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ABSTRACT

Increasing the strength of the gear tooth is a recurrent demand from industry. In

this thesis a novel approach to the design of the tooth-root profile of spur and bevel

gears using non-parametric cubic splines, with the aim of increasing the gear strength,

is introduced. Bevel gears generated using the Tredgold approximation and the exact

spherical involute were considered. The shape of the root profile was smoothed so

as to endow it with G2-continuity, thereby reducing the stress concentration at the

critical blending points. An iterative co-simulation procedure consisting of tooth-root

profile shape synthesis via non-linear programming and finite element analysis was

conducted. The proposed designs are capable of reducing the stress concentration by

20.0% in spur gears, 15.9% and 19.3% in the Tredgold approximation and the exact

spherical involute bevel gears, respectively.
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ABRÉGÉ

Augmenter la résistance des dents d’engrenages est une éxigeance récurrente

dans les industries. Dans cette thèse, une nouvelle approche à la conception de

la racine des profils de dents des engrenages planaires et coniques, en utilisant des

courbes spline cubiques non-paramétriques, afin d’augmenter la résistance des en-

grenages, est proposée. Des engrenages coniques, générés en utilisant l’approximation

de Tredgold ou le profil à développante sphérique exacte, ont été étudiés. La forme

du profil de la racine de la dent est assouplie de telle sorte à ajouter une continuité de

classe G2, ainsi réduisant la concentration des contraintes aux points critiques. Une

procédure itérative de co-simulation consistant en la synthèse de la racine des pro-

fils de dents, par programmation non-linéaire et analyse par éléments finis, fut mise

en place. Les conceptions ainsi proposées permirent de réduire la concentration des

contraintes de 20% pour les engrenages planaires, ainsi que, respectivement, 15.9%

et 19.3% dans le cas de l’utilisation de l’approximation de Tredgold et dans le cas

du profil à développante sphérique exacte, pour des engrenages coniques.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Gears are mechanical components used to transmit power and motion through

the successive engagement of their peripheral teeth. They perform multiple func-

tions in mechanical systems and machines, including altering speed ratios, reversing

the rotation direction, changing the angular orientation of rotary motion and con-

verting rotary motion into translation and vice versa. The gear is a key component

in transmission systems; therefore, its reliability and stability is essential to meet

the performance requirements of the system. Gear teeth that break become debris

that can cause a complete machine breakdown in a very short time. This can be

extremely dangerous, especially in applications such as automotive gear systems. A

growing demand for gears with higher load-carrying capacity and increased fatigue

life accompanies the fast development of automotive transmissions. There are several

ways to achieve that, namely using new materials, improved heat-treatment or novel

gear geometries [2].

The gear tooth is exposed to a combination of several effects under working

conditions, such as stress concentration, misalignment, tooth error, etc. [3]. When

transmitting loads, each gear tooth behaves as a cantilever beam, subjected to bend-

ing [4]. The maximum bending stress of the gear tooth evolves from the accumulation

of normal stress under bending and appears at the root fillet. The gear tooth-root
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is exposed to a combination of both shearing and bending [5]. Repeated excessive

stresses cause bending fatigue often at the tooth-root [2]. The first crack initiates

at the regions with the highest stress concentrations and propagates until failure

occurs [6]. Within the development history of gear design, the fatigue of gear tooth

due to bending is always a challenge to designers.

Conventional gears are designed with a circular-filleted tooth-root [2]. A circular

fillet avoids stress concentrations that would arise due to an infinite curvature at

the corner between the tooth flank and the root circle. However, at the blending

points of the circular fillet with the involute tooth profile and the root circle, stress

concentration occurs due to curvature discontinuity. Such discontinuities cause a

drastic jump in stress values, thereby making these regions prone to mechanical

failure. Hence, the optimization of the gear tooth-root profile plays a significant role

in reducing the stress concentration and improving the gear tooth strength.

In this work, an innovative optimization procedure combining shape synthesis

via nonlinear programming and FEA software package tools is developed to produce

the tooth-root fillet for spur and bevel gears with minimum stress concentration. The

Tredgold approximation (TA) and the exact spherical involute (ESI) tooth profile for

bevel gears were considered [7]. The FEA results show a significant reduction in the

maximum von Mises stress of the optimum tooth profile when compared with its

circular counterpart.
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1.2 History and Applications of Gears

The Chinese south-pointing chariot shown in Fig. 1–1 is one of the oldest geared

mechanisms. The date of this device ranges back to the 27th century B.C. It consists

of a statue with a pointing arm on top of a chariot. The function of the statue is to

point in the same direction regardless of the route followed by the chariot, thereby

acting as a mechanical compass. The wheels were mechanically geared to keep the

statue always pointing in the same direction.

Figure 1–1: The Chinese south-pointing chariot

Heron of Alexandria, a native of Roman Egypt, was a Greek mathematician

who invented many geared mechanisms. That included the water dispenser which

was coin-operated and the temple gate opener. Leonardo Da Vinci devised many

mechanisms that employed gears. One of his famous machines is the lens-grinding

machine which had an angle-gear and a geared dish.

In the 18th century, Leonhard Euler proposed the use of the involute of a circle

as the profile of gear teeth (involute gear), a remarkable design which is still used
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today. In the 19th century form-cutters were introduced. The first hobbing machine

was invented by the German Hermann Pfauter in 1897.

Until today, gears are extensively used as the building blocks of many mechanical

drives, which transfer mechanical power from the prime mover to the actuator [1].

Depending on the application, the mechanical drive is necessary to link a machine

member and an actuator that should rotate at different speeds, or to actuate several

actuators by using one prime mover, or to control the speed of an actuator without

changing the machine speed. While some mechanical drives or transmissions use

friction to transmit power, by means of friction wheels or belt drives, we focus on

geared transmissions that employ toothed gears. Gear transmissions are seen in

many applications and numerous industries.

planetary gear drive

(a) P&W geared turbofan (b) Œrlikon two-speed electric gearbox

Figure 1–2: Gear applications
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In the aerospace and automotive industry, gear drives continue to be extensively

used. New geared turbofan engines are currently being produced by Pratt & Whit-

ney (P&W). The engine makes use of a planetary gear train as shown in Fig. 1–2a

to run a bigger fan at lower speeds. As a result, the engine fan can be operated

at subsonic rather than supersonic speeds, hence reducing noise and improving effi-

ciency. Multi-speed drive trains are now being developed for fully electric vehicles

to increase efficiency, vehicle speed and driving range without drawing additional

battery power. Fig. 1–2b shows a double stage reduction gearbox manufactured by

Œrlikon Graziano for electric passenger cars or light commercial vehicles. The Auto-

motive Partnership Canada project of Canada’s National Sciences and Engineering

Research Council (NSERC), currently targeting this market area to develop an op-

timal drivetrain for fully electric vehicles, has provided the funds for this research.

1.3 Review on Structural Optimization of Gears

Optimization problems in the early years were treated by classical techniques

of differential calculus and calculus of variations. A small number of simple uncon-

strained or equality constrained problems were solved using these techniques obtain-

ing exact solutions [8]. In the early 1960’s, numerical approximation techniques were

combined with mathematical programming methods for the first time to develop

structural optimization algorithms [9].

The development of numerical approximation techniques, such as the Finite

Element Method (FEM), Boundary Element Method (BEM) and Finite-difference

Method (FDM), allowed the solving of problems too intricate to be solved by long-hand
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calculations [8]. The FEM in particular, named so by Clough in 1960 [10], became

dominant in many engineering disciplines such as biomechanics, computational fluid

dynamics and solid mechanics [11]. Since then computers have been used extensively

in many industrial sectors, including the automotive and aerospace industry. In the

area of mechanical design, the FEM is used to calculate stress and displacement mag-

nitudes, which are used to assess device-performance. In the 1970s, Armand [12] and

Gallagher [13] used numerical approximation techniques in structural optimization.

Establishing an optimality criterion was the next development. In 1971, Venkayya

suggested an optimality criterion whereby the minimum-weight structure is the one

in which the strain energy density is constant throughout the structure [14]. In

1976, Mroz and Garstecki worked on the optimal design of structural elements with

unspecified load distribution [15].

