
Parallel Non-Monte Carlo Transient
Noise Simulation

Alex Goulet

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montréal, Québec

2021-12-13

A thesis submitted to McGill University in partial of the requirements of the
degree of Master of Engineering in Electrical Engineering

© Alex Goulet, 2021

DEDICATION

To my father. May he always watch over me and be proud.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my research supervisor, Prof.

Roni Khazaka. I am immensely grateful for his guidance, encouragement, and

confidence in my abilities from day one. His positive influence on my research

as well as myself constitutes a major factor in the sense of fulfillment that I

have experienced throughout my Master’s program.

I would also like to express my gratitude to my friends Karanvir Sidhu

and Marco Kassis from the electronic design automation group for helping me

tremendously with my research and making me feel at home in the lab.

My deepest thanks go to Dr. Mina Farhan from Cadence Design System,

Inc. for his mentorship and vital contribution to this thesis.

Last but not least, I would like to thank my girlfriend Nicole Andersen

and her parents, Dr. Ross Andersen and Dr. Susan Bartlett, for their

unconditional support over the past few years.

iii

ABSTRACT

Noise analysis is a necessary but often lengthy part of the design process for

microelectronics. Frequency domain noise analysis methods are ill-suited for

simulating noise in nonlinear circuits with arbitrary large-signal waveforms,

while time domain noise analysis methods typically suffer from long simulation

times. A novel parallel non-Monte Carlo transient noise analysis method for

general nonlinear analysis is presented. Non-Monte Carlo based transient noise

methods avoid expensive and lengthy Monte Carlo iterations by describing

the nonlinear system with a linear time-varying system that can be used to

calculate the variance of the waveform at every time point. However, the

main bottleneck in these methods is that the linear time-varying system is

computationally expensive to solve when the circuit is large. To address

this issue, the proposed method decouples the linear time-varying system into

homogeneous and inhomogeneous systems that can be solved independently.

The inhomogeneous system is solved in parallel by partitioning the time interval

into independent subintervals, while the complexity of the homogeneous system

can be decreased significantly due to the linearity of the equations.

iv

RÉSUMÉ

L’analyse de bruit est une étape nécessaire mais longue du processus de

conception de la microélectronique. Les méthodes d’analyse de bruit dans le

domain fréquentiel sont mal adaptées à la simulation de bruit de circuits non

linéaires avec formes d’ondes à grand signal, tandis que les méthodes d’analyse

de bruit dans le domain temporel souffrent typiquement de longs temps de

simulation. Une nouvelle méthode de simulation transitoire non Monte-Carlo

de bruit en parallèle pour analysis générale non linéaire est présentée. Les

méthodes de simulation transitoire de bruit qui ne sont pas basées sur la

méthode de Monte-Carlo évitent les itérations longues et dispendieuses de la

méthode de Monte-Carlo en décrivant le système non linéaire à l’aide d’un

système linéaire variable dans le temps qui peut être utilisé pour calculer la

variance de la forme d’onde à chaque point dans le temps. Cependant, le

principal goulot avec ces méthodes est que le système linéaire variable dans le

temps est coûteux à résoudre en ressources informatiques lorsque le circuit est

large. Afin de résoudre ce problème, la méthode proposée découple le système

linéaire variable dans le temps en systèmes homogènes et non homogènes

qui peuvent être résolus indépendamment. Le système non homogène est

résolu en parallèle en partitionnant l’intervalle de temps en sous-intervalles

indépendants, tandis que la complexité du système homogène peut être réduite

de façon significative en raison de la linéarité des équations.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

RÉSUMÉ . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

1 Introduction . 1

1.1 Background and Motivation 1
1.2 Contribution . 3
1.3 Organization of Thesis . 3

2 Background on Circuit Simulation 4

2.1 Modified Nodal Analysis Formulation 4
2.2 DC Analysis . 6

2.2.1 DC Analysis for Linear Circuits 7
2.2.2 DC Analysis for Nonlinear Circuits 7

2.3 Transient Time Domain Analysis 9
2.3.1 Backward Euler Method for Linear Circuits 11
2.3.2 Backward Euler Method for Nonlinear Circuits . . . 11

2.4 Linear Frequency Domain Analysis 12
2.4.1 AC Analysis for Linear Circuits 12
2.4.2 AC Analysis for Nonlinear Circuits 13

3 Noise Analysis . 15

3.1 Introduction . 15
3.2 Noise Models . 15

3.2.1 Thermal Noise . 16
3.2.2 Shot Noise . 17
3.2.3 Flicker Noise . 17

3.3 Noise Bandwidth . 19

vi

3.4 Frequency Domain Noise Analysis 21
3.4.1 Noise Analysis for LTI Circuits 22
3.4.2 Noise Analysis for LPTV Circuits 23

3.5 Time Domain Noise Analysis 24
3.5.1 System Formulation 24
3.5.2 Generating White Noise in the Time Domain 28
3.5.3 Monte Carlo Method 30
3.5.4 Non-Monte Carlo Method 33

3.6 Conclusion . 40

4 Parallel Non-Monte Carlo Transient Noise Analysis 42

4.1 Introduction . 42
4.2 Parallel Implementation of the Non-Monte Carlo Transient

Noise Analysis Method 43
4.3 Numerical Computation of the Solution to the Homogeneous

and Inhomogeneous Subproblems 46
4.3.1 Solution to the Homogeneous Subproblems 46
4.3.2 Solution to the Inhomogeneous Subproblems 47

4.4 Numerical Example . 48
4.5 Conclusion . 51

5 Conclusion . 53

5.1 Summary . 53
5.2 Future Work . 53

References . 55

A Derivation of the Solution to the Differential Lyapunov Equation 58

B Proof of the Decomposition of the Differential Lyapunov Equation
into Homogeneous and Inhomogeneous Subproblems 60

vii

LIST OF TABLES
Table page

2–1 Formulae for the numerical approximation of time derivatives
for common linear multistep methods. 10

4–1 Computation time, speedup, and output RMS error evaluated
across the proposed method and other transient noise analysis
methods for the LNA. 52

4–2 Speedup achieved by the proposed method over the base serial
method as a function of the number of processors. 52

viii

LIST OF FIGURES
Figure page

2–1 Sample nonlinear circuit. 5

3–1 Thermal noise model for a noisy resistor. 16

3–2 Actual output noise PSD (solid line), theoretical noise PSD
(dashed line), and noise PSD used for simulation purposes
(dotted line). 21

3–3 Double-sided PSD of white noise generated in the time domain
(solid line) and the approximation of a constant PSD (dashed
line) using the noise bandwidth Fmax. 29

4–1 Overlapping time decomposition of (3.50) into five inhomogeneous
subproblems with zero initial condition (solid curves) and
five homogeneous subproblems (dotted curves) that are
propagated from an initial condition. 45

4–2 Low-Noise Amplifier Schematic [18]. 50

4–3 Comparison of the noise variance at the output of the LNA as
a function of time due to thermal and shot noise. 51

ix

LIST OF ABBREVIATIONS

AC Alternating Current

BJT Bipolar Junction Transistor

CPU Central Processing Unit

DC Direct Current

GMRES Generalized Minimal Residual Method

KCL Kirchoff’s Current Law

LNA Low-Noise Amplifier

LPTV Linear Periodically Time-Varying

LTI Linear Time-Invariant

LTV Linear Time-Varying

LU Lower-Upper Triangular Decomposition

MNA Modified Nodal Analysis

PSD Power Spectral Density

RF Radio Frequency

RMS Root Mean Square

x

CHAPTER 1
Introduction

1.1 Background and Motivation

Noise analysis poses a significant problem in the design of microwave

and radio frequency (RF) circuits. Electrical noise in circuits is inherent

to the circuit components and manifests itself as random fluctuations in the

amplitude and phase of any signal [19]. Although small, these fluctuations can

nonetheless impact the behavior of integrated circuits and must be taken into

account in the early design stages. For example, the noise produced internally

by a low-noise amplifier or mixer circuit in a RF front end which receives very

weak signals as input must be accounted for in order to preserve the quality

of the signal [17].

Noise analysis methods can be categorized into frequency and time domain

based methods. In frequency domain methods, the circuit is linearized around

its equilibrium point (either DC or periodic state) [22]. The total output

noise is obtained by first computing the transfer functions between each noise

source and the output. The total noise is then calculated by multiplying the

source noise power with its transfer function. However, such an approach is

limited to small-signal analysis around an equilibrium point. The noise in a

mixer circuit, for instance, would not be simulated adequately using frequency

domain methods due to the presence of a large local oscillator signal which

causes the operating points of the active devices to change significantly over

time [8].

For large-signal noise analysis of nonlinear circuits, time domain methods

are desirable. Time domain methods are traditionally predicated on the Monte

1

Carlo method. In Monte Carlo based noise analysis methods, many transient

analyses are performed to represent different paths taken by the noise sources.

The noise sources are generated using a random number generator at every

time point and the statistics of the noise are then computed across the Monte

Carlo simulations. However, the main difficulty in this approach is its large

central processing unit (CPU) cost.

Another group of time domain methods that is based on the theory of

stochastic differential equations (SDEs) avoids many drawbacks of Monte

Carlo based methods [7, 23]. These methods linearize the system of SDEs

which governs the noise in the circuit at every time point. The noise correlation

matrix can then be directly modeled using a linear time-varying (LTV) system.

While this approach is typically faster than the Monte Carlo method, it can

still be computationally expensive when the circuit is large due to the need to

solve a Lyapunov equation at every time point.

In this thesis, a novel parallel non-Monte Carlo transient noise analysis

method is presented [11]. The proposed method is inspired by the paraexp

algorithm and reformulates the LTV system at the core of a non-Monte Carlo

transient noise analysis method into homogeneous and inhomogeneous systems

that can be solved independently [9]. By partitioning the time interval of

interest into several independent subintervals, the inhomogeneous system can

be solved in parallel for each subinterval. Furthermore, the homogeneous

system can be solved efficiently by taking advantage of the linearity of the

system. By solving the most computationally expensive step in parallel,

the proposed method effectively reduces the overall CPU cost of the noise

simulation.

2

1.2 Contribution

The original contribution presented in this thesis corresponds to a novel

parallel non-Monte Carlo transient noise analysis method that aims to reduce

transient noise simulation time by implementing a non-Monte Carlo transient

noise analysis method in parallel. The details of this method are found in

Chapter 4.

1.3 Organization of Thesis

This thesis is structured as follows. Chapter 2 first lays the foundation

for noise analysis by covering the formulation of the system which models a

given circuit without noise as well as some circuit simulation techniques to

solve it, such as direct current (DC) analysis, linear multistep methods, and

small-signal alternating current (AC) analysis. Chapter 3 then builds upon

Chapter 2 by adding noise to the formulation of the system. Noise models as

well as other concepts related to noise are discussed, followed by a description

of noise analysis methods which augment the circuit simulation techniques

from Chapter 2 to allow them to solve stochastic noisy systems rather than

deterministic noiseless ones. Afterward, Chapter 4 presents a novel parallel

noise analysis method that is based on a parallel implementation of one of the

noise analysis methods covered in Chapter 3. A numerical example with results

is also provided in Chapter 4 to compare the performance of the proposed

method with that of other noise analysis methods. Finally, Chapter 5 provides

a summary of the thesis along with some potential future work to be done on

the topic of the presented research.

3

CHAPTER 2
Background on Circuit Simulation

2.1 Modified Nodal Analysis Formulation

The noise simulation problem will be formulated in this thesis using the

Modified Nodal Analysis (MNA) formulation for the compact representation

of circuit equations [13]. The MNA equations for any general circuit can be

expressed as

F (
.
x(t),x(t), t) = 0 x(0) = x0, (2.1)

where x(t) ∈ Rn is the vector of circuit variables,
.
x(t) is the time derivative

of x(t), and F maps x(t),
.
x(t), and t to a vector of real numbers of dimension

n. In the MNA formulation, the circuit variables comprise the node voltages

and branch currents obtained through the formulation of the node equations

using Kirchoff’s Current Law (KCL).

