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ABSTRACT
This paper is concerned with real valued stationary processes
" having continuous sample paths with probability one. - When such a proces§

|

is Gaussian, a well known result saynghat if the sample paths are jhot.
too badly behaved and if an appropriate mixing condition holds, then

under suitable normalization the number of upcrossings of a high level is
1
i
asymptotically Poisson distributed. { |

Recently this result has been exté@ded to general stationary’pro-
cesses, not necessarily Gaussian. In the first part of this paper we
obtain this genera] theorem for the upcrossings of a stationary process.
We first consider the discrete parameter case. We show that the point
process of exceedances of a stationary sequence converges weakly to a
Poisson point process, provided some appropriate dependence conditions afe
satisfied. We then consider the continuous parameter case and we obtain
a general Poisson point process 1imit theorem for the upcrossings of a
stagionary process, not necessarily GauSsian. We also treat the case’
of e-upcrossings.

In the second part~of this paper, the classical limit theorem
(Gaussian case) is obtained via the general théorem, thus bringing the
Gaussian case within the general framework.

Throughout the paper, the discuss}on will be carried on in terms of
the maximum of the process and we will obtain sevéra] important results

b}

on the 1imit di§tributions of the maximum.
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Lorsqu'un tel processus est Gaussien|, un résultat bien conny nous dit q/ue

i
;

si Jes trajectoires aléatoires ne sgnt pas trop irrégulieres et si le |

processus est assez bien mélangé, ajors le nombre.de passages d'un hagﬁt

)
» ‘

niveau, convenablement normalise, dst asymptotiquement distribué selon

/

une loi de Poisson.

. B N
Récemment ce résultat a été
i

processus stationnaires, pas nécgssairement Gaussien.

btenu pour une plus grande c]assef de
Dans le prerﬁiére

|
partie de ce mémoire nous obtenons ce théorem général jsur la distribution

B

Timite du nombre‘de passages de niveau. Nous considzrons d'abord le cas

i
d'une suite stationnaire et nous montrons que le processus ponctuel

/
engendré par 1'excédent d'un haut niveau converge faiblement vers un

1

processus ponctuel de Poisson. Nous considérons ensuite le cas d'un,

wprocessus stationnaire a espace parametre continu et nous montrons que Te

”

processus ponctuel engendré par les passages d'un haut niveau converge
faiblement vers un processus ponctuel de Poisson. Nous considérons
également le cas des £-passages de niveau.

Dans la deuxigme partie de ce mémoire, le théprem classique (cas

!
Gaussien) est obtenu 3 1'aide du théorem général, amenant ainsi le cas

Gaussien dans le cadre général. ? ’
" Tout au long de ce mémoire, 1a discussion se fera principalement en .
\‘ ~
termes du maximum du processus et nous obtiendrons plysieurs résultats

importants sur la distributio ‘T'mitﬁe du maximum. = 1\

&

4
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CHAPTER 1

INTRODUCTION

£

1.1 The upcrossing problem S

In this paper we shall be concerned primarily with asymptotic
distributional properties'of the number*of upcrossings of a eentinuous
parameter stationary process. Gonsider (&(t); t€R), a real valued
standard stationary Gaussian ﬁrocess dgfined on a probability space
(0,F,®). By Gaussian we mean th;t for each positive integer n and for
each (t1,t2,...,tn) in & the random vector (E(t]),...,g(tn)). has a
Gaussian joint distributiop. By statijonary we mean that foc each posi-
.tive integer n and for each (t]’tZ""’tn) in &, the randém :
vectors (g(t]),...,g(fn)) and (g(t];r),.:;,g(tn+7)) have the same
joint distribution, for every 1. By standard we mean that the d1strisu-/

\tion of g?t) (which, by stationarity, is the same for every t) has.
mean 0 and variance 1. &, of course, denotes the set of real numbers.

If w€ Q, 1its image by £(t) will be denoted by’ £(t,w). For a

fixed .w € Q, the function 't} £(t,u) vis called a sample path. We

. shall assume that the process has continuous sahp]e paths with probability

m.e. .

PlweEQ: £(t,w) is everywhere continuous] =1 .
g

We say that £(t) has an upcrgssing of the level u at timq 1o if
there exists a 6 > 0 such that £(t) <u for all t in (t5-6,t5),
E(t).> u for all t 15 (tO,t0+6), and for every n> 0, E(t) >u for
some t in gto,to+n). Let UU(T) be the number-of upcrossings of the
level wu in the time interval (0,T]. That Uu(T) is alrandoﬁ variable

, » can be shown as follows. Llet

J
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where Hn,k(‘“‘) equals 1 if

'

E((k-1)1/2",0) <u < g(kT/2"0)

R
/ . - . 9
N

and 0 otherwise. It is easily seen that H, increases almost surely to
UU(T) as n—=. The H are measura?e so that Uw(T) is measurable.
We only need UD(T) <« almost surely in order to say that UU(T) is a
random, variable. For the moment assume this is so. . —

The general problem concerning the number of upcrossings Uu(T) is

to find its probability distribution
c PIU(MY =Kk),  k=0,1,2,...

This_remains an unso]ved‘promem‘, Most results in this direction have
been to either’compute the moments of the distr\'ibutioﬁ/or comr;ufe the
limit distribution as u—wo and .T—. This_ paner is concerned wiiih,
the 1imit distribution problem.

It is injcyitive]jl clear, and actuaily easily checked, that iFOT s

fixed and u-—w,, then UU(T)—»O for almost every w € Q. However, H,

for each T > 0 we can choose a- u; .in such a way that E[U,_(T)] s
N Y ~

T
-independent of T, then it is reasonable to hope that the distribution
N B
of Uu (T) win Eonverge to some non-degenerate distribution, as T-—o,
T L

We now suppose that we are given such a family (uT; T>0). It will be
convenient to slightly modify our notation: we will write 'ZT((a‘,b]) for
the number of upcrossings of the level uy in the time interval \ (Ta,Tb] +
(i.e. ZT((a,b]) = UUT(Tb) -'UUT(Ta)). Iignce our hypothesis is that for

4

some T >0 we have .
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(1.1) . E{Z,((0,0)] =+ foranl 7 0,

where E[Z ((0,1]1)] denotes the expectatmn of. the/randpr/n variable

T((0,1]) sThe foHowmg resu]t"ho]ds ] (

staraars &Gt omm Gaussian

18

THEOREM 1.1.1. et (&(t); t€R) be 2 s;
3
procees defined ov a probabiiity space (0.,F,P) and havin:, wich

probability one, continuoue sapie pathc. Ler T be a Fixcd postitive

b

constant. Le* ZT((a,b]) denote the numbcr of ur 2roseings of the level
up in the time interval (Ta,Tb], . where the Up'e are chosen in suh a
° :

way that (1.1) holds. Asswme the following ponditione hold:

~ (M) £ certain mizine conditior,

<

(L) 4 certain local condition.
Then, 1f (a] ’b]]’(aZ’bZJ’ ... ’(aj’bj] are. disjoint subintervals of

-
(0,1] and ifF k]’kZ""’kj are novi-rerative intesers, we have

(1.2) 10 PL2plag50, 1) = ki3 12T, ] = 1%1 nn .
' 1177
The theorem says that the Z ( a ] 's are’asymptoticaﬂy’ 1'ndelpen-
dent Poiss\on random variables. In order toe get éh*is Poisson behaviour we
have to assume)a mixing condition (M) and a local cohdition (L). By
mixing we mean a certjain dependency decay: &£(t) and £(t+r) will be in
some sense approkimfatel\y independent as T beco[nes large. Unde'r an
appropriate mixing condition we will have almost indepgndency between
upcrossings occurring far apart. A local conditién will ensure us that
rthe“ sample paths are not to"o' badly behaved. This \vﬂ]‘ bound the proba-

bility of having more than one upcrossing in a short time interval.

v
-



These cond1tions\wiﬁ1 be written in terms of the so-called covariance

function defined as
L ¢ .
(1.3) r(t) = E[e(s)e(s+t)] .

-

Note that since the process is Gaussian, E[z(s)E(s+t)] is well defined
(i.e. E[]&(s)i(s+t)|] < =) and since the process is stationary
E[z(s)E(s+t)] does not depend on s. Thus r(t) is well defined.

d . This theorem was first obtaned by Volkonski and Rozanov [1961]

A ’ @

as an application of their general results [1959]. They assumed the

following conditions.

- ~

(M) alt) = 0(t7%) as t—w, forsome €>0
where «f{t) is defined by

- a{t) = sup sup |P[ANB]-P[AIP[B]] ,
SER AEFS '
4o
BEFat.

Fg being the o-algebra generated by (£(t); a<t<b),

xthe smallest v-algebra of subsets of Q for which

IS

£(t) is feasurable for all t € (a,b). (This condition, -

i.e.

: ’ is called a strong mixing condition and aft) 1is referred
. =

to as the mixing function).

L eV eists.

These conditichs Qére subsequently weakened by several authors:

Cramer [1966] (M) r(t) = 0(t™%) as t —e, for some e > 0.

) vV exists.

o

/
Cef'

s
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Belayev [1967] (M)

Quglts [1967]

-
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of

Berman conditions can hardly be improved.

o

1]
-

On one side, if

as

r(t)logt —0 and r'(t)(log tﬂ/2—+0,
r”(t): ex1sts and, for some b > 1, ‘
Pt - r(0) = 0(116g[t]T0), as t—o0.
r(t) = 0(t™%) as f—w, for some ¢ > 0.

B . . / ’
(t) logtiry > 0 then%].?fldoes not hold. This emerges from the work

Mittal and Ylvisaker [1975] {(and can be shown using Theorem 5.2 of

Leadbetter, Lindgren and Rootzen [1979]). On the other side, if r"(t)~

does not exist, then E[N’T((a,b])] =+ forall T>0 and all

0 <a <b<o,

More recent]y‘Leadbetter [1980] considered stationary prbcesses which

are not necessarily Gaussian. He obtained a general Poisson 1imit

u

-

+

distribution theorem for the upcrossings. The objective of this paper

is twofold.

Firstly we give a comprehensive exposition of Leadbetter's

rec%nt results. Then we show that for.a standard stationary Gaussian

process-whose covariance function satisfies Berman conditions,

« Leadbetter's general theorem applies. This b}ings the Gaussian case

within the gengral framework.

!

~

@‘ f

4d



~

’

v

1.2 The point process of hpcrossings '

Our discussion will be carried on in termé of point processes. Let

gq,FQP) be azpropability space. Let B be the family of Borel subsets

! .
of the interval (0,1]. A point process on the interval (0,1] is a

function o
. &
Z: OB — N

\ (w,B) —~ 2(.,B)

(where N is the set of non negative integers and where N is the set

[3

of non-negative integers to which wg added +=) such that for each fixed

’

B in B the function

Z(B): @ — N .
W 2{w,B)

is a random, variable.(i.e. it is F-measurable and finite a.e.), and for

< .
~almost every w € I the function

\

2(«.): B— N
B Z(w,B)

is a finite positive measure. (This is actually a special type of point
process. For a general definition see Kallenberg [1976] or Grandell
[1977]).

" We shall be concerned with weak convergence of point processes. Let

“21’22""’ and Z be point processes on {0,1]. We say that Zn

converges weakly to Z, and we write



@

o

0, the

[

Borel subsets of [0,1], .say By»B,ys- By, With #(3B)

random vector (Z:

n(B]),...,Z (B,)) converges in distribution to the

n
random vector (Z(B]),...,Z(Bk)). (aBi is the topological boundary of

B, and 4 is the Lebesgue measure).

A point process Z on (0,1] is called a Poisson point process

with intensity T > 0 iﬁ for every B € B, Z(B) 1is Poisson distributed
. /, s

i

with'mean 1/(B) and fpr every positive integer k, Z(B]),Z(Bzf,...,

Z(Bk) are independent“whene@er B]’BZ""’Bk are disjoint Borel subsets

of (0,11. ~

The following . theorem will p]éy a very mmportant role. It is a
special case of Theorem 4.7 in Kallenberg [1976]. »
THEOREM 1.2.1. Let Z],Zz,...‘ ani I be point processeé on (0,1], 1Z
) N

being Poisson with intersitx T. Surnose that
e 2¢ K ¢

(a) E[Z ((a,b])] — t(b-a) forall Oca<bcl.

. (B)- k
(b) Pz, (8)=0) ~ e B ror a1z B o the fom U (agb,]
where 0 < ay < b] <a, < by << b < 1.
Then I, 1. . - . /117

Now let us,gé back to our upcrossings problem. Cénsider a stationary
stochastic process (é(%ﬁ; t ER) defined on a probability space -
(2,F,P), and having, with probability one, continuous sample baths. Let.
(uT; f:-O) be a given fqaﬁ]y of constapts (typically uT-—++00 as
T—+4w). For w€Q and B E B, - let ZT(w,B) be the number of
upcrossinés of the level U by the sample path, t £(t,w) within the
time set TB = fTb; b €B}. Undi{ general conditions, ZT will be a

point process, as defined above. It will be shown that for a suitable

v

44
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choice qQf constants Ug and under appropriate conditions, the point
process of upcrossings ZT converges weakly to a Poisson point process.

This w111 be done using Theorem 1.2.1.

A

NN

1.3 Summary

In Chapter 2 we will consider the case of a stationary sequence

(gn; n =1,23:..).; We shall say that,an exceedance of the level u occurs

~

. at 10 if t10 >u. It will be éhown that the point proéess of
exceedances converges weakly to a Poisson point process provided the
o stationary sequence satisfies cerﬁa%p,dependence conditions.
In Chapter 3 we will use the results and ide}s of Chapter 2 to
ftreat the continuoys parameter case. w% will obtain Leadbetter's genera]\
Poisson point process 1imit theorem for.the upcrossiﬁgs of a stationary ~

process, not necessarily Gaussian. We shall also consider the point

process of e-upcrossings.

Chapter 4 is devoted to stationary Gaussian processes. In the first
part of this chapter we inves}igafe the re]aiionship between the covari-
ance function and the‘spectral distribution function and we review the
available literature, especially more recent work, concerning the sample
path‘ana1&t1ca1 properties, and the moments of the number of upcross%ngs

7 of a Tevel. Then we show that the general Poisson point process limit
: theorem of Chapter 3 can be applied to stationary Gaussian processes
whose covariance function satisfies Berman local and'ﬁixing conditions.

1 This gives us Theorem 1.1.1 via the general framework.
-



v CHAPTER 2

CONVERGENCE OF THE POINT PROCESS OF EXCEEDANCES
OF A STATIONARY SEQUENCE ~

2.1 Introduction .

A random.sequence (Ei; i=1,2,..) is called a stationary sequence if
for every positive integer m and for every choice of positive integers

11s79s-+.5 1 the random vectors (%1]’€i2"'
(¢

AR
1
integer k. The joint distribution function of Ei af5 snut will be
» o 1 2 m
Hence for (x],...,xm) in & we write

],12,...,1m. .

&, ) and
Ym
+k’51 +k,...,51m+k) have the same distribution, for every po?1t1ve ‘

denoted by Fi

F . (x1,x2,...,xm) = P[¢

. $Xyy Lo < Xpyeuusfe <X_]
]]’12""‘1m - i, ="2

1 - M

h 2 m

and the stationarity condition is that
F . o= F, . . )
. IREAPTERERS 1]+k,12+k,...,1m+k.
In particular Fi is independent of i and it will be denoted simply by
Fy it is called the marginal distribution function of the sequence.
Let (&3 i =1,2,...) be a stationary sequence defined on a

probability space (R,F,P). Let (un; n=1,2,...) be a given sequence of

real constants. For each positive integer n we define the point process °

of exceedances of the level u, as follows:

Zn:S2xB — N

(W!B) o Zn(w;B)

where Zn(m,B) is the number of instant Jj in the time set nB for

which we have gj(w) > U For each n, in is a poift process as

defined in Chapter 1: for any fixed w in §, the function

>

14
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. B Fﬂ»Zn(d,B) is a finite positive measure on the famf]y B of Borel

subsets of (0,1] and for an} fixed B in B, the function .

T Zn(w,B) is a random variable on O (denoted by Zn(B)).

Our main-goal in this chapter is to show that for a suitable choice

converges weakly

of constants Up> the sequence of point processes Z
™~ AN

n

to a Pois§bn point process. We will have to consider stationary

©

sequences satisfying certain dependence restrictions. We now examine

e P

different types of dependence restrictions.

M1xing conditigns ’ &~\

As mentioned in C;apter 1, a mixing Eondition is one which gives
asymptotic independency for 51'5 living far apart. Next to 1ndepenﬂéhce N
itself, the stronge%t type of mixing condition one can think of is the

so-called m-dependence: the sequence (£1; 1=1,2,...) is m-dependent

if g, and gj are independent whenever |i-j| > m. Independence is

simply m-dependence with m = 0.°
Rosenblatt [1956] introduced the notion of strong mixing. The
sequence (gi; i=1,2,...) is said to satisfy a strong mixing condition

if there is a sequence g >0, with ak-—+0 as 2w, such that

(2.1) |PANB] - PLATP[B]| < o -

whenever A € F(g],gz,...,gp) and B € F(gp+£+],£p42+é,...) for some
positive integer p. Here F(...) denotes the c-algebra generated by
the indicated random variables. (QE; 2=1,2,...) is‘usually called the
mixing sequence. Noté that m-dependence is simply strong mixing with

=0 for & >m.
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* Roughly speaking, straong mixing says that events 1iving far apart are
uniformly asymptotically independent. In proving the Poisson point
process 1imit theorem fqr the exceedances of a stationary sequence we

w11l be dealing with events of the form N {£.<u }, where J is a
. jed J—m ~
finite subset of N. It will be enough to have asymptotic independence

for events of that form. In the sequel it will be convenient to write i

F. . (u) dinstead of F. . . (u,u,...,u) in order to simplify
RV W n
the notation. We shall say that the condition D holds if for any

?

integers ]_31] <12 <vee <1p <J] <J, f--~ <Jq, with J]é7p > %, and for

any real number u, we have %K P
N - s,
“ N
u(Z.Z) ‘F . __..(u)-F. s (U)F. (u):<o¢
. 1‘] 1pJ'I Jq 1] "1p J.I Jq _ ,Q: \

r ' , -—
where a¢f~>0 as f-—«. C(learly strong mixing implies condition D:

1f (2.1) holds, then (2.2) certainlycholds since it can be written as

zP[AqBJ '.P[A]P[B]' x&z with A = {E'l iu""’g‘i iU} € F(E]’E’Z”CT )

B

1 p P
and B = {£, <u,...,£, <u} € F(&. s q+5; yeoo )
Jq Jq . 1p+£+] 1p+£+2
n:

Finally, if (u_; 1,2,...) 1is a sequence of real constants, we

n
say that condition D(un) holds if for any integers

*

1 L1y <y <1p <y iy <Jq <n for which J]-1p > %, we have

cerd j]...j (Un) _Fi]---i

(2'3) |I'
1

Jj (un)l-i an,ﬁ

where @ —0 as n-—-w, for some sequence ln = o(n). Without loss
’n

of generality we may (and will) assume that « form a non-increasing

n, %
sequence in £, for each fixed n. If this is so, it is easily seen

that the condition oo —0 as n—w, for some L, = o(n), is
. >7n

equivalent to-the condition a, n8-+0 as n—«, for each B8 > 0.

C]ea;;;\T?\éoﬁd' ion D holds, then condition D(un) holds for eséry




sequence (u_)./ ) \ /

Local condi'tior\

12

To obtain \the main result of this chapter we will need the following

Tocal condition which rules out cases where nearby Ej's are too highly
dependent. Given a sequence of real constants (Un)’ we say that the
condition D'(u )| holds if i

o [n/k) - " ‘
(2.4) lo”: hrrr:_wscup n jZZ P[g1 > U gj >un] =0,

5
o

where [t] denotes|the integer part of t.

P
We now state the main result of this chapter.

THEORE& 2.1.1. Let (&1; i=1,2,...) be a stationarv sequence on

(2,F,P). Let (un; n=1,2,...) be a sequence c¢f real constants. Let

Zn L' the poivt process of excecedances of the level up- If for some

T >0

(2.5) - n(]—F(’un))—rT as n — o

\

where F 1is the marginal distribution function of the seauevce, and Lf

o~ ‘
the conditions D(un) and D'(u,) both hold, then .

(2.6) - Z, 1

where 1 1is a Poisson point process with parameter T. /7177

1,

Thanks to Theorem 1.2.71 it will be enough to show that

>

(a) E[Zn((a,b])] — t(b-a) for O <ac<b <] .\

i

e

(b) P[Zn(A) =0] — e ™A)  fop any A of the form A=

where 0 <a; <b, <a,<b, <---<a, <b, <1.

PRSI —

(452041
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\ * ) .
It is easy to see that {a) follows from (2.5). Writing

(n) . 1 1f Ei >

n
5 S .
0 1f &, < up
we have ’
' [nb]
Zz ((a,0)) = 5 x{M ,
n . i i
' i=[na]H - :
so that

Efz,((a,b])] = {[nb] - [na])(1-F(u_))

from which (a) follows, using (2.5). To obtain (b} we will have to work
harder. Consider for the moment the simple case where (51; i=1,2,...)
is a sequence of iqdependent and identically distributed random

. AX
variables. We have™

k N
PLE,A) =01 = PLZ, (U (24,0,1) 0] Q
= PLZ,((ay,by 1) =0, 2, (30 1) = 0] T
k
= T PLZ,((a;:b;1) = 0]
i=1 .
and we have
’ _ k -1(b,-a.)
o TA}A) - Ne R
i=1
Hence to get (b) it suffices to show that

PLZ ((a,b]) = 0] — e 7(>2) R

for all O0<a<b<1. But this follows easily from (2.5) since

Cev T

7
i




. y
}zn((a,b]) =0] = PLz. <u; 1= [nal4l,...,[nb]] c
[nb]-[na] | S
' . =0 Pl nages o) o
- ~ ' = (F(u,))tnd-Lnal L

. L L1 - (1-F(u )"y Enpd-Tnal)/m /
pyyny([ed-fnadyn

1]

S|~

{1 - (s +of
e-T(b-a)

——

~as e,

Thus Theorem 2.1.1 is proven faor the simple case where < -7

(gi; i=1,2,...) 1s a sequence of independent and identically distri-
1 N

buted random variables. The independence assumption was used at -two

étages. Firstly we wrote

k
(2.7)  PLZ,({a;,b. 1) =0; i=1,...,k] = T

1 P[Z ((a;,b,])=0] .
1 .

1

-

Secondly we showed that (2.5) implies

-1(b-a) .

