
Detection of Errors

in Multiple Genome Alignments

using Machine Learning Approaches

Jaspal Singh

Masters of Science

School of Computer Science

McGill University

Montreal, Quebec, Canada

June 2018

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Master of Science

c©Jaspal Singh, 2018

Abstract

Multiple sequence alignment is a prerequisite for most evolutionary and phylogenetic anal-

yses. Previous work has shown that existing alignment algorithms are not perfectly accu-

rate, and therefore it is important to identify suspicious regions in whole-genome align-

ments. In this thesis, we develop a machine learning model that can detect errors in an

alignment. The model is trained on data that is obtained by comparing a true alignment

file (generated using an alignment simulation tool) with a predicted alignment file (gen-

erated using an alignment algorithm). Using the developed method, the sequences from

each pair of species at each alignment column can be categorized into one of five possible

classes. The training data that consists of the nucleotides at each column, was enhanced

by adding relevant features, such as the inferred ancestral nucleotides or features of neigh-

boring alignment columns. Two types of machine learning classifiers, random forests and

Artificial Neural Networks (ANN) were trained on the data. ANN performed better and

the best accuracy obtained was 65.04%. We applied the model on 1 Mb of real alignment

data consisting of ten species from the 100-way alignment available on the UCSC genome

browser. Our model predicts 40% of human-cow alignment to be suspiciously aligned.

As evidence, we show that the model predicts highly conserved regions to be correctly

aligned, while regions with high number of mismatches or regions corresponding to an-

notated transposable elements are predicted to be suspiciously aligned. Our tool will be

useful for researchers who use these alignments for downstream analyses so that they can

be cautious of their results on suspiciously aligned regions or find ways to correct these

alignments.

i

Abrégé

L’alignement multiple des séquences est une condition préalable à la plupart des analy-

ses évolutives et phylogénétiques. Des travaux antérieurs ont montré que les algorithmes

d’alignement existants ne sont pas parfaitement précis et il est donc important d’identifier

les régions suspectes dans les alignements du génome entier. Dans cette thése, nous dévelop-

pons un modèle d’apprentissage automatique capable de détecter les erreurs dans un aligne-

ment. Le modèle est entrainé sur les données obtenues en comparant un alignement correct

(généré à l’aide d’un outil de simulation d’alignement) avec un alignement prédit (généré

à l’aide d’un algorithme d’alignement). En utilisant la méthode développée, les séquences

de chaque paire d’espèces à chaque colonne d’alignement peuvent être classées dans l’une

de cinq classes possibles. Les données d’entraînement qui se composent des nucléotides

à chaque colonne ont été améliorées en ajoutant des caractéristiques pertinentes, telles

que les nucléotides ancestraux déduits ou les caractéristiques des colonnes d’alignement

voisines. Deux types de classificateurs d’apprentissage automatique, une forêt aléatoire et

des réseaux de neurone ont été entrainés sur les données. Les réseaux de neurones ont

mieux performé et la meilleure précision obtenue a été de 65.04%. Nous avons appliqué

le modèle sur 1 Mb de données d’alignement réel consistant en dix espèces extraites d’un

alignment de génomes complets disponible sur le navigateur du génome de l’UCSC. Notre

modèle prédit que 40% des colonnes d’alignments entre les séquences humaines et de la

vache sont alignés de façon suspecte. Comme preuve, nous montrons que le modèle prédit

que les régions hautement conservées sont correctement alignées, tandis que les régions

ayant un nombre élevé de mésappariements ou des régions correspondant à des éléments

transposables annotés sont prédites être alignés de façon suspecte. Notre outil sera utile

pour les chercheurs qui utilisent ces alignements pour des analyses en aval, afin qu’ils

puissent se méfier de leurs résultats sur des régions identifiées comme étant suspectes ou

trouver des moyens de corriger ces alignements.

ii

Acknowledgements

This thesis would have been impossible to complete without the valuable guidance of my

supervisor, Professor Mathieu Blanchette. He introduced me to the field of computational

biology and has guided me in every step towards the completion of my master’s degree. A

special mention to Ramchalam K.R., another student in the Blanchette lab, who has been a

great friend and helped me with this project.

I would also like to thank all members of the bioinformatics lab, especially Faizy Ahsan,

Mansha Imtiyaz, Chrisopher J.F. Cameron, Ayrin A. Tabibi and Alexander Butyaev for

creating a learning and helpful atmosphere in the lab.

Finally, I would like to thank my parents and my girlfriend for their emotional and

spiritual support throughout the program.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Multiple Sequence Alignment . 3

1.3 Review of Existing Whole-genome MSA Algorithms 5

1.3.1 MULTIZ . 6

1.4 Inaccuracies in MSA . 7

1.5 Benchmarking Multiple Sequence Alignment Algorithms 8

1.5.1 Simulation-based Benchmarking 8

1.5.2 Statistical Assessment based Benchmarking 9

1.5.3 Expert Information based Benchmarking 11

1.6 The Alignathon Project . 11

1.7 Problem Definition . 12

1.8 Outline of this thesis . 12

2 Overview of Machine Learning Approaches 13

2.1 Bias vs Variance . 14

2.2 Supervised Classification Problem . 15

2.2.1 Random Forest Classifier . 15

2.2.2 Artificial Neural Networks . 17

2.3 Evaluating Model Performance . 21

2.3.1 Confusion Matrix . 21

3 Methods 23

3.1 Species Selection . 24

3.2 Data Generation . 25

3.2.1 Generating the True Alignment 25

iv

3.2.2 Generating the Predicted Alignment 26

3.3 Comparing True and Predicted Alignment 26

3.4 Feature Enhancement . 29

3.4.1 Neighboring Alignment Columns 29

3.4.2 Match/Mismatch bits . 30

3.4.3 Ancestral Nucleotides . 31

3.4.4 Mutations along each branch of the phylogenetic tree 32

3.5 Class Imbalance . 34

3.6 Machine Learning Models . 36

3.6.1 Artificial Neural Networks . 36

3.6.2 Random Forests . 38

4 Results 39

4.1 Random Forest Results . 40

4.1.1 Feature Set 0 . 42

4.1.2 Feature Set 1 . 43

4.1.3 Feature Set 2 . 45

4.1.4 Feature Set 3 . 46

4.1.5 Summary of random forest prediction accuracies 47

4.2 Artificial Neural Networks Results . 49

4.2.1 Feature Set 0 . 50

4.2.2 Feature Set 1 . 51

4.2.3 Feature Set 2 . 52

4.2.4 Feature Set 3 . 53

4.3 Random Forests vs Artificial Neural Network 56

4.4 Real Alignment Results . 57

4.4.1 Example of correct match prediction 58

4.4.2 Example of correct gap prediction 60

4.4.3 Example of over alignment prediction 62

4.4.4 Example of under alignment prediction 64

4.4.5 Example of mis-alignment prediction 66

5 Conclusion and Future Work 69

v

List of Figures

1.1 A rooted phylogenetic tree . 2

1.2 Pairwise alignment: An example. 3

1.3 An example of a MSA . 4

1.4 Pictorial representation of MULTIZ . 7

2.1 Bias variance tradeoff as a function of model capacity 14

2.2 A simple decision tree . 16

2.3 A Perceptron classifier . 17

2.4 Neural network with three layers . 18

2.5 2 ˆ 2 confusion matrix. 21

3.1 Phylogenetic tree of the 10 selected species 24

3.2 True vs predicted alignment for a small alignment block 27

3.3 Feature set- neighboring alignment columns. 30

3.4 Feature set- match/mismatch bits. 31

3.5 Feature set- ancestor nucleotides. 32

3.6 Class distribution of the five classes for all the nine pairs of species 34

3.7 Aritificial neural network architecture . 37

4.1 Training and test accuracy vs maximum depth 41

4.2 No. of neighbors vs test accuracy for data in Table 4.2 43

4.3 No. of Neighbors vs Accuracy for data in Table 4.3 44

4.4 No. of neighbors vs test accuracy for data in Table 4.4 45

4.5 No. of neighbors vs test accuracy for data in Table 4.5 47

4.6 Random forest results: comparing all feature sets 48

4.7 No. of neighbors vs test accuracy for data in Table 4.7 51

vi

4.8 No. of neighbors vs test accuracy for data in Table 4.8 52

4.9 No. of neighbors vs test accuracy for data in Table 4.9 53

4.10 No. of neighbors vs test accuracy for data in Table 4.10 54

4.11 Artificial neural network results: comparing all feature sets 55

4.12 Comparison of RF and ANN accuracy . 57

4.13 Real alignment results: correct match class 59

4.14 Real alignment results: correct gap class 61

4.15 Real alignment results: over alignment class 63

4.16 Real alignment results: under alignment class 65

4.17 Real alignment results: mis-alignment class 67

vii

List of Tables

3.1 The five possible classes of each human-non human pair. 28

3.2 One-hot encoding of nucleotides. 29

3.3 Encoding examples for mutations along a branch 33

3.4 Class distribution per species . 35

3.5 Class distribution per species after resampling the dataset. 36

4.1 List of different feature sets. 40

4.2 Random forest results: feature set 0 . 42

4.3 Random forest results: feature set 1 . 44

4.4 Random forest results: feature set 2 . 45

4.5 Random forest results: feature set 3 . 46

4.6 Confusion matrix for best overall test accuracy achieved by RF 49

4.7 Artificial neural network results: feature set 0 50

4.8 Artificial neural network results: feature set 1 51

4.9 Artificial neural network results: feature set 2 53

4.10 Artificial neural network results: feature set 3 54

viii

4.11 Confusion matrix for best overall accuracy achieved by ANN 55

4.12 Binary confusion matrix for the multi class confusion matrix 56

4.13 Statistics for real alignment results . 58

ix

1
Introduction

The sequence alignment problem is one of the most fundamental problems in computa-

tional biology. It is the starting point of many biological analyses. Sequence alignment

algorithms have been developed since the early 1970s. However, it is computationally dif-

ficult to optimally align multiple genome length sequences and most of the algorithms used

in practice are heuristic-based approximate methods. The use of these imperfect heuristic

approaches coupled with some other reasons (discussed later) result in alignment errors.

In this thesis, we build a machine learning classifier that can detect errors in the alignment

columns of a multiple sequence alignment.

1.1 Background

All living organisms are genetically encoded with deoxyribonucleic acid (DNA) sequences.

DNA is composed of four bases (or nucleotides): adenine (A), cytosine (C), guanine (G)

and thymine (T). In humans, for example, the DNA is organized as chromosomes. There

are 46 chromosomes in the human genome which pair up to form 23 pairs of chromosomes.

Out of these 23 pairs, one pair of chromosomes is the sex chromosome and the other 22

pairs are called autosomes. In each pair one chromosome comes from the father while the

other from the mother, but these chromosomes are not just copied from our parents. There

are genetic events such as mutations or cross over that can result in changes of a single

nucleotide or multiple nucleotides in the offsprings. Therefore, every DNA (or protein)

sequence has an evolutionary history.

1

1.3 Review of Existing Whole-genome MSA Algorithms

or substitutions. Since the entire sequence has to be in one alignment, global approaches

cannot accommodate for genomic rearrangements and duplications. Local alignment ap-

proaches find homologous alignments among smaller sub-strings of the input sequence

and leave rest of the sequence unaligned. This makes the alignments robust enough to

handle genomic rearrangement and duplications. However, it increases the risk of getting

random hits among smaller alignment blocks and falsely marking them as homologous.

Many alignment algorithms take a hybrid approach where they first find local alignments

and then combine them as chains of many local alignment. This approach is appropri-

ately termed as "glocal" alignments [8]. There are many existing approaches to multiple

sequence alignment and these are explained in the next section.

