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Abstract

The brain is a complex biological system with different capabilities from responding to environ-
mental stimuli in a fraction of a second, to information integration, creative processing, decision
making, learning and memory. It is composed of numerous interconnected neural circuits, at
multiple scales, forming the static and dynamical substrate of brain functions and behavior. The
static properties of brain networks are essentially those of the anatomical structure of the brain,
with anatomical connections between brain regions and neural ensembles. The dynamical as-
pect is related to the neurophysiological activity of neural circuits and of their interactions in
real time. Brain rhythmic fluctuations represent a significant portion of these dynamical aspects.
Interactions between oscillatory rhythms are thought to be involved in the spatial and temporal
integration of information by the brain. Recent findings have provided strong evidence of such
interactions with different brain functions but the actual mechanisms remain unclear. Hence,
in-depth studies of this phenomenon will improve our knowledge of the dynamical aspects of
brain neural networks in health and disease.

The main objective of my dissertation was to study cross-frequency interactions between
neural oscillations at different rhythms, with an emphasis on phase-amplitude coupling. One of
the first challenging issues in studying cross-frequency phase-amplitude coupling is in obtain-
ing accurate measurements from electrophysiological recordings. My first study was dedicated
to proposing an analytical approach for improved identification and measurement of phase-
amplitude coupling in a time-resolved manner for a variety of experimental designs. In a sec-
ond study, I further analyzed how cross-frequency phase-amplitude coupling was related to the
epileptic phenotype of a rodent model of mesial temporal lobe epilepsy. We found expressions
of excessive coupling between the phase of slow non-REM sleep oscillations – reflecting ex-
citability cycles – and the amplitude of high-frequency oscillations in the seizure onset zone
of the epileptic animals. We also observed a positive linear relationship between this abnor-
mally elevated phase-amplitude coupling and the number of epileptic seizures per day. In my
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last study, I investigated the phase-amplitude coupling signatures of healthy brain functions
with auditory pitch discrimination as a model. Using magnetoencephalography (MEG) source
imaging, we found that delta-phase to beta-amplitude coupling significantly increased during
task performance compared to baseline resting state in auditory cortex and inferior frontal gyrus
regions. This physiological coupling was over-expressed in individuals affected by a tone deaf-
ness syndrome called amusia. Our findings highlight the regions, the nature of their activity and
their interactions that are crucial to auditory pitch perception, which is involved in higher-order
brain functions such as music appreciation and natural speech processing in language.

Overall, the present research body of work confirms that cross-frequency phase-amplitude
coupling improves the characterization of the nature of brain activity, and how it is compro-
mised in certain pathological changes. Future research will look into the translation potential
of the measure in detecting and monitoring the progression of brain disorders.
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Résumé

Le cerveau est un systéme biologique complexe aux capacités multiples, de la réponse aux stim-
uli environnementaux en une fraction de seconde à l’intégration d’informations sensorielles
multimodales, au processus créatif, la prise de décision, l’apprentissage et à la mémoire et le
langage. Il est composé de nombreux circuits neuronaux interconnectés, à plusieurs échelles,
formant le substrat structurel et dynamique des fonctions cérébrales et du comportement.
L’architecture des réseaux cérébraux est essentiellement celle de la structure anatomique des
connexions cérébrales reliant régions et ensembles neuronaux. L’aspect dynamique est lié à
l’activité neurophysiologique des circuits neuronaux et leurs interactions en temps réel. Les
fluctuations rythmiques du cerveau représentent une partie importante de ces aspects dynamiques.
On fait l’hypothèse que les interactions entre rythmes oscillatoires à différentes fréquences sont
impliquées dans l’intégration spatiale et temporelle de l’information par le cerveau. Des décou-
vertes récentes ont fourni de solides preuves de telles interactions dans différentes fonctions
cérébrales, mais la connaissances des mécanismes impliqués est encore bien incomplète. Par
conséquent, des études approfondies des phénomènes associés sont nécessaires pour éclaircir
la nature des manifestations dynamiques saines et pathologiques au sein des réseaux cérébraux.

L’objectif principal de ma thése a été d’étudier les interactions entre oscillations neuronales
à différents rythmes, en mettant l’accent sur le couplage phase-amplitude. L’obtention de mesures
précises à partir d’enregistrements électrophysiologiques est nécessaire à l’étude du couplage
phase-amplitude. Ma première étude visait donc à proposer une approche analytique pour une
identification et des mesures améliorées du couplage phase-amplitude résolues dans le temps,
qui soient également valides dans diverses conditions expérimentales. Dans une seconde étude,
j’ai analysé le lien entre le couplage phase-amplitude et le phénotype épileptique d’un mod-
èle rongeur d’épilepsie du lobe temporal médian. J’ai découvert des expressions de couplage
excessif entre la phase d’oscillations lentes du sommeil non REM - rhythmées par les cycles
d’excitabilité neuronale - et l’amplitude d’oscillations hautes-fréquences dans la zone de dé-
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clenchement des crises. J’ai également observé une corréation positive entre ce couplage phase-
amplitude anormalement élevé et le nombre de crises d’épilepsie par jour vécues par chaque an-
imal. Dans ma dernière étude, j’ai mis en évidence les signatures de couplage phase-amplitude
dans un modèle de fonction cérébrale saine, la discrimination auditive de la hauteur tonale. En
utilisant l’imagerie des sources magnétoencéphalographiques (MEG), j’ai pu constater que le
couplage de la phase des ondes delta avec l’amplitude des oscillations bet̂a augmentait con-
sidérablement au cours de l’exécution de la taĉhe par rapport à l’état initial de repos, dans le
cortex auditif et les régions du gyrus frontal inférieur. Ce couplage physiologique était surex-
primé chez les individus atteints du syndrome de surdité tonale appelé amusie. Mes résultats
mettent en évidence les régions, ainsi que la nature de leur activité et de leurs interactions,
qui sont essentielles à la perception auditive tonale, et qui sont également impliquées dans des
fonctions cérébrales avancées telles que l’appréciation de la musique et le traitement naturel de
la parole dans le langage.

Ainsi, mes travaux de recherche montrent que le couplage inter-fréquentiel phase-amplitude
caractérise de manière plus détaillée la nature de l’activité cérébrale et la manière dont elle est
compromise par certains changements pathologiques. Des recherches futures examineront le
potentiel de telles mesures dans la détection et le suivi de la progression des troubles cérébraux.
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1
Introduction

"Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate. Are

neuronal oscillations an inevitable by-product, similar to bridge vibrations, or

an essential part of the brain’s design?"

Buzsáki and Draguhn [2004]

1.1 Motivation

Neurons and other nerve cells are considered to be the fundamental units of the nervous sys-

tem. The neuron is an electrically excitable cell which connect with other cells via synapses;

and synapses are specialized structures, which let neurons communicate through electrical or

chemical signals. Synaptic signals can be either excitatory or inhibitory, increasing or reducing

the net voltage of the target cell, respectively. A typical neuron consists of three main com-

ponents: a soma (i.e. the cell body), an axon, and several dendrites. From the computational

standpoint, the neuron is thought to be the basic processing unit of the brain [McCulloch and

Pitts, 1943]. It receives and integrates inputs from other neurons, and discharge a spike if the

integrated inputs exceed a critical level of excitation. These spikes, also called action potentials,

are providing a medium for communication between cells.
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Introduction

Brain functions and behavior are not enabled by single neural cells; they emerge from

cell assemblies and network circuits, as the outcome of complex interactions between neu-

ral cells [Gerstein and Kirkland, 2001]. Through development and learning, these interactions

contribute to shaping the actual connections and wiring between neurons in circuits and as-

semblies that typically work together. Principal cells (i.e. neurons) also wire with inhibitory

interneurons, which play an important role in enabling sophisticated computational processes

[Buzsaki, 2006; Friedrich et al., 2013]. The synchronized cellular activity within neural ensem-

bles produce rhythmic fluctuations also called brain rhythms or neural oscillations, that are

observed at multiple scales of neurophysiological recording. There is a vast literature of empir-

ical observations of these oscillations in different species both in vivo and in vitro (e.g. in mice

[Buhl et al., 1998], rats [Chrobak and Buzsáki, 1998], monkeys [Kreiter and Singer, 1992], cats

[Gray and Singer, 1989] and human being [Hari and Salmelin, 1997; Bragin et al., 1999]), and

basic research on their signal origins and their functional characteristics across the frequency

spectrum [Steriade et al., 1993; Freeman, 2004; Buzsáki and Draguhn, 2004; Buzsáki et al.,

2012]. These oscillations are shown to be related to the interdependent dynamics of excitatory

principal cells and inhibitory interneurons [Buzsaki, 2006], and are widely studied markers of

brain functions and dysfunctions.

The synaptic weights in connected neural assemblies are plastic and they can change through

short-term and long-term potentiations. The functional role of brain oscillations expressed in

various frequency ranges is widely researched. My thesis intends to contribute to such clari-

fication effort. So far, oscillations are thought to bind neurons into assemblies with transient

synchronization of cells through dynamic connections [Engel et al., 2001; Varela et al., 2001].

Such mechanism would facilitate synaptic plasticity and bias input selection [Buzsaki, 2006].

Synchronous oscillations are also involved in the production and enhancement of neuronal tem-

poral correlation [Harris et al., 2003], which is necessary for spike timing dependent plasticity

(STDP) [Wang, 2010]. Symmetrically, neuronal synchronization patterns can be influenced by

STDP [Izhikevich, 2006; Cassenaer and Laurent, 2007; Nowotny et al., 2008; Thivierge and

2
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Cisek, 2008; Fründ et al., 2009]. Therefore, oscillations are at minimum signal markers of neu-

roplasticity of the brain. They are also suggested to contribute to the temporal representation

and long-term consolidation of information ([Buzsáki and Draguhn, 2004; Jacobs et al., 2007]).

Overall, brain oscillations are actively studied as signal markers for bridging the neural dy-

namics of brain systems and circuits to complex behavior [Somers and Kopell, 1993; Engel

et al., 2001; Steriade, 2001; Hasselmo et al., 2002; Whittington and Traub, 2003; Niell and

Stryker, 2010; Buschman et al., 2012], including network formation and processing for sensory

perception, memory, and even consciousness [Gray et al., 1989; Kahana et al., 2001; Engel

et al., 2001; Canolty and Knight, 2010]. While we have made considerable progress in the

understanding of the cellular and molecular machinery of neural cells and their environment,

major knowledge and technical gaps remain to comprehend the emergence of complex behav-

iors from brain circuits, and the diverse and profound phenotypes of brain disorders. For all the

reasons we have just briefly reviewed, studying neural oscillations can contribute to our better

understanding of integrating mechanisms relating the dynamics of neural circuits to behavior

in health and disease [Buzsaki, 2006; Baillet, 2017].

Most electrophysiological studies in the field have used different forms of power spectral

decompositions of electrophysiological signals in one or several empirically-defined frequency

bands of interest [Buzsáki and Draguhn, 2004; Baillet, 2017]. More recently, strong interest

has emerged about the study of interdependencies between oscillatory signals at distinct fre-

quencies. As we will review below, such manifestations of cross-frequency coupling (CFC) are

associated with complex brain functions. For instance, in the conceptual framework of active in-

ference in brain functions [Rao and Ballard, 1999; Friston, 2005], it is hypothesized that brain

oscillations may enable distinct channels for feedforward and feedback communication be-

tween brain regions and systems [Buzsáki and Draguhn, 2004; Fontolan et al., 2014]. Dynamic

interactions between oscillations are also associated with items registration and manipulation in

working memory tasks [Axmacher et al., 2010], or information segregation in the hippocampus
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[Colgin et al., 2009]. Hence, methods for identifying and characterizing interactions between

oscillating rhythms are essential to advance the understanding of the biological mechanisms of

brain functions and dysfunctions.

The main purpose of this thesis was to contribute to the relatively new field of research

on interdependencies between brain oscillatory fluctuations at different frequencies. My goals

were 1) to contribute a new versatile and time-resolved approach to measuring cross-frequency

interactions, and to validate the approach in (2) an animal model of partial epilepsy and (3) the

brain networks of human auditory pitch processing, using different modalities of electrophysi-

ology, to demonstrate the flexibility and generalizability of the approach and tools.

1.2 Overview of the thesis

The rest of this dissertation is organized as follows. Chapter 2 provides a detailed literature

review on neural oscillations, cross-frequency coupling (its definition, brain network architec-

tures, types and functions, known patterns in health and disease, and associated signal process-

ing methods), epilepsy (as a disease model investigated with cross-frequency coupling subse-

quently in the thesis), and auditory pitch discrimination (a brain function also studied with CFC

measures in our third work).

A novel method for cross-frequency phase-amplitude coupling calculation is proposed and

presented in Chapter 3. This technique is demonstrated first with synthesized data, and com-

pared to existing methods. Chapter 4 details a study on how phase-amplitude coupling is af-

fected in a rodent model of mesial temporal lobe epilepsy. Investigation of phase-amplitude

coupling in human auditory pitch discrimination in normal hearing and amusia – a neurological

disorder affecting pitch processing and music perception and appreciation – are presented in

Chapter 5. Chapter 6 concludes the thesis with a general discussion about my contributions and

suggests future research directions in the field.
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1.3 Contribution of Authors

I am the first author of all three manuscripts included in this dissertation. In all experiments, I

performed the methodological developments, software implementations, data processing, and

analysis of the results. The contributions of the co-authors include supervision of the research,

providing data, technical discussions, funding and review of manuscripts. The summary of

contributions of the co-authors of each manuscript is provided in the following:

Manuscript 1: Samiee, S. and Baillet, S. Time-resolved phase-amplitude coupling in neural

oscillations. NeuroImage, 159:270–279, 2017

‚ Soheila Samiee introduced a new algorithm for time-resolved phase-amplitude coupling

analysis that is presented in this manuscript. This involved identifying the problem, sug-

gesting a solution with mathematical formulation, and software implementation. The

method was evaluated with ground-truth simulated data and empirical local field po-

tential (LFP) data. The initial draft and final version of the manuscript was written by

Soheila Samiee, and she produced all figures of the paper.

‚ Sylvain Baillet supervised all aspects of this work. He also reviewed and contributed to

writing of the manuscript.

Manuscript 2: Samiee, S., Lévesque, M., Avoli, M., and Baillet, S. Phase-amplitude cou-

pling and epileptogenesis in an animal model of mesial temporal lobe epilepsy. Neurobiology

of disease, 114:111–119, 2018

‚ Soheila Samiee was responsible for designing the method, writing analysis scripts, per-

forming data analyses, producing all figures and writing drafts and the final version of

the manuscript.

‚ Maxime Levesque collected the data, marked the seizures and helped with interpreting

the results and reviewed the manuscript.
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‚ Massimo Avoli helped with results interpretation and reviewed the manuscript.

‚ Sylvain Baillet supervised the project, provided funding, and contributed to the writing

of the manuscript.

Manuscript 3: Samiee, S., Florin, E., Vivan, D., Albouy, P., Peretz, I., and Baillet, S.

Oscillatory network dynamics for pitch discrimination. Submitted

‚ Soheila Samiee was responsible for designing the analysis method, wrote the codes, per-

formed data analyses, produced all figures and wrote drafts and the final version of the

manuscript.

‚ Esther Florin and Dominique Vuvan were involved in data collection and study design.

‚ Philippe Albouy contributed to the approach and reviewed the final version of the manuscript.

‚ Isabelle Peretz was responsible for the study design, co-funding, and reviewed the final

version of the manuscript.

‚ Sylvain Baillet was responsible for supervising the project, co-funding, as well as editing

drafts and the final version of the manuscript.

1.4 Contribution to original knowledge

The main original contributions of this thesis are the following:

1. In the study presented in chapter 3, we introduced a novel method for time-resolved

phase-amplitude coupling estimation. The algorithm was implemented in Brainstorm,

which is open-source software, and the Matlab codes are publicly available in Github

(https://github.com/SoheilaSamiee/Phase-amplitude-coupling-estimation).

2. In chapter 4, using the same algorithm, we revealed augmented phase-amplitude coupling

related to epileptogenesis in an animal model of MTLE. The study featured two original

contributions. First, we showed that the coupling of the amplitude of fast oscillations
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along the phase of NREM-sleep slow oscillations during inter-ictal periods was elevated

in the seizure onset zone. Second, our results revealed for the first time that the strength

of that coupling was positively correlated to the severity of the phenotype (as by the daily

number of seizures).

3. In chapter 5, we analyzed phase-amplitude coupling in a pitch-discrimination study, a

common auditory task, in amusics and healthy controls. We found expressions of delta-

to-beta PAC in both groups during pitch processing, with greater strengths in amusia.

This over-expression accompanied functional disconnection (decreased of effective con-

nectivity in amusic brains).
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Chapter 2: Literature review

This chapter reviews the literature about neural oscillations, their cross-frequency coupling,

with an emphasis on phase-amplitude coupling. I then briefly introduce backgrounds about

epilepsy, pitch discrimination and amusia, which are the models I used for transferring my

methodological developments to neuroscience applications, in my second and third studies.

More details are provided in the introduction parts of each study.

2.1 Brain oscillations

Brain is a complex system that receives and processes sensory inputs from the environment.

These inputs need to be encoded and properly registered for actual processing, yielding percep-

tion. One possible generic mechanism is that the brain segregates perceptual events by packing

(i.e. grouping) information in time. For instance, Buzsaki [2006] proposed that this is achieved

via circuits of coupled neural oscillators. A beneficial function of such packing function would

be in ordering successive events, establishing causation, and deriving predictions concerning

future likely events. Another important function is the integration of distributed processes in

the brain [Levine et al., 1999]. Even very simple sensory-motor behaviors require the coordi-

nation of several neural assemblies across the brain. The temporal coordination of oscillatory
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neural activities has been proposed as a mechanism for information integration [Gray, 1994;

Gray et al., 1989]. The mechanisms ruling the local and inter-regional dynamics of brain oscil-

lations remain to be clarified and understood.

Brain oscillations are reflections of rhythmic neural activities, which can be generated

through different mechanisms. In individual neurons, they manifest in the form of rhythmic

firing which leads to the excitation or inhibition of post-synaptic neurons, or produce sub-

threshold (oscillatory) fluctuations of membrane potentials. At a larger scale, oscillations emerge

from interactions between neuronal ensembles, which leads to population synchronization and

oscillatory wave propagation [Wang, 2010; Lu et al., 2017; Zhang et al., 2018]. Although the

spiking of single principal cells in the cortex typically follow Poisson statistics [Bair et al.,

1994], oscillations can emerge from neural assemblies [Gray et al., 1989; Laurent, 1996; Des-

texhe and Sejnowski, 2003; Buzsáki, 2010]. One key reason behind this observation could be

related to the specialized mechanisms for grouping principal cells via inhibitory interneurons

[Buzsáki and Draguhn, 2004]. These interneurons can achieve this goal by generating a nar-

row window for effective excitation and rhythmically modulating the firing rate of excitatory

neurons [Cardin et al., 2009]. Three basic physiologically-plausible circuit architectures allow

neuronal circuits to synchronize spiking activity and generate periodic rhythms: (i) synaptic

coupling between inhibitory inter-neurons, (ii) reciprocal loops between inhibitory and excita-

tory cells, and (iii) electrical synapses via gap junctions [Wang, 2010]. The actual frequency of

such oscillations depend on the decay time of inhibition [Börgers and Kopell, 2005].

Neural and brain oscillations are readily observed in vivo and in vitro, in multiple brain

regions, across all recording scales and several species [Buzsáki and Draguhn, 2004]. Some

oscillatory components are self-organized (i.e. spontaneous emergence without external trig-

ger) during rest and sleep [Buzsaki, 2006]. Others are evoked (i.e. time- and phase-locked to

stimulus onset) or induced (with looser constraints in terms of timing and phase) in response to

sensory inputs [Onitsuka et al., 2013]. Local synchronous oscillating cell assemblies at different
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Table 2.1: Brain oscillations in neural networks: a brief summary of some observed oscillations
in the brain with the associated anatomies and functions. Adopted form [Uhlhaas and Singer,
2013] under (CC BY-NC-ND 3.0)

Theta (4-7 Hz) Alpha (8-12 Hz) Beta(13-30 Hz) Gamma (30-200
Hz)

Anatomy Hippocampus,
prefrontal cortex,
sensory cortex,
limbic system

All cortical
structures
thalamus,
hippocampus

All cortical
structures,
subthalamic
nucleus,
hippocampus
basal ganglia,
olfactory bulb

All cortical
structures,
hippocampus,
retina, olfactory
bulb, tectum,
basal ganglia

Function Memory,
synaptic
plasticity,
top-down control
long-range
synchronization

Inhibition,
attention,
long-range
synchronization

Sensory gating,
attention
perception, motor
control
long-range
synchronization
top-down
control,
consciousness

Perception,
attention,
memory,
consciousness,
synaptic
plasticity, motor
control

frequency bands are typically observed in electrophysiology during cognitive task performance,

with functions related to cognition, learning and memory process [Ward, 2003; Albouy et al.,

2017] (Table 2.1).

These oscillatory activities are reported in different frequency bands – such as delta, theta,

alpha, beta, and gamma – and in multiple patterns including sleep spindles and thalamo-cortical

oscillations. Oscillations in the theta (4-8 Hz) and gamma (30-145 Hz) frequency bands are as-

sociated with memory functions in rodents, human, and non-human primates [Düzel et al.,

2010]. Gamma rhythms (30 - 200 Hz) are suggested to mark information processing in corti-

cal networks [Uhlhaas et al., 2011]. However, the study of electrophysiological activity during

complex behaviors requires looking into multiple, possibly interrelated frequency bands. For

example, although hippocampal theta oscillations were initially thought to be the only key sig-

nal marker of memory processes [Winson, 1978; O’Keefe, 1993; Tesche and Karhu, 2000;

Jones and Wilson, 2005], interactions between theta and gamma rhythms via cross-frequency
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phase-amplitude coupling were found to be key to the organization of memory functions across

multiple time scales in episodic memory [Buzsáki and Moser, 2013] and shown to be corre-

lated with memory performance in rodent models [Tort et al., 2009] and human participants

[Canolty et al., 2006; Griesmayr et al., 2010]. Furthermore, such coupling may support the

retention and manipulation of working memory items [Axmacher et al., 2010], enabling for

instance, multiple channels of information transfer between sub-regions of the hippocampus

and the enthorinal cortex [Colgin et al., 2009]. Hence, in addition to single band oscillations,

analysis of interactions between these rhythms is an important concept, which has been re-

ceiving increasing scientific attention in the study of brain functions. I review in details this

phenomenon, known as cross-frequency coupling, in the next subsection.

2.2 Cross-frequency coupling

Studies of the possible functional role played by neural oscillations have reported on rhythms

in band-limited frequency ranges [Goldman et al., 2002; Klimesch, 1998; Tallon-Baudry and

Bertrand, 1999]. They showed how oscillations are related to memory, sensory perception and

cognition [Cohen, 2008]. Beyond these numerous and typical single-band effects, signal inter-

actions between frequency bands have also been reported [Buzsáki and Draguhn, 2004; Canolty

et al., 2006; Tort et al., 2008; Axmacher et al., 2010]. Such interactions, also known as cross-

frequency coupling, represent a phenomenon well observed and investigated in electrophysiol-

ogy [Buzsaki, 2006].

Recent studies, reporting on cross-frequency coupling in several brain regions, suggest that

it could be a marker of functional activation [Canolty and Knight, 2010]. It was also shown that

cognitive performance and its load [Tort et al., 2008, 2009], as well as sensory perception and

task performance is associated with changes in the intensity of this coupling [Allen et al., 2011;

Dimitriadis et al., 2015]. These CFC have been suggested to be mediated by sub-populations

of interneurons – with slower and faster dynamics – which are observed in both neocortex
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and hippocampus [Tort et al., 2007; Vierling-Claassen et al., 2010; Hyafil et al., 2015b]. For

theta-gamma coupling in particular, in vitro studies have revealed the respective cellular and

network origins of each oscillatory component and of their interactions. Low-gamma (30-80

Hz) was found to be produced by interactions within GABAergic inhibitory interneuron net-

works (denoted "interneuron network gamma" or ING), and by interactions between excitatory

pyramidal cells and local inhibitory interneuron networks (denoted: "pyramidal-interneuron

network gamma" or PING) [Freeman et al., 1975]. Theta activity is suggested to be the fre-

quency resonance peak of local [Bao and Wu, 2003] and remote networks [Whittington and

Traub, 2003] consisting of both pyramidal cells and interneurons [Hutcheon and Yarom, 2000].

Theta-gamma coupling is also suggested to be driven by interneuronal sub-populations. Wulff

et al. [2009] used genetically modified mice to show that hippocampus theta-gamma coupling

is mainly driven by parvalbumin-positive (PV+) inhibitory interneurons. They further showed

that ablation of synaptic inhibition in PV+ cells with genetic modification led to strongly altered

theta-gamma coupling in the CA1 of freely behaving mice [Wulff et al., 2009].

As explained for hippocampal theta-gamma coupling, there are two main requirements for

a circuit to generate CFC: (i) producing oscillations at two distinct frequency bands, and (ii)

coupling between the neural populations that generate each of the oscillations [Hyafil et al.,

2015b]. Synchronization of spiking activity leading to generation of oscillatory rhythms can be

achieved by synaptic coupling between different types of inhibitory and excitatory neurons and

gap junctions [Wang, 2010]. The synchronization mechanisms based on chemical synapses are:

recurrent excitation between principal neurons (driven by mutual excitation between pyramidal

cells), mutual inhibition between interneurons (driven by inhibitory interneuronal network),

and feedback inhibition through the excitatory-inhibitory loop (driven by reciprocal interac-

tions between excitatory and inhibitory neural pools). Finally, gap junctions contribute to the

synchronization of spiking activity via electrical synapses between neurons (see [Wang, 2010]

for more details on these mechanisms). In the next section, we further explain possible types of

coupling between neural circuits with various architectures, and how these architectures may
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lead to the different known types of CFC.

2.2.1 Network architecture and CFC types

Interactions between neural circuits that each generate individual oscillation can lead to CFC.

Depending on the nature of the coupling between neural populations and the architecture of the

network, different types of CFC can be observed. The coupled networks can be either intermin-

gled or connected [Hyafil et al., 2015b]. A CFC network is said to be intermingled when the

neural populations that generate each oscillation share a common sub-population (Fig. 2.1A),

with this common sub-population leading to coupling between the two networks. Intermingled

CFC networks are suggested to be the sources of theta-gamma phase-amplitude coupling in hip-

pocampus [Gloveli et al., 2005; Wulff et al., 2009]. An excitatory network is hypothesized to

be shared between the fast spiking cells generating gamma oscillations, and oriens-lacunosum

moleculare (O-LM) cells that generate theta-band fluctuations [Tort et al., 2007].

