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Abstract

Issues associated with dynamical modelling and control of a spacecraft-mounted
robotic manipulator capturing a spinning satellite are investigated in this research.
The formulation of the post-capture dynamical equations of the system was carried
out by writing the individual Lagrange’s equation for the mother spacecraft, the
two-link robotic manipulator, and the captured payload. These equations were then
assembled to obtain the constrained dynamical equations of the system as a whole.
This method, however, introduces the non-working constraint forces and moments
which substantially complicate the dynamical analysis and therefore have to be elim-
inated. A novel technique that involves the use of the natural orthogonal complement
of the velocity-constraint matrix was used in order to obtain a set of unconstrained in-
dependent, equations. A computer code was written using FORTRAN and the IMSL
snbroutine DIVPAG was used to integrate the equations of motion. The pitch angle
of the mother spacecraft, the joint angles of the manipulator, and their rates just
after capture were calculated by solving the inverse kinematics problem and using
impact dynamics principles. These were then used as initial conditions for the post-
capture dynamics. A dynamical simulation of the system for the uncontrolled case
was carried out to study the effect of the disturbance, resulting from the capture of
the satellite, on the spacecraft/manipulator system. In light of the results correspond-
ing to the uncontiolled system, a control algorithm, whose objective is to produce a
set of feedback-linearized, homogeneous, and uncoupled equations, was designed and
implemented. The effect of structural flexibility in the robot links on the response of

the system was also investigated for both the uncontrolled and controlled cases.

1ii



Résumé

La présente recherche a trait aux problemes que posent la moddlisation et le
contréle d’un robot manipulateur, porté par un véhicule spatial, utilis¢ pour la saisie
d’un satellite en rotation. La formulation des équations dynamiques du systeme apres
la saisie a été effectuée en établissant séparément les équations de Lagrange corre
spondant au véhicule porteur, au robot manipulateur a deux éléments articulés et a
la charge payante. Ces équations ont été, par la suite, assemblées afiny d’obtenir les
équations dynamiques de contrainte du systeéme dans son ensemble. Cette méthode
introduit des forces et des moments de contrainte rassifs qui compliquent considéra-
blement I'analyse dynamique, raison pour laquelle elles ont été¢ fliminées  Une nou-
velle technique, qui consiste a appliquer le complément orthogonal naturel de la ma-
trice vitesse-contrainte, a été utilisée afin d’obtenmir une série d’équations indépen-
dantes non contraintes. Un code informatique a été dlaboré avee FORTRAN et
le sous-programme DIVPAG Jd’IMSL afin d'intégrer les équations de mouvement.
L’angle de tangage du véhicule porteur, les angles d’articulation du manipulateur et
leur régime immédiatement a la suite de la saisie ont été¢ calculés apres avoir résolu le
probleme de cinématique inverse et appliqué des principes de la dynamique des chocs.
Ces données ont été retenues a titre de conditions initiales pour la dynamique appli-
cable apres la saisie. La simulation par ordinateur du systeme hors-controle o permis
d’évaluer 'effet de la saisie du satellite sur le systeme véhicule spatial/ manipulateur.
Vu les résultats non contrélés obtenus, un algorithme de controle a ét¢ congu et adopté
en vue d’obtenir une série d’équations rétrolinéaires, homogenes et découplées. Leffet
de la flexibilité structurelle des articulations du robot sur la performance du systeme

a également été examiné dans les cas tant non-controlés que controlés.
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Nomenclature

All bold-face, lower-case, Latin and Greek letters used in this thesis denote vec-
tors; all bold-face, upper-case, Latin and Greek letters denote matrices; and all calli-
graphic letters denote points. The term eztended refers to quantities associated with
each body; the term generalized refers to those quantities associated with the overall

system.

A; : cross sectional area of link 1.
b; : generalized coordinates associated with the bending of link .
B; : shape functions associated with the bending of link z.
C, : spacecraft’s centre of mass.
C, : payload’s centre of mass.
E; : modulus of elasticity of body 1.
f : generalized external forces of the system.
G; : shear modulus for body 1.
I, : area moment of inertia of body :.
Iy; : inertia tensor corresponding to the hub of body i.
K, : shear constant of body :.

M, : concentrated mass at the tip of link 2.
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Pe,

q

: extended mass matrix of body .

: generalized extended mass matrix of the system.

: natural orthogonal complement.

: position vector of a point P on body i measured from the origin of (X0, Yo, Zo) .

: position vector of the origin of (X,,Y;,Z;) as measured from the origin of

(XOa YO) ZO) .

position vector of the centre of mass of body i as measured from the origin of

(X09 YOa ZO) .

extended position vector of body 3.

: quaternion formed by either the Euler parameters or the linear invariants.

: tensor defining the orientation of (X,,Y;,Z,) coordinate frame with respect to

(Xo, Y0, Z0) -

: position vector of a point P on body ¢ measured from the origin of (X,,Y;, Z;) .

tensor defining the orientation of (X,,Y,,Z,) coordinate frame with respect to

(Xt-ls Y;-l, Z:—l )

kinetic energy of link 2.

: potential energy of body 1.

: cross product tensor of g,.

position vector of a point P on body : measured from the origin of (Xo, Yo, Zo) .
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Chapter 1

Introduction

1.1 Space Robots

In recent years there has been an increasing interest in space as a new application
field of robotics. Space robots are expected to play an increasingly significant role
in future space operations. They will be used for the assembly and fabrication of
space structures required for the construction of the proposed Space Station and a
multitude of other tasks in space.

Extensive research is currently being conducted to further improve and develop
new technologies in the area of space robotics. The objective is to minimize the
need for astronaut Extra Vehicular Activity (EVA), which would greatly reduce both
mission costs and hazards to the astronauts involved.

Space robotic systems are typically comprised of one or two cooperating robot
manipulators and can either be mounted on a free-flying spacecraft such as the space
Shuttle or on a Space Station’s platform. The Canadian Remote Manipulator System
better known as CANADARM shown in Figure 1.1, is frequently used in conjunction

with the Space Shuttle, and represents the only operational space manipulator system
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Figure 1.1: Schematic of CANADARM mounted on the Space Shuttle

available. Other advanced space manipulators currently being developed are the
European Hermes Robot Arm (HERA) and the Japanese Experiment Module Remote
Manipulator System (JEMRMS) as outlined by van Woerkom and de Boer (1992).
A more advanced version of CANADARM is the projected Mobile Servicing Sys-
tem (MSS) which is currently being designed to be the Canadian contribution to
the international Space Station, Freedom, whose construction is scheduled to com-
mence in 1995. The Space Station project is the largest of its kind and is designed
to be a permanent inhabited orbiting laboratory, where observations of Earth and
space will be done and experiments, which can only be performed in a microgravity
environment, will be conducted. The proposed MSS is projected to include a large
manipulator arm which will be known as the Space Station Remote Manipulator Sys-

tem (SSRMS), a smaller, two-armed, dexterous robot known as the Special Purpose
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Dextrous Manipulator (SPDM), as well as sensors, controls, artificial intelligence and
other technologies which make up the fully integrated system.

Due to the microgravity environment in space, space robots are able to manipulate
a payload whose mass is substantial compared to the mass of the spacecraft on which
the manipulator is mounted. For example, the CANADARM which has a mass less
than 480 kilogram is rated to manipulate payload masses of up to 30,000 kilogram in
space. However, it cannot lift its own weight on Earth. The proposed more advanced
SSRMS will be able to lift more than 100,000 kilograms in space, manipulating even
the Space Shuttle itself when it berths at the orbiting station and could still handle

valuable small loads with care and high precision.

1.2 Dynamics

Space robots have different kinematic and dynamic features than their counterparts
on Earth and consequently the dynamical analysis is far more complex. One major
characteristic of space robots, which distinguishes them from ground-fixed ones, is
the lack of a fixed base in a space environment. That signifies that the modelling
techniques used for Earth robots have to be modified in order to account for the

moving platform on which the robot is mounted.

1.2.1 Rigid Robots

The lack of a fixed-base for space robots causes the internal dynamics, i.e., the dy-
namic coupling between the system’s components, to become quite significant and
must be properly accounted for in order to achieve some favourable results. In a

space environment, the commanded motion of the robot manipulator set to per-
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form a specific task produces reaction forces and reaction moments on the Siuttle
(platform) through the robot’s base. These induced forces and moments produce a
translation of the centre of mass of the platform and a rotation about its cen .re of
mass. As a result of those same forces and moments, the robot joint angles that
would normally be commanded to produce a prescribed robot end-effector position
and orientation will cause the end-effector to miss the target. Thus, the tip position-
ing of the manipulator will affect the motion and control of the platform. Likewisc,
the motion of the platform will affect the manipulator control. Such interactions
have been recently investigated by several researchers such as Umetani and Yoshida
(1989a). These movements, which could be large depending on the relative masses of
the system’s components, are undesirable since they may involve a large end-effector
motion and an attitude drift of the spacecraft. It was found by Vafa and Dubowsky

(1990) that the manipulator’s workspace will be reduced as well.

1.2.2 Flexible Robots

There is a large number of literature available on flexible manipulators. However,
only those considered to be most relevant to this work will be cited in the following

sections.

1.2.2.1 Link Flexibility

One of the major problems facing ground-based industrial robots is their excessive
weight. Heavy links require large actuators to move them which will in turn consume
more power. As a result both the manipulated payload capacity and the speed of
operation will be adversely affected. Also, the transportation of heavy robots from

one location to another would be more difficult and very costly.
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In a space environment, the excess in weight becomes critical and space robots
should be designed as light as possible in order to cut down on the costs of launching
them into space. This could be achieved by using aluminum alloys and composite
materials to construct the robot’s links. This would result in lightweight links that
are strong in compression, but relatively weaker than industrial robots in bending.
Space robots are also designed to be very long and slender in order to improve the
efficiency, enlarge the workspace, and extend the reach. However, the large spatial
dimensions and the large manipulated payload associated with space robots make the
flexibility, which results in substantial structural vibrations, an issue of concern even
if the manipulator is operating at a low speed.

The structural flexibility inherent in such manipulators introduces a noticeable
and undesirable modification of the traditional rigid-body manipulator dynamics.
This is a result of the strong coupling between the non-linear rigid body motions and
the linear elastic displacements of the links during the manipulator’s motion. Flex-
ibility of the robot links has been a topic of investigation in the robotics field since
the 1970°s, by such researchers such as Gevarter (1970) and Hughes (1979). It was
found that its ¢ffict becomes significant when manipulating large payloads, and/or
operating at high speeds and neglecting flexibility will result in gross inaccuracies in
the positioning of the end-effector. Consequently, the induced vibrations resulting
from the flexibility could be so substantial that they might tumble the spacecraft on
which the manipulator is mounted, as suggested by Longman (1990a). The incorpo-
ration of structural flexibility of the links in the dynamical model poses a challenge
to researchets, Therefore, many researchers have simply ignored the flexibility of the
robot’s hnks entitely and treated the system as rigid. However, this will lead to a sub-

stantial deterioration in tracking accuracy, especially as the flexibility becomes more
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significant. Other researchers such as Baruh and Tadikonda (1987) treated the flex-
ibility effect as a deterministic disturbance on the rigid body motion. Consequently,
the flexible motion could be treated similarly to the way gravitational, Coriolis, and

centrifugal effects are treated.

1.2.2.2 Joint flexibility

Another equally important concern is the flexibility in the joints of the manipulator.
As far as the overall dynamical stability of the system, recent studies, such as those
done by Chiou and Shahimpoor (1984), have shown that the joint flexibility has a
similar contribution as the link flexibility. The inclusion of the flexibility in both
the joints and links in the model complicates the dynamical equations of motion
substantially. Therefore, very few researchers have addressed the effect of including
both flexibilities on the behaviour of the system. It was found by Yang and Donath
(1988) that the inclusion of both joint and link flexibility cuts down on the total
deflections, but increases the oscillatory behaviour of the links. They have shown
that both the flexibility in the joints and the links, are sources of trajectory tracking

errors and undesirable oscillations of the end effector.

1.2.3 Flexible Payload and Platform

Some researchers have investigated the possibility of either having a flexible platform
or a flexible payload. Chan and Modi (1991) concluded that the vibrational response
of the flezible platform is substantially affected by the location of the manipulator and
the time history of the slewing manoeuvres, which, in turn, could have a siguificant
influence on the microgravity environment at the Space Station. Flexibility of the

payload was also addressed by Carton and Chrétien (1989) where they have considered
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payloads with flezible appendages.

1.2.4 Cooperating Robots

The dynamics associated with two cooperating robots have been addressed by a few
researchers. Murphy et al. (1991) simulated the dynamics of two cooperating robots
mounted on a moving platform which forms a closed kinematic chain. They have
concluded that the equations of motion are identical in structure to the fixed-platform
cooperative manipulator dynamics. A good example of cooperating robots is the
proposed SPDM discussed earlier which will be equipped with two manipulator arms,
each two metres long. The two arms are designed to cooperate in performing delicate
tasks such as replacing components and working on the Space Stations’s electrical

connections.

