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PREFACE

In computational biology, cell signaling is a communication process between and

within each cell in our body that governs basic activities of cells and coordinates all cell

actions.

The ability of cells to perceive and correctly respond to their microenvironment is

the basis of their development, tissue repair, immunity, and normal tissue homeostasis

(the ability of a cell to seek and maintain a condition of equilibrium within its internal

environment). It is possible that errors in signaling interactions and cellular information

processing are responsible for diseases such as cancer, autoimmunity, and diabetes. Hence

by understanding cell signaling, diseases may be treated more effectively.

Neurons use a number of signaling pathways to regulate their internal activity. One

such pathway is calcium signaling. The calcium ion plays an important role in neuronal

channel dynamics and ultimately in the behavior of the entire neuron. It participates in the

transmission of the depolarizing signal and contributes to synaptic activity. Ca2+ signaling

waves in neurons were discovered recently and are not yet fully understood. However they

are thought to play an important role in synaptic transmission. Neuroscientists believe that

neuronal transmission has a great impact on the process of learning and on the formation of

memory. Intracellular Ca2+ signaling in a neuron is controlled by the neurons endoplasmic

reticulum and plasma membrane.
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Hence correct and efficient simulation of the calcium signaling pathways can help to

understand the pathways and to treat neuronal diseases effectively. It is very important to

realize that reaction-diffusion models are widely applicable in biology. Other examples

include ecological invasions, the spread of epidemics, tumor growth and the healing of

wounds. In this thesis I focus on the internal calcium dynamics of a neuron as described

(and therefore modeled) by biochemical reactions and diffusions. Stochastic models of

such systems provide a more realistic approximation of these systems than existing math-

ematical (partial differential equation) models.

Stochastic, spatial reaction-diffusion simulations have been widely used in systems

biology and computational neuroscience. In this thesis, an optimized time warp synchro-

nization approach was used, Neuron Time Warp (NTW), to simulate a 3 dimensional

stochastic reaction-diffusion model of calcium signaling. NTW relies upon the next sub-

volume method (NSM), which in turn is an extension of Gillespie’s Stochastic Simulation

Algorithm (SSA). The increasing scale and complexity of simulated models and mor-

phologies have exceeded the capacity of a serial implementation like Gillespie’s SSA. It

is therefore natural to employ parallel simulation for such complex problems. The main

goal of this thesis is to develop a high performance simulator using parallel discrete event

simulation (PDES). Newly developed NTW used next sub-volume method and optimistic

PDES approach to overcome the computational bottleneck in Gillespie’s SSA.

The detailed architecture and work flow of the NTW simulator is described in chapter

3. Prof. Carl Tropper’s, supervisor, guidance and suggestions helped me to develop NTW

in time. Connecting NTW with existing NEURON simulation environment was also a

big challenge in my research. Robert A. McDougal (co-supervisor) helped me to connect
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NTW with NEURON, described in chapter 4. To evaluate the correctness and performance

of NTW, I employed one ecological model, the Lotka-Volterra model and two major bio-

logical computational models of intracellular calcium signaling pathways (calcium buffer

model and calcium wave model). The calcium buffer model is employed in order to verify

the correctness and performance of NTW by comparing it to a sequential deterministic

simulation in NEURON. The derivation of a discrete event calcium wave model using the

stochastic IP3R structure is one of my main scientific contributions of this thesis. This

newly derived stochastic discrete event calcium wave model is described in chapter-5. In

high performance issue, a dynamic load balancing algorithm and a dynamic window con-

trol algorithm for NTW was also developed for the stochastic calcium wave model. We

use Q-learning to determine the basic control parameters of the algorithm. Prof. Trop-

per motivated me to employ Q-learning to optimize the performance of NTW in calcium

wave simulation. Developing such an intelligent dynamic load balancing algorithm with

dynamic window control is another research contribution of this thesis. All algorithms are

described in chapter 6.
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ABSTRACT

The intra-cellular calcium signaling pathways of a neuron depends on both biochem-

ical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small

and the calcium concentrations are so low that one molecule diffusing into the compart-

ment can make a nontrivial difference in calcium concentration. Such events can affect

dynamics discretely in such a way that they cannot be evaluated by a deterministic sim-

ulation. Stochastic models of such a system provide a more detailed understanding of

these systems than existing deterministic models because they capture their behavior at a

molecular level. My research focuses on the development of a high performance paral-

lel discrete event simulation environment, NTW , which is intended for use in the parallel

simulation of stochastic reaction-diffusion systems such as intra-cellular calcium signal-

ing. We make use of two models, a calcium buffer model and a calcium wave model. The

calcium buffer model is employed in order to verify the correctness and performance of

NTW by comparing it to a sequential deterministic simulation in NEURON. NEURON

is a framework for simulating neurons which is used by neuroscientists world-wide. Our

work is part of the NEURON project and has the long term goal of developing a multi-

scale simulation for large scale neuronal networks. We derived a discrete event calcium

wave model from a deterministic model using the stochastic inositol 1,4,5-trisphosphate

receptors, IP3R, structure. A dynamic load balancing algorithm and a dynamic window

control algorithm for NTW was also developed for the stochastic calcium wave model.

We make use of Q-learning to determine the basic control parameters of the algorithm.
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Using this algorithm we obtained an improvement in the performance of our simulator of

up to 30%.
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ABRÉGÉ

Les voies de signalisation du calcium intracellulaire d’un neurone dpendent des rac-

tions biochimiques et de la diffusion. Certains compartiments quasi isols (par exemple

les pines) sont si petits et les concentrations de calcium sont si faibles qu’une molcule

diffusant dans le compartiment peut faire une diffrence non triviale dans la concentration

de calcium. De tels vnements peuvent affecter la dynamique de manire discrte de telle

sorte qu’ils ne peuvent pas łtre valus par une simulation dterministe. Les modles stochas-

tiques d’un tel systme fournissent une comprhension plus dtaille de ces systmes que les

modles dterministes existants, car ils captent leur comportement au niveau molculaire. Ma

recherche se concentre sur le dveloppement d’un environnement de simulation d’vnements

discrets parallles de haute performance, NTW , qui est destin łtre utilis dans la simulation

parallle de systmes de raction-diffusion stochastiques tels que la signalisation de calcium

intracellulaire. Nous utilisons deux modles, un modle de tampon de calcium et un modle

d’onde de calcium. Le modle de tampon de calcium est utilis afin de vrifier l’exactitude

et la performance de NTW en le comparant une simulation dterministe squentielle dans

NEURON. NEURON est un cadre logiciel pour simuler des neurones qui est utilis par

les neuroscientifiques dans le monde entier. Notre travail fait partie du projet NEURON

et comme but long terme de dvelopper une simulation multi-chelle pour les rseaux neu-

ronaux grande chelle. Nous avons driv un modle discret d’ondes de calcium d’un modle

dterministe l’aide de la structure stochastique IP3R. Un algorithme d’quilibrage de charge

dynamique et un algorithme dynamique de contrle de fenłtre pour NTW ont galement t

dvelopps pour le modle stochastique d’ondes de calcium. Nous utilisons Q-learning pour
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dterminer les paramtres de contrle de base de l’algorithme. En utilisant cet algorithme,

nous avons obtenu une amlioration de la performance de notre simulateur atteignant jusqu’

30%.
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CHAPTER 1
Introduction

1.1 Introduction

A computer simulation is a computation that models the behavior of some real or

imagined system over time [1]. Computer simulations have become a vital part in the

design of large, complex systems. They are used to evaluate the performance of large

systems when analytical solutions and prototyping are too difficult or costly to develop.

In a discrete time simulation, the simulation model only considers a change of state at

discrete points in simulation time and advances from one such point to another. The best

known class of discrete simulation is event driven simulation [1], in which simulation time

is advanced from the time stamp of an event to the time stamp of the next event. Processing

the events of a sequential simulation is accomplished by using a centralized priority queue

of events. Because of the size of these systems it is important to parallelize the simulations.

A parallel discrete event simulation (PDES) is composed of a set of processes which

are executed on different processors and which model different parts of the simulated

system. Each of these processes is referred as a Logical Process (LP) which communicate

with one other via time stamped messages. In computational biology the biochemical

systems (e.g. reaction-diffusion systems), can be modeled as discrete event systems [2]

and can be simulated in parallel.

The human brain may be viewed as a densely connected network of approximately

86 billion neurons [3]. Biological neurons use a number of signaling pathways to regulate
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their internal activity. A signaling pathway is initiated when an extracellular molecule ac-

tivates a specific receptor located on the cell surface. In a neuron, the calcium ion plays

a crucial role in neuronal channel dynamics and ultimately in the behavior of the entire

neuron [4]. It also acts as a second messenger in the cell and triggers processes such as ini-

tiating the biochemical cascades that lead to the changes in receptor insertion in the mem-

brane. This underlies synaptic plasticity, the ability of synapses to strengthen or weaken

over time in response to increases or decreases in their activity, to muscle contraction, and

the secretion of neurotransmitters at nerve terminals [5]. Because of the importance of cal-

cium in neural transmission the accurate and efficient simulation of intra-cellular calcium

dynamics has become an important research issue for neuroscientists.

Intra-cellular calcium signaling pathways make use of biochemical reactions as well

as the diffusion of calcium ions. These pathways are an example of a reaction-diffusion

system. Such a system describes the population dynamics of one or more species dis-

tributed in space which are propelled by two major events: reaction and diffusion. Partial

differential equations are commonly used to model such system and employ continuous

simulation. These models are not very accurate, however, for a small number of ions in

a small compartment such as a neuronal spine [4]. These compartments are so small and

calcium concentrations are so low that several calcium molecules diffusing into them can

make a nontrivial difference in their concentration. The concentrations in continuous sim-

ulators are expressed by real numbers instead of integers, resulting in incorrect behaviors.

As a result stochastic discrete-event simulation has emerged as a method to complement

differential equations in biochemical simulations [6] [7].
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A system consisting of a collection of chemical reactions can be modeled by a chem-

ical master equation. Such an equation models the distribution of the chemical reactants

in the system [4] probabilistically for each point in time. In general, it is very difficult

to solve this equation. In [8], Gillespie introduced a Monte Carlo simulation algorithm

for this model. Under the assumption that the molecules of the system are uniformly dis-

tributed, the algorithm simulates a single trajectory of the chemical system. Simulating

a number of these trajectories then gives a picture of the system. The algorithm uses an

exponential distribution to compute the time of the next event (i.e. reaction) and employs

elementary combinatorics to compute the likelihood of a particular reaction occurring.

[9] describes the Next Reaction Method, which attempts to reduce the computation

time of the propensities in Gillespie’s algorithm. It makes use of a dependency graph

among the reactions which is used to identify the reactions which are in need of an update.

Gillespie’s algorithm then updates the states of all of the reactants. [10] modifies the

Next Reaction Method by re-sorting the event queue in the order of the probability of

execution of the reactions. A number of other efforts aimed at improving the efficiency of

the Gillespie algorithm have been made, including [11], [12].

A key assumption in the Gillespie algorithm is that the particles are distributed ho-

mogeneously in space. This, however, is not the case because particles in neurons are

not distributed homogeneously in space because neurons are so large that diffusion cannot

equilibrate them and the diffusion of ions in a neuron takes place. This diffusive behavior

must be included in a realistic model. Molecular dynamic simulations [13] [14] [15] could

be used to model individual particles but take into account inter-particle forces, rendering

them computationally expensive. Instead, we make use of a less expensive Monte Carlo
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algorithm, the next sub-volume method (NSM) [16]. The NSM partitions space into cubes

and represents the diffusion of ions between these cubes by events. Other events are used

to characterize reactions within the cubes. NSM makes use of the Gillespie algorithm to

compute next event times within the cubes and relies upon the use of a priority queue to

determine the next event and diffusion times. Our parallel simulator, NTW , makes use of

the NSM algorithm because particles are not distributed homogeneously in neurons.

NSM can be applied to PDES by discretizing space into sub-volumes and assigning a

sub-volume to each LP. It is necessary to make sure that the events in a parallel simulation

are executed in the same order as they would be in a sequential simulation [1], i.e. causality

must be maintained. In order to do so, the LPs must be synchronized. There are two main

approaches to this synchronization: conservative [17] and optimistic synchronization [18].

Conservative simulations rely on processes blocking, which by definition takes more time

and results in deadlocks. At the other extreme, optimistic simulations process events in

the order in which they arrive at an LP. No attempt is made to assure that events do not

violate causality. Among the optimistic synchronization schemes Jefferson’s Time Warp

[18] is the most widely employed.

PDES makes us enable to execute discrete event simulation (DES) on a system with

more than one processing node. The sequential stochastic discrete event simulation of

large scale reaction-diffusion system is very slow whereas PDES is a promising approach

to overcome this performance bottleneck [19]. This thesis employs real biological models

which are of significance to neuroscientists. So the main focus of my thesis is to develop

a PDES simulator which can be used to execute a 3D stochastic reaction-diffusion model.
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Here I have used PDES not only to reduce the simulation time but also to find an effi-

cient way to get the parallelism using Gillespies stochastic simulation algorithm in PDES

paradigm.

1.2 Discrete Event Simulation

A simulation shows the change in the physical system over time. The properties of a

system are represented by states and the changes within the system are modeled by chang-

ing these states. For example, in a biochemical reaction-diffusion system, the number of

molecules of a chemical substance in a sub-volume at a given instant in time shows the

state of that sub-volume at that instant. In general, in order to study the dynamics of a

system, our simulation program must include the following elements:

1. A representation of the system’s state.

2. Some means of changing the system’s state.

3. A representation of simulation time.

The notion of time is central to a simulation. The simulation time represents the

causal relationship between the events in a physical system. This should not be confused

with the wall-clock time, or the execution time of the simulation-it might take an hour to

simulate a hundred events in one system, while it takes a few seconds to simulate the same

number of events in another system.

Simulations may be classified by their time flow mechanism [1] as being either con-

tinuous or discrete. In a continuous simulation the state of the simulation changes con-

tinuously over time. Simulations of weather and electrical currents are accomplished by

continuous simulations. In a discrete simulation, changes in the systems occur at discrete

points in time.
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In an event-driven simulation, the simulation time advances with the time stamps of

the events. Events are sorted according to their time stamp. In order to implement an

event-driven simulation, we need three main data structures.