In the case of connected networks, the oscillations are generated from two independent

neural circuits. However a uni- or bidirectional connection between the two circuits leads to in-

teractions between generated oscillations in the form of CFC. Reciprocally connected networks

produce bidirectional coupling (Fig. 2.1B), while a uni-directional coupling (Fig. 2.1C) is the

result of one network actively driving and modulating another oscillatory network. Most theo-

retical models assume that the network generating the slow oscillation drives the other network

producing faster oscillatory signals [Hyafil et al., 2015b]. Yet, Jiang et al. [2015] suggested that

a reverse mechanism may also exist. The proposed architecture was used to model auditory

theta-gamma coupling in speech perception, where two separate inhibitory-excitatory networks

generate oscillatory activity, with theta network driving the gamma oscillation’s circuit through

a unidirectional connection [Hyafil et al., 2015a].

Another architecture is that of a uni-directional CFC with an external sensory rhythmic

input driving the network of fast and slow oscillations leading to coupling (Fig. 2.1D). Pre-
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vious research has shown that rhythmic external sensory and motor events [Lakatos et al.,

2008; Saleh et al., 2010; Luo and Poeppel, 2007] in addition to internal cognitive processes

related to learning and memory [Rizzuto et al., 2006] can entrain low-frequency activity. There-

fore, co-occurrence of low-frequency phase entrainment and phase-amplitude CFC implies that

high-frequency amplitude modulation by CFC can be entrained and coordinated by slower,

behaviorally-relevant internal and external events [Canolty and Knight, 2010]. This model has

been tested in a non-human primate vision study, reflecting the modulation of thalamic gamma

with slower LFP oscillations driven by periodic visual stimuli [Mazzoni et al., 2008].

Another factor that determines the characteristics of the network is the coupling strength

between neural populations. This will lead to either continuous or intermittent CFC [Fontolan

et al., 2013]. In continuous CFC, fast oscillations are present at all phases of the slow rhythm.

It can happen due to a weak connection from slow to fast oscillatory networks which can-

not bring fast oscillation out of oscillatory mode in any particular phase of the slow rhythm’s

cycle. However, in intermittent CFC – which is a form of CFC with stronger connection be-

tween the two networks – fast oscillations are only present during a restricted phase interval of

slow rhythms. Coupling strength may also reflect the type of CFC coupling. Jensen and Colgin

[2007] suggested four main types of coupling between neural oscillations: amplitude-amplitude

coupling (AAC), phase-phase coupling (PPC), phase-frequency coupling (PFC), and phase-

amplitude coupling (PAC). The relation between coupling strength and CFC type is that when

slow- and fast-oscillatory networks are weakly coupled, such that the intrinsic forces driving

each of them are stronger than the synaptic conductance between the two, the amplitude mod-

ulation of fast rhythms becomes negligible, yielding phase-phase coupling. In turn, strongly

connected networks may yield all the above types of coupling, including phase-amplitude cou-

pling, amplitude-amplitude coupling, and phase-frequency coupling [Hyafil et al., 2015b].

In amplitude-amplitude coupling, the amplitude of a slower rhythm modulates the ampli-

tude (or average power) of fast oscillations (Fig. 2.2B). Cross-frequency amplitude-amplitude
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Figure 2.1: Cross frequency coupling neural architecture. A) CFC generated by an intermin-
gled network: the two populations generating the individual oscillations overlap partially. In
this example, a sub-population of excitatory neurons (shown with a triangle) contributes to the
generation of both slow and fast oscillations, while the inhibitory networks (depicted with cir-
cles) generating each oscillation are distinct. B) A reciprocal bidirectional coupling, with two
separate inhibitory-excitatory networks for the generation of each oscillation. C) Unidirectional
coupling, with two separate networks responsible for the generation of rhythms. Only one net-
work projects onto the other. D) A sub-type of unidirectional network, with sensory stimuli
driving the neural population generating the fast and slow oscillations (original figure from
Hyafil et al. [2015b], replicated with permission)

coupling occurs on top of phase-amplitude coupling when the slow oscillation is asymmetric

(the ascending phase has a different duration than the descending phase – duty cycle ‰ 0.5)

[Hyafil et al., 2015b]. Bruns and Eckhorn [2004] showed an example of such coupling between

delta and gamma oscillations in the occipital cortex. In a few other studies, this type of coupling

was reported between alpha and gamma rhythms in the human visual cortex, where the ampli-

tude of alpha oscillations negatively modulated that of gamma fluctuations during a visual task

[Jensen and Mazaheri, 2010; Spaak et al., 2012; Jensen et al., 2014]. Consistent with previous
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(A) Slow oscillation's waveform

(B) Amplitude-amplitude coupling

(C) Phase-phase coupling

(D) Phase-frequency coupling

(E) Phase-amplitude coupling

Figure 2.2: Cross frequency coupling types: A) A slow oscillatory signal (for example at 4 Hz):
the frequency is fairly stable but the amplitude (red line) changes over time. This slow oscilla-
tion can be coupled to faster rhythms in different ways: B) amplitude-amplitude coupling: the
amplitude of the fast rhythm is correlated with the amplitude of the slow oscillation. C) phase-
phase coupling: there is a n:m phase locking between the phase of fast and slow rhythms, here
in each cycle of the slow rhythm there are four cycles of the fast oscillation (4:1). D) phase-
frequency coupling: the frequency of fast oscillations is modulated by the phase of the slow
rhythm. E) phase-amplitude coupling: the amplitude of fast oscillations changes with the phase
of the slow oscillation in a rhythmic manner. These four types of coupling are not mutually
exclusive. (Reproduced with permission from [Jensen and Colgin, 2007])

reports on AAC, such alpha-gamma AAC was accompanied by alpha-gamma PAC [Osipova

et al., 2008; Roux et al., 2013], and the visual alpha rhythms evoked in this task are known to

be asymmetric [Mazaheri and Jensen, 2008].

In phase-phase coupling, there is a n:m phase locking between two oscillations at different

frequencies (Fig. 2.2C). A fixed number (n) of fast oscillations’ cycles occur over m cycles

of the slower rhythm. Such type of coupling was observed between theta and gamma in the

rat hippocampus during maze exploration [Belluscio et al., 2012], and in the human neocortex

during a motor task [Darvas et al., 2009]. See also Schack et al. [2002]; Palva et al. [2005];

Fell and Axmacher [2011]; Zheng and Zhang [2013]; Scheffer-Teixeira and Tort [2016] for

additional reports on this type of coupling.

Frequency-phase coupling is the modulation of the frequency of fast oscillations by the

16



Chapter 2: Literature review

phase of a slower rhythm (Fig. 2.2D). This is a type of CFC where a slow-rhythm network

modulates the excitability of neural populations oscillating faster. Fontolan et al. [2013] and

Onslow et al. [2014] proposed computational models and simulations of this type of coupling.

To our knowledge however, it has not been reported in experimental data yet. One reason could

be simply technical, due to difficulties in identifying instantaneous-frequency modulations in

electrophysiological recordings [Hyafil et al., 2015b].

Phase-amplitude coupling is the modulation of the amplitude of fast oscillations by the

phase of a slower rhythm (Fig. 2.2E). It is also referred to as "nested oscillations" in the lit-

erature. Empirical reports of PAC indicate observations in various frequency ranges and using

a variety of recording and signal analysis techniques [Canolty and Knight, 2010; Schroeder

and Lakatos, 2009b; van der Meij et al., 2012]. PAC between slow oscillations and gamma can

be achieved via sparse-spiking Pyramidal Interneuron Gamma (PING) networks [Spaak et al.,

2012; Hyafil et al., 2015a], but not occur in dense-spiking oscillations [Onslow et al., 2014].

Sparse-spiking gamma rhythms are prominent in sensory brain areas.

Phase-amplitude coupling (PAC) is a widely studied form of CFC [Canolty and Knight,

2010]. It has been suggested as a mechanistic component involved in spatial exploration [Jensen

and Lisman, 1998], working memory [Lisman and Buzsáki, 2008] and visual perception [Van-

Rullen and Koch, 2003; Palva and Palva, 2011]. Several other studies have shown that PAC

measures reveal task-dependent neural responses in cognitive processes [Axmacher et al., 2010;

Fell and Axmacher, 2011; Tort et al., 2008, 2009; Schutter and Knyazev, 2012]. It has been ob-

served in several species (e.g., mice, rats, cats, monkeys, and humans) and in different brain

regions including hippocampus, neocortex and basal ganglia [Canolty and Knight, 2010].

2.2.2 CFC functions

It has been suggested that CFC plays a functional role in neuronal local activation, inter-areal

communication and neural plasticity [Tort et al., 2009; Canolty and Knight, 2010]. It is also
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proposed that CFC may serve as a mechanism for information transfer from large-scale brain

networks (operating at behavioral timescales) to the fast local cortical processing necessary

for synaptic modification and effective computation [Canolty and Knight, 2010]. It is a candi-

date mechanism for the integration of multiple temporal and spatial scales in brain computation

[Palva et al., 2005; Sauseng et al., 2008; Holz et al., 2010; Palva et al., 2010]. Possible functions

of CFC can be categorized in three main groups: Multi-item and sequence encoding, synchro-

nization of fast rhythms for long-distance communication, and temporal parsing of continuous

stimuli [Hyafil et al., 2015b]. Each category and its putative architecture is detailed in the fol-

lowing.

Multi-item or sequence encoding

Neural systems need to maintain representations of distinct items without interference. Such

items include visual objects or the motor commands to be performed in a successive order to

enable a complex motor sequence, or multiple items to be retained and manipulated in working

memory (Fig. 2.3A). Neural oscillations, and CFC in particular, provide an efficient mechanism

to this aim by temporally clustering the spiking activities associated to each item in a distinct

phase of an ongoing slow oscillation. This allows down-stream neural systems to retrieve a

particular item as they tune to its associated phase [Jensen, 2001; Akam and Kullmann, 2010].

The original idea is based on a model proposed by Lisman and colleagues for hippocampal

theta-gamma coupling [Lisman and Idiart, 1995; Jensen and Lisman, 2005]. Lisman and Idiart

[1995] indeed suggested that humans can store up to 7 items in short-term memory through

having them represented in a burst of gamma („ 40 Hz) cycles nested in a slower oscillation (5-

12 Hz). The memory patterns were shown to repeat at each cycle of the slow oscillation. Such

a mechanism was also found in the alpha-gamma coupling over the occipito-parietal cortex

in a visual working memory task [Roux and Uhlhaas, 2014], and multi-item representations

in working [He et al., 2010; Fontolan et al., 2014] and spatial memory in the hippocampus

[Lisman, 2005; Lisman and Buzsáki, 2008], and visual attention in visual cortex [Jensen et al.,
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Figure 2.3: Cross frequency coupling functions. A) multi-item or sequence encoding: (a) Three
examples of multi-item encoding in working memory, spatial memory and visual attention
tasks, with (b) a possible associated architecture: an intermingled network with an excitatory
sub-population shared between the inhibitory populations responsible for generating each of
the slow and fast oscillations. This function can be computationally achieved by PAC, PPC and
AAC. (c) Schematic of coupled slow and fast rhythms, and representation of each item in a
separate cycle of the faster oscillation. B) Long-distance communication: (a) Potential archi-
tecture: four separate networks of excitatory-inhibitory neurons generating slow (green) and
fast oscillations (orange), excitatory sub-networks of slow oscillations are connected making
slow rhythms synchronized between Region 1 and Region 2. Local CFC in each of the two
regions also facilitates the synchronization of faster rhythms. (b) Schematic of local PPC in
each region and synchronized slow oscillations, resulting in phase-locked faster oscillations.
C) Sensory parsing: (a) Potential architecture: a rhythmic sensory stimulus (blue) fed into both
slow and fast oscillation networks. Direct connection from slow to fast oscillations controls
and optimizes local sensory processing at fast oscillations with more power being assigned to
more-informative stimulus periods. (b) Sensory decoding with fast oscillations nested in slower
rhythms - main spiking occurs at a certain phase of the slow rhythm. (Replicated with permis-
sion from [Hyafil et al., 2015b])

2014] and other instances of multi-item representations [VanRullen and Koch, 2003; Lisman

and Buzsáki, 2008] (Fig. 2.3A-a). CFC enables a form of time compression for the neural

representation of successive elements, and could be involved in binding mechanisms and neural

plasticity [Fell and Axmacher, 2011].

This function of CFC can be expressed via an intermingled network consisting of two sep-

arate inhibitory sub-populations and a sharing pyramidal-cell sub-network [Tort et al., 2007],
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or via a direct connection between two inhibitory sub-populations [Malerba and Kopell, 2013]

(Fig. 2.3A-b). Phase-amplitude coupling, phase-phase coupling and amplitude-amplitude cou-

pling can all implement a form of multi-item encoding [Hyafil et al., 2015b], although PAC is

the most widely studied and observed in empirical data. With PAC, the number of items that

can be stored depends on the number of cycles of fast oscillation that can fit in each cycle of the

slow rhythm. Hence, the ratio between the typical theta and gamma frequency ranges would be

compatible with the maximum number of items (7˘ 2) that can be stored in human short-term

memory [Lisman and Idiart, 1995] (Fig. 2.3A-c). Interestingly, it is shown that even this capac-

ity can be altered in high-load tasks, with modulations of the slow frequency (via decrease in

slow oscillation’s frequency to fit more gamma cycles in each period of it) [Axmacher et al.,

2010].

Long-range communication

One of the main possible roles for neural oscillations is their capacity to enable selective com-

munication between brain regions. One of the most studied hypotheses is that of coherent,

phase-locked oscillations as markers of inter-regional communication between the nodes of

brain networks [Fries, 2009]. The frequency range of these rhythmic fluctuations may depend

on the spatial scale of the inter-node distances. For instance, faster oscillations at gamma fre-

quency could channel a mechanism for communication at local scales, particularly for bottom-

up processes [Fries et al., 2007; Fries, 2009; Von Stein and Sarnthein, 2000]. Alternatively,

oscillations at lower frequencies (< 12 Hz) are hypothesized to channel longer-range functional

connections [Von Stein and Sarnthein, 2000; Solomon et al., 2017]. Both local and long-range

network communications could also benefit from a form of coupling between slow and fast

rhythmic fluctuations [Buzsáki and Draguhn, 2004]. Indeed, synchronization of local gamma

oscillations over distant regions could be accomplished by locking their occurrences to the

same phase of slower rhythms of interconnected regions [Fell and Axmacher, 2011; Roux et al.,

2013]. Fig. 2.3B, depicts how such mechanisms could yield synchronization of fast oscillations
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at two distant regions (shown with a brown connecting line), subserved by the long-range con-

nection of the networks generating the slow oscillations (shown in green) and local CFC in

each region. This type of phenomenon has been shown in the hippocampus [Tort et al., 2007;

Colgin et al., 2009] and visual cortex [Doesburg et al., 2009; Bosman et al., 2012; Saalmann

et al., 2012; McGinn and Valiante, 2014]. The associated signalling principle of CFC could be

either PPC or PAC [McGinn and Valiante, 2014; Hyafil et al., 2015b]. Fig. 2.3B-b shows how

PPC would explain this phenomenon, with coherent fast oscillations locked to also-coherent

slow rhythms via local PPC in each region. The raster plot shown under the faster oscillatory

time series indicates how the firing pattern in Region 2 follows that of Region 1.

Temporal parsing of continuous stimuli

Many biological stimuli are temporally organised or composed of rhythmic patterns. For ex-

ample, natural speech waveforms are modulated by the rhythmicity of prosody at different

(syllable, phrase, sentence) rates [Rosen, 1992]. This extends to the vast majority of sensory

inputs, especially in the conceptual framework of active sensing [Schroeder et al., 2010]: e.g.,

odors are best perceived with rhythmic sniffing patterns, visual scenes are explored with motifs

of brief fixations separated by saccadic eye movements. We can posit that such active explo-

rations of our sensory environment entrain slow rhythmic activity in primary sensory areas, with

faster oscillations possibly signalling the actual processing of sensory inputs [Fries et al., 2007;

Mazzoni et al., 2008; Pasley et al., 2012; Hyafil et al., 2015b,a]. The active sensing framework

is aligned with the theory of predictive coding [Mehta, 2001]: the brain constantly predicts the

sensory inputs based on the context; when this prediction does not match the sensory input, a

prediction error is sent back to the higher-order circuits to update the biological representation

of internal predictive model, which leads to behavioral adaptation and learning [Clark, 2013].

In this context, slow rhythms could support crucial timing processes involved in the prediction

of sensory inputs, such as the parsing of time-varying stimuli (e.g., speech) and modulating

the allocation of local computational resources (manifested e.g., via local gamma oscillations)
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at the expected timing of sensory events [Schroeder and Lakatos, 2009a; Canolty and Knight,

2010; Gross et al., 2013b; Panzeri et al., 2014].

The notion of sensory entrainment is defined as the temporal alignment of neural activ-

ity in sensory systems with time-varying features of the environment [Sameiro-Barbosa and

Geiser, 2016]. This entrainment results in local slow rhythms in sensory areas getting locked

to some of the dynamical properties of sensory inputs [Luo and Poeppel, 2007; VanRullen and

Macdonald, 2012]. For instance, the auditory cortex can be entrained by audio streams, from

temporally-organised sequences of pure tones [Lakatos et al., 2013] to natural speech [Gross

et al., 2013b]. Such entrainment is related to task performance in perception [Sameiro-Barbosa

and Geiser, 2016], when the detection and registration of sensory cues are enhanced when oc-

curring systematically at a preferred phase of intrinsic oscillations [Ng et al., 2012]. Faster

oscillations coupled to slower entrained rhythms are hypothesized to be involved in the pre-

diction and registration of predicted sensory events – a mechanisms which may extend beyond

sensory perception to a generic communication process between brain networks.

Phase-amplitude coupling has been proposed as a possible mechanism to implement such

functions [Hyafil et al., 2015b] (Fig. 2.3C). For example, MEG shows that beta-band (15-35 Hz)

bursts issued by the motor system entrain a slower harmonic responses from auditory cortices to

align their phase with the expected occurrence of incoming sounds [Morillon and Baillet, 2017].

There is further electrophysiological evidence that supports the idea that beta-band activity

conveys temporal prediction signals in the context of sensory entrainment [Sameiro-Barbosa

and Geiser, 2016]. One potential mechanism could be that beta-band activity in motor systems

be a marker of predictive signaling for active sensing, resetting the phase, via PAC, of lower-

order (e.g., sensory) systems.
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Summary

In summary, CFC measures interdependencies between brain rhythmic fluctuations. The actual

functional role of CFC is widely studied but remains to be clarified. The most researched mani-

festation of CFC is that of PAC, which has been observed in all three categories of investigated

functions.

2.2.3 CFC in health and disease

Alterations of cross-frequency coupling, and of PAC in particular, have been reported in sev-

eral neurological and mental disorders. In Parkinson’s disease (PD), extensive beta to high-

frequency oscillations (HFO) coupling was observed in LFP recordings from the subthalamic

nucleus (STN) [López-Azcárate et al., 2010]. Such coupling decreased significantly when deep

brain stimulation was applied to that structure. Hence, CFC could be signal marker of the patho-

physiological mechanisms of the disease. Shimamoto and colleagues further showed exagger-

ated slow rhythms (theta–beta) to gamma PAC in the primary motor cortex (M1) synchronized

to STN neural discharges in PD patients [Shimamoto et al., 2013]. High levels of PAC coupling

strength between beta (13-30 Hz) phase and gamma (50-200 Hz) amplitude was also reported

in the M1 arm region of PD patients by de Hemptinne et al. [2013]. Here too, the coupling

strength was reduced after application of deep brain stimulation that alleviated PD symptoms

[De Hemptinne et al., 2015].

Whether these observations generalize to other syndromes is being extensively studied. For

instance, CFC reports are less clear in schizophrenia: Allen et al. [2011] compared CFC in

an oddball task between large groups of schizophrenia patients vs. healthy controls. PAC was

overall lower in patients, with exceptions over fronto-temporal scalp electrodes. There was also

an association between genetic polymorphisms and CFC. Spencer et al. [2009] and White et al.

[2010] also reported reduced coupling in the auditory cortex of schizophrenic patients, but

between different bands (delta-to-gamma and alpha-and-gamma, respectively). Kirihara et al.
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Figure 2.4: Hypothetical models of cross-frequency coupling in schizophrenia. A-B: possible
forms of coupling in health; A) CFC during a memory task in which gamma amplitude (shown
in red, 40 Hz) increases at the peak of the theta cycle (shown in blue, 8 Hz). B) Increased
working memory load associated with the slowing of theta oscillations (from 8 to 4 Hz) while
the amplitude of gamma signals remains constant: more items can therefore be registered within
each theta cycle leading to increased working memory capacity. C-F: hypothetical CFC disease
models ; C) gamma amplitude is altered while theta oscillations remains same as A. D) slowing
of theta oscillations from 8 to 6Hz; hence, one theta cycle cannot cover all five cycles of gamma.
E) increase of theta amplitude affects coupling by decreasing the relative salience of gamma
amplitude at the peak of theta phase. F) increased theta amplitude leads to augmented gamma
amplitude and enhances the strength of theta-gamma coupling. One negative consequence could
be in decreasing the dynamic flexibility of network information processing (replicated with
permission from [Moran and Hong, 2011])

[2012] also tested a large group of schizophrenic patients and control subjects in a steady-

state auditory stimulation study, but did not observe significant differences in CFC between the

two groups. I emphasize that the experimental protocols and analysis methods were different

from the other two studies, which may account for some of the discrepancy in their respective
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findings. Moran and Hong [2011] suggested a model for CFC alteration in schizophrenia based

on interactions between slow and fast oscillations in the form of phase-amplitude coupling

(Fig. 2.4). Figure 2.4A-B depicts the possible dynamics of gamma-theta coupling in health,

and Fig. 2.4C-F represents four hypothetical disease models of coupling.

Alzheimer’s disease (AD) is another disorder currently investigated with CFC markers. In

a transgenic mouse model of the disease, decreased theta-to-gamma coupling in hippocampal

in vitro preparations were shown to precede Aβ accumulation [Goutagny et al., 2013]. This

suggests a possible role of PAC as signal marker of early AD pathogenesis. Such observations

were replicated using in vivo LFP recordings in the same AD mouse model, with decreases of

theta-to-gamma coupling in recordings from the hippocampus and parietal cortex, however not

from prefrontal regions [Zhang et al., 2016].

In epilepsy, increased CFC was found in the seizure onset zone during ictal periods in

children with medically-intractable epilepsy (secondary to focal cortical dysplasia) [Ibrahim

et al., 2014] and during sleep in adult patients with pharmaco-resistant focal epilepsy [Amiri

et al., 2016]. In social anxiety disorders, excessive resting-state delta-to-beta CFC coupling

was decreased in response to behaviorally-efficient pharmacological interventions [Miskovic

et al., 2011]. In obsessive-compulsive disorders (OCD) as well, effective deep brain stimulation

decreased beta-to-gamma CFC in the mid-occipital cortex, to normal levels [Bahramisharif

et al., 2016].

Summary

In summary, altered manifestations of CFC have been observed empirically in several disor-

ders. The patterns of alterations with respect to normative variants are inconsistent between

syndromes. This makes the picture more complex but may also points at CFC changes that may

be disease specific. Overall, excessive expressions of CFC were more commonly reported in

disorders so far. Further studies of the association of CFC parameters with specific pathophys-
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iological changes are required.

2.2.4 Methods for PAC calculation

Cross-frequency coupling and PAC in particular have been receiving increasing interest in the

last couple of decades. Several methods have been proposed, yet we need to emphasize several

fundamental factors that negatively affect the performance of PAC measurements, leading to

possible false detection and misinterpretations.

These factors originate from (see also Fig. 2.5A): (i) the biological dynamical system pro-

ducing neural oscillations, (ii) the measurement of neural dynamics, or (iii) the mathematical

approach for estimating PAC. For example, asymmetric slow oscillation cycles produce spu-

rious PAC coupling in the absence of genuine cross-frequency interactions [Cole and Voytek,

2017]. Unavoidable filter distortions, instrument noise, or cross-talk between recorded signals

can also lead to inaccurate CFC estimation. Finally, data non-stationarity, short data lengths

and presence of signal discontinuities or artifacts in recordings also lead to inaccurate CFC es-

timates [Penny et al., 2008; Tort et al., 2010; Onslow et al., 2011]. Aru et al. [2015] suggested

practical guidelines to minimize the influence of these nuisance factors.

There is presently no gold standard method for PAC estimation. Each published algorithm

has its own advantages and limitations, depending on data length, signal-to-noise ratio (SNR),

study design and required time resolution of PAC estimates (i.e. ongoing or event-related

recordings), etc. All approaches typically proceed with completing the following three main

steps: i) extraction of instantaneous narrow-band phase and amplitude from original record-

ings, ii) estimation of coupling between these two components and iii) evaluation of statistical

significance of the resulting measure (Fig. 2.5). The first step mainly involves band-pass fil-

tering of the signal and extracting the instantaneous phase and amplitude of the filtered data.

Wavelet and Hilbert transforms are popular tools to this end. The different PAC algorithms are

distinct mainly with respect to the second step.
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Typical approach to analyze phase-amplitude cross-frequency coupling

(A)

(B)

Figure 2.5: Estimation cross-frequency phase-amplitude coupling. A) Typical process for ex-
tracting CFC from time series: i) biological system producing observable dynamical changes,
ii) recording of signal traces (e.g., LFP, EEG or MEG), and iii) CFC algorithmic estimation.
B) Analytic pipeline for PAC estimation: i) Extraction of signal components: recordings are
filtered within frequency bands of interest, instantaneous phase and amplitude are estimated, ii)
Correlations between phase and amplitude statistics using a algorithm of interest (the schematic
illustrates the modulation index method proposed by Tort et al. [2010]), iii) Statistical assess-
ment: a parametric or non-parametric test is used to assess the statistical significance of the
PAC estimate (adapted from [Aru et al., 2015])

Canolty et al. [2006] suggested a method based on defining a complex signal consisting

of the amplitude of the faster oscillations and the phase of slower rhythms at each time point.

The temporal average of this signal provides estimates of the strength and the phase of the

coupling. Two other algorithms were proposed and based on assessing the correlation between

the instantaneous phase of the slow rhythms and the envelope of the fast oscillations using

phase-coherence [Cohen et al., 2008], and phase-locking values [Penny et al., 2008]. Bruns and

Eckhorn [2004] and Penny et al. [2008] investigated the correlation or the coherence between

the amplitude of the slow rhythms – or original signal [Colgin et al., 2009] – and the envelope

of the faster oscillations as a measure of phase-amplitude coupling. Later in 2010, Tort et al.
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[2010] suggested an algorithm based on the Kullback-Leibler divergence between the uniform

distribution and the distribution of faster oscillations’ amplitude on the phase of slower rhythm.

In absence of PAC, the amplitude of fast oscillations is expected to be randomly distributed

over all phase angles of the slow-rhythm cycle, resulting in a uniform empirical distribution;

therefore, the divergence from uniform distribution would be small and this outcome would

reflect low coupling. Symmetrically, when faster oscillations occur preferentially at a certain

phase angle of the slow cycle, the distribution (of fast oscillations’ amplitude on the phase

of slower rhythm) would peak at that phase angle, resulting in higher coupling strength values.