As computer-aided design (CAD) systems gained popularity, geometric ap-

proaches to shape optimization evolved. That is, the design parameters in the opti-

mization problem defined the shape of the component at prespecified locations. In

1975, Francavilla et al. characterized the optimal shape defined by a set of geometric

design parameters upon minimizing the stress concentration factors [16]. In 1977

Oda conducted an iterative procedure in which a predefined fundamental shape is

modified based on the stresses obtained by carrying out a finite element analysis in

each iteration [17].

Coupling of the CAD system to structural optimization was the next develop-

ment. Esping solved the minimum-weight design problem by resorting to a CAD

approach [18]. By using a set of lines, he defined the members of a truss structure.
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The values of the design variables were based on the position of the truss nodes and

the objective function was formulated so as to minimize the truss weight. Parametric

curves and CAD surfaces allowed the synthesis of complex shapes. Interest in the

application of splines to curve synthesis was in continuous growth.

In 1983, Angeles showed how periodic splines can be used to synthesize curves

that meet the local geometric properties of a finite set of points located through the

interval of interest [19]. The curve-synthesis problem was of interest to designers

in many technical areas. Determining the shape complying with certain geometric

conditions such as prescribed values of slopes and/or curvature was a requirement in

many problems such as synthesis of cam profiles, design of railroad tracks or conveyor

belts etc. Existing methods at the time focused on the problem of interpolation given

a set of interpolation points i.e., the interpolation points remained unchanged while

the designer modified some of the parameters of the interpolation curve. In the

approach proposed by Angeles, a method was introduced that determined a set of

unknown interpolation points. The distribution of the local geometric properties that

the approximating curve should have at the interpolation points was prescribed, then

the curve was synthesized such that the prescribed values were met.

The curve synthesis concept using cubic splines presented by Angeles has been

implemented in several structural optimization problems. Angeles et al. [20] pub-

lished a two-level approach for the structural optimization of a spherical parallel

manipulator. The proximal link thus designed belongs to a spherical mechanism

called the Agile Wrist. The optimum design of the proximal link was obtained in

two stages. In the first stage, the shape of the midcurve producing minimum stress
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concentrations was obtained by resorting to the concept of curve synthesis using cu-

bic splines. Stress concentrations are induced by curvature discontinuities; hence,

the requirements imposed on the midcurve were to blend as smoothly as possible at

the blending points and to minimize curvature changes. The second stage involved

obtaining the optimum cross-section along the midcurve producing a link of mini-

mum weight. Several cross-sections were tested. The optimum solutions rendering

the minimum weight link were generated. The scaling factors defining the size of the

cross sections at several points along the midcurve were the design variables. The

optimum solutions were then tested to determine which one renders minimum the

volumetric strain energy. The approach resorted to FEA by using the optimization

tool in the Structure module of Pro/Mechanica.

In 2012, a curve synthesis approach proposed by Angeles et al. [21] employs

non-parametric cubic splines for the shape optimization of a self-deployable anchor

designed for mitral valve repair. The anchor curve, which had to undergo high defor-

mations was designed so as to minimize stress concentrations by enforcing curvature

continuity. The von Mises stress in the optimum design was significantly reduced.

Structural optimization finds its applications in many mechanical parts. In this

research we focus on gears. A gear is subjected to very high specific loads. The

tooth-root is loaded by extremely high bending. If the bending stress at the tooth-

root exceeds the material strength, a crack could initiate in the fillet, leading to a

fatal failure [22]. In applications such as automotive transmissions, there is always

a growing demand for gears with high bending strength and increased fatigue life.
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Reducing bending stresses in gears is widely investigated in the literature with

the aim of increasing the load-carrying capacity and extending the gear life. When

reviewing the vast literature published, approaches in achieving the foregoing goal

have been directed towards either identifying and selecting the optimum combina-

tion of gear geometrical parameters or optimizing the tooth-root fillet profile shape.

The former was approached by Andrews and Hearn in 1987, who developed a design

optimization procedure that modifies the tooth design parameters to reduce stress

level in the root fillet while satisfying the functional constraints, that is, to maintain

a practical design [23]. Design parameters included pressure angle, module, num-

ber of teeth and rack tip radius factor. The objective function was formulated to

approximate the structural behaviour with respect to the design parameters. Finite

Element Analysis was used to compute stress values in the fillet region. The opti-

mization problem was solved using penalty-function methods, where the constrained

problem is transformed to one of unconstrained optimization. Although the gear

bending stress was reduced by having a larger pressure angle, undesirable effects

were seen in the results, such as a lower contact ratio, which causes higher noise level

and rough running of the gears. Thus, the gear load-carrying capacity in other types

of failure modes such as pitting and scuffing, is reduced.

In 2002, Kapelevich et al. proposed an alternative method of design for spur and

helical gears [24]. Since gear design is generally based on standard tools, the gears

provided are usually not optimum. The author separated gear-geometry definition

from tool selection; hence, the gear tooth profiles did not depend on the standard

set of parameters of the generating rack and its location relative to a standard pitch
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diameter of the gear. The foregoing approach allowed gear designers to explore more

gear combinations, which could provide better performance for a particular product

or application. The next step is defining a unique tool geometry to generate the

designed gear set; therefore, the cost of a custom cutting tool had to be added.

Kapelevich has also developed involute gears with asymmetric tooth profiles for gear

applications where opposite flanks of the gear tooth are functionally different.

Efforts to minimize fillet stresses by optimizing gear tooth geometry have been

further reported by Spitas et al. [25]. Their approach uses nondimensional gear teeth

in a stress minimization problem. The number of design variables is reduced by incor-

porating the geometrical parameters of the gear in the contact ratio of the pair, thus

reducing computational time. The authors use boundary element analysis (BEA) to

compute the maximum fillet stress. However, instead of modelling the gear tooth

and running a BEA for every iteration,“stress tables” are used, which were precal-

culated by applying BEM on different combinations of the design parameters. By

linear interpolation of the tabulated values, all the required intermediate values are

readily calculated. The proposed optimum design was verified using two-dimensional

photoelasticity. The procedure reports reduction in fillet stresses; however, it does

not touch upon the fillet profile itself, which has a significant effect on the maximum

stress value at the fillet region.

Volume and weight constraints are a major concern for designers and engineers

in today’s competitive automotive industry. Bian et al. introduced a multi-objective

topology optimization approach for bevel gears [26]. The problem was formulated

such that minimizing the weight of the bevel gear was the direct optimization goal
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while reducing contact stress, tooth root bending stress and improving flexibility.

Bending stress and flexibility were set as design constraints by setting an upper

bound for the former and a lower bound for the latter. A parameterized model of

the bevel gear was created in CAD software. The tooth surface and the gear hole

were fixed during the optimization process. The resulting gear structure had two

through holes on each tooth and some small pits, thereby achieving a lighter design.

The gear tooth-root, an area of maximum tooth bending stress concentration, re-

quires particular attention. Improving the geometry of the fillet results in substantial

reduction in fillet stresses. Kapelevich et al. proposed a bending stress minimization

technique based on curve fitting of the fillet profile to provide minimum bending

stress concentration [27]. A random search method was used for the optimization

problem where fillet nodes are moved along a prescribed path towards a common

centre; the stress distribution is determined in every iteration. The initial fillet pro-

file is a trajectory of the mating gear tooth tip. However, due to the random nature

of the method, the results obtained were not always identical. Additionally, since

continuity between fillet nodes cannot be guaranteed, wiggling shapes were often

generated, which requires refinement to generate a smooth shape. The optimum

fillet profile was approximated using trigonometric functions.

In 2005, Xiao et al. proposed a new shape-optimization approach which uses

B-splines to represent the fillet shape [28]. The proposed method avoids the repre-

sentation of the fillet profile by discrete nodes, which often leads to a huge number

of design variables and does not guarantee continuity between elements. A genetic

algorithm (GA) was taken as the optimizer. The control points of the B-splines were
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defined as design variables, as opposed to discrete nodes as in the former approach.

