ﬂE..ﬁWuEE% %
g

mvm ..aww

etis
i+

. L)
P L .m.‘..\ iy
W,%éx_%ﬁmﬁ.,

“ S
r ot 2 b 1L
e
il el ot ety
o ...v&..ﬁ._v_a :.zn“..ju.(..,. 0

bbbttty
" I Y
_4.“ et
1
i

. it

P

fity Mwm
Yy Lo fity
i

CINE AT

awmﬁ__. M 0T [
“ﬂy‘“ﬂ\-‘:
ey
g s
[T

1
L
P

W

-u el

5

£ pipiy Fii .n_‘...__ﬁa.
4.._“.“.‘%__,.. ot Mw
e Tt

»&-s: ._:..«..L\..q. |

n“ﬁm;u ¥ J

v

1
oA 1 o p B e

R R T

e
peaneTy et

g ehutiee 1ty
g g
Fy i

¥ b g
e b
vt e e

Ve s .

!_w- '

R

B L L R e P e A L R

ALl

!.vn.
it
Pertipdite

L R T T
A e R

R i
L e P
AR hortor rhpre

v SRy o

s

a-...i_:u.._.-::
i B

Ll

R L PR T

WA e

A e T
ﬂsl__!\ 2-....

.J-‘-f..b‘\n?...m widw)

B R L it

A Ly s
St

L e
R I
S

P

Vg PR o
o ;_.‘f"z .w.,._u_ W,
.u_.:..- ¥ " gt

Y
Y PR i RS T
L o
"y g
o ity
g
i Rl
LA T et 1
S H s Lt
R T R
tr L R i B

g
Porrrtp e e sv e ¢

H
O
ekt

i
Fowid .
e T Lol L
W PR
- b

“

R R R T .
() TR P e

b Vo B 1 o
g L R e
=y

iy
Ty

oy Ty Y

Y A

A







o e o

SHAPE OF THE TANDEM BOOM
OF LOGS

by
B.J. Prasil

A thesis submitted to the Department of Mechanical Engineering
in partial fullfillment of the requirements for the degree of
Bachelor of Engineering.

Department of Mechanical Engineering
McGill University
Montreal
May 1975




— o - et s e L s LU P 5 . b o it




ey =

T A Ter—

PRRTSRIBIRRTRRS GBI Y /6 SV O R

A A

X

A lone tug hauls gigantic log booms

down the Saguenay River.
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SUMMARY

A theory has been developed to predict a shape of a towed
boom of logs, where the logs are treated as a continuum which
transmits only normal stresses. It is assumed , that the wood
is sufficiently moved by the water that it does not supvort any
shearing stresses. It is found that if the skin friction between
the bottom of the raft and the water is assumed to be constant,
the shape of the boom is one of the single-parameter family of
elasticas. The solution can be obtained in terms of elliptical
integrals. Shapes of symmetrical single boom, tandem of booms
Joined at one point and symmetrical cinched boom have been suc-
cesfully obtained and now the theory has been extended to pre=-
dict the shape of an unsymmetrical tandem of booms joined at

two points.

An attempt has been made to compare theory with experimen-
tal results and the response of the shape of the boom to a chan-

ge in its parameters has been studied.
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horizontal distances between points on the booms
whole or partial area of raft
vertical distances between pointson the booms

constant of integration

elliptic integral of the second kind

elliptic integral of the first kind

towing force

= ()12

| £sinK 1/2

( 2 )

the total length of the boom,also opposing end

force bending a thin beam

length of an elastica

tension in the boom

coordinates

coordinates

angle between the boom and the direction of tow
at the towing point

local angle between tangent to the boom and
the direction of tow

normal compressive force per unit length in plan
view

hydrodynamic skin friction beneath the raft
I+ sin@

| ¢+ s(n &

such that sinzq') =




1.INTRODUCTION

l.1l. History cf Related VWork.

Transportation of pulpwood on the lakes and along the
seashore has received much less attention then the much more
spectacular river drive. Very few refferences to this subject
can be found. The huge rafts must be moved over long stretches
of water by mechanical means. On shallow lakes the rafts are
winched across by special winch boats. Large powerful tugs
are used on Great lakes or when moving the rafts along the

seashore. One cf the best works on different types of rafts

“used in Canéda HeR(2).

However, it is mostly desc;iptive, goes into considerable
detail in spots, but is very sketchy elswhere. It provides
a useful information about how the booms are constructed,
studies different types of rafts as used in different parts
of the country and provides a method for determining the volume
of the wood in the raft. Windforce on the raft and the loss

of wood during the tow are also considered.

In Canada, especially in eastern part, the wood is often
transported as a loose floating raft, surrounded by a boom
of large timbers, up to 30 feet long. Sometimes, several

timbers must be bolted together to achieve a sufficient




diemeter. These are then joined by chaines to form the

complete boon.

The rafts are usually made up at the mouth of the river,
where it empties into the lake. The wood flows freely down-
stream into the boom thet is anchored to the banks. The boom
is then closed and forms a circular raft, which is joined by
a cable to the towing boat. When the towing starts, the wood
moves to the rear and piles up three or four logs deep at

the end with open water at the front. The boom now assumes

the characteristic oval shape.