1.3 Control Schemes

Control of space manipulators has been investigated by many researchers, but most
of them assumed that the manipulator’s base is stationary, i.e., the conventional con-
trol schemes for ground-fixed manipulators could be directly implemented. However,
if the translation and rotation of the platform is to be considered, then a modified
scheme that estimates the platform’s position and attitude has to be designed and im-
plemented in order to achieve effective control. With the above-mentioned condition
and by avoiding singularities, Papadopoulos (1991) suggests that nearly any control
algorithm that can be used for fixed-based manipulators can also be implemented to

free-floating space robots.
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1.3.1 Control of the Spacecraft

Several schemes for the control of the mother spacecraft have been proposed and can
be classified in three major categories. In the first category, reaction wheels and/or
jet thrusters, as suggested by Dubowsky et al. (1989), are used to control the space-
craft’s attitude and position by compensating for the forces and moments exerted on
the robot base (spacecraft) as a result of its motion. However, reaction jets may con-
sume large amounts of expensive attitude control fuel and hence limiting the useful
life of the system (Torres and Dubowsky, 1991). On the other hand, thanks to the
inertially-fixed base, a solution to the relatively simple inverse kinematics problem
is only needed and control laws designed for Earth robots could be directly imple-
mented to systems in this category. The second category addressed by Longman et al.
(1987) proposes an active attitude control system (ACS) that maintains the space-
craft’s attitude relative to its orbital frame, which is achieved by applying appropriate
corrective torques. The spacecraft’s centre of mass however, is still free to translate in
response to the force disturbances of the robot and its payload. The control of these
systems is considerably more complicated than those of the first category. However,
the control could be simplified by using a technique called the virtual manipulator
(VM) developed by Vafa and Dubowsky (1990). The third category, which involves
free-flying spacecraft, has been proposed in order to conserve expensive fuel and to
avoid possible collision of the robot’s end-eflector with the payload about to be cap-
tured. However, since the Attitude Control System is off for systemns in this category,
this mode is only feasible when no external forces and torques affect the system and
when its total angular momentum is negligible (Papadopoulos 1991). The control
of such systems is the most complicated of all the aforementioned categories due to

the fact that the platform is floating and therefore the inverse kinetics rather than
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kinematics problem has to be reckoned with. Longman (1990b) introduced a method
that obtains one feasible solution among an infinite number of solutions to the inverse
kinetics problem. The virtual manipulator (VM) method, which only applies to rigid
manipulators, could be used as weil in order to generate a more practical numerical
approach to solving the inverse kinetics problem. Umetani and Yoshida (1989b) in-
troduced the Generalized Jacobian matrix (GJM) concept and suggested that its use
will enable the implementation of the conventional control method for ground-fixed

manipulators to space robots.

1.3.2 Position Control of the End-Effector

The control of space manipulator systems is complicated by the non-linear nature of
its equations of motion. In the absence of vibrations of the manipulator’s links due
to structural flexibility, i.e., when the system could be treated as rigid, satisfactory
accuracy of the end-effector positioning could be achieved. However, in the case of a
flezible system the control is further complicated by the strong coupling between the
rigid and flerible degrees of freedom. Therefore, accuracy in the positioning of the
end-effector of the flezible manipulator and the avoidance of its oscillations due the
structural flexibility pose a big challenge to the control designer.

The complexity of the control scheme used for the positioning of the robot’s end-
effector is highly dependent on whether the spacecraft control system is turned on or
off. In the case when it is off, it was shown by Lindberg et al. (1990) that the position
of the robot end-effector is no longer just a function of the present robot joint angles,
but rather a function of the whole history of the joint angles. On the other hand, in
situations where the ACS is on, the end-effector position is purely a function of the

final robot joint rates.
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In the case of a single link robot manipulator the control could be simplified by
treating the flerible manipulator as a linear system. Cannon and Schnitz (1984) used
a series of feedback control schemes with sophisticated sensor systems. Sakawa et al.
(1985) presented another closed-loop control algorithm based on a detailed analytical
model of the link and an alternative sensor system.

In a multi-link case however, neglecting the nonlinear terms may lead to sub-
stantial errors in the response of the system. Many researchers have used feedback-
linearization techniques in order to control such systems and achieve an accurate
end-effector position. Baruh and Tadikonda (1987) treat the flexibility effects as a
deterministic disturbance and implement the feedback-linearization control law by
means of spatially distributed sensors that measure the elastic motion. Bayo (1988)
developed a procedure to calculate the torques required to move the end-effector of a
multi-link robot through a specified trajectory while avoiding tip oscillations.

Experimental studies are also being conducted to study the effects of flexibility
on the positioning of the end-effector using Radius (Buchan et al. 1989). Carusone
and D’Eleuterio (1991) have shown that the implementation of a trajectory tracking
controller is vastly superior to a PID controller; the manipulator end-point followed

the desired path more closely without any large oscillations.

1.4 Payload Capturing

There is very little work done on the collision and capture dynamics of a robot ma-
nipulator. Umetani and Yoshida (1989b) through experimental studies have shown
that a spacecraft-mounted manipulator is capable of properly chasing and capturing

both a standing and a moving target (satellite). This is in spite of the complex space-
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craft /manipulator dynamical interactions. Yoshida et al. (1992) used the Extended
Generalized Inertia tensor (Ex-GIT) and the virtual mass concepts to formulate the
collision problem by focusing on the velocity relationship just before and after the
collision without an actual sensing of the impact force, but considering the momen-
tum conservation law. However, they have not presented any simulation results that
reveal the effects of impact on the system. Chapnik and Heppler (1991) have stud-
ied the effect of impact on a single link flezible manipulator and concluded that the
deflection of the beam after impact is very small and could be ignored, however the
deflection rate is significant and cannot be neglected.

Capturing a payload in space is a complicated procedure because dynamics and
control issues of the different phases that constitute this particular task have to be

dealt with. The phases could be summed up as follows:

1) Chase and approach of the target which involve the application of appropriate

joint torques that will lead to the desired approach trajectory.

2) Impact between the payload and the robot’s end effector. This phase is highly
sensitive to the initial conditions of the payload and the configuration of the

spacecraft /manipulator system just before impact.
3) Grasp of the payload by the manipulator’s end effector.

4) Suppression of any residual motion of the payload by applying appropriate joint

torques.
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1.5 Objective and Motivation

The primary objective of this research is to develop a methodology for the formulaticn
of the dynamical equations of motion of a spacecraft/manipulator system capturing a
satellite and to study the impact dynamics. A simulation of the post-capture dynam-
ics will be carried out in order to evaluate the effect of such a task on the system’s
various degrees of freedom, i.e., spacecraft attitude, joint angles, and the orientation
and position of the captured payload, and their rates. Of great interest in the pro-
posed research is to evaluate the effect of the inertial properties (mass and inertia) and
the pre-capture dynamical properties (initial velocity and spin rate) of the impacting
body on the post-impact behaviour of the system. Hence, cases involving both smooth
and hard impacts resulting from the berthing of the spacecraft/manipulator system
and the payload will be investigated. Structural flexibility in the robot’s links is of
great concern as well, and an appropriate modelling technique has to be implemented.
Control of the system just after impact is also of importance. The objective of a con-
trol scheme is to suppress any residual motion of the payload and maintain stability
of the system’s components, i.e., the spacecraft, robot manipulator, and payload.
The motivation behind this research is the lack of analyses that address the effect
of an impacting body on the behaviour of the spacecraft/manipulator system. Most
of the previous research conducted in the area of robot manipulators mounted on a
free-flying spacecraft investigated the effect of the dynamie coupling between a robot
and its base on the positioning of the end-effector as it performs a certain task. A very
small number of researchers actually investigated the effects of capturing a satellite
and those who did were only concerned with the approach dynamics associated with
capturing a payload; collision was briefly considered by Yoshida et al. (1992), but

the post-impact dynamics was not simulated.
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1.6 Thesis Organization

In Chapter 2, the rescarch problem is clearly stated and a schematic of the space-
craft /manipulator system under study is presented. The generalized coordinates of
the system are defined and the extended position and velocity vectors are introduced.
Definitions of rotation matrices and recursive relations of the joint position vector
and the angular velocity and their rates are also derived. Chapter 3 starts with
expressions for the kinetic and potential energies for each one of the individual bod-
ies constituting the system. Next, the individual equations of motion are derived
using the Lagrangian formulation. The unconstrained equations of motion of the
system are then derived using the Natural Orthogonal Complement, whose objective
is to cancel the non-working constraint forces. In Chapter 4 the collision dynamics
resulting from the capture of a payload by the spacecraft-mounted manipulator is
derived, and a methodology to determine the post-capture numerical values of the
generalized velocities is outlined. In Chapter 5 various control schemes used for
space manipulators are briefly introduced. The control method used in the thesis
for both the mgid and flerible cases is then laid out in details. In Chapter 6 the
dynamical simulation results, after solving the equations of motion of the system, are
presented and discussed in length. The method used to calculate the post-impact
initial conditions of the system is also presented. Finally, Chapter 7 concludes the
thesis by summarizing all the results obtained and outlining some recommendations

for future work.




Chapter 2

Kinematics of the System

2.1 Introduction

The system under study is illustrated in Figure 2.1. It is composed of a main body
(hereafter referred to as mother spacecraft) that serves as a platform on which a
two-link robotic manipulator is mounted, and a payload. It is importaut to point
out that, although the manipulator shown in the figure consists of two links, the
formulation developed in this thesis is applicable to the general case, i.e., for a multi-
link manipulator. By definition, the orbital frame shown in the Figure rotates about
Earth while the system frame, sometimes referred to as the body-fixed frame, is
engraved on the spacecraft and rotates and translates with it. At a given instant in
time, the orientation of the system frame (X, Y], Z;) relative to the orbital frame
(Xo, Yo, Zo) defines the spacecraft’s attitude, represented by the pitch, roll, and yaw
angles. The angular velocity of the orbital frame with respect to the inertial frame
(X1, Y1, Z;) located at the Earth’s centre, is denoted by 2.

In Figure 2.1 the orbital and system frames are located at the spacecraft’s centre

of mass Cs. This is because, in practice, it is the trajectory of the mother spacecraft,

14
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rather than that of the system’s centre of mass, that is maintained. However, the
problem of orbit maintenance is not considered here. In any case, due to the fact that
the mother spacecraft usually has the most substantial contribution to the total mass
of the system, the centre of mass of the system is very close to that of the mother

spacecraft Cs.

L O |\
A RIS T SR MR S vy
X \
1 Rc \ BOdy 1
(Mother Spacecraft)

Y, B

Figure 2.1: System under study

Both the platform and the payload are modelled as rigid in this study. However,
the manipulator’s links are modelled as flezible and the effect of the flexibility on the
spacecraft /manipulator system is investigated. On the other hand, the joints of the
manipulator are modelled as rigid and they are all chosen to be revolute for simplicity.

At first, the kinematics of an individual body, say body 7, will be discussed and
then the kinematics of the entire system will be presented in terms of rotation matrices

and recursive relations. A suitable set of coordinates that describes the motion of a
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rigid body will be described next. For the case of a flezible body, the flexibility
is modelled by using either a finite-element model or beam eigenfunctions and the

flezible body motion will be simply superimposed on the rigid body motion.

2.2 Generalized Coordinates

The vector 9 contains the independent generalized coordinates for an N-body system.

It is defined as follows:
T .
¢=[¢'{‘a¢g‘av¢%] (Z.l)
where the vector 1, represents the spacecraft’s attitude degrees of freedom, namely,

pitch, yaw, and roll. It can be written as :

¥, = [a,8,9]" (2.2)

These angles will be modelled as the angular rotation of three separate joints. The
actual formulation will use the quaternions discussed in section 2.3, however, for
physical interpretation of the results quaternions will be converted into pitch, yaw,
and roll angles because they are more easily interpreted in flight mechanics. In the
planar case, a would be the same as 0, while 8 and v are both zero.

For the remaining (N — 1) bodies, the generalized coordinates, which will depend

on whether the body involved is rigid or flexible, could be written as follows:

o = [6,] if body 1 is rigid (23)
[6,,b,7]", if body i is flezible

where,

bt = {bah bl2; vy btm]T (24)

contains the m generalized coordinates associated with bending in link i, and 6,

(Figure 2.2) is the angular rotation of joint : as a result of the actuator. For a



CHAPTER 2. KINEMATICS OF THE SYSTEM 17

rigid link it represents the angle between X, and X,-;, measured along the positive
direction of Z,. For a flezible link the angle between X, and X,_; is the sum of 6,

and the angle of rotation of the tip of link i — 1 which results from the structural

flexibility.

