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position of liquid and #* 2% of crystal. Isocons of the coexisting solid
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meters is suggested to adjust calculated results to experiments using
one (eutectic minimum) or two (cotectic line) points. The calculations

can be used to guide experiments.



SYMBOLS

superscript X for excess thermodynamic functionv
superscript K for correction thermodynamic function V
superscripts A, B, crystal,liquia,for function V of phases
subscripts <, ﬁ, 1, 2, for fuaction v of components

gas constant

~ 's.-ﬁ < =

chemical potential

Gibbs free energy

enthalpy

entropy

absolute temperature

mole fraction

number of moles, stoichiometric constants
activity

activity coefficient

temperature of fusion of a solid phase pure in component <

R el ot 8 2 x4 0o = 5

<
z heat of fusion of a solid phase pure in component <
:-' superscript ' used for the value of 4}/: estimated from a liquidus in

binary 4':,'

regular or subregular solution model interaction energy parameter

ot

actual value of excess free energy of mixing across the binary ‘c/

O &
-

normalized mole fraction of component < in binary »5(
slope of fat Zj
number of components in the system

an arbitrary constant with 2L P <£»
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Formulation of asymmetric n - component excess free energy of
mixing model and corresponding formulas for n - component activity

coefficients.

Computerized derivation of general binary partial excess chemical
potentials from phase diagrams of simple eutectic type and solid

solution type.

Computerized method for calculating tie lines between solution phase
one - solution phase two:
I ternary immiscible liquid one - ternary immiscible
liquid two
IT binary crystal (ie. plagioclase) - ternary liquid

The process can be generalized to more than three components.

Formulation of empirical n - component correction free energy model
with n independent parameters for adjusting calculated results to
experimental results using a few selected key experimental points

such as:

Phase invariant points, two points on cotectic lines,
three points on cotectic surfaces.
If compositions of the coexisting solid solution minerals are

known, one point is sufficient.
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1. INTRODUCTION

Theories of Non - Ideal Liquids and Methods

of Calculating Immiscibility

The development of theories of non - ideal liquids dates back to
Margules (1895), Hildebrande (1929), and Scatchard (1935). However,
in increasing relevance to the development of the dissertation, import-
ant treatments begin with Blander (1964), who developed and derived
formulae for the theoretical properties of a molecular scale model of
a non - ideal liquid. This required complex equations with a large
number of poorly known parameters, especially if the model was extended
past a first order approximation. Calculated results compared satis-
factorily with experimental determinations only on certain molten salt
Systems. Darken and Gurry (1953) presented a more empirical approach
that was applied to a few metal alloy systems while Lumsden (1966)
used a similar but more detailed approach to treat and discuss in detail
almost four hundred molten salt systems. He included as well, excess
entropy corrections which strongly reduced errors of a first order
approximation. These treatments were for binary systems only. Thompson
(1967), in a very informative paper, derived easily handled expressions
for non - ideality from macroscopic considerations. The e¥xpressions

included two orders of approximation.

Bowen (1928) briefly studied non - ideal liquidus surfaces in petro-

logic systems and used the cryoscopic equation:
where af; is molar enthalpy of

fusion of component < and Tp,

bniay= %gf(} % is the temperature of fusion
oy

of pure ¢, and Q is the activity

of < in liquid, to generate partial




excess differential free energies of mixing for systems with a simple
binary eutectic and no solid solution. Other techniques for obtaining
binary excess chemical potentials have been studied indirectly through
phase diagrams and by direct experimental measurements. For instance,
Thompson (1967) derived a formula for calculating two non - ideality
constants from a known immiscibility field in a binary system. Muan,
Masse and Rosen (1966) used a gaseous side reaction to buffer iron and
cobalt activities to determine isothermal non — ideality in the solid
solution of Fe28i04 and COZSioa. Pelton and Flengas (1969) developed

a computer handled analytical technique for treating non - ideality
calculations in a ternary system. He showed how activity coefficients
of all three components could be calculated if twenty or more isothermal
partial excess free energies for component one were available to be
fitted to a fifteen parameter surface by the method of least squares.
The method is general and extremely useful, but requires coverage of

the ternary with activity data for component one. Experiments on vapour
pressures, volatility data, chemical reactivity in gaseous side-reaction
or crystallization point depression can provide this ternary data, but
the most accessible type of data (phase diagrams with isotherms) is the
most difficult to use. This is because the primary liquidus coexist-

ing with crystalline "A" is terminated at the ternary eutectic and does

not cover the whole compositional field.

Darken and Gurry (1953), Blander (1964), Lumsden (1966), and Thompson
(1967) and Thompson and Waldbaum (1969a, 1969b) used one, two or three
parameters to fit by least squares the excess free energies and excess
entropy across the binary interval from x=0 to x=1. However, the methods
developed in this dissertation allow use of the actual excess free energy

values and when the rest of the non - ideal theory is transformed
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in the same fashion, nonlinear simultaneous equations describing a phase
set can be solved by computer. While Bowen's approach and use of the
cryoscopic equation was immediately usable, it was necessary to alter
slightly Thompson's approach to solving for immiscibility and derive
methods of interpreting three additional types of common behavior:

solid solution-liquid equilibria (plagioclase-1liquid)

solid solution-solid solution (ortho-clinopyroxene)

incongruent melting of solids (orthoclase to leucite+liquid)

Excess free energies for two component pairs can now be calculated from
binary phase data for all types of behavior. Ternary excess free ener-
gies can be estimated at any point by a combination of the binary excess
free energies. It is not difficult to estimate n-ternary excess free
energies (and consequently activity coefficients) from a combination of

the binaries but it becomes difficult to solve the equations of a specific
phase set unless a specific distribution of the fourth and higher compo-
nents is assumed (ie. constant 4% H20 in all non-aqueous phases in a system
containing three or more components as well as water).

The main qualitative methods of predicting immiscibility have been
presented in papers in the Journal of American Ceramic Society. Levin
and Block (1957-1967) in a series of four papers, reviewed and developed
various methods based on molecular models for determining the extent of
miscibility gap. The methods are based on coordination and structural
studies, oxygen volume relationships, and additive cell density studies.
When applied to a large number of ceramic oxide systems, these methods
gave reasonable estimates of the compositional limits of binary and some
ternary immiscibility fields (two points for a binary, three points for
a ternary), but neither the temperature dependence nor the thermal maxi-
mum could be calculated. As a result the calculations are valid only

for systems where the immiscibility volumes show little variation with tempe-
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rature. Using thermodynamics, Kadik and Khitarov (1963) discussed the
role of various thermodynamic properties in affecting the topology of
immiscible water-silicate melt equilibria. Charles and Wagstaff (1967,
1968) studied two types of systems: the alkali metal oxide-silica
systems (RZO—SiOZ) and the B203-SiO2 System in an attempt to calculate
the extent of metastable immiscibility. Liquidus data close to RZO

were not available, so that volatility data and Knudsen cell data were
used to generate excess free energies for these regions while the cry0-
scopic equation was used close to SiO2 and throughout the B203—Si02
system. The immiscibility fields were determined by graphical construc-
tion from a series of isothermal plots of total free energy versus com-
position. Experimental results roughly verified Charles and Wagstaff's
calculated metastable immiscibility regions. The much larger discrepan-
cies in the R20—8i02 Systems were probably due in part to the mixed source
of activity data. Christie (1968) used a similar graphical construction
to discuss the spinodal mechanism of exsolution in the alkali feldspars.
Mueller (1964b), Thompson (1967) and Kern and Weisbrod (1967) demonstrat-
ed the theory of calculating or determining graphically a binary immi-
scibility field by solving the so-called immiscibility equations, which
are set up with one or two fixed non - ideality parameters. Olson (1965)
calculated a ternary liquidus and developed a repeat graphical construc-
tion technique for pPositioning the extemsion of a regular binary immisci-
bility field into a regular ternary solution, providing the approximate
orientation of the tie lines are known. The calculations ignored excess
entropy of mixing. Blander (1968) studied molten salt systems and de-
rived an equation involving binary regular solution parameters for cal-
culating the maximum immiscibility temperature in a ternary. The relation-
ship between immiscibility in reciprocal systems and some additive ter-

nary systems was demonstrated for salts. The effects of melting tempera-




tures, enthalpies of fusion, and total free energies on the topology

of molten ternmary salt systems is discussed very well by Blander. For
every binary a single non - ideality parameter is calculated from the
experimental eutectic temperature and composition. Then these para-
meters were used to calculate liquidus temperatures in the ternary
Systems of the reciprocal type. The results compared very well in sur-
face details with the known liquidus, although the error in the ternary
eutectic was larger than possible experimental error. 1In addition the
calculated diagram violated the Alkemade theorem. Excess entropy of mix-
ing was not considered, and All calculated non-ideality parameters were
negative ie. the mixtures show negative departures from ideality (towards
compound formation) as opposed to the positive departures (towards immi-
scibility) so common in silicate liquids. There were no calculations
done of liquidus surfaces in ternary systems where there was any posi-

tive deviations shown in the binaries.

The procedures developed in this dissertation allow direct calcula-
tion of points on an immiscibility field for two and three component
Systems. Excess entropy of mixing is not included in the treatment. A
comparison of calculated liquidus temperatures with immiscibility tempe-
ratures distinguishes between stable and metastable immiscibility fields
and fixes the curve of intersection of a stable immiscibility field and
a2 liquidus surface. In addition points on the liquidus extending into
ternary systems from a binary or termary solid solution phase can be cal-
culated by a similar process to calculating immiscibility tie-1line.
Isocons of coexisting solid solution phase were contoured on the liquidus,
making it possible to construct all types of crystallization paths accu-

rately. Empirical correction free energies, that can be calculated by




comparison of calculated results with 1, 2 or 3 experimental points, per-

mit adjustment of calculations to experimental results.



2. DERIVATION OF ACTIVITY COEFFICIENT EXPRESSIONS

2.1 Partial and Total Excess Free Energy, the Operator D( ) and

the Regular Solution Model

The original definition of the excess quantities can be extended
to chemical potentials (Thompson 1967) so that for component T

. X . . .
where the superscript indicates an excess quantity.

: S AUy + UL
REAL IDEM. ERCESS
However, é&;‘ = UL FRTEn Q. where ¥ is an activity coefficient.

2 Ur PRT LY rRT G X

Since ;g:; = WUct+RTx; it follows that d‘- = R7énd. - Like other
RL

X
partial molar quantities, 4, satisfies

bi= & U-m) 3_{%‘) Moore (1963)
= é + (”M) a,ié.) 2—1
o(wi) T
E- Faw 2
=1

The symbols used in (2-1,2) are the excess free energy C:'-and the number
of moles A of component I. It is more convenient in later develop-
ments to use the mole fraction X; rather than M. The partial differ-
ential N means that all other M‘[j#i) are to be held constant and hence
the internal ratios of 5}‘ (‘;‘j*‘:) are constant. If the total number

of moles is N; , it follows that % :,i-: (i:J‘;A) are also constant.
Since )f,'= /%{!; then 9, can be replaced by dx; where the differential

dX: 1is constrained to a path so that the internal ratios of :—é (ﬁ’/'i‘l)
are constant. This path lies in the line joining Xi<X; and X;=1 . This

method of differentiation will be referred to by rhe operater gg—;—

and (2-1) is redefined as

Go= Gt (1-X) 2(6)

<

The regular solution model as used by Kern and Weisbrod (1967) and others is




based on the nearest neighbour approximation followed by assumptions of
randomness and negligible excess volume of mixing. Consider an n - com-
ponent system (I,J,K,...) in the volume V that contains one mole total.
All state functions of the system are hence molar quantities. The
nearest neighbour first order approximation is that the only important
interactions are independently bimolecular of the well defined form I - I
or I - J, and that the resulting internal energies of association E, ,
are fixed independent of the matrix. In terms of relative numbers, the
number of interactions of type I - J is X!& and the number of inter-
actions of type I - I is X.X . Summing over all pairs of components,

the total number of interactions of all acceptable types is

” 2 -~ X = ”L a - ‘(‘"
Z x *,éjia-“ﬁ Zx fzﬂzz]z; X
/& 2
= (‘Zix‘_) ‘1

Thus the relative numbers are also the normalized occupation numbers of
the various internal energy levels of association £ry . For the exchange

association of components I, J according to
(T-7) + O-7) = 2(1-J)
the excess internal energy per association I - J is
Wyy = Ezs - é}(Eix ¢ 534J
The total molar excess internal energy-éin volume V is the sum of the
products of normalized occupation number and the excess internal energy

level value (Moore 1963, Laidier 1965)

3=22 Z xxwsg
PEE 3 J'?t
”t
2 3 tex Wax here Wes 22wy
P 4 J)!
The terms involving x2 drop out as «rr=¢ . If we now make use of the

assumptions of randomness (§:0) and negligible excess volume of mixing

2,-T§= é:é‘vﬁﬁ'

g S DK,

i=z‘j>¢

x

then G

]
|
&~



[Ores

Applying (2-4) to a binary, f; = XY w2 = Xg(1-X1) Wea and (2-3)

= & li-xa) D(f)) = X2 (X)) Wiz + (r-X)(1-2 X2) Wis

UI/:.I (I‘/"i) (X;'/‘[ ‘2X1)

C/-X:.)zu/xz

Similarly dz:(/-xﬂzk/n and as a check of (2-2)
X it Mo e = Xy (100 Wia + Ko (1-Xe) s
= Wiz Xg Xe (/- X0 # 7~ 22)
= X2 Xz Lz

.

2.11 The Asymmetric Model Defined by Extension of the Regular Solution

X
Model and Derivation of Equations for A/

Consider the n-component regular solution model where

EZ X< X Wrs

£=2 ;>¢ 2-4
Each binary pair 7 contributes Y. ,'l’/ W1r to the total g This can be

interpreted as

e = [ g ()

»

The term in square brackets is the value of G in the binary ‘4/ at compo-
sition (,\7_)1) and the term in heavy parentheses is the DILUTION FACTOR
by which the binary excess free energy is multiplied by to take it into

the n-component system. Making é,:/ the value of the excess free energy

. , .- X
in the binary ¢ at &‘_"_’7) thené becomes

2 i (Xch) é

;’:{Jn. j >e

This is the asymmetric model and makes use of the actual values of ég

that occur in the binaries. It is necessary to use (2-3) on (2-5) to

x
derive comnsistent expressions for 4y . Now the double summation (2-5) for
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the purposes of considering component 1, can be broken into Z(X *X1) é

Jk1
and Z é(‘(f +X) é - To allow use of the J( ) operator,
./
LR = Ce and XP_c, where P is an integer 2 P
Xz X:. X3 N
”
Since f X;=1 then Xerxa ZZCP) =7

z>g
Rearranging «x;, = (’g‘ﬁ) and using Xp = Xz Co = (pLrxz)
* =
C, a
Thus ;-_/c; :5{%‘) - Using operator &2¢3 on these relations 2-6

N Dixs)
ﬂ(&) = - *ZCP and gcp 2-7

Considering terms from

” X
Z (xa7%)% Gy
=

x Xg
(¢« f!.‘)zé i = - M4 -DCX’)) 42 D( ) D /\/1;‘/\’)
1x,, 1) Z(sz“t‘j) gz:/ (1 D—CXL‘% 1"( th&_) o J
D(x3) D D(x¢)
x‘fz\"
J
x
Defining 67- = (7;& and using (2-7) followed by (2-6) then
0 (572%)

ALY )é‘ * - 1 X ACEA
D(gxz;i J} 2 “"y (/ )+ L1 %)’ 9,/ [x(x ; {Q)]
1

2 (Xif&) é"/' (1-x, ‘&) # 97 [X,f,\j - Xg (/ ’G—X)‘/
(/- Xz) () - Xq)

H [2 (1+%) Gy (1- mu) 9,/]

Since the result is independent of the Qa » then this holds for all ]#1.

Considering terms from 5 /Z)‘ ety ) 5’
[Méj_) 2 /J/‘*o\’) y ( - EC{.?‘C{J
DlKs) Zen
X /‘/g'
Since )9- is some sort of constant, then Z= ),;-@\) is also constant

X
and thus ij as found at Z in the binary is also fixed independent of /(1 .
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Hence éy is treated as a constant to X)) in the above differentiation.

Using (2-6)
D((x;f,g')‘ég-) . -7 (,/,-,‘)5) Giy (Xetk)
DX (/-1

X
= =2 (X;H’C'Jz G
(r-x2) ’

This is independent of choice of & and hence is true for all (c'f/';t 1)

«

P DG
From (2-3) then a=G # (1Xs) 52;3) so

.2 G’ [Xr¥][20-% ) #xapx, |+ 7 x G B - z Z (xorerls
WAl /*1 31 j>c /
ZJE(X‘”)é P 4

The general formula then must be

- o P
[Zt Z‘;‘()’n‘X) fJé)? 9/ €

As a check of (2-2)

= - X - = -
ZX;ZZ‘ZZ Xe e #X )Gf“fzz_,;:',yé’y*-—ézyg'
o1 €=2 J*r z'-'I/'zz =2

The coefficients of gf/ are

(¥ %) 7 )ZC(,‘#&') = (Xerx)?
because éf/ - 6‘/".
The coefficients of (97 are X:‘&'-{j'/; =0 because Eer =-—@'¢J

Making use of these properties

i - = 5 ..
S widii 2T P )by -6
2=z <=1J>¢

= 2 é - é
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Applying the general formula (2-8) for three components

Gy

2 L) bp v (Xer6) 8] + X262 # X Bus - G

]

42 Z[(Xz_//}.) éz.:. *- (YLF)QJ g}_,] - Xz 61; X3 513 ‘é.

2-9
X X -
A3 = 200kxafonsr (00) Gas] - 52 Brs ~¥a By -&
x «
where é.’( = C,\’,ﬁ’;)z Gsz + (Xy 7‘)@)16“13 F (g 4xs)t Ga3
4
The form of (;q and é%] in (2-8) is completely unspecified. This is
an advantage, for now if we wish to specify a certain model, say the n-~
component regular solution model, then (2-8) can be used tc generate the
. Xe
corresponding general 4. . Defining 339;57é%i§) then from (2-4)
N P o so that ( ‘[ = (/ -2, )[A/c
Reintroducing X¢ and )5 results in é . Ch/A 2 We  and
s )
' We,
- | - t
6;7 ( {)’(f)’) (4}/‘
Then by (2-8) we have
' X< We S - X -X) We
=27 gt g M X Wy -
U g ety Jé‘:‘ )
”t
(4/{' [ . 2 o
_ 2| axix -xt -xx - &
J; (Xe?¥) J /]
72
x ’
de = 7wy -6
< ) 7Y 2-10
Jtc. —_—

X
For a more complex type of G , it is not necessary to generate the expli-

P 4
cit equations for i . A general computer routine which uses (2-8) with

the appropriate substitutitons is also valid. Consider for example,
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Thompson's (1967) formulation of

= X X, € W Lo W
C=2 Z (23 ) ¢ By by) where W zujc - Now

and then 97 = g_é;d - Wf/ (/-32?9(/— Z:/) £ hy“’ z_:/ (2‘327.)

The general routine then becomes, with the symbols defined as

crz &
X(1YE X<
‘I'.(T,J); <]
TH(I,.J)EB;J'
FTLGCIDEL;

C RAUTINF CALCULATFS N-COMFONFANT FTLGCI) AT (X15X25X35 a0 XN)
CT=0
nn 22 T=1sN
RTLGCT)=P
T1=1+)
pe 1 J=T1,N
ITF(JeFREoN+1IGD TO 10
Z7=X(1)/Z7¢(XCIY+X(.]))
11 G(I,J)=Z*(l.-Z)*(Z*%(J,I)+(1.-7)*W(I,J))
12 TH(I,J)=W(I,J)*(l.-3o*Z)*( 1 .-7,)+\h(J,I)*Z*(9,.-3.*Z)
GT:FT+G(I,J)*(X(I)+X(J))**9

PTLG(T)=FTLF(I)*2.*G(I,J)*(X(I)*V(J))+X(J)*TH(I;J)

V¢ CONTINUE
o0 CONTINUE
po 3¢ I=1,.N
3n RTLGEC(I)=FTLGC(IY-GT

1f a different formulation were used, this routine would function properly
if statements 11 and 12 were changed accordingly. While the problem of
solution of phase equilibria has not yet been solved for more than three
components, the awkardness of the formulae, as noted by Thompson (1967),

has been completely removed for any multicomponent formulation of é .

To conclude then, the general formulae for activity coefficients are:

1) Symmetric non-ideality GJ}TZ\‘]%‘«‘N] and é‘; Z Z?/‘Qéh{t/
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then L= Zd‘/’ ‘r/«/" -G 2-10

2) Asymmetric non-ideality é _,__Z‘Z‘ 2 '?/, ,)zéy 2-5
, =

(-lt‘/' £

=2 i_é’ahy)éy +VZ:::§ 6(/ _é‘ 'Z_-Q

Sl
D ( éc.') )/ .
= J s = <

where 6:/ E D(T{/) where Zz/ = (e "_‘7)

The influence of an n-component mixture on the activity coefficient

of { is made up of two types of contributions:

1) The term C is from all 'Zz binaries, including those exclusive

of 4 .
2) The other terms involve only binaries with component < .

Thus all ﬂ[,. binary excess free energies influence the activity

coefficient of component < .

