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ABSTRACT

One of the fundamental problems in signal processing is to enhance a signal which has

been corrupted by an additive noise. In this thesis, the problem of alleviating the effects

of camera noise corrupting the dialog of a film. soundtrack is examined. Two methods of

noise reduction are investigated: adaptive noise cancellation with a synthesized reference

signal, and spectral subtraction. It is found that, due to the relatively low correlation be­

tween successive camera noise pulses, the adaptive noise cancellation approach is not ef­

fective at reducing camera noise. The spectral subtraction method is shown to reduce

camera noise, but the process creates audible artifacts which can be very disturbing to the

listener. To overcome this, new methods are proposed for reducing musical noise and

rime aliasing effects. The use of subbands and sub-frames is shown to significantly im­

prove the performance of the spectral subtraction algorithm by providing a better match

of the noise reduction process to the noise. The performance is further improved by Ïn­

corporating a perceptual model into the spectral subtraction algorithme The use of sub­

bands, sub-frames, and a perceptual model allows the amount of processing applied to the

signal to be minimized which in turn reduces the level of any artifacts which may result

from the noise reduction process. The results of a formal subjective test demonstrate the

improved performance of the new noise reduction algorithme
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RÉsUMÉ

De tous les problèmes rencontrés en traitement de signal, un des plus fondamentaux est

l'amélioration d'un signal détérioré par un bruit additif. Cette thèse considère le problème

de réduction de bruits provenant d'une ciné-caméra et se retrouvant dans la bande sonore

d'un tùm. et donc affectant le dialogue. Deux approches sont étùdiées pour réaliser cette

réduction de bruit, soit l'annulation adaptative du bruit par la méthode des moindres

carrées et utilisant un signal de référence synthétisé, ainsi que la soustraction spectrale.

Les résultats démontrent que l'approche d'annulation adaptative du bruit utilisant un

signal de référence synthétisé n'est pas efficace pour réduire le bruit de caméra, ceci étant

du à la corrélation relativement faible entre les impulsions consécutives du bruit.

L'approche de soustraction spectrale offre une réduction considérable du bruit de caméra,

mais des artifices perceptibles et très perturbant pour l'auditeur en résultent. Pour éviter

ceci, de nouvelles approches de réduction de bruit musical et d'effets de repliement

(aliasing) temporel sont proposées. L'utilisation de sous-bandes et de sous-trames résulte

en une amélioration importante de la performance de l'approche de soustraction spectrale

en créant une meilleur correlation entre le bruit et the processus. Le rendement est

d'autant plus amélioré en insérant un model perceptuel dans l'algorithme de soustraction

spectrale. L'utilization de sous-bandes, de sous-trames, et du model perceptuel permet de

minimiser le degré de traitement du signal qui en plus minimise les artifacts provenant de

la réduction de bruit. Les résultats d'un test subjectif formel démontrent l'amélioration

de la performance de l'algorithme de réduction de bruit.
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1. INTRODUCTION

This thesis addresses one aspect of the general problem of enhancing a signal which has

been corrupt:ed by an additive noise. This problem arises in applications ranging from

removing noise from speech signais in a telephone system, to detecting sonar signais

amidst the ambient noise of the ocean, to enhancing fetal electrocardiograms. In fuis the­

sis, we examine the problem of enhancing a speech signal which has been corrupted by a

repetitive or cyclicaI noise source. That is, it is assumed that certain characteristics of the

interfering noise repeat over time.

While the research described in this thesis focuses on the specific application of re­

moving camera noise from Hlm soundtracks, the results are readily extendible to other

applications which require that a signai be enhanced in the presence of a repetitive noise.

For example, many mechanical devices (e.g. motors, generators, cooling fans, printing

presses, propeller blades, etc.) produce repetitive acoustic noises which can corrupt a de­

sired acoustic signal (e.g. speech, music, sonar). Also, there are many sources of cyclical

electrical noise (e.g. car ignition noise, interference from electric motors, switching power

supplies, etc.) which can corrupt other electrical signais. Therefore, any signal which has

been corrupted by a repetitive noise source can potentially be enhanced using the methods

described in this thesis.

As a result of one of the noise reduction methods investigated in this thesis, a mathe­

matical and subjective comparison of two auditory masking models was conducted, and

new enhancements to the models were proposed. This work has implications for many

applications beyond the field of noise reduction.

1.1 Description ofthe Problem ofCamera Noise in Film Soundtracks

This thesis examines the problem of camera noise in fIlm soundtracks and investi­

gates potential schemes for reducing this noise. The soundtrack of a motion picture con­

sists of a mix of audio recordings of music, sound effects, and speech. The music seg­

ments of a soundtrack are invariably recorded in the highly controlled acoustic environ­

ment of a recording studio. Similarly, sound effects are often taken from a pre-recorded

library of sounds, or if they are not available from such a library, theyare created and

recorded on a foley stage. The foley stage is another acoustically controlled environment

1



• designed specifically for the task of creating sound effects for films. Sïnce neither the

music nor the sound effects are recorded at the time of fIlming, they are not affected by

camera noise. The dialogue however, is recorded at the time of filming and it is here

where the problem of camera noise arises.

•

Figure 1.1 Dlustration of a typical filming scenario.

The problem of camera noise corrupting the dialogue recordings can be described

with the help of Figure 1.1. The figure depicts a typical fIlming scenario with an actor

standing before a camera reciting bis dialogue. Above the camera is a microphone which

is used to record the actor's voice and any other assorted sounds that the actor might

make Ce.g. coughing, rustling paper, typing, footsteps etc.). The microphone is typically

placed as close to the actor as is possible without appearing within the view of the cam­

era.

Simply stated, the fundamental problem is that due to its mechanical workings, the

camera produces an acoustical noise which is picked up by the microphone (as depicted

by the arrows in Figure 1.1) along with the speech signal. The noise of the camera is su­

perimposed onto the soundtrack along with the voice of the actor. The loudness of this

noise relative to the level of the actor's voice can vary significantly due to: the type of

camera; the type of microphone employed; the acoustic characteristics of the room; and

the relative positions of the camera, the actor and the microphone. It is possible to timit

the loudness of the camera noise to sorne extent by carefully controlling sorne or aU of

these variables. However, this reduction in the level of the noise may occur at the ex­

pense of limiting sorne other technical or artistic aspect of the filming process. For ex-
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ample, unidirectional microphones which are more sensitive to sounds arriving from the

front of the microphone than from its rear, can be employed to record the dialogue. By

placing the camera to the rear of a unidirectional microphone, it may be possible to re­

duce the amount of camera noise picked up by the microphone. However, it should be

noted that the camera noise reaches the microphone via many paths. That is, the camera

radiates noise in all directions and the noise will reflect off of the various surfaces (e.g.

floor, walls, fumiture, etc.) within the room and will reach the microphone at different

times, from various directions and with different amplitudes. Therefore, the reverberation

of the room may limit the effectiveness of this approach. If the level of the camera noise

is relatively low in comparison to the dialogue then, as an alternative to reducing the

noise, it may be possible to mask it with background music or sound effects.

Despite these means of limiting or masking the camera noise in the dialogue record­

ings, it is still very common for the camera noise to be audible to some degree. This is

particularly true for JMAXTM films· since the larger cameras used to make these fùms are

inherently noisier. Even small amounts of camera noise may distract the viewer and de­

stroy the film's illusion of reality, and therefore, any audible camera noise is generally

considered to be unacceptable [1].

For those cases in which the level of the camera noise is sufficiently high so as to be

detectable, the actor's dialogue must be re-recorded (dubbed) in an acoustically controlled

environment after the filming has occurred. This process is known as automatic dialog

replacement (ADR). In ADR, the actors recite their dialogue while watching an image of

their (previously fùmed) performance and listening to the noisy version of their dialogue.

While ADR completely eliminates the problem of camera noise, it is an undesirable solu­

tion since it adds significant costs to the production of a film and, because the actor must

now worry about remaining synchronized with the image, it typically compromises bis

performance [1,2]. ADR is used regularly during the making of most movies in order to

overcome the problem of camera noise. Therefore, a method for removing camera noise

without adversely affecting the underlying speech signal would be of signjficant benefit

to the fIlm making process [3,4]. A review of the pertinent scientific literature and dis­

cussions with individuals in the fl1m industry indicate that no such method presently ex-

• The !MAX corporation produces a specialized type of motion picture using a very large screen format
which encompasses the viewer's peripheral field of view. To retain resolution and picture quality. llvlAX
cameras require a sophisticated transport mechanisffi.
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ists. However, the Th1AX Corporation, whose cameras pose a greater noise problem due

to their large size, did conduct sorne research on this topic [5].

It is reasonable to question the value of a system which could successfully reduce

camera noise. In the making of a f"Ilm, the cost of ADR is typically on the order of

US$SO,OOO. Given the hundreds of f"Ilms made each year, one can see that literally mil­

lions of dollars are spent annually on ADR. This is despite the methods which currently

exist for limiting camera noise (see Chapter 2).

1.2 Description ofCamera Noise

It is useful to have in mind an idea of the sound of camera noise. To this end, it is in­

structive to describe the mechanisms which combine to produce the acoustic noise in a

motion picture camera.

A motion picture camera is an intricate mechanical device composed of many moving

parts. The film is transported from the supply reel, through the camera to the take-up reel

by means of the sprocket holes which line the film. The sprocket system is used to ensure

that the f"Ilm is correctly aligned with the camera's shutters and lens. With a frame of the

film correctly aligned, the shutters open and close to briefly expose the fùm, and the film

is then moved to the next frame. This process is repeated 24 times every second. The

rate (f"Ilm rate) of 24 frames per second was chosen to provide sufficient visibility of lip

movement when sound was introduced to motion pictures [6]. The camera noise is heard

as a series of clicks or pulses (actually, noise bursts) occurring at a rate of 24 times per

second.

The reader is probably familiar with the sound of a motion picture projector. Given

that the camera and projector have many similar components, the noise of the camera is

quite similar to that produced by a projector. Examples of camera noise can be heard on

the compact disc accompanying the thesis (see Chapter 8).

1.3 Requirements ofa Noise Reduction Scheme

In order for any camera noise reduction scheme to be fully acceptable, there are several

requirements which it must meet. Of course, a successful noise suppression technique

must reduce the camera noise such that any residual noise will not be perceptible to the

audience. AIso, the process must not adversely affect the quality of the underlYing speech
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signaL This implies that the restored speech signal must be of very high quality and that

no audible artifacts can be introduced as a result of the noise reduction process.

Given the manner in which dialogue is traditionally recorded, it is highly desirable

that the noise suppression technique be a single-input system. That is, the technique

should be able to process the corrupted (noisy) signal without the benefit of an additional

recording of the isolated camera noise. While this is a very severe restriction in that it

eliminates the use of certain approaches for noise suppression, it is unlikely that any

scheme would gain widespread acceptance unless it meets this fundamental requirement

[3,4,5]. Moreover, a successful single-input noise suppression scheme could also be used

for the restoration of older films, thus greatly extending its usefulness.

Since a successful noise reduction scheme would be used as part of an artistic process

(i.e. the making of a soundtrack for a film), the key parameters which control the per­

formance of the process must be identified and put under the user' s control. Finally,

while it is not absolutely necessary for the noise reduction to occur in real-time, from a

practical point of view, the process must operate with reasonable speed.

1.4 Noise Reduction Techniques

In describing the problem of camera noise it was seen that the task of removing camera

noise from a fIlm soundtrack consists primarily of extracting a speech signal frOID noise.

Separating a desired speech signal from an undesired signal is an important and common

problem in signal processing. There has been a significant amount of research devoted to

this topie, although primarily in the context of telephony, speech compression, speech

recognition and military voice communications. In this section, methods of noise reduc­

tion based on adaptive fIltering methods and spectral subtraction are considered briefly.

Sorne of the benefits and limitations of each approach are also addressed.

1.4.1 Adaptive Noise CanceUation Aigorithms

A commonly used method for reducing noise in speech signais is the adaptive noise can­

cellation (ANC) technique. In its basic form, ANC uses two inputs: a primary input and a

reference input. In the present application, the primary input corresponds to the noisy

speech (recorded at the primary microphone), while the reference input would consist of a

recording of the camera noise alone. In practice, the reference input would be obtained

by placing a second receiver (reference microphone) next to the camera and recording the

camera noise at the same time that the dialogue is being recorded. To understand how the

5
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adaptive noise cancellation method works, consider the propagation of the noise from the

camera to the (primary) microphone as depicted in Figure 1.1. The sound from the cam­

era first reaches the microphone by the direct path between them. Due to the reverbera­

tion of the room however, this is followed by a plethora of reflections arriving at different

times and with different amplitudes. The ANC method works by estimating this complex

acoustic response frOID the camera to the primary microphone.

Given this estimate, the reference input (i.e. the camera noise) is processed to produce

an approximation of the camera noise as it would appear at the primary microphone. This

approximation of the camera noise is then subtracted from the primary input signal, thus

reducing the noise and leaving a noise-reduced recording of the speech signal. The esti­

mation of the acoustic path is often done by using the least-mean square (LMS) adaptive

algorithm which adapts on an iterative basis. A comprehensive introduction to ANC and

its many applications, as well as a derivation of the LMS algorithm can be found in the

classic paper by Widrow et al. [7].

While ANC can be quite effective in many applications, there are certain basic limi­

tations which must be considered. Since the LMS algorithm iteratively derives its esti­

mate of the acoustic path, the rate at which the algorithm adapts to produce this estimate

must be considered. Clearly, it is desirable for the algorithm to adapt as quickly as possi­

ble. However, the speed with which the LMS algorithm cao adapt is limited by the op­

posing requirements for the algorithm to remain stable and the need for an accurate esti­

mate. Performance of an ANC system can also be compromised if sorne of the desired

speech signal leaks into the reference input signal (i.e. is recorded by the reference micro­

phone). Variations to the basic LMS algorithm and an analysis of the factors which limit

its performance (adaptation rate, accuracy of the estimate, stability, etc.) cao be found in

[8,9,10,11]. An important variant of the LMS algorithm is the normalized LMS algo­

rithm, which can provide superior performance when dealing with impulse-type noise

(such as camera noise).

An area of research which is closely related to ANC is the problem of blind signal

separation [75,81,88,89,91]. Blind signal separation cao be viewed as a generalization of

the ANC method which attempts to overcome many of the limitations inherent to ANC.

It was origffially believed when this research work began that LMS-based ANC was

the obvious choice of methods for reducing camera noise. There are severa! factors how­

ever which make the use of this method less appealing for this application. The most im­

portant factor is that ANC is a two-input, rather than a single-input scheme. A single-
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input scheme, of course, was one of the primary criteria for an acceptable noise reduction

scheme. In some instances, when the noise is repetitive and somewhat predictable, it may

be possible to sYnthesize the reference signal rather than record it directly. This effec­

tively creates a single-input ANC system. For this approach to reduce camera noise re­

quires that the individual pulses of the camera noise be sufficiently similar to each other

so tbat a representative reference signal can be derived. Unfortunatelyas will be seen in

Chapter 4, the individual pulses are not similar enough to Yield a sufficient degree of

noise reduction using this approach.

1.4.2 Methods Based on Spectral Subtraction Techniques

At about the same time that adaptive noise cancellation was trrst being developed, the

technique of spectral subtraction was proposed by Weiss et al. [12] and by Boll [13,14].

The process was originally intended for military applications in an attempt to improve the

intelligibility of speech under extreme noise conditions. For example, spectral subtrac­

tion was used to try to improve voice communications in the cockpits of jet fighter air­

craft and helicopters [13,15]. Interestingly, tests showed that the spectral subtraction

technique did not provide any improvement in intelligibility [13,16,17]. It did however

provide a perceived improvement to the quality of the processed speech signal, and it is in

this context that spectral subtraction is examined as a potential means of reducing camera

noise.

In a manner similar to ANC, spectral subtraction forms an approximation of the noise

signal and then subtracts this estimate from the noisy speech signal. However, spectral

subtraction uses a much less precise approximation of the noise signal than ANC. More

precisely, an audio signal can be described in terms of its combined spectral magnitude

and phase. The adaptive noise cancellation scheme described earller requires an accurate

determination of both of these parameters, whereas the spectral subtraction process only

estimates the spectral magnitude and effectively ignores the phase. Ignoring the phase

portion of the noise causes corresponding errors in the phase portion of the processed

speech. However, these errors are usually unimportant since the ear has been found to be

relatively insensitive to the phase portion of speech signals [18,19].

This simplified approximation of the noise signal provides several advantages. For

example, unlike the ANC scheme, the spectral subtraction algorithm does not suffer from

conflicts between stability and adaptation rate. More importantly however, the simplified

approximation allows spectral subtraction to be a single-input process thus making it

7
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suitable for the task of reducing camera noise. Spectral subtraction relies on the assump­

tion that the spectral magnitude of the noise during gaps in the speech is the same as

during speech intervals. Therefore, the spectral subtraction scheme derives its noise es­

timate directly from the recording of the noisy speech during the intervals where there is

no speech activity.

Due to its crude characterization of the noise source, the spectral subtraction process

can produce many audible artifacts which are sometimes more disturbing to the listener

than the original noise. The artifacts become more audible as more aggressive processing

is applied to the noisy speech signal. As the level of the camera noise increases, more

aggressive processing must be applied to sufficiently reduce this noise, and thus the re­

sulting artifacts become more audible.

Spectral subtraction is actually a name given to a family of algorithms which are

variations of a fundamental technique. The various algorithms differ primarily in how

they forro their estimate of the noise signal. They effectively provide a trade-off between

the amount of noise suppression achieved and the level of the resulting artifacts. Perhaps

the most disturbing artifact, and certainly the one which has received the most attention,

is musical noise. Musical noise can be described as a sequence of short-lived tones oc­

curring at random times and frequencies. A significant portion of the research into spec­

tral subtraction has been devoted ta studying ways of limiting and suppressing musical

noise. Vaseghi and Frayling-Cork [20] proposed a 'survival algorithm' for removing mu­

sical noise which is based on examining the amplitude and duration of the tones that

make up the musical noise. Cappé [21] has shown how the variant of the spectral sub­

traction algorithm proposed by Ephraim and Mahler [22] provides noise reduction with­

out creating nlusical noise. However, this version of the spectral subtraction algorithm

does not completely eliminate the interfering noise signal and is therefore not applicable

to the camera noise problem.

An interesting variation ta the spectral subtraction algorithm was investigated by

Tsoukalas et al. [120,130,23] wherein a model of the human auditory system is incorpo­

rated into the system. The auditory model is used ta determine which portion of the noise

is audible and which is being masked by the desired signal. The spectral subtraction algo­

rithm then removes ooly that portion of the noise which is audible. This approach is re­

ported ta significantly reduce artifacts such as musical noise [120,121,130,131,132].

Spectral subtraction bas been applied mainly to reducing high level noise in voice

communication systems and as a pre-processor to speech compression and speech recog-

8
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nition systems [24,25,26,14,27,28,29]. In these applications, where noise conditions can

be quite severe, artifacts resulting from the processing rnay be acceptable provided that

communications (or recognition) are improved. Spectral subtraction has also been used

to reduce the background noise (hiss) in old gramophone recordings prior to being trans­

ferred to compact dise [20,30]. In this application spectral subtraction was found to work

successfully if the level of the background noise is sufficiently far below (>30dB) the

level of the music signal. This is a much less severe noise condition than found in sorne

voice communication applications. Also, in the gramophone restoration application it is

acceptable to merely reduce the level of the background noise without making it inaudi­

ble. This is in contrast to the camera noise problem where the noise must be rendered

inaudible. As with the removal of camera noise, audible artifacts are not acceptable when

restoring gramophone recordings.

The problem of removing camera noise shares features of both the voice communica­

tion and gramophone restoration applications. While the level of the camera noise is ex­

pected to be nearer to the noise levels found in communications systems, the processed

speech signal must be of the same high quality dernanded when restoring gramophone

recordings. Therefore, removing camera noise makes for a unique and challenging noise

reduction problem in that two opposing demands must be addressed. In this thesis it will

be shown that spectral subtraction can be successfully used to remove camera noise in

ftlm soundtracks. This is achieved primarily by taking advantage of specific characteris­

tics of the camera noise which allow the amount of processing applied to the noisy signal

to be time and frequency dependent. By matching the noise reduction algorithm to the

noise, the amount of processing applied to the signal can be reduced which in turn re­

duces the level of any residual artifacts. The use of a perceptual model in the spectral

subtraction algorithm builds on this philosophy. By removing only those portions of the

noise which are audible, the amount processing applied to the signal is reduced and thus

the levels of the artifacts are also reduced.

1.5 Original Contributions

Based on a review of the pertinent literature and discussions with individuals in the fllm

industry, this thesis appears to constitute the frrst comprehensive investigation into the

use of adaptive signal processing methods for reducing camera noise in fllm soundtracks.

The results of the thesis provide a successful single-input approach for removing camera

noise while minimizing any audible effects on the underlying speech signal. As such,
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these results point the way towards a hardware and/or software implernentation wlnich

could be used bath in the making of new films and for the restoration of aider films.

An important aspect of the thesis work was the careful measurement and characteri­

zation of the acoustical and statistical properties of the camera noise. This was done for

several cameras and the factors which cause variations in the camera noise were ide:nti­

fied. It was shown that the camera behaves as a distributed noise source. This has im­

portant implications for the possible success of ANC-based noise reduction schemes_ A

mathematical model of camera noise was developed which differentiates between the pe­

riodic and cyclical randorn components of camera noise. The model was extended tOt in­

clude the inter-pulse jitter in the timing of the periodic component. The information de­

rived in this chapter was not available in the scientific literature and will serve as a useful

foundation for other researchers who may wish ta address the problem. Moreover, the

recordings form a valuable database which can be used by researchers to develop and

evaluate other potential schemes for reducing camera noise.

Significant effort was given to investigating the use of ANC-based (and blind signal

separation) techniques for reducing camera noise, and it was shown that this approach is

not Iikely ta yield a high degree of noise reduction due to the distributed nature of the

camera noise. It was shown that the maximum amount of noise reduction is limited to

about 15 dB which is insufficient for this application. These findings provide an expla­

nation of why other (IMAX) attempts at using ANC for reducing camera noise failed.

A variation to ANC using a synthesized reference signal was proposed. litter in the

timing of the camera noise was shawn ta limit the performance of this approach. A

method for synchronizing the ANC to the camera noise was proposed and the resulnng

improvernent in performance was demonstrated.

While the ANC approach was not successful at adequately suppressing camera n~ise,

these negative results provide valuable information to future studies regarding the limita­

tions of ANC in similar applications.

Several extensions and modifications to the traditional spectral subtraction algori~

were proposed which help to reduce sorne of the artifacts which can result frorn the proc­

eSSe These extensions are not restricted to the camera noise application and are useful to

the general noise reduction problem.

• The zero-phase fIlter interpretation of the noise suppression equation was

generalized and the effects of each of its parameters were analyzed.
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• The various artifacts resulting from the noise reduction process were char­

acterized and the cause of each artifact was related to one of two sources

oferror.

• The minimum spectral floor proposed by Berouti et al. [17] was extended

to make the resulting noise floor more perceptually benign.

• The "survival algorithm" proposed by Vaseghi and Frayling-Cork [20]

was extended to provide improved suppression of the musical noise.

• A new noise-overestimation parameter, based on the variance of the noise

measured during the derivation of the noise estimate, was proposed.

• The use of zero-padded PFf's with truncation was proposed to reduce pre­

and post- echoes (temporal smearing artifacts).

• An analysis/synthesis windowing operation was added to remove the dis-

continuities at the boundaries of the overlapping processing frames.

A general mathematical framework for a subbandlsub-frame based spectral subtraction

algorithm was derived which includes quadrature mirror analysis and sYnthesis fliter

banks. The possibility of aliasllig when combining the subband signals (due to the spec­

tral subtraction process) was highlighted and the implications for the fliter bank design

were considered. The use of subbands and sub-frames was shown to allow the noise re­

duction process to be matched to the characteristics of the noise, thus reducing the overall

amount of processing. This follows frOID the general philosophy adopted in the thesis of

rninimizing the amount of processing applied to the signal in order to minimize the re­

sulting artifacts. The approach was further generalized by using non-uniform sub­

framing and issues regarding the appropriate choice of windows were addressed.

The need for frame sYnchronization when using spectral subtraction techniques in the

presence of a cyclical interferer such as camera noise was identified. A simple means of

obtaining frame synchronization was also proposed.

A significant amount of new work related to the topic of perceptual models was con­

ducted in the research. The work provides direct benefit for camera noise reduction as

well as general noise reduction applications. Moreover, the results are directly applicable

to numerous other applications such as perceptual audio codecs which use a model of the

human auditory system.
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• A detailed mathematical comparison was made between the Zwicker and

the Patterson-Moore models for simultaneous masking. This involved

viewing the Zwicker model in a non-traditional manner (equivalent audi­

tory filters in the linear frequency domain) and deriving generalized ex­

pressions for the Patterson-Moore auditory filters and excitation patterns.

• Significant differences were shown to exist between the two models, and

these differences were shawn to be both level and frequency dependent.

• The results of a psycho-physical study (in conjunction with Shlien) dem­

onstrated that the ability of many listeners to discriminate variations in

frequency is far superior ta that predicted by the Zwicker mode!. This

provides strong evidence of the need for a fmer resoiution basilar domain

scale than is provided by the critical band mode!.

• A new analytic expression describing the filtering effects of the outer and

middle ear was developed which recognizes the low frequency roll-off of

the middle ear. A new complementary analytic expression for the internal

noise floor of the auditory system was also derived.

• A new analytic expression was derived which predicts the amount of for­

ward masking as a function of both frequency and level.

• A compression model for the addition of masking (both simultaneous and

non-simultaneous) based on Humes and Jesteadt's modified power-Iaw

was integrated into the perceptual model to account for excess masking.

• The interaction (additional spreading in frequency) between the transform

window and the auditory fIlters was demonstrated. The KBD window was

shown to overcome many of the limitations inherent in "traditional win­

dows". It Was shown that the auditory filter model requires modifications

in order to account for the frequency domain effects of the window.

• It was shown that the effects of the synthesis window are not included in

the signal used by the perceptual model and thus, there is an inherent error

(bias) in the predicted masking threshold. A method for resolving this

matter was proposed and a window function which is appropriate for use

with the KBD was derived.
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A new perceptual model was developed based on: the auditory filters of Patterson and

Moore modified to account for the effects of the transfonn window; the newly proposed

outer and middle ear transfer functions; the newly proposed internal noise flaor; the

newIy derived expression for forward masking; and the modified power-law for the addi­

tion of masking. The new perceptual model was incorporated into a subbandlsub-frame

based spectral subtraction algorithme The algorithm included the new window preceding

the perceptual modei to account for the synthesis window, as weil as the new method for

estimating the clean signal.

• Subjective tests demonstrate the differences in the masking thresholds

predicted by the Zwicker perceptual model versus the Patterson-Moore

mode!. The results indicate that the Patterson-Moore model developed in

this thesis provides better performance for the noise reduction application.

The differences in the two perceptual models demonstrated in the thesis

strongly suggest the need to reevaluate the use of Zwicker based models in

perceptuaI audio codecs.

• A formai subjective test was conducted using the most rigorous and sensi­

tive methods availabie. The results clearly demonstrate a significant im­

provement in the performance of the spectral subtraction algorithm due to

the use of subbands and sub-frames, as weil as the use of a perceptual

mode!. The results aIso demonstrate that the methods developed in this

thesis meet the requirements for a successful camera noise reduction sys­

tem.

1.6 Outline ofthe Thesis

The thesis is divided into nine chapters. Chapter 2 provides a more detailed look at the

problem of camera noise in fum soundtracks and describes existing methods, and their

limitations, for reducing its audibility. AIso, previous (unsuccessful) research efforts to

reduce camera noise are described. In Chapter 3, the properties of camera noise are char­

acterized. Measurements of camera noise in both the time and frequency domains are

described. These measurements provide valuable insights for investigating possible noise

reduction schemes. AIso, the distributed nature of camera noise is demonstrated and its

implications on noise reduction are considered. A model of camera noise is proposed

which allows it to be divided inta two main (periodic and cyclical noise) components.
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The fourth chapter examines the potential for using adaptive noise cancellation tech­

niques to reduce camera noise. The chapter provides a review of the theory behind the

LMS algorithm and sorne of its variants. The dependence of ANC on the coherence be­

tween the two input signals is demonstrated and its impact on the reduction of camera

noise is discussed. The theory behind blind signal separation is reviewed and it perform­

ance is compared to ANC. The maximum amount of noise reduction attainable for cam­

era noise using these methods is predicted. An ANC algorithm using a synthesized refer­

ence is proposed as a means of reducing one component of the camera noise. It is shown

that, due to jitter in the camera noise, steps must be taken to keep the ANC process syn­

chronized to the noise. The chapter ends with discussions and conclusions regarding the

suitability of ANC methods for reducing camera noise.

Chapter 5 begins with an overview of spectral subtraction using BoIl's method. Vad.­

ous spectral magnitude estimation methods are then analyzed and compared, and the per­

formance of these methods is evaluated in the context of reducing camera noise. The arti­

facts resulting from spectral subtraction are described and several modifications and ex­

tensions are proposed which can help to reduce the severity of these artifacts. In Chapter

6, a spectral subtraction algorithm based on subbands and sub-frames is proposed to de­

compose the processing in the time-frequency plane. A mathematical framework is de­

rived and it is shown that matching the noise reduction process to the camera noise can

significantly improve the performance of the spectral subtraction algorithme The use of a

model of the auditory system to improve the performance of the spectral subtraction algo­

rithm is considered in Chapter 7. Two well-known perceptual models are compared from

a mathematical viewpoint, and several modifications are proposed. The new perceptual

model is incorporated into the subbandlsub-frame based spectral subtraction algorithme

The chapter concludes by examining how the transform. window interacts with the per­

ceptual mode!.

In Chapter 8 the various noise reduction schemes described and developed in the the­

sis are evaluated subjectively. The most promising schemes are evaluated in a formal

subjective test. The results of the test provide a clear comparison of the performance of

the various noise reduction schemes and demonstrate the improved performance due to

the enhancements proposed in the thesis. Finally, Chapter 9 consists of a summary and

discussion regarding the task of reducing camera noise in film soundtracks.
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2. EXISTING NOISE REDUCTION METHODS

2.1 Introduction

The problem of camera noise was described in the previous chapter, where it was empha­

sized that any audible camera noise is generally considered unacceptable since it may de­

stroy the sense of reality desired by a fIlmmaker. However, when watching a fllm, one is

rarely aware of the sound of the camera and therefore, methods for preventing camera

noise from corrupting the soundtrack must already existe Indeed, there are several meth­

ods which currently exist for reducing the audibility of camera noise in fùm soundtracks

and in this chapter, they are explored and their potentiallimitations are highlighted.

The methods outlined in Section 2.2-Microphone Techniques and Section 2.3­

Acoustic Barriers and Blimps are employed at the time of fùming and may by their nature

impose limitations on creative aspects of the fùming process. Section 2.4 describes an

electronic (analog) signal processing device which, though not intended for this purpose,

cao be used ta reduce camera noise to sorne extent. The main benefit of this approach is

that, since it is a post-processing approach, no limitations are imposed at the time of

fùming. Dubhing or automatic dialogue replacement is described in Section 2.5 as the

method of last resort. Although ADR entirely eliminates the problem of camera noise, it

can he a rather costly solution aod cao have an impact on the fmal artistic quality of the

soundtrack. Section 2.6 discusses informal results of severa! attempts to use modem sig­

nal processing methods to reduce camera noise.

m
y(t) =I,[Si(t)*hsi ]+ll(t)*hn

i=l

n(t)

Figure 2.1 Simplified model of the camera noise problem•
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The problem of camera noise is reexamined in Figure 2.1. The figure shows the sig­

nal y(t) received at a microphone which is a summation of m signals (Si(t), i=I,2,.. .m) and

the camera noise n(t). The m signals represent the various actors as weil as any other

sounds which are desired during the time of recording. Each of the m signals is con­

volved with a corresponding acoustic impulse response, hst Similarly, the camera noise is

also convolved with an acoustic impulse response, hn • Each of the impulse responses rep­

resents the acoustic path from a source to the microphone. The possible methods for re­

ducing camera noise will be examined in the context of this simple mode!.

2.2 Microphone Techniques

Before discussing how microphone techniques might be used to reduce camera noise,

consider sorne of the goals of the sound engineer when recording the dialogue for a film

soundtrack. First, it must be recognized that the goals go far beyond merely making an

intelligible recording of the dialogue. The recording must also capture the timbre, rever­

beration, and spatial characteristics associated with the sound of the actors' voices in the

given acoustic environment [1]. Furthermore, the recording must also capture other

acoustic events not associated with the dialogue. That is, other sounds such as back­

ground noises Ce.g., passing cars, environmental sounds, etc.) and any incidental sounds

made by the actors also need to be recorded at the time of f"llming. This implies that the

use of highly directional microphones to focus-in on the actors' voices may be an inade­

quate approach and that one or more less directional microphones may be required.

When recording dialogue in a room, the microphone not only picks up the sound di­

rectly from the actor, but also picks up the many reflections frOID the surfaces within the

room. These reflections have a variety of amplitudes and delays with respect to the direct

sound, and it is the relation between the direct sound and these reflections which deter­

mines the acoustic character of the room. For example, in a small room (e.g. office, liv­

ing room) where the reflecting surfaces are nearby, the reflections will come in quick suc­

cession saon after the direct sound. Conversely, in a large room Ce.g. gymnasium, concert

hall) there is often a longer delay between the arrival of the direct sound and the fust re­

flections. Also, the time between reflections may be longer. The (acoustic) absorptive

characteristics of the surfaces within the room will determine the strength of the reflec­

tions relative to the direct sound and ultimately the reverberation time [31] of the room. A

listener is sensitive ta these various phenomena and uses them to derive an acoustic im­

pression of the room [32].
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There are two basic microphone parameters which can be manipulated to reduce the

level of the camera noise recorded by a microphone: proximity and directivity. In the

fust, the relative proximity of the actor and the camera to the microphone is adjusted in

arder to minimize the level of the recorded camera noise. For example, a lavalier micro­

phone can be placed in the actor's clothing. This helps to increase the signal-to-noise ra­

tio of the recording. However, the timbre of the recording made in this manner is typi­

cally very unnatural.

Altematively, a highly directional microphone can be used to focus-in on the voice of

the actor while rejecting other sounds in the room (including the camera noise). The re­

sulting recording will lack the reverberant and spatial information of the room and will

have to be processed to try to simulate the lost information. Moreover in general one

cannot expect to obtain more than 10 dB of broadband noise reduction using directional

microphones in real rooms [33].

Both of the above methods are equivalent to reducing the amplitude of the acoustic

path hn relative to the paths hSi as shown in Figure 2.1. While these microphone tech-

niques can help to substantially reduce the level of the camera noise, their effectiveness is

limited and is offset by the conflicting needs of capturing room ambiance.

2.3 Acoustic Barriers and Blimps

An obvious solution to reducing camera noise in film soundtracks is to reduce the level of

the mechanical noise produced by the camera. In fact, this has been done to a large extent

over the past decades. However, the technological advances which have allowed for qui­

eter camera operation have been offset by other advances which have reduced the noise

and distortion in sound recordings. That is, although newer cameras may be quieter, the

quality of fllm soundtracks has improved such that the camera noise is still audible. This

is particularly true for digitally recorded soundtracks which have a nominal dYnamic

range of about 96 dB.

In the very early days of motion pictures with sound, camera noise was an extremely

significant issue. To overcome the noise problem, cameras were often placed behind

acoustic barriers or in acoustically isolated booths with a window through which the

scene could be fI1med [6]. Referring back to Figure 2.1, this is equivalent to reducing the

path Iz,z. While this approach serves to reduce the camera noise in the soundtrack, it im-

poses serious limitations on the visual aspects of film. Basically, the approach requires
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that the camera be in a fixed position throughout the scene. Ironically, the introduction of

sound in motion pictures has been viewed by sorne as the main cause for the slow devel­

opment of artistry in the visual aspect of films.

The modem version of the acoustic barrier is called a ''blimp'' which is an enclosure

which encases the camera. Unlike the acoustically isolated booths described above, a

blimp allows the camera to be mobile while fIlming a scene. However, any acoustic bar­

rier requires mass in order to be effective [34] and so a blimp can significantly increase

the size and weight of the camera, thus limiting its mobility. Moreover, blimps do not

entirely eliminate the audibility of camera noise [5].

While camera manufacturers continue to reduce the level of noise produced by their

cameras, this is understandably not their first priority, and they do not want to compro­

mise image quality or mobility for lower noise. AIso, as with many mechanical devices,

wear of the parts over time may increase the noise produced by the camera. The use of a

blimp implies additional costs at the time of filming and may not be a viable option if

fùming of a scene demands significant camera mobility. While reducing the noise at its

source seems like a logical solution, it is not always an option.

2.4 Dolby 430 Series Background Noise Suppressor System

The Dolby 430 Series Background Noise Suppressor System is an analog signal process­

ing device which is sometimes used to combat the effects of camera noise [4]. The Dolby

device is intended to reduce the audibility of broadband noises such as wind or traffic

rumble and was not designed with the goal of reducing camera noise [35]. Nonetheless,

it is sometimes used for this purpose since no alternative signal processing approaches are

readily available. The Dolby noise suppressor is based on the Dolby SR noise reduction

system [36] which is used to reduce the background noise in analog tape recordings.

The Dolby system operates by dividing the input signal into two frequency bands each

of which is followed by an expander circuit (i.e., a level dependent attenuator). In the

lower frequency band the signal content below about 2 kHz is determined relative to the

nominal signallevel. If the level of the signal in this low frequency band is within ±10

dB of the nominal level, then nothing is done to the signal. However, if the level of the

signal in the low frequency band is more than 10 dB below the nominallevel, then a level

dependent shelving filter [1] is applied to the signal. This low frequency shelving tuter is

fiat for frequencies above 2 kHz, but can attenuate low frequency signals by as much as

18 dB. The depth of this shelving filter increases with decreasing low frequency input
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signallevel. A similar process is done simultaneously for the frequencies between 200

Hz and 8 kHz.

The effectiveness ofthis system relies on the fact that perceptually~a high level signal

will mask a relatively low level noise occupying the same frequency range. Therefore,

under these conditions there is no need for any noise reduction. However, as the signal­

to-noise ratio decreases~ the interfering noise will become more audible. To reduce the

audibility of this noise, the input signal is rùtered in proportion to its signal-to-noise ratio.

The Dolby noise suppressor is most effective at reducing low level broadband noise in the

short gaps that occur in speech signals. It does not however~ provide any noise reduction

outside these gaps, where there is a significant signal present. Also~ for situations where

the signal-to-noise ratio of the input signal is low, the Dolby system can create audible

artifacts [35].

One important functional advantage of the Dolby system is that it does not require a

reference signal (Le., a separate recordiùg of the interfering noise). This dramatically in­

creases the potential usefulness of the system since there is no need for an additional re­

cording of the noise source at the time of fllming. Also, given this, the system could in

theory be used to reduce noise in the restoration of old films. Another feature of the

Dolby system is that it allows the user to directIy control the amount of processing ap­

plied ta the input signal. However, it does not have the ability ta be self-adaptive ta

changes in the camera noise.

2.5 Automatic Dialog Replacement - Dubbing

There are situations where, despite the use of various microphone techniques, acoustic

barriers, and post-processing, the level of the camera noise in a film soundtrack is still

deemed ta be unacceptable. In this situation the ooly recourse is dubbing or automatic

dialog replacement (ADR). ADR is the procedure whereby the actors' dialogue is re­

recorded in a quiet environment after the filming is completed [1].

Typically, ADRt is done in a dubbing theatre where the actors recite their dialogue

while watching a projection of their previously fIlmed performance. Clearly this process

completely eliminates any problem of camera noise. However, ADR cao produce several

undesirable side effects. In the ADR process the actors must carefully match their re-

t The "automatic" component of ADR appears to be the automatie synchronization of the newly recorded
dialogue with the image.
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recorded dialogue to the image of them talking. Any mismatch between the sound of their

voices and the image of their lips moving might be noticeable and annoying to the audi­

ence. AIso, dubbing the dialog for a given scene in a fJ1m requires that the actors recreate

the emotional setting which was present at the time of fIlming. AIthough it may solve a

technical problem, ADR can compromise the actor's performance.

While ADR resolves one technical problem for the sound recording engineer, it does

introduce another. One of the goals when recording dialogue for a film is to also capture

the ambiance of the room (i.e. background noises, reverberant characteristics, relative lo­

cations of the actors, etc.). Since ADR is done in a sound recording studio, rather than at

the location where filming occurred, the engineer is faced with the task of trying to recre­

ate the ambiance of the room. Done incorrectly, this results in a sudden change in the

character of the soundtrack which occurs only for those portions of the dialogue which

have been dubbed. Again, if this is noticeable to the audience, the illusion of reality cre­

ated by the film may be destroyed.

A final but not unimportant consideration in ADR is that of cost. The combination of

salaries (especially those of the actors and director) and the rentai of the necessary facili­

ties implies that ADR can be rather costly. The cast of ADR for a typical fIlm. is on the

order of US$50,OOO [37]. With hundreds of fù.ms (and television programs) being made

each year, it is evident that millions of dollars are spent annually on ADR. Furthermore,

the time required for dubbing may delay the overall production of the film. As such, a

more cast-effective and less time consuming solution is desirable.

2.6 Other Signal Processing Attempts at Reducing Camera Noise

In this thesis, various signal processing techniques are examined for reducing camera

noise. In this section we briefly describe other signal processing methods which have

been previously proposed for reducing camera noise. Each of these methods was found

ta be ineffective and was subsequently abandoned.

2.6.1 Attempts by sAle

Severa! years ago (circa 1995), the IMAX corporation funded a research effort to study

ways of reducing camera noise [5]. The research was conducted by the Science Applica­

tions International Corporation (SAIC) in the U.S.A. SAIe explored the possibility of

using active noise cancellation ta reduce the acoustic noise output of the 1MAX-3D cam­

era. The system effectively consisted of an "electronic blimp". Unfortunately, the
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method did not provide a significant amount of noise reduction, and so work on this ap­

proach was halted. The findings of Chapters 3 and 4 of this thesis suggest that a probable

cause of the poor performance was the distributed nature of the camera noise.

A second method was aIso examined by SAIC wherein they applied signal processing

techniques directly to the film soundtrack. This is in keeping with the approach proposed

in this thesis. SAIC proposed the use of adaptive noise cancellation to reduce the level of

the camera noise. It was found that this method did not provide sufficient noise reduction

and so it was rejected. This same approach is examined in this thesis (see Chapter 4) and

is shown to be unsuccessful due to the low inter-channel coherence resulting from the

distributed nature of the camera noise. It should be noted that the author was unaware of

the work done at SAIC until after the work described in Chapter 4 was completed.

A [mal method explored by SAIC involved a noise reduction scheme based on the use

of neural networks. Like the methods proposed in this thesis, the scheme was a single

input approach, thus making it more suitable for the camera noise application. This

method was also abandoned because it did not provide a useful amount of noise reduction

and it severely distorted the desired signal.

Unfortunately, details regarding the approaches developed by SAIC are not available

since all of the results are contained in proprietary reports which are not publicly avail­

able. The collaboration between SAIC and IMAX was terminated with the conclusion

that signal processing techniques examined by SAIC for reducing camera noise in film

soundtracks are not viable.

2.6.2 Commercially Available Broadband Noise Reduction Systems

There are several commercially available noise reduction systems for restoring gramo­

phone recordings. These systems perform several tasks including; click removal, correc­

tion of pitch errors, removal of low frequency noise pulses due to breakages in the surface

of the disc, and broadband noise reduction [20,30,38,39,40,41,42]. These systems can be

very effective at removing noise from gramophone recordings. The broadband noise re­

moval components of these systems are generally based on spectral subtraction (see

Chapter 5), but specific details of their operation are proprietary. These systems have

been under development for many years and it is interesting to ask how these more ma­

ture technologies might perform at removing camera noise. Unfortunately, these noise

reduction systems are very expensive, and the author did not have direct access to them.

However, staff at two fùm studios have experimented with these systems and subse-
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quently concluded that they were not suitable for the task of removing camera noise from

film. soundtracks [4743]. In faimess to these noise reduction systems however7 they were

not designed for this application and do not take advantage of the repetitive nature of

camera noise.

2.7 Summary

In this chapter it was seen that sorne options for reducing or eliminating camera noise cur­

rently exist. However7 these solutions may compromise certain artistic aspects of the

fùm7 create other technical problems, or incur significant costs. Previous attempts at re­

ducing camera noise have been unsuccessful, and systems designed for restoring gramo­

phone recordings are not effective for the camera noise application.

22



•

•

3. CHARACTERIZATION OF CAMERA NOISE

3.1 Introduction

Before exploring potential signal processing approaches for reducing the audibility of

camera noise in film soundtracks, it is useful to characterize the underlying properties of

the noise. To this end, a series of comprehensive acoustic measurements of a profes­

sional film camera were made at the studios of the National Film Board of Canada (NFB)

in Montreal. The results of the measurements provide valuable information regarding the

fundamental properties inherent to camera noise, as weIl as a database of recordings for

developing and evaluating noise reduction schemes.

Prior to making the acoustic measurements, discussions were held with staff members

of the NFB [3,4] from which it was determined that the following parameters were likely

to have an effect on the level and quality+ of the camera noise: make of camera, fIlm size

(Le. 16 mm, 35 mm, etc.), type of lens, film stock, and location within a reel of fIlm.

Therefore, measurements were conducted to examine and evaluate any effect on the cam­

era noise due to these parameters.

Unfortunately, at the time the measurements were made, only one make of camera

was available at the NFB and therefore, differences in camera noise due to the make of

the camera or the fIlm size could not be evaluated. It was believed however, that the re­

sults of these measurements would be directly applicable to other makes and models of

cameras.

