Procedural abstraction in a relational database
programming language
Nattavut Sutyanyong

School of Computer Science
McGill University, Montreal

June 1994

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements of the degree of Master of Science.

Copyright © N. Sutyanyong 1994

Name

SUTYAN YOonNG . NATTAVUT

Dissertation Abstracts International 1s arranged by broad, general subject categories Please select the one subject which most
nearly describes the content of your dissertatior Enter the corresponding four-digr code in the spaces provided

C'omp w«t!/b

0
YClZNeq

SEIGR

Subject Categories

I SUBJECT TERM

THE HUMANIITIES AND SOCIAL SCIENCES
COMMUNICATIONS AN{D THE ARTS

Architecture

Art History

Cinema

Danco

Fine Arts

Information Science
Journalism

Library Science

Mass Communicalions
Music

Speech Communication
T!\omor

EDUCATION

Gaonerot
Admmistration

Adult and Continuing
Agncdlura

ri
Bilingual and Mulieultural
Business
Community College
Curnculum and Instruction
Early Childhood
Elementary
Finance
Guidanee and Counseling
Heoll
Higher
History of
Home Economics
Industnal
Llanguage and Literature
Mathematics
Music
Philosophy of
Physical

0729
0377
0900

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculiure
Goneral
Agronomy
Ammal Cultre and
Nu!n'nonh l
Ammal Pathology
Food Science and
Technol
Forestry o?%Ydehfo
Plant Cultuie
Plant Pathology
Plant Physiology
Range Management
Wood Technology

Biol
a);mrnl

Anatomy
Brostatistics

Lmnolog
Mucrobnoﬁ)gy
Molecular
Neuroscience
Oceanagraphy
Physiology
Radiaton
Vaterinary Science
2oology
Biophysics
General
Medical

EARTH SCIENCES

Biogeochemish
Goochemustry v

0473
0285

0475
0476

0359
0478
0479

Psychol 0525
Rending 0535
Religious 0527
Sciences 0714
Seconda 0533
Soaial Sciences 0534
Socioiogy of 0340
Special 0529
Teacher Training 0530
Technol 0710
Tests and Measurements 0288
Vocahonal 0747
LANGUAGE, LITERATURE AND
LINGUISTICS
tanguage
%er?erol » 0679
Ancient 0289
Linguishics 0290
ordern 0291
Literature
General 0401
Classical 0294
Comparghve 0295
Medieva 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian {English) 0352
Canadan {French) 0355
Engl'sh 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314
Geodesy 0370
Geology 0372
Geophysics 0373
Hydrology 0388
inerology 0411
Paleobotany 0345
Paleoecology 0426
Paleontology 0418
Paleozoology 0985
Palynol 0427
Physucnwpogmphy 0363
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIEMCES

Environmental Sciences 0748
Health Sciences
General 0566
Audiology 0300
Chemotherapy 0992
Denhistry 0567
Educahon 0350
Hospital Manogement 0769
Human Development 0758
immurol 0982
Medicine ond Surgery 0564
Mental Heolth 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health an
Therapy 0354
Ophthnﬁnology 0381
Pathclogy 0571
Pharmacology 0419
Pharch¥ 0572
Phg«ca' herapy 0382
Public Health 0573
Radiology Q574
Recreaton 0575

PHILOSOPHY, RELIGION AND
THEOLOGY

Philosophy
Religion

nera
Bcllbhccl Studies
er
Hnsk?r{' of
Philosophy of
Theology

SOCIAL SCIENCES
American Studirs
Anthropolog
Archaeology
Cultural
Physical
Business Admin stration
General
Accounting
Banking
Management
Marketing
Canadian Stodses
Economics
Genera
Agricultural
Commerce Busiress
Enonce
1510
lic’:‘borry
20
goﬂdore r:
raphy
Gee?gnlobgy
History
General

Speech Pathology
Toxicology
Home Economics

PHYSICAL SCIENCES

Pure Sciences
Chemistry
General
Agricultural
Analytical
Biochemistry
Inorganic
Nuclear
Orgaruc
Pharmaceutical
Physica
Polymer
Radiation
Mathemanhcs
Fhysics
General
Acoushcs
Astronomy and
As?ros:hyslcs
Atmospheric Science
Atomic
Electronics and Electrmg
Elementary Parficles an
High Energy
Flwc?ond Plasma
Molecular
Nuclear
Onhics
Radhation
Sohid State
Stahstics

Applied Sciences

Apphed Mechanics
Computer Science

UMI

SUBJECT CODE
Ancient 0579
Medieval 0581
Modern 0582
Black 0328
Alfrican 0331
Asia, Australio and Oceania 0332
anadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337
Hitary of Science 0585
Lerw 0398
Political Scrence
Genera 0615
International Law and
Relations 0616
Public Administration 0617
Recregtion 0814
Secral Work 0452
Sceivlogy
Crmamalogy and Penclogy 0433
riminology and Penology
Demogropq';{ 0938
Ethnic ond Raciol Studies 0631
Individual and Family
Studies 062¢€
Industnal and Labor
Relations 0625
Public and Sociol Welfare 063C
Social Structure an
Development 070C
Theory and Methods 034¢
Transportation 070§
Urban and Regional Planning 099
Women's Studtes 0452
Engineerin
Generg 0537
Aerospace 0536
Agnicultural 0539
Automotive (540
Biomedical 541
Chemical (7547
Cril 0540
Electromics and Electrical (544
Heat and Thermodynamics (346
Hydraulic (2544
tndustrial (1546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 055
Nuclear 0552
Packaging 0549
Petroleum 0765
Sunitary and Municipal 0554
System Science 0790
Geotechnology 0428
Operations Research 0796
Plashes Technology 0795
Texhle Technology 0994
PSYCHOL0GY
neral 0621
Behavioral 0384
Chnical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiological 0989
Psychobiology 0349
Psychometrics 0632
ial 0451

o

Abstract

This thesis introduces the notion of procedural abstraction in a relational database
system. Procedures are treated as special forms of relations, and called computations.

Like relations, a computation is defined over a set of attributes. Subset of at-
tributes can be defined as input attributes and the remaining attributes are output.
Beyond the notion of procedures that a procedure can have only one set of input and
outpul parameteis, computations are symmetiic: a computation may have a number
of different subscts of input attributes.

Computtations can be recursive and called by other computations.

States are introduced so that computations can remember values from previous
cvaluation and use them in next iuvocations. Stateful computations may be instan-
tiated to have new sets of states,

This thesis contains the design and implementation of a parser for compiling
computations as well as operations to evaluate them. All operations are coincident

with relational algebra, a set of operations for manipulating relations.

Résumé

Cette these introduit la notion d’abstraction procédurale dans un systeme de base
de données relationelle. Les procédures sont traitées comme des formes spéciales de
relations et elles sont nommeées cormputations.

De méme que lrs relations, une computation est définie sur un ensemble d’attributs.
Un sous-enseible d’attributs peut étre défini comne des attributs d'entiée et les at-
tributs qui restent répresentent la sortie. Au dela de la notion de procédures, une
procédure ne pouvant avoir qu'un ensemble de parameties d'entrée et de sortie, les
computations sont symétriques: une computation peut avoir un nombre différents de
sous-ensembles d’attributs d’entiée.

Les computations peuvent étre 1écmsives et appelées par d’autres computations.

Les états sont introduits pour que les conputatious puissent se rappeler les valeurs
des évaluations précédentes et les utiliser dans des invocations ultérieures. Les compu-
tations étatiques peuvent étre instantisées porr avoir des nouveaux. ensembles d’éLats.

Le contenu de cette these inclus la coneeption et 'implantation d'un analysenr
lexical pour la compilation des computations ainsi que des opérations pour leur
évaluation. Toutes les opérations coincident avec 'algebre relationel, un ensemble

d’opérations pour la manipulation des relations.

Acknowledgements

I would like to thank my supervisor, Professor T.H. Merrett, for his invaluable
advice throughout the period of doing this thesis.

I would also like to thank the system coordinator of our ALDAT lab, Heping
Shang, who provided much assistance on the usage of facilities in the lab; Luminita C.
Stancu and Sandro Mazzucato who translated the abstract into the résumé in French;
Jared A. Chiama who proofiead the whole thesis; S. Alan Ezust who provided me
with the LaTeX sciipt for typesetting the thesis.

A special thanks goes to the Canadian International Development Agency (CIDA).
Without their financial support throughout my study program, I would not have been
able to complete my research.

Finally, I would like to dedicate this thesis to my parents, who have becn awaiting

my return home for almost two years. I will be back soon.

iii

Contents

Abstract
Résumé
Acknowledgements

1 Introduction

1.1 An overview of the relational model .

1.1.1 Operations on relations . . .
1.2 Rescarch trends in database models
1.2.1 Object-Oriented models . .
1.2.2 Extended 1clational models
1.2.3 Procedures as relations . . .

1.3 Thesis outline

............

2 An overview of Relix

2.1 WhatisRelix?
2.1.1 Domains and relations . . .
2.1.2 Basic commands in Relix . .

2.2 Relational algebra.

2.3 Domainalgebra

3 User’s manual
3.1 Basic concept of computations . . .

3.2 Stateful computations

iv

e
-

——
o
=

...................

CO =3 €1 B QO e

................... 10

28
................... 28
................... 3

3.3 Operations on computations 33
3.4 Formalsyntax e 37
3.4.1 Identifiers e e 38
342 Typesofvariables. 38
343 Constants L e e 39
3.44 Stateful variables 0 o Lo 40
3.4.5 Expressions L Lo e e e e e e 40
3.4.6 Callingacomputation 43
3.4.7 Declaration of computations 46

3.5 Examples e e 47
3.5.1 Constant computation 47
3.5.2 Imtegerdivision 0L, 48
3.5.3 Mnulti-valued computation 48
3.5.4 Recursive computation L 0L o .. 49
3.5.5 Stateful computationo o0 L. ol
3.5.6 The role of instantiation 53

4 Implementation 55
4.1 Implementationof Relix 55
4.2 Representation of computations L 0L oL, 56
421 Sourcefile o8
422 lcodefile o o8
423 Systemrelations L L oL o 39
4.2.4 Datastructures L L L 0 e e e 66

4.3 Implementation of operations0 L. 69
44 Theparser e e e 74
4.5 Theexecutor o . e e e e 78
4.5.1 Thestorages. e e e 78
452 Theengine e e 79

4.6 Concurrency control L L . 84

v

5 Conclusions 87

5.1 Conclusions

................................ 87
52 Futurework oL 88
5.2.1 Natural join between computations 88

5.2.2 Other joinoperations 89

5.2.3 Successive mode in stateful computations 90

5.2.4 Shared states in computations 91

525 Arrayofinstances. L ... 92
Bibliography 93

vi

Chapter 1
Introduction

This thesis documents the implementation of computation, a notion of procedural
abstraction, in a relational database system [37]. The work was done by extending
Rehz, a relational database system developed at MceGill.

Computations provide a mechanism of storing procedures or pieces of programs
in a database. One ecan then use computations to evaluate data in the database.
Additionally, computations are treated as special forms of relations. Operations on

computations are designed to coincide with the operations on relations in Relix.

1.1 An overview of the relational modc!

After E.F.Codd fiist introduced the relational database model in 1970 [10], much
research in the atea of 1elational database systems has thrived broadly and rapidly.

Rescarch has been done in the context of:
o database design [9, 19, 20];
o implementation techniques [46, 44, 30);
o database theory [31];
¢ query languages [48, 26);

e concurrency control [18, 27];

o distributed databases [8]:
e database machines {23).

Before we go into details, we shall clarify some terminology here.

The word domain means set of values. For example, the domaiu of student iden-
tifiers is the set of all possible student identifiers.

Suppose Dy, D,, ..., D, are domains. R is a relation on these n domains if it 1s a
set of n-component data, the first component of which is a value on Dy, the second
component flom D, and so on. In other words, the relation R is a subset of the
Cartesian product Dy x Dy X --- x D,. We said that the degree of Ris n.

A name is given to each of the n domains of a relation to telease users from re-
membering the domain ordering of the 1elation. These names ave called the attrbutes
of the relation. One can refer to any domain of a relation by its attribute.

Each element of the set of n-component data is said to be a fuple of the relation.
A tuple can be thought of as the mapping of a set of attributes to a set of values.

A relation must retain the following properties:

e Each attiibute is unique among all attributes of the relation.
o All tuples are distinct from one another.

¢ The ordering of tuples is unimportant.

For example, suppose we want to keep the information of students who are regis-
tered in a course. Student identifiers and names, which are divided into two fields
lastname and firstname, are recorded. A relation, Student, of the student 1ecords
may be represented in table form as in Table 1.1.

We may perceive a relation as a table. An attribute is equivalent to the title
of a column. A tuple is equivalent to a row or record. Hete, stu_ad, lastname, and

firstname are attributes of the relation Student.

(stu.id:“9300435”, lastname: “Smith”, firstname: “Roy”)

is a tuple of the relation Student.

stu.id | lastname | firstname
9300435 | Smith Roy
9213651 | White Adam
9204560 | Ford Watson
9102214 | Lee Sandra
9380009 | Warrant | Roger
9011137 | Pinn Michael

Figure 1.1: An example of a relation

In the relational model, relations are the only data structures that users perceive.

The work of organising data in storage is taken care of by database management
systems (DBMS).

1.1.1 Operations on relations

In order to manipulate data, we nced a set of operations. In the relational model,
this is called relational algebra. Since Codd’s original publication in [11], a number
of variations of relational algebra have been proposed; for example, in [35].

Codd originally defined two groups of four operations each. The first four oper-
ations are tiaditional set operations—union, intersection, difference, and Cartesian
product. The second ones are special relational operations—select, project, join, and
divide. All operations take relations as operands and return a relation as result.

Union takes two relations which are of the same degree (say n) and for every i
(i=1,2,...,n) the i*" domains of the two relations are the same; and returns a relation
that is created by copying tuples from its operands, and eliminating duplicate tuples.

Intersection takes two compatible relations, as in the union operator; and returns
a relation containing ouly those tuples that appear in both operands.

Difference takes two compatible relations, as in the union and intersection opera-
tors; and returns a relation containing those tuples that appear in the first operand
but not in the second operand.

Cartesian product takes two relations; and returns the relation that contains all

tuples generated by combining every pair of tuples, one from each of the two operands.

Selection takes a relation and a condition; and returns a subset of the relation
contains those tuples of the operand that satisfy the condition.

Projection takes a relation and a list of attribute(s); and returns a relation of the
specified attribute(s) that contains all tuples of the operand with duplicate tuples
removed.

If we think of a relation as a table, a selection is an extraction of the relation in
the horizontal way and projection is an extraction in the vertical way (with duplicate
rows removed).

Join takes two relations and a condition; and returns a relation consists of ail
possible concatenated pairs of tuples, one from cach of the two operands, such that
the condition is true. Join is equivalent to the selection on the condition of the
Cartesian product of the two operands.

Division takes two relations. One is a dividend of m+n attiibutes. The other is a
divisor of n attributes, which are also defined on the dividend. The operator compares
sets of the n attributes of the dividend on the same value of the m attiibutes to the
set of all tuples of the divisor; and returns a relation of tuples of the m attributes
whose set of the n attributes cover all tuples of the divisor.

Details on relational algebra can be found in (11, 36, 15, 16, 14].

