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Abstract 

Biological Chiral Lyotropic Liquid Crystals (BCLLCs) possess promising applications in 

crucial fields including advance photonic area, biomimicry, stimuli-responsive material design, 

and more. The wide range of structure-related applications and the highly sought after features 

of BCLLCs such as biodegradability and biocompatibility drive the need to thoroughly 

understand BCLLCs self-assembly, and as a result, this field has been placed at the forefront 

of research and development of advanced materials. Despite remarkable progress achieved 

over the past decades, the self-assembly in these materials has not been fully understood so far.  

In the present Ph.D. thesis, we use multi-scale multi-transport multi-dimensional modeling 

and Direct Numerical Simulation to study inextricably linked phenomena of phase separation 

and long-range orientational ordering in the BCLLCs self-assembly, which are of paramount 

importance in material design and engineering. In particular, we focus on three well-known 

BCLLCs: collagen, β-lactoglobulin amyloid fibrils (BLG), and cellulose nanocrystals (CNC). 

We develop phase diagrams for collagen dispersions and explore physics governing the phase 

transition boundaries. Thereafter, the growth of a single cholesteric droplet is investigated to 

reveal mechanisms involved through structure formation within a growing chiral droplet. 

Furthermore, the nucleation-and-growth zone exiting in the phase diagram is explored and 

exhaustively characterized in the terms of fundamental quantities such as induction time, 

nucleation duration and droplets’ size, morphology, population, growth laws, and more. 

Machine learning techniques are then utilized to develop wide-range correlations for the 

characterizations. Using free energy analyses, the physics behind the nucleation-and-growth 

mechanism is also elucidated in detail. Finally, we bring our focus on an in-depth 

understanding of the mechanisms involved in the paranematic-to-cholesteric (PN-N*) 

relaxation of BCLLCs. Not only do we reveal the physics behind the PN-N* relaxation, but 

also a novel systematic framework is proposed to estimate viscoelastic properties such as 

Landau elastic constant (L1) and rotational viscosity, which are hardly measurable for BCLLCs 

with the existing experimental protocols.  

Taken altogether, the results presented in this Ph.D. thesis deepen understanding of BCLLCs 

self-assembly and contribute to advance both the science and engineering aspects of this field, 

potentially narrowing down the gap between currently in-use experimental protocols and the 

sought-after material performance.  
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Résumé 

Les Cristaux Liquides Biologiques Chiraux Lyotropes (CLBCL) possèdent des applications 

prometteuses dans des domaines cruciaux tels que les études photonique avancées, le 

biomimétisme, la conception de matériaux sensibles aux stimuli, etc. Le large éventail 

d'applications liées à la structure et les caractéristiques très recherchées des CLBCL, telles que 

la biodégradabilité et la biocompatibilité, rendent nécessaire une compréhension approfondie 

de l'auto-assemblage des CLBCL, et c'est pourquoi ce domaine a été placé à l'avant-garde de 

la recherche et du développement de matériaux avancés. Malgré les progrès remarquables 

réalisés au cours des dernières décennies, l'auto-assemblage de ces matériaux n'a pas encore 

été entièrement compris.  

Dans la présente thèse de doctorat, nous utilisons la modélisation multidimensionnelle, 

multi-échelle et multi-transport, et la simulation numérique directe pour étudier les 

phénomènes inextricablement liés de séparation de phases et d'ordre d'orientation à longue 

distance dans l'auto-assemblage des CLBCL, qui sont d'une importance capitale dans la 

conception et l'ingénierie des matériaux. Nous nous concentrons en particulier sur trois CLBCL 

bien connus : le collagène, β-lactoglobuline fibrilles amyloïdes, et les nanocristaux de 

cellulose. Nous développons des diagrammes de phase pour les dispersions de collagène et 

explorons la physique régissant les limites de transition de phase. Par la suite, la croissance 

d'une gouttelette cholestérique unique est étudiée pour révéler les mécanismes impliqués par la 

formation de structure au sein d'une gouttelette chirale en croissance. En outre, la zone de 

nucléation et de croissance qui sort du diagramme de phase est explorée et caractérisée de 

manière exhaustive en termes de quantités fondamentales telles que le temps d'induction, la 

durée de nucléation et la taille des gouttelettes, la morphologie, la population, les lois de 

croissance, etc. Des techniques d'apprentissage automatique sont ensuite utilisées pour 

développer des corrélations à grande échelle pour les caractérisations. En utilisant des analyses 

d'énergie libre, la physique derrière le mécanisme de nucléation et de croissance est également 

élucidée en détail. Enfin, nous mettons l'accent sur une compréhension approfondie des 

mécanismes impliqués dans la relaxation paranématique-cholestérique (PN-N*) des CLBCL. 

Non seulement nous révélons la physique derrière la relaxation PN-N*, mais un nouveau cadre 

systématique est proposé pour estimer les propriétés viscoélastiques telles que la constante 

élastique de Landau (L1) et la viscosité rotationnelle, qui sont difficilement mesurables pour 

les CLBCL avec les protocoles expérimentaux existants.  
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Dans l'ensemble, les résultats présentés dans cette thèse de doctorat approfondissent la 

compréhension de l'auto-assemblage des CLBCL et contribuent à faire progresser les aspects 

scientifiques et techniques de ce domaine, en réduisant potentiellement l'écart entre les 

protocoles expérimentaux actuellement utilisés et les performances recherchées du matériau.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Contents 

Dedication .............................................................................................................................. i 

Contributions of the Authors ................................................................................................. ii 

Acknowledgments ............................................................................................................... iii 

Résumé .................................................................................................................................. v 

Chapter 1. Introduction ......................................................................................................... 1 

1.1 Thesis Motivation ........................................................................................................ 1 

1.2 Thesis Objectives ........................................................................................................ 3 

1.3 Thesis Organization .................................................................................................... 5 

References (Chapter 1) ...................................................................................................... 8 

Chapter 2. Background ........................................................................................................ 10 

2.1 Liquid Crystals (LCs) ................................................................................................ 10 

2.2 Biological Chiral Lyotropic Liquid Crystals and Applications ................................ 12 

2.3 Need for Mathematical Modelling and Direct Numerical Simulation of BCLLCs Self-

assembly ............................................................................................................................... 13 

2.4 Equilibrium Phase Diagram ...................................................................................... 14 

2.4.1 Preliminaries ...................................................................................................... 15 

2.4.2 Onsager .............................................................................................................. 18 

2.4.3 Generic Approach for Phase Diagram Construction .......................................... 18 

2.5 Dynamical Modeling of BCLLCs ............................................................................. 20 

2.5.1 Total Free Energy ............................................................................................... 20 

2.5.2 Governing Equations .......................................................................................... 23 

References ....................................................................................................................... 24 

Chapter 3. Thermodynamic modelling of acidic collagenous solutions: from free energy 

contributions to phase diagrams............................................................................................... 28 

3.1 Preface ....................................................................................................................... 29 

3.2 Abstract ..................................................................................................................... 29 

3.3 Introduction ............................................................................................................... 30 



viii 

 

3.4 Thermodynamic model ............................................................................................. 33 

3.4.1 Free energy contributions for charged chiral calamitic mesogen ...................... 33 

3.4.2 Energy contributions for chiral charged mesogen solutions in isotropic solvents

.......................................................................................................................................... 39 

3.5 Phase diagrams .......................................................................................................... 43 

3.5.1 Binodals .............................................................................................................. 43 

3.5.2 Isotropic-cholesteric phase transition ................................................................. 43 

3.6 Asymptotic analysis .................................................................................................. 43 

3.7 Results and discussion ............................................................................................... 44 

3.8 Conclusions ............................................................................................................... 55 

3.9 Acknowledgement ..................................................................................................... 55 

References (Chapter 3) .................................................................................................... 56 

3.10 Supporting Information, ESI (Chapter 3) ................................................................ 61 

3.10.1 Appendix A: Details of energy landscape derivation....................................... 61 

3.10.2 Appendix B: Model Parameters and Material Properties Used in Computation 

of Phase Diagrams ........................................................................................................... 70 

3.10.3 Appendix C: Consistency with previous studies .............................................. 74 

3.10.4 Appendix D: Nomenclature ............................................................................. 75 

References of Supporting Information (Chapter 3) ........................................................ 78 

Chapter 4. Theoretical Platform for Liquid-Crystalline Self-Assembly of Collagen-Based 

Biomaterials ............................................................................................................................. 81 

4.1 Preface ....................................................................................................................... 82 

4.2 Abstract ..................................................................................................................... 82 

4.3 Keywords .................................................................................................................. 83 

4.4 Introduction ............................................................................................................... 83 

4.5 Continuum methodology for simulation of liquid-crystalline Self-assembly of 

tropocollagen dispersed in acidic aqueous solutions ........................................................... 88 

4.5.1 Long-Range Description of Molecular Alignment ............................................ 88 



ix 

 

4.5.2 Free Energy Contributions for Pure Charged Cholesterogens; Incorporation of 

Biaxial Order Parameter .................................................................................................. 89 

4.5.3 Mixing Free Energy of Binary Dispersions Consisting a Charged Cholesterogen 

and Small-Sized Solvent .................................................................................................. 91 

4.5.4 Total Free Energy Tailored for Tropocollagen Self-Assembly in Acidic Aqueous 

Solutions .......................................................................................................................... 94 

4.5.5 Governing Equations for Kinetics of Self-Assembly; Orientational Relaxation, 

and Uphill Diffusion ........................................................................................................ 95 

4.5.6 Computational details ......................................................................................... 96 

4.6 Results and discussions ............................................................................................. 98 

4.7 Conclusions ............................................................................................................. 104 

4.8 Nomenclature .......................................................................................................... 105 

4.9 Acknowledgments ................................................................................................... 108 

References (Chapter 4) .................................................................................................. 108 

4.10 Supplementary Information .................................................................................. 114 

4.10.1 Sequential Steps of Self-assembly Simulations ............................................. 114 

4.10.2 Technical Details of Numerical Simulations ................................................. 117 

References of Supporting Information (Chapter 4) ...................................................... 117 

Chapter 5. Nucleation and growth of cholesteric collagen tactoids: A time-series statistical 

analysis based on integration of direct numerical simulation (DNS) and long short-term 

memory recurrent neural network (LSTM-RNN) .................................................................. 119 

5.1 Preface ..................................................................................................................... 120 

5.2 Graphical Abstract .................................................................................................. 120 

5.3 Abstract ................................................................................................................... 120 

5.4 Keywords ................................................................................................................ 121 

5.5 Introduction ............................................................................................................. 121 

5.6 Methodology ........................................................................................................... 124 



x 

 

5.6.1 Direct numerical simulation (DNS); energy landscape and governing equations

........................................................................................................................................ 124 

5.6.2 Characteristic length ......................................................................................... 127 

5.6.3 Surrogate model ............................................................................................... 127 

5.6.4 Symbolic regression ......................................................................................... 129 

5.7 Results and discussions ........................................................................................... 129 

5.7.1 Cholesteric tactoids zone in Collagen’s equilibrium thermodynamic phase 

diagram .......................................................................................................................... 129 

5.7.2 Induction period ............................................................................................... 131 

5.7.3 Nucleation ........................................................................................................ 132 

5.7.4 Coarsening ........................................................................................................ 136 

5.7.5 Mechanisms and principles governing the quench depth dependence of the NG 

characteristics ................................................................................................................. 142 

5.7.6 Mechanisms and principles governing the growth law exponent, n, during the 

nucleation period ............................................................................................................ 145 

5.8 Conclusions ............................................................................................................. 146 

5.9 Acknowledgments ................................................................................................... 149 

References (Chapter 5) .................................................................................................. 149 

5.10 Supporting Information ......................................................................................... 160 

5.10.1 Supplementary Note S1: Details of obtaining results from DNS .................. 160 

5.10.2 Supplementary Note S2: Details of LSTM-RNNs implemented in the present 

study ............................................................................................................................... 161 

5.10.3 Supplementary Note S3: Log-log plots of the universal growth laws ........... 161 

5.10.4 Supplementary Note S4: Formulation of the tactoids depopulation during the 

coarsening period ........................................................................................................... 166 

5.10.5 Supplementary Movies ................................................................................... 167 

References of Supporting Information (Chapter 5) ...................................................... 167 



xi 

 

Chapter 6. Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to 

cylindrical geometry .............................................................................................................. 168 

6.1 Preface ..................................................................................................................... 169 

6.2 Abstract ................................................................................................................... 169 

6.3 Introduction ............................................................................................................. 170 

6.4 Results ..................................................................................................................... 172 

6.4.1 Distinct relaxation dynamics ............................................................................ 172 

6.4.2 Mechanisms of BLG and CNC relaxations ...................................................... 176 

6.4.3 Understanding the physical origins of relaxation mechanisms ........................ 180 

6.4.4 Properties estimation and relaxation time controllers ...................................... 184 

6.5 Discussion ............................................................................................................... 185 

6.6 Methods ................................................................................................................... 187 

6.6.1 Preparation of BLG cholesteric bulk ................................................................ 187 

6.6.2 Preparation of CNC cholesteric bulk ............................................................... 187 

6.6.3 Preparation of BLG and CNC samples for optical microscopy ....................... 187 

6.6.4 PolScope ........................................................................................................... 188 

6.6.5 Direct numerical simulation ............................................................................. 188 

6.7 Acknowledgments ................................................................................................... 191 

References (Chapter 6) .................................................................................................. 191 

6.8 Supporting Information (Chapter 6) ........................................................................ 196 

References of Supporting Information (Chapter 6) ...................................................... 230 

Chapter 7. Conclusions and Outlook ................................................................................ 232 

7.1 General Conclusions ............................................................................................... 232 

7.2 Contributions to Original Knowledge ..................................................................... 235 

7.3 Recommendations for Future Work ........................................................................ 237 

References ..................................................................................................................... 238 

 



xii 

 

List of Figures 

Figure 1-1. Thesis organization flowchart. In each rectangle, the objectives of the chapter 

are summarized. Also, the solid arrows show the connectivity between chapters. ................... 6 

Figure 2-1. Schematic representation of (a) rod-like mesogen and director, (b) isotropic 

phase, (c) nematic phase, (c) smectic phase, and (d) cholesteric phase, the helix axis, and pitch 

length p0. ................................................................................................................................. 11 

Figure 2-2. The flexibility of fibers in a dispersion can change from worm-like (low 

persistence length) to rigid (high persistence length) through increasing ionic strength. ....... 15 

Figure 2-3. (a) The schematic representation of a needle-like mesogen charged positively 

along with the resulting repulsion region around it. All three fibrous LCs investigated in this 

thesis have such rod-shaped rigid geometry. (b) The decaying electrostatic potential close to 

the positively charged surface of the mesogen, and the qualitative behavior of the electrostatic 

potential with respect to the increase of ionic strength. As the solution concentration of mobile 

ions increases, the ionic strength increases, and correspondingly more ions attach to the 

mesogen surface, causing that the electrostatic potential drops in a shorter distance. ............ 16 

Figure 2-4. The schematical illustration of the excluded volume formed by two fibers. The 

spatial configuration of two adjacent rods forms a parallelepiped space that can’t be occupied 

by other fibers. The parallelepiped volume is called “excluded volume”. .............................. 17 

Figure 3-1. Organization of the present study. Numbers on the left top side of boxes are the 

numbers of (sub)sections. ........................................................................................................ 33 

Figure 3-2. The potential of orientation-dependent intermolecular interaction,U, along the 

phase transition curve. The red squares are calculated based on the phase transition data 

reported in reference16.............................................................................................................. 45 

Figure 3-3. Phase diagram of the acidic collagenous solution at 25 °C. The black solid lines 

from left to right indicate lower binodal curve, I-N* phase transition and upper binodal curve. 

The color shows the variation of the macroscopic order parameter S in the phase diagram. The 

red dash lines and green dash-dotted lines are binodal curves for Onsager and SLO theories44.

.................................................................................................................................................. 47 

Figure 3-4. The uniaxial order parameter S as a function of the net cholesteric potential W.  

The predicted value of S at the transition is relatively low and less than 0.4. ......................... 49 

Figure 3-5. Coupling parameters along the A) phase transition curve B) cholesteric 

metastability curve (cholesteric binodal).  See equations 3-21b-e. The sum of these three 

coupling parameters is the net cholesteric potential W. .......................................................... 50 



xiii 

 

Figure 3-6. Typical variation of the net cholesteric potential with respect to the 

concentrations of collagen and acetic acid concentration [AA] in the cholesteric region of phase 

diagram shown in Figure 3-3. .................................................................................................. 53 

Figure 3-7. The chimney-like equilibrium phase diagrams for the acidic collagenous 

solutions, A) 4 mM acetic acid and B) 1000 mM acetic acid. ................................................. 54 

Figure 3-8. Phase ordering of two positively charged rods. ............................................... 62 

Figure 3-9. Schematic of the principle of charge neutrality. There are 16 H+ (7 cations on 

the collagen backbone and 9 cations are mobile in dispersion) and 16 A-. ............................. 68 

Figure 3-10. Dependence of  L/Deff on collagen concentration........................................... 69 

Figure 3-11. Experimental equilibrium pitch extracted from the reference17. .................... 71 

Figure 3-12. The pH-dependent linear charge density of collagen. .................................... 73 

Figure 4-1. Phase diagram of tropocollagen in acidic aqueous solutions. The black solid 

lines are binodal curves and the black dashed line is phase transition boundary. The quench 

point and the evolution path are shown by a red square and a blue solid line, respectively. This 

figure is adapted from reference20. The schematics denote the isotropic phase at low collagen 

concentrations, a typical micron-sized cholesteric drop in an isotropic bulk at intermediate 

concentrations, and the chiral nematic (N*) or cholesteric phase at higher concentrations. ... 86 

Figure 4-2. Schematic of the computational domain, in which a small chiral nematic drop is 

initially seeded, and allowed to naturally grow in coexistence with an isotropic phase. ........ 87 

Figure 4-3. The spatial distributions of order parameters, S and P, in conjunction with the 

director configuration at the early growth of cholesteric tactoid shown in panels a), b), c) and 

d). In the first column the uniaxial configuration, n, of tropocollagen macromolecules are 

represented by rods whose color (blue to red) shows the uniaxial order parameter, S. To 

complete the understanding about the configuration of rods in xy-plane, in the second column, 

the z component of n is shown by use of a monochromatic blue spectrum. In last column, the 

monochromatic cyan denotes the variation of biaxial order parameter during the time evolution. 

Panel e) illustrating the color bars for S, nz and P, the used coordination of system and length-

scale bar. ................................................................................................................................ 100 

Figure 4-4. The equilibrium spatial distributions of a1) uniaxial order parameter, S, and the 

relaxed uniaxial director, n, b) z component of uniaxial director, c) concentration, and d) biaxial 

order parameter, P. Panel a2) showing the magnified rotation of tropocollagen placed in the 

yellow dash-line box. Panel a3) indicating the non-singular escaped  λ+1 disclination emerges 

at the center of tactoid. Panel e) representing the color bars for S, nz, P, and C, the used 

coordination of system and length-scale bar. ......................................................................... 102 



xiv 

 

Figure 4-5. The dynamics of the averaged free energy contributions, given in eqn.(4-28), 

through a shallow quench from an isotropic state into cholesteric phase—the quench point and 

evolution path are shown in Figure 4-1. The solid lines correspond to the left y-axis and dash 

lines should be referred to the right y-axis. ............................................................................ 103 

Figure 4-6. Sequential steps of numerical solving of governing equations, data processing 

and data visualization. ............................................................................................................ 115 

Figure 5-1. (a) Schematic illustration of the terminologies used in this study; squares 

indicate a time-series of each target quantity (i.e. tactoids population or characteristic length). 

(b) The input/output of the LSTM-RNN used as a fast surrogate model. The LSTM-RNNs are 

trained by the early time-series of target quantities and then the trained networks forecast the 

future of time-series (i.e. remaining time-series). .................................................................. 129 

Figure 5-2. The acidic aqueous collagen solution phase diagram in terms of acetic acid (mM) 

versus collagen concentration (mg/ml). The left and right solid black curves represent the lower 

and upper binodal curves denoted by Ci and Cch, respectively. The green zone is a computed 

estimate where the NG regime exists. The red circle is an arbitrary quench point inside the NG 

zone (green zone), for which the phase separation follows the red arrows. Regardless of where 

the quenching point is, phase separation leads to two phases; collagen-lean and collagen-rich 

phases which yield a continuous isotropic matrix phase and dispersed cholesteric tactoids, 

respectively. ........................................................................................................................... 130 

Figure 5-3. The graphical and tabular (inset) representations of induction times at various 

quench percentages. The induction period takes place during the early stage of the NG 

processes. The power law is approximately tl ≈ ηq-5, showing a strong sensitivity to 

quenching depth. .................................................................................................................... 132 

Figure 5-4. (a) Evolution of the uniaxial director field at a shallow quench (ηq = 12.5%) 

and a deeper quench (ηq = 30.0%). The first and last columns indicate the beginning, t = tl, 

and the end, t = tl + tn, of the nucleation period, respectively. The blue-to-red spectrum and 

black color show the order parameter, S, and isotropic phase, respectively. See the 

Supplementary Movies S1 through S4 for all the time sequences corresponding to the 

nucleation period of  ηq = 12.5%, 15%, 25% and 30%, respectively. (b) Size distribution at 

ηq = 12.5%. The size distributions of other quenches has a similar trend. (c) The quench depth 

dependence of characteristic length, 〈L〉. See the Supplementary Note S3 for the corresponding 

log-log plots.  (d) The quench depth dependence of tactoids population,  N. (e) The quench 

depth dependence of tactoids population peak, Nm, and nucleation duration, tn. (f) The tabular 



xv 

 

representation of panel (e). NB: the information shown in all panels corresponds to the 

nucleation period. ................................................................................................................... 133 

Figure 5-5. (a) Evolution of the uniaxial director field during the coarsening period at a 

shallow quench (ηq=15%) and a deeper quench (ηq=25%). The first column indicates the 

beginning of coarsening which is coincident with the end of the nucleation period, t = t0C =

tl + tn. The blue-to-red spectrum and black color exhibit order parameter, S, and isotropic 

phase, respectively. See the Supplementary Movies S2 and S3 for all the time sequence 

corresponding to the three NG stages for ηq=15% and 25%, respectively. (b) Size distribution 

at ηq=25% during the coarsening period. The size distributions of other quenches have a similar 

trend during coarsening.  (c,d) The characteristic length, L, during the entire quench process at 

a shallow quench (ηq=15%) and a deeper quench (ηq=25%), respectively. See the 

Supplementary Note S3 for the corresponding log-log plots during the coarsening period. (e,f) 

The tactoids population during the entire quench process at a shallow quench (ηq=15%) and a 

deeper quench (ηq=25%), respectively. General Note regarding panels (c-f): the excellent 

performances of the LSTM-RNN and the proposed correlations are shown by solid black and 

blue curves moreover all NG stages obtained by DNS are distinguished by different colors with 

the circle marker, refer to the legends shown in the graphs................................................... 137 

Figure 5-6. Overview of the workflow applied to develop the correlations. .................... 141 

Figure 5-7. The graphical representation of correlations developed for (a) the growth laws 

and (b) the tactoids population during coarsening periods. Note that see the Supplementary 

Note S3 for the log-log plot of the panel (a). ......................................................................... 142 

Figure 5-8. Time evolution of system energy at a shallow quench (ηq=15%) and a deeper 

quench (ηq=25%), see the graph legend................................................................................. 143 

Figure 5-9. (a) The time-series images showing the evolution of fibers configuration in a 

growing cholesteric tactoid. The blue-to-red spectrum and black color exhibit order parameter, 

S, and isotropic phase, respectively. See the Supplementary Movie S5 for all the time sequence. 

