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Abstract

Deep Learning (DL) algorithms have been used to model physical systems. However, the

success heavily relies on how DL methodologies accommodate the properties of a system

and data. Especially for experimental data, noise and other confounding factors often

significantly impede modeling and training. Under this context, we study the case of

Traction Force Microscopy (TFM), a class of experimental procedures and algorithms for

measuring cell traction. While TFM has contributed to numerous discoveries over the past

three decades, its application has been limited due to demanding experimental

requirements and the ill-posed inverse problem of computing cell traction from substrate

displacement. To address these challenges, we introduce Deep Morphology Traction

Microscopy (DeepMorphoTM), a DL approach that infers cell traction from a shape

sequence of a cell. By employing a deterministic framework, DeepMorphoTM effectively

mitigates the biological variability in cell contractility for a given cell shape. Leveraging

the smoothness of Neural Network (NN) output, DeepMorphoTM directly infers the

displacement and then computes the traction, circumventing the ill-posedness in training
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and inference. Moreover, alternative model designs and accurate extrapolation across cell

types and substrate materials provide additional insights into the cellular system, revealing

information beyond TFM analysis. Apart from establishing new avenues for investigating

cell mechanics, this study sets an excellent example of modeling and studying physical

systems with DL from experimental data.
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Résumé

Les algorithmes d’apprentissage profond (DL) ont été utilisés pour modéliser des systèmes

physiques. Cependant, le succès dépend fortement de la manière dont les méthodologies

DL prennent en compte les propriétés d’un système et des données. En particulier pour

les données expérimentales, le bruit et d’autres facteurs de confusion entravent souvent de

manière significative la modélisation et l’apprentissage. Dans ce contexte, nous étudions le

cas de la microscopie à force de traction (TFM), une classe de procédures expérimentales

et d’algorithmes pour mesurer la traction cellulaire. Bien que la TFM ait contribué à de

nombreuses découvertes au cours des trois dernières décennies, son application a été limitée

en raison des exigences expérimentales élevées et du problème inverse mal posé du calcul

de la traction cellulaire à partir du déplacement du substrat. Pour relever ces défis, nous

présentons Deep Morphology Traction Microscopy (DeepMorphoTM), une approche DL qui

déduit la traction cellulaire à partir d’une séquence de formes d’une cellule. En utilisant

un cadre déterministe, DeepMorphoTM atténue efficacement la variabilité biologique de la

contractilité cellulaire pour une forme de cellule donnée. En tirant parti de la douceur des
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sorties des réseaux neuronaux (NN), DeepMorphoTM déduit directement le déplacement et

calcule ensuite la traction, ce qui permet de contourner les problèmes d’apprentissage et

d’inférence. En outre, les modèles alternatifs et l’extrapolation précise à travers les types

de cellules et les matériaux de substrat fournissent des informations supplémentaires sur le

système cellulaire, révélant des informations au-delà de l’analyse TFM. Outre le fait qu’elle

ouvre de nouvelles voies pour l’étude de la mécanique cellulaire, cette étude constitue un

excellent exemple de modélisation et d’étude de systèmes physiques à l’aide de DL à partir

de données expérimentales.
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Chapter 1

Introduction

This thesis explores modeling a physical system with Deep Learning (DL) by investigating

the experimental case of cell contractility. The goal is to develop a DL approach that

infers cell traction from experimentally measured cell shapes. This approach offers a simpler

and more robust alternative to the current method for measuring cell traction, Traction

Force Microscopy (TFM). Challenges faced by TFM are addressed by this approach. The

mathematics, mechanics, biology, and algorithms behind TFM and cell contractility are

studied. The outcomes of this approach and their implications are interpreted in the context

of this approach and modeling physics with DL in general.
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1.1 Thesis organization

This manuscript-based thesis comprises four chapters. Chapter 1 provides an overview of

the thesis and enters the case study from the angle of TFM. Chapter 2 is the manuscript in

which a DL approach modeling cell contractility is developed. Chapter 3 further discusses

the mathematics, mechanics, and algorithms behind the system of a cell and its underlying

substrate, the properties of the system and data, and their impact on the design of DL

methodologies. Chapter 4 concludes the thesis and suggests future directions.

1.2 Traction Force Microscopy

Cell contractility is essential in a wide array of biological processes such as differentiation

[Yim and Sheetz 2012] and tissue development [DuFort et al. 2011], as well as homeostatic

functions including wound healing [Li and Wang 2011], heart contraction [Münch and

Abdelilah-Seyfried 2021; Pasqualini et al. 2018], and cell division [Lesman et al. 2014;

Taneja et al. 2019]. Moreover, abnormal contractile phenotypes appear in an

ever-expanding array of diseases, such as cancer [Kumar and Weaver 2009] and asthma

[Berair et al. 2013; Ram-Mohan et al. 2020]. In addition to being a potential biomarker for

various diseases, contractility is also a key factor mediating other well-recognized

mechanobiological processes, including stretch-activated ion channels [Ellefsen et al. 2019],

nucleus-mediated mechanotransduction [Elosegui-Artola et al. 2017], modulation of cell
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stiffness [Chowdhury et al. 2021], and extracellular matrix rigidity sensing [Doss et al.

2020; Yim and Sheetz 2012]. Given the clear importance of cell contractility in physiology

and pathology, this has driven an explosion of innovative methods to quantify these forces

in different contexts. Particularly, cell traction forces - the mechanical interactions between

cells and their underlying substrate - have been widely accepted as a metric to quantify cell

contractility. Traction forces were first observed on and calculated from the wrinkling of

thin, silicone rubber films [Harris et al. 1980; Lee et al. 1994]. This method lacked precision

due to topography changes during wrinkling and inconsistencies in said films sticking or

slipping. Later, silicone micropost arrays were employed to calculate traction forces from

the bending of cell-actuated microposts [Tan et al. 2003]. This approach also presents

limitations including a prescribed adhesion area and cell-induced substrate deformations

being limited by the bending limit of the microposts. Additionally, no force is transmitted

through the discrete micropost array.

The current gold-standard biophysical technique used to quantify cell contractility is

TFM. In brief, TFM generally quantifies traction stress exerted by cells on their

surroundings by measuring cell-induced deformations on continuous substrates of known

stiffness. Substrate deformations can be readily obtained as a displacement vector field by

applying cross-correlation algorithms, such as Particle Image Velocimetry (PIV), on paired

images of the substrate with and without the deformations [Adrian 1984; Keane and

Adrian 1993; Raffel et al. 1998; Stamhuis and Videler 1995; Willert and Gharib 1991].
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Typically in TFM, cells crawl on 2D substrates. This setting makes a 2D in-plane

displacement field sufficient to recover in-plane traction stresses, providing a convenient

solution in terms of experimental complexity and compatibility with lab-standard

microscope imaging. Over the last three decades, a variety of TFM algorithms have been

developed to solve the problem globally or locally. The global approach addresses the

vector fields of traction and displacement. Often, the Green’s function, which defines the

relationship between the vector fields, is used. In 1999, Dembo and Wang initially solved

the traction on a mesh over the cell area by Boundary Element Method (BEM) with

Bayesian likelihood [Dembo and Wang 1999]. In 2001, Balaban et al. used Singular Value

Decomposition (SVD) without a mesh [Balaban et al. 2001; Schwarz et al. 2002]. Around

the same time, Butler et al. proposed Fourier Transform Traction Cytometry (FTTC) that

significantly reduced the computational cost by taking the Fourier Transform (FT) of the

entire problem and solving the problem in the frequency domain [Butler et al. 2002].

Taking the global approach without the Green’s function, in 2009, Hur et al. calculated the

traction by Finite Element Analysis (FEA) [Hur et al. 2009, 2012]. Alternatively in a local

view, by considering only the constitutive relation between strain and stress, rather than

the vector fields, the calculation was done with 3D displacement [Maskarinec et al. 2009;

Toyjanova et al. 2014].

Although TFM has been implemented with a diversity of methods, the vast majority of

the algorithms take the global approach and share a common fundamental challenge: the
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”ill-posed” inverse problem of calculating the traction vector field from the cell-induced

substrate displacement vector field. Problematically, the calculation is extremely sensitive

to noise in the displacement data, which is an intrinsic property of the ill-posed problem.

To mitigate potential noise-generated error, regularization has been added to the traction

computation [Brask et al. 2015; Colin-York et al. 2016; Han et al. 2015; Huang et al. 2019;

Legant et al. 2010; Sabass et al. 2008; Schwarz et al. 2002; Suñe-Auñón et al. 2016, 2017;

Tanimoto and Sano 2012; Tikhonov et al. 1995]. Instead of an exact solution accounting

for both the actual displacement and the noise, regularization promotes a solution

corresponding to a “more regular” or “simpler” part of the displacement data based on

assumptions about the problem, as opposed to the “irregular” or “complex” contribution of

the noise. Reasonably, the nature and amount of the applied simplification or “regularity”

could significantly affect the result. Therefore, regardless of the algorithm, the fundamental

challenge of using TFM lies in the application of the appropriate noise-management

strategy – specifically, the regularization and associated parameters. The selection of the

strategy depends on specific experimental condition and requires additional expertise in

math and computer science. Accordingly, while the noise-management strategies continue

to be proposed for improving TFM practices, these improved techniques are seldomly

implemented to their full effect across the TFM community where to date the choice of

strategy can still be somewhat arbitrary, thus impairing quantitative reproducibility across

different studies [Brask et al. 2015; Colin-York et al. 2016; Han et al. 2015; Huang et al.
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2019; Legant et al. 2010; Sabass et al. 2008; Schwarz et al. 2002; Suñe-Auñón et al. 2016,

2017; Tanimoto and Sano 2012]. A lack of standardized implementation of TFM creates

major obstacles in the advancement of cell force studies and general mechanobiology.

Despite the importance of technique fundamentals, the mathematical components of

TFM and its associated noise-management techniques are often only superficially discussed

in papers that adopt them for their analysis. This drift in descriptive rigor has

progressively obscured the functional consequences that certain analysis decisions may

entail. Even in existing TFM review articles, the math components and noise management

are often presented in an inaccessible mathematical level or without enough context for the

reader to make informed alterations to their TFM workflow. In pursuit of an optimized

and perhaps standardized implementation of TFM that will support increasing

mechanobiology studies, there is a growing need for increased literacy among TFM users

for the technique more than ever. Therefore, the mechanical and mathematical core of

TFM is explained by this thesis in an intuitive fashion. The goal is to enable users to

discern the functional outcomes or pitfalls of the various TFM implementations seen

throughout literature and to provide insight on best practices of TFM.

1.2.1 The mechanics behind TFM

In crawling cell motility, a cell adheres to and pulls the underlying substrate via focal

adhesions. In TFM, while the cell usually crawls on the 2D flat surface of the substrate,
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the pulling exerts 3D force, creating stress and deformation throughout the substrate. The

stress and deformation follow two rules. First, because the acceleration of the cell is small

enough to be ignored, the substrate is assumed to be in mechanical equilibrium where

forces are balanced throughout. The stress can be considered to balance everywhere in the

substrate, as described by the divergence of the stress tensor:

ρα = dF
dV

= ∇ · σ =



∂σ11
∂x1

+ ∂σ21
∂x2

+ ∂σ31
∂x3

∂σ12
∂x1

+ ∂σ22
∂x2

+ ∂σ32
∂x3

∂σ13
∂x1

+ ∂σ23
∂x2

+ ∂σ33
∂x3


= 0 (1.1)

where ρ is the density of the substrate; α is the acceleration of a point in the substrate;

F is the force at a point in the substrate; V denotes volume; σij is a stress component,

that resides on dimension xi and is parallel with axis xj, of a stress tensor σ (Fig. 1.1).