Consequently, the number of design variables was reduced, as needed when using

GA. A large number of design variables would often lead to an exponential increase

in search-space dimension. The Boundary Element method (BEM) was used and

an adaptive mesh generator was developed. While Xiao et al. resort to B-splines

to synthesize the fillet profile, their procedure can be streamlined by curve synthe-

sis using non-parametric cubic splines [29]. More importantly, the curve-synthesis

problem can be formulated as an optimum design problem that can be solved using

gradient methods, which are more robust than stochastic methods. Since a cubic

spline passes through the control points, an adaptive mesh generator is not required,

given that the node location is automatically selected to coincide with the control

points, thereby guaranteeing a descent mesh distribution. An efficient technique for

optimizing the tooth-root fillet shape will be demonstrated in this thesis.

Ristic analyzed the impact of the gear tooth fillet radius at the critical cross sec-

tion on the stress values [30]. This work studied the effect of having two fillet radii

in the tooth root region on the stress concentration. The second fillet radius acts as

a “disencumber notch”, which is supposed to lower the tooth root stress concentra-

tion. The spur gears considered were part of planetary transmission belonging to an

excavator. By trial and error, the author conducted a series of iterations in which the

radii of the fillets was varied systematically and a FEA was conducted to compute

the maximum stress in the two fillet radii. The analysis showed that the proposed

approach is not always correct as in many cases higher tooth root stresses were re-

ported with two fillet radii rather than one. Increasing the radius of a circular fillet
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reduces the stress concentration because the curvature is minimized. However, there

is a limit to the size of the fillet radius to avoid interference. Variation of the fillet

stress with the tooth circular fillet radius is reported by Xie et al. [31]. The authors

conducted a study on a helical gear that is part of an automotive transmission.

The multiple benefits of tooth fillet profile optimization leads to the topic of man-

ufacturing with a concern on the how about of producing those customized fillets.

Forming gear technology like powder metal processing, injection molding, extrusion

etc. makes manufacturing of gear wheels with optimized tooth root fillet shapes pos-

sible. Flodin et al. talk about how powder metal manufacturing technology can be

used to manufacture gears with optimized fillets in mass production [32]. It may be

less efficient to use conventional methods of gear manufacturing in this case.

1.4 Thesis Contributions

The research work reported in this thesis focuses on a study of the load-carrying

capacity of spur and bevel gears. Results of the study have been implemented on

CAD models and tested using FEA. The major contributions are:

• Implementation of a curve synthesis approach to generate optimum gear tooth-

root fillet profiles;

• formulating an innovative optimization procedure combining shape synthesis

and FEA software tools to minimize stress concentrations in the tooth-root

fillet;

• increasing the bending strength of spur gears, Tredgold-approximated and ESI

bevel gears;
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• achieving a more uniform stress distribution in the tooth-root region of spur

and bevel gears.
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CHAPTER 2

Geometric Modeling of Gears

2.1 Spur Involute Gears

Spur gears are used to transmit rotation between parallel shafts. Their teeth

are cylindrical surfaces with generator parallel to the axis of rotation [33].

Figure 2–1: Spur gear model

Fig. 2–1 shows a spur gear model. The gear tooth profile has an involute shape.

Involute gearing is widely used in industrial applications because of its numerous

advantages. The transmission ratio of an involute gear is uniform and insensitive to

small fluctuations in the centre distance. Transmission errors are therefore minimized

and the gear operation is relatively silent. Involute cylindrical gears are also relatively

simple to manufacture. The generation tools for involute gears can be produced with

high precision. Additionally, involute gear tooth profiles can be readily varied using
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the same standard tools. The tooth thickness of involute gears can be changed

providing nonstandard centre distances just by changing tool settings [34].

involute

l

M

N

P

rb

O

Figure 2–2: Involute of a circle

The involute of a circle is a roulette obtained by rolling of a straight line over

the circle [1], as shown in Fig. 2–2. The circle, of radius rb, is called the base circle.

The generation of the involute of a circle can be demonstrated by imagining a cord

as it wraps or unwraps around a circle. Any point on the unwrapped part of the

cord traces out an involute. The involute has the following features:

• The normal at any point on the involute profile is tangent to the base circle.

• The radius of curvature of the involute at the point at which the normal is

tangent to the base circle is ρ = PN .
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Figure 2–3 shows an illustration of an involute gear tooth. The involute profile

shown is defined by⎧⎪⎨
⎪⎩

xinv = rb(cos t+ t sin t)

yinv = rb(sin t− t cos t)
, 0 ≤ t ≤

√
r2a
r2b

− 1 (2.1)

where the involute profile extends from the base circle to the addendum circle, of

radius ra.

O

X

Y

involute

addendum circle

base circle

pitch circle

dedendum circle

ra
rb

rp

rd

A

B

D

E

XE

YE

Γ Γ

ΩS

ζ

αc

f

H

Figure 2–3: Geometry of the spur gear tooth
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The reference circle for tooth element proportions is the pitch circle. The pitch

circles of two gears in mesh are tangent to each other. The distance measured between

two neighbouring teeth along the pitch circle is the circular pitch p. Hence,

p =
πd

N
(2.2)

where d is the pitch diameter in mm and N is the number of teeth.

The module m is a scaling factor that is used as a measure of the circular pitch.

It is given as

m =
p

π
=

d

N
mm (2.3)

The addendum circle of radius ra lies on the top land of the tooth while the

dedendum circle or root circle of radius rd lies on the bottom land. The tooth-root

fillet blends the end of the involute segment at the base circle with the dedendum

circle.

Table 2–1: Dimensions of the spur gear model
number of teeth 20
module (mm) 24
face width (mm) 50
pressure angle (◦) 20
addendum circle radius (mm) 264
pitch circle radius (mm) 240
base circle radius (mm) 225.526
dedendum circle radius (mm) 210

The pressure angle αc is the angle between the transmitted force and the tan-

gent to the wheel. The face width is the gear tooth length in the axial direction.
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The dimensions of the spur gear model used in this research are given in Ta-

ble 2–1.

2.2 Bevel Gears

Bevel gears transmit power between shafts intersecting at any angle. There

are several types of bevel gears. Each type works best for a specific application,

depending on the mountings, space available and operating conditions [1]. There are

three types of bevel gears, depending on the tooth shape:

• Straight

• Helical

• Spiral

Straight bevel gears are widely used in automotive differentials. They are the

simplest kind of bevel gears, having straight tapered teeth, as shown in Fig. 2–4.

Figure 2–4: Straight bevel gears [1]

The basic parameters of straight bevel gears are shown in Fig. 2–5. The pitch

diameter de of straight bevel gears is usually measured at the large end of the tooth,
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commonly called the heel. The small end of the tooth is called the toe. The circular

pitch and module are calculated in the same manner as in the case of spur gears.

 b
1

b2

s2

2

e2

1e

s1

1

1

f1

2

1r

e

Figure 2–5: Straight bevel gear parameters

The pitch cones meet at the apex as shown in Fig. 2–5. The pitch cone angles

of bevel gears 1 and 2 are δ1 and δ2, respectively. The pitch cone angles are related

to the number of teeth by

tan δ1 =
N2

N1

tan δ2 =
N1

N2

(2.5)
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The face angle and root angle of gear 1 are shown as δ1f and δ1r, respectively.

The back cone angle is δs. The face width is b and the length of the outer cone is

denoted as Re.

The projection of a straight bevel gear onto a plane tangent to the back cone

yields a virtual spur gear. Bevel gears designed based on the virtual spur gear lead

to the TA [33]. The virtual spur gear has a pitch radius rb equal to the back cone

distance, as shown in Fig. 2–5. The number of teeth N ′ of the virtual spur gear is

given by

N ′ =
2πrb
p

(2.6)

where p is the circular pitch measured at the heel.

A bevel gear set belonging to a differential manufactured by Linamar Corpora-

tion 1 is used in this research. The parameters of the bevel pinion and gear are given

in Tables 2–2 and 2–3, respectively.

