Holistic Cache Component 

Clustering application servers also clusters application server caches. Since caches in 

the cluster are totally unaware of each other, there is a high probability that at a given 

point in time there are duplicate cached objects in the cache cluster. This redundancy 

not only leads to cache inconsistency but also affects application scalability. The 

impact is more if caching is done only in main memory, which is an expensive 

hardware with limited capacity. 

 

The application performance can be easily improved if all these distributed caches 

somehow add up to give a uniform single large cache. To achieve this, caches have to 

be aware of each other, so as to not cache things already cached on other servers. 

Moreover, they should be able to retrieve objects stored on remote caches. This 

scheme not only removes redundancy but also increases cache hit rate because of 

overall increased capacity, which further reduces the load on the database. 

 

This collaborative caching termed as ‘Distributed Cooperative Cache’ in [18] is 

achieved by way of a cache directory which knows the whereabouts of each cached 

object in the whole cluster. The cache directory is replicated across all application 

servers and kept consistent as cache objects are stored and removed from the cache. 

When an application server needs an object not found in its local cache, the cache 

directory resolves the cached object’s location from the cache key, and hence, the 

object is fetched from the remote cache. 

 

Our work is build upon this cooperative cache component which uses EhCache as an 

underlying application level cache. We have done a few enhancements to this caching 

component essential to achieve better caching, such as: 
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Object Replication Support:  

The cache directory now supports object replication. That is, if an object X is replicated 

on N servers to improve availability, all cache directory replicas contain the list of 

these N servers for this object X. Any request for object X can now be served from any 

of these N servers if not found locally. This redundancy not only adds fault tolerance 

and availability to the caching system but also increases local cache hits at the cost of 

cache space. 

 

As discussed in the last chapter, replication creates consistency issues when there are 

updates. Consistency could be achieved by invalidation where updated objects could 

be invalidated and thus, removed from the cache. But since our focus in this thesis is 

on read-only workload we have not implemented consistency mechanisms. 

 

Singleton Cache instead of Disjoint Region Based Cache: 

The default implementation of EhCache (for Hibernate) creates unique caches per 

database table called Region Caches. Thus, if there are hundreds of tables in a 

database then there will be as many cache instances. Each of these cache instances - 

usually named after the table - only stores objects of its associated table. This 

approach, although if achieves better concurrency for update heavy traffic, has 

obvious disadvantages such as 

 

 Each cache region has to be specifically configured and adjusted on constant 

basis. For example, when a certain table grows or its access frequency 

increases then the system administrator needs to increase the cache capacity 

for this region and perhaps penalize some other region caches by decreasing 

their capacity. Performing such manual tuning on all application servers is very 

time consuming. Not doing so could lead to cache inefficacy. 
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 Not only objects are stored and retrieved from an associated region cache, but 

also evicted from the same cache instance. This has two undesirable effects. 

First, the cache eviction policy is forced to choose an object for eviction from 

this cache when its capacity reaches its limit, even though other region caches 

have free space. This puts a hard cap on region caches. Second, the eviction 

policies can only evict from the given cache (for which there is a put request). 

Hence, eviction policies such as LRU are oblivious of least recently used objects 

in other region caches (than the candidate chosen from this cache). Finally, not 

only the inactive region caches waste valuable cache space but also increases 

thrashing for popular regions. 

 

To overcome all these drawbacks we have created a singleton cache shared by all 

regions. When Hibernate requests for a region cache the same singleton instance is 

returned. This makes it easier to setup cache capacity based on available memory, 

gives eviction policies full view of the application cache, and makes automation tool 

like ours to generate cache policies effectively. 

 

Popularity Aware Eviction Policy: 

The LRU eviction policy works best most of the time. However, web requests follow 

patterns where there is a likelihood that a naïve LRU policy would evict an object 

blindly which is about to be requested. This is particularly true when cache capacity is 

small compared to the database size, and many random requests interleave popular 

ones.  

 

To alleviate this phenomenon we have introduced cache object stickiness 

implemented through a Time-To-Live (TTL) cached object property. TTL is the time 

after which the object expires from the cache and becomes a candidate for eviction. 

By increasing the TTL for popular objects we reduce their chances of eviction, thereby 
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letting them stick to the cache a bit longer than less popular objects. We propose 

three different levels of TTL: 

 

 Short TTL: This is the base TTL set for any object in the cache. Objects are very 

rarely accessed within a timeframe should be assigned short TTL. Objects with 

short TTL are more likely to be evicted from the cache. 

 

 Long TTL: Long TTL has a longer life (TTL value) than short TTL but still the 

object could be evicted if it is not accessed for a long time, thus evicted 

through expiration or as an eviction candidate. Popular objects could be 

cached with Long TTL. 

 

 Stable TTL: Objects which are always meant to be kept in the cache are stored 

with a stable TTL. Depending on the application, stable TTL could be set in 

terms of hours or even days. Examples of objects to be stored with stable TTL 

are dictionary tables and catalogues that are accessed extremely frequently. 

 

These little refinements on the existing open-source software give us the flexibility to 

better tune the application for various workloads. In the next section we describe the 

fundamental components of our infrastructure, the Policies, and how and where do 

they fit in our distributed multi-tier web application. 

 

3.2 Policy-Based Request Distribution and Caching 

Expert Systems are software that mimics human reasoning to solve a problem. A more 

prevalent type of expert system known as Rule-Based Expert System constructs a set 

of procedural rules to solve a problem. The rule here is a trigger that fires when a 

given condition is met, to partially or fully solve a problem. Having a large set of rules 

not only increases rule trigger-rate, but also allows an expert system to come up with 
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the best possible solution. Many scientific and diagnostic systems are built as rule-

based expert systems.  

 

Our proposition is similar to a rule-based system, where rules are created to efficiently 

serve a user request. We call our rules policies and hence, our approach ‘policy-based’ 

approach. It is also important to understand the distinction between a strict rule-

based approach and our policy-based approach. In a strict rule based system, requests 

(inputs) are ignored if none of the rules are able to comprehend it. Contrary to this our 

policy-based approach is assistive and improves system performance if the policy is 

applicable to the user request. If it is not, then, the default system functionality is 

performed and we still achieve a response, but perhaps not in the optimal way. Thus, 

our goal is to maximize policy hit-rate, which in turns increases system performance 

and throughput. 

 

Our intention is to improve system performance by offloading the database. We do 

this by increasing the cache hit-rate, especially the local cache hit-rate. Having a 

distributed clustered cache offloads the database considerably. It does not, however, 

necessarily improve response time. This is because a remote cache request involves 

network latency. A random or even a round robin distribution of user requests to 

different application server spreads objects all over our cache cluster. Therefore, a 

request which might be accessing merely 3 objects, each from a different remote 

cache, could be much slower than one accessing 30 objects from a local cache. 

 

To alleviate this problem inherent in a blind distributive cache, we silently profile 

application requests and resources, and observe access patterns in them. As the web 

application runs and users start querying the servers, we collect all this information on 

a continuous basis. The collected requests and resources, their associated data, and 

their mappings collectively form our knowledge base. We then analyse this structured 
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data set and generate request distribution policies for the load balancer and the 

corresponding cache policies for the application servers. These policies are defined 

next. 

 

3.2.1 Policy-based Load Balancing 

 

As discussed in the last chapter, basic load balancing schemes are content-blind - that 

is, they distribute requests across a cluster without looking at the request. Our 

approach to load balancing is content-aware in that it peeks at the request and knows 

in advance where this request would be served faster. This distribution by the load 

balancer takes advantage of the cache present on the application servers. For 

example, when a dynamic request X is sent to application server AS1, then the object 

accessed by it would get cached on this server so that subsequent requests are served 

immediately without going to the database. Since our load balancer is content-aware 

it would send the next request X to AS1 which would then be served from the cache. 

This sticky distribution is achieved through Load Balancer Policies. These policies are 

generated by the analytics server and the load balancing algorithm takes advantage of 

these policies and performs efficient distribution. 

 

The load balancer policy is a collection of request to application server mappings. The 

structure of this policy is very simple as shown below. 