Second, the stress and deformation are bound by the constitutive relation of the material

of the substrate. This relationship resembles the relation between force and displacement

of a linear spring under compression or extension, as described by Hooke’s law F = kx. In

experiments, the substrate, often a continuous isotropic linearly elastic material, follows a
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similar relation, generalized from Hooke’s Law:

σ =



σ11

σ22

σ33

σ23

σ13

σ12



= Cε = E

(1 + ν)(1 − 2ν)



1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





ε11

ε22

ε33

2ε23

2ε13

2ε12



(1.2)

where ε is a strain tensor, constructed in the same way as σ (Fig. 1.1); C is a stiffness

tensor. Strain, a measure of deformation, is related to the gradient of the displacement. The

stiffness tensor C defines the material properties of the substrate and maps the strain tensor

to the stress tensor.

The stress on the surface is traction:

T =



T1

T2

T3


= σn =



σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33





n1

n2

n3


(1.3)

where T is a traction vector and n is an outward unit normal vector to the surface of the

substrate. In the case of a 2D substrate, n = [0 0 1]′ is the out-of-plane direction. As the

surface not in contact with the focal adhesions is free, the traction vector field is only non-
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Figure 1.1: A stress tensor fully defines the state of stress at a point. σij , a component
of a stress tensor, is on dimension xi and along axis xj .

zero at the focal adhesions. Importantly, non-zero traction at any location contributes to

the deformation throughout the entire substrate, with the degree of contribution depending

on factors such as the material properties of the substrate and the relative location of the

traction. In other words, while the tractions are spatially discrete, the displacement of the

substrate at any location is a function of the entire traction field. The relation between

the traction and displacement is linear and can be written in the form of a convolution or

Fredholm integral equation of the first kind:

u(r) = (G ∗ T)(r) =
∫

G(r − r′)T(r′) dr′ (1.4)

where u(r) is a displacement vector at a point r on the interface; T(r′) is the traction vector

at a point r′; G is a Green’s function or Green’s tensor (Fig. 1.2).
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Figure 1.2: The relationship between traction and displacement is defined by a
Fredholm integral equation of the first kind. ri and r′

j are points in the vector fields.

G serves as a linear map from T to u and defines the relation between the displacement

and traction. Therefore, the Green’s function depends on the experimental setups,

incorporating factors such as the topography, thickness, linearity, and the (an)isotropy of

the substrate. Given such conditions, the function can be derived with the constitutive

relation of the substrate material and Eq. (1.1) [Landau and Lifshitz 1986]. Particularly

for elastic substrates under small deformation, the Green’s function can be derived through

the theory of elasticity, with Eq. (1.1) and (1.2), and boundary conditions such as zero

force or displacement on the bottom and sides of the substrate [Landau and Lifshitz 1986].

Most commonly, TFM experiments use “ideal” substrates that are flat, thick,

homogeneous, isotropic, and linearly elastic. In this case, the Green’s function is the

solution of the Boussinesq problem, i.e. the stress in an isotropic linearly elastic half-space
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under a point-source load [Boussinesq 1885; Landau and Lifshitz 1986; Schwarz et al.

2002]. Although the out-of-plane stress has been shown to be significant in some cases, the

out-of-plane traction and displacement are often ignored [Brask et al. 2015; Butler et al.

2002; Dembo and Wang 1999; Huang et al. 2009; Hur et al. 2009, 2012; Notbohm et al.

2012; Sabass et al. 2008; Schwarz and Soiné 2015]. By neglecting the out-of-plane

components and thus reducing T and u to 2D vector fields, the Green’s function for this

standard TFM experimental condition is accordingly reduced to this 2D function:

Gin-plane(r) = 1 + ν

πEr3

(1 − ν)r2 + νr2
x1 νrx1rx2

νrx1rx2 (1 − ν)r2 + νr2
x2

 (1.5)

where r = (rx1 , rx2) and r =
√

r2
x1 + r2

x2 is the distance from the origin to r; ν is the Poisson

ratio; E is Young’s modulus. In Eq. (1.4), r − r′ in G(r − r′) is the relative location of r to

r′. Noticeably, Gin-plane spatially decays by a factor of 1
r
, making the displacement resulting

from a point traction also decay by a factor of 1
r
.

Eq. (1.4) shows the causal process of the interaction between the traction and

displacement and defines the forward problem: u(r) at any point r combines all the

information from the entire field of T through the integration with G. However, TFM

addresses the inverse problem that T needs to be calculated from u through G.
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1.2.2 Strategies employed by TFM algorithms

TFM algorithms attempt the problem with either a global or a local view. In the global view,

the Green’s function maps the traction field to the displacement field, so Eq. (1.4) needs

to be inverted to calculate the traction. This inversion creates a notorious ill-posed inverse

problem. In the local view, the ill-posed inverse problem is avoided, but additional data

needs to be acquired and processed, requiring less accessible experiments and computational

resources. Generally, TFM algorithms take one of three strategies, two of which take the

global view.

First, globally, with a Green’s function, Eq. (1.4) can be inverted. As one of the first

attempts employing this approach, the inverse problem was solved using BEM with Bayesian

likelihood [Dembo and Wang 1999]. Later, SVD was employed with L2 regularization and

optionally the location of focal adhesions to handle the ill-posedness [Balaban et al. 2001;

Schwarz et al. 2002]. A discretized 2D Green’s function is a 2D matrix. Because the Green’s

function decays slowly, the function results in a very large matrix for every point in the

displacement field. With the size of the displacement field, every matrix must be inverted to

solve the traction, making the calculation computationally expensive and slow [Butler et al.

2002]. This computational challenge, however, can be resolved via an FT approach: the

convolutional equation in real space becomes multiplication in Fourier space, annulling the

need for the inversion of large matrices, leading to a new computationally efficient approach,

FTTC [Butler et al. 2002]. While in the original implementation FTTC did not include
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regularization due to the ideal data used, regularization is necessary in many cases and can

be applied in the Fourier domain [Suñe-Auñón et al. 2017].

Second, still globally, when the Green’s function is not known, the same linear system

described by Eq. (1.4) can be solved as a boundary value problem by FEA, following Eq.

(1.1), (1.2), and (1.3). By using the surface displacement and the assumption of zero-stress

beyond the region of interest as boundary conditions, along with the substrate material

properties, the stress distribution in the entire substrate can be calculated [Hur et al. 2009,

2012]. As this approach still solves the same inverse problem, the ill-posedness is still

implicitly faced. Moreover, due to the technical complexity of FEA, this approach is more

difficult to implement. In addition to solving entirely with FEA, hybrid methods can use

FEA to calculate the unknown Green’s function and then with the Green’s function in

hand, methods in the first strategies, such as SVD with L2 regularization, can be used to

calculate the traction [Legant et al. 2010].

Finally, the third approach takes the local view by using Eq. (1.2), a 3D displacement

field, and Hooke’s law for small strain or Neo-Hookean model for large strain [Maskarinec

et al. 2009; Toyjanova et al. 2014]. As the approach only deals with the local constitutive

relation, the ill-posed inverse problem is circumvented, and the computation is trivial.

Nevertheless, a 3D displacement field for depth near the surface of the substrate must be

measured to calculate the strain tensors, making this approach experimentally challenging

and computationally intensive [Maskarinec et al. 2009; Toyjanova et al. 2014]. Thus, this
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technique is relatively less common throughout literature compared to solving the ill-posed

inverse problem.

In summary, the FTTC approach is currently the fastest and easiest to use, but only

limited to experimental settings with known Green’s function, whereas the rest are slower

and require more expertise to use, but are flexible for different experimental settings.
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2.1 Abstract

Traction Force Microscopy (TFM) has emerged as a broadly applicable standard

methodology to measure cell-generated traction forces and their role in regulating cell

behavior. While TFM platforms have enabled many discoveries, their implementation

remains limited due to complex experimental procedures, specialized substrates, and the

ill-posed inverse problem where small high-frequency noise in the displacement severely

contaminates the traction. Here, we introduce Deep Morphology Traction Microscopy

(DeepMorphoTM), a Deep Learning (DL) alternative to quantify cell-generated traction

forces directly from the cell shape. DeepMorphoTM first infers cell-induced substrate

displacement solely from a shape sequence of a cell and subsequently computes cellular
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traction forces, thus avoiding the requirement of a specialized deformable fiduciary marked

substrate and simplifying the overall methodology, imaging, and analysis. We demonstrate

that DeepMorphoTM matches conventional TFM in result, while offering stability against

the biological variability in cell contractility for a given cell shape. As such, the inference

reduces variance in the quantification of cell contractility and potentially the need of

experimental replication. Without high-frequency noise in the inferred displacement,

DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the

consistency and accuracy of traction analysis. Moreover, the accurate extrapolation across

cell types and substrate materials suggests robustness of the methodology. Accordingly, we

present DeepMorphoTM as a robust yet simpler alternative to conventional TFM for

characterizing cellular contractility in 2D.

2.2 Statement of significance

Traction force microscopy has served as a gold standard for cell traction force measurement

in the field of mechanobiology. However, its experimental and analytical complications

have made its translation difficult in settings outside of specialized biophysics labs.

DeepMorphoTM, a readily implemented alternative, uses deep learning to accurately infers

cell-generated displacement and traction directly from a shape sequence of a cell. This

approach demonstrates stability against the biological viability in cell contractility for a

given cell shape, reducing variance in contractility analysis. The inferred displacement is
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also free from high-frequency noise that plagues the computation of traction, yielding

stable and consistent traction quantification. DeepMorphoTM applies accurately across cell

types and substrate materials, suggesting common mechanics of cell contractility and

robustness of the methodology.

2.3 Introduction

Cells are sensitive to the mechanics imposed by their surrounding microenvironment. Cells

recognize microenvironment mechanical cues using traction forces generated by actomyosin,

and respond biologically in forms such as cell proliferation [Petridou et al. 2017], directed

migration [Ladoux and Mégé 2017; Van Helvert et al. 2018], and differentiation [Engler et al.

2006; Vining and Mooney 2017]. Correct recognition and transduction of such mechanical

cues are essential to health whereas defective responses are associated with diseases such as

cancer [Ingber 2003; Jaalouk and Lammerding 2009]. Hence it is critical to quantify cell

traction forces to understand how cells recognize and react to microenvironment mechanics,

as this measurement may open new avenues for disease diagnosis and specialized therapies.

Traction Force Microscopy (TFM) is a widely used technique for measuring cell traction

forces. TFM has characterized the roles of cell traction forces in regulating diverse

physiological and pathological processes in virtually all adherent cells, thus making traction

force measurements a critical aspect of studying biological behaviors and identifying

pathologies [Rokhzan et al. 2019; Wheelwright et al. 2018; Yoshie et al. 2018, 2019]. Useful
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as TFM is, its exploitation and implementation are limited by its own complexity. TFM

often utilizes protein-functionalized elastic substrates, often silicone or polyacrylamide,

containing submicrometer fluorescent beads acting as fiduciary markers to capture

cell-induced substrate deformations. A typical TFM experiment involves imaging the

substrate beads in the cell-contractile state, followed by the detachment of cells to image

the beads again to determine their positions in the unstressed state. The resulting two

images are analyzed to generate a displacement vector field, which along with known

mechanical properties of the substrates are used to calculate traction forces and cell strain

energy based on the theory of elasticity [Dembo et al. 1996; Butler et al. 2002; Dembo and

Wang 1999; Hur et al. 2009; Toyjanova et al. 2014].

Although TFM provides traction force measurements, a substantial complication in

many but not all [Banda et al. 2019; Bergert et al. 2016; Fu et al. 2010; Ghagre et al. 2021;

Ghassemi et al. 2012; Park et al. 2015; Plotnikov et al. 2012; Balaban et al. 2001; Tan et al.

