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Abstract 
 
Parkinson’s Disease (PD) is a severe disorder characterized early in the disease by the 

selective death of dopaminergic neurons. Mitochondrial damage, and consequentially 

mitochondrial turnover is central to neuronal health and the pathogenesis of the 

disorder. PINK1 and Parkin are two proteins that play an essential role in mitochondrial 

quality control and their mutations are known to cause early-onset PD. Prior studies 

demonstrated that the PINK1/Parkin pathway selectively promotes the degradation of 

respiratory chain proteins in Drosophila. Yet, how this phenomenon translates to 

neurodegeneration and whether it is observed in other models remains unknown.  

Incidentally, human midbrain organoids (hMOs) recently emerged as a novel model 

system that holds promise to elucidate biological processes such as the PINK1/Parkin 

canonical pathway. Due to their scientific infancy, validated experimental methodologies 

to interrogate these organoids are lacking. To this end, we developed a SILAC-based 

approach comprised with a novel data processing pipeline to measure global protein 

turnover in organoids at baseline. We successfully characterized 773 protein half-lives 

and compared them to Parkin knock out (PKO) hMOs. Surprisingly, we found no 

significant differences in the turnover of mitochondrial proteins between Wild-type and 

PKO hMOs. Furthermore, we compared our results with previously published studies 

and found that hMOs half-lives correlate with mouse cortical proteins better than 

primary cortical neurons. In future work, we intend to analyze hMOs with all PD-related 

mutations to potentially uncover a unifying basis between environmental, familial, and 

sporadic cases. Our work sets the stage to identify new degradation pathways and 

components to be therapeutically targeted to improve PD patient lives. 
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Résumé 
 
La maladie de Parkinson (MP) est une maladie grave caractérisée au début de la 

maladie par la mort sélective des neurones dopaminergiques. Les lésions 

mitochondriales, et par conséquent le renouvellement des mitochondries, sont au cœur 

de la santé neuronale et de la pathogenèse de la maladie. PINK1 et Parkin sont deux 

protéines qui jouent un rôle essentiel dans le contrôle de la qualité mitochondriale et 

leurs mutations causent une forme précoce de la MP. Des études antérieures ont 

démontré que la voie PINK1/Parkin favorise la dégradation sélective des protéines de la 

chaîne respiratoire chez la drosophile. Cependant, on ignore comment ce phénomène 

se traduit par la neurodégénérescence et s'il est observé dans d'autres modèles 

animaux.  Par ailleurs, les organoïdes de mésencéphale humain (OMh) sont 

récemment apparus comme un nouveau système modèle prometteur pour élucider des 

processus biologiques tels que la voie canonique PINK1/Parkin. En raison de leur 

nouveauté, les méthodologies expérimentales validées pour interroger ces organoïdes 

font défaut. À cette fin, nous avons mis au point une approche basée sur le SILAC et un 

nouveau système de traitement des données pour mesurer le taux de renouvellement 

des protéines dans les organoïdes. Nous avons caractérisé avec succès 773 demi-vies 

de protéines et les avons comparées à celles des OMhs ‘knock-out’ (PKO). 

Étonnamment, nous n'avons trouvé aucune différence significative dans le 

renouvellement des protéines mitochondriales entre les OMHs de type sauvage et les 

OMHs PKO. De plus, nous avons comparé nos résultats avec des études publiées 

précédemment et nous avons constaté que les demi-vies des OMhs sont en meilleure 

corrélation avec les protéines corticales de la souris que les neurones corticaux 
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primaires. Dans nos futurs travaux, nous avons l'intention d'analyser les OMhs avec 

toutes les mutations liées à la MP afin de découvrir une base unificatrice entre les cas 

environnementaux, familiaux et sporadiques. Nos travaux vont permettre d’identifier de 

nouvelles voies de dégradation et de nouvelles cibles thérapeutiques pour améliorer la 

vie des patients atteints de la MP. 
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Chapter 1 Introduction 
 

1.1 Parkinson’s Disease 

 
Parkinson’s Disease (PD) manifests in four cardinal motor symptoms consisting of 

bradykinesia, resting tremor, rigidity, and postural instability which appears in later stage 

progressions (Parkinson’s Disease: Pathogenesis and Clinical Aspects, 2018). The 

disease affects approximately 1% of the population over 60 years old and pivots itself as 

the second most common neurodegenerative disease next to Alzheimer’s disease (AD) 

(Tysnes & Storstein, 2017). PD is characterized by the selective death of dopaminergic 

(DA) neurons in the substantia nigra pars compacta (SNc) located in the midbrain. A 

classical hallmark of the disorder is the presence of Lewy bodies, a term coined by Fritz 

Jacob Heinrich Lewy who discovered these structures in PD patient brains in 1912 

(Holdorff, 2002). Aberrant accumulation and misfolded forms of α-synuclein (α-syn), a 

protein involved in the compartmentalization and recycling of neurotransmitters, is the 

main component of Lewy bodies (Xu & Pu, 2016). Yet, the underlying cause of how α-

syn aggregates contribute to the specific cell death of DA neurons remains unknown. 

Studies have proposed that its toxic effects are implicated in pathways involved with 

synaptic-vesicle trafficking, mitochondrial function, endocytosis, and autophagy (B.-K. 

Choi et al., 2013; Cuervo et al., 2004; Martin et al., 2006; Mazzulli et al., 2011; Winslow 

et al., 2010).  For example, -syn is degraded through chaperone mediated autophagy 

(CMA), an important lysosome-dependent targeting process that may be linked to 

mitochondria quality control (MQC) (Yang et al., 2016). Mutants of -syn that cause PD 

are poorly degraded by CMA, yet still bind to the lysosomal receptor LAMP2A preventing 

the degradation of other CMA substrates by the lysosome (Cuervo et al., 2004).  
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Additionally, -syn can interact with dopamine non-covalently to generate a dopamine-

modified form that has been shown to interfere with CMA activity and is poorly 

translocated in the lysosomes (Martinez-Vicente et al., 2008). This finding along with the 

observation that CMA inhibition is increased in DA neurons compared to cortical neurons 

could potentially explain the preferential loss of DA neurons in PD (Martinez-Vicente et 

al., 2008). Furthermore, Shahmoradian et al. have identified distorted organelles, such as 

mitochondria, and other membrane fragments in the composition of Lewy body inclusions 

in postmortem PD patient brains (Shahmoradian et al., 2019). These observations 

indicate that mitochondrial damage and defective organelles are also implicated in PD-

affected neurons. Although, the exact mechanism of PD continues to elude the scientific 

community, it is clear that protein quality control (PQC) plays a central role to the 

pathogenesis of PD. This Introduction will emphasize mitochondrial dysfunction and 

impairment of autophagy/lysosomal pathways as an overarching theme of PD.  

 

1.2 PD is linked to the mitochondria 
 
Evidence that the mitochondria is implicated in PD was first introduced in 1989 when a 

group of four individuals developed severe parkinsonism, a term used to describe a broad 

range of symptoms observed in PD (Langston et al., 1983). This group consumed a 

recreational drug contaminated with a compound known as 1-methyl-4-phenyl-1,2,5,6-

tetrahydropyridine (MPTP), a protoxin that is converted inside DA neurons to MPP+, 

which inhibits complex I of the electron transport chain. Intriguingly, rats undergo 

nigrostriatal degeneration when exposed to rotenone, a potent pesticide that also inhibits 

complex I (Sherer et al., 2003). Notably, the disruption of complex I has been shown to 
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alter changes in genes related to axonal growth and induce progressive parkinsonism in 

mice (González-Rodríguez et al., 2021).   

 

Several theories have been proposed to explain how mitochondrial dysfunction is 

associated with the selective death of DA cells in the SNc. Firstly, SNc DA neurons are 

particularly vulnerable due to their large axonal arborization. Studies in rats demonstrate 

that DA neurons can make massive branches of synapses and have up to 200 000 

vesicular release sites in the striatum (Matsuda et al., 2009). Bolam et al, estimates that 

these number of synapses put SNc DA neurons at least 2 orders of magnitude larger than 

its other neuronal counterparts (Bolam & Pissadaki, 2012).  The consequence of these 

vast connective networks is that they require a higher energy demand which makes these 

neurons uniquely susceptible to any perturbations in oxidative phosphorylation. SNc 

neurons are so extreme that they are constantly operating at their maximum and any 

burden on the energy supply will “tip them over the edge” eventually leading to cell death.  

Secondly, the vulnerability of SNc DA neurons can be attributed to its autonomous 

pacemaking activity. They generate slow action potentials that are broad, which 

maximizes the entry of Ca2+ through distinctive L-type Cav1 Ca2+ channels (Surmeier et 

al., 2017). This differs from the physiology of DA neurons found in the ventral tegmental 

area (VTA), an area located in the midbrain responsible for reward and motivation 

(Lammel et al., 2012).  The elevated intracellular Ca2+ imposes additional energetic 

burden on the neuron as it needs to sequester the Ca2+ by investing more resources on 

ATP-dependent transporters in the endoplasmic reticulum (Surmeier, 2007).   
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It is important to note that these features of SNc DA neurons are not intrinsically lethal to 

the cell but they increase their vulnerability in the face of additional stressors such as 

neurotoxins, elevated reactive oxygen species (ROS), damage accumulated through 

age,…etc. In the case of MPTP, inhibition of complex I not only reduces ATP output but 

it also increases the production of ROS. This leads to a vicious positive feedback loop as 

the generation of ROS can cause cellular damage to nucleic acids, proteins, and even 

the electron transport chain itself to produce more ROS (Dauer & Przedborski, 2003). 

Hence, it is vital that the body maintains a healthy environment by installing mechanisms 

to recycle dysfunctional organelles and prevent the spread of stressors such as oxidative 

damage. This theme of PQC continues to loom over the scientific community as 

investigations turn towards the genetics of PD.   

 

1.3 PINK1/Parkin is implicated in MQC 
 
The majority of PD cases are sporadic but some propose that approximately 5-10% of 

patients suffer from a monogenic form (Lill, 2016).  The first familial form of PD identified 

is caused by an autosomal dominant mutation (A53T) in SNCA, which encodes for -syn 

(Polymeropoulos et al., 1997). Likewise, the mutation G2019S in LRRK2 is considered 

the most common, accounting for about 4% familial cases and 1% of sporadic cases 

(Tolosa et al., 2020). Recessive loss-of-function mutations in the proteins PARK2, PINK1, 

and DJ-1 have also been identified to cause early-onset forms of PD (< 50 years). 

Although they account for only a small fraction of the total pool of PD cases, these genes 

play an essential role in shedding light on the mechanisms that underlie 

neurodegeneration. DJ-1 has been shown to exhibit neuroprotective effects in DA 
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neurons through acting as an oxidative stress sensor further reinforcing the importance 

of PQC. Indeed, PARK2 and PINK1 are also implicated in MQC. PARK2, which encodes 

for the E3 ubiquitin ligase Parkin, is the most common recessively mutated gene 

consisting of around 8.6% early-onset PD cases. Drosophila models with Parkin-null 

mutations exhibit reduced lifespan, locomotor defects and sterility in males (Greene et 

al., 2003). Likewise, PINK1-knockout Drosophila display a similar phenotype resulting in 

male sterility, muscle degeneration and morphological defects in the mitochondria (Clark 

et al., 2006).  It is clear that PINK1 and Parkin are implicated in the MQC pathway, where 

PINK1 acts upstream in the process as a damage sensor and Parkin is the effector.  

 

1.3.1 PINK1/Parkin mediated mitophagy 
 
Mitophagy is the selective removal of mitochondria by autophagy (Tolkovsky, 2009). 

PINK1/Parkin is implicated in MQC through mitophagy. Briefly, when mitochondria 

undergo stress (such as membrane depolarization), PINK1 accumulates onto the outer-

mitochondrial membrane and homodimerizes (P. Ge et al., 2020). This promotes kinase 

activation, allowing PINK1 to phosphorylate ubiquitin at Ser65 which in turn stimulates 

the recruitment of Parkin in the cytosol. Parkin will then “amplify” the detection signal 

through creating ubiquitin chains on various downstream substrates.  The long ubiquitin 

chains promote the recruitment of ubiquitin adaptor proteins which lead to the engulfment 

of the damaged mitochondria by the autophagosome (Whitworth & Pallanck, 2017). 

