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A lone tug hauls gigantic log booms 

down the Saguenay River. 



S U ~ M A R Y • 

A theory has oeen de·:eloped to predict a shape of a tow ed 

boom of logs, where the logs are treated as a continuum which 

transmits only normal stresses. It is assumed that t he wood 

is sufficiently moved by the water that it does not support any 

shearing stre~ses. It is found that if t he s ki n friction be tween 

the bottom of the raft and the water is a s sumed to be constant, 

the shape of the boom is one of the single-par ameter f amily of 

elasticas. The solution can be obta ined in t e r ms of elliptical 

integrals. Shapes of symme trical singl e boom, tandem of booms 

joined at one point and symmetrical cinched boom have been suc

cesfully obtained and now the theory has been extentied to pre

dict the s '.ape of an unsym~etrical t andem o f booms joinea at 

t wo points. 

An attemp t has be en mad e to con9are theory with experime n

tal results and th e response of the s hape of the boom to a chan

ge in its par ame ter s has been studied. 
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l.INTRODUCTION 

1.1. History of Related ~.:ork. 

Transportation of pulpwood on the lakes and along the. 

seashore has received much less attention then the much ~ore 

spectacular river drive. Very few refferences to this subject 

can be found. The huge rafts must be moved over long stretches 

of water by mechanical means. On shallow lakes the rafts are 

winched across by special winch boats. Large powerful tugs 

are used on Great lakes or when moving the rafts along the 

seashore. One of the best works on different types of rafts 

-- usea in Canada is (2). 

However, it is mostly desc~iptive, goes into considerable 

detail in spots, but is very sketchy elswhere. It provides 

a useful information about how the booms are constructed, 

studies different types of rafts as used in di ferent parts 

of t he country and provides a method for determining the volume 

of the wood in the raft. Wind f orce on the raft and the loss 

of wood during the tow are also considered. 

In Canada, especially i n eastern part, the woo d is often 

transported as a loose floating raft, s urrounded by a boom 

of large timbers, up to 30 feet long. Sometimes, several 

timbers must be bolted together to achieve a sufficient 
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diameter. These are then joined by chaines to form the 

complete boom. 

The rafts are usually made up at the mouth of the river, 

where it empties into the lake. The wood flows freely down

stream into the boom thet is anchored to the banks. The boom 

is then closed and forms a circular raft, which is joined by 

a cable to the towing boat. When the towing starts, the wood 

moves to the rear and piles up three or four logs deep at 

the end with open water at. the front. The boom now assumes 

the characteristic oval shape. 

The Forest Work Studies Section of the Cent~al Association 

- of ·finish Woodworking Industries conducted a research on 

timber raft drag in 1950. 

Study of factors affecting the car.acity of the rafting 

vessel has been included. It is shown that the towage expenses 

can be reduced by 25% by using larger bundles if the constant 

speed and a constant traction power is employed. The great 

advantage of large size rafts lies in the fact that the resis~ance 

of the raft .. i.ncreases more slowly than its size grO'liS. 

At too high speeds (implying that the size of the raft 

is inadequate) the increase in costs may easily total 50 %. 
However, the boat can be so powerful that adequate raft cannot 

be built because the waterway may not allow the pasage of so 
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big a raft. This can be avoided if the raft is either 

cinched, or tandem of rafts is used, in which case the same 
amount of wood can be transported but the w·idth of the raft 

is considerably reduced. 

1.2~ Reasons for Investigation. 

As stated before, cost of transportation can be reduced 
by using larger rafts, but this pres ents problems if the water
passage is narrow and then· the exact knowledge of the shape 
and of the dimensions of the raft is necessary to determine 
how much wood in what manner can be transported. 

1.3. Range of Investigation. 

A theory has been developed in (1) to predict the shape 

of a single boom. Alco an approximate relation for the geometry 
of the boom in terms of the maximum number of logs a boom 
can hold was obtained. The theory then has been extended to 
predict the distortion of t he boom if a second raft is attached 
and to give the shape of a boom that was cinched by an auxiliary 
boom. In the present paper t he t he ory de vel opea in (1 ) is 

further extended to predict t he shape of a n unsymmetrical 

tandem of booms when the trailing boom is attached at t wo points. 
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Then different symmetrical cases are studied to find the gen~ral 

behaviour of the tandem of booms, when some of the parameters 

are changed. 
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2. THEORY .. 

2.1. Assumptions Made about the Problem. 

If a raft is towed in a straight line at a constant 

speed, the followi~assumptions are utilized as stated in (1): 

a) The aerodynamic, as distinct from t he hydrodynamic forces, 

on the boom may be neglected. (The typical towing speed is 

1 m.p.h.). 

u 
b) The Froude Number 

9 
L , which is typically .01, is 

sufficiently small for wave drag to be neglected. This is 

somewbat . difficult to justify experim6ntally since there 

are fe~ available measurements on wide, flatbotto med, hulls; 

However the Froude number is very low, and aerial photographs 

of tows do not show any waves emanating from t t e boom. 

c) The lo~are so numerous (there are typically 105 to 106 

1ogs in a full scale boom of pulp wood) that they may be 

replaced by a continuum. 

d) The shearing stresces tran.smi tted from one group of logs 

to another are continually changing in magnitude and 

direction due to the movement of water around them so that 

the continuum has no shearing stresses vdthin it. 
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e) The boom, which in reality is formed by joining together 

boom sticks with chains, may be treated as a fl .-exi ble 

rope, which itself does not experience any hydrod~rnanic 

force. 