2.3 Coordinates of a Rigid Body

The motion of a rigid body 7, could be fully described by the position and orienta-
tion of its body-fixed frame (X,, Y,, Z,) with respect to the orbital frame (Xo, Yo, Zo) .
The position of the origin of (X,,Y;,Z,) can be described by the position vector p;,
while the rotation can be described by the rotation tensor Q,. The nine elements of the
matrix Q, are the direction cosines which describe the orientation of the body-fixed
frame (X,,Y,, Z,) in (Xo, Yo, Z0o) coordinates. There exist only three independent
parameters within the nine elements, i.e., there exist six constraint equations, which

are due to the orthogonality property of Q,, i.e.,
Q/Q. =1 (2.5)

where 133 is the 3x3 identity matrix. The independent parameters could be rep-
resented by either the Euler angles or by a four-parameter set such as the Euler
parameters or linear invariants. The four-parameter sets, of course, will be subjected
to a constraint. A more detailed description of these two four-parameter sets could be
found in (Cyril 1988). Cyril has shown that the choice of Euler parameters or linear
invariants is immaterial because they do not appear in the final dynamical equations
of the system.

The 7-dimensional extended position vector, q;, contains the position vector of any

point on a rigid body 7 and the orientation of the body. Meanwhile, the 6-dimensional
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extended velocity vector, w,, contains the velocity of any point on a rigid ¢ and the

angular velocity of the body. This could be written as follows:

q, = [13"1', él;r]T (2'6)

w, = [v],w]]T (2.7)

where g, represents the quaternion formed by either the Euler parameters or the

linear invariants which are extensively discussed by Cyril (1988).
2.4 Coordinates of a Flexible Body

The motion of a flezible body comprises of two components:
i) The rigid body motion described in Section 2.3.
ii) The flezible motion resulting from the structural elasticity inherent in the links.

The flezible motion of body 7 could be represented by m generalized coordinates
b;, where m is the number of modes chosen to discretize the beam. lence, the
(7 4+ m)-dimensional extended position vector and the (6 + m)-dimensional extended

velocity vector, q, and v,, respectively, could be written as:

q, = [ﬁ'sra fl;T, bl]T (2°8)
w, = [V, wl,b,)" (2.9)

where q; and w, contain, in addition to the components of a rigid body described
in the previous section, the vectors b, and B, containing the elastic coordinates and

their rates, respectively.
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2.5 Modal Discretization

The displacement of any point on body 7 is a continuous function of both the
location and time. In order for the Lagrangian formulation to be applicable, the
displacements are discretized so as to obtain generalized coordinates that are functions
of time only.

The motion of link 7 can be expressed in terms of two components:

i) a ngid body component describing the motion of a line that is tangent to the

beam at the joint (which is considered to be clamped to a rotating hub) which

is referred to as nominal motion,

ii) a flexible body component describing the elastic deflection of the body from
this tangent line sshow in Figure 2.2, which depicts the planar case for clarity,

which can essentially be superimposed over the nominal motion.

Xt

9t+1 i
/’
e
Y, OH—I
Pt
A e —»

0, hink i

Figure 2.2: Motion of a flexible link



CHAPTER 2. KINEMATICS OF THE SYSTEM 20

Let r, be the position vector of any point P on the flerible body with respect
to (X,,Y,,Z,) axes. A set of unit vectors Xx,,y,,z, are chosen to be parallel to
(X.,, Y, Z,) axes, respectively and z,, y,, z, are the coordinates of a point in the frame.

Vector r, could be written as:
r, =z,X; + [l"(llf.,t) (210)

where p, represents the deflection of the beam due to bending, shear, and axial
shortening. The components of p, projected on X,,Y,, and Z, axis respectively, are
Bi(1)s a(2), and pi,3). The component p,) results from an axial shortening effect,
which is also referred to as centrifugal stiffening. Meirovitch (1967) relates g,y to
Ha2) and py(3) as:

d au,
fan) R 2 1{( ”‘2’) +( g;?’)]dz (2.11)

the in-plane and out-of-plane deflections. The negative sign in equation (2.11) is a
result of the shortening of the link. In this thesis the shortening effect will be ignored
because the links will be moved at low speeds with rates that are considerably smaller
than their first natural frequencies. On the other hand, if the links are operating at
high speeds, the centrifugal stiffening has to be accommodated for in the model as
done by Likins (1974).

The two other components of p, namely, p,) and p,(), are given in their dis-

cretized form as:

mm=i%@hﬂ) (2.12)
J=1
Ha(3) = }T: 615 (24)bi(nrs) () (2.13)

where ¢,;(z,) are the shape functions used for discretization, corresponding to body

twithj=1,...,m and m = 2m.
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t o e

When shear effect is included in beam vibration, the flexibility of the beam is in-

creased, consequently, the generalized stiffness is decreased.

Effects of Rotary Inertia

Rotary Inertia is the inertia associated with the angular acceleration of the beam sec-
tions. In the absence of shear, these sections, always remain plane and perpendicular
to the longitudinal axis of the beam.

If shear is present then the above does not apply and the slope of the beam’s axis

has to be re-defined as follows:

a 1] 2|’t
Eel) gy + ) (2:14)
a#l( )(xu t)
_—_—26:1: = £,(3) + Mh(3) (2.15)

where Q’é’éﬂ, Qg—'fl, €i2)y &(3)» Th2), and 7,3y are the total angle of rotation about

the Y;-axis, the total angle of rotation about the Z,-axis, the angle of rotation about
the Y;-axis due to bending, the angle of rotation about the Z,-axis to bending, the
angle of distortion about the Y;-axis due to shear, and the angle of distortion about
the Z,-axis due to shear, respectively.

The displacement vector g, can be written in the compact form:
B, (z,,t) = By(z,)b,(t) (2.16)

where B,(r,) is a 3xm matrix of shape functions associated with bending of link :

and is defined as:

Bl(xl)= é1 .. dw 0 ... O (2'17)

0 v 0 ¢,’1 co ¢iﬁ;
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As mentioned earlier, the Fuler-Bernoulli beam theory will be used to model the
structural flexibility in the beams. Hence, the total rotation of the beam will only
depend on bending resulting from the flexibility. The rotation of the tip of link ¢ with

respect to (X,,Y;,Z,) is denoted by 8, (Figure 2.2) and is defined as:

by1)
6i = | by | =Dill)b, (2.18)
é(3)
where, ] - -
0 ... 0 0 ... 0 7
D(l)={0 ... 0 —g,(L) ... —¢a(l) (2.19)

. 0 .0

and ()’ represents differentiation with respect to x;, while §1), 6,(2), and ;(3) repre-

sent the x, y, and z components of §;, respectively.

2.6 Rotation Matrices

The rotation matrix describing the orientation of body i- fixed axes (X,, Y,, Z;) with

respect to the orbital frame (Xo, Yo, Z0) is defined as follows:

Q, = R]Rz...R,_]R,; = 1,...,N (2.20)

where, R, describes the orientation of body i-fixed axes (X,,Y:, Z,) , with respect

to body (i — 1) fixed axes (X,_, Y;-1, Z,—1). The rotation matrices R, and Ry, are

respectively defined by:

- -

1 0 0 cosy 0 —siny cosae  sina 0
Ri= |0 cosp —snf 0 1 0 —stna cosa () (2.21)
0 sinfB cosp siny 0 cosy 0 0 1
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and o ]

[ 1 0 0 cosbizy 0 —sindyy)
Risi= [ 0 cosliyy —sindy 0 1 0
0 sinb,1) cosdip sinia) 0 cosé,(y)
' o ' (2.22)

cosbzy sind,z 0 1 cosbyy —sinbfiyy 0
—sinbi3 cosdys) 0 sinby, cosbiy; 0

0 0 1 11 0 0 1 ]

fori = 1,...,N — 1, where (o, ,4) are the pitch, yaw, and roll of the mother
spacecraft (body 1) described earlier.

All deformations resulting from the flexibility of the links are small enough so
that their trigonometric functions could be linearized. Therefore, the rotation matrix

R, ;1 could be re-written in a simpler form as:

r - .- -

1 —5,(3) -5,(2) COSH‘H —sinﬂ.,“ 0

Ry = 5,(3) 1 —6;(1) sinf,_; cosbiy; O (2'23)

b2y iy 1 0 0 1

L 4L J

for: =1,...,N-1.

2.7 Recursive Relations
The position of the origin of (X,,Y;, Z,) with respect to that of (Xp, Yo, Zp) is defined
by the following recursive relation:

P = Piar +roa(lo) (2.24)

for: = 2,...,N. It is obvious that p, is equal to zero, because it is defined as the

distance between the origins of the orbital and system frames.
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Differentiating equation (2.24) with respect to time, the inertial velocity of the

frame (X,,Y,, Z;) would be readily obtained as:
{’, = \7,_1 + w1 X r‘_l(l._l) + ﬂt—l’ 1= 2, ey N (2.25)

Similarly, the acceleration vector can be obtained by differentiating equation (2.25)

with respect to time as follows:

V= \;':-1 + w1 X Wiy X Py (li-1) + @iz xri-1(ho1)

+2w|_) X i"l—l + i}'t—l’ 1 = 2, oo ,N (2.26)

The angular velocity of the system frame (X, Y7, Z;) with respect to the orbital
frame (Xo,Y0,Z0o) in terms of the orbital rate 2 and the angles describing the

attitude of the platform could be obtained as follows:

N 4 3

cosy 0 —sinycosf B
wi=| 0 1 sinp A (2.27)

siny 0 cosycosf \ Q4+ a

J

The angular velocity of (X;,Y;,Z;) with respect to (Xo, Yo,Zo) is defined as

follows:

w, = W, + 5,_1 + 0,2, (2.28)

where ¢ = 2,...,N. Differentiating equation (2.28) with respect to time, an expres-

sion for the angular velocity of body ¢ is obtained as follows:

“;Jl = ‘bt—] + sx—l + W1 X bt-l + élzl

+(w1—l + 51-—1) X ét (2'29)



Chapter 3

Dynamical Equations of Motion

3.1 Introduction

In this chapter the unconstrained equations of motion of an N(= n +2)-body dynam-
ical system (refer to Figure 2.1) composed of an n-link robot manipulator, a mother
spacecraft, and a payload, will be derived. The l.agrangian formulation rather than
the Newton-Euler formulation will be used, because the former is simple to implement
and is directly applicable to systems with kinematic loops and flexible bodies. This
will no doubt make the derivation straight forward, however one has to pay the price
of lengthy partial differentiations.

The usual practice in Lagrangian Dynamics is to consider the dynamical system as
a whole, i.e., expressions for the system’s potential and kinetic energies are obtained
and are used to derive the equations of motion for the whole system. In this thesis,
however, the formulation is carried out by writing the Lagrange equations governing
the motion of each individual body. The individual equations will then be assembled
and re-arranged to obtain the constrained dynamical equation of the whole system.

This procedure makes the derivation much simpler, however, it introduces the non-

[{&]
[
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working constraint forces and moments as in the case of the Newtonian approach.
These constraint forces and moments, which are not relevant to the computations done
in this thesis, complicate the dynamical system by introducing additional variables to
the equations of motion. Hence, a novel technique that involves the natural orthogonal
complement, described by Cyril (1988), will be used to eliminate those non-working
constraint forces to produce a set of independent dynamical equations of motion.

In order to obtain the individual equations of motion of each body, expressions for
both the potential and kinetic energies have to be obtained first. These are presented

in the following two sections.

3.2 Kinetic Energy

For all practical purposes, the orbital and the attitude motions of a body in space
could be studied separately. Hence, expressions for the kinetic energy resulting from
the orbital motion and that from the attitude motion could be obtained independently.
It is worth mentioning that the attitude motion of the body could perturh its orbital
motion, however this perturbation is negligible and thus, it is assumed here that the
orbital motion of the mother spacecraft is prescribed. From now on, the phrase kinetic
energy would imply kinetic energy associated with attitude and structural dynamics.

The kinetic energy of an individual body z, denoted by T}, can be written in terms

of its extended velocity vector, w,, and its extended mass matrix, M,, as follows:
1 T Ly
T‘=§w‘ M.(q,t)w, 1 =1,...,N (3.1)

The derivation is carried out by obtaining an expression for the velocity of a point
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P, on body ¢ as follows:

VvV, +w,xr,, if body 1 is rigid
v, (z) = (3.2)
V,+w,xr, + 1, if bodyiis flexzble
In the following subsections, expressions for the kinetic energy of each body of the
system, i.e., the mother spacecraft, the 2-link robot manipulator, and the captured

satellite will be derived. These expressions will then be used in the Lagrangian

formulation to obtain the individual equations of motion.
3.2.1 Kinetic Energy of the Mother Spacecraft

The mother spacecraft (body 1), which serves as a platform for the robot manipulator,
will be modelled as a rigid body for simplicity. Its kinetic energy, T could then be

written as:

1
ﬂ:iﬁhﬁwdm, (3.3)

where,

vi{z)=Vi+w xny (3.4)

Where w, represents the angular velocity of the mother spacecraft and includes the
orbital angular velocity Q.
Now, equation (3.3) could be rewritten as (its detailed derivation is in appendix
A):
1 1

ﬂ:imwm+§{uqm (3.5)

where I, is the inertia tensor of the spacecraft about its centre of mass. Also, v,
represents the velocity of the origin of the system frame relative to the orbital frame,
which is zero in the presert case.