However, this process has yet to be shown in vivo.  
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Figure 1.1: Overview of the PINK1/Parkin pathway in MQC (Bayne & Trempe, 2019): OMM = 

Outer Mitochondrial Membrane, ER = Endoplasmic Reticulum, Ub = Ubiquitin  

 

 

 

 

 

 

 

 

 

 

 

1.3.2 PINK1 and Parkin’s protective role in MQC is multifunctional  
 
PINK1 and Parkin’s role in MQC extends beyond mitophagy. Indeed, PINK1 and Parkin 

can manipulate mitochondrial dynamics through facilitating fission and inhibiting fusion. 

For instance, Parkin ubiquitination promotes the degradation of mitofusin 1 and 2, two 

GTPases that mediate mitochondrial fusion (Tanaka et al., 2010; Ziviani et al., 2010). 

Likewise, PINK1 is able to independently activate and recruit DRP1 to promote fission in 

the mitochondria (Pryde et al., 2016). This process allows cells to segregate local 

damaged areas of the organelle by sending them off to the lysosome whilst preventing 

dysfunctional sections from refusion and transmitting the injury to other healthy 

mitochondria. Mitochondrial trafficking is also regulated by PINK1/Parkin through the 

destruction of Miro, a protein that connects mitochondria to microtubules (Kane & Youle, 

2011). PINK1 phosphorylation of Miro leads to its degradation which detaches the 
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defective mitochondria from the microtubule network and prevents its transport 

throughout the cell. Another example of PINK1/Parkin-mediated quality control is 

observed in mitochondrial derived vesicles (MDVs), a structure that transports specific 

cargo from the mitochondria to various organelles (Soubannier et al., 2012). PINK1 and 

Parkin are required for the generation of MDVs that are destined for the lysosome (G. 

McLelland et al., 2014). This mechanism has been hypothesized to allow for the selective 

removal of specific regions in the organelle that experience local oxidative damage 

instead of removing the entire organelle, which is resource-intensive. Indeed, kinetic 

analyses demonstrate that the generation of Parkin-dependent MDVs occurs rapidly in 

response to ROS and precedes mitophagy (G.-L. McLelland et al., 2014). Sugiura et al 

characterizes MDVs as a likely first line defense in MQC and highlights the importance of 

cargo selection in protecting the cell from oxidative damage (Sugiura et al., 2014). Indeed, 

MDVs generated in response to mitochondrial stress are enriched in oxidized protein and 

cargo in brain MDVs were significantly enriched with proteins involved in oxidative 

phosphorylation (Roberts et al., 2020; Soubannier et al., 2012).  

 

It is clear that PINK1/Parkin activation is instrumental to MQC and its genetic ablation 

causes the loss of DA neurons in humans. Emerging evidence present mitochondrial 

dysfunction and impaired autophagy as potential unifying themes surrounding the 

pathogenesis of familial, environmental and sporadic cases of PD (Ryan et al., 2015). 

However, the impairment of mitochondria across all patients with PD is unlikely to occur 

by the same mechanism and the PINK1/Parkin pathway’s contribution to non-familial 

cases is unclear. A number of questions remain: What is PINK1/Parkin’s true role in global 
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mitophagy at baseline? To what degree does PINK1/Parkin inactivation contribute to the 

pathogenesis of sporadic PD?  Are there any other players that are implicated in MQC 

yet to be discovered? Interestingly, mitochondrial proteases have also emerged as key 

regulators of reshaping the proteome and overseeing MQC. Notably, mitochondrial 

hyperpolarization has been shown to activate m-AAA proteases through the degradation 

of TMBIM5 to breakdown complex I and confine the spread of ROS to hyperpolarized 

mitochondria (Patron et al., 2022). The regulation of proteolytic activity is also likely to be 

central towards pathological condition. Thus, the jury is still out for identifying the precise 

targets and pathways that are perturbed in PD. Performing proteome wide protein 

turnover studies will shed light on PQC mechanisms such as mitophagy and proteolysis 

which could provide a unifying basis for PD and expand our understanding of neuronal 

vulnerability.  

 

1.4 PQC through the lens of protein turnover 
 
Quality control encompasses various molecular processes that involve import, 

surveillance, folding, and turnover of proteins.  Protein turnover – the renewal and 

replacement of decaying proteins with the synthesis of new functional proteins – is 

essential for maintaining homeostasis in the cell. Ranging from minutes to several 

months, the turnover rate of a protein varies by its function and localization (Buscham et 

al., 2019; Price et al., 2010). The regulation of protein turnover is critical to not only 

neuronal health but is implicated in various processes such as cellular development and 

growth, transcription, immune response, and cell signalling (Balch et al., 2008; DeMartino 

& Slaughter, 1999). Pathological states can arise when this regulation is impaired. For 
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example, the human papillomavirus is responsible for the development of warts, cervical 

carcinoma, and certain head and neck cancers (Hanna et al., 2018). The virus proliferates 

through the production of a protein that stimulates the degradation of p53, an essential 

protein involved in tumor suppression  (Martinez-Zapien et al., 2016; Scheffner et al., 

1993). Hence, the half-life of specific proteins is often altered in pathological disease 

states. Measuring global turnover rates allows for the identification of these proteins or 

pathways that are dysregulated.  

 

Two main degradation pathways are autophagy and the ubiquitin proteasome system 

(UPS). Impairment of either pathway has been shown to be associated with diseases 

including cancers, cardiovascular disorders, and neurodegenerative disorders(Herrmann 

et al., 2004; Lehman, 2009; Nemchenko et al., 2011; Nixon, 2013; White, 2015). Studies 

in mice show that the deletion of ATG7, a gene essential for autophagy, has been linked 

to PD-related phenotypes such as neurodegeneration, locomotor impairments, and 

accumulation of -syn in presynaptic terminals (Friedman et al., 2012; Sato et al., 2018). 

Likewise, a significant decrease in proteasome activity has been observed in the 

hippocampus of postmortem-interval autopsied brains of patients with AD (Keller et al., 

2000). Identifying drugs that can modulate these degradation pathways to restore their 

function is a promising therapeutic strategy.  

 

However, before treatments can be developed to target these pathways, it is important to 

first measure the half-lives of healthy cells at baseline to establish a reference point. 

These half-lives can then be used to compare with the protein half-lives of diseased cells 
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to observe whether the turnover rate have been up or down-regulated. How does one 

then measure protein half-lives in cells? 

 

1.4.1 Measuring protein turnover  
 
Some of the first protein metabolism studies conducted over 80 years ago showed proof 

that proteins were not static and animal tissues could indeed degrade and synthesize 

proteins (Foster et al., 1939). The experiment involved heavily restricting the diets of rats 

and then administering isotopic ammonia and measuring its presence. From there, both 

historical and modern protein turnover studies employ an assembly of techniques that 

involve introducing a “tracer” into an organism of interest and measuring its change. This 

tracer takes the form of radioactive, biochemical, or stable-isotope label and is typically 

administered through the metabolism of carbon, nitrogen, or the amino acids of cells. 

However, high radioactive doses emitted by the tracer can harm the cell and genetically 

engineered tracers can disrupt the function of the tagged protein and only allows one 

protein to be investigated at a time.  Hence, amongst these methods, Stable Isotope 

Labeling of Amino Acids in Cell Culture (SILAC) or in mammals (SILAM) combined with 

quantitative mass spectrometry emerged as the least disruptive and most comprehensive 

technique for conducting protein turnover experiments.  

 

Principally, SILAC experiments involves growing two populations of cells or animals with 

two distinct media. The first population is exposed or fed to the “light” media containing 

amino acids with the natural isotope. The second population is exposed to the “heavy” 

medium consisting of a stable-isotope labelled amino acid which acts as a tracer. 
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Subsequent digested peptides that contain this tracer will include a mass shift 

distinguishable by MS. For example, peptides that contain the stable-isotope label [5,5,5]-

2H-3-leucine will contain a mass shift of 3 Da compared to peptides with standard leucine. 

Essential amino acids are used as tracers to ensure proper incorporation into newly 

synthesized proteins in the cells.  

 

The addition of the “heavy” tracer can be thought as “pulsing” the organism to “chase 

away” amino acids with the natural isotope abundance to be replaced by the SILAC label. 

Over the course of time, cells will continuously incorporate the heavy tracer and a “heavy” 

to “light” (H:L) tracer ratio for each peptide in the cell can then be measured at different 

time points.  The average of all H:L ratios for all peptides of a given protein can be used 

to calculate a half-life for a specific protein. This concept essentially measures the protein 

turnover rate through measuring the rate of “heavy” tracer incorporation into newly 

synthesized peptides as shown by Figure 1.2.  
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There are a few points of caution with using SILAC to measure protein turnover. Firstly, 

these measurements are functioning under the assumption that the cells or animals are 

in a steady state throughout the course of the labeling experiment (ie. the organism is not 

continuously growing). At steady state, the rate of protein synthesis is equal to the rate of 

protein degradation and thus the global protein levels remain unchanged. Throughout 

dynamic processes such as cellular growth or stress response, protein production rates 

or degradation rates can be up or down-regulated in response to stimuli. Hence, SILAC 

measurements of an organism undergoing dynamic change would only be capturing 

Figure 1.2: Principles of SILAC. Schematic demonstrating peptides derived from two theoretical 
proteins (A and B) with different half-lives incorporating the labelled tracer at separate time points. 
Protein B is turned over faster than protein A as it reaches a higher tracer percentage at each time point. 
From the tracer percentages, a half-life for each given protein can be computed. 
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differences in synthesis or degradation rates rather than its actual protein turnover. 

Secondly, when a tracer is first introduced to a cell, it is diluted by unlabelled amino acids 

found as free amino acids or generated by the breakdown of pre-existing proteins (Hsieh 

et al., 2012). Hence, the amino acid pool contributing to newly synthesized protein 

contains a mixture of both unlabelled and labelled amino acids that must be accounted 

for.  

 

1.4.2 Prior studies on mitochondrial turnover 

Although the PINK1/Parkin pathway has been well established in cell cultures, evidence 

of its role in mitophagy in vivo is limited. Several studies have analyzed mitochondrial 

protein turnover using SILAC-based approaches and fluorescence reporters in vivo.  

Vincow et al. first interrogated the role of the PINK1/parkin pathway through proteome-

wide turnover measurements in Drosophila (Vincow et al., 2013a). These results were 

obtained through SILAC time course experiment (described in the previous section of the 

Introduction) using tri-deuterated leucine as a tracer label. Their findings highlight that 

Parkin knockout (PKO) flies displayed slower turnover for a subset of mitochondrial 

proteins. Intriguingly, they also observed that turnover of specific subunits in the electron 

transport chain experienced significantly greater impairment than ATG7 mutant flies. This 

suggests that Parkin selectively degrades proteins involved in oxidative phosphorylation 

as opposed to widespread non-specific mitophagy. If true, this could be a potential 

explanation for the complex I deficits and the increased susceptibility to ROS damage 

seen in PD (Mortiboys et al., 2008; Palacino et al., 2004; Shoffner et al., 1991).  
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 However, other studies show seemingly conflicting results regarding 

PINK1/Parkin’s role on mitophagy. Lee et al. assessed mitophagy through the use of a 

mito-QC reporter, a construct made of a mitochondrial targeting sequence from the OMM 

protein Fis1 fused with a tandem mCherry-GFP tag (Lee, Sanchez-Martinez, Zarate, et 

al., 2018). When exposed to the neutral pH of the cytosol, mito-QC fluoresces both green 

and red, but GFP is quenched when introduced to an acidic environment such as the 

lysosome which then fluoresces only red (McWilliams et al., 2016). Another tool used to 

measure mitophagy employs a mitochondrial-targeted form of keima, a coral-derived 

acid-stable fluorescent protein that emits different-colored signals at acidic and neutral 

pHs (Sun et al., 2015a). This tool is coined as Mt-Keima and is directed to the 

mitochondrial matrix through using a mitochondrial targeting sequence from COX8A (Sun 

et al., 2015b). Principally, fluorescent reporters measure mitophagy through using the pH 

sensitivities of both mito-QC and mt-Keima to distinguish free mitochondria from 

mitochondria in lysosomes. Lee et al generated transgenic Drosophila expressing these 

fluorescent reporters and compared mitochondrial turnover in wild type, PINK1, and PKO 

mutants (Lee, Sanchez-Martinez, Zarate, et al., 2018). Surprisingly, they discovered that 

loss of PINK1 and Parkin function had no substantial influence on basal mitophagy. 