From (2.1), the MNA equations for an arbitrary circuit which contains

both linear and nonlinear elements can be further developed into the following

formulation:

Gx(t) +C
.
x(t) + f(x(t)) = b(t) x(0) = x0, (2.2)

where G ∈ Rn×n is a constant matrix which contains the contributions from

the linear lumped memoryless elements such as resistors, C ∈ Rn×n is a

constant matrix which contains the contributions from the linear lumped

memory elements such as capacitors, f(x(t)) ∈ Rn is a vector of algebraic

functions which accounts for the contributions of the nonlinear circuit elements,

and b(t) ∈ Rn is a vector which contains the contributions from the independent

4

current and voltage sources. All entries inG, C, and b(t) can be automatically

generated from the circuit netlist using preexisting component stencils, which

capture the contributions from the circuit components and express them in a

single system of equations [30].

As an example of how (2.2) would be implemented for a given circuit,

consider the simple nonlinear circuit shown in Fig. 2–1. Applying KCL at

the three nodes in the circuit while also adding an additional equation for the

relationship between the inductor voltage and current yields the following set

of equations:

Iin(t) R1=1/g1

v1(t)

R2=1/g2

L

iL(t)

v2(t)

ID=Is(e
v1(t)−v3(t)

vT − 1)

R3=1/g3

v3(t)

C

Figure 2–1: Sample nonlinear circuit.

g1 v1(t) + g2(v1(t)− v2(t)) + Is

(
e

v1(t)−v3(t)
vT − 1

)
= Iin(t), (2.3a)

g2(v2(t)− v1(t)) + iL(t) = 0, (2.3b)

g3 v3(t) + C
.
v3(t)− Is

(
e

v1(t)−v3(t)
vT − 1

)
= 0, (2.3c)

v2(t)− L
.
iL = 0. (2.3d)

5

Rewriting the set of equations in (2.3) in the format of the matrix equation

in (2.2) results in the following system of equations:

g1 + g2 −g2 0 0

−g2 g2 0 1

0 0 g3 0

0 1 0 0


︸ ︷︷ ︸

G



v1(t)

v2(t)

v3(t)

iL(t)


︸ ︷︷ ︸

x(t)

+



0 0 0 0

0 0 0 0

0 0 C 0

0 0 0 −L


︸ ︷︷ ︸

C



.
v1(t)

.
v2(t)

.
v3(t)
.
iL(t)


︸ ︷︷ ︸.

x(t)

+



Is(e
v1(t)−v3(t)

vT − 1)

0

−Is(e
v1(t)−v3(t)

vT − 1)

0


︸ ︷︷ ︸

f(x(t))

=



Iin(t)

0

0

0


︸ ︷︷ ︸

b(t)

,

(2.4)

which is now in a format that is suitable for efficient circuit simulation.

The remaining sections in this chapter review the main types of circuit

analyses that are relevant to noise simulation. These simulation types are all

detailed using the MNA formulation.

2.2 DC Analysis

DC analysis is a type of circuit analysis that mainly finds its applications

in obtaining the solution to the system at the first time point for transient

analysis and finding the operating point of the circuit for small-signal AC

analysis. It involves finding the DC solution to the circuit due to the sole

presence of constant sources.

With constant sources only, the system in (2.2) becomes:

Gx(t) +C
.
x(t) + f(x(t)) = bDC x(0) = x0, (2.5)

where bDC contains the contributions from the constant sources in the circuit

and is now time-invariant. Furthermore, since bDC is the input to the system

6

and is time-invariant, then the solution to the system x(t) is constant at

equilibrium and its derivative
.
x(t) is equal to 0. As such, (2.5) at equilibrium

can be simplified to

GxDC + f(xDC) = bDC , (2.6)

where xDC is the solution to the system at equilibrium. There are two ways

to proceed from (2.6) depending on whether the circuit is linear or nonlinear.

2.2.1 DC Analysis for Linear Circuits

For the more specific case where there are no nonlinear components in

the circuit, (2.6) simplifies to

GxDC = bDC . (2.7)

This simple system is then typically solved by lower-upper (LU) decomposition

of theG matrix followed by forward and backward substitution, or by iterative

solvers such as the generalized minimal residual method (GMRES) [29].

2.2.2 DC Analysis for Nonlinear Circuits

For the general case where there are some nonlinear components in the

circuit, iterative numerical methods must be used to address the contributions

from the nonlinear components. Among the most commonly used methods is

the Newton-Raphson method, which attempts to find the roots of a real-valued

function Ψ(xDC). More precisely, the objective is to find xDC ∈ R which best

satisfies

R = {r ∈ Rn
∣∣Ψ(r) = 0} (2.8)

for the desired level of accuracy. To do so, the real-valued function for the

system in (2.6) is defined as

Ψ(xDC) = GxDC + f(xDC)− bDC , (2.9)

7

where Ψ(xDC) ∈ Rn is equal to 0 when xDC is the exact DC solution.

Furthermore, its derivative is given by

.
Ψ
(
x

(j)
DC

)
=
∂Ψ(xDC)

∂xDC

∣∣∣∣
xDC=x

(j)
DC

= G+
∂f(xDC)

∂xDC

∣∣∣∣
xDC=x

(j)
DC

= G+ J
(
x

(j)
DC

)
,

(2.10)

where x
(j)
DC is the current approximation of the exact value of xDC at the jth

Newton-Raphson iteration and J
(
x

(j)
DC

)
is the Jacobian matrix of f(xDC)

evaluated at x
(j)
DC . Starting from an initial guess x

(0)
DC , x

(j)
DC is updated iteratively

as follows:

x
(j+1)
DC = x

(j)
DC + ∆x

(j)
DC , (2.11)

where

∆x
(j)
DC = −

(.
Ψ
(
x

(j)
DC

))−1

Ψ
(
x

(j)
DC

)
. (2.12)

The desired level of accuracy for the convergence of the Newton-Raphson

method can be implemented in two possible manners. The first is to set a

user-defined error tolerance and determine if the algorithm converges on the

jth iteration based on whether or not the Euclidian norm of ∆x
(j)
DC is below

the error tolerance. The second is to set another user-defined error tolerance

and verify if the algorithm converges on the jth iteration based on whether or

not the Euclidian norm of Ψ
(
x

(j)
DC

)
is below the error tolerance. Moreover,

it is possible to combine both of the above for a more accurate solution at the

potential cost of increasing the number of iterations required for the algorithm

to converge. Finally, a careful selection of the initial guess x
(0)
DC , x

(j)
DC such that

it is closer to the exact solution results in faster convergence and can often

determine whether the algorithm will converge at all [21].

8

Continuation Methods for Convergence Problems

As nonlinear DC analysis is an important tool for various types of noise

analysis methods, it is important to discuss its shortcomings. Should iterative

techniques such as Newton-Raphson fail to converge using an arbitrarily selected

initial guess x
(0)
DC , continuation methods can be used [6, 27]. When applied to

the formulation in (2.6), the nonlinear system becomes:

GxDC + f(xDC) = α bDC , (2.13)

where α is an extra parameter. The input source vector bDC is then incrementally

increased starting from zero using an increasing sequence of values for α ∈

[0, 1]. In doing so, (2.13) can initially be solved in a trivial manner and

provide progressively better initial guesses to solve the subsequent problem

which is closer to the original problem. Naturally, a larger sequence of values

for α increases the likelihood that the iterative technique will converge at the

expense of a larger CPU cost.

2.3 Transient Time Domain Analysis

Transient analysis is a simulation type that observes the changes that

occur in a circuit over time. It is often used to simulate the transient part

of the circuit response before steady state is reached. Starting from a given

initial condition, performing a transient simulation involves computing the

solution to the system at every time point using the solution at previous time

points. The resulting transient response can be interpreted as a trajectory in

time, the transient part of which is shaped by the initial condition. Numerical

integration methods are used to solve systems of ordinary differential equations

(ODEs) such as (2.2) in the time domain. More specifically, linear multistep

methods are used to approximate the time derivative
.
x(t) at every time point

[4].

9

Let be tk be a discrete time point, with 0 ≤ . . . < tk < tk+1 < . . . and

k = 0, 1, 2, By discretizing it in time and writing it at time t = tk+1, (2.2)

becomes:

Gxk+1 +C
.
xk+1 + f(xk+1) = bk+1, (2.14)

where xk+1 is defined as x(tk+1) for simplicity and x0 is equal to the DC

solution to the circuit (see Section 2.2). The backward Euler method detailed

in Table 2–1 is used to solve (2.14) as it will be the integration method of

choice in this thesis. Using the backward Euler method to approximate the

derivative in (2.14) results in the following difference equation:

Gxk+1 +C

(
xk+1 − xk

h

)
+ f(xk+1) = bk+1, (2.15)

where h is the time step that separates two successive time points. Rearranging

(2.15) such that all the known terms are located on the right-hand side of the

equation yields the following difference equation:(
G+

C

h

)
xk+1 + f(xk+1) =

C

h
xk + bk+1. (2.16)

The process of solving for xk+1 in (2.16) varies depending on whether the

circuit is linear or nonlinear.

Table 2–1: Formulae for the numerical approximation of time derivatives for
common linear multistep methods.

Linear Multistep Method Numerical Approximation

Forward Euler
.
x(tk) = x(tk+1)−x(tk)

h

Backward Euler
.
x(tk+1) = x(tk+1)−x(tk)

h

Trapezoidal Rule
.
x(tk+1)+

.
x(tk)

2 = x(tk+1)−x(tk)
h

10

2.3.1 Backward Euler Method for Linear Circuits

For the more specific case where there are no nonlinear components in

the circuit, (2.16) simplifies to(
G+

C

h

)
xk+1 =

C

h
xk + bk+1. (2.17)

Since
(
G+ C

h

)
is a constant matrix and the right-hand side of (2.17) is

known, the main CPU cost of the transient simulation of a linear circuit is a

single LU decomposition of
(
G+ C

h

)
for the entire simulation combined with

one forward substitution and backward substitution at every time point.

2.3.2 Backward Euler Method for Nonlinear Circuits

For the general case where there are some nonlinear components in the

circuit, (2.16) can be solved using a nonlinear iterative solver such as Newton-Raphson.

To do so, the real-valued function for the system in (2.16) is defined as

Ψ(xk+1) = Gxk+1 +C

(
xk+1 − xk

h

)
+ f(xk+1)− bk+1. (2.18)

Furthermore, its derivative is given by

.
Ψ
(
x

(j)
k+1

)
=
∂Ψ(xk+1)

∂xk+1

∣∣∣∣
xk+1=x

(j)
k+1

=

(
G+

C

h

)
+
∂f(xk+1)

∂xk+1

∣∣∣∣
xk+1=x

(j)
k+1

=

(
G+

C

h

)
+ J

(
x

(j)
k+1

)
,

(2.19)

where x
(j)
k+1 is the current approximation of the exact value of xk+1 at the jth

Newton-Raphson iteration and J
(
x

(j)
k+1

)
is the Jacobian matrix of f(xk+1)

evaluated at x
(j)
k+1. Starting from x0, x

(j)
k+1 is updated iteratively as follows:

x
(j+1)
k+1 = x

(j)
k+1 −

(.
Ψ
(
x

(j)
k+1

))−1

Ψ
(
x

(j)
k+1

)
. (2.20)

Contrary to the DC analysis of a nonlinear circuit for which the Newton-Raphson

method only needs to be applied once, the transient analysis of a nonlinear

11

circuit requires the application of the Newton-Raphson method at every time

point. The main CPU cost can therefore be attributed to the figurative

inversion of
.
Ψ
(
x

(j)
k+1

)
for every Newton-Raphson iteration at each time point.

Moreover, as with the DC analysis of a nonlinear circuit, convergence problems

may arise. In such a case, the continuation method described in subsection

2.2.2 can be applied in the same way to ensure convergence.

2.4 Linear Frequency Domain Analysis

Linear frequency domain analysis is a simulation type that provides the

steady state response of a circuit with respect to periodic inputs over a certain

frequency range and is hence commonly known as AC analysis. It can be

applied to linear circuits or nonlinear circuits that are linearized around an

operating point (i.e. small-signal analysis) using phasor analysis [25]. Small-signal

equivalent circuits for many integrated components have been established [12].