1. An event list which contains all of the events in increasing time stamp order. The

event list is usually implemented with a priority queue [20]. The events in the list are

processed until it is either empty or a termination conditions is satisfied. Processing

an event may result in the creation of new events.

2. A global clock which shows the simulation time.

3. A set of state variables which represents the state of the simulation and model the

physical system.

In general, an event-driven simulation program is comprised of a simulation appli-

cation and a simulation kernel. The application part is specific to the model, e.g. the

biochemical reaction-diffusion simulation model. State variables and the handlers for the

events are implemented within the simulation application. The kernel’s job is to manage

simulation time and calling the functions associated with the events (event handlers) at the

right times. Figure 1–1 depicts the main structure of an event-driven simulation program.

In the following section, we describe the event driven simulation for stochastic reaction-

diffusion system simulation.

1.3 Discrete Event Simulation of a Biochemical System

Consider a biochemical system in a cube (with a volume V) which contains a set of

species and reactions involving these species. A reaction occurs when two species inter-

act with each other. State changes correspond to increasing or decreasing the number of

molecules of the reactants of the system. The simulation of such a biochemical system
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Application Layer:
● Maintaining state variables
● Event handler

Simulation Engine:
● Maintaining event list
● Managing simulation

Calls to 
event 
scheduling

Calls to 
event 
Handlers

Figure 1–1: The Main Structure of an Event-Driven Simulation Program.

using Gillespie’s stochastic simulation algorithm, SSA, [8] defines a discrete event simu-

lation. In SSA, the time of next event i.e. event time is generated by using an exponential

distribution.

1.4 Parallel Discrete Event Simulation (PDES)

A parallel discrete event simulation is composed of a set of processes which are ex-

ecuted on different processors. The processes model different parts of a physical system

and are referred to as Logical Processes (LPs). The LPs communicate with each other via

time stamped messages. Events are stored in an event list and each LP processes all of

its events in increasing time stamp order. The efficient management of the event list has a

significant effect on the performance of the parallel simulation. Although processing the

events in a sequential simulation is performed by using a centralized list, such an approach

is not possible in parallel simulation as it would be highly inefficient.
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It is possible that errors might occur if events are executed out of time-stamp order

(causality errors). The problem of maintaining causality is referred to as the synchro-

nization problem - the idea is to make sure that the execution of the parallel simulation

produces the same sequence of events as if all of the events had been processed by a single

process. There are two main approaches for solving the synchronization problem - con-

servative synchronization and optimistic synchronization which will be discussed in the

following two subsections.

1.4.1 Conservative Synchronization

In this scheme, the LPs avoid out of order execution of events. For example, assume

that there is an event E1 at LPA with time stamp 3 and an event E2 at LPB with time stamp

10. If LPA schedules an event E3 in LPB with time stamp 8, the execution of E3 may

affect the execution of E2 at LPB. By using a local causality constraint we can avoid the

occurrence of such problems.

Such a constraint is obtained if each LP processes events in increasing time stamp

order [1]. If each LP adheres to the local causality constraint the results obtained from

parallel execution of the simulation program are exactly the same as the results of a se-

quential execution.

Assume that a simulation consists of N logical processes, LP0, ... ,LPN−1. Each LP

has a current simulation time Ci. Whenever an event is processed, Ci is updated to the

time stamp of that event. If LPi can send a message to LPj, an input link is established

from LPi to LPj. The main goal in conservative synchronization is to determine when

it is safe to process an event. An event Ei with time stamp Ti at LPi is safe to process

if LPi can guarantee that it will not receive an event with a time stamp smaller than Ti.
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Processes which do not have safe events are blocked and wait until their events become

safe to process. One of the basic algorithms which determines which events are safe is the

Chandy/Misra’s Null message algorithm [21]. In this algorithm it is assumed that events

are received in a time stamp order on a link and that there is a FIFO queue on each input

link. The algorithm is as follows:

While(simulation is not over)

Wait until each FIFO contains at least one message

Remove smallest time stamped message M from its FIFO

Current simulation time, C:= time stamp of M

Process M

While this algorithm satisfies the local causality constraint, a cycle of empty queues

may lead to a situation in which each process in the cycle is blocked and results in a

deadlock. Deadlocks are avoided by the use of lookahead. If an LP with time stamp T can

schedule events with time stamp of at least T +L then L is referred as the lookahead of

that LP.

In order to avoid deadlock, each LPi with time stamp Ti sends a null message with

time stamp Ti + Li to each LPj which is waiting for a message from LPi. This null message

informs LPj that LPi will not send a message with a time stamp less than Ti + Li. As a

result some of the messages in LPj may be executed and deadlock can be avoided [21].

1.4.2 Optimistic Synchronization

In optimistic synchronization LPs allow a violation of the local causality constraint

and provide mechanisms to undo any damage caused by the violations. In this approach,

LPs do not send messages in time stamp order. Time Warp [18] is the most widely used
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of the optimistic synchronization mechanisms. It consists of two control mechanisms to

guarantee correctness of the simulation, Local Control and Global Control. Local controls

are implemented within processors while global controls execute a distributed computation

performed by all of the processors.

Local Control Mechanism: Each LP in Time Warp has an event list which includes

all of the events which are either processed or scheduled but not as yet processed. This

event list is referred to as the input queue. The input queue contains messages sent by

other LPs. The LP removes the event with the smallest time stamp from its event list and

executes it without verifying the safety of the event. The LP may later receive a message

with a time stamp smaller than the current time of the LP. This message is referred as

straggler message. If a straggler message arrives, a rollback to the time stamp of the

straggler is performed and all of the processed events with a greater time stamp than that

of the straggler are re-executed.

Local control techniques (1) rollback all state variables modified at simulation times

which were larger then that of the straggler message and (2) annihilate messages which

have timestamps larger then that of the straggler and which were sent to other LPs. Two

approaches for rolling back the state variables are copy state saving, and incremental state

saving. Copy state saving saves all to the state variables in a state queue before executing

an event. The messages which were sent to other LPs are annihilated via the use of anti-

messages [18]. An anti-message is the exact copy of the original message along with a flag

which indicates that it is an anti-message. The LP saves anti-messages in its output queue.

Whenever a straggler message arrives at an LP, an anti-message for all the messages in the

output queue which have a time stamp larger than that of the straggler message are sent.

10



The anti-message annihilates its corresponding message in the input queue of the receiver

LP. This is continued until all incorrect processes are rolled back [1].

Global Control Mechanism While the simulation is in progress, memory is con-

sumed by the creation of new messages and by saving the state of LPs. In order to avoid

running out of memory, a mechanism is needed to reclaim it (fossil collection [22]). By

finding a lower bound on the time stamp of future rollbacks, memory used to store events

with a smaller timestamp then this lower bound can be deleted. This lower bound is called

the Global Virtual Time (GVT). The GVT at real time (t) is defined as the minimum times-

tamp of any unprocessed message or anti-message in the system at (t) [1].

In order to compute the GVT each processor calculates the minimum of all of its

unprocessed messages and anti-messages, referred as Local Virtual Time (LVT), and sends

it to a controller. The controller then computes the global minimum among these values

(GVT) and sends it to all to all of the processors. If one could take a snapshot of all unpro-

cessed events and anti-messages in the system at time (t), computing the GVT would be

trivial. However, there are two challenging problems regarding the computation-transient

messages and simultaneous reporting.

A transit message is a message which has been sent but not received yet. Transit

messages are unprocessed messages which disappear from the network and must be con-

sidered in the calculation of GVT. Assume that a controller could freeze all the processors

of the system and have them report their local minimum among the unprocessed events

and anti-messages. It could then compute the GVT. This algorithm is not correct because

while all of the processors are frozen, there may be some messages in the network. These

messages have been sent by the sender LP but have not been received at the destination.
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Figure 1–2 illustrated an example of a transient message. The message with time stamp

15 is a transient message which is not accounted for in either sender or receiver processor.

Controller

P
1

P
2

25 30

15

Compute local 
minimum

Local minimum

Transient message

Figure 1–2: The transient message example.

A straightforward solution to the transient message problem is to use message ac-

knowledgements. The idea is to make sure that each transient message is accounted for by

either the sender or the receiver processor. A simple synchronous GVT algorithm which

uses acknowledgements along with a central controller is shown in algorithm 1.

Algorithm 1 Synchronous GVT Computation Algorithm
Controller:

1. The controller periodically broadcast a “Start-GVT” message to all the processors to initiate the GVT calculation.
2. Upon receive “Receive-Start” from all the processors:

• Broadcast a “Compute-GVT” to all the processors.
3. Upon receive the local minimum from all the processors:

• Compute the global minimum and broadcasts this value to all the processors.
Processors:

1. Upon receiving the “Start-GVT” message from the controller:
• Stop processing the events.
• Send the “Receive-start” message to the controller.
• Wait to receive “Compute-GVT” from the controller.

2. Upon receiving the “Compute-GVT” message from the controller:
• Compute the local minimum time stamp among:

– The time stamp of unprocessed events and anti-messages within the processor.
– The time stamp of the any message the processor has sent but has not received an acknowledgement.

• Send the minimum value to the controller.

The algorithm with two processors is illustrated in figure 1–3. The first two messages

(Start-GVT and Receive-Start) are for synchronizing the processors. When each processor
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receives the Compute-GVT message, the processor computes its LVT and sends this value

to the controller. Finally the controller computes the GVT and broadcasts it to all the

processors.

Controller

P
1

P
2

Start-GVT

Receive-start

Compute GVT

LVT

GVT

Figure 1–3: An example of synchronous GVT computation.

A drawback of this algorithm is the need to block every processor in the system in

the interval between receiving the Start-GVT message and the Compute-GVT messages.

An alternative approach is to let the processors keep processing the events while the GVT

computation is in progress. This implies using an asynchronous GVT computation algo-

rithm without the need for global synchronization points. Having such an algorithm may

lead to the simultaneous reporting problem. The simultaneous reporting problem occurs

because not all of the processors report their local minimum at the same point in real

time. Hence one or more messages can slip between the cracks and not count towards the

calculation of GVT.

Figure 1–4 illustrates an example of the simultaneous reporting problem. The con-

troller broadcasts the Compute-GVT message. P2 receives the message and reports its

local minimum of 25. The Compute-GVT that is sent to P1 is delayed in the network.

Meanwhile, P1 sends a message with time stamp 15 to P2. At this time P1 receives the
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Compute-LVT message and reports that its local minimum is 30. Finally, the controller

computes an incorrect GVT value of 25.

Controller

P
1

P
2

25 30

15

Compute local 
minimum

Local minimum

Message with an 
event

Figure 1–4: An Example of simultaneous reporting problem.

[23] solved the simultaneous reporting problem by making processors send acknowl-

edgements and tagging these acknowledgements in the period starting from the time that

the processor sends its local minimum until it receives the new GVT value. NTW uses this

approach to calculate its GVT.

1.5 Stochastic Simulation Algorithm (SSA) and Next Sub-volume Method (NSM)

There exists many mathematical ways to describe the dynamics of chemical reactions.

Deterministic reaction rate equation (RRE) is one of them. The RRE is accurate only when

the number of reacting molecules is large enough to allow a continuum point of view.

When the number of molecules of a given chemical species is very low, the randomness in

the system usually cannot be ignored and stochastic description is essential there.

The chemical master equation (CME) [24] is such a stochastic description which

is a mathematical formulation for the time evolution of the probability of the chemical

system to occupy every possible discrete state. Basically, CME is derived from the Markov

property of the underlying chemical kinetics. If the chemical system is determined by
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specifying the number of molecules of each species, then the master equation governs the

dynamics of the probability distribution for the system. However, the fact is that such a

description suffers from the “curse of dimensionality”, i.e., each new species adds one

dimension to the problem, thus, the computational complexity grows exponentially.

Monte Carlo algorithms are used to analyze the CME without suffering from the curse

which simulate a single trajectory of the chemical system at a time. Simulating a number

of these trajectories then gives a picture of the chemical system.

Consider a chemical system with n different species in a volume, V . The time evo-

lution of the state vector x(t) = x1(t), x2(t), . . . , xn(t), where xi(t) is the number of

molecules of species Si at time t. Using the derivation in [8], for each reaction channel R j

there exists a constant c j such that the average probability at which a particular combina-

tion of R j reactants will react in the infinitesimal time interval [t, t + dt] is c jdt. Hence,

given the time t and the state vector x(t), the probability a jx(t)dt that the reaction R j hap-

pens in [t, t +dt] is c jdt times the total number of reactant combinations. a jx(t) is called

the propensity function for reaction R j.

The stochastic simulation algorithm (SSA) [8] offers an alternative way to solve the

CME directly. SSA, defines a function p(τ,µ) such that p(τ,µ)dτ is the probability that,

given the state x at time t, the next reaction in the system will occur in the infinitesimal

time interval [t + τ, t + τ + dτ], and it will be R. Again, the probability function p(τ,µ)

can be decomposed as the product of the probability function p0(τ) times aµdτ . So the

function p(τ,µ) becomes:

p(τ,µ)dτ = p0(τ)aµdτ (1.1)
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Here, p0(τ) is the probability that, given the state x at time t, no reaction will occur in the

time interval [t, t +τ] and aµdτ is the probability that the reaction R will occur in the time

interval [t + τ, t + τ +dτ].

The direct SSA is stated as follows:

1. Set the time variable t := 0 and the state variable x to the initial state.

2. Calculate the propensity functions a j(x), 1 ≤ j ≤ M, for the current state x(t) = x

and the sum a0(x) = ∑ j a j(x)

3. Generate two uniform U(0,1) random numbers r1 and r2 and then choose the next

reaction time by

τ = (1/a0)ln(1/r1) (1.2)

and the reaction channel µ as the integer that satisfies the inequality

µ−1

∑
j=1

a j(x)≤ r2a0 ≤
µ

∑
j=1

a j(x) (1.3)

4. Update the system state and t := t + τ . Repeat from Step 2 until the final time t f is

reached.

In order to speed up the original SSA algorithm, improvements have been made by

adopting different approximation techniques. [9] describes the Next Reaction Method,

which attempts to reduce the computation time of the propensities in Gillespie’s algo-

rithm. [10] modifies the Next Reaction Method by re-sorting the event queue in the order

of the probability of execution of the reactions. More efforts also aimed at improving the

efficiency of the Gillespie algorithm have been made, including [11], [12]. Gillespie’s

SSA assumes the homogeneous distribution of particles in space however the particles

in neurons are not distributed homogeneously in space. To include diffusive behavior of
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neuron particles, molecular dynamic simulations [13] [14] [15] could be used to model

individual particles but take into account inter-particle forces, rendering them computa-

tionally expensive. Instead, we can use a less expensive Monte Carlo algorithm, the next

sub-volume method (NSM) [16].