The Forest VWork Studies Section of the Central Association

- of Finish Woodworking Industries conducted a research on

timber raft drag in 1950.

Study of factors affecting the caracity of the rafting
vessel has been included. It is shown that the towage expenses
can be reduced by 25% by using larger bundles if the constant
speed and a constant traction power is employed. The great
advantage of large size rafts lies in the fact that the resistance

of the raft.increases more slowly than its size grows.

At too high speeds (implying that the size of the raft
is inadequate) the increase in costs may easily total 50 %.
However, the boat can be so powerful that adaguate raft cannot

be built because the waterway may not allow the pasage of so




big a raft. This can be avoided if the raft is either
cinched, or tandem of rafts is used, in which case the same

amount of wood can be transported but the width of the raft

is considerably reduced.

l.2. Reasons for Investigation.

As stated before, cost of transportation can be reduced
by using larger rafts, but this presents problems if the water-
passage is narrow and then the exact knowledge of the shape
and of the dimensions of the raft is necessary to determine
how much wood in what manner can be transported.

~—

l.35. Range of Investigation.

A theory has been developed in (1) to predict the shape

of a single boom. Also an approximate relation for the geometry
of the boom in terms of the maximum number of logs a boonm

can hold was obtained. The theory then has been extended to
predict the distortion of the boom if a second raft is attached
and to give the shape of a boom that was cinched by an auxiliary
boom. In the present paper the theory developed in (1) is
further extended to predict the shape of an unsymmetrical

tandem of booms when the trailing boom is attached at two points.




Then different symmetrical cases are studied to find the general

behaviour of the tandem of booms, when some of the parameters

are changed,
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2. THEORY :

2.1l. Assumptions Made about the Problem.

If a raft is towed in a straight line at a constant

speed, the followirg assumptions are utilized as stated in (1):

a) The aerodynamic, as distinct from the hydrodynamic forces,
on the boom may be neglected. (The typical towing speed is

iemepeh. ).

b) The Froude Number

;1 y Which is typically .01, is
sufficiently small for wave drag to be neglected. This is
somewhat difficult to justify experimentally since there

are few available measurements on wide, flatbottomed, hulls;
However the Froude number is very low, and aerial photographs

of tows do not show any waves emanating from the boom.

c¢) The logs are so numerous (there are typically 105 to 106

logs in a full scale boom of pulp wood) that they may be

replaced by a continuum.

d) The shearing stresces transmitted from one group of logs
to another are continually changing in magnitude and
direction due to the movement of water around them so that

the continuum has ro shearing stresses within it.
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e) The boom, which in reality is formed by joining together
boom sticks with chains, may be treated as a flexible
rope, which itself does not experience any hydrodynaric

force.

f) The hydrodynamic skin friction on the bottom of the raft
is. constant and independent of position. This assumption
is Jjustified on the grounds that the logs probably present
a fully-rough condition to the turbulent boundary layer
which grows on the underside of the raft. Moreover since
the logs pile up towards the rear of the boom, the roughness
appropriately increases with x.

~

2.2, Equation of an Elastica.

The following is an outline of the theory which was

developed for a single boom in (1).

Consider a small element dx . dy of the continuum *owed

in the water in -X -direction.

To achieve equilibrium

29, s T 250
IX Y
where ¢ is the compressive force between the logs per unit

length.
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Solving the equation :

amd evaluating the constant
o~ =( 202, 2)
G =¥

where x is measured from the leading edge of the wood as

opposed to X which is measured from the point of tow.

Considering the boom itself :

Fig 2.2.1

G i i
U= e (2.2.3)
R .
where R =-3%dj;local radius of curvature of the boom.

It follows that the shape of the boom is given by an

equation of the form

X, X 14 - (2.2.4)




which turns out to be the same as the equation governing

+

a shape of a thin beam subjected to opposing loads at

the ends = Fig. 2.2.2.

p

1o s el e

——

The problem has been solved (3) and the shape was called

an 'elastica'.

2.3. Length and Shape of an Elastica.

Integrating the equation 2.2.3 following expression is

obtained :

2 :
?'-2"-". = [ (sinx - sin8B) =wi(2y3a1l)
or X = VZ szsino( - sin8) : kza.I_ —s(223-2)

dy = -k sinB dB
VZ (sinx - sinB)

since dx :
— =sinb
ds
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after some manipulation it is found that

Y= k[2E(m,p) ~ Flm )] - (2.3.1)

where F is the elliptical integral of the first kind

(1~ msin®¢ )nidrf)

E is the elliptical integral of the second kind

¢ '
2 2.2
/(/-msm¢) dc"b
0
mz_ | + SIinX
- ) 2 {
and sing = (’fsm@ 2
[ * Sine

From 2.5.2 the associated value of x is

x=2mk cos ¢ - (2.3.5)

The length of the elastica measured from the end to

the general point 8 is :

5 = k[F(m)-g-") ~ F/m,¢)]
Thus the length of any part of the curve and the coordinates

of points lying on it can be obtained if « , @ and k are known.