2.4.1 AC Analysis for Linear Circuits

For the AC analysis of a linear circuit, the MNA formulation in (2.2)

features no contributions from f(x(t)) and the initial condition is omitted as

it does not affect the steady state response of the circuit. Consequently, the

formulation becomes:

Gx(t) +C
.
x(t) = b(t). (2.21)

Next, consider an arbitrary sinusoidal input signal operating at a frequency

ω = 2πf whose contribution is stored in b(t). The phasor form of b(t) can

then be expressed as:

b(t)⇒ Bejωt, (2.22)

where B ∈ Cn is a vector which contains information on the magnitude and

phase of b(t). Because the circuit is linear, the steady state response of the

circuit is also sinusoidal with the same frequency ω. Consequently, the solution

12

vector x(t) can be expressed in phasor form as:

x(t) = Xejωt. (2.23)

Substituting (2.22) and (2.23) into (2.21) results in the following equation:

GXejωt +CX
∂ejωt

∂t
= Bejωt, (2.24)

which can be further simplified to:

GX + jωCX = B. (2.25)

Solving for X in (2.25) leads to the following equation:

X = (G+ jωC)−1B. (2.26)

Typically, a sweep over a given frequency range is performed and the

value of ω changes at every frequency point. Hence, X contains not only

the frequency domain magnitude of the circuit response but also its phase.

Furthermore, the main CPU cost of performing a linear frequency domain

simulation lies in the figurative matrix inversion at every frequency point.

2.4.2 AC Analysis for Nonlinear Circuits

For the AC analysis of a nonlinear circuit operating under small-signal

conditions, the solution vector x(t) can be divided into two parts as follows:

x(t) = xDC + xs(t), (2.27)

where xDC is the solution to the system in (2.6) due to constant inputs (i.e.

the DC solution) and xs(t) denotes the small-signal solution to the circuit due

to small periodic input signals. Noting that
.
xDC = 0, the MNA formulation

in (2.2) can then be expanded like so:

G(xDC + xs(t)) +C
.
xs(t) + f(xDC + xs(t)) = bDC + bs(t), (2.28)

13

where bDC and bs(t) respectively contain the contributions from the constant

input sources and small periodic input signals. The first-order Taylor

approximation of f(x(t)) around xDC is given by

f(x(t)) ∼= f(xDC) +
∂f(x)

∂x

∣∣∣∣
x(t)=xDC

(x(t)− xDC). (2.29)

To linearize the system in (2.28), (2.29) is used to approximate f(xDC+xs(t))

as follows:

f(xDC + xs(t)) ∼= f(xDC) +
∂f(x)

∂x

∣∣∣∣
x(t)=xDC

(xDC + xs(t)− xDC)

= f(xDC) + J(xDC)xs(t),

(2.30)

where J(xDC) is the Jacobian matrix of x(t) evaluated at xDC . It is important

to note that this approximation is only valid for circuits operating under

small-signal conditions.

Substituting (2.30) in (2.28) and subtracting (2.6) from (2.28) yields the

following equation:

(G+ J(xDC))xs(t) +C
.
xs(t) ∼= bs(t). (2.31)

The formulation in (2.31) strongly resembles the one in (2.21), with the main

difference being that the coefficient matrix of x(t) in the former is G+J(xDC)

rather than simply G, where J(xDC) is a constant. This implies that once the

circuit has been linearized around xDC and hence J(xDC) has been obtained,

the process of performing the remainder of the AC analysis reduces to the

process of performing the AC analysis of a linear circuit.

14

CHAPTER 3
Noise Analysis

3.1 Introduction

In this chapter, a detailed description of the methodology for the noise

analysis of an electronic system is provided. The word noise is used in this

thesis to refer to the electrical noise that is generated by the circuit components

themselves. The term noise analysis then denotes the prediction of the small

current and voltage fluctuations incurred by the presence of noise sources in a

circuit. As there are innumerable unique circuits in existence that exhibit

distinct behaviors, it follows that there are many different noise analysis

methods as some are better suited for a specific type of circuit than others.

Noise analysis methods are classified in this chapter into frequency domain

methods and time domain methods.

The methodology for noise analysis typically comprises the following four

components:

• Mathematical models for the noise sources;

• Mathematical formulation of the noisy system;

• A noise analysis method to simulate the effects of noise on the circuit;

• Techniques to calculate the noise characteristics using the data from the

noise simulation.

3.2 Noise Models

To model the fluctuations in the amplitude and phase of the signals in

a circuit due to a noisy component, the noisy component can be replaced by

either a noise voltage source in series with the noiseless model of the noisy

15

component or a noise current source in parallel with the noiseless model of the

noisy component as shown in Fig. 3–1.

Figure 3–1: Thermal noise model for a noisy resistor.

Due to the random nature of noise, the exact value of these noise sources

is unknown. However, what is known is the power spectral density (PSD) of

the noise sources, which varies according to the characteristics of the noisy

component as well as the type(s) of noise produced by the noisy component.

There are three main types of noise: thermal noise, shot noise, and flicker

noise.

3.2.1 Thermal Noise

Thermal noise occurs in any resistive material and is caused by the random

motion of electrons due to thermal agitation. At room temperature, the

bandwidth of thermal noise is approximately 6000 GHz, and time samples

of thermal noise are thus uncorrelated when separated by more than 0.17 ps

[10]. For frequencies below the higher end of this bandwidth, the PSD of

thermal noise is constant with frequency. As such, thermal noise is modeled

as white noise. The double-sided PSD of thermal noise, or current variance

16

(mean square) per Hertz of bandwidth, is given by

Sth(t) = 2kTG(t), (3.1)

where k is the Boltzmann constant, T is the temperature in K, and G(t) ∈ R

is the time-varying conductance in Ω−1.

3.2.2 Shot Noise

Shot noise stems from the discrete nature of charge carriers and is more

prevalent in devices that have a p-n junction, such as diodes and bipolar

transistors. The lifetime of a shot event is typically fractions of a nanosecond

for semiconductor devices, so the bandwidth of shot noise is usually in the

high gigahertz range [10]. As with thermal noise, the PSD of shot noise is

constant with frequency below the high end of the gigahertz region and shot

noise is thus also modeled as white noise. The double-sided PSD of shot noise,

or current variance (mean square) per Hertz of bandwidth, is given by

Ssh(t) = qID(t), (3.2)

where q is the electron charge in C and ID(t) is the time-varying current

through the junction in A.

3.2.3 Flicker Noise

Flicker noise is present in all active elements as well as some passive

elements and is caused by a variety of phenomena. Unlike thermal and shot

noise, the PSD of flicker noise decreases with frequency. Consequently, flicker

noise is modeled as pink noise rather than white noise and it is a low-frequency

phenomenon due to how white noise from other sources dominates it at higher

frequencies. The double-sided PSD of flicker noise is given by

Sfl(f) = K
Iα

fβ
, (3.3)

17

where K, α, and β are constants particular to each device, and I is the current

through the device in A.

Unlike thermal and shot noise, flicker noise does not have independent

values at every time point and is correlated with both recent values and

values in the distant past [20]. To include them in a unified formulation

for time domain noise analysis later on in this chapter, flicker noise sources

need to be synthesized using white noise sources. One way to do so is to use

the summation of Lorentzian spectra to model the PSD of each individual

flicker noise source [14]. In a time domain noise simulation, the summation

of Lorentzian spectra that models the PSD of a given flicker noise source can

be obtained by replacing the flicker noise source with a series combination of

noisy resistors in parallel with a capacitor. The thermal noise that is generated

by these resistor-capacitor blocks is thus filtered in a way that produces the

desired summation of Lorentzian spectra that models the PSD of the flicker

noise source at the output of this flicker noise synthesis circuit. A summation

of N Lorentzian spectra is given by

S(f) =
2σ2

π

N∑
h=1

ph
p2
h + f 2

, (3.4)

where ph designates the pole frequencies and σ2 is the variance of the considered

quantity [26]. In the context of a flicker noise synthesis circuit being used to

generate such a PSD, the pole frequencies correspond to the poles introduced

by the resistor-capacitor blocks and the variance becomes that of the so-called

kTC noise that is produced by resistor-capacitor circuits.

Naturally, the size of the overall circuit for the purpose of time domain

noise simulation and hence the complexity of the noise simulation itself increases

as a consequence of modeling flicker noise sources using flicker noise synthesis

circuits. The number of extra nodes introduced by modeling flicker noise

18

sources in the time domain in this manner is directly related to their β

constants in (3.3) as well as the frequency range over which their PSDs are

modeled in the frequency domain [26].

3.3 Noise Bandwidth

The noise bandwidth used for simulation purposes, which is denoted by

Fmax, is a concept that is relevant to both frequency domain and time domain

noise analysis. As seen previously, the different noise types have their own

PSDs which eventually fall off as the frequency increases. In the case of

thermal and shot noise, the PSD is constant and only starts the decrease

at tremendously high frequencies. Thermal and shot noise can therefore be

considered as having their own bandwidths. Oftentimes, the bandwidth of a

circuit is much smaller than the bandwidth of the noise sources it contains.

At first glance, it would seem sufficient to choose a slightly bigger Fmax

than the circuit bandwidth to fully capture the output noise PSD. As will

be explained in the next two sections, Fmax has a direct effect on the overall

noise simulation time for frequency domain noise analysis methods as well as

some time domain noise analysis methods, so there is often an incentive to

limit Fmax to decrease computation time. However, because the output noise

PSD is calculated from the individual contributions from all the noise sources

in the circuit that act as their own voltage or current sources, the circuit

bandwidth for noise analysis is better defined as various individual bandwidths

from the noise sources to the output rather than as a single bandwidth between

the input signal and the output. As such, noise sources located at different

locations in a circuit will also have different bandwidths with respect to the

output depending on what filtering effects exist between the noise sources

and the output. It then becomes important to properly model the parasitic

capacitances which exist within the circuit as they have a significant impact

19

on the bandwidth of some noise sources. For example, the thermal noise in

the node voltage v2(t) in Fig. 2–1 caused by the resistor R2 will have a very

high value in the noise simulation as it is effectively unfiltered from the point

of view of the noise simulation. This is because there is no capacitive path to

ground from that node, only an inductive path. A capacitive path to ground

would progressively start behaving like a short circuit for the noise current to

go through as the frequency is increased to high values, whereas the inductor

progressively starts acting as an open circuit that blocks access to ground

instead. In practice, parasitic capacitances in a circuit have a filtering effect

on the noise, so modeling them adequately to avoid unfiltered noise at some

nodes is necessary for accurate noise simulations.

Furthermore, it is often the case that a few noise sources in the circuit

have a very large bandwidth compared to the other noise sources. For instance,

a noise source that is near the output and for which the only filtering effect is

caused by a capacitive path to ground through a parasitic capacitor will have a

very large bandwidth with respect to the output as well as a significant impact

on the total output noise. Therefore, to accurately simulate the total output

noise, it is often necessary to pick a much larger Fmax than the traditionally

defined circuit bandwidth to fully capture high-frequency noise from all the

noise sources. This gives rise to a trade-off between noise simulation accuracy

and overall noise simulation time through careful selection of Fmax for most

noise simulation methods. For accurate noise simulations, however, Fmax

should be slightly higher than the largest individual bandwidth(s) in the

circuit to avoid neglecting oftentimes significant contributions from some noise

sources, but not so high as to exceed the noise bandwidths discussed in

Section 3.2. A visual representation of the selection of Fmax for accurate

noise simulations is given in Fig. 3–2.

20

Figure 3–2: Actual output noise PSD (solid line), theoretical noise PSD
(dashed line), and noise PSD used for simulation purposes (dotted line).

3.4 Frequency Domain Noise Analysis

Noise analysis in the frequency domain is typically conducted in a small-signal

fashion. Small-signal equivalent circuits for many integrated components have

been built around noise simulation [12]. The main assumption associated with

small-signal noise analysis is that the noise in the circuit is much smaller than

the signal and does not significantly affect the operating point or periodic state

of interest. Consequently, frequency domain noise analysis becomes a linear

problem that stems from the linearization of the circuit around its operating

point or periodic state.