Likewise, McWilliams et al also demonstrated that PINK1 knockout mice displayed no 

differences in basal mitophagy compared with their wild-type counterparts (McWilliams et 

al., 2018a). However, Liu et al detected a two-fold increase in PINK1/Parkin mitophagy 

from mice subjected to exhaustive exercise through mt-Keima, but not mito-QC (Y.-T. Liu 

et al., 2021). Evidently, fluorescent reporters present an exciting opportunity to study in 

vivo mitophagy but are not free of limitations. One drawback of fluorescence reporters is 
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that they do not measure the half-life of different proteins and fail to identify the 

degradation patterns of specific regions within the mitochondria. It is apparent that 

fluorescence reporters do not capture all turnover events in the cell. Further inspection of 

global protein dynamics is required to elucidate the PINK1/Parkin canonical pathway.  

 

 All these studies highlight the feasibility and demand for more research surrounding 

mitophagy. Studies need to be conducted in models that accurately reflect the physiology 

of PD in order to develop effective treatments. Yet, mitochondrial protein turnover has 

never been investigated in a mammalian model of PD to date. This manuscript aims to 

address that data gap.  

 

1.5 Organoids as a novel model of PD 
 
Organoids are 3-dimensional (3D) self-assembling tissue constructs that have the 

potential to recapitulate the architecture and function of an organ (Takebe & Wells, 2019). 

These models can be patient-specific as organoids can be derived from embryonic stem 

cells or obtained through the dissociation of adult organs. Due to their remarkable ability 

to mimic complex cellular features, human brain organoids have emerged as a novel 

technology to dissect neurological development and diseases (Qian et al., 2019). For 

example, cerebral organoids were observed to display premature neuronal differentiation 

in patients with microcephaly, a disorder that is notoriously difficult to capture in mouse 

models (Lancaster et al., 2013). Brain organoids have also identified therapeutic targets 

against disorders such as autism-spectrum disorder, neuro-infections. Alzheimer’s 
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Disease, and Miller-Dieker syndrome (Dang et al., 2016; Iefremova et al., 2017; Mariani 

et al., 2015; Raja et al., 2016).  

 

Recently, human midbrain-like organoids (hMOs) generated from induced pluripotent 

stem cells presents an exciting opportunity for modelling PD (N.-V. Mohamed et al., 

2021). hMOs produce neuromelanin-like granules, a by-product of dopamine synthesis, 

that are chemically identical to those isolated from human SNc tissue (Jo, Xiao, Sun, 

Cukuroglu, Tran, Göke, Tan, Saw, Tan, & Lokman, 2016). This feature is not captured in 

2D neuronal cell cultures. Furthermore, hMOs harboring SNCA triplication capture key 

features of PD expressing elevated -syn levels and age-dependent increase in -syn 

aggregation (N.-V. Mohamed, Sirois, et al., 2021b).  

 

It is clear that hMOs holds promise as an exciting tool that can potentially complement 

existing in vitro systems in investigating PQC and neurodegeneration. Despite this, 

validated experimental methods to study these models are lacking and mitochondrial 

protein turnover has never been reported in organoids. 

 

1.6 Rationale and research objectives 
 

This literature review has outlined several key principles. First, PD is intimately connected 

with PQC. Abhorrent protein aggregation, respiratory chain deficits and increased 

oxidative damage observed in PD patients pivots mitochondrial dysfunction and 

autophagy as a central theme to the etiology of the disease. Second, PINK1/Parkin is 

implicated in MQC through mitophagy and other mechanisms. Interrogating this pathway 

holds promise to revealing pathogenic overlap between familial, environmental, and 
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sporadic forms of PD. Third, proteome wide turnover measurements can be used to 

assess PQC. For example, Vincow et al. uses a SILAC-labelling time course approach to 

demonstrate that Parkin-null Drosophila display impaired turnover in selective subunits 

involved in oxidative phosphorylation. This knowledge can then shed light on specific 

components or pathways that are dysregulated in a diseased model which can then be 

targeted therapeutically. However, physiologically relevant models are required to fully 

realize this potential. Finally, hMOs emerge as a novel PD model to address this problem. 

Organoids mimic the structural complexity of organs serving as a bridge between 2D 

cultures and in vivo models. However, whether hMOs live up to becoming truly powerful 

models of diseases or simply remain as a tool with scientific potential has yet to be proven 

as validated methods to study this technology is limited.  

 

Hence, the objectives of this project are to establish a method to measure protein turnover 

in hMOs, as a way of determining the impact of PD mutations on mitochondrial turnover. 

The project has three key aims. First, to design a standardized workflow to measure 

protein turnover rates in hMOs. Second, to develop a robust statistical framework to 

validate the protein half-life calculations. Third, to apply the method to different genetic 

cell lines to compare turnover rates across genotypes.  

 

To measure protein turnover, we employed a SILAC-based time course approach using 

D3-leucine as a tracer. hMOs were grown in triplicates across five different time points. 

The organoids were processed through in-gel digestion and peptides were identified 

through LC-MS/MS. A data processing pipeline was established to convert peptide H:L 
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tracer ratios to protein half-lives. This involved open-source software such as Maxquant, 

Skyline, and Topograph. The data processing workflow and accuracy of the protein half-

lives were validated through conducting a Monte-Carlo simulation and comparing protein 

half-lives with previously characterized turnover rates.  To determine if the method could 

be applied to compare genotypes, a PKO midbrain-like organoids (MBOs) was generated 

through introducing an exon 6 deletion in the PARK2 gene (X.-Q. Chen et al., 2022). Our 

results successfully and accurately identified the half-lives of 773 proteins for the first time 

in hMOs. These findings are reported in a research article published in the journal 

“Methods” for a special issue entitled “Tools for drug discovery and disease modelling”.  

 

 

 

 

 

 

 

 

 

 

 

  



 

 

31 

Chapter 2: An approach to measuring protein turnover in 

human induced pluripotent stem cell organoids by mass 

spectrometry 
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Abstract 

Patient-derived organoids from induced pluripotent stem cells have emerged as a model 

for studying human diseases beyond conventional two-dimensional (2D) cell culture. 

Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, 

recapitulate cellular architecture, and have the potential to model diseases in complex 

organs, such as the brain. For example, the hallmark of Parkinson’s disease (PD) – 

proteostatic dysfunction leading to the selective death of neurons in the substantia nigra 

-- present a subtle distinction in cell type specificity that is lost in 2D cell culture models. 

As such, the development of robust methods to study global proteostasis and protein 

turnover in organoids will remain essential as organoid models evolve. To solve this 

problem, we have designed a workflow to reproducibly extract proteins from brain 

organoids, measure global turnover using mass spectrometry, and statistically investigate 

turnover differences between genotypes. We also provide robust methodology for data 

filtering and statistical treatment of turnover data. Using human midbrain organoids (hMO) 

as a model system, our method accurately characterized the half-lives of 773 midbrain 

proteins. We compared these half-lives both to Parkin knockout hMOs and to previously 

reported data from primary cell cultures and in vivo models. Overall, this method will 

facilitate the study of proteostasis in organoid models of human disease and will provide 

an analytical and statistical framework to measure protein turnover in organoids of all cell 

types.   
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2.1 Introduction 

2.1.1 Organoids as a novel model to recapitulate neurodegenerative disease 

Three dimensional (3D) human brain organoids derived from induced pluripotent stem 

cells (iPSCs) have emerged as a novel tool in modelling distinct regions of the brain and 

can even reconstitute neuronal crosstalk via organoid fusions (Bagley et al., 2017; A. 

Chen et al., 2020; Jo, Xiao, Sun, Cukuroglu, Tran, Göke, Tan, Saw, Tan, Lokman, et al., 

2016; Kelava & Lancaster, 2016). This technology serves as a critical bridge between 2D 

cultures and in vivo models for examining complex neural mechanisms and their 

dysregulation in disease. Unlike traditional in vitro cultures, the architecture of organoids 

consists of multiple region-specific cell types conferring more physiologically relevant 

characteristics (Fatehullah et al., 2016; N.-V. Mohamed, Sirois, et al., 2021a). Two 

examples of disease-relevant hallmarks in organoids that remain poorly captured in 2D 

culture models are: (1) midbrain organoids produce neuromelanin-like granules, a 

byproduct of dopamine synthesis that are highly enriched in the midbrain neurons lost in 

Parkinson’s disease (PD) (Jo, Xiao, Sun, Cukuroglu, Tran, Göke, Tan, Saw, Tan, 

Lokman, et al., 2016; N.-V. Mohamed et al., 2021); (2) β-amyloid plaques and 

neurofibrillary tangles are also found in cerebral organoids, a pathological marker of 

Alzheimer’s disease (AD) pathology (S. H. Choi et al., 2014).  

 

These findings demonstrate that brain organoids complement existing model systems as 

a tool to study the mechanisms underlying neurodegenerative diseases. However, 

despite their promise as a driver for scientific discovery, the technology is still in its infancy 

as validated experimental methods to study these models are lacking.  
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2.1.2 Protein Dynamics in Neurodegeneration 

Turnover - the dynamic balance of protein degradation and synthesis - is essential to 

maintain the homeostasis of all cells including neurons (Fecto et al., 2014). Studies have 

shown that dysfunctional mitochondria and their impaired turnover is a fundamental 

problem associated with specific neurodegenerative disorders such as PD, AD, and 

Amyotrophic Lateral Sclerosis (Karbowski & Neutzner, 2012). In fact, mutations in PINK1 

and Parkin, two proteins implicated in the selective turnover of mitochondria, cause 

autosomal recessive juvenile PD (Narendra & Youle, 2011). Furthermore, defects in both 

the ubiquitin proteasome system and autophagy machinery lead to protein misfolding and 

aggregation, a common mechanism of pathogenesis in neurodegenerative diseases, 

such as PD, AD and Huntington’s Disease (Dennissen et al., 2012; Son et al., 2012). As 

such, the proteome-wide study of protein dynamics in organoids presents a unique 

opportunity to uncover novel mechanisms underlying neurodegeneration and cell-type 

specificity in disease. Other studies have used quantitative mass spectrometry to profile 

differential protein expression in brain organoids following drug treatment; (Dakic et al., 

2017; Notaras et al., 2021) however, there are currently no established methods to 

measure protein turnover in these systems. Our study aims to address this gap. 

 

2.1.3 Measuring protein turnover in organoids using SILAC 

Protein turnover can be measured using stable isotope labelled amino acids (SILAC) 

coupled with quantitative mass spectrometry (MS). While stable isotope labels can be 

introduced into proteins either metabolically, chemically, or enzymatically, this study will 

focus on metabolic labelling, as it is the most effective implementation for in- and ex- vivo 
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systems (Ong & Mann, 2005). Briefly, the SILAC metabolic labelling approach involves 

growing cells in two separate media: (1) the “light” medium, which contains an amino acid 

with all atoms at their natural isotope abundance and (2) a “heavy” medium, which 

contains heavy isotope labels incorporated into the same amino acid. The “heavy” labeled 

amino acid is subsequently incorporated into newly synthesized proteins, which induces 

a small mass shift in the digested peptides that is distinguishable by MS. The ratio of 

heavy to light (H:L) abundance of each peptide can be measured at different time-points 

in a pulse-chase-like time course experiment. The H:L ratios for all peptides of a given 

protein can then be averaged to compute a half-life for that particular protein. One critical 

requirement for the measurement of turnover in this manner is that the protein levels must 

remain constant throughout the time course (steady state); in this case, the rate of 

synthesis must equal the rate of degradation, allowing the turnover rate to be calculated.  

 

Common SILAC labels contain 13C or 15N isotopes within Arg or Lys in media to 2D cell 

culture systems, or in heavy labelled food of animals such as zebrafish, newts and mouse. 