2.3 The Exact Spherical Involute

Commercial bevel gears have tooth profiles designed with either the Tredgold or

the octoidal approximation, depending on the production machine used. Some are

designed with the two approximations. The ESI profile was introduced to provide

a uniform transmission ratio with a lower ripple effect than the TA. The design is

1 An industrial partner of the Automotive Partnership Canada project at McGill
University.
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Table 2–2: Dimensions of bevel pinion
number of teeth 9
mating gear teeth 14
module (mm) 5.7658
pressure angle (◦) 24
pitch angle (◦) 32.735
face angle (◦) 39.588
root angle (◦) 24.530
face width (mm) 22.5
virtual gear number of teeth 11

Table 2–3: Dimensions of bevel gear
number of teeth 14
mating gear teeth 9
module (mm) 5.7658
pressure angle (◦) 24
pitch angle (◦) 57.265
face angle (◦) 64.117
root angle (◦) 49.059
face width (mm) 22.5
virtual gear number of teeth 26

insensitive to changes in shaft angles; therefore; the transmission ratio remains con-

stant [35]. However, production methods for such tooth profiles are not commercially

available; they are currently a subject area of research [36].

The ESI is the counterpart of the planar involute used in the production of spur

gears. While the involute profile in the planar case was obtained by the rolling of

a straight line on the base circle, in bevel gears it is obtained through the rolling

motion of a great circle of the fundamental sphere on the base cone. The spherical

involute is represented below in parametric form [37]:

x = sin(α sin(βb)) cos(α)− sin(α) sin(βb) cos(α sin(βb)) (2.7)

y = − sin(α) sin(α sin(βb))− cos(α) sin(βb) cos(α sin(βb)) (2.8)

z = cos(βb) cos(α sin(βb)) (2.9)

where design parameter βb is the base cone angle and variable α is the angle through

which the taught cord unwraps from the base cone.
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O

Base circle

Figure 2–6: Exact spherical involute

An in-house algorithm developed by Angeles et al. was used to produce the

ESI tooth profile for the Linamar bevel gear set [37]. The volume of the differential

assembly was kept constant for the TA and ESI bevel gear set. The number of pinion

and gear teeth, pressure angle, tooth thickness and cone angles where all kept the

same. The input data are provided in table 2–4.

Table 2–4: ESI bevel gear set parameters
number of pinion teeth 9
number of gear teeth 14
pressure angle (◦) 24◦

sphere radius (mm) 46.7805
face width (mm) 22.5
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2.4 Tooth Modelling and Bending Stress Calculation

Tooth breakage is a major cause of failure in gears. It occurs as a result of

repeated high stresses close to the stress limits, causing bending fatigue. Evaluat-

ing tooth bending strength is therefore of high significance. Often tooth breakage

happens at the fillet region of the gear. A crack initiates in the fillet region and

propagates until breakage occurs. As a result the stress at the fillet region is an

indicator of the gear bending strength.

In practice, standards like the ISO and AGMA are widely used for gear-strength

evaluation. These methods use simplified formulas that estimate fillet stresses within

acceptable limits and in a less expensive procedure. They use different methods and

models to generate different design solutions for the same gear under the same oper-

ating conditions. Most standards evaluate the gear bending or tooth-root strength

by determining the maximum stress in the stretched fillet when a load is applied

at the highest point of single tooth contact (HPSTC). However, the location of the

critical section in the tooth fillet and the parameters of the critical section are usually

different. In this section an overview of the AGMA standards [5] for the evaluation

of tooth-root strength in gears is given.

In the AGMA standard, the gear tooth is treated as a cantilever beam with

a load applied at the HPSTC. The Lewis method is used to determine the critical

section location in the fillet. A constant strength parabola is inscribed within the

tooth profile and the tangency points with the fillet are considered the critical section

points C. Given a load F applied at an angle αF , the vertex of the parabola is

positioned at the intersection between the applied load line of action and the tooth
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Figure 2–7: AGMA critical section parameters

vertical axis. The parameters of the critical section that are used to calculate the

fillet stress are the angle between the tangent to the fillet at the critical point and

the centerline ζc, tooth thickness at the critical section sc, bending moment arm hc,

and the radius of curvature of the fillet curve ρc at the critical point, as shown in

Fig. 2–7. Coefficients accounting for the stress concentration induced by a geometric

notch and the geometric properties of the fillet go into the calculation of the local

tooth-root stress.

The stress correction factor Kf ,

Kf = H +

(
sc
ρc

)L (
sc
hc

)M

(2.10)

where H = 0.331 − 0.436αn; L = 0.324 − 0.492αn; M = 0.261 + 0.54αn; and αn is

the normal pressure angle.

The bending strength geometry factor J is
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J =
1

Kf
cosαF

cosαn

[
6hc

s2c
−

tanαF

sc

] (2.11)

The local tooth-root stress σc is, in turn,

σc =
FtPd

bJ
(2.12)

where Ft is the tangential load; Pd is the diametral pitch; b is the face width.

Load factors are also implemented to account for overload that could be a result

of misalignments in the transmission, dynamic loads, etc. They have not been shown

in the equation here for simplicity.

Standards like ISO and AGMA estimate fillet stresses. However, to accurately

determine the stress distribution in the fillet region, either experimental or numerical

methods should be used. Several experimental methods are reported in the litera-

ture using electric resistance wire strain gauges or photo-elasticity. Computer-based

methods such as the Finite Element Method (FEM) have been widely used in the

literature because of their high accuracy. Other methods such as the finite prism

method or the theory of Muskhelishvili applied to circular elastic rings have also

been reported [5].

The Finite Element Method offers a robust evaluation of the stress distribution in

the fillet. Stress in the fillet region depends on a relation between the load applied to

the gear tooth and the resulting displacements. In the FEM, the model is discretized

into finite elements connected at nodal points and boundaries. Element matrices are

obtained by formulating an approximate solution over each element. By combining
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element matrices, a global stiffness matrix is generated, which governs the force

displacement relation over the entire domain [38]. The FEM can be used to accurately

determine the tooth-root stresses for complex fillet shapes; hence, it is used in this

work.
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CHAPTER 3

Methodology

3.1 Curve Synthesis

In the curve synthesis procedure described here, we resort to non-parametric

cubic splines to discretize the tooth-root fillet. There are several forms of curve

discretization available, including Basis splines and Bézier curves; however, non-

parametric cubic splines are chosen because they are the simplest and most straight-

forward to use, thereby streamlining the procedure. In this chapter two kinds of

curves are synthesized, planar and spherical.

3.1.1 Planar-curve Synthesis

Figure 3–1 includes a sketch of the blending segments—the involute and part of

the dedendum circle—by means of a third one, Γ . The coordinate frame {E xE yE}

is built with its origin lying on the projection of OD and the xE-axis coinciding

with point B, as shown in Fig. 2–3. Point B, the starting point of the fillet curve,

lies on the base circle, while point D, the ending point of the fillet curve, lies on

the dedendum circle. Point A is defined as the intersection of the involute with the

addendum circle. The tooth-root lies between the base circle and the dedendum

circle. Notice that the segments in Fig. 3–1 pertain to a tooth in the lower half of

the gear, as opposed to the tooth of Fig. 2–3, for ease of representation.

We define n + 2 points {Pk}
n+1
0 along Γ , by their polar coordinates Pk(ρk, θk),

with P0(ρ0, θ0) = B and Pn+1(ρn+1, θn+1) = D. For point Pk, let θk = θ0 + kΔθ, for
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Figure 3–1: The blending of the involute and root circle segment using G2-continuous
curve fillet

k = 1, 2, · · · , n+ 1, the uniform increment Δθ being

Δθ =
θn+1 − θ0
n+ 1

(3.1)

Hence, the polar coordinates {ρk}
n+2
1 are assembled into a (n + 2)-dimensional

vector array as

ρ = [ρ0, ρ1, · · · , ρn+1]
T (3.2)

Similarly, its first- and second-order derivatives ρ′ and ρ
′′, with respect to the polar

coordinate θ of Fig 3–1 are defined likewise,

ρ
′ =

[
ρ′0, ρ

′

1, · · · , ρ
′

n+1

]T
(3.3)
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ρ
′′ =

[
ρ′′0, ρ

′′

1, · · · , ρ
′′

n+1

]T
(3.4)

According to the definition of non-parametric cubic splines, the cubic polynomial

ρk(θ) between two consecutive supporting points Pk and Pk+1 takes the form [39]

ρk(θ) = Ak(θ − θk)
3 +Bk(θ − θk)

2 + Ck(θ − θk) +Dk (3.5)

in which θk ≤ θ ≤ θk+1 and 0 ≤ k ≤ n.