.

(2.8) PLz,((a,b]) =0] — e

In the following sections we shall obtain Theorem 2.1.1 by showing that

if, instead of independence, the conditions D(un) and D'(un) hold,

then (2.8) still holds and the difference of the two terms in (2.7) goes
to 0 as n-—w, N

( Note that we have

™
] “»_Z ((a,b])=0 = max E. <u_ .
’ N [nal<i<[nb] ' "
For brevity we will write

N . s N

My = max{gy 65500008 )

ef
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and our discussion will be carried on in terms of the random variable

- \ “

+

M.
n
The results presented in the next three sections are due to
Leadbetter, except for one half of Theorem 2.3.2 (namely the fact that
P[Mn-iun] — e ' implies that n(]-F(un)) — 1) which is due to
R. Davis [1979]. The results are presented essentially as in Leadbetter

[1974, 1976, 1978] and Leadbetter, Lindgren and Rootzen [1979].

2.2 Asymptotic independence of the maximum over juxtaposed intervals
J

In the next three sections, (&1; i=1,2,...) will be a statjonary
sequence defined on some given probability space (&,F,P). For any set

K of positive integers we will write

M(K) = max ¢
. 1€k
If k=1{1,2,...,n} we write simply Mn' It will be convenieﬁf to talk
of an interval to mean any finite set K of consecutive integers
\{j],j]+1,...,j2} say. We then say that K has lehgth Jp-dq*l. I
F= {kyuky+l,. .o ko} with j2‘<k], we say that K and F are ‘

separated by k]-jz.

LEMMA 2.2.1. Suppose that the condition D(un) holds for some given
sequence (un). Let n, r and k be fized positive integers. Suppose
K1,K2,...,Kr are subintervals of {1,2,...,n} such that Ki * and Kj

are separated by at least K whenever 1 # j. Then

r r
(2.9) P[jQ1 {M(KJ.) iun}] - J,_I__I]P[M(KJ.) _<_un] < (r'])an,k .

where % is as in (2.3).



Proof. For brevity we write Aj = (M(K,) <u 3. let Ky = {kj,...,z.}

where ki <y <k, <f,<-r<k <. (after renumbering if nec?ssary).

~

Then, since kZ—Q] > Kk, &ondi%ion D(uAZ;te]]s us that

' /
JP[A]rWAz] -P[A]]P[A2]| Sop g .

>

Similarly we have R

~r =
v

[PLA, NA, NALT - P[A]]P[Asz[A3]| . \ |
[PLA; A, NA3T - PIA) A, TPIAT] +PLASTIPIA, MA T - PLA, IP[A, T

i-zgn,k

[

-
3
F

L2

since Ky UKy C {ky,...,2,) and ky=2, > ks Proceeding in this way we

/ :
/ ' ,

Now let /@ be a fixed posﬁ%ive;igtegif and for/any positive
'3

i

/ v /
integer n /ﬁet [n/k] denote the/ﬁntijiy’part of n¢k. Clearly we haVe

obtain (2.9). / : /1]

3

-

[n/k]k gJﬁ/< (In/k] +1)k. In the/follo ing we shall approximate

/ k : . ’
JUNPIYS BV T R , |
/For a given -n, c/dpse m [so that k < m < [n/k] and let us

/
d}éide\phe interval {1,2,...,[d/k]k} into 2k consecutive intervals in

/@he following way:

11‘= {(1,2,...,[n/k]-m}
1; = {[n/k]-m+1,...,[n/k]}

I, = {[n/k]+1,...,2[n/k]-m}
Iy - (2[n/k]-m+1,...,2[n/k1}

~

L
.
1]

= LD In/k34, o kDn/k]-m)
{k[n/k]-m+1,...,k[n/k]} .

~



W‘m—;ra et ¥ g

“

Finally write . : ‘”’*ﬁ
= (k- ‘ .
i . Iy {{k 1)[n/k]+m+],.=..,k[n/k]}
* = RN
Ik+1 {k[n/kJ+1,...,k[n/k]+m} .

. k » .
Tg approximate P[Mniun] by P [M[n/k]kiun] we proceed as follows. ..
First we approximate P[M _<_ur'}] by P[_’W]{M(Ij)iun}],, i.e. we disre-
J:

gard the small intervals 13. Then, using Lemma 2.2.1 we approximate
k k
P[ ﬂ {M(1I ; ) <u ;] by I P[M(Ij))_iu ] which, by stationarity, is equal
J=1

k -~ .
to P [M[n/k] _plu ] Finally we approximate P [M[ Jk]-m <Y ] by N
Pk[M[n/k]iun]’ i.e. we throwf back in the small interval I;‘.
Specifically we have:
X - -

L- . W .
LEMMA 2.2.2° With #he above notation, and assuming that the condition

1

D(u,) holds, we have _  °

, k - )
(i) 0 < P[jf:]{M(Ij)iun}] -PM <u ] < (k+])P[M(I]) <u <M(I )]

.. k ; k \
(i1) 'f[jﬂ{”(%)i“n”“f

MCT)) <u B0 < ke \\
-

(1) [PKIM(1,) <u ]-P [M[n/k] <u 3| < kPIMCI)) <u <M1

Hence by combining (i), (i1) and (i11) we have \
N * \\ R
(2.10)  [PM_<u 1- P'k[M[n/E]iunji < (2k+1)P[h:I(I])iun WD ke

k . \
Proof. (i) follows at once since {M_ <u } C A {M(I.)<u_} and their
N *© \ n_' n J:‘] J - n

difference implies M(Ij) <u

We have ' : ,

0 < P[jQ1 ML) <u33-PIMy <up]
5 B
P[(J.Q]{M(Ij)gun})- M <u }] K
k+ .
P[J_i{| {M(Ij)\f_un<M(IJ.)}] *

n < M(I}) for at least one j, 1 < j i\kﬂ.

baul

A



gt

k+1 #y7
jZ]P[M'(Ij)iun<M(rJ)] ._ \

I

(k+1)P[%;11)5unfM(1§‘)] |

where.we used stationarity in the last»statement. (ii) follows from
Lemma 2.2.1 and the fact that j£1P[M(%)iun] is equal to

Pk[M(I])f_u"n] by stationarity. To ebtain (iii) we note that
~ \ N

0 < P[M(I]) <u ] P[M[n/k] <u ] P[M ) iun-<M(I?)] .

L3 1

Put y = PIM(1y) <u ) and x = P[M[n;k:lf_un]. (i11) follows from the
obvious inequalities "
B 0 < y*xK < k(y-x)

‘\‘v\ \
which holds whenever 0 < x <y < 1. (2.10) follows easily. //1/

K]
- |
|

~LEMMA 2.2.3. With+the above notation, and asswivg th%( the condition

D(un) heids, let r be a fizxed positive integer. Then|if n > (2r+])mk
we have : . \

\ ;
n,m’

* x 1,
(2.‘11) D P[M(I])iun<M(I])] < FH2ro
Proof. Since [n/k] > (2r+1)m," we mdy choose interva]s\ KisKoseaK,

°

[

|
each of length m, from I, = {1,2,...,[n/k]-m} so -that tKweyware

separated from each other and from I? . by at least m. Theh

S5
7 %)

o P[M( )iun<M(IT)]f:P[gE\]{M(KS)f_un}ﬂ{M(I;)>un}] \
AN

r r
- PLO {M(Ks)gun}] - P[0, MH(KS) <u ) Ay <u )]

* J

By stationarity, P[M(K <u\}t P[M I )<u 1=p, say, and by

Lemma 2.2.1 the two terms on the right hand side differ frort\ p" and

L=

a |

Vi

I
!
l L4
|
|

e o p—

AN



pr+] (in absolyte magnitude) by no more than (r-l)an noand ro "

respectively. Hence

o
¢ I

P+ +2ra

* r
PIM(I,) <u <M{I7)] < p -p n.m

r r+] 1

from which (2.11) follows since p -p e

‘ S~

<

/117

~

_—sl-—-

From these lemmas we easily obtain the following theorem which is an
essential step leading to the Poisson point process 1imit theorem for

the excgedances.

'
THEOREM 2.2.4: I~F (Ei; i=1,2,...) tis a stationary seguernce and 1f
(un) 18 a seguence of real conmstants for whish the condition D(un)

holds, then for every positive integer K we have
P[M <u_]-PK[M <u] =0 as n— e
n=-"n [n/k]="n N :
Proo*. Fix k. If m, r, n are positive integers satisfyjdg L
(2.12) k <m < [n/k] and n > (2r+1)mk
then by Lemma 2.2.2 and Lemma 2.2.3 we-have

(2.13) P <u ]- Pk[M[n/k] <u 1l < &y (akreare)
- , thr

o
n,m

Now fix r. Take m= L. s in our statement of condition D(gn).

Since Qn = o(n), (2.12) is satisfied for large enough n. Thus, s{nce

. g —0 as n—«=, (2.13) gives us
**n
. k 2k+1
112ﬁiyp |P[Mnfiun] -P [M[n/k]fiun]l <5

Since r was anbitrary, the proof is complete. 111/



.

2.3 A weak convergence result for the maximum

1f (c:].; i=1,2,...) 1is a sequence of independent and identically

distributed random variables with marginal distribution function F and

if (un) is a sequence of real constants such that n(]—F(un))—ir a%

"

n*—+w, then we have ) .

P[ max £ i”n] ) ’
1<i<n

P[Mniun]
P[E] SUpo €2’5un’ .. .,gn\_gun]

i}
W
e
—

el

Hence P[Mniun]——re"‘ as n—o«. Conversely, »P[Mniun]—»e—T can be

wrifiten as (F(un))n——»e'T. This implies F(un)~—>1 and
n 109[1—‘(1-F(un))]——>-T from which we get n(]—F(un)) — 1. Thus we

have:
b

‘THEOREM 2.3.1. Let (51.; i=1,2,...) bea sequence of independent and

identically distributed random variables with marginal distribution

funection F, let (un) be a sequence of real constants, and let T be

P
N

a positive constant. Then ' - »

n(]-F(un)) — T as N —®
1f and only if

PIM <uT—e" as n—ew. R ’

B - .
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'

Using the result of Section 2.2 we now show that this theorem also

holds for stationary sequences satisfying the conditions D(un) and D'(un).

THEOREM 2.3.2. Let (i]; i=1,2,...) be a stationary secuence with

marginal dictributiorn function F, let (un) be a sequecwnce of reat

constants for which the conditions D(u Y and D'(un) hold, and let 1 be

n
a po;itive constant. Then
(2.18) ) n(}—F(un)) — T @ N — o &
if and only 17
(2.15) PM_ <u]—e" as n— e, -

o

Proof. Let k be a fixed positive integer. Fromo

[n/k]
{M[n/k'] >un} = jtzJ] {ij >un}
we get N “

[ngk]P[ ] ;L ] <P[M_ ]

E.>u_J - . E.>Uu_, £.>uU < >u
L J7n s 17 5§ n” = [n/k] ™ "n
j= . 1<i<j<[n/k] [n/k] ”

< jz] PLe; > upd s

and using stationarity we get

(2.16) 1= [n/KI(1-Flup)) < PDM g <upd < 1= D/kDO-F(y )+,

‘ [n/k] : - . »
where Sn,k = [n/k] jZZ P[g] > Yo !»;J. >un]. Since condition D‘(un) holds,

we have &

_A'im sup S o(%) as k — o . .

Mo

Suppose (2.14) holds. Taking n—o 1in (2.16) we get

N



1 . ) e
]"Fi 11rrr]14lnf P[_M[n/k] <ul < 11;1;uo P[M[n/k]iun]\i]'E’Lo(E) _

Now taking the k-th power and then using Theorem 2.2.4 we get ,

Ty K . . 1 111k
(1-5)" < 1am inf P[M_ iun] < 1im sup P[Mniun] < (1 —F+O(F)) .

k n-oo N
Taking k-—s we obtain (2.15). Now suppose (2.15) holds. Then by

. Theorem 2.2.4 we have

K s n -,

P[M[n/k]iun] — e
Writing (2.16) as
1 'P[M[n/k]iun]\‘i [n/k](l-F(un)) <1 ‘P[M[n/k]iun]ﬂn,k ’

and letting n—«, we get

22

1. e T/k i%h’m infn(]—F(un)) ijk—h'm supn(T—F(un))’i 1 -e'T/k+o(]E) .
N N
Multiplying by k and letting k—o, we get (2.14). /1]

TQeogem 2.3.2 is 1interesting on its own.  As we shall see Jater, it
can be used to obtain interesting results concerning the limit distribu-
tion of an(MU‘;bn) for suitable choice of an, bn‘ For the moment our
goal is to use Théorem 2.3.2 to obtain Theorem 2.1.7. First we need a
technical result. So far we have been dealing with just one sequence

(uj; n=1,2,...). Given such a sequence we now define a family of

sequences ((un(e); n=1,2,...); 8>0) by writing .

: ' Un(e) = u[n/@] .

Note that (un(1)) is simply the original sequence (un).
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LEMMA 2.3.3.

(a) 17 n(]—F(un)) — 1, then n(]-F(un(e))) — 81 for all & > 0.

[

(b) 1€ condition D(un) holde, then condizion D(un(E\)) holds for
0 <o <.
(¢) If condition D'(un) holds, then condition D'(un(s)) holas for

0co <1

¢
- 3

>

Proof. 1f n(1-F(u))—=, then [n/s](1-Flupy qq)) =7, which gives
n(]—F(un(e)))—»er. Thus (a) is proved. Assume condition D(un) holds.

Take 151]<---<1p<3]<---<3q5n with 31-1p32. Writing

1=(1],...,1p) and j = (j],...,Jq), we have

(2.17)  |F,.(u (€)= F.(u (6))F.(u (8))].
If 0<e <1, then n < [n/e]. Hence, since condition D(“n) holds, the

right hand side of (2.17) does not exceed

L
“n,1 " %[n/el,s

where % o is as in (2.3). Since an’p_nwo for sdme &in = o(n), we

have o ——>q with £ =2['n/8]" C’1ear1y Z[n/e'] = o(n). Hepce

'
n,Qn

condition D(un(e)) holds. (b) is proved. For 0 <& <1 we have

[n/k] . ) ) Ingkd
n j.ZZ PLEy >u,(8), £y >u (8)1 = n jZZ P[fh> Urn/e)’ &5 >u[n/e]'J
| [[n/8)/K]

< [n/e] jZZ PLEY > Urn/e]e & >u[n/6]]

~

By condition D'(un), the upper 1imit of this expression as n—w (or
equivalently as [n/6]—w) tends to 0 as k—«. Hence condition

D‘(un(e)) holds. (c) is proved. * /117
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THEOREM 2.3.4. et (£5:4=1,2,,..) be a statiznary secuence with
#’ A e,

marginal dietritution furcwgen F, let (un) be. a¢ sequence of real |
\

-

Co \
constants for whizh the conditioms D(un) an? D'(un) hotd and let T bLea

rositive constant such that (2.14) holds. If (v(n); n=1,2,...) isa

sequence of positive intezere such that for some 0 < € <1

v(n — 8 a&¢ n — 4

) 'GT Y
(2.18) P[Mu(n)f_ungv—+ e as N ox

i
Proof. By Lemma 2.3.3 we ha\‘Fel
(a) n(1-F(u (¢))) —6: as n—e
I(b) condition D(un(e)) holds . . ‘ o
(c) condition D'(un(ﬂ)) ho]ds); .

Hence from Theorem 2.3.2 {with @1 instead of 1) we have

Bt

P[Mniun(e)]_' e as n—
Thus T T
-0

P[Mv(h)iuu(n)(e)]_'e T as n— o .

~ [

Hence (2.18) will follow from
(2.]9) P[M\)(n)iun]'P[M\)(n)f_u\)(n)(e)J g Q as n— w

which is to be expected since uv(n)(e) = Ury(n)/e] and by hypothesis

v(n)/6 ~ n. (2.19) is obtained as follows: If up, < u\)(n)(e), then

I S
o 0 < P[M\)(n) _<_Un] - P[M\)(n) iuv(n)(e)]
5 P[uv(n)(e) <M\)(n)iun:I



| ——
:

U(n)
PL U {u,
=1

u(n) LRl )-Fluyy (6D)] -

A

)<y cut]

(n

| A

n

Similarly, if ug < Ul(nl(e) then

"

4

<ol TFlu, gy (6] - Fluy)]

0, PLH g <, () (811 P, ) vy

Thus we have

N

N

|P[M\)(n) iun] - [Mv(n) iuv(n)(e)]\ < v(n)[F(un)—F(uv(n)(e))!
\ == vin) [ (1-F(ug)) - (1-F(uyy(8)))]
d = v(n) [H(1+(1)) - gpy(T40(1)) |
= 0o(1) as n—w
Thus (2.19) holds and|the proof is complete. N ///_/

The Pgisson point process 1imit theorem for the exceedances of a

stationary sequence wjll follow easily from the following result.

o

ﬁ
THEOREM 2.3.5. Let (&,5 1=1,2,...) be a stationary sequence with

i

marginal distributton|function F, let (un) be a secuence of recl

constants for which the conditions D(un) and D'(un) hold and let 1 be a

positive constant such that (2.14) holds. If Oia] <by <a2<b2< ce <
ar<bril and if Kn,:i = {I;nai]” ,[nai]+2,...,[nbi]}, * then

r
-TZ(b].-ai) ~

r
(2.20) PLA MK .)<u}] —e | as n—o .
j=] n,1"—mn ,

- Proof. By Lemma 2.2.1 we have

|
¥ r 5 r

(2.21) lP[JQ] {M(Kn,‘i) gun}] - iI=T1 P[M(Kn,i ) iun:] ’i (r-1 )&n,nB
| ' l

\ | ;

\

\ , ' \

!
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where g = ]<Tl:-](ai+]-bi) and where Spx 1S esin (2.3). Since
condition D(Un)' holds, the right hand side of (2.21) goes to O as n—=,

By stationarity we have
™

P[M(Kn,i)iun] - P[P'1([nb1.]-[na1.])iun] ’Z

([nb, 3-na, 1)

and clearly — (b.-a.) as .n——;m. Thus from Theorem

n i~%
2.3.4 we have .
-1(b;-a;) N
P[M<Kn,1)wn] — e as N —ro
r
- -‘T%(b_i-a” '
and hence 1 P[M(Kn 1.)iun]\—> e as n—o .
i=1 ; . .
This, combined with (2.21), gives us (2.20). 117

2.4 The Poisson point process limit theorem for, the exceedances

The convergence of the point process of exceedances of a stationary
sequence to a Poisson point process, Theorem 2.1.1, is now easf/]y
obtained.

Let ({’1‘; i=1,2,...) be a stationary sequence with marginal
distribution function F, Tlet: (un)' be a sequence of real constants
for which the conditions D(un) and D'(un) hold and let Z ~ be the point

process of exceedances of the level u . If n'(1—F(un)‘) -1, for some
1> 0, then Zn—w»Z where 7 1is a Poissdn point process with

intensity T.

T - N
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N L .
Froof. By Kallenberg's result, it is enough to show that
- - v
(@) E[Zn((a,b]“)]——w(b-a) as n—=, forall 0<a<bc<T.
S -’ r
(b) P[Zn(A)=O]—+e < (A) for all A of the form i-1<ai’bi]

Dl
with 0<a, <b <a2<b2<"'<ar<bri], where _A(A) is the

171
Lebesgue measuré of A.

As we saw in Section 2.1, (a) 1is immediate:

E(Z,((a,b])] = ([nbl-[nal)(1-Flu )) — (b-a)7 .

\

Now let A be as described above. Then s

PLZ(A)=0] P[Zn(iL:J] (a,;b;1) =0]

]

"
P[.Z]Zn((ai’b1])=0]
=

r
P[i‘;‘]ﬂ{znq('(a]- :b.1)=01]
r
=T{M(Kn,1):iun}] ‘

PL,

1

where Ky 5 = {[nai]+1.,[na1.]+2,...,[nb].]}.. The last equality holds since

-the sets"{Zn((aj,bi])=0} and {M(K )iun} are the same. By

n,i

Theorem 2.3.5 we have

173

r
P[ig]{M(Kn,i)iun}] — exp(-ri ](bi-ai)] as n—o |
]

Hence (b) holds. Theorem 2.1.1 is proved. NI/

-

2.5 Connected results

"

As before, (5]:; i=1,2,...) "will denote a stationary sequence

with marginal distribution function F, Mn will be the maximum of

{51,52,...,'@"}, (un) will be a sequence of real constants, Zn will be"
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the point process of, exceedances of the level up, and Z will be a }

Poisson point process with intensity 1. The last three sections can be

T

r
summarized as follows:

[

A. 1f condition D(un) holds and if k is a (fixed) positive integer

then

w

; k
P[Mniun]-P[M[n/k]iun]——ro as n—o .