 

www.example.com/req1/  -> {Application Server 2} 

www.example.com/req1?id=1 -> {Application Server 1} 

www.example.com/req1?id=2 -> {Application Server 3} 

www.example.com/req2   -> {Application Server 1, 2} 

 

The first mapping maps req1 to application server 2. The second and third mappings 
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are for the same request but with different parameters (a.k.a. Query String). Hence, 

these are treated as two different requests and can be mapped to two different 

servers. This brings us to the concept of URL processing in an application server. In 

web applications, all the first three requests are served by the same server side script 

req1 (or an equivalent Servlet in Java-based application servers). The server side script 

may in fact behave differently and access different resources based on query 

parameters. Therefore, we incorporate fine grained URLs in our mappings. Although 

this increases the size of our structure, the load balancing algorithm works upon a 

large set of URLs and achieves better and uniform request distribution. 

 

As evident from the last mapping, one request can be mapped to multiple servers, in 

which case the load balancer would send the request to any one of these server. The 

provision to have a single request being served by different servers opens up dynamic 

replication possibilities on application servers provided each server locally caches the 

objects it accesses rather than fetching it from a remote location. Under peak 

workload, where a few requests are frequently accessed, mapping them to only one 

server could overload it. This multiple server configuration helps us balance load on 

each server.  

 

3.2.1 Policy-based Caching on Application Servers 

 

To efficiently utilize the distributed cache we generate caching policies which work 

well in tandem with our load balancer policies.  As discussed in Section 3.2 we have 

devised a new mechanism to caching where objects could be cached with different 

TTL. This enables our analytical engine to assign different life time to each object 

based on its popularity. Moreover, a clustered distributed cache needs a tighter 

control over what objects are cached and what are not when they are fetched from a 

local cache or a remote cache. 
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Before describing different caching scenarios in our holistic cache environment, it is 

imperative to understand a typical cache policy. A cache policy looks like 

 

com.example.User#100  ->   { Server 1 (Long TTL) } 

com.example.User#200  ->   { Server 1 (Long TTL),  Server 2 (Long TTL) } 

com.example.Country#Canada ->   { Server 1 (Stable TTL), Server 2 (Long TTL) } 

com.example.Country#USA  ->   { Server 3 (Short TTL) } 

 

Here ‘com.example.User’ is the ORM entity for the database table User, and ‘100’ is 

the identity of the object representing the primary key of the corresponding row in the 

User table. Thus, User 100 is destined to be cached on application server 1 with a Long 

TTL. Analogous to the load balancer policy, objects could be cached on different 

servers with same or different TTL values, again giving the analytics server flexibility to 

create complex cache assignments. For example, during the Winter Olympics in 

Vancouver, a website could encounter more traffic for Canada, and may increase the 

priority of Entity-Canada to Stable on one server and replicate it as Long on another, 

while reducing that of Entity-USA to short. 

 

The cache policies are created for individual application servers and may include 

duplicate entries to support object replication. Thus, the above cache assignment 

translates to this equivalent server-to-objects cache policy. 

 

Server 1    ->      { User#100 (Long TTL), User#200 (Long TTL), Country#Canada (Stable TTL) } 

Server 2    ->      { User#200 (Long TTL), Country#Canada (Long TTL) } 

Server 3    ->      { Country#USA (Short TTL) } 
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3.2.1 Caching Scenarios 

 

The flow chart below illustrates how the cache components perform when an object 

‘Obj’ is requested by a data access layer (such as Hibernate). 
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Figure 3.2: Caching scenarios 
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The GET request for an object is intercepted by our cache wrapper which first checks 

the local cache for the object. If it is found there, it is immediately returned. 

Otherwise, we look into our cache directory for a remote presence. If the object is 

found in a remote cache it is retrieved from there. Depending on whether a policy 

exists at the local application server for this newly retrieved object it is stored in the 

local cache with a policy-based TTL, else, the object is returned without being put in 

the local cache. This allows us to only cache objects from remote caches which are 

meant to be replicated according to the policies generated by the analytics engine. If 

the object is not found in the clustered wide application cache, then it is fetched from 

the database and put into the local cache. Again, if the policy exists for this object it is 

stored with a given TTL otherwise with the base short TTL. The directory structure is 

kept consistent across all servers when objects are stored and evicted from the cache. 

 

3.3 Monitoring System 

 

We have developed a monitoring system that extracts useful information from the 

user’s HTTP requests and the cache accesses. We, however, do not monitor 

application business logic and internal communication which allows our monitoring 

system to be deployed along with pre compiled web applications. This is a really 

important aspect of any automation tool where non-invasive components are 

seamlessly integrated with a functional system. These components can also be 

detached from the application with ease, which makes it ideal to do application 

profiling and data mining for experimentation purposes. However, we have aimed to 

keep the overhead of monitoring to a minimum so that the system performs equally 

well with the additional monitoring layer. Now, we discuss high level concepts about 

our monitoring system, the implementation aspects of which are presented in  

Chapter 5. 
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3.3.1 Remote Logging 

 

The crucial aspect of any monitoring solution is logging of information. An inefficient 

logging could sabotage the whole monitoring system. Keeping in view our need for 

dynamic policy generation, we chose remote server logging over traditional local file 

system logging. Although File based-logging is robust, in a clustered environment it 

does not prove to be feasible for the following two reasons. 

 

 Each server logs records in its local disk, which then need to be merged based 

on timestamps or other mechanisms to get the global view of application logs. 

This usually cannot be done for active log files as it’s been constantly written 

to. 

 

 The processing of file logs is resource intensive and cannot be performed on 

the application servers. Also, in this arrangement, one application server needs 

to be a master log processor reading files from other servers which could hog 

the network during log processing cycles. 

 

Remote logging addresses both concerns seamlessly. By virtue of remote logging we 

are able to output the log directly at the log server, a separate machine in the server 

cluster, where the analysis tool is running. Thus, the analysis tool is fed with the 

logging data in real-time as it is produced. This makes the policy generation more 

dynamic. Moreover, the raw log events are never materialized to the file system 

saving valuable IO cost. 

 

3.3.2 Request Interception 

 

Requests are intercepted using the Interceptor Pattern. According to [24] 
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“In the field of software development, an interceptor pattern is a 

software design pattern that is used when software systems or frameworks want to 

offer a way to change, or augment, their usual processing cycle” 

 

In web applications, we just augment the usual request processing by adding 

interceptors to collect request statistics. This interceptor is really fast as it does not 

change requests or its processing, but merely monitors and logs http access details. A 

sample entry in an access log looks like 

 

REQ     1233453464    GET    /rubis/cateogries?id=10    200   150 

 

The first value identifies the log type which is the request. The second value is the 

timestamp of the incoming request. The third value is the HTTP method. The fourth 

value is the requested resource along with any query string. The fifth value is the 

response code and lastly the total time taken in millisecond for this request to 

complete. 

 

3.3.3 Cache Monitoring 

 

We monitor cache accesses analogous to HTTP requests. Both GET and PUT accesses 

are logged. A log entry for a GET request contains the timestamp, request type which 

is GET, and the object key. The key is composed of Entity Type and its primary key. A 

sample log entry is shown below 

 

 1233453464    GET    com.example.User#100 

 

The PUT request is made after an object is fetched from the database. Usually a GET 

request precedes a PUT but if the data access layer is sure that the object cannot be in 
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the cache, such as for Inserts and Update queries, a 2nd level cache PUT is done. The 

PUT log entry is similar to GET with an additional object’s size parameter, and it is 

shown below 

 

 1233453464    PUT    com.example.User#100      300 

 

It is worth mentioning that we do not log the objects value here, because a value is 

usually big. This would slow down the remote logging considerably. Also, for 

application unaware tools, like ours, performing analysis on values is much harder. 

Therefore, we only store object size, which is a reasonably accurate estimate on 

entity’s caching and network bandwidth needs. 