2003] forms of this technique is the necessity to acquire a “null force” reference image to

quantify cell-induced bead displacements and subsequent traction force measurements.

This markedly complicates experimental procedures, imaging, and analysis, and it

precludes cellular postprocessing, such as immunofluorescence staining. Furthermore, the

calculation of the traction forces from the substrate displacements has also been a

fundamental challenge. Over almost three decades, a diverse variety of TFM algorithms

have been proposed, with the common approach calculating each traction vector from the
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entire displacement vector field [Dembo et al. 1996; Balaban et al. 2001; Butler et al. 2002;

Dembo and Wang 1999; Hur et al. 2009; Lee et al. 1994; Legant et al. 2010]. However, all

these approaches face the notorious ill-posed inverse problem in which the computation of

traction is extremely unstable. Small but high-frequency noise in the experimentally

measured displacement is amplified to significant perturbation in the traction, requiring

nontrivial measures to attempt stability [Brask et al. 2015; Huang et al. 2019; Schwarz

et al. 2002; Suñe-Auñón et al. 2017]. Alternatively, the traction can be calculated from

local strain tensors, which is a function of displacement gradient. Yet, leveraging the

constitutive relation between strain and stress requires three-dimensional displacement that

is difficult to acquire experimentally [Maskarinec et al. 2009; Toyjanova et al. 2014]. Thus,

the complex experimental procedure and computational drawbacks of TFM call for a more

streamlined and robust method to quantify cell traction forces.

From a material perspective, every cell and the underlying substrate is a mechanical

system obeying the laws of physics, including the conservation of momentum and

constitutive relations. Each component of the system possesses distinctive properties,

sustains loads, and contributes to cell deformation that ultimately manifests in the cell

shape. The shape of adherent cells is closely related to actin-cytoskeletal structure, cell

traction, and biological processes [Murrell et al. 2015; Oakes et al. 2014; Rape et al. 2011;

Tan et al. 2003]. For instance, many cells, when allowed to adhere and spread in 2D

without constraints, often reach an extended polygonal shape and form long and thick
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actin filaments, accompanied with increased traction forces. Irrespective of cell area, cells

with sharp vertices have been shown to apply large traction forces at vertices that effect

biological responses such as differentiation [Oakes et al. 2014; Rape et al. 2011; Tan et al.

2003]. Recently, analytical models have been proposed to calculate the traction forces from

the shape of a cell. For example, Oakes et al. modelled the cell as a thin homogeneous and

isotropic elastic film with line tension and homogeneous contractile pressure, and adhesions

as a uniform distribution of linear springs [Oakes et al. 2014]. Assuming mechanical

equilibrium, the force-balance model of the system is obtained by the principle of minimum

energy. Given the cell shape and properties of the system, the traction is calculated.

However, such analytical models depend on the detailed knowledge and unrealistic

assumption of the experimental system, lacking magnitude of traction and generalizability.

In this way, it is not possible to infer traction forces using cell shape alone.

Deep Learning (DL) algorithms are often used to learn complex parametrized models from

data. Recently, the downstream problem of computing the traction from deformed substrate

has been attempted with Deep Learning (DL) [Duan and Huang 2022; Wang and Lin 2021].

However, the learning algorithms can directly extract and exploit spatiotemporal features

from the cell shape sequences to approximate the mechanics of cell traction. In particular,

Convolutional Neural Networks (CNNs) excel at extracting local invariant features from

structured spatiotemporal data such as the shape of cell [LeCun et al. 1989]. One of the most

popular CNN architectures, U-Net, highlights the precise localization and high resolution in
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the construction of the output, making this design ideal for inferring field data for the cell

and substate [Ronneberger et al. 2015].

Here, we demonstrate Deep Morphology Traction Microscopy (DeepMorphoTM), a

Deep Learning (DL) approach that infers cell traction force solely from a shape sequence of

a cell, resulting in a stable, consistent, accurate, and dramatically simpler alternative to

TFM, without introducing additional experimental procedure or analysis. Examined under

a comprehensive set of metrics, DeepMorphoTM establishes the competence of Deep

Learning (DL) in modelling cell mechanics and inferring mechanical measurements in the

cell. Particularly, unlike individual experimental measurements, the deterministically

inferred result approximates an effective ensemble average that is significantly more stable

against the biological variability in cell contractility for a given cell shape, reducing

variance that may otherwise obscure patterns in data. Finally, evaluated with both

traction field and adhesion distribution, the extrapolation by DeepMorphoTM across cell

types and substrate materials suggests the learning of common mechanics of cell

contractility [Murrell et al. 2015; Oakes et al. 2014; Rape et al. 2011; Tan et al. 2003].
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2.4 Results

2.4.1 Substrate displacement and cell traction accurately inferred

from a shape sequence of a cell are stable against biological

variability in contractility for a given cell shape and high-

frequency noise.

A standard time-lapse TFM experiment with fluorescent cell imaging was performed to

obtain the bead and cell image sequences (Section 2.6). Substrate displacement and cell

traction were respectively calculated from the bead images with a Particle Image

Velocimetry (PIV) and a Fourier Transform Traction Cytometry (FTTC) algorithm as

described previously [Bauer et al. 2021; Liberzon et al. 2020; Thielicke and Sonntag 2021].

Without the need to address the noise in image segmentation (Fig. 2.8), the cell images

were segmented to extract the cell shapes, which were then represented as the Signed

Distance Functions (SDFs). SDFs are 2D scalar fields where each value in the field

represents the distance to the cell boundary and the geometry is implicitly represented as

the zero-level-set. Less affected by the biological variabilities in cell contractility for a given

cell shape, DeepMorphoTM deterministically and accurately infers the effective

ensemble-average displacement field at a time instance solely from a short sequence of cell

shapes through a U-NET style 2D CNN [Ronneberger et al. 2015]; then, a standard TFM
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Figure 2.1: A shape sequence of a cell reveals effective ensemble-average cell substrate
displacement through DeepMorphoTM, allowing the calculation of contractility. A.
Workflow of DeepMorphoTM. First, a short sequence of cell images is transformed to geometries
represented as SDFs. The SDFs are then fed into a U-NET style 2D CNN. Finally, the displacement
vector field at a time instance is inferred and the traction vector field is calculated from the inferred
displacement without the need of regularization. B. Example ground truth displacement and
traction demonstrate that DeepMorphoTM accurately infers the vector fields. Additionally, the
inferred traction contains less background noise than the ground truth. (Scale bar: 30 µm.) C.
Comparison between inferred and ground truth vector component for displacement and traction
indicates accurate inference in effective ensemble, as shown by the linear regression close to y = x.
The R2 values are lowered by the conflict between the biological variability in cell contractility
for a given cell shape in the ground truth measurement and the stability in the inference from
DeepMorphoTM. D. Comparison between inferred and ground truth RMSD, RMST, and strain
energy demonstrates good alignment between the inferred and ground truth mean displacement,
mean traction, and total strain energy per vector field, for cell with RMSD above 0.3 µm (red).
Noise in ground truth displacement of 0.1041 µm RMSD (Fig. 2.6B) significantly affected the fitting,
as is shown by linear fitting for all data (blue). (553 time instances, n=18.)
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algorithm, such as FTTC, without regularization stably computes the traction from the

inferred displacement [Butler et al. 2002] (Fig. 2.1A,B).

Notably, the traction is not inferred directly. To directly infer the traction, the neural

network needs to be trained on the traction measurement data. Problematically, the

computation of the ground truth is unstable, where bounded but high-frequency noise in

the displacement measurement can be amplified into unbounded perturbation that spreads

throughout the ground truth traction. As confirmed by an L-curve test, the ground truth

measurement forms an L-shaped curve that indicates instability (Fig. 2.6A). Usually,

regularization is applied to address this instability, but even with significant effort, the

recovered traction is not the exact true traction [Brask et al. 2015; Huang et al. 2019;

Schwarz et al. 2002; Suñe-Auñón et al. 2017]. Regularization relies on the information

about the data which is often not known definitively but rather assumed. The deviation of

the assumption from the truth not only hinders the noise from being removed correctly,

but also introduces bias to the computed traction. Furthermore, due to the lack of

standard procedure on regularization, the bias or error is inconsistent across studies, with

biased training data leading to inaccurate models and quantification.

To circumvent those issues, DeepMorphoTM does not directly infer the traction but

displacement. The displacement measurement usually does not contain significant artificial

bias or unbounded noise and thus makes good training data. More importantly, the

computation of the traction from the inferred displacement is stable. The stability arises
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from the limited presence of high-frequency noise in inferred displacement, as verified by an

L-curve test where the inferred displacement produces a roughly horizontal curve

(Fig. 2.6A). In other words, while experimentally collected displacement data contains

high-frequency noise that destabilizes the TFM computation and heavily contaminates the

traction, the low-noise inferred displacement mitigates the need for regularization and

avoids the accompanied problems, offering stability, consistency, and accuracy through

DeepMorphoTM.

In the CNN, the contracting encoder gradually extracts spatiotemporal features at

different levels from the input SDF sequence. The expanding decoder hierarchically

reconstructs the displacement field from the features and recovers the resolution of the

output. The skip connections directly pass the features at different levels from the encoder

to decoder to enhance the spatial precision of the displacement distribution. Highly

compressed scalar latent features are learned at the bottleneck to promote the learning of

global properties, such as the total momentum and energy of a cell. To counter the

variance in the data, an ensemble of five models were trained and combined by averaging

the output. To train each model, the original dataset was augmented by randomly rotating

or flipping each sample. The training was done by minimizing the mean over losses between

each inferred and ground truth displacement vector component, following L1 loss function:

L = |Ui − Ûi|
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where Ui and Ûi denotes ground truth and inferred displacement vector component.

Respectively, 903, 111, and 553 partially-overlapping cell sequences from 16, 6, and 18

different cells were used for training, validation, and testing.

DeepMorphoTM demonstrates great accuracy on spatial and global quantities, as well

as stability against the biological variability in cell contractility for a given cell shape. To

prevent the background vectors from diluting the evaluation of meaningful displacement

and traction, a strain-energy-derived weight was applied on each vector in the evaluations.

Because strain energy

U = 1
2V σϵ = 1

2
V

E
ϵ2 = 1

2
V

E
σ2

where V is volume; E is substrate Young’s modulus; σ is stress; ϵ is strain, the weight for

each vector was formulated to be the square of the greater norm between the ground truth

and inferred vectors, normalized by the sum of the weights per vector field:

wi = max(ni, n̂i)2∑n
i=1 max(ni, n̂i)2

where ni and n̂i are the norm of a ground truth and inferred vector respectively.

Accounting for spatial distribution, the comparison between the ground truth and inferred

vector components revealed a linear relation of approximately y = x, reflecting the high

accuracy of the inferred vector fields (Fig. 2.1C). Our deterministic model, by design, does

not incorporate the variance in the displacement and traction within and among cells of
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the same shape, so that the inference may be less affected by the biological variability,

possibly creating the spread of the data (Fig. 2.1C). Apart from the spatial distribution,

the average displacement and traction per vector field and strain energy were also

evaluated. The field averages were quantified by Root Mean Squared Displacement

(RMSD) and Root Mean Squared Traction (RMST). The noise level was quantified in

RMSD to be 0.1041 µm from the displacement measured from separately acquired bead

image pairs of the same cell-free stationary substrate areas (Fig. 2.6B). Despite the

perturbation by noise by up to approximately 35%, linear regression on inference vs.

ground truth for cells with RMSD over 0.3 µm yielded a fitted line close to y = x for

RMSD, RMST, and strain energy, indicating the accurate inference of the field averages

and strain energy (Fig. 2.1D). Like in the spatial distribution, the variance in the field

averages suggests potential biological variability in contractility for a given cell shape, that

is not modelled by our approach. Furthermore, DeepMorphoTM demonstrated excellent

temporal consistency through the course of cell locomotion (Supplemental Video).