1.2 Research trends in database models

The first paper on the relational model was introduced by Codd in 1970 [10]. In
1979, Codd published the extended relational model RM/T [12]. He wrote a hook
describing what he called Version 2 of the model in 1990 [14]. The features in the
relational model have been increased fiom “nine structural features, three integrity
features, and eighteen manipulative features” in the RM/T model (referred in [17])
to “18 classes of features” in the Version 2 [14).

The use of database systems has grown rapidly. Nowadays people require database
systems to store and manipulate not only tableau format of data; but also parts of
text documents, programs, maps, or diagrams [7]. Applications of databases vary

from business applications to science/engincering applications such as computer-aided

4

design (CAD), computer-aided manufacturing (CAM); office information systems
(OIS); geographical information systems (GIS); and hypertext/hypermedia. One of
the needs of the latter types of applications is the ability to store and manipulate
complex data structures. The relational model, unfortunately, because of its simple
data structure, has been claimed to not support complex objects. Furthermore, in
most cominercial relational database systems, data is retrieved or updated through
database languages, such as SQL. ! Database languages, particularly SQL, lacks the
computational completeness [4]. That means the languages cannot perform all com-
putations, such as recursion and looping that can be done in ordinary programming
languages. To counter this problem, the database languages are embedded in host
languages, such as Pascal, PL/1, C, etc. When a program reaches a database com-
mand, it passes the command to the database system for evaluation and the result
is returned back to variables in the main program. Zdonik and Maier criticised this
approach led to “the impedance mismatch between the data manipulation language
(DML) of the database and the general-purpose language in which the rest of the
application is written” [1].

In the following two sections, we look at two approaches of database models that
have been proposed to solve the above problem. We then discuss our approach in the

last section.

1.2.1 Object-Oriented models

Recently, the concept of object-orientation has been flourishing in many fields of
computer science. Among them are object-oriented analysis (OOA), object-oriented
design (OOD), object-oriented programmming (OOP), and object-oriented database
management system (ODBMS). ODBMSs are, more or less, influenced by the concept
of OOP. We briefly discuss the concept of OOP here.

A programming language is considered an OOP language if it embodies the fol-

lowing concepts:

'SQL, stands for Structured Query Language, originally pronounced se-quel, was first defined
by Chamberlin and others at the IBM Rescarch Laboratory in San Jose, California (cited from [15}
p.95.)

¢ Classes and objects

A class contains data and operations on data. Operations are called methods
in OOP terminology. One can use a class by declaring a name belonging to
that class. This process is called instantiation. The name becomes an object of
the class. Theoretically, one can access the data of an object ouly by calling

methods provided by the class of the object.

Class hierarchies

A class can derive data and operations from other classes. For example, persons
and students have the following common properties: name, age, and sex. How-
ever, students may have some additional specific properiies, such as student
id and major. In OOP, classcs such as persons are called parent classes; and
students are called subclasses. Subclasses may detive not only common data
elements but also operations on data from paient classes. This mechanism is
called inheritance. A class can be a subclass of its parent class and, at the same
time, a parent of other classes. The relationships then form as hierarchical trees
of classes. The benefit is we can reuse data and operations of parent classes
without rewriting them in subclasses. Any changes on operations are made
in the parent classes only, instead of iteratively making changes to the same

operations in several subclasses.

Overloading and late binding

In fact, the concept of overloading is not new and has been used in ordinary
programming languages for a long time. The example is the operator plus
(+). When we write two statements, say, 3 + 4 and 3.5 + 4.2, the language
distinguishes the plus operators of these two statements. The first plus operator
is an “integer” plus but the latter is a “real” plus that are totally different from
the implementation point of view. However, users do not have to realise that,
In OOP, the concept is applied more generally. We can have two methods with
the same name. For example, we can have a print() method in class integer and
the same name in class reul; compared with a printint() for printing integers

and another print_real() for reals in ordinary progiamming languages.

Generally, ODBMSs are the database systems that allow data to store beyond
tableau format of the relational model. It can deal with complex data structures as
in programming languages. Another possible way of thinking of ODBMSs is as an
OOP with persistent data, in the sense that data in the programs lives beyond the life
of programs. The ability to manipulate data and perform computations within one
single system is the strong point that is claimed to solve the problem of the impedance
mismatch between data manipulation languages (e.g., SQL) in the relational model
and ordinary programming languages.

Although ODBMSs have some advantages over relational database management
systems (RDBMSs), no standard specification in ODBMSs has been defined, as
Codd’s original paper [10] contributed to RDBMSs. Varieties of research proto-
types and commercial products are done or underway. Among these aie Encore [49),
EXODUS [6], Gemstone [5], Iris [21], Oz {4], ObjectStore [29], Versant [47].

1.2.2 Extended relational models

Another direction of the research in database models is to extend the relational
database systems to support complex objects. We discuss an example of this ap-
proach.

POSTGRES is an extended relational database system developed at University of
California, Berkeley by Stonebraker and his team. The system was extended from an
original relational database system called INGRES. Some of the goals of POSTGRES
were [42]:

e Support complex objects

o Allow new data types, new operators, and new access methods to be included
in the DBMS

e Support triggers and rules
o Make as few changes to the relational model as possible

The query language used in POSTGRES is POSTQUEL. It is a modification of

QUEL,? the original query language used in INGRES.

POSTGRES allows users to use C functions in query commands in order to cope
with complex queries. For example, a query “Get the names of students whose final
grade is A” may be written in POSTQUEL [41] as follows:

RETRIEVE (Student.Name)
WHERE grade(Student.midtern, Student.final) =’'A’

Here, grade() is a C function that requires two parameters, midterm mark and
final mark; and retuins the grade.

This may solve the problem of computational incompleteness of the relational
model. In addition, since POSTGRES is still based on the concept of the relational
model, it implies that one who has been familiar with the 1elational model may

capture the idea in a shorter time than start learning on a new model.

1.2.3 Procedures as relations

The approach in this thesis generalises the notion of procedural abstraction in ordi-
nary programming languages as a special form of relations and adapts the existing
operations on relations to simulate the ones on proccdures. We shall first introduee
the concept of domain algebra, which sparks our approach.

Domain algebra is a set of operations that manipulate the attiibutes of relations.
The mechanism of domain algebra allows one to perform operations among attiibutes
of the same tuple and on the same attributes over a set of tuples. For example, a
relation Mark has three attributes -stuid, midterm, and final. Suppose we want
to compute the total mark of cach student, which is the summation of the midterm

mark and the final mark. We may write down the formula of the total mark as below:

total = nudterm -+ final

PRTV [45] treated the above formula as a relation of infinite tuples on three

attributes, total, midterm, and final. We might then use the natural join of the

ZQUEL, derived from QUEry Language, is an implementation of the relational calculus, a coun-
terpart of the relation algebra. ([15) p.209)

relation Mark and the above relation to perform the computation of the attribute
total.

Obvionsly, we cannot store a relation of infinite tuples explicitly. It must be a
virtual relation. Merrett suggested that, instead of forming those three attributes
as a virtual 1elation, we may consider total as a virtual attribute defined on the two
attributes, midterm and finel. The value of total can be actualised ca any relation
containing the attributes midterm and final by naming the attribute name in a pro-
jection. [36]

There are two types of operations in the domain algebra—horizontal and vertical
operations. The horizontal operations are used to «leseribe the relationship within a
tuple. The relationship can be any arithmetic expressions, as the example of total
above, boolean expressions, or conditional expressinn (if-then-else).

The summation might be a simple example to demonstrate vertical operations of
domain algebra. Suppose we want to sun the final mark of all students. The formula

may be written as:
sum_final = red + of final

where red indicates a reduction operation and the operator + is one of many oper-
ators that can be specified. When sum_final is actualised, its value is equal to the
result from the + operation of the values in the attribute final of all tuples.

Although the domain algebra allows computations over attributes of relations, it
does not provide the iteration mechanism such as do-while statement. Our approach
is to move back to the original idea of virtual relations in PRTV. We describe com-
putations among attiibutes as special relations, called computations. Attributes of
relations perform as parameters of computations. 'We simulate the iteration mecha-
nism by allowing computations to call themselves recursively. Moreover, we extend
operations on relations (e.g., selection, projection, join) to computations to simulate
the calling operation.

We also intioduce states, a notion of persistent data element in ODBMS, into
computations. States are inaccessible but can be updated via operations on com-

putations. Moreover, we borrow the concept of instantiation in OOP/ODBMS to

generate new copies of states. This leads to a limited form of object identity [25] to

distinguish instantiations.

1.3 Thesis outline

This thesis is divided into five chapters. Chapter 1 provides an overview of the re-
lational model as well as research trends in other database models. We end with
the motivation of our approach. Chapter 2 introduces the general concept of Relix.
Chapter 3 is the user’s manual, which shows the syntax and semantics of compu-
tations, operations on computations, as well as examples. Chapter 4 discusses the
implementation details. Chapter 5 is the conclusions. Some proposals for future work

are also presented in the last chapter.

10

Chapter 2
An overview of Relix

Relix is briefly described in this chapter. The purpose is to provide enough back-
ground for readers to be able to understand the rest of the thesis. Therefore, we
will present only a subset of Relix commands which relate to this work. Section 2.1
introduces the concept of Relix and some basic commands. Section 2.2 describes the
relational algebra. Scection 2.3 describes the domain algebra. Readers should bear in
mind that there is no intention of presenting all the details of Relix in this thesis.
The complete reference of Relix can be found in [28].

To avoid any confusion, the following convention is applied throughout the rest

of the thesis:
o The boldface style is used for reserved words.

o The typewriter font is used for program output, examples, or commands that

one types in.

o Anything enclosed in a pair of angle brackets (<...>) is a label which one has

to substitute with some sequence of characters.
o Anything enclosed in a pair of single quotes (‘...") is to be typed as it is.

o Anything enclosed in a pair of square brackets ([...]) is an optional word or
phrase.

11

o The symbol ‘|’ is an alternation notation. One can use the words/phrases on

either side of |’.

2.1 What is Relix?

Reliz, which stands for Relational database on Unix, is the interpreter that accepts
relational algebra and domain algebra statements as described in [36]. It has been
developed under the ALDAT project at McGill University since 1986. The main
purpose of developing Relix is for use as an experimental version to demonstrate the
concept of the relational database model.

The language used in Relix is divided into two main categories demain algebra
and relational algebra. As implied by their names, domain algebra is a set of oper-
ations on domains; and relational algebra is on relations. In the interactive mode,

Relix gives the prompt ‘> whenever it is ready to receive input from users.

2.1.1 Domains and relations

In order to create a relation in Relix, onc has to explicitly create the domains that
the relation is defined on. Domains can be any of these five atomic types boolean;
two types of integer, short and long; one type of floating point, 1cal; and string.

To create a domain, use the following syntax:

domain <dom-name> <dom-type>;
For example,

> domain stu.id intg;

> domain lastname strg;

The first statement tells Relix to create a domain stu.id of type integer. The
second one is to creatc a domain lastname of type string. However, if the domain
already exists and has anotlier type, there are two possible actions:-

1. An error message is generated if the domain is used by any relations and/or
other domains, or,

2. An old domain is overwritten by the new one.

To create a relation, use the following syntax:

12

relation <rel-name>(<dom-list>) ;
For example,
> relation Student(stu_id, lastname, firstname);

Relix will create a relation Student that has three attributes, namely, stu.id,
lastname, and firstname. All the above attributes have to be created as domains
before the relation is created.

We shall note that, in Relix, any relation of degree 1 is called scalar relation. We
can perform scalar operations, such as addition, on scalar relations. [38] A singleton
scalar relation, which contains only one tuple, may be viewed as a single value. This
concept permits us to use relations in arithmetic and other expressions, which we will

exploit in chapter 3.

2.1.2 Basic commands in Relix

e show domains or a domain
Syntax
sd!
or
sd!!<dom-name>
Description

Relix will show the name, type, and other information associated with all

domains in the system or a particular domain.
Example

>sd!lastnanme

e show relations or a relation
Syntax
sr!
or

srl{<rel-name>]

13

Description

Relix will show the name, degree, and other related information of all rela-

tions in the system or a particular relation.
Examples

> sr!!Student

show details of relations or a relation
Syntax
srd!
or
srd!![<rel-name>]
Description

Relix will show all the domains defined on all relations in the system or a

particular relation.
Examples

> srd!!Student

print a relation
Syntax
pr!!<rel-name>
Description
Relix will print all data in the specified relation.
Examples

> pr!!Student

delete a domain
Syntax

dd!!<dom-name>

14

Description
Relix will delete the specified domain.
Examples

> dd!!stu_id

¢ delete a relation
Syntax
dr!!<rel-name>
Description
Relix will delete the specified relation.
Exaniples

> dr!!Student

¢ quit
Syntax

q!

2.2 Relational algebra

Relational algebra is a set of operations on relations. Operands and results of rela-
tional algebra are always relations. The relational algebra in Relix is an extension
set of Codd’s original relational algebra [10, 11], proposed by Merrett [35].

Two relations are used as examples throughout this chapter:

15

Student (stu_id, lastname, firstname)

9300435 Smith John

9213651 White Adam
9204560 Ford Watson
9102214 Lee Sandra
9380009 Warrant Roger
9011137 Pinn Michael

Mark(stu.id, assignment, midterm, final)

9011137 25 18 45
9102214 17 13 32
9204560 23 10 20
9213652 21 18 40
9380099 28 17 35
9300345 27 16 44

Some relational algebra operations are:

¢ assignment
Syntax
<rel-name> <- <rel-expression>;
Description

Relix will creates a new relation of the name on the left hand side by copying

all the attributes and data from the relation on the right hand side.
Examples

> New_mark <- Mark;

¢ increment

Syntax

16

<rel-name> <+ <rel-expression>;
Description

Relix will appends all but the duplicated tuples of the relation on the right
hand side to the relation on the left hand side. Both relations must be defined

on the same set of attributes.
Examples

Suppose there is a relation Studentl that has the following tuples:

Studenti(stu.id, lastname, firstname)

8905412 Roy Patrick
9213651 White Adam
9102214 Lee Sandra

8730027 Muller Kirk

The statement
> Studentl <+ Student;

will give the following result to the relation Studenti.

stu.id lastname firstname
8730027 Muller Kirk

8905412 Roy Patrick
9011137 Pinn Michael
9102214 Lee Sandra
9204560 Ford Watson

9213651 White Adam
9300435 Smith John
9380009 Warrant Roger

relation: "Studentl" has "8" tuple(s)

17

selection
Syntax
where <selection-clause> in <rel-expression>
Description
Selection is an operation that selects the tuples in the relation that satisfy
the condition in the selection clause. The result of the selection operation is

a relation that can be used in any operation where a relation expression is

required as an operand, e.g., in the assigninent statement.
Examples
> smith <- where lastname = "Smith" in Student;

The result is

stu_id lastname firstname
9300435 Smith John

relation: "smith" has "1" tuple(s)

projection
Syntax

‘[<projection-list>‘]’ in <rel-expression>
Description

Projection is an operation that extracts the subset of attributes specified in
the projection list of the relation. The result is a relation that can be placed

wherever a relation expression is required as an operand.