B. If conditions D(u ) and D'(u) hold, then '

- '[' 2
n(1-Hun))~*T —P[Mngun]—+e .

C. 1If conditions D(un) and D'(un) hold, then

W
n(]-F(un))—»T = 1 —I.

“

We used A'to obtgin B and then B to obtain C. The converse of B was

not used to obtain C but was presented for completeness:
B'. If conditions D(un) and D’(un) hold, then

P[Mngun] — el = n(]-F(wﬁg)—»r .
. ’ [ _
These results are interesting in their own. But they also lead to some

very important theorems as we shall now see.

Gnedenko's theorem

To begin with, wesshall discuss a famous result concerning the

asymptotic behaviour of the distribution‘bf -Mn.

A

.t prsty

o
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.

3 1=21,2,...) 18 a sequence cf iniczendent and
\
identical ly distriluted random variables and 1f for somc consiants

a >0 aguZ b we have
n ‘ n

P[an(Mn-bn) <x] = G(x)

L]
for some non-degenerate distribution Function G (where — means

convergence at the corntinuity poists of the limiting function), then G

ig of one of the three types listed below: -

rd

Type 1 6(x) = exp(-e”%) - < X <
0 ~o < x < 0
Type 2 G(x) = a )
s exp(-x ) 0 <x <o
for some o >0 4
exp(-(-x)%) ~o < x < 0
Type 3 G(x) =
: 1 . 0 <x<w /177

for some o >0
.

N

(If. 6, and G, are distribution functions and if for some a > 0 and
).

T 2
som% b we have Qz(x) = G](ax+b) for every x, then G] and G2 are
said to be of the same type. Observe that type 2 and type 3 are in fact
families of types indéxed by the parametér o)

This result is referred to as Gnedenko's theorem even though it was

"discovered long before Gnedenko. Frechet [1927] found that the possible
Timit laws for~ anMn’ with a suitable choice of a, > 0, were only
laws of types 2 and 3. Fisher and Tippet [1928] established .that the
1imif laws for an(Mn-bn), with suitable choice of a, > 0 and bn’
were only Taws of types 1, 2 and 3. Later DeMises [1939] found condi-

tions on the distributioq function of the gi's for an(Mn-bn) to

*»
, converge to a law of types 1, 2, or 3. However Gnedenko [1943] was the

'y
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first to prove the theorem in corﬁp? ete generality. Its proof may be

displayed as the two following results:

~

;-
N

LEMMA 2.5.2. et M],Mz,... be rardom varialies (whizh in this Lemu
I
may b/é mazximi or not) and suproge a, > 0 and brl are conctants such
; /
that! /
/ h o
I //

(2.22) . Ple (M b ) <x] = 6(x)

for some ron-dezenerate dictribution funztion G. Furthermore suppose
\ ‘

@ tha: for k= 2,3,... we have

, (2.23) Pla (M b ) <x] D 6% (x) .

Thew, corresrondins to eack K, there are comstants o, > 0 and B
i) IS u b . k k

¢ such that

5

(2.24) 6 (nrtg,) = 6(x) , forall x €R. /",

. / ’ . *
LEMMA 2.5.3. If G Zg a non—degenerate/distribution function such that

(2.23) holds for k= 1,2,3,... (for some constants o > 0 and bk)

then G 1is one of the three extreme value types listed inm Theorem \2.5. 1.
- o

1117

3

< One can easily check that if Mn is the maximum of the first n terms

of a sequence of independént and identically distributed random variables,
B .23) holds (for k=2,3,...) whenever (2.22) holds. Hence
Theorem 2.5.1 follows at once from Lemma 2.5.2 and Lemma 2.5.3.. The
o ~ A

[

< first of these lemmas is essentially a result of Khintchine and its proof

may be found in Gnedenko and Kolmogorov [1~954, section 10, theorem 1].

— ———— ———
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The derivation of the second lemma constitutes the major part ot

|
Bnedenko's papern[1943] A simple proof is presented in deHaan [19761].
Using the result Jf Sectmn 2.2 it 1s easy to obtain Pnedenko S

theorem for stationary seGuences.

2%

THEOREM 2.5.4. Let (&1; i=1,2,...) be astationary sequerice and

suprose thaz for some cpnetante ap >0, b, we hae

[

P[a (M - )<x] —'>G(x)‘

+
for some nov-degenerate dietribution fumetion G. Surroee tha* for each
reail nurmver X the condirtior D(un) holds for the seauernce u, = x/an *an.
Then has ome ¢ the three extreme value forms lisved in Theorem 2.8.1.
/
~ ' Al - . . - i
Prco”. ylet x be a continuity point of G. Writing u, = X/an+bn

-

we have 2

P¥, <u ] — G(x)
Since condition D(un) holds, Theorem 2.2.4 tells us that
1 oMk .
Pla (M b ) <x] — 6V (x)  k=1,2,3,... .

Hence we get

1/k

4 oI, <upd > 676 k=123,

Thus the resu1;c follows from Lemmas 2.5.2 and 2.5.3. /7177

_ This theorem can be found in Leadbetter []974]. It was previously
obtained by Loynfs [1965] for stationary sequences satisfying a st‘rong'
mixing condition. Loynes investigations had 1’ts'or1g1'n in Watson's
[1954] paper on the maximum of m-dependent stationary sequences. The

asymptotic distribution of Mn in the case of a stationary gﬁg}us'siah »
e

[N - [



~ written®in terms of the covariance function of the sequence.

g

'
i

sequence was stud155&by Berman [1964]. His dependence cond1t1ons were

{
i

A
L

The associated sequence of- independent rantom variables

4

« As a second /application of the results of this chapter, consider a

« 1

1

stationary sequénce (Z_; i=1,2,...) ‘With marginal distribution func-,
/ k .

tion F andr}%t— (ni; i=1,2,...) be a seguence bf independent and

-

jdentically dkﬁtr1buted random variables having fhe same marginal

‘
4

distribution function . F ((hi; 1=1,2,...) 1is sometimes called the

gqsociated sequenceé of independent random variables). Let Mn be, as

&

usual, the maximum of {f,,% ,i..,g }, and let ﬁ be the maximum of
’ SR e n-e n .

{nysnos..any e Then:

-

THEOREM 2.5.5. Witk the above no*ztion, 1° (un) is such that the

conditione D(un) avd D'(un) hotd (for the seauevce (ii; i=1,2,...))

then for 0 < 8 <1 we have

j j @
. / |

% PIM <u ]~ 6 ifand only if P[ﬁnf_l:lniz] 9.

Proof. This follows trivially Theorem 2.3.1, which sa&s that
. |

§
P[qu“n] — 8 if and only if n(1-F(un)) —= -log 6 ,

i
combinéd with Theorem 2.3.2, which says that
{ 5 '

\ |
/

THEOREM 2:5.6. With the above notation, if a > 0 and b, are given

7

constants such that for every X the conditions D(un) and D‘(un) hoild

(for the sequence (E;‘i; i=1,2,...)) with Liﬁ = x/.an+bn, cand if G

"
'S ‘ Ej
. ® -

: .

P[Mnfiun] —~— 8 if and only if n(]—F(un)) — - log 6. ////

32

~
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-~ . - ~d < M AR FaX PP RN Ta i~y
L8 a4 MOV-IegEmeriie GLetrilbutios Nwsitio, the

//

d - - e -
(2.25) P[an(Mn bn)_;x] G{x) . -
17 and only iF o
(2.26) ‘ P[an(Mn'bn)fiX] — G(x) . /

Broc”. We will show that (2.25) implies (2.26). The converse follows in

exactly the same way. If (2.25) holds, then by‘Gnedenko’s theorem G

is one of the three extreme value types. ‘Hence G is continuous

everywhere. Thus in (2.25) and (2.26) the notation — means conver-

gence at every point. If x is such that G(x) > 0, then .
P[an(Mn-bn)_ix]-—+G(x) implies ﬁ[an(ﬁn—bn)fix]~—+6(x) by Theorem

2.5.5. If G(x) =0 then for every y with G(y) > 0 we have
( P[an(Mn—bn) f_xJ i‘P[an(Mn‘b%).iY] .
Hence we have '

1im sup P[an(ﬁn-Bn)_§X] < Gly) . ' ¢
n-voo .

for all y with G(y) > 0. Letting y decrease to infly: G(y)>0} and

using continuity of G we get . ‘

/ : . ;E Pla (M -b )<x] =0
This holds for all x. Hence (2.26) holds. 111/

W

The k-th largest value
We conclude with a third application. Let (Ei; i=1,2,...) be a
stqt%onahy sequence with marginal distribution function F .and for any

positive integer k, Tlet Mék) denote thé k-th largest value of




&

- g

{Q],ﬁz,...,gn}. M£1) is our usual Mn‘ )

-

THEOREM 2.5.7. F (un) ie a sesuence of constants suchk that the condi-

tions D(un) and D'(un) hotd and 1% For sore 1 > 0 we have

n,(1—F(un))—>T as N—e, then

]TS . e
T as n-——w,

OS.

k
P[Mék) iun] — é_r

I r~31

S

Proo”. ‘Observe that

wl¥) ey y = iz ((0.1]) <kl

where Zn is as usual the point process of exceedances of the Tevel -
Uy Thus

It k) <u 1 =PIz ((0.17) k-1 o

k-1 \
e A (GRS
. s=0 \
But from Theorem 2.1.1 we have
S .

P[Zn((0,1]) =5] = e 5T s TO,],...,k-]

which gives us the desired result. < 1117

COROLLARY 2.5.8. The theorem still holds if the asswmption
n(]—F(un)) — 1 ' <8 replaced by P[Mniun] —e ' (this follows from
Theorem 2.3.2) or by P[ﬁniun]-»e_T (thic follows from Theorems 2.3.2

and £.5.5). - ‘ /11 .

\
~

THEOREM 2.5.8. Suppose that we are given constants a, > 0 and bn

such that for every X the conditions D(un) and D'(un) hold with

>

u, = x/an +bh' Let G be a non-degenerate distribution function. If

78
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Pla (M -b ) <x] = G(x)

thev. For k = 1,2,3,... w7 have

Proof.‘ This follows from Theorem 2.5.7:(and 1ts corollary) just like

Theorem 2.5.6 was obtayned from Theorem 2.5.5. /177

These examples illustrate how,the results of this chapter can be
used. Although we shall not do so here, it is also possible to consider
exceedances of several levels, considered jointly. We would then obtain

a Poisson result which in turn could be used to obtain the joint distribu-

(k)'s.

tion of various quantities of interest, such as two or more Mn

These problems and more are treated in Leadbetter, Lindgren and Rootzén

[1979].



’ CHAPTEE 3

CONVERGENCE OF THE POINT PROCESS OF UPCROSSINGS
OF A STATIONARY PROCESS

¢

3.1 Introduction

In this chapter, (g(t),'tééﬂ will denote a stationary stochastic
process defined on a probability space (¢,F,P) and having, with
probability one, continuous sample paths. As in the discrete case,

F will denote the joint distribution function of the random

t]tz. ..tn

variables g(t]),g(tz),...,g(tn) and, for brevity, we will write

Ft1t2"'tn(U) instead of Ft]tz...tn(u,u,...,u). Fwill denote the
marginal distribution function of the process. In order to avoid compli-

cated notations and technical lemmas, we will assume that F 1is con-

36

tinuous and that F(d) <1 for all u (this includes the Gaussian case).

The results of this chapter are still true if we don't make these
assumptions. ' -
Our main goal in this chapter is to obtain the Poisson point
process limit theorem for the upcrossings. We shall use essentially. the
same approach we used for the discrete case. For T > 0 we write
- M(T) = max £(t) .

0<t<T

The value of M(T) for a particular w € 2 is denoted by M(t,w),
M(T,w) = max £{t,w) .

0<t<T ’
It is easily seen ‘that M(T) is a random variable on (Q,F,P). It is-
well defined and finite a.e. since for almost every w 1in € the sample
path t k+;gkt,w) is continuous. It is measurabfe since, again by
continuity of the sample paths, we have

:

'

e ——— -
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we will also obtain the converse of Bc’

—

|-
|
|
!
[

M(T,e) = Tim max{z(40); 1 L 1,2,...,2%
. e 2 ,

for almost.every w 1in . We shall assume, when needed, that for some

,hy >0 :

0
P[M(h) >u] - huu as u-—<« {for 0<h <h0

©

‘where My is the mean number of upcrossings of the Jevel u in the time

interval (0,1]. The function will p]éy the role played by 1-F(u )
in the discrete case. Given a family of rea1 constants (uTE T>0), Tlet

Z. be the point process of upcrossings of the level Ur- We shall

T
follow the lines of Chapter 2 and prove the followjng results:

~

B PIMITY <urd - PKIMET/K) <ud — 0 g T
B.. TuuT-+t = PM(T) cupl —
. X
C. L

where Z 1is a Poisson point process with intensity <. For completeness

%

—oe | = Tu T

Bé. | P[M(T)iuT] g i

The results of this chapter are presented ds in Leadbetter [1980].

A

3.2 Asymptotic independence of the maximum over juxtaposed intervals

In this section we shall obtain a continuous time parameter version

of Theorem 2.2.4. In addition to a D(un)-type condition we shall need
A . .
some regularity conditions to make sure the sample paths are relatively

smooth.
X

37
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Let a positive function ¢(u) and a family of positive constants

q,(u), a >0, u>0, begiven. We say that the condition R1 holds if

for some hO >0

o
(3.1) - P[M(h) >u} ~ h,(u) as u—«, for all O<h< ho .

We say that the condition R2 holds if.

" [ N
(3.2) qa(u) — P as u-—e«, for each a>0, and
B i PLeE(0) <u, £(q,(u)) < u, Mg, (u)) > u] /
. ) TTS—XiUP qa(u)#(ﬂ — 0 as a—0 .

HLEMMA 3.2.1. “ )

AN

(1) I7F tke condition R1 holds for w(u) and iy d(u) =0 as

U—e,  theon ,

¢ -

" PIM(d(u)) >u) = o(s (u)) as u—rew.
(ii) If the condition R1 holds for (u) then
PIE(0) >u) = o(y(u)) as u—w.

(i11) IF the conditions I‘U and R2 hold for +y(u) and qa(u) and if
I <s an interval of length h, 0 <h<hO (ho as in (3.1)),
then there are constants Y, such that
) N up LU () <us oy (0) €11 PIND) 0] ¥
— e (u) ) — 'a

where Y, —0 ae a—0. The comergence is uni form in all

intervals of this fized length h. N

&



Proof. Fix he€ (O,ho), where hg is as in (3.1). For u large --
N\,

enough we have 0 < d(u) < h. Hence P[M(d(u))>u] f_P[M(h) >u] from

which we get, since condition Rl holds,

Tim sup P[M(dKaBQ ;ujli h. .
U ; -
We get (i) b} 1ettiné h decrease to 0. (ii) follows at once from (i)
since P[£(0)>u] < P[M(1/u)>u]. Let I be an inferval of length
~h (0O<h <h0). 1t consists of no more than [h/qa(u)] subintervals of

the form ((g-l)qa(u),jqa(u)] together with (possibly) a shorter

I

interval at each end:. The difference in probab1lity 1n (3.4) is clearly

~
&

non-negative and (using stationarity) is dominated by

Yau o a;%UTP[E(Q)<:u, £(g, (u)) <u, Mg, (u)) >ul +2P[M(g, (u)) >ud .

N

Hence (3.4) holds with

’ y. = 1im sup Ya,u
a oo v{u)

AN
'

When the conditions R1-and R2 hold, we get ya-—+0 as a—0 by using

(3.3) and (i). This broves (ii1). /117

We now introduce the continuous parameter version of 'condition

D(hn). let (uT; T>0) be a family of constants such that Uy =
as T—w=, let (qT; T>0) be a family of positive constants such. that
qT-+0 as T-—«=., We say that the condition DC(uT) holds with respect .

to At if for any
(3.5) P <52<---<sp<t] <t2f---<tp. € {qu: Oiqui‘T} )

with t]-sp >y, we have

N
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)\
(36) FS vee§ toee et
~—0 for some Y = o(T) as T-—e., Without loss of

s Y
A T
generality we may (and will) assume that o is non-increasing in .

where/ ag

When this is so, the condition o7y — 0 for some Yq o(T) as
st .-’T ]
T—« 1is equivalent to the condition a1 a7 0 for each 6 > 0.
The following theorem is obtained from Theorem 2.2.4 by writihg

M(T) as the Mn of a suitable stationary sequence. /

THEOREM 3.2.2. dsewne that the conditions Rl and R2 hold for some givm/

/
v(u) and qa(u). Let (UT;T>O) be a fanily of econgtants, with /,/
ST
Up == as T—o, such that /’
. /
(a) For eack a » 0, the condition DC(UT) holds with 1;;;.‘3/pect to
qr = q_{(ug). “ //
T a' T ,
(b) To(M) <o Bewodci, /

s
s

Then for 0 < h g hy (hy as in (3.1)) and for' every positive integer Kk,
k
(3.7) P[M(nh) <u  T-P [M([n/k]h)f_unh] — 0‘ as n—w .

Proof. Fix hE (O,hO). Consider the random sequence Lyslosee

defined by . . e ’

Ly = max{£(t); (n-1)h <t <nh}

and write M, = max{g],gz,...,cn}. Note that M(nh) = Mn. It is easily

seen that the ;- Sequence is stationary. Let Yy T Unpe If we can show
that the condition D(vn) holds for the sequence (Ci; i=1,2,...), then

by Theorem 2.2.4 we will have for every positive integer 'k,

N

) k
P[Mni\)n] -p [M[n/k]i\)n] — 0 as n-—o ,

v ————

S/
il J

!

<3




i

which 1is éxact]y the same as (3.7). Hence it suffices to show that the

condition D(vn) holds for (:1; i=1,2,...). Consider inteaers
(3.8) F TSy iy ei iy gy < <dnen

with j]-1p > g. For all such choice of positive integers we would like

‘to have

(3.9) Pz
. 1 .
n,?

. ' * — = . - s
with an 0 for some. . o(n) as n—o., Put Ir [(1r 1)h,1rh]

*™n
and Jg = [

(Js-ﬂ)h,gsh]. Write q for qa(unh). Consider the following

subsets of 0: . ) ‘

E

éq = Aq(a,n,p,11,12,...,ip) = rEH(E(jO) Supps JA€LY
§ p J
A= A(n,p,iw,wz,.;.,ip) = rCH{;i <unh} ,
» ‘ >
Bq = Bq(a,n,p',j1,jé,.--,jp.) = SQH{i(jq)<§ynh; ja€J.1,
. | pt
B = Bl(n,p',Jqu,...,Jp.) = s=1{cj5 <upp)

N . \
The left hand side of (3.9) is just |P[ANB]~-P[AJP[B]]| .and for each

a >0 we have

t

(3.10)  [p[ANB]- P[AIP(B]| < |P[ANB] - PLA N8 ]|
J + [P[A, "B, 1 - PLA, IP[B ]|
© + P JIPLBJ-P[B]| + PIBI|PLA J-PIA]|

.

As in the proof of Lemma 3.2.1(iii), we have

4



(3.11) : 0 gPtAqﬁBq]—P[AﬁB]iy

42

(M
a,u.p

(1) _ _nh . . N
where Ya’unh W[Q(O) <unh’ E(qa(unh)) <Unha*M(qa<Unh)) >unh]

+ 2nP[M(q, (u ) >up,]
]

)
()
2 Dh g 6.
and Tim sup—(——y| —+0 as a—0.
N-ree M Uk

(Note that (3.11) holds for all ir's and js's satisfying (3.8), while
X ‘
YSL)‘ does not depend on the 1'r's and js-&s). Similarly we have
>“nh

2)
0 < PIA]-P[A] < v
- - ?’Unh
3)
0 <P[BJ]-P[B] <v¥Y
9 a:Upp
2 ' N
8 B
. *“nh .
where ﬂ 11r:+iup W——»O as a—0
ME
&lnp -
and , ‘ hfgéwm—ho as a—0 .
2 (1) (2) (3)
Put v = y( +y +y . From (3.10) we get
‘ a,u, BUop AU AU

(3.12) |P[ANB] - P[AIP[B]] < Yau. * lP[AqﬂBq] - P[Aq]P[Bq]I

o r~
where \
(3.13 LN P |
3.13 R 1im sup — 0 as— 0. ‘
N~ n Unh 1 ¢ ,

Since the largest Jjg in any Ir is at most "iph, and the smallest jq
in any "]s is at least (j1-1)h, their difference is at least (2-1)h.

Also the largest Jjgq does not exceed nh. Thus by (3.6) and (3.12)




“

“for large enough n (we are using.the fact that «

43
%

(3.14) PIABT- PLARPEEDL <3, il oy
, ’“n ’

in which the dependence of ap , on @ is explicitly indicated. Note

that the left hand side of (3.14) does not depend on a. Hence

|P[ANB] - P[AIP[B]] io;’q ’ /

(a) )
nh,(%-1)h

+ o

where a = inf(ya o
*“nh

N2 a>0
%

which is precisely what we need, provided we can show that 1im a; an -
. . o ’

for any <6 > 0. But for any a > 0 we have

. N
* (a)

a <vro otas e e <Y
n,en a,u-p nh,(en 1)h au

decrease in ). 4

P
Hence for all a > 0 we have a |
Tim sup of < Vim sup y +1im o{ak
n-oo n,en R e HUnh e nh,%enh
= 1im sup vy '

n-ee a’unh

\

But, since Tw(uT) is assumed to be bounded, (3.13).1implies

N

“ 1im sup Yau. 0 as a—0 .
N0 *’nh

Thus we have Tim a; on = 0. This completes the proof. . //7/
N’

*It is now a simple mMatter of technical calculation to go from the

above result to the main result of this section.