2.4.2 Variation in the experimental measurements of square

patterned cells displays biological variability in

contractility for a given cell shape.

Even under carefully controlled experimental conditions, such as culture media and

temperature, cells with the same shape exhibit nonidentical, although similar, substrate
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Figure 2.2: Biological variability is prominent in the contractility of square patterned
cells. A. Two cells confined on square shaped adhesive protein patterns have nearly identical shapes
but generate evidently different substrate displacement and traction. B. and D. The norm Pearson
correlation map shows the similarity in the displacement and traction norm fields respectively
between the two patterned cells. High correlation colocalized with large displacement and traction.
C. and E. Vector difference, norm deviation, and angle deviation map show the variation between
respectively the displacement and traction created by two patterned cells. The variation comes
from the magnitude rather than the direction. (Scale bar: 15 µm.)
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displacement and traction [Bastounis et al. 2011; Ghabache et al. 2021; Inagaki and

Katsuno 2017]. Like other heterogeneous and stochastic behaviors of the cell, this

biological variability in cell contractility for a given cell shape may obscure experimental

measurements, necessitating replications to uncover the trend behind widely dispersed

data. To be robust against the biological variability, DeepMorphoTM takes a deterministic

approach that distills the effective ensemble-average contractility from the experimental

measurements, reducing variance in the collected data and potentially the need for

experimental replications. With this design, however, the inferred result is not identical to

the ground truth which contains the biological variability. Therefore, the quantification of

the biological variability is required to estimate the contribution of this variability in the

discrepancy between individual inference and ground truth. The closer the variability to

the discrepancy, the more accurate DeepMorphoTM possibly is in inferring the effective

ensemble average. As an initial examination of the biological variability, experimentally

measured displacement and traction from square adhesively patterned cells with nearly

identical shapes were respectively compared to each other (Fig. 2.2A). The norm Pearson

correlation map illustrates structural similarity in the vector norm fields between two

patterned cells (Fig. 2.2B,D). Expectedly, high correlation between cells colocalizes with

large displacement and traction. Vector difference, norm deviation, and angle deviation

map uncover the variation between respectively the displacement and traction created by

two patterned cells (Fig. 2.2C,E). At high displacement and traction area, while the angle
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deviation is negligibly small, the vector difference and norm deviation are nontrivial and

similar in magnitude, suggesting the biological variability to be primarily in stress

distribution but not mechanical balance.

2.4.3 The discrepancy between inference and ground truth

potentially arises from biological variability in contractility

for a given cell shape, with the temporal information in

cell shape altering the inference.

While DeepMorphoTM is accurate in effective ensemble, the discrepancy between

individual ground truth and inference exists. The discrepancy is expected to be primarily

contributed by the biological variably in contractility for a given cell shape. To quantify

this biological variability for patterned cells and discrepancy for nonpatterned cells, four

different metrics were employed: the weighted Norm Pearson Correlation (wNPC), the

weighted Vector Deviation (wVD), the weighted Absolute Norm Deviation (wAND), and

the weighted Angle Deviation (wAD). wNPC measures the linear correlation between the

norm of two vector fields and reveals the similarity in the structure or relative distribution

of the norm of the vectors. The value scales from -1 to 1, where 1 indicates identical

structure; 0 indicates no similarity; -1 indicates inversely related structure. wVD is the

vector distance between two vector fields, contributed by the difference in the magnitude
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Figure 2.3: The inference and ground truth differ approximately by the extent of the
biological variability for a given cell shape. wNPC (A, C), wVD, wAND, and wAD (B, D)
among displacement (A, B) and traction (C, D) respectively of patterned cells (red) and those
between nonpatterned inferred and ground truth (blue). Each box displays the median as the
central mark, while the lower and upper edges represent the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme nonoutlier data. Outliers are individually plotted using
△ marker. The metrics on patterned cells quantify the biological variability in cells with a square
shape and are considered the baseline to the evaluation of nonpatterned ground truth and inference.
The inference by DeepMorphoTM is designed to be stable against biological variability and hence
deviates from the ground truth by at least the extent of the biological variability on average.
Therefore, by meeting the baseline, the evaluation indicated DeepMorphoTM to be accurate in
effective ensemble. (Pat. Cell: 126 data pairs, n=7. Non-pat. Cell: 553 time instances, n=18.)
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and direction. wAND shows the absolute deviation in magnitude between two vector fields.

wAD denotes the difference in the direction between two vector fields and scales from 0° to

180°.

To generate the biological variability baseline for the evaluation between the ground

truth and inference, the displacement and traction of patterned cells were first augmented

by rotation and flipping, and then compared, with the four metrics, respectively between

each two cells. The evaluation then followed the same metrics, with the outcome bordering

the biological variability baseline (Fig. 2.3). Particularly, wAD is negligibly small for both

the baseline and evaluation. This result suggests that DeepMorphoTM inference may differ

from experimental measurements predominately by the extent of the biological variability

for a given cell shape; other source of the deviation, including the error in the inference and

background noise in the ground truth measurement, may be small. Notably, for both the

patterned cells in the baseline and nonpatterned cells in the evaluation, some comparison

yielded low and even negative wNPC. These outliers may be attributed to the biological

variability that is apparent in square-patterned cells, wherein cells may have metastable

states of contractility across multiple independent contractile axes, allowing weakly

correlated distributions of traction at load-bearing adhesions (Fig. 2.7). The prominence of

this effect in the patterned cells might also cause the baseline to be higher in wVD and

wAND. wVD and wAND were also affected by the moduli of the substrates, where the

baseline was 20 kPa and the evaluation 25 kPa. Moreover, DeepMorphoTM is also stable



2. Inferring Cellular Contractile Forces and Work using Deep Morphology
Traction Microscopy 34

against noise in segmentation, while the accuracy of segmentation alters the geometry and

the inference (Fig. 2.8).

Interestingly, altering temporal information in the input during training or inference

implies the nontrivial role of the temporal evolution of cell geometry in cell contractility.

At inference, feeding the input sequence in reverse to a model trained on forward sequences

results in lower accuracy, suggesting irreversible cell deformation due to contractility

(Fig. 2.9). Moreover, models trained on greater input time span and time resolution yield

higher accuracy particularly in wNPC and wAD (Fig. 2.10). These outcomes suggest that

the evolution of cell geometry reflects the dynamical process of contractility that exists

beyond the time instance at which the contraction happens [Sigaut et al. 2021].

Although the inferred displacement does not contain significant high-frequency noise to

trigger the ill-posedness, the ground truth and baseline displacement does, necessitating

regularization. In this work, the noise was assumed to be separable from the true

displacement in the frequency domain, rationalizing the usage of the ideal lowpass filtering

on the ground truth displacement data. To reduce computational cost, although possibly

different for each displacement data, the optimal frequency threshold per sample was

assumed to not vary substantially in each dataset; therefore, a single threshold was

determined by the L-curve test and applied to an entire dataset (Fig. 2.6A). Further, to

demonstrate the influence of the assumption on the frequency profile of the displacement

data, the same evaluation was repeated with the traction computed with a wide range of
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regularization thresholds (Fig. 2.11).

2.4.4 Extrapolation by DeepMorphoTM across cell types and

substrate materials implies common mechanics of cell

contractility.

DeepMorphoTM models the mechanical relationship between cell shape and contractility.

The underlying mechanics of cell contractility is expected to be similar across cell types

and substrate materials [Murrell et al. 2015; Oakes et al. 2014; Rape et al. 2011; Tan et al.

2003]. If so, the methodology and even inference of DeepMorphoTM should be

generalizable. Specifically, while the magnitude of the inferred vectors varies, the relative

spatial distribution is expected to be consistent to some degree. To confirm this

generalizability, the traction of PC3/PC3-AR cells in different media testosterone

concentrations on 12 kPa PDMS substrates and CHO-K1 cells on glass substrates were

inferred with DeepMorphoTM trained on 3T3 cells on 25 kPa substrate. As expected, the

spatial distribution and orientation of the inferred traction is consistent with the

experimentally measured measurement for PC3/PC3-AR cells (Fig. 2.4A,B). Regardless of

the cell types, because DeepMorphoTM was trained on a stiffer substrate of 25 kPa, the

inferred displacement is lower than the measured displacement in a 12 kPa substrate by a

ratio of 12 kPa / 25 kPa (Fig. 2.4C). If the inferred displacement is näıvely scaled by 25

kPa / 12 kPa, the magnitudes of the inferred and measured traction also match
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Figure 2.4: DeepMorphoTM trained on 3T3 cells on 25 kPa PDMS extrapolates
traction for cells of untrained types, treatments, and substrate modulus. A. A PC3
cell under 1nM testosterone on 12 kPa PDMS with the corresponding ground truth traction and
the traction inferred by the model trained on 3T3 cells on 25 kPa PDMS. While the magnitude
of the ground truth and inference is different, the spatial distribution matches well. As a typical
case, noise in the ground truth can be difficult to suppress. (Scale bar: 25 µm.) B. wNPC and
wAD of the PC3/PC3-AR extrapolation test (red) and 3T3 in-distribution evaluation (blue). The
extrapolation yields similar performance as interpolation. C. Inferred vs. PC3/PC3-AR 12kPa
traction vector component. The inference is consistently lower in magnitude as reflected by the
slope of the linear fitting. The weighted Pearson correlation and R2 are similar to that of the
in-distribution evaluation dataset (Fig. 2.1C). D. Scaled inferred vs. PC3/PC3-AR 12kPa traction
vector component. Scaling the inferred displacement by a constant factor of 2.08 to compensate
for the difference in substrate stiffness between 12 and 25 kPa results in the scaled inferred traction
and a fitting of approximately y = x. (396 time instances, n=27.)
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(Fig. 2.4D). The inferred traction was also overlaid with adhesions of CHO-K1 cells,

revealing that while the adhesions did not fully colocalize with the traction, the traction

colocalized with the adhesions (Fig. 2.5, 2.12). As expected, traction cannot exist beyond

the adhesions yet not all adhesions are load-bearing. Additionally, the resolution of the

inferred traction did not match that of the adhesions, due to the lower resolution of the

ground truth measurement used in training and thus of the inference as well. To ensure

comparable resolution, the adhesions were Gaussian blurred by a series of extent

(Fig. 2.12A). Pearson correlation between the norm of the traction and the adhesions were

calculated (Fig. 2.12B). The correlation was weighted by the square of the inferred

traction, so that the comparison highlighted adhesions that were inferred to be

load-bearing (Fig. 2.12C).

Figure 2.5: Traction inferred by DeepMorphoTM trained on 3T3 cells colocalizes with
the adhesions of cells of an untrained type. A. Inferred traction and segmented adhesions
overlays suggest correlation between traction and adhesions across cell types. B. Pearson correlation
maps between the inferred traction and segmented adhesions highlight that traction colocalizes with
adhesions at cell extrusions. (Scale bar: 20 µm.)
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2.5 Discussion

In this study, substrate displacement and cell traction are accurately inferred solely from a

cell shape sequence with the DL method DeepMorphoTM. Biological variability under

controlled experimental settings injects variance to data and impedes the discovery of the

meaningful patterns. The deterministic approach models an effective ensemble average of

the experimentally measured data, significantly weakening the biological variance in

quantification. However, this design also introduces discrepancy between the inference and

ground truth. This added discrepancy does not indicate error in the inference, but rather

suggests the stability of DeepMorphoTM against the biological variability in contractility

for a given cell shape. As such, our method accurately infers the effective ensemble-average

vector fields and global quantities. Further, without high-frequency noise in the inferred

displacement, the need for regularization in the computation of traction, which challenges

traditional TFM algorithms, was negated. Finally, the extrapolation by DeepMorphoTM

across cell types and substrate materials matches the experimentally measured traction

fields and adhesion distribution, implying the modelling of common mechanics of cell

contractility.