Since the time that the measurements were made at the NFB, the IMAXTM corpora­

tion provided the author with recordings of the noise produced by severa! of their cam­

eras. As weIl, IMAX allowed the author access to their 3-D camera in order to make

measurements and recordings. Due to variaus constraints, measurements of the IMAX

cameras were not as comprehensive as those conducted at the NFB. Nonetheless, the re­

sults of the IMAX measurements support the assumption that the results of the NFB

measurements are applicable ta other cameras.

; Here the term quality refers to the characteristics of the noise and not ta any parameter which would influ­
ence one's preference or dislike for the camera noise.
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3.2 Description ofthe NFB Measurement Set-Up

The measurements of the camera noise were conducted in a large mix-down studio at the

NFB in MontreaL The m.ix-down studio, which is used to m.ix the final soundtrack of a

film, consisted of a very large room with high ceilings and a projection screen at one end

of the room. The studio was acoustically treated to reduce the level of background noise

and to minimize the reverberation within the room. Ideally, the measurements would

have been conducted in an anechoic chamber 50 that only the sound emanating directly

from the camera would be measured. Non-anechoic conditions imply that acoustic re­

flections from nearby surfaces will inevitably be included in the measurements. Although

measurements in an anechoic chamber were not possible, the effects of any acoustic re­

flections were lessened by the large size of the room which made it possible to place the

camera and measurement microphones such that the nearest surface (other than the floor

of the room) was approximately 7 m away. Therefore, because of the large distance be­

tween the microphones and the reflecting surfaces, and because these surfaces were

acoustically treated, the reflected acoustic energy was greatly attenuated at the micro­

phone. As such, it was felt that the studio provided very acceptable conditions for the

acoustic measurements described here.

The camera which was analyzed was an AATON - Regular 16 mm camera with an

AATON M3908 MAG-A housing the ïilm. This camera operates at the typical fI1m rate

of 24 frames per second. Eastman EXR 7245 color negative film was used in all of the

measurements of camera noise.

Two Bruel and Kjrer Type 4165 measurement grade microphones were used to meas­

ure the noise from the camera. The outputs of the microphones were connected to two

microphone preamplifiers before going to a Sony PCM-7030 DAT recorder. The sam­

pling rate,fs, of the DAT recorder was set to 48 kHz for all of the measurements. This is

the sampling rate which is typically used in the fI1m industry since it is an integer multiple

of the rate (24 frames/sec) at which the fI1m in the camera operates. It will be seen later

in the thesis that this relationship between the sampling rate of the audio recordings and

the frame rate of the camera provides sorne useful benefits in the noise reduction process.

Figure 3.1 provides an overview of the measurement setup. As cao he seen from the

figure the two microphones were placed at 900 to each other. This was done in arder to

measure the directivity of the camera noise as weil as the distributed nature of the camera

noise. The front of the camera (i.e., where the lens is pointing) was designated to be 00
,

thus making the rear of the camera 1800
• The left side of the camera was designated to be
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• 90° while the right side of the camera was 270°. Each microphone was located at a dis­

tance of 1 m from the centre of the camera.
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Figure 3.1 Camera noise measurement setup

3.3 Calibration ofMicrophones

Prior to making any measurements, the two microphones as weIl as the two channels of

the measurement system were calibrated using a Bruel and Kjrer Type 4230 calibrator.

The calibrator provides a 1 kHz acoustic sinusoidal signal of precisely 94 d.BSPL (re: 20

ppascal) thus making it possible to measure the absolute level of the camera noise. By

adjusting the input gain on the DAT recorder, full-scale (16 bits PCM) on the recorder

was set to correspond to 94 dBSPL. Using this as a reference, the absolute sound pres­

sure level of an subsequent recordings could be determined.

•

It was assumed beforehand (and later confirmed) that the lever of the noise emitted by

the camera would be weIl below 94 d.BSPL and therefore using this level as full-scale

would not maximize the potential dynamic range of the measurement system. Therefore,

during the calibration process, a 20 dB attenuator was inserted ioto the signal path be­

tween the preamplifier and the DAT recorder. During the subsequent measurements, the

20 dB attenuator was removed. By ioserting the attenuator into the signal path during the

calibration process, the sound pressure level corresponding to full-scale on the DAT re­

corder was reduced from 94 dBSPL to 74 dBSPL. The result was an effective 20 dB Ïn­

crease in the dynamic range of the measurement system thus ensuring that the subsequent
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• acoustic measurements would not be limited by the noise floor of the measurement sys­

tem. The calibration process was done separately for each microphone.

3.4 Description ofNFB Measurements

As mentioned in Section 3.1, several variables were believed to contribute to the level

and quality of the camera noise. However, given that only one camera was available, ooly

a subset of these variables could be examined. A series of measurements was conducted

to investigate these parameters.

3.4.1 Background Noise of Measurement System

As a frrst measurement, the level of the background noise of the measurement system was

determined. Here the system consisted of the room as weIl as all of the electronic com­

ponents (microphones, pre-amps, DAT recorder) used in the recordings. For this meas­

urement, the camera was turned off and a 30 s recording was made of the ambient noise.

This recording therefore included the noise due to the room as weIl as the noise floors of

the various electronic components in the recording chain. The spectrum of the measured

background noise is shown in Figure 3.2 with the vertical axis indicating the sound pres­

sure level (re: 20 ,upascal). The figure shows the level of the noise decreasing steadily for

increasing frequencies. This is typical of the acoustic background noise found in this type

of room [34].
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Figure 3.2 Spectrum of measurement system background noise.
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• The background noise of a system is frequently expressed in terms of the overall A­

weighted sound pressure level which was 34 dBA in this case. The background noise

measurement of Figure 3.2 serves as baseline by which it may be determined whether a

spectral component in a given measurernent is due to the camera or the rneasurement

system.

3.5 Typical Camera Noise

3.5.1 Basic Characteristics of Camera Noise
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Figure 3.3 Time waveform of camera noise.
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•

In this section the results of the acoustic measurements are presented in order to pro­

vide a general overview of sorne of the main characteristics of the camera noise. AIl of

the results shown in this section pertain to measurements of the camera noise taken at 0°

with the zoom lens mounted on the camera. Figure 3.3 shows an example of the time

wavefonn of typical camera noise. It should be noted that the waveform represents only

the camera noise. That is, there is no desired signal, such as speech in the waveform.

However, there is a signfficant amount (relative to the level of the camera noise) of low

frequency room noise in the waveform. Therefore, the signal depicted in Figure 3.3 was
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• highpass filtered to reduce the level of the room noise and allow a better examination of

the nature of the underlying camera noise. The resulting waveform is shown in Figure

3.4.

The highpass fIlter consisted of a 100 tap FIR. (finite impulse response) fIlter with a

cut-off frequency of 70 Hz. The fliter was designed to be linear phase thereby keeping

the time domain waveform intact. That is, there is no "smearing" of the waveform due to

the phase response of the fIlter which is an important consideration given the repetitive

nature of the camera noise.
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Figure 3.4 Highpass ïdtered lime waveform of camera noise.

As cao be seen, the camera noise consists of a series of regularly spaced pulses. The

time between the pulses is 1I24th of a second which corresponds to the fIlm rate of the

camera (Le., 24 frames per second). Since the audio recordings were made at a sampling

rate of 48 kHz the time between pulses is 2000 samples. This fact will be used to advan­

tage in the noise reduction schemes described later. While the individual pulses are

similar in their appearance, it is clear that each pulse is unique. Also, while each of the

individual pulses appears to contain a large amount of the noise power, a significant

amount of noise is aIso present between the pulses.
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• Figure 3.5 provides a close-up view of 5 pulses. From the figure one cao more readily

see the differences between individual pulses. Also, the portion of the camera noise

which lies between the peaks of the pulses is seen more clearly in the figure. While there

are some similarities in the structure of the sections of noise between the pulses, it cao be

seen that, again each of these sections is unique. The uniqueness of the individual pulses

and the noise energy between the pulses will play an important raIe in determining the

effectiveness of the noise reduction scheme described in Chapter 4.
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Figure 3.5 Close-up view of highpass tlltered camera noise.

Figure 3.6 provides a close-up view of a single pulse. Interestingly, from this view, it

is now clear that the "puIseU of the camera noise is actually made of several peaks. Fur­

thermore, the section of noise following the peak of the pulse appears ta be quite random

in nature.

•
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Figure 3.6 Close-up view of a single pulse of the camera noise.

So far we have seen only time domain plots of typical camera noise waveforms.

Figure 3.7 provides a view of the power spectrum of typical camera noise. The power

spectrum was obtained by averaging over 170 pulses (about 7 s) of camera noise meas­

ured at 0°. The power spectrum was derived using Welch's method [44] based on modi­

fied periodograms with a Hanning window and 50% overlapping of the time segments.

The upper curve in the figure corresponds to the camera noise, while the lower curve is

the system background noise described earlier. ft can be seen that the camera noise has a

broadband spectrum, although the level of the camera noise becomes insignificant

(relative to the background noise) below about 100 Hz.

The power spectrum of Figure 3.7 does not reveal any obvious harmonie structure to

the camera noise wbich would be easy to detect and remove. While there appears to be a

peak in the spectrum at about 3800 Hz, tbis is not consistent and is merely particular to

this measurement.

Given that the camera operates at a rate of 24 frames per second, one might reason­

able expect to find spectrallines in the power spectrum related to this rate. These spectral

lines do occur, but only if the power spectrum is measured over many pulses, rather than

over single pulses as was done in Figure 3.7. This matter is discussed in greater detail in

Appendix A.
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An alternative way to view the camera noise is in the fonn of a spectrogram. Figure

3.8 shows the spectrogram over several camera pulses (a Hanning window was used with

256 point FFf's). In this plot the horizontal axis represents time while the vertical axis

represents frequency. The log amplitude of the signal is depicted by the shading of the

figure. Lighter shades of gray represent lower amplitudes while darker shades represent

higher amplitudes, with black being the highest amplitude.

In the figure, it is easy to see where the peak energy of the pulses occur. The peaks

create a broadband noise which extends over the entire audible spectrum. Following each

peak is a region over which the level of the noise rapidly decays, while prior to each peak,

the camera noise is low. This is particularly true in the higher frequencies. This structure

of the camera noise will be exploited in sorne of the noise reduction algorithms to be de­

scribed in the sequel.

3.5.2 Directivity of the Camera Noise

The purpose of the next set of measurements was to determine the directivity of the cam­

era noise. The directivity of the camera noise is important since it directly affects the

amount of noise picked up by the microphone recording the actor's dialogue. If the cam­

era noise is not omni-directional, then the noise picked up by the microphone will vary as

the relative positions of the camera and the microphone change. That is, there may be

directions for which the camera noise is stronger and so if the microphone is placed in

that position, the level of the recorded noise will be higher than for other positions. Also,

the directivity of the camera noise is particularly important when considering a noise re­

duction scheme such as LMS (least-mean-square) based adaptive noise cancellation

which requires that a recording of the interfering signal (Le., the camera noise is this case)

be available with little or none of the desired signal mixed with it. Therefore, when de­

ciding where to place the transducer for this recording, it is useful to know where the

camera noise is loudest.

With the camera operating, the resulting noise was measured at 15° intervals using the

setup depicted in Figure 3.1. By using two microphones, the time required to do these

measurements was cut in half thus reducing the effect of any possible time varying pa­

rameters. For these measurements the camera was fitted with the zoom lens and the

height of the microphones was set to 51 inches which was equal to the height of the cen­

tre of the camera lens. Recordings of 10 s duration were made at 24 angles in the hori­

zontal plane. The recordings were fùtered on an octave-band basis and polar plots de-
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• picting directivity were generated for the octave bands extending from 125 Hz to 8000

Hz.

Figure 3.9 shows the directivity of the camera _noise averaged over the octave band

centered at 125 Hz. Again, 00 represents the front of the camera which is the direction

where the lens is pointing. In this plot (and for all subsequent directivity plots) the

shaded area represents the level of the noise created by the camera For a gÏven angle, the

distance from the centre of the plot to the edge of the shaded area indicates the level of

the noise in decibels. For example, referring to Figure 3.9, the level of the noise at 00 is

about 42 dB. As one might expect given the relatively small size of the camera, the noise

is nearly omni-directional in the 125 Hz octave band.
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Figure 3.9 Directivity al 125 Hz
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• Figure 3.10 shows the directivity of the camera noise in the 250 Hz octave band.

Again the noise is omni-directional, although the level is somewhat attenuated relative to

the 125 Hz octave band.

The directivity of the camera noise in the 500 Hz octave band is given in Figure 3.11.

The level of the noise in this octave is significantly lower than for the two previous oc­

tave bands. AIso, the noise has become somewhat directional, with higher levels of noise

found towards the rear of the camera.

Figure 3.12 shows the directivity of the noise in the 1000 Hz octave band. In a man­

ner similar to the 500 Hz octave band, the noise in the 1000Hz octave band is somewhat

directional, with the higher noise levels at the rear of the camera. Interestingly, the over­

allievel of the noise has increased in this octave band relative to the 500 Hz octave band.

270

Figure 3.12 Directivity at 1000 Hz

270

Figure 3.13 Directivity at 2000 Hz

•

The noise in the 2000 Hz octave band shows a very different directivity pattern as

compared to any of the other octave bands. From Figure 3.13 it can be seen that the leveL

of the noise is greater towards the front-Ieft and the rear-right of the camera. The level of

the noise is this octave band is greater than at 1000Hz and is comparable to the level at

4000 Hz.

The directivity patterns of the noise at 4000 Hz and 8000 Hz are similar. For botlh

octave bands the noise is greater towards the rear and is particularly strong on the left side

of the camera Figure 3.14 shows the directivity at 4000 Hz while the directivity at 80<0

Hz is shown in Figure 3.15.
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Figure 3.15 Directivity at 8000 Hz
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From the polar plots shown in the above figures, it can be concluded that the directiv­

ity of the camera noise varies significantly with frequency. At sorne frequencies, differ­

ences of as much as 10 dB can be found for different angles as the relative positions of

the camera and microphones change. This implies that any successful noise reduction

algorithm must be capable of adapting to the resulting changes in the level and spectrum

of the camera noise. Furthermore, the results of the measurements described in this sec­

tion indicate that there does not appear to be any single best angle at which to place a mi­

crophone in arder to record the reference signal for an adaptive noise cancellation ap­

proach to reducing the noise. More importantly, the relatively high directivity of the

camera noise at sorne frequencies suggests that the camera noise is not behaving as a

point source, but rather as a distributed source. This matter is further investigated later in

this chapter.

3.5.3 Effect of Camera Lens

It was believed that the type of lens used during fùming could have an effect on the re­

sulting noise emitted by the camera [3,4]. Therefore, measurements of camera noise were

made with two types of lenses mounted on the camera: a prime lens and a zoom lens.

The measurements were again made at 15° intervals around the camera as described in

Section 3.2, and they were made on a single reel of fIlm. sa that only the effect of the lens

would be measured. That is, it was assumed beforehand that different film stocks could

have an effect on the camera noise (see Section 3.5.4 Effect ofFilm Stock) .
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Figure 3.16 Etfect of lens type on the spectrum of the camera noise.

•

Figure 3.16 shows a typical example of the camera noise with a prime lens versus a

zoom lens. It can be seen that there is no apparent change in the overall sound pressure

level of the noise as a result of changing lenses. There are howevery differences in the

fine structure of the power spectrum. The lower plot (centered on the -5 dB grid line for

clarity of presentation) shows the difference between the two power spectra. Although

the differences in the noise spectra are relatively small for the most party there are points

in the spectra which differ by as much as ±5 dB. These differences are large enough to be

audible and so a noise reduction method that can adapt to these changes appears to be

warranted. It is possible that the differences seen in Figure 3.16 may be due to the loca­

tion in the film rather than due to the lens being used. This matter will be examined in

Section 3.5.5.

3.5.4 Etfect of Film Stock

•

Discussions with camera experts at the NFB revealed that significant differences in the

camera noise could be expected with changes in the film stock used in the camera.

Thereforeycomplete directivity measurements (as described in Section 3.5.2) were made

for two different reels of fIlm. Both reels consisted of the same type of film (Eastman

EXR 7245 Color Negative Film).

The power spectra for the two f:ùm stocks are shown in Figure 3.17 for an angle of 0 0
•

ft is apparent that significant changes can occur to the spectrum of the camera noise as a
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• result of changing the film stock. Both the overall sound pressure level of the noise and

the structure of the spectrum have changed significantly. It should be noted that the fig­

ure represents the difference in the camera noise at ooly one angle. Much larger differ­

ences can occur at other angles as can be seen in Figure 3.18 which shows differences in

camera noise at six different angles.
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Figure 3.17 EtTect of tllm stock on the spectrum of the camera noise.
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different angles.
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It can be seen that differences in the noise spectra of as much as 15 dB were measured

as a result of changing film stocks. The changes to the power spectra are relatively small

for frequencies below about 300 Hz. Above this point however, the changes tend to in­

crease with increasing frequency. It is important to note that the change in the spectrum

of the camera noise is different for each angle. That is, the directivity of the noise has

also changed as a result of changing the film stock. Also, it should be stated that it may

be possible for even greater differences to occur for different cameras, different types of

f"Ilm, or other reels of the same type of f"Ilm. These points were not explored in these

measurements.

Figure 3.17 and Figure 3.18 clearly demonstrate that changing film stocks can have a

significant effect on the resulting camera noise. Therefore, any method developed for re­

ducing camera noise in film. soundtracks must be able ta adapt to these changes.

3.5.5 Effect of Location Within a Reel of Film

The possibility that the power spectrum of the camera noise might change due to the lo­

cation within the reel of f"I1m was also investigated. Ta do this, a recording of the camera

noise was made over the length of an entire 122 m reel of film (about 5 min). For this

recording the microphone was placed at 0° and the zoom lens was mounted on the cam­

era. This recording was then analyzed ta examine the degree ta which the camera noise

changes over short intervals of time, as weil as for longer periods.
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Figure 3.19 Changes in the spectrum of the camera noise over 10 s intervals.
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Figure 3.19 shows four different power spectra of the camera noise measured for the

same reel of film. The power spectra were measured at lOs intervals and were averaged

over 2 s. These power spectra were again derived using Welch's method [44] using a

2000 point Hanning window with 50% overlap. It can be seen that the power spectrum

changes very little over this period (about 32 s) of time. Therefore, it appears that for a

given set-up (camera, lens, film stock, etc.), the power spectrum of the camera noise is

relatively constant over short periods of time.
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Figure 3.20 Changes in the spectrum of the camera noise over 1 min intervals.

Figure 3.20 is similar to Figure 3.19 except that the power spectra were measured

over 1 minute intervals rather than lOs intervals. Therefore, in this case the four meas­

urements were taken over a total period of about 3 minutes. Again, the variations in the

power spectrum of the camera noise are rather small over this time period. As might be

expected however, the variations are somewhat larger over these longer time intervals.

The measureroents described in this section reveal that, for a given reel of fJ1ro, the

power spectrum of the camera noise does not change very much over time. This feature of

the camera noise will be exploited in the noise reduction method based on spectral mag­

nitude estimation described in Chapter 5.

3.5.6 Recordings of Dialogue

At the time that the audio recordings were made to characterize the NFB camera noise,

additional recordings were made to capture examples of dialogue corrupted by camera
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noise. These recordings of speech in the presence of camera noise were intended to be

used as test sequences to evaluate the various noise reduction algorithms. During the re­

cordings the talker stood directly in front of the camera at a distance that was deemed by

the camera operator to be typical for a close-up. This corresponded to a distance of about

1 meter from the camera to the talker. The microphone was placed as close as possible to

the talker, but not so close that it would be visible in the camera's field of view. There­

fore the recordings represented a realistic configuration for filming a close-up shot in a

fIlm. In addition, a second microphone was placed nearer to the camera in order to record

a "worst case" condition of dialogue corrupted by camera noise.

Twenty test sentences from the Revised Harvard Test Sequences [45] were used as

dialogue for these recordings (see Appendix B). The Harvard Sentences are commonly

used in subjective tests to determine speech intelligibility or to evaluate speech quality.

The same 20 sentences were also recorded in the absence of any camera noise. These

"noise free" recordings provided a reference of uncorrupted speech to be used in the

evaluation of the variaus noise reduction schemes.

From the recordings of speech corrupted by camera noise it is possible to estimate

typical and worst case signal-to-noise ratios for the dialogue. To do this, the recordings

were first highpass filtered at 70 Hz using an FIR fùtec. This was done to remove the

room noise tbat was earlier seen to dominate the recordings at frequencies below about

100 Hz. The levels of the speech signal and the camera noise were tben determined from

the highpass fI1tered waveforms. The broadband signal-to-noise ratio for the "typical"

close-up recording was found to be 37 dB while the "worst case" signal-ta-noise ratio

was 22 dB. The value of a "typical" signal-to-noise ratio was derived from the recording

using the microphone nearer to the talker, while the "worst case" value was measured

from the recording using the microphone nearer to the camera. It is important to note that

these represent average signal-to-noise ratios in that the level of the speech (dialogue) is

expected to vary significantly within an actor' s performance and therefore, parts of the

soundtrack may have a significantIy poorer signal-to-noise ratio. Furthermore, it was

seen earlier that the film stock has a significant effect on the level of the camera noise.

Therefore, it is expected that the above values of signal-to-noise ratios do not represent

the worst case.

The signal-to-noise ratio values reported above do not take into account the frequency

content of the speech and the camera noise. Figure 3.21 shows the average power spectra

signal-to-noise ratios versus frequency as measured at the two microphones. The upper
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• curve represents the "typical" signal-to-noise ratio versus frequency, while the lower

curve is for the "worst case" signal-ta-noise ratio. It can be seen from the figure that the

values for the signal-ta-noise ratios (37 dB and 22 dB) quoted earlier are dominated by

the 100 Hz to 2 kHz frequency range. That is, the signal-ta-noise ratios in this range are

much greater than for higher frequencies. At higher frequencies, the average "typical"

signal-ta-noise ratio is about 20 dB while the "worst case" signal-ta-noise ratio is about 5

dB.
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Figure 3.21 Signal-to-noise ratio versus frequency for typical (upper curve) and
worst case Oower curve) camera noise.

The results shawn in Figure 3.21 suggest that a single value description, such as sig­

nal-ta-noise ratio, does not adequately describe the relation between the speech and the

interfering camera noise due ta the time-varying nature of speech. It is important ta note

that these curves represent the signal-ta-noise ratios at only one measurement angle and

ooly one configuration of the camera AIso, these measurements are for the NFB camera

which is significantly quieter than the !MAX cameras.

3.6 Measurements ofthe IMAX Cameras

In this section, measurements of the noise produced by a broad range of !MAX cameras

are described. The !MAX corporation produces a specialized type of motion picture us­

ing a large-screen format. !MAX fIlms are projected onto very large screens (several sto-
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ries high) in order to fully encompass the viewer's peripheral field of view. In order to

retain resolution and picture quality, !MAX uses a wide gauge :fIlm (70 mm), and requires

a sophisticated transport mechanism to move the fùm at very high speeds. As a result, an

!MAX camera has only 1.5 to 3 minutes of film on a reel, and so reel changes occur fre­

quently during filming. Furthermore,!MAX cameras are noisier than conventional cam­

eras due to their complex mechanical workings. !MAX cameras are also larger, heavier,

and more expensive than conventional cameras. For example, the !MAX-3D camera (of

which there are only 2) costs US$ 2 million and requires 4 people to carry it. Therefore, a

blimp which would add ta the size and weight of the camera is a highly undesirable ap­

proach to reducing it' s noise level.

!MAX fl1ms have consisted primarily of documentary style films based on topics such

as; the N.A.S.A. space shuttle and Russian MIR space station missions, underwater foot­

age of the Titanic, an expedition to the summit of Mount Everest, etc. The restriction in

subject matter is due in part to the high cost of ADR associated with !MAX fùms. Due to

the high noise leveis produced by the cameras, a conventional movie (i.e., with actors and

dialogue) filmed in the !MAX format requires that all dialogue be dubbed. Therefore,

!MAX :fllms would benefit greatly frorn a successful camera noise reduction system. De­

spite the sornewhat restricted subject matter of Th1AX films, they are viewed by more

than 60 million people each year.

3.6.1 Recordings Provided by IMAX

The !MAX corporation provided the author with 2 sets of recordings. These included

sorne of the recordings used by SAIC in their research collaboration with !MAX (see

Chapter 2). The rrrst recording consisted of a professional actor reciting dialogue while

being filmed with a standard !MAX camera (model MSM 9801). This recording is use­

fuI in that it provides a recording of dialogue in a real-world setting ,vith which to test the

noise reduction algorithms.

Using this recording, measurements were made to examine the changes in the spec­

trum. of this camera noise over time. The results are plotted in Figure 3.22 which shows

the average power spectrum measured at 4 intervals in the recording. It can he seen that,

like the NFB camera, the power spectrum of the Th1AX MSM 9801 camera is relatively

constant within a reel of fÙ1n. Somewhat larger variations in the measured power spectra

are seen for frequencies above 2 kHz.
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Figure 3.22 Changes in the spectrum of the IMAX MSM 9801 camera noise over
time.

The second set of recordings consisted of numerous sequences recorded during the

docking of the N.A.S.A. space shuttle with the Russian MIR space station. The record­

ings consist of 30 s sequences of the astronauts performing their duties during a space

mission. These recordings contain high levels of background noise and exhibit strong

multipath reflections. These recordings provide a good example of the need for a camera

noise reduction system, since there is no possibility of ADR with the astronauts. The

camera noise on these recordings is from the model MKIT!MAX camera which is rela­

tively small and lightweight. Due to the high level of the background noise and the fact

that there is dialogue throughout the recordings, measurements of the power spectrum of

the camera noise over time are not presented here.

3.6.2 1MAX-3D Camera

The author was given access to the IMAX-3D camera to make recordings and measure­

ments. Recordings were made at two indoor locations and one outdoor location in order

ta provide a variety of real-world environments. AIl recordings were made with 2 profes­

sional quality microphones recording onto separate channels of a DAT recorder. One mi­

crophone was placed at the talker's location, while the other was placed next to the cam-
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era. Recordings of the camera alone (i.e., no speech signal) and of camera with dialogue

were made. This allowed sorne of the measurements conducted at the NFB to be repeated

for the IMAX-3D camera.

Measurements were made to examine the changes in the spectrum of the IMAX-3D

camera noise over time. The results are plotted in Figure 3.23 which shows the average

power spectrum rneasured at 5 intervais in the recording. Again, the power spectrum is

relatively constant within a reel of film thus further supporting the rmdings for the other

cameras, as weil as the model for camera noise proposed earlier.
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Figure 3.23 Changes in the spectrum of the IMAX-3D camera noise over lime.

3.7 The Camera as a Distributed Noise Source

The varying directivity of the camera noise with frequency as seen in Section 3.5.2 sug­

gests that the camera may be a distributed noise source. This observation is supported by

the author's experience when making the recordings of both the NFB and the IMAX-3D

cameras. By moving a microphone to different positions around the cameras, it was pos­

sible to hear different components of the noise being emphasized.

In this section, the distributed nature of the camera noise is examined. That is, we

seek to demonstrate that the camera noise n(k) is composed of P components distributed
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• in space,

p

n(k) = L '4(k) (3.1)
i=l

where nfCk) represent the various noise cornponents such as; the opening and closing of

the shutters, the motion of the film through the camera, the motor(s) driving the mecha­

nism.

(3.2)

We begin by defining the magnitude-squared coherence Cyx(m) between the observed

stationary signals x(k) and y(k) at the two microphones,

1SyX(lO)1
2

Syx( ro) is the complex cross-power spectrum,

OC>

Syx(m) = Lryx(l)e-jŒl

[=-00

(3.3)

where

ryx(l) = E[y(k)x(k-l)]

is the cross-correlation. S;a(m) and Syy(lrJ) are the power spectra of x(k) and y(k) respec­

tively as defmed by,

OC>

Saa(m) = Lraa(l)e-jW[
[=-00

(3.4)

where

raa(l) = E[a(k)a(k-l)] . (3.5)

It can be shown that, given a point sound source (Le., non-distributed) in a noise-free

room, the magnitude-squared coherence C yx( 0) between the signais measured at two lo­

cations in the room will be equal to 1. If however, the sound source is distributed in

space, then Cyx(lO) will be equal to sorne value less than unity [46]. Therefore, Cyx(O) cao

be used as a measure of the degree of distribution of a sound source.

•
The magnitude-squared coherence, Cyx(lO) measured for the NFB camera is shown as

the solid curve in Figure 3.24. This curve was obtained by calculating Cyx(lO) of the cam­

era noise recorded at 2 microphones. One microphone was at 00 and the other micro­

phone was at 900
• It can be seen that, at most frequencies, the magnitude-squared coher­

ence is well below 1.0. In fact, for most frequencies, Cyx(m) is below 0.6. Thus, it can be
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• concluded that the camera is indeed a distributed noise source. The importance of this

result will be seen in Chapter 4 where it will be shown that~ due to the relatively low

Cyx(m)~ the performance of noise reduction schemes based on adaptive noise cancellation

or blind signal separation is severely limited.

Cyx(m) is sensitive to any misalignment of the signals y(k) and x(k). Therefore, in cal­

culating the values for Cyx(m) in Figure 3.24, y(k) and x(k) were shifted in time relative ta

each other until the maximum value for CyxCm) was obtained, thus eliminating any mis­

alignment effects. This method was used for ail measurements of CyxCm) reported in this

thesis.
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Figure 3.24 Magnitude-squared coherence of NFB camera noise measured al2
microphones.

•

One might ask whether CyxCco) would increase if the microphones had been placed at

different locations around the camera Ta address this question, measurements were

taken at 30 different locations around the camera. AlI of the measurements had CyxCm)

values similar to that plotted in Figure 3.24. The dotted line in Figure 3.24 represents the

maximum value of CyxCco) found at each frequency across ail of the measurements. The

results show that the low values of Cyx(m) are not due to the location of the measurement

microphones, and so the conclusion that the camera is a distributed noise source is further

strengiliened.
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• While recording the IMAX-3D camera, it seemed evident that, due to its large size

and complex workings, it was acting as a distributed noise source. This observation was

tested by measuring the magnitude-squared coherence Cyx(m) between the two channels

of the recording of the camera noise alone (i.e., without a speech signal). The result is

plotted in Figure 3.25. It can be seen that Cyx(m) is quite low for most frequencies, and

exceeds 0.5 for only a few individual frequencies. The result of this measurement con­

firms the observation that the IMAX-3D camera is a distributed noise source. Therefore,

noise reduction techniques based on adaptive noise cancellation or blind signal separation

are not likely to perform adequately for this camera. This conclusion is confirmed in

Chapter4.
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Figure 3.25 Magnitude-squared coherence of Il\fAX-3D camera noise measured at 2
microphones.
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It is interesting to compare the results in Figure 3.25 to the results for the NFB camera

shown in Figure 3.24. It can be seen that overall, Cyx(m) for the IMAX-3D camera tends

to be significantly lower than for the NFB camera. This suggests that the IMAX-3D

camera is the more distributed noise source. This conclusion is sensible given that the

IMAX-3D camera is much larger than the NFB camera, and it has more complex inner

workings. Moreover, the IMAX-3D camera uses two reels offùm (one for each lens) and

so it effectively consists of two cameras in one.
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• 3.8 A Model ofCamera Noise

In considering various schemes for reducing camera noise, it is helpful to have a model of

the composition of the noise source. In this section, a simple model is developed which

decomposes camera noise n(k) into two fundamental components: a periodic component

and a cyclical random component. That is, the model is of the form

n(k) = p(k) + c(k), (3.6)

(3.7)

where p(k) represents the periodic component and c(k) represents the cyclical random

component.

The time domain waveforms (see Figures 3.4 and 3.5) as weil as the spectrogram. of

Figure 3.8 clearly indicate that camera noise is not a stationary random process. Rather,

camera noise consists of regularly spaced pulses which are similar to each other. How­

ever, differences between the pulses are also clearly visible. There is a random compo­

nent to the camera noise which is most readily seen between the pulses. Figure 3.19,

Figure 3.20, and Figure 3.22 show that the power spectrum of the camera noise (within a

reel of rùm.) remains relatively unchanged over time. That is, from frame to frame, the

power spectrum of the camera noise does not change dramatically. However, the spec­

trogram of Figure 3.8 clearly demonstrates that the camera noise varies significantly

within a frame. Therefore, the model should reflect these two aspects of camera noise.

In deriving a model of camera noise we begin by considering the periodic component

pek). Let Q(k) be the sum of all the camera noise components qi(k) which repeat from

frame to frame

{
2',qiCk) ; k=1,2,...,T

Q(k)= i

o ; elsewhere

where T is the periode The periodic component p(k) of the camera noise n(k) is then de­

fmed as,

00

p(k) = L,Q(k+lT).
1=-00

(3.8)

•
The periodic component of the camera noise is likely due to the opening and closing

of the shutters, the movement of the sprockets which guide the fllm through the camera,

as weil as the motor(s) driving the overall mechanism.

The second component of the camera noise is the cyclical random component, c(k)

which is modeled as a zero-mean stationary random process whose amplitude is modu-
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• lated by a gating function G(k). This component is described as a cyclical random proc­

ess since it consists of a random process whose statistics fluctuate within each frame, but

repeat from frame to frame. That is, the statistics of the noise are cyclical. The gating

function is detmed as,

G(k)={a(OJ)
{3(OJ)

; k=1,2,...;r(m)

; k=-r(m)+1,...,T
(3.9)

The parameter a(m) determines the levei of c(k) during the peak (pulse) portion of the

camera noise, while /3(m) controis the Ievel between the pulses. 't(OJ) is chosen to be equal

to the duration of the pulse portion of the camera noise. The three parameters, a(m),

(3(OJ), and 't(OJ} are all assumed to be a function of frequency to reflect the results of Fig­

ure 3.8. Given this, the cyclical random component c(k) of the camera noise is detmed as,

c(k)=v(k)· I,G(k+ln ,
[=-00

where v(k) is a zero-mean stationary random process.

(3.10)

This component of the camera noise is composed of several sources inc1uding; the

random movement of the tùm as it passes through the camera, the vibrations of the body

of the camera, and all noise sources which are not directly related to the fùm rate of the

camera.

The camera noise n(k) can now be detmed in terms of the two components p(k) and

c(k),

00

n(k)= L[Q(k+ln+v(k)G(k+ZDl .
[=-00

(3.11)

•

Equation (3.11) provides a simple mathematical model of the camera noise. The

limitations of this simple model will be seen in later chapters. In Chapter 4, methods

which seek ta exploit the periodic component p(k) are examined, while Chapter 6 ad­

dresses the cyclical random component, c(k).

3.9 Summary

In this chapter a series of acoustic measurements designed to characterize camera noise

were described. Measurements at the NFB showed that a significant component of the

noise is related to the fùm rate of the camera. However, not all of the noise is directly

related to the film rate. Based on these findings, a simple mathematical model of the
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camera noise was derived which includes a periodic component and a cyclical random

component.

It was found that the camera is a distributed noise source, and so the performance of

noise reduction schemes based on adaptive noise cancellation or blind signal separation

will be compromised.

The type of lens used on the camera was found to have a small effect on the noise,

whereas the fIlm stock had a much larger effect. Somewhat surprisingly, the location

within a reel of film had virtually no effect on the camera noise.

Measurements were also made from recordings of 3 models of MAX cameras.

While the level of the noise from the MAX cameras is significantly higher than for the

NFB camera, the main fmdings of the NFB measurements are supported. That is, the

cameras act as distributed noise sources and the power spectrum of the noise is relatively

constant for a given reel of fJ1m.

The measurements described in this chapter demonstrate that camera noise can be

quite variable due to severa! factors. Therefore, a statie processing approach cao not ade­

quatelyaddress the problem of camera noise, and a successful noise reduction scheme

must be adaptive. AIso, the main characteristics of camera noise appear to be common to

the 4 cameras which were examined. These represent a broad range of camera types.
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4. NOISE REDUCTION USING ADAPTIVE FILTERING

METHOnS

4.1 Introduction

In this chapter adaptive fI1tering methods are examined as a potential means of reducing

camera noise. Specifically, the adaptive noise cancellation CANC) method and the more

recently developed blind signal separation techniques are explored. In their basic fonns

both of these adaptive filtering techniques require at least two input signals and thus vio­

late the single-input requirement for a practical scheme for reducing camera noise.

Nonetheless, these techniques are worth exploring since they cao provide valuable insight

inta the noise reduction problem.

The chapter begins with a brief overview of Wiener filter theory and the concept of

optimal filtering of stationary random processes. The ANC problem is described with an

emphasis on the Widrow-Hoff LMS algorithm. Results of simulations ta examine the use

of the LMS-based ANC method for reducing camera noise are presented. The underlying

principles of blind signal separation techniques are provided and methods based on sec­

ond order statistics are described in sorne detail.

The similarities between the noise cancellation problem and the blind signal separa­

tion problem are highlighted. It will be seen that the signal separation problem cao be

viewed as the more general case of noise cancellation. Furthermore, the ANC method is

shawn ta be a special case of sorne signal separation algorithms. Included in this chapter

is a discussion of sorne of the factors which can limit the performance of these adaptive

fIltering methods for this application.

It was originally believed at the start of this research work that an LMS-based ANC

method was the obviaus means of reducing camera noise. In an effort to overcome the

two (or multi) input requirement of the adaptive filtering approach, a variation ta the

ANC method is proposed wherein the reference input signal is sYnthesized, thus effec­

tively creating a single-input ANC system. However, in arder to provide a useful degree

of noise cancellation, the synthesized reference input approach requires a high correlation

between the individual pulses of the camera noise. Unfortunately, it will be seen that the

inter-pulse correlation is relatively low
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• 4.2 Wiener Filters

In this section the discrete-time Wiener filter is examined for the case of a real-valued

time series. We will restrict the discussion to the fonnulation of a fmite-duration impulse

response (FIR) fIlter. Wiener theory provides the means to determine the coefficients of

the filter which rninimjzes the mean-squared error between the fIlter output and sorne de­

sired signal.

x(k)
w

y(k)

-
y(k)

e(k)

Figure 4.1 Block diagram of Wiener lUter.

Consider the linear transversal filter w of order N-l shown in Figure 4.1. The input

x(k) to the fIlter is assumed to be wide-sense stationary with zero mean. The tap weights

for the tIlter are Wi, i=1,2, ... ,N. The output of the filter, y(k) represents an estimate of

sorne desired signal y(k), and is obtained through the convolutional sum

N
y(k) = Lw[x(k-l+l). (4.1)

/=1

The goal is to determine the coefficients Wb i=1,2, ... ,N such that the difference be­

tween the desired signal y(k), and the estimate of the desired signal y(k), is minimized.

That is, we want to somehow minimize the estimation error, e(k) which is detIned as,

e(k) = y(k)-Y(k). (4.2)

Wiener theory uses the minimum mean-square error as the criteria for optimizing the

fIlter. Specifically, the filter coefficients are chosen so as to minimize the cost function

J(w) defmed as

We now consider the cost function in terms of the desired signal, the input signal, and

the fIlter tap weights. Define the tap weight vector•

J(w) =E[e2 (k)].

= E[(y(k)-y(k»2]

Thus, J(w) represents the mean-squared error.

(4.3a)

(4.3b)
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• and the input vector

x T (k)=[x(k),x(k-1), ...,x(k-N+1)].

(4.4)

(4.5)

The convolutional SUffi of (4.1) can now be expressed as the inner product of the tap

weight vector and the input vector

y(k)=wTx.

The mean-squared error J(w) now becomes

J(w)=E[(y(k)-wTx)2]

=E[y(k)2]-2wTE[x(k)y(k)]+wT E[x(k)xT (k)]w.

(4.6)

(4.7)

Note that the error is a second order function and thus has a unique minimum. Our goal

is to find the value of w which gives this minimum value.

Denoting the cross-correlation vector between the input and the desired signal as

rxy =E[x(k)y(k)]

and the correlation matrix of the input signal as

(4.8)

rxx(O)

rxx (l)

Rxx = rxx(2) (4.9)

where

rxx(l)=E[x(k)x(k-l)] . (4.10)

The mean-squared error J(w) cao now be written in terms of these new expressions to

give

J(w)=ryy (0)-2wTr.xy+wTRxxw . (4.11)

The gradient of the mean-squared error J(w) with respect to the tap weight vector is given

by

•
av=awJ(w).

=-2r.xy+2wT Rxx .
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• Setting this to zero, we obtain the discrete form of the Wiener-Hopf equation, or the

so-called normal equation

R- 1wopr = xxrxy. (4.13)

Therefore, W OP! represents the coefficients of the minimum mean-squared error Wiener

fùter. Substituting this optimal value for W into (4.11) we get

J(w)=ryy(O)-wT rxy

=ryy(O)-ryy(O)

which is the minimum mean-squared error obtained with the Wiener filter.

4.3 Adaptive Noise Cancellation

(4.14)

In this section, we describe the basic aspects of adaptive noise cancellation as applied to

the problem of reducing camera noise. It should be noted that the acoustic nature of the

signals introduces certain practical limitations which will be discussed later. We begin by

considering the non-adaptive structure shown in Figure 4.2.

Signal
s(k)

Noise
n(k)

Il

x(k)
w

y(k)

+ - y(k)

s(k)

Figure 4.2 Block diagram of non-adaptive noise cancellation system.

The figure shows a desired signal s(k) which is corrupted by an additive noise n(k)

and picked up at a receiver to farm the primary input signal y(k). Bath s(k) and n(k) are

assumed to be wide-sense stationary. As a result of the paths through which they travel in

the room, the signal s(k) is convoIved with the acoustic impulse response hll and n(k) is

convolved with h21. That is,

y(k)=s(k)*h11 +n(k)*h21

= Lh1l (l)s(l-k)+ L~l (m)n(m-k)
l=O m=O•

00 00

(4. 15a)

(4. 15b)
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• In. the adaptive noise cancellation method, it is assumed that a second reference input

x(k) is available which contains a signal which is in sorne way correlated with n(k)*h21(k).

From Figure 4.2, we see that for the case considered here,

x(k) =n(k) *h22
00

= L.1Z22 (l)n(l-k)
l=O

(4.16a)

(4. 16b)

The noise cancellation method now consists of îlitering the reference signal x(k)

through w to yield y(k) such that the subtraction of y(k) from y(k) gives the optimal es­

timate of the desired signal s(k). In mathematical terms, we want to find w such that

min{J(w) }= min{E[f(y(k)- y(k»]} (4.17)

where.f( ) is sorne fonction which is used as the criterion for minirnizing J(w). If we

choose to minimize J(w) in the mean-squared sense, then we obtain

min{Jew) }= min {E[(y(k) - y(k»2] } . (4.18)

•

We note that this is the same cost function that was used in (4.3) to derive the optimal

Wiener filter. Therefore, for our noise cancellation problem, the optimal estimate of the

desired signal s(k) is obtained by setting w equal ta the optimal value, wopt found in the

normal equation (4.13). Equivalently, we can say that wopt is the value of w which mîni­

llÙzes (4.18).

In general, we cannot assume that the fIlter w will be operating in a stationary envi­

ronment and so, w opt may be continuously changing. To account for the changing W Oph an

adaptive fliter is used. The problem then becomes one of designing the adaptive filter so

that it tracks the changes in the operating environment and remains as close as possible to

Wopt. The basic Adaptive Noise Cancellation scheme is illustrated in Figure 4.3.

The reference input x(k) is fIltered by the adaptive fliter w(k) to yield the sequence

y(k) which is an estimate of the primary signal y(k). y(k) is then subtracted from y(k) to

give e(k) which is the error signal used by the adaptation algorithm to find the optimal

fIlter w(k) at time k .

55



• Signal
s(k)

Noise
n(k)

y(k)

+

w
x(k)

"----~---...j

- y(k)

s(k) =e(k)

•

Figure 4.3 Block diagram of adaptive noise canceUation system.

Widrow et al. [7] showed that rninirnizing e(k) is equivalent to fmding the best esti­

mate of s(k). This is intuitively satisfying since x(k) is assumed to be correlated with only

the undesired (i.e., noisy) portion of y(k). Therefore, by removing as much as possible of

the portion of y(k) associated with x(k), (i.e., by rninirnizing e(k» we are left with an op­

timal estimate of s(k). As such, the error signal e(k) is in fact, the estimate of the desired

signal.

Solving the normal equation (4.13) directly in order to find w opt is a computationally

demanding process (especiaIly for higher arder fliters) since it includes inverting the cor­

relation matrix Rxx• We therefore seek a simplified means of obtaining an estimate of

W opt. There are many adaptation algorithms which can be used to update the coefficients

of the adaptive filter. The choice of adaptation algorithm will have a prafound effect on

the performance of the adaptive noise cancellation system. In practice, the choice of al­

gorithm is determined by how quickly and accurately it tracks changes in the operating

environment, its computational complexity, its robustness against instability, and the

types of input signais expected.

4.3.1 The Widrow-Hoff LMS Aigorithm

The most commonly used adaptation scheme is the Widrow-Hoff least-mean-square

(LMS) algorithm which is based on the method of steepest descent [8,47,7]. One of the

key features of the LMS algorithm is its low computational complexity. It does not re­

quire explicit calculation of the correlation matrix Rxr or the cross-correlation vector rxy.

Furthermore, it does not require matrix inversion. The LMS algorithm is derived below.

We begin by examining the method of steepest descent. Assume that w(k) is a linear

transversal filter of order N-l. Ta find the optimal value of w(k) using the method of
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• steepest descent, we use the recursive relation
1

w(k+ l)=w(k)+-,u[-V(k)]
2

=w(k)-~,u iJJ(w)
2 aw

where

(4.19)

(4.20)

(4.21)

The estimate of w opt at time k+1 is determined by the estimate at time k and the gradi­

ent. Substituting the solution for V derived in (4.12) into (4.20) we get

w(k+1)=w(k)+,u[rxy - Rxxw(k)]. (4.22)

In the LMS algoritbm, instantaneous estimates of rxy and Ra are used. We define the in­

stantaneous estimates as

rxy(k) = x(k)y(k)

Rxx(k)=x(k)xT (k) .

and (4.23)

(4.24)

Replacing the correlation matrix Ra and the cross-correlation vector rxy in (4.22) by their

instantaneous estimates, we get

w(k+1) =w(k)+ ,u[x(k)y(k) -x(k)xT (k)w(k)]

=w(k)+ lJX(k)[y(k)-xT (k)w(k)].