AN
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THEOREM 3.2.3. Asswre that i 2pditione Rl ol R2 hold For some giocw

(u) 2 g (u). Le: (uT‘, T>0) te a fxrily of constants, with
(a) For eack a >0, the condition D (.UT) holds with respect to

(b) TL(UT) ie bounied
(c) ,'(UT) ~ L(U[T/hjlh) de T-—, Ffor sone O<h<ho, ,hO as in
comat +ion Rl

Thew for every positive inzezer K we have
(3.15) . PIMT) <] PRIM(T/K) <ud — 0 as T— .
rroo’. Let h € (\O,ho) be such that (c) holds. Clearly we have

IPLM(T) < ] - PEIMCT/K) <uq]l
< [PIM(T) <uqd - PIM(nh) <upd)
g * [pnlngh) <up] - PIM(ngh) <up p]
\ + [P[M(nsh) < Thj PXIM([n /K1) <uy h]l
(P [M( [nT/k]h _<_un h] p [M [nT/k]h)<uT]]
lP Ll [nT/k]h)<uT] P [M(T/k)

where we wrote \nT = [T/h]. (3.15) will follow if we can show that each

one 0f those five terms”goes to 0 as T-—oo.

1. (P[M(T)f_uT*]-P[M(nTh iuT]f—+O as T — o,

Since h, we have

-

- {M(nTh)iuT} = {M(nTh) <u; and £(t) >uy for some te[nTh,T]}

nTh <Tx (nT+1)

b

- . 1 U M(T) <uq) R .



v

‘where the two sets on the right are disjoint. 1t follows that

Since uT

—r© 45§

0 < P[M(ngh) <u ] - PIM(T) < ug]

< plzth) >up for some tE[nTh,T]']

-< PIM(R) >upd

T—« and since M(h)

<

we have P[M(h)>uT]—+O as T-—c«, This proves 1.

1

- . — o
2. lP[M(nTh)guT] P[M(nTh)iunTh]' 0 as T .

If

Similarly, if Up p, < U7 then

u

N

hf“

~5¢

we have

T’

(e}
A

P[uT < M(nTh) <u

| ~

“nTP[uTO< M(h) <u

nT(P[M(h) > UT] -

]

0 < P[M(nTh) iuT] -P
= P[unTh <M(nTh) <
i‘nTP[unTh <M(h)7<_

= nT(P[M(h) > UnThJ

Hence, using condition R1, we get

%

< i’[M(nTh) iunTh] : P[M(nTh)»iuT]

nTh]

]
m .
P[M(h) >unTh]) :

M{nyh) _<_unTh]
uT]

uT] .
- PM(h) > uT]) .

5
P

f [P[M(nTh) 5uT] - PiM(nTh) iunTh][

[ N

n

nTIPEM(h) >unTh] - P[M(

h) >u 1|

il ) 140(1)) - hulup) (140(1))|

lnThw(unThY(Ho(]\)) -

h
I:.J]:T_)u_]_w(u.l.)(H‘O(.I )|

is finite almost everywhere,

b

45
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Je

i ° o

Using-(b) and%(c) it is easily seen that this last expression goes to O
- ?

as T—e. ‘This proves 2. ' o

- . . \

3. \|P[M(nTh),5unTh]-Pk[M([nT/k]h)f_unThﬂ 50 a5 T e, |

This is the content of Theorem 3.2.2.

k . Krpp
4. |P [M([nT/k]h):iunTh]— P [M([nT/k]h) ;_uT]! — 0 as T -—
, If unTh > Urs, we have, as in the proof of 2, .
0 < P[M([n/kIn) i“hTh] - P[M([nT/kﬂjh) <u;]
< ng/KJ(R0HCR) > ugd = L) >, D)
From the fact that R L
: ) S K k .
(3.16) . 0< x<y<1 implies 0 < y -x_ < k(y-x)
) §y e
weget -
[ @
0 < P*[M(In /kIn) <u T~ PKIM(In/KIn) <upd
) AT B
| ik[nT/k](P[M(h)>uT]-P[M(h? >unTh]) -
. |
S1m1]ar1y, if Unhy < Uy then - / , ~

.
0< Pk[M([r)T/k]h) <uq] --Pk[M([nT/k]h) iu”Th] / e
T e Mng/KIUPDM) >y T PDC) > urD) o

Hence yé have “

—_—

S TP/ <y D= PN EngA) <)
< kIng/kJ[PIM(h) >M T - PLM(h) >UnTh]|

? !

which.goes to 0 as T—w, just as in the proofs-of 2. This proves 4.

—

v e e o
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5. [PKIM(Tng/kdn) <upd - P IM(T/K) cur]l =0 as T e | ,
Since 0 < T/k —[nT/K]h.i h, we have, as in 1,
0 < P[M([n/kIn) <upd - PIMT/K) <upd < PIM(R) > u ]
9

Using (3.16) we get

0 < PRIM(InL/kIh) < urd - PRIMOT/K) <ucd < kP[M(R) ~u.]

< T/ Uy s T

which goes‘to 0 as T-+=, as in the proof of 1. This proves 5.
Theorem 3.2.3 is proved. % : /17

L

3.3 A weak convergence result for the maximum 4
2

In order to obtain a continuous parameter version of Theorem 2.3.2,

we will need a continuous parameter version of the condition D'(un).

3

" This condition, we shd11 call it condition Dé(uT), will be phrased in -~

terms of the so-called e-upcrossings of a level by the process. This
v .
concept was originally introduced by Pickands [1969a,1969b] to deal with

processes whose sample paths were so irreqular that the ordinary upcross-

ings could be infinite in numbeyr in a finite interval. Here we use this
éoﬁcept whether ihe number of ordinary gpcrossings is infinite or not.

Let € be positive. The stationary process (£(t); t€R) is said
to’havg an c-upcrossing of the level u at the poinEf tO if it has an
ordinary upcrossiné of the level u at t0 and if ’g(t)_g u for all t
in (to-e,to). (This is not egact1y Pickands original definition but it a
leads to the same asymptotic results and it is easier to handle). Note - ;

that if there is an e-tipcrossing at tgs then the interval (to-e,to) <
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contains no c-upcrossings. Thus the number of e-upcrossings 1n‘a unit

interval does not%gfceed 1/e. We will write Moy for the mean number

of e-upcrossings of the level u .in the time %nterva] (0,1]. Using

stationarity one can check that tug,u is Ehe mean number of

e-upcrossings of the level u in the time interval (s,s+t], for any s.
Let w(u), be a given function for which the condition R1 holds.

We say that the condition Dé(uT) holds for thé"fami]y of constants

(uT; ™ 0), with uf—»w as I;+w, if

1im sup TIuET,uT-u(uT)! — 0 as ec—0.

- Tosee

THEOREM 3.3.1. Assume that the conditione R1 and RZ2 held for some given

¢(u) and qa(u). Let (UT; T>0) be a fanily of constante, with
—ow gg T—e, such thit for each a > 0 the condition DC(UT)

with reepect to Qg = qa(uT), and such that the condition Dé(uT)

holds with respect to ¢(u). Let 1 be a positive comstant. Then

Y
(3.17) Tt,(uT) — 71 g8 T =
implies .
(3.18) PIMT <ur] > e a8 T,

-~
,

Conversely, with the additional assumption that for some 0 <h< hO’ ho N
as in condition R1, we have LL'(UT) ~ w(ulﬁ/h]h) as T—wo, then (3.18)
implies (3.17).

Proof. Let k be a positive integer. Since there is either 0 or 1

(T/k)-upcrossing of the level ur in the time interval. (0,T/k], we

have
a ‘ A

v
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(3.19) (T/kﬁu(T/k) ,. = mean number of (T/k)-upcrossings in (0,T/k]
? T ,
= P[exactly ane’ (T/k)-upcrossing in (0,T/k]] 1

< PIM(T/k) >uT] .

To get the last inequality we used the fact that the probability of
having a (T/k)-upcrossing of the level ur at the point T/k is 0
(This follows from the fact that the marginal distribution funct{gn of

the process is assumed to be continuous). On the other hand, using

i

stationarity, we have
~w
(3.20)  ~ PIM(T/k) >u ] < ([T/kn]+1)P[M(h) >u ], O<h<hy .

Combining (3.19) and (3.20) and using

[T/kh]+1 ~ T/kh and P[M(h) >u ] &(uT)
we get ; ‘

o, (T/k)u(T/k),uT < PEM(T/K) >ugd < (T{k).(uT)(i+eT)

~ J

or, equivalently,

«

(3.21) 1= (1/K)v(ug)(1+85) < PIM(T/K) <uy] 2 ' -

< 1= (17K ug) + (77K o (ug)-u (17k)up)

where eT——+O as T —ro,

Assume (3.17) holds. Taking T 1in (3.21) and using condition

-

Dc(“T) we get

»

(1 -1t/k) < Vim inf P[M(T/k) <u ]

T

< 1im sup P[M(T/k) < uT] < (1-1/k+0(1/k)) as k-—w .,

T
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Taking the k-th power and using Theorem 3.2.3, this becomes

v

(1-/k)% < Tim inf PIM(T) <] “ a
K

< Tim sup P[M(T)iuT] < (V-t/k+o(1/k))" as k—r=.
T )

Letting k—« we get (3.18).
Conversely assume that (3.18) holds and that for some O <h <hO, hO
as in condition R1, we have uv(uT) ~ Q(U[T/h]h) as T—o, Thfz

inequalities in (3.21) can be written as /

(3.22) 1= PIM(T/K) <up] < (T7K)e(ug) (146,)

‘ v

and

Note that when the condition Dé(uT) holds, T”(UT) is bounded so that the >

-

conditions of Theorem 3.2.3 are satisfied. Let T—e in (3.22) and

(3.23). Using Theorem 3.2.3 and condition DC'(uT) we get

1-e7K < (17k) Vin inf Ty(up)

. T
< (/K) Timsup Tylug) < 1-e 7Keo(1/k) -
~ T—Nx’
Multiplying by k and letting k —o we obtdin (3.17). 1117

Following the 1ines of Section 2.3 we will now show that, under the

conditions of Theor%m 3.3.71, (3.17) implies

P[M/geT)iuT]——ye-eT as T—w, 0<a<l .

~

Suppose we are gilx}en a family of constants (uT; T>0). For 8 >0 we

define ”T(e) = J(T/e)'

|
/
!



LEMMA 3.3.2.

holde (with respezt to 8o qT’ thew

condition DC(UT(G)) holde (with respect to the samo _qT) for:

(¢) I1f poniation Dé(uT) holde (with respecet to some w{u)) tho

(uT(e)) holds (with respect to the sarmic v(u))

for all €& > 0. 3

Froc?. Clearly if Tg(UT)—*T,' then (T/e),(u(T/e))——m and hence
Tu/(uT(E‘))——>81. Thus (a) is proved. Now suppose that the condition

DC(uT) holds with respect to some qr- Take

S

J<Sp << <t <t <---<tp. E{qu; Oiquiﬂ

2 p <t <t

with t]-sp >y. If 0<e< 1, then T < T/6. Hence, writing

“T.v T %178,y

) o e by (e ()P oy (i) < g = o
. 51 spt] tp. T/6 51 sp T/86 t1 tp. T/e T/8,Yv T,v
We have aT,YT——»O as T—e, forsome vy, = o(T). Take( YT Y10
Then y+ = 0o(T) and '
= o7/g o(T) as T—w . 7,

: ’YT rjee

Hence the condition DC(uT(B)) holds with respect 'to Ay This proves (b).

Finally assume condition Dé(uT) holds with some given y(u), i.e.

we have

i \

(3.2’4) 11r¥iup Tlu Mo, g w(:T) -0 as e€—0 .

.
3

P

v L]

) s
-



N

. For any fixed @ >0, e—0 1is equivalent to e#—0. Hence (3.24)

can be written as

(3.25) ]1$*§UD T AEQT’UT-w(UT) — 0 as e£—0 .

N

Similarly, T-—« 1is equivalent to T/8-—«=. Hence (3.25) can be

written as

N
-0 as ¢—0 .

Tim sup (T/¢)
Toeo ‘

LAET,UT/G-MUT/E)

e

°

Hence we have

=

—0 as e—0,

1im sup TluET,uT(e)—w(uT(e))

T

2 . ’
i.e..condition Dé(“T(e)) holds for w(u). This completes the proof. ////

N

THEOREM 3.3.3. idesumc that tne conditione R ana R2 hold for some givem

. . - ¢ .
vlu) arnd qa(u). Let (uT;T >0) be a family of constants, with

uT—*m as T—«=, sguch that for each a > 0 the condition DC(UT)

holds with respect to 47 = g (uT), and such that the condition Dc'(uT)

a

_holds with respect to Y(u). Let 1 be a positive constgnt. Then, for

0<6<t,
Tw(uT) — T as J—ow
> IZI
1,r7p ies
(3.26) PIM(eT) <uy] — €7 ae T, -

" Proof. Fix 6 € (0,1]. By the lemma we have

Tw(uT(e)) — 07

and the conditions DC(uT(e)) and Dé(uT(e)) hold. Hence by Theorem 3.3.1
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we get

C‘T

PIM(T) <u(e)] — e " as T—o

T
AN

from which (3.26) fpllows easily. ‘ « /1

The Poisson point process 1imit theorem for the upcrossings of a
stationary process will follow easily from the following result, as in

Chapter\é.

THEOREM 3.3.4. 4scure that the conlitions Rl and R2 ho?Z for some agiven
ou) and q_{u). rLet (uT;T >0) be a family of constants, with
Up — as T—o, such thz: “or each a >0 the 2dndition DC(UT)

T holds with resrest to 9 = qa(uT-), and such that the condition D(IZ(UT)

holds with res:eot to (u). Let 7 be a positive covstant and let
I]""’Ik be subinzervais of (0,1], Ij = (aj,bJ] with B
~
0<a, <b, <a2<b2<-.-- <ak<bk§]"
Then
“ Tolu) — 1 as T e

implies ,

k - k

N . — - . -a. —r o

P[j=]{M(TIJ) <upil — exp( Tig](b1 a;)) as T ,

where M(T1.) is the maximuwnm: of the process over the time set TI\j = (Taj,Tbj].

Proof. For simplicity we write q = qa(u.l.). For each a > 0 we have

‘ c |
LA ML) <up]- BATEp surd|
k - k . .

< P[jQ]{M(TIj)iUT}]'P[j’:]fi(lq)f_UT; WETIJ'}:]I

K k
N {e(d x 1] - i 3 i :
+ [PLR teli0) <ups 9 €TIN- T PLE(i) cups da€TL)

k kK
1 ] s iqg€eTI.] - . . .
+ lj=]P[g(1q)_<_uq iq TIJ] JLI]P[h?(TIJ)iuT]I

¥



R

~

Let x(a,T), y(a,T), z(a,T) be the three terms on the right hand side of

[

the 1neqLa11ty, in the order in which they appear. Then
(3.27)  1i p[ 5 M(TI.) ] 1'% PIM(TI.) <u-]
. im su ) <up - ) <u -
Sl P j=1 iT="T j= jr="T
< Vim sup x{a,T) + Tim sup y(a,T) + 1im sup z(a,T) .

The left hand side of (3.27) does not depend on a. Hence if we can show

8

that each term on the right hand side of (3.27) goes to 0 as a—0, it
e

will follow that

8

i

. k k -
(3.23) !P[jg{M(TIj)iuT}]-j£1P[M(TIj)iuT] —~0 as T — .

By stationarity we have M(?Ij) = M((bj-aj)T). Hence (3.28) combined

with Theorem 3.3.3 wil1 give us

N

k.
PL O (by-a;)] as'T— .

=1

H 1=

{M(TIj) g_uT}] — exp(-z‘
i=]
Thus it remains only to show that each térm on the right’hand side of

(3.27) goes to 0 as a—0.

1. Tim sup x(a,T) — 0 as a — 0,.
. Tow
.
Let us write A=A(T) = 0O M(TI,)< uT}
J=1 3=
k
B = B(a,T) = ,g{g(1q)iuT;1q€TIj}.

J

ES

k.
For each a we have A CB. The set UTI. is covered by no more than

J:
T6/q subintervals of the form [(i-1)q,iq] " together with possibly 2k
k

shorter intervals, where we wrote ¢ for (bj-aj). Using
=

J
statioparity we get

54
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x(a,T) = [P[AJ-P[B]| = P[B-A] : ;

< %[5(0) <Urs £(q) < Urs M(q) >QT] + 2kP[M(q) >UT] .

From Lemma 3.2.1 we have

‘}

) PM(q) >url — 0 as T — .

Hence from the above inequality and from the fact that Tu;(uT) — T as
|

€

» T —o=, we obtain =

PL£(0) <up, £(a) >up, Mla) >u,]

]ir_rriiup x(a,T) < o Wr?*iup q"(UT)
Since condition RZ holds we get N
(3.29) . . lim sup x{a,T) — 0 as a — 0..
R
2. lim sup y(a,T) — 0 as a — 0 . )
Toe ™
Let us write Dj = DJ.(a,T) = {i(iq)iuT; inTIj}

a

aUsing ideas of Lemmas 2.2.1, 2.2.2 and 2.2.3 we can show that
/ <

k k
1im sup y(a,T} = Vim sup |[P[ N D.J~ N P[D.]|{ =0 foreach a,
Toco P N T-so0 c J:] J J:] J

" and hence 1im sup y(a,T),— 0 as a—0, trivially.

Tow .
3. - . lim sup z(a,T}—»O as a —0 .
Toce
. R = \ = 0 . . ,
Let us write: K Kj(a,T) {£(1q)ille‘, 1q€TIj}
Fyo= Fo(T) = IM(TI) <up)

T

As in the proof of (3.29) we have
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(3.30) Tim sup lP[Kj]-P[Fj]‘ — 0 as a—0, for j=1,2,...,k.

T
Clearily
|PLK,IPTK,] - PLF IPLF, D1
< PLK,IPLK, T=PFy 31 +PLF, TIPLK, I-PIF I
Hence from (3.30) we get 7
Tim sup |P[K,JP[K,]-P[F,IP[F,]| =0 as a — 0.
o 1 2 1 2- -
/
Proceeding 1n thiggmanner we obtain ' N
- K K .
1im sup | I P[K.]J- T P[F;]| -0 as a —0,
Too  1§=1 97 §=1 7 —
i.e. 1im sup zl(a,T\)——>O as a— 0.
Toeo
This completes the proof of Theorem 3.3.4. - /177

N

3.4 The Poisson point process 1imit theorem for the upcrossings

As in the previous sections, (£(t); t€R) will be a stationary
stochastic process defined on some probability space (%2,F,P) and having,
with probability one, continuous sample paths. (uT; T>0) will be some
given.family of constants, w\ith Up —® as T—o. As in Chapters 1 and
2, B will be the o-field of Borel sﬁbsets of (0,1] and N will be
the set of non-negative integers to \;vhichﬁwe add the point +~. For
each, T > 0, consider ‘ l
Z.: @xB —~ N

T
(w,B) ZT(w,B)

where ZT(w,B) is the number of upcrossings of the Tevel u, by the

1
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1

sample path £(t,w) within the time set TB. Our first concern is to

is a point process, as defined in Section 1.2.

shOﬁ that ZT

LEMMA 3.4.1. For each B E€ B, the furction

ZT(B): 0 — N
w ZT(u,B) '

18 measurakle.

Proo?. Let & be the family of all sets B dn B for which Z (B) is
measurable. That & contains the sets of phe form (a,b] (with

0 <a<b <1) was proved (using a different notation} in Section 1.1.

It follows easily that & contains the field of all finite disjoint
unions of such half open intervals. The o-field generated by this field
is B. Hence, using the fact that the o-field generated by a field
coincides with the monotone class generated by that field, we get & =B

by showing that & is a monotone class. This is easily checked. v

-

Let uu‘ be the mean number of upcrossings of the level u in the

time interval (0,1]. When needed, we will assume that

(3.31) A | w, <= forall wu.

Under.this additional condition, Lemma 3.4.1 becomes

LEMMA 3.4.2. If (3.31) holds, then for cach . B € B the function

Z-(B): @ — N

w }—* ZT(w,B)

T(

18 a random variable.



v

Proo*. We know already that ZT(B) is measurable. Usding our additional

hypothesis we get

E[2,(8)] < E[Z;((0,1])] = TuuT <

Hente ZT(B) is finite almost everywhere. Thus it is a random

variable. , /177

We now fix w and look at ZT as a function of B.

LEMMA 3.5,\.3. "If (3.31) holds, then for almost all w in 8, the

Function

ZT(UJ): B"‘*N .
B I ZT(w,B) ‘IL

18 a finite positive measure.

Proof. Clearly, for all w € Q, ZT(m) is a positive measure 4n B 3

v

As in

since for disjoint Bi s we have ZT(‘“’]-E]Bi) = 1Z]ZT

Lemma 3.4.2, :we have ZT(w,(OJ]) < « for almost all For those w,

Z;{w) s a finite positive measure on B. /117
The Tast two lemmas combined give
THEOREM 3.4.4. 1f (3.31) holds, then ZT 18 a point process. 1717

-

Using Kallerberg's result, the main theorem of this chapter follows

easily from the results of the previous sections.