2.II1 Validity Tests for Partial and Excess Free Energies

During this investigation, a collection of tests was made to check
the consistency of activity coefficient functions with respect to a spe-

cific formulation of é . They are

L v
2-11 ¢ must approach A as number of
71 components st approac 2 Components

components is reduced by one.

- t ¢
2-12 ' i(«' Ue = é , @ restatement of (2-2)

2-13 dé fﬂ-&jgé; : @ Testatement of (2-3)

n
"
»
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2-14 -éa' (asymmetric) must reduce to zé{t(symmetric) when

the symmetric relations are substituted for the asymmetric.
2-15 éZ‘as expressed in terms of summations must be consistently

interchangeable in ‘Qf’ﬁ"
Tests (2-11, 12, 15) are usually the easiest to apply, but test (2-13)
by derivation is the only absolutely certain method of validity testing.
All five relations hold for a correct formulation of l;; from a specified

x

A
formulation of & . Conversely if one condition does not hold then the

expressions are not valid.

X
To illustrate with an example where the formulation of ¢ was in-
X
correct with respect to a G definition consider the paper by Sryvalin and Esin
(1959); page 109
"The simplest formulation of the influence of the energetic non-
equivalence of different sites for like atoms leads to the appear-

ance of two energy effects in the expression for the heat of mixing:
Qb = QuXke # kel + Quahiks + s XaXs™ # Qoskaks ¢ o3 12 g?

One of theseQ,as for regular solutions, represents the interaction
energy, while the othertbrepresents deviations from regular mixtures
due to structural pecuiiarities of the solution. Assuming further
that the entropy of mixing is the same as for ideal solutions, we

have the following expressions for the activity coefficients of com-

ponents in the ternary systems:

Y= QX ll-xa) + 422 Xz (1-242) + Qr3 X3(1-Xa) *5:3)(52(/'111) " R23 %X -2 fas X xP

,{,Zl-’ B X1(/-X2) 2 5:1)(:*’1 (1-2) - Qs X1 X3 ‘2513)/: X5 K23 03 (/—Iz)*gzg)&z[/-zxz)

dhs =~ O XaXa = 2 Guadats®+ Ois X2 (118) + 28usxets (1 )+ Bes e (1-05)¢ Qs a5 (1-16)

End of quote.
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Although condition (2-12) holds:Z—fe";«' =g ,» it is easily seen that
condition (2-15) does not hold in the terms 5‘/ Hence the asymmetry
in the binaries has not been properly taken into the termary. Closer
examination also shows that condition (2-11) is also not satisfied.

It appears that the expressions for {;‘ were manufactured so as to sa-

tisfy conditions (2-12, 14).
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3. EQUILIBRIUM PHASE SETS : EQUATIONS

3.1 Liquid with Pure Crystalline Solid

The cryoscopic equation used by Bowen (1928) is

nta) = %< (£ - )
3-1
where ©H is the heat of fusion at & for the crystalline solid [ pure
in component < , and Q4 is the activity of component <« in the liquid
phase at T with reference state crystal { pure in { at T. Rearranging
yields
Ue= RT n¥i = ot (I 1) - Rt X 32

where ]f is the activity coefficient of « at A and T. Using (3-2) and
liquidus data from a simple binary phase diagram a /Zé curve for com—
ponent « in the liquid phase can be calculated for the composition range
between X;=41 and the simple eutectic composition, but not on the other

side of the eutectic. Three methods were developed to convert these incom-
plete JL curves to completed excess free energies of mixing: a repeat
graphical construction, numerical solution of the associated first order
differential equation, and, the method used herein, a classical Gibbs-

Duhem integration. The other two methods gave similar results but re-

quired more data sets within a binary. The methods are described in

detail in Appendix A.

Rearrangement of (3-1) also yields

T = - T (f{4 {-6/7/(')
(RTo;en li - OH)

¥
w

b 4
so that knowing l&;a general liquidus surface away from X?=i) T=7, can

X . : .
be calculated. Since #. is affected by binary pairs V/& {/¢‘*‘)




.development is completely general for all solution phase-solution phase
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as well as by binary pairs 4‘./ (J'#i) » then the liquidus surface away

from {. is also affected by binary pairs /1 (/l#‘f c).

3.11 Solution Phase A with Solution Phasc B

From Kern and Weisbrod (1967)
wul = 4 +”R7 o0 af
’ .

«?f = wf 1R7 4 ay 2g
The standard states are the end members of phases A and B being pure in
component 1 or 2. |

8
8  BvA
since AMd%. 4 at equilibrium so RT ln(a—ﬁ) = ﬂ -7 AG
o B9A . 84 8o

but 961 =eH, - T"S: and at 75‘ » the transition temperature,

o894 °8-4
o 8 g
then “G =0 apng 25, = %. for pure component 1.
¢

Since g=RT&Y; < RT 8a 83 ~ RT ba Xs

4
. then ﬁ:' d: o RT&[;:—‘E) ‘ AH‘:BM(l B ?07—.;)

ﬂ (i~ Xa) oBwm T
and similarily 4, - RTen | x5/ + At ( 1- %) 3-5
where the temperature dependence of A//.- is taken to be zero. The

equilibria that satisfy B+4 at B¢ where binary phases B and A have the

same end member composition but different structures. Hence both solid
solution-liquid solution (plagioclase-1liquid) and solid solution-solid
solution (clinopyroxene-orthopyroxene) behavior can be treated if ,d{
are known for both phases, both components. In the case of the alkali
feldspar solid solution series, there is a temperature minimum where

x,_" =x‘a and.so (3-5) reduces to ﬁ;‘#d: and 4(’: #—4‘ . In genleral this will

be true for any two phases: different phases have different excess free energies.
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Equation (3-1) also follows from (3-5) when (1=1,4/x’0.

3.111 Application of Solution Models to Generate 5, ﬁ

From Binary Equilibria Involving Two Solution Phases

For phases A and B, components 1 and 2, the regular solution model

x
- — vA4
can be added to (3-5), using WizWjz for phase A, én: Guin phase A, X4 Z X2
o B X
and <#H: 3% Since M! = (1-%)2\4/5 by (2-4), then by (3-4)

(1-xg)* Wa ~(i-xad*Wa = RT 5‘“(%) * AH, (l- ;)
b1

- (1-X4) T
G We = Xa'ia = RT b | 7] # 2Ha (1= 7 )

3-6
Solving simultaneously where bcy= 2 (1- %;.) i RT&'(;’%)
) = OH, (| - L)+ RT h[‘@%
Cxa ey - (- xa)? ¢C’-’]
Wg = ( X4 +Xg - 2xaXs)(xa -Xa)
wh - EXBws - ]
A Xa? 37

Program W1XLIQ is designed,using equation (3-7),to calculate \Aéq,n,Wuq
from a set of T“Xuq‘xmygdata from a solid solution binary. The minimum

and maximum values for the error envelope about di are obtained by combi-

nation of reasonable errors in T,Xua )Xcm. The errors are errors in

reading points off the curve of the phase diagram. A smooth curve for
[{{{)){(‘}/'5 is drawn and the Gibbs - Duhem integration is used to gene-
rate d.') X¢<-5. The curve should be smooth at ;=5 but if it is not then

it must be adjusted to be smooth within the limits of the error envelopes.

b If this is not possible, then Gcannot be closely represented by XK Nj'
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and instead a two or three parameteré must be tried. For Thompson's

(1967) model using two parameter é
4 ) ” A A 4
é‘ = Xa (I-Xa) [\“&1 (1-Xa)+ J-j.’“] where \Ja # “&1 and

(22:. (I-XA)"E%ACI-M)+2& k&:‘i] 3—

A
Exchanging subscripts 1, 2 and using X:_:-' I- Xq , X4 EX:

o]

results in 1214: ﬁ.‘[k&; (l~2f/~¥4]) + %:1("‘\%)]
= XaTWh3 (- X002 ¢ Lkt (24 -2)] ER

There are four unknowns: N:;,k&_:,h&;_’hi: but there are only two equa-
tions of (3-5) for each temperature. It is necessary to use data at

two temperatures, and generate four simultaneous equations whi;h can 5

A A
be reduced to the form éﬂt)ﬁ% where 71-"“&7':%:[‘&‘}%:“&, 1—““4.1. .
These four equations are solved by a general subroutine rather than as
specific formulae as are presented by (3-7). This model is built into
program WWXLIQ using equation (3-6). If the 4’curves of only one of the
¥

two phases is valid, the ¥ of the other phase can be generated from the

421' data of the first phase by use of the solid solution equation (3-4).

This is the function of program OLCAL.

As a check of the methods, points from the calculated system
Orthoclase-Albite (Thompson and Wealdbaum 1969a-partIV) were used to
generate ﬁm curves which compare very well (figure E-1) with Thompson's
ﬁ-uq curves. Since Thompson's W's are temperature dependent, the curves
will not compare exactly. There does not appear to be any absolute

k 3

method of generating a general U< curve from the data without this

method of curve smoothing.
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Concerning immiscibility, an additional statement can be made to
(3-4) as shown by Kern and Weisbrod (1967): 4(;4= ;’ . This is equiva-
lent to oﬂ:g where 7;,_+0 .

Thus the same equations in (3-6, 7) can be used to obtain é from binary
immiscibility fields with the additional festrictions: 9”:'"’ for % =0
Further simplifications for immiscibility can be made if with the first
model W 4‘:”8 or with the second model Wn‘ ¢k&; . Note that these simpli-
fications are permitted only because 4”;':'0 and would not be allowed

otherwise: as stated for the case the alkali feldspar minimum, where

%% l(?; 4Uf and thus Wyp#kf. Then instead of (3-7) where W'?Vn%and

¥p 4,2
MU, = C/- X ) W
! ’ RT 2. (2)

w= CCi-xmt -G-x)* ]

Thompson demonstrated for his model
Xs) P ]
b - L Garre LYES)

with 2  (fn-x8)
C2- )] Cr-Xa)
and LZERF el ks = y

then Wiz . O , _¢_‘1_m) + TG0 -4l - 3 (xarxe)]
L2~ (Xt

RT (xXatXp) ({ " - x‘)z
Wag . Uha + 7 Lé» —&)}
i (% —xa)*

Thej and é are calculated from these Wusing Wi =l AND (3-8).

3-10

3-11




gy

22.

4. ASSOCIATION - DISSOCIATION IN LIQUIDS

%
Particle Interactions that Affect /é{(' , Liquidus Curves

and the Estimation of Heats of Fusion

X

The 4/, are determined as the excess quantity that is necessary ¢
bring an experimental liquidus to its ideal ( )/=_L, no association or
dissociation) curve defined by Aﬂ«',f%’ and the cryoscoupic equation (3-1).
If OH( has not been determined calorimetrically (as is true for many
silicates), it can be estimated, as will be shown, by the freezing
point depression method using the cryoscopic equaticn. However, asso-
ciation and/or dissociation causes the estimate of ©H. to be incorrect

X !
(ek%), so that Y. calculated using “H; will also be incorrect. Associa-
tion and dissociation are particle interactions ( a non ideality) and as
x -
such, should be included completely in ’{/{c (not in an incorrect “¥c ).
This is especially important when activity matching is attempted: in
a multicomponent system with coexisting liquid phases A and B, in general
YA XB . ) A 8 N . )
Wi ~Ue¢ =7[(‘°”¢‘¢”¢)so that Yy — X, = r (one - DHY) |

However,the effect on calculating an n-component liquidus temperature

. - ', ) - 3
for + tends to cancel out if ﬂ" and 4/,' are used in equation (3-3). It
is thus necessary to consider carefully the use of the cryoscopic equation

in estimating heats of fusion.

OHe
Since (3-1) is  fma. = (L 7-’,) then

/0¢
by replacing & by ¥ and 9, by 4‘/; (an estimate of 9% ) then

e Aﬂ: - 3 1 ,&'n (QH;) s D .
by X¢ = Tq_(_,%' ‘7L, , resulting in 1 M so that a plot of

Ohy = R& ¥¢ versus X¢ then has a limiting value of “#;. The shape of 4-1

G Y
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this curve as extrapolated to X¢=1 is undefined, so consider 2#; as
.
Xc»1 2 5"14‘-’0,(-‘7'—5‘."-;!: *0 . Hence ?¥. has the fndeterminate limiting

form of 0 . Using L'Hopital's Rule on indeterminate limits

0
. [TdRenk) R 2
%”.‘,1 L d(JQ x_t j RTO'
om Oh) 5 = = x ,(sz T - Pl
Xo=1 6‘”‘ d Ci—é)—] <71 LTl dxy 4/4) Xi=q
Xe»1 dix<)
2
aT RTo: o A . .
Thus ( - T =12 and the limiting liquidus slope at X;-1 defines 4-2
ALely,.s ™ oue
the heat of fusion. In the region close to X¢=1 k:f will approximate
. R ¢
5‘.1> s0  lum (AH'«‘); X, - 0”‘ L) where C is constant. 4-3
Yo~y X< »1 ? i:;‘ Tog
[4

P 3
' T . .
A plot of 2#; versus 7 should be linear near ti<{ .
Association or dissociation in the liquid affects these methods of
estimating A . Assuming component I to dissociate completely into
two particles in liquid component J then the actual concentration of

AN,
. I i /\/ = — h = th
particles of component is X« ) where N = moles, so that e

actual mole fraction of J is . . _# . 4=4
(M-fzﬂf')
L //
Calculating a mole fraction ignoring dissociation X'= 20 _ so
J (X

Mi= )—:ﬁ, -{//' and substituting in (4-4) then ).(/ = 4 - = X/
i X e T d Mor2 -2y X’
ThusJ [(7- )f-)(]dx L—J (){/) 2/] [Z/T/]
(2-x )(1~
= .‘dej as ;(J-vi and ﬁ'-’i.
sence (41) 1) 28T BT e il o e
DGl g 2 2F; 5

¥
Complete dissociation of I into twe particles causes 4/:'/' to be an in-
correct estimate of OI./]’ by a factor of two. 1In a similar fashion com-

plete dissociation of J into two particles causes AHJ.’ =2°Hj while




24,

on! = 2%
association of J into half as many particles causes u/ = 3 .
IDEAL CURVE:
¥: 1 , 7m0 associalion or digsciation

----- CURVE 1

—t— CURVE 2

X 5 particle mole f;-:ﬁw, v /g'ad

Figure 4-1
Liquidus Variation Due to Interactions

A more diagramatic approach is to consider figure 4-1 at temperature T:
1) if I dissociates it takes a smaller amount of I to make A¢ at T,

i.e. X< X and curve 1; X:i= Xi

2) if I associates it takes a larger amount of I to make J< at T,
b
i.e. ¥ 7 X and curve 23 Xr=zx2
Pl
So then if I dissociates it raises its liquidus and 4¥; and drops J's

liquidus and AHJ' . The reverse is true for association of I.

A method of protecting against these problems is to analyse liquidus
data of component J with several different types of component I (tectosi-
licate, sorosilicate, orthosilicate). If I dissociates in a melt of J,

a tectosilicate I should give a different mumber of particles than a
sorosilicate I, and hence Aﬁﬁf should change with the type of silicate

v

structure of component I. Calculations on both Gehlenite - Anorthite

and Gehlenite - Akermanite resulted in ‘AHQaM = 20 kcal. The conclu-
sion is that neither Akermanite nor Anorthite dissociate or associate in
liquid Gehlenite. Since Gehlenite is similar in structure and physical
properties to Akermanite, it should also not undergo such particle inter-

)
actions and hence OH = AH = 20 kcal. In contrast to gehlenite,
GEML GEHL

i)
pyroxene type components behave much differently, showing very high DH" .




25.

Possibly some.dissociation takes place in the pyroxene structure at the
same time as a lot of association of the other components. Pyroxene dis-
sociation would be loss of simple cations , as opposed to extensive modi-
fication of the chain like structure - Chipman 1942 ,» Wwhile the pyroxene

like liquid causes added components to polymerize.

I have attempted to characterize a liquidus surface by using as a
model a scheme of incomplete dissociation/association of a component
where the equilibrium constants of the interactions are temperature depen-
dent. This differs from the models of Flood (1968), Bradley (1964) and
Cochran (1967), where the interactions are assumed to be complete and
temperature independent, which is equivalent to very large or small equi-
librium constants ot the order ABS(L5DUO]72.. Lacy (1965) discussed
the problem of statistical models for silicate melts and came to the con-
clusion that polymerization/depolymerization interactions generally do
not go to completion. In the present scheme ten constants are given

assumed values, where 1 and 2 are components:

£ .f
for fusion (f) Oy, Toy
r
o4 | Ton 4-6
“ O
for interaction Ny , N2 Misthe stoichiometry of
equilibria (<) interaction

PEY “ &
ks = 2He _ 451
b RT R

PSRN <D ~
- ©°H _ OS5,
&Yl k1 R’_‘r ﬁ-‘

The interaction equilibria interfere with each other the way an inert
gas displaces a chemical reaction that has a different number of moles
products than reactants (Moore 1963). It becomes necessary to solve three

simultaneous interdependent non linear equations with three unknowns.
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This is quite difficult to do, but then if such a model is fitted to a
liquidus, the constants of the interaction equilibria also become un-
knowns, two of which are exponents. However, this sort of model is very
realistic, and if the techniques are perfected, it should provide a
theoretical basis for applying statistics to picking the best possible

liquidus through experimental points.

Association/dissociation equilibria introduces a type of nonideality
similar to that of element partitioning between an ideal single site
phase and an ideal double site phase. Calculations (Barron 1970 unpubli-
shed) show that regular solution partitioning curves can be duplicated
very accurately (but not exactly : 1% mole fraction) by single site phase
- double site phase partitioning with temperature dependent equilibrium
constants. The reverse though, is not generally true: once the regular
solution model W is given a value, the values and temperature dependence
of the two equilibrium constants are fixed. 1In a similar manner the inter-
action model will generally approximate a regular solution model, but
results can be obtained from the interaction model that cannot be fitted

4

to the regular solution model. The 4. curves for the interaction model

should thus only be used with an approach similar to that of this disserta-

tion.
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5. RESULTS OF A THREE COMPONENT é AND VALIDITY OF THE EMPIRICAL
X
CORRECTION FREE ENERGY G

The é developed in this dissertation does not take into account
excess entropies of mixing. In general the sign of § need not be the
same as the sign of é (Lupis 1966). When several calculated ternary
Systems are compared with the experimental ones it is found :

1) if Gx'j?O in binaries, temperature surfaces calculated are

higher than experimental determinations.

2) 1if 57»40 in binaries, the calculated temperatures were

lower than experimental.

3) mixed value éf[ in binaries resulted in temperatures both

greater and less than experimental temperatures.

The deviations in the calculations consistently reflect the sign
of the binary excess free energies, and thus are not likely to be caused
by excess entropies. Instead they must be explained in terms of some
ternary interaction factor. Such an effect would require a change in
the dilution factor (2-5): (A’é f‘XJ')z . From the relationship of sign
of Gy in binaries to the sign of T calculated - T experimental, it
is necessary that the dilution factor get smaller faster than (/c'fﬁ')l .
This way the absolute value of a ternary /4//;«' would get closer to zero
(i.e. x;closer to one) so the calculated temperatures would be raised if

é;fo and lowered if éﬁ’;’?D - The form of the ternary effect is completely
unspecified. In fact it may have a molecular interpretation no more im-
portant than a homogenizing of the environment around each species. 1In

the complete formulation of éf/ approach, species are not treated and
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hence the use of an Empirical Correction Free Energy G is justified if

the model seems to work where results can be checked.

An n-component correction free energy model should satisfy the

following preliminary restrictions:
5-1 C, = O as any (x¢ f-)‘(/') -1
K .
5.2 (A,—0O as X¢—1 and (Xc‘f{/)'_’i

5-3 It should have at least n independent adjustable parameters so
that in the case of an (n+l) phase minimum (i.e. a ternary eutec-
tic), the n liquidus surfaces can all be raised to the eutectic

temperature and composition.

Various models tried were:

é: 2- Z (/"‘/‘"j)kj' which doesn't satisfy (5-1) for =272

¢’=1J'>¢

A
11& ZZ(/ Xy ﬁ')(xé*{/‘)k,“/' but H;#° as Xit¥sg for 23

(‘1J>¢
iii -/WA)Z,( Ke which yields 5:0 for any i[-0 for =752
=1
L
[T[ T (1 Xe- )] 2;’;[({ which seems to satisfy (5-1, 2, 3) 5-4
<z 1J>‘ t:i I—

Developing model iv

tsyL

~ - — 2
G- [Z, T 0-x -x)],z_}:/u = [7,(1x -X)j[7777 (1- x‘.x-)]éxek;
and using dhx ;l(.alx then Ck; D(eng) DCG)
D(Xs) DCX-I)
s p b, Z bn (- X %) + 7 D tnla-wion) + tn ] chk«]
¢¢1J>c
Z Kk
D(}na)_ 3 &-1) T (xcex) Ky - “‘1—]
2D, T i L L + L B
J ( Z ki)
<=1
D(t’ma) 2 (x-1) (XD ki _
(1-41) D (%2) *J” (1-%-%) Z Z -Xe-X) /Z/qx,, 1



] (G L D(e-qG)
Now Ai = G“(I"Kt) ‘(—' = G t(1- Xi) G DO(,_) = G [’l +(/—X1)
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+
Using X< fz(% which does not change with the choice of compo-
;-

=L %

nent 1 and XSi Z(Xi*i) which does depend on the choice of
/;1 (1 -X1 )3)

component 1,then
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2yl

L[k1 X3 (XS =XS1+42) + KaXz (XS -XSq) + . KnXi (XS-XS'J.)J

The general formula is then
L

fie 2 [ron tsrsed e (o) P

= . [ (xs- x:t)Z Xk # k] SE

A
Formulating RT&'IQ( erfa{f[{ where ,é/, is the correction to be

calculated and using the freezing point depression equation results in

o= oh (L~ 1) -RTBox - 4
At an n - SOlld phase point, by knowmg T}’t (<= i’r) using binary data
to estimate //{z » then n values of /ﬁ can be calculated from (5-9).
These are used in the n equations of the form of (5-7), solved simulta-
neously to give n independent values of K{ . These /{1, are then used
over the whole region, modifying the n-component activities. When one
binary of a termary system forms a solid solution the situation becomes

more difficult. One additional unknown is introduced ( X, in crystal)
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and two nonlinear equations associated with solid solution are introduced
(3-5). Consider for example a correction of Diopside - Albite - Anorthite,

with reference to figure 5-1 and diagram 7-2 .

experimental cotectic

Diofswe
————calculated cotectic
P
s
Aarre AORTHITE P, P2: Centrally chosen points
Figure 5-1
Compositions for M ¢ with experimental I, X7
known.
k T x
For Diopside {/(1 = O ( To{'i)‘RTgn/ﬁ"//{i by (5-9).