Ozkurt [2012] proposed a method for PAC estimation based on a plain confidence limit formula,

called normalized direct PAC (ndPAC), potentially improving the sensitivity and specificity of

PAC estimation. Kramer and Eden [2013] suggested a PAC measure extracted from a general

linear model (GLM) of the amplitude of fast oscillations depending on the phase of slower

rhythms.

Most of these methods require relatively long data time series (several cycles of the slow

rhythm) for meaningful estimation of PAC. However, one can expect that the strength of cou-

pling changes dynamically with context, stimulus or brain states [Tort et al., 2008, 2009;

Canolty and Knight, 2010]. Voytek et al. [2013] therefore proposed a method for deriving event-

related estimations of PAC. With that approach, PAC coupling is measured over repeated trials

rather than across time, yielding a time-resolved estimate of event-related PAC changes. This

approach therefore cannot be used in studies of ongoing brain activity such as in sleep or the

resting state. Dvorak and Fenton [2014] suggested an alternative approach using two different

time scales: a global scale with longer time windows to detect coupled oscillations (i.e. the

frequency of the coupled slow and fast rhythms), then a local time scale for time-resolved cal-

culation of the coupling strength for this detected pair (from shorter time windows). Yet, tran-

sient expressions of PAC may not be detected after the first step is applied; hence, the method

has poor sensitivity. Pittman-Polletta et al. [2014] used an adaptive decomposition approach

to estimate PAC, and showed that their method was less sensitive to data non-stationarity with
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optimum extraction of biological none narrow-band oscillations.

Assessment of the statistical significance of PAC estimates is the next key step. A common

approach is to generate surrogate time series to derive an empirical distribution under the null

hypothesis to be tested. Ideally, the surrogate dataset should only see its levels of CFC modified

while keeping all other signal features (e.g., narrowband power) unchanged. This is challenging

in practice with some approaches being more conservative than others [Aru et al., 2015; Florin

and Baillet, 2018]. Phase-scrambling is a simple approach, but it alters the non-stationarity of

the data (i.e., make it more stationary compared to real recordings) in addition to removing PAC

[Nakamura et al., 2006]. An alternative is to select a few random time points (in the input) and

shuffle the blocks defined between these points of either the instantaneous phase or amplitude

time series [Canolty et al., 2006]. The smaller the number of points, the more conservative the

outcome statistics will be [Aru et al., 2015]. van Wijk et al. [2015] also suggested a parametric

approach for surrogate data generation based on a GLM of the epoched data, which is more

computationally tractable.

In summary, several methods exist for PAC estimation, with respective assets and limita-

tions. In the present thesis, I proposed a new method which alleviates most of the shortcomings

of existing methods, which will be introduced and discussed in Chapter 3.

2.3 Epilepsy

2.3.1 Introduction and definitions

Epilepsy is a brain disorder which affects around 65 million people worldwide. It is one the

most common chronic neurological syndromes [Thurman et al., 2011]. It is characterized by

unpredictable and recurrent interruptions of brain’s normal functions, called epileptic seizures

[Fisher et al., 2005]. Epileptic seizures are defined as "a transient occurrence of signs and/or

symptoms due to abnormal excessive or synchronous neuronal activity in the brain" [Fisher
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et al., 2005].

The causes behind the disorder are diverse, which makes it a complex syndrome to capture

generically. The International League Against Epilepsy (ILAE) defines epilepsy as a brain dis-

order presenting at least one of the following conditions: i) a minimum of two unprovoked (or

reflex) seizures occurring more than 24 hours apart; (ii) one unprovoked (or reflex) seizure and

a probability of further seizures (at least 60%) after two unprovoked seizures, occurring in next

10 years; (iii) diagnosis of an epilepsy syndrome [Fisher et al., 2014].

2.3.2 Treatment

The optimum goal of epilepsy treatment is seizure freedom without side effects. Unfortunately,

this cannot be achieved in all patients. About 70% of patients keep their seizures under control

with appropriate medication. The response rate and severity of side effects differ between vari-

ants of the epilepsy syndrome, its underlying causes, age and other factors [Duncan et al., 2006;

Guerrini, 2006; Perucca, 2009; Perucca and Tomson, 2011]. Dietary changes can contribute to

controlling seizure occurrences, in combination with drug treatment. The ketogenic diet is one

of these interventions, with some efficacy in children with refractory (drug-resistant) epilepsy

[Neal et al., 2008].

Despite a substantial increase of the number of anti-epileptic drugs over the past couple

of decades [Moshé et al., 2015], one third of patients still do not respond to pharmalogical

interventions [Del Felice et al., 2010; Moshé et al., 2015]. Surgery is the only alternative option

for cure in patients with focal epilepsy. The intervention involves the resection, destruction

or disconnection of epileptic brain tissues, or neurostimulation implants [Moshé et al., 2015].

Surgical resection requires the clear identification of the seizure-onset zone [Jobst and Cascino,

2015]. Around half of the patients benefit from long-term seizure freedom after surgery [Petkar

et al., 2012; De Tisi et al., 2011], with substantial improvement of their quality of life [Seiam

et al., 2011; Hamid et al., 2014].
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Therefore, improving the pre-surgical delineation of the seizure-onset zone would be key

to the outcome for the other patients still affected by seizures [De Vos et al., 2007; Wang

et al., 2013; Liu et al., 2016; Jacobs et al., 2016]. Magnetic resonance imaging (MRI) [Worrell

et al., 2000], functional MRI (fMRI) [Seeck et al., 1998], positron emission tomography (PET)

[Gok et al., 2013] and single photon emission computed tomography (SPECT) [Spencer, 1994;

La Fougère et al., 2009] are all being used in the multidisciplinary assessment of complex cases.

Beyond classical detection of spike and seizure onsets with scalp and intracranial EEG, neural

oscillations have also raised a lot of interest in epilepsy research more recently. High-frequency

oscillations (HFO) have been suggested as signal markers of the seizure-onset zone (SOZ)

even during interictal periods [Urrestarazu et al., 2007; Jacobs et al., 2008; Dümpelmann et al.,

2015]. The rate of HFO occurrences is higher in SOZ, and decreases with medication intake

[Jacobs et al., 2008; Zijlmans et al., 2009].

2.3.3 Pathophysiology

Transient abnormal synchronization of neural assemblies is the electrographic signature of

epileptic seizures. The phenomenon is thought to lead to the disruption of neuronal communica-

tion [Moshé et al., 2015]. Decreased inhibition or increased excitation are assumed to be physi-

ological markers of the epileptic SOZ [Ackermann and Moshé, 2010; Galanopoulou, 2010; Liu

et al., 2013]. Fig. 2.6 explains the mechanistic role of dis-inhibition in seizure generation. The

extended seizure generation network (shown with an orange oval shape) consists of several ex-

citatory and inhibitory neurons and interneurons at one or several brain regions. Under normal

physiological conditions, the networks are controlled by inhibitory interneurons (shown in blue)

(Fig. 2.6A). If the regulating inhibitory interneurons are further inhibited by other inputs, such

exaggerated dis-inhibition can lead to over-excitation of the network, abnormal function and

eventually a seizure (Fig. 2.6B). Therefore, multiple interacting aspects of inhibitory and ex-

citatory cell types may contribute to pathological hyper-synchronization of neuronal networks

into producing seizures (Fig. 2.6C) [Galanopoulou, 2010; Moshé et al., 2015].
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A)

B)

C)

Figure 2.6: Role of dis-inhibition in seizure-generating neuronal networks. A) Normal function
in a physiological condition: normal connection of inhibitory (small blue circle) and excitatory
neurons (orange triangle) to the seizure generation network (orange oval shape) during normal
brain function. The network that generates the seizures can be a complex network of several
cell types located in one or expanding into several regions of the brain. B) Dis-inhibition leads
to seizure: inhibition of inhibitory input can cause over-activation of the seizure generating net-
work, which results in a seizure. C) Network hypersynchrony: interactions between inhibitory
and excitatory neurons can also lead to pathological hypersynchrony of neurons and the initia-
tion of seizures. (original figure from [Moshé et al., 2015])

Depending on the connectivity of the SOZ with other networks of the brain, a wide range of

comorbib disorders may affect epileptic patients, such as depression, attention-deficit hyper-

activity disorders (ADHD), and other cognitive impairments [Beghi et al., 2006; Bertram,

2013]. Different networks can be involved at different stages of seizures: from their initia-

tion to spreading and termination. The detection of the regions involved at each stage can be

important to the diagnosis and intervention against seizures. The epileptic network may also

change during development in the same individual [Galanopoulou, 2007]. Epigenetic factors

(e.g., drug use, stress, inflammation) can also contribute to the plastic alterations of epileptic

network dynamics [Galanopoulou and Moshé, 2014; Ono and Galanopoulou, 2012].

Several animal models of epilepsy have been contributed to better understand the factors

of complexity of the syndrome [Coppola and Moshé, 2012]. Furthermore, advances in neu-

roimaging and neurophysiology have contributed to improve the localization of the SOZ and
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the definition of propagation patterns in patients [Schevon et al., 2012; Toyoda et al., 2013].

These tools can be used to identify signal- and bio-markers of epilepsy development, progres-

sion, and to better identify the tissues that may be safely resected for treatment while preserving

essential brain functions [Engel Jr et al., 2013].

2.3.4 Mesial temporal lobe epilepsy (MTLE)

Mesial temporal lobe epilepsy (MTLE) is the most common type of complex partial epilepsy in

patients. MTLE seizures mainly arise from medial-temporal structures such as the hippocam-

pus, amygdala, and entrohinal cortex [Spencer and Spencer, 1994; Salanova et al., 1994a; En-

gel Jr, 1996; Gloor, 1997; Chan et al., 1997; by Heinz-Gregor Wieser for the ILAE Commission

on Neurosurgery of Epilepsy, 2004]. The syndrome is associated with cognitive impairments

but do not affect attention and executive functions [Hermann et al., 1997]. MTLE patients do

not usually respond well to anti-epileptic drug regimens; hence, surgery is the preferred option

also because of the fairly localized seizure onset to medial temporal structures [Engel et al.,

1997; Engel Jr, 2001]. In terms of pathophysiology, there is evidence of enhanced excitation

in MTLE [Engel et al., 2001], or recurrent excitatory, inhibitory circuitry. More specifically,

alterations of the expression of GABAA receptor subunits can lead to decreased inhibition and

hypersyncrony in MTLE. This alteration has been reported in both patients [Loup et al., 2000],

and animal models of MTLE [Poulter et al., 1999; Peng et al., 2004]. GABAA is one of the

two types of principal inhibitory neurotransmitters in the brain (GABA: gamma amino butyric

acid).

2.3.5 Summary

Epilepsy is one of the most common chronic neurological disorders, with great prevalence in

development and adulthood. A possible cause is in the imbalance of inhibitory and excitatory

mechanisms involving neural and brain networks. However, the syndrome is so diverse in its

phenotypes that there is no single signal marker pertinent in all patients. Neuroimaging and
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advanced electrophysiology are methods of choice for both the clinical and basic neuroscience

of epilepsy, to better understand the mechanisms involved, improve detection and progression,

and propose more efficient treatment alternatives to patients.

2.4 Pitch discrimination

Pitch discrimination is a basic capability of human perception used in our everyday life in

auditory speech and music processing. Pitch is the fundamental frequency of a sound, which

can be accurately measured with physical instruments, but can be perceived differently by each

individual. Each person has a threshold for perceiving pitch differences beyond which stimulus

discrimination becomes strikingly difficult [Albouy et al., 2013]. Individuals with severe forms

of congenital amusia (tone deafness) are particularly challenged in perceiving tones at different

pitches, which impairs their perception (and enjoyment) of music. The brain mechanisms for

the perception of near-threshold stimulus changes are presently only partially understood.

Musical training contributes to improving pitch discrimination abilities [Micheyl et al.,

2006] as found in trained musicians compared to the general population [Spiegel and Watson,

1984; Kishon-Rabin et al., 2001; Tervaniemi et al., 2005].

2.4.1 Anatomy of pitch perception

Functional brain imaging studies have mapped an extensive set of regions involved in pitch

discrimination. They include the ventral auditory pathway with the superior temporal gyrus, in-

ferior frontal lobule and some aspects of the prefrontal cortex [Zatorre et al., 1992; Gaab et al.,

2003; Norman-Haignere et al., 2013; Albouy et al., 2013; Peretz, 2016; Hohmann et al., 2018].

Further anatomical evidence from diffusion-weighted MRI indicates that the connectivity of the

arcuate fasciculus (AF), which connects the inferior frontal gyrus (IFG) to the auditory cortex,

is also essential for the ability to detect small pitch changes [Loui et al., 2009]. AF connectivity

is reduced in tone-deaf subjects, and superior AF connectivity strength is associated with indi-
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vidual performances in pitch discrimination [Loui et al., 2009]. Furthermore, the motor cortex

is involved in pitch discrimination, when temporal attention is required for the detection of

pitch changes in a tone sequence [Chen et al., 2008; Zarate and Zatorre, 2008; Morillon and

Baillet, 2017; Chang et al., 2018].

2.4.2 Brain dynamics of pitch discrimination

Empirical effects on brain oscillations have been reported during pitch discrimination [Albouy

et al., 2013; Mazaheri et al., 2014; Florin et al., 2017]; however, the actual mechanisms in-

volved remain elusive. Modulations of event-related potentials (ERP) – in terms of latency and

amplitude – have been associated with indidivual performances in pitch discrimination [Sams

et al., 1985; Tervaniemi et al., 1993; Brattico et al., 2001; Peretz et al., 2005; Tervaniemi et al.,

2005]. Sams et al. [1985] reported on a mismatch negativity in the EEG around 170 ms after

an unexpected deviant tone. The amplitude of this component is suggested to be associated

with performance in pitch discrimination [Tervaniemi et al., 1993], and its latency is shorter in

musicians vs. non-musicians [Brattico et al., 2001]. Albouy et al. [2013] performed the dynam-

ical causal modeling of the N100m EEG component, which is salient in pitch processing. They

showed in tone-deafness decreased intrinsic connectivity in both auditory cortices, increased

lateral connectivity between auditory cortices, and decreased right fronto-temporal backward

connectivity.

Florin et al. [2017] further showed that accuracy in a pitch discrimination task can be pre-

dicted from the amplitude of oscillatory activity before target-tone presentation. The power of

theta oscillations (4-8 Hz) in the right inferior frontal cortex, and beta oscillations (12-30 Hz) in

the right auditory cortex prior to the target tone presentation were found to be associated with

correct detection of pitch changes [Florin et al., 2017].

More studies have reported effects in functional connectivity (based on neural oscilla-

tions) between brain regions during pitch processing. For example, Morillon and Baillet [2017]
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showed that effective connectivity expressed in beta oscillations (18-24 Hz) from the left sensory-

motor cortex directed to auditory regions, was associated with higher performances in the tem-

poral anticipation of tones in a pitch discrimination task. Further effects in CFC interactions

were also reported in auditory processing. Fontolan et al. [2014] showed that the phase of

delta-beta activity in associative auditory cortex (AAC) modulated the gamma amplitude in A1

during speech processing, which suggests a possible role in information transfer between brain

regions.

2.4.3 Congenital amusia

Congenital amusia or tone deafness is a disorder that mainly affects the perception and pro-

duction of music [Ayotte et al., 2002]. It is not associated with any visible brain lesion, basic

hearing impairment, cognitive deficit or lack of environmental stimulation [Peretz et al., 2002].

Around 4% of the general population is affected by the disorder [Peretz et al., 2007]. Amusia

has a hereditary component: around 39% of first-degree relatives of amusics (i.e., individuals

affected by amusia disorder) also suffer from amusia [Peretz et al., 2007]. The syndrome was

discovered and characterized in 2002 by Dr. Isabelle Peretz [Peretz et al., 2002; Ayotte et al.,

2002], with whom I have collaborated during my thesis. The standard diagnosis approach for

amusia is with the standardized tests from the Montreal battery of evaluation of amusia (MBEA)

[Peretz et al., 2003].

Individuals with amusia have been increasingly studied because findings may reveal the

brain structures and functions and genetic factors specifically related to music processing,

which is considered a highlight of the human brain. The neurobiology of amusia is still not

fully understood. Recurrent interactions between the right auditory and inferior frontal cortices

are hypothesized to be key to pitch processing and were found to be affected in amusia [Loui

et al., 2009; Albouy et al., 2013]. Functional interactions between the auditory cortex and IFG

develop with musical training, which is thought to be a protective factor against amusia [Peretz,

2016]. Further investigations are nevertheless necessary to understand the neural dynamics of
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brain systems involved in pitch discrimination and how they are affected in amusia.

2.4.4 Summary

Pitch discrimination is a basic brain function involved in most aspects of auditory perception,

including the prosody and intonations of spoken language. The brain dynamics between key

regions involved in pitch processing remain essentially unknown. I have briefly introduced

amusia as a specific disorder of pitch processing and discrimination, which does not affect other

auditory abilities or cognitive functions. I propose to use this deficit as a model for advance our

understanding of the brain dynamics subserving auditory pitch processing.

2.5 Conclusion

Neural oscillations reflect multiple dynamical aspects of brain activity. They interact with each

other in a hierarchical manner, as a form of cross-frequency coupling. Such coupling is involved

in perception, the temporal parsing of incoming stimuli, and mechanisms of communication

between brain regions. Some brain disorders alter the typical local and inter-regional patterns

of cross-frequency coupling.

Several approaches have been proposed to estimate this signal marker, but none so far is

considered the gold standard. Improving on CFC methods would have major translational im-

pact on studies of both (i) brain function in sensory and cognitive tasks, and (ii) dysfunction

in disorders. This brief review highlights the necessity for further research on signal extraction

and characterization from neurophysiological recordings, in relation to underlying physiologi-

cal mechanisms and their role in brain functions and specific disorders.
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Chapter 3: Time-resolved phase-amplitude

coupling in neural oscillations

3.1 Preface

In this chapter, I contribute a new method for the estimation of phase-amplitude coupling from

electrophysiological time series. The proposed algorithm, called tPAC, can be used to resolve in

time the parameters of PAC, in both event-related and ongoing brain waveforms. Development

and validation of tPAC was the object of my first study in the course of my thesis. I used the

method thereafter to investigate (i) pathological activity in depth recordings from an animal

model of epilepsy (Chapter 4), and (ii) the dynamics of brain networks for pitch discrimination

in human participants (Chapter 5).

In the following chapter, I introduce the details of the tPAC method, provide algorithmic

considerations and thorough evaluations with synthesized data. The performances of tPAC are

then compared to other approaches in the field. Finally, I show empirical evidence that tPAC

provides insight on dynamic physiological processes related to behavior using LFP recordings
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from the entorhinal cortex of a freely-moving rat. This chapter was published as:

Samiee, S. and Baillet, S. Time-resolved phase-amplitude coupling in neural oscillations.

NeuroImage, 159:270–279, 2017

Contributions

SS introduced a new algorithm for time-resolved phase-amplitude coupling analysis that is

presented in this manuscript. This involved identifying the problem, suggesting a solution

with mathematical formulation, and software implementation. The method was evaluated with

ground-truth simulated data and empirical local field potential (LFP) data. The initial draft and

final version of the manuscript was written by SS, and she produced all figures of the paper.

SB supervised all aspects of this work. He also reviewed and contributed to writing of the

manuscript.
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3.2 Abstract

Cross-frequency coupling between neural oscillations is a phenomenon observed across spa-

tial scales in a wide range of preparations, including human non-invasive electrophysiology.

Although the functional role and mechanisms involved are not entirely understood, the con-

cept of interdependent neural oscillations drives an active field of research to comprehend the

ubiquitous polyrhythmic activity of the brain, beyond empirical observations. Phase-amplitude

coupling, a particular form of cross-frequency coupling between bursts of high-frequency oscil-

lations and the phase of lower frequency rhythms, has recently received considerable attention.

However, the measurement methods have relatively poor sensitivity and require long segments

of experimental data. This obliterates the resolution of fast changes in coupling related to be-

havior, and more generally, to the non-stationary dynamics of brain electrophysiology.

We propose a new measure of phase-amplitude coupling that can resolve up to two cycles of

the underlying slow frequency component. The method also provides a measure of the coupling

strength, for augmented insight into the mechanisms involved. We demonstrate the technique

with synthesized data and compare its performances with existing methods. We also show that

the method reveals rapid changes in coupling parameters in data from the entorhinal cortex

of a free-behaving rat. The time-resolved changes revealed are compatible with behavior and

complement observed modulations of oscillatory power.

We anticipate that this new measure of dynamic phase-amplitude coupling will contribute

to accelerate research into the dynamics of inter-dependent oscillatory components related to

brain functions and dysfunctions.

Keywords:

Phase-amplitude coupling, cross-frequency coupling, neural oscillations, electrophysiology,

brain dynamics.

.
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3.3 Introduction

Classical studies of the role of neural oscillations in brain functions and behavior have re-

ported on oscillatory rhythms within distinct, band-limited frequency ranges [Goldman et al.,

2002; Klimesch, 1998; Tallon-Baudry and Bertrand, 1999] (see [Cohen, 2008] for a review).

The oscillations that compose brain rhythms are known to be interdependent across frequency

bands [Buzsáki and Draguhn, 2004]. This form of interaction known as cross-frequency cou-

pling is a phenomenon readily observed in electrophysiology at multiple scales and with a

range of experimental techniques [Buzsaki, 2006]. Phase-amplitude coupling (PAC) is one of

the best-studied subtypes of cross-frequency coupling [Canolty and Knight, 2010], accounting

for the more frequent occurrence of higher-frequency bursts at preferred phases of underlying

low-frequency cycles. PAC has received tremendous attention recently, with several studies re-

vealing modulations of such coupling depending on task and resting-state conditions in health

and disease [Tort et al., 2008, 2009; Axmacher et al., 2010; Fell and Axmacher, 2011; Schutter

and Knyazev, 2012; Florin and Baillet, 2015; De Hemptinne et al., 2015]. The physiological

relevance for PAC is in the assumption that slow oscillations mark the cycles of relative net ex-

citability of neural ensembles [Von Stein and Sarnthein, 2000; Fries, 2005; Haider et al., 2006;

Lisman and Buzsáki, 2008], which in turn pace the occurrence of neural spiking and that of

faster post-synaptic activity, marked by high-frequency and often broadband bursts [Canolty

and Knight, 2010].

One can further hypothesize that such coupling is transient by nature, reflecting the elusive

dynamics of polyrhythmic brain activity. Some early task-related evidence of this assumption

was demonstrated in humans by Tort et al. [2008]. Ideally, measures of PAC need to provide

the best possible frequency estimates of the oscillatory components related in phase and am-

plitude through this form of coupling. We would also need to assess the strength (intensity) of

such coupling, to evaluate how it might be affected by behavior or physiopathological mech-

anisms. Finally and ideally, these measures would need to be accessible at the best possible
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temporal resolution, to detect and track such PAC changes at the natural “speed” of brain ac-

tivity. This latter aspect has proven to be methodologically challenging, essentially because of

the relatively poor signal-to-noise ratio affecting the higher-frequency portion of electrophys-

iological brain signals – in particular with non-invasive measures such as electro (EEG) and

magnetoencephalography (MEG).

Event-related phase-amplitude coupling (ERPAC) was recently introduced in an attempt to

bridge that methodological gap [Voytek et al., 2013]. The method indeed provides a PAC mea-

sure with high temporal resolution, however under the constraint that expected PAC changes

are time-locked to a stimulus or event of interest across repeated trials. This aspect restricts the

sensitivity and the range of applications of ERPAC to event-related experimental designs and

analyses.

More recently, Dvorak and Fenton [2014] proposed to estimate PAC over two complemen-

tary global and local time scales. The global time scale – defined over 10 seconds or more,

typically – is to identify the frequencies of the most coupled pair of oscillatory components:

a slower oscillation (frequency for phase, fP ), which phase modulates the amplitude of faster

bursts expressed at frequency fA (frequency for amplitude). In turn, a local time scale – de-

fined over the fA cycles – is for detecting time variations in coupling strength. One identified

issue with the approach though is that it assumes stationarity in coupled frequency pairs (a.k.a.

modes) (fA, fP ) over possibly long periods of observations: this is an unlikely eventuality in

neurophysiology.

The strength of PAC is another measure of interest to obtain dynamically [Tort et al., 2008,

2009]. However, existing methods to assess PAC strength are also challenged by poor temporal

resolution (see [Tort et al., 2010] for a review). We propose a new approach and practical

method to address these issues in the widest range of experimental settings (task-related and

spontaneous, ongoing electrophysiological data).
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Figure 3.1: tPAC procedure: (1) The electrophysiological signal xptq is bandpass filtered around
fA, the tested frequency for amplitude modulations; (2) the envelope of the resulting bandpass
filtered signal is extracted using standard Hilbert transform; A short temporal window slides
on the resulting envelope: (3) the power spectrum of the windowed envelope (PA) is estimated
and its peaks are extracted; (4) the power spectrum of the original signal in the same time
window is estimated, and is used for finding the highest peak in PA that co-occurs with a peak
in Px. This determines the dominant frequency for phase f˚P ; (5) windowed xptq (with a signal
buffer on both sides) bandpass filtered around the selected frequency for phase f˚P , (6) and its
analytic phase is obtained via Hilbert transform; (7) for each time point, the amplitude of the
fast-oscillation envelope and the instantaneous phase of the slow oscillation are reported using
a polar vector; (8) the Euclidean norm of the summed vectors averaged over an integer multiply
of fP cycles is a measure of coupling strength within these time and frequency intervals. This
value is further normalized with respect to the magnitude of xfAptq, to minimize the influence
of signal magnitude in the measurement of coupling strength. These steps are repeated for all
predefined fA frequency bins, and for all sliding time windows.

3.4 Material and Methods

3.4.1 Principles

Formally, let us define PAC as the modulation of the amplitudeAfA of an oscillatory component

of frequency fA by the phase φfP of a slower rhythm of frequency fP , with fP ă fA. Our

approach to derive a time-resolved measure of PAC (tPAC) was inspired by Cohen [2008] and

Canolty et al. [2006], which methods we combined and optimized to achieve the best possible

temporal resolution and sensitivity to coupling strength. The methodological steps are detailed

below and summarized in Fig. 3.1.
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The principle of the tPAC procedure is that it searches for the fP oscillation with strongest

PAC coupling with fA bursts, over time windows that slide along the electrophysiological data

signal xptq. The user is first required to define a spectral range of interest for fP and fA – for

instance, rfPmin , fPmaxs (e.g., [2, 12] Hz) for the fP range. The range for fA is then subdivided

into twenty centre frequencies either linearly or logarithmically, determined by the user. The

other parameter that should be defined by the user is the length of sliding time window. This

window should be long enough to cover at least one full cycle of fPmin .