(Andersen et al., 2005; Krüger et al., 2008; Looso et al., 2010; Ong et al., 2003; Westman-

Brinkmalm et al., 2011). 13C6-labeled Lys, an essential amino acid, has been used to 

measure the turnover of proteins in mice (Fornasiero et al., 2018). Alternatively, leucine 

is also an essential amino acid that is highly abundant, and less costly than its Lys/Arg 

label counterparts. Furthermore, leucine does not undergo metabolic scrambling, the 

process in which the heavy label is metabolized and incorporated into other amino acids 

potentially confounding analysis (Duan et al., 2016). Leucine is catabolized in the cell to 

-ketoisocaproic acid and -hydroxy--methylbutyric acid, two metabolites that enter 
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cholesterol biosynthesis or the citric acid cycle via acetyl-CoA, where the branched 

aliphatic  carbons are excreted through carbon dioxide. Leucine metabolism has indeed 

been observed in both astrocytes and neurons derived from human iPSCs (Salcedo et 

al., 2021).  

 

Other studies have validated the use of heavy leucine in turnover measurements by 

feeding Drosophila melanogaster [5,5,5]-deuterium-3-leucine (D3-Leu) food that was 

incorporated into the flies over time (Vincow et al., 2013b). Likewise, organoid models 

can be cultured with 13C,15N-labeled lysine and arginine to characterize growth and 

protein abundance under different conditions (Gonneaud et al., 2016). Refining these 

organoid-specific SILAC protocols will be especially useful as the number of validated 

organoid genotypes and relevant disease models expand. In this work, we provide a 

robust methodology to measure protein turnover in iPSC-derived organoids and compare 

differences across cell lines. A brief experimental overview is outlined in Figure 2.1.  As 

a test case, we compare wild type (WT) hMOs to Parkin KO (PKO) hMOs, demonstrating 

adequate sensitivity of our method and laying the foundation for future turnover studies 

in organoids.  Our approach has been optimized to produce robust and consistent data 

from a variety of protein processing and mass spectrometry methods.  
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Figure 2.1. Experimental overview. Human midbrain organoids derived from healthy 

iPSC lines were metabolically labelled with D3-Leu SILAC media over a time course 

experiment. The organoids were processed at 5 different time points to extract proteins 

and digest into peptides for MS analysis at each time-point. Protein identifications and 

the rate of heavy isotope incorporation were determined using MaxQuant, Skyline, and 

Topograph software.  

 

 

2.2 Methods  
Cell-line information and ethical approvals 

The use of iPSCs in this research is approved by the McGill University Health Centre 

Research Ethics Board (DURCAN_IPSC / 2019-5374).  AIW002 lines come from C-BIG 

repository, The Neuro. 

 

2.2.1 Organoid Generation 

Human midbrain organoids (hMOs) derived from healthy individuals were provided by the 

Neuro’s Early Drug Discovery Unit (https://www.mcgill.ca/neuro/open-science/eddu). The 

complete procedure regarding generation is described in the standardized protocol ref: 

https://doi.org/10.12688/mniopenres.12816.2 (N. v Mohamed et al., 2021). For Parkin-

knockout (PKO) in AIW002-02 iPSCs, gRNAs were designed in exon 2 and cloned into 

the PX459 vector. After transfection and colonies selection, Sanger sequencing showed 
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one clone contained a homozygous 77 bp deletion, resulting in a frameshift mutation (C. 

X.-Q. Chen et al., 2022). 

 

2.2.2 In Vivo Stable Isotope Labeling of hMOs 

The SILAC time course experiment consisted of triplicate hMOs (n = 3) at five different 

time points: Day 0, 3, 7, 14 and 28. Sixty-day old hMOs were incubated in light SILAC 

media (Table 2). After 7 days of incubation, 3 hMOs were extracted as day 0 (baseline), 

flash frozen and stored at -80°C until needed. The remaining hMOs were transferred to 

heavy SILAC media and left to incubate for the corresponding number of days. Both 

heavy and light media were changed every 2-3 days. All other hMOs were then extracted, 

frozen, and stored at each designated timepoint following the time course schedule.  

 

2.2.3 hMOs Sample Preparation 

hMOs were removed from -80°C storage and rinsed in buffer (50 mM Tris • HCl, pH 7.5). 

They were then placed in a Potter-Elvehjem PTFE glass tube Dounce homogenizer with 

200 µL of lysis buffer (50 mM Tris • HCl, pH 7.5, 8 M urea, 1 mM EDTA, 1X Halt™ 

Protease Inhibitor Cocktail, 1X PhosStop™ Phosphatase Inhibitor Cocktail). Detergents 

may be added in the lysis buffer to improve solubilization of membrane proteins if the 

downstream steps include in-gel digestion or another detergent removal method. Each 

hMO was homogenized in the lysis buffer with 30-35 pestle strokes and transferred to a 

1.5 mL Eppendorf. The tubes were sonicated in a bath sonicator for 10 minutes and spun 

at 16,000 g for 10 minutes at 4°C. The supernatants were collected and placed into new 

low-bind 1.5 mL tubes on ice. Protein concentrations of each supernatant were measured 
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using Pierce BCA protein assay kit, according to manufacturer’s instructions.  All samples 

were normalized to 1 µg /µL in 1X Laemmli buffer and were boiled at 80°C for 5 minutes 

for subsequent SDS-PAGE in-gel digestion.   

 

2.2.4 In-Gel Digestion  

For each sample, 20 µg of organoid lysates were loaded onto a 10% Mini-PROTEAN® 

TGX™ Precast Protein Gels (50 µl wells). Samples were run at 100 V until the samples 

migrated fully into the stacking region of the gel. Protein bands were visualized using 

SimplyBlue™ SafeStain (ThermoFisher), according to manufacturer instructions. Each 

sample was excised in a single band using a clean razor blade, and in-gel digestion was 

performed as previously described (Shevchenko et al., 2006). Briefly, each band was 

destained, reduced with 10 mM DTT, alkylated with 55 mM iodoacetic acid, and digested 

with trypsin overnight at 37 °C. Digested peptides were extracted with 1:2 (vol/vol) 5% 

formic acid / acetonitrile, transferred to a clean 1.5 mL Eppendorf tube, and dried in a 

Savant SPD2010 SpeedVac (ThermoFisher). Peptides were re-suspended in 0.1 % 

formic acid. At this stage, peptides can either be loaded by equal volumes or can be 

normalized using the Pierce Quantitative Colorimetric Peptide assay, according to 

manufacturer’s instructions.  

 

2.2.5 LC-MS/MS  

2 g of extracted peptides were re-solubilized in 0.1% aqueous formic acid / 2% 

acetonitrile and loaded onto a Thermo Acclaim Pepmap (Thermo, 75 m ID X 2 cm C18 

3 m beads) pre-column and then onto an Acclaim Pepmap EASY-Spray (Thermo, 75 
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m X 15 cm with 2 m C18 beads) analytical column separation using a Dionex Ultimate 

3000 uHPLC at 250 nl/min with a gradient of 2-35% organic (0.1% formic acid in 

acetonitrile) over 3 hours. Peptides were analyzed using a Thermo Orbitrap Fusion mass 

spectrometer operating at 120,000 resolution (FWHM in MS1) with HCD sequencing 

(15,000 resolution) at top speed for all peptides with a charge of 2+ or greater. 

 

2.2.6 Data Processing  

Our data processing protocol is easily portable to data generated from different mass 

spectrometer vendors and/or digestion methods, as it utilizes freely available, open-

source software. The basic workflow consists of: (1) peptide identification from raw data 

files in MaxQuant; (2) spectral library building in Skyline; (3) protein half-life determination 

in Topograph; (4) data parsing, filtering, and analysis.  

 

2.2.6.1 Peptide Identification and Database Search with MaxQuant  

RAW mass spectra data was processed using Andromeda, integrated into MaxQuant 

(version 1.6.10) (Cox & Mann, 2008). While MaxQuant has the ability to specify heavy 

labels and calculate H:L peptide ratios directly, our workflow uses MaxQuant solely as a 

means for protein identification for spectral library building in Skyline. 

1. In “Configuration”, select ‘Add’ to introduce a custom modification that has not been 

defined in MaxQuant. For this example, D3-Leucine “H(-3) 2H(3)”, with a mass change of 

3.0188u were inputted as a standard type modification. Press the “Modify Table” to 

transfer the custom modification to the modification list in MaxQuant. Click “Save 

Changes”, and restart MaxQuant.  
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2. Load all RAW data into MaxQuant using “Load folder” with “Recursive” selected, and give 

each file a name with “Set experiment”. Biological replicates must have unique experiment 

names (eg. run_1, run_2, run_3), as they will be combined later in Topograph. 

3. In “Group-specific parameters”, select carbamidomethylation (C) as a fixed modification. 

Select oxidation (M), protein acetylation (N-term), and D3-Leucine as variable 

modifications.  For instrument parameters, select default MaxQuant parameters for an 

Orbitrap, including a first search peptide tolerance of 20 ppm and a main search peptide 

tolerance of 4.5 ppm.  

4. Select Trypsin/P as an enzyme for cleavage, and permit a maximum of two missed 

cleavages. 

5. In “Global parameters”, add your FASTA file of interest (ie. reviewed human proteome 

from UniProt; UP000005640). Select the row and set the identifier rule to “Uniprot 

identifier”. The minimum peptide length can be left at 7 a.a. 

6. In “Identification”, ensure that you select “Match between runs” to enable transferring of 

protein identifications across runs. All other settings can be left default.  

7. Set the number of dedicated processors in the bottom left and start the run.  

 

2.2.6.2 Building Spectral Library through Skyline 

Skyline (daily version 21.2.1.403) is an open-source application for targeted proteomics 

and quantitative data analysis (MacLean et al., 2010). Skyline builds spectral libraries via 

BiblioSpec from a variety of upstream database searches, including MaxQuant. For 

additional details and tutorials, visit the Skyline website: 

https://skyline.ms/project/home/software/Skyline/begin.view 

1. Save RAW files and all MaxQuant output files in the same directory.  

https://skyline.ms/project/home/software/Skyline/begin.view
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2. Create a blank Skyline document and save it the same folder with the RAW data and 

MaxQuant text file outputs. Navigate to the Modifications.xml in the MaxQuant bin folder 

and copy it to the same folder. 

3. Select ‘File’ to import a ‘Peptide Search’. Click ‘Add Files’ and navigate to the msms.txt 

file and import with default settings. Ensure that Skyline has found all raw spectrum files 

by checking the “Results files found” table and add any modifications that have not been 

defined by Skyline.  

4. Select “Orbitrap” for precursor mass analyzer and set the resolving power to 120 000 at 

400 m/z. Only scans within 5 minutes of MS/MS IDs were included. These parameters 

should be adjusted according to the instrument used for the timecourse experiment.  

5. Select Trypsin/P [KR | -] as an enzyme for cleavage, and permit a maximum of two missed 

cleavages. 

6. Select the same FASTA file used for the MaxQuant search and click “Finish” to create a 

BiblioSpec spectral library.  

 

2.2.6.3 Protein Half-Life Calculations with Topograph 

Topograph processes spectral libraries to calculate protein turnover rates by analyzing 

the fraction of heavy labels in newly synthesized proteins. The software is able integrate 

information from all replicates and timepoints to produce one half-life of a given protein. 

Furthermore, Topograph considers precursor pool enrichment levels, allowing for 

accurate calculations when the precursor pool is not fully labeled (Hsieh et al., 2012).  

1. Create a new workspace in the same directory as the BiblioSpec library and RAW data 

files.  

2. Navigate to ‘Add Search Results’ to select ‘Import BiblioSpec library’ 
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3. Keep the default static modification (C heavier by 57.021461 Da) and specify the heavy 

label by selecting the preset ‘D3-Leu’ option. Custom isotope labels can also be 

configured, if necessary. 

4. Select and import RAW data files and begin analysis on peptides with default settings. 

This process can take several days depending on the complexity, quantity and size of the 

data.  

5. After the peptide analysis is complete, select ‘Set Cohort and Time points of Samples’ and 

assign time points and the cohort of samples based on the experimental design. Specify 

the number of biological replicates and conditions associated with the experiment.  

6. Prior to calculating half-lives, configure the following parameters under ‘View half-lives’: 

Select the option to calculate % newly synthesized from ‘Distribution of Unlabeled, 

Partially Labeled and Fully Labeled Peptides’. Set the percent of label at the start of the 

experiment to 0 and choose the median precursor pool. Set a minimum intensity of 105, 

minimum deconvolution score of 0.95, minimum turnover score of 0.98, and an outlier filter 

of TwoStdDev for the acceptance criteria. Choose ‘Simple Linear Regression with 95% 

CI’ for further statistical analysis. The curve should not be forced through the origin as we 

suggest evaluating whether there is a time delay from the introduction of the label to the 

appearance of the label in the peptide (see 2.6.6).  