For the Plagioclase - Liquid equilibria we have by (3-5), (5-8)

K X
RTn, 8 = LaBTtnre 4l = w7ewas « o4, (I -y)

L1BUID LQuip CRYSTAL oo

or K T
Wa = RTln Qs + OH, (= -1) - -
um.g CRYSTAL . ( 7.;,_ 1) W
and similarly for component 3 g 5-10
& T -
ls - RTnas , A,L/B(—f -1) - RTbnXs -Us,
LRviID CRYSTAL o3 LIVID

&
The first two terms on right hand side of Ua, {73 are independent of

CRYITAL

X;“™" and at fixed T are nonlinear functions of X3 .
RTtnls 4 Bif, (L -
— crysra. | s (T.3 1)

K
( - a3

o RT4n Gz s 0H, [T
] Raeysnn2 f 1/75; 1)

T - -
-<o
- -~
- -

-
I See

e o b RT by ¢ 4Ly
2nX- .
IRT L/aauflga Liguv O

’

Ab X gm; An

K Figure 5-2
A4, as a Functicn of X?""“
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CR L
) Pkl

The next two terms are fixed independent of so the resultants

K k
are two curves of ﬂ;_ )‘a_; as functions of
& k

if :Rm‘ is known then £/, 03 are defined, and the three linear

Xiky}mL , figure 5-2. Obviously

. . s
equations are solved for ki) kz.) Kg . However if szvn is not known
then there exists corresponding curves for ki)kzjkg as a function of

chwf‘?‘ (figure 5-3).

Ab An
K1
K2
K3
%271 X SRPTAL Xe 20
Figure 5-3

K< From X,Crystal

There is no unigue solution so that a second composition P2 on the cotec-
g P

RYSTAL

tic is needed. First a trial X is taken for composition F, yield-

ing values for Kq,k:,Ks using (5-10, 7). The values for ﬁ" at composi-
K
tion P2 can then be calculated with these Ki . With ﬂ; 4 (5-8) and

program GAPMIS, the temperature (Tcalc) at composition P2 is calculated.

. . . STA.
This procedure is repeated for several trial values of X:m “ at compo-

sition P to obtain a plot of Tcalc-— T experiment for composition P2

versus X, at composition P. Tuere is a unique solution where Tcalc =

T experiment which yields the desired fgysnn at compositions P and

P2.
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6. GENERAL CRITICISMS

6.1 Usage of the Total Function Versus Statistically Determined

Two or Three Parameter

Use of a complete or total function é rather than a one or two
parameter z has not been justified from a basis of a statistical eva-
luation of the original liquidus data. However, some systems require at
least a three parameter é . For example, systems like Fayalite-Silica,
Forsterite-Silica have strongly non-centered immiscibility fields with
both sides being very steep. Thompson and Waldbaum (1969b) demonstrated
the shape of a two parameter E immiscibility field for NaCl-KCl1: the
maximum temperature is displaced off X = 0.5, and the short side is much
steeper than the other. Hence for Fayalite-Quartz, Forsterite-Quartz at
least a three parameter é is required to describe the shape of the bi-
nary immiscibility field. The ternary 't‘ for a three parameter é con-
tains nine different terms whereas the complete formulation of é requires
only six terms in the ternary d; . Just to include the necessary number

of parameters in é causes the formulation of 4‘ to increase in complexity.

A statistical study of possible liquidus curves through a series of
T-X“® points is not wise unless very careful consideration is given to
the required result. Several authors have discussed various types of
ionizing models to explain anomalous freezing point depression curves
(Flood, 1968; Bradley, 1964; Cochran, 1967). The results indicate that
the liquidus surface is very sensitive to anything displacing the degree
of association or dissociation. A statistical treatment assumes that the
errors are random and should average out. If errors in temperature were

caused by impurities, then the thermodynamically best liquidus would be
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the upper limit of the possible curves because additional components

lower the liquidus by Alkemade's Rule (unless there is appreciable ideal
solid solution of an impurity component that melts at a higher temperature).
Statistics can only be applied if there is a valid model of the phase. For
example, Green (1970) recently published information on the statistically
fitted quasi-chemical model which explained the calorimetric non-ideality
in solid NaCl-KCl better than a statistically determined two parameter’&
(Thompson 1969). Inherent in the use of the quasi-chemical model is the
partition energy functions of the existing particles. For liquids this
would require detailed knowledge of the species present. The interaction
model described in section (4-6) could be used to statistically pick a

best liquidus, but with at least six unknowns, twenty to thirty sets of
data are required. The use of the complete formulation of & effectively
avoids these problems by not attempting to analyse the cause of non-ideality,
and hence not constraining the liquidus curve or the [{ curves to a special
type of curve. There is, at present, no thermodynamically sound way to

put a best general liquidus through experimental points. The only true
restrictions are that the curve be smooth and within the possible experi-
mental error of the experimental points. Arbitrarily, a polynomial might
be fitted to the liquidus data so that analytically the curve is well de-
fined. Dr. W.C. Luth made just such a general point in a conversation

at the spring 1970 annual meeting of the AGU.

x
6.11 . as Obtained in Forsterite—-Quartz and Fayalite-Quartz

Consider a liquidus surface as it approaches the top of a meta-

stable immiscibility field:
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Figures 6-1
Interaction of Liquidus and Liquid Irmiscibility

It is of interest in figure 6-le,where the two liquid field breaks
through the liquidus,to consider what the metastable liquidus looks
like. Assuming a liquidus to be a smooth curve, it must havé some

shape like the dotted curve of figure 64e. This then should be the
liquidus curve used to generate ﬁ& for the metastable liquidus, not

the apparent flat liquidus at constant temperature which was used in

the calculations in this dissertation. In order ﬁo realistically speci-
fy the shape of the metastable liquidus it is necessary to have con-
trol on the shape of the stable liquidus close to the immiscibility
field in figure 6-le. With the immiscibility in these silicate systems,

this control has not been demonstrated experimentally (Bowen 1928).
X

As a result there are unknown errors in the 4QQ curves of both components,
since the Gibbs-Duhem integration is used; How these errors affect the
calculated results in Quartz-Fayalite-Leucite is completely unknown.
Perhaps (3-12) can be used to estimate the two parameters for Thompson's
immiscibility model, which then are used to generate the metastable
liquidus. The technique can only be approximate since the shape of the
immiscibility field suggests that é for the liquids involved requires

at least three parameters.
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6.111 Incongruent Melting, Non Binary Behaviour, Minor Solid Solution

Many of the binaries treated contained incongruent melting sub-
stances. The metastable portions of the liquidus were drawn by eye and
used as acceptable if the resulting ZZ curves were smooth. Some binaries
were estimated by extrapolation from ternary diagrams: Anorthite-Orthoclase
was attempted from Quartz-Anorthite-Orthoclase. The metastable liquidus
was modified in the region of the extrapolated binary eutectic so that

X
the A« curves were smooth (Figure E-2)

Y
Most of the calculations of ﬁﬂ from binaries have ignored small

amounts of solid solution. Calculations on Gehlenite-Akemanite, Albite-
Orthoclase and Anorthite-Albite indicate that in the liquid phase

,(,,{(GE”L > /ngr ) /(:/(4“ are almost independent of the solid composition
if the solid is greater than 85-90% pure (mole fraction). Non binary
behaviour in general was ignored in because of lack of information on

the compositions of the phases involved. However, such behaviour causes
the albite liquidus in Albite-Leucite to be lowered (Levin et al 1964)
and the albite liquidus in Albite-Diopside to be raised tc a humped maxi-
mum (Morse 1968) not shown in Bowen's (1928) diagrams. The only experi-
mental points in Bowen's Diopside-Albite—Anorthite which violate the cal-
culated results are two compositions close to the cotectic near ,X;:m;.lZ.
The calculated feldspar liquidus is too high. Since the Diopside-Albite
liquidus used for the calculations is that of Bowen, the calculated 1li-
quidus of plagioclase in Diopside-Albite and in Diopside-Albite~Anorthite
close to &:ﬁm=0 is below what it should be according to the data of Morse
(1968). 1If the calculated liquidus had been too low, then non binary

behaviour would be an explanation, but this is not the case, so some other

effect must be present.
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7. CONCLUSIONS

The calculated systems Q“artZ-Fayalite-Leucite, Diopside-Albite-

Anorthite and Quartz-Albite-Orthoclase are shown in diagrams 7-1, 2,

3. The sources of liquidus-solidus data for these Systems are presented

in table 7-1.

TABLE 7-1

THERMODYNAMIC DATA SOURCES

SYSTEM SOURCE

Quartz-Fayalite-Leucite Roedder (1951)
Diopside-Albite-Anorthite Bowen (1928)

Quartz-Albite-Orthoclase J. Schairer in Levin et al. (1964) fig.
786, Krauskopf (1967) fig. 14-1.

Quartz-Fayalite Levin et al. (1964). 586, 682, 696

Quartz-Forsterite Levin et al. (1964) fig. 598, 682, 803
Turner (1960) page 126

Forsterite-Leucite op cit fig. 803, 811

Fayalite-Leucite Ai; from Forsterite-Leucite

Leucite-Quartz op cit fig. 412, 795, 803, Turner (19600
page 107

Quartz-Albite Luth (1966-67)

Quartz-Orthoclase Luth (1966-67)

Orthoclase-Anorthite Levin et al. (1964) fig. 795, 799

Diopside-Albite Bowen (1928)

Diopside-Anorthite Bowen (1928)

Albite-Orthoclase Thompson (1969) part IV

Albite-Anorthite Deer et al. (1966)

Molecular weights and heats of fusion are from Waldbaum (1968), except

the heat of fusion of Leucite which was estimated to be 6770 cals/mole

from the systems Leucite~Quartz and Leucite-Forsterite.

The procedures developed give reasonable results in terms of
8’ general topography. There are differences, however, which are mainly
due to the calculated temperatures being higher than the experimental ones.

In the system Quartz-Fayalite-Leucite (diagram 7-1) the calculated immi-

IiIIIIIIIIIIIIIIIIIII..I.“.II..I.lI...l.l....l.llIIIIIIII--r’
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Low Temperature Immiscibility:weight fraction

Roedder (1951)
1470

Fayaihite Leucite

1205 1686

F igure 7-1
The System Qmwt;j - Fayall - Lewats
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scibility fields are considerably larger than the experimental ones.

The minimum temperature of immiscibility is about 1090 + 10°C in both
cases. The calculated internal immiscibility field completely cuts
across the field of crystallization of fayalite and encroaches 250°C

into the field of Leucite. Actually,the line Orthoclase-Fayalite

crosses the immiscibility field between 1290 and 1320°C and is cut by

the immiscibility tie-lines in this area. This means that a critically
undersaturated liquid below the line Orthoclase-Fayalite could exsolve

a liquid above the line which would eventually fractionate to free quartz,
orthoclase and fayalite. If a few more components were added it is
entirely possible that this trend of immiscibility could occur in systems
close to natural rock systems. Philpotts (1970) has recently found field
evidence that liquids of quartz syenite composition show immiscibility
phenomena with liquids of a feldspathoidal basalt composition in the

Monteregian province of Quebec.

The shape of the calculated immiscibility field is quite irregular
although smooth. Perhaps in an experimental system this could be due

to preferred structures in the liquid increasing the immiscibility gap

as was suggested by Dr. Philpotts in a conversation. It is certainly
reasonable that an immiscibility field should be elongated or stretched
towards binary compositions that support the liquid structures causing
immiscibility. 1If there are three such structures then an irregular
immiscibility field would result with the additional possibility of a
three liquid field occuring if the non-ideality is large enough. Dis-
ordered forms of at least three solid silicate structures occur in
liquid silicates: inosilicates (Philpotts, private communication),

orthosilicate and tectosilicate. Significant differences are found in
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viscosity, density and electrical conductivity between two liquid silicates
Q%? with a different predominant structure. This means the liquid struc-
tures are fairly well-defined and hence irregular{y shaped immiscibility
fields should occur in ternary silicate liquids. Silicate immiscibility
fields are inevitably shown with smooth regular isctherms and liquidus
intersections but perhaps this is assumed rather than proven experiment-
ally. McTaggart, in Levin et al. (1964) fig. 783, studied the system
Ti02—2r02—5i02 and mapped out an immiscibility field extending from the
binary T102—8102 at 1765°C into the ternary to 40% ZrO2 at 1680°C, with
a sudden drop of 85° to 1680°C taking place at 4% ZrOz. This is an immi-
scibility field that suddenly rises just before it gets to the binary,
but still the liquidus intersection at the sudden rise is shown as a
regular curve with no change in curvature. This is not likely to be the
case. On the other hand Levin et al. (1964), fig. 559, extrapolated the
line of maximum immiscibility temperatures in SiOZ—BZOB-BaO through to

Ba0-5i0, from 10% B,0,and got estimates of metastable immiscibility

2 273
which were supported by electron microscope studies of glasses in SiOz-BaO.
Evidently some silicate immiscibility fields have regular surfaces, but

the regularity must be demonstrated both in temperature and compositions

before it is taken to be the case.

The calculated system Dicpside-Albite-Anorthite (diagram 7-2) com-
pares very well with Bowen's (1928) experimental results. In general the
ternary liquidus calculated is high by 2-15°C with an average of 8°C.
Bowen's results from the equilibrium crystallized liquids D and E permit
the checking of temperatures and crystal compositions calculated from

a similar path mapped out using figure 7-2 and the techniques developed

in appendix D. Table 7-2 shows the correspondence, with data source 3
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resulting from carefully pletting Bowen's quoted compositions on his
diagram, and interpolating temperatures using the isotherms. In four
cases this changed temperatures by as much as 4-5°C. This is not a
criticism of the quoted values since the isotherms have an error possibi-

lity similar to individual readings.
TABLE 7-2

EQUILIBRIUM CRYSTALLIZATION IN DIOPSIDE-ALBITE-ANORTHITE

Mole percent variation in plagioclase

source liquid mole ¥% first crystal first Diopside last iiquid

data Dio/Ab/An T X T X T X
1 D 18 D 1375 80 M 1216 66 H 1200 50
2 D 41 D 1385 80 M 1215 62 H 1199 50
3 D 41 D 1380 80 M 1220 66 H 1200 50
1 E 13 E 1480 95 N 1245 85 0 1237 82
2 E 16 E 1480 94 N 1255 84 0 1251 82
3 E 71 E 1480 95 N 1249 85 0 1241 82

sources 1: Bowen (1928), 2: calculated, 3: Bowen (1928)
The compositions of crystals at H and O are fixed by the bulk composition

only so here the temperatures are the things to compare.

The exercise in working out a crystallizing path using the isocons of
the coexisting plagioclase immediately indicates the usefulness of the
isocons. Further details are provided in appendix D, but in general it
can be stated that any type of crystallization path can be constructed
easily and quickly using the isocons. Much important information can be
obtained from these paths, but they can only be defined by extensive care-
ful experimentation or by the simpler use of the isocons. Therefore a
new term for this type of contour is proposed by the author. The con-

tours are lines on the liquidus of constant composition of the coexisting

solid solution phase. The term suggested is ICOPHASE, I for equal compo-
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sition and COPHASE for the coexisting phase. In addition, where the

coexisting phase is specifically to be understood, the new terms ICOCRYST

(the coexisting phase is crystalline) and ICOLIQ (the coexisting phase

is a liquid) are proposed. In this sense, the contours on figures 7-2, 3

are ICOCRYSTS.
allow one extra
the definitions

ICOPHASE
ICOCRYST
ICOLIQ

As a suggestion

importance were

Plotting of immiscibility relatioms using ICOLIQS will
degree of freedom in displaying results. To summarize,

of the new terms are:

isocon of a component in a coexisting solution phase.
isocon of a component in a coexisting solid solution phase.

isocon of a component in a coexisting liquid phase.

it would be worthwhile if simplified systems of geologic

redone experimentally with the purpose of obtaining ico-

crysts of the main minerals that are solid solutions. The solvus of

feldspars in An—-Or-Ab would require two sets of icocrysts as the solid

solution is ternary. Graphical construction of crystallization paths can

be replaced by computer construction if the information contained in the

icocrysts is fitted to a polynomial function of the liquid composition.

The calculations done on the granite system (diagram 7-3) yield

slightly higher temperatures than the experimental results. Table 7-3

shows the results on the ternary minimum.

TABLE 7-3

TERNARY MINTMUM IN THE GRANITE SYSTEM

composition weight temperature

Source quartz Ab Or cent.

Calculated 29.5 34.0 36.5 988
L

Experiment 35.0 27.0 38.0- 978

* Krausiopf(1947)

The gquoted accuracy of the binary eutectic in Quartz-Orthoclase is

990 + 20°C so that the ternary minimum might only be depressed one or
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two degrees below the eutectic in Quartz-Orthoclase. If the experimental
ternary minimum is correct, the calculations would suggest that the eutec-
tic in Quartz-Orthoclase is near 992°C. One important fact shown by the
calculated results in diagram 7-3 is that the compositions of the alkali
feldspars change quite rapidly in the region of the minimum, especially

on the cotectic line towards albite. A change along the cotectic of

10% Ab in the liquid changes the composition of the coexisting alkali
feldspar by as much as 25% Or. A strange thing also happens if liquids
close to Ab-Or are fractionally crystallized, for it appears to be possible
for the coexisting crystal to firet get poorer in Or, but then as the li-
quid swings and approaches the minimum from Ab, the crystal will then
increase in Or. The same composition of alkali feldspar can crystallize
at two different temperatures along the same crystallization path. It

would be interesting to see if this could be demonstrated in the field.

The n-component correction free energy model is introduced to the
dissertation only for the purpose of clarifying and demonstrating how
the time and expense of detailed experimentation can be reduced by
correcting the calculated results to a few experimental points. A
testing of the form of the model by application is beyond the scope of

the dissertation and will be saved for further work in the future.
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8. SUGGESTIONS FOR FURTHER WORK

8.1 Ternary Solid Solution -~ Liquid Equilibria

For the liquidus extension of a binary solid solution series into
a ternary, the activities in the ternary liquid and binary fused crystal
were matched only for the two components in the binary solid solution.
For a ternary solid solution series, it is necessary to include the match-
ing of activities for all three components. Considering the feldépar
system Ab-An-Or  there is data for the crystalline and liquid states in Ab-Or
(Thompeon and Waldbaum l969b),An-N;(Deer et al 1766), and by extrapolation
and curve smoothing for the liquid in Or - An (this research). The only
thermodynamic data required is for the solid phases in Or-A,. From chemi-
cal analyses of feldspars it is possible to obtain a minimum estimate
of the mutual solid solubility limits of orthoclase and anorthite. By
Deer et al (1966), this is about 4-57%, so using the regular solution

model at the extrepolated eutectic temperature, a \A/o,.l,,, for the crystal

phase can be calculated by (3-11) as: where T is the
RT &»é_,"t'
Wo,.aa = %P eutectic temperature,
A\2 Py
[ (-x{ ) - (- xg) ] X, is mole percent Or
25 .
_ 087 “i843 e.\(,-;s') A  is alkali feld-
T _.ost
(9% ) spar, P is plagioclase
= 9400 ails/mole

The liquidus surface would be contoured with two sets of icocrysts, one
for the mole percent of Or and the other for the mole percent An. Crystal-
lization paths could easily be deduced using the icocrysts as shown

in Appendix D. Next, by calculating the shape of the ternary solvus a
plot of some ratio (R) versus temperature would yield a geqthermometer.

For example R = normalized Ab in Alkali feldspar
normalized Ab in Plagioclase
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would be an acceptable R. There is no unique curve for this such as
the one used by Barth (1951) because the mutual solubility of alkali
feldspar and Plagioclase is temperature-dependent, but a series of

curves of R at constant Ax in Alkali feldspar would provide a unique

solution for the temperature.