The result of (4.25) can be written as

(4.25a)

(4.25b)

•

e(k) = y(k)-xT (k)w(k) (4.26)

w(k+1)=w(k)+ .ux(k)e(k). (4.27)

Equations (4.26) and (4.27) form the basis of the LMS algorithme The variable JI is

the adaptation step size which determines the rate at which w(k) converges towards the

optimal solution. Comprehensive discussions regarding the ANC method and the LMS

algorithm can be found in [8,9,10,48].

4.3.2 Limitations of the LMS Algorithm

While the LMS algorithm provides a computationally efficient means of steering the

adaptive futer towards its optimal solution, it has severallimitations due to its simplicity.

In the ANC application the task of the LMS algorithm is ta adapt the transversal filter

w(k) sa as to obtain the maximum amount of noise reduction. If we assume (as is often

done) that h u=1 and h22=1, then it cao be seen from Figure 4.3 that optimal performance
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(4.28)

• occurs when the taps of the filter are equal to the impulse response h 21 (i.e., wopr= h21).

That is, the adaptive filter is attempting to predict the acoustic path traveled by the noise

n(k) to the primary microphone.

One of the main limitations of the LMS algorithm is its potentially slow rate of COD­

vergence. The rate of convergence determines the time required for w(k) to reach a suffi­

ciently close approximation to h21 and provide a sufficient degree of noise reduction. The

rate of convergence also affects the ability of the adaptive fIlter to track changes in h21.

A key factor in determining the rate of convergence of the LMS algorithm. is the ei­

genvalue spread of the correlation matrix RoU [8,10,49]. The eigenvalue spread ,t(R) is

defmedas

Â
X(R)=~

Â min

where Àmax and Âmin are the Iargest and smallest eigenvalues of RoU- In matrix terms, tlIe

eigenvalue spread is related to the condition number of the correlation matrix RoU [50'].

When the eigenvalue spread is large, the LMS algorithm requires a greater number of i"t­

erations (i.e., more tirne) in order to converge.

The effect of the eigenvalue spread can be seen directly in the adaptation stepsize pa­

rarneter J.l of (4.27). A larger value of Il allows the LMS algorithm to converge mOIre

quickly than a smaller value of Il. However, if Il is too large, the algorithm will not coo­

verge. The largest value of Ji- which will still provide a convergent system, is determined

by the maximum eigenvalue Âmax of the correlation matrix RoU' Specifically, a necessary

condition for convergence in the mean is that J.l must lie within the interval [8,9,lO,48,4~]

2
O<J.l<-- .

Âmax

(4.29' )

•

The relation between Âmax and the rate of convergence is evident from (4.29). For a

given value of Il, the rate of convergence is determined by the mode corresponding to thle

smallest eigenvalue, Âmin• A smaller Âmin implies a larger decay time of the mode, and

hence a slower rate ofconvergence.

While a large value for J.l implies a faster rate of convergence, it also implies a larger

misadjustment M [8,9,10,49]. That is, a larger value of J.llimits the accuracy with which

w(k) converges to w opt• The relation between the misadjustment M and the adaptive step­

size Il cao he approximated by
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• (4.30 )

for a transversal filter of order N-l. Therefore, there is an inevitable tradeoff between the

speed with which the adaptive filter converges and the amount of noise reduction that an

LMS-based ANC system can achieve. Moreover, the performance of the LMS-based

ANC system will be directly intluenced by the statistics of the noise ta he canceled.

Other adaptive algorithms exist which do not suffer from the limitations of the LMS

algorithm but are more (ofien dramatically) computationally demanding. One class of

adaptive filters which can offer and improved rate of convergence while maintaining a

reasonable level of computational complexity are the transform domain LMS algorithms.

The concept of adaptive fIltering in the frequency domain was proposed by Dentino et al.

[51]. The theory behind transform domain adaptive filtering was further developed by

Narayan et al. [52] and Lee and Un [53] including an improved understanding of the per­

formance characteristics of this class of fùters. Marshall et al. [54] studied the perform­

ance of the transform domain adaptive filter for a variety of orthogonal transforms. They

found that considerably improved performance (i.e., rate of convergence) over LMS

could be obtained for a broad class of input signals using the transform domain schemes.

The ratio of the maximum ta the minimum eigenvalues of the correlation rnatrix Rn

is bounded by the ratio of the maximum ta the minimum magnitudes of the power spec­

trum ofx(k) [55]. That is,

1< Âmax < rnaxIX(e
jw

)1
2

Â °w 2·min minIX(e1 )1
(4.31 )

Given this, an approach to accelerate the rate of convergence of the adaptive algo­

rithm is ta somehow transform the input signal x(k) into another signal z(k) whose corre­

sponding correlation matrix Rzz; has a smaller eigenvalue spread. This can be achieved by

performing the adaptive fIltering in sorne orthogonal transform domaine

A block diagram of the transform domain adaptive fIlter is given in Figure 4.4 where

it cao be seen that the input signal vector x(k) is transformed into another vector z(k)

•
ZT(k) =[z\ (k),Z2 (k), ... ,ZN (k)]

using an orthogonal transformation

z(k) = Qx(k) .

The transform matrix Q is a unitary matrix of rank N and thus,
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• (4.34)

The transformed input vector z(k) is multiplied by the transform domain tap weight

vectorv(k)

VT(k) = [VI (k), V2 (k)p .. , vN(k)]

to form the adaptive output Y(k).

y(k) = ZT (k)v(k)

The resuIting error signal is

e(k) = y(k)- y(k)

and the tap weight update equation is

where

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

is the adaptation stepsize parameter for the ith transform component and f.L is a positive

constant that controIs the rate of convergence.

Signal
s(k)

Noise
n(k)

y(k)

+ - y(k)

s(k) =e(k)

•

Figure 4.4 Block diagram of a transform domain LMS based ANC system.

The purpose of the transform Q is to decorrelate the input signal x(k) thus minimizing

the eigenvalue spread, and so the choice of an appropriate orthogonal transform is critical.

It is weIl known that the Karhunen-Loéve transform (KLT) provides the optimal decor­

relation of an input signal. The KLT is composed of the orthonormal eigenvectors of the

input correlation matrix. and is thus signal dependent. Because it is a signal dependent

transform, the KLT is generally not practical for most applications.
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•

Several researchers have studied the performance of transform domain LMS for a va­

riety of time-invariant transforms. Lee and Un [53] evaluated the performance of trans­

form domain LMS for a variety of orthogonal transfonns assuming real-valued input data.

The transfonns that they investigated included; the discrete Fourier transform (Off), the

discrete cosine transfonn (OCT), the symmetric cosine transform (SeT), a fast KLT, and

the discrete sine transfonn (DST). Marshall et al. [54] also studied the performance of

severa! transfonns including the DFf, the DCT, the Walsh-Hadamard transform (WHT),

the discrete Hartley transfonn (DHT), and the Power-Of-Two transform (P02) which was

designed specifically for the transform domain LMS. They found that, in general, the

DCT-LMS gave the best overall performance for speech signais. Narayan et al. [52] ex­

amined the performance of transform domain LMS using the DFf and the DCT. They

concluded that, for speech applications, use of the DCT-LMS will provide faster conver­

gence than the DFf.

The performance of the different algorithms depends on the orthogonalizing capabili­

ties of the data-independent transform used to pre-whiten the input data. No general

proof exists demonstrating the superiority of one transform over the others. However,

Beaufays [56] recently proved that, for fust-order Markov input signais, the eigenvalue

spread after transformation by a DCT will always be less than for a DFT.

In recent years, transform domain LMS using a wavelet transform has been proposed

[57,58,59,61]. A wavelet-based approach offers potential advantages over Fourier-based

methods for cases when the time varying modes of the input signal are not adequately

represented by a weighted sum of sinusoids. Hosur and Tewflk [59,60] showed that the

wavelet transform LMS could provide better convergence performance than DCT-LMS.

Attallah and Najim [61] found that a wavelet decomposition based on a regular subband

tree yielded better results than one based on a dyadic tree. A comprehensive review of

transform domain adaptive filtering can be found in the review paper by Shynk. [62].

In this section, we focus on the LMS algorithm and its transform domain variants.

Our interest in the LMS based algorithms is prompted by their low computational com­

plexity. Of course, other non-LMS based adaptive algorithms existe For example, recur­

sive least-square (RLS) algorithms are known to exhibit near optimal convergence be­

havior, but suffer from high complexity and instability issues [49,8]. Fast least squares

algorithms including those based on lattice structures do reduce the computational de­

mand and provide stable performance. However due to the high computational demands

of the camera noise problem, the use of these algorithms remains impractical.
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• As stated earlier, the task of the adaptive filter in the ANC system depicted in Figure

4.3 is to estimate the path h21 • In the camera noise application, h21 is the acoustic path

from the camera to the microphone which is recording the actor's dialogue. Because it

may be necessary in many instances for the ANC system to provide more than 20 or 30

dB of noise reduction, it may be necessary for w(k) to be a very high order filter (Le.,

many taps). For example, in a room having a reverberation time of about 1.5 s, it may be

necessary to cancel the multipath reflections of the fIfst 500 ms of the acoustic impulse

response h21 in order to achieve 20 dB of noise reduction. At the sampling rate of

A=48000 Hz, an adaptive filter length of 24000 taps would be required. Even if it were

deemed acceptable to reduce the sampling rate to 24000 Hz, the order of the adaptive fil­

ter would still exceed 10000 taps. Due to the large number of taps required, any practical

implementation would likely necessitate using an LMS-based adaptation algorithme Also,

BoIl and Pulsipher [63] found that an audible echo may be created in the output of an

ANC system when using long filter lengths. The echo becomes more prominent as Jl is

increased since the accuracy with which w(k) converges is correspondingly reduced. That

is, the individual taps of the fliter wander about their optimal values, thus resulting in a

large excess mean squared error.

4.3.3 Limitations of the ANC system

The ANC system depicted in Figure 4.3 represents and ideal case. In real-world applica­

liDns, regardless of which algorithm is employed to adapt the filter, there are certain

limitations of the ANC system which can constrain its performance. A somewhat more

realistic scenario is shown in Figure 4.5.

x(k) '---.,.------'

Signal
s(k)

Other
noise

sources

ni(k)

i = 1,2, ... , L Camera
Noise
no(k)

y(k)

+

w

s(k) =e(k)

y(k)

•
Figure 4.5 Block diagram of an ANC system onder realistic conditions.

It can be seen that a new path h 12 has been added. This path represents the leakage of

the desired signal into the reference input x(k). This leakage places an upper bound on
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(4.41)

• the amount of noise cancellation that can be achieved. The leakage also causes the noise­

reduced signal at the ANC output to be somewhat distorted. In their seminal paper on

adaptive noise cancellation, Widrow et al. [7] showed that the maximum attainable sig­

nal-to-noise ratio at the ANC output is equal to the reciprocal (at ail frequencies) of the

signal-to-noise ratio of the reference input,

1
max{SNRoutput} ~ (4.40)

SNRreference

Therefore, as an example, if the level of the signal is 20 dB below the level of the noise in

the reference input, then a maximum of 20 dB of noise reduction can be achieved by this

ANC system.

Widrow et al. also derived an expression to estimate the amount of signal distortion D

at the ANC output,

D == SNRre/erence ,
SNRprimary

where y(k) is the primary signal and x(k) is the reference signal.

Equation (4.41) shows that the signal distortion will be higher if the signal-to-noise ratio

at the reference input is high and the signal-ta-noise ratio at the primary input is low. Of

course, if there is no signal leakage into the reference input, then the output signal will

not be distorted.

Referring back ta Figure 4.5, it is frequently assumed that the path h22 from the noise

source to the reference input is equal to 1. However, in some situations, this assumption

is not valide This is certainly the case for the camera noise problem, and thus the impli­

cations of h22;t:1 must be considered. To understand the potential impact of this, we ex­

amine the operation of the ANC system in the z-domain. The error is

Y(z) - fez) = S(z)Hl 1(z) + N(z)H21 (z) - N(z)H22 (z)W(z)

The error is minimized if

(4.42)

(4.43)

•

Wez) = H 2l (z) .
H 22 (Z)

Therefore, in general Wopt(z) must include the inverse of H22CZ). If H 22(Z) is non­

minimum phase, then Hî".](z) will be unstable and as a result, the adaptive fliter will not

converge ta the value given in (4.43). It is weil established that acoustic impulse re­

sponses in rooms are generally non-minimum phase [64,65] and thus, in the case of re­

ducing camera noise, one may be faced with a non-minimum phase h22• It is therefore
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• possible that the amount of noise reduction attainable in the camera noise application may

be limited by this factor.

The more realistic ANC scenario depicted in Figure 4.5 also introduces the existence

of additional noise sources, ni; i=1,2, ...L. To examine the effect of these additional noise

sources, we begin by defming the coherence function between the primary signal y(k) and

the reference signal x(k) as

(4.44)

where OJ denotes the frequency of înterest. Sy:iOJ) is the complex cross-power spectrum

where

00

~ l -jmlSyx(co) = ~ryx()e

l=-oa

ryx(l) =E[y(k)x(k-l)]

(4.45)

(4.46)

is the cross-correlation. Both y(k) and x(k) are assumed to be wide-sense stationary ran­

dom processes. Syy(ro) and Sxx(ro) are the power spectra ofy(k) and x(k) respectively. For

convenience, we derme the magnitude-squared coherence,

(4.47)

(4.48a)

(4.48b)

(4.48c)

Consider the frequency-domain representation of the cost function as defined in (4.3)

and (4.7).

See(ro)=E[IY(ro)-Y(ro) 1
2 ]

=E[IY(co)-W(m)X(co)12 ]

=Syy(ro)-W*(ro)Syx(ro)-W(lO)S;x(lO)+IW(ro)12Sxx(ro)

Completing the squares and substituting the definition for magnitude-squared coherence

in (4.47), gives

•
The above equation is minimized when the rùter W( ro) is equal to

Syx(ro)
Wopt (m) = -S;;""xx-(-ro-)
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• which is in agreement with the normal equation found in (4.13). Assuming this optimum

solution, (4.49) reduces to

(4.51)
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Figure 4.6 Relation between magnitude-squared coherence and maximum noise
reduction attainable.
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Therefore, the performance of the ANC system is dependent upon the coherence between

y(k) and x(k). A high coherence CCyxCco) ~ 1) implies a small residual error. The maxi­

mum noise reduction attainable by the ANC system at frequency OJ is given by

-1010g10(1-Cyx (OJ)) and is plotted in Figure 4.6. It can be seen from the figure that a

magnitude-squared coherence of at least 0.99 is required in order to obtain 20 dB of noise

reduction.

•

It can be shown that the magnitude-squared coherence CyxCOJ) is independent of the

acoustic paths h ll , h12, h2 1, and hu. The magnitude-squared coherence is lowered by the

presence of additional independent noise sources in the ANC system as depicted by ni;

i=1,2, ... ,L in Figure 4.5. The additional noise sources could be the result of the back­

ground acoustic noise of the room, or electronic noise in the microphones and pre­

amplifiers. Sînce the background noise of the room is often out of the control of the user,

it may he a linùting factor in the amount of noise reduction attainable.

The additional noise sources may aIso be the result of a distributed noise source. As

described earlier, a camera is composed of many components each contributing to the

overall noise output of the camera. Moreover, the various noise sources are physically

distributed in space and they have separate acoustic paths ta the reference microphone
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(4.52)

•

•

and thus reduce the magnitude-squared coherence. That is, the camera noise at the refer­

ence microphone is
p

x(k) = Lni(k) */zzz. ,
l

i=O

where ni represents the components of the distributed noise source, and h22
i
represents the

paths from the noise components to the reference input. The effects of a distributed noise

source have been studied in other ANC applications.

Early studies by BoIl and Pulsipher [63,66] examining the potential performance of

acoustic ANC systems predicted that lOto 20 dB of noise reduction was achievable. In

these studies, there was no leakage of the desired speech signal iuto the reference micro­

phone and the two microphones were placed severa! meters apart. An LMS adaptive fil­

ter having 1500 taps was used and took approximately 15 s to converge fully. This rela­

tively long adaptation time was the result of choosing a small enough value of Il to not

create an audible echo as described earlier. Following on these results, Harrison et al.

[67,68] used ANC to reduce the noise level in the voice communications system imbed­

ded in the oxygen facemasks wom by fighter aircraft pilots. Here, the primary micro­

phone was placed inside the facemask while the reference microphone was placed about 6

cm away on the outside of the mask. Harrison et al. reported an averàge reduction in the

noise level of about Il dB in their simulations.

At about the same rime, Darlington, Wheeler, and Powell [69,70] aIso examined the

use of ANC for the cockpit noise problem. They found however, that the results reported

by Harrison et al. were overly optimistic due to the simplified simulation used in that

study. Darlington, Wheeler, and Powell found that, due to the distributed nature of the

noise source(s) in a cockpit, acoustic ANC was onlyeffective at frequencies below about

1 kHz. Based on work by Piersol [46], they showed that the distributed noise source(s) in

the cockpit lowered the coherence between the two input signais. Specifically, Piersol

showed that in a diffuse (spherically isotropie) noise field, the magnitude-squared coher­

ence between two omnidirectionaI receivers will be

2 [Sin(oxi/C)]2Cyx(m)=lyyx(m)1 = oxi/c (4.53)

where d is the distance between the two receivers, and c is the speed of sound. A distrib­

uted noise source in a reverberant environment will behave as a diffuse noise field.
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Figure 4.7 (a) Magnitude-squared coherence and (b) maximum theoretical
canceUation versus frequency as a fonction of distance between receivers in a diffuse
noise field.

As shown earlier, the coherence determines the maximum attainable degree of noise

reduction. Equation (4.53) indicates that the coherence is inversely related to the distance

between the receivers, and thus to obtain a high degree of noise cancellation at the higher

frequencies, the primary and reference microphones must be placed close together. This

contradicts the typical ANC approach wherein the two receivers are spaced far apart to

avoid leakage of the desired signal into the reference input. Equation (4.53) also indi­

cates that, for a given distance, the coherence will decrease with increasing frequency as

shown in Figure 4.7a.

•

A study by Rodriguez et al. [71] confmned these findings and concluded that ANC is

ineffective in the presence of a distributed noise source. More recently, Elko examined

the possibility of using ftrst-order differential microphones to increase the coherence and

thus improve the performance of an ANC system in a spherieally isotropic noise field

[33,72,73]. He found that the use of directional microphones did not significantly in­

crease the coherence, and 50 no improvement in the amount of attainable noise reduction

can be expeeted. In fact, depending on their orientation relative to the sources, directional

microphones may reduce the coherence.

•

EIko also points out that if the length of the adaptive filter is tao short relative the re­

verberation time of the room, the reverberant energy which is not accounted for by the

adaptive FIR fùter, will act like a spherically isotropie noise field. This result cao also be

predicted from Piers01' s work.

In the present application, the camera acts as a distributed noise source and thus, in a

reverberant environment, it will behave as a diffuse noise field. Furthermore, due to the

relatively high sampling rate required, and the potentially long reverberation times, the
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•

•

length of the adaptive filter w(k) will necessarily account for only a portion of the acous­

tic impulse response, h21. Therefore, the camera noise convolved with the remaining

portion of the impulse response will appear as a spherically isotropic noise field. These

two factors will conspire to lower the magnitude-squared coherence and thus severely

limit the performance of the ANC system in the camera noise application.

4.3.4 Summary of ANC methods

In this section, noise cancellatioo methods were introduced in the context of the Wie­

ner ftlter. An adaptive noise cancellation scheme was derived based on the weIl known

LMS aIgorithm. While the LMS algorithm is attractive from the point of view of com­

putational complexity, its rate of convergence is relatively slow. Transform domain vari­

ants of the LMS algorithm can significantly improve the rate of convergence with only a

small increase in computational complexity.

The fundamentallimitations of the ANC method were examined. It was shawn that

leakage of the desired signal into the reference input imposed a bound 00 the amount of

noise reduction attainable, and aIso caused the output signai to be distorted. The per­

formance of the ANC system could also be limited if the path h22 was non-minimum

phase. Finally, the relation between the inter-channel coherence and the ANC's perform­

ance was derived. Severa! factors can reduce the coherence including a distributed noise

source, and an insufficiently long adaptive FIR filter.

Extensions to the basic ANC method have been proposed in the literature to address

many of its limitations. However, in its basic forro, ANC has inherent limitations which

constrain its usefulness in many practical situations. Even under the best of conditions,

acoustic ANC systems do not achieve more than about 20 dB of broadband noise reduc­

tian. And, while this amount of noise reduction is impressive, it is not sufficient for re­

ducing higher levels of camera noise. Therefore, we must consider other methods of re­

solving the camera noise problem.

4.4 Blind Signal Separation

In recent years there has been a great deal of research into the problem of blind signai

separation. Stated simply, blind signai separation consists of separating n signais which

have been mixed together in sorne unknown manner. More specifically, given n sources

which have been mixed together in sorne way and recorded at n receivers, the goal is to

recover the n original signais. The problem is blind in the sense that it is assumed that
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• nothing is known about the mixing parameters. The only assumption is that the n source

signais are mutuaIly independent. Given this assumption~ the various blind signai sepa­

ration techniques take the mixture ofn signais and strive to generate n independent output

signais. Blind signai separation is often likened to the so-called cocktail party effect

wherein a listener is able to focus his attention on a given source signai in the presence of

other interfering sources [74].

Clearly~ if successful~ blind signai separation techniques would be of great benefit in

many applications. In the present application the blind signai separation problem can be

viewed as a generalization of the ANC problem. In the blind signai separation approach

bath the desired and interfering source signais of the ANC system are viewed as desired

output signals. By generalizing the problem~ the blind signai separation methods cao

overcome sorne of the limitations of ANC described in the previous section.

(k)(k)Xl YI

separation

x2(k) network Y2(k)

ll cost
function

sI(k)

Ca) mixing Cb) unmixing

Figure 4.8 llIustration of signal separation problem for the 2 x 2 case: (a) the mixiog
paths, (b) unmixing tnters.

•

Many researchers have limited their examination of the blind signal separation prob­

lem to the 2 x 2 case as depicted in Figure 4.8. The mixing portion of the blind signal

separation process is shown in Figure 4.8a. Here two signais (eg. 2 talkers~ or a talker

and a noise source) are mixed together to forro the received signais xl(k) and x2(k). More

specifically~ the source signais Sl (k)~ s2(k) are mixed according to the relations described

by hll~ h12, h21~ and hn and are collected at two receivers to form xI(k) and x2(k). Sorne

researchers assume the simple case where hij; j=1~2 are scaIars, but in general we are

more interested in the convolutive mixing problem. In this case, the paths hij; j=1,2 are

assumed to be FIR fùters. Figure 4.8b shows the unmixing or separation aIgorithm

where, given the mixed inputs xl(k) and x2(k), we attempt to estimate the originaI source

signais sl(k) and s2(k) .
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Figure 4.9 Herault-JuUen method for blind signal separation.

While sorne notable early work was conducted on the problem of blind signal separa­

tion, interest in this topic appears to have grown significantly with the publication of the

work by Jutten and Herault [75] in 1991. They proposed a recurrent neural network ap­

proach for separating scalar mixtures as shown for the 2 x 2 case in Figure 4.9.

The approach can be described in matrix form,

y(k) = x(k) - W(k)y(k)

x(k) = Hs(k)

where H is the unknown mixing matrix. Hence,

y(k) = [1+ W(k)]-lx(k)

where

(4.54)

(4.55)

(4.56)

(4.58)

•

W --[ 0 W
12

] . (4.57)
w21 0

Based on the independence criteria, Jutten and Herault adapted the elements of W using

the simple adaptive learning algorithm

dWij(k)

dk

where J.L is the adaptation parameter and f(·) and g(.) are two different odd rron-lïnear

functions such as f(y )=y3 and g(y)=tanh(1Oy).

The Herault-Jutten algorithm has received rnuch attention and work is ongoing to

overcome its limitations and improve its performance. Nomura et al. [76] proposed an

extension to the Herault-Jutten network to provide for delayed source signals. Cichocki

et al. [77] found that the Herault-Jutten algorithm performed poody when the input sig-
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nals were bad.ly scaled (i.e., weak signals mixed with strong signals) and proposed a

modification which addresses this issue.

Blind signal separation using higher-order statistics (ROS) bas also been studied. The

appropriateness of using ROS lies in the fact that statistical independence is a much

stronger property than uncorrelatedness. By using higher-order moments to test for inde­

pendence of the output signais, it is possible to estimate the elements of the mixing ma­

trix H.

Cordosa [78] proposed a blind identification scheme based on fourth-order normal­

ized moments. Thi and Jutten [79] addressed the problem of separating convolutive

mixtures of source signais using fourth-order cumulants, while recently Shamsunder and

Giannakis [80] developed bispectrum and trispectrum based aIgorithms for the multi­

channel blind signal separation problem.

While the use of ROS for blind signai separation is attractive from a theoreticaI point

of view, they suffer from several disadvantages which often make them impracticaI in

real-world applications. First, caIculation of higher-order cumulants and polyspectra is

very computationally demanding and often requires large amounts of computer storage

(memory). Second.ly, reliable estimates of higher-order statisties require long data sam­

pies, making their use very difficult in situations involving non-stationary signais or a

time-varying mixing process.

Bell and Sejnowski [81] proposed a technique for blind signal separation based on

maximizing the entropy of non-linearly transformed output signals. The non-linearity

was obtained through the squashing function tanh(·). They reported very good results ïn­

eluding the "nearly peneet" separation of up to 10 digitally mixed speech signais. Bell

and Sejnowski's algorithm was aIso applied to the problem ofblind deconvolution.

Torkola [82,83] addressed two limitations of the Bell and Sejnowski algorithm. First,

he extended the aIgorithm ta the separation of delayed signals. Torkola then showed how

the entropy maximization method could be used to address the problem of convolutive

signal mixtures. Most recently, Lee et al. [84] extended Torkola's work to account for

non-minimum phase mixing of the source signais. They tested their algorithm by at­

tempting to separate 2 talkers in a reaI room. They report very good performance and

conclude that it should now be possible to apply the aIgorithm to real-world blind signal

separation problems.
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• Smaragdis proposed a frequency-domain extension to the work of Torkola and Lee et

al. [85]. His intent was to reduce the statisticaI dependence between the taps of the sepa­

ration filters while aIso reducing the computational complexity. This is akin to the use of

transform domain variants of the LMS algorithm. to increase the rate of convergence.

Separation of artificiaIly mixed signais was demoDstrated to be quite good, however per­

formance of the algorithm. in a real-world situation remains unproven.

The final approach to the blind signal separation problem which we will consider

consists of adaptively decorrelating the output signais. These methods only exploit sec­

ond-order statistics and do not take advantage of the information contained in the higher

moments. Therefore, in theory they will not perform as weil as when higher order statis­

tics are considered. This potential reduction in performance is offset by the significant

reduction in computationaI complexity and the improved reliability of estimating the re­

quired signal statistics. Blind signal separation methods based on output decorrelation

are of particular interest in the present study because of their direct relation to the ANC

methods described earlier.

Algorithms based on output decorrelation for separating two signais from a scaIar

mixture have been developed by Canagarajah [86] as weIl by Van Gerven and Van Com­

pernolle [87]. These methods however do not extend to the case of convolutive mixtures

and hence, are of little interest in the present application.

The basic 2 x 2 blind signal separation system based on output decorrelation is shown

in Figure 4.10. The input signais Xi; i=1,2 are assumed to be a result of the mixing proc­

ess depicted in Figure 4.8a. In matrix form, in the frequency domain, we have

X(Œ) = H(ro)s(m)

where

(4.59)

(4.60)

•

To fmd sem) from x(m) we require that W(m) he the inverse ofH(m). That is, given

y(m) =W(m)x(m)

where

or equivaIently
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• Therefore, if

then we have

Thus we require

y(m) =W(œ)H(œ)s(m).

Wopt(œ) =H-1(m)

y(m) = sem) .

(4.63)

(4.64)

(4.65)

W(m)=Ir1(m) 1 ( Hu(m) -Hl2(m») (466)
HIl(co)H22(m)-H12(m)H21(œ) -H21(m) H22(m)· .

Typically, Hll(co) and H22(œ) are assumed to be equal to 1. The task is then to Ïmd W(m)

using the decorrelation criteria,

xl(k) Yl(k)

(4.67)

Figure 4.10 Basic 2 x 2 signal separation system based on output decorrelation.

In 1993, Weinstein et al. [88] proposed a method for blind signal separation of con­

volutive signal mixtures. They derived a recursive algorithm using the cross-correlations

between the input and output signals of their system. Their cast function was related ta

the cross-correlation function [89]

In computer simulations using low arder FIR mixing [uters, they obtained an increase

in the signal-ta-noise ratio of about 10 dB. An interesting aspect of the Weinstein et al.•

rylyz (k) =E[YI (k) Y2 (k + 1)]

= E[YI (k)(x2 (k + 1) + W;IXI (k +l»]

= E[YI(k)x2 (k+l)]+E[w;lx l(k+1)YI(k)] .

Note that the dermition of rYIY2(k) includes the output signal in its formulation.

(4.68)

(4.69)

(4.70)
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• method is that both the LMS and recursive least squares ANC systems are special cases

of their blind signal separation system.

Yellin and Weinstein [90] extended the method of Weinstein et al. by incorporating

higher-order cumulants into the criteria for determining the optimal separation futers.

The higher-order statistics take advantage of the independence assumption of the two in­

put signais. They tested their method by attempting to separate two source signais

(speech and music) in a reaI room. Using second and forth-order statistics, they report

very good results, and thus, like Lee et al. ' s entropy maximization scheme, this method

appears promising for real-world applications.

A blind signal separation algorithm was proposed by Chan et al. [89,91] which is

similar in many ways to the method developed by Weinstein et al. Their method also

uses an iterative time-domain algorithm and can be readily applied to the n x n case.

Chan et al. used a different cost function than Weinstein et al. Their cost function

was related to the cross-correlation function

rylyz (k) = E[Yl(k)Y2(k+I)]

= E[Cx1(k) + Wi2X2(k))(~ (k + 1) + wi1x1Ck +1))]

(4.71)

(4.72)

•

Note that this defmition of r yty2(k) only uses the input signals Xi; i=I,2 and not the output

signais.

Chan et al. daim several advantages over the Weinstein algorithm. First, whereas the

Weinstein method requires the number of lags used to calculate the cross-correlations to

be equal to the length of the filters, wij, the Chan algorithm does not. Therefore, the Chan

method offers a degree of flexibility which may be important when using low order sepa­

ration futers. Secondly, in the Weinstein method, interim values of the cross-correlations

between the input and output signals must be calculated when iterating towards the opti­

mal solutions for wij. In Chan's method, the input signal correlations are used and only

need to be calculated once. Therefore, the algorithm. offers a signfficant reduction in

computational complexity. A more complete comparison of these two algorithms can be

found in [89]. Chan demonstrated very good performance of bis algorithm. for computer

simulations as weIl as for simulations in an anechoic chamber. Unfortunately, tests of the

algorithm in a real-world situation were not provided.

Moigedey and Schuster [92] proposed a method for separating signals from a scalar

mixture using time delayed correlations to reduce the task of determining the mixing co-
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efficients ta an eigenvalue problem. More recently, Ehlers and Schuster [93] extended

this work ta the blind separation of convolutive mixtures and proposed a Monte Carlo

approach for rninjrnjzïog their cost function. They applied their algorithm ta the problem

of automatic speech recognition and report impressive improvements in the recognition

error rate.

4.5 Comparison ofthe performance ofANC and BSS systems

As stated earlier, there are many similarities between blind signal separation and adaptive

noise cancellation. This is particularly true for blind signal separation algorithms based

on second-arder statistics (Le., output decorrelation). It was seen earlier that the leakage

of the desired signal into the reference input of an ANC system will directly limit the

amount of noise reduction possible. Blind signal separation systems overcome this

problem by adding the separation fliter W21 (as shown in Figure 4.10) ta account for the

leakage path. Therefore, blind signal separation systems have a potential advantage over

ANC systems in applications where leakage is a problem.

Chan compared blind signal separation and ANC performance is the presence of sig­

nal leakage and found that, as expected, the ANC system performed poody when tbere

was a significant amount of leakage. Conversely, the performance of the blind signal

separation system was relatively independent of the level of leakage. üdd1y, Chan's re­

sults indicate that blind signal separation always performs better (by more than 10 dB)

than ANC even in the absence of leakage. Moreover, bis results indicate that, when the

Ievel of the signal Ieakage is below sorne value, both the ANC and blind signal separation

systems actually reduce the signal-ta-noise ratio from input to output. Chan's fmdings

are counter-intuitive and contradict previous research, and should he explored further.

Another limitation of ANC systems occurs when the path h22 is non-minimum ph.ase.

This restricts the ability of the adaptive filter to converge. In the blind signal separation

approach this problem is resolved by the filters Wil and W22. However, most blind signal

separation algorithms simply set W 11 and W22 equal ta 1 since additional constraints are

required in order to solve for the four filters wij; i,j=1,2. Chan et al. offer several possible

constraining conditions [89,91,94].

It was shawn earlier how the performance of an ANC system is dependent upon the

magnitude-squared coherence of the input signais. One way in which the coherence cao

be lowered is by the presence of additional noise sources. The effect of additional

sources (i.e., more sources than receivers) on the performance of blind signal separation
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• systems does not appear to be fully addressed in the literature. It would seem that the ef­

fect of additional sources on blind signal separation systems should be similar to the ef­

fect on ANC systems, and so the blind signal separation approach should oot offer any

advantage in this regard. As noted earlier, a distributed noise source is equivalent to hav­

ing additional noise sources.

It was shown that one way to increase the coherence in a diffuse noise field is to place

the receivers doser together. It is interesting to speculate whether this would improve the

performance of a blind signal separation system. Recall, that the cost fonction of a 2 x 2

blind signal separation system based on output decorrelation is related ta

Ty1yZ (k) = E[(xL(k) +Wf2X2(k))(X2(k+l) + WIIXl(k+ l))] . (4.73)

In a diffuse sound field, the input cross-correlation terms will be affected by the distance

between the receivers (see Figure 4.7). At one extreme, if the receivers are spaced very

far apart, then the cross-correlation fonction will tend towards zero and the blind signal

separation system will minimize the cost function by setting W21=Wl2=Ü (i.e., W becomes

the identity matrix). In this case, the blind signal separation system will do nothing, and

the output signals will be equal ta the input signals,

(4.74){
Y1(k)::::} xL(k)

as rx x.. (k) ::::} 0, .
1 - Y2(k) ::::} x2(k)

At the ather extreme, if the distance d between the receivers is very small, the impulse

responses from a given source ta the two receivers will begin to look similar,

(4.75)1
hlL = IlQ.l

as d::::} 0, ~2 = hL2

xl(k) = x2(k)

and as a result, in arder ta minimize the cast fonction, the blind signal separation system

will tend towards

(4.76)as d::::} 0,

W2L ::::} 1

w12 ::::} 1

YI(k) ::::} 0

Y2(k) ::::} 0

Therefore, under these conditions, the output signals will go to zero and signal separation

will not occur. This is particularly true at lower frequencies where the wavelength is sig­

nificantly larger than the distance d.•
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The above anaIysis, aIthough somewhat heuristic, indicates that the performance of a

blind signai separation system will be dependent on the spacing between the receivers for

a given acoustic environment. It aIso suggests that, as for ANC, directionaI microphones

may not be helpful in generaI for blind signal separation. Blind signal separation rnethods

based on higher-order statistics may be less sensitive to this parameter. This matter needs

further investigation including a mathematical framework within which performance

tradeoffs may be determined.

Most simulations of blind signal separation systems use separation filter lengths that

are at least as long as the mixing tùters. It was noted earlier that the coherence between

the input signais cao be reduced if the separation filters are insufficiently long relative to

the reverberation time of the room. Therefore, the performance reported in many simula­

tions may be overly optimistic as compared to what cao be expected in real-world appli­

cations.

Blind signal separation cao be viewed as a generalized ANC technique with its great­

est inherent advantage being its relative insensitivity to signal leakage. However. in the

absence of signai leakage, blind signal separation systems (particularly those based on

second-order statistics) are not likely to offer significaotly better performance.

It should be noted that in sorne instances an ANC system is preferable to a blind sig­

nal separation system. Consider the 2-input situation where there are several desired sig­

nais and one interfering noise source. The goal of the noise reduction system in this

situation is to produce a noise-free recording of the desired signais. This is possible with

the ANC approach. because the user can "tell" the algorithm which signals are considered

desirable and which signai is the noise, through appropriate placement of the receivers. If

there is sorne leakage of one or more of the desired signais into the reference input, then it

is not clear what the resulting output signais will be using blind signal separation since

there are more signals than receivers. With ANC, the output will be the desired signals

with sorne degree of noise reduction and signal distortion.

4.6 Results ofTests ofANC to Reduce Camera Noise

Sample recordings (see Chapter 3) of both the NFB camera and Imax-3D camera were

processed using the ANC method to determine the amount of noise reduction that could

be achieved. For these tests, a commonly employed variant of the LMS algorithm was

used to adapt the filter. The Normalized LMS (NLMS) algorithm is often used in situa­

tions where the power levels of the input signalS are subject to wide fluctuations such as
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• is found in speech signals corrupted by camera noise [9]. NLMS is described by the fol­

10wing update equations,

and

e(k) = y(k) - w(k)xT (k) (4.77)

(4.78)

•

W(k+l)=W(k)+tL-[ x(k)e(k) J,
c+xT (k)x(k)

where c is a small positive constant which prevents division by zero if x(k) goes to zero.

The primary input consisted of the camera noise recorded with a microphone placed

where a talker (actor) would stand with respect to the camera. The reference signal was

recorded using a second microphone positioned next to the camera. Steps were taken to

ensure that the primary and reference signals were correctIy aligned in time. It should be

noted that, since the recordings did not contain speech, there was no leakage of a desired

signal into the reference input. Therefore, in these tests, we would expect a blind signal

separation system to perform similarly to the ANC system.
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Figure 4.11 Maximum noise reduction attainable for the NFB camera.

Due to the various factors described earlier in this chapter, the ANC system only pro­

vided between about 6 and 10 dB of noise reduction for the NFB camera, and less than 6

dB for the IMAX-3D camera. These results are in good agreement with the degree of

noise reduction that would be predicted from the coherence measurements shown in
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Chapter 3 (see Figures 3.24 and 3.25) which showed the magnitude-squared coherence

C.xy(œ), for sorne of the recordings used in the ANC tests. Recall that the magnitude­

squared coherence was limited by the fact that the cameras are distributed noise sources.

Using the relation described earlier in this chapter, the maximum cancellation that an

ANC system can achieve can be determined from the magnitude-squared coherence. The

maximum cancellation attainable for the NFB camera is plotted in Figure 4.11 and in

Figure 4.12 for the Il\1AX-3D camera. It can be seen that, for both cameras, the cancella­

tion is very frequency dependent, with reasonable cancellation at sorne frequencies, and

virtually none at others. It should be recalled that the power spectrum of the camera noise

is broadband and is not limited to specific frequencies (see Figures 3.19, 3.20 and 3.22).
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Figure 4.12 Maximum noise reduction attainable for the IMAX-3D camera.

The results of the tests indicate that the use of ANC provides no more than 10 dB of

noise reduction due to the distributed nature of the camera noise. This amount of noise

reduction is not sufficient for the task of removing camera noise, since a clearly audible

residual noise signal will remain. Since there was no leakage of a desired signal into the

reference input, it is not expected that a blind signal separation system would provide

better performance than the ANC system examined here. More importantly however, this

was a two-input system and thus violated a fundamental requirement for a practical cam­

era noise reduction system.
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• 4.7 Adaptive Noise Cancellation Using a Synthesized Reference

In sorne ANC applications, such as reducing camera noise, it is not practical or desirable

to obtain a separate reference measurement of the interfering noise. In these situations it

may be possible to sYQthesize a reference signal if the interfering noise is periodic or re­

petitive [9,48]. In this section, an ANC system using a synthesized reference signal for

reducing the periodic component ofcamera noise is investigated.

It was seen in the acoustic measurements described in Chapter 3 that camera noise

consists of a series of noise bursts repeating at a rate of 24 times per second. The noise

bursts are seen as sharp transient peaks followed by intervals of lower level noise which

extend between the peaks. A simple model of camera noise n(k) was derived consisting

of a periodic component p(k) and a cyclical random component c(k),

n(k) = p(k) +c(k), (4.79)

where

00

p(k)= L,Q(k+IT).
[=-00

(4.80)

with

(4.81)
{

Lqi(k) ;k=1,2,...,T
Q(k)= i

o ;elsewhere

where qi(k) are the components of the camera noise which repeat from frame to frame,

and T is the period which is equal to the reciprocal of the fIlm rate.

Figure 4.13 ANC system with a synthesized reference input signal.
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• A simple approximation to periodic component of camera noise would consist of a

train of Dirac pulses occurring at a rate of 24 times per second. As shown in Figure 4.13

this approximation to camera noise was used as the reference input to the ANC system

described in the previous section.

With this synthesized reference signal r(k), the taps of the adaptive filter w(k) will

converge to the periodic or "common" component Q(k) of the camera noise pulses found

in y(k). Therefore, this approach relies on there being a strong periodic component and

thus a high degree of correlation between the successive pulses of the camera noise. The

periodic component, Q(k) is then subtracted from the signal y(k) leaving the cyclical ran­

dom component c(k) of the camera noise.

As a fust step in evaluating the proposed technique, "ideal" camera noise was applied

to the primary input of the ANC system. The ideal camera noise consisted of a single

camera noise pulse (2000 samples) replicated 480 times over 20 s, and therefore n(k) was

equal to p(k). This was done to verify that the ANC algorithm was functioning correctly,

and to see whether a reduction in the periodic component of the camera noise could he

achieved using a synthesized reference llnder best-case conditions. The resllits indicated

that near-perfect cancellation could be achieved with this approach llnder these ideal con­

ditions.
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Figure 4.14 Correlation between successive camera noise pulses; open circles are
non-synchronized; stars are synchronized.
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• The ANC system using a synthesized reference input was then implemented using a

recording of real camera noise as the primary input signal. The results showed only a

modest reduction in the level of the camera noise at the output of the ANC system under

these conditions. CertainlY:t the results were not adequate for the application of removing

camera noise from film soundtracks. An analysis of the adaptation process of the tilter

w(k) revealed the somewhat unexpected frnding that the correlation between successive

camera noise pulses was relatively low, thus suggesting thatp(k) is a small component of

n(k). This can be seen in Figure 4.14.

The open circles in the figure show the normalized correlation ;;oY"(0) between the

frrst (reference) pulse and each of the next 24 pulses of camera noise. As can be seen, the

correlation between the reference pulse and the subsequent pulses varies significantly.

Furthermore, all of the correlations are relatively low with none exceeding 0.7. These re­

sults suggest that p(k) is only a small component of n(k). Similar measurements on other

instances of camera noise showed similar low inter-pulse correlation. The normaliZed

inter-pulse correlation, ;;oY" (0) is defined as,

where

and

;: (0) = ryoY"(0)
YoY.. ~r. (0)· r. (0)

YoYo y"y"

T

ryoY"(0) = LYO(l)YnCi+nT) n =1,2,3, ...
i=O

(4.82)

(4.83)

•

T

ryoY/O) = LY6(i) (4.84)
i=O

T

ry"y" (0) = Ly~(i+ nT). (4.85)
i=O

The acoustic measurements of Chapter 3 suggested a more significant periodic com-

ponent and showed that the spectral magnitude of the camera noise was relatively con­

stant over the duration of a reel of film. Investigations were therefore conducted to deter­

mine the cause of the low inter-pulse correlation. ft was hypothesized that the low corre­

lation could be due in part to sorne variation (drift or jitter) in the periodic component

p(k) of the camera noise. Indeed, it was discovered that there are significant variations in

the timings of the individual camera noise pulses. This is illustrated in Figure 4.15.
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Figure 4.15 Example of jitter in the arrivai tintes of the pulses of the camera noise.

The figure shows the jitter in the relative times of arrivai (in samples) of the individ­

uaI peaks of the camera noise for 40 pulses. A jitter value of 0 samples indicates that the

time between noise pulses was exactly 2000 samples pulses (corresponding to the film

rate of the camera at a sampling rate of 48 kHz). The points in the figure were derived by

adjusting the relative time, -r- between the reference pulse and each of the subsequent

pulses until the maximum correlation between that pulse and the reference pulse was ob­

tained,

•

where

with

and

-r- such that max{;;'oY" (-r-) }

r. (-r-)r: (-r) = YoY..
YoY.. ~r. (-r-). r. (-r-)

YoYo Y..Y"

T -I-rI-l
ryoY"(-r-) = LYO(L)Yn(i + nT + -r-) n =1,2,3, ...

i=O

T

ry"y" (-r-) = Ly~(i+nT+-r-).
i=O
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It can be seen from the figure that there is considerable jitter in the timings of the

points of maximum correlation. This implies that there is some variability in the me­

chanical workings of the camera which causes slight differences in the inter-pulse timing

of the periodic component Q(k). The jitter described in Figure 4.15 limits the performance

of an ANC system based on a synthesized reference input signal.

To further investigate this matter, the ANC system was modified so that the timings

of the Dirac pulses in the reference input were adjusted to account for the jitter. Specifi­

cally, the location of each individual Dirac pulse in the pulse train was synchronized to

the pulses of the camera noise to obtain maximum correlation between noise pulses. Re­

ferring back to Figure 4.14, the upper curve consisting of stars joined by a dotted line in­

dicates the maximum correlation between each pulse and the reference pulse using the

ANC system with a synchronized reference input signal. It can be seen that the correla­

tions are consistently higher for each pulse and thus this method is expected to provide

better noise cancellation. However, the correlation is still relatively low for the purpose

of ANC.
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Figure 4.16 Converged values of W for the non-synchronized (middle panel) and
synchronized (lower panel) ANC systems versus typical pulse (upper panel).

