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ABSTRACT 

paper is con'cerned with real valued stationary processes 

having continuous sample paths with probability one. -When such a lrocess­

is GausSi~n, a well known result sa~~ (ha~ ~f the sample paths ar~ not. 

too badly behaved and if an aprroPrla~e rnlxlng conditïon hold·s, th n 

under suitable norinalization the number of upcrossings of a high level is, 

asymptotical1y Poisson d"tributed. 1 J 

Recently thlS result has been 

cesses, not necessarily Gaussian. 

exte'1ded to general stat10nary pro­

In the first part of thlS paper we 

obtain this "general theorem for the upcrossings of a stationary process. 

We first consider the discrete parameter case. We show that the point 

process of exceedances of a stationary sequence converges weakly to a 

Poisson point process, provided sorne appropriate dependence conditions are 

satisfied. We then consider the continuous parameter case and we obtain 

a gen-eral Poisson point process 1 imit th~orem for the upcrossings of a 

stationary proces5i, not necessarily Gau~ian. We also treat the case ,II 

of E-upcrossings. 

In the second part of this paper, the classical 1 imit theorem 

(Gaussian case) is obtained via the general theorem, thus bringing the 

Gaussian case within the general fram,ework. 

Throughout the paper, the discussion will be carried on in terms of 
• 

the maXlmum of the process and we will obtain several important results 

on the limit distributions of the maximum. 
Il 
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Ce mémoire -traite des procèssus 'stochastiques 
.t 

, i i ' 

à valeurs 
o '!' 

réell es ayant, avec probabil ité un, es trajectoires aléatoi es continu~s. 
j 

, ~ 1 
Lorsq~',un tel proce'ssus est Gaussien, un résultat bien conn nous dlt que 

, 
si ies trajectoires aléatoires he s 

processus est assez bien mélangé, a 
l , 

et sil e j 
; 

hayt 

niveau, convenablement normal ise, st asymptotiquement di selo'n 

une loi de Poisson. 

une plus 
1 

ande cl assep de 
, ,,,,,,' 

Recemment ce resultat a 

processus stationnaires, pas néc ssairement Gaussien. 
1 0 

[Jans le prelJlière 

, 1 

1 ~ 

partie de ce mémoire nous 'obtenons ce théorem général sur la distribution 
1 

I
l
'- limite du nombre de péfSsa0es d~ niveau. Nous consid,rons d'abor1le cas 

d'une suite statlonnaire et nous montrons que le pr~~essus poncttel 

engendré par l'excéd.ent d'un haut niveau converge faiblement ve~s un 

processus p.onctuel d~~isson. Nous considérons ensuite le cas d'un 

vpfoce,ssus stationnaire à espace paramètre continu et noys montrons que le 
-.' 

proce.ssus ponctuel engendré par les passages d'un haut niveau converge 

faiblement vers un processus ponctuel âe Poisson. Nous considérons 

également le cas des E-passages de nivea'U. 

,Dans la deuxième partie de ce mémoire, le théorem classique (cas 
l "\..' 

Gaussien) est obtenu ~ l'aide du théorem général, amenant ainsi le cas 

Gauss; en dans 1 e cadr'e généra 1 . 

. Tout au long de ce mémoire, la discussion se fera principalement en 
''\ 

" termes du maximum du processus et nous obt; endrons pl~s; eurs résultats 1 

importants sur la distributio~ du maximum. 

\ 
/ 
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CHAPTER 

l NTRODUCTI ON 

1.1 The upcrossing problem 

In this paper we sha11 be concerned pr'imarily wi.th asymptotic 

distributlona' properties' of the number"of upcrossings o'f a ~ntinuous 

pahmeter stationary process. Go.nsider (t;:(t); tE(ft). a rea1 valued 

standard stationary Gaussian process defined on a probability ,space 

(rl,F,ç1'). By Gaussian we fllean that for each positive integer n and for 

each (t1.t2 •...• t n) in 6i.
n the random vector ([(tl) ..... ~(tn)) has a 

Gaussiqn joint distributioI)_ 8y stationary we mean that for each posi-, 

,tive i,nteger n and for each (t1 .t2 •...• tn) in (ftn. the random ' 
, , 

vectors (Ut,) ..... .;{tn)) and (E:{t,+T), .. ; • .;(tn+T)) have the same 

joint distribution. for every T.' By standard we mean that the dlstribu-
'\ If 

tion of .;(t) (which. by stationanty. is the same for every t) has. 

mean 0 and variance 1. 61. of course, denotes the set of rea 1 numbers. 

If w E rt, its image by .;(t) will be denoted by' ';(t,w). For a 

fixed .w E rt. the function 't 1-+ t;:(t,w) is called a sample path. We 

J 

'" shall aS,sume that the process has continuous samp1e paths with probability 

0 0eo 

P[wErt: .;(t.w)ïs everywhere continuous] = 1 . 
il 

We say that .;(t) has an upcrQssing of the level u at tim~ étO if 

there exists a 6 > 0 such that t;:(t) ~ u for a11 t in (tO~6.tO)' 

.;(t),~u 'for- a 11 t in (tO·tO+o), and for every n > O. 
1 

.; ('t) > u for 

sorne t in ~ to' tO+n). Let Uu (T) be the number'of upcrass;ngs of the 

1 evel u in ~he time interval (O.T]. That Uu (T) is a random variable 

1 if can be shawn as follows. Let 

.J 

1 " 

( 

1 
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where H k C...;) equa 1 s' if n, 

and Ootherwise. It is easily seen that H increases almost surely to , . n 

Uu(T) as n -->-oc. The Hn are measura~e 50 that Uu,(T) is meaSurable. 

Vie only need ~(T) < 00 almost surely in order to say that Uu(ï) is a 

random variable. For the moment assume this is 50. 

The general problem concèrning the number of upcrosslngs Uu(T) is 

to find its probability distribution 

k=O,1,2, .... 

Thi~emains an unsolv~d problem, Most re'Sults in this dlre~<tl0n have 

been to either compute the moments of the distributia{ or com;ute the 

limit distribution as u- m and .T---+~. This. paner is conceqled with 

the l imit di stribuNon probl em. 

It is int\Jitively clear, and actually easily checked, that if T is 

fixed and u ~(X)" then Uu(T) --0 for almost every w E It. However, if 

for each T >- 0, we can choose 'a' uT . in such a way tnat E[Uu (T) ] i s 
. \ T, 

~independent of T, then it is reasonable to hope that the distribution 

of Uu (T) w,ill converge to sorne non-degenerate distribution, as T --+00. 
T ~ 0 

We now su~pose that we are given such.a family (uT; 1>0). It will be 

convenient ta slightly modify our notation: we will write ,IT( (a:b) for 

the number of upcrossings of the l,evel uT in the time interval (Ta, Tb] 

(i.e. ZT((a,b]) = Uu (Tb) -'U
u 

(Ta)). 
. -, T _ T 

Hence our hypothesi sis that for 
-.-7 

sorne 1 > 0 we have 

, , 
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E [ZT ( (0, 1 ] ) ] = 1 for a 11 T -' b, 

l'-~''' 

deno.tes the expecta(ion of. thE;/rand~ var:iab1e 
""'--' " 

where E[Zr((o.,1])J 

Z;((O,1]). ,The fol1?wing r~sult"ho1ds. (, 

, 
THfOREM 1.1.1. Let (~(t); tE~) 

"f'Y'ocess de5inE:l or; a probJ.biZity s;xwe (~",F,P) ar",--:' r,.:n):n,:, /"".::;7, 
" 

pY'ObélbiZit;j one J contù:UO:AB sœrrpZe f'at.hc. ~(!t T be a .J'"ixci 'D0sitiv, 

Ur in the t'i7"1e inteY'val (T~,Tb]J _ wheY'e the Ur'e aN cr..JseYi ir; su"h a 
Q 

that (1. 1) holds. , 

(L) A certain Zoc:1Z condition. 
" 

::'hen J if (a1,b,],(a2,b2], ... ,(aj,'bj] we.disJoir.: suhinteroals 0.-" 

~ ~ 

(O,lJ :xnè i,;'- k1,k2 , ... ,k j QY'e ncn-r..e::a::ivè int,::;:-,cT'sJ /.Je have 

(1. 2) 

--:-(b.-a.) k. 
jo e 1 1 [T (b . -a . )] l 

= TI ' 1 1 " lim P[ZT((a.,b
1
])=k.; ;=l,.-, .. ,jJ 

T -!o<Xl l l ;=1 ok;! 
11/1 

The theorem says tha t the Zr ( (a i ,b i ] ) 1 S are- asymptot i ca 11 y i ndepen­

dent Poisson random variables. In order to get this Poisson behaviour we 

have to assume a mixing condition (M) and a local côhqition (L). By 

mixing we mean a certain dependency decay: E;(t) and E;(t+l) will be in 
. ( 

sorne sense approxima te 1y i ndependent as T becomes 1ar~e. Under an _ r 

\ 
appropri at~ mi xi ng condition we will have a lmost i ndependency between 

upcrossings occûrring far apart. A local condition will ensure us that 

the' sample paths 'are not to'b bad1y behaved. This ~ill. bound the proba­

bility of having more than one upcrossing in a short time interval. 

-,' 

3 
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These condltions---wi'll be written in terms of the so-called covanance 

function defined as 

(1 .3) r(t) = E[t(s)~(s+t)J 

Note that since the process is Gausslan, E[~(s)[(s+t)J is we11 defined 

(i.e. E[iE;(s);(s+t)IJ <'00) and since the process is stationary 

E[~(s)Us+t)J does not depend on s. Thus r(t) is well defined. 

This theorem was flrst obta1ned by Vo1konski and Rozanov [1961J 

as an applicatlon of their general results [1.959J. They assumed flle 

following conditions . 

(M) 0:,( t ) 0 ( t - E ) as t -r oc, for s ome E > 0 

ü.(t) 

where o:(t) is defined by 

= sup sup! prA 'îBJ - P[AJP[BJ 1 

s8i, A E FS . 
_00 

+x 
,BEFs+t, 

F~ being the o-algebra generated by (E;(t); a <t<b), 

i.é.'the smallest o-algebra of subsets of r. for which 

s(t) is measurable for al1 t E (a,b). (This condit10n ~ , ' , 
, , 

is called a strong mixing condition and o:(t) is referreD 
"-

to as the mlxing function). 

(L) r(iv)(t) exists. 

These conditidhs were subsequent1y weakened by several authors: 

" 
(M) r(t) = O(t- E

) 

. 
Cramer (1966J as t -+ co, for some E > O. 

(L) r(iV)(t) exists. 
, 

,~\ 

.:::. ~ 

4 

~ 
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D'\") 

" 

0; 

.> ~ ... J 

- Y 
Be1ayev [1967]"" (11) r(t) logt-O and r'(t)(log t)1/2-+ 0, 

(L) r"(t) eXl's'ts and, for sorne b:> l, 

r"(t)~r"(O) = O(11b9[t[[-b), as t--O. 

, . 
7 

as t--". 

y,. 
Qu~ [1967] (M) r(t) = O(t-t:) as {-+ex:>, for sorne [> O. If , 

• •• < 

'Ii' 

. 
t.!) ~ 

1 

Berman [11971aJ ,'" 

(L) 

(M) 

'\ (J) 
" 

r"(t) exists and, for sorne 6 > 0, 

jér"(t)-r"(O) 
t dt<oc. 

o 

dt)logt--O as 

r"(t.) exists. 

• p Berman conditions can hard1y be improved . On one side, 
lfi~ ,/ <~ 

if 

{(t) 1Qg\t y > 0 then..(1.2) does not ho1d. This emerges from the work 
~'Y(~ // on A 

+t.Ç of Mi t ta 1 à:nd 
, 0 

Y1visaker [1975J (and can be shown us>jng Theorem 5.2 of 
, 

Leadbet~er,Li.ndgren and Rootzen [1979J). On the other slde, ff r"(t) 

does not exi-st, th en E[NT((a,b])] = f'J for a11 T > 0 and all 

o < a < b < "". 

~lore recent1y Leadbetter [1980J considered s-tationary processes which 

are no~ necessarily Gaussian. He obtained a genera1 Poi?son limlt 
fi 

distribution theorem for the upcrossings. The objective of thlS paper 

is twofo1d. First1y we give a comprehensive ~xposition of Leadbetter's 

r~c)nt results. Then we show that for.a standard stationary Gaussian 

process-whose covariance function satisfies Berman conditlons, 

~ Leadbetter's gen~ral theorem applies. This brings the Gauss;an case 

within the gen~ral framework. 

5 

" 

• 
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1.2 The point protess of upcrossings 

Our discussion will be carried on in te;rms of point processes., Let 

{~i,F~,P) be a probability space. Let B be the faml1y of Borel subsets 

of\ the interval (0,1]. A pOlnt process on t'he interva1 {O,lJ is a 

function 

Z:r?xB-+N 

(where N is the set of non negative integers and where N is the set 
, 

of non·negative integers to which w~ added +cr) such that for each fixed 

B in B the fun~tion 

Z(B): 0c-+N 

(,: 1-+, Z(w,B) 

is a random.variab1e,(i.e. it is F-measurab1e and finite a.e.), and for 
.J' 

, a1most every lA' E ::-.: ~the 'function 

Z(w.,): B -+ fi 
B 1-+ Z(w,B) 

is a finite positive measure. (This is actually Q special type of point 

process. For a general definition see Kallenberg [1976] or 'Grandell 

[1977J). 

, We shall be concerned with weak convergence of point processes. Let 

}1'Z2"'" and Z be point processes on (0,1J. We say that Zn 

converges weakly ta Z, Sind we write 
o 

z !!.r z 
n 

if for every positive integer k and for every choice of k disjoint 
/ 

6 

0, 
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rando'm vector 

random vector 

p= 

(Z~(Bl)"" ,Z,n(B k)) 

(Z(B1),· .. ,Z(B k))· 

{' 

converges in distributlon to the 

(dB. is the topolog.ical boundary of 
l 

B. and ~ is the Lebesgue measure). 
l , 

A point process Z on (O,lJ \s called a Poisson poin' process 
1 

with intensity T > a i!f for every B E B, Z(B) is Poisson distributed 
! 

with' mean Tf (B) and fpr every positive integer k, Z(B l ),~(B2),"" 

Z(B
k
) are independent'whene~er 

of (0,1]. 

are di sjoi nt Borel subsets 

The following,theorem will play a very lmportant role. It i s a 

C .--' 

special case of Theorem 4.7 ln Kallenberg [1976J. 

• THEOREM 1.2.1. Let Zl ,Z2"" œ:,:;.- Z be point pY'ocesses on (0,1], 

being Poisson vith in te:r;:.2it:, T. SU"('Posr? that 

'J'hen 

(a) 

(b) 

E[Zn((a,bJ)J ~ ,rb-a) ;01" aZZ 

P[Z (B) = OJ -+ e -1/.(B)' foY' aZZ 
n 

O<q<b<l. 

B 'of th(" foY'l7l 

wheY'~ a ~ a, < bl < a2 < b2 < •. , < bk < 1. 

w 
Zn ~ Z .. 

k 
u(a.,b.] 

i = l l l 

Z 

1111 

7 

Now let US.go back ta our upcrossings problem. Consider a stationary 

stochastic, process (t;;(1,); tEIR) defined on a probability space 

(Q,F,P), and having, ~ith probability one, continuous sample paths. Let 
. , 

(UT; T > 0) be a ÇJiven family of consta~ts (typically uT -++00 as 

,T-t+OO). For w E Q and BE B,' let ZT(w,B) be the number of 

upcrossings of the level ur by the sample path, t 1-+ t;(t,w) within the 

time set TB = ~Tb; b EB}. UndW general conditions, ZT will be a 

point process, as defined above. It will be shown that for a suitabie 

, t 

-1 

'. 
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choice Qf_~onstants _uT and under appropriate conditlons. the point 

process of upcrossings ZT converges weakly to a Poisson point process. 

This wlll be done using Theorem 1.2.1. 

1.3 Summary 

In Chapter 2 we ~ill consider the case of a stationary sequence 

(Sn; n=1.2,. .... ). \<Je shan say that .. an exceedance of the level U occurs 

at > u. It will be shown that the point process of 

exceedances converges weakly ta a Poisson point process provided trre 

stationary sequence satlsfies cerpai~r,odependence ,conditions. 

In Chapter 3 we will use the results and ideas of Chapter 2 to 

~treat the continuo~s parameter case. We will obtain Leadbetter's general 
(1) 

Poisson point process llmit theorem for.the urcrossi~gs of a stationary 

process, not necessarily Gaussian. We shall also consider the point 

process of E-upcrossings. 

Chapter 4 is devoted to statlonary Gaussian processes. In the first 

part of this cnapter we investigate the relationship betw~en the covari-

ance function and the spectral distribution function and we review the 

available literature, espe~ia11y more recent work, concerning the sample 

path ana1ytical properties, and the moments of the number of upcros~ings 

of a level. Then we show that the general Poisson point process 1imit 

theorem of Chapter 3 can be applied to stationary Gaussian processes 

whose covariance function satisfies Berman local and mixing conditions. 

This gives us Theorem 1.1.1 via the general framework. 
~ 

8 
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CHAPTER 2 

CONVERGENCE OF THE POYNT PROCESS OF EXCEEDANCES 
OF A STATIONARY SEQUENCE , 

2.1 Introduction .. 
A random\sequence (C; i =1,2, . ..) is ca1ied a stationary sequence if 

1 
-

for every posit1ve integer m and for every choice of posltive 1ntegers 

il' i 2" .. , i m the random vectors and 

\(~;1+k';i2+k'" ·,E;;m+k) have the same dlstribution, for every positlVe 

integer k. The jOlnt d,stribution function of ~. ,E;. , ... ,E. will be 
1 l 12 ' • ~ m 

denoted by Fl',· '1' . Hence for (xl' ... , x) in 6f1 we wri te 
l' 2"'" m' m 

F,.. " (Xl,xZ'""x) = P[( <xl'~' <x2 ' ... ,[. <x] 
1"2"'" m m '1- '2- 'm- m 

and the stationarity condition ;s that 

, ' 

In particular F. is independent-of , and it will be den~ted simp1y by 
, ' 

F; it;5 c~lled the marginal distribution function of the sequence. 

Let (~i; i = 1 ,2, ... ) be a stationary sequence defined on a 

probability space (0,F,P)'. Let (un; n=1,2, ... ) be a given sequence of 

real constants. For each positive integer n we define the point process 

of exceeda nces of the 1 eve 1 un ,as fo 11 ows :' 

where Zn (w, B) i s the number of instant j in the time set nB for 

which we have E, . (w) > u . Far each n, Zn is a po; l'Tt process as 
J n 

defined ;n Chapter 1: for any fixed w in rl, the function 
... 

• E 

9 
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B \-;. Zn(u.:',B) is a finite positive'measure on the family B of Borel 
e, 

subsets of (O,lJ and for any fixed B in B, the functlOn, 

u' f--+ ZnC""B) is a rqndam variable on Q (denotèd by Zn(B)). 

Our main'99al in this chapter is ta show that for a suJtable choice 

of cons ta nts the sequ~nce of point processes Zn converges'weaxly 

to a Poissbn point process. We-wi1l have to cons1der stationary 
j.~ 

sequences satisfying, certain dependence restr1cti~n_s. We now examine 

different types of dependenc~ restrictions. ------ -

10 

M~xing condit1Qns L 
As mentioned in Chapter l, a mixtng condition is one which give~ 

a symptot ici ndependency for si 1 s 1 i vi ng fa r apa rt. Next to i ndependence 
, 

itse1f, the strongest type of mi~in9 condition'one can think of is the 

so-called m-dependence: the sequence (';1; 1 =,1,2, ... ) is m-dependent 

, if Si and, S j are i ndependent whenever 1 i - j 1 > m. l ndependehce i s 

s imply m-dependence with' m = O. a 

Rosenblatt [1956J introduced'the notion of strong m1xing. The 
'" , 

sequence (si; i = 1
0

.2,: .. ) ,is said tosatisfy a strong mixing condition 

if there is a seque~ce 

(2. 1 ) 

Œ~ ~ 0, w1th 0. ----+ 0 as 
9. 

1 P[A "BJ - P[AJP[8J 1 2. Œt 

such that 

whenever A E F(~1'~2'" .,Sp) and B € F(Sp+t+l ,Sp~t+2" .. ) for sorne 

pos it lVe i nteqer p. Here F C. .. ) denotes the a-a l gebra genera ted by 

the indicated randorn variables. (a t ; ~ = l ,2, ... ) is1usually called ,the 

" mixing sequence. Note that m-dependence is simply strong mixing.with 

a~ = 0 for t > rn. 



11 

... Roughly speaking, strong mixlng says that ev.en1lS l,iving far apart are 

uniformly asymptotically independent. In proving the Poisso~ point 

process limit theorem fQ! the exceedances of a stationary sequence we 

W111 be dealing with events of the form ri {~. < u}, where J is a 
jEJ J - n 

flnlte subset of N. It will be enough to have asymptotlc independence 

for events of 

Fi i ... {(u) 
1 2 m 

the notation. 

that form. In the sequel it will be convenien~ to write 

instead of F.; . (u,u, ... ,u) in order to simplify 
11 "2' .. , m 

We shal1 say that the condition 'D holds if for any 

integers l~i, <Ï 2 <'" <ip<j, <j2<'" <jq' with j,-i >.Q., 
6 P - and for . 

any real number u, we have 

" (2.2) I F. . . (u) - F. . (u}F. . (u) 1 < Ci n , ... , J . "J , ... , J"'J - x. 

, 

, pl q , p l q 1 

~I 

where Clearly strong mixing implies condition D: 

1f (2.1) holds, then' (2.2) certainlY;fholds since it can be written as 

IP[A'IB]-.P[AJP[BJI~:l.Q. with A= {~i ~u""'~i 2U}EF(~"~2"''''~i) 
-~ 1 P P 

and B = {~j ~u""'~j ~u} E F(~i +.i+l'~i +J'..+2'···)· 
l q', P P 

Finally, if (un; n = l ,2, ... ) is a sequence of real constants, we 

say that condition D(un) holds if for any integers 

1<',<i2 <"'<i <j,<j2<"'<j <n forwhich j,-i '>9., wehave - p q- p-

(2.3) I F. " . (u ) - F. . (u )F. . (u ) 1 < 0. , ... , J "'J n , ... , n J '''J n - n 9. , pl q 1 p l q , 

where o.n i -+0 as ,n-+ oo , for some sequence in = o(n). Without loss 
, n 

of generality we may (and will) assume that un,9. form a non-increasing 

s~quence in 9., for each fixed n. If this is so, it is easily seen 

that the condition "0. Q. --0 as n-+ co , for ,sorne 
~ n, n 

equivalent to-the condition 0. B --?-O as n -+00, n,n 

Clea~' ion D holds, then condition D(un) 

Q.n = 0 (n ) , i s 

for each B ,> O. 
~ 

ho l ds for every 



--1---'~ -
~.'( , 

1 

sequence ( u ).! n ' 

, 
/ 

/ 
/ 12 . 

\ 
Loca l condH i o~ 

\ 

To obtain the main result of this chapter we will need the following 
\ 

local condltion which rules out cases where nearby ~.'s are too high1y 
J 

dependent. Give a sequence of real constants (u), we say that the n 

condltion holds i,f 

[ni k] 
(2.4) im 1im sup n ! P[~l > u , ~. > U ] = 0 n J n 

-><x' n~ j=2 
" "" 

where [t] denotes\ the i nteger pa rt of t. 
\ 

We now state the main result of this chapter. 

! 

THEOREM 2.1.1. Let (s.; i =1,2, ... ) be a stationary seauence on 
l 

(D,F,P). Let (un; n=1,2, ... ) be CI sequt'"ncc c.~reaZ cCYistants. L"t 

T > 0 

(2.5) n (1 - F Cu n )) --+ Tas n --+ 00 

, ' 

where F is the marginal distribution function ot the seauence) and if 

.""" the conditions D(u n) and D'(un) both hold, then 

(2.6) z .'!!-r z 
n 

Z' is a Poisson point process with parame ter T. 