 

3.3.4 Request Tracing 

 

Request tracing is the most important part of our analysis. Simply put, request tracing 

is a way to identify all objects accessed by a request. In web applications, the data 

access layer is oblivious of web requests and is only concerned with data objects or 

entities. Thus, to overcome this barrier, we include a unique global id (GUID) with each 

log message sent. One GUID is created per thread, and since a request is processed in 

one thread all cache logs get the same GUID as sent along with the request log. This is 

essential because as the log server receives interleaved logs from concurrent request, 

a GUID is needed to recollect and identify them as part of one request. This helps us to 

determine data access patterns of requests. Furthermore, using this information we 

can direct the load balancer to send specific requests to the application server that 

contains the cache objects so that local cache hits are maximized. In addition to GUID, 

we also send the host machine name with each log message to distinguish logs from 

different servers. 
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3.4 Log Processing 

As logs arrive at the Logging server, they are processed by different processors. We 

called them ‘Log Processors’ and their purpose is to collect log messages of interest 

and structure them in a meaningful way. Log messages from different servers are 

maintained in separate structures. This gives us the flexibility to analyse load on 

different servers. But for a global view of application we also merge them into one 

structure. The data structures produced by log processors are then fed to the analysis 

engine which then generates policies. 

 

3.4.1 Request Log Processing 

 

HTTP access logs are processed by the Request Log Processor. This processor identifies 

popular requests by their access frequency. In addition, it also maintains the first and 

last access time for each different type of request, and the average time taken for this 

request. All these structures are maintained in time buckets (say 10 min each), so that 

during analysis we can pick the last X buckets and merge them, to observe more 

recent trends and discard older analysis. 

 

3.4.2 Cache Log Processing 

 

Cache log events are processed by the Cache Log Processor. The cache objects are 

maintained in their lowest granularity, i.e., at the database row level. These objects 

can also be accessed at higher granularity (at table level) by just dropping the primary 

key from the cache key. For each object, we maintain its frequency, the number of 

GETs and PUTs, and first and last access time. Again, data structures are segmented 

into equally spaced time buckets. 
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3.4.3 Request-Cache mappings 

 

One log processor in our framework maps cache objects to request. It processes both 

the request log and cache log streams and ties them together on the basis of GUID. 

Sample Request-to-Objects mappings are like 

 

/req1  -> { a, b } 

/req2  -> { b, e } 

/req3  -> { x } 

 

If the same request is encountered again during processing with different objects, 

then the previous mapping is updated with new objects, as shown below 

 

 /req1  -> { a, c, x}         => /req1 -> { a, b, c, x } 

 

Thus, we only store one mapping for the request as union of all objects. This allows us 

to identify a set of all possible objects that can be accessed by a given request. We 

also generate inverse mappings during processing from object to requests, enabling us 

to see object overlaps in different requests.  The Object-to-Requests for the first 3 

mappings are shown below 

 

a -> { /req1 } 

b -> { /req1, /req2 } 

e -> { /req2 } 

x -> { /req3 } 
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3.5 Analysis Engine 

The analysis engine is the brain of our system. It contains the algorithms and 

procedures which generate the policies for the application server and the load 

balancer. It uses different statistics which have been extracted from the log processors 

to make decisions about the policies. The analysis is not performed continuously as log 

processing is, but at preconfigured time intervals. Since this is little application 

dependent, the system administrator can choose an interval on the basis of the 

workload. 

 

We have kept our analysis engine as open as possible so different algorithms could be 

configured with different workload and application characteristics. The algorithms 

which we call Strategies work on the same set of structures, but use different 

heuristics and parameters to come up with unique request distributions and cache 

assignments. The generated policies are sent to all the application servers and the load 

balancer where they are applied instantly without requiring them to be restarted. 

 

Policies are usually generated for both load balancer and application server, but 

sometimes generating one and not the other is sufficient to improve performance. 

Since policies are generated and applied at regular time intervals we are better able to 

manage variations in workload than a static configuration. 
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Chapter 4 

5 Dynamic Request Centric Analysis 

 

4.1 Introduction 

 

This chapter focuses on core algorithms and strategies that enable us to improve 

application performance and overall system throughput. Here, we discuss a broad 

range of analysis on various factors to generate load distribution and caching policies 

for our multi-tier web application system. The caching subsystem of our multi-tier 

infrastructure is a distributed one. One of the important reasons of implementing a 

dynamic request centric caching and load balancing algorithm on top of a distributed 

cache is to minimize remote calls, both to the remote cache and backend database.  

 

Our analysis is performed on metrics collected from the application server and the 

distributed cache. The distributed cache in consideration here is the persistent in-

memory application level cache. In our analysis, we do not consider the session level 

cache, and neither have we done any monitoring at this level. 

 

Our solution is implemented on Java Enterprise Edition (Java EE) application servers 
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and Apache Http Server because of its worldwide acceptance and open-source 

production quality implementation. Nonetheless, this does not restrict our approach 

to only Java based application servers. The whole infrastructure could be ported to 

any web application platform with minimal changes. This was another reason to keep 

the analytics engine separate from the application server; the policies generated by 

the analytics engine could be serialized into XML or another network friendly protocol 

with ease, making it a plug-and-play solution. 

 

The analytical engine, although an add-on, then becomes the integral part of the 

whole system. Figure 4.1 shows the system with analysis engine, and the essential 

data input and output. 

 

The data flow diagram shows how the analysis engine processes the performance 

metrics collected from the application server cluster and produces policies. The 

configurations are application specific properties such as cluster size and cache 

capacity, and algorithm tuning properties such as replication factor. The diagram does 

not refer to particular policy but shows Policies in general as an output. This is because 

the policies generated by the analysis engine effect the web application as a whole, 

even though in some cases a desirable performance could be achieved by applying 

Figure 4.1: Analysis Engine 
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policies at either load balancer or application servers (see Section 4.8). 

 

In this thesis we pursue a dynamic request centric analysis. The nature of our analysis 

is dynamic because it is done online with running servers, albeit on a dedicated 

machine, and the analysis adapts itself to changing workload. Our focus is on 

application unaware but request aware analysis (i.e. our analysis is oblivious of 

business application but aware of user requests). We term it a Request Centric 

Analysis. Having said that, we do consider cache statistics in our analysis, and we have 

used request tracing abilities of our system to build more controlled, uniform, and 

efficient request distribution policies. The cache policy more often plays an adjunct 

role to the load balancer policy because the default caching behavior of our system is 

distributed which minimizes backend database queries. The request distribution policy 

further improves on the default system by maximizing local cache hit thereby avoiding 

cache indirection. By virtue of this, we reduce network latency involved in fetching 

remote objects, thus improving response time. By localizing requests to servers, we 

virtually partition our cached data on different servers based on application needs, 

thus maximizing cacheability without incurring the network IO cost involved in remote 

fetching.  

 

The rest of this chapter is organized as follows. In the next section we describe the 

important data structures and configurations which are used in nearly all algorithms. 

After that we discuss our base distribution and caching algorithm. Then we extend it 

to support replication. Finally we present a more complex assignment strategy that 

reduces cache redundancy. 

 

4.2   Data Structures and Configurations 

 

In our thesis, algorithms rely on performance metrics and data structures processed 
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by log processors as discussed in last chapter. These data structures are maintained 

separately for each application server, and even further segmented into time intervals. 

The first thing our analyser does is to merge each individual data structure taking into 

account only the more recent segments. Choosing the appropriate segment size is the 

key; in our approach, we neither disregard all structures processed in the last policy 

generation phase nor include all. Instead we include few segments from the last run. 

Once all these data structures are merged we feed them to our algorithm (aka 

Strategy). Below we outline the structures that are most important and used by every 

strategy. 

 

 HTTP Request List: 

 Since our analysis is request centric we maintain a list of all requests that 

access at least one resource. We only consider cache objects as resources. 

Thus, requests which access static html pages or images are not processed and 

are ignored. This is desirable as static resources are usually served faster. 

Moreover, not apportioning these requests gives the load balancer the 

opportunity to distribute such requests as evenly as possible. We also discard 

requests which are erroneous (whose responses are not OK; HTTP 200). The 

http request lists maintained for each server is merged, and then sorted on 

popularity. Our metric to identify request popularity is request frequency, 

which is a very good estimate. The list goes from most popular request to least 

one (sorted descendingly). 

 

 Request to Resource Map 

All accessed objects are mapped to their requests at each server. These 

mapping are then merged from all servers to obtain an application wide 

Request-to-Resource Map. We need this structure so that we can create cache 

policies for the most frequent requests. 
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In addition to the prepared structures, the algorithms depend on the following basic 

parameters 

 CacheSize: Capacity per server 

 NumServers: Number of application servers 

 TotalCapacity: CacheSize * NumServers 

 

4.3   Basic Distribution Algorithm 

 

Our first algorithm, the Basic Distribution Algorithm, addresses the following concern 

in multi-tier applications: 

 A distributed caching system can relieve the database server from constant 

barrage of requests, by serving some requests from the local cache or a remote 

cache. However, the network cost of retrieving an object from a remote cache 

increases response time. 

