
The Classical Cadence as a Closing Schema:

Learning, Memory, & Perception

David Robert William Sears

Music Theory Area
Department of Music Research

Schulich School of Music
McGill University
Montreal, Canada

September 2016

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

© 2016 David R. W. Sears





For Shannon





i

Abstract

How do we know when a passage of music is coming to an end? According to scholars in the

learning sciences, much of what we understand about the conventionalized ending formulæ

characterizing music of the classical style—what scholars have for centuries called cadences—is

acquired implicitly over the course of many years. This dissertation considers the validity of

this claim using corpus-analytic and experimental techniques, and drawing from theories of

implicit (statistical) learning, schema theory, and expectation.

Due to the cross-disciplinary nature of the research paradigm, the dissertation is divided into

three parts to present theoretical, computational, and experimental approaches. Part I reviews

contemporary accounts of the classical cadence articulated in the “New Formenlehre” tradition

and then outlines the theories that account for the acquisition and mental representation of the

most common cadence types associated with the late-eighteenth-century repertories of Haydn,

Mozart, and Beethoven, paying particular attention to the cadence typology presented in

William E. Caplin’s Classical Form. Following Robert Gjerdingen’s schema-theoretic approach,

I argue that listeners who are familiar with classical music have internalized these cadence types

as a flexible network of interrelated mental representations, or rival closing schemata.

To support this view, Part II re-examines the classical cadence using statistical modeling

procedures that might simulate the learning mechanisms underlying human cognition. The

corpus consists of symbolic representations of 50 sonata-form expositions from Haydn’s string
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quartets (Opp. 17–76), along with an annotated collection of 245 exemplars of the five cadence

categories that achieve, or promise, cadential arrival: perfect authentic, imperfect authentic,

half, deceptive, and evaded. Models for the representation (the multiple-viewpoint framework),

discovery (non-contiguous n-grams), classification (the ratiomodel, the neighbor-joiningmethod,

and nearest neighbor analysis), and prediction (a finite-context model called IDyOM ) of cadences

demonstrate the psychological reality of cadential schemata.

Finally, Part III extends the findings from Part II in five experimental studies. In Experiments

1–2 I asked participants to provide completion ratings for cadences heard both in and out of

context to examine the roles played by syntactic and rhetorical parameters in models of cadential

strength. Next, Experiments 3–5 consider the link between expectancy and cadential closure,

using both explicit (retrospective and continuous ratings) and implicit (reaction-time) response

methods. Taken together, the reported findings provide converging evidence in support of the

view that category systems for the classical cadence are psychologically relevant if they mirror

the structure of attributes encountered in a given repertory that listeners are likely to learn and

remember.
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Résumé

Comment savons-nous que, dans une musique, un passage touche à sa fin? Selon les spécialistes

en science de l’apprentissage, une grande partie de ce que nous comprenons comme étant des

formules conventionnelles de clôture caractéristiques de la musique du style classique—ce que

les chercheurs ont appelé pendant des siècles cadences—est acquis implicitement au cours de

nombreuses années. La présente thèse évalue la validité de cette affirmation en utilisant à la fois

des techniques d’analyse de corpus ainsi que des techniques expérimentales, tout en s’inspirant

des théories de l’apprentissage implicite, la théorie des schémas ainsi que la théorie des attentes.

En raison de la nature interdisciplinaire du paradigme de recherche, la thèse est divisée en

trois parties présentant respectivement les approches théoriques, informatiques, et expérimen-

tales. La première partie présente tout d’abord les discussions contemporaines de la cadence

classique telle que pensée dans la tradition “Nouvelle Formenlehre”. S’ensuit la description des

théories prenant en compte l’acquisition et la représentation mentale des types de cadences

les plus courantes associées au répertoire de Haydn, Mozart et Beethoven datant de la fin du

dix-huitième siècle. Une attention particulière est accordée à la typologie de cadence présen-

tée par William E. Caplin dans son traité Classical Form. En prenant pour point de départ

l’approche théorique des schémas de Robert Gjerdingen, je soutiens que les auditeurs familiers

avec la musique classique ont intériorisé ces types de cadences en tant que réseau flexible de

représentations mentales interdépendantes, ou schémas de clôture rivaux.
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Afin de renforcer ce point de vue, la seconde partie réinterroge la cadence classique via

l’utilisation de procédures de modélisation statistiques qui pourraient simuler les mécanismes

d’apprentissage qui sous-tendent la cognition humaine. Le corpus est composé de représentations

symboliques de 50 expositions de forme sonate en provenance de quatuors à cordes de Haydn

(Opp. 17–76), ainsi que d’une collection annotée de 245 exemplaires des cinq catégories

de cadence atteignant ou promettant l’arrivée cadentielle: authentique parfaite, authentique

imparfaite, demi, rompue, et évitée. Les modèles pour la représentation (le cadre de points de

vue multiple), la découverte (n-grammes non contigus), la classification (le modèle de ratio,

la méthode d’agglomération des voisins, et l’analyse du plus proche voisin), et la prédiction (un

modèle de contexte fini appelé IDyOM ) des cadences démontrent la réalité psychologique de

schémas cadentiels.

Enfin, la dernière partie approfondit les conclusions de la partie II par le biais de cinq

études expérimentales. Pour les expériences 1 et 2, dans le but d’examiner les rôles joués par les

paramètres syntaxiques et rhétoriques dans les modèles de force cadentielle, j’ai demandé aux

participants de fournir des évaluations de degré de clôture de cadences entendues, certaines étant

données dans leur contexte musical, d’autres non. Ensuite, les expériences 3 à 5 considèrent le

lien entre l’attente et la clôture cadentielle, en utilisant les méthodes d’intervention explicites

(évaluations rétrospectives et continues) et implicites (temps de réponse). Dans l’ensemble, les

résultats rapportés fournissent des preuves convergentes soutenant l’hypothèse selon laquelle

les systèmes de catégories pour la cadence classique sont psychologiquement pertinents si ils

reflètent la structure des attributs rencontrés dans un répertoire donné que les auditeurs sont

susceptibles d’apprendre et de se souvenir.
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Introduction

...while the patterns of music do not seem to be objectified by most members of most
cultures, including our own, they are thoroughly learned. It apparently makes no
difference that most of us cannot make sharp definitions of consonance and dissonance,
or speak with real knowledge of the perfect cadence; we recognize what is consonant and
what is dissonant in our music, and we have learned our music patterns well enough to
know when the closing measures of a composition are brought to a satisfying or to an
“unfinished” end. We learn what kinds of sounds are satisfactorily fitted into our music
without necessarily having any technical knowledge about it; music structure is carried
subliminally and, since it is not objectified in most individual cases, it is resistant to
change.

Alan P. Meriam

Pattern discovery is an essential task in many fields, but particularly so in that branch of

criticism concerned with the theory and analysis of musical form. According to Herbert A.

Simon and Richard K. Sumner, “one of the purposes of analyzing musical structure and form is

to discover the patterns that are explicit or implicit in musical works.”1 This seems especially

true of the highly stereotyped harmonic and melodic formulæ appearing at the ends of phrases,

themes, and larger sections in the instrumental repertories of the late eighteenth century—what

music theorists and composers call cadences.

By way of example, consider the first eight measures from the third movement of Mozart’s

1Herbert A. Simon and Richard K. Sumner, “Pattern in Music,” in Machine Models of Music, ed. Stephan M.
Schwanauer and David A. Levitt (Cambridge, MA: MIT Press, 1993), 83.
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Piano Sonata in B-flat, K. 281, shown in Example 1. With the exception of its somewhat unusual

opening harmony (a tonicization of ii), this passage is in many respects a fairly conventional

beginning in Mozart’s keyboard style. Two phrases subdivide the opening eight measures:

an antecedent phrase in mm. 1–4 followed by a consequent phrase in mm. 5–8. Although

the second phrase largely repeats the first, a few compositional devices help to distinguish

the consequent from the antecedent: the change from a piano to a forte dynamic, the subtle

embellishments of the right-hand melody, and the expansion of register in the left hand. Yet,

the most significant difference appears at the end of each phrase. The antecedent concludes with

a dominant harmony in root position, a stable albeit active sonority whose metrical placement

and expanded duration serve to reinforce the perception of ending. Theorists have termed

this recurrent pattern a half cadence. The ending of the consequent, and of the theme as a

whole, features harmonic motion from a root-position dominant to a root-position tonic at the

downbeat of m. 8, as well as the arrival of the melody on the first scale degree, characteristics

that exemplify a closing formula theorists have termed a perfect authentic cadence.

Although we tend to theorize little as to how passages like this one begin, we have a great deal

to say about how they end. The highly conventionalized nature of these endings has prompted

theorists to describe and explain the compositional procedures involved in articulating cadences.

In the words of Jonathan Dunsby, the cadence concept is in fact “one of the few consistently

patterned aspects of musical structure.”2 But why all this fuss about (cadential) patterns? Why

is the discovery and classification of cadences germane to the interests of theorists, or indeed,

anyone?

In the epigraph with which I began, anthropologist Alan P. Meriammakes a basic assumption

about the “patterns of music,” cadential or otherwise: they are “thoroughly learned,” “carried

2Jonathan Dunsby, “Schoenberg on Cadence,” Journal of the Arnold Schoenberg Institute 4, no. 1 (1980): 43.
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Example 1: Mozart, Piano Sonata No. 3, K. 281, iii, mm. 1–8.

subliminally,” and “resistant to change.”3 Thus for Meriam, “perfect cadences” are relevant to

theorists, composers, or any other group of listeners because they are learned and remembered.4

Psychologist Jay Dowling seems to agree:

[The standard IV–V–I cadence] illustrates the type of musical structure that is

implicitly comprehended by the brain when we listen to music. The average

listener cannot explicitly verbalize the harmonic relationships just described but

is nevertheless quite aware when the harmonies arrive at stable points of rest and

when they need further resolution. It is this type of implicit knowledge that we

wish to understand and explain.5

In other words, the classical cadence is the ideal pattern by which to test the hypothesis that
3Alan P. Meriam, The Anthropology of Music (Evanston, IL: Northwestern University Press, 1964), 297.
4A few decades earlier, fellow anthropologist Melville J. Herskovits explained that “the peculiar value of

studying music... is that, even more than other aspects of culture, its patterns tend to lodge on the unconscious
level (“Patterns of Negro Music,” Illinois State Academy of Science 34 [1941]: 19).

5W. Jay Dowling and Dane L. Harwood, Music Cognition (New York: Academic, 1986), 18.
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knowledge of music is thoroughly learned, carried subliminally, and resistant to change.

This dissertation is divided into three parts to present theoretical, computational, and

experimental approaches to the classical cadence. Part I proceeds from the general to the

particular, beginning with the concepts of closure and stability in music discourse, and then

narrowing the theoretical and stylistic purview to the cadences and other closing formulæ

characterizing classical music. Chapter 1 considers how definitions of closure engage theories of

learning, memory, and perception. In my view, the phenomenal experience of closure depends

on the mental representation of hierarchical organizational systems like tonality and meter

where certain events are more permanent (or stable) in memory and facilitate processing during

perception. To extend these claims to the recurrent temporal patterns appearing at the ends

of phrases and themes in the classical style, Chapter 2 reviews contemporary approaches to

the classical cadence and then outlines the theories that account for the acquisition and mental

representation of the most common cadence types associated with the late-eighteenth-century

repertories of Haydn, Mozart, and Beethoven, paying particular attention to the cadence

typology presented in William E. Caplin’s Classical Form. Following Robert Gjerdingen’s

schema-theoretic approach, I argue that listeners who are familiar with classical music have

internalized these cadence types as a flexible network of interrelated mental representations, or

rival closing schemata.

To support this view, Part II presents a corpus study of the classical cadence that uses statisti-

cal modeling procedures to simulate the learning mechanisms underlying human cognition for

the purposes of pattern discovery, classification, and prediction. Chapter 3 presents the Haydn

Corpus, which consists of symbolic representations of 50 sonata-form expositions from Haydn’s

string quartets (Opp. 17–76), along with an annotated collection of 245 exemplars of the

five cadence categories that achieve, or promise, cadential arrival: perfect authentic, imperfect

authentic, half, deceptive, and evaded. Using the multiple-viewpoint framework developed by
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Darrell Conklin, I encode irreducible attributes of the musical surface like chromatic pitch,

note onset time (in beats), metric position, key, and mode. From these basic types I then

derive a number of other viewpoints to represent the “core” events of the classical cadence:

the chromatic scale degrees, melodic intervals, and contours of the outer parts, a coefficient

representing the strength of the metric position, and a vertical sonority, presented as a combina-

tion of vertical interval classes or chromatic scale degrees. Armed with this corpus, Chapter 4

employs an n-gram approach to determine whether cadences and other closing formulæ are the

most recurrent patterns in the Haydn Corpus. Next, Chapter 5 classifies the cadence collection

on the basis of the features they share using a family of techniques for similarity estimation and

clustering pioneered (or inspired) by psychologist Amos Tversky. Finally, Chapter 6 applies

a finite-context model developed by Marcus Pearce called the Information Dynamics of Music

model (or IDyOM) to determine whether expectancy formation, fulfillment, and violation

contribute to the perceived closing strength of the cadence categories in Caplin’s typology.

To consider whether the findings from Part II relate to the schematic knowledge of con-

temporary listeners, Part III examines the influence of musical expertise on the perception

and cognition of cadential closure in Mozart’s keyboard sonatas using the many methods of

inference developed in the experimental sciences. In Experiments 1–2 in Chapter 7, I asked

participants to provide completion ratings for cadences heard both in and out of context to

examine the roles played by syntactic and rhetorical parameters in models of cadential strength.

Next, Experiments 3–5 in Chapter 8 consider the link between expectancy and cadential closure

using retrospective ratings, continuous ratings, and an implicit reaction-time task based on

the priming paradigm. Across all five studies, the reported findings support the view that the

classical cadence is the quintessential phrase-level event schema, a perfect distillation of the

features characterizing the classical style.
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Part I

The Concept of Closure
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Chapter 1

Closure and Stability in Tonal Music

A similar rushing forth of participating energies ... takes place at the cadence and here
too, in the jostling, space gets tight, so that the individual, regardless of how important
he may be, has to be satisfied with a fraction of the space available... This is surely the
psychology of the close.

Arnold Schoenberg

There is likely not a scholarly text in the history of music that does not touch upon the

concept of closure. One finds references to its various word forms (e.g., close, closed, closing,

etc.) or its many cognates (e.g., Fr. cadence, Ger. Schluss, Lat. clausula, etc.) in some

of the earliest analytical writings about music, and the idea still has considerable currency

among contemporary scholars. This is perhaps because closure remains a lodestar for musical

organization, the discovery of which remains the central task of many music theorists. As

Mark Anson-Cartwright points out,1 some writers have even drawn inspiration from studies of

closure in other art forms, where critics like Frank Kermode,2 Barbara Herrnstein Smith,3 and

1Mark Anson-Cartwright, “Concepts of Closure in Tonal Music: A Critical Study,” Theory and Practice 32
(2007): 1.

2Frank Kermode, The Sense of an Ending: Studies in the Theory of Fiction (London: Oxford University Press,
1968).

3Barbara H. Smith, Poetic Closure: A Study of How Poems End (Chicago: The University of Chicago Press,
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Rudolf Arnheim have been particularly influential.4 The concept of closure thus looms large

for many scholars, both because it encapsulates so much about our experience of artistic works

and because it invites cross-fertilization between art forms and their associated disciplines.

One reason for the persistence of the term closure in analytical writing is that, as a linguistic

metaphor, it maps potentially opaque aspects of musical structure onto kinaesthetic features of

typical human behaviors, such as bodily movement through space or the physical manipulation

of objects. Linguists and philosophers call these linguistic mappings image schemas, “recurring,

dynamic pattern[s] of our perceptual interactions and motor programs that [give] coherence

and structure to our experience.”5 Janna Saslaw has argued, for example, that musical events

are closed in the sense that, like the edges of a container, they form a boundary separating one

passage from another.6 The appeal of the container schema is thus that it offers a linguistic

shorthand for describing seemingly ineffable experiences like boundary perception in terms of

everyday kinaesthetic behaviors like closing a jar.7

Nevertheless, closure has become something of an umbrella term in analytical discourse.

Its usage in present-day scholarship admits multiple meanings beyond those expressed by the

original container schema, and it often operates on a vast continuum of time spans, from the

1968). See, for example, Kofi Agawu, “Concepts of Closure and Chopin’s Opus 28,” Music Theory Spectrum 9
(1987): 1–17; Patrick McCreless, “The Hermeneutic Sentence and Other Literary Models of Tonal Closure,”
Indiana Theory Review 12 (1991): 35–73. Ironically, Smith herself cites Leonard B. Meyer’s discussion of closure in
his first book, Emotion and Meaning in Music, as an important influence on her theory of poetic closure (Poetic
Closure: A Study of How Poems End, 1–37).

4Rudolf Arnheim, Art and Visual Perception: A Psychology of the Creative Eye (Berkeley: University of California
Press, 1954). See, for example, Steve Larson, “On Rudolf Arnheim’s Contribution to Music Theory,” The Journal
of Aesthetic Education 27, no. 4 (1993): 97–104; Steve Larson, Musical Forces: Motion, Metaphor, and Meaning in
Music (Bloomington and Indianapolis: Indiana University Press, 2012).

5Mark Johnson, The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason (Chicago: The
University of Chicago Press, 1987), xiv.

6Janna Saslaw, “Forces, Containers, and Paths: The Role of Body-Derived Image Schemas in the Conceptual-
ization of Music,” Journal of Music Theory 40, no. 2 (1996): 222.

7For a discussion of image schemas and their relevance to music, see Saslaw, “Forces, Containers, and
Paths: The Role of Body-Derived Image Schemas in the Conceptualization of Music”; Lawrence M. Zbikowski,
Conceptualizing Music: Cognitive Structure, Theory, and Analysis (Oxford: Oxford University Press, 2002), 63–95.



1.1 Definitions of Closure in Music Discourse 11

two-note motive to the multi-movement work. In cases where closure seems too general and

imprecise, modifiers like ‘tonal,’ ‘formal,’ ‘syntactic,’ and ‘rhetorical’ are also commonplace,

thereby restricting its purview to specific musical parameters or repertories. And yet since a

definitive account of the term would deserve its own volume,8 and since this thesis concerns

a particular species of closing pattern scholars call cadence, §1.1 will merely reiterate what

others have said about the most common definitions of closure in music discourse. §1.2 then

considers how those definitions might trespass on theories of learning, memory, and perception

by abandoning the concept of closure—which rarely appears in the writings of experimental

psychologists—in favor of stability, a term that often appears in its stead.

§1.1 Definitions of Closure in Music Discourse

The concept of closure in music discourse often refers to one or more of the following four

definitions:

i. the segmentation of the musical surface into motives, phrases, and sections.

This definition makes two assumptions about musical organization: (1) that a composition

segments into discrete “chunks,” such that closing events precede temporal boundaries; and (2)

that this segmentation process organizes these segments hierarchically, such that segments at one

level of the structural hierarchy—say, for example, sections—nest (or subsume) segments at lower

levels—phrases and motives.9 In most theories of segmentation, this process applies recursively,

phrases nesting within sections, motives nesting within phrases, and so on. Fred Lerdahl and

8For a review of the concept of closure in music analysis, see Anson-Cartwright, “Concepts of Closure”;
Janet Joichi, “Closure, Context, and Hierarchical Grouping in Music: A Theoretical and Empirical Investigation”
(PhD Dissertation, Northwestern University, 2006), 66–85; Crystal Peebles, “The Role of Segmentation and
Expectation in the Perception of Closure” (Dissertation, Florida State University, 2011), 6–84.

9Bob Snyder’s description of closure in terms of segmental groups is a case in point (Music and Memory: An
Introduction [Cambridge, MA: The MIT Press, 2000], 59–67).
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Ray Jackendoff have called this organization grouping structure,10 but since psychologists also

employ the term ‘grouping’ to refer to the simultaneous and sequential processes by which

listeners organize the incoming auditory stimulus into continuous streams of sound events,11

we might instead call it segmental grouping.

Unfortunately, the relationship between segmental grouping and closure is not entirely clear,

since the former process is not always synonymous with the latter concept in music discourse.

According to musicologist Leonard B. Meyer, closure “is not simply cessation—silence. It

involves conclusion—almost in the syllogistic sense that the conclusion or completion is implicit

in the premises, in the earlier phases of the musical motion.”12 The caesura following a dominant

seventh chord may elicit a decisive segment boundary, for example, but the failure to resolve

that dominant will extend the tension and imply further continuation. Thus, for Meyer, the

perception of closure depends in part on the cessation of expectations following the terminal

event(s) of a musical process. Nevertheless, this is not to say that segmentation and closure

represent distinct processes. Crystal Peebles has suggested, for example, that segmentation

is a prerequisite for closure. In her view, closure is “the feeling of finality that occurs at the

anticipated end of a musical segment.”13

Implicit in these criticisms is another definition of closure, one that associates a closing

event with the “conclusion,” “completion,” or “anticipated end” of a temporal process:

ii. the terminus (or completion) of a temporal process.

This definition is perhaps the most pervasive in contemporary scholarship. It assumes first, that

closure characterizes musical events, rather than segment boundaries, where an ‘event’ could
10Fred Lerdahl and Ray Jackendoff, A Generative Theory of Tonal Music (Cambridge, MA: The MIT Press,

1983), 8.
11Albert S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound (Cambridge, MA: MIT

Press, 1990).
12Leonard B. Meyer, Emotion and Meaning in Music (Chicago: University of Chicago Press, 1956), 130.
13Peebles, “The Role of Segmentation and Expectation in the Perception of Closure,” 1.
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refer to an isolated note or chord, or to longer time spans in the structural hierarchy, such as

motives and phrases; and second, that closing events follow other events in the musical process;

to borrow an expression from William E. Caplin, they “must end something.”14 In other words,

closing events serve a specific temporal function; they complete a goal-directed process.

If we assume that the mechanisms eliciting segment boundaries differ in some way from

those effecting temporal functionality, an event conveying an initiating or medial function could

precede a segment boundary. From this point of view, grouping structure—at least as it was

intended by Lerdahl and Jackendoff—is divorced from temporal function, from the perception

of beginnings, middles, and ends. And just as I related segmental grouping in definition i to the

hierarchical organization of musical works, so too can we apply definition ii to multiple levels

of the structural hierarchy. A beginning at one level—say, for example, a composition’s opening

theme—may subsume beginnings, middles, and ends at lower levels—its phrases, motives, and

so on. To be sure, theories of temporality articulated in the “New Formenlehre” tradition

take precisely this approach.15 Caplin suggests, for example, that “closure in general involves

bringing to completion some process implicating one or more modes of musical organization at

a given structural level of a work,” with cadences serving to end local-to-middle-ground levels

of musical organization—the levels of the phrase and theme.16

14William E. Caplin, “The Classical Cadence: Conceptions and Misconceptions,” Journal of the American
Musicological Society 57, no. 1 (2004): 56.

15Markus Neuwirth coined the term “New Formenlehre" tradition to refer to the revival of interest in theories
of musical form over the last few decades (“Recomposed Recapitulations in the Sonata-Form Movements of Joseph
Haydn and his Contemporaries” [PhD Dissertation, Leuven University, 2013], 9), perhaps best exemplified in
recent volumes by William E. Caplin, James Hepokoski and Warren Darcy, and Janet Schmalfeldt. See, for
example, William E. Caplin, Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn,
Mozart, and Beethoven (New York: Oxford University Press, 1998); William E. Caplin, James Hepokoski, and
James Webster, Musical Form, Forms, & Formenlehre: Three Methodological Reflections, ed. Pieter Bergé (Leuven:
Leuven University Press, 2009); James Hepokoski and Warren Darcy, Elements of Sonata Theory: Norms, Types, and
Deformations in the Late-Eighteenth-Century Sonata (New York: Oxford University Press, 2006); Janet Schmalfeldt,
In the Process of Becoming: Analytic and Philosophical Perspectives on Form in Early Nineteenth-Century Music (New
York: Oxford University Press, 2011).

16Caplin, “The Classical Cadence,” 56.
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To consider the articulation of closure at more global levels, however, authors typically rely

on another definition, one of return:

iii. a return to baseline, homeostasis, or equilibrium.

Meyer has called this definition the “law of return,” and it again applies to both local and

global levels of musical organization. Put simply, definition iii assumes that closure results from

the recurrence of events following some intermediary process, resulting in a ternary formal

design at a given level of the structural hierarchy (e.g., ABA). Metaphors of motion are also

commonplace here, since closing events are said to return the composition from a state of

tension and conflict to one of equilibrium, stability, or resolution. Meyer argues, for example,

that “a feeling of harmonic completeness arises when the music returns to the harmonic base

from which it began.”17 Critics often appeal to this definition at more global levels of musical

organization, however, such as at the “double return” of the main theme and home key in the

recapitulation of sonata-form movements.18 In this context, recurrence is assumed to resolve

a tonal or thematic conflict brought about by the presence of intermediary and contrasting

materials;19 it closes (or ends) the large-scale tonal and thematic motion.

This view of closure is most readily associated with Schenker’s mature theory of tonal

structure, but it might also describe more recent architectonic theories, such as the generative

theory of Lerdahl and Jackendoff. In either case, the principle of tonal return assumes that

the same principles apply continuously at every level of a composition’s structural hierarchy.

Following Schenker, Charles Rosen has suggested, for example, that the modulation to a

contrasting key area in sonata form is “essentially a dissonance raised to a higher plane, that

17Meyer, Emotion and Meaning in Music, 150.
18James Webster, “Binary Variants of Sonata Form in Early Haydn Instrumental Music,” in Internationaler

Joseph Haydn Kongress Wien 1982, ed. Eva Badura-Skoda (Munich: Henle, 1986), 127.
19Charles Rosen, The Classical Style: Haydn, Mozart, Beethoven (New York: Norton, 1972), 120.
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of the total structure.”20 According to this view, hierarchical organization is therefore limited

to superordinate or subordinate relations between events on the musical surface; there are no

coordinate (A↔B) or proordinate (A→B) relations between events either within or between

levels.21 As such, closure at both local and global levels of musical organization is characterized

entirely by the superordinate status of the closing event within the structural hierarchy.

Each of the definitions presented thus far has been more or less ambivalent about the

experience of closure during music listening. Surely some of the above assumptions are more

psychologically relevant than others. Thus, one final definition deserves mention, one that

situates the concept of closure within the psychological effects it presumably engenders:

iv. the perception of rest, repose, quiescence, or stability; an arrival.

Applications of closure in music discourse routinely demonstrate a certain psychologizing

impulse.22 Appeals to the “feeling” or “sense” of finality or resolution are especially common.

These descriptions also continuously feature terms associated with phenomenal experience,

such as relaxation, satisfaction, rest, repose, quiescence, and stability.

Given the discussion thus far, it should be evident that the above definitions are not mutually

exclusive. For example, Anson-Cartwright’s definition of closure as “that condition of rest

or finality which a piece or movement attains at the moment of structural (tonal) resolution”

resonates with definitions ii and iii, while his suggestion that listeners with exposure to a set

of stylistic conventions will “feel” tonal closure during the act of listening recalls definition
20Ibid., 26.
21In the simplest sense, musical organization refers to the relationships between events on the musical surface,

be they notes, chords, motives, phrases, or any other coherent ‘units’ of that organization. The connections
between these events might represent temporally ordered (or proordinate) relations, such as the V–I progression
in tonal harmony, unordered (or coordinate) relations, such as the members of a major triad, or in hierarchically
arranged systems, superordinate/subordinate relations, such as the prolongation of a given harmony through
other (subordinate) harmonies (e.g., I–V4

3–I
6). For a discussion of these relational types, see George Mandler,

“Organization, Memory, and Mental Structures,” in Memory Organization and Structure, ed. C. Richard Puff (New
York, NY: Academic Press, 1979), 303–319.

22Chapter 2 links this impulse to discussions of cadence, specifically (see §2.2).
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iv.23 It is also worth noting that these definitions are by no means exhaustive. A number of

other issues appear frequently in discussions of closure that I have not mentioned here: the

status of closure as both time-point and time-span, the potential for certain parameters to afford

hierarchic structuring (e.g., pitch and temporal duration) when others do not (e.g., dynamics

and tempo), and the strength of closure provide ready examples. But since each of these issues

resurfaces in later chapters, I will instead turn my attention to the psychological mechanisms

underlying the phenomenal experience of closure, particularly as it pertains to the cadences

and other mid-level closing patterns associated with the instrumental repertories of the late

eighteenth century: music that today exemplifies the classical style.

My goal in the next section is to explain how various psychological processes might relate

to the experience of closure for the melodic and harmonic events appearing at the moment of

cadential arrival, a term designated by Caplin to refer to the terminal event(s) of a cadence,

such as the onset of a root-position tonic harmony at the end of a perfect authentic cadence.

But since I noted in the introduction that the concept of closure appears infrequently in music

psychology, I will prefer the term stability, which often appears in its stead. Thus, I begin by

clarifying what psychological stability might mean for individual events like notes and chords,

leaving a discussion of the processes underlying the perception of cadences and other recurrent

closing patterns for Chapter 2.

§1.2 Stability: The Sensory-Cognitive Continuum

Among music theorists and psychologists, closure often accompanies stability. Meyer writes,

for example, that closure is “the arrival at relative stability,”24 while psychologists Jamshed

23Anson-Cartwright, “Concepts of Closure,” 3.
24Leonard B. Meyer, Explaining Music: Essays and Explorations (Berkeley: University of California Press, 1973),

81.
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J. Bharucha and Carol Krumhansl explain that stable events “are perceived as more final and

serve as better completions” compared to unstable ones.25 But whereas definitions of closure

typically allude to the temporal functionality of “closing” events (see definition ii above), the

concept of stability appeals to the hierarchical systems that govern musical organization. This

is to say that stability is a property (or characteristic) of a system where certain events are more

central (or stable) than others. Meyer’s definition of tonality is a case in point:

The term “tonality” refers to the relationships existing between tones or tonal

spheres within the context of a particular style system...; some of the tones of

the system are active. They tend to move toward the more stable points in the

system—the structural or substantive tones.

But activity and rest are relative terms because tonal systems are generally hierarchi-

cal: tones which are active tendency tones on one level may be focal substantive

tones on another level and vice versa. Thus in the major mode in Western music the

tonic tone is the tone of ultimate rest toward which all other tones tend to move.

On the next higher level the third and fifth of the scale, though active melodic

tones relative to the tonic, join the tonic as structural tones; and all the other tones,

whether diatonic or chromatic, tend toward one of these. Going still further in the

system, the full complement of diatonic tones are structural focal points relative

to the chromatic notes between them. And, finally, as we have seen, any of these

twelve chromatic notes may be taken as substantive relative to slight expressive

deviations from their normal pitches.26

For Krumhansl and Bharucha, the “stable points” characterized by Meyer as “focal” or “inactive”

25Jamshed J. Bharucha and Carol L. Krumhansl, “The Representation of Harmonic Structure in Music:
Hierarchies of Stability as a Function of Context,” Cognition 13 (1983): 83.

26Meyer, Emotion and Meaning in Music, 214–215.
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became synonymous with a host of other terms, such as structural significance, resistance

to change, priority, and resolution,27 all of which reflect—to a greater or lesser degree—the

hierarchical system of dynamic, temporal relations Krumhansl would call the tonal hierarchy.28

But how might organizational systems like tonality influence listeners? If the temporal

relations characterizing these systems played no role during listening, the hierarchies of stability

that are “out there” in the music—on which the perception of closure seems to depend—would

presumably collapse. For our purposes, this means that psychological stability is a property of

themental organization of musical materials, rather than of the musical materials themselves. Or

put another way, these systems are not “objective properties of the music” referring to a “fixed,

internal structure,”29 but psychological effects resulting from how listeners organize sensory

stimuli in general, without which tonality and meter—as products of human creativity—would

not exist.

Meyer makes this distinction between objective and subjective organization explicit in an

earlier passage of Emotion and Meaning in Music.

Our opinion or feeling as to the completeness of a given stimulus is a product of the

natural modes of mental organization. These function both within the framework

of what is given in the style and within the sound terms established in the particular

work. In other words, the mind, governed by the law of Prägnanz, is continually

striving for completeness, stability, and rest.30

Setting aside Meyer’s allusion to Gestalt theory,31 his description of the perception of closure

27Carol L. Krumhansl, Cognitive Foundations of Musical Pitch (New York, NY: Oxford University Press, 1990),
19.

28I review the experimental studies demonstrating this hierarchy in §7.1. I also replicate this hierarchy in §4.1.
29Brian Hyer, “Tonality,” in Cambridge History of Western Music Theory, ed. Thomas Christensen (Cambridge:

Cambridge University Press, 2002), 727.
30Meyer, Emotion and Meaning in Music, 128.
31The central point of the law of Prägnanz is that “psychological organization will always be as ‘good’ as
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according to the “natural modes of mental organization” and its relation to “what is given in the

style” assumes that the organized objects and events encountered in the external environment are

at least partially isomorphic with their internal (ormental) representations. Psychologist Arthur

Reber has called this position representational realism, and according to Stephen McAdams, it is

likely “one of the major contentions of the cognitive approach to psychology.”32 In reference

to tonal music, for example, McAdams notes that these representations might correspond “to

the perception or imagination of a major chord, to the connecting of a sequence of clarinet

notes into a melody, or to the expectation of a tonic chord to resolve the tension state evoked

by a dominant seventh chord.”33 In each case, the symbolic representation in the musical

materials corresponds in some meaningful way with its manner of representation in the minds

of listeners.34

the prevailing conditions allow. In this definition the term ‘good’ is undefined. It embraces such properties as
regularity, symmetry, simplicity and others...” (Kurt Koffka, Principles of Gestalt Psychology [New York: Harcourt,
Brace & Co., 1935], 303). For Meyer’s discussion of the law of Prägnanz and its relevance to his theory of
expectation, see Emotion and Meaning in Music, 83–127.

32Stephen McAdams, “Music: A Science of the Mind?,” Contemporary Music Review 2 (1987): 18. Roger Shepard
argues for a similar principle that he calls psychophysical complementarity, which states that the mental processes
of animals have evolved to be complementary with the structure of the surrounding world (“Psychophysical
Complementarity,” in Perceptual Organization, ed. Michael Kubovy and James R. Pomerantz [Hillsdale, N.J.:
Erlbaum, 1981], 279–341). Albert Bregman notes, for example, that the physical world allows an object to be
rotated without changing its shape, so the mind must have mechanisms for rotating its representation of objects
without changing their shapes as well (Auditory Scene Analysis: The Perceptual Organization of Sound, 39).

33McAdams, “Music: A Science of Mind?,” 19.
34Cognitive scientist Zenon Pylyshyn explains, “to be in a certain representational state is to have a certain

symbolic expression in some part of memory” (Computation and Cognition [Cambridge, MA: MIT Press, 1985],
29). Reber cautions, however, that the procedures (or rule systems) underlying the organization of a stimulus by
an experimenter do not necessarily correspond with those employed by listeners, despite the similarity between
the structure of the stimulus display and its manner of mental representation. “It is likely that insights into the
nature of mental representation will be garnered from careful examination of the structured nature of the stimulus
display, but it is also likely that the operative description of the array may not correspond with the initial formal
characterizations that were used in its construction. In short, we know with surety what the rules were that we
used to construct the displays. But we cannot know with anything like the same confidence either the rules that
characterize the display nor those that are induced by our subjects. Careful examinations of their behavior will
provide some understanding of the rule systems they have induced, and the basic principle of representational
realism suggests that we regard this characterization as the one best suited for the stimulus displays themselves
(Implicit Learning and Tacit Knowledge: An Essay on the Cognitive Unconscious [Oxford: Oxford University Press,
1993], 118).
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In this context, the notion of psychological stability for organizational systems like tonality

has profound implications for learning, memory, and perception. Presuming listeners acquire

mental representations of major triads, clarinet melodies, and dominant-to-tonic progressions

during music listening, the concept of psychological stability might also reflect the permanence

of those representations in memory and their influence on subsequent processing. One might

argue, for example, that listeners are more likely to expect more stable events in the tonal system

because they are better remembered. Some three decades after the publication of Meyer’s book,

this was, in fact, precisely the view Krumhansl proposed.

Human cognitive and perceptual systems invest certain elements with special status:

these elements are given priority in processing, are most stable in memory, and are

more important for linguistic descriptions.35

For Krumhansl, an organizational system like tonality is psychologically relevant if its most

central events are more stable in memory and facilitate processing during perception. To return

to Meyer’s definition of tonality, this processing advantage explains why certain (unstable)

tones are active while other (stable) tones are inactive or restful: stable events are resistant to

change, continuation, or further implication because they are better remembered, and thus

easier to process. In short, stable events are more expected than their unstable counterparts.36

But how do these systems emerge in the minds of listeners? This question revives a very old

argument about the influence of previous knowledge on the organization of sensory experience

and the formation of expectations. On one side, the nativists assume that the capacity to

comprehend complex, “rule-governed” syntactic structures like natural language or tonal music

35Krumhansl, Cognitive Foundations of Musical Pitch, 18.
36Bharucha and Krumhansl argue, for example, that “in the predominant Western idiom and in many forms

of Eastern music as well, beginnings and endings of segments are usually marked by stable musical events. The
listener familiar with this idiom has expectations as to when unstable events should resolve to more stable events,
and the composer works with these expectations” (“The Representation of Harmonic Structure in Music,” 94).
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is given a priori, which is to say that the brain inherits the necessary sensory and cognitive

mechanisms to perceive and produce such structures in everyday life. Perhaps more importantly,

this position also assumes that the biological constraints placed on one genre or style period also

necessarily apply to all of the others. As a result, acoustic and psychoacoustic (or physicalist)

accounts assume that musical concepts like consonance and dissonance, harmony, voice leading,

and tonality represent cross-cultural universals.

On the other side, the empiricists claim that the external environment engages general

induction routines in the cortex that operate across modalities and across stimulus forms. With

sufficient exposure, these routines learn and remember the underlying structure of the stimulus

environment and then guide the sensory apparatus to seek out and find similar structures.37

In our case, this would mean that knowledge of the organizational systems governing classical

music should differ from person to person, resulting in a range of perceptual experiences for

phenomena like stability and closure. What is more, tonality itself would no longer serve as

a monolith in experimental research, since the temporal relations characterizing that system

would vary from one style to another. In other words, if the empiricist view is correct, the

concept of tonality as it is intended by experimental psychologists would instead reflect a

plurality of potentially overlapping tonal systems, each governed by a given repertory or style

period and each depending on the previous experiences of a given individual listener.

The distinction between nature and nurture remains quite popular in the cognitive sciences,

though the tendency towards monism is not always useful. For example, the capacity for

three-dimensional vision develops early and rapidly, but the influence of previous knowledge

37Reber, Implicit Learning and Tacit Knowledge, 156. Even the empiricist position just outlined assumes that
the cortex begins with a certain kind of structure (i.e., the general induction routines) already in place, which
Reber calls process nativism. Reber contrasts this view with a content nativism of the kind supported by scholars
like Noam Chomsky and Jerry Fodor, which assumes that the very content of mind, the content of encapsulated
cognitive modules, is laid down in the genes (Ibid., 149).
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on visual perception is now widely accepted.38 In light of the plethora of reported effects for

both sensory and cognitive processes in numerous aspects of human auditory processing, it

therefore seems unreasonable to assume that only one of these processes could account for the

psychological effects associated with organizational systems like tonality. Nevertheless, this

dual framework remains quite useful as a classification tool, since so many explanations—both

past and present—divide the mind into its sensory and cognitive components. And since both

accounts continue to receive attention in the scholarly community, it is helpful to retain this

division for the sections that follow.

1.2.1 Sensory Principles

To account for hierarchical organizational systems like tonality and meter, as well as more

general musical concepts like melody and voice leading, consonance and dissonance, and

harmony, sensory explanations take as their starting point the mechanisms responsible for

organizing complex auditory environments into, say, barking dogs, backfiring cars, and whirring

blenders. In this context, the concept of stability is an emergent property of a more general

organizational principle we might call coherence, which refers to the mechanisms by which

acoustic components or events cohere as a single entity.39 For nativists, the concept of coherence

is a one-size-fits-all approach that yields increasingly complex organizations—from tones, to

chords, to keys—by assuming that stable events organize (or cohere) in the auditory periphery

38Reber, Implicit Learning and Tacit Knowledge, 154.
39Stephen McAdams, “The Auditory Image: A Metaphor for Musical and Psychological Research on Auditory

Organization,” in Cognitive Processes in the Perception of Art, ed. W. Ray Crozier and Antony J. Chapman
(Amsterdam: North-Holland, 1984), 291.
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more readily than unstable events.40 But how does this organization process take place?41

The vibrations produced by sound sources encountered in the external environment radiate

out into the air as sound pressure waves. These waves combine linearly in the atmosphere—

bouncing off some objects and getting partially absorbed by others—before reaching the ears

as a complex mixture of acoustic energy.42 This mixture may feature a single auditory event,

which consists of a set of simultaneous frequency components emanating from the time-limited

vibrations of one sound source, or a complex of events and their frequency components

emanating from many sources. To infer the underlying structure of such a mixture, the human

auditory system must group the various components into their constituent sound sources and

then track those sources over time, a process psychologist Albert Bregman calls auditory scene

analysis (ASA).43

ASA begins with the perceptual fusion or concurrent grouping of frequency components

into auditory events. To recover the spectral and temporal characteristics of the various

components of a complex sound, the sensory representation depends on a dual coding scheme

in the auditory periphery.44 On the one hand, the tonotopic (or place) scheme refers to the

40The human auditory system is divided into two subsystems: the peripheral auditory system (i.e., the outer,
middle, and inner ear), and the central auditory system (i.e., the primary auditory cortex). For a review of the
auditory periphery, see Graeme K. Yates, “Cochlear Structure and Function,” in Hearing, ed. Brian C. J. Moore
(San Diego: Academic Press, 1995), 41–74; Jan Schnupp, Israel Nelken, and Andrew King, Auditory Neuroscience:
Making Sense of Sound (Cambridge, MA: The MIT Press, 2011), 51–92.

41Certainly an organizational system like meter also plays an important role in the stability of individual
events in the classical style, for which sensory accounts also exist. See, for example, Olivia Ladinig et al., “Probing
Attentive and Preattentive Emergent Meter in Adult Listeners Without Extensive Music Training,”Music Perception
26, no. 4 (2009): 377–386; Edward W. Large and Caroline Palmer, “Perceiving Temporal Regularity in Music,”
Cognitive Science 26, no. 1 (2002): 1–37; Dirk Jan Povel, “Internal Representation of Simple Temporal Patterns,”
Journal of Experimental Psychology: Human Perception and Performance 7, no. 1 (1981): 3–18. Since I consider
rhythm and meter in greater detail in Chapter 3, and since I am specifically concerned here with the stability of
the sorts of events that appear at the moment of cadential arrival in classical music, I have restricted this discussion
to physicalist accounts of pitch (i.e., melodic, harmonic, or tonal stability).

42Stephen McAdams and Carolyn Drake, “Auditory Perception and Cognition,” in Stevens’ Handbook of
Experimental Psychology, ed. Hal Pashler and Steven Yantis, vol. 1: Sensation and Perception (New York: Wiley,
2002), 397.

43Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound.
44McAdams and Drake, “Auditory Perception and Cognition,” 399.
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organization of the hair cells along the basilar membrane, which act as filters akin to a Fourier

analysis by responding maximally to different frequencies.45 The hair cells responsible for a

certain range of these frequencies then transduce the corresponding physical vibrations into

nerve impulses. On the other hand, the temporal scheme refers to the process by which the

basilar membrane registers small differences in the periodicities of these components by time-

locking the pattern of neuron firings to certain phases of the wave form.46 Together, these

coding schemes recover the spectral and temporal characteristics of each component with

remarkable precision.

The perceptual fusion of frequency components into a single auditory event—or the segrega-

tion of components into two or more events—depends on a host of cues, with the coincidence

of more than one cue reinforcing the potential for fusion. In brief, components are likely to

fuse if they are related by a common period (harmonicity), feature synchronous onsets (onset

synchrony), originate from a common position in space (spatial position), or demonstrate similar

intensity or frequency behavior over time (modulation coherence). Of this list, harmonicity and

onset synchrony are arguably the most central.47

In the case of harmonicity, listeners typically associate complex periodic sounds with a

fundamental frequency (or virtual pitch), though the sound itself consists of a number of

component frequencies (or spectral pitches) related at integer multiples of the fundamental.48

Concurrent grouping thus depends on the harmonicity of the various components, which is to

45Phil N. Johnson-Laird, Olivia E. Kang, and Yuan Chang Leong, “On Musical Dissonance,” Music Perception
30, no. 1 (2012): 19. For an introduction to the history of the place theory of perception in the writings of
physiologist Hermann von Helmholtz, see Benjamin Steege, Helmholtz and the Modern Listener (Cambridge:
Cambridge University Press, 2012), 43–79.

46McAdams and Drake, “Auditory Perception and Cognition,” 399; Brian C. J. Moore, “Pitch Perception,” in
An Introduction to the Psychology of Hearing, 2nd ed. (New York: Academic Press, 1982), 115–149.

47McAdams and Drake, “Auditory Perception and Cognition.”
48Ernst Terhardt, “Pitch, Consonance, and Harmony,” Journal of the Acoustical Society of America 55 (1974):

1061–1069.
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say that harmonic sounds cohere more readily than non-harmonic sounds.49 Brian C. J. Moore

and his co-authors have demonstrated, for example, that listeners can hear out a harmonic

component from the complex tone if it is mistuned by as little as 2% of its nominal frequency.50

This mistuned harmonic can also affect the perceived frequency of the virtual pitch by pulling it

in the direction of the mistuning, suggesting that the auditory periphery possesses a harmonic

template or a time-domain coincidence processor that integrates those components featuring

integer multiples of a fundamental.51 What is more, the auditory system is extremely sensitive

to small temporal asynchronies among the frequency components.52 Rudolf A. Rasch found,

for example, that a single frequency component from a complex tone becomes audible with an

asynchrony as small as 35 ms.53

Once fused, the auditory periphery can extract a number of auditory attributes for a given

event, such as loudness, pitch, and timbre.54 In the domain of pitch, for example, the clarity or

salience of the percept varies as a function of the fundamental frequency of the complex tone,

which psychoacousticians describe using terms like tonality,55 tonalness,56 and toneness.57 In a

model of pitch that simulates the toneness of a pitch percept, Ernst Terhardt and his co-authors

demonstrated that sensitivity was most acute in the spectral dominance region, which is centered

49David Huron, “Tone and Voice: A Derivation of the Rules of Voice-Leading from Perceptual Principles,”
Music Perception 19, no. 1 (2001): 7.

50Brian C. J. Moore, Robert W. Peters, and Brian R. Glasberg, “Thresholds for the Detection of Inharmonicity
in Complex Tones,” Journal of the Acoustical Society of America 77, no. 5 (1985): 1861–1867.

51McAdams and Drake, “Auditory Perception and Cognition,” 400.
52Ibid., 403.
53Rudolf A. Rasch, “The Perception of Simultaneous Notes such as in Polyphonic Music,” Acustica 40 (1978):

21–33.
54McAdams explains that auditory attributes like loudness and pitch are emergent properties of the grouping

process, which is to say that ASA precedes the perception of these attributes (“Music: A Science of Mind?,” 43; ,
“Recognition of Sounds Sources and Events,” in Thinking in Sound: The Cognitive Psychology of Human Audition,
ed. Stephen McAdams and Emmanuel Bigand [Oxford: Oxford University Press, 1993], 146–198).

55ANSI, Psychoacoustical Terminology (New York: American National Standards Institute, 1973).
56Richard Parncutt, Harmony: A Psychoacoustical Approach (Berlin: Springer-Verlag, 1989).
57Huron, “Tone and Voice.”
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near 300 Hz for complex tones—roughly D4 above middle C.58 Thus, harmonic sounds also

cohere more readily if the virtual pitch appears in this region.

In sum, concurrent grouping processes play a fundamental role in the formation of auditory

events, particularly for the sorts of complex periodic sounds we find in music.59 But are

these presumably low-level processes laid down in the genes, or learned over the course of

development? For Bregman, ASA depends to some degree on both explanations, but since the

structure and function of the auditory periphery is likely innate, evolutionary inheritance is a

necessary starting point.

... if you think of the physical world as having a "grammar" (the physical laws that

are responsible for the sensory impressions that we receive), then each human must

be equipped either with mechanisms capable of learning about many of these laws

from examples or with a mechanism whose genetic program has been developed

once and for all by the species as a result of billions of parallel experiments over the

course of history, where the lives of the members of the species and its ancestors

represent the successes and the lives of countless extinct families the failures. To me,

evolution seems more plausible than learning as a mechanism for acquiring at least

a general capability to segregate sounds. Additional learning-based mechanisms

could then refine the ability of the perceiver in more specific environments.60

Over the past two decades, a number of studies have supported this view by identifying

58Ernst Terhardt, Gerhard Stoll, and Manfred Seewann, “Algorithm for Extraction of Pitch and Pitch Salience
from Complex Tonal Signals,” Journal of the Acoustical Society of America 71, no. 3 (1982): 679–688; Huron, “Tone
and Voice,” 7–8.

59In addition to concurrent grouping processes, ASA also concerns those sequential grouping processes that
connect events into auditory streams, and those segmental grouping processes that segment (or “chunk”) the
event streams into auditory units like motives and phrases. For a review of these grouping processes in ASA, see
Diana Deutsch, “Grouping Mechanisms in Music,” in The Psychology of Music, 3rd ed., ed. Diana Deutsch (New
York: Academic Press, 2013), 195–249; McAdams and Drake, “Auditory Perception and Cognition,” 407–418.

60Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, 39–40.
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concurrent or sequential grouping processes in newborn infants61 as well as non-human animals,

like macaque monkeys,62 european starlings,63 and even goldfish.64 According to Bregman, this

evidence suggests that the grouping processes underlying ASA “deal with a world in which the

sound of a particular source is important for survival.”65

In light of my earlier discussion of stability and expectation, it seems reasonable to assume

that listeners process complex periodic events more quickly than non-periodic events because

the former cohere more readily in the auditory periphery than the latter, particularly if those

events fall within the spectral dominance region identified by Terhardt and his co-authors.

Nevertheless, this assumption says very little about the hierarchies of stability described by

Meyer and Krumhansl. Do the grouping processes underlying auditory event formation

apply beyond the level of the note to event complexes like dyads and triads, or to harmonic

progressions of the sort found in cadential contexts?

To extend the grouping processes governing ASA to more sophisticated musical objects like

chords, melodies, and fused composite timbres, McAdams represents the combined aspects of

a set of auditory impressions as an auditory image, a psychological representation of a sound

entity that exhibits an internal coherence in its acoustic behavior.66 In his view, the most

61Stephen McAdams and Josiane Bertoncini, “Organization and Discrimination of Repeating Sound Sequences
By Newborn Infants,” Journal of the Acoustical Society of America 102, no. 5 (1997): 2945–2953; István Winkler
et al., “Newborn Infants Can Organize the Auditory World,” Proceedings of the National Academy of Sciences 100,
no. 20 (2003): 11812–11815.

62Yonatan I. Fishman et al., “Neural Correlates of Auditory Stream Segregation in Primary Auditory Cortex
of the Awake Monkey,” Hearing Research 151, nos. 1–2 (2001): 167–187.

63Stewart H. Hulse, Scott A. MacDougall-Shackleton, and Amy B. Wisniewski, “Auditory Scene Analysis
By Songbirds: Stream Segregation of Birdsong by European Starlings (Sturnus vulgaris),” Journal of Comparative
Psychology 111, no. 1 (1997): 3–13.

64Richard R. Fay, “Auditory Stream Segregation in Goldfish (Carassius auratus),” Hearing Research 1230, nos.
1–2 (1998): 69–76.

65Albert S. Bregman, “Progress in Understanding Auditory Scene Analysis,” Music Perception 33, no. 1 (2015):
17.

66Stephen McAdams, “Spectral Fusion, Spectral Parsing and the Formation of Auditory Images” (PhD Disserta-
tion, Stanford University, 1984); McAdams, “The Auditory Image: A Metaphor for Musical and Psychological
Research on Auditory Organization.”
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powerful aspect of this concept is that it allows for the hierarchical organization of more

complex perceptual structures from less complex structures by appealing to the same grouping

processes at each level of the hierarchy.67 He explains,

It would appear that what is derived as a perceptual quality after one level of

auditory organization may become an “element” contributing to grouping decisions

at a higher level of organization. For example, the separation of several series of

harmonic frequencies and the subsequent perceptual fusion of each one gives rise

to a distinct pitch for each series. At the next level of organization, some of

these pitches may be grouped according to the musical context as members of a

common chord whose quality of being consonant or dissonant arises from their

being considered as a group.68

According to this view, the concept of coherence applies in some general way to any set

of auditory events, so long as they can be “perceived as a whole, as a single image.”69 For

hierarchical auditory images like vertical sonorities, for example, the perceptual difference

between one level (e.g., tones) and another (e.g., chords) is a matter of degree rather than

kind.70 This would imply that any of the factors that promote perceptual fusion or concurrent

grouping also apply for vertical sonorities,71 though Bregman also points out that the effects of

these factors diminish as we ascend the organizational hierarchy.

The fusion in chord perception is not as strong as the fusion of the partials of a

single note or as weak as in the perception of unrelated sounds, but falls somewhere
67McAdams, “The Auditory Image: A Metaphor for Musical and Psychological Research on Auditory Organi-

zation,” 291.
68McAdams, “Music: A Science of Mind?,” 43.
69McAdams, “The Auditory Image: A Metaphor for Musical and Psychological Research on Auditory Organi-

zation,” 291.
70David Huron, Review of Harmony: A Psychoacoustical Approach, by Richard Parncutt, Psychology of Music 19,

no. 2 (1991): 219.
71Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, 509.
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between the two extremes. Perhaps we ought to call it vertical grouping rather than

fusion. This vertical grouping contributes to the experience of chord perception in

which the chord, rather than the individual tones, becomes the acoustic object that

we hear. Thus, consonant pitch relations may be one of the bases for the vertical

links between parts that hold the piece of music together.72

The earliest explanations for “vertical grouping” derived consonant pitch relations from

simple frequency ratios or the partials of a complex tone (the Klang, or corps sonore),73 but

physiologist Hermann von Helmholtz provided the first systematic attempt to link the auditory

periphery to vertical sonorities and the rules governing their succession. Armed with anatomical

evidence disclosed by the use of the compound microscope,74 Helmholtz theorized that the

perception of consonance is a sensory response caused by (1) the absence of rapid beating

(oscillations in amplitude) created by interactions of adjacent partials, which Terhardt would

later call sensory consonance; and (2) the correspondence of partials between two or more tones,

which amounts to an extension of Bregman’s harmonicity principle.75

Psychoacoustic studies published over the last century have validated many of Helmholtz’s

72Ibid., 495–496.
73Appealing to the frequency ratio between the fundamentals of two tones dates back to antiquity. Using

a single-stringed instrument called a monochord, the ancient Greeks defined a gamut of pitches by specifying
the numeric ratio between the length of the string segment that produces one pitch and that of the segment
that produces some other. They observed that simple ratios like 2

1 and 3
2 produce more beautiful, euphonius, or

consonant intervals than complex ratios like 16
15 (Jan Herlinger, “Medieval Canonics,” in The Cambridge History

of Western Music Theory, ed. Thomas Christensen [Cambridge: Cambridge University Press, 2002], 168). More
sophisticated explanations based on the acoustic properties of individual tones first appeared in the later writings of
the French theorist and composer Jean-Philippe Rameau, who attempted to derive the principles of tonal harmony
from the overtone series (or corps sonore). For a discussion of the influence of acoustics on Rameau’s theory of
harmony, see Nathan John Martin, “Rameau and Rousseau: Harmony and History in the Age of Reason” (PhD
Dissertation, McGill University, 2008), 19–74.

74Burdette Green and David Butler, “From Acoustics to Tonpsychologie,” in The Cambridge History of Western
Music Theory, ed. Thomas Christensen (Cambridge: Cambridge University Press, 2002), 259.

75Hermann L. F. Helmholtz, Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie
der Musik, 2nd ed., trans. Alexander J. Ellis (London: Longmans, Green, 1877/1885), 185–196; Terhardt, “Pitch,
Consonance, and Harmony”; Ernst Terhardt, “The Concept of Musical Consonance: A Link between Music and
Psychoacoustics,” Music Perception 1, no. 3 (1984): 276–295.
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findings with respect to the sensory consonance and harmonicity of dyads and triads. Studies of

sensory consonance essentially began with a series of experiments by Reinier Plomp and Willem

J. M. Levelt. Following the seminal discovery of critical bands, which represent the bands of

auditory nerve fibers along the basilar membrane that respond selectively to a small range of

frequencies,76 Plomp and Levelt determined that the sensory dissonance (or roughness) caused

by two adjacent tones peaks when the frequency difference equals around 25% of the critical

bandwidth.77 Subsequent algorithms by William Hutchinson and Leon Knopoff extended these

findings to triads and replicated several music-theoretic intuitions about the consonance of

intervals found in Western common practice, leading them to suggest that musical consonance

results in part from the absence of beating among partials, just as Helmholtz predicted.78

Nevertheless, sensory explanations for musical consonance suffer from several limitations.

First, they generally fail to predict the relative dissonance of the most common chord types.

For ratings of “harmoniousness” of individual chords, for example, the following rank order

of increasing dissonance obtains: major < minor < diminished < augmented.79 Models of

roughness based on acoustic beating predict that the augmented triad should be more consonant

than the diminished triad, however.80 Second, for both sine tones and complex periodic tones,

models of roughness tend to produce higher consonance ratings as the size of the interval

increases. As a consequence, an interval like the major seventh receives higher consonance

ratings than the perfect fifth, a finding that clearly contradicts music-theoretic predictions.81 To

76In other words, the critical bandwidth represents the range of frequencies over which the basilar membrane
fails to resolve simultaneous tones or partials.

77Reinier Plomp and Willem J. M. Levelt, “Tonal Consonance and Critical Bandwidth,” Journal of the Acoustical
Society of America 38, no. 4 (1965): 548–560.

78William Hutchinson and Leon Knopoff, “The Acoustic Component of Western Consonance,” Interface 7,
no. 1 (1978): 1–29; William Hutchinson and Leon Knopoff, “The Significance of the Acoustic Component of
Consonance in Western Triads,” Journal of Musicological Research 3, nos. 1-2 (1979): 5–22.

79Norman D. Cook and Takashi X. Fujisawa, “The Psychophysics of Harmony Perception: Harmony is a
Three-Tone Phenomenon,” Empirical Music Review 1 (2006): 106–126.

80Johnson-Laird, Kang, and Leong, “On Musical Dissonance,” 21.
81Terhardt, “The Concept of Musical Consonance: A Link between Music and Psychoacoustics,” 280–281.
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be sure, the German philosopher-psychologist Carl Stumpf criticized the Helmholtzian view of

sensory consonance for precisely this reason. In Stumpf’s view, tonal consonance is a top-down,

psychological response to the tonal fusion (Tonverschmelzung) of simultaneous tones—the

phenomenon of two tones blending to the extent that they are perceived as “unitary.”82

To resolve these issues, many psychoacousticians—including Helmholtz himself—have

suggested that musical consonance reflects two components: (1) the sensory consonance of dyads

and other vertical sonorities resulting from biological constraints of the auditory periphery, and

(2) tacit knowledge acquired during exposure to the principles of tonal music.83 In a recent study

examining the interaction between musical experience and presumably low-level sensory factors

like beating and harmonicity, Josh H. McDermott and his co-authors found that harmonicity

measures were positively correlated with musical training, leading them to suggest that previous

experience enhances an innate bias for harmonic sounds. To be sure, the assumption that

listeners learn to process and even prefer harmonic sounds across repeated exposures appears

frequently in the experimental literature.84 The well-known virtual pitch algorithms designed

by Terhardt and Parncutt—which extend the harmonicity principle to vertical sonorities like

dyads and triads—are noteworthy in this regard. Following a long tradition dating back to

Rameau, they assumed that extracting the fundamental frequency of a complex tone (the

corps sonore) is equivalent to determining the root of a chord (the basse fondamentale). But in

their view, the principles governing tonal harmony result from perceptual familiarity with the

complex periodic sounds associated with mammalian vocalizations. Terhardt explains,

The whole learning process postulated by [Helmholtz], in which an individual
82For a brief introduction to Stumpf’s Tonpsychologie, see Green and Butler, “From Acoustics to Tonpsycholo-

gie,” 263–265.
83Helmholtz, Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik; Johnson-

Laird, Kang, and Leong, “On Musical Dissonance”; Terhardt, “The Concept of Musical Consonance: A Link
between Music and Psychoacoustics.”

84See, for example, Josh H. McDermott et al., “Indifference to Dissonance in Native Amazonians Reveals
Cultural Variation in Music Perception,” Nature 535 (2016): 547–550.
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acquires familiarity with the basic musical intervals by aural analysis of harmonic

complex tones, will with highest probability take place as an essential part of the

perception of speech, as speech is the most significant auditory signal to humans.

The purpose of that learning process, according to virtual-pitch theory, is to enable

the auditory system to extract virtual pitch from any complex tone, even when

some harmonics (in particular the fundamental) are not present. It is thus a sort of

byproduct that in that learning process a sense of harmonic intervals (octave, fifth,

etc.) is acquired. The biological significance of that sense lies in its being a means

to extract virtual pitch from voiced speech sounds. The harmonic pitch intervals

are just “acquired system parameters.”85

The view that harmonicity and other concurrent grouping processes depend on top-down

mechanisms related to learning and memory is consistent with McAdams’ description of

auditory imagery. In his view, “any listener still carries into the musical situation all of the

‘perceptual baggage’ acquired from ordinary in-the-world perceiving.”86 As a consequence,

the mechanisms by which listeners cohere auditory events into auditory images reflect both

bottom-up and top-down processes; listeners may “have a biological predisposition” to cohere

some event complexes more readily than others, but “what is coherent psychologically may

evolve with specialized musical experience.”87

Thus, while it seems reasonable to suggest that the stability of events and event complexes

like notes or triads depends at least to some degree on the biological constraints of sensory

processing, these sorts of explanations still fail to account for the pattern of observations

encountered in experimental studies of consonance and dissonance, stability, and so forth.

85Terhardt, “The Concept of Musical Consonance: A Link between Music and Psychoacoustics,” 288.
86McAdams, “The Auditory Image: A Metaphor for Musical and Psychological Research on Auditory Organi-

zation,” 290.
87McAdams, “Music: A Science of Mind?,” 39.
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One might argue, for example, that perfect intervals like the octave appear frequently in many

musical styles because they reflect concurrent grouping principles like harmonicity and sensory

consonance that trick the auditory periphery into partially fusing their constituent events. But

it is also important to note that not all of the world’s musical scales reflect the concept of octave

equivalence.88 What is more, in studies that require participants to judge the similarity of

isolated tone-pairs, psychologists Edward M. Burns and W. Dixon Ward point out that musical

training influences similarity judgments for octave intervals. Since “musicians tend to show

significant octave effects” when nonmusicians show “little or none,”89 they conclude that octave

equivalence might be learned.90 In short, it is conceivable that top-down mechanisms related to

learning and memory at least partly determine the stability or coherence of individual events

like notes and chords even at the lowest levels of sensory organization.

This dual-component view of stability is perhaps best exemplified in a series of studies

examining the perception of tonal melodic closure in the early history of music psychology.

Following Stumpf’s theory of tonal fusion, which revived the Pythagorean explanation for the

consonance of dyads in terms of simple frequency ratios, Theodor Lipps and Max F. Meyer

proposed the “law of the power of 2” (sometimes called the Lipps-Meyer Law), which states

that one of any two tones from a diatonic scale is more final if its number in the frequency

ratio is a power of two. Meyer justified this view by appealing to the overtone series; a melody,

he claimed, “moves from overtones to the fundamental tone.”91 Nearly two decades later, his

student Paul Farnsworth demonstrated in a series of experimental studies that the repetition of

88Edward M. Burns and W. Dixon Ward point out that these scales typically appear in cultures that are either
pre-instrumental or that use inharmonic instruments of the xylophone type (“Intervals, Scales, and Tuning,” in
The Psychology of Music, ed. Diana Deutsch [New York: Academic Press, 1982], 258).

89Edward M. Burns, “Intervals, Scales, and Tuning,” in The Psychology of Music, 2nd, ed. Diana Deutsch (New
York: Academic Press, 1998), 253.

90Burns and Ward, “Intervals, Scales, and Tuning,” 264.
91Max Friedrich Meyer, “Experimental Studies in the Psychology of Music,” The American Journal of Psychology

14, nos. 3/4 (1903): 193.
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certain sequences over the course of the experimental session influences the perceived finality of

the terminal note.92 This training effect led Farnsworth to propose an alternative account based

on the “habit principle,” in which the discrimination of finality depends on the association

of a ratio symbol with the terminal position in a tonal succession.93 In fact, W. Van Dyke

Bingham criticized the Lipps-Meyer Law soon after its publication for precisely this reason.

For Bingham, the laws of consonance and dissonance—on which the Lipps-Meyer Law was

presumably based—represent just one component of the sensory-cognitive apparatus, the other

being predicated on the formation of top-down associations over the course of exposure. The

conclusion of his dissertation brilliantly captures the distinction between nature and nurture.

The operation of two main forces must be distinguished—one of them sensory,

the other associative. The first of these, the phenomenon of consonance, is native

and doubtless has its basis in the relatively simple action of the sensory apparatus

in responding to auditory stimuli which are more or less similar—are, indeed, in

a measure identical. But although the basis for consonance inheres in the inborn

structure of the nervous system and the acoustical properties of vibrating bodies,

nevertheless it is a commonplace of musical history and observation that these

same native tendencies are subject to tremendous modification in the course of

experience. One race, one age hears as consonant intervals which another age

or race has never learned to tolerate; and within the history of individuals it is

easily observable that consonance and dissonance are merely relative terms whose

denotation shifts with growing experience. Moreover the whole complex group of

phenomena we call tonality bears witness to the power of association to amplify
92Paul R. Farnsworth, “The Effect of Repetition on Ending Preferences in Melodies,” The American Journal of

Psychology 37, no. 1 (1926): 116–122.
93Paul R. Farnsworth, “Ending Preferences in Two Musical Situations,” The American Journal of Psychology 37,

no. 2 (1926): 238; Farnsworth, “The effect of repetition on ending preferences in melodies”; Paul R. Farnsworth,
“A Modification of the Lipps-Meyer Law,” Journal of Experimental Psychology: General 9, no. 3 (1926): 253–258.
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and organize these native feelings.94

1.2.2 Cognitive Principles

Throughout the previous section I made repeated reference to organizational systems based

on pitch and temporal duration, two of the most important auditory attributes in perception

that serve as form-bearing dimensions in many compositional styles,95 providing the basis for

musical concepts like consonance and dissonance, melody and voice leading, harmony, tonality,

and meter. In my view, these systems depend to some degree on the biological constraints of the

auditory periphery, by which listeners form auditory images for the kinds of complex periodic

sounds encountered in many musical traditions. But since these constraints generally fail to

account for more sophisticated aspects of musical organization, such as the consonance and

stability of event complexes like dyads and triads, we might also assume that the hierarchies

of stability characterizing classical music reflect cognitive processes related to memory and

learning.

Memory is an enormous concept in experimental psychology. Since I mention stores (e.g.,

short-term, long-term) and types (e.g., declarative, procedural) of various sorts in subsequent

chapters, it will be useful to review these notions briefly here. Richard C. Atkinson and Richard

M. Shiffrin published what remains the canonical multi-store model, which divides memory into

three interrelated stores that vary according to the duration of retention: the sensory register (or

sensory memory), short-term (or working) memory,96 and long-term memory. Sensory memory

is an ultra short-term memory buffer for the immediate storage of sensory information that

94W. Van Dyke Bingham, Studies in Melody (Baltimore: Review Publishing Company, 1910), 87.
95Stephen McAdams, “Psychological Constraints on Form-Bearing Dimensions in Music,” Contemporary Music

Review 4 (1989): 181–198.
96For Atkinson and Shriffin, working memory and short-term memory are synonymous, but a few years

after the publication of the Atkinson-Shriffin model, Alan Baddeley and Graham Hitch proposed an alternative
multi-store model that separated the two concepts (“Working Memory,” in The Psychology of Learning and Memory,
ed. Gordon H. Bower, vol. 8 [New York: Academic Press, 1974], 47–89).
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continuously decays until it is lost.97 In the presence of competing information, the duration of

the store varies depending on the sensory modality; for vision (which is sometimes called iconic

memory), Atkinson and Shiffin suggest estimates of no more than a second,98 but for audition

(which Ulric Neisser termed echoic memory),99 the upper limit is closer to four seconds.100 Thus,

for our purposes, auditory sensory (or echoic) memory is responsible for the representation

of auditory images like tones and chords, by which listeners register attributes like loudness

and pitch. Like sensory memory, short-term memory (STM) decays and then disappears, but

the temporal duration of the decay is considerably longer, perhaps as long as ten to twelve

seconds.101 The capacity of short-term memory is not boundless, however. In this case, the

upper limit proposed by George A. Miller of 7± 2 events is a good rule of thumb.102 According

to Atkinson and Shriffin, STM receives selected inputs from sensory memory (i.e., from the

bottom up) and from long-term memory (i.e., from the top down). Thus listeners in possession

of long-term mental representations for vertical sonorities like dyads and triads might transfer

this information to STM to seek out similar structures. Finally, long-term memory (LTM) is “a

fairly permanent repository,”103 which is to say that it decays very little over time.

The transfer process from one store to the other entails mechanisms like conscious attention

during perception and rehearsal of information in STM. Atkinson and Shriffin also suggest

that the transfer process between LTM and STM is bi-directional in that long-term mental

representations for the kinds of objects and events encountered in everyday life may trigger the

97Richard C. Atkinson and Richard M. Shiffrin, “Human Memory: A Proposed System and Its Control
Processes,” in The Psychology of Learning and Motivation, ed. Kenneth Wartenbee Spence and Janet T. Spence, vol. 2
(New York: Academic Press, 1968), 90.

98Ibid., 92.
99Ulric Neisser, Cognitive Psychology (New York, NY: Taylor & Francis, 1967/2014), 190.
100Christopher J. Darwin and Michael T. Turvey, “An Auditory Analogue of the Sperling Partial Report

Procedure: Evidence for Brief Auditory Storage,” Cognitive Psychology 3 (1972): 255–267.
101Snyder, Music and Memory, 50.
102George Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information,” Psychological Review 63 (1956): 81–97.
103Atkinson and Shiffrin, “Human Memory: A Proposed System and Its Control Processes,” 91.
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organization and recognition of those objects and events in STM. It is also important to note

that Atkinson and Shriffin limit top-down information transfers to STM, which in our case

means that echoic memory is excluded from higher-level memory processes. Many researchers

have criticized this view, however, since a number of studies over the past few decades have

demonstrated top-down effects for even the most primitive aspects of sensory organization.104

Thus mental representations from LTM and STM for organizational structures like chords,

clarinet melodies, or composite timbres are likely to influence the formation of auditory images

in echoic memory. As Neisser puts it, “in perceiving, the immediate past and the remote past

are brought to bear upon the present.”105

How might the processes related to STM constrain the emergence of organizational systems

like tonality and meter, in which certain events are more stable than others? McAdams

points out that the sensory-cognitive apparatus enhances the encoding and recognition of

pitch and temporal duration—the auditory attributes on which these systems depend—by

organizing values along these dimensions into a relatively small number of perceptually discrete,

proportionally related categories.106 Much of the world’s music relies on musical scales, for

example, which typically feature discrete and discriminable steps, octave equivalence, and a

moderate number of degrees within the octave.107 Without these sorts of constraints, listeners

would be far less likely to learn and remember the patterns that characterize a given composition

or repertory. What is more, the relative fixity of the categories along these dimensions allows

104Bregman refers to the influence of top-down knowledge on ASA grouping principles as “schema-based”
processing effects (Auditory Scene Analysis: The Perceptual Organization of Sound, 395–454).

105Ulric Neisser, Cognition and Reality (San Francisco: W. H. Freeman and Company, 1976), 14. Despite
the plethora of effects associated with each store, contemporary research continues to dispute the necessity of
compartmentalizing memory in this way. According to Reber, for example, a singular memory process may
underlie each of the various stores (Implicit Learning and Tacit Knowledge, 80–81).

106McAdams, “Psychological Constraints on Form-Bearing Dimensions in Music,” 181; see also Leonard Meyer,
“A Universe of Universals,” The Journal of Musicology 16, no. 1 (1998): 8.

107Dowling and Harwood, Music Cognition, 91.
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listeners to encode the relations among values within a given pattern.108 As a consequence,

transpositions of patterns in pitch or duration that preserve the relations between categories are

more easily recognized during perception than those that do not.109

But what about the influence of LTM on lower memory processes, or on perception itself?

Unfortunately, the storage metaphor is not particularly helpful in this case because it fails to

capture the biological purpose of memory. Following the cognitive revolution, associationist

theories like schema theory, connectionism, and predictive coding have suggested that the mind

builds “mental models” of the external environment whose purpose is to predict the future.

From this point of view, memory exists “not to allow us to relish past successes or regret past

failures, but to allow us to repeat our successes and avoid future failures.” In short, its purpose is

“not recall but preparation.”110 British psychologist Kenneth Craik summarizes this view thusly:

If the organism carries a ‘small-scale model’ of external reality and its own possible

actions within its head, it is able to try out various alternatives, conclude which is

the best of them, react to future situations before they arise, utilize the knowledge

of past events in dealing with the present and future, and in every way to react in a

much fuller, safer and more competent manner to the emergencies which face it.111

But what form do our mental representations take, and how do we acquire them? We

might further divide LTM into two types: explicit (or declarative) memory and implicit (or

procedural) memory. Explicit memory denotes the representation of facts and events that

108McAdams explains that “our ability to recognize transposed or accelerated musical patterns testifies to the
psychological reality of relational encoding” (“Psychological Constraints on Form-Bearing Dimensions in Music,”
185).

109The auditory periphery plays some part in explaining why these auditory attributes serve as form-bearing
dimensions and not others, but the point here is that the constraints placed on STM must also influence the con-
struction of scales, the temporal duration of motives and phrases, and many other aspects of musical organization.

110David Huron, Sweet Anticipation: Music and the Psychology of Expectation (Cambridge, MA: MIT Press, 2006),
219.

111Kenneth Craik, The Nature of Explanation (Cambridge: Cambridge University Press, 1943), 61.
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require conscious recall, such as the age of the Earth or the date of one’s birthday. For these

sorts of representations, the transfer from STM to LTM typically requires an explicit learning

strategy based on conscious attention and repeated rehearsal. Implicit memory refers to our

unconscious representations of how things might go, such as playing chess or conversing with

friends. For these representations, the acquisition process is assumed to be based on an implicit

learning strategy that abstracts the pattern of co-occurring features an object or event might

share with previously encountered exemplars. This latter type of memory is presumably what

governs our mental representations for hierarchical organizational systems like natural language

or tonal music.

To justify this view, psychologist Arthur Reber proposed a domain-general learning mecha-

nism to explain how humans learn their native language(s) during early development.112 Unlike

many of his nativist peers who believed that knowledge is not “acquired” at all but given a

priori, Reber assumed that much of the knowledge necessary to comprehend complex, seem-

ingly “rule-governed” syntactic structures is acquired tacitly, beneath conscious awareness. He

referred to this acquisition process as implicit learning (IL), arguing that it “takes place largely

independently of conscious attempts to learn and largely in the absence of explicit knowledge

about what was required.”113 According to Reber, IL represents the default mode of knowledge

acquisition, one subserved by procedural memory centers that are phylogenetically older than

those underlying declarative memory.114 Thus in his view, the acquisition of explicit, reflective,

and declarative knowledge represents just the tip of the iceberg, with implicit, nonreflective,

and procedural learning residing beneath the conscious surface.115

112Arthur S. Reber, “Implicit Learning of Artificial Grammars” (MA Thesis, Brown University, 1965); Arthur S.
Reber, “Implicit Learning of Artificial Grammars,” Journal of Verbal Learning and Verbal Behavior 6 (1967):
855–863.

113Reber, Implicit Learning and Tacit Knowledge, 5.
114Larry R. Squire, “Mechanisms of Memory,” Science 232, no. 4758 (1986): 1615.
115Reber conceives of consciousness as a late arrival on the evolutionary scene. It is, in his words, “an emergent

aspect of a complex brain” (Implicit Learning and Tacit Knowledge, 86).
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But just how does one learn implicitly? Stripped down to its bare bones, IL is simply the

detection of statistical regularities in the environment.116 For Reber, a mental representation for

a major triad is abstracted over time from the exemplars of that category that we encounter in

classical music because the essential characteristics that apparently define the category co-occur

with remarkable frequency. Reber calls this the abstractive view of knowledge acquisition,117

and it pertains to all sorts of contexts. McAdams suggests, for example, that organizational

systems like tonality and meter represent abstract knowledge structures because they embody

a system of relations that apply across a large number of exemplars. In his view, these sorts

of structures “serve to establish the relative stability or salience relations among the values

along a given dimension. This domain is perhaps the most important for the consideration

of form-bearing capacity because it is clear that if a system of habitual relations among values

along a dimension cannot be learned, the power of that dimension as a structuring force would

be severely compromised.”118 In other words, the stability of isolated events like notes and

chords in tonal music is primarily learned.

To demonstrate how we might learn the statistical regularities governing these systems, IL

studies typically use arbitrary and unfamiliar stimulus domains with complex, rule-governed,

idiosyncratic structures. In the first IL study, Reber employed a finite-context, Markovian

artificial grammar, which consists of a small alphabet of letters and a distribution of probabilities

governing the transitions between them. In his case, the grammar produced a finite number

of grammatical strings from three to eight letters in length. The basic procedure for IL

experiments has two components: (1) an acquisition phase, during which participants memorize

a subset of the grammatical strings the grammar can produce; and (2) a testing phase, during

which participants determine the grammatical status of a series of new strings, some of which

116For this reason, it also sometimes called implicit statistical learning.
117Reber, Implicit Learning and Tacit Knowledge, 120–121.
118McAdams, “Psychological Constraints on Form-Bearing Dimensions in Music,” 183.
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were generated by the artificial grammar, and some not. Reber demonstrated over several

experiments that participants could reliably distinguish grammatical from non-grammatical

strings, suggesting they had become sensitive to the constraints of the grammar just by exposure

to exemplary strings.119

Over the past five decades, researchers have demonstrated IL effects for sequences of

letters,120 abstract visual shapes,121 and animal pictures.122 In the music domain, the evidence

suggests that listeners can implicitly learn familiar123 and unfamiliar musical systems,124 serial

music,125 and synthesized instrumental timbres.126 A few studies have also generalized these

findings to melodic and harmonic contexts using artificial grammars and probabilistic learning

paradigms. In both cases, the results indicate that listeners can acquire the statistical regularities

governing novel melodic or harmonic grammars during short-term exposure.127 The size of

this learning effect also varies as a function of the complexity of the grammar128 and the length

119Reber, “Implicit Learning of Artificial Grammars.”
120For a review of language acquisition using IL paradigms, see Jenny R. Saffran, “Statistical Language Learning:

Mechanisms and Constraints,” Current Directions in Psychological Science 12, no. 4 (2003): 110–114.
121József Fiser and Richard N. Aslin, “Statistical Learning of Higher-Order Temporal Structure from Visual

Shape Sequences,” Journal of Experimental Psychology: Learning, Memory, and Cognition 28, no. 3 (2002): 458–467.
122Jenny R. Saffran et al., “Dog is a Dog is a Dog: Infant Rule Learning is Not Specific to Language,” Cognition

105, no. 3 (2007): 669–680.
123Jenny R. Saffran et al., “Statistical Learning of Tone Sequences By Human Infants and Adults,” Cognition 70

(1999): 27–52.
124Psyche Loui, “Humans Rapidly Learn Grammatical Structure in a New Musical Scale,” Music Perception 27,

no. 5 (2010): 377–388.
125Zoltán Dienes and Christopher Longuet-Higgins, “Can Musical Transformations Be Implicitly Learned?,”

Cognitive Science 28 (2004): 531–558.
126Barbara Tillmann and Stephen McAdams, “Implicit Learning of Musical Timbre Sequences: Statistical

Regularities Confronted with Acoustical (Dis)Similarities,” Journal of Experimental Psychology: Learning, Memory,
and Cognition 30, no. 5 (2004): 1131–1142.

127Erin Jonaitis and Jenny Saffran, “Learning Harmony: The Role of Serial Statistics,” Cognitive Science 33
(2009): 951–968; Martin Rohrmeier and Ian Cross, “Tacit Tonality: Implicit Learning of Context-Free Harmonic
Structure,” in Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music, ed.
Jukka Louhivuori et al. (Jyväskylä: University of Jyväskylä, 2009), 443–452; Martin Rohrmeier, Patrick Rebuschat,
and Ian Cross, “Incidental and Online Learning of Melodic Structure,” Consciousness and Cognition 20 (2011):
214–222.

128Rohrmeier and Cross, “Tacit Tonality: Implicit Learning of Context-Free Harmonic Structure.”
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of the exposure phase,129 which is to say that stimuli produced by less complex grammars

or presented over a longer exposure phase tend to increase the participants’ ability to detect

non-grammatical sequences.

In sum, the evidence is overwhelming that participants can induce the statistical structure

inherent in complex (musical) stimuli over a relatively short period of time. For our purposes,

this means that listeners learn more complex hierarchical organizational systems like tonality

and meter over the course of exposure if their most stable events appear more frequently in

the classical style. Bharucha and Krumhansl would seem to agree, suggesting that stable tones

“appear more frequently, in prominent positions, and with rhythmic stress.”130 Once learned,

our statistical knowledge of these organizational systems “is thought to impose its organization

on all subsequent musical experiences,”131 allowing us to build mental models of our immediate

experiences and predict future outcomes.

§1.3 Conclusions

I noted in §1.1 that definitions of closure often trespass on theories of learning, memory, and

perception. To the degree that they reflect the perception of closure, theories of segmentation,

formal function, and the law of return—as well as associated psychological effects like stability

and rest—are not just overlapping magisteria in the study of musical experience, representing

distinct but complementary areas of inquiry and potentially separable psychological processes.

In my view, these theories—and the processes underlying them—result from a basic function of

the human mind: that of prediction. Among music scholars, this view was first crystallized

by Meyer, but the resurgence of associationist theories in the cognitive sciences over the past

129Jonaitis and Saffran, “Learning Harmony.”
130Bharucha and Krumhansl, “The Representation of Harmonic Structure in Music,” 64.
131Krumhansl, Cognitive Foundations of Musical Pitch, 284.
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few decades has placed the study of the brain’s predictive mechanisms at the forefront of

contemporary scholarship. This is not to say that our tendency to continuously expect certain

outcomes over others explains every aspect of closure; not all of the compositional procedures

associated with a theory of closure will feature prominently in the minds of listeners. Rather,

my point is that those aspects of closure that do correspond with the reception of musical

works—such as segmental grouping, temporal functionality, and the perception of stability—

reflect the brain’s predictive processing strategies, where minimizing uncertainty about future

events is a biological imperative.

But how do we generate expectations during music listening? I suggested in §1.2 that

psychologists appeal to the term stability to refer to hierarchical systems of relations like tonality

and meter under which certain events are more stable in memory and facilitate processing

during perception. These “hierarchies of stability” depend on bottom-up processes of sensory

organization and top-down processes related to memory and learning. In other words, listeners

are more likely to learn and remember events and event complexes like tones and chords if

they (1) cohere more readily in the auditory periphery, and (2) appear more frequently in a

composition or repertory.

But what about recurrent temporal patterns like cadences? Do sensory principles play some

part in the formation of these sorts of structures in tonal organization? Recall that for Bregman,

the factors governing primitive sensory organization diminish as we ascend the organizational

hierarchy. Event complexes like dyads and triads may reflect emergent properties of sensory

organization in some general way, for example, but beyond this level—say, for cadences and

other formulaic closing patterns—sensory accounts are increasingly unlikely. As Bregman puts

it, these sorts of patterns “are specific to musical styles and are based on cognitive schemas,

not primitive perceptual organization.”132 Thus, Chapter 2 offers a critique and discussion

132Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, 496.
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of the cadence concept in the “New Formenlehre” tradition, and then appeals to theories of

schematic organization articulated in the cognitive sciences to explain the acquisition and mental

representation of cadences and other closing patterns.



45

Chapter 2

The Classical Cadence as a Closing Schema

The mind has become so habituated to the form of the ordinary perfect cadence that in a
movement of highly emotional character it comes rather like a platitude.

William S. Rockstro

In the previous chapter I suggested that a sonority is psychologically stable if it 1) exhibits

an internal coherence in its acoustic behaviour, and 2) appears frequently in a given style. The

former relates to our capacity to organize concurrent sound events into a coherent auditory

image, the latter to the likelihood that we will store that image in long-term memory. Putting it

simply, sonorities that are maximally coherent and highly prevalent are more likely to serve as

endings. But how do composers approach stable sonorities? And how do listeners know when

the end is near?

In the classical style, stable events do not simply appear at random. Rather, the available

compositional options for the events preceding stable sonorities were fairly constrained, re-

sulting in the appearance of a limited number of highly stereotyped harmonic and melodic

formulæ at the ends of phrases, themes, and larger sections—what theorists and composers

have for centuries called cadences. To be sure, our preoccupation with applying the cadence
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concept to a dizzying variety of styles is a testament to the prevalence of conventionalized

phrase endings in both Western and non-Western musics. Yet despite its foundational position

in the Formenlehre tradition over the last few centuries,1 the classical cadence continues to

receive attention and undergo refinement in the scholarly community. The recent revival of

interest in theories of musical form has prompted a number of studies that reconsider previously

accepted explanations of how composers articulate cadences in the classical period,2 that classify

instances in which cadential arrival fails to materialize,3 and that situate the concept of cadence

within a broader understanding of both tonal and formal closure.4 But despite such intense

theoretical scrutiny, it remains unclear whether cadential patterns are represented in long-term

memory, how they are perceived during music listening, and how the various constituent

features of cadences contribute to the experience of closure.

In this chapter, I will suggest that the finality attributed to a given sonority is not only

determined by its inherent psychological stability within the classical style, but also by the

degree to which it is implied by parameters that appear in prospect. Indeed, my claim here is

that listeners who are familiar with classical music have internalized the most common cadence

types as a flexible network of interrelated mental representations, or what Robert Gjerdingen

has called rival event schemata.5 During music listening, the activation of this network in

the prospective stage—and of the individual closing schemata contained within—results in

the formation of expectations for the terminal event of the cadence, the fulfilment of which

1For a review of the various “doctrines of form” in the history of music theory, see Scott Burnham, “Form,”
in The Cambridge History of Western Music Theory, ed. Thomas Christensen (Cambridge: Cambridge University
Press, 2002), 880–906.

2Caplin, “The Classical Cadence.”
3Caplin, Classical Form, 101–111; Robert Hatten, “Interpreting Deception in Music,” In Theory Only 12, no. 5

(1992): 31–50; Hepokoski and Darcy, Elements of Sonata Theory, 150–179; Janet Schmalfeldt, “Cadential Processes:
The Evaded Cadence and the ‘One More Time’ Technique,” Journal of Musicological Research 12, no. 1 (1992): 1–52.

4Anson-Cartwright, “Concepts of Closure.”
5Robert O. Gjerdingen, A Classic Turn of Phrase: Music and the Psychology of Convention (Philadelphia:

University of Pennsylvania Press, 1988), 62.
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determines the perceptual boundary both for the schema itself, and perhaps more importantly,

for the larger phrase-structural process that subsumes it.

The acquisition of this network of closing schemata is therefore essential to the perception

of closure at local and middleground levels of musical organization. But how do listeners acquire

the network? It should be evident that the preceding discussion makes an explicit statistical

assumption about the nature of learning: namely, that the acquisition of mental representations

results from the frequency of occurrence of patterns in the classical style. In short, a pattern

that appears frequently is more likely to serve as a schema. Thus, by examining a large number

of cadences from a relatively narrow, historically limited corpus, my goal here is to provide

empirical evidence for the kinds of closing patterns that listeners may learn implicitly.

I begin in §2.1 by reviewing contemporary accounts of the classical cadence articulated in the

“New Formenlehre” tradition, which identify the most common cadential types according to (1)

their essential surface characteristics; and (2) the temporal context in which they appear. In §2.2,

I outline the theories that explain the acquisition and mental representation of cadences and

other frequently-occurring closing patterns, drawing particularly from research on expectation,

implicit statistical learning, and schema theory. Finally, §2.3 applies Gjerdingen’s schema-

theoretic approach to the cadence typologies articulated in the Formenlehre tradition to consider

whether listeners with sufficient exposure to classical music have internalized the most common

cadence types as a flexible network of rival closing schemata.
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§2.1 The Classical Cadence

2.1.1 Definitions

Of the many conventional figures and recurrent patterns that characterize the classical period,

the cadence is generally regarded as a central feature.6 In a style marked by “points of arrival,

on every scale of magnitude, from the figure to the complete movement,”7 cadential formulæ

flourished in eighteenth-century compositional practice by serving to “mark the breathing

places in the music, establish the tonality, and render coherent the formal structure,” thereby

cementing their position “throughout the entire period of common harmonic practice.”8 And

yet, like many of the concepts in circulation in music scholarship (e.g., tonality, harmony,

phrase, meter), the classical cadence has been extremely resistant to definition. To sort through

the profusion of terms associated with cadence, Ann Blombach surveyed definitions in eighty-

one textbooks distributed around a median publication date of 1970.9 Shown in Figure 2.1,

Blombach demonstrated that the cadence is associated most frequently with harmonic elements,

though a number of other requisite components also feature, such as a characteristic melody or

rhythm, the presence of a rest or pause, and so on.

From the elements listed in Figure 2.1, it appears that most definitions implicitly characterize

the cadence as a time span, which consists of a conventionalized harmonic progression, and in

6Caplin, “The Classical Cadence,” 51-52.
7Leonard G. Ratner, Classic Music: Expression, Form, and Style (New York: Schirmer Books, 1980), 33.
8Walter Piston, Harmony, 3rd ed. (New York: W. W. Norton & Company, 1962), 108. The view that a

cadence establishes the tonality is widely held in music theory. In Classical Form, for example, William Caplin
distinguishes those progressions that characterize a cadence at the end of a theme from those prolongational or
sequential progressions that appear earlier in the theme. He writes, “the tonality itself is not made certain until its
principal harmonic functions are articulated in a sufficiently powerful manner. It is thus the role of a cadential
progression to confirm a tonal center as such” (Classical Form, 70; my italics).

9Ann Blombach, “Phrase and Cadence: A Study of Terminology and Definition,” Journal of Music Theory
Pedagogy 1 (1987): 229.
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Figure 2.1: Bar plot of the percentage of occurrences for elements of cadence definitions that
appear in textbooks published before (blue) and after (red diagonal) 1970. Reproduced from
Table 1 of Blombach’s, “Phrase and Cadence” (1987), 227.

some instances, a ‘falling’ melody.10 In over half of the textbooks surveyed, these harmonic-

melodic formulæ are also classified into a compendium of cadence types, with the degree

of finality associated with each type sometimes leading to comparisons with punctuation in

language.11 But as this list also demonstrates, many scholars view the cadence as a “point of

arrival,”12 or time point, which marks the conclusion of an ongoing phrase-structural process

10Cadence derives from the latin caderer, “to fall."
11Walter Piston’s description of the authentic cadence as “a full stop or period in punctuation,” and the

half cadence as “a comma, indicating a partial stop in an unfinished statement,” is but one example from
twentieth-century pedagogical texts (Harmony, 63). Analogies to punctuation have a long history in music theory.
Gjerdingen’s revival of Francesco Galeazzi’s graded series of four cadence types is one noteworthy example. It
consists of the complete cadence (period), the half cadence (colon), the resolution of an inverted dominant seventh
to a root-position tonic (comma), and finally the melodic evasion of a complete cadence, which has no analogue
(Music in the Galant Style: Being an Essay on Various Schemata Characteristic of Eighteenth-Century Music [New York:
Oxford University Press, 2007], 156-157). Caplin has suggested that the analogy is ultimately misleading, however,
asserting that “punctuation may be a visual sign of syntax [in written language] but is not a real source of syntax.
A phrase or sentence achieves a degree of syntactical closure not by ending with any given punctuation mark, but
by word meanings, inflections, and ordering” (“The Classical Cadence,” 104).

12Ratner, Classic Music, 33.
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(e.g., the end of a phrase), and which is often characterized as a moment of rest, quiescence,

relaxation, or repose. Thus a cadence is simultaneously understood as time-span and time-

point,13 the former relating to its essential features (cadence as formula), the latter to the

presumed boundary it precedes (cadence as ending).

The desire to characterize endings beyond those located in eighteenth-century compositional

practice has led many to champion a more inclusive approach to the cadence concept, one that

abandons the time-span view of cadence to accommodate those repertories for which harmony

and tonality are not the primary agents of musical structure.14 Definitions of cadences for

atonal repertories as “temporary or permanent point[s] of repose imposed by any element or

combination of elements” are thus fairly commonplace.15 Blombach’s definition is a case in

point:

A cadence is any musical element or combination of musical elements, including

silence, that indicates relative relaxation or relative conclusion in music. (“Con-

clusion” is intended in the sense of “destination of ideas,” as opposed to merely

stopping with no indication of finality or direction.)16

Despite the breadth of application these definitions provide, the overwhelming majority

of scholars have elected instead to restrict discussions of cadence to relatively narrow, stylisti-

cally unified repertories for which pitch centricity is a fundamental organizing principle, in

some instances even limiting their investigations to the works of individual composers.17 By

13Caplin, “The Classical Cadence,” 77–81.
14Donald Johns, “On the Nature of Cadence,” in Music in Performance and Society: Essays in Honor of Roland

Jackson, ed. John Koegel and Malcolm S. Cole (Warren, MI: Harmonie Park, 1997), 396.
15ibid. (my italics).
16Blombach, “Phrase and Cadence,” 229.
17To provide just three examples from recent scholarship, see Jennifer Bain, “Theorizing the Cadence in the

Music of Machaut,” Journal of Music Theory 47, no. 2 (2003): 325–362; Roland Jackson, “Gesualdo’s Cadences:
Innovation Set Against Convention,” in Musicologia humana: Studies in Honor of Warren and Ursula Kirkendale
(Firenze, Italy: Leo S. Olschki, 1994), 275–289; Nathan John Martin and Julie Pedneault-Deslauriers, “The
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narrowing the purview to particular time periods, the result has been “a more precise and

focused conception” of the many ending formulæ present in a given repertory, allowing analysts

to “make more subtle distinctions among a wide variety of harmonic, rhythmic, and formal

phenomena.”18 Indeed, the revival of interest in theories of musical form over the last few

decades—perhaps best exemplified in the recent volumes by William Caplin, James Hepokoski

and Warren Darcy, and Janet Schmalfeldt—has led to considerable refinement of the cadential

types associated with the instrumental music of Haydn, Mozart, and Beethoven.19

2.1.2 The Cadential Types: Essential Characteristics

For few other topics in music scholarship are neologisms more welcome than for the cadence

types associated with classical music. To be sure, although the “high classical style” refers to a

fairly limited period of music history (ca. 1770–1810), the compendium of cadential terms for

the music of this period is still enormous. This fact reflects profound disagreement, appearing

both in contemporaneous treatises and in recent research, as to the impact of a large number of

musical parameters (e.g., melody, harmony, the presence and treatment of dissonance, inversion,

texture, dynamics, tempo, timbre, and orchestration) for the identification of endings of varying

strengths and for various levels of the structural hierarchy. Thus coming to a consensus as to the

procedure by which closing formulæ may be identified and categorized remains a tremendous

challenge.

Of the many scholars currently associated with the “New Formenlehre” tradition, William

Caplin has presented perhaps the most comprehensive account of the classical cadence to date.

Following the principles of form introduced by Arnold Schoenberg in Fundamentals of Musical

Mozartean Half Cadence,” in What Is a cadence? Theoretical and Analytical Perspectives on Cadences in the Classical
Repertoire, ed. Markus Neuwirth and Pieter Bergé (Leuven: Leuven University Press, 2015), 185–214.

18Caplin, “The Classical Cadence,” 52.
19Caplin, Classical Form; Hepokoski and Darcy, Elements of Sonata Theory; Schmalfeldt, In the Process of

Becoming.
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Composition, and later developed by Schoenberg’s student, Erwin Ratz, in Einführung in die

musikalische Formenlehre, Caplin positions the cadence concept within a general theory of

formal functions, which attempts to differentiate how musical segments at various levels of the

structural hierarchy—ideas, phrases, themes, and so on—express their temporality as beginnings,

middles, and ends.20 In Caplin’s form-functional approach, the cadence is understood as a

temporal end, but it functions within his theory as both time point and time span. He thus

distinguishes the moment of cadential arrival, which serves to “mark the structural end of

a thematic region,” from the time span leading up to and including cadential arrival that

“communicates to the listener that ‘the cadence’ is forthcoming,” which he terms cadential

function.21 And although he suggests that a number of features signal the impending cadential

arrival within cadential function through “specific, harmonic, melodic, rhythmic, and textural

devices,”22 the cadential progression plays the most decisive role in his theory.23

His definitions of cadential arrival and cadential function thus depend entirely on features

of the underlying harmonic progression. The moment of cadential arrival, for example, is

identified neither at the onset of melodic resolution, nor at a melodic or harmonic event

preceding a decisive segment boundary, but rather at the time point where the final harmony of

the cadential progression first appears. Nor are the boundaries of cadential function determined

by a decisive change in texture or a sudden leap in the melody, but instead by the initial and

terminal harmonies of the cadential progression.24 He writes,

20Caplin, Hepokoski, and Webster, Musical Form, Forms, and Formenlehre, 23.
21Caplin, Classical Form, 43.
22Caplin, “The Classical Cadence,” 77.
23ibid., 56. Janet Schmalfeldt similarly refers to the cadential progression as the “supreme signal for thematic

closure.” Schmalfeldt, “Cadential Processes,” 1.
24Mark Richards has recently questioned this view, asserting that the initiation of cadential function is signaled

by melodic-textural changes in addition to a cadential progression (“Closure in Classical Themes: The Role of
Melody and Texture in Cadences, Closural Function, and the Separated Cadence,” Intersections: Canadian Journal
of Music 31, no. 1 [2010]: 25). Caplin’s response to this potential criticism has been to distinguish the parameters
that contribute to the grouping structure from those that determine formal functionality. In Caplin’s theory, the
initiation of a temporal function is determined entirely by harmony and tonality, whereas a number of parameters,
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Even if the implied cadential arrival fails to materialize—owing to deception, evasion,

or abandonment—we can still identify a passage of music whose formal function is

cadential. Sometimes the cadential function is relatively compressed, as is the case

especially with a simple half cadence ending a four-measure antecedent phrase. At

other times, the cadential function is considerably expansive, such as in subordinate-

theme areas where the confirmation of the new key requires powerful expression.

But nomatter what the length of the cadential function, its boundaries are essentially

defined by the underlying cadential progression.25

Shown in Table 2.1, Caplin classifies every possible cadential category according to two

fundamental types: those for which the goal of the cadential progression is tonic (the perfect

authentic cadence and its variants), and those for which the goal is dominant (the half cadence

and its variants). To the perfect authentic (PAC) and half (HC) cadence categories he also adds

the imperfect authentic cadence (IAC), a melodic variant of the PAC. He refers to these three

cadential categories as “the only genuine cadences in music in the classical style” because they

are the only categories that can achieve thematic closure.26

Whereas imperfect authentic and half cadences remain categorically distinct from the perfect

authentic cadence in Caplin’s theory, the deceptive, evaded, and abandoned cadence categories

generally do not, as they initially promise an authentic cadence, yet fundamentally deviate from

the cadential progression, thus failing to achieve authentic cadential closure at the expected

moment of cadential arrival. The deceptive cadence leaves harmonic closure somewhat open

by closing with a non-tonic harmony, usually vi, but the melodic line resolves to a stable

scale-degree at cadential arrival, thereby providing a provisional sense of ending for the ongoing

both syntactic and rhetorical, affect segmental grouping (“William Caplin Responds,” Intersections: Canadian
Journal of Music 31, no. 1 [2010]: 70).

25Caplin, “The Classical Cadence,” 77.
26Caplin, Classical Form, 43.
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Types Categories Essential Characteristics Grouping Functions

Perfect Authentic V – I �, ��
1̂

Imperfect Authentic V – I
�, ��

3̂ or 5̂

I Deceptive* V – ?, Typically vi
�, ��

1̂ or 3̂

Evaded* V – ?
�

?, Typically 5̂

Abandoned* Cadential Progression
↔?