Thanks to Theorem 1.2.l it will be enough to show that 

(a) E[Zn((a,b]l] ~ T(b-~) for 0 < a < b < l 

( b.) P [ Z ( A) = 0 ] ~ e - T J\.( A ) 
n 

for any A of the form A = 
k 

1/1/ 

-..... -
~'. 

U (a.,b.] 
i = l l l 

, 

\ 
\ 

J 

il 



._~ 

-, , 

/ 
1 

1 

~. 

1 

1 

l 

" 

It ;s easy ta see that (a) follows from (2.5). Writing 

we have 

50 that 

(n) 
x­

l 
= f 0

1 
lf 

1 if 

~i > Un 

~. < U 
1 - n 

[nb] (n) 
I x. 

i = [na]+ l l 

E[Zn((a,b])J = ([nbJ - [naJ)(l-F(u n)) 

i/ 

-
fram which (a) fallow5, using (2.5). To obtain (b} we'wil1 have to work 

harder. Consider. for. the moment the simple case where (~ ; i = 1 ,2, ... ) , 
is a sequence of independent and identical'y distributed random 

W h fl"\.~ ( 
variables. e ave 

and we have 

k ' ~ 
P[l (A) =OJ = P[l Cu (a.,b J) =OJ 

n ,n 1=1 , 1 

= P[Zn((a1,b,J) ~'O"",Zn((ak,',bkJ) =OJ 

k 
= TI P[Z ((a.,b,J)=OJ 

i=l n '.1 

_ A(A) k -T(b.-a.) 
e T = TI e .' .,1 

i =1 

Hence ta get (b) it suffices to show that 

P[l ((a;b]) = 0] __ e-T(b-a) 
n 

for all 0 < a < b < 1. But this follows easily from (2.5) since 

.\ 
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~ 1 

-- , 

JIn ( (a, b J) = 0 J = peSo < u ; i = [naJ+l , .... ,[nbJJ 
1 - n' • 

[nb J- [n-a J 
.TI P[E:[naJ+i ~unJ 
l=l 

= (F(Un))[nbJ-[naJ 

=' {(1 - Cl-F(u )) )n}([nbJ-[na])/n' 
n 

= {(1 _ (1.+ 0(1)) ln} ([nbJ-[naJ )/n 
n n 

--+ e-T(b-a) ,as n -+~. -

Thus Theorem 2.1.1 is proven for the slmple case where 

II. 

(~.; i=1,2, ... ) is a sequence of inde.pendent and identical1y distri-
1 l 

j 

.... 
buted random variables. The independence assumption-was used at ·two 

stages. Firstly we wrote 

k 
(2.7) TI P[l ((a.,b.J) =OJ 

; =1 . n 1 1 

(-. 

Secondly we showed that (2.5) impties 

(2.8) 

"-

In the following sections we shall obtain Theorem 2.1.1 by showing that 

if, instead of independence, the conditions D(un) and D'(u n) hold, 

then (2.8) still holds and the difference of the two terms "in (2.7) goes 

ta 0 as n --+00. 

Note that we have 

-'", Z ((a,bJ) = 0 ~ max ~i < u 
-~.~ [naJ<i~.InbJ - n 

For brevity w~ will write 
\ 

14 
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\ 
\ 

\ 
1 

j 
1 

and our discussion will be carried on in terms of the random variable 

M • 
n 

, 

The results presented in the next three sectlons are due to 
, 

,Leadbetter, except for one half of Theorem 2.3.2 (namely the fact that 

P[M < U ] -+ e- T 
n - n implies that n(l-F(un)) ~T) which is due to 

R. Davis [1979]. The results are presented essentially as in Leadbetter 

[1974, 1976, 1978] and Leadbetter, Lindgren and Rootzen [1979]. 
" 

2.2 Asymptotic independence of the maximum over juxtaposed intervals 

In t~e next three sections, (~l; i = l ,2, ... ) will be a stationary 

sequence defined on somè given probabil ity space (S"2.F,P). For any set 

K of positive inteqers we will write 

M( K) = max (. 
iEK 1 

If ~ = {l.2, ...• n} we write simply., Mn' It will be convenient to ta1k 

~f an interval to mean any finite set K of consecutive integers 

'{j1. j ,+1 •... ,j2} say. Wè then say that K has 1.ength j2- j ,+1. If 

F ,= {k, ,k,+l '.'" .k2} with j2 < k" we say that K and Fare 

s~parated by k,-52. 

LEMMA 2.2.1. Suppose that the condition D(u ) - ,n holds fol' sorne given 

sequencé (un) . Let n.. r and k be fixed positive intfgel's. Suppose 

K"K2, ..• ,Kr al'esuhintel'valsof {'.2 •... ,n} su~hthat Ki 'and Kj 

are separated by at least k whenevel' i; j. Then 

(2.9) 

whel'e ex n.r 

\ 

Ip[ h {M(K.)<u}]- h P[M(K.)<u]1 < (r-')ex k 
j=l J - n j=' J - n n. 

'l-S as 'l-n (2.3). 

\ 
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( 
,1 ' 
l_~ 

/ 
,,' 

Proof. For brevitywewnte A. = {M(K )<u}. Let KJ' = {kJ"':"ZJ'} J .:; - n 

'" where k, ~ 9.. 1 < k2 ~ 9..Z < •• : < ~r ~ Qr" (after renumberi ng if necessa ry) . 

/ 

Ir ~ 

1,1 Then, since kZ-.Q., 2. k, êondition D(unttells us that 

/ 

JP[Al nA 2] - P[A,]P[A2] 1 .2. Ctn,k 

Similarly'we have 

1 prAl ,'1A2 nA3] - prAl ]P[A2] P[A 3] 1 

.2. 1 prAl n A2 riA) - prAl r")A2]P[A3] 1 + P[A 3] 1 prA:, 'n A2J - prAl ]P[A2] l, 

< 2:), k - n, 

, , 

since K, UKZ'C {kl, ... ,Q2} and k3-l1. 2 ~ k:.~ Proceeding in this' way we 

obtain (2.9). / III 
/ 

1 l 1 

Now let /k be a fixed posHive/Lnteger and fort,any posltive 
/ .. / / 

integer n /let [n/k] d not.e the Ant;ze .... e / part of nik. Clearly w~ have 
/ J' 1 d 

[n/k]k~,n < ([n/k]+l)k. In the follo ing we shall approximate 

P[Mn 2.y~] ~ by pk[M[n/k] 2.-U~J. • / 
/ 

/For a gi ven -n, 
/ 

so that k < m < [n/k] and let us 
/ 

di~ide the interval 
! " 

1 

{1 ,2, ... , [ni k] k} into 2k consecutive intervals in 
1 

/the followinq way: 
/ 

1,' = {l ,Z, ... , [n/k]-m} 

I~ = {(n/k]-m+l, ... ,[n/k]} 

12 = {[n/k]+l, ... ,2[n/k]-m} 
, 

1~ = {2[n/k]-m+l, ... ,2[n/k]} 

Ik = {(k-l )[n/k]+l, ... ,k[n/k]-m} 

I~ = {k[n/kJ-m+',,,.,k[n/kJ} 

.---- ... ~- ,1 
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, 1 

.0 

Finally wnte 
, 

{ ( k - , ) [ n / k J +m+' , ...• k [ n / k ] } 
, 

= {k[n/kJ+l, ... ,k[n/kJ+m} .' 

k ' 
P [M[n/kJ .::.unJ we proceed as fo'lows. To approximate P[M < u] by 

• n - n 

Fi rst we approxima'te P[M < u • ] by 
n - n 

k . P[ fJ {M(l.) <u }],_ l,e. we dlsre-
j=l J - n 

gard the sma11 interva1s r:. Then, using Lemma 2.2.1 we approximate 
k k J 

P[ .'n {M(I.) < u}] by TI P[M(!. )1. < U ] which, 
J=l J - n j=l J '- n 

by stationarity, is equal 

to pk[M[ /k] <u J. Finally we approximate 
n -m - n 

k' -
P [M[n/k]-m .::.unJ by 

pk[M[n/k]'::'Un], i.e. we throw tlack in the smal1 interval I~. 

SpeclficaTly we have: 
\ 
\ . 

L EMMA 2. 2 • 2". 
'i$J 

With ~e above ~~t;tioy.> and assum~ng that th6 condition 
- , 

D( un) ~oZds> ?;Je have ~ 

k -
(i) 0.::. P[j;l {M(Ij) ~un}] - P[Mn .::.unJ .::. (k+l )P[t1(I,) ~uD < M(I~)] 

k 'k \ 
(ii) 1~[j;l{t~(I,j)'::'Un}]-~ [M(I,).::.unJi .::.bn,m \ 

(i i i) 1 pk[MO, ) ~ un] - pk[M[n/kJ .::. unJ 1 .::. kP[M (I, ) 2. un < M(I~)] 
Rence by combining (i), (i i) and (i i i) we have ." \ 

(2.10) !P[M <u J-p.k[M[ /k]<u JI < (2k+l)P[M(I,)<u <M(I*,)]\b n - n n - n - - n n ,m 
< ) 

k, \ 
Proof. (i.) follows at once si'nce {M < u 1 C (') {M(I.) < u} and, t~eir' 

,I::> n - n' j=l J - n 

differenceimplies M(I.)<u <M(I~) foratleastone.j, <j<,k+1. 
J - n . J - -, 

He have 
k 

o < p[ n (M( 1.) < u }] - P[M < u 0 J 
- j=l J - n n - n 

k 
::; p[(.n {M( 1.) < U }) - {M < U }] 

J=l J - n n - n 
k+l 

< P[ U {M(I.) < u < M(I":')}] 
- j=l J ,- n J 

17 
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k+1 
< Ip[M(I.)<u <MUY)] 
- j=l . J - n J 

= (k+l)p[rrh) .:..un ~ M(Ii)] 

\ 

\ 

\ 
\ 

where=we used statianarity in the 'ast'·statement. (ii) follaws fram 
k , 

L"ellTT1a 2.2.1 and the 'tact that TI P[M(U)<u] is equa1 ta 
j=l /J - n . 

pk[M(I,) < u· ] by statianarity. Ta ,0btain (iii) we note that 
-nr-' \ '" 

Plut y = .P[M(I1) .:..unJ and x == P[M[n/~] .:..unJ· 

obvious inequalities 

k k O:,y -x :, k(y,-x) 

(iii) follows from the 

18 

~- ~--

which holds whenever 0.:.. x :, y .2. 1. (2.10) follows easily. 1111 

'-- L EMMA 2. 2 . 3 . 

we have 

(2.11) 

Wi t hL,c abox notat:on, mci assuno'"<, ~t the candi tio" 

let r be a fixe:i positive integer. The1'l\ if n > (2r+l )mk 
\ 

. \ 

- l \ P[M(Il) 2,un <M(Ii)] 2, r+ 2rCtn,r.1 . 

Proof. Si nce. [ni k] .':. (1r+ 1)m •. we mlly choose '; n~erva 1 s \ K1• K2 .... ,Kr' 
\ 

each o,f 1ength m, from Il = {1,2, ... :[n/kJ-m} 50 ,that tfe~.are 

sepa ra ted from each 0 ther and fram Il' by a t 1 ea 5 t m. T~e n 
;;',' \ 

" '\ ,,;[M(JI l . .::. Un < M(Jil] <. p[,5
1 

IM( Ks 1 .::. Un) n (M(Jil 'Un)] \' 

\ r r r * 
= p[.n{M(Ks)<u }J-P[ n,{M(Ks ).:..un}n\{M(I 1 ).:..u}] 

s=l - n 5;;: \ n 
~ J 

, 

By statianarity, P[M(K) <u~== P[M(I*,) <u ] = p, say, antl by 
5 - n - n 

-, , 

, ,r 
LellTT1a 2 .• 2.1 the two terms on the ri ght hand 5 ide di ffer fro~ p and, 

i "'"... 



o 

" •• Q 

(' 

r+l 
p (in abso1blte magnitude) by no more than (r-1)~ and rt n,m n,rg 

respective1y. Hence 

from which (2.11) follows since r r+1 
p -p 

1 1 
< - <­- r+ 1 r ~ 1111 

From tbese 1ermlas we easily obtain the following theorem which· is an 

essentia1 step 1eading to the Poisson Doint process limlt theorem for 

the exceedances . 

• • 
THEOREM' 2 . 2.4; I.~ (~:; i =1,2, ... ) 

l 
1--S a statioYlaY'3' sequence and if' 

ho~dsJ th:e~l for eveY'U positive inte.(!er k we have 

, 
?Poo."'. Fix k. If m, r, n are positive integers satisfy.:i~,g 

(2.12) k < m < [n/k] and n>(2-r+1)mk 

then by Lermla 2.2.2 and Lemma 2.2.-3 we·have 

(2.13) IP[M <u J_pk[M[ Ik]<u JI < 2k+l + (4kr+2r+k)o: n - n n - n - r n,m 
. .. , ~ -

D(u ) 
n 

Now fix r. Take m ~ Q,n' as in our statement of condition D(~n)' 

Since tn = o(n), (2.12) 'is s.atisfied for large enough n. Thus, s;nce 

O:n_Q, -+0- as n-;-+"", (2 . .1 3) gives us 
, n 

Since r was ar.bitrary, the proof is complete. 

2k+1 
< -­

r 

1111 



\ 

" 
-\ 

\ 

1 

\' 
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2.3 A we?k convergence result for the maximum 

If ((;; i = l ,2, ... ) is a sequence of independent and identically 

distr;but~d random variables with marginal distrlbution funètion F and 

if (un) is a sequence of real constants s.uch that n(l-F(U n )) ~T a~ 

n ~ro, then we have 

P [ M < U ] = p [ ma x ~. < U ] 
n-n l<;<n,-n 

= P[[l~Un' Ç,2'<u ,···,s-<u J - n n - n 
n 
r: p[~. <U] 

i =1 ' - n 

= (F(un))n 

(1 --t1-F(un)))n 

(1 - (l+o(l)))n 
n n 

He~p[M <u J--+e-' as n-+<X'.· Converse1y, P[M <u J--+e-
1 

can be n-n . • n-n 

wri ten?s. (F(un))n~e-T. This implies F(u n)--+l and 

n log[F(l-F(u
n
))] -+-1 from which we get n(l-F(un)) -+1. Thus we 

hav'e: 

THEOREM 2.3.1. Let (s.; i=1,2, ... ) 
l 

be a seauence of in:lependeYlt and 

identically distributed random va~Zables with marginal distribution 

function F, let 

a posi tive cons tant. 

if and only if 

be a sequence of real con'Stants, and let T be 

Then 

n(l-F(u )) -+ T as n --+ 00 '" 

n 

11// 

. \ 
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Using the resu1t of Section 2.2 we now show that this theorem a1so 

ho1ds for stationary sequences satisfYlng the condltions' D(u n) and D' (un)' 

THEOREM 2.3.2. Let (~l; i = 1,2, ... ) be a station.:xY'd seCUfnce with 

maY'ginaZ distY'ibutioy: . ./.'w..:Jtion FJ let (Un) be a seq-uo:,ce C'.+" Y'eaZ 

constants for which the conditions D(un) and D'(un ) hoZ:l~ and let T be 

-
a positivE- constant. rnen 

(2.14) 

(2.15) 

n(l-F(u n)) --+- T as n --+- 00 

P[M < U ] --+- e- T as n --+- 00 • n - n 

Proof. Let k be a fixed positive integer. Fromo 

[ni k] 
{M[n/ k] > un} = u {r. > U } 

j=l '7J n 

3 we get 

[n/k] 
l P[~.>u]- ,I P[I:.>u, 

j=l J n, l.:.i<J::Jn/k] 1 n 
~.>u] < P[M[ /k]>u] J n - n n 

[ni k] 
< l' P[~. > U ] , 

j=l J n 

and using stationarity ,we get 

(2.16) 

where 

we have 

1 - [n/k]{l-F(un)) ~ P[M[n/k] ~U,n\~ 1 - [n/k](l-F(un)) +Sn,k 

[n/k] , j . 
S = [n/k] I P[~l' >u , 1:. >u]. Since cond'ltlon D'(u ) ho1ds, 
n)k j=2 _~~ J n n 

)/. S 
"",'-1 lm sup k n) n-+oo ,'-. 

1 = o{-) 
k 

Suppose (2.14) ho1ds. Taking n-+ oo in- (2.16) we get 

, ' 

\ -~ . 
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Now taking the k-th power and then using Theorem 2.2.4 we get 

(1 _f)k,::' 11m inf P[Mn ~unJ ::. 1im sup P[Mn::,UnJ ::. (1 -r+o(t))k 
n-+oo n4<X , 

Taking k-+~ we obtaln (2.15). Now suppose (2.15) holds. Then by 

. Theorem 2.2.4 we have 

J -T/k 
P[M[n/k] ::,un -4 e as n -+ 00 

Wrlting (2.16) as 

-
l-P[M[ /kJ<u J'< [n/kJ(l-F(u)) < l-P[M[ /kJ<u J+s k n - n - n - n - n n, 

and1etting n-HC , weget 

< 

1_e- T
/
k ~flim infn(l-F(u

n
)) ~f1im supn(l-F(un))'~ 1-e-T/k+o(t)· 

n-+cr n-..x 

Multiplying py k and 1etting k-+a:, we get (2.14). / / / / 

Theorem 2.3.2 is lnteresting on its own. 'As we shall see later, it 
'-

can be used to obtain interesting resu1ts concerning the limit dlst~ibu-

tlOn of a (M -b ) 
n ~ n 

for suit~ble choice of a , b . r For the moment our n n 

goal is to use Théorem 2.3.2 to'obtain Theorem 2.1.1. First we need a 

technical resu1t. $0 far we have been dealing with just one sequence 
\, ' 

(Un; n;: l ,2, ... ). Given such a sequence we nov! define a family of 

sequences ((U n.(8); n;:1,2, ... ); e >0) by writing 

Note that (un(l)) is simply the original sequence (un)' 

" \ 
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LEM~1A 2.3. 3. 

(a) Jf n(:-F(un)) -- 1J n(l-F(u (6))) ~ ST fJr a:Z e > O. 
n ,é 

(b) "J • .I' conditwY!. D(u
n

) hol3s, the>;. c:Jnii:~'éJ17 D(u n (9)) hoUe fC'r 

0<8<1. 

(cl Jf condition D' (un) halds, the" ccm.d'~7;i01~ D' (un(e)) hL~ZC.S f'O!' 

o ~ El < 1. 

Proof. If n(l-F(u
n

)) -+":, then [nl,:](l-F(u[nleJ)) -+1, which gives 

n(l-F(un(e))) -+81. Thus (a) is proved. Assume condition D(u n) 'holds. 

Ta ke l < i < ••• < i < j < •.. < j < n - l p l q-

i == (i l ' .. . , i) and j = ( j l ' . . . , j ), - p - q 

with jl-i >.L Writing p -

we have 

(2.17) IFij(un(e)) - F!(U n(8))F j (U n(8))I. 

= 1 Fi j ( U [ni': J) - F ~ ( U [ni e J ) F J (u [ni 8 J ) 1 

If 0 < e.:. l, then n < [n/S]. Hence, Slnce condition D(u n ) holds, the 

right hand side of (2.17) does not exceed 

where anis as in (2.3). Since a -+0 for some tn = o(n), we 
n,~ n,9. . n 

have a~ 9.' ~ 0 with 
, n ' 

i~ = i['n/er C,learl Y i[n/8] = o{n). He~ce 

condition D(un(e)~ holds. (b) ;s proved. For 0 < 8 < l we have 

Enik] [n/k] 
n .I P[t:1 >un(8), t: j >un(e)] = on .I P[sl.>u[n/8J' t: j >u[n/eJ] 

J.-2 J-2 . 

[[n/S]/k] 
< [n/8J jL P[sl > u[n/eJ' Sj > u[n/6J] 

By condition D'(u ), the upper 1imit of this expression as n~oo (or "-
• n 

equ;valently as [n/8] -+(0) tends to 0 as k -+00. Hence condition 

D' (u
n

(6)) holds. (c) is proved. 1111 

., 



THEOREM 2.3.4. ,~c: (~i; 'i = l ,~ .. ) be a stat'::JY'.c:'l'l· SeJUf'ncc 'v)i:J, 
~ , ""l!" 

mal°gùulÎ dis:Y'-:~ ,/.1<on :nw,·:·%r;'>: FJ let (un) b2~ c sec7uence of 'l'cal \ 
- L' • \ 

c:YYll3ta.nts foY' tJr::~::I: the ccmi~:-:'oY/E D(un ) anil D'(un) hold an.:! Zet 1 be'op 

positive constant sucn ttut (2.14) hoZds. If (v(n); n=1,2, ... ) is Q 

sequence D . ./' pos:'tive inte:::eY'2 8uch tr..at fOi? SO'7le 0 < e < 1 

then 

, 
(2.18) 

~ -+ e as 
n 

Pro of. By Lemma 2.3.3 we ha$e 

(a) 

(b) 

(c) 

n(l-F(un(e))) -+(1: as n-+CX' 

condition D(un(f)) ho1ds 
\ 

condition D'(un(r,)) holds.'~ 

Hence from Theorem 2.3.2 (wlth ~-;- instead of T) we have 

TQus 

P[M <u (e)] -+ e-eT as n -+ 00 

n - n 

as n -+ 00 

Hence (2.18) will follow from 

(2. 19) P[M ( ) <u ] -P[M ( )<u (n)(6)] -+ 0 as n ->- 00 vn-n vn-v . 

.. ~ 

which is to be expected sill.ce Uv(n)(8) = u[v(n)/6] and by hypothesis 

v(n)/e - n. (2.19) is obtained'as fo11ows: If u ... > U ()(8), then n \i n 
o 1 

0,< peN () <u J-P[M ( ) <u ( )(8)J - vn -n \in -\in 

, 
1 

.. -1----

24 
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Thus we have 

') ( n) 
< P [ u {u ( ) (e) < .; , < U } J 
- • \1 n J- n 

J =1 

< \1(n)[F(u )-F(u ( )(8))J - n \1 n 

o .2. P[M\l(n) .2. U ",(n)(e)J ~- P[M\I(n) 2. UnJ 

.2. '\{n )[ F (u') ( n) (e)) - F (un) ~ 

IP[M\I(n)~unJ- [Mv(n).2. u\/(n)(f)J] ~ v(n)]F(un)-F(uv(n)(e))1 

25 

<= v(n)l(l-F(u n)) - (l-F(uv(n)(S)))] 

= v (n) 1 ~(1 +.0 (1 )) - v (~ ) ( 1 +0 ~ 1 ) ) 1 

0(1) as n-roo, 

Thus (2.19) ho1ds and the proof is conp1ete. !! / / 

The Pgi sson poi n process 1 iml t theorem for the exceedances of a 

stationary sequence w 11 follow easily from the following result . 

... 
THEOREM 2.3.5. Let ~i; i = 1,2, ... ) be a statianaT'y sequence with 

marginaZ distribution functian F., let (un) be a seournce of T'eal 

constants foT' which t e condüions D(u n) and D' (un) hald and let -: bp a 

positive constant Buch that (2.14) holds. If O~al <b l <a2 <b 2 <'" < 
i 

ar<br~l and if Kn;i ~ {[na;J+i ,[na;J+2, ... ,[nb;]}J ·the'} 

r 
-TL(b.-a.) 

1 1 1 
-"+ e (2.20 ) 

r 
P[ n {M(K .) < U } J 

j=l n,l-n 
1 

as n -+00 • 

Proof· By Lemma 2.2.1 we have 

r ' r 
Ip[.n {M(K :)<u }]-.rr P[M(K .)<u JI'< (r-l)et CJ 

J=l n,1 - n 1=1 n,l - n - n,ni-J , 

1 



\ , 
\ 

where 6 = ~in (a,'tl-b,.) and where Q k is as in (2.3), Since 
1<,<r-1 n, 

condition D(unT holds, the right hand side of (.2.21) go es to 0 as n --->'0:. 