2.4. Unsymmetrical Tandem of Booms Joined at Two Points.

It is quite common to attach a second boom, which trails
the first one. They can either be joined at one point or the

trailing boom can be attached at two places. This distorts

the first boom in a manner illustrated in D e e L] s

[

In this case six parameters would be given - lengths of
1 o° Hence
five non-dimensional parameters which specify the geometry of

A B R R

A'A'TA'TE T i

the booms Pl’ PZ’ P3 and PLP and the two areas A, and A

the boom are obtained :

where A = A, + A

1 2

The geometry of the boom may be obtained implicitly from

the resolution of forces at three points : A, M and N.

Since the booms experience only normal forces, the ten-

sion in each boom is constant.

Junction A

A

A

i
I Eig. 2.04.2
:
!
l
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Resolution of forces into their x and y components gives

the following equations :
F = T cosx, + T, cosa, - (2.4.1)
T, sinx, =T, sinx, - (2.4.2)

Also the towing force must be equal to the total area,

multiplied by the skin friction 'l :

F= (A +A)T - (2.4.3)

= !
or, in terms of ks :

2 2
' = k - (2.4.4
A.ng k,[COSo([ + ﬁcos 0(2] (ZReio)
= t
2 2
/ - y b (2-1-;--5)
k, sina, = k, sina,
-
where k‘ar ‘_l'! and k: = %‘L

Junction M :

Since the trailing boom is not distorted in any way
by some external forces, it is symmetrical about an offset
axis parallel to x and joins the leading boom at an anglee2

at both junctions M and N.

Kilgs 2,

Lt
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Again, resolution of forces into x and Y components yields :

T-l sg.n el 1 Tz_ﬂ'n 92 = T3 s‘ln 93 = (2!-}--6)
Tycos8, =T, <0$92+T3c0593 s St
2 . :
or s k‘ 5'."61 & k: sinB, = l\; smgj - (2.4.8)
2 2 2
k cos6 » kycos6, + k,cosb, - (2.4.9)
where k: b : k; = A3
T W
Junction N :
A T;
3
8,
g, 2. 0.4
By the same procedure :
T, cos 8 = T3 cos 9.' *T,cas8B, (2 400

T(‘ .Sl.n 95 + TZ Sin 92 = T:a sg.n Q‘. — (2.1-}.11)




2 2 2
or K, cosBs = k; cosf, + k, cos 6, - (2.4 -12)

k: sin B; = k: sin 9,, - k: sin B, - (2.4.13)

In relating lengths of the booms and areas of the rafts
to the anglec and tensions involved each boom has to be
considered separately and the x and y distances (CJ;and b's )
of the respective portions as indicated in Fig. 2.4.5 have
to be found.

The portion of the boom that is an elastica will be
called s while the complete length of the boom will be de-
noted P.

Length of the elastica in boom 1 can be calculatec as

o lifE i T - 7 fmy 0] - G
. It
where m = | +sin&, \2 Ifﬂnﬂe)
| ( o ) Sm¢ [’ +smot

Length of the elastica in bocom 2

=2k, F(m, %) = (2.4.15)

I
| +sinB, \2
—

where "@ 2 (




s sl

Length of the elastica in boom 3 :
- Sl
33 = kj[F(m3)¢J)f F(m_i) qs")J ( 2.4 16)
where | + sin &3 é . I + sin(~ 33) '2!'
n{;=-( 5 ) suaibs z J]

| + 5#113
. 1)
: [lfsmﬂ-é?:,) 2
Sth = -
P I + sin&,

Length of the elastica in boom 4 :

Sq = ki [F("’MTEF - Flm, 4’5)] E e
g
e L | + sh1(-195) &
| + Sin&, \ 2 :
m,’,( +2: z) s'"¢5=[!+sin«2

The distance a, and b2 can be obtained from considering

elastica s

>

| //\

%Y,

Fyg. 2.6
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|
L]
\n
I

3 k3[2E(m3,¢3).. F(ms, ;)] S )

'.'/2, = k_,[ZE (ms) ) - F(ms) qbe)] P

Here it is assumed that the distortion of the boom is

‘'not such that the part of the elastica in consideration would

completely lie above or below the axis %',

If that was the case, than in the next equation the y‘

coordinates would have to be subtracted from each other.

bz ¢ 9.“" 9;* "3{2[5("‘3»4’3) t E(m_;,cp,,)}-

~[F(my, ;) = F(my, ‘Pa)]} e

X, = 2myk; cos ¢, - (2.4.21)
X; = 2 m, k; cos @, - (2.4.22)

) =
Q= [ =% | = 2myksl(cos ¢3—cos¢4)! - (2.4.23)

Now from elasticas 1 and 4 the following information is ob-

tained :




X :
; X
Y,
yz !
e = .7
91 = k’(ZE(m”CP }
¢ | ‘ _'f:{}nf)qz‘)}
(2

9, = K {2E(m,\ L)~ F(m, —E)}
| R
g, = ky (2E(mi, )~ F(my; ps))
g, = k,,(zE{m”.g-)-F(m 7’_)}

) 2
X, =2mk coscp,
Xy= 2my ky cos p,
byts i =y,
o LT Y,

B -
_.,-~b2_-b3—b,,

(2

(2

(2

(2

(2.