When performing a small-signal noise simulation, the individual contributions

from every noise source in the circuit to the output are computed and then

compounded. All the noise sources in the circuit are assumed to be independent

Gaussian processes with a known PSD and random phase. The noise sources

thus provide their own contributions to the total output noise, where each

contribution is given by

σ2 =

∫ ∞
−∞

So(f)df, (3.5)

where σ2 is the variance of the output noise due to a given noise source in V2

and So(f) is the double-sided PSD of the output noise incurred by that noise

21

source in V2/Hz. Once an appropriate value for Fmax has been selected, (3.5)

simplifies to

σ2 =

∫ Fmax

−Fmax

So(f)df. (3.6)

Then, as the noise sources are assumed to be uncorrelated (independent Gaussian

processes are uncorrelated by definition), the total output noise is given by

σ2
total =

∑
i

σ2
i , (3.7)

where σ2
total is the total output noise variance in V2.

The bulk of the computations for frequency domain noise simulation lies

in computing the PSD of the output noise incurred by every single noise source

in the circuit as it involves separately calculating the transfer function between

the noise sources and the output at every frequency point. As such, this process

can become computationally expensive when Fmax is large and the number of

noise sources in the circuit is high. One way to make frequency domain noise

analysis more efficient is to widen the interval between subsequent frequency

points in the frequency regions which see little change in the frequency response.

Typically, this translates to simulating progressively fewer frequency points as

the frequency increases.

Moreover, there are two similar ways of computing the individual contributions

from the noise sources to the output PSD of a circuit depending on whether the

circuit of interest is a linear time-invariant (LTI) circuit or linear periodically

time-varying (LPTV) circuit. More precisely, the nature of the circuit determines

the relationship between the PSD of the noise sources and that of the output

noise.

3.4.1 Noise Analysis for LTI Circuits

Noise analysis for LTI circuits is straightforward. The nonlinear circuit

is linearized around a fixed operating point, which provides a LTI system

22

for noise analysis. The PSD of the output noise incurred by the individual

contribution of a noise source is then given by

So(f) =
∣∣∣H(f)

∣∣∣2 Si(f), (3.8)

where Si(f) is the PSD of the noise source in A2/Hz, So(f) is the PSD of the

output noise incurred by that noise source in V2/Hz, and H(f) is the transfer

function between the noise source and the output in V A−1. The underlying

assumption behind (3.8) is that both the noise sources as well as the output

noise are WSS stochastic processes. However, this assumption is only valid for

LTI circuits.

3.4.2 Noise Analysis for LPTV Circuits

For circuits with changing bias conditions or circuits for which small-signal

conditions may not be assumed, a generalization of the noise analysis method

for LTI circuits is required. One way to do so is to linearize the circuit around

a periodic steady-state rather than a fixed operating point, which provides a

LPTV system rather than a LTI system for noise analysis [16]. The average

PSD of the output noise incurred by the individual contribution of a noise

source is then given by

So(f) =
∞∑

n=−∞

∣∣∣Hn(f)
∣∣∣2 Si(f + n

1

T

)
, (3.9)

where Si(f) is the PSD of the noise source in A2/Hz, So(f) is the average PSD

of the output noise incurred by that noise source in V2/Hz, Hn(f) represents

the Fourier coefficients of the transfer function between the noise source and

the output in V A−1, and T is the period. The formulation in (3.9) relies

on the assumptions that the circuit features periodic large-signal excitations

and periodic steady-state large-signal waveforms and hence the noise sources

as well as the output are cyclostationary stochastic processes. In fact, the

23

noise sources can be modeled as WSS stochastic processes by exploiting the

assumption that they are cyclostationary noise sources [15]. However, this

noise analysis method is only applicable to LPTV circuits in which the noise

can be assumed to be cyclostationary.

3.5 Time Domain Noise Analysis

Noise analysis in the time domain is typically conducted through transient

analysis. Transient noise analysis is used to simulate the evolution of the noise

in a circuit over time as opposed to frequency domain noise analysis in which

the noise is simulated at a fixed point in time. This gives rise to completely

different kinds of noise analysis methods, which are categorized in this chapter

as Monte Carlo and non-Monte Carlo methods. As they all rely on transient

analysis to simulation noise, these methods share a common formulation of

noisy circuit equations.

3.5.1 System Formulation

Based on the formulation in (2.1), a general circuit with noisy components

can be modeled as the following system of stochastic differential equations

(SDEs):

F (
.
x(t),x(t), t) +B(x(t), t)v = 0 x(0) = x0 + xnoise,0, (3.10)

whereB (x(t), t) ∈ Rn×q is a matrix containing the noise currents which model

the q total number of noise sources, v is a vector of q standard white Gaussian

stochastic processes, and xnoise,0 is a vector of n random variables with zero

mean. It should be noted that v is implicitly a function of t in that it is updated

with the simulation time step ∆t. Every column in B(x(t), t) corresponds to

a single noise current source that can have either one or two nonzero entries

depending on whether one of the two nodes between which the noise source is

located is grounded or not.

24

When implemented using the MNA formulation in (2.2), (3.10) becomes:

Gx(t)+C
.
x(t)+f(x(t))+B(x(t), t)v = b(t) x(0) = x0+xnoise,0. (3.11)

Let xsn(t) be the solution to the noisy system in (3.11). The system then

becomes:

Gxsn(t) +C
.
xsn(t) + f(xsn(t)) +B(xsn(t), t)v = b(t)

xsn(0) = x0 + xnoise,0.

(3.12)

Accordingly, the noise in the solution is defined as

xnoise = xsn − xs, (3.13)

where xs is the solution to the system without noise. It should be noted that

the time dependency of xsn, xs, and xnoise is henceforth omitted for simplicity.

The first-order Taylor approximation of f(x) around xs is given by

f(x) ∼= f(xs) +
∂f(x)

∂x

∣∣∣∣
x=xs

(x− xs) = f(xs) + J(xs)(x− xs), (3.14)

where J(xs) is the Jacobian matrix of f(x) evaluated at xs. Considering that

the noise in a signal is typically many orders of magnitude smaller than the

signal itself (i.e. xnoise � xs), (3.14) can be used to approximate f(xsn) in

(3.12) as follows:

Gxsn +C
.
xsn + f(xs) + J(xs)(xsn − xs) +B(xsn, t)v ∼= b(t)

xsn(0) = x0 + xnoise,0.

(3.15)

The noisy system is now a system of linear SDEs due to the small noise

perturbation approximation in (3.14), which allows the time domain noise

analysis methods detailed in the later sections to be applied to a linear system.

25

Furthermore, B(xsn, t) can be approximated as

B(xsn, t) ∼= B(xs, t) (3.16)

and then defined as

B(t) = B(xs, t) (3.17)

for simplicity due to the previous assumption that the noise in a signal is much

smaller than the signal itself. In fact, the approximation in (3.16) allows for

the generation of B(t) from a transient noiseless simulation prior to the noise

simulation itself as it now only depends on xs. One of the key concepts of

transient noise analysis is that the mean µ and the variance σ2 of xsn are given

by

µ(xsn) = xs + µ(xnoise) (3.18)

and

σ2(xsn) = σ2(xnoise) (3.19)

due to the fact that xs in (3.13) is deterministic by definition. It follows that a

transient noise simulation with respect to xnoise provides the same information

about the noise in a circuit as a transient noise simulation with respect to xsn

would. With this idea in mind, the noisy system in (3.15) can be restructured

around xnoise in the following way. First, consider the noiseless system in (2.2)

to which the solution is xs:

Gxs +C
.
xs + f(xs) = b(t) xs(0) = x0. (3.20)

26

Next, substituting (3.16) and (3.17) in (3.15) and expanding xsn using (3.13)

results in the following:

G(xs + xnoise) +C(
.
xs +

.
xnoise) + f(xs)

+J(xs)xnoise +B(t)v ∼= b(t)

xs(0) + xnoise(0) = x0 + xnoise,0.

(3.21)

Then, to remove all the terms that do not have an effect on xnoise and its

derivative, (3.20) is subtracted from (3.21) resulting in the following noise

system:

(G+ J(xs))xnoise +C
.
xnoise +B(t)v ∼= 0 xnoise(0) = xnoise,0. (3.22)

Finally, define:

A(t) = G+ J(xs), (3.23)

whereA(t) is time-varying for nonlinear circuits and time-invariant and simply

equal to the G matrix when the circuit is linear. The noise system in (3.22)

can then be simplified to

A(t)xnoise +C
.
xnoise +B(t)v ∼= 0 xnoise(0) = xnoise,0, (3.24)

which will be the basis for the two transient noise analysis methods detailed

in this section.

It should be noted that b(t) no longer has an explicit effect on the system

to solve. However, b(t) implicitly affects the linearization process (i.e. the

computation of J(xs) in A(t)) and the generation of B(t). Consequently,

the first step in any transient noise analysis method is to perform a transient

noiseless simulation prior to the transient noise simulation itself. This implies

solving (3.20) for xs by transient analysis while storing J(xs) at every time

point and then generating B(t) for all time points using xs. The linearization

27

of the system around xs can be interpreted as a linearization around the

trajectory in time that the solution to the system takes when there is no

noise. This linearization approach differs from the linearization that occurs in

frequency domain methods, where the circuit is linearized around an operating

point or periodic state.

3.5.2 Generating White Noise in the Time Domain

Time domain white noise generation plays an important role in transient

noise analysis methods which inject random noise sources in the circuit at every

time point, namely Monte Carlo methods. In the frequency domain, white

noise has a constant PSD, meaning that the PSD is frequency independent.

In order to generate white noise in the time domain, the white noise signal

generated in the time domain must be constructed in such a way as to approximate

the constant PSD of white noise in the frequency domain. This can be achieved

by modeling the white noise signal as a random pulse waveform [24].

Given the PSD of a noise source, its associated white noise signal can

be generated in the time domain in the following way. In the time domain,

a white noise signal n(t) with bandwidth Fmax can be approximated as the

random pulse waveform

n(t) = Aη(t,∆t), (3.25)

where η(t,∆t) is a random number with Gaussian probability distribution

updated with time interval ∆t and A is the noise signal amplitude given by

A =
√

2SFmax, (3.26)

where S is the double-sided PSD of the noise source detailed in Section 3.2.

Using the following two properties:

lim
T→∞

1

T

∫
T

n(τ)n(τ)dτ = A2 (3.27)

28

and

lim
T→∞

1

T

∫
T

n(τ)n(∆t− τ)dτ = 0, (3.28)

the autocorrelation function of the white noise signal is then given by

n2(t) = lim
T→∞

1

T

∫
T

n(τ)n(t− τ)dτ = A2Λ

(
t

∆t

)
, (3.29)

where Λ
(
t

∆t

)
is a triangular pulse of width ∆t. Next, the PSD of n(t) can be

obtained by calculating the Fourier transform of the autocorrelation function

as follows:

n2(f) =

∫ ∞
−∞

n2(t)e−j2πfxdx = A2∆t sinc2(f∆t), (3.30)

where sinc2(y) is the normalized sinc function. The PSD of the generated

white noise signal is shown in Fig. 3–3. As discussed in Section 3.3, Fmax

Figure 3–3: Double-sided PSD of white noise generated in the time domain
(solid line) and the approximation of a constant PSD (dashed line) using the
noise bandwidth Fmax.

is carefully selected to fully capture high frequency noise from all the noise

sources. Now, since the PSD in (3.30) is a function of ∆t but not a function

of Fmax, the former must be selected in relation with the latter to ensure that

the generated white noise signal is indeed a good approximation of a constant

PSD. As shown in Fig. 3–3, for the PSD in (3.30) to be a good approximation

29

of the constant PSD of white noise, the upper bound for the time interval is

∆t =
1

2Fmax
. (3.31)

At this value of ∆t or smaller, the generated white signal is a good approximation

of the constant PSD of white noise up until the absolute value of the frequency

approaches Fmax. However, as discussed in Section 3.3, Fmax is typically chosen

such that its value is slightly higher than the largest individual bandwidth(s)

out of all the noise sources in the circuit. This implies that the bulk of the noise

lies at frequencies much lower than Fmax, which ensures that the generated

white signal is a good approximation of the constant PSD of white noise.

Furthermore, as mentioned in Section 3.3, there is a trade-off between

noise simulation accuracy and overall noise simulation time through careful

selection of Fmax for white noise generation in the time domain. Assuming

a fixed value of ∆t in relation to Fmax in (3.31), Fmax may be decreased

to increase ∆t, thereby lowering the overall noise simulation time. However,

doing so affects how good of an approximation of a constant PSD (3.30) is and

can even make the noise simulation completely fail to capture high-frequency

white noise in the circuit if the Fmax falls below the largest individual bandwidth(s)

out of all the noise sources in the circuit.