By stationarity we have 

and clearly 

2.3.4 we have 

and hence 

P[M(K .)<u] , n, 1 - n 

n 
~ (b.-a.) 

1. 1 

P[M(K .)<u] n ,1 - n 

-T(b.-a.) 
1 1 

~ e 

r 
-T'(b.-a. ) r . L , 1 

TI P [M ( K . ) < U ] "----+ e 1 
. ln" - n , = . ' 

This, combined wit~ (2.21), gives us (2.20). 

Thus from Theorem 

, 
as n-+ oo 

as n -+00 . 
, 

2.4 The Poisson po,nt process l imit theorem for, the exceedances 

1111 

The convergence of the ~oint process 0 of exceedances of a stati onary 

sequence ta a Poi sson poi nt process, Theorem 2.1.1, i s now eas rly 

obta i ned. 

Let (si i i = 1,2,.,.) be a stationary sequence with marginal 

distribution function F, let \ (u ) be a sequence of rea1 constants 
n 

for which the conditions D(un) and 01(U n) hold and let Zn be the point 

process of exceedances of the level un' If n'(l-F(un{) ->T, for sorne 

T > 0, then 

inten~ity T, 

" 

Z !i.. Z where Z ; s a Po; sson point process wi th n 

26 
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By Kallenberg's result, it is enough ta show that 
ot1 

E[Zn((a"bJ)]-q(b-a) as n--+"', for all o < a < b < 1. 
r 

(al ) 

(b) P[Z (A) = OJ ~e-~i.(A) 
n for all A of ~he form U (a .• b.] 

; = 1 ~ 1 
" i, 

with 02. al < b
1 

< a
2 

< b2 < ... < ar < br 2. 1, where f,(A) i s the 

Lebesgue measure of A. 

As we saw in Section 2.1, (a) is immediate: 

E[Zn((a"b])] = ([nb]-[na])(l-F(u n)) -+ (b-ah 

Now let A be as described above. Then 

r 
P[Zn(A) = OJ = P[Zn(i~l (a, ,Di]) = OJ 

r 
= P[ l Z ((a,.,b.]) =OJ 

. 1 n l 1= 
r" 

= PL" {Z (·(a. ,b.J) = O}] 
1=1. n" , l -

r 
= P[.'1JM(K )<u}] 

1=1 n,' - n 

where K . = {[na.J+1.,[na.]+2, .... [nb.J}., The last equal,ty holds since n,' l l l 

'-'-·the sets -{Zn((a,.,b,.J)=O} and {M(K .) <u} are the same. By n, l - n 

TheO'rem 2.3.5 we have 

r r 
. P[ n {M(K .) <u }] ->- exp(-T '\/(b.-a.)) as n-+ ro 

i = ln, l - n ; ~l l , 
1 

Hence (b) holds. Theorem 2.1.1 is proved. Nil 

2.5 Connected re§ults 
. , 

As before, (~i; i =1,2, ... ) will denote a statianary sequence 

with marginal distribution function F, Mn will be the maXlmum of 
" 

{~l ,s2"" 'Sn}' . (Un) will be a sequence of real constants, Zn will be" 

---; 

\ 

'-, 
y 

, .. 
. ' 

1 

1 
~I 
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~ 1 

the poi nt process of, exc~edances of the l eV,el un and Z will be a 

Poi sson 'poi nt process with i ntens ity T. The l ast three sèctions can be 
1 

summarized as follows: 
.. 

A. If condition D(u ) holds and if k is a (fixed) positive integer 
n 

then 

B. If conditions D(u n) and D' (Un) hold. then 

n(l-F(u ))--q => P[M <u J-+e- T 

n n - n 

c. If condltions O(u ) and D'(u ) hold. then 
n n 

n(l-F(u ))--q ~ Z ~Z 
n n 

We used A'to obtain Band then B to obtain C. The converse of B was 
'\ 

not used to obtain C but was presented for completeness: 

B' , If conditions D(u ) and D'(u ), hold. then n n 

P[M < U J -+ e- T ~ n(l-F(u/))-q 
n - n Yn' 

, t 
These results are inleresting in their own. But they alsa lead ta some 

very important theorems as we shall now see. 

Gnedenko's theorem 

To begin with, we.!Jshall discuss a famous result concerning the 

asymptotic behaviour of the distribution ,of' Mn' 
n~~ 
.. "' 

/ 

28 
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THEOREM 2.5.1. If (;i; i =1,2, ... ) 'bS a seqUi?YI/3t; c . .!' iniclê";:?cn-:: Q>0 
\ 

ide;ltic~lZ-);l dist:rièutei! :ra"klD"l variabZ-es an..~' if . .('010 SOr>7C cC'nSiQ1îts 

P [ a (~1 - b ) < x J ~ G ( x ) 
n n n -

. 
for sorne non-degenera,te distribution ,,+'uncti:m G ('uJhere -- meal1S 

convergence at the cor:.tinuity -.p.aixJts of' the lirnting function) J then G 

is of one of the three t!::':Jes liiOted be2.oùJ: 

Type 1 G(x) -x exp(-e ) _00 < X < CO 

{ :xP(_X- O
) 

" 
_00 < X < 0 

G(x) 
0 < X < 00 

Type 2 

for sorne CL > 0 ~ 

{ exp(-(-x)") _00 < X < 0 
G( x) = 

1 .. \ 0 < x < CD 11// 
Type 3 

for sorne CL > 0 
~, 

........... "-~ 
(lOf" Gr and G2 are distribution functions and if for some a > 0 and 

) 
some b we have ~2(x) = G,(ax+b) for every x, th en G1 and G2 are 

sa; d to be of the sarne type. Observe tha t type 2 a nd type 3 are in fact 

families of types indexed by the parameter o..) 

Th; s resul t i s referred ta as Gnedenko 1 s theo.rem even though i t was 

. discovered long before Gnedenko. Frechet C1927J found that the possible 

limielaws for a M n n' with a suitable' choice of an > 0, were only 

laws of types? and 3.' Fisher and Tippet [1928J established.that the 

limit laws for a (M -b ), with suitable choice of a > 0 and bn , 
" n,n n n 

were only 1 aws of types 1, 2 and 3. Later DeMises [1939J found condi-
1 

tions on the distribution. function of the ~i IS for an(Mn-bn ) to 
f' 

converge to a l aw of types l, 2, or 3. However Gnedenko [1943J was the 

29 
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,1 

1 
1 
1 

/ 
.. 

first to praye the theorem in complete generality. Its proof may be 
, 

disJDçyed as the two followlng res'ults: 

L EMMA 2. 5 . 2 , Le t 
l , 

mati b/? m.zci'T/f GY' not) ar": sup:/ose an > 0 and bn are cmietarits ,$.uch 
1 

that! 

( 2 . 22) 

for sortle 

, 

" 
, 

p[a (M -b ) < x] ~ G(x) 
n n n -

1':0 a" pnei''''+- d"·.":rc·h,,~,/o~, • Yi- e,?~ ",,,te: v __ .,_,c< .' " .+'un::t:· cm G. FUl''.;heY'T'70re suppose 

eJp th:::.: foY' k = 2,3" .. ,,-le have 

(2.23) p[a k(M -b k) < x] ~ G1/k(x) . n n n - , 

(2.24 ) //// 

! , ~ 

LEMMA 2.5.3. If G is a non-de;wneT'ate (distribution function such that 

(2'.24) holds'for k = 1,2,3, ... (.-c'OT' some constants Œk > 0 and b
k
) 

then G is one 0: the three extre'11e value types listed in TheoY'em ,2. 5.1. 
" 

//11 

One can easily check tha~t if Mn is the maximum of the first n tetms 

30 

• 

of a sequence of i nd mtérît and identically distr; buted random vari.ables, 

k=2,'3, ... ) whenever (2.22) holds. Hence 

Theorem 2.5.1 fo 11 ows a t once from LenTTla 2.5.2 and Lerrrna 2.5.3. ' The , ~ 

first of these lerrmas is essentially a result of Khintchine and its proof 

may be found in Gnedenko and Kolmogorov [1954, section 10, theorem 1]. 

, 
L 



,-
, 
1 

1 • 

The derivation of the ~econd lerruna constitutes tbe major part o~ 
1 

Gnedenko's papero[1943). A simple proof is presented in deHaan [1976J. 

Using the result J/ $ection 2.2 it ;s easy to obtain Gnedenko's 

theorem for stationarY,sequences. 

THEOREM 2.5.4. Let (~l; i = 1,2, ... ) be Q stat{:)Y!Œ'!'l) st'Gue."fce an.:? 

G. SU;--'!"OUf' iha'" . .('oY' eœ:n 
- .tf 

-

31 

x th{' ceJ,'ld:r:o" D(u ) hC:.i3 POY' the seauenC'c U = x/a +b. 
n' n n n 

,ce: ~ has 

h'co:~. '\ Let x be a cor.ttinuity point of G. Wr;ting u = xl a + b n n n 

we have 

Since condition D(u ) holds, Theorem 2.2.4 tells us that _ n ; 
( , 

p[a k(M -b k) < x] -+ G1/k(x) n n n - K=1,2,3, ... 

Hence we get 

- k=1,2,3, ... 

-
Thus the result fol1ows from Lemmas 2.5.2 and 2.:r:3. / / / / / 

This theorem can be found in Leadbetter [J974]. It was previously 

obtained by Loynes [1965J for stationary sequences satisfying a strong 

mixing condition. Loynes investigatio'ns had its ongin in Watson's 

[1954J paper on the maximum of m-dependent stationary sequences._ The 
c 

asymptotic distribution of Mn in the case of a stationary Gaus'sian 
,,-t,t: 

..-';,11 

1 • 

" 
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1 

" 
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sequence was studlêd-by Berman [1964J, His dependence condltlons were 

~~ written"in terms of the) cOyQriance functlOn of the 
1 
1 

sequence: 
1 

1 

The associated sequence of" indepehdent ran~om variables 

32 

:, ,As a second/apPlication of the results of this chapter, consider a " __ 
l ' , 

stationary sequ~nc,e (~; i = 1,2, ... ) wlth m,arginal distribuvlon func.-, "-
/ l 

tion F and ri-Jt- (Tl.; i = 1,2, .. ,) be a sequence of independent and r l > 

identlcally dV.trlbut~,d ra,~dom variables havlng the same margin~l 

distnbutlon functiQn ,F (fIl i ; '1 = 1 ,2, .. ,) is sometimes calle~ the 

~.;;ociated sequence of indep'endent random va~lables). Let Mn be, as 
"-

usual" the maximum of {~l ';2"" ,sn}," and let Mn be the maximurn of 

{.~1,n2, ... ,nn}, Then: 

THEORE~1 2.5.5. Iv'~:;; t7:.:. ab~~?)c r::F':<f:cm, i.f' (Un) is such th::d the 

c:Jlui:'ti:Jl:F D(u ) a>:..:' D' (un) 1:,<.: (.f':JY' tÏîé seouen::f' (E;,; i = l ,2,.,.)) _ n l 

then Je)]' o < e < 1 Le',", h:x,x: 

Proof. This f..ollows trivially Theo'rem 2,3:1, which sa~s that 
1 

" 
P[M <u J -+ e if and only if n(l-F(un)) -4: -log e n - n 

combinéd w;th Theorem 2.3,2, which says that 
1 

'/ 
P[M <u ] ~ e if and only if n(l-F(u)) -+ log e. Jill 

t'l- n n 

THEOREM '2,,5.6. With the above notation, if an > 0 and bn are given 

constants 8uch tOOt foY' e,very x the conditions D(u ) and D'(u ) hold n ,n 

(foI',theseque:zce (Si; i=l,2".,)) with ~=x/.an+bn.> and if G 

.. 



1 

o 1 

(2.25) P[a (M -b ) < x] --=.. G(x) 
n n n -

P[a (M -b }<x] ~ G(x) n n n - / 

We will show that (2.25) lmplies (2.26). The converse follows in 

exactly the same way. If (2.25) holds, then by Gnedenko's theorem G 

is one of the three extreme val~e types. Hence G ;s continuous 

. everywhere. Thus in (2.25) and (2.26) the notation ~ means conver-

§ence at every point. If x is such that G(x);> 0, then 

P[an(M -b ) < x]--G(x) implies PCa (M -b ) < x]--G(x~ by Theorem nn-" nnn-

2.5.5. If G(x) = 0 th en for every y with G(y) > 0 we have 

,~ , 

Hence we have 

lim sup Plan(Mn-b n) ~xJ ~ G(y) 
n-+co ~ __ ,' 

for all y with G(y) > O. Letting y decrease to inf{y: G(y) > O} and 

using continuity of G we get 

A 

l im P[a. (M -b ) < x] = 0 n n n -n->oo 

This holds for all x. Hence (2.26) holds. 

The k-th 1 argest val ue' 
,-

-~~ 

We 'conclude with a third aplilicati,on. 
, 

1111 

Let (~.; i = 1 ,2, ... ) be a 
l 

stationary sequence with marginal distribution function> F ,and for any 1 

positive integer k, le~ M~k) denote the k-th largest value of 

\ 
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M(l) is our usual 
n 

THEOREM 2.5.7. ,::.-"" (un) is c s e:::<eYi.CE of constan-':s su-::/: tÎ1c:t the condi­

t:-or.s D( u ') ù.>U! D' (u ) ho Zd aY1J3. i -""~oY' so>re 1 > 0 we haut n "n . -

n.( 1 - F (un) ) -- T as n ->- cr , the~: 

PPOO:. Observe that 

P [M ( k) < U ] 
n - n 

k-l s 
. -1 '1 1 

-- e L - as 
S=O s! 

{M(k)<u} == {Z ((0,1]) <k-l} 
n - n n -

where Zn is as usual the poirlt process pf exceedances of the level 

Thus 

P[Z ((O,l]) <k-l] 
n -

k-l 
l P[Zn((O,l]) = sJ 

5=0 . 

But from Theorem 2.1.1 we have 

s 
P[Zn((O,l]) =5] ~ e- 1 fr 

which gives us the desired resu1t. 

s=O,1, ... ,k-1 

COROLLARY 2.5.8. The the~rem still holds if the dssumption 

n(l-F(u n)) --1 . is replaced by P[M < U ] -+ e- 1 (this foUows trom n - n 

1111 

TheC'r'el"1 2.3.2) Or' by P[M <U ]_e-1 (thie foZlows from Theorems 2.3.2 n - n 

34 

a~ 2.5.5). 1111 <!15' 

... 
THEOREM 2.5.9. Suppose that we are given constants an > 0 and bn 

sueh that for' ever'y X the conditions ~(Un) and D'(un ) hol~ with 

Let G be a non-deaenerate distribution funetion. 
~ v ~ 

If 



,p [a (M ( k ) - b ) <" x J ~ G k ( x ) 
n n n-

k-l 
__ {Go(X)s~_r'O(-lOg..G(X))S/S! 

where Gk (x) 
-:.~ G (x-t > 0 

if' G(x) = 0 

PrCJC'.-f'. This follows from Theo-rem 2.5.7, (and lts corollary) just like 

Theorem 2.5.6 was obtaJ~ed from Theorem 2.5.5. 111/ 

These examples illustrate how. the results of thlS chapter can be 

used. Althbugh we shall not do 50 here. it is also possible to consider 

exceedances of several levels, considered jointly. We'would then obtain 

35 

a Poisson result which in turn could be used to obtaln the joint distribu­

tiQn of various quantitles of lnterest, such as two or more M(k) 's. n 

Theseproblensand more are treated in Leadbetter, Llndgren and Rootz~n 

[1979J. 

\ 
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CHAPTER. 3 

CONVERGENCE OF THE POINT PROCESS OF UPCROSSINGS 
OF A STATIONARY PROCESS 

3.1 Introduction 

In this chapter, (~(t), tE6t) will denote a stationary stochastlc 

process defined on a probabi1ity space (r:,F,P) and having, with 

probability one, continuous sample paths. As in the discrete case, 

Ft t ... t will denote the joint d{strlbution function of the random 
l 2 n 

variables ~(tl),~(t2), ... ,t;(tn) and, for brevity, we will write . 

Ft t ... t (u) lnstead of Ft t ... t (u,u, ... ,u). F wlll denote the 
l 2 n l 2 n ' '. 

marglnal dlstribution functlon Df the process: In order to avoid compli-

cated notations and technical lemmas, we will assu~e that F is con-

36 

tlnuous and that F(u) < l for all u (this includes the Gaussian case). 

The results of thlS chapter are still true if we don't make these 

assumpti ons. 

Our main goal in this chapter is ta obtain the Poisson point 

process limit theorem for the upcrossings. We shall use essentially,the 

same 9Pproach we used for the discrete case. For T > 0 we write 

M ( T) = ma x ~ ( t ) 
O<t<T 

The value of M(T) 'for 11 parti cul ar w E)( i s denoted by M( t ,w), 

M(T,w) = max ~(t,w) . 
O<t<T 

It is easily seen"that M(T) is a random v~riable on (~,F,P). It is" 

well def...:t-ned a'nd finite a.e. since' for almost every w in ~ trie samp1.e 
, 

path t 1-+ s(t,w) is continuous. It is measurable since, again by 

conti nuit y of the sample paths, we have 

--:'1 

l , J 



M(T, ") - l' {r(iT), - 0 l 2 2k1 
~ - lm max - :k ' 1 - , , "'" 

k~ 2 1 

for almost,every w in ~, ~e shall assumt, when needed, that for some 

hO > 0 

P[M(h) > uJ - h'...:u as u -+0.. tor 0 < h < hO 

'where lJ u is the mean number of upcrosSlng of the level u in the time 

interval (O,lJ. The functlon w will play the role played by l-F{u) u' . n 

in the discrete case. Given a famlly of real constants (UT'; T >0), let 

ZT be the pOlnt process of upcrossings of the level UT' We shall 

follow the lines of Chapter 2 and prove the follow'ng results: 

. Ac' 

B 
c 

C 

.. 

T\J -+"( ~ P[M (T) :. UT] -~ 
UT 

w 
T \J --> 1 => ZT --> Z~-", c 

where Z is 

' UT ' 

a Poisson point process with intenSi~Y T. For completeness 

we will also obtain the converse of Be' 

B', 
c T\1 L r 

UT) 

The results of this chapter are present~d as in Leadbetïer [1980J. 

3.2 Asymptotic independence of the maximum over juxtaposed intervals 

In this section we shall obtain a continuous ti~e parameter version 

of Theorem 2.2.4. In addition to a D(un)-type condition we shall n~ed 
-.::, 

some regularity conditions t~ make sure the sample paths are relatively 

smooth. 

\ 
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f Let a positive function ~(u) a-nd a family of positive constants 

qa(u), a > 0, U > 0, be g'iven. We say that the condition R1 holds if 

for sorne hO > 0 

\3.1) . 

He say that the condition R2 holds if, 

(3,2) 1 

qa(u) -- p as u~œ, for each a > 0, and 

P[t(O)<u, [(qa(u)) <: u, M(qa(u)) > uJ 
(3,3) lim sup ëÇTu) ,I( u) --0 as a --+ 0 

u-+<X 

: 1.. EMMA 3. 2 . 1. 

(i) If the con.:1ition Rl holds for ~J(u) ar.d i; d(u,Y --0 as 

'- -

.... P [M ( d ( u )) > U ] = 0 ( du) ) as U ~ w • 

(ii) If'thecon1it,io~Rl holdsfor ~'(u) then 

P[~(O) > uJ = o(~'(u)) as U -;'00 • 

, 
(i i i) I: the c,ondi tions Rl and R2 hold foY' ' ~ (u) and qa (u) and if 

(3.4) 

l is an intervaZ of length hJ 0 < h < ho (hO as in (3.1)) J 

then there are cons tants Ya such that 
, 

P[Ujq (u)) < u; jq (u) E 1] - P[M(() < uJ o < l im sup ___ a ___ -__ --,a---.-______ -__ 
'~I(U) .2. ~a ' u-+oo 

wheY'e y ~ 0 as a -;. O. The conveY'gence is um]om in aU a 

inteY'vals of this fixed length h. , , 

38 
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PY':Jof. Fix h E (O,hO)' where hO is as in (3. f). For l:J large 
'. 

enoughwehave O<d(u)<h. Hence P[M{d{u))>u] <P[M(h»uJ from 

which we get, since condition Rl holds, 

lim sup P[M(d(u)) >u]'< h 
du) -u-+o 

vie get Ci) by letting h decrease to O. (ii) follows at once from (il 

slnce P[ç(O) > u] .:::.. PU1{1/u) > u]. Let l be an interval, of length 

h (0,< h < ho)' 1t consists of no more than [h/qa(u)] subintervals of 

the form ((J-l)qa{u),jqâ(u)] together with (possibly) a shorter 

interval at each end: The difference in probabllity ln (3.4) ;s clearly 
'J 

non-negative and (using stationarity) is dominated by 

"Y a •u = ~ )P[~(o)<u, [(q (u))<u, M(q (.u))>uJ+2P[M(q (u))>u] 
qa u. a a'" a 

'. 

Hence (3.4) holds with 

'Ya u 
y = li~ sup ~ . a ~' \ U J u-><x 

When the conditions Rl 'and R2 hold. 'Ne get 'Y --+0 as a--+O by using a 
, 

(3.3) and (i). Th l s p~ov es (i i i ) . 1111 

We now introduce the contlnuous parameter version of'condition 

D(un ). ,Let (uT; T>O) be a.family of co~stants such that uT-+oo 
-

as T ~oo. Let (qr; T > 0) be a family of positive constants such. that 

qT-+O as T~oo. We say that the condition Dc(uT) holds with respect. 

to qT if for any 

with t1-s > y, we have p -
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~ 1 

where o'T -+0 for sorne )'1 = 0(T) as T-+o:. Without 10ss of 
. / , iT 

genera1ity we may (and will) assume that aT is non-increasing in )'. 
,) 

When this is 50, the condition QT -+ 0 for so~e ~T = o(T) as 
, ,'Y T 

T-+cx. is Equivalent to the condltlon aT,eT -+ 0 for each, 8 > O. 

The fol1owl,ng theorem is ob~ained from Theorem 2.2.4 by writing 

M(T) as the Mn of a suitab1e stationary sequence. 

(uT;T > 0) be a fœrliZ~1 of constants, with 
~ 

UT-+OO as T-H"J sucn tha-:-

(a) • .r,n' eac,: a > 0, thé c(ln:1::don Dc (UT) 

qT=qa(uT), 

(b) r-'(MT) -;'8 br~l,iei. 