2ok

(2ol

(2.

w20

.25)

.26)

w2

.28)

«52)




T

- 17 -

= -y = (2Rl
Q< lx, —x,| (2:4-33)
b
. = - (2.54.34)
4 f‘anxlffana'z
Erom boom 2 a5 and aL+ can be found :
2} Yy g
- —— 9‘ 1
-
<L
;
Fig. 2.4.8
n L o J M e
b‘“2k2[2E(le'z) F(m?_)z) ( .35)
Two equations of two unknowns are obtained :
a; = a, + a, =S EYLteE)
b, = l‘anQZ =y tan 92 = bz = (2.1.57)

Hence a. and a, can be solved for.

3 4




or : 21:; cos 6,

B

Now all the information needed for calculating the *

lengths of the booms is available

Ptz tiane,. 2. 220k 35)

: : cos «,

[3 X Sa ¢ Gata, - (2.4.39)
cos@,

P3 = 83 = (2-’4—.’-{-0)

1

F=s, + a (2.4.41)

¢ €os «,

It is also known that the force to tow the trailing
boom is equal to the area of the second boom multiplied

by the skin fraction :

2T, cos 6, =A,T - (2.4.542)

A, - (2.4.43)

[}

The total area can be calculated using the equation 2.4.4.

Hence the relationship between the geometry of the boom

and the five nondimensional parameters li.) fé_) B ’ R
VA" VA'va’' Va

A j )
and ]f hzs been determined.
2

It does not seem possible to solve for the particular

angles from these equations. However, if the procedure is
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reversed, for assumed values of Oﬂl, 0(2, 0(3, 91 and 8

the five nondimensional parameters can be obtained in the

3

following manner .:

From equations 2.4.5, 2.4.8, 2.4.9, 2.4.12, 2.4.13 and from

equating expressions for a, from equations 2.4.23 and 2.4.33
k, k k

the values of =< et JUXN d re calculated.
k‘ H k' - k‘ ’ 92, 9}_‘— an 95 are a a

Then lengths of elasticas S1s 555 55 and s, are obtained from

Ly
equations 2.4.14, 2.4.15, 2.4.16 and 2.4.17.

Equations 2.4.20 and 2.4.23 give values of b2 and a2

respectively, equations 2.4.24 to 2.4.34 give expressions for

al and distances a3 and ah are given by equations 2.4.35 to

el

1
Finally equations 2.4.38 to 2.4.41 yield expressions
for lengths of the booms Pl’ P2, P3 and Pq‘ Evaluation of

2.4.43 gives the value of A. and fronm equation 2.4.4. Al is

> N

s E‘E.,_&andf.‘!.are

P,
A A VA VA

obtained. Hence values of

l

>

determined.

As can be seen from equation 2.4.4, the total area
Al ot Aa varies proportionally with kla. Therefore Vz-is
proportional to kl. Also from equatioms 2.4.14, 2.4.15,
2.6 and 2.04.17 513 By Sz, 5, and therefore also pl,Apa,

p3 and pbr are proportional to kl since they can be written as




Saak

K g : .
5222kl(-zg"—)F(m2,,léL) ecc
then
2
—é.' = .—-—..——-—k' ( ) . —-‘-— = --._____—kl( ) . EE- = _k,‘__...———( ) etc

k K =
therefore if Ei S ]; and -EE are calculated, the value of k

i [ I

1
itself does not change any of the five nondimensional para-

meters. In the computer program it is not carried along and

values are calculated as if kl is equal to 1.
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3. DISCUSSION

The theory presented in this paper was developped for
an unsymmetrical case. However, in the first part of the
computer program a system of nonlinear equations has to be
solved. To obtain the solution, the external subprogram 'XUX'
is used. Qt €mploys the Brown's method to give the results.
Initial values of the unknowns haye to be guessed. They are
then compared and new values are assigned to the unknowns

by the computer untill the solution is obtained.

Unfortunately, two of the unknowns appear as parts of
the argument of the arcsin function. The subprogram chooses
the new Values of the unknowns regardless of the fact Ehent
the argument of arcsin must be less or equal to one. When
the program was run it was always terminated prematurely
because the arguzent of arcsin was greater than one. No other
method for solving a system of nonlinear equations was
avallable on the computer and the subprogram presently used
could not have been modified. In the future surely some
other method can be made available, which avoids this
prqblem or the 'XUX' (actually listed as 'AUX') subprogranm
can be modified by someone with enough expertise in computer

programing.




Since the unsymmetrical solution could not have been
obtained, the symmetrical cases are studied. The angle &,
is put equal to &, and a little modification in the

subprogram 'XUX' is needed.

Cases that are studied are listed in the table 3.1. One
'standaradt cése is picked and then the.given parameters are
changed one by one to obtain the -response of the shape to
these changes. Since the procedure is reversed, i.e. the
values of the angles are assumed, when in reality the lengths
of the boom and areas of the rafts would be given, some of
the chosen values are not possible in reality. In this case
the program is terminated prematurely and a message explaining

the problem is printed out.