Examples

> stu_name <- [firstname, lastname] in Student;

The result is

18

firstname lastname

Adam White
John Smith
Michael Pinn
Roger Warrant
Sandra Lee
Watson Foxd

relation: "stu_name" has "6" tuple(s)

o T-selector
Syntax
‘['<projection-list>‘]' where <selection-clause> in <rel-expression>
or
<rel-name>‘{’ <value>‘;’ <value>‘, ... ‘}’
Description
T-selector is a combination of selection and projection.

The second syntax is called positional notation. One can supply values for
attributes as if the attributes were ordered in the same way as when the relation
was declared. Any positions of attributes that left biank are output. Compared
to the original T-selector syntax, the unsupplied attributes are equivalent to
the projection list; and the supplied attributes are the selection clause. The
notation is quite limited because it allows users to express selection clauses

which use the equal sign and the AND operator only.
Examples
> 3rd_year <~ [lastname] where stu.id < 9200000 in Student;

The example shows that the relation 3rd.year contains all tuples of the
attribute lastname with stu.id less than 9200000.

> Lee’s._id <- Student{,"Lee","Sandra"}

19

The above example shows the command that supplies the value “Lee” and
“Sandra” for the attributes lastname and firstname respectively of the re-
lation Student. The position of the first attribute, stu.id is left blank to

designate the output attribute. The equivalent version of the example is

> Lee’s_id <- [stu.id] where lastname = "Lee" and

firstname = "Sandra" in Student

p-join
Syntax

<rel-expression> ‘[’ [<dom-list>] <p-join-op>

[<dom-list>] " <rel-expression>

Description

p-join is a family of join operatiens that combine two relations by operations

on sets, e.g., union, intersection, and difference. Two of them are mentioned:

- natural join is an operation that combines tuples of the two relations
that have equal values on the join attributes. We used the keyword ijoin, which
comes from intersection join, or natjoin to represent natural join. Formally,
we can define the natural join of R(U,V) and S(X,Y) on the join attributes U
and X as

R[Uijoin X] S = {(w,v,2,y) | (u,v) € Rand(x,y) € S and v = x}

- union join is an operation that is a union of the set of tuples from the
natural join, with the tuples from the relations of hoth sides that are not equal
to each other in the join attributes, expanded the missing attributes by the
DC null value.! Union join is represeuted by the keyword ujoin. We formally
define the union join of R(U,V) and S(X,Y) as

R[U ujoin X] S = R[U ijoin X] S Uleft wing U right wing
left wing = {(u,v, DC,DC) | (u,v) € R andVy((u,y) € S)}
right wing = {(DC, DC,z,y) | (z,y) € S and Vv((z,v) € R)}

IDC stands for “don’t care”, a special value that describes irrelevant information (36}

20

Examples
> RijoinS <- Student ijoin Mark;

The result is

stu.id lastname firstname assignment midterm final

9011137 Pinn Michael 25 18 45
9102214 Lee Sandra 17 13 32
9204560 Ford Watson 23 10 20

relation: "RijoinS" has "3" tuple(s)
> RujoinS <- Student ujoin Mark;

The result is

stu_id lastname firstname assignment midterm final

9011137 Pinn Michael 25 18 45
9102214 Lee Sandra 17 13 32
9204560 Ford Watson 23 10 20
9213651 White Adam DC DC DC
9213652 DC DC 21 18 40
9300345 DC DC 27 16 44
9300435 Smith Roy DC DC DC
9380009 Warrant Roger DC DC DC
9380099 DC DC 28 17 35

relation: "RujoinS" has "9" tuple(s)
e o-join
Syntax
<rel-expression> ‘[’ [<dom-list>] <a-join-op>
[<dom-list>] J" <rel-expression>
Description
o-join is a family of join operations that combine two relations by set com-

parisons. Three of them are discussed here:

21

- inclusion (sup or div) of R(U,V) in S(V) is an operation that gives
a relation RsupS(U) such that the scts of V of the same value u in R are a

superset of the set of V in S.

- natural composition (icomp) of B(U,V) and S(V) is an operation that
gives a relation RicompS(U) such that some elements of the sets of V of the
same value u in R arc elements of the set of V in S. In fact, it is a relation that

comprises all attributes but the join attributes of R [1join] S.

- separation (sep) of R{U,V) in §(V) is an operation that gives a relation
RsepS(U) such that the sets of V of the same value uin R have no element that
belongs to the set of V in S.

Examples

To demonstrate the o-join, two relations are given.

Register(student, course) CompSci(course)

Smith CS100 CS100
Smith C5202 CS202
White 5100 CS208

White CS5202
White C5208
White MA100
Ford MA100
Lee CS202
Lee MA100

Suppose Register is a relation of the courses that students are registered
in, and CompSci is a relation of all the courses given by Computer Science
Department. The question “Find students who are registered in all the courses

given by Computer Science Department?” is written as:

> RsupS <~ Register sup CompSci;

22

Register
(student, course)
Smith CS100 .
Smith CS202 CompSci
\ (course)

White CS100

White ~ C5202 < gg;gg
White CS208 CS008
White MA100

Ford MA100 }

Lee CS202

Lee MA100

Figure 2.1: Set comparisons between two relations

In Figure 2.1, the four sets on the left hand side are tuples of the relation
Register grouped on the same value of attribute student. The set on the right
hand side contains tuples of the relation CompSci. The inclusion operation picks

the students whose set of courses are a superset of the set of courses on the right
hand side.

The result is:

student
White

relation: "RsupS" has "1" tuple(s)

The question “Find students who are registered in some of the courses given

by Computer Science Department?” is written as:
> RicompS <- Register icomp CompSci;

The natural composition operation does the intersection between the four

23

sets and the one on the right hand side and picks the students whose result
from the intersection are not empty.

The result is:

student

Lee

Smith

_White

relation: "RicompS" has "3" tuple(s)

The question “Find students who are registered in none of the courses given

by Computer Science Department?” is written as:
> RsepS <- Register sep CompSci;

The separation opcration does the intersection and picks the students whose

results from the inteisection are empty.

The result is:

student
Ford

relation: “RsepS" has "1" tuple(s)

In general, the second operand may have some attributes that are not the at-

tributes of the first operand. The g-join between R(U,V) and S(V,Y) is done by
grouping sets of V of the same value u in R (say U) and sets of V of the same value

y in S (say Y); compari.g each of sets in U to each of sets in Y according to the con-

dition of the o-join (e.g., superset, non-empty intersection, empty intersection); and

returning a relation on attributes (U,Y) of the tuples that satisfy the above condition.

2.3 Domain algebra

Besides creating a domain by declaring its type as in section 2.1.1, one can build

a new domain by cxpressing the domain as operations on existing domains in the

system. This mechanism is called domain algebra [36].

24

The syntax of the command is
let <dom-name> be <dom-expression>;
Relix will create a domain name associated with the domain expression. Domain

expressions can be written in one of the following types:

e scalar operations

This is the simplest type of operations. Basically, the expressions deal with
arithmetic operations; the conditional expression—if-then-else; and constants.

Below are some examples.

- constant doinain
let one be 1;
let myname be "Joe";
let TRUE be true;
Note that true is a reserved word representing the boolean value “true”.
The capitalised TRUE is a domain name.
- unary operators
let FALSE be not TRUE;
let debt be -income;
— binary operators
let mark be assignment + midterm + final;
let total._interest be principle * time * interest._rate;
—~ conditional expression
let grade be if mark > 50 then "Pass" else "Fail",;
— predefined functions
let area.triangle be sqrt(a**2 + b¥*2 + c*x2) / 2;

Note the area of a triangle if the length of the three sides of the triangle
are a,b and c is a half of the square root of the summation of the square

of each side. Here sqrt is a predefined function.

— type casting
let 1_intg be (long salary);

Here, salary is a domain of type real. The new domain, 1_intg is defined

to be a long integer that has a value equivalent to salary.
o reduction

Suppose we want to find a summation of an attribute in a relation. We need
a mechanism to process values across tuples of the relation. Merrett called this

mechanism the vertical operations [30].

Simple reduction produces a single result from the values of all tuples of a
single attribute in the relation. The syntax is

let <dom> be red <opr> of <dom>;
For example,

let sum be red + of mark;

let cnt be red + of 1;

The first statement expresses the domain sum as a summation of domain

mark. The second is the summation of the constant 1.

e equivalence

Reduction can also produces a number of different results from different sets
of tuples in a relation. Instead of calculating from all tuples, we group tuples

into different sets by specifying the “grouping” attributes. The syntax is
let <dom> be equiv <opr> of <dom> by <dom-list>;
For example,
let sum_by_type be equiv + of product by type;

The statement gives the summation of the domain product of the same value
of the domain type.

26

e functional mapping

Functional mapping performs the accumulation of the operator specified by

the “ordering” attributcs. The syntax is
let <dom> be fun <opr> of <dom> order <dom-list>;
For example,

let accum_prod be fun + of product order year;

e partial functional mapping

Partial functional mapping is a functional mapping controlled by the “group-

ing” attributes. The syntax is
let <dom> be fun <opr> of <dom> order <dom-list> by <dom-list>;
For example,

let acc.prod_type be fun + of product order year by type;

27

Chapter 3
User’s manual

We devote this chapter to the detail of computations. Section 3.1 explains the concept
of computations. Section 3.2 introduces a special type of computations that have
hidden states. Then we propose the operations on computations in section 3.3 and
formally describe the grammar and semantics of computations in section 3.4. We end

the chapter by showing some examples.

3.1 Basic concept of computations
The notion of computations covers three aspects:

¢ it represents procedural abstraction;

e it is symmetric;

o thercfore, it is close to the notion of constraints as in (43].

For example, a constraint vel = dist/time cxpresses a relationship between ve-

locity, distance, and time, a fundamental physic law. The computation is

28

comp Displacement(dist, time, vel) is

def vel = dist / time;

vel <~ dist / time

alt .
dist <- vel * time

alt

time <~ vel * dist;

Here, Displacement is the name of the computation. Dist, time, and vel are
attributes.

The body of a computation begins after the keyword is. We say that computations
represent procedural abstraction because each computation contains algorithms for
evaluating the values of subsets of attributes, when values are supplied for the rest
of the attributes. These algorithms, which we call blocks, are alternative forms that
express any attribute(s) to be derived from the rest of attributes. We do not propose
mechanisms to enforce consistency of those blocks: it is up to users to write code for
cach block and to relate them to one another.

A special type of blocks called predicate clause defines the constraint of a com-
putation. It begins with the keyword def followed by a boolean expression, which
is used when one supplies valaes for all attributes of the computation. The output
value is the resuit of evaluating the boolean expression, which is a boolean value.

In this example, the statement
def vel = dist / time;

is the predicate clause of the computation Displacement. When one supplies values
for ali the attributes, the ahove statement is evaluated and a result of boolean value
is returned.

Ordinary blocks are separated from one another by the keyword alt. Blocks may
contain one statement or a sequence of statements.

In this example, each block of the computation Displacement contains only one
statement. The fisst block is used when one supplies values for the attributes dist
and time. Then, the value of the attribute vel is computed by the statement in the

block and returned as an output attribute. In the same manner, if one supplies values

29

for the attributes vel and time, then the value of the attribute dist is computed,
by the statement in the second block, and returned. The third block is used when
one supplies values for the attributes vel and dast.

Computations are symmetric. A computation can has more than one set of input
attributes. This concept makes computations go beyond the notion of procedures or
functions that each procedure has only one set of input and output parameters.

We can represent the type of the above computation as the union of the type of

the predicate clause and the types of the blocks as follows:

(dist:real x time:real X wvel:real) — boolean |
(dist:real x tvme:real) — vel:real |
(time:real x vel:real) — dist:real |

(dist:real x vel:real) — time:real

Technically, when one supplies values for attributes, the system scearches for the
corresponding type, picks up the block of that type and evaluates the predicate clanse
or the statements in the block. For example, suppose one supplies values for dist

and time. The system will find the type
(dist:real x tame:real) — vel:real

and evaluate the value of vel. Likewise, one may supply values for time and vel.
This time, the type

(time:real x vel:real) — dist:real

is searched and the value of dist is evaluated using the statement in the block
corresponding to the type. In contrast, if one supplies only a value for dist, the

system cannot evaluate because the type
dist:real — (time:real x wvel:real)

is not defined in the computation and an error message is returned.

Merrett suggested that we can think of computations as compressed forms of
relations [37]. For the purpose of illustration, let us assume the domains of the
three attributes of the above example are positive integers. Then we may write the

computation Displacement as a rclation of infinite tuples as helow:

30

Displacement(dist, time, vel)

i 1

2 1

3 1 3
2

4

6

From the above format, we may simply imagine that if one supplies values for any
two attributes, the process of getting the answer is the table lookup algorithm. In

Relix, it is the T-selector. For example, the statement
> R <~ {vel] where dist=6 and time=2 in Displacement;

will return a scalar relation of one attribute, vel, that has one tuple of value 3 to the

name R.

This implies that the T-selector can be applied to computations as well. Further-
more, Relix provides the positional notation, which is somehow closer to the notation
of calling a procedure. Its syntax may be easier to understand than the general

T-sclector syntax when applied to computations. For example, the statement
> R <- Displacement{6,2,};

is equivalent to the above T-selector example. Likewise, the syntax allows the last

comma to be omitted whenever the last attribute is an output attribute. Therefore,

we can also write as below:
> R <- Displacement{6,2};
The statement

> R <- Displacement{,2,3};

31

will cause the computation Displacement to use the block of the statement
dist <- vel * time. The result relation from the evaluation that has a tuple of

the attribute dist of the value 6 will be assigned to the relation R.

3.2 Stateful computations

Readers may notice that computations discussed in the previous section are purely
functional. In other words, a computation will give the same answer if one supplics
the same values for the same set of input attributes no matter how many times
s/he evaluates it. In this scction, we introduce another type of computations called
stateful computations. They are computations that have hidden states. These states
are persistent and affect the output in next invocations.

For example, a simple stateful computation, an accumulator

> comp Accum(no#:seq, in, total) is
total <~ old total initial O + in;

The seq keyword, as in no#:seq, states that the attribute no# is a sequencing
attribute. Its function is to designate the order of tuples in relations joining with
stateful computations. As a matter of fact, we do not need sequencing attributes in
any operations on computations except the natural join operation. At this moment,
readers are asked to think of any sequencing attribute as an extra unused attribute
in stateful computations.

The old keyword, as in 01d total, introduces a stateful variable. It is automati-
cally updated by copying the value from the variable of the same name at the end of
the evaluation.!

The keyword initial scts the following constant as ar initial value to the stateful

1This mode of evaluation is correspondent to the simultaneous mode in [40], which all states
are updated in parallel at the end of the computation. Another possible mode of evaluation is the
successive mode, which the value of a vaiiable is updated to its stateful variable immediately after
change (by the assignment statement). These may apply to methods of finding solution of lincar
equations; the simultaneous mode applies to the Jacobi iterative method and the successive mode
to the Gauss-Seidel iterative method.

32

variable name that places before it. (The above expression will be parsed as (old
total initial 0) + in.)

Below is an example of an evaluation of the computation Accum.
> R <= Accum{300};

will give a tuple of the attribute total of the value 300 to the relation R.

Repeatedly, we enter the command again,
> R <- Accum{300};

Now, the value is 600.
The result is 600, instead of 300, because the output attribute total depends on
not only the input attribute in but also the stateful variable old total, which has

the value 300 at the titne before the second execution.