V
Half ? – V

�, ��
5̂, 7̂, or 2̂

Dominant Arrival* Inverted V, 7t ℎ �, ��
4̂, 5̂, 7̂, or 2̂

Table 2.1: The cadential types and categories, along with the harmonic and melodic characteris-
tics and the potential grouping functions for each category. Categories marked with an asterisk
are failed cadences. Arrows denote the following grouping functions: � ending, � beginning, ��
elision,↔ middle.

thematic process. In addition to the submediant, a number of other harmonies may also appear,

such as iv6, I6, or even a dissonant sonority like vii65/V.
27

The evaded cadence is characterized by a sudden interruption in the projected resolution of

the melodic line; instead of resolving to 1̂, the melody leaps up, often to 5̂, thereby replacing

27Edward Latham has proposed that the deceptive cadence should be limited to consonant triads, however,
reserving diminished and dominant-seventh chords for the evaded category because of the forward momentum
generated by their dissonant character (“Drei Nebensonnen: Forte’s Linear-Motivic Analysis, Korngold’s Die Tote
Stadt, and Schubert’s Winterreise as Visions of Closure,” Gamut 2, no. 1 [2009]: 313). For more information
on the physiognomy of the deceptive cadence and the history of the concept, see Markus Neuwirth, “Fuggir la
cadenza, or the Art of Avoiding Cadential Closure: Physiognomy and Functions of Deceptive Cadences in the
Classical Repertoire,” in What Is a Cadence? Theoretical and Analytical Perspectives on Cadences in the Classical
Repertoire, ed. Markus Neuwirth and Pieter Bergé (Leuven: Leuven University Press, 2015), 117–156.
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the expected ending with material that clearly initiates the subsequent process. Caplin notes,

however, that cadential evasion may be characterized by a disruption in any number of param-

eters, such as melody, texture, dynamic, and register, so long as they counter the perception

of a structural end at cadential arrival.28 Thus, the evaded cadence projects no sense of ending

whatsoever, as the events at the expected moment of cadential arrival, which should group

backward by ending the preceding thematic process, instead group forward by initiating the

subsequent process.

Like the deceptive and evaded cadence categories, the abandoned cadence deviates from the

authentic cadential progression. But whereas in the former categories the cadential dominant

remains essentially intact, in the abandoned cadence the composer “abandons” the progression

before reaching the projected moment of cadential arrival, either by inverting the cadential

dominant or by omitting the dominant entirely.29 His notion of cadential abandonment—

indeed, his entire theory of cadence—is thus predicated on the recognition of a root-position

dominant as the sine qua non of the classical cadence.30 For that reason, he also regards a

half-cadential progression whose final dominant is inverted at cadential arrival as a deviation of

the half cadence category, which he calls a dominant arrival.31 Yet unlike the deviations of the

authentic cadence, the dominant arrival may also refer to progressions whose final dominant

contains a dissonant seventh, for in Caplin’s view, the dominant would be too unstable to serve

as a satisfactory cadential goal.32

28Caplin, Classical Form, 106.
29ibid., 107. Danuta Mirka refers to a similar situation in her discussion of absent cadences in the second

movement of Haydn’s Symphony No. 64 in A major (“Absent Cadences,” Eighteenth Century Music 9, no. 2
[2012]: 213–235).

30“A central tenet of my concept of cadence is the requirement that dominant harmony occur exclusively in
root position prior to the moment of arrival (or, in the case of a half cadence, just at the moment of arrival). So
essential is this harmonic condition that if the dominant first appears inverted (say V6

5 ) or becomes inverted after
initially being in root position, then either no sense of cadence will be projected or else a potentially cadential
situation fails to be fully realized as such” (Caplin, “The Classical Cadence,” 70).

31Caplin, Classical Form, 79.
32Caplin additionally refers to a dominant arrival that appears before the section’s “structural” end as a
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In Caplin’s theory, a passage therefore attains cadential status if it consists of certain

essential characteristics relating to harmony and melody. Few scholars have questioned the

important role accorded to harmonic and melodic content in establishing cadential closure,

particularly for music from the classical style.33 To be sure, Leonard Meyer referred to harmony

and melody as among the primary or syntactic features of tonal music because they can be

“segmented into perceptually discrete, proportionally related stimuli,” thereby affording the

capacity for hierarchic structuring, an attribute many scholars have claimed is essential both to

perception and memory.34 Those attributes that cannot be segmented into perceptually discrete

relationships—dynamics, tempo, sonority, timbre, and so on—he referred to as secondary and

statistical. Citing Barbara Herrnstein Smith’s examination of the mechanisms engendering

closure in poetry, Kofi Agawu also proposed a number of similar dichotomies to distinguish

the harmonic or melodic aspects of a work from those he deemed ornamental, such as syntax-

semantics, structure-rhetoric, and form-expression.35

Following Meyer and Agawu, Caplin thus differentiates among the cadential categories

common in music-theoretical discourse—perfect authentic, imperfect authentic, deceptive, and

so on—strictly according to the syntactic parameters specific to each category. He writes,

In its syntactical aspect, a given cadence represents a particular cadential type on

the basis of its harmonic-melodic content exclusively. In its rhetorical aspect, that

premature dominant arrival (Classical Form, 81). Poundie Burstein has recently questioned the utility of the
distinction between half cadence and dominant arrival, however, suggesting that the claim that a HC must be a
dominant triad in root position is a useful preference rule, but shouldn’t be regarded as axiomatic. Burstein also
points out that to regard inverted dominant endings as non-cadential deviations departs from theoretical traditions
stretching back to the eighteenth century (“The Half Cadence and Other Such Slippery Events,” Music Theory
Spectrum 36, no. 2 [2014]: 209–213).

33Many scholars have questioned the subordinate status traditionally accorded to non-syntactic parameters in
the perception of closure, however, in particular for music following the classical period. For an example, see
Ann Hyland’s analysis of the first movement of Schubert’s D. 46 (“Rhetorical Closure in the First Movement of
Schubert’s Quartet in C Major: A Dialogue with Deformation,” Music Analysis 28, no. 1 [2009]: 120–123).

34Leonard B. Meyer, The Spheres of Music (Chicago: The University of Chicago Press, 2000), 286. See also
McAdams, “Psychological Constraints on Form-Bearing Dimensions in Music.”

35On the rhetorical aspects of closure, see Agawu, “Concepts of Closure and Chopin’s Opus 28,” 3–5.
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cadence has a unique compositional realization entailing the entire range of musical

parameters, including rhythm, meter, texture, intensity, and instrumentation...

When characterizing cadential strength and weakness, it is important that we

distinguish between the syntactical and rhetorical aspects.36

In the case of the authentic cadence, for example, the dominant and tonic harmonies of

the cadential progression must be in root position, “their most stable form,”37 and the tonic

must support 1̂ (PAC), or 3̂ or 5̂ (IAC), in the soprano voice (see Table 2.1). If the dominant is

inverted or the soprano does not present one of the above scale degrees at cadential arrival, the

passage in question is, by definition, not an authentic cadence.

Thus, for a great many scholars in the “New Formenlehre” tradition, the resolution of

an inverted dominant to a root-position tonic fails to meet the requirements of an authentic

cadence. Indeed, a passage containing such a progression would not even constitute a cadence

sui generis.38 To justify this claim, researchers sometimes cite the apparent “strength” of the

ascending fourth/descending fifth progression within the tonal system, asserting for example

that the descending fifth motion of the V–I progression must be exposed in the bass “so that the

sense of a strong harmonic progression can be projected most powerfully.”39 Or they argue that

36Caplin, “The Classical Cadence,” 107.
37Caplin, Classical Form, 27.
38See, for example, note 30.
39Caplin, Classical Form, 27. Caplin’s characterization of the authentic cadence as a “strong progression” recalls

Schoenberg’s discussion of the V–I progression in Harmonielehre. “...the strongest movement of the root is the leap
of a fourth upward, because this movement seems to correspond to a tendency of the tone... The tone that was
previously the principal tone, the root, becomes in the second chord a dependent tone, the fifth. More generally,
the bass tone of the second chord is a higher category, a higher power, for it contains the first, the tone that itself
was the root. In [C major in] the triad on G the g is sovereign. A progression that evokes this situation, which
so to speak, sets a king over a prince, can only be a strong progression. But the c not only subjugates the root, it
forces the other chord components as well to conform to its requirements; and the new chord contains, apart from
the vanquished former root, nothing that recalls the former government. It contains, apart from that one, nothing
but new tones. One can justifiably assume that progressions which produce similar situations are equally strong,
or nearly so.” He clarifies this point further in a footnote: “So long as a bass tone is not the root, its sole drive is to
become just that. Once it is the root, then it has a different goal: to lose itself in, to become part of a higher entity”
(Harmonielehre, trans. Roy Carter [Berkeley and Los Angeles, CA: University of California Press, 1978], 115–116).
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I V6
5 I vii6 V

HC

Example 2.1: Haydn, String Quartet in B-flat, Op. 50/1, iv, mm. 20–24.

comparatively weaker progressions should be regarded as contrapuntal or prolongational, rather

than as “weakened” cadential progressions,40 because they serve only to sustain an individual

harmony, rather than to confirm a tonal center as such.

Despite their apparent unsuitability in tonic cadences, these allegedly “prolongational”

progressions nevertheless surface quite frequently in cadential progressions for which the goal

harmony is dominant. Of the cadence categories listed in Table 2.1, the essential characteristics

of the half cadence category are certainly less strict; a potential HC need only present a

progression for which the penultimate and ultimate sonorities feature a change of root (e.g., I–V,

I6–ii6–V, iv6–V, vii6/V–V, etc.), and with the ultimate sonority consisting of a root-position

dominant triad that supports any chord member in the soprano.

According to these criteria, the identification of a half cadence in Example 2.1 would

seem uncontroversial.41 This rather abbreviated two-chord cadential progression consists of

a temporary tonicization of the dominant in m. 23, one whose resolution in the following

measure recalls a voice-leading formula that appears quite frequently in Renaissance contrapuntal

40Piston asserts, for example, that the imperfect cadence may refer to a cadential progression whose dominant
is inverted. (Harmony, 110).

41Caplin identifies a half cadence at this moment in (Classical Form, 130).
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practice. In his entry on “Cadence,” published in Grove’s Dictionary in 1908, William S.

Rockstro referred to this close as the clausula vera, or “true close,” a remnant of the old discant-

tenor framework in which the tenor descends a whole step and the melody ascends a half step.42

And yet this passage, which serves as a viable cadential progression in the context of a half

cadence, would nevertheless be deemed too weak to serve as a cadential progression in any

context in which the tonic serves as the goal harmony. But why should the progression in

Example 2.1 confirm a tonal center in the context of a half cadence when it fails to do so for

passages whose goal harmony is tonic?43

We could certainly expand our compendium to include tonic cadences that feature inverted-

dominant resolutions, but both Caplin and Schmalfeldt have further argued that such passages

are extraordinarily rare in the classical style.44 Indeed, it is precisely because the closing formula

identified in Example 2.1 appears frequently at the ends of phrases and themes that these authors

have elected to ignore the prolongational status of the progression and apply the half cadence

concept more flexibly. But if a prolongational progression like this one were to appear at tonic

endings, Caplin writes that “such a phrase should, in principle, be regularly usable in formal

locations that would bring thematic units to a close. But throughout the eighteenth century, it

is rare to find such cases of formal units closed by harmonic progressions whose dominant is

42William S. Rockstro, “Cadence,” in Grove’s Dictionary of Music and Musicians, ed. J. A. Fuller Maitland, vol. 1
(London, 1908-1910), 435. To my knowledge, contemporary usage of Rockstro’s term originated in Gjerdingen,
Music in the Galant style, 164. Following Nathan Martin and Julie Pedneault-Deslauriers, I also classify the clausula
vera within the expanding half cadence type in §3.4.3. For a discussion of the half cadence types in Mozart’s
keyboard sonatas, see Martin and Pedneault-Deslauriers, “The Mozartean Half Cadence.”

43To take this point still further, would a half-cadential progression featuring ascending fourth/descending
fifth motion in the bass (e.g., V7/V–V, which Caplin terms a reinterpreted HC) represent a stronger ending
than one featuring a stepwise ascending bassline (e.g., V6

5/V–V)? In contemporary Formenlehren, the two are
syntactically equivalent in a half-cadential context, but the latter progression is treated as prolongational and
therefore non-cadential in the context of an authentic cadence.

44William E. Caplin, “Teaching Classical Form: Strict Categories versus Flexible Analyses,” Tijdschrift voor
Muziektheorie (Dutch Journal of Music Theory) 18, no. 3 (2013): 119–135. Following Francesco Galeazzi’s graded
series of four cadence types (see note 11), Gjerdingen refers to root-position tonic cadences featuring inverted-
dominant resolutions as commas (Music in the Galant style, 156).
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inverted...”45 Schmalfeldt agrees, acknowledging that while such passages “establish points of

repose by effecting the closure of ideas and phrases, they rarely serve to articulate the large-scale

harmonic closure of a complete thematic-contrapuntal process.”46

It would seem then, that scholars justify the inclusion (or exclusion) of various cadence

categories on purely empirical grounds, only drawing conclusions about the nature of certain

essential characteristics for each category after examining a representative corpus of conventional

formulæ that appear at the ends of phrases and themes. In other words, classifying the cadence

categories according to their essential characteristics before identifying the temporal context

in which they appear puts the cart before the horse. Lerdahl and Jackendoff make this point

explicit in A Generative Theory of Tonal Music, for their concept of cadence depends entirely

on an initial interpretation of the grouping structure. They define cadences as “signs or

conventional formulas that mark and articulate the ends of groups from phrase levels to the

most global levels of musical structure,” and they assert that their theory “can ‘find’ these signs

when they occur at the ends of groups, and label them as functioning cadentially for all the

levels of grouping that terminate with them.”47 If these “signs” do not appear at the ends of

groups, in Lerdahl and Jackendoff’s view they are not cadences, since a cadence “by definition

articulates the end of a group.”48

The appeal to temporal context is thus a common refrain in the Formenlehre tradition,

appearing in both contemporaneous treatises and modern scholarship. Ann Blombach has

claimed, for example, that to attain cadential status, the mere presence of a cadential formula

is not sufficient unless it appears at a phrase ending.49 Instances in which cadential formulæ

appear in other temporal contexts—e.g., at a theme’s beginning, or following its end—are also

45Caplin, “The Classical Cadence,” 73.
46Schmalfeldt, “Cadential Processes,” 43.
47Lerdahl and Jackendoff, A Generative Theory of Tonal Music, 134.
48Ibid., 28.
49Blombach, “Phrase and Cadence,” 232.
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Example 2.2: Haydn, String Quartet in B-flat, Op. 71/1, i, mm. 1–4.

frequently dismissed as non-cadential.50 The opening passage from the first movement of

Haydn’s string quartet in B-flat, Op. 71 illustrates this point. Shown in Example 2.2, Haydn

opens the movement with a textbook perfect authentic cadence.51 If these measures were to

appear instead at the end of a thematic unit, scholars would likely have little trouble attributing

cadential status to a passage that otherwise clearly exhibits cadential content.52 Nevertheless,

this passage would not function as a syntactical cadence for a number of scholars because, to

quote Rockstro, “it has not any actual significance of the kind implied by a cadence, but only

when it occurs at the end of a period or phrase of some sort.”53

A few scholars have instead elected to privilege the time-point conception of cadential

closure by classifying ending formulæ according to the grouping criteria established at cadential

arrival. In “Cadential Processes: The Evaded Cadence and the ‘One More Time’ Technique,”

50In a recent article on mid-section cadences in Haydn’s sonata form movements, Burstein appeals to Koch’s
ruhepunkte des Geistes to determine whether the surrounding context warrants the identification of a cadence.
“In each case, one should take into account not only the rhythmic and melodic features of the phrase ending,
but also the surrounding context: to paraphrase Koch, “feeling” must assist us in ascertaining whether specific
resting points mark the end of complete or incomplete sections of the whole” (“Mid-section Cadences in Haydn’s
Sonata-Form Movements,” Studia Musicologica 51, nos. 1-2 [2010]: 102).

51This compositional procedure is not limited to the first movement of Op. 71. See also the thematic
introductions from the opening movements of Op. 33/5, Op. 50/6, and Op. 74/1.

52Caplin, “The Classical Cadence,” 110.
53Rockstro, “Cadence,” 438.
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Schmalfeldt distinguishes between three types of syntactic closure: (1) distinct closure, in which

the goal event closes a preceding process; (2) elision, in which the goal event both closes the

preceding process and initiates the subsequent process; and (3) evasion, in which the goal event

provides no ending whatsoever, and instead serves only to initiate the subsequent process.54 She

then situates the cadential categories, classified according to their essential characteristics—PAC,

IAC, HC, and so on—within these three types.55

As should be evident from the above designations, Schmalfeldt essentially characterizes

cadential arrival according to its temporal function, with the final harmony of the cadential

progression serving either as a beginning, an end, or an elision of the two. In fact, this approach

is fairly consonant with Caplin’s theory of formal functions, but Schmalfeldt’s designations

reside much closer to the musical surface, pertaining not to the level of ideas or fragments

as Caplin conceives them, but to the level of individual harmonic events.56 I have therefore

renamed Schmalfeldt’s closure types to conform more readily with Caplin’s formal-functional

terms and included a fourth type to characterize an event at the projected moment of cadential

arrival that instead appears in the middle of an ongoing process, resulting in the following

four grouping functions: � ending, � beginning, �� elision, and↔ middle. In Table 2.1 I have

associated these grouping functions with each cadence category in Caplin’s typology.

But which characteristics articulate a grouping function? Again, Caplin distinguishes

between the various temporal functions—including the cadence categories that make up cadential

function—strictly according to essential characteristics relating to harmony and melody. This

approach certainly facilitates the identification of conventional formulæ, whose memorability

54In their theory, Lerdahl and Jackendoff apply these terms somewhat differently. They refer to elision as
overlap, in which an event or sequence of events is shared by two adjoining groups; and they call evasion elision, in
which the moment of ending is replaced with a beginning (A Generative Theory of Tonal Music, 55–62).

55She does not discuss the abandoned cadence or the dominant arrival in her theory, however.
56In Caplin’s theory, the idea unit represents the smallest formal function, and it is typically comprised of two

real measures. Caplin also points out that in the simplest cases, a single harmony supports the idea unit, but he
concedes that an idea can be harmonized by several distinct chords (Classical Form, 41).
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rests upon the recurrence of harmonic and melodic characteristics, but it fails to adequately

represent all of the parameters that articulate segment boundaries at various levels of the

structural hierarchy. To be sure, Caplin restricts the cadence concept to the articulation of

“formal” boundaries at middleground levels of musical organization (i.e., at the levels of the

phrase and theme), leaving aside “other modes of closure” that might be used to bring motives

and other short ideas to an end.57 Thus, although they often operate together, a grouping

boundary (or rhythmic stop, as Caplin puts it) is “conceptually (and perceptually) distinct”

from a formal end.58

Hepokoski and Darcy make a similar claim with regard to their concept of essential exposi-

tional closure (EEC), the moment when the subordinate theme area of a sonata-form movement

attains the first satisfactory PAC in the new key that proceeds onward to differing material. In

Sonata Theory, the EEC is the most important generic and tonal goal of the exposition, and they

emphasize that it should be “conceptually privileged” because it closes the thematic materials

in the subordinate theme and marks the securing of the secondary key.59 Nevertheless, they

note that despite its structural significance, the EEC should not be perceptually privileged for

the simple reason that rhetorically stronger cadences very often occur in the closing section as

reinforcement work. They write,

One should not determine an EEC on the basis of what one imagines an EEC

should ‘feel’ like in terms of force or unassailably conclusive implication. [...] The

first PAC closing the essential exposition is primarily an attainment of an important

generic requirement—nothing more and nothing less.60

And yet, as I will argue in §2.3, the grouping structure often plays a significant role in
57Caplin, “The Classical Cadence,” 60.
58Caplin, Classical Form, 51.
59Hepokoski and Darcy, Elements of Sonata Theory, 123.
60Ibid., 124.
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distinguishing the cadence categories listed in Table 2.1. Poundie Burstein asserts, for example,

that “a half-cadential ending does not exist independently of features of texture, rhythm, and

form that combine to demarcate it,” and that “for a dominant harmony to be a convincing and

syntactically proper close, various features must coordinate with one another.”61 Thus in his

view, harmonic progressions should not receive so privileged a position in the identification

of half cadences, since “the harmonies considered abstractly cannot assert a half cadence.”62

William Rothstein would seem to agree, suggesting that “elements of closure, beyond the

harmonic cadence, may involve the register of the bass or melody, the presence or absence of

some important melodic tone (either in the passage leading to the cadence or in the cadence

itself), the presence or absence of a subdominant-type harmony in the cadential progression, or

any of a number of other factors.”63

Those scholars intent on establishing a psychological approach to the perception of closure

have elected to cast a wider net, examining how syntactic and rhetorical parameters may interact

to effect segmental grouping at multiple levels of the structural hierarchy. Schoenberg referred

to this process as the psychology of the close;64 Meyer called it parametric congruence. I quote the

latter.

Closure—the arrival at relative stability—is a result of the action and interaction

among the several parameters of music. Because melody, rhythm, harmony, texture,

timbre, and dynamics are relatively independent variables, some may act to create

closure at a particular point in a work, while others are mobile and on-going.

To the extent that the parameters can act together in the articulation of closure

or, alternatively, in creating instability and mobility, they may be said to move
61Burstein, “The Half Cadence,” 206.
62Ibid.
63William Rothstein, Phrase Rhythm in Tonal Music (New York: Schirmer Books, 1989), 116.
64Arnold Schoenberg, The Musical Idea and the Logic, Technique, and Art of Its Presentation, trans. Patricia

Carpenter and Severine Neff (New York: Columbia University Press, 1995), 172–173.
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congruently. Conversely, when some parameters foster closure while others remain

open, the parameters are said to be noncongruent.65

According to this view, parametric noncongruence may obtain for every category in Caplin’s

typology. In the case of the deceptive cadence, “rhythm and melody act to articulate closure,

but harmony remains open and mobile.”66 For the half cadence, a potentially active, unstable

dominant achieves the status of a cadential goal by means of metrical, textural, and rhythmic

reinforcement.67 Even for the authentic cadences, for which the principles that determine

syntactic closure are said to be unambiguous, features related to rhythm, texture, and dynamics

could nevertheless weaken or obscure the segment boundary; indeed, there are numerous

instances in the classical style in which they do.

But if we seek to identify those ending formulæ that listeners are likely to learn and

remember, we would do well to distinguish an investigation of the essential characteristics

that might designate mental representations for the cadence categories listed in Table 2.1 from

an examination of the numerous parameters—both at and following cadential arrival—that

determine the strength of the segment boundary after the fact. In §2.2, I privilege the time-span

view of the classical cadence as a conventional formula, one whose frequency of occurrence and

temporal context allow listeners to generate expectations for the impending cadential arrival,

setting aside the many issues surrounding segmental grouping and cadential strength until §2.3.

65Meyer, Explaining Music, 81.
66Ibid.
67Ibid., 85.
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§2.2 Cadences as Mental Representations

2.2.1 The Psychologizing Impulse: Expecting Cadences

While the systematic study of listening behaviour normally remains outside the sandbox of

music theory, scholars nonetheless remain highly sensitive to the potential effects of ending

formulæ on listeners. Descriptions of cadential arrival as a moment of rest, finality, or repose—

terms that abound in the history of theory—imply that closure is inherently felt during the act

of listening. Heinrich Christoph Koch, a theorist and contemporary of Haydn and Mozart

known today for his contributions to the theory of musical form, referred to such moments

as “resting points of the spirit,” noting that “only feeling can determine both the places where

resting points occur in the melody and also the nature of these resting points.”68

To account for the perception of closure in Western tonal music, many scholars have ap-

pealed to theories of expectation. Jonathan Dunsby has noted, for example, that in Schoenberg’s

view, the experience of closure for a given cadential formula is only satisfying to the extent that

it fulfils a stylistic expectation.69

[To close a piece of music] I believe we simply fulfil the requirements recognized by

the conventions and the sense of form of the era, requirements which, in defining

the possibilities, evoke expectation and thereby guarantee a satisfying close.70

Yet despite incipient references to tension, surprise, and expectancy in theories of cadence

and closure, a psychological approach to musical expectations remained out of reach until the

68Heinrich Christoph Koch, Introductory Essay on Musical Composition, trans. Nancy Kovaleff Baker (New
Haven, CT: Yale University press, 1983), 1–3. By referring to the “spirit,” Koch thus implies that closure is not
an external property of the sounding stimulus (e.g., a note or chord within a particular tonal context, a decisive
textural or rhythmic break, etc.), but instead is determined internally by the listener.

69Dunsby, “Schoenberg on Cadence,” 125.
70Schoenberg, Harmonielehre, 127.
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mid-twentieth century with the publication of Leonard Meyer’s dissertation and subsequent

first book, Emotion and Meaning in Music.71 For the theorists associated with what we now

call the “Penn School,”72 Meyer’s dissertation provided the impetus for a research agenda

predicated upon the study and analysis of the listening experience.73 And of the many features

associated with Western tonal music, Meyer considered the classical cadence the quintessential

compositional device for eliciting specific expectations. Following the first musical example

from Emotion and Meaning in Music (see Example 2.3), Meyer writes,

In Western music of the eighteenth century, for example, we expect a specific

chord, namely, the tonic (C major), to follow this sequence of harmonies [. . . ].

Furthermore, the consequent chord is expected to arrive at a particular time, i.e.,

on the first beat of the next measure. Of course, the consequent which is actually

forthcoming, though it must be possible within the style, need not be the one

which was specifically expected. Nor is it necessary that the consequent arrive at

the expected time. It may arrive too soon or it may be delayed. But no matter

which of these forms the consequent actually takes, the crucial point to be noted is

that the ultimate and particular effect of the total pattern is clearly conditioned by

the specificity of the original expectation.74

Hence, a cadence, or more precisely, the material preceding cadential arrival, elicits very definite

71Leonard B. Meyer, “Emotion and Meaning in Music” (PhD Dissertation, The University of Chicago, 1954);
Meyer, Emotion and Meaning in Music.

72"... after relocating to the University of Pennsylvania in the 1970s, [Leonard Meyer] founded the so-called
“Penn” school of music theory, with its strong focus on listeners” (Robert O. Gjerdingen, “The Psychology of
Music,” in The Cambridge History of Western Music Theory, ed. Thomas Christensen [Cambridge: Cambridge
University Press, 2002], 976). Among Meyer’s students, Gjerdingen counts Eugene Narmour, Justin London, and
himself.

73According to Anna Tirovolas and Daniel Levitin, Emotion and Meaning in Music is the second most cited
book in the journal Music Perception (“Analysis of Empirical Articles in Music Perception,” Music Perception 29, no.
1 [2011]: 32).

74Meyer, Emotion and Meaning in Music, 25–26.
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Example 2.3: A cadential progression, reproduced from Example 1 of Meyer’s Emotion and
Meaning in Music (1956), 25.

expectations concerning the melodic scale-degree, the harmony, and the metric position of the

goal event. The moment of cadential arrival, on the contrary, elicits no further expectations

with respect to these parameters.75 This absence of expectancy following cadential arrival

led Eugene Narmour to describe cadential arrival as a nonimplicative context,76 or, to use

Elizabeth Margulis’s expression, as an event that suppresses expectancy.77 These authors might

therefore suggest that terms like rest, finality, and repose result from a desire to characterize

the cessation of expectancy following cadential arrival. David Huron summarizes this point

nicely: “When there cease to be expectations about what may happen next, it makes sense for

brains to experience a sense of the loss of forward continuation—a loss of momentum, of will,

determination or goal. In short, it makes sense for brains to experience a sense of repose or

quiescence whenever the implications cease.”78

75Depending on the formal or generic context, however, this point does not preclude the possibility that we
may generate expectations for the initiation of subsequently new processes following a cadential goal, such as
the prolongation of dominant harmony following a half cadence or the onset of codettas following a perfect
authentic cadence. The possible types of expectation experienced during music listening are wide-ranging, but in
this instance I employ the term ‘expectation’ rather narrowly to refer to schematic expectations for the musical
parameters that characterize a cadential goal. For a discussion of the diverse applications of the term in music
discourse, see Elizabeth Hellmuth Margulis, “Surprise and Listening Ahead: Analytic Engagements with Musical
Tendencies,” Music Theory Spectrum 29, no. 2 (2007): 197–217.

76Eugene Narmour, The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model
(Chicago, IL: University of Chicago Press, 1990), 102.

77Elizabeth Hellmuth Margulis, “Melodic Expectation: A Discussion and Model” (PhD Dissertation, Columbia
University, 2003), 263. If I may echo Margulis’s sentiment, Narmour’s concept of closure is complex, but his claim
is essentially that non-closural events, such as the leading tone, elicit intense and very specific implications, while
closural events, such as the moment of cadential arrival, suppress further implications (The analysis and cognition of
basic melodic structures, 102).

78Huron, Sweet Anticipation, 157.
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But in the context of Example 2.2, to suggest that the harmonic progression in m. 1

elicits specific expectations for tonic harmony does not presume that listeners are familiar

with the work itself. On the contrary, Jamshed Bharucha and others make a clear distinction

between schematic and veridical expectancies, where schematic expectations represent long-term

stylistic knowledge resulting from extensive exposure with a corpus of music, whereas veridical

expectations refer to explicit prior knowledge about how a particular work goes.79 What is

more, Margulis has suggested that the schematic category itself may represent more than one

variety of expectation.

Specifically, schematic expectations inhabit a continuum from relatively deep to

relatively shallow, where depth relates to availability for direct access (from little to

much availability), susceptibility to change through exposure (from little to much

susceptibility), and scope of application (from more universal to more limited).

Examples of increasingly shallow schematic expectations might be: expectations for

closure; expectations for cadential closure in tonal music; expectations for common

cadence types in music from the classical period; and expectations for common

cadence figures in the music of Mozart, where these expectations are increasingly

available for access, increasingly susceptible to change through exposure to new

pieces within the relevant repertoire, and increasingly limited in scope.80

Depending on the criteria for cadential identification, schematic expectations for cadential

closure would necessarily inhabit much of Margulis’ continuum, with the specificity of the

definition corresponding to the depth of the schematic expectation. Take the perfect authentic

cadence as one example. Conceived generally as a V–I progression, the PAC persisted throughout
79Jamshed J. Bharucha, “Music Cognition and Perceptual Facilitation: A Connectionist Framework,” Music

Perception 5, no. 1 (1987): 4. For further discussion of the expectation types (e.g., conscious, dynamic, etc.), see
Huron, Sweet Anticipation, 219–238.

80Elizabeth Hellmuth Margulis, “A Model of Melodic Expectation,” Music Perception 22, no. 4 (2005): 666.
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much of the history of Western music, and thus, expectations for the resolution of such a

progression would lie on the deep side of the spectrum, where they would be relatively

unconscious, susceptible to very little change through exposure to other musical styles, and

fairly broad in their scope of application. But in a short article published just after the

second world war, Charles Cudworth observed a particular subspecies of the PAC that he

termed the Cadence Galante,81 but which we now call (after Gjerdingen’s nomenclature) the

Cudworth Cadence,82 in which a complete authentic cadential progression supports an octave

stepwise descent in the melody (see Example 2.4). Given the greater specificity of its essential

characteristics, it is unsurprising that the Cudworth cadence was confined to a relatively narrow

period of roughly eighty years at the beginning of the eighteenth century. And thus despite

its frequent appearance in the instrumental works of composers like Pergolesi, Scarlatti, and

Haydn, expectations for this Galant mannerism would necessarily lie on the shallow side of the

schematic spectrum. Gjerdingen articulates this point clearly in Music in the Galant Style:

Because it is based on the statistics of music heard, and on human learning, memory,

and other cognitive abilities, schema theory does not insist on either a canonical

set of schemata (certain patterns and no others), or a canonical set of relationships.

It is descriptive rather than prescriptive. It accepts that connoisseurs may be able

to recognize a large number of highly differentiated schemata with quite specific

implications, while neophytes may apply a coarser, all-purpose set with very general

implications.83

But how do such expectations form? As this quotation demonstrates, the most frequent

answer given by theorists and psychologists infers a causal relationship between a statistically
81Charles L. Cudworth, “Cadence galante: The Story of a Cliché,” The Monthly Musical Record 79 (1949):

176–178.
82Gjerdingen, Music in the Galant style, 146.
83Ibid., 377–378.
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Example 2.4: The Cudworth Cadence, reproduced from Example 1 of Cudworth’s “Cadence
Galante” (1949), 176.

probable event and an expected event. Because cadences appear frequently and their underlying

harmonic and melodic characteristics remain fairly consistent, listeners learn over repeated

exposure to expect these endings. A theory of expectation is therefore appealing to the study of

cadence because it provides a direct, causal link between events on the musical surface and the

schematic knowledge of the listening subject.84

2.2.2 Schema Theory: Remembering Cadences

For the theorists of the Penn School, understanding music is not a matter of dictionary

definitions, of knowing the various rules of musical syntax and grammar explicitly, but is

instead a matter of acquiring the appropriate knowledge of a musical style by virtue of exposure

over the course of one’s life.85 Thus, theoretical terms associated with classical music—perfect

authentic cadences, augmented 6th chords, applied dominants, and the like—are perhaps better

understood, to use Vasili Byros’ expression, as declarative objectifications of procedural or tacit

knowledge.86 Putting it simply, in Meyer’s view, knowledge of a style, and of the replicated

patterns that characterize that style, is usually tacit.87

In fact, Meyer’s insistence on tacit or procedural knowledge to explain complex musical
84Byros makes precisely this point in connection with the Le-Sol-Fi-Sol schema (“Meyer’s Anvil: Revisiting

the Schema Concept,” Music Analysis 31, no. 3 [2012]: 280–281). I attempt to provide experimental evidence of
schematic expectations for cadential closure in Chapters 6 and 8.

85Meyer, Emotion and Meaning in Music, 60–62.
86Byros, “Meyer’s Anvil,” 282.
87Leonard B. Meyer, Style and Music: Theory, History, and Ideology (Philadelphia, PA: University of Philadelphia

Press, 1989), 10.
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behaviors is consistent with theories of learning advanced in cognitive psychology over the

last several decades. As I discussed in Chapter 1, psychologist Arthur Reber proposed a

domain-general learning mechanism called implicit learning to explain how humans learn their

native language(s) during early development.88 In his view, listeners with exposure to complex

syntactic structures like natural language or tonal music acquire mental representations for

the most recurrent patterns over time because the characteristics that apparently define those

patterns co-occur with remarkable frequency. As a result, Reber assumes that listeners form

mental representations that are at least partially isomorphic with any encountered instance. He

calls this the abstractive view of knowledge acquisition, but in studies of category formation,

patterns learned in this way are often called prototypes.

So the formation of schematic expectations for the end of a passage, and thus, the perception

of closure, depends in part on our ability to abstract the correlational structure of classical

music and internalize the most common harmonic-melodic prototypes associated with cadential

closure. It is worth noting, moreover, that it is precisely this ability that explains the remarkable

diversity of such patterns in both Western and non-Western musics more generally. Although

sensory principles have some part to play in determining the psychological stability of an

individual harmonic-melodic event, the replication of quite distinct closing patterns in Joplin’s

rags, Du Fay’s chansons, or indeed, Haydn’s string quartets, testifies to their role as learned

conventions within a particular historical and cultural context. Meyer makes precisely this

point in connection with the primary (or syntactic) parameters that articulate closure.

In any realm of human activity, the degree of “indifference” or interchangeability

of convention is variable. In music, for instance, closure can be a result of the

syntactic stipulation of the primary parameters (melody, harmony, rhythm) and/or

the gradual abatement of the secondary parameters (descending pitches, lower
88Reber, “Implicit Learning of Artificial Grammars”; Reber, “Implicit Learning of Artificial Grammars.”
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dynamics, slowing activity, less complex or dense textures). But the indifference

levels of these closural means are not the same. The indifference level of the

secondary parameters that create what Leonard Ratner has called the “dynamic

curve” is very low... The closure created by a hierarchy of pitch relationships,

however, has a considerable degree of indifference. Tonal systems, in other words,

are unquestionably conventions. Witness the variability of closural progressions in

Western art music from Machaut to, say, Prokofiev—not to mention the profusion

of closing patterns in the music of other cultures.89

All of this is to say that these “learned conventions,” or schemas, form the basis of our tacit

knowledge for music of the classical style. But what constitutes a schema? Most psychologists

note the first modern usage of the term in the work of British psychologist Frederic Bartlett.90

Rather than representing memory as a storehouse containing traces of every past object or

event encountered in everyday life,91 Bartlett suggested that the human mind maintains a few

organized settings of past reactions or experiences that serve as templates or models, against

which present experiences could be compared. According to Bartlett, these schemata are “active,

developing patterns” whose units are serially organized, not simply as individual members

coming one after the other, but as a unitary mass.92

Bartlett’s largely abstractive view of mental representations informed later research on

pattern recognition, and was also influential in Eleanor Rosch’s work on category formation,

89Leonard B. Meyer, “Nature, Nurture, and Convention: The Cadential Six-Four Progression,” in The Spheres
of Music (Chicago: The University of Chicago Press, 2000), 228–229.

90Frederic C. Bartlett, Remembering: A Study in Experimental and Social Psychology (London, United Kingdom:
Cambridge University Press, 1932). David Rumelhart also acknowledges Kant’s use of the term in Critique of
Pure Reason (“The Representation of Knowledge in Memory,” in Schooling and the Acquisition of Knowledge, ed.
Richard C. Anderson, Rand J. Spiro, and William E. Mongague [Hillsdale, NJ: Erlbaum, 1977], 100–101).

91Reber calls this the “distributive (exemplar)” view, in which a stimulus is coded and stored, not on the basis
of patterns and regularities among features, but as a kind of “raw” instance (Implicit Learning and Tacit Knowledge,
121–122).

92Bartlett, Remembering, 201.
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but a genuine schema theory as it was envisioned by Bartlett, one which represented schemata

as active, goal-directed processes that constantly inform and revise perception, would not be

proposed again until the mid 1970s with the work of Marvin Minsky, Roger Schank and Robert

Abelson, and David Rumelhart.93 By that point in time, studies in pattern recognition had

already indicated that participants could recognize prototypical shapes (e.g., square, circle)

despite pronounced distortions, leading researchers to suggest that prototypes result from

central tendencies among a cluster of features.94 Rosch later extended these findings to the study

of natural categories for domains like color, line orientation, and shape, demonstrating over a

series of experiments that participants tend to define a category as a set of variations around its

most clear cases.95

According to Rosch, classification systems like the one presented in Table 2.1 are not

arbitrary products of historical accident, but rather the result of psychological principles of

categorization.96 In her view, category systems established in a particular historical or cultural

context provide maximum information with least cognitive effort while mapping the perceived

stimulus structure as closely as possible. Contrary to the Aristotelian or classical view often

embraced within the Formenlehre tradition, in which categories consist of a set of “criterial” or

essential features, Rosch further claimed that categories tend to be defined in terms of prototypes

93Marvin Minsky, “A Framework for Representing Knowledge,” in The Psychology of Computer Vision, ed.
P. H. Winston (New York: McGraw-Hill, 1975), 211–277; Roger C. Schank and Robert P. Abelson, Scripts, Plans,
Goals and Understanding: An Enquiry into Human Knowledge Structures (Hillsdale, NJ: Erlbaum, 1977); David E.
Rumelhart, “Notes on a Schema for Stories,” in Representation and Understanding: Studies in Cognitive Science, ed.
Daniel G. Bobrow and Allan M. Collins (New York: Academic Press, 1975), 211–236. Rumelhart retained the term
schema in his theory, while Minsky and Schank and Abelson called their concepts frame and script, respectively,
but Alan Baddeley suggests all three studies could be broadly regarded as examples of schema theories (Human
Memory: Theory and Practice [Hillsdale, NJ: Erlbaum, 1990], 336).

94Fred Attneave, “Transfer of Experience with a Class-Schema to Identification-Learning of Patterns and
Shapes,” Journal of Experimental Psychology 54, no. 2 (1957): 81.

95Eleanor R. Heider, “Universals in Color Naming and Memory,” Journal of Experimental Psychology 93, no. 1
(1972): 10–20; Eleanor H. Rosch, “Natural Categories,” Cognitive Psychology 4 (1973): 328–350; Eleanor Rosch,
“Cognitive Reference Points,” Cognitive Psychology 7 (1975): 532–547.

96Eleanor Rosch, “Principles of Categorization,” in Cognition and Categorization, ed. E. Rosch and B. B. Lloyd
(Hillsdale, NJ: Erlbaum, 1978), 251.
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that contain the attributes most representative of items inside and least representative of items

outside the category.97 A category is therefore best understood as a network of overlapping

attributes, where its members are prototypical to the extent that they bear a family resemblance

to—have attributes in common with—other members of the category.98

Gjerdingen has crystallized this point of view by visualizing category membership on

a target, with the prototype at the bull’s-eye. One could assess the degree of inclusiveness

of a potential category member by comparing it to the cluster of attributes characterizing

the category itself: the more attributes it shares, the more prototypical the member, and

thus, the closer to the bull’s-eye.99 For a category whose attributes consist of letters from the

English alphabet, for example, items of the form AD, BCD, CE, and ACD would bear a family

resemblance, since each item has at least one attribute in common with one or more items. But

note here that since none of the four items share any one attribute, the Aristotelian or classical

model would fail to classify these items into the same category.

From a probabilistic point of view, a classical category is comprised of at least one attribute

that appears in every member, so the probability P of that attribute’s occurrence in any new

member is always 1. For category members determined by family resemblance, however, the

representativeness (or cue validity) of even its most representative attribute is potentially less

than 1.100 For the examples above, C and D would receive the highest cue validities because they

appear in three of the four members (P = .75), followed by A, which appears twice (P = .5),

and finally B and E, which appear just once (P = .25).

By basing category membership on the notion of family resemblance, Rosch’s account

exemplifies the probabilistic approach to category formation adopted by cognitive psychologists

97Ibid., 253–254.
98Eleanor Rosch and Carolyn B. Mervis, “Family Resemblances: Studies in the Internal Structure of Categories,”

Cognitive Psychology 7 (1975): 575.
99Gjerdingen, A Classic Turn of Phrase, 94.
100Rosch and Mervis, “Family Resemblances.”
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over the last half century, which Michael Posner has subsequently nicknamed the “Roschian

revolution.”101 Rosch has been quick to point out, however, that to speak of a prototype

for natural semantic categories is simply a convenient grammatical fiction, since prototypes

for natural categories are rarely found in the real world.102 According to her view, category

membership should not be determined using “criterial features” because the prototype itself does

not exist.103 Instead, any particular instance can be judged along a continuum of prototypicality

using the cluster of co-occurring attributes that are most representative (or prototypical) of the

items inside and least representative (or prototypical) of the items outside the category. To be

sure, an essential difference between the formation of categories in cognitive psychology on

the one hand, and the identification of cadences in the Formenlehre tradition on the other, is

precisely that no single attribute defines a given category. There are no essential characteristics for

chairs, refrigerators, or stationwagons in Rosch’s view because such categories almost invariably

include members for which there is no common attribute.

Nevertheless, to abstract the prototype for a given cadence category would not be equivalent

to abstracting the prototype for a shoe or a dalmation. The use of the term ‘category’ is, in

this instance, something of a misnomer. According to Jean Mandler, categorical organization

refers to the cognitive structures, hierarchically arranged, that govern our understanding of the

relationships among superordinate (car, Porsche), subordinate (Porsche, car), and coordinate

classes (Porsche, Lamborghini).104 But whereas categorical organization concerns the level of

inclusiveness of the category, schematic organization refers to the internal spatial or temporal

layout of the individual structure and its manner of activation during perception. Unlike

101Michael I. Posner, “Empirical Studies of Prototypes,” in Noun Classes and Categorization, ed. Colette Craig
(Amsterdam: John Benjamin, 1986), 54.

102Rosch, “Principles of Categorization,” 263.
103Rosch and Mervis, “Family Resemblances,” 574.
104Jean M. Mandler, “Categorical and Schematic Organization in Memory,” in Memory Organization and

Structure, ed. C. Richard Puff (New York, NY: Academic Press, 1979), 262.
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categories, the structure of a schema is not based on class membership, but on the connection of

its individual attributes on the basis of contiguities that have been experienced in space or time.

Modern schema theorists refer to these two schema types as scene and event, respectively.105

Conceived as a temporally organized representation of common sequences of events, an

event schema is thus an inherently dynamic concept that bridges the perceptual and the cognitive.

According to Rumelhart, it should not be viewed as a static definition consisting of a set of more

or less probable features, but rather “as a procedure whose function is to determine whether, and

to what degree, it accounts for the pattern of observations.”106 A schema is thus a kind of mental

script that when activated, affords listeners the capacity to expect potential continuations and

seek out new information from the incoming environment.

It is probably more fitting, then, to imagine an event schema for a cadence as roughly

equivalent to a schema for eating out at a restaurant.107 It consists of a set of temporally

organized events that can be filled in any given instance by values that have greater or lesser

degrees of probability of occurrence attached to them.108 In the restaurant schema, the events

may consist of arriving at the restaurant, being seated at a table, ordering, eating, and paying

the bill. In the cadence schema, the events may consist of a sequence of harmonies, or a

particular bass-soprano counterpoint, or perhaps some combination of the two. Indeed, as part

of its specification, a schema contains the network of interrelationships among its constituent

events.109 Thus, determining whether a given pattern will activate a particular schema is an

inherently probabilistic question, where the typical values of each event within the schema

105Ibid., 260.
106David E. Rumelhart, “Schemata: The Building Blocks of Cognition,” in Theoretical Issues in Reading Com-

prehension, ed. Rand J. Spiro, Bertram C. Bruce, and William F. Brewer (Hillsdale, NJ: Erlbaum, 1980), 39 (my
italics).

107The restaurant script is a well-known example from Schank and Abelson of a ‘script-like’ schema (Scripts,
Plans, Goals and Understanding, 42–46).

108Mandler, “Categorical and Schematic Organization,” 263.
109Rumelhart and Ortony, “The Representation of Knowledge in Memory,” 101.
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will serve as default values that constrain our expectations for possible continuations. And as

Rumelhart notes, these constraints are not all-or-none, requiring that certain events within the

schema have a fixed range of values; they are merely specifications of the normal range of values

for each event in the schema.110

In sum, a ‘schema’ theory is not just a theory about the representation of knowledge in

memory; it is also a theory about how that knowledge is used. To be sure, the allure of schema

theory as it was intended by Bartlett is that at its foundations it places the temporal dimension of

perceptual experience front and center. As a consequence, cognitive psychologists often appeal

to schema theory to explain temporal experiences like reading, storytelling, and music listening.

In these contexts, schemata abstracted from previous experience engender expectations about

events that are likely to occur during perception, thereby orienting attentional processes to

important aspects of the stimulus. As psychologist Jamshed Bharucha explains, “events are

thus expected, implied, erroneously judged to have occurred and rendered more consonant,

to the extent that their mental representations have been activated in anticipation of their

occurrence.”111

Following the emergence of schema theory in the mid 1970s, musical applications in experi-

mental psychology largely centered around mental representations of tonal materials, either in

reference to scales,112 or to the stability relations characterizing tonality more generally—what

Carol Krumhansl termed the “tonal hierarchy.”113 Modifiers like ‘scale’ and ‘tonal’ for musical

schemata were thus somewhat commonplace in the 1980s,114 with cadential formulæ receiving

110Rumelhart, “Schemata,” 36.
111Bharucha, “Music Cognition and Perceptual Facilitation,” 3.
112“Tonal scales constitute one of the most durable families of perceptual-motor schemata that have been

observed in psychology” (W. Jay Dowling, “Scale and Contour: Two Components of a Theory of Memory for
Melodies,” Psychological Review 85, no. 4 [1978]: 345).

113Carol L. Krumhansl and Edward Kessler, “Tracing the Dynamic Changes in Perceived Tonal Organization in
a Spatial Representation of Musical Keys,” Psychological Review 89, no. 4 (1982): 334–368.

114For an example of “scale schemas,” see Dowling and Harwood, Music Cognition, 124–152. For an example of
“tonal schemas,” see Jamshed J. Bharucha, “Anchoring Effects in Music: The Resolution of Dissonance,” Cognitive
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much less attention. It would take another decade—following the schema theories of Leonard

Meyer, Eugene Narmour, and especially Robert Gjerdingen—for experimental psychologists to

suggest that listeners with sufficient exposure to tonal music might possess long-term schematic

representations for cadential formulæ.115

In the hands of the Penn School, examples of the schema concept and its various an-

tecedents obtained greater specificity, applying less to tonal organization as a whole, and more

to the highly replicated patterns characterizing a given style, either at the phrase level (e.g.,

cadences),116 or at more global levels of musical organization (e.g., sonata form).117 To be sure,

with the publication of his second monograph, Music, the Arts, and Ideas, Meyer’s view that

listeners abstract recurrent temporal patterns as complex mental categories anticipated modern

schema theory by nearly a decade:

We perceive, comprehend, and remember our experiences—musical or other—

in terms of more or less learned schematic types. Particular experiences and

objects are comprehended and remembered as deriving from, and deviating from,

schemata which serve as methods for “encoding” and remembering large amounts

of information easily and efficiently.”118

Meyer’s “changing-note archetype” is perhaps the most well-known example of a phrase-level

schema from the writings of the Penn School, in which the harmonic progression I–V–V–I

supports the melodic pattern 1̂–2̂–7̂–1̂;119 Gjerdingen would devote the entirety of his first

Psychology 16, no. 4 (1984): 485–518; Jamshed J. Bharucha, “Event Hierarchies, Tonal Hierarchies, and Assimilation:
A Reply to Deutsch and Dowling,” Journal of Experimental Psychology: General 113, no. 3 (1984): 421–425.

115For example, see Burton Rosner and Eugene Narmour, “Harmonic Closure: Music Theory and Perception,”
Music Perception 9, no. 4 (1992): 383–412.

116Leonard B. Meyer, Music, the Arts, and Ideas (Chicago: The University of Chicago Press, 1967), 287–289;
Meyer, Explaining Music, 213; Meyer, The Spheres of Music, 231; Gjerdingen, A Classic Turn of Phrase, 34.

117Gjerdingen, A Classic Turn of Phrase, 100–104; David Temperley, Review of Music in the Galant Style, by
Robert O. Gjerdingen, Journal of Music Theory 50, no. 2 (2006): 286.

118Meyer, Music, the arts, and ideas, 287.
119Meyer, Explaining Music, 191.
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monograph to this “classic turn of phrase,”120 in his later writings naming it the “Meyer schema”

in honor of his mentor.121 Despite some disagreement as to the role played by presumably

innate physiological and psychological constants in the formation of categories, both Meyer

and Narmour essentially characterized recurrent temporal patterns as stylistic norms abstracted

from experience.122 Thus, in some senses, terms like archetype, style form, and style structure

represent incipient schema theories in their own right.

Following schema theory’s appearance in cognitive psychology, ‘schema’ gradually suc-

ceeded the lexicon of associated terms in the music theory community,123 with Gjerdingen’s

various articles and monographs playing an especially important role. Unlike his predecessors,

Gjerdingen adopted a corpus-analytic framework to examine the musical schemata characteriz-

ing the instrumental repertories of the eighteenth century, thereby bringing into sharper focus

the complex mental categories first proposed by Meyer and Narmour. He explains,

Applications of schema theory to music, as developed by Leonard B. Meyer, Eugene

Narmour, and myself, focus on a listener’s evolving interactions with a stream of

musical events... The actual complexity of those real-time interactions, in which a

listener attempts to relate each new sensation to learned regularities and remembered

exemplars, may go far beyond verbal description. But if one focuses only on highly

probable, idealized successions of events, then it may be possible to present at least

an outline of a modern schema theory as it relates to musical patterns.124

Thus, in what follows I apply Gjerdingen’s schema-theoretic approach to the cadence typologies

120Gjerdingen, A Classic Turn of Phrase. For Gjerdingen, the most common changing-note archetype featured
1̂–2̂–4̂–3̂ in the melody and 1̂–2̂–7̂–1̂ in the bass.

121Gjerdingen, Music in the Galant style, 111–128.
122Meyer, Explaining Music, 213.
123By the end of his career, Meyer used archetype and schema interchangeably to refer to a “replicated pattern

class” (The Spheres of Music, 157).
124Gjerdingen, Music in the Galant style, 373.
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articulated in the Formenlehre tradition to consider whether listeners with sufficient exposure

to classical music have internalized the most common cadence types as a flexible network of

interrelated mental representations, or rival closing schemata.

§2.3 The Cadence Typology: Rival Closing Schemata

2.3.1 Scale-Degree Schemata

Despite the breadth of the term’s application for patterns at both local and global levels of

musical organization, Gjerdingen generally reserves the schema concept for patterns whose

initial and terminal events take place within the limits of short-term memory (i.e., around 6

seconds).125 Schemata as Gjerdingen conceives them are thus “mid-size” parsings of the musical

structure residing at the phrase level.126 In his view, each schema is a cluster of constituent

features and featural correlations whose manner of representation determines the historical

specificity of the pattern.127 He notes, for example, that standard music notation overspecifies a

prototype’s constituent features, since our mental representation of a given category is likely in

no particular key or meter and may be quite general regarding the spacing of the voices, their

timbres, and so on.128 On the other hand, prototypes defined only by harmonic progressions

fail to specify features relating to melodic organization that undoubtedly play an important role

in perception and memory, resulting in rather coarse-grained schemata that likely transcend

the period of interest.129 Thus, Gjerdingen’s representation scheme occupies a middle ground,

representing each prototype as a complex correlation of melodic, contrapuntal, harmonic, and
125Gjerdingen, A Classic Turn of Phrase, 64. Simply put, listeners are far less likely to integrate sequential events

into a stable pattern if they exceed this interval (Justin London, Hearing in Time: Psychological Aspects of Musical
Meter [New York: Oxford University Press, 2004], 27).

126Gjerdingen, A Classic Turn of Phrase, 266; Gjerdingen, Music in the Galant style, 21.
127Robert O. Gjerdingen, “Courtly Behaviors,” Music Perception 13, no. 3 (1996): 381.
128Gjerdingen, Music in the Galant style, 453.
129Gjerdingen, “Courtly Behaviors,” 380.
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metrical features.130

Each prototype represents individual events as gray lozenges containing a metric position

(strong, weak, blank), a scale degree in the melody, a link to the next core melodic tone (up,

down, same), a sonority (presented using figured bass notation), a scale degree in the bass, and a

link to the next core bass tone. In other words, each prototype represents those features listeners

are most likely to learn and remember while preserving the two-voice framework characterizing

what Leonard Ratner once called the “classic texture.”131 Given his devotion to contrapuntal

organization over harmonic progression and the emphasis he places on scale-degree patterns

specifically, we might prefer the expression scale-degree schemas.132

Figure 2.2 presents Gjerdingen’s Do-Re-Mi schema, which consists of a stepwise ascent from

1̂ to 3̂ in the melody and a lower-neighbor motion prolonging 1̂ in the bass. At first glance,

this representation scheme conjures forth homorhythmic realizations of the prototype, but

Gjerdingen distinguishes here between the lozenge-like events represented in Figure 2.2 and

their corresponding stages, which refer to the temporal unfolding of those events within a given

exemplar of the schema. In other words, the events of the Do-Re-Mi function for Gjerdingen

either as points of reference or signs of punctuation that may be elaborated or prolonged within

the stages of the schema.133 In this regard, Gjerdingen’s event and stage recall Narmour’s style

form and style structure, the former representing those seemingly time-independent patterns that

recur with statistically significant frequency (e.g., triads and seventh chords), the latter ascribing

130Gjerdingen, A Classic Turn of Phrase, 132.
131“Classic texture maintained a tradition that was established in the early baroque style, circa 1600—the polarity

of treble and bass. The treble carried the leading melodic line, supported by a bass part that set the harmony
and provided rhythmic punctuation; middle voices completed the texture with chord tones” (Ratner, Classic
Music, 108). In a review of Music in the Galant Style, David Temperley notes that there is a Schenkerian aspect
to Gjerdingen’s approach, in that his schemata consist only of “core” tones of the outer-voice melodies. In some
senses, Gjerdingen’s schemata are essentially middle-ground voice-leading patterns (Review of Music in the Galant
Style, 288).

132This is also the term Temperley prefers (Ibid., 278).
133Gjerdingen, Music in the Galant style, 21–22.
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Figure 2.2: The Do-Re-Mi schema prototype, represented using Gjerdingen’s notation (2007).

time-dependent function to those patterns, representing how they behave in real music.134

In many respects, Gjerdingen’s schemata and Caplin’s cadence categories have a great deal in

common. Both theories view the compendium of schematic or categorical types as relatively

short time spans consisting of recurrent temporal patterns, and both theories define these types

according to their most representative features. That is, both theories identify schematic or

cadential characteristics on the basis of their frequency of occurrence (and/or co-occurrence)

within the style.

And yet, as I mentioned in the previous section, many scholars within the Formenlehre

tradition also determine the cadential status of a given exemplar by appealing to temporal

context. A cadence, they might argue, is a point of arrival, or time point, which marks the

conclusion of an ongoing phrase-structural process. In other words, a cadence is a recurrent

134See especially chapter 11 of Eugene Narmour, Beyond Schenkerism (Chicago: The University of Chicago
Press, 1977), and Gjerdingen, A Classic Turn of Phrase, 41–42.
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pattern that serves a specific temporal function within a phrase or theme; it is an end of some

sort. According to this point of view, mental representations for the cadence categories from

Caplin’s typology might also contain a functional attribute characterizing the temporal context

in which their corresponding exemplars appear. To be sure, as both Rumelhart and Rosch point

out, categories are very often characterized by the function of the objects or events they contain.

Birds, for example, have perceptual attributes like beaks and feathers, and functional attributes

like foraging and flight.135

Although Gjerdingen suggests that “formal location, especially in a late eighteenth- or early

nineteenth-century repertory, has a wider range of variation and lower index of criticality than

does basic harmonic progression or melodic design,”136 the appeal to temporal context is still

evident in all of the schemata he describes. From a small sample of some three hundred pairings

of schemata, for example, he demonstrates the range of possible schema successions, noting

that successful composers possessed “strategic knowledge of how to arrange the schemata to

achieve certain aesthetic effects and to fulfill the requirements of particular moments in the

course of specific musical genres.”137 The Romanesca, Do-Re-Mi, Meyer, and Sol-Fa-Mi all serve as

“opening gambits,” for example, while the Prinner functions as an especially common “riposte.”

Using his theory, one could traverse the permitted successions of a prototypical composition,

imagining each schema as a sign-post along the formal trajectory: the Indugio is a “teasing delay”

before a half cadence, the Quiescenza prolongs tonic harmony following an especially important

cadence, the Fonte appears after the double bar in minuets or short movements, and so forth.

From this perspective, a cadence is not just any schema; it is a closing schema. Certainly

135Again, from the Roschian perspective, it is worth noting that none of these attributes defines the category
‘bird.’ Many extinct non-bird dinosaur species had feathers and beaks, for example, while extant bird species like
ostriches and penguins do not fly. Certainly some of these characteristics are more representative of the category
than others—all birds have feathers, but not all birds fly—but no attribute perfectly distinguishes birds from other
categories.

136Robert O. Gjerdingen, “Defining a Prototypical Utterance,” Psychomusicology 10, no. 2 (1991): 136.
137Gjerdingen, Music in the Galant style, 373.
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the exemplars of the perfect authentic cadence—like the exemplars of any other schema in

Gjerdingen’s theory—do not always appear at the corresponding temporal position in a phrase

or theme, as in Example 2.2; in such cases, the representativeness or criticality of the attribute

decreases with each counterexample. But the point here is that exemplars of closing schemata

appear with sufficient frequency at the ends of phrases and themes to justify the inclusion

of functional attributes like temporal context among the network of perceptual attributes

characterizing the schema. Gjerdingen makes precisely this point in relation to the Fonte,

noting that the many relational features encapsulated in his representation scheme “contribute

to defining the fonte prototype, as does its typical location immediately following the repeat

sign.”138 Thus, if the Romanesca is a particularly frequent opening gesture, we can say at the very

least that the schemas reflected in Caplin’s typology serve to close off schema successions, with

the terminal event of the cadence determining the perceptual boundary both for the schema

itself, and more importantly, for the chain of schemata it follows.

Gjerdingen’s scale-degree schemata and Caplin’s cadence categories differ in another respect.

Recall from the earlier section that for many theorists in the Formenlehre tradition, the final

events of the cadence constitute its essential characteristics. A pattern that does not include V–I

in root position and 1̂ in the soprano at the cadential arrival is not a perfect authentic cadence,

they might argue. And yet for schema theorists, no feature defines a given category. In their

view, a category represents the complex network of features shared by its members, with some

features appearing in more members than others. It would seem that the Aristotelian or classical

model and the Roschian or probabilistic approach are irreconcilable.

But in fact, for temporal formulæ like cadences, the apparent necessity of a category’s

final events is a common mathematical property of temporal sequences in general, one which

mathematicians suggest is consistent with a Markov process. Put simply, if we imagine a system

138Gjerdingen, “Defining a Prototypical Utterance,” 136.
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that produces a sequence of symbols according to certain probabilities, called a stochastic process,

a Markov process is a special case in which the probability of each event depends only on the

previous events in the sequence.139 And as Meyer explains, a common property of Markov

processes is that the probabilities increase as the sequence unfolds.

If music is a Markoff process, it would appear that as a musical event (be it a phrase,

a theme, or a whole work) unfolds and the probability of a particular conclusion

increases, uncertainty, information, and meaning will necessarily decrease. And in

a closed physical system where the Markoff process operates this is just what does

occur—probability tends to increase.140

Accordingly, one could surmise that the criticality or representativeness of each event

increases as a schema unfolds, but particularly so for closing schemata, where the final event

of the schema also serves as the final event of a much larger phrase-structural process. Thus,

for an opening gambit like the Do-Re-Mi, the terminal event Mi is presumably more critical

or representative of the schema than the initial events Do and Re, but probably less critical

or representative than the final event of a closing schema like the perfect authentic cadence.

Again, if music is a Markov process, uncertainty is “built into” the Do-Re-Mi because it appears

at the beginning of a piece or section, where the relationships between attributes like pitch,

rhythm, and meter have yet to be established, but this systemic uncertainty naturally decreases

as the piece or section unfolds,141 with the patterns appearing at its end serving as the most

predictable, probabilistic, specifically envisaged formulæ in all of tonal music.142

139Claude Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal 27, no. 3 (1948):
385.

140Leonard B. Meyer, “Meaning in Music and Information Theory,” The Journal of Aesthetics and Art Criticism
15, no. 4 (1957): 419.

141Ibid.
142Meyer, Emotion and Meaning in Music, 50; Huron, Sweet Anticipation, 154.
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Thus, it should come as no surprise that the essentialist view appears so frequently in the

Formenlehre tradition, since listeners are far more likely to expect terminal events—both for

the schemas themselves, and for the larger phrase-structural processes that subsume them—if

they are highly probable, indeed formulaic. From this point of view, schematic expectations

amount to probabilistic inferences, whereby frequently (co-)occurring events on the musical

surface activate a given schema from memory, allowing listeners to generate expectations for

the most probable continuations in prospect. The subsequent realization of those expectations

in retrospect contributes to the perception of closure, and perhaps more importantly, reinforces

the schema in memory.143

2.3.2 Cadential Strength

To this point I have said very little about the closural strength of the terminal events of the

closing schema. If, as Schoenberg suggests, cadential formulæ are satisfying to the extent that

they fulfill a stylistic expectation,144 the perceived strength of the phrase-structural boundary

might correspond with the strength of the expectations it generates. In other words, from

the probabilistic view of category formation just described, the strength and specificity of

our schematic expectations formed in prospect and their subsequent realization in retrospect

contributes to the perception of cadential strength, where the most expected (i.e., probable)

endings are also the most complete or closed.

We might hypothesize, for example, that the frequent co-occurrence of the many features in

the perfect authentic cadence make it a prime candidate for schematic representation in long-

143Musicologists and theorists sometimes note the correspondence between expectation and probability. Barbara
Barry suggests, for example, that “implications of closure are based on the probability of certain expected
harmonic, textural, or dynamic gestures, either as learned procedures or remembered experiences of similar
configurations”(“In Search of an Ending: Reframing Mahler’s Contexts of Closure,” Journal of Musicological
Research 26, no. 1 [2007]: 57).

144Dunsby, “Schoenberg on Cadence,” 125.
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term memory. Indeed, for those with sufficient exposure to classical music, the PAC category

should serve as the quintessential event schema for the ends of phrases, themes, and larger

sections, with the specificity of the mental representation reflected in the strength and specificity

of the schematic expectations it generates. For listeners with little experience in classical music, a

schema for the perfect authentic cadence may only consist of the most representative (terminal)

events, resulting in relatively weak and vague expectations for exemplars heard in prospect.

And yet for highly trained (or experienced) listeners, events in the initial stages of the schema,

though they are less representative than the events appearing in its terminal stages, nevertheless

serve as sign-posts for the impending cadential end, resulting in stronger and more specific

expectations for the final event(s) of the schema.

This is especially true of perfect authentic cadences closing larger sections, such as at the

end of the exposition or recapitulation in sonata-form movements. Cadences in these formal

locations often feature an expanded cadential progression (ECP), whereby the constituent events

of the schema support an entire phrase (i.e., typically at least four measures of music).145 In

such cases, the initial stages of the ECP alert the listener to the impending cadential arrival.

Caplin notes, for example, that the ECP is typically composed of a four-harmony formula:

I6, ii6 (or IV), V, and I, with the initial I6 serving as a “conventionalized sign” or cue for the

onset of the progression.146 Additionally, the dominant stage often features a cadential six-four

that both signals and significantly delays closure “from the phrase level to the highest level of

structure.”147 Regarding its delay function in the classical style, Caplin notes that dominant

expansion creates a “sense of heightened drama,”148 while Meyer suggests that the durational

145Caplin, Classical Form, 254.
146William E. Caplin, “The "Expanded Cadential Progression": A Category for the Analysis of Classical Form,”

Journal of Musicological Research 7 (1987): 218.
147Meyer, The Spheres of Music, 245–247.
148Caplin, “"Expanded Cadential Progression",” 227.
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emphasis indicates that “high-level closure [is] at hand.”149 Regarding its sign function, Leonard

Ratner remarks in Harmony that “when the [six-four chord] sounds, we receive a clear and

strong impression that a cadence will be made. This chord is the signal for an authentic

cadence.”150 Schmalfeldt agrees, suggesting that “the six-four embellishment of the dominant

transmits the unmistakable message that a cadence is underway.”151 Schoenberg relates this sign

function to the conventionality of the progression and its potential to generate expectations,

remarking that “the cadential six-four draws attention to itself and arouses the expectation of a

certain sequel. It amounts to a certain cliché.”152

In sum, the perfect authentic cadence is a prospective schema, in that the initial events serve to

activate the corresponding mental representation before the final events take place. What is more,

because the terminal events for closing schemata like the perfect authentic cadence are the most

probabilistic, specifically envisaged, and so on, perhaps far more so than the terminal events for

other schemata like the Do-Re-Mi, composers very often combat the tendency toward maximum

certainty by introducing designed uncertainty at the precise moment of cadential arrival.153

Meyer suggests, for example, that “departures from or delays in the normally expected course

of musical events will be most effective where that course is most specifically and precisely

envisaged, deviations will be most effective where the pattern is most complete.”154 Hence, it

is precisely their position at the ends of phrases and themes that makes deviations of closing

schemata so likely. For Gjerdingen, cadences from the deceptive, evaded, abandoned, and even

149Meyer, The Spheres of Music, 245.
150Leonard G. Ratner, Harmony: Structure and Style (New York: McGraw-Hill, 1962), 110.
151Schmalfeldt, “Cadential Processes,” 5.
152Schoenberg, Harmonielehre, 141.
153Meyer, “Meaning in Music and Information Theory,” 419.
154Meyer, Emotion and Meaning in Music, 50. C.P.E. Bach even relates these deviations to cadential gestures

explicitly, noting that “embellishments are best applied to those places where a melody is taking shape, as it were,
or where its partial, if not complete, meaning or sense has been revealed. Hence with regard to the latter case, they
are found chiefly at half or full closes, caesuræ, and fermatæ”(Essay on the True Art of Playing Keyboard Instruments,
trans. William Mitchell [New York: W. W. Norton & Co., Inc., 1949], 84).
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imperfect authentic categories in Caplin’s typology would therefore represent rival closing

schemata, since they share initial events with the perfect authentic cadence but later diverge,

typically at the precise moment of cadential arrival.155 They are, in other words, primarily

retrospective schemata because their activation very likely takes place after the final events have

occurred.

This point does not preclude the possibility that listeners may expect an imperfect authentic

cadence, or a deceptive cadence, or even an evaded cadence at a particular moment in the

phrase-structural process—if listeners with considerable experience in the classical style have

internalized the most common cadence types as a flexible network of interrelated mental

representations, they might expect more than one potential continuation at any given moment.

But the potential for events on the musical surface to activate any one of these rival closing

schemata in prospect is not equally likely. Or put another way, the strength of the activation for

each schema reflects the frequency of occurrence of the corresponding final event(s). Presumably

the perfect authentic cadence serves as a schematic default for many (if not all) of the exemplars

encountered in the classical style because its final events appear more frequently than those in

the other categories, but listeners might also expect one (or more) of the other cadential types,

albeit more weakly.156

But what about the other closing schemata? Could a mental representation of the imperfect

authentic cadence or the half cadence serve as the default prospective schema within the network?

That is, upon hearing the initial events from a given exemplar, could listeners expect the terminal

event(s) from one of the other cadence categories, and not from the perfect authentic cadence?

Recall that in Caplin’s theory, the deceptive, evaded, and abandoned cadence categories initially

155Gjerdingen, A Classic Turn of Phrase, 62.
156Just how many continuations we might expect at any given moment is difficult to determine. As Narmour

notes, “we need to know more about memory—or rather about forgetting, since the listener can carry only so many
implicative “paths” in his head. We need to formulate some rules of memory because an analysis that enumerates
every possible connection between tones can be confusing” (Beyond Schenkerism, 156).
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promise an authentic cadence, but fundamentally deviate from the cadential formula, either at

the moment of cadential arrival (DC, EV), or sometime earlier (AB). For this reason, exemplars

of the DC, EV, and AB categories presumably activate a mental representation of the perfect

authentic cadence in prospect and only serve as rival closing schemata in retrospect. For the

other genuine categories (IAC, HC), however, it is conceivable that the initial events within

Gjerdingen’s representation scheme could imply the terminal event(s), resulting in a network of

cadential schemata in which the genuine categories serve as schematic defaults in prospect. We

might call this the Genuine Schemas model.

And yet because the terminal events of the perfect authentic cadence are likely the most

probabilistic, many scholars seem to reject the view that all of the genuine categories may

serve as default prospective schemata under the assumption that the initial events of every

encountered exemplar—whether they form an imperfect authentic cadence, a half cadence, or

any other ending formula in toto—most strongly activate the same essential prototype: the

perfect authentic cadence. We might call this the 1-schema model. According to this view, the

PAC schema allows listeners to generate expectations concerning potential continuations, and so

any deviation on the musical surface naturally results in a violation of listener expectations, and

thus would be experienced as a decrease in the perceived strength of a given excerpt. Deviations

from the expected final event thereby result in closing schemata of diminished strength. As a

consequence, the half cadence represents the weakest cadential category; it is marked not by

a deviation among the many events at cadential arrival, but rather by their absence. The half

cadence is, as the term suggests, an incomplete cadence.

The 1-schema model of cadential strength has received some support from music theorists.

Lamenting that “a well-defined hierarchical theory of cadence-types has simply not become

established,” Schmalfeldt outlined the five cadential types for which the goal event closes a
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preceding process, which she termed distinct closure,157 and of these types, she regarded the half

cadence as weakest.158 Citing Schmalfeldt’s hierarchical model of cadential closure, Edward

Latham also recently proposed a model that identifies and subsequently weights the criteria

deemed necessary for establishing cadential closure on a 10-point scale.159 He assigns 5 points

to tonic harmony and 5 points to the preceding dominant, and he derives these scores from the

scale-degrees present in the bass (1.5) and soprano (0.5), from whether the sonority is in root

position (1.5), and finally from the presence of particular chord members (0.5) and a contextual

feature: whether each sonority serves as a harmonic and melodic goal (1.0). Latham then scores

each of Schmalfeldt’s cadential types and places them along the scale. According to his criteria,

the PAC category receives between 9 and 10 points (depending on whether the cadential tonic

is elided), followed by IAC (8.5–9.5), DC (6.5–8.5), EV (3.5–8.5), and finally HC (3.5–5.0),

positioned near the bottom of the scale. His model therefore conceptualizes a half cadence as

an incomplete authentic cadence.

Thus, whether a half-cadential formula serves as an incomplete authentic cadence within the

1-schema model on the one hand, or as a prospective schematic default in the Genuine Schemas

model on the other, depends on whether listeners generate strong and specific expectations

for the terminal events of the pattern. Caplin has suggested, for example, that the dominant,

merely by virtue of its harmonic-melodic content, can represent a harmonic end: “In the

half-cadential progression, the dominant itself becomes the goal harmony and so occupies the

ultimate position. To be sure, this dominant usually resolves to tonic, one that normally initiates

a new harmonic progression, but within the boundaries of the half-cadential progression itself,

157Schmalfeldt, “Cadential Processes,” 11–12.
158ibid., 7. At no point, however, does Schmalfeldt explicitly compare the strength of the half cadence with

modifications of the perfect authentic cadence, such as the deceptive cadence. Thus her view of the half cadence
within the general hierarchy of cadential categories remains unclear.

159Latham, “Drei Nebensonnen,” 308.
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the dominant possesses enough stability to represent a harmonic end.”160 The implication

here is that stability occupies a continuum, whereby the ultimate dominant in a half-cadential

progression is less stable than the ultimate tonic in an authentic cadential progression because

the half-cadential dominant—or indeed any dominant—implies further continuation to tonic

harmony. And yet since this implication is presumably quite weak, that same ultimate dominant

is still more stable than the penultimate dominant in an authentic cadential progression.

But perhaps the primary mechanism determining the stability of a given terminal event is

not how strongly it implies continuation to further events, but rather how strongly it is implied

by preceding events. In the Genuine Schemas model, the half-cadential dominant may imply

further continuation, but its stability is determined at least in part by previous implications.

In other words, for the IAC and HC categories, it is conceivable that the initial events within

Gjerdingen’s representation scheme could imply the terminal event(s), resulting in default

prospective schemata for all of the genuine cadence categories.

Like the DC and EV categories, the IAC category shares initial events with the PAC category

but diverges at the expected moment of cadential arrival, in this case by concluding with 3̂ in

the soprano. Thus, determining if the PAC category serves as the default prospective schema

for a given imperfect authentic cadence depends on whether listeners generate expectations for

3̂ at the cadential arrival. Presumably tonal melodies featuring scale degrees like 2̂ or 7̂ proceed

most frequently to 1̂; indeed, corpus studies generally bear this claim out.161 In such cases,

resolutions to 3̂ are less common, and thus, less expected. On the other hand, 4̂ proceeds more

often to 3̂ than to 1̂, particularly when it serves as a dissonant seventh above 5̂ in the bass, as is

often the case in cadential formulæ. In other words, we might conclude that cadential melodies

that descend by step to 3̂ are more likely to imply the terminal scale degree in prospect, as does

160Caplin, Classical Form, 29 (emphasis in original).
161For example, see Huron, Sweet Anticipation, 158.
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Example 2.5a. Readers familiar with Gjerdingen’s schemata will note the correspondence here

between imperfect authentic cadences that descend to 3̂ and the Prinner schema, which consists

of a stepwise descending tetrachord in the outer voices: from 6̂ to 3̂ in the soprano, and from 4̂

to 1̂ in the bass.162 In this case, however, the bass presents the standard 4̂–5̂–1̂ cadential formula,

with the stepwise descent from 4̂ to 1̂ appearing instead in the alto voice. In addition to the

descending tetrachord, the soprano features a cadential trill above the penultimate dominant,

another common sign-post for the impending cadential end. Thus, given the stepwise descent

to 3̂, the cadential trill, and the movement’s andante tempo marking, it as at least conceivable

that listeners who are familiar with the IAC schema would have sufficient time to generate

expectations for 3̂ before the moment of cadential arrival in m. 8.

In Example 2.5b, however, Mozart deviates from the expected PAC schema only at the

moment of cadential arrival, with the melodic descent implying 1̂ and not 3̂. Here, the cadential

progression appears to support an extended Do-Si-Do pattern in the melody, but when the

cadential six-four resolves to a root-position dominant seventh, 2̂ replaces 7̂ in the soprano to

effect an upward resolving suspension to 3̂ at the downbeat of m. 36, with a chromatic passing

tone inserted in between.163 Nevertheless, the sudden appearance of 2̂ at the end of m. 35 does

not in itself imply the upward resolving suspension that follows; we could easily re-interpret 2̂

within a broader stepwise descent from 5̂ to 1̂ beginning in m. 34, with the Do-Si-Do pattern

relegated to an inner voice. Thus, mm. 34–35 imply a perfect authentic cadence, with the

events at the cadential arrival only activating the IAC schema in retrospect. To be sure, as

Markus Neuwirth points out, analysts sometimes interpret cadences like this one as melodically

162Exemplars of the Prinner sometimes insert 5̂ between 2̂ and 1̂ in the bass, suggesting a kind of Prinner IAC.
See, for example, Mozart’s K. 282, i, mm. 2–4 (Appendix B, #12). For a discussion of the Prinner’s cadential
implications, see William E. Caplin, “Harmony and Cadence in Gjerdingen’s "Prinner",” ed. Markus Neuwirth
and Pieter Bergé (Leuven: Leuven University Press, 2015), 17–57.

163Also, see Mozart, K. 533/iii, m. 26.
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Example 2.5: a) Prospective IAC: Mozart, K. 281, ii, mm. 4–8. b) Melodic Deviation IAC:
Mozart, K. 498a, iv, mm. 32–36.

deceptive deviations of the perfect authentic cadence.164

Whether the HC category may serve as the default prospective schema is more difficult to

determine, since the terminal events of the HC schema would seem to imply a continuation

that simply never materializes (see Figure 2.3). But given the prevalence of half-cadential

progressions that tonicize (or strongly point to) the dominant, either by inserting �4̂ or �6̂

in the bass, it seems plausible that listeners might expect the events at cadential arrival in

half-cadential contexts. Shown in Example 2.6, the half cadence closing the transition in the

first movement of Mozart’s K. 332 features an expanded cadential progression that tonicizes

the dominant with an augmented sixth chord in m. 35. As I point out later in Chapter 5, the

soprano clausula 1̂–�4̂–5̂ featured here is especially characteristic of a particular sub-type of the

164For contemporaneous accounts of cadential deviations featuring melodic deceptions, see Neuwirth, “Fuggir
la cadenza, or the Art of Avoiding Cadential Closure,” 117–130.
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Example 2.6: Prospective HC: Mozart, K. 332, i, mm. 31–37.

half cadence that I call the Expanding Do-Fi-Sol, in which the (�)6̂–5̂ bass clausula supports an

upper register 1̂ in the soprano that leaps down to �4̂ before resolving to 5̂. And since the events

constituting this particular schema rarely precede the terminal events of a perfect authentic

cadence, listeners with exposure to this formula might expect the events at the cadential arrival

in m. 37, and not the terminal events of a perfect authentic cadence in the moments that follow.

Thus, while it is possible that listeners may expect a tonic resolution that simply never

appears, both because half cadences often share initial events—in some cases the entire pattern—

with exemplars of the PAC schema, and because half cadential formulæ are generally less

common than their perfect authentic counterparts, it is also conceivable that listeners may

generate expectations in prospect for exemplars from the PAC, IAC, and HC categories. What

is more, recall that these categories receive special status in Caplin’s theory as “the only genuine

cadences... in the classical style” because they are the only categories that can achieve thematic

closure.165 In light of the preceding discussion, we might further suggest that composers reserved

the PAC, IAC, and HC categories for phrases, themes, and larger sections at least in part because

these categories allow listeners to generate expectations for the terminal events of the phrases,

themes, or sections they close. That is, they are genuine because they have the potential to serve

as the schematic default in prospect.

165Caplin, Classical Form, 43.
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2.3.3 Terminal Events as Perceptual Boundaries

In this chapter, I have suggested that listeners who are familiar with classical music have

internalized the most common cadence categories as a flexible network of rival closing schemata.

During music listening, the activation of this network in prospect—and of the individual closing

schemata contained within—results in the formation of expectations for the terminal events of

the cadence, the fulfilment of which in retrospect serves to close off both the schema itself and

the larger phrase-structural process that subsumes it.

But just how does one “close off” a closing schema, or indeed any schema? According to

Gjerdingen, nothing links the events of a schema together except “the statistics of their common

co-occurrence.”166 A schema is therefore closed or complete only when the probability between

adjacent events is comparatively low. One could imagine a probability curve that might visualize

what he is suggesting, where a sudden decrease in probability from one event to the next closes

off the schema.

By way of example, consider the prototype for the converging half cadence shown in Figure

2.3. In the converging sub-type, the bass ascends by step to 5̂, and the soprano descends by

step to 2̂ or 7̂.167 For Gjerdingen, listeners internalize a schema like this one as a consequence

of the frequent co-occurrence of the cluster of features presented in the first three events. If,

however, a fourth event were to appear quite frequently—comprised of, say, tonic harmony in

root position and 1̂ in the soprano—listeners would presumably internalize a 4-event schema,

166Gjerdingen, Music in the Galant style, 374.
167In Gjerdingen’s theory, the converging cadence also includes an initial tonic event with 3̂ in the outer voices

(ibid., 160). Nathan Martin and Julie Pedneault-Deslauriers did not include the initial tonic event in a recent
corpus study of this sub-type, however (Martin and Pedneault-Deslauriers, “The Mozartean Half Cadence,”
186–189). What is more, in my own corpus (presented in Part II), only 15 of the 45 half cadences from the
converging sub-type feature an initial tonic event. As a consequence, I have elected to exclude the initial tonic
from this prototype. This is not to say that events other than those shown in the prototype—an initial tonic with
3̂ in the bass, a cadential six-four, etc.—never appear, only that the features presented in Figure 2.3 are the most
representative.
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Figure 2.3: The three events of the converging cadence schema prototype followed by a fourth
event, represented using Gjerdingen’s notation (2007).

and not the converging sub-type from Figure 2.3. The distinction here thus rests on the final

event of the schema.

What then, are we to make of the two cadences in Example 2.7 from the opening movement

of Haydn’s Op. 76, No. 2? The passage preceding the second cadence serves as a near verbatim

repetition of the passage preceding the first; alterations of the original cadence appear in green.

And yet, Example 2.7a culminates in a half cadence at the end of the transition, while Example

2.7b concludes with a perfect authentic cadence in the subordinate theme. How can the passages

feature different schemata at their ends?

Since the cadence categories from Caplin’s typology represent rival closing schemata—they

share initial events but later diverge—a given exemplar of the HC schema may nest within the

PAC schema.168 Recall that I referred to such cases as incomplete authentic cadences. And yet

168Although schemata are generally mid-level parsings of the musical surface, Gjerdingen notes the potential for
“low-level” schemata to nest within “high-level” schemata. Simple overlaps (or elisions) are also possible, where one
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we might argue that the second chromatic event of the converging sub-type appears more often

in half cadences than in the other categories because it serves to tonicize the dominant, thereby

strengthening our expectations for the terminal events of the half cadence such that the HC

schema would become the default mental representation during listening.

In this case, Example 2.7a is a somewhat unconventional member of the converging sub-type.

The cadential bass line appears in the cello part in m. 18 at the end of the “fifths” motive (for

which this quartet was named), but the superposition of the end of the fifths motive with the

beginning of the cadential progression has altered the normative cadential bass line from 4̂–]4̂–5̂

to 2̂–5̂. Nevertheless, the cadential melody exemplifies a particularly common variant of the

converging sub-type Gjerdingen has called the “High 6̂ Drop”, which descends from 6̂ to 7̂ to

signal the approaching close.169 We might therefore hypothesize that the melody from Example

2.7a could activate a mental representation of the converging sub-type, thereby alerting listeners

to the terminal events in m. 19; the subsequent realization of those schematic expectations then

contributes to the perception of closure and reinforces the schema in memory.

When the passage returns essentially unchanged in m. 45, our schematic expectations would

presumably also remain unchanged.170 Indeed, by repeating the passage almost verbatim, Haydn

likely reinforces our expectations for the terminal events of the HC schema. And yet rather

than conclude the second passage with a converging half cadence in m. 49, Haydn closes the

repetition with a perfect authentic cadence in m. 50. Thus, alterations of the musical materials

in m. 49 are wholly unexpected; listeners expecting the converging sub-type would therefore

either nest the HC schema within the PAC schema or group the events at the downbeat of m.

50 forward with the subsequent process. But if schemata like the converging sub-type amount

schema begins near the end of another schema (Music in the Galant style, 375–376).
169Ibid., 162.
170David Huron distinguishes schematic expectations arising from long-term memory from those dynamic

expectations arising from short-term memories of brief—even single—exposures (Sweet Anticipation, 227). From
this point of view, Example 2.7a engenders both types of expectation.
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to probabilistic inferences about frequently recurring patterns, why would listeners link the

event at the downbeat of m. 50 with the converging sub-type?

By considering the influence of a network of rival event schemata on the perception of

passages like this one, my emphasis has been decidedly top-down. To be sure, the epigraph

with which I began expresses the view that long-term memory plays an essential role in the

perception of tonal cadences. To that end, I reviewed the substantial body of evidence from

scholars in the learning sciences that humans internalize the many recurrent patterns they

encounter in the external environment, suggesting that the perception of closure in music of the

classical style depends in part on such non-verbal, implicit knowledge. Nevertheless, bottom-up

sensory processes also play an important role in the perception of boundaries and the formation

of event schemata.

If schematic expectations amount to probabilistic inferences, as Gjerdingen suggests, Figure

2.3 indicates that the converging schema results from the frequent co-occurrence of the first

three events and the rare co-occurrence of any surrounding events. This schema is therefore

closed or complete when the probability between events three and four is comparatively low.

And yet the exemplar in Example 2.7b highlights the role played by bottom-up principles of

segmental grouping on the apparent link between events three and four.

In Example 2.7a, the resolution of the cadential six-four is accompanied by a quarter-note

caesura in the lower three parts, with the first violin presenting a melodic lead-in to the next

measure. This decisive rhythmic break thus reinforces the perceptual boundary resulting from

the realization of expectations for the terminal events of the converging sub-type. In Example

2.7b, however, the caesura is replaced by continuous surface activity and the appearance of

a dissonant seventh above the cadential dominant in the second violin. What is more, the

first violin regains 2̂ in preparation for the tonic resolution that follows. Thus, the events

following the cadential six-four simultaneously violate schematic expectations for the terminal
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events of the converging sub-type while strengthening the syntactic link between the expected

terminal dominant and the subsequent events at the downbeat of m. 50, thereby forcing

listeners to abandon the schematic default—the HC schema—in favor of an increasingly likely

alternative—the PAC schema.

The point here is that the perception of boundaries is determined not only by the fulfillment

or violation of expectations for the terminal events of the previously activated schema (i.e., by

top-down, prospective processes), but also by the parameters at and immediately following those

events that serve to reinforce or weaken the boundary percept after the fact (i.e., by bottom-

up, retrospective processes). Psychologists Christopher A. Kurby and Jeffrey M. Zacks have

summarized this view as event segmentation theory, whereby perceivers form working memory

representations of ‘what is happening now,’ called event models, and low-level discontinuities

in the stimulus elicit prediction errors that force the perceptual system to update the model

and segment activity into discrete events.171 In the context of music, such discontinuities take

many forms: sudden changes in texture, surface activity, rhythmic duration, dynamics, timbre,

pitch, register, and so on. And when the many parameters effecting segmental grouping act

together to create closure at a particular point in a work, as they do in Example 2.7a, parametric

congruence obtains.

This view of closure matters all the more when we consider that the terminal event(s) for

closing schemata like the converging sub-type very often determine the perceptual boundary

not just for the schema itself, but also for the longer phrase-structural process it follows. In such

cases, the perceived strength of the perceptual boundary—which might impact multiple levels

of the structural hierarchy—depends on both top-down and bottom-up processes. Psychologists

Bridgette Hard, Barbara Tversky, and David Lang note, for example, that perceivers can

171Chistopher A. Kurby and Jeffrey M. Zacks, “Segmentation in the Perception and Memory of Events,” Trends
in Cognitive Sciences 12, no. 2 (2008): 72–79.
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hierarchically organize event sequences without prior conceptual knowledge of the commonly

occurring patterns contained therein,172 and Crystal Peebles suggests that sensory characteristics

contribute to the segmentation of lower levels of hierarchically organized stimuli.173 The

perception of hierarchical structure in music is of course subject to many other phenomena,

such as attention, familiarity with the stimulus,174 and exposure to the style,175 but it seems

reasonable to conclude that a psychological approach to the perception of hierarchical event

boundaries must also consider the role played by sensory processes.

Perhaps more importantly, principles of segmental grouping play an important role in the

formation of event schemata in long-term memory. To return to my earlier point, if Example

2.7b were to occur quite frequently, listeners would presumably internalize the converging

sub-type as a 4-event schema concluding with tonic harmony in root position, and not the

3-event schema shown in Figure 2.3. That is, mental representations of the parameters listeners

are most likely to learn and remember depend upon the audibility of the many recurrent

patterns contained therein. If listeners are to abstract the schema as a “discrete chunk,”176 they

must do so as a consequence of low-level sensory discontinuities that reinforce the perceptual

boundaries surrounding the framing events of each encountered exemplar.177 Gjerdingen

notes, for example, that in addition to co-occurrences among the cluster of features in his

representation scheme, there must also be “enough rhythmic-harmonic-melodic closure to

172Bridgette M. Hard, Barbara Tversky, and David S. Lang, “Making Sense of Abstract Events: Building Event
Schemas,” Memory and Cognition 34, no. 6 (2006): 1221–1235.

173Peebles, “The Role of Segmentation and Expectation in the Perception of Closure,” 72.
174Elizabeth Hellmuth Margulis, “Musical Repetition Detection Across Multiple Exposures,” Music Perception

29, no. 4 (2012): 377–385.
175Elizabeth Hellmuth Margulis, “Aesthetic Responses to Repetition in Unfamiliar Music,” Empirical Studies of

the Arts 31, no. 1 (2013): 45–57.
176Byros, “Meyer’s Anvil,” 290.
177The commitment to sensory principles in schema formation is part and parcel of modern schema theories.

To use the vernacular common to schema theorists like David Rumelhart, for example, schemata are conceptually
driven (top-down) and data-driven (bottom-up), which is to say that in schema-directed processing, activation goes
in both directions (“Schemata,” 41–42).
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establish [...] schema events as perceptible points of articulation.”178 Meyer would seem to

agree, suggesting that the delineation of musical patterns depends upon the emphasis they

receive from other musical components, such as rhythm, dynamics, register, phrasing, and

timbre.179 This is not to say that the framing events of every encountered exemplar must be

congruent with principles of segmental grouping for listeners to abstract the corresponding

schema—Gjerdingen does not specify changes in dynamics, rhythmic duration, or tempo in

his representation scheme because listeners are far less likely to remember them. Rather, my

point is that principles of segmental grouping must delineate exemplars of a given schema

with sufficient frequency to allow listeners to internalize the many parameters that they will

remember: the successions of scale degrees appearing within each voice, the metric context in

which they appear, the harmonies formed by their co-occurrence, and so forth. In other words,

to abstract the converging sub-type, listeners should encounter Example 2.7a more frequently

than they do Example 2.7b.

§2.4 Conclusions

According to Meyer, “we perceive, understand, and respond to the world, including music, in

terms of the patterns and models, concepts and classifications, which have been established in

our traditions—linguistic, philosophical, musical, and so on.”180 From this point of view, the

replication of cadences and other closing patterns in the instrumental repertories of Haydn,

Mozart, and Beethoven define the style to which they belong.181 In §2.1 I argued that theories

of the classical cadence described in the “New Formenlehre” tradition identify cadence types
178Gjerdingen, A Classic Turn of Phrase, 81. See also Gjerdingen, Music in the Galant style, 374–375.
179Meyer, Music, the arts, and ideas, 268; Meyer, Explaining Music, 83.
180Meyer, Music, the arts, and ideas, 273–274.
181For Meyer, a ‘style’ is “a replication of patterning, whether in human behavior or in the artifacts produced by

human behavior, that results from a series of (tacit) choices made within some set of constraints” (Style and Music:
Theory, History, and Ideology, 3).



2.4 Conclusions 105

according to (1) their essential surface characteristics; and (2) the temporal context in which

they appear. §2.2 then described the psychological theories that explain the acquisition and

mental representation of cadences, and which emphasize the role played by schematic memory

in the formation of expectations during music listening. Finally, §2.3 argued that listeners

with exposure to classical music have internalized the most common cadence types as a flexible

network of rival closing schemata. Using Robert Gjerdingen’s schema theory as a guide, I

argued that the genuine cadence categories are primarily prospective schemata, whereas the

cadential deviations serve as retrospective schemata.

As I hope should now be clear, the many claims made in this chapter necessitate a converging-

methods approach: the first to provide a detailed study of the many recurrent closing patterns

characterizing a representative corpus of instrumental works from the classical style (Part II),

the second to examine the psychological relevance of existing theoretical models of the classical

cadence in a series of experimental studies (Part III). Thus, in Part II I present a corpus study of

the classical cadence that re-examines the cadence typology in Table 2.1 using the probabilistic

approach to category formation adopted by cognitive psychologists over the last half century.
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Part II

Corpus Evidence:

Eighteenth-Century Listeners
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Chapter 3

Representing Closing Schemas: The

Haydn Corpus

There is a sequence of perceptions in the mind of a listener, measured inferentially in
psychology. There is a sequence of events in the air or transmission cable, measured in
physics. There is an operational schema, the “score” or a “piece of music,” representing
certain aspects of the psychological and physical events. Each of these sequences forms an
interconnected system of signs. Each sign system is closely related to the others.

Joel E. Cohen

In the previous chapter, I reviewed contemporary accounts of the classical cadence articu-

lated in the “New Formenlehre” tradition and then outlined the theories that account for the

acquisition and mental representation of the most common cadence types associated with the

late-eighteenth-century repertories of Haydn, Mozart, and Beethoven, paying particular atten-

tion to the cadential typology presented in William E. Caplin’s treatise, Classical Form. Citing

psychologist Eleanor Rosch’s work on category formation, I argued that category systems

for the classical cadence are psychologically relevant if they mirror the structure of attributes
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encountered in classical music that listeners are likely to learn and remember.1 Following Robert

Gjerdingen’s schema-theoretic approach, I then suggested that listeners who are familiar with

the classical style have internalized the most common cadence types as a flexible network of

rival closing schemata.

For Rosch, models of category formation depend on the statistical properties of objects

and events encountered in the external environment. For our purposes, this means that the

acquisition and retention of a network of cadence types depends on the frequent occurrence of

these patterns on the one hand, and on a listener’s repeated exposure on the other.2 Providing

evidence in support of the former claim is thus the purpose of Part II.3

This chapter presents the representation scheme used throughout Part II. §3.1 considers the

motivations for corpus studies in music research, and §3.2 presents the corpus of expositions

fromHaydn’s string quartets and describes how it might be digitally encoded and stored. For the

purposes of pattern discovery (Chapter 4), classification (Chapter 5), and prediction (Chapter 6),

§3.3 represents the most pertinent features (or viewpoints) from the Haydn Corpus according

to the multiple viewpoints framework developed by Darrell Conklin and Marcus Pearce. Using

Gjerdingen’s schema-theoretic approach as a guide, I then represent the “core” events of the

classical cadence in §3.4 according to the chromatic scale degrees and melodic contours of the

outer parts (which Gjerdingen calls the “two-voice framework”), a coefficient representing the

strength of the metric position, and a vertical sonority, presented as a combination of vertical

interval classes or chromatic scale degrees.4

1Rosch, “Principles of Categorization,” 252.
2Jean Mandler writes, “... repeated experiences and their internal representation lead to the phenomenon

known as ‘familiarity.’ Because of the individual nature of experience, one person’s ‘familiar’ organization can be
another’s chaos.” “Categorical and Schematic Organization,” 260.

3I leave the latter claim for Part III.
4Gjerdingen, Music in the Galant style, 142.
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§3.1 Corpus Studies: Motivations

In the history of music scholarship, corpus studies are nothing new. As Gjerdingen noted

in a recent issue of Music Perception devoted to corpus research, music historians have been

collecting musical prints and manuscripts for centuries, with the word “corpus” gracing the

titles of several scholarly editions.5 But following the birth of modern computation and the

proliferation of data in machine-readable formats, corpus studies have come to denote the

collection and statistical analysis of large bodies of data,6 typically using automated procedures

made available by relatively recent advances in computer processing power.7

Computational corpus studies got their start in the early 1960s when linguists Henry Kuc̆era

and W. Nelson Francis created the first machine-readable corpus of American English at Brown

University.8 Compiled from five hundred samples of English-language text and consisting

of over one million words, the Brown Corpus laid the groundwork for the study of natural

languages using field-collected samples.9 And as a consequence of innovations like optical

character recognition (OCR), which automatically transcribes printed text into digital formats,

natural language corpora using automatic transcription methods are now commonplace in

language research.10

In the ‘data-rich’ environment characterizing present-day scholarship,11 interrelated sub-

5Robert O. Gjerdingen, “‘Historically Informed’ Corpus Studies,” Music Perception 31, no. 3 (2014): 192.
6David Temperley and Leigh VanHandel, “Introduction to the Special Issue on Corpus Methods,” Music

Perception 31, no. 1 (2013): 1.
7Cory McKay and Ichiro Fujinaga, “Style-Independent Computer-Assisted Exploratory Analysis of Large

Music Collections,” Journal of Interdisciplinary Music Studies 1, no. 1 (2007): 64.
8Charles F. Meyer, English Corpus Linguistics: An Introduction (New York: Cambridge University Press, 2002).
9Henry Kucera and W. Nelson Francis, Computational Analysis of Present-Day American English (Providence,

RI: Brown University Press, 1967).
10Despite its relatively modest size relative to current language corpora—the Corpus of Contemporary American

English is currently the largest corpus of American English at over 450 million words—the Brown Corpus remains
a significant lexical resource in corpus linguistics. See, for example, Christopher D. Manning and Hinrich Schütze,
Foundations of Statistical Natural Language Processing (Cambridge, MA: MIT Press, 1999).

11David Huron, “The New Empiricism: Systematic Musicology in a Postmodern Age,” in 1999 Ernest Bloch
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fields like corpus linguistics, computational linguistics, and natural language processing provide

but three examples from the plethora of emerging sub-disciplines witnessed over the past few

decades. Fields like biology (computational biology, bioinformatics), psychology (cognitive

science, artificial intelligence), and of course, music research (music information retrieval,

empirical musicology) have all instituted encoding initiatives at one time or another, and all

now borrow and share corpus-based methods quite freely.

And yet, despite the growth of corpus studies over the past few decades, both in the

Formenlehre tradition and in the discipline at large, Markus Neuwirth has characterized the

prevailing approach adopted by Formenlehre theorists as one based on what statistician David

Fischer has called “intuitive statistics,”12 with scholars frequently eschewing explicit statistical

methods in favor of qualitative descriptions derived from empirical observation. Caplin states

in the Introduction to Classical Form, for example, that “the account of classical form given

here is a ‘theory’ only in an informal sense... Principles are derived from empirical observation

and are largely descriptive. No attempt is made to ground the concepts in some broader system

of mathematics, logic, cognition, or the like, and no proof is offered for the many assertions

made.”13 Like Caplin, James Hepokoski and Warren Darcy also rely on empirical observation,

characterizing Elements of Sonata Theory as a “research report, the product of our analyses of

hundreds of individual movements by Haydn, Mozart, Beethoven, and many surrounding

composers of the time (as well as later composers).”14 But as Paul Wingfield points out, the

authors fail to provide “a full account of the sample, complete descriptive statistics and an

explanation of sampling methodology.”15

Lectures (University of California, Berkeley, 1999).
12Neuwirth, “Recomposed Recapitulations,” 34.
13Caplin, Classical Form, 5.
14Hepokoski and Darcy, Elements of Sonata Theory, v.
15Paul Wingfield, “Beyond ‘Norms and Deformations’: Towards a Theory of Sonata Form as Reception

History,” Music Analysis 27, no. 1 (2008): 141.