1.3 Review of Existing Whole-genome MSA Algorithms

MSA algorithms can broadly be categorized into two categories: those that guarantee to

find the optimal alignments and those that are based on certain heuristics. Before review-

ing some multiple sequence alignment algorithms, let us first discuss about pairwise align-

ments because at the base of most multiple sequence aligners lies a fast pairwise sequence

alignment algorithm [4]. Pairwise sequences of moderate size („ 100kb) can be opti-

mally aligned by dynamic programming approaches: Needleman-Wunsch [9] for global

alignments or Smith-Waterman algorithm [10] for local alignments. The running time of

these algorithms is Opn2q where n is the average length of all the input sequences. These

approaches are not computationally feasible for larger sequences and we need a faster

pairwise alignment algorithm. For larger pairwise alignments a heuristic approach called

seeded alignments is used. In this heuristic, the algorithms search for local alignment only if

they contain some highly conserved short sequence matches. After finding this short match

of sequence the alignment is extended using the Smith-Waterman algorithm that allows

for indels. BLAST [11], LAGAN [12], AVID [13], MUMmer [14] are examples of seed-

based alignments. Multiple local alignment regions are then chained using algorithms such

as Chaining/Netting [15], GRIMM-synteny [16], MAUVE [17] and MERCATOR [18]. In

this phase, multiple alignment regions can mingle together that allows to find homology

between sequences that undergo genomic rearrangements and duplications.

For multiple sequence aligners, some algorithms were developed that determine the

5

1.3 Review of Existing Whole-genome MSA Algorithms

optimal alignment. These were based on extension of dynamic programming techniques

([19, 20, 21, 22]) or on graph formulation algorithms that use combinatorial techniques

([23, 24, 25]). Similar to pairwise optimal aligners, these techniques are computationally

infeasible for larger sequences. The running time of such algorithms grows exponentially

with respect to the number or length of the sequences to be aligned. Therefore to align

larger sequences or a large number of short sequences, heuristic-based approximate algo-

rithms were developed.

The most common form of heuristic for MSA is called progressive sequence multi-

ple alignment [26]. In this heuristic, a phylogenetic tree is inferred (using UPGMA[27] or

neighbor-joining method [28]) from the sequences or is provided as input. Based on the

tree the two closest species are aligned first, then a third sequence is chosen and aligned to

the first alignment without making any changes to the first alignment. This process is re-

peated till we obtain an alignment with all the species. Some of the famous algorithms that

use this heuristic are CLUSTAL [29, 30], TBA [31]/MULTIZ [32, 33], MLAGAN [12]

and MAVID [34]. These algorithms differ in their choice of algorithm used for pairwise

sequence alignment and their scoring function when they combine two pairs of aligned

sequences. TBA/MULTIZ joins two pairwise alignment blocks by combining two pair-

wise alignments of extant species. MULTIZ was used to produce the genome alignments

available in the UCSC Genome Browser [35] including a whole-genome alignment of 100

vertebrate genomes. All these alignments use the seeded pairwise alignment approach for

the pairwise alignments. In this study, we use the MULTIZ algorithm which is described in

the next section.

1.3.1 MULTIZ

A general approach in aligning multiple genomes is to pick one of the genomes as a "ref-

erence genome". All the other sequences are aligned pairwise to this reference genome.

This is done primarily to annotate the reference sequence by finding the orthology between

all the other sequence and the reference sequence. A drawback of this method is that the

conserved regions in the subset of species apart from the reference are not identified. The

local pairwise alignments are calculated by BLASTZ and the alignments between three

or more sequences is calculated by MULTIZ. MULTIZ combines two or more blocks of

6

1.5 Benchmarking Multiple Sequence Alignment Algorithms

ment blocks that do not meet a certain statistical thresholds [38] are either removed from

the complete alignment or broken down into smaller supported sub-alignments. Most of

the alignment algorithms do not give a confidence value with each alignment due to which

it is difficult for researches to fully trust these alignments for further biological analyses.

This called for a benchmarking standard to be developed for the MSA algorithms. The next

section describes some of the benchmarking methods available in the literature.

1.5 Benchmarking Multiple Sequence Alignment Algorithms

Previous benchmarking strategies [39] can be classified into three types: p1q those using

simulation, p2q those using statistical methods, and p3q those using expert information.

Each of these categories is explained below.

1.5.1 Simulation-based Benchmarking

Simulation-based benchmarking is performed by using a simulation tool to generate a set of

sequences combined with their true alignment file, asking a given alignment tool to predict

the alignment of those sequences, and then comparing the true and predicted alignment.

There are many simulation tools [40, 31, 41, 42]. These tools differ by their capabilities to

model the various types of biological mutations involved in a realistic evolutionary model.

A comprehensive simulator tool such as the sgEvolverSimulator [43, 44] generates genome

length simulated sequences but lacks in modeling translocations and mobile elements evo-

lution. EvolSimulator [45] is another simulator but it uses a simpler model of evolution

and has a focus on ecological parameters. The ALF simulator [46] is another option that

models genes and neutral DNA simulation.

For this thesis, we use a simulation software called EVOLVER [47]. EVOLVER can

simulate full sized, multi chromosome genome length evolution. It has an extensive set of

expert-curated model parameters that models DNA sequence evolution with sequence an-

notations; a gene model; a base-level evolutionary constraint model; chromosome evolution

including inter- and intra- chromosomal rearrangements; tandem and segment duplications;

and mobile element insertions, movements, and evolutions. The input to EVOLVER is a

phylogenetic tree, the root genomic sequence and a set of simulation parameters (rate of

8

1.5 Benchmarking Multiple Sequence Alignment Algorithms

various kinds of mutations). EVOLVER keeps track of the mutations that occur during evo-

lution along a phylogenetic tree. The tool knows the exact homology among the sequences

at the leaves of the tree and can produce their true alignment. The leaf sequences are then

fed into a MSA tool to obtain another alignment. The two alignments are compared using

various methods but the most common one is calculating the specificity (fraction of aligned

sites that are homologous) and sensitivity (fraction of homologous sited correctly aligned).

The methods used for comparison are statistical methods which are discussed in the next

section.

The advantages of simulation based techniques is three fold: p1q the ’true’ homology is

known, p2q new data can be generated as desired and p3q different scenarios can be modeled

during evolution. However, there is a risk of simulated data have different properties than

the actual biological data and the alignments being dependent of the evolution parameters.

1.5.2 Statistical Assessment based Benchmarking

Many statistical methods have been developed to assess the quality of MSAs. Most of these

methods were developed for protein alignments.

The T-Coffee/TCS Index ([48, 49]) assigns a reliability index (normalized between 0

and 1) to every pair of aligned residues in the target MSA, to every column and to the whole

alignment. It computes a library of all pairwise alignments for the given set of sequences

and estimates the score of aligning two residues Rx
i (ith residue of sequence x) and R

y
j (jth

residue of sequence y) by identifying all intermediate residues Rz
k from a third sequence z

that connects Rx
i and R

y
j through the two pairwise alignments: Rx

iR
z
k and Rz

kR
y
j . The pair-

wise reliability score is the sum of scores of all Rx
iR

y
j pairs linked through all possible Rz

k

residues, normalized by the maximum score over all possible pair combinations involving

Rx
i or/and R

y
j . The reliability score of an alignment column is averaged across all pairwise

aligned residue scores within the column. These values are combined to give the whole

alignment an alignment reliability score.

Another method called the Heads or Tails (HoT) [50], proposed a simple reliability

check for MSAs. The given set of sequences (called the heads set) was reversed to form

a tails set and both these sets were aligned independently. The two alignments were com-

9

1.5 Benchmarking Multiple Sequence Alignment Algorithms

pared by calculating the fraction of identical alignment columns and the proportion of

residue pairs that are paired identically in the two alignments. HoT measures more the

consistency of an alignment algorithm with alternate data, rather than its accuracy [51].

The HoT method was extended [52] to measure the residue-pair reliability, column relia-

bility and alignment reliability. For any given MSA S, a guide-tree was created using the

CLUSTALW algorithm. Each internal branch of the tree was used to partition the input

sequences into two subsets. For each of these sub sequences two alignments were calcu-

lated by CLUSTALW: one for the given sub sequence (heads set) and one for the reversed

sub sequences (tails set). This way each internal branch would have eight MSAs associated

with it. This process is repeated for each internal branch and the set of alignments generated

is termed as the guide tree alignment set, represented as gtAS. The residue pair reliability

score for all residue pairs in S is calculated as the proportion of alignments in gtAS that

match in S. This residue pair reliability score is averaged over columns and the complete

alignment to generate the column reliability and alignment reliability scores respectively.

The GUIDANCE (GUIDe tree based AligNment ConfidencE) [53] tool is another such

algorithm that measures the reliability scores (pair-wise, column and complete alignment).

For an input MSA, the algorithm first generates multiple inferred phylogenetic guide trees

based on bootstrapping technique [54]. For each of the trees, a perturbed MSA is gener-

ated using the input sequences and either the MAFFT [55], PRANK [56] or CLUSTALW

alignment algorithm. The input MSA is compared to all the generated perturbed MSAs to

assign a reliability score to each column, alignment pairs and the complete alignment. The

above methods along with some other methods like Zorro [57] and ALiScore [58] were

primarily developed for protein alignments with sequences of moderate length.

Prakash et al. [59] developed a method for measuring the accuracy of whole-genome

DNA alignments using a statistical method known as StatSigma-w. StatSigma-w is an ex-

tension of StatSigma [60], a method that was used to assess if a MSA is contaminated

with one or more unrelated sequences. Given a MSA and a phylogenetic tree, StatSigma

computes a p-value for each of several null hypothesis cases. Each branch of the phylo-

genetic tree is related to a null hypothesis. The null hypothesis of a branch k is defined

as the branch being ’unrelated’, i.e., the sub-alignment corresponding to the left and right

subtrees are independent rather than homologous. The assumption is that after rejecting all

10

1.6 The Alignathon Project

null hypotheses, we can infer that all the sequences in the alignment are related. Extending

StatSigma to every region of the alignment (StatSigma-w) can detect suspicious alignment

regions in the whole chromosome. The authors identified 9.7% (27 Mbp) of the human

chromosome I alignment (on the UCSC genome browser) to be suspiciously aligned.

Statistical measures are attractive because they are generally quick and easy to use.

However, without having a gold standard to compare them against, these assessments can

only serve a proxy to a true assessment of accuracy.

1.5.3 Expert Information based Benchmarking

For protein MSA benchmarking techniques, the 3D structural and functional informa-

tion could assist in determining the true alignment ([61, 62]). However, DNA alignment

are much harder to assess because we lack external criterion to assemble expert level

benchmarks [63]. DNA alignment are usually evaluated using ad hoc expert information

([64, 65]). The main advantage of using expert information while evaluating alignments is

that the objective is clear before assessing the alignment. However, such expert information

could only assess part of the alignment (for ex. coding exons), and this method is infeasible

for all alignments in general.

The next section is about the Alignathon project [66], which was an online competition

to assess whole-genome alignment methods, and was one of the motivating factors for this

thesis.

1.6 The Alignathon Project

As in the Assemblathon project [67] that assessed the various assembly methods for se-

quencing technologies, the Alignathon project was a competitive evaluation of whole genome

alignment techniques. Teams submitted their alignments and assessments were performed

collectively on the submissions. Three datasets were used for evaluation, two were simu-

lated sets based on primate and mammalian phylogenies, and one comprised of 20 real fly

genomes. Ten teams made 35 submissions using 12 different alignment methods. The sub-

missions were assessed independently using simulation and statistical techniques. Both the

benchmarking techniques found that there were significant differences in accuracy among

11

1.7 Problem Definition

the contemporary alignment tools (MULTIZ, TBA, PSAR-Align [68], VISTA-LAGAN

among others). A considerable difference was found in the alignment quality of different

annotated regions, and very few tools aligned the duplications. Most of the tools worked

well at alignments along short evolutionary distances and very few performed competi-

tively when the sequences were far apart in the phylogenetic tree. It showed that more

work is needed to identify likely errors in alignments, and correct them.