(b) The characteristic length of the growing tactoid depicted in panel (a). NB: the results 

illustrated in both panels are obtained by the non-diffusive model (i.e. only Q-tensor equation 

is numerically solved). ........................................................................................................... 145 

Figure 5-10. The overview of workflow applied to obtain results; from computing the results 

using DNS to Image Processing in regards to data extraction. .............................................. 160 

Figure 5-11. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the nucleation period for ηq = 12.5%, R2=0.970. ........ 162 

file:///D:/McGill_Cloud/Notes_2021_03_27/Thesis/After_Oral_Defense/Final%20Submission/Revised_Khadem_Sayyed%20Ahmad_Chemical%20Engineering_thesis.docx%23_Toc68086701
file:///D:/McGill_Cloud/Notes_2021_03_27/Thesis/After_Oral_Defense/Final%20Submission/Revised_Khadem_Sayyed%20Ahmad_Chemical%20Engineering_thesis.docx%23_Toc68086701


xvi 

 

Figure 5-12. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the nucleation period for ηq = 15.0%, R2=0.980. ........ 163 

Figure 5-13. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the nucleation period for ηq = 20.0%, R2=0.976. ........ 163 

Figure 5-14. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the nucleation period for ηq = 25.0%, R2=0.971. ........ 164 

Figure 5-15. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the nucleation period for ηq = 30.0%, R2=0.970. ........ 164 

Figure 5-16. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the coarsening period for ηq = 15.0%, R2=0.998. The 

green zones in the panels (a) and (b) correspond to the same time interval, moreover, the pink 

zones show the remaining time interval. At the beginning of the coarsening period, the slight 

deviation of the curve fitted with the DNS results is magnified in the logarithmic scale (see the 

green zones). .......................................................................................................................... 165 

Figure 5-17. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during the coarsening period for ηq = 25.0%, R2=0.979. The 

green zones in the panels (a) and (b) correspond to the same time interval, moreover, the pink 

zones show the remaining time interval. At the beginning of the coarsening period, the slight 

deviation of the curve fitted with the DNS results is magnified in the logarithmic scale (see the 

green zones). .......................................................................................................................... 165 

Figure 5-18. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. 

tactoids average diameter) during coarsening period for ηq% =12.5, 15.0, 20.0, 25.0, and 30.0, 

and the corresponding R2are 0.989, 0.998, 0.979, 0.979, and 0.979, respectively. .............. 166 

Figure 6-1. Slow-fast and smooth relaxation dynamics corresponding to BLG and 

CNC, respectively. (a-f) Time-series snapshots of BLG microscopy (POM) images. (g-l) 

Time-series snapshots of CNC microscopy (POM) images. The images shown in panels(a-l) 

were experimentally acquired using the LC PolScope device and different colors represent 

different director field orientations which are appreciated according to the colormap depicted 

as the inset in the panel (f). See Supplementary Note 1 for the detailed discussion on the 

mapping between fibers orientation and colormap. Note that the colormap shown as the inset 

in the panel (f) is applicable for all the microscopy images studied in this work.  Over the 

relaxation time, cholesteric fingerprints progressively propagate into the unwound state (dark 

zone). Times elapsed from the beginning of relaxation are shown on top-left corners; min and 



xvii 

 

hr stand for minutes and hours, respectively. (m) Experimental observation and numerical 

simulation on the normalized relaxation progress curve, R, for BLG. The labels B1 to B6 

correspond to Figure 6-2. (n) Experimental observation and numerical simulation on the 

normalized relaxation progress curve, R, for CNC. The labels C1 to C4 correspond to Figure 

6-3. (o) The coordinate system used throughout this study along with a schematic illustration 

of a capillary tube indicating the ground state of fibers configuration in a circular cross-section 

in the xz-plane, known as concentric, and the averaged fibers configuration in a lateral plane 

in the xy-plane, known as chiral monodomain. The averaged fibers configuration on the lateral 

plane is representative of the colormap PolScop analysis shown in the panels (a-l). ............ 173 

Figure 6-2. Mechanism of slow-fast dynamic in BLG relaxation. (a) The colormap 

indicating the fibers orientation in the experimental POM panels captured by the LC PolScope 

device (see Supplementary Note 1 for further information), the blue-to-red spectrum showing 

the order parameter, S, computed by direct numerical simulation (see Supplementary Note 6 

for further information), and the coordinate system. (b) Initialization of director field in direct 

numerical simulation, representing the initial configuration of fibers. (c, e, g, i, k) The 

experimental POM panels corresponding to the B2 to B6 stages shown in Figure 6-1(m). (d, f, 

h, j, l) The schematic fibers orientation and their order parameter computed by direct numerical 

simulation in the lateral plane for the B2 to B6 stages shown in Figure 6-1(m). . General Note: 

the label numbers from B1 through B6 are marked in Figure 6-1(m). ................................... 178 

Figure 6-3. Mechanism of smooth dynamic in CNC relaxation. (a) The colormap 

indicating the fiber orientation in the experimental POM panels captured by the LC PolScope 

device (see Supplementary Note 1 for further information), the blue-to-red spectrum showing 

the order parameter, S, computed by direct numerical simulation (see Supplementary Note 6 

for further information), and the coordinate system. (b) Initialization of director field in direct 

numerical simulation, representing the initial configuration of fibers. (c, e, g) The experimental 

POM panels corresponding to the C2 to C4 stages shown in Figure 6-1(n). (d, f, h) The 

schematic fibers orientation and their order parameter computed by direct numerical simulation 

in the lateral plane for the C2 to C4 stages shown in Figure 6-1(n). General Note: the label 

numbers from C1 through C4 are marked in Figure 6-1(n). ................................................... 179 

Figure 6-4. The generic mechanism of relaxation dynamics. (a, b) Parametric analyses of 

the normalized relaxation progress, R, showing that smooth relaxation dynamics arise, 

provided coherence length is greater than a threshold. η stands for the rotational viscosity 

coefficient. (c, d) The interplay between homogeneous and elastic free energies, and the 

resulting net free energy. The grey-hatched zones indicate the period over which the order 



xviii 

 

parameter of the para-nematic phase is dropped, Phase (I), and the remaining white-hatched 

zones correspond to front propagation, Phase (II).  During the former and the latter, as can be 

appreciated by net free energy behavior, elastic and homogeneous contributions mainly control 

net free energy, respectively. Note that all graphs exhibit the spatial-averaged quantities and 

the panels (c) and (d) correspond to the BLG and CNC relaxations, respectively. (e-h) POM 

images showing no significant change in the cholesteric zone during each of the four BLG 

plateaus marked in Figure 6-1(m). These POM images were experimentally acquired using the 

LC PolScope device. Scale bar is p∞=43µm. ......................................................................... 181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 

 

List of Tables 

Table 2-1. Representative examples of well-known BCLLCs and their analogues in nature 

1, 6, 7. .......................................................................................................................................... 12 

Table 2-2. Summary of five free energy contributions used in the present Ph.D. thesis, and 

their physical interpretation 1. .................................................................................................. 21 

Table 3-1. The physical properties of components in acidic collagenous solution. ........... 70 

Table 3-2. Solubility parameters ......................................................................................... 71 

Table 3-3. Nomenclature ..................................................................................................... 75 

Table 4-1. The material properties and parameter values used in the present paper. The 

square-brackets next to the values indicate the corresponding unit, and [-] shows dimensionless. 

Note: for those parameters which have not been documented for solutions of tropocollagen, the 

common values are used instead. Readers are referred to references20, 21, 64-67 for details of 

parameter selection. ................................................................................................................. 99 

Table 5-1. Proposed correlations describing tactoids population, N, and growth laws 〈L〉, 

during nucleation periods. N and 〈L〉 are obtained by Symbolic Regression and Classical 

Regression, respectively. ....................................................................................................... 134 

Table 5-2. The proposed correlations describing the tactoids population, N, and the growth 

laws, L, during coarsening periods. N and L are obtained by Symbolic Regression and Classical 

Regression, respectively. ....................................................................................................... 141 

Table 5-3. Summary of quench depth dependence of the NG characteristics. Upward and 

downward arrows qualitatively signify increase and decrease, respectively. ........................ 143 

Table 5-4. The material properties and parameter values used in the DNS. The square-

brackets show the corresponding unit. ................................................................................... 161 

Table 5-5. Hyperparameters used for the LSTM-RNNs ................................................... 161 

Table 6-1. BLG and CNC properties obtained by the experiment and/or simulation. See 

Supplementary Note 2 for further information on the properties. ......................................... 184 

Table 6-2. Order parameter and rotational viscosity of para-nematic mediums.  ‡ signifies 

the local minima, see Supplementary Note 5 and Movies 4, 6. ............................................. 185 

 

 



1 

 

Chapter 1. Introduction  

1.1 Thesis Motivation 

“Look deep into nature, and then you will understand everything better”. 

Albert Einstein 

Earth is about 4.54 billion years old! 1 In the course of such a long span, Nature has 

evolutionarily devised optimal solutions for the problems it encountered, resulting in the 

magnificent Nature! To name a very few examples of Nature’s fascinating solutions, the color 

change observed in the plant and animal kingdoms (e.g. the fish Chrysiptera cyanea, the beetle 

Tmesisternus isabellae, the tropical plant Selaginella willdenowii) due to environmental stimuli 

2-7, the transparency of cornea, the mechanical properties of bone, and more. Nature’s 

fascinating solutions have inspired engineers and scientists to employ Nature’s solutions in 

design and fabrication and precursor materials. This approach is known as biomimicry, and the 

man-made materials fabricated in this way are called bioinspired materials or biomaterials. 

There is evidence that hierarchically structured biological materials (e.g. cornea, bone, 

tendon, beetle exocuticle, plant cell wall, etc.) have had a liquid crystalline stage in their 

morphogenesis through which their primary structures are formed 8. Besides, their fibril 

structures have a profound impact on their properties. Therefore, the bioinspired material 

design can be successfully expanded through an in-depth understanding of the liquid crystalline 

ordering. The present Ph.D. thesis focuses on three Biological Chiral Lyotropic Liquid Crystals 

(BCLLCs): collagen, β-lactoglobulin amyloid fibrils (BLG), and cellulose nanocrystals (CNC) 

which are ubiquitously found in biological materials—Note that biological materials are those 

found in nature whereas, as pointed out earlier, biomaterials are man-made.  

 BCLLCs have shown myriad applications in the advanced material design inspired by 

Nature, ranging from stimuli-responsive materials in sensor design 9 to fabrication of artificial 

human organs mimicking their natural counterparts 10, 11. The promising versatility of these 

structured materials comes from the fact that BCLLCs’ constituents, known as mesogens, are 

self-assembled in various spatial configurations depending on conditions (e.g. concentration, 

pH, ionic strength, and confinement), imparting unique macroscopic properties. In other words, 

BCLLCs possess structure-related properties, leading to countless promising applications. For 

this reason, BCLLCs have received significant attention in a variety of crucial fields, as 

discussed in section 2.2 in detail. 
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Despite the crucial past and recent research, there have still been substantial questions 

required to be answered so that the self-assembly mechanisms of these highly structured 

materials, i.e. BCLLCs, can be fully understood and leveraged. Four essential challenges in 

this area are as follows.  

First, in general, the equilibrium thermodynamic phase diagram is a vital requirement for 

material design. Although the phase diagram of thermotropic LCs, which are low-molecular-

weight mesogens, has been thoroughly studied 12, the phase diagram of BCLLCs, which are 

colloidal fibrous mesogens compared to molecular thermotropic LCs, has not completely 

explored. 

Second, understating the mechanisms involved through the growth of a single cholesteric 

droplet or tactoid can greatly be beneficial for tailoring material fabrication. Notwithstanding 

this importance, the growth of a cholesteric seed isolated from other factors (e.g. tactoid 

collision) has not been fully explained yet.    

Third, the nucleation-and-growth stage is another key step in engineering the fabrication of 

these ordered materials. Although the nucleation and growth (NG) and the governing physics 

have well been elaborated for classical materials, this importance has not been completely 

understood for LCs notably BCLLCs.  

Fourth, film formation flow is an essential element needed in material engineering. 

Cholesteric mesogens subjected to flow are aligned along the flow direction, this structure is 

called para-nematic. There have been impactful studies discussing the flow processing of LCs 

13, 14. However, the dynamics of relaxation from para-nematic to cholesteric in absence of flow 

have remained unexplored.  

The importance of BCLLCs and some challenges in this field have been mentioned thus far. 

It can be concluded that BCLLCs have crucial applications, however, there are significant 

challenges that should be addressed first. In this regard, it is well worth quoting from The 

Physics Nobel Prize winner, P.G. de Gennes, that "liquid crystals are beautiful and mysterious; 

I am fond of them for both reasons." 15 

This Ph.D. thesis aims to address the above-mentioned unexplored aspects of BCLLCs. We 

first focus on thermodynamic equilibria to construct the phase diagram of collagen dispersions 

and to explore factors affecting the phase transition boundaries. We then build on that and use 

Direct Numerical Simulation (DNS) to understand the complex dynamics of a single growing 
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cholesteric tactoid embedded in the isotropic phase. Afterward, the NG mechanisms governing 

cholesteric microstructure formation are elucidated in detail. Finally, we investigate the 

relaxation of cholesteric mesogens from para-nematic to cholesteric under cylindrical 

confinement. It should furthermore be noted that DNS used in the present thesis is based on 

the numerical solution of mesoscopic governing equations, which consist of six nonlinear, stiff, 

fourth order Partial Differential Equations (see eqs. 2-12 and 2-13). Provided that the spatio-

temporal step sizes associated with the numerical technique are sufficiently small, DNS is 

capable of providing a full description of the multi-scale self-assembly of BCLLCs. DNS 

captures the self-assembly phenomena taking place in a spatial range of nano- to micro meters, 

while the time-marching window can be adjusted to retain numerical stability. 

The outcomes of the present thesis have deepened the understanding of BCLLCs self-

assemblies, paving the way to fabricate high-performance functional materials that are sought-

after in various areas such as biomimetic material fabrication 10, biosensing devices 16, stimuli-

responsive materials 9, plasmonic mesostructured materials 17, and more.  

 

1.2 Thesis Objectives 

The general objective of the present Ph.D. thesis is to develop and apply Liquid Crystals 

Theory to further reveal underlying principles of BCLLCs self-assemblies by which a part of 

fundamental long-lasting challenges is addressed. In this thesis, we focus on five main 

objectives: (1) Development, implementation, and validation of thermodynamic and dynamic 

models allowing multi-scale, multi-transport, multi-dimensional simulation of BCLLCs self-

assembly; (2) Calculation of thermodynamic equilibrium phase diagrams;(3) Dynamics of 

defect nucleation and annihilation during the growth of cholesteric tactoids in the absence of 

tactoidal collisions;(4) Dynamics of nucleation and growth regime;(5) Dynamics of relaxation. 

The specific objectives are:  

1. To formulate the system’s net Helmholtz free energy by incorporation of the 

fundamental physics and adaption of previous theories if needed. The resulting free 

energy formulation is capable of accurately describing the dispersion’s energy from 

both thermodynamics and kinetics standpoint, ultimately leading to an accurate 

description of BCLLCs self-assemblies. 

2. To develop a foundation to construct the BCLLCs’ phase diagrams; in particular, 

Ca-Cc and T-Cc phase diagrams of collagen fibers dispersed in acetic acid aqueous 
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solutions;  here Ca, Cc, and T stand for acetic acid concentration, collagen fibers 

concentration, and temperature, respectively. The Ca-Cc phase diagram has been 

experimentally reported 18, hence that study is used for validation of results obtained 

in Objective 1. Additionally, the T-Cc phase diagram is also known as the chimney 

phase diagram, which is well-known in polymer science and considered as the 

finger-print of rod-like polymeric dispersions. This is another validation assessment 

of the free energy formulation developed in Objective 1.   

3. To understand the factors affecting the phase transition boundaries existing in the 

collagen phase diagram developed in Objective 2; in particular chirality, acetic acid 

concentration, collagen concentration, and more.  

4. To generalize the validated free energy developed Objective 1 by including the 

biaxiality (higher order symmetry breaking) impact and to develop dynamical 

governing equations to simulate the kinetics of cholesteric self-assembly as a 

function of time and space.  

5. To apply the governing equations developed in Objective 4 and to use the Ca-Cc 

phase diagram constructed in Objective 2 in order to capture the dynamics of 

cholesteric growth through phase evolution of an isolated cholesteric seed growing 

in an isotropic matrix—note that isolation means the tactoidal collisions are avoided. 

6. To explore the location of the NG zone existing in the biphasic zone of the collagen 

phase diagram obtained in Objective 2. 

7. To characterize the explored NG zone found in Objective 6 in fundamental terms of 

drop-size distribution, drops’ shape, morphology within growing drops and 

morphological diversities, growth laws, drops’ population, and more. 

8. To employ machine learning techniques to reduce the computational cost of NG 

simulations carried out through DNS and to develop a wide-range of correlations for 

the characterization obtained in Objective 7. 

9. To reveal the underlying physics behind the characterizations across the NG zone, 

achieved in Objective 7. 

10. To investigate the dynamical relaxations of BCLLCs mesogens from the para-

nematic phase to the cholesteric ground state. For this purpose, the governing 

equations describing the orientational relaxation are used; these governing equations 

are obtained in Objective 4. 

11. To understand the physical origins behind the relaxations’ mechanisms explored in 

Objective 10. 
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12. To propose a systematic approach based on the combination of experimental 

observations and DNS results to estimate important viscoelastic properties such as 

rotational viscosity and coherence length. This objective is based on Objective 10. 

 

1.3 Thesis Organization 

The present thesis focusses on modeling, implementation, and validation of both 

thermodynamics and dynamics of BCLLCs self-assembly. We present fundamental physics 

involved in the BCLLCs self-assembly, phase diagrams and the factors controlling the 

miscibility boundaries, defect formation and defect escape in the evolution of cholesteric 

tactoids, nucleation and growth, and para-nematic to cholesteric relaxation. A detailed 

description follows. 

Chapter 2 provides the comprehensive background required for the four following research 

chapters: Chapters 3, 4, 5, and 6. Specifically, Chapter 2 presents the fundamentals of liquid 

crystalline materials with emphasis on BCLLCs, the state-of-the-art applications of BCLLCs, 

the need and opportunity for Direct Numerical Simulation (DNS) for BCLLCs self-assemblies, 

and the theoretical and computational simulation background. The organization of the research 

chapters is given in Figure 1-1.  
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Figure 1-1. Thesis organization flowchart. In each rectangle, the objectives of the chapter are 

summarized. Also, the solid arrows show the connectivity between chapters.  

 

In Chapter 3, the physics playing role in the chiral nematic phase formation of BCLLCs are 

identified, and free energy contributions are correspondingly considered in the total free energy 

of the mesophasic system. Particularly, for electrostatic repulsion, we develop simple mean-

field potential instead of using the previous sophisticated theories such as Poisson–Boltzmann 

theory. The reason is to avoid ending up with a computationally demanding model because the 

developed model should be used in the governing equations, known as Model C, which itself 

is inevitably computationally demanding—Model C is explained in Chapters 2, 4, and 5. 

Thereafter, the performance of the developed thermodynamic model is assessed by the 

experimental data available for collagen dispersed in an acetic aqueous solution. The validation 

is carried out via different thermodynamic and liquid crystalline criteria such as Ca-Cc and T-
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Cc phase diagrams, order parameter at isotropic-cholesteric interface known as the critical order 

parameter, and the asymptotic behaviors of the developed total free energy leading to the 

previous well-established theories. We then rely on the validated thermodynamic model to 

explore the factors controlling the phase transition boundaries, i.e. the lower and upper binodal 

curves.  

In Chapter 4, the biaxiality contribution is developed and then incorporated into the total 

free energy to further generalize the free energy developed in Chapter 3. Furthermore, the 

governing equations to capture dynamics of self-assembly are developed; the governing 

equations describe the non-conserved field, which is the orientational configuration of 

mesogens, and the conserved field, which is the fibers’ concentration. Finally, the governing 

equations are then applied to simulate the growth of a small cholesteric seed embedded within 

the isotropic matrix in collagen dispersions. Such simulation reveals the cholesteric growth 

mechanisms; in particular, defect formation and escape (frustration effect) are explained.    

In Chapter 5, DNS is performed to study the kinetics of isotropic-to-cholesteric (I/N*) phase 

separation in the collagen dispersions for various quench depths—quench depth is a measure 

to quantify the percentage that the dispersion concentration exceeds the lower thermodynamic 

binodal curve. Through extensive simulations of I/N* demixing at various quench depth, the 

zone in which NG takes place is identified. Thereafter, all three NG stages, which are induction, 

nucleation, and coarsening, are investigated across the NG zone. Each stage is characterized in 

terms of the evolution of tactoids’ population density, size, morphology, growth laws, and 

more. Although the simulations of NG by use of DNS are accurate, such simulations are 

computationally demanding, requiring powerful processors and long running time. For this 

reason, a Machine Learning technique known as Long Short-term Memory Recurrent Neural 

Network (LSTM-RNN) is employed to predict the coarsening dynamics; thereby reducing the 

running time. Afterward, all the data obtained are converted to wide-range algebraic 

correlations by use of classical regression and symbolic regression, which is another type of 

machine learning technique. These correlations are advantageous for future studies because 

they avoid redoing computationally demanding DNS. Finally, the physical origins behind the 

characterization are revealed by using rigorous free energy analysis. 