/ 
/ . / 

holds with r?spect to 
/ 

/ 

/ 
/ 

,/ , 
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':'h.cn foY' 0 < h s ho (ho as in (3.1)) and foY" eveY'y positive integer kJ 

(3.7) k 
P[M(nh) ,:,unhJ - P [M([n/kJh) ,:,unhJ -+ 0 as n-HX). 

aoof'. F"ix h E (O,hO)' Consider the random sequence sl ,s2"" 

defined by 

Sn = max {~ ( t ); ( n -1 ) h ,:, t ,:, n h } 

Note that M(nh) = M . 
n It is easily 

seen that the sn-sequence is stationary. Let vn = unh . If we can show 

that the condition D(v ) ho1ds for the sequence (s,.; i = 1 ,2, ... ), then • n 

by Theorem 2.2.4 we will have for every positïve integer 'k, 

k 
P[M <v ] - P [M[ /k] <v ] -+ 0 as n-HlO , n- n n - n 

/ 



/ 
/ 

/ 

/ 
/ 

, 

/ 

/ 

/ 

'" 

/ 
/ 

/ 

/ 

WhlCh is exactly the same as (3.7). H.ence it suffices ta ShOh' that the 

condition D(\"n) holds for (::'i; i =1,2, ... ). Consider inteClers 

(3.8) 1<; <i < .. ·<i <j <J < ... <j <n-
1 2 P 1 2 p'-

, 
with jl-1 > Q,. For all such choice of positlve integers we wou1d 1ike p -

to have 

(3.9) 
1 
P [ r < '1 ~ <' r < \' ~ < \, ] '":>. "" ••• , s \', '? • , 1 1 • ,L, • 1 l-n l-nJ-n J-n 

1 p 1 p' 1 * 
P [ ç < \) •... , ( . < \,' ] P [ ç. < \,, ,..., r, • <' \] < 0. n 

l - n l - n J - n J - n - n,~ 1 pl, p' 
-, 

with' 0.* -0 for sorne, Q = o(n) as n-4-OO. Put l = [ri -l)h,l h] 
n. Qn' n. r r r 

and J s = [(J s -'l?h,j sh]. Write q for qa(u nh ). Consider the followlng 

subsets of ~: 

A = A (a.n,p,i
1
,i

2
, ... ,i ) .q q p 

A'= A(n,p,i 1 ,12, ... ,i
p

) 
\ 

B = B(n,p',jl,j2, ... ,j ,) 
, . p 

1 

p 
n {~(jo) < U h; jq E Ir} 

r=l - n 

p 
= n {~. < U h} 

r=l lr- n 

p' 
n{t;(jq)~unh; 

s 'T 1 \ 
P " 1 

::: n {ç. < U h} .~ 
s=l J s - n 

The 1eft hand side of (3.9) is just Ip[A nB] - p[A]pIB] 1 and for each 

a > 0 we have 

(3.10) 1 prA (")B] - P[Ajp[B] 1 

1 
1 

, , 

< 1 prA (")B] - prA tiB JI 
q q 

+ 1 PCAq n'Bq] - P[Aq]P[Bq] 1 

+ P[AqJIP[B~]-P[B]1 + P[B]IP[AqJ-P[AJI 

As in the proof of Lemma 3.2.1(iii), we have 
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.'1 

" 

" 

·1 

(3.11) 

where y(l) 
a,u nh 

and 

0< P[A ns ]-P[AnS] (y(l) 
- q q - a,u nh 

= q tu
h )P[~(O) (Unh , Ë(qa(u nh )) <~unh, .. M(qa(Un~)) > unhJ 

a nh 

+ 2nP[M(qa(unh )) >u nh ] 

y(l) 
a,u nh 

l im sup .1 ( ) -+ 0 as a -+ a n-;oo n, unh 

(Note that (3.11) holds for all i 's and j 's satisfying (3.8),'while r . s 
\ (1 ) '. 

y does not depend on the. iris and js"s). Similarly we have a,unh 

0< P[A J-P[A] < y(2) 
- q - a,u nh 

o < P[B ] - p[S] < y(3) - 9 - a ,u nh 
(2) 

. Ya,u
nh 

limsuPn,.,(u )-+0 as a-O 
n-+ro "n h 

where 

y(3) // 
a ,u nh . 

11m sup 1"(; ) ~,O as a-O n-;oo n~ Unh 
and 

From (3.10) we get 

(3.12) 1 P[A nB] - P[A]P[BJ 1 < y + 1 prA riS ] - prA JP[8 ] 1 - a ,unh q q q q 
, r 

where 
.' 

(3.13 ) 

y 
a,u h ~ 

1im sup n\)J( n) -+ 0 aJ'~; - 0 
n~ unh \. :' 

Since the largest jq in any l is at most ,iph, and the sma11est jq 
. r 

in any Js is at least (j,-l)h, their difference is at least (Q.-l)h. 

Also the largest jq does not exceed nh. Thus by (3.6) and (3.12) 
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\ 

(3.14) 

in WhlCh the depen_dence of D.T,Q on a is exp1icitly indica>ted. Note 

that the 1eft hand side of (3.14) does not de pend on a. Hence 

IP[:n. (lB] - P[A]P[B] 1 * .::. û n Q , ' .... 
* ' . . (a) 

ex = 1nf(Ya U '+Cinh (~-1 )h) 
n,9. a >0 'n h ' 

whiCh is preclse1y what we need, provided we can show that 
\ 

for any "~ 8 > O. But for any a > 0 we have, 

CJ..* < Y' .+ex(a,j, < y +o:(a) 
n,en - a,u nh nh,(6n-1)h - a,u nh nh~~nh 

1 . * lm 0. 8 
n~ n, n 

for 1 arge enough n (we are using~the fact that (a 
L<;; 
/1,9-

decrease in 

Hence for all a > 0 we have 

lim sup 0:* 8 < 1im sup y +lim o.(a)~ 
n~ n, n - n~ a,unh n~ nh,~nh 

, 
=limsuPYau n-+oo ' n h 

But, since N(uT) is assumed to be bounded, (3.13). impl ies 
~ ,. 

l im sup y --;- 0 as a -+ 0 
n-700 a'~nh 

Thus we have lim o.~ 8n = O. This completes the,proof. 
n-+oo ' 

~) . 

1111 

'It is now a simple ~atter of technica1 calculation ta go from the 

above result to t~e main ~esult of this s~ction. 
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,/ 
\ ' 

UT-TOC as T-+x, su::i, th.:::.;; 

(al ;:JY' e:l::r. a > 0, t"!-zë; cOY'..::ition Dc(,uTl hpZ,ls :.;:th respcC't to 

qT = qa (,uT) , '-

(b) TduT) is bov.YJe::' 

(c) -,(uT) - '(U[T/hJ~h) aS T-+oo , .+'01" SOI':'" 

D'c'o:. Let h E (O,ho) be ~uch that (c) holds. Clearly we have 

1 P [ M ( T) ~ uT] - pk [~1 ( TI k) ~ UT] 1 

~ 1 P[M( T') .2. uTJ - P[M( nTh) ~ uTJ 1 

/- + Y[M(nTh) ~uTJ - p[M(nTh) ~un hJ 
k T 

+ 1 p[M(nTh) ~ unThJ - P [M( [nT/k]h) ~ unThJ 1 

k k 
+ Ip [M([nT/kJh) ~un hJ - P [M([nT/k]h) :::.uTJ 1 

T 
+ Ipk[M,([nT/k]h) 2.UTJ - pk[M(T/I<) ~uT~I. 

" 

as in 

w~ere we wrote 'nT = [T/h]. 

one ôf those five term 

(3.15) will follow if we can show that each 

to 0 as T --+ 00 • 

{M(nTh) ~UT} = {M(nTh) ~uT and t(t) >uT for sorne tE[nTh,T]} 
.... 

-: U {M(T) ~ uT} 

/ 



1 ~ 

o 

1 

'where the two sets on the right ar:e disjoint. It fol1ows that 

o ~ P[~1(nTh) ~uTJ - P[M(T) ~u"FJ , 

~ p[:}i) > uT for some tE [nTh, TTJ 

o~P[M(h»UTJ .. 

Since uT---+oo as T-HX and since M(h) is finite almost everywhere, 

we have P[M(h):. urJ -+0 as T ---+oc, 'Th1S proves 1. 

\ Il 

l ' 
, 1 

we have 

o ~ P[M(nTh) ~unThJ ~ P[M(nTh)'~uTJ 

= PEUT < M(nTh) ~un hJ 
T 

~ nTP[uTc,< M(h) ~un hJ 
. T 

= nT(P[M(h) > ur] - P[M(h} > UnTh]) 

o ~ P[M(nTh) ~uTJ - P[M(nTh) ~un h] 
T 

= P[u
nTh 

< M(nTh) ~uT] " 

~.nTP[un h < M{h) ~uTJ 
T ' 

= nT(p[M(h) > unThJ - P[~l(h) > UT]) 

Hênce, using condition Rl, we get 

, 
1 

/ 

r 

f 

;Jl 
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j' 

) 

.. 

USlng"o(b) andil(c) it is easily seen that this last expr.ession goes to 0 
~ 

as T -H>". 'This proves 2. .. . . 
1· 
1 

as T -- 00. 

o 

This is the content of Theorem' 3J.2. 

4. 

,H U
nTh 

> uT' .. we have, as in the proo-f of 2, dt 

o ~ P[M([nT/k]h) ~unThJ - P[M([~T/k)h) ~uTJ 

< [nT/k](P[M(h) > uT'] - P[M(~.) > un h])' . 
- T 

From the fact that 

. (3.16) 

Simi)arlY, if 

Hence we have 

., 

. 
0<. x~y~ 1 

k k 02, y -x" < k(y-x) implies 
\. , -

o ~ pk[M([~T/kJh) ~uT] -"pk[M([nT/k]h) ~UnTh] 
~ k[nT/k](P[M(h) > un h] -'P[M(h) > uT]) 

T 

--
~ IP~[M([nT/k]h) 2,un hJ - pk[M([nT/\kJh) .::.uTJI 

T 
2. k[nT/kJIP[M(h»MT]-P[M(h) >un hJ1 

, " T 
• 

1 

1 r-

I 
/ / 

: .// 
i 1 

y: 
whictJ. goes ta 0 as T -roo, just as in the proof>:~of 2. This proves 4. 

'", 

.' 

/ 

1 

1 
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l' 
U 

5. 

Since 0 ~ T/k - [nT/k']h ~ h, we have" as in l, 

Using (3.16) we get 

vlhiGh goes·ta a as T--XJ, as in the proof of 1. This pravè-s 5. 

Theorem 3.2.3 is proved. ///1 '!;; 

! 

3.3 A weak convergence resul,t for the maximum 

In order to ontain a'continuous parameter version of Tlgeot"em 2.3.2, 

we will need a continuous parameter version of the condition D'(u ). 
• ~ n 

Il This con'dition, we st{a)l call it condltlon D'(uT), will be phrased in 
q c 

terms of the so-ca1led ~-upcrossings of a level by the process. This 
-..1,-

concept was original1y introduced by Pickands [1969a,l969b] ta deal wlth 

procesSBs whose sample paths were 50 irreqular that the ordlnary UDcrOS5-

ings cou1d be infinite in numbe:r in a finite interval. Here we usé th15 

concept whether tfle number of ordinary upcros5ings is infinite or not. 

cLet E be positive. The stationary process (~(t); tE6i) is sai'd 

ta 'hav,e an c-upcrossing of the level 

ordinary upcrossing of the level 

u at the point ta 
'\;'~ 

u a t to a nd if t: ( t ) < u for al 1 t 

if it has an 

47 

in (to-E:,tO)' (This i5 not exactly Pickands original definition but it 

leads to the same asymptotic re5ults and Ù i5 easier to handle). Note .-

that if there i5 an E-6pcrossing at to' then 'the interval (to-E:,to) 



contains no E-upcrossings, Thus the nuw.ber of E-upcrossings in a unit 

interval does not~~ceed l/e. We will wr'i te ].JE u for the mean number , 
of e-upcrossings of the level u • in the time i nterva l (0,1]. Us i ng 

... 
stationarity one can check that tfj . 

c,u is the mean number of 

e-upcrossings of the l evel u in the t ime i nterva 1 (s,s+tJ; for any 

Let l;.'(u) be a given function for which the condition Rl holds. 

We say that the condition D~(uT) holds for the~family of constants 

(UT; 1'-->0), with uT-+ CG as 1-+ 00 , if 

as E--O 

THEOREM 3.3.1. Ass~e thar the conditions Rl a~ R2 hald for sorne given 

~I(U) arui qa(U)' Let (UT; T > 0) be a farli.l]! of constants, ùJ'Ïth 

UT--OC as T-+cc, SUé: y! th:;.:: tOI' ecœh a > 0 the condit7:on Dc(uT) 

he :18 ù.1it.h res::Jec7:. to qT = qa (uT), a>Ui su::h t'kat the condition D~ (UT) 

halds ùJith l'espe::t ta 1j)(U). Let T be Q positive constant. Then 

(3.17) 

imp!ies 

(3.18 ) 

\, 

48 

s. 

Convel'sely, ùJith the additional assumption that fol' sorne 0 < h < ho' hO 

"-
as in condition Rl, we have ~'(UT) - \jJ(U[T/hJh) as T _00, then (3.18) 

... 
implies (3.17). 

Proof. Let k be a positive integer. Since there is either'O or 1 

(T/k)-upcrossing of the level UT in the time interval, (O,T/k], we 

have 

, " ) 

''\J 



, " 

(3.19) (T/l<-):.J(T/k) ,uT == mean numbElr of (T/k)-upcrossings in (O,T/~J .i 

P[exactly o.ne> (T/k)-upcrossing in (0, T/k]J 

i P U1( T / k) > uT J . 

To get the 1ast inequality we used the fact that the probabllity of 

having a (T/~)-upcrossing of the level uT at the point T/k is 0 

(This follows from the fact that the marginal distribution function of 1 

"-

the process is assumed ta be contlnuous). On the other hand, using 

stationarity, we have 
~ 

(3.20) P[M(T/k) >uT] .:: ([T/khJ+1 )P[M(h) > UT] 

Combining (3.19.) and (3.20) and using 

o < h < hO . 

[T/kh] + 1 - T/kh and P[M(h) > UT] - hJ>(uT) 

we get 
" 

~ (T/k)W(T/k),u
T

':: PE11~T/k) >uTJ.:: (T~k).(uT)(1+8T) 

or, equivalently, 

49 

(3.21) l - (T/k)tP(uT)(1+8 T) .2. P[M(T/k) 2.UTJ" "-

.2. l - (T/kh(uT) + (T /k)(t;;(u,.)-lJ(T/k) 'UT) 

where 8
T 
~ 0 as T --.orO). 

Assume (3.17) holds. Taking T-+-oo in (3.21) and using condition 

D~(uT) we get 

(1 - T/k) 2. 1 im inf P[M(T/k) .2.UTJ 
. T-+<Xl 

.2. 1im sup P[M(T/k).2.UTJ 2. (l-T/k+o(l/k)) as k-+co 
T->oo . 



" ' 

Taking the k-th power and using Theorem 3.2.3, this becomes 

(1 - T/k)k ~ 1 im inf P[M(T) ~uTJ 
T -+0:' 

~ lim sup P[M(T)~uTJ ~ (l-T/k+o(l/k)/ as k-T OO 

T -+0: -

Letting k-TOO we get (3.18). 

Conversely assume that (3.18) holds and that for sorne O<h<hO' hO 

as in condition Rl, we have dUT) - ~(u[T/hJh) 

.. inequa1ities in (3.21) can be wdtten as 

(3.22) 
, 

and 

(3.23) 

as T --H". The 
\ 

50 

Note that when the condition D~(uT) holds, T, .(u T) is bounded 50 that the 

condltions of Theorem 3.2.3 are satisfied. Let T-rro in (3.22) and 

(3.23). Using Theorem 3.2.3 and condition D~(uT) we get 

1 _e- T/ k ~ (l/k) lim inf T1/J(u
T

) 
T-= 

-T/k ( ~ (l/k) 1 im sup Tdur) ~ 1 - e + 0 l/k) 
T-= 

Multip1ying by k an letting k -TCXl we obtain (3.17). " 111/ 

Followlng the 1 nes of Section 2.3 we wl11 now show that, under the 

condi'tions of Theor~ '3.3.1, (3.17) implies 

" 1 

P [M / eT) ~ uT] --+ ,e - 8 Tas T --+ 00 , 0 < e < l 

J , " 
Suppose we are given a family of consta,nts (uT; T>O). For 6 > 0 we 

define uT(a) = ~(T/e)' 

j 
~i' 

[ , 
il - -~- / 



" 

/ 

L EMMA 3. 3 . 2 . 
" 

• 0<8<1. 

(c) If ç:onJî.-:;ion D~(uT) h:+ie (l.,,·th 'J'es"'(!wt ta Borne \'(u)) thl}' 

"c:md:t~:C'7 D~(uT(e)) ho3di (l.Ji~h Y'es;"!i?'::-:- to the Sa!'i( du)) 

: DY' a Z : e > o. 

['T'OC _.;'. Clearly if TduT)-+T" then (T/S),(u(T/e)) -+1 and hence 

T~. (uT (e ) ) -+ 8, , Thus (a) is proved. Now suppose that the condition 

De (uT) holds with respect to sorne qr Take 

with t,-sp.:::. y.If 0 < e < l, then T.:::.. T/e. Hence, writlng 

a+ , y = aT/ e , y , 

-:::: 

I
Fs ,,' st, , , t ( uT i e ) -F s .. , S (u T / e ) Ft ,,, t ( uT/ e) 1 .::. o.T / e , y = ex 1 

T,y l p , p' l p 1 p' 

We have o.T -0 as T-HX', for SOfTle YT :: o(T), Take, Y-r = YT/e" 
,y T 

Then y+ = 0(T) and 

o.-r,y
T
, = ~/8 y = 0 (T) as T -+00 , 

, T/e" 
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Hence the condition Dc (U T(8)) holds with resRect'to qT' This proves (b). 

Finally assume condition D~(uT) holds with sorne given ljJ(u), i.e. 

we' have 

( 3 . 24 ) 



, , . 

\.~ 

For any fixed 8 > 0, E-l-O is equivalent ta fe~O. Hence (3.24) 

can be written as 

(3.25) lim SUD TI,J~AT -~'(UT)II-+ 0 as E-l-O. 
T-=. t... 'UT 

Similarly, T-'"oo is equivalent to T/e~oo. Hence (3.25) can be 

written as 

l i m su p ( TI 6) 1 k T u - ~, ( u TI A ) 1 --l- 0 a s 
T-?oo l ,t.. , T/e v 

Hence we ha ve 

-
lim sup TlpET,uT(er'!'(UT(S)) 1 --; 0 as [-+.(), 

T4<:O 

{. , 
i.e.· condition D~(uT(8)) holds for (Hu). This completes the proof. 111/ 

THEOREM 3.3.3. M:sUT'iC thTC the' c::rr),,}~tiOYLF Rl and R2 hold fo"!' S01'1e gl:ve.n 

1 

(uT; T > 0) be a !W',:z.!! of constants, with 
(; 

uT -+ 00 as T ~ 00, suer: th:rt' .tOi' each a > 0 the condi tian De (UT) 

ho Ids ùJi th PeSDect ta qT = qa (uT)' anJ such th:J.t the candi tian 0 ~ (uT) 

halds ùJith l'espect ta ~I(U). Let 1 be a positive constqnt. Then, foY' 

o < e .::. l, 

1 

implies 
/ 

.(3.,26) [ ] 
-8T 

P M(eT)~uT -+ e as 

noof. Fix 8 E (O,1]. Bythe.,lemmawehave 

T -+00 • 

and the conditions Dc(uT(e)) and D~(uT(e)) hold. Hence by Theorem 3.3.r 
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we get 

P[M(T) .s.UT(é)] -+ e-:'T as T-7oo 
. ' 

from WhlCh (3.26) f llows easily. 
\' / / / / 

The Poisson point process 1imit theorem for the upcrossings of a 

stationary process will follow easily,from the fo11owlng result, as in 

Chapter). 

~,( u) and qa (U). Let (uT;T>O) be a f(]J";:l-y 0/' constants J with 

UT --+ co as T-+Q 
,J su~h t !-:.:lc .. -t'or ic::1Cr.. a > 0 th" c! :YrJ -: -: ion Dc(uT) 

1. = (a., b ] uü h 
J J J 

Then 

irrrp Z ies 
k k 

P[ n {M(n.) < uT}] --+ exp(-T l (b.-a.)) as 
j=l J - i =1 1 1 

T --+ 00 
J 

l.Jhel"e M(TI
J
.) is the maximwn 'of the pI'o:Jess avel" the time set TI. = (Ta. ,Tb.] . 

J J J 
Praof. For simplicity we write q = qa(UT)' For each a > O' we have 

!P[j~l {M(TljJ .s.uT}] - j~,r[M(TIj) .s.l)T] [ , 

< Ip[.A {M(TI·)-~~T}]-PC.~ {~(iq) <UT; ;qETI.}][ 
.' - J=l J - J=l, - J 

/ 

+ Ip[ ~ {Uiq)<uT; iqETI.}]-.~ P[~(iq)<uT; iqETI.J[ 
j=l - J J=l - J 

+ I.~ P[~(iq)<u ; iqETI.J-.~ P[M(TI.) <UT]! 
J=l - q J J=l , J-



, j 

Let x(a,T), y(a,T), z(a,T) be the three terms on the right hand side of . 
the ineq~a1ity, ln thè 'order i~ w·hich fhey appear. Then 

lim Sup Ip[ ~ {M(TI.) <uT] - ~ P[M(TI.) <U T]/ 
- T-Ko j=l J - j=l J -

< 1 i m s u p x~ a ,T) + l i m s U p y (a , T) + li m s u p z ( a , T) 
T -tee T -KO T -KC 

The 1eft hand side of (3.27) does not depend on a. Hence if we can show 
/1 

that each term on the right hand side of (3.27) goes ta 0 as a -D, it 

will fa 11 ow tha t 
, 

(3.28), Ip[~{M(TI,)<uT}]- ~P[M(TI.)<uTJI-+o as T-+:. 
, j=l J - j;: 1 J -

\t 0 

By stationarity we have M(TI j ) = M((bj-a)T). Hence (3.28) combined 

with Theorem 3.3.3 wlll give us 

k' k 
P[ n {M(TI.) <uT}] -+ exp(-l / (b.-a.)) as' T --+ ex,. 

J=l J - ';=1 l l 

, , 
Thus it remalns only ta show tha~ each term on the r;ght hand side of 

(3.27) go es ta 0 as a -+0. 

1. limsupx(a,T)---..O as a-+O,. 
T-+oo 

Let us wri te 
k 

A = A(T) = n {M(TI.) < uT} 
j=l J-
k 

B = B (a, T) = j ~1 {~( i q) .:. uT; i q E TI j } 

k _ 
For each a we have A C B. The set U TI. is covered bv no more than 

T8jq subintervals of the form [(i-l')q:~~]~gether with ~OSSibl.Y 2k 
k 

shorter i nterva l s, where we wrote e for I (b ,-a.) . Us i ng 
j =1 J J 

stat;o~arity we get . 
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x(a,T) = [P[A]-P[B] [ P[B-A] 

Tf; 
~ q-r[~(O) <uT' ~(q) < uT' M(q) >ùT] + 2kP[M(q) >uT] 

From Lemma 3.2.1 we have , 

P[M(q) >ur ] -+ 0 as T -+ œ • 

Hence from the above inequality and from the ,fact that T~J(uT) -+T as 

~T-+œ, weobtain " 

T P[~(O) < uT' ~(q) > uT' M(a) > uT] 
1im sup x(a,T) < 8~ Hm sup 

T-+oo - T-+<» q; (uT) 

Since cond~tion R2 ho1ds we get 

(3.29 ) , 1im sup x(a, T) -+ 0 as a -;. 0,. 
T-+= 

2. lim sup y(a,T) -+ 0 as a -+ 0 . 
T-+= 

Let us wri te 

'Using ideas of Lemmas 2.2.1,2.2.2 ang 2.2.3 we can show that 

lim sup y(a,T» ~ 1im sup Ip[.~ D.] -.~ p[D·JI = 0 for each a, 
T-Kü "1 T-+oo J=l J J=1 J 

and hence lim sup y(a,T),-+ 0 as a-+O, trivially. 
T-KX> 

3. 

Let us wri te' 

-\': 
limsupz(a,T)-+O as a-+"O. 

T-+oo 

K.;; K.(a,T) = {~(iq)~uT,; iqETI.} 
J J J 

F. = F.(T) = {M(TI.) <uT} 
J J J -

As in the proof of (3.29) we have 

/ 

-.., 
, 
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Il 

(3.30 ) lim sup IP[K.]-P[F.JI -r 0 as a-rO, for j =1,2, ... ,k . 
T-tCO J J 

l 

Clearly 

1 P [ Kl J P [K2 ] - P [ F l ] P [F 2 JI, 

~ P [ K2] 1 P [Kl j-P [F l J 1 + P [F l J 1 P [K2 J - P [ F 2] 1 

Hence from (3 ~O) '!le get i 

'. , 

l i m su p 1 P [Kl J P [K2] - P [ F 1 ] P [F 2 ~ 1 --'t~ 0 a s a -- 0 
T-= 

Proceeding ln thl~~anner we obtain 

, k k 
lim sup j.n P[K.] - .n P[F.J!-r 0 as a -+ 0 , 

T -+0-' J = 1 J J = l J 

i.e. lim sup z(a,T') -r 0 as a -r 0 . 
T~ 

This completes the proof of Theorem 3.3.4. 