1.7 Problem Definition

We saw that whole genome alignment of sequences is a computationally difficult problem

and most of the aligners sacrifice on accuracy for a number of reasons. This motivated us

to build a tool that can detect errors in the alignments produced. The rest of this thesis deals

with solving the problem defined below:

Given: A multiple sequence alignment

Predict: The position and type of errors in the alignment

It is important to note here that the true alignment is not given or known. The goal is not

to evaluate an alignment algorithm but to predict suspiciously aligned regions within an

alignment. The alignment tool chosen for this thesis is MULTIZ but our approach could be

applied to any of the alignment tools.

1.8 Outline of this thesis

The next chapter (Chapter 2) gives a general overview of the machine learning algorithms

used in this thesis. Chapter 3 explains the method we developed to solve the problem de-

scribed in section 1.7. Chapter 4 describes the results obtained, and finally chapter 5 con-

cludes the thesis and describes possible extensions. The work in chapters 3 and 4 were done

in collaboration with Ramchalam Kinattinkara Ramakrishnan whose contribution was ap-

proximately 20%, although I was the leader of the project, and all the text of my thesis was

written by me.

12

2
Overview of Machine Learning

Approaches

Machine learning is the field of computer science that uses statistical methods to give ma-

chines the capability to learn from data without being explicitly programmed [69]. Broadly,

the field of machine learning can be categorized into three categories:

‚ Supervised Learning: In supervised learning each input example has an associated

label. The task of the machine learning algorithm is to learn a function (also called the

hypothesis function) that maps the input data to their corresponding labels in order

to categorize unseen data into their correct labels. Supervised learning is further sub-

divided into classification or regression problems. When the labels are categorized

into two or more discrete classes, the problem is termed as a classification super-

vised problem. In regression problems, the labels are not categorical but instead are

continuous real numbers.

‚ Unsupervised Learning: Unsupervised learning deals with problems where the in-

put data has no associated labels. Here, the algorithms are designed to learn patterns

within the data itself, for example to cluster them in groups or to infer distances

between themselves.

‚ Reinforcement(Active) Learning (RL): Reinforcement learning is a form of learn-

ing where the goal is to learn a sequence of steps to optimize costs/rewards. The

algorithms designed in RL learn the correct actions to take in an environment by tak-

13

2.1 Bias vs Variance

ing random actions initially and improving over time based on the rewards observed

after every action.

According to the literature surveyed for this thesis, machine learning has not been applied

to detect errors in whole-genome alignments yet. However, scientists have used machine

learning algorithms to detect latent errors in computer code [81] or for finding anomalies in

the dataset such as for spam detection [82], cyber security intrusion detection [83], etc. It

is not easy to draw a direct parallel between these works and ours because they do not deal

with finding errors on data that is the output of an algorithm but deal with raw data sets. In

this thesis, we deal with a supervised classification problem and the rest of the chapter is

focused on this.

2.1 Bias vs Variance

There are two kinds of errors associated with a machine learning model. Bias is the error

that measures how far is the true hypothesis from the hypothesis space considered by the

predictor. The goal of any algorithm is to reduce the bias as much as possible but in pursuit

of this, it is possible that the algorithm learns the training data and does not generalize well

for unseen data. This leads to the other kind of error, i.e., variance. Variance measures how

large a small change in input data can affect the predictions. Ideally we want our model to

have low bias and low variance but there is a trade-off between these two types of errors.

Complex models tend to have low bias but high variance and vice-versa. Figure 2.1 depicts

this trade off with respect to model capacity (or model complexity) of a machine learning

model.

Figure 2.1: Bias variance tradeoff as a function of model capacity. Figure is taken from

[70].

14

2.2 Supervised Classification Problem

Underfitting occurs when the model has still not learnt patterns in the data and it suffers

from high bias. Conversely, overfitting occurs when the model memorizes the labels asso-

ciated with the training data (implying very low bias) but doesn’t generalize well to unseen

data (because of high variance).

2.2 Supervised Classification Problem

In supervised classification problem, each input example has an attached label and our goal

is to learn a function that maps the data to its corresponding label. Formally, given a data

set D that consists of training examples, each example is represented by

xi “ă xi1, xi2, xi3, ..., xin, yi ą, where

‚ xij ε Xj is the value of the jth feature of the ith example

‚ yi ε Y is the label for the ith training example, where Y is a finite discrete set

The goal is to learn a function mapping f : X1ˆX2ˆX3ˆ....ˆXn Ñ Y . The function f is

also called the hypothesis function. There are many algorithms to find a good hypothesis

function but in this thesis, we apply two such algorithms: random forest classifier and

artificial neural networks.

2.2.1 Random Forest Classifier

Before describing a random forest classifier, we need to understand the decision tree classi-

fier. A decision tree constructs a tree like structure where each node makes a decision based

on a test of one of the features (or on combination of features) and splits the data based on

the outcome of the tests. Generally, this is done till the leaf node contains instances of a

single class. Any unseen data is classified by traversing the path to the leaf along the tree

based on the outcome of the attributes of the data at each node. A simple decision tree is

shown in Figure 2.2 where there are two output classes - positive (P) and negative (N), and

the goal is to predict if a specific user performs an activity (for example playing golf) on

Saturday mornings.

15

2.2 Supervised Classification Problem

Generally, there can be K layers in a neural network. Layer 0 is called the input layer, it

simply copies the input. Layer 1, .., K ´ 1 are called the hidden layers. The last layer K is

called the output layer. Each neuron in layers 1, .., K performs a weighted sum of its input

and applies an activation function to the sum. The network is also called a feed forward

neural network because the outputs of unit in layer k are inputs to the units in layer k ` 1.

There are no connections among units in the same layer, and there are no connections going

back to a previous layer. You could also observe that all the units of layer k are connected

to all the units of layer k`1 which implies that this is a fully connected feed forward neural

network.

Similar to a perceptron, in the training phase, the learning algorithm adjusts all the

weights in the network based on the input data. After initializing the weights randomly,

the algorithm computes the output for each training example. Based on the difference (es-

timated by a loss function) between the true output and predicted output the weights are

adjusted by an optimization technique. There are many optimization techniques but the

most commonly used is gradient descent. Gradient descent adjusts the weight by calculat-

ing the gradient of the loss function starting from the output layer and back-propagating

the gradient across each hidden layer. During the back propagation step it calculates the

amount of correction required in all the weights of the network. The weights are adjusted

at each iteration of the training phase. The training approach is summarized in the below

steps:

‚ Initialize all weights to small random numbers

‚ Repeat until convergence

– Pick a subset X of the training examples randomly

– Feed the example through the network to compute output at the output unit

– For the output unit, compute the correction by calculating the gradient of loss

function

– For each hidden unit h, compute its share of correction by back propagation

– Update each network weight by gradient descent with the equation below. wh,i

is the weight of unit i in layer h. α is the learning rate. δhxh,i is the gradient

19

2.2 Supervised Classification Problem

at unit i of layer h.

wh,i Ð wh,i ` α ¨ δh ¨ xh,i

Depending on how the subset X of examples is selected at each iteration, we obtain three

variants of gradient descent

‚ Batch Gradient descent (BGD): X is the entire set of training examples.

‚ Stochastic Gradient descent (SGD): X consist of a single example at a time.

‚ Mini batch gradient descent (MGD): X is a set of fixed number of randomly se-

lected examples.

BGD is very slow for large datasets and it requires the entire dataset to be stored in the

computer’s memory, which makes it infeasible for large datasets. This is overcome by us-

ing SGD. SGD is much faster than BGD but it suffers with high variance while setting the

weights due of which it may overshoot the mimima of the hypothesis function. However,

with variance decreasing techniques it is shown that SGD can converge to the same op-

tima as BGD [74]. MGD takes the best of both worlds and performs an update for every

mini batch of the training data. This way there is less variance in updating the weights and

the convergence is much more stable. Some advanced optimization techniques such as the

Adam optimizer [75] use a technique called momentum that accelerates the gradient de-

scent in the direction of optima by adding a fraction of the update vector from the previous

step to the current update vector. The other advanced techniques, such as Adagrad [76]

modify the learning rate in the training phase. For parameters associated with frequently

occurring features, a smaller learning rate is used compared to the parameters associated

with less frequently occurring features.

It may take a lot of time and many experiments to tune the large number of hyper

parameters to get satisfactory results. To tune the hyper parameter values, the complete

data is generally divided into three disjoint sets: training set, validation set and test set. For

each possible value of the hyper parameter the model is trained on the training set and its

accuracy is obtained on the validation set. The hyper parameter with the best accuracy on

the validation set is applied on the test set.

20

2.3 Evaluating Model Performance

trices. The False Positive Rate (FPR) is calculated as FP
FP`TN

and the False Negative Rate

(FNR) is FN
FN`TP

. In the detection of recurrence of cancer we would like FNR to be as low

as possible but wouldn’t worry as much about FPR.

To conclude, this chapter gave a brief overview of the machine learning methods used in

this thesis. The next chapter explains the data generation and feature engineering methods

developed to solve our problem.

22

3
Methods

As discussed in Section 1.5, there are many ways to find errors in multiple sequence align-

ments. To use machine learning techniques to detect errors in an alignment we need to feed

into our model examples of correct and incorrect alignments. Simulation based tools can

generate a true alignment. Other benchmarking approaches discussed previously such as

using expert information or statistical techniques cannot be incorporated into a machine

learning problem. Hence, our approach is one that relies on simulation-based techniques.

We decided on a small set of species and assume that the set of species and its correspond-

ing phylogenetic tree is given to us as input (explained later in section 3.1). The approach

could be explained in the steps below, each of which is detailed in subsequent sections.

1. Use a simulation tool, which takes as input the genomic sequence of the root of the

phylogenetic tree, evolves the sequences along the branches of the phylogenetic tree

and outputs sequences of the leaf species and their MSA.This alignment is referred to

as the true alignment from now on. The simulation tool must take into consideration

the various types and rates of evolutionary events (substitutions, indels, duplications

etc.).

2. Generate the MSA of the sequences at the leaves of the tree using an alignment tool.

From now on this is referred to as the predicted alignment.

3. Compare the alignment files generated by step 2 and step 3 to identify portions of the

alignment where the predicted alignment agrees with the true alignment, and those

where they disagree.

23

3.2 Data Generation

3.2 Data Generation

3.2.1 Generating the True Alignment

As discussed in Chapter 1, a comprehensive suite of tools, EVOLVER [47] (used in the

Alignathon project [66]) was developed to generate simulated genomic sequences. This

tool considers various intrachromosomal and interchromosomal biological processes such

as substitutions, insertions, deletions, duplications, translocations and inversions while sim-

ulating the evolution of these sequences. The expert curated parameter set that includes the

rate of occurrence of these biological events with respect to the length of the input sequence

was presented along with the simulation tool. EVOLVER simulates sequences along a sin-

gle branch of the tree. To generate simulated sequences based on a phylogenetic tree we

need to run EVOLVER for multiple branches. The tools required to simulate sequences

along a phylogenetic tree were developed in the Alignathon project [66]. These tools called

EvolverSimControl available at https://github.com/dentearl/evolverSimControl, EvolverIn-

fileGeneration available at https://github.com/dentearl/evolverInfileGeneration/, along with

complementary tools such as mafJoin available at https://github.com/dentearl/mafJoin/ can

construct Multiple Alignment Format (MAF) files containing the entire multiple sequence

alignment between sequences of leaves, internal nodes and roots of a phylogenetic tree.