3.1 Corpus Studies: Motivations 113

With the drive toward digitization now in full swing, statistical methods provide powerful

analytic tools, enabling the testing of a priori hypotheses for bodies of music that often far

exceed the capacities of one scholarly lifetime,16 and allowing the analyst to uncover empirical

evidence that remains open to falsification and subsequent replication.17 To be sure, according

to David Huron, the impetus for corpus studies “is not merely some obsession with things

numerical, or a kleptophilic compulsion to collect, but a proper moral imperative,” where the

desire for truth, knowledge, “and other good things” depends on the quality and quantity of

the collected evidence.18 Leonard Meyer summarizes this point nicely:

Since all classification and all generalization about stylistic traits are based on some

estimate of relative frequency, statistics are inescapable. This being so, it seems

prudent to gather, analyze, and interpret statistical data according to some coherent,

even systematic, plan. . . it would appear desirable to define as rigorously as possible

what is to count as a given trait, to gather data about such traits systematically, and

to collate and analyze it consistently and scrupulously—in short, to employ the

highly refined methods and theories developed in the discipline of mathematical

statistics and sampling theory.19

But perhaps the most important motivation for corpus studies follows from the prevailing

view in cognitive psychology that humans learn and comprehend complex, rule-governed

structures like natural language merely by exposure during early development. If implicit

16Jonathan Wild, “A Review of the Humdrum Toolkit: UNIX Tools for Musical Research, created by David
Huron,” Music Theory Online 2.7 (1996).

17Gjerdingen has pointedly observed that music scholars “bandy about words like ‘typical,’ ‘characteristic,’ or
‘standard’ with the open confidence of embezzlers who, knowing that they alone keep the books, cannot imagine
being called into account” (“Defining a Prototypical Utterance,” 127). For a discussion of statistical methods in
the Formenlehre tradition, see Neuwirth, “Recomposed Recapitulations,” 25–67.

18David Huron, “On the Virtuous and the Vexatious in an Age of Big Data,” Music Perception 31, no. 1 (2013):
5.

19Meyer, Style and Music: Theory, History, and Ideology, 64.
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learning is indeed the primary mechanism by which we acquire knowledge about the world

around us, a representative sample of works in the classical style will serve as a proxy for the

musical experiences of listeners situated in that style.20 And so for those with sufficient exposure

to the eighteenth-century instrumental repertories of Haydn, Mozart, and Beethoven—whether

deceased members of the Viennese courts or modern listeners who have immersed themselves in

classical music—a detailed study of the recurrent patterns found therein is “at once an inventory

of part of their musical knowledge.”21 Thus, my hope is that examining a large number of

cadences from a relatively narrow, historically limited corpus will provide a clearer view of the

cadence types characterizing the classical style, as well as offer empirical evidence for the kinds

of closing patterns that listeners may learn implicitly.

§3.2 The Haydn Corpus

The Haydn Corpus consists of symbolic representations of 50 sonata-form expositions selected

from Haydn’s string quartets (1771–1803).22 The choice to limit this corpus to one composer,

genre, and form resulted from a number of considerations. First, restricting the investigation to

Haydn’s string quartets ensured that idiomatic differences in compositional style would not

affect the reported findings. Second, this genre—perhaps more so than any other—allows the

20Byros, “Meyer’s Anvil,” 278.
21Gjerdingen, “Courtly Behaviors,” 380–381.
22Music corpora exist in symbolic and audio formats. Symbolic representations include printed notes, scores,

and text, and a number of encoding formats are now prevalent in the research community, including Musical
Instrument Digital Interface (MIDI), Kern, and MusicXML, with software like Huron’s Humdrum Toolkit (The
Humdrum Toolkit, 1993, music-cog.ohio-state.edu/Humdrum/index.html), the MidiToolbox in Matlab (Tuomas
Eerola and Petri Toiviainen, MIDI Toolbox: MATLAB Tools for Music Research, 2004), and Michael ₡hbert’s Music21
in Python providing frameworks for encoding and analysis (“music21: A Toolkit for Computer-Aided Musicology
and Symbolic Music Data,” in 11th International Society for Music Information Retrieval Conference, ed. J. Stephen
Downie and Remco C. Veltkamp [2010], 637–642). For reviews of the Humdrum Toolkit and Music21, see Wild,
“A Review of the Humdrum Toolkit: UNIX Tools for Musical Research, created by David Huron”; Dmitri
Tymoczko, Review of Music21: a Toolkit for Computer-aided Musicology, by Michael Cuthbert, Music Theory Online
19, no. 3 (2013).

music-cog.ohio-state.edu/Humdrum/index.html


3.2 The Haydn Corpus 115

analyst to model the individual instrumental parts both independently and in combination,

thereby simplifying the discovery of composite events like dyads and triads in complex poly-

phonic textures. Finally, since most of the basic musical materials from sonata-form movements

appear in the exposition, with cadences appearing less frequently in the development, and

with recapitulations often repeating verbatim the cadential material from the exposition, it

seemed more reasonable to restrict the corpus to expositions, thereby mitigating the potential

for repeated or unnecessary material in the corpus. In sum, the Haydn Corpus is small enough

to allow for analytical annotations regarding the key and mode, the position and identification

of cadences of various types, and so on, yet large enough to permit the analyst to ask more

general questions about the articulation of cadences in music of the classical style.

Table 3.1 presents the reference information, keys, time signatures, and tempo markings

for each movement. The corpus spans much of Haydn’s mature compositional style (Opp.

17–76), with the majority of the expositions selected from first movements (28) or finales (11),

and with the remainder appearing in inner movements (ii: 8; iii: 3). All movements were

downloaded from the KernScores database in the MIDI format and analyzed in Matlab.23 To

ensure that each instrumental part would qualify as monophonic—a pre-requisite for many of

the analytical techniques that follow—all trills, extended string techniques, and other ornaments

were removed.24 Note velocities and durations were quantized exactly, and the tempo in beats-

per-minute (bpm) for each movement was determined by score or convention (see the tempo

markings in Table 3.1). Table 3.2 provides a few descriptors concerning the number of events

in each movement for each instrumental part.

Most natural languages consist of a finite alphabet of discrete symbols (letters), combinations

of which form words, phrases, and so on. As a result, the mapping between the individual letter

23http://kern.ccarh.org/.
24For events presenting extended string techniques (e.g., double or triple stops), I retained the note event in

each part that preserved the voice leading both within and between instrumental parts.

http://kern.ccarh.org/
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Table 3.1: Reference information (Opus number, work, movement, measures), keys (case
denotes mode), time signatures, and tempo markings for the exposition sections of each
movement in the Haydn Corpus.

Excerpt Key Time Signature Tempo Marking
Op. 17, No. 1, i, mm. 1–43 E C Moderato
Op. 17, No. 2, i, mm. 1–38 F C Moderato
Op. 17, No. 3, iv, mm. 1–26 E[ C Allegro molto
Op. 17, No. 4, i, mm. 1–53 c C Moderato
Op. 17, No. 5, i, mm. 1–33 G C Moderato
Op. 17, No. 6, i, mm. 1–73 D 6/8 Presto
Op. 20, No. 1, iv, mm. 1–55 E[ 2/4 Presto
Op. 20, No. 3, i, mm. 1–94 g 2/4 Allegro con spirito
Op. 20, No. 3, iii, mm. 1–43 G 3/4 Poco Adagio
Op. 20, No. 3, iv, mm. 1–42 g C Allegro molto
Op. 20, No. 4, i, mm. 1–112 D 3/4 Allegro di molto
Op. 20, No. 4, iv, mm. 1–49 D C Presto scherzando
Op. 20, No. 5, i, mm. 1–48 f C Allegro moderato
Op. 20, No. 6, ii, mm. 1–27 E ₡ Adagio
Op. 33, No. 1, i, mm. 1–37 b C Allegro moderato
Op. 33, No. 1, iii, mm. 1–40 D 6/8 Andante
Op. 33, No. 2, i, mm. 1–32 E[ C Allegro moderato
Op. 33, No. 3, iii, mm. 1–29 F 3/4 Adagio
Op. 33, No. 4, i, mm. 1–31 B[ C Allegro moderato
Op. 33, No. 5, i, mm. 1–95 G 2/4 Vivace assai
Op. 33, No. 5, ii, mm. 1–30 g C Largo
Op. 50, No. 1, i, mm. 1–60 B[ ₡ Allegro
Op. 50, No. 1, iv, mm. 1–75 B[ 2/4 Vivace
Op. 50, No. 2, i, mm. 1–106 C 3/4 Vivace
Op. 50, No. 2, iv, mm. 1–86 C 2/4 Vivace assai
Op. 50, No. 3, iv, mm. 1–74 E[ 2/4 Presto
Op. 50, No. 4, i, mm. 1–64 f] 3/4 Allegro spirituoso
Op. 50, No. 5, i, mm. 1–65 F 2/4 Allegro moderato
Op. 50, No. 5, iv, mm. 1–54 F 6/8 Vivace
Op. 50, No. 6, i, mm. 1–54 D C Allegro
Op. 50, No. 6, ii, mm. 1–25 d 6/8 Poco Adagio
Op. 54, No. 1, i, mm. 1–47 G C Allegro con brio
Op. 54, No. 1, ii, mm. 1–54 C 6/8 Allegretto
Op. 54, No. 2, i, mm. 1–87 C C Vivace
Op. 54, No. 3, i, mm. 1–58 E ₡ Allegro
Op. 54, No. 3, iv, mm. 1–82 E 2/4 Presto
Op. 55, No. 1, ii, mm. 1–36 D 2/4 Adagio cantabile
Op. 55, No. 2, ii, mm. 1–76 f ₡ Allegro
Op. 55, No. 3, i, mm. 1–75 B[ 3/4 Vivace assai
Op. 64, No. 3, i, mm. 1–69 B[ 3/4 Vivace assai
Op. 64, No. 3, iv, mm. 1–79 B[ 2/4 Allegro con spirito
Op. 64, No. 4, i, mm. 1–38 G C Allegro con brio
Op. 64, No. 4, iv, mm. 1–66 G 6/8 Presto
Op. 64, No. 6, i, mm. 1–45 E[ C Allegretto
Op. 71, No. 1, i, mm. 1–69 B[ C Allegro
Op. 74, No. 1, i, mm. 1–54 C C Allegro moderato
Op. 74, No. 1, ii, mm. 1–57 G 3/8 Andantino grazioso
Op. 76, No. 2, i, mm. 1–56 d C Allegro
Op. 76, No. 4, i, mm. 1–68 B[ C Allegro con spirito
Op. 76, No. 5, ii, mm. 1–33 F] ₡ Largo. Cantabile e mesto
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Table 3.2: Descriptive statistics for the Haydn Corpus.

Instrumental Part N M (SD) Range

Violin 1 14,506 290 (78) 133–442
Violin 2 10,653 213 (70) 69–409
Viola 9156 183 (63) 79–381
Cello 8463 169 (60) 64–326

Note. N refers to the number of note events, M denotes the mean rounded to the nearest integer, SD
represents the standard deviation, also rounded to the nearest integer, and the Range indicates the lowest
and highest values.

or word encountered in a printed text and its symbolic representation in a computer database is

essentially one-to-one. Music encoding is considerably more complex. Notes, chords, phrases,

and the like are characterized by a number of different features, and so regardless of the unit of

meaning, digital encodings of individual events must concurrently represent multiple properties

of the musical surface. To that end, many symbolic formats encode standard music notation as

a series of discrete event sequences in an m × n matrix, where m denotes the number of events

in the symbolic representation, and n refers to the number of encoded features (e.g., pitch,

onset time, rhythmic duration, etc.).

By way of example, Figure 3.1 presents the note matrix provided by the MIDI Toolbox for

the first measure from the opening movement of Haydn’s String Quartet in F, Op. 17/2. The

columns of the note matrix refer to the following characteristics: (1) onset time, measured in

quarter-note beats; (2) duration in quarter-note beats; (3) instrumental part (or MIDI channel),

with the instrumental parts ordered from 0–3 (beginning with the first violin); (4) pitch in

semitones, where middle C (C4) is 60; (5) velocity, which in MIDI nomenclature describes how

quickly the key is pressed, and thus, how loudly the note is played (0–127); (6) onset time in

seconds; and (7) duration in seconds.25

25Tuomas Eerola and Petri Toiviainen, “MIR in Matlab:The MIDI Toolbox,” in Proceedings of the 5th Interna-
tional Conference on Music Information Retrieval (ISMIR) (2004), 22.
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Onset Duration MIDI Pitch Velocity Onset Duration
(beats) (beats) channel (seconds) (seconds)

0 3 0 72 64 0 1.8
0 0.5 1 69 64 0 0.3
0 0.5 2 65 64 0 0.3
0 0.5 3 53 64 0 0.3
0.5 0.5 1 69 64 0.3 0.3
0.5 0.5 2 65 64 0.3 0.3
0.5 0.5 3 53 64 0.3 0.3
1 0.5 1 69 64 0.6 0.3
1 0.5 2 65 64 0.6 0.3
1 0.5 3 53 64 0.6 0.3
1.5 0.5 1 69 64 0.9 0.3
1.5 0.5 2 65 64 0.9 0.3
1.5 0.5 3 53 64 0.9 0.3
2 0.5 1 69 64 1.2 0.3
2 0.5 2 65 64 1.2 0.3
2 0.5 3 53 64 1.2 0.3
2.5 0.5 1 69 64 1.5 0.3
2.5 0.5 2 65 64 1.5 0.3
2.5 0.5 3 53 64 1.5 0.3
3 1 0 77 64 1.8 0.6
3 0.5 1 69 64 1.8 0.3
3 0.5 2 65 64 1.8 0.3
3 0.5 3 53 64 1.8 0.3
3.5 0.5 1 69 64 2.1 0.3
3.5 0.5 2 65 64 2.1 0.3
3.5 0.5 3 53 64 2.1 0.3

Figure 3.1: Top: Haydn, String Quartet in F, Op. 17/2, i, m. 1. Bottom: Event representation
provided by the MIDI Toolbox.
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The note matrix is fairly self-explanatory, but two further comments are warranted here.

First, when the movement begins on a metric downbeat, as does the example in Figure 3.1, the

onset vector measured in quarter-note beats begins at 0 (and not 1). Second, as a consequence

of the quantization step during pre-processing, the velocity vector in the note matrix does not

vary, so this feature will be excluded from further discussion.

The MIDI Toolbox obtains the first five columns of the note matrix in Figure 3.1 from

the note-event messages of the MIDI protocol, but the MIDI file also encodes meta-events

that represent more general features of the music, such as the key, tempo, meter, and time

signature.26 The tempo associated with the note matrix is 100 bpm, for example, so given the

onset and duration vectors measured in quarter-note beats and the tempo provided by the

MIDI file, we can easily derive either of the onset and duration vectors in seconds shown in the

right-most columns of the note matrix:

dursec(ei ) =
durbeats(ei ) × 60

bpm(ei )

where event ei refers to the ith row of the note matrix.27 The appeal of symbolic representations

like this one is that they encode only the most important features, thereby requiring very

little computer memory while remaining flexible enough to allow the researcher to derive any

further features with relative ease. From the vector of pitches from the twelve-tone chromatic

scale, for example, we could easily obtain a sequence of melodic contours or intervals for each

instrumental part, or a vector of vertical intervals between one or more parts. If we also include

information from the MIDI file’s meta-events (e.g., key and time signatures, tempo changes,

etc.), we can derive vectors representing metric positions, scale degrees, variations in the onset

26Eleanor Selfridge-Field, ed., Beyond MIDI: The Handbook of Musical Codes (Cambridge, MA: MIT Press, 1997),
53.

27To obtain the corresponding values for the onset vector measured in seconds, one need only replace dur with
onset in the equation.
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and duration vectors measured in seconds, and so on.

Figure 3.1 also demonstrates a few limitations of the Haydn Corpus. Because the encoded

representations were not aligned with selected performances, clock-time measures like those

represented in columns six and seven reflect a metronomic interpretation of musical time

that necessarily departs from the kinds of everyday encounters with this repertory we might

hope to study. Ideally, we could align the encoded representations with performances, either

by employing tempo-alignment algorithms, or by annotating an isochronous pulse at a given

metrical level in the performance and then aligning the encoded representation to the obtained

tempo curve, but such is the encoding bottleneck that time-aligned symbolic representations

are exceedingly rare in the research community. What is more, as I mentioned in the previous

section, the MIDI format does not distinguish between enharmonic equivalents—F] and G[

are represented by the same numeric value (66). As a result, the encoded representation shown

in the note matrix is too reductive to capture the entire pitch alphabet, and so distributional

analyses for pitch-based features like pitch class or scale degree will generally be restricted to

alphabets of 12 elements.28

§3.3 Representing Cadences with Multiple Viewpoints

Representation schemes like the one presented in Figure 3.1 roughly correspond to the multiple-

viewpoint framework first proposed by Darrell Conklin in the late 1980s, and later extended

and refined by his student, Marcus Pearce.29 Conklin’s primary aim was to apply statistical

28John Snyder has been particularly critical of this limitation (“Entropy as a Measure of Musical Style: The
Influence of A Priori Assumptions,” Music Theory Spectrum 12, no. 1 [1990]: 121–160).

29Darrell Conklin, “Modelling and Generating Music Using Multiple Viewpoints,” in Proceedings of the First
Workshop on Artificial Intelligence and Music (St. Paul, MN, 1988), 125–137; Darrell Conklin, “Prediction and
Entropy of Music” (MA Thesis, University of Calgary, 1990); Darrell Conklin and Ian H. Witten, “Multiple
Viewpoint Systems for Music Prediction,” Journal of New Music Research 24, no. 1 (1995): 51–73; Marcus T. Pearce
and Geraint A. Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” Journal of New
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modeling procedures from the machine learning and prediction of language to domains such as

music, where events have a multidimensional structure.30 Like the note matrix in Figure 3.1, the

multiple-viewpoint framework accepts sequences of musical events that typically correspond to

individual notes as notated in a score. Each event e consists of a set of basic attributes—what I

have up until this point been calling ‘features’—and each attribute is associated with a type, τ,

which specifies the properties of that attribute. The syntactic domain (or alphabet) of each type,

[τ], denotes the set of all unique elements associated with that type, and each element of the

syntactic domain also maps to a corresponding set of elements in the semantic domain, [[τ]].

Following Conklin, attribute types appear here in typewriter font to distinguish them from

ordinary text. In the twelve-tone chromatic scale, for example, the type pitch class would

consist of the syntactic set, {0, 1, 2, ..., 11}, and the semantic set, {C,C]/D[,D,...,B}.31

Within this representation language, Conklin defines several distinct classes of type, but we

will concern ourselves in what follows with just three: basic, derived, and linked.32 Basic types

are irreducible representations of the musical surface—that is, they cannot be derived from

any other type. Thus, an attribute representing the sequence of pitches from the twelve-tone

chromatic scale—hereafter referred to as chromatic pitch, or cpitch—would serve as a basic

type in Conklin’s approach because it cannot be derived from a sequence of pitch classes, scale

degrees, melodic intervals, or indeed, any other attribute. What is more, basic types represent

Music Research 33, no. 4 (2004): 367–385; Marcus T. Pearce, “The Construction and Evaluation of Statistical Models
of Melodic Structure in Music Perception and Composition” (PhD Dissertation, City University, London, 2005);
Marcus T. Pearce, Darrell Conklin, and Geraint A. Wiggins, “Methods for Combining Statistical Models of Music,”
in Computer Music Modelling and Retrieval, ed. U. K. Wiil (Heidelberg, Germany: Springer Verlag, 2005), 295–312.

30Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction,” 57–58.
31Note that in this example the semantic domain of pitch-class names is necessarily larger than the corresponding

syntactic domain as a consequence of enharmonic equivalence, hence the appearance of two labels C] and D[ for
the value 1.

32For a review of multiple-viewpoint systems, including a discussion of the viewpoint classes defined by
Conklin and Pearce, see Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction”; Pearce, “The
Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition,”
49–79.
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every event in the corpus. For example, a sequence of melodic contours would not constitute a

basic type because either the first or last events of the melody would receive no value.33 Indeed,

an interesting property of the set of n basic types for any given corpus is that the Cartesian

product of the domains of those types determines the event space for the corpus, denoted by ξ :

ξ = [τ1] × [τ2] × ... × [τn ]

Each event consists of an n-tuple in ξ—a set of values corresponding to the set of basic types

that determine the event space. ξ therefore denotes the set of all representable events in the

corpus.34 To model a corpus of Bach chorales, Conklin identified six basic types: chromatic

pitch (pitch), key signature (keysig), time signature (timesig), fermata (fermata), start time

(st), and duration (duration).35 With the exception of fermata, the MIDI format encodes all of

these types either as note or meta events, and the MIDI Toolbox represents three of these types

explicitly in its note matrix representation (see columns 1, 2, and 4 in Figure 3.1).

As should now be clear from the examples given above, derived types like pitch class, scale

degree, and melodic interval do not appear in the event space but are derived from one or more

of the basic types. Thus, for every type in the encoded representation there exists a partial

function, denoted by Ψ, which maps sequences of events onto elements of type τ. The term

viewpoint therefore refers to the function associated with its type, but for convenience both

authors refer to viewpoints by the types they model.36 The function is partial because the

output may be undefined for certain events in the sequence (denoted by ⊥). Again, viewpoints

33In a melody of length n, a sequence of contours will necessarily be of length n − 1.
34Pearce, “The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception

and Composition,” 58–59.
35In the representation scheme outlined in his dissertation, Pearce expanded the list of basic types described by

Conklin by omitting fermata and timesig and including rest duration (deltast), bar length (barlength), metric
pulses (pulses), mode (mode), and phrasing (phrase) (Ibid., 63).

36Pearce explains that for basic types, Ψτ is simply a projection function, thereby returning as output the same
values it receives as input (Ibid., 59).
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for attributes like melodic contour or melodic interval demonstrate this point, since either the

first or last element will receive no value (i.e., it will be undefined).

Basic and derived types attempt to model the relations within attributes, but they fail to

represent the relations between attributes. I argued in Chapter 2 that prototypical utterances are

comprised of a cluster of co-occurring features, and the relations between those features could

be just as significant as their presence (or absence). In isolation, the harmonic progression V–I

does not provide sufficient grounds for the identification of a perfect authentic cadence, but

the co-occurrence of that progression with 1̂ in the soprano, a six-four sonority preceding the

root-position dominant, or a trill above the dominant makes such an interpretation far more

likely. Thus, linked viewpoints attempt to model correlations between attributes by calculating

the cross-product of their constituent types.37 We might hypothesize, for example, that the

succession of scale degrees in the bass voice interacts with the chordal sonorities it supports,

and a viewpoint linking these attributes measures this interaction explicitly.

§3.4 Viewpoint Selection

Taken together, basic, derived, and linked viewpoints form an elegant multiple-viewpoint system

for the representation and analysis of music. But how do we select the appropriate viewpoints

for the representation of cadences in Haydn’s string quartets? According to Gjerdingen’s schema-

theoretic approach, a cadence is best understood as an instance of bass-melody co-articulation.

Gjerdingen represents the “core” events of the cadence by the scale degrees and melodic contours

of the outer voices (i.e., the two-voice framework), a coefficient representing the strength of the

metric position (strong, weak), and a sonority, presented using figured bass notation. Given the

37For readers familiar with David Lewin’s direct-product systems, a linked viewpoint models a product type
(Generalised Musical Intervals and Transformations [New Haven, CT: Yale University Press, 1987], 1–15); Conklin
and Witten, “Multiple Viewpoint Systems for Music Prediction,” 12–13.
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importance of melodic intervals in studies of recognition memory for melodies,38 we might

also add this attribute to Gjerdingen’s list.

3.4.1 Note Events

Melodic Interval. The melodic interval of an event is represented as an integer by the attribute

type melint. Given the chromatic pitch vector provided by the symbolic representation, which

I will hereafter call cpitch, we derive a sequence of melodic intervals by the function:

Ψmelint(ei ) =



⊥ if i = 1,

Ψcpitch(ei ) − Ψcpitch(ei−1) otherwise.
(3.1)

Here, we obtain the distance between adjacent pitches as an integer, where ascending intervals

are positive and descending intervals are negative.

Contour. The viewpoint contour reduces the information present in melint still further.

Starting from the basic type cpitch, we derive a sequence of melodic contours from the

function:

Ψcontour(ei ) =




−1 if Ψcpitch(ei ) < Ψcpitch(ei−1)

0 if Ψcpitch(ei ) = Ψcpitch(ei−1)

1 if Ψcpitch(ei ) > Ψcpitch(ei−1)

(3.2)

where all ascending intervals receive a value of 1, all descending intervals a value of –1, and all

lateral motion a value of 0. This viewpoint assumes all ascending motion is equivalent, whether

by a semitone or an octave.

38See, for example, W. Jay Dowling, “The Importance of Interval Information in Long-Term Memory for
Melodies,” Psychomusicology 1 (1981): 30–49.
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Scale Degree. I derived melint and contour from cpitch, but a viewpoint relating the chro-

matic pitches in each movement to a referential tonic pitch class cannot be obtained from the

symbolic representation alone. In some studies, the referential tonic is determined from the

opening key signature (e.g., four sharps), and from an assessment of the underlying mode (E

major or C] minor), resulting in scale-degree distributions that do not control for modula-

tions or changes in modality.39 Key-finding algorithms have also become more common in

recent decades, allowing researchers to automatically identify the key of a passage with high

degrees of accuracy (>90%).40 Nevertheless, the lack of available annotated corpora indicating

modulations and changes of mode makes testing these algorithms quite difficult.41 To resolve

these issues, I manually annotated the key, mode, modulations, and pivot boundaries for each

movement in the corpus and then included the analysis in a separate text file to accompany the

MIDI representation. Thus, every note event in the corpus was associated with the viewpoints

key and mode. The vector of keys assumes values in the set {0,1,2,...,11}, where 0 represents the

key of C, 1 represents C] or D[, and so on. Passages in the major and minor modes receive

values of 0 and 1, respectively.

To derive a viewpoint relating each chromatic pitch to a referential tonic, chromatic scale

degree (or csd) maps cpitch to key and reduces the resulting vector of chromatic scale degrees

39Elizabeth Hellmuth Margulis and Andrew P. Beatty, “Musical Style, Psychoaesthetics, and Prospects for
Entropy as an Analytic Tool,” Computer Music Journal 32, no. 4 (2008): 68. Note that while key signatures appear
in the notated score, determining the modality necessitates an interpretation on the part of the analyst.

40Joshua Albrecht and Daniel Shanahan, “The Use of Large Corpora to Train a New Type of Key-Finding
Algorithm: An Improved Treatment of the Minor Mode,” Music Perception 31, no. 1 (2013): 59–67.

41David Temperley and Elizabeth Marvin examined distributional approaches to key finding using a corpus
of classical string quartets, and they only included the opening eight measures from each movement to ensure
modulations would not affect the results (“Pitch-Class Distribution and the Identification of Key,” Music Perception
25, no. 3 [2008]: 193–212). Nevertheless, Leigh VanHandel recently noted that in 58 of the 310 movements a
modulation still took place within the first eight measures (“The Role of Phrase Location in Key Identification by
Pitch Class Distribution,” in Proceedings of the 12th International Conference on Music Perception and Cognition and
the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music, ed. Emilios Cambouropoulos
et al. [Thessaloniki, Greece: School of Music Studies, Aristotle University of Thessaloniki, 2012], 1069–1073).
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modulo 12:

Ψcsd(ei ) =
(
Ψcpitch(ei ) − Ψkey(ei )

)
mod 12 (3.3)

The domain of csd consists of twelve distinct symbols numbered from 0 to 11, where 0 denotes

the tonic, 7 the dominant, and so on.42 Events located within the boundaries of a pivot were

encoded in both keys. In a movement that modulates to the key of the dominant (e.g., from C

to G), for example, the pitch class C appearing within the pivot would receive the values {0,7},

and the pitch class E would receive the values {4,9}.

Metrical Strength. In Gjerdingen’s view, a mental representation for a musical category is

“likely in no particular key,” and “may or may not have a particular meter.”43 For this reason,

Gjerdingen generalizes across metric contexts by appealing to the strength of each event in the

notated meter, which he characterizes as either strong or weak. Whether duple or triple, simple

or compound, the internal organization of the meter is therefore largely irrelevant, as strong

beats in one context are equivalent to strong beats in any other context. For our purposes, this

approach greatly simplifies matters, since we would otherwise be forced to divide the corpus

into its various metric conditions (e.g., 44, 34, 68, etc.), examining each in isolation.

Many corpus studies determine the metric context inductively by using statistical procedures

like autocorrelation, which classifies meters by finding periodicities in the note onset distribu-

tion.44 By making minimal prior assumptions about the metric organization, this approach

has the added benefit of distinguishing the perceptible meter from the notated time signature,

42This viewpoint is quite common in corpus studies. See, for example, Margulis and Beatty, “Musical Style,
Psychoaesthetics, and Prospects for Entropy as an Analytic Tool,” 68; Pearce, “The Construction and Evaluation
of Statistical Models of Melodic Structure in Music Perception and Composition,” 71.

43Gjerdingen, Music in the Galant style, 453.
44Judith C. Brown, “Determination of the Meter of Musical Scores by Autocorrelation,” Journal of the Acoustical

Society of America 94, no. 4 (1993): 1953–1957; Petri Toiviainen and Tuomas Eerola, “Autocorrelation in Meter
Induction: The Role of Accent Structure,” Journal of the Acoustical Society of America 119, no. 2 (2006): 1164–1170.
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which does not always accurately reflect the real metric organization.45 Nevertheless, corpus

studies of note onset distributions using the notated measure as a rigid framework provide

convincing evidence that the time signature serves as a normative template for the representa-

tion of temporal information in Western notation. And thus, while note distributions derived

from large symbolic corpora sometimes disregard significant variations in metric organization

within an individual composition, they also capture large-scale differences between various

metric contexts with great precision. To be sure, if the metric organization of music in say,

common time, is to be understood as a mental representation acquired by implicit, statistical

learning, then metric strength or stability (like tonal strength or stability) should arise out of

distributional statistics, and the notated measure provides a useful starting point in this regard.

Thus, in what follows, I consider the metric strength of note events in the corpus by first

determining their position in the notated measure.

Just as csd relates the sequence of chromatic scale degrees in each movement to a particular

key, a viewpoint representing metric position relates the sequence of note onset times to a

particular time signature. The MIDIToolbox provides the basic type onset, which refers to the

onset time of each event measured in quarter-note beats, and the basic type timesig indicates

the number of quarter-note beats in the notated measure.46 Six meters appear in the corpus—4
4,

cut, 34, 24, 68, and 3
8—so the domain of timesig consists of four values: 1.5, 2, 3, and 4 quarter-note

beats. In other words, each of these values represents one or more of the meters from the Haydn

Corpus: 4
4 and cut consist of 4 quarter-note beats, 34 and 6

8 consist of 3 quarter-note beats, and

so on. To determine the metric position of each event in the corpus, the viewpoint metricpos

reduces onsetmodulo timesig and adds 1 to the resulting sequence of metric positions to ensure

45Grosvenor Cooper and Leonard Meyer, The Rhythmic Structure of Music (Chicago: The University of Chicago
Press, 1960), 88.

46None of the excerpts in the Haydn Corpus feature a change of time signature during the movement.
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that the downbeat in each measure = 1.

Ψmetricpos(ei ) =
(
(Ψonset(ei ) mod timesig(ei )

)
+ 1 (3.4)

Thus, a note event falling on the 20th quarter note in a common-time movement would receive a

value of 1 in metricpos because it falls on a downbeat in the notated measure ( (20 mod 4) + 1).

To this point I have only offered a method for determining the metric position of each

event in the corpus. To determine the strength of each event in the notated meter, it might be

useful to review a few working definitions for terms relating to metric organization that appear

frequently in contemporary theory. If meter refers to nested layers of approximately equally

spaced beats or pulses,47 metric strength reflects the coincidence of these layers at multiple levels:

the greater the number of layers that align at a given moment, the greater its metric strength.48

The precise cocktail of features responsible for the perception of meter is not yet known, though

metric attending would seem to depend on isochronous patterns of accentuation resulting from

changes in harmony, dynamics, rhythmic duration (agogic accents), and register, just to name a

few.

Accent is a loaded term in music research. It generally refers to how events in a musical

sequence draw attention to themselves;49 to borrow a well-known expression from Grosvenor

Cooper and Leonard Meyer, an accented event is “marked for consciousness.”50 In A Generative

Theory of Tonal Music, Fred Lerdahl and Ray Jackendoff distinguish between three types of

accent: (1) phenomenal, which refers to stressed or emphasized events in a continuous sequence;

(2) structural, which refers to “points of gravity” in a phrase, such as a cadence; and (3)

47Harald Krebs, Fantasy Pieces: Metrical Dissonance in the Music of Robert Schumann (New York: Oxford
University Press, 1999), 22.

48Yonatan Malin, Songs in Motion: Rhythm and Meter in the German Lied (New York: Oxford University Press,
2010), 39.

49Ibid., 41.
50Cooper and Meyer, The Rhythmic Structure of Music, 8.
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metrical, which refers to the strength of certain beats in a given metrical context. In their view,

phenomenal accent “functions as a perceptual input to metrical accent,” where “moments of

stress in the raw signal serve as ‘cues’ from which the listener attempts to extrapolate a regular

pattern of metrical accents.”51 Yonatan Malin would seem to agree, suggesting that phenomenal

accents generate metrical layers when they recur at regular intervals. And like Lerdahl and

Jackendoff, Malin characterizes phenomenal accents according to the usual cast of characters:

dynamics, agogic accents, register, harmonic and textural change, the functional beginning of a

unit, and so forth.52

But perhaps the clearest cue to musical meter lies in the frequency-of-occurrence of note

onsets within the notated measure. Caroline Palmer and Carol Krumhansl have noted, for

example, that note onset distributions readily conform to theoretical accounts of the metric

hierarchy for works in both duple and triple meters.53 Thus, we might derive a measure of

metric strength empirically by examining the distribution of note onsets in the notated measure

for each meter in the corpus.54

Note events can appear in a range of metric positions within each measure. For movements

in common or cut time in the Haydn Corpus, for example, note events appeared in 51 unique

51Lerdahl and Jackendoff, A Generative Theory of Tonal Music, 17.
52Malin, Songs in Motion: Rhythm and Meter in the German Lied, 41. Although I have only cited the contribu-

tions of twentieth-century theorists, these ideas have a long history in music theory. Lerdahl and Jackendoff’s
accent types recall Johann Philipp Kirnberger’s Akzenttheorie, and Cooper and Meyer’s off-cited expression that
accented events are marked for consciousness is reminiscent of Johann Mattheson’s description of events in
metrically strong positions as having an “inner content and emphasis.” For a review of theories of accent, rhythm,
and meter in music theory scholarship, see William E. Caplin, “Theories of Musical Rhythm in the 18th and
19th Centuries,” in The Cambridge History of Western Music Theory, ed. Thomas Christensen (Cambridge, UK:
Cambridge University Press, 2002), 657–694; Justin London, “Rhythm in Twentieth-Century Theory,” in The
Cambridge History of Western Music Theory, ed. Thomas Christensen (Cambridge, UK: Cambridge University
Press, 2002), 695–725.

53Caroline Palmer and Carol L. Krumhansl, “Mental Representations for Musical Meter,” Journal of Experimen-
tal Psychology: Human Perception and Performance 16, no. 4 (1990): 728–41.

54This approach also lends support to the claim that mental representations for various meters result from
statistical learning, whereby metrically strong or stable events appear frequently at particular positions on the
metric grid.
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metric positions. To visualize each meter using a histogram, I have divided the notated measure

into equal-sized bins, with the size of each bin corresponding to the duration of a 32nd note.

Histograms typically display the number of note events in each bin, but this approach gives

equal weight to each note event, regardless of duration. To resolve this issue, several recent

corpus studies weighted pitch-class and scale-degree distributions by the rhythmic duration of

each event, so I have also adopted that procedure here.55

Rather than weight the histogram for each meter by notated durations, which assumes

durational equivalence across the corpus regardless of the underlying tempo,56 I have elected to

weight each histogram using Richard Parncutt’s model of durational accent, which maps the

physical inter-onset interval (IOI) between events ei and ei+1 to the phenomenal accent of note

event ei .57 Following a number of experimental studies linking IOI with metrical accentuation,

Parncutt’s function assumes that the perceptual or durational accent for a given note event

increases with the IOI that follows it. To account for limitations of auditory processing for very

short (< 50 ms) and very long (>1–2 s) IOIs, he also includes two free parameters, represented

by k and τ in the equation below.

accentdur (ei ) =
[
1 − e xp

{
−ioi (ei )

τ

}]k

The function accentdur (ei ) denotes the durational accent of event ei , e xp is the natural

exponential function, ioi (ei ) refers to the IOI following event ei , expressed in milliseconds, τ

is the saturation duration, which is proportional to the duration of echoic memory, and k is

55The Krumhansl-Schmuckler key-finding algorithm provides one well-known example (Cognitive Foundations
of Musical Pitch, 77-110).

56Snyder, “Entropy as a Measure of Musical Style: The Influence of A Priori Assumptions.” To normalize
note distributions across movements in different meters and tempi, Snyder also suggested weighting each note as a
fraction of the duration of the entire piece (141).

57Richard Parncutt, “A Perceptual Model of Pulse Salience and Metrical Accent in Musical Rhythms,” Music
Perception 11, no. 4 (1994): 409–464.
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the accent index, which accounts for the minimum discriminable IOI. Parncutt suggests that

parameter values of k = 2 and τ = 500 ms provide a good fit to experimental data, so I have

retained those values here.58

Shown in Figure 3.2, the durational accent increases for small values of IOI and plateaus (or

saturates) at around 2 s, when the IOI exceeds the duration of echoic memory. The further we

move from right to left along the curve (i.e., the shorter the IOI between events), the greater

the difference in accent between long and short IOIs. According to Parncutt, the shape of the

curve therefore sharpens the difference between long and short events and renders metrical

interpretations less ambiguous.59

Unfortunately, identifying physical IOIs between events in polyphonic textures is relatively

complex. Do we select the IOI between adjacent events within a given instrumental part, or

within the entire texture? How do we account for effects of auditory streaming? To simplify

matters, I have elected to treat note duration as a rough approximation of inter-onset interval,

with the hope that the results obtained here will be replicated in subsequent analyses weighted

by IOI.

Using Parncutt’s model, I determined the durational salience of the note durations (measured

in seconds) in each movement. To demonstrate the effect of weighting the note distributions by

durational salience, Figure 3.3 presents bar plots of the distribution of the proportion of note

onsets within the notated measure in 4
4, with the plot on the left weighted by note count, and

the plot on the right weighted by summing the durational accents in each metric position. The

plot below presents the arithmetic difference between these two distributions, with positive

values indicating a greater proportion of note events in the duration-weighted distribution. The

plot on the left demonstrates that note onsets appeared prevalently at positions throughout

58Ibid., 426–433.
59Ibid., 431–432.
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Figure 3.2: Durational weight plotted against note duration in seconds, reproduced from
Figure 6 of Parncutt’s “A Perceptual Model of Pulse Salience and Metrical Accent in Musical
Rhythms” (1994), 431.

the notated measure, but the duration-weighted distribution shown in the plot on the right

indicates that longer durations appeared far more frequently in metrically strong positions, such

as beats one and three. In fact, weighting the note distribution by durational accent clarified

the metrical hierarchy just as Parncutt suggested, with the downbeat receiving the greatest

proportion of durations at the level of the measure, followed by beat three at the half-note level,

beats two and four at the quarter-note level, and so on.

From visual inspection alone, a four-level viewpoint of metric strength would seem to

provide the best fit to the underlying distribution. But to select the optimum number of

levels across all of the metric conditions, quantifying the degree of fit in each case, it might be

useful to examine the statistical properties of the distribution more closely. If we conceptualize

metric strength along a continuous scale, with strong or stable events at one end and weak or

unstable events at the other, we might reorder the metric positions within the histogram from

most common to least common to reflect this scale. The black line in Figure 3.4 presents the

most common sixteen metric positions from the duration-weighted note distribution shown in

Figure 3.3.

Formally, the note onset distribution presented in Figure 3.4 is a discrete probability
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Figure 3.3: Top: Bar plots of the proportion of note onsets from the Haydn Corpus in each
metric position within the notated measure in 4

4, weighted by note count (left), or by summing
the durational accents in each metric position (right). Bottom: Bar plot of the difference in the
proportion of note onsets.

distribution, and it loosely conforms to the family of power laws used in linguistics to describe

the frequency-of-occurrence of words in language corpora.60 George Zipf noted, for example,

that in many language corpora the frequency of any word is inversely proportional to its rank

in the corpus.61 According to Zipf’s law, the most frequent word occurs twice as often as the

second most frequent word, three times as often as the third most frequent word, and so on.

In this case, however, the note onset distribution more closely resemblances an exponential

function with base 2, where the most frequent metric position occurs twice as often as the

60Manning and Schütze, Foundations of Statistical Natural Language Processing, 20–29.
61George Kingsley Zipf, Human Behavior and the Principle of Least Effort (Oxford, UK: Addison-Wesley, 1949).
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Figure 3.4: Line plot of the duration-weighted proportion of note onsets in 4
4, ordered from

most to least common. The right y-axis annotates the durational level reflected in the note
distribution, which appears in dotted black. The exponential distribution (base 2) appears in
blue.

second most frequent position and four times as often as the third most frequent position. The

blue curve in Figure 3.4 visualizes the exponential function, 2−(x−1) × .67, where x represents

the rank of each metric position according to its frequency in the distribution, 2−(x−1) halves

the proportion of note onsets as we ascend in rank (i.e., from left to right); and .67 ensures that

the curve passes through the top-ranked position in this particular distribution.62

Nevertheless, the exponential function is not a perfect fit. If metric strength is to be

conceived as a continuous exponential function, as I previously suggested, we would expect note

onsets in the fourth-ranked metric position to appear half as often as those in the third-ranked

position, but meter distributions like this one instead demonstrate a staircase effect, where

each stair conforms to a different durational level within the metric hierarchy. In this case, the

fourth-ranked position (beat two) appears almost as often as the third-ranked position (beat

four) because both positions reflect the quarter-note durational level in 4
4. From left to right, the

next four positions in the distribution represent the eighth-note level, the next eight represent

62To ensure this equation would fit any distribution, we could replace the constant .67 with 2(y1), where y1
refers to the most frequent (i.e., highest ranked) metric position in the measure.
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the sixteenth-note level, and the final sixteen positions represent the thirty-second-note level

(not shown).

Given this staircase effect, one possible explanation for the close fit between the note

distribution and the exponential curve with base 2 might be that the durational levels of the

metric hierarchy in 4
4 preserve the same 2:1 ratio from top to bottom (i.e., a whole note is

double the duration of a half note, a half note is double the duration of a quarter note, etc.).

And if a doubling of the durational level corresponds to a doubling of the proportion of note

onsets in 4
4, we could further hypothesize that the ratio represented between adjacent levels of

any metric hierarchy should correspond to the ratio between stairs of the corresponding note

onset distribution.

Bearing this assumption in mind, I have created a hypothetical note distribution for each

meter that preserves the ratio between adjacent levels of the metric hierarchy. Table 3.3 presents

the durational levels for each meter, starting with the 32nd note value. A measure in 4
4 consists

of six such levels, 34, 24, and 6
8 consist of five levels, and 3

8 consists of four. To create a hypothetical

note distribution, we must first determine the proportion of note onsets for each level of the

metric hierarchy. The column denoted by w represents the number of 32nd notes contained

within each durational level. To find the proportion of note onsets associated with each level

Li , we need only divide the weight w at each level by the sum of the weights for that meter:

prop (Li ) =
wi∑
w

w preserves the ratios between adjacent levels, and the function prop ensures the resulting

values in L sum to 1. In 4
4, for example, the downbeat receives a durational weight of 32, and the

sum of the weights in 4
4 is 63, so the estimated proportion of note onsets associated with the

metric downbeat is .51.
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Table 3.3: Levels of the metric hierarchy for each meter.

Metric
Strength Dur. N a wb Dur. N w Dur. N w Dur. N w Dur. N w

4 1 32 1 24 1 16 1 24 1 12
3 1 16 2 8 1 8 1 12 2 4
2 2 8 3 4 2 4 4 4 3 2
1 4 4 6 2 4 2 6 2 6 1

8 2 12 1 8 1 12 1
16 1

a N refers to the number of metric positions within the notated measure for each level.
b w refers to the durational weight of each level, measured in 32nd notes.

Unfortunately, these values assume each level consists of just one metric position; within

the notated measure, however, the lower levels of the metric hierarchy feature multiple metric

positions. As a result, if we were to assign each metric position the appropriate proportion

using the equation above, the sum of the resulting values in the distribution would be greater

than 1. To adjust these proportions such that they accommodate the number of metric positions

N associated with each level, I multiply the values of N by the corresponding proportions in L

and sum them, and then divide each Li by this sum:

propadj (Li ) =
Li∑

(L × N )

Using the adjusted proportions from the equation above, we can assign a proportion to each

metric position according to its membership in the metric hierarchy. I will hereafter refer to this

procedure as the proportions model. Figure 3.5 presents the bar plots of the duration-weighted

note distributions for each movement on the left in blue, with the distributions provided by the

proportions model on the right in red. The majority of the movements in the Haydn Corpus

were notated in common or cut time, so the top-left distribution represents over 20,000 note
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events. By comparison, only one movement was notated in 3
8, so the bottom-left plot represents

less than 1,000 note events.

I mentioned previously that Palmer and Krumhansl have already noted the degree to which

note onset distributions conform to theoretical accounts of the metric hierarchy for each

meter,63 and the distributions on the left in Figure 3.5 replicate that finding. In fact, the

frequency-of-occurrence of notes in the metric positions associated with each durational level

corresponds exactly with the levels of metric strength found in Table 3.3 for every meter—the

metric position associated with the level of the measure received the highest proportion of

note onsets, the metric positions associated with the next lower level received the next highest

proportions, and so on.

There are a number of statistical procedures for determining the degree of fit between the

predicted distributions from the proportions model and the corresponding note distributions

from the Haydn Corpus. In this instance, I have elected to describe the relationship using

linear regression, which calculates a best-fit line that minimizes the error between the predicted

estimates and the actual values found in the note distribution. To understand the regression

estimates that appear in Figure 3.5, R2 refers to the fit of the model, where a value of 1 indicates

that the model accounts for all of the variance in the outcome variable (i.e., a perfectly linear

relationship between the predictor and the outcome), and a value of 0 indicates that the model

fails to account for any of the variance.

The distributions from the proportions model provide an excellent fit for the simple meters

(44, 3
4, and 2

4), suggesting that the empirical distributions reflect the ratios between adjacent

levels of the metric hierarchy. Nevertheless, the fixed 2:1 or 3:1 ratios characterizing each

distribution in the proportions model are somewhat variable in the empirical distributions. In

4
4, the model underestimated the proportion of durations for the most frequent metric positions

63Palmer and Krumhansl, “Mental Representations for Musical Meter.”
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Figure 3.5: Left: Bar plots of the proportion of note onsets weighted by durational accent for
movements in 4

4, 34, 24, 68, and 3
8 (solid blue). N refers to the number of note onsets represented

in each plot. Right: Bar plots of the proportion of note onsets predicted by the proportions
model (dashed red). R2 indicates model fit.
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(the downbeat and beat three), but overestimated the proportion of durations for the lowest

levels of the hierarchy (the metric positions associated with the levels of the 16th and 32nd note).

The same trend emerged in the 3
4 distributions, where the model underestimated the proportion

of durations at the downbeat and overestimated the proportion of durations at the level of the

16th note and lower. Note, however, that the proportions model correctly predicted the 3:1

ratio between the dotted-half-note level and the quarter-note level in the note distribution—in

both distributions, the proportion of durations at the downbeat was three times larger than the

proportion of durations for metric positions at the quarter-note level.

In 2
4, the proportions model predicted far smaller proportions at the eighth-note level than

the empirical note distribution demonstrated. To be sure, the difference between the levels

of the quarter note and eighth note are surprisingly small. If we were to derive a viewpoint

of metric strength strictly from empirical observation, it would seem reasonable to assign the

same value to the metric positions from these two durational levels. For the sake of consistency

across all of the meters, however, I have elected to retain the theoretical metric hierarchy in 2
4.

For the compound meters, the predicted models were less successful. In 6
8, the second dotted

quarter received a greater proportion of durations than the model predicted, just as we noted for

the corresponding level from the 4
4 distribution. The proportions model for 3

8 suffered from the

same limitation; in this case, the predicted 3:1 ratio between the levels of the dotted quarter and

eighth note did not correspond with the ratio in the empirical distribution, where proportions

for metric positions at the eighth-note level were much larger. In fact, the ratio between these

two levels was less than 2:1 in the empirical distribution. Nevertheless, the small sample size for

the 3
8 distribution calls into question any similarities or differences we might observe between

the model and the distribution.

Given the degree of fit between the empirical note distributions and the corresponding

proportions models, a viewpoint of metric strength reflecting the coincidence of layers of nested
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periodicities appears well justified. Metric strength in this context is an ordinal viewpoint,

where the value associated with each metric position represents the number of periodicities

(or layers) it supports within the notated meter. Since meter minimally involves two or three

layers,64 a viewpoint representing four levels of metric strength should be sensitive enough

to allow us to make subtler distinctions than a two- or three-level viewpoint would permit,

while still being coarse enough to generalize across all five metric contexts. Shown in Table 3.3,

level 4 represents the metric downbeat; level 3 represents the duple or triple subdivision of the

measure; level 2 represents the next subdivision, which typically corresponds to the level of the

quarter or eighth note; and level 1 represents the lowest level of strength, which consists of all

of the remaining metric positions across the measure.

3.4.2 Chord Events

To this point I have represented note events in the Haydn Corpus according to four viewpoints:

melodic interval (melint), melodic contour (contour), chromatic scale degree (csd), and metric

strength (strength). Figure 3.6 presents the viewpoint representation for the first violin part

from the opening two measures of the first movement of Haydn’s String Quartet in E, Op.

17/1. The appeal of this approach is that it represents each part in isolation, allowing us to

consider the distinct roles these instrumental parts may play, both in the corpus at large, and

in cadential contexts. Nevertheless, by treating the note event as the unit of analysis, this

representation scheme can tell us nothing about the manifold ways in which these parts may

interact. In short, it tells us nothing about the vertical sonorities that characterize this style.

Identifying events beyond the level of the note using inductive methods is a tremendous

challenge. As a consequence, many analysts have elected to ignore the symbolic encoding

entirely and instead annotate vertical sonorities using roman numerals, figured bass symbols,

64Lerdahl and Jackendoff, A Generative Theory of Tonal Music, 19; London, Hearing in Time, 47.
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1 2 3 4 5 6 7 8 9 10 11 12

melint ⊥ 4 3 -2 -3 -2 4 1 2 2 -9 -1
contour ⊥ 1 1 -1 -1 -1 1 1 1 1 -1 -1
strength 1 4 1 2 1 3 1 4 1 2 1 3
csd 0 4 7 5 2 0 4 5 7 9 0 11

Figure 3.6: Top: First violin part from Haydn’s String Quartet in E, Op. 17/1, i, mm. 1–2.
Bottom: Viewpoint representation.

and the like. But in recent decades, several studies have attempted to derive principles of tonal

harmony from symbolic corpora by constructing composite viewpoints of chord events from

simpler viewpoints derived from note events.

The simplest procedure for deriving chord events from multi-voiced textures is to partition

note events into simultaneities whenever all of the instrumental parts have the same onset time.

Shown at the top of Example 3.1, all four instrumental parts feature the same onset time on six

occasions in the first two measures. This approach works well for homo-rhythmic textures and

simple species counterpoint, but it under-partitions more complex polyphony where common

onset times may not coincide with the harmonic rhythm of the passage.65 For this reason, many

current music analysis software frameworks perform a full expansion of the symbolic encoding,

which duplicates overlapping note events at every unique onset time.66 Shown below in the

same example, expansion results in the identification of ten unique onset times for which all

four instrumental parts are present. With this method, we could model the resulting sequence

of note combinations directly, or sample at regular metric intervals using what Conklin calls

65Darrell Conklin, “Representation and Discovery of Vertical Patterns in Music,” in Music and Artifical
Intelligence: Proc. ICMAI 2002, ed. Christina Anagnostopoulou, Miguel Ferrand, and Alan Smaill, vol. 2445
(Springer-Verlag, 2002), 3–4.

66ibid., 4. In Humdrum, this technique is called ditto, while Music21 calls it chordifying.
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Example 3.1: Top: Haydn, String Quartet in E, Op. 17/1, i, mm. 1–2. Bottom: Full expansion.

threaded viewpoints.

In previous publications, Conklin represented vertical sonorities by the melodic intervals

between adjacent onset times in each instrumental part. Beginning with the cello part in

Example 3.1, Conklin’s method derives the vertical pattern 〈0, 0, 0, 3〉 between events 1 in 2. Ian

Quinn and Panayotis Mavromatis have pointed out, however, that this approach hard-codes

the ordering of the four parts when in principle, voices are permutable.67 Swapping the alto

and tenor voices in a vertical sonority would produce a completely different representation in

Conklin’s method, for example. As an alternative, Quinn developed a representation consisting

67Ian Quinn and Panayotis Mavromatis, “Voice-Leading Prototypes and Harmonic Function in Two Chorale
Corpora,” in Mathematics and Computation in Music, ed. Carlos Agon et al. (Heidelberg: Springer, 2011), 231.
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of an ordered triple (S1, S2, I ), where S1 and S2 are sets of intervals above the bass in semitones

modulo the octave, and I is the melodic interval (again modulo the octave) from the first bass

note to the second. He calls this representation a voice-leading type.68

The appeal of Quinn’s representation is that the most common voice-leading types in a

given corpus will have analogues in figured-bass nomenclature. Nevertheless, as a representation

scheme for chord events, Quinn’s voice-leading type is more promiscuous than traditional

definitions of ‘chord’ would embrace. Whereas theorists tend to assign chordal status only to

those vertical sonorities featuring stacked intervals of a third, Quinn’s voice-leading types make

no distinction between chord tones and non-chord tones, consonant and dissonant intervals,

or diatonic and chromatic scale degrees.69 As a result, the syntactic domain (or alphabet) of

voice-leading types is enormous. Thus, to adapt Quinn’s method here, we need to reduce the

syntactic domain such that the resulting viewpoint corresponds more closely with the figured

bass symbols in Gjerdingen’s schema-theoretic framework.70

The viewpoint vertical interval class combination (vintcc) models the vertical intervals in

semitones modulo 12 between the lowest instrumental part b and the upper parts u from the

basic type cpitch:

Ψvintcc(eib ) = |Ψcpitch(eib ) − Ψcpitch(eiu ) | mod 12 (3.5)

68Ian Quinn, “Are Pitch-Class Profiles Really Key for Key,” Zeitschrift der Gesellschaft der Musiktheorie 7 (2010):
151–163; Quinn and Mavromatis, “Voice-Leading Prototypes and Harmonic Function in Two Chorale Corpora.”
The ELVIS team at McGill University use the same method. For more details, see http://elvisproject.ca/.

69Quinn, “Are Pitch-Class Profiles Really Key for Key,” 152.
70Ideally, we would reduce the syntactic domain to less than, say, 30 symbols, but given the number of

combinatorial possibilities for three- and four-note chords, such a feat is staggeringly difficult to achieve. At present,
the creation of an alphabet-reduction algorithm that identifies such a reduced set of chord classes is beyond the
scope of this dissertation, but see Christopher W. White, “Some Statistical Properties of Tonality, 1650-1900” (PhD
Dissertation, Yale University, 2013); Christopher W. White, “An Alphabet-Reduction Algorithm for Chordal
n-Grams,” in Proceedings of the 4th International Conference on Mathematics and Computation in Music (Springer,
2013), 201–212.

http://elvisproject.ca/
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If we only consider unique onsets that contain all four instrumental parts, the number of

combinatorial possibilities is 123 (or 1728), but this procedure excludes combinations containing

only one or two vertical interval classes.71 By including unique onsets for combinations

containing two, three, or four instrumental parts, the number of combinatorial possibilities

increases to 133 − 1 (or 2196), since the syntactic domain of each vertical interval class is

{0, 1, 2, ...,⊥}.72
To reduce the syntactic domain of vintcc to a more reasonable number while retaining

those combinations that approximate figured bass symbols, I have excluded note events in

the upper parts that double the lowest instrumental part at the unison or octave, allowed

permutations between vertical intervals, and excluded interval repetitions. Following Quinn,

the assumption here is that both the precise location and repeated appearance of a given interval

in the instrumental texture are inconsequential to the identity of the combination. Thus, by

allowing permutations and excluding voice doublings of the lowest instrumental part, the major

triads 〈4, 7, 0〉 and 〈7, 4, 0〉 would reduce to 〈4, 7,⊥〉. Similarly, by eliminating repetitions, the

chords 〈4, 4, 10〉 and 〈4, 10, 10〉 would reduce to 〈4, 10,⊥〉. Using this procedure, the potential

domain of vintcc reduces dramatically from 2196 to 232 unique vertical interval combinations,

though the Haydn Corpus only contained 190 of the 232 possible combinations, reducing the

domain yet further.

Unfortunately, vintcc does not represent voice-leading information, nor does it define each

harmony in relation to an underlying tonic. Quinn’s solution to the first limitation was to

encode the melodic interval between successive events in the bass. Given the viewpoint csd,

however, we may instead represent vertical sonorities as combinations of chromatic scale degrees.

71I did not include onsets consisting of just one instrumental part under the assumption that such instances
would not constitute chord events.

72I excluded the combination representing just one instrumental part from the calculation, 〈⊥,⊥,⊥〉. Again, ⊥
indicates that the vertical interval class is undefined.
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The viewpoint csdc includes the chromatic scale degrees derived from csd as combinations of

two, three, or four instrumental parts. Here, the number of possibilities increases exponentially

to 134−131 (or 28, 548), since the cello part is now encoded explicitly in combinations containing

all four parts.73 Rather than treating permutable combinations as equivalent (e.g., 〈0, 4, 7,⊥〉 and

〈4, 7, 0,⊥〉), as we did in vintcc, it will also be useful to retain the chromatic scale degree in the

lowest instrumental part in csdc and only permit permutations in the upper parts. Excluding

voice doublings and permitting permutations in the upper parts reduces the potential domain

of csdc to 2784, though in the Haydn Corpus the domain reduced yet further to 688 distinct

combinations.

§3.5 Conclusions

This chapter took a circuitous path through the Haydn Corpus. I began in §3.1 with a

brief discussion of corpus studies in music research, and then in §3.2 presented the corpus

of expositions from Haydn’s string quartets and the representation scheme employed by the

MIDIToolbox. Digital encodings of individual note or chord events typically represent multiple

properties of the musical surface, so in §3.3 I adopted a multiple-viewpoint framework to encode

irreducible viewpoints like chromatic pitch (cpitch), note onset in beats (onset), metric position

(metricpos), key (key), and mode (mode). From these basic types I then derived a number of

other viewpoints in §3.4 to represent the “core” events of the classical cadence: melodic

interval (melint), contour (contour), chromatic scale degree (csd), and strength (strength) to

represent note events, and vertical interval class combination (vintcc) and chromatic scale

degree combination (csdc) to represent chord events.

Armed with this representation scheme, I now apply a few common statistical methods to
73As with vintcc, I excluded combinations representing less than two instrumental parts from the calculation

(e.g., 〈⊥,⊥,⊥,⊥〉).
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probe the corpus at large and consider whether cadences and other closing formulæ are indeed

the most recurrent patterns in classical music. Thus, Chapter 4 attempts to reinforce the link

between psychological stability and statistical frequency, providing distributional evidence in

support of the view that cadences are among the most important event schemas in the tonal

system.
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Chapter 4

Discovering Closing Schemas: Stability

and Voice

We perceive, understand, and respond to the world, including music, in terms of the
patterns and models, concepts and classifications, which have been estabilished in our
traditions—linguistic, philosophical, musical, and so on.

Leonard B. Meyer

For many, the cadence concept is woven into the very fabric of the tonal system. According

to Giorgio Sanguinetti, it represents “the first, most elementary of tonal structures,”1 providing a

flexible scaffold on which to build increasingly complex diminutions spanning phrases, sections,

and entire pieces.2 If the cadence is indeed the quintessential tonal schema, a “microcosm

1Giorgio Sanguinetti, The Art of Partimento: History, Theory, and Practice (Oxford, UK: Oxford University
Press, 2012), 105.

2Few would disagree that cadences effect closure at the level of the phrase or theme (i.e., at fore-to-middle-
ground levels of musical organization), but whether local cadences effect closure at higher levels of formal
organization, or indeed, that the materials found within an entire work could constitute a high level cadence,
remains very much in dispute. For a summary and critique of the role of cadential closure in the structural
hierarchy of a work, see Caplin, “The Classical Cadence,” 56-66, and Michael Spitzer, “The Retransition as Sign:
Listener-Oriented Approaches to Tonal Closure in Haydn’s Sonata-form Movements,” Journal of the Royal Musical
Association 121, no. 1 (1996): 11–45.
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which summarizes the essential features... of the work it closes,”3 we should expect to see those

features reflected in global characteristics of the corpus at large.

It seems from existing corpus studies that the features on which the cadence concept

depends—prominent scale degrees, sonorities, metric positions, and the like—appear with far

greater frequency in existing corpora than those deemed unstable, suggesting that stable events

are resistant to change, continuation, or further implication because they appear frequently in a

given style. Nevertheless, the compositional framework that supports the classical cadence—and

indeed, many of the cadential formulæ spanning the entire European art tradition from its

inception—consists of at least two independent voices serving quite distinct roles, an observation

that has yet to receive much attention in corpus research.4 Thus, in §4.1 I provide distributional

evidence for the tonal and metric stability of note and chord events appearing at the moment

of cadential arrival and examine the statistical characteristics that distinguish each voice of the

two-voice framework, setting aside the discovery of entire cadential patterns until §4.2.

§4.1 Stability and Voice

4.1.1 Note Events

I have represented note events in the Haydn Corpus according to four viewpoints: chromatic

scale degree (csd), metric strength (strength), melodic contour (contour), and melodic interval

(melint). Also, recall from Chapter 3 that to derive csd I annotated the key, mode, modulations,

and pivot boundaries for each note event in every movement of the corpus. Figure 4.1 presents

the major and minor chromatic scale degree distributions weighted by Parncutt’s coefficient

of durational salience for each instrumental part, and omitting note events occurring within
3Alfredo Casella, The Evolution of Music throughout the History of the Perfect Cadence (London, UK: Chester,

1924), iii.
4Gjerdingen, “‘Historically Informed’ Corpus Studies,” 194.
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the boundaries of a modulatory pivot.5 As expected, both sets of distributions replicated the

goodness-of-fit profiles first published in Carol Krumhansl and Edward Kessler’s seminal 1982

study.6 For the major and minor distributions from the upper parts, 1̂ received the highest

proportion of durations, followed by 5̂, 3̂, the other diatonic scale degrees, and finally the

remaining (chromatic) scale degrees.7 A theory of implicit statistical learning would predict

that cadences featuring scale degrees like 1̂, 5̂, and 3̂ at the expected moment of cadential arrival

should be easier to learn and remember because those scale degrees appear far more frequently

in the classical style. Thus, it should not be surprising that the (genuine) cadence categories in

Caplin’s typology—and in nearly every theory of cadence—feature precisely these scale degrees

(see Table 2.1).

The distributions in Figure 4.1 also illustrate an important difference between the four

instrumental parts: for the major mode distributions, 1̂ and 5̂ appeared more frequently in the

cello part than in the upper parts, whereas diatonic scale degrees like 2̂, 3̂, and 6̂ appeared less

frequently relative to the upper parts. In fact, the cello part presented a different tonal hierarchy

altogether in both the major and minor distributions, with 1̂, 5̂, and 4̂ representing the most

stable scale degrees, and not 1̂, 5̂, and 3̂, as was noted for the distributions from the upper parts.

One explanation for this finding might be that the upper-part distributions reflect the statistical

behavior of higher voices in a multi-voiced texture, where stepwise motion—particularly around

the most stable scale degrees of the tonal system—is a hallmark of melodic organization. In the

two-voice framework characterizing the “classic texture,”8 however, the cello part exemplifies

the contrapuntal organization of a lower voice, where scale degrees like 1̂, 5̂, and 4̂ (and not 3̂)

harmonize particularly well with the distribution of scale degrees appearing in the upper parts.

5In other words, I have excluded all note events that imply more than one key.
6Krumhansl and Kessler, “Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial

Representation of Musical Keys,” 343.
7I review this and other experimental studies examining the perception of closure in §7.1.
8Ratner, Classic Music, 108.
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Figure 4.1: Major (top) and minor (bottom) chromatic scale degree distributions weighted by
durational accent for each instrumental part.

I took care in the preceding discussion not to conflate each instrumental part with a specific

voice in the musical texture (e.g., the first violin part with the soprano voice). In the classical

style, for example, the cadential bass sometimes appears in an inner part when the cello part

is absent. For my purposes, the generic term voice will exemplify what psychologist Albert

Bregman has called an auditory stream.9 As opposed to concepts like line, part, or voice,

Bregman’s “stream” distills into one term the various sensory and cognitive processes by which

listeners parse the complex auditory scene into its constituent sound sources (e.g., the viola part

from a Haydn string quartet), integrating those sources that display similar sequential grouping

9Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, 9.
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cues, and segregating those sources that display dissimilar grouping cues.10 In the classical string

quartet texture, listeners may perceive many auditory streams, or as is far more likely, just one

or two streams, with two or more instrumental parts presenting acoustic cues so similar as to

integrate the individual sound sources into just one stream.11

In music-theoretical discourse, the various modifiers associated with the term voice—soprano,

bass, discant, tenor, and so on—attempt to convey the approximate ambitus and distinct

functional characteristics associated with a given line or part, often bearing in mind the presence

of other voices (and their functional characteristics) in the complete musical texture. Yet

at present, few corpus studies consider how the distributions characterizing these individual

voices might differ. To provide a descriptive measure of the differences we might find between

instrumental parts in the Haydn Corpus, I will apply a statistic from information theory that

mathematician Claude Shannon called entropy,12 but which is sometimes also called Shannon

entropy to distinguish it from other usages of the term in physics and astronomy.

A number of music-analytic studies have employed Shannon entropy as a descriptive statistic

for musical style,13 and they often note the potential for information-theoretic tools to address

questions in music cognition more generally.14 Ben Duane’s attempt to distinguish between

10Event formation by auditory fusion results from concurrent grouping cues relating to the temporal onset syn-
chrony, spectral harmonicity, and coherent frequency and amplitude behavior of the various acoustic components
characterizing the auditory scene. Auditory stream integration results from sequential grouping cues relating to
the spectral, intensity, and spatial continuity of auditory events separated in time. For a review of principles of
auditory scene analysis, including a description of the various cues characterizing event formation and auditory
stream integration, see McAdams and Drake, “Auditory Perception and Cognition.”

11Bregman himself was well aware that the rules governing Western contrapuntal practice correspond in many
instances with principles of auditory scene analysis (James K. Wright and Albert S. Bregman, “Auditory Stream
Segregation and the Control of Dissonance in Polyphonic Music,” Contemporary Music Review 2 [1987]: 63–92),
and David Huron conducted a large-scale corpus study to compare the two domains (“Tone and Voice”).

12Shannon, “A Mathematical Theory of Communication.”
13See, for example, Leon Knopoff and William Hutchinson, “Information Theory for Musical Continua,”

Journal of Music Theory 25, no. 1 (1981): 17–44.
14Meyer, “Meaning in Music and Information Theory”; Joseph Youngblood, “Style as Information,” Journal of

Music Theory 2, no. 1 (1958): 24–35; Leon Knopoff and William Hutchinson, “Entropy as a Measure of Style: The
Influence of Sample Length,” Journal of Music Theory 27, no. 1 (1983): 75–97; Dean Simonton, “Melodic Structure
and Note Transition Probabilities: A Content Analysis of 15,618 Classical Themes,” Psychology of Music 12, no. 3
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individual lines in a complex texture using context models provides one recent example.15

By taking an information-theoretic approach, Duane successfully differentiated melodies and

countermelodies from accompanying lines in Haydn’s string quartets using a measure of

Shannon entropy, leading him to suggest that the “leading status” of a given line within the

texture derives from a listener’s natural sensitivity to the probabilistic structure of musical

lines.16

Denoted by H , Shannon entropy represents the degree of choice or uncertainty involved

in selecting a symbol from a particular message, where the message consists of a finite set of

discrete symbols—a dictionary of English words, a database of nucleic acid sequences, or in our

case, a corpus of Haydn string quartets.17 The more choices available for selection, the more

uncertain the eventual outcome, and thus, the higher the value of H . On the other hand, when

restricted to just one choice, H is 0, since the outcome will always be certain.

Formally, Shannon represented H as the number of bits (or binary digits) of information

associated with a particular message, with bits expressed on a logarithmic scale with base 2. In

the multiple-viewpoint framework employed here, if every distinct symbol associated with a

given viewpoint is equally likely, H is maximum and equal to log2(N ), where N represents the

number of symbols in the syntactic domain (or alphabet) of that viewpoint. Thus, a viewpoint

whose syntactic domain consists of just two symbols represents 1 bit of information (e.g., mode

(1984): 3–16; Dean Simonton, “Computer Content Analysis of Melodic Structure: Classical Composers and Their
Compositions,” Psychology of Music 22, no. 1 (1994): 31–43; Margulis and Beatty, “Musical Style, Psychoaesthetics,
and Prospects for Entropy as an Analytic Tool.”

15Ben Duane, “Texture in Eighteenth- and Early Nineteenth-Century String-Quartet Expositions” (PhD
Dissertation, Northwestern University, 2012); Ben Duane, “Agency and Information Content in Eighteenth- and
Early Nineteenth-Century String-Quartet Expositions,” Journal of Music Theory 56, no. 1 (2012): 87–120.

16Duane, “Agency and Information Content in Eighteenth- and Early Nineteenth-Century String-Quartet
Expositions,” 93.

17In the communication system proposed by Shannon, Joseph Youngblood likened the degree of choice or
uncertainty to the roles played by composer and listener: “In information theory, information refers to the
freedom of choice which a composer has in working with his materials or the degree of uncertainty which a
listener feels in responding to the results of a composer’s tonal choices” (“Style as Information,” 25).
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= {0,1}), a viewpoint consisting of four distinct symbols represents 2 bits (e.g., strength =

{1,2,3,4}), and a viewpoint consisting of eight distinct symbols represents 3 bits (though no such

viewpoint exists). In the case of the chromatic scale degree distributions presented in Figure 4.1,

the syntactic domain of csd consists of twelve distinct symbols in the Haydn Corpus, so the

Shannon entropy associated with csd is 3.59 bits (i.e., log2(12) = 3.585).

For the above examples, it can be helpful to think of each bit as a fair coin flip. One flip

produces two possible outcomes: H (for heads) and T (for tails); two flips produce four possible

outcomes: HH, HT, TH, TT; three flips produce eight possible outcomes: HHH, HHT, HTH,

HTT, THH, THT, TTH, TTT; and so on. The more symbols in the syntactic domain of a

given viewpoint, the more choice or uncertainty. But note here that to think of each bit as a

coin flip also assumes that each outcome is equally likely, hence the mathematical property that

H is maximum and equal to log2(N ) when the probabilities associated with each symbol in the

syntactic domain are equal. I will refer to this value as Hmax.

Returning to csd, the Shannon entropy of 3.59 bits assumes that the proportion of durations

calculated for each chromatic scale degree is equal. In the context of the Haydn Corpus,

however, the distributions in Figure 4.1 demonstrate just how much more frequently we find 1̂

than, say, ]4̂. To calculate the Shannon entropy for a viewpoint whose symbols are not equally

likely, the original H should represent the weighted sum of the individual values of H for each

symbol in that viewpoint:

H = −
∑

pi log2 pi, (4.1)

where pi represents the probability of symbol i, and the sum of the probabilities for all distinct

symbols is 1. Thus, in Equation 4.1, if the probability of a given chromatic scale degree in

csd is 1, the probabilities for all the remaining chromatic scale degrees will be 0, and H = 0

(i.e., maximum certainty). If all of the chromatic scale degrees are equally likely, however, the
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equation reduces to log2(N ).

In fact, we can infer the relative values of H for each instrumental part just by looking at

the distributions in Figure 4.1. Given what we know about Shannon entropy, distributions

featuring the majority of durations in just a few chromatic scale degrees (like 1̂ and 5̂) will

produce lower values of H , whereas relatively flat distributions—where the durations spread

evenly among the chromatic scale degrees—will produce higher values of H . In both the major

and minor distributions, the durations concentrate more in 1̂ and 5̂ in the cello part than they

do in the upper parts, so we can infer that the degree of choice or uncertainty—and thus, the

value of H—will be lower for the cello part.

Table 4.1 presents the descriptive statistics for each instrumental part. The major mode

distribution for the first violin presented in Figure 4.1 consists of 12,964 note events, which

represents approximately 89% of the total number of note events in the corpus. Another 7%

appear in the minor mode, with the remaining 4% occurring within the boundaries of a pivot

(not shown).18 As expected, Shannon entropy was lowest for the cello part (H = 2.78), followed

by the viola (H = 3.00), the second violin (H = 3.06), and the first violin (H = 3.09). To relate

the absolute entropies to the maximum entropy for that viewpoint, I have also included the

relative entropy, denoted by Hrel, which represents the ratio of the Shannon entropy for a given

distribution to the maximum entropy (i.e., Hrel =
H

Hmax
). This statistic is particularly useful

when comparing distributions across viewpoints whose syntactic domains differ in size.19

In statistical parlance, the various measures of H described here represent point estimates of

unknown population parameters.20 In other words, the first value of H reported in Table 4.1

(3.09) is a descriptive statistic drawn from a particular sample—the major mode chromatic scale-

18Again, these note events were excluded from the analysis.
19For this reason, Hrel is also sometimes called normalized entropy (Margulis and Beatty, “Musical Style,

Psychoaesthetics, and Prospects for Entropy as an Analytic Tool,” 69).
20George A. Ferguson and Yoshio Takane, Statistical Analysis in Psychology and Education, Sixth (Toronto, ON:

McGraw-Hill, 2005), 166-167.
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Table 4.1: Statistics for the major and minor chromatic scale-degree distributions weighted by
durational accent for each instrumental part.

N a %b Hc CId Hrel
e rKKf Vln 1 Vln 2 Vla Vc

Major
Vln 1 12,964 89.37 3.09 3.07–3.11 0.86 .95 – .96 .99 .92
Vln 2 9362 87.88 3.06 3.03–3.09 0.85 .94 – .99 .86
Vla 8125 88.74 3.00 2.98–3.03 0.84 .95 – .89
Vc 7466 88.22 2.78 2.75–2.81 0.78 .94 –
Total 37,917 88.64 3.02 3.01–3.03 0.84 .97

Minor
Vln 1 1038 7.16 3.08 3.01–3.18 0.80 .74 – .89 .98 .92
Vln 2 829 7.78 3.01 2.94–3.10 0.78 .84 – .91 .90
Vla 672 7.34 2.93 2.86–3.02 0.76 .80 – .88
Vc 687 8.12 2.83 2.72–2.96 0.73 .80 –
Total 3226 7.54 3.01 2.97–3.06 0.78 .82

a N refers to the number of note events.
b % refers to the percentage of note events that did not occur within a pivot.
c H refers to the Shannon entropy.
d CI refers to the 95% bootstrap confidence interval of H using the bias-corrected and accelerated
percentile method with 1000 replicates (see text and footnote 25).
e Hrel refers to the Shannon relative entropy.
f rKK refers to the Pearson correlation coefficient calculated between the empirical distribution and the
corresponding Krumhansl-Kessler goodness-of-fit profile.

degree distribution from the first violin part—that estimates the unknown (and unknowable)

value of H if we could sample from the “infinite pool” of chromatic scale degrees represented

in the first violin parts of Haydn’s string quartets, the entire classical string quartet repertoire,

or indeed, all tonal music.21 In order to draw inferences about the potential differences between

estimates of H for each instrumental part, statisticians typically calculate an interval estimate

to assert with some known degree of confidence that the population statistic falls within the

estimated interval, called a confidence interval (CI ).

21What is meant by “population” is itself an intriguing question. Elizabeth Margulis asks, for example, “do
listeners evaluate Haydn’s choices in light of the choices he made in all his string quartets..., or in all his works, or
in all 18th-century music, or in all tonal music?” (“Musical Style, Psychoaesthetics, and Prospects for Entropy as an
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In hypothesis testing theory, confidence intervals provide an interval estimate for a specific

population statistic: the arithmetic mean. But since our interest here is in Shannon entropy, the

equation for obtaining the standard 95% confidence interval around a sample mean would not

be appropriate to the task.22 In such instances, statisticians often employ an alternative method

called the bootstrap,23 which determines the accuracy of point estimates like the arithmetic

mean or Shannon entropy when the underlying theoretical distribution is unknown.24

To determine the confidence interval for statistics other than the mean, the bootstrap

method randomly selects a data point for inclusion in the bootstrap sample and then replaces

it in the original distribution, repeating this procedure n times to produce a sample of the

same size as the original distribution (this procedure is called sampling with replacement). The

algorithm then creates a large number of samples (typically 1000), calculating for each sample a

replicate of the test statistic, in our case H . Given an appropriate confidence level (90%, 95%,

and 99% are the most typical), the algorithm finally estimates the upper and lower boundaries

of the confidence interval from the distribution of H replicates. In the case of the 95% interval,

Analytic Tool,” 77). From a psychological perspective, the “infinite pool” described by Leon Knopoff and William
Hutchinson should represent the long-term stylistic knowledge of listeners regarding the functional characteristics
of the first violin part (“Entropy as a Measure of Style: The Influence of Sample Length,” 81). Determining the
relevant sample (or population) by which to examine that knowledge is an incredibly difficult task, however. See,
for example, Justin London, “Building a Representative Corpus of Classical Music,” Music Perception 31, no. 1
(2013): 68–90.

22In fact, Knopoff and Hutchinson provide the necessary equations to obtain the standard 95% confidence
interval for Shannon entropy (“Entropy as a Measure of Style: The Influence of Sample Length,” 94), but like
the confidence interval calculated for the arithmetic mean, the equations assume a normal distribution. What is
more, the authors note that when using standard methods to estimate confidence intervals, the sample should
consist of at least 7900 characters (Ibid., 83). The bootstrap method I describe in what follows does not assume
normality, and Thomas DiCiccio and Bradley Efron note that bootstrap methods are generally more robust than
the standard interval estimates for small sample sizes (“Bootstrap Confidence Intervals,” Statistical Science 11, no. 3
[1996]: 189–228).

23Bradley Efron and Robert J. Tibshirani, An Introduction to the Bootstrap (London, UK: Chapman & Hall,
1993).

24Standard confidence intervals depend on the assumption that the arithmetic mean will be approximately
normally distributed, which statisticians call the central limit theorem (CLT). In short, the CLT captures the idea
that if we could draw a large number of samples from the (infinite) population, calculating a mean for each sample,
the hypothetical distribution of sample means would fit a normal (bell-shaped) curve. Since the bootstrap method
generates this distribution empirically, it need not rely on the normality assumption.
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for example, 97.5% and 2.5% represent the upper and lower boundaries, respectively.25

Table 4.1 presents the bootstrap confidence intervals of H for the major and minor dis-

tributions from each instrumental part. As previously mentioned, the cello part received

the lowest values of H for the major and minor distributions, and given the lack of overlap

between the corresponding confidence intervals and the values of H calculated for the upper

parts, we can infer that the major mode distribution from the cello part differs significantly

from the upper-part distributions. Shannon entropy therefore demonstrates one fundamental

difference between the four instrumental parts in Haydn’s compositional style: namely, that

the proportion of durations in the cello part concentrate more in 1̂ and 5̂ than they do in the

upper parts. And although these scale degrees also occur frequently in the upper parts, they

become the focal point for melodic activity in the cello part because they serve as harmonic

support for the upper parts in the complete texture.

For reference, I have also provided in the right-most columns of Table 4.1 the Pearson

correlations for the major and minor distributions from each instrumental part with the

corresponding Krumhansl-Kessler goodness-of-fit profiles, as well as the correlations between

the distributions themselves.26 As expected, the distributions in the major mode were all highly

25 I have described here the basic percentile method for deriving bootstrap confidence intervals, but in many
cases the bootstrap distribution is non-symmetric (i.e., non-normal) and the test statistic may differ systematically
from the population parameter, resulting in bias in the calculated confidence interval. To resolve this issue, Bradley
Efron and Robert Tibshirani recommend the bias-corrected and accelerated percentile method (or BCa ), which
corrects for both bias and skewness in the bootstrap distribution. Thomas DiCiccio and Efron have demonstrated
the success of BCa to approximate the exact confidence interval for both parametric and non-parametric bootstrap
distributions, so I adopt that method here. An Introduction to the Bootstrap, 178-201; “Bootstrap Confidence
Intervals.”

26 The Pearson product-moment correlation is the most common quantitative statistic in key-finding algorithms,
though other measures based on Euclidean distance have recently been considered (Albrecht and Shanahan, “The
Use of Large Corpora to Train a New Type of Key-Finding Algorithm”). It represents the magnitude of the
relationship between two variables X andY , giving a value between −1 and +1. A negative value indicates a negative
relation (e.g., X decreases as Y increases), whereas a positive value indicates a positive relation (e.g., X increases
as Y increases), and 0 indicates no correlation between X and Y . For a discussion of the Pearson correlation
coefficient in key-finding algorithms, see David Temperley, “What’s Key for Key? The Krumhansl-Schmuckler
Key-Finding Algorithm Reconsidered,” Music Perception 17, no. 1 (1999): 67-70.
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correlated with the corresponding Krumhansl-Kessler profile ( r > .93). Thus, the degree to

which each distribution conveyed a particular key did not differ between instrumental parts.

The inter-correlations between the major mode distributions for each part also replicated the

earlier finding obtained by the estimates of H . Here, the distributions from the upper parts

were all highly correlated, whereas the cello part was generally less correlated with the other

parts.27

Thus far I have only considered the distributions of chromatic scale degrees represented

by csd in the Haydn Corpus. As expected, the duration-weighted distributions replicated the

hierarchy of tonal stability described by previous authors, and information-theoretic measures

also demonstrated an important difference between the instrumental parts in the complete

texture: specifically, the preference for scale degrees like 1̂, 5̂, and 4̂ in the cello part compared

to the other parts. But what about the other viewpoints examined in this corpus, viewpoints

that clearly play an important role in the representation of cadences?

Table 4.2 presents the statistics for the metric strength, contour, and simple melodic interval

distributions weighted by Parncutt’s coefficient of durational salience for each instrumental

part. Shown in Figure 4.2, the metric strength distributions demonstrated a similar trend for

all four parts, with durations appearing more frequently at metrically strong positions—at

the levels of the downbeat (4) or first subdivision of the measure (3)—and less frequently at

metrically weak positions. This trend was especially clear in the cello part, where durations

rarely appeared at lower levels of the metric hierarchy (i.e., at metric positions represented by

the lowest two levels of strength). This trend became incrementally less clear for each adjacent

27That the minor mode distributions were less correlated with the corresponding Krumhansl-Kessler key
profile is a well-known limitation of the correlational approach (r < .85) (Albrecht and Shanahan, “The Use of
Large Corpora to Train a New Type of Key-Finding Algorithm”). At first glance, it also seems noteworthy that
the minor mode distribution from the first violin was much less correlated with the corresponding key profile
than the other parts (r = .74), but again, the small sample size for the minor mode distributions casts considerable
doubt on any inferences we may hope to draw.
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Table 4.2: Statistics for the metric strength, contour, and simple melodic interval distributions
weighted by durational accent for each instrumental part.

N H CI Hrel Vln 1 Vln 2 Vla Vc

Metric Strength
Vln 1 14,506 1.97 1.96–1.97 0.98 – .99 .97 .98
Vln 2 10,653 1.92 1.91–1.93 0.96 – .99 1.00
Vla 9156 1.89 1.88–1.91 0.95 – 1.00
Vc 8463 1.87 1.85–1.88 0.93 –

Contour
Vln 1 14,456 1.49 1.48–1.50 0.94 – 1.00 1.00 .40
Vln 2 10,603 1.54 1.53–1.55 0.97 – 1.00 .36
Vla 9106 1.55 1.54–1.56 0.98 – .33
Vc 8413 1.58 1.58–1.58 1.00 –

Simple Melodic Interval
Vln 1 14,456 3.72 3.69–3.76 0.80 – .97 .94 .81
Vln 2 10,603 3.62 3.59–3.66 0.78 – .98 .90
Vla 9106 3.69 3.65–3.73 0.79 – .94
Vc 8413 3.43 3.39–3.47 0.74 –

upper part, however. In the first violin part, for example, durations appeared less frequently

at metrically strong positions and more frequently at metrically weak positions relative to the

lower parts, resulting in a flatter distribution. In information-theoretic terms, we should expect

the incrementally greater freedom associated with each of the adjacent upper part distributions

to produce incrementally higher values of H . The values of H shown in Table 4.2 demonstrated

precisely this trend, with the cello and first violin parts receiving the lowest (1.87 bits) and

highest (1.97 bits) values of H , respectively.

The bottom plot in Figure 4.2 presents the contour distributions for each instrumental part.

The upper parts all displayed very little lateral motion and approximately equal proportions of

ascending and descending motion. For the cello part, however, the proportion of durations

was spread evenly across the distribution, though it did demonstrate a slight preference for
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Figure 4.2: Metric strength (top) and contour (bottom) distributions weighted by durational
accent for each instrumental part.

ascending motion. As a result, the values of H in Table 4.2 increased from the first violin (1.49

bits) to the cello (1.58 bits).

Unfortunately, contour is a coarse viewpoint because it consists of just three symbols. Figure

4.2 indicates that the cello part ascended slightly more frequently than it descended, but by

which intervals? Figure 4.3 presents the distributions of simple intervals for each instrumental

part (i.e., intervals up to an octave). Smaller intervals predominated in all four parts, resulting in

approximately Gaussian (or normal) distributions. The Gaussian curve was particularly evident

in the first violin part, presumably because smaller intervals represent the basic unit of motion
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Figure 4.3: Simple melodic interval distributions weighted by durational accent for each
instrumental part.

in upper-voice melodies.28 According to psychologists Jay Dowling and Dane Harwood, this

preference for smaller intervals in melodic organization is a cross-cultural universal resulting

from the physiological structure of the auditory system,29 which integrates acoustic components

separated in time into one perceptual stream—what Bregman called auditory stream integration—

partly as a consequence of pitch proximity.30 But it is also noteworthy that the preference

28Existing corpus studies bear this claim out. Piet Vos and Jim Troost have noted, for example, that there is
an exponential decrease in the proportional occurrence of intervals larger than five to six semitones (“Ascending
and Descending Melodic Intervals: Statistical Findings and Their Perceptual Relevance,” Music Perception 6, no.
4 [1989]: 383-384). For cross-cultural evidence of the prevalence of small intervals in melodic organization, see
Dowling and Harwood, Music Cognition; Huron, “Tone and Voice,” 25.

29Dowling and Harwood, Music Cognition, 155-156.
30Huron, “Tone and Voice,” 22-30. Leon van Noorden’s studies examining the boundaries for auditory stream

integration aptly demonstrate how pitch proximity and rate of change interact during perception. Simply put, van
Noorden found that for very small changes in log frequency—say, two semitones or less—listeners easily integrate
the incoming sound events into one stream regardless of changes in inter-onset interval. For larger changes in
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for certain large intervals increased as we descend from the first violin part to the cello part.

Unisons, perfect fifths, and octaves appeared fairly infrequently in the first violin part, but in

the cello part these intervals were especially common. Presumably the contrapuntal interaction

between the outer voices plays some part in establishing this difference, with the bass voice

moving both by step and by leap to provide harmonic support for the primarily stepwise

soprano.

Shown in Table 4.2, the Shannon entropies for each part reflect these distributional dif-

ferences, with the prevalence of perfect intervals in the lower parts producing significantly

lower values of H . As a result of the presence (or absence) of large intervals, the distributions

characterizing upper voice melodies therefore exhibit greater freedom and are most likely easier

to track as individual auditory streams, whereas lower voice melodies are both less informative

and more difficult to track.31

Finally, corpus studies have shown both for Western and non-Western melodies that small

intervals tend to descend, whereas large intervals tend to ascend.32 Shown in Figure 4.4, the

interval direction distribution for the first violin part generally replicated this finding, with

intervals smaller than a perfect fourth descending, and intervals of a perfect fourth or larger

ascending. For the cello part, however, the results were generally reversed. With the exception

of the intervals of a minor third and its inversion, intervals smaller than a perfect fifth generally

log frequency (i.e., larger than two semitones), however, changes in the temporal interval between incoming
sound events play a significant role, with shorter inter-onset intervals—less than, say, 150 ms—resulting in auditory
stream segregation (“Temporal Coherence in the Perception of Tone Sequences” [PhD Dissertation, Institute
for Perception Research, 1975]). Based on his findings, one could argue that while the prevalence of large leaps
makes bass melodies more difficult to track than upper voice melodies, the prevalence of longer durations in the
bass relative to the upper voices might also make bass melodies easier to track. A corpus study comparing the
distribution of durations from each part might bear this claim out.

31Again, this claim assumes that the voices do not differ with respect to rate of change (see footnote 30), but I
do not consider that issue here. However, in Chapter 7 I provide experimental evidence in support of the related
claim that listeners attend primarily to the soprano voice in multi-voiced textures, though musical training appears
to promote flexible voice tracking (see §7.2.3).

32Vos and Troost, “Ascending and Descending Melodic Intervals: Statistical Findings and Their Perceptual
Relevance,” 388.
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Figure 4.4: Simple interval direction distributions weighted by durational accent for each
instrumental part.

ascended, whereas intervals of a perfect fifth or larger generally descended. According to

psychologists Piet Vos and Jim Troost, the distribution of interval directions demonstrated in

the first violin part confirms Leonard Meyer’s claim that large ascending intervals function as

carriers of musical tension and surprise, resulting in the gap-fill archetype that has since sparked

considerable scholarly debate.33 That we find precisely the opposite pattern of results in the

lowest instrumental part suggests (at the very least) that its role as the “bearer of harmonic

fundamentals” severely constrains the distribution of melodic intervals.34 In the bass voice, the

melodic intervals of the descending third, ascending fourth, and their inversions serve especially

important functions in Western tonal harmony, thus differentiating bass melodies from upper

33Paul von Hippel, “Questioning a Melodic Archetype: Do Listeners Use Gap-Fill to Classify Melodies?,” Music
Perception 18, no. 2 (2000): 139–153.

34Caplin, Classical Form, 27.
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voice melodies in multi-voiced textures.

4.1.2 Chord Events

In the preceding section I provided distributional evidence for the note events in the Haydn

Corpus, noting that events deemed stable within a given tonal (csd) or metric (strength) context

appeared more frequently than those deemed unstable. In this section I extend this discussion

to chord events. Beginning with vertical interval class combinations, vintcc contained 18, 007

combinations representing 190 unique types (hereafter called vintcc types). Approximately 30%

of the combinations presented just one distinct interval class (e.g., a perfect fifth, or < 7,⊥,⊥>),

however, so I have omitted those combinations from the analysis in this section in order to

examine the most common chord types represented by vintcc (major and minor triads, seventh

chords, etc.). This procedure eliminated 5277 combinations and 12 distinct vintcc types.

Figure 4.5 presents a multi-level pie plot of the vertical interval class combinations that

consisted of at least two distinct interval classes, with the proportions weighted by durational

accent. Following Quinn, I collated the remaining 178 types into three categories: type, quality,

and inversion.35 The inner pie plot presents the three chord types (e.g., seventh chords); the

inner concentric circle presents the chord qualities associated with each chord type (e.g., major-

minor, minor, major, half-diminished, and diminished); and the outer concentric circle presents

the inversions for each chord quality in clockwise order (i.e., root position, followed by first,

second, and third inversion).36 Gaps in the outer circle indicate that the associated chord quality

does not contain recognizable inversions (e.g., augmented triads, diminished seventh chords,

etc.). The ‘other’ type was divided into tertian and non-tertian vintcc chord qualities, where

tertian events consisted of incomplete seventh chords and their inversions (e.g., < 4, 10,⊥>

35Quinn, “Are Pitch-Class Profiles Really Key for Key,” 154-155.
36I have not included inversion labels for the minor, half-diminished, and diminished seventh chords, but the

inversions appear in clockwise order.
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Figure 4.5: Multi-level pie plot of the vertical interval class combinations (vintcc) consisting
of at least two distinct interval classes weighted by durational accent. The three levels represent
chord type (triads in blue, seventh chords in red, and other chords in green), quality (major,
minor, diminished, augmented, etc.), and inversion (root position, first, second, third). For
the seventh chords, quality abbreviations represent major-minor (Mm), minor (m), major (M),
half-diminished (ø), and diminished (o). Tertian combinations represent incomplete seventh
chords. Inversions appear in clockwise order beginning in root position for each chord quality.
N = 12, 730.
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represents a major-minor seventh chord with missing fifth), and non-tertian events consisted of

the remaining combinations.

Major triads in root position, first inversion, and second inversion appeared most frequently,

followed by major-minor seventh chords in root position, and then minor triads in root position;

together these five chord types constituted 50% of the combinations in the corpus. In fact, the

27 vintcc types classified as triads (in blue) and seventh chords (in red) in Figure 4.5 accounted

for slightly less than three quarters of the 12, 730 combinations in the Haydn Corpus. Nine

tertian vintcc types represented another 8% of the available combinations, with the remaining

18% of combinations—presumably characterized by the presence of what we ordinarily call

‘non-chord tones’— represented by the remaining 142 vintcc types.

Given my previous claims about the relationship between frequency-of-occurrence on the

one hand and psychological stability on the other, we might conclude from Figure 4.5 that the

root position major triad represents the most stable chord type. But unfortunately this rather

narrow view of stability also forces us into less tenable claims—for example, that major-minor

seventh chords in root position are more stable than minor triads in root position. We could

argue that these findings are statistical aberrations, but they generally replicate previous results

for Bach’s chorales, suggesting at the very least that the distribution of chords in this corpus

generalizes to other tonal repertories.37 Alternatively, one could claim that by pooling events

from both the major and minor modes, the distribution of chords in the minor mode was

largely lost, since minor mode passages and movements occur far less frequently in the corpus.

Assuming the minor mode distribution conforms to the findings presented thus far, minor

triads would presumably appear most frequently in the minor mode distribution, followed by

major-minor seventh chords and major triads. But again, if the Haydn Corpus is to serve as a

37Quinn, “Are Pitch-Class Profiles Really Key for Key,” 154-155; Martin Rohrmeier and Ian Cross, “Statistical
Properties of Tonal Harmony in Bach’s Chorales,” in Proceedings of the 10th International Conference on Music
Perception and Cognition (ICMPC), ed. Ken’ichi Miyazaki et al. (Sapporo, Japan, 2008), 619–627.
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metaphor for musical experience, eighteenth-century listeners presumably heard far less music

in the minor mode, and so the distribution in Figure 4.5 should better reflect the chord types

Galant listeners were likely to learn and remember than would one which weights the two

modes equally.

But perhaps the distribution of chords shown in Figure 4.5—and more importantly, our

notion of stability—reflects more than one mechanism. As I argued in Chapter 1, psychological

stability depends both on the statistical frequency of the event within a particular style and on

the degree to which listeners organize the acoustic components characterizing that event into a

coherent auditory image. For vertical sonorities like triads and seventh chords, for example, the

strength of the auditory image depends (among other things) on the harmonicity of the various

acoustic components characterizing the members of the chord, not to mention its approximate

ambitus, the spacing of the chord members, and of course the timbre(s) voicing each member.

In this instance, the tendency towards philosophical monism simply is not justified, since the

sensory constraints characterizing human auditory processing play some role in determining

the chord typology shown in Figure 4.5.38

All of this is to say that implicit learning is by no means the only mechanism underlying

psychological stability, particularly for chord typologies represented by viewpoints like vintcc

that classify sonorities without a fixed reference point. For viewpoints like csdc, however,

chord representations deemed stable within a particular tonal context presumably appear with

far greater frequency than those deemed unstable. To be sure, as we have already seen with

viewpoints like csd and strength, the stability relations characterizing the Western tonal system

emerge out of distributional statistics, providing evidence in support of the link between

stability and implicit learning.

38A discussion of the various sensory mechanisms underlying event formation for vertical sonorities like triads
and seventh chords merits its own study, but unfortunately such a study is beyond the scope of this dissertation.
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For the chromatic scale degree combinations in the Haydn Corpus, csdc contained 17, 277

combinations representing 688 unique types. Approximately 30% of the combinations presented

fewer than three distinct chromatic scale degrees (e.g., < 0, 4,⊥,⊥>), however, so I have again

omitted those combinations in this section in order to examine the most common chord types

represented by csdc (diatonic and chromatic harmonies, modal mixture, etc.). This procedure

eliminated 5135 combinations and 114 distinct csdc types.

Shown in Figure 4.6, each multi-level pie plot presents the diatonic chromatic scale degree

combinations consisting of at least three chromatic scale degrees from either the major or minor

modes, with the proportions weighted by durational accent. The inner pie plot represents

the diatonic harmonies, labeled with Roman numeral notation,39 and the outer concentric

circle represents each inversion (root position, first, second, and third). Just as in Figure 4.5,

inversions appear in clockwise order for each harmony beginning in root position.

In the major mode, tonic harmony appeared most frequently, followed by dominant

harmony, the pre-dominant harmonies IV and ii, and finally vii, vi, and iii. In the outer

concentric circle, root position chords predominated for harmonies like I, IV, V, and vi, but

unsurprisingly, first inversion chords appeared more frequently for ii, iii, and vii. For the minor

mode distribution, the same general pattern of results emerged, with I and V appearing far

more frequently than the remaining diatonic harmonies. It is noteworthy, however, that for the

minor mode distribution, i, iv, and ii generally appeared much less frequently relative to the

major mode distribution, resulting in comparatively larger proportions for V, VI, and vii.

Shown in the lower table in Figure 4.7, the 49 csdc types representing diatonic harmony

(triads and seventh chords for every diatonic harmony in every inversion) for the major

and minor modes accounted for approximately 62% and 68% of the chromatic scale degree

combinations, respectively. The table also presents three other harmony categories: modal

39Following convention, upper and lower case Roman numerals denote major and minor triads, respectively.
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Figure 4.6: Multi-level pie plots of the diatonic chromatic scale degree combinations (csdc)
consisting of at least three chromatic scale degrees from the major (top) and minor (bottom)
modes, with the proportions weighted by durational accent. The two levels represent diatonic
harmony (triads and seventh chords) and inversion (root position, first, second, third). In-
versions appear in clockwise order for each harmony beginning in root position (labels only
provided for dominant harmony). In both plots, iii and IV did not appear in third inversion. In
the minor mode plot, i did not appear in third inversion, and ii did not appear in root position.
In the major mode plot, N = 11, 253. In the minor mode plot, N = 885.
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Major Minor

N Duration % N Duration %

Diatonic 6404 1229.18 61.75 540 118.06 67.55
Modal Mixture 304 65.88 3.31 19 3.35 1.91
Chromatic 707 140.87 7.08 110 26.85 15.36
Other 3838 554.75 27.87 216 24.45 15.18

Figure 4.7: Top: Radial bar plots of the chromatic scale degree combinations (csdc) consisting
of at least three chromatic scale degrees for which each chromatic scale degree serves as root.
Each grid line represents 4% of the total duration, with the proportions weighted by durational
accent. Bottom: Percentage of chromatic scale degree combinations weighted by durational
accent for each of four categories: diatonic harmony, modal mixture, chromatic harmony
(applied dominants, augmented sixth chords, and Neapolitans), and other.

mixture, which represents the 49 csdc types from the opposite mode; chromatic harmony,

which denotes applied triads and seventh chords (V and vii) for the non-tonic harmonies that

were not also shared by the other harmony categories,40 as well as Neapolitan and augmented

40In the major mode, for example, the same chromatic scale degrees represent tonic harmony and V/IV, so in
such instances combinations were included in the larger of the two categories.
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sixth chords; and other, which represents all other csdc types. Together, the diatonic, chromatic,

and modal mixture categories accounted for nearly three quarters of the combinations from the

major mode and nearly 85% of the combinations from the minor mode.

Finally, Figure 4.7 provides an alternative visualization of the distribution of combinations

in csdc that includes all three harmony categories represented in the previous table. Here,

radial bar plots present the chromatic scale degree combinations for which each chromatic scale

degree serves as root. Each grid line represents 4% of the total duration, with the proportions

weighted by durational accent. Thus, the radial bar representing 1̂ in the major mode plot

accounts for 28% of the combinations in the Haydn Corpus. For the major mode, 1̂ and 5̂

served as the most frequent roots, followed by 4̂, 2̂, and 7̂. In the minor mode, 1̂ and 5̂ also

occurred most frequently, followed by 7̂, [6̂, 4̂, and finally 2̂. Compared to the diatonic scale

degrees, chromatic scale degrees like ]4̂ or [7̂ rarely served as roots within the tonal system.