To compare the performance of the synchronized and non-sYnchronized ANC sys­

tems, it is instructive to examine the value to which the adaptive fliter w(k) converged for

each system. This comparison is provided in Figure 4.16. The upper plot shows one of
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the noise pulses used in the simulation and represents a typical noise pulse. The middle

plot shows the value to which the adaptive filter w(k) converged for the non-synchronized

ANC system. It can be seen that, while the basic features of the upper plot are seen in the

middle plot, the details of the pulse are not represented. That is, the periodic component

Q(k) obtained using the non-synchronized ANC system does not describe the detailed

structure of each pulse sufficiently weIl. Therefore, when subtracted from the primary

signal y(k), the periodic component does not significantly reduce the Ievel of the individ­

ual noise pulses.

The lower plot in Figure 4.16 shows the value to which the adaptive fùter w(k) con­

verged for the synchronized ANC system. It cao be seen that the details (the higher fre­

quencies) are better represented using the synchronized ANC system. Indeed, it is sensi­

ble to assume that the correlation between the high frequency components of the pulses is

most affected by the jitter between noise pulses.
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Figure 4.17 Input (upper panel) and output signaIs of the non-synchronized (middle
panel) and synchronized (Iower panel) ANC systems.

Figure 4.17 shows the input and output signals of both the synchronized and non­

synchronized ANC systems. The upper plot is the input signal, the middle plot is the out­

put of the non-synchronized ANC system, and the lower plot is the output of the synchro­

nized ANC system. From the figure it can be seen that the non-synchronized ANC sys-

85



• tem output has reduced the level of the noise to sorne extent. Specifically~ the low fre­

quency ringing seen between pulses is noticeably reduced. However~ the peaks of the

pulses remain largely uncanceled. In the lower plot it can be seen that the synchronized

ANC system reduces both the low frequency ringing and substantially reduces the peak

(transient) portion of each pulse. Therefore~ by synchronizing the noise pulses for maxi­

mum correlation~ the ANC system using a synthesized reference signal is providing a

greater degree of noise reduction.
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Figure 4.18 Noise canceUation versus frequency for the (a) non-synchronized and Ch)
synchronized ANC systems using a synthesized reference input signal.

In order to better compare the performance of the synchronized and non-synchronized

ANC systems~ it is instructive to examine the degree of noise reduction in the frequency

domain. The upper curve in Figure 4.18 plots the noise reduction versus frequency for

the non-synchronized ANC system. A reduction of about 5 dB is obtained at frequencies

between 100 Hz and 300 Hz. At frequencies near 1 kHz, the non-synchronized ANC

system actually increases the level of the noise in the output signal by about 1 dB. Above

1 kHz the non-synchronized ANC system does nothing.

The lower curve in Figure 4.18 plots the noise reduction obtained using the synchro­

nized system. The performance at low frequencies is comparable to that obtained with

the non-synchronized ANC system. At mid frequencies, near 1 kHz, the noise reduction

is as much as 7 dB. Furthermore, the noise reduction at higher frequencies (above 2 kHz)

ranges from 3 to 10 dB. Therefore~ the synchronized ANC system performs significantly

better than the non-synchronized ANC system. It should alSO be noted that the improve-
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• ment in performance occurs primarily at higher frequencies and so, as expected, the jitter

affects primarily the higher frequencies. On average, the amount of noise reduction ob­

tained here is about 5 dB less than the maximum attainable using traditional 2-input ANC

(see Figure 4.11).

The results suggest that the model of camera noise should be modified to include jit-

ter,

n(k) = p(k) + c(k) ,

00

p(k)= L,Q(k+IT+ç(k» ,
[=-00

(4.90)

(4.91)

•

where ç(k) is a random variable which introduces jitter in the timing of Q(k) within p(k).

The results described above were for the NFB camera. To determine whether the

above results can be extended to other cameras, the same analysis was repeated for two

!MAX cameras.
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Figure 4.19 Noise canceUation versus frequency for the (a) non-synchronized and
(h) synchronized ANC systems for the !MAX camera (MSM 9801).

Figure 4.19 shows the amount of noise cancellation as a function of frequency which

was achieved for the standard !MAX camera. The upper curve plots the noise reduction

attained using the non-sYnchronized ANC system. For frequencies between 200 Hz and

500 Hz a reduction of between 7 and 10 dB is obtained. About 5 dB of noise reduction is

obtained for the range between 500 Hz and 1 kHz. The performance of the ANC system
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falls off quickly above 1 kHz and virtually no noise reduction is obtained The lower

curve in Figure 4.19 shows the noise reduction obtained using the synchronized ANC

system. Except for the very low frequency range, the sYnchronized ANC system consis­

tently outperforms the non-synchronized system and more than la dB of noise reduction

is obtained at sorne frequencies.
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Figure 4.20 Noise canceUation versus frequency for the (a) non-synchronized and
(b) synchronized ANC systems for the IMAX-3D camera.

Figure 4.20 shows the degree of noise cancellation as a function of frequency ob­

tained for the llvIAX-3D camera, with the results for the non-synchronized ANC system

in the upper plot and the results for the synchronized system in the lower plot. Here, the

noise reduction is limited primarily to frequencies below 2 kHz. A comparison of the two

plots indicates that, for this camera, synchronizing the synthesized reference signal to the

camera noise pulses does not improve the performance of the ANC system. The poor

performance at higher frequencies indicates that the noise pulses are not correlated at

these frequencies. This may be due to the extremely complex mechanical workings in­

side the llvIAX-3D camera, as weB as the large physical size of the camera. Interestingly,

for the llvIAX -3D camera, the amount of noise reduction obtained using the synthesized

reference input signal is equivalent to the maximum attainable using a traditional 2-input

ANC system (see Figure 4.12).

The results of this section indicate that the synthesized reference ANC system with

pulse-synchronization provides almost as much noise reduction as the standard 2-input

ANC system. The synthesized reference system is preferred since it is a single input ap-
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proach as required for a camera noise reduction system. It should be noted,. however, that

the system does not perform weIl enough to reduce the camera noise to an acceptable

level. This is because the periodic component Q(k) is relatively weak,. and thus the inter­

pulse correlation is too low to obtain the necessary degree of noise reduction. Nonethe­

less, the single-input system may be of some benefit if used in conjunction with other

noise reduction schemes.

4.8 Summary

In this chapter, noise reduction methods using adaptive filtering were examined.

Adaptive noise cancellation based on the weIl know LMS algorithm was described and its

limitations were identified. Transform based variants of the algorithm were seen to pro­

vide improved performance while keeping the computational complexity to a practical

level. Factors which Can limit the amount of noise reduction attainable with ANC were

investigated including; signal leakage and low inter-channel coherence. Background

noise, a distributed noise source, and the distance between microphones were all shown

to contribute to low inter-channel coherence.

Blind signal separation was introduced as a generalization of ANC. Blind signal

separation overcomes the signalleakage problem of ANC but is still sensitive to back­

ground noise, a distributed noise source, and microphone spacing. Tests of an ANC sys­

tem to reduce camera noise achieved about 10 dB of noise reduction which is insufficient

for the camera noise application.

To take advantage of the repetitive nature of camera noise, an ANC system using a

synthesized reference input was proposed. It was found that, due to low inter-pulse cor­

relation, the noise reduction obtained using this system was limited. One factor which

was shown to contribute to the low inter-pulse correlation was the jitter in the arrival time

of the camera noise pulses. The performance of the ANC system was improved by syn­

chronizing the reference signal to the input signal to maximize the inter-pulse correlation.

With a syncbronized reference signal, the level of noise reduction was comparable to that

obtained with the standard 2-input ANC system. Since a key requirement of the camera

noise reduction system was that it be a single-input scheme, the synchronized synthesized

reference approach is preferred. Given this f"mding, the mathematical model of camera

noise was modified to include inter-pulse jitter.

Camera noise is composed of many sources of noise such as: the opening and closing

of the shutters, the movement of the film from the supply reel to the take-up reel, the
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movement of the sprockets which feed the fIlm through the camer~ the vibration of the

camera enclosure, and the rotation of the motors which drive the entire mechanism.

While some of these noise sources are directly related to the film rate, those which are not

will tend to reduce the inter-pulse correlation and will thus limit the performance of the

ANC system with a sYQthesized reference signal. Specifically, since the periodic compo­

nent is only part of the overall camera noise, this method provides between 5 dB and 10

dB of noise reduction under best case conditions. This is insufficient for the camera noise

application and so, by itself, this approach is not viable. However, the method may be

somewhat beneficial if used in conjunction with other noise reduction schemes which ad­

dress the non-periodic component of the camera noise.
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5. SIGNAL ENHANCEMENT TECHNIQUES BASED ON

ESTIMATION OF THE SHORT-TIME SPECTRAL

MAGNITUDE

5.1 Introduction

In this chapter frequency domain based techniques wmch have been developed to reduce

the levei of an interfering background noise source are examined. The underlYing noise

reduction algorithm is commonly referred to as "spectral subtraction" and is based on es­

timating the short-time spectral magnitude of the signal. A key advantage of the spectral

subtraction technique is that it can be applied when ooly the audio signal contaminated by

camera noise is available. That is, unlike the adaptive noise cancellation techniques de­

scribed in Chapter 4, spectral subtraction does not require direct access to the noise

source in the form of a reference input. Therefore, the spectral subtraction approach is

weIl suited to the problem of camera noise and allows the possibility of using the tech­

nique for restoring the soundtracks of oider fIlms.

In Chapter 3 it Was seen that camera noise can be modeled as the sum of a periodic

component and a cyclical random noise component. The adaptive noise cancellation

method using a synthesized reference signal was shown in Chapter 4 to reduce the peri­

odic component by about 10 dB. The spectral subtraction based methods examined in

this chapter will be shown to successfully reduce the cyclical random component as well

as the periodic component of the camera noise.

Signal enhancement based on estimating the spectral magnitude of the signal was frrst

proposed by Weiss et al. in 1974 [12]. A more comprehensive study of the technique was

presented four years later by BoIl [13,14] who appears ta have discovered the technique

independently of Weiss et al. BoIl applied the spectral subtraction technique as a pre­

processor to a speech compression algorithm in a communications system. The algorithm

Was intended to work with bath narrowband periodic noise and broadband colored noise.

The various spectral subtraction based noise reduction algorithms described in this

chapter were initially developed for military applications in an effort to improve the Ïn­

telligibility of speech signais under extremely adverse noise conditions. For example,

variations of the algorithm have been used to enhance speech communications in heli-
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copter and jet aircraft cockpits where the signal-to-noise ratio was in the range of -5 dB to

+5 dB [13tI4tI5]~ In general it was found that under these extremely adverse conditions

the various spectral subtraction algorithms did not tend to provide any improvement in

speech intelligibility. In fact, in sorne instancest the algorithms have been found to re­

duce the intelligibility of the speech [13,16]. The algorithms howevert were used with

sorne success as a pre-processor to datalbandwidth compression systems [95]. The spec­

tral subtraction technique was also shown to improve the performance of digital LPC vo­

coders [15,27]. While the various algorithms may not improve speech intelligibilityt

most have been found to provide a significant improvement in the perceived quality of

the resulting speech signal. It is in this context that the spectral subtraction algorithms

were considered as potential means of reducing camera noise in fIlm soundtracks.

In a film soundtrackt the signal-to-noise ratio (speech to camera noise) is expected to

be significantly greater than the -5 dB to +5 dB described above (see Section 3.5.6).

Furthermore, it is known that speech intelligibility is not a concem in environments hav­

ing a signal-to-noise ratio greater than about +15 dB [96t97]. Thereforet the camera noise

on a fùm soundtrack is not expected to have any effect on speech intelligibility. Rathert

the camera noise may have a significant effect on the quality of the audio (usually speech)

signal. Thereforet the algorithms examined in this chapter were explored solely as a

means of enhancing the perceived quality of the audio signal on the fl1m. soundtrack.

The noise reduction algorithms described in this chapter assume that a noise n(k) has

been added to a stationary random signal s(k), and that n(k) and s(k) are independent of

each other"'. It is assumed that the noise floor which is present in the short-time spectrum

can be reduced by subtracting an estimate of it from the spectral magnitude of the noisy

speech. Spectral subtraction noise reduction algorithms attempt to estimate the short­

time spectral magnitude of the clean signal and then use the phase from the noisy signal

y(k)t to recover an estimate s(k) of s(k). The various algorithms differ primarily in the

way in which the spectral magnitude of s(k) is estimated. The class of noise reduction al­

gorithms described in this cbapter depend on the fact that the sbort-time spectral magni­

tude of a speech signal is perceptually important whereas its phase is relatively unimpor­

tant [13,18,19].

• An example of a non-independent noise is the quantization noise resulting when appropriate dithering has
not been applied (S. P. Lipshitz, R. A. Wannarnaker, and J. Vanderkooy, uQuantization and Dither: A
Theoretical Survey," J. Audio Eng. Soc. vol. 40. no. 5. May 1992].
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• This chapter provides a detailed description of the underlying concepts of the spectral

subtraction technique for signal enhancement. This is done in the context of describing

the method proposed by BoIl. Variations and enhancements to this underlYing technique

which make it particularly effective at removing camera noise from f'ùm soundtracks are

described in subsequent chapters. Specifically, by decomposing the spectral subtraction

process into subbands and sub-frames, the noise reduction process can be matched to the

characteristics of the camera noise. AIso, by incorporating a perceptual model into the

spectral subtraction algorithm, the noise reduction process removes only those compo­

nents of the camera noise which are audible at each instant in time. Both of these refine­

ments to the spectral subtraction algorithm share the philosophy of reducing the amount

of processing applied to the Doisy signal, thus reducing the residual artifacts which can

result from the noise reduction process.

5.2 Spectral Subtraction - Boll's Method

In this section, the spectral subtraction algorithm developed by Boll [13,14] is de­

scribed. Consider an input signal y(k) consisting of a stationary random signal s(k) which

has been corrupted by an uncorrelated additive noise source n(k). If the power spectral

density of the noise n(k) is known, then it is possible to determine the power spectral den­

sity of the signal s(k). That is, given that noise has been added to a signal,

then the following relation applies,

y(k) = s(k) +n(k) , (5.1)

(5.2)

•

where Py(ro), PsCm), and Pn(m) are the power spectral densities of y(k), s(k) and n(k) re­

spectively. Therefore, an estimate of PsCm) can be obtained by subtracting Pn(m) from

Py(m). However, because audio signals (including speech) are time-varying processes,

the above reasoning must be modified somewhat. Specifically, the observed signal y(k) is

windowed into short-time segments. The windowed segment of the observed input signal

yw(k) is obtained by multiplying a segment of y(k) by an appropriate windowing fonc-

tion w(k). Similarly, sw(k) and nw(k) are windowed versions of s(k) and n(k) respec­

tively. The reason for using windowed segments of the input signal yw(k) is that speech

can be considered to be locally stationary over periods of about 30 to 40 ms [14,95].

Therefore, by choosing an appropriate window lengili, sw(k) can be assumed to be sta-

tionary.
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• Windowing the input signal implies a modified version of equation (S.l), reflecting

the fact that the processing must be carried out on a short-time basis,

yw(k) = sw(k) +nw(k).

Taking the Discrete Time Fourier Transform. (DTFf) of (5.3) we get,

YwCe joo ) = Sw(e
joo

)+ N wCe joo )

where in general for any arbitrary signalj(k) of length L,

(5.3)

(5.4)

(5.5a)

(5.5b)

L-l

FwCe joo ) = Lfw(k)e-jmk

k=O

L-l
= LfCk)w(k)e-jaic .

k=O

Similarly, for any FwCe joo ) , the inverse Discrete Time Fourier Transform is found by

(5.6)

Equations C5.3), (5.4), (5.5), and (S.6) therefore provide the following transform. pairs:

yw(k) H Yw(e joo ) , C5.7a)

sw(k) H SwCe jOJ ), (5.7b)

nwCk) H NwCe jOJ ). (5.7c)

In the spectral subtraction technique proposed by BoIl it is assumed that the spectral

magnitude of the noisy speech can be successfuIly approximated by the sum of the speech

and noise spectral magnitudes. That is, BoIl made the approximation,

IYwCejoo)1 = ISw(ejoo)I+INwCejoo)1

from which the spectral magnitude of the speech signal can be estimated as

(5.8)

•

ISw(ejOJ)1 = IYw(ejoo)I-INwCejID)1 ' (5.9)

where ISw (e joo )[ is the estimated spectral magnitude of the clean speech signal.

Since it is assumed that only the degraded signal is available, the magnitude of the

noise spectrum INwCejoo)1 is not readily available. Therefore, INwCejoo)1 is approximated

by E(INwCejw)I], where E[·] denotes the expectation operator. Typically, nwCk) is as-
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• sumed to be locally stationary in the sense that the spectral magnitude of the noise just

prior to speech activity is the same as during speech activity. Furthermore, nw(k) is as-

sumed to be ergodic, and so that in practice E[INw(ejOJ)I] is obtained by averaging meas­

urements of IYw(ejliJ)1 during periods with no speech activity, where only the noise is pre­

sent. As such, the estimated spectral magnitude of the cleao speech signal is calculated

by

ISw(ejw)1 = IYw(ejw)l- E(INw(ejW)I] ,

where [Yw(eja»[ is obtained directly from the observed data.

(5.10)

Equation (5.10) presents an interesting problem in that it cao produce a negative esti­

mate for ISw (e jW )1. BoIl suggested two ways of dealing with this problem. One approach

is to set all negative values of ISw(ejco)1 to zero. This is equivalent to half-wave rectifi­

cation. The second approach is to make all negative magnitudes positive, which is

equivalent to full-wave rectification. Therefore, C5.10) cao be modified to include half­

wave rectification

(5.11)

or full-wave rectification,

(5.12)

•

To obtain the noise-reduced signal sw(k), the magnitude ISwCejOJ)[ must be com­

bined with an estimate of the phase of the signal Cf)Sw (e jOJ ) to form Sw(eja». How-

ever, since Cf)sw(e joo ) is not available, it is replaced by Cf)Yw(ejOJ ), the phase of the de­

graded signal. This approximation is justified because it is weIl known that listeners tend

to be quite insensitive to phase errors in speech over the short term [13,18,19}. The re­

sults of subjective tests indicate that listeners do not detect random phase errors of less

than about 1tI4 over short time intervals. Therefore, the approximation to sw(k) can be

constructed by combining the magnitude and phase estimates and performing an inverse

DTFf in the following manner,

(5.13)
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• (5.14)

(5.15)

The above derivation of the spectral subtraction process can also be viewed dia­

gramaticallyas shown in Figure 5.1. The observed signal y(k) is windowed into short time

segments prior to being transformed via a Discrete Fourier Transform (DFT). In practice

this is done using a Fast Fourier Transform (FFf) algorithm. The resulting phase is

stored for later use while the spectral magnitude is processed. During periods where there

is no speech activity an estimate of the spectral magnitude of the noise is derived. This

estimate of the magnitude of the noise is subtracted from the magnitude of the noisy input

signal. Any negative values are rectified and combined with the stored phase prior to per­

forming an inverse DFf. The output of the inverse-DFf is an estimate of the clean

speech signal.

<f)y' (ej(J)) 1--------,

w

y(k) ""-------' ...._--~

window DFT rectify IDFT

s(k)

•

Figure S.l Block diagram of the spectral subtraction process.

As stated earlier, the spectral subtraction technique assumes that the noise is locally

stationary. If the spectral magnitude of the noise changes to sorne new locally stationary

state, then it is assumed that there is enough time (about 300 ms without speech activity)

to determine a new estimate of the noise spectral magnitude. Therefore, for a slowly

varYing non-stationary background noise source, the algorithm requires sorne form of

speech activity detector in order to know when to update the estimate of the noise spectral

magnitude. The estimate of the noise spectral magnitude is obtained by locally averaging

the observed signal during periods of non-speech activity. This averaging reduces the

variance in the estimate of the noise fIoor.

Another key assumption is that speech is stationary over short periods of time. BoIl

chose a window length of 32 ms which is approximately twice the maximum possible
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• pitch period of the speech. The length of the window must be chosen carefully. A shorter

window length will guarantee stationarity of the speech signal but will result in poorer

frequency resolution in the spectrum of the noise within a given window. Conversely, a

longer window will provide better frequency resolution in the spectral magnitude of the

noise but may cause audible artifacts in the reconstructed speech signal since the speech

can no longer be assumed to be stationary within the processing frame.

BoIl' s implementation used windows which were overlapped by 50%. The overlap­

ping greatly reduces any discontinuities in the reconstructed signal that cao occur at the

boundaries of the windowed segments. Of course, the windows of the processed time

data must be overlapped when reconstructing the output time signal. Boll used a Hanning

window, while Lim [16] suggested a Bartlett (triangular) window. Lim and Oppenheim

[95] suggest that the type of window is not critical to the performance of the algorithm

provided that the sum of the overlapping windows is equal to unity as described by the

following expression,

(5.16)

•

The above discussion relates to the analysis window. There is, of course, a corresponding

windowing operation which occurs in the synthesis process. While equation (5.16) im­

plies the use of a rectangular synthesis window, it will be seen later that other analy­

sis/synthesis window combinations can provide improved performance. Moreover, when

incorporating an auditory model into the spectral subtraction process, the choice of win­

dow becomes important.

Boll used a DFT size equal to the window size. However, Allen [98] points out that

modifying the magnitude spectrum in the Fourier domain is equivalent to convolving the

signal with a fI1tering function. Sïnce convolution generally results in a lengthening of

the signal, a forro of temporal aliasing cao result. Ta eliminate this aliasing, zero padding

of the time signal cao be done prior to the DFT. In this way, any modifications to the

spectrum magnitude will spill into the zero padding upon doing the inverse DFT. BoIl

found that for bis work (voice communication systems), augmenting the signal with zeros

did not result in a significant improvement in audio quality.

To test the performance of bis algorithm, Boll conducted a DRT (Diagnostic Rhyme

Test) to measure the intelligibility of the reconstructed signal. He aIso conducted tests to

evaluate the subjective quality of the processed waveform. The signal-to-noise ratio of

the unprocessed speech was in the range of -5 dB to +5 dB, and the results indicated that
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• the spectral subtraction algorithm had no positive effect on intelligibility. However, the

perceived quality of the speech was significantly improved.

Many variations to the spectral subtraction algorithm. have been developed. The vari­

ous algorithms differ primarily in the manner in which they estimate ISw (e jQJ )1. Many

altemate spectral subtraction algorithms can be derived through a generalization of (S. 10)

as shown below,

(S.17)

•

where a > 0 and f3 is the overestimation parameter. Setting both parameters, a and f3
equal ta unity results in the magnitude subtraction algorithm proposed by BoIl. Setting a

equal ta 2 results in the power subtraction version of the spectral subtraction algorithm

[99]. Lim [16] conducted a study in which he investigated the effect of a on speech in­

telligibility. He performed intelligibility tests with 22 listeners on speech segments hav­

ing signal-to-noise ratios of 00, +S, 0, and -5 dB, processed using the spectral subtraction

algorithm described by (5.17) with values of 2.0, 1.0, 0.5 and 0.25 for a (/3=1). Lim

found that within the range from 0.5 to 2.0 the choice of a did not significantly affect the

measured intelligibility of the processed speech. For a =O.2S the intelligibility scores de­

creased substantially. Interestingly however, Lim. indicates that for values of a of 1.0 and

0.5, the processed speech was perceived to be "less noisy". The overestimation parameter

f3 allows for the possibility of subtracting more than the expected value of the noise and

will be discussed in greater detail in later sections.

5.3 Interpretation ofSpectral Subtraction as a Zero-Phase Filter

Lim and Oppenheim [95] showed that the spectral subtraction algorithm can be viewed as

a zero-phase [liter. That is, the spectral subtraction process can be described by the fol­

10wing expression,

Sw(e jQJ
) = Yw(e jQJ

). H(e jQJ
). (S.18)

For example, substituting (S.17) into (5.18) and setting a equal to 2 provides the follow­

ing expression for H(e jQJ
),
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• (5.19)

Furthermore, by defming

(5.20)

and substituting this into (5.19), the following expression for H(e jOJ ) is obtained,

(5.21)H(ej(JJ) = (x 2
(e

j
(JJ? - 13J1/2 .

X 2 (e J(JJ)

The parameter X 2 (e j (JJ) as defined in (5.20) is the signal-plus-noise-to-noise ratio at

each frequency OJ. The lliter described by (5.21) can be described as a zero-phase fliter

since it uses ooly magnitudes and thus has no effect on the phase of the signal. Figure 5.2

plots H(ej(JJ) as a function of X 2 (e j (JJ) for values of f3 of 0, 1, 2 and 4.
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Figure 5.2 Spectral subtraction suppression curves as a fonction of the
overestimation parameter, f3 (a=2).

-

-

- beta=O
- - beta=1
..... beta=2
._.- beta=4

",.
1

1
i

(

1

1

1

1

1,
-14

-16

-1S~

.,;

'"",.
/

1
1

1
(

1
/

t
1

1
1
1
1
1

1
1

1
1

1
1

1
1

-20 L.-.JL~__.L.-,,",",,"----L.._----l~L.--_...L.-_--l..__.L...-._.....J'I.--_....1'__...J...-_-1.-........J

[Il

"0 -S'-

~
:c-10 '-
Cl
oo

C\I -12

•
99



• The figure reveals that the spectral subtraction process, at a frequency ID, can be de­

scribed as a family of attenuation (suppression) curves which are dependent upon the

value of 13. The amount of attenuation applied to the noisy signal, and therefore the

amount of noise suppression, varies with the local signal-plus-noise-to-noise ratio of the

unprocessed signal. At higher values of X(ej(J)), (i.e. ~ 20 dB) very little processing is

required and therefore almost no attenuation is applied to the noisy signal. As the signal­

to-noise ratio decreases however, more noise suppression is required and so more at­

tenuation is applied to the signal. It can also be seen from the figure that increasing the

overestimation factor 13 causes more attenuation to be applied to the noisy signal. More

precisely, the suppression curves are offset (horizontally) by 3 dB for every doubling of 13.

The zero-phase filter interpretation of the spectral subtraction process can be general­

ized beyond what Lim and Oppenheim described (see equation (5.19)). Specifically, by

substituting (5.17) into (5.18) without assuming a specifie value for a, the following

equation is obtained,

By now defining

1/a
IYw(ej(t))IŒ

- f3. E[INwCejlllf]
Iyw (ej(J) )\a (5.22)

(5.23)

(5.24)

and substituting X a (ej(J)) into (5.22), the following expression for H(ej(J)) is obtained,

H(ej(JJ) =(x CX
(e

j
(JJ}_f3)VŒ .

X a (e JOJ )

A further generalization can be made by allowing the exponent outside the parenthe­

sis of (5.24) to be independent of the exponent inside the parenthesis. More precisely, a

new variable ris defined and (5.24) is modified to give,

•
(5.25)
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(5.26)

• In a study by Paul [100]~ this additional degree of freedom was found to be helpful in al­

lowing for a balance between the amount of noise suppression and the amount of signal

distortion resulting from the processing.

Expressed in the form of equation (5.17)y this generalized version of spectral subtrac­

tian is given asy

ISw(eiWf = IYw(eiW)I Œ
- f3. e[INw(eiW)IŒ

] •

It should be noted thaty for values of a;é 2 y X a (e j (J)) as defined in (5.23) is no

longer equal to the signal-plus-noise-to-noise ratio. In order to plot H(ej(J)) as a function

of the signal-plus-noise-to-noise ratio~ the parameter Xa(ej(J)) must be described in

terms of X 2 (e j (J)) as shown belowy

(5.27)

•

The parameter X
2

(ej{J)) represents the signal-plus-noise-to-noise ratio of the unproc­

essed signal. A parameter which is perhaps more convenient for understanding the prop­

erties of the zero-phase spectral subtraction filter is the traditional signal-ta-noise ratio
~ 2 ~ .

denoted here as R (e )~ and related ta X (e ) through the fol1owmg,

X 2 (e j (J)) =R(eiOJ )+1. (5.28)

Given (5.25) and (5.28)y it is possible to examine the suppression curves for the more

generalized spectral subtraction algorithm. Examples of various suppression curves re­

sulting from tradeoffs of the parameters a y f3 and rare gÏven in Figures 5.3 to 5.6.

Figure 5.3 shows a family of suppression curves which were obtained by varying a

and rtogethery while keeping f3 equal to unity. Note that the horizontal axis represents

the signal-to-noise ratio R(ej{J)). It can be seen that more attenuation is applied to the

noisy signal for lower values of a (and r) and hence more noise reduction is obtained.

The curve with a = r = 1 represents the magnitude subtraction algorithm proposed by

Bol1y while the curve with a = r = 2 is the suppression curve for the power subtraction

algorithm. Clearly the magnitude subtraction algorithm represents a more aggressive

noise reduction algorithm than the power subtraction approach.
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• The curves of Figure 5.4 show the effect of changing a while keeping r=1. Again,

f3 is held equal to unity for all curves. For signal-to-noise ratios below 0 dB, the suppres­

sion curves become linear and are parallel to each other. Furthermore, these linear por­

tions of the suppression curves are offset vertically by 6 dB for every doubling (or halv­

ing) of a.

The curve corresponding to a =2 (with y = 1) is the Wiener tilter version of the

spectral subtraction algorithme That is, it approximates a Wiener [Ilter and stems from an

attempt to minimize the mean-squared error of the best time domain tit to the underlYing

speech signaL Similarly, the power subtraction algorithm described earlier corresponds

to the best estimate of the spectrum of the speech [15].
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Figure S.5 Suppression curves for four values of a and two values of ~ Upper
curves are for r=2. Lower curves are for 'Ff).5.

The curves in Figure 5.5 represent two groups of suppression curves which are ob­

tained for two values of y; The upper group of curves correspond to a value of y =2

while the lower set of curves are for y= 0.5. Within each group the value of ais varied

in four steps from 0.5 to 4. Lowering the value of yprovides a sharper knee in the at­

tenuation curve and results in a steeper slope at lower signal-to-noise ratios. Note how­

ever, that within the two groups the linear portions of the curves remain parallel. That is,
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• the curves within a group have the same slope for signal-to-noise ratios below approxi­

mately 0 dB.

Figure 5.6 demonstrates the effect of varying y;: For the suppression curves shown in

this figure, a and f3 are held constant at unity. Examination of the linear portions of the

curves (Le. R(ej(jJ) ~O dB) shows that rcontrols the slope of the curves. Specifically, a

halving of rresults in a doubling of the slope.
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Figure 5.6 Suppression curves for four values of 'y, with a=~l.

Given the results of Figures 5.4 and 5.6, the combined effect of changing both a and r

can be understood. Referring back to Figure 5.3, consider the linear portions of the

curves for a = r= 1 and a = r= 2. Examination of these curves at R(ej(J}) =-10 dB,

shows that the attenuation of the a = r= 1 curve can be derived by doubling the slope of

the a= y= 2 curve (due to the halving of r) and subtracting 6 dB (due to the halving of

a).

The results plotted in Figures 5.2 to 5.6 demonstrate that considerable flexibility in

controlling the suppression curves is possible through changes in the parameters ~ f3 and

rof (5.25). Suitable values for these parameters depend on the signal-to-noise ratio of the

unprocessed signal, the required amount of noise suppression and the acceptable level of
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distortion to the underlying signal. It has aIso been shown in Figures 5.2 to 5.6 that the

slope of the linear portions of these curves is directly controlled by a, fJ and ~ This is an

important consideration since it has been shown by Paul [100] that the points at which the

various spectral subtraction algorithms create unpleasant artifacts tend to have the same

slope on the noise suppression curves. That is, when the slope of the suppression cllrves

exceed a critical value, perceptually disturbing artifacts appear.

5.4 Limitations ofthe Spectral Magnitude Estimation Methods

In the previolls sections the fundamental principles of signal enhancement based on esti­

mating the spectral magnitude were described. In this section, the performance of this

technique is discussed and its limitations are identified.

It has already been noted that spectral subtraction does not tend to improve speech

intelligibility, but does provide an improvement in the perceived quality of the signal.

However, its perfonnance is limited by the audible artifacts created by the process which

can be more disturbing to sorne listeners than the original noise. These artifacts become

increasingly disturbing as the signal-to-noise ratio of the corrupted input signal decreases.

In order for the spectral subtraction technique to be useful for reducing camera noise,

steps must be taken to reduce the audibility of these artifacts while providing a sufficient

amount of noise suppression.

The various types of artifacts created by the spectral subtraction process include:

• musical noise,

• incomplete or variable cancellation of the noise (modulation of the noise floar),

• timbral effects and/or 10ss of frequency components of the signal,

• missing sounds - 10ss of low level signal (speech) components,

• phase distortions,

• time aliasing,

• pre-echoes and post-echoes (temporal smearing).

Ail of these artifacts are due to errors in two of the underlying assumptions upon

which spectral subtraction is based. Specifically, the artifacts cao be shown to be due to

errors in the assumption that the spectral magnitude of the noise (within a given process­

ing frame) is equal to the expected value of the noise,
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as weIl as errors in approximating the phase of the underlying signal by the phase of the

noisy signal,

5.4.1 Musical Noise

Musical noise is possibly the single most limiting factor when using the spectral subtrac­

tion process for removing camera noise. Musical noise consists of short spurious bursts

of isolated frequency components which appear seemingly at random across the spectrum

of the processed signal. As noted earlier, because of the time-varying nature of speech,

spectral subtraction must be done on a frame-by-frame basis. Due to the random frame­

to-frame fluctuations in the magnitude spectrum of the noise, the level of a given spectral

component will sometimes be greater than the estimated value of the noise. Therefore,

the spectral subtraction process will not entirely cancel these components and short tone

bursts will exist for the duration of the frame. Because of its musicality (tonality), this

residual noise is often very disturbing to the listener and for the purpose of removing

camera noise, musical noise must be strictly avoided. An example of musical noise is

provided in Figure 5.7 which shows the spectrogram of a signal with no speech activity

processed by spectral subtraction (with a =~ =y = 1). The musical noise is seen as the

darker areas (rectangles) in the figure which represent short bursts of residual narrowband

noise.

It should be noted that musical noise occurs more when half-wave rectification is used

in the spectral subtraction process. This is because with half-wave rectification, varia­

tions in the level of a given spectral component can result in that component being ran­

domly switched on and off on a frame-by-frame basis. Conversely, with full-wave recti­

fication, negative spectral components become positive and no sudden switching occurs.

However, full-wave rectification limits the amount of noise suppression that is possible,

and can in fact increase the noise level in sorne instances [13]. Therefore, developers of

spectral subtraction algorithms have used half-wave rectification exclusively.
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Figure 5.7 Spectrogram of processed signal showing musical noise.

(5.29)

5.4.2 Ephraim and Malah's Spectral Subtraction A1gorithm

Ephraim and Malah [22] proposed a version of spectral subtraction which uses a mini­

mum mean-square error estimate of the magnitude spectrum of the noise. The main point

of interest regarding this algorithm is that it produces colorless residual noise and does

not create musical noise as a result of its processing. This is achieved by using the con-

cept of an a priori signal-to-noise estimate SNRprio which is defined as,

..... . 2
jw _ jw ISCp-l,eJw)1

SNRprioCp,e )-(l-qJ)P[SNRpost (p,e )]+qJ jw 2 '
E[INCe )1]

with

(5.30)

•

'w 1Y(p,e jw )12
SNRpost(p,eJ ) . 2 '

E[IN(eJw ) 1 ]

where P[·] denotes half-wave rectification. SNRpoSI(P,t!~ is the a posteriori estimate of

the signal-to-noise ratio in the pth time interval, while IS(p-l,ejŒ)12 is the estimate of the

desired signal in the p-1 time interval. The parameter cp determines the amount of

smoothing applied in the estimate of SNRprio and is typically set to about 0.98.
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In an effort to determine the mechanism within the algorithm which causes the resid­

ual noise to be colorlessy Cappé [21] conducted a comprehensive study of the Ephraim

and Malah noise suppressor and concluded that the nonlinear smoothing procedure limits

the variation in the attenuation applied to the noisy signal over successive frames. By

limiting the frame-to-frame variation in the attenuationy the on-and-off switching of

spectral components responsible for musical noise is correspondingly limited. Cappé's

findings tend to support the observations of Paul [100] who noted that the onset of musi­

cal noise occurs when the slope of the noise suppression curves exceeds a critical value.

As the slope of the suppression curve increases, the variation in the level of a given

spectral component increases relative to the average level. Paul speculated that musical

noise becomes audible when a critical value of this ratio is exceeded. Stated more sim.­

ply, a steeper slope on the suppression curve tends to emphasize the on-and-off switching

of low level spectral components. When the slope exceeds a certain value, the switching

increases to the point that it becomes audible. Recently, Scalart and Vieira Filho [101]

showed that the smoothed noise estimate technique cao be used to significantly reduce

musical noise in the various spectral subtraction algorithms (magnitudey powery Wiener,

etc.) described earlier.

The Ephraim and Malah noise suppressor is not directly applicable ta the problem of

camera noise since it provides only a reduction of the interfering noise and does not give

complete cancellation of the noise. In some applications, such as the restoration of

gramophone recordings, complete noise cancellation is not required and so the Ephraim

and Malah noise suppresser can be applied [30]. For the problem of camera noise how­

ever, other schemes must be investigated for reducing the musical noise.

5.4.3 Signal Subspace Approach

More recently, Ephraim and Van Trees (102,103] proposed a signal subspace approach to

speech enhancement. They decomposed the vector space of the noisy signal into two

subspaces; a signal plus noise subspace and a noise subspace. The noise reduction process

then consists of nulling the noise subspace and estimating the signal from the remaining

subspace. The main difference between the signal subspace approach and the spectral

subtraction method is in the transform. used ta decompose the noisy signal. The Kar­

hunen-Loève transform (KLT) was used for the decomposition in the signal subspace ap­

proach.
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As in the Ephraim. and Malah method described above, the main advantage claimed

for the signal subspace approach is that it does not create musical noise. To evaluate the

performance of the signal subspace approacb, Ephraim and Van Trees conducted two

subjective tests. In the first test they found that 84% of the listeners preferred the speech

enhanced by the signal subspace method over the unprocessed noisy speech. The re­

maining listeners felt that the distortion of the speech signal due to the processing was

more disturbing than the noise. In the second test, listeners compared the amount of dis­

tortion to the speech signal resulting from the signal subspace approach and the spectral

subtraction approach. The results indicate that the signal subspace approach causes more

audible distortion of the speech signal than the spectral subtraction method.

Therefore, the signal subspace approach may not be appropriate for the camera noise

application since distortion ta the underlying speech signal must be strictly avoided.

Moreover, while the main benefit of the signal subspace approach appears to be that it

does not produce musical noise, we shall see later in this chapter that spectral subtraction

methods based on auditory perception can also reduce musical noise while rninirnizing

distortions to the speech signal.

5.4..4 Wavelet Based Noise Reduction

A noise reduction method which shares many similarities with the signal subspace

method described above is the method based on wavelets [104,105].

In this approach, the noisy signal is expanded in an appropriate orthonormal basis.

The choice of basis is made using sorne form of cost function such as the Shannon en­

tropy. The coefficients of the expansion are ordered in terms of magnitude. Those coef­

ficients which faU above sorne pre-determined threshold are assumed to be due the coher­

ent (desired) portion of the input signal. The residual terms consist of the noisy part of the

input signal and are treated as a new signal which is in tom expanded and divided into its

coherent and noisy components. This iteration process continues and the coherent por­

tions from each expansion are combined ta produce an estimate of the clean signal.

Berger et al. [104] used this approach ta restore old musical recordings of piano and

vocal arrangements. They report that while the wavelet based denoising algorithm was

useful for removing noise from musical signais, it created several undesirable artifacts in

the restored signal. Specifically, they report disturbing signal-dependent fluctuations in

the level of the residual background noise (Le., noise spurts). Among other artifacts,
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Berger et al. also indicate that the method creates annoying random clicks and whistles

(tones) in the restored signal.

It appears that while wavelet based noise reduction may offer an alternative method

for noise reduction, it has several shortcomings which limit its performance. Therefore,

in this thesis, we shall restrict our discussion to spectral subtraction based algorithms.

Later in this chapter, the similarities between the concept of decomposing the spectral

subtraction process into subbands and sub-frames, and wavelet decomposition will be

highlighted. An advantage of the subbandlsub-frame approach is that it can be easily ex­

tended to include a model of the human auditory system which in tum can significantly

reduce the audibility of unwanted artifacts and distortion to the speech signal.

5.4.5 Overestimation with Minimum Spectral Floor

Many schemes have been developed to try to avoid or eliminate musical noise. The earli­

est attempts used the overestimation parameter defined earlier as f3 in (S.17) [17]. By

setting f3 > 1, the level of the noise is overestimated and thus the amount of noise sup­

pression is increased. This in tum, reduces the amount of musical noise in the processed

signal by limiting the number of spectral components that go uncanceled. By progres­

sively increasing f3, one can reduce the musical noise to an arbitrary level. In practice,

values in the range from 1.5 to 2.S are used for Boll's version of spectral subtraction.

Rather than multiplYing the expected value of the noise magnitude by an overestima­

tion parameter, Preuss [27] proposed using the maximum value of the spectral magnitude

of the noise measured during periods with no speech component. This is effectively a

form of overestimation. More recently, Lockwood and Boudy [24] suggested that the

overestimation parameter should be frequency dependent.

The problern with any approach for reducing musical noise based on sorne form of

overestimation is that one inevitably cancels a portion of the desired speech signal. This

becomes increasingly true at lower signal-to-noise ratios where distortions to the under­

lying speech signal becorne readily audible. This distortion is not acceptable when re­

moving camera noise. At higher signal-to-noise ratios, a significant amount of overesti­

mation is possible before any distortion to the speech signal becomes audible and there­

fore, under these conditions, the musical noise can be effectively eliminated. At lower

signal-to-noise ratios a modest overestimation is acceptable but must be combined with

other techniques in arder ta remove the musical noise.
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•
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As a means of providing a tradeoff between the amount of attainable noise suppres­

sion, the audibility of musical noise, and the level of distortion to the underlying speech

signal, Berouti et al. [17] proposed the use of a minimum spectralfloor. In this scheme,

any spectral component falling below sorne threshold is set to a value referred to as the

spectral floor. Mathematically, the process can be described by rnod.ifying (5.26) as fol­

lows;

DwCej(JJ) = IYw(ej(JJ)[a - f3 ·INwCej(JJ)l
a

,

1

,. j(JJ l'Y {DwCej(JJ), DwCej(J) > S ·INw(eja»l
a

SwCe ) =
S ·INwCej(J))l

a
, otherwise

where ISwCejm)1 is the estimate of the spectral magnitude of the desired speech signal.

The parameter S·INw(eja»l
a

corresponds ta the spectral floor. The parameter Slim­

its the amount of noise suppression by keeping the residual noise above sorne minimum

level. This in tum limits the variance of the residual spectral components, thus limiting

the on-and-off switching of these components which causes the musical noise. Smaller

values of 8 provide a greater degree of noise suppression but result in more audible musi­

cal noise. Experiments have shawn that the optimal value for Sis dependent on cx, {3, and

y[17, 100].

As an extension to the minimum spectral floor method for the camera noise case, we

propose the followiog. Due to the characteristics of the camera noise, specifically the pe­

riodic component, there is sorne structure to the phase of the camera noise. Therefore,

when implementing a minimum spectral floor, the structure in the phase is maintained

and the residual noise is clearly audible as camera noise. To overcome this problem, the

phases of the components which fall below the minimum spectral floor are set to sorne

random value. The values for the phase are chosen from a unifonnly distributed random

process. As can be heard on the demonstration CD, this results in a more benign (hiss­

like) noise which may he more acceptable in the camera noise application.

5.4.6 Survival Algorithm

The approach of the methods presented so far for reducing musical noise has been to in­

tegrate sorne scheme directly ioto the spectral subtraction process. A somewhat different

approach was proposed by Vaseghi and Frayling-Cork [20] whereby the output of the
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spectral subtraction algorithm is processed in a separate algorithm designed specifically

to reduce musical noise.

The overestimation schemes discussed in the previous section considered only the

magnitude of the spectral peaks which cause musical noise. The Vaseghi and Frayling­

Cork algorithm takes into account the duration of the spectral peaks as weIl as their level.

They found that a large proportion of the spectral peaks of the noise which result in musi­

cal noise had a duration of less than 15 ms, whereas spectral components due to the

speech signal tend to have a longer lifetime. Therefore, they reasoned that a means of

reducing musical noise could be devised based on the lifetime of a given spectral peak.

Vaseghi and Frayling-Cork proposed a survival algorithm which passes a "window"

over the successive frames of the spectra resulting from the output of the spectral sub­

traction process for each of the frequency bins. The size of the window was chosen to

accommodate 5 frames from the spectral subtraction process. The extreme end frames in

the window are tested to determine if they are simultaneously zero. Having both end

frames equal to zero indicates that the spectral components contained within the window

are of short duration. If the two end frames of a given frequency bin are not simultane­

ously zero, then this suggests that a desired signal component is contained within the

window and no processing is done on these frames. If however, they are equal ta zero,

then a second test is performed to see if any of the frames within the window exceed a

threshold level which would indicate the presence of a signal. If any of the frames ex­

ceeds this threshold then no processing is done to the frames. If none of the frames ex­

ceed the threshold, then ail of the frames within the window are set to zero. The window

is then shifted to the next group of 5 frames and the process is repeated.

While this method is somewhat heuristic in its approach, Vaseghi and Frayling-Cork

reported that their survival algorithm removes the majority of musical noise and results in

considerably lower residual noise energy and a substantial improvement in perceived

quality.

5.4.7 Modified Survival A1gorithm

The survival algorithm described above was implemented and evaluated as a means of

reducing musical noise when suppressing camera noise. The size of the window used in

the survival algorithm was varied to include from 5 to 10 frames. The threshold used to

determine the presence of a signal component was frequency dependent and based on the
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• estimate of the noise. Specifically, the threshold T was a function of the noise e~timate as

described by,

(5.33)

•

Using qJ, the threshold could be varied and it was found that the value of T giving the

best performance varied with the signal-to-noise ratio of the input signal. As indlicated by

Vaseghi and Frayling-Cork the algorithm provided a substantial reduction of the musical

noise. However, it was found that with some modifications, the algorithm coulcll he made

to perform better.