The simulation was started by using a 10 Million base pair (Mbp) subset of chromo-

some 22 from the well annotated human genome version 18 (hg18) of the UCSC browser.

This 10 Mbp sequence was used as the ancestor sequence (root) of the phylogenetic tree

shown in Figure 3.1. Using the actual human DNA sequence as our root sequence appears

counterintuitive at first because human is one of the leaves in our tree, but it makes the root

sequence realistic to an actual genomic sequence (in terms of DNA sequence properties

such as percentage of GC content, etc.) which is preferable than using a random sequence

for the root.

At the end of the simulation, along with the MAF file we also get the fasta files con-

taining the evolved genomic sequence at each node of the tree. The length of sequences at

the leaves of the tree varied from 11 Mbp to 13 Mbp. It took approximately 36 hours on

a machine with 64 GB of RAM and 12 CPU cores, to generate the simulated data. Since

25

3.3 Comparing True and Predicted Alignment

the simulation tool keeps track of the history of each nucleotide during the entire evolution

and uses it to align them correctly, we can consider this MAF file as the true alignment or

the correct alignment.

3.2.2 Generating the Predicted Alignment

We can utilize the fasta sequences of the leaf species generated by the simulation tool,

and feed them into any alignment tool to generate a predicted MAF file. The alignment

tool that we have chosen for this thesis is MULTIZ [32]. It is one of the most popular and

widely used alignment tool for whole-genome alignments. It is also used for the alignments

shown in the UCSC genome browser [35]. Before feeding the fasta files to MULTIZ, each

sequence was fed into a masking tool called RepeatMasker [85]. RepeatMasker identifies

and soft-masks repetitive elements in the sequence, which helps to speed up the running

time of MULTIZ. All the species were aligned pair wise with human as the reference.

To generate pairwise alignments for MULTIZ, LASTZ was run with the following flags:

–step=10, –gapped, –nochain, –gfextend and –strand=both. MULTIZ combines these pair-

wise alignments to generate an alignment file containing all the ten species. This MAF file

would be considered as the predicted alignment.

3.3 Comparing True and Predicted Alignment

After obtaining the true and predicted alignment files, our task is to compare them. We can

compare alignments by comparing the index positions of the nucleotides that are aligned

together. For example, refer to the small alignment blocks shown in Figure 3.2 among three

species: human, microbat and shrew.

26

3.3 Comparing True and Predicted Alignment

True Predicted Class Class

Alignment Alignment Description Label

Human 1 1 Correct
0

Non Human 2 2 Match (CM)

Human 1 1 Correct
1

Non Human ´ ´ Gap (CG)

Human 1 1 Over
2

Non Human ´ 2 Alignment (OA)

Human 1 1 Under
3

Non Human 2 ´ Alignment (UA)

Human 1 1 Mis
4

Non Human 2 3 Alignment (MA)

Table 3.1: The five possible classes of each human-non human pair. The numbers represent

index positions in the DNA sequence of the species. ’-’ represents gap in the alignment.

For example, if index position 1 of human is aligned to a - in the other species in the true

alignment but in predicted alignment index 1 of human is not aligned to a - but is aligned

to any nucleotide then that alignment pair would be labeled as over alignment.

Labeling the data this way would make it possible to not only find the erroneous align-

ment columns but also tell the type of error that occurs in each species.

To summarize, we compare each alignment column of the predicted alignment to the

corresponding column of the true alignment. Corresponding columns here imply that they

both have the same human index position in the alignment. Columns where there is a gap

for human are ignored. Since we have 10 species in our phylogenetic tree, we will have

nine labels for each alignment column and each of these labels could belong to one of the

five classes described in Table 3.1.

28

3.4 Feature Enhancement

3.4 Feature Enhancement

The alignment contains characters (A,C,G,T,-). To feed these characters into a machine

learning model we have to encode these characters numerically. These characters are one-

hot encoded as shown in Table 3.2 before being fed into a machine learning model.

Nucleotide Encoding

A 1 0 0 0 0

C 0 1 0 0 0

G 0 0 1 0 0

T 0 0 0 1 0

- 0 0 0 0 1

Table 3.2: One-hot encoding of nucleotides.

Along with the nucleotides, we can feed in additional features that may help the clas-

sifier to find erroneous alignments. We consider four different types of features here and

each one is explained below.

3.4.1 Neighboring Alignment Columns

The goal of an alignment algorithm is to align conserved sequences together and these

conserved regions generally occur in consecutive chunks of 10 to 1000 nucleotides. Also,

in an alignment of a large genomic sequence with another large sequence, a mutation in

one alignment column will affect the neighboring alignments as well. Due to this, an error

in aligning one column would often result in errors in the neighboring columns as well.

Therefore, in addition to the features encoding the alignment column whose correctness

we want to predict, we will feed in the encoding of neighboring alignment columns on

both sides. As a result, the classifier can look at an alignment block instead of a single

alignment column to predict the class labels of the central alignment column. The exact

number of neighboring columns to be used will be set experimentally. Figure 3.3 shows

an alignment block where we take three neighboring columns on each side of the central

29

3.4 Feature Enhancement

while deletion means removal of a nucleotide. It is also possible that there is no mutation

or indels along a branch and the character of an ancestor (nucleotide or gap) remains the

same for the descendant. However, it is important to distinguish a nucleotide not changing

over a branch from a gap not changing over a branch. We encode the above details using

six bits of information per branch of the phylogenetic tree after comparing the character of

the ancestor with that of the descendant in that branch.

The six bits are:

‚ Transition Bit: Set to 1 if there is a mutation of type transition, else to 0.

‚ Transversion Bit: Set to 1 if there is a mutation of type transversion, else to 0.

‚ Insertion Bit: Set to 1 if an insertion occurs along that branch, else to 0.

‚ Deletion Bit: Set to 1 if a deletion occurs along that branch, else to 0.

‚ Nucleotide Match Bit: Set to 1 if both ancestor and descendant are the same nu-

cleotides, else to 0.

‚ Gap Match Bit: Set to 1 if both ancestor and descendant are gaps, else to 0.

The Table 3.3, shows few different encodings for different branches of the tree shown in

Figure 3.5. Please refer to the node numbers from the Figure 3.5.

Ancestor

Node No.

Descen-

dant Node

No.

Ancestor

Nucleotide

Descen-

dant

Nucleotide

Transition
Transver-

sion

Nucleotide

Match
Deletion Insertion

Gap

Match

12 1 C C 0 0 1 0 0 0

17 7 ´ ´ 0 0 0 0 0 1

11 10 G T 0 1 0 0 0 0

18 17 G ´ 0 0 0 1 0 0

Table 3.3: Encoding examples for mutations along a branch.

There are 18 branches in the tree and encoding six bits of information per branch gen-

erates 108 bits of features per alignment column.

33

3.5 Class Imbalance

Species Correct Match Correct Gap Over Alignment Under Alignment Misalignment

Cow 40.076% 19.257% 9.142% 23.82% 7.706%

Cat 53.187% 14.717% 8.718% 15.56% 7.819%

Mouse 26.723% 24.444% 8.155% 34.087% 6.592%

Pig 50.141% 15.821% 9.012% 17.561% 7.464%

Rhesus 78.394% 5.488% 5.678% 6.136% 4.303%

Microbat 49.576% 16.676% 8.914% 17.777% 7.056%

Elephant 51.389% 15.801% 8.707% 16.754% 7.349%

Rabbit 50.267% 15.603% 9.037% 16.402% 8.69%

Shrew 24.88% 24.961% 8.156% 35.899% 6.105%

Table 3.4: Class distribution per species.

The species closest to human in the phylogenetic tree, like rhesus, have the high-

est percentage of "Correct Match" as expected, while the species farthest to human, i.e.,

Shrew, has the lowest percentage of "Correct Match" but the highest percentage of "Under-

Alignment". On one hand it was encouraging to see that MULTIZ did a satisfactory job in

aligning these sequences, but on the other hand this made our task of finding errors in the

predicted alignment more difficult because any classifier could achieve a decent accuracy

by predicting the majority class. Since we have a large dataset with „ ten million instances,

we re-sampled our dataset to delete instances from the over represented class to make all

the classes equal in frequency.

For each alignment column we have nine labels, because of which we cannot re-sample

the dataset in a way that ensures a uniform class distribution for all species simultaneously.

Hence, we decided to focus our analyses only on the Human-Cow pair of species. After

re-sampling, the size of the dataset decreased from 10471799 records to 4034749 records.

The class distribution of all the species with these „ 4 million records is shown in Table

3.5.

35

3.6 Machine Learning Models

Species Correct Match Correct Gap Over Alignment Under Alignment Misalignment

Cow 20.0% 20.0% 20.0% 20.0% 20.0%

Cat 44.846% 16.363% 14.545% 15.065% 9.18%

Mouse 22.405% 25.695% 12.717% 32.09% 7.093%

Pig 40.571% 17.637% 15.313% 16.919% 9.56%

Rhesus 71.657% 7.303% 9.322% 6.235% 5.483%

Microbat 41.63% 18.172% 14.675% 17.157% 8.366%

Elephant 44.187% 17.703% 14.079% 16.063% 7.969%

Rabbit 44.098% 16.467% 14.038% 15.857% 9.541%

Shrew 20.142% 26.811% 13.064% 33.566% 6.416%

Table 3.5: Class distribution per species after resampling the dataset.

The alignment errors largely occur independently from one species to another, thus re-

sampling did not lead to large changes in the class frequencies for other eight species. The

evaluation of our machine learning model is done only on the accuracy for the human-cow

label. If we want to predict the label for all ten species then we will need to build ten

different models, one for each species. Even though our focus is to build a classifier that

could predict the classes for human-cow, it was decided that the dataset should contain the

features and labels for all the species because we think there is some correlation among the

data that would help our classifier to predict the labels of human-cow alignment pair.

3.6 Machine Learning Models

This section explains the implementation details of the machine learning models.

3.6.1 Artificial Neural Networks

An artificial neural network (ANN) has large number of hyperparameters such as the num-

ber of hidden layers, the number of neurons in each layer, the activation function, etc. The

exact value of these hyperparameters depends on the kind of problem and data set, and

finding these exact hyperparameters over the entire space of hyperparameters is often time

36

3.6 Machine Learning Models

ing to the five output classes: correct match, correct gap, over alignment, under alignment

and mis-alignment (even though the analysis is done only on the human-cow output pair).

The sum of these five probabilities is one. The class with the highest probability is the

predicted class for each output layer. ANN was implement using tensorflow [87] and keras

[88] machine learning packages.

3.6.2 Random Forests

Random Forests (RF) was implemented using the scikit-learn package [89].

All the experiments with RF and ANN were run on a machine with 64 GB RAM,

12 CPU cores and two Nvidia GPUs. The code is available for reference at https://

github.com/jaspal1329/MSA-ED.

In conclusion, in this chapter, we discussed about the data generation process and repre-

sented our problem as a supervised machine learning classification problem. Some feature

enhancement techniques were also proposed along with the implementation details of the

machine learning models. The next chapter presents the results obtained using our machine

learning model.

38

https://github.com/jaspal1329/MSA-ED
https://github.com/jaspal1329/MSA-ED

4
Results

This chapter discusses the results obtained with the prediction approaches described in the

previous chapter. Section 4.1 and section 4.2 explains the results obtained with Random

Forests (RF) and Artificial Neural Network (ANN) respectively. Section 4.3 compares the

two classifiers. Finally, section 4.4 shows the results obtained when the best learned ma-

chine learning model is applied on real alignments.