3.5.3 Monte Carlo Method

Time domain noise analysis is traditionally based on the Monte Carlo

method, in which a large number of transient noise simulations are performed

to represent the many different paths taken by the randomly generated noise

sources [3]. As the number of Monte Carlo simulations increases, the solution

to the noise analysis problem approaches its expected value by virtue of

the law of large numbers in probability theory. More precisely, the mean

and the variance of the noise in the circuit as a function of time may be

30

estimated through Monte Carlo transient noise analysis if enough Monte Carlo

simulations are performed. The Monte Carlo method can be applied to the

MNA formulation of the circuit equations which include the noise sources as

follows. Let the superscript (i) denote the ith Monte Carlo iteration, where

i = 0, 1, . . . ,m. The formulation in (3.24) then becomes:

A(t)x
(i)
noise +C

.
x

(i)
noise +B(t)v(i) ∼= 0 x

(i)
noise(0) = x

(i)
noise,0, (3.32)

where the product of B(t)v(i) contains the noise signals defined in (3.25).

More specifically, the noise signal amplitudes are placed in B(t) as detailed

in subsection 3.5.1 and the corresponding random numbers with Gaussian

probability distribution are placed in v(i).

As discussed in Section 3.5.1, the first step in performing a transient noise

simulation of a given circuit using the Monte Carlo method is to perform a

single transient noiseless simulation of the circuit in order to find B(t) and,

in the case where the circuit is nonlinear, A(t). This transient noiseless

simulation is a nonlinear transient simulation if the circuit is nonlinear or

a linear transient simulation if the circuit is linear. Regardless of whether or

not the circuit is linear, the second step is to solve (3.32) m times using linear

transient analysis. Since v(i) is different for each Monte Carlo iteration, the

solution x
(i)
noise will also be different for each Monte Carlo iteration.

Now, considering that xnoise is the noise in the solution, the mean and

the variance of the noise in the circuit can be computed by taking the mean

and the variance of x
(i)
noise as a function of time across the ith dimension. It

should be noted that for the noise simulation to be accurate, v(i) must be

generated using a random number generator in such a way as to have a mean

of 0 and a variance of 1 across the ith dimension. Moreover, it may be helpful

to randomly generate all the values of v(i) in advance and then normalize

31

their mean and variance across the ith dimension to ensure that they indeed

have a mean of 0 and a variance of 1. However, due to the added memory

cost, this should only be done for simulations with a relatively low number of

Monte Carlo simulations. As the number of Monte Carlo simulations becomes

relatively high, the mean and variance of the randomly generated numbers

will approach their true value, thereby eliminating the need to normalize the

mean and variance of v(i).

Furthermore, since the Monte Carlo method relies on the generation of

white noise at every time point to model thermal and shot noise, accurate

Monte Carlo simulations require the use of a very small time step as discussed

in subsection 3.5.2. This results in highly inefficient transient noise simulations

that need to be repeated in a Monte Carlo fashion, which leads to a very

high overall CPU cost. That being said, because Monte Carlo simulations

are independent of each other, computing them in parallel to greatly reduce

computation time is straightforward. Each Monte Carlo iteration of (3.32) can

be solved by a given processor and the only time where the processors need

to communicate is during the calculation of the statistics of the noise at the

very end of the simulation. Nevertheless, the CPU cost of Monte Carlo noise

simulation, even after parallelization, is still high.

Finally, accurate transient noise analysis requires long individual transient

noise simulations that are performed a very large number of times in a Monte

Carlo fashion, resulting in significant memory requirements. Memory issues

mainly occur during the calculation of the variance, as every single Monte

Carlo simulation is stored in memory until then due to the way variance is

calculated. However, there exist some methods which can progressively and

accurately compute the variance as new samples become available without

the need to store all the samples in memory [5]. Unfortunately, due to their

32

sequential nature, these methods are ill-suited for Monte Carlo based transient

noise analysis methods that are implemented in parallel.

3.5.4 Non-Monte Carlo Method

A non-Monte Carlo method is a transient noise analysis method that

avoids the main drawbacks of the Monte Carlo method, more precisely the

need for a very small time step combined with a large number of transient

noise simulations performed in a Monte Carlo fashion. It does so by making

use of the theory of SDEs to directly compute the mean and correlation matrix

and hence the variance of the noise without having to outright inject noise

sources at every time point. However, the noise system needs to be remodeled

before the theory of SDEs can be employed for such a purpose. The following

derivations describe how this can be done and are detailed in [7].

Derivation of the System of Linear SDEs

The objective of this initial derivation is to remodel the noise system in

(3.24) as a system of linear SDEs of the form:

.
y = E(t)y + F (t)u y(0) = y0. (3.33)

At first glance, this can be achieved by multiplying both sides of (3.24) by the

inverse of the C matrix. However, this assumes that C is a full-rank matrix

and hence is invertible, which is generally not the case as it often has zero

rows and columns. For instance, all of the entries in the first two rows and

columns of C in (2.4) are zero because the two nodes which are represented

by the node voltages v1(t) and v2(t) do not have any capacitors connected to

them in the circuit shown in Fig. 2–1. In MNA formulations for which the

contribution from the circuit elements to C is always symmetric, the number

of zero rows is equal to the number of zero columns.

33

To ensure that C is a full-rank matrix, the circuit variables in xnoise are

reordered in such a way as to regroup the zero columns of C on the right side

of the matrix and the equations are reordered in such a way as to regroup the

zero rows of C at the bottom of the matrix, which results in (3.24) taking the

following form:A11(t) A12(t)

A21(t) A22(t)


x1

noise

x2
noise

+

C11 0

0 0


 .
x1
noise

.
x2
noise

+

B1(t)

B2(t)

v ∼= 0

x1
noise(0)

x2
noise(0)

 =

x1
noise,0

x2
noise,0

 ,
(3.34)

where A11(t) ∈ Rm×m, C11 ∈ Rm×m, A22(t) ∈ Rk×k, A12(t) ∈ Rm×k, A21(t) ∈

Rk×m,B1(t) ∈ Rm×q,B2(t) ∈ Rk×q, x1
noise ∈ Rm, x2

noise ∈ Rk, m is the number

of nonzero rows/columns in C, and k is the number of zero rows/columns in

C. In MNA formulations for which the contribution from the circuit elements

to C is not always symmetric, some adjustments to the formulation of the

system may be required to ensure that the number of zero rows is equal to the

number of zero columns. As a consequence of the partitioning of the matrices,

(3.34) can be separated into two sets of m and k equations as follows:

A11(t)x1
noise +A12(t)x2

noise +C11
.
x1
noise +B1(t)v = 0

x1
noise(0) = x1

noise,0 x2
noise(0) = x2

noise,0

(3.35)

and

A21(t)x1
noise +A22(t)x2

noise +B2(t)v = 0

x1
noise(0) = x1

noise,0 x2
noise(0) = x2

noise,0.

(3.36)

By solving for it in (3.36), x2
noise is given by

x2
noise = − (A22(t))−1A21(t)x1

noise − (A22(t))−1B2(t)v, (3.37)

34

which assumes that A22(t) is invertible. This is usually true unless both nodes

of a voltage source are connected to capacitors or one of them is connected to

a capacitor while the other one is grounded, in which case the problem can be

circumvented through manipulation of the circuit variables and equations in

(3.24) [7].

Next, defining

D1(t) = − (A22(t))−1A21(t)

D2(t) = − (A22(t))−1B2(t)

(3.38)

and then substituting (3.37) and (3.38) in (3.35) results in

A11(t)x1
noise +A12(t)D1(t)x1

noise +C11
.
x1
noise

+B1(t)v +A12(t)D2(t) v = 0

x1
noise(0) = x1

noise,0.

(3.39)

Afterwards, defining

Ẽ(t) = −(A11(t) +A12(t)D1(t))

F̃ (t) = −(B1(t) +A12(t)D2(t))

(3.40)

and then substituting (3.40) in (3.39) while also rearranging the terms in

(3.39) such that all the terms but the one which contains a time derivative are

regrouped on the right-hand side of the equation leads to

C11
.
x1
noise = Ẽ(t)x1

noise + F̃ (t)v x1
noise(0) = x1

noise,0. (3.41)

Finally, a system of linear SDEs in the form of (3.33) can be obtained by

multiplying both sides of (3.41) by the inverse of C11 as follows:

.
x1
noise = E(t)x1

noise + F (t)v x1
noise(0) = x1

noise,0, (3.42)

where E(t) ∈ Rm×m and F (t) ∈ Rm×q are respectively equal to Ẽ(t) and

F̃ (t) multiplied by the inverse of C11 from the left. This assumes that C11 is

35

invertible, which is true so long as every node in the circuit that is connected to

a capacitor has a capacitive path to ground or an independent voltage source

node. It is therefore often necessary to model the parasitic capacitances in a

circuit to ensure that this condition is respected.

Derivation of the System of ODEs for the Noise Correlation
Matrix

Now that the noise system in (3.42) is in a suitable form, the theory of

SDEs can be used to formulate the equations which govern the mean and the

correlation matrix of x1
noise. Consider the differential form of (3.42) given by

dx1
noise = E(t)x1

noise dt+ F (t) dw x1
noise(0) = x1

noise,0, (3.43)

where w is a vector of q independent Wiener processes defined as

dw = v dt. (3.44)

For a system of linear SDEs with additive noise of the form of (3.43), the exact

solution is given by

x1
noise(t) = Φ(t, t0)x1

noise(t0) +

∫ t

t0

Φ(t, τ)F (τ) dw(τ), (3.45)

where Φ(t, t0) is the state-transition matrix of the system which corresponds

to the solution of

.
Φ(t, t0) = E(t) Φ(t, t0) Φ(t0, t0) = I (3.46)

and I is the identity matrix [1]. Again, the main objective in time domain

noise simulation is to find the mean and variance of the noise in the circuit

as a function of time, which in this case implies finding the mean and the

correlation matrix of x1
noise over the time interval of interest. In order to first

36

find the mean of x1
noise, let t0 = 0 such that (3.45) simplifies to

x1
noise(t) = Φ(t, 0)x1

noise,0 +

∫ t

0

Φ(t, τ)F (τ) dw(τ). (3.47)

The mean of x1
noise can then be obtained by taking the expectation of both

sides of (3.47) while using (3.44) and noting that E [v(t)] = 0 and E
[
x1
noise,0

]
=

0 as follows:

µ1(t) = E
[
x1
noise(t)

]
= E

[
Φ(t, 0)x1

noise,0

]
+ E

[∫ t

0

Φ(t, τ)F (τ)dw(τ)

]
= Φ(t, 0)E

[
x1
noise,0

]
+

∫ t

0

Φ(t, τ)F (τ)E [v(τ)] dτ

= 0.

(3.48)

This implies that the mean of the noise variables in x1
noise is always zero for

all kinds of circuits and for all time t under the current system formulation.

Next, the correlation matrix of x1
noise, which is defined as

K1(t) = E
[
x1
noise(t)x

1
noise(t)

T
]
, (3.49)

satisfies the differential Lyapunov equation

.
K

1
(t) = E(t)K1(t) +K1(t)E(t)T + F (t)F (t)T K1(0) = K1

0, (3.50)

where K1(t) ∈ Rm×m is a symmetric positive semi-definite matrix [1]. The

initial value K1
0 corresponds to the solution to the continuous Lyapunov

equation

E(0)K1
0 +K1

0E(0)T + F (0)F (0)T = 0, (3.51)

where K1
0 is assumed to be a symmetric positive semi-definite matrix [1]. This

is generally true unless E(0) has eigenvalues with nonnegative real parts, in

which case K1
0 is set to 0 [7]. Since K1(t) represents the correlation matrix of

x1
noise as a function of time, the noise variance of the circuit variables in x1

noise

37

as a function of time can be obtained directly from the diagonal entries of

K1(t). Similarly, the noise correlations between the different circuit variables

in x1
noise as a function of time can be obtained directly from the non-diagonal

entries of K1(t). Considering K1(t) is symmetric, (3.49) represents a system

of m(m + 1)/2 linear ODEs whose number quickly grows as the size of the

circuit increases, with m being roughly equal to the number of nodes connected

to a capacitor. The noise analysis problem, which originally involved solving

a nonlinear stochastic system, is therefore reduced to solving a LTV system.