The Vaseghi and Frayling-Cork algorithm makes a binary decision as to whether or

not the spectral components within the analysis window are due to musical noise. This

decision is based largely on the presence of components at the boundaries of the analysis

window. As such, the basic survival algorithm will not eliminate low level musical noise

which happens to faU on the boundaries of the analysis window. Similarly, the algorithm

does not address musical noise which fails within the same analysis window as a signal

component which exceeds the threshold. A modified survival algorithm was therefore

devised which attempts to address these issues. The workings of the modifieci survival

algorithm are seen in Figure 5.8.

frames

Figure 5.8 Modified survival algorithm for removing musical noise_

As before, an analysis window containing N frames from the output of the spectral

subtraction process is used in the proposed modified survival algorithm. The oew algo­

rithm uses two thresholds and a soft-decision ruIe for attenuating low level cornponents.

A gain factor, g is applied to each framefldW
) as determined by the foUowing ruJe,
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where

(5.35)

•

The mIe works in the following manner. Any frame fldm) within the analysis win­

dow who's level exceeds the threshold, Tl is left unaltered. Tl is chosen such that the

probability of a noise spectral peak exceeding this threshold is very low. That is, frames

exceeding Tl are with a high probability due to the signal component.

Those frames which fall below Tl are multiplied by the gain factor (actually attenua­

tion) g. The gain factor g is determined for a given analysis frame by the percentage of

frames which exceed the second threshold, T2. That is, the fewer the number of frames

which exceed T2, the greater the attenuatïon applied to these frames. The exponent p is

used to further control the attenuation applied to these frames. Larger values of p result

in more aggressive attenuation of these low level frames. Both thresholds Tl and T2 were

made to be functions of the noise estimate in a manner similar to equatïon (5.31). This

modified survival algorithm provides more degrees of freedom.

It can be seen that, unlike the Vaseghi and Frayling-Cork algorithm, all frames in the

modified version influence the decision as to whether or not the content of the analysis

window is musical noise. As a result, a noise spectral peak located in the same analysis

window as a wanted signal component will now be attenuated. Also, short bursts of mu­

sical noise will now also be attenuated. The number of frames in the analysis window of

the Vaseghi and Frayling-Cork algorithm was determined by the expected duration of

noise spectral peaks. The new algorithm allows for flexibility in choosing the size of the

analysis window.

To better understand the modified survival algorithm, consider the example depicted

in Figure 5.8. In this example, framesfl andl6 would pass unprocessed. AlI other frames

would he attenuated by a factor g. Since balf of the frames fall below T2, the gain factor g

would be equal to sorne value g =O.sP detennined by the parameter p. In the Vaseghi

and Frayling-Cork algorithm, none of the frames in this example would be processed

(attenuated).
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• 5.4.8 Incomplete noise cancellation

The basic spectral subtraction algorithm described in Section 5.2 does not provide com­

plete canceIlation of the noise. That is, a residual noise will remain after processing. The

incomplete canceIlation of the interfering noise is due to the variations in the spectral

magnitude of the noise. Specifically, the spectral magnitude of the noise varies about

sorne rnean value from frame to frame. This is in evidence in Figure 5.9 which shows the

average value (dotted curve) of the noise for each spectral component as weIl as the

maximum value (solid curve) over 20 frames. It can be seen that in this example, the

maximum value of the noise can exceed the average value by as much as 5 dB. Other

examples may demonstrate a larger variation.

In BoIl's basic algorithm the expected value of the noise is used in the subtraction

process, and so, for those frames where the noise exceeds the expected value, a portion of

the noise will not be canceled.
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Figure 5.9 Maximum and mean values of noise spectral magnitudes.

One method for overcoming the problem of incomplete noise cancellation employs

the overestimation parameter f3 frrst proposed by Berouti et al. [17]. Although overesti­

mation was originally intended as a means of reducing musical noise, it is also useful for

obtaining more complete cancellation of the interfering noise. As its name suggests, this

parameter provides an overestimation of the noise in the spectral subtraction process thus

ensuring that a greater portion of the noise is canceled. Higher values of f3 provide a
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• greater degree of noise suppression ancL given a sufficiently high value. the interfering

noise can be completely eliminated~ A key advantage of the overestimation parameter is

its simplicity and several variations to the basic concept have been proposed~

5.4.9 Overestimation based on the expected vaIue and variance of the noise spectral

magnitude

While the use of an overestimation parameter effectively reduces the amount of uncan­

celed noise. the methods proposed to date are limited in that they do not account for the

variations of each spectral magnitude component. That is, they are based solely on the

mean (or maximum) of the spectral magnitude of the noise. Therefore, a new variant to

the overestimation parameter is proposed which makes use of both the mean and variance

of the spectral magnitude of the noise. The following variation to the spectral subtraction

equation is proposed,

(5.36)

•

where STD[·] represents the standard deviation. Both the mean and standard deviation of

the spectral magnitude of the noise are estimated during the time interval just prior to

speech activity. This new method for overestimating the noise spectral magnitude pro­

vides additional flexibility and informallistening tests indicate that it tends to give better

noise cancellation performance. This appears to be due to the fact that it more accurately

reflects the variations in the interfering noise.

5.4.10 TimbraI Effects and Loss of Signal Components

Due to the same mechanism which can cause some of the noise to go uncanceled, spectral

subtraction can also cause part of the desired signal to be removed. When the level of a

spectral component of the noise within a given processing frame is lower than the noise

estimate, a portion of the signal at that frequency will be canceled. The results of this can

be heard as either a change in the timbre of the desired signal or a loss of low level signal

components.

One way to limit the amount of desired signal which is canceled in the spectral sub­

traction process is to underestimate the level of the noise. Of course, this will result in

incomplete noise cancellation. Therefore, a balance must be found in order to obtain a

sufficient degree of noise cancellation without overly distorting the underlYing speech

signal. Informallistening tests indicated that the new overestimation method proposed in
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the previous section tends to provide a good compromise between these two conflicting

requirements.

5.4.11 Phase Distortions

One of the fundamental assumptions of the spectral subtraction process was that the

phase of the desired signal could be successfully approximated by the phase of the noisy

input signal. This approximation means that there will be some error in the processed

signal. Even if one could somehow know the exact spectral magnitude of the noise,

spectral subtraction does not offer any mechanism ta determine the phase of the noise.

There are two main types of audible artifacts which occur as a result of this phase error:

roughness and temporal smearing. Roughness is primarily heard during sustained sounds

such as vowels in speech. Conversely, temporal smearing is more readily heard as pre­

echoes and post-echoes occurring near a transient signal.

Vary [19] showed that there is a direct relation between the expected maximum phase

error and the signal-to-noise ratio for complex gaussian noise. Vary derived the follow­

ing relation

E(dcI> ] =sin-1( [1r. N(e~W)) , (5.37)
max V2 S(eJw )

where dcI>max is the maximum phase deviation, N(e jCtJ
) is the noise power, and S(ej{J)) is

the signal power at frequency (j). This expression is plotted in Figure 5.10 as a fonction

of the signal-to-noise ratio.

There is one point on the curve shown in Figure 5.10 which is of particular interest.

For a signal-to-noise ratio of about 6 dB, the resulting expected maximum phase error is

1C/4. This point is of interest because it has been shown that while the ear is relatively in­

sensitive ta phase, the threshold at which a random phase error becomes audible is about

1C/4 radians [19]. For larger phase errors the speech takes on a rough quality. Therefore,

it can be concluded that roughness due ta phase error will not be audible provided that the

signal-ta-noise ratio is above 6 dB.
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•

5.4.12 Time Aliasing and Temporal Smearing

The effects of phase errors of less than 1rI4 radians in the spectral subtraction process can

also be heard as temporal smearing due to time aliasing. Allen [98] noted that in an analy­

sis-synthesis system, such as the FFf-IFFf process in the spectral subtraction algorithm,

any modification to the signal in the spectral domain is equivalent to flitering in the time

domain. Since time domain fùtering typically results in an increase in the length of a sig­

nal, the spectral subtraction process can distort the time waveform due to time aliasing.

The temporal aliasing is a result of the circular convolution of the signal with the time

domain response (impulse response) of the modification [106].

Time aliasing is illustrated in Figure 5.11. The upper plot shows a 64 sample refer­

ence signal which has been augmented to 128 samples through zero padding. The lower

plot shows the signal after it has been transfonned to the spectral domain, modified, and

inverse transformed back to the time domain. It cau be seen that due to the spectral modi­

fication, samples 65 ta 128 in the lower plot are no longer equal ta zero. Rather, the
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• spectral suhtraction process caused sorne Ieakage of the signal into the zero padded sam­

pIes.

original signal
0.5r------.----.,....------r-----'T----.-----~____,

12010080604020
-0.5 ""---_--''--....L....- ---'--__....L.--1.. --L L...- -'------'

o

o

reconstructed signal with time aliasing
0.5r-----...-----.,....-----r----'T----.-----,-____,

o

-0.5 '---- -'- ....L.- --L- ---'- L...-- ....L....-----'

o 20 40 60 80 100 120
samples

Figure 5.11 Time aliasing due to modüying a signal in the frequency domain.

Another way of viewing time aliasing is as a mismatch hetween the phase and mag­

nitude of the reconstructed signal. In the spectral subtraction process, an estimate of the

spectral magnitude of the noise E[INwCejw)l] is subtracted from the magnitude of the

noisy signal IYw(ejco )1. However, in constructing the estimate of the clean signal, the

phase of the noisy signal <1Jy' (ejco ) is combined with the magnitude of the estimate of
w

the clean signalISw(ejw)l. This is not the correct phase for the estimated magnitude of

the clean signal and so temporal aliasing will occur. In order to avoid temporal aliasing,

it wouid he necessary to have the phase <1>S (e jw ) corresponding to the estimate of the
w

•
clean signal. It shouid be noted that this is not the same as the phase of the actual clean

signal. Since tbis phase information is not available, temporal aliasing results.

In the traditional spectral subtraction process the time samples are not typically zero

padded prior to performing the FFf. In this case, the samples which are seen as leakage

in the lower plot would be aliased (superimposed) onto the frrst 64 samples. This results
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• in a temporal smearing of the signal which can be heard as pre-echoes or post-echoes. If

a transient (signal onset) occurs in the middle or latter portion of the analysis window,

temporal smearing will occor before the transient thus creating a pre-echo. An example

of a pre-echo due to time aliasing is shown in Figure 5.12. where the upper plot shows the

reference time waveform \vithout a pre-echo, and the lower plot shows a pre-echo due to

time aliasing. The pre-echo begins just before sample 2000 and lasts for about 1500

samples. Note that the pre-echo appears just prior to a sharp transient in the signal. A

second pre-echo can be seen near sample 8000 and lasting for just over 1000 samples.

reference signal
4000.------.--------r----r------r-----,r-------,

2000

-2000

...............:- :: .
· .· .

· . ..... - - -.- - .. - "" .. .. "." -- ..
.. .. .. ..
.. .. .. ..
.. .. .. ..- .· -· .

12000100008000600040002000
-4000~---....L.------l.._--_.1.------1.-------I-------I

o

signal with pre-echo
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120002000 4000 6000 8000 10000
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Figure 5.12 Pre-echoes resulting from time aliasing.
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Pre-echoes as shown in Figure 5.12 are commonly produced by transfonn based per­

ceptual audio coders. Subjective tests by Shlïen and Soulodre [107] have shown that

these pre-echoes can be easily detected by certain groups of listeners and so an effort

should be made to rninirnize them in the spectral subtraction process

•
5.4.13 Zero Padding with Truncation

One means of addressing the issue of time aliasing is to use zero padding when perform­

ing the FFf. However, placing the zero samples at the end of the data samples will create

post-echoes which may be audible since there is now a delay between the signal and the
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leakage. Placing the zeros before the data samples will result in an exaggerated form of

pre-echo. In order to resolve this matter, the following scheme was devised. A frame of

M data samples is zero padded prior to performing an FFT of size N (M<N). The zeroes

are placed after the data samples. Following the spectral subtraction operation, the data is

transformed back to the time domain. As seen earlier, this will result in leakage of non­

zero samples into the zero padded portion of the time waveform. The lengili of the time

waveform is then truncated and only the fust M samples are used to construct the noise

reduced signal. The N-M samples which contain the Ieakage are discarded since they

tend to be detrimental to the quality of the processed signal. In the example of Figure

5.11, samples 65 to 128 of the lower plot would be discarded. Informallistening tests in­

dicate that with N-:::=2M, this scheme effectively eliminates temporal smearing artifacts

(pre-echoes and post-echoes) and provides a distinct improvement in the perceived qual­

ity of processed signals containing transients.

5.5 Summary

In this chapter signal enhancement schemes based on estimating the short-time spec­

tral magnitude of the signal were described. This approach is usefui for reducing both the

periodic component and the cyclical random component of the camera noise. It was seen

that the spectral subtraction process can he interpreted as a zero-phase fIlter, and a gener­

alized form of this zero-phase fIlter provides a high degree of flexibility and control in the

noise suppression process.

The artifacts which are created as a result of the spectral subtraction process were

identified and a variety of schemes for limiting their audibility were introduced. A care­

fuI balance of these schemes can provide an acceptable degree of noise reduction for

moderate levels of camera noise. For higher levels of camera noise however, the tradi­

tionaI spectral subtraction process yields unacceptable levels of distortion and artifacts in

the reconstructed signai.
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6. SPECTRAL SUBTRACTION USING SUB-FRAMING AND

SUBBANDS

In the previous chapter it was seen that the spectral subtraction process can provide a de­

gree of noise reduction but may cause audible artifacts as a result. These artifacts become

more pronounced (audible) as the signal-to-noise ratio of the corrupted signal decreases.

Informallistening tests have shown that when removing low level camera noise a proper

balance between the choice of an appropriate suppression curve, a moderate overestima­

tion factor based on first and second order statistics, and a modified survival algorithm

with carefully chosen thresholds may be employed to reduce the artifacts to an acceptable

level. However, as the level of the camera noise increases, either the artifacts produced

by spectral subtraction cannot be entirely suppressed, or the quality of the underlying

speech becomes unacceptably distorted. Therefore, in its present incarnation, spectral

subtraction can not be used for rernoving camera noise when the level of the noise ex­

ceeds sorne value. In this chapter, a new scheme is described which takes advantage of

the repetitive nature of camera noise and allows spectral subtraction to be successfully

employed under more severe levels of camera noise.

6.1 Spectral Subtraction using Sub-frames

The results of the acoustic measurements described in Chapter 3 showed that camera

noise n(k) can be modeled as the sum of a periodic component p(k) and a cyclical random

cornponent c(k) in the forro,

n(k) = p(k)+c(k) . (6.1)

Both p(k) and c(k) are related to the fI1m rate of the camera (i.e., 24 frames per second).

The methods developed in Chapter 4 were intended to address p(k) and did nothing to

reduce c(k).

Another way to view the camera noise is as a series of noise bursts which coincide

with the fIlm rate. The noise bursts consist of an initial peak pulse containing a large

portion of the noise energy followed by an interval of lower level noise. That is,

n(k) =npeak(k)+1lnull(k) . (6.2)

p(k) and c(k) each contribute to bath the peak and null portions of the noise, so that
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The reason for viewing the noise in this manner is that the level of the noise is greater

during the "peak" than during the "null" portions of each noise burst. As such, for a

given level of speech, the signal-ta-noise ratio during the peaks of the noise will be lower

than during the nulls. Since the performance of spectral subtraction is directly dependent

on the signal-to-noise ratio of the corrupted speech, this method of viewing the noise can

be exploited ta improve the noise reduction by alIowing the processing ta be directed by

the peak-and-null property of the camera noise. To do this, the spectral subtraction proc­

ess is divided into sub-frames.

• n(k) =Ppeak(k) + Pnull(k) + Cpeak(k)+ cnull(k) . (6.3)

•

The concept of sub-framing is best understood with the help of Figure 6.1 which

shows a series of camera noise pulses with overlapping (50%) Hanning windows super­

imposed. The lengths of the windows, and hence the processing frames, are chosen to

exactly coïncide with the period T of the camera noise. Furthermore, the windows are

aligned such that they are centered on either the peak or null portion of a noise pulse. In

other words, the windows are aligned to altemately provide a higher noise level followed

by a lower level of noise.

-0.6

-0.8

-1

o 2000 4000 6000 8000 10000 12000 14000 16000
samples

Figure 6.1 Division of the spectral subtraction process into two sub-frames.
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• In sub-framing we operate two interleaved spectral subtraction processes. One proc­

ess operates on the peak portions of the noise (solid curve) while the other process oper-

ates on the null portions (dotted curve). Let 'Prlak(mn) and 'P~jl(mn) be the zero-phase

spectral subtraction filters operating on the peak and null portions of the camera noise.

The two spectral subtraction processes use separate noise estimates: one based on the

level of the noise during the peaks E[INpeak(ejOJ)12] and one based on an estimate of the

noise during the nulls E[INnull(ejOJ)12]. Because of the difference in the level of the

noise between the peak and the null portions of the noise pulses, the spectral subtraction

process operating on the null portions is operating at a significantly higher signal-to-noise

ratio. As a result, more moderate processing can be used and thus the resulting artifacts

are far less audible. During the peak portions, the signal-to-noise ratio is lower and more

aggressive processing must be applied to the signal. However, this more aggressive proc­

essing is done over a shorter lengili of time and thus the resulting artifacts are relatively

short-lived and are consequently less audible. The reduced audibility of the short-lived

artifacts is due in part to the masking that occurs in the ear. This will be described further

in Chapter 7.

It should be noted that the two interleaved spectral subtraction processes are inde­

pendent of each other, and thus the parameters of the processes can be individually opti­

mized to provide the best performance. For example, the interleaved processes can use

different noise suppression curves, different overestimation factors, and different thresh­

olds for their survival algorithms. The use of sub-frames provides a greater degree of

freedom in the spectral subtraction process and inherently reduces all types of audible ar­

tifacts.

The above sub-framing process cao be described mathematically as follows. Let

~~~«(rJn) and ~~~l(mn) be the DFr's of the rth peak and null frames respectively,

where r and n are integers such that -00 < r < 00 , 0 :::; n :::; N-l, and N ~ L ~ B. N is the

number of points in the DFf, Lis the length of the window w(k), and B is number of•

L-l _j21rnk
~~~(mn) = Y(2rB,n) = LY(2rB+k)w(k)e N