In Chapter 6, the experimental observations for relaxation from para-nematic phase to chiral 

nematic phase in β-lactoglobulin amyloid fibrils (BLG) and cellulose nanocrystals (CNC) are 

first presented—all the experimental data are obtained by our ETH Zurich (Swiss Federal 
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Institute of Technology, Zurich) collaborators. Although these BCLLCs are similar in various 

aspects, BLG and CNC have shown different relaxation dynamics, called slow-fast and smooth 

relaxation, respectively. Afterward, DNS not only accurately predicts these unexpected 

relaxation behaviors but also sheds light on the underlying physics. An extensive parametric 

study is also carried out, leading to the generalization of the results that the dynamics relaxation 

behavior for BCLLCs strongly depends on material properties such as chirality, coherence 

length, and rotational viscosity. Additionally, a systematic platform based on the combination 

of experiment and simulation is proposed for estimation of rotational viscosity and coherence 

length, which are elusively measurable for BCLLCs with the previous conventional standard.  

Finally, in Chapter 7, the main outcomes of this thesis along with the recommendation for 

future works are presented.  
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Chapter 2. Background 

2.1 Liquid Crystals (LCs) 

The liquid crystalline phase possesses two features: long-range orientational order and 

varying positional order. The former confers the properties of crystalline solids to LCs, making 

LCs crystal-like. The latter bestows the properties of isotropic liquids to LCs, making LCs 

liquid-like. In other words, LCs possess both the crystallinity of crystals and the fluidity of 

isotropic liquids simultaneously. For this reason, the liquid crystalline phase is considered as 

an intermediate state between crystalline solids and isotropic liquids 1, 2.  

In general, LCs are categorized according to the phase transition driving force, which can 

be temperature and/or concentration. Materials whose liquid crystalline phase emerges due to 

temperature change are called thermotropic LCs. On the other hand, materials whose liquid 

crystalline phase is concentration-driven are known as lyotropic 1, 2. The mechanism of liquid 

crystalline phase formation in thermotropic and lyotropic LCs are primarily van der Waals 

interactions and excluded volume interactions, respectively 1, 3, 4.  

The “mesogen” and “mesophase” are referred to as LC constituent (e.g. LC molecule, 

compound, fiber, colloid, etc.) and liquid crystalline phase, respectively. Mesogens are required 

to have a large aspect ratio; for example, they can be rod-like or disk-like—the present Ph.D. 

thesis focus on rod-like LCs. The average orientation of the long axis of mesogens is called 

director, represented by the unit vector, 𝐧, see Figure 2-1. In addition to the above-mentioned 

classification, based on the macroscopic orientational architecture created by 𝐧, LCs can be 

classified into three prime categories: nematic, smectic, and cholesteric, see Figure 2-1. 
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Figure 2-1. Schematic representation of (a) rod-like mesogen and director, (b) isotropic phase, 

(c) nematic phase, (c) smectic phase, and (d) cholesteric phase, the helix axis, and pitch length 

p0. 

In the isotropic phase, mesogens have neither oriental order nor positional order, see Figure 

2-1. This phase is denoted by I. In the nematic phase, indicated by N, there exist orientational 

order in the absence of positional order.  Mesogens orient so that their long axes are almost 

aligned along a particular direction. Unlike the nematic phase, the smectic phase retains partial 

positional order. The smectic phase has a layered structure; in each layer, mesogens are self-

assembled similar to the nematic phase. The cholesteric phase emerges if the mesogens are 

intrinsically chiral or a chiral dopant is added to the nematic phase. In the cholesteric phase, 

denoted by N*, LC constituents have a helicoidal twist around the helical axis, h, which is 

perpendicular to the director field, n; hence the cholesteric phase can be considered as a multi-

layer nematic phase so that the average director field slightly twist when moving from layer to 

layer. For this reason, the cholesteric phase is also known as twisted nematic or chiral nematic. 

To characterize the helicoidal twist, the distance between 2π rotation is called the pitch shown 

by p0, see Figure 2-1. Furthermore, the chiral wavevector is defined as q = 2π p0⁄ . When the 

cholesteric phase is subjected to a flow, the helices unwind, and in consequence, mesogens are 

aligned along the flow direction. The resulting phase resembles a nematic. Under such 

condition, the phase is technically called para-nematic, denoted by PN. In the present Ph.D. 
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thesis, we bring our focus on the following liquid crystalline phase: Isotropic (I), Nematic (N), 

Cholesteric or Chiral Nematic or Twisted Nematic (N*), and Para-nematic (PN). 

 

2.2 Biological Chiral Lyotropic Liquid Crystals and Applications  

The present Ph.D. thesis’s focus is on Biological Chiral Lyotropic Liquid Crystals 

(BCLLCs). In general, biological mesogens typically have elongated rod-like shape and exhibit 

a lyotropic phase transition 5. The solidified state of BCLLCs can be abundantly found in 

nature; a few are listed in Table 2-1. 

Table 2-1. Representative examples of well-known BCLLCs and their analogues in nature 1, 6, 

7. 

BCLLC Biological analogues in nature 

Collagen bones, cornea, and tendon 

Chitin Exoskeleton of insects, crustaceans, and arthropods  

Cellulose  Plants 

 

BCLLCs have opened the opportunity for the fabrication of high-performance materials in 

crucial areas 5, 8. In particular, three BCLLCs have been investigated in this Ph.D. thesis; 

Collagen, Cellulose Nanocrystals (CNC), and β-lactoglobulin Amyloid (BLG).  

 

Three long polypeptide chains are twisted together to form a triple helical structure known 

as Type I Collagen. The triple helical structure has a long aspect ratio and is considered as a 

needle-like mesogen, making the building block of the liquid crystalline phase. The triple 

helical collagen commonly possesses a 1.5 nm bare diameter and 300 nm length. In addition, 

due to presence of special chemical groups on the collage backbone, the fibers take positive 

charges, leading to an effective diameter more than two or three times the bare one 9.  

The chiral nematic is the widely reported mesophase for collagen.  The phase transition is 

concentration-driven; thus, collagen dispersion falls into the class of lyotropic liquid crystals 9, 

10. The macroscopic architecture observed for collagen fibers dispersed in acidic aqueous 

solutions highly resembles the structured collagen-based tissues which are ubiquitously found 

in human soft and hard organs such as cornea, bone, tendon, etc 11. For example, osteon is the 

essential building block of compact bone. In this crucial tissue, the arrangement of collagen 



13 

 

fibers is a cylindrically chiral structure. This structure has also been observed in collagen 

mesophase 12, 13, and even in other BCLLCs 14. Furthermore, collagen mesogens can form a 

cornea-like structure 15. Due to this resemblance and the fact that there are rich mammalian and 

non-mammalian resources for collagen as a primary precursor, the biomimetic fabrication of 

collagen-based tissues (e.g. artificial cornea 15, 16 and bone 17, 18) has attracted growing interest. 

The suspension of CNC leads to lyotropic cholesteric mesophase. Cellulose is the main 

precursor is fascinating from various aspects; cellulose is biocompatible, biodegradable, low-

cost, and mass-producible 19. Moreover, CNC has shown promising applications due to its 

mesophasic structures; for example, the advanced photonic applications 8, 20, 21, stimuli-

responsive materials, and sensor design 22, 23. 

β-lactoglobulin Amyloid, known as BLG, is a protein-based LC that possesses homogenous 

nematic, bipolar nematic, and cholesteric mesophases depending on the confinement volume 

24. This lyotropic fibrous mesogen has come to great interest due to its application in vital areas. 

For example, biology and medicine, particularly the BLG role in neurodegenerative diseases; 

namely Parkinson’s and Alzheimer’s 24, 25. Moreover, BLG can be utilized in the manufacturing 

of functional materials 26. 

 

2.3 Need for Mathematical Modelling and Direct Numerical Simulation of BCLLCs Self-

assembly 

Mathematical modeling and numerical simulation can greatly contribute to advance the 

engineering and science aspects of BCLLCs self-assembly because such theoretical studies can 

play a complementary role in experimental studies, avoiding trial-and-error fabrication. In 

particular, Direct Numerical Simulation (DNS) plays central role in revealing the mesoscopic 

nature of self-assembly in BCLLCs because of the fact that the spatio-temporal resolutions can 

be adjusted at the expense of computational costs. 

Repetition of experimental runs can be both expensive and time-consuming. In this regard, 

theoretical studies can be advantageous. For example, in reference 9, with a considerable 

number of experimental runs, the phase diagram of collagen has been partly reported. Chapter 

3 has shown that thermodynamics principles along with numerical techniques allow to 

precisely determine phase transition boundaries and to obtain a wealth of insights on how these 

boundaries are affected by experimental conditions. Another excellent example is Chapter 5 in 

which Direct Numerical Simulation (DNS) provides a thorough analysis of the nucleation and 
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growth of collagen tactoids (droplets). In Chapter 5, the nucleation-and-growth zone existing 

in the biphasic zone of the phase diagram is identified, moreover, the fundamental quantities 

regarding tactoids population, morphology, size, and more are characterized in detail and 

corresponding correlations have been reported. However, gaining such information 

experimentally would be significantly demanding from both time and cost perspective.  

 The BCLLCs self-assembly is a multi-scale phenomenon, meaning that the self-assembly 

contains inextricably linked sub-phenomena taking place in the range of nano-meter to micron-

meter—These sub-phenomena may take place simultaneously and/or in sequence. This makes 

some information barely accessible in experimental research, however theoretical studies can 

accurately describe such multi-scale space at the expense of computational cost. In addition, 

theoretical studies can thoroughly capture the dynamics of BCLLCs self-assembly even at a 

small timescale. Chapter 4 is exemplary because it demonstrates that DNS can capture defect 

formation and escape, which take place in a few nano-meter and in a short time span. 

More importantly, the theoretical studies are capable of rationalizing the experimental 

observations by which an in-depth understanding of the BCLLCs self-assembly is achieved. 

This can be vividly seen in Chapter 6 where theoretical analysis not only reveals the physical 

origins behind the observations but also generalize the results obtained from the experiment.  

 

2.4 Equilibrium Phase Diagram 

Liquid crystalline materials can exhibit various ordered phases (e.g. isotropic, nematic, 

cholesteric, etc.) under different conditions 9, 24. For this reason, knowing the phase diagram 

and the factors controlling the phase transitions are imperative in order to take control of self-

assembly. The objectives of this section are as follows. The fundamental physics involved in 

phase transition is discussed in section 2.4.1. Section  2.4.2 explains Onsager’s landmark 

research which is the cornerstone in theoretical studies associated with the phase transition of 

lyotropic liquid crystals. Finally, section 2.4.3 elaborates the thermodynamic fundamentals for 

determining the boundaries of order-disorder phase transition by which the phase diagram is 

constructed.  
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2.4.1 Preliminaries 

2.4.1.1 Persistence Length 

In polymer science, the rigidity of a polymer chain is quantified by the persistence length, 

which is defined as a length “over which the orientations of the bonds become uncorrelated. 

27”. Therefore, increasing persistence length indicates that the chain is more rigid. In a similar 

vein, the lower persistence length shows that the chain is less rigid; thus, the chain is more 

flexible. Furthermore, fibers are required to have high persistence length (i.e. to be rigid) in 

order to attain the liquid crystalline phase. 

Long fibers normally take a worm-like shape in the neutral solution, driving the solution 

away from the liquid crystalline phase. Fibers prefer the worm-like shape, i.e. low persistence 

length, because the intrachain attractive force along the fiber backbone is dominant. Hence, 

reducing the intrachain attractive force is a practical way to reach a higher persistence length. 

For this purpose, the dispersion’s ionic strength should be increased by for example dissolution 

of salt or adding an acid, making more mobile ions available. When there are more mobile ions 

in the dispersion, more like-charges (ions) can be deposited on the backbone of worm-like 

fibers. Gaining like-charges is the prime cause that worm-like fibers turn to rigid ones because 

like-charges deposited on the fibers backbone increases intrachain repulsive forces, leading to 

weakening the effect of attractive forces in the net intrachain forces along the backbone 28, see 

Figure 2-2. 

 

Figure 2-2. The flexibility of fibers in a dispersion can change from worm-like (low persistence 

length) to rigid (high persistence length) through increasing ionic strength.  

In partial summary, to show birefringent properties, the concentration of mobile ions in the 

dispersion must be increased until the fibers become sufficiently rigid. 

2.4.1.2 Effective Diameter, Length, and Volume 

In the LC theories associated with order-disorder phase transition, the diameter, length, and 

volume of fibers along with fibers volume fraction are described by two adjectives: either 
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effective or bare (i.e. uncharged). This section aims to explain these important terminologies 

which are frequently used in this context. 

Owing to particular chemical structures of BCLLCs, the BCLLCs mesogens can be charge-

carrier because some like-charges can be deposited on the mesogens’ outer surface; thereby 

repelling each other. In LC theory, such mesogens are treated as charged hard particles 

dispersed in the solution. Collagen rod-like fibers dispersed in acidic aqueous solution is an 

exemplar of charge-carriers because, depending on the dispersion’s pH, a certain number of 

positive charges, H+, are absorbed on the collagen backbone, making collagen fibers similar 

to positively charged hard rods dispersed in an acidic solution, see Figure 2-3.  

 

Figure 2-3. (a) The schematic representation of a needle-like mesogen charged positively along 

with the resulting repulsion region around it. All three fibrous LCs investigated in this thesis 

have such rod-shaped rigid geometry. (b) The decaying electrostatic potential close to the 

positively charged surface of the mesogen, and the qualitative behavior of the electrostatic 

potential with respect to the increase of ionic strength. As the solution concentration of mobile 

ions increases, the ionic strength increases, and correspondingly more ions attach to the 

mesogen surface, causing that the electrostatic potential drops in a shorter distance.  

To consider the repulsion effect, the geometry of fibers is modified by including the 

repulsion zone as part of the fiber. Hence, Deff = D + ε and Leff = L + ε where ε is the distance 

over which the electrostatic effect due to charged attached on the mesogen surface persists:  

ε = ακ-1 2-1 
The formulation of the Debye screening length, κ-1, and double-layer thickness parameter, 

α, are discussed in Chapters 3 and 4. Interestingly, the repulsion zone is reduced by increasing 
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mobile ion concentration due to a physical principle called “screening” or “shielding”.  This 

principle explains that when the ionic strength increases due to the addition of salt or acid into 

the dispersion, more mobile ions whose charges are opposite to the mesogen surface are 

attracted to the mesogen surface as a result of electrostatic forces. This attraction leads to the 

fact that the electrostatic potential induced by the charged mesogens decreases, in consequence, 

ε becomes shorter. Thus, the net effect is summarized as the more ionic strength leads to a 

thinner ε. 

It should be further noted that mesogens considered in this thesis have rod-shaped with a 

very large aspect ratio, making mesogens look like a needle. Given the geometry of mesogens, 

it can be appreciated that the length of mesogen, L, is considerably larger than ε; thereby 

making Leff and L almost identical. However, ε is comparable with bare diameter; hence, the 

effective diameter, Deff, is used instead of the bare diameter, D, in LC analysis. 

 

2.4.1.3 Excluded Volume 

In general, in a dispersion of particles whose aspect ratio is sufficiently large, the “excluded 

volume” comes into play. The excluded volume is defined as the volume which is inaccessible 

for particles because of the configuration of other particles. This concept is presented in Figure 

2-4. 

 

Figure 2-4. The schematical illustration of the excluded volume formed by two fibers. The 

spatial configuration of two adjacent rods forms a parallelepiped space that can’t be occupied 

by other fibers. The parallelepiped volume is called “excluded volume”.  
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2.4.2 Onsager 

In the renowned Onsager’s work 4, the coexisting regime between isotropic and nematic 

phase has been theoretically proven: 

ϕlb = 3.3
Deff
L

 2-2 

 

ϕlb is called effective volume fraction, showing the lower binodal threshold where the 

isotropic become unstable. Deff and L are effective diameter and fiber length. The upper binodal 

threshold, ϕub, distinguishing the biphasic zone from the nematic regime in the phase diagram, 

is also expressed by 

ϕub = 4.5
Deff
L

 2-3 

 

In Onsager’s theory, phase ordering is considered as an exclusively entropy-driven 

phenomenon. As fibers in the dispersion adopt a long-range orientational order, two 

simultaneous mechanisms take place. First, the orientational entropy is reduced because fibers 

become aligned along a common direction. Second, the translational entropy increases since 

ordering makes more space accessible for fibers to translate longer distances in comparison 

with the isotropic phase in which fibers are randomly aligned and the translation is greatly 

blocked. In other words, through phase ordering, the excluded volume is reduced; hence more 

space becomes available for the fibers’ translation, which leads to an increase in translational 

entropy. Onsager was the first who theoretically explained the above-mentioned physical 

understanding of the isotropic-to-nematic (I/N) phase transition. He revealed that the 

dispersion’s free energy is reduced if the excluded volume is reduced, meaning that the long-

range orientational ordering takes place, and in consequence, the systems go through the phase 

transition from isotropic to nematic order.   

  

2.4.3 Generic Approach for Phase Diagram Construction 

The standard thermodynamic approach to determine binodal curves in a phase diagram is to 

use the chemical potential. The chemical potential of component A in phase P, μA
P , is defined 

as  
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μA
p
=
∂f

∂nA
 2-4 

 

where f and nA denote free energy of system and moles of component A (e.g. LC and 

solvent), respectively. The superscript P stands for the phase (e.g. p=Isotropic, Nematic, or 

Cholesteric). This crucial thermodynamic property is related to mass transfer; the difference 

between the chemical potentials of a component in two phases describes the tendency of that 

component for being transferred between two phases. Accordingly, the equality of chemical 

potentials indicates that the net mass transfer is zero, and phases reach equilibrium. Given the 

chemical potential, the equilibrium phase diagram is constructed based on the thermodynamic 

criterion that the chemical potentials of each component in all the phases coexisting together 

must be equal to each other, μi
P = μi

Q 29. 

As can be inferred from equation 2-4, the definition of system free energy is needed to 

construct the phase diagram. Depending on the system under study, the governing physics are 

identified, and correspondingly the system free energy, f, is defined; for example, Chapter 3 

elaborates on the free energy contributions involved in a binary solution comprising a needle-

like mesogen and small-sized solvent. 

In partial conclusion, the steps required for determining the phase transition boundaries are 

as follows. 

1) Definition of the system Helmholtz free energy density, f. In this stage, all the physics 

which can have an impact on the self-assembly should be found and included in the system 

free energy, f. 

2) Use equation 2-4 to develop an analytical relation for the chemical potential of each 

component in different phases. 

3) Apply the criterion of phase equilibria, μi
P = μi

Q
. In this stage, a system of nonlinear 

equations is obtained.  

4) In addition to the equations formulated in the previous step, there is a need of applying 

mass conservation law to make sure that the initial mass of each component inserted in the 

system should be equal to the sum of masses of that component in all phases present in the 

system. The corresponding mathematical description is mi = ∑ mi
j

j  where mi is the mass 

of component i and j indicates phases present in the dispersion. Therefore, the component 

mass balance should be augmented with the equations developed in step 3.  
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5) The resulting nonlinear system of equations is then solved numerically; thereby computing 

the phase transition boundaries.  

 

2.5 Dynamical Modeling of BCLLCs 

The equilibrium thermodynamic analysis discussed in the previous section, 2.4, result in 

knowing the upper and lower miscibility boundaries, which are essential for analyses 

associated with transport phenomena. This section elaborates the spatiotemporal modeling by 

which mass transfer coupled with fiber orientation can be captured as a function of time and 

space.     

Before proceeding to develop the spatiotemporal model describing the multi-scale evolution 

of mesogenic particles, the contributing factors and their impacts on the total free energy for 

the mesophasic systems need to be established. The organization of this section is as follows. 

The free energy formulation is explained in section 2.5.1 in detail. Having formulated the total 

free energy in section 2.5.1, the governing equations, known as Model C, are then formulated 

and discussed in section 2.5.2. 

 

2.5.1 Total Free Energy 

In general, the total free energy of a mesophasic solution, F, consists of five free energy 

contributions. 

F = ∫(fh + fe + fm + fi + fc)
V

dV 2-5 

 

V stands for volume or area in three- or two-dimensional simulations, respectively. These 

contributions are listed in Table 2-2, and elaborated in the sections below.  
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Table 2-2. Summary of five free energy contributions used in the present Ph.D. thesis, and their 

physical interpretation 1.  

Free Energy Contribution Symbol Physical Interpretation 

Homogenous fh The order-disorder phase transition. 

Bulk elasticity fe 
The three common deformation modes; splay, 

twist, and bend. 

Mixing  fm Entropy and enthalpy due to mixing. 

Concentration gradient fi Cost of interface formation. 

Coupling fc Mesogens configuration in the interfacial layer. 

 

2.5.1.1 Q-tensor 

The long-range orientational order in a mesophase is described by 

𝐐 = S (𝐧𝐧 −
𝛅

3
) +

1

3
P(𝐦𝐦− 𝐥𝐥) 2-6 

 

S and P represent the degree of mesogens’ alignment around the uniaxial director, 𝐧, and 

biaxial directors, 𝐦 and l. For example, S=1 shows that all fibers are perfectly aligned along 

the uniaxial director, n, showing perfect crystal structure. On the other hand, S=0 represents 

fibers that are uncorrelated with n, indicating the isotropic phase. Consequently, the uniaxial 

order parameter, S, lies between 0 and 1 for the typical liquid crystalline phase. S can also be 

negative, describing the orientational ordering for disc-like mesogens, which is out of the 

present thesis’s scope—readers are referred to the following references for more information 2, 

30, 31. All directors, n, m, and l, are perpendicular with respect to each other. In light of the Q-

tensor definition given in equation 2-6, the Q-tensor has useful features; Q-tensor is symmetric, 

Q=QT, traceless, Tr(Q)=0, and is a second-order tensor, Q=Qi,j. Accordingly, Q-tensor has 

only five independent components.  