To minimize remote calls our first algorithm applies the following reasoning: 

 Identify the popular requests which are accessing the database (or cache) most 

frequently. 

 Assign a subset of these popular requests to specific application servers. By 

partitioning requests to server we maximize local cache hit rate. 

 Allocate the objects accessed by theses requests to the corresponding server 

with a longer TTL. 

 

We implement this simple policy by considering certain workload characteristics. First, 

the observed pattern is not always going to repeat, thus we cannot force all popular 

objects into the cache. Hence, we only consider the most popular ones depending on 

aggregate cache capacity. Second, we keep a portion of the cache unallocated so 
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objects for other requests could be cached. To do so, we put a cap on the number of 

cache assignments per application server. We also put a cap on total cache 

assignments by similar proportions. Figure 4.2 shows the algorithm setup while Figure 

4.3 depicts the algorithm. 

 

The basic distribution approach simply pops the most popular request from the list 

(line 15) and maps it onto one application server (line 24). It also generates cache 

policies for this application server (line 28-32) so the objects accessed by this request 

(line 18) stick longer in cache than less popular objects. The next popular request is 

then mapped to a different application server. Application servers are chosen in a 

round robin fashion (line 40). We continue generating policies until either the request 

list is exhausted, or we have reached the threshold set for popular requests (line 9-10). 

It is important to note that the cutoff on popular requests is reached when the cap on 

aggregate cache capacity is touched, controlled by MAX_ALLOC_DIVISOR factor (line 

9); bigger values lead to fewer assignments while a value of 1 uses the whole cache for 

assignment. 

 

  

 

 

 

 

 

Initialization 
 
1 numServers      = 3      //number of servers 

2 currentServer   = 0      //server chosen for policy 

3 reqIdx          = 0      //Current Request index 

 

4 CacheSize       = 5000   //from configuration file 

 

5 totalObjAlllocated = 0    

6 objectAlloc[] = [0]      //0 objects allocated initially on each server 

7 maxObjectAlloc[] = [CacheSize]   //maximum objects allowed per server 

8 MAX_ALLOC_DIVISOR = 3    // cap total capacity by dividing this factor 

  

Figure 4.2:  Basic distribution algorithm initialization 
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Algorithm 
 

 

9 while totalObjAllocated < totalCapacity/MAX_ALLOC_DIVISOR and  

10       reqIdx < # of httpRequest 

11  

12 do 

13   

14   //pick the next most frequently access request 

15  curReq = httpRequest[reqInd] 

16     

17  //get corresponding objects for this req 

18  objects = reqToResMap[curReq] 

19     

20  //check if the current server has the capacity to cache all objects 

21  if objAllocated[currentServer] + objects < maxObjAlloc[currentServer] then 

22  

23   //create loadbalancer rule for this request 

24   LBPolicy [curReq] = {currentServer} 

25      

26   //create a cache policy for each object with LONG_TTL 

27      

28   foreach cacheKey in objects do 

29  

30    currentServerASPolicy [cacheKey] = LONG_TTL 

31  

32   end //for 

33  

34   // update counters 

35   objAllocated[currentServer] += # of new objects assigned 

36  

37   totalObjAllocated += # of new objects assigned 

38    

39   //move to the next server 

40   currentServer = (currentServer+1) % numServers 

41  

42   //move to next popular request  

43   reqIdx++     

44      

45  else 

46  

47   //choose another server as currentServer has max-out 

48   currentServer = (currentServer+1) % numServers; 

49      

50  end   

51    

52 end //main loop ends 

 

 

Figure 4.3:  Basic distribution algorithm 
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4.4   Replication Strategy 

Our previous algorithm will work well if the processing power of the application 

servers is not bottlenecked. However, it may not perform well if some popular 

requests are directed to one particular server, which eventually gets saturated. This 

could adversely affect system throughput as one server might be overloaded while 

others remain underutilized. To overcome this problem we augment our basic 

distribution algorithm with replication, where the most popular requests are assigned 

to multiple servers. We term this algorithm Replication Strategy. Selecting the most 

frequently accessed requests and assigning them across the cluster balances the load 

on application servers under peak load. The load balancer policy generated for popular 

requests contains multiple servers instead of one, allowing the load balancer to evenly 

distribute such requests. 

 

Finding the appropriate request set for replication is very important, because of the 

limited cache capacity. We cannot simply replicate all popular requests until the cache 

is filled. As mentioned in the pure distributed strategy, we reserve only a portion of 

the cache for policies while keeping the rest of the cache available to other requests. 

Now, we provision some cache for replication leaving the remaining cache till cut-off 

for distribution. The Figure 4.4 shows how our virtual cache capacity is partitioned per 

server. 

25% for Replication 

50% for cache assignment (MAX_ALLOC_DIVISOR) 

Replicated  
Objects 

 

Distributed 
Objects 

 

Unassigned cache 
space 

 

Figure 4.4: Cache partitioning for policy assignments 
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The cache space provisioned for replication is configurable. However, as the workload 

might vary, choosing a fixed value beforehand is not the best option. Therefore, we 

adjust the replication factor dynamically. Below we outline the important steps to 

compute an effective replication percentage. 

 

 DesiredReplication (DR) is the percentage of cache reserved for replication, 

configured at startup. For example, if 10,000 objects were accessed during the 

last interval and this factor is 20%, then objects (associated with popular 

requests) are replicated in the cluster until 20% of the capacity is filled. This value 

is oblivious of workload and needs adjustments. 

 UniqueResourcesCount is the number of unique cache object accessed during the 

last interval. 

 ObjectsPerSlot (OPS) is calculated as the ratio of UniqueResourcesCount to 

TotalCacheCapacity. This factor is used to adjust replication. If OPS is less than 1 

then the entire resource set (accessed objects) is cacheable, if the factor is 

greater than 1 than we have more objects and less capacity. If OPS is 

1/numServers then all objects could be replicated across cluster. 

 EffectiveReplication (ER) is the normalized replication and is calculated as   

ER  =  DR / OPS 

For example if the desired replication is 20% but OPS is 2 then our effective replication 

reduces to 10%. But if OPS is ½ then effective replication jumps up to 40% (or the limit 

set for the caching policy). Hence, this heuristic tweaks replication factor so that under 

random workload (resulting in more objects accessed) replication is reduced. On 

contrary, if only popular requests are made, resulting in fewer objects than available 

cache space, replication is increased to achieve uniform load distribution. 

 

Figures 4.4 and 4.5 show the algorithm in action. This strategy starts in replication 

mode (line 9), where one request is assigned to all servers. During the mode, 
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replication is achieved by only increasing request index (reqIdx) once a request is 

assigned to all servers (line 57-59). If the cluster size is big then replication could be 

reduced to k servers with a minor change in the algorithm. Objects assigned during 

replication mode are given STABLE_TTL (line 33-38), so they tend to outlive other 

cached objects stored with smaller TTL. The effective replication (ER) factor is 

computed during initialization (line 11-13). Upon reaching the effective replication 

threshold (line 51 - 54) the strategy switches to distribution mode (line 56). From here 

on, the algorithm works just like our basic distribution strategy. This algorithm (Figures 

4.5 and 4.6) with the replication ad-on is shown below. The enhancements are 

highlighted. 