7. To calculate half-lives for each protein, select ‘By Protein’, then click ‘Recalculate’. To 

calculate half-lives for each peptide, deselect both ‘By Protein’ and ‘By Sample’, then click 

‘Recalculate’ 

8. The corresponding table lists all the identified proteins along with their half-lives and 

confidence intervals. To customize and view more information surrounding the half-life 

calculation (such as the rate constant, standard deviation, x-intercept of the linear 

regression), select the ‘Views’ tab in the middle left of the screen and click ‘Edit View’. 

9. Click ‘Export’ to output the viewed data table into a csv file named ‘ResultRow’.  
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10. Select the ‘View’ tab in the top left and navigate towards the options “Results By Cohort” 

and “Results By Replicate” to output “DisplayRow” and “PerResultReplicate” as csv files.  

“Results By Cohort” displays the half-life of each protein separated by RAW file. The 

information can be customized to display, tracer percentage, and area under the curve 

under the ‘Views’ tab.  “PerResultReplicate” is an overview of all the individual peptides 

found in each RAW file and displays the tracer percentage on the peptide level. 

Note: Topograph groups proteins with shared peptides and assigns a single half-life 

calculation to that group. These non-unique groups will contain multiple concatenated 

FASTA headers in the “ProteinName” column. Users should analyze half-lives from 

ambiguous protein groups at their own discretion.  

 

2.2.6.4 Data Parsing and Filtering  

Data cleansing is conducted through Excel and manual validation of the half-life curves.  

1. Using the ‘ResultRow.csv’ file, remove all proteins that have ‘NA’ or negative values for 

their half-life or 95% confidence interval. 

2. Data points are defined as any peptide contributing to the t1/2 calcuation at any replicate 

and timepoint. Check the ‘Point_Count’ option in the custom ‘Views’ tab to view the total 

number of all data points for a given half-life calculation.  

3. Topograph can exclude timepoints used in protein half-life calculations by deselecting 

days in the ‘Included Times’ box. To extract the number of data points for a given protein 

at any specific time point, ‘Included Times’ was reduced to a single day, half-lives were 

recalculated by clicking ‘Recalculate’, and the resulting list was exported to CSV. This 

process was repeated for all time points and appended on a protein level. Only proteins 

with at least 2 data points detected in 3 different time points were included for further 

analysis.  
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4. Divide the range of the 95% confidence interval (upper bound minus lower bound) with 

the half-life of each individual protein to yield a value analogous to the coefficient of 

variation. Exclude proteins with a “coefficient of variation” ratio of > 0.3. 

2.2.6.5 Protein Abundance Calculations 

Topograph sums the peak areas of all forms of both the labeled (heavy) and unlabeled 

(light) peptide as a measure of total abundance. This abundance should be compared 

across time-points, either on a peptide or a protein level, to ensure that the steady state 

assumption remains valid. 

1. Normalize the abundance values under the ‘Area’ column found in the 

‘ResultsbyCohort.csv’ by dividing each individual value for a protein by the sum of all the 

values in that biological replicate. 

2. Calculate the average abundance values for each protein across all the biological 

replicates at day 0 and 28.  

3.  For each protein, perform paired sample t-tests with a Benjamini Hochberg correction 

with a false discovery rate of 5% to compare the mean abundance values between day 0 

and 28. 

4. Exclude proteins that have significant differences in mean abundance from further 

turnover analysis.  

 

2.2.6.6 Assessing Time Delays for Heavy Label Incorporation  

The x-intercepts of protein half-life curves can be used to assess the time delay from 

when the heavy media was first introduced to the organoid to heavy label appearance in 

a peptide. These intercepts may also be used to gain a qualitative sense of the curve 

fitting in Topograph, depending on the distribution of x-intercepts across a dataset.  
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1. Calculate the mean and standard deviation of the x-intercept distribution derived from the 

filtered dataset in 2.2.6.7.  

2. Flag proteins that have a x-intercept 2 standard deviations away from the mean. In our 

dataset, we have excluded these hits from bulk analysis, though they could be manually 

inspected prior to inclusion, at the user’s discretion. 

3. If the dataset is centered around t = 0, recalculate protein half-lives by fitting all proteins 

through the origin (under ‘Curve Fitting’ select ‘Force curve through origin’ and 

‘Recalculate’ – see step 6 of 2.2.6.3). If the dataset is not centered around the origin, 

Topograph is unable to force curves through non-zero x-intercepts, so we recommend 

leaving the dataset unforced.    

 

2.2.7 Protein Half-Life Calculations and Monte Carlo Simulation 

To calculate protein half-lives, we used the following equation derived from Topograph 

where n = percent of a peptide that is newly synthesized, λ = the rate constant, t = the 

amount of unlabeled peptide at a given time point, and t0 = the time delay from the 

introduction of the heavy label to its appearance in a peptide. In our organoid model, t0 is 

0 days as determined by 2.2.6.6 (Hsieh et al., 2012): 

1 − 𝑛 =  𝑒−𝜆(𝑡− 𝑡0) 

1-n (100% pre-existing peptide - %newly synthesized peptide) represents the fraction of 

remaining unlabeled peptide at a given time point. The natural logarithm can then be 

applied to the degradation of this pre-existing peptide.  

ln(1 − 𝑛) =  −𝜆(𝑡 −  𝑡0) 
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The turnover rate (λ) of a protein is equal to the slope of the linear regression on the 

degradation of all the peptides identified for that given protein. The half-life can then be 

calculated with the following formula:  

𝑇1/2 =
ln(2)

−𝜆
 

Monte Carlo simulations were conducted in Python to determine the technical 

reproducibility of our method by subsampling data points and comparing the subsampled 

t1/2 to the Topograph t1/2. For a given protein, n = 3 data points were randomly subsampled 

100 times from the total pool of data points identified in Topograph. Simple linear 

regression through the origin was performed to compute a half-life for each randomly 

selected n = 3 subsample. The 95% confidence interval of each half-life calculation was 

determined using the standard error of the regression parameter estimates. The average 

half-life and confidence interval of the 100 iterations was then calculated for n = 3 data 

points. This process was repeated through incrementing the subsample n by 1 until n 

equaled the total pool of data points for a given protein identified in Topograph.  

 

2.2.8 Determining Significant Changes in Protein Turnover Across Cell Lines 

For each protein, turnover rates were compared by calculating a fold change in half-life 

between cell lines (PKO t1/2 / WT t1/2). P-values were computed for each fold change using 

a previously established method that determines P-values from 95% confidence intervals 

for a given ratio (Altman & Bland, 2011). The P-values were adjusted for multiple 

comparisons by using the Benjamini-Hochberg procedure with a false discovery rate of 

5%. Proteins turned over significantly faster or slower (Log2(Fold Change) > -0.5 and 

<0.5) were plotted as a volcano plot (Goedhart & Luijsterburg, 2020).   
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2.2.9 Functional Annotation and Gene Ontology  

hMO proteins with confident half-lives (n = 773) were uploaded to STRING (version 11.5), 

a database to predict and visualize protein interaction networks, by Uniprot ID (Szklarczyk 

et al., 2019). For ambiguously assigned protein groups, the first FASTA header was 

chosen as the representative protein and Uniprot ID for that group. Proteins were 

assigned a functional annotation using information from a variety of resources including 

gene and protein information databases (COMPARTMENTS and KEGG) (Binder et al., 

2014; Kanehisa & Goto, 2000). Gene Ontology enrichment was performed using 

ShinyGO v0.75 (S. X. Ge et al., 2020). 210 outliers (defined as > 1.5  or < 0.66 fold 

change)  from the mouse cortex vs. hMO correlation were input as Uniprot IDs. The 4337 

identified proteins from our MS experiments were used as the background gene list. 

KEGG was chosen as the pathway database for all diagrams.  

 

2.2.10 Statistical Analysis and Figure Generation 

Simple linear regression was conducted using ordinary least squares in the statsmodels 

Python package. The correlation between the percentage newly synthesized peptides of 

replicate organoids was graphically visualized using the Matplotlib Python library. The 

remaining statistical comparisons and generation of figures were performed through 

GraphPad Prism 7.05 (GraphPad Software).  
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2.3 Results and Discussion 

2.3.1 Robustness and Reproducibility 

Overall, a total of 4337 proteins derived from 25144 peptides were identified from our MS 

data. After removing hits that did not meet the acceptance criteria (CV <0.3, 2 data points 

across 3 time points, and x-intercept < 2SD outlined in sections 2.2.6.4-2.2.6.5), 773 

proteins remained for analysis. For PKO organoids, 602 proteins remained after filtering.  

 

To validate the robustness of our method, we aimed to: (1) compare the inter-replicate 

variability across time points, and (2) assess how the number of data points affects the 

reliability of protein-level turnover measurements. First, we compared the tracer 

percentages for each protein across replicates (n = 3) and time points after coefficient of 

variation (CV) filtering (Figure 2.2). R2 values ranged from 0.83 – 0.95 between Day 3 

and Day 28 for both organoid genotypes, demonstrating adequate reproducibility across 

replicates and cell lines. Another important observation is that the organoid proteins 

reliably increased in heavy label incorporation over time, as seen by the shifts in 

distribution from 0% tracer at Day 0 to nearly 100% tracer at Day 28. For Day 0, the 

correlations were weaker (R2 = 0.43 and 0.59), in part due to the limitation of fitting a 2-D 

plane to points clustered near (0,0,0), where noisy values can drastically alter R2 

calculations. Most of the outliers which deviated significantly from the 2-D correlation 

plane were successfully pre-filtered by the steps outlined in 2.2.6.4. 
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Figure 2.2. D3-Leucine incorporation is strongly correlated across replicates at 

non-zero time points. The average “% newly synthesized” for all proteins prior to filtering 

were plotted on a 3-dimensional scatter plot according to time point. Only proteins with 3 

valid ‘% newly synthesized’ values at each time point were included. Grey points 

represent proteins that did not meet the filtering criteria and were excluded from further 

analysis. The blue plane visualizes the multiple linear regression model of the 3 

replicates. 

 

The weaker correlations at Day 0 along with the x-intercept analysis in 2.2.6.5 support 

the intuitive principle that Day 0 samples are not necessary for confident half-life 

determinations in SILAC turnover workflows. While it is safe to assume that there will be 

no heavy labelling at Day 0, we recommend that users investigate the distribution of x-

intercepts, which represents the “transit time” of heavy label incorporation in a biological 

system. In organoids, we demonstrate that there is minimal delay in the initial heavy label 

uptake, as our global distribution of x-intercepts was centered around 0 days 

(Supplemental Figure 1A). In mice or other organisms which require absorption via their 

digestive tract, one would expect longer transit times for the heavy labels and 
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consequently non-zero, positive x-intercepts in their curve fits. Our dataset also 

highlighted that Topograph curves whose x-intercepts are extreme outliers (eg. ± 2SD 

from the total distribution) should be excluded from bulk analysis or analyzed on a case-

by-case basis. Datasets which center around a common x-intercept with few extreme 

outliers may not require this level of filtering stringency.  

 

Next, we evaluated the impact of the number of data points on the quality and accuracy 

of turnover measurements by performing Monte Carlo subsampling on select proteins 

and re-calculating each half-life from a subset of data points (Figure 2.3). In Topograph, 

one “data point” equates to one peptide measured at one time point. In our experimental 

design (n = 3 replicates across 5 time points), one unique peptide can contribute up to 15 

data points for a given half-life calculation. To maximize data completeness, we restricted 

our analysis onto proteins containing a minimum of 2 data points across 3 time points. 