NSM is a discrete-event approach towards the simulation of reactions and diffusion

of species inside of a volume containing an inhomogeneous distribution of particles [16].

It is a generalization of the SSA [11]. In NSM the simulation is divided into sub-volumes

each of which is assumed to be well-stirred. Figure 1–5 contains such a sub-volume.
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Figure 1–5: Computational sub-volume

The state of the system is updated by performing an appropriate reaction within a

single sub-volume or by allowing a molecule to move to a randomly selected neighboring

sub-volume. There are two types of events used in this approach: 1) those which represent

reactions inside a sub-volume and 2) those which represent diffusion between adjacent

sub-volumes. NSM makes use of the Gillespie algorithm to compute the next event time

within a sub-volume. Within the main loop of the algorithm the sub-volume with the
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smallest next event time is selected and the event type is then determined using the reaction

rates. The event is then executed and the state is updated. Note that the update is done

only in a small region. NSM relies upon priority queues for both the next event time and

the diffusion time.

1.6 Time Warp for Stochastic Reaction Diffusion Simulation

[2] points out that a conservative synchronization is not suitable for use with the

NSM due to the zero lookahead property (in which a simulator at logical time T can only

schedule a new event with time stamp T) of the exponential distribution. This leads Time

Warp as the only alternative.

The natural outcome of using Time Warp is that space is divided into sub-volumes

and a collection of sub-volumes is assigned to each LP. Interactions between LPs consist

of diffusion events between neighboring sub-volumes. [25] [2] and [19] evaluate several

Time Warp based approaches. NTW also uses NSM and inherits features from previously

recognized simulators, Clustered Time Warp (CTW) [26] and XTW [27].

In CTW, LPs are grouped together to form a cluster. The main idea behind this is

that large simulation, LPs belonging to the same functional units can be grouped together.

These groups are referred to as a cluster. There is no limitation on the number of clusters

in a system. The only restriction is that each cluster can be mapped onto one processor - it

cannot be divided between processors.

XTW uses a multi-level queue (XEQ) along a single rb-message. XEQ has an O(1)

cost bounded by the number of simulated entities (as opposed to the number of events).

An rb-message not only reduces the cost of annihilating previously sent messages, but also

reduces the memory cost by eliminating the output queue for each LP. NTW inherits both
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the clustering approach and the multilevel queuing scheduling (i.e. XEQ) with a single

rb-message in. Chapter 3 describes NTW in some detail.

1.7 NEURON

NEURON [28] is a simulation environment primarily developed by Michael Hines at

Yale. In this environment, complex nerve models can be created by connecting multiple

one-dimensional sections together to form arbitrary neuron morphologies. NEURON also

allows for the insertion of membrane properties in these sections (including channels,

synapses, and ionic concentrations). In NEURON, the ion channels of axons and soma [4]

are typically of the Hodgkin-Huxley type [29]. NEURON is very flexible and supports a

wide class of models. Recently, NEURON was extended to incorporate reaction-diffusion

models so that it would be able to simulate chemical reactions of diffusive ions (example

Ca2+) as well as electric signals and allow these two types of information to be combined

to understand diseases [30]. NEURON as released currently only support deterministic,

although there is infrastructure to support stochastic using NTW.

[30] focus how extended NEURON supports in research on the role of cell biological

principles (genomics, proteomics, signaling cascades and reaction dynamics) on the dy-

namics of neuronal response in health and disease. [31] is the example of the multiscale

simulation using extended NEURON for Pharmacological Treatment of Dystonia in Motor

Cortex.

The main goals of my thesis are to develop a high performance parallel simulation

environment for the stochastic reaction-diffusion systems by using PDES and to integrate
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this simulator with existing deterministic models of reaction-diffusion systems. This re-

search is a part of NEURON the project. More precisely, it will be integrated within NEU-

RON (www.neuron.yale.edu). A sequential version of NTW is already integrated with

NEURON. The experimental integration of parallel NTW with NEURON is described in

chapter 4. Developing parallel reaction diffusion models for the simulation of neurons is

just beginning here. The work described in this thesis should be viewed as a first step in

this direction.

1.8 Intracellular Signaling Pathways of a Neuron

Neurons use a number of signaling pathways to regulate their internal activity. A

signaling pathway is initiated when an extracellular molecule activates a specific receptor

located on the cell surface. In turn, this receptor triggers a biochemical chain of reactions

and/or diffusions inside the cell and then creates a response.

In a neuron, the calcium ion plays an important role in neuronal channel dynamics

and ultimately in the behavior of the entire neuron. It behaves like a second messenger

in the cell and triggers processes such as initiating the biochemical cascades that lead to

the changes in receptor insertion in the membrane. This underlies synaptic plasticity, the

ability of synapses to strengthen or weaken over time in response to increases or decreases

in their activity, to muscle contraction, and the secretion of neurotransmitters at nerve

terminals. Because of the importance of calcium in neural transmission the accurate and

efficient simulation of intra-cellular calcium dynamics has become an important research

issue for neuroscientists.

In this thesis we simulate two major models of calcium signaling pathways, a calcium

buffer and a calcium wave model. The calcium buffer model is employed in order to verify
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the correctness and performance of NTW by comparing it to a sequential deterministic

simulation in NEURON. We also derived a discrete event calcium wave model from a

deterministic model using the stochastic IP3R channel structure so that we can use it on

our developed NTW . Details about the derived models are given in chapter 5.

1.9 Thesis Motivations and Structure

Stochastic, spatial reaction-diffusion simulations have been widely used in systems

biology and computational neuroscience. Specifically, in computational neuroscience,

much work involves the use of computational models for the electrical response of neu-

rons. In these models, it is assumed that the concentrations of sodium and potassium ions

are constant during the course of electrical activity. However, this is not the case for cal-

cium. Indeed, the calcium concentration within a cell is highly dynamic and is determined

by a number of factors (1) the influx of calcium through VOCC (2) the release of calcium

from calcium activated internal stores (e.g. Endoplasmic Reticulum, ER) (3) buffering by

mobile and fixed buffers and (4) the extrusion of calcium by calcium pumps. The release of

calcium from internal stores, e.g. endoplasmic reticulum, depends on reactions and diffu-

sions which occur stochastically [32]. If the number of molecules within cell compartment

is small, a deterministic simulation is not realistic. So depending upon the concentration

of calcium ions an adaptive stochastic-deterministic solver can be used. NTW connected

with NEURON could be a such adaptive solver.

The increasing scale and complexity of simulated models and morphologies have ex-

ceeded the capacity of a serial implementation. It is therefore natural to employ parallel

simulation for such complex problems. In this thesis, we have developed an optimistic
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MPI-based, parallel stochastic spatial reaction-diffusion simulator, Neuron Time Warp

(NTW ), to simulate models of calcium signaling pathways in a neuron.

Most existing calcium wave models are governed by differential equations. In this

thesis we derived a stochastic discrete event calcium wave model from a mathematical

model (which we used as a benchmark model for our experiments). The propagation of

a calcium wave through a neuron leads to a very computational imbalance between the

areas covered and uncovered by the wave at any given instant in time. Hence designing

and developing a load balancing algorithm became an important part of this thesis. We

used dynamic load balancing algorithms based on techniques from artificial intelligence.

The introduction of such algorithms into NTW proved to enhance its performance.

The rest of the thesis is organized as follows: Chapter 2 describes the background

and related work of this thesis. A detailed description of NTW is contained in chapter 3.

The connection between NTW and NEURON is described in chapter 4. The derivation of

a discrete event calcium wave model is described in chapter 5. A dynamic load balancing

algorithms using reinforcement learning is described in chapter 6. Finally the last chapter

contains the conclusion and thoughts on future research in this area.
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CHAPTER 2
Background and Related Work

There are two types of algorithms which have been used for the stochastic simulation

of neurons, particle-based and lattice-based [7]. In particle based methods, the state of the

system is the number and location of particles in the sub-cellular space. The location of a

particle and the system time are governed by probability distributions (e.g. [7]). Particles

engage in a reaction when they are close enough. MCell [14], Smoldyn [15] and CDS

[33] are particle based simulators. In lattice-based methods, the sub-cellular space is sub-

divided into lattice points or voxels using a mesh generation algorithm, and molecules are

represented within each voxel. NSM is a lattice-based algorithm, in which space is par-

titioned into mesh grids called sub-volumes (i.e. voxels). Reactions can happen between

molecules in the same grid and molecules can diffuse to adjacent grids. As we employed

the next sub-volume method in which reactions between adjacent grids are ignored, we

also ignored reactions between adjacent grids in NTW . NeuroRD [7] is a spatial exten-

sion of the Gillespie’s tau-leap algorithm. This tool develops sequential version, while our

intention is to produce a parallel algorithm capable of large scale simulations.

2.1 PDES for a Stochastic Reaction Diffusion System

The sequential stochastic discrete event simulation of large scale reaction-diffusion

system is very slow. However in the era of high performance computation, parallel discrete

event simulation has the ability to overcome this performance bottleneck [19].
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In order to evaluate the parallel execution of the NSM algorithm, [25] uses two Time

Warp based approaches. Both represent sub-volumes by LPs and messages between sub-

volumes contain the diffusion events. One of the simulators makes use of grid computing.

Preliminary results on small models were encouraging. As pointed out by the authors, a

number of areas including window management and state saving remain to be investigated.

[2] points out that a conservative synchronization is not suitable for use with the

NSM due to the zero lookahead property of the exponential distribution. An optimistic

algorithm was implemented and preliminary results obtained for a predator-prey model

(Lotka-Volterra). The performance of the simulation was hampered by a lack of control

over the window size.

[19], [34] investigate the performance of optimistic synchronization algorithms in

simulations of a reaction-diffusion system based on Gillespie’s SSA [8]. They present

a variant of the Next Sub-volume Method called the Abstract Next Sub-volume Method

(ANSM). Three optimistic synchronization algorithms were employed - Time Warp(TW)

[18], an optimistic approach with risk-free message sending called Breathing Time Bucket

(BTB) [35] and a hybrid approach combined these approaches. [19] and [34] were also

used for the simulation of a predator-prey model. None of the approaches employed a 3D

grid geometry.

[36] developed the Lattice Microbes software to efficiently sample trajectories from

either the Chemical Master Equation (CME) and Reaction-Diffusion Master Equation

(RDME) on a high performance computing infrastructure (workstation containing a Super-

micro X9DRG-QF motherboard with dual Xeon E5-2640 CPUs and four GTX680 GPUs

using NVIDIA drive), taking advantage of GPUs to increase performance. They employed
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a multiple thread approach to get efficient shared-memory communication between host

threads, and avoided high GPU context switching overheads that would otherwise occur

for multi-process access approach (i.e. with MPI). They considered uniform sub-volumes

with some spacing and employed a multi-particle diffusion method. They used a dynamic

load balancing algorithm to deal with inhomogeneous workloads. Employing a very small

model (four reactions and 4 species), two and four GPUs provide a speedup over the single

device, however for smaller volumes the benefit of four GPUs is correspondingly smaller.

Eight GPUs did not provide any speedup when the sub-volume size was smaller than 64

cubic microns.

None of those above mentioned approaches employed a real neuronal geometry. They

did not employ a real model (e.g. calcium buffering, calcium wave model etc.) as a

benchmark to verify their simulators. We use models derived from a NEURON model to

verify NTW ’s correctness and to examine its performance.

2.2 Discrete Event Calcium Wave Model

In this thesis, a discrete event calcium wave model is derived from a deterministic cal-

cium wave model [37] using the stochastic IP3R channel structure. [38] uses a stochastic

calcium wave model in which a reaction-diffusion system is modeled using partial differ-

ential equations. The channel dynamics of endoplasmic reticulum involving the inositol

1,4,5-trisphosphate receptors (IP3R), are modeled stochastically.

Models of IP3R play a central role not only for understanding channel kinetics, but

also as building blocks for constructing larger scale models of cellular Ca2+ signaling.

[39] developed a stochastic model of IP3R in Xenopus oocytes and used stochastic simu-

lation to predict the behavior of individual channel. They assumed that each IP3R channel
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consists of four identical and independent subunits and that each subunit consists of two

independent Ca2+ binding sites. One site is an activating/inhibitory binding site while one

is an IP3 binding site. The channel is open when at least three subunits are in active state.

We follow the same IP3R channel dynamics specified in [39] to derive a discrete event

calcium wave model.

2.3 Dynamic Load Balancing and Time Window

Load balancing algorithms could be static or dynamic, depending upon the rules they

follow. In static algorithms [40], [41], [42] the tasks are assigned to a processor according

to pre-specified rules and the assigned work load or tasks do not change during the simu-

lation. The decision regarding the transfer of the task does not depend on the current state

of the simulation. On the other hand, dynamic algorithms [43], [44] distribute tasks using

the current state information of the simulation. If the workload of a processor becomes

heavy then the tasks received at the processor are transferred to another processor which

is not loaded so heavily.

[45] presents two algorithms for dynamic load balancing in a distributed computer

system to reduce the difference of workload among the processors. Both algorithms are

based on the load information of neighbor processors and they need considerable memory

space for maintenance of the routes and load table. Those approaches more efficient in

local area networks.

[46] presents a dynamic load balancing algorithm for PDES of spatially explicit prob-

lems. They used a virtual ring of processes with a constraint of one round of communica-

tions and nearest-neighbor communication. This approach is efficient when the problem
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size is large (i.e. large space LP). The cost of load movement with small space LPs exceeds

the benefits of an even load distribution.

[47] describes a load balancing algorithm for Clustered Time Warp [26]. The ob-

jective of the algorithm is to balance the computational load among the processors while

minimizing the communications load. The computational load of a cluster is defined as

the number of processed events since the previous load balance. The computational load

of a processor is the sum of the loads of all of the clusters within that processor. Load bal-

ancing is performed by transferring clusters from overloaded processors to under-loaded

ones. The algorithm iteratively transfers half of the difference in load from the most loaded

processor to the least loaded one. The change in inter-processor communication is esti-

mated and the cluster with the lowest inter-processor communication cost is selected for

the actual transfer. This algorithm is repeated iteratively until all the processors have ap-

proximately the same load [47].