After generating the data by the methods described in chapter 3, our job is to train a

machine learning model that can label each position of the Human-Cow predicted align-

ment pair to belong to one of the five class labels: Correct Match (CM), Correct Gap (CG),

Over Alignment (OA), Under Alignment (UA) and Mis-Alignment (MA). Table 4.1 shows

the four different feature sets introduced in the previous chapter. For each feature set we

will experiment by varying the number of neighboring alignment columns (Section 3.4.1).

39

4.1 Random Forest Results

Feature Set Description

Feature set 0

One-hot

encoded

nucleotides

of the ten

species

Feature set 1

Feature

set 0 `
Match/mis-

match

bits

Feature set 2

Feature

set 1 `
Ancestor

nucleotides

Feature set 3

Feature

set 2 `
Mutation

along each

branch of

the phy-

logenetic

tree

Table 4.1: List of different feature sets.

The total number of examples was approximately 4 million (4021490 to be exact). This

was split into 70% training data („ 2.8 million records) and 30% test data („ 1.2 million

records). After training the model using the training data, the accuracy of the classifier was

measured on the test data.

4.1 Random Forest Results

The default hyper-parameters of the random forest classifier in the scikit-learn package

[89] such as the number of trees, the number of features to consider for each split, the

40

4.1 Random Forest Results

splitting criteria, etc. work well for most of the classification problems. However, it was

observed that if the leaves of all the decision trees in RF were expanded till each leaf was

pure (which was the default option), the RF classifier was overfitting. To overcome this the

maximum depth of each tree in the RF was tuned by plotting the train and test accuracy for

multiple settings of this hyper-parameter. Figure 4.1 shows this curve for the experiment

run on feature set 0 with zero neighbors. The classifier overfits as the maximum tree depth

parameter is increased. The point in the graph where the test accuracy is highest decides the

optimum value of this parameter. The optimal depth in Figure 4.1 is 16 where the overall

test accuracy of the classifier is 50.65%.

Figure 4.1: Training and test accuracy vs maximum depth. The maximum depth of each

tree in the RF is plotted along the horizontal axis. The accuracies are plotted along the

vertical axis. As the depth increases the training accuracy keeps on increasing but after an

optimum depth the test accuracy starts to decrease. The optimum depth in this case is 16

where the test accuracy is the highest.

In a similar fashion the optimal depth was found for each of the experiments run with

RF. This resulted in running many iterations of the same experiment with different maxi-

mum depths and it increased the running time of the experiments. While we are not going

to report the optimal tree depth for each dataset, we observe that it consistently ranges

between 15 and 25.

41

4.1 Random Forest Results

4.1.1 Feature Set 0

Table 4.2 shows the test set accuracies for feature set 0 as the number of neighbors are

increased. In all the results, the number of neighbors shown in the table is the sum of

neighbors on both side of the primary alignment column. So 20 neighbors imply 10 align-

ment columns on each side of the primary alignment column. The accuracy per class is

the number of instances predicted for that class divided by the total number of instances

belonging to that class.

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 50.65% 54.55% 55.62% 42.67% 59.13% 41.25%

20 52.87% 60.44% 56.58% 44.34% 63.00% 39.96%

40 54.53% 61.45% 58.83% 46.28% 63.87% 42.06%

60 55.68% 61.05% 60.23% 49.42% 64.43% 43.16%

80 56.80% 61.93% 60.21% 51.05% 65.76% 44.88%

Table 4.2: Random forest results: feature set 0. CM, CG, OA, UA, MA stand for correct

match, correct gap, over alignment, under alignment, and mis-alignment respectively. All

the accuracies presented here are test set accuracies.

42

4.1 Random Forest Results

Figure 4.2: No. of neighbors vs test accuracy for data in Table 4.2. The plot shows the

change in accuracies as the number of neighbors is increased.

Figure 4.2 shows that the accuracy increases substantially as the number of neighbors

increases. This shows that the classifier predicts better if it looks at multiple consecutive

alignment columns instead of a single alignment column. We can also observe that for the

overall test accuracy, the rate of increase is gradually decreasing as the number of neigh-

bors increase and so we can expect the accuracy to not increase drastically with further

increase in number of neighbors. The amount of computer memory required to run these

experiments increases with the number of neighbors. With approximately 2.8 million train-

ing examples, it became impractical to run experiments with more than 80 neighboring

columns on this feature set, because the amount of RAM needed was more than 64 GB.

The best overall test accuracy obtained by Random Forest for feature set 0 is 56.8%

with 80 neighbors.

4.1.2 Feature Set 1

For feature set 1, Table 4.3 and Figure 4.3 show the change in test accuracies with increase

in number of neighbors.

43

4.1 Random Forest Results

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 51.17% 53.20% 55.51% 43.23% 60.18% 43.70%

20 53.62% 60.26% 57.57% 47.34% 62.41% 40.51%

40 54.90% 60.27% 58.13% 50.10% 64.15% 41.76%

60 56.16% 60.91% 58.14% 51.08% 67.04% 43.52%

80 57.08% 60.53% 58.08% 53.38% 68.48% 44.78%

Table 4.3: Random forest results: feature set 1. All the accuracies represented here are test

set accuracies.

Figure 4.3: No. of neighbors vs test accuracy for data in Table 4.3. The plot shows the

change in accuracies as the number of neighbors is increased.

As observed for feature set 0 accuracies increase with increase in the number of neigh-

bors. Again due to large number of training examples and limited computer memory, we

couldn’t test it with number of neighbors larger than 80. The best overall accuracy obtained

with feature set 1 is 57.08% for 80 neighbors. Feature set 1 performs slightly better than

feature set 0. A more detailed comparison will be presented in section 4.1.4.

44

4.1 Random Forest Results

4.1.3 Feature Set 2

For feature set 2, the inferred ancestral nucleotides were added to the previous feature set.

Table 4.4 and Figure 4.4 show the results obtained.

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 51.65% 52.83% 56.83% 44.20% 59.97% 44.39%

20 53.84% 60.59% 58.72% 47.86% 61.85% 40.22%

40 55.17% 60.64% 57.56% 50.46% 65.48% 41.61%

Table 4.4: Random forest results: feature set 2. All the accuracies represented here are test

set accuracies.

Figure 4.4: No. of neighbors vs test accuracy for data in Table 4.4. The plot shows the

change in accuracies as the number of neighbors is increased.

Since we add nine ancestral nucleotides (45 bits after one hot encoding) per alignment

column, the training data consumed more memory making it more difficult to increase the

number of neighboring columns and at maximum 40 neighbors could be added. We see

that the best accuracy achieved by feature set 2 for 40 neighbors is 55.17% which is more

than the accuracies of feature set 0 and feature set 1 for 40 neighbors but less than what

45

4.1 Random Forest Results

was obtained with feature set 1 with 80 neighbors. However, if it was possible to add more

number of neighbors in feature set 2, it would perform the best among the feature sets

tested so far.

4.1.4 Feature Set 3

The final feature set 3 adds the inferred mutations along the branches of the phylogenetic

tree. There are 18 branches in the phylogenetic tree (Figure 3.1) and we are encoding this

feature using six bits per branch (Section 3.4.4). Thus in total this feature set will add 108

bits per alignment column. Due to the large number of features per alignment column, it

became difficult to add a larger number of neighboring columns. With the entire training

set, we could add only 10 neighboring columns. To compare the results with other feature

sets for 20 and 40 neighboring columns the number of examples in the training data were

reduced to half and one-fourth respectively. Table 4.5 and Figure 4.5 show the results.

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 51.90% 53.64% 57.36% 45.08% 59.80% 43.62%

10 53.51% 60.22% 57.34% 49.49% 61.01% 39.50%

20* 53.27% 59.75% 55.50% 49.60% 62.63% 38.82%

40** 52.74% 59.87% 52.45% 46.71% 65.25% 39.26%

Table 4.5: Random forest results: feature set 3. All the accuracies represented here are test

set accuracies. (*) the size of training set was halved. (**) the size of the training set was

quartered.

We can see (Figure 4.5) that reducing the size of data set resulted in a decrease in

accuracies.

46

4.1 Random Forest Results

Figure 4.5: No. of neighbors vs test accuracy for data in Table 4.5. The plot shows the

change in accuracies as the number of neighbors is increased. (*) the size of the training

set was halved. (**) the size of the training set was quartered.

4.1.5 Summary of random forest prediction accuracies

A comparison between all the feature sets was drawn (Figure 4.6) and it was observed that

for zero neighbors feature set 3 performed best but for 20 and 40 neighbors feature set 2

performed best. Feature set 1 performed best with more than 40 neighbors. It would not be

fair to compare feature set 3 with other feature sets for 20 or more neighbors because the

classifier was trained on less data for feature set 3.

47

4.1 Random Forest Results

Figure 4.6: Random forest results: comparing all feature sets. The results for feature set 3

are on smaller number of training examples for 20 and 40 neighboring columns.

In conclusion, the experiments with RF showed that all the feature sets engineered for

this problem helped the classifier. Feature set 3 gave the best results when the classifier

was trained with the entire dataset (zero neighbors). However there is a trade-off between

increasing the number of features per alignment column and increasing the number of

neighboring columns. It looks like if it was possible to run RF on feature set 3 without

compromising on the training data, the best accuracy would be achieved by feature set 3

with 80 neighbors. If we only look at the overall best test accuracy achieved by RF, then

feature set 1 with 80 neighboring columns gave the best accuracy of 57.08%. Table 4.6

shows its corresponding confusion matrix.

48

4.2 Artificial Neural Networks Results

Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA) Accuracy

Class 0 (CM) 145192 164 37234 40 57234 60.53%

Class 1 (CG) 1427 136914 2410 93385 1581 58.08%

Class 2 (OA) 60643 1323 123611 415 45570 53.38%

Class 3 (UA) 1410 70604 1151 162608 1680 68.48%

Class 4 (MA) 90990 729 38898 313 106183 44.78%

Table 4.6: Confusion matrix for best overall test accuracy achieved by RF. Rows represent

the true class while columns represent the predicted class. For example, 164 examples of

true class 0 are predicted to belong to class 1.

The confusion matrix shows that there is larger confusion among classes 0 (CM), 2

(OA) and 4 (MA), and among classes 1 (CG) and 3 (UA). This is because in classes 0,

2 and 4 a nucleotide is aligned to a nucleotide, while in classes 1 and 3 a nucleotide is

aligned to a gap (Refer Table 3.1). Therefore its easier to differentiate between these two

group of classes. A completely random predictor would predict each classes equally, but a

slightly more clever random classifier would predict classes 0, 2 and 4 with 33% accuracy

and classes 1 and 3 with 50% accuracy. The confusion matrix shows that our classifier is

significantly better than this and this behavior is observed in all the confusion matrices.

Unfortunately, RF cannot be easily extended to train in batches and it requires the entire

dataset to be loaded into computer’s memory. This made it difficult to run experiments with

the largest feature set. Artificial neural network overcomes this problem and potentially

allows us to learn more complex hypotheses. The next section shows its results.

4.2 Artificial Neural Networks Results

In section 2.2.2, we saw that neural networks could be trained in batches and this helps us

overcome the problem of storing the entire dataset for training (like in random forests). We

trained the neural network (with the architecture shown in section 3.6.1) in mini batches of

250 training examples. Each experiment was run for ten epochs of the entire training set.

It was observed that the classifier achieved the maximum test accuracy within ten epochs

and further training overfit the model. The learning rate was set to 0.001. The loss function

49

4.2 Artificial Neural Networks Results

used was sparse categorical cross entropy with adam optimizer. Training approximately 2.8

million examples in batches of 250 for ten epochs solves the memory problem but it results

in larger running time for each experiment. The running time of each experiment varied

between 12 hours to 96 hours with an average of around 24 hours per experiment.