As will be discussed in section 2.5.2, the Q-tensor’s five independent components are 

numerically computed as a function of time and space through solving the governing coupled 

nonlinear parabolic Partial Differential Equations (PDEs). Hence, in the post-processing stage, 

the computed values are required to be converted to the uniaxial, S, and biaxial, P, order 

parameters, and uniaxial, n, and biaxial, m, director fields. This transformation can be obtained 

through the relation between the Q-tensor’s eigenvalues and eigenvectors; the uniaxial director, 

n, and biaxial director, m, are eigenvectors corresponding to the largest eigenvalue, 2S/3, the 
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second largest eigenvalue, -(SP)/3, respectively. It should be further mentioned that the 

biaxiality, P and m, is normally negligible for chiral nematic liquid crystals 32, 33.  

 

2.5.1.2 Free energy variation due to phase ordering 

Two free energy contributions are involved through the long-range ordering in the 

mesophasic system: phase transition and bulk elasticity. The corresponding free energy 

contributions are given by 

fh =
A

2
Tr(𝐐2) −

B

3
Tr(𝐐3) +

C

4
(Tr(𝐐2))

2
 2-7 

fe = L1[∇ × 𝐐 + 2q𝐐]
2 + L2[∇ ⋅ 𝐐]

2 2-8 

 

fh is well-known as Landau-de Gennes (LdG) theory in which A, B, and C are 

phenomenological concentration-dependent constants. Note that A directly controls if the 

phase transition takes place or not, moreover, B<0 and C>0 guarantee two minima of the free 

energy pertinent to disordered phase and ordered phase 2, 34. fe comes from the well-established 

Frank-Oseen-Mermin theory. L1 and L2 are Landau elastic constants related to the three main 

forms of liquid crystalline distortions; splay, twist, and bend whose Frank elastic constants are 

shown by K1, K2, and K3, respectively 2, 35. Eq. 2-8 describes nematic phase in case that the 

pitch length goes to infinity, leading to negligible wavevector (q). Furthermore, eqs. 2-7 and 

2-8 correspond to short-range and long-range order.  

 

2.5.1.3 Free energy variation due to mixing 

The lyotropic liquid crystalline solutions are comprised of mesogen dispersed in a solvent. 

Accordingly, mixing free energy is needed to be taken to account. For a given binary mixture, 

the mixing free energy is described by the well-known Flory-Huggins theory expressed by 

fm =
ϕln(ϕ)

n
+ (1 − ϕ)ln(1 − ϕ)+χϕ(1 − ϕ) 2-9 

 

where ϕ, n, and χ represent effective volume fraction of the mesogen, the number of 

segments that exist on the backbone of mesogen, and Flory’s parameter, respectively.  
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2.5.1.4 Free energy variation due to interface 

If there is an interface in the mesophasic system, two free energy contributions play role in 

the total free energy of the system: interface formation, fi, and a preferred orientation of 

mesogen in the interface, fc. The corresponding free energy contributions are expressed by 

fi = Lϕ(∇ϕ)
2 2-10 

fc = Lϕ−𝐐(∇ϕ) ⋅ (∇ ⋅ 𝐐) 2-11 
 

where  Lϕ and Lϕ−𝐐 stand for interface formation and coupling constants. 

 In the modeling presented in this Ph.D. thesis, there exist two fields in general: conserved 

and non-conserved fields corresponding to ϕ and Q, respectively. In fact, the coupling between 

these two terms, equation 2-11, is required to be taken to account in the total free energy. This 

coupling term can describe the energy cost due to the orientation of mesogen in the interface, 

which can be tangential or homotropic 36-38. 

 

2.5.2 Governing Equations 

The spatio-temporal evolution of conserved, ϕ, and non-conserved filed, 𝐐, is numerically 

captured through solving the time-dependent Ginzburg–Landau (TDGL) formalism, known as 

model C in the Hohenberg and Halperin classification 39: 

γ(𝐐)
∂𝐐

∂t
= −(

δF

δ𝐐
)

[s]

 2-12 

∂ϕ

∂t
=Mϕ∇ ⋅ ([𝐈 + 𝐐] ⋅ ∇

δF

δϕ
) 

2-13 

δ is the functional derivative. γ(𝐐) = η (1 −
3

2
𝐐:𝐐)

2

is rotational viscosity and η is 

rotational viscosity constant. Mϕis mass transfer mobility. In equation 2-13, if 𝐐 = 𝟎, the 

equation is simplified to the renowned Cahn-Hilliard theory which has widely been used for 

simulation of liquid-liquid demixing. The reason that 𝐐 appears in equation 2-13is that mass 

transfer mobility comprises from isotropic and anisotropic contributions, which are reasonably 

assumed equal in the present thesis 33, 40. 
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The governing equations described by eqs. 2-5 through 2-13 are generic in regard to the 

description of isotropic, nematic, and cholesteric dispersions; meaning that only the 

coefficients can take different values depending on the biochemical conditions whereas the 

essential nature of the expressions remain unchanged. 
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contributions to phase diagrams - Soft Matter, 2019, 15, 1833—1846. DOI: 
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3.1 Preface 

As discussed in Chapters 1 and 2, knowing the location of the equilibrium disorder-order 

phase transition in the phase diagram and the variation of these boundaries with respect to 

physical properties are of prime importance for engineering the fabrication of the sough-after 

ordered materials. Notwithstanding the importance, the lower binodal boundary, and upper 

binodal boundary along with the governing physics controlling these boundaries have not yet 

been understood for colloidal lyotropic liquid crystals. For this reason, this chapter addresses 

these crucial subjects: isotropic-to-cholesteric phase transition boundaries and the factors 

controlling them for collagen fibers dispersed in acidic aqueous solutions. 

 

3.2 Abstract 

Tropocollagen is considered one of the main precursors in the fabrication of collagen-based 

biomaterials. Triple helix acidic solutions of collagen I have been shown experimentally to lead 

to chiral plywood architectures found in bone and “cornea” like tissues. As these plywoods are 

solid analogues of liquid crystal architectures, bio-inspired processing and fabrication 

platforms based on liquid crystal physics and thermodynamics will continue to play an essential 

role. For tissue engineering applications, it has been shown that dilute isotropic collagen 

solutions need to be flow processed first and then dehydrated. Thus, a complete fundamental 

understanding of thermodynamics and free energy contributions in acidic collagen aqueous 

solutions is necessary to avoid expensive trial-and-error fabrication. To achieve this goal, we 

analyze the microscopic mechanisms of ordering and interactions in solutions of triple helix 

collagen, namely mixing, attraction, excluded-volume and chirality. To capture the mentioned 

physics, we then incorporate and integrate the Flory-Huggins, Maier-Saupe, Onsager and Frank 

theories. Nonetheless, they together are incapable of providing an acceptable mesophasic 

description in acidic collagenous solutions because tropocollagen biomacromolecules are 

positively charged.  We then explore a simple and accurate electrostatic mean-field potential. 

Our results on collagen are in good agreement with experiments and include phase diagrams, 

phase transition thresholds, and critical isotropic/cholesteric order parameters. The present 

extended theory is shown to properly converge to classical liquid crystal models and is used to 

express the phenomenological Landau-de Gennes parameters with more fundamental 

quantities. This study provides a platform to derive accurate process models for the fabrication 

of collagen-based materials, considering and benefitting from the full range of underlying 

interactions. 
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3.3 Introduction 

Type I collagen is ubiquitous within mammalian or even some non-mammalian tissues1; 

thus it is widely considered as the main precursor in the synthesis of collagenous biomaterials. 

Owing to myriad applications of collagen in bioinspired and biomimetic materials, fabrication 

of collagenous biomaterials is at the forefront of research and development2-6. For example, 

there are considerable current efforts to fabricate artificial bone or bone regeneration7, 8 and 

corneal stroma reconstruction9, 10. 

The functions of these versatile self-assembled biomaterials are affected by the spatial order, 

packing and organization of tropocollagen macromolecules. In acidic solutions, the primary 

architectural motif of these highly organized materials is formed at the molecular level. 

However, a considerable amount of experimental and theoretical studies has been carried out 

on the properties of collagenous biomaterials at the tissue level11-15, and molecular studies are 

few10, 16-18. In spite of substantial efforts concerning the fabrication of collagenous biomaterials, 

in some cases like the fabricated cornea or even bone, the quality of synthesized tissues is not 

satisfactory when they are compared to the natural counterparts.  Furthermore, the required 

molecular level understanding of phase ordering in collagenous solutions also remains 

relatively incomplete.  It is expected that the development of comprehensive molecular and 

process models and multi-scale, multi-transport, multi-dimensional simulations of collagen 

self-assembly can generate impactful fabrication design principles. New bioinspired functional 

materials and improved biomaterials will emerge through a better fundamental understanding 

of thermodynamics and the packing process of orientational self-assembly and phase ordering. 

In the present study, we develop a fundamental theory and apply it to multiscale 

thermodynamic equilibria that has an essential role in the understanding of collagen 

orientational self-assembly and self-ordering. We like to emphasize that, in this paper, we only 

consider the molecular triple helix acidic collagen solutions and higher order fibrillar 

assemblies are excluded as they are not present in the regimes and conditions under discussion 

in this paper. Without ambiguity and for brevity in this paper we refer to triple helix collagen 

as molecular collagen or when convenient as collagen. 

The macroscopic chiral molecular collagen solution has an orientational order similar to 

those found in many biological fibrous composites known as biological plywoods19. Biological 

plywoods possess a liquid crystalline state at the beginning of their morphogenesis19. Thus, 

their formation can be described by liquid crystal physics and thermodynamics2, 5, 20-23. Triple 

helix collagen is a rodlike macromolecule with a high aspect ratio which imparts the long-range 
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orientational order to collagen in acidic solutions17, 24. This biomacromolecule is denatured if 

the temperature is higher than 45ºC 25, and is lyotropic mesogen5, 16.   Collagen rods are 

inherently oleophilic and are capable of carrying positive charges in acidic solutions (pH<4) 

by which the solubility of collagen in the aqueous solutions becomes possible. The reason for 

being miscible is the emergence of interchain repulsive interactions among rods that reduce the 

hydrophobic attractions26, 27. That is why the fabrication of collagenous biomaterials must start 

from dilute acidic isotropic solutions followed by a synchronized water removal process to 

eventually reach the cholesteric state28; synchronized means that the water transport and 

dehydration kinetics is precisely coupled to the orientational phase ordering process. In 

addition, when the collagen molecules are dispersed in pure water, they behave as wormlike 

semiflexible rods. However, being a positive charge carrier gives rigidity to the collagen rods 

because the intrachain repulsive forces along the backbone overcome the intrinsic softness of 

backbones17. To account for the characteristics of orientational ordering and attractive 

interactions of collagen macromolecules, we employ the Maier-Saupe theory.  This well-

established model is able to satisfactorily provide a robust mathematical description in both the 

long-range orientational order and orientation-dependent attraction that belongs to van der 

Waals interactions29-32. In addition, from a physical viewpoint, through the phase ordering 

process, the excluded volume of system needs to be minimized. Consequently, the Onsager 

theory should be included into our model to explain this effect. This theory, which is considered 

as a cornerstone in liquid crystal theory, provides an accurate result as long as the D/L is much 

less than 132-34. This requirement, which comes from the second virial approximation, is met in 

our study because we deal with the dispersions of long, rigid and elongated molecules.  

As mentioned above, one of the distinctive characteristic of triple helix collagen rods is the 

ability to be a carrier of positive charges in acidic solutions. From a theoretical standpoint, the 

stable configuration of two rods, which are charged is orthogonal35, 36. The conclusion can be 

drawn that the like-charges are a destabilizing effect of ordered phase37. To take this fact into 

account, previous theories need to be modified by the use of effective rod diameter in lieu of 

the bare one, and a proper term corresponding to the interchain electrostatic interactions is 

required in the free energy contributions in order to describe the twisting effect. The effective 

diameter has been brought into focus in the pioneering work of Onsager34 and other studies35, 

38. Nevertheless, the macroscopic modeling and validations of mixtures in which rod-like 

charged macromolecules are dispersed in the small-sized solvent requires further investigation, 

especially the impact of interchain electrostatic interactions on the stability of mesophases such 
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as those of acidic collagen solutions. One of the objectives of this article is to address this need 

by using molecular mean-field treatment.  The macroscopic chirality is the last mechanism that 

we need to include in the free energy contributions. Collagen triple helix rods form the 

helicoidal structure with the micrometer-sized pitch whose values depends on the 

concentrations of acid and collagen18. In this regard, the Frank and Mermin free energy39, 40 is 

a widely used theory that we have employed in this article. In this paper (Appendix B of ESI), 

the micron-range pitch is a given function of collagen concentration, extracted from 

experimental data18. 

The specific objectives of this paper are: 

1. Formulate the free energy of triple-helix collagen dispersed in the aqueous solutions of 

acetic acid. 

2. Compute and validate with real experimental data16 when available, isotropic-cholesteric 

phase transition and phase diagrams as a function of acetic acid. 

3. Characterize the effect and impact of molecular level and fundamental parameters on the 

cholesteric ordering and isotropic-cholesteric phase transitions of collagen solutions. 

4. Coarse-grain the model to fit the Flory-Huggins-Landau de Gennes model for future use 

in process modeling of acidic triple helix collagen films.  

5. To establish whether the thermodynamics of acidic collagen solution closely follows the 

known behavior of rigid and semi-rigid lyotropic liquid crystalline polymers, such as 

displaying an athermal chimney phase diagram20.  

This paper is organized as follows.  Section 3.4.1 gives the derivation of the free energy for 

a pure chiral charged rigid calamitic mesogen, and in section 3.4.2 we develop the free energy 

for the binary solution of mesogen in a non-mesogenic solvent. The cholesterogen and solvent 

are viewed as charge-carrier rigid rod-like particles and dissociable component, respectively. 

In section 3.5, we discuss how to formulate binodal curves (subsection 3.5.1) and the isotropic-

cholesteric phase transition curve (subsection 3.5.2) from the free energy obtained in section 

3.4.2. Section 3.6 shows that our suggested model has the identical form with LdG expansion 

in the vicinity of isotropic-cholesteric (I-N*) phase transition. Hence, the phenomenological 

coefficients of LdG can be systematically derived from our suggested model. Finally, in section 

3.7, we provide a discussion about the main results of this study. The Electronic Supplementary 

Information (ESI) has four Appendices. Appendix A presents details of the mathematical 
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derivations for all quantities used in this paper. Appendix B gives details of the model 

parameters and physical properties. Appendix C presents a systematic validation of the model 

by demonstrating that it reduces to well-established theories if some mechanisms like chirality, 

electrostatic, and attractive interactions are ignored38, 41. Lastly, in Appendix D, we have 

provided the nomenclature to make the derivation of model easy-to-follow. The organization 

and flow of information are summarized in Figure 3-1. 

 

Figure 3-1. Organization of the present study. Numbers on the left top side of boxes are the 

numbers of (sub)sections. 

 

3.4 Thermodynamic model 

3.4.1 Free energy contributions for charged chiral calamitic mesogen 

This subsection formulates the required free energy contributions for the accurate 

description of the thermodynamics of acidic collagenous solutions. For clarity and continuity, 

we first introduce needed definitions and concepts.  The nomenclature used throughout is in 

Appendix D of ESI. The Onsager theory34 accounts for the electrostatic repulsion by 

considering the double layer as a part of rod’s diameter. Thus, the effective rod diameter Deff 

is: 35, 37, 38   

Deff = D+ακ
-1 (3 − 1) 

D is the diameter of uncharged rods. Here κ-1 is the Debye screening length defined as: 

κ-1 = (8πλBNavoI)
−
1

2, where λB, Navoand I are the Bjerrum length, Avogadro’s number and 
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ionic strength, respectively—the definition of ionic strength is I=
1

2
∑ miZi

2
i  where m 

corresponds to molar concentration, Z is charge number, and the sum is taken over all mobile 

ions42. The   double-layer thickness parameter  is37:   

α = lnA′ + γ
E
+ ln2 −

1

2
−
4

π
[|sin(γ)|Ei (−

A′

|sin(γ)|
)]
i

 (3 − 2a) 

A′=A
eκD

κD
, A=2πΛ

2
λBD (3 − 2b) 

[f(𝐮, 𝐮′)]i =
1

16π2
∬f(𝐮, 𝐮′)dΩdΩ

′
 (3 − 2c) 

where γ
E

 and Λ are Euler constant and linear charge density. Ei is the exponential integral 

defined as Ei(x)=-∫
exp(-t)

t
dt

∞

-x
. The operator of [•]I given by eqn. (3-2c), represents the 

integration over all possible orientations of two rod-shaped mesogens whose orientations are 

expressed by the molecular rod’s unit vectors 𝐮 and 𝐮′. The solid angle, dΩ=sin(θ)dθdφ, is 

the surface element of the sphere with a unit radius where θ and φ are polar and azimuthal 

angle, respectively. The angle between the rods is γ=cos-1(𝐮 ⋅ 𝐮′). Additionally, for a given 

molecular orientation, ψ(𝐮) gives the single-rod orientational distribution function on the unit 

sphere43. 

As mentioned above, several microscopic mechanisms simultaneously govern the 

thermodynamics of acidic collagen solutions: (1) The orientation-dependent attractive 

interactions because of Van der Waals dispersion forces, (2) The Columbic repulsion and 

twisting due to the protonated amine functional groups on the backbone of collagen rods when 

the solution’s pH is lower than a certain value, (3) the excluded volume effect (4) the distortion 

in their long-range orientational pattern owing to helicoidal structure, (5) the orientational and 

translational entropy and (6) the enthalpy contribution .  Each of these effects is captured by 

fundamental theory except for the interchain electrostatic interactions (i.e. Columbic repulsion 

and twisting). More precisely, one widely used approach to simulating the electrostatic mean-

field is to take the molecular average of the estimations given by the solution of Poisson–

Boltzmann equation over all particles. Yet, we avoid employing it since the objective of this 

study is to develop a tractable model. In this section, we first integrate the existing theories; 

namely, Onsager theory to accounts for the minimization of excluded volume, Maier-Saupe 

theory to describe the orientation-dependent attractive interactions of Van der Waals forces, 

and Frank distortion free energy to take into account the various possible macroscopic 
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orientational elasticity of the ordered cholesteric phase. Second, we formulate and incorporate 

a simple mean-field potential to account for the interchain repulsion and twisting.  

The total dimensional Helmholtz free energy for NA chiral charged mesogens in a volume 

V is38, 40: 

βF

NA
=βμo (T)-1+lncA

′ +σ(ψ(𝐮))+B2(ψ(𝐮))+M(ψ(𝐮))+C(ψ(𝐮)) (3 − 3) 

β=(kBT)
-1 where kB and T are Boltzmann constant and absolute temperature;μo  is the 

standard chemical potential of particle; cA
′  is dimensionless number density defined as 

cA
′ =υcAwhereυ is the volume scale and cA=NA/V is the number density; lncA

′ , stands for 

translational entropy that favors the anisotropic phase, and the rest of terms reflect the impact 

of molecular orientation. σ(ψ(𝐮)), B2(ψ(𝐮)), M(ψ(𝐮))and C(ψ(𝐮)) denote the effect of 

orientational entropy, the excluded volume based on the second virial approximation, the 

orientation-dependent intermolecular interactions and the geometric chirality of mesogen.  

The alignment of rods decreases the orientational entropy, given by38: 

ΔSO=-σ(ψ(u))=-∫ψ(u)ln(4πψ(u)) dΩ (3 − 4) 

Notwithstanding the fact that the ordering causes reduction in orientational entropy, the 

ordering provides excess free volume availability, which means more translational entropy44. 

To consider the excluded-volume, we have used the Onsager theory which is based on the viral 

expansion truncated to second-virial term, B2(ψ(𝐮)). Considering the proper pair-potential 

between the outer double layers of two macromolecules, the second-virial approximation is 38: 

B2(ψ(𝐮))=cAυAAρ(ψ(𝐮)) (3 − 5a) 

ρ(ψ(𝐮)) =
4

π
∬Γ(γ)ψ(𝐮)ψ(𝐮′) dΩdΩ

′
 (3 − 5b) 

Γ(γ) = |sin(γ)| × {1+h [-ln|sin(γ)|-ln2+
1

2
]} (3 − 5c) 

In eqn. (3-5a), the average excluded-volume between two rods is denoted by 

υAA=π/4DeffL
2. Moreover, the term h=(κDeff)

-1corresponds to magnitude of the twisting 

effect.   

So far, the theory of Onsager has been presented, including the effective diameter due to the 

role of Columbic electrostatic repulsion in orientational ordering. Although the Onsager theory 

attributes the phase ordering mechanism to the minimization of excluded volume, the Maier-
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Saupe theory considers the van der Waals attraction as driving mechanism for macroscopic 

orientation of the rods. In reality, these two microscopic mechanisms are not mutually 

exclusive32, 45. In our model, these mechanisms (i.e. excluded volume and orientation-

dependent attraction) simultaneously affect the phase ordering because collagen is rod-like 

macromolecule that has sort of orientation-dependent attractive interactions. We note that the 

need in the simultaneous use of Onsager and Maier-Saupe theories to capture the physics of a 

mesophase has been acknowledged and implemented in other real systems. To name a few:  

polymer dispersed liquid crystals41, 46, colloid or nano-laden liquid crystals47, 48, cholesteric 

cellulose polymers49 all exhibit both lyotropic and thermotropic behavior, as do other 

mesogens50. Moving on to the Maier-Saupe theory, the orientation-dependent attractive 

interactions among rod-like macromolecules favors alignment of molecules, and as a result 

promotes the orientational ordering and lowers the free energy as well30, 31, 41. Similar to the 

approach of Maier-Saupe30, 31, we have taken the averaged potential interaction directly 

proportional to the local order parameter, P2(𝐮 ⋅ 𝐧), and the macroscopic uniaxial order 

parameter, S, which is the ensemble average of P2(𝐮 ⋅ 𝐧). Hence, the one-body mean field 

potential of  ith rod for attractive interactions on the other existing rods in the system is given 

by43: 

βUi
MS=-βU′MSυASP2(cos(θ)) (3 − 6) 

where U′MS and υAindicate the positive constant independent of temperature and the 

molecular mesogen volume, respectively. θ stands for the angle between the molecular unit 

vector of  𝐮, and the uniaxial director, 𝐧.  If 𝐧 is chosen along the z-axis of a spherical 

coordinate system, θbecomes polar angle. The corresponding averaged energy due to the 

attractive interactions is given by43: 

EMS =
ZNA
2
∬Ui

MSψ(𝐮)ψ(𝐮′) dΩdΩ
′
 (3 − 7) 

where Zis the coordination number. Accordingly, substituting the eqn. (3-6) into eqn. (3-7) 

leads to the well-known result51-56: 

βEMS

NA
=-βUMSS2cAυA

2  (3 − 8) 

UMSis a positive constant independent of temperature defined as 
ZU′MS

2
. The positive sign of 

orientation-dependent attractive parameter shows that EMS decreases when the rods 

concentration, as well as the order parameter S, increase.  
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In the present work, we need to take into account the energy contribution of rod-shaped 

polyelectrolytes that carry like-charges because the amine functional groups of collagen are 

protonated in acidic pH and collagen rods have positive charges.  We use a simple mean-filed 

potential for interchain electrostatic interactions instead of solving Poisson–Boltzmann 

equation and averaging over all rods. The reason is to avoid costly and time-consuming 

approaches57 while maintaining accuracy and more importantly for future incorporation of the 

present free energy into macroscopic multi-transport models to describe de-hydration and film 

formation. The governing physics of mesogen self-assembly are complicated58, 59, in turn, the 

simulation of self-assembly inevitably requires the solution of highly nonlinear PDEs which is 

time expensive6, 60-62 therefore it is reasonable not to incorporate the Poisson–Boltzmann 

equation. To take into account the electrostatic forces, we shall formulate the average 

electrostatic potential. 