3.3 Operations on computations

Operations on computations are designed to be similar to the ones on relations. We
even reuse two commands on relations: delete and print.
The commands on computations are:
e delete
Syntax
dr!!<comp-name>
Examples
> dr!!Displacement
Description

The command deletes a computation. Any computation that has been called
with instantiation by other computations cannot be deleted until its callers have

been deleted. We will discuss more on the calling mechanism in the next section.

33

e print
Syntax
pr!!<comp-name>
Examples
> pr!tAccum
comp (no#:seq, in, total) is
total <- old total initial 0 + inm;
Description

The command prints the body of a computation

o show

Syntax
sc!

or
sc!!<comp-name>

Examples
> sc!
Displacement(dist:real, time:real, vel:real)
[dist time vel] -> []
[dist time] -> [vel]
[time vel] -> [dist]
[dist vel] -> [time]
Accum(no#:long,seq, in:long, total:long)

[no#,in] -> [total]

34

> sc!lAccum

Accum(no#:long,seq, in:long, total:long)

(no#,in] -> [total]
Description

The command shows the types of all computations in the system or a par-
ticular computation.

The statements on computations are:

o create

We discuss the syntax and semantics of the computation in the next section.

¢ assignment
Syntax
<new-comp-name> <- <comp-expression>;
Examples
> NewDisp <- Displacement;
Description

An assignment creates a new computation with a name on the left hand side
(LHS) by copying the body and hidden states, if any, from the computation
on the right hand side (RHS). The operation fails and an error message is
given when the name on LHS has already been used. This is different from the
assignment on relations. The LHS name will be overridden in the assignment

statement on relations whether it has already been used or not.?

¢ instantiation

Syntax

?The difference of the assignment operator on computations and relations is a design decision.
We protect the case that one may lose his/her work when a computation is accidentally overridden.
The cost we pay is the flexibility of assigning to any name freely, as in the case of relations. However.
. one might assign a computation t¢ an already used name by deleting the name first.

35

new <comp-name>
Examples

new Accum
Description

An instantiation takes a computation as an operand and creates a new com-
putation by copying the body and hidden states, if any, from the operand,
However, the hidden states of the result computation are reset to their initial
values. An instantiation can be placed wherever a computation expression is

required, e.g., in the assignment statement.

NewAccum <- new Accum;

¢ T-selector
Syntax
‘['<projection-list>‘]’ where <sclection-clause> in <comp-expression>
or
<comp-expression>‘{’ <value> ‘" <value>‘," ...}’
Description

T-selector is a mechanism of cvaluating a computation by supplying values
for a subset of attributes and receiving the values of the rest as results, which
are always relations. When using the first syntax, it is allowed to use only the
equal sign (=) and AND operator in the sclection clause.

e natural join
Syntax
<comp-name> (ijoin | natjoin) <rel-expression>

or

<comp-name> ‘[’ <attribute-list> (ijoin | natjoin)

<dom-list> ‘]’ <rel-expression>

36

Description

We only consider the natural join operation between a computation and a
relation. The operation behaves as if the relation were fed in tuple by tuple to
be evaluated in the computation. The output is a relation whose attributes are
the union of the attributes of the computation and the attributes of the input

relation.

In stateful computations, different orders of tuples fed in may lead to differ-
ent outputs. We solve the problem by introducing a set of attributes used as
sequencing attributes, for example, the attribute no# in the computation Accum
in the previous section. Then, before the evaluation step, we sort the input re-
lation on the sequencing attributes. In the case where there is more than one
tuple on the same scquencing attribute(s) only the first tuple is evaluated and

the rest are ignored.

3.4 Formal syntax

We illustrate the formal syntax of computations in this section. The syntax will be
given in BNF (Backus-Naur Form). We give the description before the syntax and
then show some «xamples. The convention of the BNF is briefly summarised below.

BNF contains a set of rules. A rule comprises its name enclosed in a pair of angle
bracket (<..>), an assignment (::=), and its definition. A definition can be written

as the combination of the following syntax:
e A rule’s name, which refers to its definition.

e Symbols enclosed in a pair of single quotes (‘.."). This means the symbols are

to be typed as they are.

o Symbols enclosed in a pair of square brackets ([..]). This means any one of the

symbols is used.

o Symbols enclosed in a pair of curly brackets ({..}). This means the symbols are
optional.

37

o The metasymbol ‘|', which is an alternation notation. One can use the symbol
on either side of ‘|

o A pair of round brackets ((..)), which is a grouping notation.

¢ The metasymbol *', which means the symbol before it may appear zero or
more times.

e The metasymbol ‘+’, which means the symbol before it may appear one or
more times.

¢ The metasymbol ‘-’ appearing in a pair of square brackets. This indicates

continuous ASCII-ordering symbols, e.g., [0-9] is equivalent to [0123456789).

3.4.1 Identifiers

An identifier is a combination of any length of characters, digits or the symbols
underscore (-), number sign (#) and single quote (’). However, in the implementation,
the length of any identifier is limited to 80 characters.
Syntax

<identifier> ::= ([a-z] | [A-Z] | [0-9] | [-#'])+
Example

a, Anne, dist, 0eq34, a_book, a’, e#, seqno#, .name

3.4.2 Types of variables

There are five types of variables or constants in computations.
Syntax

<type> ::= ‘bool’ | ‘boolean’ | ‘short’ | ‘intg’ | ‘integer’ | ‘long’
| ‘real’ | ‘float’ | ‘strg’ | ‘string’

‘bool’, ‘boolean’ are used to designate boolean type.
‘intg’, ‘integer’, ‘long’ are for long integer, which is in the range of —2147483648
- 2147483647.

‘real’, ‘float’ are for floating point.

38

‘short’ is for a short integer, which is in the range of —32768 - 32767.

‘strg’, ‘string’ is for a string variable or constant.

3.4.3 Constants

A constant can be

- a boolecan constant, ‘true’ or ‘false’;

a null value constant, ‘dc’ (don’t care) or ‘dk’ (don’t know); 3

an intcger numnber,

a floating point number;

a string, any sequence of characters within a pair of double quotes (“ 7).

A floating point number can be written in the exponential form (the exponential
part after the character ‘e’ or ‘E" attaches to a base part). We can also specify the
type of constants by attaching the type after the constants separated by a colon (‘").

Lastly, an integer number is always considered type ‘long’ unless any other type is
g p g p

specified.
Syntax
<constant> = <boolconst> { ‘' <type>}
| <nullconst> { ' <type>}
| <integer> { “' <type>}
| <floating> { *’ <type>}
| <string> { ¢’ <type>}
<bool_const> ::= ‘true’ | ‘false’
<null.const> = ‘de’ | ‘dk’
<sign> = [—+]
<integer> = {<sign>} ([0-9])+
<floating> = {<sign>} <real>
<real> = ([0-9])+ < ([0-9])*

| ([0-9))* *." ([0-9))+
1 [0-9] «." ([0-9])* <expon>

3«don’t care” and “don’t know” are special values that describes the status of irrelevant infor-
. mation and missing data respectively. [36]

39

<expon> = [eE] <integer>
Examples

boolean constants: true, false

null value constants: de, dk

long constants: 12, —34, 56789022

floating point constants: 1.2, —3.5, 10., 0.5434, 1.2¢2, 0.5E—3
string constants: “Tom”, “Hello world!”, “#8$a*&%”
short constants: 134:short, —470:short,

3.4.4 Stateful variables

Stateful variables are defined by stating the keyword old before identifiers. Both
attributes and local variables can be stateful. Stateful variables may be initialised. If
there is more than one initial value defined, ouly the first initial value is used and a
warning message is issued. Stateful variables without initial values are set to default
initial values (‘false’ for boolean type, 0 for numeric type, and null string for string
type) with a warning message.

Syntax
<state-var> ::= ‘old’ <identifier> { <initial> <constant>}
<initial> u= ‘init’ | ‘initial’

3.4.5 Expressions

An expression can be recursively defined as

- a constant;

i

an identifier;

a stateful identifier;

any of unary operators following by an expression;

any of binary operators with two expressions;

conditional expression (if-then-clse);

- grouping expression with round bracket (...);

40

- predefined functions with an expression,
- type casting;
- computation calling.

Syntax

<expression> = <constant>
| <identifier>
| <state-var>
| <unary-op> <expression>
| <expression> <binary-op> <expression>
| ‘if’ <expression> ‘then’ <expression> ‘else’ <expression>
| /(" <expression> ‘)’
| <function> ‘(’ <expression> ‘)’
| (" <type> <expression>> ‘)’
| <computation-call>
<unary-op> u=‘+'|‘='|‘" | ‘not’
<binary-op> := <compare-op> | <arith-op> | <logical-op>
| ‘min’ | ‘max’ | ‘cat’ | ‘also’
<compare-op> = ‘="| ‘I="|‘~v=" | =" <>] =]
<arith-op> u=‘4"| ‘=" [* /" | ** | ‘mod’
<logical-op> u=‘and'| ‘&’ | ‘or’ ||
<function> ::= ‘abs’ | ‘isknown’ | ‘round’ | ‘ceil’ | ‘floor’ | ‘sqrt’
| ‘In’ | ‘log’ | ‘logl0’ | ‘acos’ | ‘asin’ | ‘atan’

| ‘cos’ | ‘sin’ | ‘tan’ | ‘cosh’ | ‘sink’ | ‘tanh’

The unary operators are plus sign (‘+'), minus sign (‘~’), and negator (‘not’
or ‘). Any expression which follows the plus or minus sign must be number type
(integer or floating point). One which follows the negator must be boolean type.

The binary operators are
e Comparison operators : ‘=', ‘~="or ‘I==’, ‘<’ ‘K=" >’ ‘>=",

o Arithmetic operators : ‘4, ‘=", ‘¥’ ¢/’ *¥*' (exponentiation), ‘mod’ (modulus

operator). The operands must be number type (integer or floating point).

41

e Logical operators : ‘and’ or ‘&’, ‘or’ or ‘|’. The operands must be boolean type.

o Concatenation operator (‘cat’). The operator takes two expressions of string

type and concatenates them together.

e Maximum operator (‘max’). The operator compares two expressions and re-

turns the greater cne. The expressions can be type real, long, short or string,.

e Minimum operator (‘min’). The operator does the same as the maximum op-

erator but returns the lesser one.

e Multi-valued operator (‘also’). This operator returns both expressions. Used
in the assignment statement, it returns multiple values to the name on the left
hand side of the assignment operator. For example, an inverse of the function
abs() is

> comp InvAbs(x,iabs) is

iabs <- x also —x;

The variable iabs will return two values, x and —x.

To avoid ambiguity in the order of the operators, we define the precedence and
associativity in Table 3.1.

The higher the position of the operator in the table, the higher its order of prece-
dence is. For example, an expression 3 + 5 * 4 *x3 = 34 & 15 < 5 will be interpreted
as ((3 + ((5 * (4 %%3)))) = 34) & (15 < 5).

The conditional expression (if-then-else) requires three expressions. if-expression
must be boolean type. then-expression and else-expression must be compatible types,

There are 17 predefined functions:

abs() returns an absolute value of the expression.

isknown() returns ‘true’ when the expression is any value but not ‘dk’.

round() returns the greatest integer that less than or equal to the expression.

ceil() returns the least integer that greater than or equal to the expression.

floor() returns the greatest iuteger that less than or equal to the expression.

sqrt() returns the positive square root of the expression.

- In() or log() returns the logarithm to the natural base of the expression.

42

Operator Associativity
‘old’ (unary-op)
‘initial’ non-associative
‘not’, ‘I’ (unary-op)

Rk right-associative
9k mod’ left-associative
R left-associative
‘max’ ‘min’ left-associative
‘cat’ left-associative
= = non-associative
c<7 ¢<=’ 5 iy

‘&' fand’ left-associative
‘I' ‘or’ left-associative
‘also’ non-associative

Table 3.1: Precedence and associativity of operators

- log10() returns the logarithin to base 10 of the expression.

- acos(), asin(), atan() return inverse cosine, inverse sine, and inverse tangent
functions of the expression.

- cos(), sin(), tan() return cosine, sine, and tangent functions of the expression.

- cosh(), sinh(), tanh() return hyperbolic cosine, hyperbolic sine, and hyperbolic

tangent functions of the expression.

3.4.6 Calling a computation

As with functions and procedures in traditional programming languages, computa-
tions can be called by other computations, In fact, we use the positional notation
to embody computation calling. The 1eturn value must be a singleton scalar rela-
tion, which is implicitly treated as a variable in ¢ mputations. A computation can

recursively call itself as well.

43

Syntax

<computation-call> ::= { ‘new’ } <identifier> ‘{’ <actual-params> '}’

<actual-params> = <empty> | <expression> | <actual-params> *,’
| <actual-params> ‘.’ <expression>

<empty> n=(4)*

For example, a computation that computes the factorial.

> comp Factorial(n,fac) is

fac <- if n=0 then 1 else n * Factorial{n-1};
Suppose one enters the command
> R <~ Factorial{3};

The computation Factorial will assign the value 3 to n and try to evaluate the

value of fac. The process of evaluation may look like a downward calculation iun the
table below.

n fac

3 3 * Factorial{2}
2 2 * Factorial{1}
1 1 * Factorial{0}
0 1

Finally, the computation Factorial stops at n=0 and returns the value of fac
upward to its caller. The final result is a relation of an attribute fac. which has one
tuple of value 6.

One should be careful when calling stateful computations inside other compu-
tations. Suppose we want to use the computation Accum in section 3.2, which is a
stateful computation, to represent a storage with a capacity of 100. A computation

IsFull is written to report the status of the storage whether it is full or not.

> comp IsFull(no#, in, mesg) is
mesg <- if new Accum{no#,in} < 100 then "I’m full!"

else "I need more.";

44

Here, the computation Accum is said to be called with instantiation. With the
keyword new, the computation IsFull will instantiate a hidden state from the one
in Accum and reset to the initial value when it is declared. After that, we run the

statement
> Mesg <- IsFull{0, 68};

The relation Mesg will have a tuple of the attribute mesg of the value “I need
more.”. Note that the value supplicd to the attribute no# in the above T-selector
statement can be any value and there is no effect on the result since it plays the role
of sequencing attribute only in the natural join operation.

In contiast, if the keyword new is missing in the declaration of the computation

IsFull as below:

> comp IsFull(no#, in, mesg) is
mesg <~ if Accum{no#,in} < 100 then "I’m full!"

else "I need more.";

Every time we perform any evaluation (either T-selector or natural join) on the
computation IsFull, the original state in Accum determines the result of the expres-

sion Accum{no#,in}. For example, we run the statement
> R <~ Accum{0, 40};

Assume that the stateful variable in is originally 0. After the above statement,
the stateful variable 1n in Accum is 40. Then we run the statement on the latter

version of IsFull as exactly as the above one.
> Mesg <- IsFull{0, 68};

The statement updates the stateful variable in in Accum to 108 and returns the
value “I'm full?”. This might not the expected answer.

Forward reference is allowed in calling computations. In other words, computa-
tions can be called by other computations before their declaration. The called names
are kept without checking their existence during the compilation process. They must
be created, however, before the evaluation (T-selector or natural join) of the calling

computations, or an error is reported.

45

However, the principle of forward reference does not apply to the case of calling
with instantiation. Because we need to instantiate all the states from the called

computations in the compilation process, we require the called computations to have

been declared.