Random forests showed that feature set 3 performs best without reducing the size of

the data-set. For ANN, we experiment with feature sets 0, 1 and 2, matching the number of

neighbors in RF to draw a comparison. For feature set 3, we experiment with larger number

of neighbors than RF.

4.2.1 Feature Set 0

Table 4.7 shows the results for feature set 0 with the corresponding graph in Figure 4.7. As

observed with RF, the overall test accuracy increases with increase in number of neighbors.

However, unlike the results observed with RF, we can see in the graph that the overall test

accuracy almost plateaus starting at 20 neighbors.

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 51.04% 52.67% 56.40% 42.72% 58.49% 44.90%

20 55.73% 56.47% 60.02% 49.22% 60.61% 52.35%

40 56.00% 54.40% 64.29% 55.48% 58.66% 47.22%

60 55.93% 54.13% 66.64% 53.29% 57.34% 48.29%

80 56.25% 57.30% 63.44% 53.94% 61.65% 44.91%

Table 4.7: Artificial neural network results: feature set 0. All the accuracies presented here

are test set accuracies.

50

4.2 Artificial Neural Networks Results

Figure 4.7: No. of neighbors vs test accuracy for data in Table 4.7. The plot shows the

change in accuracies as the number of neighbors is increased.

4.2.2 Feature Set 1

The results for feature set 1 is shown in Table 4.8 with its corresponding graph in Figure 4.8.

With increase in neighbors, the accuracies for class 0 (CM) and class 2 (OA) decrease but

it increases in other classes. The overall test accuracy has stopped increasing with increase

in neighbors and the best accuracy achieved is 58.8%.

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 50.94% 50.38% 58.16% 43.10% 56.99% 46.09%

20 57.49% 63.93% 63.11% 58.02% 59.27% 43.12%

40 58.82% 63.22% 63.52% 59.03% 61.02% 47.32%

60 58.85% 62.86% 66.78% 57.96% 58.54% 48.11%

80 58.81% 61.47% 61.80% 56.70% 63.99% 50.09%

Table 4.8: Artificial neural network results: feature set 1. All the accuracies presented here

are test set accuracies.

51

4.2 Artificial Neural Networks Results

Figure 4.8: No. of neighbors vs test accuracy for data in Table 4.8. The plot shows the

change in accuracies as the number of neighbors is increased.

Feature set 1 performs substantially better than feature set 0. The best overall test accu-

racy is around 2.5% higher for feature set 1 than feature set 0. The comparison will be seen

graphically later when we compare all the feature sets (Figure 4.11).

4.2.3 Feature Set 2

Adding inferred ancestral data increased the accuracy considerably in random forests and

the same is observed in ANN. The accuracies are shown in Table 4.9 and Figure 4.9. As

expected the accuracies increase with increase in number of neighbors.

52

4.2 Artificial Neural Networks Results

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 51.98% 53.30% 58.57% 43.00% 58.33% 46.73%

20 60.44% 65.45% 65.40% 62.61% 59.69% 49.07%

40 62.70% 70.90% 62.57% 64.11% 65.42% 50.48%

60 64.02% 72.74% 60.72% 69.67% 69.59% 47.35%

Table 4.9: Artificial neural network results: feature set 2. All the accuracies presented here

are test set accuracies.

Figure 4.9: No. of neighbors vs test accuracy for data in Table 4.9. The plot shows the

change in accuracies as the number of neighbors is increased.

Feature set 2 performs substantially better than feature set 1. There is an increase of

around 6% between the best overall test accuracy for feature set 2 than feature set 1. This

shows that the inferred ancestral nucleotides helped the classifier considerably.

4.2.4 Feature Set 3

For feature set 3 first we experiment with the same numbers of neighbors as with RF to

compare the two algorithms, and then we increase the number of neighbors further than

53

4.2 Artificial Neural Networks Results

that, to obtain the most accurate model. Table 4.10 shows the results with the corresponding

graph in Figure 4.10.

No. of Overall Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA)

Neighbors Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 52.33% 53.60% 60.28% 44.66% 56.99% 46.12%

20 61.19% 72.60% 66.33% 62.96% 58.36% 45.68%

40 63.04% 73.74% 59.36% 68.00% 68.87% 45.25%

60 64.15% 76.33% 59.03% 69.90% 71.23% 44.27%

120 65.04% 78.01% 58.88% 67.39% 73.16% 47.76%

Table 4.10: Artificial neural network results: feature set 3. All the accuracies presented here

are test set accuracies.

Figure 4.10: No. of neighbors vs test accuracy for data in Table 4.10. The plot shows the

change in accuracies as the number of neighbors is increased.

The increase in overall accuracy from 60 to 120 neighbors (i.e. over an increase of

60 neighbors) is small compared to the increase from 40 to 60 neighbors (i.e. over an

increase of 20 neighbors), thereby indicating that adding more neighbors is unlikely to

54

4.2 Artificial Neural Networks Results

greatly increase the accuracy. Also the running time required to run an experiment with

feature set 3 was the highest among all feature sets because of the number of features per

alignment column. Therefore, we did not experiment with more neighbors. Among the four

feature sets, feature set 3 performed the best (Figure 4.11) even though the difference in

accuracies between feature set 3 and feature set 2 is small.

Figure 4.11: Artificial neural network results: comparing all feature sets.

The best accuracy obtained using ANN is 65.04% and its corresponding confusion

matrix is displayed in below Table 4.11.

Class 0 (CM) Class 1 (CG) Class 2 (OA) Class 3 (UA) Class 4 (MA) Accuracy

Class 0 (CM) 185463 0 19568 0 32711 78.01%

Class 1 (CG) 22 136807 39 95455 20 58.88%

Class 2 (OA) 33511 7 153956 1 40975 67.39%

Class 3 (UA) 33 63109 15 172233 41 73.16%

Class 4 (MA) 90180 6 32444 8 112146 47.76%

Table 4.11: Confusion matrix for best overall accuracy achieved by ANN. Rows represent

the true class while columns represent the predicted class.

55

4.3 Random Forests vs Artificial Neural Network

As seen in RF, the confusion matrix shows that the classifier is confused primarily

between two group of classes, classes 0 (CM), 2 (OA) and 4 (MA) and classes 1 (CG) and

3 (UA). We know classes 0 (CM) and 1 (CG) indicate correctly aligned columns while

classes 2 (OA), 3 (UA) and 4 (MA) indicate errors in alignment columns. Its important that

our classifier makes fewer errors for classes 2 (OA), 3 (UA) and 4 (MA) than classes 0 (CM)

and 2 (CG) because predicting a correctly aligned column as incorrect is less severe than

missing to detect an incorrectly aligned column. If we consider it as a binary classification

problem with classes 0 (CM) and 1 (CG) as positive classes while classes 2 (OA), 3 (UA)

and 4 (MA) as negative classes then the multi class confusion matrix can be transformed

into a binary confusion matrix as seen in Table 4.12.

Positive Class Negative Class

Positive Class 322292 147793

Negative Class 186846 511819

Table 4.12: Binary confusion matrix for the multi class confusion matrix. Classes 0 (CM), 1

(CG) are annotated as positive while other classes are annotated as negative. Rows represent

the true class while columns represent the predicted class.

Based on the binary confusion matrix, the false positive rate of the predictor is 0.27,

which is less than the false negative rate of 0.31. Thus it predicts more examples of positive

class to negative than vice versa, as desired. To conclude, ANN gives a decent accuracy of

65%. The next section compares the results obtained with RF to those obtained with ANN.

4.3 Random Forests vs Artificial Neural Network

We compare the two classifiers based on their overall test accuracies obtained for each fea-

ture set with different number of neighboring columns. Figure 4.12 shows this comparison.

56

4.4 Real Alignment Results

the 100-way alignment file. The alignments of all other species except the ten leaf species

and their ancestors (shown in Figure 3.1) were removed. The nucleotides of alignment

columns corresponding to the desired human index positions were used to create the nec-

essary features of feature set 3. The features of each alignment column along with 120

neighboring columns were fed into the classifier. The classifier predicted the probability

of each class label. The label with the highest probability was chosen as the predicted la-

bel for that index position. Table 4.13 shows the statistics for the predictions made by the

classifier.

Total no. of No. of alignment columns predicted for each class

alignment columns CM CG OA UA MA

998698 274307 (27.45%) 328894 (32.93%) 68850 (6.89%) 236314 (23.66%) 90333 (9.05%)

Table 4.13: Statistics for real alignment results.

Our classifier predicts 60% of the region as correctly aligned (sum of class 0 (CM) and

class 1 (CG)) while 40% of the region is detected as suspiciously aligned. This is similar to

the original class distribution for human-cow alignment in the simulated data (Refer Table

3.4). Though the percentage of suspiciously aligned regions is high, we can analyze regions

in the alignment that are predicted to belong to these classes and find valid explanations for

these predictions.

4.4.1 Example of correct match prediction

One of the regions where the classifier detect high probability of correct match is shown in

Figure 4.13.

58

4.4 Real Alignment Results

The region where the probability of correct match predicted by our classifier is high

corresponds to a highly conserved exonic region in the alignment shown by the genome

browser. Highly conserved regions are generally correctly aligned by MSA algorithms and

this gives confidence to us that the correct match predictions by our classifier is valid in

this particular region.

4.4.2 Example of correct gap prediction

Figure 4.14 shows a region of prediction where the classifier predicts a high probability of

correct gap.

60

4.4 Real Alignment Results

The region with high probability of correct gap is a region where the nucleotides at the

human index position are aligned to gaps in all of the nine other species. Since there are

gaps in most of the species, it is more likely that the true alignment is to align the human nu-

cleotides with a gap, which is the prediction made by our classifier. Further increasing our

confidence in the correctness of this prediction is the fact that the region where high correct

gap predictions are made corresponds to an ALU/SINE transposable element, which is a

class of transposable elements that is only active in primates.

4.4.3 Example of over alignment prediction

Figure 4.15 shows a region where the probability of over alignment predicted by our clas-

sifier is high.

62

4.4 Real Alignment Results

The region where the probability of over alignment is high corresponds to a region

where the human sequence is aligned to gap in most of the species except cow and two other

species. The region also contains transposable elements and we know that it is difficult to

align transposable elements because they are repeated across the genome. Therefore our

classifier is likely correct in predicting that these regions should be aligned to gaps instead

of nucleotides.

4.4.4 Example of under alignment prediction

One of the regions where our classifier detects high probability of under alignment is shown

in Figure 4.16.

64

4.4 Real Alignment Results

This is a region that contains several conserved sub regions. This region also contains

alignments where the human nucleotides are aligned to nucleotides in many species except

cow and a few others. This could be some of the reasons because of which the classifier

predicts that the human nucleotides should be aligned to nucleotides in cow rather than

gaps.

4.4.5 Example of mis-alignment prediction

Figure 4.17 shows a region of mis-alignment predicted by our classifier.

66

4.4 Real Alignment Results

The genome browser shows in gray the nucleotides that do not match to the human

nucleotides. We can see that many nucleotides in cow do not match to those of human.

This could be one of the reasons why our classifier predicts this region to be mis-aligned.

In conclusion, the machine learning model predicts correct and suspicious alignments

in a real alignment file, and these predictions could be justified by looking at the annotations

and nucleotides at the predicted positions. The next chapter concludes our work with future

suggestions.

68

5
Conclusion and Future Work

Aligning multiple sequences optimally is difficult and the existing algorithms are based

on imperfect heuristics. Detecting suspiciously aligned regions in an alignment is critical

to researchers who use these alignments for downstream analyses as they can flag these

regions or find ways to correct the alignment in these regions. In this thesis, we suggest a

machine learning approach that can classify each alignment pair in a MSA to one of the five

classes: correct match, correct gap, over alignment, under alignment or mis-alignment. As

an example, a machine learning model was built to classify the Human-Cow alignment pair

in an alignment of ten vertebrate species. After training the model on simulated data, the

model with the highest accuracy (65%) was used to predict the labels on a real alignment.