3.4 The Poisson point process liffiit theorem for the upcrosstngs 

56 

1111 

As in the previous sections, (E;(t); tEIR) will be a stationary 

~tochastic process defined on sorne proba~ility space (~.F,P) and having, 

with probabil ity one, continuous sample paths. (uT; T > 0) will be some 
"-

given ,family of constants, with uT -r00 as T -+00 .. As in Chapters land 

2: B will be the a-field of Borel subsets of (O,l] and fi will be ) 

the set of non-negative integers ta which we add the point +co. For 1 

each , T > 0, consider 

lT: ~ x B -t- N 
(w,B) ~ ZT(w,B) 

where ZT(w,B) is the number of upcrossings of the level uT by the 



t ~ .. 

" t 

l' 

sample path Ut.éJ) within the' time set TB. Our first concern is to 

ShO.w that ZT is a point process, as defined in Section 1.2. 

LEMMA 3.4. l. FOl" ea-::Î, B E B~ t'rIt: f'w:c::or: 

lT(B): r2 -+ N 
w ~ lT(li-,B) 

is m.easW',:i!::~c. 

Pra 0.1'. Let [;, be the family of all sets ~ "in B for which ZT(B) is 

measurab1e. That r. contains the sets of the form (a,bJ (with 

o < a < b < 1) was proved (using a different notation] in Section 1.1. 

It follows easily that r. contains the field of all flnite diSjoint 

unions of such half open intervals. The a-field generated by this field 

is B. Hence, using the fact that the a-field generated by' a field 

coincldes with the 'monotone class generated by that field, we get 8, = B 

by showing that 8, is a monotone class. This is easlly checked. 111/ 

Let \.lu' be the mean number of upcross; ngs of the l evel u in th'e 

time interval (0,1]. When needed,'we will assume that 

(3.31) IJu < 00 for all u. 

Uoder this additional condition, Lemma 3.4.1 becomes 

LEMMA 3.4.2. If 0..31) hoZds .. then fol' eaeh ' B E B the function 

ZT( B): Q -+ N 
f' w.1-+ ZT ( w , B) . 

is a Y'andom variable. 
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Prao."'. We know already thé).t ZT(B) is measurable. Us·ing our additional 

hypothesis we get 

Hence ZT(B) is finite a1most everywhere. Thus it is a random 

variable. 1111 

We now fix w and look at ZT as a function of B. 

, 
LEMMA 3.4,.3. 'If (3.31) hoUs, then fol' almost aU w in DJ the 

function 
\ Zr(w): B '-4 N 

B 1-+ ZT ( w, B ) 

is a [inite positive meQSU1"e. 

Proof. Clearly, for all w E)2, ZT(w) is a positlVe measure 6n B 
00 

00 

Slnce for disjoint B
1
· 's we have ZT(ul,.u B.);:: l ZT(w,B.) 

1=1 l ;=1 ' 
As in 

Lermna 3.4.~"we have ZT(w,(O,l]) < 00 for almost all For those w, 

ZT(w) is a finite positive measure on .B. 

The last two 1el11l1as combined give 

,­, 

1111 

Tf.lEOREM 3.4.4. If (3.;31) holds J then ZT is a point ~roqess. 1111 

Using Kallertberg 's result, the main' theorem of this chapter follows 
(' 

easily from the resul ts of the prev; DUS sections. 

THEOREM 3.4.5. Assume ,that the conditions Rl and R2 hold for the function 

ljJ(u) = ~u and some giv~n qa(u). Let (UT; T>O) be a fconiZy of 
" "-

constan ts J wi th uT ---4- 00 as T --+ 00 J such that for each a > 0 the 

candi tion De (uT) ho lds wi th respect to qT = qa (UT l. and such that the 

. '. 



" f , 

) 
1 

1 
conditio~ D~(uT) h~lds wi:h respect :-0 

i 
co'."..star:~ 'T W6 h:rJe 

(3.3;) 1 

then 

= ]J • 
U 

wheY'e Iz is a Poisson p01:nt pY':Jcess Iùi::'h 'inter;s~t!:' T. 

,1 
1 

Proof. 'By Kallenberg's result (Theorem 1.2.') it suffices to show that 

(a) 

\ (b) 

E [ZT ( ( a , b] ) tl-~ T ( b - a ) for a 11 0 < a < b < l 

P[Z ((3) = 0] --+ e-·1A(B) -for a11 B of the form 
T 

wlth 0 ~ al < b, < a2'~ b.~ < •• , < ak ( bk ~ l, 

Lebesgue measure of B.' - , 

where 

Now (a) follows at once since usi get . 
E[ZT((a,b])] =J(b-a)u -+1(b-a) 

\ uT 

To obtain (b) note that 
o 

o .:. P[ZT(B) :: OJ - P[M(T~) ~uTJ 

= P[ZT(B) :;:-0, M(TB) > uT] 

k 
~ 2 P[~(Ta.) >u

T
] 

i =1 1 

= kP~t;(O) > UT] 

k 

k 
U (a. ,b.] 

i = 1 ' l 

fi (B) l s the 

59 . 

since if the maximum in TB = .u (Ta.,Tb,'] "Iexceeds 
1=1 l 

upcrossings of uT in these i ntervals. then s( t) 
" 

UT' but there a re no 

must exceed uT at 

the initia' point of at least one such interval. Thus we have 

----t 
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By Theorem 3.3.4 we have 

k n k 
P[M(TB1~uTJ = p[.n {M((Taj,Tb.J)~uT}J ~ exp(-1 L (b;-a;)! 

" ç J=l J 1 - i=l, 
1 - as T -+ 00 

Thus ~!III -

Certain stationary processes have sample paths so badl~ behaved 

that ~ ,=' += for all u. For these processes it is cl ear that Theorem u -

3.4.5 c'annot apply. It may however be possible to show that the point 

proçess Of c-upcrossings converges to sorne Poisson point pro~ess. 

For - LÜ E ri and B E B, let zi~)(w,Br ·be the \number of 

--.. E-upcro~s i ngs of thé l evel uT Withi n,the time set TB. As ln 

Section 3.3, ~ will denote the mean number of c-upcrossings'of the c ,u , 

level u wlthin the time interval v(o:n~we did for Grdinary . 

upcrossings, we.can e~sily obtain the following: 

T (c) 
HEOREM 3.4.6. ZT 

, 
is" a point pY'ocess. 11// 

Note that ln the present situation we always have ).J" < 00, 
c,U 

In Theorem,3.4.5, the ordinary upcrossings case, we had to assume 
, , 

that the condition Rl hold with \jJ(u) = ~. In the c-upc"ossings c,ase, 6!' 

it 'iS enough to assum~ that ;'t o'holds for ~Dme \jJ(u). p' \ 

L EM~lA < 3. 4 . 7 . If the condition Rl holds foY' sorne function 

, , 
""-.Q-

~(u)~ Ithen 
'- T-- ~--

(3.33) .f OY' a ZZ sma 'll, enoug h c . 

FPoof. By hypothesis we have, for sorne hO > 0, .. 

(3.34) / 

" 

" 

r 



,1 

0, 

1 

Let us wrlte Z*(c,u,T) for the number of l-upcrossings of the leve1 u 

in the time interval (O,T]. C1early Z*(E,U,::) 1S either zero or one, 

Hence 

so that 

e~c,u = E,[Z*(e,u,-s)] = P[Z*(E,U,E) = 1] ~ P[M(E) >'u] 

P[M(E) > u] 
lJe,u .:s. [ 

{Hence, for 0 < E < hO we get, using (3,34), 

(3.35) 
)JE , u 

li m sup iRU) ~ l 
u4O' 

Cl early we have' \ 
<,1 * P[M(2E) > uJ ~ P[M(E) > uJ + p[Z*(E,u,2E)-Z (s,u,E) = 1] 

Hence we get 

\ 

'-

= P[M(c) > uJ + E)J U " 
E, 

2 P{M(2=) > uJ P[M(~) > uJ < )Je ,u 
2cdu) - (:'t tu) - "0UT 

Letting u.".oo and using (3,34), we get, for 0 < E < h012, 

lJ 
l ' 'f C,u .:s. lm ln 'J,T.":T , 

U-t<XJ \jJ \ U , 

Together with (3.35) this gives us (3.33), 1111 

~ THEOREM 3.4.8. Assume that the conditions Rl and R2 hold for sorne given 

1j;(u) and qa(u). Let (Ur; r>o) be a gi'IJen family of constants~ ùJith 

ur ->- 00 as T -+ oo~ such that fOr-et1(Lh --a > 0 the condi tion De (uT) < 

holds ~ith respect to qr = qa(uT)~ and such that the condition D~(uT) 

holds ~ith respect ta 1jJ(u), If foT' sorne positive constant 1 ùJe have 

----
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(3.37) "z(E) w T ~ Z as T -+. 00 , 

ùJheT'e' Z 'ts a Poissor.. poir.."!: pY'ocess 1.J:-th intensit;; T. 

P:J:'Oo • .(.'. By Lerrma 3.4.7 we ha ve 

].J , 
E, U l 

"~--+ as u -+ cc, for a 11 sma 11 enough E. 

It follows easily that the conditions Rl, R2 and D~(uT) hold for ].Je,u 

as well as for ~,(u) and that (3.35) holds with].J instead of 
E ,uT 

0i(uT), for all sma11 enough 'c (3.37) is then easily obtained by 

repeating verbatim the proof of Theorem 3.4.5. 1111 

3.5 Connected results 

As in the dl screte case, we can obta,i.n from the theor~ms of the las t 

three sections some interesting connected results. 

Gnedenko's theorem 

In C~apter 2, Gnedenko's theorem on the possible limit distributions 

of the normalized maximum of a sequence of independent and identically , 

distributed random variables was extended to the case of a stationary 

Lsequence. It i~ reasonable to believe that such a result should hold for 

the maximum of a stationary process. It does indeed. 

THEOREM 3.5.1. Assume tha,t the condi,tions Rl and R2 hold foT' sorne give'n 

w(u) and qa(u). Suppose that foT' sorne families 'of constants aT > 0 

and' bT ?Je have 

62 
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(3.38) 
,1 

x. the far7i:y uT = x/aT +bT ~s s"vié'h th.:::t T~ (uT) if! bur:it:ù· an3 ."':)21 

"-

each a > 0 the cor0.:tior; Dc(uT) h:J~_Js for qT = qa(u
T

), Ther: G ,'r;, 

7ist~d in ~neGre~ 

'\ 

Prao}'. Take 0 < h < hO' hO as in condition Rl. From (3.38) we have 

Pra h(M(nh)-b h) < x] ~ G(x) as n -.. DO n n-

This can be written as 

where we write 

The sequence 

P[a (M -13 ) < x] ~ G(x) ,as n -+ 00 n n n -

C - b I-'n - nh 

Mn = ma x {ç l ' s2' ... , sn} 

ç. = max{~(t); (i-l)h < t < ih} 
l . - -

( ç .; i = 1,,2 ; ... ) 
l 

i s statinnary and, as in the proof" of 

Theorem 3.2.2, for each x the condition D(v
n

) holds for the sequence 
, 

v = xia + 8. Thus by Théorem 2.5.4, Gis one of the three extreme n n n 

value types listed in Theorem 2.5.1. 1111 

Associated sequence of independent random variables . 
Theorem 3.3.1, on the convergence of P[M(T) ,:.uT], may be related 

to the corresponding result for sequences of independent and_identically 

distributed random variables in the following way. 
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THEOREM 3.5.21. Ass;,('T/~ tha-':"tn( cw0i:ic;:€ R1 ay3. R2 hobd ;ùr 30,..,e piven 
1 

\,,'(u) m:d qJ(u). Let (UT; T > 0) be c: • .rar1~7y of constants, w;'fh 

uT--+oo as l-+ro, such that for"each a> 0 the cond-:tion·J1c (u'r)1 

hoZà lJitt-, respect to qT = qa(uT), art3. such thùt the condition D~(uT)'· 
" If 1 

ho ~ds lJi th jrespect to iJ-' ( u) , As sUl'Ie moreover t'ha: for sorne fixed h, 
, , 

o < h < hO~ 
1 

T -+,00. »1el1, for 0 < p ~ l, 

" 

1 
1 

1 

if anil mPZ1A if 
1 v 

" 

P [M < u' hJ -+ P n - n 

as T -+ 00 

as T -+ 00 , 

lJhere Mn = ma~{ç1,ç2,···,Çn} for SO"1e sequence, (Çi; i =1,2, ... ) of 
-: 

independent a';.:i identicaZly distributed ra}uioT" variables lJhose marginal 

distributioy. function F satisfies , , 

Proof. This is easily obtained using Theorem 2.3.1 and Theorem 3.3.1. 

1/// 

The k-th largest local maxim~ ( 
Suppose that with pr.obabi1ity one the sample paths of our stationary 

process (~(t); tE~) are continuous1y differentiab1e. Let 
-

be a given family of constpQts. Let ZT be the number of loca1 1maxima 

within the interva1 (O,T), for which the process value exceeds the 

1evel ur For the rest of this section let us write ZT fOr ZT((O,l]), 

the number of upcrossings of the 1eve1 uT' within :the interval (O,T] . 

. -':Clearly there is at 1east one local maximùm between any two upcrossings. 
~I 

Hence' 

r 
1 • 

'\ 

J • 
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(3.39) 

If the sample paths are not too irregtJlar and if T is larqe, so that 

uT is large, it is reasonable to hope that' ZT and ZT will be approxi--

mately equal. Let us write lJ u for the mean number of local maximum 

above the level uT wlthin the interval (0, 1).' By stationarity we 

have E[ZT] = TD . 
uT 

LEM~1A 3.5.3. Suppose T).1 -- T > O~ as T-+oo~ and surpLÎse tn:lt ~ 
uT 

G~ - lJu as t-+oo. Ther.. E[IZT-ZTIJ-+O. ':'hus for every r..on-ne[1.1 {"Je 
T T 

integer k we have 

P[ZT = k] - P[IT = k] -+ 0 as T -+ 00 • / 
Proof. From (3.39) we get 

from whi ch 'we get Th5 in turn impl ies that 

'(ZT-ZT) -+0 in probabil ity/' giving P[ZT t ZT] 0, and hence 
/ 

( P [ZT = k] - P [~T = k]) -- O. ' 1111 

Now let us write M(k)(T) for the k-t largest local,..maximum in 

( 0 , T) • Cl ea r l y 

(3.40) 

/ 

1 J 
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THEOREM 3,\?4. ASS:<.T'H? 0::1.":- th, con:!,'f-c"éJ1:S Rl aru::. R2 hc':J f':Jf' th.:? ."'U1î:-:-;·or: 
<' 

c:Jndition Dc(uT) hoZds witk res~ect to qT = qa(UT)' and suer. trwt the 

cond.:t{.or: D~(UT1 hoUe with respect ta Ij!(u) = l1u' Suppose morecn'eY' that 

;.ou - Il as T __ oc. I . .r ,f'or Sorryt? 1 > 0 
T uL 

T W -+ T as T -+ 00 ' 

uT 
the)] 

(3.41) 
(k) k-l s 

P[M (Tl .:. uT] -- e-
T l T Is! 

s=O 

Prpof. By (3.40) we have 

k-l 
, (3.42) = P [ZT < kJ = L P [ZT = sJ 

s=o 

By Lemma 3.5.3 We' Ihave (P[ZT = s] - P[lT = sJ) -- 0 and by Theorem 3.4.5 

[ ] -1 S ( . ) we have P lT=s ~ e 1/5! Combining these two results with 3.42 

we get (3.41). " 1//1 

We concl ude th; s short seri es of. appl ica~ions with a conti nuous 

parameter version of Theorem 2.~.9. ",", 

THEOREM 3.5.5. Assume that the conditions Rl and·R2 hold for the function 

~J(u) = 1-lu and sorne given qa(u), Suppose that for sorne families of 

constants aT > 0 am bT ùJe have 

foY' sorne non-degenerate distribution function G. FoY' each X > 0, 

suppose that fol' uT = xlaT + bT the condition De (uT) holds with respect 



/Je have 

(3.43) 

/JheY'e 

du) = )... . u 

as T -+00. 

,1>. 
\~i" 

P [a
T 

(M ('k) (T) -b
T

) .::. X J ~ G
k 

(x) as T -+ 00 

k-l .; 
= { G(X)s~o(:109 G(x)) /s! 

o ' 
iF G(x»O' 

if' G(x) = 0 . 

\ ?Poof. First observe that the conditions of Theorem 3.5.2 are satisfied 

(if condition D~(uT) holds with respect to ~!(uTr, then Ty(uT) is 

bounded) . ~ence G is one of the three extreme value types 1isted in . \ 

Theorem 2.5. l . Thus Gand' G
k 

are everywhete conti nuous 50 tha t -+ 

means convetgence at every point x. Let x be suc~ tta!t G(x) 

Put G(x) = e- 1
. By Theorem 3.3.1 we have T1/J(u

T
) -+1, i where 

\ 

UT = x/aT+br Hence by Theorem 3.5.4 we have 

(k) k-l s 1 

P[M (T) .::.uTJ -+ e-
1 I 1 Is,! 

, " 5 =0 

or, equiva1ent1Y 

. k-l 
p[aT(M(k)(T)-b

T
) 2.xJ -+ G(x) L (-log G(x))s/s! 

s=O 

) O. 

If X is suçh that G(x) = 0, then for every y with G(y) > 0 we 

have, "si nce for such y we have x < y, 
1 

Letting T -+ 00 we get 
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(3.44) 
( ) . - k- l 

l'im sup P[aT(M k (T)-bT) ~xJ ~ G(y) L (-log G(y))s/s! 
T->o:· s=O . 

" As y decreases to yO = inf{y: G(y) >O}, G(y) decreases to O. Hence 

the right hand side of (3.44) goes ta O. Thus 

whenever G(x) O. Therefore (3.43) ~olds. 111/ 

.' 
/ 

/ 

1 

/ 
" 
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4.1 Introduction 

CHAPTER 4 

STATIONARY GAUSSIAN PROCESSES 

• 

1 

The results of Chapter 3 were obtained for stationary process~ 

satisfying certain condltions. These conditions were, written, more or 

less dlrectly, in terms of the distribution of the process, i.e. in 
, 

terms of the family bf finite dlmen~ional distribution functions of the 

process. We now tUTn our attenti on to the case where the process i s 

Gau~sian. It turns out that the distrlbution of a standard stationary 

Gauss;an process is completely characterized by the covariance function 

69 

of the process. Hence a condition on the distribution of 5uch a plrac~ 
can, at least in principle, be written as a condit~on on the covariance 

function, and vice versa. 

Berman [1971~ obtained Theorem 1.1.1 for standard stationary 
j 

Gauss~an processes, having continuous sample paths with probability one, 
~ 

and whose covarlance function r(t) satisfies 

(4.1 ) r"(t) exists, 

(4.2) r(t) log t --- 0 as t --+ 00 • 

.., 
The,main goal of this chapter ;5 to show that under Berman's hypothesis 

we h~ve 

(a) the condition Rl holds with, 1)i(u) = )Ju 

(b) the condition R2 holds with 1)i{u) =)Ju and 
, a 

"Cl (u) = -a u 
(c) for each a > 0, the condition Dc(uT) holds with respect to ~i 

t~e family qT = qa(uT) = a/uT' whenever uT is such that 

'-fT )Ju 
T 

--+T for sorne T > O. 

.. 
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(d) the c,ondltion D~(uT) holds with respect to JI(U) ="Wu whenever 

uT is such that T-w ~ 1 for sorne 1 > O. 
UT 

Thus the results of Chapter 3 hold for 'a standard stationary Gausslan 

process, having continuous sample paths with probability one, and whose 

covariance function satisfies Berman conditions (4.1) and (4.2). In 

particular, Theorem 1.1.1 holds under Berman conditions. 

This approach does not reduce the amount of work required, but does 

bring the GaUSSlan case withln the general framework,. 'We will see that 

Berman conditions ~re' almost necessary for Theorem 1.1.1 to hold. This 

shows that the conditions of Chapter 3 (Œonditions Rl, R2, Dc(uT), D~(uT)) 

are not too restrictive. 

4.2 The covariance function and the spectral distribution function 

Before we attack' the core of this chapter, we have 'to explain what . 
it means to say that the di~tribution of a standard stationary Gaussian 

process is corn letely characterized by the covariance function of the 

proces s. 

Let (Ut); tE~) be a standard stationary Gaussian process (SSGP) 

defined on sorne probability space (~,F,P). As far as probability theory 

is concerned, the value taken by ~(t) at a given point w E ~ is not 

really important. What real1y matters is the family of finite ~imen­

sional distribution functions ,(fddf's) of the.process. i.e. the family 

, k 
{Ft~,t2, ... ',tk; (t1·t2' .. ··tk)E6{; k=1.2, ... } 

where F is the joint distribution fû~ction of 
t 1 ' t 2 " ... , t k 

(~( t l ), .. ., ~ ( h)) , i. e. 

. , 

\\ ' 
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It 1S important to characterize those fami1ies of fddf's which are the 

fami1y of fddf's of some SSGP. 

A we1l known resu1t of elementary probabi1ity theory says that a 

function F on ~ satisfies the conditions 

~, Fis non-decreas i ng 

1im F{x} :: 0, lim F{x} = 
x+-oo x++ro 

• fis right continuous 
o 

if a)ld only if there exists a random variable X, defined on sorne 
, 

probability space (ro,F,P), such that 

F(x) :: P[X~xJ for all x E Iii . 

Such an F is called a (l-dimensional) dlstributlQn anctlDn. Simllarly , 

a function F on ~k satisfies the conditions 

• Fis non-decreas i ng in each of its variabl es and 6b_/(a) ~ 0 

k 
for all a ~ b; a, b E. ~, (where, for a:: (al"" ,a k) and 

b=(bl .... ·bk), a<b means a.<b for i=l, ... ,k, and 
- l - l 

where ~b._a.F(a) 
l , 

= F(a1' ... ,ai_l'bi'aitl ..... ak) -F.(a) and 

L1b_/(a) :: 6b -a L1b -a .. '6b -a F(a)) 
l l 2 2 k k 

~ l im F(x
l

, ... ,xk) '= 0 for ~ach j and 
x ,+-00 
J 

Xk-l-OO 

• F is right continuous in each of its variables 

if and on1y if there exists a random vector (Xl'" .',X k), defined on 



.-' , 
-~ 

sorne probabi1ity space (~.F,P), such that 

Such an F is called a(k-dimensiona1 distribution function. Now 

co~sider a family 

(4.3) 

where each F 
t ···t is a k-dimensional distribution function. as above. 

1 k 
A question arises: when s r the fami1y of fddf's of sorne stochastic 

process (t;:(t); tEI'ii)? T e answer is given by Kolmogorov's theorem. 

THEOREM 4.2.1. The famiZ. r given in (4.3)~ where each Ft t 1-S 1 .. , k 

a k-diT'lensionaZ distribut,' on function~ is the ;'arriZy of fddf's of sorne 
o 

stochastic process (t:(t); t E(1) ::f and onZy i.L' the foZlowing ruo 

I. The symmetry condition. 

if 0 is a permutation o. {l, 2 •..• ,k} ~ then 

= Ft t {x (l~"" ,x (k)) 
0(1)'" a(k) a J 0 

II. The FoY' and 

/III 

The proof can be found in Cramer and Leadbetter [1967]. The following 

result follows at once. 
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'. 