8. 11 Pressure and Temperature Dependence of é

It is evident from Lindsley's work published in the volume "Sympo-
sium on Anorthosites" (Isachsen, 1970) that the shifting of the Diopside-
Anorthite eutectic towards anorthite at higher pressures cannot be accounted
for simply on the basis of raised melting temperatures, plus the same {Z
curves. The eutectic is shifted so quickly that the non-ideal properties
must be pressure dependent. That is to say, the excess volume of mixing
is not zero. Thompson (1969) calculated a moderate pressure dependence
for his two non-ideality parameters in solid Albite-Orthoclase. In terms

then of generality, all excess thermodynamic free energies are pressure

dependent. Assuming the é is temperature independent, a phase diagram

C? fom
done at two pressures will yield twe G curves and since 3%;=Vthen -227231:—1
figure 8-1.
(B
: s T This calculated U can then be
é T : used to get G for pressures between

l-atm and P and for moderatre extra-

polation to higher pressures as

- X
- = X _ +(P-1)°V
:("i Figure 8-1 *ard Gp - éid‘ 0

G and ¥ of Two Pressures
Using Lindsley's data on Albite-Anorthite at sSuccessive pressures, &‘

<X

liquid and ?-solid can be obtained, and with similar data for Diopside-
Albite, Diopside-Anorthite, the pressure shifting of the Diopside-Plagioclase

cotectic line could be calculated.
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Thompson ana Waldbaum (1969b) calculated, from a miscibility gap

x

assuming two parameter é » the temperature dependence and value of &G .

The process is not simple, and implicit in the process is that at any
®

one temperature G is described accurately by G’( = X%z (x,w,, "x’-"]ﬂ-).
LA
A ¢ . db._&
The temperature dependence of is the excess entropy S as a7
It appears to be impossible using phase diagrams to separate the effects
-4 x
of a general G and a general s . However, when the liquidus from

a binary is externded into a system, the n-component eutectic minimum

uses the '{j data from the lower temperature areas of the binaries:

1

with reference to figure 8-2 the

X

U data for E comes from the intersec-
tion of the dotted lines with the bina-

ries, generally cutting the binaries

3 near the binary eutectics i.e. the

z 4
Flgure 8-2
Source ofﬂfor Ternary Eutectic lower temperatures in the binaries.
x

' The process of calculating then corrects itself for S automatically to
a first approximation. Thus phase diagrams done at two Pressures should

g

yield fairly accurate data on Y .

8.II1 Distribution and Fractioning of Minor and Trace Elements

During Crystallization and in Solid State Equilibrium

Assume or obtain equilibrium constants of partitioning of a minor
i nhahs B i e
element for every crystalline phase, =777 and an initial concentra-
tion for the minor element. Using the icocrysts of a calculated ternary
(D10p51de-Alb1te—Anorth1te) map out a typical crystalllzatlon path and

with this path and the constants derive fractionation curves of the minor

element under the following assumptions:
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1) Crystallization path is controlled by degree of fractiomal

crystallization.

2) At any time, equilibrium is assumed between liquid and the
crystal just crystallized. Regular zoning in crystals in
major components can be modeled by fractional crystailization,
but during crystallization of each zone the partitioning of

the minor element is an equilibrium partitioning.

3) If minor element concentration is small then ignore its acti-

vity coefficient, but use activities for the major elements.

4) If two components contain a major element that the minor

element is substituting for, it is necessary to use a collected

708, -1084, 2005

activity for the major element. For example in liquid

=
(- 7#-2)

Ao - [(ah\ (a°"?)

L1QUID L/Quid ACneImes

Digital data can be taken from the crystallization path mapped out, with
temperature, composition of liquid and plagioclase, activities in liquid

and crystals and relative mass of plagioclase that crystallized in the

last increment. This could be the input data for a program, to be developed,
which moves in small increments of crystallization down the curve calcu-
lating partitioning of remaining minor element in the liquid with crystal.
When diopside joins plagioclase we need a K-Diopside and the situation

has to be solved so that both equilibria occur. When solidification is
complete, we then need a K-Diopside-Anorthite that can be obtained from

partitioning the binary Diopside-Anorthite:

M -M}.%‘;Dé f&#(a_ 5(7_03 pre— Ca ‘(; sz‘ * /‘1' 462.&',_ Dg
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(prp) ( /Yf:,’/\ ﬂ.?
kD"P 4,‘ / D*\ / Fg ODI? =1 but a’qn is
LXH / (04.,, ) CRYSTAL

dependent on T and X;_

Previous work has been done in this line by Neumann (1954), Mueller (1964),
Ryabchikov (1960), Shimazu (1967) and Gast (1968), using assumed distri-
bution coefficients that were temperature and composition independent.

With phase data at another pressure, the év's can be calculated so that

these element partitioning paths can be calculated at different pressures.

8.1V Testing Field Examples of Immiscibility

x
Collect Gxdata on major mineral pairs so that an attempt in 5 - 6

components can be made to check if activity matching does occur between
two suspected immiscible liquids. This requires at least partial J[ in-
formation on at least 10 binaries ( %ﬁ) Some ex i 1 i i

. perimental point in
the system would be valuable to calculate (5 » the correction free energy.
Then we pick a geologically reasonable temperature range and see if
matching of activities can be demonstrated. Some of the liquids cannot
be handled; for example, there is insufficient information on phyllosili-
cates, amphiboles and the effect uf water pressure on crystallization.
However if it can be demonstrated that these phases crystallize with the
same composition in BOTH LIQUIDS, this constitutes reasonable evidence
that their activities were the same. However, the té for these mineral
components is still required for every binary affects 42 whether it is
a binary with 4 or not. Possibly though, a match of activities ignoring

these phases would demonstrate immiscibility.

8.V Apply Methods to Sulphide Systems, Molten Salt Systems,

Metamorphic Solid State Equilibria, and Slag Systems
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APPENDIX A

X

X
Methods for Deriving # and ¢ from a Simple Binary Eutectic

System I-J with No Solid Soiution

Input data: weight percent and liquidus temperature data, in order

from eutectic out.

X
Values of 4 on I's side of the eutectic are calculated using (3-2)

A = A”ﬁ'(r;_h_r"") ~RTlnx, and this yields an intermediate data

o¢

set of the form:

I J
X< 4’7“ &‘[ )q 47} ai/
D |4:@ XD (e = Eutecte : X{L0) + XD =1
Xt | ditd X2 4?:,{9)
: : : "
s e
X | Uim) 7;,the number of liquidus points

on I's side,need not equal 7‘2/

X X X
1) Iterative Graphical Construction of Ge}‘ using A and 4/; with
J J

Program QCALN2

x
b A (1)

L’d;and-w]
B
Gy
7 p
=4 (2)
T Xi) X<(2) I
%=1 5@ X=1
£
Figure A-1 "

Geometric Construction of Gr'/'
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s
With reference to figure A-1, since X (1) is the eutectic, with AL ),

, ¢
A/;(1) being the partial quantities of &?‘(4-) at X<(2) , then from the

J

- = /1
geometry C//éé‘ 1) - ,é;‘!i)} _ T G () - Ue (2)]
[1-0] Exf'(l)'ij

x . - o
and hence G‘/- (1) = L’i - X 1] [,dj/‘(i)- é?z'(i),{ + U L1)

— X o
Putting DB(2) = [T gle(1> 4 A (D]
2

x
. 790
and solving the geometry for G:/ - P
(&, @ -peed] _ [&e (1) - pBC2Y]

Do - 1] D¢y -173
X LV IEN _1'7 %
R - S T L DR
sc Sl o= V2 - ; + DR
G‘:}r T:X,_’(:L\, -1% _’\LU, (1) DB(Z/A‘ R /

Thus the general iterative formula is

x 2 -
/ X< (A1) -1] A, () - 93(77,:1)—7 + DB (m*2)

NS - .
i (1) = Tl -1] S 7Y s

J

where  DE(m#1) = [l im » L r) [ /2.

This method requires a large number of data points (50-60) spread through-

out the interval. An upper and a lower curve of éf/ (i.e. an estimate
X

of possible error in G due to the nature of construction) can be calcu-

X
- /. x
lated by making a curve with DBO) = Aen1)  and with DB = /<) .

In general the difference in the curves was smaller than the accuracy of

x
plotting if more than fifty points were used. Data for A{; on 1's side
X S _ A0
of the eutectic is obtained from (A-1) as /é»{ :ﬁ:' # EJ‘Z /t/‘] .
c/ E/{ —1]
¥ x ¥
2) Solution of Differential Equation for Gﬂ from {/‘){// with Program
‘] A\’S

QCALN3
e x
Since 4/¢ 1is a partial quantity of ij then (2-1) holds,

// .'\ . . - - - 1 -
ﬁ‘ - é__+ {‘/—XJ%?{"H , and putting ¥YzX: , dividing by (-¥)° yields
/

d
=

|

:‘I_’
(8
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AT 57 . 4
)2 so that Jf'—D =2k

e

48, 5
{1-x) 4 (x *

™~

Integrating between x¢2) = X<(2) and Xc2) = A (2)

. < x¢2)
G (2 G - L dAx
“r P~ X(1 ¢r-x)*
(=~ %)) O - el %)
X¢2)
H A-5
e }(’ /2) = C/ -X(2)J rLi) + // /"7‘ ax
A SNEELIZD SRV,
X1}
1 .
According to Darken (1953) the argument CT-—(‘)Z is integrable as Y, ,—1

as a result of Raoult S Law in the neighbourhood of Y, =1 :

*{M gx _x)z] A
Xc~1

. x . .
That is: /, approaches zero as fast as A{1-x)° . The integration

X
is performed by fitting {é& i IS ;’ﬁ,}&_ﬂ sz, a2 LO 2 parabola and

integrating between XA<{%) and X« (7rz) .
The general form is Xn92)
Gem 7 o
A Dl A A
/' - /- >~
(1) = [1- X fe2)] }/——— ; AR
? iz “ LG xow] (1-20* A-6
x X))
and (A-2) defines £(1) at Xo(1) . Alternatelyv {/:(lJ Jz
f’ X&) £=n, 011, 7192

could be fitted to the parabola. This simplifies the integration formula
but results from both methods were within .02 percent of each other. The

X
print out of QCALN3 uses the parabolic fit to U .

3) Modified Gibbs-Duhem Integration: Program DUHEM

From Darken (1953), a typical Gibbs-Duhem integration takes the form

‘/{_
'ZKK‘L = - _J_.)o( eu.b/
Y A-7
Since /’—-)/(— becomes infinite at )f"‘i , the integration is difficult
L= j/

- L T

near XJ':i so Darken introduces the transformation 0'// = I—_;;‘%z . A-8
J
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Y
By the regular solution model £ :RTm¥, is temperature invariant so

that 0(/‘=RT o{/‘* will be used and both sides of (A-8,7) will be multi-
v

. . . _-Rrﬂntf . - VT SpvS- 3 _
plied by RT. This vields 0( m and rearranging RT&,;)} «Df/(/ §) EX f(/ A-9
so that o (RTén¥) = ,X,zdof/ + W & dX¢ . Substituting into (A-7)

/~)’( Xy : 4/1.—_4”1
Tj X..-:—//(_'- - . . . = — . . . —_ ./_ . .
R7én A W) [ oty +2 00 dr ] Z/{«jo‘(/dxt X (1= X Ja
«<1 7 A
Xe=1 X’ =L
Integrating the second integral by parts yields
X >Xy X ex Xyexy /“"" =
/*?//- YAG 2 X XoG — [ o dlaix) = XE Xl 1 [ oS, dy; —/ / X elre
yez1 = 1 Y2
S0 o
: / _
RTondy = - Xa )\(/0(/ - _{/—g’%f’j d )jbjjdlﬁ
{""_/1
x . e
and /y{{ = - {7/? D(;/ —_— ’/ 0-(/ d’({' A-10
“'"/1':..7
Since the input data goes from the eutectic out, the equation needs t»o
be modified. Where J.«'(”'*l) is to be determined on J's side of eutectic
at i) , X2 (1)
Lctwrd) = = K Ou2) () < 4 ()] & (r12) = / )9 Alr-x)
y’:o
)j :5 ()
1'¢
’ - - -/ . . —
4,y = {/m‘f/-g/ (] o (n) o5 AL %)
5=
and subtracting and rearranging for the general formula
1’4
ﬁd”"l) = Uin) + ><J'(n>[;->f!-1n>] oG (h) - X (rr2) [1- (m)]a/(mz)
)j j(hfj)
- o AU-%)
J/ A-11
)j:)j(ﬂ)
At the eutectic O‘(]'a) is defined by (A-9). This method yields, directly,
X

Y
values of a{/, , /d; across the interval. The curve of 6_«/ can be obtained
J

by use of (A-2). Suppose inside of )g'(’)ﬂ< ){/é i, o:// remains constant.
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Then using (A-11)
Y - — <, .
’."3 1) = AU £ X () ey [ 1~ X, ()] * o o] o= [,-,\7-17,)7_7

H]

1 4
U ¢ 25 0m) X [ X o0 ]+ oty ey [ - X em]

1 4
so =)= AL : oy 72
Ml=1d = () ¢ o0 T X)) ] A-12
In general all three methods gave comparable curves for ij‘
within the plotting accuracy. One major difficulty was in recalculating
i 4 x
accurate /08/ 4%/ from segmented parabolic fitted curves of ‘ay » SO
that the modified Gibbs-Duhem approach was the method used to genarate
¥ x
by direct calculation AZQ %5'. This problem of obtaining accurate -£/¢
from a segment fitted kjy'curve was especially bad near segment borders.
Here the slope was not exactlv continuous to the next segment and hence
x
two values of 47; at a border could be calculated depending on the direc-
v 1 4
tion of approach. But by fitting AQ{)&O in parabolic segments, (A-2)
‘/,
and 6%-=”QQ—4§ vielded the necessary data for the n-component activity
coefficient calculations, while slope discontinuities in {7(curves only
appear as second derivative discontinuities in éf This is so since
X
diip éh -4/ Qé ¢447 A, . dUc .
dW[{ - 4 and dx; T éi{ l& is continuous but AT is

not. An example of the problems encountered in using a segmented para-
X
bolic fit to C; is shown in Figure A-2. The segmented parabolic fit to

X
47{ curves completely eliminated such difficulties and permitted calcula-

tions to be extended to ternary systems.
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APPENDIX B

X
Methods for Generating d,‘ and Gl from Phase

Diagrams Involving Two Coexisting Solution

Phases A and B: Programs W1XLIQ, WWXLIQ, OLCAL

Programs W1XLIQ: éﬂ'ﬂ’é{]' U:'/' and WWXLIQ: éf/‘:/(‘. ﬁ(,:’/ u/‘.]'fx’.'a{,l)
use data from the binary, (3-7, 8), and calculate:no error, minimum and
maximum values for /dim, /é}‘im;ssuming reasonable errors in [- XL/Q'XCRy_y
in taking points off the phase diagram. These limits are used in con-
junction with DUHEM (ITYPE =2) to see whether or not the ,{(x‘ curves can
be adjusted to be smooth and satisfy the Gibbs-Duhem relation. Program
OLCAL calculates 4;“‘ from /{28 for a binary with coexisting solution phases

A and B using (3-5) and the temperature and compositions:
.8
A g %5 7) B8R T T
%(x‘.: 4;!. f-RT&n(?/ + SH, (.T—Z’.')
l Tor _—

x 8
The source of 4; can be independent or derived from the phase diagram

using programs WIXLIQ or WWXLIQ. I calculated from Nafziger's data

RyIAL

(1968), using a least square technique, |,/ = JitL1/28 cals/mole with the

fo-Fa

same activity accuracy as for Nafziger's activity curves drawn to fit the

data. The experiments were performed at 1100°C, so the use of OLCAL to

/(; L1GuD ¥ yavio

generate 3 , o curves from the phase diagram would test the

assumption h/;ﬁ:m:#f(‘r) . This was tried but the relation between ﬁ;wm
and ﬁ;‘”did not satisfy tangencv to the Z:uawn curve. Apparently 1100°C
is too different from liquidus temperatures (1205-1890°C) and the M/F:_?‘
of the crystalline olivines is temperature dependent. It was found that
,{;‘-“wn is insensitive to ,d‘.ckm" if the crystal is 7 85% pure, thus

. ¥ Liaup .

in some cases reliable curves for /V,‘ could be generated using WIXLIQ
b

or WWXLIQ without being able to obtain suitable'{/" curves for the crystal.

x
The 4™ curves can be generated using OLCAL.
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b]
Program QESTR estimates &4, , the heat of fusion of I, from binary
liquidus data assuming the particles of I in the melt have the same mole-
cular weight as the crystalline end member of I. By (4-1)
AL[)' . RénXe so that RTnX. = OH, {I —1)
e | _ 1 75:
(.- #)
NI )
e o - o B-2

Thus a plot of RTmXy versus ; has a slope of 4/»‘,’- which should approach
(23
|

oH, as X-»1 . When Y. gets very close to 1,7’; -:;:
€

The plot of RT7ot, versus

is very subject

bl
to errors causing large variatioms in Ol .

;_ will overlie a grid of radiating lines of constant A!‘/"‘ and a region
Q¢

for estimating 4#, can be outlined between [X{"iz and [( ‘r:‘%) not
subject to errors ]

I 4
Program TMQ uses selected data from the U, curves generated by DUHEM,
W1XLIQ, WWXLIQ, and OLCAL, and fits it in segments to parabolas and punches

out on cards the resulting data in a suitable form for use with program

GAPMIS.



APPENDIX C

Phase Equilibria Calculations

Program Gapmis

Input data: 1) end member reaction heats and temperatures for all com-

ponents in n—component system

7 . .. .
2) Ci binary data for excess chemical potentials:

boundaries of intervals and parabolic fit coefficients to 49614?
in the intervals.
3) specified temperature T and its range for computations.
4) bounding mole fractions for area (s) for computations

and composition increments for calculatioms.

5) parameter ITYPE which defines the type of phase calcu-

lation to be performed (Table C-1).

TABLE C-1

ITYPE Operation in area of interest at temperature T

0

N

immiscibility tie lines in liquid

immiscibility tie lines in liquid then read new T

£§; in solid solution crystal, then read new T

activities in liquid, then read new T

activities in solid solution crystal, then read new T
activities in fused solid solution crystal, then read new T
liquidus, no solid solution, away from each component
liquidus, then read new T

solid solution-liquid tie lines

solid solution - liquid tie lines then read new T
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ITYPE Options 3,4, 5:activities at ('G,Xz,x’a 2 Am)

Using formula (2-8): d{= < Z’lfxg'r‘:"/') éf/ *‘Z_/‘j B - f Z-/"/'""’/):g{,'

J ¥ /$(' v PESS /'>t' ¥
ith é d B¢ bei btained from bi < /A
wl {J an U/ elng o} alne rom lnary J a J < (/r‘,fj.)
Yorr
Then Q¢ = Xi EXP g7 C-

We enter the binary f/ at Z¢ as opposed to Zf/ since the binary /4/1,
v
%
4/, data is arbitrarily fitted in segmented parabolas to Xz . Activi-

ties in the crystal can be referred to a fused state for option 5 by use

of (3-3): o
B q _ X400 B»A s, T
Q1 e () w0 )

A
Putting X, ‘-'X,'B for fused crystal A of same composition as crystal B

=

X g B4 f— _ £g B4 _ .
then 4}{:‘ = /6/1' - H s (/9—;_ T) = /6/,' + A#z (7—7 70-¢> c-2
o¢ -~ 74

1’4
e
Since /ﬂ‘- is known from the input data, then (C-1) gives the activities
¥ 8
in the fused state from /é{i -

Options 6,7: liquidus temperatures away from I at (X1,Xz, g Xm)

With '{;i, OH and To¢ known then by (3-3)

( {;,'-{—C/'/{)

(RTo; bn¥e -2H,)

Options 0,1: Immiscibility tie lines in three component system

7’;: ~ Tog

In search areas A, B (figure C-1), activities a; , b« are calculated on

the four corners of a parallelogram defined by

1 & °
Q: X Xsty b Y Ve, Vs
8 X424 %, X3-2, X*?e,yz;ya'aﬂ
era“X”_{Z‘,{z‘ZZQ Y,rée,ﬁfég‘%'ZZa
X1,X2 10 X;-24 Y1, Y2128, -2s

where Za is the search increment in area A

Figure C-1
The Search Parallelograms 2 and b
in Search Areas A and B
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Then Q¢ =[mm(adremr(2>]/2. with & being determined on each cormer of
d and the range of @& from a, is Ra, :Emcx(a")-”m},,’dcy/?.

Similarily for b:

{3¢' = Eonui (b)) Fomex (b ]/ 2

Rbg = Comex (bs) - min (81 /2 c3
Pucting A8, = [ 85 (i -b) - (Rac+ Rb() ] c-4
if AB:> 0, then the separation between @; and [;; exceeds the sum of
their ranges so there can be no solution tie line joining points within
areas 2 and b . However, if A8, <0 then the limits of & overlap b: .
so there is two points, one in 4 and one in b so that &= be (activities).
If it holds for all components i.e. A8, L © f@' €=1,2,3 c-5
then there is a solution in & and b such that
Q1= by »
oites o { @y by [T oo hat the seti
Qs = b for components 1,

2,3.

The two parallelograms can be further subdivided to refine the solution.

Options 8,9: Binary Solid Soldtidn Liquidus into System

Since components outside the bimary solid solution do not dissolve
appreciably in the solution crystal, the activity matching (c-3,4,5)
between the three component liquid and the fused crystal, is done only
for the two components in the solid solution binary using (C-2,1) i.e.
AB, < O for i=2,3. The process and program is easily altered to handle

ternary liquid solution - ternary solid solution by doing a search for

Agi<o , i= 1,2,3.