This final dataset contained a wide range of data points per protein, ranging from 6 to 501 

(median = 27), highlighting the need to unbiasedly visualize how this variation propagates 

into the final half-life calculation and error estimates. This Monte Carlo based approach 

can also inform users whether their data point cut-offs for downstream calculations are 

ideal or how many data points are needed to detect differences between conditions. 
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Figure 2.3. Monte Carlo simulations reveal accurate half-lives in subsampled 

proteins. Blue and black dots represent the average half-life after 100 iterations for each 

subsample in WT and PKO, respectively. Error bars indicate the average 95% confidence 

interval of the half-life calculation. Red and green shaded boxes highlight the half-life and 

95% confidence interval determined by Topograph using the total pool of identified 

datapoints.*** p < 0.0001 and * = p < 0.01 (Benjamini-Hochberg adjusted). 

 

For our dataset, the Monte Carlo simulation demonstrated that the number of data points 

needed for a confident estimate of t1/2 is protein-dependent, but that reliable estimates of 

t1/2 can still be achieved with as few as 6 data points in some cases (eg.SAFB2 in Figure 

2.3). For the 9 proteins selected, the average t1/2 of 100 Monte Carlo simulations 

(blue/black dots in Figure 2.3) converged within the 95% confidence interval of the final 

Topograph t1/2  within 3-12 data points. PSA3, whose subsampled errors were large, also 

had wide 95% confidence intervals in the final half-life calculation from Topograph (see 
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PKO t1/2 in Figure 2.3), suggesting that the final t1/2 error estimates are accurate and result 

in low false positive rates following statistical comparisons. 

 

2.3.2 Characterizing Protein Half-Lives 

The successful incorporation of D3-Leu into hMOs following incubation with D3-Leu 

media can also be visualized by tracking the tracer percentage of specific proteins over 

time (Figure 2.4A). In the example provided, the electron transport chain protein 

ATP5F1A yielded a half-life of 14.11 ± 0.23 days in WT hMOs (Figure 2.4B). 

 

Figure 2.4. D3-Leu incorporates into hMOs and produces robust protein half-life 

calculations.  A) The percentage of newly synthesized peptides for a given protein 

reliably increases over the time course. Proteins with faster turnover rates highlighted in 

green reach complete incorporation earlier than proteins with slower turnover rates as 

depicted in blue. B) Example of Topograph half-life output for ATP synthase subunit 

alpha. Black circles represent the 23 peptides (204 data points) contributing to the half-

life calculation. The blue and green lines indicate the upper and lower bounds of the 

95% confidence interval.  
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Figure 2.5. Lifetime of midbrain organoid proteins. Lifetimes of proteins organized 

into groups accordingly to their location and biological pathway. Each data point 

corresponds to a single protein lifetime. The black lines indicate the mean and the 

standard deviation (SD) for each group. Analysis of variance (ANOVA) followed by the 

Dunnett’s test summarizes the significance of protein groups compared to the average 

half-life of all the proteins identified (* ≤ 0.05, ** ≤ 0.01, **** ≤ 0.0001).  
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 Overall, WT hMO half-lives (n = 773) ranged from 2 to 79 days, with a median half-life of 

7.9 days. Next, WT hMO half-lives were summarized and grouped according to KEGG 

annotation and/or cellular localization to investigate trends in compartment- or function-

specific turnover rates (Figure 2.5). Most annotations did not deviate significantly from the 

pool of all characterized half-lives, except for a few notable exceptions: first, 

mitochondrially localized proteins displayed significantly longer half-lives compared to all 

measured hMO proteins. Second, histones, proteasomal subunits, and ribosomes were 

also significantly longer lived. These findings align with previous studies showing the 

exceptional stability and persistence of histones in mammalian models, most likely to 

maintain chromatin structure (Fornasiero et al., 2018; Toyama et al., 2013). Proteins 

associated with RNA transport displayed shorter half-lives, though they did not reach 

significance when compared to the total pool of hMO proteins. As the emphasis of this 

work was on method development, we did not focus on the biological implications of these 

differences, though it is reassuring that these global trends are also seen in other 

mammalian systems. 

 

In this work, we used PKO organoids as a test case to show that our method is sensitive 

enough to detect significant differences in protein turnover between organoid genotypes. 

For the analysis between WT and PKO organoids, we selected the 579 proteins in 

common between both datasets after CV, data point, and x-intercept filtering. Overall, 

only ~6% of proteins were significantly different between WT and PKO organoids using a 

±1.4 fold change cut-off, highlighting that the majority of protein turnover in organoids is 

not Parkin-dependent (Figure 2.6). This is not surprising, as basal mitophagy has been 
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shown to occur independently of Parkin in a variety of organisms and reporter systems 

(Lee, Sanchez-Martinez, Martinez Zarate, et al., 2018; McWilliams et al., 2018b; Wrighton 

et al., 2021). Moreover, all the significantly altered proteins exhibited faster turnover in 

PKO compared to WT hMOs, which suggests that Parkin deletion may have altered the 

neuronal development or cellular composition of hMOs.  

 

Figure 2.6. Global changes in protein half-lives between WT and PKO organoids. 

Volcano plot comparing the turnover differences across the 579 proteins that were in 

common between WT and PKO hMOs after data filtering. Significant hits were defined as 

those with p ≤ 0.01 and a log2 fold change ratio (PKO t1/2 / WT t1/2) of ≥ 0.5 or ≤ -0.5 

(approximately 1.4 fold change) 
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2.3.3 Comparison of Turnover Rates with Prior Studies 

This is the first time that protein half-lives have been characterized in brain organoids. As 

such, we sought to compare our data with previously published turnover measurements 

in mice (Fornasiero et al., 2018). When compared to different organs in mice, hMOs were 

more correlated to mouse cerebellum and cortex than to heart or muscle, albeit modestly 

(Supplemental Figure 2A). When compared to primary cortical neurons in two separate 

studies, hMOs were poorly correlated, presumably due to the rapid global turnover of 

proteins in primary neurons (Supplemental Fig 2B) (Cohen et al., 2013; Heo et al., 2018). 

To our knowledge, there are no datasets measuring protein turnover in mammalian 

midbrains, so direct comparisons were not feasible. To investigate whether the lack of 

correlation between mouse brain regions and hMOs was due to experimental error or a 

true difference in turnover patterns, we compared a subset of the most confident hits (CV 

< 0.3) in both datasets (Figure 2.7). The total R2 did not increase significantly when 

removing mouse cortex half-lives with higher errors (R2 = 0.200 in Figure 2.7 vs. R2 = 

0.194 in Supplemental Figure 2A). This lack of increase in correlation suggests that these 

differences were not due to experimental error. GO analysis on the outliers revealed that 

human midbrain proteins with different half-lives than mouse cortex were enriched in 

Parkinson’s disease, proteasome, synaptic vesicle cycle, and oxidative phosphorylation 

GO terms (Figure 2.7). Specifically, respiratory chain proteins were turned over faster in 

midbrain organoids than in mouse cortex, while proteosomal proteins were turned over 

slower (Supplemental Data 1).  
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Figure 2.7. Correlation between hMO half-lives and mouse cortex highlights 

differential protein turnover. Scatterplot comparing the half-lives of hMO proteins (CV 

< 0.3) to mouse cortex proteins (CV < 0.3). Gene ontology analysis was performed on 

the correlation outliers (red dots in top panel, defined as fold change >1.5 and < 0.66) in 

ShinyGO via KEGG. The top 20 most significant hits (FDR corrected p-value < 0.05) 

were plotted as a lollipop chart and selected GO terms were highlighted in black.  
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Overall, while both hMO and mouse brain datasets showed that mitochondrial proteins 

were turned over slower compared to their respective total protein pools, the selective 

differences highlighted by our GO analysis suggest that midbrains may contain distinct 

turnover signatures when compared to other parts of the brain. It will be critical to validate 

whether these differences are truly midbrain specific or whether they represent inherent 

differences across mammalian model systems. 

 

2.3.4 Limitations 

Organoids have immense potential for the modelling and understanding of various 

diseases, but still suffer from important limitations. Notably, organoids lack an efficient 

circulatory system leading to issues with oxygen and nutrient exchange (Zhao et al., 

2021). Likewise, due to the inherent 3D organization of the tissue culture, nutrient 

inaccessibility to the inner core can lead to cell necrosis as observed at the core of many 

reported organoid models (Kelava & Lancaster, 2016). Reduced penetrance of the heavy 

SILAC label to the organoid center may also contribute to an increased background pool 

of unlabeled proteins ultimately biasing protein half-life calculations. Recent work has 

highlighted the utility of microfluidic devices in organoid systems to improve nutrient 

access and reproducibility in growth, which may also facilitate future studies in hMOs 

(Velasco et al., 2020). It is also important to note that turnover measurements in their 

current form necessitate a few key assumptions: (1) the biological system must be in a 

steady state; this can be verified by quantifying the total level of protein at the beginning 

and the end of the time course; (2) all fragments of a protein are turned over at the same 
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rate (i.e. one turnover measurement is calculated for each protein, even if a proteolytic 

fragment or domain of a protein may be turned over more rapidly). Finally, brain organoids 

are small and thus axons do not grow more than a few millimeters, whereas axons in 

mammals can be several centimeters, and even meters. This could create significant 

differences in the turnover rate of proteins located in the soma compared to the synaptic 

terminals. In the future, a global comparison of protein turnover results from various 

turnover software and mathematical models will be useful in order to harmonize and 

confirm accurate absolute t1/2 values across workflows.  

 

2.4 Conclusion 

We have provided a robust framework for extracting proteins and measuring global 

protein turnover in human midbrain organoids. We have also developed a simple 

analytical and statistical workflow that can be implemented by scientists of all skill levels 

using open-source or freely available software. Future work using our approach will be 

able to highlight crucial differences in protein turnover between control and disease 

models of brain organoids. Overall, our work facilitates the study of proteostasis in 

organoid models of human disease and will provide a framework to measure protein 

turnover in organoids of all cell types.  

 

Data Accessibility 

The RAW mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2022) partner 
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repository with the dataset identifier PXD032169 (username: 

reviewer_pxd032169@ebi.ac.uk; password: bCJpxdWn).  

 

Supplementary Material   

Supplemental Information  

Supplemental Data 1 
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Table 1:  Manufacturer information regarding media and biochemical reagents used for 

organoid labeling 

  

Reagents 
Supplier / 

Manufacturer 

Catalogue 

Number 

Neurobasal (-L-Leu, -L-Lys, -L-Arg) Gibco ME17677L1 

L-Leu (Unlabeled) Cambridge Isotope 
ULM-8203-

PK 

L-Leu (5,5,5-D3 Labeled) Cambridge Isotope DLM-1259-1 

L-Lys hydrochloride Thermo Fisher 88429 

L-Arg hydrochloride Thermo Fisher 88427 

N2 Gibco 
17502048 
 

B27 without vitamin A Gibco 
12587010 
 

GlutaMAXTM-I Gibco 
35050-061 
 

Minimum Essential Medium- Non-Essential Amino 
Acids (MEM-NEAA) 

Gibco 
11140050 
 

2-mercaptoethanol Gibco 

 
21985023 
 
 

Brain-derived Neurotrophic Factor (BDNF) 
 

PeproTech 
 

450-02 
 

Glial cell-derived Neurotrophic Factor (GDNF) 
 

PeproTech 
 

450-10 
 

Ascorbic acid 
Millipore Sigma 
 

A5960 
 

Dibutyryl- cyclic AMP (db-cAMP) 
 

Millipore Sigma 
 

D0627 
 

Penicillin-Streptomycin (Penni/Strep) 
Millipore Sigma 
 

P0781 
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Table 2: Recipe for preparation of labeling medium 

 

 

 

 

 

 

 

 

Reagent and Final  

Concentration 
Recipe for 50 mL 

Neurobasal (without L-Leu, L-Lys or L-Arg) 50 mL 

1:100 N2 0.5 mL 

1:50 B27 without vitamin A 1 mL 

1% GlutaMAXTM-I 0.5 mL 

1% MEM-NEAA 0.5 mL 

2-mercaptoethanol 0.175 µL 

10 ng/mL BDNF 25 µL 

10 ng/mL GDNF 25 µL 

100 μM ascorbic acid 25 µL 

125 μM db-cAMP 12.5 µL 

Penni/Strep 0.05 mL 

105 mg/L *L-Leu (Unlabeled) /  L-Leu (5,5,5-D3 

Labeled)  
0.5 mL 

146 mg/L L-Lys  0.5 mL 

84 mg/L L-Arg 0.5 mL 
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Supplemental information  
 

  

 
Supplemental Figure 1. Visualization of global x-intercept distribution and outliers 
prior to 2 SD filtering. A) Frequency histogram of the x-intercepts (“transit times”) for 
all n = 813 characterized proteins prior to 2 SD filtering, which reduced the hits to n = 
773.  B) Sample curves of proteins with extreme negative (blue) or positive (red) x-
intercepts based on Topograph fitting. These proteins were filtered out of the final 
dataset as they lie 2 SD away from the mean.  
 