THEOREM 4.2.2. The fa'71iZ;) r ç:i'i.Jer: tn (4.3), ù.'hCloe ea:::r. Ft ... t i$ Q 

l, k 

(i) the.s~et~j and'co~istencb cor~itio~$ are satis:ied, " .,. 
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( li) 

( i i i ) 

fol' and T E 6i~ F = F t, +T 'o' .. ,t k +1 t 1 ' ... ~ tk~ 
foY' f t ... t '1-S a k-d"~me'1sion:11 Gaussia1; 

l k 
distribution function 'with mear; vectoY' (0,0,: .. ,0) an} 

aovarianoe m.::. trix ( a t . t .; l .2. i ,j .2. k ) 
f" l J 

'" ... " . - l 2 k .1 DY' l - , ,..., . /11/ 

J 

Theorem 4,2.2 characterizes those families of fddf's which are the 

family of fddf's of sorne SSGP. Let uS write fa* for the class of all 

such famil ies. 

We now turn our attentlon to the covariançe function. If 

~(é:(t); tEdi) is a SSGP, then its covariance function is 1 

o 1 

(4.4) r(tL = E[t;(s)t;(stt)] , 

as defined in Section 1.1. As we did for the families pf fddf's, we would 

~, like to characterize those functions r(t) which are the covariance 

function of sorne SSGP. This is easily done. 

THEOREM 4.2.3. A real valued functi.on r(t). defined on 6i~ is the 
, 

covariance funcHor al[ sorne SSGP if and only if. 

(i) r(O) = 1 

(ii) r(t) = r(-t) 

(iii) for all positive integer k~ and for aZl 

(Xl'" .,Xk) in tR
k

J we have 

k k 
L L r(t.-t.)x.x. > 0 . 

j=l i=l J , J' 



'. 

• 

': 

\ 

c, 

.' . , 

1 

FToof. If r(t) is the covariance function of sorne SSGP then (i) and . 
(ii) follow easi1y from the definitions whereas (iii) follows from 

k< k k '2 
L L r(t.-t.)x.x. = Hi L xoE,(to)1 ] > 0 

j = l i = l J 1 J 1 t= l ~ " 

Conv~rsely, suppose ~(.t) is a real valued fUl')ction, defined on 61, 

family r of / 

let Ft .•. t/ 
1 ,1< 

be the k-dimensional Gaussian distribution function wit~ mean vector / 
7 

1 

/ 
/ 

/ 

(0," ... ,0.) and covariance matrix (0,.) = (r(tl,-t.)). Note that fr'~ ~ •. lJ J n ~ 
'''~ (il) and (iii) the matrix (o .. ; l <i,j <k) is syrmletric and non egative 

lJ - -

definite so that Ft ... t is a wel1 defined k-dimensional Gau sian 
o l k / 

distribution fu~ction (see Cramer and Leadb~tter [1967, page/fi]). 8y 

(i) ~he diagonal elements of this coy~riance matrix are -all/equal ta one. 

'It is easily checked that the co,nditions (1). (ii) and (il;') of Theorem ' 
J 

4.2.2 ar'e then satisfied. Thus our family r is the f,lmilY of fddf's ot 
Q ! • 

sorne SSGP., ThlS SSGp has covariance function r(t). ' / / / / 

It is clear from- (4:4) that the covariance function of the process . ' 

is uniquely determined by the faml'ly of fddf's. The proof of Theorem 

4.2.3 shows that the converse is also true: qiven the covariance func-

tion, the family of fddf of the process is uniquely determined. Hence ,wè 
" 

have a natural one-to-one and onto ,co-r-respondence between the_ dass, say, 

, ... t.*,,, of all c~variance functions of SSGP's and tne class 8,* of all 

families of fddf's of SSGP's. 

Let us now restrict oursel ves to a 5mall er class of processes. We 

say that a SSGP is continuous in quadratic mean (QM) at the point t if 

.. 

"fi C 

\ , 
\ 

\ 

<9 



.... 

lim E[IE:(s)-~(t)!2J = a . 
s'-+t 

ThiJs limitation is by no means too restrictlVe. In the sequel we will 

only-----eonsider SSGP's having, w,ith probabllity one, continuous sample 
) 

'paths. and QM continuity is a necessary condition for sample path 
1 

1. . 
contlnul ty. 

It is easily seen (see Cramer and Leadbetter [1~67] ) that if 
j 

(EJ~); t Edt) ; 5 a SSGP with covariance funct lOn r( t) • then the fo 11 ow-
" 

; ng conditions are equivalent: 

~(t) i 5 QM èontinuous on tH 

~(t) is QM conti nuous a t ~; 0 

r(t) is continuous on tH 

• 'r(t) • i s continuous at 0 . ' 

Thu when we restri ct oursel ves ta QM'contir:Juous SSGP's. Theorem 4.2'.3 

bec.~ Q 

THEdREM 4.2.4. ''Â, l'eal Va ~ue:1 function r (t) J de fined on dtJ 

covlianee funetion of some Q'! continuo"s SSCF if and only if 

1 (i ) r( 0) == 1 

1(;;) r(t) = r(-t) 

(~i i) fol' aU positive integer kJ 
'. .. 

\ k 
(xl" ,'. ,x k) in 61 J we have 

and foI' al l 

k k 

is the 

and ' 

, . 

\ 
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L L r(t.-t.)x.x. > 0 
j == l --..1'== l J l J l 

\ . 

(i v) ~) . '., 
'1-8 cont'1-nuous at 0, 1111 

, \ 

\ 
\ 



o 

The one-ta-one and onto correspondence between .r.* and 8,* reduces to a 

one-to-one and onto corresporidence between t, the class of al1 , 

covariance functions of QM continuous SSGP's, and 8", the class of a11 

farnilies of fddf's of QM continuous SSGP's. 

The readerwith basic knowledge of Fourier transforms, as applied to 

probabil ity th~ory, has observed that Theorem 4.2.4 says rnerely that the 

class ! is precisely the class of a11 real valued so-ca11ed charac­

teristic functions. It follows (see Lukacs [1964]) that the map~ing 

is a one-to-one and onto'forrespondence between the family N of'a11 
--:::::. ..... - ,., 
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symrnetric distribution functions G (i.e. G is a l-dimensional distribu-
i 

tian function an'd G(-X\) = l-lim G(t), for ea'ch x) and the farnlly .r. 
" ,Ux 

of all covariance functions of QM continuous SSGP's. Thus if r(t) is 

the covariance function of sorne QM continuous SSGP, then it can be written 

as 

(4.5) r{t) = [ cos H dG(,,) 
_00 , 

for some G in N. This represe.ntation is unique. G is then called 

the spectral distribution function of the process. 
'f 

Thus any two of ~,! and N are, in a very natural way, in ,a 

'one-to-one and onto correspondence. Hence the.distribution of a QM ' 

, 
\ 

'" 
; 

continuous SSGP, i.e. its family of fddf's, is completely determined by 

its covariance function, as well' as)by its spectral distribution function. 

-', 



l' 

1 ~ 

4.3 Analytical properties of the sample paths and finiteness of the 

mO,ments of the number of upcrossings, 

In this section we will give necessary and/or sufficient condltions 
" 

for a QM 'contl nuous SSGP to have certa 1 n properti es. ]11 the li terature, 

although they are usually qiven in terms of the covariance functlon, 

these çonditions are of,ten 9iven in terms of the spectral distribution 

functlon. Since (4.5) deflnes a one-to-one and onto correspondence 

between N and .f. ;t ;5 clear that to a condltion on the covariance 

function correspdnds a condition Qn the 5pe6tral distribution function: 

and vlce-versa.' 

Conditions on the co~iance functlon and the spectral 

distribution function 

" ~ 
THEOREM 4.3.1.~ Let G(À) be i~ N an3 let r(t), be th~ aopres~~rJi~~ 

ele"7('Y!t in .f., Le. r(t) 'LS g1.-wn by (4.5). Then 

(4.6) 

(4.7) r(t) has a fourth derivative 

(4.9) 1 

r(t) has a ?eco'nd derivative. and for b > l sorne 

rlt(t)-f"(O) = o ( Il og 1 t 11-b) as t--O 

~ 
r 

"'-

'" --., 

• 
,', " ,',- ,., 

, "Jo .... , ... 
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.f 
( 

('4 . 1 0 ) 

(4.11) 

(4.12) 

(4.13)' 

(4.14) 

(4.15) 
1 
! 

, , 
1. 

-\ 

r(t} has' a second derivative.,and for some é > 0 

J: rll(t)-rll()) dt < cc 
t 

~ 

'-

~ 

, 
~ .-

r(t) has a second derivative 

u 

\ ~ 

for sorne a > l we have 

for sorne b > 1 we have 

dt) -r(O) ::;; O(!log!t!!-b) as t -+ 0 ' 1111 

Note that (4.7), (4.9), (4.11) and (4.13) are respedively Cramer, 

Belayev, Qua11s and Berman local conditions for Theorem 1.1.1 to hdld. 

C1ear1y we have (4.6) ~ (4.8) => (4.10) => (4.12) => (4.14). The equiva­

~ences (4.6) .. (4.7) and (4.12) ~ (4.13) are well, kn~wn resuÙs (see 

lukacs [1964J). Qua11s [1967J obtained (4.1'0) ~ (4.11) qnd Belayev 

78 
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[196l} obtalned (4.8) ~ (4.9) and (4.14) ~ (4.15). 

In the 11terat re,'the conditions (4.7), (4.9). (4.11) and (4.13) 

often appear under an equiva1ent form. We state those'equiva1ent forrns 

that are common1 used, 

(A) Conditio (4.7) is equlva1ent to each one of 

• te fourthOderivative of r(t) exists at t = 0 . 

he fourth derivative of r(t) eXlsts and is,continuous 

(4.16) 

(B) Condition (4.9) 15 equiva1ent to 

4.17) 
.r 

• r(t) 

2 
À2t 2' b 

= 1 --2-+0(t Ilogltll- ), 
" 

1 < b < 00 a np sorne 0.::.. À 2 < 00 

as t-+O, for sorne 

(C) Condition (4.11) is equivalent to each one of 

(0) 

dt) has a second derivative, and for sorne é > 0 
1 

.1 

\ J
o ri ( t ) - t r" (0 ) 

2 dt 
o t 

< ex:> 

• r{'t) has a second derivative, and for,: sorne 

Condition 

J
o r(t)-r(O)'-r"(O)t2/2 dt < 00 

, i 0 t 3 
1 

(/3) i 5 equiv, lent to each one of 

ô > 0 , 
" 

• the second derivative of r(t) exists at 't = 0 

the second derivative of r(t} exists and is continuous 

evi~ywhere ' 
/ 

~ " 
(l 

\ 
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'1, 

... 

(4. 18) 

2 
\2 t 2 

• r(t) = 1 --2-+o(t } < 00 for some 0 ~ :\2 

(E) Moreover if (4.17) or (4.18) holds, then 

" 

and if (4.16) n'61ds, then in additlon we have 

The results (A), (0) and H) can be found in Lukacs [1964J, ,(8) can be 

found ln Cramer and Leadbetter [1967J and (C) can be found in Qualls 

[1967J. 

Sample path analytical properties 

We say that two stochas;ti~ processes (t;:(t); tE!R) and 
-

('l(t)~ tE61), deflned on the sarle probability space, are equivalent if 

for each' t in 61 we have Ut) = 1î(t) a1most'everywhere. The follow-

ing theorem sUfT111arizes some results concerning samp1e path continuity 

and differentiability. 

THEOREM 4.3.2. Let (~(t); tE6\) be a, SSCP with 'covariance function 

r(t). Then the foZlowing ~esults hold. 

(a) If dt) is conti'1uous, then (t;:(t); t E 6\) has an equivalent 

version such that either 

(i) , with probahility one, ,the sample paths are continuous., oio 

(ii) with probability one, the sample paths have discontinuities of 

the second kind at every point 
., , 

(b). If r(t) satisfies (4.15), then (~(t); tE6{} has an equivaZent 

version having, wi,th probability one, continuous sarrrple pat(zs~, 

80 
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Hunt [1951] obtalned samp1e path differentiabllity and sample path 

continuity under conditions (4.8) and (4.14) respectively. These condi-

tions on the spectral distribution function are often called, Hunt's 

-diffèrentiabil ity condition and Hunt '5 continuity condition. They are 

known to be close to necessary. Belayev [1960,1961J obtained (b) and"(dl 

above by translating Hunt's condltions on the, spectr~l distribution func-
1 

tion<;nto conditions on the covariance function (this is a pprt of 

Theorem 4.3.1 )., He also obtained (cl. Davies and Dowson'[19i5J showed 
, 

that almost everywhere dlfferentiability cannot be replace,d by everywhere 

" differentiability in (c). (a) is due to Dobrushin [1960J. 

The moments of the number of upcrossings 

We now di scuss sorne resul ts on the moments of the numblt of 
1 ~t 

upcrossings Zu(T) of a level u by a SSGP, say (~(t), tE~), during 

the time interval (O,TJ. 

If (~(t+h)-~(h))/h converges in quadratic mean (OM) as h------+;P, 
/ 

then the 'limiting random variable, which is unique up to equivalene,e, is 

denoted by ~I(t) and is called"the QM derivative of the process at the . , 

~nt t. 
It i s eas ily seen tha t t;: 1 (t) exi sts i f and 0 n l y i f r" (t) 

xi sts. (Hence i[Yexists at the point t = 0 then i t exi sts 

at ~very point t L 
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4' 

Mk(T) = E[l CT.)(l (T)-1)"'(Zu(T)-(k-1))] , u u l ' 

The foll'owing theorem was obtâiïned by Cramer and leadbetter [1965] under 

the assuiT1ption that the process has sample path derivative. Y1visaker 

[1966] showed/that the eXlstence of a QM derivative is sufficient. 

THEOREM 4.3.3. Let (Ut); tEIR) be a S'SCF lJhosc spectral distY'ibut-:Ol1 

funct{ on G (À) p08sesses C continuo1A.s CO"'t)onent ar.d a fini te second 

moment )'2' (F~o"" the abov2 -y'esults it fo:701J8 Hut (E;(t); t EIR) has 

a~, equ{vaZent vcy's;·:xy. w:'th ccnl;inuous s:L"'7ple paths. We assume that wc 

are dea.îinç with such a vers ':0;:) • Let lu (T) and Mk(T) , be as defined 

above. Then .,+'0[' k =. , ,2, .•. Je foZlô,,,,,ill? equ:ûity halds, lJhetheY' both 

sides are finite OT' not: 
/. 

(4.19) Mk(T)'= JT"'~JTr ... rYl···YkPt ... t (u, ... ,U,y"""Yk) 
o 0) 0 JO 1 k 1 

dYl .. ·dYkdtl·· 'dt k 

whel°e Pt ... t (xl"" ,xk,y, , .. , 'Yk) is the joint density of 
, k 

~(tl),···,~(tk)'C(t1),··.,E;'(tk)· 11// 

The spectral distribution function. G(À) is assumed to have a conti-

nuous component only to guarantee the existence of the mentioned joint 

density. For k = 1. (~(t),E;'(t)) a'lways have a joint density 50 that 

we don't need this extra assumption on G(À). 

Fonnu1a (4.19)' can in principle be eva1uated in terms of the 

covariance function r(t) and its derivatives. Q'f course, in genefal 

the expression 50 obtained i5 net yery usab1è. For, k = l or 2 we may 

hewever obtain a manageab1e form. 

1 

\ 

\ 
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If k:: l, .then formula (4.19) reduces to 
-pc--~ 

(4.20) ITfO: \ 
E[Zu(T)] = 0 eYPt(U,Y)dYdt (finite or not) 

1\ 

where p.t(x,y) is a bivariate Gaussian density with mean vector (0,0) 

and covariance matrix 

sa that . 2 
1 -l/2 1 -y /2)2 

pt{u,y) = - e -- e ' 
y~ /2~À2 

Thus (4.20) becomes, after integration, 

(4 . 21 ) 

which is a1ways finite. Note that in the statement of Theorem 4.3.3 it 

i s· assumed that Ylvisaker [1965] showed that if )2 = +00 then 
" 

E[Zu(T)] :: +00. Thus (4.21)' always holds. 

If k = 2, then formula (4.19) reduces ta 

(4.22 ) E[Z (T) ( 
u 

This' time' Pt t (x l ,X2'Y1'Y2) ;5 a 4-dimensional Gaussian density with 
l 2 , 

mean vector (d, ,0,0) a.nd covariance matrix 

! 
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~ j 
l 

hOlds) then E[Z (T)(Z (T)-1)] < 00 and (4.22) ,can be written as 
u u 

(4.23) 

where 

E [Zu (T) (Zu (T) - l )] -= 2 fT (T - t ) exp [ - u 2 / (1 +r (t) ) 1 B (t) 1 (b, h) dt 
• 0 \ , 

À
2
(l-r2(t)) .:: (r'(t))2 

S(t)= ' >0 
2-r(1_r2(t))3/2 

b = r"(t)(1-r 2(t)) +r(t)(r'(t))2 \. 

)'2(1-r2(t)) - (rI (t) )2 

h = url(t)r - 1- r 2(t) )1/2 
. l+r(t) lÀ (1-r2(t)) _ (rI (t))2 

, . 

1 (2 roc [ , 2+ 2 +2b l I(b,h) = .,--.... (x-h)(y+h)exp _x y 2 xy dxdy 
2-r:/l-b L h- -h 2(1-b ) 
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In his paper Qual1s ralsed the question of whether (4.10) is a necessary 

condition for finlteness of the second moment of Zu(T). Geman [1972] 

answered this question positively. 

The following theorem summar;zes the results on finiteness of the 

fi rst and second moment of Zu (T). 

THEOREM 4.3.4. Let (~(t); tEIR) be a SSGP having, with probabilitF one, 

continuous s~le paths. Let ~u and o~ be ~espectively the mea~ and 
'\ 

the var:ance of the numbe~'o: uDc~ossings of the leveZ u in the timè 

inte~val (O,lJ and let G be the spect~al distribution function of the 

process. Then, 

If in addition G has a continuous cGrriponent, then 

1111 
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'" 

l, 

• 

One can show that if dt) ->-0 as t--+<>:, then G(» is everywhere 

contlnuous. Thus Theorem 4.3.4 applies to the SSGP's consldered in 

Theorem 1.1.1 and we conclude that, in their respectlve versions of that 

theorem, Vo1konskii and Rozanov, Cramer, Be1ayev, and Qualls were al1 

assumi ng 2 Ou < 00 whereas Berman on1y assumes Vu < 00. 

We conclude this section wlth some comments on the expressions 

'(4.21) and (4.23) for the first and second,moments of the number of 

upcrossings. Fo'nnu1a (4.21) is ca11ed Rice's formu~a. It was first 

obtained by Rice [1945] for the case where the spectral distribution 

function is discrete with on1y a finite nUJ'TIber of jumps. In 1957 

Grenander and Rosenb1at gave a simp1er proof for the same case.' In 1960 

Ivanov proved the result for the' case wh€re the spectral distribution 

function has a fourth moment. In 1961 Bulinskaya proved the result under 
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Hunt's condition guaranteeing ~(t) to have continuqus sample derivatives. 

Finally in 1964 and 1965 bath It6 and Ylvisaker proved the result that 

Rice's formula holds, whether \2 is finite or not. 

A formula for the variance of the number of zeros during the time 
1 

interval (O,TJ was given by Steinberg, Schultheiss, Wogrin and Zweig 

[1955J., Volkonskii and Rozanov [1961], ;'n,'a footnote, obtalned under 

certain con'ditions, main1y that the covariance functian has a sixth deri-

vative, a formula for the variance of the number of upcrossings 'of a 

giyen level. In the case of the zero level, thear formula reduces to the , " 

one of Steinberg et al. Finally Leadbetter and Cryer [1965] obtained 

Steinberg's formula for the zero l.evel under the assumption that the 

covariance" function r(t) satisfies (4.11). This form~la, written in 

terms of r(t), r'(t) and ,r"(t), is derived ;n Cramer and tleadbetter 

[1967J. One can check that Quall',s formula (4.23) a1so red'uces to the 

\ 

---.., , 

, 1 
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" , 

forfTlul a of Stei nberg et al. when u:: O. 

4.4 
';':;; 

Stationary Gaussian processes satisfying Berman local 

and mi xi ng condHions' : 

Vie shall now prove the results announced in Section 4.1. namely that 
1 

the conditions Rl, R2, Dc(uT) an~ D~(uT) ,hold for SSGP's s,atisfying 

Berman conditions. ~ and ~ win denote the standard Gaussian density 

and the standard Gaussian distribution, respectively, i.e. 

and . 
tjJ(u} :: roocp(t)dt r 

The condition Rl 

Let (t;.(t); CE6\) be a SSGP, defined on30me probability soace 

(rI,F,P), whose covariance function satisfies Berman local condition 
<' 

'(4.1), or equivalently 

(4.24) r{t) t-+O 

where À2 ,;5 thè second spectral moment. From Section 4.3 we know that 

(~(t); t E 6t) is equivalent to a process having', with probability one, 

\ continu'ous sample paths. We assume that (~(t); tE6t) is itself such ,a 
\ '1 
Iprocess: We want to ~how that undër these assumptions the condition Rl 

oldsw;th Iji{u) = 

(4 25) 

, 
\ J 

IJ ,,\w; -. e. for some 
u 

P[M(h} > u] -t- 1 
hflu 0 

as 

" 
'-"-~~"""-. 

hO > 0 we have 

u -+00, Q < h < hO 
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where M(h) and 1-1 have the usual meaning. We shall first obtain u 
(4.25) for a very particular process. We will then"extend'~the result to 

the general case ,by showing that the maximum of the general process over 

1 [O. hl and :he max i mum of t he parti cu l ,r p rocess over [0 • hl behave . r 
similarly. , 

Let A ~nd <p be indepèndent random varfables on (~,F,P), A . 
1 

! 
l:\eing Rayleigh distributed with density 

2 
-x 12 xe x > ° , 

and cp beï ng ,uniformly di s tri buteçi ov.er 

be th e proces s defi ned by 

[O,2n], and let (~*(t); tE,fl) 
" 

, Q 

. , 
',t;*(t) = A cos(~t+~) 0 

where À2 is as in (4.24), Hiis easily seen that (t;*(t); tE(\{) is a, 

SSGP with continuous ~ample P?ths and with covarianceCfunction r*('t) 

sadsfying 

(4.24)* 

2 
À2t 2-

r*(t) = 1 --r+o(t ), as t ~O '. 

(~*(t); t EIR) i 5 sometimes called the tri gonpmetric process associated 

with (~(t); t EGi). It has the same second spectral moment. ,For this 

process, the distribution of the maximum over the interval [O,h], say 

M*(h}. is easily computefl. We get. for 0 < h <' Tl1.ff:i, 

. ..., 
hlf2. -u~/2 

P[M*(h)2. u] = ~(u)-2TTe 

Hence. using Ricels formula. we have, for 0 < h.< QTf/If2. 

..... 

• 1 

, . 