THEOREM 3.4.5. Assume that the conditions Rl and R2 hold for the function

I

y(u) = u and some givén qa(u). Let (uT; T>0) be a fanily of

u ®

constaﬁt\s, with Up—> as T-—w, such that for each a >0 the

eordition DC(uT) holds with respect to 4 = qa(uT), and such that the
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\ ¥
/{A “

cond,tzoL D T) holde with respest to wlu) = u,. IS Jor some roed

i :
consvanj T we have

—~ ) 7 - >
(3.32) Ty — 1 as T —w
u
T
, Al

| W :

then ZT —~ 17 as T —

where |1 is a Poisson point process with intensity T.

i
o
i

7

Proof, 'By Kallenberg's result (Theorem 1,2.1) it suffices to show that

(a) E[ZT((a,b])]l,;—‘—> t(b-a) for all 0 <a<b <1

MB) for all B of the fomm

“(b) PLZ;(B) =0] -~ €™
with Oia1<b1 <a2.§§2\<--- <ak<bki], where
Lebesgue measure of B.:
Now (a) follows at once since using (3.32) we get
E[Z ((a,b])] = (b~ a) — 1(b-a) .
. ur

To obtain (b) note that

Y o

0 PLZ;(8) =0]- PLM(TB) < u ]

P[Z;(8) =0, M(TB)>u ]
k

iZ]P[a(Tai) >ur]

= kP[£(0) > u;]

»
KA

k
(Ta ,Tb] gexceeds Urs

since if the maximum in 7B = 2
i=

‘upcrossings of up in these intervals, then £(t) must exceed u

~
the initial point of at least one such interval. Thus we

b

kkJ(a b

=] ,
A{B) 15 the

but there are no

T
have

40 < P[ZT(B) =O]-P[M(TB)5UT] — 0 as T — o .,

at

=loe

+
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By Theorem 3.3.4 we have

~

F o~ %

) .
. P[M(TB?;;UT] =P[ N {M((Taj”Tbj]).iuT}] — exp (-1 (bi—aif

i =1 i=] N

. : , - Tas T — e,
Thus p[ZT(B)z 0] — e-TA(B) as \T —« . w8y

Certain stationary processes have sample paths so badly behaved
that W, = Ao for all wu. For these processes it is clear that Theorem

3.4.5 cénnot apply. It may however be possible to show that the point

~

process of e-upcrossings converges to some Poisson point process.

§ . For 'w€9 and BEB, let Z%E)(w,B)\be the number of

. ~g-upcrossings of the level Us within the time set TB. As 1n

Section 3.3, M will denote the mean number of e-upcrossings-of the

)

Tevel u within the time 1nterva1u\zatT]T\\£5\we did for ordinary

P upcrossings, we.can eésiTy obtain the following:

THEOREM 3.4.6. Z.(rE) is.a point process. /111

Lt Note that 1n the present situation we always have Memy <
~In Theorem.3.4.5, the ordinary upcrossings case, we had to assume

tht the condition R1 hold with w(u) = My In the e-upCfossings cése, &

it is enough to assume that it %o]ds for some w(u). < |

i
\,’
~a, H

LEMMA™3.4.7. If the condition Rl holds for some funetion (u), ’then

S ‘ , ] . B

U - .
(3.33) E%ﬁ%‘—+ 1 as U— o, for all small_enough t.
Proof. By hypothésis we have, for some h, >0, B

(3.34) / PIM(h) >u — 1 as u-—>«, 0<hc< h0 . \

y ' A hotu |

s v opu— - —



€1
X
Let us write Z*(c,u,T) for the number of c-upcrossings of the Tevel u
in the time interval (0,T]. Clearly Z%(c,u,z) 1s either zero or one.
Hence
€Uy = E[Z*(e,u,e)] = P[2*(c,u,e) =1] < P[M(e) >u]
: P[M(c) >u
so that Yeu S =
.Hence, for 0 < e < h0 we get, using (3.34),
(3.35) Vim sup _52Y < 1
: mSUP 1) <
pd
Clearly we have' \\ , T
o
P[M(2¢) >u] < P[M(e) >ul+ P[Z2*(e,u,2¢)-2"(c,u,e) = 1]
= P[M(¢c) >u]+€u€’u .
Hence we get '
L
o PEM(2:) >u] _ PIM(c) >ul  Pe,u
2e¢(u) gy(u) = y(u)
Letting u-—« and using (3.34), we get, for 0 < ¢ < ho/2,
u
o £,u
- 1 5']13*;nf‘$TGY .

Together with (3.35) this gives us (3.33). | 111/

THEOREM 3.4.8. Assume that the conditions Rl and R2 hold for some given‘

y(u) and qa(u). Let (uT; T>0) be a given family of constants, with
Up —= as T—=, such that for-each --a > 0 the condition Dc(uT) ‘

holds with respect to gy = qa(uT)', and such that the condition D(':(UT)

holds with respect to y(u). If for some positive constant 1 we have
~

‘(313'6) . Tw(uT) —+ 1T g8 T — =

4,



then-for all sufficiently small € we have
o 3

*

(3.37) ) "z&ﬁ)iz as T =,
4
where 1 is a Poisson point process with intensity T.
Proof. By Lemma 3.4.7 we have ] ’ -
UE;; — 1 as u—c«, for all sma11‘enou h €

It follows easily that the conditions R1, R2 and Dé(uT) hold for u_ .
as well as for u(u)} and that (3.36) holds with e | instead of

. JUp

w(uT), for all small enough 'e.i (3.37) is then easily obtained by

repeating verbatim the proof of Theorem 3.4.5. ] 11

v

3.5 Connected results

o As in the discrete case, we can obtain from the theorems of the last

:

three sections some interesting connected results.

7

' Gnedenko's theorem
In Chapter 2, Gnedenko's theorem on the possib]é 1imit distributions
of the normalized maximum of a sequence of independent ahg identically
distributed random variables was extended to the case of a stationary
Lsequence:* It is reasonable to believe that such a result should hold for

the maximum of a stationary process. It does indeed.

THEOREM 3.5.1. Assume that the conditions R1 and R2 hold for some given

i}

p(u) and qa(u). Suppose that for some families of constants a; > 0

and’ bT we have




a

(3.38) P[aT(M(T)-b <x] = 6(x) as T—=

»

for some nomdegenerave distritation Ffurztion G, Suvposc that ‘cr each
< ttoe

X, the family up = x/aT +bT <8 such that Tp(uT) e bounied and

s

ar

each a > 0 the condition DC(UT) holds for qp = qa(uT). Ther. G “e

~

one of the three extrevc value tupes listed in Theorem 2.5.1. ")

N

Proof. Take 0 < h <h hO as in condition R1. From (3.38) we have

. 0’
Pla,,(M(nh)-b ) <x] = G(x) as n — o« .

This can be written as

P[un(Mn—Bn)-iX] = 6(x) s N — e

<
where we write Gy = 8y Sn = bnh
Mn = max{c],cz,...,an}

. = max{g(t); (i-1)h<t <ih} .

The sequence (Li; i=1,2,...) 1is stationary and, as in the proof' of
Theorem‘3.2.2, for each x the condition D(vn) holds for the sequence
Vp = x/an-+8n. Thus by Theorem 2.5.4, G ié one of the three extreme
value types 1isted\}n Theorem 2.5.1. 111/
Associgted sequence of independent random variables

Theorem 3:3.1, on the convergence of P[ﬁ(T)_guT], méy be related

to the corresponding result for sequences of independent and_identically

distributed random variables in the following way.

B e o e
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/ N ; 5 ,
. THEOREM 3.5.2. 4ssume that the conditicne Rl ard R2 hold for sore given
w(u) ard q%}(u). Let (uT; T>0) be a fanily of constants, with

Up—= as ,/ﬁ'-*oo, such that for each a >0 the condition._QC(U‘T)
i {

~N

holds with pespect to G =4 (ur), and such that the condition DI(UT)“

< | 4 aT ‘ c
holds with[respect to W(u). Asswme moreover that for some fixzed h,

0<hc« hQ; hO as in condition Rl, we have w(UT) ~ w(U[T/h]h) as

/
T —eo, ‘”’79, for 0<p <],

g'EM(T)iuT] ~p g8 T—o

4

n
!
i
if and mﬁly if

P[ﬁniu;]h] —p as T —w,

~

where Mn = max{z;,] NPT ,Cn} for some sequence (Ci; i=1,2,...) of
s N
independent and identically distributed randor variables whose marginal

~
¥ - . . hg s }
distribution funetion F satisfies

L

*

1-Flu) ~ hi{u) as u— .

i

Proof. This is easily obtained using Theorem 2.3.1 and Theprem 3.3.1.
a
The k-th largest 1qca;1 maxima | . ‘
Suppose that with probability one the sample paths of our stationary
process (£(t); tE€R) are continuously differentiable. Let (uT; T>(;) o
be a given family of constants. Let iT be the number of 1oca’11maﬁ}xima
within the interval (0,T), for which the process value exceeds the
Tevel up. For the rest of this section let us write Z, for Z.((0,1]),
the number of upcrossings of the level uT\ witfﬁ‘n the interval (0,T].
. "Clearly there is at least one local maximum between any two upcrossings.

Hence

v —— = -




(3.39) , Ip 2 1.-1 . | b

T ////
If the sample paths are not too irregular and if T is large, so that

Ug is large, it is reasonable to hope that ZT and ZT will be apprdxi—
mately equal. Let us write ﬁu for the mean number of Tocal maximum
above the level us within the intervai (0,1). By stationarity we

have E[ZT] = TuUT.

LEMMA 3.5.3. Suppose Tuu —1>0, as T—w, and surpose that w
T

¢

o~ as T—o., Then E[[Z:-Z+11—0. Thus for every non-negative
Uﬁ- UT T T v v *
integer K we have

P[2T=k]—P[ZT=k]T—>O as T—ow . /

Proof. From (3.39) we get

-,

} EL|Z1-2, 1] = E[Z7-2;) +2P[2 = 1-1] .

If I;=12;-1, then g(T)> DT. Hence

;
E[lzT-zTu/gmu ~Tu, +2PLE(T) > yi]
T T

N i B
from which we get E[{iT-ZTU]-—+O as T—. Thib in turn implies that
f

(3--2.) —0 in probabilityl giving P[Zw.#ZTJ 0, and hence
j

T4
(P[Z;=k]1-P[Zy=k]) — 0. /111

Now let us write M(k)(T) for the k-tly largest local, maximum in

(0,T). Clearly

[N L

(3.40) MM cun fEc |
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THEOREM 3.5.4. 4ssume that the conditions Rl and RZ2 hoid for the funztion

Ju) = g, ad some siven qa(u). -Le* (uT;T:>O) be ¢ family of
L

conetants, with Up — as T—w®, such that for each a >'0 <the

condition DC(UT) holde with resvect to Oy = qa(uT)’ and suck that the

condition Dé(uT) holde with respect to y(u) = M, Suppose moreover that

Lo~ ae T—x, IF f'oz;* gome 1>0
D
TuuT — 1 ag | — o °
then
k-1
(3.41) K1) cud = €T ] Asst oo
s=0
Proof. By (3.40) we have
(k) . k-1 _
(3.42) PIMM(T) <ur] = P[Z;<k] = § P[Z,=s] .
R T Lo T

By Lemma 3.5.3 we have (P[2T=s] - P[ZT=s]) — 0 and by Theorem 3.4.5
we have P[ZT=s] — e T ¥/st Combining these two results with (3.&2)
we get (3.41), -~ , i

We conclude this short series of.applications with a continuous
AN

parameter vlersion of Theorem 2.%‘9.
THEOREM 3.5.5. Asswme that the conditions R1 and-R2 hold for the function
wlu) = u, and some given qa(u). Suppose that for some families of

o

constants éT >0 and bT we have

P[aT(M(T)-bT)gx] —;-G(x) as T —

for some non-degenerate distribution funetion G. For each x > 0,

suppose that for up = X/a;+tby the condition Dc(uT) holds with respect

1 . -

R
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to a7 = qa(uT)’ for eazl. a > 0, and the condition D(':(UT) Folde with

resgpect o v(u) = by Surrose moreover that for some  h, with

0 <h<hg hy aein condition RI, we have 4 (ug) - L‘(“[T/h]hA) as

T—=, arm" that p, ~ U as T—w. Thew any posit-ve inteser kK
Ug Ur <. .
we have "
(3.43) Pla (M(k)(T)-b Yex] =6, (x) as T —w
T T - k
k-1 —
. G(x) ¥ (-log G(x))7/s! 4f G(x) >0
where Gk(x) = s=0
0 ' if G(x) =0

N\

| Proof. First observe that the conditions of Theorem 3.5.2 are satisfied

)

(if condition Dé{uT) holds with respect to w(qu, then Tw(uT) is
bounded). Hence G is one of the three gxtreme value types Tisted in

Theorem 2.5.1. Thus G and G, are everywhere continuous so that —

K
means convergence at every point x. Let x be such that G(x) > O.
. ~

Put G(x) = e '. By Theorem 3.3.1 we have Tw(uT)~—+T,§ where

E Uy = x/aT-+bT. Hence by Theorem 3.5.4 we have

k‘] /
Pt )Ty cud — €T ] o :
o N S-'-O X
or, equivalently
' (k) ' k‘] S
Pla (M (T)-by) <x] — G(x) ] (-log G(x))"/s!
T T s=0

If x is such that G(x) =0, then for every vy with G(y) > 0 we

have, since for such y we have x <y,
v 4

| pLag (1) (1)-b7) <1 < PLar ™) (1)-b1) <47

L0

Letting T — « we get

- e

'Wm
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‘ ) (k) K s
(3.44) 11? sup P[aT(M (T)-bT)g_x] < G(y) ZO(-1og G(y)) /st .
—CC - S: .

As y decreases to y, = inf{y: G(y) >0}, G(y) decreases to 0. Hence

the right hand side of (3.44) goes to 0. Thus
(k)
P[aT(M (T)-bT)f_X] —+ 0 as T —

whenever G(x) = 0. Therefore (3.43) holds. . /77

¥ & °
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CHAPTER 4 .
. STATIONARY GAUSSIAN PROCESSES

J

4.7 Introduction ‘ S

The results of Chapter 3 were obtained for statioﬁary processes
satisfying certain conditions. These conditions were written, more or
less directly, in terms of the distribution of the process, i.e. in
terms of\the family of finite dimengional distribution functions of fhe
process. We now turn our attention to the case where the process is
Gaussian. It turns out that the distribution of a standard staticnary
Gaussian process is completely characterized by the covariance function
of the process. Hence a condition on the distribution of such a p%oc:EE‘\
can, at least in principle, be Qritten as a conditjon on the covariance
function; and vice versa. '
Berman [19713; obtained Théoreﬁ 1.1.1 for standara stationary

Gaussjan processes, having continuous sample paths with probability one,

and whose covariance function r(t) satisfies
(4.1) . r'(t) exists,
(4.2) : r(t)]ogf — 0 as t — .,

Thez;hin goal of thi§ chapter is to show that under Berman's hypothesis

we have

(a) the condition R1 holds with ¥(u) My
' - a
w, and g, (u)

(b) the condition RZ holds with y(u) m

(c) for each a > 0, the condition DC(uT) holds with respect to ¥

the family Gy = qa(uT) = a/uT, whenever ug is such that
Ay

YTy — 1 for some 1t > 0. J
uT By 4
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(d) the condition Dé(uT) holds with respect to &(u) = iy whenever

’ ur is such that Tuu — 1 for some 1 > 0.
T ’

Thus the results of Chapter 3 hold for a standard stationary Gaussian
process, having continuous sample paths with probability one, and whose
covariance function satisfies Berman conditions (4.1) and (4.2). In
particular, Theorem 1.1.1 holds under Berman conditions.

This approach does not reduce the amount of work required, but does
bring the Gaussian case within the general framework. We will see that
Berman conditions are almost necessary for Theorem 1.1.1 to hold. This

shows that the conditions of Chapter 3 (conditions R1, R2, DC(uT), Dé(“T))

are not too restrictive.

~

4.2 The covariance function and the spectral distribution function

Before we atfack the core of this chapter, we have fo explain what

'1t means to say that the distribution of 3 standard stationary Gaussian '

process is comfletely characterized by the covariance function of the
process.

Let t (£(t); t€R) be a standard stationar& Gaussian process (SSGP)
defined on some probapi]ity space (%,F,P). As far as probability theory
is concerned, the value taken by &(t) at a given point w € Q 1is not
really important. \What really matters is the family of finite Qimen—

sional distribution functions (fddf's) of the.process, i.e. the family

1

s

. . , ¢
{Ft ,t ,...,t, (t]’tz’...,tk)ER’k-]’z”"}
1’72 k
where is the joint distribution function of
t]’tZ"°"tk

(g(t])s---,g(t‘},k)): i.e.

o

. ———————— - -

AN



; m‘a..._m FNSUN

T

71

It 1s important to characterize those families of fddf's which are the

family of fddf's of some SSGP.
A well known result of elementary probability theory says that a

function F on & satisfies the conditions

& + F is non-decreasing

Tim F(x) = 0, 1lim F(x) =1
] ¥+co

+ ¥ s right continuous
B T 0

if and only if there exists a random variable X, defined on some

S

probability space (Q,F,P), such that "
F(x) = P[X<x] for all x ER .

Such an F is called a (1-dimensional) distributign fanction. Simlarly -

k

3 function F on & satisfies the conditions

» F is non-decreasing in each of its variables and Ab_aF(a) >0
for all a<b; a,b Svﬁk. (where, for a = (a],...,ak) and
*

b = (b],,..,bk), a <b means a, <b,  for i=1,...,k, and

where Abi'aiF(a) = F(a],...,ai_],bi,ai+1,...,ak) - E(a) and
A Fla) =4 & - F(a))
b"a b]-a.l bz_az bk-ak ‘

e Tim F(x1,...,xk)'= 0 for gach j and ‘lim F(x],...,xk) =]
X o~ N X_l—mo

-0 ¢

Xk

« F is right continuous in each of its variables

if and only if there exists a random vector (x],...;xk), “defined on

3



-

‘some probability space (%,F,P), such that

k
F(x],...,xk) = P[X]fix],...,xk_gxk] for all (x],...,xk) ER .

Such an F 1is called agk—dimensiona] distribution function. Now

corsider a family \

k

(4.3) T=(F L5 (et JERS, k=1,2,.00)

‘ 1 k
where each Ft]--~tk ]
A question arises: when fs T the family of fddf's of some stochastic

process (£(t); t€R)? The answer is given by Kolmogorov's theorem.

THEOREM 4.2.1. The Ffamily T given in (4.3), where each Fo ...¢ s
’ 1 k

a k-dimensional distributdon functiown, is the Ffawily of fddf's of some
stochastic process (E(t); tE€R) <f and only iF the following two

conditions are satis ied:
I. The symmetry condition. Ir ('C.l > as ,tk) and (X] s ,xk) € (ﬁk and

if o s a permutation of {1,2,...,Kk}, then

F B (Xyseoubx,) = F
t-l"'tk ] k , t

II. The consistency cond’itjion. For (t]""’tk) and (x1,...,xk) € R

and for “tkﬂ €8] we have .

“ "th’\\g &

F -'-tk(xTiff"xk) = lim Ft]---t N (x],...,xk,xk+]) . 1117

t

1 k“k+1

417"
The proof can be found in Cramer and Leadbetter [1967]. The following

result follows at once.

o p—— 4 -~

is la k-dimensional distribution function, as above.
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THEOREM 4.2.2.

The family T civer in (4.3), wvhere each

F

t]

kK-dimensional distributicr. function, 18 the family of FIdf's of some

if
(i)

(11)
(111)

and ornly if

B

bl

the, symmetry andcomsistency conditions are satisFied,

for (t],.:.,tk) e /K

for ‘(t]""’tk) € &,

k

and

,F

t]..

TER F

dietribution function with mean vector

eovariance matrix (ot ¢
.i

e,
for

.i

=1,2,...,k.

= F

© 73

S

K

a

PRAFRFNR RS tyses
.t is a k-dimensional Gaussian
k .
(O,O,."..,O) and
p 1<i,J<k) satisfuing o , =
‘ in

J

3

»
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Theorem 4.2.2 characterizes those famiﬁies o% fddf's which are the

. such families.

. family of fddf's of some SSGP.

Let us write &*

»

for the class of all

We now turn our attention to the covariange function.

e(t); tER)

(4.4)

as defined in Section 1.1.

o

r(t) = E[e(s)e(s+t)],

g

is a SSGP, then its covariance function is , |

If

like to characterize those functions r{(t) which are the covariance

function of some SSGP.

THEOREM 4.2.3. 4 real valued function r(t),

This is easily done.

covariance function of some SSGP if and only if,

(1)
(i)
(ii1)

r(0)
r(t)

for all positive integer K,

(x],...

1

r{-t)

>

Kk k
-

EERS

rit,
( J

’xk) in ﬁk, we have

“txgxs 2 0..

3t

!

defined on &,

15 the

and for all (t]""’tk) and

>

As we did for the fami]ies/of fddf's, we would



7

Proof. If r(t) 1is the covariance function of some SSGP then (i) and

4 w
(i) follow easily from the definitions whereas (iii) follows from

s o &
ke k k C
to-t.)X.x, = _
' | jz] iZTr( 57E XX Eng]ng(tz)l 1>0
. ] 4 /
Conversely, suppose r(t) is a real valued function, defined on @&, /

, satisfying (i), (ii) and (iii). We associate to r{t) a family T of

=3 ° k

fddf's in the following way: given (ty,tp,...,t) €& let F /

toeeet
1Y
be the k-dimensional Gaussian distribution function with mean vector//

7
» Co (0s...,0) and covariance matrjx (Oii) = (r(ti'tj))' Note that fr %\\\\\

©
Y
| ~.