By virtue of the G2-continuity condition, i.e., two curvatures coinciding at the

blending point, ρ, ρ′ and ρ
′′ are found to satisfy the linear relationships below [39]:

Aρ
′′ = 6Cρ, Pρ

′ = Qρ (3.6)

with matrices A, C, P and Q provided in the Appendix.

Further, the curvature at Pk takes the form

κk =
ρ2k + 2(ρ′k)

2 − ρkρ
′′

k

[ρ2k + (ρ′k)
2]3/2

(3.7)

Now, let the curve Γ be the curve with the “smallest possible curvature”, i.e.,

with a curvature distribution that carries the minimum rms value in the segment

comprised between B and D of Fig. 2–3. Hence, the optimization problem is formu-

lated as

z =
1

n

n∑
k=1

wkκ
2
k −→ min

ρ

(3.8)

subject to

κ0(ρ, ρ
′, ρ′′) = κB = 0, κn+1(ρ, ρ

′, ρ′′) = κD =
1

rd
(3.9)

in which wk > 0 denotes the normalized weight at point Pk, obeying
n∑

k=1

wk = 1.
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Besides, with reference to Fig. 2–3, the additional boundary constraints at the

two blending points are⎧⎪⎨
⎪⎩

θ0 = θB = 0

θn+1 = θD =
π

2
− ζm

,

⎧⎪⎨
⎪⎩

ρ0 = ρB = rb tan ζm

ρn+1 = ρD =
rb

cos ζm
− rd

(3.10)

The optimization problem thus formulated is constrained and nonlinear, which

can be solved using a suite of methods; the one used here is the ODA (orthogonal

decomposition algorithm) [40], as implemented in MATLAB.

3.1.2 Spherical-curve Synthesis

The foregoing curve synthesis procedure is used for spur and bevel gears tooth-root

profile optimization. While its implementation is obvious in the spur gear case, in

bevel gears it depends on the method of generation. In this research work the TA

and the ESI tooth profile have been considered for bevel-gear generation.

The projection of a TA bevel gear onto the Tredgold plane, tangent to the back

cone, generates a virtual spur gear, as shown in section 2.2. The curve-synthesis

procedure is implemented on the tooth-root profile of the virtual spur gear. Upon

regeneration of the bevel gear using the corresponding virtual spur gear with opti-

mum tooth-root fillet profiles, the bevel gear tooth-root profile is smoothed.

On the other hand, if the tooth flanks are designed with an ESI profile, then the

tooth-root profile also lies on a spherical surface. Here we resort to the parametriza-

tion of a spherical curve.

Figure 3–2 includes the sketch of a bevel gear tooth with an ESI and the deden-

dum circle, which is the intersection of the dedendum cone with the sphere surface.
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Figure 3–2: The blending of the involute and the root circle segment of an exact
spherical involute bevel gear

The spherical curve Γ blends the ESI and the dedendum circle. The point O′ is

defined at the intersection of the sphere and the Y -axis. Point A, the starting point

of the fillet curve, lies on the base circle, while point B, the ending point of the fillet

curve, lies on the dedendum circle.

To define the position of any point Pk on the fillet curve, we introduce the angle

θk between the Z-axis and the normal to the plane of the great circle C (Z ′) that

passes through points O′ and Pk, and the arc length ρk on the great circle, namely,

the length of the shortest path or the smaller geodesic between the two points. The

shortest path in spherical geometry is the equivalent of a straight line in Euclidean

geometry.
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Now, n+2 points are defined along Γ with P0 = A and Pn+1 = B. The problem

is treated like a planar one but by using the arc length ρ and the angle θ to define

the position of the supporting points. The optimization problem is formulated as

z =
1

n

n∑
k=1

wkκ
2
k −→ min

ρ

(3.11)

subject to

κ0(ρ, ρ
′, ρ′′) = κA = 0, κn+1(ρ, ρ

′, ρ′′) = κB =
1

rd
(3.12)

in which rd is the radius of the dedendum circle and wk > 0 denotes the normalized

weight at point Pk, obeying
n∑

k=1

wk = 1.

With reference to Fig. 3–2, the additional boundary constraints at the two blend-

ing points are ⎧⎪⎨
⎪⎩

θ0 = θA

θn+1 = θB

,

⎧⎪⎨
⎪⎩

ρ0 = ρA

ρn+1 = ρB

(3.13)

The optimization problem is solved. To generate the fillet curve, the resulting

supporting points which are defined in terms of arc length ρ and angle θ are defined

using Cartesian coordinates and input to a CAD software to generate the spherical

curve. Using a simple rotation the transformation can be done. With reference to

Fig. 3–2, the frame F ′ is attached to the great circle C, its Y ′-axis always coincident

with the Y -axis. A matrix R represents the rotation of frame F ′ with respect to

frame F about the Y -axis, namely,
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R =

⎡
⎢⎢⎢⎢⎣
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎥⎥⎥⎥⎦ (3.14)

The position vector of the point Pk that lies on the great circle C, in frame F ′,

is given by

r′P =

[
r sin

ρ

r
r cos

ρ

r
0

]T
(3.15)

where r is the sphere radius. The subscript k has been suppressed for simplicity.

Therefore, the position vector of point Pk can be expressed in frame F by

rP = Rr′P (3.16)

thus obtaining

rP =

⎡
⎢⎢⎢⎢⎣
r cos θ sin

ρ

r

r cos
ρ

r

r sin θ sin
ρ

r

⎤
⎥⎥⎥⎥⎦ (3.17)

3.2 Co-simulation

The structural optimization problem is implemented via co-simulation among:

the ODA package, implemented in Matlab; modelling, using SolidWorks Applica-

tion Programming Interface (API); and FEA, using a customized ANSYS Paramet-

ric Design Language(APDL). The iterative design optimization procedure for gear

tooth-root profile optimization is shown in the flowchart of Fig. 3–3. In the spur
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gear case, both modelling and FEA were done on ANSYS using APDL. However,

bevel-gear modelling, which requires more advanced solid modelling techniques, was

implemented using a customized macro in VisualBasic.NET format on SolidWorks.

The software packages were coupled together to interact in an automated iterative

procedure to solve the structural optimization problem.

Matlab

Initial generation of
point coordinates

Ansys

Meshing
Static analysis
Output vM stress

Meeting criteria?

Yes

Done

No

Matlab

Weight updating
Recalculating coordinates

SolidWorks

Modelling

Figure 3–3: Root curve optimization flowchart

35



The procedure starts with all the weight coefficients, wk, equal to 1/n and

the foregoing optimization problem is solved. The supporting-point coordinates are

obtained and used to generate the initial cubic-spline tooth-root profile, called the

geometrically optimum fillet. It is so termed because it was obtained with equal

weights. As a result of the G2-continuity offered by the geometrically optimum fillet,

the stress distribution in the tooth-fillet region is reduced significantly. However,

further reduction is still possible through an iterative procedure.

The supporting-point coordinates of the geometrically optimum fillet obtained

from Matlab are imported into ANSYS (in the spur gear case) or SolidWorks (in the

bevel gear case), where the gear tooth is modelled. A FEA is then carried out on

the gear model on ANSYS. The gear tooth is meshed, displacement constraints and

loading conditions are applied, and the FEA is conducted. Based on the von Mises

stress distribution in the fillet thus obtained, the weight coefficients are determined

and used for the next iteration, such that:

wk =
sk
n∑

i=1

si

(3.18)

where sk is the von Mises stress at the kth supporting point.