• 

f) The hydrodynamic skin friction on the bottom of the raft 

is . constant and independent of position. This assumption 

is justified on the grounds Xhat the logs probably present 

a fully-rough condition to the turbulent boundary layer 

which grows on the underside of the raft. Moreover since 

the logs pile up towards the rear of the boom, the roughness 

appropriately increases with x. 

2.2. Equation of an Elastica. 

The following is an outline of the theory whic h was 

developed for a single boom in (1). 

Consider a small element dx • dy of the continuum t owed 

in the water in -X -direction. 

To achieve equilibrium 

dcr 

JX =0 
where u is t he compressi ve force between the logs per unit 

length. 



- 7 -

Solving the equation : 

- (2.2.1) 

ani ev.aluating the constant 

u =Tx -(2.2.2) 

where x is measured from the leading edge of the wood as 

opposed to X which is measured fron the point of tow. 

Considering the boom itself 

Fig 2.2.1 

ucls--Tda 

T -- - (2.2.3) 
R 

where R =- ds is local radius of curvature of the boom. q8 

It follows that the s ha pe of the boom is given by an 

equation of the f orm 

)( 0( I 
R 

- (2.2.4) 
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which turns out to be the same as the equation governing 

a shape of a thin beam subjected to opposing loads at 

the ends - Fig. 2.2.2. 

p 

X 

p 
Fig. 2.2.2 

The problem has been solved (3) and the shape was called 

an 'elastica' . 

2.3. Length and Shape of an Elastica. 

Integrating the equation 2.2.3 following expression is 

obtained : 

or 

since 

.C)-;_y. 2 
L ./\ =-: T (sin o< -- s/n B) 

2 

X ::: V 2 k 2 (sin o< - .sin B) 

-k s/n 8 cLB dy ~ 

' V 2 (sin « - sin B) 

d'( . e 
-::::Sin 
ds 

- (2.3.1) 

- (2.3.2) 

- (2.3.3) 
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after some manipulation it is found that 

- (2.3.4) 

where F is the elliptical integral of the first kind 

. /rl -m2sln2</J ) -J d 1/J 
0 

E is the elliptical integral of the second kind 

~ 

jo-
o 

2 1 .. s1nO< 
m = 2. I 

and sin cp • { 1 '~' $t~ 8 ·; 2 
I t- Sin 0( 

From 2.3.2 the associated value of x is 

· x = 2 m~ cos cp - (2.3.5) 

The length of the elastica measured from the end to 

the general point e is : 

Thus the length of any part of the curve and the coordinates 

of points lying on it can be obtained if~ ' e and k are known. 
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2.4. Unsymmetrical Tandem of Booms Joined at Two Points. 

• 
It is quite COffimOn to attach a second boom, which trails 

the first one. They can either be joined at one point or the 

trailing boom can be attached at two places. This distorts 

the first boom in a manner illustrated in Fig. 2.4.1. 

In this cas e six parameters would be given - lengths of 

five non-dimensional parameters which specify the geometry of 

the boom are obtained · A. A ~ ~ ·Az)FA)FAJFA and 

The geometry of t he boom may be obtained implicitly from 

the resolution of forces at three points : A, M and N. 

Since the booms experience only normal forces, t he ten-

sion in each boom is constant. 

Junction A 

T, 
F 

X 

Fig. 2.4.2 
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Resolution of forces into their x and y components give s 

the following equations : 

- (2.4.1) 

- (2.4.2) 

Also the towing force must be equal to the total area, 

multiplied by the skin friction er : 

F ~ (A, + A2 ) T 
'-'.s or, in terms of "' . . 

l l 
A, + A2 = k, [cos~. + ~ cos oc 2 ] 

l 

k2 . 

1 
5100\

1 
= 

/, 2. . 
"If Stn «z. 

where and 

Junction H : 

- (2.4.3) 

(2.4.4) 

- (2.4.5) 

Since the trailing boom is not distorted in any way 

by some external forces, it is syiUmetrical about an offset 

axis par~l to x and joins the leading boom at an angle 8
2 

at both junctions M and N. 

P, 

Fig . 2.4.3 
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Again, resolution of forces i nto x and y components yields : 

where 

Junction N : 

. ..,.. 

By the same procedure 

k 2. T 
~ 3 

J -t' 

Fig . 2. 4 .4 

- (2.4.7) 

- (2.4.8) 

- (2.4.9) 

- ( 2. 4 .10) 

- (2. 4 .11) 
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- (2.4.12) 

• 

- (2.4.13) 

In relating l en g ths of the booms and areas of the rafts 

to the angles and tensions involved each boom has to be 

' b's considered separately and the x and y dist£¥lces (as and ) 

of the respective portions as indicated in Fig. 2.4.5 have 

to be found. 

The portion of the boom that is an elastica will be 

called s while the complete length of the boom will be de-

noted P. 

· ~ 

where 

where 

Length of the elastica i n boom l can b e c a l culat e a as 

S1 :: k, [F {m,,!) 
2. 