The extended mass matrix of the spacecraft M, could be readily obtained from
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equation (3.5) as
(m1)1 O
M, = (3.6)

O3xa L
6x6

3.2.2 Kinetic Energy of the Links

In this thesis, a flexible body ¢ will be modelled as a beam. The kinetic energy of a

beam, in general, can be written as follows (Timoshenko 1955):

T = % lp(:z:)vT(m)v(a‘)d:c + %JWVT(I)V(I) + %wTIHw
2/ z)k2(2)€3(z, t)d + 2/ )2 (£)E3 (&, t)d (3.7)

where the subscript ¢ was and will be dropped from now on for brevity and p, &, I,
and M are the mass per unit length, the radius of gyration of the cross-section taken
about the neutral axis of bending, the hub moment of inertia, and the concentrated
mass (if any) at the tip of body i, respectively. The first term in equation (3.7)
corresponds to the rigid body motion of link i, the second term represents the kinetic
energy of miass M located at the end of body i, the third term is the kinetic energy
of the hub, and the last two terms are associated with the inertia due to the angular
acceleration of the beam sections due to bending in the in-plane and out-of-plane
directions, respectively. The links considered in this thesis are long and slender, iee.,
their cross-sectional dimensions are small compared with their lengths. Therefore,
the effect of the rotary inertia can be neglected as suggested by Timoshenko (1955).
This allows the use of Euler-Bernoulli beam theory to model the elastic behaviour
of the links. In the event that the beam is shorter or thicker, Tunoshenko beam
theory, which accounts for the transverse shear and the rotary inertia effects in the
model, has to be used. Another assumption in this thesis is that the geometric and

physical properties of the links remain constant along its length and that its neutral
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axis coincides with the centroidal axis. Also, the effects of centrifugal stiffening could
be neglected because the links will be rotated at relatively low speeds.
Next, starting from equation (3.7), a more convenient expression for the kinetic

energy of each flexible body @ will be derived, from which the extended mass matrix

corresponding to that body will be extracted. The terms v?(z) and v2(!) in equation

(3.7) can be easily evaluated from equation (3.2) (subscript ¢ has been dropped for

convenience), and are found to be as follows:

v¥(z) = v? 4 2V7 (wxr) + (wxr)T (wxr)

+2VTF 4+ 2wxr)Tr 4 2 (3.8)

Equation (3.8) can be re-written in terms of X and U, the cross-product tensor of
x and u, respectively. The resulting equation, whose detailed derivation is given in

Appendix A, is as follows:

v =92 = 972X 4+ 2U)w + 207 + ji?
F+wT (2?1 —x@x) - 2(XxQp + L ® X)

+(p?1 - p @ p)lw + WT(2zX + 2U) 4 (3.9)
Similarly, an expression for v¥(!) can be obtained as:

vi(l) = v? = vT (21X + 2U())w + 29T u(l) + £3(1)
+wT(P(1-x®x) - I(x ® p + u(l) ®x)
+(p(1)1 = p(D) ® p(l))lw + wT(2AX + 20(1)) (1) (3.10)
The symbol ® used in the above equations denotes the tensor product of two vectors.

Upon the substitution of equations (2.16), (3.9) and (3.10) into equation (3.7)

and integrating, the kinetic energy for a flezible link 7, could be written as (refer to
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Appendix A for the detailed derivation):

2T = VT [m + M)V — ¥T[p(2T; + I*X) + 2M (U(l) + IX]w
+2¥T [Ty + MB(1)]b + wT[2p(T4 + XTs) + 2M(U())B(I) + IXB(!))]b
+¢.;T[p(§'1‘10 + 2xTT5ul + Iy — Tg — T7 + Ts)
+M(PT10+ 20" B(1)p1 — I(x ® p(l) + p(1) ® x) — p()) ® p(l) + Ty)lw

+b7[pTs + MBT(1))B(l)]b (3.11)

In equation (3.11) the terms xTTs and x7B(!) could be set to zero if the axial
shortening effect is ignored, i.e. u; = 0. The terms T;, T3, T4, Ts, Ts, Tr, Ts, Ty,

and To are defined as follows:

T, = /0 'Bds

Ty = /0 'BTBdz

T, = /0 'UBdz

Ts = /Ol zBdr

T6=/01:1:(x®u+;z®x)dx (3.12)
T = [(n@uds

Tsg = uTTgul

To = u"b7(1)Bul

T10=1—(X®X)= —X2

and T, represents the cross product tensor corresponding to T,b.
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The extended mass matrix, M, can be extracted from equation (3.11) and is given

by: ) _
My Mg Mg

M= Mu My Mg (3.13)

My My My
5 d (864m)x(6+m)

where the components of M are as follows:

My = (M + m)l

12
Mg = —p(Ty + -Q—X) + M(U(l) +1X)

Mg = pTy + MB(!)
3
Mgy = p(+Tio + 2xTTspul + Iy — Te — T7 + Ts)

3
+M(*To + 2TB(Dpl — I(x @ p(l) + 1(l) ® x)
—p(l) ® p(1) + Ty) (3.14)
Mg, = p(T4 + XTs) + M(U()B(l) + IXB(1))

My = pT3 + MB(I)TB(I)

My = MdTo
Mbd = MZ;
M, = M3,

and the subscripts d, 8, and b correspond to the displacement, rotation, and bending,

of the body, respectively.

3.2.3 Kinetic Energy of the Captured Payload

The spacecraft /manipulator system has the capability of capturing a payload as men-

tioned earlier in Chapter 2. For such a case, the extended mass matrix of the captured
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payload will be derived in this section. The payload was assumed to have an an ini-
tial spin rate of w, about its axis of symmetry and was modelled as a rigid body for

simplicity. The position of any point, P, on the payload could be written as:

Pn = Pc, +'n (315)

where r, is the position of any point P, on the payload measured from the centre of
mass and p., is the position vector of the payload’s centre of mass measured from

the orbital frame and is defined as follows (subscript n will be dropped for brevity):
Pc = f) + Iye (3'16)

where ry. is the position vector of the payload’s centre of mass C measured from the
origin of its body-fixed frame B which coincides with the tip of the last link of the
manipulator (see Figure 4.1). An expression for the velocity of any point on the

payload could be readily obtained from equation (3.15) as:
vV =V, + wxr (3.17)

and,

v? = v 4 2vT (wxr) + (wxr)” (wxr) (3.18)

After performing the integration and re-arranging, the kinetic energy of the payload

is obtained as follows (please refer to appendix A for its detailed derivation):
2T = VT [(m)1)]¥ = V7 [2mRyJw + w71} Jw (3.19)

where I, is the inertia tensor of the payload about the origin of its body-fixed frame
and V represents the velocity of the payload’s body-fixed axes relative to the mother

spacecraft.
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The extended mass matrix M of the payload could be readily extracted from

equation (3.19) and could be written as follows:

My My
M = (3.20)
My Mg
6x6
where,

Mu= (m)l

My = —mRy,

Mjs = M,

Mgy =1,

3.3 Potential energy

The potential energy corresponding to body 1, denoted by U, is a function of the
extended position vector q, alone. It consists of two parts; one due to the gravity
gradient and the other due to the elastic strain energy stored in the flezible body. The
effect of the former is much smaller than the latter and is neglected here. Hence the
potential energy for a rigid body is equal to zero. The potential energy for a flezible

body could be written as:

N
B ) dz

1 g 1
+;2-/0 KGAnpydr + -2-/0 K GAnlyydz (3.21)

1 66(2)2 1
= - (== -
U 2/()E1\a )d:c+2/0E'I(

where E,I,G and K are the modulus of elasticity, the area moment of inertia, the
shear modulus, and the shear constant, respectively. Again, the subscript ¢ has been
dropped for convenience. The first two terms on the right hand side of equation

(3.21) are the strain energy of the link due to bending, and the last two terms are the
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strain energy due to shear deformation. As mentioned earlier the links considered in
this thesis are long and slender, therefore the effect of shear deformations could be
neglected without losing generality. After dropping the terms related to shear and
performing the integration in equation (3.21), the potential energy could be re-written

as (refer to Appendix A for a detailed derivation):

U= %EleT,,b (3.22)
where, l
Tu = [ (B")B"de (3.23)
and ) )
0 0 0 0
B'=|g ... ¢ 0 .. 0 (3.24)
|0 0 g .. g |

3.3.1 Structural Damping

The energy dissipation caused by cyclic stress and strain within a structural ma-
terial is often referred to as structural damping. Experimental studies have shown
that the energy dissipation per cycle for metals such as aluminum and steel, which
are common structural materials, is approximately proportional to the square of the
strain amplitude but is essentially independent of frequency (Kimball, 1929).

By incorporating structural damping in the model, the energy dissipated by the
flexible links in the deformation process is accounted for. Structural damping could
be modelled by replacing the modulus of elasticity, E, by the complex modulus of

elasticity, E* defined as follows:

. d
E* = E(l+vg, (3.25)
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where v is a loss factor resulting from the normal strain lagging the normal stress
during sinusoidal motion.
The new modulus of elasticity, E*, is substituted in equation (3.22) replacing E

and a new expression for the potential energy is obtained as follows:

U*=U+ EIbTT,;vb (3.26)

3.4 Equations of Motion of an Individual Body

The dynamical equations of motion of body ¢ can be derived using the Lagrangian

formulation, which is given by the following expression:

%(%p%:x‘-% i=1,...,N. (3.27)
where ¥, is a vector containing all the non-conservative generalized forces (dissipative,
external, and constraint forces) acting on body i.

The kinetic and potential energy expressions obtained in sections (3.2) and (3.3),
respectively are substituted in equation (3.27). Due to the length of the derivations
of the equations of motion for each individual body they will not be presented in this
thesis. However, it could be found in Cyril (1988) where the body equations were

expressed in terms of displacement, rotation, and bending dependent terms.

The general form of the individual equation of motion of body ¢ is:

where vector ¢F contains all the generalized external forces and moments acting on
body ¢ such as the ones arising due to the applied joint torques, vector ¢,s contains
all the position and velocity dependent generalized forces and moments in addition to
the dissipative forces, and vector ¢ contains the generalized constraint forces vector

arising due to the kinematic velocity constraints.
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3.5 Equations of Motion of the System

Upon assembling the equations of motion for each body, the system’s constrained

equations of motion can be written in the form :

Mw = ¢ + ¢° + ¢° (3.29)
where,

M = diag(M;, My, ..., My)

is the generalized extended inertia matrix of the system. Vectors w, ¢, ¢%, and ¢°
represent the the generalized extended acceleration vector, the generalized extended

external, system, and constraint forces, respectively and are defined as follows:

W) ¢7 é7 &7
. E S C
W3 2 2 2
W = ¢E = ¢S = . ¢C = i (3.30‘)
_WN_ _¢1€1_ _4’1%_ _d’g_

3.5.1 Elimination of the Constraint Forces and Moments

The system’s dynamical equations of motion given by equation (3.29) contain the non-
working constraint forces and moments vector, ¢, that is a result of the coupling
between the adjacent components of the system. That vector introduces additional
variables to the dynamical equations, and hence makes the simulation more compli-
cated. Therefore, a method has to be implemented in order to eliminate the vector
@° from the equations of motion and will be presented next.

The linear kinematic velocity constraints of the system and the natural orthogonal

complement associated with the matrix of constraint coefficients will be derived first,
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An expression relating the natural orthogonal complement N, the generalized extended
velocity vector, w, and the generalized coordinates of the system can be obtained
(Cyril et al. 1989) as follows:

w = N(¥ + %) (3.31)
and

Yo = [2,0,...,0]
where £ is the orbital rate of the system and 1) is the vector containing the generalized
velocities.

An expression for W could be readily obtained as follows:
W = N + N(¥ + o) (3.32)

It was shown by Cyril et al. (1989) that the result of pre-multiplying the constraint
vector @€ by NT is zero, i.e.,
NT¢C =0 (3.33)
This is equivalent to saying that vector ¢, which contains the constraint forces and
moments, does no work, which is in accordance with the principle of virtual work.
Hence, the natural orthogonal complement N will be used to eliminate ¢°€.
Upon pre-multiplication of equation (3.29) by N7, substitution of equation (3.32),
and utilization of equation (3.33) the independent dynamical equations of motion of

the system become:

.

M = (b, %, %) + (3.34)
where,

M = N"MN

¢ = N7[¢° — MN(¢) + 1,)]

f = NT¢E



CHAPTER 3. DYNAMICAL EQUATIONS OF MOTION

[
o

Let N’ be defined as N + nm. In the above equation, the (N'xN')-dimensional
M is the generalized extended mass matrix of the system, which is symmetric and
positive definite. Vector f represents the actual external forces and moments applied,
and vector C contains all the nonlinear Coriolis, damping, and centrifugal terms.