§4.2 Scale-Degree Schemas

4.2.1 Contiguous N -grams

§4.1 provided evidence in support of the view that stable events appear with far greater frequency

than those deemed unstable. It would seem that the features on which the cadence concept

depends are resistant to further continuation at least in part because they appear frequently

in the classical style. Nevertheless, I argued in Chapter 2 that stable events do not simply

appear at random. Rather, the classical style is characterized by a limited number of highly

stereotyped harmonic and melodic formulæ, and the degree of finality attributed to the final

events within those formulæ depends in no small part on the sequence of events they follow. In

other words, to remember a perfect authentic cadence is not only to recall its final harmonic
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and melodic events, but rather to retain some impression of the entire temporal formula: the

successions of scale degrees, melodic intervals, and contours appearing within each voice, the

harmonies formed by their co-occurrence, the metric context in which they appear, and so

forth. Borrowing from psychologists like David Rumelhart and Marvin Minsky,41 Gjerdingen

has called these recurrent patterns schemas,42 but given the term’s breadth of application in

music psychology and the emphasis Gjerdingen places on scale degree patterns specifically, we

might call them scale-degree schemas.43

In corpus linguistics, researchers often discover recurrent patterns by dividing the corpus

into contiguous sequences of n events, called n-grams, and then determining the frequency

of each distinct pattern in the corpus.44 N -grams consisting of one, two, or three events are

often called unigrams, bigrams, or trigrams, respectively, while longer n-grams are typically

represented by the value of n.45 Much of the discussion in §4.1, for example, represented the

Haydn Corpus using unigrams, but to expand our notion of stability for viewpoints like csdc,

we need only increase the value of n.

Each movement m consists of a contiguous sequence of combinations, so let k represent the

length of the sequence for each movement. Since the Haydn Corpus consists of 50 movements,

the number of n-grams in the corpus is
50∑

m=1
km − n + 1. csdc contains 17, 277 combinations

representing 688 unique types, so the Haydn Corpus contains 17, 227 bigrams, 17, 177 trigrams,

and so on. Given what we know about the limits of sequence perception, however, we could

41Minsky, “A Framework for Representing Knowledge”; Rumelhart, “Notes on a Schema for Stories.”
42Gjerdingen, A Classic Turn of Phrase.
43Temperley, Review of Music in the Galant Style, 278.
44For an early example of n-gram databases in music research, see J. Stephen Downie, “Evaluating a Simple

Approach to Music Information Retrieval: Conceiving Melodic N-Grams as Text” (PhD Dissertation, The
University of Western Ontario, 1999).

45Formally, n-gram models attempt to identify the dependencies between contiguous events using Markov
chains. That is, n-gram (or context) models attempt to predict the next event in a sequence given a preceding
context of n events. In this chapter, I examine the relevance of n-grams for pattern discovery and classification,
setting aside context models until Chapter 6.
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discard those n-grams that listeners are unlikely to group into smaller segments.

Psychologists have long observed that participants tend to group sequences separated in time

into smaller perceptual units to overcome processing limitations.46 According to Paul Fraisse,

the perception of grouping falls within a range of 200 milliseconds to 1.8 seconds; beyond this

upper limit, grouping no longer occurs.47 This estimate tends to vary between 1.5 and 2 seconds

depending on nature of the task,48 but it generally corresponds to the upper limit of auditory

sensory memory, or what Ulric Neisser termed echoic memory,49 which represents the time

period over which sensory experiences linger in auditory perception.50 Thus, in the analyses

that follow I have only included n-grams whose adjacent events occur within an inter-onset

interval (IOI) of 2 seconds under the assumption that sequence perception breaks down beyond

this interval.

In the preceding section I weighted the frequency for each distinct unigram using a measure

of durational accent under the assumption that note or chord events with longer temporal dura-

tions are somehow more salient and/or better remembered than those with shorter temporal

durations, and thus should contribute more to the final count. But how would we apply this

function to temporal patterns ( i.e., when the value of n is larger than 1)? We could again assume

that patterns featuring longer average temporal durations should receive higher weights, but for

46McAdams and Drake, “Auditory Perception and Cognition,” 428-429.
47Paul Fraisse, “Rhythm and Tempo,” in The Psychology of Music, ed. Diana Deutsch (New York: Academy

Press, 1982), 156.
48Studies of subjective rhythmization—the grouping of isochronous stimuli into groups of twos and threes—

typically provide upper limits between 1.5 and 1.8 seconds. See, for example, Thaddeus L. Bolton, “Rhythm,” The
American Journal of Psychology 6, no. 2 (1894): 145–238. For a review of the boundaries of sequential grouping, see
London, Hearing in Time, 27-47.

49Neisser, Cognitive Psychology, 190.
50David Huron and Richard Parncutt, “An Improved Model of Tonality Perception Incorporating Pitch Salience

and Echoic Memory,” Psychomusicology 12, no. 2 (1993): 157. The upper limit of echoic memory varies between
two and four seconds in the auditory domain (Darwin and Turvey, “An Auditory Analogue of the Sperling
Partial Report Procedure: Evidence for Brief Auditory Storage”), but I adopt the more conservative estimate
in the analyses that follow. For a review of memory and its role in the perception of temporal sequences, see
Candace Brower, “Memory and the Perception of Rhythm,” Music Theory Spectrum 15, no. 1 (1993): 19–35.
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longer n-grams the duration of event a may differ from the IOI between events a and b .51 In

this section I offer an alternative weighting scheme, one that penalizes patterns that listeners

are less likely to remember. When the value of n is larger than 1, we might instead weight

each pattern by the degree of contiguity between adjacent members of the n-gram. Presumably,

n-grams that minimize the temporal distance between adjacent members are more likely to be

perceived as a unitary whole, thereby minimizing the burden on echoic memory.

Hermann Ebbinghaus (1850–1909) was very likely the first psychologist to observe that

memory for contiguous sequences decays exponentially over time, which he called the forgetting

curve.52 Over the following century, studies of sequence memory gradually refined this curve

using inverse exponential functions,53 though the optimum half-life for sensory memory—the

temporal duration in which memory decays by half—varies from anywhere between 0.5 and 3

seconds in the experimental literature.54

Several recent studies in music cognition have modeled memory decay for note or chord

sequences using inverse exponential functions. David Huron and Richard Parncutt have

observed, for example, that accounting for sensory memory decay generally improves key-

finding algorithms. By varying the half-life of the decay function, they also successfully derived

an optimum half-life of around 1 second for two-chord progressions (i.e., for every second

that passes, memory decays by half).55 Following Huron and Parncutt, I have weighted the

appearance of each distinct n-gram in csdc using an exponential decay function with a half-

life of one second to account for the decay in sensory memory resulting from the potential

51In other words, a and b would receive the same durational accent even if a rest appeared between them.
52Michael Jacob Kahana, Foundations of Human Memory (New York, NY: Oxford University Press, 2012), 6.
53Ibid., 292.
54For a review of the published findings concerning sensory memory decay, see Huron and Parncutt, “An

Improved Model of Tonality Perception Incorporating Pitch Salience and Echoic Memory,” 165-166.
55They note that this half-life is quite long for echoic memory and suggest that the exponential decay simulated

for their study may incorporate elements from short-term memory (Ibid., 166), or what Fraisse once called the
psychological present, which generally lasts around 3 seconds (“Rhythm and Tempo”).



4.2 Scale-Degree Schemas 175

discontiguity between contiguous events, shown in Equation 4.2.

d (n-gramt ) = 2

[ 1
n − 1

n∑
i=2

(offseti−1 − onseti )
]

(4.2)

For each event i in n-gramt , the distance function, denoted by d , represents the average offset-

to-onset interval (OOI) between adjacent events. The values of d fall in a range between 0-1,

with n-grams that do not contain rests between adjacent events receiving a value of 1 (maximal

contiguity), and n-grams containing rests approaching 2 seconds in duration receiving values

closer to 0 (minimal contiguity). Note here that the exponential decay for a contiguous bigram

consisting of events a and b does not begin at the onset of event a (i.e., when a begins), but

instead at its offset (i.e., when a ends). Although several studies have suggested that inter-onset

intervals, and not offset-to-onset intervals, provide the most perceptually salient information for

sequential grouping,56 the equation above attempts to model the temporal interval over which

memory begins to decay for each isolated event within the sequence, and not the approximate

interval over which sequential grouping breaks down. For impulsive instrument timbres like

piano and harpsichord, this distinction is probably meaningless, since sensory memory will

begin to decay soon after perceptual onset. For non-impulsive, sustained timbres like bowed

string instruments, however, note or chord events with longer durations are still present in

perception after the moment of perceptual onset, so d will only begin to decay after those events

end.57 In other words, grouping breaks down for sequences featuring note or chord events with

very long IOIs (i.e., greater than two seconds), but sensory memory for isolated events within

that sequence will not decay until each event ends. Thus, d represents the degree of contiguity

56McAdams and Drake, “Auditory Perception and Cognition,” 426-427.
57Ben Duane used precisely this approach to account for sensory memory decay in a context model that

predicted each note in a given instrumental part given a preceding context of n events (“Agency and Information
Content in Eighteenth- and Early Nineteenth-Century String-Quartet Expositions,” 101-102).
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(measured by OOI) between adjacent events in the n-gram, where an inverse exponential

function models the decay in sensory memory resulting from the potential discontiguity.

Unfortunately for complex textures like string quartets, finding relevant patterns using con-

tiguous n-grams is a tremendous challenge. The musical surface typically features considerable

repetition, and a significant portion of the chromatic scale degree combinations in csdc feature

fewer than three distinct chromatic scale degrees, thereby obscuring the kinds of patterns we

might hope to study (e.g., trichords and tetrachords, harmonic progressions featuring more

than one harmony, etc.). One solution to this problem might be to include only those n-grams

that present a genuine harmonic change between events and consist of at least one trichord or

tetrachord in the pattern. To that end, in the analyses that follow I have excluded those n-grams

that (1) do not present at least one combination featuring more than two distinct chromatic

scale degrees, (2) feature adjacent repetitions of the same combination (e.g., < 0, 4,⊥,⊥> and

< 0, 4,⊥,⊥>), (3) share the same chromatic scale degree in the bass and feature subsets or

supersets of chromatic scale degrees in the upper parts (e.g., < 0, 4,⊥,⊥> and < 0, 4, 7,⊥>), or

(4) represent inversions of the same combination (e.g., < 0, 4, 7,⊥> and < 4, 0, 7,⊥>).

Table 4.4 presents the top ten contiguous 2-grams weighted by temporal distance and

determined with and without the above exclusion criteria. The combinations are represented

using Roman numeral notation, and incomplete harmonies contain the subscript symbols

NoRt, No3, and No5 to denote missing chord members. Parentheses indicate a pedal in the bass

throughout the n-gram. Without exclusion, the top ten 2-grams represent approximately 11%

of the 17,131 2-grams with an IOI of less than 2 seconds in the Haydn Corpus. Unsurprisingly,

tonic harmony serves as the terminal event in eight out of the ten 2-grams, with the progression

V7–INo5 ranked seventh overall, appearing 146 times in the corpus. Without exclusion criteria,

these 2-grams demonstrate considerable redundancy, with the remaining nine 2-grams presenting

repetitions of tonic or dominant harmony.
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Table 4.4: Top ten contiguous 2-grams weighted by temporal distance with and without
exclusion criteria.

Without Exclusion Criteria With Exclusion Criteria

d N csdca d N csdc

446.39 450 I I 145.37 146 V7 INo5

216 219 INo5 INo5 59 59 V6
4
b V

212.78 214 I64 I64 57.9 59 V6
5 I

183.12 184 I6 I6 53.66 54 (vii) INo5

159.98 165 INo5 I 44.2 46 V6
4 V7

154.17 155 V V 39 39 V7
No3 V6

4

145.37 146 V7 INo5 31 31 V6
4 V7

No3

139.78 141 V7 V7 30 30 V4
2 I6

104.34 106 I INo5 29.56 31 ii6 V6
4

91.22 92 i i 28.48 29 IV I6

Note. The table includes contiguous 2-grams with inter-onset intervals of less than 2 seconds. Exclusion
criteria: (1) any adjacent repetitions; (2) all events represent inversions of the same combination (e.g.,
< 0, 4, 7,⊥> and < 4, 0, 7,⊥>) (3) any adjacent events sharing the same chromatic scale degree in the bass
and featuring subsets or supersets of chromatic scale degrees in the upper parts (e.g., < 0, 4,⊥,⊥> and
< 0, 4, 7,⊥>); (4) all events have less than three chromatic scale degrees (i.e., no trichords or tetrachords).
N -grams in red denote partial or complete cadential progressions.
a Chromatic scale degree combinations are represented with Roman numerals. The subscript symbols
NoRt, No3, and No5 denote missing chord members (e.g., I6NoRt represents < 4, 7,⊥>). Parentheses
indicate that the chromatic scale degree in the bass does not change throughout the n-gram (i.e., a pedal.)
b All instances of the harmony, V6

4, denote cadential six-fours (i.e., 5̂ in the bass with 1̂ and 3̂ in the upper
parts).

Shown in the right-most columns of the table, 36% of the 17,131 2-grams feature a genuine

harmonic change of some sort. With exclusion, progressions deemed “cadential” in the Formen-

lehre tradition rise to the top of the table, with five of the top ten progressions representing

partial or complete cadential progressions (shown in red). What is more, the top ten 2-grams

represent approximately 9% of the 2-grams meeting these exclusion criteria, indicating that
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of the progressions featuring harmonic change, cadential progressions are among the most

numerous patterns in the Haydn Corpus.

For 3-grams and 4-grams, however, this procedure fails to identify patterns of any significant

frequency in the corpus, instead uncovering extended prolongations of tonic and dominant har-

mony. For example, the top-ranked 3-gram V7
No3–V

6
4–V

5
3 appears just 14 times in the corpus,58

while the top-ranked 4-gram (vii)–I–(vii)–I appears just 7 times. Thus, by limiting ourselves to

contiguous relationships between combinations, the power-law relationship between frequency

and rank order almost entirely disappears as the value of n increases, resulting in increasingly

flat distributions of chromatic scale degree combinations. The commitment to contiguous

n-grams—the standard method in corpus research—has effectively tied our hands.

4.2.2 Non-contiguous N -grams

The contiguous n-gram approach reflects an implicit assumption about the nature of association:

namely, that any event on the musical surface depends only on its immediate neighbors. For

stimuli demonstrating hierarchical structure, however, non-contiguous events often serve as

focal points in the syntax.59 In the contemporary theoretical landscape, this claim should

seem uncontentious: the rise of architectonic approaches in 20th century theory—Schenkerian

analysis, the cognitively informed A Generative Theory of Tonal Music, or recent theories in

the Formenlehre tradition, to name a few—all demonstrate an unwavering commitment to the

discovery of associations that lie beneath (or beyond) the musical surface.60

It should be no surprise, then, that studies of sequence memory published over the past

century have repeatedly demonstrated the importance of non-contiguous associations for a

58Here and in Tables 4.4 and 4.5, V6
4 denotes a cadential six-four (i.e., 5̂ in the bass with 1̂ and 3̂ in the upper

parts).
59Gjerdingen, “‘Historically Informed’ Corpus Studies,” 195.
60London, “Rhythm in Twentieth-Century Theory.”
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variety of stimulus domains. According to psychologist Michael Kahana, the concept of remote

association was in fact Ebbinghaus’ main theoretical advance—the idea that events are not only

associated in memory with their nearest neighbors in the sequence, but also with the next

neighbors, and the next-next neighbors, albeit more weakly.61 Ebbinghaus writes,

The associative threads, which hold together a remembered series, are spun not

merely between each member and its immediate successor, but beyond intervening

members to every member which stands to it in any close temporal relation. The

strength of the threads varies with the distance of the members, but even the weaker

of them must be considered as relatively of considerable significance.62

Given the constraints I initially placed on contiguous n-grams—only including those patterns

with IOIs shorter than 2 seconds, and privileging those patterns with shorter OOIs in the

final count—we may also include n-grams featuring non-contiguous events using the same

criteria.63 Nevertheless, non-contiguous patterns may span tens of seconds, so I will add one

further constraint concerning the temporal duration of the entire pattern. When the n-gram is

contiguous and relatively short—consisting of, say, 7 ± 2 events,64 it typically spans just a few

seconds, so it would seem reasonable to assume that listeners could remember the pattern in

toto. When n is larger than 1 and the pattern features non-contiguous events, however, it may
61Kahana, Foundations of Human Memory, 7.
62Hermann Ebbinghaus, On Memory: A Contribution to Experimental Psychology (New York: Teachers College,

Columbia University, 1885/1913), 94.
63This approach is similar to a technique recently implemented by David Guthrie in natural language processing

to identify non-contiguous n-grams. In his case, the temporal structure of a sequence of linguistic utterances
is less clearly defined, so he identifies non-contiguous relationships by simply skipping adjacent events in the
sequence, which he calls skip grams (“A Closer Look at Skip-gramModelling,” in Proceedings of the 5th International
Conference on Language Resources and Evaluation (LREC 06) [European Language Resources Association, 2006],
1222–1225). James Symons has also demonstrated the applicability of non-contiguous n-grams for the discovery of
recurrent temporal patterns in a corpus of two-voice solfeggi by sampling at regular temporal intervals (“Temporal
Regularity as a Key to Uncovering Statistically Significant Schemas in an Eighteenth-Century Corpus,” Paper
Presented at the Society for Music Theory, 2012, New Orleans, LA).

64Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information.”
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span tens of seconds. Clearly n-grams of this sort lie beyond the limitations of short-term or

working memory, so it will be useful to specify an upper limit for the duration of the total

pattern that accounts for the limitations of working memory. Justin London has suggested

that the longest interval by which we can hierarchically integrate sequential events into a stable

pattern is around 5 to 6 seconds,65 so in what follows I additionally exclude those n-grams with

onset intervals measured from the first to the last event of more than 6 seconds.

Without these limitations, the number of associations between events in the sequence—be

it a short passage of music or an entire movement—necessarily explodes in combinatorial

complexity as the value of n and the number of events in the sequence k increases, since each

event may be said to depend on literally every other event in the sequence. Recall that the

number of contiguous n-grams in any sequence is given by k − n + 1. Thus, the number of

contiguous 2-grams in a 5-event sequence is 4 (5− 2+ 1 = 4). Figure 4.8 depicts these contiguous

associations with solid arcs. If we include non-contiguous associations, however, the number of

n-grams is given by the combination equation:

(
k
n

)
=

k!
n!(k − n)!

=
k (k − 1)(k − 2) . . . (k − n + 1)

n!
(4.3)

The notation
(k
n

)
denotes the number of possible combinations of n events from a sequence

of k events, or “k choose n.”66 By including the non-contiguous associations, depicted with

dashed arcs in Figure 4.8, the number of 2-grams for a 5-event sequence increases to 10. As

the values of k and n increase, the number of patterns can very quickly become unwieldy: a

20-event sequence, for example, contains 190 possible 2-grams, 1140 3-grams, 4845 4-grams, and

15,504 5-grams. Clearly not all of these patterns consist entirely of focal events. What is more,

65London, Hearing in Time, 27.
66The factorial symbol ! denotes the product of all the whole numbers from 1 to n. Thus, 4! = 4 × 3 × 2 × 1, or

24.
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a b c d e

Contiguous
Non-Contiguous

Figure 4.8: A 5-event sequence, with arcs denoting all contiguous (bold) and non-contiguous
(dashed) 2-grams.

the vast majority represent redundant associations resulting from repetitions in the sequence.

Consider the following sequence of scale degrees:

2̂–3̂–2̂–2̂–1̂

Each event e serves as the terminus for up to ke − n contiguous and non-contiguous n-grams.

Thus, the final event (1̂) in the sequence above forms four possible 2-grams: 2̂–1̂ appears

three times, and 3̂–1̂ appears once. If each n-gram serves as a plausible representation of the

associations listeners might form for a given terminal event in the sequence, we might only

include those patterns that represent genuine alternatives (i.e., that represent distinct n-grams).

In this case, the final event forms just two distinct 2-grams: 2̂–1̂ and 3̂–1̂. But which of the

three 2-grams presenting 2̂–1̂ do we include? I have elected to maximize the distance weight

calculated for each distinct n-gram by selecting the pattern with the smallest average temporal

distance. Assuming the sequence above features no rests between contiguous events (i.e., OOIs

of 0 seconds), the 2-gram 2̂–1̂ would therefore receive a distance weight of 1 because the closest
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instance is contiguous.

In the case of contiguous patterns, of course, each event serves as the terminus for precisely

one n-gram, hence the mathematical property that the total number of n-grams is necessarily

smaller than the total number of events in the sequence. But as I have already stated, the great

limitation of contiguous n-grams is precisely that they offer no alternatives; every terminal

event depends only on the events directly preceding it. For non-contiguous patterns, however,

the number of possible distinct n-grams for every event e in the sequence ranges from 1 to

ke − n, so this approach often reduces the total number of redundant associations for each event

in the sequence by only including the individual weights from among the genuine alternatives.

Finally, just as I did with the contiguous n-grams, the analyses that follow include the exclusion

criteria described earlier so as to consider only those n-grams representing a harmonic change

of some sort.

Table 4.5 presents the results of these procedures for the top ten contiguous and non-

contiguous 2-grams, 3-grams, and 4-grams in the Haydn Corpus. The top ten 2-grams are

remarkably similar to those found in the right-most columns of Table 4.4, though the absolute

counts for each n-gram have understandably increased. For example, the top-ranked 2-gram

V7–INo5 appears as a contiguous sequence 146 times, but with the addition of non-contiguous

sequences, this number increased to 397, with a total distance weight of 312.7. Four of the top

ten progressions also feature some variation of V–I, providing further evidence of the primacy

of that progression in the tonal system.

Perhaps more importantly, by including non-contiguous sequences, cadential patterns retain

their position in the table even as the value of n increases. For 3-grams, the top-ranked pattern

V6
4–V

7–INo5 appears almost twice as frequently as eight of the remaining nine patterns in the

table, with a total distance weight of 102. What is more, the pre-dominant harmony that most

often precedes this n-gram in many cadential models, ii6, appears in the table as the seventh
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Table 4.5: Top ten contiguous and non-contiguous 2-grams, 3-grams, and 4-grams weighted by temporal distance.

2-grams 3-grams 4-grams

d N csdca d N csdc d N csdc

312.7 397 V7 INo5 102 136 V6
4
b V7 INo5 57.41 82 V7 INo5 V7 INo5

155.22 210 V6
5 I 96.19 139 INo5 V7 INo5 39.51 55 ii6 V6

4 V7 INo5

151.92 209 V6
4 V7 57.07 82 V7 INo5 V7 36.03 53 INo5 V7 INo5 V7

128.66 199 V INo5 56.63 95 I V7 INo5 32.15 50 INo5 I6NoRt V7 INo5

109.43 163 I6 IV 55.39 78 INo5 (vii) INo5 32.08 44 (vii) INo5 (vii) INo5

108.53 146 V6
4 V 47.94 78 I IV6

4 I 29.52 41 V4
3 I V4

3 I
105.81 166 V7 I 47.11 66 ii6 V6

4 V7 28.34 47 I6NoRt INo5 V7 INo5

104.43 156 V6 I 46.06 81 INo5 V INo5 27.92 41 ii6NoRt
c V6

4 V7 INo5

101.03 175 V I 44.88 71 I V6
5 I 27.66 44 V7 INo5 I6NoRt INo5

99.9 122 (vii) INo5 43.94 71 I V6 I 26.33 44 INo5 I6NoRt V INo5

Note. The table includes contiguous and non-contiguous n-grams with inter-onset intervals of less than 2 seconds.
Exclusion criteria: (1) any adjacent repetitions; (2) all events represent inversions of the same combination (e.g.,
< 0, 4, 7,⊥> and < 4, 0, 7,⊥>) (3) any adjacent events sharing the same chromatic scale degree in the bass and featuring
subsets or supersets of chromatic scale degrees in the upper parts (e.g., < 0, 4,⊥,⊥> and < 0, 4, 7,⊥>); (4) all events have
less than three chromatic scale degrees (i.e., no trichords or tetrachords). N -grams in red denote partial or complete
cadential progressions.
a Chromatic scale degree combinations are represented with Roman numerals. The subscript symbols NoRt, No3, and
No5 denote missing chord members (e.g., I6NoRt represents < 4, 7,⊥>). Parentheses indicate that the chromatic scale
degree in the bass does not change throughout the n-gram (i.e., a pedal.)
b All instances of the harmony, V6

4, denote cadential six-fours (i.e., 5̂ in the bass with 1̂ and 3̂ in the upper parts).
c IVNo5 is an alternative Roman numeral interpretation of the combination (< 5, 9,⊥,⊥>).
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ranked 3-gram, with a total distance weight of 47.11. It should come as no surprise, then, that the

pattern ii6–V6
4–V

7–INo5 and its variant ii6NoRt–V
6
4–V

7–INo5 appear as the second and eighth most

common 4-grams, respectively. Assuming these two patterns in fact represent just one pattern,

in which the pre-dominant may necessarily imply either IV or ii6, the combined distance weight

for these 4-grams of 67.43 would make the cadential progression Pre-Dom–V6
4–V

7–INo5 the

most common 4-gram in the Haydn Corpus.

The appeal of non-contiguous n-grams for stimulus domains exhibiting hierarchical structure

should now be obvious, since the patterns that appear most frequently—and thus, the patterns

that listeners are most likely to learn and remember—necessarily lie beneath the surface. What

is more, this approach makes minimal assumptions about the nature of the musical materials,

the temporal context in which these patterns appear, or the stylistic knowledge listeners might

actually possess. In short, non-contiguous n-grams provide evidence in support of the view

that cadential patterns are among the most important schemas in the tonal system using an

inductive, data-driven method.

§4.3 Conclusions

For many, the cadence is the quintessential tonal schema, a perfect distillation of the features

characterizing the classical style. This chapter presented evidence in support of this view,

demonstrating that the features on which the cadence concept depends occur with remarkable

frequency in the Haydn Corpus. §4.1 replicated and extended the published distributional

evidence for individual tonal, harmonic, and metric events, and examined the statistical evidence

that distinguishes each voice of the two-voice framework using an information-theoretic tool

called Shannon entropy as well as a statistical technique called the bootstrap. To discover

recurrent temporal patterns like cadences, I then extended the canonical n-gram approach
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in §4.2—which divides the corpus into contiguous sequences of n events—by including non-

contiguous sequences using a weighting function d , which awards higher weights to patterns

comprised of temporally proximal members. When non-contiguous n-grams were included in

the final count, the cadential progression Pre-Dom–V6
4–V

7–INo5 emerged as among the most

frequent patterns in the Haydn Corpus.

But what about the other cadential schemas characterizing the classical style? Surely they

possess internal regularities that justify their inclusion in existing cadence typologies, despite

their absence from Table 4.5. In this case, statistical analyses conducted on large corpora tend

to obscure the many recurrent patterns contained therein. Gjerdingen notes, for example, that

many chords can follow IV in compositional practice, but only one chord can follow IV in

the Prinner schema (namely, I6). The former is necessarily a global question, necessitating a

statistical analysis that is limited only by the size of the corpus, whereas the latter depends on

our first identifying the many instances of that pattern before computing statistics intended

to reveal its internal organization.67 Thus, in the next chapter I first annotate a collection of

cadences from the Haydn Corpus before examining a few techniques for the classification of

these cadences on the basis of the features they share.

67Gjerdingen, “‘Historically Informed’ Corpus Studies,” 196.
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Chapter 5

Classifying Closing Schemas: The

Cadential Typology

Taxonomy (the science of classification) is often undervalued as a glorified form of
filing—with each species in its folder, like a stamp in its prescribed place in an album;
but taxonomy is a fundamental and dynamic science, dedicated to exploring the causes
of relationships and similarities among organisms. Classifications are theories about the
basis of natural order, not dull catalogues compiled to avoid chaos.

Stephen Jay Gould

The capacity to identify and categorize recurrent patterns encountered during everyday life

is a tremendous perceptual and cognitive feat, one achieved by the mind’s propensity to detect

regularities amidst the ‘blooming, buzzing confusion’ of present experience and compare those

clusters of co-occurring attributes against remembered exemplars.1 Indeed, if the mind is to

create order out of the ‘welter of stimulation’ characterizing the perceptual present,2 it must do

so by organizing objects and events into categories.

1William James, The Principles of Psychology, 2 vols. (New York: Holt, 1890), 1:488.
2Mandler, “Categorical and Schematic Organization,” 260.
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The classical cadence is a case in point. As conventional harmonic and melodic formulæ,

cadences provide perhaps the clearest instances of phrase-level schematic organization in the

classical style. And as the profusion of terms associated with the classical cadence demonstrates,

scholars within the Formenlehre tradition continue to offer new cadence types, with the essential

characteristics concerning the final harmonic and melodic events of each type often playing the

decisive role in the final classification.

In Chapter 2 I noted that the commitment to these “criterial” or essential features in

category formation is widely held in the Formenlehre tradition. In the perfect authentic cadence,

for example, theorists often suggest that the dominant and tonic harmonies of the cadential

progression must be in root position, and the tonic must support 1̂ in the soprano voice. In

this chapter I consider an alternative view, one that exemplifies the probabilistic approach to

category formation adopted by cognitive psychologists over the last half century, in which a

category is understood as a network of overlapping attributes, and members are prototypical

to the extent that they bear a family resemblance to—have attributes in common with—other

members of the category.

To support this claim, this chapter classifies the many cadential patterns found in the Haydn

Corpus using a family of techniques pioneered (or inspired) by psychologist Amos Tversky.

§5.1 describes the methodology for annotating exemplars of the following five cadences in the

Haydn Corpus from Caplin’s cadence typology: perfect authentic (PAC), imperfect authentic

(IAC), half (HC), deceptive (DC), and evaded (EV) (see Table 2.1). In §5.2, I calculate the

similarity between every pair of cadences using Tversky’s ratio model, which was later adapted

by Daniel Müllensiefen and Marc Pendzich to compare melodies, and then apply (in §5.3)

an additive clustering algorithm called the neighbor-joining method to visualize the obtained

similarity estimates using phylogenetic trees.



5.1 Collostructions: The Cadence Collection 189

§5.1 Collostructions: The Cadence Collection

To uncover meaningful patterns that otherwise elude global statistics, linguists Anatol Ste-

fanowitsch and Stefan Gries abandoned traditional collocational analysis, which determines

which items occur most frequently around a given item within a large corpus, in favor of

what they called collostructional analysis, which starts with a particular construction and then

investigates which items occur more or less frequently in a given slot within that construction.3

The distribution of words following the word day in a corpus of English text is presumably

quite large, for example, but following the construction Don’t give up your day, the distribution

very likely consists of just one word ( job).

The benefit of this approach is that it can identify the internal regularities characterizing a

particular construction without appealing to global statistics. But by starting with a construc-

tion, collostructional analysis is necessarily more labor-intensive, since the researchers must

inspect and manually code each instance before the analysis can take place.4 What is more,

this approach assumes that we already know a great deal about the constructions we seek to

study. To provide evidence that listeners actually learn and remember the cadential schemas

associated with the classical style, we would ideally attempt to identify these constructions

using unsupervised methods that might mirror the kinds of mental processes that characterize

learning and memory.5 In this case, however, I will adopt the collostructional approach, which

is to manually identify the many instances of a given pattern (in this case, cadences) before

3Anatol Stefanowitsch and Stefan Th. Gries, “Collostructions: Investigating the Interaction of Words and
Constructions,” International Journal of Corpus Linguistics 8 (2003): 209–243.

4Ibid., 215.
5In classification tasks, supervised learning algorithms train on (or learn from) a set of annotated examples

before attempting to classify a set of unannotated examples (i.e., they require feedback as to the correct output
corresponding to any given input). Unsupervised learning algorithms attempt the task without such feedback
(Pearce, “The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and
Composition,” 2). For an introduction to machine learning algorithms in music research, see McKay and Fujinaga,
“Style-Independent Computer-Assisted Exploratory Analysis of Large Music Collections.”
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applying techniques intended to reveal its internal organization.6

To examine the cadences found in the corpus, I classified exemplars of the five cadence

categories that achieve (or at least promise) cadential arrival in Caplin’s cadence typology—PAC,

IAC, HC, DC, and EV (see Table 2.1). Along with the cadential classification, I have also

included for each cadence: the boundaries of cadential function; the harmonies of the cadential

progression; the duration of the cadential progression, expressed as a percentage of the length

of the total movement; the presence of an expanded cadential progression, cadential six-four,

or trill within cadential function; or a melodic surface dissonance or change in dynamics

at cadential arrival. Finally, to consider the relationship between cadential articulation and

formal function, I also annotated the boundaries of the thematic sections in each sonata-form

exposition: Main Theme (MT), Transition (TR), and Subordinate Theme (ST). Suffice it to say

that I will not explore each of these annotations in what follows, instead concentrating on those

annotations that have direct bearing on the representation scheme described in Chapter 3.7

The Haydn Corpus contains 270 cadences (see Appendix A). Example 5.1 illustrates some

of the relevant annotations for one such cadence, which appears in the opening movement of

Haydn’s string quartet in F, Op. 76/2. As mentioned in Chapter 2,8 this passage features a half

cadence in m. 19, with the cadential bass line appearing in the cello part in m. 18 following the

end of the “fifths” motive for which this quartet was named. In this case, the cadential melody

is entirely consistent with the converging half cadence schema shown in Figure 5.1, but the

superposition of the end of the “fifth” motive with the beginning of the cadential progression

6Gjerdingen, “‘Historically Informed’ Corpus Studies,” 196. As a consequence, any generalizations I might
make about how we learn and remember the cadential schemas that appear in the Haydn Corpus await further
experimental study using computational models, human listeners, or (preferably) both.

7The annotations described here are clearly subject to the idiosyncrasies or biases of the analyst. To mitigate
the effects of subjective interpretation for the analyses that follow and further ensure that the exemplars from the
cadence collection achieved cadential status in Caplin’s typology, all of the cadential identifications were made in
consultation with William E. Caplin.

8See Example 2.7.
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ii V
6
4

5
3

HCProgression

Arrival

Category

Resolution
Idea

6̂ 7̂

Example 5.1: Haydn, String Quartet in F, Op. 76/2, i, mm. 15–20.

in the cello part has altered the normative cadential bass line of the schema from 4̂-�4̂-5̂ to 2̂-5̂.

The encoded cadence collection approximates the prototypes in Gjerdingen’s scheme by

representing each cadence using the viewpoints csd and contour for each of the outer parts, and

vintcc and strength between all four parts. Each encoded cadence represents the cadential idea

for the viewpoints from the first violin part and the cadential progression for the viewpoints from

the cello part. In some cases, the resolution of the cadential melody does not correspond with

the end of the cadential progression, as in Example 5.1.9 In this case, the encoded viewpoints

for the first violin part and the cadential progression begin at the onset of the cadential idea on

beat 3 of m. 18 and end at the resolution of the dissonant suspension on beat 2 of m. 19, and

the viewpoints for the cello part begin on beat 3 of m. 18 and end at the moment of cadential

arrival on the downbeat of m. 19.

Recall that Gjerdingen’s representation scheme depends on a two-voice framework consisting

of the outer voices. I noted in Chapter 4, however, that the first violin and cello parts are by

9Recall from Chapter 2 that Caplin marks the onset of the cadential arrival at the time point where the final
harmony of the cadential progression first appears, but the end of the cadential idea sometimes includes a surface
dissonance that delays the moment of melodic resolution.
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Figure 5.1: The converging cadence schema prototype, represented using Gjerdingen’s notation
(2007).

no means synonymous with the soprano and bass voices. In the classical string quartet, for

example, the cadential bass line sometimes appears in an inner part (e.g., in the viola or second

violin). Before entering a cadence into the corpus, it was therefore necessary to indicate whether

the outer parts were present in the cadential function. To examine these cadences more closely

using computational methods, I have elected to omit those cadences in which the cadential

progression and cadential idea do not appear in the cello and first violin parts, respectively.

This procedure eliminated 15 cadences. Additionally, another 10 cadences represent cadential

deviations that imply more than one category (i.e., PAC-EV or DC-EV). Thus, for the analyses

that follow (both in Chapters 5 and 6), the corpus consists of 245 cadences.

Figure 5.2 visualizes the cadence collection as a pie chart. As expected, the perfect authentic

cadence (in blue) and the half cadence (in red) represent the most prevalent categories, followed

by the cadential deviations: the deceptive and evaded categories (in magenta and yellow, respec-
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PAC
122

IAC
9

HC 84

DC
19

EV
11

Figure 5.2: Pie chart of the cadences in the Haydn Corpus.

tively). The imperfect authentic cadence (in green) is the least common category, which perhaps

reflects the late eighteenth-century stylistic preference for perfect authentic cadential closure

at the ends of themes and larger sections. According to Markus Neuwirth, this distribution

largely replicates previous findings for Mozart’s keyboard sonatas,10 suggesting this distribution

may characterize the classical style in general.

I mentioned in Chapter 2 that this cadence typology tends to underspecify a number of im-

portant constituent features of closing schemata that relate principally to melodic organization,

features which undoubtedly play an important role in perception and memory. To resolve this

issue, I adopted Gjerdingen’s representation scheme for the cadences in the Haydn Corpus.

In what follows I will further classify these cadences using a similarity model first proposed

by Amos Tversky and later adapted by Daniel Müllensiefen and Marc Pendzich to compare

melodies.

10Markus Neuwirth, e-mail message to author, October 28, 2015.
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§5.2 Similarity and Prototypicality

5.2.1 Tversky’s Ratio Model

To uncover the relationships between items in a given corpus, classifiers very often depend on

some notion of similarity. And because similarity is limited at one extreme (sameness) but

not obviously at the other,11 researchers often operationalize similarity as a distance metric,

where items are represented as points in a multi-dimensional space and observed dissimilarities

between items correspond to the metric distances between the respective points.12 A metric

distance function, denoted here by δ, is therefore a scale that assigns to every pair of items

a non-negative number that represents their distance in accordance with the following three

assumptions: (1) that the distance between any item and itself is 0 (self-identity); (2) that the

distance between any pair of items is always the same, no matter the direction of the comparison

(symmetry); and (3) that distance is transitive, such that if item a is similar to item b, and item

b is similar to item c, a and c cannot be very dissimilar (triangle-inequality).13

Given the apparent simplicity of the approach, it should come as no surprise that the

geometric (or dimensional) view described here has become the prevailing method in cognitive

psychology. But in a seminal review of similarity models, psychologist Amos Tversky noted

that the geometric approach does not always reflect the similarity judgments of participants

in experimental conditions.14 According to Tversky, similarity judgments are inherently direc-

tional, and thus, asymmetric. The expression, “a is like b,” for example, has a subject, a, and a

referent, b, and is not necessarily equivalent to the similarity statement, “b is like a.” Citing

11Alan Marsden, “Interrogating Melodic Similarity: A Definitive Phenomenon or the Product of Interpreta-
tion?,” Journal of New Music Research 41, no. 4 (2012): 324.

12Amos Tversky, “Features of Similarity,” Psychological Review 84, no. 4 (1977): 327.
13Ibid., 328.
14Ibid.
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Rosch’s work on category formation, Tversky instead suggested that the choice of subject and

referent depends on the prototypicality of the items, where the more prototypical item serves

as the referent. And so for Tversky, similarity judgments represent an implicit evaluation of

prototypicality, where the variant (subject) is always more similar to the prototype (referent)

than vice versa.

To accommodate the potential asymmetry between items, Tversky pioneered a set-theoretic

approach to similarity, in which each item is represented by a collection of features or attributes,

and the similarity between two items is a feature-matching process that increases with the addi-

tion of common features and/or the deletion of distinctive features. In the initial formulation

of this approach, Tversky offered two similarity models, but the matching function of interest

to us here is the ratio model:

δ (a, b ) =
f (A ∩ B)

f (A ∩ B) + α f (A \ B) + β f (B \ A)
, α, β ≥ 0, (5.1)

where similarity lies between 0 and 1. a and b represent the items under investigation, and A

and B denote the sets of features. The function f (A ∩ B) measures the salience of the features

shared by a and b, and f (A \ B) and f (B \ A) measure the salience of the features that are

distinct to a and b, respectively, where salience (or prominence) generally refers to the intensity,

frequency, familiarity, good form, or informational content of a given feature within the larger

set.15 The terms α and β denote weights that express the degree of asymmetry calculated by the

model. If α = 1 and β = 0, for example, the salience of the features shared by a and b is only

evaluated with respect to all of the features in a. This choice of weights yields an asymmetric

15Ibid., 332.
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and directional similarity relation and δ (a, b ) reduces to

f (A ∩ B)
f (A)

,

where δ = 1 if a shares all of its features with b, and δ = 0 if a shares none of its features with

b, regardless of the features that might be distinct to b. If α = β = 1, however, the model is

symmetric and δ (a, b ) reduces to
f (A ∩ B)
f (A ∪ B)

,

where f (A ∪ B) measures all of the features in a and b. Thus, δ is only a metric model if

α = β = 1, (i.e., δ (a, b ) = δ (b, a)).

Although geometric models continue to appear in studies of melodic similarity, Tversky’s

set-theoretic approach has received broad support in recent decades.16 In a comparative study

of state-of-the-art similarity algorithms, Daniel Müllensiefen and Marc Pendzich recently noted

that their implementation of Tversky’s ratiomodel correctly predicted court decisions on music

plagiarism with high degrees of accuracy (up to 90%) relative to the other geometric models

they examined.17 In their approach, the distinct contiguous n-grams in each melody a and b

from length n=1 to n=4 represent the respective feature sets A and B. To determine the salience

or prominence of each n-gram (denoted by f in Equation 5.1), they applied a weighting scheme

from computational linguistics called the Inverted Document Frequency (IDF ), which measures

16See, for example, James C. Bartlett and Jay W. Dowling, “Scale Structure and Similarity of Melodies,” Music
Perception 5, no. 3 (1988): 285–314; Marsden, “Interrogating Melodic Similarity”; Naomi Ziv and Zohar Eitan,
“Themes as Prototypes: Similarity Judgments and Categorization Tasks in Musical Contexts,” Musicae Scientiae
Discussion Form 4A (2007): 99–133.

17Daniel Müllensiefen and Marc Pendzich, “Court Decisions on Music Plagiarism and the Predictive Value of
Similarity Algorithms,” Musicae Scientiae Discussion Forum 4B (2009): 257–295.
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the prevalence of a distinct n-gram τ in a collection of melodies C .

I DF (τ,C ) = log
(

|C |
|m : τ ∈ m |

)
(5.2)

|C | denotes the total number of melodies in collection C and |m : τ ∈ m | is the total number of

melodies that contain n-gram τ at least once. High IDF values therefore indicate rare n-grams,

whereas low values indicate common n-grams. In the context of Tversky’s equation, this means

that two melodies will be more similar if the n-grams they share appear infrequently in the

collection.

To examine the predictive value of symmetric over asymmetric models, they applied α and

β weights corresponding to a symmetric model (α = β = 1), an asymmetric model (setting α

or β to 1 and the other to 0), and a dynamically weighted model (representing α and β as the

ratio of their shared n-grams to the total n-grams in a and b, respectively). They then combined

the similarity values computed for each length n into one composite similarity estimate that

represents the arithmetic average of the similarity values calculated for each length weighted by

the entropy of the n-gram distribution from the larger collection. Because entropy necessarily

increases as length increases, this weighting scheme awards higher weights to similarity values

computed from longer n-grams under the assumption that longer exact matches play a greater

role in the perception of similarity.18

5.2.2 Implementation

In what follows I have adapted their approach to the comparison and classification of cadences

from the Haydn Corpus, but with a few noteworthy alterations to the original model. First,

they restricted the feature set to contiguous n-grams, but I have also included non-contiguous n-

18Ibid., 274.
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grams, weighting each distinct n-gram by the distance function d described in §4.2 (see Equation

4.2). For n-grams that appear more than once in the sequence, I select the highest distance

weight. Second, they examined all distinct n-grams across the entire melody, weighting each

n-gram equally regardless of its position within the sequence. For the classical cadence, however,

events appearing at the end of cadential function play a far greater role in the final classification

than those appearing at the beginning, so I have restricted the feature set to contiguous and

non-contiguous n-grams whose final members terminate at the end of the sequence. As a

consequence, two cadences whose sequences do not share the same final event will automatically

receive a similarity value of 0 for that viewpoint, since neither cadence will share any n-gram

of any length. Third, Müllensiefen and Pendzich only applied the model to the sequence

of melodic intervals characterizing each melody. To approximate the representation scheme

advocated by Gjerdingen, I have applied the similarity model separately to the sequences of

contours and scale degrees characterizing each outer part (contour and csd), and the sequences of

vertical interval class combinations and metric strengths characterizing the full texture (vintcc

and strength), and then combined the resulting similarity values in a later step.

The salience function f and the weighted average depend on a collection of melodies from

which to draw the requisite IDF and Shannon H statistics. The goal here is to select a collection

that is somehow representative of the sequences under investigation. Ideally, we would derive

the necessary statistics from a much larger collection of cadences, but given the restricted size

of the corpus, I have instead selected a collection of excerpts that could contain the cadences

as members, but which might also feature other kinds of patterns. In this corpus, all of the

annotated cadences terminate on metrically strong positions at the moment of cadential arrival

(strength = {3, 4}) and feature the outer parts throughout cadential function, and over 90%

of the cadences are less than 6 seconds in duration. To ensure the collection could contain

the annotated cadences as members, I randomly selected 1,000 non-overlapping excerpts that
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terminated on metrically strong positions, featured both of the outer parts throughout the

excerpt, and lasted 6 seconds in duration. The IDF and H statistics were then computed from

the distinct, distance-weighted contiguous and non-contiguous n-grams that terminated on the

final event for each excerpt in the Haydn collection.

If we replace f , A, and B with the appropriate I DF weights, f (A ∩ B) can be rewritten as

∑
τ∈An∩Bn

I DFC (τ)

The numerator of Equation 5.1 is now represented as the sum of the I DF estimates for the

terms shared by a and b . This is the approach favored by Müllensiefen and Pendzich,19 but in

my case, the model also includes non-contiguous terms, so simply replacing each term with its

corresponding I DF estimate would put contiguous and non-contiguous terms on equal footing.

To resolve this issue, we might award higher weights to terms that minimize the temporal

distance between adjacent members so that uncommon terms lying closer to the surface will

receive higher weights in the final model.

For terms that are distinct to either a or b , including the distance weight is straightforward.

f (A \ B) can be rewritten as

I DFC (τA\B ) · d (τA\B ),

which represents the dot product of the I DF estimates from the collection and the distance

estimates from a that are distinct to a (i.e., the sum of the I DF estimates weighted by d for

the distinct terms in a ). Shared terms consist of two distance weights, however, since the term

necessarily appears in both sets. In such cases, I select the higher value of d in order to maximize

the similarity estimate for cadences with shared terms. Thus, if the distance of a shared term is

19Müllensiefen and Pendzich, “Court Decisions on Music Plagiarism and the Predictive Value of Similarity
Algorithms,” 272.
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.8 in A and .5 in B , the term would receive a distance weight of .8.

For Tversky, an item is prototypical if it exemplifies the category to which it belongs.20 That

is, prototypical items contain features that are common to the other members of that category.

Or put another way, we might say that prototypicality reflects the absence of distinct features,

so that cadences with many (or all) shared features and few (or no) distinct features are more

likely to serve as prototypes within a given category. The appeal of Tversky’s ratio model is

thus that the asymmetry measured between items is an explicit measure of prototypicality: the

greater the difference in the similarity estimates for a pair of cadences, the more “prototypical”

the referent cadence.

But perhaps the most important consequence of the set-theoretic approach described here

is that asymmetries imply a “nested” relation, where the more prototypical stimulus nests

within the variant. Psychologists James Bartlett and Jay Dowling have noted, for example, that

asymmetries in similarity ratings for scalar and non-scalar melodies suggest that scalar melodies

elicit fewer alternatives in the minds of listeners. The assumption here is that listeners implicitly

categorize new stimuli into a set of possible alternatives, with the range of the imagined set

determining the stability of the stimulus: the smaller the set, the more stable the stimulus.21

And because non-scalar melodies presumably belong to a much larger set of alternative stimuli,

Bartlett and Dowling expected that less stable (i.e., non-scalar) melodies would be perceived as

more similar to more stable (i.e., scalar) melodies than vice versa. The results confirmed this

asymmetry, suggesting that nested relations occur when the set of alternatives evoked by one

stimulus (the non-scalar subject) includes the second stimulus (the scalar referent).22

If we assume that asymmetries reflect the presence of a nested relation, in which the more

20Tversky, “Features of Similarity,” 347.
21Wendell R. Garner, “Good Patterns Have Few Alternatives: Information Theory’s Concept of Redundancy

Helps in Understanding the Gestalt Concept of Goodness,” American Scientist 58, no. 1 (1970): 34–42; Wendell R.
Garner, The Processing of Information and Structure (Potomac, MD: Lawrence Erlbaum, 1974).

22Bartlett and Dowling, “Scale Structure and Similarity of Melodies,” 289-290.
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stable referent nests within the embellished variant, we need only set β to 1 and α to 0 to apply

this assumption to Tversky’s ratio model. In this formulation, the ratio model reflects the

features that are distinct to b, and δ (a, b ) reduces to

f (A ∩ B)
f (A ∩ B) + f (B \ A)

(5.3)

If a is the variant, b necessarily contains fewer distinct features, so δ (a, b ) > δ (b, a). If a is the

referent (or prototype), however, b contains more distinct features, so δ (b, a) > δ (a, b ).

Replacing f , A, and B in Equation 5.3 with the I DF and d weights described earlier yields

the final model.

δn (a, b ) =
I DFC (τAn∩Bn ) · [dAn (τAn∩Bn ) ∨ dBn (τAn∩Bn )]

I DFC (τAn∩Bn ) · [dAn (τAn∩Bn ) ∨ dBn (τAn∩Bn )] + I DFC (τBn\An ) · dBn (τBn\An )
(5.4)

The model represents each term τ as the product of the I DF weight computed from the

collection and the corresponding d value from either a or b . If the term is distinct, d represents

the highest distance estimate calculated from the instances of the term in b (dBn (τBn\An )). If the

term is shared by a and b , however, d represents the higher of the two distance estimates from

a and b ( [dAn (τAn∩Bn ) ∨ dBn (τAn∩Bn )]).23 Each similarity estimate, δn (a, b ), is then combined

into one composite similarity estimate, δ (a, b ), which represents the arithmetic average of the

similarity values calculated for each length weighted by the entropy of the n-gram distribution

from the larger collection.

To illustrate how Tversky’s equation models nested relations in cadential contexts, consider

the two cadences shown in Example 5.2. Using Gjerdingen’s framework, we could compare the

23The term ∨ denotes the maximum of the two distance estimates for the term shared by a and b .
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a b

3̂ 4̂ 5̂ 5̂ 1̂ 3̂ 4̂ 2̂ 5̂ 5̂ 1̂

a b

Scale Degree Onset (s) Duration (s) Scale Degree Onset (s) Duration (s)
3̂ 0 0.5 3̂ 0 0.25
4̂ 0.5 0.5 4̂ 1 0.75
5̂ 1 0.5 2̂ 1.75 0.25
5̂ 1.5 0.5 5̂ 2 0.25
1̂ 2 0.5 5̂ 2.25 0.25

1̂ 2.5 0.5

Example 5.2: a) Haydn, String Quartet in B-flat, Op. 50/1, iv, mm. 68–70. b) String Quartet
in B-flat, Op. 64/3, i, mm. 3–5. Below: Event representation of the chromatic scale degrees in
the cello part for a and b.

sequences of contours or chromatic scale degrees in either of the outer parts, or the sequences

of metric strengths or vertical interval class combinations for the entire texture, but in this

example I will confine my observations to the sequence of chromatic scale degrees appearing in

each cello part. In the Neapolitan tradition, the bass line in a, 3̂-4̂-5̂-5̂-1̂, exemplifies the cadenza

composta, or compound cadence, in which 5̂ in the standard cadential bass line, 3̂-4̂-5̂-1̂, receives

two metrical units to support a dissonant suspension.24 The bass line in b is nearly identical,

but also includes 2̂ between 5̂ and 1̂, resulting in the sequence 3̂-4̂-2̂-5̂-5̂-1̂. We might therefore

expect a to serve as the prototype and b to serve as the variant because the former “nests within”

the latter, resulting in an asymmetry relation where δ (a, b ) < δ (b, a).

24Sanguinetti, The Art of Partimento, 105.
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Table 5.1: Similarity algorithm for the cadences in Example 5.2. Top: Distance and I DF
weights for the n-grams that are distinct to a (A \ B ), shared by a and b (A ∩ B ), and distinct to
b (B \ A). Bottom: Asymmetric similarity estimates for each length n, along with the average
estimates weighted by shannon H.

a = 3̂-4̂-5̂-5̂-1̂

b = 3̂-4̂-2̂-5̂-5̂-1̂

A \ B A ∩ B B \ A
τ d IDF τ d IDF τ d IDF

n = 1
1̂ 1 1.18

n = 2
3̂-1̂ .35 3.7 2̂-1̂ .71 3.14
4̂-1̂ .59 3.65
5̂-1̂ 1 1.91

n = 3
3̂-4̂-1̂ .71 4.03 2̂-5̂-1̂ .92 3.68
3̂-5̂-1̂ .71 3.46 3̂-2̂-1̂ .5 3.72
4̂-5̂-1̂ .84 3.06 4̂-2̂-1̂ .84 3.84
5̂-5̂-1̂ 1 2.37

n = 4
3̂-4̂-5̂-1̂ .89 3.6 2̂-5̂-5̂-1̂ 1 4.3
3̂-5̂-5̂-1̂ .89 3.85 3̂-2̂-5̂-1̂ .67 4.14
4̂-5̂-5̂-1̂ 1 3.23 3̂-4̂-2̂-1̂ .75 4.57

4̂-2̂-5̂-1̂ .94 4.2

n H A \ B A ∩ B B \ A δ(a, b ) δ(b, a)

1 2.72 0 1.18 0 1 1
2 5.64 0 5.36 2.23 .71 1
3 8.71 0 10.26 8.47 .55 1
4 11.6 0 9.86 14.45 .41 1

TOTAL .56 1
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Table 5.1 presents the I DF and d weights for the terms that are distinct to a (A \ B ), shared

by a and b (A ∩ B ), and distinct to b (B \ A). For each length n, the ratio model represents

the measures of the common and distinctive terms as the dot product of the corresponding

I DF and distance estimates. At n = 1, for example, 1̂ appears at the end of the sequence in

308 of the 1,000 sequences in the collection, so its I DF weight is small (log(1000/308) = 1.18).

For unigrams the distance measure makes little sense, so for n = 1, d corresponds to a count

of the term in the sequence.25 And because the model described here only includes n-grams

whose final members terminate at the end of the sequence, the value of d will always be 1 for

unigrams. Thus, at n = 1, the dot product of the weights for the term shared by a and b is 1.18.

At n = 2, the two sequences share 3̂-1̂, 4̂-1̂, and 5̂-1̂. In the previous section I excluded

non-contiguous n-grams with IOIs longer than 2 seconds, and so by that reasoning we might

also exclude 3̂-1̂ from b (see the event representation in Example 5.2). In this section, however,

I have elected to relax that restriction under the assumption that the cadence is a perceivable

whole (i.e., that the cadence serves as a stable pattern over which listeners can hierarchically

integrate sequential events). To that end, I also include non-contiguous n-grams with IOIs less

than the maximum interval over which hierarchical integration could presumably take place

(i.e., 6 seconds). Shown in the lower table, the dot product of the estimates shared by a and b

is (.35)(3.7) + (.59)(3.65) + (1)(1.91), or 5.36, while the dot product of the estimates that are

distinct to b is 2.23. Plugging these values into Equation 5.3, the similarity of a to b at n = 2 is
5.36

5.36+2.23 , or .71, while the similarity of b to a is 5.36
5.36+0 , or 1.

As n increases, the asymmetry between a and b increases. For n > 2, a shares all of its

terms with b , so that δn (b, a) = 1, but b contains distinct terms featuring 2̂ that lower the

corresponding similarity estimates. Following Müllensiefen and Pendzich, I have combined

25Recall from the previous section that distance, denoted by d , represents the degree of contiguity (measured by
OOI ) between adjacent events in the n-gram. Hence, distance assumes n > 1.
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these estimates into one composite similarity estimate that represents the arithmetic average of

the similarity estimates weighted by the Shannon entropy of the n-gram distribution from the

collection. Shown in the lower table, the composite similarity estimate of a to b is .56, while

the composite similarity estimate of b to a is 1. Thus, for this example the asymmetry reflects a

nested relation, where a serves as the referent (or prototype) because it shares all of its features

with b .

§5.3 Classification Using Additive Trees

5.3.1 The Neighbor-Joining Method

Applying Tversky’s ratio model to every pair of cadences in the Haydn Corpus, we obtain

an asymmetric similarity matrix consisting of 245 rows and 245 columns for every viewpoint

in Gjerdingen’s scheme—csd and contour for the outer parts, and strength and vintcc for the

entire texture—thereby yielding six matrices. To obtain graphic representations that classify the

cadences on the basis of the features they share, I will apply a technique from cluster analysis

called additive clustering, which represents each cadence as a node in a connected graph, called

a tree, and which represents the dissimilarities between cadences by the lengths of the paths

joining them.

Tree representations of similarity data are widespread in the scholarly community, though

additive trees are less well known than their more restrictive hierarchical clustering counterparts,

most likely because the hierarchical clustering scheme is more straightforward to calculate.26 In

agglomerative (or bottom-up) hierarchical clustering, the two items a and b with the highest

26Computational approaches to taxonomic organization were dominated by hierarchical clustering algorithms
in the early days. See, for example, Peter H. A. Sneath and Robert R. Sokal, Numerical Taxonomy: The Principles
and Practice of Numerical Classification (San Francisco: Freeman, 1973), 188-308. For a review of additive clustering
algorithms, see Joseph Felsenstein, Inferring Phylogenies (Sunderland, MA: Sinauer Associates, 2004), 147–195.
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similarity estimate are grouped into a single cluster, and then the similarity between the new

cluster and any other item c is calculated according to a specified linkage method, which is often

the minimum, maximum, or average of (a, c ) and (b, c ).27 The algorithm then repeats this

step until it obtains a single cluster that includes all of the items. Thus, hierarchical clustering

produces a metric tree, in which the height of the lowest (internal) node connecting two items

represents the distance (or dissimilarity) between them, and where items connected to lower

nodes on the tree denote higher similarity relations.28

Although hierarchical clustering remains the most common technique in cluster analysis,

it unfortunately imposes severe limitations on the resulting tree representation because it

implies that (1) all intra-cluster distances are smaller than all inter-cluster distances; and (2)

all inter-cluster distances are equal. Together these properties define the ultrametric inequality

that characterizes hierarchical clustering. And because similarity judgments often violate the

ultrametric inequality, Shmuel Sattath and Amos Tversky championed the more general additive

clustering scheme to represent similarity data, which assumes that (1) intra-cluster distances may

exceed inter-cluster distances; and (2) objects outside a cluster are not necessarily equidistant

from objects inside a cluster.29

In graph theory nomenclature, a tree is a connected graph without cycles, which is to say

that a tree consists of nodes, and any pair of nodes is connected by exactly one straight line (or

path). External nodes representing items are called leaves, while the paths connecting leaves

to internal nodes are called branches. An additive tree is thus a metric representation of the

similarity matrix, in which the dissimilarity between items is represented by the length of the

path (or cophenetic distance) that joins them. Extending the metaphor yet further, ultrametric

27These three functions denote the single, complete, and average linkage methods in hierarchical clustering
algorithms.

28For an example of hierarchical clustering in music analysis, see Ian Quinn, “Listening to Similarity Relations,”
Perspectives of New Music 39, no. 2 (2001): 147-153.

29Shmuel Sattath and Amos Tversky, “Additive Similarity Trees,” Psychometrika 42, no. 3 (1977): 319–345.
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trees possess a node called the root that is equidistant from all external nodes. Trees derived from

hierarchical clustering algorithms typically represent the root on top such that a horizontal line

could connect the leaves of the tree. But because additive trees are metric but not ultrametric,

the intra- and inter-cluster distances between items vary, resulting in a better-fitting (and more

tree-like) representation of the similarity matrix.

The neighbor-joining method (NJ) is perhaps the most well-known additive clustering

algorithm to date. Created by biologists Naruya Saitou and Masatoshi Nei in the late 1980s,30

the NJ method was intended to visualize the genetic similarities between biological species,31 and

it remains the canonical method for the estimation of phylogenetic trees, though its application

now extends far beyond its original mandate.32 And since the NJ method has been shown to

produce tree topologies with higher degrees of fit than the traditional hierarchical clustering

scheme, it is the preferred method here.

The details of the algorithm need not concern us here,33 but the basic procedure is much

the same as the agglomerative hierarchical clustering scheme described earlier: the NJ algorithm

iteratively groups the pair of items (or clusters) with the highest similarity estimate and then

calculates the similarity between the resulting cluster and every other item (or cluster) in the

matrix. But unlike hierarchical clustering, which places the items at equidistant points along an

imaginary line, the NJ method starts with a star-like formation, with items placed at equidistant

30Naruya Saitou and Masatoshi Nei, “The Neighbor-Joining Method: A New Method for Reconstructing
Phylogenetic Trees,” Molecular Biology and Evolution 4, no. 4 (1987): 406–425; James A. Studier and Karl J. Keppler,
“A Note on the Neighbor-Joining Algorithm of Saitou and Nei,” Molecular Biology and Evolution 5, no. 6 (1988):
729–731.

31Radu Mihaescu, Dan Levy, and Lior Pachter, “Why Neighbor-Joining Works,” Algorithmica 54, no. 1 (2009):
1–24.

32For examples of the NJ method in fields like literature and music, see Albert C.-C Yang et al., “Information
Categorization Approach to Literary Authorship Disputes,” Physica A: Statistical Mechanics and its Applications
329, nos. 3-4 (2003): 473–483; Esben Paul Bugge et al., “Using Sequence Alignment and Voting to Improve Optical
Music Recognition fromMultiple Recognizers,” in Proceedings of the 12th International Society for Music Information
Retrieval Conference (ISMIR 2011) (2011), 405–410.

33For a worked example of the NJ algorithm, see Saitou and Nei, “The Neighbor-joining Method,” 407-414.
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points around a circle, and with their path lengths connected to a central node like the spokes

of a wheel. At each step, the pair of items (or clusters) with the highest similarity estimate is

joined to a newly created node that is connected to the central node, and then the least-squares

method is used to estimate the branch lengths and to update the similarity matrix.34

Like most clustering algorithms, the NJ method is metric, which is to say that it requires

a symmetric matrix that represents the dissimilarity between items. For the purposes of

classification, it will therefore be necessary to recalculate the similarity matrix from Tversky’s

ratio model such that δ (i, j ) = δ ( j, i) for every pair of cadences in the Haydn Corpus, but I

will nevertheless retain the asymmetric matrix to determine the most prototypical cadences in

each class.

The standard approach to dealing with pronounced asymmetries in a similarity matrix is to

simply calculate the arithmetic mean of δ (i, j ) and δ ( j, i), and since the ratio model computes

similarity rather than dissimilarity, I also subtract the similarity matrix from the identity

relation in the ratio model so that the resulting matrix represents the dissimilarity between all

pairs of cadences in the Haydn Corpus. For the cadences a and b in Table 5.1, for example,

δ (a, b ) = .56 and δ (b, a) = 1, so δ (a, b ) = δ (b, a) = 1 − 1
2 (.56 + 1), or .22, where 0 represents

identity.

To demonstrate how the NJ algorithm works, Figure 5.3 presents the additive trees (or

dendrograms) calculated from the dissimilarity matrix shown in Table 5.2 for the sequence of

chromatic scale degrees from eight authentic cadential bass lines in the Haydn Corpus. Additive

trees can be visualized in a number of ways. The square method shown in the top dendrogram is

34Saitou and Nei, “The Neighbor-joining Method,” 408-409. Although Sattath and Tverksy pioneered the
additive tree method (called ADDTREE), which is based on rather different underlying principles than those
of the NJ method, several authors have noted that the ADDTREE and NJ methods make similar mathematical
assumptions and produce identical or highly similar trees (Olivier Gascuel, “A Note on Sattath and Tversky’s,
Saitou and Nei’s, and Studier and Keppler’s Algorithms for Inferring Phylogenies from Evolutionary Distances,”
Molecular Biology and Evolution 11, no. 6 [1994]: 961; Felsenstein, Inferring Phylogenies, 166–170).
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Table 5.2: Dissimilarity (or distance) matrix calculated by Tversky’s ratio model for the
sequence of chromatic scale degrees from eight authentic cadential bass lines in the Haydn
Corpus.

3̂-3̂-4̂-5̂-1̂ 3̂-4̂-5̂-1̂ 4̂-3̂-2̂-5̂-1̂ 4̂-5̂-1̂ 3̂-4̂-5̂-5̂-1̂ 4̂-2̂-5̂-5̂-1̂ 4̂-2̂-5̂-1̂ 5̂-1̂

3̂-3̂-4̂-5̂-1̂ –
3̂-4̂-5̂-1̂ .17 –
4̂-3̂-2̂-5̂-1̂ .59 .57 –
4̂-5̂-1̂ .22 .20 .27 –
3̂-4̂-5̂-5̂-1̂ .35 .16 .60 .22 –
4̂-2̂-5̂-5̂-1̂ .68 .68 .40 .24 .51 –
4̂-2̂-5̂-1̂ .68 .67 .23 .24 .68 .16 –
5̂-1̂ .22 .22 .22 .20 .21 .24 .25 –

the canonical representation for clustering trees because it emphasizes the hierarchical relations

of the tree; in this case, the root marks the point at which the blue and red lines meet. Here, the

sum of the horizontal path lengths (or cophenetic distances) represents the dissimilarity between

two items in the tree, but bear in mind that the length of the vertical paths connecting two

items or clusters is arbitrary. In this dendrogram, we can see that 4̂-2̂-5̂-1̂ is very similar to

4̂-2̂-5̂-5̂-1̂, with a cophenetic distance of .16 ( .08 + .08); less similar to 5̂-1̂, with a cophenetic

distance of .3 ( .08 + .1 + .12); and still less similar to 3̂-3̂-4̂-5̂-1̂, with a cophenetic distance of .65

( .08+ .1+ .12+ .02+ .08+ .07+ .05+ .13). Shown in Table 5.2, these three cophenetic distances

correspond closely to the dissimilarities estimated by the ratio model of .16, .25, and .68.

The appeal of dendrograms based on additive clustering algorithms is generally twofold.

First, they organize items into groups (or clusters) on the basis of the features they share. In this

case, 4̂-5̂-1̂ nests within all of the bass lines in red, whereas the bass lines in blue represent more

remote variations of the 4̂-5̂-1̂ pattern, in which 4̂ descends to 2̂ before approaching 5̂. Second,

additive trees implicitly represent prototypicality because they allow the path lengths between
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5̂-1̂
4̂-2̂-5̂-5̂-1̂
4̂-2̂-5̂-1̂

4̂-3̂-2̂-5̂-1̂
4̂-5̂-1̂

3̂-4̂-5̂-1̂
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Figure 5.3: Square (a) and equal-angle (b) dendrograms calculated with the NJ algorithm for
the sequence of chromatic scale degrees from eight authentic cadential bass lines in the Haydn
Corpus.
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items to vary such that each item’s position reflects its average distance to the other items in the

tree. For square dendrograms, the prototypicality of each bass line varies as a function of the

horizontal position of the corresponding leaf, where bass lines appearing to the left are more

prototypical than those appearing to the right. Thus, 5̂-1̂ and 4̂-5̂-1̂ are the most prototypical

patterns in each class, with 5̂-1̂ serving as the central prototype for the entire tree. Given the

initial assumption in the ratio model that prototypes nest within variants, this result is entirely

expected, as both 5̂-1̂ and 4̂-5̂-1̂ nest within the remaining bass lines in the tree, though 4̂-5̂-1̂

nests more directly for the bass lines in red.

One limitation of the square method is that it tends to obscure the cophenetic distances

between items from different clusters. And since the length of the vertical lines connecting

each pair of items (or clusters) is arbitrary, we could instead represent the tree in such a way as

to preserve the cophenetic distance matrix calculated by the NJ algorithm while maximizing

the angular distance between classes, thus omitting the vertical path lengths altogether. In this

case, I have used the equal-angle algorithm, which starts from the root of the tree—again, at

the point where the blue and red lines meet—and allocates arcs of angle to each subtree that

are proportional to the number of leaves in it.35 Shown in the lower tree in Figure 5.3, this

approach clearly distinguishes the two classes without obscuring the distances between bass

lines from different clusters, such as 5̂-1̂ and 4̂-5̂-1̂. And remember that the same cophenetic

distance matrix applies for both trees, so we could easily determine the precise values for the

path lengths in the equal-angle tree by lifting the corresponding values from the square tree.

To determine how faithfully the dendrograms preserve the pairwise distances in the dis-

similarity matrix, analysts sometimes compare the cophenetic distances with the original

dissimilarity estimates using a Pearson correlation; in cluster analysis, this is called a cophenetic

35Felsenstein, Inferring Phylogenies, 578-580; Tobias H. Kloepper and Daniel H. Huson, “Drawing Explicit
Phylogenetic Networks and their Integration into SplitsTree,” BMC Evolutionary Biology 8, no. 22 (2008), doi:10.
1186/1471-2148-8-22.

http://dx.doi.org/10.1186/1471-2148-8-22
http://dx.doi.org/10.1186/1471-2148-8-22
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correlation. Because additive trees are not ultrametric—the leaves (shown with white boxes)

are not equidistant from any one point on the tree—the cophenetic distance matrix generally

corresponds much more closely with the original dissimilarity matrix than those derived from

hierarchical clustering algorithms. Using hierarchical clustering with the complete linkage

method, for example, the correlation between the cophenetic distance matrix and the original

dissimilarity matrix is moderate, r (28) = .61, p < .001. For the cophenetic distance matrix

computed by the NJ algorithm and represented by the additive trees in Figure 5.3, however, the

fit is much better, r (28) = .92, p < .001.

5.3.2 Combining Viewpoints and Evaluation

With the similarity model and clustering algorithm now in place, we should be able to classify

all of the cadences in the Haydn corpus on the basis of the features they share, and in so doing,

identify the most prototypical exemplars in each class. But recall that the similarity model was

applied separately to six different viewpoints—the sequences of contours and chromatic scale

degrees characterizing each of the outer parts, and the sequences of metric positions and vertical

interval class combinations characterizing the entire texture—under the assumption that the

similarity relations characterizing a pair of cadences will reflect more than just one constituent

viewpoint. To classify the cadences from the collection, the similarity matrices should therefore

be combined in some way before applying the NJ method. But how do we determine which

viewpoints to combine, and how do we combine them?

For classification problems like this one, researchers in fields like machine learning rely on

ensemble methods, which combine individual models using a variety of techniques to (1) more

faithfully represent the stimulus domain under investigation (in our case, the musical surface);

and (2) improve model performance. The simplest method of combining similarity models is

to compute the arithmetic mean of the similarity estimates for each pair of cadences, but doing
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so assumes that listeners weight each viewpoint equally when determining similarity. As an

alternative, Pearce and Conklin have suggested weighting the arithmetic mean of the similarity

matrices in the final model by the Shannon entropies associated with the corresponding

viewpoints.36 In their case, greater entropy (and hence uncertainty) was associated with a lower

weight, but I will make the opposite assumption here.

In the ratio model, using the I DF weight assumes that two sequences will be more similar

if they share very rare n-grams, so in this instance I have weighted the similarity matrices by the

Shannon entropies of the corresponding viewpoints under the assumption that two cadences

will be more similar if they share features from more uncertain (or unpredictable) viewpoints.

Put another way, it is far more likely that a pair of cadences will share similar sequences of

melodic contours than vertical interval class combinations because contour consists of just three

distinct symbols, whereas vintcc consists of 190 symbols. By weighting each viewpoint by its

Shannon entropy, viewpoints with larger alphabets, and thus, greater uncertainty, will receive

higher weights in the final model.

Using the 3rd-order Shannon entropies derived from the Haydn collection, the viewpoints

receive the following weights:

contourvc = 6.17
csdvc = 11.6

contourvl1 = 6.04
csdvl1 = 12.42

strength = 6.95
vintcc = 16.9

With these weights, we could derive a composite similarity matrix that represents the

weighted mean of all of the viewpoints. But given what little we know about the features
36Pearce, Conklin, and Wiggins, “Methods for Combining Statistical Models of Music,” 302–304.
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listeners actually employ in the service of similarity estimation, classification, and the like, it

seems more reasonable to calculate every possible combination of models and select only that

model which most closely corresponds to the labels from Caplin’s typology. That is, it seems

preferable to select the best model empirically, using Caplin’s typology as a baseline (or ground

truth). Of course, the labels themselves are subject to interpretation, and to employ them in

this way is to assume that Caplin’s typology is somehow relevant to how listeners represent,

estimate, and classify cadences. But in the absence of experimental data, Caplin’s typology

provides us with a reasonable alternative.

Given six viewpoints, there are 63 possible combinations either of one viewpoint model, or

of the weighted mean of two, three, four, five, or six viewpoint models. In what follows, I have

selected the combination of viewpoint models that most closely corresponds with the labels

from Caplin’s typology using an external evaluation method from the fields of machine learning

and information retrieval called the weighted F-measure.37 The NJ algorithm was computed

for all model combinations, and cluster validation was performed to find the five clusters that

minimized the maximum dissimilarity between items in each cluster.38

Table 5.3 provides the confusion matrix and accuracy measures for the best perform-

ing model combination, which includes the weighted mean of all of the viewpoints except

contourvl1.39 The x-axis of the confusion matrix represents the annotations from Caplin’s

typology, and the y-axis represents the model predictions. Thus, the diagonal represents correct

classifications, and all other values represent confusions. Reading along the diagonal, the cluster

analysis correctly classified 233 of the 245 cadences in the Haydn Corpus.

Recall captures what we often mean by accuracy. It represents the proportion of correctly

37Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval (New York, NY: ACM Press,
1999), 82.

38I used the very same cluster validation method to find the two clusters shown in red and blue in Figure 5.3.
39My approach here is technically unsupervised, so in this instance the confusion matrix is called a matching

matrix, but I have elected to retain the more common term here.
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Table 5.3: Confusion matrix and accuracy measures for the top model combination: contourvc×
csdvc × csdvl1 × strength × vintcc.

Annotation
PAC IAC HC DC EV Precision Recall F-measure

Pr
ed
ic
ti
on

PAC 120 3 0 0 3 .95 .98 .97
IAC 2 6 0 0 1 .67 .67 .67
HC 0 0 84 0 0 1 1 1
DC 0 0 0 17 1 .94 .89 .92
EV 0 0 0 2 6 .75 .55 .63

classified items in each class, where the sum of the values in each column determines the number

of items for that class. For the PAC category, for example, the NJ method correctly classified

120 of the 122 cadences in the Haydn Corpus. What is more, the confusion matrix tells us

which other categories the model confused with the PAC category: in this case, the algorithm

incorrectly classified two of the perfect authentic cadences in the IAC category.

For some categories, the model may be very accurate but not very precise, which is to

say that it might classify many (or all) of the cadences from a given category into the same

class, but also confuse cadences from other categories with that same class. Precision represents

the proportion of correctly predicted items in each class, where the sum of the values in each

row determines the number of model predictions for that class. For example, the NJ method

correctly classified six of the nine imperfect authentic cadences in the Haydn Corpus, so its

recall value is .67, but it also confused three other cadences with the IAC category, resulting in

the lowest precision value in the model of .67.

To balance the recall and precision values characterizing a given model, the F-measure

evaluates model performance by computing the weighted average of precision and recall. We

could of course award higher or lower weights to precision and recall depending on the

classification problem at hand, but in this case I have employed the balanced F-measure, which
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weights the two coefficients equally:

F -measur e = 2 ·
pr ec i sion · r ec al l
pr ec i sion + r ec al l

(5.5)

Based on the F-measure estimates, the NJ method classified cadences from the PAC and HC

categories with the highest accuracy and precision, followed by the DC category, and finally

the IAC and EV categories. For the purposes of model comparison, I have condensed these

F-measure estimates into a single composite score that represents the arithmetic mean of the

individual F-measures weighted by the number of cadences in each class. The idea here is to

award higher weights to F-measures from classes with many items. As a result, the PAC and HC

categories receive higher weights than the other categories because they represent the majority

of the cadences in the corpus.

Table 5.4 presents the top ten model combinations based on the balanced F-measure weighted

by the number of cadences in each class. The model described in Table 5.3 received a value of

.95. The Rand Index is also often reported in classification tasks, so I have provided it here. It

measures the similarity between two clustering solutions as the ratio of the correct classifications

against all classifications.40 From this list, it seems clear that the sequences of chromatic scale

degrees in the outer parts play the most prominent role in the model’s performance, as csdvc

appears in every model and csdvl1 appears in eight of the top ten models. Given the emphasis

placed on the outer parts in Caplin’s typology, this result seems quite reasonable, though

40The Rand Index represents each class by a 2 × 2 confusion matrix, in which the diagonal values represent the
number of cadences that were correctly classified in that class (the true positive condition, or TP) and the number
of cadences that were correctly classified in the other classes (the true negative condition, or TN). The remaining
cells in the matrix refer to the false positives (or FP) and false negatives (or FN) for each class (i.e., the sum of the
non-diagonal values for the row and column representing each class in the original matrix). For the PAC category,
for example, TP is 120, TN is 132 (i.e., the sum of the remaining values along the diagonal in the original matrix),
FP is 2, and FN is 6. The Rand Index sums the values from each cell of the 2 × 2 matrix for all of the classes in the
model, and then divides TP+TN by TP+TN+FP+FN. If the original confusion matrix contains no confusions,
the Rand Index is 1.
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Table 5.4: Top ten model combinations based on the weighted F -measure of the cadence labels
derived from Caplin’s typology and the five clusters that minimized the maximum dissimilarity
between cadences in each cluster in the tree.

Weighted Rand Total
Model F-measure Index Correct

1. contourvc × csdvc × csdvl1 × strength × vintcc .95 .98 233
2. contourvc × csdvc × csdvl1 × strength .92 .97 229
3. contourvc × csdvc × csdvl1 × vintcc .92 .97 229
4. contourvc × csdvc × contourvl1 × csdvl1 .91 .97 226
5. csdvc × csdvl1 × strength × vintcc .91 .97 228
6. contourvc × csdvc × contourvl1 × strength × vintcc .91 .97 228
7. csdvc × vintcc .91 .97 228
8. csdvc × contourvl1 × csdvl1 × vintcc .91 .97 227
9. csdvc × contourvl1 × csdvl1 × strength × vintcc .90 .97 225
10. csdvc × csdvl1 × strength .90 .97 227

it is also noteworthy that all of the viewpoints appear in at least four of the top ten model

combinations, suggesting csd is not the only relevant viewpoint in Caplin’s typology.

§5.4 The Cadential “Tree of Life”

Figure 5.4 presents the equal-angle dendrogram calculated with the NJ algorithm for the

cadences from the Haydn Corpus. I partitioned the cadences in the left tree using the cluster

validation method described earlier, but in the right tree I have clustered the cadences into the

five categories from Caplin’s typology. The PAC and IAC categories appear at the top of the

trees in blue and green, the HC category appears at the bottom of the trees in red, and the DC

and EV categories appear on the right side of the trees in magenta and yellow.

Using the weighted mean of the dissimilarity matrices from the viewpoints in the top model

combination, the NJ method organized the cadences on the basis of the features they shared.
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Figure 5.4: Equal-angle dendrogram calculated from the top model combination—contourvc × csdvc × csdvl1 × strength ×
vintcc—with the NJ algorithm for the cadences from the Haydn Corpus. a) Partitioned into the five clusters that
minimized the maximum dissimilarity between cadences in each cluster. b) Partitioned into the five cadence categories
from Caplin’s typology.
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As a result, cadences from categories displaying similar characteristics appeared closer in the

tree. Cadences from the IAC category appeared as a subordinate branch of the PAC category at

the top of the tree, cadences from the DC and EV categories appeared together on the right

side of the tree, and cadences from the HC category, which share few characteristics with the

other categories in Caplin’s typology, were isolated at the bottom of the tree. To gain a more

complete understanding of the similarity relations characterizing the cadences in each category,

we might therefore partition the final tree into three sub-trees: the authentic cadences at the top

of the tree, the cadential deviations at the right of the tree, and the half cadences at the bottom

of the tree.

5.4.1 Authentic Cadences

The authentic cadence sub-tree features 135 cadences: 122 cadences from the PAC category, 9

cadences from the IAC category, and finally 4 cadences from the EV category. The NJ method

clustered the cadences into six branches in the sub-tree. Counting clockwise from the left-most

branch, the fourth branch consists primarily of imperfect authentic cadences, so we might

expect the remaining branches to reflect other pertinent sub-types of the authentic cadence.

Previous attempts to subdivide the authentic cadence have relied upon a number of dis-

tinguishing characteristics: the final scale degree in the soprano (1̂ or 3̂), the presence of a

dissonant suspension above the cadential dominant or at the moment of cadential arrival, and

the length of the cadential progression have all been suggested at one time or another. According

to Giorgio Sanguinetti, Haydn’s Neapolitan contemporaries typically classified the authentic

cadence into three types according to the number of metrical units supporting the cadential

dominant: the cadenza semplice, or simple cadence, which consists of just one unit (e.g., V–I,

ii6–V–I, etc.); the cadenza composta, or compound cadence, which consists of two units, and thus

supports a cadential six-four (e.g., V6
4–V

7–I); and finally the cadenza doppia, or double cadence,
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which consists of four units (e.g., V5
3–V

6
4–V

5
4–V

5
3–I), though this particular bass pattern featured

less prominently in the late eighteenth century.41 But because the partimento training many

composers received during this time emphasized a two-voice framework of soprano and bass,42

Gjerdingen additionally subdivides the authentic cadence according to the behavior of the

soprano voice: the descending stepwise Mi-Re-Do and its variant, the descending hexachord; the

octave descent of the Cudworth cadence; and the prolonged repetition of 1̂ and 3̂ characterizing

the Pulcinella all provide ready examples, not to mention of course the imperfect authentic (or

incomplete) cadence, which remains a mainstay of most cadence typologies.43

Shown in Figure 5.5, the authentic cadence sub-tree tends to subdivide the cadences according

to the final event characterizing each viewpoint in the final model combination. Reading

clockwise starting on the left, the first two branches represent those cadences employing the

standard cadential bass, 3̂–4̂–5̂–1̂, that feature either a final ascending or final descending contour

from 5̂ to 1̂. Within both branches, the NJ method then clustered the cadences according to the

presence of a cadential six-four. Thus, the cadential bass descends from 5̂ to 1̂ for the cadences

in the first branch, with the first nine leaves featuring semplice cadences and the interior leaves

featuring composta cadences. For the second branch in the sub-tree, however, the cadential bass

ascends from 5̂ to 1̂, with nearly three quarters of the leaves featuring composta cadences.

The third branch of the authentic cadence sub-tree represents cadences with bass lines either

41Sanguinetti, The Art of Partimento, 105-106.
42Musicologists Felix Diergarten and James Dack have both suggested that Haydn, then in his twenties, was

very likely to have received partimento training by the composer Nicola Porpora, who before retiring to Vienna
in 1752 at the age of 66, studied and taught at the Conservatorior dei Poveri di Gesù Cristo in Naples for nearly
three decades. During his time with Porpora, Haydn learned to realize an unfigured bass and accompany a singer
at the harpsichord, and since biographical evidence suggests that Haydn preferred to compose at the keyboard, it
is possible that his partimento training, however brief, may have imparted the lexicon of Galant schemata from
the “Italianate style” (“‘The True Fundamentals of Composition’: Haydn’s Partimento Counterpoint,” Eighteenth
Century Music 8, no. 1 [2011]: 53–75; “Sacred Music,” in The Cambridge Companion to Haydn, ed. Caryl Clark
[Cambridge: Cambridge University Press, 2005], 141).

43Following Johann Gottfried Walther, Gjerdingen refers to the perfect authentic cadence as the clausula
formalis perfectissima, or “most complete close” (Music in the Galant style, 139).
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PAC
IAC
EV

3̂-4̂-5̂-1̂

3̂-4̂-�4̂-5̂-1̂
3̂-4̂-5̂-1̂

Soprano 3̂

Minor

Complete Triad/Octaves

1.

2. 3.

4.

5.

6.

Figure 5.5: Equal-angle dendrogram calculated from the top model combination—contourvc ×
csdvc×csdvl1×strength×vintcc—for the authentic cadence sub-tree. Each cadence was clustered
into the categories from Caplin’s typology.

that lack the initial ascent to 5̂ (e.g., 5̂–1̂ or 1̂–5̂–1̂), or that embellish the standard bass with scale

degrees like �4̂ (e.g., 4̂–�4̂–5̂–1̂). Sixteen of the twenty four cadences in this branch also feature

expanded cadential progressions (i.e., harmonic progressions spanning a complete phrase).44 In

fact, the first cluster of eight leaves in branch three represent exemplars of a schema Gjerdingen

has called the Grand, in which a composta bass supports the melodic sequence, 1̂–6̂–5̂–2̂–1̂.45 As

with all of Gjerdingen’s schemata, the Grand is often subjected to extensive elaboration—indeed,

particularly so for this schema, since it typically effects closure at the ends of movements or

larger sections.

Selected from the first cluster of leaves in branch three, one particularly noteworthy instance

of Gjerdingen’sGrand cadence appears at end of the exposition in the first movement of Haydn’s

‘Frog’ Quartet, Op. 50, No. 6 (see Example 5.3). In Gjerdingen’s scheme, the Grand features

44Caplin, Classical Form, 254.
45Gjerdingen, Music in the Galant style, 152.
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the standard composta bass, and the theme’s first attempt at the final cadence features just such

a bass beginning in m. 34, but at the moment of cadential arrival, the progression resolves

deceptively to the flattened submediant in m. 38. Like so many other cadential deviations

within sonata form, this deceptive gesture would seem to heighten the expectation for authentic

cadential closure at the end of the exposition, and so in such cases, the subsequent passage often

features a continuation of the previous cadential process. In this case, however, the events in

m. 38 initiate a rather unexpected prolongation of [VI, thereby eliding the preceding cadential

progression with the subsequent prolongational passage. Nevertheless, Haydn quickly rights

the ship by replacing the flattened submediant with ]4̂ in the bass in m. 43, and what began

as an unexpected exploration of a new tonal region soon culminates in yet another expanded

cadential progression, and finally, a perfect authentic cadence to close the subordinate theme in

m. 48.

Despite extensive diminutions, the Grand’s underlying two-voice scaffold remains essentially

intact in this example, particularly so in the soprano voice, where each focal scale degree appears

in a metrically strong position—1̂ in m. 38, [6̂ in m. 42, 5̂ in m. 45, 2̂ in m. 47, and finally 1̂

in m. 48. From this point of view, the appearance of [VI in m. 38 serves both as a deceptive

resolution for the preceding cadential progression and as a tonic substitute for another expanded

cadential progression, with the initial scale degrees, 3̂ and 4̂, of the composta bass replaced by

[6̂ and ]4̂, resulting in a chromatic variation of Gjerdingen’s schema.

Cadences like this one are indeed quite common in the corpus, though Haydn sometimes

either substitutes the initial melodic events of the Grand for other chord members, or omits

them altogether. In such cases, only the final three events of the schema remain: the 5̂–2̂–1̂

pattern in the soprano, and the composta bass that supports it.46

46See, for example, Op. 54/1, ii, mm. 46–52; Op. 17/3, iv, mm. 22–24; or Op. 33/4, i, mm. 25–26. The cadence
in mm. 26–34 of the second movement of Op. 55/1 is particularly noteworthy in this regard. The expanded
cadential progression begins with a lament bass, but upon reaching 5̂, reverts to the composta and presents the
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V6
4 �VI V7V7 �VI6 V7 �VI

vii7 V6
4 V7 I

PAC

DC

1̂
�6̂

5̂
2̂ 1̂

Example 5.3: An example of Gjerdingen’s Grand cadence: Haydn, String Quartet in D, Op.
50/6, i, mm. 37–48.

As mentioned previously, the cadences in branch four consist of authentic cadential progres-

sions culminating in 3̂ in the first violin at the moment of cadential arrival. Thus, all nine of

the cadences from the IAC category appear in branch four, but another seven cadences from the

PAC and EV categories in Caplin’s typology also appear in this branch. Given the restrictions

placed on the similarity algorithm—including only those n-grams whose terminal event appears

5̂–2̂–1̂ pattern in the soprano.
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at the end of the sequence—these model confusions should not be surprising. Remember that

the NJ method clustered the cadences on the basis of the features they shared. As a result, it

successfully clustered all of the imperfect authentic cadences in the branch. But by examining

such a limited number of (primarily syntactic) viewpoints, it also necessarily ignored several

of the rhetorical characteristics that contribute to Caplin’s typology, particularly for cadences

featuring parametric noncongruence, where harmonic-melodic content alone is not always

sufficient for cadential identification. In other words, for particularly problematic cases, the

method sometimes struggled.

Shown in Example 5.4, the cadence closing the subordinate theme in the final movement of

Haydn’s Op. 50/1 appears in branch four because it contains an authentic cadential progression

with a composta bass and 3̂ in the first violin at the moment of cadential arrival. Like the Grand

cadence in the previous example, it begins with the tonicization of a tonic substitute following

a cadential deviation in m. 64, in this case tonicizing the minor-mode subdominant rather than

[VI.47 In m. 68, iv6 gives way to the authentic cadential progression that closes the subordinate

theme, but 3̂ appears in place of 1̂ in the first violin in order to resolve the dissonant seventh

from the preceding measure.

To further complicate matters, the cadential idea in the first violin presents not one but two

voices in an otherwise monophonic texture: a soprano voice stepwise descent from 5̂ to 2̂, and

47In Caplin’s theory, the deceptive and evaded categories differ primarily as a consequence of the grouping
structure expressed by their final events at the cadential arrival. If those events group backward with the preceding
cadential process, the cadence is deemed deceptive, but if they group forward with the subsequent passage, the
cadence is said to evade the expected resolution. In this case, the behavior of the outer voices is consistent with a
deceptive cadence, with the melody and bass resolving to 1̂ and [6̂, respectively, but the change in texture and the
increase in dynamics and surface activity accompanying these scale degrees indicate that the events at the downbeat
of m. 64 may group forward rather than backward. Examples like this one point out the difficulties involved in
making categorical distinctions about cadential deviations, since several musical features play some role in the
perception of segmental grouping boundaries. Indeed, the distinction between deception and evasion in Caplin’s
typology has been criticized for precisely this reason (Nicholas Marston, Review of Classical Form: A Theory of
Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven, by William E. Caplin, Music Analysis
20, no. 1 [2001]: 146). As I mentioned at the beginning of this section, particularly problematic cases like this one
received two labels in the Haydn Corpus, and were thus omitted from the tree analysis presented here.
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iv6 vii65 iv6 vii43 I6 ii6 V6
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DC-EV
Closing Section

PAC

5̂ 4̂ 3̂ 2̂

1̂

Example 5.4: A perfect authentic cadence clustered in the IAC branch of the authentic cadence
sub-tree: Haydn, String Quartet in B-flat, Op. 50/1, iv, mm. 64–75.

an inner voice that initially doubles the second violin part before presenting (and resolving)

the dissonant seventh. As a consequence, the model could not distinguish the immediate

resolution of the inner voice from the delayed resolution of the soprano voice a few measures

later. Of course, Haydn could have resolved the cadential dominant and realized the stepwise

descending melody of the cadential idea simply by placing a double stop F-A dyad at the

moment of the cadential arrival—indeed, that very dyad appears at the end of the exposition a

few measures later. Instead, he elected to omit 1̂ from the first violin in order to foreground
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the melodic-motivic material appearing in the viola on the downbeat of m. 70, thus eliding the

preceding cadence with the beginning of the closing section. And since the C5 in the viola’s

upper register represents the highest note in the texture at the moment of cadential arrival,

placing a double-stop in the first violin would have relegated the melodic-motivic material to

the background. Haydn’s choice to foreground the beginning of the closing section by omitting

1̂ altogether thereby deferred the expected melodic resolution of the perfect authentic cadence

to the interior of the closing section, either at the beginning of the second codetta in m. 72, or

at the end of the exposition in m. 75.

Borrowing a term from Leonard Meyer, the cadence in m. 70 is thus only provisionally

realized at the moment of cadential arrival, with the expected melodic resolution arriving several

measures later.48 But since the encoded cadential idea concludes with 3̂ in m. 70, the NJ method

classified this cadence in branch four with the other imperfect authentic cadences. Whether

this cadence is indeed perfect authentic, imperfect authentic, deceptive, or evaded depends on

the perceived strength and temporal function of the cadential boundary, which can serve either

as a beginning, an end, or some combination of the two.49 At the very least, the thematic

elision and the omission of 1̂ at the cadential arrival have seriously weakened the cadence, thus

putting the perfect authentic interpretation in doubt, but given the presence of a complete

authentic cadential progression culminating in tonic harmony in root position, the caesura

appearing in beat two of m. 70 in the outer parts, and the increase in surface rhythmic activity

in the second violin, deferred or separated PAC seems the most convincing label in this case.50

48Meyer, Explaining Music, 117.
49In the case of abandoned cadences in Caplin’s typology, the events at the expected cadential arrival can also

serve as a middle, which is to say that no boundary exists (see Table 2.1).
50Mark Richards has called instances like this one separated cadences, where the cadential arrival may be

dispersed over a span of music when the parameters responsible for articulating cadential closure are temporally
mis-aligned (“Closure in Classical Themes,” 35-37). Whether listeners experience a partial arrival when the bass
resolves and a more complete arrival when melodic closure obtains is very difficult to judge. Clearly the perception
of closure depends on whether, and to what degree, the many parameters of a musical work align at a given
point in time: the longer the time interval between the various parameters effecting cadential closure, the more
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Nevertheless, the NJ method classified this cadence in branch four with the other imperfect

authentic cadences precisely because it contained the requisite syntactic characteristics to justify

its inclusion in the IAC category.51

In addition to the deferred or separated perfect authentic cadences appearing in branch four,52

the NJ method placed four evaded cadences in this branch as a consequence of the final events

they shared. Unlike the other categories in Caplin’s typology, evaded cadences may feature

quite literally any scale degree in the outer voices and any harmony characterizing the entire

texture—including 1̂ in the soprano supported by tonic harmony in root position—so long as

the final events at the expected moment of cadential arrival group forward with the subsequent

passage, and not backward with the preceding cadential process. For this reason, cadences from

the evaded category appear in three different branches of the tree (see Figure 5.4), thereby

reflecting three different categories: imperfect authentic, deceptive, and evaded.

Just as in the previous example, the evaded cadences in branch four feature an authentic

cadential progression and 3̂ in the soprano at the cadential arrival. Shown in Example 5.5, the

evaded cadence in m. 45 of the opening movement of Haydn’s Op. 74/1 brings a composta

bass and a compressed variant of the Cudworth in the soprano, but 3̂ replaces 1̂ at the expected

moment of cadential arrival, a form of melodic deception that often appears—along with the

temporally remote the associations a listener must form, and thus, the greater the burden placed on attention,
memory, and so forth. In Caplin’s theory of form, harmony is the essential characteristic underlying (formal)
closure, so for instances in which the two principal voices of a cadence achieve closure at different points in time,
he tends to privilege the onset of the final harmony of the cadential progression as the clearest signal for cadential
closure. There are of course very good reasons to privilege the selective attention to, or “partial hearing” of, a
given syntactic parameter like harmony in a theory of closure, but experimental evidence would suggest that
listeners depend on a great many parameters when determining the strength and status of a given ending. Chapter
7 attempts to tease out how these many parameters engender closure in the classical style.

51Since I omitted cadences if the cadential progression did not appear in the cello part, one could argue that I
also could have omitted cadences if the first violin did not bring the soprano voice of the cadential idea, as is the
case in Example 5.4. As Meyer points out, attempts to sharpen our concepts and categories into algorithmic form
is a useful exercise “not merely because they can save enormous amounts of time but, equally important, because
their use will force us to define terms and traits, classes and relationships, with precision” (Meyer, Style and Music:
Theory, History, and Ideology, 64).

52See also Op. 17/4, i, mm. 45–53.
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vii65 I6 vii65 ii6 V6
4

7 I

EV
Example 5.5: An evaded cadence clustered in the IAC branch of the authentic cadence sub-tree:
Haydn, String Quartet in C, Op. 74/1, i, mm. 43–45.

other cadential deviations—in the subordinate theme of sonata-form expositions. To be sure, the

classification here is not altogether unreasonable, since analysts sometimes interpret cadences

like this one as melodically deceptive imperfect authentic cadences.53 Nevertheless, the sudden

change in dynamics, texture, and surface activity suggest that the events at the implied cadential

arrival group forward rather than backward, and thus, despite the presence of a complete

authentic cadential progression and 3̂ in the soprano at the cadential arrival, the cadence was

classified in the EV category in the Haydn Corpus.

Whether the cadence in Example 5.5 is evaded is not really the point here. Certainly

this interpretation determines how we evaluate the model’s performance, but our goal is to

understand how the ratio model and NJ method—given a specific but limited set of viewpoints—

actually classify this and every other cadence in the corpus. Clearly Caplin’s cadence typology,

or more specifically, the cadential annotations specific to this corpus, depend(s) on some

assessment of the rhetorical features surrounding the moment of cadential arrival (i.e., on

53Neuwirth, “Fuggir la cadenza, or the Art of Avoiding Cadential Closure,” 117–130.
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features characterizing the perceived grouping structure), and so any discrepancies between the

model predictions and the cadential annotations will necessarily result from the omission of

these features in the present approach.

Finally, branch five consists of cadences in the minor mode, while branch six presents

cadences for which the final sonority in vintcc features a complete triad or doubles 1̂ (i.e.,

< 4, 7,⊥> or < 0,⊥,⊥>). For all of the other cadences in the authentic cadence sub-tree, the

final harmony at the cadential arrival consisted only of 1̂ and 3̂ (i.e., vintcc = < 4,⊥,⊥>), and

so the NJ method clustered cadences separately in branch six if they did not feature this final

sonority.

Whether these cadences constitute a sub-type of the authentic cadence depends of course on

the viewpoints employed in service of similarity estimation and classification. For many, the

presence of certain scale degrees over others within a given sonority would seem inconsequential

so long as the harmony and inversion remain essentially intact. From this point of view, the

failure of the NJ method to integrate these cadences into the other branches of the tree reflects

two limitations of the current approach: (1) that cadences are compared entirely on the basis of

n-grams whose final event terminates at the end of the sequence, when cadences may otherwise

share n-grams located at other positions within the sequence; and (2) that vintcc does not always

reflect the figured bass symbols or Roman numeral annotations made by analysts, resulting in

potentially unnecessary distinctions regarding the final sonorities in each cadence.

All of this is to say that the potential sub-types of the authentic cadence sub-tree reflected in

Figure 5.5 do not always correspond with the sub-types offered in the Formenlehre tradition.

Although many of the smaller clusters located at the furthest extremes of the sub-tree reflect

various sub-types of the authentic cadence—the semplici cadences in the first cluster of branch

one, the composte cadences in the largest cluster of branch two, or the Grand cadences in the

first cluster of branch three—the predominant branches of the sub-tree subdivided the cadences
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according to the contour between the final two scale degrees in the bass (branches one and

two), the presence of chromatic scale degrees in the standard bass (branch three), the presence

of 3̂ in the soprano at the moment of cadential arrival (branch four), and the mode of the

entire cadence or final harmony of the cadential arrival (branches five and six). To improve

model performance for the authentic cadences in the Haydn Corpus, reducing the syntactic

domain of vintcc and including n-grams from other positions in the sequence would be a useful

starting point. Nevertheless, as we will see shortly, applying the NJ method to the best model

combination may not have resulted in particularly clear sub-types for the authentic cadence,

but it produced very clear sub-types for the half cadence category.

Prototypicality Reconsidered: Nearest Prototype Analysis

Before turning to the other sub-trees, we might first consider another issue explored by the

ratio model: prototypicality. Because the ratio model and NJ method classify the cadences on

the basis of the features they share, some cadences within each class will be more prototypical

than others, which is to say that some cadences will share more features specific to the class than

others. Presumably, finding the most prototypical exemplars in each branch—or in the sub-tree

as a whole—may indicate which cadences listeners are most likely to learn and remember, or

at the very least, which cadences listeners are the most likely to associate with that branch.

For equal-angle additive trees, for example, prototypical cadences tend to appear closer to the

middle of the tree because they are more similar to all of the other cadences in the tree than

cadences appearing at the furthest extremes of the tree.