We found around 40% of 1Mbp region to be suspiciously aligned. Some predicted regions

were analyzed and it was observed that highly conserved regions were predicted to be

correctly aligned and suspicious regions correspond to misaligned regions or regions with

transposable elements which makes our predictions more likely to be correct. Our error

detection framework is suited for predicting errors only in eukaryotic genomes and cannot

be applied to prokaryotic genomes because the phylogenetic tree of prokaryotes does not

have a clear tree-like structure due to horizontal gene transfers in their evolutionary process.

In this thesis we used two classifiers: Random Forests (RF) and Artificial Neural Net-

works (ANN). Some other classifiers such as Support Vector Machines (SVM) could also

be used but SVMs do not work well with large datasets as they requires high amount of

memory to store the kernel matrix. We chose RF and ANN because RF can serve as a good

69

Conclusion and Future Work

baseline model and ANNs are efficient in learning complex hypothesis functions without

the need for storing the complete dataset in memory (batch gradient descent).

Although we made significant progress in building a machine learning model to de-

tect errors in an alignment, our method has some limitations that could be improved in the

future. Among the fixed set of ten species, our model only predicts the labels for one align-

ment pair, the human-cow alignment pair because of the class imbalance problem (Section

3.5). We dealt with the class imbalance problem using an under-sampling technique and if

we want to predict the class labels for all the alignment pairs using this method we would

need to build a classifier for each pair of species. There are other existing methods that can

be used to deal with the class imbalance problem, such as penalizing the classifier more if

it makes a wrong prediction on an instance of the minority class. The performance of each

technique depends on the kind of problem and dataset and there is no way of telling which

method is better until they are applied and their results analyzed.

To enhance our feature set we used the inferred ancestral nucleotides but these inferred

nucleotides add some uncertainty to our model. For each ancestor in the phylogenetic tree,

Ancestors 1.0 [86] predicts the probability of each nucleotide (A, C, G, T or -) at each po-

sition. We could use these probabilities in our model to capture this uncertainty. Instead of

encoding the ancestor nucleotides in the one-hot encoded form (Table 3.2) we could encode

them using the probabilities generated by Ancestors. The mutation along each branch of

the phylogenetic tree (Section 3.4.4) could also be encoded by multiplying the appropriate

probabilities of the nucleotides at both ends of the branch.

Another limitation of our model is that since we used a simulation-based dataset on a

fixed phylogenetic tree, our current model works only for the set of chosen ten species and

is not robust enough to predict errors for an alignment with arbitrary number of species. If

we want to predict errors for any alignment we would need to train a new model based on

the input. However, if required we can predict the errors on an alignment that is used by

researchers frequently, such as the 100-way real alignment dataset on the UCSC Genome

browser. Although, based on our current implementation simulating the dataset and training

a model for this would take months.

Several directions could be fruitful to explore to improve our approach. First, we could

70

Conclusion and Future Work

also try to design better architectures for ANN by improving the choice of hyper-parameter

values using cross validation. Finding the correct set of hyper-parameters such as the num-

ber of hidden layers, the number of neurons per layer, the activation function, the number of

epochs, the weight initialization method, etc. can take significant time and computational

resources. Second, since the label of one alignment column depends on the neighboring

columns, we could also try other advanced neural network techniques, such as Long Short

Term Memory (LSTM) networks [91] that are efficient at detecting patterns in sequen-

tial data. LSTMs coupled with convolutional neural networks may learn interesting spatial

patterns between the alignments columns in an alignment block and may result in more

accurate models. Third, since we have the luxury of generating as much training data as we

want (caveat: running time and storage space), we can generate data that could be helpful in

learning more complex hypotheses using advanced machine learning algorithms (such as

LSTM). Finally, after detecting suspiciously aligned regions in whole-genome alignments,

we could try to fix these regions by using existing human-computing algorithms such as

PHYLO [92, 93]. Ramchalam K.R. (another student in Blanchette’s lab) and I are working

on a technique that uses reinforcement learning to fix these suspicious alignment blocks.

In conclusion, we propose a unique machine learning approach to address a key prob-

lem in bioinformatics. Our approach involves novel use of simulation tools to produce data

and after careful feature engineering we apply our model to real alignment data to show

that it can be used to detect suspicious alignments. We hope this method will be useful for

the research community.

71

Bibliography

[1] https://www.khanacademy.org/science/biology/her/

tree-of-life/a/phylogenetic-trees [Online; accessed 21-May-2018.]

[2] Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., et al. 2001. Initial se-

quencing and analysis of the human genome. Nature 409: 860-921.

[3] Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., et al. 2002. Initial

sequencing and comparative analysis of the mouse genome. Nature 420: 520-62.

[4] Blanchette M. 2007. Computation and Analysis of Genomic Multi-Sequence Align-

ments. Annu. Rev. Genomics Hum. Genet. 8: 193-213.

[5] https://www.codoncode.com/aligner/ [Online; accessed 11-June-2018.]

[6] Gotoh O. 1999. Multiple sequence alignment: Algorithms and applications. Adv. Bio-

phys. 36:159-206.

[7] Wang L, Jiang T. 1994. On the complexity of multiple sequence alignment. J. Comput.

Biol. 1: 337-48.

[8] Brudno M., Malde S., Poliakov A., Do C.B., Couronne O., et al. 2003. Glocal align-

ment:finding rearrangements during alignment. Bioinformatics 19 (Suppl. 1): i54-62.

[9] Needleman S. B. and Wunsch C. D. 1970. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48: 443-453.

[10] Smith T.F. and Waterman M.S. 1981. Identification of common molecular subse-

quences. J. Mol. Biol. 147(1): 195-197.

[11] Schwartz S., Kent W.J., Smit A., Zhang Z., Baertsch R., et al. 2003. Human-mouse

alignments with BLASTZ. Genome Res. 13: 103-7.

72

https://www.khanacademy.org/science/biology/her/tree-of-life/a/phylogenetic-trees
https://www.khanacademy.org/science/biology/her/tree-of-life/a/phylogenetic-trees
https://www.codoncode.com/aligner/

BIBLIOGRAPHY

[12] Brudno M., Do C.B., Cooper G.M., Kim M.F., Davydov E., et al. 2003. LAGAN and

Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA.

Genome Res. 13: 721-31.

[13] Bray N., Dubchak I., Pachter L. 2003. AVID: a global alignment program. Genome

Res. 13: 97-102.

[14] Delcher A.L., Kasif S., Fleischmann R.D., Peterson J., White O., Salzberg S.L. 1999.

Alignment of whole genomes. Nucleic Acids Res. 27: 2369-76.

[15] Kent W.J., Baertsch R., Hinrichs A., Miller W., Haussler D. 2003. Evolution’s caul-

dron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc.

Natl. Acad. Sci. USA 100: 11484-89.

[16] Pevzner P., Tesler G. 2003. Genome rearrangements in mammalian evolution: lessons

from human and mouse genomes. Genome Res. 13: 37-45.

[17] Darling A.C., Mau B., Blattner F.R., Perna N.T. 2004. Mauve: multiple alignment of

conserved genomic sequence with rearrangements. Genome Res. 14: 1394-403.

[18] Dewey C. Pachter L. https://www.biostat.wisc.edu/~cdewey/

mercator/

[19] Gupta S. K., Kececioglu J. D., Schäer J. D. 1995. Improving the practical space and

time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence align-

ment. Comput. Biol. 2: 459-472.

[20] Lermen M. and Reinert K. 2000. The practical use of the A* algorithm for exact

multiple sequence alignment. J. Comput. Biol. 7: 655-671.

[21] Lipman D. J., Altschul S. F. and Kececioglu J. D. 1989. A tool for multiple sequence

alignment. Proc. Natl. Acad. Sci. U.S.A. 86: 4412-4415.

[22] Reinert K., Lenhof H.P., Mutzel P., Mehlhorn P. and Kececioglu J. 1997. A branch-

and-cut algorithm for multiple sequence alignment. 1st Annual International Confer-

ence on Research in Computational Molecular Biology, RECOMB. 241-249.

73

https://www.biostat.wisc.edu/~cdewey/mercator/
https://www.biostat.wisc.edu/~cdewey/mercator/

BIBLIOGRAPHY

[23] Althaus E. and Canzar S. 2008. LASA: A tool for non-heuristic alignment of multiple

sequences. Bioinformatics Research and Development. BIRD 2008. Communications

in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg.

[24] Althaus E., Caprara A., Lenhof H. P., and Reinert K. 2002. Multiple sequence align-

ment with arbitrary gap costs: Computing an optimal solution using polyhedral com-

binatorics. Bioinformatics 18 Suppl 2: S4S16.

[25] Althaus E., Caprara A., Lenhof H.P. and Reinert K. 1999. A polyhedral approach to

sequence alignment problems. PhD thesis, Universität Saarbrücken.

[26] Durbin R., Eddy S., Krogh A., Mitchison G. 1998. Biological Sequence Analy-

sis:Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press.

[27] Sokal R. R. and Michener C. D. 1958. A statistical method for evaluating systematic

relationships. Univ. Kansas Sci. Bull. 38: 1409-1438.

[28] Saitou N. and Nei N. 1987. The neighbor-joining method: A new method for recon-

structing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

[29] Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., et al. 2003. Multiple se-

quence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-

3500.

[30] Higgins D.G., Sharp P.M. 1988. CLUSTAL:A package for performing multiple se-

quence alignment on a microcomputer. Gene 73: 237-44.

[31] Blanchette M., Kent W.J., Riemer C., Elnitski L., Smit A.F., et al. 2004. Aligning

multiple genomic sequences with the threaded blockset aligner. Genome Res. 14: 708-

15.

[32] Miller W., Rosenbloom K., Hardison R.C., Hou M., Taylor J., Raney B., Burhans R.,

King D.C., Baertsch R., Blankenberg D., et al. 2007. 28-way vertebrate alignment and

conservation track in the UCSC Genome Browser.Genome Res 17: 1797-1808.

74

BIBLIOGRAPHY

[33] Meyer L.R., Zweig A.S., Hinrichs A.S., Karolchik D., Kuhn R.M., Wong M., Sloan

C.A., Rosenbloom K.R., Roe G., Rhead B., et al. 2013. The UCSC Genome Browser

database: extensions and updates 2013. Nucleic Acids Res 41: D64-D69.

[34] Bray N. and Pachter L. 2004. MAVID: Constrained ancestral alignment of multiple

sequences. Genome Res. 14: 693-99.

[35] Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haus-

sler D. 2002. The human genome browser at UCSC. Genome Res. 12(6): 996-1006.

[36] Chakrabarti S., Lanczycki C.J., Panchenko A.R., Przytycka T.M., Thiessen P.A.,

Bryant S.H. 2006. State of the art: refinement of multiple sequence alignments. BMC

Bioinform. 7: 499.

[37] Wang C., Lefkowitz E.J. 2005. Genomic multiple sequence alignments:refinement

using a genetic algorithm. BMC Bioinform. 6: 200.

[38] Loytynoja A., Milinkovitch M.C. 2001. SOAP, cleaning multiple alignments from

unstable blocks. Bioinformatics. 17: 573-74.

[39] Iantorno S., Gori K., Goldman N., Gil M., Dessimoz C. 2014. Who watches the

watchmen? An appraisal of benchmarks for multiple sequence alignment. Methods

Mol. Biol. 1079: 59-73.