It is more convenient, for simulation and control purposes, to partition equation
(3.34) into rotational and elastic coordinates-dependent matrices and vectors, denoted

by the subscripts § and b, respectively, as follows:

Mgg Mab 0 Cy T
; : = + (3.35)
Mbg Mbb b Cp 0
where,
0=1[0,...,0n)" (3.36)
and
b =[by,...,b,)7 (3.37)

where b, was previously defined in equation 2.4. The upper part of the generalized
external force vector is equal to 7 which corresponds to the nominal joint torques, i.e.,
the actual joint torques applied, and has the dimension of N. The (nm)-dimensional
lower part, however, is noted to be equal to zero, which implies that actuators are only
present at the joints and separate distributed generalized forces cannot be applied to
explicitly control the flezible modes. It is important to note that the above equation

and all subsequent ones only apply under the two following conditions:

i) The orbit of the spacecraft’s centre of mass is maintained as was mentioned in
the introduction of Chapter 2, i.e., the system frame is at the centre of mass of

the spacecraft.

ii) Only motion in the orbital plane is allowed.



Chapter 4

Dynamics during the Capture of a

Satellite

4.1 Introduction

One of the tasks space robots are designed for is the retrieval of satellites in orbit for
either periodical maintenance or repair of a malfunction. Dynamics and control issues
associated with the capture of a satellite have to be resolved, and an efficient method-
ology has to be devised for simulation purposes. There are three stages involved in

the capture of a satellite, namely:

1. Approach Dynamics: which is the pre-capture stage and involves trajectory

planning of the end-effector in order to chase and arrive at the target.

2. Contact Dynamics: the end-effector latches onto the payload and it rigidizes

the connection.

3. Post-Impact Dynamics: which involves the behaviour of the system following

. the capture.

39
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Researchers such as Umetani and Yoshida (1989b) have studied the approach
dynamics, others such as Yoshida et al. (1992) presented the formulation of the
collision dynamics using the Generalized Inertia Tensor and the virtual mass concept.
However, none of the researchers whose work has been reviewed investigated the effect
of the impact resulting from the capture of a payload on the post-capture behaviour
of the system. Thus, a methodology will be presented in this chapter that properly
accounts for the impact effects and obtains the pitch rate of the mother spacecraft
and the joint rates, immediately after impact. These will then be used as initial

conditions for the post-impact dynamical simulation.

4.2 Impact Dynamics

Let us suppose that a spacecraft-mounted robot manipulator is preparing to capture
a payload by means of its end effector. It is assumed that the payload’s mass, m,,
and inertia tensor about its centie of mass, I, are known beforchand. Also, at the
instant of capture, the payload is expected to have a linear velocity of its centre of
mass v, and angular velocity w, (Figure 4.1).

Before a dynamical simulation of the post-capture system is carried out, the joint
rates of the manipulator and the spacecraft’s pitch rate just after capture have to
be determined. In other words the effect of capturing a satellite on the space-
craft/manipulator system has to be evaluated. Hence, an expression that could be
used to calculate the post-impact rates has to be derived. This is carried out by
writing the equation of motion of the spacecraft/manipulator system and that of the
payload prior to contact between them. In the derivations to follow, all the bodies

involved will be modelled as mgid for simplicity. However, the post-impact joint rates
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obtained by the method of this section would be used for the dynamical simulation
of a system with flezible bodies; the initial rates of the elastic coordinates will be
given some reasonable values, which implies that the pre-impact rates of the elastic
coordinates are unspecified but in principle, can be calculated.

The equation of motion of the spacecraft/manipulator system can be obtained
by setting all the elastic-dependent terms in equation (3.35) to zero, and adding the
term J7f; that represents a vector of forces and moments associated with the impact

force. The resulting equation could be written as:
Magé = Cg(g,é) + 7+ JTfl (41)

where J represents the (6xN) Jacobian of the system and could be written in the

following form:

Jh
J= (4.2)
J;
where
Jl = [EIXi'l . ENXi'N]?'xN (4.3)
and
J-z = [e, e eN]SxN (4.4)

Here F, represents the distance from joint 7 to point B on the end effector of the robot
manipulator, and e, is a unit vector along the axis of rotation of joint 2.
Similarly the equation of motion of the impacting body, which is modelled as rigid,

during collision could be written in the following form:
M, W, = c,(vp) — Af; (4.5)

where w, and ¢, represent the extended velocity vector of the payload, and a vector

containing the non-linear Coriolis, damping, and centrifugal terms, respectively. Also,
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- Body 4
7 orbit | (satellite)

Figure 4.1: Capture of a payload.

M, represents the generalized mass matrix of the payload, and is defined as follows:

M, = (mp)1 0 (4.6)
0o I,

The term AF; on the right hand side of equation (4.5), represents a vector containing
the forces and moment acting at the payload’s centre of mass, associated with the

impact force f;. Finally A is a non-singular transformation matrix defined as follows:

1 0
A= (4.7)

~Ry, 1

where R, is the cross-product tensor of ry. which represents the position vector of

the payload’s centre of mass C as measured from the point of contact B, and is defined
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as follows: , .

(4.8)

&
I
N
o
|
8

The impacting force f; resulting from the collision could be easily eliminated from
the two equations of motion, i.e., this formulation will only consider the velocities
before and after impact without the need for sensing the actual impact force. f;
could be eliminated upon the pre-multiplication of equation (4.5) by JTA~! and
adding the result to equation (4.1), the equations of motion could then be re-written
as follows:

ITA M, W, + M8 = co+ JTA I, + T (4.9)
Note that A is non-singular and A ! exists.

Next, equation (4.9) is integrated over the period of the impact 77, with the

assumption that there are no joint torques 7 applied during the impact. The resulting

equation after integration is as follows:
-~ . . TI
ITAIM,(w,, —w,,) + Moo(8; — 6;) = /0 (C+ITA  c,)dt (4.10)

where the subscripts ¢ and f signify pre-impact and post-impact values, respectively.
The impact force f; during a collision between two bodies is usually very large

and acts for a very short impact time of 77 . Thus, one can say that:

1 = Oe)ye<< 1
0, w,,0,r,, = O(1), (4.11)
0,w, = 0(3)

€

Clearly, the left hand side of equation (4.10) is O(1). The integrand (C+JA"c,)
. on the right hand side is also O(1); however, the value of the integral is O(e) and
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therefore could be neglected. Thus, equation (4.10) could be re-written as:
ITAT'M,(w,, —w,,) + Mao(8;, - 8,) =0 (4.12)

Equation (4.12) could be applied to all kinds of collisions ranging from plastic ones,
where the payload is rigidly attached to the end effector of the robot manipulator
after impact, to the elastic ones, where the payload rebounds with no loss of energy.
However, of interest here is the case where the payload is successfully captured (plastic
case) and the consequent behaviour of the spacecraft/manipulator system. In such a
case the extended velocity vector of the payload after impact, w,,, could be written

in terms of J, Ry, and 6 s as follows:

,=Jo; (4.13)
where,

J= (4.14)

By substituting equations (4.13) and (4.14) into equation (4.12) and re-arranging,

the following is obtained:

9,=G'H (4.15)

where
= JTAT'M,J + My, (4.16)
= JTA'M,w,, + My¥, (4.17)

from which, for the planar case, the pitch rate of the mother spacecraft as well as
the joint rates of the manipulator just after impact could be solved for in terms of
the pre-impact extended velocity vector of the payload, and the joint rates of the
manipulator, w,, and 8,, respectively. These rates could then be used as the initial

conditions for the post-impact dynamical simulation of the system.



Chapter 5

Control Design

5.1 Introduction

There are generally two objectives of the control of a robot manipulator system. The
first involves trajectory planning of the arm where it is moved via an actuator torque,
calculated using a PID control law, to a desired configuration. The other objective is
simply to maintain stability following a disturbance by applying appropriate control
torques; e.g., capture of a spinning satellite. The captured satellite in this thesis is
considered to be a deterministic disturbance; i.e., the inertia and dynamic properties
are presumed to be known beforehand. However, in a realistic situation there could be
some parameter uncertainties and some noise in the system which might complicate
the control design and undermine its effectiveness.

In this thesis, the control scheme developed will only be concerned with the post-
capture behaviour of the system, i.e., appropriate joint torques will be calculated and
applied to achieve the desired final values. The computed torque method, which will

be used to calculate to control torques, is presented next.
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5.2 Computed Torque Method

This method will be used to calculate the appropriate control torques needed to
achieve the specified final values of the rotation-dependent coordinates of the sys-
tem. Due to the highly non-linear nature of the equations of motion in this thesis in
particular and in multi-body dynamics in general, they are first linearized via appro-
priate feedback. Therefore, this control method is sometimes referred to as feedback
linearization control. The torque calculations are carried out by first obtaining the
values of the spacecraft attitude, the the joint angles, the tip deflections, and their
rates which are measured by collocated sensors at the joints and possibly at the end-
effector. The required torques that achieve control could then be calculated based on
these sensors’ measurements. This control method assumes that all the state variables
are available. The actuators needed to apply the torques, which are generally motors,
are located at the joints, except for the spacecraft where the control is achieved by
means of jet thrusters or reaction wheels.

In the following subsections the feedback linearization control torques will be cal-
culated by first assuming that the manipulator is rigid. Next, the effects of flexibility

will be evaluated and they will be included in the control design.

5.2.1 Control of the Rigid System

For rigid link manipulators, the joint angles and their rates are obtained from the
measurements of collocated sensors at the joints. By setting all the flexibility related
matrices in equation (3.35) to zero, the equation of motion for the rmgid system can
be written as:

Mgoé =Co+ T (5.1)
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The actuator torques required to suppress the disturbance resulting from the cap-

ture of a payload can be calculated using the following:

T = —Mga[Dxé + D3(0 — 64)] — o (52)

where,

D; = diag(2¢wy, 26wy, ..., 2(NwWN)
D, = diag(w?,w?, ...,w%)
are diagonal metrices containing the control gains, and 8, contains the desired final
values of the joint angles. It must be noted that vector ¢4 in equation (5.2) represents
the nonlinear compensation term.
By substituting equation (5.2) into equation (5.1), a set of linearized, uncoupled,

and homogeneous equations of motion are obtained and could be written as

#+D,0+D,y(0-8,)=0 (5.3)

5.2.2 Control of the Flexible System

Control of flexible manipulator systems is far more complex than the rigid case. This
is a result of the coupling between the rotation and bending coordinates. A different
control strategy altogether has to be followed in order to attain the desired results.
Another complication in the control of flexible manipulators arises due to the more
involved measutement of the joint rotation angle. The angle between two consecutive
links represents the sum of the joint rotation due to the actuator of the current link
and the deflection due to flexibility of the previous one (see Figure 2.2).

There can be basically three possible appreaches used for flexible system control,
they are as follows :

1) The elastic effects are ignored; L.e., the equation of motion is assumed to be as

in equation (5.1). By this method the flexible system is treated as a rigid one. The
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computed torque by this model would give good results only if the elastic effects due
to the links’ flexibility are negligible, otherwise it may result in gross inaccuracies in
the positioning of the end-effector.

2) The elastic effects are included in the mathematical model, and their amplitudes
could be determined from the sensor readings by means of an estimator. This model
accounts for the flezible degrees of freedom in the calculation of the torques and treats
them as known disturbances but does not explicitly control them. Therefore, some
residual oscillations in the tip deflections of the links are expected before they are
damped to zero as a result of structural damping inherent in the material of the links.

3) Active control of both the rotational and bending coordinates, which is achieved
by applying both torques and generalized forces. Such control is only possible if
actuators capable of applying transverse forces to the links are present.

The approach presented in (3) is still in the experimental stages and has not
been used in an actual situation. Therefore, the only feasible model that could be
implemented at the present time is the one that treats the elastic deformations as
known disturbances, but does not explicitly control them, namely (2).

The bending coordinates can be solved for in terms of the rotational coordinates

and equation (3.35) could be re-arranged as:

MO =&(¢,P) + 7 (5.4)

where,

The feedback linearization control torque that produces an equation of controlled

motion similar to equation (5.3) is given by:

r=-M[D;§+D,(0-8,)] ¢ (5.5)
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The above torque calculations are based on the true parameters of the system.
Hence, it is assumed that b and b could be estimated, possibly by means of an
accelerometer located at a point close to the tip of the link. This will obtain b
which could be easily integrated to obtain the values b and b. The robustness of the
controller has not been evaluated because it is beyond the scope of this thesis.

The control torque vector 7 in equation (5.5) is of the same order as the rigid-
body degrees of freedom, consequently a control strategy similar to that used for the

rigid manipulator, can be used for the flezible manipulator as well.