. 1 
m, =- ( I + ~tr'\ or.,) 2. sin cp, 

Leng th of the elastica i n bo om 2 : 

- (2.4.14) 

- (2.4.15) 
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Length of the elastica in boom 3 

- ( 2.4.16) 

. t+., =[ 1

1 

+ si.n f- 81)} ~ stn T 3 
+ ~tn oc3 

. [' + s,-, (- B~t )J l 
Stn ~lt = 

I + ~,, Q(J 

Length of the elastica in boom 4 : 

( 

. 1 
I -t 2.s lt'l 0( 2 ) .2 m, = 

- ( 2.4.17) 

- -]* . [I+ s/nf-Gs-) 
s 1 n lf"'k ~ 

Is I + sin «2. 

The distance a2 and b2 can be obtained from considering 

elastica s
3 

Fig. 2.4.6 
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.. 
- (2. 4 .18 ) 

- (2.4.19) 

Here it is assumed that the distortion of the boom is 

· not such that the part of the elastica in consideration would 

completely lie above or below the axis x'. 

If that was ' the case, than in the next equation the y 

coordinates would have to be subtracted from each other. 

- (2.4.20 ) 

- (2.4.21) 

I 
~2 ~ 2 mJ 1<3 cos cp~ (2.4.22) 

a2 = I )(,' - xll r 2 m3 k 3 I (,os cp 3 - cos cf>" ) I - ( 2. 4. 2 3 ) 

Now from elasticas 1 and 4 the following information is ob-

tained : 
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Fig. 2.4.7 

'1, ~ k 1 { 2E ( mtl 4> 1 ) - F (m 1 1 C/>1 ) } 

Y3 " k 1 ( 2 E (m, 1 f ) - F {m, d:J} 
fj

2 
~ kit [!.E ( m,_ 1 cf;s) - F { mlt J cp5 ) J 

'J" ~ k+ ( 2 E (m~, 1 f)- F ( ~ J f) j 

X I ~ 2 m, ~~ c 0 S cp, 

b 3 = ':1, - ':1 J 

• 

X 

- ( 2. 4. 24) 

- (2.4.25 ) 

- (2.4.26) 

- (2.4.27) 

- ( 2. 4. 28 ) 

- (2.4.29) 

- ( 2. 4. 30) 

- ( 2. 4 . 31) 

- (2.4. 32) 
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a2 - I le, - X4/ - (2. 4.33) ... 

bs 
- (2.4.34) a ~ 

I feu, 11( 
1 

+ fan «z 

Erom boom 2 a
3 

and a
4 

can be found 

Fig. 2.4.8 

- (2.4.35) 

~1o equations of two unknor.ns are obtained 

- (2.4.36) 

- (2.4.37) 

Hence a
3 

anci a
4 

can be sol ved for. 
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Now all t h e in f ormation needed for calculating t h e • 

lengths of the booms is avail able : 

P, = s, + a, (2.4.38) 
COS Q( I 

~ ~ 52. t qJ +a~ 

cos 82. 
- (2.4.39) 

13 ::t s 
3 

- (2.4.40) 

~ s't 
a, 

= t-
COS«2. 

- (2.4.41) 

It is also known t hat t h e force to tow the trailing 

boom is equal to t h e area of t h e second boom mul tiplied 

by t h e skin fric t ion 

- (2.4.42) 

or: - (2.4.43) 

The total area can be calculated using t h e equation 2.4.4. 

Hence t h e rela t ionsh i p between t h e geometry of t h e boom 

fiv e nondimensional parameters R PL R R 
VA'VA'VA)Vt\ 

and the 

and 
A, 
A2. 

has been determined. 

It does not seem possible to solve for the particular 

angles fro m t h ese equations. However, if t h e p rocedure is 
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reversed' for assumed values of <X 1' 0(2; 0( 3' e 1 and e 3 

the five nondimensional parame ters can be obtained in the 

foJlowing manner $: 

From equations 2.4.5, 2.4.8, 2. 4.9, 2.4.12, 2.4.13 and from 

equating expressions for 

k2. kl 

a 2 from equations 2.4.23 and 2.4.33 
k.,. the values of - , - , 

k, k, k, e4 and e 5 are calculated . 

Then lengths of elasticas s
1

, s
2

, s
3 

and s
4 

are obtained from 

equations 2.4.14, 2.4.15, 2.4.16 and 2.4.17. 

Equations 2.4. 20 ana 2.4.23 giv e values of b2 and a
2 

respectively, equations 2. 4 .24 to 2.4.34 giv e expressions for 

~ and distances a 3 and a 4 are given by equations 2.4.35 to 

-- 2.4-.-37 .. 

Finally equations 2.4. 38 to 2.4.41 yield expres s ions 

for lengths of the b ooms P
1

, P
2

, P
3 

and P
4

. Evaluation of 

2.4.43 gives the value of A2 and from equation 2.4.4 . A
1 

is 

obtained. Hence values of A, , P, , P.z. , PJ and B. are 
Az VA VA VA" VA 

determined. 