The common approach taken by traditional TFM algorithms through the Green’s

function or finite element analysis faces an ill-posed inverse problem [Huang et al. 2019;

Schwarz et al. 2002; Suñe-Auñón et al. 2017]. The displacement is a Fredholm integral of

the first kind of the traction. The computation of the traction exploits the inverse relation
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involving effectively the displacement gradient. From a mechanical perspective,

displacement itself is not directly related to traction, but through displacement gradient,

which is associated with strain and then stress. Therefore, the magnitude of the calculated

traction depends on the spatial frequency of the displacement, but not on the magnitude of

the displacement. In this way, however small in magnitude, noise in the displacement with

high spatial frequency translates to large error in the traction. To compound the issue, the

slowly decaying Green’s function propagates every local noise to the entire traction field,

rendering the computation highly unstable. As the common resort, regularization has been

employed to address the instability. However, regularization itself presents challenges.

Accurate prior knowledge about the displacement and traction needs to be known in

advance, and then appropriate regularization strategy should be employed accordingly.

Specifically, because each regularization method addresses a specific type or part of noise,

to perfectly regularize the computation of traction: all the assumptions about the

displacement and traction must be correct; the noise must be separable from the true data

based on these assumptions; all types of noise are addressed by the regularization methods.

Guaranteeing all these requirements is by no means trivial if possible at all. Furthermore,

each computation requires a one-off effort to address the above challenges, creating an

additional challenge of high computation cost and low applicability, especially for large

dataset required by DL. For this reason, a single frequency threshold was applied to the

entire dataset to calculate the ground truth traction. Additionally, due to the lack of closed
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form solution, many regularization methods adopt optimization-based algorithms that also

have high computational complexity [Huang et al. 2019; Suñe-Auñón et al. 2017]. Avoiding

the ill-posedness and all the challenges coming with it, DeepMorphoTM utilized solely cell

shape to infer the displacement rather than traction. The reliability and accuracy of the

training data is hereby not limited by the quality of the computation of the measured

traction. Although the inverse problem is faced again in the computation of the traction

from the inferred displacement, the ill-posedness and instability are resolved by the inferred

displacement, as proven by the L-curve test (Fig. 2.6A).

Under a carefully controlled setting, biological variability injects variance or fluctuation

to and obscure patterns in the data, including the relationship between cell shape and the

mechanical profile of the cell. This variability may be heterogeneous and/or stochastic and

live among or within individual cells. However, were the variability in contractility given a

cell shape to be accounted for, the heterogeneity may be modelled deterministically with

additional input information; otherwise, generative or probabilistic approaches may be

used to address both heterogeneity and stochasticity. Possible sources of the variability

include the fluctuation of the traction, the spatiotemporally heterogeneous mechanical

properties of the cell material due to discrete cytoskeletal structures, and the reduction of

3D volume to 2D shape in measurement. Firstly, while inertia effects are negligibly small in

the cell system, thereby making it highly overdamped, underdamped wave-like fluctuations

of the traction have been observed, suggesting active biological processes to generate such
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fluctuations [Bastounis et al. 2011; Ghabache et al. 2021; Inagaki and Katsuno 2017].

Secondly, the interior mechanical properties of cells, such as local modulus and viscosity,

may vary among cells and over time, altering the relationship between the shape and

forces. Thirdly, while the cell is a 3D mechanical system, our current method only utilized

2D shape information, which could simply be incomplete. Employing input of 3D cell

geometry could remove the variability from this source with additional experimental and

computational cost. Accordingly, free from additional experimental effort, generative or

probabilistic approaches may be preferred for utility.

Despite the biological variability in the training data, DeepMorphoTM accurately

distills the relationship between cell shape and traction. This relationship follows the laws

of physics, and thus cell shape is fundamentally driven by mechanics. For instance, the

lower accuracy from feeding the input sequence in reverse during inference fits the

expectation that the deformation and locomotion of cells are an irreversible process with

viscous energy dissipation (Fig. 2.9); however, the different yet similar accuracy for models

taking input of different time span and time resolution hints at the quasi-static nature of

biological processes (Fig. 2.10). Regardless of cell type or substrate material, cells with a

certain shape are expected to exhibit similar spatial distributions of traction including the

direction, because of the common mechanism of contractility and mechanical balance

[Murrell et al. 2015; Oakes et al. 2014; Rape et al. 2011; Tan et al. 2003]. Indeed, the

inferred traction matched the experimental measurement simply after scaling the inferred



2. Inferring Cellular Contractile Forces and Work using Deep Morphology
Traction Microscopy 42

displacement and colocalized with the adhesions of cells of untrained types on untrained

substrates. Further, this common fundamental mechanical relationship also suggested great

generalizability and potential of DeepMorphoTM that this DL approach could easily be

trained and applied to different cell types and substrate materials. We believe that

DeepMorphoTM offers researchers who do not have access to TFM a novel and extremely

simplified approach to incorporate contractility measurement into their studies. Even

beyond current studies, valuable insights can be easily gained from historical cell image

data through retrospective mechanical analysis with our method.

2.6 Materials and Methods

2.6.1 Synthesis of Compliant Silicone Substrates for TFM

To perform TFM experiments, polydimethylsiloxane (PDMS) substrates of 12 kPa, 20 kPa,

and 25 kPa were prepared as described previously [Ghagre et al. 2021; Yoshie et al. 2018,

2019]. In brief, PDMS solutions were supplied by mixing same weight ratio of component

A and B of commercial PDMS (NuSil® 8100, NuSil Silicone Technologies, Carpinteria, CA)

with respectively 0.36%, 0.45%, and 0.48 % w/w of Sylgard 184 PDMS crosslinking agent

(Dimethyl, methyl hydrogen siloxane, which contains methyl terminated silicon hydride

units) to obtain substrates with a modulus of 12 kPa, 20 kPa, and 25 kPa. Then, 170 µl of

each solution was applied to the clean 22×22 mm glass coverslips and cured at 100 °C for
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two hours. For traction force microscopy, prepared PDMS substrates were coated with 1

µm thick layer of fiduciary particles using spin coater (Laurell Technologies, WS-650 Spin

Processor) and incubated at 100 °C for an hour.

In order to covalently bind fibronectin to PDMS substrates, Sulfo-SANPAH

(ThermoFisher Scientific) solution dissolved in 100 mM HEPES was added on top of the

substrates and they were exposed to UV for 2 minutes. After UV activation,

Sulfo-SANPAH solutions were removed and 5 µg/ml fibronectin (Sigma) solution diluted in

PBS was added on top of the samples, followed by incubation in room temperature for 9-12

hours. Finally, fibronectin solutions were removed, and substrates were rinsed with PBS

three times. After UV sterilization of coated substrates, trypsinized cells were seeded on

top of the samples and they were allowed to adhere overnight.

2.6.2 UV based Micropatterning of proteins on Silicone

Substrates

To measure biological variability, we adhesively micropatterned silicone substrates with

square shapes using a UV-patterning system (PRIMO, Alveole Lab, Paris, France). PDMS

substrates were incubated with poly-L-lysine (PLL; Sigma) solution (5 mg/mL) prepared

in 0.1 M HEPES buffer (pH 8.5) for 1 h at room temperature, followed by rinsing with

Milli-Q water. Positively charged PLL electrostatically adsorbs onto the negatively charged

surface of silicone substrates and allows protein attachment after printing. The substrates
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were then incubated with polyethylene glycol succinimidyl valeric acid (PEG-SVA; Laysan

Bio) prepared in 0.1 M HEPES buffer (pH 8.5) for 30 min at room temperature, followed

by thorough rinsing with phosphate buffered saline (PBS), pH 7. PEG-SVA acts as an

antifouling brush layer that repels protein attachment. The substrates were then covered

with the UV sensitive photoinitiator solution of PLPP (Alveole Lab, Paris, France) and

placed on the stage of a microscope (Nikon Ti2 Eclipse) equipped with the UV- patterning

system. To generate the patterns, we used the open-source graphics software programs

Inkscape and ImageJ to generate binary 8-bit mask image files that were loaded into

PRIMO’s control software. The desired pattern was generated by a digital micromirror

array in the PRIMO system and projected using a 375 nm UV laser with an intensity of 29

mW/mm2 via a 20×/0.45NA objective. The projected pattern results in localized

photodegradation of the antifouling PEG-SVA brush, in the shape of the desired pattern.

An exposure dose of 20 s was adequate to complete photodegradation of the PEG-SVA

brush. Following UV exposure, we washed the substrates with PBS and incubated them

for 1 h at room temperature with a mixture of fluorescently labeled bovine serum albumin

(BSA; Alexa Fluor 555 conjugate, Thermo Fisher, 5 µg/mL) and fibronectin (40 µg/mL,

Sigma) in PBS to adsorb the protein to the exposed PLL surface. Excess protein was

rinsed off with PBS prior to cell seeding.
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2.6.3 Cell Culture

NIH-3T3 Mus musculus, mouse cell line obtained from ATCC were cultured in Dulbecco’s

modified Eagle medium (DMEM) (Wisent) supplemented with 10% fetal bovine serum (FBS)

(Wisent) and 1% Penicillin-Streptomycin antibiotic (P/S) (Thermo Fisher). The cells were

incubated at 37 °C in 5% CO2 environment and they were allowed to grow on the substrates

for 18 hours before imaging. For biological variability experiments, cells were seeded on the

patterns for 1 h at 37 °C in 5% CO2 environment, followed by a gentle wash with PBS to

remove nonattached cells to avoid nonspecific attachments. Cells were further incubated for

16 - 18 h (on patterns) before imaging at 37 °C in 5% CO2 environment.

PC3-AR is an androgen receptor (AR)-positive prostate cancer cell line that was

generated by stably expressing mGFP-tagged AR by means of lentiviral transduction

(OriGene) of the highly metastatic, AR-negative prostate cancer cell line, PC3, obtained

from the American Type Culture Collection (ATCC). PC3-AR has been used in previous

studies to investigate the mechanisms of AR in mediating prostate cancer progression and

invasiveness [Miao et al. 2017]. Cells were cultured in RPMI-1640 culture media without

phenol red (Wisent Inc.), supplemented with 10% fetal bovine serum (Wisent Inc.) and 1%

penicillin–streptomycin (P/S, Wisent Inc.); 0.5 ug/mL puromycin was used in culture

media to select for cells expressing mGFP-AR. In this study, various androgen

concentrations were applied to PC3-AR. PC3-AR cells were plated in androgen-free media

supplemented with different concentrations of synthetic testosterone R1881 (Toronto
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Research Chemicals Inc.) to reflect low (0.1 nM), normal (1 nM), and high (10 nM)

androgen conditions [Chatterjee et al. 2019; Lessard et al. 2012]. Androgen-free media

consists of RPMI-1640 media with 10% charcoal-stripped fetal bovine serum (CSS; Gibco,

Thermo Fisher Scientific Inc.), 1 % P/S, and 0.5 µg/mL puromycin. The

androgen-deprivation condition consisted of only androgen-free media.

Chinese Hamster Ovary-K1 (CHO-K1) cells stably expressing chicken

paxillin-WT-EGFP were obtained from the lab of Dr Rick Horowitz (University of

Virginia, Charlottesville, VA). CHO-K1 cells were grown in low glucose (1.0 g/L)

Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher Scientific, Cat. no.