To classify these cadences, recall that the NJ method requires a symmetric matrix where 0

represents identity (i.e., maximal similarity). To that end, I employed a data reduction method

that eliminates the asymmetry between cadences (i.e., 1 − δ (a,b )+δ (b,a)
2 ). But since asymmetries

in the ratio model imply nested relations where one item serves as a prototype for the other,
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eliminating those asymmetries in the matrix impairs prototypicality estimation in the resulting

tree representation. Luckily, prototypicality estimation does not require a symmetric matrix,

so we can return to the asymmetric matrices calculated by the ratio model and compute the

weighted average of the same viewpoints from the best-performing model combination in the

classification task (contourvc × csdvc × csdvl1 × strength × vintcc).

Given the ratio model presented here, there are a number of ways to calculate prototypicality.

More prototypical cadences will receive higher similarity values on average in the referent

position than less prototypical cadences, for example, which is calculated as the arithmetic mean

of the similarity values appearing in each column of the matrix.54 More prototypical cadences

will also exhibit higher asymmetries than less prototypical cadences, so we could alternatively

represent prototypicality as the sum of the differences between δ (a, b ) and δ (b, a) in each

column.

In what follows, I have borrowed and extended a technique from Tversky and J. Wesley

Hutchinson called nearest neighbor analysis.55 In their formulation, item b is the nearest neighbor

of item a if δ (a, b ) > δ (a,Λ) for all Λ in the matrix. But since b also serves as a prototype for a

in this model if δ (a, b ) > δ (b, a), we might alternatively refer to b as the nearest prototype of

a if δ (a, b ) > δ (b, a) and δ (a, b ) > δ (a,Λ). Following this procedure, we can determine the

nearest prototype of each cadence in the matrix, and then simply count the number of times

each nearest prototype appears. The cadence that serves as the nearest prototype most often is

the most prototypical, followed by the next most common nearest prototype, and so on.

This technique works very well for the descriptive measures proposed by Tversky and

Hutchinson to characterize the similarity matrix as a whole,56 but it tends to ignore more

54I have just described Tversky’s equal-weighted prototypicality equation (“Features of Similarity,” 347-348).
55Amos Tversky and J. Wesley Hutchinson, “Nearest Neighbor Analysis of Psychological Spaces,” Psychological

Review 93, no. 1 (1986): 3–22.
56Their principal contribution is a diagnostic measure called centrality, which measures the degree to which the

items of a given similarity matrix share a nearest neighbor. Those matrices characterized by just a few distinct
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remote prototypicality relationships that could alter the final count, and thus, improve the

prototypicality estimate. The chromatic scale degree sequence 4̂–2̂–5̂–1̂ might serve as a more

immediate prototype for 4̂–2̂–5̂–5̂–1̂ than 4̂–5̂–1̂, for example, but 4̂–5̂–1̂ is more likely to serve

as a prototype for the majority of the cadential bass lines in the corpus. In this case, 4̂–5̂–1̂

lies beyond the nearest neighbor, but if we adjusted the final count by considering all of the

potential prototypes for each cadence, the prototypicality estimate for 4̂–5̂–1̂ would necessarily

increase by a much wider margin than a less prototypical bass like 4̂–2̂–5̂–1̂.

Given an n × n matrix of similarity estimates, the approach employed here orders all of

the potential prototypes b from most to least prototypical for each cadence a, and then each

prototype receives a prototypicality score corresponding to its ordinal rank, with the nearest

prototype receiving the score n, the next nearest prototype receiving the score n − 1, the next

next nearest prototype receiving the score n− 2, and so on; any remaining cadences do not serve

as prototypes and so receive a score of 0. Using the resulting n × n matrix of prototypicality

scores, the final prototypicality estimate is

proto(a,Λ) =
∑

scor e s (Λ, a)
n(n − 1)

, (5.6)

where proto(a,Λ) denotes the prototypicality of item a with respect to class Λ. In this

formulation, proto represents the ratio of the sum of the prototypicality scores from column a

of the matrix to the maximum possible prototypicality estimate, with values falling in a range

between 0–1.57 In this approach, the prototypicality estimate for any given cadence depends on

the other cadences in the class. A cadence from branch one may be very prototypical when

compared to the other cadences in that branch, for example, but much less prototypical when

nearest neighbors (i.e., items with high prototypicality) will demonstrate high centrality.
57An item receiving the maximum prototypicality estimate would serve as the nearest prototype for every item

in the matrix except itself, hence the denominator n(n − 1).
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Table 5.5: Prototypicality estimates for the exemplars from the first three branches of the
authentic cadence sub-tree, branches one and two and branch three of the cadential deviations
sub-tree, and the three branches of the half cadence sub-tree.

Branch proto
Number Excerpt Sub-tree Branch

Authentic Cadences
1 Op. 20, No. 1, iv, mm. 4–6 .78 .90
2 Op. 50, No. 2, iv, mm. 48–50 .86 .86
3 Op. 71, No. 1, i, mm. 7–8 .89 .84

Cadential Deviations
1/2 Op. 20, No. 4, i, mm. 22–24 .79 .90
3 Op. 74, No. 1, ii, mm. 30–33 .40 .89

Half Cadences
1 Op. 17, No. 2, i, mm. 19–20 .62 .77
2 Op. 54, No. 3, i, m. 4–5 .92 .96
3 Op. 55, No. 3, i, mm. 5–8 .41 .83

compared with all of the cadences in the sub-tree, or indeed, in the tree as a whole.

Table 5.5 and Example 5.6 present the prototypicality estimates and musical examples

for the most prototypical cadences from the first three branches of the authentic cadence

sub-tree, which I will hereafter call exemplars. Shown in Example 5.6a, the perfect authentic

cadence closing the main theme in the finale of Haydn’s Op. 20, No. 1 received the highest

prototypicality estimate from the cadences in branch one, with a proto of .90 for the cadences

within the branch and .78 for the cadences in the authentic cadence sub-tree. It consists of a

semplice bass supporting a stepwise descending hexachord in the soprano. Gjerdingen points

out that such broad descents are not always in a fixed relationship with the bass, as is the case

here.58

The exemplar from branch two appears in mm. 48–50 in the finale of Op. 50, No. 2

(see Example 5.6b). Unlike the previous example from branch one, it consists of a composta

58Gjerdingen, Music in the Galant style, 144.
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Example 5.6: Exemplars from the first three branches of the authentic cadence sub-tree. a)
Branch 1: String Quartet in E-flat, Op. 20/1, iv, mm. 4–6; b) Branch 2: String Quartet in C,
Op. 50/2, iv, mm. 48–50; c) Branch 3: String Quartet in B-flat, Op. 71/1, i, mm. 7–8.
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bass, with the second 5̂ appearing an octave lower, a particularly common signal of authentic

cadential closure within the subordinate theme. In this example, the melody ascends to 6̂ in

m. 48 and then “drops” to 1̂ at the downbeat of m. 49. Such sudden drops often occur within

the cadenza composta at the onset of the cadential six-four. Just as in the previous example, the

cadential content is generally very compressed and features relatively little surface activity, but

remember that the ratio model awards the greatest positive asymmetries to cadences featuring

the smallest possible sequences that “nest within” sequences from the other cadences in the class.

As such, the cadential bass lines in Example 5.6 serve as exemplars precisely because they do not

embellish the sequences characterizing each viewpoint in the final model combination.

This is particularly true of the most prototypical cadence in branch three, which closes the

main theme in the opening movement of Op. 71, No. 1. Shown in Example 5.6c, the bass

lacks the initial ascent to 5̂, resulting in the extraordinarily compressed cadential progression,

V7–I. In fact, this cadence received the highest prototypicality estimate of all of the cadences

in the sub-tree because it shares the most characteristic features of the authentic cadence—5̂–1̂

in the bass and a V7–I progression—with nearly every other cadence in the tree.59 But note

here that it also received a lower prototypicality estimate for the cadences in its branch, as the

majority of these cadences consisted of expanded cadential progressions featuring a composta

bass and ]4̂ between 4̂ and 5̂. In this case, branch three is the most heterogeneous of the first

three branches in the sub-tree because it features cadences that either omit the initial ascent of

the standard bass, as is the case for Example 5.6c, or embellish the standard bass in some way.

As a result, the cadence in Example 5.6c is less likely to serve as the nearest prototype for the

cadences featuring more complex diminutions from branch three than those cadences featuring

less elaborated structures from branches one and two.

59Only 8 of the 131 authentic cadences in the Haydn Corpus do not feature a dissonant seventh above the
penultimate dominant.
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Figure 5.6: Equal-angle dendrogram calculated from the top model combination—contourvc ×
csdvc × csdvl1 × strength × vintcc—for the sub-tree comprised of cadential deviations (i.e.,
cadences from the DC and EV categories). Each cadence was clustered into the categories from
Caplin’s typology.

5.4.2 Cadential Deviations

The cadential deviations sub-tree consists of 26 cadences: 19 cadences from the DC category, and

7 cadences from the EV category. Shown in Figure 5.6, the NJ method clustered the cadences

into three branches in the sub-tree. Reading clockwise starting on the right, the first two

branches represent those cadences featuring a standard bass that resolves deceptively to 6̂, but

with the soprano resolving either to 1̂ (branch one) or 3̂ (branch two) at the moment of cadential

arrival. These two branches feature just one confusion, which in this case consisted of an evaded

cadence whose syntactic characteristics exemplified the DC category, but whose rhetorical

features signaled cadential evasion. Branch three represents those cadences for which the bass

resolves down to 3̂, in nearly every case supporting a I6 harmony. But since I6 could potentially

group forward or backward, depending on the behavior of the many other characteristics

supporting boundary function—surface activity, dynamics, texture, rhythmic duration, metric

position, and so on—branch three also includes two cadences from the DC category.

Example 5.7a presents the exemplars from branches one and two of the sub-tree. Shown in
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Table 5.5, this cadence received by far the highest prototypicality estimate of .90, with the next

highest candidate receiving an estimate of .71. Nevertheless, it is also noteworthy that when

compared to the other cadential deviations in the sub-tree, which include cadences from the

EV category in branch three, Example 5.7a received a lower estimate of .79. Like the previous

examples in the authentic cadence sub-tree, it features the standard, unembellished 3̂–4̂–5̂–1̂

bass, in this case a composta, and the soprano resolves as expected to 1̂ following a stepwise

descent from 4̂. But as is often the case with deceptive cadences, the bass resolves deceptively to

6̂, thus thwarting the expected moment of cadential arrival.

Shown in Example 5.7b, the exemplar from branch three features the same standard,

composta bass. Following Johann Gottfried Walther, Gjerdingen suggests that the standard

voice-leading scheme for the resolution of a dominant seventh to a root-position tonic—Walther’s

clausula formalis perfectissima, or “most complete close”—features 7̂–1̂ in the soprano, (5̂–)4̂–3̂ in

the alto, 2̂–1̂ in the tenor, and 5̂–1̂ in the bass,60 and it is noteworthy that this example preserves

that scheme exactly. Yet, as is customary of cadences from the EV category in Caplin’s theory,

the cadence in Example 5.7b thwarts the expected moment of cadential arrival, in this case by

leaping above the expected scale degrees in each of the four voices and replacing the expected

root-position tonic with I6. The events thus group forward as a consequence of the changes in

register, harmony, dynamics, and articulation.

Although these two exemplars provide textbook examples of cadential deviations, the

relatively meager sample for the DC and EV categories in the Haydn Corpus casts considerable

doubt on the inferences we might hope to draw about prototypicality, particularly given

the range of features cadential deviations support for the events at the moment of cadential

arrival. Remember that since the DC and EV categories differ primarily as a consequence of

the temporal function expressed by their final events, and not as a consequence of a specific

60Gjerdingen, Music in the Galant style, 139–140.
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Example 5.7: Exemplars from the cadential deviations sub-tree. a) Branches 1/2: String Quartet
in D, Op. 20/4, i, mm. 22–24; b) Branch 3: String Quartet in C, Op. 74/1, ii, mm. 30–33.

melodic, harmonic, or rhythmic goal, numerous syntactic and rhetorical events may appear at

the moment of cadential arrival so long as they function either as endings or beginnings. And

because the ratio model only included n-grams whose final events appeared at the end of the

sequence, the NJ method failed to group all of the cadential deviations in the corresponding

sub-tree.
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Figure 5.7: Equal-angle dendrogram calculated from the top model combination—contourvc ×
csdvc × csdvl1 × strength × vintcc—for the half cadence sub-tree. Each cadence was clustered
into the categories from Caplin’s typology.

5.4.3 Half Cadences

The half cadence sub-tree consists of all 84 cadences from the HC category. Shown in Figure

5.7, the NJ method clustered the cadences into three branches in the sub-tree, with the second

(middle) branch subdivided into three subordinate branches. Reading clockwise starting on

the right, the first two branches clustered the cadences according to the contour of the bass,

with the cadences in the first Expanding branch featuring a descending bass and the cadences in

the second Converging branch featuring an ascending bass. The third Reinterpreted branch

represents those cadences that reference the PAC formula—the resolution of a root-position

dominant to a root-position tonic, with 1̂ in the soprano at the cadential arrival—in the key of

the dominant. But since the home key is immediately reinstated following the cadence, Caplin

refers to such cases as reinterpreted half cadences.61

For the previous sub-trees, the branches did not always reflect pertinent sub-types of the

corresponding categories. For the half cadence sub-tree, however, the NJ method discovered sub-
61Caplin, Classical Form, 57.



240 Classifying Closing Schemas: The Cadential Typology

V4
3 V

HC

1̂ �4̂ 5̂

1̂ �4̂ 5̂ 1̂ �4̂ 5̂

V4
3 V7−8

4−3

HC

vi I6 I V7 �VI Ger+6 V
HC

Expanding Exemplar

a) b)

Example 5.8: Top: Expanding Exemplar from the first branch of the half cadence sub-tree.
String Quartet in F, Op 17/2, i, mm. 19–20. Bottom: Variants of the Expanding Do-Fi-Sol. a)
String Quartet in G minor, Op. 20/3, iii, mm. 26–27; b) String Quartet in D minor, Op. 76/2,
i, mm. 3–4.

types that have only recently been described in the Formenlehre tradition. Shown in Example 5.8,

the cadences in branch one exemplify a sub-type Nathan Martin and Julie Pedneault-Deslauriers

have called the Expanding 6–8 half cadence, in which the bass descends by step from 6̂ (or �6̂) to

5̂, resulting in cadential progressions that tonicize the dominant, such as V4
3/V–V, vii

6/V–V, or
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+6th–V.62 Yet unlike the authentic cadence and its variants, whose final harmony supports a

strict melodic goal (typically 1̂ or 3̂), the final harmony of the half cadence may support any

chord member in the soprano. As such, it typically descends by step to 2̂ or 7̂ or ascends by

step to 5̂, depending on the bass clausula supporting it. In the Expanding sub-type, the soprano

usually ascends by half step from ]4̂ to 5̂, thereby producing the schema’s characteristic 6–8

intervallic progression between the outer voices.

The exemplar from branch one in Example 5.8 closes the transition in the first movement

of Haydn’s Op. 17, No. 2. Shown in Table 5.5, it received a proto of .77 for the cadences

within the branch and .62 for the cadences in the half cadence sub-tree. According to Martin

and Pedneault-Deslauriers, the normative Expanding sub-type begins with 3̂ in the soprano,63

but the most frequent pattern in Haydn’s string quartets opens with 1̂ in an upper register,

which then leaps down to ]4̂ before resolving to 5̂. And since the ]4̂–5̂ pattern sometimes

appears in an inner voice while the soprano descends to 7̂, I will call the exemplar in Example

5.8 the Expanding Do-Fi-Sol. Provided below are two variants of the schema that fill in the space

between 1̂ and ]4̂ and open with the submediant harmony supported by 6̂ (Example 5.8a) or [6̂

(Example 5.8b).

As is evident in the half cadence sub-tree, the Expanding half cadence appears less frequently

in the Haydn Corpus than the more well known Converging half cadence sub-type, which

characterizes the majority of the cadences in branch two.64 It consists of a stepwise ascending

bass to 5̂ that often features ]4̂, but unlike the Expanding HC, which typically concludes with 5̂

in the soprano, the Converging half cadence may be further subdivided by the melodic goal it

supports, with the three subordinate branches comprised of cadences whose goal is 5̂, 2̂, and 7̂,

62Martin and Pedneault-Deslauriers, “The Mozartean Half Cadence,” 190–192.
63Ibid., 190.
64Gjerdingen, Music in the Galant style, 160–162; Martin and Pedneault-Deslauriers, “The Mozartean Half

Cadence,” 186–189.
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Example 5.9: Top: Converging Exemplar from the second branch of the half cadence sub-tree.
String Quartet in B-flat, Op. 64, No. 3, iv, mm. 52–53. Bottom: Variants of the Converging
Half Cadence. a) String Quartet in E, Op. 54, No. 3, i, mm. 4–5; b) String Quartet in B-flat,
Op. 55, No. 3, i, mm. 5–8.

reading clockwise starting from the bottom.65

Example 5.9 presents the exemplar and two variants from the Converging HC branch of the

655̂ is a fairly uncommon melodic goal in the Converging sub-type; just six cadences from the Haydn Corpus met
this criterion. Like branch three of the authentic cadence sub-tree, the first subordinate branch of the Converging
sub-type is something of a catch-all, including half cadences with stepwise ascending bass lines and 5̂ in the soprano
at the cadential arrival, as well as more elaborated structures than those found in subordinate branches two and
three that feature 2̂ or 7̂ as the melodic goal.
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sub-tree. Appearing in the opening measures of the first movement of Op. 54/3, the exemplar

in the Converging HC branch received the highest prototypicality estimate of all of the cadences

in the sub-tree, with a value of .92 for the cadences in the sub-tree and .96 for the cadences

within the branch. It features ]4̂ to 5̂ in the bass and 1̂ to 7̂ in the soprano but lacks a diatonic

pre-dominant harmony like ii6, resulting in just two harmonies in the cadential progression.

The more common three-stage variant of the Converging sub-type is shown in Example 5.9b,

where the 4̂–]4̂–5̂ pattern in the bass supports a stepwise descent to 7̂ in the soprano. In this

case, the initial melodic descent in m. 5 precedes the start of the cadential progression, and

the cadential dominant is prolonged by a melodic overhang that climbs back up to 2̂ before

the end of the passage. Example 5.9a presents a separate variant of the Converging schema in

which ]4̂ is no longer present in the bass and vi replaces the more typical I6, resulting in the

cadential progression vi–ii6–V. This variant also includes a cadential six-four to support the

melodic descent from 4̂ to 2̂.

Finally, Example 5.10 presents the exemplar from the third branch of the half cadence

sub-tree. Following a two measure basic idea and its repetition at the beginning of the transition,

the passage abruptly cadences on dominant harmony in m. 22. In the home key, the bass

clausula 2̂–5̂ supports the soprano motion from ]4̂ to 5̂, which in the key of the dominant is the

standard formula for a perfect authentic cadence; in fact, the voice leading exemplifies Walther’s

clausula formalis perfectissima. Following the dominant prolongation and caesura, the beginning

of the second part of the transition reasserts the home key (albeit temporarily), suggesting that

the perfect authentic cadence formula signifies a half cadence in retrospect. Within the branch,

this exemplar received a prototypicality estimate of .83, but given the small number of cadences

in the reinterpreted HC branch, it should be unsurprising that it received a much lower value

of .41 for the cadences in the sub-tree.

Two other half cadence sub-types are worthy of mention here despite being clustered in
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Example 5.10: Reinterpreted Exemplar from the third branch of the half cadence sub-tree.
String Quartet in G, Op. 54, No. 1, i, mm. 17–23.

the larger branches of the sub-tree. One instance of Vasili Byros’ Le-Sol-Fi-Sol schema appears

in the second branch of the sub-tree, for example, because, like the Converging sub-type, the

bass clausula of the Le-Sol-Fi-Sol features �4̂.66 In this case, the NJ method interpreted the

Le-Sol-Fi-Sol as a variant of the Converging sub-type because the ratio model awards higher

weights to n-grams featuring proximal members, and so �4̂–5̂ received a higher weight than

�6̂–5̂. Along with the Expanding and Converging schemas, Martin and Pedneault-Deslauriers

also mention a third sub-type called the Simple half cadence, which features a I–V progression

with 2̂ in the soprano at the cadential arrival.67 The NJ method did not cluster the simple half

cadences from the Haydn Corpus in a separate branch, however, instead placing them in the

third subordinate branch of the Converging sub-type because they featured an ascending (albeit

leaping) bass and 2̂ at the cadential arrival. Presumably had there been more instances of this

sub-type in the Haydn Corpus, the NJ method would have distinguished Simple half cadences

from the other sub-types in the tree.

66Op. 54/2, i, mm. 50–54. Byros discusses this example in “Meyer’s Anvil,” 294.
67Martin and Pedneault-Deslauriers, “The Mozartean Half Cadence,” 192–193.
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§5.5 Conclusions

This chapter presented a probabilistic approach to category formation, in which a category is

a network of overlapping attributes, and its members are prototypical to the extent that they

bear a family resemblance to other members in the category. To support this view, I identified a

collection of cadences from the Haydn Corpus in §5.1 and then classified the cadences using

set-theoretic tools pioneered by psychologist Amos Tversky. Classifiers typically depend on

some notion of similarity, so §5.2 quantified the similarity between cadences using the ratio

model, which assumes that asymmetries between items imply a “nested” relation (i.e., where

the more prototypical item nests within the variant item). Using the neighbor-joining method

in §5.3, I then visualized and classified the cadences on the basis of the features they shared

using phylogenetic trees. Finally, §5.4 presented the cadential “tree of life” for the cadences

from the Haydn Corpus and identified the most prototypical exemplars from each category.

To this point I have said nothing about whether the principles motivating the development

of the NJ method in evolutionary biology correspond in any way with the assumptions that led

to its application here. Like any clustering algorithm, the NJ method depends on a similarity

algorithm to produce a dissimilarity matrix, which in my case quantifies the dissimilarities

between cadences using an asymmetric procedure, where cadences sharing most (or all) of their

features with the other cadences in the corpus serve as prototypes. In the final approach, the NJ

method attempted to preserve the asymmetries between cadences by placing more prototypical

members near the center of the equal-angle tree. Thus, in the square tree in Figure 5.3 (see

Page 210), the branch lengths represent the dissimilarity between cadential bass lines, and the

horizontal position of each leaf reflects the prototypicality of the corresponding bass line.

For evolutionary biologists, distance methods typically quantify the dissimilarity between

two species by the number of substitutions between their respective DNA sequences. Thus,
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the branch lengths of an additive tree represent the genetic changes between biological species

over evolutionary time scales. To return to Figure 5.3, the branch lengths would now represent

genetic change, with the horizontal position of each leaf representing the appearance of the

corresponding species on the evolutionary time line. In other words, biologists interpret the

horizontal position of each leaf as a measure of evolutionary time, while I have interpreted

those positions as a measure of prototypicality.

One could of course assume that the distinction between time and prototypicality is

meaningless and suggest that increasingly sophisticated diminutions of the closing schemas

described here have evolved gradually over the history of Western music.68 Gjerdingen notes,

for example, that the more often a schema occurs, the more prototypical it will be, resulting

in approximately normally-distributed instances of the schema over time.69 But since I have

applied the NJ method to a relatively homogeneous corpus of modest size and scope, it would

be unreasonable to conclude that any given cadence necessarily evolved out of other, simpler

exemplars from the same corpus. In my case, the path lengths do not reflect an underlying

temporal continuum over which musical changes occur, but rather a continuum reflecting the

depth of our schematic knowledge for a given cadential formula.

Recall from Chapter 2 that schematic knowledge inhabits a continuum from relatively

deep to relatively shallow, where depth relates to availability for direct access, susceptibility

to change through exposure, and scope of application.70 As an example, I cited the perfect

authentic cadence, noting that a V–I progression persisted throughout much of the history of

Western music, whereas the Cudworth cadence was confined to a relatively narrow period of

roughly eighty years. From this point of view, the additive trees in Figure 5.4 (see Page 218)

68Don Randel’s article on the “emerging” V–I cadence exemplifies this kind of thinking (“Emerging Triadic
Tonality in the Fifteenth Century,” The Musical Quarterly 57, no. 1 [1971]: 73–86).

69Gjerdingen, A Classic Turn of Phrase, 99–106.
70Margulis, “A Model of Melodic Expectation,” 666.
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visualize the prototypicality (or schematic depth) of the cadences encountered in the Haydn

Corpus, where cadences like the Cudworth lie near the outer extremes of the tree because they

are increasingly available for access, increasingly susceptible to change through exposure, and

increasingly limited in historical scope. Put another way, if one could imagine schema variation

on a target, as Gjerdingen has previously suggested,71 and then overlay this target on either of

the additive trees in Figure 5.4, the more prototypical exemplars would lie closer to the bull’s

eye, with the less prototypical variants positioned at the furthest extremes of the target.

The point here is that the evolutionary metaphor may be appealing, but these methods do

not represent changes in a given cadence category over time, but rather changes in the proto-

typicality of the cadences from that category. That being said, this approach to classification

is not without its limitations. First, by assuming that prototypes “nest within" variants, the

ratio model as I have applied it here automatically favors reductions to simpler, less embellished

patterns, which can at times lead to strange results. For example, the exemplar at the top

of Example 5.9 shares nearly all of its features with the other cadences from the Converging

branch, but is it more prototypical of the Converging half cadence schema than, say, Example

5.9b? Perhaps a prototypical exemplar not only shares most (or all) of its features with the

other members of its class, but also contains those features that cover the largest number of

those members. This is to say that patterns like Example 5.9b—which shares features with

both the Converging Exemplar (V6
5/V–V) and Example 5.9a (ii6–V)—are more likely to serve as

prototypes if they maximize the number of represented members.

Second, by applying a fixed weighting scheme based on the Shannon entropy of the view-

points in the final model combination, I have assumed that the combination of viewpoints

employed in service of similarity estimation and classification would not change from one

category to the next. For the half cadence-tree, this weighting scheme divided the cadences into

71Gjerdingen, A Classic Turn of Phrase, 94.
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pertinent sub-types, but for the authentic cadence sub-tree, the branches rarely corresponded

with many of the sub-types described in the Formenlehre tradition. Whether we classify cadences

from each category using such a fixed weighting scheme is an open question, but it is at least

possible that listeners attend to different musical features depending on the diagnostic properties

of the category (i.e., the features that are most likely to distinguish one member from another).

The presence of a cadential six-four or the precise sequence of scale degrees in the melody

may be more relevant to the authentic cadence category than to the half cadence category, for

example.

But perhaps the greatest limitation of the present approach was to exclude n-grams from

the similarity model if their final members did not terminate at the end of the sequence. As a

consequence, the model clustered the cadences into the largest branches of the tree on the basis

of the final event(s) they shared. The goal here was to adopt a hybrid approach that made two

assumptions: (1) that cadence categories should not be determined entirely by certain essential

features, but by the family resemblance of their members; and (2) that the final events of the

cadence should weigh more heavily than the initial events in the final classification. As an

initial step, I adopted the largely essentialist stance that the exclusion of n-grams that do not

terminate at the end of the sequence would improve the accuracy and precision of the classifier,

despite the fact that listeners might take a more holistic approach to similarity estimation and

classification. An alternative approach might be to weight each n-gram depending on its position

in the sequence, or to compute a measure like cue validity (see § 2.2.2), which determines the

diagnostic value of each event within the sequence empirically.

Indeed, some in the Formenlehre tradition classify the various categories of the classical

cadence according to the strength of the cadential arrival, leading many theorists to appeal to

theories of expectation as the source of the cadential percept. And since the material preceding

cadential arrival elicits very definite expectations concerning the melodic scale-degree, the
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harmony, and the metric position of the goal event, classification would seem to depend as

much on the expectations these cadences generate as it does on the features they share. Thus,

in Chapter 6 I apply a context model developed by Marcus Pearce called the Information

Dynamics of Music model (or IDyOM) to determine whether expectancy formation, fulfilment,

and violation contribute to the hierarchy of cadence categories described in the Formenlehre

tradition.
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Chapter 6

Predicting Closing Schemas: The

Cadential Hierarchy

... anyone speaking a language possesses, implicitly, an enormous knowledge of the
statistics of the language. Familiarity with the words, idioms, clichés and grammar
enables him to fill in missing or incorrect letters in proof-reading, or to complete an
unfinished phrase in conversation.

Claude E. Shannon

The ability to make accurate predictions about future events is a biological imperative.1

While descending a staircase, for example, even slightly misjudging the height or depth of each

step could be fatal, so the brain activates a schematic representation of the staircase in order

to predict future steps, using incoming auditory, visual, haptic, and proprioceptive cues to

minimize potential prediction errors and update the representation in memory. Since our

chances of survival from one moment to the next depend on the accuracy of our predictions, it

1Moshe Bar, “The Proactive Brain: Using Analogies and Associations to Generate Predictions,” Trends in
Cognitive Sciences 11, no. 7 (2007): 280–289; Karl Friston, “A Theory of Cortical Responses,” Philosophical
Transactions of the Royal Society, London, Series B 360 (2005): 815–836; Karl Friston, “The Free Energy Principle: A
Unified Brain Theory?,” Nature Reviews Neuroscience 11 (2010): 127–138.
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is no surprise that many cognitive scientists consider predictive processing to be the “primary

function” of the brain.2 And as Psychologist Ulric Neisser points out, the brain engages these

predictive mechanisms constantly in response to all kinds of sensory stimuli, including those

from the auditory modality.

The listener continuously develops more or less specific readinesses (anticipations)

for what will come next, based on information he has already picked up. These

anticipations—which themselves must be formulated in terms of temporal patterns,

not of isolated moments—govern what he will pick up next, and in turn are modified

by it. Without them, he would hear only a blooming, buzzing confusion.3

In Chapter 2 I characterized the most common cadence types from the classical style as

relatively short time spans consisting of recurrent temporal patterns. In my view, listeners who

are familiar with classical music have internalized these cadence types as a complex network of

rival closing schemata. The activation of this network allows listeners to form expectations for

the terminal events of the cadence, the fulfillment of which determines the perceived strength

and temporal position of the cadential boundary both for the schema itself, and in some cases,

for the larger phrase-structural process that subsumes it. For our purposes, this means that

(1) expectancy violations for the terminal events of the cadence result in closing schemata of

diminished strength (see §2.3.2); and (2) the terminal event of the cadence is the most expected

event in the surrounding sequence, while the next event in the sequence is comparatively

unexpected (see §2.3.3).

2Andreja Bubic, D. Yves von Cramon, and Ricarda I. Schubotz, “Prediction, Cognition and the Brain,”
Frontiers in Human Neuroscience 4 (2010): 1–15; Jeff Hawkins and Sandra Blakeslee, On Intelligence (New York,
NY: Times Books, 2004), 89. For a current review of predictive processing, see Andy Clark, “Whatever Next?
Predictive Brains, Situated Agents, and the Future of Cognitive Science,” Behavioral and Brain Sciences 36, no. 3
(2013): 1–73.

3Neisser, Cognition and Reality, 27.
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From the probabilistic view of category formation just described, schematic expectations for

the terminal events of the cadence amount to probabilistic inferences, with the most expected

(i.e., probable) endings also being the most complete or closed. David Huron notes, for example,

that “it is not simply the final note of the cadence that is predictable; the final note is often

approached in a characteristic or formulaic manner. If cadences are truly stereotypic, then this

fact should be reflected in measures of predictability.”4 If Huron is right, applying a probabilistic

approach to the cadences from the Haydn Corpus should allow us to examine these claims

empirically.

In this chapter I apply and extend a probabilistic account of expectancy formation developed

by Marcus Pearce called the Information Dynamics of Music model (or IDyOM)—a finite-

context (or n-gram) model that predicts the next event in a musical stimulus by acquiring

knowledge through unsupervised statistical learning of sequential structure—to examine how

the formation, fulfillment, and violation of schematic expectations may contribute to the

perception of cadential closure during music listening.5 IDyOM is based on a class of Markov

models commonly used in statistical language modeling,6 the goal of which is to simulate the

learning mechanisms underlying human cognition. Pearce explains,

It should be possible to design a statistical learning algorithm possessing no prior

knowledge of sequential dependencies between melodic events but which, given

exposure to a reasonable corpus of music, would exhibit similar patterns of melodic

expectation to those observed in experiments with human participants.7

Unlike language models, which typically deal with unidimensional inputs, IDyOM generates
4Huron, Sweet Anticipation, 154.
5Pearce, “The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception

and Composition.”
6Manning and Schütze, Foundations of Statistical Natural Language Processing.
7Marcus T. Pearce and Geraint A. Wiggins, “Expectation in Melody: The Influence of Context and Learning,”

Music Perception 23, no. 5 (2006): 386–387.
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predictions for multidimensional melodic sequences using the multiple-viewpoint framework

developed by Darrell Conklin and described in Chapter 3,8 which is to say that Pearce’s model

generates predictions for basic viewpoints like cpitch by combining viewpoint predictions

using a set of simple heuristics to minimize model uncertainty.9 In the past decade, several

studies have demonstrated the degree to which IDyOM can simulate the responses of listen-

ers in melodic segmentation tasks,10 subjective ratings of predictive uncertainty,11 subjective

and psychophysiological emotional responses to expectancy violations,12 and behavioral,13

electrophysiological,14 and neural measures of melodic pitch expectations.15

Pearce provides the technical details of IDyOM elsewhere,16 but a summary and discussion

of the mathematical formalism will be useful to us here.17 To that end, §6.1 describes the

methods for estimating the conditional probability function for individual viewpoints like

cpitch or csd usingmaximum likelihood estimation and the prediction by partial match algorithm.

In §6.2, I describe Pearce’s procedure for improving model performance by combining these

8Conklin, “Modelling and Generating Music Using Multiple Viewpoints”; Conklin, “Prediction and Entropy
of Music”; Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction.”

9Pearce, Conklin, and Wiggins, “Methods for Combining Statistical Models of Music.” Recall from §3.3 that
cpitch denotes the vector of pitches in each instrumental part from the twelve-tone chromatic scale.

10Marcus T. Pearce, Daniel Müllensiefen, and Geraint A. Wiggins, “The Role of Expectation and Probabilistic
Learning in Auditory Boundary Perception: A Model Comparison,” Perception 39 (2010): 1367–1391.

11Niels Chr. Hansen and Marcus T. Pearce, “Predictive Uncertainty in Auditory Sequence Processing,” Frontiers
in Psychology 5 (2014): 1–17, doi:10.3389/fpsyg.2014.1052.

12Hauke Egermann et al., “Probabilistic Models of Expectation Violation Predict Psychophysiological Emo-
tional Responses to Live Concert Music,” Cognitive, Affective, and Behavioral Neuroscience 13, no. 2 (2013).

13Diana Omigie, Marcus T. Pearce, and Lauren Stewart, “Tracking of Pitch Probabilities in Congenital Amusia,”
Neuropsychologia 50 (2012): 1483–1493; Pearce and Wiggins, “Expectation in Melody”; Marcus T. Pearce et al.,
“Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural Manifestations of Musical
Expectation,” NeuroImage 50 (2010): 302–313.

14Diana Omigie et al., “Electrophysiological Correlates of Melodic Processing in Congenital Amusia,” Neu-
ropsychologia 51 (2013): 1749–1762.

15Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural Manifes-
tations of Musical Expectation.”

16I draw much of the following discussion from Pearce and Wiggins, “Improved Methods for Statistical
Modelling of Monophonic Music.”

17Documentation and downloads for IDyOM are available here: https://code.soundsoftware.ac.uk/projects/
idyom-project.

http://dx.doi.org/10.3389/fpsyg.2014.1052
https://code.soundsoftware.ac.uk/projects/idyom-project
https://code.soundsoftware.ac.uk/projects/idyom-project
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viewpoint models into a single composite prediction for each event in the sequence. Finally,

§6.3 applies IDyOM to the events surrounding each cadence in the Haydn Corpus to consider

the following three claims about the link between expectancy and cadential closure: (1) terminal

events from cadential contexts are more predictable than those from non-cadential contexts

(§6.3.1); (2) the probabilistic account exemplified by IDyOM corresponds with models of

cadential strength advanced in the Formenlehre tradition (§6.3.2); and (3) a significant decrease

in predictability follows the terminal event of the cadential sequence (§6.3.3).

§6.1 IDyOM: A Cognitive Model of Musical Expectation

6.1.1 Maximum Likelihood

The goal of context models like IDyOM is to derive from a corpus of example sequences a

model which estimates the probability of event ei given a preceding sequence of events e1 to ei−1,

notated here as e i−11 . Thus, the function p (ei |e i−11 ) assumes that the identity of each event in the

sequence depends only on the events that precede it. In principle, the length of the context is

limited only by the length of the sequence e i−11 , but context models typically stipulate a global

order bound such that the probability of the next event depends only on the previous n − 1

events, or p (ei |e i−1(i−n)+1). Following the Markov assumption (see § 4.2), the model described

here is an (n − 1)th order Markov model, but researchers also sometimes call it an n-gram model

because the sequence e i(i−n)+1 is an n-gram consisting of a context e i−1(i−n)+1 and a single-event

prediction ei .

To estimate the conditional probability function p (ei |e i−1(i−n)+1) for each event in the test

sequence, IDyOM must first acquire the frequency counts for a collection of such sequences

from a training set. When the trained model is exposed to the test sequence, it then uses the
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frequency counts to estimate the probability distribution governing the identity of the next

event in the sequence given the n−1 preceding events.18 In this case, IDyOM relies onmaximum

likelihood (ML) estimation.

p (ei |e i−1(i−n)+1) =
c (ei |e i−1(i−n)+1)∑

e∈A
c (e |e i−1(i−n)+1)

(6.1)

The numerator terms represent the frequency count c for the n-gram ei |e i−1(i−n)+1, and the

denominator terms represent the sum of the frequency counts c associated with all of the

possible events e in the alphabet A following the context e i−1(i−n)+1. Thus, Equation 6.1 represents

the ratio of the number of times ei follows the context e i−1(i−n)+1 to the number of times any

event e from A follows the context e i−1(i−n)+1.

Armed with the Haydn Corpus and the equation above, we could generate probability

estimates for nearly any encountered sequence.19 To illustrate, Table 6.1 provides the counts

and probabilities for the chromatic scale degrees from the first violin in the Haydn Corpus for

the sequence 4̂-3̂-2̂-e4. If we ignore the preceding context (i.e., n = 1), 5̂ receives the highest

probability estimate of .187 ( 2619
13,994 ). As the value of n increases, however, the model predictions

increasingly favor 1̂ as the most likely continuation, with a probability estimate of .322 in the

first-order model, .546 in the second-order model, and finally .566 in the third-order model.

Thus, the higher-order models predict what we might expect: namely, that 1̂ or perhaps 3̂ will

follow the sequence 4̂-3̂-2̂. On this basis, we might assume that higher-order models better

simulate listener expectations than lower-order models,20 but how do we justify this claim in

18Pearce and Wiggins, “Expectation in Melody,” 389.
19When n is larger than i, such as at the beginning of the sequence, context models introduce padding symbols

to provide the necessary context.
20Alistair Moffat, “Implementing the PPM Data Compression Scheme,” IEEE Transactions on Communications

COM-38, no. 11 (1990): 1917.
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Table 6.1: Counts and probabilities for the chromatic scale degrees from the first violin in the
Haydn Corpus following the contexts 4̂-3̂-2̂, 3̂-2̂, 2̂, and no context (n = 1).

n = 4 n = 3 n = 2 n = 1
c p c p c p c p

4̂-3̂-2̂ → 1̂ 176 .566 3̂-2̂ → 1̂ 280 .546 2̂ → 1̂ 598 .322 → 1̂ 2390 .171
→ [2̂ 11 .035 → [2̂ 22 .043 → [2̂ 57 .031 → [2̂ 171 .012
→ 2̂ 27 .087 → 2̂ 52 .101 → 2̂ 203 .109 → 2̂ 1859 .133
→ [3̂ 4 .013 → [3̂ 5 .01 → [3̂ 93 .05 → [3̂ 307 .022
→ 3̂ 45 .145 → 3̂ 61 .119 → 3̂ 336 .181 → 3̂ 1823 .13
→ 4̂ 21 .068 → 4̂ 49 .096 → 4̂ 186 .1 → 4̂ 1647 .118
→ ]4̂ 1 .003 → ]4̂ 1 .002 → ]4̂ 9 .005 → ]4̂ 406 .029
→ 5̂ 14 .045 → 5̂ 19 .037 → 5̂ 151 .081 → 5̂ 2619 .187
→ 6̂ 8 .026 → 6̂ 12 .023 → [6̂ 3 .002 → [6̂ 247 .018
→ 7̂ 4 .013 → 7̂ 12 .023 → 6̂ 40 .022 → 6̂ 1126 .08

→ [7̂ 2 .001 → [7̂ 135 .01
→ 7̂ 181 .097 → 7̂ 1264 .09

Note. n refers to the length of the context, c denotes the count for each chromatic scale degree
continuation, and p represents the probability of each continuation without exclusion.

the absence of experimental evidence?

6.1.2 Performance Metrics

The most common performance metrics for context models derive from information-theoretic

measures introduced by Claude E. Shannon in the late 1940s, one of which I summarized in

§4.2. Context models for communication systems like natural language essentially began in

Shannon’s laboratory.21 However, his main contribution was to formalize the relationship

between probability theory and the quantification and compression of information, and in

so doing, to derive a method for the transduction of messages from communication systems

21Claude E. Shannon, “Prediction and Entropy of Printed English,” Bell System Technical Journal 30 (1951):
50–64.
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like English into compressed numerical codes.22 The principles outlined in his 1948 article “A

Mathematical Theory of Communication” form the basis for the digital encoding, storage, and

retrieval of information in modern data compression theory.23

At first glance, context modeling and compression theory might seem unrelated, but

Shannon demonstrated that for seemingly stochastic communication systems (i.e., where the

system produces sequences of discrete events according to certain probabilities), “parameters

of engineering importance such as time, bandwidth, and number of relays, etc., tend to vary

linearly with the logarithm of the number of possibilities,” such that events associated with fewer

possible outcomes in the transduced message also require less time (or bandwidth) or fewer

relays during transmission.24 Thus, the mathematical formalism on which his transduction

scheme depends is typically a base 2 logarithmic function. To demonstrate how this scheme

might work, Shannon encoded sequences of information according to the number of bits (or

binary digits, represented by 0 or 1) associated with their selection: the fewer the number of

choices (or higher the probability) for a particular event in the message, the fewer the number

of bits required to encode it, and thus, the less informative the event.

Returning to our earlier equation, if the probability of ei is given by the conditional

probability function p (ei |e i−1(i−n)+1), information content (IC) represents the minimum number

of bits required to encode ei in context.25

IC(ei |e i−1(i−n)+1) = log2
1

p (ei |e i−1(i−n)+1)
(6.2)

IC is inversely proportional to p and thus represents the degree of contextual unexpectedness
22Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction,” 53.
23Timothy C. Bell, John G. Cleary, and Ian H. Witten, Text Compression (Englewood Cliffs, NJ: Prentice Hall,

1990).
24Shannon, “A Mathematical Theory of Communication,” 379–380.
25David J. C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge, UK: Cambridge

University Press, 2003), 32.
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or surprise associated with ei . In Table 6.1, for example, p (1̂|4̂-3̂-2̂) is .566, so IC(1̂|4̂-3̂-2̂) is

log2( 1
.566 ), or .821 bits. Researchers often prefer to report IC over p because it has a more conve-

nient scale (p can become vanishingly small), and since it also has a well-defined interpretation

in data compression theory,26 I will prefer it in the analyses that follow.

Whereas IC represents the degree of unexpectedness associated with a particular event ei in

the sequence, Shannon entropy (H ) represents the degree of contextual uncertainty associated

with the probability distribution governing that outcome, where the probability estimates are

independent and sum to one. I have already described the formula for H in Equation 4.1, but I

present an alternative formula here to demonstrate the relationship between IC and H .

H (e i−1(i−n)+1) =
∑
e∈A

p (ei |e i−1(i−n)+1)IC(ei |e i−1(i−n)+1) (6.3)

H is computed by averaging the information content over all e in A following the context

e i−1(i−n)+1. According to Shannon’s equation, if the probability of a given outcome is 1, the

probabilities for all of the remaining outcomes will be 0, and H = 0 (i.e., maximum certainty).

If all of the outcomes are equally likely, however, H is maximum (i.e., maximum uncertainty).

Thus, we can assume here that the best performing models will minimize model uncertainty. In

principle, this means that each of the values of H computed from the probability distributions

in Table 6.1 estimates the model’s uncertainty for the possible continuations following each

context. In this case, model uncertainty decreases from the zeroth-order to the first-order model

(n = 1,H = 3.14; n = 2,H = 2.83), indicating that the model predictions improve as the

context grows.27

26Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural Manifes-
tations of Musical Expectation,” 304.

27Note that I did not compute the values of H for the higher-order models in Table 6.1 because their distribu-
tions contain chromatic scale degrees for which the probability is 0 (i.e., [6̂ and [7̂ never follow the contexts 4̂-3̂-2̂
and 3̂-2̂ in the Haydn Corpus). I mention in the next section that since log2(0) is undefined, information-theoretic
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In practice, we rarely know the true probability distribution of the stochastic process,28 so

it is often necessary to evaluate model performance using an alternative measure called cross

entropy, denoted by Hm .

Hm (pm, e
j
1) = −

1
j

j∑
i=1

log2 pm (ei |e i−11 ) (6.4)

Whereas H represents the average information content over all e in the alphabet A, Hm

represents the average information content for the model probabilities estimated by pm over

all e in the sequence e j1. That is, cross entropy provides an estimate of how uncertain a model

is, on average, when predicting a given sequence of events.29 Thus, while H is a good way

of discriminating between models when the outcome is not yet known for a given event

in the sequence, Hm allows us to discriminate between models based on the uncertainty of

their predictions for every event in the sequence. As a consequence, Hm is frequently used

to evaluate the performance of different context models on some corpus of data for tasks

like speech recognition, machine translation, and spelling correction because, as Peter Brown

and his co-authors note, “models for which the cross entropy is lower lead directly to better

performance.”30

6.1.3 Prediction by Partial Match

In Chapter 2 I suggested that the strength and specificity of our expectations for musical

materials from the classical style depend on our schematic knowledge of the many recurrent

measures like IC and H depend on non-zero probability estimates for every possible prediction.
28Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 3.
29Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 3; Manning and

Schütze, Foundations of Statistical Natural Language Processing, 74–76.
30Peter F. Brown et al., “An Estimate of an Upper Bound for the Entropy of English,” Computational Linguistics

18, no. 1 (1992): 39.
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formulæ found therein. If Pearce is correct that IDyOM simulates the “actual cognitive

processes” involved in perceiving these phenomena,31 it therefore follows that context models—

like listeners—should improve as the value of n increases, just as we found for the probability

distributions in Table 6.1. And yet because listeners are unlikely to remember temporal patterns

beyond a certain value of n, and because such high-order patterns do not recur with any

significant frequency in classical music, it also seems reasonable to impose an upper bound on

the relationship between model uncertainty and model order. To be sure, if low-order models

fail to account for the structural influence of the context on expectations, high-order models

prevent IDyOM from capturing many of the statistical regularities present in the corpus.32 The

frequency counts in Table 6.1 demonstrate this fact: At n = 1, the model consists of 13,994

chromatic scale degree patterns, but by n = 4, the model consists of just 311 patterns.

What is more, because the number of potential patterns decreases dramatically as the value

of n increases, high-order models often suffer from the zero-frequency problem,33 in which

n-grams encountered in the test set do not appear in the training set. The pattern 4̂-3̂-2̂-[7̂

never appears in the Haydn Corpus, for example, so a third-order context model would return

an estimated probability of 0. And since log2(0) is undefined, it is therefore necessary for

information-theoretic measures like IC, H , and Hm to provide non-zero probability estimates

for every possible event in the alphabet. Simply put, context models like IDyOM assume that

“no sequence of events is impossible, however unlikely it may be.”34

To resolve this issue, IDyOM applies a data compression scheme called Prediction by Partial

Match (PPM),35 which adjusts the ML estimate for each event in the sequence by combining (or

31Marcus T. Pearce and Geraint A. Wiggins, “Auditory Expectation: The Information Dynamics of Music
Perception and Cognition,” Topics in Cognitive Science 4 (2012): 641.

32Pearce and Wiggins, “Expectation in Melody,” 388–389.
33Ian H. Witten and Timothy C. Bell, “The Zero-Frequency Problem: Estimating the Probabilities of Novel

Events in Adaptive Text Compression,” IEEE Transactions on Information Theory 37, no. 4 (1991): 1085–1094.
34Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction,” 54.
35John G. Cleary and Ian H. Witten, “Data Compression Using Adaptive Coding and Partial String Matching,”
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smoothing) the predictions generated at higher orders with less sparsely estimated predictions

from lower orders. Context models estimated with the PPM scheme typically use a procedure

called backoff smoothing (or blending), which assigns some portion of the probability mass from

each distribution to an escape probability using an escape method to accommodate predictions

that do not appear in the training set. When an event like [7̂ does not appear in the n − 1 order

distribution, for example, PPM stores the escape probability and then iteratively backs off to

lower-order distributions until it predicts the event or reaches the zeroth-order distribution, at

which point it transmits the probability estimate for a uniform distribution over A (i.e., where

every event in the alphabet is equally likely). PPM then multiplies these probability estimates

together to obtain the final (smoothed) estimate.

Unfortunately there is no sound theoretical basis for choosing the appropriate escape

method,36 but Pearce and Wiggins recently demonstrated the potential ofmethod C to minimize

model uncertainty in melodic prediction tasks,37 so I employ that method here.38

γ (e i−1(i−n)+1) =
t (e i−1(i−n)+1)∑

e∈A
c (e |e i−1(i−n)+1) + t (e i−1(i−n)+1)

(6.5)

Escape method C represents the escape count t as the number of distinct symbols that follow

the context e i−1(i−n)+1. To calculate the escape probability for events that do not appear in the

IEEE Transactions on Communications 32, no. 4 (1984): 396–402.
36Witten and Bell, “The Zero-Frequency Problem: Estimating the Probabilities of Novel Events in Adaptive

Text Compression.”
37Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 4.
38Moffat, “Implementing the PPM Data Compression Scheme.” In the original PPM scheme, John G. Cleary

and Ian H. Witten offered two escape methods, named A and B, respectively (“Data Compression Using Adaptive
Coding and Partial String Matching”). Researchers attempting to improve upon these methods have generally
preserved the convention of using letter names for method designations. IDyOM implements a number of these
escape methods, but again, Pearce points out that method C generally outperforms the other methods, so I will
restrict my commentary to that method here. For a discussion of the escape methods implemented by IDyOM,
see Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 4.
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training set, γ represents the ratio of the escape count t to the sum of the frequency counts

c and t for the context e i−1(i−n)+1. The appeal of this escape method is that it assigns greater

weighting to higher-order predictions (which are more specific to the context) over lower-order

predictions (which are more general) in the final probability estimate.39

By way of example, consider again the probability estimates for the sequence 4̂-3̂-2̂-[7̂ in

Table 6.1. For a context model featuring a third-order global bound (i.e., n = 4), [7̂ fails to

follow the context beyond n = 2, so PPM stores the escape probability and then backs off

to the lower-order distribution in both cases. For the n = 4 distribution, ten chromatic scale

degrees follow the context, so t = 10, resulting in the escape probability 10
311+10 . For the n = 3

distribution, t remains the same, but the total number of patterns increases to 513, so 10
513+10 .

For the n = 2 distribution, however, [7̂ appears twice, so PPM terminates with the probability

estimate 2
1859+12 . Note here that the ML estimate for 2̂-[7̂ also includes the escape count t (of

12), demonstrating a basic feature of the PPM scheme: the probability mass includes the escape

count in every distribution whether or not the to-be-predicted event follows the context.

Bearing that assumption in mind, we need to revise the ML method from Equation 6.1 in

the following way:

α(ei |e i−1(i−n)+1) =
c (ei |e i−1(i−n)+1)∑

e∈A
c (e |e i−1(i−n)+1) + t (e i−1(i−n)+1)

(6.6)

Thus, the first two probability estimates 10
321 and 10

523 represent the escape probabilities for

the third-order and second-order models, respectively, while 2
1871 represents the revised ML

estimate for the first-order model, denoted by α. Using backoff smoothing, the final probability

estimate for [7̂ in the sequence 4̂-3̂-2̂-[7̂ is therefore 10
321 ×

10
523 ×

2
1871 , or .0000006. As mentioned

39Suzanne Bunton, “On-Line Stochastic Processes in Data Compression” (PhD Dissertation, University of
Washington, 1996), 83; Pearce and Wiggins, “Expectation in Melody,” 389.
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previously, probability estimates can become vanishingly small in situations like this one, so

the IC estimate is often preferred, which in this case is 20.58 bits.

Context models like the one just described also often use a technique called exclusion, which

improves the final probability estimate by reclaiming a portion of the probability mass in lower-

order models that is otherwise wasted on redundant predictions. In other words, the counts for

events that were predicted in the higher-order distributions do not need to be included in the

calculation of the lower-order distributions. In the previous example, the n = 4 distribution

already predicted ten of the twelve chromatic scale degrees, so the counts from these predictions

can be excluded from the lower-order distributions.40 The n = 4 escape probability remains the

same ( 10
311+10 ), but the n = 3 escape probability excludes the counts from all ten chromatic scale

degrees since they were already predicted in the higher-order distribution, resulting in an escape

probability of 10
0+10 . For the n = 2 distribution, two novel chromatic scale degrees follow the

context: [6̂, which appears thrice; and [7̂, which appears twice. Thus, the terminal probability

estimate is 2
5+12 . Using backoff smoothing with exclusion, the final probability estimate is now

10
321 ×

10
10 ×

2
17 , or .004 (8.09 bits).

Given how infrequently [7̂ follows any context in the Haydn Corpus, it should not be

surprising that it receives such a low probability estimate in the sequence 4̂-3̂-2̂-[7̂. For sequences

that do not require escape probabilities, backoff smoothing is far simpler to compute. In the

sequence 4̂-3̂-2̂-1̂, for example, 1̂ follows the context in the highest-order distribution, so the

PPM scheme terminates with the first probability estimate. Note, however, that since we now

include an escape count in the distribution, the probability estimate for 1̂ deflates slightly from
176
311 , or .566 (.821 bits) in Table 6.1, to α = 176

311+10 , or .548 (.867 bits).

The PPM scheme just described remains the canonical method in many context models,41

40Note, however, that exclusion only applies to the counts; the total number of events t following the context
remains the same in every distribution.

41John G. Cleary and W. J. Teahan, “Unbounded Length Contexts for PPM,” The Computer Journal 40, nos.
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but Suzanne Bunton has since provided a variant smoothing technique called mixtures that

generally improves model performance,42 but which, following Stanley F. Chen and Joshua

Goodman, I will call interpolated smoothing.43 The central idea behind interpolated smoothing

is to compute a weighted combination of higher-order and lower-order models for every event

in the sequence—regardless of whether that event features n-grams with non-zero counts—

under the assumption that the addition of lower-order models might generate more accurate

probability estimates.44

Formally, interpolated smoothing estimates the probability function p (ei |e i−1(i−n)+1) by recur-

sively computing a weighted combination of the (n − 1)th order distribution with the (n − 2)th

order distribution.45

p (ei |e i−1(i−n)+1) =



α(ei |e i−1(i−n)+1) + γ (e i−1(i−n)+1)p (e i−1(i−n)+2) if e i−1(i−n)+2 , ε

1
|A|+1−t (ε) otherwise

(6.7)

I have already presented the equations for α and γ above, but in the context of interpolated

smoothing it can be helpful to think of γ as a weighting function, with α serving as the

weighted ML estimate. Unlike the backoff smoothing procedure, which terminates at the first

non-zero prediction, interpolated smoothing recursively adjusts the probability estimate for

each order—regardless of whether the corresponding n-gram features a non-zero count—and

then terminates with the probability estimate for ε, which represents a uniform distribution

2/3 (1997): 67.
42Suzanne Bunton, “Semantically Motivated Improvements for PPM Variants,” The Computer Journal 40, nos.

2/3 (1997): 76–93.
43Stanley F. Chen and Joshua Goodman, “An Empirical Study of Smoothing Techniques for Language

Modeling,” Computer Speech & Language 13 (1999): 363; Pearce and Wiggins, “Improved Methods for Statistical
Modelling of Monophonic Music,” 2.

44Marcus Pearce, e-mail message to author, February 26, 2016.
45Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 2; Pearce and

Wiggins, “Expectation in Melody,” 389.
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over |A| + 1 − t (ε) events (i.e., where every event in the alphabet is equally likely).46

Returning to the sequence 4̂-3̂-2̂-[7̂, we can replace the formulæ for α and γ with the

appropriate values from the third-order distribution in Table 6.1. Recall that [7̂ never follows

the context 4̂-3̂-2̂, so the weighted ML estimate α is 0
311+10 , and the escape probability γ is 10

311+10 .

n = 4

psmooth([7̂) =

︷       ︸︸       ︷
0
321
+

10
321

· p (ei |e i−1(i−n)+2)

The second-order model only consists of veteran chromatic scale degrees (i.e., chromatic

scale degrees that were already predicted in the higher-order model) and [7̂ again fails to appear

in the distribution, so the PPM scheme excludes all of the state counts from γ but preserves the

frequency counts in α, resulting in the estimates 0
513+10 for α and 10

0+10 for γ.

n = 4 n = 3

psmooth([7̂) =

︷       ︸︸       ︷
0
321
+

10
321

·
( ︷     ︸︸     ︷

0
523
+
10
10
· p (ei |e i−1(i−n)+3)

)
Interpolated smoothing continues to include weighted combinations of lower-order models

until it reaches the zeroth-order model, at which point it terminates with the uniform distribu-

tion over A. By this point, the model has already encountered every possible chromatic scale

degree, so the uniform distribution is 1
0+1−0 .

n = 4 n = 3 n = 2 n = 1 n = 0

α + γ α + γ α + γ α + γ 1
|A |+1−t (ε)

psmooth([7̂) =

︷       ︸︸       ︷
0
321
+

10
321

·
( ︷     ︸︸     ︷

0
523
+
10
10

·
( ︷       ︸︸       ︷

2
1871

+
12
17

·
( ︷         ︸︸         ︷

135
14006

+
12
12

·

︷︸︸︷
1
1

)))
46In the PPM scheme, the alphabet A increases by one event to accommodate the escape count t but decreases

by the number of events in A that never appear in the corpus. If [7̂ never appeared in the Haydn Corpus, for
example, the probability estimate for ε would be 1

12+1−1 .
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The full model for [7̂ from the sequence 4̂-3̂-2̂-[7̂ returns a final smoothed probability estimate

of .022, or 5.491 bits. For comparison, I have also provided the full model for 1̂ from the

sequence 4̂-3̂-2̂-1̂, shown below.

n = 4 n = 3 n = 2 n = 1 n = 0

α + γ α + γ α + γ α + γ 1
|A |+1−t (ε)

psmooth(1̂) =

︷       ︸︸       ︷
176
321
+

10
321

·
( ︷     ︸︸     ︷

280
523
+
10
10

·
( ︷       ︸︸       ︷

598
1871

+
12
17

·
( ︷         ︸︸         ︷

2390
14006

+
12
12

·

︷︸︸︷
1
1

)))
Here, the final smoothed probability estimate is .601, or .735 bits.47

6.1.4 Variable Orders

In the previous examples, I arbitrarily selected a global order bound of n = 4, but as Pearce

points out, the optimal order for context models depends on the nature of the corpus, which in

the absence of a priori knowledge can only be determined empirically.48 To resolve this issue,

IDyOM employs an extension to PPM called PPM*,49 which includes contexts of variable

length and thus “eliminates the need to impose an arbitrary order bound.”50 In the PPM*

scheme, the context length is allowed to vary for each event in the sequence, with the maximum

context length selected using simple heuristics to minimize model uncertainty. Specifically,

PPM* exploits the fact that the observed frequency of novel events is much lower than expected

for contexts that feature exactly one prediction, called deterministic contexts. As a result, the

entropy of the distributions estimated at or below deterministic contexts tends to be lower than

in non-deterministic contexts. Thus, PPM* selects the shortest deterministic context to serve as

the global order bound for each event in the sequence. If such a context does not exist, PPM*
47Pearce and Wiggins point out that with interpolated smoothing, the conditional probability distribution

rarely sums to one, so IDyOM computes the entire distribution and then renormalizes the component probabilities
such that they do sum to one (“Improved Methods for Statistical Modelling of Monophonic Music,” 5).

48Ibid., 2.
49Cleary and Teahan, “Unbounded Length Contexts for PPM.”
50Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 6.
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then selects the longest matching context. In §5.1, for example, I noted that the distribution of

words following the expression Don’t give up your day very likely consists of just one word ( job).

In the context of PPM*, this means that Don’t give up your day would serve as a deterministic

context. Assuming no shorter deterministic contexts exist (e.g., give up your day, up your day,

and so on), PPM* would then select n = 6 as the global order bound.

§6.2 Combining Models

6.2.1 Long-term vs. Short-term

To improve model performance, IDyOM separately estimates and then combines two subor-

dinate models trained on different subsets of the corpus: a long-term model (LTM), which

trains on the entire corpus to simulate the long-term, schematic knowledge of listeners; and a

short-term model (STM), which is initially empty for each individual composition and then

trains incrementally to simulate the short-term, dynamic knowledge of listeners.51 Thus, the

long-term model reflects inter-opus statistics from a large corpus of compositions, whereas

the short-term model only reflects intra-opus statistics, some of which may be specific to that

composition.52 Like the STM, we might also slightly improve the LTM by incrementally

training on the composition being predicted, called LTM+. Thus, LTM+ represents both the

statistics from the training set and the statistics from that portion of the test set that has already

been predicted. Both models generate a conditional probability distribution for each event in

the corpus, so Pearce typically combines LTM+ and STM using a weighted geometric mean,53

51Pearce andWiggins, “Auditory Expectation: The Information Dynamics of Music Perception and Cognition,”
632.

52Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 6; Pearce and
Wiggins, “Expectation in Melody,” 389. According to Conklin, the short-term model is transitory since it is
discarded after a particular sequence is predicted, and dynamic because it adapts to a particular sequence (“Multiple
Viewpoint Systems for Music Prediction,” 57).

53Pearce, Conklin, and Wiggins, “Methods for Combining Statistical Models of Music.”
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yielding a single conditional distribution, called BOTH+.

The LTM (or LTM+) is taken to represent long-term stylistic knowledge, or what Keith

Potter, Geraint A. Wiggins and Marcus Pearce refer to as “typical Western musical experience,”54

so it seems reasonable to conclude that probability estimates from the LTM simulate schematic

expectations arising from long-term memory. Pearce and Wiggins concede, however, that the

LTM exhibits total recall and its memory never fails, which may explain why it outperforms

humans in some implicit learning tasks.55 It remains far less clear which memory system the

STM might simulate, however. Pearce and Wiggins claim, for example, that only the LTM and

BOTH are “serious candidates as models of human cognition,” while the STM alone is included

in IDyOM for “completeness.”56 Potter, Wiggins, and Pearce compared the estimates from both

models for two works by Philip Glass, Gradus and Two Pages, noting that the LTM exhibited a

tendency towards tonal-melodic structure while the STM emphasized local melodic structure,

leading them to suggest that the STM is a surrogate for short-term memory.57 But since the

STM only discards statistics when it reaches the end of the composition, it far surpasses the

supposed upper limits for short-term and working memory, sometimes by several minutes.58

Nevertheless, the STM corresponds quite closely with David Huron’s dynamic expectancy

type, which arises from short-term memories of brief—even single—exposures.59 Although

Huron concedes that the upper limit of short-term auditory memory is likely no longer than

10–12 seconds, he notes that repetitions of patterns throughout the composition could increase

54Keith Potter, Geraint A. Wiggins, and Marcus T. Pearce, “Towards Greater Objectivity in Music Theory:
Information-Dynamic Analysis of Minimalist Music,” Musicae Scientiae 11, no. 2 (2007): 300.

55Rohrmeier, Rebuschat, and Cross, “Incidental and Online Learning of Melodic Structure.”
56Pearce andWiggins, “Auditory Expectation: The Information Dynamics of Music Perception and Cognition,”

632.
57Potter, Wiggins, and Pearce, “Towards greater objectivity in music theory: Information-dynamic analysis of

minimalist music,” 299, 310.
58Bob Snyder suggests an upper limit of 10–12 seconds for short-term or working memory (Music and Memory,

50).
59Huron, Sweet Anticipation, 227.
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the likelihood that the corresponding mental representation will be passed to “intermediate-term

memory, and then potentially into long-term memory.”60 From this point of view, it is perhaps

possible that the probability estimates from the STM reflect dynamic expectations arising from

some combination of short- and intermediate-term memory, though the experimental evidence

for a separate intermediate-term memory system is not well supported.

But recall from Chapter 2 that in my view, cadences exemplify exactly the kinds of inter-opus

patterns that listeners are likely to store in long-term memory. If the cadence is indeed the

quintessential tonal schema, the STM should be irrelevant for the present purposes, since it

reflects the kinds of intra-opus patterns that listeners are far less likely to remember. To that

end, I have elected to omit the STM in the analyses that follow and only present the probability

estimates from LTM+, but with the hope that future studies examining the relationship between

expectancy and cadential closure might compare the results obtained here with probability

estimates from the STM and BOTH+.

6.2.2 Performance Evaluation

Context models like IDyOM depend on a training set and a test set, but in this case the Haydn

Corpus will need to serve as both. To accommodate small corpora like this one, IDyOM

employs a resampling approach called k-fold cross-validation,61 using cross entropy as a measure

of performance.62 The corpus is divided into k disjoint subsets of approximately equal size, and

the LTM+ is trained k times on k −1 subsets, each time leaving out a different subset for testing.

IDyOM then computes an average of the k cross entropy values as a measure of the model’s

performance. Following Pearce and Wiggins, I use 10-fold cross validation for the models that

60Huron, Sweet Anticipation, 228.
61Thomas G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Classification Learning

Algorithms,” Neural Computation 10, no. 7 (1998): 1895–1923.
62Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction.”
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follow.63

6.2.3 Viewpoint Selection

With the PPM* scheme now in place, we should be able to estimate the conditional probability

of every event in the Haydn Corpus, but which viewpoints do we predict? Recall from

Chapter 3 that the multiple-viewpoint framework represents sequences of note events from

a notated score according to attribute types like chromatic pitch (cpitch), melodic interval

(melint) and chromatic scale degree (csd). IDyOM is capable of individually predicting any

one of these viewpoints using the PPM* scheme, but it can also combine viewpoint predictions

using a weighted multiplicative combination scheme that assigns greater weights to viewpoint

models whose predictions are associated with lower entropy at that point in the sequence.64 To

determine the combined probability distribution for each event in the test sequence, IDyOM

then computes the product of the weighted probability estimates from each viewpoint model

for each possible value of the predicted viewpoint.

What is more, IDyOM can automate the viewpoint selection process using a hill-climbing

procedure called forward stepwise selection, which picks the combination of viewpoints that

yields the richest structural representations of the musical surface and minimizes model uncer-

tainty. Given an empty set of viewpoints, the stepwise selection algorithm iteratively selects

the viewpoint model additions or deletions that yield the most improvement in cross entropy,

terminating when no addition or deletion yields an improvement.65 The assumption here is

that, like IDyOM, listeners seek to minimize their uncertainty about future events by selecting

reduced representations of the musical surface. By way of example, Pearce and Wiggins note

63Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music,” 10.
64Pearce, Conklin, and Wiggins, “Methods for Combining Statistical Models of Music,” 304.
65Pearce, “The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and

Composition,” 121–122; Potter, Wiggins, and Pearce, “Towards greater objectivity in music theory: Information-
dynamic analysis of minimalist music,” 302.
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that infants demonstrate absolute pitch, but as exposure to music increases, the vast majority

quickly learn relative pitch.66 Viewpoint representations of the former (like cpitch) require far

more symbols than those of the latter (like melint), so it is conceivable that humans compress

multidimensional stimulus domains like music by discarding representations like cpitch in

favor of those like melint.

IDyOM was originally intended to simulate melodic pitch expectations, so the majority

of the published corpus studies using IDyOM predict pitch-based viewpoints like cpitch or

melint,67 or linked viewpoints like csd ⊗ melint.68 What is more, only a few studies employ

the viewpoint selection scheme just described.69 Viewpoint models predicting rhythmic or

metric attributes are much less common, though Pearce, Müllensiefen, and Wiggins recently

demonstrated the degree to which IDyOM can simulate the behavior of listeners in segmentation

tasks using viewpoint predictions of inter-onset interval and offset-to-onset interval.70

In Chapter 3, I represented the “core” events of the classical cadence according to pitch-based

viewpoints from the outer parts (csd and contour), a coefficient representing the strength of

the metric position (strength), and a vertical sonority, presented as a combination of vertical

interval classes (vintcc) or chromatic scale degrees (csdc).71 For the majority of the encoded

cadences from the cadence collection (see §5.1), the terminal events at the moment of cadential

66I should point out, however, that some studies have shown that infants already demonstrate relative pitch
abilities at an early stage of development. See, for example, Judy Plantinga and Laurel J. Trainor, “Memory for
Melody: Infants Use a Relative Pitch Code,” Cognition 98 (2005): 1–11.

67Pearce and Wiggins, “Improved Methods for Statistical Modelling of Monophonic Music”; Ian H. Witten,
Leonard C. Manzara, and Darrell Conklin, “Comparing Human and Computational Models of Music Prediction,”
Computer Music Journal 18, no. 1 (1992): 70–80.

68Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural Manifes-
tations of Musical Expectation”; Conklin and Witten, “Multiple Viewpoint Systems for Music Prediction.”

69Pearce and Wiggins, “Expectation in Melody”; Potter, Wiggins, and Pearce, “Towards greater objectivity in
music theory: Information-dynamic analysis of minimalist music.” Conklin also uses a variant of this technique
(“Multiple Viewpoint Systems for Music Prediction”).

70Pearce, Müllensiefen, and Wiggins, “The Role of Expectation and Probabilistic Learning in Auditory
Boundary Perception.”

71Gjerdingen, Music in the Galant style, 142.
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arrival appear in strong metric positions (i.e., strength={3,4}), and few of the cadences feature

unexpected durations or inter-onset intervals at the cadential arrival, so I have elected to

omit viewpoint models for rhythmic or metric attributes from the present investigation and

concentrate instead on those viewpoints representing either melodic or harmonic expectations.

Table 6.2 presents the reference information, domain, and cardinality for each of the

predicted viewpoints in the analyses that follow. For cpitch, for example, the MIDI protocol

specifies 128 possible chromatic pitches, but only 64 appear in the first violin and cello parts in

the Haydn Corpus. To examine melodic pitch expectations for the resolving note event at the

moment of cadential arrival in the first violin and cello, I have included viewpoint predictions

for cpitch, melint, and csd. Following Gjerdingen’s schema-theoretic approach, the analyses

in Chapters 4 and 5 also included a viewpoint representing the melodic contour between

note events, but in this case the contour model received a much higher cross entropy estimate

than the other viewpoint models, so it was excluded here. To derive the optimal viewpoint

system for the representation of melodic expectations, I also employed the stepwise selection

procedure mentioned above for the following viewpoints: cpitch, melint, csd, and contour.

In this case, IDyOM begins with the above set of viewpoint models, but also includes the

linked viewpoints derived from that set (i.e., cpitch ⊗ melint, cpitch ⊗ csd, cpitch ⊗ contour,

melint ⊗ csd, melint ⊗ contour, csd ⊗ contour), resulting in a pool of ten individual viewpoint

models from which to derive the optimal combination of viewpoints.

Shown in Table 6.3, viewpoint selection derived the same combination of viewpoint models

for the first violin and the cello. Recall from §6.1.2 that cross entropy, denoted by Hm , estimates

how uncertain a model is, on average, when predicting a given sequence of events. Thus, for

our purposes, the model with the lowest cross entropy will serve as the best performing model

because it minimizes uncertainty. For the Haydn Corpus, melint was the best performing

viewpoint model in the first step, receiving a cross entropy estimate of 3.006 in the first violin
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Table 6.2: Reference information, domain, and cardinality for the predicted viewpoints used in
the present research.

Cardinality in
Viewpoint Description Domain Haydn Corpus

Note Events
cpitch chromatic pitch {0, . . . , 127} 64
melint melodic pitch interval {−126, . . . , 126} 63
csd chromatic scale degree {0, . . . , 11} 12

Chord Events
vintcc vertical interval class combination {<0,⊥,⊥>, . . . ,<9, 10, 11>} 190
csdc chromatic scale degree combination {<0,⊥,⊥,⊥>, . . . ,<11, 8, 9, 10>} 688

and 2.798 in the cello. In the second step, the combination of melint with the linked viewpoint

csd ⊗ cpitch decreased the cross entropy estimate to 2.765 in the first violin and 2.556 in the

cello. Including any of the remaining viewpoints did not improve model performance, however,

so the stepwise selection procedure terminated with this combination of viewpoints. In §6.3 I

refer to this viewpoint model as selection.

Currently, IDyOM is not designed to accommodate viewpoints for chord events, but in

Chapter 3 I extended the multiple-viewpoint framework to include the viewpoints vintcc and

csdc. Recall from §3.4.2 that the chord types from vintcc loosely approximate symbols from

figured bass nomenclature, whereas csdc defines its chord types in relation to an underlying

tonic. As such, the probabilities estimated by IDyOM for vintcc and csdc simulate the

formation of harmonic expectations during listening.

Finally, I have also created a composite viewpoint that might represent those viewpoint

models characterizing pitch-based (i.e., melodic and harmonic) expectations more generally.

To simulate the cognitive mechanisms underlying melodic segmentation, Pearce, Müllensiefen,

and Wiggins found it beneficial to combine viewpoint predictions for basic attributes like

chromatic pitch, inter-onset interval, and offset-to-onset interval by multiplying the component
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Table 6.3: The results of viewpoint selection for reduced cross entropy in the Haydn Corpus.

Step Viewpoint Added Hm
Violin 1 Cello

1 melint 3.006 2.798
2 csd ⊗ cpitch 2.765 2.556

probabilities to reach an overall probability for each note in the sequence as the joint probability

of the individual basic attributes being predicted.72 Following their approach, the viewpoint

model composite represents the product of the selection viewpoint model from the first violin

(to represent melodic expectations) and the csdc viewpoint model (to represent harmonic

expectations) for each unique onset time for which a note and chord event are present in the

Haydn Corpus. In this case I have preferred csdc over vintcc in the composite model because

the former viewpoint explicitly encodes the chromatic scale-degree successions in the lowest

instrumental part along with the relevant scale-degrees from the upper parts. Thus, csdc better

reflects the underlying tonal context, so it should better simulate harmonic expectations.

§6.3 Results

6.3.1 Cadences vs. Non-Cadences

I noted in Chapter 2 that Caplin classifies every possible cadence category according to two

fundamental types: those for which the goal of the cadential progression is tonic (the perfect

authentic cadence and its variants), and those for which the goal is dominant (the half cadence

and its variants). These two categories account for 206 of the 245 cadences from the collection.

Thus, it seems reasonable that listeners with sufficient exposure to music of the classical style
72Pearce, Müllensiefen, and Wiggins, “The Role of Expectation and Probabilistic Learning in Auditory

Boundary Perception,” 1376.
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will form schematic expectations for the terminal events of exemplars from the PAC and HC

categories. What is more, if cadences are the most predictable formulæ in all of tonal music,

we should expect to find lower IC estimates for the terminal events from the aforementioned

cadence categories compared to those from non-cadential closing contexts even if they both

share similar or even identical terminal events. That is, cadences should be more predictable

than their non-cadential counterparts.

To compare the PAC and HC categories against non-cadential contexts exhibiting varying

degrees of closure or stability, each of the viewpoints estimated by IDyOM was analyzed for

the terminal note events from the first violin and cello—represented by the viewpoints cpitch,

melint, csd, and selection—and the terminal chord events from the entire texture—represented

by the viewpoints vintcc, csdc, and composite—using a one-way analysis of variance (ANOVA)

with a three-level between-groups factor called closure. To examine the IC estimates for Caplin’s

first (tonic) type, tonic closure consists of three levels: PAC, which consists of the IC estimates

for the terminal events from the 122 exemplars of the PAC category; tonic, which consists

of an equal-sized sample of events selected randomly from the Haydn Corpus that appear in

strong metric positions (strength>1) and feature tonic harmony in root position and 1̂ in

the soprano; and non-tonic, which again consists of an equal-sized sample of events selected

randomly from the Haydn Corpus that appear in strong metric positions, but that feature any

harmony and any scale-degree in the soprano.

To examine the IC estimates for Caplin’s second (dominant) type, dominant closure was

designed in much the same way. HC consists of the IC estimates for the terminal events from

the 84 exemplars of the HC category, while dominant and non-dominant consist of equal-sized

samples of dominant and non-dominant events selected at random. Dominant events appear in

strong metric positions and feature dominant harmony in root position but (like their cadential

counterparts) permit any chord member in the soprano, while non-dominant events appear in
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strong metric positions but feature any harmony and any scale-degree.

In hypothesis testing theory, an ANOVA computes Fisher’s F ratio,73 which represents the

probability of obtaining differences between the group means arising from the experimental

sample (i.e., the between-group variability) that are equal to or greater than the differences be-

tween means arising from the population (i.e., the within-group variability).74 If the probability

is small—less than, say, .05 (called the significance level, and represented by α)—we may claim

that the observed differences are unlikely to have occurred due to sampling error alone and thus

reject the null hypothesis that no differences exist between the group means.75

Given the popularity of the F ratio in experimental research,76 the specifics of the technique

need not concern us here, but the statistical assumptions made prior to its estimation deserve

further mention. Inferential statistical procedures are said to be robust when the probability

statements resulting from their application are insensitive to violations of the assumptions made

in their development.77 In this case, ANOVAs assume that the distributions characterizing

each group are normal (or bell-shaped), that the group variances are more or less equal (or

homoscedastic), and that the observations in each group are statistically independent. ANOVAs

are generally quite robust to violations of normality, but much less so to violations of homo-

73Ronald A. Fisher, Statistical Methods, Experimental Design, and Scientific Inference (Oxford: Oxford University
Press, 1990).

74Ferguson and Takane, Statistical Analysis in Psychology and Education, 180.
75The significance level is generally a matter of convention. Ronald A. Fisher is perhaps the first statistician to

suggest a significance level of .05 in his famous “lady tasting tea” experiment, which tested the claim that a lady
could discern just by tasting a cup of tea with milk whether the milk or the tea infusion was first added to the
cup. He noted that for eight cups of tea presented in random order—four prepared first by adding the milk, and
four by first adding the tea—the chances of correctly discerning the order is one in seventy. Fisher would only
believe her claim if she could correctly classify all eight cups of tea; his standard of evidence, or significance level,
was thus 1

70 , or p = .014. “It is open to the experimenter to be more or less exacting in respect to the smallness of
the probability he would require before he would be willing to admit that his observations have demonstrated
a positive result... [but] it is usual and convenient for experimenters to take 5 per cent. as a standard level of
significance, in the sense that they are prepared to ignore all results which fail to reach this standard” (The Design of
Experiments, 8th [New York: Hafner Publishing Company, 1971], 13) (my addition).

76There are many fine introductory texts on hypothesis testing and inferential statistics. See, for example,
Ferguson and Takane, Statistical Analysis in Psychology and Education.

77Ibid., 191.
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geneity of variance. If the ratio of the variances between any two groups is greater than 2:1 (or

smaller than 1:2), for example, such heteroscedastic groups tend to inflate statistics like the F

ratio, leading researchers to incorrectly reject the null hypothesis (called a Type I error). This

problem is particularly acute when the groups are unbalanced (i.e., not of equal size), since

variance generally increases as sample size decreases. The largest and smallest cadence categories

from the cadence collection consist of 122 and 9 cadences, for example, which is very likely

to lead to heterogeneous variances among the groups. As a result, implementing traditional

inferential techniques like the F ratio for the datasets from this chapter will almost invariably

increase the risk of producing a Type I error.

For every between-groups factor examined in this section, Levene’s equality of variances,

which tests the null hypothesis that the population variances are equal, revealed significant

differences between groups for nearly every viewpoint model. Thus, in what follows I employ

an alternative to Fisher’s F ratio that is generally robust to heteroscedastic data, called the

Welch F ratio.78 Again, this technique is fairly common in inferential statistics, so I will forgo

the formula here. Along with some measure of the F ratio, it is also common practice in

hypothesis testing to measure the magnitude of the differences between groups (called the effect

size).79 To determine the effect size both for the Welch F ratio and for the planned comparisons

described shortly, I use Barry Cohen’s recent notation of a common effect size measure called

estimated ω2.

est. ω2 =
dfbet(F − 1)

dfbet(F − 1) + NT

The term dfbet denotes the between-groups degrees of freedom, F refers to the Welch F-ratio,

78Bernard L. Welch, “On the Comparison of Several Mean Values: An Alternative Approach,” Biometrika 38,
nos. 3/4 (1951): 330–336.

79Remember that the F ratio indicates whether the differences among group means are significant; it does not
measure the size (or magnitude) of those differences.
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and NT represents the total number of IC estimates in the model.80 Thus, est.ω2 falls in a range

between 0 and 1. Unlike the more common η2, which estimates the effect size for measures

calculated from the sample, Cohen’s formula tends to produce smaller effect sizes because it

represents an unbiased estimate of the proportion of variance accounted for in the population.

For a three-group factor like closure, for example, an est. ω2 of .01 accounts for one percent

of the variance in the outcome variable and represents a small but interpretable effect size,81

whereas an est. ω2 of .14 or greater generally represents a large effect.

The F ratio is an omnibus test, which is to say that it indicates whether the differences among

group means are statistically significant, not where these differences lie. To address more specific

hypotheses about the potential differences between groups, each model also includes planned

comparisons that do not assume equal variances. Thus, in this section each model included

two planned comparisons to examine differences in the IC estimates for the terminal events

from cadential and non-cadential contexts: the first to determine whether the IC estimates

from the corresponding cadence category differ significantly from the two non-cadential levels

(Cadences vs. Non-Cadences), and the second to determine whether the IC estimates from

the corresponding cadence category differ significantly from the second (tonic or dominant)

level of closure (PAC vs Tonic or HC vs. Dominant). Unfortunately, these additional tests

increase the risk of committing a Type I error, so I apply a Bonferroni correction to the planned

comparisons, which multiplies the p value by the number of tests. As such, an initial p value of

.02 would still be significant at α = .05 ( .02× 2 = .04), whereas a p value of .04 would no longer

be significant ( .04 × 2 = .08). This approach is admittedly quite conservative, but it further

ensures that the reported findings could not have occurred by chance alone.

The top bar plots in Figure 6.1 display the mean IC estimates for the terminal note event in

80Barry H. Cohen, Explaining Psychological Statistics (Hoboken, NJ: John Wiley & Sons, Inc., 2008), 374–375.
81Ibid., 375.
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Figure 6.1: Top: Bar plots of the mean information content (IC) estimated for the terminal
note event in the first violin (left) and cello (right) for each level of tonic closure. Viewpoints
include cpitch, melint, csd, and an optimized combination called selection, which represents
melint and the linked viewpoint csd ⊗ cpitch. Bottom left: Bar plot of the mean information
content (IC) estimated for the terminal vintcc and csdc for each level of tonic closure. Bottom
right: Line plot of the mean information content (IC) estimated for the combination called
composite, which represents the dot product of selectionvl1 and csdc. Whiskers represent ±1
standard error.

the first violin (left) and cello (right) for each level of tonic closure. Beginning with the first

violin, one-way ANOVAs of the IC estimates revealed a main effect for the viewpoints melint,

F (2, 238.95) = 5.18, p < .01, est. ω2 = .02, csd, F (2, 240.42) = 3.84, p < .05, est. ω2 = .02, and

the optimized combination selection, F (2, 239.01) = 4.98, p < .01, est.ω2 = .02. The ANOVA

for cpitch was not significant, F (2, 241.94) = .45, p > .05. Mean IC estimates increased

significantly from PAC to the non-cadential levels of closure for melint, t (294.75) = −3.19,
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p < .01, r = .18, and selection, t (293.73) = −2.80, p < .01, r = .16, but the comparison for

csd was marginal, t (278.36) = −2.12, p = .07, r = .13.82 Although this trend also emerged for

the planned comparison between PAC and tonic, only the melint model revealed a significant

effect, t (230.09) = −2.42, p < .05, r = .16. Thus, the viewpoint models for the first violin

demonstrated that terminal note events from cadential contexts are more predictable than those

from non-cadential contexts.

For the cello, one-way ANOVAs of the IC estimates revealed a main effect of tonic closure for

every viewpoint (cpitch, F (2, 240.13) = 21.83, p < .001, est. ω2 = .10; melint, F (2, 227.14) =

26.96, p < .001, est. ω2 = .12; csd, F (2, 234.38) = 12.67, p < .001, est. ω2 = .06; selection,

F (2, 230.64) = 21.78, p < .001, est.ω2 = .10), but the direction of the effect was reversed. Mean

IC estimates decreased in every model from PAC to the non-cadential levels of tonic closure

(cpitch, t (282.33) = 6.46, p < .01, r = .36; melint, t (349.56) = 7.33, p < .01, r = ..37; csd,

t (314.87) = 3.15, p < .01, r = .17; selection, t (336.39) = 5.95, p < .01, r = .31), as well

as from PAC to tonic (cpitch, t (237.07) = 6.18, p < .01, r = .37; melint, t (201.16) = 6.18,

p < .01, r = .40; csd, t (234.27) = 4.92, p < .01, r = .31; selection, t (217.90) = 6.44, p < .01,

r = .40). Thus, contrary to our predictions, the terminal events in the cello from cadential

contexts were actually less predictable than those from non-cadential contexts. Why might this

be so?

In §4.1 I presented distributional evidence that distinguished each instrumental part in

Haydn’s string quartets, noting that the most stable scale degrees and metric positions appear

more frequently in the cello than they do in the upper parts. What is more, the simple interval

distributions presented in Figures 4.3 and 4.4 indicate that perfect intervals like unisons and

82Recall from §4.1 that the Pearson correlation, denoted by r , is a common effect size measure that represents
the magnitude of the relationship between two variables X and Y , giving a value between −1 and +1. A negative
value indicates a negative relation (e.g., X decreases as Y increases), whereas a positive value indicates a positive
relation (e.g., X increases as Y increases), and 0 indicates no correlation between X and Y (see Chapter 4, footnote
26).
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fifths tend to appear more frequently in the cello than they do in the upper parts, and that

larger intervals tend to descend in the cello and ascend in the upper parts. To explain these

differences, I suggested that the contrapuntal interaction between the outer voices plays an

especially important role, with the bass voice moving by step and by leap to provide harmonic

support for the primarily stepwise soprano. And yet the kinds of melodic intervals found in the

bass voice in cadential contexts—such as the leap by ascending fourth or descending fifth from

5̂ to 1̂—still appear with far less frequency than motions by smaller intervals like unisons and

seconds. In other words, even though larger intervals appear more often in the cello than they

do in the upper parts, these intervals are still quite rare in the cello part, resulting in Markov

models that expect motion by unison, repetitions of stable scale degrees like 1̂ and 5̂, and so

forth. As a consequence, IDyOM produces considerably higher IC estimates for successions

like 5̂-1̂ than for successions like 1̂-1̂, 2̂-1̂, or 7̂-1̂.

My claim, then, is that statistical models conducted on the bass voice tend to obscure the

many recurrent patterns contained therein because these patterns depend on the interaction

among numerous parameters across the entire texture. To determine whether listeners expect

the terminal events of cadences and other frequently-occurring patterns in the lower voice of

the two-voice framework, we might instead examine the harmonies formed between the cello

part and the upper parts.

The bottom-left bar plot in Figure 6.1 displays the mean IC estimates for the terminal

chord event—represented by vintcc and csdc—for each level of the between-groups factor.

One-way ANOVAs of the IC estimates revealed a main effect of tonic closure for vintcc,

F (2, 233.40) = 13.41, p < .001, est. ω2 = .06, and for csdc, F (2, 240.79) = 8.12, p < .001,

est. ω2 = .04. As expected, both viewpoint models increased from PAC to the non-cadential

levels of tonic closure (vintcc, t (315.61) = −3.19, p < .01, r = .18; csdc, t (287.99) = −3.68,

p < .01, r = .21). A marginal trend also emerged for csdc, with mean IC estimates increasing
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from PAC to tonic, t (237.61) = −2.09, p = .08, r = .13, but this trend was not present in vintcc,

t (235.46) = .19, p > .05. Thus, for both viewpoint models the terminal chord events from

cadential contexts were more predictable than those from non-cadential contexts. Moreover,

csdc indicated an ascending staircase, with the mean IC estimates increasing from PAC to tonic

to non-tonic.

I noted in the previous section that csdc is more representative of the lower voice in the

two-voice framework because it explicitly encodes the chromatic scale-degree successions in the

lowest instrumental part along with the relevant scale-degrees from the upper parts. To represent

the predictability of the harmony and melody in a single IC estimate for each note/chord event,

I created a composite viewpoint that reflects the dot product of the estimates from csdc and

selectionvl1. The bottom-right line plot in Figure 6.1 displays the mean IC estimates for the

terminal composite event for each level of tonic closure. A one-way ANOVA of the IC estimates

revealed a significant main effect, F (2, 240.79) = 10.62, p < .001, est. ω2 = .05. Mean IC

estimates increased from PAC to the non-cadential levels of closure, t (270.22) = −4.13, p < .001,

r = .24, as well as from PAC to tonic, t (240.83) = −2.34, p < .01, r = .15. Thus, composite

again demonstrated an ascending staircase for the levels of tonic closure, with PAC receiving the

lowest IC estimates and non-tonic receiving the highest IC estimates.

The top bar plots in Figure 6.2 display the mean IC estimates for the terminal note event in

the first violin (left) and cello (right) for each level of dominant closure. For the first violin,

one-way ANOVAs of the mean IC estimates revealed a main effect for the viewpoints cpitch,

F (2, 163.24) = 3.50, p < .05, est. ω2 = .01, melint, F (2, 158.07) = 5.95, p < .01, est. ω2 = .03,

and selection, F (2, 161.43) = 4.62, p < .05, est. ω2 = .02, but not for csd, F (2, 163.40) =

2.47, p = .09. Excepting the csd model, the mean IC estimates increased significantly from HC

to the non-cadential levels of dominant closure for every viewpoint model (cpitch, t (205.51) =

−2.37, p < .05, r = .16; melint, t (223.14) = −3.05, p < .01, r = .20; selection, t (217.95) =



284 Predicting Closing Schemas: The Cadential Hierarchy

−2.95, p < .01, r = .20). The size of these effects increased in the second planned comparison

when the non-dominant level was omitted (cpitch, t (151.89) = −2.64, p < .05, r = .21; melint,

t (128.28) = −3.45, p < .01, r = .29; selection, t (146.49) = −2.87, p < .01, r = .23), indicating

that terminal events from half-cadential contexts are more predictable than those from non-

cadential contexts featuring dominant harmony in root-position and a chord member in the

soprano voice (dominant), but not necessarily more predictable than non-cadential contexts

featuring any harmony and any scale-degree (non-dominant).

For the cello, the mean IC estimates demonstrated a significant effect of dominant closure

for cpitch, F (2, 165.13) = 12.32, p < .001, est. ω2 = .06, and melint, F (2, 158.07) = 5.95, p <

.01, est. ω2 = .03, but not for csd, F (2, 163.40) = .46, p > .05, and selection, F (2, 164.82) =

1.14, p > .05. The direction of the effect was again reversed, with HC receiving higher IC

estimates than the non-cadential contexts (cpitch, t (186.99) = 3.67, p < .01, r = .26; melint,

t (200.46) = 2.64, p < .05, r = .18). What is more, although a similar trend emerged for

the mean IC estimates for vintcc and csdc compared to the estimates for the first violin,

there was no main effect of dominant closure for vintcc, F (2, 157.58) = .51, p > .05, or csdc,

F (2, 165.15) = .80, p > .05, suggesting that the terminal note and chord events represented

in the cello and the entire multi-voiced texture were not more predictable in half-cadential

contexts than in non-cadential contexts. The composite viewpoint did demonstrate a significant

main effect of dominant closure, however, F (2, 163.27) = 3.17, p < .05, est. ω2 = .01. Mean

IC estimates marginally increased from HC to the non-cadential levels of dominant closure,

t (206.73) = −2.21, p = .06, r = .15, and also significantly increased from HC to dominant,

t (158.72) = −2.51, p < .05, r = .20.

In sum, the effects were generally smaller for dominant closure than for tonic closure, but both

between-groups factors demonstrated significantly lower mean IC estimates for the terminal

events from cadential contexts compared to those from non-cadential contexts. The factor
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Figure 6.2: Top: Bar plots of the mean IC estimated for the terminal note event in the first
violin (left) and cello (right) for each level of dominant closure. Viewpoints include cpitch,
melint, csd, and an optimized combination called selection, which represents melint and
the linked viewpoint csd ⊗ cpitch. Bottom left: Bar plot of the mean IC estimated for the
terminal vintcc and csdc for each level of dominant closure. Bottom right: Line plot of the
mean IC estimated for the combination called composite, which represents the dot product of
selectionvl1 and csdc. Whiskers represent ±1 standard error.

tonic closure elicited significant effects for viewpoints representing both voices of the two-voice

framework, with greater effect sizes appearing for viewpoint models characterizing harmonic

progressions (vintcc, csdc, and composite). For dominant closure, significant effects were

generally limited to viewpoints representing the first violin, and half-cadential contexts only

elicited lower mean IC estimates in reference to non-cadential root-position dominants. To

be sure, events from the HC condition were no more (or less) predictable than non-dominant
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events selected at random from the Haydn Corpus.

Given our earlier assumptions about schematic expectations for dominant events, these

results should not be surprising. According to IDyOM, the terminal events from perfect

authentic cadences are generally more predictable than those from non-cadential contexts, but

half cadences appear to be no more predictable on average than any of the other events in the

classical style. Nevertheless, it remains unclear whether terminal events from half cadences

receive higher IC estimates on average because the preceding context fails to stimulate strong

expectations for any particular continuation, or because the actual continuation is unexpected.83

And yet, by only considering the potential differences between cadential and non-cadential

contexts, the previous analysis failed to directly compare the cadence categories from Caplin’s

typology. We might imagine, for example, that the strength and specificity of our schematic

expectations formed in prospect and their subsequent realization in retrospect contributes to

the perception of cadential strength, where the most expected (i.e., probable) endings are also

the most complete or closed. From this point of view, the probabilities estimated by IDyOM

might correspond with models of cadential strength advanced in the Formenlehre tradition.

6.3.2 Cadential Strength

To compare the mean IC estimates for the terminal events from each cadence category, each of

the viewpoints was again analyzed for the terminal note events from the first violin and cello

and the terminal chord events from the entire texture using a one-way ANOVA with a five-level

between-groups factor called cadence category (PAC, IAC, HC, DC, and EV). For many of the

viewpoint models, Levene’s test revealed heteroscedastic groups for the unbalanced levels of

cadence category, so I again report the Welch F ratio and estimate effect size using est. ω2.

83Pearce, Müllensiefen, and Wiggins, “The Role of Expectation and Probabilistic Learning in Auditory
Boundary Perception,” 1374–1375.
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To examine the potential differences in the IC estimates for the terminal events from each

cadence category, each model includes three planned comparisons that do not assume equal

variances. To decrease the risk of a Type I error, I again apply the Bonferroni correction

(i.e., α
3 ). In the first comparison I coded each level of cadence category to represent two

models of cadential strength: Genuine Schemas (PAC→IAC→HC→DC→EV ) and 1-Schema

(PAC→IAC→DC→EV→HC ). Polynomial contrasts with linear and quadratic terms were then

included to estimate the goodness-of-fit for each model. In what follows I report the contrast

whose linear or quadratic trend accounts for the greatest proportion of variance in the outcome

variable, represented here by R2. The second comparison examines my earlier claim that the

genuine cadence categories elicit lower IC estimates on average than the cadential deviations

(Genuine vs. Deviations). Finally, the third comparison determines whether the authentic

cadence categories elicit lower IC estimates on average than the HC category (AC vs. HC ).

Figure 6.3 displays line plots of the mean IC estimates for the terminal note event in

the first violin (left) and cello (right) for each level of cadence category. For the first violin,

one-way ANOVAs of the mean IC estimates revealed a main effect for the viewpoints cpitch,

F (4, 32.42) = 3.19, p < .05, est. ω2 = .03, csd, F (4, 29.95) = 3.02, p < .05, est. ω2 = .03,

and selection, F (4, 29.80) = 3.77, p < .05, est. ω2 = .04, but not for melint, F (4, 31.57) =

2.34, p = .08. Moreover, the best-fitting polynomial contrast revealed a positive (increasing)

linear trend in the Genuine Schemas model (i.e., from the PAC to the EV categories) for every

viewpoint model (cpitch, t (13.47) = 3.40, p < .05, r = .68,R2 = .46; melint, t (12.13) =

3.00, p < .05, r = .65,R2 = .43; csd, t (18.99) = 3.43, p < .01, r = .62,R2 = .38; selection,

t (16.38) = 3.85, p < .01, r = .69,R2 = .47). The genuine cadence categories also received

lower mean IC estimates than the cadential deviations in every viewpoint model (cpitch,

t (17.19) = −3.64, p < .01, r = .66; melint, t (14.14) = −2.94, p < .05, r = .62; csd, t (30.51) =

−3.17, p < .01, r = .50; selection, t (26.03) = −3.66, p < .01, r = .58). The authentic cadence
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Figure 6.3: Line plots of the mean IC estimated for the terminal note event in the first violin
(left) and cello (right) for each cadence category. Viewpoints include cpitch, melint, csd, and
an optimized combination called selection, which represents melint and the linked viewpoint
csd ⊗ cpitch. Whiskers represent ±1 standard error.

categories did not differ significantly from the HC category, however.

For the cello, one-way ANOVAs of the IC estimates revealed a main effect of cadence

category for every viewpoint (cpitch, F (4, 31.18) = 8.86, p < .001, est. ω2 = .11; melint,

F (4, 30.72) = 6.81, p < .001, est. ω2 = .09; csd, F (4, 31.25) = 13.99, p < .001, est. ω2 = .18;

selection, F (4, 30.66) = 14.99, p < .001, est. ω2 = .19). The Genuine Schemas model again

produced the best fit for every viewpoint model, with polynomial contrasts revealing positive

(U-shaped) quadratic trends for cpitch, t (25.39) = 4.38, p < .001, r = .66,R2 = .43, and

melint, t (14.04) = 4.11, p < .01, r = .74,R2 = .55, but positive (increasing) linear trends for

csd, t (14.83) = 4.09, p < .01, r = .73,R2 = .53, and selection, t (13.41) = 3.83, p < .01, r =

.72,R2 = .52. The U shape exhibited in the cpitch and melint models for the cello probably

reflects the statistical preference for smaller melodic intervals in the Haydn Corpus, resulting in

lower mean IC estimates for categories that feature stepwise motion in the bass (HC and DC),

and higher estimates for categories featuring large leaps (PAC, IAC, and EV). This U shape was

not demonstrated in the csd and selection viewpoint models, however, as the DC category

received higher IC estimates relative to the other categories in these viewpoint models, thereby
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resulting in positive linear trends. Presumably, the HC category received the lowest IC estimates

on average because scale-degree successions like 4̂–5̂ are more common than successions like

5̂–1̂. And yet successions like 5̂–6̂ are also evidently less common than 5̂–1̂, hence the higher IC

estimates for the DC category and the increasing linear trend, PAC→IAC→DC→EV.

As expected, for the second planned comparison the genuine cadence categories received

lower mean IC estimates than the cadential deviations in every viewpoint model (cpitch,

t (27.62) = −2.59, p < .05, r = .44; melint, t (15.93) = −2.93, p < .05, r = .59; csd, t (24.39) =

−5.18, p < .01, r = .72; selection, t (19.91) = −4.95, p < .01, r = .74). Given the statistical

preference for stepwise motion in the cello, it should also not be surprising that the terminal

events for exemplars from the HC category received lower IC estimates on average than those

from the authentic cadence categories for every viewpoint model (cpitch, t (16.38) = 2.99, p <

.05, r = .59; melint, t (29.02) = 3.47, p < .01, r = .54; csd, t (47.17) = 5.36, p < .01, r = .62;

selection, t (39.40) = 5.65, p < .01, r = .67).