k=O

L-l _j21r nk
~~~l(mn) =Y«2r+l)B,n) = LY«2r+l)B+k)w(k)e N

k=O

(6.4)

(6.5)
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• samples by which the window is shifted from frame to frame. Typically, the window

w(k) will not be rectangular and there will be sorne overlapping of the frames.

Given ~~~(COn) and ~~11(COn)' the estimates of the desired signal during these sub- .

frames is found using

and

~r) ( ) _ \II(r) ( ) . T.(r) ( )
,)~ull con - T null COn r';ull COn •

(6.6)

(6.7)

The corresponding time-domain versions of the enhanced signal can be found using the

inverse DFf,

N-l .2trnk
i r ) (k) =..l. ~ S(r) (co )e1N

peak N ~ peak n
n=O

and

N-l ·21r k
...(r) _ 1 ~ ~r) lNn
snuU(k) - N ~ ,):ZuU(con)e

n=O

The sub-frame based spectral subtraction process is shown in Figure 6.2

(6.8)

(6.9)

•

The sub-frame based spectral subtraction process assumes that there is a significant

difference in the level of the noise during the peak and null portions of the noise. Figure

6.3 shows an example of the peak and nuIl noise estimates derived from one of the

acoustic measurements described in Chapter 3. The upper curve represents the estimate

of the peak portion of the camera noise, while the lower curve represents the estimate of

the null portion. It can be seen that at sorne frequencies the difference between the two

curves is as much as 10 to 15 dB. This means that, by matching the noise reduction proc­

ess to the characteristics of the noise, (i.e., using sub-framing) the signal-to-noise ratio
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• during the nul! portions is 10 to 15 dB higher at these frequencies than during the peak

portions. Therefore, the artifacts created by the spectral subtraction process will be

greatly reduced for these sub-frames.
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Figure 6.3 Peak and null sub-frame noise estimates.

While the use of sub-frame based spectral subtraction has been proposed in the con­

text of reducing camera noise, one can recognize that this scheme could be used ta im­

prove the performance of spectral subtraction algorithms when dealing with other cyclical

or repetitive noise sources.

6.1.1 Window Aligmnent and Frame Synchronization

To avoid modulation of the noise floor of the output signal, the sub-frarnes of the spectral

subtraction process must be synchronized to the fùm rate (24 frames per second). As

noted in Chapter 3, the digital audio recordings of the camera noise were made with a

sampling rate, Fs=48000 Hz which is an integer multiple of the fûm rate. For a sampling

rate of 48000 Hz and assuming for the moment that there is no jitter, the pulses of the

camera noise occur every 2000 samples. In order to be synchronized ta the pulses of the

camera noise, the length of the window w(k) used in the sub-framing scheme must also be

2000 samples. That is, we require L=T and B=TI2 in equation (6.4). In practice, while
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the spectral subtraction algorithm. operates on blocks of 2000 data samples, these blocks

are zero padded to augment them to a power of 2 to enable the use of a radix-2 FFf

[106].

In conjunction with the frame synchronization, it is aIso necessary to ensure that the

windows are properly aligned with the pulses of the camera noise. That is, steps must be

taken to align the "peak" window to the peaks of the noise pulses. Improper window

alignment wililimit the effectiveness of the sub-framing scheme since the difference in

the peak and null noise estimates will not he maxiInized. To examine the importance of

frame synchronization and window alignment, it is instructive ta consider Figure 6.4 and

Figure 6.5

-0.4

-0.6

-0.8

-1

o 2000 4000 6000 8000 10000 12000 14000 16000
samples

Figure 6.4 Process synchronized to the film rate and windows correctly aligned to
the noise pulses.

Figure 6.4 shows the sub-frames correctIy synchronized to the film rate (L=1) and the

windows properly centered on the peaks of the noise pulses. It can be seen that alignment

and synchronization are maintained over aIl of the noise pulses. Conversely, Figure 6.5

represents a system which is not synchronized ta the fùm rate (L>T). Here, it can be seen

that, while the first window is correctIy aligned to the noise pulse, subsequent windows

quickly drift out of alignment with the noise pulses. In this example, the size of the sub-
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frame was 2048 samples which was chosen to represent an appropriate selection for the

FFf and inverse-FFf operations.

-0.4

-O.s

-0.8

-1

o 2000 4000 SOOO 8000 10000 12000 14000 1S000
samples

Figure 6.5 Process Dot synchronized to the tllm rate.

The effects of non-synchronized sub-frames and improper window alignment can be

seen more readily in Figure 6.6 and Figure 6.7. Figure 6.6 shows a spectrogram. for the

case where the sub-frames are synchronized to the Ï1lm rate and the windows are properly

aligned. The spectrogram. consists of an altemating sequence of dark and light vertical

bands. These correspond respectively to the peaks and nulis of the camera noise. The

vertical bands remain consistent and weIl defined over the entire spectrogram.. Figure 6.7

shows a spectrogram of the camera noise with a sub-frame size of 2048 samples, and thus

the process is not synchronized to the Ï1lm rate. At the start of the process, the light and

dark vertical bands representing the nulis and peaks are weIl defmed. However, the

pulses of the noise soon begin ta drift with respect to the windows and at about 500 ms

the distinction between noise peaks and nulIs is last. The benefits of sub-framing are de­

feated during this segment of the signal and very poor noise reduction would oceur. The

pulses continue ta drift until they are once again temporarlly aligned with the processing

at about 800 ms. Thus it cau be seen that the performance of the spectral subtraction

process would modulate over time.
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Figure 6.6 Spectrogram of camera noise with process synchronized and aligned to
the camera noise.
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Figure 6.7 Spectrogram with process Dot synchronized to camera noise.
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(6.10)

• The above discussion assumed that there was no jitter in the periodic component p(k)

of the camera noise. In Chapter 4 it was seen that a significant amount of jitter can occur

and so its impact on the performance of the sub-frame spectral subtraction process must

be considered. First it should be realized that the jitter caused the timing of p(k) ta vary

in both the positive and negative directions. To reflect this, the model for the periodic

component of the camera noise was modified ta include the zero-mean random variable

!;(k),

00

P(k)= 2,Q(k+lT+c;(k) .
[=-00

Therefore, even with the jitter, the noise reduction process will remain synchronized

on average over time assuming L=T and B=TI2. Moreover, the spectral subtraction only

processes the magnitude of the input signal and does not alter the phase. Since a slight

shift (due to jitter) between the signal and the processing window will have only a minor

effect on the spectral magnitude of the signal, we cao conclude that explicit compensation

for the jitter is not necessary.

6.1.2 A Simple Method for Frame Synchronization and Window Alignment

It was seen in the previous section that, in order for sub-framing to operate successfully,

the sub-frames must be synchronized to the fIlm rate and the windows must be aligned to

the noise pulses. In this section a simple method is described for ensuring frame syn­

chronization and window alignment.

Because the camera noise is mixed with the desired speech signal, the pulses of the

noise may not be easily detected directly frOID the time waveform. Similarly, a spectro­

gram of the corrupted signal may not be sufficient for determining the precise locations of

the camera noise pulses. This is particularly true for high signal-to-noise ratios where the

level of the noise is low relative to the speech signal. However, by taking an approxima­

tion to the second derivative of the corrupted signal, the peak pulses of the camera noise

become readily apparent. This is due to the steep slopes associated with the onset of each

noise pulse. This method was proposed by Kasparis and Lane [lOS] as a means of de­

tecting scratches on vinyl records. The process is shawn in Figure 6.S and cao be de­

scribed by the folIowing equation,

•
u(k) = Iy(k) - 2· y(k -1) + y(k - 2)1 .
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• u(k)

Figure 6.8 Circuit used to detect peaks of the noise pulses.

The result of this process cao be seen in Figure 6.9. The upper plot shows the time

waveform of the noisy input signal y(k). The camera noise cao be seen as a series of

pulses between samples 30000 and 50000~ but is hidden at other points in the waveform

by the speech signal. The lower plot of the figure shows the output u(k) of the circuit

when the waveform shown in the upper plot is presented at the input. The location of

each noise pulse is easily seen in this plot. With this simple method~ the sub-frames of

the two spectral subtraction processes can be easily synchronized to the film rate of the

camer~ and the processing windows cao be aligned to the noise pulses.

input waveform

1 2 3 4 5 6

output of peak detection circuit
3000,..-------r------,-------,r----.,......------.------,----y---...,

2000

Figure 6.9 Input and output of noise peak detector.•

1000

2 3 4
samples
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• 6.1.3 Moiti Sub-Framed Spectral Subtraction

The concept of sub-framed spectral subtraction was introduced using 2 sub-frames. It may

be desirable in sorne instances ta divide the signal into multiple sub-frames. Equations

(6.4) and (6.5) can be readily modified to accommodate multiple sub-frames,

L-l ·21r k
~r)(mn) = LY((Gr+d)B+k)w(k)e-lt:r

n
(6.12)

k=O

where L is the length of the windows, d=O,l,. .. ,G-l is the index for the various sub-

frames, G is the number of sub-frames, and B is the number of samples by which the

windows overlap. The sum of the lengths of the sub-frames must equal the period T of

the camera noise in arder to obtain the benefit of sub-framed spectral subtraction.

G(L-B)=T (6.13)

•

The concept of sub-framing can be further generalized by allowing sub-frames to be of

different lengths. Again, the sum of the lengths of the sub-frames must be equal to the

period T of the camera noise. The benefit of non-uniform sub-frames will be seen in a

later section when they are used in conjunction with subband fùtering.

A logical question to consider is whether or not further benefit can be gained by using

more than 2 sub-frames. This matter was considered and spectral subtraction algorithms

were implemented using 2, 4, and 8 sub-frames. Thus the sizes of the sub-frames were

2000, 1000, and 500 samples respectively.

An analysis of the performance of spectral subtraction using these variaus numbers of

sub-frames revealed that increasing the number of sub-frames does not necessarily result

in improved performance. This is because as the number of sub-frames increases there

are fewer data samples within each sub-frame and consequently there is greater variation

in the average magnitude spectrum of the noise from frame to frame. This is particularly

true at low frequencies. Furthermore, it is not evident that the makeup of the camera

noise at lower frequencies warrants more than 2 sub-frames. On the other hand, using

more (Le., shorter) sub-frames may provide better performance at higher frequencies

where the duration of the camera noise is shorter. That is, at lower frequencies a spectral

subtraction process based on 2 sub-frames is weIl suited ta the characteristics of the

noise, while higher frequencies are better matched to a 4 or 8 sub-frame process.
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• 6.2 Spectral Subtraction using Subband Filtering

In this section a method based on decomposing the signal ioto frequency subbands is

described. Noise reduction on the individual frequency subbands is then achieved using

separate spectral subtraction processes. The full benefit of the subband processiog will be

realized in the next section when it is combined with sub-framing.

y(k) s(k)

HO(z)

Cl)

1r 1r
2:

Figure 6.10 Noise reduction based on a 2-subband QMF analysislsynthesis fllter
bank.

To divide the noisy signal y(k) into frequency bands, a quadrature mirror ['liter (QMF)

bank is employed [109,111,112]. The basic QMF structure is depicted in Figure 6.10. As

shown in the figure, y(k) is fI1tered by a lowpass fliter Ho(z) and a highpass fliter H1(z).

l:[(z) = llt(z)Y(z) l =O,L ,

where Y(z) is the z-transform of y(k).

(6.14)

•

The cutoff frequencies of the two filters are bath set ta m2. As a result, the subband

signals yo(k) and Yl(k) are each roughly limited ta a bandwidth of m2. These signals are

subsequently decimated by a factor of 2 Yielding the critically sampled signals vo(k) and

vl(k). Using the following relation,

M-l
V(zM) = lt 2, Y(zW;D, (6.15)

q=O

where M is the decimation factor and WM=exp(-j21C1M), we can derive an expression for

the critically sampled subband signals l't(z) 1=0,1
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• V/(z)= t[l[(ZI/2)+1[(_Zl/2)]

= -}[Y(ZI/2)H[(ZI/2) + Y(-Zl/2)H[(-ZI/2)] .

(6.16)

(6.17)

The second term in (6.17) represents the aliasing that oceurs as a result of the decimation.

The signals vo(k) and vI(k) are then processed by two separate noise reduetion algo­

rithms '1'[/=0,1. Since the processes are separate, they can operate using different nUffi­

bers of sub-frames. The enhanced subband signals llo(k) and vI(k) are expanded

(upsampled) by a factor of 2 to give so(k) and SI(k) which are filtered through Fo(z) and

FI(z) respectively and summed to produce s(k)

S(z) = FQCz)So(z) + F!Cz)SrCz) . (6.18)

The fùters Ho(z) and HICz) constitute the analysis filter bank while FoCz) and FI(Z)

fonu the synthesis or reconstruction bank. The analysis/synthesis process can be ex­

pressed in matrix-vector forme For the analysis bank we have,

[
l1>CZ)] = l[Ho(zI/2) HoC- ZV2)I Y(zl/2) ]
\1Cz) 2 Hl(zl/2) HlC_zl/2) Y(_zl/2)

and for the synthesis bank,

By combining (6.19) and (6.20) we get,

S(z) = [Fo(z) Fi(z)] . 21 [Ho(Z) Ho(-Z)I Y(z) ]
Hl (z) Hl C-z) Y(-z) .

Let

Go(z) = i [FQ(z)HO(z) + Fi(z)Hl(z)]

and

1Gl (z) = 2:[FQ(z)Ho(-z) + Fi(z)HI (-z)].

Equation (6.21) can therefore be expressed as
,..
S(z) = Go(z)Y(z) + Gr(z)Y(-z)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

•
where the function Go(z) describes the transfer characteristics of the tilter bank and GI(Z)

represents the aliasing. In the absence of any noise reduction processing, it is desirable to

design Ho(z), HI(z), Fo(z), and FI(z) such that s(k)=y(k). However, due to aliasing, am-
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• plitude distortion, and phase distortion, s(k) may not be identical to y(k). In designing the

analysis and sYQthesis filter banks, tradeoffs must be made between the accuracy with

which s(k) approximates y(k) and the quality (transition bandwidth, stopband attenuation,

[Ilter order, etc.) of the filters.

It is possible to design perfect recon.structïon filter banks in which the output signal

s(k) is identical to the input y(k). That is, s(k) is merely a delayed version ofy(k) ,

s(k) =z-ny(k) . (6.25)

To examine the design of a perfect reconstruction fliter bank, we begin by deriving an

expression for S(-z) based on equation (6.21)

1
[
Ro(-z) Uo(Z)!Y(-Z)] .

S(-z) = [FQ(-z) Fi(-z)]--
2 Hl(-z) Hl(z) Y(z)

Equations (6.21) and (6.26) can be combined as

[
S(z) ] 1 [ FQ(z) Fi(z) IHo(Z) HO(-Z)I Y(z) ]

S(-z) = 2: FQ(-z) 1)(-z) Hl(z) Hl(-z) Y(-z) ,

or equivalently as

s(z) = àF(z)HT(z)y(z) .

Perfect reconstruction requires that

(6.26)

(6.27)

(6.28)

or equivalently

lr !<Z)] =[z-n
S(-z) 0

o ][ Y(Z)]
(_z)-n Y(-z)

(6.29)

which gives

1 T _n[l 0]
2 F(z)H (z) = z 0 (_l)-n (6.30)

•

F(z) = 2Z-n[~ (_~-nJeHT(Z))-1 (6.31)

2 -n [Hl(-z) -HO(-Z)]- z (~3~
- det H(z) Hl(z) -Ho(z) '

where n is an odd integer. Given that the analysis [ilter bank has been determined, the

synthesis bank which will yield perfect reconstruction is derived from (6.32).
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• While the above design method is certainly valid, it imposes significant limitations on

the possible choice of filter transfer functions. Therefore, we often relax the perfect re­

construction requirement of the fliter bank in order to obtain better quality (transition

bandwidth, stopband attenuation, etc.) filters. Typically the requirement is relaxed by al­

lowing sorne (inaudible) amplitude distortion while requiring an alias-canceling filter

bank with linear phase response.

To examine the requirements for an alias-canceling fliter bank, recall that GI(Z) of

equation (6.24) represents the aliased component of the reconstructed signal s(k). To

eliminate any aliasing, we require Gt(z) = 0, or

12 [FQ(z)Ho (-z) + Fi(z)H1(-z)] =o.
This cao be easily achieved by applying the following constraints,

(6.33)

and

Fo(z) = Hl(-z)

fi (z) =-Ho(-z) .

(6.34)

(6.35)

•

Therefore, given Ho(z) and HI(z), the fliter bank will be alias-canceling if Fo(z) and FI(z)

are specified according to (6.34) and (6.35). In many QMF banks, the design is further

simplified by having the analysis filters be mirror images of each other. That is,

Hl(z) =Ho(-z). (6.36)

Given the constraints defmed by equations (6.34), (6.35), and (6.36), it cao be seen

that only one prototype fliter needs to be designed since the remaining fliters are com­

pletely specified in terms of Ho(z). To eliminate phase distortions Ho(z) is chosen to be a

linear phase FIR filter.

Based on the above, Johnston proposed a design optimization technique which mini­

mizes the amplitude distortion while simultaneously maximizing the stopband attenuation

of an alias-canceling linear phase fliter bank. Johnston provided a family of filter designs

with varying characteristics [110,109]. An important feature of these fliters is that they

provide better fliter characteristics (Le., stopband attenuation, transition bandwidth) than

a perfect reconstruction fliter bank of the same order while maintaining the amplitude

distortion below an audible level [111].

The fliter banks described so far divide the input signal y(k) into two subbands. In the

present application it is desirable to fliter y(k) ioto more subbands to allow greater flexi­

bility in selecting the size of the sub-frames across frequencies. It is a straightforward

process to extend a two channel QMF design into a fliter bank with m channels. Figure
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• 6.11 shows a non-uniform analysis filter bank which divides the input signal into 4 sub­

bands as weIl as the resulting octave spaced [liter responses. It is of course, possible to

design a uniform filter bank, but the non-uniform design is better suited to the character­

istics of the camera noise.

1---------------0 v3(k)

y(k)

Vl(k)

~ ~ ~ ~

84"2
Figure 6.11 Non..uniform QMF analysis bank based on a 3-1evel binary tree.

The 4-channel [liter bank is based on a 3-level binary tree structure wherein the two

filters, Ho(z) and HI(z) are used repeatedly. Therefore, a wide range of [liter banks can be

devised which are based on the design of a single prototype tIlter Ho(z). For example,

sorne or all of the subband signais v[(k) 1=0,1,2,3 could be further decomposed using m­

channel uniform [liter banks based on Ho(z) and H.(z).

To examine mathematically how the subband signals are derived as a result of the tree

structure, consider the subband signal v2(k) which is derived from YaCk). As seen earlier,

•

~Cz) =î[yczl/2)HOCZI/2) + Y(-zI/2)Ho(-zl/2)]

ViCz) =i[Va (zl/2)HO(zl/2) + ~(-z1/2)HOC-z1/2)] .

Substituting (6.37) ioto (6.38),

Vi (z) =i[YCzl/2)Ho(zI/2) + YC-zI/2)Ho(_zI/2)]Ho(zI/2)

+ i[y(zl/2)Ho(zl/2) + Y(-zl/2)Ho(-zl/2)]Ho(_z1/2)

Or equivalently, in matrix-vector form,
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• (6.40)

(6.41)

The other subband signais can be obtained in a similar fashion.

The corresponding 4-channel synthesis fliter bank is shawn in Figure 6.12. It cao be

seen that it consists of a complementary tree structure based on the two fIlters Fo(z) aod

FICZ). It should be noted that~ in order for the Ql\1F analysis/synthesis banks to work

properly with causal filters~ appropriate delays need ta be added to the paths of those sub­

bands which are not fully decomposed.

v3Ck) 0----------------1

V2(k) 0--------1

vl(k)

sCk)

vO(k) lb(z)

Figure 6.12 Non-uniform QMF synthesis bank based on a 3-level binary tree.

6.2.1 Effect of Processing

The design of the prototype filter is very important to the performance of the subband

based noise reduction scheme. As stated earlier, the fIlter banks used in the present study

were alias-canceling and linear phase. However, the alias-canceling property of the de­

sign assumes that no processing is done to the subband signals between the analysis and

synthesis banks. That is~ it is assumed that

v[(k) = v[(k) V'l (6.42)

where \i[(k) 1=O~l,...~m-1 are the m enhanced subband signals. With the noise reduction

processing defined as~

•
l1CCOn) = \}'[(con)\'zCmn)~

this is equivalent to assuming tbat
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• where 'P[(lOn) is the zero-phase spectral subtraction filter operating on the Lth subband.

Whenever the noise reduction algorithm is being applied~ we must expect a certain

amount of aliasing to occur in the reconstructed signal s(k).

To examine how aliasing is affected by the spectral subtraction process~ recall the ex­

pression for the reconstructed signal

,. 1 {Ho(z) H o(-Z)I Y(z) ]
S(z) =Z-[FQ(z) Fi(Z)tHI(z) Hl(-z) Y(-z) (6.45)

where it was assumed that V/Ck) =v[(k). Using (6.43) the effect of the spectral subtraction

process 'P[(z) cao he included~

[~(Z)] = [\f'oCZ) 0 lVO(Z)]
l'lez) 0 \l'1(Z) \'lez)

,.. _ 1 [ {\f'O(Zn) 0 IHo(Z) HoC-Z)I Y(z) ]
S(z) - 2" Fo(z) Fi(z)t 0 'Pl(Z) Hl(z) Hl(-z) Y(-z)

,. 1
S(z) = 2"FQ(Z)'PO(z)[HO(z)Y(Z) + HOC-z)Y(-z)]

+ i l)(z)'P1(z)[HI(z)Y(z) + HI(-z)Y(-z)]

Recalling (6.24)

SCz) = GO(z)Y(z) + G1(z)Y(-z) ~

GoCz) and Gl(z) are now defined as

GoCz) = i [FO(z)'PO(z)HO(z) + 1'i(z)'PI (z)H1(z)]

and
1GI(z) =2" [FQ(z)\f'o(z)Ho(-z) + Jf[(z)'PI(z)HI(-z)].

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

where equation (6.51) represents the aliasing component of S(z). Substituting the con­

straints deÎmed in (6.33) and (6.34)

Gl (z) = ~ [Hl (-z)'Po(z)Ho(-z) - HO(-Z)\{II (z)HI (-z)].

1= 2" HO(-z)Hl(-z)['Po(z) - \{II(Z)].

(6.52)

(6.53)

•
From (6.53) it can be seen that the amount of aliasing that occurs is related to the dif­

ference in the processing 'Po(z) and 'Pl(z) applied to the subbands in the region of over-

lap. One way of reducing the amount of aliasing is by limiting the difference in the proc­

essing applied ta the subbands. The amount of aliasing is aIso related to the transfer

139



• functions of the fI1ters Ho(z) and Hl Cz), and so it cao also be reduced by careful selection

of the filter characteristics. For example, a prototype filter with a narrow transition baod

and a large stopband attenuation cao be used.

Due to the spectral subtraction process, which deliberately alters the input signal, it is

highly likely that residual aliasing will oceur (i.e. aliased components will not be fully

canceled in the QMF synthesis bank). This is particularly true when the input signal y(k)

has a low signal-to-noise ratio and more aggressive noise suppression must be applied. In

order for the subband proeessing to be useful, steps must be taken to reduce the aliasing.

Therefore, the choice of futers becomes quite important when trying to rninirnize the

creation of any audible artifacts due to aliasing. Comprehensive discussions regarding

quadrature mirror filters may be found in [109,111,112].

.
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Figure 6.13 Frequency responses of the 32 and 64 tap quadrature mirror filters.

Two of Johnston's futers [110] were implemented and tested. The 32 tap prototype

futer had a transition bandwidth of 0.02151t', a minimum stopband attenuation of 38 dB,

and an amplitude reconstruction error of 0.025 dB (dotted line in Figure 6.13). Informal

listening tests revealed that aliasing was audible under typical noise reduction conditions.

The aliasing was perceived as a form of distortion superimposed onto the signal. Further

tests using a 64 tap prototype futer indicated that the aliasing was reduced to an accept­

able level with this design. The 64 tap filter had a transition bandwidth of 0.01151C, a
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•

minimum. stopband attenuation of 40 dB, and an amplitude reconstruction error of 0.025

dB (solid line in Figure 6.13). While the 64 tap filter has greater computational require­

ments than the 32 tap filter, the increase is very modest in comparison to the requirements

of the overall noise reduction process.

By itself, subband based spectral subtraction offers little benefit over traditional spec­

tral subtraction. However, when combined with sub-framing, a significant improvement

can be obtained in the camera noise reduction process.

6.3 Spectral Subtraction using Sub-Framing and Subband Filtering

In the two previous sections the concepts of sub-framed and subband filtered spectral

subtraction were introduced. The benefit of these approaches is that they offer an addi­

tional degree of flexibility in the noise reduction process which can improve its perform­

ance. More specifically, they allow the spectral subtraction process to be better matched

ta the cyclical characteristics of the noise. In this section sub-framing and subband fu­

tering are combined in such a way that the spectral subtraction process can be matched to

the time-frequency distribution of the camera noise. As a result, the noise reduction can

be directed sa that the noisier parts of the observed signal receive more aggressive proc­

essing while those portions of the signal with less noise receive less processing. As sucb,

the underlying philosophy behind the subbandlsub-frame approach is to minimize the

processing which is applied to the input signal. This helps ta minimize the artifacts

which occur as a result of the processing.

In the subbandlsub-frame approach the noisy signal is first divided into m subbands

using a non-uniform quadrature mirror analysis luter bank as described in the previous

section. Each subband signal viCk) î=O,l, ... ,m-l is then processed using the appropriate

number of sub-frames for that band as described in Section 6.1. In this way, a different

number of sub-frames can be applied ta each frequency subband so that a good match cao

be obtained between the time-frequency decomposition of the spectral subtraction process

and the time-frequency distribution of the camera noise. Typically, fewer sub-frames

would he used at lower frequencies and more would be used at higher frequencies to co­

incide with the spectrogram of the camera noise seen in Figure 3.8. Each of the sub­

bandlsub-frame or time-frequency ceUs v;JCk) î=O, 1,... ,m-l; j i=O,1,. .. ,g,-l is processed by

a separate spectral subtraction process 'IIij(k). It is important to note that, as part of the

spectral subtraction process, each time-frequency cell in decomposed further using a high

resolution DFf. This cao be viewed as applying a multi-channel uniform. analysis bank ta
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• each cell. The enhanced subband signais si(k) are then recombined via a synthesis filter

bank to produce the output signai s(k). The subband/sub-frame method is shown in

Figure 6.14.

gm-l vm-1,I(k) :
sub- i

frames' :
Vm-l,~..-l(k) 'P Ck)

m-l,g..-l

y(k)

vo,o(k)

voCk) go vo,ICk)
sub- :

frames :
Vo,go-ICk)

m
channel
QMF

analysis
bank

Vm-1,o(k)
'Pm-1,o(k)

m

channel
QMF

synthesis
bank

s(k)

•

Figure 6.14 Spectral subtraction based on a subbandlsub-frame decomposition.
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Figure 6.15 Example decomposition of the time-frequency plane.
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Given the flexibility of the subbandlsub-frame approach, the task is to determine the

decomposition of the time-frequency plane which best matches the characteristics of the

camera noise. One possibility which was explored is shown in Figure 6.15.

In this example, the input signal is decomposed into 4 octave-spaced subbands (Le.,

m=4). The lowest frequency subband is then divided into 2 sub-frames (Le., go=2). The

next subband (from 1Û8 to 1Û4) is divided into 4 sub-frames (i.e., g[=4). The remaining

two subbands are divided into 8 sub-frames (Le., g2=g3=8). This time-frequency decom­

position provides a reasonable match to the characteristics of the camera noise.

To evaluate the suitability of a given time-frequency decomposition, it is instructive

to examine the noise estimates E[INij(wn )1] i=O,l, ... ,m-l; ji =O,l, ...,gi -1 for each cell.

These are shown in Figure 6.16 and Figure 6.17 for the above time-frequency decompo­

sition.

85.-------.,.----r-----r--~--___,r_--.,.__--_r_--__,

80

50

45 L--__..L...-__-'--__---'-__.--L '--__-'-__-L....__---'

2S00 3000 3500 4000 4S00 SOOO 5S00 6000 6500
frequency, Hz

Figure 6.16 Noise estimates for a 4 sub..frame decomposition. Upper curve: peak
sub-frame, middle curve: intermediate sub·frame, lower curves: null sub-frames.

Figure 6.16 shows the camera noise estimates for subband v[(k) 1Û8 to 1r 14 (or 3 to 6

kHz for a sampling rate ofh=48kHz). The subband is divided into 4 sub-frames. The top

curve in the figure is the noise estimate E[IN1,O(con)l] for the sub-frame centered on the

peak for the noise pulse. The dotted curve is the noise estimate E[IN1,I(wn)l] for the fol-
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lowing sub-frame~ and the bottom two curves are the noise estimates E[IN1,2(mn)l] and

E[IN1,3(con)l] for the two remaining sub-frames. Across this frequency range~ the differ­

ence in the level of the noise in the peak sub-frame and the following sub-frame is about

7 dB. However, the noise estimates for the two remaining sub-frames are about 10 to 15

dB lower than the peak sub-frame. Therefore, the spectral subtraction processes 'JI1.2(k)

and \}II,3(k) working on these sub-frames operate at a signal-to-noise ratio which is 10 to

15 dB higher than during the peak sub-frame. As a result~ the artifacts which can occur

due to the spectral subtraction process will be dramatically reduced for these sub-frames.

80

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
frequency, Hz x 104

Figure 6.17 Noise estimates for an 8 sub-frame decomposition. Upper curve: peak
sub-frame, dotted curves: intermediate sub-frame, lower curves: Rull sub-frames.

Figure 6.17 shows the noise estimates for the two subbands v2(k) and v3(k) ranging

from 1CI4 to 1rI2 and 1d2 to le (or 6 to 12 kHz and 12 to 24 kHz for a sampling rate of

h=48kHz). These subbands are divided into 8 sub-frames. The top curve represents the

noise estimate for the sub-frame which is centered on the peak of the noise pulse. The

two dotted curves represent the noise estimates for the sub-frames which immediately

follow the peak. The five lower curves are the noise estimates for the 5 remaining sub­

frames. It can be seen that, for these two subbands, the noise estimate corresponding ta

the peak of the noise pulse (top curve) is about 10 dB higher than for the two following

sub-frames, and about 20 dB higher than for the 5 remaining sub-frames. Therefore~
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more aggressive processing can be concentrated on the peak sub-frame, and for the 7 re­

maining sub-frames, a dramatic reduction (10 to 20 dB) in the amount of processing ap­

plied to the signal can be achieved. As a result, the level of the artifacts produced by the

spectral subtraction process is significantly reduced in these frequency sub-frames.

In the decomposition of the time-frequency plane shown in Figure 6.15, ail of the sub­

frames in a given subband were the same size. However, a subband can be divided using

non-uniform sub-frames. In the noise estimates shown in Figure 6.16 (4 sub-frame case)

the two lower curves are very similar and so there is no benefit in having separate sub­

frames for this portion of the camera noise pulse. Therefore, it is sensible to combine

these two sub-frames to form a single (larger) sub-frame. The resulting sub-frame has

now doubled in length thereby doubling the frequency resolution of the noise estimate in

this interval. Similarly, the noise estimates shown in the five lower curves of Figure 6.17

are very similar and so it is sensible to merge these sub-frames ioto a single sub-frame.

T T T T
84"2

Figure 6.18 Decomposition of the time-frequency plane using non-ODÜorm sub­
frames.

This new decomposition of the time-frequency plane using non-unïform sub-frames is

shown pictoriaily in Figure 6.18. The dark (black) portion of the figure represents those

time-frequency cells which correspond to the peak portion of the camera noise pulse. The

lighter gray portion represents the cells operating on the intermediate portion of the cam­

era noise pulse (Le., the dotted curves in Figure 6.16 and Figure 6.17). The white portion

of the figure corresponds to the cells operating on the part of the input signal where the
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• level of the camera noise is the lowest (Le., the lower curves in Figure 6.16 and Figure

6.17).

Given the use of non-uniform sub-frames, some consideration must be given to the

choice of windows used prior to performing the DFf for the spectral subtraction process.

As seen earlier in equation (5.16), in arder ta reconstruct an estimate of the clean signal

s(k) we require that the sum of the windowing functions be equal ta 1. Recall that (5.16)

implies the use of a rectangular synthesis window. When windowing sub-frames of dif­

ferent lengths, care must he taken to ensure that this basic requirement is met.
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Figure 6.19 Uniform and non-uniform windowing based on 4 sub-frames.

•

The most straightforward approach for dealing with this problem is to use a form of

hybrid window as shawn in the lower plot of Figure 6.19. The upper plot shows one pe­

riod of the camera noise divided into 4 sub-frames of equal length. The fust window

(sub-frame) is centered on the peak: of the noise pulse, and is followed by three more

windows before the next peak arrives. The windows are overlapped by 50%. In the

lower plot, the third and fourth windows (sub-frames) are combined using a hybrid win­

dow. The rising slope on the left-hand side of the window is the fust haIf of a Hanning

window. The falling slope on the right-hand side of the window is the second half of the

Hanning window. Between the two halves of the Hanning window is a flat region.
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Figure 6.20 Unifonn and non-unifonn windowing based on 8 sub-frames.

Figure 6.20 shows a similar non-uniforrn windowing strategy for an 8 sub-frame de­

composition. The upper plot shows the camera noise decomposed using 8 equal length

windows. Again the windows overlap by 50%. In the lower plot, two different hybrid

windows cao be seen. The two windows differ in the length of the fiat region of the win­

dow.

The hybrid windows cao be described mathematically as follows,

l
OS - oscos(TCkjKr), 0 :5; k :5; Kr -1

wI(k) = 1, KI :5; k:5; 2K1 -1

0.5 - 0.5cos(TCkjKr), 2K1 :5; k :5; 3K1-1

(6.54)

where Ki=T14 and

(6.55)

•
1

0.5 - 0.5cos(1!kjK2 ), 0 :5; k :5; K2 -1

w2(k) = 1, K2 :5; k:5; 5K2 -1

0.5 - 0.5cos(1!kjK2 ), 5K2 S; k :5; 6K2 -1

where K2=T/8. Of course, window types other than the Hanning may be used in conjunc­

tion with the rectangular window. While the hybrid windows have the desired time char­

acteristics (i.e., sum of the overlaps is equal to 1), they may not have appropriate fre-
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quency characteristics when a perceptual model of the human auditory system is included

in the processing. This matter will be considered in greater detail in the next chapter.

The underlYing philosophy behind the subbandlsub-frame spectral subtraction ap­

proach is to match the time-frequency decomposition of the signal to the characteristics of

the noise. This allows the overall amount of processing which is applied to the input sig­

nal to be rnioirnized. This, in turn, tends to minimize the artifacts which occur as a result

of the noise reduction process. This philosophy will be extended further in the next

chapter where a model of the ear is used to direct the noise reduction process such that the

minimum processing necessary from a perceptual point of view is applied.

6.4 Interpretation ofSubbands and Sub...Frames in Terms ofWavelets

In the preceding section it was seen that the performance of the spectral subtraction based

noise reduction could be improved by matching the processing to the time-frequency dis­

tribution of the noise. This was accomplished by filtering the input signal using a non­

uniform QMF analysis bank and then sub-framing the resulting subband signais. This

time-frequency decomposition of the signal shares many similarities to a decomposition

using wavelets or wavelet packets.

In this section, sorne fundamentaI aspects of wavelets will be described and the sinù­

larities to the time-frequency decomposition outlined in the previous section will be

highlighted. As there are numerous articles and textbooks devoted to the topic of

wavelets, we shall not endeavor to provide a thorough treatment of the topic. Rather, the

discussion will be limited to a level wherein the reader cau appreciate the relation be­

tween wavelets and the time-frequency decomposition developed earlier in this chapter.

Comprehensive discussions on the topic of wavelets cao be found in

[113,114,115,116,111].

The scalar product of two signais y(t) and cp(t) in the ~(R) space of continuous-time

energy functions is defined as,

< y(t),Ip(t) > = J."2t) Ip*(t) dt

The scaIar product allows a signai y(t) to be mapped from its CUITent domain to a

transform domain defined by cpet). Setting cp(t)=exp(jrot), results in the weIl known

Fourier traosform,
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(6.58)

(6.59)
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< Y(t),ej(J)t > = f.:2t)e-illltdt .

In order to allow the transform to have some form. of time dependency, a windowing

function w(t--r) cao be added thus giving the short-time Fourier transform (81FT),

<y(t),ej(J)t> = f.2t)W(t-.t)e-illltdt .

The STFf maps the input signal yU) onto the time-frequency plane in a uniform manner.

That is, the time-frequency resolution is fixed over the entire time-frequency plane.

However, non-uniform mappings (see Figure 6.15) may be desired in order to obtain a

multi-resolution analysis of the signal. This is provided for directly by the wavelet trans­

form which is defined as,

<y(t),a,b> =_1_Joo y(t)1fF*(t-b) dt
.JiaI -00 a '

where the parameter 'llCt) is called the marher wavelet which has a bandpass cbaracteris­

tic, b is the time shift parameter, and a is the scaling parameter. The parameter a provides

a trade-off between resolution in time and resolution in frequency.

Another way to view tbese transforms is in tenus of fIlter banks. It is weIl known that

the 8TFf can be viewed as a fIlter bank having uniformly spaced fI1ters [Ill]. That is, as

can be seen in Figure 6.21, they are constant bandwidth filters.

Figure 6.21 Uniformly spaced filters of the STFT.

The rIlters of the 8TFT filter bank are obtained by modulating (frequency shifting) a

prototype lowpass filter Ho(t!~,

Hn(e jOJ ) =HO(e j (OJ-(2rrnlN))) . (6.60)

The futers Hn(t!~ n=O,l, ... ,N-l are a series of bandpass futers. Aexibility in the 8TFT is

obtained in the design of the prototype futer (basis function) which is determined by the

choice of the window function.
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• The discrete wavelet transfonn (DWT) can aIso be viewed as a filter bank. However,

the fùlers of the DWT are non-uniformly spaced. More specifically, they are constant Q

fliters,

Q centre frequency
bandwidth .

The DWT fliter bank is shown in Figure 6.22. This type of non-unifonn fliter bank

was seen earlier in this chapter in the discussion of QMF banks (see Figure 6.11). Recall

that for the QMF bank, the flitering was achieved using a binary tree structure based on

iterations of a highpass aod a lowpass fliter.

Figure 6.22 Non-uniform spaced filters of the DWT.

The filters of the DWT fliter bank are obtained by fust performing a frequency scaI­

ing of a prototype highpass fliter H(d~,

(6.61)

The resulting filters are multiband rather than bandpass filters as was found with the

STFf. In order to obtain a bandpass structure, the fIlters Hn(d~ are cascaded with ap­

propriate lowpass fliters Gn(d~. The resulting fliter response for the nth fliter bank

channel is then

ja"œ jœ _H(e )G(e) n-O, 1,.. .,m-l ,

where m is the number ofchaonels in the fliter bank.

(6.62)

•

This fIlter bank response cao be obtained using the binary tree structure shown in

Figure 6.23. Therefore, the structure of the DWT fliter bank is the same as the QMF

bank seen in Figure 6.11, and so the non-unïfonn subband decomposition described ear­

lier can be viewed as a forro of wavelet decomposition. The wavelet coefficients u[(k)

1=O,I, ... ,m-l cao be viewed as the subbaod signais v[(k) at the output of the non-unïform

QMF anaIysis bank.
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Figure 6.23 Filter bank representation of the DWT.
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A generalization of the DWT is the concept of wavelet packets. First proposed by

Coifman et al. [117,116], wavelet packets correspond to arbitrary tree-structured futer

banks, and thus they allow the input signal to be decomposecl in a far more flexible man­

ner. The sub-framing and high resolution DFf which is performed on each of the sub­

band signais as described in Section 6.1 could be viewed in terms of wavelet packets.

One of the merits of the wavelet transform is that it can be useful in unifying seem­

ingly unrelated areas of research, and may therefore help to provide new insights [115].

While wavelets offer an interesting mathematical viewpomt for exarniniog the time­

frequency decomposition described in the previous section, im this thesis we prefer to use

of the language of quadrature mirror filter banks and STFf's since they are more familiar

to the electrical engineer. Moreover, the psychoacoustic models of the human auditory

system which will be examined in the following chapter, are lbetter understood in terms of

STFf anaIysis. Also, perceptual-based processing of audio signais (e.g. compression)

using wavelets has not tended to yield any improvement in performance over traditional

STFf approaches [118,119].

6.5 Summary

In this chapter, the concepts of spectral subtraction using sub-frarnes and subband fù­

tering were introduced. When steps are taken to synchronize the process to the film rate

and to align the windows to the noise pulses, the combination of sub-frames and fre­

quency subbands provides a significant improvement in the performance of the spectral

subtraction algorithms. The benefit of these approaches is that they allow the spectral

subtraction process to be better matched to the cyclical characteristics of the camera
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noise. This inherently reduces all forms of audible artifacts since the average amount of

processing applied to the signal is rnioimized. At the time intervals and frequencies

where the camera noise is loudest, more aggressive processing is employed. Elsewhere,

less aggressive noise suppression is applied. By using a combination of sub-frames and

frequency subbands spectral subtraction can be used to successfully remove camera noise

even for relatively poor signal-to-noise ratios.
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7. SPECTRAL SUBTRACTION BASED ON MASKING IN THE

HUMAN AUDITORY SYSTEM

So far, the focus has been placed on finding ways of obtaining the best estimate of the

camera noise which is corrupting a desired (speech) signal. This estimate of the noise is

subtracted from the noisy signal to give an estimate of the desired signal. While this is a

sensible mathematical approach, Tsoukalas et al. [120] describe a novel modification to

the process which can significantly improve the performance of a spectral subtraction

based noise reduction system. They note that, due to the masldng properties of the ear, it

is not necessary to remove the entire noise component in a noisy signal. Rather, it is only

necessary to remove that part of the noise which is perceptually relevant.

By limiting the noise reduction process to removing only the audible portion of the

noise, the overall amount of noise reduction can be significantly reduced. This in tum,

reduces the audible artifacts (musical noise in particular) which cau result from the spec­

tral subtraction process. This approach is in concert with the philosophy of processing in

subbands and sub-frames in order to concentrate the processing on those parts of the sig­

nal which require it most, thus reducing the overall amount of processing applied to the

signal.

It should be noted that Tsoukalas et al. were not the fust to suggest that adding a per­

ceptual model could improve the performance of a speech enhancement system. In 1981,

Peterson and BoIl [121] described a "perceptual subtraction" algorithm, which is essen­

tially a spectral subtraction algorithm operating in the perceptual domain rather than the

Fourier domaine Peterson and BoIl state that their perceptual subtraction algorithm elimi­

nates the musical noise. Interestingly, this work appears to have been largely ignored by

other researchers. Cheng and 0'Shaughnessy [122] also took advantage of the masking

properties of the ear in their speech enhancement algorithme We will focus our attention

on the work ofTsoukalas et al. since it is the most recent and the most comprehensive.

In this chapter we review the basic features of the spectral subtraction method pro­

posed by Tsoukalas et al. which is based on the perceptual audio quality measure

(PAQM) developed by Beerends and Stemerdink [123]. This approach, which uses the

critical band approximation to the human auditory system, has certain fondamental limi­

tations which will be outlined. Due to these limitations, we choose to examine another
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auditory model which is perhaps better suited to the task of noise reduction. Whereas

PAQM combines many aspects of the peripheral auditory system into a computationally

efficient model, the new method uses a more direct approximation of the various compo­

nents of masking.

7.1 An Introduction to Auditory Masking

Perceptual based spectral subtraction relies on the masking properties of the ear. Stated

simply, masking is the process by which one signal which would otherwise be audible is

rendered inaudible by the presence of another signal (masker). Masking is a psychoa­

coustic phenomenon which occurs due to the nonlinearities in the human peripheral

auditory system (i.e., the outer, middle, and inner ear).

Modern theories of masking derive directly from the work of Fletcher [124]. Fletcher

measured the threshold at which a sinusoidal signal could be detected in the presence of

bandpassed noise centered on the signal. He noted that the threshold of detection of the

signal increased as the bandwidth of the noise was increased. However, he found that

beyond a certain point any further increase in the bandwidth of the noise did not alter the

signal detection threshold. To explain bis findings, Fletcher reasoned that the peripheral

auditory system must behave as a bank of overlapping bandpass filters which are now

caIled the auditory filters. When detecting a sinusoidal signal in noise, the listener at­

tends to (Le., pays attention to) the auditory tilter centered on the signal. Therefore, in

Fletcher's experiments, if an increase in the bandwidth of the noise occurred within the

bandwidth of the auditory tliter, then the detection threshold increased. If however, the

bandwidth of the noise \Vas larger than the bandwidth of the auditory filter, the threshold

of detection did not change. Fletcher called the bandwidth (of the noise) at which the

threshold of detection no longer increases the critical bandwidth. Fletcher' s model as­

sumed that the auditory filters had perfect (i.e. rectangular) transfer functions. While this

model is clearly unrealistic, Patterson and Moore [125] suggest that Fletcher realized that

the details of the shape of the filters were of lesser importance than the general underlying

concept.

Masking cao be divided into two general classes: simultaoeous and non-simultaneous.

In simultaneous masking, the signal and the masker occur at the same instant in time,

whereas in non-simultaneous masking the signal cao arrive either before or after the

masker [126]. Both forms of masking cao be relatively difficult to measure and to quan­

tify since they are highly nonlinear. For example, the auditory ftIters are asymmetric and
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their widths vary across frequency. Moreover, the shape of the filters change significantly

with the level of the input signal [126,127,128]. In the case of non-simultaneous mask­

ing, there is a nonlinear relation between the level of the masker and the amount of

masking obtained. Also, due to phenomena such as beating; the amount of masking

available is dependent on the spectral characteristics (noise-like versus tone-like) of the

signal and the masker. Moreover, the masking effects of two or more maskers do not add

linearly. Finally, masking thresholds can change dramatically depending on whether the

listener is using one or both ears. How these various aspects of masking are dealt with is

an important consideration in the accuracy of a gjven perceptual model.

7.2 Method of Tsoukalas et al

As mentioned earlier, Tsoukalas et al. added a psychoacoustic model to the spectral sub­

traction process. Their original work was based on the psychoacoustic model described

by Johnston [129,], but more recently they have used the model found in PAQM [130].

The essence of the method can be summarized by the expression,

ISw(ejco )12= l~v(ejm)12-max{E[INw(ejm)12]-AMT, O}. (7.1)

At each frequency the auditory masking threshold (AMr) due to the clean signal is calcu­

lated. The AMT for a given signal is the level below which all other signals will be

masked. This threshold is then compared to the noise estimate for that frequency

E[lNw(d~l]. If the noise estimate falls below the AMT, then no processing is done at that

frequency. If the noise estimate is above the AMT, then the difference between the noise

estimate and the AMT is subtracted from the spectral magnitude of the noisy signal

IYw(d~12. This reduces the noise level to the AMT thus bringing it to the threshold of

audibility. Therefore, this version of spectral subtraction only removes the audible por­

tion of the noise. Tsoukalas et al. claim that this results in significant improvements to

the performance of the noise reduction process.t

It should be noted that Tsoukalas et al. do not calculate the AMT explicitly. Rather

they calculate the compressed loudness function of the clean and noisy signals, and com­

pare the two [128,123]. This approach stems from the use of the PAQM model which

was designed as an objective means of evaluating the perceptual effects of noise in an

audio signal. Therefore, the expression in (7.1) is only an idealized approximation ta the

t Peterson and BoIl [121] claim that including a perceptual model in their spectral subtraction process sig­
nificantly reduced musical noise.
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Tsoukalas method. Also, the above expression assumes that the clean signal s(k) is avail­

able in order ta determine the AMT. Of course, this assumption is not valid in practice,

and sa the power spectrum. of the clean signal must be estimated by sorne means.

In arder to detennine the AMT, the signal s(k) must be processed by sorne form of

perceptual mode!. The choice of model is an important consideration since it determines

the predicted AMT and thus the performance of the noise reduction system. The most

common model, and indeed the one used by Tsoukalas et al., is the one based largely on

the work of Zwicker [127,128] and implemented in the context of a perceptual audio

coderby Johnston [129]. This mode!, which is based on the concept of critical bands, has

also been used by other researchers investigating the use of perceptual models in spectral

subtraction [131,132]. Another perceptually based objective measurernent system, NMR.

(noise masking ratio) is also based on the critical band model. In the present work, we

choose ta develop a new model based on the more recent psychoacoustic research con­

ducted by Patterson and Moore [125,126] which provides a more direct approximation to

the components of the peripheral auditory system. This approach has certain advantages

in sorne applications.

7.2.1 The Critical Band Model

There are severa! steps in calculating the AMT using the critical band mode!. The signal

s(k) is fust windowed (a Hanning window is typically used [129,130,133]) and trans­

formed using an FFf of length N. The power spectrum IS(eiCJ)n)(2 is then determined for

that black. A critical band analysis is performed wherein the power spectrum. is parti­

tioned into critical bands according to the expression,

bh;
Bi = .2,IS(ej

Cl)n )[2 ,

n=bli

where bli is the lower boundary, bhi is the upper boundary, and Bi is the energy of the ith

critical band. Typically i = 1,2,... ,25 for full bandwidth signals and the boundaries of the

critical bands are those defined by Scharf [134]. In general, the nurnber of FFT bins will

he much larger than the number of critical bands and so the critical band model reduces

the frequency resolution. Johnston [129] points out that a true critical band analysis

would SUffi the energy across one critical band for each frequency l:t>n, n=O,I, ... ,N-l.

Therefore, the 25 band implementation inherently discards sorne accuracy in its predic­

tion of the masking threshold. It is important to note that the implementation of the criti-
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cal band model described by Johnston was motivated by its application to perceptual

audio coders and so it may not be optimal for the purpose of noise reduction.

The signal Bi is now in the bark domain, where 1 bark = 1 critical band. In order to

account for the masking across critical bands, a spreading function is applied to the criti­

cal bands to produce the spread masking threshold Ci. The spreading operation consists

of a convolution of Bi with an asymmetric triangular function Hij having a lower slope of

25 dBlbark and an upPer slope of -10 dBlbark (shown later in Figure 7.8) [128,135]

C·=H··*B· (7.3)l LJ l·

The spread masking threshold must next be related back to the bark dornain in order

to obtain the critical band masking threshold. Johnston [129] points out that this opera­

tion can not be done directly due to possible numerical instabilities and so it is approxi­

mated by a sub-optimal renormalization process. Finally, an approximation to the abso­

lute threshold of hearing is applied as a lower limit of the masking threshold in each criti­

cal band. A full description of the details of the critical band model can be found in

[129].

The critical band model provides a reasonable :fust approximation to the masking

threshold created by a given signal, and it has been used with success in the development

of perceptual audio codees. The model is also quite computationally efficient and

straightforward to implement. However, the model makes numerous assumptions and has

certain fundamental shortcomings which can limit its performance.

The critical band model assumes that the auditory :fùters have perfect transfer func­

tians (Le., they have rectangular shapes). As discussed earlier, this assumption is obvi­

ously invalid, and in fact, the shapes of auditory filters are known to be triangular-like (on

a dB scale) [136,137,125]. Also, the auditory :fùters are known to be asymmetrica! and

vary nonlinearly with the level of the signal. The shape of the auditory :fùters and their

dependence on level is frequency dependent. As stated earlier, it is inaccurate to assume

that there are only 25 critical bands and this assumption liroits the frequency resolution of

the mode!. Moreover, the critical bands used in the model are based on the results of

Zwicker and Scharf [134,128,138], and assume that the width of the critical bands are

constant for frequencies below 500 Hz. Moore and Glasberg [139] reviewed the results

of severa! studies and demonstrated that the bandwidths of the auditory filters decrease

for frequencies below 500 Hz. Therefore, the assumption regarding constant bandwidth

critical bands below 500 Hz appears to he incorrect.
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There are other factors which suggest that a psychoacoustic model with higher fre­

quency resolution will provide better performance. As part of their mandate, Task Group

10-4 of the nu (International Telecommunications Union) has been evaluating and de­

veloping a perceptual based objective measurement system. The group has adopted a

model which significantly outperforms both the PAQM and NMR modeis [140] and uses

a much higher frequency resolution. Furthermore, the results of a recent study by Soulo­

dre et al. [141] examining the performance of six state-of-the-art perceptual audio codecs

clearly demonstrate that the performance of the codecs is directly linked to the frequency

resolution used in the codec. Without exception, the performance of the codec increased

as the frequency resolution of the model încreased.

In the critical band model, the masking of a signal at one frequency by a signal at an­

other frequency is approximated by the spreading function. In reality, this masking is due

to the overlapping of the auditory filters and is thus the amount of masking is both level

and frequency dependent. Neither of these aspects is accounted for directly in the critical

band mode!. The convolution which provides the spreading across frequency implicitly

sums the masking on a power basis. Studies by Penner [142,143] (for the non­

simultaneous case) and Lutfi [144,145] (for the simultaneous case) have shown that the

addition of masking does not obey a simple linear Iaw and cao be either significantly

greater or less than predicted by linear addition. This finding is supported by the resuIts

of a study by Green [146]. Humes and Jesteadt [147] proposed a model for the additivity

of masking which accounted for bath the simultaneous and non-simultaneous cases.

The critical band model described by Johnston does not account for non-simultaneous

masking. This is an important omission and should be included in any mode!. It should

be noted that Tsoukalas et al. do include a parameter to crudely account for one compo­

nent of non-simultaneous masking (forward masking). Modeling the masking properties

of the peripheral auditory system in terms of non-overlapping critical bands and a fIJœd

spreading function is a somewhat indirect approach. As a result, it can be difficult to

separate the contributions of the individual components of the auditory system, and there­

fore it is difficult to modify a given component independently of the others. As such,

modifying the critical band model to account for the deficiencies listed above is not a

trivial task. Moreover, it may be desirable, in some applications, to model the peripheral

auditory system of a given individual (for example, in a noise reduction system as part of

a hearing aid). This wouId be more difficult to achieve using the critical band model than

by a more direct implementation. Finally, the psychoacoustic model described above, as
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weil as the model used by Tsoukalas et al. is only valid for monophonic signals. Due ta

binaural masking level differences (BMLD) large differences in masking can occur for

stereo signais versus monophonic signals.

There are severaI parameters in the PAQM model (employed by Tsoukalas et al.)

which are intended to represent cognitive rather than physiological aspects of the human

auditory system. To calibrate these parameters within PAQM, Beerends and Stemerdink

relied on the results of formai subjective evaIuations of perceptual audio codecs. The

calibration of these parameters therefore relies on the data set used in these tests and may

not be valid for other data sets. That is, by tuning the psychoacoustic model ta a given

data set, the performance of the model may not translate weil ta other data sets. AIso, the

need ta calibrate these parameters makes it very difficult and time consuming to make an

individualized psychoacoustic mode!. Tsoukalas et al. used PAQM and NMR to tune the

parameters of their model and therefore suffer from similar limitations.

7.3 Development ofa New Psychoacoustic Model

In this section a new (high frequency resolution) psychoacoustic model is developed

which is based largely on the work of Patterson and Moore and does not make sorne of

the assumptions made in the critical band model. The new model implements the various

components of the peripheral auditory model more directIy and thus allows greater flexi­

bility in modifying its characteristics.

Before deriving the model based on the work of Patterson and Moore, we consider an

intermediate mode!. Like the critical band model described above, this intermediate

model is based largely on the work of Zwicker. However, the model does not use the

concept of critical bands. Rather, it retains the high frequency resolution resulting from

the FFf. We will therefore refer to this psychoacoustic model as the high resolution

Zwicker mode!. This model shares many similarities with another perceptually based ob­

jective measurement system, PERCEYAL developed by Paillard [148,149,133] which

has been shown to work as weIl as PAQM. This model is useful in that it allows us to

make direct comparisons between the work of Zwicker and that of Patterson ~dMoore.

7.3.1 The High Resolution Zwicker Modet

The frrst stage in the model is ta simulate the effects of the outer ear which is composed

of the pinna and the auditory canal. The pinna modifies an incoming sound ta sorne ex­

tent (particularly at high frequencies) and is important in our ability ta localize sounds.
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• However, the effects of the pinna are ignored in this model since they vary with the di­

rection of arrivai of a sound. Due ta its structure, the auditory canal tends to amplify fre­

quencies in the range from about 1 kHz to 4 kHz [ISO]. The task of the middle ear is to

provide an efficient transfer of acoustic energy between the outer ear and the inner ear.

The three small bones of the middle ear (popularly known as the hammer, anvil, and stir­

rup), provide an acoustic impedance matching between the tympanic membrane and the

oval window of the cochlea. The middle ear is most efficient at transferring sounds in the

SOO to 4 kHz frequency range and is quite inefficient at higher frequencies. Terhardt et

al. [151] proposed the following expression to account for the attenuation effects A of the

auditory canal and the middle ear,

A=-6.5i-o·6(f-33)21+0.001j4 dB, (7.4)

wbere f is the frequency of the input signal in kHz. The first half of the expression pro­

vides a slight boost to frequencies between 1 and 5 kHz, while the second balf gives a

high frequency roll-off. The curve defined by (7.4) is plotted in Figure 7.1.
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Figure 7.1 Combined response of the outer and middle ear.

A study by Shlien and Soulodre (107] showed that for many listeners the rate of high

frequency roll-off given by (7.4) is tao severe. They measured the threshold of hearing of

12 subjects at Soo Hz intervals in the frequency range from 4 kHz to 24 kHz. The results

of tbese measurements for S subjects are shawn in Figure 7.2 with the bold curve repre­

senting the expression proposed by Terhardt et al. for an average listener. It can be seen

that equation (7.4) underestimates the high frequency acuity of sorne subjects and overes-
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• timates the acuity of others. Therefore, in applications where a customized perceptual

model is warranted, user-specific measurements of the outer and middle ear responses

will be necessary. Shlien and Soulodre found that the average of their data was in rea­

sonable agreement with equation (7.4).
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Figure 7.2 Absolute threshold of hearing for 5 subjects for frequencies above 6 kHz.

•

Another parameter of the peripheral auditory system which must be accounted for, is

the internai noise of the inner ear. As in all reaI-world systems, there is an inherent noise

tloor in the auditory system. The noise is predominantly in the lower frequencies and

Terhardt et al. [151] proposed the following expression to model it

noisefloor=3.64f-O·8 dB, (7.5)

where f is the frequency in kHz. The inherent noise floor of the peripheral auditory sys­

tem as proposed by Terhardt et al. is plotted as the solid curve in Figure 7.3. Included in

the figure is the absolute threshold of hearing (dotted curve). It cao be seen that, in this

model, the absolute threshold of hearing is determined by a combination of the auditory

canal response (outer ear), the middle ear response, and the internal noise of the inner ear.