According to Poisson–Boltzmann equations, two cylindrical charged particles have the 

tendency to be perpendicularly ordered —this phenomenon is called twisting— because such 

configuration minimizes the repulsion44. Hence, the ordered phase is destabilized because of 

not only rod repulsion , but also the twisting effect which resists mesogen alignment35. Since 

the orientational ordering of positively charged rods is not energetically favorable, the sign of 

the electrostatic mean-field potential needs to be positive in order for the energy to increase as 

the order parameter (or concentration of mesogen) increases. We have then taken the form of 

the electrostatic mean-field potential similar to Maier-Saupe one with opposite sign, as shown 

in eqn. (3-9). Thereafter, using eqns. (3-7, 3-9) result in eqn. (3-10) which is the contribution 

of interchain electrostatic interactions (i.e. repulsion and twisting) to the energy (the further 

elaboration on the mean-field of repulsion and twisting are in ESI, Appendix A.1): 

βUi
elc=+βU′elcυASP2(cos(θ)) (3 − 9) 

βEelc

NA
=+βUelcS2cAυA

2  (3 − 10) 

The concentration of hydronium ions [H3O
+] —which is simply shown as [H+]—  is directly 

proportional to the number of charges adsorbed on the backbone of collagen (see Figure 3-12, 

in ESI, Appendix B.2). As a result, the increase in the concentration of hydronium ions 

amplifies the repulsive forces as well as the twisting effect and is the underlying cause for the 

destabilization of the ordered phase. In eqn. (3-10), the term which is capable of describing 

such physical mechanism is Uelc. We consequently expect unlike the UMS,  thatUelcshould vary 

as the amount of dissociated salt changes, moreover the Uelcand [H+] are positively correlated. 
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To sum up, the orientation-dependent intermolecular interaction term in eqn. (3-3) can be 

written as (see ESI, Appendix A.1): 

M=βUS2cAυA
2  (3 − 11a) 

U=Uelc − UMS (3 − 11b) 

In this paper Uis denoted as the potential of orientation-dependent intermolecular 

interaction. Eqns. (3-11a, b) reveals that the electrostatic repulsion and twisting (our suggested 

mean-field treatment) competes against the phase ordering while the orientation-dependent 

attraction (Maier-Saupe model) promotes the long-range orientational ordering. As a 

consequence, a trade-off between orientation-dependent attraction and repulsion is seen, 

thereby showing that the increase in acid concentration gives rise to mesophasic destability 

(increase of free energy) because of repulsion, and on the other hand, the decrease in acid 

content of solution brings about stability of ordered phase. 

It is noted that twisting differs from chirality as discussed in follows. Along the same lines, 

more recently, Drwenski et al. have used the second virial approximation to prove that the 

twisting phenomenon does not lead to cholesteric phase37. In order to complete the free energy 

given by eqn. (3-3), we have used the formalism of reference39, 40 for the chirality term, 

C(ψ(𝐮)). The macroscopic gradient elastic free energy of a cholesteric phase is: 

ECholesteric =
L1
2
(∇ × 𝐐+2q𝐐)2υANA (3 − 12a) 

q=
2π

p0
 (3 − 12b) 

L1and p0represent the elastic constant and pitch, respectively. The macroscopic quantity of 

long-range orientational order and the averaged directions of molecules are described using a 

quadrupole moment tensor,𝐐. In spite of the fact that cholesteric liquid crystals possess a small 

degree of biaxiality63, we assume that uniaxiality is valid as it is a widely used simplification 

for large pitch materials64.  Consequently, Q-tensor is simplified to eqn. (3-13). 

𝐐=S(𝐧𝐧 −
𝛅

3
) (3 − 13) 

𝛅 shows the Kronecker delta. The order parameter in eqn. (3-13) is not space-varying as 

long as the solution reaches the thermodynamic equilibrium. In such a case, the uniaxial 

director field is expected to obey eqn. (3-14). 

𝐧 = [cos(qz) sin(qz) 0] (3 − 14) 
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Substituting eqn. (3-13) and eqn. (3-14) into eqn. (3-12a), one can obtain the contribution 

of macroscopic phase chirality to the free energy (see ESI, † Appendix A.2): 

C =
βECholesteric

NA
=
32π2

3
(

ξ

p0
)
2

(
L

Deff
) S2 (3 − 15) 

where L and ξ corresponds to the contour length and coherence length defined by ξ=√
a3L1β

2
 

in which a3 indicates the volume of each lattice unit, respectively.  It is also noted that the 

uniaxial cholesteric phase (N*) is defined by a helix unit vector h, a signed pitch (the sign 

refers to left and right helices), a scalar order parameter S, and a director n. 

 

3.4.2 Energy contributions for chiral charged mesogen solutions in isotropic solvents 

In this subsection, the total free energy of mixing per lattice (difference between the states 

of solution and pure), which is the driving force for phase ordering and separation, is obtained. 

Like the approach of Das et al.54, we classify the constituents of a binary mixture as anisotropic 

and isotropic; the former capable and the latter incapable of adopting long-range orientational 

order. In our case, the anisotropic (A) component is collagen rods and the isotropic (I) 

component consists of acetic acid and water.  Extending the free energy based on the 

reference41 by considering the interchain electrostatic interactions (i.e. repulsion and twisting) 

and macroscopic chirality, the free energy of a triple helix acidic aqueous collagen solution 

reads: 

βFs=NAβμ
A
o+NIβμ

I
o-NA-NI+NAlncA

′ +NIlncI
′+NAσ(ψ(𝐮)) 

+υAANAcAρ(ψ(𝐮))+2υAINIcA + υIINIcI+βUcAυA
2NAS

2

+
32π2

3
(

ξ

p0
)
2 L

Deff
NAS

2 

(3 − 16) 

The degree of molecular alignment along the uniaxial director can be commonly measured 

by the ensemble average of the second Legendre polynomial:  

S=∫P2(cos(θ))ψ(𝐮)dΩ (3 − 17) 

where the single-rod orientational distribution function is normalized by: 

∫ψ(𝐮)dΩ=1 (3 − 18) 
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In the isotropic phase the normalized distribution function is a constant equal to 1/4π43, 

also σ(ψ(𝐮))=0 and ρ(ψ(𝐮))=138. Employing the Euler-Lagrange method to minimize the 

eqn. (3-16) with respect to the distribution function along with considering the constraint of 

eqn. (3-18) lead to (see ESI, † Appendix A.3 for details): 

ln(4πψ(θ))=η′-2 (βUcAυA
2 +

32π2

3
(

ξ

p0
)
2 L

Deff
)SP2(cos(θ))

−
8

π
υAAcA∫Γ(γ)ψ(θ′)dΩ

′
 

(3 − 19) 

As we will discuss later on, the constant of η′ is determined using the normalization 

restriction. The irreducible integral equation of eqn. (3-19) can be further simplified by 

expanding the eqn. (3-5c) in terms of the second Legendre polynomial65. 

Γ(γ) ≈
π

4
−
5π

32
(1-

11

8
h) P2(cos(γ)) (3 − 20a) 

P2(cos(γ)) ≈ P2(cos(θ))P2 (cos(θ
′)) (3 − 20b) 

Substituting eqns. (3-20a-b) into eqn. (3-19) yields: 

ψ(θ)=ηexp (WSP2(cos(θ))) (3 − 21a) 

W=λExE+λII+λChE (3 − 21b) 

λExE =
5

4
(1-

11

8
h) ϕ

A
eff L

Deff
=
5

4
(1-

11

8
h) cAυAA (3 − 21c) 

λII=-
π

2
Deff
2 βUϕ

A
effL (3 − 21d) 

λChE=-
64π2

3
(

ξ

p0
)
2 L

Deff
 (3 − 21e) 

whereby the normalized distribution function can be explicitly determined. Here we denote 

W as the net cholesteric potential because the scalar order parameter, which is the yardstick of 

ordering, is the exclusively function of W (see eqn. (3-23a)). λExE, λII and λChE are coupling 

parameters of excluded volume-electrostatic, intermolecular interaction and chirality-

electrostatic contributions, respectively.  Substituting the obtained distribution function, eqn. 

(3-21a), into the normalization restriction, eqn. (3-18), gives the constant η: 

η=
1

4πI0
 (3 − 22a) 
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I0(W,S) = ∫ exp(WSP2(x))
1

0

dx (3 − 22b) 

As a result of obtaining the normalized distribution function, we can formulate the order 

parameter as the self-consistent equation: 

S=
I1(W,S)

I0(W,S)
 (3 − 23a) 

I1(W,S) = ∫ P2(x)exp(WSP2(x))
1

0

dx (3 − 23b) 

Furthermore, the orientation-dependent terms σ(ψ(θ)), ρ(ψ(θ)) are determined by 

substituting the normalized distribution function into eqn. (3-4).and eqn. (3-5b): 

σ(ψ(θ))=WS2-ln(I0) (3 − 24a) 

ρ(ψ(θ))=1-
5

8
(1-

11

8
h) S2 (3 − 24b) 

In the rest of this subsection, we derive the free energy difference between a mixture and 

pure components, or mixing free energy. The mixing free energy ΔFmixing is
41, 66: 

F=ΔFmixing(NA,NI)=F
s(NA,NI)-F

s(NA,0)-F
s(0,NI) (3 − 25) 

where Fs(NA,NI), F
s(NA,0) and Fs(0,NI) are free energy of solution, pure anisotropic 

component in the isotropic state and isotropic components, respectively. We have used the 

approach mentioned in the reference41 about the number of segments along the backbone of 

components. Thus, we have taken υi=a
3niwhere ni and a3indicate the number of segments for 

ith component and volume of a lattice, respectively. Also,nA
eff=L/Deffand V=a3NTwhere the 

total number of lattice site is NT=nA
effNA+nINI. Finally, substituting the eqn. (3-16) into eqn. 

(3-25) leads the total dimensionless free energy per lattice site, ℱ (see ESI,† Appendix A.4 for 

details): 

ℱ =
βF

NT
=

ϕ
A
efflnϕ

A
eff

nA
eff

+ ϕ
I
efflnϕ

I
eff+χϕ

A
eff

ϕ
I
eff +

ϕ
A
eff

nA
eff
[
1

2
WS2-ln(I0(W,S))] (3 − 26) 

In eqn. (3-26), χ stands for isotropic Flory-Huggins parameter given by eqn. (3-27). This 

parameter is mainly function of temperature and can be generally estimated as χ=
A

T
 where A is 

physical constant related to solubility parameters (see ESI,† Appendix B.1), additionally it 

determines the miscibility of components in isotropic phase. 
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χ=a3 (
2υAI

υAυI
−

υAA

υA
2 −

υII

υI
2) (3 − 27) 

υi and υij represent the molecular volume of ith component and the averaged excluded 

volume between components of i and j. The first three terms in eqn. (3-26) are referred to Flory-

Huggins theory. Moreover, the last two terms explain the free energy change due to the 

alignment of the mesogens. 

In partial summary, for completeness and to facilitate reading, (a) the key thermodynamic 

results and (b) the main assumptions and simplifications used in this study are as follows: 

(a) Thermodynamic results: 

1. The total dimensionless free energy of mixing per lattice site, eqn. (3-26), provides the 

metastability condition for the phase separation in acidic collagenous solutions — this subject 

is explained in the subsequent subsection. The chemical potentials of isotropic and cholesteric 

phases are the criteria by which the binodal boundaries in phase diagrams of concentrations 

(acetic acid versus the collagen, Figure 3-3) and the ubiquitous athermal chimney (temperature 

against the collagen volume fraction, Figure 3-7) are determined.  

2. Eqn. (3-23a) is a nonlinear algebraic equation whose trivial root corresponds to the 

isotropic phase and non-trivial root corresponds to the macroscopic order parameter in 

cholesteric phase. The condition, under which the nontrivial root is obtained, establishes the 

phase ordering boundary. This subject is further discussed in subsection 3.5.2. 

3. Having LdG coefficients in terms of solution’s parameters is an important practical result. 

The linearization of eqn. (3-26) near the order-disorder phase shift ends up like the LdG 

expansion. Hence, the linearized form of eqn. (3-26) resolves the long-standing problem of 

quantifying the LdG coefficients. This subject is more elaborated in section 3.6. 

(b)Assumptions and simplifications: 

 1. Although cholesteric phases manifest some small degree of biaxiality, we assume the 

uniaxiality is the underlying factor in variation of free energy.  2. Rigidity of collagen rods is 

reasonable on account of the presence of mobile ions.  3. To determine the linear charge 

density, we use the common assumption that pKa of residues in collagen are kept constant 

equal to their isolated values while the pH varies and other residues are protonated or 

deprotonated.  4. The pitch functionality on concentration is taken from experimental data and 
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is not an output of the model (i.e. there is no minimization of the energy with respect to the 

macroscopic pitch).  

 

3.5 Phase diagrams 

3.5.1 Binodals 

The criterion of metastability boundaries, binodal curves, is given by : 

μ
i
Cho=μ

i
Isoi ∈ {A,I} (3 − 28) 

the superscripts Cho and Iso stand for Cholesteric and Isotropic phase, respectively. Eqns. 

(3-29a-b) show the chemical potentials in an arbitrary phase j. To rewrite chemical potential in 

term of total dimensionless free energy per lattice and volume fraction, one can use the fact 

that for the equal lattice sites ϕ
i
=
niNi

NT
, and the chain rule (see ESI,† Appendix A.5) gives: 

𝜇𝐴
𝑗
= (

𝜕𝐹𝑗

𝜕𝑁𝐴
)
𝑁𝐼,T

= 𝑛𝐴
𝑗 (ℱ𝑗 + 𝜙𝐼

𝑗
(
𝜕ℱ𝑗

𝜕𝜙𝐴
𝑗
)

𝜙𝐼
𝑗
,T

) (3 − 29a) 

𝜇𝐼
𝑗
= (

𝜕𝐹𝑗

𝜕𝑁𝐼
)
𝑁A,T

= 𝑛𝐼
𝑗 (ℱ𝑗 + 𝜙𝐴

𝑗
(
𝜕ℱ𝑗

𝜕𝜙𝐼
𝑗
)

𝜙𝐴
𝑗
,T

) (3 − 29b) 

 

3.5.2 Isotropic-cholesteric phase transition 

The self-consistent equation, eqn. (3-23a), has the nontrivial solution if W ≥ 4.5; otherwise 

isotropic phase exists which means the numerical solution of eqn. (3-23a) converges to S=0. 

Moreover, the isotropic-cholesteric transition concentration, eqn. (3-30), is then determined by 

the equality of the mentioned criterion.  

ϕ
A
eff,* =

4.5
Deff
L
+
64π2

3
(

ξ
p0
)
2

5
4 (1-

11
8 h) −

π
2Deff

3 βU
 (3 − 30) 

 

3.6 Asymptotic analysis 

The well-known macroscopic Landau-de Gennes (LdG) Q-tensor theory is based on the sum 

of homogeneous entropic/enthalpic free energy (quartic polynomial in Q) plus the gradient 

Frank elasticity contributions, and is needed for macroscopic process simulations such as the 
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formation of collagen films. Accurate prediction of spatially homogeneous phase ordering 

strongly depends on the accurate determination of its phenomenological coefficients appearing 

in the homogeneous free energy contribution. Next, we derive expressions of the 

phenomenological coefficients of LdG in terms of the microscopic theories of Flory-Huggins, 

Onsager, Maier-Saupe, and electrostatic mean-field potential.  

The anisotropic part of the free energy, eqn. (3-26), asymptotically becomes equivalent to 

the LdG formulation if one expands ln(I0(W,S))in the vicinity of the uniaxial  I-N* phase 

transition. Linearization of eqn. (3-26) around the uniaxial  I-N* yields:   

ℱ =
ϕ
A
eff ln ϕ

A
eff

nA
eff

+ ϕ
I
eff ln ϕ

I
eff + χϕ

A
eff

ϕ
I
eff + A𝐐:𝐐 + B𝐐: (𝐐 ⋅ 𝐐) + C(𝐐:𝐐)2 (3 − 31a) 

A=
3

4

Wϕ
A
eff

nA
eff
(1-

W

5
) (3 − 31b) 

B=-
9

210

ϕ
A
effW3

nA
eff

 (3 − 31c) 

C=
9

2800

ϕ
A
effW4

nA
eff

 (3 − 31d) 

Nonzero value of B implies that the phase transition is first order. Furthermore, the negative 

value of Band positive value of Cguarantee two minima of the free energy—𝐐 = 𝟎and 𝐐 > 𝟎 

correspond to isotropic and cholesteric phases, respectively. Therefore, we can see that the 

obtained coefficients meet all the restrictions of the LdG theory67. Biaxiality effects for A, B, 

C are beyond of the scope of this paper and will be treated in future work. 

 

3.7 Results and discussion 

We have assembled and discussed all model parameters and material properties used in this 

section, in the Appendix B of the ESI. A crucial parameter in the rheology of collagenous films 

flows (used to fabricate actual collagen films) is the ratio of persistent length to effective 

diameter of the flowing and rotating unit3, 6, 20. Herein, we take the length of collagen as 

constant equal to its contour length since collagen macromolecules form rigid rods in the 

presence of mobile ions17. Yet, the effective diameter is inversely proportional to the 

concentrations of both collagen rods and acetic acid (for more information on the functionality 

of the effective diameter see Appendix A.6). Typically in the present study, L/Deff ranges from 
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65 to 120 in biphasic to fully cholesteric regimes which is consistent with the values suggested 

by6, 68.  

 Now turn to show the need of including intermolecular electrostatic interactions, and 

thereafter we examine the correctness of suggested mean-field electrostatic potential. 

 

Figure 3-2. The potential of orientation-dependent intermolecular interaction,U, along the 

phase transition curve. The red squares are calculated based on the phase transition data 

reported in reference16. 

Figure 3-2 shows the potential of orientation-dependent intermolecular interactions U as a 

function of the concentration of hydronium ions. To construct this figure, based on the eqns. 

(3-11b, 3-30), we use the known concentrations of collagen and acetic acid at the order-disorder 

(isotropic-cholesteric) phase transition, extracted from16. In eqns. (3-3, 3-10) we included 

electrostatic interactions, due to the positive charges on the collagen backbone, which consist 

of repulsion as well as twisting. Figure 3-2 confirms the existence and essential role of Uelc 

because UMS is a constant and incapable of capturing the experimental data.  In the absence of 

acetic acid in the system, the only orientation-dependent interaction is attraction captured by 

UMS. When acetic acid is dissolved, the rods take on fixed positive charges, and as a result, 
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repulsion and twisting emerge. Uelc is responsible to describe the interchain electrostatic 

interactions due to the variation of acetic acid concentration.  Furthermore, as elaborated in the 

Appendix B.2, the linear charge density of collagen rods is inversely proportional to pH, in 

turn, directly proportional to the concentration of hydronium ions. In other words, the more 

hydronium ions exist in the solution, the more positive charges collagen macromolecules take. 

The increase in the number of charges on the collagen backbone makes the repulsion and 

twisting stronger, which competes with phase ordering. Accordingly, the acetic acid forces the 

phase ordering process to increase its energetic cost, and hence Uelcmust be directly 

proportional to the concentration of hydronium ions as predicted in subsection 3.4.1 and shown 

in Figure 3-2. Lastly, Figure 3-2 shows that the y-intercept of the extrapolated experimental 

data would be negative which gives rise to a positive constant for the Maier-Saupe interaction 

parameter, UMS. This result indicates that our suggested model is consistent with Maier- Saupe 

theory.  Figure 3-2 also reflects the change in the trend of intermolecular interaction as a 

function of the concentration of mobile hydronium ions. The slope of Uon the concentration of 

hydronium ions in the very dilute solution of acetic acid is larger than in the concentrated 

solution. This can be explained through the screening effect. When the concentration of mobile 

ions is higher, the electrostatic potential is screened and acts over shorter distances as a 

consequence of the shorter Debye length, whereas at low concentration of mobile ions, the 

Debye length becomes longer and the electric potential decays over longer distances. 

In partial summary, these results of Figure 3-2 show that the model is in agreement with 

Maier-Saupe’s model, and that the chosen the electrostatic mean-field potential (eqn. (3-10)) 

captures the experimental collagen data. 
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Figure 3-3. Phase diagram of the acidic collagenous solution at 25 °C. The black solid lines 

from left to right indicate lower binodal curve, I-N* phase transition and upper binodal curve. 

The color shows the variation of the macroscopic order parameter S in the phase diagram. The 

red dash lines and green dash-dotted lines are binodal curves for Onsager and SLO theories44. 

Figure 3-3 shows the phase diagram in terms of acetic acid concentration as a function of 

collagen concentration. The middle curved black solid line, originating at the bottom of the 

plot at a collagen concentration of around 52mg/ml , is the experimental phase transition 

boundary extracted from16 by which and eqn. (3-30) the potential of orientation-dependent 

intermolecular interaction, U, is obtained (Figure 3-2). The two other curved back solid lines 

correspond to the predicted binodal curves obtained by solving the nonlinear eqns.(3-28, 3-

29a-b). The obtained binodal curves are in acceptable agreement with the experimental 

results16. The color (blue to yellow) is used to show the magnitude of predicted macroscopic 

scalar order parameter. As the solution becomes more concentrated with collagen rods, the 

orientational ordering increases. This phase behavior stems from the lyotropic nature of 

collagen. The red dash-line and green dash-dotted line, which respectively stand for the 

Onsager and SLO theories43, show that the acidic collagenous solutions are not only governed 

by excluded volume and twisting effects.   
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Experiments indicate that for acetic acid at 2.9M and 90 mg/ml collagen the scalar order 

parameter is 0.45±0.1 (upper red dot in Figure 3-3). Using eqn.(3-23a) we find that for 90mg/ml 

collagen and 2.9 M acetic acid our model predicts S=0.47 , again in good agreement with 

experimental data16. 