The definition for weight coefficients given above ensures that the higher the

stress at a supporting point, the more it is penalized. The problem previously for-

mulated is solved again but with non-uniform weight coefficients until the maximum

von Mises stress remains almost constant. The process helps approach the Venkayya
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criterion of acheiving an almost unifrom stress distribution at the critical region of

the fillet [14]. The final fillet shape is called the structurally optimum fillet.

An important aspect of structural optimization problems pertains to the load-

ing conditions [11]. A gear tooth is subject to variable loading conditions because

the contact point between a pair of gear teeth changes during the process of gear

meshing. The geometrically optimum fillet offers a significant reduction of the stress

distribution in the fillet and does not depend on the loading conditions. On the

contrary, the structurally optimum fillet depends on the loading conditions, i.e., a

structurally optimum tooth-root profile under one loading condition is not neces-

sarily optimum for another loading condition. However, the maximum tooth-root

stress occurs when the tooth is loaded at the HPSTC [41]. Thus, in this work the

structurally optimum tooth-root profile was computed at that loading position.

Furthermore, the load was selected arbitrarily. As the material is assumed to

operate in the linearly elastic region, any load below yield conditions should produce

the same desired result, namely, a comparison between the smoothed and circular

fillet.

3.3 CAD Modeling

Precise CAD modelling is necessary in shape optimization problems to accu-

rately represent the geometry. The model generated is used for carrying out finite

element analysis to investigate the effect of geometry modifications on the stress
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distribution, imprecise modelling thus giving rise to misleading results. In this re-

search accurate representation of the tooth, especially the fillet profile, is necessary.

Different geometric and solid modelling techniques are used for spur and bevel gears.

The plane stress model is the most suitable for the strength analysis of spur

gears. The conditions for 2D strength analysis are met. The gear face width is

much smaller than the pitch diameter (in-plane dimension), same shape in each

transversal section and a uniform load distribution along the tooth line [5]. Hence a

2D geometric model was generated. The spur gear model was generated in ANSYS

14.0. Considering the geometric symmetry of the gear, a single tooth was modeled

and used for FEM computations. A precise representation of the whole tooth profile

was based on non-parametric cubic splines by means of the spline function rather

than on B-splines (by means of the bsplin function) because the former is more

suitable for the problem at hand. While a cubic spline is composed of piecewise

third-order polynomials that pass through the supporting points, a B-spline best fits

a curve to the supporting points. More importantly, the meshing process is facilitated

when using cubic splines because the boundary nodes are automatically selected to

coincide with the supporting points. Details on the meshing process are explained

in Section 3.4. Considering the symmetry of the gear tooth, one side of the tooth

was generated and then reflected about the axis of symmetry. The spur gear tooth

model is shown in Fig. 3–4.

A 3D FEA of the same spur gear under the same operating conditions was also

conducted by Zou et al. [4]. The same results were obtained for the 2D and 3D

models, which confirmed the accuracy of the FEA.
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Figure 3–4: Spur gear tooth model

Considering the limitations in solid modelling features available in classical AN-

SYS, we resort to SolidWorks for generation of 3D bevel-gear models, geometrically

more complex than spur gears. Upon examination, it was found that the existing

bevel gear models available in the SolidWorks 2013 toolbox inaccurately represent

the geometry. Mainly, the tooth profile is represented as a circular arc instead of a

circle involute.

A combination of modelling features was used to generate the bevel gear. The

TA and the ESI bevel gears were both modelled. To model the former, first the cross

section of the gear is constructed using the basic dimensions evaluated in section 2.2.

The cross section is rotated about the gear axis to generate the main body, which

is conical. The virtual spur gear on the Tredgold plane is then used to create the

tooth cut. The Tredgold plane is defined by imposing a tangency constraint with the

back cone. A 2D sketch of the tooth space of the virtual spur gear is created on the

Tredgold plane using the spline function offered by SolidWorks (which is a B-spline),
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(a) Tredgold Plane
(b) lofted cut

Figure 3–5: TA bevel gear CAD modelling

to generate the involute and tooth-root profile. The tooth cut shape is tapered

smoothly towards the apex and used to cut the gear using the lofted cut feature as

shown in Fig. 3–5. Through rotation copying the tooth spaces, the full gear geometry

was accomplished. Both the pinion and the gear belonging to the differential gear

set manufactured by Linamar were generated. The assembly is shown in Fig. 3–6.

The Linamar differential gear set was also modelled with bevel gears having an

ESI tooth profile. The volume enclosed by the TA bevel gear set was used to calcu-

late the radius of the sphere enclosing the ESI gear set. The gear cross-sectional area

is constructed such that, upon rotation about the main axis, a spherical boundary

is generated (rather than a conical one). The ESI tooth profile is generated using

the algorithms proposed by Angeles et al. [37] and implemented in Matlab. The

spherical involute and fillet profile data points are then imported into SolidWorks to

construct the tooth cut profile which lies on the sphere. Using the lofted cut feature,
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(a) Tredgold approximation
(b) exact spherical involute

Figure 3–6: Linamar differential gear set

the tooth spaces in the bevel gear are generated and finally repeated in a circular

pattern to render the full gear geometry.

3.4 Finite Element Models

The material used in the FE analyses conducted in this research is structural

steel with a Young modulus of 2.1 × 1011 Pa, a Poisson ratio of 0.3, and a density

of 7870 kg/m3. The gear models were based on the assumption that the material

is homogeneous and isotropic i.e., free of damages or imperfections, scratch and

machining marks, etc.

As shown in Fig. 3–7, quadratic 4-node PLANE182 elements were used on AN-

SYS 14.0 to discretize the spur-gear tooth domain. An important issue that should

be addressed in structural analysis is the remeshing problem. During the optimiza-

tion procedure, the fillet profile is modified; it is therefore necessary to accurately
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remesh the model for further evaluation. The choice of cubic splines to represent the

tooth profile was essential to achieving an efficient and accurate mesh, because the

spline passes through the supporting points. Upon meshing, the boundary nodes are

automatically selected by the FE software to coincide with the supporting points,

the mesh thus being adaptive to profile modifications. Additionally, a finer mesh

is generated at the tooth-root where 50 supporting points were used to represent

the profile and where the stress values at the nodes are of particular interest to the

topic. A rougher mesh was generated at the involute tooth section and the gear rim.

An average of 3363 elements and 3490 nodes were used in creating the mesh for the

tooth models with different fillet shapes.

Figure 3–7: Spur gear tooth mesh

The boundary conditions on the generated FE model are defined by displacement

constraints over the inner tooth hub and cut boundaries, which separate the modeled
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gear tooth from the rest of the gear body. A 1000(cos 20◦) N tangential load that

the gear transmits is applied as an external force on the FE model, at its HPSTC,

uniformly distributed along the contact line over the tooth width.

(a) TA gear tooth (b) ESI gear tooth

Figure 3–8: Bevel gear tooth mesh

The bevel gear tooth models generated on SolidWorks are imported into ANSYS

as IGES files, to be used for FEA. IGES is a very rich file format; however, not all

entity types are supported by every CAD system. The imported tooth models are

therefore modified to construct missing surfaces or to repair incomplete entities.

The tooth is meshed using 8-node brick SOLID185 elements which are suitable

for the 3D modelling of solid structures. The sweep-mesh approach is used to sweep

the mesh from the tooth heel through the volume (to the toe). The remeshing prob-

lem is also addressed here. The tooth profile curves in the wire-frame imported from

SolidWorks are free of the supporting points. Therefore, upon meshing, the bound-

ary nodes do not necessarily coincide with the original supporting points, which is
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necessary for the structural analysis procedure. Hence, an angular element size is im-

posed on the fillet curve mesh, i.e., the number of angular divisions on the fillet curve

is kept constant such that each of the fillet nodes coincide with the corresponding

supporting point. This is imposed on the tooth fillets on both the heel and toe side

such that upon sweep there will be the same number of nodes on each side. Even

though the generating tooth cut profile is on the heel side, the maximum stress is

often in the toe; therefore, the number of nodes in the fillets in each transversal sec-

tion should be kept constant. A rougher mesh is used for the involute tooth and the

rim to save computation time. The average number of elements used was 137,553.