In the critical band model described by Johnston [129], the various components were ac­

counted for at the last stage in the model where the final masking threshold was deter­

mined. This approach is inaccurate since the effects of the outer and middle ear should be
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• applied prior to the signal being mapped to the basilar membrane. Ooly the internal noise

should be considered in the final stage of determining the masking threshold.
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Figure 7.3 IntemaI noise of auditory system proposed by Terhardt et aL

There is evidence to suggest that the model proposed by Terhardt et al. is not entirely

correct. That model assumes that there is no outer or middle ear fl1tering at frequencies

below about 1 kHz. It assumes that the high threshold of hearing at low frequencies is

due entirely to internal noise. However, Glasberg and Moore [152] point out that, at high

sound pressure levels (100 phons), the equalloudness contours are not fiat in the low fre­

quencies. At these high levels, the signai is weIl above the noise fioor of the auditory

system and therefore sorne fl1tering of the signal seems to be taking place. This suggests

that part of the threshold of hearing curve measured at frequencies below about 1 kHz is

due to a ftltering process in the middle ear, and part is due to the internai noise of the

auditory system. To account for this, we derive a new mode!.

We begin by assuming that, at high sound pressure levels where the signal is weil

above the noise fioor, the equal loudness contour represents the ftltering action of the

outer and middle ear. The resulting fùter is based on the equal loudness contour Cl00

phons) provided in tabular form in ISO recommendation R.226 [152]. We thus propose

the following analytic expression for the attenuating process As, representing the com­

bined transfer functions of the outer and middle ear,

• 2 8 ~
A.r=-6.5e[-o·6(f-33) 1+0.00Ir+3.64rO' _80.64e[-4·712f 1 dB,
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• wheref is in kHz. This expression is plotted as the solid curve in Figure 7.4. The dotted

curve in the figure represents the absolute threshold of hearing. It cao be seen that for

frequencies above 1 kHz, the absolute threshold of hearing curve is equal to the curve

representing the filtering action As of the ear.

Ta derive an expression for the internai noise of the auditory system, we subtract the

fIlter response As from the absolute threshold of hearing. Again, the tabular vaIues pro­

vided in ISO recommendatidn R.226 were used in the calculations. In order to represent

the internai noise of the auditory system, we propose the following expression,

05
Nint =80.64e-4·712f dB, (7.7)

wheref is in kHz. This expression is plotted as the dashed curve in Figure 7.4.
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Figure 7.4 Proposed model for outer and middle ear filtering and internai noise
floor. Solid curve: 100 phon equalloudness contour, dotted curve: threshold of

hearing, dashed curve: internai noise floor.

The middle ear transfers the acoustic signal from the outer ear to the cochlea where

the individual haïr cells on the basilar membrane each respond to a particular frequency

range. Effectively, the basilar membrane maps the linear frequency scale to a nonlinear

pitch or mel scale. The mel is the unit of measure used to describe changes in pitch.

Zwicker and Terhardt [153] proposed an analYtical expression which approximates the

mapping from the linear frequency scale to the bark scale. Sïnce 1 bark equals approxi­

mately 100 mels, the expression can be easily modified to provide a mapping from fre­

quency to mels.
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• mels = 1300tan-1(0.76f)+ 350tan-1«(f 17.5)2) , (7.8)

wherefis the frequency in kHz. The curve defined by (7.8) is plotted in Figure 7.5.
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Figure 7.5 Mapping from linear frequency scale to mel (or bark) scale.

The curve suggests that the entire audible frequency range (about 20 Hz ta 20 kHz)

can be mapped into a range of 2500 mels which is equivalent ta 25 bark. This observa­

tion serves as the basis for the earlier assumption (in the critical band model) that the fre­

quency content of a signal cao be divided iota 25 critical bands. While the curve in

Figure 7.5 is the basis of the division of the frequency scale iota critical bands, there is

sorne question as ta its validity. Shlien and Soulodre [107] measured frequency ta mel

mapping functions of 15 subjects. This was done by measuring the subjects' ability ta

detect small variations io the frequency of atone. Specifically, a frequency modulation

threshold test as described by Zwicker and Fast! (128] was conducted. The test consisted

of plaYing atone whose frequency was modulated by ±tifand asking the subject ta indi­

cate when he heard a wavering pitch, rather than a steady pitch. The threshold, ~fTwhere

the listener is able ta detect a modulation in the pitch typically increases with increasing

frequency. The results of these measurements for five of the subjects are plotted in

Figure 7.6 in terms of the j ust noticeable variation in frequency (JNVF).

The JNVF, the critical bandwidth, and the frequency ta distance mapping along the

basilar membrane are all believed ta be related [128,154]. Specifically, the JNVF is be-
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• lieved to map to a constant step size along the basilar membrane. The JNVF has also

been shown to be related to the critical bandwidth by a constant factor of about 25.
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Figure 7.6 Just noticeable variation in frequency measured for 5 subjects.

From the results of the JNVF measurements, the frequency to mel mapping for each

subject can be derived by integrating over the JNVF curve,

mel(f) = f{ JNVF(f) dl . (7.9)

Figure 7.7 Frequency to mel mappings measured for 15 subjects.•
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The results of these measurements for aIl 15 subjects are shown in Figure 7.7. The

bold line indicates the mapping proposed by Zwicker.

It can be seen from the figure that there are large deviations between the measured

mappings and the curve proposed by Zwicker. Of particular interest are those curves

which lie above the Zwicker curve. These curves represent subjects who demonstrated

better frequency resolution than predicted by Zwicker and Terhardt. As snch, for these

subjects, the linear frequency scale maps onto a larger range of the mel scale. This sug­

gests that these subjects require more than 25 critical bands in arder ta accurately describe

their peripheral auditory systems. These tmdings are supported by the results of a study

by Stevens and Volkmann [155] who found that, on average, the frequency range from 40

Hz ta 12 kHz maps onto an interval of about 3500 mels, or about 35 bark. Another study

which supports this finding is that of Moore and Glasberg [139,156] who found that the

widths of the critical bands predicted by Zwicker are too large for frequencies below 500

Hz. This implies that subjects have better frequency resolution below 500 Hz than pre­

dicted by Zwicker. The derivation of a new perceptual model (different from the Zwicker

model) is strongly motivated by the above findings.

In the critical band model, the simultaneous masking across frequencies is calculated

using a spreading function. The spreading function consists of a two slope triangular

function as shawn in Figure 7.8. The spreading function is convolved with the signal

mapped to the bark or mel domain.

-10 db/bark

Figure 7.8 Spreading function proposed by Zwicker and Fastl.

The spreading function is typically assumed to have a rising slope SI of 25 dBlbark

and a falling slope S2 of about -10 dBlbark [135]. The rising slope represents the down­

ward component of masking wherein a higher frequency signal masks a lower frequency

signal. The falling slope represents the upward masking component wherein a lower fre­

quency signai masks a higher frequency signal. Clearly, upward masking is the dominant

effect. That is, lower frequency signais tend to better mask higher frequency signais

rather than the converse. It is known that the amount of upward and downward masking

varies with the level of the signai aIthough the variation in downward masking with level
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• is DOt very large. Ta account for the variation in upward masking, the following expres­

sion is used by Beerends and Stemerdink [123] in the PAQM model for the falling slope

ofFigure 7.8,

~ =22+minC2}0, 10)-O.2L dB/bark (7.10)

where fis the masker frequency in hertz, and L is in dB SPL. PAQM uses a value of

31dBlbark for SI. Terhardt et al. [151] propose a slightly different expression to account

for the variation in the upper slope of the spreading fonction with level,

~ = 24 + 2}O - O.2L dBlbark. (7.11)

As will be seen later, the choice of equation cao significantly affect the amount of mask­

ing predicted by the mode!.

f. Hz

•

Figure 7.9 Mapping of spreading fonction in the mel domain to excitation pattern in
the frequency domain.

Typically, in arder to calculate the spread masking threshold, the spectral magnitude

of the signal would be mapped ta the bark domain using (7.8), and the spreading function

would be applied. Rather than take this approach, we choase instead ta perform all

masking calculations in the linear frequency domain. This will allow for more direct

comparisons between the Zwicker and the Patterson and Moore psychoacoustic models.

Ta do this we map the spreading fonction at each point along the mel scale, to its equiva­

lent location along the frequency scale. This is done using the frequency ta mapping re-
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• lation defined in (7.8) in conjunction with the spreading function defined above. The

process is shown pictorially in Figure 7.9.

The mapping depicted in Figure 7.9 provides an excitation pattern in the linear fre­

quency domain. The excitation pattern refers to the level of excitation across frequency

(or more specifically, across the basilar membrane) due to a given input signal and thus

accounts for the effects of masking. The mapping process is determined for each position

along the mel scale by sliding the spreading function along the mel scale and calculating

the resulting excitation pattern. This yields a family of excitation patterns which can be

summarized by the excitation matrix Ezwicken where each row represents the excitation

pattern due to the frequency component of an input signal determined by the column of

the matrix. Calculating the composite excitation pattern S s for an arbitrary input signal

s(k) is done through the following matrix multiplication,

(7.12)

•

where Sm is a 1 by N vector of the spectral magnitude coefficients of s(k). S s is therefore a

1 by N vector containing a "smeared" version of Sm reflecting the effects of simultaneous

masking.

The excitation matrix Ezwicker, is shawn graphically in Figure 7.10. Each curve in the

figure represents the excitation pattern for a sinusoidal input signal. The front-most curve

is the excitation pattern for the lowest frequency, while the furthest curve is for the high­

est frequency. The height of the curve represents the excitation level at each frequency.

2.5

0.5 •

2.5

Figure 7.10 Excitation patterns across frequency.
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• In discussing Fletcher's work on critical bands, the concept of auditory filters was in­

troduced. As one would expect, there is a direct link between the excitation pattern ma­

trix Ezwicker and the auditory filters. In theory, the responses of the auditory filters are

simply the columns of excitation matrix. That is,

AFZwicker = (EZwicker)T , (7.13)

•

where AFzwicker is a matrix whose rows are the auditory filters of the Zwicker mode!. It

should be pointed out that, since the Zwicker model is not typically viewed in the linear

frequency domain, the true auditory filters predicted by the model are not provided in the

literature. Rather, the Zwicker model assumes the ideal filter characteristics associated

with the concept of critical bands. Therefore, the present analysis provides an interesting

new way of viewing the Zwicker model, and allows comparisons between this model and

the Patterson and Moore model which is based on direct measurements of the auditory

tùters. This comparison will be done in the next section.

With the various components of the high resolution Zwicker model defined, it is now

possible to calculate the simultaneous masking threshold for a given signal. As a test sig­

nal, a sum of 3 sinusoids at frequencies of 250, 1000, and 4000 Hz was used. This signal

was chosen since Zwicker and Feldtkeller [127] provide measured masking thresholds for

signaIs at these frequencies and so a direct comparison of the results is possible. The

masking threshold for the test signal is plotted in Figure 7.11.
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Figure 7.11 Masking threshold resulting from a combination of three sinusoids•
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It can be seen from the figure that, as expected from the spreading function, the signal

provides more masking for frequencies above the three centre frequencies than below.

The lower limit of the masking threshold is the absolute threshold of hearing. The results

of Figure 7.11 match very weIl with the measurements by Zwicker and Feldtkeller, thus

suggesting that the model is providing a good prediction of measured masking thresholds.

7.3.2 The Patterson-Moore Model

In this section, we develop a new model based largely on the psychoacoustic studies of

Patterson and Moore. The auditory rùters and excitation patterns predicted by this model

will be compared to the those predicted by the high resolution Zwicker model developed

in the previous section.

As stated earlier, the human auditory system can be described as a filter bank com­

posed of overlapping bandpass fùters with the bandwidth of the filters increasing with

increasing frequency. Masking occurs because of the overlapping of the filters which re­

sults in significant leakage of a signal into adjacent auditory filters. There are two basic

approaches to measuring and predicting the masking properties of the human auditory

system. One approach is to measure the amount of masking provided by a given masker

signal [157,158,159]. This is referred to the masked audiogram approach. Here, a

masker (typically a tone or a narrowband noise) is played and the threshold at which a

probe signal (a tone) can be detected by a listener is measured across frequency. This

method yields a prediction of the masking pattern due to the masker. To determine the

composite masking pattern, the individual masking patterns for each frequency compo­

nent of the masker are summed. While this method is intuitively appealing since it pro­

vides the desired masking information directly, it cao yield erroneous results due to psy­

choacoustic phenomena such as beating and off-frequency listening [125]. The critical

band model and the high resolution Zwicker model are both based on measurements us­

ing this approach for predicting the effects of masking.

The second approach is to measure the characteristics of the auditory filters at various

frequencies across the audible range. Given the characteristics of the auditory filters, the

excitation pattern for a signal is predicted by calculating the output of each auditory rùter.

Typically, the auditory fùters are measured using the notched-noise method proposed by

Patterson [136]. The notched-noise method has been shown to overcome the problems

and beating and off-frequency listening and is considered to be a more reliable measure-
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ment technique. The Patterson-Moore model is based on measurements of the auditory

filters.

Patterson [160] measured the shapes of the auditory filters at 3 frequencies (0.5, 1.0,

and 2.0 Id-lz) and showed that, to a fust approximation, they were linear when plotted in

decibels on a linear frequency scale. Based on this observation, Patterson et al. [137]

suggested the followîng expression ta describe the response of the auditory filters

W(g) =(1+ pg)e-pg , (7.14)

where g is the normalized distance from the centre frequency fa of the tilter ta the evalua­

tian point,

g=If-fo1lJo . (7.15)

The parameter p determines the rate of attenuation (i.e., slopes) of the filter and thus its

bandwidth. A smaller value of p results in a slower rate of attenuation and thus a larger

bandwidth tilter. This parameter can be determined from the results of the notched-noise

measurement method. Sînce the variable g is always positive, the resulting fliter response

appears as two back-to-back exponentials. The term (l+pg) serves to round off the top of

the curves where the two exponentials meet. As a result, the fliter shapes suggested by

Patterson et al. are referred to as the rounded exponential, or Roex fliter shapes.

In the critical band model the auditory fliters were assumed to be ideal rectangular

fliters, whereas the measurements by Patterson show that the fliters are better approxi­

mated by a pair of back-to-back rounded exponentials. It is convenient in sorne instances

to be able ta express the shape and parameters of the Roex auditory tilter in terms of an

ideal rectangular filter. Ta do this, the bandwidth of the Roex filter can be expressed in

terms of the equivalent rectangular bandwidth (ERB). The ERB of a given auditory filter

is equal to the bandwidth of perfect rectangular filter which passes the same power of

white noise as the auditory tilter. That is, the area under the ERB curve is equal to the

area under the Roex curve for a given auditory filter.

Numerous researcbers have measured the auditory fliter sbapes for various frequen­

cies. Moore and Glasberg [139] compiled the results from several studies and calculated

the ERB' s for eacb auditory filter measurement. They found very good agreement in the

results across the studies and derived an analytic expression which successfully predicts

the ERB's for auditory fI1ters with centre frequencies between 125 Hz and 6.5 kHz
2

ERB = 6.23f + 93.39f+ 28.52 Hz 0.125 <f< 6.5 kHz , (7.16)

where f is the frequency in kilohertz. These results are valid for a notched-noise level of

40 dB SPL.
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Figure 7.12 Equivalent rectangular bandwidth (ERB) as a function offrequency.
Dotted curve: old ERB expression, solid curve: new ERB expression, dashed curve:

bandwidth of critical bands.

More recently, Glasberg and Moore [152,161,162] have added the results from newer

studies which allows the prediction of the ERB's to centre frequencies between 100 Hz

and 15 kHz. The new expression for calculating ERB's is,

ERB =24.7*(4.37*f+l) Hz 0.1 <f< 15 kHz. (7.17)

The two expressions for ERB are plotted in Figure 7.12. The dotted curve represents

the oider expression of (7.16), while the solid curve is the new expression (7.17). Also

included in the figure (dashed curve) is the classical criticai band function proposed by

Zwicker and Terhardt [153].

It can he seen from the figure that the two ERB curves are very similar for frequencies

below about 2.5 kHz. However, the two curves diverge with the newer expression (7.17)

predicting smaller ERB's at higher frequencies. In applications which require a psychoa­

coustic model extending beyond 6 kHz, it is very important to use expression (7.17)

rather than (7.15) since the oider expression yields excitation patterns (and hence masking

threshoIds) which are significantly inaccurate at higher frequencies.

It can be seen that the critical band curve is quite different from the two ERB curves.

In particular, the critical band estimates below 500 Hz are much Iarger than the ERB es-
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• timates. If the critical band model and the ERB model were essentially the same, then the

curves would be parallel to each other. Sïnce they are not, we expect the two models to

produce significantly different predictions of masking, particularly at lower frequencies.

With the ERB at a given frequency as defined by (7.17), it is a straightforward process

to determine the parameter p for the auditory filter and thus the shape of the auditory filter

at each frequency can be determined. To do this, we recall that the area AERB under a

given ERB filter curve is equal to the area AAF under the corresponding auditory filter

curve. A ERB is simply

ERB
AERB=T' (7.18)

where Jo is the centre frequency of the auditory filter. AAF is found by solving the fol­

lowing integral

AAF=2J;(1+ pg)e-pg dg

=21-p-l(2+ pg)e-pgl~

4-
P

Equating A ERB and AAF and solving for p, we get

(7.19)

(7.20)

(7.21)

4/0
p= ERB (7.22)

With equations (7.14), (7.17), and (7.22), it is a straightforward process to derive the

shaPe of the auditory fIlter at any frequency.

It is of interest to compare the Patterson-Moore model to the Zwicker model

described earlier to determine if they would predict the same masking threshold for a

given input signal. Despite its fundamental importance, this type of direct comparison

does not appear to be available in the literature. To compare the two models, it is

convenient to derive a general expression for the shape of the Patterson-Moore auditory

futers in terms of frequency. We begin with the following equations which were

introduced earlier,

•
W(g) =(1 + pg)e-pg ,

g=lf-loVla ,
ERB =24.7 (4.37/0+1) Hz 0.1 <la < 15 kHz,

4Jà
p= ERR .

Substituting (7.24) into (7.23) gives,
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• pIf-foI
A r::' Cf te) -(1 pif - fol) ( ~ g)
n.rpM ' 0 - + Jo e Jo (7.27)

where AFpM denotes the audïtory filters of the Patterson-Moore mode!. Substituting

(7.25) ïnto (7.26) gives,

(7.28)4/0
P 24.7(437fa + 1) .

Substituting (7.28) into (7.27) gives,

Ar::' (f ~) -(1+ 41f - fol }[24.7~~;.{i+1)J
n.rpM ,JO - 24.7(437.10 +1) . (7.29)

Equation (7.29) allows the response of the audïtory fIlter centered atfa to be calculated as

a function of frequency f (in kHz).

With a slight modification to (7.29), it is possible to calculate the excitation pattern

across frequency due to a signal at frequency!c.

[ 4lk-fl ]
S (-1' f) -(1+ 41t:-fi} 24.7(437/+1)

PM Je' - 24.7(437f+l) . (7.30)

Equation (7.30) can be used to determine the excitation level at frequency f due to a sig­

nal atfc.
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Figure 7.13 Comparison of predicted auditory lUter responses. Solid curves:
Patterson-Moore model, dotted curves: Zwicker model.

Equations (7.29) and (7.30) are now used to compare the Patterson-Moore model to

the high resolution Zwicker model described earlier. Figure 7.13 compares the auditory
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• filters predicted by the Patterson-Moore model (solid curves) to those predicted by the

Zwicker model (dotted curves) for an input signal with a level of 40 dB. It can be seen

from the figure that significant differences exist between the two models. This is par­

ticularly true at low frequencies where the bandwidths of the Zwicker auditory filters are

significantly wider. This result could be anticipated from Figure 7.12, where it was seen

that the Zwicker estimate of the critical bandwidth was much larger than the predicted

ERB's below 500 Hz. It should also be noted that the differences between the two mod­

els is not consistent across frequency. That is, at sorne frequencies the Zwicker auditory

fIlters are wider than the Patterson-Moore auditory fùters, whereas at other frequencies

they are narrower. To better examine the differences in the auditory filters, they are pre­

sented on a linear frequency scale at selected frequencies in Figure 7.14. The differences

in the auditory fIlters are more obvious in this figure, where differences of more than 10

dB can be found.
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Figure 7.14 Patterson-Moore versus Zwicker auditory filters at 3 frequencies. SoUd

curves: Patterson-Moore model, dotted curves: Zwicker modeI.
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• Another way to compare the two models is in terms of the predicted excitation pat­

terns. Figure 7.15 compares the excitation patterns predicted by the Patterson-Moore

model (solid curves) to those predicted by the high resolution Zwicker model (dotted

curves) for an input signal with a level of 40 dB. Again there are significant differences

in the two models across frequency, with the largest differences occurring at the lower

frequencies. The differences in the two predictions are also very large at the highest fre­

quencies, but this may be of little practical concem.
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Figure 7.15 Comparison of predicted excitation patterns. Solid curves: Patterson­
Moore model, dotted curves: Zwicker modeI.

Figure 7.16 provides a closer view of the excitation patterns on a linear frequency

scale for three input signal frequencies. It cao be seen that differences of more than 10

dB cao occur in the excitation patterns predicted by the two models. Moreover, the dif­

ferences are not consistent across frequency.
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Figure 7.16 Patterson-Moore versus Zwîcker excitation patterns at three
frequencies. Solid curves: Patterson-Moore model, dotted curves: Zwicker model.

The figures comparing the auditory fùters as weIl as the excitation patterns clearly in­

dicate that, while they are both intended to predict the masking characteristics of the hu­

man auditary system, the two models produce significantly different predictions. Thus it

is important ta compare the perfonnance of the two models for the noise reduction appli­

cation.

7.3.3 Variations in the Shapes of the Auditory Filters with Level

Moore and Glasberg [156] measured the shapes of the auditory fùters as a function of the

level of the masker. They found that the slopes of the low-frequency skirts of the filters

broadened as the level of the masker was increased. Conversely, the slopes of the high­

frequency skirts of the auditory fùters increased as the level of the masker was increased.

In a later study, Glasberg and Moore [152] re-analyzed these results and concluded that,

while the lower slopes do indeed vary with level, the upper slopes remain relatively un­

changed with increasing masker level. This result is in keeping with the weil known psy-
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choacoustic phenomenon called upward spread of masking, wherein the masking thresh­

oId at frequencies above the masker increase nonlinearly with level [128,126].

Glasberg and Moore also found that the auditory filter centered at 1 kHz is approxi­

mately symmetrical when the level of the masker is 51 dBlERB. The auditory filters at

other centre frequencies were found to be symmetrical when the input levels to the fliters

(i.e., after the outer and middle ear attenuation) are equal ta the level of 51 dBlERB at 1

kHz. Glasberg and Moore propose the following expression to determine the parameter

Pl of the low-frequency skirt of a filter as a function of input level,

Pl(X) = PI(Sl) -038(PI(51)!Pl(51.lk»)(X - 51) , (7.31)

where Pl(Sl) is the value of P at the centre frequency for an equivalent noise level of 51

dBlERB and Pl(Sl.lk) is the value ofPl at 1 kHz for a noise level of 51 dBlERB. The pa­

rarneter X denotes the equivalent input noise level in dBlERB. The value of PI(Sl) cao be

found using (7.22).
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Figure 7.17 Auditory fUters at 1 kHz and excitation patterns for a 1 kHz signal as a
fonction of leveI.

The auditory filters at 1 kHz as a function of level (20 to 90 dBSPL) predicted by the

Patterson-Moore model are shown in the left panel of Figure 7.17. It can be seen that the

slope of the low-frequency skirt of the fliter varies significantly. The steepest slope cor­

responds to an input level of 20 dB SPL while the shallowest slope corresponds to a level

of 90 dBSPL. The right panel of the figure provides the excitation pattern as a function

of level for 1 kHz sinusoïdal input. It can be seen that the level of excitation at frequen­

cies above 1 kHz is quite large, while for frequencies below 1 kHz, the level of excitation

drops off very quickly. Stated differently, the signal produces a signfficant amount of

masking above the input frequency, and much less masking below the input frequency.
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• The nonlinear relation between the level of the input signal and the amount of masking

cao aIso be seen from the figure. Higher level input signais result in a greater amount of

masking above the frequency of the input.

It is of interest to compare the excitation patterns predicted by the Patterson-Moore

model (solid curves) and the Zwicker model (dotted curves) as a function of leve!. This

is done in Figure 7.18 using the Terhardt et al. expression (equation (5.109» to account

for the effects of level. The first panel in Figure 7.18 compares the predicted excitation

patterns for a 250 Hz sinusoidal input signal. It cao be seen that the excitation patterns

predicted by the two models are very different in this frequency range. The Patterson­

Moore model predicts much lower excitation levels than the Zwicker mode!. This is true

for frequencies above and below the signal frequency. Differences in excess of 10 dB are

evident in the upper frequencies, while differences in excess of 30 dB can he found in the

lower frequencies. The discrepancies between the two models tend to increase for de­

creasing input levels.
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Figure 7.18 Excitation patterns as a fonction of level predicted by Patterson-Moore
model (solid) and Zwicker model (dotted) using equation (7.11).
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The second panel of the figure compares the predicted excitation for a 1 kHz sinusoi­

dal input. The differences between the two models is much less in this frequency range.

However, large differences do exist in the lower frequencies, where the Zwicker model

predicts significantly lower excitation levels.

The third panel of the figure compares the predicted excitation for a 10 kHz sinusoi­

dal input. In this frequency range, the two models are in reasonable agreement for the

lower frequencies. However, at higher frequencies, the Zwicker model predicts signifi­

cantly higher excitation levels than the Patterson-Moore model. The differences between

the two models is in excess of 10 dB and increases for lower level signais.
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Figure 7.19 Excitation patterns as a fonction of level predicted by Patterson-Moore
model (solid) and Zwicker model (dashed) using equation (7.10).

The excitation patterns shown in Figure 7.18 used the expression proposed by Ter­

hardt et al. to account for the effects of leveL As seen earlier, a different expression for

level is used in PAQM and hence by Tsoukalas et al. (see equation (7.10)). Figure 7.19

compares the excitation patterns predicted by the Patterson-Moore model and the Zwicker

model (using equation (7.10)) as a fonction of level. The excitation patterns are for a 1

kHz sinusoidal input. It is evident from the figure that the two models predict very dif­

ferent excitation patterns when the PAQM expression for level is employed. A compari­

son of Figure 7.19 and the second panel of Figure 7.18 shows that the use of this expres­

sion for level results in a much larger discrepancy between the Patterson-Moore model
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and the Zwîcker model. This discrepancy between the two models when using the

PAQM expression for level is also larger for input signals at other frequencies.

The results of the comparison of the Patterson-Moore model and the high resolution

Zwicker model clearly demonstrate that the two models predict significantly different ex­

citation patterns. The differences are amplified when the expression for level used by

Tsoukalas et al. is employed. The accuracy of the perceptual model is expected to be

critical to the performance of a perceptually based spectral subtraction algorithm, and so

the two models should be implemented and compared.

7.3.4 Non-Simultaneous Masking

The peripheral auditory models described so far are intended to predict the simultaneous

component of masking. That is, the masker and the signal were assumed to occur at the

same instant in time. In this section the non-simultaneous component of masking is ex­

plored. In non-simultaneous masking, the masker occurs either before (forward masking)

or after (backward masking) the signal. Forward masking is the dominant of the two

forms of non-simultaneous masking and cao provide significant amounts of masking for

up to 200 ms after the masker has terminated. Backward masking provides much less

masking and is much less consistent across listeners. AIso, it has been demonstrated that

trained listeners cao exhibit alm.ost no backward masking [126,163]. As such, we will

only consider forward masking in our perceptual mode!.

Forward masking has been studied by many researchers and certain consistent fllld­

ings emerge. The amount of forward masking is greater for signals arriving nearer in

time ta the masker. Roughly speaking, the amount of forward masking is logarithmically

related to the delay between the signal and the masker. The amount of forward masking

decays to zero for delays longer than about 200 ms. AISO, forward masking varies with

frequency and level. However, the amount of forward masking is nonlinearly related to

the level of the masker.

An analytic expression describing non-simultaneous masking as a function of level

and frequency does not appear to be available in the literature. Therefore, we choose to

derive such an expression based on the measured results from a few studies. The results

of a study by Jesteadt et al. [164] are in good agreement with a later study by Moore and

Glasberg [165] and will forro the basis of our derivation.

Jesteadt et al. investigated the forward masking of a sinusoidal signal by another sinu­

soid of the same frequency [164]. They conducted measurements for frequencies ranging
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• from 125 to 4000 Hz. The level of the masker in their experiments was systematically

varied in the range from 20 to 90 dBSPL. They found that an expression of the following

form provided a gooa fit to their results at a given frequency,

FM(4n) = a(b-Iog&)(4n -c) dB SL, (7.32)

where a, b, and c are parameters which must be fit to the data for a given frequency, M is

the length of the delay between the masker and the signal, and Lm is the level of the

masker measured in terms of the sensation level (SL). Jesteadt et al. provide values for

the parameters a, b, and c for frequencies of 125, 250, 500, 1000 and 4000 Hz. The form

of equation (7.32) is somewhat inconvenient for the present application since it does not

provide straightforward estimates of the forward masking at arhitrary frequencies and

levels. Also, the amount of predicted forward masking is not given in dBSPL. It is there­

fore desirable to derive an analytic expression which addresses these issues.

Using the values for the signal and masker thresholds provided by Jesteadt et al., the

forward masking thresholds were calculated from the data. To simplify the process, the

analysis was restricted to delays ofM =20 ms. This value of III was chosen since it corre­

sponds to the typical time between processing frames in the spectral subtraction algo­

rithm, assuming 50% overlap of the frames. A variety of analytic expressions were in­

vestigated to find one which provided a reasonable fit to the measured data at each

masker level. The following expression was found to give a very good fit ta the data,

FM(f) = a + fk[1] dB. (7.33)

•

The values in Table 7-1 for a, /3, and y were found to give the optimal fit at each masker

level.

The values in Table 7-1 can be used in conjunction with equation (7.33) to calculate

the forward masking for any frequencyat a given masker level. For frequencies below

100 Hz, the above expression predicts excessive amounts of forward masking and the

value predicted at 100 Hz should be used.

To form a single analytic expression for predicting forward masking, the parameters

in Table 7-1 were fitted with appropriate equations. These equations were then substi­

tuted into equation (7.33) to yield the following expression,
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[
-[(1-0.049L+O.OOO7L2_1.659xlO~ [})]

FM(f,L) =(-221.71 + 2457L)05 +(4.738+0.053L2 )e 11714-6.03L+0.0846L2

dB, (7.34)

with 100 Hz ~f~ 20 kHz and 10 dBSPL ~L ~ 100 dBSPL

where fis the frequency in Hertz and L is the level of the masker in dBSPL. For masker

levels L below 10 dBSPL, a value of zero should be assigned ta FM(f, L). Again, it

should be stated that equation (7.34) is only intended to predict the amount of forward

masking for a delay of 20 ms. The expression developed above provides a very good

prediction of the measured results of Jesteadt et al. as shown in Figure 7.20.

Masker Level Cl 13 y
dBSPL

90 45.58 47.60 247.94

80 42.11 42.88 255.15

70 36.64 38.25 263.40

60 35.18 33.73 272.82

50 31.63 24.77 334.19

40 28.43 15.25 292.37

30 25.05 9.23 109.70

20 15.00 9.11 112.59

10 5.00 9.11 112.58

Table 7-1 Parameter values for equation 7.33 to predict forward masking.

The horizontal axis provides the measured data (for M =20 ms) taken from the study

by Jesteadt et al., while the vertical axis shows the amount of forward masking predicted

by (7.34). The forward masking predicted by (7.34) is in good agreement with the meas­

ured data and satisfies the requirement for a single analytic expression ta predict forward

masking.
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7.3.5 Addition of Masking

In the previous sections, methods for predicting the amount of masking due to a single

masker were described for both the simultaneous and non-simultaneous masking cases.

The question arises of how ta combine the masking effects due ta two or more maskers.

In the traditional power spectrum model of masking, the output of each auditory fùter is

simply the linear sum of the power of each masker component applied ta the filter

[124,166]. According ta this model, if two maskers provide the same amount of masking

individually, then the two maskers together should provide 3 dB more masking than ei­

ther masker alone. However, results of experiments to measure the addition of masking

indicate that this simple linear model is not appropriate.

Green [146] measured the masking thresholds of a signal for two independent simul­

taneous maskers, and compared these results ta the masking threshold with the two mask­

ers combined. The two maskers were chosen such that each provided the same amount of

masking. Therefore, combining the two maskers should have increased the masking

threshold by 3 dB. However, Green found that the combined masker produced 6 to 14 dB

more masking than either masker alone. That is, Green found an excess masking of be­

tween 3 and Il dB.
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Lutfi [144] further investigated the issue of additivity of simultaneous masking by

measuring the amount of excess masking produced by a variety of masker types and ob­

tained between 10 and 17 dB of excess masking. Based on the work of Penner and Shif­

frin [143], Lutfi proposed the following transformation to predict the combined masking

of two simultaneous maskers

Mab = [Mg +McflP , (7.35)

where Ma and Mb are the individual masking effects of the maskers and Mab is the com­

bined masking effect. The parameter p provides a compressive nonlinearity to account

for the excess masking. Lutfi found that values for p between 0.20 and 0.33 provided the

best fit to bis measured data. This model of the addition of masking is referred ta here as

the power-Iaw mode!.

In a later paper, Lutfi [145] reexamined bis data as weil as the data from studies by

Canahl [167], Nelson [168], Zwicker [127], Green [146]t Patterson and Nimmo-Smith

[169], Bilger [170], and Moore [166] ta see how weil the power-Iaw model could predict

these results. He found that setting p ta 0.33 provided a good fit to the data from each of

these studies. In all cases, the power-Iaw model with p = 0.33 was a far better predictor

of the excess masking than the simple linear mode!.

Moore [166] voiced bis skepticism of Lutfi's frndings as weIl as the overall concept

of excess masking, and devised a series of experiments wherein excess masking appeared

to be either non-existent or far less than measured in previous studies. Moore suggested

that the experimentaI procedure used by Lutfi (and others) did not account for off­

frequency listening and thus led him. to erroneous conclusions regarding excess masking

in the simultaneous case. Moore included a broadband background noise in bis meas­

urements to limit the effect of off-frequency listening. Moore concluded that Lutfi's

power-Iaw model clearly fails in some situations and that the traditional linear model

should not be abandoned.

In a more recent study, Humes and Jesteadt [147] reexamined Lutfi's results in the

context of Moore's comments and rejected Moore's conclusions. Humes and Jesteadt

contend that, in bis experiments t Moore did not account for the effects of intermasker

suppression, wherein one masker can suppress the effects of another. Moreover, Humes

and Jesteadt demonstrated that the background noise used by Moore gave additionaI

masking wbich was not accounted for. Humes and Jesteadt aIso argue that the internai

noise of the peripheraI auditory system must be considered as an additionai masker wbich

185



• is always present. They devised a modified power-Iaw for predicting the addition of si­

multaneous masking which accounts for the internai noise. The modified power-Iaw can

be expressed as

(7.36)

where Mi i=1,2,... ,N are the levels of the various masking components, ATH is the abso­

lute threshold of hearing at the signal frequency, and p is compression factor. Humes and

Jesteadt found that setting the parameter p to 0.3 gave a very good fit to the results of

Lutfi, as weil as the results of Moore. Therefore the modified power-Iaw appears ta be

the most appropriate model for predicting the addition of simultaneous maskers. It

should be noted that for larger values of Mi, the modified power-Iaw model is equivaIent

to the power-Iaw model and so it is not surprising that the optimal value for p found by

Humes and Jesteadt is very close ta the value found by Lutfi.

Penner and Shiffrin [142,143] have studied the additivity of masking in the non­

simultaneaus case by comparing the masking due to individual and combined maskers.

They found that excess masking also occurs in the non-simultaneous case, and that the

amaunt of excess masking obtained is dependent on level. Higher masker levels provide

greater amounts of excess masking. Penner and Shiffrin measured as much as 10 dB of

excess masking in sorne of their test conditions. More recently, Oxenham and Moore

[163] investigated the additivity of masking in the non-simultaneous case and obtained

results which were in good agreement with those of Penner and Shiffrin.

To predict the masking due ta two non-simultaneous maskers, Penner and Shiffrin

propased a high-compressian model based on the failowing expression

J(Mab ) = J(Ma ) + J(Mb )

J(Mx )={1+[({J-l)/1010glX]Mx }log2/10g ,B lX> 1.0

(7.37)

(7.38)

•

where the parameters lX and {3 are abtained by fitting the equation ta the data. Humes and

Jesteadt showed that their modified power-Iaw (equation (7.36) above) provides a very

good fit to Pe~er and Shiffrin's measurements. In the case of two sequential forward

maskers, a vaIue for p of 0.08 gave the best fit to the data, while a value for p of 0.23 was

best when combining forward and backward maskers. Humes and Jesteadt also showed

that the modified power-Iaw performed weil at predicting the results from other studies of

non-simultaneous masking conducted by Wilson and Carhart [171], and Widin and Vie­

meister [172]. Therefore, it appears that the modified power-law, with the appropriate
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• choice of p, provides a good model for predicting the additivity of masking in both the

simultaneous and non-simultaneous case.

In order to better appreciate the amount of excess masking that might be obtained as a

result of two maskers, it is instructive to examine a plot of masking predicted by the

original power-law mode!.

Figure 7.21 plots the amount of masking predicted by the power-Iaw model for two

maskers. In the figure one of the maskers is assumed to be at a constant level, and the

abscissa Ïndicates the level of the other masker relative to the trrst. Therefore, a value of

o dB on the abscissa indicates that the two maskers are providing the same amount of

masking. The ordinate shows the increase in masking due to the addition of the second

masker. Curves are provided for three values of the compression factor.
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Figure 7.21 Amount of masking due to two maskers as predicted by the power-Iaw
with compression factor as a parameter.
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Withp=l the power-Iaw model is equivalent to the linear mode!. Therefore, when the

two maskers provide equivalent amounts of masking, the total masking increases by 3 dB.

Withp=O.3, the power-Iaw model predicts that the sum of the two equal maskers is 10 dB

greater than the masking due to a single masker. That is, the model predicts 7 dB of ex­

cess masking. AIso, with p=O.3, the second masker provides significant additional

masking (about 3 dB) even when it's individual masking effect is 20 dB below the first.

With p=O.15, the power-law model predicts that two equivalent maskers will provide 17

dB (20 - 3 dB) of excess masking. Furthermore, for this value of p, the second masker
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provides a significant amount of additional masking even when it' s individual masking

effect is more than 40 dB below the other.
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Figure 7.22 Amount of masking due to two simultaneous maskers as predicted by
the modified power law with masker level as a parameter.

Figure 7.22 shows the amount of combined masking due ta two simultaneous maskers

predicted by the modified power-law model with p=O.3. The various curves in the figure

indicate the amount of masking due ta the more dominant masker. That is, the amount of

masking predicted by the modified power-law model is dependent on the level of the

masker. Therefore, if the two maskers each provide 10 dB of masking, then their com­

bined masking is 16 dB (la + 6 dB) according to the modeL At the other extreme, if the

two maskers each provide 50 dB of masking, then their combined masking is 60 dB (50 +

la dB) according ta the mode!.

Figure 7.23 shows the amount of combined masking due ta two non-simultaneous

maskers predicted by the modified power-law model with p=O.08. Again, the various

curves in the figure indicate the amount of masking due to the more dominant masker.

Due ta the lower value of p, the excess masking found in the non-simultaneous case is

greater than was seen in the simultaneous case. This is particularly true at higher masker

levels. Here, if the two maskers each provide la dB of masking, then their combined

masking is 18 dB (10 + 8 dB) according to the mode!. At the other extreme, if the two

maskers each provide 50 dB of masking, then their combined masking is 76 dB (50 + 26

dB) according to the mode!. The effect of the compression factor p and the importance of

accounting for excess masking is thus evident from these figures.
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modified power law with masker level as a parameter.
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7.4 Applying Perceptual Models to Spectral Subtraction

In the previous sections simultaneous masking predicted by the high resolution Zwicker

model as weIl as the Patterson-Moore perceptual model were examined. It was seen that

while the two models are both intended to predict the auditory masking threshold for a

given input signal, their predictions are quite different. In particular, the responses of the

level dependent auditory futers were shown to he significantly different for the two mod­

els. In this section a generalized approach for implementing the various components of

the perceptual model is given. The perceptual model is then integrated with the spectral

subtraction algorithm. This allows the perfonnance of the two perceptual models to he

compared.

Figure 7.24 shows a general block diagram of a perceptual model which includes each

of the components described in this chapter. The model accepts the measured spectral

magnitude of a signal at its input, and provid.es an estimate of the masking threshold for

that signal. It should be noted that the components of the auditory model relating to non­

simultaneous masking and the addition of masking are not inherent to either of the two

models. Rather, they were derived as part of the present study. Also, the expressions

used in the Patterson-Moore model to describe the outer and middle ear transfer func­

tions, as weil as the internal noise floor were derived in the present study.
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Figure 7.24 Block diagram of perceptual model.

In order to compare the two perceptual models, they were each incorporated into the

subbandlsub-frame spectral subtraction algorithm. Figure 7.25 shows the spectral sub­

traction process with the inclusion of a perceptual mode!. As shown in the figure, the

model is used to provide a perceptual based estimate of the noise. As in the traditional

spectral subtraction process, this noise estimate is subtracted from the input signal.

In Figure 6.14, it was seen that in the subbandlsub-frame based spectral subtraction

algorithm, separate zero-phase spectral subtraction filters 'PyCk) are applied to each of the

time-frequency cells vij(k). These filters can now be replaced with perceptual based

spectral subtraction filters. However, the perceptual based spectral subtraction fI1ters are

not entirely independent of each other. Sorne information regarding masking levels must

be exchanged between the rI1ters operating on the different subbands.
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Figure 7.25 PerceptuaI based spectral subtraction.

In describing the simultaneous rnasking cornponent of the auditory rnodels7 it was

seen that a masker can mask signais that are both higher and lower in frequency. There­

fore7 it is necessary to exchange this masking information between subbands. Specifi­

cally, the energy in the lower frequency subbands will contribute to the masking threshold

in the higher frequency subbands. As such, sorne estimate of this masking must be

passed from the lower frequency subbands to the higher frequency subbands. Conversely,

the energy in the upper frequency subbands will also provide a degree of masking

(although much less) to the lower frequency subbands7 and that information needs to be

passed to the lower subbands.

7.4.1 Estimating the Clean Signal

In deriving the perceptual based spectral subtraction fI1ter7 it was assumed that the clean

signal was available in order to determine the masking threshold. Of course7in a practi­

cal situation this is not the case. Therefore7the various means of obtaining an estimate of

the clean signal must be considered. This matter bas received very little attention in the

literature.

Tsoukalas et al. [130] do not determine an estimate of the cIean signal explicitlY7 but

use the following equation to determine the zero-phase spectral subtraction filter 'P(con ).

'P( ) -1 PM{E[IN(con ) 1] }
(J)n - PM{ 1Y(con 1) } 7

(7.39)

•
where we use PM{ } to denote the processing of a signal through the perceptual model. It

can be seen that7in this approach7the noise estimate which is made during periods with­

out speech activity is processed through the perceptual mode!. This, in effect, provides an
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estimate of the excitation pattern due to the noise. The denominator of the equation is the

excitation pattern due to the noisy input signal which is determined on a frame-by-frame

basis.

A key advantage of this approach is that the estimate of the excitation pattern due to

the noise (i.e., the numerator) only needs to be calculated once, and does not need to be

updated for each frame. This provides a significant reduction in computational complex­

ity since a major component of the perceptual model involves multiplication of a 1 by N

vector with an N by N matrix to account for the auditory filter bank:.

A shortcoming of the above method is that it ignores the fact that the width of the

auditory filters vary significantly with level. In the method described above, the noise is

processed through the perceptual model in the absence of the signal and is therefore proc­

essed assuming a fixed sound pressure level. However, in reality, the noise is mixed with

the desired signal and so the sound pressure level changes on a frame-by-frame basis.

Therefore, the width of the auditory fùters used in the perceptual model should aIso

change for each frame. It should be noted that it is not the level of the noise that is

changing on a frame-by-frame basis, but rather the overall level of the noisy signal. By

not accounting for the change in the auditory fliters with level, the method of Tsoukalas

et al. also inherently ignores the nonlinear addition of masking that was seen earlier.

To overcome these shortcomings, the following method for calculating the zero-phase

spectral subtraction fliter is proposed

(7.40)

•

In this approach, an initial estimate IS(mn)1 of the spectral magnitude of the clean signal is

made using a traditional spectral subtraction algorithm. This estimate of the clean signal

is then processed through the perceptual model PM yielding an estimate of the excitation

pattern due to the clean signal. The excitation pattern due to the noisy signal is aIso

found. The main advantage of this approach is that both excitation patterns are calculated

using the correct auditory fùters, and these calculations are updated with each frame.

Also, this method allows complete flexibility in the choice of spectral subtraction pa­

rameters for determining the initial estimate of the clean signal. The disadvantage of this

method is that two excitation patterns must be determined for each frame and thus the

computational complexity of the algorithm is significantly increased.

Informallistening tests were conducted to evaluate the two approaches. It was found

that the new method significantly outperforms the method proposed by TsoukaIas et al.
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• This method is therefore recommended for situations where the highest quality output is

required.
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Figure 7.26 Noise estimates with and without a perceptual model.

•
With the perceptual model incorporated into the spectral subtraction algorithm, it is of

interest to investigate how the model affects the processing applied to a noisy input sig­

nal. Figure 7.26 shows an example of the effect of the perceptual model on the noise es­

timate for a given processing frame. The solid curve in the figure shows the noise esti­

mate without incorporating the perceptual mode!. The dashed curve shows the noise es­

timate when the perceptual model is used and the masking due to the speech signal is

taken into account. As can be seen, for frequencies below about 2 kHz, the perceptual

model predicts that the noise in this frame is entirely masked by the desired (speech) sig­

nal. Therefore, no spectral components are subtracted from the noisy signal at these fre­

quencies. Above 2 kHz, the amount of masking due to the speech signal is reduced, and

so a larger noise estimate is subtracted from the input signal. Therefore, by incorporating

a perceptual model into the spectral subtraction process, the amount of overall processing

applied to the input signal is dramatically reduced. A comparison of the perfonnance of

the spectral subtraction algorithm with and without a perceptual model is provided on the

compact disc accompanying the thesis.

•
7.4.2 The Effect of Windows in Perceptual Based Spectral Subtraction

When describing the basic spectral subtraction algorithm in Chapter 5, it was stated that

several researchers had investigated the effect of the type of window used prior to per­

forming the DFf. They concluded that the choice of window did not have a sigffificant

193



•

•

effect on the performance of the spectral subtraction algorithme In this section, we ex­

amine how the choice of window can be important for perceptual based spectral subtrac­

tion algorithms.

In the traditional spectral subtraction method, a windowing function (e.g. Hanning) is

applied to the input samples prior to performing the DFf. To account for the effect of the

window, the input signal is processed in overlapping frames. After the signal bas been

enhanced in the frequency domain, it is transformed back to the time domain and the

frames are overlapped when constructing the output signal. A rectangular window is ap­

plied wben constructing the output signal.

Due to the temporal aliasing described in Section 6.2, the samples at the beginning

and end of a processing frame may not decay to zero as they should. This can cause dis­

continuities at the boundaries of each frame which cao result in audible clicks in the out­

put signal. This is particularly true when the signal-to-noise ratio of the input signal is

low and aggressive processing must be applied since this results in more severe temporal

aliasing. The problem of discontinuities cao aIso be more severe for subband/sub-frame

based spectral subtraction since the amount of processing applied to the input signal can

vary significantly from frame to frame. The problem of discontinuities can be seen as the

verticallines in Figure 5.7.

To resolve this problem we propose a method whicb is employed in perceptual based

audio codecs where discontinuities at the boundaries of processing frames are a signifi­

cant concerne To eliminate the discontinuities a synthesis windowing function is applied

to the output signal. That is, an analysis windowing function is applied to the input sig­

nai, and a synthesis windowing function is applied to the output signai. The constraint

described by (5.16) must now be generalized to allow for the synthesis window,

(7.41)

•

i

where wa_(k)and ws.(k) are the anaIysis and synthesis windows respectively. Equation
1 1

(7.41) states the well-known condition that the analysis/synthesis windows must SUffi to

unity. It should be noted that the Hanning window or the Bartlett window recommended

for traditional spectral subtraction do not satisfy the constraint of (7.41). Therefore,other

windows must he investigated.

Typically, in perceptual audio codecs, a sine window is used for both the analysis and

synthesis window [173,174]. The sine window satisfies (7.41) and provides a relatively

194



• narrow main lobe and reasonable attenuation of the side lobes [175]. However the sine

window has certain limitations when used in conjunction with a perceptual modeL In the

perceptual models, the convolution of the auditory filters with the magnitude spectrum of

the signal provides an estimate of the masking threshold for the signal. This convolution

effectively causes a smearing of the signal in the frequency domain. The windowing

function applied to the input signal prior to performing the DFr also causes a form. of

smearing of the signal in the frequency domain. Therefore, the window causes excess

smearing, beyond what is desired for the auditory modeL This can be seen in Figure 7.27

and Figure 7.28. Figure 7.27 shows the excitation pattern for a 250 Hz input signal. The

solid curve shows the response to the 250 Hz input signal as predicted by the Patterson­

Moore auditory filters. The dotted curve in the figure shows the combined effect of a sine

window and the Patterson-Moore auditory futers. AIso included in the figure is the ab­

solute threshold of hearing. The dashed curve shows the combined effect of the KBD

window which will be described later.
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Figure 7.27 Effect of windows for a 250 Hz input signal. Solid curve: PattersoD­
Moore model, dotted curve: effect of sine window, dashed line: effect of KBD

window.

•

It can be seen that the sine window causes the excitation pattern to be broader (in fre­

quency) than desired. That is, the sine window causes the amount of masking due to the

signal to he significantly overestimated. This same effect, although somewhat reduced,

can also be seen in Figure 7.28 for a 1 kHz input signal.
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Figure 7.28 Effect of windows for a 1000 Hz input signal. S.olid curve: Patterson­
Moore model, dotted curve: effect of sine window, dashed Une: etTect of KBD

window.

An alternative ehoiee of windows is the Kaiser-Bessel Derived (KBD) window which

was developed for the Dolby AC-3 audio codee [176,177]. The KBD window is also

used in the newly developed MPEG AAC codee [174,178]. TlIis window function was

designed with the intent of providing a main lobe which is as n.arrow as possible, while

attenuating the side lobes to a level below the threshold of hearllOg. The goal of the win­

dow is to minimize the number of bits needed to encode an audi~ signal. The KBD win­

dow is used as both the analysis and synthesis window.

The frrst step in ereating the KBD window is to convolve a lcemeI window (the Kai­

ser-Bessel) with a rectangular window and the KDB window is obtained by taking the

square root of the result. The KBD window is defined mathematically as follows,

where

M
2,wU)r(k-j)
j=L

wa(k)=ws(k)= I~----:K=----

Lw(j)
j=O

k=O,1, ... fl-1 (7.42)

•
{

0 O~k<N-K

L= k-N+K+1 N-K~k<N

M-{k O~k<K
- K K~k<N
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In (7.42), w(k) is the kemel window of length K+l, r(k) is a rectangular window of length

N-K, N is the size of the transform, and K is the width of the transition region of the KBD

window. Within the Kaiser-Bessel kemel window there is a parameter a which allows a

tradeoff between the width of the main lobe and the attenuation of the side lobes. The

AC-3 codec uses a =5 [176], while the MPEG AAC codec can select between a =4 and

a= 6 [178]

The effect of the KBD window in conjonction with the smearing due to the auditory

futers can be seen as the dashed curves in Figure 7.27 and Figure 7.28. It can be seen that

the K.BD window provides a significant improvement over the sine window. For an input

signal of 250 Hz, the KBD window still causes the amount of masking at the lower fre­

quencies to be overestimated somewhat. However, masking in the upper frequencies is

very weIl predicted. At 1 kHz the KBD window causes almost no excess smearing and

hence no overestimation of the masking threshold. Therefore, the KBD window is better

suited to the task of predicting the masking threshold for a signal.

A further refinement to obtaining an accurate masking threshold can be had by modi­

fying the slopes of the auditory filters to account for the additional spreading due to the

K.BD window. That is, the slopes of the auditory filters should be made steeper so that,

once the KBD windowing function is included, the combination of the window and the

auditory futers will provide the correct masking threshold. With the perceptual model

based on auditory futers (i.e., the Patterson-Moore mode!), this is a relatively straightfor­

ward refinement. The equation describing the response of the auditory futers (see equa­

tion (7.14)) would then be

W(g) = (l+pg)e-jig P'?p, (7.43)

where p is a modified version ofp which accounts for the effect of the chosen window.

As a fmal point regarding the choice of window in a perceptual based spectral sub­

traction algorithm, it is important to realize that the signal reaching the perceptual model

does not include the effects of the synthesis window. That is, the perceptual model pre­

dicts the masking threshold using data which has only been windowed by the analysis

window. Since the sum of the overlapping analysis windows does not equal unity (see

(5.16)), there is an inherent error in the information received by the perceptual mode!.

Depending on where it arrives within a processing frame, a signal component will be ei­

ther emphasized or de-emphasized with respect to other components within the window.
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• Ta resolve this we propose the following. The input samples are windowed by an

analysis window which satisfies the constraint of equation (5.16) prior to the DFf. This

frequency domain information is then used by the perceptual model to derive the masking

threshold for that frame. In parallel to this, the input samples are aIso windowed by the

KBD analysis window (or a similar window) prior to performing a separate DFf. The

noise reduction (spectral subtraction) is performed on this transformed data, but the per­

ceptual noise estimate for that frame is caIculated from the other transform data.

In order for this process to be successful, it is necessary to derive a window function

which satisfies the constraint of (5.16) and has frequency characteristics which are similar

to the response of the KDB window. The following window was found to satisfy both

requirements,

{
0 OS:k<N-K