For each fA centre frequency tested, xptq is bandpass filtered around fA with a zero-phase-

shift, even-order, non-causal finite impulse response (FIR) filter. The bandwidth of each filter

around each fA centre frequency is defined as the maximum between i) the difference between

consecutive fA centre frequencies, and ii) the highest tested frequency for fP . Thus, the filter

bandwidth spans the interval between consecutive fA frequency candidates and is inclusive of

the range of interest for possible fP oscillations. Note that to minimize the filter edge effects

and increase frequency resolution, bandpass filtering needs to be performed on the full-length

signal before extracting its components in the sliding time window.

The amplitude envelope AfAptq of the bandpass filtered signal around the fA centre fre-

quency, xfAptq is then extracted using the Hilbert transform before a sliding time window is

applied to assess dynamic changes in PAC.

If in the current time-window, the amplitude of fA oscillations is coupled to the phase of a

slower rhythm oscillating at frequency fP , then the power spectrum density (PSD) PA of the

windowed AfAptq is expected to feature a peak at fP . Further, to avoid registering spurious

manifestations of PAC, a peak around fP shall also be expected in Px, the PSD of the original

data signal xptq limited to the same time window, as recommended by Aru et al. (2015). PA and

Px are estimated using the Discrete Fourier Transform (DFT) magnitude coefficients. The best

candidate for the frequency for phase (f˚P ) corresponds to the frequency of the highest peak of

PA coinciding with a peak of Px. A tolerance threshold for the correspondence between peaks
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of PA and Px is set to the maximum between 1.5 the power spectrum’s resolution (i.e. the

inverse of the time window length) and 1.5 Hz. If no actual peak or peak coincidence is found,

the coupling intensity is set to zero and an arbitrary value – outside the range of interest – is

assigned to fP . For robustness purposes, the peaks in Px with an amplitude below 10% of that

of the highest peak in the interval of interest for fP are ignored. The reason for adding this step

was that, as typical for the purpose of optimizing the FFT’s computational time, the number

of time points was set to the closest power of 2 (equal or larger than) of the data length, with

zero-padding. This latter corresponds to signal windowing with an unknit boxcar in the time

domain. Consequently, this produces spurious secondary peaks in the spectrum of the DFT

magnitude coefficients. To avoid the detection of these side lobes as true signal peaks in Px,

we propose the aforementioned threshold applying procedure for the robust detection of the

dominant slow oscillation in Px. Furthermore, to prevent missing the peaks on the border of fP

range of interest, in peak detection from Px and PA, one extra point from both sides of the fP

interval were included. Note that decreasing the window length would potentially improve the

temporal resolution of PAC estimation, but is detrimental to the detection of f˚P , as it imposes a

lower resolution to the fP search.

Next, to extract the phase time-series of slow f˚P oscillation, xptq in the time-window of

interest is narrowband filtered around f˚P (zero phase-shift, even-order, non-causal finite im-

pulse response (FIR) filter, bandwidth = 3 Hz ) to yield xfP ptq, which analytic phase φfP ptq

is extracted using the Hilbert transform.The FIR filters used in tPAC analysis have transient

responses that should be discarded; a data buffer is a tool that is used for this purpose: 2 sec-

onds of extra data from both sides are included analysis. This data buffer is neither used in the

detection of fP nor in the estimation of coupling strength. In the first and last few windows

where extra data are not available, the signal was zero-padded.

To estimate the strength of coupling and the preferred phase of PAC occurrence along the fP

cycle, the modulation phase and amplitude at each time point are pooled into the complex signal
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zptq “ AfAptq.e
φfP ptq [Canolty et al., 2006]. A normalized estimation of coupling strength is

obtained by computing the Euclidean norm of z. z is the vector sum of zptq across all time

samples (in the current sliding time window), divided by the average amplitude AfAptq in the

same time window (Eq. 3.1). Only full cycles of fP oscillations are considered in the estimation

of z. The remaining part of the signal towards the end is cropped to avoid biasing the vector sum

towards phase samples that would de facto repeat more often than others. To achieve this aim,

we identified the phase angle at the start of each sliding time window, and used as effective

signal length, that of the maximum number of cycles that would fit within the limits of the

time window. In other words, while tracking the rotation of zptq vectors in the polar plane,

we excluded the time vectors that came after the last occurrence of the phase measured at the

onset of the time window. This was to prevent non-uniform sampling of fP phase angles. The

preferred coupling phase (φtPAC) was then estimated as the phase of the normalized vector z.
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f˚P
ˆ arg max

k:integerą1
tk ˆ 1{f˚P 6 ∆u

(3.1)

tP denotes the data length used in averaging (i.e. equal or shorter than sliding window

length, ∆); and k is the number of fP ’s full cycles included in the sliding window.

The signal time window is then moved forward with an overlap that can be adjusted by the

user. The procedure – from detecting the best fP to estimating coupling intensity – is repeated

for all successive time windows. This iterative process is subsequently repeated for all fA centre

frequency candidates. The resulting measures are pooled in a summary array, which can be

conveniently represented as the map, as illustrated in Fig. 3.1.

In a real experimental context, the actual value of the driving frequency for phase (f˚P ) is

unknown a priori. As previously mentioned, the minimum tested value for fP is the most impor-

tant factor for defining the temporal resolution of the PAC measure, as it imposes a minimum

46



Chapter 3: Time-resolved phase-amplitude coupling in neural oscillations

duration to the window length applied to the data. Indeed, at least one full cycle of the tested fP

is required to assess the possible interdependence of the fP phase cycle with the amplitude of fA

bursts. And, the presence of a dominant slow oscillation at the frequency for phase is necessary

for genuine PAC coupling [Aru et al., 2015]. Hence, peaks in the power spectrum of the data

help identify potential frequency candidates for fP . A relatively wide fP range can help capture

multiple, coexisting modes of coupling. If necessary and if the detected f˚P s were notably faster

than the minimum fP of interest, a second pass of tPAC can be run with a narrower range of

fP of interest, around the previously identified f˚P . This would also provide an opportunity to

increase the temporal resolution of the tPAC analysis, with shorter time windows.

3.4.2 Sparse estimation of time-resolved PAC

The parameters of interest in PAC estimation span time, frequency for phase, and frequency for

amplitude. Coupling strength can in principle be estimated at all points in this 3-D subspace

of unknowns, however at a very high computational cost that is certainly not justified and

necessary for all applications (NfPˆNfAˆNtime windows PAC estimations, per data time series).

We can also safely assume redundancy in the range of unknowns, for instance by considering

that oscillatory bursts at frequency fA are PAC modulated by one unique slow fP oscillation

within each sliding time window.

In practical terms, the method assumes that each fA candidate is coupled to a single fP

frequency. Therefore, the resulting comodulogram – i.e. a 2-D map indicating the strength of

coupling between different oscillations, with fP values along the x-axis, and fA values along

the y-axis – over a sliding time window does not contain more than one peak in each fA row

across all possible fP tested frequencies. Therefore, instead of testing several fP frequencies for

each fA, tPAC detects the single most coupled fP oscillation coupled to an fA centre frequency

candidate, and estimates the coupling strength for pfP , fAq. This yields a sparse representation

of the comodulogram.
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For visualization purposes, the sparse comodulogram array can be projected on 2-dimensional

hyperplanes, by averaging over the third dimension. The possible produces of such projections

are: t vs. fA, t vs. fP , or fP vs. fA representations.

3.4.3 Statistical tests for tPAC

Statistical significance of tPAC parameter estimates is verified with a non-parametric resam-

pling techniques. We followed the recommendations by Aru et al. (2015), suggesting to gen-

erate surrogate datasets using a block-resampling approach. A benefit is that phase distortion

is minimized, which reduces the rate of false-positive detection. The envelope time-series of

the fA oscillation in each time-window were first split into five blocks. These blocks were then

randomly permuted to yield a surrogate dataset that realizes the assumption of absence of PAC

beyond chance levels. This approach were acknowledged to produce relatively conservative

assessments of statistical significance of PAC measures [Aru et al., 2015].

In the experimental work reported below, n “ 500 surrogate trials were produced per time-

window and fA centre frequency candidate. The coupling strengths within the 95th percentile of

the surrogate distribution were considered statistically significant. Further, when assessing sig-

nificance of PAC values reported in the time vs. fA, and to compensate for multiple-comparison

testing, the null distributions were that of the the maximum statistic across all time windows

and tested fA frequency candidates [Pantazis et al., 2005].

3.4.4 Experimental data

The comparison of tPAC against other methods was conducted with controlled, synthesized

data. We then used electrophysiological recordings in animal preparations to relate observed

tPAC effects to behavior. All electrophysiological data processing was performed using Brain-

storm [Tadel et al., 2011], using default parameters, which distribution also contains the open

Matlab source code of tPAC. We also share the Matlab scripts for reproducing and the synthe-
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sise of more test data (http://neuroimage.usc.edu/brainstorm/Tutorials/

TutPac).

Synthesized data

Data simulations were used to provide ground-truth signals, with controlled PAC parameters.

It consisted of times series obtained from the sum of two sinusoids, with additive noise. The

amplitude of the high-frequency component was modulated by the phase of the low frequency

component according to Eq. 3.2.

xptq “ xfP ptq ` xfAptq ` εptq, (3.2)

where εptq is additive noise (see below), and each signal component is designed following

Tort et al. [2010] model (Eq. 3.3).
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xfP ptq “ KfP sinp2πfptq

xfAptq “ AfAptq.sinp2πfAtq,

where: AfAptq “ KfA
p1´χqsinp2πfpt´φcq`χ`1

2

(3.3)

KfP and KfA are fixed scalars that determine the peak amplitude of fP and fA sinusoidal

components, respectively. φc indicates the phase of xfP ptq where the magnitude of of xfAptq

bursts is maximum. χ P r0, 1s determines the fraction of xfAptq that is not modulated by xfP ptq

and therefore controls for coupling strength, defined as 1 ´ χ. Fig. 3.2 shows two examples of

synthesized signals, with different coupling strengths.

The additive noise εptq was generated from two components: random samples drawn from a

power law, to mimic background brain activity, and white Gaussian realizations for simulating

instrumental noise. The power of the Gaussian component was set to half that of the power-law

samples’.
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Figure 3.2: Illustrations of the effect of the coupling strength parameter on the power of mod-
ulated component (xfAptq) in phase-amplitude coupling. Signals were synthesized from Eq. 3.3
(SNR=10): two different coupling strengths are illustrated: a) high (1 ´ χ “ 0.8), and b) low
(1´ χ “ 0.2).

We provide more details in the Appendix for advanced simulations where the duty cycle of

xfP ptq is manipulated, to test whether asymmetrical cycles affect tPAC and other PAC measures

[Belluscio et al., 2012].

Electrophysiological data

Local field potential (LFP) recordings from multiple mesio-temporal brain regions of Long-

Evan rats were collected using eight-shank multi-site silicon probes (200 µm inter-shank dis-

tance). The freely-available data was published elsewhere [Mizuseki et al., 2009] and shared

on the Collaborative Research in Computational Neuroscience website (http://crcns.org) by the

Buzsaki laboratory. Recordings were carried out while the animals ran on a linear track (length:

250 cm), digitally sampled at 20 kHz (16-bit resolution, RC Electronics) and bandpass filtered

(1 Hz – 5 kHz). The processed LFPs were downsampled to 1250 Hz (anti-aliasing filter ap-

plied). Two LEDs were connected to the animal’s head. The position of the rat was extracted

from the video file recorded during free behavior on the linear track, with a sampling rate of

39.06 Hz, and time aligned with the LFP recordings.
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3.5 Results

3.5.1 Time-resolved estimation of PAC properties: frequency for phase,

amplitude and coupling strength

The results of phase-amplitude coupling analysis of a synthesized data set using tPAC are il-

lustrated in Fig. 3.3. This experiment covered two aspects of PAC analysis: the detection of

coupling modes (Fig. 3.3a-c) and the estimation of coupling strength (Fig. 3.3d).

In the first part, the input signal was a synthesized data trace, generated using the model

explained in section 3.4.4 (Fig. 3.3a). Multiple modes of coupling were present: during the first

half of the signal (10 s duration), the phase of slow oscillation at f˚P1
“ 9 Hz was coupled to

the amplitude of a faster rhythm at f˚A1
“ 115 Hz. In the second half, the first coupling mode

was terminated and two other modes appeared simultaneously with f˚P2
“ 13 Hz, f˚A2

“ 145

Hz, f˚P3
“ 5 Hz, and f˚A3

“ 87 Hz, respectively. The signal-to-noise ratio was set to 6 dB, and

the preferred coupling phase in the three modes are 270, 0, and 180 degrees, respectively. The

coupling strength was kept constant and identical in all modes.

The bands of interest for fP and fA in tPAC analysis were defined as [3, 15] Hz and [20,

200] Hz, respectively. The duration of the sliding time window was set to 0.75 s, hence 2.25

cycles of minimum fP of interest. Coupling strength was estimated for 20 centre frequencies

distributed linearly along the fA range of interest.

In Fig. 3.3b, the top panel depicts the initial outcome of tPAC algorithm, which shows time

variations of coupling strength with fA. This map reveals the time course of all three coupling

modes expressed in the data. The time variations of coupling strength for each fP estimated

from the sparsely estimated coupling strengths (see Sec. 3.4.2). The resulting fP vs. time map is

shown in the bottom panel of Fig. 3.3b. The comodulogram was also reconstructed (Fig. 3.3c),

as a typical, non time-resolved appreciation of PAC in signals.
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Figure 3.3: Illustration of tPAC analysis outcome on a synthesized data set. (a) A synthesized
data trace, including three different coupling modes were generated. See text for details on
the properties of simulated signals; (b) tPAC coupling strength maps for fA and fP vs. time
extracted using tPAC from the signal depicted in panel (a); (c) tPAC comodulogram; (d) tPAC
estimation of coupling strength: black trace shows the true coupling strength, the gray trace
shows the estimated tPAC strength using a window length as short as 0.53 s – the estimated
strength is normalized to its 98th percentile.

To further illustrate tPAC’s ability to estimate phase-amplitude coupling strength, a synthe-

sized data trace with continuously time-evolving coupling strength was generated: f˚P “ 4Hz,

f˚A “ 73Hz, SNR = 5 dB, duty cycle = 0.35, sampling rate = 1000 Hz, 270 s signal duration.

tPAC was applied to the data with fP and fA frequency ranges of interest, [2, 15] Hz and [50,
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140] Hz, respectively. The length of the sliding window was set to 0.53 s, which includes only

2 cycles of f˚P , and at least one cycle of the minimum fP of interest (i.e. 2 Hz as explained

above). The normalized time-resolved tPAC strength is shown in Fig. 3.3d. The correlation be-

tween the estimated time-variation of tPAC coupling and ground truth was 0.95 (p ă 0.001).

Increasing the sliding window length from 2 cycles of f˚P to 4 and 8 cycles led to similar results

(correlation coefficient of 0.97 and 0.99, respectively).

3.5.2 Methods comparison study

The performances of tPAC on synthesized data were compared further to those of four published

methods: phase-locking value (PLV) [Lachaux et al., 1999], Kullback-Leibler modulation index

(KL-MI) [Tort et al., 2010], amplitude power spectral density (APSD) [Cohen, 2008], and mean

vector length (MVL) [Canolty et al., 2006].

The dataset used consisted of 500 trials of short asymmetric (duty cycle“ 0.35) synthesized

time series, with f˚P “ 4Hz, f˚A “ 73Hz, SNR = 5 dB, and sampling rate of 1000 Hz. The

ranges of interest for fP and fA were set to [2, 15] Hz and [50, 140] Hz, respectively. The

signal duration was 1.07 cycles of minimum fP of interest (fPmin) – i.e. 0.53 s = 2.15 cycles

of f˚P . The signal length was a non-integer multiple of fP cycles, to make the situation more

challenging and realistic, when, with physiological data, the signal length is not expected to be

a multiple of fP cycles.

All tested methods (MVL, PLV, KL-MI, and APSD) were implemented in house, from the

details provided in the respective publications. The methods parameters were identical to those

used for tPAC. Zero-phase lagged FIR filters with 3-Hz and 15-Hz bandwidths were used for

filtering in the fP and fA ranges of interest, respectively. Eighteen centre frequencies for fA

were selected linearly in the [50, 140] Hz range. For the methods that scan on fP , fourteen

centre frequency candidates were linearly distributed in the [2, 15] Hz range. The duration of

filter transients (containing 99 percent of the energy from the filter’s transient effect) for all fA
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filters was less than 75 ms (29-74 ms depending on the fA center frequency – note that fA fil-

tering was performed on the full-length input signal, not on the shorter, sliding time windows).

The transient effects for fP filters were less than 1.03 seconds (289-1029 ms depending on fP

center frequency – a data buffer of 2 seconds was added prior to filtering).

Since MVL was originally introduced using a wavelet filter bank [Canolty et al., 2006], and

wavelet filter banks are common in the PAC literature [Lakatos et al., 2005; Demiralp et al.,

2007; Lakatos et al., 2008; Cohen et al., 2009; van der Meij et al., 2012], we also used an

MVL implementation based on wavelet filtering. We used the actual code shared by Canolty

et al. (2006) available in Brainstorm. Results from MVL-wavelet were obtained using a Morlet

wavelet filter bank with 150 frequency candidates for fA and fP , that were distributed logarith-

mically within [2, 150] Hz.

In all tested methods, the frequency pairs (fP ,fA) indicating the highest coupling strength

was compared to the actual values used to generate the synthesized data. The relative errors in

fA and fP were estimated (Eq.3.4). For each trial, the relative errors in fP and fA detection

were averaged together, as a summarizing measure of accuracy.

Ē “ |
fdetected ´ f

f
| ˆ 100% (3.4)

Fig. 3.4 shows the performances of the tested methods in terms of identification of the coupled

(fP , fA) pair, and quantification of coupling strength. Fig. 3.4a shows the relative errors in

coupling detection for all algorithms.On these challenging short data segments, tPAC and APSD

produced the smallest (ă 5%) relative errors.

We performed a systematic examination of the sensitivity of data length on PAC estimation

accuracy, Fig. 3.4b. The simulation procedure described above was repeated with signal lengths

increasing from 2.15 to 10.15 fP cycles. We found that for all tested methods, performances in

coupling detection improved with increasing signal length, although at different rates. Overall,

for signal duration longer than two fP cycles, tPAC and APSD produced the best estimates of fP
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Figure 3.4: Performance comparisons of selected PAC methods against tPAC (synthesized
data): estimation of fP , fA, and coupling strength. (a) Averaged relative error on coupled fre-
quency pair (fP , fA) estimates obtained from a short (2.15 f˚P cycle duration) synthesized input
signal. All methods show significantly different performances (Kruskal-Wallis rank test, Dunn’s
test as post-hoc, ps ă 0.001), except where noted "n.s.". Coupled frequency pair estimates were
tested depending on input data length (panel (b); SNR=5 dB - with two different bands of in-
terest for fP in left and right panels: [2,15] Hz and [3.5, 15] Hz, respectively.), and SNR (panel
(c); signal length was identical as in panel (a)). (d) estimation of coupling strength (signal syn-
thesis was identical as for panel (a)) with 3 tested coupling strengths: (1´χ=0.2, 0.55 and 0.9),
shown with horizontal dashed lines. Average estimates of coupling strength and corresponding
SEM over 500 trials. (e) relative error in estimated coupling strength averaged at three tested
coupling strengths. All methods showed significantly different performances (Kruskal-Wallis
rank test, Dunn’s test as post-hoc, ps ă 0.001). See text for details on synthesized signals.

and fA. As explained in Sec. 3.4.1, at least one full cycle of the minimum tested fP is required

for PAC analysis. In this experiment, since the slowest tested fP was 2 Hz (a 500-ms cycle) with

data where the unknown true f˚P was 4Hz (a 250-ms cycle), the shortest time window duration

was 2-f˚P cycles. Hence, we furthered the investigations concerning the temporal resolution of

tPAC and other PAC estimators, by conducting another set of experiments where the smallest

fP of interest (3.5Hz) was brought closer to f˚P= 4Hz (fP range: [3.5, 15] Hz; see Fig. 4b-

right panel). These experiments confirmed that the observation of too few f˚P cycles affects the
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accuracy of PAC measures. They also indicate that the performances of methods such as APSD

that rely on the detection of fP peaks in the signal spectrum are negatively affected when the

minimum tested fP is too close to f˚P . Although tPAC also relies on such peak detection, we

have implemented several procedures that augment the robustness of the method, in that respect,

as demonstrated in Fig. 3.4b. For example, if f˚P is close to the minimum fP of interest, APSD

requires window lengths that cover at least 3 f˚P -cycles, for best performances. Under the same

conditions, coupling detection with MVL-wavelet became less stable with increasing time-

window lengths. MVL, PLV, and KL were less sensitive to the proximity of f˚P with minimum

tested fP , because these methods scan systematically and linearly the fP range of interest for f˚P

and do not rely on spectral estimations. Interestingly, this new frequency range for fP (narrower

band, f˚P closer to the bands lower bound) improved the performances of these algorithms

slightly, for short signal duration of 2 fP cycles.

We tested how signal-to-noise ratio (SNR) affected PAC estimation performances. The same

simulation procedure as shown Fig. 3.4a’s was repeated, with SNR increased from -5 to +7 dB

(negative SNR values correspond to larger noise power compared to the signal’s). Our results

demonstrate that the performances of all tested methods go through the same three behaviors

depending on SNR: i) a flat response segment for SNR levels below -3 dB; ii) a dramatic

improvement in performances for SNR between -3 and 3 dB; and iii) an asymptotic plateau in

performances for SNR above 3 dB (3 dB means that signal’s power was twice of the noise’s

power).

MVL-wavelet was the most robust method against noise, however with relatively large er-

rors in estimating coupling parameters (ą 20%), even in high SNR conditions. In positive

SNR conditions, APSD and tPAC had the best performances compared to MVL, PLV, and KL

(Fig. 3.4c).

The ability of PAC methods to recover the coupling strength was also tested quantitatively

(see Fig. 3.4d-e). Again, the simulation scheme of Fig. 3.4a was reproduced, with three different

56



Chapter 3: Time-resolved phase-amplitude coupling in neural oscillations

coupling strengths ranging from low (1 ´ χ “ 0.2), to intermediate (1 ´ χ “ 0.55), then high

(1´ χ “ 0.9). Fig 3.4d shows the coupling strengths recovered from the tested methods at the

actual pfP , fAq mode. Bars indicate the SEM across trials. All PAC measures were normalized

to their maximum possible value, as obtained in noiseless and maximum coupling strength

(1´ χ “ 1) conditions.

The relative errors in coupling strength, on all trials with three coupling strength values, are

depicted in Fig. 3.4e. The data demonstrate that MLV-wavelet and tPAC manifested the best

ability to recover coupling strength quantitatively, while PLV was the most challenged method

in that respect. Although tPAC uses an algorithm similar to MVL for coupling strength esti-

mation, several optimized schemes in tPAC (namely the normalization to AfA power, window

lengths reduced to multiple cycles of fP , as described in section 3.4.1) resulted in significantly

higher performances for tPAC (error: 14.88 ˘ 0.27%) in coupling strength estimation, com-

pared to MVL-wavelet (error: 19.33 ˘ 0.43%) and MVL (error: 27.41 ˘ 0.49%), with short

input signals (All methods showed significantly different performances: Kruskal-Wallis rank

test, Dunn’s test as post-hoc, ps ă 0.001).

Taken together, tPAC demonstrated the best consolidated performances in estimating the

frequency modes expressing PAC (fP and fA), and in recovering coupling strength. APSD

showed high performances in detection of coupled frequency pair (fP , fA). However the APSD

estimation of coupling strength was poor (error ą 40%). MVL performed well in estimating

the coupling strength, but remained poorly accurate in recovering the coupled frequency pair,

especially on short data lengths (error ą 15%). In MVL, using a wavelet filter bank produced

mixed effects. More accurate coupling strength estimation, and less sensitivity to noise were

the positive effects of using the wavelet filter bank. However, the wavelet version of MVL

produced higher coupling detection error for short input (ă f˚P -cycle), not stable results with

f˚P very close to the minimum fP of interest.

These performances obtained with the shortest lengths of data input indicate that using

57



Chapter 3: Time-resolved phase-amplitude coupling in neural oscillations

tPAC, all phase-amplitude coupling parameters can be estimated in a time-resolved fashion,

using short (length of two fP cycles minimum) time windows. The next section details how we

extended testing to electrophysiological data related to behavior.

3.5.3 Electrophysiological data

The time-resolved tPAC coupling strength in the third layer of entorhinal cortex (EC3) of a rat

freely moving on a linear track was obtained, after setting the frequency of ranges of interest

to [2, 15] Hz for fP , and [35, 215] Hz for fA. Coupling strength was calculated for 20 centre

frequencies distributed linearly in the fA range of interest. Data analysis was performed at two

different temporal scales: one coarse assessment using 10-second overlapping windows; and a

finer-grained investigation using sliding windows of 2.5-s duration. In both cases, the sliding

windows were moved along the data time series with a 50% of overlap.

We show the tPAC coupling strengths both as comodulograms (fP vs. fA), and time-resolved

maps (Fig. 3.5a and 3.6a, respectively - all maps were smoothed using 2-D interpolation, with

details provided in the supplementary material). The overall strongest PAC mode of the coarse

analysis was found between the phase of theta (7.5 Hz) and the amplitude of fast gamma ([90–

130] Hz) oscillations (Fig. 3.5a). We verified the tPAC findings with the comodulogram ob-

tained from MVL -wavelet [Canolty et al., 2006] (Fig. 3.5b): the results were consistent in

terms of the principal pfP , fAq mode detected. Further, since tPAC detects the most coupled

fP to each time-window and fA sub-band, only the dominant fP modes were represented in

the tPAC comodulograms. This, by construction, makes the resulting coupling maps look less

smeared than the ones obtained by the other tested methods – see section 3.4.1 for more de-

tails). Also akin to [Canolty et al., 2006] and for visualization purposes, the spectrogram and the

epoched LFP signal were averaged time locked to the troughs of the 7.5-Hz fP cycle (Fig. 3.5c

– spectrogram is depicted relative to the averaged power across time). This confirmed that the

power of faster oscillations was indeed modulated by the phase of the slow rhythm, as detected

by tPAC.

58



Chapter 3: Time-resolved phase-amplitude coupling in neural oscillations

 0.2

     
 0.1

 0.0

- 0.1

- 0.2

8

      
   

  
6

  
  
  
4

0.07

      
0.06

  
0.05

  
0.04

  
0.03

0.02

A
m

p
lit

u
d

e
Fr

eq
u
en

cy
 (

 H
z)

0.5

0

-0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Time (s)

a.u.