The left line plot in Figure 6.4 displays the mean IC estimates for the terminal chord

event—represented by vintcc and csdc—for cadence category. One-way ANOVAs of the IC

estimates revealed a main effect for vintcc, F (4, 29.94) = 6.68, p < .001, est. ω2 = .08, and

for csdc, F (4, 31.90) = 7.02, p < .001, est. ω2 = .09. The best-fitting polynomial contrast

revealed a positive (increasing) linear trend in theGenuine Schemasmodel for vintcc, t (16.96) =

3.56, p < .01, r = .65,R2 = .43, and csdc, t (27.04) = 4.14, p < .001, r = .62,R2 = .39. The

genuine cadence categories also received lower mean IC estimates than the cadential deviations

for vintcc, t (28.01) = −3.92, p < .01, r = .60, and csdc, t (39.39) = −3.84, p < .01, r = .52.

Finally, the terminal chord events from the authentic cadence categories received lower mean

IC estimates than those from the HC category, but this trend was not significant for vintcc,

t (19.95) = −2.25, p = .11, r = .45, or csdc, t (35.67) = −1.60, p > .05, r = .26.

It is also noteworthy that the terminal events from the EV category generally received lower
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Figure 6.4: Left: Line plot of the mean IC estimated for the resolving chord event for each
cadence category. Right: Line plot of the mean IC estimated for the combination called
composite, which represents the product of selectionvl1 and csdc. Whiskers represent ±1
standard error.

IC estimates than those from the DC category. Recall from Chapter 2 that evaded cadences are

typically characterized not by a deviation in the harmonic progression (though such a deviation

may take place), but rather by a sudden interruption in the projected resolution of the melody.

To be sure, 10 of the 11 evaded cadences in the collection feature tonic harmony either in root

position or in first inversion at the moment of cadential arrival. Given how often this harmony

appears in the Haydn Corpus (see Figure 4.6), it is therefore not too surprising that the mean

IC estimates decreased from the DC to the EV category.

The right line plot in Figure 6.4 displays the mean IC estimates for the terminal composite

event for cadence category. A one-way ANOVA of the IC estimates revealed a main ef-

fect for composite, F (4, 30.91) = 7.21, p < .001, est. ω2 = .09. The best-fitting polyno-

mial contrast revealed a positive (increasing) linear trend for the Genuine Schemas model,

t (19.23) = 4.81, p < .001, r = .74,R2 = .55. Thus, the model PAC→IAC→HC→DC→EV

accounted for roughly 55% of the variance in the mean IC estimates for composite, which

represents the largest effect demonstrated across all of the polynomial contrasts from every

viewpoint model. The genuine cadence categories also received lower mean IC estimates than
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the cadential deviations, t (31.87) = −4.58, p < .01, r = .63, but the authentic cadence categories

did not differ significantly from the HC category, t (27.98) = −1.32, p > .05.

In short, the mean IC estimates from IDyOM provide strong evidence in support of the

Genuine Schemas model of cadential strength. Polynomial contrasts revealed significant positive

(increasing) linear trends for the viewpoints vintcc, csdc, composite, csdvc, and selectionvc,

as well as significant positive (U-shaped) quadratic trends for cpitchvc, melintvc, and all of

the viewpoints for the first violin. Furthermore, my earlier claim that the genuine cadence

categories elicit the strongest and most specific schematic expectations appears to be well

supported by the experimental results from the second planned comparison, which revealed

that the terminal events from the genuine cadence categories produced the lowest IC estimates

on average for the viewpoint models from the first violin and across the entire texture, whereas

the cadential deviations generally received the highest IC estimates on average. Finally, the

third planned comparison examining the potential differences between the authentic cadence

categories and the HC category received less support. Although the predicted trend emerged for

composite, csdc, and vintcc, with the terminal events from the AC categories receiving lower

IC estimates on average compared to those from the HC category, only vintcc demonstrated a

significant difference.

Taken together, the reported findings support the role for expectancy in models of cadential

strength, with the most complete or closed cadences also serving as the most expected or

probabilistic. From this point of view, the perceived strength of the phrase-structural boundary

corresponds with the strength of the schematic expectations it generates in prospect. But recall

from Chapter 2 that the perception of closure also depends on the cessation of expectations

following the terminal events of the cadence. That is, the strength of the potential boundary

between two sequential events results in part from the increase in information content (or

decrease in probability) from the first to the second event (i.e., the last event of one group to
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the first event of the following group). The preceding analyses examined terminal events from

cadential and non-cadential contexts in isolation, so the next section considers the role played

by schematic expectations in boundary perception and event segmentation by examining the

time course of IC estimates surrounding the terminal events of the cadence.

6.3.3 Terminal Events as Perceptual Boundaries

In this section I examine two claims about the relationship between expectancy and boundary

perception: (1) that the terminal event of a group is the most expected (i.e., predictable) event

in the surrounding sequence; and (2) that the next event in the sequence is comparatively

unexpected (i.e., unpredictable). The assumption here is that unexpected events engender

prediction errors that lead the perceptual system to segment the event stream into discrete

chunks.84 If the terminal events from genuine cadential contexts are highly predictable, then

prediction errors for the comparatively unpredictable events that follow should force listeners

to segment the preceding cadential process. Thus, in addition to the between-groups factor of

cadence category, which allows us to consider how the IC estimates differ from one category to

the next, this section also considers how these IC estimates change over time. In this case, the

between-groups factor of time consists of three events: et , which represents the terminal event

of the group, and et−1 and et+1, which represent the immediately surrounding events.

With more complex designs like this one, the number of significance tests can become

prohibitively large, so I will restrict the investigation to just four dependent variables under

84Kurby and Zacks, “Segmentation in the Perception and Memory of Events.” I noted in Chapter 1 that the
brain generates expectations about future events to increase our chances of survival from one moment to the next
(Clark, “Whatever next? Predictive brains, situated agents, and the future of cognitive science”). Psychologists
Christopher A. Kurby and Jeffrey M. Zacks have argued that this biological imperative also explains why listeners
segment the musical surface into motives, phrases, and themes. In their view, perceptual systems segment activity
into memorable chunks whenever errors in prediction increase transiently. The end result of this process, which
they call event segmentation theory, is a hierarchically encoded mental representation of our temporal experience
that saves on processing resources and improves comprehension.
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the assumption that their corresponding viewpoints serve as reasonable approximations of the

two-voice framework characterizing the classical cadence: selectionvl1 and selectionvc will

represent the soprano and bass, respectively, and vintcc, and csdc will each represent the entire

texture. Thus, this section analyzes these viewpoints for the note events from the first violin

and cello and the chord events from the entire texture using a 5 × 3 two-way ANOVA with

between-groups factors of cadence category (PAC, IAC, HC, DC, and EV), and time (et−1, et ,

et+1).

By moving from one to two between-groups factors, the number of omnibus statistics and

planned comparisons necessarily increases, and since Levene’s test also revealed heteroscedastic

groups for all four of the 5 × 3 viewpoint ANOVAs, our risk of committing a Type I error is

considerably greater here than in any of the previous analyses. In this case, the two assumptions

mentioned above concern the interaction between cadence category and time: namely, whether

the IC estimates for each cadence category increase or decrease significantly from one event

to the next. Thus, we can essentially ignore the main effects and concentrate only on the

interaction term of the two-way ANOVA. If the interaction is significant, I will instead report

simple main effects, which represent one-way ANOVAs with time as a factor for each level

of cadence category. Because the levels of cadence category are generally heteroscedastic, I

again report the Welch F ratio and estimate effect size using est. ω2. To decrease the risk of

committing a Type I error resulting from the additional tests of the simple main effects, I apply

a Bonferroni correction, which in this case multiplies the p value by the number of levels of the

between-groups factor. The factor cadence category consists of five levels, so an initial p value

of .008 would still be significant at α = .05 ( .008 × 5 = .04). Finally, to examine the potential

differences in the IC estimates for the levels of time for each cadence category, each simple

main effect included two simple planned comparisons that do not assume equal variances: (1)

whether the IC estimate for et is lower on average than the surrounding events, et−1 and et+1;
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and (2) whether the IC estimate for et+1 is higher on average than the estimate for et . As before,

I apply a Bonferroni correction to these two comparisons to minimize the risk of a Type I error.

Figure 6.5 displays line plots of the mean IC estimates for the note events over time in

the first violin (top) and cello (bottom) for each level of cadence category. To gain a more

global picture of the IC time course, I have provided the mean IC estimates for the seven-

event sequence surrounding the terminal event of each cadence category, but the ANOVA

models only consider the interior three events. For the first violin, a two-way ANOVA of

the mean IC estimates revealed a significant interaction between cadence category and time for

the viewpoint selectionvl1, F (8, 718) = 3.88, p < .001, est. ω2 = .03. One-way ANOVAs of

the mean IC estimates for each level of cadence category revealed simple main effects for PAC,

F (2, 236.76) = 67.63, p < .01, est.ω2 = .35, and HC, F (2, 162.48) = 32.34, p < .01, est.ω2 = .20,

but the remaining categories were no longer significant using Bonferroni correction (IAC,

F (2, 14.95) = 3.89, p > .05, est. ω2 = .02; DC, F (2, 35.86) = 2.84, p > .05, est. ω2 = .01; EV,

F (2, 18.67) = 5.22, p > .05, est. ω2 = .03).

Despite the non-significant simple main effects for the IAC, DC, and EV categories, simple

planned comparisons revealed significant trends over time for every cadence category.85 As

expected, the terminal event in the first violin received lower IC estimates on average than

the immediately surrounding events for the genuine cadence categories (PAC, t (298.45) =

−9.88, p < .001, r = .50; IAC, t (18.48) = −2.79, p < .05, r = .54; HC, t (209.41) = −6.92, p <

.001, r = .43), as well as for the DC category, though this trend was marginal, t (36.92) =

−2.10, p = .08, r = .33. Thus, for cadences featuring melodies that resolve to stable scale-degrees,

IDyOM indicates that the terminal event of the group is also the most predictable event in the

85That the planned comparisons are significant when the simple main effects are non-significant may seem
surprising, but remember that the comparisons simply measure the difference between specific levels of time (e.g.,
et vs. et+1 ), whereas the analysis of variance compares the differences between the group means against the grand
mean. In this case, the comparisons between the levels of time might be significant for a given level of cadence
category (e.g., IAC ), but the difference between the group means (relative to the grand mean) is not.
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Figure 6.5: Time course of the mean IC estimated for the events surrounding the terminal
note event in the first violin (top) and cello (bottom) for each cadence category using the
viewpoint selection, which represents melint and the linked viewpoint csd ⊗ cpitch. The
statistical analysis pertains to times −1, 0 (or Terminus), and 1. Whiskers represent ±1 standard
error.

sequence.

For the PAC, IAC, HC, and DC categories, the mean IC estimates increased significantly

from et to et+1 (PAC, t (223.50) = 11.64, p < .001, r = .61; IAC, t (12.53) = 2.78, p < .05, r =

.54; HC, t (160.95) = 8.02, p < .001, r = .53; DC, t (35.62) = 2.41, p < .05, r = .55), thereby

supporting the view that the strength of the perceptual boundary depends on the increase

in information content following the terminal event of the cadence. And yet since the EV
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category replaces the expected terminal event in the melody with material that clearly initiates

the subsequent process—often by leaping up to an unexpected scale-degree like 5̂—we might

therefore predict that a significant increase in information content should occur at (and not

following) the expected terminal event of the group. This is exactly what we observe, with

the expected terminal events from the EV category receiving the highest mean IC estimate in

the sequence, t (14.87) = 2.54, p < .05, r = .55. Thus, the pattern of results from selectionvl1

is entirely consistent with our previous assumptions: (1) that the terminal event of a group

is the most predictable event in the sequence, and (2) that the next event is comparatively

unpredictable. Here, the mean IC estimates for the first violin increased significantly following

the predicted boundary for every cadence category in the collection.

For the cello, a two-way ANOVA of the mean IC estimates revealed a significant interac-

tion between cadence category and time for the viewpoint selectionvc, F (8, 717) = 13.02, p <

.0001, est. ω2 = .12. Excepting IAC, one-way ANOVAs of the mean IC estimates also re-

vealed simple main effects for every level of cadence category (PAC, F (2, 227.67) = 42.14, p <

.001, est. ω2 = .25; HC, F (2, 161.48) = 15.57, p < .001, est. ω2 = .11; DC, F (2, 35.50) =

8.93, p < .01, est. ω2 = .06; EV, F (2, 19.87) = 8.29, p < .01, est. ω2 = .06). As expected,

the terminal event in the cello received lower IC estimates on average than the immediately

surrounding events for the HC category, t (213.66) = −5.44, p < .001, r = .35, but the trend

was reversed for the PAC, DC, and EV categories (PAC, t (322.14) = 3.18, p < .01, r = .17; DC,

t (43.02) = 2.98, p < .01, r = .41; EV, t (17.49) = 4.06, p < .01, r = .70. The trend for the IAC

category was not significant, t (21.98) = 1.98, p > .05, r = .39.

Thus, for the HC category at least, the terminal event was also the most predictable event

in the sequence. What is more, the significant increase in information content in the cello at

the expected terminal event in the DC and EV categories is consistent with what we know

about cadential deviations. For the former category the bass typically resolves deceptively
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to scale-degrees like 6̂, thereby violating our expectations for 1̂, whereas the latter category

evades the expected resolution by leaping to other scale-degrees to support harmonies like I6.

The significant increase in information content for the terminal event of the PAC category is

somewhat more surprising, however. Recall from § 6.3.2 that the mean IC estimates for the

terminal events from each cadence category in the cello demonstrated a U shape, with the HC

category receiving the lowest IC estimates (see Figure 6.3). In that case I suggested that small

melodic intervals appear more abundantly in the Haydn Corpus than large intervals, resulting

in higher IC estimates for categories featuring large leaps (PAC, IAC, and EV). From this point

of view, it therefore seems reasonable that the mean IC estimates for the cello would increase at

et for categories featuring large leaps or unexpected scale-degree continuations, as is the case

with the PAC, IAC, DC, and EV categories.

Given this pattern of results for the cello, it should also come as little surprise that HC

was the only category to demonstrate a significant increase in information content following

the terminal event of the cadence, t (151.11) = 3.76, p < .001, r = .29. To be sure, the IC

estimates for the cello did not significantly increase at et+1 for the PAC and IAC categories,

thereby undermining my claim that for the genuine cadence categories at least, the perceived

boundary follows the terminal events of the cadence. When we consider the results from the

first violin and the cello together, HC was also the only category for which the IC estimates

from selectionvl1 and selectionvc decreased at et and then increased at et+1. If the PAC and

IAC categories also generate strong and specific melodic and harmonic expectations for the

terminal events of the cadence, the viewpoint models representing both voices of the two-voice

framework should demonstrate congruent behavior. I suggested in § 6.3.1 that selectionvc is

not the most suitable representation of the lower voice in the two-voice framework because our

conception of the bass voice depends on the interaction among numerous parameters across the

entire texture. To determine the role played by the bass voice in the perception of cadential
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boundaries, we might therefore examine the harmonies formed between the cello part and the

upper parts.

Figure 6.6 displays line plots of the mean IC estimates for vintcc (top) and csdc (bottom)

over time for each level of cadence category. Two-way ANOVAs of the mean IC estimates

revealed a significant interaction between cadence category and time for the viewpoints vintcc,

F (8, 719) = 3.13, p < .01, est.ω2 = .03 and csdc, F (8, 704) = 2.99, p < .01, est.ω2 = .03. Simple

main effects and planned comparisons were not significant for csdc, however, so it will not be

reported here. For vintcc, one-way ANOVAs of the mean IC estimates revealed simple main

effects for the genuine cadence categories (PAC, F (2, 235.55) = 9.74, p < .001, est. ω2 = .07;

IAC, F (2, 15.21) = 6.48, p < .05, est. ω2 = .04; HC, F (2, 161.39) = 8.26, p < .01, est. ω2 = .06),

but not for the cadential deviations. As expected, the terminal chord event received lower IC

estimates on average compared to the surrounding events for the genuine cadence categories

(PAC, t (313.01) = −3.63, p < .001, r = .20; IAC, t (22.58) = −3.49, p < .01, r = .59; HC,

t (216.80) = −4.07, p < .001, r = .27). Although the trend was reversed for the cadential

deviations, with the mean IC estimates increasing from et−1 to et , the difference was not

significant for either category (DC, t (38.02) = 1.14, p > .05, r = .18; EV, t (18.50) = .25, p >

.05, r = .06). Finally, the mean IC estimates increased significantly from et to et+1 for PAC,

t (220.21) = 4.42, p < .001, r = .29, and HC, t (157.62) = 3.25, p < .001, r = .25, but this trend

was marginal for IAC, t (13.71) = 2.09, p > .05, r = .49.

In sum, vintcc demonstrated a similar trend to that found in selectionvl1 for the genuine

cadence categories, with the mean IC estimates decreasing from et−1 to et , and then increasing

from et to et+1. These two viewpoint models also displayed congruent behavior for the EV

category, with both models increasing from et−1 to et , suggesting that the perceptual boundary

precedes (rather than follows) the expected terminal event in evaded cadences. For the DC

category, parametric noncongruence obtained, with the mean IC estimates at et decreasing
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Figure 6.6: Time course of the mean IC estimated for the events surrounding the terminal
chord event for vintcc (top) and csdc (bottom) for each cadence category. The statistical
analysis pertains to times −1, 0 (or Terminus), and 1. Whiskers represent ±1 standard error.

in selectionvl1 but increasing in vintcc. Thus, across the levels of cadence category and time,

the selectionvl1 and vintcc viewpoint models support my initial assumptions about the role

played by schematic expectations in boundary perception: (1) that the terminal event of a group

is the most expected (i.e., predictable) event in the sequence; and (2) that the next event is

comparatively unexpected (i.e., unpredictable).

It is also noteworthy—if not statistically significant—that the IC estimates for the DC

category demonstrated a greater increase from et−1 to et compared to the estimates for the

EV category in both the vintcc and csdc models. This result may seem counterintuitive, but
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remember that 10 of the 11 evaded cadences in the collection feature tonic harmony either in

root position or first inversion. Since deceptive cadences typically feature vi at the moment of

cadential arrival, it seems reasonable that cadences from the EV category were less harmonically

unexpected than the DC category, and thus would receive lower IC estimates on average.

Nevertheless, the increase in information content from et−1 to et was not statistically significant

for either category. It is also somewhat surprising that csdc revealed no significant effects when

the trends over time for each cadence category were nearly identical to those found for vintcc.

The alphabet of csdc consists of 688 distinct chord types compared to just 190 types for vintcc,

so it is possible that the greater variety of possible continuations influenced the model estimates

in such a way as to obscure the differences between the cadence categories over time. Given the

rather meager sample size for three of the five cadence categories in the collection, however, it

is difficult to speculate about the IC estimates from csdc without first increasing the sample

size for the imperfect authentic, deceptive, and evaded cadence categories.

§6.4 Conclusions

This chapter examined three claims about the relationship between expectancy and cadential

closure: (1) terminal events from cadential contexts are more predictable than those from non-

cadential contexts; (2) models of cadential strength advanced in the Formenlehre tradition reflect

the formation, violation, and fulfillment of schematic expectations during music listening;

and (3) a significant decrease in predictability follows the terminal note and chord events

of the cadential process. In §6.1 I reviewed the mathematical formalism behind IDyOM, a

context (or n-gram) model developed by Marcus Pearce that simulates melodic and harmonic

expectations by acquiring knowledge through unsupervised statistical learning of sequential

and simultaneous structure, and §6.2 described the methods for combining viewpoint models
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estimated by IDyOM. Finally, §6.3 provided evidence in support of the link between expectancy

and cadential closure.

In §6.3.1 I found that the terminal note and chord events from perfect authentic cadences

are more predictable than (1) non-cadential events featuring tonic harmony in root position

and 1̂ in the soprano, and (2) non-cadential events featuring any harmony and any scale-degree

in the soprano. For half cadences, significant effects were limited to viewpoints representing

the first violin, but the terminal events from half-cadential contexts were still more predictable

than those from non-cadential root-position dominants. In §6.3.2 I provided strong evidence

in support of the Genuine Schemas model of cadential strength (PAC→IAC→HC→DC→EV ),

with the genuine cadence categories (PAC, IAC, HC) and cadential deviations (DC, EV)

eliciting the lowest and highest IC estimates on average, respectively. Finally, §6.3.3 indicated

that unexpected events—like those directly following the terminal note and chord events from

genuine cadences—engender prediction errors that presumably lead the perceptual system to

segment the event stream immediately following the cadential process.

Taken together, the reported findings support the role of expectancy in models of cadential

closure, with the most complete or closed cadences also serving as the most expected or

probable. Nevertheless, future studies will need to address a number of limitations in the

current investigation. First, the rather meager sample size for three of the five cadence categories

in the collection—as well as the Haydn Corpus more generally—casts some doubt upon the

generalizability of the reported findings. That the estimates from IDyOM corresponded so

well with theoretical predictions suggests that they may be robust to issues of sample size, but

future studies should look to expand the collection considerably, as well as to consider how the

relationship between expectancy and cadential closure varies for other genres and style periods.

Second, Chapters 4 and 5 demonstrated the utility of non-contiguous n-grams for the discovery

and classification of cadential patterns, but IDyOM is not presently capable of including those
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sorts of patterns.86 Attempts to include non-contiguous (or distance) n-grams now exist in

the language modeling community,87 however, so revisions to IDyOM’s architecture could be

feasible in the near future.

But perhaps the greatest limitation of the present research lies in my continued dependence

on simulation. Indeed, Part II provided a detailed study of the many cadential patterns charac-

terizing a representative corpus of Haydn’s string quartets, but to examine the psychological

relevance of the many claims made therein requires an entirely different approach, one in which

the listener, rather than the music, represents the object of study. Thus, Part III extends the

findings from Part II to a collection of cadences from Mozart’s keyboard sonatas, examining

the perception and cognition of cadential closure in a series of experimental studies. In Chapter

7 participants provide completion ratings for cadences heard both in and out of context to

examine the roles played by syntactic and rhetorical parameters in models of cadential strength,

while Chapter 8 examines the formation of expectations during music listening using retro-

spective ratings, continuous ratings, and an implicit reaction-time task based on the priming

paradigm.

86However, it is possible to construct threaded viewpoints in IDyOM that sample events from a base viewpoint
like cpitch according to some test viewpoint that represents positions in the sequence, such as metric downbeats
or phrase boundaries (Pearce, “The Construction and Evaluation of Statistical Models of Melodic Structure in
Music Perception and Composition,” 60–62).

87Guthrie et al., “A Closer Look at Skip-gram Modelling”; Milind Huang, Doug Beeferman, and X. D. Huang,
“Improved Topic-Dependent Language Modeling Using Information Retrieval Techniques,” in Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (Washington, DC: IEEE Computer Society Press,
1999); M. Simons, H. Ney, and S. C. Martin, “Distant Bigram Language Modeling Using Maximum Entropy,”
in Proceedings of the International Conference on Acoustics, Speech and Signal Processing (Washington, DC: IEEE
Computer Society Press, 1997), 787–790.
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Part III

Experimental Evidence:

Twenty-First-Century Listeners
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Chapter 7

Perceiving Closing Schemas: Completion

Ratings

The ear is so accustomed to the perfect cadence or the plagal cadence as the termination
of all polyphonic compositions, that most hearers do not consider a piece finished which
has not the chord of the tonic as its final chord.

René Lenormand

In Part I I suggested that listeners with exposure to music of the classical style possess

schematic knowledge of the many recurrent patterns found therein. To support this view, Part

II examined a corpus of Haydn’s string quartets and presented a few analytical techniques for the

discovery, classification, and prediction of cadences that might simulate the learning mechanisms

underlying human cognition. And yet despite all this interest in the effects of learning and

memory on the perception and cognition of cadences, listeners have yet to represent the object

of study. To be sure, recall from Chapter 2 that the cadence concept embraces genres and

styles beyond those encapsulated within the high classical period. Surely in today’s vast musical

landscape, such anachronistic patterns as the Cudworth or the Expanding Do-Fi-Sol delimit
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too narrow a repertory to characterize the schematic knowledge of modern listeners. Robert

Gjerdingen seems to agree:

“Native listeners” of eighteenth-century court music—whether we mean by that

term the deceased members of those courts or modern listeners who have immersed

themselves in the galant style to the point of acquiring it as a second language—hear

in its compositions discrete chunks that match memories of meaningful gestures

and phrases. Other, more casual listeners will perceive a pleasant flow of tones,

gross changes in texture and dynamics, and those elements of musical syntax that

may transcend the period in question.1

And since the musical knowledge of eighteenth-century listeners presumably “stemmed from

relatively homogeneous compositions of similar ethnic, geographic, social, and chronological

derivation,”2 we might therefore assume that the evidence accumulated in Part II characterizes

the musical knowledge of Haydn and his contemporaries, a form of “culturally situated cogni-

tion.”3 How do the findings from Part II relate to the schematic knowledge of modern listeners?

And do the sorts of patterns found in Haydn’s string quartets generalize to the works of other

classical composers and genres? It is thus the goal of Part III to examine more critically the

influence of musical expertise on the perception and cognition of the most common cadence

types from the classical style—as well as to extend the findings from Part II to the works of

another classical composer and genre—using the many methods of inference developed in the

experimental sciences.

This chapter examines the perception of cadential closure using an explicit task, in which

participants provided completion ratings on a 7-point continuous scale for excerpts drawn from
1Gjerdingen, “Courtly Behaviors,” 380.
2Ibid., 380–381.
3Vasili Byros, “Foundations of Tonality as Situated Cognition, 1730–1830” (PhD Dissertation, Yale University,

2009).
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Mozart’s keyboard works. In §7.1, I review the treatment of closure in music psychology,

attending specifically to the available experimental evidence for the perception and cognition of

tonal cadences. §7.2 presents Experiment I, which examines the perception of cadences presented

out of context, such that participants remained unaware of the larger context surrounding each

excerpt. To examine how the material following cadential arrival might also contribute to the

perception of closure in §7.3, Experiment II presented the same excerpts from the previous

experiment in context, such that participants could also consider the material following the

moment of cadential arrival when determining the perceived strength or finality of the cadence.

I conclude in §7.4 by discussing the relevant findings from Experiments I and II and their

impact on the many issues surrounding hierarchical models of cadential strength.

§7.1 Cadences: Experimental Evidence

Although the term ‘cadence’ appears frequently in the music psychology literature as a

perceptually-relevant concept, little experimental research explicitly investigates the perception

of cadential closure. Instead, a vast number of studies employ cadences and other ending

formulæ as stimuli under the assumption that the experience of closure during music listening

is simply a by-product of more general cognitive processes. Questions as to how listeners store

cognitive representations of harmonic, tonal, and rhythmic structure in long-term memory,

as well as to how these mental representations affect various aspects of music perception (e.g.,

the formation of expectations during music listening, the perception of dynamic variations in

tension, etc.), continue to resonate with music psychologists, resulting in considerably fewer

studies devoted to the perception of closure itself.

Nonetheless, closure often plays a prominent role in studies otherwise concerned with

other aspects of music perception and cognition. Krumhansl’s seminal studies examining the
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tonal hierarchy provide one notable example. In her initial experiment with Edward Kessler,

Krumhansl presented a short tonal context consisting of a major triad or one of three harmonic

progressions (IV–V–I, II–V–I, and VI–V–I), and then asked participants to rate how well each

of the twelve members of the chromatic scale fit with the preceding context. The average

probe-tone ratings for each of the 12 tones of the scale revealed a hierarchy of tonal stability,

with the tonic and dominant scale degrees receiving the highest fit ratings, followed next by the

other diatonic members of the scale, and with the non-diatonic members receiving the lowest

ratings.4 To explain the effect of tonal context on the obtained probe-tone ratings, Krumhansl

and Kessler proposed that listeners possess a cognitive representation of the tonal hierarchy.

What is more, a comparison of the goodness-of-fit ratings with the frequency-of-occurrence of

these scale-degrees in various corpora from Western music revealed a significant correlation,

with scale-degrees that occur more frequently receiving higher “fit” ratings,5 leading Krumhansl

to suggest that listeners form an internal representation of the tonal hierarchy by internalizing

the distribution properties of Western tonal music.6

Publications over the past two decades of numerous key-finding algorithms incorporating

Krumhansl and Kessler’s major and minor key profiles provide convincing evidence for the

psychological reality of the tonal hierarchy.7 Yet scholars like David Butler and Bret Aarden have

since raised several objections both to Krumhansl’s probe-tone method and to her interpretation

4Krumhansl and Kessler, “Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial
Representation of Musical Keys.” Krumhansl and Kessler also examined minor key tonal contexts using a minor
triad or one of the same three harmonic progressions.

5Krumhansl, Cognitive Foundations of Musical Pitch, 68–69.
6Ibid., 286.
7The first model incorporating the Krumhansl-Kessler key profiles was proposed by Krumhansl herself,

in collaboration with Mark Schmuckler. For a discussion of the model, see Cognitive Foundations of Musical
Pitch, 77–110. Figure 4.1 also replicates those profiles. Huron and Parncutt have since suggested methods for
incorporating effects of echoic memory and pitch salience on tonality perception (“An Improved Model of Tonality
Perception Incorporating Pitch Salience and Echoic Memory”), and Temperley has provided numerous revisions
to the Krumhansl-Schmuckler model that improve the mathematical efficiency of the algorithm and address issues
related to modulation (“What’s Key for Key?”).
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of the results.8 Noting a disparity between the distribution of the goodness-of-fit ratings with the

scale-degree distributions from tonal music, Aarden examined whether Krumhansl’s major and

minor key profiles may actually reflect the distribution properties of tones located specifically

at the ends of phrases.9 To examine the effect of phrase position on mental representations of

the tonal hierarchy, Aarden conducted a reaction-time study in which participants responded to

the contour of each event in a short tonal melody. His first experiment was designed to test the

assumption that scale-degrees receiving a higher “fit” rating in Krumhansl’s major and minor

key profiles would lead to faster reaction times, but the results did not support this hypothesis.

Yet when he asked participants in a second experiment to respond only to the contour of the

final event of each melody, he observed a close correspondence between participant reaction

times and the “fit” ratings of the final events,10 suggesting that the probe-tone method employed

by Krumhansl and Kessler actually encouraged listeners to treat the probe tone as a phrase-final

event. Thus, Aarden claimed, Krumhansl and Kessler’s major and minor key profiles reflect a

cognitive representation of the tonal hierarchy that pertains specifically to endings.11

Krumhansl, Bharucha and Kessler noted a similar closure effect for two-chord harmonic

progressions selected from the chords of the diatonic scale. Following the presentation of an

ascending major scale, participants were given a two-chord progression and asked to indicate

how well the second chord followed the first on a 7-point scale. The relatedness judgments

the authors obtained for these progressions revealed a hierarchy of stability (I > V > IV

> VI > II > III > VII), with more stable chords serving as better continuations in the

8For a succinct summary and critique of Krumhansl’s methodology and the interpretation of her results, see
Bret Aarden, “Dynamic Melodic Expectancy” (PhD Dissertation, The Ohio State University, 2003), 11–26.

9Although the correlations between the scale-degree distributions of various corpora with Krumhansl’s
goodness-of-fit ratings are quite high (r > .80), several discrepancies remain unexplained, the most noteworthy
example being that 5̂ normally appears more frequently than 1̂ in the various corpora, yet in Krumhansl and
Kessler’s key profiles, the tonic receives the highest “fit” rating.

10Aarden, “Dynamic Melodic Expectancy,” 75.
11Ibid.
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two-chord context.12 Noting that stable harmonies like I and V typically received higher

continuation judgments when they followed, rather than preceded, the remaining diatonic

harmonies, Bharucha and Krumhansl further proposed that stable tones and chords appear at

the ends of phrases because they serve as cognitive reference points,13 an expression coined by

Eleanor Rosch for elements that are characterized by their asymmetric temporal relations with

less stable elements.14

The effect of harmonic and melodic closure also has significant effects on short-term

memory during music listening, with participants demonstrating a decrease in performance

in short-term memory tasks involving melodic notes that straddle a phrase boundary. In an

experimental study examining the effect of phrase position on memory for melodies, Norma

Tan and her co-authors suggested that listeners use stable harmonies like I and V to segment

melodic phrases even in the absence of an explicit harmonic context, resulting in improved

memory performance for melodic notes that appear within phrases, and decreased performance

for notes lying on either side of a phrase boundary.15 Lola Cuddy, Annabel Cohen, and D. J.

Mewhort also reported a similar finding using a memory recognition task for entire melodies,

noting that short melodies were better remembered if they contained a strong tonal ending.16

The evidence is thus overwhelming that an internal representation of the tonal hierarchy

affects the perception of melodic closure, though it remains far less clear whether such a

12Carol L. Krumhansl, Jamshed J. Bharucha, and Edward J. Kessler, “Perceived Harmonic Structure of Chords
in Three Related Musical Keys,” Journal of Experimental Psychology: Human Perception and Performance 8, no. 1
(1982): 32.

13Bharucha and Krumhansl, “The Representation of Harmonic Structure in Music.”
14Rosch, “Cognitive Reference Points.” In the color domain, for example, Rosch demonstrated through a series

of experiments that natural categories like blue or red have reference point stimuli in relation to which variants of
those categories are judged. This relationship between variant and referent is therefore inherently asymmetrical, a
characteristic Bharucha and Krumhansl also identified in the relatedness judgments for two-chord progressions.

15Norma Tan, Rita Aiello, and Thomas G. Bever, “Harmonic Structure as a Determinant of Melodic Organiza-
tion,” Memory and Cognition 9, no. 5 (1981): 533–539.

16Lola L. Cuddy, Annabel J. Cohen, and D. J. K. Mewhort, “Perception of Structure in Short Melodic
Sequences,” Journal of Experimental Psychology: Human Perception and Performance 7, no. 4 (1981): 869–883.
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representation pertains only to the final event of a phrase, or instead, whether it may pertain to

a series of events, thereby suggesting that listeners possess schematic representations of various

melodic closing formulæ. Marilyn Boltz and David Butler have reported effects of serial order

on both the perception of melodic closure and the identification of tonal center respectively,17

but the issue as to whether listeners store melodic closing patterns in long-term memory remains

open. For bass line motion, however, the serial order of the events preceding a phrase ending

is fundamental to current definitions of cadential closure in the Formenlehre tradition; the

cadential status of the final tonic in an authentic cadence, for example, is crucially determined

by the harmony of the preceding event. Thus, music scholars frequently treat harmonic closure

as a temporal process, an idea that has gained acceptance in the experimental literature.

To consider the effect of a number of musical parameters on the perception of harmonic

closure, Burton Rosner and Eugene Narmour asked participants to judge which of a pair of

two-chord progressions seemed more closed; they then quantified variables relating to the

position of the soprano and bass voices with respect to the root of each chord, the number

of common tones shared between the two chords, and the motion of the soprano voice.18 In

addition to these parameters, they also considered style-specific variables that corresponded to

music-theoretic notions of cadential closure, such as the root progression of each stimulus and

the position of the final melodic event within the tonal hierarchy. To their surprise, parametric

variables such as the soprano position, bass inversion, and the number of shared common

17In Boltz’s study, melodies ending with the tonic-to-leading tone progression received the lowest ratings of
melodic completeness, whereas the leading tone-to-tonic progression received the highest ratings, leading Boltz to
claim that the precise temporal order of these scale degrees results in the highest perceived resolution (“Perceiving
the End: Effects of Tonal Relationships on Melodic Completion,” Journal of Experimental Psychology: Human
Perception and Performance 15, no. 4 [1989]: 754). Butler showed how the temporal order of certain rare intervals
(such as the tritone) presented as harmonic dyads can alter the identification of the tonal center. For a summary of
the previous studies he conducted with Helen Brown, see David Butler, “Describing the Perception of Tonality
in Music: A Critique of the Tonal Hierarchy Theory and a Proposal for a Theory of Intervallic Rivalry,” Music
Perception 6, no. 3 (1989): 234–236.

18Rosner and Narmour, “Harmonic Closure.”
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tones did not affect the closure preference ratings. Instead, schematic representations of root

progressions common to known cadences appeared to play the most prominent role, leading

the authors to claim that the various harmonic formulæ located at phrase endings result in the

formation of schematic representations of harmonic closure. They explain,

...when evaluating closure, listeners presumably invoke learned harmonic structures

as stylistic schemata. Such schemata come into play when the stimulus displays a

sufficient number of featured properties to activate them. This process relies on

previously learned stylistic patterns and should be central to closural evaluation.19

That listeners may possess both melodic and harmonic closing schemata might also explain

why cadences play such a prominent role in the perception of tension, a topic that has received

a great deal of attention over the past two decades. In a study initially investigating Lerdahl and

Jackendoff’s model of tonal tension, Emmanuel Bigand and Richard Parncutt asked listeners to

rate their perception of musical tension for each pair of successive chords in Chopin’s Prelude

in E major.20 Although they expected Lerdahl and Jackendoff’s model to perform best, they

were surprised to find that the simple encoding of authentic and half cadences best explained

listener ratings of tension, leading them to conclude that cadences provide important reference

points for the perception of tension during music listening.21

From an examination of the experimental literature, it appears that cadences play a vital

19Rosner and Narmour, “Harmonic Closure,” 397–398.
20Emmanuel Bigand and Richard Parncutt, “Perceiving Musical Tension in Long Chord Sequences,” Psychologi-

cal Research 62 (1999): 237–254.
21Ibid., 254. In a related finding that is pertinent to this research, the authors also suggest that listeners perceive

tension from within a short temporal window. As a result, they claim tension ratings for a given harmonic event
remain more or less independent of non-adjacent events. The effect of such hierarchical interpretations of musical
structure on the perception of both closure and tension is, however, very much in dispute. Lerdahl has since
proposed that the results obtained by Bigand and Parncutt reflect a conflation of stability/instability—terms
Lerdahl associates with tonal tension—with closure/non-closure. He rightly points out that a highly stable event,
such as the tonic initiating a phrase, may nonetheless imply continuation, and thus, non-closure (Fred Lerdahl and
Carol L. Krumhansl, “Modeling Tonal Tension,” Music Perception 24, no. 4 [2007]: 357).
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role in the perception of tonal music. And it seems intuitive that listeners possess cognitive

representations for various ending patterns that appear frequently in tonal music. But what

remains absolutely essential to such a claim is that the strength of the schematic representation

depends on a listener’s exposure to the musical style. A growing body of evidence reveals

that listeners develop implicit knowledge of tonal and harmonic structure simply as a result

of passive exposure to Western music. The psychological reality of Krumhansl’s tonal and

harmonic hierarchies therefore reflects the general purpose implicit learning mechanism I

described in detail in Chapters 1 and 2, in which knowledge about the external environment is

acquired without conscious awareness.22 Researchers have since extended this claim to explain

how listeners process harmony and melody, proposing a connectionist framework to account

for Western harmonic syntax,23 and employing artificial grammars to examine how listeners

respond to novel harmonic and melodic contexts.24 Moreover, children appear to develop a

sensitivity to harmonic structure at around 5 to 7 years of age, even in the absence of explicit

formal training.25 Researchers have also reported harmonic priming effects in children between

5-11 years of age using both behavioral and neural measures,26 and Eugenia Costa-Giomi has

even extended this claim explicitly to the perception of cadences, suggesting that by 6 years of

22Arthur S. Reber, “Implicit Learning and Tacit Knowledge,” Journal of Experimental Psychology: General 118,
no. 3 (1989): 219–235.

23Bharucha, “Music Cognition and Perceptual Facilitation”; Jamshed J. Bharucha and Keiko Stoeckig, “Reaction
Time and Musical Expectancy: Priming of Chords,” Journal of Experimental Psychology: Human Perception and
Performance 12, no. 4 (1986): 403–410; Barbara Tillmann, Jamshed J. Bharucha, and Emmanuel Bigand, “Implicit
Learning of Tonality: A Self-organizing Approach,” Psychological Review 107, no. 4 (2000): 885–913.

24Jonaitis and Saffran, “Learning Harmony”; Rohrmeier, Rebuschat, and Cross, “Incidental and Online
Learning of Melodic Structure”; Barbara Tillmann and Bénédicte Poulin-Charronnat, “Auditory Expectations for
Newly Acquired Structures,” The Quarterly Journal of Experimental Psychology 63, no. 8 (2010): 1646–1664.

25Kathleen A. Corrigall and Laurel J. Trainor, “Musical Enculturation in Preschool Children: Acquisition of
Key and Harmonic Knowledge,”Music Perception 28, no. 2 (2010): 195–200; Laurel J. Trainor and Sandra E. Trehub,
“Key Membership and Implied Harmony in Western Tonal Music: Developmental Perspectives,” Perception and
Psychophysics 56, no. 2 (1994): 125–132.

26Stefan Koelsch et al., “Children Processing Music: Electric Brain Responses Reveal Musical Competence and
Gender Differences,” Journal of Cognitive Neuroscience 15, no. 5 (2003): 683–693; E. Glenn Schellenberg et al.,
“Children’s Implicit Knowledge of Western Music,” Developmental Science 8, no. 6 (2005): 551–566.
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age, children notice the lack of a conclusive cadence if it is missing from a progression, and by 8

they can discriminate between conclusive and inconclusive cadences.27

Unfortunately, the effect either of explicit musical training or passive exposure on the

perception of closure remains unclear, with many studies reporting contradictory findings.

Boltz asked both musicians and nonmusicians to provide melodic completion ratings on a

10-point scale for several ending patterns, but she failed to observe a difference between the two

groups, leading her to claim that implicit exposure, rather than explicit training, accounts for

the perception of melodic completion.28 Barbara Tillmann and her co-authors also reported

a similar finding using cadential patterns, in which musicians and nonmusicians provided

completion ratings for both half cadences and authentic cadences (in the context of 16-m.

minuets).29 Tillmann therefore proposed that participants apply the same perceptual principles

when assessing musical closure, regardless of expertise, though nonmusicians may be less

efficient than musicians.

Other scholars, however, have noted significant effects of musical expertise on the perception

of closure. Michel Vallières et al. asked participants to categorize a series of short excerpts

from Mozart’s keyboard sonatas as beginnings, middles, or ends; and for the ending excerpts,

Vallières selected only perfect authentic cadences. The results revealed a significant difference

between musicians and nonmusicians, as the musician group correctly identified these cadences

as “ends” with nearly perfect accuracy, while nonmusicians were considerably less accurate,

correctly identifying ends roughly 80% of the time.30 Margaret Weiser also reported an effect of

27Eugenia Costa-Giomi, “Young Children’s Harmonic Perception,” Annals of the New York Academy of Sciences
999, no. 1 (2003): 477–484.

28Boltz, “Perceiving the End,” 753. Like Aarden, Boltz also considered how cognitive representations of tonal
structure affect music perception, but she employed an explicit rating task rather than a reaction-time task.

29Barbara Tillmann, Emmanuel Bigand, and Francois Madurell, “Local versus Global Processing of Harmonic
Cadences in the Solution of Musical Puzzles,” Psychological Research 61 (1998): 168.

30Michel Vallières et al., “Perception of Intrinsic Formal Functionality: An Empirical Investigation of Mozart’s
Materials,” Journal of Interdisciplinary Music Studies 3, nos. 1-2 (2009): 23. The correct identification of 80%, of
course, is still significantly better than chance, but as Vallières’s analysis later revealed, this effect of expertise could
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expertise for two-chord cadences (authentic, half, plagal, and deceptive), in which participants

were asked to rate the stability of the final chord on a 5-point scale. The results led her to suggest

that musical training facilitates flexible voice-tracking, while the absence of such training results

in an attentional bias toward the soprano voice.31 Finally, the findings obtained over a series of

experiments investigating the perception of harmonic and melodic cadential patterns led Roland

Eberlein and Jobst Fricke to theorize that experienced listeners of tonal music form schematic

representations for frequently occurring cadential formulæ. They conclude that differences of

expertise during the perception of closure result from differences in familiarity with the tonal

idiom.32

Such contradictory reports as to the role of explicit formal training or implicit exposure

on the perception of closure may reflect differences either in the choice of experimental task

or in the use of stimuli, as researchers often prefer to use homorhythmic, four-part chorale

representations of cadential progressions rather than attempt to find examples of cadences

from tonal repertories. And there are certainly very good reasons for doing so; by eliminating

variations in dynamics, tempo, and rhythm, as well as disregarding a number of features that

appear frequently in compositional practice (e.g., a trill at the cadential dominant, the cadential

six-four, the suspension dissonance at cadential arrival), such abstract paradigms provide greater

experimental control and are much easier to alter to satisfy specific experimental needs. But

not be attributed simply to greater variability between subjects in the nonmusician group, but rather to explicit
differences in the way the two groups perceived cadential patterns.

31Margaret Weiser, “Rating Cadence Stability: The Effects of Chord Structure, Tonal Context, and Musical
Training” (PhD Dissertation, McMaster University, 1992), 40–46. There has been some empirical support for the
claim that nonmusicians appear to privilege parameters related to melodic motion, such as pitch proximity and
contour, while musicians attend principally to harmonic factors, such as the size of the interval between two events
(Piet Vos and Dennis Pasveer, “Goodness Ratings of Melodic Openings and Closures,” Perception and Psychophysics
64, no. 4 [2002]: 631–639), a claim that will be pertinent to the results presented here.

32Roland Eberlein and Jobst Fricke, Kadenzwahrnehmung und Kadenzgeschichte: ein Beitrag zu einer Grammatik
der Musik (Frankfurt/M.: P. Lang, 1992), 258. Eberlein has also succinctly summarized his theory and proposed a
rough model for the effect of familiarity on the perception of closure. “A Method of Analysing Harmony, Based
on Interval Patterns or “Gestalten?,” in Music, Gestalt, and Computing, ed. Marc Leman, vol. 1317, Lecture Notes
in Computer Science (Springer Berlin / Heidelberg, 1997), 232–233.
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these paradigms also misrepresent the ways in which composers often articulate phrase endings

in tonal music (and consequently the ways in which listeners might actually perceive these

endings), as they disregard many of the features of cadences that might contribute to the

perception of closure. Perhaps worse, such an approach often leads researchers to generalize

the behavioral responses elicited by these simple melodic and harmonic formulæ to all tonal

music, though the characteristics of closure present in Prokofiev’s piano sonatas might differ

markedly from those found in Mozart’s symphonies.33 To be sure, the goal of many of the

experimental studies employing cadential stimuli is to determine how listeners represent tonal

structure in long-term memory. As a result, the examples that they employ serve to probe

the various cognitive representations of tonal patterns listeners have abstracted from previous

experience. Whether or not a given musical example could actually appear in the repertoire

might therefore seem largely irrelevant. But the precision with which we may examine these

various representations ultimately depends on a careful understanding of the music to which

listeners are consistently exposed. In comparing a listener competent in Mozart’s keyboard

style with a diverse group of participants, for example, we might find very similar ratings for

rhythmically isochronous, harmonic formulæ (and indeed, as a few of the previous studies I

have just mentioned can attest, we sometimes do), yet when presented with an excerpt written

in that keyboard style, our listener may possess distinctions of a much finer grain than those

possessed by the wider group.

Indeed, whereas theorists attend principally to the syntactic parameters of tonal music,

in compositional practice each cadence may be realized in nearly countless ways, entailing

parameters of rhythm, meter, texture, and instrumentation. Thus, cadences also differ as a

33Indeed, Courtenay Harter has outlined some of the characteristic differences of cadential articulation found
between Prokofiev and composers of the common practice. “Bridging Common Practice and the Twentieth
Century: Cadences in Prokofiev’s Piano Sonatas,” Journal of Music Theory Pedagogy 23 (2009): 57–77.
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result of their unique nonsyntactic or rhetorical content,34 an issue that has not been considered

in an experimental setting. In Mozart’s keyboard style, for example, cadences may also be

characterized according to the formal context from which they were drawn (e.g., main theme,

transition, subordinate theme, etc.) or by the presence of a melodic dissonance at the cadential

arrival.

The recent revival of interest in the Formenlehre tradition has also largely gone unnoticed in

the music psychology community, as those studies explicitly examining the perception of closure

rarely employ the wider variety of cadential categories found in the “common practice” period.

Techniques for cadential deviation, in particular, serve an important formal and expressive

function in the classical style, but they have yet to be considered in an experimental setting.

Indeed, the experimental study of cadential failure could serve to explore rich areas of inquiry

in music psychology—the perception of closure, the processing of harmonic syntax, and the

generation and violation of expectations—using musical examples selected from the extant

literature.

The experimental studies I will summarize in this chapter attempted to address these issues

directly. While an exploration of the underlying sensory and cognitive mechanisms responsible

for the perception of closure in tonal music is the ultimate aim of this research, my initial

approach was more limited in scope, concentrating as it does on a closing schema that appears

frequently in tonal music: the classical cadence. Limiting the initial investigation to cadential

closure also afforded the opportunity to consider issues germane to music theory. In the analysis

of musical form, the capacity to discern amongst various cadential categories is paramount to

the identification of the formal function of a specific musical passage, and this study provides

evidence as to whether expert and non-expert listeners can make such distinctions in real time,

without the aid of the score. Furthermore, as discussed in Chapter 4, analysts frequently

34Caplin, “The Classical Cadence,” 106–107.
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appeal to a hierarchy of cadential closure (e.g., Janet Schmalfeldt, William Caplin, and, more

recently, Edward Latham),35 and Rosner and Narmour have suggested that style-structural

closing schemata may be stored hierarchically in long-term memory,36 but it remains unclear

how various cadential categories—perfect authentic, imperfect authentic, half, etc.—may be

positioned within the hierarchy, or how the various musical parameters—melody, harmony,

rhythm, etc.—contribute to the perception of closure.

The participants were presented with 50 short excerpts from Mozart’s keyboard sonatas that

contained an equal number of perfect authentic, imperfect authentic, half, deceptive, and evaded

cadences. These categories were chosen both on the basis of their frequency in the classical

style and on their assumed relevance to scholarship in music theory and music perception.

Each excerpt contained at least the entire cadential progression as defined by Caplin,37 with

some excerpts including music preceding the onset of that progression.38 Thus, each cadential

category differs at the moment of the cadential arrival, which represents the crucial variable

distinguishing each excerpt.39

To consider syntactic and rhetorical features that occur frequently in Mozart’s cadences but

are not embraced by cadence category membership, I further subdivided each category into two

subtypes to consider issues of formal context (in the case of the PAC and HC), the presence of a

melodic dissonance at cadential arrival (for the IAC and HC), as well as the melodic scale-degree

and harmony at cadential arrival (for the DC and EV, respectively).40 Table 7.1 displays the

35Schmalfeldt, “Cadential Processes”; Caplin, Classical Form, 101–111; Latham, “Drei Nebensonnen,” 308–309.
36Rosner and Narmour, “Harmonic Closure,” 406.
37Caplin, Classical Form, 24–29.
38I included additional material preceding the onset of the cadential progression in instances in which I felt the

duration of the excerpt was too short to provide a sufficient tonal context.
39Of course, a number of other parameters within the cadential progression itself might necessarily imply a

given cadential category. For example, metrical placement and duration serve to distinguish a dominant harmony
in a half cadence from a dominant in an authentic cadence. But for the purposes of the experimental design it was
useful to differentiate each cadential category according to a specific temporal event, in this instance the moment
of cadential arrival.

40I also considered a number of other parameters for inclusion as subtypes in the study, such as the presence of
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Table 7.1: Cadence categories, syntactic characteristics, subtypes, and reference information
(Köchel index, movement, measures) for each excerpt.

Cadence Categories Subtypes Excerpts

Perfect Authentic Main Theme K. 281, i, mm. 5–8
K. 281, iii, mm. 5–8
K. 283, i, mm. 5–10
K. 311, i, mm. 19–24
K. 333, ii, mm. 5–8

Subordinate Theme K. 284, i, mm. 44–50
(Expanded Cadential Progression) K. 309, i, mm. 48–54

K. 333, i, mm. 54–59
K. 333, iii, mm. 31–36
K. 545, i, mm. 20–26

Imperfect Authentic Melodic Dissonance K. 311, ii, mm. 27–32
K. 330, i, mm. 4–8
K. 330, iii, mm. 39–43
K. 498a, iv, mm. 32–36
K. 533, iii, mm. 23–26

No Melodic Dissonance K. 281, ii, mm. 4–8
K. 282, i, mm. 2–4
K. 284, ii, mm. 21–25
K. 309, ii, mm. 1–4
K. 333, iii, mm. 28–32

Half Main Theme *K. 284, iii, mm. 1–4
*K. 311, ii, mm. 1–4
*K. 331, i, mm. 1–4
K. 332, ii, mm. 3–4

Transition K. 279, iii, mm. 11–18
*K. 280, i, mm. 21–26
K. 281, i, mm. 12–16
*K. 281, ii, mm. 22–26
K. 310, i, mm. 11–16
K. 332, i, mm. 31–37

Deceptive Failed PAC K. 280, ii, mm. 16–19
K. 281, ii, mm. 32–35
K. 282, i, mm. 11–13
K. 282, iii, mm. 25–31
K. 309, iii, mm. 58–65
K. 457, i, mm. 42–48
K. 533, i, mm. 16–22

Failed IAC K. 279, i, mm. 7–10
K. 330, i, mm. 27–31
K. 457, ii, mm. 9–11

Evaded Tonic Harmony K. 281, i, mm. 30–34
K. 281, iii, mm. 30–35
K. 309, i, mm. 13–18
K. 309, i, mm. 43–46
K. 309, iii, mm. 11–16

Non-Tonic Harmony K. 279, ii, mm. 1–4
K. 280, i, mm. 3–10
K. 281, ii, mm. 96–99
K. 332, ii, mm. 14–16
K. 333, iii, mm. 84–89

Note. Excerpts from the HC category marked with an asterisk contain a surface dissonance at cadential
arrival, whereas the remaining excerpts from that category do not.
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cadential categories, the essential characteristics, the subtypes, and the reference information

for each excerpt, and Appendix B provides musical examples of the complete stimulus set.

The category of perfect authentic cadences was subdivided according to formal location,

selected either from the main theme or the subordinate theme. The excerpts chosen from

subordinate themes feature an expanded cadential progression (ECP) (see Example 7.1a), which,

in addition to its longer duration (compared to those cadences selected from main themes), is

characterized by a dramatic increase in surface activity, usually resulting from an Alberti bass in

the left hand and the appearance of a cadential trill above the penultimate dominant.41 Indeed,

that surface activity may affect the perception of closure has been suggested by Michel Vallières,

as he found that higher average event density as well as the sudden decrease in event density at

cadential arrival significantly affected the categorization of endings by nonmusicians.42 Figure

7.1 displays the average event density, calculated as the total number of notes per second, for

each of the last five seconds of the two subtypes of the PAC category, the EV category, and

finally the other categories aggregated together. Both the PAC subordinate-theme subtype and

the EV category feature a significant increase in surface activity in the last moments before

cadential arrival, at which point the activity ceases almost entirely. For the other categories,

however, surface activity does not vary much within the cadential progression. It is thus quite

possible that PAC excerpts selected from subordinate themes will yield significantly higher

completion ratings than excerpts from the other categories.

The IAC category was subdivided according to the presence or absence of a melodic

a surface dissonance at cadential arrival in the perfect authentic cadence category, but the time constraints imposed
by the experimental session precluded a design examining more than two subtypes for each category. Moreover,
my intent was to select subtypes that reflect the most prevalent features of Mozart’s compositional style. In doing
so, however, it should be acknowledged that whereas the features reflected in each subtype may play a prominent
role in phrase endings from a number of different style periods, they may also be idiomatic to Mozart.

41For a discussion of the ECP, see Caplin, “"Expanded Cadential Progression".”
42Michel Vallières, “Beginnings, Middles, and Ends: Perception of Intrinsic Formal Functionality in the Piano

Sonatas of W. A. Mozart” (PhD Dissertation, McGill University, 2011), 106.
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(a)

(b)

(c)

(d)

(e)

Example 7.1: Five excerpts representing the five cadential categories. (a) PAC category,
Subordinate Theme subtype: K. 309/i, mm. 48–54. (b) IAC category, Melodic Dissonance
subtype: K. 330/iii, mm. 39–43. (c) HC category, Main Theme subtype: K. 284/iii, mm. 1–4.
(d) DC category, Failed PAC subtype: K. 281/ii, mm. 32–35. (d) EV category, Non-Tonic
subtype: K. 279/ii, mm. 1–4
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Figure 7.1: Time series plot of the mean event density calculated in a window of 1 second for
the two subtypes of the PAC category, the EV category, and the other categories aggregated
together. Whiskers represent ±1 standard error of the mean.

dissonance at cadential arrival (Example 7.1b displays the former case, an accented passing tone

embellishing the melodic goal). Although a number of other features might serve to differentiate

imperfect authentic cadences, such as the metric placement of cadential arrival or the contour

of the melody preceding cadential arrival (ascending vs. descending), the presence of a surface

dissonance in the melody at the moment of cadential arrival (defined by the appearance of the

final tonic harmony) is a prominent attribute of Mozart’s imperfect authentic cadences.43

As with the PAC category, half cadences were subdivided according to their formal location,

selected either from the main theme (as in Example 7.1c, which forms the antecedent phrase

of an 8-m. period) or from the end of the transition. As the material within the transition

in sonata form typically modulates to the subordinate key, the resulting tonal instability is

often accompanied by passages preceding cadential arrival that are frequently characterized by

43Imperfect authentic cadences featuring a surface dissonance typically include 2̂ at cadential arrival (see K.
330/i, m. 8; K. 311/ii, m. 32). To prolong the dissonance at cadential arrival, 2̂ also sometimes appears in the
soprano as an upward resolving suspension to 3̂, with a chromatic passing tone inserted in between (see K. 498a/iv,
m. 36; K. 533/iii, m. 26).
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increased energy (relative to the main theme).44 These features serve to dramatically differentiate

transition half cadences from those appearing in the main theme. In addition, the ten excerpts

from the HC category were also separately classified according to the presence or absence of a

melodic dissonance at the moment of cadential arrival.45

Depending upon the degree of melodic closure, the deceptive cadence category has been

further subdivided according to whether the melody arrives on 1̂, which I will refer to as a

failed perfect authentic cadence (as in Example 7.1d) or on 3̂, which I will refer to as a failed

imperfect authentic cadence.46

Finally, as I mentioned in Chapter 2, the evaded cadence is characterized by a sudden

interruption in the projected resolution of the melodic line; instead of resolving to 1̂, the

melody leaps up, often to 5̂, thereby replacing the expected ending with material that clearly

initiates the subsequent phrase. Thus, the evaded cadence projects no sense of ending whatsoever,

as the event located at the point of expected cadential arrival, which should group backward

by ending the preceding thematic process, instead groups forward by initiating the subsequent

process. In order to consider issues of harmonic context associated with the evaded cadence, the

category has been subdivided according to which harmony appears at the moment of expected

cadential arrival—tonic harmony (which is typically inverted, but may sometimes be in root

position) or non-tonic harmony (as in Example 7.1e).

Although the cadential subtypes permit an extended examination of the role played by

parameters within each cadence category, these subtypes still fail to consider the relative

contribution of a variety of additional parameters that appear frequently in cadential contexts

44Caplin, Classical Form, 125; Hepokoski and Darcy, Elements of Sonata Theory, 93.
45Unfortunately, the formal location subtypes for the HC category do not contain an equal number of

excerpts: the main theme subtype contains four, whereas the transition subtype contains six. However, the surface
dissonance subtypes for the HC category contain an equal number of excerpts.

46Because deceptive cadences occur less frequently in Mozart’s keyboard sonatas than the other cadence
categories selected for this study, the two subtypes do not contain an equal number of excerpts: the failed perfect
authentic cadence subtype contains seven while the failed imperfect authentic cadence subtype contains three.
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(e.g., the presence of a cadential trill, the use of a dissonant six-four chord suspended above

the cadential dominant, the temporal duration of the cadential progression, etc.). Thus, in

addition to the subtypes, I also characterized each excerpt according to a number of rhetorical

parameters in order to examine their relative contribution in a regression model (see §7.2.3).

§7.2 Experiment I

7.2.1 Method

Participants

Participants were 40 members (19 male) of the Montreal community recruited through the

Schulich School of Music and the McGill University classified ads. Ages ranged from 18 to

48 (M = 24, SD = 6). Twenty participants with music training equivalent or superior to

second-year-university level formed the musician group, and twenty participants with less than

one year of music training comprised the nonmusician group. To limit any effects caused by

familiarity with the stimuli, no participant with more than one year of formal study on the

piano was permitted to take part.

A questionnaire was administered to assess musical preferences and training. On average,

musicians had 11.4 years of study on a musical instrument (other than piano), 3.5 years of ear

training, 3.0 years of instruction in harmony, and 2.9 years of instruction in music analysis. At

the time of their participation, they additionally reported spending an average of 15.2 hours each

week engaged in instrumental practice. Participants also listened to an average of 11.3 hours of

music each week. All of the participants reported normal hearing, which was confirmed with

a pure-tone audiometric test using a MAICO MA 39 audiometer in which participants were

required to demonstrate minimum hearing thresholds at or below 20 dB HL for octave-spaced
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frequencies from 125 Hz to 8 kHz.47 None of the participants indicated they had absolute

pitch.

Materials

The stimuli consisted of 50 short excerpts (average 8.6 s) selected from Mozart’s keyboard

sonatas. To limit the number of variables under consideration, performance features (such

as dynamics and rubato) were neutralized and the tempo of each excerpt was determined by

convention. Each stimulus was first created with the notation software Finale and then realized

as a .wav sound file using a piano physical model created by PianoTeq. Finally, a 4-s fade-in was

inserted at the beginning of each excerpt to encourage participants to attend specifically to the

excerpt’s end.

Unfortunately, the extraction of each excerpt from its surrounding material introduced a

number of factors at the moment of cadential arrival that might confound the experimental

outcome. To eliminate these unwanted effects while preserving the stylistic integrity of each

excerpt, it was necessary to impose a few constraints on the materials appearing at the cadential

arrival. First, any chord tones appearing after cadential arrival (e.g., an Alberti bass pattern)

were verticalized to the moment of cadential arrival and all subsequent material was removed.

This alteration was necessary in order to eliminate differences in surface activity among excerpts,

in particular for instances in which the absence of the third of the triad at the point of arrival

would have resulted in an unstylistic open octave. Second, I recomposed the duration of the

cadential arrival to one full tactus to ensure that differences in duration would not affect the

perception of closure. This change still resulted in small variations in the duration of the final

47ISO 389-8, Acoustics: Reference Zero for the Calibration of Audiometric Equipment—Part 8: Reference Equivalent
Threshold Sound Pressure Levels for Pure Tones and Circumaural Earphones, Technical Report (International Orga-
nization for Standardization, 2004); Frederick N. Martin and Craig A. Champlin, “Reconsidering the Limits of
Normal Hearing,” Journal of the American Academy of Audiology 11 (2000): 64–66.
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Example 7.2: EV category, Tonic Harmony subtype: K. 281/iii, mm. 30–35. Top: From score.
Bottom: Recomposed.

event for each excerpt, but these differences were assumed to be too small to significantly

affect the completion ratings. Third, because I did not wish to consider the effect of cadential

absence—such as when a rest replaces the expected tonic at cadential arrival—in two instances

the events following the rest were shifted back to cadential arrival (see Example 7.2). Finally, any

melodic dissonances appearing at the cadential arrival were retained so as not to fundamentally

alter the excerpt (for example, in evaded cadences the melodic line frequently features an

appoggiatura at the point of the expected cadential arrival).48

Design and Procedure

The participants were seated in a double-walled IAC Model 1203 sound-isolation chamber. The

stimuli were reproduced on a Macintosh G5 PowerPC, output as S/PDIF using an M-Audio

Audiophile 192 sound card, converted to analog using a Grace Design m904 monitor system,

and presented over a pair of Dynaudio BM6A monitors. The stimuli were presented at 55

dB SPL, which was kept constant for all participants throughout the experimental session.

The experimental program, subject interface, and data collection were programmed using the

48See, for example, Appendix B, Example 45.
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Max/MSP environment from Cycling 74’ controlled by the PsiExp software environment.49

Participants were presented with a randomized set of all 50 excerpts in two blocks. After

listening to each excerpt up to three times, participants were instructed to rate the degree of

completion of each excerpt on a 7-point continuous analogical-categorical scale,50 which consists

of an analog scale subdivided into seven discrete categories labeled from 1 to 7. Completion

was defined as: “the expectation that the music will not continue. A value of 1 indicates that

the excerpt would certainly continue, whereas a value of 7 indicates that the excerpt could end

at that moment without the need for anything further.” Participants were encouraged to use

the full range of the scale over the course of the experiment. In addition, at no point was the

term ‘cadence’ ever mentioned during the session under the assumption that its usage might

unintentionally bias musicians toward consciously categorizing the excerpts’ endings.

In addition to a completion judgment, participants rated on 7-point scales the confidence of

their completion rating and their familiarity with the excerpt. To distinguish between those

excerpts potentially rated in the center of the completion scale, the participants also responded

to the following two statements on a 4-point Likert scale labeled from strongly agree to strongly

disagree: “this excerpt could complete an entire work or movement,” and “this excerpt could

complete a phrase or short passage of music.” The aim of the additional 4-point Likert response

scales was to ask participants to differentiate between endings located at the conclusion of

a longer work from those endings they may deem sufficient to complete a phrase or short

passage within that work, a distinction assumed too subtle to be captured by the completion

scale, particularly for those excerpts that participants placed in the center of the scale (i.e.,

excerpts rated as neither entirely complete nor entirely incomplete). The participants were

49Bennett K. Smith, “PsiExp: An Environment for Psychoacoustic Experimentation Using the IRCAMMusical
Workstation,” Paper presented at the Society for Music Perception and Cognition, 1995, Berkeley, CA.

50Reinhard Weber, “The Continuous Loudness Judgement of Temporally Variable Sounds with an ‘Analog’
Category Procedure,” in Fifth Oldenburg Symposium on Psychological Acoustics, ed. A. Schick, J. Hellbrück, and
R. Weber (Oldenburg: BIS, 1991), 267–294.
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also reminded that the two scales should not necessarily co-vary. By strongly agreeing that an

excerpt could complete an entire work or movement, a participant might also assume it could

complete a phrase or short passage of music. The reverse is not necessarily true, however, as an

excerpt might provide an entirely implausible ending for an entire work, yet sound satisfactory

at the end of a short passage within the work.

To familiarize the participants both with the range of stimuli as well as with the experimental

task, the experimental session began with an exposure phase consisting of ten additional excerpts

(two excerpts exemplifying each cadence category), and a practice phase in which the participants

rated each of the ten excerpts. After completing the experiment, participants filled out a short

questionnaire addressing their music background.

Analysis

Each of the dependent variables was analyzed using a 5 × 2 mixed-design analysis of variance

(ANOVA) with a within-participant factor of cadential category (PAC, IAC, HC, DC, and

EV) and a between-participant factor of musical training (musicians, nonmusicians). To

further consider differences of formal context (PAC and HC), melodic dissonance (IAC),

melodic scale-degree (DC), and harmony at the cadential arrival (EV), a separate 2 ×2 ANOVA

was calculated for each cadential category. For example, for the perfect authentic cadence

category, a 2 ×2 model was calculated with a within-participant factor of formal context (main

theme, subordinate theme) and a between-participant factor of musical training (musicians,

nonmusicians). Because the behavioral scales for the completion, confidence, and familiarity

ratings are bounded on both sides (by 1 and 7), in a few cases the aggregated data for the perfect

authentic and evaded cadential categories—the categories expected to elicit very high and very

low completion ratings, respectively—violated assumptions of normality and homogeneity of

variance due to their skewed distributions. To eliminate these issues before calculating the
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model, the completion, confidence, and familiarity ratings were normalized to the range [0-1]

and an arcsin transformation was applied. In the figures that follow, however, the raw data were

retained for the purposes of visualization. To counteract violations of sphericity, degrees of

freedom are reported using the Greenhouse-Geisser correction where appropriate. Finally, all

post hoc statistics were conducted using t-tests with Bonferroni adjustment.

7.2.2 Results

I will first describe the results as they relate to the cadential categories and then discuss

differences arising between the various subtypes. In §7.2.3, I present methods for modeling the

completion ratings using multiple linear regression.

Cadence Categories

Figure 7.2 displays bar plots of the completion, confidence, and familiarity ratings for each

of the five cadential categories. A mixed 5 × 2 ANOVA of the completion ratings revealed

main effects of cadential category, F (3.14, 119.27) = 264.56, ε = 0.79, p < .001, η2 = .85,

and music training, F (1, 38) = 8.39, p < .01, η2 = .18, as well as a significant interaction,

F (3.14, 119.27) = 8.52, p < .001, η2 = .03. For the musician group, post hoc analyses revealed

significant differences between each pair of cadential categories descending from PAC to EV

(p < .01), with the exception of a marginal difference appearing for the HC-DC pair (p = .06).

The membership of each excerpt to a cadential category therefore appeared to significantly

affect the completion ratings for the musician group. Musicians and nonmusicians did not

differ in their ratings for any of the categories of genuine cadences (PAC, IAC, HC), but the

results did reveal an effect of music training for the failed cadences (DC, EV), as nonmusicians

provided higher completion ratings for both deceptive and evaded cadences than did musicians

(p < .001). Indeed, nonmusicians did not rate half cadences as any more complete than evaded
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Figure 7.2: Bar plots of mean completion, confidence, and familiarity ratings of musicians
(solid blue) and nonmusicians (diagonal red) for each cadential category. Whiskers represent
the 95% confidence interval.

cadences (p > .05).

As expected, confidence ratings averaged across participants were weakly correlated with

the completion ratings, Spearman’s rank correlation coefficient r s (48) = .36, p = .01. A

mixed 5 × 2 ANOVA revealed a significant effect of cadence category, F (2.52, 95.75) = 25.44,

ε = 0.63, p < .001, η2 = .39, as both groups provided higher confidence ratings for excerpts

from the PAC category than for any of the other cadence categories (p < .01). Confidence

ratings were also higher for musicians than for nonmusicians, F (1, 38) = 18.93, p < .001,

η2 = .33. Although both groups provided low familiarity ratings on average, completion

ratings were nonetheless weakly correlated with familiarity, r s (48) = .50, p < .001. Familiarity
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judgments also revealed main effects of cadential category, F (2.95, 112.01) = 34.23, ε = 0.74,

p < .001, η2 = .41, and training, F (1, 38) = 4.47, p = .04, ηp2 = .11, as well as an unexpected

interaction resulting from differences in the way musicians and nonmusicians specifically rated

half cadences, F (2.95, 112.01) = 12.26, p < .001, η2 = .14. As shown in Figure 3, whereas both

groups provided higher familiarity ratings for the perfect authentic cadence category than for

the other categories (p < .05), musicians also rated excerpts from the half cadence category

as more familiar than those from the remaining categories (p < .05). This effect was not

observed in nonmusicians, however, as they provided very low familiarity ratings for excerpts

ending in half cadences, nor did these ratings differ from those of the other categories. The

intention behind providing a scale for familiarity was to determine if explicit prior exposure to

a particular excerpt would affect completion ratings, assuming that knowledge of the material

following the end of the excerpt might alter the interpretation of that excerpt’s ending, thus

confounding the experimental outcome. However, the observed difference in familiarity ratings

of excerpts ending with half cadences between musicians and nonmusicians instead suggests

a difference in their exposure to, and subsequent knowledge of, half cadences in general, a

particularly compelling finding that appears to contradict the completion data, in which no

training effect was observed for half cadences.

Cadence Subtypes

Figure 7.3 presents bar plots of the completion ratings for the cadential subtypes of each

cadence category. Beginning with the perfect authentic cadence category, both groups rated

PACs selected from the subordinate theme as more complete than PACs from the main theme,

F (1, 38) = 23.43, p < .001, η2 = .38, and there was no effect of training, F (1, 38) < 1. For

the imperfect authentic cadence category, the presence of a melodic dissonance at the cadential

arrival only affected completion ratings for nonmusicians (p < .01). In addition, nonmusicians
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Figure 7.3: Bar plots of mean completion ratings of musicians (solid blue) and nonmusicians
(diagonal red) for each subtype. Whiskers represent the 95% confidence interval.
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provided higher completion ratings for imperfect authentic cadences without a dissonance at

the cadential arrival than did musicians (p < .05). For the half cadence category, musicians

tended to rate half cadences selected from transitions as less complete than those selected from

the main theme, but this interaction between formal context and music training did not reach

significance, F (1, 38) = 3.10, p = .08, nor did the completion ratings differ with respect to

training, F (1, 38) < 1. However, excerpts from the HC category were also classified according

to the presence or absence of a melodic dissonance at cadential arrival, and for both groups

excerpts that contained a melodic dissonance received significantly lower completion ratings

than excerpts that did not, F (1, 38) = 4.5, p < .05, η2 = .15, and there was no effect of training,

F (1, 38) < 1.

The completion ratings for the deceptive cadence category revealed a significant effect of

expertise, F (1, 38) = 24.0, p < .001, η2 = .39, and the scale degree at the cadential arrival

significantly affected the completion ratings of nonmusicians (p < .05), as they provided higher

ratings for deceptive cadences featuring melodic 1̂ than for those featuring melodic 3̂. However,

the scale degree at the cadential arrival did not affect the ratings of the musician group. Finally,

the evaded cadence category featured a significant effect of expertise, F (1, 38) = 28.16, p < .001,

η2 = .43, with musicians providing much lower completion ratings for evaded cadences than

nonmusicians. Additionally, the harmony at the cadential arrival significantly affected the

completion ratings of both participant groups, as evaded cadences with tonic harmony at the

cadential arrival received higher completion ratings than cadences with non-tonic harmony

(p < .05).

Movement Completion and Phrase Completion Ratings

The movement ratings provided very few notable results, as both groups tended to strongly

disagree with the statement that the excerpts could complete a work or entire movement.
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However, the phrase ratings revealed a significant effect of music training for the half cadence

category. Figure 7.4 provides a bar plot of the distribution of the percentage of responses

for each cadential category for the statement, “this excerpt could complete a phrase or short

passage of music,” with musician ratings above and nonmusician ratings below the x-axis. This

representation therefore visually estimates the similarity between the two groups by evaluating

the symmetry about the x-axis.

A chi-square test was performed to determine the minimum number of trials necessary

to reach significant agreement for each category. Out of 200 trials within each category (20

participants × 10 excerpts), a minimum of 68 identical responses (or 34%) was necessary to

achieve significance, χ2(1) = 3.89, p < .05. The horizontal dotted lines above and below the

x-axis indicate this minimum agreement threshold. The very first category in the musician

group, for example, indicates that in 85% of all trials musicians strongly agreed that excerpts

from the PAC category could complete a phrase or short passage of music. For the IAC

and HC categories musicians generally agreed with this statement, although they generally

disagreed that excerpts from the EV category could complete a short passage. Concerning the

DC category, both groups wavered between agree (40%) and disagree (37.5%), and although

musicians minimally preferred to disagree with the statement whereas nonmusicians preferred

to agree, this difference was not significant, Mann-Whitney U = 18, 017, p = .067, r = −.09.

Indeed, whereas both groups differed with respect to the absolute percentage of agreement

of their responses, the shape of the distribution for each cadential category remained fairly

similar between the two groups. In the case of the HC category, however, the difference in

the responses of musicians and nonmusicians was significant,U = 13, 923, p < .001, r = −.28;

in over 66% of their responses musicians agreed or strongly agreed that a half cadence could

complete a phrase or short passage, whereas nonmusicians disagreed or strongly disagreed in 63%

of their responses.
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Figure 7.4: Bar plot of the distribution of the percentage of responses for each cadential
category for the statement, “this excerpt could complete a phrase or short passage of music,”
with musicians’ ratings above the x-axis in blue and nonmusicians’ ratings below in red. Pattern
fills denote response types. The horizontal dotted lines indicate the minimum threshold
necessary to reach significant agreement.

7.2.3 Modeling the Completion Ratings

Rhetorical Features

The purpose of the preceding analysis was to determine the role various cadential categories

might play in the perception of closure. To that end, five distinct cadential categories were

selected on the basis of their harmonic-melodic content. But in selecting examples from the

extant musical literature, the stimuli fail to control for a number of rhetorical parameters that

may affect participants’ ratings of completion (e.g., tempo, event density, a cadential trill, etc.).

To be sure, the syntactic characteristics that distinguish the cadence categories employed in

this study are frequently accompanied by a number of other features that may also facilitate

the identification of cadences. A trill, for example, may serve as a contextual cue that alerts

the listener to an impending cadential ending. The following analysis therefore considers the

degree to which these rhetorical parameters might predict the participant completion ratings.

Unfortunately, the small number of stimuli employed for this study (50) prohibits establishing
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a reliable multiple linear regression (MLR) model embracing the vast number of musical

parameters implicated in the articulation of cadences. Nonetheless, this correlational approach

may lead to the identification of a small number of parameters (k < 6) to be examined in future

studies.51

By considering rhetorical parameters, my assumption was that the cadence categories alone

would not account for all of the variance in the completion ratings. Before encoding the

rhetorical parameters, it was therefore necessary to determine the effect of cadence category

membership in a regression model. Each excerpt’s cadential category was encoded along an

ordinal scale from PAC to EV, following the ranking displayed in the musician completion

ratings (see the completion ratings in Figure 7.2). This ranking accounts for 84% of the

variance in the mean completion ratings from the musician group (standardized coefficient

β = .92). However, the ranking only explains roughly 53% of the variance in the nonmusician

completion ratings ( β = .73). This difference in the estimates of the MLR models may result

from differences in selective attention during the perception of closure, or it may suggest that

rhetorical parameters have a more significant impact on nonmusicians.

To consider the role these rhetorical parameters might play, 12 features were selected that

characterize (1) the entire stimulus, (2) the cadential progression, and (3) the moment of

cadential arrival (see Table 7.2):

1. Entire Stimulus. Four features characterize the entire stimulus: the tempo in beats per

minute (Tempo), the total number of notes per second (Event Density), the median pitch

height in MIDI note values (Median Pitch Height), and the duration of the stimulus in

seconds (Stimulus Duration).

2. Cadential Progression. Three dichotomous features and one continuous feature char-

51Jeremy Miles and Mark Shevlin, Applying Regression and Correlation (London: Sage Publications, 2001).
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Table 7.2: Descriptive statistics for the 12 rhetorical features.

Rhetorical Features M (SD) Range Mode (Frequency)

Entire Stimulus
(1) Tempo (bpm) 104 (31) 40–152
(2) Event Densitya 6.3 (2.6) 2.7–13.3
(3) Median Pitch Height (MIDI note number) 68 (5) 58–81
(4) Stimulus Duration (s) 9.6 (2.3) 5.6–16.8

Cadential Progression
(5) Completeb Present (30)
(6) Cadential Trill Absent (33)
(7) Cadential 64 Present (38)
(8) Cadential Progression Duration (s) 3.9 (2.3) 0.9–12.2

Cadential Arrival
(9) Melodic Dissonancec Absent (39)
(10) Metric Downbeat Present (42)
(11) ∆ Event Densityd 6.7 (5.9) 2–23
(12) Tactus Duration (s) 0.8 (0.5) 0.2–2.3

a Event Density refers to the number of notes per second.
b Complete refers to an authentic cadential progression that includes an initial tonic, a pre-dominant, a
dominant, and a final tonic, or to a half cadential progression that includes an initial tonic, a pre-dominant,
and a dominant.
c Melodic Dissonance may refer to an appoggiatura, an accented passing tone, or a dissonant suspension.
d ∆ Event Densitywas calculated as the difference between the sum of the events in a 1-s window preceding
cadential arrival to the sum of the events in a 1-s window beginning at cadential arrival.

acterize the cadential progression: the presence of every harmonic function within the

boundaries of the cadential progression (Complete), the presence of a cadential six-four

(Cadential 64), a trill within the cadential dominant (Cadential Trill), and the duration of

the cadential progression in seconds (Cadential Progression Duration).

3. Cadential Arrival. Two dichotomous features and two continuous features characterize

the cadential arrival: the presence of a surface dissonance in the melody (Melodic Disso-

nance), the metric location of the final harmony, which can occur either on or off the

downbeat (Metric Downbeat), the change in event density at the cadential arrival (∆ Event
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Density), and the duration of the events at the cadential arrival (Tactus Duration).

To limit the number of predictors input into the final MLR models, correlations were calcu-

lated for each of the rhetorical features with the completion ratings from both groups. Shown

in Table 7.3, intercorrelations between the rhetorical features displayed very few noteworthy

results, with only three correlation coefficients registering above .50. Two features in particular,

Complete and Cadential Trill, were not correlated with any of the other rhetorical features.

Moreover, the majority of the moderate-to-strong correlations shown in Table 7.3 arose as a

result of features that characterize temporal aspects of the stimulus. For example, stimulus

tempo was correlated with the duration of the tactus at cadential arrival, r (48) = −.46, as

well as of the stimulus as a whole, r (48) = −.36. However, the correlations between Melodic

Dissonance and two other features—Metric Downbeat and Tactus Duration—were noteworthy, as

excerpts that contained a melodic dissonance at cadential arrival also lengthened the duration

of cadential arrival and placed it on a metric downbeat, a result that suggests a compositional

strategy to accentuate the effect of the dissonance.

The musician completion ratings were significantly correlated with four rhetorical fea-

tures—Median Pitch Height, Complete, Cadential Trill, and ∆ Event Density—and the non-

musician ratings were correlated with two features—Median Pitch Height and Cadential Trill.

However, these correlations could simply result from their collinearity with a third variable,

the rank order of cadential categories. It was therefore necessary to control for cadence category

membership first by calculating the correlation between the completion ratings and the rank

order of cadential categories, and then correlating each of the rhetorical features with the

residuals. Controlling for the effect of cadential category resulted in significant correlations for

four features with the musician ratings—Melodic Dissonance, semi-partial correlation coefficient

s r (48) = .43, ∆ Event Density, s r (48) = .40, Cadential Trill, s r (48) = .35, and Cadential
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Table 7.3: Intercorrelations between the rhetorical features and the mean completion ratings of musicians and nonmusicians.

Features & Ratings (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Entire Stimulus
(1) Tempo −.06 .05−.36∗∗−.05 .2 −.02 −.2 −.05−.05 .55∗∗∗−.46∗∗∗ .15 .04
(2) Event Density −.02 .03 .04 .07 .2 .08 −.03−.07 .2 −.01 −.1 −.05
(3) Median Pitch Height .1 .03−.11 .06 −.04 −.11 .08 .09 −.28∗ .29∗ .33∗
(4) Stimulus Duration .07−.23 .31∗ .37∗∗ .05 .34∗ −.35∗ .44∗∗∗ .13 .24

Cadential Progression
(5) Complete −.28−.17 −.19 .16−.13 .09 .18 .31∗ .16
(6) Cadential Trill .21 −.2 −.03 .08 −.02 −.15 −.42∗∗−.41∗∗
(7) Cadential 64 −.08 −.7 .27 −.16 .00 −.1 −.11
(8) Cadential Progression Duration .01 .05 .09 .22 .17 .25

Cadential Arrival
(9) Melodic Dissonance .43∗∗−.14 .57∗∗∗−.05 −.28
(10) Metric Downbeat −.19 .22 −.08 −.15
(11) ∆ Event Density −.57∗∗∗ .33∗ .21
(12) Tactus Duration −.08 −.12

Completion Ratings
(13) Musicians .87∗∗∗
(14) Nonmusicians

Note. N = 50.
* p < .05 ** p < .01 *** p < .001, two-tailed.
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Progression Duration, s r (48) = .26—and four features with the nonmusician ratings—Melodic

Dissonance, s r (48) = .55, Stimulus Duration, s r (48) = .30, Cadential Progression Duration,

s r (48) = .28, and Cadential Trill, s r (48) = .28.

Given the small number of remaining features, a stepwise MLRmodel with forward selection

was fitted for both the musician and nonmusician completion ratings using the cadential ranking

PAC > I AC > HC > DC > EV and the rhetorical features provided above. To examine

effects of multicollinearity within the two models, correlations were calculated for all of the

predictors. Of the five predictors input in the two models, only two—the cadential ranking

and Cadential Trill—were weakly correlated, r (48) = .30, p < .05. Moreover, the mean

Variance Inflation Factors calculated for the predictors in the musician (meanV I F = 1.10) and

nonmusician (meanV I F = 1.02) models demonstrated very weak multicollinearity.52

Shown in Table 7.4, the musician model selected the cadential rankings, Melodic Dissonance,

Cadential Trill, and ∆ Event Density. These four predictors accounted for 91% of the variance

in the completion ratings. The combined size of the effect for the selected rhetorical features

was small (∆R2 = .07), however, which suggests that the cadential categories play the most

substantial role in the musicians’ ratings. The nonmusician model selected the cadential

rankings, Melodic Dissonance, and Stimulus Duration, and these three predictors accounted for

72% of the variance in the completion ratings. Moreover, the addition of Melodic Dissonance

and Stimulus Duration significantly improved the fit of the model (∆R2 = .19), indicating that

52Multicollinearity refers to the presence of significant correlations between model predictors. In regression
models, multicollinearity violates a basic assumption of linear regression (and parametric statistics more generally),
because in such instances it would be virtually impossible to determine which of the correlated predictors was
actually responsible for variations in the dependent variable. The variance inflation factor is a common collinearity
diagnostic that quantifies the degree of collinearity for each predictor included in the original model. A variance
inflation factor of 1 indicates that the predictor is orthogonal to the other predictors, whereas a value much greater
than 1 (say, for example, > 10) indicates that the predictor is highly correlated with one or more of the remaining
predictors. Bruce Bowerman and Richard O’Connell suggest a mean variance inflation factor substantially greater
than 1 indicates that the model may be biased (Linear Statistical Models: An Applied Approach [Pacific Grove, CA:
Duxbury, 1990]).
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Table 7.4: Summary of stepwise regression analysis predicting the completion ratings of
musicians and nonmusicians with the cadential rankings and the correlated rhetorical features
from Table 7.2.

B SE B β

Musicians
Step 1

Constant 0.85 0.21
PAC > IAC > HC > DC > EV 0.98 0.06 .92∗∗

Step 2
Constant 0.27 0.26
PAC > IAC > HC > DC > EV 1.01 0.06 .94∗∗
Melodic Dissonance 0.64 0.19 .18∗

Step 3
Constant 0.75 0.28
PAC > IAC > HC > DC > EV 0.96 0.06 .90∗∗
Melodic Dissonance 0.64 0.18 .17∗
Cadential Trill 0.49 0.16 .15∗

Step 4
Constant 0.68 0.26
PAC > IAC > HC > DC > EV 0.92 0.05 .86∗∗
Melodic Dissonance 0.54 0.17 .15∗
Cadential Trill 0.51 0.15 .16∗
∆ Event Density 0.04 0.01 .15∗

Nonmusicians
Step 1

Constant 2.2 0.3
PAC > IAC > HC > DC > EV 0.67 0.09 .73∗∗

Step 2
Constant 1.12 0.35
PAC > IAC > HC > DC > EV 0.71 0.08 .78∗∗
Melodic Dissonance 1.19 0.26 .38∗∗

Step 3
Constant −0.1 0.53
PAC > IAC > HC > DC > EV 0.7 0.07 .77∗∗
Melodic Dissonance 1.22 0.25 .39∗
Stimulus Duration 0.12 0.04 .23∗

Note. Musicians R2 = .84 for Step 1; ∆R2 = .03 for Step 2 (ps < .01); ∆R2 = .02 for Step 3 (ps < .01);
∆R2 = .02 for Step 4 (ps < .01). Nonmusicians R2 = .53 for Step 1; ∆R2 = .14 for Step 2 (ps < .01);
∆R2 = .05 for Step 3 (ps < .01).
* p < .01 ** p < .001.
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the two rhetorical features played a more substantial role in the nonmusician model than those

selected in the musician model.

Melody and Harmony

By retaining the cadential categories, the above models unfortunately fail to consider how

features of the soprano and bass voice may independently contribute to the perception of

closure, particularly at the moment of cadential arrival. The claim that strategies of attention

may differ as a result of music training therefore necessitates a statistical approach in which the

harmonic and melodic information of each excerpt is encoded separately, thereby permitting us

to abandon the cadential categories proper.

To consider how harmony and melody may independently contribute to participant ratings

of completion, we must quantify each predictor according to a set of criteria. First, a simple

and fairly intuitive method might be to evaluate the melodic and harmonic content of each

excerpt according to concepts of closure derived from music theory. For the purposes of this

experiment, the harmony of each excerpt was assigned a value of 2 for a tonic triad in root

position at the cadential arrival, 1 for a dominant triad in root position, and 0 for any other

harmony in any inversion.53 The melody of each excerpt was assigned a value of 2 for 1̂ at

cadential arrival, 1 for 3̂, and 0 for any other scale-degree; henceforth I will refer to the estimates

obtained from these variables as the syntax model.

While this approach is certainly intuitive, it is also glaringly imprecise, as it fails to consider

the effect of each of the possible scale-degrees that might appear at the end of each excerpt.

In a second approach, I assigned the mean goodness-of-fit ratings obtained from Krumhansl

and Kessler’s major and minor key profiles to the scale degrees appearing in the soprano and

53Bigand and Parncutt employed precisely this rating system to assess the effect of cadential patterns on tension
ratings. See “Perceiving Musical Tension in Long Chord Sequences,” 250.
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bass line of each excerpt at cadential arrival under the assumption that their profiles signify a

cognitive representation of the tonal hierarchy pertaining specifically to endings; I will refer to

the estimates obtained from these variables as the KK model.54

Before entering the tonal stability values of the soprano and bass voices as predictors in a

regression model, the two variables were correlated to determine if they violated the assumption

of multicollinearity. In this instance, the variables were not correlated, r (48) = −.07, p = .33.

Table 7.5 displays the estimates of the syntax and KK models for musicians. The syntax model

selected harmony, with a β of .61, in the first step, accounting for about 42% of the variance in

their ratings. The selection of melody in the second step, with a β of .47, significantly improved

the fit of the model, which produced a final R2 of .64. Stepwise selection therefore indicated

that the harmony predictor played the most substantial role in accounting for musicians’ ratings

of completion. Applying the KK predictors improved the fit of the regression model, with

the two predictors accounting for 72% of the variance in musicians’ ratings. The KK model

also produced similar standardized β weights, with the bass-line scale-degree again playing the

more prominent role. Thus, as predicted, musicians placed greater emphasis on the bass voice

at cadential arrival.

Table 7.6 displays the estimates of the syntax and KK models for nonmusicians. The

estimates of the syntax model for the nonmusician ratings were a near mirror image of those

found for the musicians, with the parameters of melody and harmony accounting for 65% of

the variance, but with melody, with a standardized β of .64, playing a more prominent role

than harmony. With the addition of the goodness-of-fit ratings in the KK model, however, the

54Presumably the metric position and rhythmic duration of the final events also affect participant ratings
of completion, but in only 8 of the 50 stimuli does the cadential arrival appear in a metric position other than
the downbeat (see Table 7.2). What is more, the rhetorical feature measuring the duration of the events at
cadential arrival, called Tactus Duration, was not significantly correlated with the participant completion ratings.
In noncadential contexts, these variables might play an important role in the perception of closure, but in these
stimuli, the metric position and rhythmic duration of the events concluding each stimulus could not be examined
in greater detail.
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Table 7.5: Summary of stepwise regression analysis predicting the completion ratings of
musicians with the Syntax and KK models.

Model B SE B β

Syntax
Step 1

Constant 2.42 0.28
Harmony 1.14 0.19 .66*

Step 2
Constant 1.68 0.26
Harmony 1.05 0.15 .61*
Melody 0.84 0.15 .47*

KK
Step 1

Constant −1.10 0.73
Bass 0.93 0.14 .70*

Step 2
Constant −4.16 0.71
Bass 0.97 0.10 .73*
Soprano 0.58 0.09 .49*

Note. Syntax R2 = .42 for Step 1; ∆R2 = .22 for Step 2 (p < .001); KK R2 = .49 for Step 1; ∆R2 = .24
for Step 2 (p < .001).
* p < .001.

lopsided influence of the soprano voice diminished somewhat, with the bass-line scale-degree

playing a more significant role. Thus, it appears that harmonic and melodic content can predict

the completion ratings of both groups, and both models indicate unequivocally that musicians

privilege the bass voice. With nonmusicians, however, the relative contribution of the two

parameters is less clear-cut. In the syntax model, melody accounted for a greater proportion of

the variance, while in the KK model, regression estimates for the two parameters were nearly

identical.

These models support the claim that, in the perception of cadential closure, musicians

appear to privilege the bass voice while nonmusicians are more sensitive to subtle differences in
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Table 7.6: Summary of stepwise regression analysis predicting the completion ratings of
nonmusicians with the Syntax and KK models.

Model B SE B β

Syntax
Step 1

Constant 3.13 0.21
Melody 1.05 0.16 .69*

Step 2
Constant 2.42 0.22
Melody 0.98 0.13 .64*
Harmony 0.65 0.13 .44*

KK
Step 1

Constant 1.12 0.57
Soprano 0.63 0.11 .62*

Step 2
Constant −2.63 0.60
Soprano 0.67 0.08 .66*
Bass 0.68 0.08 .60*

Note. Syntax R2 = .47 for Step 1; ∆R2 = .18 for Step 2 (p < .001); KK R2 = .39 for Step 1; ∆R2 = .36
for Step 2 (p < .001).
* p < .001.

the soprano voice. That musical training may indeed influence attention in the perception of

closure supports Weiser’s claim that training facilitates flexible voice-tracking.55 Furthermore, a

recent study conducted by Psyche Loui and David Wessel showed that, even when presented

with a task that explicitly directed participants to attend to the contour of the melody, violations

in harmonic expectancy still influenced the behavioral responses of musicians.56 And because

this effect was not observed for nonmusicians, the authors claimed repeated exposure to

Western music results in the formation of automatic expectations to harmonic progressions that

musicians simply cannot ignore, even when asked to attend to other features of the stimulus. It

remains unclear, however, whether attention to bass-line motion in cadential contexts reflects a
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flexible voice-tracking strategy promoted during explicit formal training (i.e., in a pedagogical

setting), or an attentional bias formed simply through implicit exposure to Western music.

Cadential Strength

The previous analysis sought to explain effects of expertise by appealing to differences in

the attentional strategies employed during music listening. But perhaps differences in the

completion ratings of musicians and nonmusicians might also be explained by taking another

approach altogether, one in which we retain the cadential categories and propose a general

model of hierarchical cadential closure.

In a model of cadential strength, the perfect authentic cadence represents a good place to

begin. From even a cursory glance at the literature, it occupies a central position in music theory,

as it clearly represents the locus classicus for establishing thematic closure in the high classical

period. In Chapter 2 I also suggested that listeners versed in tonal music not only possess a

cognitive representation of the tonal hierarchy, but perhaps for those listeners especially familiar

with the classical style, a schematic representation explicitly for authentic cadential closure.57

During music listening, a number of parameters located within the cadential progression may

activate our schematic representation of closure in real time, allowing listeners to generate

harmonic and melodic expectations concerning the moment of cadential arrival. Accordingly, I

noted that any deviation on the musical surface would naturally result in a violation of listener

55Weiser, “Rating Cadence Stability,” 40–46.
56Psyche Loui and David Wessel, “Harmonic Expectation and Affect in Western Music: Effects of Attention and

Training,” Perception and Psychophysics 69, no. 7 (2007): 1084–1092. In a selective attention task, the authors asked
participants to respond to the contour of a melody as they were presented with harmonic progressions that were
either highly expected, slightly unexpected, or extremely unexpected. They found that the expectancy condition
affected the speed and accuracy of the contour judgment for musicians, but had no effect on nonmusicians.

57By this I mean not only a representation for harmonic closure, though such a claim has already been made by
Rosner and Narmour (“Harmonic Closure,” 397–398), but rather for a number of potential characteristics—both
syntactic and rhetorical—that appear within the cadential progression. However, the question as to whether
listeners actually possess such a representation remains open.
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expectations, and thus would be experienced as a decrease in the cadential strength of a given

excerpt. Deviations in melodic scale-degree and harmony at the cadential arrival thereby result

in cadential categories of diminished strength.58 In this view, the half cadence represents the

weakest cadential category; it is marked not by a deviation in the melodic and harmonic content

at cadential arrival, but rather by the absence of that content.

So according to this view, every cadential context is compared to one essential prototype:

the perfect authentic cadence. In Chapter 2, I referred to this model of cadential closure as

the 1-Schema model and noted its correspondence to Edward Latham’s model, which identifies

and subsequently weighs the criteria deemed necessary for establishing cadential closure on a

10-point scale.59 Recall that he assigns 5 points to tonic harmony and 5 points to the preceding

dominant, and he derives these scores from the scale-degrees present in the bass (1.5) and

soprano (0.5), from whether the sonority is in root position (1.5), and finally from the presence

of particular chord members (0.5) and a contextual feature: whether each sonority serves as a

harmonic and melodic goal (1.0). According to his criteria, the PAC category receives between

9 and 10 points (depending on whether the cadential tonic is elided), followed by IAC (8.5–9.5),

DC (6.5–8.5), EV (3.5–8.5), and finally HC (3.5–5.0), positioned near the bottom of the scale.

His model therefore conceptualizes a half cadence as an incomplete authentic cadence.

At the heart of the half-cadence issue is an inherent contradiction: that a dominant, which is

the penultimate harmony in an authentic cadential progression, can serve as a satisfactory goal.

Indeed, many scholars besides Latham envision the half cadence as an incomplete authentic

cadence, one in which the expected resolution to tonic simply never appears.60 And perhaps

58But such deviations need not only pertain to harmonic and melodic expectations. James Hepokoski and
Warren Darcy’s attenuated PAC, in which the moment of cadential arrival is marked by a sudden drop in dynamics
or an unexpected shift to the minor mode, provides one such example. See Elements of Sonata Theory, 170.

59Latham, “Drei Nebensonnen,” 308.
60See, for example, Hepokoski and Darcy, Elements of Sonata Theory. They describe the half cadential dominant

as an active dominant (24), one that necessarily implies resolution to an existing or implied tonic (xxv).
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the results of our experiment reflect this contradiction. Recall that while the two groups did

not differ in their completion ratings for the HC category, musicians provided much higher

familiarity ratings than nonmusicians. In contrast to musicians, nonmusicians also generally

disagreed that half cadences could complete a phrase or short passage of music. Thus, the effect

of expertise on the perception of half cadences remains patently unclear.

Caplin has posited another view of half cadence, in which a dominant, merely by virtue of

its harmonic-melodic content, can represent a harmonic end: “In the half-cadential progression,

the dominant itself becomes the goal harmony and so occupies the ultimate position. To be sure,

this dominant usually resolves to tonic, one that normally initiates a new harmonic progression,

but within the boundaries of the half-cadential progression itself, the dominant possesses enough

stability to represent a harmonic end.”61 Moreover, recall that Caplin distinguishes the half

cadence—one of the genuine cadence categories—from the deceptive and evaded cadences, which

represent failed attempts to achieve authentic cadential closure. In Chapter 2, I postulated an

alternative to the 1-Schema model, in which listeners may possess schematic representations for

each of the genuine cadences, called the Genuine Schemas model. Accordingly, we may rank

the strength of cadential closure beginning with the PAC category, followed by IAC and HC,

followed by the syntactically weaker cadential categories: the DC and EV categories.

By ranking each cadential category, we may compare the two models with the completion

ratings. Given that Latham has provided a method for quantifying closure, I have also calculated

the strength of closure for each excerpt using Latham’s criteria, which I will refer to as the

Latham model. Table 7.7 provides the estimates for each model. For the musicians, the Genuine

Schemas model accounts for 84% of the variance in their ratings, while the 1-Schema and

Latham models were less successful, accounting for between 55–60% of the ratings. For the

nonmusicians, however, the 1-Schemamodel provided the best fit, accounting for approximately

61Caplin, Classical Form, 29 (emphasis in original).



7.2 Experiment I 349

Table 7.7: Summary of regression analysis predicting the mean completion ratings for each
excerpt using the Genuine Schemas, 1-Schema, and Latham models as predictors.

Model Cadential Strength B SE B β R2

Musicians
Genuine Schemas PAC > IAC > HC > DC > EV 0.98 0.06 0.92* .84
1-Schema PAC > IAC > DC > EV > HC 0.81 0.10 0.76* .56
Latham 0.54 0.06 0.77* .59

Nonmusicians
Genuine Schemas PAC > IAC > HC > DC > EV 0.66 0.09 0.74* .53
1-Schema PAC > IAC > DC > EV > HC 0.73 0.08 0.8* .63
Latham 0.47 0.05 0.79* .61

* p < .001.

63% of the variance in their ratings.

What are we to make of this result? The 1-Schema model assumes that, when presented with

a cadential excerpt, listeners have no knowledge of the future, and thus, of the material that

may follow cadential arrival. Yet for a listener familiar with the classical style, the material

that follows instances of cadential failure often differs considerably from the material following

genuine cadential closure. By thwarting the expected moment of cadential arrival, theorists

typically conceptualize cadential deception and evasion as a kind of derailment. And in order

to attain the cadential closure initially promised, the subsequent passage typically features a

continuation of an earlier process, sometimes even a direct repetition of the previous cadential

progression itself, a compositional procedure Schmalfeldt refers to as the “one more time”

technique.62 Thus, Caplin refers to the PAC, IAC, and HC categories as genuine specifically

because they are the only categories that can achieve thematic closure.