Numerical Computation of the Noise Correlation Matrix

The first step in finding the correlation matrix of x1
noise as a function

of time is to compute E(t) and F (t) numerically. This implies computing

A(t) and B(t) numerically using the transient noiseless analysis solution at

every time point as detailed in subsection 3.5.1 and then going through the

derivations of the system of linear SDEs in (3.42). The second step is to obtain

the initial value K1
0 by solving the continuous Lyapunov equation in (3.51)

numerically. While the third step comprises the bulk of the computations,

it can be bypassed for the class of circuits with time-invariant large-signal

waveforms.

For circuits with time-invariant large-signal waveforms, E(t) and F (t) are

constant with time. Consequently, the solution to (3.50) is given by

K1(t) = K1
0 (3.52)

and hence the transient noise simulation reduces to solving the continuous

Lyapunov equation in (3.51). This can be compared with the frequency

domain noise simulation of a LTI circuit discussed in subsection 3.4.1 as both

methods are applied to circuits with time-invariant large-signal waveforms.

In fact, solving (3.51) is equivalent to calculating the noise variance in (3.6)

38

for every circuit variable in x1
noise over the entire frequency spectrum (i.e.

Fmax =∞).

For nonlinear circuits with arbitrary excitations,E(t) and F (t) are time-varying

and the transient noise simulation is thus required to solve for K1(t) in (3.50)

as a function of time. To do so, (3.50) is discretized in time and written at

time t = ti+1 as follows:

.
K

1

i+1 = Ei+1K
1
i+1 +K1

i+1E
T
i+1 + F i+1 F

T
i+1, (3.53)

where K1
i+1, Ei+1, and F i+1 are respectively defined as K1(ti+1), E(ti+1),

and F (ti+1) for simplicity and K1
0 is the initial value that was obtained in

the previous step. Using the backward Euler method to approximate the

derivative in (3.53) results in the following difference equation:

K1
i+1 −K1

i

h
= Ei+1K

1
i+1 +K1

i+1E
T
i+1 + F i+1 F

T
i+1, (3.54)

where h is the time step that separates two successive time points. To solve

for K1
i+1, all the terms are first regrouped on the left-hand side of (3.54) as

follows:

Ei+1K
1
i+1 −

K1
i+1

h
+K1

i+1E
T
i+1 + F i+1 F

T
i+1 +

K1
i

h
= 0. (3.55)

Next,
K1

i+1

h
is expanded like so:

Ei+1K
1
i+1−

1

2h
I K1

i+1−
1

2h
I K1

i+1+K1
i+1E

T
i+1+F i+1 F

T
i+1+

K1
i

h
= 0, (3.56)

where I is the identity matrix. This allows (3.56) to then be factorized as

follows:

P K1
i+1 +K1

i+1P
T +Q = 0, (3.57)

39

where

P = Ei+1 −
1

2h
I

Q = F i+1 F
T
i+1 +

K1
i

h

(3.58)

and Q is symmetric. As K1
i+1 is symmetric, (3.57) represents a system of

m(m+ 1)/2 linear equations.

Finally, (3.57) can be solved iteratively starting from K1
0 to obtain the

correlation matrix of x1
noise at every time point. Since (3.57) is a Lyapunov

equation, it can be solved numerically using methods such as the Bartels-Stewart

algorithm [2]. As this step requires solving a Lyapunov equation at every

time point, the associated CPU cost becomes increasingly high as the size

of the system increases. It should also be noted that the transient noiseless

simulation and the transient noise simulation can be performed concurrently.

This is because, contrary to the Monte Carlo method, there is only a single

transient noise simulation. Consequently, the transient noise simulation is able

to compute the solution at a certain time point once the transient noiseless

simulation has performed the linearization of the system at that time point.

Although the transient noiseless simulation is forced to take the time steps

required by the transient noise simulation, the converse is not necessarily true.

3.6 Conclusion

In this chapter, various noise analysis methods are presented. Frequency

domain methods are best suited for LTI or LPTV circuits operating under

small-signal conditions, while time domain methods are preferred for nonlinear

circuits containing arbitrary large-signal waveforms. The latter is traditionally

based on the Monte Carlo method, which is associated with a high CPU cost,

even if implemented in parallel, as well as potential memory issues. As for

non-Monte Carlo methods, although they are typically faster than Monte Carlo

40

based methods, they can still be computationally expensive when the circuit

is large as they require solving a Lyapunov equation at every time point.

41

CHAPTER 4
Parallel Non-Monte Carlo Transient Noise Analysis

4.1 Introduction

As seen in the previous chapter, non-Monte Carlo transient noise analysis

appears to be an attractive option when it comes to time domain noise simulation

of nonlinear circuits with large-signal waveforms due to the drawbacks of the

Monte Carlo method. However, non-Monte Carlo transient noise analysis

methods also suffer from a high CPU cost when the circuit is large and cannot

seemingly be implemented in parallel to reduce computation time as is the case

for Monte Carlo transient noise analysis methods. This is because non-Monte

Carlo methods feature a single transient noise simulation whereas Monte Carlo

methods rely on a multitude of transient noise simulations performed in a

Monte Carlo fashion which are independent of each other. Yet, since non-Monte

Carlo methods are typically faster than Monte Carlo methods, a transient noise

analysis method that is even faster than the time domain methods detailed

in the previous chapter would result from the implementation of a non-Monte

Carlo method in parallel.

With this idea in mind, the present chapter proposes a novel approach

to the implementation of a non-Monte Carlo method in parallel [11]. The

achievement of this purpose begins with noticing that (3.50) represents a

system of linear ODEs in the form of an initial value problem and that

solving it accounts for the bulk of the computations in the transient noise

simulation. The proposed method then allows for a parallel implementation

of this computationally expensive step by using an approach similar to the

paraexp algorithm, which is a parallel integrator for linear initial value problems

42

[9]. The algorithm was adapted to solve the Lyapunov equations resulting

from the discretization of (3.50) in parallel even though they constitute a

single transient noise simulation. Consequently, the CPU cost of the proposed

method is lower than that of the non-Monte Carlo method that it is predicated

upon, especially for large circuits. Additionally, the resulting parallel speedup

is required to scale well with the number of processors used in the noise

simulation and the size of the circuit.

4.2 Parallel Implementation of the Non-Monte Carlo Transient
Noise Analysis Method

The parallel implementation of the non-Monte Carlo transient noise analysis

method requires a more comprehensive examination of the equations which

govern the noise correlation matrix. More precisely, it is the structure of

these equations which allows for the single transient noise simulation to be

parallelized in time. Because the differential Lyapunov equation in (3.50) is a

linear system, the solution to it is given by

K(t) = Φ(t, t0)K0 Φ(t, t0)T +

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ, (4.1)

where Φ(t, t0) ∈ Rk×k is the state-transition which corresponds to the solution

of
.
Φ(t, t0) = E(t) Φ(t, t0) Φ(t0, t0) = I (4.2)

and I is the identity matrix. The details of the derivation are shown in

Appendix A. It should be noted that the superscript 1 which denotes that

K1(t) is the correlation matrix of x1
noise in (3.50) is omitted in this chapter for

simplicity. Furthermore, (4.1) can be separated into a homogeneous response

K1(t) and an inhomogeneous response K2(t) that are given by

K1(t) = Φ(t, t0)K0 Φ(t, t0)T (4.3)

43

and

K2(t) =

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ. (4.4)

Since it does not depend on F (t), which contains all the noise sources that act

as inputs in the noise simulation, K1(t) can be thought of as the zero input

response of (3.50). Similarly, K2(t) can be seen as the zero state response of

(3.50) as it does not depend on the initial condition K0.

To employ p processors in the parallel task of computingK(t) in (4.1), the

time interval of interest [t0, T], where t ∈ [t0, T], is partitioned into subintervals

[Tj−1, Tj] with j = 1, . . . , p and t0 = T0 < T1 < . . . < Tp = T . These

subintervals need not be the same length of time, however it makes sense for

their lengths to be similar to each other for the purpose of splitting the parallel

task evenly and thus reducing the overall computation time. Time partitioning

schemes have also been proposed for this purpose [9]. K2(t) and K1(t) can

then be written for each subinterval as

K2,j(t) =

∫ t

Tj−1

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ (4.5)

where K2,j(Tj−1) = 0 and t ∈ [Tj−1, Tj], and

K1,j(t) = Φ(t, Tj−1)K2,j−1(Tj−1) Φ(t, Tj−1)T (4.6)

where K2,0(T0) = K0 and t ∈ [Tj−1, T]. The p inhomogeneous subproblems

associated with (4.5) are completely decoupled due to their zero initial condition,

whereas the p homogeneous subproblems associated with (4.6) are also decoupled

and can be solved once the initial condition K2,j−1(Tj−1) is available. Fig. 4–1

illustrates the time partitions as well as the decoupling of the subproblems for

p = 5. For instance, in the example shown in Fig. 4–1, a given processor would

be tasked to solve the inhomogeneous subproblem from t = T1 to t = T2

starting from the initial condition K2,2(T1) = 0, then that same processor

44

would be tasked to solve the associated homogeneous subproblem from t =

T2 to t = T5 using the initial condition K2,2(T2) that was obtained from

solving the inhomogeneous subproblem beforehand. As they are decoupled,

the subproblems with indices j = 1, . . . , p can be solved in parallel. The total

solution to the original problem can then be obtained by summation of all

the subproblems due to the system being linear. A proof of the decoupling of

the subproblems as well as the recovery of the total solution by summation

of all the subproblems is provided in Appendix B. Moreover, this summation

which occurs at the very end of the transient noise simulation is the only

instance where the processors need to communicate, which helps limit the

communication overhead. Despite that, a notable delay may occur before

the end of the communication step should some parallel tasks be completed

significantly sooner than others.

Figure 4–1: Overlapping time decomposition of (3.50) into five inhomogeneous
subproblems with zero initial condition (solid curves) and five homogeneous
subproblems (dotted curves) that are propagated from an initial condition.

45

4.3 Numerical Computation of the Solution to the Homogeneous
and Inhomogeneous Subproblems

The process of computing the solution to the inhomogeneous subproblems

varies little from the process of computing the solution to the original problem

in (3.50). However, the process of computing the solution to the homogeneous

subproblems differs greatly from the latter.

4.3.1 Solution to the Homogeneous Subproblems

Unlike solving for the solution to the original problem, solving for the

solution to the homogeneous subproblems requires no explicit numerical integration.

By making use of the state-transition matrix of the noisy system, initial

conditions for the system described by the differential Lyapunov equation in

(3.50) can be propagated quickly through time.

To first solve for the state-transition matrix, (4.2) is discretized in time

and written at time t = ti+1 as follows:

.
Φ(ti+1, t0) = E(ti+1) Φ(ti+1, t0) Φ(t0, t0) = I. (4.7)

Using the backward Euler method to approximate the derivative in (4.7)

results in the following difference equation:

Φ(ti+1, t0)−Φ(ti, t0)

h
= E(ti+1) Φ(ti+1, t0) Φ(t0, t0) = I, (4.8)

where h is the time step which separates two successive time points. Solving

for Φ(ti+1, t0) in (4.8) leads to

Φ(ti+1, t0) = (I − hE(ti+1))−1 Φi Φ(t0, t0) = I. (4.9)

Considering that the initial condition is the identity matrix, (4.9) can also be

expressed for i = 0, 1, 2, . . . as

Φ(ti+1, t0) =
i∏

N=0

(I − hE(tN+1))−1 . (4.10)

46

The computation of the state-transition matrix thus only depends on the

discretized values of E(t). However, since E(t) is generally time-varying, the

transient noise simulation is required to compute the matrix inverse in (4.9)

at every time point.

From (4.6), once the state-transition matrix Φ(ti+1, Tj−1) at the current

time point t = ti+1 is available, the solution to the homogeneous subproblem

K1,j(ti+1) can be obtained by propagating the initial condition for the current

subintervalK2,j−1(Tj−1) through time until the current time point by means of

a multiplication with the state-transition matrix and its transpose. Intuitively,

K2,j−1(Tj−1) is propagated progressively farther in time as time moves forward

in the interval [Tj−1, T] As this simply involves multiplying three matrices

together, the main CPU cost involved in finding the homogeneous solution for

a given subinterval arises from solving (4.9).