" 
,-



l!'. 

where of course ~* is the mean number of upcrossings of the level 
u ~ 

the p~ocesj?' (~*(t); tEdi). F'rom the well known relation 
- 1 

(4.26 ) u(l-O(u)) l as 
'l'(u) -; ~ 

u -->- 00 

we get, writi ng hO =, ni /f2, 

(4.27) ~[M ~~l > uJ -->- l as ~ -+00, 0 < h < hO . 
u 

88 

u by 
1 

Since 
~I 

(~(t); t:6{)~ (~*(t); tE6{) have the same spectral moment, 

Rice's f6nnula'gives us Hence (4.25) will follow from (4.27)" 

if we can show that 

P[M(h) >uJ - P[M*(h) > uJ -+ a as 
, hw 

u 

or, equivalently, if we ca'n s"how that 

(4.28 ) !P[M(h) ~uJ - P[M~(h) .$.uJ! --+ a as 
hw u 

We will ndw obtain (4.28). For each a > 0 we have 

1 

U~"'. 

tP[M(h) .:.u] - P[M*(h) 2. u] 1 .: Ip[M(h) 2. u].: P[ ~ {U
j
:) 2. u}] 1 

O<~h 

1 

, .4 . --;:U- , 

+ Ip[ ~ {U J:)2. u}] 

Od.~h 
-u-

p[ [1 {s*(ja) < un 1 
O~<h u­
-u-

. , 

1 
, 1 



1 

! + Ip[ .n u;*(jua) .::..u}}.- P[M*(tî) ~uJ 1 
Od~h -u-

\ 
".( I~ 

sO.that (4.28) will follow if we can show that each one of the fo"ow~ng 

three expressions goes to 0 as a decreases to 0: for smal] enough h: 
• 

~ J . 

jP[M(h).::..uJ-P[ ~ {~(J~)~~JI 
O<~h 

lim sup ______ -:--~u_-____ _ 
u-+oo ').lu 

\ Ip[.n {~(jua) ~u}] - P[ ~ {~*(j~) .::..u}] 1. 
O<~h Od~h -u-.. -u-

l im s up ---.:......~--------=-~------
u~ ~ 

1 p [ .n {~* ( j:) 2. il}] - P,[ M* ( h) .::.. u ] 1 

O<~h l im sup __ --=u __ -__________ _ 
u-><x ).lu 

/ ~ 

THEOREM 4.4.1. f,/itll thto a!:>(1)[ nota:-ion anJ ass~t'tions /Je have 
l ,. 

(4.29) 

foY' aU sma ZZ enoug h h. 

Proof· The fi rs t step of the 

large u. For conveni ence we 
1 

this case by a change of time 

proof is 

assume· 

sca,.le). 

= 0 
v J 

. a 
ta estimate P[~(O) < u < ~(-)J for u . 

>--2 = 1 (the general case r.educes to 

Let us write q = a/u. If 

ç = ~(q)-'~(O.) 
q 

. th€n we ha ve 

89 
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J 0 

p [ ~ ( tJ) < u < [( q ) ] p [ u - q: < [( 0) < u'] 

... , 

. .. 

LI ' 
= ri . p(x,z)dxdz 

, JO- u-qz 

= qfWr~p(u-qy,Z)dYd'Z 
OJ 0 '. 

if ' • 

'. 
1 . 

.. 

where 'p is the joint denslty of (~(O),c;). It is easily checked that 

90 

. ,. 
~ 

([(O),e;) has a bivariate normal distribution with mean (0,0) and with 

covariance matrix 
{ 

" = [ l'. (r(q)-l)/q~l 
( r ( q ) - 1 ) /,q 2 ( 1"- r ( q ) ) / q _ 

" 

Writing out thîs density we find that 1 
2
/2 

..1 

(2~ 1 LI) -
1
: 

2 exp (~ 2 
(1 - 2 ( ~ : 1 J T ) ) ) ) eU p(u-qy,z) 

'\ 
.~ (,12'" 22 

~ 
x e>\,p cnn+7 (1-r(q)) (-2uqytq y ) 

, q 
'2 ., 2 l . - -( r ( q ) - l )( u - qy ) Z t Z ) 

<;J. q 
, { 

whe,rè 12: 1 denotes the absolute value of the determinant of L It is 

eas ily seen that for fixed a 'we have 

ILl -+ 1 as U-roo. 

Usin~ (4.24), with .1.2 = ,," and recal1ing that 'q = aiu, one can check 

1 
that for eich a > 0 we have 

.. 
u2/2 . 1 a2 l' Il. 2 . 

e p(u-qy,z) -+ 2'TTexp{-8-~-2ayt~z+z )} as u-+ ro 

It'1llay also be'checked that over the integration range we have 

.. ' 
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" . \ 

wherè ~l' and Kz, are pos'itive constants-" not depending' on u. Hence 

by dominated convergen.ce we get , , 

2T llm e-u2/2rJZp(U_qY:Z'JdYctz 
. tlu-+:'" JO 0 • 

• e -a 
2
/

8 fol: exp (-J( -2ay+a,+,2}) dyd' 0-' 

- . 
= '~(a/2) - 4'( -a/2) , 

a,'2"i": 

i.e. 
\,. 

" (4.30) 
" 

l im P[e( O·) < u < t(ci/u) ] _ '4>(a/2 )-~( -a/2) 
, U-t= (a/uhJ

u - a/2"iï , 

for each a > 0: Now let Zu(h) be., as usual, the,number of'~pcr:ossing$ '\ 

of the level u Gy ~(t) in the time interval. (O,h]. Similarly, for 
,~ 

any q > 0, let N*(u,q,h) be the }lumber of points iq in ('O,h] for 

WhlCh E,:((i~l )q) < U < ~iq). By stationarity we get , 

~ E[N*(u,q,h) ] = [h/qJp[~(O) < u < ~(q)] 

Thus, if q = a/u, then using (4.30) we get, 

(4.31 ) lim Ë[N*(hu,g,h)] = ~a/2)-4l(-a/2) for each a > 0 . 
~ . U-tOO ]..lu. a /2TI 

Clearly {M(h) < u} C (), {t;(ja) < u} and it is easy to check that 
- O<ja/u<fl u-

their difference implies that either E,:(O) > u, or Zu(h) ~ land 

N*(u~,h) = Q. Thus 

," \ ' 

J., 



where we used the fact that Z "(h):'" N*(u,~,h) is nornegatïve ta get the , u ~ 

third inequality. Dividing by 11 anq Tetting u-+ oo , we get, using 
u . 

(4.26) and (4:31i, " 

(4.32) 

But clearl.x 

lim cll(a/2)-<fJ(-a/2) :: 

a tO a v'2-[; 

Hence (4.29)"-follows from (4.32) by taking the 11mit as a decr'eas'es 
',,-

to O. . " 1/1/ 

In arper ta show that as a decreases to 0, the seCond of the three 
, 

expressiar:ts 1isted before the statement of Thoeorem 4.4.1 goes to 0, we . 
need th~ following 1enma.· It ;s stated and proved as in Leadbetter, 

Li~dgren and Rootzen [1979J. 1he method used'in the pr00f was introduced 
, , 

o by Slepian [1962J and was later developed by Berma,n [1964, 1971a, 1971bJ and 

Cramer and Leadbetter [1967J. 
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L EM~lA 4.4.2. .suPPQSE: .:.:" ~2' .. , . ,f,n ar'( S tcpulG1'c CaùssiJ.>' :PCl'F')~ Vé:.1'{,1-

b
., \. h . . , . l (1) V . 1 
ves ù)"t CO;JaY'~anct?'rr;a7TU /\ = \j' mi.:'] :"n2~ ... ,hn s~T7ï:cn<:. 

1.L,ith c:?variallce l"'1at1'i~ p,O = (."..~.), ad l'et p. •. = max( 1.\ ~ .1, IA~.I). ' .-
, 1J 1J' 1J' 1J 

J'kr>ther'. Jet- ~ = (u,,' ... ,un) he 'a veetol" 0,""" l'ec.Z numbcrs and ùJritt' 
• il. 

, u = mi n ( 1 ul l , " ..• 1 un 1 ) . Ther: 

(4-,33) p [[ . < u~.; j = l , .' ..• nJ - P [n. < u .; j ::= 1 , ... , n ] 
\ J-J J-J 

~ i- l C\~ .-,\~.)+(l-o .. )-'/2exp(-i/(,+p .. )), 
TT l<i<j<n J 1J 1J 1J 

whel'e 
+ (x) = max(O,x). 

In pa:rt7'C!U:cœ, i; n" ... , nn arc independent and if 
l' 

é, = max 1/\· 1 < l, then .-1'01' aY'~~ T'ea: U an:i inte(le11 S 1.5.. Q,l < ... < Qs 
i t j 1 J 

(4.34) Ip[~~ ~u; j=l, ... ,sJ -c)1s(url ::.. K l Ir.,lexp(-u2/(1+lr .. I)) 
j l.5..i <j.:.s 1J . 1J . 

whel'e r·· = !'~'. S. is th" cOFrcZQtioYi betLJeen 
1J 1 J 

is a ccnsta>zf; (de~elldinç 01, 0)., Ij' fW"theY'Tl7ore 

~ Q • and ~ Q • J and K 
1 J 
(~n; n=1,2, ... ) ,isa, 

stationar'y Btandcœd Gaussian sequence with covarjance function r( n) 

and if then 

~~ n r 

(4.35)- Ip[~Q . .5..U; j=l, ... ,s? _Qs(u)! < Kn l Ir(i)lexp(-u
2
/(1+lr(i)ll1 

J . i =1 

Procf. We shall suppose that 1\1 and AO ar~ positive definite (as 
. 

opposed to nonnegative definite) and hence that (~l" ... '~n) and 

(nl ' ... , nn) have j(}int densities f, and f O; respectively. (The 

" nonnegati ve definite case is eàsi1y dealt with by considering 
, ' 

~.+E . l , and 

n.+E., where the El' are independent Gaussian variables with mean 0, 
4- 1 ~ 

and then letting Var(E;) -+0, using c'ontinuity.) Clearly 

" 



.. 

? 

----

p[~ <U.; j=l •... ,n] 
o • J - J 

:::: J'. ~ . ff (y) dy 1--
-oc 
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J 

1 

- 1 

1 

wher~ f
l 

and fa. a're the standard Gaussian densities based on-the ,1 \ 
l 0 h 1 ~ 0 

covar.iance matrices 1\ and II· If we write "" ,= h,". + (l-h)lI, for 

o < h < l, .the matrix •. ~h is p'ositlYe definite with units do~n the main 
- _1 \ 1 

. h l ( 0 diagonal and elements /1. ... :::: h\ .. ,+ l-h)/ ... for i t j. Let f h , be 
lJ lJ lJ 

. the stand/trd Gaubs ian dens i t/based on Ah, and write 

:::: f} ·If (y)dy h -. -
_00 

A ( 

The left hand side of (4.33) is the-n eQsily reco'~nized as F(n-F(O).~ 
. . . 

Now 

'-, --, , 

where F' (h) 
J 

~ faf h (~) .. 
= .,. dy 

ah -
_00 

0 h Ah The dens ity fh depends on h only throuQh~the'elements A •. 'Of 
lJ 

(regarding f h as a function of 
ho 

for i ~ j, say) . We have fi .. 
lJ ,~ 

h l i ndependàr(t of h, whil e for ; < j, 
h l 0 

Ai; = "Il .. :::: hA .. +(l-h)~ .. 
lJ l J ' l J 

50 ,that 

. Thus, h 

f 
~ J afh élA;j .... I - -d~ 

. . ~ h ah 
_00 l <J ail .. , 

- lJ 

F' (h) 

" l 0 J ~ f df h =_ l (A .. -A .. ) ... -h d~. 
,. " lJ lJ "lA l<J _00 OH·. • 

lJ 

\ 



. , 

'. 

. ' 

. -
, 1 

Now ~useful Rropertyof the mul tidimenslOnal no~mal densjty 

derivative with respect to a covarlance J\" is the ,sàme" as , J 

m{xed deriva~iv\,e with respect to the .'co.rr'eiponding variables . , li~ . '. 
(cf, Cramer and: Leadbetter [1967J). Thus 

" 

. ~. 

Ihus F "(h) 

. . 
" . 

T'he Y', a nd y j i nt~gra t i o.ns may be don~' a t once 'to 9 i ve 

(4.36 ) F'(h)~: l (~~·-J\~·)·fY"'Jfh(Y' =.U., y. = u.}i.l' , 
i <j , J .' J -cc .' l J J 

~. 

that its 

e second 

- l 

. .. 
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where fh(y· =;u., y .. =u.) denotes thé~funFtion of 0-2 v.ariablès formed_ 
, ~ , J. J 

by putting 
. 

y. = Ll., y. = U., 
l • l J J 

the integration'belng ovet the remaining 
.. " D j 

variables. . 
. 

We can dominate the l:~st integral by~ letting. th~ variables, 
. . . 

run from' _00 ..... to +00. But 

JI 

.~s just'the bivariate density, evaluated at (ui,u j ). 

Gaussian random va,yoiables with correlation J\~., and 
1J 

of two standard 

may therêfore be 
'\, ~ . 

Wrl tten 
, 

2. h 2 
l 

[ 
u. - 2A .. u . u . +u ') " _ __ --.----.--' ....... "'. l' J 1 J ~ exp - -

2n (1- (A ~ .) 2) 1/ 2 2'( 1- (i\~ , )~) . 
1J lJ 

~. 

(. , 
Since h IA .. I ;; 

1J 

1 O. . 1 0 
IhA .. + (l-h)i\' .. 1· < max(IA .. I,IJ\ .. I) = p .. 

1 J 1J - '1J 1J 1J 

J 
/' 

.. 



jl 

• a rid u = min(lu11·, ... ,lu 1) < min(lu l,lu.!) . n - l J 

-
it may be easilY shawn that the above expression is not greater than 

Eliminating the possible negative terms in (4.36-), we have 

'. 
F' ("h) < -2' l i/\~._AO.)+(,_p~.);1/2exp(_u2/(1+p .. )) 

- r.,' lJ 1J 1J 1J • \ l'-J . 

. Jl and since F(1) - F(O) = P(h)dh, we get (4.33). (4.34) and (4.35) 
. 0 _ ' ~ • 

" falloweasily. 1111 

T,HEOREM 4.4.3.' With thE' above notatIon and asswrrption wc have 

Ip[ ~ .{~(j~) ~u}] - P[ .n {~*(j~) ~u}] l' 
(4.37) 

O<~h . . O<~h) 
1 i m 1 i m su p __ --=-u_-_______ ----'-y_-____ · --- = D 
a-+O u--><:o Wu 

foY' al Z sma II enough h •. 

Proof. Writi ng ~j = t;(ja/u) 

~; = ~*(ja/lû) 

s = s(a,y) = [hu/a] 

. and using .-the above lerna, we get 

. 
1 

s s * 1 = P[ n {~, <u}] - p[ n {~. <u}] 
j=l J- j=l J-

< -21 L 1.A.·-A~.I('-p?·fl/2exp(-ii(l+p. .. )) 
- TIl ., 1J 1J lJ' 1J 

~l.<J~S , 

" 

, 
, 

\ . 
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1/ 

'-, 

, 

where fi.. = r (t . - t .), fi ~. ::' 'r * ( t. - t . ) t. = i al u . , 
lJ 1, J . lJ l J _1 '. 

p,. ::: ma x ( 1 Il . l,1ft. 1) :: ma x ( 1 r( t . - t .) 1 ,Ir * ( t . - t . ) 1) = p ( t . - t . ) 
1 J 1.J l J < ' l J -" l J. . l J 

p ( t) = ma x ( 1 r ( t) 1 ,'1 r * ( t) 1) . 

Fr~mk4.24) and (4.24)* we get 
0' 

Thus for sorne, hO > 0 and sorne ex > 0 we have 

(~. 39) ~ 
2 

l - p ( t) ~ 40. t 

Since 0.:. p(9 .:. l, we get , 

~ 
2 ,\. 2' 

1- p (t), '~.l J\p(t) '~1d4at , 
, ' 

and hence, 

for 

\ 
(4.40 ) l l " 0< 1 t 1 < hO, < for 

ll_p2(t) -
2hltl \ 

~ \ 
\ 

lU 

In the following, .K wi 11 denote a positive constant which may 
\ ' . 

< hO ' 

~e 
from li ne to 1; ne, Wri t,i ng 1jJ( t) = r(t).-r*\(t) arlp using (4.40). we see 

\ 

that the right hand s,ide of (4.38) i~ bound~d ~Y 

0< h < hO' 

. 
which in turn is boundecj by . / 

s IljJ(t·)1 ~ 2' 5 
Ks l'~ exp'(-,u /(l+p.(t.))) '= Ks l ~~..:::.w-

j = 1 1 t j l, J j = l. 

97 

s . . ' 
= Ks L (ja/u)eUa/u)exp(-l/(l+p(ja/u))) 

j=l , 
• 

It ;s eàsily se~n that this last expression is 

, , 

'-



• 

, bounded by, , , , 

(4.41) 

Now for: 0 <. h < hO and t::. j .2. s =" [hu/a], we have (ja/u) < h < hO' 
, -

Hence from (4.39) we get 

It fo11ows that (~.4l) is bounded ~y 

2 s .2 2 
Ke- u /2 L je{ja/u)e-a.l a 

j=l 

which in turn is bounded by 
'l, J \ 

2/2 s . 
Ke- u L j8(ja/u)nJ 

j=l 

2 
'-where n t= e-aa 

E (0, 1). 
o " , 

We have shawn that it a 1s a fixed'positive number, then for al1 

,small ~ough h we have, using Rice's formula, 

, . 
[hu/a] . 

K L je(ja/u )nJ 

j:: 1 

wher'e K > 0 and 0 < n < l do not depend o'n u and where 

e(tJ,:: Ir(t)-r*(t) 1 • 

. - t 2 

By (4.24) and (4.24)* we have e(t) --r 0 as t -tG. Since e(ja/u) is 

uniformly bounded (l.:.j .:.[hu/a], .u > 1, sày), by daminated convergeTlce 

we get 

1 

98 
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/ ' 
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[hu/a] . 
lim I·je(ja/u)nJ 

u--><x j = l 

[hll/a..] . . 
) l im jS(ja/u)nJ = 0 

'fl u-'><X 

Hence for a'> 0 and for 0 < h < hO (hO independent of a), we have 

Ip[ .r] {~(j:) ~u}] - PC' .r] g*(ju
a

) ~u}] 1 
O<~h O<~h-

li m _--'-,--=u=--_______ --=u::.--______ = 0 
u-+<x>" JJ u 

from which (4.37) follows trivially". / Il / 

,THEOREM 4.4.4. f-/:'th the above not:1tior an:! assurrrptionB we have 

1 P [ :' {~* ( j:) ~ u}] - P [M* (h) ~ u J 1 

Od·~h 
l im llm 5 up __ -_u_-_______ --=--'-__ = 0 
a+ü u~ . Wu 

for al: S~1ZZ enough h. 

Proof. The proof is the same qS for ,Theorem 4.4.1. li / / 

~ Combining the results of the last three theorems,we get (.4.28), and 

hence (4.25). Thus the condition Rl holds for SSGP's satisfying Berman 

local condition (provided we are dealing with a version hav;ng, with 

probability one, continuous sample paths). 'f 

The condition R2 

Again we consider a SSGP (Ut); tEOJ) whose covariance fu!,ction 

satisfies Berman local condition (4.1), or equivalently (4.24). For sud 

"a process the condition R2 is satisf.ied with ~(u) = ~ and qa(u) = a/u, 
U '-

i.e. 

(4.42) lim lim sup p[~(O)"<u, t;:(a/u) <u, M(a/u»u] = 0 
a-+O u-)oCO (a/u )fJ u 



, . 
..J 

This 'can be shown as fol1aws. Fran 

1 ~ ( 0) "u 1 = f ~ (0) , u, ~ (a / u) ; u -' v': M (al u ) , U \ 
" -

and using the fact that p[:-(O) ;::uJ = p[:-(Q)" u, ~(a/u)'=uJ :: 

P[M(a/u) = uJ = 0, wei get 

(4.43) 

p[C(Q) < EJ, ~(a/u)'" u, M(a/u), '> uJ 
(a/ur " u 

:: p[:-(Q) ~uJ P[~(Q) < u <' ~(a/uJJ 
(a/u)~ (a/u)~ 

u u 

_ 1-t(u)~ P[~(O)<u<r(a/u)]+ 
- - {a/u).,u "; (a/uLJ

u 

Rice's formula combined ~ith (4.26) glVes us 

P[M(a/u) ~ uJ 
- la/u),. 

. u 

P[M(a/1J) '> uJ 
(a/u L 

• U,I 

and from the proof of Theorem 4.4.1 we have (equatlOn (4,,30)) 

Thus H we can show that 

(4.44) l +~2TT/À2 

Q then from (4.43) we wi 11 have 

lim P[~(O) <U, ~(aju) <U, M(aju) >uJ = 1 ~(a/2)-~(-a/2) 
'U-KO' (a/uh1u \ - a/2TI 

\ 
1 

from which we get (4.42). 
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, 
We proceed as we did in obtaining con'd,ition Rl. Let (~*(t); tEtR) 

, be th!=, trigonometrlc process associated with (~(t); tEtR). From 

P [M* (al u) ~ u ] 

we get, for each a > 0, 

1im P[M*(a/u) > u] :: 1 +-;a1 121""/';"2 . 
(a/u ))J U-l« U __ __ 

Hence (~.44) will fo1'ow'from 

1 i P[M(a/u) > uJ - P[M*(a/u) > uJ u...: (a/u)uu ~ 0 , for each a > 0 

.. , 
or, equlva1ently, from 

, , , 

lim IP[~l(a/u)"< u] - P[M~(a/u) < uJ 1 = 
u4U (a/u)uu 

o , for each a >"'0 

. 
ThlS can be obtilined by arguments similar to those 1eadi'ng to (4.28). 

The condition 0 (uT) 
• c , " 

\, 

Let us now assume that our SSGP (~·(t); tEtH) ~has a covariance 
1 

function satisfying both Berman local condition apd Berman mixing condi-

t ion, i. e. 2 
À2 t 2 

dt) :: 1 --2-+0(1:;) as t-+O , 

(4.45) r(t) îog t -+ 0 as t -+00 • 

<" Moreover, let us assume that uT is chosen in suc~ a way that for sorne 
B 

"[ > O" 
, 

(4.46) 

. ' . 

. -

1 Dl 

. . 

.. 

".1 
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• 

,~ 
\ 
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(À~-[befOre we ~ssumepur process ~as cortin'uous sample paths. H:nce Uu 

;5 well defined. Furthermore, from Berman local 'condition it fôllows 
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that w < 00 for évery u. Thus (4.46) makes sense.)1 Under these assump-
U 

tions, we shall show that for ea'ch a> 0 the condition Dc(U T) holds 

Fix a > O. We must show ~~t there exists sorne 0. T,y satisfying, 

" for each e > 0, " 

(~. 47) 

\ 
such tha,t f~r any choice of 0 ~ s, < s2 < •.. < sp < t, < t 2 < .,. < t p" 

(4.48) 

The left hand~side of (4.48) stands for 

, , 

• ,_c 

loi P Ù ( s l ) ~ u'T' . . . ,~( s p) .:. uT' t: ( t 1 )'.:. uT" .. ,.t: ( t P ,.) .:. uT] 

- P[~(s',) .:.u·T"" ,t:(sp) .:.uT]P[~(~l) .:.uT":' ;~(otp.') .:.uT] 1 

and henc~ can be written as .' , 

o 

(4.49) 
, , 

in 

w~here ,(~l'" ':~p+p') 
covariance matrix 

is a zero mean Gaussian random vector based on the 
~ 

.. 

.... , 



i 

.' 