APPENDIX D

Stepwise Construction of Crystal Fractionation Paths

A hundred percent fractionation path (F=100) is defined by
constant removal of all the crystals formed in the last instant so that
the bulk composition of the system is that of the liquid. As a result

the liquid moves directly away from the composition of the crystalliz-

68.

ing phase, plagioclase. This path may be constructed in incremental steps

of 2.5% An in the plagioclase and icocrysts (figure D-3). For a con-
stant bulk composition and equilibrium path (F=0), the crystal, bulk,
and liquid compositions must lie on a straight line. If the crystal
composition is specified as XC, then the liquid composition is found
where the line joining Xc and the bulk composition cuts the Xc icocryst.
The final crystal, composition Xcl’ is given by the bulk composition:
there will only be two phases, diopside and a homogeneous plagioclase,
so the plagioclase composition is given by the line Diopside-bulk com-
position. Thus the position of the last liquid on the cotectic is at
icocryst. The two paths F=0 and F=100 form the constraining

1

boundaries for all possible types of crystallization paths excluding

the X
c

contamination.

Intermediate paths for 0 <F< 100 may be modeled by removing a
certain constant percentage (F) of the crystals formed in each incre-
ment of crystallization. Considering figure D-1; in order to remove F

percent of the crystals, the bulk composition must be moved dY, towards
1

the liquid, so that = = new amount of crystals.

Le

that Ye =Y (!-F) since L¢ remains constant. )Q is shortened by F

Thus ?IL-‘; =(/"F)Z/—-: so

percent to remove F percent of the crystals.



Le
(™
M K ¥

Ligo Ye sy BULK CRETAL
Figure D-1

Two "Component" Lever Rule for Fractionation

The bulk composition moves directly towards the liquid composition,
but lags behind by n; . The situation becomes more difficult when the

third phase, Diopside, appears. If we assume that both Diopside and

plagioclase are removed in the same proportion, then figure D-2 applies.

?la,i-d«e

Figure D-2

Three "Component” Lever Rule for Fractionation

It is necessary to remove dﬁ» cf P, so that the new amount of P (Yk )

a
is reduced by F= lig from the old amount (Y% ). A line parallel to

% ,

D-LIQ through the end of L will maintain EE constant, and the new posi-

tion of the bulk composition is at B'. B moves directly towards the 1li-

quid but lags behind by Lua‘7;1 . If D and P are to be removed in

different proportions then the construction is repeated for the line
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D-B and the new bulk composition occurs where the two lines of constant

7

, . . .
%f and T intersect. In these circumstances B will not move towards
P ]

the liquid.

For general crystallization, O < F <100, the path followed by the
bulk composition deviates from the path followed by the liquid. As
F~0 the deviation increases, until at F=0 the bulk composition does
not move at all. Paths of F £15 cover one half of the crystallization
field and strongly control the composition of the coexisting plagioclase.

Figure D-3 shows how small local differences in the degree of fractiona-

tion {F=10 + 5) may, at the same temperature, cause two quite different

compositions (An + 8%) of plagioclase to crystallize. Perhaps this pro-
vides a clue to zoning of plagioclases in igenous bodies, where compu-
tations by Jeffries (1959) indicate vertical thermal gradients as low as
.3°/km for cooling with convection. Geologically reasonable values for

F are probably near F=10 for magmas crystallizing to homogeneous gabbros
on the macroscopic scale. On the other hand, for magmas separating high
density minerals resulting in very sharply defined gravity stratification,
the value is probably 50 <F <100. Furthermore, in large igneous bodies,
time is approximately linearly related to temperature so that a plot of
An in plagioclase versus temperature may be used with a general time

sense.

If the bulk composition of B is such that the F=0 path does not reach
the binary eutectic Diopside - Albite before complete solidification (B
in figure D-3 only moves 2% Albite down the cotectic on F=0), then some
of the lower F paths will also not reach the binary eutectic. These
paths may be correctly terminated by examining to see if the moving bulk
composition lies in the triangle X,, - An91 - A“mawsracxhq . This

is the constraint since the "magma'" is a linear combination of these

three "components".



APPENDIX E

Thermodynamic Data for Data Sources

Phase diagrams and the resulting Aj curves, for liquid phases and
solid phases where applicable, are shown in figures E-1 to E-5. Phase
diagrams which are in weight fraction are indicated with a "Wt Z". All
A{ values are in calories per mole and the composition axis for the 47
curves is in molefraction in every case. The thermodynamic data used
by GAPMIS for the svstems Quartz - Fayalite — Leucite and Quartz -

Albite - Orthoclase is listed after figure E-5. Thermodynamic data for

the system Diopside - Albite - Anorthite is listed with the program

GAPMIS in Appendix F.
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Figure -2
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Figure E-2

data from O—X for

ANOR DAN JY670

BARBR6N0220006000
22004000580 250
SBAN62008RGE B60
8ANNB3N09 450 1680

TMQ program
i

36 250
540 860
980 1680

1826 2584

945096001 .00 2580 2674 3547

ANOR DOR JY670

ORANLIPERI1AA 4114 2450 2300

118024002800 2300
280050006400 1200
640083001 .08 380

1372 1260
640 380
120 '

output from TMQ ready for program

51ANOR DAN JY&670

« 0 «2200-M .26 1373E
e 2200 «SBON=-0 s63TAB3ISE
« SROA.BAGG 0 .572916E
e BOOG 9450 @ .683992E
e« 94501 ARG P.253272E
4 1ANOR DOR JY670

] «1100 7.411402E
e 1100 28004 A .353787E
e 2870 6400 N«218040E
e 64001 000 0.223340E

=03 P.261369E
P2 A.132407E
h3-Pe. 1848 45E
04-0.171647E
P6-0.532589E

04-7.181313E"

P4=-0.131324E
Q4~-0e. 4D3660E
P4=-9.407378E

”n3
A4

g4 .

05
a6

AS
75
04
B4

75.

h 0;.«
——=t2000
e L]
1 L L 1 1 1
: An
CGAPMIS
P«397725E 04 - (%)% 30« 250 .
Pe 462962E @3 250G, S54a. B60e
Qe 4D 4O3BE B4 860 SB7e 168G
he133934E @5 1680 1820, 2580«
0.282B64E 6 2580. 2674. 3547.
Q.149107E @S 411 4. 2450. 2300
G.170815E ©S 2300. 1370« 1266G.
P.191198E 04 120@. 640 . 380«
P.1B84038BE 04 38Q2. 120« De
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60.09 2030.1713.203.7914260.1205.218.26 6770.1686.140.7015350.1590.

QUARTZ ,FAYALITE LEUCITE

SEG PARA FIT TN D DNEC 12,69

67 LESI DEC 19 OLE
W8222.9015-0.383621E 05 0.101144E

. «0000.5574-N.42572NE-02 0.402841E

©5594,6882-0.4837T17F 04 0.231659¢
.6882.7941-0.909921E 04 0.37170TE
.794]1 .8222 0.134969E 04 N.678045F
.90151.000 0.899312E 05-0.180042E
4LEST DEC 19 DSI
.000N.3206 ND.84R224E 04-0.472591E
<3206.5974 0.483989F C4-0.178273t
.5974.7745 0.250666E 04~0.105305E
.77451.000-0.521742F 04 0.131844E
61SIFA DEC 12 DSI
.0000.3067-0.183105F=02 0.354940F
.3067.4940-0-110S7T1E C3 0.502249E
4940 .6311-0.403343F 04 0.197549E
e6311.6797-C.126136F C6 0.396598E
.6797.8118 C.936305E 04-0.237612E
.81181.000 0.526580F 05-0.131605E
SSTFA DEC 12 DFA
L0C00.1370 G.174663E 05-72.1359C5F
.1370.4474 C.971254F 04-0.333153E
<646T4.6311 0.715240E C4-0.19C46CE
<6311.6737 0.813189€ 04-0.235227¢
«6T37.7942 0.43G045F 03 0.305333F
.794721.000 0.262355E 064-0.728051F
61LEFO DEC 12 DFJ
.00C0.0992 0.1564956-03-0.165326F
.0992.3657-C.22107CE C2-0.316588¢t
«3657.7107 C.997703F 03-0.50921A3F
.7107.9138 0.9710CCE 03-0.808182E
.9138.9707-0.104252E 05 2.2%96333E
.97071.C00 0.246228E 06-0.405672E
6LEFD DEC 12 DLE
.000G.1000 0.20C226F 04 D.743139¢
.1000.3657 0.25T688E 04—-0.20546TE
.3657.5976 0.238244E 04-0.194700E
.5976.T7107 0.453626F 03 0.37T7487TE
.7107.9363 0.675413E 04-0.134335E
<93631.000 0.242066E C4-0.591301E
5S1FOST DEC 12 DOSI
L000C.2691-0.3189G9F=-N2 0.36T7494F
27691 .4234-0.23C340E 04 0.194497E
.4 284.5372 0.855940F C04-N.253851E
453727425 0.514997E C4-0.166216E
.74251.000 0.554D0C9E 05-0.138438E
6FCSI REC 12 DFU
.000C 1547 0.168G20F C5-0.222348F
1547.3662 C.T789A95F 54-0.334135E

® 4 -

.4284.5643-0.105433E 05 0.396622E
.5643.7011-0.212148E 04 0.B62063E

.70111.000 0.398344E 03 0.11C433E

N6-0.648458E
N4-0,432965E
05-0.191783F
N5-7.305045E
04-0.8B81802E
06 0.892067E

05 0.709764E
05 0.145792E
05 3.8992136¢F
05-0.496705E

04 0.334237F
N4—0.284924E
N5-0.140278E
N6—0.304640E
05 n.206056E
06 0.877593E

06 0.R030TLE
05 0.333305E
05 0.142242E
05 0.183424E
04-0.359527E
04-0.343095E

03-0.975528E
03 J.?2T739567E
04 0.822872E
04 0.124924E
05-0.1399835¢E
06 0.161035E

04-0.395405E
04-0.214215E
04-0.982608E
04-7.515643E
N5 0.658404E
04 0.348903E

04 D.,309437E
05-0.237132¢t
€5 N.215305¢
05 0.137C44E
06 0.8R9T28E

NG D.B626NZE
N5 N.,459962F
05 0.435148E
05-0.356565E
N4—-0.,709645E
04-0.150269E

05
03
05
05
04
05

05
05
04
na

04
03
05
Q6
25
25

06
NS
05
05
N4
03

03
04
Ca
C5
05
05

05
04
03
04
04
04

04
C5
€5
05
05

06
€5
09
05
04
C4



60.N09 2030.1713.278.3214702. 1200026202213560.11180

OUART Z-NR-AR, | AT
SEG PARA FIT TO D M1270

52ARSI DAR M1070
o0 .1539-0.2063065-02 00206304E

«1539,4150 0.BR2360F 02 0.174595€E-

«4150,8367-04295646E 03 0.3536 75F
«83Hh7.9697 0.25RB615E 05-0.594546E
«96971.000 0.758R11F 07-0.156109E
31ARST DS1 Mlo7n :
0 «1868 0.B7C505E 04-0.490131€
«1B6R . 6633 0.57993AF 04-0.126T3TE
«66331.000 0.204730F 04-0.323534E
620RSI DOR M1070
«0 07585‘00273665F°02 002736656
o?q85.6500-0013]480E 03 0.147267E
450C.6300-0.3164502E 04 0.153112F
«6300,8N00-0.391553F 04 0.207R54E
«RCOC .OC00 0.244399E 05-0.506497E
«90001.000 0.508998E 04-0.799998E
510RSI DSI MICTC
0 «2585 0.748B404E 0D4-0.35561TE
«2585.6300 0.547240€ 04-0.189566E
«430N.6400 0.506495E N4-0.160148E
«6400,7700 0.850704E 03-0.488073F

¢ 7TTCC1 .000-0.286545F 04 0.605040E

210RAR DOR MI107C LIQ

0 «4C00 N.120003E-03-0.,120001E
«400M].000 0.2R5333€ 03-0.156200E
410RABR DAB M1070 LIQ

o0 «1000-0.241301F 064 0.61B014E
« 1020 .36N0-0.241633E 04 0.602936F
«3600.6200-C.223960E 04 0.512938€
«62001.000-0.170637F 04 0.351632E
520RAB DOR M1070 XL

«0 «1600 0.716598E-04-0. 7166836
»1600.2800 0.560002E 02-0.875002F
«28C0.6C000 Ce306030E 03-0,249530€E
«6000.8000 0.295328E 04-0.109916F
«800C1.000 0.8851C01E 04-0.242400E
410RAB NAB M1070 XL

0 «3000-0.140006E 03 0.635562F
¢3000.5800 0.544687E 03 0.149464E
«5800.8000 0.141606E 04-0.1568 75E
¢80001.000 0.434640FE 04~0.881066F

04 0.436983E
04 0.2T7T0050€
04 0.614868E
05 0.385366E
08 0.803371E

05 0.104963E
05 0.802573E
04 0.118803E

04 0.156503E
04 0.685325¢E
05-0.107408E
05-0.174888F
05 0.274998E
04 0.399999E

05 0.506218E
05 0.164896E
05 0.118518E
06 0.6474356E
04-0.318495E

03-0.227500€
04-0.653334E

04-0.600075E
04-0.416082€
04-0.302448E
064-0.180994F

02-0.158333F
03 0.125001E
04 0.384765E

‘05 0.1-06548E

05 0.180000E

06-0.112964E
04~-0.270089E
064-0.946768E

04 0.446426E

04
04
03
05
o7

o6
04
04

04
03
0s
05
05
04

05
05
0s
04
04

04 .

03

04
04
04
04

04

04
04
05
05

05
04

o1
06

O
421.
1278,
3094,
4445,

8705,
3212,
424. .

o.
812.
1570.

- 2238,
1520.
1130.

7484,
1674,

370.
=-330.
. -95,




APPENDIX F

Listing and Rationale of Programs

QCALN 2 Iterative geometric construction for @ from Af

QCALN3 First order differential equation solved for ‘;'from‘di
DUHEM Gibbs-Duhem integration oflg' for /éil.

W1XLIQ One parameter é calculated from solid solution binary
WWXLIQ Two parameter é calculation from solid solution binary
™Q Segmented parabolas fitted to selected Ai data

QESTE Heat of fusion estimated from liquidus data

GAPMIS Calculation of phase equilibria, and data for Diopside -

Albite - Anorthite.



15
20
21
25

33
61

130

104

18

19
17

82.

c PROGRPAM QCALN2
c GFOMFTRIC CONSTRUCTION OF G-EXCESS

DIMENSION X(2)9XX{ 2, 100),W(2),Q(2),TO(2),T(2),D(2,100),
1EI(25100)¢N{2)yE(2+100)9S(15)4TP(24100)+DPD(2¢100) DEI(2,100),
1DD(2,100),DPEI(2,100),A(100),B(100),C(100)
1o,R(105,10)+RT(LO),RA(10)+RP(10),NQ(4)
1y KA(2),KV(2)

CALL SIGNON

READ(Se1NIPAIRG(WII)sQ(I)eTO(I)eN(I)oI=1,2)

READ(Sy 1) ITYPES(KAL{I )oI=192) s (KVII)eI=1,2)

FORMAT(S511)

J=0

TO(1)=T0(1)1+273.15

TO(2)=TD(2)+273.15

READ(S,20)ITL 1Yo X(I)oI=1,42)

FORMAT(2(F4.0,F3.0))

DO 2i I=1,2

T(II=T{1)+273.15

X(I)=X(1)/71000.

IF(X(1)+X(2))61,61,25

J=J+1

XX{LleJd)=X(1)2W(2)/(W(1)eX{1)®(W(2)-4W(1]))

XX(2¢J)=X(2)%N{1)/(W(2)eX{(2)%(H{L)-W(2)})))

DO 33 I=1,2

TP(1,J)=T(1)

DUI+J)=QUI)*(TP(I1+J)=TO(I))/TO(I)=1.98T*TP{I ,J)%*
1ALOGI(XX(I,204.00001)

CONT INUE

GO TO 15

CONT INUE

WRITE(6,130)PAIR

FORMAT(1H o A4)

DO 104 1I=1,2

EI(I+1)=D(2,1)=-(D(2,1)-D(1l,1))%*XX(1,1)

NI=N(T)

CO 104 J=1,N1

DB=(D{ 1,J3+D(1,J+1)) /2.

EI(IoJ+1)=EI(1,J)¢(EI(1,J4)-DB)
I*(XX(ToJ)=XX{I9J*1))/{1e=XX(1,sJ))

CONT INUE

DD 17 1I=1,2

N2=NI(T1)

DO 17 J=1+N2,8

J1=J+7

J1=AMINO{J1,N2)

WRITE(6:1BI(XX{I41J),1d=Jydl)

FORMAT(1H ,8F8.4)

WRITE(6+19)(EI(I,1d)s1d=dyJ1)

FORMAT(1H ,8FB.2)

CONTINUE

CALL S INOFF

G0 TO 5

END



25

33
61

139

Cle

31

140
1G4

126

83.

PROGRAM QCALN3

SOLVES FIRST ORDER DIFFERFNTIAL EFGUATION ANALYTICALLY

OIHMENSION X(E)yKK(Z,lDO)yW(Z)vQ(Z)pTU(Z)yT(Z),Q(Zylag)v
lEI(Zylﬂq)vN(Z)yE(ZvlCO)pS(lS),TP(ZleO)vaJ(2113C)vDEI(27133)v
100(2.100).DPEI(2.?30),A(100).5(106).C(lan)

READ(511C)PAIR9(N(I)1&(1),70(1)9N(I,71=1v2)

FORMAT(AS4,2(F602yF70l yFbelsl2))

J=9 '

T3(i¥=TO(1)+273,15

T3(2)=T3(2)+273,15

FEAD(S5+2C 1 (T(I)eX(1)el=1,2)

FIRMAT(2(FS560,F4o)

T(Ll)=T(1i)+273.15

T(2)=T(2)+273a15

IF(X(I)+X(2))01+61,25

J=d+1

XX(lyJ)=X(’)*n(2)/(N(l)*X(l)*(w(2)-N(l)))

XX(Z,J)=X(2)*N(1)/(W(2)*X02)*(N(1)-N(2)))

0DJ 33 1=1i,2

TP{I,Jd)=T(1)

D(IvJ)=Q(I)*(TP(I.J)-TU(I))/TO(I)‘10987*TP(IvJ)*ALGG(XK(IyJ))

E(IyJd}1=D(1,4)

GJ2 T3 15

CONTINuUSE

WRITE(&,13CIPAIR

FORMAT(1h ,A4)

D3 1G4 [=1,2

EI(I,1)=L(291)‘(D(271)-D(lpl))*XX(lvl)

TVD=EI(Iyl)/(l.°XX(Iyl)) 4

NZEN(T)-1

00 104 y=1,N2

IF{J=-~N2)320,32,31

CIONTINUE

AZl=(XX(I,J+Z)-XX(IvJ+1))*(E(IvJ*l)-E(IoJ))

AZ?=(XX(IvJ*l)-XK(IyJ))*(E(IvJ*Z)“E(IyJ?l))

AZ=XX(IvJ*l)/Zo*(XX(IyJ*Z)*All-XK(IvJ)*AlZ)/(AZl-AZZ)
1/2,

SZ=(E(19J*1)’E(IyJ))/(XX(IvJ*1)+XX(I'J)°2.*AZ)
1/(XX(I)J*1)‘XX(I:J))

CZ=E(IvJ)‘(XX(X'J)-AZ)**z*BZ

CIONTINUE

DEI(I,1)=0,
DEI(lpJ+1)=DEI(IvJ)*bZ*(XX(I:J+1)-XK(I'J))-Bl*(AZ-lo)*Z.*ALDG((lo-

1XX(I,J+1)l/(l.-XX(I,J)))*(SZ*(AZ-lo)**?*CZ)*(l./(I.-XX(I.J#l))-10/
1lle=XX{1,4)))
EI(I;J*l)=‘lo-XX(I,J*l))*(ThP+DEI(I,J+I))
DPD(I.J*1)=EI(I;J*l)/XX(I:J+1)/(1.-XX(I'J+1))

CONTINUE

IN=N(2)
hRITE(é,le)((XK(I.J).D(I,J).DEI(I,J)'EI(I,J),DPD(IyJ)
111=112)7J=111N)

FORMAT (i H 12(F5041F56CyFT009F6eNFTal))

N2=N(1)+1
NRITE(b,!Zﬁ)(XX(le)vD(lyJ)9DEI(19J),EI(1'J)yDPD(11J)v
1XX(],J+l)yD(1yJ+l).DEI(I.J*I).EI(I'J*I)'DPD(lyJ+1).
lJ=IN'N212’ ’

Gd TO 5

END

/DATA

A - D




I =W3HNAC

21
83

ve
89
90
33
6}
130

DIMENSION X(2);XX(2:100?;N(a).0(2);T0(2).T(2)op(2;IDB):.
lEl(E.IOG):N(E)}E(Q.lGO);S(IS),TP(E'IOO)nDPD(QnlOB)pDEl(RoQ

1DD(2, 100), DPEI (2, 100),AC100) ,B(100),C¢ 100)
1,R210, 1A<, RTZ10<, RAZ10<, RPL 1 B<,NOR 4
1,KAC2)Y ,KV(2)

CALL SIGNON .