It is useful to compare the accuracy of the obtained transition concentration, eqn. (3-30), 

with classical approaches. Onsager has theoretically shown that the solution comprises of rod-

like molecules are able to undergo an order- disorder transition if the concentration of rods 

exceeds a threshold given by44: 

ϕ
A
eff,*=Ki

Deff
L
, Kl=3.3399,Ku=4.4858 (3 − 32) 

The superscripts of l andu stand for lower and upper binodal curves, respectively. The SLO 

(Stroobants, Lekkerkerker and Odjik) theory includes the effect of twisting to Onsager theory44: 

ϕ
A
eff,* =

K1,i
Deff
L

1-K2,ih
, K1,l=3.290,K2,l=0.675,K1,u=4.191,K2,u=0.730 

(3 − 33) 

Next, we discuss the thermodynamic and phase transition predictions of the Onsager, SLO 

and present model for acidic aqueous collagen I solutions (see Figure 3-3).   We find that 

although the Onsager theory, eqn. (3-32), has included the effect of electrostatic repulsion as 

swelling of the bare diameter, Deff, it is not still able to provide an acceptable prediction for the 

binodal curves. Similarly, SLO theory underestimates the actual phase transition boundary, 

whereas it gives a better estimation than Onsager theory due to inclusion of the twisting effect. 

The deviation of the prediction of these fundamental theories from experimental data16 shows 

that the acidic solutions of collagen are governed by multiple mechanisms, which in the present 

model are integrated to accurately describe the energy landscape.  Our formulation for the 

threshold of phase transition, eqn. (3-30), reveals that in addition to repulsion and twisting, 

mechanisms of orientation-dependent intermolecular interaction and chirality play a role in 

phase ordering. That is why our approach gives higher collagen concentration values than the 

Onsager (eqn.(3-32)) and SLO (eqn.(3-33))   predictions.  
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Figure 3-4. The uniaxial order parameter S as a function of the net cholesteric potential W.  The 

predicted value of S at the transition is relatively low and less than 0.4. 

Figure 3-4 shows the uniaxial order parameter S as a function of the net cholesteric potential 

W (eqn. (3-22b, 3-23a-b)).  The figure shows that S increases with W and jumps from S = 0 

isotropic phase to Sc ≈ 0.38 , if the net cholesteric potential crosses the threshold of W ≈ 4.5. 

However, the Onsager and LdG theories, which are more tailored for lyotropic liquid crystal, 

predict the critical scalar order parameter 0.792 and 0. 5 at the phase transition, respectively33, 

67. Although the critical order parameter for the acidic solutions of collagen has not been 

documented, one can readily estimate the maximum value of critical order parameter by using 

the aforementioned experimental order parameter and linear interpolation. The critical 

concentration of collagen for the solution of 2.9 M acetic acid is nearly 82.5mg/ml (mean value 

of 80-85 mg/ml)16. In addition, the experimental value of the scalar order parameter for the 

solution of 90 mg/ml collage and 2.9 M acetic acid is 0.45, as shown in Figure 3-3 (the given 

experimental point is very close to the phase transition boundary). The linear interpolation then 

estimates the critical order parameter as 0.41. We expect that the actual order parameter at 

order-disorder phase transition would be lower than 0.41 because the scaling of phase ordering 

in the vicinity of the phase transition is sharper than linear. In partial conclusion, comparing 
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with the values of critical order parameter predicted by Onsager and LdG theories, our model 

performs more accurately. 

 

Figure 3-5. Coupling parameters along the A) phase transition curve B) cholesteric 

metastability curve (cholesteric binodal).  See equations 3-21b-e. The sum of these three 

coupling parameters is the net cholesteric potential W. 

It is important to quantify how the three contributions of the net cholesteric potential W 

(eqn. (3-21b)) vary with acetic acid concentration.  Figure 3-5 show the coupling parameters 

formulated in eqns. (3-21b-e) along the phase transition curve and the cholesteric binodal 

curve, respectively. When the concentration of acetic acid tends to zero, the number of charges 

on the collagen rods becomes negligible and the prevailing interaction is attraction. For this 

reason, in the extremely dilute concentration of acetic acid, the potential of orientation-

dependent intermolecular interaction, U, becomes negative which results in making the 
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coupling parameter of orientation-dependent intermolecular interaction, λII, positive. Apart 

from infinitely dilute solution, λII is negative, and it is monotonically decreasing with acidic 

acid concentration increases. The negative sign is due to the fact that in acidic solutions of 

collagen, the dominant interchain interaction is repulsion therefore Uand λIIhave to be positive 

and negative, respectively (see eqn. (3-11b) and eqn. (3-21d)). The monotonically decreasing 

trend in λIIreflects the intrinsic behavior of collagen rods for taking more positive charges as 

the concentration of acetic acid increase. While the number of charges on the collagen 

backbone becomes denser, the repulsion and twisting among the rods become higher and 

henceUelc ∝ [AA] ∝ [H+] ∝ −λII where [AA] is the concentration of acetic acid. Accordingly, 

the graphs of λII indicate: (i)  save for the very dilute concentration of acetic acid, the repulsion 

and twisting are primary mechanisms and van der Waals attractive interactions is less 

influential; (ii) these graphs support the need for and accuracy of the electrostatic mean-field 

potential we have added in section 3.4.1. 

Figure 3-5 reveal that the coupling parameter of chirality-electrostatic acquires negative 

infinitesimal values in the acidic collagenous solutions and plays an insignificant role in the 

net cholesteric potential as well as in the scalar order parameter. The negative value for λChE 

demonstrates that our work is consistent to previous studies20, 21, 39. In our study, due to the 

negative sign of λChE (see eqns. 3-21(e)), the ratio of coherence length over pitch, 
ξ

p0
, is 

inversely proportional to the net cholesteric potential, W, and the scalar order parameter, S.  

The   uniaxial order parameter S as a function of the length scale  
ξ

p0
 is39:   

S=
1

4
+
1

4
√9-

24

Ρ
−
96

Ρ
π2 (

ξ

p0
)
2

 (3 − 34) 

where Ρ=
3c

c∗
 represents the cholesteric potential of phase ordering;c∗ is number density at 

the I/N* phase transition. As can easily be seen, 
ξ

p0
 and S are inversely correlated39.  The 

negligible impact of chirality on the phase ordering stems from the large pitch of collagen 

(micron scale). The magnitude of  (
ξ

p0
)
2

is in the range of 10-7 – 10-8 and the chirality effect on 

S is essentially negligible .  In general, for small molecular weight rod-like mesogens, the free 

energy difference for the transition from cholesteric to nematic is considerably smaller than the 

transition from isotropic to nematic44. In the case of acidic solutions of collagen, the 

micrometer-sized pitch of collagen makes this small difference negligible. 
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Figure 3-5 A corresponds to the I-N* phase transition curve therefore the value of the net 

cholesteric potential is kept as a constant equal to 4.5. Although along the metastability curve 

(Figure 3-5 B) the net cholesteric potential slightly increases, the dependency of Won 

concentration has not become relatively significant. This shows that the primary growth in the 

scalar order parameter happens in the cholesteric phase not in the biphasic region. Regarding 

the coupling parameter of excluded volume-electrostatic, λExE, Figure 3-5 demonstrate that it 

is the dominant term in phase ordering compared to the other terms. There are two main reasons 

why the coupling parameter of excluded volume-electrostatic, λExE, is more significant than 

orientation-dependent intermolecular interaction, λII. The increase in concentration of acetic 

acid increases the effective diameter and shortens the Debye length, in which case, the twisting 

parameter, h=(κ-1/Deff), decreases, and also the excluded volume is more affected  because it 

is directly proportional to the effective diameter, υAA ∝ DeffL
2 (see eqn. (3-21c)). It should be 

also considered that λExE ∝ cAand along the phase transition curve the concentration of 

collagen as well as acetic acid are increased. Finally, all of these factors cause that the effect 

of excluded volume to become dominant and the monotonically increasing trend in λExEis 

expected. 
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Figure 3-6. Typical variation of the net cholesteric potential with respect to the concentrations 

of collagen and acetic acid concentration [AA] in the cholesteric region of phase diagram 

shown in Figure 3-3. 

Figure 3-6 characterizes the dependency of the net cholesteric potential as a function of 

collagen concentration at the various acetic acid concentrations. All lines have positive slopes; 

therefore, the net cholesteric potential has a linear dependency on the concentration of collagen 

that reflects the lyotropic nature of the collagenous solution.  Under dilute [AA] conditions, 

due to lack of mobile ions, the Debye length increases and the electrostatic potential can act 

over longer distances therefore the phase ordering intensity decreases. Thus, the slope of W 

decrease as [AA] decrease from nearly 50 mM to 4 mM. 

To reach a specific W ([AA]>50mM), the required collagen concentration goes up as the 

solution becomes more acidic. The increase in acetic acid concentration results in reducing the 

orientational ordering. Hence, λII < 0 and λII decreases by increasing the acetic acid 

concentration (see eqn. (3-21d)). Because λExE > 0 and λExE ∝ cA, the increase in collagen 

concentration can compensate the competing disordering effect generated by increasing [AA]. 
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From Figure 3-6, we can similarly conclude that for a constant concentration of collagen, 

the decrease in [AA] (50mM < [AA] < 2900mM) leads to higher orientational S. This 

important result can be also obtained using the color-plot in the Figure 3-3. 

 

Figure 3-7. The chimney-like equilibrium phase diagrams for the acidic collagenous solutions, 

A) 4 mM acetic acid and B) 1000 mM acetic acid. 

A characteristic feature of lyotropic liquid crystalline temperature-concentration phase 

diagram is the presence of an athermal bi-phasic chimney, sometimes refereed as the Flory 

chimney. Since the collagen solution belong to this class of polymers, our model should also 

predict it.   Equally important the biphasic chimney conditions yield micron-range tactoids that 

serve as liquid crystal fingerprinting and whose shape and size reflect important properties. 

Consistent with previous experimental and theoretical studies54, the shape of T-ϕ
A
eff

 diagram 

displays a chimney, as shown in Figure 3-7. The chosen range of temperature in these figures 

correspond to a safe range in which collagen is not denatured. The figure shows that on 

increasing [AA], the chimney becomes narrower and the phase transition boundary slightly 

shifts right. Therefore, the electrostatic interactions delay the appearance of the biphasic region, 

and induce the imminent emergence of a birefringent phase (i.e. chiral nematic phase). This 

behavior can be also interpreted from Figure 3-3 plotted under a constant temperature; the 

width of biphasic region in this figure becomes broader in bottom where [AA] is lower.   
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3.8 Conclusions 

In this work, we have thoroughly analyzed the driving mechanisms that govern the 

thermodynamics of acidic collagenous aqueous solutions. For these solutions, we have 

established a multiscale energy landscape emerging from microscopic entropic and enthalpic 

mechanisms of mixings, excluded volume, orientation-dependent attractive interactions, 

interchain electrostatic interactions (i.e. repulsion and twisting), and macroscopic chirality. 

Regarding the modeling of interchain electrostatic interactions, we have introduced a simple 

mean-field potential, thereafter we have validated the effectiveness of the proposed potential 

by experimental data. Moreover, our suggested theory is compatible with the experimental 

phase diagrams (Figure 3-316), the experimental order parameter16, and previous theoretical 

studies38, 41. In the vicinity of I-N*, the linearized form of our proposed continuum theory 

converges to the LdG theory whereby this study has provided a systematic framework to obtain 

the phenomenological coefficients of LdG (eqns. (3-31b-d)). We have demonstrated that just 

three coupling parameters (eqn.(3-21 c-e)) can have an impact on the phase ordering. For the 

acidic collagenous solutions, phase ordering is primarily excluded-volume-driven, moderately 

affected by the intermolecular interactions (repulsion, twisting and attraction), and almost 

unaffected by chirality (Figure 3-5). Furthermore, our results have shown that while the 

excluded volume and the orientation-dependent attractive interactions promote the 

orientational ordering, the interchain electrostatic interactions (i.e. repulsion and twisting) 

compete against the emergence of mesophase. Adding acid to the collagenous solutions results 

in repulsion and twisting which compete with chiral nematic phase ordering. In particular, the 

role of interchain electrostatic interactions, that we have incorporated in the proposed energy 

landscape, is to narrow the I-N* biphasic region (Figure 3-7). The present model predicts a 

chimney-like phase diagram as expected from lyotropic liquid crystal polymers. Our approach 

possesses the distinguishing features of accuracy and simplicity; therefore, this work has a 

potential significance to narrow the gap between existing experimental platforms and sought-

after material performance. 
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3.10 Supporting Information, ESI (Chapter 3) 

3.10.1 Appendix A: Details of energy landscape derivation 

The purpose of this appendix is to provide the mathematical details and intermediate steps 

used in deriving the energy landscape given in eqns. (3-8, 3-10, 3-11a, 3-15, 3-21a, 3-22a, 3-

26 and 3-29a).  

A.1. Impact of interchain interactions 

The aim of this subsection is to elaborate the derivation of eqns. (3-8, 3-10, 3-11a). The 

common assumption about the orientation distribution function is its independency from the 

azimuthal angle1-3 in spherical coordinates. Therefore, the 𝐮 is variable with respect to only 

polar angle and ψ(𝐮) = ψ(θ).  

According to Maier-Saupe theory2, 4, 5, the averaged potential of orientation-dependent 

attractive interactions for ith rod among the other macromolecules is given by eqn. (A.1.1) 2, 4-

6. 

βUi
MS=-βU′MSυASP2(cosθ) (A.1.1) 



62 

 

To obtain the corresponding energy, eqn. (A.1.1) needs to be substituted into eqn. (A.1.2a). 

Doing so, we get eqn. (A.1.2b) 6. 

βEMS =
ZNA
2
∬ βUi

MSψ(θ)ψ(θ′) dΩdΩ
′
 (A.1.2a) 

βEMS=-βU′MSυAS
ZNA
2
∫P2(cosθ)ψ(𝐮)dΩ∫ψ(𝐮′)dΩ

′
 (A.1.2b) 

In eqn. (A.1.2b), the first integral indicates the definition of scaler order parameter, and the 

second integral is the normalization of distribution function that is equal to one (see eqns. (3-

17, 3-18)). Therefore, eqn. (A.1.2b) can be rewritten as eqn. (A.1.3). 

βEMS=-βUMSυAS
2NA (A.1.3) 

Furthermore, NA=cAVand for pure liquid crystals V=υANA, we then write the contribution 

of orientation-dependent attractive interactions on the energy landscape as eqn. (A.1.4).  

βEMS

NA
=-βUMSS2cAυA

2  (A.1.4) 

It should be noticed that the eqn. (A.1.4) has been also used in the other studies2, 7, 8.  Now 

we turn to the modeling of mean-field potential for repulsion and twisting. When two rods are 

positively charge, the most stable configuration for them becomes orthogonal; see Figure 3-8. 

 

Figure 3-8. Phase ordering of two positively charged rods. 

Phase ordering is thus energetically unfavorable process. To model this phenomenon, we 

use the Maier-Saupe potential with a positive sign (eq. (3-9)). Doing so dictates that the 

orientational ordering for charged rods gives rise to an increase in the free energy. Similarly, 
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after taking the molecular average of the obtained mean-field potential (eqn. (A.1.2a)); the eqn. 

(3-10) of the article is obtained. Finally, the net of orientation-dependent intermolecular 

interactions reads: 

M=
βEMS

NA
+

βEelc

NA
= β(Uelc-UMS)S2cAυA

2  (A.1.5) 

 

A.2. Impact of chirality 

This subsection gives the detailed steps concerning the derivation of eqn. (3-15). The 

Mermin Frank energy for the macroscopic chirality, ECholesteric, the ideal equilibrium director, 

𝐧, and Q-tensor are given by eqn. (A.2.1a-c) 9, 10. 

ECholesteric =
L1
2
(∇ × 𝐐+2q𝐐)2υANA (A.2.1a) 

𝐐=S(𝐧𝐧 −
𝛅

3
) (A.2.1b) 

𝐧 = [cos(qz) sin(qz) 0] (A.2.1c) 

Using the eqn. (A.2.1b), the ∇ × 𝐐 reduces to S∇ × 𝐧𝐧. Second rank tensor of 𝐧𝐧 is 

constructed by eqn. (A.2.1c). 

𝐧𝐧 =

[
 
 
 
 cos2(qz)

sin(2qz)

2
0

sin(2qz)

2
sin2(qz) 0

0 0 0]
 
 
 
 

 (A.2.2) 

Based on the Einstein notation, ∇ × 𝐧𝐧 = εipq
∂(𝐧𝐧)jq

∂xp
 where εipqis Levi-Civita function and 

xp indicates spatial directions. Thus, using eqn. (A.2.2) leads to ∇ × 𝐧𝐧 = 0 and eqn. (A.2.1a) 

reduces to eqn. (A.2.3). 

ECholesteric = 2L1q
2𝐐:𝐐 (A.2.3) 

Now we need to use eqn. (A.2.1b) for further simplification of eqn. (A.2.3). 

𝐐:𝐐 = S2 (𝐧𝐧: 𝐧𝐧 −
1

3
𝐧𝐧: 𝛅 −

1

3
𝛅: 𝐧𝐧 +

1

9
𝛅: 𝛅) (A.2.4) 

The 𝛅 = 𝐢𝐢 + 𝐣𝐣 + 𝐤𝐤where 𝐢, 𝐣and 𝐤are unit vector in x, y and z directions, respectively. 

Hence, 𝐧𝐧: 𝛅 = 𝐧𝐧: (𝐢𝐢 + 𝐣𝐣 + 𝐤𝐤) = 𝐧𝐧: 𝐢𝐢 + 𝐧𝐧: 𝐣𝐣 + 𝐧𝐧: 𝐤𝐤 = (𝐧 ⋅ 𝐢)2 + (𝐧 ⋅ 𝐣)2 + (𝐧 ⋅
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𝐤)2 = 𝐧 ⋅ 𝐧 = 1. In the similar way, 𝛅: 𝐧𝐧 = 𝐧𝐧: 𝛅 = 1. Also, 𝐧𝐧:𝐧𝐧 = (𝐧 ⋅ 𝐧)2 = 1 and 

𝛅: 𝛅 = 3. We then get eqn. (A.2.5). 

𝐐:𝐐 =
2

3
S2 (A.2.5) 

Now that 𝐐:𝐐 is determined, also considering the assumptions nA
eff=L/Deff and υi=a

3ni 
2, 

the energy due to macroscopic chirality can be rearrange into eqn. (A.2.6). 

βECholesteric

NA
=
32π2

3
(

ξ

p0
)
2

S2
L

Deff
 (A.2.6) 

where the nm-scale coherence (correlation) length is defined as ξ=√
a3L1β

2
. 

 

A.3. Finding optimal distribution function 

This subsection aims to explain the intermediate steps in the derivation of the optimal 

normalized distribution function given by eqns. (3-21a, 3-22a). In this regard, we have to do 

the following optimization given in eqn. (A.3.1)2. 

{
 

 minimize :
δFs

δψ(θ)

subjectto:∫ψ(θ)dΩ=1

 (A.3.1) 

δFs

δψ(θ)
 is the functional derivative of total free energy of system. This optimization can be 

transformed into nonlinear algebraic equations by the use of Euler-Lagrange multiplier, eqn. 

(A.3.2)11: 

δH

δψ(θ)
=

δFs

δψ(θ)
− η″∫ψ(θ)dΩ = 0 (A.3.2) 

δH

δψ(θ)
and η″ are called the Hamiltonian function and Lagrange multiplier. Using eqn. (3-16) 

of the article, we reach eqn. (A.3.3a). 
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δH

δψ(θ)
=
NA
β
(

δσ(ψ(θ))

δψ(θ)
+ υAAcA

δρ(ψ(θ))

δψ(θ)

+ (UcAυA
2 +

32π2

3
(

ξ

p0
)
2 L

Deff
)

δS2

δψ(θ)
) − η″

δ∫ψ(θ)dΩ

δψ(θ)
= 0 

 

(A.3.3a) 

δσ(ψ(θ))

δψ(θ)
= 2πsin(θ) (1+ln(4πψ(θ))) (A.3.3b) 

δρ(ψ(θ))

δψ(θ)
= 2πsin(θ)

8

π
∫Γ(γ)ψ(θ′)dΩ

′
 (A.3.3c) 

δS2

δψ(θ)
=2S

δS

δψ(θ)
= 4πSsin(θ)P2(cosθ) (A.3.3d) 

δ∫ψ(θ)dΩ

δψ(θ)
= 2πsin(θ) (A.3.3e) 

Substituting eqns. (A.3.3b-e) into eqn. (A.3.3a) gives the irreducible integral equation 

expressed in eqn. (3-19) of the article whereby the optimal distribution function, eqn. (3-21a) 

and eqn. (3-22a), can be obtained. 

 

A.4. Derivation of mixing free energy 

The objective of this subsection is to clarify the derivation of eqn. (3-26) in full detail. 

Because in the isotropic state σ(ψ(θ))=0and ρ(ψ(θ))=1, and in the pure solution cA =

(υA)
-1, the free energy of the pure components are expressed as eqns. (A.4.1a,b)2, 12.   

βFs(NA,0)=NAβμ
A
o -NA+NAlnυ-NAlnυA +

υAANA
υA

 (A.4.1a) 

βFs(0,NI)=NIβμ
I
o-NI+NIlnυ-NIlnυI +

υIINI
υI

 (A.4.1b) 

The free energy difference between the solution and the pure components in the isotropic 

state is called mixing free energy2. 

 

 

 

 

 (A.4.2) 
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βΔFmixing(NA,NI)=NAlncA+NIlncI+NA(WS
2-ln(I0))

+ υAANAcA (1-
5

8
(1-

11

8
h) S2)+2υAINIcA + υIINIcI+UcAυA

2NAS
2

+
32π2

3
(

ξ

p0
)
2 L

Deff
NAS

2+NAlnυA −
υAANA

υA
+NIlnυI −

υIINI
υI

 

 
As alluded in subsection 3.4.1 of the article, υwhich is an arbitrary volume, merely plays 

dimensional consistency not any other role. Herein, one can see that it is included in eqn. 