The displacements over the inner tooth hub and the cut boundaries of the bevel gear

tooth were constrained. A 1000(cos 20◦) N tangential load is applied as an external

force on the FE model, at its highest line of single tooth contact (HLSTC). The FE

models for ESI and TA bevel gear teeth are shown in Fig. 3–8.
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CHAPTER 4

Results

In each iteration of the optimization procedure, FEA was conducted to evaluate

the von Mises stress distribution in the gear tooth-root. The FEA results obtained

for spur and bevel gears are reported in this chapter. The stress distribution in the

optimum fillets are also compared with their circular-filleted counterpart.

4.1 Spur Gears

The maximum von Mises stress in the spur gear tooth-root versus the number of

iterations is shown in Fig. 4–1. The optimization procedure stopped in the seventh

iteration, when the maximum von Mises stress reduced from the previous iteration

is smaller than 0.01 MPa. Starting from an initial guess, the maximum von Mises

stress drops significantly in the first and second iterations and then settles to a value

about 1.5% above the minimum achieved in iteration 2.

The fillet obtained in the first iteration is the geometric optimum, obtained

with equal weighting factors. The structurally optimum fillet is implemented after

six more iterations (iteration 7), although the second iteration produced already

a lower maximum von Mises stress, because a more uniform stress distribution is

achieved with the former. A plot of the optimum fillet profiles is shown in Fig. 4–2.

The von Mises stress distributions of the optimum fillets are shown in Fig. 4–3.
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Figure 4–1: maximum vM Stress vs.
number of iterations

X (mm)

Y
 (

m
m

)

Figure 4–2: Fillet profiles; geometri-
cally optimum (blue) and structurally
optimum (red)

The von Mises stress distribution in the circular-filleted tooth-root has also been

evaluated, as shown in Fig. 4–4. Compared to its circular-filleted counterpart, the

geometrically optimum fillet offers a 16.5% reduction rate in the maximum von Mises

stress, while the structurally optimum offers a 20.0% reduction. The maximum von

Mises stress values are given in Table 4–1.

(a) (b)

Figure 4–3: vM stress distribution plots for (a) geometrically optimum (b) struc-
turally optimum fillet

46



Figure 4–4: vM stress distribution for
circular fillet
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Figure 4–5: vM stress distribution on
circular (black), geometrically optimum
(blue) and structurally optimum (red)
fillets

Additionally, the von Mises stress distribution of the three fillet curves is plotted

in Fig. 4–5, in which the abscissae denotes the node number along the gear tooth-

root profile. The results show that a more uniform stress distribution is achieved in

the optimum fillets, thereby meeting the design objectives.

Table 4–1: Maximum von Mises stress in different tooth-root curve types

root curve type
von Mises σvm

(MPa)
Circular 3.386

Cubic spline (geometrically optimum) 2.827
Cubic spline (structurally optimum) 2.709

4.2 Bevel Gears

The FEA results for TA and ESI bevel gears are reported in this section.
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4.2.1 Tredgold Approximation

Figure 4–6 shows a plot of the maximum von Mises stress in the TA bevel gear

tooth-root versus the number of iterations. The optimization procedure stopped in

the sixth iteration. A similar behaviour is observed here: starting from an initial

guess, the maximum von Mises stress drops significantly in the first and second

iterations and then settles to a value about 0.6% above the minimum achieved in

iteration 2.

Figure 4–6: maximum vM Stress vs.
number of iterations

Figure 4–7: vM stress distribution on
circular (black), geometrically optimum
(blue) and structurally optimum (red)
fillets

The von Mises stress distributions of the circular, the geometrically optimum

(iteration 1) and the structurally optimum (iteration 6) fillets are shown in Fig. 4–8,

and the maximum von Mises stress values are given in Table 4–2. The von Mises re-

duction rate is 12.6% in the geometrically optimum fillet and 15.9% in its structurally

optimum counterpart, compared with the circular-filleted tooth-root.

48



(a) Circular fillet

(b) Geometrically optimum fillet

(c) Structurally optimum fillet

Figure 4–8: von Mises stress distributions for various fillets
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Table 4–2: Maximum von Mises stress in different tooth-root curve types

root curve type
von Mises σvm

(MPa)
Circular 53.88

Cubic spline (geometrically optimum) 47.093
Cubic spline (structurally optimum) 45.294

To show the von Mises stress distribution along the fillet boundary, that of the

three fillet curves are plotted in Fig. 4–7, in which the abscissa denotes the node

number along the gear tooth-root profile.

4.2.2 Exact Spherical Involute

The optimization procedure for the ESI bevel gear fillet stopped at the eighth

iteration as shown in Fig. 4–9. From the initial guess, a significant decrement is

observed in the maximum von Mises stress in the first and second iterations and

then settles to a value about 1.5% above the minimum achieved in iteration 2.

Figure 4–9: maximum vM Stress vs.
number of iterations

Figure 4–10: vM stress distribution on
circular (black), geometrically optimum
(blue) and structurally optimum (red)
fillets
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(a) Circular fillet

(b) Geometrically optimum fillet

(c) Structurally optimum fillet

Figure 4–11: von Mises stress distributions for various fillets
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Table 4–3: Maximum von Mises stress in different tooth-root curve types

root curve type
von Mises σvm

(MPa)
Circular 52.774

Cubic spline (geometrically optimum) 44.948
Cubic spline (structurally optimum) 42.587

The maximum von Mises stress values in the optimum and circular fillets are

given in Table 4–3. The von Mises stress reduction rate is 14.83% in the geometrically

optimum fillet and 19.30% in the structurally optimum, compared to the circular

fillet. The von Mises stress distributions for the three fillets are shown in Fig. 4–11.

Additionally, a more uniform stress distribution is achieved in the optimum

fillets when compared to the circular fillet, as shown in Fig. 4–10.
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CHAPTER 5

Conclusions and Future Work

Spur and bevel gear tooth-root profile optimization, for maximum load-carrying

capacity, was reported in this thesis. Non-parametric cubic splines were used to

synthesize G2-continuous fillets that minimize stress concentrations in the tooth-

root region. First a geometrically optimum, then a structurally optimum fillet is

synthesized. Compared to its circular-filleted counterpart, the proposed structurally

optimum fillet designs offer a 20.0% reduction in the maximum von Mises stress in the

tooth-root of spur gears, and 15.9% and 19.3% reduction in TA and ESI bevel gears,

respectively. Hence, the von Mises-stress-reduction rates of the proposed designs

are significant. It is noteworthy that ESI tooth shapes were originally proposed on

kinematics, not strength, considerations, yet bevel gears with ESI teeth outperformed

their TA counterparts also in terms of load-carrying capacity. Additionally, the stress

distribution of the fillets changed dramatically upon fillet-smoothing. The stress

distributions in the proposed fillet shapes were more uniform in comparison with

circular fillets.

Static analysis was done in this research to compute stresses in the tooth-root.

The proposed tooth-root profile designs offer significant stress reduction in that re-

gion. In a dynamic analysis, it is understood that the tooth-root shape affects the

dynamic characteristics of a gear system. Although tooth-root stresses are expected

53



to be reduced in dynamic conditions with the proposed designs, a deeper investiga-

tion is recommended to calculate the amount of stress reduction achievable with the

proposed designs for a specific gear system at different operating speeds.

The manufacturing processes required to produce gears with optimum fillets are

outlined in the Appendix. Conventional machining methods may be used to pro-

duce the proposed designs; however, changes in the tool geometry and/or generative

motion will be necessary. New technologies generically known as additive manu-

facturing, can also be adopted to manufacture optimum gears. A more in-depth

investigation on the feasibility, cost and possibility of mass-production is required to

identify the optimum manufacturing methods for spur and bevel gears with the new

proposed tooth-root designs.
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Appendix A: Manufacturing

Producing gears requires precise manufacturing operations. Conventional ma-

chining methods such as broaching or hobbing are widely used because of their high

production rates. Gear forming methods such as powder metal technology, sinter-

ing, or more generally, additive manufacturing, are also available and gaining broad

acceptance. Gear forming methods generally offer freedom in design and can easily

accommodate non-standard fillet shapes. Alterations in conventional machining pro-

cesses may also allow the production of gears with optimum fillets. However, cost

considerations and possibility of mass-production scale have to also be taken into

account.