4.3.2 Solution to the Inhomogeneous Subproblems

As mentioned previously, solving for the inhomogeneous subproblems is

akin to solving the original problem in (3.50). In fact, solving for the solution to

the inhomogeneous subproblems corresponds to solving (3.57) for the current

subinterval [Tj−1, Tj] starting from zero initial condition. Using the notation

in (4.5), (3.57) can be written at time t = ti+1 for a given subinterval as

P K2,j(ti+1) +K2,j(ti+1)P T +Q = 0, (4.11)

where

P = E(ti+1)− 1

2h
I

Q = F (ti+1)F (ti+1)T +
K2,j(ti)

h

(4.12)

The continuous Lyapunov equation in (4.11) is then solved iteratively through

time starting from K2,j(Tj−1) = 0 for the current subinterval. As this involves

once again solving a Lyapunov equation at every time point, the CPU cost

47

becomes increasingly high as the size of the system increases. However, since

the proposed method computes all the inhomogeneous subproblems in parallel,

the CPU cost for computing the inhomogeneous solution over the full time

interval can be decreased significantly.

Moreover, the efficiency of the parallel algorithm relies on the homogeneous

subproblems being much faster to solve than the inhomogeneous subproblems.

One way to ensure that this is the case is to use a larger time step to solve the

homogeneous subproblems than the time step used to solve the inhomogeneous

subproblems and then interpolate the values of the homogeneous solutions at

the time points which were initially disregarded. For instance, using a time

step that is three times larger would require the values of the homogeneous

solutions at two time points between two consecutive known values to be

interpolated. While the number of interpolated values has an effect on the

accuracy of the transient noise simulation, this effect is limited because of how

the homogeneous solutions are propagated quickly over long time intervals

as opposed to the inhomogeneous solutions which are solved through high

accuracy integration on short subintervals.

4.4 Numerical Example

The proposed transient noise analysis method was tested on the bipolar

junction transistor (BJT) low-noise amplifier (LNA) shown in Fig. 4–2 with a

sinusoidal input at 300MHz. Only thermal and shot noise were considered in

this example. Although the LNA circuit is fairly small, it is large enough in

that the Lyapunov equations become sufficiently expensive to solve computationally

for a speedup to be observed. The proposed method was compared to the base

serial method in which the Lyapunov equations are solved using MATLAB’s

SLICOT routine SB03MD that is based upon the algorithm developed in [2].

Additionally, a comparison was made to the brute force Monte Carlo approach

48

implemented in parallel with the same number of processors. A contrast of the

noise variance waveforms at the output of the amplifier is displayed in Fig. 4–3.

The noise variance varies sinusoidally with time since the magnitude of the

shot noise generated by the BJTs follows the sinusoidal input signal, while the

average value of the noise variance can be attributed to the combined effect of

thermal and shot noise. As observed in Fig. 4–3, the noise variance waveforms

produced by the proposed method and the base serial method nearly overlap,

while that of the Monte Carlo based method varies slightly from the other

two. It is worth noting that if the amount of Monte Carlo simulations was

taken to a number much larger than sixty thousand, then its resulting noise

variance waveform would likely overlap much more closely with the other two

waveforms due to the nature of the Monte Carlo method. However, the added

memory and computational costs incurred by such an effort would be very

high as well.

Furthermore, a summary of the computational costs using a server with

8 processors is shown in Table 4–1. The root mean square (RMS) error

section in Table 4–1 supports the earlier claim that the difference between

the Monte Carlo based method and the other two methods decreases as the

number of Monte Carlo simulations increases and hence the variance waveform

approaches its expected value due to the law of large numbers in probability

theory. This section in Table 4–1 also features the RMS error between the

proposed method and the base serial method, which can be compared to the

scale of the waveforms in Fig. 4–3 to confirm that the proposed method is

very close to the base serial method in terms of accuracy. Also shown in

Table 4–1 is the vast difference in computation time between the Monte Carlo

based method and the other two methods. This large gap in computation

time would only be made even more significant should the number of Monte

49

Vin

50Ω

100pF

175.9mΩ 1.4nH

1.42nH

178.4mΩ

250Ω

10kΩ

5kΩ

5V

295Ω

30kΩ 10nF

5V

2kΩ

3.7V

335Ω

2.7pF

15Ω

150Ω

5V

1kΩ

3.8V

3kΩ

100pF

50Ω

Vout

Figure 4–2: Low-Noise Amplifier Schematic [18].

Carlo simulations be increased further. As mentioned in subsection 3.5.3, the

CPU cost of Monte Carlo based methods, even after parallelization, is still

high. More importantly, the speedup achieved by the proposed method over

the base serial method is indicated in Table 4–1. The speedup of 2.03 implies

that the proposed parallel implementation of the base serial method speeds it

up by a factor of 2.03 for the LNA circuit.

Lastly, Table 4–2 shows how the speedup increases as the number of

processors increases. As observed in Table 4–2, the proposed method scales

well with up to 8 processors used in the noise simulation. Scalability with the

number of processors is a desirable feature for the proposed method from the

perspective of large-scale applications. Yet, the proposed method cannot avoid

50

1.490 1.492 1.494 1.496 1.498 1.500

·10−6

3.8

3.85

3.9

3.95

4
·10−7

Time (s)

N
oi

se
V

ar
ia

n
ce
(V

2
) Monte Carlo 60k sims.

Base Serial Method

Proposed Method

Figure 4–3: Comparison of the noise variance at the output of the LNA as a
function of time due to thermal and shot noise.

the diminishing return in speedup that is characteristic of parallel algorithms.

This diminishing return can be attributed partly to Amdahl’s law in computer

architecture, which states that the theoretical parallel speedup is limited by

the serial part of the algorithm [28]. Additionally, the speedup is limited by

the step involving the summation of all the solutions at the end of the noise

simulation where the processors need to communicate. This is because the

workload is not equally split between the processors as can be seen in Fig. 4–1

and the algorithm thus has to wait for all the parallel tasks to be completed

before computing the total solution. The impact of this issue on speedup can

be minimized by ensuring that the homogeneous solutions can be solved much

quicker than the inhomogeneous solutions as discussed in Section 4.3.

4.5 Conclusion

In this chapter, the proposed parallel non-Monte Carlo transient noise

analysis method is presented. The proposed method separates the differential

51

Table 4–1: Computation time, speedup, and output RMS error evaluated
across the proposed method and other transient noise analysis methods for
the LNA.

Method Monte Carlo 60k sims. Base Serial Method Proposed Method

Computation

Time (s)
27394.62 193.87 95.58

Speedup

Compared to

Monte Carlo 60k sims. 141.30× 286.61×
Base Serial Method - 2.03×

RMS Error

Compared to

Monte Carlo 20k sims. 9.71 × 10−10 9.64 × 10−10

Monte Carlo 40k sims. 5.87 × 10−10 5.82 × 10−10

Monte Carlo 60k sims. 4.34 × 10−10 4.25 × 10−10

Base Serial Method - 1.62 × 10−11

Table 4–2: Speedup achieved by the proposed method over the base serial
method as a function of the number of processors.

Number of Processors 1 2 4 6 8

Speedup 0.74× 1.32× 1.62× 1.90× 2.03×

Lyapunov equation into homogeneous and inhomogeneous subproblems that

can be solved independently. Furthermore, the time interval is partitioned

into subintervals where the homogeneous and inhomogeneous solutions can be

computed in parallel to decrease computation time. When tested on a LNA

circuit, the proposed method achieved an increasing parallel speedup over the

base serial method as more processors were used in the simulation, culminating

in a speedup of 2.03 using 8 processors.

52

CHAPTER 5
Conclusion

5.1 Summary

This thesis details various methods of addressing the noise analysis problem

in the simulation and modeling of microelectronic systems. Unlike frequency

noise analysis methods, time domain noise analysis methods are well suited

for simulating noise in nonlinear circuits with arbitrary large-signal waveforms.

Among them are the traditional Monte Carlo based transient noise analysis

methods, whose main disadvantage is their large CPU cost. To avoid this

drawback, non-Monte Carlo transient noise analysis methods which avoid

injecting noise randomly at every time point and instead directly model the

noise characteristics by relying on the theory of SDEs are described. However,

this approach is still susceptible to long computation times if the circuit is

large due to the need to solve a Lyapunov equation at every time point in the

transient noise simulation.

This thesis also proposes a novel parallel non-Monte Carlo transient noise

analysis method. By partitioning the time interval of interest into multiple

independent subintervals, the proposed method is able to decouple the noise

analysis problem into homogeneous and inhomogeneous subproblems which

can be solved in parallel for each subinterval to decrease the overall noise

simulation time.

5.2 Future Work

• Improving the efficiency at which the proposed method can solve the

homogeneous subproblems. The overall efficiency of the proposed method

relies on solving the homogeneous subproblems much quicker than solving

53

the inhomogeneous subproblems, which is not sufficiently the case with

the current method. Consequently, the proposed method could achieve

an even higher parallel speedup if this issue were to be addressed. One

possible way to do so would be to introduce a selector vector that selects

the proper output entries in the noise correlation matrix. That way,

the state-transition matrix of the system could potentially be obtained

through matrix-vector operations rather than matrix-matrix operations

and the homogeneous solutions could thus be obtained quicker.

• Implement flicker noise in the proposed method. As indicated in the

numerical example, only thermal and shot noise are considered at the

moment. While flicker noise is considerably more difficult to implement

than the other two types of noise, it ultimately does not change any part

of the process through which noise analysis is performed in the proposed

method once it has been properly modeled.

54

References

[1] S. S. Artemiev and T. A. Averina. Numerical Analysis of Systems of
Ordinary and Stochastic Differential Equations. De Gruyter, 2011.

[2] R. H. Bartels and G. W. Stewart. Solution of the matrix equation ax +
xb = c. Commun. ACM, 15(9):820–826, September 1972.

[3] P Bolcato and R Poujois. A new approach for noise simulation in
transient analysis. In [Proceedings] 1992 IEEE International Symposium
on Circuits and Systems, volume 2, pages 887–890. IEEE, 1992.

[4] John C. Butcher. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, New York, 2008.

[5] Tony F Chan, Gene H Golub, and Randall J LeVeque. Algorithms for
computing the sample variance: Analysis and recommendations. The
American Statistician, 37(3):242–247, 1983.

[6] Kwong-Shu Chao and Richard Saeks. Continuation methods in circuit
analysis. Proceedings of the IEEE, 65(8):1187–1194, 1977.

[7] A. Demir, E. W. Y. Liu, and A. L. Sangiovanni-Vincentelli. Time-domain
non-monte carlo noise simulation for nonlinear dynamic circuits with
arbitrary excitations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 15(5):493–505, 1996.

[8] Alper Demir and Alberto Sangiovanni-Vincentelli. Analysis and
simulation of noise in nonlinear electronic circuits and systems, volume
425. Springer Science & Business Media, 2012.

[9] Martin J. Gander and Stefan Güttel. Paraexp: A parallel integrator
for linear initial-value problems. SIAM Journal on Scientific Computing,
35(2):C123–C142, 2013.

[10] W. A. Gardner. Introduction to Random Processes with Applications to
Signals & Systems. McGraw-Hill, New York, 2nd ed. edition, 1990.

[11] Alex Goulet, Mina Farhan, Marco T. Kassis, and Roni Khazaka. Parallel
non-monte carlo transient noise simulation. IEEE Microwave and
Wireless Components Letters, 31(6):634–637, 2021.

55

56

[12] Paul R Gray, Paul J Hurst, Stephen H Lewis, and Robert G Meyer.
Analysis and design of analog integrated circuits. John Wiley & Sons,
2009.

[13] Chung-Wen Ho, Albert Ruehli, and Pierce Brennan. The modified nodal
approach to network analysis. IEEE Transactions on circuits and systems,
22(6):504–509, 1975.

[14] FN Hooge and PA Bobbert. On the correlation function of 1/f noise.
Physica B: Condensed Matter, 239(3-4):223–230, 1997.