5.3 Modified Control for Improved Positioning of

the End Effector

The control method described in the previous section controls the joint angles
and would produce good position control of the end effector provided that the tip
deflections of the links, due to structural flexibility, are small. For those systems
where the elastic deformations and their rates are not small, a modified control law,
that accounts for their effects, has to be designed and implemented if a better accuracy
in the positioning of the end-effector is sought. Otherwise, the deflections will cause
the end-effector to osaillate and the accuracy in its positioning will be substantially
affected, possibly causing it to miss its target.

By incorporating the rotations of the links resulting from the structural flexibil-
ity into the control law a better positioning of the end-effector, without having to
explicitly control the elastic coordinates and their rates, is expected. This could be
explained by 1ecalling that the vector 6, used in the control algorithm of the previous

section, contains the angles 0,’s. For a body 1, 6, is defined as the angular rotation
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of its X-axis, X, relative to the X-axis of the previous body, namely X,_,, measured
along the positive direction of Z,. Those axes, which were defined in section 2.5,
correspond to the r1gid body motion only. Thus, they do not account for the flexible
motion resulting from the elastic deformations. Therefore, vector 8 in equation (5.5)

could be replaced by @ = 0 + A8 where, Af is given in the following table:

Body(i) | Rigii | Flexible

Body(i-1)
Rigid 0 7
Flexible TPi-1 | P T Pt

Table 5.1: Adjustments needed for 0,

Here ¢;, which is the slope of the line joining the origin of link #’s body-fixed frame
to its tip (see Figure 2.2), is defined as:

e, = tan™' (H)

where p,(2) represents the in-plane tip deflection of link ¢ and [, represents the length
of link i. Hence, it could be seen from table 5.1 that the proper adjustment of 0, will
depend on whether the current and the previous bodies are rigid or flexible. A similar
adjustment has to be done to 8.

Finally, the modified vectors 6 and é, obtained by applying the proper adjust-
ments, according to table 5.1, to vectors 8 and 8, could be used to achieve position
control of the end effector. The modified control torque to be implemented could he

written as:

7= —NI[D,d + Dy(d - 8,)] - & (5.7)
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5.4 Attitude Control of the Mother Spacecraft

The objective of this scheme is to control only the attitude of the mother space-
craft following a disturbance, eg. capture of a satellite, without controlling the
manipulator joint angles and their rates. The attitude of the mother spacecraft must
be maintained, otherwise it will affect the orbit maintenance manoeuvres, since the
thrusters will fire along incorrect directions.

Before calculating the torque required for such control, one has to obtain an
equation of motion of the mother spacecraft that does not contain any coupling terms
with the joint accelerations. This is achieved by the pre-multiplication of equation
3.34 by ;M~! and considering only the first equation. The following uncoupled
equation can be obtained:

Ly = &(p,9,,) + 71 (5.8)
where I, represents the moment of inertia of the spacecraft about its centre of mass,
and é is a linear combination of the components of vector ¢, which contains the
non-linear terms and is dependent on 8 , b, and their derivatives.

A PD control torque, which linearizes the equation of motion, can be applied to

achieve spacecraft attitude control. It could be presented as: as:
o= 1 (20w b + W0, - ¢ (5.9)

where (; and w, are appropriate control gains.
By substituting equation (5.9) into equation (5.8) the feedback-linearized equation

of motion of the spacecraft can be written as:
(-).] + ‘ZC]w]é] + L«J?O] =0 (5.10)

which is a linear, uncoupled, homogeneous equation whose response will depend on

the values of the gains {; and w;.




Chapter 6

Simulation Results and Discussion

6.1 Introduction

In this chapter some simulation results are presented with the purpose of demonstrat-
ing the effects of capturing a satellite by a spacecraft/manipulator system. The effect
of flexibility on the system is also investigated and its effects on the performance of
the system are evaluated by comparing the results that model the links as rigid with
those that model the links as flezible.

In the dynamical simulation carried out, the shape functions used for modelling
the elasticity of the links were assumed in advance, hence they are referred to as the
assumed modes method (Meirovitch 1987). That method usually involves choosing a
set of admissible functions that adequately represent the huk shapes and satisfy at
least the geometric boundary conditions. The admussible functions could be chosen
from any of the following: polynomials, harmonic functions, splines, or eigenfunctions.
In this model eigenfunctions of a clamped-free beam are chosen as admissible functions
because of their orthogonal propertics. Cetinkunt and Book (1987) concluded after

thorough experimental and theoretical investigations that the choice of eigenfunctions
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of a clamped-free beam provides the best approximations possible of a flexible link.
The initial-value problem to be solved involves a set of highly non-linear, coupled,
stiff, ordinary differential equations It may be noted here that a system is consid-
ered stiff if the ratio between its largest and smallest eigenvalue is large (Gear 1971).
Therefore, the numerical integration method used should be able to handle stiff sys-
tems that have slowly and rapidly changing components at the same time. One of
the best available multi-step scheme, that is based on Gear’s method, is the IMSL

subroutine DIVPAG and was used in this thesis to integrate the differential equations

of motion.

6.2 Data Used in the Simulation

The simulation of a spacecraft-manipulator system as it captures a payload (Figure
2.1) was carried out for the planar case only. The relevant parameters of the various

components of the system are shown in Table 6.1.

Body [ m El I,
(m) | (kg) | (Nm?) | (kgm?)

1 |N/A|10000 | N/A | 40000

2 8.13 20 | 8.81x10% | 440.65

3 8.13 20 | 8.81x10% | 440.65

4 |N/A| 1000 | N/A 500

Table 6.1: Parameters of a 4-Body System
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The moment of inertia /.. for bodies 1 and 4 is about the body’s centre of mass,
and that for bodies 2 and 3, which are links, is about the joint of that link. As was
mentioned earlier, the payload was assumed to be initially spinning about an axis
normal to the plane of orbit, better known as the orbit normal.

The flexibility in the robot’s links is modelled by one mode. It was found, through
simulation results, that the contribution of the higher modes was negligible and using
two modes yielded results that are very close to those using one mode only. Heunce,
the total number of degrees of freedom of the system to be simulated is 6, of which 4
are rotation-dependent and 2 are flexibility-dependent. Finally, the tolerance input,
which reflects on the magnitude of the simulation errors, is of the order of 1078, and

the integration step size is equal to 1074,

6.3 Calculation of the Initial Conditions

When a payload is captured by a spacecraft-mounted robot with an impact, the
generalized velocities will be affected. Hence, the post-capture values are ought to be
calculated and are subsequently used as initial conditions for a dynamical simulation
of the system. It is assumed that the eflect of capturing a payload on the spacecraft
pitch and joint angles is negligible due to the small impact duration, hence their pre-
capture values could be directly used for the post-capture simulation. On the other
hand, the spacecraft’s pitch rate, and joint rates of the mampulator’s hnks will be
substantially affected and are solved for using equation (4.15). The values calculated
here are crucial because they will govern the subsequent behaviour of the system,
hence they should be fairly accurate in order for the simulation results to be realistic.

The calculations of the post-impact initial conditions, as seen in equation (4.15),
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will depend on the inertial (mass and inertia) and dynamical (linear and angular ve-
locity) of the payload, the initial configuration of the system, and joint rates of the
robot manipulator prior to berthing. In order to proceed with the calculations, the
pre-impact linear and angular velocities of the payload must be accurately known be-
forehand. These values are used in order to calculate the velocity of the manipulator’s
hand at the point of contact. One would like to achieve a smooth capture, i.e., at the
instant of capture there is no impact, or in other words there is no relative motion, at
the point of contact, between the body to be captured and the manipulator’s hand.
In a realistic situation, however, a velocity mismatch between the end effector and
the payload is bound to occur because one could only estimate approximately the
magnitude and direction of the payload’s velocity. Hence, the resulting capture will
not be smooth. The effects of a velocity mismatch on the system will be investigated
by comparing the corresponding results to those associated with a smooth capture.
After the extended velocity vector of the hand, wy, , which contains its linear and
angular velocities, is determined, the pitch rate of the mother spacecraft and the joint
rates of the manipulater’s links, represented by vector 8,, could be calculated. This
is carried out by solving the inverse kinematics problem of the manipulator according

to the following relation:

wp, = J6, (6.1)

where J, which is defined in equations (4.2-4.4), represents the Jacobian of the system
and subscript ¢ signifies the pre-capture parameters. Finally, the vector containing
the mother spacecraft’s pitch rate as well as the joint rates of the links, ()f , just after
capture 1s calculated by solving equation (4.15). Those rates will then be used as the

initial conditions for the post-capture simulation of the system.
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6.4 Results for the Uncontrolled Case

6.4.1 Smooth Capture

A dynamical simulation of the uncontrolled system after a smooth capture, was first
carried out. The payload is assumed to be cylindrical in shape with a radius and
length of 1 m each. Its initial angular velocity, w,, is % rpm about the negative
direction of the orbit normal, and linear velocity of its centre of mass relative to the
mother spacecraft, v,, is assumed to be zero at the instant of contact. The velocity
of the hand, vy, is taken as 0.052 m/sec in the direction shown in Figure 6.1, which
matches the payload’s velocity at the point of contact, vg, in both magnitude and
direction, i.e., smooth capture is achieved. The corresponding rates of the manipula-
tor are then calculated, as explained in section 6.3, and used as the initial conditions
for the post-capture simulation. Material damping was incorporated in the model in
order to make it more realistic; this also has the effect of damping out the oscillations
resulting from structural flexibility as explained in subsection 3.3.1.

Figures (6.3 & 6.4) show the 1esponse of the spacecraft’s pitch 0, and joint angles
62, 03, and 0, and their rates, respectively as a result of capturing a spinning satel-
lite. It is found that, without any control, the spacecraft’s pitch remains negligible
until about 45 seconds, after which it suddenly starts to increase sharply at a rate
of 0.05 deg /sec. At the same instant the end cffector’s joint angle, 04, reaches a
maximum rotation of 120 deg, which is beyond the capability of the joint and would
probably cause breakage, and 1ts rate reverses direction. It is interesting to note that
both behaviours coincides with the instant at which the joint angle 04 (corresponding
to the rotation of the second link with respect to the first one) becomes zero, ie.,

the two links of the manipulator becomne co-lincar. The configurations of the post-
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-7 orbit ' Body 4

- (satellite)

Figure 6.1: Velocities corresponding to smooth capture.

capture system, in which all bodies where modelled as rigid, are shown in Figure
6.8. One can see that, just after the manipulator’s links become co-linear, the pay-
load, whose trajectory is represented by the dashed line, starts to move towards the
mother spacecraft. This result is quite significant because it implies that the captured
payload could be retrieved to some extent without the application of any joint joint
torques which can save some energy and extend the life of the joints and actuators.

The tip deflections of the links resulting from the elasticity, and their rates (Figure
6.5) are quite reasonable and the oscillations damp out fairly quickly due to the
incorporation of a structural damping ratio 5 of 0.01 in the model. The incorporation
of damping is very essential because 1t account for the energy lost in the links as
they deform elastically. Otherwise, the tip deflections and their rates will have an
oscillatory behaviour as shown in Figure 6.6.

In order to validate the model used and to show that the results obtained are
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realistic, the total energy of the system was plotted versus time. As could be seen

from Figure 6.7, the total encrgy is virtually constant with no noticeable variations.

6.4.2 Hard Impact (Velocity Mismatch)

As mentioned in section 6.3 in order to achieve a smooth capture the linear and
angular velocities of the impacting body have to be accurately known beforchand.
However, in a realistic situation the velocities could only be estimated and therefore
a velocity mismatch between the payload and the manipulator’s end effector is bound
to occur. This in turn will result in a harder impact on the spacecraft /manipulator
system. In this simulation, the parameters of the payload are the same as in the
previous section. However, the velocity of the hand, v, was chosen as 0.1 m/sec in

the direction shown in Figure 6.2.

X

Body 4
(satellite)

Figure 6.2: Velocities corresponding to a hard impact.
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Figures (6.9-6.11) compare the effects of a soft and a hard impact on the post-
capture hehaviour of the system. It can be concluded from the obtained results that
the type of impact could be quite crucial and that a soft impact will have the least
adverse effects on the system. For the case of a velocity mismatch (hard impact) the
spacecraft pitch angle at the end of the simulation period is 1 deg higher than that
of the smooth capture case. Also, it is found, from the particular case studied, that
the elastic deformations and their rates corresponding to a hard impact are almost
double that of their counterparts for smooth capture. These results emphasize the
importance of having a good estimate of the payload’s velocity before impact in order

for the capture to be as smooth as possible.

6.5 Results for the Controlled case

6.5.1 Feedback Linearization Control

In the absence of control, the mother spacecraft experiences an attitude drift, the
links can undergo large rotations, and the payload rotates beyond the capacity of the
end effector’s joint. Thus, a control system is needed to prevent this. A control law
is used based on feedback linearization in order to obtain a set of uncoupled, linear,
and homogeneous equations of motion for the closed loop system, as was shown in
Chapter 5. The control torque 7 applied depends on whether the components of
the system are treated as rigid or flexible. The torque applied in the case of a rigid
system is presented in equation (5.2), and that for the flezible system could be found
i equation (5.5). A simulation was carried out using the aforementioned joint torques
4

and the results obtained are shown in Figures (6.12-6.15).