The shape of the boom when &,= 0.4 rad., &4 = 0.5 rad.,
8, = 0.733 rad. and B; = 1.025 rad. is chosen as a 'standarad!

case.and is presented in Fig. 1. The area AZ of the trailing
raft is about one half of Lhe area Al and the leading edge
of the wood is fairly close to the towing point (or in the
case of the second raft it follows quite close behind the
boom of the first raft). The length of the boom P3 (spacing
between pointsM and N) is about 1/3 of Pl‘ This would be the

most probable way of attaching the trailing boom.




R

The first angle that is varied is 93. The shape proves to
be very sensitive to even very slight changes. Especially
the distance by which the second raft trails the first one
i.e. the length of the boom P2 vyaries greatly. It iS5 very
closely related to changes in the angle Q!, as is found in
latter cases.’ When the angle 91 increases, the trailing
boom moves farther and farther back as can be seen from
Tifpures Su2iands S50 when (35 vas ;hosen 5 @5 rade  and i sranis
respectively. Physically, increasing the angle 632 means that

s

the tension in the boom P2 takes on larger value of the

reaction to the tension in the boom 1, since the direction

of the tension in the boom 3 moves closer to being perpendicular
to the direction of the tension in the boom 1. This could be

done only by making angle 69 smaller, while keeping the area

Z

AE unchanged, which is indeed the case.

Vhen (93 is made smaller, the second raft moves closer
to the first one, till it actually becomes embedded in it,

which is obviously impossible in reality.

Interesting results are obtained, when the angle 0(3 is
varied. The shapes of the booms when OQB assumes values of
0.6 radians and 1.05 radians are indicated on Fig. 3.4 and

3.5, respectively. The shape is almost insensitive to the
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changes in the range from 0.5 radians to 1.05 radians. The
leading edges of the wood are almost in the same place and
points of attachement of the second raft remain approximately
the same. The shape only lengthens very slightly as CK3

increases.

The ratio of the areas Al and Aa proves to be sensitive

to changes in 8. as indicatec in Bigh 516 and 5.7 where eal

1

is changed to 0.73 rad. and 0.72 rad., respectively. However,

this change has to be accompanied by appropriate changes in
925, otherwise solutions which are not realistic are obtained

in most cases. It is found, that as 91 decreases, E95 must be

made larger and vice versa.

Physically, an increase in the tension in the boom P2
causes the angle E)l to decrease. Since the tension in the
boom is directly moportional to the square root of the area
of the raft, it is expected that Aa would also increase,
That is indeed the case, as indicated in Fig. 3.6 and 3.7,
where A2 increases to 2/3 of Al in the first case and

approximately equals A, in the latter.

1
Finally the same values are assumed as in Fig. 3.7 but
<Xl is changed to 0.39 radians - Fig. 3.8. The areas

remained in approximately the same ratio, only the boom P

>
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became longer. The leacding edge of the wood in the leading
raft moved back, which is exactly. what we would expect,

since a decrease in value of & is caused either by smaller

l’

area of the leading raft or by greater distance between the

raft and the point of towing.
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4. CONCLUSIGH

The general theory has been extended to predict the shape
of the tancem of booms, towed by a single boat. With six
assumptions, the shape of the rafts is shown to consist of
a single-parameter family of elasticas joined by straight

lines to the point of towing or to the attachement.

Four of these assumptions are probably acceptable without
questioning. The remaining two, however, are more doubtful.
Neglecting the shear stresses within the continuum and the
constancy of the hydrodynamic skin friction have nct yet been
checked experimentally. If the skin friction of the second
raft is less due to turbulent conditions, then compared to
the reality the theory would tend to predict smaller area of

the trailing raft for the same tension in the boom.

However, two fullscale measurements and the model tests
showed that the theory is capable of predicting the shape
of a boom with a good accuracy. The model tests were made
using the facilities of the Department of Civil Engineering
at Queen's University, Ontario. The logs were 3/8 ins. in
diameter and 2 3/8 ins. long cut from rough oak dowel.

The boomsticks were 6 7/10 ins. long. The details of the

testsare described in (1). The fullscale test was made in
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the Baie de Chaleur in very light winds. The geometry of
a single boom very closely agreed with that predicted by

the theory. The details of the survey can be found in (4).

Unfortunately, no accurate survey has been made for
a tandem of booms. The only accessible survey of the two
rafts is Fig. 4.1. However, the surveying was done in
a manner that did not allow good accuracy. Apparatus was
held in hand by men stationed on the booms that were conti-
nually moving. The resulting shape can hardly be very
accurate, in fact, it is quite doubtful. The best method
to find suitable fullscale comparisons is by taking aerial
photographs. In the future it would be desirable to do so

as a more stringent test of the assumptions.

In the future the theory can be further extended to
predict the shape of the rafts, when wood is transported
in bundles - usually five or six bundles joined together.
If the assumption of a constant skin friction is dropped,
then the theory can be utilized in predicting the shape

when collecting oil slicks on the water surfaces.
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Computer Program.