Averaged relative spectrogram and signal

tPAC Comodulogram MVL Comodulogram

(a) (b)

(c)

Figure 3.5: Phase-amplitude coupling from LFP data recorded in the third layer of a rat en-
torhinal cortex (EC3) – (a) tPAC sparse-estimated comodulogram map, indicating the principal
pfP , fAq mode of PAC; (b) MVL-wavelet comodulogram from same recording ; (c) spectro-
gram (top) and ongoing LFP signal (bottom) averaged at the phase troughs of the low frequency
oscillation with the highest PAC (7.5 Hz).

The dynamics of cross-frequency coupling related to behavior were investigated further,

using time-resolved tPAC maps. Our results show that burst-like variations in coupling strength

occurred in the recordings (Fig. 3.6a; displayed values are above 95th percentile of surrogate

data distribution – corrected for multiple comparisons). The animal’s position on the track

(showed with gray dashed lines in Fig. 3.6a) indicated that such bursts of higher coupling

occurred when the animal was running.

We confirmed these observations by computing the PSD during respective periods of rest

and running. The power spectra showed peaks in the theta band ([5, 10] Hz) in both cases,

although at distinct frequencies (6 Hz and 7.5 Hz, respectively. Fig 3.6c). The time-frequency

decomposition of the LFP signal also showed increase in fast-oscillation power during move-
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Figure 3.6: Time-resolved tPAC parameters related to behavior – a) Time-resolved tPAC cou-
pling strength (sliding window length of 10 s); the dashed line indicates the animal’s position
on the track; b) Time-frequency decomposition of the LFP signal with the animal’s position
also superimposed (dashed line); c) Averaged power spectral density of the LFP signal in the
running and resting behavior; d) tPAC comodulogram with window length of 2.5s, from epochs
of data corresponding to the running and resting behavior. Comodulograms specific to the run-
ning and resting behavior are shown at the bottom of panel (e); e) tPAC coupling strength from
epoched data. Time 0 s corresponds to when the animal stops running and rests at one end of
the trace. Negative time stamps are for running – In all graphs, the minimum of the color bar is
set based on threshold coming from statistical analysis (see sec. 3.4.3).
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ment (Fig. 3.6b). However, such increases spanned a wide frequency range ([80, 350] Hz), and

were not specific of the fA band we found was coupled to the phase of theta oscillations.

The PSD data further revealed that in addition to the dominant peaks in theta range, there

was at least another smaller peak in the delta band (ă 4 Hz) in both behavioral conditions

(Fig. 3.6c). Previous studies reported on such slower rhythms in similar behavioral conditions,

as possibly generated by the midline thalamic nucleus [Zhang et al., 2012].

All data segments consisting of at least 10 consecutive seconds of running followed by 10

seconds of resting at one end of the track were extracted. They were temporally aligned, with

time 0 ms corresponding to when the animal stopped at the end of the track.

To detect possible event-related changes of cross-frequency coupling, tPAC was computed

on 9 epochs of 20 seconds, collected on 8 channels in EC3, with a sliding window length of

2.5 s and 50% overlap, using the same ranges of interest for fP and fA as previous analysis.

Our decision to set the minimum fP of interest at 2Hz was guided by the available slow peaks

in the power spectrum of the data, and behavioral aspects we wished to relate to dynamic PAC

changes, namely the episodes of animal running vs. resting. These latter unfold over several

seconds (about 10s each typically), hence the selection of a relatively slow minimum fP , and

therefore long tPAC window of 2.5s to sample these events in time. We also chose a larger time

window because of its potential for revealing multiple, co-existing PAC modes, at slower fP .

Fig. 3.6d illustrates the time-resolved fluctuations in coupling strength along the epoch du-

ration. The figure also shows the respective comodulograms of the running and resting periods.

Our findings confirmed that the dominant coupling mode during running was between theta

(7.5 Hz) and fast gamma ([90,130] Hz), and that the strongest coupling was observed in the

running behavior. Two other coupling modes were revealed: between delta and low gamma

([40, 60] Hz) – lower, but significant strength – and between lower theta and midrange gamma

([60,100] Hz) only during rest. These two modes were not clearly distinguishable from the non

time resolved PAC analysis. The frequency of theta oscillations that drove fast gamma during
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running was close to the dominant global theta mode (7.5 Hz). The theta coupled with mid-

gamma during rest was lower in frequency (about 6 Hz). This observation was consistent with

the dominant peak of theta observed in the power spectrum of the full data. Our results also

indicate that delta oscillations in EC3 were coupled to low-gamma rhythms, specifically dur-

ing the resting behaviour. The frequency range of the three gamma components identified were

consistent with the three modes of gamma in hippocampus reported previously by Buzsáki and

Schomburg [2015].

These results illustrate the insight enabled by time-resolved PAC measures with tPAC. Fur-

ther investigations would be required to actually comprehend the functional relevance of the

distinct, behaviorally-dependent coupling modes observed.

3.6 Discussion

We introduced tPAC, a method to measure time-resolved parameters of phase-amplitude cou-

pling in electrophysiological time series. tPAC performs comparatively better than existing

methods for estimating at once the frequencies of coupled oscillations, the strength of such

coupling, all using the shortest input signal length, with relative immunity to noise. One benefit

of tPAC is therefore to resolve PAC measures in time, at best with the resolution of two cycles

of the frequency for phase (fP ). This property alleviates the constraint of working previously

with long data epochs, which was not compatible with the expected non stationarity of elec-

trophysiological signals, for instance, in relation to behavior. Importantly, non stationarity may

induce spurious spectral correlation between Fourier coefficients, and therefore yields artifac-

tual cross-frequency coupling [Aru et al., 2015]. This adds to the significance of time-resolved

PAC methods.

tPAC was compared to selected published methods, with an emphasis on data length. The

results using ground-truth synthesized data showed that tPAC is sensitive and accurate with

at minimum a signal duration of two fP cycles. Our data also showed that MVL-wavelet and
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KL-MI PAC methods performed relatively poorly on shorter input signals – especially when

minimum fP of interest is very close to f˚P . This finding is consistent with claims by Tort

et al. [2010], indicating that a minimum of 200 fP cycles (about 30 s) are required for optimal

performance of these methods. The necessity for long input signals for MVL was also discussed

by Penny et al. [2008].

One practical solution to work against poor temporal resolutions was previously to con-

catenate short recording epochs. Although this indeed increases data length, the discontinu-

ities induced by concatenation can lead to spurious high-frequency components, which may

affect coupling estimation. For example, when epochs of identical lengths are concatenated,

discontinuities induce an artifactual PAC regime that relates sharp variations (broadband high-

frequency spectral contents) to the epoch edges, with an implicit oscillatory cycle correspond-

ing to the epoch duration. Consequently, spurious PAC may occur [Kramer et al., 2008].

Further, the estimation of coupling strength is another asset of the tPAC method: most pub-

lished methods do not properly recover this parameter [Tort et al., 2010]. Hence, tPAC pro-

vides higher temporal resolution to the analysis of phase-amplitude coupling of ongoing data

(e.g., resting-state, epilepsy, sleep recordings, etc.), and time-resolved sensitivity to coupling

strength. Note that in the context of event-related studies, with enough trial repetitions (above

150, typically), ERPAC (Voytek et al. [2013]) can provide the fastest possible temporal resolu-

tion, reaching up to the data’s sampling rate.

3.7 Conclusion

We propose tPAC as a new time-resolved method for estimating cross-frequency phase-amplitude

coupling in electrophysiological signals. tPAC combines the highest temporal resolution, the ca-

pacity of estimating coupling strength, and the lowest sensitivity to noise conditions, even for

shorter data lengths. These properties are key to reveal transient coupling variations related to

behavior, from continuous and event-related data collected with a range of electrophysiological
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techniques that are relevant to the neuroimaging community, including EEG and MEG sensor

and source data series.
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3.8 Supporting information

Appendix

3.8.1 Asymmetric synthesized data

In an asymmetric duty cycle model, the frequency of xfP signal changes linearly with time in

each cycle (fptq “ at` b). This results in an asymmetric semi-sinusoidal signal (See Fig. 3.7).

Here, each cycle of this signal is defined as: F ptq “ sinp2πpat ` bqtqrUptq ´ Upt ´ TP qs,

where Uptq is a step function. Thus, in the case of an asymmetric signal, xfP will be defined as

Eq. A.1.

xfP ptq “
N
ÿ

n“1

F pt´ nTP q (A.1)

The duty cycle (k) and the period of the signal (TP “ 1{fP ) are the main factors that

constrain the parameters of the linear changes in frequency. After solving the equations, con-

sidering that the ascending phase of xfP should be faster than its descending phase [Belluscio

Figure 3.7: A sample of synthesized data with phase-amplitude coupling generated using asym-
metric duty cycle model for frequency for phase.
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et al., 2012], the slope (a) and y-intercept (b) of the frequency are obtained as Eq. A.2.

$

’

&

’

%

a “
1´ 1´2k2

2kp1´kq

T 2

b “ 1´2k2

2kT p1´kq

(A.2)

xfP is then estimated with these parameters. Then, using a model similar to that of Eq. (3.3),

asymmetric time series can be synthesized.

3.8.2 Interpolation of the coupling maps

All coupling maps (comodulograms, time vs. fA, and time vs. fP maps) shown in section

3.5.3 were interpolated in 2-D, for visualization purposes. The interpolation was performed on

a 300x300 pixel grid with the two-dimensional spline interpolation featured in Matlab, with

default parameters.
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Chapter 4: Phase-amplitude coupling and

epileptogenesis in an animal model of MTLE

4.1 Preface

In this chapter, I investigate how pathophysiological changes in epileptic tissues of an animal

model of epilepsy affect phase-amplitude coupling, as a measure of interactions between os-

cillatory neural assemblies. We used tPAC, the method introduced in the previous chapter for

the analyses presented. The Pilocarpine animal model of mesial temporal lobe epilepsy was

provided by Prof Massimo Avoli’s lab [Cavalheiro, 1995; Cavalheiro et al., 1996; Curia et al.,

2008]. Pilocarpine induces hyperexcitability via imbalanced inhibitory-excitatory networks as-

sociated with GABAA receptors alterations [Cossart et al., 2001; Stief et al., 2007; Zhan et al.,

2010]. This imbalance is derived by decreased GABAergic inhibition in the network. Pilo-

carpine MTLE, as a relatively simple model of human temporal lobe epilepsy, can be used for

investigating how such imbalance leads to alterations in cross-frequency coupling between neu-

ral oscillations. In this study, I did not directly analyze the relationship between imbalance in

excitability and CFC, but investigated how CFC is affected in MTLE and corroborates seizure

phenotypes.
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I extracted tPAC phase-amplitude coupling parameters from interictal NREM sleep record-

ings of several preparations of Pilocarpine MTLE rat model. The few previous studies on

cross-frequency coupling in human epilepsy patients essentially reported from ictal (i.e., during

seizures) recordings [Nariai et al., 2011; Ibrahim et al., 2014]. My core hypothesis was that the

dynamical PAC expressions of epilepsy were latent in the epileptic brain, and could be detected

using tPAC away from seizures (interictal periods).

Using interictal recordings to characterize epilepsy (e.g., to determine the location and ex-

tent of the seizure onset zone) in individual patients would have tremendous practical value,

reducing the duration and risks of extensive EEG monitoring. Furthermore, we can extract

NREM sleep recordings from interictal state, but it is almost impossible to get it from ictal

state. Practically speaking, NREM sleep time series features clear slow oscillations (ă 1.5 Hz),

which are associated to the cycles of regional excitability. These observations are present in

both control and epileptic animals. We therefore used this strong slow-frequency rhythm as a

rhythmic candidate for coupling with faster oscillations, including High-frequency oscillations

(HFO).

Previous studies also featured data from patients only, hence with no perspective on nor-

mative variants and with often complex cases of epilepsy and uncertain delineation of the

SOZ, which required implantation of intracranial electrodes. Working with a well-controlled

and stereotypical animal model of MTLE alleviated some of these limitations and is a first step

before translating the findings to human data.

This chapter describes in details the experiment, analyses and findings from this study,

which was published as: "Samiee, S., Lévesque, M., Avoli, M., and Baillet, S. Phase-amplitude

coupling and epileptogenesis in an animal model of mesial temporal lobe epilepsy. Neurobiol-

ogy of disease, 114:111–119, 2018"
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4.2 Abstract

Polyrhythmic coupling of oscillatory components in electrophysiological signals results from

the interactions between neuronal sub-populations within and between cell assemblies. Since

the mechanisms underlying epileptic disorders should affect such interactions, abnormal level

of cross-frequency coupling is expected to provide a signal marker of epileptogenesis. We mea-

sured phase-amplitude coupling (PAC), a form of cross-frequency coupling between neural

oscillations, in a rodent model of mesial temporal lobe epilepsy. Sprague-Dawley rats (n = 4,

250-300 g) were injected with pilocarpine (380 mg/kg, i.p) to induce a status epilepticus (SE)

that was stopped after 1 h with diazepam (5 mg/kg, s.c.) and ketamine (50 mg/kg, s.c.). Control

animals (n = 6) did not receive any injection or treatment. Three days after SE, all animals were

implanted with bipolar electrodes in the hippocampal CA3 subfield, entorhinal cortex, dentate

gyrus and subiculum. Continuous video/EEG recordings were performed 24/7 at a sampling

rate of 2 kHz, over 15 consecutive days.

Pilocarpine-treated animals showed interictal spikes (5.25 (˘2.5) per minute) and seizures

(n=32) that appeared 7 (˘0.8) days after SE. We found that CA3 was the seizure onset zone in

most epileptic animals, with stronger ongoing PAC coupling between seizures than in controls

(Kruskal-Wallis test: χ2 (1,36) = 46.3, Bonferroni corrected, pă0.001). Strong PAC in CA3

occurred between the phase of slow-wave oscillations (ă 1 Hz) and the amplitude of faster

rhythms (50-180 Hz), with the strongest bouts of high-frequency activity occurring preferen-

tially on the ascending phase of the slow wave. We also identified that cross-frequency coupling

in CA3 (rho = 0.44, p ă 0.001) and subiculum (rho = 0.41, p ă 0.001) was positively corre-

lated with the daily number of seizures. Overall, our study demonstrates that cross-frequency

coupling may represent a signal marker in epilepsy and suggests that this methodology could

be transferred to clinical scalp MEG and EEG recordings.

Keywords:
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Temporal lobe epilepsy; Pilocarpine; Cross-frequency coupling; Phase-amplitude coupling;

Neural oscillations; CA3; Seizures.

.
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4.3 Introduction

Mesial temporal lobe epilepsy (MTLE) is a focal epileptic disorder characterized by recur-

rent seizures arising from limbic structures such as the hippocampus, the amygdala or en-

torhinal cortex [Spencer and Spencer, 1994; Salanova et al., 1994b; Engel Jr, 1996; Gloor,

1997]. Seizures occur following a latent period of several years after an initial brain insult

such as status epilepticus (SE), traumatic brain injury, encephalitis or febrile convulsions [Cen-

des et al., 1993; French et al., 1993]. Approximately one-third of MTLE patients are unre-

sponsive to antiepileptic drugs [Jallon, 1997; Wiebe et al., 2001; Engel et al., 2012]: MTLE

is one of the most refractory forms of focal epilepsy. Surgical resection of the epileptic tis-

sue remains the only therapeutic alternative [Salanova et al., 1994b; Wiebe, 2004; Blume and

Parrent, 2006; Engel et al., 2012], provided that the seizure onset zones (SOZ) are correctly

localized. The identification of the SOZ is challenging, in particular since it is mainly obtained

from inter-ictal electrophysiological data. Therefore, the present study emphasizes the possible

role of cross-frequency coupling between oscillatory components of neural signal as a signal

marker of epilepsy. Cross-frequency coupling is a phenomenon of inter-dependence between

brain rhythms of different frequencies. It has been observed in multiple preparations in ro-

dents and humans, using a variety of electrophysiology techniques, from invasive recordings

to scalp magnetoencephalography and source imaging [Canolty and Knight, 2010; Florin and

Baillet, 2015; Baillet, 2017]. Phase-amplitude coupling (PAC) is a type of cross-frequency cou-

pling where the phase of slow oscillations modulates the amplitude of faster rhythms [Tort

et al., 2010]. Invasive recordings in rodent models and epileptic patients revealed that PAC was

stronger in the seizure onset zones [Amiri et al., 2016; Nariai et al., 2011; Weiss et al., 2013;

Ibrahim et al., 2014; Guirgis et al., 2015; Weiss et al., 2016], and during the pre-ictal and ictal

phases [Colic et al., 2013; Alvarado-Rojas et al., 2014; Zhang et al., 2017]. We used here the

pilocarpine animal model of MTLE [Curia et al., 2008] to investigate the possible association

between expressions of PAC and ictogenesis in temporal lobe regions. We measured PAC be-
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tween the phase of slow oscillations (slow-wave in the delta band: 0.184 Hz) and the amplitude

of faster rhythms (beta to ripple band: 20250 Hz) in controls and in pilocarpine-treated rats.

Our results indicate a strong association between PAC signal markers (coupling strength and

phase) and seizure activity in temporal lobe regions in this rodent model of MTLE.

4.4 Material and methods

4.4.1 Animal Preparations

The methods for animal preparation have been described in detail previously [Behr et al., 2015,

2017; Lévesque et al., 2011, 2012; Salami et al., 2014]. All procedures were approved by the

Canadian Council on Animal Care and the Institutional Animal Care Committee of McGill

University. Every effort was made to minimize the number of animals used and their suffering.

Male Sprague-Dawley rats (250-300 g; Charles-River (St-Constant, QC, Canada)) were let ha-

bituate for 72 h before pilocarpine treatment. Animals were housed at 22 (˘ 2) ˝C under 12

h light/12 h dark cycle with food and water ad libitum. Scopolamine methylnitrate (1 mg/kg

i.p.; Sigma-Aldrich, Canada) was administered 30 min before pilocarpine hydrochloride (380

mg/kg, i.p.; Sigma-Aldrich, Canada) to induce a status epilepticus (SE). SE was terminated af-

ter 1 h using diazepam (5 mg/kg, s.c.; CDMV, Canada) and ketamine (50 mg/kg, s.c.; CDMV,

Canada) (Martin and Kapur, 2008). Three days after SE, rats underwent surgery for the im-

plantation of bipolar depth electrodes. Rats were anesthetized with isoflurane (3%) in 100%

O2. Four bipolar electrodes (20-30 k; 4-10 mm length; distance between exposed tips: 500 m,

MS303/2-B/spc, Plastics One, VA, USA) were implanted in the CA3 subfield of the ventral

hippocampus (AP: -4.4, ML:-4, DV: -7.8), the medial entorhinal cortex (EC) (AP: -6.6, ML:

-5.2, DV: -6.8); the ventral subiculum (Sub) ( AP: -6.8, ML: +4, DV: -6), and the dentate gyrus

(DG) (AP: -4.4, ML: +2.4, DV: -3.4) (Paxinos and Watson, 1998). The CA3 region and the EC

were implanted on the right side, the subiculum and the dentate gyrus were implanted on the

left side. Four stainless steel screws (2.4 mm length) were fixed to the skull bone and electrodes
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were fastened to the skull with dental cement. A fifth electrode was used as reference, after

removal of insulating material, and placed under the frontal bone. Ketoprofen (5 mg/kg, s.c.

Merail, Canada), buprenorphine (0.01-0.05 mg/kg, s.c. repeated every 12 h; CDMV, Canada)

and 2 ml of 0.9After surgery, continuous EEG-video recordings were performed 24h/day. EEG

signals were amplified via an interface kit (Mobile 36ch LTM ProAmp, Stellate, Montreal, QC,

Canada), and sampled at 2 kHz. Infrared cameras were used to record day/night video files that

were time-stamped for integration with the electrophysiological data using monitoring software

(Harmonie, Stellate, Montreal, QC, Canada). Throughout the recordings, animals were placed

under controlled conditions (22˘2 C, 12-hour light/dark schedule) and provided with food and

water ad libitum.

4.4.2 Analysis of seizures and seizure onset zones

Seizures were identified with the ICTA-D seizure detector (Harmonie; Stellate) and seizure

onset zones were identified according to Lévesque et al. [2012]. Briefly, the first region showing

fast activity (5-20 Hz) was considered as the seizure onset zone. The seizure onset zone was

defined according to previous published reports of animal models of MTLE [Lévesque et al.,

2012, 2015; Behr et al., 2017; Toyoda et al., 2015; Karunakaran et al., 2016] and clinical studies

[Wendling et al., 2010, 2013]. Seizures were categorized into four types: (1) CA3 seizures

initiated in CA3; (2) CA3+ seizures originated from CA3 and another region simultaneously;

(3) multi seizures originated simultaneously at all recording sites; and (4) CA3- seizures did

not involve CA3.

4.4.3 Extraction of NREM sleep epochs

Periods of sleep characterized by non-rapid eye movement (NREM) were defined by muscular

hypotonia (curled body position) and prominent delta activity (1-6 Hz). NREM segments were

selected from the video recordings at least 1 h from the last/next seizure episode [Lévesque

et al., 2011; Salami et al., 2014]. One 10-min artefact-free epoch of NREM sleep was selected
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in each animal for each day of recording. The data selected consisted of 137 epochs from 6 con-

trols and 4 epileptic animals. These epochs were exported to Matlab (The Mathworks, Natick,

MA) and analyzed off-line. Power line contamination (main and harmonics) was reduced using

notch filters with default settings available from Brainstorm, a free open-source application for

electrophysiology signal analysis [Tadel et al., 2011]. Fig. 4.1A shows samples of wide-band

recordings from all recorded regions, in a control and in an epileptic animal. Power spectrum

density analysis revealed that slow oscillations were recorded in all four regions (Fig. 4.1B).

The frequency peak of the slow oscillation was extracted in each animal, after compensation

of the 1/f decrease of the power spectral density, using Brainstorm. We call here slow-wave os-

cillations, oscillatory signals below 1 Hz. No substantial differences in slow oscillatory power

were found between the control and epileptic groups, except in the dentate gyrus, where slow

oscillatory power was higher in controls (Kruskal-Wallis test: p ă 0.001 Fig. 4.1C).

We standardized the definition of peaks and troughs of the observed slow oscillations across

animals and recording sites. The rationale is that the polarity of the oscillatory cycles collected

from the bipolar recordings depends on uncontrolled factors, such as the electrode location

with respect to the current flow of neural generators, which varies across sites and animals.

We followed the recommendations from Ellenrieder et al. [2016], whereby the peaks of slow

oscillations are defined as the extrema of the half oscillatory cycles concomitant with stronger

beta-gamma band activity. We therefore extracted the instantaneous amplitude of the record-

ings in the 20-80 Hz band using the Hilbert transform also available in Brainstorm. We then

identified the half cycle of the dominant slow oscillation with strongest beta-gamma amplitude.

In each animal and at each recording site, the polarity of the signal was flipped if the peak of

beta-gamma activity did not correspond to a positive half-cycle of the slow oscillation. There-

fore, the peak of the slow oscillation marks a dynamical state similar to the on state from sleep

surface EEG [Nir et al., 2011].
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Figure 4.1: Typical recordings from control and epileptic animals. A: Wideband sample record-
ings from a control (top) and from an epileptic animal (bottom). B: Power spectral density plots
extracted from the same animals shown in A, after compensation of 1/f decrease: note a strong
peak below 1 Hz at all recording sites in both animals. C: Regional distribution of normal-
ized signal power of dominant slow oscillation (left), and of the ripple band: 80-200 Hz (right)
across epochs. No differences were found between groups, except in DG, where slow activity
was weaker and ripple-band activity was stronger in the epileptic group (Kruskal-Wallis test,
d.o.f: 136, pă0.001, Bonferroni corrected for multiple comparisons). Comparisons between
regions for each group are reported in section 4.5.2.
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4.4.4 Phase-amplitude coupling analysis

PAC is the modulation of the amplitude of an oscillation at frequency fA (frequency for ampli-

tude) along the phase of a slower rhythm of frequency fP (frequency for phase), with fP ă fA.

The frequencies fA and fP of the dominant PAC mode need to be identified in each animal and

at each recording site, together with their coupling strength. The frequency ranges of interest

for identifying fA and fP were set to 0.18´ 4 Hz for the slow oscillation, and 20´ 250 Hz for

the faster components. We used a recent time-resolved PAC measure (tPAC) with sliding time

windows length of 18 s, also available in Brainstorm [Samiee and Baillet, 2017]. Briefly (see

Samiee and Baillet [2017] for methodological details), the tPAC method proceeds as follows: at

each recording site, the instantaneous amplitude AfAptq of fast oscillatory activity is extracted

over sliding time windows (18 s long) using the Hilbert transform in multiple sub-bands of the

20´ 250 Hz frequency range of interest. The periodogram of AfAptq and of the original signal

are then obtained and the frequency for phase fP is identified as the common peak of maximum

amplitude in both power spectra, if any. If no common peak frequency is found, the conclusion

is the absence of PAC in the time series. The electrode signal is then bandpass filtered around

fP , and its instantaneous phase (φfP ptq) is extracted, also using the Hilbert transform. PAC cou-

pling strength is measured via Euclidean averaging of the complex signal vectors of amplitude

AfAptq and phase φfP ptq across time, divided by the average signal power at frequency fA. This

procedure was repeated for all time-windows and all high-frequency sub-bands. Large-band

spiking signal waveforms can bias PAC estimates. For this reason, interictal spikes were identi-

fied in all recordings using a custom detection process: for all 10-min trials, spike events were

marked when electrode signals crossed an amplitude threshold of 4 standard deviations above

the signal average. All detected events were visually inspected, and events possibly produced

by movement artefacts were excluded. We quantified the density of interictal spike occurrences

along the phase of slow-wave oscillations, as a preferred phase concentration of spiking ac-

tivity would bias PAC scores. The phase of slow oscillations was extracted from the Hilbert
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transform of data signals filtered in the band of interest. As detailed in the Results section, we

found that spike occurrences were uniformly distributed (see Fig. 4.2) along the phase of the

fP oscillation, and concluded they did not produce spurious PAC activity. For this reason, data

epochs containing interictal spike events were not discarded from the data presented below. An-

other possible confound in PAC measures is their sensitivity to the harmonics of non-sinusoidal

waveforms of the fP oscillations [Gerber et al., 2016; Lozano-Soldevilla et al., 2016; Cole and

Voytek, 2017]. We followed the guidelines suggested by Jensen et al. [2016] and verified there

was no correlation between the respective time variations of the amplitude of fP oscillations

and of the PAC coupling strength.

4.4.5 Statistical analysis

We used inferential statistics to assess the significance of differential effects in power, PAC

coupling strength, and preferred PAC phase patterns in all 4 recorded regions, between control

and epileptic animals. We used non-parametric Kruskal-Wallis tests for assessing the main ef-

fect, and Dunns tests as post-hoc. We used parametric Watson-Williams multi-sample tests with

equal means, the circular equivalent of one-way ANOVA, for the analysis of phase effects. We

determined whether the distribution of phase angles of the fP oscillations when interictal spikes

occurred departed from uniformity using Rayleigh’s test. A larger z-value of Rayleigh statistics

would have been indicative of interictal spikes occurring at a preferred phase of the slow-wave

oscillations. Phase angles were computed between 0˝ and 360˝, where 0˝ (respectively 180˝)

corresponded to the peak (respectively the trough) of the oscillatory signal, as defined above.