What these results may suggest, however, is that the PAC, IAC, and HC categories also

achieve genuine status by virtue of the material following cadential arrival. A genuine cadence

62Schmalfeldt, “Cadential Processes.”
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therefore not only provides sufficient closure to permit the introduction of new initiating

material, but the perceived strength of such a cadence is also crucially influenced by the function

of the material following cadential arrival in the retrospective stage; or more generally put, the

surrounding context may be crucial to determining the strength of a given cadence.

So perhaps during music listening (and particularly during a first listening), the 1-Schema

model is the default for determining the strength of closure of a given ending, but the material

following each cadence subsequently compels listeners to retrospectively re-evaluate their earlier

impression, and thus, to adopt a model that embraces a theory of genuine cadential closure.

Given enough exposure to the style, however, listeners may apply this model even to excerpts

presented out of context, which would explain why musicians and nonmusicians disagreed as to

whether a half cadence could complete a phrase or short passage of music. But to consider this

claim in an experimental setting would nevertheless require stimuli that include the material

following cadential arrival, an approach that our experimental design did not permit. To address

this limitation, the stimuli in Experiment II include the material following cadential arrival

in order to examine how retrospective understanding influences the perception of cadential

strength.

§7.3 Experiment II

Experiment II considers two factors that might influence the perception of cadential closure in

the retrospective stage: (1) principles of segmental grouping, in which syntactic and rhetorical

features either reinforce, weaken, or violate schematic expectations for the terminal event(s)

of the cadence; and (2) the formal function of the subsequent passage (i.e., whether it serves

as a beginning, middle, or end for a new phrase or theme). The former entails the entire

range of parameters responsible for the perception of segment boundaries at various levels of
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the grouping hierarchy, such as the harmony, melodic scale-degree, metric position, rhythmic

duration, and surface rhythmic activity characterizing the events at cadential arrival, the

presence of an elision or caesura, a dramatic change in texture or dynamics, and so on. The

latter consists of the essential characteristics that distinguish the formal functions residing at the

phrase and theme levels in Caplin’s form-functional hierarchy, such as a post-cadential closing

section or standing on the dominant, a resumption of continuation and/or cadential function

within a thematic region, or the beginning of a new theme altogether.

To determine how the completion ratings might change following the inclusion of material

after the cadence, it was necessary to design the experiment with two context conditions, such

that participants first provide ratings for each excerpt presented out of context, as in Experiment

I, and then provide ratings again for the excerpts presented in context. This within-participant

design permits us to consider whether the ratings for excerpts presented out of context replicate

the ratings obtained in Experiment I, as well as provides a basis for comparing the ratings

obtained from both context conditions of Experiment II. Moreover, because the objective

in Experiment II was to examine the effect of the subsequent context on the perception of

cadential closure, it was also necessary to create a revised stimulus set, with the cadences further

categorized according to systematic differences relating to segmental grouping and formal

function.

In compositional practice, a number of formal options might follow the genuine cadence

categories, but for the deceptive and evaded categories the options are considerably more limited.

Thus, for the genuine cadence categories I selected two formal functions to serve as contextual

subtypes and one formal function to follow the cadential deviations. To examine the effect

of the formal function of the subsequent passage on the change in completion ratings, it was

also important to select excerpts in each subtype that maintained a consistent formal function

whenever possible, and to conclude each excerpt before reaching another cadence, double barline,
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or caesura, as these subsequent arrivals could bias participants towards rating the later ending. I

also attempted to select formal options following each of the genuine cadences that appear with

enough regularity in Mozart’s keyboard sonatas to warrant further experimental investigation.

Finally, the results obtained in Experiment I also indicated that surface dissonances influence

the perception of cadential closure for nonmusicians. For Experiments II-V, however, it was

desirable to maintain consistent stimuli to provide a basis of comparison for the results obtained

across all of the experimental tasks. Experiment V specifically required participants to indicate

as quickly as possible whether the final harmony of the cadential progression was in or out of

tune (see Chapter 8), so it was essential to synchronize the events at cadential arrival and remove

any surface dissonance that could affect participant accuracies and reaction times. Table 7.8

presents the cadence categories, a description of the post-cadential contextual subtypes, and the

reference information for each excerpt. The excerpts in bold were not selected in Experiment I,

and excerpts that included a surface dissonance at cadential arrival are marked with an asterisk

in the table.

Excerpts from the PAC category were classified according to whether the post-cadential

context featured either the beginning of the transition following the end of the main theme, or

a closing section appearing at the end of the subordinate theme. Example 7.3a presents a perfect

authentic cadence from the second movement of Mozart’s keyboard sonata in B-flat, K. 333,

with the resolution of the cadential idea appearing out of context to the right and above the initial

cadential progression, and with Mozart’s realization of the cadence presented in context below.

The arrow symbol in the caption indicates that the subtype “follows” the cadence, as in Example

7.3a, in which the transition follows the PAC. The transition begins in the penultimate measure

in the example, one measure after the cadence (i.e., PAC→Transition), but the appearance of

a new accompanimental bass pattern in the left hand coincides with the moment of cadential

arrival, potentially weakening the finality of the cadence. Since the structural beginning of the
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Table 7.8: Cadence categories, a description of the post-cadential context, and reference
information (Köchel index, movement, measures) for each excerpt. These excerpts comprised
the stimulus set for Experiments II-V.

Cadence Categories Post-Cadential Context Excerpts

Perfect Authentic → Be g inning K. 281, i, mm. 5–11
• Transition K. 283, i, mm. 10–20

K. 310, ii, mm. 5–10
K. 333, ii, mm. 5–10

→ After-the-End K. 279, i, mm. 26–33
• Closing Section K. 309, i, mm. 48–57

K. 333, i, mm. 54–62
K. 545, i, mm. 20–27

Imperfect Authentic → Be g inning K. 282, i, mm. 3–6
• Consequent K. 309, ii, mm. 1–6
• Transition K. 311, i, mm. 1–6

*K. 333, ii, mm. 22–28
→ Middl e/End *K. 311, ii, mm. 27–35

• Varied Repetition *K. 330, i, mm. 4–11
*K. 330, iii, mm. 39–47
*K. 533, iii, mm. 23–29

Half → Be g inning *K. 284, iii, mm. 1–7
• Consequent *K. 311, ii, mm. 1–6

K. 332, ii, mm. 3–5
*K. 547a, i, mm. 3–11

→ Be g inning *K. 280, i, mm. 21–30
• MC→ ST *K. 330, i, mm. 14–21

K. 333, iii, mm. 60–67
K. 533, i, m. 36–44

Deceptive → Middl e/End K. 279, i, mm. 7–12
• Varied Repetition K. 280, ii, mm. 16–20

K. 281, ii, mm. 32–38
*K. 282, i, mm. 11–14
*K. 282, iii, mm. 25–34
*K. 332, iii, mm. 22–31
K. 457, i, mm. 42–52
*K. 457, ii, mm. 9–12

Evaded → Middl e/End K. 279, ii, mm. 1–5
• Varied Repetition **K. 280, i, mm. 3–12

K. 281, ii, mm. 96–102
K. 281, iii, mm. 30–38
K. 309, i, mm. 13–20
K. 309, i, mm. 43–49
K. 309, iii, mm. 11–18
K. 333, iii, mm. 84–90

Note. Excerpts in bold were not selected in Experiment I.
* denotes the removal of a surface dissonance at cadential arrival.
** denotes the removal of an arpeggiated triad at cadential arrival.



354 Perceiving Closing Schemas: Completion Ratings

transition appears one measure after the moment of cadential arrival, Caplin distinguishes this

procedure, which he calls accompanimental overlap, from a genuine thematic elision, in which

the end of the main theme coincides with the beginning of the transition. Accompanimental

overlaps like this one are quite common at the juncture between main theme and transition

within sonata form, and they feature in three of the four examples selected for this subtype.63

In Example 7.3b, a closing section comprised of a two-measure codetta and its repetition

follows the cadence. As stated previously, for examples like this one that feature a cadence

within the closing section, I concluded the excerpt before the resolution of the second cadence

to discourage listeners from rating the more recent cadence (see the cadential progression in m.

62).64 All four excerpts from this subtype were selected from Allegro movements and feature

an expanded cadential progression and a cadential trill above the penultimate dominant.

For the IAC category, excerpts were classified according to whether a new initiating

phrase/theme or a varied repetition of the preceding continuation/cadential material followed

the cadence. Thus, cadences in the former subtype appeared most frequently in the main theme

in a period theme type, whereas cadences in the latter subtype appeared within the subordinate

theme as cadential deviations of the perfect authentic cadence. The IAC in Example 7.4a ends

the main theme, and like the previous example, features an accompanimental overlap between

the cadential arrival in m. 4 and the transition in m. 5. Two of the other examples from this

subtype end an antecedent phrase in a period (K. 311/i, mm. 1–10; K. 333/ii, mm. 22–28).

The remaining example from the IAC→Beginning subtype was difficult to classify, however,

63In K. 289/i, mm. 10–20, a caesura appears between the moment of cadential arrival and the initiation of the
transition.

64Caplin reserves cadential status for a PAC formula that closes a theme, so he refers to a PAC ending a
post-cadential phrase as a cadence of “limited scope” (“The Classical Cadence,” 86–89). For the PAC ending the
subordinate theme in the opening movement of K. 545, however, I was unable to conclude the excerpt before the
appearance of such a cadence in the closing section, as both codettas feature an abbreviated PAC of limited scope
(not shown). Visual inspection of the completion ratings did not reveal any significant differences between K. 545
and the remaining perfect authentic cadences, however.
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(a)

(b)

Example 7.3: PAC subtypes, with the moment of cadential arrival presented out of context above and the post-cadential
passage presented in context below. (a) PAC→Transition subtype: K. 333, ii, mm. 5–10; (b) PAC→Closing Section
subtype: K. 333, i, mm. 54–62.
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as the cadence was not followed by an unambiguous consequent phrase featuring the return

of the basic idea, but by a continuation phrase. Shown in Example 7.5, the cadence in m. 4

consists of a Prinner IAC ending the opening four-measure antecedent of a sixteen-measure

compound period.65 The continuation phrase follows the IAC in mm. 5–8, which suggests the

excerpt should be categorized in the Middle/End contextual subtype. But unlike the excerpts

selected for the Middle/End subtype, the continuation phrase in Example 7.5 does not feature a

varied repetition of prior continuation or cadential material following the moment of cadential

arrival (cf. Example 7.4b). What is more, the cadential idea consists of a stepwise descending

melody that resolves to 3̂, a characteristic found frequently in genuine IACs ending a phrase

or theme, whereas the cadential melody for the excerpts from the Middle/End subtype often

features stepwise ascending motion from 2̂ to 3̂ at the cadential arrival, suggesting a kind of

melodic deception that is more consistent with the cadential deviations found in subordinate

themes.66 Finally, a caesura and a melodic lead-in follow the cadential arrival in m. 4, and

Michel Vallières has noted the degree to which listeners interpret the unaccompanied melodic

lead-in as a prominent signal of a new beginning.67 For these reasons, I elected to categorize this

excerpt in the IAC→Beginning subtype in order to differentiate imperfect authentic cadences

found in compound periods within main themes from those found in the continuation and

cadential material located in subordinate themes.

The half cadence category was subdivided according to whether the moment of cadential

arrival is followed by a consequent phrase or by a prominent caesura and new thematic region.

65Caplin has recently examined a particular variant of Robert Gjerdingen’s Prinner schema that also functions
in certain contexts as an imperfect authentic cadence. In Gjerdingen’s theory, the Prinner consists of a two-voice
framework, with each voice presenting a descending scalar tetrachord: from 6̂ to 3̂ in the soprano, and from 4̂ to 1̂
in the bass. Caplin points out, however, that by inserting 5̂ between the final two notes of the bass tetrachord,
the Prinner takes on a distinctly cadential function, as in Examples 7.4a and 7.5. For a discussion of the “Prinner
cadence,” see Caplin, “Harmony and Cadence in Gjerdingen’s "Prinner".”

66Neuwirth, “Fuggir la cadenza, or the Art of Avoiding Cadential Closure,” 127-130.
67Vallières et al., “Perception of Intrinsic Formal Functionality,” 28.
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(a)

(b)

Example 7.4: IAC subtypes, with the moment of cadential arrival presented out of context
above and the post-cadential passage presented in context below. (a) IAC→Beginning subtype:
K. 282, i, mm. 2–5; (b) IAC→Middle/End subtype: K. 533, iii, mm. 23–29.

Although a post-cadential prolongation of dominant harmony often follows half cadences in

the classical style, I elected not to include those cases but rather to examine two subtypes that

feature new beginnings following the cadential arrival in order to examine the degree to which

parameters effecting segmental grouping might reinforce the perception of closure.68 Compared

to half cadences ending an antecedent phrase, half cadences preceding a prominent caesura and

the beginning of a new thematic region tend to close material residing at a higher level of the

formal hierarchy. As a consequence, we might expect these half cadences to receive higher

completion ratings relative to those ending an antecedent. Example 7.6a features a Simple half

cadence ending an antecedent phrase, with the consequent phrase beginning in the subsequent

68I also considered including another contextual subtype for the half cadence category that would examine half
cadences for which parameters related to segmental grouping do not reinforce the harmonic and melodic arrival,
but the duration of the experimental session at 90 minutes precluded the possibility of including further subtypes.
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Example 7.5: Mozart, Piano Sonata No. 7, K. 309, ii, mm. 1–16. The example presented in
context consists of mm. 1–6.

measure, while Example 7.6b presents an Expanding half cadence with Do-Fi-Sol melody (see

§5.4). The presence of a root-position V7 two measures before the cadential arrival is also

reminiscent of Nathan Martin and Julie Pedneault-Deslauriers’ Doppia half cadence type,69

though the bass moves up in the subsequent measure to E[, thus replacing the expected vii7/V

sonority with a German augmented sixth chord.

As I mentioned in Experiment I, these contextual subtypes still fail to consider the contri-

69Martin and Pedneault-Deslauriers, “The Mozartean Half Cadence,” 193–196. In their formulation, the Doppia
half cadence consists of the harmonic progression, V7–vii7/V–V, and the stepwise melodic descent, 4̂–[3̂–2̂. By
retaining the Do-Fi-Sol melody in Example 7.6b, Haydn was forced to abandon the Doppia progression so as to
prevent doubling the applied leading tone in the soprano and bass.
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(a)

(b)

Example 7.6: HC subtypes, with the moment of cadential arrival presented out of context above
and the post-cadential passage presented in context below. (a) HC→Consequent subtype: K.
311, ii, mm. 1–6; (b) HC→MC/ST subtype: K. 333, iii, mm. 60–67.

bution of a variety of other retrospective parameters that may affect the perception of closure.

Thus, in addition to these contextual subtypes, I have also characterized each excerpt in §7.3.3

according to parameters related to segmental grouping and formal function to examine the role

they might play in a correlational model.

7.3.1 Method

Participants

Participants were 30 members (17 female) of the Montreal community recruited through the

Schulich School of Music and the McGill University classified ads. Ages ranged from 18 to

33 (M = 22, SD = 4). Fifteen participants with music training equivalent or superior to

second-year-university level formed the musician group, and fifteen participants with less than
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one year of music training comprised the nonmusician group. To limit any effects caused by

familiarity with the stimuli, no participant with more than two years of formal study on the

piano was permitted to take part.

A questionnaire was administered to assess musical preferences and training. On average,

musicians had 10.6 years of study on a musical instrument (other than piano), 3.5 years of ear

training, 2.9 years of instruction in harmony, and 2.7 years of instruction in music analysis. At

the time of their participation, they additionally reported spending an average of 22.9 hours

each week engaged in instrumental practice. Participants also listened to an average of 19 hours

of music each week. All of the participants reported normal hearing, which was confirmed

with a standard audiogram administered before the experiment, and three participants indicated

they had absolute pitch.

Materials

The stimuli consisted of 40 excerpts selected from Mozart’s keyboard sonatas that contained an

equal number of perfect authentic, imperfect authentic, half, deceptive, and evaded cadences

(8 each). For the purpose of the experiment, two versions of each of the 40 excerpts were

created: an out of context version that did not include any material following cadential arrival

(M = 8.5 s, SD = 2.6 s), and an in context version that included on average an additional 7.2 s

of post-cadential material (M = 15.7 s, SD = 4.1 s).

Just as in Experiment I, performance features (such as dynamics and rubato) were neutralized

and the tempo of each excerpt was determined by convention. To ensure that unwanted

differences at cadential arrival would not affect completion ratings, the duration of the event(s)

at cadential arrival were recomposed to 900 ms (onset to offset) and any melodic dissonances

at cadential arrival were removed. Each stimulus was first created with the notation software

Sibelius and then realized as a .wav sound file at a sampling rate of 44.1 kHz and 16-bit resolution
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Figure 7.5: Screen shot of the interface used in Experiment II.

using a piano physical model created by PianoTeq (Modartt S.A.S., Ramonville Saint Agne).

Finally, to encourage participants to attend specifically to the moment of cadential arrival, a 1-s

fade-in was inserted at the beginning of each excerpt, and a 2-s fade-out was inserted at the end

of each excerpt presented in context.

Design and Procedure

The design for Experiment II was nearly identical to that of Experiment I, except that in

Experiment II the stimuli were presented at a constant level of 60 db SPL across the experimental

session, which was measured with a Brüel Kjær Type 2205 sound-level meter (A-weighting)

placed at the level of the listener’s ears.

The experimental task was also nearly identical to Experiment I, with the exception that

for excerpts presented in context the moment of cadential arrival did not represent the final

harmonic and melodic events of each excerpt. As a result, it was necessary to provide a visual

cue to alert participants to the moment of cadential arrival (see Figure 7.5). In each trial a
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playback cursor was provided at the top of the screen that followed along with the excerpt,

and a black vertical line was placed along the playback bar to mark the onset of cadential

arrival. After listening to each excerpt at least two times, participants were instructed to provide

completion, confidence, and familiarity ratings for the event(s) marked by the black vertical line,

as well as respond to two separate statements regarding whether the event(s) at the black line

could complete (1) an entire work or movement, or (2) a phrase or short passage within that

movement.

The 40 excerpts were presented in context and out of context in two blocks, with participants

rating the excerpts presented out of context first. In the first block, participants were given

identical instructions to those found in Experiment I, but in the second block, the participants

were additionally instructed to consider the material following the black line when making

their ratings. To familiarize the participants both with the range of stimuli as well as with the

experimental task, the session began with an exposure phase and a practice phase consisting

of 10 additional excerpts preceding the first block, and another practice phase consisting of 5

additional excerpts preceding the second block. After completing the experiment, participants

filled out a short questionnaire addressing their music background.

7.3.2 Results

Cadence Categories

Figure 7.6 presents bar plots of the completion ratings for each of the five cadence categories.

When the excerpts were presented out of context (top left), the ratings for both groups replicated

the results from Experiment 1 (see Figure 7.2). A mixed 5 × 2 ANOVA revealed a main effect

of cadence category, F (3.13, 87.51) = 166.72, ε = 0.78, p < .001, η2 = .84, and a significant

interaction, F (3.13, 87.51) = 4.12, p < .01, η2 = .02, but the main effect of training was
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not significant. A polynomial contrast of the cadence categories also identified the same

descending linear trend from the PAC to EV categories that was observed in Experiment I,

F (1, 28) = 367.31, p < .001, η2 = .91. For the musician group, post hoc analysis revealed

significant differences between each adjacent pair of cadence categories (p < .01), with the

exception of the DC-EV pair. Musicians and nonmusicians also did not differ in their ratings

of the genuine cadence categories, nor did post hoc tests reveal significant differences between

the HC, DC, and EV categories for the ratings of the nonmusician group. In Experiment 1,

excerpts from the DC category also elicited significantly higher ratings from nonmusicians

relative to those from the HC category. In the context of Experiment II, the same trend also

emerged, but this difference was not significant (p > .05).

When the excerpts were presented in context (top right), however, nonmusicians’ ratings

demonstrated the same descending linear trend that was observed in the ratings of the musician

group from Experiment I and in both of the context conditions from Experiment II. To consider

how the completion ratings changed when the excerpts were heard in context, the ratings made

for excerpts heard out of context were subtracted from the corresponding ratings made for

excerpts heard in context. Shown in the bottom plot of Figure 7.6, the solid blue bar in the PAC

category indicates that musicians on average rated perfect authentic cadences heard in context

nearly one unit lower on the completion scale.70 A 5 × 2 ANOVA of the change in completion

ratings revealed a main effect of cadence category, F (2.88, 80.66) = 22.45, ε = 0.72, p < .001,

η2 = .44, but there was no effect of training, and no interaction. A polynomial contrast of the

cadence categories also revealed a significant quadratic trend from the PAC to EV categories,

F (1, 28) = 51.79, p < .001, η2 = .64, with the observed means in both groups exhibiting an

upside down U-shape from the outer cadence categories (PAC and EV) to the inner category

70As a general rule of thumb, if the error bar for a given bar does not cross the x-axis, the difference between
the completion ratings for excerpts presented in context compared to out of context is significant.
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Figure 7.6: Top: Bar plots of the mean completion ratings for the out-of-context (left) and
in-context (right) conditions for each cadential category, with musicians in solid blue and
nonmusicians in diagonal red. Bottom: Bar plot of the mean difference in the completion
ratings between the out-of-context and in-context conditions. Whiskers represent the 95%
confidence interval.

(HC). A 2× 2 ANOVA comparing the completion ratings for the two context conditions of the

PAC category indicated that both groups provided lower ratings for excerpts heard in context,

F (1, 28) = 27.23, p < .001, η2 = .49, and musicians also provided generally higher ratings than

nonmusicians on average, F (1, 28) = 7.68, p = .01, η2 = .22. The participants also tended to

provide lower ratings for excerpts from the IAC category when they were presented in context,

regardless of training, but this tendency did not reach significance, F (1, 28) = 2.55, p > .05. For

the HC category, both groups rated excerpts heard in context as more complete than those heard

out of context, F (1, 28) = 19.16, p < .001, η2 = .39. The context condition did not significantly
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influence completion ratings for the remaining categories.

In the previous section, I suggested that musicians may apply a model of genuine cadential

closure even to excerpts presented out of context as a result either of extensive exposure or

explicit training, whereas nonmusicians must rely to a greater extent on the material following

cadential arrival to determine the perceived strength of the cadential ending. The crucial point

here is that the cadential status of any potential ending is at least partially dependent on the

material following the moment of cadential arrival, where parameters related to segmental

grouping will likely play a greater role. For the half cadence, the results presented in Figure

7.6 provide evidence in support of that hypothesis, since half cadences are characterized by

the appearance of various metrical, textural, and rhythmic devices after the onset of cadential

arrival that serve to reinforce an otherwise active and unstable sonority. And indeed, when

presented out of context, as in Experiment I and in the corresponding condition of Experiment

II, the nonmusician group implicitly positioned the half cadence near the bottom of the

cadential hierarchy. Yet when these excerpts were presented in context, the nonmusician group

positioned the half cadence somewhere in the middle, thereby replicating the cadential hierarchy

demonstrated in the musician completion ratings from Experiment I.

For the PAC category, however, both groups provided significantly lower ratings when

they heard the excerpts in context. The apparent contradiction embedded within the task—

determining whether the events at cadential arrival could end the excerpt “without the need for

anything further” when more material did always follow—forced participants to choose between

prospective and retrospective vantage points. Faced with such overwhelming retrospective

evidence that the cadential arrival failed to serve as the excerpt’s literal end, both groups elected

to lower the completion ratings for excerpts from the PAC category and reserve the very top of

the scale for passages which feature silence following the events at cadential arrival.

Still, if the context surrounding the cadential arrival plays a significant role in determining
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the strength of the ending, one would expect that excerpts from the EV category presented in

context would receive significantly lower ratings than those presented out of context, since the

latter excerpts impose an artificial boundary at the cadential arrival that might elicit higher

ratings from participants. As mentioned previously, the EV category is characterized by the

appearance of events at the precise moment of cadential arrival that interrupt the perceived

grouping structure and initiate the subsequent phrase. What is more, the excerpts selected for

the EV category in Experiment II “back up” and re-initiate the preceding continuation/cadential

material so as to attempt the cadence “one more time,” thus providing the listener with yet

clearer retrospective evidence that the expected cadence was not realized. Presumably in such

instances listeners with access to the surrounding context would provide significantly lower

completion ratings relative to those without such access, but these findings do not justify that

assumption. We may only conjecture from the results presented here that the position of

the half cadence within the general cadential hierarchy is dependent on parameters that both

precede and follow cadential arrival, whereas for the remaining categories the role played by

parameters that appear after the events at cadential arrival is less clearly defined.

Contextual Subtypes

Figure 7.7 presents bar plots of the change in completion ratings observed for the contextual

subtypes of the genuine cadence categories. Beginning with the PAC category, a 2 × 2 × 2

ANOVA of the completion ratings with within-participant factors of context (in context, out of

context), subtype (transition, closing section), and training (musicians, nonmusicians) revealed

a significant effect of subtype, F (1, 28) = 8.84, p < .01, η2 = .24. As in Experiment I, both

groups provided higher ratings for excerpts selected from the subordinate theme compared to

those selected from the main theme (cf. Figure 7.3). Shown in the top left plot in Figure 7.7,

however, the particular subtype that followed the category did not elicit significantly different
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Figure 7.7: Top: Bar plots of the mean difference in the completion ratings between the
out-of-context and in-context conditions for the genuine cadence categories, with musicians in
solid blue and nonmusicians in diagonal red. Whiskers represent the 95% confidence interval.

completion ratings for excerpts heard in context compared to out of context. Instead, both

groups provided significantly lower completion ratings for excerpts heard in context, regardless

of subtype.

For the IAC category, musicians and nonmusicians provided higher completion ratings

for excerpts from the main theme subtype that were followed either by a consequent phrase

(i.e., in a period or period hybrid) or by the beginning of the transition, F (1, 28) = 45.70,

p < .001, η2 = .61. Moreover, excerpts from the subordinate theme that were followed by a

varied repetition of previous continuation or cadential material received significantly lower

ratings when they were heard in context compared to out of context, F (1, 28) = 5.53, p < .05,

η2 = .16, providing further evidence that the perceived strength of a cadence—in this case an
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imperfect authentic cadence—may be influenced by the surrounding context.

Finally, both groups rated half cadences selected from the main theme that were followed

by a medial caesura and the beginning of the transition as more complete than half cadences

followed by a consequent phrase within the main theme, F (1, 28) = 6.08, p < .05, η2 = .16.

This effect was also more pronounced in nonmusicians, F (1, 28) = 4.77, p < .05, η2 = .12,

which again suggests segmental grouping may play a more prominent role for nonmusicians in

judgments of completion.

Movement Completion and Phrase Completion Ratings

Just as in Experiment I, the movement ratings provided few notable results, so the following

analysis attends specifically to the phrase completion ratings for excerpts from the HC category.

Figure 7.8 provides a bar plot of the distribution of the percentage of responses for excerpts

from the half cadence category, with ratings for excerpts heard out of context above and in

context below the x-axis. When the excerpts were presented out of context, both groups wavered

between general agreement (47%) and general disagreement (53%), but when the excerpts were

presented in context, in nearly 68% of their responses the participants generally agreed with the

statement that the half cadence could complete a phrase or short passage of music, and this

difference was significant,U = 20, 850, p < .001, r = −.25.

To visualize the difference between the two training groups more clearly, Figure 7.9 presents

the degree of change in the Likert scale ratings when the excerpts were heard in context, with

musicians’ ratings above the x-axis in solid blue and nonmusicians’ below in diagonal red. The

x-axis indicates whether the ratings for excerpts from the HC category remained the same (0),

increased (>0), or decreased (<0) when they were heard in context. The plot visualizes the

earlier finding that both groups very rarely provided comparatively lower ratings when the

excerpts were presented in context, instead exhibiting a tendency to provide higher ratings.
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Figure 7.8: Bar plot of the distribution of the percentage of responses for the half cadence
category for the statement, “this excerpt could complete a phrase or short passage of music,”
with excerpts rated out of context appearing above the x-axis and excerpts rated in context
appearing below. The ratings of musicians and nonmusicians appear in blue (on the left) and
red (on the right), respectively. Pattern fills denote response types.

7.3.3 Modeling the Change in Completion Ratings

Taken together, these results support an increasingly temporal view of cadential perception,

whereby the events at and following cadential arrival may realize, revise, or indeed, entirely

contradict schematic expectations for cadential closure. In this retrospective stage, segmental

grouping and form-functional identification inform previous interpretations of cadential closure,

challenging initial impressions in some instances, reinforcing them in others. The half cadence

category is exemplary in this regard. In the context of Experiment I, nonmusicians rated

half cadences near the bottom of the cadential hierarchy, but in Experiment II, both groups

provided significantly higher completion ratings for half cadence excerpts presented in context.

What is more, nonmusicians provided lower ratings for imperfect authentic cadences from the

subordinate theme that were followed by a varied repetition of the continuation and cadential

material, suggesting the temporal function of the passage following cadential arrival may also

influence the perception of closure. But whereas parameters in the retrospective stage apparently

play an important role in the perception of cadential closure for nonmusicians, it is noteworthy
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Figure 7.9: Bar plot of the distribution of the change in responses for the half cadence category
for the statement, “this excerpt could complete a phrase or short passage of music,” with
musicians’ ratings above the x-axis in solid blue and nonmusicians’ ratings below in diagonal
red.

that few such effects emerged in the musician ratings. To be sure, if prediction is indeed the

“primary thing” the brain does, as Jeff Hawkins and Sandra Blakeslee have recently suggested,71

perhaps long-term stylistic knowledge acquired by passive exposure or explicit training biases

musicians toward increasingly prospective processing during music listening.

Nevertheless, the preceding analysis takes a rather coarse-grained approach to the examina-

tion of retrospective parameters on the perception of cadential closure, in which I attempted

to distill a complex of co-varying features characterizing the events at and following cadential

arrival—including texture, dynamics, rhythmic duration, metric position, surface rhythmic

activity, register, and so on—into a few general subtypes to examine the post-cadential formal

functions that appear frequently following cadences. The selection of these cadential categories

and contextual subtypes therefore presents a rather incomplete picture of retrospective process-

ing. Thus, as in Experiment I, we may benefit from a correlational approach to the change

in completion ratings, one that seeks to identify those parameters that explain changes in the

71Hawkins and Blakeslee, On Intelligence, 89.



7.3 Experiment II 371

completion ratings without regard for the contextual subtypes I initially selected.

To consider the role these retrospective parameters might play, I selected 11 features fol-

lowing cadential arrival that characterize (1) the presence of a segment boundary, and (2) the

post-cadential passage (see Table 7.9).

1. Segment Boundary. Four continuous features, one dichotomous feature, and one

ordinal feature characterize segment boundaries: the next note onset following the onset

of cadential arrival in seconds (Next Note Onset), the next note onset that appears in

the bass voice in seconds (Next Bass Note Onset), the next note onset that appears in the

soprano voice in seconds (Next Soprano Note Onset), the number of notes appearing in a

1.5 s window beginning at the onset of cadential arrival (Event Density), the presence of a

rest in all four instrumental parts (Caesura), and the superposition of a new intrathematic

region, an accompanimental overlap in the bass, or a melodic lead-in at the onset of

cadential arrival (Elision).72

2. Post-Cadential Passage. Two categorical, one dichotomous, and two continuous features

characterize the passage following cadential arrival: the formal function of the subsequent

passage at the theme level, identified as before-the-beginning, beginning, middle, end, or

after-the-end (Interthematic Function), the formal function of the subsequent passage

at the phrase level, identified as beginning, middle, or end (Intrathematic Function), the

presence of a varied repetition of material from the continuation and cadential progression

preceding the onset of cadential arrival (Repetition), the duration of the stimulus in seconds

(Stimulus Duration), and the duration of the stimulus from the onset of cadential arrival

to the end of the excerpt in seconds (Stimulus Duration from CA).

72The excerpts selected for Experiment II did not feature interthematic elision (e.g., an elision of the main
theme with the transition).
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Table 7.9: Descriptive statistics for the 11 retrospective features.

Retrospective Features M (SD) Range Mode (Frequency)

Segment Boundary
(1) Next Note Onset (s) .57 (.44) .1–1.8
(2) Next Bass Note Onset (s) .97 (.77) .1–2.8
(3) Next Soprano Note Onset (s) .99 (.66) .1–2.6
(4) Event Densitya 9.98 (5.25) 3–19
(5) Caesurab Absent (28)
(6) Elisionc None (26)

Post-Cadential Passage
(7) Interthematic Functiond End (20)
(8) Intrathematic Functione Beginning (19)
(9) Repetition Present (25)
(10) Stimulus Duration (s) 15.68 (4.14) 9.2–27.6
(11) Stimulus Duration from CA (s) 7.20 (2.15) 3.6–14.1

a Event Density (1.5) refers to the number of notes identified in a 1.5 s window starting from the onset of
cadential arrival.
b Caesura refers to the presence of a rest across all four instrumental parts.
c Elision refers to the superposition of a new intrathematic phrase at the moment of cadential arrival, an
accompanimental overlap in the bass, or a melodic lead-in.
d Interthematic Function refers to one of the following temporal functions to characterize the passage at
the theme level following cadential arrival: Before-the-Beginning, Beginning, Middle, End, After-the-End.
e Intrathematic Function refers to either the Beginning, Middle, or End functions that characterize the
passage at the phrase level following cadential arrival.

Of the features presented above, Elision requires further explanation. This feature character-

izes the superposition of initiating material at cadential arrival on an ordinal scale, where an

intrathematic elision (e.g., a cadential phrase with a post-cadential standing on the dominant)

constitutes the clearest case of form-functional elision in this study, thereby receiving the highest

ranking on the Elision scale. In many instances, however, an accompanimental bass pattern

in the left hand coincides with the moment of cadential arrival, but the moment of structural

beginning appears instead in the following measure. For this reason, the sense of elision is

weakened by the absence of initiating melodic-motivic material at the moment of cadential
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arrival. Finally, a few of the excerpts selected for this study feature an unaccompanied melodic

lead-in beginning at the cadential arrival, but the absence of material in the lower voices results

in a covered caesura, thereby weakening the impression of elision still further. Stimuli that did

not include any of these features received the lowest score.

Correlations were calculated for each of the retrospective features with the change in com-

pletion ratings from both groups. Shown on the left in Table 7.10, the musician ratings were

significantly correlated with four retrospective features—Next Note Onset, Next Bass Note Onset,

Caesura, and Elision—and the nonmusician ratings were correlated with seven retrospective

features—Next Note Onset, Next Bass Note Onset, Event Density, Caesura, Elision, Interthe-

matic Function, and Stimulus Duration. After controlling for cadence category membership,

three further correlated features emerged for the musician ratings—Next Soprano Note Onset,

Interthematic Function, and Intrathematic Function—and Stimulus Duration was replaced by

Intrathematic Function for the nonmusician ratings.

Significant correlations for Next Note Onset, Next Bass Note Onset, and Next Soprano Note

Onset—both before and after controlling for cadence category membership—suggest changes in

the completion ratings resulted in part from surface activity at cadential arrival, where excerpts

characterized by longer durations between the onset of cadential arrival and the next note onset

received positive changes in completion ratings when they were presented in context. After

controlling for cadence category, features characterizing the temporal function of the passage

following cadential arrival also displayed significant correlations with the change in completion

ratings, where excerpts that were followed either by interthematic or intrathematic beginnings

received positive changes in completion ratings.

Despite the apparent significance of these correlations, however, many of the retrospective

features identified for this study were themselves also highly correlated. In regression models,

collinearity amongst model predictors violates a basic assumption of linear regression, since it
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Table 7.10: Left: Correlations of retrospective features with the change in completion ratings of
musicians and nonmusicians. Right: Semi-partial correlations controlling for cadential category.

Retrospective Features r Retrospective Features sra

Musicians
Next Note Onset .50** Next Note Onset .70***
Next Bass Note Onset .46** Next Bass Note Onset .47**
Caesura −.35* Next Soprano Note Onset .35*
Elision .47** Caesura −.39*

Elision .38*
Interthematic Function −.48**
Intrathematic Function −.41*

Nonmusicians
Next Note Onset .58*** Next Note Onset .72***
Next Bass Note Onset .53*** Next Bass Note Onset .53**
Event Density −.37* Event Density −.42**
Caesura −.48** Caesura −.51**
Elision .43** Elision .35*
Interthematic Function −.40* Interthematic Function −.57***
Stimulus Duration −.33* Intrathematic Function −.59***

Note. N = 40.
a sr = semi-partial (or part) correlation.
* p < .05 ** p < .01 *** p < .001.

would be impossible to determine which of two highly correlated predictors in a regression

model—say Next Note Onset and Next Bass Note Onset—is actually responsible for variations

in the dependent variable. Given the multicollinearity demonstrated in the feature set, as well

as the small sample size of the stimulus set, a regression model embracing multiple predictors

would thus not be advisable in the context of Experiment II.

But then again, this finding is not particularly surprising given that the very idea of para-

metric congruence is essentially synonymous with characterizing closure as a point of arrival

exhibiting a high degree of statistical covariation. To be sure, scholars often articulate closure

as a convergence of features interacting at various levels of the grouping hierarchy to achieve
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moments of rest, relaxation, or repose. In this sense, segment boundaries at relatively local

levels should be marked by clusters of covariation between a number of parameters, and the

intercorrelations shown in Table 7.9 support this view. To examine these issues yet further,

however, isolating the contribution of each parameter and determining its degree of covariation

with the other parameters that effect closure, would entail a careful recomposition of the

selected stimuli to examine surface rhythmic activity, elision, and formal function, issues that

extend far beyond the results obtained in this experiment.

§7.4 Conclusions

The goal of this chapter was to explore the underlying mechanisms responsible for the perception

of cadential closure in Mozart’s keyboard sonatas using an explicit rating task. The findings

from Experiment I indicate that, regardless of training, listeners appear to differentiate among

the categories of genuine cadences (PAC, IAC, HC). The harmonic and melodic content at the

cadential arrival (i.e., the syntactic parameters of tonal music) therefore play a pivotal role in

the perception of closure. Moreover, both groups provided higher completion, confidence, and

familiarity ratings for the PAC category than for the other categories, providing converging

evidence in support of the claim that listeners familiar with Western music possess a schematic

representation for authentic cadential closure.73

From the inclusion of subtypes within each category, a number of conclusions may be

drawn. First, the formal context of the PAC category significantly affected the perception

of completion, regardless of music training, with excerpts drawn from subordinate themes

receiving higher completion ratings. As I noted in Figure 7.1, perfect authentic cadences ending
73Eberlein, “A Method of Analysing Harmony, based on Interval Patterns or “Gestalten?”; Eberlein and Fricke,

Kadenzwahrnehmung und Kadenzgeschichte: ein Beitrag zu einer Grammatik der Musik; Gjerdingen, Music in the
Galant style; Rosner and Narmour, “Harmonic Closure”; John A. Sloboda, The Musical Mind: The Cognitive
Psychology of Music (Oxford: Oxford University Press, 1985).
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subordinate themes exhibit a number of unique characteristics that might explain this result:

the expanded duration of the cadential progression, the increased surface activity (usually in

the form of an accompanimental Alberti bass), and the appearance of a melodic trill just prior

to the cadential arrival. These results also support Vallières’ claim that the sudden decrease in

surface activity at the cadential arrival may affect the perception of closure.74

Second, several results from the completion ratings in Experiment I for subtypes of the

IAC and DC categories suggest that nonmusicians attend predominantly to the melody when

assessing the completion of a given excerpt. First, they provided much higher completion

ratings than did musicians for deceptive cadences. Second, they were more sensitive to the

presence of a surface dissonance in the melody at the cadential arrival, as evidenced by their

lower ratings for that subtype of the imperfect authentic cadence category. Finally, differences

in the melodic scale degree in the deceptive cadence category significantly affected the ratings of

nonmusicians, with melodies featuring 1̂ receiving higher ratings than those featuring 3̂, a result

that was not replicated in the ratings of the musician group.

Contrary to the nonmusician group, musicians appeared to be much more sensitive to

variations in harmony at the cadential arrival, as they provided much lower completion ratings

for deceptive cadences than did nonmusicians. What is more, the harmony at the cadential

arrival in the evaded cadence category also significantly affected musicians’ ratings. Thus, the

observed results might suggest a difference in attending strategies, with melody playing a more

prominent role for nonmusicians, harmony a more prominent role for musicians.

Indeed, the regression estimates for the rhetorical features and tonal stability values strengthen

this claim, as both the Melodic Dissonance feature and the tonal stability values for the soprano

voice played a more substantial role in the nonmusician models. This finding supports Weiser’s

74Vallières, “Beginnings, Middles, and Ends: Perception of Intrinsic Formal Functionality in the Piano Sonatas
of W. A. Mozart,” 106.
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claim that music training may modulate attention, whereby nonmusicians demonstrate an

attentional bias toward the soprano voice and musicians appear to flexibly track between the

soprano and bass voices.75 There has been some empirical support for the claim that nonmu-

sicians privilege parameters related to melodic motion, such as pitch proximity and contour,

whereas musicians attend principally to harmonic factors, such as the interval size between

two events.76 Furthermore, as mentioned previously, Loui and Wessel have shown that these

differences of attention might not be conscious.77

Given the emphasis placed on the bass voice in identifying and categorizing cadences in

music theory, the musician estimates for the tonal stability values in the bass and soprano

voices are therefore not unexpected. It remains unclear, however, whether attention to bass-

line motion in cadential contexts reflects a flexible voice-tracking strategy promoted during

explicit formal training (i.e., in a pedagogical context) or an attentional bias formed simply

through implicit exposure to Western music, a distinction that requires further attention in

the experimental literature.78 What these results do suggest is that, when faced with an explicit

completion task, musicians appear to privilege the bass voice, whereas nonmusicians appear to

be more sensitive to subtle differences in the soprano voice.

However, the hypothesis that differences in the completion ratings for the failed cadence

categories may result from differences in attending strategy does not explain the significantly

lower familiarity ratings from the nonmusician group for half cadences, nor does it explain

why nonmusicians generally disagreed with the statement that half cadences could complete a

phrase or short passage of music. Indeed, the completion ratings also suggest a different ordinal

ranking of the cadential strength of each category for the two groups. The musician group

75Weiser, “Rating Cadence Stability,” 40–46.
76Vos and Pasveer, “Goodness Ratings of Melodic Openings and Closures.”
77Loui and Wessel, “Harmonic Expectation and Affect in Western Music.”
78Emmanuel Bigand, “More about the Musical Expertise of Musically Untrained Listeners,” Annals of the New

York Academy of Sciences 999 (2003): 304–312.
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provided the highest completion ratings for the PAC category, followed by the IAC, HC, DC,

and EV categories, and this ranking provides empirical support for what I have called, following

Caplin,79 the Genuine Schemas model (see §7.2.3, Cadential Strength). For the nonmusicians,

however, the HC category did not receive significantly higher ratings than either of the DC or

EV categories, and the 1-Schema model provided the best fit to their ratings.

The present findings may therefore suggest that listeners aware of the classical style have

learned to expect the material that typically follows these cadence categories. Differences in

the completion ratings for the HC, DC, and EV categories may thus result from a limit in the

experimental design. By imposing an artificial boundary at the end of the cadential arrival, the

findings from Experiment I do not consider the degree to which the perception of closure may

be affected by the material following the cadential arrival. And the results from Experiment

II largely confirmed this hypothesis, as both groups provided significantly higher completion

ratings for half cadences heard in context. What is more, the nonmusician completion ratings

for the excerpts heard in context demonstrated the same descending linear trend found in the

musician ratings in both experiments, which suggests that musical training improves prospective

processing, with musicians’ ratings demonstrating a genuine model of cadential closure even

without hearing the selected cadences in context.

A number of issues remain underexplored in these studies, however. First, any attempt to

model the perception of closure in tonal music must also account for the effect of rhetorical

parameters, an approach that traditional definitions of cadence generally do not embrace.

The appearance of a dissonance in the melody at cadential arrival, the presence of a cadential

trill, the sudden decrease in event density at the cadential arrival, and the duration of the

stimulus all significantly affected participants’ ratings of completion and may serve as important

cues to the impending cadence. Second, the prevailing view of cadential closure held in the

79Caplin, Classical Form, 43.
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Formenlehre tradition may unnecessarily privilege harmony and melody at the expense of

rhetorical features related to segmental grouping that reinforce or contradict the syntactic

formula at the moment of cadential arrival. Indeed, the findings from Experiment II suggest

that the perception of closure is at least partly influenced by the surrounding context, where the

presence of continued surface activity at the cadential arrival, an accompanimental overlap, or an

intrathematic elision could weaken the perceived strength of the preceding cadence. Given the

exploratory nature of the statistical approach (i.e., a correlational design), however, any future

investigations considering the relative importance of either rhetorical or retrospective features

must necessarily adopt a more controlled experimental design. Additionally, by selecting

excerpts from a stylistically narrow repertoire—Mozart’s piano sonatas—the characteristics that

define closure in these excerpts (and thus, the characteristics that may lead to the development

of learned schemata), may be idiomatic to this composer and genre. Unfortunately, relatively

little is currently known regarding the degree to which listeners internalize conventional closing

patterns that appear in other style periods or genres (e.g., romantic, rock, jazz).

Perhaps most importantly, these experiments do not provide direct evidence in support of

the claim that the perception of cadential closure results from the formation of expectations

during music listening. To be sure, one essential goal in selecting the stimuli was to explore the

effect of cadential failure on the perception of closure, an issue which has yet to be considered

in the experimental literature. Techniques for cadential deviation are a prevalent feature of the

classical style and serve an important formal and expressive function. Instances of cadential

failure could therefore provide ideal stimuli for future studies adopting a priming paradigm, as

cadential deviations represent a violation of expectation when the listener’s expectations are

highest. The next chapter therefore takes precisely this approach, examining the interaction

between expectations and cadential closure in three experiments.
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Chapter 8

Expecting Closing Schemas: Converging

Methods

Contemplating the future consequences of present actions has a proud lineage among us
primates, and is one of the secrets of what is still, by and large, the stunningly successful
story of humans on Earth.

Carl Sagan

Over the past three decades, the resurgence of associationist conceptions of mental processing

in experimental psychology—demonstrated by the emergence of theories like implicit learning,

connectionism, and predictive coding—has placed the study of expectations front and center.1

In the intellectual climate now prevalent, many scholars view the brain as a “prediction machine”

that generates expectations about future events by forming associations between co-occurring

attributes within the external environment.2 Philosopher Andy Clark suggests, for example, that

brains are “statistical sponges structured by individual learning and evolutionary inheritance

so as to reflect and register relevant aspects of the causal structure of the world itself.”3 For
1Bar, “The proactive brain: Using analogies and associations to generate predictions.”
2Clark, “Whatever next? Predictive brains, situated agents, and the future of cognitive science.”
3Ibid., 19.
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Clark, it is precisely the brain’s capacity to detect and remember such statistical regularities that

explains how humans can navigate complex sensory environments from one moment to the

next.

In Chapter 2 I suggested that music exploits this characteristic of the sensory-cognitive

apparatus by organizing events on the musical surface to reflect the kinds of statistical regularities

that listeners learn and remember. The classical cadence is one such example. According to the

top-down, schema-theoretic view of memory described in Part I, I argued that listeners who are

familiar with classical music have internalized the most common cadence categories as a flexible

network of rival closing schemata. During music listening, the activation of this network in

prospect results in the formation of expectations for the terminal events of the cadence. Thus, a

theory of expectation should appeal to the study of cadences because it provides a direct, causal

link between events on the musical surface and the schematic knowledge of listeners.

There is a good deal of support for the role played by expectancy in the perception of

closure,4 and numerous scholars besides myself have suggested that listeners might possess

schematic representations for cadences and other recurrent closing patterns.5 Yet there is cur-

rently very little experimental evidence justifying the link between expectancy and the variety

of cadences in music of the classical style, or indeed, in tonal music more generally. This point

is somewhat surprising given that the classical cadence is the quintessential compositional device

for suppressing expectations for further continuation.6 To be sure, the harmonic progression

and melodic contrapuntal motion preceding the moment of cadential arrival elicit very definite

expectations concerning the harmony, the melodic scale-degree, and the metric position of the

4Huron, Sweet Anticipation; Margulis, “Melodic Expectation”; Meyer, Emotion and Meaning in Music; Nar-
mour, The analysis and cognition of basic melodic structures.

5Eberlein, “A Method of Analysing Harmony, based on Interval Patterns or “Gestalten?”; Eberlein and Fricke,
Kadenzwahrnehmung und Kadenzgeschichte: ein Beitrag zu einer Grammatik der Musik; Gjerdingen, A Classic Turn
of Phrase; Meyer, Music, the arts, and ideas; Rosner and Narmour, “Harmonic Closure”; David Temperley, The
Cognition of Basic Musical Structures (Cambridge, MA: The MIT Press, 2004).

6Margulis, “Melodic Expectation,” 263.
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goal event.

Chapter 8 offers three experimental studies to examine whether the formation, fulfillment,

and violation of expectations contribute to the perception of cadential closure during music

listening. In §8.1 I review the evidence for melodic and harmonic expectations in experi-

mental psychology and consider the roles played by long-term and short-term memory in

the formation of expectations. §8.2 presents Experiment III, in which participants provided

explicit retrospective expectancy ratings both before and after hearing the moment of cadential

arrival for the cadential excerpts from Experiment II (see Table 7.8). To examine how these

ratings might vary over time for each cadence category, §8.3 presents Experiment IV, in which

participants provided continuous expectancy ratings on a slider while listening. To provide

an implicit measure of expectancy in §8.4, Experiment V employs a reaction time task under

the assumption that expected melodic and harmonic events at the moment of cadential arrival

are primed, thus facilitating processing speed. In this case, participants indicated as quickly as

possible whether the final chord event from each cadence was in or out of tune relative to the

preceding context. Finally, §8.5 simulates the findings for the stimuli from Experiments III-V

using three sensory-cognitive models of musical processing: the model of auditory sensory (or

echoic) memory developed by Marc Leman,7 which represents a sensory model of auditory

expectations; Petr Janata’s Tonal Space model,8 which projects the output of Leman’s model to

the surface of a torus using a self-organizing map (SOM) algorithm that has been trained on the

zeroth-order pitch distribution information from a tonal corpus, and thus combines sensory

and cognitive approaches to expectancy formation; and finally IDyOM,9 the cognitive approach

7Marc Leman, “An Auditory Model of the Role of Short-Term Memory in Probe-Tone Ratings,” Music
Perception 17, no. 4 (2000): 481–509.

8Petr Janata et al., “The Cortical Topography of Tonal Structures Underlying Western Music,” Science 298
(2002): 2167–2170.

9Pearce, “The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception
and Composition.”
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presented in Chapter 6, which predicts the next event in a musical stimulus by acquiring

simulated long-term knowledge from a tonal corpus through unsupervised statistical learning

of sequential structure.

§8.1 Expectations: Experimental Evidence

8.1.1 Explicit and Implicit Methods

According to psychologists Neal J. Roese and Jeffrey W. Sherman, expectancies are “beliefs

about a future state of affairs, subjective estimates of the likelihood of future events ranging

from merely possible to virtually certain.”10 These beliefs may be consciously held, reflecting

declarative knowledge accumulated through explicit training, or beneath conscious awareness,

reflecting tacit, procedural knowledge acquired through implicit exposure. As a consequence,

both explicit and implicit measures of expectancy appear in the experimental literature. David

Huron notes, however, that expectancy is a theoretical construct that is rarely directly observ-

able. As a result, researchers must operationally define a measurable quantity that is somehow

related to, if not synonymous with, the construct of interest.11 In this case, researchers often

employ a converging-methods approach in the hopes that demonstrable evidence from multiple

methodologies, both explicit and implicit, might better reflect the formation of expectations.12

Explicit measures typically consist of subjective ratings paradigms, in which participants

monitor and self-report their expectations on a scale or slider. In retrospective ratings tasks,

participants hear a musical context and then indicate the strength and specificity of their

10Neal J. Roese and Jeffrey W. Sherman, “Expectancy,” in Social Psychology: Handbook of Basic Principles, 2nd
ed., ed. Arie W. Kruglanski and E. Tory Higgins (New York: The Guilford Press, 2013), 91.

11Huron, Sweet Anticipation, 42.
12The converging-methods approach is particularly common in emotion studies. See, for example, Lorraine

Chuen, David Sears, and Stephen McAdams, “Psychophysiological Responses to Auditory Change,” Psychophysiol-
ogy, 2016, doi:10.1111/psyp.12633.

http://dx.doi.org/10.1111/psyp.12633
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expectations for further continuation,13 or provide a measure of uncertainty for the range of

possible future outcomes.14 Experimenters also sometimes follow the context with a target

(or probe) event and ask participants to indicate how well the target “fit” with (or completed)

the preceding context.15 In cases where the target event appears in the middle of the stimulus,

experimenters alert participants to the impending target using a visual cue,16 or they dispense

with the retrospective ratings paradigm entirely and instead employ a continuous ratings task,

in which participants use a slider to indicate how their expectations vary over time. Recent

examples of such tasks include continuous predictability judgments made during melodies,17

and continuous judgments of how well the musical context fit with a continuously sounding

probe tone.18 Finally, production tasks represent an alternative explicit measure in which

participants produce the expected continuation following a musical context, either by singing,19

13Mark A. Schmuckler, “Expectation in Music: Investigation of Melodic and Harmonic Processes,” Music
Perception 7, no. 2 (1989): 109–150.

14Hansen and Pearce, “Predictive Uncertainty”; Huron, Sweet Anticipation, 46.
15Emmanuel Bigand and Marion Pineau, “Global Context Effects on Musical Expectancy,” Perception and

Psychophysics 59, no. 7 (1997): 1098–1107; Lola L. Cuddy and Carole A. Lunney, “Expectancies Generated by
Melodic Intervals: Perceptual Judgments of Melodic Continuity,” Perception and Psychophysics 57, no. 4 (1995):
451–462; Krumhansl and Kessler, “Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial
Representation of Musical Keys”; E. Glenn Schellenberg, “Expectancy in Melody: Tests of the Implication-
Realization Model,” Cognition 58 (1996): 75–125; E. Glenn Schellenberg, “Simplifying the Implication-Realization
Model of Melodic Expectancy,” Music Perception 14, no. 3 (1997): 295–318; Mark A. Schmuckler, “Expectancy
Effects in Memory for Melodies,” Canadian Journal of Experimental Psychology 51, no. 4 (1997): 292–306; Barbara
Tillmann et al., “Harmonic Priming in an Amusic Patient: The Power of Implicit Tasks,” Cognitive Neuropsychology
24, no. 6 (2007): 603–622.

16Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural Manifes-
tations of Musical Expectation”; Barbara Tillmann and Frédéric Marmel, “Musical Expectations Within Chord
Sequences: Facilitation Due to Tonal Stability Without Closure Effects,” Psychomusicology 23, no. 1 (2013): 1–5.

17Tuomas Eerola and Carol L. Krumhansl, “Real-Time Prediction of Melodies: Continuous Predictability
Judgments and Dynamic Models,” in Proceedings of the Seventh International Conference on Music Perception and
Cognition, ed. Catherine Stevens et al. (Adelaide: Causal Productions, 2002), 473–476.

18Petri Toiviainen and Carol L. Krumhansl, “Measuring and Modeling Real-Time Responses to Music: The
Dynamics of Tonality Induction,” Perception 32 (2003): 741–766.

19James C. Carlsen, Pierre I. Divenyi, and Jack A. Taylor, “A Prelimary Study of Perceptual Expectancy in
Melodic Configurations,” Bulletin of the Council for Research in Music Education 22 (1970): 4–12; James C. Carlsen,
“Some Factors Which Influence Melodic Expectancy,” Psychomusicology 1, no. 1 (1981): 12–29; Sean Hutchins and
Caroline Palmer, “Repetition Priming in Music,” Psychology of Popular Media Culture 1(S) (2011): 69–88.
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playing,20 or notating the expected continuation.21

Explicit measures of expectancy have been criticized for confounding expectations derived

from explicit training with those resulting from implicit exposure. Emmanuel Bigand notes,

for example, that for tasks requiring the judgment of an aspect of musical structure for which

musicians have been explicitly trained, effects of expertise are sometimes confused with fa-

miliarity with the experimental task, the musical stimuli, or both.22 Production tasks are

particularly culpable in this regard, since singing, playing, or composing expected continuations

requires advanced musical training.23 What is more, Huron points out that explicit measures

require “conscious, contrived, reflective responses ... when under normal listening conditions

expectations may be largely unconscious and effortless.”24 For example, Barbara Tillmann and

her co-authors have found that individuals with amusia—a congenital disorder characterized

by severe deficiencies in the processing and production of pitch variations (commonly known

as tone-deafness)—often demonstrate severe impairments in expectancy-related tasks requiring

explicit processing, but behave similarly to healthy controls when responding to implicit tasks.25

These dissociations between implicit and explicit task performance have been found in various

neurological disorders (e.g., aphasia), suggesting that in most cases the formation, fulfillment,

and violation of expectations lie beneath conscious awareness, involving neurological substrates

that are more resistant to neurological attacks than those expectancies derived from explicit

20Mark A. Schmuckler, “Expectation in Music: Additivity of Melodic and Harmonic Processes” (PhD Disserta-
tion, Cornell University, 1988); Schmuckler, “Expectation in Music.”

21Steve Larson, “Continuations as Completions: Studying Melodic Expectations in the Creative Microdomain
Seek Well,” in Music, Gestalt, and Computing: Studies in Cognitive and Systematic Musicology, ed. Marc Leman
(Berlin: Springer-Verlag, 1997), 321–334.

22Bigand, “More about the Musical Expertise of Musically Untrained Listeners,” 304–305.
23Larson, “Continuations as Completions: Studying Melodic Expectations in the Creative Microdomain Seek

Well.”
24Huron, Sweet Anticipation, 45.
25Tillmann et al., “Harmonic Priming in an Amusic Patient.” See also Omigie, Pearce, and Stewart, “Tracking

of pitch probabilities in congenital amusia”; Omigie et al., “Electrophysiological correlates of melodic processing
in congenital amusia.”
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knowledge.26

For these reasons, implicit tasks are far more common in the experimental literature. To

measure expectations implicitly, experimental studies depend on the priming paradigm, which

assumes that the processing of incoming events is affected by the context in which they appear;

related or repeated events are primed, thus facilitating processing. In behavioral priming studies,

researchers employ a secondary task that draws the participants’ attention to features of the

stimulus other than those being assessed, but that may still be affected by the relatedness (i.e.,

expectedness) of the target event.27 Accuracies and response times (RTs) are then collected to

determine whether the preceding context primed participants to expect related or repeated

target events.

In psycholinguistics, the priming paradigm is used to examine the semantic relatedness

between word pairs using a lexical decision task. Participants are presented with related word

pairs like lion-tiger and unrelated word pairs like table-tiger and asked to indicate as quickly as

possible whether the target is an existing word from the English language or a nonword foil (e.g.,

tiger vs. tigel). RT studies employing the lexical decision task have repeatedly demonstrated

that the semantic relatedness of the word pair influences the accuracy and speed of the response,

providing evidence in support of the view that semantically related targets are primed.28

In their landmark 1986 study, “Reaction Time and Musical Expectancy: Priming of Chords,”

Jamshed J. Bharucha and Keiko Stoeckig adapted the lexical decision task to tonal harmony by

examining the tonal relatedness between chord pairs.29 Participants were presented with pairs

26Arthur S. Reber, “The Cognitive Unconscious: An Evolutionary Perspective,” Consciousness and Cognition 1,
no. 2 (1992): 93–133.

27Tillmann et al., “Harmonic Priming in an Amusic Patient,” 604.
28See, for example, James H. Neely, “Semantic Priming and Retrieval from Lexical Memory: Evidence for

Facilitatory and Inhibitory Processes,” Memory & Cognition 4, no. 5 (1976): 648–654; James H. Neely, “Semantic
Priming and Retrieval from Lexical Memory: Roles of Inhibitionless Spreading Activation and Limited-Capacity
Attention,” Journal of Experimental Psychology: General 106, no. 3 (1977): 226–254.

29Bharucha and Stoeckig, “Reaction Time and Musical Expectancy.”
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of major or minor triads that were either closely related (e.g., C major and G major) or very

distantly related (e.g., C major and F] major) on the circle of fifths, and asked to determine

whether the target triad was in or out of tune (in the out-of-tune condition, the fifth of the

chord was tuned flat by an eighth tone, or 25 cents). The authors found that participants were

faster and more accurate for the closely related targets, indicating that the preceding context

triad primed the participants to expect a target triad from a related tonal context.

Following their study, the priming paradigm became the canonical implicit method for

the study of expectations during music listening. Over the past three decades, researchers

have examined priming effects for melody,30 harmony,31 and timbre,32 as well as complex

interactions between multiple parameters, such as melody and harmony,33 and voice leading

and harmony.34 These studies have also employed a number of secondary discrimination tasks,

such as mode (major vs. minor),35 timbre (same vs. different),36 intonation (in tune vs. out

30Aarden, “Dynamic Melodic Expectancy”; Frédéric Marmel and Barbara Tillmann, “Tonal Priming Beyond
Tonics,” Music Perception 26, no. 3 (2009): 211–221.

31Bharucha and Stoeckig, “Reaction Time and Musical Expectancy”; Bigand and Pineau, “Global Context
Effects on Musical Expectancy”; Emmanuel Bigand et al., “Effect of Global Structure and Temporal Organization
on Chord Processing,” Journal of Experimental Psychology: Human Perception and Performance 25, no. 1 (1999):
184–197.

32Barbara Tillmann and Emmanuel Bigand, “Musical Priming: Schematic Expectations Resist Repetition
Priming,” in Proceedings of the 8th International Conference on Music Perception & Cognition, ed. Scott D. Lipscomb
et al. (Adelaide, Australia: Causal Productions, 2004), 674–676.

33Loui and Wessel, “Harmonic Expectation and Affect in Western Music.”
34Benedicte Poulin-Charronnat and Emmanuel Bigand, “The Influence of Voice Leading on Harmonic Prim-

ing,” Music Perception 22, no. 4 (2005): 613–627.
35Bharucha and Stoeckig, “Reaction Time and Musical Expectancy.”
36Marmel and Tillmann, “Tonal Priming Beyond Tonics”; Elizabeth Hellmuth Margulis and William H. Levine,

“Timbre Priming Effects and Expectation in Melody,” Journal of New Music Research 35, no. 2 (2006): 175–182;
Tillmann and Bigand, “Musical Priming: Schematic Expectations Resist Repetition Priming.”
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of tune),37 dissonance (consonant vs. dissonant),38 contour (up vs. down),39 and articulation

(legato vs. staccato).40 For every task, participants were slower and less accurate for target

events from a distantly related tonal context.

In addition to behavioral methods, researchers have examined priming effects using neural

and psychophysiological measures. Studies measuring central nervous system (CNS) activity

using electroencephalographic recordings (EEG),41 functional magnetic resonance imaging

(fMRI),42 and magnetoencephalography (MEG)43 have all demonstrated significant priming

effects for tonal materials. In EEG studies, for example, expectancy violations produce a

notable evoked response potential (or ERP) in the electrical currents produced by neuronal

activity measured on the surface of the scalp. Harmonic expectancy violations produce two

characteristic (i.e., replicable) components of the ERP: an early (right) anterior negativity

E(R)AN occurring between 150–280 ms after the onset of the target chord, which is believed to

reflect the cognitive processing of tonal harmony (what Stefan Koelsch has called the music-

37Bharucha, “Music Cognition and Perceptual Facilitation”; Hasan Gürkan Tekman and Jamshed J. Bharucha,
“Implicit Knowledge Versus Psychoacoustic Similarity in Priming of Chords,” Journal of Experimental Psychology:
Human Perception and Performance 24, no. 1 (1998): 252–260; Timothy Justus and Jamshed Bharucha, “Modularity
in Musical Processing: The Automaticity of Harmonic Priming,” Journal of Experimental Psychology: Human
Perception and Performance 27, no. 4 (2001): 1000–1011.

38Bigand and Pineau, “Global Context Effects on Musical Expectancy”; Bigand et al., “Effect of Global
Structure and Temporal Organization on Chord Processing”; Poulin-Charronnat and Bigand, “The Influence of
Voice Leading on Harmonic Priming.”

39Loui and Wessel, “Harmonic Expectation and Affect in Western Music.”
40Seung-Goo Kim, June Sic Kim, and Chun Kee Chung, “The Effect of Conditional Probability of Chord

Progression on Brain Response: An MEG Study,” PLoS ONE 6, no. 2 (2011): 1–9, doi:10.1371/journal.pone.
0017337.

41Petr Janata, “ERP Measures Assay the Difference of Expectancy Violation of Harmonic Contexts in Music,”
Journal of Cognitive Neuroscience 7, no. 2 (1995): 153–164; Aniruddh D. Patel et al., “Processing Syntactic Relations
in Language and Music: An Event-Related Potential Study,” Journal of Cognitive Neuroscience 10, no. 6 (1998):
717–733.

42Stefan Koelsch et al., “Adults and Children Processing Music: An fMRI Study,” NeuroImage 25 (2005):
1068–1076; Barbara Tillmann, Petr Janata, and Jamshed J. Bharucha, “Activation of the Inferior Frontal Cortex in
Musical Priming,” Cognitive Brain Research 16 (2003): 145–161.

43Burkhard Maess et al., “Musical Syntax Is Processed in Broca’s Area: An MEG Study,” Nature Neuroscience
4, no. 5 (2001): 540–545; Asuka Otsuka et al., “Neuromagnetic Responses to Chords are Modified by Preceding
Musical Scale,” Neuroscience Research 60 (2008): 50–55.

http://dx.doi.org/10.1371/journal.pone.0017337
http://dx.doi.org/10.1371/journal.pone.0017337
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syntactic mismatch negativity, or MMN);44 and a later bilaterial or right-lateralized negativity

(N5) occurring approximately 500 ms after the onset of the target chord, which is assumed

to reflect the integration of the target into the preceding harmonic context.45 Along with

CNS measures, priming effects have also been reported for peripheral psychophysiological

measures of autonomic nervous system (ANS) activity such as the skin conductance response,46

suggesting that both the CNS and ANS respond to expectancy violations in music.

The appeal of neural and psychophysiological methods in priming studies is that they mea-

sure implicit processes without requiring the experimenter to employ a competing secondary

task. For this reason, researchers sometimes also consider the influence of attention on ex-

pectancy. In an early ERP study by Stefan Koelsch and his co-authors, for example, participants

were presented with harmonic progressions featuring a syntactic violation, and then asked either

to attend explicitly to the stimulus, or to respond to a timbre discrimination task. The authors

44Stefan Koelsch, Schmidt Björn-Helmer Schmidt, and Julia Kansok, “Effects of Musical Expertise on the Early
Right Anterior Negativity: An Event-Related Brain Potential Study,” Psychophysiology 39 (2002): 657–663.

45Stefan Koelsch et al., “Brain Indices of Music Processing: "Nonmusicians" Are Musical,” Journal of Cognitive
Neuroscience 12, no. 3 (2000): 520–541; Koelsch, Schmidt, and Kansok, “Effects of Musical Expertise on the
Early Right Anterior Negativity”; Stefan Koelsch et al., “Effects of Unexpected Chords and of Performer’s
Expression on Brain Responses and Electrodermal Activity,” PLoS ONE 3, no. 7 (2008): 1–10; Sakari Leino
et al., “Representation of Harmony Rules in the Human Brain: Further Evidence From Event-Related Potentials,”
Brain Research 1142 (2007): 169–177; Psyche Loui et al., “Effects of Attention on the Neural Processing of
Harmonic Syntax in Western Music,” Cognitive Brain Research 25 (2005): 678–687; Maess et al., “Musical Syntax is
Processed in Broca’s Area: An MEG Study”; Mira Müller et al., “Aesthetic Judgments of Music in Experts and
Laypersons—An ERP Study,” International Journal of Psychophysiology 76 (2010): 40–51; Patel et al., “Processing
Syntactic Relations in Language and Music”; Nikolaus Steinbeis, Stefan Koelsch, and John A. Sloboda, “The Role
of Harmonic Expectancy Violations in Musical Emotions: Evidence from Subjective, Physiological, and Neural
Responses,” Journal of Cognitive Neuroscience 18, no. 8 (2006): 1380–1393; Eduardo G.A. Villarreal et al., “Distinct
Neural Responses to Chord Violations: A Multiple Source Analysis Study,” Brain Research 1389 (2011): 103–114.
ERP studies of melodic expectations have produced fewer characteristic (i.e., replicable) MMNs in response to
expectancy violations, but see Mireille Besson and Frédérique Faıta, “An Event-Related Potential (ERP) Study of
Musical Expectancy: Comparison of Musicians with Nonmusicians,” Journal of Experimental Psychology: Human
Perception and Performance 21, no. 6 (1995): 1278–1296; Robbin A. Miranda and Michael T. Ullman, “Double
Dissociation Between Rules and Memory in Music: An Event-Related Potential Study,” Neuroimage 38, no. 2
(2007): 331–345; Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and
Neural Manifestations of Musical Expectation.”

46Koelsch et al., “Effects of Unexpected Chords and of Performer’s Expression on Brain Responses and
Electrodermal Activity”; Steinbeis, Koelsch, and Sloboda, “The Role of Harmonic Expectancy Violations in
Musical Emotions.”
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found that the presence of a secondary task had no effect on the ERP components, suggesting

that attentional processes play very little role in the processing of harmonic syntax.47 In a later

study Psyche Loui and her co-authors reported similar null effects even when participants

were told to ignore the stimuli and study reading comprehension passages, though the authors

noted that the ERAN had a smaller amplitude and later onset in the reading condition.48 Thus,

violations of harmonic expectations elicit measurable ERPs even when participants explicitly

attend to other stimuli.

In sum, the evidence is overwhelming that the formation of expectations during music

listening plays a significant role in the processing of harmony and melody, parameters that

remain essential to the perception of (cadential) closure. Nevertheless, explicit and implicit

methods suffer from a variety of limitations that might endanger the generalizability of the

reported findings, so many studies take a converging-methods approach by employing both

explicit and implicit methods across several experiments.49 Thus, the first goal of the experi-

ments reported in this chapter was to investigate the link between expectancy and cadential

closure using both explicit and implicit behavioral methods. In Experiment III, participants

were presented with a truncated cadential excerpt, which omitted the final, target harmonic and

melodic events at the moment of cadential arrival, and a non-truncated excerpt that included the

final events. Following the truncated excerpt, participants indicated the strength and specificity

of their expectations for a musical continuation. Following the non-truncated excerpt, they

then indicated how well the final target events fit with the expectations they had formed during

the preceding context. In Experiment IV, participants provided continuous ratings of the

47Koelsch et al., “Brain Indices of Music Processing: "Nonmusicians" Are Musical.”
48Loui et al., “Effects of Attention on the Neural Processing of Harmonic Syntax in Western Music.”
49Bigand and Pineau, “Global Context Effects on Musical Expectancy”; Koelsch et al., “Effects of Unexpected

Chords and of Performer’s Expression on Brain Responses and Electrodermal Activity”; Steinbeis, Koelsch, and
Sloboda, “The Role of Harmonic Expectancy Violations in Musical Emotions”; Tillmann et al., “Harmonic
Priming in an Amusic Patient.”
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strength of their expectation that the end of the excerpt was imminent on a one-dimensional

analog scale. Finally, in Experiment V, participants indicated as quickly as possible whether the

final target harmonic and melodic events at the moment of cadential arrival were in or out of

tune, where out-of-tune targets were raised by 40 cents relative to the preceding context.

8.1.2 Stimuli: Staircasing Expectancy

Priming effects have generally been limited to stimuli featuring two or three expectancy levels:

an expected condition, which is usually represented by a root-position tonic triad in harmonic

contexts or 1̂ in melodic contexts; and an unexpected condition, which may feature any number

of harmonies or scale degrees from distantly related tonal contexts. Two stimulus sets feature

prominently in harmonic priming studies. The first appeared in a 1997 study by Emmanuel

Bigand and Marion Pineau, and has since been used in a number of other studies published

in the laboratories of Bigand and Tillmann. It consists of a set of four-voiced, homorhythmic

eight-chord sequences that culminate in a V–I authentic cadential progression in the expected

condition. The authors then preserved the two target chords (e.g., G major to C major) in the

unexpected condition but altered the preceding six-chord context to reflect the dominant key,

resulting in a I–IV target progression.50 Across both behavioral and neural measures, all of the

studies using this stimulus set replicated the findings from the initial study: participants were

faster and more accurate in response to the V–I progression relative to the I–IV progression,

50Bigand and Pineau, “Global Context Effects on Musical Expectancy”; Bigand et al., “Effect of Global
Structure and Temporal Organization on Chord Processing”; Poulin-Charronnat and Bigand, “The Influence
of Voice Leading on Harmonic Priming”; Barbara Tillmann and Emmanuel Bigand, “Global Context Effect in
Normal and Scrambled Musical Sequences,” Journal of Experimental Psychology: Human Perception and Performance
27, no. 5 (2001): 1185–1196; Tillmann, Janata, and Bharucha, “Activation of the Inferior Frontal Cortex in Musical
Priming”; Barbara Tillmann et al., “The Influence of Musical Relatedness on Timbre Discrimination,” European
Journal of Cognitive Psychology 18, no. 3 (2006): 343–358; Tillmann et al., “Harmonic Priming in an Amusic
Patient”; Barbara Tillmann et al., “Tonal Centers and Expectancy: Facilitation or Inhibition of Chords at the Top
of the Harmonic Hierarchy,” Journal of Experimental Psychology: Human Perception and Performance 34, no. 4
(2008): 1031–1043.
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suggesting that the preceding tonal context primed listeners to expect the more common

terminal harmonic progression.

The second most common stimulus set first appeared in a study by Stefan Koelsch, Tomas

Gunter, and Angela D. Friederici. It also consists of four-voiced, homorhythmic chord se-

quences that observe the rules of common-practice voice leading, and it also employs the

same authentic cadential progression in the expected condition. In the unexpected condition,

however, Koelsch replaced the expected root-position tonic with [II6, a choice which, while

syntactically incongruous, also rarely occurs in tonal music. Again, Koelsch and his colleagues

have repeatedly demonstrated harmonic expectancy violations for [II6, using both behavioral

and neural measures.51

Along with these stimulus sets, priming studies have also demonstrated expectancy violations

for diatonic harmonies and scale degrees from the same tonal context, such as I vs. V,52 and I vs.

vi in harmonic contexts,53 and 1̂ vs. 4̂ in melodic contexts.54 These increasingly subtle priming

effects are perhaps best exemplified in a recent study by Barbara Tillmann and her co-authors

that compared RTs for the three chords at the top of the harmonic hierarchy: I, V, and IV. Their

findings revealed a graded hierarchy of tonal stability, with participants responding most quickly

51Koelsch et al., “Brain Indices of Music Processing: "Nonmusicians" Are Musical”; Koelsch, Schmidt, and
Kansok, “Effects of Musical Expertise on the Early Right Anterior Negativity”; Koelsch et al., “Children Processing
Music”; Koelsch et al., “Adults and Children Processing Music: An fMRI Study”; Leino et al., “Representation of
Harmony Rules in the Human Brain”; Loui et al., “Effects of Attention on the Neural Processing of Harmonic
Syntax in Western Music”; Loui and Wessel, “Harmonic Expectation and Affect in Western Music”; Maess et al.,
“Musical Syntax is Processed in Broca’s Area: An MEG Study.”

52Barbara Tillmann et al., “The Costs and Benefits of Tonal Centers for Chord Processing,” Journal of
Experimental Psychology: Human Perception and Performance 29, no. 2 (2003): 470–482; Tillmann et al., “Tonal
Centers and Expectancy: Facilitation or Inhibition of Chords at the Top of the Harmonic Hierarchy”; Tillmann
and Marmel, “Musical Expectations Within Chord Sequences: Facilitation Due to Tonal Stability Without Closure
Effects.”

53Stefan Koelsch et al., “Untangling Syntactic and Sensory Processing: An ERP Study of Music Perception,”
Psychophysiology 44, no. 3 (2007): 476–490; Kim, Kim, and Chung, “The Effect of Conditional Probability of
Chord Progression on Brain Response: An MEG Study.”

54Frédéric Marmel, Barbara Tillmann, and Charles Delbé, “Priming in Melody Perception: Tracking Down the
Strength of Cognitive Expectations,” Journal of Experimental Psychology: Human Perception and Performance 36,
no. 4 (2010): 1016–1028.
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for tonic targets, followed by dominant targets, and then subdominant targets. Frédéric Marmel

and Tillmann also extended this non-tonic priming effect to melodic contexts, observing that

participants were faster and more accurate for 3̂ relative to 7̂.55

These stimulus sets have since been criticized for conflating general harmonic expectations

formed during music listening with those expectations pertaining to the “closing” progressions

of tonal music. Tillmann and Marmel recently noted, for example, that the terminal position of

the target could prime participants to expect a tonic target, regardless of the context preceding

it. Using the same stimulus set, the authors selected tonic and dominant targets located at

various positions within each stimulus and employed a visual cue to alert the participants to the

impending target.56 They found that participants were faster for tonic over dominant targets

regardless of the temporal position of the target, though participants were also significantly

faster for targets appearing at later positions. Thus, participants were primed by the length and

content of the preceding context, and not by an implicit awareness of the temporal position of

the target.57 Nevertheless, the authors could not discount the possibility that mid-stimulus tonic

targets might elicit closing effects. Moreover, they did not consider the potential reciprocal

influence between expectancy and closure: A cadential progression at the end of a phrase or

theme might affect the strength and specificity of our expectations, but presumably those

expectations also contribute to the perception of closure.

To be sure, much of the debate surrounding the link between expectancy and closure in the

priming literature concerns the manner of the cognitive representation(s) that a tonal context

presumably primes.58 Given the degree to which zeroth-order frequency distributions of note

55Marmel and Tillmann, “Tonal Priming Beyond Tonics.”
56A number of priming studies have used this approach. See, for example, Aarden, “Dynamic Melodic

Expectancy”; Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural
Manifestations of Musical Expectation.”

57Tillmann and Marmel, “Musical Expectations Within Chord Sequences: Facilitation Due to Tonal Stability
Without Closure Effects.”

58Researchers even disagree as to whether priming effects result from mental representations of tonal structure
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and chord events have dominated the field in recent decades,59 priming studies often assume

that the variable-order relations between events in the preceding context contribute very little

to tonal priming effects. Nevertheless, several studies select target melodic and harmonic events

by appealing to the syntactic relations between the context and the target using either fixed,

first-order context models (i.e., transition probabilities),60 or more sophisticated variable-order

context models.61 The assumption in these studies is that listeners with exposure to tonal music

possess schematic representations for recurrent temporal patterns such that a stimulus context

activating one or more of those representations will prime certain targets over others. That is,

the specific order of events in the context determines whether, and to what degree, the target

will be primed. Following Helen Brown, we might call priming effects induced by schematic

knowledge of zeroth-order frequency distributions structural priming, whereas priming effects

resulting from knowledge of harmonic and melodic syntax might be called functional priming.62

To compare structural and functional tonal priming effects, Tillmann and Bigand used

Bigand and Pineau’s original stimulus set but introduced a scrambled condition, in which

the six context triads were swapped 2 by 2 (e.g., 2-1-4-3-6-5), or 4 by 4 (4-1-5-2-6-3). The

results demonstrated that accuracies and reaction times were relatively unaffected by the

stored in long-term memory, or from psychacoustic similarities between the context and the target stored in
auditory sensory memory (see 8.1.3 ).

59See, for example, Krumhansl and Kessler, “Tracing the Dynamic Changes in Perceived Tonal Organization in
a Spatial Representation of Musical Keys.”

60Janata, “ERP Measures Assay the Difference of Expectancy Violation of Harmonic Contexts in Music”;
Schmuckler, “Expectation in Music”; Kim, Kim, and Chung, “The Effect of Conditional Probability of Chord
Progression on Brain Response: An MEG Study.”

61Egermann et al., “Probabilistic Models of Expectation Violation Predict Psychophysiological Emotional
Responses to Live Concert Music”; Pearce et al., “Unsupervised Statistical Learning Underpins Computational,
Behavioural, and Neural Manifestations of Musical Expectation.”

62According to Brown, a structural account of tonality defines a tonal context by examining the pitch content
of a set of tones, so a “zeroth-order frequency distribution” is simply a count of each distinct pitch or pitch class in
a passage of music. Brown contrasts this synoptic and atemporal account with a functional account, which assumes
that listeners track tonal music by constantly assessing the positions of the tones as they are heard (“The Interplay
of Set Content and Temporal Context in a Functional Theory of Tonality Perception,” Music Perception 5, no. 3
[1988]: 222).
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scrambling condition, suggesting that the temporal order of the triads in the context only

weakly contributes to harmonic priming effects.63 Nevertheless, simulations of tonal priming

effects using computational approaches have demonstrated the degree to which kth-order

context models can better predict RTs than those using zeroth-order models. In a meta-study

comparing several computational approaches, Tom Collins and his co-authors found that a

closure variable representing the first-order transition probability between the context and the

target significantly improved the model, with high probabilities of closure leading to faster

RTs.64 Thus, the role played by functional priming effects remains patently unclear, as few

studies have attempted to replicate and extend these findings, either by using more controlled

stimuli, or by using computational models that might simulate the behavior of listeners.

Perhaps worse, few of the secondary tasks mentioned in the previous section permit the

behavioral study of musical events experienced in “real-time” and at tempi similar to those

found in real music. In nearly all of the previously mentioned studies, experimenters selected

or composed rhythmically isochronous passages presented at relatively long IOIs, and then

recomposed the target or the preceding context in the unexpected condition. Marcus Pearce and

his co-authors have criticized priming studies for precisely this reason, noting that ecological

validity tends to be low in the harmonic priming literature because participants are less likely

to encounter such artificially constructed stimuli in the natural environment, thus endangering

the generalizability of the collected evidence.65 To resolve this issue, a few recent studies have

demonstrated melodic priming effects for genuine musical materials using behavioral and

63Tillmann and Bigand, “Global Context Effect in Normal and Scrambled Musical Sequences.”
64Tom Collins et al., “A Combined Model of Sensory and Cognitive Representations Underlying Tonal

Expectations in Music: From Audio Signals To Behavior,” Psychological Review 121, no. 1 (2014): 33–65. It is also
worth noting that Petri Toiviainen and Carol Krumhansl compared models based on zeroth-order and first-order
transition probabilities to account for goodness-of-fit ratings and found that the models performed equally well, so
the efficacy of functional over structural models is still very much in dispute (“Measuring and Modeling Real-Time
Responses to Music”).

65Pearce et al., “Unsupervised Statistical Learning Underpins Computational, Behavioural, and Neural Manifes-
tations of Musical Expectation,” 303.
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psychophysiological measures.66 Nevertheless, none of these studies extended the reported

findings to stimuli featuring multi-voiced textures, where the syntactic relations between

harmonies play a greater role in the formation of tonal expectations. Indeed, I noted in

Chapter 7 that instances of cadential failure could provide ideal stimuli for studies adopting

a priming paradigm, as cadential deviations represent a violation of expectation when the

listener’s expectations are highest.67 In other words, instances of cadential deception and evasion

provide ready examples of expectancy violation derived from real music.

Thus, the second goal of the present study was to examine the formation, fulfillment, and

violation of melodic and harmonic expectations for cadences from the classical repertoire. To

that end, the stimulus set for Experiments III, IV, and V consists of the 40 out-of-context

excerpts from Experiment II (see Table 7.8). The hypothesis here is that genuine cadences will

elicit the highest fit ratings and strongest priming effects because they fulfill listener expectations

for the target melodic and harmonic events at the moment of cadential arrival. Conversely,

cadential deviations will elicit the lowest fit ratings and weakest priming effects since they

violate expectations for the melodic and harmonic events at the cadential arrival. What is more,

by including excerpts from the HC category, the present study also explicitly examines how

expectancies in authentic cadential contexts might differ from those in half-cadential contexts.

8.1.3 Sensory and Cognitive Accounts

To explain how listeners form expectations during music listening, researchers typically offer

either sensory or cognitive accounts, or in some cases some combination of the two. According

to sensory accounts, facilitation effects arise when the preceding context shares sensory features

66Aarden, “Dynamic Melodic Expectancy”; Egermann et al., “Probabilistic Models of Expectation Violation
Predict Psychophysiological Emotional Responses to Live Concert Music”; Pearce et al., “Unsupervised Statistical
Learning Underpins Computational, Behavioural, and Neural Manifestations of Musical Expectation.”

67Meyer, Emotion and Meaning in Music.
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with the target. Mark Schmuckler suggests, for example, that “a chord sharing component

tones, or overtones, with a preceding chord will be more highly anticipated than a continuation

containing no overlapping frequencies with its predecessor.”68 When the preceding context

shares sensory or psychoacoustic information with the target, the resulting facilitation effect is

called sensory priming; researchers have also demonstrated facilitation effects resulting from the

repetition of note or chord events from the target in the preceding context, called repetition

priming, but for our purposes repetition priming is simply a special case of sensory priming in

which the context shares entire note or chord events with the target. Thus, sensory accounts

appeal to the psychoacoustic similarities between note or chord events accumulated over just

a few seconds in echoic memory and assume that bottom-up representations of the auditory

environment alone can account for the processing of tonal syntax during music listening.

According to cognitive accounts, listeners generate expectations by detecting and remember-

ing the statistical relationships between co-occurring events in the auditory environment. If

events in the stimulus co-occur with considerable frequency, the preceding context will activate

schematic representations of the stimulus and then prime listeners to expect certain targets over

others. Thus, both structural and functional priming effects appeal to the statistical learning

of (co-)occurrences between note or chord events over the course of one’s life and assume that

top-down schematic representations of the auditory environment govern what the sensory

apparatus will pick up next. Whether the target shares sensory features with the preceding

context is thus inconsequential to cognitive accounts unless those features co-occur with enough

frequency to justify their prior representation in long-term memory. Psychologist Aniruddh

Patel summarizes this view thusly: “one strong piece of evidence for a cognitivist view of tonal

syntax is that certain psychological properties of musical elements derive from their context

68Schmuckler, “Expectation in Music,” 134.
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and structural relations rather than from their intrinsic physical features.”69

Unfortunately, disentangling low-level sensory influences from cognitive accounts of tonal

expectancy remains a tremendous challenge, and appealing to the musical materials themselves

tends to complicate rather than clarify matters. Sensory or psychoacoustic accounts of tonal

harmony are deeply rooted in the history of Western music theory,70 and continue to find

favor in contemporary scholarship.71 Emmanuel Bigand and his co-authors note, for example,

that tonal syntax reflects the constraints of acoustic structure, such as octave equivalence and

harmonic overtones, as well as general auditory mechanisms related to the perception of acoustic

dissonance,72 virtual pitch perception,73 and principles of auditory stream analysis.74 They also

point out that the note and chord events associated with the tonic and dominant feature strong

overlaps in harmonic spectra, which suggests that the acoustic properties of sounds provide an

“acoustic foundation” for tonal syntax.75 Max Matthews, John R. Pierce, and Linda A. Roberts

have summarized this view as the acoustic nucleus hypothesis. They write, “with new materials,

it is necessary to have an acoustic nucleus on which to grow powerful musical connotations via

long-term learning. The acoustic nucleus consists of sound qualities that are perceivable at a low

peripheral level.”76 According to this view, the contextual relations between note and chord

69Aniruddh D. Patel, Music, Language, and the Brain (Oxford: Oxford University Press, 2008), 260.
70See, for example, Jean-Phillippe Rameau, Treatise on Harmony, trans. Phillip Gossett (New York: Dover,

1971).
71Edward W. Large et al., “A Neurodynamic Account of Musical Tonality,” Music Perception 33, no. 3 (2016):

319–331; Leman, “An Auditory Model of the Role of Short-Term Memory in Probe-Tone Ratings”; Parncutt,
Harmony: A Psychoacoustical Approach.

72Plomp and Levelt, “Tonal Consonance and Critical Bandwidth”; William A. Sethares, “Consonace-Based
Spectral Mappings,” Computer Music Journal 22, no. 1 (1998): 56–72.

73Terhardt, “Pitch, Consonance, and Harmony”; Ernst Terhardt, Gerhard Stoll, and Manfred Seewann, “Pitch
of Complex Signals According to Virtual-Pitch Theory: Tests, Examples, and Predictions,” Journal of the Acoustical
Society of America 71 (1982): 671–678.

74Wright and Bregman, “Auditory Stream Segregation and the Control of Dissonance in Polyphonic Music.”
75Emmanuel Bigand et al., “Empirical Evidence for Musical Syntax Processing? Computer Simulations Reveal

the Contribution of Auditory Short-Term Memory,” Frontiers in Systems Neuroscience 8 (2014): 3.
76Max V. Matthews, John R. Pierce, and Linda A. Roberts, “Harmony and New Scales,” in Harmony and

Tonality, ed. Johan Sundberg (Stockholm: Royal Swedish Academy of Music, publ. no. 54, 1987), 83.
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events in the tonal system could simply be “an emergent property” of echoic memory.77

To study the cognitive components of musical expectancies, researchers typically control

for the sensory or psychoacoustic similarities between the preceding context and the target by

manipulating the experimental stimuli so that (1) the context and the target share no component

note or chord events (repetition priming); and/or (2) the selected timbre consists of a simple

periodic waveform like a sine tone to minimize the potential for shared overtones (sensory

priming). In the last three decades, priming studies have demonstrated that after short contexts,

targets from related tonal contexts were processed faster than unrelated targets even when

the context and target did not share sensory information,78 and when they were separated by

a silent interval or a white noise burst.79 In longer contexts, participants also demonstrated

facilitated processing for related targets compared to less related targets,80 and this priming

effect persisted even when the less-related targets shared more tones with the context than

related targets.81 What is more, these schematic priming effects remained unaffected by veridical

knowledge about how each stimulus might proceed. In two recent studies, participants were

permitted to preview the entire stimulus before completing the secondary task, but they were

still slower to respond to unrelated targets, indicating that schematic expectations resist veridical

knowledge about the stimulus.82

Despite the wealth of counter evidence from experimental studies for the limited role played

by sensory priming in the formation of tonal expectations, advocates of both sensory and

77Bigand et al., “Empirical Evidence for Musical Syntax Processing? Computer Simulations Reveal the
Contribution of Auditory Short-Term Memory,” 19.

78Bharucha, “Music Cognition and Perceptual Facilitation.”
79Hasan Gürkan Tekman and Jamshed J. Bharucha, “Time Course of Chord Priming,” Perception and Psy-

chophysics 51 (1992): 33–39.
80Koelsch et al., “Untangling Syntactic and Sensory Processing: An ERP Study of Music Perception”; Marmel,

Tillmann, and Delbé, “Priming in Melody Perception: Tracking Down the Strength of Cognitive Expectations.”
81Emmanuel Bigand et al., “Sensory Versus Cognitive Components in Harmonic Priming,” Journal of Experi-

mental Psychology: Human Perception and Performance 29, no. 1 (2003): 159–171.
82Justus and Bharucha, “Modularity in Musical Processing: The Automaticity of Harmonic Priming”; Tillmann

and Poulin-Charronnat, “Auditory Expectations for Newly Acquired Structures.”
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cognitive priming accounts have pointed to the success of computational models to simulate the

observed priming effects. Richard Parncutt’s psychoacoustic model of tonal harmony provides

one early example.83 Following Ernst Terhardt’s studies on virtual pitch and pitch salience,84

Parncutt quantified the harmonic relatedness between two chords according to the number of

pitches they shared, taking into account the relative perceptual salience of each pair of pitches,

which he called pitch commonality. In the 1997 priming study by Bigand and Pineau mentioned

in the previous section, the authors simulated the observed priming effects by calculating the

pitch commonality values between the prime and target triads, weighted according to recency.

They reported larger pitch commonality values for tonic targets over subdominant targets, and

the values also correlated significantly with the correct response times, thereby demonstrating

the degree to which sensory and cognitive accounts make parallel predictions.85

Given the source of the stimuli selected for the experiments in this chapter, controlling

for sensory effects by eliminating repetitions of component tones and overtones from the

target in the preceding context is not feasible. Thus, the third and final goal of the present

study is to consider how the most well-known sensory and cognitive computational models

of tonal expectancy simulate the results from Experiments III, IV, and V. §8.5 evaluates the

simulated priming effects from three models: (1) the Auditory Echoic Memory model developed

by Marc Leman,86 which computes the correlation of an auditory image of the target with the

corresponding auditory image of the preceding context, and which has been shown to simulate

priming effects for stimulus sets from 18 separate studies;87 (2) the Tonal Space model,88 a

83Parncutt, Harmony: A Psychoacoustical Approach.
84Terhardt, Stoll, and Seewann, “Algorithm for Extraction of Pitch and Pitch Salience from Complex Tonal

Signals.”
85Bigand and Pineau, “Global Context Effects on Musical Expectancy.”
86Leman, “An Auditory Model of the Role of Short-Term Memory in Probe-Tone Ratings.”
87Bigand et al., “Empirical Evidence for Musical Syntax Processing? Computer Simulations Reveal the

Contribution of Auditory Short-Term Memory.”
88Janata et al., “The Cortical Topography of Tonal Structures Underlying Western Music.”
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sensory-structural priming model that projects the output of Leman’s model to the surface of a

torus, and which has been shown to simulate the priming effects for the RT data from seven

separate studies;89 and (3) IDyOM, the context model presented in Chapter 6, which simulates

functional priming effects by acquiring long-term knowledge about the sequential dependencies

between contiguous note and chord events on the musical surface.

§8.2 Experiment III

8.2.1 Method

Participants

Participants were 40 members (20 female) of the Montreal community recruited through the

Schulich School of Music and the McGill University classified ads. Ages ranged from 18 to

46 (M = 24, SD = 6). Twenty participants with musical training equivalent or superior to

second-year-university level formed the musician group, and twenty participants with less than

one year of musical training comprised the nonmusician group. To limit any effects caused by

familiarity with the stimuli, no participant with more than two years of formal study on the

piano was permitted to take part.

A questionnaire was administered to assess musical preferences and training. Participants

reported listening to an average of 19 hours of music each week, and all but two participants

self-identified as music lovers. The musicians practiced their primary instruments for an average

of 20 hours each week, and had been playing their primary instruments for an average of 6

years. Musicians also averaged 4.9 years of ear training, 3.2 years of instruction in harmony,

and 3.4 years of instruction in music analysis. All of the participants reported normal hearing,

89Collins et al., “A Combined Model of Sensory and Cognitive Representations Underlying Tonal Expectations
in Music.”
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which was confirmed with a standard audiogram administered before the experiment,90 and

five musicians reported the ability to identify pitches absolutely.

Materials

The stimuli consisted of the 40 excerpts presented out of context in Experiment II. To examine

harmonic and melodic expectations both before and after the events at cadential arrival, two

versions of each excerpt were created: a truncated version that omits the final harmonic and

melodic events at the cadential arrival, and a non-truncated version that includes the final

events. Unfortunately, because these excerpts only present phrase endings, it was assumed

that the selected stimuli would not represent the full range of the expectancy strength and

specificity scales, since excerpts terminating at the beginning or middle of a musical phrase

could potentially generate weaker expectations.91 So as not to bias ratings of expectation toward

one end of the expectancy scales, eight foil stimuli that terminate in the middle of a musical

phrase were also selected from Mozart’s keyboard sonatas. The foils were inserted such that

each group of six consecutive trials contained one foil that was neither the first nor the last

member of the group.

Following the experimental design employed in Experiments I and II, performance features

(such as dynamics and rubato) were neutralized and the tempo of each excerpt was determined

by convention. To ensure that unwanted differences at cadential arrival would not affect

expectancy ratings, the duration of cadential arrival was recomposed to 900 ms and any melodic

dissonances at cadential arrival were removed. Each stimulus was first created with the notation

90389-8, Acoustics: Reference Zero for the Calibration of Audiometric Equipment—Part 8; Martin and Champlin,
“Reconsidering the Limits of Normal Hearing.”

91Nicolas Escoffier and Barbara Tillmann, “The Tonal Function of a Task-Irrelevant Chord Modulates Speed
of Visual Processing,” Cognition 107, nos. 1070–1083 (2008); Pearce et al., “Unsupervised Statistical Learning
Underpins Computational, Behavioural, and Neural Manifestations of Musical Expectation”; Tillmann and
Marmel, “Musical Expectations Within Chord Sequences: Facilitation Due to Tonal Stability Without Closure
Effects.”
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software Sibelius and then realized as a .wav sound file at a sampling rate of 44.1 kHz and 16-bit

resolution using a piano physical model created by PianoTeq (Modartt S.A.S., Ramonville Saint

Agne).

Design and Procedure

Participants were presented with a randomized set of 40 excerpts and 8 interspersed foils. After

listening to the truncated version of each excerpt, participants rated on 7-point continuous

analogical-categorical scales the strength of their expectation that the music would continue

(Expectancy Strength), and the specificity of their expectation for a musical continuation (Ex-

pectancy Specificity). For the expectancy strength scale, participants were instructed that a

value of 1 indicates that they had no expectations that the music would continue, whereas

a value of 7 indicates that they had very strong expectations that the music would continue.

On the expectancy specificity scale, a value of 1 indicates that they had no specific idea how

the music would continue, whereas 7 indicates that they had a very specific idea how the

music would continue. In addition to their expectancy ratings, participants also responded

to the statement: “Following this excerpt, the end of the passage is imminent,” on a 4-point

Likert scale labeled from strongly agree to strongly disagree. Next, participants listened to the

non-truncated version of the same excerpt and rated on a 7-point scale how well the final chord

fit with the expectations they had formed when they heard the truncated version, with a rating

of 1 indicating that the musical continuation fit very poorly with the expectations they had

formed while listening to the previous truncated excerpt, and a rating of 7 indicating that the

musical continuation fit very well with their expectations.

To familiarize the participants both with the range of stimuli as well as with the experimental

task, the session began with an exposure phase and a practice phase consisting of 12 additional ex-

cerpts. After completing the experiment, participants filled out a short questionnaire addressing
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their music background.

Analysis

Data were analyzed with a linear mixed effects model (LMM) approach,92 an alternative to

conventional regression models (MLR, ANOVA, etc.) that allows the researcher to control for

random sources of variance without the loss of statistical power resulting from data aggregation

across subjects or stimuli, which is a frequent preliminary step in repeated-measures designs (e.g.,

F1 and F2 ANOVAs, RM-ANOVA). Mixed effects models have become increasingly common

in the analysis of linguistic priming data because they can accommodate both continuous and

binary response data,93 which regularly violate assumptions of normality and homogeneity of

variance in repeated-measures designs,94 and often lead to unbalanced datasets as a result of the

omission of incorrect responses from the analysis (as was the case in Experiments IV and V).

As suggested by Harald Baayen and his co-authors,95 I included crossed random effects for

participants and items (musical excerpts). Equation 8.1 presents the general model formulation

they provided:

yi j = Xi j β + Si si +W jw j + ε i j (8.1)

92Brady T. West, Kathleen B. Welch, and Andrzej T. Galecki, Linear Mixed Models. A Practical Guide using
Statistical Software (Boca Raton: Chapman & Hall/CRC, 2007).

93The Journal of Memory and Language recently devoted a special issue to emerging data-analytic methods,
with mixed effects modeling procedures receiving substantial attention (Kenneth I. Forster and Michael E. J.
Masson, “Special Issue: Emerging Data Analysis,” Journal of Memory and Language 59, no. 4 [2008]: 387–556). For
a discussion of the issues surrounding the analysis of interval data using LMMs, see R. Harald Baayen, Doug J.
Davidson, and Douglas M. Bates, “Mixed-Effects Modeling with Crossed Random Effects for Subjects and Items,”
Journal of Memory and Language 59 (2008): 390–412; R. Harold Baayen and Petar Milin, “Analyzing Reaction
Times,” International Journal of Psychological Research 3, no. 2 (2010): 12–28. For a discussion of how LMMs
generalize to ordinal and categorical data, see Peter Dixon, “Models of Accuracy in Repeated-Measures Designs,”
Journal of Memory and Language 59 (2008): 447–456; T. Florian Jaeger, “Categorical Data Analysis: Away from
ANOVAs (Transformation or Not) and Towards Logit Mixed Models,” Journal of Memory and Language 59 (2008):
434–446.