As can be seen from equation 2.4.4, t h e total area 

A1 + A2 varies prop ortionally with k
1

2 Therefore VA is 

proportional to k1 . Also fro m equations 2.4.14, 2.4.15, 

2.4.16 and 2.4.17 s1 ~ s 2 , s 3 , s 4 and therefore also p1 , p
2

, 

P3 and p 4 are proportional to ~ s ince they can be written as 
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s2. :: Zk, ( ~2 )F (mz 1 f) etc 

I 

then 

A, k~ (. .. ) P, k l (. ' . ) p2. ~~ ( ... ) 
etc - = - -;2 . - ::z 

A2. k: ( ... ) VA "· (. .. ) J 'lA k, ( ... ) 

kt. k3 . I<,. 
therefore if - , ana - are calculated, the value of k

1 k, k, k, 

itself does not change any of the five nondime nsional para-

~eters. In the computer program it is not carried along and 

values are calculated as if ~ is equal to 1. 
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3. DISCUS SION 

The theory presented in this paper was developped for 

an unsymmetrical case. However, in the first part of the 

co~puter program a system of nonlinear equations has to be 

solved. To obtain the solution, the external subprog r am 'XUX' 

is used. It smploys the Brown's method to give the results. 

Initial values of the unknowns have to be guessed. They are 

then compared and new values are assigned to the unkno \'.ns 

by the computer untill th e solution is obtained. 

Unfortunately, two of the unknown s appear as parts of 

the argument of the arcsin function. The subprogram c h ooses 

the new values of t he unknowns regar dless of the fact that 

the argument of arcsin must be less or equal to one. When 

the program was run it was always ter~inated prematurely 

because the argu~ ent of arcsin was greater than one. No other 

method for solving a system of nonli near equati ons was 

availabl e on t he computer and the subprogram presently used 

could not have be en modified. In the future surely some 

other method can be made a vailable, which avoids this 

problem or the 'XUX' (actually listed as 'AUX') subprogram 

can be modified by someone with enough expertise in computer 

programing . 
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Since t~e unsymmetrical solution could not have been 

obtained, the symmetrical cases are studied. The angle a 2 

is put equal to ~, and a little modificat i on in the 

subprogram •xux• is needed. 

Cases that are studi6d~e listed in the table 3.1. One 

•standard' case is picked and then the given para~eters are 

changed one by one to obtai n the ·response of the shape to 

these changes. Since the procedure is reversed , i.e. t h e 

values of . the angles are issumed, when in reality t he l eng ths 

of the b oom and areas of the rafts would be given, some of 

the chosen values are not possible in reality. In th i s case 

the prog ram is terminated prematurely and a message explai ning 

the p robl em is printed out. 

The shape of the boom when~.= 0 . 4 rad ., ~J = 0.5 rati., 

9, = 0.733 rad. and 83 = 1. 025 rad. is chosen as a •standard' 

case . and is presented in Fi g . 1. The area A
2 

of t h e trailing 

raft i s a b out one half of Lhe area A
1 

and the lead ing edg e 

of th e wood is fairly close to the towing point (or in the 

cas e of the second r a ft it follows quite c l ose behind the 

boom of the first raft). The length o f the boom P
3 

(spacing 

between poin~M and N) is about 1/3 of P
1

. This would be the 

most probable way of attaching the trailing boom . 

• 
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The first angle that is varied is 8
3

. T ~ e shape proves to 

be very sensitive to eve n very slight changes. Especially 

the distance by which the second raft trails the first one 

i.e. the length of the boom P2 varies greatly. It is very 

closely related to chang~s in the angle 91 , as is found in 

latter cases.· When the angle 81 increases, the trailing 

: boom moves farther and farther back as can be seen from 

figures 3.2 and 3.3 when 8
3 

was cho sen 1. 03 rad. and 1.1 r a d., 

respectively. Physically, i _ncreasi ng t e angle 8 
3 

mea ns t ha t 

the tension in t he boom P2 takes on larger value of the 

reaction to t he tension in t he boom 1, sinc e the direction 

of the tension in the boom 3 moves closer to being perpendicular 

to the dir e ction of the te nsion in the ooom 1. This could be 

done only by making angle e2 s maller, while keepi ng the ar ea 

A2 uncha nged, which is indeed the case. 

When 9 
3 

is made smaller, th e second raft moves closer 

to the first one, till it actually becomes embedded in it, 

which is obviously i mpossible i n reality. 

Interesting re s ults are obtained, when t he angle o<. 3 is 

va-ried. The shapes of the booms when ~ 3 a s sumes values of 

0.6 radians and 1. 05 radians are indicated on Fig. 3.4 and 

3.5, respectively. The s hape is almost insensitive to t he 
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changes in t~ e range fr om 0.5 radians to 1.05 radians. The 

leading edges of the wood are alnost in t he same place and 

points of attachement of the second raft remain approximately 

the same. The shape only lengthens very slightly a s CX 
3 

increases. 

The :r-atio of the areas A
1 

and A2 proves to be sensitive 

to changes in 81 as indicated in Fig. 3.6 and 3.7 where 81 

is changed to 0.73 rac:i . and 0.72 rad ., respectively. Horever, 

this cha~ge has to be accompanied by a ppropriate changes in 

9
3 , otherwise solutions which are not realistic are obtained 

in most cases. It is found, that as 8
1 

decreases, 

made larger and vice versa. 

8..., mus t be 
:; 

Physically, an increase i n t he tension in the boo' P
2 

cause s the angle 8 1 to de crease. Since the t en sion in the 

boom is directly JrOportional to the square root of the area 

of the raft, it is expec ted that A2 would also increase . 

That is indeed the case, as i ndi cated i n Fig. 3.6 and 3.7, 

where A2 increases to 2/3 of A
1 

in the first cas e and 

approximately equals A1 in the latter . 