READ(S, 10 PATR, (WCI),0CI),TOCII,N(I),Im1,2),1TYPE
FORMAT(ARA, 2(F6.2,F640sF601,12),11)

RXXm )

Jun

GO TO (98,99),ITYPE

NisNCL)

NC2YaN Y

READ(S,B2)X(1),5¢1),8¢8)

FORMAT (FJ.3,8F 4.0)

X(2)=X(1)

GO TO 83

CONTINUE

TOC1)=TO(1)+273.15

TO(2)=TO(R)+273,15
READ(S,20)CT(1),X(1),1m},R)
FORMAT(2(F4.0,F3.3))

DO 21 I=1,2

TC1)aT(1)+273,18

X(1YmX(1)/RXX

CONTINUE ,

IFCXC1)eX(2))61461,25

JuJe]
XXC1o)mXC1)WERIZCWEII X 1I#CWCRY=W( 1)) Y
XXC2,J) =X (2) W 1)/ CWERIKCRISCW( 1) =W(Q)))
DO 33 1=},

TPCIL, =TI

GO TO «(89,92),ITYPE

DC1,J)=SC1)

D2, Hus(R)

GO TO 9o

CONTINUE

DEl, BT (TP(I;J)=TOCIII/TOCI) =198 T TP(Isd) e
1ALOG(XX(T1,J)+ +00081)

CONTINUE :

EZI,JeaDRI, Je

1/7¢1 o=XK(10d) deng

CONTINUE

GO TO ¢15,81),1TYPE

CONTINUE . ‘

WRITE( 8, 130)PAIR

FORMATUIH ,A4)

CALL TESSERCE,XX)N; TP)

CALL SINOFF

G0 TO 8

END

PROGRAM DUHEM

MAIN

Niunnormalfzed welight 2 XX tmole traction,Qiheat ot fusion,
Wimole welpht  TOottemperature of fusfon,1:1 fquidus temperatures,
Dl d.,“. on 4's side of cutectie TP in degrees absolute,
Neinumber ot sets ot data,

Reads name of binary, mole welght, heat ot fusion, temperature of fusion
and the number of data poelnts on Hquildus, then ITYPE
Normalfzing tactor tor reducing unnormal fzed data.

PEYPE-]
ITYPE-2

repular T-X Hguidus data trom cutectic out
X- -G data from X=.5 out.

4 .
Reads moletract fon component one=mole traction component two, then 44 and U,
trom X-.5 out.

Reads unnormal feed 1-X data, X(1) tor component one on fts side of cutectic,
X() tor component two on the other side,

Data starts at cutectic and moves outwards.

Normaltees X and T

A blank 1-X data card causes program to operate on the data,

Cateulates mole tractions,

.
Calealates D= {6, and E= ay on 1's stde of cutect te,

Reads next data on liquidus away trom cutecttc or X=.5

Writes name of binary,

TESSER performs Gihbs-Duhem integration with &y, mole fractions,
and number of data points,

Reads new binary name,

]




2=HW3HNQd

SUBROUTINE TESSER(E,XX,N,TP) .

DIMENSION E(2,108),XX(2,1008),N(2),B(108),C(100),0¢108)

1LXTC100),R1C100),C1C100)»V(3),2(¢3),T(J)

1.TP(2, 10@)

DO 104 1#1,2

120122-1<seR]g1¢

N2#NZI2¢ :

Bi%i<od

CTI<HEZL, 1 <#XXRIL, Javeg

DO 25 Jwi,Ng
23 XTCIImy o =XXC12,J)

DO 37 Jeg,Ne

Kiade

K2eaJe

DO 300 Jisl,3

KXaKi+J) =)

V(J1I WX T(KX)
360 Z(J1I=ECI2:KX)

IF(J-N2)27,28,28
et CONTINUE

CALL PARFIT(V,Z,T)
. D0 24 1iv1,3
24 TCI=T(II/FLOATCI 1)
es CONTINUE

DO 26 Jimi,e

KaKleJ)=1

BOKIBTC1I+T(RIV(JII+T(I)I eV (J1Yeeg
26, BCK)ISV(J1)*B(K)

B12J<ABITJ~1<8B2K 1 <=BRJ< _ .

CRJ<HCXI<hBIRJCERTRI K] oo XTI C<HERI Ry | €aXTRI O8] o uX TS C

$ERIR, J<

CONTINUE

N3sNge )

CONJIuCINRI+XTINRI (| ¢ XX(IQ)NB))ISECIR,NG)

XX(I12,N3)m], '

XT(N3) =@,

N2mN3

DO 29 Jsi,NE

TPCIR,J)sTP(I2,J)~273.18
29 DXJ<IERI R, <o XTRJeonQ

DO 110 Kisl,2

DO 58 J#l,Ne

1F21-1<70,70,80
70 XTXJ<XXR1Q,J¢

GO TO 9@
80 XTRJ<h] =XXRIBHJ
99 IFRK1=-1<91,91,98.
91 CiXJ<#DRJe
GO T0'93
9 CiRJe#CRJe
93 CONTINUE
1] CONTINUE

FESSER
Pertorms Gibbu-Duhem tntepratfon on component (2, wenerating ¢y on 12 ide

of cutectic.  Program has been proven agatnst plandmeter measured Integration,

PARFIT tits E= agy tor KX=d=1, 0,041 as o parabotic tunction ot
Lo-XX(T2) vhere XX(T2) §w mole traction of component 12 on 124 wide of the
cutectic, T oare the constants of the it

Integration of agy trom K=1-1 to K=l+] and muttiplicd by 1.-XX(12) to rafse
the power due to fategrat fon.

Bl 15 the total Intepral from K¢l to Ked, while € fs the determined value
of Ay at Xx(1.2)

P
Caleubates value ot 4y at XXz2 *0 assuming oy fs5 constant past the last data
point on 12' Hquidus,

x
Prepares 0 data foy writing,

"G8



e=WdHnd

220
222
210
1.09

‘DO 210 J=1,N2,8

Jisd+ 7

JI=AMINACILILN2)

WRITE(6,22M (XX(12,id)»1Jdedsd )
WRITEC6, 220 (XTI »1dmdud )
WRITE(6,222)(CICTIUI 1 Und,d )
WRITE(6, 222X (TP(IR, 1) s ldndsdl)
FORMAT(RFB «4)

FORMAT(RFB.2)

CONTINUE

CONTINUE

WRITEZé6,111¢

FORMATZ///¢<

CONTINUE

CONTINUE

RETURN

FND

SURROUTINE PARFIT(X,E,RT)
DIMENSION X(,EC(3),A(I),RT(D)
X1s(EC1) =E(R))e(X(2)=-X(3))
X28(E(2)=EC(3)) e (X(1)=X(2))
RT(3)2(X1=X2)/7((X(R)=XK(3))®(X(1)4a2=X(2)e¥2)=(X(])=X(2))

18 (X(2)*e3=-X(3)»%2))

10

21
2s
20

RT(2) = (EC 1) =E(2)=RT(I*(X( 1) »w2-X(2) 44 2) I/ (X( 1) =X(2))
RTC1)=EC1)=RT(2)*X(1)=RT(3)*X(1)»e2

DO 10 I=1,3

ACIIERTCII+RT(2I®X(I)+RT(II#X(I)eeg

ACIYsACD) =ECD)
IFCABSCAC1))+ABS(A(2))+ABS(A(3))=-.B1%ABS(E(R)))208,20,21
WRITE( 6, 25)X,E»RT

FORMAT(' BB *,3F5.4,3F7.1,3E13.6)

CONTINUE

RETURN

END

. ﬁ%$g\ﬂnaﬁﬂ’BBOISSSQSlOODBI47821209!53

SPT19559
S26T7525
S a6anrars
556043455
5AS5712420
605412385
62506350
64472211
66419218
6RANS250
7A370215
723371RA
74307147
762718126
TR250106

R@218
82190
Ba164
86130

gBige

90 13
92 53
94 27
96 g0
SR 9

99
77
68
55
at
a9
P8,
20
18
3

Writes first the directly calonlated values (trom MAIN) ot XX 1
imd (VXX 12 ), e and TP, then the values of the same variables
senctated by the dintepration toy 1,

L
Retoros to calealate 4y tor the other side of the cutectfe.

PARF T

Fite parabolie curve to three sets of data then checks accuracy of the

Writes naughty word and data it acceuracy not better then . 3%,

fit.

Name ot binary An-0r, mole weight, heat ot fuston, temperature of fusfon for

components one (An) and two (Or), then 11YPEa2,
to HOO because X oare mole tractions already.

Data {s mole traction component one
dy 4 from X=.5 out,

Blank card causes integration to begin.

Fhe mole weights are set

mole fraction component two, then

*98




P=-W3HNa

WNOR2TR2129ANA185346278321'47A21200 61

11BAN6S511R493S
12ATHRALIRSYS 40
1231001 18R9 50
1257120119m960
128011401193970
129R1601195980
13171R1193989,
132200
1345220
12571240
1366260
13732R%
13RN30NA
1dR9 320
139R3 40
1404360
14103RA
1417400
1423420
143Mmaan
1437460
1442480
1449500
1454520
1460540
1465560
1470580
1475600
1480620
14R 4648
1489&860
1491680
1495700
15A1720
15A77 40
1510760
1513780
1S1RRAA
1520R20
1524R 40
1527860
153ARRO
1534900
1538920
1541940
1544950

Name of bhinary An-0Or, mole welight, heat of fusion, temperature of fusion for
components one and two, then 1TYPEs),

Data s temperature, wetght composition trom cutectic out,

Blank card causes {ntegration to begin.

.Le



I=CIIXIM

DIMENSION-N(E)oTO(B)aX(B)oXI(E)oXX(R)oHH(Q)qXO(ﬂ)oﬂ(BM

1oUCA), UNCAY JUMCA) pNAMEC10)»1P(3,9)
REAL H,MW
READ(S, 10)(CIP(I,J)s1m1,3),Jui,8)
18 FORMAT(24l1)
DO° 30 I»1,3
IPC],9)=0
DO 3% J=1,8
IFCIPCL,U))29,29,30
29 IPC(l, e
38 CONTINUE o
<4 READ(SlII)NAME:(H(I)oTo(l)pMV(l’al.lIQ)
11 FORMAT(|0A4a/aE(FSOODerOOFSQQ))
TOC1)=TO(C1)+273.15
TO(2)8TO(2)+273.18
WRITE(6,2)INAME
el FORMAT(10AQ)
READ(S, 13)RT,RX,RX
13 FORMAT(3F3.2)
[ READ(S, 12)T1,X1¢2),X1¢1)
12 FORMAT(3F3.2)
IFCX1C1Y+X1(2))4r4517
17 DO 1081 ITel,9
TeT1e¢FLOATCIP(1,1T))»,01
X(I)-XI(l)*FLOAT(lP(e.!T))o.BI
X(2)eX1(2)+FLOATCIP(3,1T))e.0099
TeTOC1)+TH(TO(R)=TOC1))/RT
XC1)uABS(RX1-X(1))/RX
X(2)mABS(RX1«X(2))/RX
ee DO 15 I=1,2
18 XX(I)-X(I)/Mw(l)/(X(l)/MH(l)»(l.-X(l))ruwta))
xocl)-H(l)/TO(l)t(TO(l)-T)#lJ9B?thhLOG(XXYB)IXx¢I))
XO(Q)IH(Q);TO(E)‘(TO(Q)-T)Q|o’87‘T.AL°0((fo.xx‘e))/'
1Cle=XXC1)) :
H(l)-(XX(e)t-thocl)-(l.-XX(a))ouEAXOCO))I
J(XX(Q)#XX(l)-Eu‘XX(Q)‘XK(l’)/(xx‘e’OxK‘1’,
Hte)-(xxtl)-‘etw(|)-X0(8))Ixx(e)ooq
UC1dmg ) o=XXC1))nu2eW( L)
Uca)eXX(1)en2el()) .
UC3)a( ) «-XX(2))hsReW(R)
UCQ)sXX(2)se2eW(2)
IFCIT=1)90,90,100
90 DO 91 Kmi, 4
UN(K)Y mUCK).
91 UM(K)YmUCK)"
: GO TO 10}
188 D0 93 Kmi, 4
UNCKIBAMIN I CUNCKI JUCK) )
93 UMCK)YmAMAX 1 CUMCK) s UCK) )
(1] CONTINUE
TeT=273.15
WRITE(€6,95)XXaTsWs CUCKI » UNCKY » UMCK) oK w1, 4)
9s FORMAT(RFS s4sFSe8,2FT00sTaRsIF7005709F7.8)
GO TO 6 :
END
/DATA
100101111110011000001010

@

PROGRAM WiXL1Q

MAIN )

Wihieat of fusion, To:temperature of tusfon,X1-42:composition of crystal
and Tiquid {n unnormallzed weight percent XX:mole fraction composition
of crystal and liquid, MWimole welight of components,X0:@ of a-7),

Wircgular solution model parameter W,UN-UM-U: & min-max-no error,
NAME:name of binary, IP:ivarfable which works possible error variations on
T- X ‘xu\qm‘

Reads name, 4, o, mole welights

Writes name of binary

Reads facrors for normalizing input data of liquidus

11 X s + Xcama, data are for component one then RX1=0, but {f the data

are for component two, RX1=RK and later the data are turned into

mole fraction component one

Reads unnormalized Hquidus data T=-X e ~Xcanm i0 weight percent of component 1
With blank 1-X,e,4 -X.eomm card go to & to read new name and data for next binary

Normalizes T,X, e and puts on the error variatfions

* xun "

Mole fractions are for component one

Intermediate varfable @ calculated for (3-7)
W for regular solution calculated, W(1) for crystal and W(2) for l1iquid.

Calculates él‘fnr components one and twoiU(1);U(2) for crystal and
U(3),U¢4) tor liquid,

Minimum, maximum and no error values for éz determined

Data written in order of crystal, liquidimole fractions of component one,
temperature €, regular solution W's (47- for no error, minimum, maximum,
first for component one then for component two)

Goes to 6 to read next lne of T-X, ... ~Xeawre, data for same binary.

DATA
Integers (IP) specifying the error combinations in T-Xigvo “Xeagra:

Data {8 the same as for program WWXLIQ

"88



1
18

el
13
14

16

e

113

49

1=01TXMM

41
S4

83
(1]

DIMENSION MW(2),TO(2),T(100),TIC100Y,%¢2,100),X1(2s100)
..XX(Qalﬂﬂ)nNAME(IO)oH(B)pUX(‘)oUN(A)pUH(‘lilP(So’)
REAL H,MW :
READCS, 1) CCIP(T, d)aimlad)adml,g)

FORMAT(24al 1)

CALL SINOFF

READ(S, 1 1) NAME

FORMAT(10A4)
READ(S:la)(H(l)aTO(l)oNV(l)ol'log)OXN
FORMAT(R(FS .0,F4.0,FS% «2),FR2.0)

NaX N

TOC1)aTO(1)+273415

TO(2)mTO(2)+273415

WRITE( 6, 21 INAME

FORMAT(10AQ)

READ(S5, 1 3YRT,RX,RX

FORMAT(JFB.2) .

READ(S, 1) (TICKI o X1CRoKI 2 X1C 1K) sKm},N)
FORMAT(3F3.2)

DO 10 Jai,N

DO 60 ITmu},9

KayJ

CONTI NUE

IFCIT=-9)111,118,1018

KanK=-2w(K/2)

KislPC1,IT)eKA

K2=l1P(R2,IT)+K4

K3=sIP(3,IT)+K4

TIK)aTI(K)+FLOAT((=1)wsK1)w,01
XC1oKY®X1C1,KI¢FLOAT((~1)eeKR) % ,01
X(2,K)uX1(2,K)*FLOAT((=1)08K3)#,0099

GO TO 113

T(KYaTI(K)

XC1oK)eX1(1,K)

X(2,K)mX1(2,K)
T(K)ITO(l)’T(K)t(TO(E)-TO(I))IRT
KC1oKImABS(RX1=X(1,K))/RX
X(2,K)uABS(RX1=-X(2,K))/RX

DO 15 I=),2
.XX(X;K)IX(!:K)/MN(l)/(x‘l:K)/HU(l)#‘l.-X(IOK’)/MN(B))
,ES-I09879T(K)‘ALOG(XX(B;K)IXX(loK))*H(l)lTO(I)O(TO(I)-T(K’

54-1.937tT<K)-AL00(1t.-xxce.u))/(l.-xxtlak)))outa)(TO(a)
19(TOC2)=T(K)) : :
ClmClooXXC1oK) I 028 ( ) =R XX (1,K))

Cem(] =XX(1,K)) 022 XX(1,K)

CIm( 1 emXX(R2,K) )28 (o=@ ,#XX(Q)K))
Cam(14=XX(2,K))IuReXX(2,K) 0L,
DIRXXC1,K)®a20R o0 (1 =XXC1,K))

D2uXXC ) pKI o240 (@ XX C1,)K)=1,4)
D3IBXX(2oKIed28R.0( | o =XXCB,K))
DARXX(2,K)I 228 (R e XX(RsK)=1,)

Ca=-C3

Cas-C4

D3w-p3 .

Da=-D4

IFC(K=Jd=1Ye(K=J+1) 4], 48, 42
IFCXXCLaddeRXCRIJI=10).54) 84,50

KanJ-3

GO TO 88

KeJe 3

CONTINUE

PROGRAM WWX1.1y

MAIN

MWimole wefght, Tostemperature of fusion, Hiheat ot tusion, T:liquidus temp,

XErannormalfeed X,y - Ligve I welght percent, Xinormal lzed

Xempra = Xuwe With error variations in welght percent, NAME:name
of binary XXt Xoepm— Xiewo mole tractlons, UX;UN{Umy @ no error - minimum

and maximum, IP:ivariable vausing crror varfations,
Reads name of binary

Reads heat ot fusiion, temperature ot tusion, mole weipht, and number at

data points,

Writes name of binary.

Reads normabizing tactors oy Lyxte 1t data 4o component one,

Reads unnormal Lzed T-Xeovo = X aegras

Program operates on suceessive 5 0 ata peint..
Sets up nine errer variations.

Niuth variatfon s no epror so ®oe to statement 12

Error combinations are cnumerated on unnormal taed I-Negysme

Normalizes 1-X

Xowwrae = Xuawo 10 weight pereent,

Caleubates mole percent component one dnocrvstal and liguid.

Varfable mattipliors tor two solid solutlon cquat lons;
when K=J, the tirse two of four and

RX1-0

“Nogap data

K=J + 3, the second two of four Hnear equations, four unknowns.

After the varfable multipliers for the last two of four equations
are caleulated, then go to statement 42 to solve the four cquations,

If Xemrw +Xpawo > 1 mole fraction then the next patr of T-X, 40 -

for solution {a taken from data podnts J and J-1,
. Xeanms +Xiguo < 1 the data points are J and J+1.

Xevorne

data

"68



2=01TXMM

42

190
191
209

193
60

160
10

/DATA
191111110011000201010

Ei=ED

ER=E4

Al=Cl

A2=C2

A3aC3

A4qaC4

RisDi

R2=n2

Bl=DJ

Ba=Da

GO TO 76
Alil=RiwAR=A]*B2
Al2=R1%A3=-A1%03
Al3sRI%A4-AleR4
EllsBlIsElI=AlsER
Ril=D1eC2=-CleD2
Ri22D1«C3-Ci»DJ

- B13eD1¢CA-CI*DA

E12sD1¢F3~-CleE4
Cli=sDl#R2=-RIsD2
Cl2aD1+R3I-RIeD]
Ci3=DI+Ra-RI1sDA
E1J3=DIsE2-Bi¢E4
Gi=Ril*n12-Al1*RI2
G2=A13+811-R13+«A1)
G3=RI2+C11=-C12%B1])
G4sR13¢C11-C13%R1 1)
GS=El1+*Bl1=-E)12%A1 )
G6uEI12+C11~E13¢B1 1
V=(GS5%G3-G6+61)/(GI«GR=-G1+G4)
U=(G5=-VeG2)/61
S=(E11-A128U-A]3¢V)/AL]
Re(El=-A2¢5-A3%U=A4sV)I/A}
UX(1ImAl*R+ARSS
UX(2)=B1*R+BReS
UX¢3)==CA3sU+AQeV)
UXCa)e=(RIsU+B4eV)
IFCIT=-1)190, 190,200

DO 191 Kml,4q

UNCK)asUX(K) .
UMCK) sUX(K)

GO TO é0

DO 193 K=1,4
UNCK)=AMINICUNCKD) » UX(K))
UMCK) = AMAX] CUMCK) »UXCK))
CONTINUE )
WRITEC6,,10@)XXC15J) s XX(2sJYsRsS»UsVs CUXCHI s UNCKD » UMCK) ,Km ) Q)
FORMAT(2FS i4saF 7.0, TARIIFT.4007,9FT40)
CONTINUE

GO TO 4

END

l%q
REB-AN pHZ Pa23
13564011168262222900015532782129

435 .00 1.0

12599692S

130994900

135991R72

140990R 49

1 AS9RORLS

1509RRRB )

‘1718972721
185968700

1
1
1
1
1
1
1 1609R3768R
1
4

Varfable multipifers tor the first two equations (K=J) are stored then RO to
statement /6 to caleubate those tor the next two (K=J]a3),

Calenlates fntermedfate vartables fn the solution of the four linear equations,

Caleulates Voand U as W's for the Viquid and § and R as W's for the crystal,

Caleulates d. for components one and two, with UX(1), UX(2) for crystal, and
UX(3), UX(4) tor the Mquid.