Rollbacks have a very strong influence on Time Warp’s performance. An approach to

controlling the number of rollbacks is to limit the optimism by allowing only those events

whose timestamps are within a certain time window to be executed optimistically [48].

The time window is defined by the interval [GV T,GV T +W ], where W is the size of the

window. Events within this interval can be executed, but those which have a time stamp

beyond (GV T +W ) are not allowed to be executed, i.e. the LP is blocked. A blocked LP

can still receive messages, but cannot send messages except for messages involved in the

GV T computation. After a GVT update, the window itself is updated. Previously blocked

LPs are unblocked if their next scheduled event falls within the newly updated window.
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A load balancing/window control algorithm is described in [49]. In NTW , we made

use of techniques from artificial intelligence to build these algorithms similar to the ones

described in [49]. We combined the load-balancing algorithms with a window control

algorithm.
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CHAPTER 3
Neuron Time Warp

In NTW we divide the portion of the neuron being simulated into sub-volumes (SV s),

each of which is assigned to an LP. Interactions between the SV s consist of events being

sent between neighboring sub-volumes.

3.1 Introduction

As previously mentioned, [27] describes an event scheduling (XEQ) algorithm and

a rollback message mechanism (rb-message). XEQ has an O(1) cost, while rb-message

eliminates the computing cost of anti-messages and reduce the memory cost by eliminating

the output queue at each SV . These two ideas are incorporated in NTW .

NTW [50] is an object oriented simulation environment which utilizes the NSM al-

gorithm and makes the following assumptions:

1. SVs are grouped together to form a cluster. There is no limitation on the number of

clusters in a system. However the only restriction is that each cluster can be mapped

onto one processor - it cannot be divided between processors.

2. In each cluster, the reaction and diffusion events are arranged in chronological order.

3. Within a cluster, SV s receive messages in chronological order.

4. Each SV is a cube and is therefore connected to maximum of six neighbor SV s.

5. The topology of the SV s is static during the simulation.

In NTW, clusters are distributed among computational units (e.g. logical processors

or cores). We currently allocate one cluster per core and each core runs an MPI process.
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Each cluster processes the events belonging to its LPs in increasing time-stamped order.

There is a special cluster, called a controller which is in charge of distributing the simu-

lation workload, computing the GVT, and collecting the simulation results. We employ

Mattern’s algorithm [51] to calculate the GVT. NTW employs local rollback and local

checkpointing [26] upon the arrival of a diffusion event at a cluster. A history queue,

used to record scheduling history has been added to minimize the cost of scheduling rb-

messages.

3.1.1 Architecture

The architecture and communication overview of NTW is displayed in figure 3–1.

SV
M

inputExtEQ

SVEQ

ICEQ

HQ

SV
1

Cluster 1

Controller: GVT computation 
and fossil collection

Shared 
memory 
message 
passing or 
MPI msg

clEQ

SQ

Priority SV Queue

Cluster N

Physical Node Physical Node

TCP 
for 
MPI

PQ

SVEQ

ICEQ

HQ

SQ

PQ

Cluster 0

Figure 3–1: Architecture and communication overview of NTW .

In every cluster there are two event queues, the clEQ and the inputExtEQ. The clEQ

is used to sort the events generated by the LPs in the same cluster. Its top event is the
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lowest time stamped event of the cluster. All events from different clusters are put into

inputExtEQ and then forwarded to a destination input channel event queue, ICEQ. The

priority SV queue is a container of SV s. The head of the SV queue contains the SV with

the minimal local time, Lt, of next event in the cluster.

In a three-dimensional geometry, an SV can have at most six adjacent SV s. Each

SV has an SV EQ which is used to find the smallest time-stamped event of the SV , several

input channels ICEQ’s which are used to hold diffusion events from neighbors, a processed

event queue PEQ, a state saving queue SQ and a history queue (HQ).

The multi-level event queue structure is composed of three parts:

1. Each input channel can have one unique incoming source i.e. there are six ICEQs

for six neighbors of an SV .

2. At the SV level, SV EQ which is a priority event queue. The top is the lowest event

of the ICEQs.

3. At the cluster level, the priority event queue is clEQ. The top of clEQ contains the

lowest time stamped event of the cluster.

There is a pointer at each input channel called current input event (CIE) which points

to the event which is de-queued from its ICEQ and is stored in the SV EQ. There is also

a pointer at each SV current sub-volume event (CSE) which points to the event which is

de-queued from its SV EQ and is stored in the clEQ. These two pointers are used when

rollback happens. Note that :

1. An ICEQ can submit one event to its corresponding SV ’s, SV EQ, if and only if

ICEQ is not empty. The pointer value of the event is assigned to CIE.
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2. An SV can submit only one event to its corresponding cluster’s clEQ if and only if

SV EQ is not empty. The pointer value of the event is assigned to CSE.

After an event is generated it will be sent to the corresponding input channel queue,

ICEQ and the event is inserted into the tail of the ICEQ. If the ICEQ is not empty, the

smallest timestamped event is submitted to SV EQ. The cost of insertion into the SV EQ is

constant i.e. log(6). If SV EQ is not empty, the top of SV EQ that is the smallest time stamp

event of the SV will be submitted to the clEQ. Here the insertion cost is log(n). Here n is

the number of SV s belongs to the cluster that is fixed up at the beginning of the simulation.

Thus the cost of event scheduling is constant for the whole simulation. Using rb-messages

instead of anti-messages in XTW removes the need to employ an output queue. Whenever

a straggler arrives, an rb-message is send to other LPs. This message will cancel all the

messages which have a time stamp larger than the time stamp of itself.

The HQ can be viewed as an array of its neighbors, in which each element stores the

time stamp of the last event sent to the corresponding neighbor. The HQ is used when the

SV needs to be rolled back. For example, suppose that the local virtual time of SVi is 100,

its HQ[0] is 80 and HQ[1] is 90. This indicates that it did not schedule any event to its

first neighbor after 80 and second neighbor after 90. Assume that SVi receives a straggler

and needs to rollback to a checkpoint at 88. After retrieving the local virtual time and

recovering the state, it needs to send rb-messages to the neighbor SVs to nullify the events

which time stamps are greater than 88. It is easy to assert that a rollback-message i.e rb-

message should be sent to the neighbor defined by HQ[1] whereas we do not need to send

an rb-message to the neighbor defined by HQ[0]. In this way, both the communication

during the simulation and the cost for rolling back can be reduced.
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3.1.2 Event Flow

In NTW , the event set consists of rd-event, diffuse event and rb-message. When an LP

receives an event message, it checks either it is normal message (i.e. rd-event or diffuse

event) or not (i.e. rb-event message). If the time stamp of any arrival event message is

less than LP’s local time i.e. straggler, then the LP needs to go through rollback process

otherwise put into input channel queue (for normal message) or remove events from input

channel queue which time stamps are greater than the arrival rb-message’s time stamp.

The steps are depicted in figure 3–2. When a cluster receives a diffuse event from an LP

located in another cluster, it is buffered into inputExtEQ and then forwarded into the ICEQ

of its destination LP.

Receive an event, e

rb-
message?

YesNo
Straggler?

  - Roll back state variables.
  - Remove events from 
    PQ which time is greater
    than rb-message's 
    time-stamp and copy to 
    ICEQ. 
  - Forward rb-message to
    the neighbors according 
    to HQ.

Yes

   - Remove events from 
     ICEQ which time 
     stamps are greater 
     than the time-stamp 
     rb-message.

Straggler?
YesNo

- Put e into the ICEQ.
- De-queue the top event of 
  ICEQ and put into SVEQ.
- De-queue the top event of
  SVEQ and then insert 
  into clEQ.

 - Transform events from 
   clEQ to SVEQ and then
   to ICEQ.
 - Rollback states variables.
 - Remove events from PQ 
   which time is greater than
   straggler's time-stamp and
   put into ICEQ. 
 - Put straggler at the top of 
   ICEQ and then to clEQ.

No

Normal message

Figure 3–2: LP level event receiving.

The steps for processing events in SV s are determined by NSM. In every cluster, the

SV ’s are kept sorted in a binary heap such that the SV for which the first event occurs is at
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the top. The rd-event is scheduled by the top SV of priority event queue and the diffusion

event is scheduled by a neighboring SV which is responsible for the diffusion event, see

figure 3–3.

 - Update priority SV event queue.
 - Schedule an rd-event to the top sub-volume of the 
    priority SV queue.

Dequeue the top event 
from clEQ

Event 
Type?

rd-event diffuse-event

Judge 
Reaction Diffusion 

 - Select a reaction
 - Update Lp's states and then
    update SQ.
 - Update PQ.
 - Compute the time of next 
   event, τ.

- Select species type to diffuse.
- Update LP's states and then update SQ.
- Update PQ.
- Schedule a diffused event to a neighbor.
- Update HQ
- Compute the time of next event, τ.

- Update LP's state and then SQ.
- Update PQ.
- Compute the time of next event. 

Figure 3–3: Cluster level event processing.

3.2 Shared Memory Communication

We call other SV s located in the same machine a family and give every SV a buffer to

receive messages from its family. A semaphore controls access to the buffer. For example,

if SV0 is about to send data to its (family) SV2, SV0 needs to hold the semaphore for SV2,

then find room to write the data, after which it releases the semaphore when writing is

finished. When receiving data, SV0 must first hold the semaphore and then receive the

data, after which it releases the semaphore.
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3.3 Experimental Work and Analysis

The front end for NTW makes it possible for a group of chemical reactions to be

input by the user and to be used in the simulation. This enables the user to experiment

with different reactions, different concentrations of the molecules and ions involved in the

reactions and their associated reaction rates. It is also possible to experiment with different

diffusion rates into between adjacent cells.

Our experiments made use of the Lotka-Volterra model [52] to represent chemical

reactions and the diffusion of ions taking place on a dendritic branch. The reasons we

selected the LV model are that (1) it is simple and we can therefore focus on the simulation

and that (2) the model is well known so we can verify our experimental results easily.

Spatial Lotka-Volterra model: We model a neurite branch as a 3D geometry of

2766 cubical sub-volumes. Nprey and Npredator are the populations of the prey and the

predators in a single sub-volume. Initially they are set to 100 in each sub-volume of the

domain. Ci stands for the reaction constants.

r0 : Prey
C1−→ 2×Prey

r1 : Predator+Prey
C2−→ 2×Predator

r2 : Predator
C3−→ Null

C1 = 10, C2 = 0.09 and C3 = 10 are the reaction rate constants for reactions r1, r2

and r3, respectively. Dprey = 7.5 µm2/ms and Dpredator = 5 µm2/ms are the diffusion rate

constants for the prey and the predators. The reaction rate equations for all of the reactions

are: r1 = C1 * Nprey, r2 = C2 * Nprey * Npredator and r3 = C3 * Npredator. The diffusion rates

for any sub-volume i are

Si = ni * ∑
M
j=1 D j ∗N j
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Here, ni = number of directions to which molecules can diffuse, D j = diffusion rate con-

stant for any species(Prey or Predator) j and N j = number of molecules of species j at any

sub-volume i.

Simulation Domain: Because the cylinder and branches are basic shapes for mod-

eling neurites in NEURON, we use a Y-shaped geometry to determine the connections of

neighboring SV s. The Y-Shape geometry consists of three cylinders, each 10 microns long

and 1 micron in diameter. Each sub-volume is 0.25x0.25x0.25 cubic microns in size, and

there are 2766 sub-volumes in total. Each cluster involved in the simulation has the same

number of SV s. A conceptual neuronal branch is shown in figure 3–4.

Conceptual 
neurite branch

Cluster 3

SV8 SV9

Root system with controller

Cluster 1 Cluster 2

Processor 1 Processor 2 Processor 3

SV2SV1 SV3 SV4 SV5 SV6 SV7

Figure 3–4: Conceptual Y-Shaped geometry is distributed to three clusters.

Hardware and Software Platform: The simulation runs have been executed on a

Intel(R) Core(TM) i7-3770S CPU physical machine which is equipped with 4 physical

cores (i.e. 8 logical processors) and 16GB RAM (Each physical core can execute 2 thread

in parallel. So there are 8 logical processors in this machine.) The operating system on this

machine is Ubuntu 12.04, with kernel 3.2.0-29-generic-pae. The MPI version is: (Open
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MPI) 1.4.3 and gcc version is 4.6.4. NTW is implemented by using C++ programming

language.

3.3.1 Oscillatory behavior of Lotka-Volterra System

The number of species is the state of the Lotka-volterra model. A portrayal of the in-

teraction of the two species is contained in figure 3–5. In this figure we plot the population

of the prey and the predator for a period of time during which 24,000,000 events were pro-

cessed. We employ one controller and three workers and use the same initial conditions for

all of the sub-volumes. We recorded the state of each sub-volume every 1.0 virtual time

units. [19] observed the pronounced oscillatory behavior of the Lotka-Volterra System

using the same spatial Lotka-Volterra model which we used here. We obtained the same

behavior as mentioned in [19] and we can conclude our experimental results are faithful

to Lotka-volterra model.
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Figure 3–5: Population of predator and prey in time.
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3.3.2 Performance

Lotka-volterra Model on Y-shape and Cuboid Geometry: We have two versions

of our code, one of which employs MPI alone, while the other makes use of shared mem-

ory. The execution time and the number of rollbacks for both of these versions are por-

trayed in figures 3–6 and 3–7 on the Y-shaped geometry.

Figure 3–6: Execution time for Y-shaped model.

From these two figures we see that the shared memory version of the simulation time

has a lower execution time then the MPI version (as expected). A maximum difference of

11% occurs at 6 processors. We also see that the MPI version has more rollbacks. The

maximum percentage difference occurs with 6 processors, approximately 30%.

In order to determine if shared memory would further improve performance in a larger

model we made use of a cuboid of dimension 8×8×100 (thus 6400 SV s in total). The re-

sults are depicted in figures 3–8 and 3–9 in which we see the expected improvement. There

is a 12% maximum difference in the execution time using 4 processors and a maximum

difference of 79% in the number of rollbacks using 4 processors.
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Figure 3–7: Rollbacks for Y-Shaped Model.

Figure 3–8: Execution time for cuboid model.