Gear Machining Methods

Gear machining methods are classified into gear form-cutting and gear genera-

tion.

Gear Form-cutting

In gear form-cutting techniques, form tooth cutters are used that have profiles

identical to the space between the gear teeth. By using cutters having tooth space

profiles including optimum fillets, gears with such fillets can be formed. Gear form-

cutting methods include broaching and milling.

A broach is a multi-tooth cutting tool. Its profile is identical to the space be-

tween all gear teeth. Each tooth on the broach is generally higher than the proceeding

tooth. In broaching, the broach or the gear blank is pushed or pulled relative to each
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(a) Gear milling

hob 

work piece 

(b) Gear hobbing

Figure 1: Various gear machining methods [1]

other to remove material. The depth of cut, therefore, increases with each tooth as

the process is done and the gear is formed all at once.

A multi-edge cutter is used in the milling process to create the tooth space

between neighbouring teeth. The cutting tool has a profile identical to the space be-

tween two neighbouring teeth. The rotating cutter is gradually fed into the stagnant

workpiece to produce each tooth space individually. The process could also be used

to machine bevel gears usually on heavy-duty milling machines.

Gear Generation

Gear generation involves gear cutting through the relative motion between a

rotating cutting tool and the generating motion or rotation of the workpiece. The

root curve depends on the motion program of the cutting tool, gear rotation and

tool-tip geometry. The tool profiles used are not identical to the tooth spaces. Using

the “gear forms tool” generating method, the gear teeth with optimum fillet profile
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can be meshed with the cutting tool to generate the corresponding tool profile [27].

The main gear generation methods used are hobbing, shaping and rack generation.

Hobbing is a machining method commonly used for the production of spur and

helical gears. The hob is a helical cutting tool. Both the hob and the gear blank

rotate as the hob is fed axially into the gear blank.

A pinion-shaped cutter is used in shaping. It is aligned with the gear axis and

begins cutting by reciprocating while feeding gradually into the gear blank to a pre-

determined depth. Both the cutter and the blank rotate at the same pitch circle

velocity.

During rack generation, a multi-tooth rack shaped cutter is reciprocated along

the axis of the gear blank and fed into it while the blank slowly rotates. Once the

cutter finishes a path it is disengaged and returns to a starting point.

Gear Forming Methods

The use of gear forming methods such as powder metal processing, injection

molding, forging and others, allow for the production of gears with non-standard

optimum fillets. Some of those methods are outlined in this section.

Powder metallurgy (PM) processing uses atomic diffusion to create objects from

metal powder at high temperatures. Mass production of gears with optimum fillets

is possible using PM. The process is more efficient in producing non-standard gears

than traditional cutting methods [32]. Casting methods could be used to produce

non-standard gears. Several casting methods are available, including sand, die and

investment casting. The accuracy of the gear is dependent on the quality of the die
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or the mold. Gears made of non-ferrous material such as aluminium and copper

alloys are commonly extruded. The teeth are formed on long rods and then cut into

usable lengths.

Gearing Industry

Linamar Corporation is a leading designer and manufacturer of precision metal-

lic components, including gears for the automotive and energy industry. Several

Linamar facilities in Guelph, ON were visited by the author on July 11th, 2013,

together with other members of the APC project team. These facilities included

Linamar Gear, one of the largest gear production facilities in North America, and

McLaren Performance Technologies, a Linamar subsidiary. A tour of the facilities

was done and discussions were conducted with engineers at Linamar, who provided

useful insight on the design and manufacturing capabilities of gears in industry.

Linamar designs and manufactures straight, helical and bevel gears for the auto-

motive industry. Gear design is made according to the American Gear Manufacturers

Association (AGMA) standards. Most gears are produced according to AGMA 12,

12 denoting the Gear Quality Number; that is a high-accuracy level, achieved by

grinding and shaving, with first-rate machine tools and skilled operators. In the

design phase, FEA is conducted using ANSOL, a software package. The gear ma-

terial is chosen and the model is loaded with the operating loading conditions. The

software package computes gear stresses at different meshing positions of the gear

teeth. If stresses are not within allowable limits, the gear parameters are changed.

In the manufacturing phase, highly automated production lines take the gear
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blanks through the different stages of the manufacturing process, from cutting, fol-

lowed by heat treatment, to grinding and shaving and, finally, to measurement, to

ensure that the gears fall within the precision standards.

Different methods are used to cut the gear teeth, including hobbing, shaping

and broaching. After cutting of the gear teeth, the gears are heat-treated to achieve

the necessary hardness, strength and wear resistance for the intended use. To com-

pensate for heat-treatment distortion of a cut gear, grinding is used to ensure that

the gear falls within the precision standards. Attention is also given to achieving a

smooth surface between the involute profile of the tooth and the fillet.

Finally, gear shaving is used to improve the surface finish of the gear teeth. A

few gears are selected randomly from the batch and inspected for accuracy. Spe-

cial machinery is used that is capable of measuring the geometric accuracy of gears,

namely, gear tooth spacing, profile, helix, concentricity, and finish.

A variety of tests on gears are also conducted. In McLaren Performance Tech-

nologies, many testing apparatuses are used to test the gears. Most of the time

failure in gears occurs as a result of fatigue; therefore, a couple of fatigue tests in

addition to a static test are conducted.

Cyclic loading is applied to a gear tooth using the apparatus shown in Fig. 2a to

simulate tooth-loading, as it goes in and out of mesh repeatedly with another gear.

The tool at the end of the arm in contact with the gear tooth has an involute profile

to emulate the same contact loading that occurs in gears. The test is stopped if fail-

ure occurs, which is when 10 percent of initial displacement of the arm is detected

or if the number of cycles reached a given threshold.
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(a) Failure Test (b) Torque Test

Figure 2: Various tests done on gears

A torque test is also done, in which a cyclic torque is applied to the gear teeth,

instead of a force. The test is conducted until either failure occurs or a specified

number of cycles is achieved. The apparatus used for this test is shown in Fig. 2b.

A static test is done to determine the maximum static load that a gear tooth

can withstand before failure. A high capacity press is used for this test. High loads

are applied to the gear tooth until failure happens.
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Appendix B: Matrices Related to the G2-Continuity Conditions

A = Δθ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0

1 4 1 0 · · · 0 0

0 1 4 1 · · · 0 0

...
...

. . .
. . .

. . .
...

...

0 0 · · · 1 4 1 0

0 0 0 · · · 1 4 1

0 0 0 · · · 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =
1

Δθ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 1 0 0 · · · 0 0

1 −2 1 0 · · · 0 0

0 1 −2 1 · · · 0 0

...
...

. . .
. . .

. . .
...

...

0 0 · · · 1 −2 1 0

0 0 0 · · · 1 −2 1

0 0 0 · · · 0 1 cn′′n′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

in which n′′ = n+ 2, c11 = −1 −Δθ/ tan(γ0) and cn′′n′′ = −1−Δθ/ tan(γn+1).
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P = Δθ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Δθ
0 0 0 · · · 0 0

1 4 1 0 · · · 0 0

0 1 4 1 · · · 0 0

...
...

. . .
. . .

. . .
...

...

0 0 · · · 1 4 1 0

0 0 0 · · · 1 4 1

0 0 0 · · · 0 0
1

Δθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q =
1

Δθ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

tan(γ0)
0 0 0 · · · 0 0

−3 0 3 0 · · · 0 0

0 −3 0 3 · · · 0 0

...
...

. . .
. . .

. . .
...

...

0 0 · · · −3 0 3 0

0 0 0 · · · −3 0 3

0 0 0 · · · 0 0
1

tan(γn+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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