3.4.7 Declaration of computations

A computation can be created by using the following syntax:

<computation> := ‘comp’ <new-comp-name> <attributes> ‘is’ <body>
<new-comp-name> ;= <identifier>

<attributes> u= (0 <identifier> {2 ‘seq’} (4, <identifier> {*:’ ‘seq'})* ¢)’
<body> = {<predicate-clause> } <block> (‘alt’ <block>)*
<predicate-clause> ::= ‘def’ <expression> ‘;’

<block:> ;= <single-stmt> | <compound-stmt>

<single-stmt> i= <identifier> <~ < expression>

<compound-stmt> = ‘{’ {<local-vars> } (<single-stmt> ‘;")+ ‘}'
<local-vars> = ‘local’ <vars-type-list> (!, <vars-type-list>)* ¢}’
<vars-type-list> = <variable-list> '’ <type>

<variable-list> = <identifier> (4, <identifier>)*

<new-comp-name> must he unique among the set of relation and computation
names in the system.

<attributes> is a list of domain names representing the attributes of the compu-
tation. The optional keyword seq is used to show that the designated attribute is a
sequencing attribute.

<body> contains at most one predicate clause, which is designated by the keyword
def followed by a boolean expression and a semicolon (*;'), and at least one block. In
the case of more than one block, the blocks are separated by the keyword alt.

<block> can be one statement or sequences of statements.

<single-stmt> is an identifier followed by the assignment operator (‘<-’) and an
expression.

<compound-stmt> comprises an optional <local-vars> which is the declaration

part of local variables, and sequences of statements; within the curly bracket.

46

The declaration of local variables starts with the keyword local followed by sets
of variable names, a colon (*’), and a type with each set separated by a comma (*,");
and ends with a semicolon (*;’). Variables used in the statements of any block must
be either local variables of that block or attributes of the computation in which the

variables helong to.

3.5 Examples

Note that we assume all attributes’ names used in the following computations have
alrecady been declared as domain names with proper types before the declaration of

computations (e.g., domain pi real;).

3.5.1 Constant computation

Here is an cxample of declaring a constant computation, Pi. Using the positional

notation without attribute, the computation Pi returns a constant.

> comp Pi(pi) is
pi <- 3.141593;

> result <- Pi{};
> pr!lresult

pi
3.141593

relation: ‘"result" has "1" tuple(s)

Constant computations may be called in other computations. Here is an example
of a computation to compute the area of circles that uses the computation Pi as a

constant.

> comp CirArea(radius, area) is

area <- Pi{} * radius * radius; << use the computation Pi >>

47

3.5.2 Integer division

The example below shows a computation for integer division. The purpose is to show
that computations may have more than one output attribute.
The computation IntDiv takes two input attributes, dividend and divider; and

returns two output attributes, quotient and remainder.

> comp IntDiv(dividend, divider, quotient, remainder) is
{

quotient <- dividend / divider;

remainder <- dividend mod divider;

}i

> result <- IntDiv{34, 3};

> pr!!result

quotient remainder
17 1

relation: '"result" has "1" tuple(s)

3.5.3 Multi-valued computation

Computations may return more than one value to the same attribute.* For example,

the computation SqRoot returns both positive and negative root.

> comp SqRoot(n,root) is
root <- sqrt(n) also -sqrt(n);
> result <- SqRoot{24};

> prilresult

root
-4 ,898979
4 .898979

relation: ‘"result" has "2" tuple(s)

4Some limitations applied. See details in section 4.5.2

48

iteration {123 [(4{5|6]..|n
a 1/1(2]3|5(8]..]Fib(n)
b 0j1(12]|3|5]..]|Fib(n-1)

Table 3.2: The values ofaand b

3.5.4 Recursive computation

To demonstrate recursive computations, we consider finding the sequence of Fibonacci

numbers, in which cach number is the sum of the preceding two starting with 0 and
1

0,1,1, 23,5, 8,13, 21, ...

The Fibonacci numbers can be defined as follows:

0 ifn=20
Fib(n)= ¢ 1 ifn=1
Fib(n-1) + Fib(n-2) otherwise

We may compute the Fibonacci numbers by an iterative method. Let us use a
pair of integer a and b, initialised to 1 and 0 respectively. If we repeatly apply the

parallel assignment

a—a+b

be-a

The values of a and b will be as in Table 3.2. [2]
We apply this method to the computation FibIter. The computation calls itself

recursively until it reaches the stopping condition and returns the value back to its

parent.

> comp Fib(n,fib) is
fib <- FibIter{1,0,n};
> comp FibIter(a,b,count,sun) is

sum <~ if (count=0) then b else FibIter{a+b,a,count-1};

49

Suppose Num is a relation of the numbers 1 to 10. We may generate the first ten
Fibonacci numbers by joining Fib with Num,

> pr!!Num

|©m\10501.bWMHOI.'5|

relation: "Num" has "10" tuple(s)

> FirstTenFib <- Fib ijoin Num;
> pr!!FirstTenFib

n f£ib
0 0
1 1
2 i
3 2
4 3
5 5
6 8
7 13
8 21
9 34

relation: "FirstTenFib" has "10" tuple(s)

50

I I A ¥ ™

[1 [1 o

Figure 3.1: Wave forms of the 3-bit counter

3.5.5 Stateful computation

We use the frequency divider as an example of stateful computation. The output
toggles whenever the input changes its state from 1(true) to 0(false). In Figure 3.1,
Vin and OO0 are the input and output signal respectively of the frequency divider
circuit.

We can build a 3-bit counter using three frequency dividers as in Figure 3.2. The

computation forms of the frequency divider and the 3-bit counter are

> comp FreqDiv(time:seq, vin, vout) is

vout <- if (old vin initial true=true and vin=false) then
not old vout initial false else old vout;

> comp Counter(time:seq, vin, o0, ol, 02) is

{

00 <- new FreqDiv{0, vin};

ol <- new FreqDiv{0, 00};

02 <- new FreqDiv{0, oi};

}

51

Vin

div div div

02 01 00

Figure 3.2: Diagram of the 3-bit counter

Suppose we have a rclation Pulse which represents the wave form as in Vin
in Figure 3.1. The natural join between the relation Pulse and the computation
Counter gives the output attributes 00, O1, and O3 corresponding to the wave form

in Figure 3.1. The following is an output in the form of a relation.

> result <- Pulse ijoin Counter;

> pr!lresult

92

time vin o0 ol c2

0 true false false false
1 false true false false
2 true true false false
3 false false true false
4 true false true false
5 false true true false
6 true true true false
7 false false false true
8 true false false true
9 false true false true
10 true true false true
11 false false true true
12 true false true true
13 false true true true
14 true true true true
relation: ‘'result" has "15" tuple(s)

To ensure that the computation Counter begins counting from zero. We should

use the statement

> result <- Pulse ijoin new Counter;

The keyword new will instantiate a new counter in which all states are reset to

their initial values, regardless of any states remaining from the previous execution of

the computation Counter.

3.5.6 The role of instantiation

Instantiation plays a very important role on stateful computations. Statements with
and without the keyword new may lead to totally different results., Examples are
two following T-sclector statements on the stateful computation Accum in section 3.2.

One with an instantiation as

53

> R <- new Accum{92};

will always give the result 92 to the relation R because the T-selector is done by exe-
cuting a new instance of the computation Accum, which has its own state reset to the

initial value of the corresponding state in Accum. The other without an instantiation
as

> R <- Accum{92};

will depend on the last status of the hidden state in Accum.

54

Chapter 4
Implementation

This chapter is about the implementation of computations. Section 4.1 overviews the
implementation of Relix. Section 4.2 describes how computations are represented.
Algorithms for cach operation on computations are given in section 4.3. Then, in
section 4.4, we explain the functions of the parser, which performs the syntactic and
semantic checking. Section 4.5 is the detail of the executor used in the evaluation of
computations in the T-selector and the natural join operations.

Section 4.6 presents the mechanism of concurrency control.

4.1 Implementation of Relix

Relix consists of two main modules: a parser, generated by Lex [30] and Yace [24];
and an interpreter, which is a C program. The parser performs syntax checking and
generates intermediate codes. The interpreter branches to particular C functions
corresponding to the intermediate codes.

Each relation is stored in a UNIX file whose name corresponding to the name of
the relation. Due to UNIX limitations, relation names must be unique in the first
fourteen characters, even though users may name relations up to 80 characters.

Databases, which are collections of relations, are equivalent to UNIX directories.
Each databasc has its own data dictionary. Thercfore, relations of the same name in
different databases are not related to each other and may represent different things.

Data dictionary, information about domains and relations, is kept in the form of

55

relations. We call these relations system relations. Data dictionary contains three
system relations: .dom, .rel, and .rd,! which store information of domains, relations,
and relationship between relations and domains respectively. We discuss only the
system relations .rel since it is related to the implementation of computations. The

relation .rel is defined as follows:
el (.rel.name:strg, .sort_status:short, .rank:short, .ntuples:long)

Each relation defined on Relix has a tuple in relation .rel, including .rel itself.
Attribute .rel_.name stores the relation names. .Sort_status and .rank tell Relix that
whether the relations aie sorted or not, and on how many attributes. .Ntuples indi-
cates how many tuples are in the relations.

When we start Relix, all system 1elations are loaded into data structures in mem-
ory. Relix performs all operations dircctly on the data structures and updates the

data back to the system relations whenever the data is changed.

Xt

The main flow of Relix can be summaiised as the following algorithm:
1. Load system relations into data structures.

2. Wait for input from users.

3. Parse the input and generate intermediate codes.

4. Execute the intermediate codes.

5. Update systemn relations if necessary.

6. Go to step 2.

4.2 Representation of computations

Computations are implemented as special forms of relations. A computation is rep-

resented as three components:

In Relix convention, names hegin with period (.) are system names.

56

ot

. A source file—a file of the same name as the computation contains the source

code of computation.

2. An i-code file—a file of the name “.<comp-name>.ic”, which <comp-name>
is replaced by the actual computation name, containing intermediate codes

generated in the executable format in Relix.

3. Interface mnformation— its declaration, type, local and stateful variables are

kept in the form of tuples in systen relations.

An example of a computation Rpar that computes the resistance r_par of two re-
sistors r1 and r2 connected in parallel is used for the purpose of illustration through-

out this section. The computation Rpar is written as below:

comp Rpar(ri,r2,r.par) is

def 1/r_par = 1/r1 + 1/12;

{

local x:real;

X <-rl + r2;

r_par <- if x=0 then 0 else ri * r2 / x;

}

alt

{

local x:real;

X <- r2 - r.par,

ri <- if x=0 then 0 else r2 * r_par / x;

}

alt

{

local x:real;
x <~ rl - r_par;
r2 <~ if x=0 then 0 else rl * r_par / x;

}i

57

The computation Rpar contains four blocks: the predicate clause, which is the
boolean expression after the keyword def, and three sequences of statements grouped
within the brackets separated by the keyword alt. Note that there need be no bracket

if a block contains only one stateinent.

4.2.1 Source file

Source files are kept only for the purpose of human reading. They do nothing in
the execution process of computations. We gencrate a source file by intercepting all
characters that users type in when they create a computation. Then we eliminate
the name of the computation in the source file to make it anonymous. The source

file of the computation Rpar will look like this:

comp (rl,r2,r_par) is
def 1/rpar = 1/rl + 1/r2;

x <- rl - r_par;
r2 <- if x=0 then 0 else rl * r_par / x:

}i

Note that the name Rpar in the first line was eliminated. The advantage of the
anonymity, which we will see later, is we can simply copy the source file from the
original computation to the new computation in the assignment and the ipstantiation
operations.

4.2.2 I-code file

I-code files play a certain role in the execution of computations. Conceptually, they
are sequences of mnemonic codes for a stack machine. For example, the i-code
push-name telis Relix to push its operand onto the stack. The i-code plus tells
Relix to pop two clements from the stack, do a plus operation, and push the result

back to the stack. We discuss the details of i-code 1n section 4.4 and 4.9.

4.2.3 System relations

Each computation has its entry in relation .rel. The .sort_status of any computation
is set to a constant CMPTN_STATUS (equals 16 in the current version) to be distinct
from other types of relations. The .rank and .ntuples are set to RELIX_VOID (the
status indicates the unused state, which equals —3).

In addition to the relation .rel, five system reclations are designed to keep in-
formation related to computations. Table 4.1 illustrates the relations’ names, their
attributes and their functions.

The system relations contain information of the computation Rpar are shown:

.comp(.comp_name, .dom_pos, .dom_name, .type, .seq.attr)

Rpar 0 ri1
Rpar 1 r2 1
Rpar 2 r_par 1

.comp_type(.comp_name, .block, .block_type, .code_offset)

—— 0y i - a - -y - —— - - - - — - e - - - - - -

Rpar 0 7 0

Rpar 1 3 154
Rpar 2 6 360
Rpar 3 5 570

- - - —— o - e - o - - - - - .- - o

Rpar 1 x 1
Rpar 2 x 1
Rpar 3 b 1

Relation .comp contains information of attributes, their positions, and their types.
The type is represented as a short integer which can be deciphered as in Table 4.2.
Relation .comp_type contains information on types of computations, which is dif-

ferent from the types of attributes above. To avoid any confusion, we call the types of

59

Relation

Attribute name

Function

.comp

(.compmame :strg,
.dom_pos :short,
.dom.naine :strg,
type:short
.seq.attr : short)

Attribute information
computation name

position of attribute, begins at 0
attribute name

type of aitribute

sequencing attribute status

.comp-type

(.compmame: strg,
.block : short,
.block_type:long,

.code_offset : short)