(i1) and (ii1) the matrix (Oij; 1<1,j<k) is symmetric }nd nonfegative \\\\\
definite so that Fy et is a we11\defined k-dimensional Gaugsian N
. 1 k /

distribution function (see Cramer and Leadbetter [1967, page 26]). By

i

n

. (i) the diagonal elements of this covariance matrix are all/equal to one.
- "It is easily checked that the conditions (1), (ii) and (@%é) of Theorem °
4.2.2 are then satisfied. Thus our family T is the fé%i]y of fddf's of

some SSGP.. This SSGP has covariance function r(t). ‘ /111

a

It 15 clear from (4.4) thatnthe covariance function of the process
is uniquely determined by the family of fddf's. The proof ;f’Theorem
4.2.3 shows that the converse is also t?ue:n given the covariance func-
., tion, the family of fddf of the process is uniquely determined. Hence we
have a natural one-to-one and onto correspondence between'the\cfass, say.
« L, of all covariance functiqns of SSGP's and the class &% of all ]
: families of fddf's of SSGP's. ! . ‘ ”
Let\us now restrict ourée]Qes to a smaller class of processes. We

say that a SSGP is continuous in quadratic mean (QM) at the point t if
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Tim E[J5(s)-2(¢) %] = 0 . : .
s=t
Thifs Timitation is by no means too restrictive. In the sequel we will
on]y\eonsider SSGP's ‘having, with probability one, continuous sample . ’
<patps, and QM continuity is a necessary condition for sample path
con‘tinuity. K i
It 1'5 ea‘sﬂy seen (see Cramer and Leadbetter [1967]) that if |
(g(:c); tﬂ%)l is a SSGP with covariance function r(t), then the fo]]-ow-
ingl conditions arls equivalent: . ' o .
, .
« £(t) is QM continuous on &
- - £(t) s QM continuous at -0 '
s - - r(t) s continuous on R .
< r(t) .js}cont‘inuous at 0
Thus when we restr‘ict ourse]v‘es ‘to QM' contimuous SSGP's, Theorem 4.2’.3
becdmes:
£
THEQREM 4.2.4. “A real valued furnction r(t), defined on R, is the
covariance function of some QM continuous SSGF if and only if
(i) r(0) =1
i(1'1‘) r(t) = r(-t)
(i11) for all positive i?ﬁtegezz k, and for all (t],.\ﬁ.,tk) and
: (X]"""Xk) in\ﬁk, we have {5 o
| Kok ' | .
5 jZ] \f;r‘(tj-ti)xjxi >0 I« ) \\\
(iv) t) s coth'vZnuous at 0. ’ ////k
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The one-to-one and onto correspondence between £* and & reduces to a
one-to-one and onﬁo correspoﬁ@ence between £, the class of all
covariance functions of QM continuous SSGP's, and &, the class of all
families of fddf's of QM continuous SSGP's.

The reader with basic knowledge of Fourier tra;sforms, as applied to
probability theory, has observed that Theorem 4.2.4 says merely that the
class £ 1is precisely the class of all real valued so-called charac-

teristic functions. It follows (see Lukacs [1964]) that the mapping

o

G — Jm cos At dG())

is a one-to-one and onto-égrrespondence between the family N of‘'all
symmetric distribution functions G (i.e. ijis a 1-dimensional disfribuj
tion function and G(-&Q\= 1-1im G(t), for each x) and the famly £
of all covariance functiors 6ft8§ continuous SSGP's. Thus if r{t) is

the covariance function of some QM continuous SSGP, then it can be written

~

s - ~

as

k- 9] >~

(4.5) r(t) = jw cos At dG())

for some G 1in N. This representation is unique. G 1is then called
the spectral distribution function of the process.

Thus any two of & L and N are, in a very natural way, in a

-one-to-one and onto correspondence. Hence the.distribution of a QM .

continuous SSGP, i.e. its family of fddf's, is completely determined by

its covariance function, as well aﬁﬁby its spectral distribution function.

<

5
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)

4.3 Analytical properties of the sample paths and finiteness of the

moments of the number of upcrossings,

In this sectigf we will give necessary and/or suffiéient conditions
for a QM continuous SSGP to have certain properties. lﬁ the literature,
a]thoqgh they are usually given in terms of the covariance function,
these conditions are often gjven in terms of the spectral distribution
function. Since (4.5) defines a one-to-one and onto correspondence
between N and L it is clear that to a condition on the covariance
function corresponds a condition qn the spegtral distribution function,
and vice-versa.’

Conditions on the cov@riance function and the spectral
distribution function

THEOREM 4.3.1§& Let G()\) bc in N and let r(t). be the corresronding

element in L, di.e. r(t) is given by (8.5). Then |

(4.6) | rx“dc(x) < o
0
% )
(4.7) r(t) has a fourth derivative )
®
(4.8) for some a >1 we have waz[log(]+x)]§d6(l) < oo
0 |
<>
(4.9) ' r(t) has a second derivative, and for some b > 1 P '
r'(t)=r"(0) = 0(logt][™) as t — 0 ‘
éﬁ* ~ ) o
& A\
. !
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~ Z/ = .y
)//// k4.10) fwxz1og(1+l)d6(k) < ® ‘
0 '
/ . | |
// \
// - (4.1) r(t) has a second derivative, and for some & > 0
‘ 6 3] n ) i
[ r(8)-r"(0) 4t ¢ w
0 t
(4.12) ) ’ JwAZdG(A) < w
0
, .
~ <> -
B
(4.13) ' r(t) has a second derivative
.1 b=
(4.14) for some a > 1 we have /

f[]og(l’m]*’de(x) o
- 0

(4.15) for sofie b > 1 we have

e(t) -r(0) = 0(|Tog|t]|®) as t—0 . - /111

]

Note that (4.7), (4.9), (4.11) and (4.13) are respectively Cramer,

Belayev, Qualls and Berman local conditions for Theorem 1.1.1 to hold.
Clearly we have (4.6) = (4.8) = (4.10) = (4.12) = (4.14). The equiva-

7

ences (4.6) # (4.7) and (4.12) < (4.13) are well. known resylts (see

ukacs [1964]). Qualls [1967] obtained (4.170) ¢ (4.11) and Belayev

¥
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that are commonly used.

(A) Condition/(4.7) is equivalent to each one of

<

, - thle fourth ‘derivative of r(t) exists at t =0

he fourth derivative of r(t) exists and is.continuous

everywhere ‘

Condition (4.9) 1s equivalent to . .

+ 2
Jat 201 1-b
- r(t) = 1-——+0(t"|Tog|t]| "), as t—0, for some

T <b<e and some 0 <, <o

Vi

(C) Condition (4.11) is equivalent to each one of

- r{t) has a second derivative, and for some & > 0
¢T\ 6 1 3
4 ’ 0 t
.+ r{t) has a second derivative, and for some ¢ >0
Jé r()-r(0f-r"(o)t?/2 , ..
3
14 0 t I

¥

(D) ‘Condition (4.13) is equivalent to each one of

it

+ the second derivative of r{(t) exists at t =0

- the second derivative of r(t) exists and is continuous

’ R ~
eyé?ywhere o
e ' : ,

cor(t)y =1- =+ +o(t’), as t—0, for some 0(<)2,A4 <



thz 2
(4.18) «r(t) =1 -——?—~+o(t ) for some 0 < Ap < o
, (E) Moreover if (4.17) or (4.18) holds, then

C Xy = -r"(0) = Iw AZdG(A) , '

r

and if (4.16) hgads, then in addition we have

hy V) 0y = r Vaso) .

&

The results (A), (D) and ¢E) can be found in Lukacs [1964], (B) can be .
found 1n Cramer and Leadbetter [1967] and (C) can be found in Qualls

© [1967].

Sémp]e path analytical properties
We say that two stochastic processes (£(t); tER) and
(n(t); t€R), def{ned on the same probability space, are equivalent if

for each' t in & we have I(t) = n(t) a]mostleverywhere. The follow-

N

ing theorem summarizes some results concerning sample path continuity

and differentiability.

{ ' THEOREM 4.3.2. Let (£(t); t€R) be a. SSCP with eovariance function

1

r(t). Then the following results hold. N

(@) IF r(t) is conmtinuous, then (&(1); t€R) has an equivalent

N

version such that either
(1) " with probability one, the sample paths are éontinuous, or

o (11) with probability one, the sample paths have discontinuities of

e

the second kind at evefy point
(b)- If r(t) satisfies (4.15), then (&(t); tE€R) has an equivalent
" version having, with probability one, contimuous sample paths.

l

t

o ———— -
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(c) Ifr r(t)\ satiefies (4.13), thon A{L); tER) has an ciuvalon

-

"o . - g . f- - - ,-' 4,- - - " PN - . hd J
vergion having, with probabiiir. one, alrmost everwhire d.F7cre

tiakle sawie pavhs,
(d) 1F r(t) satisfies (8.9), then (&(t); tE€R) hzs an esuivalent
Y
version having, with probability one, continuously differentiable
t

v

samy lo paths.,

a

Hunt [1957] obtained sample path differentiability and sample path
continuity under conditions (4.8) and (4.14) respectively. These condi-

tions on the spectral distribution function are often called Hunt's

-differentiability condition and Hunt's continuity condition. They are

known to be close to necessary. Belayev [1960,1961] obtained (b) and*(d)
above by translating Hunt's conditions on tHelsﬁectrgl distribution func-
tion into conéitions on the covariance function (this is a part of
Theorem 4.3.1).. He also obtained (c). Davies and Dowson [1975] showed
that almost everywhere differentiability canﬂdt be rep]éceﬁ by everywhere

dffferentiabi]ity in (c). (a) is due to Dobrushin [1960].

Thé moments of the number of upcrossings

We now discuss some ;ﬂeslults on the moments of the numl** of
upcrossings Zu(T) of a level u by 2 SSGP, say (&(ts, teg), durigb
the time interval (0,T].

If (g(t+h)-£(h))/h converges in guadratic mean (QM) as h—0,
then the -1imiting random varfab]e, yhich is unique up to equiva]enée, is
denoted by £'(t) and js called the QM qerivative of the process at the

oint t. It is easily seen that &£'(t) exists if and only if r"(t) |
xists. (Hence if {,'(t0 . exists at the point t = 0 then it exists
at\every point t L

13



M (T) = ELZ, (THZ(T)-1) -+ (2,(T)-(k-1))] .

u )

The following theorem was obt&ined by Cramer and leadbetter [1965] under
the assumption that the process has sample path derivative. VYlvisaker

[1966] showed ‘that the existence of a QM derivative is sufficient.

§
THEOREM 4.3.3. Let (E(t); tE€R) be a SSGF whose spectral distribution

Ffunction G()) pocsesses ¢ continuous cormonent and a finite second

moment .)\2. (Fro= the above results it followe that (£(t); tE€ER) has

an equivalent version with ecntinuous sample paths. We assume that we

are dealing with such a version). Let ZU(T) and Mk(T) “be as defined
above. Ther for k =_1,2,... ‘t/‘e following equality holds whether both
sides are finite or not:

-

R B
(4.19) M (T) = f ”J fry oy Dy (U U Yy eesyy )
k o Jolo g kPt -ty 1 k

dy]---dykdt]-”dtk

where Py .y (x],...,xk,y],...,_yk) is the joint density of
1 k
O NPT RUTS RO N 1111

The spectral distribution function. G(X) is assumed to have a conti-
nuous component only to guarantee the existence of the mentioned joint

4

density. For k=1, (&(t),&'(t)) always have abjoint density so that

82

we don't need this extra assumption on G(}). : \

Formula (4.19) can in principle be evaluated in terms of the
covariance function r(t) and its derivatives. Of course, in genegal
the expression so obtained is not very usablé. For k=1 or 2 we may

however obtain a manageable form.

o e rep—_—



If k =1, _then formula {(4.19) reduces to
o—
T pex .
(4.20) E[z (T)] = J J'yp (u,y)dydt (finite or not)
u ole t 1
. where pt(x,y) is a bivariate Gaussian density with mean vector (0,0)

and covariance matrix

so that ! ?
' ; Y4 -y /2>
peluy) = 1 u/2 _1_ 7702
Ver '55715 . ¢
Thus (4.20) becomes, after integration,
/E; -u2/2

(4.21) B[, (1)) = 7 5 e

N

which is always finite. Note that in the statement of Theorem 4.3.3 it
is assumed that by < Yivisaker [1965] showed that if dop = then
E[zu(Tf3 = 4w. Thus (4.21) always holds.

If k =2, then formula (4.19) reduces to

G

| T(T e |
(4.22) £z (1)(Z,(T)-1)] = deojojoy]yzptﬁz(u,u,y],yz)dy]dyzdt]dt2 :

This time Pt t (x1;x2,y],yé) is a 4-dimensional Gaussian density with
172, . '
mean vector (0,0,0,0) and covariance matrix

|



holds) then E[ZU(T)(Z (T)-1)] < « and (4.22) can be written as

(4.23) E[ZU(T)

u

T
(zu(T)-1)]'= ZJO(T-t)exp(-uz/(Hr(t))WB(t)I(B,h)dt

A
N

M (1r2(8)) 2 (r (2))°

[y

where B(t) = 377 >0

20 (1-r (1)) |
p = 0= 0) e )
(1 (1)) - (1 (2)) ‘
_ur'(t) [ ] -l

: (t)
PG 0 () - (e ()
2, 2

1/2

2

[r—

I(b,h) =-———l———{m{m (x—h)(y+h)exp[—5~tx—t295¥]dxdy .

2

2 b7 h! - 2(1-b%)

In his paper Qualls raised the question of whether (4.10) is a necessary

condition for finiteness of the second moment of ZU(T). Geman [1§72]

answered this question positively.

' The following theorem summarizes the results on finiteness of the

first and second moment of ZU(T).

84

THEOREM 4.3.4. Let (E(t); tER) be a 55GP having, with probability one,

. 2 .
continuous sample paths. Let Yy and o, be respectively the mean and

the variance of
interval (0,1]

process. Then,

If in addition

N\
the number 'of uvcrossings of the level U zn the timé

and let G be the spectral distribution function of the

bocw o rxzde(x) <o |
u . O

7

G has a continuous component, then

05 <w ® J®A21og(1+k)dG(A) < w
0

1117



One can show that if r(t) —0 as t—«, then G(}) is everywhere
continuous. Thus Theorem 4.3.4 applies to the SSGP's considered in
Theorem 1.1.7 and we conclude that, in their respective versions of that
theorem, Volkonskii and Rozanov, Cramer, Belayev, and Qualls were ail
assuming 03 < = whereas Berman only assumes ‘mu'< w,

We conclude this section with some comments on the expressions

"(4.21) and (4.23) for the first and second.moments of the number of
upcrossings. Formula (4.21) is called Rice's formu]a. It was first
obtained by Rice [1945] for the case where the spectral distribution
function is discrete with only a fimite number of juips. In 1957 )
Grenander and Rosenblat gave a simpler proof for the same éase.\ In 1960
Ivanov proved the result for the:case where the spectral distribution
function has a fourth moment. In 1961 Bu{inskaya p}oved the result under
Hunt's condition quaranteeing £(t) to have continuous sample derivative
Finally in 1964 and 1965 both It6 and Ylvisaker proved the result that
Rice's formula holds, whether Xy i finite or not.

A formula for the variance of the number of zeros during the time
interval (0,7] was given by Steinberg, Schultheiss, Qogrin and Zweig
[1955].. Volkonskii and Rozanov [1961], in‘a footnote, obtained under
certain cohditions, mainly that the covariance function has a sixth deri-
vative, a formula for the variance of the number of upcrossings of a
given Tlevel. In the case of the zero leve], their formula reduces to the
one of Steinberg et al. Finally Leadbetter and Cryer [19é§] obpained
Steinberg's formula for the zero level under theaassumpt%on that the
covariance, function r(t) satisfies (4.11). This formyla, written in
terms of r(t), r'(t) and r"(t), is derived in Cramer and Aeadbetter

[f967]. One can check that Quall's formula (4.23) also reduces to the
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s

formula of Steinberg et al. when u = 0.

4.4 Stationary Gaussian procesé‘és satisfying Berman local

and mixing conditions

We shall now prove the results announced in Section 4.1, namely that
7 0

i

the conditions R1, R2, DC(UT) and DC'(uT) hold for SSGP's satisfying
Berman conditions. ¢ and ¢ will denote the standard Gaussian dens1'ty~
and the standard Gaussian distribution, respectively, i.e.

b 2 !

and ' ‘ :

The condition RI

H

Let (£(t); t'€R) be a SSGP, defined on_some probability space
(Q,F,P),f whose covariance fur;ction satisfies Berman local condition
(4.1), or equivalently

L2
)\zt

(4.24) r(t) = ]-—2—+o(t

2) as t—0

\ where Az .1s the second spectral moment. From Section 4.3 we know that

\
i

\ (E(t); tER) s equivalent to a process having, with probabﬂify one,
| .

\ continuous samp]é paths. We assume that (g(t); t€R) is itself sucha

\process.‘ We want to Lhow that under these assumptions the condition Rl

[N
1

olds with y(u) = uu,":”‘i'.e. for some hO >0 we have
P[M(h) >u]

-+ 1 as u—w, 0<h<hO




ba

|

where M(h) and My have the usual meaning. We shall first obtain

(4.25) for a very particular process. We will then“extend.the result to

}

the general case by showing that the maximum of the general process over
J

l[O,h] and the maximum of the particular process over [0,h] behave

similarly. -

Let A and ¢ be independent random variables on (Q,F,P), A -

i

/
Being Rayleigh distributed with density

\ 2
. \fA(X)=xex/2, x >0,

¢

g

and ¢ being.uniformly distributed over [0,2n], and let (£*(t); teR)

- Q

v

be the process defined by
EF(t) = A ‘cos(/fz_tv*;p) °

where r, s as in (4.24). Tt,is easily seen that (£*(t); tER) is_a
SSGP with continuous sample paths and with covariance® function r*(t)

satisfying .
2
(a.20)* () = V- Bo(t?) as t—0n

(E*(t); tER) s sometimes called the trigonometric process associated
with (£(t); t€R). It has the same second spectral moment. For this

process, the distribution of the maximum over the interval [Q,h], say

M*(h), is easily computed. We get, for 0 <h < UL/ :
£ {
~ Wiy 2,
P (h) <ul = 0(u) - =2 e /2

Hence, usifg Rice's formula, we have, for O < h.<°'ﬂ/v/5\;,
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v

the pr'ocesg (£*(t); tER). From the well known relation

. 88
’h"TZ— /2 i /»k‘ -
P () >u) 2 e (-e(u)
'hJ; '@ | h"TZ— —u2;2
¢ -1+ V27 1-¢(u)
weian * o

where of course Bu: is the mean number of upcrossings of the Tevel u by ¢
N .
f . .

H

(4.26) ) “—(%‘%()‘iﬁ?j as

u-—ow

—_— 3

we get, writing hO fn//ifg,

(4.27) — 1 as u—w, O<h<h0.

3

B3

Since (£(t); t€R) <and (£*(t); tE€R) have the same spectral moment,
Rice's férmula -gives us by = u:’ Hence (4,25) will follow from (2.27)'
! s i

if we can show that

*
NN P[M >u]h P[M h)>u] 35 U ,
My
or, equivalently, if we can show that
(4.28) | PLMch h - PM*(h) <ull _, g as u—o .
Hu
We will now obtain (4.28). For each a > 0 we have
[PIM(h) <u] - PIM*(R) <u]| < [PIM(h) <ul=PL N () <ul]
ja '
4 _Oi\“ﬁ'ih o
PL 0 {58 <ul) .
N ‘ B Oi—lrih !
- PL 0 L) <w]
0cdach ~ ° _
v ’

\.
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Lo ' + P00 (2 (D) <udB- PN (R) <ud N
et 7 L pdig ;
taeerd " , —_y - ) ~ &
'so. that (4.28) will follow if we can show that each one of the following .
three expressions goes to 0 as a decreases to 0, for small enough h:
- ’ & y
/’ ja ‘
! P <ul-PL v 2(2) <u ]
0<2&<h
1im sup —Uu ,
U ‘ My ‘ )
A G R R A A C R [ !
0_<_l9<_h 0<9-9—gh
Tim sup U= —u
U0 ‘ My
1 %
PLN e cnd - ppwe(h) <]
0<iep ‘
» lim sup —u
. U= M
! ' ¥
THEOREM 4.4.1. With the ahove notation and asswﬁpti{_’ong ve have ‘
‘P[M(h)w]-P[ n {E\(j—?—) <u}]] )
I P - . . u’—
" “0<ten
(4.29) 1im lim sup —= —4 =0,
a0 oo My s
" for all small enough h. ‘ / ’ .
Proof. The first step of the proof is to estimate P[£(0) <u <€'(%)] for
large u. For convenience we assume AZ =1 (the geriera] case reduces to
« / ¢ . = ~
this case by a change of time scale). Let us write q =a/u. If
- £la)-€(0) =
q 3 N "
- then we have ‘ ) . ’



V4

. { ’ (r(q)—])/q*} S
‘ Lty 20rieat |

90

Plu-qz < £(0) < u]

+ L u ‘ ,
‘ = (r[ p(x,z)dxdz
J0'u-qz

o
r
it
—_
[«a]
~
o
A
~
—
=)
=
.
]

o0 (7
q[ (,p(u—qy,Z)dyd’z
040 RN

+

a q : N R
where 'n is the joint density of (£(0),c). It is easily checked that
AN »

s

(&(6),;) has a bivariate normal distribution with mean (0,0) and with

2 E}

covariance matrix !

1

-

Writing out this density‘we find that

2 v | l
el /Zp(u-qy,z) - (zviz])-1/zexp %Uz -~fri%ﬂ, - |

| x exp[ ?TLT(Z ?q))( 2ugy+q 22

- @ weayeef)] o

?

where |Z| denotes the absolute value of the determinant of . It is

/

easily seen that for fixed a 'we have
2] — 1 as u—w .