The computer program is written for an unsymmetrical
case. The values of &, , &, , &3, 6, and 83 are fed in and
the initial guesses are made for the unknowns. The subprogram
'XUX!' is called to solve a system of nonlinear equations,
yielding the values of the remaining angles and the ratios
of the tensions in the booms. The lengths of the booms are
calculated next. The total area and the ratio Al and A2 are
obtained and the lengths of the booms are nondimensionalized
by dividing by the square root of the total area. The co-
ordinates of the points, defining the shape of the boom are

calculated last.

Nomenclature

Al s ml etc

AD - al etc

AM1 : ml etc

AR s A :
AR|S Al

AR2 A2

ARR . : Al/A2

Bl - bl etc

CEL1 : subroutine calmalating complete integrals of

the first kind




CEL2

ELI1

ELIZ2

Pl
PH1
S1
SA
TH1
U(i)
X(1i)

X,Y

S i

subroutine calculating complete integrals
of the second kind
subroutine calculating partial integrals
of the first kind

subroutine calculating partial integrals

of the second kind

Pl etc

dh etc

i |

VA

B, etc

the calculated unknowns
initial values

coordinates
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SAATCH WATFIV Y400000 7CO0071-PRASIL(TIME,PAGES) =
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EWATFIV YA4CCO000 700971 PRASIL.TIVE=10,PAGES=10

NODOOOOOOONODOODONOOD

00

aNalalNalg! OO -

SO0 n

*¥*+THFE SHAPE OF THE TANDEM BCOM OF LOGS#*%%

k]
t*t#‘t**i#t##*###t*t*##*t*!****##*#*#*0tﬂﬂti#1##'#‘#‘####‘**“‘

THIS PROGRAM PREDICTS THE SHAPE OF AN ULNSYMMNETRICAL TANDEM OF
BOOMS. FIRSTs IT USES THE EXTERNAL SUBPRCGRAM I XUX] TO SCLVE

A SYSTEM OF NONLINEAR EQUATICNS TC OBTAIN THE VALUES OF THE
REMAINING ANGLES3 THEN IT CALCULATES THE RATIC CF THE TwC AREAS
AND GIVES THE RATIQCS OF THE LENGTHS OF THE BCCMS TO THE SQUARE
ROGCT OF THE TOTAL AREA. FINALLY IT PROCEEDS TC CALCULATE AND PRINT
OUT THE COORCINATES OF THE PCINTS OF THE ECCMS.

i*####t#t#####*###*###1####*#t###*#*#ﬁ#11*###i########*##*###**

IMPLICIT REAL®E(X W)
EXTERNAL XUX

CIMENSION X(7),WA(38),U(7)
FORMAT(2F12.3)

INITIAL VALUES

X(1)=1.D0
X(2)=5.D0
X(3)=7.00
X(4)=7.1D0
X(S)=3.3D-1
X(6)=0.7020
XPS=1.D—-3
NSIG=3
N=6
ITMAX=100

SOLUTICN OF SYSTEM OF NONLINEAR EGUATICNS

CALL ZSYSTM(XUX XPSsNSIGyN:X+sITMAX ,WA,IER)
uiz)=x(2)
u(3)=x(3)
U(4)=x(4)
U(s)=x(s)
u(e)=x(6)
u(zr=x(1)
Al=0.41
A2=0.39
A3=.5
TH1=0.733
TH3=1.025

CALCULATICN CF PARAMETERS
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R N R R R R R RTINS~

,_._.

27
28
29
30
31
32
33
34
35
3&
i
38
39
40
41
42
43
44
45
46
47

48
49
S0
S1
52
53
54
S5
o€
S7
5B
56
60
Gl
62
63
64
6S
€6
67
68
69
70
74 8
72
3
74
75
76
77
e
79
80

OO OO0

AMI=SAORT((1.+SIN(A1))/2.)
AMZ2=SURT((1.+SIN{U(S)))/2.)
AM3=SART((1.+SIN(A3))/2a)

AMA=SORT((]l +SIN(AZ2))/2.)
PHI=ARSIN(SQRT((1«+SIN(=TH1))/(1.4SIN(A1))))
PH3=ARSIN(SORT( (1 «+SIN(-TH3))/(1.+SIN(A3))))
PH4=ARSIN(SAQRT((1+SIN(=U(7)))/(1.+SIN(A2))))
PHS=ARSIN(SCRT((1+SIN(-U(6)))/(1.+SIN(A2))))

CALELEEL LI (ECL s AMLIEL)
ZT1=TAN(PH1)
ZT3=TAN(PH3)
ZT4=TAN(PH4)
ZTS=TAN(PHS)
CM11=(1.-SIN(Al))/2.
CMI=SOGRT(CM11) .
CM44=(1.-SIN(A2))/2.
CM4=SORT(CM44)
CM33=(1.-SIN(A3))/2.
CM3=SQRT(CM33)
CM22=(1.-SIN(U(S)))/2.
CM2=SQRT(CM22)

CALCULATION OF THE LENGTHS

CALL ELTI(F1,ZT1,CM1)
S1=FC1-F1

CALL CEL1I1(FC2.AM2,1E2)
S2=U(2)*2.%FC2

EALLS CRIENECR, Al y1EL)
CALL ELI1(F4,ZT5,CM4)
S4=U(4)*(FC4—-F4)

CANESELE I TES vwZ 13, CM3)
CALEL EL TL(E32,7Z714,CM3)
P3=U(3)%(F31+F32)
CC=1.