Diffusion rates affect the probability of a particular type of chemical reaction oc-

curring, thereby altering the state of the system. This motivated us to experiment with
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Figure 3–9: Rollbacks for cuboid model.

different values of the diffusion rate in the Y-Shaped geometry - we doubled the diffusion

rate of both of the prey and the predator (Figures 3–10 and 3–11).

Figure 3–10: Execution time with doubled diffusion rates for Y-shape model.

A similar story plays out in these figures, with the maximum differences for the exe-

cution time and the number of rollbacks being 12% and 44% respectively.
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Figure 3–11: Rollback with doubled diffusion rates for Y-shape model.

These results indicate that better performance is achieved by utilizing shared memory.

However, shared memory is not a panacea - the number of rollbacks increases for both

approaches after achieving a minimal execution time. This in turn indicates the need for

dynamic load balancing and dynamic window management.
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CHAPTER 4
NEURON and NTW

Detailed simulation of chemical reactions and the diffusion of ions through a neuronal

membrane presents challenges due to the multiple scales at which this occurs, scales that

require development and consolidation of a number of different simulation methodologies.

In the last chapter we described the NTW . In this chapter we describe NEURON simulator

and our attempts to integrate NTW with NEURON.

4.1 NEURON

NEURON [28] is a simulation environment which was primarily developed by Michael

Hines at Yale. In NEURON complex nerve models can be created by connecting multi-

ple one-dimensional sections of neurons together to form arbitrary neuron morphologies.

NEURON also allows for the insertion of membrane properties in these sections (includ-

ing channels, synapses, and ionic concentrations). In NEURON, the ion channels of axons

and soma are typically of the Hodgkin-Huxley type [29]. NEURON is very flexible and

supports a wide class of models.

The computation executed by the nervous system involves the spread and interaction

of electrical and chemical signals within and between neurons and glia cells (a type of cell

which supports neuronal communication and also plays a vital role in the development

of human intelligence). These signals can be modeled by the diffusion equation and the

cable equation, partial differential equations in which the potential (voltage, concentration)

and the flux (current, movement of a solute) are smooth functions of time and space. In
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NEURON, these partial differential equations are solved numerically by converting them

into difference equations.

A deterministic reaction-diffusion model is not accurate [4] when a small number

of Ca2+ ions are involved (e.g. a neuronal spine, which is a small membranous bump

on a dendrite ). A sequential version of NTW is already integrated with NEURON. The

experimental integration of parallel NTW with NEURON is also done as to check its

compatibility with NEURON.

4.2 Connecting NTW to NEURON

Python has direct access to NEURON and can import NEURON’s different computa-

tional modules by using the import statement. On the other hand, NTW ’s code is in C++

and Python does not have direct access to C++ code. However, Python can use ctypes, a

foreign function interface module (included in Python 2.5 and above) which allows for the

loading of dynamic libraries and calls C functions. Hence Python can provide information

such as the geometry (i.e. neighbor information for each sub-volume, species and reac-

tions, sub-volume size, etc.) from the NEURON simulator to NTW through the C-C++

interface.

4.2.1 Sequential NTW integration

We developed a serial version of NTW with only one process (sequential NTW ) and

incorporated it with NEURON. The interaction between NTW and NEURON is shown in

figure 4–1.

NTW is an individual module which interacts with NEURON using Python’s ctypes

interface. Prior to the simulation, pointers to all necessary NEURON’s data structures are

sent to NTW . As a result NTW can access NEURON’s data structures and can update
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Figure 4–1: Typical interaction between NEURON and NTW .

NEURON’s state. NTW can update NEURON states immediately when NTW processes

an event during the simulation.

4.2.2 Parallel NTW integration

We have integrated the parallel version of NTW with NEURON in order to to check

its compatibility with NEURON. We used a python script as a front end to the simulation

and used ctypes as shown in figure 4–1. From this experiment we noticed that during

the simulation NTW ’s worker processes do not have any access to NEURON’s states (i.e

NEURON’s data structures) directly and they can not update NEURON’s state instantly

when an event is processed. Only NTW ’s controller has access to NEURON’s states, but

the controller does not process any events. A typical block diagram of parallel NTW with

NEURON is also shown in figure 4–2.

In this experiment, we used a cylinder (10 microns in length and 2 microns in diam-

eter) model with 2700 voxels (i.e. 2700 SVs each which is 0.25x0.25x0.25 cubic microns

in size) and we also considered only one type of molecule, Ca2+ ions. Every voxel has 20
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Figure 4–2: Typical block diagram of NEURON-NTW connection.

Ca2+ ions. In this case, the size of the NEURON’s data structure is 2700. For simplicity

we only consider diffusion events. NTW uses 3 worker process and one controller.

At the beginning of the simulation, the controller distributes 2700 sub-volumes among

the worker processes evenly. It also provides a pointer to NEURON’s states to all of worker

processes. This pointer is copied to all worker processes. As a result, every worker process

individually updates only its portion of copied states. After execution of 20,000 diffusion

events the state of NEURON and NTW shown in figure 4–3.

Transforming Safe States from NTW to NEURON: After every certain period of

time (a cycle), NEURON’s state is updated by the controller. In every cycle, all worker

processes of NTW send their safe states to the controller. After receiving current safe

states from all of the worker processes, the controller updates NEURON’s states. Safe

states means that the current updated states due to the execution of events which have

smaller time stamp than the current GVT. In this experiment, after the execution of 20,000
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(a) Controller shows the NEURON’s state
(NEURON’s state not updated yet here).

(b) Worker process 1 updates only first 1 to 900
sub-volumes (SV s).

(c) Worker process 2 updates 901 to 1800 SV s. (d) Worker process 3 updates 1801 SV s to 2700 SV s.

Figure 4–3: State of NEURON and NTW workers.

events by each worker process, the controller collects safe states and updates NEURON’s

states as shown in figure 4–4.

NEURON state is updated by the controller after every C GVT cycle of the simula-

tion. This might have a serious effect on the performance of a large simulation.

46



Figure 4–4: NEURON’s state after completion of the simulation.
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CHAPTER 5
Intracellular Ca2+ Signaling Pathways

As we mentioned before, the calcium ion, Ca2+, plays a vital role in neuronal chan-

nel dynamics and ultimately in the behavior of the entire neuron. It is an important second

messenger signal in many cell types, with diverse roles, from fertilization to regulating

gene expression [37]. It is very important to neurons as it participates in the transmission

of the depolarizing signal and contributes to synaptic activity [54]. Ca2+ signaling waves

in neurons were discovered more recently and are not yet fully understood however they

are thought to play an important role in synaptic transmission which is the form of secre-

tion that leads to the release of neurotransmitters [54]. Nowadays, neuroscientists believe

neuronal transmission has great impact in the process of learning and the formation and

consolidation of memory [54].

Intracellular Ca2+ dynamics is controlled by the endoplasmic reticulum and the plasma

membrane operating as a binary membrane system. These two membrane system interact

with each other to control neuronal processes such as neurotransmitter release, associativ-

ity, plasticity and gene transcription. My research focus on the internal calcium dynamics

of a neuron which depends on both biochemical reactions and diffusions.

In this chapter we describe the intracellular calcium signaling dynamics of a neuron.

We simulate two models of calcium signaling pathways, a calcium buffer and a calcium

wave model. The calcium buffer model is employed in order to verify the correctness and
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performance of NTW by comparing it to a sequential deterministic simulation in NEU-

RON. We also describe the newly derived discrete event calcium wave model (from a

deterministic model) using the stochastic IP3R channel model.

5.1 Neuron Basics

The neuron is the computational building block of the human brain. Each neuron

receives inputs from thousands of other neurons via its dendrites and, in turn connects

to thousands of other neurons via its axon. The point of contact between the axon and

the dendrite of another neuron is called the synapse. The inter-cellular space between

the presynaptic and postsynaptic neurons is called the synaptic space or synaptic cleft.

When a synapse is activated by an electrical impulse from a presynaptic neuron, it releases

chemical substances called neurotransmitters into the synaptic cleft which diffuse across

the synaptic space to the postsynaptic neuron. The neurotransmitter molecules then bind

to special receptors located on the membrane of the postsynaptic neuron. Receptors are

membrane proteins which are able to bind to a chemical substance such as a neurotrans-

mitter.

The membrane of a neuron is semi-permeable and has ion channels within it which

control ion flow (including sodium, potassium, and calcium) between the exterior and the

interior of the cell body. Movements of ions through these channels result from the diffu-

sion of the ions down concentration gradients and the voltage difference created by differ-

ent concentrations of these ions on the exterior and the interior of the membrane. Some

of the channels are voltage gated; they are opened or closed by the electrical membrane

potential.
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5.2 Ca2+ Signaling Dynamics of Neuron

Neurons use a number of signaling pathways to regulate their internal activity. A

signaling pathway is initiated when an extracellular molecule activates a specific receptor

located on the cell surface. In turn, this receptor triggers a biochemical chain of reactions

and/or diffusions inside the cell which in turn leads to a response.

These signaling pathways fall into two main groups depending on how they are ac-

tivated. Many of them are activated by external stimuli. The cell responds to both intra-

and extra-cellular cues, and can detect these through various signaling cascades wherein

molecules react, diffuse, and/or are transported. Others respond to information generated

from within the cell, usually in the form of metabolic messengers. In these signaling path-

ways information is conveyed either through protein-protein interactions or is transmitted

via diffusing molecules which are referred to as second messengers. A second messenger

is an intra-cellular substance, e.g. a calcium ion, that mediates cell activity by relaying a

signal from an extracellular molecule, (e.g. a neurotransmitter) which is bound to the cell’s

surface. In this case the neurotransmitter is the first messenger. Neurotransmitters transmit

signals across a synapse between two neurons. When a receptor on a post-synaptic neuron

receives a neurotransmitter, it initiates intra-cellular signaling pathways. The role of Ca2+

signaling is very important to a neuron’s response.

The basic mechanism of calcium signaling depends upon increases in the intra-cellular

concentration of calcium ions. In most cells the concentration of intra-cellular calcium os-

cillates with a period ranging from a few seconds to a few minutes [57]. These oscillations

often take the form of waves. At rest, the concentration of calcium in the cell cytoplasm
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is low while outside the cell and in the internal compartments of the cell (e.g. the endo-

plasmic reticulum (ER)) it is high, as shown in figure 5–1. The ER acts as an internal

warehouse of calcium ions from which calcium can exit to the cytosol through channels

such as inositol triphosphate receptors, IP3R, (e.g. it can also exit via RyR or leak). The

IP3Rs are located on the surface of the ER. Calcium ions, Ca2+, can be pumped back from

the cytosol to the ER by ATPase pumps.

When a postsynaptic neuron is electrically excited by receiving neurotransmitters at

receptors, its voltage gated calcium channels (VGCC) located in the plasma membrane

are opened and some calcium ions enter into the cytosol. This excitation also activates

transmembrane proteins (a type of membrane protein spanning the width of the biological

membrane to which it is permanently attached) to facilitate communication between cells

by interacting with chemical messengers and G-proteins. G-proteins are a family of pro-

teins involved in transmitting signals from stimuli coming from outside a cell to the inside

of the cell. They function as molecular switches. The G-protein activates a Phospholipase

C (PLC) enzyme and produces two second messengers, di-glyceride (DAG) which remain

in the membrane and IP3, which diffuses through the cytoplasm of the cell and binds to IP3

receptors (IP3R). When an IP3R channel is triggered by both Ca2+ and IP3, it is opened

and allows the fast release of calcium from the ER to the cytoplasm, as shown in figure

5–1.

Typical calcium signaling pathways involve both binding and enzymatic reactions

while molecules move through the intra-cellular space randomly. Hence binding and en-

zymatic reactions in combination with diffusion are the basic building blocks for modeling
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Figure 5–1: Calcium wave dynamics in neuron.

intra-cellular signaling pathways [4]. Recent intra-cellular calcium model consists of de-

terministic reaction-diffusion equations coupled to stochastic transitions of the calcium

channels. The calcium and buffer concentrations in the cytosol are represented by par-

tial differential equations (PDE). Stochastic quantities are the discrete states of channel

units which determine the open/close state of a channel. The intra-cellular calcium con-

centration is determined by calcium diffusion, the transport of calcium ions through the

ER membrane and the binding and unbinding of buffer molecules, mitochondria etc. The

reaction terms, buffer binding and unbinding of calcium are modelled by the mass ac-

tion kinetics in which the rate of a chemical reaction is proportional to the product of the

concentrations of the reacting chemical species.

In a neuron calcium releases do not occur with a regular period, but are strongly

influenced by stochastic process [53] [38]. The exact nature of these stochastic processes

is not clear, but the most plausible explanation is that stochastic opening and closing of
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the IP3R and RyR are the most important influence causing irregularity in the calcium

release. In [32], the calcium dynamics of a cell is formulated as a hybrid model in which

the reaction-diffusion equations are used (a high concentration of calcium and buffers in

the cytosol is assumed) and the opening/closing of channels is stochastic. In this paper we

develop an IP3R model and a stochastic simulation to predict the behavior of individual

channels.

5.3 Experimental Work and Analysis

Our experiments made use of two models - a calcium buffer [4] on a dendritic branch

derived from NEURON simulation environment and a newly derived discrete event cal-

cium wave model on a cylinder of 3D grid of sub-volumes cubes (derived from NEURON

simulation environment) and on an one dimensional geometry.

We make a comparison between a deterministic simulation in NEURON and a stochas-

tic parallel simulation in NTW on a calcium buffer model to verify NTW ’s accuracy with

respect to deterministic computation. We use the same reaction and diffusion rates, the

same geometry (dendritic branch). We also employed the calcium buffer model to ascer-

tain NTW s performance. We use a discrete event calcium wave model derived from a

deterministic model [37] [38].

5.3.1 Calcium Buffer Model

Free calcium, Ca2+, is buffered by intra-cellular buffers (e.g. calmodulin or parval-

bumin). It can escape from these buffers, resulting in an almost constant concentrations of

cytosolic calcium. This observation can be used to verify our simulator. The buffer model

includes two reactions as follows:

r0 : Ca+Bu f
C1−→CaBu f
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r1 : CaBu f
C2−→Ca+Bu f

Here, the reaction constant, C1, for reaction r0 is 0.01 /ms and for reaction r1 the

reaction constant, C2, is 0.01 /ms. The diffusion constant of Ca is 0.0001 µm2/ms. Bu f

and CaBu f are not mobile species i.e. diffusion constant for those are 0.