Pleks the mindmum, maximum values for UX

Writes o order of crystal then liquid, the mole fraction for component one,
Thompsons W parameters and 4§, no error-min-max.
Reads new binary,

Name ot Ab-An.  From Deer, Howie and Zussman (1966)

Heat of fusion, temperature of fusfon and molecular weight for components one
and two, the number of sets of data,

RT,TX,TX1.  1f data of T-X,e.0 ~Xeam I8 in°C, mole fraction then make RT=
TO(2)-T0(1), RX=1, and Rxtf 1f data is for component two, RX=0 {f data {s
for component one. If dota is unnormalized make RT the scale length be-
tween TO(1) and TO(2), and {f data {8 for component two, RX!=RX and RX
{s the scale length between X(2)=0 and X(2)«1. If data {8 for component
one then RX1=0,

Only 9 of the full 29 sets of data points are shown,
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400

401
408

DIMENSION X(3)58(3),RT(3), NANE( 8)
1,SR(A, 1 @)

READ(S, SINAME

FORMAT ( 5A4)

WRITE( 6, 6)NAME

N=0

FORMATC(IH ,85A44)

READ(S, 1M X, S

FORMAT(IF 4.4, 3FS.0)

IF(X(3))25,25,8

IFEXe1)17,7,2

X(1)w| .AE~R6

CALL PARFIT(X,8,RT)

NaNe |

SRC1,NYaX (1)

SRIZ,N)wX(3)

SRC3,N)=RT(1)

SRCA,N}=RT(2)

SR(S,N)uRT(3)

SR(6,N)uS( 1)

SR(T,N)mS(@)

SR(B, NI =S (3)
WRITEC6,35)X¢13,%(3) ,RT, S
FORMAT(2F5+4s 3E1346,°3F7.0)

GO TO

SR(1,1)2n

SR(2,N)n}

Ni®N-)

WRITE( 7. 409N, NAME
FORMAT(Z1,%1°,5a4)
wnxte<1.491)((5R¢I,J).x-n.ax.uen.nl>
FORMAT(2FS .4, 3E13.6, 3F7.0)
WRITE(7,402) CSRC(I,N),1w},B)
FORMAT(FS .4,F5%.3, 3E1J6,3F7.0)

GO TO 4

END

SUBROUTINE PARFIT(X,E,RT)

DIMENSION X€3),E(3),A(3),RT(3)
xu-(sc|)-£(e))-(x(e)-X(3)x
Xew(EC2)=E(3))e(X(1)=X(2))
chs)-<xn-xe)/c¢x<e)-x(a)>-(x(|)ooe-x?e)aca)-(x(1)-xcn))
19(X(2)%a2-X( ) uug)) '
RT(e)-(:(l)-ace)-nr(a)otx(|>~-e-xce)--a))/cx¢1r6X(a)x
RTCIREC1)=RTC2)#XC1)=RT(3) #X( 1) eup
DO 10 I=},3
ACII=RTC1)+RT(2)#XCIISRT( ) #X (1) wng
A(l)=ACT)=ECTY ' - .
IF(ABS(A(l))0A88¢A(Q{)0ABS(A(3))-4.)30.2008I
WRITE(6,88)X, E,RT .
FORMAT(¢ * -!,33"30400'70!03!!8.‘)
CONTINUE.

- RETURN

- EMD
/DATA

PROGRAM 1)

MAIN .
Xicompositfon of sampenent cwo corresponding to the value ot 4S5
RE:roots of parabolic ¢ o NAMEiname of binary and the name at the component
consbdered,

5 .
Reads three values ot X(in cemponent two), then three values of 6 or 1,

A blank X- £ data card Causes transter to statement 25 for punched output ot
the calenlated data.

PARFIT tits parabola to the three sets ot data, with roots RJ.

.
Stores abl data in SR tor punching on cards atter blank X- & card,

Reads next x-4 deita podnt {n the same binary

N1 {5 the number ot segments An the binary,

Panches on cards the vumber ot segments, Lyoand name o1 binary and component
considered.

Punches on cards the compositional limits of cach seRment in component two,
the three parameters ot the tt, then the three 4 data used in caleulating
the tit,

PARFIT
Fits parabola to three sets of XFE data of the torm Eag (X), with roots RT.
Calealates fntermediate varfables and roots by climination,

Checks the computed values against the input values to see If error
greater than 4 for the three points,
Writes naughty word and the data bt the aceuracy fs not acceptable.

A typleal value tor £ 1s 3000 calories,
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/DATA

ANOR DAN MIB7Q

POARATAN2AAPABNAN
20003RAA6AAN 215
600066007202 925
TANTRAMR 4PN 1327
BABPRENAIAONA 1707
9ANNI2AN9E AR 1900
960R980N1 .20 2371

ANOR DOR MIRTA

AREAN2AAAAAN 4409
P40NN6AAARAA 31 a2
NRAN1AAD1200 2612
1200260A3AAN 2193
3APAA6ARS6AN 1090
S6ART2ANT6AR 453
76AARSAAYANA 1S
900A96a01 A0 38

DIOR DD! MI187@

oNNNALI200200700000
200030006000 -10
6PAPTAANREAN 1390
860N 1009600 3160
960P9750) .0N. 4B70

DIOR DOR M1870

PANNN2AANANNA=] 493
P4ANPARANI ING 2710
130017002600 328n
262040005000 £520
SA0ATARARANG 1300
8A0R9A0R1 .00 290

45
5n3
1103
1550
1780
2000
2s5n7

3518
eser
eal}
1250
635
183
60

215

925
1327
1707
1900
2301
2983

3142
2612
2193
1090
453
125
3R

1000000

=99
een
enon
370
5400

1650
3150
3100
1770

S30

-0
13%0
a1é6a
48170
7680

2710
Jese
252n
1Jea

2990

10000030

ANOR is name ot binary An-Or, DAN {8 the 4 for An
There are three values of mole fractfon component two (Ur)
from the segment, with the end points of the segment hefng two of them,
then there are three values of ¢ for An.
'
Blank X¢ card causes punching ot catenlated data on cards, and reading of the

next bhinary or component .,

4]
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130
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gen
a0e
gle
400

DIMENSION X(2),XX(2,100),W(2),0(8),TO(2),T(2),0(2,100),
AEl(EoIBO);N(E)aE(e:IGB).SJIS)»TP(Q;lBO)oDPD(R:IOC).DEL(B:I%

1DDC2, 10R) L, DPEI(R, 1087 ,AC100),B(100),0C100)
toR210, 10<,RTX10<, RASIB<, RPR 10¢,NOX A«
1sKAC(R) KV(2)

CALL SIGNON
READ(S;lO)PAlRo(H(f);O(]):TO(l)aN(l’oJ')oﬂ’olTYPl-
FORMATCAA,2(F6 RsF6e0aF6elalB)HIN)

RXXw® |

Jugg

TOC1)=TOC1)+273.15

TO(2)eTO(2)+273.18
READ(S,20)(T(1),X(1)slm},R)
FORMAT(2(FA4.0,F3.3)?

DO 21 Isl,2

TCIInTCI)+2T7338

XC1YuX(1)/RXX

IF(XCI)eX(R))I61561,85

JuJe )
XX(an)lX(l)OH‘E)/(V(l)‘X(I)‘(U(Q)-U}I)))
XXKC2,J)uXCR2)0WCII2(NCRIGX(BI0(W(1)=W(R)))
DO 33 1=),@ :
TPCL,J)uT(])

CONTINUE

60 TO 15

CONTINUE

WRITE(6, 130) PAIR

FORMATC(IHK ,A4)

DO 400 I=i,8

Ne2sN(1)

K=0 X

A(l)ep

DO J91 Jwi,N@

ECIoJInTPC(L,J)/7TOCD)
DC1,J)me109B76TPCI,J)SALOGIXXCT,U)) . )
IFCIDCL,J)=BA40.0(E(1,J)=0088))0CDIIsUd =l j 66600 CE(],J)=094)))
174,74,2391

KaKe+ |

ACIY=ACL ) =DCI,J)eTOCIIZCTPCLoJ)=TOCI))
.CONTI NUE

ACT1)SACTI)/(FLOAT(K)+ .@001)
IFC(ITYPE)BD,80,90

WRITE(6,81)A(L) .

FORMAT(' HEAT OF- FUSION',F10.8)

GO TO 4n@

CONTINUE

DO 210 Jei,N2,8

Jinge?

JI1=AMINA(J1,NR) _
WRITEC6,220) (XXC1,1J),1dnd,J1)
"WRITEC6,220) (ECIs1J)olundsdl)
WRITE(6,22R)¢D{EsU) o Edndsdl)
‘'FORMAT(BFB «4)

FORMAT(BF8.8)

CONTINUE

CONTI NUE

CALL SINOPFPF

60 TQ. 3

. N
/DATA

QESTR

MAIN

Xionnormal {zed welight 7,XX: mole traction, 1: Hauldus temperature °C,
Wimole weight, Toitemperature of fusion, Nipumber of sets of data,
PAIRiname ot binary, TPisuccesstve liquidus temperatures,

Atestimate of heat of tusfon fn region ol high plotting accuracy,

Reads name of binary, mole welght, heat of fusion, temperature of fusion,
number of data points on the liquidus, and ITYPE, a print out control
Reads the normalizing tactor for reducing the composition data.

Reads the T and the unnormalized X welght percent data from the
Haquidus for both components

Normal{zes I-X

A bLank I'-X data card causes program to begin estimation ot the heat
ot fusfon, by transterring to statement 61,

tonverts X to mole traction of each component

DO LOOP calculates on component one's side of the cutectlice, then on
two's side,

A plot ot D versus E 1ies on o series of radiating loes of contact
heat of fusion, and & reglon can be outlined wiere the plotting
accuracy is detindte. The region {n trapezohedral, and lies between
TP/TO~ .88 and [P/T0=,94
D and E are in the acceeptable reglon then D ois used in estimat fng
the heat of tusfon

ITYPE=0 writes only the estimated heat of fusfon while TTYPE-
writes E,DL,XX tor every data point.

Reads new binary name

Data is the same as for DUHEM
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BON
o 2

751
757
481
486
A4S0

488

J00

45
47
21
978

T

DIMENSION VO(4).TEX(a).ALPHA(a),QF(d)oTH(a).S(d),
IA(J).B(4).C(4).O(4.4).05(a.4).V(4):AH(IS.IS);GT(IS.IS)»
IGTP(IS.!S).G(ls.15).RTLG(4).X<4).15(15.15).1(4).70(4)

l:xa(d:lﬂ)nxd(4:lﬂ):“|(4nlﬂ);a|(45|0);C|(40le)nlNP(4))lN°‘4)

IJCAT(]“)]J))HEAD(‘“JQ”)

COMMON Xl.xa.lN.AA.BB‘CC,Xa.anlNP.AI.Bl.CI.lNG

COMMON IBI;l82;lB3nlB4nIBS:lBG:KBI:K320K533K343K550K86
EQUI VALENCE(NIF(1),1B1)

DO 757 I=l,10

READ(S.75|)(cﬁT(lpJ):J'lal3)

FORMAT (20A 4)

READ‘5’75')‘"EAD(‘IJ)DJ“'4°)

CONTINUE

READ‘SI‘Hs"w(l)IQF‘I)JTO(I)DI"O‘)
FORMAT(Q(FG-E;F609:FS.B))

READ(S;ASO)NARK.TITLEnNAME

FORMATC(11,10A4,7, 10A4)

DO 488 Iz1,4

TOCI)=TOlI)+273,

DO 47 I=1,NARK

RERD(S:JRB)‘N([);INO(I)

FORMATC(21 1)

NIisINCI)
READ(S:QS)(XI(I;J)lXE(l:J))AA(lau’aBB(X)J);CC([:J)wJ‘lcNI)
READ(S,300) INP(])

Ni=INPCI)
READ(5545)(XJ(I:J)ox4‘l)J)aAl(loJ)oBl(lpJ)oCl(an)pJ'lel)
FORMAT(2FS .4, 3E13 .6)

CONTINUE .

READ(S5,978)IT1,IT2,1T3

FORMAT(214,123)

[ lTYPE-ﬂlMaIlM‘T;QRTLGXL*TaSALlOOT.4AXL#T.5A'XLOT
c

ee
$70

158
10

480

e —

6T,7T+T',855,955+T
READ(S.??O)ISPACE;KSPACE;JSFABE.NIF:ITYPE
FORMAT(312,6¢12,13),11)
WRITE(6, 102R) I TYPE
FORMAT(* [ITYPEm *,]0)
1TYPITYPE+|
CALL SINOFF
HRITE(6.752)NAME:(CAT(ITYP;IKT).IKTII.la)oTlTLE
FORMAT(IHI.lOAQ.IoISA4.2X;IBAQ)4
URITE(é;YSS)KHEAD(KTYP;IKT).IKTII.QO)
FORMAT (204 4)
DO 10 Iw),12
NFCIY=NIFCI)+)
TOTe1./100.
ITESTx0
DO 190 ITeIT1,ITR,IT3
TelT+273
WRITE(6, 480)IT
FORMAT(® Ts 4,18)

PROGRAM GAPMIS

MAIN

QF:hrul ol tusfon, 10t temperatyre

NAME tname ot lvlnnry,rlrLE:lypv
seRments on the parabolic firs
binary, INPisame as IN for the

ot tusion,Wimole welght,

of v data used, INtnumber of
tode ot the tirst component in each
second component INQiparameter whicn

determines whether binary 44 data {s backwards or not ,
NIF: input data defining two search areas {n triangular coordinates,

X1iX2icompos it {onag) Hmits of o

O AATBBICC: paramet ey of the
component one X 3;X4: ) {ke X1;x2

ach segment n A, data for component
segmented pavabolic fit to £, for
for component wo, ALIBL;C b ike AA

etes for component teo, CATIHEAD:print out table head ings .

Enumerated triangular coordigae

These two statements cause one

8 o the two search areas,
to one matcehing of values of

IBL, IB2, .0 KB6 with NIF(1), NIFCH) L NTF (L) at all times In the

executton of the program,

Reads table headings tor print out

Reads mole weldght , heat ot tusion, temperature of tusion tor the component s

v
Reads number ot pairs ot Al data to be read I (NARK), then type ulr{Z data,

then the name of the ternary,

.
he parameter 180 determines whether the binary .g.lx backwards or not.

.
Reads in € qar, tor each binary tn order ot component one then component
twoo The mole tract fony Are tor component two.

Reads temperature range and fncrement over which calculat fons are to be per-

formed.,

OPTIONS FOR CALCULATON WITH PARAMETER 1TYPE. +1 means atter tinishing
the specitied calealations read In a new range and fncrement for
the temperature.A'XL means activities {n fused crystal,

Reads fnerement s for scarch areas one and two, retining 1nvrvmun(.
then the triangular coordinates of the two scarch areas and the ITYPE
OPTION for caleulation to be performed.,

RAX Library routine which Prints time of execution to this potnt,

¥
Writes name of ternary, tvpe ot (4o gaga and the table headings,

ITEST will determine the total number o) Points tested tor the LTYPE OPTION

caleulat fons,

The temperature po Loop (s set up,

Tempervature °¢ 1y written atter table h

Hiags,
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2=S1HdVY9

961
962

963

958
1813

998

999
1011

1025
1630

1216
1012
1014

420

430
700
425

977

R63
864
865

L7=1SPACE+JSPACE/S

L.haK SPACE+JSPACE/S

DO 100 1=1B1,1B2,1SPACE

Li=l=-LE

Le=1+L.7

DO 10¢ J=1R3,1R4 I SPACE

JI=103=-¢1+D)
lF((lﬂS-Jl)*(lnﬁ-Jl))963:963;190
V1)=FLOAT(1=-1)wTO0T

V2)=FLOAT(J-1)%T0T

V(3 =FLOAT(J1=-1)TOT

ITEST=1TEST+1

60 TO (977.977;lhlI:988n‘ﬂlln1014:420;&29!9771977751TYP
CALL ACTCAL(V,R,T)

GX=¢

Bo 998 1TP=1,3
GX:GX*V(ITP)*ALOG(ABS(B(ITP)*oaﬂﬂel)/(V(lTP)‘oﬂﬂoﬂl))
GX=1 9R7«T*GX

CALL WTPER(V, W, ()
leTE(6.999)(V(lTP),ITP=lp8).(a(lTP).lTP-l.3)»6K.(C(lTP).l
1TPe1 3

FORMAT(IH »6F7+4,F7:1,3F7.4)

GO TO 1040

CALL RTLXL(V,A,T,T70,QF,B)
1F(lTYP-3)|ﬂ|651025:|ﬂl6 .
NRXTE(é.lﬂaﬂ)(V(ITP):lTP'llﬂ)l(ﬁ(lTP)alTP'IDS)
FORMAT(1H »3F7+303F7.®)

GO TO 100

CONTINUE

PO 1012 L=2,3
B(L):EXP(B(L)/!.987/TOALOG(V(L)¢.63001))
GO TO 1013

CALL RTLXL(V,B,T,»T0,QF »A)

GO TO 1413

CALL RTLGA(V,RTLG,T?

PO 430 L=1,3

%XPaT
A(L)=-TO(L)*(RTLG(L)’°F(L))/(‘.987‘T0(L)*hLOG(V(L)?oO@DBl)
4-QF (L))

ACLY=A(LY=-273.

po 740 [TP=1,3

RCITP}=RTLGCITP)
NR]TE(ﬁ:aas)(V(L)lL‘loJ)IAI(B(L’IL-lpa)
FORMATCIH o3F6o3.3F7o153F7ol)

GO TO 10Q

cAaLL LlMS(VnSoTHnlSPﬁCE;ToTOTilTYP)
LasJ-L8

LasJ+L7

DO 1) K=KB1,KR2,KSPACE

DO 1@] N=KR3,KBAa,KSPACE

Kie1RA3=-(K+N) .
IF((KRS-KI)*(KBé-K\))ﬂﬁalaéailﬂl
lF((K'Ll)*(K-LR))86408651ﬂ65
IF((N-L3)*(N-L4))|Q|:865)565
X(1)=sFLOAT(K=-1)%TOT

X(2)aFLOAT(N=1)*TOT

X¢3)uFLOAT(K1=1)%TOT

DA TOOPrS 1aor ummwh“lwm-ﬂl‘meuwnh‘nm‘dmllw\(ﬁr
Abe set oup,

search area one

Number of points tested fso dncremented by one,
Splits up to pertorm PIYPE OPTIONS.
LIYPE- drealeulates activities in tigquid

ACTCAL calenbates activities fn ligquld at temperature 1 ousing composition V,

Total excess tree enctgy of mixing caleunlated,
WIPER caleulates welght tractions (C) trom mole percent.
Fhin fo 4 peneral write statement tor options 1TYPE=2,3,4.5

RILXE calenlates AY dn crvstal: activities In the fused state and H (o
crystal (B) Hapl htal!

PINPE-2: b dn crvstal (B) at composition V

FINPE-4tactivitfes (1) in erystal at tempersture 1, composition V.

PEYPE=Ssactivities In tused crystal at T,V
ITYPE=b:simple cutectic Hguidus temperature
RILGA caleulates {§ In Liquid at 1 as RTLG.

Formula (3-2) trom text caleulates liguidus.

1
Writes composition, temperatures and { tor components one, two, three.

LIMS caleultates contral value (8) and range (TH) of activities in liquid
At T in a moveable search parallelogram.
DO LOOPS tor compositions of components one

two Het up,

and two for search arca numb

er
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2

760
750

770

40

160

101
100

01

20
3%
38

45

10

TYP~9) 750,760,760
éil‘.l’. LIMSXL(X,B,CoKSPACE, T,TOT,TO,QF)
GO TO 779
CONTINUE
CALL LIMS(XsBsCoKSPACE,T,TOT,ITYP)
CONTINUE

A 1201,3
?2(:95(5(12)-9(l?))-(TH(lZ)OC(la)))49:40.lﬂl
CONTINUE .
CALL REFINE(V,X,]1SPACE,KSPACE,»T-JSPACE,I1ACC,S,B,1TYP, TO,
10F)
IFCIACCHY 100,100,160
CALL WTPER(V;N.TEX)

W, V0)

SS%#E?I?E???;V:L):L'103):(X(L)lL'Io3)o(TEX(L).L'lna)p(VO(L
’ Y,Lu1,3),
1,(S(L)Y,Lel,),(B(L)H»L=1,3)
FORMAT(IH ,6F643,6FT¢4,6F6.3)
GO TO 100
CONTINUE
CONTIMNUF.
DO 9041 [=i,12
NIF(I)YaNIF(1) =1

A SINOFF

SR%#E(G:QI|)lTEST;N]F:lSPACE;KSPACE:JSPACE
RMAT( 215,151 4)

zgRTO (ég;EIJZliel:21:2102212]:2202]):1TYP

END
ROUTINE LIMS(V,S,TH,ISPACE,T,TOT,1TYP)

g?siggléN V(A),5(4),A04),B(4),C(4),XCA4),YCA),TH(4)

1,RC4),UcC4)

CALL ACTCAL(V,A,T)

Z=FLOAT(ISPACE)+TOT

X(2)sV(2)+Z

X(3)eV(3)~Z

XC1r=vel)

CALL ACTCAL(X,B,T)

IFC1TYP-9)30,20,20

DO 35 JX=},3

C(JX)mACIX)

U(JX)y=ACIX)

GO TO 4S5

CONTINUE

Y(3)aX(3)

Y(2)=V(2)

Y(1)m]l.=Y(2)=Y(D])

CALL ACTCAL(Y,C:T)

R(1)aV(1)+2Z

R(2)aV(R)+Z

R(3)=V(3)-2.%2

CALL ACTCAL(R,U,T)

CONTINUE’ .