11,885-084) supplemented with 10% fetal bovine serum (FBS; Thermo Fisher Scientific,

Cat. no. 10082-147), 1% non-essential amino acids (Thermo Fisher Scientific, Cat. no.

11140-050), 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; Thermo

Fisher Scientific, Cat. no. 15630-080) and 1% penicillin- streptomycin (Thermo Fisher

Scientific, Cat. no. 10378-016). Cells were maintained in 0.5 mg/mL Geneticin-418 (G418;

Thermo Fisher Scientific, Cat. no. 11811-031) antibiotic selection to maintain

paxillin-EGFP expression. ibidi µ-slides (Ibidi, Cat. no. 80826) were coated with freshly

made 2 µg/mL solution of fibronectin diluted in phosphate buffered saline (PBS) from a

stock of 0.1% human plasma fibronectin (Sigma Aldrich, Cat. no. F-0895) overnight at 4

°C. Slides were then washed 3x with PBS. Cells were lifted with trypsin/EDTA (Thermo

Fisher Scientific, Cat. No. 25200-056) and 2000 cells/cm2 were seeded into wells of the
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µ-slides (Ibidi, Cat. no. 80826) and left in the incubator overnight. The samples were

placed in a Chamlide TC-L-Z003 stage top environmental control incubator (Live Cell

Instrument, Seoul, South Korea) at 37 °C with 5% CO2 while imaging.

2.6.4 Traction Force Microscopy

Active contractile stress in actin cytoskeleton were quantified using TFM as previously

described [Koushki et al. 2020; Yoshie et al. 2018, 2019; Butler et al. 2002]. NIH 3T3 cells

were cultured on fibronectin coated compliant PDMS substrates of known moduli and a

thin PDMS layer of embedded fiduciary fluorescent particles was spin coated on the top

surface. After 12 hours incubation at 37 °C, cells were stained with Cell Tracker Green

CMFDA dye (Thermo Fisher) as per manufacturers protocol to visualize cell shape. To

capture the force image, the stained cells and fluorescent particles were imaged

simultaneously using Leica TCS SP8 confocal microscope with low magnification (×10/NA

0.4 air objective) at a resolution of 0.28 µm/pixel. The null force images of the fluorescent

particles were acquired at the end of the experiment by detaching the cells from the

substrate surface.

For PC3-AR cells, substrate surfaces were functionalized using Sulfo-SANPAH

(Sigma-Aldrich, MO, United States) and coated with 5 µg/ml fibronectin to facilitate cell

attachment at 4°C overnight, as previously described [Molter et al. 2022; Yoshie et al.

2019]. Prior to cell plating, cells were labelled with CellTracker Orange CMTMR Dye
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(Invitrogen; Thermo Fisher Scientific, Inc.), then plated in their respective experimental

androgen condition. Cells were then allowed to settle on the PDMS substrate and adjust to

their chemical environment for 48 hours before imaging. Immediately before imaging, cell

nuclei were labelled with HOESCHT 33342 (1:10000 dilution; Thermo Fisher Scientific,

Inc.). For imaging, cells were mounted on a confocal microscope (Leica TCS SP8 with a

40×/0.85 NA objective). During imaging, cells were maintained at 37°C and 5% CO2

(perfusing 100% humidity prebottled 5% CO2 in synthetic air). Labelled cells, mGFP-AR,

nuclei, and fiduciary TFM bead displacements were simultaneously imaged using

fluorescent and transmission microscopy.

The displacement vector field was calculated from the drift-corrected force and null-force

fluorescent bead images by PIVlab and OpenPIV [Liberzon et al. 2020; Thielicke and Sonntag

2021]. The traction was computed with FTTC implemented by pyTFM [Bauer et al. 2021].

Regularization implemented an ideal low-pass filtering on the displacement.

Total Internal Reflection Fluorescence Microscopy (TIRF)

Microscopy of CHO-K1 Cells

CHO-K1 cells were imaged using a Spectral Diskovery TIRF unit (Spectral Applied

Research, Richmond Hill, ON) attached to an inverted Leica DMI6000B microscope (Leica

Microsystems, Wetzler, Germany) with a Leica Plan ApoChromat 63x/1.47 NA TIRF oil

immersion objective lens. Paxillin-EGFP was imaged with 1% power (10% power, 10x
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pulsing) from a 100 mW 488nm diode laser (Spectral Applied Research) with a TIRF

depth of 100 nm, an ORCA-Flash4.0 (Hamamatsu, Japan), 5 sec exposure time and 2x2

binning to obtain high signal-to-noise images. Pixel size was 0.1244 µm with a and was

equipped with two ImagEMX2 Digital EM-CCD Cameras (Hamamatsu, Hamamatsu City,

Japan). Images were captured with an EGFP emission filter (ET 525/50nm) using

MetaMorph 7.1 image acquisition software (Molecular Devices Inc.) and custom designed

TIRF controls (Quorum Technologies Inc., Guelph, ON).

2.6.5 Training and testing data preparation

Cell images were processed and segmented with CellProfiler with selected modules and

methods, including ReduceNoise, Minimum Cross-Entropy, Otsu, and Robust Background

[Stirling et al. 2021] . The SDF was computed by BWDIST Distance transform of binary

image through MATLAB. The dimension of the SDF and displacement field were rescaled

to fit the CNN. The distance value of SDF and vector value of the displacement field were

rescaled to the same order of magnitude to assist training convergence. The 2D SDF

sequence was stacked to make 3D input.

2.6.6 Construction and training of the CNNs

The deep learning algorithm was implemented through PyTorch [Paszke et al. 2019]. The

CNNs were structured similar to U-Net [Ronneberger et al. 2015]. The spatial dimension of
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the input and output was 256×256. The time dimension of the input data was processed

as channel. Each convolution layer was paired with a following ReLU activation. In the

encoding path, convolution blocks consisted of two 3×3 convolutional layers and a following

2×2 max pooling layer. The initial convolution block used 80 channels. Four convolution

blocks succeeded, with the first layer of each block doubling the number of channels. Three

consecutive 3×3 convolution layers and a 2×2 convolution layer were used to reduce the

features to scalars. The first 3×3 convolution layers doubled the number of channels and

the 2×2 convolution layer did again. At the beginning of the decoding path, four 2×2

consecutive transposed convolution layers were applied first to recover the dimension of the

features from the scalars. Then followed four transposed convolution blocks, each with two

3×3 convolution layers and a 2×2 transposed convolution layer. Each transposed convolution

block took as input the upstream output as well as the features from the skip connection.

Finally, the number of channels were gradually reduced to two by four 3×3 convolution

layers.

Optimization was done with Adam optimizer with an initial learning rate of 0.0001

[Kingma and Ba 2014]. 30 samples were used per batch. Each training session was

performed on a single NVIDIA V100 GPU approximately over 7 h 45 min for 240 epochs.
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Figure 2.6: Noise in the ground truth measurement is quantified. A. L-curve test for the
computation of traction from the ground truth measurement and inferred displacement. The test for
the ground truth produced an L-shaped curve, indicating that small high-frequency perturbations
in the measured displacement cause significant contamination of the traction. The ground-truth
computation is unstable and requires regularization. On the contrary, the computation with the
inferred displacement results in an approximately horizontal curve and therefore does not suffer from
this issue. (54 time instances, n=18.) B. Root Mean Squared Displacement of the measurement
on undeformed substrate reveals the noise profile of the displacement measurement. (425 time
instances, n=14.)
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Figure 2.7: Evident in square patterned cells, metastable states of contractility across
multiple independent contractile axes may create drastically different distributions of
traction at load-bearing adhesions. A. Comparison of the norm of the displacement of the
two square patterned cells in Fig. 2.2A exposes low correlation for large displacement. B. In
addition to the expected large positive correlation, wNPC shows significant negative correlation at
high-displacement area.
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Figure 2.8: The inference is stable against the quality of segmentation, where the
accuracy of the geometry has a more substantial influence than the precision. A.
Example cells and the corresponding segmentations under threshold parameters of 0.5 and 1.1 are
different in structure and thus accuracy. B. Input generated with different thresholds result in
nontrivial difference in wNPC, wVD, wAND, and wAD between the ground truth and inferred
displacement. The effect of threshold depended on the threshold applied in the generation of the
training data. In this work, a lenient threshold was employed to deliver accurate segmentation.
Threshold parameters lower than 0.5 predominantly generated clearly wrong segmentations. C.
Example cells and the corresponding segmentations under smoothing parameters of 0.5 and 9.5
are different in boundary smoothness, while the change in structure and accuracy is marginal. D.
Input generated with different smoothing result in trivial difference in wNPC, wVD, wAND, and
wAD between the ground truth and inferred displacement. (205 time instances, n=6.)
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Figure 2.9: Lower inference accuracy from the input in reversed sequence suggests
irreversible cell deformation due to contractility. (553 time instances, n=18)

Figure 2.10: Training with greater input time span and time resolution enables higher
inference accuracy. The effect is more prominent in wNPC and wAD than in wVD and wAND.
(553 time instances, n=18.)
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Figure 2.11: The extent of regularization affects the evaluations. As the cutoff frequency
of the low-pass filter lowers, information in the displacement is removed progressively from high
to low frequency. A. For biological variability baseline with patterned cells, when more higher
frequency information is removed from two displacement fields, the displacement and therefore
traction fields become more similar until the retained information is extremely small. B. For
the evaluation between ground truth and inference, when more high frequency information is
removed from the ground truth displacement, the similarity between displacement and thus between
traction fields rises initially and then decreases. Initially, noise is removed from the ground truth,
reducing the difference between the ground truth and inference. Then, further regularization erodes
meaningful information in the ground truth, causing the ground truth to deviate from the inference.
Particularly, wAD monotonously decreases in the examined threshold range because the direction
of the vectors is a low-frequency feature. (Pat. Cell: 126 data pairs, n=7. Non-pat. Cell: 553 time
instances, n=18.)
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Figure 2.12: Lower resolution of the inferred traction creates discrepancy in spatial
frequency between the traction map and adhesions. A. Segmented adhesions of a cell
were Gaussian-dilated by standard deviation of 0, 1.1365, and 3.4095 µm, from left to right, and
overlaid on the inferred traction. Due to the lower resolution of the training data, traction of
resolution lower than that of adhesions was inferred. The dilation compensates for the discrepancy
in resolution. B. Corresponding to A., the Pearson correlation maps between the inferred traction
and Gaussian-filtered segmented adhesions quantifies the colocalization of adhesions and traction.
C. Weighted Pearson correlation between inferred traction fields and Gaussian-filtered adhesions
for different cells uncovered the resolution of the inferred traction. The peak correlation indicted a
spatial standard deviation in the traction of approximately 1.1 µm from the adhesions. The weight
emphasized the correlation between meaningful traction and the colocalized adhesions, neglecting
the possibly non-load-bearing adhesions beyond the area of meaningful traction. (n=10.)
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Chapter 3

Discussion

The development of DeepMorphoTM relied on a comprehensive understanding of the

mathematics, mechanics, biology, and algorithms that underlie TFM and cell contractility.

Introduction (Chapter 1) and manuscript (Chapter 2) have addressed certain facets. This

chapter continues to discuss these topics and their impact on the design of DL

methodologies.

3.1 The ill-posed inverse problem

3.1.1 Hadamard’s well-posedness conditions

Jacques Hadamard established a set of three conditions that define a well-posed problem:

(i) the existence of a solution, (ii) the uniqueness of a solution, and (iii) the continuous
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dependence of a solution on data [Hadamard 1902; Hansen 2010]. Particularly, the

continuous dependence states that any small perturbation, such as noise, in the data must

lead to an also small perturbation in the solution. Failing any of the conditions makes a

problem “ill-posed”. Generally, the inverse of the Fredholm integral equation of the first

kind may not have a solution, a unique solution, or a solution that continuously depend on

the data, rendering the problem ill-posed based on all three conditions [Delves and

Mohamed 1988; Hadamard 2003; Hansen 2010; Kress et al. 1989; Ursell 1974].