Initialization 
 

 
1 numServers      = 3      //number of servers 

2 currentServer   = 0      //server chosen for policy 

3 reqIdx          = 0      //Current Request index 

 

4 CacheSize       = 5000   //from configuration file 

 

5 totalObjAlllocated = 0    

6 objectAlloc[] = [0]      //0 objects allocated initially on each server 

7 maxObjectAlloc[] = [CacheSize]   //maximum objects allowed per server 

8 MAX_ALLOC_DIVISOR = 3    // or whatever configured 

9 repMode = true   //replication mode or distribution mode 

10 uniqueObjects = getUniqueObjects()  //unique object count 

11 OPS = uniqueObjects/totalCapacity // objects per slot 

12 DR  = .1  // desired replication (configurable) 

13 ER  = DR/OPS // effective replication 

 

Figure 4.5:  Replication strategy initialization 
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Algorithm 

14 while totalObjAllocated < totalCapacity/MAX_ALLOC_DIVISOR and  

15       reqIdx < # of httpRequest 

16  

17 do 

18   //pick the next most frequently access request 

19  curReq = httpRequest[reqInd] 

20     

21  //get corresponding objects for this req 

22  objects = reqToResMap[curReq] 

23     

24  //check if the current server has the capacity to cache all objects 

25  if objAllocated[currentServer] + objects < maxObjAlloc[currentServer] then 

26  

27   //create loadbalancer rule for this request 

28   LBPolicy [curReq] = {currentServer} 

29      

30   //create a cache policy for each object 

31   foreach cacheKey in objects do 

32  

33    // Stable TTL if in replication mode else long TTL 

34    if repMode then 

35     currentServerASPolicy [cacheKey] = STABLE_TTL 

36    else 

37     currentServerASPolicy [cacheKey] = LONG_TTL 

38    end 

39   end 

40  

41   // update counters and move to next server 

42   objAllocated[currentServer] += # of new objects assigned 

43  

44   totalObjAllocated += # of new objects assigned 

45    

46   currentServer = (currentServer+1) % numServers 

47      

48   //update reqIdx based on repMode 

49   if repMode then 

50    //current replication factor 

51    repNow = totalObjAllocated/totalCapacity 

52  

53    //if we have reached effective replication switch mode 

54    if repNow >= ER then 

55     repMode = false 

56     reqIdx++; 

57    else if replicated on all servers then 

58     reqIdx++    //move to next popular request 

59    end 

60  

61   else  //not replication mode 

62    reqIdx++  //move to next popular request 

63   end 

64  else 

65   //choose another server as currentServer has max-out 

66   currentServer = (currentServer+1) % numServers; 

67      

68  end   

69  

70 end //main loop ends 

  

Figure 4.6:  Replication Strategy 

 



 

62 

4.5   Compact Assignment Strategy 

 

In the previous two strategies that we have discussed requests are assigned in a round 

robin fashion to our application server cluster. This round-robin placement of requests 

works really well since requests are sorted on frequency resulting in even load 

distribution. Each server in this scheme gets a fairly equal proportion of total request 

from the load balancer. However, since several requests could access an object, the 

object is unintentionally replicated to different servers. For example, if request R1 

accesses objects {a,b} and is assigned to application server A1, and request R2 

accesses objects {a,c,d} and is assigned to application server A2, then we have it 

redundantly replicated to two servers with the round-robin server selection. 

 

To overcome the above unintended redundancy, we propose a novel method called 

Compact Assignment Strategy where a request is assigned to a server that contains 

the most objects for the new request. Therefore, in the above example, R2 and the 

objects {c,d} are assigned to server A1. Hence, for the above case we save 1 unit of 

cache capacity. This compaction is beneficial if the cache capacity is small and several 

objects are accessed by many popular requests. Not employing this strategy for such 

situation would spread the same objects to different servers, thereby considerably 

reducing aggregate cache capacity. 

 

Now instead of round robin, the server selection for a request R1 accessing objects in 

Set O follows the following general rules: 

 

 Find the number of overlapping objects each server has with O, and arrange 

servers in descending order (i.e. server with the most overlap first). 

 Pick the top server and check if it can accommodate non-overlapping objects. If 

not, pick the next one in the list. This minimizes cache redundancy while at the 
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same time ensures that we don’t run over the cutoff set for allocation per 

cache. 

 If two or more servers have the same number of overlapping objects, pick the 

one with the least number of assigned objects to break tie. This contributes to 

more even assignment and prohibits a situation where one server is constantly 

assigned all the requests (and objects). 

 If no overlap is found then choose the one with the least number of assigned 

requests. This follows the same reasoning as the previous rule, but instead we 

choose request counter as a measure to even out the distribution. 

 

This server selection scheme is only used in the distribution phase of assignment. For 

the replication phase, we don’t care about compactness as the intent is redundancy, 

and simple round robin suffices. 

 

Figure 4.6 shows the enhanced algorithm with compact assignment strategy. The 

initialization is pretty much the same except now we maintain counters of request 

assigned per server (line 79). If we are in non-replication mode then we calculates the 

object overlap for each server (line 17-21) and choose the candidate server with the 

most overlap (line 24-28). We also tag objects (line 20) that are already assigned so 

that we do not assign them again (line 71-73). During this step we also discard the 

servers with not enough capacity for new objects. There is a high chance that more 

than two servers have the same overlap because of the replication phase that 

precedes distribution phase. We break such ties by selecting a candidate with fewer 

overall objects (line 30-37). If there is no overlap then we simply choose the one with 

least assigned request (line 44-53). The rest of the algorithm generates policies for the 

selected server. 
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Algorithm 
 

1 while totalObjAllocated < totalCapacity/MAX_ALLOC_DIVISOR and  

2      reqIdx < # of httpRequest do 

3   

4      //next most popular request and its objects 

5      curReq = httpRequest[reqInd] 

6      objects = reqToResMap[curReq] 

7   

8      candidateFound = false 

9   

10      //only used in Non-Rep Mode 
11      if not in repMode then 
12    matches[] = [0]         //initialize matches counter to 0 

13    candidateServer = undef //candidate Server index 

14    max = -1                //max overlap so far 

15   
16    foreach server in servers do 

17     //check for overlap and tag matched objects 

18     foreach cacheKey in objects do 

19      if cacheKey found in server then 

20                               alreadyAssigned.put(cacheKey) 
21       matches[server]++ 

22      end 

23     end 

24   
25     //check if the server has enough space left 

26     if matches[server] > max and objAllocated[server] +  

27                       objects - matches[server]) < maxObjAlloc[i] then 

28   
29      max = matches[server] 

30      candidateServer = server 

31   
32     else if matches[i] = max then 

33                        // break ties by choosing least assigned objects 
34      if cacheObjAllocated[server] <  

35                            cacheObjAllocated[candidateServer] then 

36   
37                                candidateServer = server 

38      end 

39     end 

40    end 

41   
42    if candidateServer is not undef then 

43     candidateFound = true 

44     currentServer = candidateServer 

45    else 

46     //find the least request-allocated server 

47     candidateServer = 0 

48     foreach server in servers do 

49      if reqAllocated[server] <  

50                        reqAllocated[candidateServer] then 

51   
52                    candidateServer = server 

53      end 

54     end 

55     currentServer = candidateServer 

56    end 

57       end 
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Continues… 

  

58 //check if the current server has the capacity to cache all objects 

59  if candidateFound or objAllocated[currentServer] + objects <  

60                         maxObjAlloc[currentServer] then 

61  

62   //create loadbalancer rule for this request 

63   LBPolicy [curReq] = {currentServer} 

64       

65   //create a cache policy for each object 

66   foreach cacheKey in objects do 

67   

68    // Stable TTL if in replication mode else long TTL 

69    if repMode then 

70     currentServerASPolicy [cacheKey] = STABLE_TTL 

71    else if cacheKey not in alreadyAssigned then 

72     currentServerASPolicy [cacheKey] = LONG_TTL 

73    end 

74   end 

75   

76   // update counters and move to next server 

77   objAllocated[currentServer] += # of objects assigned 

78   

79   totalObjAllocated += # of objects assigned 

80   

81    reqAllocated[currentServer]++ 

82     

83   currentServer = (currentServer+1) % numServers 

84       

85   //update reqIdx based on repMode 

86   if repMode then 

87    //current replication factor 

88    repNow = totalObjAllocated/totalCapacity 

89   

90    //if we have reached effective replication switch mode 

91    if repNow >= ER then 

92     repMode = false 

93     reqIdx++; 

94    else if replicated on all servers then 

95     reqIdx++    //move to next popular request 

96    end 

97   

98   else  //not replication mode 

99    reqIdx++  //move to next popular request 

100   end 

101   else 

102   //choose another server as currentServer has max-out 

103   currentServer = (currentServer+1) % numServers; 

104       

105   end   

106   

107 end //main loop ends 
 

 

 

 

 

Figure 4.7:  Compact assignment strategy 
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4.6   Supplementary Load Balancer Assignment 

 

So far, our assignment algorithms stop when the aggregate cache assignment reaches 

a given threshold. We do so to allow other types of request their fair share of cache, 

and to handle the unpredictability of the workload. In case of the replication strategy, 

the reserved cache space fills up much faster because of redundancy. This can be 

problematic as we are not accommodating other popular requests in our policies 

which may be queried frequently in the future. The load balancer treats any other 

request, for which there exist no rule, as an unpopular request and distributes it 

randomly or in round-robin fashion to all application servers. Subsequent requests, 

whenever forwarded to servers other than the original one (where corresponding 

objects were cached) are served much slowly because of remote fetching, which 

increases response time and creates unnecessary overhead on application servers. 