A 
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Supplemental Figure 2. Correlation between global hMO half-lives with mice and 

primary cortical neurons. Scatterplots comparing the half-lives of hMO proteins (CV < 

0.3 from this study) to all proteins reported in A) various organs in mice and B) rat 

cortical neurons [42, 43]. Proteins across datasets were matched according to gene 

name. Pearson’s correlation coefficients are denoted by r2. For comparison of hMO t1/2 

CV < 0.3 to mouse cortex t1/2 CV < 0.3, see Figure 2.7.  
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Chapter 3 Discussion 
 

3.1 Methodological Contributions 

 

The present work highlights a new standardized workflow that can be applied to measure 

proteome-wide turnover. The significance of our methodology is its flexibility, as it is not 

restricted to PD, but can be extended to other diseases and model systems. Specifically, 

there are three key methodological contributions in regards to data analysis.  

 

First, we established a software pipeline for analyzing turnover data comprised of 

MaxQuant for peptide identification, spectral library construction with Skyline, and protein 

half-life calculation using Topograph. This pipeline is applicable to proteomics data 

extracted from various different sources. Furthermore, we identified the optimal search 

parameters and offered user-friendly instructions on how to navigate the program settings 

of each software as documentation was limited. Second, we created a robust sequence 

of processing steps that yield high quality protein half-lives composed of filtering on the 

CV, time delay of tracer incorporation, point count, and protein abundance. The novelty 

is that we validated our protein half-lives using a Monte-Carlo simulation to prove the 

robustness of the calculations. To the best of our knowledge, this technique has not yet 

appeared in filtering steps from other protein turnover studies. It ensures that only the 

most robust data points make it to the final data set. Third, we demonstrate that our 

method is able to detect statistical differences in turnover rates across separate 

genotypes. This establishes the foundation for future research that aims to investigate 

different pathways and genes of interest involved in proteostasis.  
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However, challenges still remain which restrict the methods applicability and ability to 

identify significant trends. Although our results characterized the half-lives of 773 proteins, 

this barely scratches the surface of the entire human proteome, which is approximately 

20,000 (Kim et al., 2014). Another constraint is that we are unable to identify the cellular 

origin of a given identified protein. Some of our protein hits were associated with 

astrocytes and bulk sample analysis may fall short of accounting for the heterogeneity of 

each SILAC sample.  Advancements in single-cell proteomics allow researchers to sort 

individual cells and perform turnover analysis on a subset of cells to decode how specific 

cell-types are impacted and regulated in the nervous system (Kelly, 2020). This increased 

analytical insight would allow us to identify any microenvironmental factors that influence 

PQC or shed light on novel cellular subpopulations that could be influenced in 

neurodegeneration. Recent techniques also present an exciting opportunity to 

complement and optimize our current established methodology for obtaining turnover 

rates at a greater depth. The following section will highlight some future advancements 

that will improve key aspects to the workflow.   

 

3.1.1 Targeted Approaches with Selection Reaction Monitoring Methods 
 
First, data incompleteness is a major constraint on obtaining protein turnover rates. Half-

life calculations are derived from aggregating the H:L ratios of all the peptides of a given 

protein across multiple timepoints. Hence, the quality and accuracy of the half-life 

measurement is reliant on the ability of the MS instrument to reproducibly and repeatedly 

identify the same peptides in different samples. This was not the case for the results in 

Chapter 2 as some proteins were missing peptides across time points and replicates. 
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Data incompleteness was incorporated in our stringent filtering process and thus resulted 

in the removal of many protein hits. This can be attributed to the consequences of 

operating our MS instrument in Data Dependent Acquisition (DDA) mode for discovery 

proteomics. DDA selects ions to fragment by high-energy collision dissociation (HCD) 

based on the most intense ions observed in the MS1 scans (Davies et al., 2021). 

However, due to fluctuations in scan times or minor differences in liquid chromatography, 

peptides selected for fragmentation can vary from run to run (H. Liu et al., 2004). Different 

peptide fragmentations can result in their misidentification which omits them from the 

aggregate protein half-life calculations. Hence, the nature of DDA contains inherent 

variation when sampling peptides which contribute to incomplete data acquisition for 

protein turnover studies (Tabb et al., 2010). Selection Reaction Monitoring (SRM) is a 

targeted MS/MS technique that can address this issue through boosting sensitivity and 

selectivity. Principally, SRM employs triple quadrupole MS instruments enabling the user 

to specify m/z filters to select certain peptides for fragmentation (Picotti & Aebersold, 

2012). As opposed to scanning over a large mass to charge range, a peptide m/z can be 

specified to achieve maximal sensitivity. The complexity of the proteome is often difficult 

to resolve but SRM proteomics allows for high sequence-based selectivity (Vidova & 

Spacil, 2017).  Since only a window of m/z are transmitted to the MS detector, a 

predetermined list of target peptides belonging to specific proteins can be selectively 

investigated. This allows SRM to uniquely target precise biological functions and 

pathways, or validate significant protein hits in turnover studies. Indeed, a number of SRM 

based proteomic approach have been used to uncover important protein dynamics 

(Bisson et al., 2011; Konvalinka et al., 2013). Similarly, a combination of SRM-SILAC 
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methodology can be used to interrogate protein turnover. Performing SRM techniques on 

a subset of proteins involved in a pathway of interest will allow us to increase the accuracy 

and number of peptides identified to generate a more holistic protein half-life. For 

example, an SRM adapted approach in Chapter 2 could investigate a list of subunits in 

the respiratory chain to drive a more powerful discovery regarding Parkin’s impact on 

oxidative phosphorylation. Through specifying particular isolation windows, we can 

increase our visibility and identification of certain peptides across all time points and 

replicates.  

 

3.1.2 Isobaric Tagging combined with SILAC approaches  
 
Another practical constraint surrounding the methodology is the cost and scalability of the 

SILAC time course experiment.  For example, an experiment comprised of 5 time points, 

3 replicates, and 2 genotypes translates to 30 total samples that require individual LC-

MS/MS runs (5 x 3 x 2). It is clear that any addition of new genotypes or time points of 

interest can quickly strain the limited time and resources available. Isobaric tagging 

combined with SILAC hyperplexing is an innovative MS technique that could potentially 

alleviate this issue (Welle et al., 2016). Briefly, Tandem Mass Tags (TMT) are isobaric 

labels which contain a mass reporter and mass normalizer consisting of different stable 

isotope configurations. Since, the tags have the same nominal mass, TMT labelled 

peptides appear at the same m/z value in a MS1 scan(Rauniyar & Yates 3rd, 2014). 

However, the mass reporter can be cleaved off the labelled peptide and be detected by 

the mass analyzer in the MS2 spectrum (Zhang & Elias, 2017). This strategy allows for 
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multiple samples to be labelled by distinct TMT isotopic reporter variants and analyzed 

simultaneously in a single pooled MS run.  

 

Welle et al. demonstrates how this approach can be applied with SILAC to conduct 

proteome-wide turnover studies. Experimental samples from varying timepoints (ie. Day 

0, 3, 7…etc) and separate replicates are labelled with different TMT tags (TMT126, 

TMT127, TMT128…etc) but pooled together in a single sample. A peptide from the same 

protein in all the pooled samples will have the same m/z in the MS1 spectra. However, it 

can be designated to the correct replicate and timepoint in the MS2 spectrum due to the 

distinct mass reporter of each TMT label. Therefore, fragmentation of the SILAC labelled 

peptide peaks will provide insight regarding the kinetic incorporation and appearance of 

the heavy label across multiple samples in one LC-MS/MS run.  

 
 

3.2 Applying protein turnover studies to other PD models 
 
The results in Chapter 2 demonstrate that the majority of the midbrain organoid proteome 

turnover is Parkin-independent, including most mitochondrial proteins as shown in Table 

3.  

Table 3: Mitochondrial protein hits 

Uniprot Gene Name Description WT t1/2 

(d) 
PKO t1/2 

(d) 
Ratio P 

P34897 SHMT2 Serine 
hydroxymethyltransferase, 
mitochondrial 

12.17 6.66 0.55 <0.001 

P00367 GLUD1 Glutamate dehydrogenase 1, 
mitochondrial 

19.28 11.31 0.59 <0.001 

Q13011 ECH1 Delta(3,5)-Delta(2,4)-dienoyl-
CoA isomerase, mitochondrial 

16.77 11.41 0.68 <0.001 

Q9UJZ1 STOML2 Stomatin-like protein 2, 
mitochondrial 

20.37 13.94 0.68 <0.001 
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O75489 NDUFS3 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 
3, mitochondrial 

9.92 7.14 0.72 <0.001 

P49419 ALDH7A1 Alpha-aminoadipic 
semialdehyde dehydrogenase 

12.66 9.29 0.73 <0.001 

P30049 ATP5F1D ATP synthase subunit delta, 
mitochondrial 

18.58 13.71 0.74 <0.001 

P49189 ALDH9A1 4-trimethylaminobutyraldehyde 
dehydrogenase 

9.37 6.91 0.74 <0.001 

Q8NCW5 NAXE NAD(P)H-hydrate epimerase 11.19 8.41 0.75 <0.001 

P30084 ECHS1 Enoyl-CoA hydratase, 
mitochondrial 

11.97 9.23 0.77 0.005 

P23368 ME2 NAD-dependent malic enzyme, 
mitochondrial 

9.93 7.69 0.77 0.002 

P36957 DLST Dihydrolipoyllysine-residue 
succinyltransferase component 
of 2-oxoglutarate 
dehydrogenase complex, 
mitochondrial 

17.82 13.81 0.78 0.003 

O43488 AKR7A2 Aflatoxin B1 aldehyde reductase 
member 2 

11.07 8.60 0.78 <0.001 

P35232 PHB1 Prohibitin 22.30 17.37 0.78 <0.001 

P22695 UQCRC2 Cytochrome b-c1 complex 
subunit 2, mitochondrial 

17.79 13.91 0.78 <0.001 

P30048 PRDX3 Thioredoxin-dependent peroxide 
reductase, mitochondrial 

14.79 11.72 0.79 <0.001 

P07954 FH Fumarate hydratase, 
mitochondrial 

16.91 13.43 0.79 <0.001 

P48735 IDH2 Isocitrate dehydrogenase 
[NADP], mitochondrial 

11.58 9.21 0.80 <0.001 

O95831 AIFM1 Apoptosis-inducing factor 1, 
mitochondrial 

12.53 10.03 0.80 <0.001 

P07195 LDHB L-lactate dehydrogenase B 
chain 

14.88 11.92 0.80 <0.001 

P09622 DLD Dihydrolipoyl dehydrogenase, 
mitochondrial 

15.11 12.31 0.81 0.003 

Q99623 PHB2 Prohibitin-2 21.77 17.75 0.82 <0.001 

P06576 ATP5F1B ATP synthase subunit beta, 
mitochondrial 

17.48 14.30 0.82 <0.001 

P22234 PAICS Multifunctional protein ADE2 9.97 8.17 0.82 0.002 

Q9HC38 GLOD4 Glyoxalase domain-containing 
protein 4 

8.71 7.18 0.82 0.002 

Q13423 NNT NAD(P) transhydrogenase, 
mitochondrial 

9.64 7.95 0.82 0.016 

P08559 PDHA1 Pyruvate dehydrogenase E1 
component subunit alpha, 
somatic form, mitochondrial 

9.30 7.73 0.83 0.005 

P05141 SLC25A5 ADP/ATP translocase 2 10.17 8.50 0.84 <0.001 

P10809 HSPD1 60 kDa heat shock protein, 
mitochondrial 

18.66 15.61 0.84 <0.001 

P00441 SOD1 Superoxide dismutase [Cu-Zn] 12.04 10.13 0.84 0.003 

P36542 ATP5F1C ATP synthase subunit gamma, 
mitochondrial 

16.64 14.02 0.84 <0.001 

P61604 HSPE1 10 kDa heat shock protein, 
mitochondrial 

13.76 11.65 0.85 <0.001 
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Q16891 IMMT MICOS complex subunit MIC60 13.88 11.76 0.85 0.011 