With the common substrate properties and boundary conditions, TFM satisfies the

existence and uniqueness conditions, violating only the continuous dependence condition.

For the inverse problem to have a solution, the Green’s function must have a singularity,

where a singularity is a point at which the function is not defined [Hansen 2010; Ursell

1974]. In the case of Eq. (1.5), Gin−plane(r) has a singularity at r = 0, and therefore

satisfies the existence condition. Furthermore, for the solution to be unique, the mapping

from T to u by Green’s function must be invertible [Hansen 2010]. As Gin−plane(r) is

invertible, an inverse of Gin−plane(r) that maps u to T exists [Butler et al. 2002; Huang

et al. 2009; Schwarz and Soiné 2015]. Therefore, Gin−plane(r) also satisfies the unique

solution condition.

The continuous dependence condition is violated when low-magnitude noise in the

displacement can be transformed to significant perturbations in the traction field in a

manner that depends on the spatial frequency of the noise. The greater the frequency, the



3. Discussion 69

more noise is amplified. The noise strongly contaminate the computed traction and impair

the reliability of TFM [Hansen 2010; Mesgarani and Azari 2019]. While various numerical

methods have been employed to solve the inverse problem, including Bayesian likelihood,

BEM, SVD, FT, and FEA, the violation of the continuous dependence condition has been

avoided by none [Butler et al. 2002; Dembo and Wang 1999; Hur et al. 2009, 2012; Schwarz

et al. 2002]. The violation of the continuous dependence condition is the very nature of the

relationship between traction and displacement.

3.1.2 The slowly decaying Green’s function

The relationship between displacement and traction is fundamentally influenced by the

property that G(r) is long-ranged: compared to the point-like traction which decays

rapidly in space, Gin-plane in Eq. (1.5) decays slowly by a factor of 1
r
. In the forward

computation of Eq. (1.4), G is applied to each T(r′) vector, making each vector produce

an influence decaying by 1
r

over the range of G in displacement. In this sense, the Green’s

function functions like a Gaussian filter, casting a smoothing or blurring effect, as each

traction vector is ”spread out” by the Green’s function. At every r, the integration

combines G(r − r′)T(r′) ”spread out” from all T(r′). These operations result in the

damping of higher-frequency components in the traction field in the forward computation.

The field of traction and of displacement can be described as the sums of sinusoidal waves
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of different amplitudes and frequencies in different directions:

u = ∑
f uf

T = ∑
f Tf

(3.1)

where uf and Tf are the wave components of the displacement and traction. Eq. (1.4) can

be rewritten accordingly as:

∑
f

uf (r) = (G ∗
∑

f

Tf )(r) =
∑

f

(G ∗ Tf )(r) =
∑

f

∫ ∞

−∞
G(r − r′)Tf (r′) dr′ (3.2)

The damping effect is more pronounced in higher-frequency than lower-frequency traction

components. For Tf with a low frequency thus long period compared to the range of G,

information is similar within the effective range of G, so mixing G(r − r′)Tf (r′) would not

change the information from each traction vector substantially. However, high-frequency

Tf contains significantly different information in the effective range of G. Different spatial

information becomes mixed in space, leading to effective loss of the information. To be

more specific, positive and negative amplitudes partially cancel each other and sum up to

approximately zero. Thus, the damping is strong for high-frequency components in traction.

In other words, the forward computation has a damping or smoothing effect in the mapping

from T to u, where higher-frequency components in traction are damped more significantly,

causing the displacement to be smoother than the traction [Hansen 2010].
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The inverse computation exhibits the opposite effect: higher-frequency components in

displacement are amplified during the computation of traction. This effect can be explained

in the forward and inverse view. In the forward view, because G(r) decays by 1
r
, T(r′) closer

to r has greater influence over u(r). If the spatial variation in T(r′) in the effective range

of G is large enough, information from T(r′) at r′ close or equal to r dominates u(r). In

other words, information from high-frequency traction components can be distinguishable

in displacement only if the amplitude is exceptionally high. Therefore, higher-frequency

components in displacement, although small in amplitude, result in exceptionally large high-

frequency traction in the inverse computation.

From the inverse view, the reason is two-folded. First, because every displacement

vector contains combined information from the entire traction field through G, u(r) at

each r propagates information to T(r′) at all r′ through G. This property exhibits an

amplification effect in the sense that local information in the displacement has non-local

impacts in traction. The second part of the reason lies in the integro-differential

relationship between displacement and traction.

3.1.3 The integro-differential relation

The integro-differential relationship is analogous to that of an integral and its respective

derivative. For an integral equation, there is an equivalent differential equation [Ursell

1974]. Because the integration of traction yields displacement, displacement needs to be
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differentiated to compute traction. From a mechanical perspective, displacement itself does

not have a direct relationship with traction, but through displacement gradient, which is

related to strain and then stress. Therefore, the integration in the forward problem

essentially becomes differentiation in the inverse problem.

For a given amplitude, the derivative of uf linearly increases with the frequency and

therefore the magnitude of T does not depend on the magnitude of uf but the frequency.

However small in magnitude uf is, uf can be computed into an arbitrarily large magnitude

of T, depending on the frequency. The higher the frequency is, the more uf is amplified.

Nonetheless, this effect of differentiation is local and does not alone affects the computed

traction to the extend in TFM.

Compounded with the first part of the reason from the inverse view, the amplification of

higher-frequency displacement component becomes non-local in traction through the Green’s

function and significantly impact the computed traction. The range of G determines how far

the local derivative of u is spatially propagated in T. With a long-ranged Green’s function,

the inverse computation strongly amplifies higher-frequency components in the mapping

from displacement to traction.

3.1.4 Noise in the displacement

In practice, noise in the displacement data can come from many sources, including elastic

inhomogeneities in the substrate, weak coupling between marker beads and polymer
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matrix, deficiencies in the optical setup, and inaccuracy in the tracking routines [Sabass

et al. 2008]. While the displacement decays smoothly by a factor of 1
r
, the noise has much

higher frequencies. Consequently, the noise is greatly amplified and can strongly corrupts

the computed traction [Sabass et al. 2008; Schwarz and Soiné 2015; Schwarz et al. 2002].

3.2 Regularization

3.2.1 The common approach

Lacking the “simpler” smooth pattern of the true displacement, high-frequency noise can

be mitigated by regularization, if a distinct assumption(s) about the displacement, i.e.,

smoothness, or about the traction, i.e., sparsity and smoothness, is known [Delves and

Mohamed 1988; Donoho 2006; Hadamard 2003; Hansen 2010; Kress et al. 1989; Mesgarani

and Azari 2019; Ursell 1974]. Because solving Eq. (1.4) as is yields noisy traction, a

”simplified” solution with suppressed noise is attempted through regularization that

encourages a “simpler” or “more regular” solution distinct from the “complex” or

“irregular” noise. Often, this attempt is accomplished through introducing additional

regularization terms or penalties to the problem. The penalties fulfill the assumptions that

are used to additionally constrain and regularize the solution. In this way, regularization

may turn the inverse problem of Eq. (1.4) to an optimization problem which finds T that

minimizes an expression formulated by rearranging Eq. (1.4) and adding one or multiple



3. Discussion 74

penalties:

argmin
T

[
∥G ∗ T − u∥q1

p1 +
∑
n=1

λn∥Rn(T)∥q2
p2

]
(3.3)

where argmin
T

[·] denotes the value of T at which the enclosed expression is minimized; ∥ · ∥p

denotes Lp norm, the measure of distance; q is the exponent of the norm; Rn(T) is a penalty;

λn is a tuning parameter controlling the strength of each penalty. G∗T−u is the rearranged

form of Eq. (1.4). If λn = 0, there are no penalties, and thus Eq. (3.3) is reduced to the

unregularized Eq. (1.4) upon only minimizing ∥G ∗ T − u∥q1
p1 .

3.2.2 The effect of Lp norm

One crucial concept in regularization is the measure of distance, Lp norm. Independent of

the dimensionality, p sets the standard of the measure of distance, where the different p give

different lengths of a vector. Roughly, the Lp norm of a 2D vector d = (d1, d2):

∥d∥p = (|d1|p + |d2|p)
1
p , p > 0 (3.4)

where | · | denotes absolute value. The effect of p in practice can be understood from the

contour line of the norm of d. A contour line is a curve along which a value is constant. On

a topographic contour map, each contour line marks the location of a constant altitude. On

a meteorological pressure contour map, each contour line marks the location of a constant

pressure. Similarly for Lp norm, each contour line marks the end points of the vectors of a
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constant length. The contour lines shape differently for different p. The most recognizable

case is L2 norm in 2D:

∥d∥2 =
√

d2
1 + d2

2 (3.5)

In this case, the contour lines are circles. However, with L1 norm in 2D:

∥d∥1 = |d1| + |d2| (3.6)

the contour line are squares with the vertices on the axes. Notably, the transformation of a

vector, such as G ∗ T − u and Rn(T) for T in Eq. (3.3), makes a vector function and can

change the shape, scale, and location of the contour line. Therefore, the contour line of the

norm of a vector function may have a different shape, scale, and location from that of the

vector itself. Dissimilarly, the power of the norm, such as ∥G ∗ T − u∥q1
p1 and ∥Rn(T)∥q2

p2 in

Eq. (3.3), only changes the scale of the contour line, but not the shape and location.

Minimizing a norm is like travelling towards the bottom of a basin or the low-pressure

centre of an area – an explorer starts at an arbitrary place and heads across the contour

lines towards the centre of the curves. In optimization problems like Eq. (3.3), several norms

are to be minimized – the explorer treks to the place with the altogether lowest altitude,

pressure, and perhaps other measurements. Each norm or measurement has its own set

of concentric contour lines, the centre of which is the minimum for each. However, the

overall contour lines would be the superposition of the individual sets of the contour lines.
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The overall minimum would not be at the centre of any individual set of contour lines, but

somewhere amongst those centres. In Eq. (3.3), T would be the location of the explorer,

and ∥G∗T−u∥q1
p1 and ∥Rn(T)∥q2

p2 are the different measurements. T of the overall minimum

is at the centre of the superimposed contour lines of ∥G ∗ T − u∥q1
p1 and ∥Rn(T)∥q2

p2 .

Expectedly, the location of the overall minimum is affected by the shape of each individual

set of contour lines. For each set, while the norm is constant on each contour line despite

the shape, a location along the line nearer to convex vertices is “farther” from the centre of

the line and therefore possibly “closer” to the centres of other contour lines. Accordingly,

at such a location, the norms with respect to other individual sets of contour lines is likely

to be smaller. In other words, on a contour line in an individual set, the overall norm at

a location nearer to a vertex is probably smaller. Therefore, the overall minimum is prone

to be at or near a vertex of an individual set of contour lines. In this way, p affects the

overall minimum by changing the shape of the contour lines of Lp norm. Some values of p

promote the minimum to be on or near the vertices. Notably, for p ≤ 1, the contour lines

have vertices on the axes. A point on or near an axis has the other axis component equal or

close to zero. Hence, the contour lines with vertices on axes induce zero or sparsity in the

minimum.