 

To remedy this situation we generate load balancer policies for unassigned but 

frequent requests, with no corresponding cache policies. The load balancer will now 

send all such requests to a particular server, thus avoiding remote calls. This 

supplemental strategy (Figure 5.6) could be added to all our algorithms. 

 

We introduce a new configurable variable LBUrlFreq (line 1) that specifies the 

minimum request frequency for which we generate additional load balancer policies. 

Setting its value to -1 disables this phase. The unassigned requests in our popular list 

having at least the LBUrlFreq frequency are assigned to application servers (line 12-

15). The least request-allocated server is chosen (line 9) to balance out any 

unevenness in previous phases. For non-compact strategies we simply stick to round-

robin selection.  
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4.7   Complexity 

 

The complexity of our algorithms is linear and all algorithms run in O(n) where n is the 

number of popular requests. In the first two strategies, the Basic Distribution and the 

Replication Strategy, the server selection is round robin which takes constant time. 

Also, any lookup in algorithm is from a hash map which is constant. The Compact 

Assignment Strategy, however, is a tad slower as it has to find the overlap. For S 

Algorithm 

1 if LbUrlFreq != -1 then 

2  
3   while reqIdx < # of httpRequest do 
4  

5   //pick current object 
6   curReq = httpRequest[reqInd] 

7    
8    //chose the least request-allocated server  

9   currentServer = getLeastAllocatedServer() 

10    
11   //only allocate if request frequency is more than LbUrlFreq 

12   if frequency of curReq >= LbUrlFreq then 

13       
14    //create loadbalancer rule for this request 
15    LBPolicy [curReq] = currentServer 
16   

17     //update request allocated counter 

18     reqAllocated[currentServer]++ 

19  

20    //move to the next request 
21    reqIdx++ 

22       
23   else 
24    break; 
25   end 
26  

27   end //while 

28  
29 end 

 

 

Figure 4.8:  Load Balancer-Only assignment 
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servers and O objects in the current request, this requires S * O hash lookups or 

O(S*N). As the number of objects accessed in any given request is usually not large, 

and the number of application servers is reasonably small, we contend that the 

selection of a candidate server is of acceptable speed. It is also worth noting that we 

don’t exhaust our full list of popular request, but only a limited subset. 

  

 

4.8   Simplified Policy Setup 

 

In some cases we may want to reduce complexity and overhead involved in managing 

policies at the application server. There are several scenarios where we can totally 

eliminate policy generation for the application server: 

 

 Replication is not required. The basic distribution algorithm distributes 

requests in a sticky manner, maximizing local cache hits. 

 

 There is no need for differentiated TTL values. Without application server 

policies all objects are stored with SHORT_TTL with equal chance of eviction. 

 

 A different caching implementation is used, which is totally oblivious of policies 

and thus a mere simplified load balancer-only strategy suffices. 

 

 The request distribution policies don’t really need a complimentary distributed 

cache environment. Even in non-distributed caching environment this would 

yield benefits similar to cookie based sticky connection. 
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Also note that if replication is needed, we can’t have an oblivious application server as 

our default behavior would not replicate objects retrieved from remote cache. Just 

like above, we can have a setup where we only generate caching policies without 

caring for request distribution. Possible scenarios could be 

 

 Popular requests are replicated to all servers. Sending such requests to any 

server would be served totally by the local server. Here, we keep the 

replication threshold high enough so that most popular requests are replicated 

leaving no space for the distribution. 

 

 The application servers are running in a virtual environment hosted on the 

same physical machine with close to none communication latency. The elastic 

server setup in Amazon EC2 [25]  is such a configuration. In this case remote 

fetch would be nearly as fast as local fetch except for the indirection cost. We 

can generate caching policies that would make full use of the aggregate cache 

capacity. 
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Chapter 5 

5 Experimental Results 

 

5.1 Introduction 

 

This chapter evaluates the request-centric strategies discussed in the last chapter. We 

first describe the hardware and software environment used for the experiments. Then 

we give a brief overview of the benchmark we used and the implementation details of 

our infrastructure. After that we show and compare performance results obtained 

from different strategies and test configurations. 

 

 

5.2 Experimental Test Bed 

 

We conducted our experiments on a cluster of 9 nodes. We used a dedicated machine 

for each of our servers, namely, the load balancer, the application servers (from 3 to 5 

instances), the database server, the analysis server, and the client. The hardware and 

OS specification of all the nodes in our cluster is identical and is shown in Figure 5.1 
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CPU Intel(R) Core(TM)2 CPU 6700 @ 2.66GHz 

RAM 8 GB 667MHz memory 

Network card Intel 82540EM Gigabit Ethernet Controller 

Network switch 3Com Baseline Switch 2948 SFP 1Gbps 

Operating System Fedora Linux Distribution 

 

 

All the nodes are diskless and access the same disk (Seagate Cheetah Ultra320 15K 

RPM Hot-Plug Drive) over LAN. We have used JBoss 5.1 as our application server. Each 

instance of the JBoss application server runs on its own separate node but accesses 

the same disk (where instances are installed). The application servers run on the 64bit 

version of Java Development Kit 1.6 (JDK 1.6) and Java Enterprise Edition 1.5 (Java EE 

5). We have used PostgresSQL 8.4.1 (64 bit) as our database server. 

 

5.2.1 Implementation Details 

 

The load balancer is behind the application servers and is the only point of access to 

the application for the clients. We have used Apache 2.0 web server with the load 

balancing module. The default load balancing algorithm is weighted round-robin. Since 

the serving capacity of each server is identical we have given each server the same 

weight (i.e. 1:1:1 for 3 servers). When the load balancer server receives the policy it 

uses the request counting algorithm [26], which works in the following way 

 For each application server an lbstatus variable is kept, initialized to 0, for 

request counting. The lbstatus of the chosen target server is decreased by 

number of servers – 1, while lbstatus of all other servers is increased by 1. 

 If there is a rule for the incoming request the load balancer sends the request 
to the target server. 
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 If there is no rule for the incoming request, the candidate target server is 

chosen with the highest lbstatus. This ensures that the server least requested is 

chosen for an unassigned request. 

 

The analysis server runs on a dedicated machine, configured to receive remote logs 

from application servers. We have used the remote logging capability of the Log4J 

logging library [27], which is very efficient. Log4J creates a persistent TCP connection 

between each application server and the analysis server for remote logging. 

 

5.2.2   Benchmarking Suite 

 

To evaluate the performance of our algorithms we have used a RUBiS benchmarking 

suite [28]. RUBiS is a prototype implementation of an auction site modeled after Ebay 

(ebay.com), and is primarily used to measure application server performance and 

scalability. This benchmark is comprised of the following two main components: 

 

RUBiS Application 

RUBiS comes with a web application built on the Java Servlet API for request 

processing. This application is interactive and just provides basic auction site 

functionality without cluttering the UI. Hibernate is used as data access layer, and is 

plugged with our enhanced version of EhCache (with distribution and replication 

support).  

 

Client Emulator 

To test the RUBiS application a benchmarking tool is provided, called Client Emulator. 

It is a workload generation tool that emulates several clients’ sessions running 

concurrently. We are only concerned with read-only requests, thus we use the 
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browsing mix workload for our experiments. In this workload a typical client session 

starts with logging into the site, and then browsing different categories, regions, 

items, bids, comments, and user profiles before logging out. The client emulator 

parses the response it receives for a client request, finds all links that it can follow to 

emulate the next user interaction. The emulated client waits for on average 7 seconds 

before issuing another request. This wait time is called Think Time and it is kept to 

mimic a human interaction on a website.  