P48047 ATP5PO ATP synthase subunit O, 
mitochondrial 

16.97 14.45 0.85 <0.001 

P05141 SLC25A5 ADP/ATP translocase 2 9.34 7.97 0.85 0.120 

P25705 ATP5F1A ATP synthase subunit alpha, 
mitochondrial 

14.11 12.12 0.86 <0.001 

P04179 SOD2 Superoxide dismutase [Mn], 
mitochondrial 

17.60 15.36 0.87 0.019 

P51659 HSD17B4 Peroxisomal multifunctional 
enzyme type 2 

8.18 7.14 0.87 0.002 

P00505 GOT2 Aspartate aminotransferase, 
mitochondrial 

17.16 15.01 0.87 <0.001 

Q04837 SSBP1 Single-stranded DNA-binding 
protein, mitochondrial 

21.01 18.44 0.88 0.149 

P38646 HSPA9 Stress-70 protein, mitochondrial 6.62 5.81 0.88 0.003 

Q9BPW8 NIPSNAP1 Protein NipSnap homolog 1 16.81 14.79 0.88 0.070 

P32119 PRDX2 Peroxiredoxin-2 12.88 11.34 0.88 0.019 

P21796 VDAC1 Voltage-dependent anion-
selective channel protein 1 

10.02 8.84 0.88 <0.001 

P27695 APEX1 DNA-(apurinic or apyrimidinic 
site) endonuclease 

9.40 8.41 0.89 0.138 

Q12931 TRAP1 Heat shock protein 75 kDa, 
mitochondrial 

5.75 5.16 0.90 0.062 

P45880 VDAC2 Voltage-dependent anion-
selective channel protein 2 

9.91 8.92 0.90 <0.001 

P49411 TUFM Elongation factor Tu, 
mitochondrial 

8.24 7.44 0.90 0.037 

Q99798 ACO2 Aconitate hydratase, 
mitochondrial 

8.41 7.60 0.90 0.002 

Q00325 SLC25A3 Phosphate carrier protein, 
mitochondrial 

10.81 9.77 0.90 0.316 

P05141 SLC25A5 ADP/ATP translocase 2 10.30 9.33 0.91 0.305 

P31040 SDHA Succinate dehydrogenase 
[ubiquinone] flavoprotein 
subunit, mitochondrial 

5.81 5.37 0.92 0.361 

P30044 PRDX5 Peroxiredoxin-5, mitochondrial 9.05 8.37 0.92 0.110 

P31930 UQCRC1 Cytochrome b-c1 complex 
subunit 1, mitochondrial 

14.14 13.22 0.93 0.494 

Q9UBQ7 GRHPR Glyoxylate 
reductase/hydroxypyruvate 
reductase 

6.33 5.96 0.94 0.558 

P32119 PRDX2 Peroxiredoxin-2 12.61 11.99 0.95 0.158 

P17612 PRKACA cAMP-dependent protein kinase 
catalytic subunit alpha 

8.08 7.69 0.95 0.334 

Q99497 PARK7 Parkinson disease protein 7 9.13 8.73 0.96 0.315 

P09417 QDPR Dihydropteridine reductase 7.72 7.45 0.96 0.611 

O00429 DNM1L Dynamin-1-like protein 6.13 6.07 0.99 0.921 

O00154 ACOT7 Cytosolic acyl coenzyme A 
thioester hydrolase 

5.96 5.92 0.99 0.878 

Q9Y277 VDAC3 Voltage-dependent anion-
selective channel protein 3 

7.79 7.74 0.99 0.954 

O75390 CS Citrate synthase, mitochondrial 9.24 9.24 1.00 0.995 

P49327 FASN Fatty acid synthase 4.44 4.44 1.00 0.983 



 

 

79 

P24752 ACAT1 Acetyl-CoA acetyltransferase, 
mitochondrial 

7.21 7.23 1.00 0.964 

P80404 ABAT 4-aminobutyrate 
aminotransferase, mitochondrial 

10.23 10.36 1.01 0.890 

P41250 GARS1 Glycine--tRNA ligase 5.50 5.82 1.06 0.054 

Q16881 TXNRD1 Thioredoxin reductase 1, 
cytoplasmic 

6.76 7.48 1.11 0.264 

P42704 LRPPRC Leucine-rich PPR motif-
containing protein, mitochondrial 

4.09 4.95 1.21 0.006 

O43169 CYB5B Cytochrome b5 type B 6.94 9.42 1.36 0.002 

O75746 SLC25A12 Calcium-binding mitochondrial 
carrier protein Aralar1 

5.97 8.16 1.37 0.002 

 

The significantly altered proteins in PKO were surprisingly degraded faster than their WT 

counterpart which is inconsistent with the observations obtained from the Drosophila 

study conducted by Vincow et al. Despite this, the biological consequence of these protein 

turnover rates remains to be investigated in other models of PD. Chapter 2 presented 

limitations inherent to the organoid model growth and development to explain our turnover 

measurements. The following section will now delve into other future steps to further 

scrutinize the PQC mechanisms that underlie PD pathogenesis to potentially complement 

our initial results.  

 

3.2.1 Interrogating other PD-related genes 
 
Examining protein turnover in other familial models will potentially bring to light hidden 

pathways and proteins that are dysregulated in PD pathology. Future work should look 

into investigating mutations in other PD-related genes. A spectrum of pathogenic 

mutations including 7 missense mutations, genomic duplications, and triplications have 

been reported in SNCA (Fujioka et al., 2014; Konno et al., 2016). Recently, Nguyen et al. 

developed human midbrain organoids harboring SNCA gene triplication through using 

CRISPR/Cas9(N.-V. Mohamed, Sirois, et al., 2021b). Notably, these organoids not only 
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manifested elevated -syn levels but also displayed -syn aggregation, a hallmark of 

patient brains with synucleinopathies. Indeed, both oligomeric and phosphorylated forms 

of -syn increased as organoids matured and correlated with the selective DA neuron 

loss over time. Aggregated -syn may also inhibit the proteasome through interacting with 

a subunit of the proteasome 19S cap or interfering with its catalytic activity (Lindersson 

et al., 2004; Snyder et al., 2003). Apart from disturbing proteasomal function, -syn has 

been hypothesized to confer neurotoxic effects through inducing oxidative stress, 

decrease neurotransmitter release, and inhibit synaptic vesicle recycling (Nemani et al., 

2010; Scott et al., 2010; Stefanis, 2012). Proteome wide turnover studies on this model 

offers an opportunity to narrow down the specific perturbed pathways and pinpoint the 

exact mechanisms that cause dysregulation. 

 

Another gene central to lysosomal function is GBA. Mutations in the GBA gene encoding 

for lysosomal enzyme glucocerebrosidase occurs in approximately 5-15% of PD patients 

(Smith & Schapira, 2022). Likewise, GBA mutations also cause Gaucher’s disease, a 

lysosomal storage disorder which leads to the accumulation of glucocerebroside in 

tissues such as the liver, spleen, bone, and bone marrow (Rosenbloom & Weinreb, 2013). 

Observations demonstrating increased rates of Parkinsonism in relatives of Gaucher’s 

disease patients place the gene as a critical genetic risk factor for PD (Halperin et al., 

2006). A study conducted in Ashkenazi Jewish patients with PD revealed that 

approximately one third of the sample cohort harbored a GBA mutation (Aharon-Peretz 

et al., 2004). Many hypotheses have risen claiming that reduced glucocerebrosidase 

activity leads to α-syn accumulation or that heterozygous GBA mutations leave patients 
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vulnerable to a “second hit” involving either another genetic or environmental risk factor. 

However, studies have yet to demonstrate the accumulation of glucosylceramide, the 

substrate of glucocerebrosidase, in PD patients with GBA mutations. The mechanistic 

association between GBA and PD is still unresolved.  

 

A unifying question overarches the series of the PD-associated genes presented in this 

manuscript such as SNCA, GBA, LRRK2, DJ-1, PINK1, and Parkin. What are the exact 

mechanisms underlying these genes and how do their impairment translate to selective 

neuronal death? Would these deficient organisms display impaired turnover of specific 

cargo required for neuronal health or do they prevent lysosomal function from removing 

harmful components that target neurons? Future studies should assess global protein 

turnover of all PD-related genes to uncover pathways and proteins to help piece together 

this puzzle.  

 

3.2.2 Investigating PINK1/Parkin pathway in vivo  
 
The lack of differences observed in mitophagy at baseline when PINK1/Parkin is 

compromised in vivo has been difficult to reconcile. Notably, PINK1/Parkin knock out mice 

surprisingly fail to capture any meaningful neurological or behavioural phenotypes of PD 

(Pickrell & Youle, 2015). One intriguing possibility is that an additional stressor is required 

to trigger the PINK1/Parkin pathway. Although PINK1/Parkin KO mice present no DA 

neuronal loss, intestinal infection with gram-negative bacteria in PINK1 null mice yielded 

motor impairment  (Matheoud et al., 2019). Likewise, PKO mice that express POLG, a 

proofreading-defective version of mitochondrial DNA polymerase, exhibited DA neuronal 

loss and motor deficiencies (Pickrell et al., 2015). The impaired proofreading activity 
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conferred by POLG introduces mutations in mtDNA and accumulates mitochondrial 

stress, yet mice expressing POLG alone do not display PD-related phenotypes (Pickrell 

et al., 2015; Trifunovic et al., 2004). This finding suggests that loss of PINK1/parkin or 

mitochondrial stress alone may not lead to neurodegeneration but a combination of these 

events is required to elicit the phenotype. Similar to inactivating a tumor suppressor gene 

in cancer biology, loss of PINK1/Parkin’s protective MQC function can be represented as 

a “first hit” in a multi-hit model of PD. This is further exacerbated by a “second hit” of 

mitochondrial stress derived from either bacterial inflammation or the accumulation of 

mtDNA mutations. This could potentially explain the increase in incidence rate of sporadic 

PD after 60 years old, as individuals accumulate “hits” over time through other 

environmental events (de Lau & Breteler, 2006). Whereas, patients with genetically-

associated PD have a decreased tolerance to these “hits” due to inadequate PQC 

mechanisms thus leading to an earlier age of onset for the disease(Alcalay et al., 2010).  

 

Hence, future work should introduce an additional stressor to measure protein dynamics 

in a multi-hit model of PD in vivo. Figure 3 proposes an experimental procedure that 

extends the approach used in chapter 2 to study protein turnover in mice subject to a 

stressor, but could also be applied to organoids treated with stressors.  
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Figure 3: Theoretical experimental overview of in vivo turnover measurements.  
Briefly, triplicates of PINK1-KO and Parkin-KO mice will be crossed with mutator mice expressing POLG to 
generate mutant mice in the mutator background. These mice will then be fed a standard unlabelled diet (“light”) 
for a period of time. After the mice are habituated to their diet, they will switch onto “heavy” labelled food which 
marks the beginning of the SILAC-time course experiment. A stressor in the form of bacterial infection or 
exhaustive exercise will be introduced to the mice shortly prior to switching diets to induce inflammation. 
Proteome wide turnover calculations will be performed to identify dysregulated pathways implicated in 
neurodegeneration. 
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3.3 Conclusion 
 

The work contained in this thesis aimed to dissect the mechanisms underlying 

neurodegeneration through measurement of protein turnover as a proxy for PQC. 

Regulating protein turnover is an essential component of proteostasis and central to 

maintaining neuronal health. Thus, we developed a robust workflow and software pipeline 

to characterize protein half-lives using a SILAC-based quantitative MS approach. We 

chose to analyze protein turnover in organoids for the first time due to their exciting ability 

to recapitulate complex features of the brain. A baseline dataset of turnover rates was 

obtained after a rigorous filtering process and further validated using a multiple probability 

simulation. The PINK1/Parkin canonical pathway is imperative to MQC and we thus 

developed a statistical framework to compare global protein turnover with Parkin-null 

organoids. Our work expands our understanding of organoids as a model system and 

enables powerful research surrounding protein turnover.  We hope that the methods and 

findings presented here will contribute to the discovery of new therapies aimed to improve 

the lives of patients with PD.   
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