Finally the same values are assumed as in Fi g . 3.7 but 

~lis changed to 0.39 r ad ians - Fig. 3 .8 . The ar eas 

remained in approximatel y the same r atio, only the boom P
3 

• 
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became longer. The leaci~g edge of the wood in the leading 

raft moved back, wDich is exactly . what we would expect, 

since a decrease in value of ~l' is caused either by smaller 

area of the leading raft or by greater distance between the 

raft and the point of towing. 
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4. C0.1 CLU SI o:: 

The g ~ neral theory has been exte.ded t o predict the shape 

of the tanriem of booms, t owed by a single boat. With six 

assumptions, the shape of the rafts is shown to consist of 

a single-parameter family of elasticas joined by straight 

lines to the point of t owing or to the· attachem ent. 

Four of these assumptions ar e probably a cce ptable without 

questioni ng . The remaini ng two, however, are more doubtful. 

Neglecting t e shear str esses within the continuum and t he 

constancy of the hydrodynamic s kin friction have not yet been 

checked e ~perimentally. If the skin fricti on of the seco_d 

~aft is less due to turbul~nt conditions, then compared to 

the reality the theory would tend to predict smaller area of 

the trailing raft for the same tens ion in the boom. 

Howevert two fullscale measurements and the model tests 

showed that the theory is capable of predicting the shape 

of a boom with a good accuracy. The model tests were made 

using the facilities of the De par tment of Civil Engineering 

at Queen's University, Ontario. The logs were 3/8 ins. in 

diameter and 2 3/8 ins. long cut from rough oak dowel. 

The boomsticks were 6 7/10 ins. long . The details of t he 

te s ts m-e described in (1). The full scale test was made in 

• 
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the Baie de Chaleur in very light winds. The geometry of 

a single boom very closely agreed with that predicted by 

the theory. The details of the survey can be found in (4). 

Unfortunately, no accurate survey has been made for 

a tandem cif booms. The only accessible survey of the two 

rafts is Fig. 4.1. However, the surveying was done in 

a · manner that did not allow good accuracy. Apparatus was 

held in hand by men stationed on the booms that were conti

nually moving. The resulting shape can hardly be very 

accurate, in fact, it is quite doubtful. The best method 

to find suitable fullscale comparisons is by taking aerial 

photographs. In the future it would be desirable to do so 

as a more stringent test of the assumptions. 

In the future the theory can be further extended to 

predict the shape of the rafts, when wood is transported 

in bundles - usually five or six bundles joined together. 

If the assumption of a constant skin friction is dropped, 

then the theory can be utilized in predicting the shape 

when collecting oil slicks on the water surfaces. 
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0.4 0 . 5 0 . 733 1.025 Fi g . 3. 1 

-
0 . 4 0 . 5 0 .733 1.03 Fig . 3 .2 

0 . 4 0 . 5 0 .733 l.l Fig . 3 . 3 

0 . 4 0 . 6 0 . 733 1. 025 Fig . 3 -4 

0 .4 1. 05 0 . 733 1 .025 Fig . 3 . 5 

0 . 4 0 . :5 0 . 73 l . l Fig . 3.6 

0 . 4 0 .5 0 .72 1 .2 -, . 
.rlg . 3.7 

0. 39 0 . 5 0 . 72 1. 2 Fig . 3 .8 

Table 3 .1 
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A P P E N D I X 

Compu te r Program . 

The computer program is written for an unsymmetrica l 

case. The values of a, , « 2 , ~3 , 8, and BJ are fed in and 

the initial guesses ar e ma de for the unknowns. Th e subprogram 

'XUX' is called to solve a system of nonl inear equa t i ons, 

yielding the values of t he remaining angles and the r a tios 

of t he tensions in the boom s. The l eng ths of ~ h e booms a re 

calculated next. The t ota l area and t he ratio A
1 

and A
2 

are 

obtained and the l eng ths of t he booms are nondi mensionalized 

by dividing by th e square root of t he to t al ar ea. The eo-

ordinates o f t ne points, defini ng t he s hape o f the b oom are 

calculat ed last. 

Nomenclature 

Al o<
1 

etc 

ADl 

AMl 

AR 

ARl 

AR2 

ARR 

Bl 

CELl 

. . 
a

1 
etc 

~ etc 

A 

Al 

A2 

Al/A2 

b
1 

etc 

subroutine calrul a ting compl e te int -eg rals of 

the first k ind 
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CEL2 subroutine calculating complete integrals 

of the second kind 

EL!l subroutine calculating partial integrals 

ELI2 

Pl 

PHl 

Sl 

SA 

THl 

U(~) 

X(i ) 

X,Y 

of the first kind 

subroutine calculating pa rtial integ r a ls 

of the second kind 

P
1 

etc 

<P, etc 

9 1 etc 

th e cal cul at e d unknowns 

ini t i al val u e s 

co ordinate s 

• 
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'~ATCH WATFIV Y400000 7C0971-PRASIL(TI~E.PAC.ES) 