./ 

r 
'r(O) , r(s,-s2)" .r(s,-sp) 

r(s2-s,) r(O) '" r(S2-Sp) 

1 r(s,-t,) 
1 

1 r( s2- t , ) 

1 • 

r(s,-t2 ) ,,:r(s,-tp ') 

r(s2- t Z) ... r(Sz-tp,) 

l' . 
r(sp-s,) r(sp- s 2) .. ·r(O) 1 r(sp-t,) r(sp-t2 ) ".r(sp-t p') 

A ~ - - - - - - - - - - - - - - - -,~ - - - - - - - - - - - - - - - -
r(t

1
-s,) r(t,-s2) ... r(t1-s p) \ r(O) r(t,-tZ) .;.r(t,-tp.') 

r(t
2
-s,) r(t2-s2) ... r(tz-sp) 1 d t 2- t ,) r(O) ... r(t2-tp ') 

1 

r(tp:-S,) r,(t
p
:-s

2
) .. ·r(tp:-S p ) 1 r("tp:-t,') r(tp;-t2):~'r(à)' 

and (rl" ... ,llp+p') is a zero mean Gaussian random vector based on the 
,-

, covariance matrix ", 

r(O) r(s -s )·.·r(s -s ') , 2, ~l' p 
r (s 2-s,) r (0) : ~ .. r( s - s ) 

" ',' 2. p 
.... _-J 1 . . 

r{$ -s,~ r(s -s2)· .. r(O) 
* . pp, 

/, :: - - - - - - - -
Cl' 0 ,0 

a 0 a 

0 0 0 

1 

1 

1 

1 

1 
1 

o 
o 

a 

f' a . 0 

0 >" 0 

0 0 

~ - - - - - - - - - - - - - -q - -

: r(O) r(t,-t2) ... r(t,'::.t p ') 

1 r(tz-t,) r(O) " .r(t2-tp'~ 
1 
l ' . 
1 r(tp,-t,) r(t p,-t2)·· 'r(O) 

Hence, by Lemma 4.4.~, the quantity. in (4.49) is bounded by 

1 'i' !., * Z -1/2 (2 1 2 L I\··-I\··I('-p··) exp -ur/(l+p")J 
• '\:.i<j.:p+p' 1J 1J 1J 1J 

k
· h ) '. . Loo 1ng up at t ~ covar1ance matrlces we 

are dealing with, we see that the last expression is slmply . . . ~. 

l . ,2 -1/2 (2 ) Zn J !r(s.-t.)!(l-r (s.-t.)) exp -uT/('+!r(s.-t.)!) 
TI '1 < i <p 1 J 1 J 1 J 

1~J~~p' " . 

For each (i,j) .. in, the abo'Ve summation, 

~ -- -~-' 

s.-t. is of the form ka/uT 
1 J' 
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{, 

~ 
l';"" 
Q 

for some pos it·i ve i nteger k. For each 'such k there are 'certa i y 

more than [TuT/a] couples, (i~J) for which Si-tj;= ka/uT' since 
, . 

p+p' ~ [TuT/a]. Moreover for each '(i ,j) in the summation we ha~e 

Is
1
-t

j 
1.:: y. Hence the last expression 1S bounded above by 

(4.50) 

From Berman mixing 'cond1t,ion (4.45) we have r(t)-,-+Q as t-H'··. Com- 1 

~. 'bined w1th the fact that r(t) 15 çont1nuous, th1S implies that the 

supremum of i r(t) 1, as t· ranges over [') ,ex-,) , lS obta1ned at some 

point 't'of [j,")' If Idt.)l=l, then' ~(Q) ,and [(tJ are 
y ), , , 

1inearly related, since the} ari Sausslan random ~ariables, aS,are, by 

Ai 
104 

. , 
f;(t ) S (2t ), ~(O) [(2t ).' stationahty, and and hence 50 are and 

Y 1 l 

Thus 1 ((2\,) ! = 1. In th 1 s way it follows that -!r(kt )1 = l for a 11 
l 

contradlctlng the requl rement that r(t)--+O 'as t -+"-'. Thus we have 

!.r(t)l<l. It follows that 
y' 

Hence (4.50) is bounded above by 

(,4.51 ) 

where we write K(y) = (1-r2(t ))-1/2. Th~s we have shown that (4.a8) 
, y 

holds with a
T 

given by the expression (4.51). It remains to show 
,y 

that for each---- e > 0 the conditiàn (4.47) is satisfied. Since r(t)-+O 

as t -+00, we have K(y) -+ 1 as y -+00. Hence K(y) < 2' for large 

enough y. Now fix' e > O. For 1argé enough T we have 

k, 

./ 
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(4.52) 

If we write 0t l sup!r(s)j, 'then'th~ right hand side of (4.52) is 
s>t '. 

not greater than 

[ 

This last expressjon' is equal to 

si nce 

.' 1 

Now for eaëh eT ~ ka/uT ~ T we have 
1--"" . 

. !r(ka/uT) 1~,l+lr(ka/uT)!) 2. oST 

so that 
"­
"-

for each term in the l.st summation. Since there ~re no more th~",,,: 
[TuT/a] terms in the summatlon, the right hand side of (4.52) is bounded>'~~ 

by 2 2 . ~ 
Î 1 2 -uT uToel: .... " 

n(TuT/a} 08Te _ e 

Hence for large enough T we have 

. 2/ 2 2,'; 
2 2 -uT 2 -uTveT 

ar,eT ~ (l/TI)(l/a) (uToeT)(Te /) e (4.53) 
.. 

\ 

f\ 



. , 

,< 

Using (4.46) and Rice's formula we get 

Hence 

But 6eT 10g'T = 6eT ,10g eT 66T log e 

= sup Ir(slilog eT - log e sup lr(s)I 
s>eT s'6T 

< sup Ir(s) log s: - log e sup Ir(s) 1 

s>eT s>eT 
" 

Thus fram our mlxlng condltion we get 

and he~ce 

(4.54) 

From (4.46) 

(4.55) 

68T log T -- 0 as T -4- te 

lim U~5eT 
T-->o:> of . 

combined with Rlce's formula 

= 0 . 

we also get 

2 
-uT/ 2 

lim Te = 21lT/1I2 
T-'K'c 

Combimng (4.53)" (4.54) and (4.55) we get 

1 im aT eT = 0 • 
T-K>J ' 

, \" 

~----------~---~ 

. 
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. "-
We have shown that for each a > 0 the condition Dc(ùT) holds wlth 

respect to the family qT = a/uT' 

,( 



~I 

, , 
'" 

The conditio~ D~~uT) 

As above, we let (.~(t); tEiSi) be a SSGP whose ;ovariance function 

satlsfies Berman local condition and Berman ffiixing co~dition 

2 
f. 2t 2 

r(t) = l --2-+o(t) as t--O, (4.56) • 
1 

(4.57) r(t) logt -- O' as t"'-HÛ , 

and we assume that we are dealing with a version having, with probability 

one, contlnuous sample paths. Moreover we a~sume-that uT is chos~n in 

such a way that for some "r > 0 we haY.e 

(4.58 ) 

Under these assùmptions, the con.dltlOn D~(uT) is satlsfied with ,th\func­

tlOn du) = wu' i.e. 

(4.59) 1 i m su p T 1 ~ -w l ,-l- 0 a s [-l- 0 . 
T-+o. ET ,uT uT 
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This may be obtained from arguments of Plckands [1969a·,1969b]. Suchaproof 

~hould appear in a forthcoming paper by'Lindgr~n and Rootzen (in preparâ­

tlon for Institute of Statistics Mimeo Series, Universlty of North 

Carol,ina at Chapel Hill). Unfor.tunately we failed in trying to ,produce 

such a proof., We ')wi 11 thus content oursel ves' wi th a somewhat undi rect 

proof. 

We have already shown that when (4.56), (4.57) and. (4.58) hold, the/ 

conditions Rl, R2 and Dc(uT) are satisfied. If we could also obtain the! 

condition D~(uT) then it would follow from the theorems of Chapter 3 that 

(4.60) -1 
-+ e as T ___ 00 

.'-' 



and 

(4.61 ) 

"d 

where M(T), ZT 'and 

ua 

Z Y!.. Z T -->- 0' T as . , 

Z ar-e, as usual, the maximum ov€r .[O,T], 
J'! i 
- , . 

1Gc 

the 

pOlnt .process'of upcros~ings of the level uT and a Poisson point proce~s 

with lntenslty 1, respectlvely. Our proof that under (4.56), (4.57) 

and (4.58) the conditlon D~(uT) holds will be lndlrect ln the sense that 

we will actua11Y. obtain (4.60) as an intermediate ster. Of course a more 
" 

dlrect p~oof would be des1rable for lt would th en make the results of 

Chapter 3 useful; they would provide a nice way of obtalning (4.60) and 

(4.61) for the Gaussian case, whereas they are rather useless once (4.60) 
li G 1 -

.: 
has been obtalned. But our maln goal is not to exhiblt nicer or sTmpler· 

. 
proofs of Berman results. Our goal in this cnapter' 1S simply ta show 

that the ger;leral condltions oZ Chàpter 3 are satlsfied by SSGP's, with 

covar1ance f~nctlon satisfylng Berman condlt10ns. 1 

LEMMA 4.4.5. 

(4.60) hoZds. 

" 
Proof. cMost of the ideas and techniques, lnvolved in thlS proof have 

" already b~en used in this paper. So we shall simply give an outline of 

the proof. 

We know that under the present assumptions the condltion Rl is 

satisfied with 1/J(u) = ~-u. Thus for sorne hO > 0, 

(4.62 ) P[M(h) > u] l 
h -+ 
~u 

as U -+00, 

1 

4 
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Consider a fixed h >fO for Wh1Çh (4.62) ho1ds. Choose E > Oe, small 

enough so that 0< E < h. For each T > 0, write 

nT = [Tjh] 

and divide the time interva1 [O,T] as fo 11 OvJS : 

Il [O,h-E] * Il = [h-c , h] 

12 [h,2h-E], , 1* = [2h-t: .2h] 2 
,; 

[(nT-l )h,nTh-E] 1* [nTh-c,nTh] l = = 
nT ' nT 
l = [nTh.T] 

t+---:--

Finally choose q = q(nT) 'such thjt quT---+O, as -T--+-oo. For convenience 

choos~ q 50 that h lS always a mu1t1p1e of q, so that the same 

I\umber of 'points jq will lie in each of I l ,1 2, ... , and in each of 

* * 1,.12 ..... We then proceed as follows: 

(1) àpprox1mate 

• (ii) approximate 

(iii) approximate 

(lV) approximate 

(v) approximate 

(V1) approximate 

More specifically we .have the following -approximations: " 
, 0 

(i) 

Clearly {M(T)iuT} C {M(nTh).::.uT} and the difference of these two sets 

is included in {s(t) >uT for som,e tE[nTh,(nT+l)h]}. Hence using 

stat~onarity we get 

'r... 



" 
o ~ p(M(nTh) ~~TJ - P[~1(T) ~uT] ~ P[M{h) >UT] 

~ 

By (4.62) the right. hand s l de of tm s expression goes to 0 as T goes to 

oc ThlS gives us '(il. 
lt lI" 0' 

-~? . . 
. (i i) 

nT 
0:,:. P[M(k~lIk) ~uTJ - PU1(nTh) ~UT] ~ K~E 

Again the difference of the probablllties is clearly nonnegatlve. It;5 
n 
T * ' dominated by p[ U {M(Ik) > UT}]. By stationarity we get 

k= l • . 

nT nT 
P[ U {M( I;) > uT} ] ~ l P[M( I;) > uT] 

k=l k=l . 

= nTP[M( E) > uT] 

Hence we ha va 

---From ((.62), the right hand·sid~ goes to as T 90es to 00. Hence for 

large enough T we have 

Combining (4.58) anç! (4.63) we get nTllu -+ T/h. Therefore (ii) holds, 
T 

say with K
1 

= 41/h, for al1 large enough T. The important pOlnt is 

( i i i ) 

does not depend on E.' 
l' 

nT nT 
O,~ P[t;:(jq)~uT; jqE U Ik] -P[M( U Ik) <uT] ---+ 0 as T-+oo 

, k=l k=l - . 
'\ 

This is obtained using arguments simi1ar to those used in obta~~ing 

Theorem 4.4.1. 
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nT n ' ~: 
(iv) P[~(jq)~uT; jqEk~lIkJ-P T[~(jq) <uT' jqEl1] -+'1) as T-+é7-. 

Repeatinq the argument used in obtaining éondit1on Dc(uT), one can check 

, that the abso1ute value of the above difference is bounded above by 

(4.64 ) T ' 2 
K- L Ir(Jq)!exp(-uT/(l+lr(jq) 1))' 

q (~jq~T 

This expression is very simi1ar to 

( ! 

KI Z Ir(jq) lexp(-u~/(l+ir(jq) 1)) 
q 8T~Jq.:::.T 

In obt.aining condition Dc(uT) we have shown that if Q = q (u ) = ~ , 
~ . a T UT 

where ~ > 0 is fixed, then the expression (4.65) goes to ° as T goes 

to oc, If (4.64) the summat10n ranges over a 1arger interval and instead 

ot havfng qtJT = a fixed, we'have qu,T-+O", as T-+oo. Nevertheless one 

cân show t'hat the expression ('4.64) does go to ° as T goes to m, as . 
long as quT-+O at an appropriate1y slow rate. 

(v) 

As in (lii), th1S is obtained,using arguments similar to those u?ed in 

obtaining Theorem 4.4.1. 

( vi) 

M(I,) is simply M(h-E). Clearly' {M(h) 5-uT} c {M(h-t::} ~uT} ang the 

difference of these two sets is contained in {M~I~) > ùT}. Thus, using 

stati pnari'ty, 
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. We reca 11 tha t 0 0 2.. x ~y 2.. l n n 
~ O~y -x ~n(y-x). Thus 

From (4.58), ("4.62) and (4.63) we have nTP[M(E) > uTJ ~ (T/h)[ as 

T-I-oo. Hence we can find K2 50 that (vi) holds for a11 large 

enough T. 

Combining these approximations we get 

• n 
lim sup Ip[M(T)~uTJ-P T[M(h)5..UTJI ~ Ke 
T~ , 

where K;:: Kl + K2 does not .depend on E. Hence 

... (4.66) 
n 

'P[M(T) ~uTJ - P T[~(h) ~uTJ -+ 0 as T--rcc. 

, 
Agai_n from (4.58), (4.62) and (4.63) we have 

. P1M'(h) >U
T
] :r t/n

T 
+o(l/n

T
) as T-+oo 

\ 

Il 

Thus 

n . ,ù n 
P T[M(h) 5.. UTJ ;:: (1 _2-+ o(--.L)) T ~ e- T as T-+oo. 

- "nT nT 

. 
Combined with (4.66), this gives us (4.60). This',completes the proof. 

1/// 

COROLLARY 4.4.6. Under the hypothesis.of th~ lemma ~e have 

(4.67) T-+oo • .. 

+' ~ h .. Jor eae pos~t~ve E. 

Proof. Put vT = uT/
E

' Then, using Rice's formula, 

, 
l, 

i 
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Thus (T/E)w -+T as vT 
T -+0::, , or às T---+-oo. Hence by the 

lerrma we get 

P[M(T) .:. v
T

] ~ e-[1 

or P[~1(T} ,-:,uT/E] ___ :e-~T 

Hence [ () ] -ET 
P M cT.:. Ut -- e III/, 

THEORn14.4:7. ,Let _(~(t); tEtH) ,be a SSGP having) with pY'obability one) 

cont':nuous sœrrple paths) and let the constants uT be chosen sa that 

(4.58) halds. If the covaY'iance function satisfies Beman focal -condi­

tion and,Be~Qn mixirlg condition) the~ the condition D~(uT) holds with 

~I (u) = l-Ju' 

" 
Froof. As in the proof of L~mma 3.4.7 we have, for all small enough 

pos1tive c, 

(4.68) 

(4.69) ETjJ T ~ P[M(2ET) > uT] - P[M(ET) > UT] 
E ,uT . 

( 
From (4,::~~) we get 

,J 0 
T].1 T - T < l(e- n - P[M(cT) < uT]) + l(l_e-E,T_ET) . 

E. U -E - E 
" T ~ 

Hence from Corollary 4.4.6 we have 

(4.70) 

Similarly from (4.69) we get 

• 



, 

i 

Hence from Corollary 4.4.6 we have 

. . ( ) l, -ET -20 ) 11m lnf T).1 T -1 >::\e -e -[1 
T~ ('UT - ( ... 

(4.71) 

Since the right hand side of (4} 70) and the right hand side of (4.71) • 

both go to 0 as" ( decreases to 0, we get' 

lim sup!T).1 T -Ti --+' 0 as (-o. 
T-+= E ,uT 

) 

. , 

f· 

, 

/111 
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" CHAPTER 5 

CONC.LUSION 

In Chapter 3 we' have presfn~ed 'som~ general theorems 'on the w

6

eak 
... \, , 

conver'gence of the maximum and on the wea k convergence of the poi nt 
, • 0 

• ~ , '.l , 

proce~s of upcrossings,: for stationary processes sati~lying.,certain conQi) 

tions., In Chapter 4 w~ sho~ed that these condit'-'ions are'fulfilled by 
o 

,"standard stationary Gaussian processes, having with probability· one 
0;>. 'b .... 

continuous sa~ple paths, wit~ covaria~ce fu~c:ion satisf~t9 Berman loca,l. 

and mlXing çonditions. I~.~0110;S t~~t. fOT .. SUCh .~.ro.cessfs.~e hav~, with 

the,us~al notation, . ~ 
\ , 

(5.1) p[M(n~uTJ ~ e- 1 

and 

, (5.2) 

{ 
/ 

~henever uT is chosen so that Tw ,-+ T > O. One also ObtRi~s the 
uT 

follow;ng important result: if uT = x/a T +bT, with 

" (5.3) 
'. b

T 
= ("2 10g,T)1/2 + (210g Trl/2169(:1J) 

then .T].l' -+ e~x so th'at (5.1) becomes 
, ur 

(5.4) 

. ' 
(In yirtue of Gnedenkols theorem, this double exp;nential limit is not 

1 

too sl1r.pri s i ng',) 
~ 0 

.Can Bermàn conditions be weakened? Lét us first consj~er th~ local 

çonditiÜ'n. P.icka~ds, ~1969a,1969bJ has considered SSGP whose covariance 

: function satisfies 

1. 

. : 

p ,-' 



"". 

(5.5) r(t) = 1- (-Ft la +o( Iti éi
) as t-O 

~ 1, • , u 

for sorne" 0 < C < co and sorne·' 0 < 0. <,2. Let (Ut); tÈtR) be such a 

process, It is easily seen that ûnder (5.5)'Belayev conti nuit y condition 
CI 

is satisfi'ed. Hence (~(t); t E 6Z) 'is equivalent to a process having, 

w'ith probability o~e, continuous sample paths. We' may assume 'that 

(t;(t); t E 6Z) is itself such a process. If 0. ='2 then (5.5) is sirnply 

\ Berman local condition, If 0 < a < 2 then r"(t) does not exist and 

hence ]J'u' the mean number of upc'ross i ngs Di the 1 evel u per unit 

interval, is, infinite. Hence there is no hope for a Poisson li'mit 

theorem for the distribution of the number of upcrossings. Even tnough 

116 

it is continuous, a typical sample path is 59 badly behaved that when it . 
" 

c rosses the l eVel u, it doe? S0 tao often. Pi ckands showed tha t a 

Poisson lirÎlÎt distri~ution is ?till aRpropriate ,if one counts only the 

significant upcrossings, the E-upcro5sings defined in Chapter 3. His 

~ain results are a limiting expression for]J , S,u a Poisson limit theorem 
t • • 

f~r the distribution of the number of s-upcrossings and a double expo-

"-.nenti~'l' limit distribution for the (s/tably ~ormalizedl maximum of th:e 
-r 

process. More specifically, Pitkands [1969a~1969bJ proved the following 

results: 

(Pl) It" (5.5) holds for sorne 0 < C -< 00 and ,sorne 0 <'0: ~-2, then for 

all small enough s > 0 

. (5.6) 
CVaH . 2 

, 0. 2/0. - l -u /2 --- u e as: u _ ro _ 

where J1 E ,u is, as bef.p.re, the mean number df s-upcrossings of 

the level u per unit time interval and where Ho. is a constant 

" 



.. -~ t 

dependi n~ on1t on CL (Thi s constant , s, gj ven by 
,--,/ , 

(5.7) , Ha = lim t resp[ sup Y(t) > sJds 
T~ JO O<t<T' 

"J --

, 
where Y(t) is a nonstati~nary Gaussian process with means and~ 

• covari ances gi ven by , 

E[Y(t)] = -Itl~ , , 

and it sati'fies' 0 < H < (0). 
0. • 

(PZ) If, in ad ;tion, Berman mixing condition 'holds, land if uT, is 

chosen s 1 that Tu -+ T'> 0, then ': 1 (,UT 

1) e~T/ 
/lim P[Z+( (('0,1]) = k] =,-k-!-
'T --K(O • 

k = 0, l ,2"." . 

wh-erez(r.) ,is the point process of E-upcrossings 'corresponding 
1 Til 4 "" ,-

'1 " 

.. . ' 
!< 

Observe that the right h~nd side of (5.6) does not de~end 9n E. 

'Hence for all (small enough) El' (2 > 0, we-,have 

/" ' , ' 

.. 
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, , 

'\ 

? 

/. 

Moreover in the case 1) 2 we have, 1(1 addition,' 
, , 

as u---+ oc 

This follows from the fact that condition Rl holds wlth both and 

~Ju' 'If we combine this·W1th Rice's formula we get 

( 

(Thi's can a1so be obtained from (5.7)). In particular thlS te11\~ us that 

(~.8) reduces to (5.3) when Q.~ 2, as one would e;pect. 

Plckanas' proofs are analog to the proofs ,of Cramer [1966), Qual1s 

[1967J and Berman [1971a]. The ideas are siMi1ar but the computations 

are much more compl icated. (~et us mention that Qualls and Watanabe 

[1972J obta,"ned the same results under slightlY,more genera1 assumptlOns, 

name1y that the covariance functionsatlsfles /' 

o , 
dt):: 1 -H(tl!t'la'+O(H(t:)[tl-') as t---+O 

where H(t) s.ati,sf~es, ~~ HH((tt)) ~ l,' for all c' > 0)-. 

,Again all these results can be obtained via the theorems of 

Chapter 3. TplS is done by showing that if (C(t); t EtR) is a ~$,GP 
, , 

(having, with probabllity one, continuous samp1e paths) whose covariance 

function satisfies Pickands'.locëj1 condition (5.5) and Berman mixing 

cond i t ton, then: 
t> 

(a) The cond i t lOn Rl holds with ~1 (u) equa1 to the right hand 

side of (5~6). 

(b )" The cond i tian R2 ho1 ds with )\fi(u) as 'i n (a) and with 

qa (u) = 
-2/0_ 

au . 
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~ (c) For each a > 0, the conditlon De ( uT) ho l d s W l th respect to 
Q 

_ -,2/ Ci 
the family qT = qa(uT) - aUT ' whenever ,uT i s chosen 50 

that TI.. (uT) ---..1 > 0, ~ as "Îon (a). 
\ ' 

(d) The condition D~(ùT) 'holds with li as in (a) , whenever , uT 

i's chosen 50 that W(ui) -q > O. 

These results are stated in Leadbetter [1980] and th~ proofs ~hou1d 
, , 

appear in Lindgren and Rootzen (ln I9reparation for Institute of, ~tatistic5 

Mlmeo Series, University of North (aro1ina at Chape1 Hill). 

Let us ~ow turn our attention to the mixing con~ition. So far we 
, '1 

,1 

have always!assumed Berman mlxing conditlon . 
(5.9) r(t) logt ~ 0 as t~oo ' 

As mentioned" ln Section 1.1, if 
"\ 

, -
(5.10) r(t)logt-'.+y>O as t-+ cn , 

.(' 

then (5.2) does'not ho1d. Thus (5.9) is close to beil)g a necessary 

.condition for (5.2) and a1so (5.1) pnd (5.4) to ho1d. Berman actually 
" 

showed that (5.9) can be rep1aced by 

(5.11) 
\ 

Conditions (5.9) and (5.11) are not comparable; sorne covariance func-
• f 

tions,'satisfy (5.9) bu't not (5.1'1) and'some satisfy (5.11) but not (5.9). 

Mittal [1979J showed that the condition ,. 
'. 
(5.12) 

for sorne 0 < S < and sorne f(t) = 0(1) as T -rCO, is strictly 

wea~er than (5.9) or (5.11), and that combined with f' 



(1" 

è> 

~ --
/ .. ( 

(5.13) . r(t)-+O as' t _0'_ 

it is a sufficient condition for (5.4) to hold. ( .\ i s , as usua l , the 

"Lebesgue measure). It i sour conj ectu re tha ~ (a), (b), (c), (d) above 

are still true if Berman mixing condition is rep1aced by Mitta1 mixlng 

condition ((5.12) combined with (5.13)). 
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