CALINLL ELSHRONES Ny ZT 3 EM 3 CEWEMIT)
CALL ELIZ2(E32,2T4,CM3,CC4sCM33)

Y13=U(3)*(2,%xE31-F31)
Y23=U(3)*(2.*¥E32-F 32)
B2=Y13+Y23

AD2=2.%AM3I%kU(3)*aARS(COS(PH3)-CCS(PH4))
CARLD ELET2(E L2l +sCGMLCCyCM11)
CALL CLIZ2(E4+2ZT5,CM4,CC,CM44)
CALL CELZ2(ECl,AM],CC,CM11,IE3)
CALL CEL2(EC4,AM4,CC,CN4A,]ES)

Y11=2.*E1-F 1
Y31=2.*EC1—-FC1
Y2a=U(4)%(2.*E4—-F4)
Y44=U(4)*%(2.%EC4—-FC4)
83=ld—Y 31

B4=Y24-Y44
B5=B2-E3-B4

ADI-CS/Z(TAN(AL)I4TAN(AZ))

P1=S1+AD1/CNS(Al)
PAa=S41+AC1/C0OS(A2)

CALL CEL2(EC2,AM2,CC,CM22.1E6)

Bl=2.%U(2)*(2.%EC2-FC2)

CF BCOMS
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[ 4Bl ADA=(B1-E2-AD2%TAN(U(S)))/2./TAN(U(5))

| 82 11 AD3=AD2+ADA
i 83 P2=S2+(AD3+ADA4)/COS(U(S))
| G
} C
? c CALCULATION OF THE AREAS
€
C
s AR2=?.%U(2)*U(2)*COS(U(5S))
8s AR=CCS(A1)+U(4)*U(4a)*COS(A2)
£6 AR1=AR-AR2
| B SA=SCGRT(AR) :
g8 SP1=P1/SA
. 89 SP2=P2/SA
90 SP3=P3/SA
91 SPA=P4/SA -
| 92 ARR=AR1/AR2 =
; 93 PRINT,* ¢
94 PRINT,* REL. LENGTH OF BOCM P1 *,SP}]
| 95 . PRINT,* RELe LENGTH OF BCCM P2 *,Sp2 =
. 96 PRINT,* RELe LENGTH OF BCCM P3 ',SpP3
97 PRINT, REL. LENGTH OF BGCM P4 ',SFE4
98 PRINT,* RATIO OF AREAS *,ARR
99 PRINT,*
100 PRINT,* X—CCORD. Y—-CCORDa*
C
C
c PLOTTING OF BCOM 1
¢
- C
101 PRINT,* BCOM 1| ¢
102 Y=Y31/SA
103 C=Y-ADI1/SA*TAN(A1)
104 Y=Y-0
105 SX=AD1/SA
106 WRITE(6,100)SX,Y
107 T=A1-0.1
108 10 PH=ARSIN(SQRT((1«+SIN(T))/(1.e+SIN(AL))))
109 ZT=TAN(PH)
110 CABESEE 11 (P, 2T JCHT)
111 GALLEELTIZ2(P23ZT +CM1 ,CC,CM11)
: 112 PY=(2.%2P2=P1)/5A-D
113 PX=2.%xAM]1%*COS(PH)/SA+AC1/SA
114 WRITE(6.100)PX,PY
115 T=T-0.1
116 IF(T.LT.—TH1) GO TO 20
117 GaYigsio
118 20 Y1=Y11/SA-D
| 119 SX1=2.%ANM1*COS(PH1)/SA+AD1/SA
t 120 WRITE(6,2100)SX1.Y1
| 4
} C
| = PLCTTING OF BCOCOM 2
| C
i C
' 121 PRINT,* UPPER BRANCH CF SYMMETRICAL EQCM 2 ¢
122 CRALLGEL2(EGZ JANZ s CC.CV224 1ET)
| 123 Y2P=U(2)%(2.%EC2-FC?)/SA
l 124 D=Y?P-Y1—-AD4*TAM(U(S))/SA
]

125 Syz2=y2pP-0D
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126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

1

162
163
164
165
16€
167
168
169
170
171
172
173
174
145

30

OONOO

S0

el aNaNalg!

70

=

SX2=SX1+ADA/SA

WR'YE‘G:!OO)SX?.SY?