Using (4.24), with 2, = 1,7 and recalling that q = a/u, one can check

that for each 'a > 0 we have '
e l . L]
R TV LR TS
p(u-qy,z) — §rexp{————-§{—2ay+qz+z )} as u—o .

4
L2

It may also be checked that over the 1nteq}ation range we have h

' 3



\ -
: . -\U&/Z '; ‘KZZZ <
’ S : e "“plu-ay,z)'< Kpe

where }g]a and K2 are positive constants, not d'epending'on u. Hence’

by dominated convergence we get ' .
@ 2 y4 .
/ a 4 2r 1 eV /ZFJ p(u-qy,z)dydz
' ' N Ub_’fx O O R ¢ .
St o © ’ 2 z ) ’
] - ¢8 /8JaJ exp(-o—;—(-Zaeraerzz))d}dz -
‘ . 7000 . - .,
; _va/2) -e(-a/2) '
a/27
i.e. : . .
i, r s
. (4')30) 1im P[do')(;/uu;f(a/u)] - '@(6/2)-(1’(-&/2)
{ LV leandy R El a»/Z_n—
o © for each a > 0. Now let Zu(h) be, as usual, the number of ‘ypcrossings \
of the level u by £&(t) in the time interval, (0,h]. Similarly, for
) .-
N any q >0, Jlet N*(u,q,h) be the number of points 1iq in ¢0,h] for

which £((i-1)q) < u < giqg). By stationarity we get
) m '

*E[N*(u,q,h)] = [h/qlP[z(0) <u<e(q)] .

* b

Thus, if q = a/u, then using (4.30) we get,

.

) (4.31) 1im EIN(u,0.0)] . (a/2)-0(-0/2) ¢4 gaen a5 0 .
B TE h“u, avem
. Clearly {M(h)<u} C n {Q(‘]—a) <u}l and it is easy to check that °
0<ja/u<h
\ . their difference implies that either £(0) > u, or Zu(h) > 1 and

N*(u,\%,h) = 0. Thus

.
. . N
.
. o
¢
®
hd .
- --..eiﬂ
~ L N
- A
N
- ———




V2

v

PRy <ul -l 0 (c(22) <un)| .

<1 -

&

< PL&(0) »u] + P[Zu(h)_zf and N*(u,%wh)

0<ja/u<h

13

o(u) # PLZ,(h)-N*(u,3,h) 1]
o(u) + E[Z,(h)-N"(u,5,h)]

u

o(u) +-E[Z,(h) 1= E[N"(u,5.0)]
&(u) + hy: - E[N*(u,%,h)] ,

=07 - h

rhere we used the fact that Zth)i-N*(u,%,h) is nopnégatﬁve to get the

third inequality. Dividing by wu and Tetting u:—*m, we get, using
] u

N (4.26) and (4.:31),

A ]

(4.§2) 1im sup

PIMeh) <ul-PL 0 qed) cu)]

0<léch
_—u— <‘h

. Lo

But clearly

o

~

to 0.

In order to show that as

UU, -

Tim ¢(a/2)'¢('a/2) =1,
a+0 aven

Hence (4.29)~follows from (4.32) by taking the 1imit as

4 w

a

decreases

/117

expressions listed before the statement of Theorem 4.4.1 goes to 0, we

need the following lemma.

It is stated and proved as in Leadbetter,

92

a decreases to 0, the second of the three

L¥ndgren and Rootzen [1979]. The method used in the proeof was introduced

A

o by Slepian [1962] and was later developed by Berman [1964,1971a,1971b] and

Cramer and lLeadbetter [1967].

AN
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LEMMA 4.4.2. Cuppose E106os v nf, are standard Gauseiun rajaom varia-

- . . 1 ] ; :
bles with covariancesmatriz N = (Aij ),\"ianj Q] APTERE ,nn sa’mz’?az“:;,
with covariance rmatriy AO = ("0), and let p,. = max( ]'\1 R I/\O |).
. g 1] ij : 1370

Turther, let™ u = (u],‘. . .,un) be a vestor of reci nwmbcrs and write
* A

u=min(lu]\,.‘..,|un!). Ther. i T

3

(4.33)  Ple; <ugs 3=1,0,n]-Plny <uys §=7,...,n]

1 1 0+ -1/2 2
< 5— A, =ML, 1-p.. exp{-u /(1+p..))
Z 7 Tiigjin( i U) ( 013) p(-u/( O]J)]
+ . ‘
where (x) = max(0,x). i N
In particular, 1f Myseeesn, are independent and if
§ = max[/\-! | <1, then for any real U and integere 1 < Ry <evr < 3§
1#J 1 . . * - S
(4.34) 'P[gﬁ'gu; j=1,...,s]-¢s(u)' <K ] |ri.|exp(—u2/(1+1r..|)]
. j -li.i<jis J . U.
1 . -
oy .= N s the corrclation bet 7
where r‘1J AQiQJ 18 the corr Tom between Eg-i and EQj, and K
18 a constant (derending on &). If furthermore (&n; n=1,2,...) .78 a

stationary standard Gaussian sequence with covariance function r(n)
|

and if T_<_Q]<"'<2 <n, then

S
~ ) n ’
(4.35) IP[EQ.iU; j=1,...,s;]—¢s(u)| < Kn.z |r(1')lexp(-uz/(]+|r(i)|))

J =1
: &

Proof. We shall suppose that A] and /\O are positive definite (as

opbosed to nonnegative definite) and hence that (g]’,...,gn) and

(nys...,n.) have joint densities f, and f,, respectively. (The
1 n 1 0

nonnegativé definite case is egsily dealt with by consideri’ng Eitey and

ngtess where the e; are independent Gaussian variables with mean 0,

and then letting Var(ei)——ro, using continuity.) Clearly

3



. U R
.L’E;Jf_uj;j=1,...,n]=j'7-Jf](g)d¥ - '

a
2 ~

1

. u . .
@) . ‘ P[nj <uy3 j=1,...,n] = J-_-m-ffo(vy)dz ) l

4

covariance matrices A] and A - If we write Ah‘= hA wﬁ(]—h)}\o, for

0<h <1, -the matrix AP s positive definite with units down the main

. . ho_ o 0
diagonal and elements Aij'“ rlﬂijﬁ(]—h)“].j h,
_the standard Caussian density based on Ah, and write - i

for i# 3j. Llet f_ be

[
- AN

' JF[h’) = J,-ijfh(x)'d)_/ . ’

L

The left hand side of (4.33) is then easily recofnized as F(T1)-F(0).”

Now o ] ‘ .
S FOL-F(O) [ PN
. 0
’, ) ' L u of, (y) - . .
wh(?re ‘ . F'(h) = j_wJT dy . | '
4 ) The density fh depends on h only through-the elements A?j of /\h
- (regarding f, as a function of ATJ for i < 3, say). We have
4 N I h _ . . . . . h - ] 0
' Ay = 1 mdepend\sqt of h,. wtn]e for i < j, Aij = hA1j+“-h)Aij
so that ~° !
B ‘ hﬁ . .
E s .. aAij - A'l —AO -
' * al ij jj )
" ThUS, - h ®
u 3f, AL
F'(h) =‘J J ] — L dy
o el gy, 0
of -
> O H h
=W»X(A -A )IJ“d‘Z
TS W e 8/\?. '

e e -
;
~
i
o
<
.

where 15] and f, are the standard Gaussian densities based on"the ]
' 0 1, o



Now a useful nroperty of the mu]tidimenswnaﬂ normal density/is that its

derwatwe w1th respect to a covariance Aij is the same as

. . (cf Cramer and Leadbetter [1967]) Thus .ot ,
) I - o . -
. afh' = i fh "
: . A.. *3y.o9y.
‘ T ‘) I ‘
Thus Fh) = T (Al ion J J dy .- ° h
- o i< Txl W W5ayy . =
The ¥ and yj integratm_ns may be dong~at once ‘to give L
¥ 10~ u' - . .
- ‘ (4.36) .F th)e = 1Zj(A1’J"/~\*J’)J'_;th(.,y" “djs Y5 = usldy
: where fh(y]. SUgs y:]. =uj) denotes thé’funiction of n-2 ,variat;]es formed .

by putting Yi = 111, Y. = Uj’ ' the iﬁteqrati_on‘bemg“oger the remaining

J
% ‘ . | _ :
variap]es. We can dominate the Tast integral bygletting the variables

run from -m~to +o. But -

v =

, X
is just-the bivariate density, evaluated at (u].,uj), of two standard

Gaussian random va-ﬂ'ables with correlation /\?J., and may theréfore be

< a IS

written - '

S D : 3

: 2A ULuLtU

RYNVE: eXP[u Jr:u%zuj) :

2n(1-(A]) 20- (A,))

co - .
- Since : |A?j| hady e (1-mnd - <max (I 113510 = o

R —
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?

min(fug [seens tup 1) < minflu, b fus )

L]

l

¢

™~
N

it may be easily shown that the above exprefsion is not greater than

and since F(1) -lg(O) = J

~

follow easily.

THEOREM 8.4.3.« With the above notation and assumption we have

(4.37)

1im 1im sip
a0 U0

—

]
(1ep?
2A (]-01:1

1
0

4

<

)

-2 T
/2 exP(‘U /(H'D]-\

1] ij

'

By

ARG RO

o

i

(/\1. .—/\O . )+(]—p2..):]/2exp

_Eliminating the possible negative terms in (4.36-), we have

(—uZ/(Hpi

for all small enough h.-
A !

Proof.

>

" (4.38) F

Writing

I
Oilugih

- S ) * ’
= |pLA {e;<ul] -P[jf:]{ﬁj <u}]]

=1
1 *
R D I VY
- 2”]9'53'55

1

. and using the above lemma, we

LISEINGE SR B
0clz<h S
uU
{
’ & = £(ja/u)
, &} = £*(jasu)
s =s{a,u) = [hu/a]
et /,/‘

i] i

N o n

0<334p
— u ——

(1-05,)7/

! Texp

(/014 )

{g*(l})iu}ll \

1

)

Fe(h)dh, we get (4.33‘)._ (4.34) and (4.35) '
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- * .k _ - .
. where ;= r(tijtj) M U D 1a/u ’ ,
= * = - * - = = Y
P33 max(IAiJI,[A1j|) max( |r(t, tj)|} ri(t, tj)l) o(t; tj) ,
" o(t) = max(|r(t)][, | (1)]) .
From £4.24) and (4.24)" we get . '
. ’ ‘ O ’ Aztz ) . o
1-o(t) = L—so(t?) . ‘ ;-
Thus for some, hy > 0 and some o > 0 we have )
2 .
(#.39) . 1-p(t) > 4ot” , for |t} < hy -
Since 0 iAp(ﬁ> <1, we get,
1 o 1- p2(tY'> lklp(t3s>@4at2 for |t] <h
) .'. _. \ o2 3 O b
and hence .
' (4.40) - Lo —Le | for 0<|t<h, .
VI-07(t) 2/t \ .
.\‘ - N

In the fo]fowing, K will denote a positiye constant which may ¢ ahge
* from Tine to line. Writing y(t) = r(t)erVt) and using (4.40), we see

that the right hand side of (4.38) i$ bounded by

P

» - |W(ti-t’)l & 1

2 . .
' K1 ‘*Tf‘:ffﬁ—— EXP(-U /(1+o(t1-tj))] » O<h<hy,

v T<i<jcs 1M 750, )

which in turn is bodn&ed by | A | f//q

p CRI - ja/0
’ s s | Ks E (ja/u) exp(-uz/(1+o(ja/u)))
J=1

2
£ j;—rt_ﬁ— exp (-0 (1ol t5))) T {ja/u

N . . -

S . .

, ., : Ks.E](ja/U)e(ja/u)exp'[—uz/(1+o(ja/U))) ‘
J:

- ¥

where 8(t) = Iw(t)}ltz. It is easily seen that this last expression is

\
1]

Pl

*

)
4

[ — =

\ % .
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. 1

bounded by - ;=

G_UZ/Q

(4.41) Kkse (a/u)a{a/v)exp (- (2 /8 (1-0(32/u))

1

N~

N
Now for 0 < h < hy and 1< <s=[hu/al, wehave (ja/u) < h < hy. .
Hence from (4.39) we get

(u274)(1-o(ja/u)) > ajlat

It follows that (4.41) s bounded by
2,5, 5 2.2

ke U /2 ) joljasu)e™ @
j=1 \

oo

which in turn is bounded by

2, S . :
ke 2 geliasun’ .

j=1 . i
o W
“where ne= e €(0,1). - >
We have shown that i“t a 1is a fixed'positive number, then for al
.small epough h we have, using Rice's formula, .
. Pl N (e cwl-pL N {g*(J—}):u}]}
0<3%<h | 0<d<h Thu/al ;
VA : <k ) o geljasuln -
u ‘V Al j"-‘] °
where K >0 and 0 < n<1 do not depend on u and where f\
4

' ?(tQ}= F(t);r*(t) .

By (4.24) and (4.26)* we have 68(t)—0 as t—0. Since B(jasu) is
uniformly bounded (1<j <[hu/a), u>1, say), by dominated convergence

we get B

-

v
— -



V2

[hu/a]
Tim ) - jé(ja/u)n
U j=1

Chu/al .-
7 Tim 3s(dasu)n? = 0
321 U ’

J .

.Hence for a> 0 and for 0 < h < hO (hO independent of a), we have

°

e .
oo L0 EER il =Pl 0 R sl
: 0<2%h 0<38ch -
Tim ———Y — =0
u-rer ut
q "
from which (4.37) follows trivially. 1177
\
 THEOREM 4.4.4. With the above notatior ani assumptions we have
PL 0 (7 (22 <ud]-PIM*(h) < u] D
0«2
Tim Twm sup s S =0
a0 oy “Hy
1
For all small encugh h.
Proof. The proof is the same as for:Theorem 4.4.1. 1Y
% Combining the results of the last three theorems we get (4.28), and

hence (4.25). Thus the conditié)n R1 h;ﬂds for SSGP's satisfying Berman
Tocal condition (provideq we are dealing with a version.having, with
probability one, continuous sample paths). .ﬁ’
The condition RZ

Again we consider a SSEP (E(t)s t€®) whose covariance function
satisfies Berman local condition (4.1), or equivalently (4.24). For such
a process tﬁe condition R2 is satisfied with y(u) = M, \and qa(u) = a/u,‘

[

i.e.

. PLE(0) <u, E(a/u) <u, M(a/u)>u] _
(4.42) ;lg 11|S+iup WU)UU 0 .

s p———
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D )
- . ' . oo, »
, )

This can be shown as follows. From

(0) = 00) +u, Tla/u) ot U M(a/u) <o :
T cuy (e U, Masu) cu

L]

and using the fact that P[c(0) =y] = P[7(0) < u, <{a/u)=y] =
P(M(a/u)=u] =0, weget ° L . , T

PLz(0) <@, f(a/;J) <u, Mla/u) > u]
{a/u).,

P (0) /u] PLE(0)

- <uc<t(a/u)]  PM@a/u) <ul _ *
~{a/u). (a/uls, ‘ la/u)e, . N~
I )4 P[2(0) <u<s(a/u)] , P[M{a/u) >u]
(4.43) =- (a/u)gu R €7/ S 11

Rice's formula combined with (4.26) gives us

2

M T=0u) 1 o
1im a/ ‘.,u»_a.‘z /.2

u—)(f
and from the proof of Theorem 4.4.1 we have (equation (4.30))

1in PLE(O) <u < €(a/u)] | ¢(a/2)-4(-a/2) |
(a/ulu, :

U - ave-
Thus if we can show that
: P[M(a/u)>u] NN i
“then from (4.43) we will have
. P[£(0) <u, £(a/u) <u, M(aju) >u] _ , _#{a/2)-8(-a/2) b
1im Ta/u) \
Uro Hu \ avln -,

from which we get (4.42).

~.
~
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~
4O

We proceed as we did in obtaining condition R1. Let (£"(t); tE€R)

be the trigonometric process associated with (Z(t); t€®). From

avh, . 2
PIM*(a/u) <u] = o(u) -5t e /P 0 e B T,
» . ‘/)—\_Z”rgé
we get, for each a > 0, e = )
’ . p[M*(a/u) >u] ] L
Tim = 1+27/%, . -
TETS (a/U)Uu N a 2

2

Hence (4.44) will _foHowfrom-

P[M(a/u) >ul - P[M*(a/u) >ul | v for cach a > 0
(a/ulu, T

o

1im
U—Nx
*

" . - ) '
or, equivalently, from

IP[M(a/UwiU] ‘P[Mt(a/U)SUJL.: 0, for each a >“‘O .
(a/ulu ,

Tim
u——xx

This can be obtained by arguments similar to those leading to (4.28).

, o © .
The cond1t10n§DC(ulT)v i ' i
Let us now assume that our SSGP (&(t); t€R) ‘has a covariance

! bl

function satisfying botlh Berman local condition apd Berman mixing condi-

v

tion, i.e. ~ 9

,, At o
¢ r{t) =1- 5 +o(ts’) , as t—0,

\ . - .

(4.45) ¢ r(t)logt —~0 as t—w, )

A

“ Moreover, let us assume that Ug is chosen in such a way that for some
e

L] - o

>0, -

/e

(4.46) - ) Ty — 1 as Foe.

- b -
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(As before we éssumeLour process Qas continuous sample paths. Hence Yy
¢ - *

[

i$ well defined. Furthermore, from Berman Tocal ‘condition it f6llows .
that R for every u. Thus (4.46) makes sense.)” Under these assump-

tions, we shall show that for each a > 0 the condition DC(uT) holds

with respect to the family q; = qa(uT) = a/us. ' - )
Fix a > 0. We must show that there exists some ar satisfying,
< . 3
for each € > 0,°
- ?
\(4.47) v arar 0 a5 Toe S
) T
such that for any choice of 0 é& Sy <S, < <5p<t1 <t2<- . <tp. in
{ja/ugs 0<ja/up <T} with tms, 27 > 0 we have . & ; t_)
jor ' : .
(4.48)  {F o ¢ .g (up)=Fg g (updFe o upd] <ap
,ws‘l Spt] %p| T' s]‘ Sp T t-l tp| T —: T,'Y
The left hand_side of (4.48) stands for
L4 .
P[&(s])iuq,.u,a(sp)guT,ﬁ(t])guT,.“,g(tp.)guTJ
- P[§(5y)i“7"“’5(5p)i“T]P[g(E1)i“T’--;5(tpf)i“T]‘
and hence can be written as - RS .
. : ‘o A g
‘(4-49) [PLEY <tqs-esEpypr SUpd = PEng cpeeang o <upll

is a zero mean Gaussian random vector based on the

~

where (51,..
4 .

covariance matrix

'3£p+p')



and (n],...,n

AR

P

p+p’

" covariance matrix

" r(0) r(s]—sz) r(§];sé)|
r(sz-s]) r(0) :: r(sz-sp)

5 l

(s -5, ) r(s 5,0 r(0) |

_______________ L

o 0 0 |

0 D 0 :

v : I

0 0 0|

r(t :—s]) n(t :—52)-"r(t ;-s )

0
. o
0 0 0
TR
r(ty-t;) r(0) Pyt )
r(t 1) r(t -t,) r(0)’ |

r(sz—t]) r(sz-tz) r(sz-t )
r(sp:t]) r(sp-tz) . r(sp—tp,)
P0) ety - ;(£13t;.3
r(t,-t;) r(0) rlty-t),)

) is a zero mean Gaussian random vector based on the

il

Mo

Mence, by Lemma 4.4.8, the quantity,in (4.49) is bounded by

where

-

1 ) | * 2 \-1/2 4
" Ry o RS 1 (1=p50) exp(-uz/{(1+p;.))
. 2ﬂ1§j<jsp+p. ij 1] iJ T 1]
Pij * max(IAijl,IA?jW). Looking up at the covariance matrices we

are dealing with, we see that the last expression is simply

1 y 22 -1/2 2
% |r(si-tj)|(1—ﬁ (si'tj)) | exp(-uT{(]+|r(si-tj)|))

-

?or each (i,j) »in the above summation, Si'tjn is of the form ka/uT

o~

N



”
t;i" i

.

for some positive integer k. For each such k there are’certal

more than [TuT/a] couples. (i,3) for which Si'tj = ka/uT, since

A

p+p' f‘[TuT/a]. Moreover for each *(i,j) 1in the summation we have

151-tjl > y. Hence the last expression 1s bounded above by

N

T

o

] ,

(4.50) o L k} ]r(ka/uT)!(1—r2(ka/uT))']/Zexp(—u$/(1+{r(ka/uT) N
a - ’ '

YT '

-
fe T

L

>
9
1Y

-

From Berman mixing condition (4.45) we have r(@)-*+0 as t—o«. Com-

‘bined with the fact that r(t) 1s continuous, this implies that the

o
N

supremum of |r(t)|, as t- ranges over [y,=}, 15 obtained at some

-

point ‘t{ of [v,o). If |r{t.)! =1, then £(0) and E(ty) are

|
!

Tinearly related, since they‘are.Gauss1an random variables, as.are, by

stationafity, £(t ) and g(Zt\), and hence so are £(0) and {(ZtY)f
, -

Thus |r12t})! = 1. Inthis wav it follows that '[r(kt\)1 =1 for al
contrad1ct;ng the requirement that r(t)—0 ‘as t—o. Thus we have

Lr(ty)i < 1. It follows that

sup (1-r2(t)) V2 = 1Pt V2 <
ty . T

Hence (4.50) is bounded above by

3
AN

. Tu ©
(4.51) k()= ;()j, Ir(ka/up) lexp(-us/ (1+]r(ka/ur) )
a
Y =<T

T

where we write K(y) = (1-r2(tY))']/2. Thus we have shown that (4.48)

2

holds with « given by the expression (4.51). It remains to show

T,y

that for each~ 6 > 0 the condition (4.47) is satisfied. Since r(t)—0

as t—w, we have K(y)—1 as y—«. Hence K{y) <2 for large

enough y. Now fix- 6 > 0. For large enough T we have

K,

4



r(ka/uT)Iexp[—u%/(1+}r(ka/uT)!))