·······~~·~·~···~·*···~······················*··························· 

(1) SWATFIV Y4CCOOO 700971 PRAS{L.TI~E=lOoPAGES=10 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1 
2 
3 
4 100 

c 
c 
c 
c 
c 

5 
6 
7 
e 
9 

10 
l 1 
12 

1 3 
14 

c 
c 
c 
c 
c 

15 
16 
17 

1e 
19 
20 
21 
22 
23 
24 
25 
26 

c 
c 
c 
r 

***T~E SH~PE OF THE TANOE~ BCn~ OF LOGS*** 

• 
·~····*························································ 
THIS PRQGqAM P~EDICTS THE SHAPE OF AN ~~SY~~EfRICAL TANDEM OF 
BOO~S. FIRST, IT USES THE EXTERNAL SUBPRCGRAM IX~XI TO SCLVE 
A SYST~~ OF NONLINEAR EOLATIC S TC OBTAI~ T~~ VALUES OF THE 
RE~AI"~ING AIIGLESo THEN IT CALCULATES TI-'E RATIC CF THE TWC AREAS 
AND GIVES THE RATIOS OF THE LENGTHS Or T~c 8CCMS ro THE SQUARE 
ROOT OF THE TOTAL AREA. FINALLY IT PROCEED? TC CALCULATE AND PRINT 
OUT THE COORCINATES OF THE PCINTS OF Tr.E 6CCMS. 

IMPLICIT REAL*U(X,W) 
EXTERNAL XUX 
CI~E~SION X(7),WA(38),U(7) 
FORMAT(2r-12.3) 

INITIAL VALUES 

X(l}=1.00 
X(2)='5.00 
X(3)=7.00 
X(4)=7.t00 
X ( 5 ) = 3 • 30- 1 
X(6)=0.700 
XPS=l.0-3 
NSIG=.l 
N=6 
IT~AX=lOO 

SOLUTICN OF SYSTE~ OF NO~LINEAR EGUATICNS 

CALL ZSYST~(XUXoXPSoNSIGoNoXoiTMAXoWAoiER) 
U(2)=X(2) 
U(3)=X(3) 
U(4)=X(4} 
U(5)=X(5) 
U(6)=X(6) 
U(7)=X(l) 
Al=0.41 
A2=0.39 
AJ=.S 
TH1=0.73J 
TH3=1.025 

CALCULATION CF PARA~ETERS 
-- - · -- - -- - - - .. ·--·--- -·----- ·- -



27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

48 
49 
50 
51 

I 52 
53 
54 
55 
56 
57 
se 
59 
60 
Gl 
62 
63 
64 
65 
66 
67 
6e 
69 
70 
71 
72 
73 
74 
75 
76 
77 
1e 
79 
80 

.... 

c 

c 
c 

AM1=SO~T((t.+SIN(A1 ))/2.) 
AM2=SOnT( ( 1.+5liJ(U(5)) )/2.) 
AMJ=SoqT( ( t.+S[N(AJ) )/?..) 

AM4=SORT((1.+~1N(A2))/2.) 

- l~5 -

PHl=AnSI CSORT((t.+SIN(-THl))/(t.+SlN(Al)))) 
PH 3 =At~ S 1 N ( S 0 R T ( ( 1 • + 5 I (- T H J ) ) / ( I • + S [ N ( A 3 ) ) ) ) 
PH4 = AR 5 IN ( S 0 R T ( ( 1 • + 5 IN ( -IJ ( 7 ) } ) / ( 1 • +SIN ( A J ) ) ) ) 
PHS=ARSIN(SCRT((1.+5[N(-U(6)))/( 1.+SIN(ft2)))) 
CALL CEL1(FCl,AM1,IE1) 
ZTl=TAN(PHl) 
ZT3=TAN(PHJ) 
ZT4=TAN(PH4) 
ZTS=TAN(PHS) 
CMll=( 1.-SIN(Al} )/2. 
CMl =SORT (Cl-Ill) 
CM 4 4 = ( 1 •- S I N ( A 2 } )-/ 2 • 

CM4=SORT(CM44) 
CM3J=( 1.-SIN(AJ) )/2. 
CM 3 = S 0 I ~ T ( CM 3 3 ) 
CM22=( l.-SIN(U(5)) )/2. 
CM2=SORT(CM22) 

C CALCULATION OF THE LENGTHS CF 8CO~S 
c 
c 

CALL ELil{Fl,ZTl,CM1) 
Sl=fCl-Fl 
CALL CEL1(FC2,A~2.IE2) 
S2=UC2)*2•*FC2 
CALL CEL1CFC4,A~4.IE4) 

CALL ELI1CF4,ZTS,CM4) 
S4=U(4)*(FC4-F4) 
CALL EL I 1 ( F 3 1 , Z T 3 , C 1.A 3) 
CALL ELI1CFJ2,ZT4,C~3) 
PJ=U(3)~(F31+F32) 

CC=t. 
CALL EL12CEJ1,ZTJ,C~3.CC,C~J3) 
CALL ELI2CE32,ZT4,C~J.CC,C~33) 

Yl3=~(3)*(2.*EJ1-FJ1) 

Y23=UC3)*(2.*E32-FJ2} 
82=Y13+Y23 
AD2=2·*A~1* U C3)*' 8 S(COS(PH3)-CCS(~~4)) 

CALL t::LI2CE1,2rt,C~l.CC,C~ll) 

CALL ELI2(E4,ZT5,C~4,C~,CM44) 
CALL CEL2CECl,AMt,CC,C~l1, IE3) 
CALL CEL2CEC4,AM4,CC,C1'44, JES) 
Yll=2.tE1-F1 
YJl=c.'~'ECl-FCl 