For correlation between measures we used Pearson correlation. Bonferroni corrections for mul-

tiple comparisons were applied in all tests.
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4.5 Results

4.5.1 Seizures and interictal spikes

Pilocarpine-treated animals showed recurrent spontaneous seizures, on average 7 (˘ 0.8) days

after SE. As previously reported [Lévesque et al., 2012], CA3 was involved as a seizure onset

zone in most cases across all epileptic animals (n = 32 seizures) (CA3 = 7, CA3+ = 7, CA3- =

3, widespread = 15, Fig. 4.2A). Interictal spikes were observed in all recorded regions. Control

animals did not show interictal spikes or seizures.

We recorded an average of 5.25 (˘2.5) interictal spikes per minute in all epileptic animals.

The number of interictal spikes was significantly different between regions (Kruskal-Wallis

test: χ2 (3, 308) =128.24, p ă 0.001). As previously reported [Behr et al., 2015; Lévesque

et al., 2015] interictal spikes occurred at higher rates in CA3 and subiculum, than in EC or DG

(post-hoc: Dunns tests, p ă 0.001, Fig. 4.2B). CA3 and subiculum interictal spike rates were

not significantly different (p “ 0.37).

Bandpass filtering of interictal spikes produce fast oscillatory artefacts, which may bias PAC

measures if spiking activity occurs at a preferred phase of background slow-wave oscillations.

We verified this was not the case in our data: the distribution of interictal spikes occurrences did

not show clustering at a preferred phase of the slow oscillations (Fig. 4.2C). This verification

was derived considering two low-frequency ranges for phase-driving slow oscillations: 1) the

band of interest for fP (0.184 Hz), and 2) all frequencies below 2 Hz where PAC was strongest

in all regions (see Fig. 4.3C). No spike clustering was found with either of the low-pass settings

(Rayleigh’s test for non-uniformity, p ą 0.10). We therefore proceeded with performing PAC

analysis over the entire 10-min time-period, without excluding interictal spikes.
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Figure 4.2: Seizure onset zone and interictal spikes in epileptic animals. A: Pie chart show-
ing the distribution of seizure onset zones in epileptic animals. CA3 was mostly involved as
a seizure onset zone. B: Number of interictal spikes at each recording site (***: p ă 0.001).
CA3 and subiculum showed the highest rate of interictal spikes compared to EC and DG. C:
Polar plots showing the distribution of interictal spikes relatively to the phase of background
slow-wave oscillations: the phase distribution of the data was not significantly different from a
uniform distribution (Rayleigh’s test for non-uniformity, p ą 0.10).

4.5.2 Power effect: slow-wave oscillations and ripple band

The presence of a dominant slow oscillation in the band of interest for fP is a safeguard condi-

tion for valid (not spurious) PAC detection (Aru et al., 2015). Dominant slow oscillations (ă 1

Hz) were observed in all epochs in all recorded regions, both in controls and in epileptic animals

(Fig. 4.1). To investigate possible influence of slow-oscillatory signal power on the estimation

of PAC coupling strength, we measured the relative power of the dominant slow oscillations

with respect to the total power spectrum of the signal at each recording site and in each epoch.

In comparison of groups, difference in relative signal power was only found in DG (Kruskal-

Wallis test, Bonferroni corrected for multiple comparison, p ă 0.001), where power in epochs

from epileptic group was lower than controls. There was no significant correlation between this

power and number of seizures per day in this region (Pearson correlation, p ą 0.3). In compar-

ison of this power for different regions, in control animals the only significant difference was
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found between power of CA3 and EC, where EC was stronger than CA3 (Kruskal-Wallis test,

Dens post hoc, p ă 0.001). In epileptic animals, we had higher power in EC compared to all

other regions (Kruskal-Wallis test, Dens post hoc, p ă 0.001). We also checked the power in

ripple band. Again, DG was the only region with significantly different power between groups,

but this time higher in epileptic (Kruskal-Wallis test, Bonferroni corrected for multiple com-

parison, p ă 0.001). In comparison of this power for different regions, in control animals only

subiculum was stronger than EC (Kruskal-Wallis test, Dens post hoc, p ă 0.01), and in epilep-

tic animals, power in DG was stronger than CA3 and EC (Kruskal-Wallis test, Dens post hoc,

p ă 0.001).

4.5.3 Phase-amplitude coupling

As already mentioned, all PAC analysis was derived from data epochs of non-REM sleep, dur-

ing interictal periods at least 1 hour apart from seizures. Our objective was to research new

signal markers of epileptogenicity away from seizures. Sleep was a period of particular interest

because of signal quality (no movement) and the presence of dominant slow oscillations, as

frequency-for-phase candidates.

Figure 4.3A shows the EEG recorded from an epileptic animal that included ripple-band

oscillations (80 ´ 200 Hz). The amplitude of oscillations in the ripple band was coupled to

the phase of background slow-wave oscillations. Figure 4.3B reveals phase amplitude coupling

in the time-frequency domain of this sample trace. Akin to Canolty et al. [2006], we obtained

the time-frequency decompositions of raw EEG epoch (10 min). It was then averaged time-

locked to each trough of the dominant slow oscillation (here 0.7 Hz). The top panel shows

the normalized average time-frequency map (using logarithmic scale for frequency), and the

bottom panel indicates the raw EEG epoch averaged about the trough of the 0.7 Hz cycle.

This confirmed that the power of faster oscillations was indeed modulated by the phase of the

slow rhythm. As shown in figure 4.3C, our PAC analyses covered high-frequency candidates in

20 ´ 250 Hz range. Systematic investigation of slow-to-fast PAC coupling over the frequency
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Figure 4.3: Phase-amplitude coupling in EEG recordings. A: Sample EEG trace from CA3
of an epileptic animal showing that oscillations in the ripple frequency band (80´ 200 Hz) are
modulated by the phase of slow-wave fluctuations (signal polarity is negative up). B: Visualiza-
tion of phase-amplitude coupling in the sample data trace shown in panel A: top panel plots the
normalized time-frequency decompositions of EEG signal epoch time-locked averaged with
respect to the troughs of the dominant slow oscillation (here 0.7 Hz); the bottom panel plots
the corresponding averaged EEG signal (CA3). C: Average comodulogram representations of
phase-amplitude coupling between slow (0.18 ´ 4 Hz) and fast (20 ´ 250 Hz) oscillations, in
the control (top row) and epileptic (bottom row) groups. A comodulogram is a two-dimensional
representation of the strength of PAC coupling between pairs of oscillatory signal components:
frequency for phase fP values is along the x-axis, and frequency for amplitude fA values is
along the y-axis. The strength of PAC coupling for each (fP , fA) pair is color-coded.

ranges of interest revealed that coupling strength was overall stronger in specific frequency

bands in the epileptic group compared to controls (Fig. 4.3C). The plots illustrated in panels

B and C of figure 4.3 indicate that PAC in the analyzed data was not caused by wide-band
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non-oscillatory activity, but presumably by band-limited ripple oscillations.

The maximum PAC coupling strength across all (fP , fA) tested frequency pairs was iden-

tified for each epoch and recording site, and compared between groups (Fig. 4.4A). We found

that cross-frequency coupling in CA3 was stronger in epileptic animals compared to controls

(Kruskal-Wallis test: χ2 (1,36) = 46.3, Bonferroni corrected, p<0.001). In the epileptic group,

PAC was also stronger in CA3 compared to other regions (Kruskal-Wallis test: χ2 (3, 308)

= 81.35, post-hoc Dunns test for pairwise comparison: p ă 0.001 compared to EC and DG,

p=0.017 compared to subiculum). The subiculum was the region with the second strongest PAC

coupling values (post-hoc Dunns test, p ă 0.001). In the control group, PAC was weaker in CA3

and DG than in EC and subiculum (post-hoc Dunns test for pairwise comparison: p ă 0.01).

We also found that the PAC coupling strength in CA3 and subiculum was positively correlated

with the number of seizures per day, across all data epochs from the epileptic group (Pearson

correlation, CA3: ρ “ 0.44, number of epochs = 78, p ă 0.001; Sub: ρ “ 0.41, number of

epochs = 78, p ă 0.001, Fig. 4.4B). There was no relationship between daily seizure count and

coupling strength in the other recorded regions (p ą 0.10).

We did not find a monotonic positive relation between the power of slow oscillations and

PAC strength measures (Pearson correlation: ρ ă 0, |ρ|s ă 0.06, p ą 0.49). Therefore, we can

safely assume that the PAC effects reported were not spuriously produced by harmonics in the

electrophysiological waveforms [Jensen et al., 2016].

We also investigated whether the fast oscillatory bouts were generated at consistently pre-

ferred phase angles of the underlying slow-wave oscillations across all animals tested. Fig-

ure 4.5A shows the circular histograms of the PAC coupling phases, at each recording site and

in both groups. We found preferred phase angles for PAC coupling, except in EC in controls

(Rayleigh’s test for non-uniformity, Bonferroni-corrected, p ă 0.01). CA3 was the only record-

ing site where both 1) PAC coupling was stronger in epileptic animals than in controls, and

2) fast oscillations occurred around one preferred phase angle of the underlying slow waves.
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Figure 4.4: PAC coupling strength. A: Strength of PAC coupling in each group and at
each recording site. In epileptic animals, PAC was stronger in CA3, followed by the subicu-
lum (Kruskal-Wallis test: chi2 (1,36) = 46.3, post-hoc Dunn’s test for pairwise comparison:
p ă 0.05). PAC coupling only in CA3 was stronger in epileptic animals than in controls
(Kruskal-Wallis test: χ2 (3, 308) = 81.35, Bonferroni corrected, p ă 0.001). B: PAC cou-
pling strengths across all data epochs from epileptic group were positively correlated with the
number of seizures per day in CA3 (left, Pearson’s correlation, ρ=0.44, number of epochs = 78,
p ă 0.001) and Sub (right, Pearson’s correlation, ρ “ 0.41, number of epochs = 78, p ă 0.001).

Therefore, we performed detailed analyses of PAC phase angles in CA3, and found that in

both control and epileptic animals, fast oscillations occurred preferentially over the ascending

phase of the slow-wave oscillation (mean phase angle in controls: -0.53 rad, in epileptic ani-

mals: -0.60 rad). The observed mean phase angle was not significantly different between the

two groups (Watson-Williams multi-sample test for equal means, F(1,136)=0.08, p “ 0.77). In

epileptic animals however, we found that the distribution of preferred phases of PAC coupling

was unimodal and substantially more present over the ascending phase of the slow oscillation

than in controls (Fig. 4.5B). Overall, the fast oscillatory PAC events occurred preferentially
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at the transition phase between the trough and peak of the slow oscillations associated with

NREM sleep (Fig. 4.5C). The preferred phase concentration of fast oscillations towards the end

of the transition between the trough and peak of concurrent slow oscillations, are consistent

with previous reports in which different signal analysis methods were used to analyze human

EEG data [Frauscher et al., 2015; Amiri et al., 2016; Song et al., 2017].
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Figure 4.5: Distributions of the phase of fast oscillatory activity coupled to slow-wave os-
cillations. A: Polar plots show the preferred phase of fast oscillatory activity along the cycle of
slow oscillations, across all epochs, for all recording sites and both groups (in degrees angle).
Note that in all regions except EC in control animals, the distribution of PAC phase angles was
not uniform (Rayleigh’s test for non-uniformity, Bonferroni-corrected, p ă 0.01) B: Histogram
of observed coupling phase angles in CA3 along the cycle of the slow oscillatory signal, for
control and epileptic animals (in radian). The distribution was more expressed towards the end
of the ascending phase of the slow oscillatory cycle in epileptic animals. C: Schematic illustra-
tion of the observed phase and amplitude PAC effects: stronger bouts of fast rhythmic activity
occurred consistently and preferentially towards the end of the ascending phase of the under-
lying slow-wave oscillations in CA3 of the epilepsy group. Akin to sleep surface EEG, the
polarity of the slow oscillation was adjusted so that positive peaks mark the on state.
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4.6 Discussion

Our study emphasizes multiple aspects of NREM sleep polyrhythmic activity in the seizure

onset zone, in the pilocarpine animal model of MTLE: 1) at all recording sites, we confirmed

the expression of PAC: the amplitude of fast oscillations above 20 Hz was modulated by the

phase of an underlying slow wave below 4Hz ; 2) this coupling was stronger in the CA3 region

of epileptic animals compared to controls; 3) PAC strength in CA3 was positively correlated

with the number of seizures per day; and 4) in CA3, high-frequency (50´ 180 Hz) oscillations

occurred preferentially towards the end of the transition between the trough and peak of the

underlying slow cycles (ă 1 Hz). Our results confirm that PAC is a ubiquitous phenomenon

in electrophysiology [Canolty and Knight, 2010; Buzsáki et al., 2012; Baillet, 2017]. However,

they also reveal that PAC signal parameters, such as coupling strength and phase, are relevant

to understand the properties of epileptic networks in MTLE. Our findings also emphasize that

stronger PAC coupling in the seizure onset zone is related to seizure occurrence.

By extension of the communication through coherence hypothesis [Fries, 2015], it has

been proposed that phase-amplitude coupling may be a signal marker of information transfer

from large-scale cellular networks to small-scale fast processing networks engaged in effective

synaptic modification [Canolty and Knight, 2010]. Rodent studies of the mesial temporal re-

gions engaged in working memory processes have shown how PAC may enable multiplexed

signal communication between sub-regions of the hippocampus and adjacent structures [Col-

gin, 2016]. Recent imaging work of the electrophysiology of the human resting state also points

at the possible role of PAC as a mechanism for large-scale network communication [Florin and

Baillet, 2015]. PAC parameters are related to the dynamics of network excitability in neural as-

semblies [Buzsáki and Wang, 2012]. For this reason, they are pertinent measures of electrophys-

iological manifestations of neurological diseases and syndromes that primarily or secondarily

affect neural excitability. For instance, early, pre-symptomatic reductions of PAC coupling were

observed in vivo in the temporal regions of a mouse model of Alzheimer’s disease [Goutagny
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et al., 2013]. Alternatively, strong PAC coupling was found in the motor cortex of Parkinsons

patients [van Wijk et al., 2016].

We showed here that fast oscillations, essentially in the gamma-ripple band (50-180 Hz),

were modulated in amplitude by the phase of slow-wave oscillations (ă 1 Hz) in all regions,

both in controls and epileptic animals. Our data are in line with previous studies showing

strong PAC coupling between the gamma band and slow-wave oscillations in rodents [Andino-

Pavlovsky et al., 2017; López-Azcárate et al., 2013], primates [Steriade et al., 1996; Isomura

et al., 2006; Takeuchi et al., 2015] and humans [Monto et al., 2008].

To the best of our knowledge, our study is the first to measure phase-amplitude coupling in

the temporal lobe after a pilocarpine-induced SE, between the gamma-ripple band and slow-

wave oscillations. Epileptic animals showed stronger PAC coupling in the CA3 area, which is

often identified as a seizure onset zone in the pilocarpine model of MTLE [Lévesque et al.,

2012; Behr et al., 2017; Toyoda et al., 2013]. Therefore, our observations are in agreement

with previous reports showing strong PAC in the seizure onset zone of epileptic patients [Amiri

et al., 2016; Nariai et al., 2011; Weiss et al., 2013; Ibrahim et al., 2014; Guirgis et al., 2015;

Weiss et al., 2016]. Taken together, these results are consistent with the idea that large networks

of neurons fire in synchrony, and produce local-field oscillatory signals in the gamma ripple

band that are triggered by slow-wave oscillations. Such fast signals were previously found in

the seizure onset zone of epileptic patients [Medvedev et al., 2011; Urrestarazu et al., 2007],

with slow-wave oscillations (ă 1 Hz) modulating these faster oscillatory signal components

[Frauscher et al., 2015]. Widespread high-amplitude slow waves are prominent during sleep

and could facilitate the expression of such high-frequency activity [Nazer and Dickson, 2009;

Frauscher et al., 2015]. The mechanisms of generation of high-frequency activity facilitated

by slow-wave oscillations remain unclear. Partial evidence suggests that slow-wave oscilla-

tions enhance synaptic excitability and hyper-excitability, which would in turn facilitate the

development of pathological hyper-synchrony, and eventually epileptiform activity [Nazer and
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Dickson, 2009; Schall et al., 2008; Wolansky et al., 2006].

We also found that PAC coupling strength in CA3 and subiculum was positively related to

seizure occurrence, with stronger PAC coupling associated to high seizure rates. This is presum-

ably the first report of such association between seizures occurring after SE and PAC coupling

strength in temporal regions. These findings are in line with the hypothesis that episodes of

enhanced excitability - marked in the EEG by stronger coupling between gamma-ripple band

activity and slow-wave oscillations - are associated with a higher probability of seizure occur-

rence. Our data are also in agreement with previous evidence showing that interictal spikes are

coupled to high-frequency activity in CA3 during episodes of high seizure activity in the pi-

locarpine model of MTLE [Behr et al., 2015; Lévesque et al., 2011]. The subiculum was also

previously described as the onset zone of spontaneous seizures in some cases of the pilocarpine

model of MTLE [Lévesque et al., 2012; Toyoda et al., 2013]. We may therefore assume that

changes in PAC in the seizure onset zone reflect time-windows during which neuronal networks

undergo substantial changes in neuronal network excitability.

Furthermore, we found that high-frequency oscillations in CA3 occurred preferentially to-

wards the end of the phase transition between troughs and peaks of slow-wave oscillations.

Several previous reports pointed at the influence of the coupling phase in the registration of

perceptual items by brain systems [Jensen and Colgin, 2007; Gips et al., 2016]. In epilepsy,

a recent study suggested that the phase of occurrence of high-frequency oscillations may be

used to distinguish physiological from pathological events [Song et al., 2017]. Our findings are

concordant with this relatively scarce literature published so far. However, one limitation of our

study is that we did not use a surface reference electrode, which would have facilitated the reg-

istration of the slow-wave peaks and troughs we observed with the actual up and down states of

NREM sleep. Nevertheless, we followed the guidelines published by Ellenrieder et al. [2016]

for slow-wave signal interpretation under similar circumstances. Moreover, our data showing a

preferred coupling phase towards the end of the transition from slow-wave troughs to peaks are
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concordant with previous reports on epileptic PAC in human recordings [Frauscher et al., 2015;

Amiri et al., 2016; Song et al., 2017].

In this study, we report on data epochs exclusively from NREM sleep. The rationale is

twofold: 1) Contrarily to our data from other sleep stages and wakefulness, NREM sleep data

showed a dominant slow oscillation throughout epochs, which we considered a conservative

requisite for measuring PAC; 2) interictal NREM sleep produced the lowest rate of movement

artefacts, compared to active wakefulness, which was a factor of data quality in support of

our findings. Subsequent research would be required to investigate whether similar PAC sig-

nal markers of epileptogenicity would be present during wakefulness and other sleep stages.

We also look forward to further PAC studies of the transition between interictal and ictal sta-

tus. Such research may clarify the physiological mechanisms and circuits involved in seizure

activity.

Taken together, our results indicate that measures of phase-amplitude coupling between the

phase of slow-wave oscillations and the amplitude of local gamma-ripple band oscillations,

are indicative of pathological network activity in the seizure onset zone of pilocarpine-treated

epileptic animals. These findings emphasize the potential role of PAC measures as a signal

marker of epilepsy. We also anticipate that PAC measures will contribute to improve our under-

standing of how polyrhythmic brain activity structures the neural dynamics of communication

within and between brain systems, and how it is impaired during epileptogenesis and around

seizure occurrence. Future studies should consider producing histological analyses in addition

to electrophysiological recordings, to further relate the observed PAC signal markers with an-

ticipated structural and morphological changes in tissues.
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Chapter 5: Neurophysiological network

dynamics for pitch discrimination

5.1 Preface

This chapter is dedicated to the analysis of phase-amplitude coupling as a marker of neural

activation and network dynamics for pitch discrimination. The study used magnetoencephalog-

raphy recordings from both healthy controls and individuals with amusia. I investigated how

this congenital disorder affects the oscillatory mechanisms (via CFC) and associated functional

connections found in healthy individuals. The details of study design, analyses and results are

provided in this chapter.

This chapter is submitted for publication in a journal as: "Samiee, S., Florin, E., Vivan, D.,

Albouy, P., Peretz, I., and Baillet, S. Oscillatory network dynamics for pitch discrimination.

Submitted"
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5.2 Abstract

Pitch discrimination is crucially involved in music and speech auditory processing. It is com-

promised in several chronic and developmental neurological conditions and mental-health dis-

orders. Yet, the brain mechanisms involved at the systems level remain poorly understood.

Here we used neurophysiological brain imaging to identify the hierarchy of oscillatory neural

dynamics expressed in a pitch-discrimination task requiring the detection of pitch changes in a

sequence of pure tones. We sought to clarify the cross- and poly-frequency network dynamics

within and between auditory and downstream brain regions associated with task performance.

To this end, we recruited normal-hearing and congenital amusic participants and used magne-

toencephalography time-resolved source imaging. Amusics have difficulties in discriminating

pitch variations in auditory sequences. Their data were used to identify the components of local

and network brain dynamics essential for correct task performance.

We found that in the auditory cortex, delta-to-beta band cross-frequency coupling increased

dynamically at the onset of the tone sequence and culminated at the occurrence of the target

tone. We also found hierarchical and frequency-specific expressions of directed connectivity

between the auditory, inferior frontal and motor cortices during tone-sequence presentation. Our

data show bottom-up signaling directed from auditory regions to the inferior frontal and motor

cortices, which were entrtained at the rate of the tone sequence presentation. Symmetrically,

we also found that beta-band activity was directed, in a top-down fashion, from motor cortex

towards both inferior frontal and auditory regions. Top-down beta coupling was also expressed

during baseline resting state but became time-locked to tone occurrences during the presentation

of the auditory sequence.

Overall, our results emphasize the dynamical and anatomically-distributed nature of cross-

and poly-frequency interactions between bottom-up stimulus-driven signalling, and top-down

motor signals of predictive timing in auditory perception. Functional impairment in amusics
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was associated with both chronically elevated levels of delta-to-beta phase-amplitude coupling

during rest and task performance, and depressed bottom-up connectivity between auditory cor-

tex and downstream regions.

Keywords:

Pitch discrimination, Neural oscillations, Audition, Active inferences, Predictive coding, Pre-

dictive timing, Phase-amplitude coupling, Phase transfer entropy, Amusia, Directed connectiv-

ity, Magnetoencephalography, Brain network dynamics.

.
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5.3 Introduction

Pitch discrimination is essential to the identification and registration of complex auditory stim-

uli as in music and speech [Ahmed et al., 2018]. A wide body of functional brain imaging

studies have reported on the anatomically-distributed nature of the brain processes involved.

At the cortical level, the superior temporal gyrus, inferior frontal lobule and prefrontal cortex

are regions along the ventral auditory pathway recruited by pitch discrimination [Zatorre et al.,

1992; Gaab et al., 2003; Albouy et al., 2013; Peretz, 2016; Hohmann et al., 2018]. The strength

of structural connections between the inferior frontal gyrus and the superior temporal auditory

cortex along the arcuate fasciculus is associated with pitch discrimination abilities [Loui et al.,

2009]. Further, when temporal attention is required to discriminate between tones presented in

temporally-organized sequences, the brain network involved also includes the lateral motor cor-

tices [Morillon and Baillet, 2017; Chang et al., 2018], highlighting the functional interactions

between endogenous predictive timing and the registration of incoming sensory events [Chen

et al., 2008; Zarate and Zatorre, 2008; Fujioka et al., 2012; Arnal and Giraud, 2012].

Beyond mapping, the dynamic, neurophysiological aspects of pitch discrimination remain

elusive. To approach this question, we adopted the mechanistic view that hierarchically cou-

pled, poly-frequency neural oscillations contribute to brain sensory registration and processing

[Schroeder and Lakatos, 2009b]. Such cross-frequency interactions between the typical fre-

quency bands of electrophysiology are actively studied as possible vehicles for inter-regional

brain network integration [Engel et al., 2001; Engel and Fries, 2010; Florin and Baillet, 2015].

Fontolan et al. [2014] for instance reported on cross-frequency interactions between brain oscil-

lations in the delta ([1-4] Hz), beta ([15-35] Hz) and gamma ([40-80] Hz) bands in auditory cor-

tex during speech listening. Phase-amplitude coupling (PAC) is one of the most studied forms

of cross-frequency coupling in neurophysiology. Changes in PAC characteristics – in terms

of slow frequency for phase or fast frequency for amplitude, coupling strength and preferred

phase of fast-frequency bursts occurrences along the slow-frequency cycle – have been related
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to sensory, motor and cognitive events [Canolty and Knight, 2010] and in the dynamics of inter-

regional connectivity in resting-state brain networks [Florin and Baillet, 2015]. Although PAC

emerges from interconnected cell-assemblies and networks in normal healthy functions, there

is growing evidence from patient and preclinical data in Parkinson’s disease [de Hemptinne

et al., 2013; van Wijk et al., 2016], epilepsy [Amiri et al., 2016; Samiee et al., 2018] and autism

spectrum disorder [Berman et al., 2015] that excessive levels of PAC are associated with brain

dysfunctions. The actual pathophysiological mechanisms could be related to the notion that

PAC is related to the dynamical fluctuations of net excitability in cell assemblies – a mecha-

nism primarily or secondarily impaired in multiple brain conditions.

In the present study, we aimed to identify the local and inter-regional cross-frequency cor-

tical dynamics involved in pitch discrimination. We sought to establish which of these compo-

nents are essential to the realization of the task, by contrasting the neurophysiological activity of

healthy participants with that of subjects affected by congenital amusia. Amusia, or tone deaf-

ness, is a disorder that affects the perception and production of music [Ayotte et al., 2002]. In

particular, amusics have difficulties in detecting variations of auditory pitch in tone sequences

[Peretz, 2016].

We restricted our investigations to a set of regions of interest along the ventral auditory

pathway and to their functional interactions with the motor cortex. Indeed, pitch discrimination

from a sequence of tones engages predictive processes in terms of timing and encoding of the

target auditory input. Based on Morillon and Baillet [2017], we expected that these processes

of active inference would manifest in the coupling between the phase of low-frequency cortical

rhythms entrained at the rate of presentation of the tone sequence, and the amplitude of beta

oscillations associated with the predictive timing of the occurrence of the target tone [Arnal

and Giraud, 2012]. Also following Morillon and Baillet [2017], we expected neurophysiolog-

ical activity to be entrained downstream along the auditory ventral pathway at the rate of the

tone presentation. We also anticipated to observe top-down inter-regional influences from the

96



Chapter 5: Neurophysiological network dynamics for pitch discrimination

motor cortex on auditory regions, expressed in the beta range [Michalareas et al., 2016]. We

sought to identify differences along these measures between the two groups of participants to

further characterize the mechanistic aspects in brain neurophysiology that are essential to pitch

discrimination. We also tested whether these latter would be expressed by default, in the brain

resting-state of the amusic brain vs. normal-hearing controls.