94Dixon, “Models of Accuracy in Repeated-Measures Designs”; Jaeger, “Categorical Data Analysis.”
95Baayen, Davidson, and Bates, “Mixed-Effects Modeling with Crossed Random Effects for Subjects and Items.”
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The vector yi j represents the responses of subject i to item j . Xi j is the design matrix,

consisting of an initial column of ones (representing the intercept) and followed by columns

representing factor contrasts and covariates. This matrix is multiplied by the vector of popula-

tion coefficients β. The Si si andW jw j terms constitute the model’s random effects structure,

which serve to make the model’s predictions more precise with respect to the subjects and items

actually examined in the experiment. Si andW j are full copies of the Xi j matrix, and both are

multiplied with the vectors si and w j , respectively, which specify for subject i (in the case of

the Si matrix) and item j (in the case of theW j matrix) the adjustments required. The last term

is a vector of the residual errors, which includes one error for each combination of subject and

item.

Previous studies have treated the specification of the random effects structure as an empirical

problem, only including random intercepts and by-unit random slopes if they improve model

fit (i.e., if they explain a significant proportion of the variance in the outcome variable).96

Dale Barr and his co-authors have recently argued, however, that the standard practice in

mixed-model ANOVAs has always been to specify “maximal” random-effects structures because

underspecified random-effects structures (e.g., random-intercepts only LMMs) can lead to

significantly higher Type I error rates.97 They therefore advocate for the selection of a maximal

random effects structure a priori, which produces nominal Type I error rates while substantially

improving statistical power relative to traditional parametric models (e.g., RM-ANOVA). All

mixed-effects analyses were conducted with the software R (2.15) using the packages lme498

and languageR.99 Ratings of expectation strength, specificity, and fit were analyzed with linear

96Baayen, Davidson, and Bates, “Mixed-Effects Modeling with Crossed Random Effects for Subjects and Items.”
97Dale J. Barr et al., “Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal,”

Journal of Memory and Language 68 (2013): 255–278.
98D.M. Bates, M. Maechler, and B. Bolker, lme4: Linear Mixed-Effects Models Using S4 Classes, (R package version

0.98.501) [computer software]., 2011.
99R. Harold Baayen, languageR: Data Sets and Functions with "Analyzing Linguistic Data: A Practical Introduction

to Statistics". R package version 1.4., 2012.
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mixed effects models using the lmer function. Following Barr et. al,100 all models included a full

random effects structure as specified by the design of the experiment, with intercepts for each

participant and by-participant slopes for the within-subject fixed factor of cadence category

(PAC, IAC, HC, DC, EV), and with intercepts for each musical stimulus and by-stimulus slopes

for the between-subjects factor of musical training (musicians, nonmusicians). To calculate

omnibus tests and parameter estimates, models were fit using sum coding for the predictor

variables so that levels of the fixed effects would represent deviations from the grand mean,

as is the approach in traditional ANOVA pedagogy.101 Tests of main effects and interactions

were calculated using the Anova function from the car package,102 and pairwise comparisons

and polynomial contrasts of the levels of the fixed factors were calculated using the lsmeans

package.103 Finally, to visualize the effects of the included fixed factors on participant ratings

after controlling for the random variance in the dataset, the figures present the estimated means

and standard errors determined by the model.

8.2.2 Results

Figure 8.1 displays line plots of the estimated mean expectation strength, specificity, and fit

ratings of musicians and nonmusicians for each cadential category. Excerpts from the foil

condition have also been plotted for comparison. As expected, musicians and nonmusicians

provided lower strength and specificity ratings for the foil condition than for any of the other

cadence conditions, suggesting phrase endings generate stronger and more specific expectations

than excerpts terminating in the middle of a phrase. The intention behind including the foils,

100Barr et al., “Random Effects Structure for Confirmatory Hypothesis Testing.”
101Ibid.
102John Fox and Sanford Weisberg, An R Companion to Applied Regression, 2nd ed. (Thousand Oaks, CA: Sage,

2011).
103Russell V. Lenth, “lsmeans: Least-Squares Means. R package version 2.00-4,” 2013, http://CRAN.R-project.

org/package=lsmeans.

http://CRAN.R-project.org/package=lsmeans
http://CRAN.R-project.org/package=lsmeans
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Figure 8.1: Line plots of the estimated mean expectation strength, specificity, and fit ratings of
musicians and nonmusicians for each cadence category and the foil category. Whiskers represent
±1 standard error.

however, was simply to encourage participants to use the full range of the scale, so the foil

trials were employed as fillers, and only responses to the cadence categories are presented

in the analyses that follow, resulting in a preliminary dataset of 1600 trials (40 stimuli × 40

participants).

Shown in Table 8.1, Type III Wald F tests of a mixed 5×2 LMM of the expectation strength

ratings with Kenward-Roger approximation for the denominator degrees of freedom revealed

a significant effect of cadence category.104 Because the genuine and deviation conditions of

104Ulrich Halekoh and Søren Højsgaard, “A Kenward-Roger Approximation and Parametric Bootstrap Methods
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the authentic cadence only differ at the moment of cadential arrival, it was predicted that

the truncated excerpts from the HC category would receive the lowest expectancy strength

ratings. As expected, pairwise comparisons of the cadence categories using the Tukey HSD

test revealed significant differences between the PAC–HC and HC–EV categories (p <.05),

with the HC category receiving the lowest strength ratings overall. Moreover, a polynomial

contrast of the cadence categories revealed a significant quadratic trend from the PAC to EV

categories, B = 1.99, t = 3.37, p < .01, with the estimated means exhibiting a U shape from the

outer cadence categories (PAC and EV) to the inner category (HC). The model estimates also

suggested a main effect of training on expectation strength, with nonmusicians providing lower

ratings than musicians, but this effect was not significant, F (1, 37.98) = 2.77, p = .10, and there

was no interaction.

Expectation specificity ratings were moderately correlated with the strength ratings, r (1600) =

.56, p < .001, and visual inspection of the model estimates indicated a similar pattern of re-

sponses to those found for the strength ratings (see Figure 8.1). Type III Wald F tests revealed

main effects of cadence category and training, as well as a significant interaction (see Table 8.1).

The PAC and HC categories received the highest and lowest specificity ratings, respectively,

and polynomial contrasts revealed the same U-shaped quadratic trend in the ratings for both

groups (musicians, B = 2.45, t = 2.65, p < .05; nonmusicians, B = 2.02, t = 2.43, p < .05).

Musicians also provided significantly higher specificity ratings than nonmusicians, suggesting

that increased exposure to the music of a given style may influence the specificity of expectations

formed during music listening.

The 4-point Likert-scale ratings for the statement, “following this excerpt the end of the

passage is imminent,” provided similar results to those observed for the analogical-categorical

scales of expectation strength and specificity. The upper plot in Figure 8.2 presents a bar plot

for Tests in Linear Mixed Models – The R Package pbkrtest,” Journal of Statistical Software 59, no. 9 (2014).
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Table 8.1: Analysis of deviance table for maximal linear mixed effects models predicting ratings
of expectation strength, specificity, and fit.

df a Wald F

Expectation Strength
Cadence Category 39.41 3.00*
Training 37.98 2.77
Cadence Category × Training 23.81 1.54

Expectation Specificity
Cadence Category 39.91 3.57*
Training 39.14 17.38***
Cadence Category × Training 27.90 2.98*

Expectation Fit
Cadence Category 43.74 14.26***
Training 43.77 1.27
Cadence Category × Training 37.03 2.14

Note. N = 1600. aDenominator degrees of freedom for Type III Wald F tests reported with Kenward-
Roger approximation. Independent variables are factor variables with sum coding (e.g., musicians = 1,
nonmusicians = −1). Results of Wald F test: * p < .05 ** p < .01 *** p < .001. A maximum random
effects structure was included, with a random intercept for participants and by-participant slopes for
cadence category, and a random intercept for musical stimuli and by-stimulus slopes for musical training.

of the distribution of the proportion of responses for each cadence category, with musicians’

ratings above and nonmusicians’ ratings below the x-axis. Like the previous bar graphs from

Experiments I and II (see Figures 7.4 and 7.8), this representation estimates the similarity

between the ratings of musicians and nonmusicians by visualizing the symmetry of their

responses about the x-axis. The very first category in the musician group, for example, indicates

that for truncated excerpts from the PAC category musicians strongly agreed in 65% of all trials

that the end was imminent. As expected, both groups generally agreed or strongly agreed with

the statement for the genuine and deviation conditions of the authentic cadence. But whereas

musicians generally disagreed or strongly disagreed that the end was imminent for excerpts from

the HC category (58%), nonmusicians demonstrated a preference to strongly agree or agree with

the statement throughout the experimental session, even for the excerpts from the foil condition
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Figure 8.2: Top: Bar plot of the distribution of the proportion of responses for each cadential
category and the foil category for the statement, “the ending is imminent,” with musicians’
ratings above the x-axis in blue and nonmusicians’ ratings below in red. Pattern fills denote
response types. Bottom: Line plot of the estimated cumulative probabilities calculated from the
Likert scale ratings. Right y-axis presents thresholds of the response scale: Strongly Agree (SA),
Agree (A), Disagree (D), and Strongly Disagree (SD). Whiskers represent ±1 standard error.

that terminated in the middle of a musical phrase. The design of the experiment—presenting

a truncated and non-truncated version of each excerpt in direct succession in each trial—may

therefore have biased nonmusicians to always expect a phrase ending following the end of each

truncated excerpt.

Given the ordinal nature of the dependent variable, the Likert-scale ratings were entered

into a proportional-odds logistic regression model using the polr function from the MASS
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library.105 In order to estimate a linear regression model on ordinal data, proportional-odds

models transform the cumulative probabilities calculated across all values of the response

variable (in this case, from strongly agree to strongly disagree) onto an unbounded log-odds

scale. For transparency, however, in the bottom plot in Figure 8.2 the estimates were back-

transformed onto a cumulative probability scale [0-1] on the left y-axis, with the estimated

threshold values between adjacent levels of the likert scale shown on the right y-axis. Higher

cumulative probability estimates indicate a tendency to strongly agree or agree, whereas lower

cumulative probability estimates indicate a tendency to disagree or strongly disagree.

Type III Wald chi-square tests revealed a main effect of cadence category, χ2(4) = 223.38, p <

.001, and the effect of training was not significant, χ2(1) = .02, p > .05, but there was a

significant interaction, χ2(4) = 30.13, p < .001. The PAC and HC categories again received the

highest and lowest ratings, respectively, and a quadratic trend was observed in the ratings of

both the musicians, B = 7.42, z = 12.75, p < .001, and nonmusicians, B = 3.53, z = 6.4, p <

.001, thereby replicating the U-shaped curves found in the strength and specificity estimates.

Musicians were also more likely to disagree or strongly disagree that the end was imminent

following truncated excerpts from the HC category, B = −.65, z = −3.19, p < .01, with

nonmusicians demonstrating a bias to agree or strongly agree throughout the experimental

session.

Shown in Table 8.1, a mixed 5×2 LMM of the expectation fit ratings for the non-truncated

excerpts revealed a significant effect of cadence category, but musical training and the interaction

were not significant. The PAC category received the highest fit ratings from both groups, and

105William N. Venables and Brian D. Ripley, Modern Applied Statistics with S (New York: Springer, 2002).
Unfortunately, the proportional-odds model applied here does not account for random variance associated with
the participants and items used in the experiment. Attempts to apply mixed effects procedures to ordinal models
are currently still in development. At present the mixed effects logistic regression models available in R (e.g., clmm
or MCMCglmm) do not support the calculation of omnibus tests or pairwise comparisons. For this reason, I
elected to omit the random effects structure entirely (Barr et al., “Random Effects Structure for Confirmatory
Hypothesis Testing”).



8.2 Experiment III 413

pairwise comparisons with the Tukey HSD test revealed significant differences between the

PAC category and the remaining cadence categories excepting the IAC category. Moreover,

polynomial contrasts revealed a significant decreasing linear trend from the PAC to the EV cate-

gories for the fit ratings of both musicians, B = −7.03, t = −6.84, p < .001, and nonmusicians,

B = −4.16, t = −5.03, p < .001, a finding that replicates the cadential hierarchy observed in the

IC estimates from IDyOM in Chapter 6 (see Figures 6.3 and 6.4), as well as the completion

ratings from Experiments I and II in Chapter 7 (see Figures 7.2 and 7.6).

8.2.3 Discussion

By excluding the events at cadential arrival, Experiment III sought to determine whether

the half cadence is unique among the selected cadence categories. Indeed, if the tonic is the

most stable sonority within the tonal system, and accordingly, if listeners have internalized

the distributional properties that characterize that system, presumably any cadence category

for which the goal harmony is dominant will elicit weaker and less specific expectations

relative to those for which the goal harmony is tonic. The above findings lend support to this

claim, as ratings of expectation strength, specificity, and phrase completion for excerpts from

the truncated condition exhibited a U-shaped pattern, with excerpts from the PAC and HC

categories receiving the highest and lowest ratings, respectively. In fact, all of the categories

with tonic harmony as the expected goal elicited higher ratings of expectancy strength and

specificity for the moment of cadential arrival than did excerpts from the half cadence category,

suggesting that the half cadence is best understood as an incomplete authentic cadence prior to

the moment of cadential arrival.

When these excerpts included the events at cadential arrival, however, ratings of expectation

fit demonstrated the same descending linear trend observed in the previous two experiments,

with the half cadence category positioned not at the bottom of the cadential hierarchy, but
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somewhere in the middle. Taken together, these two findings are consistent with the Janus-faced

view of closure espoused by Eugene Narmour,106 whereby the half cadence serves as the weakest

category in prospect as a result of the relatively weak and unspecific expectations it affords, yet

finds itself near the middle of the cadential hierarchy in retrospect by virtue of the fulfilment

of those expectations, however weakly formed. Thus, the cadential hierarchy itself reflects a

bipolar continuum of schematic expectancy characterized by two opposing end points, with

the fulfilment or confirmation of listener expectations on one end, and the negation, denial, or

violation of those expectations on the other. A central property of this scale is precisely that it

represents both the direction and intensity of the realization, where direction on the schematic

scale corresponds to the location of the realized event(s) near one end or the other (i.e., either

as a fulfilment or violation), and where intensity (or strength) corresponds to the distance of

those event(s) from the center of the scale.

According to this scale, the authentic cadence categories receive very high completion

and expectancy fit ratings because the events at cadential arrival largely confirm or fulfil

harmonic and melodic expectations formed in prospect, doing so with such intensity as to

elicit ratings to one extreme of the scale. And by violating expectations when the listener’s

expectations are highest, deviations of the authentic cadence categories necessarily lie on the

other extreme of the schematic spectrum. But whereas the cadence categories supporting the

tonic as the goal harmony stipulate both direction and intensity, expectations for the events at

cadential arrival for the half cadence category remain so weakly formed that their fulfillment

positions the category very near the center of the scale, resulting in the cadential hierarchy

PAC→IAC→HC→DC→EV.

Nevertheless, to demonstrate that half cadences elicit weaker and less specific expectations

106Narmour, Beyond Schenkerism; Steven Haflich, Review of Beyond Schenkerism: The Need for Alternatives in
Music Analysis, by Eugene Narmour, Journal of Music Theory 23, no. 2 (1979): 290.
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in prospect compared to the other cadence categories necessitates an alternative method, one

that measures how expectations for the impending end might vary over time. To that end,

Experiment IV required participants to continuously rate their expectations for the end of

the excerpt on a slider. The hypothesis here is that expectancies will gradually increase over

the course of the excerpt until the moment of cadential arrival for each cadence category, but

that half cadences will elicit weaker expectations—and thus, lower ratings—relative to the other

cadence categories.

§8.3 Experiment IV

8.3.1 Method

Participants

The participants were the same as those who participated in Experiment III.

Materials

The excerpts were the same as those employed in Experiment III, but all foil excerpts and

excerpts from the truncated condition were omitted, resulting in a stimulus set consisting of

40 excerpts. Pilot testing also revealed that excerpts shorter than 8 seconds in duration were

potentially too short to rate accurately in a continuous response task, so 13 of the stimuli

were extended by the necessary number of measures before their original start to increase their

duration beyond 8 seconds (M = 11.5 s, SD = 2 s).
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Design and Procedure

Participants were presented with a randomized set of the 40 revised, non-truncated excerpts

and asked to continuously rate the strength of their expectation that the end of the excerpt was

imminent on a one-dimensional analog scale. The term “imminent” was defined as “within the

next one to two seconds,” and the left and right limits of the scale were labeled with “very weak”

and “very strong,” respectively. Following the onset of the final chord, participants were told

to move the slider back to the left limit of the scale as quickly as possible to indicate that the

excerpt had ended.107

The slider was connected to an Arduino-based USB interface (Arduino, Torino, Italy) that

recorded the slider values on a continuous scale from 1 to 7 at a sampling rate of 100 Hz,

and the computer interface provided instructions on the screen and allowed the participant to

advance through the trials by clicking the mouse on a button on-screen. Before each trial began,

stimulus playback would not occur until the slider was positioned to the left limit of the scale,

and participants were encouraged not to begin moving the slider until they started to expect

that the end of the passage was imminent. To familiarize the participants with the experimental

task, the session began with a practice phase consisting of five additional excerpts. Because the

same group of participants completed Experiments III and IV in the same session, the order of

presentation for the two experiments was counterbalanced across participants.

Analysis

The continuous slider data were processed in MATLAB (The Mathworks, Inc., Natick, MA).

To remove extraneous information and ensure a smooth time series in each trial, the data were

107I elected to use a unipolar scale as opposed to the bipolar scale described in §8.2.3 because this experiment
examines whether expectations formed in prospect might differ between the half cadence category and the other
cadence categories. Thus, the end of the expectancy scale corresponding to negation, denial, or violation was
unnecessary for the present experiment.
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low-pass filtered with a cutoff frequency of 4 Hz using a linear phase filter, which was based on

the convolution of a 1st-order Butterworth filter impulse response that was also convolved with

itself in time reverse to avoid phase shifting. To obtain a measure of the rate of change in the

slider ratings (also referred to as rating velocity), each time series was first downsampled to 2

Hz using cubic spline interpolation, and first-order derivatives were then calculated from the

resulting time series.

Following Stephen McAdams and his co-authors,108 trials were excluded from further

analysis if the slider ratings did not meet the following criteria: the slider was not positioned to

the left of the expectancy scale when the trial began (2 trials); the participant failed to move the

slider throughout the trial (44 trials); the participant failed to move the slider until after the

onset of the final chord of the excerpt (132 trials). These criteria resulted in the exclusion of

178 of 1600 trials (11%).

8.3.2 Results

To visualize the slider ratings for each cadence category, the grand mean time course for

the untransformed and velocity-transformed slider ratings was calculated for musicians and

nonmusicians using a time window from five seconds preceding to three seconds following

the onset of the cadential arrival. Shown in Figures 8.3 and 8.4, the dotted lines indicate the

95% confidence bounds around the grand mean time course for both training groups, with

the bounds around the musician ratings shaded in blue. To examine how the slider ratings

varied over time using a mixed effects modeling procedure, means were calculated for 1 s epochs

centered from 4 s before the onset of the cadential arrival to 0 s. LMMs of the untransformed

and velocity-transformed ratings therefore included fixed factors of cadence category (5 levels),

108Stephen McAdams et al., “Influences of Large-Scale Form on Continuous Ratings in Response to a Contem-
porary Piece in a Live Concert Setting,” Music Perception 22, no. 2 (2004): 297–350.
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Figure 8.3: Grand mean time course for the slider ratings of musicians in blue and nonmusicians
in dotted red for each cadential category. Equidistant dotted lines indicate 95% confidence
bounds around the mean ratings, with the confidence bounds around the musician ratings
shaded in blue. The vertical dotted line indicates the onset of the final chord.
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musical training (2 levels), and time (5 levels), with random intercepts for each participant and

by-participant slopes for the within-subject fixed factors of cadence category and time, and

with intercepts for each musical stimulus and by-stimulus slopes for the between-subjects factor

of musical training. Table 8.2 presents the omnibus tests calculated from the LMMs of the

untransformed and velocity-transformed slider ratings.

Beginning with the untransformed slider ratings in Figure 8.3, Type III Wald F tests reported

with Kenward-Roger approximation revealed a significant effect of time, F (33.7) = 93.73, p <

.001, with the mean time course increasing until the moment of cadential arrival for every

cadence category and for both training groups, at which point it tended to decrease. The

model also revealed significant interactions between cadence category and training, F (51.8) =

4.05, p < .01, cadence category and time, F (6679.5) = 5.06, p < .001 and training and time,

F (33.7) = 3.48, p < .05. For the PAC category, polynomial contrasts demonstrated significant

linear increasing trends across time for the ratings of both musicians, B = 7.37, t = 16.78, p <

.0001, and nonmusicians, B = 4.78, t = 10.00, p < .0001. Although the average time courses for

both groups appeared at approximately the same position on the scale at 5 s preceding cadential

arrival, musicians’ ratings also exhibited a significantly steeper slope compared to nonmusicians,

B = .26, t = 3.53, p < .05, which explains the higher peak at cadential arrival. For the

remaining categories for which the tonic was the goal harmony, musicians also demonstrated an

exponential increasing trend across time (IAC, B = 2.17, t = 3.97, p < .0001; DC, B = 1.25, t =

2.35, p < .05; EV, B = 2.21, t = 4.22, p < .0001), with a relatively slower and more gradual

rate of increase between a period of roughly 5 s and 2 s preceding a sudden and more steep

increase in ratings within the final 2 s. This exponential increase suggests that musicians were

less aware of the impending cadential arrival for the IAC, DC, and EV categories compared

to the PAC category until approximately 2 s before the onset of the cadential arrival, which is

perhaps when the cadential dominant first appeared.
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Table 8.2: Analysis of deviance table for maximal linear mixed effects models predicting slider
ratings and first-order derivatives of the slider ratings.

df a Wald F

Slider Ratings
Cadence Category 38.4 1.35
Training 41.5 .02
Time 33.7 93.73***
Cadence Category × Training 51.8 4.05**
Cadence Category × Time 6679.5 5.06***
Training × Time 33.7 3.48*
Cadence Category × Training × Time 6679.5 .75

Slider Velocity Ratings
Cadence Category 32.8 4.72**
Training 36.3 11.53**
Time 33.7 4.85**
Cadence Category × Training 18.8 .90
Cadence Category × Time 6683.9 4.98***
Training × Time 33.7 3.84*
Cadence Category × Training × Time 6683.9 1.46

Note. N = 8000. aDenominator degrees of freedom for Type III Wald F tests reported with Kenward-
Roger approximation to one decimal place. Independent variables are factor variables with sum coding
(e.g., musicians = 1, nonmusicians = −1). Results of Wald F test: * p < .05 ** p < .01 *** p < .001.
A maximum random effects structure was included, with a random intercept for participants and by-
participant slopes for cadence category and time, and a random intercept for musical stimuli and by-
stimulus slopes for musical training.

Shown in Figure 8.4, the velocity-transformed slider ratings capture this exponential rate of

increase quite well for the IAC, DC, and EV categories, and particularly for the IAC category,

in which a sharp increase in average velocity appears within the final 2 s before cadential arrival.

The ratings of the nonmusician group did not demonstrate this exponential rate of increase,

however, nor did their ratings differ significantly for any of the cadence categories in general;

both the starting slider position and the rate of increase over time were nearly identical for

every category.

For the half cadence category, visual inspection of the musician time course in Figure 8.3
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Figure 8.4: Grand mean time course for the first derivative of the slider ratings of musicians
in blue and nonmusicians in dotted red for each cadential category. Equidistant dotted lines
indicate 95% confidence bounds around the mean ratings, with the confidence bounds around
the musician ratings shaded in blue. The vertical dotted line indicates the onset of the final
chord.
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would suggest that half cadences elicited the lowest peak ratings relative to the other cadence

categories. To be sure, since participants were tasked with moving the slider to the bottom

of the scale as quickly as possible following the moment of cadential arrival, the value and

time index of the maximum rating represent the crucial moment in which the participants’

expectations are highest, so they should be of interest to us here. Thus, if half cadences elicit

significantly weaker expectations for the cadential arrival compared to the other categories,

participants should reach a lower peak on the expectancy scale at a later point in time.

In some trials, the peak rating appeared before the moment of cadential arrival, suggesting

that participants anticipated the end of the excerpt and consequently reached a plateau in their

ratings. In other trials, however, the peak rating appeared after the cadential arrival, indicating

that participants did not anticipate the impending end. Unfortunately, by calculating means in 1

s epochs, determining the average position and time index of the maximum slider rating would

be impossible. Thus, in the analysis that follows, the average maximum rating was calculated

for a 4 s window surrounding the cadential arrival, and trials were excluded if the slider ratings

did not reach a maximum during this window, resulting in a dataset of 1114 trials. The left line

plot in Figure 8.5 presents the estimated mean rating of the slider maxima, and the right plot

presents the estimated time indices for those maxima. The horizontal dotted line indicates the

onset of cadential arrival. Thus, for the PAC category, musicians reached the slider maximum

300 ms before the cadential arrival on average.

Type III Wald F tests of the fixed effects from the 5×2 LMM of the slider maxima revealed a

significant effect of cadence category, F (4, 37.27) = 2.63, p < .05, and a significant interaction,

F (4, 26.00) = 4.10, p < .05, but there was no main effect of training. As expected, the half

cadence category received the lowest maximum rating on average, and polynomial contrasts

revealed a quadratic trend in the ratings of the musicians, B = 3.26, t = 4.27, p < .0001, thereby

replicating the U-shaped curves found in the strength, specificity, and Likert-scale ratings from
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Figure 8.5: Left: Line plot of the estimated means of the slider rating maxima that occurred
within a 4 s window surrounding the onset of the cadential arrival for musicians and nonmusi-
cians for each cadence category N = 1114. Right: Line plot of the estimated means of the time
indices for the maximum slider ratings. The horizontal dotted line indicates the onset of the
cadential arrival. Whiskers represent ±1 standard error.

Experiment III. Although the same U-shaped trend emerged in the ratings of the nonmusician

group, the polynomial contrast was not significant.

Type III Wald F tests from the LMM of the time indices of the slider maxima revealed a

significant effect of cadence category, F (4, 36.17) = 2.67, p < .05, with both groups reaching

the slider maximum the most quickly for the PAC category, M = −130 ms, SE = 130 ms.

Musicians also reached the slider maximum more quickly than nonmusicians on average,

F (1, 41.42) = 7.00, p < .05, and the PAC category provided the only estimated time index

in which musicians anticipated the cadential arrival, M = −290 ms, SE = 150 ms, which

indicates that perfect authentic cadences elicit the strongest and most specific expectations

for the moment of cadential arrival. As predicted, the participants also reached the slider

maximum for the HC category latest on average, M = 340 ms, SE = 130 ms, and polynomial

contrasts revealed a weaker but still significant quadratic trend across the cadence categories,

B = −.96, t = −2.12, p < .05. Taken together, the estimated ratings and time indices for the
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slider maxima therefore suggest that the PAC and HC categories generated the strongest and

weakest expectations, respectively, with the remaining cadence categories falling somewhere in

the middle.

8.3.3 Discussion

As predicted, expectations for closure increased over the course of each excerpt and then peaked

at or near the moment of cadential arrival. For musicians, slider ratings demonstrated an

increasing linear trend over time up to the cadential arrival for the PAC category. For the

remaining cadence categories for which tonic harmony was the expected goal (IAC, DC, EV),

however, expectations for closure increased exponentially over time, suggesting that musicians

were less aware of the impending cadential arrival for these categories compared to the PAC

category. Any number of features may have contributed to this difference (e.g., the length of

the cadential progression, the presence of a cadential trill, a cadential six-four, etc.), but the

point here is that excerpts from the PAC category feature syntactic and rhetorical parameters

within cadential function that must have alerted the musician group far sooner to the impending

cadential arrival relative to the other categories, resulting in a higher starting position and a

generally linear (as opposed to exponential) increasing trend for the musician time course.

What is more, closer inspection of the average ratings and time indices for the slider maxima

at or near the moment of cadential arrival revealed the same U-shaped pattern observed in

the strength, specificity, and phrase completion ratings from Experiment III, with excerpts

from the PAC and HC categories receiving the highest/earliest and lowest/latest maximum

ratings, respectively. This finding provides converging evidence in support of the view that

half cadences elicit weaker expectations in prospect than the cadence categories for which tonic

harmony serves as the expected cadential goal.

For nonmusicians, the slider ratings did not differ for any of the cadence categories; the
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starting slider position and the rate of increase over time were nearly identical for every

category, suggesting either that nonmusicians were simply unaffected by differences in the

selected cadence categories—a hypothesis that seems unlikely given the pronounced differences

observed in the nonmusician ratings for every other task employed across the five experiments—

or that the task itself—asking participants to continuously monitor and rate their own subjective

experiences while simultaneously listening to the musical excerpt—was simply too demanding for

the nonmusician group. Indeed, the attentional and vigilance demands placed on participants

in continuous ratings tasks may interfere with explicit processes related to the formation of

expectations during music listening.109 Perhaps worse, these tasks may fail to tap into the

largely unconscious, automatic expectancies resulting from implicit processes during auditory

perception. To measure these sorts of expectancies for the events at cadential arrival, Experiment

V therefore adopts a priming paradigm and uses a competing secondary task to orient the

participants’ attention to other features of the stimulus. In this case, participants indicated

as quickly as possible whether the note and chord events at the moment of cadential arrival

were in or out of tune, where out-of-tune foil trials were tuned 40 cents sharp relative to the

preceding context.

109McAdams et al., “Influences of Large-Scale Form on Continuous Ratings in Response to a Contemporary
Piece in a Live Concert Setting”; Emery Schubert, “Measurement and Time Series Analysis of Emotion in Music”
(PhD Dissertation, University of New South Wales, 1999).
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§8.4 Experiment V

8.4.1 Method

Participants

Participants were 30 members (13 female) of the Montreal community recruited through the

Schulich School of Music and the McGill University classified ads. Ages ranged from 18 to

35 (M = 22, SD = 4). Fifteen participants with musical training equivalent or superior to

second-year-university level formed the musician group, and fifteen participants with less than

one year of musical training comprised the nonmusician group. To limit any effects caused by

familiarity with the stimuli, no participant with more than two years of formal study on the

piano was permitted to take part.

A questionnaire was administered to assess musical preferences and training. Participants

reported listening to an average of 16 hours of music each week, and all but four participants

self-identified as music lovers. The musicians practiced their primary instruments for an average

of 20 hours each week, and had been playing their primary instruments for an average of 12

years. Musicians also averaged 2.9 years of ear training, 3.3 years of instruction in harmony,

and 3.4 years of instruction in music analysis. All of the participants reported normal hearing,

which was confirmed with a standard audiogram administered before the experiment, and one

musician reported the ability to identify pitches absolutely.

Materials

The excerpts were the same as those employed in Experiment III, but all foil excerpts and

excerpts from the truncated condition were omitted, resulting in a stimulus set consisting of

40 excerpts. To create the intonation task for Experiment V, the final harmonic and melodic
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events at cadential arrival in each excerpt were presented both in tune and out of tune (i.e.,

tuned 40 cents sharp relative to the preceding musical context), resulting in 40 in-tune and 40

out-of-tune (foil) trials for the session.

Design and Procedure

The experimental session was divided into two phases. In the first training phase, participants

were presented with a randomized set of 20 trials. In each trial, a playback cursor was provided

at the top of the screen that followed along with the stimulus, and a black vertical line was

placed on the playback bar along with a black circle placed directly above the line to mark the

onset of the cadential arrival (see Figure 8.6). When the playback cursor reached the black line,

the circle turned green, at which point participants were instructed to judge as quickly and

accurately as possible whether the chord marked by the black line was in or out of tune by

pressing one of two buttons on the keyboard, labeled “in” and “out,” respectively. Following

the completion of each trial in the training phase, visual feedback was provided on the screen

to indicate whether the response was correct or incorrect. In the second experimental phase,

participants performed the in-tune/out-of-tune judgment without feedback, and the 80 trials

were randomized such that the target and foil conditions of each excerpt were not presented

within five experimental trials of each other. After completing the experiment, participants

filled out a short questionnaire addressing their music background.

Analysis

As suggested in two recent articles by Florian Jaeger and by Hugo Quené and Huub van

den Bergh,110 response accuracies were analyzed with mixed-effects logistic regression models

110Jaeger, “Categorical Data Analysis”; Hugo Quené and Huub van den Bergh, “Examples of Mixed-Effects
Modeling with Crossed Random Effects and with Binomial Data,” Journal of Memory and Language 59 (2008):
413–425.
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Figure 8.6: Screen shots of the interface used in Experiment V.

(GLMMs) using the glmer function, with the accuracy of the response as a binomial dependent

variable. In order to estimate a linear regression model on proportion data, GLMMs transform

proportions onto an unbounded log-odds scale, and all estimates in the following analyses are

reported on the log-odds scale. For transparency, however, the plotted GLMM estimates were

back-transformed onto a probability scale [0-1]. Correct RTs were analyzed with linear mixed

effects models (LMMs) using the lmer function. Due to violations of normality observed in the

residuals of the estimated RT models, analyses were conducted using log-transformed RTs.
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8.4.2 Results

Following Emmanuel Bigand and his co-authors,111 out-of-tune foils were excluded from the

analysis under the assumption that they do not constitute lawful musical events.112 Foil trials

were instead employed as fillers, and only the data from in-tune target trials are presented here,

resulting in a preliminary dataset of 1200 trials. Before entering accuracy into a GLMM, any

responses occurring within 150 ms of the onset of the cadential arrival or later than 5 s following

the onset the cadential arrival were deemed too early and too late, respectively, resulting in the

omission of 14 trials (1%).

Before examining the effect of the individual cadence categories themselves, a binomial

factor variable called ending was created to compare those cadences that achieve genuine

thematic closure—PAC, IAC, and HC—against those cadences that represent deviations of

the authentic cadence—DC and EV—under the assumption that the latter cadence categories

would elicit the strongest violations of harmonic and melodic expectancy at cadential arrival.

Type III Wald chi-square tests of a mixed 2×2 GLMM of the participant accuracies revealed

significant effects of ending, χ2(1) = 13.49, p < .001, and training, χ2(1) = 22.38, p < .001,

as well as a significant interaction, χ2(1) = 15.57, p < .001. For the musician group, the

pairwise comparison between the genuine and deviation conditions did not reveal a significant

difference, B = .15, z = .6, p > .05, but for nonmusicians this difference was significant,

B = 1.32, z = 4.93, p < .001. Shown in Figure 8.7, the model predictions demonstrate that

musicians were extremely adept at the intonation task, regardless of the syntactic ending

appearing at cadential arrival. This effect was not demonstrated for the nonmusician group,

however, as they performed no better than chance in the deviation condition. Indeed, compared

111Bigand et al., “Sensory Versus Cognitive Components in Harmonic Priming.”
112See also Tillmann and Marmel, “Musical Expectations Within Chord Sequences: Facilitation Due to Tonal

Stability Without Closure Effects.”
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Figure 8.7: Line plots of the estimated mean proportion correct and response times of musicians
and nonmusicians for each ending. Whiskers represent ±1 standard error.

to the grand mean, nonmusicians were roughly half as likely to accurately identify the intonation

of the final chord, B = −.58,odds ratio = .56,Wald Z = −3.68, p < .001.

Type III Wald F tests of the logRTs revealed a significant effect of ending, F (1, 47.71) =

10.9, p < .01, and pairwise comparisons indicated logRTs were significantly slower in the

deviation condition for both musicians, B = −.04, t = −2.34, p < .05, and nonmusicians,

B = −.07, t = −3.23, p < .01. Shown in Figure 8.7, the model estimates also suggested a main

effect of training, with nonmusicians appearing to be slower in their responses than musicians,

but this effect was marginal, F (1, 28.4) = 3.63, p = .067, and there was no interaction.

To examine the effect of the cadence categories individually, I specified 5×2 mixed-effects

models that included a within-subject factor of cadence category and a between-subjects factor

of musical training. Type III Wald chi-square tests revealed significant main effects of cadence

category, χ2(4) = 15.13, p < .01, and training, χ2(1) = 16.76, p < .001, and a significant inter-

action, χ2(4) = 18.17, p < .01. For the musician group, none of the cadence estimates differed

significantly from the intercept, indicating that the cadential categories had no impact on the

accuracy of the intonation judgment. For the nonmusician group, however, the estimated odds

of correctly identifying the intonation of the target chord for excerpts from the PAC category
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Figure 8.8: Line plots of the estimated mean proportion correct and response times of musicians
and nonmusicians for each cadence category. Whiskers represent ±1 standard error.

was over five times higher than the estimated odds calculated across the entire experiment,

B = 1.73,odds ratio = 5.64,Z = 2.76, p < .05. Pairwise comparisons of the nonmusician

responses using the Tukey HSD test revealed a significant difference between the PAC–DC pair,

and the EV category also differed significantly from the other cadence categories (see Figure

8.8). Polynomial contrasts of the nonmusician responses also revealed a significant decreasing

linear trend from the PAC to EV categories, B = −10.90, z = −5.25, p < .0001.

Type III Wald F tests of the fixed effects from the 5×2 LMM of the correct logRTs revealed
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a significant effect of cadence category, F (4, 37.54) = 3.43, p < .05, and a marginal effect of

training, F (1, 28.48) = 3.59, p = .07, but the interaction was not significant. Polynomial

contrasts revealed a significant increasing linear trend in logRTs for both musicians, B =

.18, df = 35.47, t = 2.73, p < .01, and nonmusicians, B = .29, df = 50.78, t = 3.37, p < .01,

which again corresponds to the cadential hierarchy observed in the IC estimates in Chapter 6

and in Experiments I, II, and III in Chapters 7 and 8.

8.4.3 Discussion

Participants were faster and more accurate for the events at the cadential arrival from the

genuine cadence categories compared to the cadential deviations. As expected, logRTs from

both groups also demonstrated a significant increasing linear trend from the PAC to the EV

categories, thereby replicating similar findings from Experiments I (see Figure 7.2), II (see

Figure 7.6), and III (see Figure 8.1). In this experiment, target events in the authentic cadence

categories (PAC, IAC) were primed, thus facilitating processing, while target events in the

cadential deviations (DC, EV) presumably elicited inhibition effects resulting from unexpected

harmonies and/or scale degrees in the target.

For the half cadence category, participant responses again appeared somewhere in the

middle, indicating a processing benefit relative to the cadential deviations but a processing cost

relative to the authentic cadence categories. Thus, whether participant logRTs for the half

cadence category indicate somewhat weak facilitation or inhibition effects relative to those

from the other cadence categories remains unclear. In psycholinguistic studies employing the

priming paradigm, researchers typically determine whether the preceding context facilitates or

inhibits target events by creating a baseline condition for which no priming effect occurs (i.e.,

where the preceding context is neither related nor unrelated to the target).113 By comparing

113Tillmann et al., “Tonal Centers and Expectancy: Facilitation or Inhibition of Chords at the Top of the
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the logRTs for the baseline condition against those from the selected cadence categories, we

could then determine the processing benefit (or cost) for each category. In the absence of such

a condition, however, we can only assume that the position of the half cadence category in

the participant logRTs results from the presence of note and chord events associated with the

dominant at the moment of cadential arrival, events which, according to scholars like Carol

Krumhansl and Jamshed J. Bharucha, are generally less stable in the tonal system.114

In Experiments III and IV, the cadence categories elicited larger differences in the ratings

of musicians compared to nonmusicians. In Experiment V, however, this trend was reversed,

with the speed and accuracy of the responses from the nonmusician group demonstrating larger

differences in the selected cadence categories relative to the musician group. Given the size of

the effects reported here, the relatively weaker effects found in Experiments III and IV for the

nonmusician group may have been due to the musician group’s increased familiarity either with

the experimental tasks, with technical terms relating to the experiments, or with the purpose(s)

of the experiments themselves. To be sure, Bigand champions implicit behavioral tasks like the

priming paradigm for precisely these reasons, noting that they can “determine the structures

‘naturally’ treated by the musical ear ... without a conscious effort underpinned by explicit

response strategies.”115 Thus, the implicit method employed in Experiment V demonstrates

that priming effects occur in cadential contexts regardless of explicit musical training.

But how do we account for the formation of expectations during musical listening? Do the

priming effects observed here result from implicit exposure over the course of many years, or

from sensory processes accumulated over echoic memory? Or perhaps the sensory-cognitive

apparatus combines the two processes in some way. The next section simulates the observed

Harmonic Hierarchy.”
114Bharucha and Krumhansl, “The Representation of Harmonic Structure in Music”; Krumhansl, Bharucha,

and Kessler, “Perceived Harmonic Structure of Chords in Three Related Musical Keys.”
115Bigand, “More about the Musical Expertise of Musically Untrained Listeners,” 305.
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priming effects from Experiment V using the most current computational approaches in the

priming literature.

§8.5 Simulations

Echoic Memory

Of the available sensory computational models of tonal expectancy,116 Marc Leman’s model of

echoic memory (EM) is perhaps the most well known.117 Leman’s aim was to demonstrate that

a model comparing the immediate pitch percept with the integrated pitch image computed over

the window of echoic memory could explain tonal probe-tone judgments,118 thus challenging

cognitive accounts of tonal expectation.119 Emmanuel Bigand and his co-authors have since

simulated tonal priming effects for stimulus sets from 19 separate priming studies using the

EM model, suggesting that processes related to echoic memory play a substantial role in the

formation of tonal expectations.120

Shown in Figure 8.9, the model consists of four stages: (1) peripheral auditory system, (2)

pitch periodicity analysis, (3) echoic memory, and (4) tonal contextuality. In the first stage,

the EM model produces auditory nerve images (ANIs) that simulate the mechanisms by which

the auditory peripheral nervous system transduces the acoustic signal into patterns of neural

firing rate-codes in the auditory nerves. It first low-pass filters the acoustic signal to match
116For a review and discussion of these models, see Collins et al., “A Combined Model of Sensory and Cognitive

Representations Underlying Tonal Expectations in Music,” 39–43.
117Leman, “An Auditory Model of the Role of Short-Term Memory in Probe-Tone Ratings.” It has also been

called the Tonal Contextuality (TC) model, the periodicity pitch (PP) model, and the auditory short-term memory
(ASTM) model in recent publications. To avoid confusion regarding the names of the models implemented here,
and since I am only applying the model to simulate echoic memory, I will prefer “EM” model.

118Krumhansl and Kessler, “Tracing the Dynamic Changes in Perceived Tonal Organization in a Spatial
Representation of Musical Keys.”

119Krumhansl, Cognitive Foundations of Musical Pitch.
120Bigand et al., “Empirical Evidence for Musical Syntax Processing? Computer Simulations Reveal the

Contribution of Auditory Short-Term Memory.”
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Figure 8.9: Schematic diagram of Leman’s model of echoic memory (EM), reproduced from
Bigand et. al’s “Empirical Evidence for Musical Syntax Processing?” (2014), 6. LPF = lowpass
filter; BPF = band-pass filters; HCM = hair cell models; ANI = auditory nerve image; AC
= auto-correlation functions; PI = pitch image; EM = echoic memory; GPI = Global Pitch
Image; LPI = Local Pitch Image; TC = Tonal Contextuality.

the filtering processes of the outer and middle ear, and then applies a bank of 40 band-pass

filters (or channels) whose bandwidths correspond to critical bands along the basilar membrane.

To complete the first stage, the EM model finally converts these band-pass-filtered channels

into neural rate-code patterns using hair-cell models that amplify the signals using half-wave

rectification and dynamic range compression.

In the second stage, the EM model produces a pitch image (PI) that represents the estimated

periodicities in the firing patterns of the ANI channels in a range defined between 80 Hz and

1250 Hz. It first applies a windowed autocorrelation function that detects periods in each

channel at shifted windows of 60 ms. A coincidence mechanism then sums these periodicities

and stores the results in a summary pitch image. Thus, for a stimulus with a frequency

component at 600 Hz, the ANI channel corresponding to 600 Hz will produce periods at

multiples of 1
600 in the resulting PI (e.g., 1.66, 3.33, 5, 6.66, 8.33 ms).121

In the third stage, the EM model incorporates effects of echoic memory. Using the PI as

121Ibid., 4.
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input, Leman produces echoic images at both local and global time scales (LPI and GPI) using a

leaky integrator, which updates the image at each time step t by adding a certain amount of the

previous image to the new incoming pitch image, using an exponential half-decay function to

simulate the decay in echoic memory over the duration of the selected time scale.122 In the most

recent studies employing the EM model,123 the LPI was obtained using a short integration time

of 0.1 s to represent the immediate pitch percept, while the GPI was obtained with a longer

integration time of anywhere between 1.5 and 4 s to represent the global pitch percept stored in

echoic memory.

Finally, the fourth stage estimates the similarity (or tonal contextuality) between the LPI

and the GPI at each t using the Pearson correlation coefficient r . According to Bigand and his

co-authors, the tonal contextuality index produced by the EM model represents the “tension”

of the LPI with respect to the GPI, with high values indicating high correlations, and thus,

low levels of tension.124 Thus, the EM model produces a continuous time series of tonal

contextuality values that reflect the relatedness between the immediate pitch percept and the

preceding pitch context.

Tonal Space

Unlike Leman’s EM model, the Tonal Space (TS) model assumes that tonal contexts are main-

tained in regions of the brain mediating interactions between sensory, cognitive, and affective

information.125 Thus, Petr Janata and his co-authors designed the TS model to account both

for sensory and cognitive priming effects by projecting the output pitch images from Leman’s

122Leman, “An Auditory Model of the Role of Short-Term Memory in Probe-Tone Ratings,” 489.
123Bigand et al., “Empirical Evidence for Musical Syntax Processing? Computer Simulations Reveal the

Contribution of Auditory Short-Term Memory”; Collins et al., “A Combined Model of Sensory and Cognitive
Representations Underlying Tonal Expectations in Music.”

124Bigand et al., “Empirical Evidence for Musical Syntax Processing? Computer Simulations Reveal the
Contribution of Auditory Short-Term Memory,” 6.

125Janata et al., “The Cortical Topography of Tonal Structures Underlying Western Music,” 2169.
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EM model to the surface of a torus using a self-organizing map (SOM) algorithm,126 the central

purpose of which is to learn and remember the statistical regularities governing complex stimu-

lus domains like tonal music.127 To be sure, Gjerdingen has suggested that connectionist models

like the SOM algorithm “present an appealing analog of the ordinary listener, someone who

without formal training has nevertheless developed a strong sense of how music ‘works.’ ”128

For this reason, the SOM algorithm has become the canonical method for simulating cogni-

tive representations of tonal materials over the past three decades, with Bharucha’s MUSACT

model,129 Gjerdingen’s L’ART pour l’art,130 and Tillmann’s SOM model of harmonic perception

providing ready examples.131

The mathematical details of SOMs have been described elsewhere,132 but a brief summary

of the approach will be useful to us here. A SOM is a hierarchical artificial neural network

that learns the distributional information associated with a particular corpus without explicit

teaching inputs. Conventional SOMs typically consist of an input layer, which represents the

incoming stimuli, and a topological layer, which represents the neuronal activity of the cerebral

cortex.133 To simulate the tonotopic organization of sensory information in the cortex,134 the

topological layer is composed of n neurons (or units) positioned on a two-dimensional grid

(or map) that are connected by synapses (or connection strengths) to the input layer such that

126Teuvo Kohonen, Self-Organizing Maps (Berlin, Germany: Springer, 1995).
127Tillmann, Bharucha, and Bigand, “Implicit Learning of Tonality,” 891.
128Robert O. Gjerdingen, “Using Connectionist Models to Explore Complex Musical Patterns,” Computer Music

Journal 13, no. 3 (1989): 67.
129Jamshed J. Bharucha, “MUSACT: A Connectionist Model of Musical Harmony,” in Proceedings of the

Cognitive Science Society (Hillsdale, NJ: Erlbaum Press, 1987).
130Gjerdingen, “Using Connectionist Models to Explore Complex Musical Patterns”; Robert O. Gjerdingen,

“Categorization of Musical Patterns by Self-Organizing Neuronlike Networks,” Music Perception 7, no. 4 (1990):
339–370.

131Tillmann, Bharucha, and Bigand, “Implicit Learning of Tonality.”
132For a thorough review of SOMs in the priming literature, see ibid., 887–891.
133Charles Delbé, “Recurrent Self-Organization of Sensory Signals in the Auditory Domain,” in From Asso-

ciations to Rules: Connectionist Models of Behavior and Cognition, ed. Robert M. French and Elizabeth Thomas
(Singapore: World Scientific, 2008), 184.

134Tillmann, Bharucha, and Bigand, “Implicit Learning of Tonality,” 891.



438 Expecting Closing Schemas: Converging Methods

similar stimulus inputs will elicit maximal responses from nearby units (i.e., units located near

each other on the map). If the sides of this map share the same unit, the global shape of the

map becomes a cylinder or a toroid, as is the case with the SOM developed by Janata and his

co-authors.135

The original algorithm is based on competitive learning, with each unit corresponding to a

prototype or reference vector, which could represent a note, a triad, a harmonic progression, or

nearly any other feature deemed noteworthy by the experimenter. In the case of the TS model,

the prototype vectors represent the 24 major and minor keys of the tonal system. For each

stimulus input, the algorithm measures the Euclidean distance between the input vector and

the prototype vectors representing all of the units on the map. The prototype vector with the

smallest distance value then wins the competition. During training, the connection strength

between the input stimulus and the winning neuron is then updated such that future activations

of that unit will be stronger for similar input stimuli and weaker for dissimilar input stimuli.

Perhaps more importantly, the input stimulus also activates the other units on the map, albeit

more weakly, thereby reorganizing the order of the units to reflect their degree of activation.

When training is complete, each unit is specialized to represent a particular feature of the input

stimuli (e.g., a particular tonal context), and the map is topographically organized such that

input stimuli with similar features will activate nearby units on the map (e.g., excerpts in C

major will be closer to those in G major than to those in F] major).

When presented with a harmonic progression in C major, the output pitch image from the

TS model triggers a cascade of spreading activation across the map at each time t , with the

highest activation appearing at the unit representing the key of C major, followed by weaker

activations for neighboring units like G major and A minor, and yet weaker activations for

less proximal units like D major. For the TS model, the authors trained the SOM using the

135Delbé, “Recurrent Self-Organization of Sensory Signals in the Auditory Domain,” 185.
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pitch images from the EM model integrated with a 2 s time constant that were extracted from a

melody that was explicitly composed to modulate through all 24 major and minor keys over

the course of approximately 8 minutes.136 Like Leman’s EM model, Janata and his co-authors

also employ an exponential decay function that integrates the activation patterns over time

to incorporate effects of echoic memory. Thus, at any point during the stimulus input, the

relative activations across the map that have been accumulated over echoic memory represent

the effects of long-term schematic knowledge on the tonal expectancies of listeners.

Information Dynamics of Music

Although the TS model simulates the effects of long-term schematic knowledge on tonal

expectancies, it fails to consider whether a SOM can account for tonal priming effects in

isolation. What is more, SOMs have been criticized in recent years because they generally do

not represent the contextual relations between contiguous events on the musical surface.137

To be sure, although the gradual memory decay included in the TS model allows the analyst

to consider long-range temporal dependencies,138 SOMs including such a decay essentially

model how a structural account of tonal expectations varies over time.139 In other words,

unlike Markov models, conventional SOMs like those used in tonal priming studies do not

explicitly model the sequential dependencies between events in tonal music.140 Tom Collins

and his co-authors argue, for example, that priming experiments to date have mainly tested

musical expectations based on zeroth-order probabilities when higher-order models are more

136Collins et al., “A Combined Model of Sensory and Cognitive Representations Underlying Tonal Expectations
in Music,” 42.

137Ibid.
138John Ashley Burgoyne, “Stochastic Processes and Database-Driven Musicology” (PhD Dissertation, McGill

University, 2012), 80.
139See Footnote 62.
140Researchers are beginning to consider the potential for recursive SOMs to model tonal expectancies over time,

the purpose of which is to represent temporal sequences as opposed to zeroth-order distributions. See, for example,
Delbé, “Recurrent Self-Organization of Sensory Signals in the Auditory Domain.”
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appropriate. They write,

Though the importance of harmonic syntax for describing the tonal trajectory of

a piece of music and associated expectations is undisputed by music theorists . . . ,

explicit consideration of the perception of chord transitions and the locations of

those transitions within phrasal structure has yet to gain momentum in the field of

music psychology.141

In this regard, functional interpretations of cognitive priming effects—such as the Information

Dynamics of Music (IDyOM) model described in Chapter 6—might offer a suitable alternative

to artificial neural networks like the SOM algorithm. Thus, in what follows I have also

simulated the priming effects for the stimulus set employed in Experiment V using IDyOM.

8.5.1 Method

For the EM and TS models, the local pitch image was set to .1 s and the global pitch image was

set to 4 s. Following Collins and his co-authors, Pearson’s r was computed over each stimulus

from Experiment V at a sampling rate of 26 Hz for both models.142 To obtain a single tonal

congruency estimate for each stimulus comparing the target chord event with the preceding

context, the correlation time series for the EM and TS models were averaged over the time

window corresponding to the target chord at the expected moment of cadential arrival.

For IDyOM, providing a suitable training corpus of Mozart keyboard sonatas was beyond

the scope of the present study, so for the sake of simplicity I have trained the LTM+model from

IDyOM on the note events from the first violin in the Haydn Corpus under the assumption that

the sequential dependencies between melodic events in Haydn’s compositional style will roughly

141Collins et al., “A Combined Model of Sensory and Cognitive Representations Underlying Tonal Expectations
in Music,” 54.

142Ibid.



8.5 Simulations 441

correspond to those found in the soprano-voice melodies in Mozart’s keyboard sonatas. Given

the pronounced differences in texture between the string quartet and piano genres, however,

the present investigation does not consider bass-line or harmonic expectancies. Thus, the EM

and TS models were computed over the entire audio stimulus, but IDyOM was only computed

over the soprano-voice melody from each stimulus. To examine melodic pitch expectations

for the resolving note event in the melody at the moment of cadential arrival, I derived the

viewpoint combination from the stepwise selection procedure described in §6.2.3. As before,

viewpoint selection derived the following combination of viewpoint models: melint, followed

by the linked viewpoint csd ⊗ cpitch, which I will again refer to as selection.

8.5.2 Results

To examine the effect of cadences that achieve genuine thematic closure—PAC, IAC, and

HC—against those cadences that represent deviations of the authentic cadence—DC and EV—

the model simulations were first analyzed for the factor variable ending with a two-tailed

independent samples t -test. Levene’s test revealed heteroscedastic groups for one of the models,

however, so I report t -tests that do not assume equal variances. Shown in Figure 8.10, the EM

and TS models did not produce higher correlation estimates for the genuine cadences compared

to the cadential deviations (EM, t (25.83) = .44, p > .05; TS, t (37.03) = .12, p > .05). Note that

the y-axis is upside down so that decreasing estimates correspond to increasing logRTs. For

IDyOM, however, the cadential deviations received significantly higher IC estimates relative to

the genuine cadences, t (16.95) = −3.02, p < .01.

Figure 8.11 presents line plots of the simulation estimates for the EM, TS, and IDyOM

models for each cadence category. To examine the effect of the cadence categories individually,

one-way ANOVAs were specified for each model simulation. Again, Levene’s test revealed

heteroscedastic groups for two of the three models, so I report Welch’s F test here and estimate
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Figure 8.10: Left: Line plots of the correlation estimates from the EM and TS models for each
ending. The y-axis is upside down so that decreasing estimates correspond to increasing logRTs.
Right: Line plot of the information content estimates from IDyOM for each ending. Whiskers
represent ±1 standard error.

effect size using est. ω2 (see §6.3.1). To address whether the model simulations corresponded

with the linear increase demonstrated in the logRTs in Experiment V, a polynomial contrast

was also included that estimates the goodness-of-fit of the predicted trend.

A one-way ANOVA for the correlation estimates did not reveal a significant effect of

cadence category for the EM model, F (4, 17.24) = 1.98, p > .05, est. ω2 = .09, and the

polynomial contrast did not exhibit the increasing linear trend reflected in the logRTs, B =

−.10, df = 15.33, t = −.90, p > .05. For the TS model, however, the mean correlation

estimates demonstrated a significant effect of cadence category, F (4, 15.61) = 3.02, p <

.05, est. ω2 = .17, but with excerpts from the HC category receiving the lowest estimates

on average, M = .61, SE = .12. As a consequence, the polynomial contrast was not significant,

B = −.35, df = 8.43, t = −1.90, p = .09. Finally, the IC estimates from IDyOM revealed

a significant effect of cadence category, F (4, 14.87) = 14.05, p > .001, est. ω2 = .57, and the

polynomial contrast exhibited a significant increasing linear trend from the PAC to the EV

categories, B = 12.39, df = 7.53, t = 6.85, p > .001.

To this point I have only considered whether the model simulations correspond with the
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Figure 8.11: Left: Line plots of the correlation estimates from the EM and TS models for
each cadence category. The y-axis is upside down so that decreasing estimates correspond to
increasing logRTs. Right: Line plot of the information content estimates from IDyOM for each
cadence category. Whiskers represent ±1 standard error.

effects of cadence category observed in the participant logRTs. To examine the relationship

between the model simulations and the participant responses specifically, Table 8.3 presents the

intercorrelations between the model simulations and the mean fit ratings and logRTs collected

in Experiments III and V, respectively. As expected, the pooled fit ratings and logRTs were

significantly correlated, r (38) = −.51, p < .01, which indicates that participants were faster for

target chords at the cadential arrival if they received the highest fit ratings.

For the model simulations, the EM and TS models demonstrated just one significant

correlation with the participant responses: musicians were faster for excerpts that received high

correlation estimates from the TS model, r (38) = −.33, p < .05. This correlation was weak,

however, explaining only 11% of the variance in the musician ratings, and no other significant

correlations emerged. Conversely, IDyOM featured moderate-to-strong correlations with every

response variable, r 2 range: .17-.50: in each case, participants were faster and provided higher

fit ratings for target events that received lower IC estimates by IDyOM.
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Table 8.3: Intercorrelations between the model simulations and the mean logRTs (Experiment V) and fit ratings
(Experiment III) of musicians and nonmusicians.

LogRTs (Experiment V) Fit Ratings (Experiment III) Simulations
Mus. Nonmus. Pooled Mus. Nonmus. Pooled EM TS IDyOM

LogRTs
Musicians .60∗∗∗ .92∗∗∗ −.59∗∗∗ −.39∗ −.54∗∗∗ −.28 −.33∗ .71∗∗∗
Nonmusicians .88∗∗∗ −.34∗ −.30 −.34∗ .18 .13 .41∗
Pooled −.55∗∗∗ −.38∗ −.51∗∗ −.18 −.24 .63∗∗∗

Fit Ratings
Musicians .86∗∗∗ .98∗∗∗ .15 .16 −.64∗∗∗
Nonmusicians .95∗∗∗ .14 .14 −.60∗∗∗
Pooled .15 .16 −.64∗∗∗

Simulations
EM .66∗∗∗ −.10
TS −.30
IDyOM

Note. N = 40.
* p < .05 ** p < .01 *** p < .001, two-tailed.
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8.5.3 Discussion

Of the model simulations examined here, IDyOM provided the best fit with the experimental

data from Experiments III and V. What is more, the IC estimates shown in Figure 8.11 corre-

spond quite well with the IC estimates calculated for the cadences in the Haydn Corpus (see

Figure 6.3). In both cases, deceptive cadences received much lower IC estimates on average than

evaded categories, presumably because the former category features a stable scale degree in the

melody at the cadential arrival (e.g., 1̂ or 3̂), whereas the latter category typically features an

unexpected leap. To be sure, when considered in isolation, melodic expectations for the moment

of cadential arrival in deceptive cadential contexts should not differ from those in authentic

cadential contexts, as is the case here. Conversely, the unexpected leap characterizing the evaded

cadences employed in Experiments II–V may explain the higher IC estimates observed for

excerpts from that category.

To obtain the increasing linear trend found for the cadence collection in Chapter 6 using

IDyOM, recall that I created a composite viewpoint that combined the IC estimates from

selectionvl1 and a harmonic viewpoint called csdc. In that case, a linear combination of

melodic and harmonic expectations reflected the increasing linear trend that has since been

observed in the completion ratings from Experiments I and II, the ratings of expectancy fit from

Experiment III, and the logRTs from Experiment V. Thus, the model simulations provided by

IDyOM might better reflect the corresponding trend in the logRTs if I also include a viewpoint

representing the formation of harmonic expectancies during listening.

Nevertheless, the effects reported here provide evidence in support of a functional interpre-

tation of tonal processing, in which listeners with exposure to tonal music retain long-term,

schematic knowledge about the statistical dependencies between contiguous events. This

knowledge allows listeners to generate expectations during music listening, with the syntactic



446 Expecting Closing Schemas: Converging Methods

relationships between tonal events activating schematic representations that either facilitate or

inhibit the processing of continuations heard later. This is not to say that sensory or psychoa-

coustic explanations of the priming effects observed here—or reported elsewhere—play no role

in expectancy formation; only that the sensory account considered in isolation generally fails

to account for the priming effects demonstrated in these experiments. What is more, given the

paucity of experimental studies examining tonal expectancies for genuine musical materials,

these findings might motivate researchers to consider stimulus sets that will better reflect the

musical styles and genres to which listeners might be consistently exposed.

§8.6 Conclusions

This chapter examined the link between expectancy and cadential closure in the keyboard

sonatas of Wolfgang Amadeus Mozart. In §8.1 I reviewed the evidence for tonal expectancies

during music listening, noting that genuine musical materials rarely appear in the experimental

literature. In Experiment III (§8.2), participants provided the lowest strength and specificity

ratings for excerpts from the HC category. When the terminal events at the moment of

cadential arrival followed the preceding context (i.e., the non-truncated condition), however,

half cadences were placed in the center of the expectancy fit scale, suggesting that listener

expectations reflect a bipolar continuum, with fulfillment on one end and violation on the

other, and where distance from the center of the scale corresponds to the strength of the

experienced expectation. In Experiment IV (§8.3), continuous ratings of expectations for

closure reinforced the interpretation of results from Experiment III, with excerpts from the

PAC and HC categories receiving the highest/earliest and lowest/latest maximum ratings,

respectively. Finally, Experiment V (see §8.4) demonstrated facilitation effects in the correct

RTs of both musicians and nonmusicians for excerpts from the PAC category, suggesting that
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authentic cadential contexts prime listeners to expect a root-position tonic harmony with 1̂ in

the soprano. What is more, the mean logRTs across all five cadence categories demonstrated the

same ascending linear trend that was previously observed in the model simulations in Chapter

6, as well as the completion and expectancy fit ratings in Experiments I, II, and III. Finally, in

§8.5, the model simulations provided by sensory or psychoacoustic accounts of tonal priming

generally failed to explain the pattern of results observed here. Instead, the functional account

represented by IDyOM provided the best fit to the data, suggesting that listeners generate

expectations for potential continuations as a consequence of the frequent co-occurrence of

events on the musical surface.
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Conclusions

The constraints of a style are learned by composers and performers, critics and listeners.
Usually such learning is largely the result of experience in performing and listening
rather than of explicit formal instruction in music theory, history, or composition. In
other words, knowledge of a style is usually “tacit”: that is, a matter of habits properly
acquired (internalized) and appropriately brought into play... It is the goal of music
theorists and style analysts to explain what the composer, performer, and listener know
in this tacit way... This can be done only by making inferences from observable
data—the replicated patternings present in works of art—to general principles.

Leonard B. Meyer

I have argued in this thesis that listeners who are familiar with classical music have internal-

ized the most common cadence categories as a flexible network of rival closing schemata. Once

learned, the activation of this network during music listening—and of the individual closing

schemata contained within—results in the formation of expectations for the terminal events of

the cadence, the fulfillment of which serves to close off both the schema itself and, in many cases,

the larger phrase-structural process that subsumes it. To support this view, the corpus-analytic

studies in Part II presented a few analytical techniques for the discovery, classification, and

prediction of cadences from Caplin’s typology that might simulate the learning mechanisms

underlying human cognition. The experimental studies in Part III extended these findings to

human listeners by examining the psychological relevance of existing theoretical models of the

classical cadence.
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In some ways, this particular study took a deductive path, beginning with the categories

identified in Caplin’s theory of cadential closure and then working down to the parameters at the

musical surface that characterize those categories. But this is not to say one could not have taken

an inductive approach, whereby the musical parameters dictate the number and position of the

categories within the schematic network. In Chapter 4, for example, I extended the canonical

n-gram approach to include non-contiguous sequences and found that cadential progressions

like ii6–Cad64–V
7–I are among the most frequent patterns in the Haydn Corpus. Nevertheless,

in large part my choice was to examine whether exemplars of the cadence categories advanced in

the “New Formenlehre” tradition influence listeners in some meaningful way. As a consequence,

this study did not consider those musical passages that defy ready categorization in traditional

theories of cadential closure, yet still elicit an ending percept. In Chapter 5, for example, I

excluded ten cadences from the cadence collection because they implied more than one category

(i.e., PAC-EV or DC-EV). By abandoning the cadential categories entirely, we might therefore

consider the entire range of musical parameters responsible for the perception of closure without

recourse to theories of cadence, which attempt to reveal the procedures by which composers

articulated closing patterns in the classical style, but which do not always directly correspond

with the schematic knowledge of listeners. Indeed, what is essential for a theory of cadence may

not always be tenable for a psychological theory of closure.1 Certainly, empiricism provides a

method for applying constraints to our theoretical models, weeding out the impossible from

the possible, but the concept of closure advanced in theories of cadential closure need not

dispense with an examination of compositional procedures in favor of exclusively explaining

how listeners perceive and process closing patterns.

However, the desire to explain or clarify how we experience musical endings can provide

1Nicholas Cook makes the same point in reference to the perception of tonal closure (“The Perception of
Large-Scale Tonal Closure,” Music Perception 5, no. 2 [1987]: 205).
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common ground for further cross-disciplinary work. In my view, the application of experi-

mental methods in future studies offers researchers the opportunity to gain a more complete

understanding of the underlying sensory and cognitive mechanisms responsible for the per-

ception of closure in music. Indeed, these methods seem especially worthwhile if we accept

the view advocated by scholars in the learning sciences that the first-time listening is never

“completely innocent of analysis.”2 As Carol Krumhansl points out,

... musical knowledge is highly constrained, stable, and permanent. It is presumed

to be the consequence of years of exposure to a system of music, which is itself

shaped at a very basic level by acoustic properties and the way they are encoded

by the sensory system. Once acquired, this knowledge is thought to impose its

organization on all subsequent musical experiences.3

This is not to say that schematic knowledge is fixed across a group of listeners; the depth

(or specificity) of that knowledge will vary from one person to another. When confronted

with a Cudworth Cadence, for example, listeners with relatively little exposure to this galant

mannerism may hear a V–I progression, while those with a great deal of experience in the

instrumental repertories of Pergolesi, Scarlatti, and Haydn may possess a schematic representa-

tion that is nearly isomorphic with the encountered exemplar. Finally, those listeners with no

familiarity with Western tonal music might have to rely entirely on the biological constraints

of the auditory periphery, and so may hear only a ‘blooming, buzzing confusion.’4

But no matter the depth or specificity of the representation, the important point here is

that much of this knowledge lies beneath the conscious surface, reflects implicit rather than

explicit learning strategies, and goes far beyond verbal description. Jay Dowling summarizes
2Edward T. Cone, “Three Ways of Reading a Detective Story or a Brahms Intermezzo,” The Georgia Review

31, no. 3 (1977): 80.
3Krumhansl, Cognitive Foundations of Musical Pitch, 284.
4James, The Principles of Psychology, 1:488.
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this view thusly:

We tend to think of what we “really” know as what we can talk about, and to dis-

parage knowledge that we can’t verbalize. When we possess two representations of

a musical structure, one declarative and the other procedural, we tend to prefer the

declarative one because of its accessibility to theorizing and formal manipulation.

We must come to realize that most of our brain representations of musical structure

are first developed through years of perceptual learning in listening to and perform-

ing music, and that the corresponding declarative representations are typically in

the form of rationalizations at the conscious level of subtler and richer implicit

representations at the subconscious level. At the conscious level we inevitably

discard information in the interests of clarity of formalization—information that

the brain “knows” procedurally to be important and does not forget.5

If we share Leonard Meyer’s view that the goal of music researchers is “to explain what the

composer, performer, and listener know in this tacit way,”6 then it seems reasonable to conclude

that the cadence concept is merely a declarative shorthand for those features of music that so

exquisitely exploit the sensory-cognitive apparatus.

5Dowling and Harwood, Music Cognition, 252. Eric Clarke has similarly argued that “we live in a tremendously
logocentric culture, in which our capacity to express ourselves in language seems sometimes to be regarded as
virtually synonymous with knowledge” (“Issues in Language and Music,” Contemporary Music Review 4 [1989]:
10).

6Meyer, Style and Music: Theory, History, and Ideology, 10.
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Appendix A

The Haydn Corpus Cadence Collection

The Haydn Corpus consists of midi representations of 50 sonata-form expositions fromHaydn’s

string quartets (see Table 3.1), as well as accompanying text files that include the position of

each prominent key area, the boundaries of thematic functions—Main Theme (MT), Transition

(TR), and Subordinate Theme (ST)—and a number of annotations about the cadences appearing

in each movement.

The cadence collection consists of exemplars of the five cadence categories in the Haydn

Corpus that achieve, or promise, cadential arrival in Caplin’s cadence typology—PAC, IAC,

HC, DC, EV (see Table 2.1). In the table below, I have included the cadential classification and

bass clausula for each cadence (see Chapter 5), and I have also indicated whether each cadence

includes a cadential six-four, an expanded cadential progression (ECP), a surface dissonance

at cadential arrival (e.g., a 4-3 suspension), and a trill above the penultimate dominant. The

electronic corpus also includes a number of other annotations for each cadence, such as the

harmonies of the cadential progression, the duration of the cadential progression expressed as a

percentage of the length of the total movement, whether the events at the moment of cadential

arrival elide with the following passage, and so on.
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Number Cadence Bass Clausula Cad 6
4 ECP Diss. Trill Excerpt

1 PAC Semplice No Yes No No Op. 17, No. 1, i, mm. 4-6
2 PAC Semplice No No No No Op. 17, No. 3, iv, m. 4
3 PAC Semplice No No No No Op. 17, No. 4, i, mm. 6-8
4 PAC Semplice No Yes No No Op. 17, No. 5, i, mm. 10-12
5 PAC Semplice No No No No Op. 17, No. 5, i, mm. 24-25
6 PAC Semplice No No No No Op. 17, No. 6, i, mm. 22-24
7 PAC Semplice No No No No Op. 20, No. 1, iv, mm. 5-6
8 PAC Semplice No No No No Op. 20, No. 3, i, mm. 5-7
9 PAC Semplice No Yes No No Op. 20, No. 3, iii, mm. 35-41
10 PAC Semplice No No No No Op. 20, No. 4, i, mm. 66-67
11 PAC Semplice No No No No Op. 20, No. 4, iv, mm. 5-6
12 PAC Semplice No No No No Op. 20, No. 4, iv, mm. 39-40
13 PAC Semplice No No No No Op. 20, No. 5, i, mm. 4-5
14 PAC Semplice No No No No Op. 20, No. 5, i, mm. 30-31
15 PAC Semplice No No No No Op. 20, No. 5, i, mm. 45-46
16 PAC Semplice No No Yes No Op. 20, No. 6, ii, mm. 6-8
17 PAC Semplice No No No No Op. 33, No. 2, i, mm. 3-4
18 PAC Semplice No No No No Op. 33, No. 2, i, mm. 11-12
19 PAC Semplice No No No No Op. 33, No. 2, i, mm. 20-21
20 PAC Semplice No Yes No No Op. 33, No. 3, iii, mm. 14-17
21 PAC Semplice No No No No Op. 33, No. 3, iii, mm. 25-27
22 PAC Semplice No No No No Op. 33, No. 5, i, mm. 7-10
23 PAC Semplice No No No No Op. 33, No. 5, i, mm. 29-32
24 PAC Semplice No No No No Op. 50, No. 1, i, mm. 11-12
25 PAC Semplice No Yes No No Op. 50, No. 1, i, mm. 18-21
26 PAC Semplice No Yes No Yes Op. 50, No. 2, i, mm. 93-100
27 PAC Semplice No No No No Op. 50, No. 3, iv, mm. 46-47
28 PAC Semplice No Yes No No Op. 50, No. 5, i, mm. 5-8
29 PAC Semplice No Yes No No Op. 50, No. 5, i, mm. 47-50
30 PAC Semplice No Yes No No Op. 50, No. 5, iv, mm. 9-12
31 PAC Semplice No Yes No No Op. 50, No. 6, i, mm. 11-16
32 PAC Semplice No No No No Op. 50, No. 6, ii, m. 4
33 PAC Semplice No No No Yes Op. 54, No. 1, i, mm. 43-44
34 PAC Semplice No Yes Yes No Op. 55, No. 3, i, mm. 64-67
35 PAC Semplice No No No No Op. 64, No. 3, i, mm. 3-5
36 PAC Semplice No No Yes No Op. 64, No. 4, iv, mm. 15-16
37 PAC Semplice No No No No Op. 64, No. 4, iv, mm. 58-60
38 PAC Semplice No No No No Op. 64, No. 6, i, mm. 7-8
39 PAC Semplice No Yes No Yes Op. 71, No. 1, i, mm. 62-66
40 PAC Composta Yes No No Yes Op. 17, No. 1, i, mm. 39-41
41 PAC Composta Yes No No Yes Op. 17, No. 2, i, mm. 34-36
42 PAC Composta Yes No No No Op. 17, No. 3, iv, mm. 16-18
43 PAC Composta Yes No No No Op. 17, No. 4, i, mm. 49-51
44 PAC Composta Yes Yes No Yes Op. 17, No. 5, i, mm. 30-32
45 PAC Composta Yes No No Yes Op. 17, No. 6, i, mm. 60-62
46 PAC Composta Yes Yes No No Op. 20, No. 1, iv, mm. 38-48
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47 PAC Composta Yes Yes No Yes Op. 20, No. 3, iv, mm. 35-38
48 PAC Composta Yes Yes No No Op. 20, No. 4, i, mm. 78-87
49 PAC Composta Yes Yes No No Op. 20, No. 4, i, mm. 95-99
50 PAC Composta Yes Yes No Yes Op. 20, No. 6, ii, mm. 21-25
51 PAC Composta Yes No No No Op. 33, No. 1, i, mm. 10-11
52 PAC Composta Yes No No Yes Op. 33, No. 1, i, mm. 31-33
53 PAC Composta Yes No No No Op. 33, No. 1, iii, mm. 29-30
54 PAC Composta Yes No No No Op. 33, No. 1, iii, mm. 37-38
55 PAC Composta Yes No No Yes Op. 33, No. 2, i, mm. 26-28
56 PAC Composta Yes No Yes No Op. 33, No. 3, iii, mm. 6-8
57 PAC Composta Yes No No Yes Op. 33, No. 4, i, mm. 25-26
58 PAC Composta Yes Yes No Yes Op. 33, No. 5, i, mm. 83-89
59 PAC Composta Yes No No Yes Op. 33, No. 5, ii, mm. 7-8
60 PAC Composta Yes No No No Op. 50, No. 1, i, mm. 49-50
61 PAC Composta Yes Yes No Yes Op. 50, No. 1, i, mm. 51-56
62 PAC Composta Yes No No No Op. 50, No. 1, iv, mm. 68-70
63 PAC Composta Yes No No No Op. 50, No. 2, i, mm. 7-9
64 PAC Composta Yes No No No Op. 50, No. 2, i, mm. 27-29
65 PAC Composta Yes No No No Op. 50, No. 2, iv, mm. 48-50
66 PAC Composta Yes No No Yes Op. 50, No. 2, iv, mm. 74-77
67 PAC Composta Yes No No No Op. 50, No. 3, iv, mm. 22-24
68 PAC Composta Yes Yes No Yes Op. 50, No. 3, iv, mm. 54-65
69 PAC Composta Yes Yes No Yes Op. 50, No. 4, i, mm. 51-56
70 PAC Composta Yes Yes No No Op. 50, No. 5, i, mm. 17-20
71 PAC Composta Yes Yes No No Op. 50, No. 5, i, mm. 51-54
72 PAC Composta Yes No No Yes Op. 50, No. 5, i, mm. 60-63
73 PAC Composta Yes No No Yes Op. 50, No. 5, iv, mm. 43-45
74 PAC Composta Yes Yes No Yes Op. 50, No. 6, i, mm. 43-48
75 PAC Composta Yes Yes No Yes Op. 50, No. 6, ii, mm. 16-22
76 PAC Composta Yes No No No Op. 54, No. 1, i, mm. 10-13
77 PAC Composta Yes Yes No Yes Op. 54, No. 1, i, mm. 37-40
78 PAC Composta Yes Yes No No Op. 54, No. 1, ii, mm. 17-20
79 PAC Composta Yes Yes No Yes Op. 54, No. 1, ii, mm. 31-34
80 PAC Composta Yes Yes No Yes Op. 54, No. 1, ii, mm. 46-52
81 PAC Composta Yes No No No Op. 54, No. 2, i, mm. 23-25
82 PAC Composta Yes No No No Op. 54, No. 2, i, mm. 61-63
83 PAC Composta Yes No No No Op. 54, No. 2, i, mm. 71-73
84 PAC Composta Yes No No No Op. 54, No. 2, i, mm. 78-81
85 PAC Composta Yes No No No Op. 54, No. 3, i, mm. 7-8
86 PAC Composta Yes No No No Op. 54, No. 3, iv, mm. 14-16
87 PAC Composta Yes Yes No Yes Op. 54, No. 3, iv, mm. 63-72
88 PAC Composta Yes No No No Op. 55, No. 2, ii, mm. 15-16
89 PAC Composta Yes No No No Op. 55, No. 2, ii, mm. 46-48
90 PAC Composta Yes Yes No No Op. 55, No. 2, ii, mm. 56-60
91 PAC Composta Yes Yes No No Op. 55, No. 2, ii, mm. 65-71
92 PAC Composta Yes No No No Op. 55, No. 3, i, mm. 14-16
93 PAC Composta Yes Yes No No Op. 64, No. 3, iv, mm. 7-10
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4 ECP Diss. Trill Excerpt

94 PAC Composta Yes No No No Op. 64, No. 3, iv, mm. 65-67
95 PAC Composta Yes No No No Op. 64, No. 4, i, mm. 7-8
96 PAC Composta Yes No No No Op. 64, No. 4, i, mm. 30-32
97 PAC Composta Yes No No No Op. 64, No. 4, i, mm. 34-37
98 PAC Composta Yes Yes No No Op. 71, No. 1, i, mm. 27-30
99 PAC Composta Yes No No No Op. 71, No. 1, i, mm. 49-51
100 PAC Composta Yes Yes No Yes Op. 74, No. 1, i, mm. 13-18
101 PAC Composta Yes Yes No Yes Op. 74, No. 1, i, mm. 48-52
102 PAC Composta Yes No No No Op. 74, No. 1, ii, mm. 49-51
103 PAC Composta Yes No No No Op. 76, No. 2, i, mm. 11-12
104 PAC Composta Yes No No No Op. 76, No. 4, i, mm. 20-22
105 PAC Composta Yes Yes No Yes Op. 76, No. 4, i, mm. 55-60
106 PAC Composta Yes No No No Op. 76, No. 5, ii, mm. 7-9
107 PAC Composta Yes Yes No No Op. 76, No. 5, ii, mm. 28-33
108 PAC* Composta Yes No No No Op. 64, No. 6, i, mm. 35-36
109 PAC* Composta Yes No No Yes Op. 74, No. 1, i, mm. 39-41
110 PAC None Yes Yes No Yes Op. 17, No. 3, iv, mm. 22-24
111 PAC None No No No No Op. 20, No. 3, iv, mm. 9-10
112 PAC None No No No No Op. 20, No. 4, i, mm. 29-30
113 PAC None Yes No No Yes Op. 33, No. 5, ii, mm. 24-26
114 PAC None No No No No Op. 50, No. 1, iv, mm. 7-8
115 PAC None No No No No Op. 50, No. 1, iv, mm. 14-16
116 PAC None No No No No Op. 50, No. 4, i, mm. 7-8
117 PAC None Yes No No No Op. 50, No. 4, i, mm. 42-44
118 PAC None Yes No No No Op. 55, No. 1, ii, mm. 15-16
119 PAC None Yes Yes No Yes Op. 55, No. 1, ii, mm. 26-34
120 PAC None No No No No Op. 64, No. 3, i, mm. 16-17
121 PAC None No No No Yes Op. 64, No. 3, i, mm. 64-65
122 PAC None Yes Yes No No Op. 64, No. 6, i, mm. 39-45
123 PAC None No No No No Op. 71, No. 1, i, mm. 7-8
124 PAC None Yes No No No Op. 76, No. 2, i, mm. 48-50
125 PAC* None Yes No No No Op. 55, No. 1, ii, mm. 7-8
126 PAC* None Yes Yes No No Op. 71, No. 1, i, mm. 53-58
127 PAC-EV** Evaded Yes No No Yes Op. 50, No. 2, iv, mm. 65-68
128 PAC-EV** Semplice No No No No Op. 76, No. 2, i, mm. 30-32
129 PAC-EV** Composta Yes No No No Op. 20, No. 3, iv, mm. 27-29
130 PAC-EV** Composta Yes Yes No No Op. 54, No. 3, i, mm. 39-42
131 PAC-EV** Composta Yes Yes Yes No Op. 74, No. 1, ii, mm. 9-14
132 PAC-EV** Composta Yes No No No Op. 74, No. 1, ii, mm. 36-38
133 IAC Semplice No No No No Op. 20, No. 1, iv, mm. 2-3
134 IAC Semplice No Yes Yes No Op. 50, No. 5, i, mm. 13-16
135 IAC Semplice No Yes No Yes Op. 74, No. 1, i, mm. 7-10
136 IAC Composta Yes No Yes No Op. 20, No. 3, iii, mm. 6-8
137 IAC Composta Yes Yes No Yes Op. 64, No. 3, i, mm. 58-62
138 IAC Composta Yes Yes No No Op. 64, No. 4, iv, mm. 48-52
139 IAC* Composta Yes No Yes No Op. 64, No. 6, i, mm. 29-30
140 IAC None No No No No Op. 50, No. 1, iv, mm. 3-4
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141 IAC None No No No No Op. 50, No. 1, iv, mm. 10-12
142 IAC None No No No Yes Op. 50, No. 2, iv, mm. 6-8
143 HC Converging No No Yes No Op. 17, No. 1, i, mm. 17-18
144 HC Converging No No No No Op. 17, No. 3, iv, m. 8
145 HC Converging No No No No Op. 17, No. 4, i, mm. 32-33
146 HC Converging Yes No Yes No Op. 17, No. 5, i, m. 8
147 HC Converging No No No No Op. 20, No. 1, iv, mm. 17-18
148 HC Converging Yes No Yes No Op. 20, No. 3, i, mm. 12-14
149 HC Converging No No No No Op. 20, No. 3, i, mm. 39-41
150 HC Converging Yes No Yes No Op. 20, No. 4, iv, mm. 17-18
151 HC Converging No No No No Op. 20, No. 5, i, mm. 24-25
152 HC Converging No Yes No No Op. 20, No. 5, i, mm. 32-35
153 HC Converging No No No No Op. 20, No. 6, ii, mm. 15-17
154 HC Converging Yes No Yes No Op. 33, No. 1, i, m. 6
155 HC Converging No No Yes No Op. 33, No. 1, iii, mm. 15-16
156 HC Converging Yes No Yes No Op. 33, No. 2, i, m. 8
157 HC Converging Yes No Yes No Op. 33, No. 3, iii, mm. 3-4
158 HC Converging No No Yes No Op. 33, No. 4, i, mm. 16-17
159 HC Converging No No No No Op. 33, No. 4, i, mm. 20-21
160 HC Converging No No No No Op. 33, No. 5, i, mm. 43-45
161 HC Converging No Yes No No Op. 33, No. 5, ii, mm. 14-17
162 HC Converging No No No No Op. 50, No. 1, i, mm. 32-33
163 HC Converging No No No No Op. 50, No. 2, iv, mm. 59-60
164 HC Converging Yes No Yes No Op. 50, No. 3, iv, mm. 10-11
165 HC Converging No No Yes No Op. 50, No. 3, iv, mm. 39-40
166 HC Converging No No No No Op. 50, No. 5, i, mm. 27-28
167 HC Converging Yes Yes Yes No Op. 50, No. 5, iv, mm. 21-24
168 HC Converging No No No No Op. 50, No. 6, i, mm. 22-23
169 HC Converging No No No No Op. 50, No. 6, ii, mm. 7-8
170 HC Converging No No No No Op. 54, No. 1, ii, mm. 11-12
171 HC Converging No No No No Op. 54, No. 1, ii, mm. 25-26
172 HC Converging Yes No Yes No Op. 54, No. 3, i, mm. 3-4
173 HC Converging Yes No Yes No Op. 54, No. 3, i, mm. 21-22
174 HC Converging Yes No Yes No Op. 54, No. 3, i, mm. 29-30
175 HC Converging No Yes No No Op. 54, No. 3, iv, mm. 31-34
176 HC Converging No No No No Op. 54, No. 3, iv, mm. 42-43
177 HC Converging No No No No Op. 55, No. 1, ii, mm. 20-22
178 HC Converging No No No No Op. 55, No. 2, ii, mm. 25-27
179 HC Converging No Yes No No Op. 55, No. 2, ii, mm. 31-34
180 HC Converging No No No No Op. 55, No. 3, i, mm. 6-7
181 HC Converging No No No No Op. 64, No. 3, iv, mm. 52-53
182 HC Converging No No No No Op. 64, No. 4, i, mm. 13-14
183 HC Converging No No No No Op. 64, No. 4, iv, mm. 23-24
184 HC Converging No No No No Op. 64, No. 4, iv, mm. 33-34
185 HC Converging No No No No Op. 64, No. 6, i, mm. 15-16
186 HC Converging No No No No Op. 71, No. 1, i, mm. 14-16
187 HC Converging No No No No Op. 76, No. 4, i, mm. 31-32
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188 HC* Converging No No Yes No Op. 20, No. 3, iii, mm. 17-18
189 HC* Converging No No No No Op. 50, No. 2, iv, mm. 30-32
190 HC* Converging No No No No Op. 50, No. 3, iv, mm. 29-31
191 HC* Converging No No No No Op. 55, No. 3, i, mm. 24-25
192 HC Expanding No No No No Op. 17, No. 1, i, m. 2
193 HC Expanding No No No No Op. 17, No. 2, i, mm. 19-20
194 HC Expanding No No No No Op. 17, No. 2, i, mm. 23-25
195 HC Expanding No No No No Op. 17, No. 4, i, mm. 18-19
196 HC Expanding No No No No Op. 17, No. 5, i, m. 18
197 HC Expanding No No No No Op. 17, No. 6, i, mm. 55-56
198 HC Expanding No No No No Op. 20, No. 3, i, mm. 3-4
199 HC Expanding No No Yes No Op. 20, No. 3, iii, mm. 26-27
200 HC Expanding No No No No Op. 20, No. 3, iv, mm. 16-17
201 HC Expanding No Yes No No Op. 20, No. 3, iv, mm. 21-25
202 HC Expanding No Yes No No Op. 20, No. 4, iv, mm. 23-28
203 HC Expanding No No No No Op. 33, No. 1, iii, mm. 7-8
204 HC Expanding No No No No Op. 33, No. 1, iii, mm. 23-24
205 HC Expanding Yes No Yes No Op. 33, No. 3, iii, mm. 12-13
206 HC Expanding No No No No Op. 50, No. 1, iv, mm. 50-52
207 HC Expanding No No No No Op. 50, No. 2, i, mm. 34-35
208 HC Expanding No No No No Op. 50, No. 2, iv, mm. 37-38
209 HC Expanding No No No No Op. 50, No. 4, i, mm. 20-21
210 HC Expanding No Yes No No Op. 54, No. 2, i, mm. 50-54
211 HC Expanding No No No No Op. 54, No. 3, i, mm. 52-54
212 HC Expanding No No No No Op. 55, No. 2, ii, mm. 7-8
213 HC Expanding No No No No Op. 64, No. 3, i, mm. 40-42
214 HC Expanding No No No No Op. 64, No. 3, iv, mm. 33-35
215 HC Expanding No No No No Op. 64, No. 4, i, mm. 20-21
216 HC Expanding No No No No Op. 71, No. 1, i, mm. 34-36
217 HC Expanding No No No No Op. 76, No. 2, i, m. 4
218 HC Expanding No No No No Op. 76, No. 2, i, mm. 40-41
219 HC Expanding No No No No Op. 76, No. 4, i, mm. 49-50
220 HC* Expanding No No No No Op. 20, No. 5, i, mm. 8-10
221 HC* Expanding No No No No Op. 50, No. 1, iv, mm. 23-24
222 HC* Expanding No No No No Op. 74, No. 1, i, mm. 26-27
223 HC Leaping Yes No Yes No Op. 20, No. 6, ii, mm. 13-14
224 HC Leaping No No No No Op. 64, No. 3, i, mm. 12-13
225 HC Leaping No No No No Op. 64, No. 3, iv, mm. 3-4
226 HC Leaping No No No No Op. 64, No. 6, i, m. 4
227 HC Leaping Yes No Yes No Op. 76, No. 2, i, mm. 18-19
228 HC* Leaping Yes No Yes No Op. 33, No. 1, i, mm. 15-16
229 HC* Leaping No No No No Op. 54, No. 3, iv, mm. 7-8
230 HC* Leaping Yes No Yes No Op. 74, No. 1, ii, mm. 26-27
231 HC Reinterpreted No No No No Op. 17, No. 6, i, mm. 11-12
232 HC Reinterpreted No No No No Op. 33, No. 5, i, mm. 17-20
233 HC Reinterpreted No No No No Op. 50, No. 2, i, mm. 12-13
234 HC Reinterpreted No No No No Op. 50, No. 6, ii, m. 2
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235 HC Reinterpreted No No No No Op. 54, No. 1, i, mm. 21-22
236 HC Reinterpreted No No No No Op. 64, No. 4, i, mm. 3-4
237 DC Deceptive Yes Yes No No Op. 17, No. 1, i, mm. 31-37
238 DC Deceptive Yes Yes No Yes Op. 17, No. 2, i, mm. 26-29
239 DC Deceptive No No Yes No Op. 17, No. 4, i, mm. 4-6
240 DC Deceptive Yes No No Yes Op. 17, No. 4, i, mm. 39-41
241 DC Deceptive No No No No Op. 17, No. 5, i, mm. 23-24
242 DC Deceptive Yes No No No Op. 20, No. 3, i, mm. 56-60
243 DC Deceptive Yes Yes No No Op. 20, No. 3, i, mm. 79-85
244 DC Deceptive Yes No No Yes Op. 20, No. 4, i, mm. 22-24
245 DC Deceptive Yes Yes No Yes Op. 20, No. 5, i, mm. 40-43
246 DC Deceptive No No No No Op. 33, No. 1, i, mm. 28-29
247 DC Deceptive Yes No Yes No Op. 33, No. 1, iii, mm. 35-36
248 DC Deceptive No No No No Op. 33, No. 4, i, mm. 8-9
249 DC Deceptive No No No No Op. 33, No. 4, i, mm. 9-11
250 DC Deceptive No No Yes No Op. 50, No. 1, i, mm. 9-10
251 DC Deceptive Yes No No No Op. 55, No. 3, i, mm. 42-44
252 DC Deceptive No Yes Yes No Op. 64, No. 4, iv, mm. 39-42
253 DC Deceptive Yes No No No Op. 64, No. 6, i, mm. 38-39
254 DC Deceptive Yes Yes No No Op. 76, No. 4, i, mm. 13-18
255 DC Deceptive No No Yes No Op. 76, No. 5, ii, mm. 25-27
256 DC-EV** Deceptive Yes Yes No Yes Op. 50, No. 1, iv, mm. 59-64
257 DC-EV** Deceptive Yes Yes No Yes Op. 50, No. 6, i, mm. 34-38
258 DC-EV** Evaded Yes No No No Op. 50, No. 2, i, mm. 90-93
259 DC-EV** Composta Yes No No Yes Op. 20, No. 3, iii, mm. 25-26
260 EV Evaded Yes Yes No Yes Op. 17, No. 1, i, mm. 25-31
261 EV Evaded Yes No Yes No Op. 17, No. 4, i, mm. 45-47
262 EV Evaded Yes Yes No No Op. 33, No. 3, iii, mm. 19-22
263 EV Evaded Yes No No No Op. 33, No. 5, i, mm. 81-83
264 EV Evaded Yes No No No Op. 50, No. 2, i, mm. 56-58
265 EV Evaded Yes Yes No No Op. 50, No. 2, i, mm. 58-63
266 EV Evaded Yes No No No Op. 74, No. 1, ii, mm. 32-33
267 EV Evaded Yes No No No Op. 76, No. 2, i, mm. 26-28
268 EV Semplice No No No No Op. 74, No. 1, i, mm. 46-47
269 EV Composta Yes No No No Op. 33, No. 5, i, mm. 63-65
270 EV Composta Yes No No No Op. 74, No. 1, i, mm. 43-45

* Excluded from the analyses in Chapters 5 and 6 because one or both of the outer parts was not present
at the moment of cadential arrival.
** Excluded from the analyses in Chapters 5 and 6 because the cadence implied more than one category.



460



461

Appendix B

Experiment I: Stimuli

Each of the five cadence categories examined in the stimulus set was subdivided into two

subtypes. The PAC category was subdivided according to formal location, selected either from

the main theme or the subordinate theme (MT vs. ST). The IAC category was subdivided

according to the presence or absence of a melodic dissonance at cadential arrival (Diss. vs. No

Diss.). The HC category was subdivided according to formal location, selected either from the

antecedent of a period theme type or from the end of the transition of a sonata-form movement

(Theme vs. TR). The excerpts from the HC category were also separately classified according

to the presence or absence of a melodic dissonance at the moment of cadential arrival (Diss vs.

No Diss.). The DC category was subdivided according to whether the melody arrives on 1̂

or on 3̂ (Failed PAC vs. Failed IAC). Finally, the EV category were subdivided according to

the harmony appearing at the moment of expected cadential arrival—tonic harmony, which is

typically inverted, but may sometimes be in root position, or non-tonic harmony (Tonic vs.

Non-tonic).

The extraction of each excerpt from its surrounding material introduced a number of factors

at the cadential arrival that could confound the results, so it was necessary to apply the following
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constraints: (1) any chord tones appearing after cadential arrival (e.g., an Alberti bass pattern)

were verticalized to the moment of cadential arrival and all subsequent material was removed;

(2) the duration of the cadential arrival was recomposed to one full tactus; (3) for two excerpts

a rest appeared at the expected cadential arrival, so the events following the rest were shifted

back to cadential arrival. For further details, see §7.2.
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1. K. 281, i, mm. 5–8 (Allegro, eighth = 132) PAC – MT



3

3

3

3

3 3



























 

































 











 





 



















 















2. K. 281, iii, mm. 5–8 (Allegro, half = 85) PAC – MT



















































 



























 

































 





















3. K. 283, i, mm. 5–10 (Allegro, quarter = 138) PAC – MT















 





 

 

 

 

 

 

 

    



































































































4. K. 311, i, mm. 19–24 (Allegro con spirito, quarter = 132) PAC – MT













  

 









 













 



















 





















































 



 



























































































5. K. 333, ii, mm. 5–8 (Andante cantabile, quarter = 56) PAC – MT
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6. K. 284, i, mm. 44–50 (Allegro, quarter = 136) PAC – ST




























 







 





 





 





 























































 





 





 



























 





 





 





 

















 







 





































































7. K. 309, i, mm. 48–54 (Allegro con spirito, quarter = 144) PAC – ST



















































 































































































































































  



































































8. K. 333, i, mm. 54–59 (Allegro, quarter = 126) PAC – ST



























































































































   





























 











 











 

























































































9. K. 333, iii, mm. 31–36 (Allegretto grazioso, quarter = 138) PAC – ST





























 

























































































































































































10. K. 545, i, mm. 20–26 (Allegro, quarter = 132) PAC – ST
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11. K. 281, ii, mm. 4–8 (Andante, eighth = 80) IAC – No Diss.



















































































































 









12. K. 282, i, mm. 2–4 (Adagio, quarter = 40) IAC – No Diss.

































 



 







 



 

 









































13. K. 284, ii, mm. 21–25 (Andante, quarter = 72) IAC – No Diss.



















 











































































 

















 

















 























14. K. 309, ii, mm. 1–4 (Andante un poco adagio, quarter = 50) IAC – No Diss.





















 









 















 





















 





























































 















  













15. K. 333, iii, mm. 28–32 (Allegretto grazioso, quarter = 138) IAC – No Diss.
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16. K. 311, ii, mm. 27–32 (Andante con espressione, eighth = 96) IAC – Diss.

































































































 



















































 

































 

































17. K. 330, i, mm. 4–8 (Allegro moderato, eighth = 132) IAC – Diss.

























 



































































 



























































 









 











18. K. 330, iii, mm. 39–43 (Allegretto, quarter = 88) IAC – Diss.





























 



 





 



 

 











 

 































































































19. K. 498a, iv, mm. 32–36 (Allegro, dotted quarter = 100) IAC – Diss.



































































































 

 

































 

































 









 





















 









 



 













20. K. 533, iii, mm. 23–26 (Allegretto, half = 63) IAC – Diss.
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21. K. 284, iii, mm. 1–4 (Andante, quarter = 120) HC – Theme/Diss.



















 







































































































22. K. 311, ii, mm. 1–4 (Andante, eighth = 96) HC – Theme/Diss.















 











 

















 



































 



























































23. K. 331, i, mm. 1–4 (Andante, eighth = 120) HC – Theme/Diss.



















 





 





 





 



 



 



 

























 































 















































 

24. K. 332, ii, mm. 3–4 (Adagio, eighth = 84) HC – Theme/No Diss.



















 











































 



































































25. K. 279, iii, mm. 11–18 (Allegro, quarter = 120) HC – Transition/No Diss.
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26. K. 280, i, mm. 21–26 (Allegro assai, quarter = 138) HC – Transition/Diss.





































 













































































































   











27. K. 281, i, mm. 12–16 (Allegro, eighth = 132) HC – Transition/No Diss.

























 























































































































































































 













  

















 





































 











28. K. 281, ii, mm. 22–26 (Andante, eighth = 96) HC – Transition/Diss.





























































































































































29. K. 310, i, mm. 11–16 (Allegro maestoso, quarter = 116) HC – Transition/No Diss.











   



















  





 





 















































 

 

 







































































































































































 













































30. K. 332, i, mm. 31–37 (Allegro, quarter = 152) HC – Transition/No Diss.
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31. K. 280, ii, mm. 16–19 (Adagio, eighth = 76) DC – Failed PAC





































  



























































































































32. K. 281, ii, mm. 32–35 (Andante, eighth = 96) DC – Failed PAC
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33. K. 282, i, mm. 11–13 (Adagio, quarter = 45) DC – Failed PAC























 

















  













  













 









 







































































34. K. 282, iii, mm. 25–31 (Allegro, quarter = 120) DC – Failed PAC

















 













































































 

























 



















































35. K. 309, iii, mm. 58–65 (Allegretto grazioso, quarter = 88) DC – Failed PAC
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36. K. 457, i, mm. 42–48 (Molto Allegro, half = 84) DC – Failed PAC

























 







































 















 









































































  













37. K. 533, i, mm. 16–22 (Allegro, half = 72) DC – Failed PAC (not VI)























































 



 











 



 









 























































 











 





















 

 







38. K. 279, i, mm. 7–10 (Allegro, quarter = 112) DC – Failed IAC

















































 



  









































 





 





































































































 





















39. K. 330, i, mm. 27–31 (Allegro moderato, eighth = 126) DC – Failed IAC
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40. K. 457, ii, mm. 9–11 (Adagio, eighth = 69) DC – Failed IAC
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41. K. 281, i, mm. 30–34 (Allegro, quarter = 132) EV – Tonic







































































































 



















































































































































42. K. 281, iii, mm. 30–35 (Allegro, half = 75) EV – Tonic
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43. K. 309, i, mm. 13–18 (Allegro con spirito, quarter = 144) EV – Tonic (Sub.)















 













 







































 



































































































44. K. 309, i, mm. 43–46 (Allegro con spirito, quarter = 144) EV – Tonic































































 





























































 



















45. K. 309, iii, mm. 11–16 (Allegretto grazioso, quarter = 75) EV – Tonic
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46. K. 279, ii, mm. 1–4 (Andante, quarter = 60) EV – Non-Tonic













































 















































































 



47. K. 280, i, mm. 3–10 (Allegro assai, quarter = 138) EV – Non-Tonic































 



 



 







 































 



















































































































































































 



























 



















48. K. 281, ii, mm. 96–99 (Andante, eighth = 96) EV – Non-Tonic





































































 





































































49. K. 332, ii, mm. 14–16 (Adagio, eighth = 84) EV – Non-Tonic















3

3











































































































 







































50. K. 333, iii, mm. 84–89 (Allegretto grazioso, quarter = 138) EV – Non-Tonic
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