0 10 I=1,3
g(l:IAMAXI(A(l)nﬁ(l);C(l)aU(l))
TH(I)IAMINI(A(lita(l)JC(l)aU(l))
SCI)u(SCI)+THC(I) ) /78, '
TH(I)=S8¢I)=TH(])

RETURN
END

IIYPE=H,9: 50l Ld solat fon tic line caleuwlated at T
LIMSXL determines the central value (B) and the

range (€3 ot activitfes
n tused crystal {o moveable

warch parallelogram,

LIMS tor activities in Tiquid tn second search area.

Checks to see 1 activitles in the two moveable <earch paraltelograms can
be matched tor 4 possible solut fon.

REFINE retines the possible wolat fon toa mere accurate compasit lon,
TACE=] means o refined solat fon has been tound

WIPER converts V5 to weldpht tractions

Writes mole fractfons of coexisting phases, velght

tractions, and values
of the mitehed activigiea,

Closes search area two.
Closes

icarch arca one,

Writes the number of polnts tested, the  compositional limits o
the two search areas and the search incrementys,

Reads new search areas with statement A
catcalations with statement 22,

LIMS

Determines coentral vatue (S8) and range (TH) ot

the moveable scarch parallelopram,
The Tmits of

and new temperature range for

activities in Hquid {n

the moveable search parallelogram are def fned by V. X, Y,R.
The size ot the paralletogram is the search increment 7,
ACTCAL caleulates activities (B) in liquid at 1.

Activitles are caleolated at cach corner ot the paratlelogram,

ITYPE=B 9t s50lid solu fon caleulat fons require matehing of activities for
only the components in the solid solut fon (HhH

Determines the central value (8) and the range (TH) ot

activities in the
parallelogram,

ay
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963

863

160
750
170

49
101

=S IHd Y9

-

. SURROUTINE ACTCAL(V,A,T)
DIMENSION V(4);A(4);RTLG(4)
CALL RTLGA(V,RTLG,T)
DO 10 1wy,
A(l)-V(l)tEXP(RTLB(I)ITIIo987)
CONTINUE :
RETURN
END
SUAROUTINE REFINE(V.X.ISPACE.KSPACEpT;JSPACE.IAGC;S:B;
VITYP,TO, GF) )
DIMENSION VEA) - X(4)2SCa), TH(4),BC4),C( 4)
1,TOC4),0F(4)
TOT=) ./ 1000,
CALL nouno(v.lspace.xal.lae.laa.laa.les.las)
cALL ROUND(X.KSPACE.KRI.xae.naa.naa.nasonaé)
DO 100 1a1Ri,1R2, SPACE
D0 190 J=1BJ3,1B4, JSPACE
JIm19a3<1y
lr((lﬂs-Jl)-clns-Jl))963.963.lao
V(I)-FLOAT(l-l)tTOT
V(2)sFLOAT(J=1)¢TOT
V(3)aFLOAT(J 1~ ) +TOT
CALL LlMS(V:S:TH:JSPACE.T.TOT:!TYP)
lF(lTYP-?)SIBoSEO:SEB
KBim|
KB2m|
CONTINUE
DO 101 KeKB1,KB2, JSPACE
DO 181 NeKBJ,KB4, JSPACE
Kimi@pa-K-N
IF((KBS-KI)t(KBG-KI))BOG:BGS:IOI
X(I)IPLOAT(K-l)tTOT
X(2)IFL0&T(N~|)OT0T
Xt3)=FLOAT(K1=1)sTOT
IFC(ITYP-9)750, 168,760
CALL LIMSXL(X.B.OaJSPACE.T.TOTaT0.0F)
. GO TO 770 .
CONTINUE -
CALL LlMS(X.B:C.JSP“CC:T.TOT:ITYP’
CONTINUE
DO 40 12=},3
lF(ABS(S(IB)¢B(I§))-(7“(!9)00(18)))403400lﬂl
CONTINUE
1ACCH»)
GO TO 110
CONTINUE
CONTINUE
1ACCep
RETURN
END
SURROUTINE BoUND(V.lSﬂAOtoIlolﬂcl&al‘pl!olé)
DIMENSION V¢a)
Li=100R.eVC1)+1],
1221 1+ 10e] SPACE
“13w1000 .0v(R)+1},
14s13¢10%] SPACE
lé'lﬂﬂeo.V(a)‘llo
[5=16-20¢1 SPACE
RETURN
.END

ACTCAL

Determines aetivitfon iy Hguid at 1 and composition V
RILGA determines € (ry16) b Mauid ar 1,v,

Ativitios calonlared

REFINE

Retines the wolut fon found fu MAIN by searching the two previous moveahle
search parallelograms with smaller moving search parallelograms

BOERD detormines the po LOOP timits of the tWo arvas to be searched

Tdentioal to the portton in the HAIN program that matches activities
CXCCpt the earch dncrement s are ISPACE/ 1000

toactivities gre matched the TACC=1, but [1ACC=0 for no solution.

BUUND
Cateulates DO LOOP 1imigs for the two moveable search
pavallelograms which now become refined search area one and two.
They are now going to be searched with moving parallelograms
with the retined tnerement JSPACE/ 100,

k6
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149

70

8o
75

SUBROUTINE WTPER(X,W,C)

DIMENSION XC4),W(4),C(4)

CTol o/CXCI)OWIIIOXCRIOW(RISX( D) eW(T))

DO 20@ Kwy,)

C(K)=X(K)eWCK) oCT

RETURN

END

SUBROUTINE RTLGA(V,RTLG,T)

PROGRAM RTLGA CALCULATES RTLNCACTIVITY COEFFICIENT)

DIMENSION RTLGCA),V(4)»Z(4),SC4)s THC 4)

Z(1)VIIIZ(VIII+VI1)+.080001))

CALL XHMC1,ZC1),SC1),THC1),T)

2(2InVIRI/ZCV(RI+V( 1)+ .ARAAY)

CALL XHM(2,Z(2),S(2),TH(2), T)

ZCI)uV(IIZ(VI3YeV(R) 4 .00P0 1)

CALL XHM('3,Z¢3),8¢3),TH(3),T)

GYXE (1 e=V(R)I00208(1)4C14=V(1))e@0S(3)¢(1,-V(I))ssp65(2)

RTLGC1IA240C0140V(3))08CRI4(1e=VE(RI)ISC1))=V(RYeTHIR)=V(I)
f* THC 1)
1-67X

anu(ei-e.ot(|k-V(a))os(u)¢<|.-V(l))oS(a))oV(l)ornce)-V(a)

{*TH( )
1-GTX v .
\RTLB(S)U!.O((I.-V(!))OS(I)O(l--V¢l))08(3))0V(l)OTH(I)OV(ﬂ)
1 TH( D)
1-6TX

RETURN
END

SUBROUTINE XHM(I,Y»8,TH,T)

DIMENSION X104, 18),X2(4s 10)5AAC4s 10, BB( 4, 18),CCC4s 18),
TINCA) ,XI04, 10),XA0 4, 18)5A1C4, 18)sBIC4s 18),C1C4s 18),
IINPCA),INOC Q)

COMMON XlaKQoleAAnBBoCColOOl‘:lNP:AhBlnchlﬂo

IFCINGCI)=1)70,70,88
X=y

GO TO 78
Xs] =Y
CONTINUE
NIsINC]) =)

DO 1S Jmi,N)

IFCCX=-X1C1sJ))0(XXRCE,J)))10,10,18
CONTINUE
JuINCD)

THIZARCT,JI+XBB(T,J)¢Xe920CC(], )

NI=sINP(I) '

DO 20 J=1,N1 . .

IFCCX-XICT,d) )0 eX=XaClsJ)))R1,R1,80
CONTINUE
JeINPCD) .
THR=AL(1,J)+XeBI(I,J)eXenQeC1(1,4)

THeTHR=TH| .

SaTHI+XSCTHR=TH|)

IFCING(S)=1)85,85,90
THaeTH
RETURN
END

Sy

WIPER
Caleulates weipht pereent (C) from mole percent (X) with mole
welphts (W)

RILGA .
Calenbates (€ dn Vquid

Psen the intersecttons fn the binarfes (7) to pet the binary values
ot ﬁ.'.lml Q'J nsing XHM

¥ i
Formulae (J-8) tor (A in the Haguild from the text.,

NHM
Cateulates the value ot = S and ?:).J» In at 2 {;::L’J\ in the binary 1)

HEINQ=2 the binary data ©s backwirds but 18 IR« the data is the right
way around.

Determines which segmented interval that the input composition X
Hes dn tor the @ data (o binary 1}

Calculates (;( In binary 1)

v
Determines which scegmented loterval X lies (n tor the (/, data fn binary {4

It the data is backwards the stope {s roeversed,
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SURROUTINE LIMSXL(Y,S,TH,1SPACE,T,TOT, T0,0F) .
DIMENSION V(4),CCAa»SC4),AC4),BlA),TH(A),TOCA),0F ()

1,%X¢Aa)

- ZuFLOAT(I SPACE)*TOT

CALL RTLXL(V,A,T,T0,0F,X)
Cteyaveers+z

Cermvedr-2

CALL RTLXL(CsBsT»TO»OF,X)
DO 1P 1=2,3
St1)=wAMAX1CACL)Y,B(1))
THCIY=AMINICACT) ,BCT))
St1)=(StIYeTH(I) I/
THC(1I=SC(1)Y=TH(T)
TH(1)n ). ES

St1H=0

RETURN

END

SUBROUTINE RTLXL(V,A,T»TO,0F,X)

DIMENSION V(A),A(4),TOCA),QFCA)»8C(A),TH(A) ) X( Q)

CALL XHMC4»V(R), S(R)»TH(R) )"

AC2)=S(RISVIIIeTH(R) "

ACIInS(R2)=V(R)STH(2)

X¢2)y=A(R)

Xt3)=A(I)

DO 10 =g,
ACI)aVCIYSEXPCCACIISOFCII#(T=-TOCI)IZTOCIN)IZ 198/ T)
LISRL] ] :

RETURN

END

SACTIVITY

123-123

IMMISCIBLE LIQUIDS AT TEMPERATURE T IN
MOLE % PHASE ONEe MOLE % PHASE TWO® ﬂthHT { ONE

‘®ACTIVITY

123-l25
EXCESS CHEMICAL POTENTIALS OF CRYSTAL "IN

MOLE % CRYSTAL

ACTIVITIES OF LIQUID AT TEMPERATURE T
MOLE FRACTION LIOQUIDeACTIVITIES IN LIOUIDeO EXC!SStlUtIGHTaPERCEN;

3

3

1

3

IMMISCIBLE L10UIDS AT TEMPERATURE T IN
MOLE % PHASE ONE® MOLE X PHASE TwWOe

3

k]

3

WEIGHT X ONE

EXCESS CHEM POT CRYSTAL

IN .
TOTAL

| e
ACTIVITIES OF CRYSTAL AT TEMPERATURE T IN

NDL! FRACTION ORVBTLOACTIVITIES IN CRYSTLO$°$§EISSO‘HIIGNT PtROEN;

e
AGT!VITIES OF FUSED ORYSThL AT TEMPERATURE T IN
HOLt FRAGTION CRYITL‘AGTIVI?lIS IN cRYITLtgonglllt‘Htlﬂﬂf PIROEN;
3 .

]

3

® WEIGHT % TWO.

¢ WEIGHT X TwO

LIMSXL

Determines the central value (8) and the range (TH) of activities in fused
crystal for a moveable search {nterval defined by the composition V

and V(2) +Z where 2 18 the search .ac.ement. This is done only for com-
ponents two and three, the components in the solid solution phase.

RTLXL calculates activities (n fused solid soluttfon phase at T

RTILXL

Determines activities for components two and three at T in the fused solid
solution phase.

Binary name 4 caltled in XUM Is the 4’ data for the solid solution phase

Activities {n crystal referred to fused state.

DATA

Headings for the tables for the different ITYPE OPTIONS. The data
Hnes with less than 8-10 characters are a direct continuation of the
preceeding line; they are actually on the same data card, but the
printer width {s only 70 characters.

“66
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. SIMPLE EUTECTIC LIOGUIDUS TEMPERATURES [N
MOLE FRACTION LI1©*LI1QUIDUS TEMPERATURE®EXCESS CHEM POTENTIAL
1 2 J 1 2 3 ! e 3
SIMPLE EUTECTIC LIOUIDUS TEMPERATURES IN
MOLE FRACTION LICeLIQUIDUS TEMPERATURE*EXCESS CHEM POTENTIAL
1 2 ] 1 e . 3 ] . 2 3
SOLID SOLUTION LIQUIDUS AT TEMPERATURE T N
MOLE T LIQUID ® MOLE X CRYSTAL & WEIGHT % LIQUID ¢ WE]GHT % CRYSTL
®ACTIVITY
1 e 3, 1 2 3 | e 3 } e J
123-123 .
SOLID SOLUTION LIQUIDUS AT TEMPERATURE T IN
MOLE % LIQUID * MOLE % CRYSTAL ¢ WEIGHT % LIQUID - WEIGHT % CRYSTL
SACTIVITY
1 2 - 3 L} e 3 ] e 3 1 e J
123~123
216056255ﬂﬂ0l39|;262022|35600||'8027808‘290090‘553-
4ADIOP-AB-AN, 1ATM
SEG PARA FIT TO D Mi@TR
TRANDM DAN J2670

0 +N66M=-0.62147TE-N3 0.621478E P=0.23146RE 03 A 16. 4afe
P66 IBAR 0 ,39468AE A2 M. 753424F AR=-A. 1N1944E A4 a0, 36 29.
« IRRR.35AN-0,. 4P4NI TE 02 P, 10S571E P4=-0,400N78E A4 20. =2l. =161

+ 3570 .6420 B.513801E P2 A.!}3852E P4-P.a9B663E Ba =161, =326, ~1273.
+ 6420 .7770-A . 375841E 04 @.115747E N5-0.119996E A5 -1273, <1329, -20n9.
77709140 P.181383E 95~0.420840F @5 0 .207907E A5 -2009. -2873. -2958.
+91401 000 P.124903E 06-0.274919E 06 0.147733E @6 =2958. -£995. =745,
S1ANDM DDI JUAN2670 !

8 +1060-0.855830F 83-9.326150E BS5 0.195000F 96 -1572. -159, -pilez,
+ 1960 .4120~0.215436E B4-0.326602E 83 @.596147E 04 ~£122, -2020. =1277.
+ 4120 .6420=0.4) SAEAE B P.90B74RBE RA4=0:512796E 04 «1277, «571. =430,
+ 6420 8950-0.3B9770E A4 0.794337E 04=04395944E 04 <430, =31 af.

+ 89501 .000-0 .899SA9E 84 B.194711E #5-D «104760E 25 49, Se, Q.
5 1DMAB DD! J2670
@ +5170-0.126942E-03 0.1R26941E B3 A116493E 04 0, 10, 377.

+ 5170 .8A5A A.176384E 04a-0.674898E B4 P.T86557E 04

+8A50.9170 A.253604E AS-A.676795E 0S5 @.471426E @S

+9170.9650-0.207293E 06 8.419067E 06-0.206985E 86 £94B. 4317. 4357.
+ 96501 ,00N=B.526054E BT D.1AY94PE PB-A ,5739A6E 87 4357. 2960. 1831.
4 1DMAB DAB JAN2670

.8 +1030 9 .2€I07AE M4-0.177233E A5 B 9BMAIBRE BS 787, 1367+ 1246,
+ 10930 .6570 2.139685E 94-0.143219E 04~ 257B40F 03 1246, 1047, 344,
+ 65709650 A .1332AGE N4-0,126987E Pa~B.358064E 03  Jaa. 130. =26,
+ 96501 :000 9.9278L3E 03-0.195621E, 06 M .1ALBIIE 06 <-226. <«160. 2.

Mole welight, heat of fusfon, and temperature of fusion for components one,
two and three.
Name of the ternary Diopside-Albite~Anorthite
The form of the {nput data is as segmented parabolic fit t()lilo ratler
than to &
The characters 72 ANDM DAN have the following meanipg:

7

there are sceven segments fitted to =f (X)
2 the binary 4 data is backwards so INQ=2
ANDM the binary is An-Dio from Bowen (1928)
DAN the data 1s for 4 of An
The characters 51 ANDM DD! are similar to those for An, only they are for
Do, The | 15 not read, as the binary is alrcady backwards.
The order ot the binary fnput data for 4 s for tiquids; {n Dio-An

first, then for Dio-Ab, and then for Ab-An. The fourth set of 2 data
is for the crystal phase in Ab-An.

The property of the binary 4 data being backwards or forwards 1s determined
by using ITYPE options 2 and 6 in GAPMIS for binary compositions and com-
paring the results with the ¢ data in the last three columns.

The first two data are the mole fraction (second component) limits of

cach segment, and the next three data are the parameters of the fie,

while the last three data are the ¢ values used In calculating the fit,

“00T
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T 1ARAN L1G DAR

0 PAA=-P.165169E-

« 12AR 3700 ALRTIINRE
s 3700 S53AA=-A161340E
« 5300 .6700 A.791173E
*» 6700 80RA A.SR2142E
+« RAGA .R9NP=-N 23957 4aE
«B9AA1 APN=0.115454E
B 1ABAN L10 DAN M770
;) NT00 A,.420P49E
+ 0700 .1600-0.21P0ANE
s 1600 ,3300-0.204353E
* 3300 .4R00-N.792R68E
» 4BAN 5400 A .81 7TANAE
¢ 5400 .7000-0.340624E
7000 8700-0.146762F
«87001 .000 A.4511)6E
8 2ABAN XL DAB M770

A3 A.165171E
A2=-0,3099 70
A3 P.462498E
02-0.190476E
A4-0.1720A57E
#5 0 .5444R0E
A6 P .260R7AE

A2-0N,49061 4E
83 M.131349E
A3 P.157549E
A2 A.B96316E
A3-A.2950ANE
03 P.120000E
A3 A.100209E
A4=-0. 103153k

0 +2400-8.199863E402 A4 199863E

+ 240D .3400=0,133797E
¢ 3400 . 5000 0 .445199E
«5000.6200 0.9258S57E
* 6200 .7507 M. 1B2) Aa4E
e 7500 8709 A.384274E
«B700 .9400 0.311606E
« 94001 PP0=-0.219796E
6 1ABAN XL DAN M770

of «1P0P B.40PANNATE
e 1000.2500 0 .205R33E
2500 .JRPP-0 B44929E
« 3800 .750P=-N 6 TRNA2AE
« 7500 9200-0A.131S87E
« 92001 000 0.23999SE

A3 0.332165E
A3-N.908336E
fl-0.230556E
04-0,492825E
A3-0.11RASAE
95-0.703701E
75 9.488386E

84-0.,720669E
04-0.2266ARE
A2~-N.289766E
83 P.181563E
03 8.414704E
04-0.%541241E

Al=P.164]170F
A3 A.J9R675E
A3=0,312498E
83 0.634%917E
A5 P.126674E
A5-7,303703E
A6=-D .1 461R24E

A4 A.37P256E
R4-0.396835E
N4=n 225490E

@3-0 .1 34525E

A4 P.27777BE
N4a-0 .93749RF
Na~-0.13504a2E
A5 A.SRMA)6E

RA4=-P.372691F
Pa=0 .691664E
A3 0.515876E
94 0.)38889E
A4 N.32RBASE
A4 08 .857125E
AS A .397151E
05-0 .261109E

@5 0.347768E

05 @.518666E
84 9.710851E
Pa=0.119059E
A3-0.294117E
04 0.281245E

0300160303340080158230000040070300629

Ne 4,
A =-30.
=33, =13,
=4 =10,
~20. D
164, 4af6 .
445, 390 .
42 . -95,
-120. «95,
=17 6M .
7“. 64.
41, 35.
34, 4],
40 . e5.
-70. ~T72.
‘9. 239,
265. 254,
196. 150,
1en. 70.
0. 17,
«25, ~18.
-1l 35,
10S. 50 .
anan., 968,
311, =399,
«365. -339 .
=160, 4.
14, 10.
fe -4,

=33,
-4,
-20.
164,
445 .
=999,

=120,
=10,
70,
aj.
d4.
an.
=70,
[

265S.
196,
12n.

a0,
~25.,

=l
105,
-52.

IR
£365.
=160,

14,
1,
9.

Y

Doooption LIYPE tar 1,00 1o 1600°C in steps of 100°C

lN(IRH_ﬂLNl'ﬁ SEARCH AREA ONE SEARCH AREA WO 1YPE

! 2 REFINE ! 2 3 1 2 3
0h 08 Hil 05 045 40 08B0 1y 005 00 000 42 o710 |(). $L1Y] Y
Inerement 1 ois tor search area oney the tigures under 12§ are the composi-
tional limbts tor the search area, tn component s one, two, three,
FINPE-9 means the calenlat fon option te be performed 16 solfd solution,

‘10T
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