[15] C.D. Hull and R.G. Meyer. A systematic approach to the analysis of noise
in mixers. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 40(12):909–919, 1993.

[16] Christopher D Hull and Robert G Meyer. A systematic approach to the
analysis of noise in mixers. IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, 40(12):909–919, 1993.

[17] Christopher Dennis Hull. Analysis and optimization of monolithic RF
downconversion receivers. PhD thesis, University of California, Berkeley,
1992.

[18] Marco T. Kassis, Dani Tannir, Raffi Toukhtarian, and Roni Khazaka.
Computation of the x-parameters of multi-tone circuits using multipoint
moment expansion. In 2017 IEEE 26th Conference on Electrical
Performance of Electronic Packaging and Systems (EPEPS), 2017.

[19] K. Kellogg, L. Dunleavy, S. Skidmore, H. Morales, and C. White. Bridging
the gap in noise spectral density measurements derived from flicker and
noise figure measurement systems. In 2017 IEEE 18th Wireless and
Microwave Technology Conference (WAMICON), pages 1–4, 2017.

[20] Marvin S Keshner. 1/f noise. Proceedings of the IEEE, 70(3):212–218,
1982.

[21] Roni Khazaka. Projection based techniques for the simulation of RF
circuits and high speed interconnects. PhD thesis, Carleton University,
2002.

[22] T. H. Lee and A. Hajimiri. Oscillator phase noise: a tutorial. IEEE
Journal of Solid-State Circuits, 35(3):326–336, 2000.

[23] A. G. Mahmutoglu and A. Demir. Non-monte carlo analysis of
low-frequency noise: Exposition of intricate nonstationary behavior and
comparison with legacy models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(11):1825–1835, 2016.

57

[24] John A. McNeill. Jitter in ring-oscillators. PhD thesis, Boston University,
Boston, MA, 1994.

[25] Mauro Parodi and Marco Storace. Linear and nonlinear circuits: Basic
& advanced concepts, volume 1. Springer, 2018.

[26] B. Pellegrini, R. Saletti, B. Neri, and P. Terreni. 1/f v noise generators.
In Noise in Physical Systems and 1/f Noise. Elsevier, 1985.

[27] Stephen L Richter and Raymond A Decarlo. Continuation methods:
Theory and applications. IEEE Transactions on Systems, Man, and
Cybernetics, (4):459–464, 1983.

[28] David P Rodgers. Improvements in multiprocessor system design. ACM
SIGARCH Computer Architecture News, 13(3):225–231, 1985.

[29] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal
residual algorithm for solving nonsymmetric linear systems. SIAM
Journal on scientific and statistical computing, 7(3):856–869, 1986.

[30] Jiri Vlach, Vlach Jǐŕı, and Kishore Singhal. Computer methods for circuit
analysis and design. Springer Science & Business Media, 1983.

APPENDIX A
Derivation of the Solution to the Differential Lyapunov Equation

The following derivation intends to prove that

K(t) = Φ(t, t0)K0 Φ(t, t0)T +

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ (A.1)

is the solution to the differential Lyapunov equation

.
K(t) = E(t)K(t) +K(t)E(t)T + F (t)F (t)T K(0) = K0. (A.2)

It does so by first assuming the form of the solution in (A.1) to the differential

Lyapunov equation in (A.2) and then differentiating it to produce the original

differential Lyapunov equation.

Before proceeding with the differentiation, (A.1) is first segmented into

two parts for simplicity denoted by

K1(t) = Φ(t, t0)K(0) Φ(t, t0)T (A.3)

and

K2(t) =

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ. (A.4)

The derivative of (A.3) is then given by

.
K1(t) =

.
Φ(t, t0)K(0) Φ(t, t0)T + Φ(t, t0)K(0)

.
Φ(t, t0)T . (A.5)

However, the state-transition matrix Φ(t, t0) is defined as the solution to the

system
.
Φ(t, t0) = E(t) Φ(t, t0) Φ(t0, t0) = I. (A.6)

58

Thus, (A.5) can be further simplified using (A.6) to

.
K1(t) = E(t) Φ(t, t0)K(0) Φ(t, t0)T + Φ(t, t0)K(0) Φ(t, t0)T E(t)T . (A.7)

Next, using the Leibniz integral rule, the derivative of (A.4) is given by

.
K2(t) =

∫ t

t0

[.
Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T + Φ(t, τ)F (τ)F (τ)T

.
Φ(t, τ)T

]
dτ

+ Φ(t, t)F (t)F (t)T Φ(t, t)T
dt

dt

−Φ(t, t0)F (t0)F (t0)T Φ(t, t0)T
dt0
dt
,

(A.8)

which can be further simplified by using (A.6) to

.
K2(t) =

∫ t

t0

E(t) Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ

+

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T E(t)T dτ + F (t)F (t)T ,

(A.9)

where the integral has been split into the sum of its two parts in anticipation

of the final step of the derivation.

Lastly, by recombining (A.7) and (A.9) and takingE(t) out of the integrals

as it does not depend on τ , the derivative of (A.1) is given by

.
K(t) =E(t) Φ(t, t0)K(0) Φ(t, t0)T +E(t)

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)Tdτ

+ Φ(t, t0)K(0) Φ(t, t0)TE(t)T +

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)Tdτ E(t)T

+ F (t)F (t)T = E(t)K(t) +K(t)E(t)T + F (t)F (t)T ,

(A.10)

which is exactly the system in (A.2) and thus completes the proof.

59

APPENDIX B
Proof of the Decomposition of the Differential Lyapunov Equation

into Homogeneous and Inhomogeneous Subproblems

The objective of this proof is twofold: it first demonstrates the ability

to decompose the solution to the differential Lyapunov equation in (3.50)

into homogeneous and inhomogeneous solutions where the inhomogeneous

solutions provide the initial conditions for the associated homogeneous solutions,

and then it shows that the total solution can be obtained by superposition of

all the solutions.

The proof begins with recalling that the solution to the differential Lyapunov

equation

.
K(t) = E(t)K(t) +K(t)E(t)T + F (t)F (t)T K(t0) = K0 (B.1)

is given by

K(t) = Φ(t, t0)K0 Φ(t, t0)T +

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ (B.2)

and that the solution in (B.2) can be further divided into a homogeneous

response K1(t) and an inhomogeneous response K2(t) that correspond to

K1(t) = Φ(t, t0)K0 Φ(t, t0)T (B.3)

and

K2(t) =

∫ t

t0

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ. (B.4)

Then, let t ∈ [0, T] and partition the time interval [0, T] into subintervals

[Tj−1, Tj] with j = 1, . . . , p and 0 = t0 = T0 < T1 < . . . < Tp = T . Writing

60

(B.2) at the last time point t = T and separating the integral (i.e. the

inhomogeneous response) over the full time interval into a sum of integrals

over the subintervals results in the following:

K(T) = Φ(T, 0)K0 Φ(T, 0)T +

∫ T

0

Φ(T, τ)F (τ)F (τ)T Φ(T, τ)T dτ

= Φ(T, 0)K0 Φ(T, 0)T +

∫ T1

0

Φ(T, τ)F (τ)F (τ)T Φ(T, τ)T dτ

+

∫ T2

T1

Φ(T, τ)F (τ)F (τ)T Φ(T, τ)T dτ + . . .

+

∫ T

Tp−1

Φ(T, τ)F (τ)F (τ)T Φ(T, τ)T dτ.

(B.5)

Next, by using the properties of the state-transition matrix

Φ(tq, ts) = Φ(tq, tr) Φ(tr, ts)

Φ(tq, ts)
T = Φ(tr, ts)

T Φ(tq, tr)
T ,

(B.6)

where q, r, s = 0, 1, 2, . . ., (B.5) can be expanded as follows:

K(T) = Φ(T, 0)K0 Φ(T, 0)T

+

∫ T1

0

Φ(T, T1) Φ(T1, τ)F (τ)F (τ)T Φ(T1, τ)T Φ(T, T1)T dτ

+

∫ T2

T1

Φ(T, T2) Φ(T2, τ)F (τ)F (τ)T Φ(T2, τ)T Φ(T, T2)T dτ + . . .

+

∫ T

Tp−1

Φ(T, T) Φ(T, τ)F (τ)F (τ)T Φ(T, τ)T Φ(T, T)T dτ.

(B.7)

61

The state-transition matrices which do not have τ as an argument are then

moved outside their respective integrals, which leads to

K(T) = Φ(T, 0)K0 Φ(T, 0)T

+ Φ(T, T1)

(∫ T1

0

Φ(T1, τ)F (τ)F (τ)T Φ(T1, τ)T dτ

)
Φ(T, T1)T

+ Φ(T, T2)

(∫ T2

T1

Φ(T2, τ)F (τ)F (τ)T Φ(T2, τ)T dτ

)
Φ(T, T2)T + . . .

+ Φ(T, T)

(∫ T

Tp−1

Φ(T, τ)F (τ)F (τ)T Φ(T, τ)T dτ

)
Φ(T, T)T .

(B.8)

Finally, noting that

Φ(tq, tq) = I (B.9)

by definition, where I is the identity matrix, (B.8) can be simplified as follows:

K(T) = Φ(T, 0)K0 Φ(T, 0)T + Φ(T, T1) K̃1(T1) Φ(T, T1)T

+ Φ(T, T2) K̃2(T2) Φ(T, T2)T + . . .

+ Φ(T, Tp−1) K̃p−1(Tp−1) Φ(T, Tp−1)T + K̃p(T),

(B.10)

where

K̃i(u) =


∫ u
Ti−1

Φ(t, τ)F (τ)F (τ)T Φ(t, τ)T dτ Ti−1 ≤ u ≤ Ti

0 otherwise

(B.11)

is the solution to the inhomogeneous subproblem which belongs to the subinterval

[Ti−1, Ti] and i = 1, 2, . . . , p. The K̃i are then propagated through time until

the last time point of the time interval t = T by multiplying them respectively

by Φ(T, Ti) and Φ(T, Ti)
T from the left and from the right. This corresponds

exactly to solving the associated homogeneous subproblems using the solution

to the inhomogeneous subproblem at the last time point K̃i(Ti) as an initial

condition as discussed in Section 4.2. Moreover, the first and last term on

62

the right-hand side of (B.10) represent the purely homogeneous and purely

inhomogeneous solutions as shown in Fig. 4–1.

The next step is to prove that the total solution K(t) at any given time

t can be obtained by superposition of all the solutions at that point in time.

According to Fig. 4–1, all the solutions at any point in time consist of one

inhomogeneous solution and one or more homogeneous solutions, one of which

is a purely homogeneous solution with initial condition K0. With this in

mind, let t ∈ [Tk−1, Tk], where 1 < k < p, k ∈ N, and [Tk−1, Tk] is an arbitrary

subinterval. The total solution in (B.10) at time t is then given by

K(t) = Φ(t, 0)K0 Φ(t, 0)T + Φ(t, T1) K̃1(T1) Φ(t, T1)T + . . .

+ Φ(t, Tk−1) K̃k−1(Tk−1) Φ(t, Tk−1)T + Φ(t, Tk) K̃k(Tk) Φ(t, Tk)
T + . . .

+ K̃p(T).

(B.12)

Since t < Tk, the terms to the right of Φ(t, Tk) K̃k(Tk) Φ(t, Tk)
T in (B.12)

are equal to zero due to (B.11) and all instances of Tk are replaced with t as

follows:

K(t) = Φ(t, 0)K0 Φ(t, 0)T + Φ(t, T1) K̃1(T1) Φ(t, T1)T + . . .

+ Φ(t, Tk−1) K̃k−1(Tk−1) Φ(t, Tk−1)T + Φ(t, t) K̃k(t) Φ(t, t)T

= Φ(t, 0)K0 Φ(t, 0)T + Φ(t, T1) K̃1(T1) Φ(t, T1)T + . . .

+ Φ(t, Tk−1) K̃k−1(Tk−1) Φ(t, Tk−1)T + K̃k(t).

(B.13)

Clearly, the first term, middle terms, and last term on the right-hand side of

(B.13) correspond respectively to the purely homogeneous solution with initial

condition K0, other homogeneous solutions, and an inhomogeneous solution.

Therefore, K(t) is shown to be obtainable by summation of all these solutions,

which completes the proof.

63