Y24=UC4)t(2.*E4-F4) 
Y44=UC4)t(2.*EC4-FC4) 
83=Yll-YJl 
84=Y24-Y44 
85=82-E::lJ-84 
ADt:-;;~/(Tt.N(Al HTA"'(A2)) 
Pl=Sl+ADl/CnSCAl) 
P4=S4iACl/COS(A2) 
CALL CEL2CEC2,AM2,CC,CM22.IE6) 
81=2.tU(2)t(2.+EC2-FC2) 



81 
82 
83 

84 
85 
86 
b1 
ea 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

101 
102 
103 
104 
105 
106 
107 
108 
l O<J 
1 1 0 

l l 1 
1 l 2 
l l 3 
l 1 4 
1 15 
1 16 
1 1 7 

1 18 
ll<J 
120 

121 
1 22 
123 
124 
125 

l l 

c 
c 
c 
c 
c 

c 
c 
c 
c 

· C 

10 

20 

c 
c 
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AD4=CU1-E2-AD2*TAN(U(5)))/2./TAN(U(5)) 
AD3=AD2+AD4 
P2=S2+(A03+A04)/COS(U(5)) 

CALCLLATION OF THE AREAS 

AR2=?.*U(2)*U(2)*COS{U(5)) 
AR=CCSCA1)+U(4)*U(4)*COS(A2) 
AR l = AR-AR2 
SA=SGRT(AR) 
SPl=Pl/SA 
5P2=P2/SA 

SP3=P3/SA 
SP4=P4/SA 
ARR=AR1/AR2 
PRINT I I ' 
PRINT I. REL. LENGTH OF BOCM P1 
PR _I NT I. REL. LENGTH OF BCCM P2 
PRINT,• REL. LENGTH OF BCCM P3 
PRINT,' RE:L. LENGTH OF BOOM P4 
PRINT,• RATIO OF AREAS I • ARR . 
PR ( NT. I 

PRINT I I X-CCORD. v-ccono.• 

PLOTTII\G OF BCOM 1 

PRINT,• BGOM 1 
Y=Y31/SA 
O=Y-A01/SA*TAN(Al) 
Y-=Y- 0 
SX=AD1/SA 
WRITEC6ol00)SXoY 
T=Al-0.1 

t 

• I SP 1 
I. SP2 
' 1 SP 3 
' , SF4 

PH=ARSI N (SQ RT( ( l.+SIN(T) )/( l..+SINCAl l))) 
ZT=TA N (PH) 
CALL ELilCPl,ZT,CMl) 
CALL ELI2CP2,ZT, C Ml,CC,C~ll) 

PY=C2.*P2-P1 )/ S<\-0 
PX=2.~ A MI* COS ( PH l/SA+AC1/SA 

W R I T E C 6 , 1 0 0 ) P X , ~' Y 

T=T-0.1 
IF(r,LT.-TH1) GU TO 20 
GO TO 10 
Yl=Y11/SA-D 
SX1=2.*AVl*COS(P Hl)/SA+ADl/SA 
WRJTE(6,100)SXloYl 

C PLCTTI~G OF bOOM 2 
c 
c 

PRINT,• UPP~R BRA~Ch CF SYVMfTRICAL EOCM 2 
CA L L C EL 2 ( E C £' , A '-' 2 , C C • C tJ 2 ? , I E 7 ) 
V2P=UC2l*(2.•EC2-fC?l/SA 
D=Y?P-Yl-AD4*TA I(U(5) )/SA 
SY2=Y2P-O 

.. - -- . ---- --

' 



126 
127 
128 
129 30 
130 
131 
132 
133 

' 134 
135 
136 
137 
138 
139 40 
140 
141 

c 
c 
c 
c 
c 

142 
143 
144 
145 
146 
147 
148 
149 50 
15 0 
15 1 
152 
153 
154 
15 5 
156 
157 
15 8 
15 9 60 
1 60 
16 1 

c 
c 
c 
c 
c 

162 
163 
164 
165 
166 10 
167 
1 68 
169 
1 70 
1 71 
172 
1 73 
1 74 
1 75 
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SX2=SX1+AD4/SA 
Wl~ I T E ( 6 , 1 0 0 ) S X 2, S Y 2 
T=U(S)-<J.1 
PH=ARSIN(SORT((l.+SINCT))/(1.+SIN(U(5))))) 
ZT=TAN(~ H ) 

CALL EL I 1 (P1 eZT,CM2) 
CALL ELf?.(P2,lT,CM2,CC,C~22) 
PY=UC2)* (2.*P2-P1 )/SA-D 
PX=2.*A~?.*U(~)*COS(PH)/SA+SX2 

WRITE(6,100)PX,PY 
T=T-0.1 
IF(T.LT.-1.57) GO TO 40 
GO TO 30 
PY2=-D 
PX2=2.*A~2*U(2)/SA+SX2 

WRITE(6,100)PX2,PY2 · 

PLOTTING OF BOOM 4 

P~INT,• BOOM 4 
Y=Y44/SA 
D=Y-AD1/SA*TAN(A2) 
Y=-Y+D 
SX=ADl/SA 
WRITt:::C6tl00)SX,Y 
T=A2-0.t 
PH=A~SI CSC ~ T((l.+SI N (T))/(l.+SIN(A2)))) 