5.4 Material and Methods

5.4.1 Participants

Sixteen participants with no musical education were recruited in the study (age: 62.6 ˘ 6 y,

4 male). Eight were affected by the amusia disorder, according to the Montreal Battery of

Evaluation of Amusia (MBEA) [Peretz et al., 2003]. The other eight participants were controls

with no musical impairment, matched in age, gender and years of education. The experimental

paradigm was reviewed and approved by the ethics review procedures of McGill University

Health Centre (Protocol: NEU-12-023). All participants gave written informed consent to take

part in the study.

5.4.2 Experimental design

The paradigm was adapted from Hyde and Peretz [2004] and Peretz et al. [2005]. Each trial

consisted of a sequence of five pure tones: Tones 1, 2, 3 and 5 were identical and played at

the pitch level of C6 (1047 Hz; standard pitch). Tone 4 was the target tone played at 5 different

pitch levels across trials. In half of the trials, the target tone was played at the standard C6 (1047

Hz) pitch ("standard" trials). In the other half of the trials ("deviant" trials), the target tone was

played with a deviation of 25, 50, 100, or 200 cents (100 cents corresponds to 1 semitone)

from the standard tone. Each tone was presented for 100 ms, and the time interval between two

consecutive tone onsets in a sequence (inter-tone interval, ITI) was 350 ms. The total duration
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Figure 5.1: A) Experimental design. B) Anatomical regions of interest in a representative sub-
ject.

of a sequence was 1.4s (Fig. 5.1A).

Ten minutes of resting-state were recorded from all participants (eyes open) at the beginning

of the session. Task instructions were then given to the participants: they were asked to listen

to tone sequences and to press a button with either of their index fingers, to indicate whether

the presented sequence comprised a standard or a deviant target sound. They were instructed

to keep their gaze fixed on a crosshair displayed on a back projection screen positioned at a

comfortable distance. Responses with the right or left hand to standard vs. deviant trials were

intermixed between participants. All subjects received 40 training trials prior to data collec-

tion with magnetoencephalography (MEG). Following training, no feedback was provided to

participants about whether their detection of pitch deviation was correct.

A total of 640 tone sequences were presented to every participant, in 10 blocks of 64 trials.

There were a total of 320 standard tone sequences and 80 deviant trials per pitch deviance level.

Trials started in succession, 1 second (˘ ă 50 ms jitter) following the subject’s response to the
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previous trial.

5.4.3 Data acquisition

MEG data was collected during resting-state and task performance in seated position using a

275-channel CTF MEG system, with a sampling rate of 2400 Hz. Simultaneous EEG data was

recorded from four standard electrode positions: FZ, FCZ, PZ, and CZ. The audio presentations,

subject button presses, heartbeat and eye movement electrophysiological signals (ECG and

EOG, respectively) were also collected in synchronization with MEG. Head position was mon-

itored and controlled using three coils attached to the subject’s nasion and both pre-auricular

points. The headcoil locations and 100 scalp points were digitized prior to MEG recordings in

each individual, using a Polhemus 3-D digitizer system. We performed T1-weighted MRI in

each participant (1.5-T Siemens Sonata, 240 ˆ 240 mm field of view, 1 mm isotropic, sagittal

orientation) for cortically-constrained MEG source imaging [Baillet, 2017].

5.4.4 Data preprocessing and source modeling

Contamination from system and environmental noise was first attenuated using CTF’s 3rd-

order gradient compensation. All further data preprocessing and modeling was performed with

Brainstorm [Tadel et al., 2011] following good-practice guidelines [Gross et al., 2013a]. The

recordings were visually inspected, with segments contaminated by excessive muscle artifacts,

head movements or remaining environmental noise marked as bad and discarded from fur-

ther analysis. Powerline artifacts at 60 Hz and harmonics were reduced using notch filters.

Signal-space projectors (SSP) were designed using Brainstorm’s default settings to attenuate

the electrophysiological contamination from heartbeats and eye blinks.

The MRI data was segmented using the default FreeSurfer pipeline. For distributed source

imaging, we used Brainstorm to downsample the cortical surface tessellation produced to 15,000

vertices. We derived a forward MEG head model for each individual using the overlapping-
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sphere analytical approach (with Brainstorm default settings). We then obtained a weighted

minimum-norm estimate (wMNE; Brainstorm with default settings) to project sensor-level pre-

processed data onto the 15,000 vertices of the individual cortical surface, in each individual.

The empirical covariance of sensor noise, required for wMNE modeling, was estimated from a

2-min empty-room MEG recording collected at the beginning of each session.

5.4.5 Event-related responses

The event-related brain responses were extracted from the time-locked average of correctly-

detected trials in all experimental conditions (standard and various degrees of pitch deviance).

Electrophysiological signals were bandpass filtered between [0.5, 50] Hz, and baseline cor-

rected using the 150 ms before the presentation of the target tone ([-150, 0] ms).

5.4.6 Regions of interest

We defined six anatomical regions of interest in each individual using a MEG functional lo-

calizer. The right and left auditory cortices (rAud and lAud) were identified as the regions

presenting the strongest M100 (100 - 120 ms) event-related average response to all tones. The

surface area was restricted to „ 3 cm2 per region. We defined rIFG and lIFG as portions of

Brodmann BA45, identified in each individual from the Brodmann cortical atlas provided by

Freesurfer. rIFG and lIFG were the regions where maximum differential activity was observed

between deviant and standard tones, around 100 ms after target tone presentation. Their surface

area was restricted to „ 1.3 cm2. Left and right cortical motor regions (lMot and rMot, respec-

tively) were defined with a surface area of „ 3 cm2 at the pre-central locations with the largest

M50 50-ms latency responses evoked after right-hand and left-hand button presses in all trials,

respectively (Fig. 5.1B).
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5.4.7 Monitoring of vigilance: posterior alpha-band activity

We selected a cluster of five posterior MEG channels presenting the highest levels of pre-target

alpha-band activity ([8, 12] Hz) across subjects (MZP01, MLP31, MRP31, MLP32, MRP32).

We computed the power of MEG signals at these sensor locations over the pre-target period

([-1.5, 0] s) of each trial. We used the even-order linear-phase FIR filters in Brainstorm (band-

pass: [8, 12] Hz, stop-band attenuation: 40 dB, 99% energy transient: 0.402 s) and computed

the root-mean-square signal strength across the sensor cluster for each trial. We used the same

approach for EEG, restricted to electrode PZ.

5.4.8 Phase-amplitude coupling

We used a time-resolved measure of phase-amplitude coupling (tPAC) between co-localized

slow and fast cortical signal components [Samiee and Baillet, 2017]. tPAC measures the tem-

poral fluctuations of the coupling between the phase of slower activity (at frequency fP ) and the

amplitude of faster signal components (at frequency fA). Briefly, the instantaneous amplitude

of faster signals (AfAptq) in a sub-band of the fA band of interest was extracted using Hilbert

transform. Power spectral analysis was used to identify the frequency of strongest oscillation

in AfAptq (in the fP band of interest), coinciding with an oscillation in the original time series.

This frequency was then labelled as the fP frequency coupled to the current fast fA frequency.

The coupling strength between AfAptq and the instantaneous phase of the signal filtered around

fP was then calculated. All methodological details for tPAC were published elsewhere [Samiee

and Baillet, 2017] and we used the implementation openly available in Brainstorm.

We extracted comodulograms to identify the strongest modes of (fP , fA) coupling over time

windows of 1.5 s that contained the entire tone sequence at every trial, testing 20 different fA

centre frequencies in the [15, 250] Hz band. The fP band of interest was [2, 12] Hz. When

resolving PAC in time, we tracked the temporal variations of the strongest mode of coupling

observed in the comodulograms extracted in the previous step. tPAC was derived from 700-ms
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time windows with 50% overlap, and with [2, 4] Hz as the fP band and [15, 35] Hz as the fA

band.

5.4.9 Stimulus-brain response coupling

We assessed whether the auditory stimulus tone sequence induced modulations of beta activity

in the auditory cortex. We therefore generated a reference sinusoidal signal at 2.85 Hz (the rate

of the tone presentations every 350 ms), with its peak at the onset of each tone presentation.

We then estimated the tPAC cross-frequency coupling between the phase of this reference sig-

nal and the amplitude of beta oscillations in the auditory regions of interest. We tracked the

variations in time of this coupling using tPAC with a sliding window length of two cycles of

the tone presentation rate (700 ms), with 50% of overlap. We identified the preferred phase of

tPAC coupling along the frequency cycle of reference. We transformed the corresponding phase

angle to a time latency over the 350-ms cycle of the stimulus reference signal.

5.4.10 Effective connectivity estimation with directed phase-transfer en-

tropy

We evaluated the directed functional connectivity between the regions of interest (ROIs) using

directed phase-transfer entropy (dPTE) [Lobier et al., 2014]. Akin to Wiener-Granger causality,

dPTE measures effective connectivity based on the respective instantaneous phases of pairs of

narrow-band neurophysiological signals. The frequency bands of interest for the source signals

extracted from each ROI were in the delta [2, 4] Hz and beta [15, 35] Hz ranges. The delta

band contains the tone-sequence presentation rate (2.85 Hz). The beta band was expected to

mark top-down inter-regional communications between motor and auditory cortices [Morillon

and Baillet, 2017]. dPTE is a signed measure, which is indicative of the estimated direction

for effective connectivity. For example, considering two regions A and B, positive (respectively

negative) dPTE values indicate information transfer from cortical node A (resp. B) to cortical
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note B (resp. A). We used the dPTE code openly shared by Hillebrand et al. [2016] and available

in Brainstorm.

5.4.11 Statistical analyses

Parametric tests (e.g., t-tests against zero-mean, paired t-tests, repeated measure ANOVAs)

were employed. Tukey’s tests were used for post-hoc analyses and corrections against multiple

comparisons. tPAC values were assessed for statistical significance using a non-parametric re-

sampling approach: for each trial, we generated 500 surrogates using block-resampling [Samiee

and Baillet, 2017]. Each surrogate was produced from selecting five time points randomly in the

trial epoch to subdivide the instantaneous phase signal into five blocks. These blocks were then

randomly shuffled. tPAC was estimated from the resulting block-shuffled phase signal and from

the original instantaneous amplitude time series. This resampling technique provides reference

surrogate signals with no phase-amplitude coupling beyond chance levels and with minimum

phase distortion. The tPAC values obtained from the surrogate data were normally distributed

(Shapiro-Wilk test, p ą 0.8). tPAC values from each original trial was z-scored with respect to

the empirical distribution of tPAC values obtained from the surrogate data generated from the

same trial (Eq. 5.1):

tPACzptrial iq “
tPACptrial iq ´ averageptPACSurrogateptrial iqq

stdptPACSurrogateptrial iqq
. (5.1)

5.5 Results

5.5.1 Behavior

We call hit-rate the ratio of correctly detected trials for all five deviance levels (Fig. 5.2A). A

two-factor (group ˆ deviance level) between-subject ANOVA on observed hit rates revealed a

significant interaction between groups and deviance levels, F p1, 4q “ 19.1, p ă 0.001. There
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was no difference in accuracy between deviance levels of 25 and 50 cents (post-hoc Tukey test,

tp70q ă 1.1 , pTukey ą 0.98), and between deviance levels of 100 and 200 cents (tp70q ă“ 0.28

, pTukey “ 1). For this reason, we combined the trials with deviance levels of 25 and 50 under

one condition called low deviance, and all trials with deviance levels of 100 and 200 cents under

another condition labelled high deviance .

Fig. 5.2B shows the behavioral performances expressed as the differences in hit rates versus

false detection rates in both conditions. In both deviant conditions, the hit rate was the percent-

age of correctly detected deviant trials; false detection was for trials when standard target tones

were detected as deviants. In the standard condition (deviance = 0 cent), the hit rate was the

percentage of correctly detected standard trials; the false detection rate was the percentage of

deviant tones mistakenly reported as standards.

There was a significant interaction F p1, 2q “ 39.6, p ă 0.001 between groups and deviance

level. Controls performed better than amusics in the standard (tp74q “ 4.53, pTukey ă 0.001)

and low deviance conditions (tp74q “ 12.70, pTukey ă 0.001). There was no significant dif-

ference in performances of controls between the high and low deviance conditions (tp74q ă“

2.58, pTukey ą“ 0.11). Amusics did perform significantly better in the high deviance condition

and significantly worse in the low deviance condition (standard vs low deviance: tp74q “ 6.19,

pTukey ă 0.001, standard vs. high deviance: tp74q “ ´6.19, pTukey ă 0.001, low vs. high

deviance: tp74q “ ´15.16, pTukey ă 0.001).

We used d’ as a measure of sensitivity in behavioral performances of each participant in

the low and high deviance conditions (Fig. 5.2C). We found a significant interaction between

the level of target pitch deviance and groups (F(1,1)=20.3, p ă 0.001). Both controls and

amusics showed significantly higher sensitivity to high deviance compared to low (controls:

tp60q “ 4.07, ptukey ă 0.001, amusics: tp60q “ 10.45, ptukey ă 0.001). Controls were more

sensitive than amusics in the low-deviance condition (tp60q “ 7.53, ptukey ă 0.001) but not in

high-deviance trials (tp60q “ 1.15, ptukey “ 0.66).
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Figure 5.2: Behavioral performances, vigilance and event-related EEG responses. A-C) Be-
havioural performances: A) hit rate for 5 different deviance levels of target tone (with respect
to the first three tones in each trial): 0 deviance reflects the condition with all tones having the
same pitch frequency (standard trials). In all other four conditions there was a deviant pitch
tone presented as target. There were no significant interactions between groups and pitch de-
viance levels of 25 and 50 cents, and 100 and 200 cents, respectively. The trials from each
of these two trial subgroup were combined under "low" and "high" deviance conditions in all
subsequent analyses. B) The difference between hit rates and false detection rates are presented
for the two resulting grouped conditions. C) Sensitivity index (d‘) for amusics and controls in
the high and low deviance conditions. D) EEG event-related responses in the standard, low and
high deviance conditions in both groups. E) Posterior alpha power averaged over trial baselines
(pre-target period) across a cluster of posterior MEG sensors as a measure of vigilance.

5.5.2 Event-related responses

Group average event-related responses to target tone presentations are shown for electrode CZ

in Fig. 5.2D. There was a clear N1 component around 110 ms following the onset of the target

tone in both groups and all three conditions. In line with previous reports [Peretz et al., 2005],

both amusics and controls produced a P3 component in the high-deviance condition (yellow

trace). The P3 response was weaker for standard tones in both groups. In the low-deviance

condition, amusics showed similar responses than to standards, with controls producing a P3

which amplitude was intermediate between those in standard and high-deviance conditions.
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5.5.3 Posterior alpha power

We measured the posterior normalized alpha power as a proxy for vigilance [Valentino et al.,

1993], attention [Aftanas and Golocheikine, 2001] and the cognitive demand of the task [Gevins

and Smith, 2000; Ciesielski et al., 2007]. Higher alpha levels could indeed account for lower

task performances between groups and confound the interpretation of the data. There was a

main effect for group and task performance (Fig. 5.2E). Amusics produced lower levels of

posterior alpha activity (F(1)=28.37, p ă 0.001), which could be indicative of the task requiring

higher attentional demands for this group [Gevins et al., 1979; Smith et al., 1999]. Posterior

alpha activity was reduced in correct trials (F(1)=8.1, p “ 0.004), which is consistent with its

negative relationship with attention and vigilance. Interactions between response accuracy and

groups were significant (accuracy ˆ group interaction: F(1)=5.86, p “ 0.01), with a post-hoc

Tukey’s test showing lower alpha power in correct trials in amusics (t(9262)=-4.46, pTukey ă

0.001) and significantly lower posterior alpha levels in amusics compared to controls in both

correct and incorrect trials (correct: t(9262)=3.98, pTukey ă 0.001, incorrect: t(9262)=4.16,

pTukey ă 0.001). We produced similar observations from the simultaneous EEG recordings at

electrode Pz (not shown).

5.5.4 Phase-amplitude coupling

We set the search frequency range for fP to [2, 12] Hz and [15, 250] Hz for fA, for the de-

tection of local phase-amplitude coupling in the right-hemisphere ROIs using tPAC. Previous

studies reported on right-hemisphere dominance in similar pitch discrimination tasks [Peretz,

2016; Zatorre et al., 1992]. Across participants and for both groups, we found that PAC was the

strongest between the phase of delta-band activity at [2,4] Hz and the amplitude of neurophys-

iological signals in the beta frequency range at [15,35] Hz (Fig. 5.3A).

Time-resolved analysis of PAC variations along the tone sequence in rAud is shown in

Fig. 5.3B. We found in both groups and across all tested time windows that the strength of
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Figure 5.3: Phase-amplitude coupling analyses. A) The comodulograms extracted from source
signal in the rAud ROI are shown for controls and amusics. In both groups, the strongest mode
of phase-amplitude coupling was between the phase of delta activity at [2,4] Hz and the ampli-
tude of neurophysiological signals in the beta range at [15,35] Hz. B) Time-resolved analysis
of phase-amplitude coupling between these frequency ranges in rAud, z-scored with respect to
surrogate data (z “ 3.63 was above chance levels with corrected p “ 0.001 across time win-
dows). C) Interaction between accuracy of perceived pitch deviance and group, for delta-to-beta
PAC in rAud. D) PAC comodulograms of MEG source signals from rIFG ROI in both groups.
E) Time-resolved local delta-to-beta PAC in rIFG, z-scored with respect to surrogate data. F)
Interaction between accuracy of perceived pitch deviance and group, for delta-to-beta PAC in
rIFG. G) Delta-to-beta coupling in rAud and rIFG in both groups, during baseline resting-state
and during task performance. H) Time-resolved stimulus (pure 2.85-Hz sinusoidal signal) to
brain (beta activity in rAud) phase-amplitude coupling, left panel: coupling strength z-scored
with respect to surrogate data (z “ 2.44 is above chance levels with corrected p “ 0.05 across
time windows); right panel: Distribution of the preferred phase angles for coupling between
the auditory tone presentations and the peak of beta amplitude, across trials and for each time
window along the tone sequence (translated in relative latencies with respect to each tone onset
time). Vertical dashed lines indicate when each tone was presented in the sequence (for a dura-
tion of 100 ms). The bars indicate the 95% confidence interval and the shaded traces report the
standard error on the mean.

phase-amplitude coupling was above chance levels (z ą 3.4, pcorrected ă 0.01). Overall, cou-

pling was stronger in amusics than in controls (F(1)=11.1, p ă 0.001), with no effect of re-

sponse accuracy (F(1)=0.02, p “ 0.88) or pitch deviance (F(1)=0.94, p “ 0.33; Fig. 5.3C).

There was also a main effect of time (F(6)=6.53, p ă 0.001): in both groups, a post-hoc
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analysis showed that PAC increased after the onset of the tone sequence (p “ 0.0006) and

decreased after the occurrence of the target tone (over the three subsequent time windows:

p “ 0.0187, p “ 0.0126, and p ă 0.0001, respectively).

In the right inferior frontal cortex (rIFG), phase-amplitude coupling was also the strongest

between the phase of regional delta activity and the amplitude of beta-range activity (Fig. 5.3D).

Time-resolved tPAC analysis in that region revealed a main effect for groups (F(1)=43.95, p ă

0.0001; Fig. 5.3E): as in rAud, amusics showed overall stronger PAC levels than controls (p ă

0.001, Fig. 5.3E & F). We also observed a main effect of deviance level (F(1)=5.84, p “ 0.0157)

and an interaction between deviance and accuracy of pitch change detection (F(1)=13.09, p ă

0.001). Indeed in controls, phase-amplitude coupling was stronger in rIFG when target tones

were correctly or incorrectly perceived as deviants, compared to PAC when the target tone was

correctly or incorrectly reported as standard (pcorrected “ 0.007; Fig. 5.3F).

We performed a two-factor ANOVA (group x perceived deviance) of phase-amplitude cou-

pling in rIFG, which confirmed a main effect of group (F(1)=43, p ă 0.0001) and of perceived

deviance (F(1)=13.71, p “ 0.0002). In the right auditory cortex, there was only a main effect

of group (F(1)=21.35, p ă 0.0001) and no effect of perceived deviance (F(1)=2.25, p “ 0.13).

These observations point at a neurophysiological marker in the inferior frontal cortex of the

actual perception of the target tone as deviant, regardless of accuracy. There was no such effect

in the right auditory region, and it was absent in amusics.

We also derived phase-amplitude coupling statistics in the baseline resting state prior to the

auditory-testing session, to evaluate a possible predictive relation with the values observed dur-

ing task performance (Fig. 5.3G). Resting-state PAC between delta and beta was above chance

level in rAud for both groups (p ă 0.05), but only marginally in rIFG (p ą 0.07). We found

a main effect of group (F(1)=13.93, p “ 0.0002), region (F(1)=411.44, p ă 0.0001), and be-

havior (i.e. resting-state vs. task performance, F(1)=2241.1, p ă 0.0001), with a significant

interaction between group and state (F(1)=93.97, p ă 0.0001). Post-hoc analysis of the inter-
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action showed that overall and in both groups, PAC in the baseline resting state was lower than

during task performance in the tested regions (p ă 0.0001), with lower coupling in rIFG than

in rAud in both states (p ă 0.0001).

We derived measures of phase-amplitude stimulus-to-brain coupling in right auditory cor-

tex. The goal was to replicate previous observations of stimulus-induced beta-amplitude mod-

ulations in auditory cortex in similar conditions [Fujioka et al., 2012; Cirelli et al., 2014;

Chang et al., 2018]. We observed stronger coupling between the different phases of the tone

sequence and auditory beta amplitude modulations in amusics than in controls (F(1)=60.5,

p ă 0.001; Fig. 5.1H:left). There was no significant effect of time (F(6)=1.16, p “ 0.32),

accuracy (F(1)=2.08, p “ 0.14) or pitch deviance (F(1)=0.41, p “ 0.53). Overall, neurophysi-

ological delta-to-beta phase-amplitude coupling was stronger than stimulus-to-beta coupling in

the tested region (t(119985)=69.45, p ă 0.001).

For each trial, we also extracted the latency of maximum beta amplitude after each tone

onset in the sequence. The right panel of Fig. 5.1H shows the empirical distributions of these

latencies for both groups. The dashed vertical lines show the onset and offset of each tone

presentation in the sequence. We found that in both groups beta-range activity peaked at the

temporally-expected presentation of the tone („ 50ms after tone onset), starting immediately

after at the first tone in the sequence.

In summary, we observed significant cross-frequency coupling between the phase of delta

activity and the amplitude of beta-range signals in the right auditory (rAud) and the inferior

frontal cortices (rIFG), with overall stronger coupling in rAud, where it was also stronger than

stimulus-to-beta coupling. Beta activity was the strongest at the actual occurrence of the tones

in the sequence. Neurophysiological delta-to-beta coupling was related to behavior, with higher

levels during task performance than over baseline resting state. The amplitude of beta oscilla-

tions was maximum at the expected latencies of the tones in the sequence. Phase-amplitude

coupling increased dynamically after the onset of the tone sequence and culminated at the oc-
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currence of the target tone. Overall PAC was chronically stronger in amusics than in controls in

auditory and inferior frontal regions. We found only in controls a neurophysiological marker of

perceived deviance of the target tone, regardless of accuracy, with increased phase-amplitude

coupling in the right inferior frontal region (rIFG).

5.5.5 Directed functional connectivity

From the frequency ranges identified by the phase-amplitude coupling analyses above, we de-

rived dPTE directed connectivity measurements between the regions of interest in both hemi-

spheres in the delta ([2,4] Hz) and beta ([15,30] Hz) frequency bands, over the baseline resting-

state period, the [-1500,0] ms pre-target and the post-target [0,1500] ms time segments of the

tone sequence presentation.

We tested the observed dPTE values against zero in each group and behavioral state (base-

line resting state, pre- and post-target) with statistical corrections for the 18 comparisons per-

formed (3 pairs ˆ 2 frequency bands ˆ 3 states).

In controls during the resting state, we found a directed connectivity transfer in the beta

range from motor cortex to Aud (tp15q “ ´6.48, p ă 0.001) and to IFG (tp15q “ ´6.31, p ă

0.001; Fig. 5.4A: left panel). We found the same directed connectivity pattern during task per-

formance in both pre- (Aud: T p15q “ ´12.42, p ă 0.001, IFG: T p15q “ ´8.42, p ă 0.001) and

post-target segments (Aud: T p15q “ ´7.33, p ă 0.001, IFG: T p15q “ ´4.6, p “ 0.006). We

observed a reversed directed connectivity transfer in the delta range from the auditory cortex to

IFG and motor regions in pre- (IFG: T p15q “ 4.06, p “ 0.018, Mot: T p15q “ 4.07, p “ 0.017)

and post-target (IFG: T p15q “ 3.71, p “ 0.038, Mot: T p15q “ 4.66, p “ 0.006) segments, but

not in the resting state.

In controls, a three-factor ANOVA (pairs of ROIs ˆ state ˆ frequency bands) of directed

connectivity measures (dPTE) confirmed a significant main effect of the frequency band (F p1q “

4.57, p ă 0.001) with opposite directions of connectivity transfer for delta- vs. beta-band activ-
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Figure 5.4: Directed functional connectivity analyses: A) Measures of directed phase-transfer
entropy for each pair of left and right ROIs, frequency band, and stage of the experiment, for
controls (left) and amusics (right). The distributions of dPTE values are shown for each inter-
regional connection and over the baseline resting state, the pre- and the post-target segments of
the tone sequences. The green and pink traces are for beta- and delta- band dPTE, respectively.
The circles show the group average, with bars indicating 95 ´ % confidence intervals. All
statistics were corrected for multiple comparisons (*: p ă 0.05, **: p ă 0.01, ***: p ă 0.001).
B) Summary of findings plotted on a template cortical surface: the arrows are schematics for
significant dPTE directed connections. Line thickness indicates the strength of the dPTE group
average. Similar patterns were found in both hemispheres (not shown), with stronger delta-band
bottom-up transfers from Aud to IFG on the right side in controls (tp84q “ ´2.7, pTukey “
0.04). The thickness of the circles around the auditory (Aud) and inferior frontal (IFG) cortices
recalls the strength of local cross-frequency phase-amplitude coupling between the phase of
delta-band activity and the amplitude of beta-band activity.

ity. Interactions showed that directed connectivity transfer of delta-band activity from auditory

regions (rAud and lAud) to inferior frontal cortices (rIFG and lIFG) was increased during pre-

target tone presentations, compared to baseline resting state (tp90q “ 4.73, p ă 0.001). Delta-
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band transfer was also stronger from auditory to motor regions (rMot and lMot) over the entire

tone sequence (pre- and post-target) compared to the baseline resting state (pre: F p90q “ 5.39,

p ă 0.001, post: F p90q “ 4.27, p ă 0.001). Reversed directed connectivity transfers were

observed in the beta band from motor to auditory regions, and from motor to inferior frontal

cortices. There were stronger dPTE scores over the pre-target segment compared to post-target

( from motor to auditory regions: F p90q “ 3.65, p “ 0.006; from motor to inferior frontal

cortices: F p90q “ 3.52, p “ 0.009).