Type of computation

computation name

sequence number of block, begins at 0
type of block

offset of intermediate code in the .ic file

.comp.local Local variable
(.compmame:strg, | computation name
.block : short, sequence number of block
.-var.nane : strg, local variable name
.type:short) type of variable
.comp_state State variable

~~~

.comp.ame:strg,
.block : short,
Anstance : short,
var_nante :strg,
.type:short,
Anit.val : strg,

.act.val : strg)

computation name

sequence number of block

sequence number of instance

state variable name

type of variable

initial value in ASCII sortable format

current value in ASCII sortable forinat

.comp.depend

(.calling : strg,
.called : strg)

Dependency of stateful computation
caller

receiver

Table 4.1: System relations of computations

60




Type | Code
bool 0
real 1
string 2
short 3
long 4

Table 4.2: The codes representing types of variables

computations as computation types. We number each block of code sequentially start-
ing from zero. The predicate clause is optional. It must be the first block (block 0),
however, if it exists. Computations that have no predicate clause will start running
the block number of ordinary blocks from 0, not 1. In the case of the computation
Rpar, the predicate clause is considered block 0, The code for computing the attribute
r-par block 1, and so on. It is not difficult to see that the computation type of Rpar
is

block 0 : (rl:real x r2:real x r-par:real) — boolean

block 1 : (r1:veal x r2:real) — r_par:real

block 2 : (r2:real x r_par:real) — ri:real

block 3 : (rl:real x r_par:real) — r2:real

We represent the computation type information in attribute .block_type as a long
integer (32 bits) and mark the bit corresponding to the position of input attributes.
Output attributes are the complement of input attributes. For example, the posi‘ions
of r1, r2, and r_par are 0, 1, and 2 respectively. The computation type of block 0
is 20 4 2! 422 = 7, of block 1 is 2° 4+ 2! = 3, and so on. With this method, we limit
the number of attributes in any computation to 30. Any constant computation will
have the computation type equals 0 (no input attribute).?

The attribute .code_offset indicates the offset of intermediate codes in the i-code

file. For example, the code of block 2 begins at byte 360 of the i-code file.

2See an example in section 3.5.1

61




Relation .comp_local keeps the information of local variables of each block of com-
putations. As shown above, each block of the computation R_par has its own local
variable. Even though the variable names, x, are the same; they represent different
positions of storage.

Another example is raised to demonstrate the content in the two remaining system

relations, .comp.state and .comp_depenid. Here is a computation represents a hank

account.

comp Acct(no#:seq, dep, bal) is
bal <- old bal initial 0 + dep;

No# is a sequencing attribute. The result of bal is calculated by adding the de-

posit (dep) to the balance (old bal) A new account is defined by instantiating the
computation Acct.

comp NewAcct(no#:seq, dep, bal) is
bal <- new Acct{no#,dep};

The system relation .comp_state that keeps the information of stateful variables

of both computations is shown:

.comp_state

(.comp_name, .block, .instance, . var_name, .type, .init_val, .act_val)
Acct -1 0 bal 3 -00000 -00000
NewAcct 0 1 bal 3 -00000 ~-00000

Stateful variables are recorded in the relation .comp_state. The computation Acct
has one stateful variable, bal. The value —1 in the attribute .block means the name
is a stateful variable of an attribute. The value 0 in the attribute .instance means
the variable is declared directly in Acct. The attribute .init_vel and .act_val keep the
initial and actual values of bal, represented in ASCII sortable format (the format
used in Relix that transforms numbers into fixed-length strings so that they can be
sorted by using ordinary string sorting function). Both values are set to the value

after the keyword initial, which is zero. Initial values are not changed after the

62




declaration of computations but actual values may be updated when computations
are exccuted using the T-sclector or the natural join operation.

The computation NewAcct does not declare any stateful variable explicitly. How-
ever, it instantiates a state by calling Acct with the keyword new, which means
NewAcct will create a new set of stateful variable(s) by copying from the one(s)
of Acct and resetting the actual value(s) to the initial value(s). We also say that
Acct is an instance of the first block (.block=0) of NewAcct. A tuple in relation
.comp_state records the stateful variable bal belongs to the first block of the compu-
tation NewAcct. The value 1 in attribute .instance means the state is derived from
the first instance of the block.

Here is another example. Suppose we have a fixed-size buffer of 2048 bytes. We
want to write a computation that returns a status TRUE if it successfully adds certain
bytes of data into the buffer and does not overflow; and 1eturns FALSE otherwise.

The computation NotOverflow is

comp NotOverflow(no#:seq, bytes, result)

{

local size:intg;

size <~ old size initial 2048 - bytes;

result <~ if size < 0 then false else true;

<< Comment:set the value of "size" back if not successful >>

size <~ if size < 0 then old size else size;

}i
The information of stateful variables of the computation NotOverflow will be:

.comp_state

(.comp.name ,.block,.instance,.var_name,.type,.init_.val,.act_val)

NotOverflow 0 0 size 3 -02048 -02048

The value in the attribute .block is 0 because the stateful variable size belongs
. to the first block. The value in the attribute .instance is 0 because size is directly

63




l l l l level of instantiation

L3 L2 Li

1 1 1 1 L
. . . . instance number

F F F F

Figure 4.1: The detail of the attribute .instance

declared in the block, not derived from instantiating other computations as in the
case of the computation NewAcct.

Formally, the attribute .block indicates the scope of stateful variables. It equals
-1 when the name is a state of an attribute. Otherwise, it equals the block number
of the block in which the name is a local state.

The attribute .instance equals 0 if the stateful variable is declared in the block
(with the keyword old); or iudicates the level of mstantiation and the wnstance num-
ber, which is the number (starting from 1) indicating the order of appearance of the
instance within the block. In this case, the four half-Lytes of .instance support four
levels of instantiation, each with instance numbers from 1 to 15(F)- sce Figure 4.1,

In the example of frequency dividers and a counter in section 3.5, the computation
FreqDiv is stateful. The computation Counter, which is a 3-bit counter, uses three
frequency dividers. The instance numbers of those three FreqDivs are 1, 2 and 3
respectively according to the order of their appearances in the code. The level of
instantiation is LO above becausc the states come fromn the computation FreqDivs
which were instantiated.

Suppose we write another computation TwoCounter which uses two 3-bit counters.
Similarly, the instance numbers of those two Counters are 1 and 2 respectively. The
level of instantiation, however, is L1 above since the states are not from the Counters
but the FreqDivs which were instantiated by the Counters.

The system relation .comp.state of the ahbove computations are (the values of the

64




attribute .instance are shown in hexadecimal):

.comp_state

(.comp_name, .block, .instance, . var_name, .type, .init_val, .act_val)

FreqDiv -1 0 vin 0 1 1
FreqDiv -1 0 vout 0 0 0
Counter 0 0001 vin 0 1 1
Counter 0 0001 vout 0 0 0
Counter 0 0002 vin 0 1 i
Counter 0 0002 vout 0 0 0
Counter 0 0003 vin 0 1 1
Counter 0 0003 vout 0 0 0
TwoCounter 0 0011 vin 0 1 1
TwoCounter 0 0011 vout 0 0 0
TwoCounter 0 0012 vin 0 1 1
TwoCounter 0 0012 vout 0 0 0
TwoCounter 0 0013 vin 0 1 1
TwoCounter 0 0013 vout 0 0 0
TwoCounter 0 0021 vin 0 i i
TwoCounter 0 0021 vout 0 0 0
TwoCounter 0 0022 vin 0 1 i
TwoCounter 0 0022 vout 0 0 0
TwoCounter 0 0023 vin 0 1 1
TwoCounter 0 0023 vout 0 0 0

The values 0001, 0002, and 0003 of the attribute .instance in the tuples where
.comp_name="Counter” refer to the first, sccond and third instance in the code of the
computation Counter respectively. The values 0011, 0012, and 0013 (in hexadecimal)
in the tuples where .comp_name="“TwoCounter” refer to all instances instantiated by
the first instance in the code of the computation TwoCounter. The values 0021, 0022,

and 0023, similarly, refer to all instances from the second instance of the computation

65




TwoCounter.

The last system relation, .comp_depend, stores dependencies between stateful com-
putations. The attribute .calling and .called store the name of the calling compu-
tations, or caller; and the comiputations being called, or receiver respectively. The
purpose is to keep consistency of states and i-codes between callers and receivers.

The rcceivers cannot be deleted because all states of the caller were generated
based on the states and i-codes of the teceiver found at the time the caller was
compiled. If the states and i-codes of the receiver were changed, or disappeared after
this, it might cause inconsistency in the states of the caller when executing the i-codes
in che receiver.

The situation is different in non-stateful computations. As they do not have
hidden states, we need not to keep the dependency as in the case of stateful compu-
tations. Therefore, we allow non-stateful computations to be deleted freely, without
considering the dependencies between computations. This implies that the principle
of forward reference is applied to non-stateful computations but not stateful compu-
tations as we have mentioned in scction 3.4.6.

Below is the data in relation .comp_depend for the above examples.

.comp_depend(.calling, .called)

NewAcct Acct
Counter FreqDiv

TwoCounter Counter

4.2.4 Data structures

For reasons of efficiency, we load the information in the system relations to memory
whenever we start Relix. Below are the data structures used for storing the infor-

mation (written in C with comments bracketed by /* and */) and their descriptions:

66




typedef struct _sym { /* corresponding to .comp and .comp_local */

char name[MAX_ID]; /* .dom_name or .var_name */
short type; /* .type */
short status; /* .seq.attr, not used in .comp_local */
short offset; /* .dom_pos, not used in .comp_local */
struct _sym *next, /* ptr to next element */

} SYM_TYPE;

The structure SYM_TYPE is used to store computation attributes or local variables
in a single-linked list. Name and type are for the name and type of attributes or
variables. Stacus is currently used to indicate the sequencing attribute if set to 1,
otherwise 0. 0ffset indicates the position of attributes as well as their address of

storage when it is being excecuted. *Next points to the next element in the list.

typedef struct _state { /* corresponding to .comp_state */

unsigned short instance; /* .instance */
char name [MAX_ID]; /* .var.name */
short type; /* .type */
ACT_VAL_TYPE *init_val, /* .init_val */
*actual.val; /* .actual._val */
struct _state *next; /* ptr to next stateful var */

} STATE_TYPE;

The structure STATE_TYPE is for storing stateful variables. It is a single-linked list
like SYM_TYPE. *Init_val and *actual_val arc for initial and actual values which

are stored in the ASCII sortable format.

typedef struct _block { /* corresponding to .comp_type */

long btype; /* .block_type */

short code_offset; /* .code_offset */

SYM_TYPE *local; /* ptr to a list of local var(s) */
STATE.TYPE xstate; /* ptr to a list of stateful var(s) */
struct .block *next; /* ptr to next block */

} BLOCK_TYPE;

67




The structure BLOCK_TYPE stores information related to blocks. Btype stores the
type of the block while code_offset stores the offset of i-codes iv the i-code file.

xLocal and *state are pointers to lists of local variables and stateful local variables

respectively.

typedef struct _cmp { /* parent of the whole structure */

char name [MAX_ID]; /* .comp_name */

SYM_TYPE xfparam; /* ptr to a list of comp attr(s) */
STATE.TYPE  *state; /* ptr to a list of stateful attr(s) */
BLOCK_TYPE *block; /* ptr to a list of block(s) */
boolean completed; /* compilation flag */

struct _cmp *next_in_bucket, /* ptr to next comp in the bucket */

*next_in_table; /* ptr to next computation */
} COMP_TYPE;

The structure COMP_TYPE is the parent of the whole structures. Name is the name of
computations. *Fparam and *state arc pointers to lists of attributes and their states
respectively. *Block points to a list of blocks. Completed is used in the compilation
process and set to TRUE when the computation is successfully compiled.

A global hashing table and a global linked list are provided for computations.
Every computation in Relix must have an entry in the hashing table and link to the
linked list. When two or more computations have the same hash value, we solve the
collision by forming them as a single-linked list with the pointer *next_in_bucket.
*Next_in.table links all the computations in Relix together as a list. We will refer
to the hashing table and the linked list as computation pool and computation list
respectively.

The computation pool is used when searching for a computation by its name and
the computation list for sequential tracking from the beginning of the list to the end

when writing the information of all computations back to the system relations.

68




typedef struct .dp { /* corresponding to .comp_depend */
char calling[MAX_ID],/* .calling */
called[MAX_ID]; /* .called */
struct _dp *next_calling, /# pointer to the next caller */
*xprev_calling, /* pointer to the previous caller */
*next-called, /* pointer to the next receiver */

*prev._called; /* pointer to the previous receiver */
} DEPEND_TYPE;

The structure DEPEND_TYPE stores the dependency information in the system re-
lation .comp_depend. Calling and called are the names of callers and receivers
1espectively. *Next_calling and *prev_calling form a double-linked list on the
dependencies of the same hashing key on their callers. So are *next_called and
*xprev_called on the receivers.

Two global hashi tables are implemented, one for the callers, referred to as the
caller pool and the other for the receivers, the recewver pool. We can search by hashing
any receiver’s name when we want to check before the deletion whether the receiver is
called by other computations. Similarly, we can secarch by hashing the caller’s name
when we want to delete all the caller’s dependencies, one of the tasks while the caller
is being deleted.

The reason we implement the structure DEPEND_TYPE as double-linked lists instead
of single-linked lists is, when we update a pointer in one list, we need the backward

link of the other list to update the pointer in that list.

4.3 Implementation of operations

We implement operations on computations the same as the program flow we have
mentioned at the end of section 4.1. Commands and statements are translated into
sequences of intermediate codes. Then, the interpreter executes the intermediate

codes. The algorithm for each operation is shown below:

69




e create

[Ty

© ® N e G s w W

If the rame is already used, the operation fails.

Create an entry in the relation pool (the hash table for relations).

Create an entry in the computation pool.

Link the entry to the computation list.

Create a file with the same naine as the computation, used as a source file,
Create an i-code file.

Perform the compilation of the intermediate codes (details in section 4.4).
Write the generated intermediate codes into the i-code file.

Write the source program into the source file.

¢ show

. If users do not supply the name thien set pointer ptr to the beginning of

the computation list, otherwise search an entry in the computation pool

that contains the computaiton name.

Set pointer ptr to that entry, and set flag onlyone to TRUE.

. Display the following information of the computation pointed by ptr

— the name of the computation
— the name, type, and sequencing status of the attributes

— the computation type of each block

. If ptr is null or onlyone=TRUE then stop, otherwise move ptr to next

entry and go to step 2.

e print

1.

2.

Search an entry in the computation pool that has the same name as the

computation,

Print the contents of the file of the same name.

70




o delete

b

[y
o]

© P NS o e wN

. If the name appears in the receiver pool then the deletion fails.

Remove the entries that the name is the caller from the caller pool.
Unlink the corresponding pointers in the receiver pool.

Remove the entry from the relation pool.

Delcete the source file and the i-code file.

Search for an entiy with the same name in the computation pool.
Free »fparam, rstate, and *block associated to the entry.

Set the name to null string.

Unlink the entry from the computation list.

. Remove the entry from the computation pool.

e assignment

Note that we call the names on the left and right hand side of the assignment

operator as LHS and RHS respectively.

1.

5.

[=2]

Secarch RHS in the computation pool. If the name is not found then the

assignment fails.

. Search LHS in the relation pool. If LHS is found (has been named to a

relation or a computation) then the assignment fails.

. Create an entry of LHS in the computation pool.

Link the eutry to the computation list.

Copy *fparam, *state, and *block from RHS to the ones in LHS.

. Copy the source file and i-code file from RHS to LHS.

. If RHS is a caller in the caller pool, generate the same dependency infor-

mation with the name of RHS changes to the name of LHS.

e instantiation