The nominal joint control torques and thrusters corresponding to the rigid sys-




CHAPTER 6. SIMULATION RESULTS AND DISCUSSION 60

tem (solid linc) (Figure 6.12) are active for only about 20 seconds with a maximum
magnitude of the order of 10 Nm. After that the joint torques approach zero, which
means that the desired joint angles and rates were attained. On the other hand,
the same figure shows that the applied torques for the flerible case are substantially
different and have an oscillatory behaviour. This could be explained by recalling that
those torques were designed to compensate for the nonlinear terms which, after the
rotation coordinates are controlled, are dependent on the flexible coordinates only.
Therefore, the oscillations in the control torques persist as long as the oscillations in
the links are present. It may be recalled that the flexible modes were not controlled.

The response of the spacecraft’s pitch, the joint angles, and their rates is very
good and can be found in Figures 6.13 and 6.14 The spacecrafts pitch is maintained
almost at zero throughout the simulation period, while the end-effector rotates a mere
7 deg before the rotation is reduced to zero. This compares with, in the absence of
control, a total rotation of approximately 3 deg for the spacecraft and 120 deg for the
payload. The links’ joint angles and rates reach steady state faitly quickly, and the
configuration of the system after control 1s identical to the pre-capture one, thanks
to the position and velocity tracking available in the control algorithm. Iniguie 6.15
shows the oscillatory behaviour of the link tip deflections and their rates which were
excited due to the application of the joint torques. The explanation behind this is
that the flexible modes are only accounted for in the control algorithm but are not
explicitly controlled. The links’ oscillations take a while to die down because the only
kind of damping incorporated in the model is the one inherent in the material of the
links, which is quite small. In practice, the effective damping would be larger. Active
control of the elastic generalized coordinates could only be aclieved by applying

transverse control forces along the links by means of distributed actuators or the
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mtegration of piezoelectric materials within the links (e.g. van Poppel 1992).

The position of the robot’s end effector relative to the mother spacecraft is plotted
in Figure 6 16, where the circles and stars represent the position at each time step for
the riged and flexible controls, respectively. One can see that, if the links are rigid, the
end-effector position is maintained after about 20 seconds. However, for the flezible
case, the position is shown to be oscillating in a region represented by the framed
box, for time greater than 20 seconds. These oscillations are undesirable because
they render the manipulator inaccurate and might cause the end effector to miss its
target. The figure also shows the importance of modelling a link as flezible in order
to obtain realistic results. A flexible link could only be modelled as rigid if the elastic
deformations are very small and neglecting them will have a negligible effect on the

positioning of the end effector.

6.5.2 Modified Control for Better Positioning of the End

Effector

In cases where the effect of the flexibility in the links is substantial, a modified joint
control torque has to be applied in order to achieve better accuracy in the positioning
of the end-effector. Details of the scheme are presented in section 5.3. The modified
control torques, shown in Figure 6.17, implemented are found to be slightly higher
than those needed to achieve joint control. Hence, the eflect of the modified control
torque on the link tip deflections and their rates is minimal as seen in Figure 6.20.
The only substantial difference between the two control schemes can be seen in the
tesponse of the joint angles and their rates in Figures (6.18 & 6.19), respectively.
They are found to demonstrate an oscillatory behaviour similar in nature to that of

the link tip deflections, and their rates. This kind of response is expected because
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the modified angles and their rates are designed to account for, in addition to the
rgid rotations, the tip rotation of the links due to the structural flexibility. This
ensures a better accuracy in the positioning of the end effector. The effectiveness of
the modified control method is validated by Figure 6.21 where the position of the
end effector relative to the mother spacecraft is plotted. After about 20 seconds the
position, represented by the framed box, is shown to converge to a point very close

to that prior to the capture (t=0).

6.5.3 Spacecraft Attitude Control

In some situations only the attitude of the mother spacecraft is needed to be controlled
at all times in order to maintain its tiajectory. Therefore, with that objective in
mind, a simulation was carried out by implementing a control torque that can be
calculated using equation (5.9). That control torque on the mother spacecraft required
to maintain its pitch as close as possible to zero is presented in Figure 6.22. It is found
that the spacecraft’s torque is only active for about 15 seconds with a maximum value
of 6 Nm, while no torques are applied to the manipulator’s joints. The implementation
of the control torque is very eflective as seen in Figure 6.23 where the spacecraft drifts
by a mere 0.07 deg compared to 3 deg for the uncontrolled case. It 1s also found from
Figure 6.24 that the spacecraft’s pitch rate responds gqute well to the control torque
where it only reachies a maximum of 0.01 deg /sec compared to a steady value of
0.06 deg /sec in the uncontrolled case. Due to the small magnitude of the control
torque and its short duration, its eflect on the joint angles, link tip deflections, and
their rates is negligible. This can be seen by comparing Figures 6.23, 6.24, and 6.25

to Figures 6.3, 6.4, and 6.5, respectively.
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Chapter 7

Conclusions

7.1 Conclusion

This thesis was concerned with the behaviour of a spacecraft/manipulator system
just after it captures a payload, in this case a satellite in orbit. The formulation was
cartied out by witing the indindual equations of motion for each of the four bodies
constituting the system, i e the mother spacecraft, the two-link robotic manipulator
and the captured satelhite These cquations were then assembled and the equations of
motion of the system as whole, which contained the constraint forces and moments,
were obtamed  These were then eliminated by using the natural orthogonal com-
plement of the veloaty-constraint matrix  This approach leads to computationally
efficient algotthms for the dynamic simulation of both rgid and plerible bodies. The
computations cartied ont 1 this thests wete in the local frame, therefore there was
no need to transform vectors and matrices to the inertial frame which snbstantially
simphtied the derivations. A computer program was written using FORTRAN, and
several dynamical simulations were performed using the IMSL subroutine DIVPAG,

and the results were plotted usimg MATLAB.
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A methodology was devised m osder to caleulate the values of the generalized
coordinates and then rates of the system immediately following the mapact with a
satellite by the 1obot manmpulator  Those were then used as the mitial conditons
for the post-capture sumulation It was tound that the post unpact behaviour of the
system is highly affected by the pre-unpact mertial and dy namical properties of the
payload, i.e., whether th e resulting unpact is soft or hard, alvo the results have shown
that the prescribed end-effector’s velocity at the mstant of impact 15 very <raaal
because it could substantially 1educe the effect of unpact on the system Hence, a
very good estimation of the payload’s mitial velocity has to be obtained beforchand

The simulation tesults of the system followmg the capture of a satelhite, without
the application of any control torques, have shown that the effect of captunng a satel
lite on a spacecraft/mampulator system was quite substantial ‘The biggest concern
was the attitude drift of the mother spacecralt which s undesiable  Also, the end
effector joint rotation was found to be beyond the capabihty of the jomt which i no
doubt will cause breahage Hence, a contiol algorthm had to be designed and 1im
plemented to mamtain the attitude of the mother spacecraft, prevent the ks from
large rotations, and suppress any residual motion of the payload

A PD feedback lineatization control scheme was implemented and the results
have shown that 1t was quite effective as far as the 1igud system was concerned  The
control torques apphed were found to be small in magmtnde and had o reasonably
short duration; also the joint angles and rates achieved the presaibed values fairly
quickly thanks to the position and velocity feedback in the control law - On the other
hand, the control of the flerible system was complicated by the heavy coupling be
tween the rotation and bending coordinates  Therefore, the control torgues, which

are highly dependent on the elastic coordinates and thewr rates, showed an os illatory
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behaviour. Those oscillations were found to be damping out quite slowly because the
only damping available 15 that inherent in the rnaterial of the links, which is very
small The mcorporation of jomt friction in the model would probably eliminate the
oscillations much quicker. The pusitioning of the end-effector could be improved by
developing a control algorithm which will provide accurate end-eflector trajectory
tracking. Experiments, that use such a coutroller, were conducted at the University
of Toronto (Carusone aud D’Eleuterio 1991). The results have shown that such a
control is superior to a PID controller and is less susceptible to the oscillations of the
links. On the other hand, if an effective complete control is sought, the elastic coor-
dinates and their rates have to be controlled explicitly by means of collocated sensors
and actuators distributed along the flexible links and capable of the application of
transverse forces to the links.

From the results obtained in this thesis, it could be concluded that the effect of the
flexibility in the robot’s links has to be accounted for in most dynamical simulations,
otherwise gross inaccuracies in the positioning of the end effector will occur and will
tender the particular task the 1o0bot was set to do inefficient. Only in cases were the
elastic deformations are found to be very small, the flexibility could be ignored and

hience the links could be modelled as rigud.

7.2 Recommendations for Future Work

The material presented in this thesis covered only a small part of capture dynamics.
There 1s a wide range of further mvestigations that could be done as an extension to

this work; therefore some suggestions for future work are outlined next.

a) Incorporate joint friction and joint flexibility in the model.
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b)

h)

Extend the simulation to a 3-dimensional case as opposed to a planar case

considered here.

Consider the approach dynamics as the spacecraft /manipulator system goes to

capture a payload.

Investigate the effects of capturing a payload which is flexible or contans flexible

appendages.

Design and implement a control torque whose purpose is to retrieve the captured

payload towards the mother spacecraft.

Conduct some robustness studies, and investigate the effect of noise on the

system.
Explicit control of the elastic coordinates and their rates.

Implement a control algorithm for end-effector trajectory tracking.



Bibliography

[1]

[1]

Baruh H. and S. S. K. Tadikunda, “Issues in the Dynamics and Control of Flexi-
ble Robot Manipulators”, AIAA Symposium on Dynamacs and Control of Large

Structures, pp. 659-671, June 29-July 1, 1987.

Baye ., “Computed Torque for the Position Control of Open-Chain Flexible
Robots”, Proccedings IEEE International Conference on Robotics and Automa-

teon, pp. 316-321, April 1988.

Buchan K. S., J. Carusone, and G. M. T. D’Eleuterio, “A Laboratory Facility
for the Study of the Dynamics and Control of Structurally Flexible Manipula-
tors”, Seventh VPIESU/AIAA Symposium on Dynamics and Control of Large

Structures, Blacksburg, VA, May 8-10, 1939.

Cannon R., and E. Schmitz, “Initial Experiments on End-Point Control of a
Flexible One-Link Robot”, International Journal of Robotics Research, Vol. 3,

No. 3, pp 62-75, Fall 1984.

Carton D. and J. P. Chrétien, “Dynamic Modelling and Control of a Flexible
Arm Holding a Non-Rigid Payload”, Proceedings of the 2nd European In-Orbit

Operations Technology Symposium, Toulouse, France, September 12-14, 1989.

90



BIBLIOGRAPHY ol

[6]

[7]

[9]

[10]

[11]

[12]

[13]

Carusone J. and G. M. T. D’Eleuterio, “Experiments in the Control of Struc-
turally Flexible Manipulators with the Radius Facility™, Proceedings of the Sec-
ond Japan-USA Conference on Adaptive Structures, Nagoya, Japan, November

12-14, 1991.

Cetinkunt S., and W. J Book,* Symbolic Modelng of Flexible Manipulavors™,
Proceedings of the 1987 IEEE Conference on Robotics and Automation, Vol. 3,

March 31-April 3, 1987, Raleigh, NC, pp. 2074-2080.

Chan J. K. and V. J. Modi, “A Closed-Form Dynemical Analysis of an Orbiting

Flexible Manipulator”, Acta Astronautica, Vol. 25, No. 2, pp 67-75, 1991

Chapnik B. V., G. R Heppler, and J.D. Aplevich, “ Modeling Impact on a One-
Link Flexible Robotic Aim”, IEEE Transactions on Robotics and Aulomation,

Vol. 7, No. 4, pp. 479-488, August 1991.

Chiou B. C. and M. Shahimpoor, “Effect of Joint Stiffness on the Dynamic
Stability of a One-Link Force-Controlled Manipulator”, Robotica, Vol. T, pp.

339-342, 1989.

Craig J. J., Introduction to Robotics : Mecchames & Conliol. Addison-Wesly,

Reading, Mass., 1986.

Cyril X., “Dynamics of Flexible-Link Mampulators”, Ph.D) Thesus, 1988, De-

partment of Mechanical Engineering, McGill Umiversity, Montiéal, Canada.

Cyril X., J. Angeles, and A, K Misra, “FLEXLINK A Software Package for the
Dynamic Simulation of Flexible-Link Robotic Mampulators”, Procecdings 1959
ASME International Computers in Enomncering Conference, Anaheim, CA, pp.

453-459, July 30-August 3. 1989.




BIBLIOGRAPHY 92

[14]

[16]

[17]

[18]

[19]

[20]

21]

Cyril X., J. Angeles, and A. K. Misra, “Dynamics of Flexible Multibody Me-

chanical Systems”, Transactions of the CSME, Vol. 15, No. 3, pp. 235-256, 1991.