The 2D case above may appear to indicate that Lp, p ≤ 1, norm promotes only one non-

zero value. This apparent property does not align with the reality of TFM that multiple

non-zero vectors exist in the traction field. TFM concerns vector fields. A vector field,
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such as u, T, and G, can be reshaped into a single column, becoming a n-D vector with

n dependent on the size of the field. Therefore, in TFM, all the 2D vectors add up to

very high dimensionality. The generalization from 2D to 3D provides intuition on the high-

dimensional case of TFM. In 3D, the terminal of vectors of a norm are on an isosurface instead

of a contour line. The isosurfaces with vertices on axes shape similarly to octahedrons that

would be formed by the L1 norm of a vector. For such an isosurface, a location nearer to

vertices and edges is “farther” from the centre of the isosurface and possibly “closer” to the

centres of other isosurfaces. Hence, the overall minimum is prone to be at or near a vertex

or edge of an individual set of isosurfaces. Like the 2D case, a point around a vertex has the

other two axis components close to zero. A point around an edge has one axis component

close to zero. Therefore, isosurfaces with vertices on axes also induce zero or sparsity in the

minimum.

As mentioned above, all the 2D vectors add up to very high dimensionality in TFM. The

Lp norm of a n-D vector d = (d1, d2, · · · , dn) is roughly defined as:

∥d∥p =
(

n∑
i=0

|di|p
) 1

p

= (|d1|p + |d2|p + · · · + |dn|p)
1
p , p > 0 (3.7)

Given the same d, different p give different lengths of d, ∥d∥p. Conventionally, the measure
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of p = 2, the L2 norm or Euclidean distance, is used:

∥d∥2 =
(

n∑
i=0

|di|2
) 1

2

=
√

d2
1 + d2

2 + · · · + d2
n (3.8)

Therefore, ∥G ∗ T − u∥2, the L2 norm of the difference between the vectors in G ∗ T and u,

is usually used in Eq. (3.3). Measures other than p = 2, such as the L1 norm:

∥d∥1 =
n∑

i=0
|di| = |d1| + |d2| + · · · + |dn| (3.9)

are more applicable to the penalties, Rn(T).

3.2.3 The common techniques

Generally, three types of regularization techniques have been used in TFM. First, for the

assumption that the traction is sparse, or in other words, only non-zero at some spots

assuming to be focal adhesions, Lp, p ≤ 1, regularization can be used because it induces

sparsity [Fu 1998; Tibshirani 1996]. Due to the computational difficulty in solving the

optimization problem for p < 1, L1 regularization is employed for convenience [Ge et al.

2011]:

argmin
T

[
∥G ∗ T − u∥2

2 + λ∥T∥1
]

(3.10)
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Under L1 regularization, the T at the minimum of Eq. (3.10) are prone to contains zeros,

resulting in a sparse solution. Additionally, L1 regularization is also used to solve

underdetermined linear systems. Because the majority of the solution is encouraged to be

zero by L1 regularization, this regularization effectively promotes solving for only the

remaining non-zero values [Donoho 2006]. Therefore, under L1 regularization, sparse

traction at higher resolution can be reconstructed from displacement at lower resolution

[Brask et al. 2015; Han et al. 2015; Suñe-Auñón et al. 2016]. Second, Tikhonov

regularization addresses the smoothness of the solution and can be used based on the

assumption about the smoothness of the traction. Tikhonov regularization takes the

general form of:

argmin
T

[
∥G ∗ T − u∥2

2 + λ∥ΓT∥2
2

]
(3.11)

where Γ is a matrix operator specific to a measure of smoothness [Tikhonov et al. 1995]. For

example, a first-derivative operator addresses uniformness, and a second-derivative operator

addresses curvature. Commonly in TFM, Γ is an identity matrix and the regularization is

therefore a zeroth-order Tikhonov regularization, also known as L2 regularization [Tikhonov

et al. 1995]. Particularly, while L2 regularization does not induce sparsity, this method does

assume the distribution of the traction values to be Gaussian. Higher orders of Tikhonov

regularization addressing different measures of smoothness is rarely used because the traction

field is not assumed to be smooth under those measures [Balaban et al. 2001]. Third, as

the noise have apparent distinctively high frequencies, low-pass filtering can be used to
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truncate the displacement in the frequency domain, directly removing the high-frequency

components in the displacement and smoothing the data [Tanimoto and Sano 2012]. The

cutoff frequency determines the strength of regularization. The choice of regularization

technique is not restricted to the above three. Alternative suitable regularization techniques

are also available, such as truncated SVD and proximal gradient methods [Hansen 2010;

Huang et al. 2019]. Different regularization techniques can be combined as in Eq. (3.3)

[Huang et al. 2019].

Given a dataset, because L2 regularization, low-pass filtering, and L1 regularization

only account for arbitrary measures of smoothness and sparsity, any of these techniques

can be better than another. L2 regularization and low-pass filtering have been popular as

regularization techniques in general, so there is no surprise that these methods have been

broadly used in TFM as well. However, recently L1 regularization was demonstrated to

outperform the alternatives in many cases [Colin-York et al. 2016; Sabass et al. 2008;

Schwarz et al. 2002; Suñe-Auñón et al. 2017]. Convenient as such comparison may appear,

attention should be drawn to the experimental condition under which the conclusion is

made, as the assumptions thereof can strongly affect the traction calculation. Do the

traction values have a Gaussian distribution? Is the traction field sparse? Are the noise

and artifacts separable in the frequency domain? Particularly, there is no strict definition

regarding the ratio between the number of non-zero and zero values for the traction to

qualify as sparse. However, a reasonable initial conjecture would be, for example, that the
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traction is sparse and thus L1 regularization valid for single cell experiments, but not so for

monolayer experiments. Because single cell images zoom in to one cell in which the focal

adhesions only occupy a small portion of the cell area, the non-zero-to-zero ratio of traction

is low. On the contrary, monolayers images zoom out to larger scales on which the cells

and therefore focal adhesions can become densely located in the image, so the

non-zero-to-zero ratio of traction is high. Accordingly, the best regularization technique(s)

depends on the properties of that specific displacement data and the underlying traction.

A suitable regularization technique alone cannot guarantee an accurate solution. The

tuning parameter λn and the cutoff frequency for low-pass filtering determine the strength

of regularization and therefore also the accuracy of the solution. Overly small λn and high

cutoff frequency do not regularize the solution sufficiently, leaving the remaining effect of the

noise in the traction. Excessively large λn and low cutoff frequency result in oversimplified

solution, abating the actual displacement. A variety of methods to determine the strength

of regularization are well-developed, including L-curve criterion, discrepancy principle, self-

consistence criterion, and more recently, Bayesian methods [Engl 1987; Golberg 1979; Hansen

2007; Honerkamp and Weese 1990; Huang et al. 2019].

3.3 Remarks on DL methodologies

The outcome of experimenting with time span and time resolution in DeepMorphoTM aligns

with the quasi-static nature of cell deformation and locomotion. This property may reduce
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the necessity of adopting the Recurrent Neural Networks (RNNs) for processing cellular

dynamics, justifying the use of CNNs in DeepMorphoTM. However, the performance of

RNNs and CNNs on modeling cellular dynamics needs to be quantified to reach a conclusion,

as the quasi-static property is implied in hindsight by CNNs.

While no accurate analytical model of cell contractility is established, fundamental

physical laws governing cell contractility are known. Properties of cell contractility have

also been discovered and can be modeled analytically, such as the quasi-static nature,

viscous energy dissipation, and underdamped wave-like fluctuations [Bastounis et al. 2011;

Ghabache et al. 2021; Inagaki and Katsuno 2017]. To promote interpretability,

generalizability, and potentially performance, NNs can be integrated with these known

equations and equation solvers in latent and data space, yielding a partially parameterized

model. While DeepMorphoTM did not explore this direction, leveraging known equations

is fundamental to modeling physics with DL.

DeepMorphoTM avoids the ill-posedness by directly inferring substrate displacement

rather than cell traction. The small amount of noise in the displacement measurement does

not significantly affect learning and is neither learnt nor inferred unless NNs overfit. Prior

to this design, alternatives have been experimented. Using the unregularized ground truth

traction, the direct inference of the traction was attempted through employing regularization

techniques for DL training, such as weight decay and batch normalization. However, good

training quality could not be achieved due to heavy noise in the ground truth. Another option
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is to directly infer the traction, compute the displacement through the forward computation

of Eq. 1.4, and make only the displacement target in training. Additional loss terms, such

as net momentum, were also experimented. However, none of the alternatives produced

any significant effect. Therefore, although sophisticated methodologies are tempting, such

methodologies are futile unless they address the data properly.
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Chapter 4

Conclusion and future work

This thesis demonstrates the significance of a comprehensive understanding of a system

and data to modeling a physical system with DL. The mechanical system of a cell and its

underlying substrate is modeled with DeepMorphoTM based on experimentally measured

cell shapes. DeepMorphoTM accurately infers effective ensemble-average substrate

displacement from a shape sequence of a cell with a CNN and subsequently computes cell

traction, offering a simpler and more robust alternative to TFM. The mathematics,

mechanics, biology, and algorithms behind TFM and cell contractility are studied, and DL

methodologies are designed accordingly. For both training and inference, the ill-posedness

in the computation of traction is circumvented by the absence of high-frequency noise in

the inferred displacement. Moreover, DeepMorphoTM reveals information beyond TFM

analysis, suggesting common mechanics underlying cell contractility, viscous energy
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dissipation in cell deformation and locomotion, and the quasi-static nature of biological

processes. Notably, while this thesis does not investigate the integration of NNs with

known equations and equation solvers in a latent or data space, this direction is crucial to

modeling physics with DL for interpretability, generalizability, and performance.

Future research delves into the integration of equations and differentiable solvers in,

particularly, a latent space. Often, complex high-dimensional systems have simple low-

dimensional behaviour in an appropriate basis which can be defined by fundamental physical

relationships. DL provides great flexibility in the shaping of a latent space where this basis

may exist. The general goal of future works is to map between a high-dimensional system

space and a low-dimensional latent space manifesting simple latent physics; in this way, high-

dimensional complex simulations can be performed through the latent space with stability

and low cost. Major challenges include the smoothness of the latent space in space and

time, the interpretability and, potentially, disentanglement of the latent dimensions, and the

fidelity of the reconstruction from the latent space.

Beyond the scope of this thesis, this future direction was attempted without success in the

experimental case of cell contractility. The attempt was too ambitious due to the lack of an

established mechanical model for the biological system and the complexity of experimentally

acquired data. Therefore, future studies start from established systems and simulated data.
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James P Butler, Iva M Tolić-Nørrelykke, Ben Fabry, and Jeffrey J Fredberg. Traction fields,

moments, and strain energy that cells exert on their surroundings. American Journal

of Physiology-Cell Physiology, 282(3):C595–C605, Mar 2002. doi: 10.1152/ajpcell.00270.

2001.

Ferdous Chowdhury, Billy Huang, and Ning Wang. Cytoskeletal prestress: The cellular

hallmark in mechanobiology and mechanomedicine. Cytoskeleton, 78(6):249–276, 2021.

doi: https://doi.org/10.1002/cm.21658.

Huw Colin-York, Dilip Shrestha, James H Felce, Dominic Waithe, Emad Moeendarbary,

Simon J Davis, Christian Eggeling, and Marco Fritzsche. Super-resolved traction force

microscopy (stfm). Nano letters, 16(4):2633–2638, 2016.

L M Delves and J L Mohamed. Computational methods for integral equations. CUP Archive,

1988.

Micah Dembo and Yu-li Wang. Stresses at the cell-to-substrate interface during locomotion of



Bibliography 88

fibroblasts. Biophysical Journal, 76(4):2307–2316, Apr 1999. doi: 10.1016/S0006-3495(99)

77386-8.

David L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):

1289–1306, 2006. doi: 10.1109/TIT.2006.871582.

Bryant L Doss, Meng Pan, Mukund Gupta, Gianluca Grenci, René-Marc Mège, Chwee Teck
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Alberto Suñe-Auñón, Alvaro Jorge-Peñas, Hans Van Oosterwyck, and Arrate Muñoz-
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