The cylinder and branch are basic shapes for modeling neurites in NEURON. We use

a dendritic branch geometry, also referred to as Y shaped, which is taken from a NEURON

model. The Y-Shape geometry consists of three cylinders, each 10 microns long and 1

micron in diameter. Total volume of 3 connected cylinders is about 23.56 µm3 and whole

volume is sub-divided into 2766 sub-volumes. All sub-volumes are considered same in

size and it is 0.25×0.25×0.25 cubic microns. Each cluster has near to the same number

of SV ’s.

Hardware and Software Platform: The simulation platform was an Intel(R) Core(TM)

i7-3770S CPU with 4 physical cores (8 logical processors) and 16GB RAM Each core can

execute 2 threads in parallel. Hence there are 8 logical processors. The operating system

is Ubuntu 12.04, with kernel 3.2.0-29-generic-pae. The MPI version is (Open MPI) 1.4.3,

gcc version is 4.6.4. NTW is implemented by C++.

Concentrations were recorded for both the deterministic and parallel stochastic algo-

rithms - see figure 5–2 for different concentrations. We employed a Y-shape geometry

with the same reaction and diffusion rates and obtained almost the same behavior for both

simulations. In the high concentration experiment, the initial concentrations in NEURON

model for Ca, Buf and CaBuf were 8.0 µM, 4.0 µM and 0.0001 µM respectively. In order

to verify the accuracy of the parallel simulation, we kept the same configurations. The
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parallel version was run on four cores (one controller and three workers). The same exper-

iment was done for low concentrations- 0.8 µM, 0.4 µM and 0.0001 µM for Ca, Buf and

CaBuf respectively. The standard deviation plots for both the high and low concentration

experiments are shown in figure 5–3.
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Figure 5–2: Varying concentration in deterministic and parallel stochastic simulation for
a. high concentration b. low concentration.

To compare the results obtained by the NTW sequential (one controller with one

worker) and parallel (one controller with several workers) stochastic simulations, we em-

ployed the calcium buffer model on the same Y-shape geometry. The NTW sequential and

parallel (one controller with three workers) simulation with a standard deviation is shown

in figure 5–4.

For all of the stochastic simulation experiments, the average of three parallel stochas-

tic runs is considered. The standard deviation of three stochastic runs is shown in figure
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Figure 5–3: Standard deviation between deterministic and parallel stochastic for a. high
concentration b. low concentration.

Figure 5–4: a. Varying concentration in NTW stochastic sequential and parallel simula-
tion. b. Corresponding standard deviation plot.

5–5. The average standard deviation of the three stochastic runs (on 25 sample points) for

Ca, Buf, and CaBuf are 0.01 µM, 0.006 µM and 0.095 µM respectively.
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Figure 5–5: Standard deviation of three parallel stochastic runs.

Table 5–1: Performance table of calcium buffer model in parallel simulation.

Number of workers, N
Average physi-
cal time,
T(N), in sec.

Speedup,
S(N) =
T(1)/T(N)

1 2.53 1
2 1.27 1.993
3 0.96 2.66
4 0.68 3.7
5 0.57 4.44
6 0.48 5.27
7 0.46 5.5

Performance: To measure the speed-up of the parallel simulator, we employed a

calcium buffer model on a neuronal branch and ran the parallel simulation for 5.7 virtual

time units during which 1.2 million events were processed. The simulation took 2.53

seconds for one worker and for two workers it required 1.27 sec, as shown in the table 5–

1.
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The execution time and speedup plot for the calcium buffer model on the Y-shape

geometry are portrayed in figure 5–6 and figure 5–7 respectively. When a dendrite branch

is distributed over multiple logical processors, communication latency is created and the

execution time flattens out at 7 logical processors.

The number of rollbacks increases linearly when the number of worker process in-

creases, the result of increased communication between the workers. With proper load

balancing we can distribute the communication workload over the processors and decrease

the number of rollbacks.

Figure 5–6: Execution time of calcium buffer model in parallel simulation.

5.3.2 Stochastic Discrete Event Calcium wave model: including Ca2+ activating and
Ca2+ inhibiting sites dynamics

In the deterministic approach, the calcium concentration in the cytosol, [Ca C], is

calculated at every time step from different (in and out) fluxes- JIP3R , JSERCA, and JLEAK

[37]. In the stochastic approach, different events (Channel Open, Release, Pump back and
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Figure 5–7: Speedup of NTW as a function of number of worker process.

Leak) at discrete points of time are considered. The event frequency can be controlled

by their (in/out) flux rates, as derived in a mathematical model [37]. We have derived

a stochastic reaction-diffusion discrete event calcium wave model from the deterministic

model by considering only two bindings sites (activating and inhibiting Calcium sites).

Because of the high occurrence of IP3 binding and unbinding [38] ignored the IP3 binding

site in their IP3R model and we do the same. Parameter values were obtained from [37] to

produce a calcium wave propagation in an unbranched one dimensional geometry (length

of 200 micron and diameter of 1 micron). We also observe Ca2+ wave propagation in a

cylinder with a diameter of 1 micron and a length of 20 micron which consists of 3D grid

of 1701 sub-volumes.

The stochastic channel dynamics of IP3R: The IP3R releases Ca2+ from the ER to

the cytosol. It consists of four identical sub-units, each of which is composed of three

binding sites [38]: an activating Ca2+ site, an inhibiting Ca site and an IP3 binding site.
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The three binding sites allow for eight different states Xi jk for each subunit. The index i

stands for the IP3 site, j for the activating Ca2+ site, and k for the inhibiting Ca2+ site.

An index is 1 if an ion is bound and 0 otherwise. Transition probabilities per unit time for

transitions which involve the binding of a molecule are proportional to the concentration

of that molecule. The channel is open if the subunit is in X110 , i.e., they have bound Ca2+

at the activating site and IP3. Because the transition rates between the states X0JK and X1JK

(IP3 binding and dissociation) are two orders of magnitude faster than the other transition

rates [38] ignored the IP3 binding site. We also consider the same approach and assumed

that the channel has a possibility of opening if the subunits is X10.

The binding and dissociation of calcium Ca2+ at the activating and inhibition sites

are stochastic events rendering the opening and closing of the channel a stochastic pro-

cess. This stochastic process is coupled to the concentration of cytosolic calcium because

the binding probabilities per unit time depend on it and the number of open channels de-

termines the concentration.

The transitions corresponding to reactions follow:

R0 : IP3RInhibit
rc1−→ IP3RNot Inhibit

R1 : IP3RNot Inhibit
rc2−→ IP3RInhibit

R2 : IP3RNot Active
rc3−→ IP3RActive

R3 : IP3RActive
rc4−→ IP3RNot Active

R4 : Ca E
rc5−→Ca C

R5 : Ca C
rc6−→Ca E

R6 : Ca E
rc7−→Ca C
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The, first two reactions, R0 and R1, correspond to Ca2+ binding and unbinding at

the Ca2+ inhibition site. R2 and R3 are calcium binding and unbinding at the calcium

activation site. Reaction R4 is for calcium release from ER to cytosol. R5 and R6 are

for the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) pump from cytosol to ER

and leaking Ca2+ to cytosol, respectively. Calcium in the cytosol is Ca C and calcium in

the Endoplasmic Reticulum, ER, is Ca E. Two mobile species in this model are Ca C,

for which the diffusion constant is DC = 0.75µm2/ms and IP3, for which the diffusion

constant is DIP3 = 1.75µm2/ms. We assume Ca E is not mobile, so its diffusion constant

is, DCE = 0.

In NSM, at every iteration, the reaction rates for all of the reactions are evaluated. In

order to calculate a reaction rate, we follow the flux rate calculation of the deterministic

model [37]. For experiment, the reaction constants were set as follows: rc1 = 1.0,rc2 =

1.0,rc3 = 1.0,rc4 = 1.0,rc5 = 10.0,rc6 = 0.5 and rc7 = 1.5.

The calculation of NSM reaction rates are given below:

Reaction rate for reaction R0 (to not inhibit IP3R) and R1 (to inhibit IP3R Chan-

nel):

The rate of R0 reaction i.e. Ca not inhibiting rate = rc1 ∗ IP3RInhibit ∗hin f .

The rate of R1 reaction i.e. Ca inhibiting rate = rc2 ∗ IP3RNot Inhibit ∗ (1−hin f ).

Here, hin f represents the fraction of inactivated IP3R receptors by cytoplasmic cal-

cium i.e Ca C and it is defined here as follows: hin f = Kinh/(Kinh +[Ca C]). Here, Kinh is

a constant.

[Ca C] is the local concentration of calcium in the cytosol. Initially, IP3RInhibit = 0

and IP3RNot Inhibit = 4 (as for 4 sub-units) which causes R1’s reaction rate to be greater
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than the R0’s reaction rate. That means initially that all of the channels are in an inhibited

state i.e. XJ1. When the R0’s reaction rate is greater than R1’s rate the channel is in not in

an inhibited state i.e. XJ0.

Reaction rate for reaction R2 (to activate IP3R) and R3 (to inactivate IP3R Chan-

nel):

The rate of R2 reaction i.e. Ca activating rate = rc3 ∗ IP3RNot Active ∗ (1−nin f ).

The rate of R3 reaction i.e. Ca inactivating rate = rc4 ∗ IP3RActive ∗nin f .

Here, nin f represents the fraction of activated IP3R receptors by cytoplasmic calcium

i.e Ca C and it is defined here as follows: nin f = [Ca C]/(KAct +[Ca C]). Here, KAct is a

constant.

Initially, IP3RNot active = 4 and IP3RActive = 0 which causes R2’s reaction rate to be

greater than R0’s reaction rate. So all of the channels are in inactivate state i.e. X0K . When

R3’s reaction rate becomes greater than R2’s reaction rate, the channel becomes active i.e.

X1K .

Reaction rate for reaction R4 (to release Ca2+ from ER to cytosol):

The reaction rate of R4, i.e. the Release rate = rc5 ∗ (JIP3R)

Here, JIP3R =VIP3R ∗ x∗n∗m∗h∗ ([Ca E]−[Ca C])

Where,

n = IP3RActive/(IP3RActive + IP3RNot Active)

m = IP3/(IP3 +KIP3)

h = IP3RNot Inhibit/(IP3RInhibit + IP3RNot Inhibit)

x = number o f IP3R channels per cluster.

Here x = 1 i.e. one IP3R channel per cluster.
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VIP3R and KIP3R are constants.

It is notable that release depends on m, n, and h.

• If IP3 is not available i.e. m = 0 and release rate will be 0. This means release event

will never happen.

• Similarly, h depends on IP3RNot Inhibit . When, IP3RNot Inhibit is 0 then h is also 0,

which means that the channel is in an inhibited state and the release event cannot

occur. The state of IP3RNot Inhibit or IP3RInhibit is managed by reaction R0 and R1.

• n depends on IP3RActive. When, IP3RActive is 0 then n is also 0. This means IP3R is in

an Ca inactivated state. The value of IP3RActive and IP3RNot Active is always updated

by reaction R2 and R3.

Reaction rate for reaction R5 (to pump back Ca2+ from cytosol to ER):

The reaction rate or pumping rate = rc4 ∗ JSERCA

Here, JSERCA =VSERCA ∗ ([Ca C]2/(K2
SERCA +[Ca C]2).

and VSERCA and KSERCA are constants.

Reaction rate for reaction R6 (leak Ca from ER to cytosol):

The reaction rate i.e., the leak rate = rc5 ∗ JLEAK .

Here, JLEAK =VLeak ∗ ([Ca E]− [Ca C]).

and VLeak is a constant.

All constants are taken from deterministic model [37] are shown in table 5–2.

The basics of Ca2+ wave propagation

Figure 5–8 shows a calcium wave through an array of sub-volumes, each of which

has only one IP3R receptor. When (1) there is a small number of Ca2+ and IP3 ions are

available (2) the calcium activated site being activated and no calcium inhibition, the IP3R
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Table 5–2: All constants for calcium wave model
VIP3R 0.0002
KAct 0.0004
KIP3 0.0013
Kinh 0.0019

KSERCA 0.0001
VSERCA .00003249
VLeak 0.00003

channel releases Ca2+ from the ER to the cytosol, creating a small calcium wave called

a ‘blip’. Several blips in a IP3R cluster creates a ‘puff’. Because each cluster has only

one IP3R, we do not distinguish between blips and puffs in our experiments. Due to the

puffs, the cytoplasmic calcium concentration is raised as shown in figure 5–8. The released

calcium then diffuses to neighboring sub-volumes and activates nearby IP3R via “calcium

induced calcium release” (CICR). Thus a global propagation of a calcium wave is evoked,

figure 5–8. In short, Ca2+ release at one IP3R can trigger Ca2+ release at adjacent IP3R

via CICR, leading to the generation of Ca2+ waves.

Model verification and wave propagation In order to to observe wave propagation

experimentally, we employed an array of two hundred 1x1x1 cubical micron SV s con-

nected linearly as shown in figure 5–9. In every sub-volume we modeled the cytosolic

and endoplasmic reticulum (ER) compartments by using a fractional volume for each, as

shown in figure 1–5.

Initial concentration for both Ca2+ and IP3 are 0.0033 µM (i.e. 2 Ca2+ molecules per

SV ) and 0.0 µM respectively. After a period of time, after one iteration of main loop, the

concentration of IP3 is increased to 0.332 µM (i.e. 200 IP3 molecules per SV ) in the middle

six SV s (i.e. SV97 to SV102) and observed the spreading of a Ca wave as shown in figure
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Figure 5–8: Calcium wave propagation through a linear geometry with one IP3R channel
per micron.

Figure 5–9: Linear connection of computational sub-volumes, SV s.

5–10. Similarly to observe the spreading of calcium wave through a 3D grid, we employed

a cylinder with a diameter of 1 micron and a length of 20 micron which consists of 3D grid

of 1701 0.25x0.25x0.25 cubical micron sub-volumes. Initial concentration for both Ca2+

and IP3 are 0.0033 µM (i.e. 2 Ca2+ molecules per SV ) and 0.0 µM respectively. After

a period of time, after one iteration of main loop, the concentration of IP3 is increased to

106.27 µM (i.e. 1000 IP3 molecules per SV ) in the middle nine SV s (i.e. SV845 to SV853)

and observed the spreading of calcium through a 3D grid cylinder as shown in figure 5–11.
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Figure 5–10: Observation of calcium wave propagation in linear geometry.