[40] Stoye J., Evers D., Meyer F. 1997. Generating benchmarks for multiple sequence

alignments and phylogenetic reconstructions. Proc. Int. Conf. Intell Syst. Mol. Biol. 5:

303-306.

[41] Cartwright R.A. 2005. DNA assembly with gaps (Dawg): simulating sequence evolu-

tion. Bioinformatics (Suppl. 3) 21: iii31-iii38.

[42] Varadarajan A., Bradley R.K., Holmes I. 2008. Tools for simulating evolution of

aligned genomic regions with integrated parameter estimation. Genome Biol. 9: R147.

[43] Darling A.C.E., Mau B., Blattner F.R., Perna N.T. 2004. Mauve: multiple alignment

of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403.

75

BIBLIOGRAPHY

[44] Darling A.C.E., Mau B., Perna N.T. 2010. ProgressiveMauve: multiple genome align-

ment with gene gain, loss and rearrangement. PLoS ONE 5: e11147.

[45] Beiko R.G., Charlebois R.L. 2007. A simulation test bed for hypotheses of genome

evolution. Bioinformatics 23: 825-831.

[46] Dalquen D.A., Anisimova M., Gonnet G.H., Dessimoz C. 2012. ALF- a simulation

framework for genome evolution. Mol. Biol. Evol. 29: 1115-1123.

[47] Edgar R., Asimenos G., Batzoglou S., Sidow A. 2009. EVOLVER. http://www.

drive5.com/evolver/

[48] Notredame C., Abergel C., Andrade M.A. 2003. Using multiple alignment methods

to assess the quality of genomic data analysis. Bioinformatics and genomes: current

perspectives, Wymondham (UK) Horizon Scientific Press 30-50.

[49] Chang J.M.M., Di Tommaso P., Notredame C. 2014. TCS: a new multiple sequence

alignment reliability measure to estimate alignment accuracy and improve phyloge-

netic tree reconstruction. Mol. Biol. Evol. 31: 1625-1637.

[50] Landan G., Graur D. 2007. Heads or tails: a simple reliability check formultiple se-

quence alignments. Mol. Biol. Evol. 24: 1380-1383.

[51] Hall B. 2008. How Well Does the HoT Score Reflect Sequence Alignment Accuracy?

Mol. Biol. Evol. 25(8): 1576-80.

[52] Landan G., Graur D. 2008. Local reliability measures from sets of co-optimal multiple

sequence alignments. Pac. Symp. Biocomput. 15-24.

[53] Penn O., Privman E., Ashkenazy H., Landan G., Graur D., Pupko T. 2010. GUID-

ANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res.

38: W23-W28.

[54] Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the boot-

strap. Evolution vol. 39 (pg. 783-791).

76

http://www. drive5.com/evolver/
http://www. drive5.com/evolver/

BIBLIOGRAPHY

[55] Katoh K., Misawa K., Kuma K. and Miyata T. 2002. MAFFT: a novel method for

rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.

30: 3059-3066.

[56] Löytynoja A. Goldman N. 2010. webPRANK: a phylogeny-aware multiple sequence

aligner with interactive alignment browser. BMC Bioinformatics. 11: 579.

[57] Wu M., Chatterji S., Eisen J.A. 2012. Accounting For Alignment Uncertainty in Phy-

logenomics. PLOS ONE 7(1): e30288.

[58] Patrick K., Karen M., Johannes D., Birthe T., Björn M. von R., Johann W. W. and

Bernhard M. 2010. Parametric and non-parametric masking of randomness in sequence

alignments can be improved and leads to better resolved trees. Frontiers in Zoology. 7:

10.

[59] Prakash A. & Tompa M. 2007. Measuring the accuracy of genome-size multiple align-

ments. Genome biology. 8. R124. 10.1186gb-2007-8-6-r124.

[60] Prakash A., Tompa M. 2005. Statistics of local multiple alignments. Bioinformatics

21: i344 - i350.

[61] Thompson J.D., Koehl P., Ripp R., Poch O. 2005. BAliBASE 3.0: latest developments

of the multiple sequence alignment benchmark. Proteins. 61: 127-36.

[62] Edgar R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced

time and space complexity. BMC Bioinform. 5: 113.

[63] Kemena C., Notredame C. 2009. Upcoming challenges for multiple sequence align-

ment methods in the high-throughput era. Bioinformatics. 27: 2455-2465.

[64] Margulies E.H., Cooper G.M., Asimenos G., Thomas D.J., Dewey C.N., Siepel A.,

Birney E., Keefe D., Schwartz A.S., Hou M. et al. 2007. Analyses of deep mammalian

sequence alignments and constraint predictions for 1% of the human genome. Genome

Res. 17: 760-774.

77

BIBLIOGRAPHY

[65] Paten B., Herrero J., Beal K., Fitzgerald S., Birney E. 2008. Enredo and

Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs.

Genome Res. 18: 1814-1828.

[66] Earl D., Nguyen N., Hickey G., Harris R.S., Fitzgerald S., et al. 2014. Alignathon:

a competitive assessment of whole-genome alignment methods. Genome Res. 24(12):

2077-2089.

[67] Earl D., Bradnam K., St. John J., Darling A., Lin D., Fass J., Yu HO., Buffalo V.,

Zerbino D.R., Diekhans M., et al. 2011. Assemblathon 1: a competitive assessment of

de novo short read assembly methods. Genome Res. 21: 2224-2241.

[68] Kim J., Ma J. 2011. PSAR: measuring multiple sequence alignment reliability by

probabilistic sampling. Nucleic Acids Res. 39: 6359-6368.

[69] Samuel A.L. 1959. Some Studies in Machine Learning Using the Game of Checkers.

IBM Journal of Research and Development, vol. 3, no. 3, pp. 210-229.

[70] https://djsaunde.wordpress.com/2017/07/17/

the-bias-variance-tradeoff/ [Online; accessed 15-May-2018.]

[71] QUINLAN J.R. 1985. Induction of Decision Trees. Centre for Advanced Computing

Sciences, New South Wales Institute of Technology, Sydney, Australia.

[72] Mitchell T.M. 1997. Machine Learning. Section 3.4.1 Pg 55-60.

[73] Haykin S. 1998. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR.

[74] Johnson R. and Zhang T. 2013. Accelerating Stochastic Gradient Descent using Pre-

dictive Variance Reduction. Advances in Neural Information Processing Systems 26:

315-323.

[75] Kingma DP and Ba JL. 2015. Adam: a Method for Stochastic Optimization. Inter-

national Conference on Learning Representations. Third International Conference for

Learning Representations, San Diego, 2015

78

https://djsaunde.wordpress.com/2017/07/17/the-bias-variance-tradeoff/
https://djsaunde.wordpress.com/2017/07/17/the-bias-variance-tradeoff/

BIBLIOGRAPHY

[76] Duchi J., Hazan E., & Singer Y. 2011. Adaptive Subgradient Methods for On-

line Learning and Stochastic Optimization. Journal of Machine Learning Research

12:2121âĂŞ2159.

[77] Li H., Doermann D. and Kia O. 2000. Automatic text detection and tracking in digital

video. IEEE Transactions on Image Processing vol. 9, no. 1, pp. 147-156.

[78] Zhang G.P. 2003. Time series forecasting using a hybrid ARIMA and neural network

model. Neurocomputing. 50: 159-175.

[79] Stormo G.D. 2000. DNA binding sites: representation and discovery. Bioinformatics.

16: 16-23.

[80] Khan J., Wei J.S, et al. 2001. Classification and diagnostic prediction of cancers using

gene expression profiling and artificial neural networks. Nature Medicine. 7: 673-679.

[81] Brun Y. and Ernst M. D. 2004. Finding latent code errors via machine learning over

program executions Proceedings. 26th International Conference on Software Engi-

neering. pp. 480-490. doi: 10.1109/ICSE.2004.1317470

[82] Wang A.H. 2010. Detecting Spam Bots in Online Social Networking Sites: A Ma-

chine Learning Approach. IFIP Annual Conference on Data and Applications Security

and Privacy. volume 6166. 335-342.

[83] Buczak A. L. and Guven E. 2016. A Survey of Data Mining and Machine Learning

Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys &

Tutorials vol. 18, no. 2, pp. 1153-1176.

[84] Newick format of the 100 way phylogenetic tree. http://hgdownload.

soe.ucsc.edu/goldenPath/hg38/multiz100way/hg38.100way.

commonNames.nh

[85] Smit A.F.A., Hubley R., Green P. 2010. RepeatMasker Open-3.0. http://www.

repeatmasker.org

[86] Diallo A.B., Makarenkov V., Blanchette M. 2010. Ancestors 1.0: A web server for

ancestral sequence reconstruction. Bioinformatics, Volume 26, Issue 1. Pages 130-131.

79

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/hg38.100way.commonNames.nh
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/hg38.100way.commonNames.nh
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/hg38.100way.commonNames.nh
http://www.repeatmasker.org
http://www.repeatmasker.org

BIBLIOGRAPHY

[87] Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G.S., Davis

A., et al. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems.

Software available from tensorflow.org.

[88] Chollet F, et al. 2015. https://github.com/fchollet/keras. GitHub.

[89] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blon-

del M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau

D., Brucher M., Perrot M., and Duchesnay E. 2011. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research. 12: 2825-2830.

[90] http://genomewiki.ucsc.edu/index.php/Hg38_100-way_

conservation_alignment [Online; accessed 15-June-2018.]

[91] Hochreiter S. and Schmidhuber J. 1997. Long Short-Term Memory. Neural Comput.

9: 1735-1780.

[92] Kawrykow A, Roumanis G, Kam A, Kwak D, Leung C, et al. 2012. Phylo: A Citi-

zen Science Approach for Improving Multiple Sequence Alignment. PLoS One. 7(3):

e31362.

[93] Kwak D, Kam A, Becerra D, Zhou Q, Hops A, Zarour R, et al. 2013. Open-Phylo:

a customizable crowd-computing platform for multiple sequence alignment. Genome

Biol. 14(10): R116.

80

https://github.com/fchollet/keras
http://genomewiki.ucsc.edu/index.php/Hg38_100-way_conservation_alignment
http://genomewiki.ucsc.edu/index.php/Hg38_100-way_conservation_alignment

	Introduction
	Background
	Multiple Sequence Alignment
	Review of Existing Whole-genome MSA Algorithms
	MULTIZ

	Inaccuracies in MSA
	Benchmarking Multiple Sequence Alignment Algorithms
	Simulation-based Benchmarking
	Statistical Assessment based Benchmarking
	Expert Information based Benchmarking

	The Alignathon Project
	Problem Definition
	Outline of this thesis

	Overview of Machine Learning Approaches
	Bias vs Variance
	Supervised Classification Problem
	Random Forest Classifier
	Artificial Neural Networks

	Evaluating Model Performance
	Confusion Matrix

	Methods
	Species Selection
	Data Generation
	Generating the True Alignment
	Generating the Predicted Alignment

	Comparing True and Predicted Alignment
	Feature Enhancement
	Neighboring Alignment Columns
	Match/Mismatch bits
	Ancestral Nucleotides
	Mutations along each branch of the phylogenetic tree

	Class Imbalance
	Machine Learning Models
	Artificial Neural Networks
	Random Forests

	Results
	Random Forest Results
	Feature Set 0
	Feature Set 1
	Feature Set 2
	Feature Set 3
	Summary of random forest prediction accuracies

	Artificial Neural Networks Results
	Feature Set 0
	Feature Set 1
	Feature Set 2
	Feature Set 3

	Random Forests vs Artificial Neural Network
	Real Alignment Results
	Example of correct match prediction
	Example of correct gap prediction
	Example of over alignment prediction
	Example of under alignment prediction
	Example of mis-alignment prediction

	Conclusion and Future Work