L= k-N+K+1 N-KS:k<N

M-{k O~k<K
- K KS:k<N

In. (7.44), w(k) is a Kaiser-Bessel kernel window of length K+1, r(k) is a rectangular win­

dow of length N-K, N is the size of the transform, and K is the width of the transition re­

gion of the new window. It is clear that this is very similar to the KBD window, except

that the square-root has been removed in arder to satisfy (5.16). In order to obtain a fre­

quency response which is similar to the KBD window's response with a = 5, a value of a
=2.5 was used in the Kaiser-Bessel kernel of the new window.

•
where

M

I.wU)r(k- j)
j=L

K

LW(j)
j=O

k=O,1, ... ,N-1 (7.44)

•

The above discussion regarding the various aspects of choosing an appropriate win­

dow cao be extended directly to the case of non-uniform sub-framing as depicted in

Figure 6.19 and Figure 6.20. The refinements to the windowing process described in this

section appear to have been overlooked by the developers of high quality perceptuaI audio

coders.
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7.5 Summary

In this chapter, the use of a perceptual model to improve the performance of the spec­

tral subtraction algorithm was introduced. The psychoacoustic model based on critical

bands was described and its limitations were highlighted. A new psychoacoustic mode!,

based largely on the work of Patterson and Moore, was derived. A comparison between

this model and a model based on the work of Zwicker revealed significant differences

even though they are intended to predict the same masking threshold.

Based on the experimental results of Jesteadt et al., an expression for predicting non­

simultaneous masking as a fonction of level and frequency was derived. Expressions de­

scribing the nonlinear addition of simultaneous and non-simultaneous masking were aIso

described.

A spectral subtraction process incorporating a perceptual model into the subbandlsub­

frame structure was described, and it was shown how the perceptual model can signifi­

cantly reduce the amount of processing applied to the signal. Finally, the effects of the

choice of window when using a perceptual based model was described and a method for

reducing these effects was introduced.

The main objective behind the use of a perceptual model, as weIl as the use of sub­

bands and sub-frames is to minimize the overalI amount of processing applied to the

noisy signal. By minimizing the amount of processing the severity of the residual arti­

facts and signal distortion is reduced. The subbands and sub-frames allow the processing

to be directed by the characteristics of the noise, while the perceptual model allows the

processing to he directed by the masking provided by the signal.

The work in this chapter which examined perceptual models, including a comparison

of the simultaneous masking models, the development of new expressions for the outer

and middle ear response, the derivation of an expression for non-simultaneous masking,

and the examination of the effects of the window fonction, is of value to many other ap­

plications Ce.g. perceptual audio codecs) not related to noise reduction.
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8. EVALUATION OF THE NOISE REDUCTION ALGORITHMS

In this chapter the performance of the VariOllS noise reduction schemes described in this

thesis are evaluated. Ideally, formal subjective listening tests would be conducted to

evaluate and compare each of the VariOllS schemes. However, due to the complexity, as

weIl as the time required to properly conduct sllch tests, it is not feasihle to evaluate eaeh

scheme in this manner. Therefore, a formal subjective test was conducted to evaluate

only the most promising noise reduction algorithms. The results of informal listening

tests are used to describe the performance of the remaining noise reduction schemes.

AIso, a compact dise (deseribed in this cbapter) is included with the tbesis to demonstrate

the various noise reduction schemes as weil as sorne of the artifacts whicb cao result.

Before listening to the entire CD, the reader may wish to bear a few selected tracles in

order to briefly compare the performance of the noise reduction algorithm developed in

this thesis to the classic spectral subtraction algorithm. For this purpose, we suggest that

the reader listen to the following three trac!cs.

Track #3: Ref+12dB Speech with camera noise at highest SNR used in the tests.
Track #24: Ref+12dB input signal (Track #3) processed using the Bo11's method.
Track #33: Ref+ 12 dB input signal (Track #3) processed using with subbands/sub-

frames and the Patterson-Moore perceptual model.

Demo 1: Quick overview of a1gorithm performance.

Tbe fust 3 traclcs on the CD contain a segment of speech which bas been corrupted by

camera noise. The level of the camera noise is varied in 6dB increments between the 3

tracks. Track #1 bas the highest level of camera noise and is referred to as Rej. The level

of the camera noise in Track #2 is 6dB lower (i.e., SNR is 6dB higher) and is referred to

as Ref+6dB. The level of the camera noise in Track #2 is 12dB lower than Track #1 (i.e.,

SNR is 12dB higher) and is referred to as Ref+12dB. Tbese 3 tracks are used throughout

this chapter as the input signais to demonstrate the performance of the various noise re­

duction algorithms.

Track #1: Ref Speech with camera noise at lowest SNR.
Track #2: Ref+6dB Speech with camera noise at intermmediate SNR.
Track #3: Ref+ 12dB Speech with camera noise at highest SNR.

Demo 2: Reference input signaIs with camera noise.
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8.1 Performance of Noise Reduction Techniques based on Adaptive

Filtering Methods

Chapter 4 described noise reduction techniques based on adaptive filtering methods. To

satisfy the requirement that a successful camera noise reduction scheme must be a single

input system, an adaptive noise cancellation algorithm. using a synthesized reference input

signal was proposed. This algorithm was shown to provide a degree of reduction to the

periodic component of the camera noise. It was also seen that, due to jitter in the arrivai

times of the camera noise pulses, the effectiveness of this noise reduction scheme was

compromised. Therefore, steps were taken to synchronize the ANC process to the camera

noise. This resulted in improved noise reduction.

The next six traclcs on the CO demonstrate the performance of the ANC algorithm

with a synthesized reference input. Track #4 is the noisy speech segment (Track #1)

processed by the non-synchronized ANC system. Track #5 is the same noisy speech

segment (Track # 1) processed by a synchronized ANC system.

Track #4: Re! input signal (Track #1) processed by the non-synchronized ANC
system.

Track #5: Re! input signal (Track #1) processed by the synchronized ANC system.

Demo 3: ANC with synthesized reference on lowest SNR input.

Track #6 is the noisy speech segment (Track #2) processed by the non-synchronized ANC

system. Track #7 is the same noisy speech segment (Track #2) processed by a synchro­

nized ANC system.

Track #6: Re!+6dB input signal (Track #2) processed by the non-synchronized ANC
system.

Track #7: Re!+6dB input signal (Track #2) processed by the synchronized ANC
system.

Demo 4: ANC with synthesized reference on intermediate SNR input.

Track #8 is the noisy speech segment (Track #3) processed by the non-synchronized

ANC system. Track #9 is the same noisy speech segment (Track #3) processed by a syn­

chronized ANC system.
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Track #8: Ref+ 12dB input signal (Track #3) processed by the non-synchronized
ANC system.

Track #9: Ref+ 12dB input signal (Track #3) processed by the synchronized ANC
system.

Demo 5: ANC with synthesized reference on highest SNR input.

From the six tracks it is apparent that, as described in Chapter 4, the synchronized

ANC system provides more noise reduction than the non-synchronized ANC system.

Specifically, the synchronized ANC system provides more reduction at the higher fre­

quencies. However, neither system provides complete elimination of the periodic com­

ponent of the camera noise, and of course, neither system provides any reduction of the

cyclicaI random component of the noise. Interestingly, by removing a portion of the peri­

odic component of the noise, one can begin to hear the other components of the camera

noise more clearly. Also, the perceived noise reduction is more dramatic when the input

signal has a lower initial signal-to-noise ratio.

lt cao be noted on these tracles that the ANC methods do not provide much noise re­

duction during the intervals where there is speech activity. This makes it difficult to

combine this method with the spectral subtraction methods since they assume that the

noise is locally stationary. Efforts to combine the two approaches results in good noise

reduction during the intervals without speech activity, but poor performance during the

intervaIs where there is speech activity.

From these tracles it cao be concluded that, as stated in Chapter 4, the ANC-based

methods do not provide a sufficient degree of noise reduction on their own. Therefore,

the ANC-based noise reduction methods were not included in the formai subjective test

described later in this chapter.

8.2 Performance of Noise Reduction Techniques based on Spectral

Subtraction

Chapters 5, 6, and 7 described noise reduction techniques based on variations to the

spectral subtraction method. These variations of the spectral subtraction algorithm

(magnitude, power, etc.) were implemented in a generic form without the use of sub­

frames and without synchronizing the process to the film rate. Informal listening tests

indicated that these basic implementations were only effective at removing camera noise

at rather high signal-to-noise ratios (>30 dB). At lower signal-ta-noise ratios the artifacts
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resulting from the processing made the systems unusable for the task of removing camera

noise.

In all of the listening tests, the enhanced signal was compared directly with the origi­

nal noisy input signal. Moreover, the difference of these two signals was also derived.

This allows the listener to hear the portion of the original signal which was being re­

moved by the spectral subtraction process. This ability was found to be particularly use­

fuI when trying to detennine the best setting for a given parameter.

As described in Chapter 5, a very limiting artifact resulting from spectral subtraction

is the musical noise. Track #10, which was derived using BoIl's method, provides an ex­

ample of musical noise. It should be noted that the quality of the speech signal is very

good, but the musical noise makes the output signal unusable for a fIlm. soundtrack.

Track #10: Example of musical noise resulting from BolI's method.

Demo 6: Musical noise.

One way to overcome the problem of musical noise is to overestimate the level of the

noise (see Section 5.4.5). However, if the overestimation is too high, the desired signal

can become highly distorted. As a compromise, a minimum noise floor can be introduced

to reduce the audibility of the musical noise without overly distorting the signal. Track

# Il is the noisy speech segment (Track # 1) processed by BoIl's spectral subtraction algo­

rithm with a minimum noise floor set to 30 dB below the level of the camera noise. In

this example the audibility of the musical noise is greatly reduced compared to Track #10.

There is however sorne distortion to the desired speech signal. Moreover, the camera

noise is still audible and thus Track # Il is not usable in a fIlm. soundtrack.

Track #11: Spectral subtraction (Boll's method) with a minimum noise floor set to
30dB below the level of the camera noise.

Demo 7: Minimum noise tloor.

In Section 5.4.5 a method for making the residual background noise more perceptu­

ally benign (Le. hiss-like) was proposed. Track #12 is the noisy speech segment (Track

#1) processed by Boll's spectral subtraction algorithm with a more benign residual noise.

The minimum noise floor was set to 30 dB below the level of the camera noise. In this

track, the structure of the camera noise has been greatly reduced and so the residual noise

may be more acceptable.
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Track IU2: Spectral subtraction (Boll's method) with a perceptually benign noise
floor set to 3DdB below the level of the camera noise.

Demo 8: Benign minimum noise floor.

The various spectral subtraction algorithms were also implemented using two sub­

frames. This provided a better estimate of the noise and also allowed for more aggressive

processing to be applied using the overestimation parameter which was set independently

for the two sub-frames. As a result, signals with poorer signal-to-noise ratios could be

successfully processed using these systems. When the signal is aIso processed in sub­

bands, the performance of the algorithm. improves further. For example, a 4 subband

system was implemented and tested..The highest 2 subbands were processed using 8 sub­

frames. This allowed the processing to be very localized in these subbands and so the

performance in the higher frequencies was noticeably improved. Specifically, the output

signal did not suffer from as much high frequency roll-off. These findings were con­

trrmed in the formai subjective tests.

The two perceptual models described in Chapter 7 (i.e., the high resolution Zwicker

model and the Patterson-Moore model) were implemented and incorporated into the sub­

band/sub-frame based spectral subtraction algorithm. It was found that both models pro­

vided a significant improvement to the noise reduction process as commned in the formal

subjective tests. The effect of the perceptual model is to restore much of the high fre­

quency speech signal that is removed when a high overestimation value is used. Moreo­

ver, the restored speech signal tends to have less temporal smearing when the perceptuaI

model is used. These points will be discussed further in the next section.

To reduce the number of test items in the formal subjective test, a preliminary test

was conducted to compare the performance of the two perceptual models (Tracks #13 to

18). Listeners compared the noisy speech segments processed by the spectral subtraction

algorithms using the two models and were asked to indicate which segment they pre­

ferred. AlI listeners agreed that the Patterson-Moore model provided the better output.

Law frequency noise components could be heard in the output of the spectral subtraction

algorithm based on the high resolution Zwicker model. These noise components were

more obvious when the input signal had a poorer signal-to-noise ratio. This is a reason­

able finding since, as discussed in Chapter 7, the critical bands below 500 Hz are known

to be too large and so the model would tend to overestimate the amount of masking avail­

able below 500 Hz. The unmasked noise resulting from the high resolution Zwicker
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model is due in part to the very aggressive (noise reduction) processing used in this the­

sis. This aggressive processing is required in order to completely eliminate the camera

noise as weil as the musical noise. With less aggressive processing, this unmasking does

not OCCUf.

Track #13: Re! input signal (Track #1) processed using the high resolution Zwicker
model.

Track #14: Re! input signal (Track #1) processed using the Patterson-Moore mode!.
Track #15: Ref+6dB input signal (Track #2) processed using the high resolution

Zwicker model.
Track #16: Ref+6dB input signal (Track #2) processed using the Patterson-Moore

model.
Track #17: Ref+ 12dB input signal (Track #3) processed using the high resolution

Zwicker model.
Track #18: Ref+ 12dB input signal (Track #3) processed using the Patterson-Moore

mode!.

Demo 9: Comparison of perceptual models.

To further compare the two perceptual models, it is instructive to listen to the masking

thresholds predicted by the two models. To this end, a clean segment of speech was

processed through the two models and the masking thresholds were determined. The

masking thresholds were combined with the phase of the input signal to create audio sig­

nais which are representations of the masking thresholds due to the two models. There­

fore, these signals represent the maximum amount of noise (as predicted by the two per­

ceptual models) which cao be masked by the input signal. Track #19 is the representation

of the masking threshold for the high resolution Zwicker model and Track #20 is the rep­

resentation of the masking threshold predicted by the Patterson-Moore modeL The two

masking thresholds sound quite different and the additional high and low frequency

masking predicted by the high resolution Zwicker model cao be heard in these tracles.

This is an interesting result since the two perceptual models are intended to predict the

same quantity (i.e., the masking threshold), yet their predictions are clearly different.

This has important implications for other applications, such as perceptual audio codees,

which rely extensively on the predicted masking threshold. Most perceptual codecs are

based on the criticaI band theory and thus the Zwicker mode!. The results described here

strongly suggest that the Patterson-Moore model should be examined for these applica­

tions.
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Trick #19: M asking threshold predicted by the high resolution Zwicker model.
Trick #20: Masking threshold predicted by the Patterson-Moore model.

Demo 10: Predicted masking thresholds.

By combining the various processes (subbands, sub-frames, perceptual model) de­

scribed in this thesis, it is possible to obtain very good noise reduction on signals with

relatively low signal-to-noise ratios. Therefore, the scheme developed in tbis thesis for

reducing camera noise be deemed a success. This conclusion is confumed by the results

of the formal subjective tests described in the next section.

DAT recordings of noise from the fMAXTM camera were obtained and the algorithms

developed in this thesis were applied to the recordings. It was found that the camera

noise reduction system (based on subbands, sub-frames, perceptual model) was quite suc­

cessful at removing the !MAX camera noise. However, due to the large size of the !MAX

camera, its noise is generally much louder and so residual artifacts remained in the proc­

essed signal. One must decide whether to use more aggressive processing to completely

eliminate the camera noise while audibly distorting the desired speech signal, or reduce

the amount of processing thus allowing sorne residual camera noise to remain. Nonethe­

less, the methods proposed in this thesis appear to be very promising for reducing the

!MAX camera noise.:f:

Representatives at !MAX indicated that even though the noise reduction scheme can­

not completely remove the camera noise without distorting the speech, it may still be a

very useful tool in the automatie dialogue replacement process. Specifically, the noise

reduetion algorithm developed here could be used to significantly reduce (not eliminate)

the camera noise prior to the ADR process. This would give the actors a much cleaner,

and less distracting version of their dialogue to listen to during the ADR process.

8.3 FormaI Subjective Test

A formal subjective test was conducted to evaluate the performance of the most promis­

ing camera noise reduction schemes to emerge from the thesis. Specifically, the subjec­

tive test was intended to evaluate the performance of a subbandlsub-frame based spectral

subtraction algorithm incorporating a perceptual mode!.

i: Unfortunately, due to copyright considerations. the demonstration CD does not include examples of the
!MAX cameras.
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The procedures and methods detailed in the ITU-R recommendation for subjective

testing of audio systems with small impairments (ITU-R Rec. BS.1116 [179]) were fol­

lowed. The subjective test methods outlined in BS.1116 are considered to be the most

rigorous and sensitive for evaluating the quality of audio processing systems (Le., algo­

rithms), and are used extensively in the assessment of perceptual audio codecs. This rec­

ommendation addresses the performance of the playback system (amplifiers, loudspeak­

ers, etc.), the acoustic characteristics of the listening environment (reverberation and

background noise), assessment of listener expertise, the grading scale used to indicate

subjective evaluations, and the methods of data analysis. The tests were carried out at the

Audio Perception Lab of the Communications Research Centre in Ottawa, Canada which

is one of the world's foremost subjective testing facilities. Further description of the use

of BS.1116 as well as details regarding the Audio Perception Lab can be found in

[180,181].

The subjective tests described in this chapter are perhaps the IIfst such tests conducted

to evaluate the quality of noise reduction algorithms. While it is true that other research­

ers have evaluated the quality of their noise reduction algorithms, they have not used the

very sensitive methods used here. These sensitive methods are both warranted and neces­

sary since the audio signals are full bandwidth signals (Le., about 20 to 20000 Hz) and

they will be used in an application (fIlm soundtracks) which demands CD quality audio.

Therefore, the use of telephony oriented subjective test methods, such as the Diagnostic

Rhyme Test are not appropriate in this case.

A 15 s segment of male speech, consisting of four sentences from the Harvard Test

Sequences [45], was used as the test material. The sentences were recorded in a quiet

studio at the National Film Board of Canada in Montreal (see Section 3.5.6). The test

segment was mixed with a recording of camera noise at 3 different levels (6 dB incre­

ments), thus providing 3 different signal-to-noise ratios. The 3 signal-to-noise ratios are

referred to as Rej, Ref+6dB, and Ref+12dB, where Refcontains the highest level of cam­

era noise. Relatively high levels of camera noise were used since it was felt that it would

be easier for subjects to discriminate between algorithms. The leveis of the noise were

such that any noise reduction system which could successfully restore Ref+12dB should

be capable of successfully eliminating camera noise in most applications.

These 3 test segments were then processed by 4 variants of the spectral subtraction al­

gorithm, to produce a total of 12 test items for the subjective test. The 4 noise reduction

algorithms consisted of: a standard spectral subtraction scheme based on Boll's method; a
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subbandlsub-frame spectral subtraction scheme based on BoIl's method; a subbandlsub­

frame spectral subtraction scheme based on the Wiener filter; and a subbandlsub-frame

spectral subtraction scheme incorporating the Patterson-Moore based perceptual model

described in Chapter 7. In processing the test segments for the subjective test, the over­

estimation parameters were set such that ail of the camera noise was eliminated as weIl as

aIl of the musical noise. Sïnce this is a necessary criteria for a successful camera noise

reduction scheme, it was considered to be a suitabIe and fair criteria for determining the

overestimation parameter.

The subjective test used the highly efficient within-subject (or repeated measures) de­

sign which is known to eliminate the effects of individuai differences among subjects. A

total of 21 subjects (17 male and 4 female) participated in the test and included many

subjects who bave previously shown a higb level of expertise in audio subjective tests.

Each subject conducted the test alone and the order in which each subject was exposed to

the 12 test items was randomîzed thus eliminating the possibility of any time-related bi­

ases in the resuIts.

A computer based playback system enabled the subject to instantaneously switch

among any one of three versions of an auditory stimulus (see Figure 8.1) on each trial.

Selecting button "A" on the screen produced the reference stimulus which was aIways

known by the subject to be the clean speech segment. Clicking on button "B" or "C"

produced either a hidden reference, identical to "A", or else a processed version of the

test sequence. Which of 'CB" or "c" produced the hidden reference or the processed ver­

sion was unknown and unpredictable to the subject from trial to trial.

Figure 8.1 Computer screen used by Iisteners to control playback and switching.
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The subject's task on each trial was to identify the processed version (on '13" or "C")

and to grade its quality relative to that of the clean speech segment on "A". In the con­

tinuous grading scale used by the subjects, 1 to 1.9 represented an evaluation of varying

degrees of a "very annoying" judgment, 2.0 ta 2.9 covered the "annoying" range, 3.0 to

3.9 meant "slightly annoying", 4.0 ta 4.9 was for judgments of "perceptible but not 00­

noying", and 5.0 indicated "imperceptible". This is, in effect, a 41 grade continuous

scale, with categorically labeled groupings for ease of orientation and to aid rating con­

sistency throughout the experiment. The version judged to be the hidden reference (on

"C" or "B") was given a grade of 5.0 ("imperceptible") sa that on each trial one grade had

to be "5.0".

During the blind-rating phase, each subject was free to take as much time as required

on any trial, switching freely among the three stimuli as often as desired. The audio ma­

terials within a trial were time-synchronized sa that the cross-fade when switching among

"A", '13" and "C" was subjectively seamless. The subjects listened to the stimuli over

loudspeakers since Ïllm soundtracks are typically auditioned in this manner.

Prior to conducting a formal double-blind listening test, each subject went through an

extensive training session which allowed them to become familiar with the playback sys­

tem, the experimental procedures, as weil as the artifacts resulting from the noise reduc­

tion algorithms. The training process is outlined in BS.1116 and has been shown to pro­

vide a high degree of resolution and stability in subjective test results.

The test method described above using the AlBIC hidden reference double-blind ap­

proach allows the expertise of the subjects to be evaluated so that the results from non­

expert subjects can be eliminated. A post-analysis showed that all of the subjects partici­

pating in this test demonstrated a high level of expertise and so the data from ail subjects

was included in the subsequent analysis.

An analysis-of-variance (ANOVA) was conducted on the test results and the main ef­

fects of the noise reduction algorithm, the signal-to-noise ratio, and the interaction be­

tween algorithms and signal-to-noise ratios were evaluated. The ANOVA indicated a

highly significant effect (p<O.OO 1) due to noise reduction algorithm and a highly signifi­

cant effect (p<O.OOl) due to signal-to-noise ratio. The ANOVA also revealed that there

was no significant interaction between the noise reduction algorithm and signal-to-noise

ratio.
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• The results of the subjective test are shown in Figure 8.2. The horizontal axis indi­

cates the 3 signal-to-noise ratios used in the test, while the vertical axis provides the MaS

(mean opinion score) of the 21 subjects. AIso inciuded along the vertical axis are the 4

categorical descriptors used in the BS.1116 rating scale to describe the magnitude of any

audible artifacts in the test items. Any two data points in the figure are statistically dif­

ferent (p<O.OS) if their error bars do not overlap, while overlapping error bars indicate

that the data points shouid be considered to be statistically identical.
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The results of the subjective test provide a clear indication of the performance of the

various noise reduction schemes. The lower curve represents the subjective performance

of the traditional spectral subtraction algorithm based on Boll's method (i.e. magnitude

subtraction). It can be seen that it provides the poorest subjective performance at each

signal-tü-noise ratio. The two middle curves represent the subbandlsub-frame spectral

subtraction algorithms based on BoIl's method and the Wiener filter. It can be seen that

these two algorithms provide a significant improvement in the quality of the resulting

output signals. The two algorithms provide statistically identical results and so there does

not appear to be any subjective benefit in using one algorithm instead of the other. The

upper curve represents the spectral subtraction algorithm which incorporates the Patter­

son-Moore based perceptual model ioto the subbandlsub-frame spectral subtraction algo­

rithm (referred to in the figure as the Soulodre algorithm). The figure shows that this al-

210



•

•

•

gorithm provides a cIear and consistent improvement in performance over the other noise

reduction algorithms. Therefore, this algorithm provides the best overall performance for

reducing camera noise.

There are several interesting details which can be gleaned from the figure. First, by

dividing the spectral subtraction process into subbands and sub-frames, the improvement

in the noise reduction algorithm is roughly equivalent ta a 6dB increase in the signal-to­

noise ratio of the input signal. That is, the performance of the subband/sub-frame spectral

subtraction algorithms at a given signal-ta-noise ratio is roughly equivalent to the per­

formance of the traditional spectral subtraction algorithm at a 6d.B higher signal-ta-noise

ratio. Similarly, the performance obtained by combining a perceptual model with the

subbandlsub-frame spectral subtraction algorithm (the Soulodre algorithm), is roughly

equivalent to the performance of the traditional spectral subtraction algorithm operating at

a 12 dB higher signal-to-noise ratio. These are significant gains in the signal-to-noise ra­

tio since the performance of the spectral subtraction algorithms is very dependent on the

initial signal-to-noise ratio of the input signal. For the Ref+12dB noise condition, this

(Soulodre) algorithm had a MûS which feU in the no! annoying range of the perceptual

scale. In the evaluation of high quality audio systems, the ITU-R requires a score in this

range in order for a system to meet ~'broadcast quality" (i.e. CD quality) requirements

[182]. Essentially, a score in this range indicates that the system is providing an output

which is virtually indistinguishable from the clean signal. Therefore, for signal-ta-noise

ratios at or above Ref+12dB, the noise reduction algorithm derived in this thesis satisfies

this very stringent requirement. Given that Ref+12dB was intended to represent a rela­

tively high level of camera noise, this result implies that this algorithm should be success­

fuI at removing camera noise under most (typical) conditions. Moreover, in many in­

stances, music and sound effects will be mixed with the dialogue in the final soundtrack,

thus masking any low-Ievel residual artïfacts.

It should also be noted that the improvement in the performance of the spectral sub­

traction algorithm which is obtained by including subbands, sub-frames, and a perceptual

model is very robust. That is, the improvement in performance is consistent regardless of

the initial signal-ta-noise ratio of the input signal. This is conÏrrmed by the fact that the

ANGVA revealed that there was no significant interaction between the noise reduction

algorithm and the signal-to-noise ratio of the input signal.

The audio sequences used in the subjective test are included on the demonstration

CD. Track #21 is the segment of clean speech to which the camera noise was added.
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This segment of speech was used as the reference (button "A") ta which the subjects

compared the various processed test items. Track #22 ta Track #24 are the output of the

spectral subtraction process for 3 levels of camera noise using the BoIl method (i.e. mag­

nitude subtraction) without subbands or sub-framing. Track #25 ta Track #27 are the out­

put of the spectral subtraction process using the Boll method with subbands and sub­

framing. Track #28 to Track #30 are the output of the spectral subtraction process using

the Wiener filter method with subbands and sub-framing. Track #31 to Track #33 are the

output of the spectral subtraction process using both subbands and sub-framing as weIl as

the Patterson-Moore based perceptual model (the Soulodre algorithm).

Track #21: Clean speech signal.
Track #22: Ref input signal (Track #1) processed using the BoIl's method.
Track #23: Ref+6dB input signal (Track #2) processed using the Boll's method.
Track #24: Ref+ 12dB input signal (Track #3) processed using the Boll's method.
Track #25: Ref input signal (Track #1) processed using Bo11's method with

subbands/sub-frames.
Track #26: Ref+6dB input signal (Track #2) processed using Boll's method

with subbands/sub-frames.
Track #27: Ref+ 12dB input signal (Track #3) processed using BoIl's method

with subbands/sub-frames.
Track #28: Ref input signal (Track #1) processed using Wiener filter method with

subbands/su b-frames.
Track #29: Ref+6dB input signal (Track #2) processed using Wiener filter method

with subbands/sub-frames.
Track #30: Ref+ 12dB input signal (Track #3) processed using Wiener filter method

with subbands/sub-frames.
Track #31: Ref input signal (Track #3) processed using with subbands/sub-frames

and the Patterson-Moore perceptual mode!.
Track #32: Ref+6dB input signal (Track #3) processed using with subbands/sub­

frames and the Patterson-Moore perceptual mode!.
Track #33: Ref+ 12dB input signal (Track #3) processed using with subbands/sub­

frames and the Patterson-Moore perceptual model.

Demo 11: Tracks used in formaI subjective test.

Several types of artifacts can be clearly heard in the tracks listed above. The effects

of temporal smearing become audible as the signal-ta-noise ratio of the input signal be­

cornes poorer and more aggressive processing is applied. Specifically, on Trades #22,

#25, and #28 certain syllables are quite smeared. Also7 there is an obvious 10ss of high

frequency information which becomes less severe as the signal-ta-noise ratio of the input

signal increases. AIso, the loss of high frequencies is less severe for those traclcs where
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the perceptual model is included Ci.e~ Track #31 ta Track #33). At lower signal-to-noise

ratios, a whistling sound is superimposed on some portions of the speech.

It is interesting to note that some of the artifacts in the above tracks are more audible

when auditioned over headphones rather than loudspeakers. For example, in Track #33,

components of the noise are partially unmasked when auditioned over headphones,

whereas these components are entirely masked in loudspeaker listening. This is a com­

mon observation in the subjective evaluation of perceptual-based audio codecs [179]_

8.4 Conclusions

In this chapter, subjective evaluations were conducted of the various noise reduction

schemes described in the thesis. A comparison of a spectral subtraction algorithm incor­

porating different perceptual modeis revealed that the Patterson-Moore based model

tended ta perform better than the Zwicker based model for the noise reduction applica­

tion. Audio representations of the masking thresholds predicted by the two models re­

vealed clear and important differences. This result has significant implications for other

applications Ce.g. perceptual audio codecs) not related ta noise reduction.

A formai subjective test of the most promising schemes demonstrated that a sub­

band/sub-frame based spectral subtraction algorithm incorporating the Patterson-Moore

based perceptual model provides the best noise reduction performance for camera noise.

This algorithm performs as weil as a traditional spectral subtraction algorithm operating

on an input signal having a 12 dB higher signal-to-noise ratio. It was also shown that the

improved performance Cover traditional spectral subtraction) due to this algorithm is ro­

bust and is relatively independent of the initial signal-to-noise ratio of the input signal.

The results of the formai subjective test support the philosophy taken in this thesis of

minimizing the amount of processing applied to the signal.

The results of the formal subjective test indicate that the newIy developed aIgorithm.

should be successful at removing camera noise under typical conditions without audibly

distorting the signal. Therefore, this algorithm satisfies the requirements for a successful

camera noise reduction system.
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9. CONCLUDING REMARKS

In this thesis, the problem of camera noise corrupting fIlm. soundtracks was investigated

and an effective method for reducing the noise was developed. Section 9.1 summarizes

the key points of the thesis, while Section 9.2 looks at future research directions.

9.1 Summary

The problem of camera noise in film soundtracks was introduced and the requirements

for a noise reduction scheme were outlined. A successful scheme must render the camera

noise inaudible while not significantly distorting the underlying speech signal. Another

requirement is that it must be a single-input system which can be applied in post­

production. This requirement adds a significant degree of difficulty to the task.

In Chapter 2, the methods currently used to limit or eliminate camera noise in film

soundtracks were described. Methods based on microphone techniques attempt to focus­

in on the desired signal either by using a highly directional microphone or by placing the

microphone as close as possible to the actors. In another approach, the camera noise is

limited at the source by placing the camera behind an acoustic barrier. An analogue sig­

nal processing device (the Dolby 430 Series) was described which is sometimes used to

try to reduce camera noise. The device was not designed with the intent of reducing cam­

era noise, and so its usefulness in this application is limited.

A comprehensive characterîzation of camera noise was described in Chapter 3. An

examination of the time waveform revealed that the camera noise consists of a series of

pulses coinciding with the fIlm rate of the camera (24 frames per second). Each pulse

consists of an initial peak followed by an interval of noise. While the pulses showed

similarities, it was seen that the pulses are in fact different. Directivity measurements

were aIso made, and it was found that the power spectrum of the camera noise changes

with the angle of the measurement.

Several factors were evaluated to determine whether they caused any variation in the

camera noise. It was found that the type of lens mounted on the camera had a small ef­

fect, whereas the film stock caused much greater changes to the noise. Measurements

taken over time demonstrated that the power spectrum of the camera noise did not change

significantly within a given reel of film. Measurements were also conducted on three

!MAX cameras. These cameras were very different (physically, and in their intended ap-
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plication) from each other and were also very different from the NFB camera Yet each

camera exhibited similar characteristics which can be exploited in the noise reduction

process.

It was shown that, due to its physical size, as weil as its many mechanical compo­

nents, the camera behaves as a distributed noise source. This finding has important im­

plications regarding the possible success of certain noise reduction schemes. The !MAX

cameras also behaved as distributed noise sources. The consistency in the characteristics

of the cameras measured in the this chapter support the notion that the noise reduction

methods developed in the thesis should be widely applicable to other types of cameras.

A mathematicaI model was developed to describe camera noise. The model divides

the camera noise into two parts: a periodic component, and a cyclical random component.

This allowed the noise reduction schemes to be described in terms of their ability to re­

duce either or both of the components.

In Chapter 4, ANC based methods for reducing camera noise were investigated and a

review of the theory behind the LMS algorithm and some of its variants was provided.

The potentiaI limitations (extraneous noise sources, rate of convergence, leakage of de­

sired signal into reference input, etc.) of the adaptive noise cancellation method were

identified. It was shown that the performance of the ANC method is dependent on the

coherence between the two input signals. The coherence is reduced in the presence of a

diffuse sound field and it was shown that a distributed noise source acts as a diffuse noise

field. Since the camera is a distributed noise source, the inputs to an ANC system (for

reducing camera noise) have low coherence. Therefore, it can be concluded that, for the

purpose of reducing camera noise, an ANC system will have only limited success. This

conclusion was confmned through experimental results.

Blind signal separation methods were reviewed and their relation to ANC was high­

lighted. The effect of microphone spacing on the performance of a blind signal separa­

tion system based on second order statistics was considered. It was shown that blind sig­

nai separation is also dependent on the coherence between the input signais, and therefore

its performance will be limited by the distributed nature of camera noise.

To satisfy the single-input requirement for the camera noise reduction system, an

adaptive noise canceling scheme using a sYQthesized reference input was proposed. The

method relies on the noise having a high inter-pulse correlation and is intended to reduce

the level of the periodic component of the camera noise. Unfortunately, an analysis of the
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camera noise found rather low inter-pulse correlation and thus the approach is largely un­

successful for the present application. The poor performance of this method was shown

to be due in part, to the jitter in the times of arrivai of the individuaI camera noise pulses.

To resolve this matter, a method for sYnchronizing the ANC process to the camera noise

was devised. This method significantly increased the inter-pulse correlation (primarily in

the higher frequencies) and consistently provided between 10 and 15 dB of noise reduc­

tion.

In Chapter S, signal enhancement techniques based on estimating the short-time

spectral magnitude of the signal were investigated. The mathematical foundation for the

spectral subtraction process was derived for the method proposed by Boll. Spectral sub­

traction reduces both the periodic and cyclical random components of camera noise. It

was shown that spectral subtraction is equivalent to a zero-phase fliter and that this inter­

pretation allows for both a better understanding and a generalization of the process.

The limitations of the method were identified and the artifacts resulting from spectral

subtraction were described. Several new modifications to the traditional spectral subtrac­

tion algorithm were proposed to minimize the audibility of these artifacts. The minimum

spectral floor proposed by Berouti et al. for reducing the audibility of musical noise was

extended to make the noise floor more perceptually benign. A modified version of the

survival algorithm devised by Vaseghi and Frayling-Cork was proposed which was found

to provide better reduction of musical noise. An overestimation parameter based on the

mean and variance of the noise was proposed, as was a means of reducing time aliasing

effects caused by modifications to the spectrum of a signal. An analysis/synthesis win­

dowing function (when performing the FFfIIFFT operations) was added to remove the

discontinuities at the boundaries of overlapping processing frames. Use of these exten­

sions is not limited to the camera noise problem, and can improve the performance of the

spectral subtraction algorithm in general.

In Chapter 6 general mathematical framework for integrating subbands and sub­

frames into the spectral subtraction algorithm was derived based on the use of quadrature

mirror fliter banks. It was shown that matching the noise reduction process (in the time­

frequency plane) to the noise can significantly improve the performance of the spectral

subtraction algorithm by reducing al1 forms of audible artifacts. By directing the proc­

essing to those portions of the noise which require it most, the overall amount of proc­

essing applied to a signal cao be significantly reduced. This approach was generalized

using non-equal sub-frames. The need for window alignment and frame synchronization
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when using sub-frames was demonstrated and a simple means of maintaining frame syn­

chronization was proposed. This general philosophy of minimizing the amount of proc­

essing applied to the signal in a given subbandlsub-frame is carried throughout the thesis.

ln Chapter 7 the addition of a perceptual model to the spectral subtraction process was

investigated. The perceptual model was used to determine which portions of the noise

are audible and which are being masked by the desired signal. The noise reduction proc­

ess is then limited to reducing those portions of the noise which are audible. As such, the

overall amount of processing applied to the signal is minimized from a perceptual point

of view and thus the levels of the artifacts are also reduced.

Certain limitations of the critical band based model used by Tsoukalas et al. were

identified and two other models of simultaneous masking were considered. The high

resolution Zwicker model and the Patterson-Moore model were compared frOID a mathe­

matical point of view by mapping them from their basilar membrane representations ta

the linear frequency domaine The models were shown to produce significantly different

estimates of the auditory masking threshold.

A new perceptuaI model was developed based on the Patterson-Moore model for si­

multaneous masking. The model aIso contained several new components derived in this

thesis to account for the fIltering effects of the outer and middle ear, the internai noise

floor of the internai ear, forward masking as a function of level and frequency, nonlinear

addition of masking, and the interaction between the auditory rIlters and the window used

in the Fourier transforme The new model was incorporated into a subbandlsub-frame

based spectral subtraction algorithm and a new method for estimating the clean signal

was proposed. This implementation of spectral subtraction with the perceptuaI model

was found to provide superior performance over traditional implementations.

Chapter 8 provided a subjective evaIuation of the performance of the various noise

reduction algorithms derived in the thesis. Listening tests confrrm the differences be­

tween the auditory masking thresholds predicted by the two perceptual models. The

spectraI subtraction algorithm operating with the Patterson-Moore based perceptual

model was found to perform better than the aIgorithm based on the Zwicker mode!. A

formai subjective test using the most rigorous and sensitive methods was conducted to

evaluate the more promising noise reduction algorithms. The Boll method and the Wie­

ner fliter method of spectral subtraction were found to be subjectively equivaIent in their

performance. The results of the formal subjective test clearly show that the subbandlsub­

frame based spectral subtraction algorithm with the new Patterson-Moore based percep-
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tual model provides the best performance overalL The results demonstrate a significant

improvement in the performance of the spectral subtraction algorithm due to the use of

subbands and sub-frames, as weIl as the use of a perceptual model. It was therefore con­

cluded that the methods developed in the thesis meet the requirements for a successful

camera noise reduction system.

This thesis appears to constitute the first formal effort to apply adaptive signal proc­

essing techniques to the problem of reducing camera noise in rIlm soundtracks. In the

thesis, the characteristics of camera noise were thoroughly analyzed and many different

approaches to reducing camera noise were investigated. The method based on spectral

subtraction using subbands, sub-frames and a new perceptual model was shown to pro­

vide very good performance. The application of adaptive signal processing techniques to

the problem of camera noise is in its infancy, and one might compare its current state to

that of gramophone restoration about 10 to 15 year ago. It is likely that, as has occurred

with gramophone restoration, other researchers will investigate the camera noise problem

and develop new methods for improving the quality of the noise reduction algorithms.

Hopefully, the work in this thesis will provide some insight to these researchers about

which methods are most likely to be successful.

The work in this thesis related to the analysis and development of a new perceptual

model is of potential benefit to many applications not related to camera noise. The model

can be incorporated into any spectral subtraction algorithm for reducing a noise which is

eorrupting a speech or music signal. Moreover, since the model uses an auditory rIlter

approach, it is relatively straightforward to develop customized implementations of the

algorithm which might be useful in some applications. The new perceptual model also

offers interesting new possibilities in the fields of perceptual audio codees as weIl as per­

ceptual-based objective measurement systems.

9.2 Future Research Directions

There are several issues whieh should be addressed in order to improve the performance

of the signal enhancement system developed in this thesis. In this section, some of the

more important issues are identified.

9.2.1 Realtime Implementation

The work in tbis thesis provided a generalized form of the spectral subtraction process as

weIl as severa! extensions intended to minimize specifie artifaets created by the spectral
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subtraction process. Moreover, a subbandlsub-frame framework was introduced as was a

perceptual mode!. As a result, there are numerous parameters which must be adjusted in

order to obtain the highest degree of noise suppression without causing significant distor­

tion to the underlying speech signal. In this thesis, all processing was done on a noo­

realtime basis, thus making it rather difficult to fine tune the values of these parameters.

Furthermore, it was not practical to process large amounts of data.

At this stage, a very useful next step in the research would be ta develop a realtime

implementation of the process. This would allow the effects of each parameter in the

process to be evaluated quickly and efficiently. Furthermore, this is the most sensible

means of fully detennining the required tradeoffs between the various parameters.

The computational requirements for most parts of the noise reduction scheme devised

in this thesis are not excessively demanding. The most demanding portions of the proc­

ess are those related ta the calculation of the auditory masking threshold required for each

block of data. As implemented in the thesis, this requires the multiplication of a 1 by N

vector with an N by N matrÏX. Present day DSP chips include specifie instructions de­

signed to rapidly perform these operations. Furthermore, significant computational sav­

ings could be had by calculating the auditory masking threshold in the basilar membrane

domain where the (pitch) resolution is lower and sa the number of points in the calcula­

tions is much less than N. It seems probable that, given the current state of the art, the

entire noise reduction process could be performed in realtime on a single high-end DSP

processor. Due ta requirements for high quality audio output (i.e. 16 bits), the processor

should have an internal resolution of no less than 24 bits.

9.2.2 Improved Perceptual Model

The use of a perceptual model was found ta provide a significant improvement in the per­

formance of the spectral subtraction algorithme Moreover, the new model based on the

Patterson-Moore simultaneous masking model was found to provide better performance

than the model based on the Zwicker mode!. It should be noted that these models were

not developed with engineering applications in mind, and so frOID an engineering point of

view, these two models leave many important questions unanswered. It would be very

useful to perform a series of fundamental experiments related ta auditory masking which

are designed with engineering applications in mind. Such experiments would include the

effects of frame-based processing, transform-based processing, windowing effects, etc.

219



•

•

•

For example, work which is currently being done in the area of very low bitrate per­

ceptual audio codecs may be useful in this regard. At very low bit rates it is inevitable

that the effects of quantization Ce.g. quantization noise, temporal smearing, timbre effects,

etc.) will be audible. Research is currently being done ta investigate strategÏes for mîni­

mizing the perceived annoyance due these inevitable artifacts. The results of these stud­

ies may help designers of noise reduction algorithms to find the best balance between re­

sidual noise and artifacts in the signal. The author is currently conducting such experi­

ments, but there are many questions to be answered.

9.2.3 Improved Reduction of Periodic Noise Component

In Chapter 4 a method was developed for reducing the level of the periodic component of

camera noise. This method was shown to he inadequate by itself as a means of reducing

camera noise. It seems sensible to use tbis method as a pre-processor to the spectral sub­

traction based method. However, this approach did not perform well because the ANC

based method developed in Chapter 4 does not adequately reduce the periodic noise com­

ponent during intervals of speech activity. It is possible that the removal of the periodic

component of the camera noise could be improved at lower frequencies Cespecially during

speech activity) by using the method proposed by Godsill and Tan [42] for removing low

frequency transient noise from gramophone recordings. They model the transient noise as.

an autoregressive process and use a Kalman tuter approach to remove the noise. If tbis

method can provide a more consistent reduction of the periodic component, inc1uding

during speech activity, then it may be useful as a pre-processor to a spectral subtraction

algorithm. This could be quite beneficial in situations where the level of the camera noise

is excessively high. It is not clear how their method would perform at higher frequencies_

Nonetheless, their method should be investigated.

9.2.4 Use of Discrete Cosme Transform

In their work on noise reduction using a signal subspace approach, Ephraim and Van

Trees used the KLT to decompose the noisy vector ioto two subspaces. This method was.

reported to provide an enhanced signal which is free from musical noise. lise of the KLT

however, is computationally demanding and does not lend itself easily ta integration with.

a perceptual mode!. As a possible compromise, it would be worthwhile to investigate the

use of a discrete cosine transform in the signal subspace approach. The DCT is known to

give a good approximation to the KLT yet it is computationally efficient. Moreover, the

OCT lends itself more readily to integration with a perceptual model.
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9.2.5 Increased Number of Frequency Subbands

The use of a combination of sub-frames and subband fùtering was seen to provide a sig­

nificant improvement in the performance of the spectral subtraetion system. In the simu­

lations performed in this thesis, four frequency subbands were used. The use of more

subbands at lower frequencies (below 6 kHz) should be investigated as a possible means

of achieving better performance at these frequencies. This may provide additional im­

provement when used in conjunction with a perceptual model since upward masking is

the dominant form of masking and so it is important to have the best possible estimate of

the signal at low frequencies.

9.2.6 Phase Estimation

Vary showed the relation between the maximum expected deviation in phase and the sig­

nal-to-noise ratio of the input signal. His results suggest a possible means of trying ta

estimate the short-time phase of the desired signal. Vary's work provides bounds which

would help in the estimation of the phase. It is expected that a more accurate estimate of

the phase could provide improved performance (particularly at low signal-to-noise ratios)

by reducing the artifacts related to temporal aliasing.

9.2.7 Multiple Passes of the Spectral Subtraction Process

While investigating the effects of the various parameters in the spectral subtraction proc­

ess, it was found that if only a moderate amount of noise suppression was applied to the

corrupted signal, no musical noise resulted. The amount of noise suppression was con­

trolled by the parameters a, {3, and ras shown in Figures 5.3 to 5.6. That is, a, {3, and r
were set so that the slope of the noise suppression curve did not become too steep thus

causing musical noise. Of course, the remaining camera noise was still at an unacceptable

level.

To obtain more noise suppression, the processed signal was re-processed through the

spectral subtraction system. A new estimate of the background noise was derived from

the residual noise at the output of the Hrst spectral subtraction process. This procedure

was repeated over several iterations.

Although this approach was not entirely successful, it did show enough promise ta

warrant further investigation. Since musical noise results from the non-linearity of the

spectral subtraction process, it seems reasonable that it could be reduced by decreasing

the severity of the non-linearity.
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9.2.8 ffigher Order Statistics

Though not reported in the thesis, the use of higher order statistical methods was investi­

gated as a possible means oftaking advantage of the repetitive (cyclicaI) nature of camera

noise. Higher order statistics are frequently used when dealing with cyclostationary sig­

nais, and therefore it was felt that they could be useful in reducing camera noise

[183,184,185,186,187,188,189,190,191]. A major drawback with signal processing

methods based on higher order statistics (such as the bispectrum or trispectrum) is the

computational requirements involved. Calculation of these statistical measures is far

more demanding than second-arder quantities. AIso, they must be calculated over many

cycles in arder ta obtain accurate measurements. Moreover, since the rate of repetition of

camera noise is relatively slow (24 frames per second), one must examine the signal over

a large number of samples in order to include a sufficient number of "cycles" for the

noise ta appear cyclical. This implies that a camera noise reduction scheme based on

higher arder statistics would have to deal with very large quantities of data and the proc­

essing of this data would be very computationally demanding. Given the author' s current

computing capabilities, it was not possible to implement algorithms based on the use of

higher order statistics. As greater computing power (and memory) becomes available, it

may be worthwhile ta investigate these methods.

9.3 Epilog

In this dissertation a signal processing method was proposed which removes camera noise

from fIlm soundtracks. The method uses a technique ~own as spectral subtraction which

is based on estimating the short-time spectral magnitude of the desired signal. The basic

spectral subtraction process however, creates audible artifacts which are often more dis­

turbing than the originaI noise and thus new algorithms were proposed ta rninirnize these

artifacts. The spectral subtraction process was also extended to take advantage of the cy­

clical or repetitive nature of camera noise. Sub-frames, which were synchronized and

aligned to the interfering noise, used in conjunction with frequency subbands were found

to significantly improve the noise reduction process. The use of subbands and sub-frames

permits the noise reduction process to be better matched to the noise in the time­

frequency plane. This in tum allows the overall amount of processing applied to the sig­

nal to be reduced, thus reducing the resulting artifacts. The noise reduction process was

further improved by including a perceptual model which allows furtber reduction in the

amount of processing applied to the signal. A subbandlsub-frame based spectral subtrac­

tion algorithm using a perceptual model provided a means of successfully removing cam-
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era noise from film soundtracks without adversely affecting the quality of the underlying

signal. In a formal subjective test the proposed method was shown to work weil even in

the presence of relatively high levels of camera noise.

While the work in this thesis examined the specifie problem of reducing camera

noise, the results could be extended to other applications which require a signal to be en­

hanced in the presence of a repetitive noise. Also, much of the work can be applied to the

general problem of noise reduction in audio signais, while other aspects of the thesis are

directly useful to other applications.
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APPENDIXA

The power spectrum of the camera noise can be averaged over short intervals of time re­

lated to the pulse rate of the camera (i.e. 2000 samples), or it can be viewed over longer

intervals spanning many pulses. The choice of whether to view the power spectrum of

the interfering noise over a shorter or longer time interval depends on the application.

For example, sorne noise reduction schemes, such as spectral subtraction described in

Chapter 5, process the signal over short intervals wherein the signal (typically speech) is

considered ta he stationary.

Ir was seen in Figure 3.7 that, when viewed over a time interval equal ta the period of

the noise pulses, there was no obvious structure to the camera noise. Specifically, there

were no spectrallines that would indicate a harmonic structure to the noise. However,

given that the camera operates at a rate of 24 frames per second, it is reasonable to as­

sume that a power spectrum measured over several noise pulses would reveal spectral

lines spaced 24 Hz apart. Indeed, these spectral lines do occur, but oruy if the power

spectrum is measured over rnany pulses of the camera noise.

Figure A.l shows the power spectrum of the camera noise measured over 16 pulses of

the camera noise (Le. 2/3rds of a second). Spectrallines spaced 24 Hz apart cao be seen,

although the amplitudes of the spectral lines do not appear to follow a constant pattern.

The amplitudes of the spectrallines tend to decrease with increasing frequency. Although

not seen in the figure, the spectral lines tend to disappear above about 2500 Hz, even

though the spectrogram of Figure 3.8 showed significant noise energy above this fre­

quency associated with the onsets of the pulses. Furthermore, the magnitudes of the

spectrallines vary with the angle of the measurement, the fIlm stock, and the type of lens

mounted on the camera.
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Figure A.1 Typical power spectrum of the camera noise measured over 16 noise
pulses.• There is an underlying broadband noise that can be seen between the spectral lines.

This is due to the fact that the camera noise is effectively a series of noise bursts and that

each burst is unique. Furthennore, the camera noise is made up of other components that

are not directly related to the 24 frames per second film rate.

The power spectrum of the camera noise can look quite different depencling on the

length of the time interval over which it is measured. For the spectral subtraction scheme

used in this thesis it is necessary to process the signal over short time intervals, and there­

fore, the power spectrum must also be measured over these short intervals.

•
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APPENDIXB

Twenty sentences frOID the 1965 revised list of phonetically balanced sentences (Harvard

Sentences [45]) were used in evaluating the performance of the various noise reduction

schemes described in this thesis. The Harvard Sentences consist of 720 phonetically bal­

anced sentences which are grouped into 72 lists each containing 10 sentences. List 1 and

list 5 were used in the tests, and were recorded as described in Section 3.5.6. These 20

sentences are listed below.

List 1:

1. The birch canoe slid on the smooth planks.

2. Glue the sheet to the dark blue background.

3. I1's easy to tell the depth of a weIl.

4. These days a chicken leg is a rare dish.

5. Rice is often served in round bowls.

6. The juice of lemons makes fine punch.

7. The box was thrown beside the parked truck.

8. The hogs were fed chopped corn and garbage.

9. Four hours of steady work faced us.

10. A large size in stockings is hard to selle

List 5:

1. A king ruled the state in the early days.

2. The ship was tom apart on the sharp reef.

3. Sickness kept him home the third week.

4. The wide road shimmered in the hot sun.

5. The lazy cow lay in the cool grasSe

6. Lift the square stone over the fence.

7. The rope will bind the seven books at once.

8. Hop over the fence and plunge in.

9. The friendly gang left the drug store.

10. Mesh wire keeps chicks inside.
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