Figure 5–11: Observation of calcium wave propagation in a cylinder with a diameter of 1
micron and a length of 20 micron which consists of 3D grid of 1701 sub-volumes.
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Because there is high concentration of IP3 in SV97 to SV102, the release event can only

occur at those SV s. IP3, and then spread gradually along the dendrite, resulting in a Ca2+

activation of the IP3 receptors (IP3Rs). Activation of IP3Rs permit release of Ca2+ from the

endoplasmic reticulum stores into the cytosol. This causes the concentration of calcium

in cytosol, [Ca C] to increase and to start to diffuse in both directions (left and right) from

the middle and to affect the neighbor SV s as well. In addition the IP3 also diffuses to

neighbors and causes neighboring SV s to start to release events. Thus a global wave of

calcium in the cytosol, Ca C, starts to propagate in both directions with respect to time (1

ms to 30 ms) as shown in figure 5–10. The calcium wave is travelling very fast (about 3.3

micron per ms), which is far from a real biological neuron ( 1 micron every 20 ms). In

fact we reproduced the qualitative dynamics and moved on because we are interested in

the performance of NTW with our discrete model.

Steady state IP3R channel dynamics:

We developed an IP3R model and a stochastic simulation to predict the behavior of

individual channels. The IP3R model plays a central role not only for the understanding

of channel kinetics but also as a building block for constructing larger scale models of

cellular calcium signaling. Figure 5–12 describes the dependence of IP3R channel open

probability (Po) as a function of cytosolic Ca2+ for different concentration of IP3.

Experiment: Initially all channels of the domain (sub-volume SV0 to SV199 each of

which has only one IP3R channel) are closed. The concentration of Ca2+ in cytosol is

.0033 uM and the concentration of the IP3 in cytosol is 0 µM. After a very short period of

time, the concentration of IP3 (for all SV s) rises to .0083 µM. This causes all of the IP3R

channels to open and increases the level of Ca2+ concentration in the cytosol very sharply.
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When Ca2+ concentration in cytosol reaches into a certain point, here it is .035 µM, all

channels starts to close and reach into a steady state.

Open probability (Po) calculation: The NSM algorithm first calculates the total reac-

tion and diffusion rates at every iteration. Then it decides whether the event is reaction or

diffusion event randomly. If the event is a reaction, NSM selects a reaction out of the 7

reactions. The model consists of 7 reactions, R0 to R6, where R4 is the open reaction i.e.

release Ca2+ from ER to cytosol. The open probability Po is defined as the ratio of the

total number of R4 reactions occurring (release events), NR4 to the total number of reaction

events, N. Po = NR4/N. Figure 5–12 is the plot of Po for different concentration levels of

cytosolic calcium with 3 different concentrations of IP3.

[39] experimentally observed that the channel open probability is a bell-shaped func-

tion of the concentrations of calcium in cytosol, [Ca C]. The open probability varies with

respect to IP3 concentrations. We also obtained the same behavior, validating our stochas-

tic discrete event calcium wave model. It is notable that when calcium concentration is

about .073 µM the open probability is very low (less than .02). In a stochastic simulation,

the channel open probability Po never goes to zero as in steady state some releases do

occur due to the constant concentration of calcium in cytosol and IP3.

Performance: The execution time of our model in the neuronal branch geometry

is displayed below in figure 5–13. We first note that it takes 5 worker processes for the

execution time of the model to be divided in half. In the Calcium buffer model it took 2

workers to achieve this.
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Figure 5–12: Steady state open probability as function of calcium in cytosol, Ca C.

Figure 5–13: Execution time of calcium wave model in parallel simulation.

The reason for this has to do with the large computational imbalance between the

areas in the model with high calcium (covered areas) and those with low calcium (uncov-

ered areas). This imbalance results in a large number of rollbacks-they increase almost
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Table 5–3: Experimental data of workloads of the covered and uncovered areas.
Virtual Time = 4 Virtual Time = 8 Virtual Time = 12

Description Covered
area

Uncovered
area

Covered
area

Uncovered
area

Covered
area

Uncovered
area

Average number of
processed events,

NOE
5017.13 196.04 8668.65 380.4 12100.58 564.5

Percentage of event
processing 96.10% 3.90% 95.62% 4.38% 95.34% 4.66%

Number of
Sub-volumes 46 154 88 112 100 100

linearly with the number of process-see figure 5–14 and degrade the performance of the

simulation.

Our experiments clearly revealed this computational imbalance. Table 5–3 shows

experimental data comparing the workloads of the covered and uncovered areas.

Figure 5–14: Rollback with multiple worker processes in calcium wave model simulation.

Some take-aways from these experiments
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• 95% more events are processed in the covered area than in the uncovered area.

Among the processed events in the covered area about 15% are reaction events and

about 85% are diffusion events. We conclude that it is important to detect the cov-

ered area in order to determine the proper distribution of sub-volumes among the

worker processes.

• The size of the covered area increases with time, so dynamic load balancing is worth-

while investigating.

• The rate of spreading of the covered area depends on the speed of calcium wave

which in turn depends on the concentration of IP3. If the concentration of IP3 is

high, the Ca wave spreads quickly, otherwise slowly [37]. Hence we can detect the

covered area via the concentration of IP3 in the SV s.

We intend to explore the utility of a load balancing algorithm for this problem.
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CHAPTER 6
Dynamic Load Balancing using Reinforcement Learning

In the last chapter we noticed that a large computational imbalance occurs between

the areas in the model with high calcium (covered areas) and those with low calcium

(uncovered areas) in our calcium wave model. This imbalance results in a large number

of rollbacks and degrades the performance of the simulation. In this chapter we introduce

a dynamic load balance algorithm along with a dynamic time window in order to enhance

the performance of calcium wave simulation.

6.1 Dynamic Load-balancing

The distribution of load among the processors has an important effect on the perfor-

mance of a parallel program. In order to achieve the best performance all of the processors

should have approximately the same load. In the calcium wave simulation when the cal-

cium wave starts to spread from one processor to neighboring processors a load imbalance

starts to occur.

A centralized algorithm is employed for dynamic load balancing in NTW. In this

approach each processor sends its load and communication information to a central node

called a controller. The controller node utilizes this information to select (and inform)

those processors which participate in the algorithm.

6.1.1 General Structure of the Algorithm

We introduce two algorithms, the computation and communication algorithms, used

to balance the computational and communication loads respectively. Recall that in our
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algorithm each SV is represented by an LP. The parameters which are made use of by the

computation and communication algorithms are as follows:

LP computation load (LpLoad) The computation load of each LP is defined as the

number of events processed since the last load balance.

Worker process computation Load (PComp) The computation load of each worker

process is defined as the sum of the computation loads of the LPs within that worker

process.

LP communications load (LpComm[] The communication load of each LP is an

array of length n−1 where n is the number of processors in the system. Each element of

this array is the number of messages that the LP has sent to other processors since the last

load balance of the simulation.

Processor to processor communication load (PPComm[]) The communication load

of a processor is represented by an array of length n−1 where n is the number of processes.

The elements of the array are the number of messages that the process sent to the other

processors since the last load balance.

Processor communication load (PComm) The number of messages that each pro-

cessor sent to other processors.

The computation-communication weight (λ ): λ The final load of the processor. Its

value is between 0 to 1.

Processor load (PLoad) The weighted sum of the computation and communication

loads:

PLoad = λ ∗PComp+(1−λ )∗PComm (6.1)
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The load-balancing algorithm is initiated at every C GVT cycles, where C is a control

parameter whose value is determined by a Q-learning algorithm. After C GVT computa-

tions we estimate the workload for each worker process and detect a load imbalance using

runtime statistics. The idea of the algorithm is as follows: each processor (i.e. NTW’s

worker process) sends the values of PComp and PComm to the controller (i.e. NTW’s

controller process). The controller checks the loads of the worker processes to detect

an imbalance. If there is an imbalance, the controller selects the over and under-loaded

worker processes and sends a message to the over-loaded process. The maximum loaded

process then selects up to L of its LPs and sends them to the minimum loaded process. To

select the value of L the controller uses a q-learning algorithm.

The next subsections describe the details of all algorithms used in our dynamic load-

balancing approach.

6.1.2 Load Imbalance Detection

Every C GVT cycles controller detects the imbalance of workload among the worker

processes as specified in algorithm 2.

When load imbalance is detected then the maximum and minimum workload are

computed by using algorithm 3.

6.1.3 The Computation and Communication Load-balancing Algorithm

The computation algorithm first balances the computation and then attempts to bal-

ance the communication between processors. Each processor sends PLoad and PComm

to the controller every C GVT cycles. The controller selects the highest and lowest loaded

processes PLoadmax and PLoadmin and sends PLoadmax the address of PLoadmin which in

turn selects n LPs having the most communication with PLoadmin to send to PLoadmin.
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Algorithm 2 Load imbalance detection algorithm
Input: cltLt,Lt, tau,cltLtmin,cltLtmax
Output: TRUE OR FALSE

Initialisation : cltLt is updated by the SV’s local time, Lt, which is calculated as
Lt = Lt + tau (tau is the time of next event). tau is inversely proportional to number
of molecules in the process. When a Ca2+ wave is initiated in a process, its size
increases very sharply, causing tau to decrease. When tau decreases, Lp level (SV’s)
local simulation time (Lt) progresses very slowly. In our experiments we observed
that least valued Lt is always overloaded.

1: Controller sends loadDetectionSignal to all worker processes.
2: All processes send back their cluster level local time, cltLt, to the controller.
3: Controller determines the lowest cltLt by cltLtmin = min(cltLtp1,cltLtp2, ...cltLpn)

as well as the maximum difference between cltLtmin and cltLti by di f f erenceLt =
max(cltLti− cltLtmin) where i = 1....n processes.

4: if (di f f erenceLt > cltLtthreshold) then
5: Return TRUE
6: else
7: Return FALSE
8: end if

Algorithm 3 Max-min workload calculation
Input: CollectLoadSignal,PComp,PComm
Output: PLoadmax,PLoadmin

1: Controller sends CollectLoadSignal to all worker processes.
2: Worker processes compute their PComp (sum of all LpComps within the worker pro-

cess). PComm (sum of all LpComm[] within the worker process) is sent to the con-
troller. The controller computes λi as follows:

λi = PComp/(PComp+PComm) (6.2)

3: Computes PLoadi of a worker process i using equation (6.1).
4: Controller determines the highest loaded process, PLoadmax and least loaded process,

PLoadmin.
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Algorithm 4 The computation load-balancing algorithm
Input: calling algorithm 2
Output: PmaxLoad , PminLoad , doMigration

When load imbalance detection algorithm returns TRUE the controller process
P0:

1: Send collectLoad signal to all worker processes.
Upon the receipt of collectLoad signal, each worker process Pi:

2: for each LPj which Pi hosts do
3: PCompi = PCompi +LpLoad j
4: end for
5: calculate PLoad by using equation 1 and send the PLoadi and PCommi[] to the Con-

troller processes.
Upon the receiving of PLoadi and PCommi[] from all worker process the controller
process P0:

6: Finds the highest loaded process Pj:
PLoadmax, j = Max(PLoad1,PLoad2, ...PLoadN) where jth process has maximum load
and N is the number of worker processes

7: Finds least loaded process Pj:
PLoadmin, j = Min(PLoad1,PLoad2, ...PLoadN) where jth process has the minimum
load and N is the number of worker processes

8: Sends the doMigration message to PmaxLoad to inform about minimum loaded process
PminLoad .
Upon the receipt of doMigration signal from controller, the highest loaded pro-
cess:

9: Finds the top n LPs which have the maximum value of LpComm[Destination]
10: Sends the n LPs to the destination processor which is the least loaded process PminLoad .
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Algorithm 5 The communication load-balancing algorithm
Input: calling algorithm 2
Output: PmaxCommLoad , PminLoad , doMigration

When load imbalance detection algorithm returns TRUE the controller process
P0:

1: Send collectLoad signal to all worker processes.
Upon the receipt of collectLoad signal, each worker process Pi:

2: for each LPj which Pi hosts do
3: PCompi = PCompi +LpLoad j
4: end for
5: calculate PLoad by using equation 1 and send the PLoadi and PCommi[] to the Con-

troller processes.
Upon the receiving of PLoadi and PCommi[] from all worker process the controller
process P0:

6: Finds the maximum value of PCommi[ j] i.e. PmaxCommLoad:
7: for i = 1ton−1 do
8: for j = 1ton−1 do
9: if PCommi[ j]> MaxComm then

10: Selected1 = i
11: Selected2 = j
12: end if
13: end for
14: end for

Find the sender process:
15: if PCompselected1 > PCompselected2 then
16: Sender = Pselected1
17: else
18: Sender = Pselected2
19: end if
20: Finds least loaded process Pj:

PLoadmin, j = Min(PLoad1,PLoad2, ...PLoadN) where jth process has the minimum
load and N is the number of worker process.

21: Sends the doMigration message to Sender process which is highest communication
loaded PmaxCommLoad .
Upon the receipt of doMigration signal from controller, the highest loaded pro-
cess:

22: Finds the top n LPs which have the maximum value of LpComm[Destination]
23: Sends the n LPs to the destination processor which is the least loaded process PminLoad .
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6.2 Reinforcement Learning

Reinforcement learning (RL) is a computational approach to understanding and au-

tomating goal-directed learning and decision-making [56]. In reinforcement learning, an

agent interacts with an environment. The agent takes actions which cause changes in the

environment and the environment, in turn, sends numerical responses to the agent indicat-

ing the effectiveness of its actions.

A Markov decision processes (MDP) is a mathematical framework for modeling de-

cision making in situations where outcomes are partly random and partly under the control

of a decision maker. The agent and its environment can be represented by a finite MDP

(the MDP has with finite number of states and action sets). The MDP consists of:

1. S: a set of environment states.

2. A: a set of actions that the agent can take.

3. π: a policy which is a mapping from the environment to the action and that the agent

takes.

4. Reward Function (RF): A reward function maps the state or state-action pair of the

environment to a set of scalar rewards R.

5. Value Function (VF): A value function defines the expected return an RL agent can

receive for a given policy.