ZT=TA N(P H ) 
CALL ELll(PloZToCM4) 
CALL EL1 2 ( P2 , Z T,C M4 ,CC,C ~ 44) 

PY=- U(4 )*( 2 .*P 2 - P l )/SA+D 
PX=2•*A M4 •U C4 )*C OS(P H )/SA+AD1/SA 
WRITE(6,1 00)PX ,PY 
T=T-0.1 
IF(T.LT.- U(6)) GO TO 60 
GO T O 50 
Y4=-Y~4/ ~ A+D 

SX4=2.•A ~ 4* U (4)*C O S(P H 5)/SA+A01/SA 

W~ITEC6ol0 0 )SX4oY4 

PLOTTI G OF QCOM 3 

D=Y13/SA-Y1 
AD=2.*A~3 «U (3)*COS(PH3)/SA-SX1 

T=-THJ-0.1 
PRI NT,• UOOM 3 
PH=ARSI N ( S Q ~ T((le+SIN(T))/(1.+SIN(A3)))) 

ZT=TA N(Ph) 
CALL ELI1( P l.ZT,C M3) 
CALL t:::LI2( P 2,LT,C MJ,C C ,CMJ3) 
PY=U(3)*(2.~P2-Pl)/SA-D 

PX=2.~A ~ J~ U (J)•CCSC~H)/SA-AD 

WRITEC6ol00)PXoPY 
T=T-0.1 
IF(T.LT.-1.57) GO TO 80 
GO TO 70 



176 
177 
178 
179 
180 
1 8 1 

182 
183 
184 
185 
186 
187 
108 
189 
1QO 
191 

192 
1o.J3 
194 

195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 

210 
21 1 
212 
213 
214 
215 
216 
217 
21e 
219 
220 
221 

eo 

90 

c 
c 

PYJ =- 0 
PX3 = ~•*A~3*U(J)/SA- AO 

WRITE(6,100)PX3,PY3 
D=- Y23/SA- Y4 
AD = 2 • *A~ 1* U ( 3) *C 0 S ( P' i4} / S A-S X 4 
T=- U{7) - U.l 
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PH = A q S IN ( S 0 R T ( ( 1 • + ~ IN ( T ) ) / ( 1 • + S IN ( A 3} ) ) ) 
ZT = TA"l(PH) 
CALL ELil(Dl,ZT, CM3) 
CALL ELI2(P2,ZT,CMJ,~C,CM33) 
PY =- U(3)*(2,*P2-Pl ) / SA+O 
PX =2 .*A~J*U(3)*CCS(PH)/SA- AD 

WQITE(6,100)PX,~Y 

T= T-0 .1 
IF(T.LT. - 1.57) GO TO 95 
GO TO 90 
CONTINUE 
S TOP 
END 

c ***********************.***************4*4********************** 
c 
C THIS IS AN EXT~RNAL SUBPROGnA~ FOR SOLVING A 5YSTEM CF NCNLINEAR 
C EQUATIONS USING 8RO~N'S ~ETHOD. 
c 
c **************************************************************** 
c 

1 

2 

3 

4 

5 

6 

D~UBLE DRECISinN FUNCTION XUX(X , KJ 
IMPLICIT REAL~8(A-H,O-Z) 
DI~EN310 X(l) 
Al = 0.41DO 
A2=0.39LJO 
AJ = 5.D-l 
TH1=0.73JDO 
TH3=1.025u0 
AMl=DSCRT((l.DU+G~I (Al))/2.00) 
AM4=CSCRT((l.CJ+CSI~CA2))/2.00) 

A~J=DSCRT( ( l.GO+ DS I (AJ) )/2.CO) 
PHl=O~RSI ~ CD~ORf((l.DO+DSI ( - THl )) / (t.OO+~SIN(Al)))) 

PHJ=DArtSI (f'SO~T((l.OO+DSIN( - TH)))/(l.DO+CSII'l(/\))))) 

G 0 T 0 ( 1 , .'? , 1 , '' , '5 , r, ) , t< 
XUX=Ar-13*X(3)* L),\,JS(C CCS(DHJ) - CCCS(DARSII\(0SORT( ( l.DO+DSIN( - X( 1)) )/ 

l(t . DO+D51N(A2) )))))-DA 6S (A~l*DC nS CPHl) - A~4*X(4)* 

2C C OS(uARS! , CDS G,H ( ( l.DO+DSIN(-X(6)) )/( t.CO+DSIN(.A2) )) ))) 
RETURN 
XUX=DSIN(Al)-X(4)*X(4)*DSIN(A2) 
RETURN 
XUX=DSI~(THl)+X(2)*X(?)*DSIN(X(5)) - X(3)*X(3)*r.SIN(TH3) 

RETURN 
XUX=CCOS(TH1)-X(2)*X(2)*DCOS(X(5)) - X(3)*X(3)*CCCS(THJ) 
RETURN 
X U X=~ ( 3 ) *X ( J ) * D S I i-1 ( X ( 1 ) ) -X ( 2 ) ~X ( 2 ) * D S 1 N ( X ( 5 ) ) - X ( 4 ) * ,( ( 4 ) * D SI N ( X ( 6 ) ) 

RF.TURN 
XUX=X(J)*X(J)*DCOS(X(l})+X(2)*X(2l*OCOS(X(5)) - X( 4 )*X(4)*DCOS(X(6)) 
RE TUR~l 
EP-JD 

• 
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