(A.4.2). Given ϕi=ciυi, Ni =
ϕiV

υi
, incompressibility ϕA + ϕI=1, small-sized solve nI=1, and 

the isotropic Flory-Huggins parameter χ=a3 (
2υAI

υAυI
−

υAA

υA
2 −

υII

υI
2), the Flory-Huggins theory gives  

eqn. (A.4.3b). 

βΔFmixing(NA,NI)=NAlnϕ
A
+NIlnϕ

I
+2υAINIcA + υIINI (cI −

1

υI
)

+ υAANA (cA −
1

υA
) 

+NA(WS
2-ln(I0))

+ (υAAcA (−
5

8
(1-

11

8
h))+UcAυA

2

+
32π2

3
(

ξ

p0
)
2 L

Deff
)NAS

2 

(A.4.3a) 

βΔFmixing(NA,NI)=NT (
ϕ
A
lnϕ

A

nA
+ ϕ

I
lnϕ

I
+ ϕ

A
ϕ
I
χ+

ϕ
A

nA
(
1

2
WS2-ln(I0))) (A.4.3b) 

  

 

A.5. Chemical potential in terms of total dimensionless free energy per lattice and volume 

fraction 

In this subsection, we develop the chemical potential for mesogen in the phase j (i.e. Cho or 

Iso), eqn. (3-29a). In addition, doing similar mathematical manipulations leads to the chemical 

potential for the solvent. 

Knowing that ℱ =
βF

NT
, we reach to eqn. (A.5.1). 
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μ
A

j
= (

∂Fj

∂NA
)
NI,T

=
1

β
(NT (

∂ℱ

∂NA
)
NI,T

+ ℱ (
∂NT
∂NA

)
NI,T

) (A.5.1) 

To determine the 
∂NT

∂NA
, we should use the definition of NT=nA

effNA+nINI. 

(
∂NT
∂NA

)
NI,T

= nA
eff (A.5.2) 

Now, we should write the (
∂ℱ

∂NA
)
NI,T

in term of volume fraction. 

(
∂ℱ

∂NA
)
NI,T

= (
∂ℱ

∂ϕ
A

)
NI,T

(
∂ϕ

A

∂NA
)
NI,T

 (A.5.3) 

The definition of volume fraction with the assumption of equal lattice size is ϕA =
nA
effNA

NT
, 

therefore we are now able to determine (
∂ϕA

∂NA
)
NI,T

. 

(
∂ϕ

A

∂NA
)
NI,T

=
1

NT
(nA

eff − ϕ
A
(
∂NT
∂NA

)
NI,T

) (A.5.4) 

Substituting eqn. (A.5.2) to eqn. (A.5.4) gives the desired form of (
∂ϕA

∂NA
)
NI,T

. 

(
∂ϕ

A

∂NA
)
NI,T

=
1

NT
nA
effϕ

I
 (A.5.5) 

Finally, we should substitute eqns. (A.5.2, A.5.5) to eqn. (A.5.1) to reach the final form that 

we wanted. 

𝜇𝐴
𝑗
= (

𝜕𝐹𝑗

𝜕𝑁𝐴
)
𝑁𝐼,T

= 𝑛𝐴
𝑗 (ℱ𝑗 + 𝜙𝐼

𝑗
(
𝜕ℱ𝑗

𝜕𝜙𝐴
𝑗
)

𝜙𝐼
𝑗
,T

) (A.5.6) 

 

A.6. Functionality of L/Deff 

The ionic strength of the dispersion of collagen in an aqueous acetic acid solution is 

represented by: 

I=
1

2
∑miZi

2

i

=
1

2
∑mi
i

 (A.6.1) 

because the charge number of acetic acid is one, AA↔A-+H+. Now we formulate the 

summation of molarities for all mobile ions. Let NH+
m  and NA−

m  are the number of hydronium 
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ions and acetate ions that are mobile in the dispersion. Hence, the total number of mobile ions, 

NT
m, is given by  

NT
m=NH+

m +NA−
m  (A.6.2) 

To determine NA−
m , we shall take into consideration that the number of mobile acetate is the 

summation of number of existing hydronium ions, NH+
m , and the number of protonated 

hydrogen that are adsorbed on the collagen backbone, NH+
b . This consideration is due to the 

principle of charge neutrality, see Figure 3-9. 

  NA−
m =NH+

m +NH+
b  (A.6.3) 

 

Figure 3-9. Schematic of the principle of charge neutrality. There are 16 H+ (7 cations on the 

collagen backbone and 9 cations are mobile in dispersion) and 16 A-. 

The number of protonated hydrogen on the collagen backbone is simply given by 

NH+
b =NAΛ(pH)L. Substituting the eqn. (A.6.3) into eqn. (A.6.2) leads to 

NT
m=2NH+

m +NAΛ(pH)L=2mH+
m VNavo+mAΛ(pH)LVNavo (A.6.4) 

Hence, the ionic strength of dispersion can be written in known terms. 

I=mH+
m +

1

2
mAΛ(pH)L (A.6.5) 
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Since mH+
m  shows the molarity of mobile hydronium ions that do not have tendency to 

absorbed on the collagen backbone anymore, from equilibrium of acetic acid in water, we can 

conclude that mH+
m = √kd[AA]

13. 

I=√kd[AA] +
1

2
mAΛ(pH)L (A.6.6) 

As discussed later on in Appendix B.2, Λ(pH) can be determined by knowing the 

mH+
m because pH=-log10

m
H+
m

13. 

Now that the functionality of ionic strength, eqn. (A.6.6), is obtained, one can readily 

conclude that  

-1

A eff eff[AA] constant : m I κ D L/D=       

-1

A eff effm constant : [AA] I κ D L/D=       

The trend of variation in the ratio of L/Deff with respect to the concentrations of acid and 

collagen is shown in Figure 3-10. 

 

Figure 3-10. Dependence of  L/Deff on collagen concentration. 

The obtained range of L/Deff is consistent with previous work and data14. 
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3.10.2 Appendix B: Model Parameters and Material Properties Used in Computation of 

Phase Diagrams 

In this section, we have first tabulated some physical properties for the components that 

exist in our study, Table 3-1 Thereafter, other parameters have been brought to the subsequent 

subsections for further discussion.  

Table 3-1. The physical properties of components in acidic collagenous solution. 

Physical property Value Reference 

ρ
collagen

(
g

l
) 1120 (15) 

MwCollagen(Da) 285,000 (16) 

DBare(nm) 1.5 (16) 

L(nm) 300 (16) 

p0(μm) 
2~22 (depending on 

the concentrations) 
(17) 

δ(nm) 

5~24 (depending on 

the concentration of 

collagen) 

(18) 

 

It is worth mentioning that, based on the reference17; the experimental pitch (in unit of µm) 

for the collagenous solutions can be fitted with respect to collagen concentration (in unit of 

mg/ml). For solutions prepared in 5mM and 500mM acetic acid, the empirical correlations are 

respectively given by 

p0
2
 = 11C-0.02 (B.1) 

p0
2
 = 140C-0.92 (B.2) 

For other acetic concentration, we have used the interpolated values. Figure 3-11 shows the 

trend of experimental pitch with respect to variations of collagen concentrations. 
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Figure 3-11. Experimental equilibrium pitch extracted from the reference17. 

 

B.1. Isotropic Flory-Huggins parameter, χ 

In this subsection, we aim to provide an acceptable estimation of isotropic Flory-Huggins 

parameter. Actually, values of parameters in eqn. (3-27) are not always available; instead, we 

unavoidably turn to an estimation method. As per regular solution theory, the dimensionless 

isotropic Flory–Huggins interaction parameter, χ, is estimated using Hansen solubility 

parameters, eqn. (B.1.1)19. 

χ=α
υI

kBT
((δA,d-δI,d)

2
+0.25(δA,p-δI,p)

2
+0.25(δA,h-δI,h)

2
) (B.1.1) 

υI stands for volume of solvent, which is isotropic component in present work. δI,jis Hansen 

solubility parameter; the first subscript shows the component which can be either isotropic (I) 

or anisotropic (A), the second subscript d, p and h are contributions because of dispersive, polar 

and hydrogen bonding. In addition, α is the experimental fitting parameter bounded between 0 

to 1.  The solubility parameters for this system are summarized in Table 3-220. 

Table 3-2. Solubility parameters 

Solubility parameters Values (
J

cm3
)
1/2

 

δcollagen,d 16 

δcollagen,h 23.6 
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Solubility parameters Values (
J

cm3
)
1/2

 

δcollagen,p 20.3 

δwater,d 12.2 

δwater,h 37.3 

δwater,p 27.3 

δacetic acid,d 15.4 

δacetic acid,h 15.2 

δacetic acid,p 9.4 

δcollagen,d 16 

 

α has not been documented for collagen. We have unavoidably used experimental value of 

mesogen with molecules similar to collagen molecules. We have then chosen cellulose acetate 

because its Flory-Huggins parameter in the dilute solution has reported 0.421. The solvent 

mainly consists of water molecules, thus we took the radius of solvent as 1.4 Å. Finally, 

substitution of these physical values into eqn. (B.1.1) leads to following estimation for the 

dimensionless isotropic Flory-Huggins interaction. 

χ >
120

T(K)
 (B.1.2) 

(K) shows that the temperature must be absolute in unit of Kelvin.  

 

B.2. The pH-dependent linear charge density of collagen 

The aim of this subsection is to present an acceptable method to determine the linear charge 

density of tropocollagen in various pH because the linear charge density is required in eqn. (3-

2b). 

Type I collagen is composed of three helical polypeptide chains; two α1(I) chains and one 

α2(I). Each chain contains roughly 1052 amino acid residues twisted around each other in the 

form of a right-handed triple helix. Collagen has the repeating triplets of sequence Gly-X-Y 

where X and Y are often proline (~28%) and hydroxyproline (~38%) residues, respectively16. 

In our study, we have focused on the acidic collagenous solutions because the rods are far 

away from fibrogenesis and the primary architecture of collagenous plywood are formed. In 
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the acidic pHs, the amine functional groups are protonated, and as a result the rods become 

positively charged (Figure 3-12 indicates the linear charge density of collagen Type I against 

the pH). The eqn. (3-2b) of the article requires the linear charge density of collagen. One 

approximate but good method to determination of a peptide charge is as follows.  We should 

compare the pKa of each residues with the pH of solution. If pKa is greater and pH, that residue 

gets protonated, otherwise deprotonated. This procedure can readily be done using a protein 

calculator22. Additionally, we have used UniProt Knowledgebase23 to obtain the sequence of 

rat tail; rat CO1A1: P02454; rat CO1A2: P02466.  

 

Figure 3-12. The pH-dependent linear charge density of collagen. 

 

The minimum distance between fixed charges on the backbone of a polyelectrolyte cannot 

be less than the Bjerrum length, which is about λB =0.79 nm in our study6. Based on the 

assumption of uniform charge distribution, Figure 3-12 satisfies the mentioned physical 

constraint because the averaged distance between charges is L/(|Λ|L-1)>1nm>λB. 
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3.10.3 Appendix C: Consistency with previous studies 

In this section, we show that our suggested model (eqns.(3-3, 3-26))  can be reduced to the 

other well-established models if some of the mechanisms are ignored.  

C.1. Onsager Model 

Under condition that the solution is only comprised of rigid rodlike uncharged mesogens; 

the main mechanisms become the translational and orientational entropies along with the 

excluded volume. In eqn. (3-3), if we consider M(ψ(𝐮))=C(ψ(𝐮)) = 0, we reach to the energy 

landscape proposed by Onsager24. 

 

C.2. Matsuyama et al. Model (ref(2)) 

The general structure of the energy landscape developed in this study is based on 

Matsuyama et al. model2 (comparing eqn. (3.6) of the mentioned reference with eqn. (3-26) in 

our work). The main difference between our suggested theory and Matsuyama et al. is that, due 

to the nature of the acidic collagenous solutions, we have also included the mechanisms of 

chirality and interchain electrostatic (i.e. repulsion and twisting). Here, we aim to show that 

our proposed theory can be simplified to the Matsuyama et al. theory that has been used in 

other studies7, 8, 25, 26. Giving that the included mechanisms are negligible therefore we should 

consider the Uelc=h=κ-1=0 and  p0 = ∞. Doing so, the net cholesteric potential ends up like 

eqn. (C.2.1a,b). 

W=ϕ
A

L

D
(
5

4
+ χ

a
) (C.2.1a) 

χ
a
=

π

2
D3βUMS (C.2.1b) 

Considering our suggested model with the net potential given by eqn. (C.2.1a,b) leads to 

eqn. (3.6) of reference2. 
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3.10.4 Appendix D: Nomenclature 

Table 3-3. Nomenclature 

Symbol Units Definition 

a3 m3 volume of each lattice unit 

B2(ψ(𝐮)) [-] 
excluded volume based on the second virial 

approximation 

C(ψ(𝐮)) [-] geometric chirality of mesogen 

cA
′  [-] dimensionless number density 

cA m-3 number density 

Deff m effective diameter 

D m bare diameter 

dΩ radian solid angle  

EMS j 
Energy due to Maier-Saupe contribution (i.e. 

attractive interaction)  

Eelc j 
Energy due to interchain electrostatic 

interactions (i.e. repulsion and twisting) 

ECholesteric j 
Energy due to Frank distorsion (i.e. 

cholesteric)  

Ei [-] exponential integral 

Fs j free energy of solution 

h [-] magnitude of the twisting effect 

𝐡 [-] helix unit vector 

I molar ionic strength, 

kB m2.kg.s-2.K-1 Boltzmann constant, 1.38064852 × 10-23  

L m contour length 

L1 j/m elastic constant 

M(ψ(𝐮)) [-] 
the orientation-dependent intermolecular 

interactions 

mi molar molar concentration of ith mobile ion 

Navo mol-1 Avogadro’s number, 6.022140857 × 1023 

NAand NI [-] 
number of chiral mesogens and isotropic 

component 
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Symbol Units Definition 

NT [-] total number of lattice site 

NH+
m   [-] number of hydronium ions 

NA−
m  [-] number of acetate ions 

NT
m [-] total number of mobile ions 

NH+
b  [-] 

number of protonated hydrogen that are 

adsorbed on the collagen backbone 

nA
eff [-] 

number of segments on the backbone of 

mesogen 

𝐧 [-] uniaxial direction 

p0 m pitch 

P2(𝐮 ⋅ 𝐧) [-] 

second Legendre polynomial of angle 

between the macromolecule and uniaxial 

direction (i.e. local order parameter) 

q m-1 pitch wave  

𝐐 [-] 
quadrupole moment tensor, well-known as 

Q-tensor 

S [-] macroscopic uniaxial order parameter 

U j.m-3 
potential of orientation-dependent 

intermolecular interaction 

Ui
MS j 

one-body mean field potential of  ith rod for 

attractive interactions on the other existing 

rods in the system 

U′MS j.m-3 
positive constant independent of temperature 

related to Maier-Saupe parameter 

UMS j.m-3 
positive constant independent of temperature, 

Maier-Saupe parameter 

Ui
elc j 

one-body mean field potential of  ith rod for 

electrostatic interactions (i.e. repulsion and 

twisting) on the other existing rods in the 

system 

U′elc j.m-3 
strength of electrostatic potential (i.e. 

repulsion and twisting) 
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Symbol Units Definition 

Uelc j.m-3 
strength of electrostatic interaction among 

the rods (i.e. repulsion and twisting) 

𝐮 and 𝐮′ [-] 
The orientations of two rod-like 

macromolecules  

V m3 volume of system 

W [-] net cholesteric potential 

z m z-component of space  

Z [-] coordination number 

Zi [-] charge number of ith mobile ion 

α [-] double-layer thickness parameter 

β j-1 thermal energy 

γ radian angle between the rods 

γ
E
 [-] Euler constant, 0.5772 

𝛅 [-] Kronecker delta 

δi,j (j.m-3)1/2 

solubility parameters, i indicates the 

substance and j stands for the kind of 

bonding. j can be d, p and h which are for 

dispersive, polar and hydrogen bonding, 

respectively. 

ΔSO [-] orientational entropy 

η′and η [-] 
constants determined by normalization of 

distribution function 

θ radian polar angle 

κ-1 m Debye screening length 

λB m Bjerrum length 

λChE [-] coupling parameters of  chirality-electrostatic 

λExE [-] 
coupling parameters of excluded volume-

electrostatic 

λII [-] 
coupling parameters of intermolecular 

interaction  

Λ charge number per meter linear charge density 
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Symbol Units Definition 

μo  j standard particle chemical potential 

ξ m coherence length or correlation length 

σ(ψ(𝐮)) [-] effect of orientational entropy 

υAA, υIAand 

υII 
m3 

average excluded-volume between mesogen-

mesogen, mesogen-isotropic component and 

isotropic component- isotropic component. 

υAand υI m3 
molecular volumes of mesogen and isotropic 

component  

υ m3 volume scale, an arbitrary volume 

φ radian azimuthal angle 

ϕA
effand ϕ

I
eff

 [-] 
effective volume fraction of mesogen and 

isotropic component 

χ [-] isotropic Flory-Huggins parameter 

ψ(𝐮) [-] single-rod orientational distribution function 

ℱ [-] total dimensionless free energy per lattice site 

 

 

References of Supporting Information (Chapter 3) 

1. Drwenski T, Dussi S, Hermes M, Dijkstra M, Roij Rv. Phase diagrams of charged 

colloidal rods: Can a uniaxial charge distribution break chiral symmetry? 2016;144(9):094901. 

2. Matsuyama A, Kato T. Theory of binary mixtures of a flexible polymer and a liquid 

crystal. J Chem Phys. 1996;105(4):1654-60. 

3. Lin-Liu YR, Shih YM, Woo C-W. Molecular theory of cholesteric liquid crystals and 

cholesteric mixtures. Physical Review A. 1977;15(6):2550-7. 

4. Maier W, Saupe AJZfNA. Eine einfache molekular-statistische Theorie der 

nematischen kristallinflüssigen Phase. Teil l1. 1959;14(10):882-9. 

5. Maier W, Saupe AJZfNA. Eine einfache molekular-statistische Theorie der 

nematischen kristallinflüssigen Phase. Teil II. 1960;15(4):287-92. 

6. Doi M. Soft Matter Physics: OUP Oxford; 2013. 



79 

 

7. Das SK, Rey AD. Texture formation under phase ordering and phase separation in 

polymer-liquid crystal mixtures. J Chem Phys. 2004;121(19):9733-43. 

8. Gurevich S, Soule E, Rey A, Reven L, Provatas N. Self-assembly via branching 

morphologies in nematic liquid-crystal nanocomposites. Physical Review E. 2014;90(2). 

9. De Luca G, Rey AD. Chiral front propagation in liquid-crystalline materials: Formation 

of the planar monodomain twisted plywood architecture of biological fibrous composites. 

Physical review E, Statistical, nonlinear, and soft matter physics. 2004;69(1 Pt 1):011706. 

10. Muševič I. Liquid Crystal Colloids: Springer International Publishing; 2017. 

11. Sagan H. Introduction to the Calculus of Variations: McGraw-Hill; 1969. 

12. Matsuyama A. Phase separations in mixtures of a liquid crystal and a nanocolloidal 

particle. The Journal of Chemical Physics. 2009;131(20):204904. 

13. Silberberg M. Chemistry: The Molecular Nature of Matter and Change: McGraw-Hill; 

2006. 

14. Gutierrez OFA, Rey AD. Theory and Simulation of Cholesteric Film Formation Flows 

of Dilute Collagen Solutions. Langmuir. 2016;32(45):11799-812. 

15. Cusack S, Miller A. Determination of the elastic constants of collagen by Brillouin light 

scattering. Journal of Molecular Biology. 1979;135(1):39-51. 

16. Voet D, Voet JG. Biochemistry. Hoboken, NJ: John Wiley & Sons; 2011. 

17. Peixoto PD, Deniset-Besseau A, Schanne-Klein MC, Mosser G. Quantitative 

assessment of collagen I liquid crystal organizations: role of ionic force and acidic solvent, and 

evidence of new phases. Soft Matter. 2011;7(23):11203-10. 

18. Gobeaux F, Belamie E, Mosser G, Davidson P, Panine P, Giraud-Guille MM. 

Cooperative Ordering of Collagen Triple Helices in the Dense State. Langmuir. 

2007;23(11):6411-7. 

19. Lindvig T, Michelsen ML, Kontogeorgis GM. A Flory–Huggins model based on the 

Hansen solubility parameters. Fluid Phase Equilibria. 2002;203(1):247-60. 

20. Miller RG, Bowles CQ, Chappelow CC, Eick JD. Application of solubility parameter 

theory to dentin-bonding systems and adhesive strength correlations. 1998;41(2):237-43. 



80 

 

21. Mark JE. Physical Properties of Polymers Handbook: Springer New York; 2007. 

22. v3.4 PC. pH-dependent Linear Charge Density 2013 [Available from: 

http://protcalc.sourceforge.net/. 

23. Knowledgebase U. Amino Acids Sequence 2018 [Available from: 

https://www.uniprot.org/. 

24. Odijk T. Theory of lyotropic polymer liquid crystals. Macromolecules. 

1986;19(9):2313-29. 

25. Susanta KD, Alejandro DR. Computational modelling of multiscale morphologies in 

polymer–liquid crystal blends. Nanotechnology. 2005;16(7):S330. 

26. Das SK, Rey AD. Computational modelling of multi-phase equilibria of mesogenic 

mixtures. Computational Materials Science. 2004;29(2):152-64. 



81 

 

Chapter 4. Theoretical Platform for Liquid-Crystalline Self-

Assembly of Collagen-Based Biomaterials 

This chapter is reproduced with permission from Sayyed Ahmad Khadem and Alejandro D. 

Rey - Theoretical Platform for Liquid-Crystalline Self-Assembly of Collagen-Based 

Biomaterials - Frontiers in Physics, 2019, 7:88. DOI: 10.3389/fphy.2019.00088. Copyright 

2019 Frontiers. 

 



82 

 

4.1 Preface 

Biaxiality is taken to account in this chapter, generalizing the free energy developed in 

Chapter 3. Thereafter, the governing equations of phase separation and phase ordering, which 

are inherently coupled, are developed in order to investigate the cholesteric growth within a 

single growing tactoid free from tactoidal collisions. This chapter contributes to understanding 

the phenomena exclusively involved in tactoidal cholesteric growth. In particular, the defect 

formation and escape mechanism are explored, which is of paramount importance in nano-

particle laden systems.  