Dubowsky S., E. Vance, and M. Tortes, “The Control of Space Manipulators Sub-
ject to Spacecraft Attitude Control Saturation Limits™, Proceedings of the NASA
Conference on Space Teleroboties, JPL | Pasadena, CA, January 31-February 2,

1989.

Gear C. W., Numerical Initral Value Problems i Ordinary Differential Equa-

tins Prentice-Hall, Englewood Cliffs, NJ, 1971.

Gevarter W B., “Basic Relations for Control of Flexible Vehicles”, ATAA J.,

Vol. 8, No. 4, pp 666-672, April 1970.
Goldsimmith W., Impact. London : Edward Arnold Ltd., 1960.

Hughes P C., “Dynamics of a Chain of Flexible Bodies”, The Journal of the

Astronautical Scicnees, Vol. 27, No. 4, pp. 359-380.
Hughes P. C., Spaceeraft Attitude Dynamacs. New York : Wiley, 1986.

Huity W. C. and M. Rubinstein. Dynamucs of Structures, Prentice-Hall, NJ,

1964.

Kane T. R., R. R. Ryan, and A. K. Banerjee, “Dynamics of a Cantilever Beam
Attached to a Moving Base”, Journal of Guidance and Control, Vol. 10, No. 2,

pp. 139-151, 1987.

Kaplan M. H ., Modern Spacecraft Dynamics & Control, John Wiley & Sons,

1976




BIBLIOGRAPIIY 93

[24] Kimball A. L., “Vibration Dampimg Including the Case of Solid Friction™, Trans-

actions of the ASME, APM, Vol. 51, No. 21, 1929,

[25] Likins P. W., “Geometiic Stiffuess Charactenstics of a Rotating Flastic Ap-
pendage”, International Journal of Solids and Structures, Vol. 10, No. 2, pp.

161-167, 1974.

[26] Longman R. W., “Attitude Tumbling due to the Flexibility in Satellite-Mounted
Robots”, The Journal of the Astronautical Sciences, Vol. 38, No. 4, pp. 487-509,

QOctober - December 1990a.

[27] Longman R. W., “The Kinetics and Workspace of a Satellite-Mounted Robot™,
The Journal of the Astronautical Sciences, Vol. 38, No. 4, pp. 423-1440, October

- December 1990b.

[28] Longman R., R. Lindberg, and M. Zedd, “Satellite-Mounted Robot Manipulators
- New Kinematics and Reaction Moment Compensation”, International Journal

of Robotics Rescarch, Vol. 6, No. 3, pp. 87-103, 1937.

[29] R. Lindberg, R. Longman, and M. Zedd, “Kinematic and Dyname Properties of
an elbow Manipulator Mounted on a Satellite”, The Journal of the Astronautical

Sciences, Vol 38, No. 4, pp. 397-421, 1990.

[30] Meirovitch L., Analytical Methods i Vibrations. The Macmillan Company, New

York, 1967.

[31) Murphy S 1., J. Wen, and GG N. Sanidis, “ Sunulation of Cooperating Rohot
Manipulators on a mobile Platform”, IEEE Transactions on IRobolies and Au-

tomation, Vol. 7, No.4, August 1991.




BIBLIOGRAPIY 94

[32]

[33]

(34]

[35]

[36]

[37]

(3]

[39]

Nenchev D., Y Umetani, and K. Yoshida, “ Analysis of a redundant Free-Flying

Spacecraft/Manipulator System”, JEEE Transactions on Robotics and Automa-

tron, Vol 8, No. 1, pp 1-6., February 1992.

Papadopoulos E and S. Dubowsky, “ On the Nature of Control Algorithms
for Free-Floating Space Manipulators”, IEEE Transactions on Robotics and Au-

tomation, Vol 7, No.6, pp. 750-758, December 1991.

Paul, R. P. |, Robot Manipulators: Computer Interfacing and control, The MIT

Press, Cambridge, Mass., 1981.

Sakaws [, ' Matsuno, S. Fukushima, “Modelling and Feedback Control of a

Flexible Atm”, Journal of Robotic Systems, Vol. 2, pp. 453-472, 1985
Timoshenko S, Vibrations Problems i Enginecring. Princeton, NJ, 1955.

Torres M and S. Dubowsky, “Path Planning for Space Manipulators to Minimize
Spacecraft Attitude Disturbance”, Proceedings 1991 IEEE International Confer-
enee on Roboties and Automation, Sactamento, CA, Vol. 3, pp. 2522-2528, April

1991

Umetani Y. and K. Yoshida, “Experimental Study on Two Dimensional Free-
Flying Robot Satellite Model”, Proceedings of The NASA Conference on Space

Teleroboties, JPL, January 31-February 2, 1989a.

Umetani Y. and K. Yoshida, “Theoretical and Experimental Study on in-orbit
Capture Operation with Satellite Mounted Manipulators”, Proceedings of the
[Ith TFAC Symposium on Automatic Control in Acrospace, Tsukuba, Japan, pp.

137-112, 1989b.



BIBLIOGRAPHY a5

[40]

41]

[43]

[44]

[46]

Vafa Z. and S. Dubowsky, "On the Dynamics of Manipulators in Space Using the
Virtual Manipulator Approach™, Proceedings 1987 IEE'E Conference on Robotics

and Automation, Rayleigh, NC, pp. 579-585, March 30-April 3, 1987

Vafa Z. and S Dubowsky, * On the Dynamics of Space Mampulators Using the
Virtual Manipulator, with Applications to Path Planning™, The Journal of the

Astronautical Sciences, Vol 38, No. 4, pp.441-472, October-December 1990

van Poppel J. and A. K Misra, “Active Control of Space Structures Using,
Bonded Piezoelectric Film Actuators”, ATAA/AAS Astrodynamics Conferenee,

Hilton Head Island, SC, pp. 328-341, August 10-12, 1992

van Woerkom P. Th. L. M, and A. de Boer, “Development of a Lincar Recursive
“Order-N" Algorithm for the Simulation of Flexible Space Manipulator Dynam

ics”, {8rd Congress of the International Astronautical Federation, Washington,

DC, Angust 28-Sc tember 3, 1992,

Yang G. and M. Dou th, “Dynamic Model of a One-Link Robot Mampulator
with Both Structural and Joint Flexibility”, HEEE International Conference on

Robotics and Automation, Philadelphia, PA] pp. 476-181, 1988

Yoshida K., R Kuwazume, N Sashida, and Y Umectani, “ Modeling of Collr-
sion Dynamics for Space Iree-Floatmg Links with Extended Generahized Inertia
Tensor”, Proceedings 1992 IEEE Conference on Robotics and Awtomation, Nice,

France, May 1992.

Yoshida K and Y Umnetani, “ Control of Space Free-Flying Robot” | Proceedings

of the 29th IEEFE Conference on Decision and Countrol, pp 97-102, 1990,



Appendix A

Detailed Derivations of Various

Equations

A.1 Derivation of Equation (3.5)

By substituting equation (3.4) into (3.3) the following is obtained:

1 . 1
T] = > ‘/1:” {/’II {’1({7711 + :2‘/ (wlxrl)T(wlxr,)dml (Al)

mi

r4

By using the definition of the integrand, the equation is re-written as:

I . | R
r ”F” 7
PI = ;7711Vl Vi -+ .——)wl

Z mi

(r{l —r; @ ry)dm w, (A.2)

The value of the mtegral represents the moment of inertia of the spacecraft, I, about

its centre of mass, Therefore, equation (A.2) could be re-written as:

1 1

’1'1 = S'IH]V’II‘{’l + ;;wlT [Il ] Wi (A3)

which s identical to equation (3.5).

96
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A.2 Derivation of Equation (3.9)

Recall equation (3 8)
vi(r) = v 4+ 2vT (wxr) + (wxr)T(wxr)
+20TE 4 2(wxr) T + (A1)
which can be re-written as:

vi(z) = V2 + 20T (wxr) + wT (r’1 - r & r)w

+207¢ 4 2(wxr)TE + £ (A.5)
Substituting equation (2.10) into equation (A.5) and noting that
r=gp (A.6)
the following equation is obtained:

vie)=vi 4 W wxp) + 2007 (wxx) + Wl (11 + £2x*1 + 20x put)

—(@Op+ rXOX+rx O p+rp@x)|w + 207
+2r(wxx) o+ 2wxp) T o + o (A7)

Equation (A.7) could then be re-written in terms of the cross producet tensors X

and U associated with x aud g, 1espectively, to obtam:

vi(r) = v - 29T Uw — 2097 Xw + W [(121 + o4x*1 4 2ex” )
—(pep+rxox+rxop4oepex)wo 20 a
+2r(wxx)T 1+ Z(WX}I.)Tﬂ + it (AR)

It was assumed earlier that the axial shortening in the links 1s neghgible, ve uy =0,

T

hence the term xTu in equation (A 8) vanishes. Also, since x 1s o umt vedtor, x* 1s
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set to 1. Equation (A.8) could be further simplified to obtain:

vi=vt - V72X + 20)w + 2V p + i
+oT (2?1 -x2x)-r7(x @ p+ p®X)

+(p*1 - p o p)w 4wl (22X +2U) 4 (A.9)

which is identical to equation (3.9).

A.3 Derivation of Equation (3.11)

The terins associated with the inertia due to the angular acceleration in equation

(3.7) are ignored and the equation becomes:

1 fh
T = - / ple)vT(z)v(r)dz + leT(I)V(l) + leIH‘*’ (A.10)
2 Jo 2 2

Substituting equations (3.9) and (3.10) into equation (A.10) the following is ob-

tained:

2 = p /Ul[v'l — 9T (20X 4 2U)w + 297 p + i
40Tl —x@x) —2(xQ p + p ®x)
Hp'1 = p® p)lw + Wl (20X + 2U)j] da
+ MV = vT X + 20w + 2V w(l) + £3(1)
+wl(F1 —x@x) = I(x®p+ p(l) ®x)

+(pA (D1 = p() @ p(1))w + W (2AX + 20 (1)) fa(1)] (A.11)
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Substituting equation {2 16) into equation {A.11), performing the integration, and

re-arranging, the equation becomes:
2T = VT [m + MV = VT [p2T, + 1*X) + 2M (U(!) + IXw
+29T [T, + MB()]b + wT[2p{T, + XT5) + 2M(U()B(!) + IXB())]b
+wT[p(§-Tm 4+ 2xTTopl + Iy — Tg — T7 + Ty)
+M (P T+ 20 B(l)p1 — [(x & p(!) + p(l) @ x) = p(l) @ p(l) + Ty)lw
+bT[pTs + MBT()B())]b (A.12)

which is identical to equation (3.11), and Ty, Ty, T3, Ty, Ts, Ts, T7, Tu, Ty, and

T,o are defined in chapter 3.

A.4 Derivation of Equation (3.19)

The kinetic energy of the payload is as follows:
I = / v2 dm (A.13)
substituting equation (3.18) into equation (A.13) yiclds:
2K =mv?+ 2(vpxw)7'/ rdm
m

+w7‘/ (F*1 = r oo r) din w (A 14)

by definition the integral of the second term vanishes and the integral of the last term
represents the moment of meitia of the payload I, about its centre of mass Equation
(A.14) then becomes:

2K =mvi+ wT 1w (A.19)
An expression for v. is readily obtained from equation (3.16) as follows:

V., = V + WXl + Iy, (A”))
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the last term of equation (A.16) is zero because it is assumed that the payload is

rd. An expiession for v could now be obtained as:
2 _ o2 _ ool
vi= vio v Rw+ wTRZ;Rwa (A.17)

where Ry, represents the cross product tensor of ry, and can be written as:

0 —z y
Rbc = Z 0 - (Als)
-y = 0

Substituting equation (A.17) into equation (A.15) and re-arranging yields:

27 = vT[(m)1]v — vT2mRyJw + w1, Jw (A.19)
where
I, = mRz;Fh,c + 1. (A.20)

represents the moment of mertia of the payload about the origin of its body-fixed

frame. It could be seen that equation (A 19) is identical to equation (3.19).

A.5 Derivation of Equation (3.22)

As discussed in chapter 3 the effects of shear could be ignored, hence equation (3.21)

could be re-wiitten as:

Dy

Lot 06, 1
P oyt ~ [ E .
[ 2/011(01)(11:+2/[)EI(6I)(1£ (A.21)

Since shear deformation was neglected, hence one can obtain the following from

equations (2.14) and (2 15):

6(2) = —-5;-— = z (b;bﬁ.’_] (A.22)



APPENDIX A DETAILED DERIVATIONS OF VARIOUS EQU

and
Au(y LI
= = b
~() or ;gﬁ] !
Therefore,
6)6(2) 2 ()5(3) 2 . T n.T "

Substituting equation A.24 into A 21 yields.
L
l/ - ;lb[b T“b

which is identical to equation (3.22).

"YTIONS
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(A.24)

(A 25)