((4.52) °T,eT = Ta Ea

— pT<—<T
.——{J —

T .
- N
If we write 6t\= supir(s)|, ‘then‘the right hand side of (4.52) is )
s>t )
not greater than N : -

( %{TUT/a)s Z exp(-U$/(1+|F<ka/uT)1))

3

This last expression is equal to :

-U2 Bl SN
1 . T ' 2 -
HTuq/a)s e ga exp(uTlr(ka/u )/ 1+| ka/uT )
eT<—~T ' ‘ .
Uy~ S
) : v
since
2 r(ka/u )| —u%
, m,r(ka/u T T T Trka/u)TT !
Now for each 6T < ka/up < T we have
o~ ,
[r( ka/u 1}T1+\ (ka/u; )aD; < 8g1
So that exp (02 |r(ka/uy) |/ (1+r(Ka/u) ) < expluZ6,)~
Pl T PRI S A TE
for each term in the last summatiori. Since there are no more th;;\\ ™
[TuT/a] terms in the summation, the right hand side of (4.52) is bounded ™
» U ‘ -u2 uzd - ~
r 2 T, Tel N

T(Tur/a)"6g.e ,
Hence for large enough T we have
2 2 Y .
-uT/Z 5 -u §
Ve

7

(4.53)

+

5 o7 < (UM (1/)2(8,7) (Te

«* M o
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RXY
.

' iUsing (4.46) and Rice's formula we get

’

N /27097 — 1 as T
Hence u25 /285, .1og7 — 1 as T—«
. a T7eT "7€T o
But 68T109T =69T}096T - 66T1oge ‘
, = sup |r(s)ilog €T - log & sup |r(s)]
$>0T s>6T

| A

sup |r(s) logs! - loge suplr(s)| .
s>eT s>2T

N
Thus from our mixing condition we get

66T109T ~ 0 as T—w«w

and hence !
(4.54) Jim u25 =0 -
’ , T T°87 ’ h
E v
From (4.46) combined with Rice's formula we also get
. “ .
(4.55) Tim Te 177 = 2n1/V%; .
Combining (4.53), (4.54) and (4.55) we get b
1im a =0 .
o 'T.6T .

»

We have shown that for each a > 0 the condition DC(UT) holds with

respect to the family 9y = a/uT.

o

4
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The condition DégLT) ’ 0

As above, we let (f(t); t€R) be a SSGP whose govariance funtﬁion
satisfies Berman Tocal condition and Berman mixing condition

xztz 2 '
(?5&. r(t) = 1- 5 +0(t") as t—0,
' 8

(4.57) r(t) logt — 0 "as t—ow
and we assume that we are dealing with a version having, with probabil{ty
éne, continuous sample paths. Moreover we agsumelthat Up is chosén in
such a way that for some ™ > 0 we haye
(4.58)1 4TUuT —~ 7 as t—e | \
Under thesé assumptions, the cond1£1on Dé(uT).is sat1sfied with .the func-
t19n v{u) = by i.e. , ' N
(4.59) . 1i$ﬁjup T}uET,UT-u;TIW—ﬂ-O as ¢ —0 .
This may be obtained from arguments of Pickands [1969a,1969b]. Such a proof
should appear in a forthcoming paper by Lindgren and Rootzen (in prepara-
tion for Instituté of Statistics Mimeo Series, University of North .
Carolina at Chapel Hil11). Unfortunately we failed in trying to ,produce
such a proof., We ‘Will thus content ourselves with a somewhat undirect
proof.

We have already shown that when (4.56), (4.57) and. (4.58) hold, the ¢

conditions R1, R2 and Dc(u are satisfied. If we could also obtain th

T) .
condition Dé(uT) then it would follow from the theorems of Chapter 3 that Fan

(4.60) © PIM(T) Ul — e as Toe,



P

(4.62) PIMB) >ul 7 45 Uw, O<h<h

and

(4.61) ZT X7 as T—o,

! %

¢ 3

where M(T), ZT ‘and 7 are, as usual, the maximum over .[0,T], the
point .process ‘of upcrosgingg of the level Ur and a Poisson point process
with 1ntensity 71, respectively. Our proof that under (4.56), (4.57)

and (4.58) the condition Dé(u ) holds will be i1ndirect 1n the sense that

T
we will actua]iy,obtain (4.60) as an intermediate step. Of course a more
direct pﬁpof would be desirable for 1t would then make the results of
Chapter 3 useful; they would provide a nice way of obtaining (4.60) and
(4.61) for the Gaussian case, whereas they are rather useless once (4.60)
has been obtained. But our main goal is not to exhibit nicer or 21mp1er~
proofs of Berman results. Oui goal in this chapter-is §imp1y to show

that the general conditions o( Chapter 3 are satisfied by SSGP's, with

covariance function satisfying Berman conditions. /

LEMMA 4.4.5. If bgi% Bermar local conditior and Bermar mixing condition
hold and <1 Uy 18 _chosen so that £4.58) kolde for some T > 0, then

(4.60) holds.

Proofi\~MOSt of the ideas and techniques 1nvolved in ths proof have

’ a]reaE} been used in this paper. So we shall simply give an outline of -

the proof.
We know that under the present assumptions the condition Rl is
satisfied with y(u) = M- Thus for some hO > (0,

huu 0"
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Consider a fixed h >30 for which (4.62) holds. Choose ¢ > (., small

énough so that O0<e<h. For each T >0, write

(4.63) ny = [T/h]

and divide the time interval [0,T] as follows:

I, = [0,h-¢] 1;* = [h-c,h]
I, = [h,2h-c] ° 1o [Zh-e,fh]
; . )
I”T = [(ne=1)h,n h-€] InT = [ngh-c,nh]
I= [nsh,T] —

R

Finally choose gq = q(nT) ‘such that quy—0, as T —®. For convenience

choose q so that h 1s always a multiple of q, S0 that the same

Rumber of points jg will 1ie in each of 11,12,,.., and in each of

T,I;,... . We then proceed as foHowé: .
(1) approximate P[M(T)<u.] by P[M(n;h)<u;]
=4 s 2y

Ny N ' T .
, (i1) approximate P[M(mh) <u ] by P[M(ksz]'Ik)iuT]

1

I

. o . M
(ii1) approximate P["M(kgllk)iuT] by P[&(jq) <ups qukg]lk] »
. = nT n .
(1) approximate P[£(Jq) <up; qukL_J]Ik] by P T[r:(jq)guT; ja€l,]
. g ) N
(v) approximate P '[£(jq) <uy; Ja€I;] by P [M(I})<u;l
n n
(vi) approximate P TI:M(I])iu.r:l by P T[M(h) _<_uT] .

More specifically we have the following approximations:
(i) 0< P[M(nTh)iuT] -P[M(T)iuT] — 0 as T—ow .

Clearly {M(T)'iuT} C {M(n;h) <u;} and the difference of these two sets
is included in {g(t) > ur for some tE[nTh,(nTH)h]}. Hence using

stationarity we get =

s



| ¢

- ¢

o

\

0 < P[M(n;h) <] -PIN(T) < urd < PIM{R) Supd

By (4.62) the right. hand side Sf this expression goes to 0 as T goes to

~«. This gives us '(i). .
1 e, o
: = nT . ,
< (11) Ofi-P[M(kEHIk)iUT] ’P[M(”Th).i“T] < Kie .

Again the difference of the probabil1ties is clearly nonnegative. It 1is
n

T .
dominated by P[kg]{M(IE) >uT}]. By stationarity we get

nT nT R
P[kg]{M(Ik)wT}] kZ]P[M(Ik)>uT]_

I A

= nTP[M(f) >uT] .
Hence we have - F
nr L ' J
.. PIM(, Y Ty ) <upl - PIM(ngh) <urd . iEM(s) >u] '
e nTEUuT' \ - EL’UT

o]

el
From (4.62), the right hand side goes to 1 as T goes to «~. Hence for

large enough T we have

n
T
0 < P[M(ktqlk) iuT} TP[M(nTh)_igT] 5_2nTuuTe .

Combining (4.58) and (4.63) we get nqu, T/h. THerefore (i1) holds,
T

say with K] = 41/h, for all large enough T. The important point is

that K, does not depend on €.
Al

1

n ,
: \ : T nT :
(i11)  0.< P[&(ja) <ups qukg]lk] -P[M(kg]lk)iuT] _+0, as T—w .
. , .

This is obtained using arguments similar to those used in obtalning

" Theorem 4.4.1. .

110



n , :
. T n @

. - _; . . “ = T . . ) ~. .
(iv) Pleig) <ugs Jqékg]lk] P [2(a) <ups J9€L] =0 as T—= .

i

Repeating the argument used in obtaining &ondition DC(uT), one can check

. that the absolute value of the above difference is bounded above by

(4.64) K lr(Ja)lexp[-ui/(1+lr(JQ)|)]'

Of—

)
£<3q<T

This expression is very similar to

CJ

T . 2 s
(4.65), . Kg 1 _Ir3a)exp(-u/(+r(3a) 1))
] 8T<ja<T
! . C . _ _a
In obtawnjng condition Dc(uT) we have shown that if a-= qa(uT) = 0 .

where_ a >0 is fixed, then the expression (2.65) goes to 0 as T goes
to «. If (4.64) the summation ranges over a larger interval and instead
of having quy = a fixed, we have qu’T-—+Oa as T—wo. Nevertheless one
can show that the exp;ession (A.64i does go to 0 as T goes to «, as

Jong as quT-—+O at an apﬁropriateTy’s1ow rate.
oo s :
(v 0<P [e(Ja) cups Ja€L,T-P 'M(1)) <yl — 0 as T—w .

——

As in (111), this is obtained using arguments similar to those used in

obtaining Theorem 4.4.7.

4
~

g ’

n n
(vi) 0<P T[M(I])g}ﬁj -P‘T[M(h)°iuT] < Koe

M(1,) is simply M(h-¢). Clearly’ {M(h) <u;} C {M(h-e) <u;} ang the
difference of these two sets is contained in {MQI?) >UT}. Thus, using

P

stationarity, , .

’

0 < PIM(1,) <urd - PIMCR) <urd < PIM(e) >ur] .

“« e e pon o
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We recall that .0<x<y<l = Oiyn—xnin(y—x). Thus

n, N -
"0 <.P [M(I1)_iUTJ -pP M[(h);iuT] g'nTP[M(c) >uT] .

¢

From (4.58), (4.62) and (4.63) we have nTP[M(e) >uT] — (1/h)e as

T—», Hence we can find K, so that (vi) holds for all large

-

3

enohgh T.

Combining these approximations we get

T+e0

1im sup }p[M<1o <ur] -PnT[M(h)fiuT]f < Ke

where K = K, +K

1t K, does not depend on e. Hence

~

- - (4.66) PICT) <ur] - T[H(R) <ur] — 0 as Tove

' 4

Again from (4.58), (4.62) and (4.63) we have

- PTM(h) >uT'J = i/nT+o(1/nT) as JT—ow .

N T )01 nT -7
Thus P [M(h)iUT] = (1;—+O(H—)) — e as T —o .,

Combined with (4.66), this gives us (4.60). This completes the proof.
| /117
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COROLLARY 4.4.6. Under the hypothesis.of the lemma we have

£ET
as T—w ;

~ -

(4.67) P[M(eT) _<_uTj — e

# L
for each positive €.

Proof. Put vp = uT/E. Then, using Rice's formula,

2 2
: -\ /2 -u /2
_ T (e
TUVT h T'z_n_ e - T ZTT e . .

Poro
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1! © Thus (T/e)u, — 1 as T—re,.0r Ty —eT as T+, Hence by the
i < VT VT

‘ . lemma we get ' «

' ~ PIM(T) <v ] e €T

P ¢
e &

or PIM(T) <up ] — .

Hence : P[M(eT)iuT] — e T, ’ 111

THEOREM 4.4:7. Let (£(t); tE€R) .be a SSGP having, with probability one,
continuous samyple paths, and let the constants Ur be chosen so that
(4.58) holds. If the covariance fumction satisfies Berman local condi-

tion and ,Bermar. mixiﬁg condition, then the condition Dé(uT) holds with

W(u) = .

u
~
Proof. As in the proof of Lemma 3.4.7 we have, for all small enough

positive e,

I A

’ (4-68) eTu P[M(ET) Z_UT] ’

ET,uT
P |
Toup 2 PHEET) >ug] - POCET) >ug] | o
( i
From (4&5&) we get

(4.69) eTy

[v

o 0

Tu -7 5_%{e-ET-—P[M(sT)‘iuT]] + %{1-e'aT-sr).

s:'[,uT

Hence from Corollary 4.4.6 we have

| .
(4.70) . Tim sup (Tu -1 i%(]-e-ET-ET) .

T

ET’UT

Similarly from (4.69) we get

a‘\

Tug , -T2 —l—(P[M(sT) <ul-eT) 4 ::—(e'zET - PIM(2¢T) <u ])
sUr , -
+ —l—(e-ETb—e-ZET-sT] . b




&””h—«.\
f
s
o
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Hence from Corcllary 4.4.6 we have

he-sr_eizr_

- e1) .

"T) >
ET,UT -

T

(4.71) Tim inf(Tu

.,

Since the right hand side of (4\} 70) and the right hand side of (4.71) «

both go to 0 as € decreases to 0, we get’

»

Hrg suplTuET,u -t —0 as e—0 . /117 . ’
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CHAPTER 5 -
CONCLUSION '

”« - . ' .

» N P

In Chapter 3 we‘have presgnted some genera] theorems on the weak

convergence of the maximum and on the weak convergence of the point
rs A

process of upcross1ngs,,f0r stationary processes sat1sfy1ng certa1n cond1)
!

tions. In Chapter 4 we showed that these cond1t1ons are fu]f11]ed by

cstandard stationary Gaussian processes, having with probabi]ity-one
“ v ~ ¢

continuous sample patns, with covariance function satisfying Berman local

@

a ]
» -

and mixing conditions. It fo]]owsdthet fqr.sach brOces?ii we have, with

. the.usual notation, R ' oo
o 5 |
.10 - PIM(T) cur) — €
, and .
' W oo

j (5\.2) v - ZT - 7 .

4 . , . . .

P

whenever Ur is chosen so that Tu -— 7 > 0. One also obtains the

. Uy

following 1mportant resylt: if Ur = x/aT-+bT, with N

- “ a; = {2 109?)1/2 ' : - .
(5.3) : ' ‘

e 1/2, 472
. by (2 10g.T) (21og T)” wg(~—2—) ,
- ) ;E
then qu‘ — e* 5o that (5.1) becomes ,
“Pup .

(5.4) : P[aT(M(f)-bT)_gx] — exp(-e7*) . )

: ’ BV .
(In virtue of Gnedenko’'s theorem, this double exponential limit is not -
too surprising.) :

) #

.Can Berman conditions be weakened? Lét us first ccnsjﬁeﬁ the local

gondition. Rickaﬁds.[]969a,1969b] has coneidered SSGP whose covaniance

Ca*
L

e rp—
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(5.5) r(t) = 1-CPe[*+o(1t]%) as t—0

P

for some - 0 < 6 <o and somer 0 < a < 2. Let (g(t);'tédﬂ be such a
' procesé. It is easil& seen that under (5.5)'%F]ayev continuity condition
is satisfied., Hence (g(t); tER) 'is equivalent to a process having,
with probability one, antiﬁuous §amﬁ1e paths. We may assume that
(£(t); t€R) is itself such a process. If o =2 then (5.5) is simply
¢ Berman local condition. If 0 <o <2 then r"(t) does not exist and
~_ " hence “ﬁ’ the mean number of upérossihés of the level u per unit
interval, is infinite. Hence there is no hope for a Poisson 1Tﬁit
theorem for the distribution of the number of upcrossings. Even though
it is continuous, a typical sample path is so badly behaved that when it

crosses the level wu, it does so too often. Pickands showed that a

-~
—~

Poisson limit distrijpution is still appropriate if one counts only the
significant upcrossings, the e-upcrossings defined in Chapter 3. His

. k-main results are a limiting expression for Me o 2 Poisson limit theorem
1

4

-

., for the distribution of the number of e-upcroésings and a double expo-

J
i -

S nential 1imit distribution for the (gyéiab]y normalized} maximum of the

A process. More specifically, Pitkands [1969al]969b] proved the following

results:

[

(P1) 1f (5.5) holds for some 0 < C< » and some 0 <& <’2, then for
all small enbugh e>0

C]‘,O‘H

. (5.6) - ' ~——— 2
‘ @ \ | uE:,U '/2? u

9 2 )
2012 ho g

where He u is, as befgre, the mean number of e-upcrossings of
b f .

the level u per unit time interval and where Ha is a constant

e

AN



P

[

depending only on «. (This constant 15 gjven by
— )

(5.7) . H_=1im %—fmesp[ sup Y(t)>slds 4
©o LY T J0 OsteT
where Y(t) is a nonstatidnary Gaussian process with means andg
covariances gjven by . .

!

©OEl¥(D)] = —!ytyl(-‘ s covl¥(t)),¥(E)T = [ 1%+ 1y 1% - eyt |

and it saii!fies' 0 <H, <=

chosen s

g 1

jthat T“s,u — 1>0, then

T - 4
) "'rk R '
11m P[Z ((0,11) =k] =
oo |

-

where ;Z%E) is the point process of e—upc;ossings‘corre;pondjng
to '! ’ ' -
(P3) If ] ’ a; =\(21ogT)]/2 ) - ’
! a;:égf e ' . ,
. . ' ~
(518? bT—= (2’!ogT)]/2 (21ogT) ]/2(( ;)1og1ogT

C 4 tog (2n)7 /221 oMoy )

then ,P[aT(M(T)ibT> gx]°—+ éxp(-e'x) as T—ro,

[

Observe that the right hand side of (5.6) does not depend on «.
Hence fgr all (sma11 enough) t], eé > 0, we-have

P

o v y———— — . P &
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. s
Moreover in the case o = 2 we have, 1n addition,’
: . N .
L~ L as u—«

This follows from the fact that condition R1 holds with both Uy and

1

My 'If we combine this-with Rice's formula we get

‘HZ:]/\Q.

(This can also be obtained from (5.7)). In particular this te1k§/us that

, (§ué) reduces to (5.?) when o = 2, as one would ekpéct.

| Pickands' proofs are analog to the proofs.of Cramer [196Qj, Qualls
[1967] and Berman [1971a]. The ideas are similar but the computations

are much more complicated. (get us mention that Qualls and Watanabe -
[1972] obtained thé)same results under slightly more general assumptions,

namely that the covariance function satisfies -

. L, 9 . .
r(t) = 1-H(t)[t|* +o(H(t)[t]") & t—0

where H(t) satisfies, llg ) =1 for all F~> 0)- ]
Again all ‘these results can be obtained via the theorems of _

Chapter 3. This is done by showing that if (5(t); t ER) s a SSGP ”

t

(having, with probability one, continuous sample paths) whose covariance

functioh satisfies Pickands' Tocg! condition (5.5) and Berman mixing

condition, then:

(a) The condition RI holds with ¢(u) equal to the right hand

-

side of (5.6). ' ’ - -
(b). The condition R2 holds with "y(u) as ‘in (a) and with

- a2,

<

q, (u)



119

[

~(c) For each a > 0, the condition DC(uT) holds with respect to

L}
the family gy = q,(u;) = au;z/a, whenever ur s chosen so

T)'—’T >0, ¢ as in (a).
\ .

(d) The condition D'(u ) holds with y as in (a), whenever u
c''T T

s that TL(U

is chosen so that T&(Uf)'—+T > 0.
These results gre stated in Leadbetter [1980] and the proofs &hould
appeﬁr in Lindgren and Rootzen (in prgpaﬁation for institute of. Statistics
Mimeo Series, University of North Carolina at Chapel H11f): |
Let us now turn our attention to the mixing condition. So far we

have always/assumed Berman mixing condition
(5.9) ‘ r(t)logt — 0 as t—w .

As mentioned 1n Section 1.1, if
. N S

1 AN
i

(5.10) Cor(t)Togt ey >0 as te
£

then (5.2) does not hold. Thus (5:9) is close to being a necessary

condition for (5.2) and also (5.7) and (5.4) to hold. Berman actually

" showed that (5.9) can be replaced by

| o 2 | |
- (5.11) t)dt < w . _ B
| [~ . o

L3

¥
\<
AN

Conditions (5.9) and (5.11) are not comparable; some covariance func-
N 3 ¢
tions satisfy (5.9) but not (5.11) and -some satisfy (5.11) but not (5.9).

Mittal [1979] showed that the condition
S,

. :

(5.12) /MtzoitiT;lMt)wgt|>f@)}=o(T as T—e ,

for some 0 <B <1 and some f(t) =o(1) as T—rw, is strictly

wea%9r>than (5.9) or (5.11), and that combined with "
///‘h‘ﬁ\ N ~ ’
A



(5.13). ' ‘ r(t) —0 ad t—o«

«
o

it is a sufficient condition for (5.4) to hold. (4 is, as usual, the

“Lebesgue measure). It is our conjecture that (a), (b), (c), (d) above

are still true if Berman mixing condition is replaced by Mittal mixing

. condition ({5.12) combined with (5.13)).

120
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