Instantiation does the same thing as the assignment but copying the initial

values to the actual values in all stateful variables.

71




¢ T-selector

We implement the computation executor as a stack machine. There are three

types of storage in the stack machine: Code Segment for storing code, Data

Segment for storing data, and Stack Segment as the stack of the machine (details

in section 4.5). T-selector is one of the two operations that use the executor

(The other is the natural join).

Algorithm

1.

NS oo PN

10.

11.

14.

Determine the computation type from input attributes.
Search the block corresponding to the computation type.
Save current status of the stack machine.

Load the intermediate codes of the block into Code Segment.
Allocate storage for all the local variables in Data Segment.
Create an entry for the output 1elation.

Set all storages in Data Segment to the uninitialized status (by setting the
type te RELIX_VOID).

Load the value of the input attributes into Data Segment.
Perform the execution.

Append the output attributes from Data Segment as a tuple of the ontput
relation.

Free storage of all the local variables in Data Segment.

. Restore current status.

13.

In the case where the output relation has more than one tuple (some may
be generated by the i-code mult-val from the multi-valued expression),
project the relation over its domains to eliminate the possible duplicate

tuples.

Return the name of the output relation.

72




e natural join

e e NS

10.
11.
12.

13.

14.

17.
18.
19.

. Determine the join attributes.

. If the computation is stateful then determine the sequencing attributes of

the relation.

. Search the block corresponding to the type of the join attiibutes.

. Swap the sequencing attributes, if any, to be the first clements of the join

attributes,

Project the relation over the join attributes (by swapping the sequencing
attributes to the first, the projection will implicitly sort the output relation

on the sequencing attributes).

Save current status of the stack machine.

Load the intermediate code of the block into Code Segment.
Allocate storage for all the local variables in Data Segment.
Create an entry for the output relation

Repeat step 11-17 until no more tuples.

Fetch a tuple from the input relation.

If the computation is stateful and the sequencing attribute is the same as

the previous tuple then go to step 17.

Set all storages in Data Segment to the uninitialized status (by setting the
type to RELIX_VOID).

Load the value from the tuple into Data Segment.

. Perform the execution.

16.

Append the output attributes from Data Segment as a tuple of the output

relation.
Move to next tuple.
Free storage of all the local variables in Data Segment.

Restore current status.

73




20. Project the output relation to eliminate the possible duplicate tuples.
21. U-join the projected output relation with the original input relation.

22. Return the output relation from the join operation.

4.4 The parser

When users declare a computation, Relix will check the syntax of the computation
and perform semantic analysis. The syntax analyser is done by modifying the current
grammar of Relix, which is generated by Lex [30] and Yace [24], using the grammar
we described in section 3.3 and 3.4. In this scction we mainly discuss the semantice
analyser of the parser.

The functions of the semantic analyser are:
1. Variable declaration—attributes, local variables, stateful variables.
2. Type checking—check the corvectness of type of expressions.

3. Computation type inference-—-infer the computation type of each block from

the expression within the block.
4. Generate intermediate codes and store in an i-code file for execution,

5. Determine the beginning position of intermediate codes of each block in the
i-code file.

6. Determine the dependency of the caller and the receiver in the case of stateful

computations.

If a computation is syntactically correct a sequence of intermediate codes is gen-

erated. We follow the principle of the postfiz notation intermediate code in Relix [28].

For example, an expression
a<-b+c

will give a sequence of intermediate codes as follows:

74



push-name a
varaddr
push-name ¢
var
push-name b
var

plus

assign

From the above intermediate codes, we do the type checking, computation type
inference, and generate a more compact version of intermediate ~odes to be kept in
an i-code file for the purpose of exccution (Within this section, we call this type of
intermediate codes as run-tune i-codes to he distinet from the ones created by the
syntactic analyser).
Assume that e and ¢ are attributes, bis a local variable. The run-time i-codes

generated by the semantic analyser are:

push-addp a
push-para ¢
push-locl b
plus

assign

We augment six kinds of “push” to designate the type of the name after it.
Push-para and push-locl, as in the above example, mean the following name is
an attribute and a local variable respectively. Push~spar and push-sloc mean a
stateful veision of both types. Push-addl and push-addp, used in the assignment
stateinent, tell the executor to push the addiess of the variable instead of value.

We omiit the discussion of the type checking since we reuse the code for the type
checking in domain algebra [28].

The computation type of blocks, whicl is represented as a long integer marking

bits coriesponding to the position of input attributes, is determined as follows:

o the computation type of the predicate clause is a bit string marking all positions

of attributes (all attributes are considered input).

75




e the ¢

omputation types of other blocks are iteratively inferred from the depen-

dency (DP) value of variables in statements in the blocks. The algorithmn is

1.

At the beginning of the block, set DI value of all attributes and local
variables to RELIX_.VOID (unused status).

In cach statement, set the DP value of the variable on the LHS of the as-
signment operator to the bit operation “or” of the weight, which is defined
below, of all operands of the expression on the RHS.
- The weight of any coustant is 0.
~ The weight of any stateful variable is 0.
- The weight. of any attribute is 2P°*"*o") when pasition is the order of
the attribute in the computation if its DP value is RELIX_VOID or

its DP value otherwise.

- The weight of any local variable is its DP value. If the DP value is
still RELIX_VOID then error.

. At the end of cach statement, if there is any attiibute that oceurs on both

LHS and RHS of the assignment operator then error.

At the end of the block, do the bit operation “or” of all tlie DP values of

all attributes. The 1esult is the computation type of the block.

. If the computation is stateful, mark the bit of the computation type cor-

responding to the position of the sequencing attributes.

The examples below show how the above algorithm works. Note that we use the

symbol ‘|’ to represent the bit operator “or”.

comp Ex1(
def a=b+c

a <~ b+c;

a,b,c) is
&= The type is 20 | 2! | 22 = 7 (all attributes).
&= The DP valuc of a is 2! (position of b)
| 22 (position of ¢) = 6.
The type is the DP value of a = 6.

76




comp Ex2(a,b,c) is

{

local temp:intg;

temp <~ b+1; <= The DP value of temp is 2! (position of b)
| 0 (constant) = 2.
a <- temp+c <= The DP value of a is 2 (the DP value of temp)
| 22 (position of c)
also b-c; | 2! (position of b ) | 22 (position of ¢) = 6.
}: The type is the DP value of a = 6.

comp Ex3(a:seq,b,c) is

{

b <~ old b initial 0 - ¢; <= The DP value of b is 0 (stateful variable)
| 22 (position of c) = 4.
} The type is 4 (the DP value of b)

| 2° (position of a, a sequencing attribute) = 5.

comp Ex4(a,b,c) is

{
local temp:intg;
a <- b+i; &= The DP value of a is 2! (position of b)
| 0 (constant) = 2.

c <~ temp+a; <= The DP value of ¢ is the DP value of temp
}s (RELIX_VOID-—unintialised local variable). Error!!!
comp Ex5(a,b,c,d) is
{
a <- c*x10; <= The DP value of a is 22 (position of ¢)

[ 0 (constant) = 4.
b <- d/2; &= The DP valuc of b is 2* (position of d)

| 0 (constant) = 8.
}i The type is 4 (the DP value of a)

| 8 (the DP value of b) = 12.

77




comp Ex6(a,b,c,d) is

a <~ c*¥2; <= The DP value of a is 22 (position of c)
| 0 (constant) = 4.
b <- a-d*2; <= The DP value of b is 4 (the DP value of a)

| 2% (position of d)
| 0 (constant) = 8.

}; The type is 4 (the DP value of a)
| 12 (the DP value of b) = 12.

comp Ex7(a,b) is
a <- atb; <= The DP value of a is 2% (position of a)
| 2! (position of b) = 3.
Error!!! a occurs in both LHS and RHS of

the assignment operator.

4.5 The executor

The executor is used for evaluating computations in the T-selector and the natural
join operations. It comprises storages, an engine, and four pointers. There are
three types of storages: Code Segment, Data Segment and Stack Segment. The four
pointers are CS, DS, SP and IP. CS and DS point to the beginning of intermediate
codes in Code Segment; and of attributes and local vatiables storage in Data Segient
respectively. SP points to the top of stack in Stack Segment. 1* points to the position
of intermediate code which is being executed in Code Segment. When the executor
starts, the engine sequentially fetches the iuterinediate code at the position where TP
points, advances IP to the next intermediate code, performs the algorithm according

to the intermediate code until it reaches the stop command.

4.5.1 The storages

Code Segment is implemented as an array of characters. Data Segment and Stack

Segment are implemented as arrays of ACT.VAL.TYPE, the structure that keeps

78




any type of data as a single element. The advantage is we do not have to deal with
the problem of varying lengths of different types of data, i.e. 1 byte for boolean, 2
bytes for short, 4 bytes for long. The disadvantage is we pay the cost of spending
more memory. The ACT_VAL_TYPE structure is written in C as helow:3

typedef struct {

short v_type; /* type of data */

short v_short; /* storage for short */
long  v.long; /* storage for long */
real vreal; /* storage for real */

char  *v_string; /* pcinter to string storage */
short v_buffer; /* don’t use %/
booleanv.bool; /* storage for beoolean x/

} ACT_VAL_TYPE;

4.5.2 The engine

Here are the actions the engine performs for each i-code:
e push-para and push-locl

— Read the next string from Code Segment.

— Treat it as an attribute’s or a local variable’s name.

|

Find its address.

Push its valne from Data Segment onto Stack Segment.
e push-spar and push-sloc

~ Read the next string from Code Segment.
— Treat it as a stateful attribute’s or a stateful local variable’s name.

— Find its actual value from the data dictionary.

3Actually, the structure has already been used in Relix for other purposes. We adapt it to use
in the executor.

79




— Push the value onto Stack Segment.
e push-adrp and push-adrl

— Read the next string from Code Segment.
— Treat it as an attribute’s or a local variable’s name.

~ Find its address and push onto Stack Segment.
¢ push-name (already used in Relix)

— Read the next string from Code Segment.

— Push the name as a string onto Stack Segment.
e push-count (already used in Relix)

— Read the next string from Code Segment.

— Translate to a short integer and push onto Stack Segment.
¢ unary operators, type casting, functions

— Pop one value from Stack Segment.
- Perform the evaluation according to the operator on the value.

— Push the result onto Stack Segment.

¢ binary operators (comparison, logical, arithmetic, concatenation, maximum,

minimum operators)

~ Pop two values from Stack Segment.
~ Perform the evaluation according to the operator on the values.

— Push the result onto Stack Segment.
o ternary opcrators or if-then-clse

— Pop if-value from Stack Scegment.

— If if-value is TRUE, exccute the i-code of then-clause and then skip the

i-code of else-clause.

80




~ Otherwise, skip the i-code of then-clause and execute the i-code of else-
clause.
constant operators

When users use any constant value, Relix will generate a string form of that
constant following by a constant operator. For example, a constant 3 will be

translated into

push-name -00003
long

A constant operator can be any of the following operators, boolean, short,
long, real and string. The actions of the operators are:

— Pop a counstant in the form of character string from Stack Segment.

— Perform the conversion of the constant to the type specifed by the operator.

— Push the result back to Stack Segment.
asgign

— Pop a value from Stack Segiment.
-- Pop an address.

— Set the value to the storage in Data Segment pointed by the address.

mult-val

This command is generated from the multi-valued expiession. Since we repre-
sent any variable as an element in Data Segment, it is impossible that a variable
can hold multiple values. What we do is write the value to the output relation
after the evaluation of cach value. This method of implementation leads to a

few limitations on the multi-valued expression:-

1. No local variable can be assigned from any multi-valued expression.

2. Only one multi-valued expression is allowed in any block and must be in

the last statement of the block.

81




3. The computation with multi-valued expression cannot be called inside

other computations. It must be executed at the Relix prompt only.

4. No multi-valued expression is used in the conditional expression (if-then-

else).
The actions are:

— Pop a value from Stack Segiment.

— Pop an address.

— Set the value to the storage in Data Segment pointed by the address.

— Push the address back to Stack Segment.

— If the execution is not from Relix, error.

— If the address refers to a local variable, error.

— Otherwise, crcate a tuple of all the output attributes and append to the
output relation.

For example, the statement
x <- sqrt(y) also -sqrt(y);

will have the intermediate codes as

push-adrp x

push-para y

sqrt

mult-val <= Write the value to the storage in Data Segment;
push-para y push the address back;

sqrt write all the output attributes as a tuple.

unary-minus

assign &= Write the value to the storage in Data Segment.
halt &= Write the output attributes as another tuple.

82




e filler (used in right-partial-fit to indicate an output attribute)
— Push an unintialised data onto Stack Segment.

¢ new
— Set the “new” flag to TRUE (to be used in right-partial-fit).

e right-partial-fit

This command indicates calling a computation. The actions are:

— Pop a short integer indicating the numbc - of attributes.

~ Pop values as many times as indicated by the number of attributes. Assign

the values to the corresponding addresses in Data Segment.
— Pop the called comnputation’s name.

— Save current status by pushing the CS, DS and IP pointers onto Stack
Segient.

— Set CS to the end of current code, DS to the end of current data, and IP
to CS.

— Load the called computation’s intermediate codes.
— Perform the execution on the intermediate codes.

— Restore previous status by popping the old IP, DS and CS back from Stack
Scgment.

— Push the result onto Stack Segment.

The different beiween the execution when “new” flag is TRUE and FALSE
is all the stateful variables that are referred to within the execution are the

calling computation’s when the flag is TRUE and are the called computation’s

otherwise, 4

We do not support nested calling. For example,

a <~ COMPL{..., coMP2{...} };

4As in examples in section 3.5.6

83




is not allowed. Alternatively we create a local variable to hold the result of

COMP2 and then use the variable as a parameter in COMP1.
temp <- COMP2{...};
a <= COMP1{..., temp };

¢ halt

— Update stateful variables from its non-stateful variables of the same name.

— if the execution is from Relix prompt, write the output attributes to the
output relation.

—~ Stop the execution.

4.6 Concurrency control

Relix was designed to be a multi-user database system. Therefore, concurrency con-
trol was one of the functions that Relix encountered. Computations, to be built as
parts of Relix, certainly have to follow its scheme.

When a user starts Relix, data dictionay in the form of system 1elations are
copied into data structures in memory. At the same time, if another user starts
Relix, another copy of the data dictionary is brought up. To control the consisteury
of several copies of data dictionary in memory and the system relations, which are
ordinary UNIX files, Relix propagates changes in data dictionary to the defferential
files. Every time any Relix process updates the data dictionary it writes the updating
contents into the differential files. Before executing a commnand, every Rehix process
checks the differential files and updates its own data dictionary in memory from the
differential files. To cover the concurrency contiol of computations, the modification
of the original differential files is done to support the change of the data dictionary
of computations.

In any ciitical section, like writing to the differential files, Relix iimplemented a
semaphore as a UNIX file. Any Relix process that wants to get into a critical section
has to delete the semaphore file corresponding to the critical section and create the

same file back when it leaves.

84




The problem of locking is also considered. There are two kinds of locking—
exculsive lock (X-lock) and shared lock (S-lock). Exclusive lock on any object guar-
antees that no other process can access the object except the one which has locked
the object. Shared lock allows other processes to access but not update the object.
For example, in Relix, the 1elation being deleted is locked exclusively so that no other
process can manipulate the relation. Relix implemented the locking mechanism using
a write queue and a read queue.