All these observations were identical for both hemispheres, with the exception of delta

transfer from auditory to inferior frontal cortex, which was stronger on the right side (post-hoc:

hemisphere ˆ frequency band interaction: tp84q “ ´2.7, pcorrected “ 0.04).

Qualitatively, the variations of dPTE measures were strikingly similar between controls

and amusics (Fig. 5.4A). There was no significant main effect of the group or interaction of

the group with other factors. Yet in amusics, the strength of dPTE of bottom-up delta-band

connectivity from the auditory to the inferior frontal cortices, and from the auditory to the

motor cortices was not significantly different from zero during tone sequence presentation (both

during pre- and post-target segments, p ą 0.099).

Akin to controls, top-down beta-range directed transfer was significant from motor to au-

ditory cortices (resting-state: tp15q “ ´6.49, p ă 0.001, pre: tp15q “ ´7.67, p ă 0.001,

post: tp15q “ ´8.11, p ă 0.001), and from motor to inferior frontal cortices (resting-state:

tp15q “ ´6.31, p “ 0.005, pre: tp15q “ ´6.80, p ă 0.001 , post: tp15q “ ´4.44, p “ 0.009).

There was no difference between right and left hemispheres in amusics (F ă 1.33, p ą 0.25).

In summary, the presentation of an auditory tone sequence induced delta-band effective

connectivity bilaterally, emerging from the auditory cortices and directed to the inferior frontal

and motor cortices. This bottom-up transfer was significant only in controls and was not present

during baseline resting state. In both groups, directed connectivity in the opposite direction (top-

down) was observed in the beta band from motor to auditory and to inferior frontal cortices, by
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default during resting-state baseline, and was emphasized during the pre-target segment of the

tone-sequence presentation (Fig. 5.4B).

5.6 Discussion

We used non-invasive neurophysiological measures of local and inter-regional brain dynamics

to reveal some of the basic mechanisms of sensory integration during a simple pitch discrimi-

nation task. These analyses were performed in controls with normal hearing and in congenital

amusia participants, to resolve the mechanistic elements that are essential to pitch perception,

which is deficient in amusia. Our behavioral results confirmed that amusics had more difficulty

than controls in detecting small pitch variations of up to 50 cents. Their lower accuracy was not

due to a lack of vigilance in performing a task that was difficult and possibly frustrating to them

[Ciesielski et al., 2007]. This observation was derived from electrophysiological measurements

of posterior alpha-band activity, which was actually lower in amusics than controls [Valentino

et al., 1993; Aftanas and Golocheikine, 2001].

We performed in-depth analyses within and between brain regions of interest that had been

highlighted consistently in previous pitch-discrimination studies with a variety of functional

exploration techniques [Zatorre et al., 1992; Albouy et al., 2013; Peretz, 2016; Morillon and

Baillet, 2017]. They comprised, bilaterally, the Heschl/superior temporal gyrus in auditory cor-

tices, the posterior aspect of the inferior frontal gyrus and the pre-central motor cortices. These

ROIs were identified with a functional-localizer strategy on the individual anatomy of every

participant.

During the presentation of tone sequences, we found in both groups local expressions of

cross-frequency coupling between the phase of delta-band activity and the amplitude of beta-

band signal components in the right auditory and inferior frontal cortices. The frequency of

delta-band activity was close to the rate of the tone sequence (2.85 Hz), which is typical of

cortical entrainment at the dominant rate of auditory signals [Doelling and Poeppel, 2015;
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Morillon and Baillet, 2017]. By boosting neural signals in response to rhythmic sensory in-

puts, cortical entrainment increases signal-to-noise ratio and improves the detection of genuine

phase-amplitude coupling effects [Aru et al., 2015; Samiee and Baillet, 2017]. There was no

delta-to-beta coupling in the absence of tone-sequence presentation, namely during the baseline

resting state in IFG (Fig. 5.3G). The fact that we observed delta-band entrainment in IFG with

the task (Fig. 5.3B-C) is compatible with this region being a downstream node of the ventral

auditory pathway [Zatorre et al., 1992; Gaab et al., 2003]. Expressions of beta-band activity

during pitch processing have been previously reported in auditory regions [Cirelli et al., 2014;

Fujioka et al., 2012], including in the pre-target time period [Florin et al., 2017].

In both groups, phase-amplitude-coupling was elevated in auditory and inferior frontal cor-

tices during task performance compared to baseline resting state (Fig. 5.3G). This observation

is in line with published reports of higher transient PAC levels during task performance, such

as with working memory [Axmacher et al., 2010], associative learning [Tort et al., 2009; van

Wingerden et al., 2014] and visual attention [Szczepanski et al., 2014].

A striking overall effect between groups was that delta-to-beta coupling in the auditory and

inferior frontal cortices was higher in amusics than in controls, both during tone-sequence pre-

sentations and at baseline in the resting state. We believe that these observations of elevated

ongoing phase-amplitude coupling are first in amusia. They contribute to converging evidence

that chronically elevated PAC levels could be brain signal indicators of neurophysiological dys-

function, as previously shown in e.g., Parkinson’s disease [de Hemptinne et al., 2013; van Wijk

et al., 2016], epilepsy [Amiri et al., 2016; Samiee et al., 2018] and autism spectrum disorders

[Berman et al., 2015]).

Delta-to-beta coupling was stronger in auditory than inferior frontal cortices in both groups

(Fig. 5.3G), which we interpret as caused by a more direct entrainment of auditory delta ac-

tivity by the stimulus, than in downstream regions. Yet, another marking difference between

groups was that there were modulations of delta-to-beta phase-amplitude coupling in the in-
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ferior frontal cortex of controls depending on their perception of the target tone as deviant,

regardless of accuracy. Such percept-dependent increases are compatible with the known in-

volvement of the inferior frontal cortex in pitch detection [Doeller et al., 2003; Alain et al.,

2001; Florin et al., 2017]. There was no such modulation in amusics, which is in line with the

absence of P300 event-related responses in this group, generated in part in the IFG region[Florin

et al., 2017].

We derived time-resolved measurements of phase-amplitude coupling (tPAC) over time

windows around the occurrence of each of the tones in the sequence. In the auditory cortex

of both groups, there was an increase of cross-frequency coupling immediately after the onset

of the tone sequence (Fig. 5.3B), which culminated at the expected latency of the target tone

presentation. This was confirmed by a time-resolved analysis of stimulus-to-beta coupling in

the auditory cortex, which showed that stronger phasic beta activity occurred at the expected

latency of the auditory tones in the sequence (Fig. 5.3H). These effects were observed both in

controls and amusics. The measurement of such coupling between the timing of the tone pre-

sentations (i.e., the actual physical stimulus) and modulations of beta-band signal amplitude in

auditory cortex is an approach that was used previously by Chang et al. [2018]. They showed

that stimulus-to-beta coupling in right auditory cortex was associated with the predictability

of pitch changes in a sequence. In our study, pitch changes occurred at the fourth tone of the

sequence but only in 50% of the trials. Hence the predictability of the timing of pitch changes

was high, but their actual occurrences were unpredictable from trial to trial. In that respect,

our results are consistent with Chang et al. [2018]’s, as our participants presented lower lev-

els of stimulus-to-beta coupling than their endogenous delta-to-beta counterparts, with no time

modulations along the tone sequence presentation (Fig. 5.1H).

We interpret the lesser levels of stimulus-to-beta compared to delta-to-beta coupling as due

to the fact that the dominant delta-band neurophysiological activity did not exactly match the

tone presentation rate. This is indicative of phase and frequency jitters between the regular
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auditory inputs of the tone sequence and the entrained neurophysiological responses. These

fluctuations were similar between groups and were not related to accuracy.

Our observations of directed, frequency-specific connectivity between regions of interest

provided further insight into both the neurophysiological processes of normal pitch discrim-

ination of their alteration in amusia. During resting-state baseline, we found in both groups

bilateral connections in the beta band issued from the precentral motor cortex and directed to

the auditory and inferior frontal cortices. These connections persisted during task performance

and were emphasized during the pre-target segment of each trial. These results are in line with

reports of dynamically-structured and anatomically-organized beta-band activity in the resting

state [Brookes et al., 2011; Florin and Baillet, 2015]. They are also concordant with strong

emerging evidence that beta-band activity is a vehicle for top-down signalling in brain systems

during sensory processing [Engel et al., 2001; Engel and Fries, 2010; Bressler and Richter,

2015; Bastos et al., 2015; Michalareas et al., 2016; Chao et al., 2018]. This body of experimen-

tal evidence is in support of the theoretical framework of predictive coding [Rao and Ballard,

1999; Friston and Kiebel, 2009] and predictive timing [Arnal and Giraud, 2012] in sensory

perception. In this context, beta-band top-down activity would channel predictive information

concerning the expected nature and temporal occurrence of incoming sensory information to

primary systems [Fontolan et al., 2014; Baillet, 2017]. In essence, the theoretical principles

posit sensory perception as an active sensing process, in which the motor system would play a

key role [Schroeder et al., 2010]. In audition for instance, we previously showed that the lateral

motor cortex directs beta-band connectivity towards the auditory cortices, even in the absence

of overt movements, contributing to the temporal predictions of tone occurrences in complex

sequences [Morillon and Baillet, 2017]. Our present data confirm and extend these observa-

tions: the modulations of beta-band activity in the auditory cortex peaked at the occurrences of

the tones in the sequence, which is compatible with the involvement of the motor cortex in driv-

ing inter-regional signals for predictive sensory timing. This top-down signalling mechanism

was not affected in amusics.
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Symmetrically, during tone-sequence presentations, we found only in controls a bottom-up

form of directed connectivity issued from the auditory cortices towards both the inferior frontal

and motor cortices (Fig. 5.4A). These connections were not significantly expressed in amu-

sics, and not present during the baseline resting state in controls. The delta band was that of

maximum phase-amplitude coupling found at the regional level and encompassed the stimulus

presentation rate of 2.85Hz. There was an hemispheric asymmetry of this connectivity trans-

fer to the right hemisphere [Zatorre et al., 1992]. This bottom-up connectivity transfer is also

compatible with the principles of predictive coding and timing that primary sensory regions

propagate prediction-error signals downstream in brain systems networks, for ongoing updates

of internal predictive and decision models [Rao and Ballard, 1999; Friston and Kiebel, 2009;

Baillet, 2017].

This observation is consistent with published dynamical causal models of impaired di-

rected connections between auditory and inferior frontal cortices in amusics [Albouy et al.,

2013] and other neurophysiological disorders [Omigie et al., 2013]. These previous results

were not frequency-specific as they were obtained from event-related signals in response to

tone-sequence presentations. Our present findings are also in line with fMRI data showing re-

duced functional – not directed – connectivity between the same cortical regions of amusics

[Hyde et al., 2010]. Loui et al. [2009] also reported lower anatomical connections via the ar-

cuate fasiculus in amusics, using diffusion-imaging tractography, although these results were

not reproduced [Chen et al., 2015]. In our data, the directed connectivity patterns were qualita-

tively similar between amusics and controls. The inter-individual variability of dPTE statistics

was greater in amusics, which may explain why both the strength and directionality of con-

nections were deemed not significant in this group. We are cognizant that our sample size was

small. Yet the motifs of directed connectivity are compatible with the large effects observed in

both behavior and local phase-amplitude coupling statistics.

In conclusion, the present study provides evidence that pitch discrimination from a sequence
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of pure tones engages a distributed network of cortical regions comprising at least the auditory,

inferior frontal and lateral motor cortices. Our results show that the motor cortex issues beta-

band signals down to inferior frontal and auditory regions, which are present in the resting

state, but which timing during auditory presentation mark the actual expected occurrences of

tones in the sequence. The auditory cortex is entrained at a rate around the physical pace of

the tone sequence, and this signal is propagated in a top-down fashion further downstream

to the motor system and along the ventral pathway to the inferior frontal cortex. These poly-

frequency phenomena interact locally through phase-amplitude coupling, which increases in

auditory regions at the onset of the tone sequence and culminates at the expected occurrence of

the target tone before returning to baseline levels.

This data identify two poly- and cross-frequency mechanisms as crucial to pitch-change de-

tection, when contrasting amusics with controls. First, delta-to-beta phase-amplitude coupling

is chronically elevated in the auditory and inferior frontal regions of amusics. Second, bottom-

up signalling along the ventral auditory pathway and to the motor cortex is depressed in this

group. In sum, these findings point at an alteration of pitch encoding in the auditory regions of

amusics, leading to insufficient prediction error signalling driven to inferior frontal regions and

poorer detection. The predictive timing functions seem to be preserved in amusics, at least in

the present context of highly predictable and regular pacing of the tone sequence.

Taken together, we believe these findings advance the complete and dynamic view of tone

sequence sensory processing in audition. We anticipate that some of these new observations

would generalize to other sensory modalities and that the cross- and poly-frequency neurophys-

iological markers of impaired auditory processing would be pertinent to plain other functional

deficits in sensory perception.
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6
General discussion & conclusion

6.1 Summary of findings and discussions

The main objective of my thesis was to advance knowledge of the functional role of cross-

frequency interactions between the phase and amplitude of neural oscillations at different fre-

quencies. I also aimed at studying expressions of cross-frequency coupling in selected disease

and behavior models. Cross-frequency coupling between rhythmic fluctuations of brain activity

has been observed over the last couple of decades and has triggered a lot of interest and ques-

tioning in the integrative neuroscience community. However, there are still several unanswered

questions related to this phenomenon. In this chapter, I summarize our findings and discuss

their implications, limitations and the prospective of future research work beyond the present

contributions.

The robust and reliable identification of phase-amplitude coupling in electrophysiolog-

ical recordings was the foremost methodological step I have taken. I proposed tPAC as a

new method for detection and quantification of cross-frequency phase-amplitude coupling in

a time-resolved manner [Samiee and Baillet, 2017] (Chapter 3, Fig. 3.1). The method applies

to all varieties of experimental designs, i.e. both for event-related and ongoing spontaneous
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time series of brain activity. I ran a thorough evaluation and comparison of tPAC against four

competing approaches using synthesized data, which confirmed its ability to resolve cross-

frequency coupling strength and other parameters, even from short segments of signal (Fig. 3.4).

The output of tPAC is a sparse three-dimensional array in time, frequency for phase and fre-

quency for amplitude. I developed the analytical tools to project these tPAC parameters on

three two-dimensional subspaces (Fig. 3.3). Hence, tPAC also provides the typical data repre-

sentations (e.g., comodulograms), with improved sensitivity and temporal resolution (Fig. 3.5).

I have made tPAC and the suite of such practical tools available in Brainstorm [Tadel et al.,

2011], with extensive online documentation. The code is also publicly available via Github

(https://github.com/SoheilaSamiee/Phase-amplitude-coupling-estimation). I conducted the em-

pirical evaluation of tPAC with in-vivo LFP recordings from the entorhinal cortex of a freely-

moving rat, in a linear-track experiment (Fig. 3.6).

Abnormal expressions of PAC in brain disorders have attracted a lot of attention over the

past decade [Spencer et al., 2009; White et al., 2010; López-Azcárate et al., 2010; Allen et al.,

2011; Miskovic et al., 2011; Kirihara et al., 2012; Goutagny et al., 2013; Shimamoto et al.,

2013; de Hemptinne et al., 2013; Ibrahim et al., 2014; De Hemptinne et al., 2015; Zhang et al.,

2016]. However, the actual alignment of these observations with pathophysiology is not entirely

clear. In Chapter 4 of my dissertation, I investigated the disease model of Pilocarpine-induced

MTLE, which affects the inhibitory-excitatory balance in the networks of the medial temporal

cortex of a rat. I discussed how interactions between these networks can be marked by CFC

in electrophysiological recordings. My hypothesis was confirmed by experimental data, which

showed exaggerated expressions of PAC between the phase of slow-wave NREM oscillations

and the amplitude of fast rhythms in the HFO band, with specific localization within the seizure

onset zone (Fig. 4.3- 4.4, [Samiee et al., 2018]). This observation was consistent with a pre-

vious report on interactions between HFO and slow waves in epileptic patients [Amiri et al.,

2016]. We did not analyze the direct relationship between the imbalance of excitatory and in-

hibitory activity and CFC. A follow-up study in the lab, also in collaboration with Prof Avoli,
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is now using optogenetics to establish such causal link with the specific blockade of inhibitory

interneurons.

Looking forward, using CFC with scalp or intracranial recordings during EEG monitoring

of epilepsy patients could improve the delineation of the seizure onset zone before surgery, for

severe forms of complex partial epilepsy.

I also observed that PAC strength in the SOZ was higher on days when epileptic seizure

activity was also high (Fig. 4.4). To the best of our knowledge, this is the first report showing

a positive correlation between PAC modulations and the frequency of seizure occurrences. Pre-

vious studies had measured PAC variations between different states: peri-ictal and ictal states

[Nariai et al., 2011], or temporal changes of PAC in different sleep stages [Amiri et al., 2016].

Further investigation of such associations between PAC strength and seizure frequencies or

occurrences could contribute to improved patient monitoring or even seizure forecasting for

patient safety and interventions.

One limitation of our study was that we did not have access to surface (scalp) EEG record-

ings to determine with certainty the polarity of excitability cycles during sleep. The polarity

of excitability cycles are important in determining the preferred phase angle of PAC with re-

spect to these cycles. Song et al. [2017] and Frauscher et al. [2015] suggested that the preferred

phase angle for coupling would help discriminating between pathological and healthy vari-

ants of HFOs. In my study, I grouped this phase across different recordings using the method

suggested by [Ellenrieder et al., 2016], but access to surface EEG recording would have been

optimal and should be considered in future studies.

I then proceeded to study a model of brain function and sensory integration using a pitch

discrimination task. I used MEG data from human participants and extracted phase-amplitude

coupling parameters from source imaging time-series distributed over the cortex. I reported

observations of increased PAC between delta-phase (2-4 Hz) and beta-amplitude (15-35 Hz)

during pitch discrimination, with respect to resting-state baseline levels in the auditory cortex
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and inferior frontal gyrus (Fig. 5.3). These two regions are part of the ventral auditory pathway

and have previously been reported to be involved in auditory pitch processing [Zatorre et al.,

1992; Gaab et al., 2003]. My observation of transient augmentation of PAC strength is consis-

tent with previous reports of increased PAC during task performance, for example in working

memory [Axmacher et al., 2010], visual attention [Szczepanski et al., 2014] and associative

learning [Tort et al., 2009; van Wingerden et al., 2014]. I propose that sensory entrainment (see

section 2.2.1) – whereby a sensory stimulus drives both slow and fast oscillatory networks –

emphasizes the phenomenon. In my study, the auditory stimulus was presented in sequences at

a rate of 2.85 Hz, which is in the delta frequency range. I propose that the transient coupling of

this slow oscillation with top-down beta bursts is compatible with the theoretical frameworks

of active sensing [Morillon and Baillet, 2017] and general sensory de-multiplexing [Hyafil

et al., 2015b] (see sec. 2.2.2). My analyses of effective connectivity, revealed that local PAC

fluctuations co-occur with inter-regional communication, also in the same frequency ranges as

those observed within PAC: delta and beta. Hence, we can think of these oscillatory manifesta-

tions as supports for information inter-regional transfer and local integration in brain networks.

Whether my findings in auditory pitch perception generalize to other sensory modalities or even

higher-order brain functions such as natural speech processing needs to be investigated.

Furthermore, we observed augmented PAC in amusics compared to controls in both auditory

cortex and inferior frontal gyrus (Fig. 5.3). This alteration in PAC strength is in line with previ-

ous reports on PAC changes in other disorders including Parkinson’s disease [López-Azcárate

et al., 2010; Shimamoto et al., 2013; de Hemptinne et al., 2013; De Hemptinne et al., 2015],

Alzheimer’s disease [Goutagny et al., 2013; Zhang et al., 2016], and epilepsy [Ibrahim et al.,

2014; Amiri et al., 2016; Samiee et al., 2018]. Additionally, increased coupling in amusics is

observed in regions (Aud and IFG) previously reported to present thicker cortex in amusics

than in controls [Hyde et al., 2007]. Hence, further analysis of the potential relationship be-

tween cortical thickness and PAC could the topic of future studies in the field.
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6.2 Future research

I hope the methods and data reported in my dissertation have advanced the tools and under-

standing of the possible functional role and mechanisms of oscillatory brain activity. I believe

my contributions can inspire future research works over a wide spectrum of related topics.

6.2.1 Mechanisms

Although some computational [Hyafil et al., 2015b] and biological mechanisms [Wulff et al.,

2009; Korotkova et al., 2010] have been hypothesized for CFC, there are still multiple aspects

that require investigation and justification. In-vivo and in-vitro studies, potentially combined

with optogenetics will nurture progress in that direction.

One of the basic aspects to be further investigated in my opinion, is the respective contribu-

tion of inhibitory vs. excitatory neural circuits in CFC, at distinct frequency bands (associated

with different tasks or observed in different regions of the brain). This could only be achieved

from analyzing the direct effects of silencing each circuitry on the CFC pattern. This would

help improve the physiological understanding of empirical results when an altered pattern of

CFC is observed in brain and mental disorder. Animals models and in-vitro preparations could

contribute toward this aim. Targeting a particular group of cells via transgenic animal models

can confirm how impairment of those cells would lead to alterations of CFC in different regions

of the brain and for different tasks. Optogenetics is also a key tool for such investigation as it

provides the opportunity to study the causal influence of activating or silencing a particular

circuit or cell type, in a well-defined region of the brain, on PAC patterns, during rest and task,

with observable consequences on behavior.
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6.2.2 Inter-regional coupling

Interactions in brain networks, between regional neural assemblies, can in principle be mediated

by and reflected in oscillatory rhythmic signalling. So far I have put the focus on local manifes-

tations of cross-frequency coupling. Oscillatory coupling between regions is typically measured

within a single narrow-band frequency e.g., using measures of temporal or amplitude-envelope

correlations or spectral coherence [Srinivasan et al., 2007; Murias et al., 2007; Hipp et al.,

2012; Meijer et al., 2014; La Rocca et al., 2014]. However, since different oscillatory rhythms

may carry different dimensions of brain integration (both spatially and temporally), coupling of

neural assemblies oscillating at different frequencies can be hypothesized to provide enhanced

opportunities for communication at multiple spatial scales and for storing complex informa-

tion [Buzsáki and Draguhn, 2004; Canolty and Knight, 2010; Fries, 2015]. Therefore, further

studies of possible mechanisms for inter-regional cross-frequency coupling (IRCFC) and how

it is affected in task performance and disorders is warranted. The proposed algorithm for PAC

estimation in chapter 3 (tPAC) can also be used in this type of analysis for IRPAC estimation.

In terms of potential mechanism for IRCFC, one possibility is that inter-regional coupling

is driven by local CFC, and long-range connections of slow rhythms [Hyafil et al., 2015b];

however, if inter-regional CFC is stronger than local CFC, as shown in [Fontolan et al., 2014],

this mechanism may not explain the observed IRCFC adequately, and there could be other

mechanisms involved, which would require further investigation.

In terms of applications, variations of IRCFC with task performance need to be documented

so that we advance our understanding of complex brain functions. For example, in our pitch

discrimination analysis (Chapter 5), strong PAC between delta and beta oscillations was found

locally in both Aud and IFG. Symmetrically, our connectivity analysis revealed that delta is

mainly originating from auditory cortex, and beta from motor cortex. Hence, inter-regional

phase-amplitude coupling analysis between auditory and motor cortices could be an interesting

topic for future works in this direction. This would involve analysis of whether and how IRPAC
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is affected during pitch processing by amusics, and whether it would contribute new insights

to our previous findings of alteration of local PAC and inter-regional single band connectivity.

This type of analysis would also advance our understanding of brain network mechanisms at

large.

6.2.3 PAC and epilepsy

Based on my investigations of PAC in an animal model of epilepsy, I consider there remain

several open questions on the topic and opportunities for further research:

‚ Using disease models to register histology with electrophysiology: it would clarify the

relation between PAC parameters and structural and morphological changes in epileptic

tissues.

‚ Understanding the association between the inhibitory-excitatory balance and PAC pa-

rameters: Optogenetics can target and modulate selectively excitatory and inhibitory sub-

networks in animal models of epilepsy [Krook-Magnuson et al., 2013; Kokaia et al.,

2013]. The approach is presently investigated for controlling ictogenesis [Shiri et al.,

2017; Lévesque and Avoli, 2018]. Such specific interventions would clarify which and

how PAC parameters are related to the activity of inhibitory and excitatory neural sub-

populations, at baseline and in epilepsy tissues.

‚ Analysis of time-resolved changes in transition between states (e.g., interictal, preictal,

and ictal states): In Samiee et al. [2018], I have focused on inter-ictal periods between

seizures and found stronger coupling between the phase of slow oscillations and the

amplitude of bursts in the ripple band, especially when seizure daily activity was the

strongest. I propose that tracking in time the coupling parameters during the transition

from interictal to preictal and ictal states would provide considerable insight into the

electrophysiological mechanisms of ictogenesis. I would anticipate that PAC may be a

better (in sensitivity and specificity) marker of individual epilepsy phenotypes in patients
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and predictor of seizure activity than current alternatives. CFC could also be used for bet-

ter categorization of the various seizure onset patterns observed in models and patients

e.g., low-voltage fast-onset (LVF) and hypersynchronous-onset (HYP).

6.3 Conclusion

In conclusion, cross-frequency phase-amplitude coupling is a rich signal marker of basic phys-

iological mechanisms of neural population activity and interactions. It is sensitive to interac-

tions between inhibitory and excitatory neural assemblies in all brain states, including rest,

task-oriented behavior and sleep (Chapter 3 and 4). We also showed how sensory entrainment

influences the rhythmicity of faster bursting activity according to this mechanism (Chapter 5).

As such, CFC expands our insight into the mechanisms of electrophysiological signalling, and

opens wide perspectives on applications to brain signal markers in healthy behavior and a range

of chronic and neurodegenerative disorders. Further studies are warranted to transfer the find-

ings into genuine clinical applications. For instance, CFC measures could potentially be used in

neurostimulation approaches for functional recovery and therapeutic interventions. Frequency-

tuned none-invasive brain stimulation [Albouy et al., 2018] could be an example approach for

targeting a particular underlying oscillatory component – highlighted with PAC analysis – and

enhancing it. This approach could be helpful in other applications than the present model of

auditory working memory enhancements [Albouy et al., 2018] and abating ictogenesis [Shiri

et al., 2017], for example in helping with the recovery of motor functions in stroke patients.
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