T=U(S)=0.1
PH=ARSIN(SQRT((1«+SIN(T))/(1+SIN(U(S)))))
ZT=TAN(PH)

CALMELT LIP3 ZT ¢ CM2)
CGALLANELIN2(IP2, ZTH CM2,s GG CM22)
PY=U(2)*(2.%P2=P1)/SA-D
PX=2.%AM2%U(D2)*COS(PH)/SA+SX2
WRITE(6,100)PX,PY

T=T~0.1

IF(T.LTe—1.57) GO TO 40 ¥
GO TO 30

PY2==D

PX2=2.*%AN2%U(2)/SA+SX2
WRITE(6,100)PX2,PY2 -

-

PLOTTING NF BOOM &

PRINT,® BCCOM 4 -
Y=Y44/SA
D=Y—-AD1/SAXTAN(A2)
Y==Y+D

SX=AD1/SA

WRITE(6+100)SX,sY

T=A2-0.1
PH=ARSINI(SCRT((1.+SIN(T))/Z(1.+SIN(A2))))
ZT=TAN(PH)

CALL ELIL1I(P1,Z2T,CM4)

GAEL ELL2{(P25 2T ,CM4% CEaCM44 )
PY=—U(48)%(2.%¥P2-P1)/SA+D
PX=2.%¥AM4%*U(4)%*COS(PH)/SA+ADL1/SA
WRITE(6,100)PX,PY

T=T-0.1

IF(T.LT.-U(6)) GO TO 60

GO TO SO

Y4=—Y24/SA+D
SX4=2.%AM4*¥U(4)*CAS(PHS)/SA+ADL1/SA
WRITE(E,2100)SX4,Y4

PEONRING OF BCOM 3

D=¥Y13/5A-Y1
AD=2.*AM3xU(3)*C0OS(PH3)/SA-SX1
T=—TH3-0.1

PRINT, " socoOM 3 .
PH=ARSINI(SQRT((1«+SIN(T))/(1.+#SIN(A3))))
ZT=TAN(PH)

CALL ELI1(P]1.,ZT,CM3)
CANEPELIZ2(P2,ZT s CHM3:sCCoCM13)
PY=U(3)*(2.*P2-P1)/SA-D
PX=2.«AM3%U(3)=CCS(PH)/SA—-AC
WRITE(6+100)PXsPY

T=T—0.1

IF(T.LT.—157) GO TO 80

GO TO 70
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199
200
201
202
203
204
205
20€
207
208
209

210
211
212
243
214
215
216
217
2le
219
220
221

80

90

ONONOOOO00OO

SRl e

]

PY3==-D

PX3=2.*AM32U(3)/SA=-AD
WRITE(6,100)PX3,PY3

D=—Y23/5A-Y4
AD=2.*AM3I*xU(3)*COS(P'14) /SA-SX4
T==U(7)-0.1
PH=ARSIN(SAORT( (1 «+SIN(T))/(1.+SIN{(A3))))
ZT=TAN(PH)

CALL ELI1(P]l,ZT,CM3)

CALL ELI2(P2,2T,CM3.7C,CM33)
PY==U(3)*x(2,%F2-P1)/SA+0D
PX=2.%AM3%xU(3)*CCS(PH)/SA—-AD
WRITE(6,100)PX,PY

T=T-0.1

IF(T«LT.~1.57) GO TQ 95

GO TO 90 ~

CONT INUE =

STCP

END

L R R R R N E R R R R R R RS R R S

THIS IS AN EXTERNAL SUEPROGRAM FOR SOLVING A
EQUATIONS USING BROWN'S METHCD,

SYSTEM CF NCNLINEAR

R s R R R R R E R R R R RS RS R R RS

DOUBLE ORECISINN FUNCTION XUX(X,K)
IMPLICIT REAL*3(A-H,0-2)

DIMEN3SICN X(1)

Al=0.41D0

A2=0.39D0

A3=5.D0-1

TH1=0.733D0

TH3=1.025C0

AM1=DSCRT((1.D0+DSIN(AL1))/2.D0)

AM4=CSCRT((1.CO+CSIN(A2))/2.D0)

AM3=DSCRT((1.00+DSIN(A3))/2.C0)
PH1=DARSIN(DSORT((1,D0+DSIN(=TH1))/(1«DO0+CSIN(AL1))))
PH3=DARSIN(PSCRT((1.D0+DSIN(—TH3))/(1.D04CSIN(A3))))

G0 s 2 A et ) K
XUX=AM3%X(3)*UA3S(CCCS(PH3)-CCOS(DARSIN(DSCGRT((1.D0+DSIN(=X(1)))/
1(1.00+C5IN(A2))))))-DAES(ANI%DCNS(PHL)—AN4xX(4)*
2CCOS(DARSINIDSGRT((1D0+DSIN(=X(6)))/(1CO0+DSIN(A2))))))

RE TURN 5
XUX=DSIN(AL1)=X(4)%X(4)*%DSIN(A2)

RETURN

XUX=DSIN(THL)+X(2)%X(2)*DSIN(X(S))-X(3)*X(3)*DSIN(TH3)

RE TURN

XUX=CCOS(TH1)=X(2)*Xx(2)*DCOS(X(S5))—X(3)%X(3)*CCCS(TH3I)

RETURN
XUX=X(3)%X(3)%DSIN(X(1))=X(2)%X(2)*DSIN(X(S))-X(4)%L(4)*DSIN(X(6))
RETURN
XUX=X(3)%=X(3)*DCOS(X(1))+X(2)%X(2)*DCOS(X(5))=-X(4)%X(4)*DCOS(X(6))
RE TURN

END
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