At some point in time t, the agent selects an action a ∈ (Ast) on the basis of its current

state st ∈ S. The goal of the agent is to develop a policy π which maximizes the long-term

reward. The reward function indicates the desirability of different states or state-action

pairs. It is very important to remember that reward function must reflect the main goal of

the system. For example, in the dynamic load-balancing algorithm for NTW, if we assign
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a reward for balancing the computational load instead of decreasing the simulation time,

the simulation might wind up with a balanced computational load between processors and

a bigger simulation time.

6.2.1 Q-Learning

In general, Q-learning [55] is used to find an optimal action-selection policy for any

given finite Markov decision process. An agent can utilize Q-learning to acquire an opti-

mal policy using delayed rewards. The agent can find an optimal policy even when there

is no prior knowledge of the effects of its actions on the environment [55]. In Q-learning,

the reward and the best value of the current state is used to improve the estimate of the pre-

vious state-action pair. The Q-learning algorithm estimates the state-action value function

as follows:

Q(st ,at)← (1−α)Q(st ,at)+α[Rt + γMaxaQ(st+1,a)] (6.3)

where α and γ are the learning step and the discount rate, respectively. The discount

rate is a measure of how far ahead in time the algorithm looks. It affects how much weight

it gives to future rewards in the value function. st+1 is the state reached from state st when

performing action at at time t. The best value at the next state (i.e. MaxaQ(st+1,a)) is the

maximum over all actions a that could be executed at the next state st+1. In order to select

an action in a state, we follow a straightforward approach - the highest rewarded action is

selected first. Algorithm 6 displays the basic Q-learning algorithm.

6.3 The Control Parameters and Q-Learning for NTW

Basically, we have used a single agent with two-state approach to formulate the dy-

namic load balancing approach. Here, a central node, the controller process, gathers infor-

mation from all of the worker processes, runs the Q-learning algorithm, finds new values
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Algorithm 6 The Q-learning
1: for Repeat for each episode do
2: Initialize s
3: for Repeat for each step do
4: Select and carry out an action a at any time t
5: observe reward r and next new state st+1
6: Q(st ,at)← (1−α)Q(st ,at)+α[Rt + γMaxaQ(st+1,a)]
7: s← st+1
8: end for
9: end for

for the control parameters and informs all of the worker processes about the new values.

Our single agent is run in the controller process.

We have two control parameters for the load balancing algorithm - L and C.

L: the number of LPs which are transferred from one worker process to another at

each execution of the dynamic load balancing algorithm. We utilize 4 different values for

L, L = 10,15,20,25.

C: the number of GVT cycles between executions of the load balancing algorithm.

We utilize 3 different values for C, C = 2,4,6.

If L has m values and C has n values there are m ∗ n combinations of these control

parameters. Each (combined) value corresponds to an action of the Q-learning algorithm.

There are two states for the algorithm-unbalanced and balanced. The state change diagram

is contained in figure 6–1

After C GVT cycles all of the worker processes send their data to the controller which

then executes the reinforcement learning algorithm. After computing new values for the

control parameters, it broadcasts them to the worker processes.
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Figure 6–1: States and actions in Q-learning.

The Reward Function: If the reward function does not reflect the main goal of the

system (reducing the simulation time), the RL algorithm does not succeed. Hence we

relate the reward to the event processing rates of the worker processes.

If ti is the wall clock time at the ith GVT cycle (GV Ti), we define the Event Commit

Rate (ECR) of the ith GVT interval (the interval from GV Ti−1 to GV Ti) to be:

ECRi = NCi/(ti− ti−1) (6.4)

where NCi denotes the number of committed events as GV Ti. Committed events are

the processed events whose times stamps are less than the current GVT.

In order to define a reward, we use a reference point. We define ECRre f as the average

event commit rate since the beginning of the simulation:

ECRre f = (
D

∑
i=0

ECRi)/(tD− t0) (6.5)

In the above formula, D is a small number between 5 to 10. The reward of the ith

GVT interval is then defined as:

Ri = ECRi−ECRre f (6.6)
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From this definition, the reward is positive if the simulation is faster that the reference

rate during the last GVT interval. Otherwise a punishment (negative reward) is effected.

The event commit rate represents the speed of the simulation.

After calculating ECRre f , the reward is calculated every C GVT cycles and the value

of the current state action pair (the Q matrix) is updated. At each cycle of the dynamic

load balancing algorithm, we select the state action pair with the largest average reward.

The algorithm 7 presents the general structure of the Q-learning dynamic load balancing

algorithm.

Algorithm 7 Q-learning and Dynamic load balancing
1: In every GVT cycle the controller checks for a load imbalance by running algorithm

2.
2: if Algorithm 2 returns FALSE then
3: Controller does nothing
4: else
5: Controller identifies processes with maximum and minimum workload using algo-

rithm 3.
6: Controller calculates λ using equation (6.2).
7: if λ > 0.6 then
8: Run the communication algorithm in process with maximum workload
9: else

10: Run the computation algorithm in process with maximum workload
11: end if
12: Set the state of the simulation to Si, i = (1,2). S1 is a balanced state and S2 is

an unbalanced state. In state S2, take action ai (LPs migrated from highest loaded
process PLoadmax to minimally loaded process, PLoadmin)

13: Compute the reward Ri by using equation (6.6).
14: Run the Q-learning algorithm with Ri as input.
15: end if

Algorithm 8 presents the basic Q-learning algorithm used in dynamic load-balancing

approach.
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Algorithm 8 Q-learning for NTW
Input: reward, Ri, of the latest execution of the last action.
Output: L and C

1: for Repeat for each episode do
2: Update the reward of the last action via equation (6.6).
3: Update the Q matrix via equation (6.3)
4: Select the action with maximum reward in state s2. If rewards are equal, then selec-

tion is made randomly.
5: Compute L and C from the selected action.
6: end for
7: After computing new values for the control parameters L and C, controller broadcasts

them to all worker processes.

6.3.1 The Time Window

Rollbacks can be controlled by a time window. The time window is an interval [T,T +

W ] in virtual time. If the next event at an LP has a time stamp larger then GV T +W , the

LP is blocked. A blocked LP can receive events from other LPs but cannot execute them or

send messages to other LPs. The LP remains blocked until the GVT is updated, after which

the events within the new window can be executed. The objective of the time window is

to prevent too great a disparity in the virtual time of LPs, thereby reducing the number of

rollbacks.

In our experiment we used 4 values for L(10, 15, 20, 25) and 3 values for C ( 2, 4,

6), resulting in 12 actions. Each action for our time window algorithm is a choice of the

window size. The window sizes are multiples of a fixed parameter U . The multiple is the

product of the values chosen in the load balancing algorithm for L and C. The basic steps

of controlling time window is given in algorithm 9.
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Algorithm 9 Time Window
Input: L and C of the latest execution of the last action.
Output: Wi

1: Compute the window size by using C and L obtained from algorithm 8.
2: Wi = CxLxU . Here i = 1 to mxn actions. We use U = 1000.

6.4 Simulation Result

In this section we study the performance of the dynamic load balancing algorithms.

We use our discrete event calcium wave model as specified in chapter 5. In the learning

algorithm the values of α and γ are 0.1 and 0.9 respectively. Each experimental result is

the average of three simulation runs.

Environment: A SW2 node, consisting of two Dual Intel(R) Sandy Bridge EP E5-

2670 2.6 GHz CPUs, 8 cores per processor, 8 GB of memory per core, and a non- blocking

QDR InfiniBand network with 40 Gbps between nodes. The node runs Linux 2.6.32-

504.30.3.el6.x86 64.

Load imbalance detection: We did an experiment to observe how the load imbal-

ance detection performs in our simulation. We used 4 processes (1 controller and 3 worker

processes). Initially, we put IP3 in process 1 to trigger a Ca2+ wave, resulting in a com-

putation load imbalance among the worker processes. The cluster level (i.e. process level)

local simulation times of the three worker processes are displayed in figure 6–2. We note

that the cluster level local simulation time of process 1 is always less than that of the other

worker processes because the Ca2+ wave was initiated in process 1.

Performance We employed the Ca2+ wave model in a hippocampal pyramidal neu-

ron (from NeuroMorpho.Org, C91662, ModelDB:87284, 50 micron distance from soma

and consisting of 14749 SVs). We executed about 72 Million events. The execution time
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Figure 6–2: Cluster level local simulation time when Ca2+ wave is initiated in process 1.

and the number of rollbacks both decrease when load balancing along with a time window

is used, as shown in figure 6–3 and figure 6–4 respectively. The maximum improvement

(30% in execution time) takes place when 4 worker processes are used. Note that with-

out the time window, the load balancing algorithm becomes less effective because of the

increase in the number of rollbacks.
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Figure 6–3: Execution time 1) with load balancing and window, 2) with load balancing
and without window, and 3) without load balancing and window.

Figure 6–4: Number of rollbacks 1) with load balancing and window, 2) with load balanc-
ing and without window, and 3) without load balancing and window.
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CHAPTER 7
Conclusion

In this chapter, we first briefly summarize the research contained in this thesis and

discuss our thoughts for our future research.

Stochastic, spatial reaction-diffusion simulations have been widely used in systems

biology and computational neuroscience. The increasing scale and complexity of sim-

ulated models and morphologies have exceeded the capacity of a serial simulator. It is

therefore natural to employ parallel simulation for such complex problems. In this thesis,

we have developed an optimistic MPI-based, parallel stochastic spatial reaction-diffusion

simulator, Neuron Time Warp (NTW ), to simulate stochastic reaction diffusion systems.

Our research is a part of the NEURON project at Yale University.

NTW makes use of a multi-leveled priority queue in order to minimize the cost for

scheduling events. A history queue (HQ) is used to minimize unnecessary forwarding

of rb-messages to neighboring sub-volumes. Initial experiments made use of the Lotka-

Volterra (LV) model to represent chemical reactions and the diffusion of ions taking place

on a dendritic branch of a neuron. We observed that NTW scaled well with the number of

processes used. The execution time using shared memory improved more than 12% for 4

processors and more than 30% for 6 processors.

The intra-cellular calcium signaling pathways of a neuron depend on both biochem-

ical reactions and diffusions. Some structures (e.g. spines) are so small and chemical

concentrations are so low that a small number of molecules diffusing into such a structure
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can make a large change in the concentration of the molecules. These events can affect the

cellular dynamics in such way that they cannot be evaluated by a deterministic simulation.

Stochastic models of such a system provide a more detailed understanding of these sys-

tems then deterministic models because they capture their behavior at a molecular level.

Chapter 5 describes experiments using models of calcium signaling pathways.

We simulated two models of calcium signaling pathways in a neuron-a calcium buffer

and a calcium wave model. The calcium buffer model was employed in order to verify

the correctness and performance of NTW by comparing it to a sequential deterministic

simulation in NEURON. We found almost same behavior between the serial and parallel

runs in high concentration experiment whereas we observed some deviation in case of low

concentration experiment. The average (25 sample points) standard deviation of calcium,

Buf, and CaBuf dynamics between sequential deterministic and stochastic parallel runs

were about 0.098 µM, 0.062 µM and 0.064 µM respectively. To measure the speedup of

the parallel simulator, we employed calcium buffer model on the same neuronal branch

and ran the parallel simulation for 5.7 virtual time units during which 1.2 million events

were processed. We obtained speedup more than 5 for 7 processes.

We developed a discrete event calcium wave model (from a deterministic model)

using a stochastic IP3R model. We employed it in NTW for both 1-D and 3-D geome-

tries. We observed that the propagation of a calcium wave through a neuron led to a large

computational imbalance between those areas which were covered and those which were

not covered by the wave at a given instant in time. Hence developing a load balancing

algorithm became an important undertaking. We developed a distributed dynamic load

balancing algorithm to balance the computational and communication loads during the
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simulation. In order to tune the parameters of the dynamic load balancing algorithm and

also to find a good value for the time window in our Time Warp implementation, we made

use of reinforcement learning. We achieved up to a 30% improvement in performance

using this algorithm.

A sequential version of NTW was integrated with NEURON. The architecture for a

connection of parallel NTW with NEURON is described in chapter 4. This leads us to a

description of our future work.

Open door for future research in biology: This work applies an optimized time

warp synchronization approach using next sub-volume method algorithm, named NTW, to

study intracellular neuronal dynamics, but reaction-diffusion kinetics arise across a large

range of spatial/temporal scales in biology.

• Waves of elevated intracellular calcium using the same underlying ER kinetics con-

sidered here arise in the Xenopus immediately following fertilization and increase

inositol-1,4,5-trisphosphate (IP3). This fertilization calcium wave in Xenopus laevis

is originated at the point of spermegg fusion and traverses the entire diameter of the

egg. [58] proposed a fertilization calcium wave which is a reaction diffusion model.

• In the brain, spreading depression – which is linked to migraines [59] and ischemic

stroke [60] – is driven by regenerative potassium waves where the potassium is re-

leased from cells and diffusion is across the extracellular space. The details of the

extracellular space create small “compartments” that have low levels of molecules

that need to be addressed stochastically.

• In ecology, a fox eating a hare is a “reaction”, as is their reproduction. Random

movement of animals is a random walk (aka diffusion).
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7.1 Future Work-Short Term and Long Term

Our short term objectives revolve around the improvement of our load balancing al-

gorithms. In this thesis, we applied a single agent Q-learning technique to tune the pa-

rameters of the load balancing algorithm. In this approach a learning agent tries to find

the optimal values for the load balancing parameters by interacting with an environment.

For the distributed algorithm, a multi-agent learning approach can be employed to tune the

dynamic load balancing algorithm’s parameters at each node. In this approach agents have

to cooperate with one other in order to find optimal values for the control parameters.

Simulated annealing might be another option to optimize the performance of dynamic

load balancing algorithm [49]. I plan to investigate the performance of load balancing al-

gorithms using simulated annealing approach to tune the parameters of the load balancing

algorithm.

The long term objectives for our research are to:

1. develop a combined deterministic and stochastic discrete event model for reaction

diffusion system so that connected NTW-NEURON can be used as an adaptive

stochastic-deterministic solver.

2. develop a combined electrical excitation (i.e. extracellular) and intracellular calcium

dynamics models for neurons.

These objectives are quite ambitious. We leave you with an intriguing thought-given

the complexity of combining continuous and discrete event simulations it is possible that

the right approach is to not combine the two models/simulations but instead to develop

one discrete event model for both of the models/simulators. So we end the thesis with a

question.
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