5.3 Methodology 

 

We have done several experiments to analyze the performance of our strategies 

against the simple cooperative cache and the standalone EhCache models. All our 

experiments were run for about an hour using the client emulator for different client 

and cache configurations. To get reasonably good approximation of performance 

statistics we only present the results obtained during the stable runtime, which 

excludes the initial 30% of time spent on cache warm-up and the last 20% of time on 

cool down. The workload for our experiment only consists of read-only requests, and 

hence the database remains unchanged throughout a run and for subsequent 

experiments. The size of our database is about 1 GB while the default size of each 

individual application level cache is 60MB. 

 

For fair comparison among different caching systems and our strategies we have kept 

the cache and client configuration the same. Our strategies are implemented on top of 

cooperative cache. If the application server is running without any cache policy, it 

behaves just like the cooperative cache and does not replicate anything. Moreover, 

since we have used a singleton cache instance for all entity types in the cooperative 

cache (and for strategy runs), we have modified the EhCache to use singleton cache, 

too. 
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5.4 Motivation 

 
The purpose of our experiments is to confirm our theoretical reasoning for strategies. 

As we have discussed in the last chapters, the cooperative cache reduces backend 

database calls but does not yield the optimal response time due to remote cache hits. 

Before we move to runtime results it is important to know the factors that affect and 

differentiate our algorithms from other basic approaches. First of all, we put emphasis 

on cache hit-rate, and in particular the local cache hit-rate. Figure 5.1 illustrates this 

point with the latency we obtained for a typical local and remote fetch operation. 

 

Figure 5.1:  Comparison of local and remote cache access latency 

 

The difference between a local cache access and a remote one is quite large. In fact, 

we can access about 8 objects from the local cache for the time it takes to access one 

object from a remote cache. Thus, we have put emphasis on local cache access. It is 

worth mentioning that under heavy network usage, the remote call latency would go 

up as it is dependent on network IO, while local cache access latency would remain 

pretty much constant. Similarly, the database access latency varies much like this. 

Under minimal load on the database server, the database latency is comparable to 
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that of a remote cache access. Under heavy load it is much higher. If the database 

saturates, the response time could go up to tens of seconds. 

 

5.5   Experimental Results 

 
Our first experiment demonstrates the advantage of a clustered cache against 

standalone cache. Figure 5.2 primarily illustrates how the cooperative cache performs 

against EhCache on a cluster of 3 nodes with round-robin load balancing for 600 and 

900 concurrent clients. 

 

Figure 5.2: Average response time for different caching schemes 

 

It is evident from the figure that clustering application server caches does help greatly 

and gives the application an immediate performance boost. For smaller workload of 

600 clients, both caching schemes result in less than 15ms response time with 

cooperative cache approximately 36% faster. However, for 900 clients’ workload, the 

average response time for a non-clustered EhCache is over 1.5sec, while it is under 

16ms for the basic cooperative cache which is about 100 times faster. This 
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performance gain is because of a much bigger application level cache (3 times) for the 

cooperative cache because of cache clustering. The application with a standalone 

EhCache saturates at this point because of frequent cache misses overloading the 

database. The saturation is evident from Figure 5.3 which clearly shows lesser 

throughput for EhCache compared to the cooperative cache for 900 clients. 

 

Figure 5.2: Throughput for different caching schemes 

 

5.5.1   General Comparison 

 

We did experiments with different number of clients to see how our strategies 

perform under various workloads. Figure 5.3 shows the average response time for 

cooperative cache and our different strategies from 900 to 2000 clients. In this 

comparison we have the basic distribution strategy with no replication (DistOnly), the 

compact assignment strategy with 10% replication (CompactDistRep), and the 

compact assignment strategy with no replication, which essentially makes it compact 

distribution strategy (CompactDistOnly). In all these strategies, assignment was 

capped to half of the cache. 
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Figure 5.3: Response time of strategies for different clients 

 

The cooperative cache with its round-robin load balancing algorithm performed well 

under 1500 clients, after which the average response time shot up.  For 1800 clients, 

the cooperative cache reached its highest throughput but couldn’t maintain it for 2000 

clients where it saturated and response time went over 1.5 seconds. All our three 

strategies performed better than the cooperative cache for all loads primarily because 

of our content-aware load distribution. These strategies performed seamlessly well 

under 1800 clients’ load but couldn’t maintain the same fast response time for 2000 

clients when cache evictions increased resulting in increased database activity. 
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Nonetheless, the response times for all of the strategies remained faster than that of 

cooperative cache for 1800 because of higher local cache-hits. The CompactDistRep 

did fairly well but always underperformed compared to the other two strategies. This 

is because with replication, the total number of popular requests that were being 

assigned to application servers was less than non-replication strategies. Consequently, 

when replication strategy came close to saturation its response time was about 30% 

slower than distribution strategies. 

 

The DistOnly strategy and the CompactDistOnly strategy performed equally well for 

smaller number of clients, with average response time less than 16 milliseconds till 

1800 clients. For 2000 clients load, the average response time jumped for both these 

strategies. In this case, the CompactDistOnly strategy performed 10% better than 

DistOnly strategy because the load balancer was able to send requests to a server with 

a greater chance of local cache hits. However, we couldn’t see the anticipated 

improvement from compact assignment because of the simplistic nature of the RUBiS 

web application where not a lot of requests access common objects. But we still do 

contend that with applications where there is a greater overlap of resources in 

requests the compact assignment would be able to localize requests better. 

 

5.5.2   Compact vs. Round-Robin Assignment 

 

Next we did an experiment to see the benefits of the compact assignment over a naïve 

round-robin assignment during policy generation (see Section 4.5 and 4.6 of Chapter 

4). Our intent here is to show compactness by way of number of policies generated 

with the same configuration. Figure 5.3 shows the number of load balancer rules 

generated for each server with round-robin and compact assignment. With round-

robin assignment we reach the cache cap faster than compact assignment and the 

algorithm stops further policy generation. This is because the round-robin assignment 
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overlooks already assigned objects and inadvertently replicates them to other servers, 

while compact assignment avoids this redundancy resulting in the generation of 4.2% 

more rules. 

 

Figure 5.4: Round-Robin vs. Compact Assignment Strategy 

 

Another insightful result of the policy distribution in Figure 5.4 data table is the 

uniformity of compact assignment. The number of rules generated for each target 

server is very close to each other with the standard deviation of 3.05 rules. This asserts 

that compact assignment does a fairly good job at generating even yet compact 

distribution. On contrary, the distribution from round-robin is ought to be even 

because of its very nature. For 1800 clients, the average response time for compact 

and round-robin assignment strategy was 21 and 24 milliseconds, respectively. Clearly, 

the compact assignment strategy performed better, with about 12.5% faster response 

time than the round-robin assignment. We can attribute this improvement to the 4.2% 
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additional rules that compact assignment was able to localize to specific servers 

resulting in more local cache-hits. 

5.5.3   Cache Capping for Assignment 

 

To measure the behavior of capping the cache for assignment we performed another 

experiment by varying the cap. This way, the assignment continued longer and 

generated more policies. The Figure 5.5 illustrates the effect of a larger cap on 

response time when benchmarked for 2000 clients. 

 

Figure 5.5: Avg. response time variation because of cache capping 

 

The compact assignment algorithm performed better when the cap was changed from 

a quarter of the cache to half of the cache, by approximately 40%. This is mainly 

because raising the cap generated twice as many policies per server which helped the 

load balancer to localize more request to specific servers. Without any cap, we saw a 

further improvement of 11% over half cache cap. The response time for the simple 

cooperative cache was much higher, and is shown here to compare the effect of 
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content aware load balancing against round-robin one. Figure 5.6 shows the 

proportion of local to remote cache hits for each scenario. 