To request an exclusive lock on any object:

- Repeat waiting until the object is not in either the write or read queue.

- Put the object in the write queue,

To request a shared lock on any object:

- Repeat waiting until the object is not in the write queue.

- Put the objeet mn the read queue.

To release an exclusive nr shared lock:

- Take the object out of the write or read queue.

To implement the locking mechanism for computations, we reuse the one in Relix
since computations are special cases of relations. However, we create a new set of read
and write quenes for stateful variables. The locking of these variables is performed
separately sinee, in the same operation, thiey may 1equire the type of locking different
from the computation they belong to. Table 4.3 shows the type of locking required
in each operation.

We also implement the concurrency control of data from relation .comp.depend
(dependency information between stateful computations). As mentioned before, the
data is loaded into two global hash tables, caller pool and receiver pool. We consider
these two pools as a single cutical section using the semaphoie mechanism. Only
one process can enter the eritical section at a time. ' We also propagate the changes
of dependency mfoimation to a differential file. For example, after the deletion or
creation of any stateful computation, we write the changes of the dependency infor-
mation, if any, to the differential file. Then, other Relix processes will update their

own dependency information (in memory) from the differential file.

85




Operation

Type of locking

Declaration X-lock

Print S-lock

Delete X-lock

Assignment/ | X-lock on the new computation,
Instantiation | S-lock on the computation
T-selector

non-stateful

S-lock

stateful S-lock on the computation
but X-lock on all stateful variables
Join

non-stateful

stateful

S-lock
S-lock on the computation

hut X-lock on all stateful variables

Table 4.3: Types of locking on operations

86




Chapter 5

Conclusions

5.1 Conclusions

Computations have been built to represent procedural abstraction in Relix. They
are special forms of relations. Operations on relations can apply to computations as
well. Two of the operations in relational algebra [36], T-selector and natural join,
have been implemented.

With the T-sclector operator, we supply values for a subset of attributes and get
the complement of the attributes as a result. The natural join between a computation
and a relation is thought of as supplying a set of tuples from the 1elation for input
attributes of the computation. Each tuple is equivalent to cach set of values we supply
for in the T-sclector. The result of the natural join is a set of tuples in which cach is
equivalent to the output tuple returns from the T-selector.

Furthermore, we introduce hidden states in computations. They are inaceessible
states associated with attributes or local variables, which are antomatically npdated
from their counterpart at the end of the execution of computations. The mechanism
of states allows us to remember previous states and reuse them in the next ronnd of
executions, for example, the balance in a bank account, or previous solutious of the
iteration method in solving linear equation.

Stateful computations can also be instantiated to give new stateful computations
with all states reset to their initial values. These states are independent of original

computations’ states.

87




In the natural join between stateful computations and relations, we found that the

order of tuples in the relation affected the result of states. Therefore, we introduced
sequencing attributes to impose an order on tuples. Every stateful coriputation must
have some attributes which serve as sequencing attributes to designate the order.

This work is an experimental system of building computational objects in a rela-
tional database system. We believe that relational database systems can be extended
to cover the problem of computational incompleteness, one of many points that are
claimed as a weakness in [4].

The strong point of the relational algebra is it gives a higher abstraction of oper-
ations on data. When we use the relation algebra with computations, we retain this

property without losing the power of the operations.

5.2 Future work

There are many features to be further explored in the context of computations. Some

of themn are presented here.

5.2.1 Natural join between computations

Suppose we have two computations, C1 (a:intg,b:intg,c:intg) and C2(d:intg, e:intg,b:intg).

The computation types of C1 and C2 are:
(a:intg x biintg) — c:intg

and
(d:intg x e:intg) — brintg

respectively. CI natjoin C2might have the attributes (a:intg,b:intg, c:intg, d:intg,e:intg)
and the following computation type:

(a:intg x biintg) — cantg |
(d:intg x e:intg) — brintg |
(a:intg X diintg X eintg) — crintg

88




The last part of the above type comes from the fact that we can derive the

attribute bfrom the attributes d and e. That means, in the new computation resulting
from C1 natjorn C2, we can input either @ and b; or d and e; or a.d and ¢ to get the
rest of the attributes as the output.

This interpretation seems more complicate when cither Cf or C2 is the union of

more than one computation type. For example, suppose the computation type of Cl
has been changed to:

(a:intg x b:intg) — crintg |

(azintg X c:intg) — biintg

Can we do the substitution of the first part of the computation type of C1 with the
computation type of C2 and leave the second part as it is? Then the computation
type of CI natjoin C2 will be:

(azintg X b:ntg) — crintg |
(d:intg x e:intg) — brintg |
(a:intg X cintg) — biintg |
(a:intg X dantg X eintg) — cintg

Moreover, how do we interpret the natural join of two stateful computations?
Here is onc alternative.

Suppose there are hidden states in the joining computations.

- If no state at the common attributes, then copy all states to the result compu-
tation.

- If there are states at the join attributes and the values of all states are equal,
copy those values into the result computation.

- If there are states at the join attributes but the value of any state is not equal,
the operation fails.

5.2.2 Other join operations

We may think of the natural composition between two computations as a functional

composition. If fand g are functions that f: a — band g : ¢ — d then the functional

89




composition g o f: a — d is applicable if and only if the domain b is equal to the

domain ¢. For example, the computations CI and C2 are:

comp Ci(a,b,c) is c <~ a+b;
comp C2(d,e,b) is b <- dxe;

' The computation C3, which is C1 icomp C2, will be:

comp C3(a,c,d,e) is
| {
‘ local b:intg;
| b <~ dxe;

c <- atb;

}

Then, the computation type of C8 will be:
(azintg x d:antg X ezantg) — cintg

We have not yet found any useful interpretation for other join operations, such
as union join, different join, or other type of o-joins in the context of computations.

However, Merrett did give some interesting interpretations of these operators in [37].

5.2.3 Successive mode in stateful computations

As we have mentioned in chapters 3 and 4, states in stateful computations can be
updated in two modes: simultancons mode, which has been implemented, and suc-
cessive mode. States are updated simultaneously from their non-stateful variables of
the same names at the end of the evaluation of computations in the simultaneous
mode. Alternatively, in the successive mode, states are updated immediately at their
change after the execution of assignment statements.

An implementation of the successive mode may be done at two levels:

1. At the syntactic level, we provide a new command to toggle the running mode
of stateful computations, e.g, sim and suc for the simultaneous and successive

. mode respectively. We may also set the simultaneous mode as the default mode.

90



2. At the implementation level, instead of updating all stateful variables at the
i-code halt,! we update the state variable of the changed value at the i-code

assign.

5.2.4 Shared states in computations

Suppose we have a computation which represents a storage or a memory cell. A
stateful variable is used in the computation to be the storage to keep a value, say, an
integer. There are two operations on this computation: read the value in the storage
and write a value to the storage. This intioduces a problem of sharing a stateful
variable by two operations, which cannot be solved by simply declating two stateful
computations for the operations, read and write.

We may solve the above problem by extending computations as follows:

1. Computations aic treated as ordinary type. a computation can be passed as a

paraneter.

2. Stateful variables can be explicitly declared.
Then, the storage may be written as below:

domain i integer;
domain ¢ comp;
comp storage(i, c) is

local old i initial 0 : 1intg; << declare a stateful var >>
old i <- c{i}

alt

i <- c{old i};

}

comp write(j,i) is

j <= 1i;
comp read(i,j) is

i<-3;

18ee section 4.5.2

91




When we supply a value and a computation name for the attributes i and c

respectively, the computation storage use the block
old i <~ c{i}

From the above statement, we can infer that the type of computation c is
intg — ity

Then, the type of the block is
(izintg x c:(intg — intg) — ¢)

The symbol ¢ represents no returning value because we keep the value of 0ld i within
the computation.

In the same manner, the block
i <- c{old i}
will have the type
c:(intg — intg) — iintg
To write a valuc, say 10, to a storage, we type
stl <- new storage{10,"write"};
To read the value of the storage sti, we type

i <- st1{,"read"};

5.2.5 Array of instances

Suppose we need to instantiate a hundred of bank account from the computation
Accum? at the same time. It is a tedious task to do them one by one. A way to do
that is to have computations as an attribute in a relation. The relation may have
other attributes used as an identifier of a computation in each tuple.

For example, a statement

2Gee page 32

92




Acct_arr <- new Accum on acct_no[101..200];

may gencrate a relation Acct_arr that has two attributes: (acct_no:intg, Accum:comp)

with each tuple is an instance of the computation Accum identified by the value 101
to 200 on the attribute acct_no.

Suppose we deposit $1000 to a particular account, say acct_no 150, it can be done
by typing

bal <- Acct.arr{150}{0,1000};

In fact, we may have more than one identifier attribute and the values on iden-
tifier attributes may not be continuous. For example, we may create a relation of 6

instances of computation by the following syntax:
inst_arr <- new StateComp on Idif[i..3], Id2[4,89];

In this case, the identifiers wili be the combination of the values from the attributes

1d1 and 1d2, i.e., (1,4), (2,4), (3,4), (1,89), (2,89), and (3,89).

93




Bibliography

(1]

[2]

3]

[4]

(8]

. Fundamentals of Object-Oriented Databases. In S.B. Zdonik and
D. Maier, editois, Readings in Object-Oriented Database Systems, pages 1-32.
Morgan Kaufimaun, San Mateo, CA, 1990.

H. Abelson, G.J. Sussman, and J. Sussman. Structure and Interpretation of
Computer Programs. The MIT Press, Cambridge, MA, 1985.

A.V. Alio, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1990.

F. Bancillion, C. Delobel, and P. Kanellakis, editois. Building an Object-Oriented
Databasc System: The story of Oy, Morgan Kaufmann, San Matco, CA, 1992.

P. Butterwortly, A. Otis, and J Stein. The Gemstone Object Database Manage-
ment System. Communecetions of the ACM, 34(10), October 1991.

M.J. Carey, D.J. DeWitt, G. Gracfe, D.M. Haight, J.E. Richardson, D.T. Schuh,
E.J. Shekita, and S.L. Vandenberg., The EXODUS Extensible DBMS Project:
An Overview. In S.B. Zdonik and D. Maie1, editors, Readings in Object-Oriented

Database Systems. Morgan Kaufinann, San Mateo, CA, 1990

R.G.G. Cattell. Object Data Management, Object-Oriented and Extended Re-
lational Databasc Systems (Revised Edition). Addison-Wesley, Reading, MA,
1994.

S. Ceri and G. Pelagatti.  Distributed Databases: Principles and Systems.
MecGraw-Hill, New York, 1984.

94




[9] P.P. Chen. The Entity-Relationship Model  Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1), March 1976.

[10] E.F. Codd. A Relational Model of Data for Large Shared Data Banks, Commu-
nications of the ACM, 13(6)-377- 87, June 1970.

[11] E.F. Codd. Reclational Completeness of Data Base Sublanguages. Data Base

Systems, Courant Computer Science Symposwum 6, 1972.

[12] E.F. Codd. Extending the Database Relational Model to Capture More Meaning,
ACM Transactions on Database Systems, 4(4), December 1979.

[13] E.F. Codd. Relational Database, A Practical Foundation for Productivity. Com-
munications of the ACM, 25(2):109 17, Febrnary 1982,

[14] E.F. Codd. The Relational Model for Database Management: version 2 Addison-
Wesley, Reading, MA, 1990.

[15] C.J. Date. An introduction to Database Systems, volume 1. Addison-Wesley,
Reading, MA, fourth edition, 1986.

[16] C.J. Date. An wntroducticn to Databasc Systems, vohune 1. Addison-Wesley,
Reading, MA, fifth edition, 1990.

[17] C.J. Date and H. Darwen. Relational Datebase Writings 1989-1991. Addison-
Wesley, Reading, MA, 1992.

[18] K.P. Eswaran, J.N. Gray, R.A. Lorie, and LL. Tiaiger. The Notions of Con-
sistency and Predicate Locks in a Data Base System.  Communications of the

ACM, 19(11), November 1976.

[19] R. Fagin. Multivalued Dependencies and a New Nonnal Foum for Relational
Databascs. ACM Transactions on Database Systems, 2(3), September 1977,

[20] R. Fagin. Normal Forms and Relational Database Operators, In Proc. 1979
ACM SIGMOD International Conference on Management of Data, 1979.




(21] D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis, N. Der-
rett, C.G. Hoch, W. Kent, P. Lyugback, B. Mahbod, M.A. Neimat, T.A. Ryan,
and M.C. Chan. Inis: An Object-Oriented Database Management System. ACM

Transuctions on. Office Information Systems, 5(1), January 1987.

[22] C E. Froberg. Numerical Mathematics: Theory and Computer Applications. Ben-
jamin/Cummings Publishing, Menlo Park, CA, 1985.

(23] D.K. Hsiao, cditor. Advanced Database Machine Architecture. Prentice-Hall,
Englewood Cliffs, NJ, 1983.

[24] S.C. Johnson. Yace: Yet Another Compiler-Compiler. Computing Science Tech-
nical Report 32, AT&T Bell Laboatories, Murray Hill, NJ, 1975.

[25] S N. Khoshafian and G.P. Copeland. Object Identity. In OOPSLA '86 Conference
Proceedings, Portland, OR, September 1986.

[26] W. Kim, D.S. Reiner, and D.S. Batory, editors. Query ’rocessing in Database
Systems. Springer-Verlag, New York, 1985.

[27] H.T. Kung and J.T. Robinson. On Optimistic Methods for Concurrency Control.
ACM Transactions on Database Systems, 6(2), June 1981.

[28] N Laliberté. Design and implementation of a primary memory version of Aldat,

including recursive relations. Master's thesis, McGill University, Montreal, 1986.

[29] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb., The Objectstore Database
System. Comanunacations of the ACM, 34(10), October 1991.

[30] M.E. Lesk. Lex: a Lexical Analyzer Generator. Computing Science Technical
Report 39, AT&LT Bell Laboratories, Murray Hill, NJ, 1975.

[31] D. Maicr. The Theory of Relational Detabases. Computer Science Press, 1983.

[32] A.P. Malvinoand D.P. Leach. Digital Principles and Applications. McGraw-Hill,
New York, fourth edition, 1986.

96




[33]

34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

T.H. Merrett. NIRDS: An Algebraic Relational Database System. In Canadian
Computer Conference, May 1976.

T.H. Merrett. Relations as Programming Language Elements. Information Pro-
cesswng Letters, 6(1)29 33, Feb 1977,

T.H. Meriett. The Extended Relational Algebra, a Basis for Query Languages.
In B. Shueiderman, editor, Databases: Inproving Usability and Responsiveness.

Academice Press, New York, 1978.

T.H. Marett.  Relatronal Information. Systems. Reston Publishing Company,
Reston, Virginia, 1984.

T.H. Merrett. Computations: Constraint Programming with the Relational Al-
gebra. In International Sympostum on Next Genevation Database Systems and

their applhcations, Fukuoka, Japan, September 1993

T.H. Merrett and N. Laliberte. Including Scalars m a Programming Language
Based on the Relational Algebra. IEEE Transactions on Software Engmeermy,
15(11)-1437-43, November 1989.

T.H. Merrett and E. Muushkin  Cominon Conceptual Foundations of Object-

Oriented and Relational Databases (Unpublished), Mareh 1992

A. Pidcock. FSL: A language for constraint programuing with booleans and
reals. Master’s thesis, McGill University, Montieal, 1993,

M. Stonebraker and G. Kemunitz., The POSTGRES Next-Generation Database
Management System. Communacations of the ACM, 34(10), October 1991,

M. Stoncbraker and L.A. Rowe. The Design of POSTGRES. In Proceedings of
ACM SIGMOD 86 Internatiorial Conference on Management of Data Associa-
tion for Computing Machinery, May 1986.

G.J. Sussman and G.L. Steele Jr. CONSTRAINTS A Language for Expressing
Almost-Hierarchical Descriptions. Artificial Intelligence, 14, 1980.

97




44

[45]

46}

[47]

18]

[49]

T.J Teorey and 1.0 Fry Dessgn of Database Structures. Prentice-Hall, Engle-
wood Chffs, N.J. 1982

SJP Todd. The Petetlee Relation Test Vehicle- a system overview. IBM
System Jouwrnal, 15(4), 1976.

J.D Ullman  Prmciples of Database Systems.  Computer Science Press,
Rockville, MD, second edition, 1982,

Versant Object Technology. Versant Reference Manual. Versant Object Tech-
nology Ine., Menlo Park, CA, 1990.

S.B. Yao. Optimization of Query Evaluation Algorithms. ACM Transactions on
Database Systems, 4(2), June 1979.

S.B3 Zdonik and M. Hownick. A Shaied, Segmented Memory System for an
Object-Oriented Database. ACM Transactions on Office Information Systems,
5(1), January 1987

98