 

Figure 5.6: Ratio of local to remote cache hits 

 

In the cooperative cache, we got 61% local cache-hit which is not as good as any of our 

strategies. When the assignment was restricted to 1/4th of the cache the local cache 

hit-rate improved to about 79%. We were able to squeeze out more local cache-hits 

when the cap was doubled. In this case, local cache hit-rate got up to 85%. When we 

removed the cap altogether the local cache-hit rate got up to 86%, a slight increase 

but good enough to give us an 11% improvement in average response time. From 

analysis log, we also found out that when the cap was set to half the strategy was able 

to generate policies for all requests that were accessed 5 times or more thus removing 

the cap resulted in little improvement. 
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5.5.4   Scalability 

Our next two experiments are geared towards scalability. In the first case, we ran our 

experiment on a cluster of 3 application servers and then on 5 application servers with 

identical cache and client configuration. As intended, the addition of 2 more nodes to 

the application tier gave us smaller response time. Figure 5.5 shows this improvement 

in average response time of the cooperative cache and the compact strategy for 1800 

and 2000 clients. 

 

Figure 5.7: Avg. response time for 3 and 5 servers 

 

The response time fell for both the cooperative cache and the compact strategy. The 

improvement is appreciable in case of cooperative cache, where response time 

dropped by 93% and 97% for 1800 and 2000 clients, respectively. This plunge in 

response time is because of the increase in aggregate cache capacity with the addition 

of 2 nodes resulting in higher hit-rate and fewer evictions.  And because of higher hit-

ratio the database was accessed less frequently in 5 servers than 3 servers, bumping 

up the throughput by nearly 8% in case of 2000 clients. We also witnessed good 
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improvement for our strategy, where response time for 5 servers was 96% faster than 

that of 3 servers, and about 54% faster than that of cooperative cache for 5 servers, 

for 2000 clients. The result clearly demonstrates scalability when cluster size was 

increased and also shows that strategy performed better than cooperative cache 

because of more local cache hits. 

 

Since the addition of nodes essentially increased the aggregate cache size, we 

performed another experiment by keeping the cluster size to 3 nodes and increasing 

the cache size. We chose the basic distribution strategy for this one and ran 

experiments for 2000 clients with 60MB and 110MB caches and 1/4th cache cap. 

Figure 5.8 shows the average response time for the mentioned configuration. We 

observed an improvement of 84% in case of the cooperative cache and about 94% in 

case of our distribution strategy. We can clearly see that increasing the cache capacity 

has a direct impact on the response time for both the cases. The cache statistics also 

showed an increase of 27% in the local cache hit-rate and a decrease of 15% in remote 

cache hit-rate for our distribution strategy which asserts that most of the request 

were satisfied from the cache and particularly, the local cache. 

 

Figure 5.8: Effect of cache capacity on response time 
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5.5.5   Replication 

 

In Section 5.5.1 we found that Replication strategy didn’t perform that well compared 

to distribution strategies because the application servers never got saturated as RUBiS 

application has a very simple business logic. Therefore, we modified the RUBiS 

application to perform some CPU intensive task. For this, we introduced a non 

functional CPU task in BrowseCategories request to emulate complex business logic. 

We also modified the workload so that this request was accessed more often making it 

a popular request suitable for replication. Figure 5.9 shows the improvement when 

popular requests were replicated, for 2000 clients with the modified workload. It is 

evident that distributing a popular resource-hungry request to just one server 

performs worse than replicating it on multiple servers. The total average response 

time in the case of replication was 3 times faster than that of Distribution-Only 

strategy. 

 

Figure 5.9: Popular replicated strategy against distribution only strategy 
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In the case of only distribution, the BrowseCategories request got assigned to 

application server 1 while in the case of replication, it was assigned to all three 

application servers (with corresponding objects replicated). The Distribution-Only 

strategy resulted in saturation of application server 1, whose CPU became the 

bottleneck, shooting up the average response time to 117 milliseconds for the 

BrowseCategories request. Also in this case, other application servers were 

underutilized. On contrary, when BrowseCategories requests were served by multiple 

servers, none of the application servers got saturated resulting in a much faster 

response time of 37 milliseconds. Hence, we argue that it is much better strategy to 

replicate resource intensive popular requests to avoid imbalance in cluster 

performance and utilization. 

 

5.5.6   Total Database Cacheability 

Sometimes the database is not big and there is enough aggregate cache capacity to 

permanently store almost 100% of the database into the cache. For such a scenario, 

we evaluate the performance of our strategy against the naïve cooperative cache. We 

chose a smaller database that could be completely cached in approximately 105 MB of 

aggregate cache (about 35MB per application server). Figure 5.10 shows the average 

response for cooperative cache and compact strategy for different workloads. 

Figure 5.10: Strategy vs. Cooperative Cache on smaller database 
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After the cache warm up the requests were mostly served from the cache, either local 

or remote. In case of the cooperative cache, we observed an even hit-rate for local 

and remote caches, while for the compact strategy the local hit-rate was more than 9 

times the remote hit-rate, which explains why the compact strategy always trumped 

the cooperative cache. For 2000 and 2500 client workloads, the compact strategy 

resulted in an 82% and 89% faster response time, respectively. Nonetheless, the 

cooperative cache was able to gracefully handle workload of 2500 concurrent clients 

with the throughput of about 350 requests per second, nearly equal to that of the 

compact strategy. The cooperative strategy saturated at 3000 clients while our 

strategy was still able to handle this workload, which clearly underscores the 

importance of local cache-hits. Since database access is almost none, the saturation of 

the cooperative cache for 3000 concurrent clients is attributed to overwhelming 

increase in remote cache accesses adversely affecting the network latency per remote 

call. At this point the throughput fell by 15% for the cooperative cache while it jumped 

to about 427 requests per seconds for our strategy, indicating that content-aware 

request distribution is essential for achieving high throughputs. 
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Chapter 6 

6 Conclusions and Future Work 

 

 

6.1 Conclusions 

 

Performance and scalability of multi-tier internet applications have been an active 

research area as these applications are frequently overwhelmed by an ever increasing 

user base. Since most of the requests are dynamic in nature and require frequent 

access to the database, the throughput of a multi-tier application starts to suffer as 

database becomes the bottleneck. In this thesis, we address these concerns with a 

holistic caching infrastructure that seeks to improve application performance and 

enables scalability. 

 

We reduce the bottleneck on the database server by exploiting a distributed cluster-

wide application cache, having aggregate capacity much larger than the individual 

cache, where objects are retrieved from the remote application server cache if they 

are not found locally. In this thesis we added the support for object replication to this 

distributed cache, so that popular objects could be accessed from multiple servers 
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enabling better cluster utilization in case of frequent popular requests. On top of it, we 

built an application monitoring tool that transparently logs request and cache statistics 

on a remote analysis server. These logs are processed and analyzed at the analysis 

server which then generates request distribution policies for the load balancer and 

caching policies for the application servers. These policies are intended to reduce 

latency involved in remote cache access by mapping requests to servers in such a way 

that maximizes local cache-hits. On one hand our monitoring and analysis framework 

is application-unaware and requires no changes in the application, while on the other 

it generates content-aware policies for better performance. 

 

In this thesis we focused on request-centric analysis, where we identify popular 

requests and assign them to specific application server. Our first algorithm, the basic 

distribution algorithm, assigns popular requests to servers in a round-robin fashion. 

Next we develop a replication and distribution strategy where the most popular 

requests are assigned to multiple servers while the others are distributed. Finally, we 

build a compact assignment strategy where a request is assigned to a server 

containing the maximum number of associated objects, thereby avoiding unintended 

object replication occurring with round-robin assignment. All our strategies are 

extensible and can be easily configured for optimal policies. 

 

We analyzed the benefits of our strategies with the RUBiS benchmark. All our 

strategies were able to improve application performance under various workloads 

when compared to the base cooperative cache environment. The application was also 

able to scale much better under peak workload when policies were applied and 

yielded a better throughput and response time than the cooperative cache.  
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6.2 Future Work 

 

The holistic caching infrastructure is very extensible and amenable for a wide range of 

analysis. For example, one could make use of the request tracing ability of our system 

to identify user session activity from application access patterns for usability and 

security analysis. 

 

The analysis could also incorporate other parameters that we log such as average 

request processing time to filter out requests which are executed faster while 

prioritizing bottleneck requests during policy generation phase. 

 

In this thesis we have focused on read-only workloads and have not looked at 

consistency issues involved with object replication in a read-write workload. We 

believe that consistency mechanisms could be enforced in our caching infrastructure 

by cache invalidation or update propagation to other caches. 
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