 

4.2 Abstract 

The collagen triple helix is a ubiquitous biomacromolecule used in acidic aqueous solutions 

as precursor in the fabrication of artificial compact bone and cornea and in tissue engineering. 

The primary architecture of these highly structured solid tissues is formed during the 

cholesteric liquid-crystalline stage of their morphogenesis.  The theoretical platform that 

describes the coupled dynamics of phase-ordering and mass transfer developed, implemented 

and validated here can be used for optimal material design and plays a significant 

complementary role to future experimental studies. Based on uniaxiality assumption, we have 

recently developed and validated a theory for the free energy tailored for acidic collagenous 

dispersions. Here we significantly expand and generalize our previous study, by including 

biaxiality since cholesteric phases must have a degree of biaxiality.  In this work, we first 

modify the proposed interchain interaction and excluded-volume contribution by use of the 

addition theorem for spherical harmonics. Then, the Euler-Lagrange minimization followed by 

expansion around I/N* transition allows us to construct the free energy of ordering in terms of 

the phenomenological Landau–de Gennes formulation. Finally, we use the time-dependent 

Ginzburg-Landau equations to study the non-Fickian evolution of a single two dimensional 

cholesteric tactoid through a shallow quench from the isotropic to biphasic region of the phase 

diagram. Although equilibrium biaxiality is considerably low for these long-pitch cholesterics, 

we found that during self-assembly the biaxial order parameter achieves significant larger 

values than the equilibrium value. Additionally, the relaxed director field becomes both onion-

like and defect-less, which is consistent with the twisted bipolar structure observed 

experimentally. The self-assembly simulations demonstrate that the formulated theoretical 

platform is not only consistent with previous theoretical and experimental studies but also able 

to be used to explore new routes for non-equilibrium collagen self-assembly. Taken together, 
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this study deepens our understanding of cholesteric (chiral nematic N*) mesophase in acidic 

solutions of tropocollagen, and suggests a systematic spatio-temporal model that is capable of 

being used to extract the engineering principles for processing of these sought-after 

biomaterials.  

 

4.3 Keywords 

Biaxiality, Liquid-Crystalline Self-assembly, Collagen-Based Bioinspired Materials, 

Cholesteric Tactoids, Landau–de Gennes Model, Time-dependent Ginzburg-Landau Model, 

Chiral Nematic Nucleation and Growth, Uphill Diffusion. 

 

4.4 Introduction 

Type I Collagen is composed of three left-handed polypeptide helices (denoted by 

[α1(I)]2[α2(I)]) twisted together to yield a right-handed triple helix. This rod-shaped 

biomacromolecule, also known as tropocollagen, commonly has a 1.5 nm bare diameter and 

300 nm height. The tropocollagen falls into the class of fibrous proteins and is abundantly 

found in both soft and hard human’s tissues, namely cornea, tendon, cortical bone, and more1. 

Over the past two decades, biomimetic fabrication of collagen-based biomaterials has received 

considerable attention in view of the abundant critical applications such as artificial bone2-5 and 

cornea6, 7 reconstruction.  Moreover, for in-vitro replication of these collagenous biological 

tissues, there is fortunately no concern about supply because tropocollagen can be readily 

accessible through mammalian and non-mammalian resources8. Consequently, numerous 

promising applications of biomimetic fabrication of collagenous biomaterials9-11 in conjunction 

with the availability of precursor play a central role in the drive to create the bioinspired 

collagen-based materials. 

The structural pattern of tropocollagen rods bestows great structural-relation properties on 

collagenous biological materials and biomaterials. Furthermore, their structures are analogous 

with architecture of tropocollagen in liquid-crystalline states12, hence these materials are called 

“solid analogues”. This correspondence establishes the role and impact of liquid-crystalline 

morphogenesis13-15 and singles out liquid-crystal-based biomimetic material process 

engineering as a promising route to enhance the quality of collagen-based biomaterials or even 

to explore new ones3, 16-19.   



84 

 

Normally, tropocollagen is immiscible in aqueous solutions due to its hydrophobicity. To 

attain a stable aqueous isotropic phase, which is the starting point of biomimetic fabrication, 

hydrophobicity of tropocollagen must be reduced by being dispersed in acidic solutions. 

Basically, numerous amine function groups that are good proton receptors are found along the 

tropocollagen backbone. Once these functional groups are protonated, the intrachain repulsion 

causes that the semi-flexible (worm-like) backbones become uncoiled and essentially rigid 

rods. The existing interchain repulsion also impedes aggregation, in other words the rods have 

an effective diameter between two or three times the bare one20-22. Finally, due to being charge-

carrier rigid rod-like molecules, tropocollagen is capable of exhibiting lyotropic cholesteric 

phase organization. For example, for an acetic acid concentration of [AC] ≈ 2900 mM, a phase 

transition from isotropic to chiral nematic (N*) takes places at tropocollagen concentrations of  

[C] ≈ 88
mg

ml
21. 

Although the primary architecture of these versatile biomaterials is formed at the molecular 

level (i.e. mesophasic stage), the focus has been at the tissue level23 and studies on molecular 

level are few21, 22. Furthermore, to the best of authors’ knowledge, theoretic studies of   

cholesteric self-assembly of aqueous acidic tropocollagen solutions have not been carried out, 

which also reflects the case of chiral nematic phase ordering in general24-26. To address this 

gap, we have recently developed, implemented , and validated a theoretical model tailored for 

self-assembly of tropocollagen dispersed in acidic aqueous solutions20. This thermodynamic 

theory20, which is based on the uniaxiality assumption, has integrated microscopic mechanisms 

of mixing entropy and enthalpy, attraction, repulsion, twisting, excluded-volume and chirality. 

In the present study, we lift the uniaxiality assumption by generalizing the free energy that 

includes biaxial effects. This is crucial for cholesteric materials because chiral nematic phase 

is described by two vectors: the director (n) and the chiral axis (h), additionally cholesterogens 

are intrinsically biaxial as discussed by27, 28. Incorporation of the biaxial order parameter into 

the cholesteric self-assembly deserves consideration because biaxiality influences pattern-

formation even in  nematic mesophase, such as interfacial biaxiality under tangential director 

orientation29-32, the biaxial core of singular disclinations33, 34, and sometimes more pronounced 

biaxiality under time-dependent conditions than under static equilibrium35. For the above 

reasons we first include biaxiality in the model formulation stage and then focus on its 

emergence in bulk, defect core, and interfacial regions; which are of significant importance in 

all structured materials30, 33, 36-38.  



85 

 

In our previous validated work20, we showed that our thermodynamic model of acidic 

collagen solutions captures two key features: (i) the expected chimney diagram predicted by 

Flory and found experimentally for many lyotropic rod-like liquid-crystalline polymers39, and 

(ii) the parabolic bi-phasic funnel in aqueous acidic collagenous solutions under increasing pH, 

where cholesteric tactoids (drops) emerge from isotropic phases. Study of cholesteric tactoids 

is important because of three main reasons: (i) tactoid formation process must occur in to 

chimney and funnel phase diagrams, which are the fingerprint of rod-like macromolecules. 

Thus, these cholesteric drops are a crucial element in the validation of thermodynamics of rod-

shaped rigid macromolecules;(ii) these stable but deformable drops serve a sources of material 

properties information such as bulk  Frank-Oseen-Mermin elasticity27, novel coupled gradient 

contributions between nematic order parameter and collagen concentration, and the cholesteric 

pitch;(iii) characterizing and understanding the emergence, growth, annihilation, and 

coalescence of tactoids are essential to future developments of collagen-based material 

processing.  To focus on collagen tactoids, as shown in Figure 4-1, we then target the dynamic 

of self-assembly through a shallow quench from isotropic phase into the bi-phasic funnel of 

the previously obtained phase diagram20. In contrast to the better-known single component 

monomeric thermotropic tactoids, in the present case concentration is a conserved transport 

variable that need to be included. For this purpose, we formulate the coupled phase 

ordering/mass transfer Model C40, 41 in order to derive the governing equations of collagen self-

assembly. Afterward, we impose proper auxiliary conditions (e.g. initial and boundary 

conditions for the computational domain) on the obtained governing equations to capture a 

thorough spatio-temporal evolution of a single cholesteric tactoid—see Figure 4-2. This 

evolution has two steps: (i)emergence of a cholesteric nucleus in a continuous isotropic phase, 

(ii) followed by the formation of a stable chiral nematic tactoid coexisting with the isotropic 

phase.  
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Figure 4-1. Phase diagram of tropocollagen in acidic aqueous solutions. The black solid lines 

are binodal curves and the black dashed line is phase transition boundary. The quench point 

and the evolution path are shown by a red square and a blue solid line, respectively. This figure 

is adapted from reference20. The schematics denote the isotropic phase at low collagen 

concentrations, a typical micron-sized cholesteric drop in an isotropic bulk at intermediate 

concentrations, and the chiral nematic (N*) or cholesteric phase at higher concentrations. 
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Figure 4-2. Schematic of the computational domain, in which a small chiral nematic drop is 

initially seeded, and allowed to naturally grow in coexistence with an isotropic phase. 

 

In this work we restrict simulations to a single collagen tactoid with the aim of contributing 

to the evolving understanding of chiral phase ordering24, 42, 43. The simulations are also 

restricted to 2D. In principle, 3D spatio-temporal simulations can give a full picture of tactoid 

formation stages. Yet, from practical viewpoint, the present phase ordering/mass transfer 

coupled nonlinear model with nano-to-micron scales becomes essentially intractable44. 

Furthermore, we have previously shown45-47 that 2D simulations can provide invaluable 

predictions, and as discussed later on, in this study the important metrics of size, shape, and 

structure are not lost when using our 2D simulation box. In particular, we capture bulk 

disclinations, interfacial anchoring, interfacial biaxiality, growth modes, and self-selected 

shapes. Hence, this 2D study gives a necessary foundation for future 3D simulations. 

The paper is organized as follows. Section 4.5 presents the methodology used in the 

formulation of self-assembly, including: (1) Formulation of the free energy for a system 

consisting of charged cholesterogen dispersed in a mixture of water solvent and mobile ions—

see subsections 4.5.1-4.5.4. Subsection 4.5.1 defines the Q-tensor.  In 4.5.2, the free energy of 

pure charged cholesterogen is developed taking into account the biaxial order parameter. In 

4.5.3, the obtained free energy is generalized for a mixture of charged cholesterogen and small-
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sized solvent. In 4.5.4, we discuss and incorporate  other free energy contributions involved in 

the evolution of mesophasic state, such as the elasticity of Frank-Oseen-Mermin28 and gradient 

contributions, and formation of the I/N* interface. Thus, in 4.5.4, the total free energy of system 

is formulated. (2) Formulation of governing equations along with the appropriate auxiliary 

conditions for simulation of liquid-crystalline self-assembly in which a cholesteric nucleus of 

tropocollagen is initially seeded and allowed to spontaneously growth in coexistence with 

isotropic phase—see subsections 4.5.5-4.5.6. In 4.5.5, the governing transport equations 

(Model C) are formulated.  Finally, subsection 4.5.6 presents the implementation of self-

assembly simulation for nucleation and growth of a single cholesteric tactoid coexisting with 

an isotropic phase. Section 4.6 presents results of emergence and growth of a cholesteric 

tactoid. Lastly, the conclusions and nomenclature are summarized in sections 4.7 and 4.8, 

respectively.  

 

4.5 Continuum methodology for simulation of liquid-crystalline Self-assembly of 

tropocollagen dispersed in acidic aqueous solutions 

4.5.1 Long-Range Description of Molecular Alignment 

The long-range orientational order in a liquid-crystalline phase is parameterized by a 

second-order symmetric traceless tensor called Q-tensor14, 15, 48. 

𝐐=S(𝐧𝐧 −
𝛅

3
) +

1

3
P(𝐦𝐦- 𝐥𝐥) (4 − 1) 

where 𝛅 is the Kronecker delta. The orientation of a mesogen is characterized by the 

orthogonal director triad of (𝐧,𝐦, 𝐥). The degree of alignment along the uniaxial director, 𝐧, 

and biaxial director, 𝐦, are S and P, respectively. Due to the quadrupolar symmetry of Q-

tensor, it possesses the salient feature of head-tail invariance of molecular alignment (i.e. 𝐧 ≡

−𝐧, 𝐦 ≡ −𝐦 and 𝐥 ≡ −𝐥). The largest absolute eigenvalue of Q-tensor equals to 2S/3 and the 

corresponding eigenvector is equivalent of uniaxial director, 𝐧. The difference between the 

absolute medium and smallest eigenvalues is 2P/3 and the eigenvector corresponds to the 

second largest absolute eigenvalue is biaxial director, 𝐦. Thus, in the isotropic and ordered 

phases, the Q-tensor becomes the 3×3 zero matrix, Q=0, and nonzero matrix, Q≠0, 

respectively. 
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The uniaxial and biaxial order parameters are also defined in terms of directors/Q-tensor or 

the normalized orientational distribution function on the unit sphere, ψ(𝐮), for any given 

molecular orientation, 𝐮: 

S=∫P2(cos(θ))ψ(𝐮)dΩ =
3𝐧 ⋅ 𝐐 ⋅ 𝐧

2
 (4 − 2) 

P=∫Δ(θ,φ)ψ(𝐮)dΩ =
3(𝐦 ⋅ 𝐐 ⋅ 𝐦 − 𝐥 ⋅ 𝐐 ⋅ 𝐥)

2
 (4 − 3) 

dΩ=sin(θ)dθdφ represents a solid angle, and θand φ are the polar and azimuthal angles. 

Δ(θ,φ) is defined as 
3 sin2(θ) cos(2φ)

2
. As explained below, P2(cos(θ)) and Δ(θ,φ) are 

representative of uniaxiality and biaxiality, respectively. In addition, the normalized 

distribution function, employed in eqns. (4-2 and 4-3), implies following constraint49: 

∫ψ(𝐮)dΩ=1 (4 − 4) 

 

4.5.2 Free Energy Contributions for Pure Charged Cholesterogens; Incorporation of 

Biaxial Order Parameter 

The total dimensionless Helmholtz free energy per particle, F̃, for a dispersion comprising 

NAcharged cholesterogens is20, 50, 51: 

F̃ =
βF

NA
=βμo (T)-1+lncA+σ(ψ(𝐮))+B2(ψ(𝐮))+M(ψ(𝐮)) (4 − 5) 

where β, μo (T) and cA stand for thermal energy, standard chemical potential and number 

density, respectively. The last three terms in eqn. (4-5) account for the contribution of 

molecular orientation (i.e. uniaxiality and biaxiality) in the mesophasic state.  σ(ψ(𝐮)) 

describes the decrease of orientational entropy upon alignment of the mesogenic molecules. 

σ(ψ(𝐮)) = ∫ψ(𝐮)ln(4πψ(𝐮)) dΩ 
(4 − 6) 

Since we focus on rod-like rigid mesogen, the second virial approximation is capable of 

accurately describing the excluded volume effect, given by51, 52: 

B2(ψ(𝐮))=cAυAAρ(ψ(𝐮)) (4 − 7a) 

ρ(ψ(𝐮)) =
4

π
∬Γ(γ)ψ(𝐮)ψ(𝐮′) dΩdΩ

′
 

(4 − 7b) 
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Γ(γ) = |sin(γ)| × {1+h [-ln|sin(γ)|-ln(2) +
1

2
]} 

(4 − 7c) 

υAA is the average excluded volume defined as πDeffL
2/4 in which L and Deff denote contour 

length and effective diameter of tropocollagen. Deff has a dependence on the bare diameter, 

D=1.5 nm, and concentration20. To take biaxiality into consideration, in accordance with53-55, 

we make use of the addition theorem for spherical harmonics to express the angle between two 

rods, γ, in terms of the polar, θ, and azimuthal, φ, angles in spherical coordinate:  

P2(cos(γ)) = P2(cos(θ))P2 (cos(θ
′)) +

Δ(θ,φ)Δ(θ′,φ′)

3
 (4 − 8) 

First term in eqn. (4-8) is independent from azimuthal angle and represents uniaxiality. 

Second term is related to biaxial contribution and has the dependence on both polar and 

azimuthal angles. 

The intermolecular interaction and angle between rods interchangeably affect each other 

because the electrostatic repulsion and twisting favors perpendicular orientation while the van 

der Waals attraction prefers the parallel alignment (i.e. nematic phase)51, 52, 56. Hence, based on 

our previous work20 and reference53, we suggest the net interchain potential expressed by 

βUi=β(U′elc-U′MS)υAP2(cos(γ)) (4 − 9) 

where υA is the volume of an individual rigid rod, υA = πDeff
2 L/4. U′elc and U′MS are 

parameters of electrostatic repulsion and a positive constant, respectively. The contribution of 

intermolecular interaction, M(ψ(𝐮)), is then obtained by taking average over all possible rod 

configurations20: 

M(ψ(𝐮)) =
3

2
βUcAυA

2𝐐:𝐐 
(4 − 10) 

U=Uelc − UMS is called the potential of the orientation-dependent intermolecular 

interactions where Uelc and UMS are the strength of electrostatic repulsion and Maier-Saupe 

constant that is a positive constant independent of temperature. Note that 𝐐:𝐐 is related to 

uniaxial and biaxial order parameters by 2 (S2 +
P2

3
) /3. 

We note that the effective diameter reflects the intermolecular repulsion, or to put it another 

way, the effective thickness of the attached ions on the backbone of tropocollagen. This 

effective thickness is called double-layer thickness, ακ-151, 52: 

Deff = D+ακ-1 (4 − 11) 
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α and κ-1, which are defined as follows, are parameter of double-layer thickness and  Debye 

screening length, respectively: 

α = lnA′ + γ
E
+ ln(2) −

1

2
−
4

π
[|sin(γ)|Ei (−

A′

|sin(γ)|
)]
i

 
(4 − 12a) 

A′=A
eκD

κD
,A=2πΛ

2
λBD (4 − 12b) 

[f(𝐮, 𝐮′)]i =
1

16π2
∬f(𝐮, 𝐮′)dΩdΩ

′
 (4 − 12c) 

κ-1 = (8πλBNavoε)
−
1
2 (4 − 12d) 

ε=
1

2
∑miZi

2

i

 
(4 − 12e) 

where λB, Navo, ε, m, Z, Ei(•), γE and Λ are the Bjerrum length, Avogadro’s number, ionic 

strength, molar concentration, charge number, the exponential integral defined as Ei(x)=-

∫
exp(-t)

t
dt

∞

-x
, Euler constant equals to 0.5772, and linear charge density.  A detailed account of 

parameters’ values, their selection and physical significance and physical properties for 

aqueous acidic collagen I solutions  is given in  reference20. 

 

4.5.3 Mixing Free Energy of Binary Dispersions Consisting a Charged Cholesterogen and 

Small-Sized Solvent 

The mixing free energy of the binary solution is given by50 

F = ΔFmixing(NA,NI) = F
s(NA,NI) - F

s(NA,0) - F
s(0,NI) (4 − 13) 

where Fs(NA,NI), F
s(NA,0) and Fs(0,NI) are free energies of solution, pure anisotropic 

component dispersed in isotropic state and isotropic component, respectively. Thus, in this 

subsection, we shall first derive the free energy of solution, and then formulate the mixing free 

energy of a binary dispersion by use of eqn. (4-13). 

Substituting eqns. (4-7 and 4-10) into eqn. (4-5) leads to the free energy of pure charged 

chiral nematic rods. The free energy for binary mixture of charged chiral mesogen and small-
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sized solvent (water in our case)—denoted by subscript A and I, respectively—is then 

formulated as 

βFs=NAβμ
A
o+NIβμ

I
o-NA-NI+NAlncA+NIlncI+NAσ(ψ(𝐮)) 

+υAANAcAρ(ψ(𝐮))+2υAINIcA + υIINIcI 

+NAβUcAυA
2 (S(ψ(𝐮))

2
+
1

3
P(ψ(𝐮))

2
) 

(4 − 14) 

Eqn. (4-14) is not usable unless the unknown normalized distribution function, ψ(𝐮), is 

known. To formulate the normalized distribution function, the total free energy of system 

subjected to the normalizing constraint, given by eqn. (4-4), is minimized using Euler-Lagrange 

method. This minimization yields an irreducible algebraic integral equation expressed by 

ln(4πψ(θ,φ))=η′-2βUcAυA
2 {SP2(cos(θ)) +

1

3
PΔ(θ,φ)} 

−
8

π
υAAcA∫Γ(γ)ψ(θ′,φ)dΩ

′
 

(4 − 15) 

Simplicity of free energy expression is essential since our ultimate objective is the self-

assembly simulation which in itself is computationally complex. A heavy computational load 

is expected because the self-assembly process covers a wide range of length scale (i.e. ranging 

from nano- to macro-scale) and it may go through a variety of complex microscopic 

mechanisms43, 57-61. Thus, to improve tractability, we expand the functional part of eqn. (4-15), 

Γ(γ), in terms of the second Legendre polynomial by use of eqn. (4-8): 

Γ(γ) ≈
π

4
−
5π

32
(1-

11

8
h) {P2(cos(θ))P2 (cos(θ

′))

+
1

3
Δ(θ,φ)Δ(θ′,φ′)} 

(4 − 16) 

Having substituted eqn. (4-16) into eqn. (4-15), the normalized distribution function is 

obtained: 

ψ(θ,φ) =
exp (W {SP2(cos(θ)) +

PΔ(θ,φ)
3 })

I00
 (4 − 17) 

where the I00 is a definite integral defined as 

I00(S,P,W) = ∫ ∫ exp (W{SP2(x) +
PΔ(x,y)

3
})dxdy

1

0

1

0

 (4 − 18) 
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W is known as the net cholesteric potential, which is similar to reference20 and can be 

parameterized as 

W=αwϕ
A

 (4 − 19a) 

αw =
5

4
(1-

11

8
h)

L

Deff
−

π

2
Deff
2 βUL (4 − 19b) 

ϕAis the effective volume fraction and h=(κDeff)
−1. W is assumed to only be dependent 

on concentration of acid throughout the evolution—a reasonable assumption because W is 

mainly affected by concentration of acid20. 

Next the mixing free energy, eqns. (4-20a-c), is obtained by use of eqns. (4-13, 4-14 and 4-

17). Detailed account of such algebraic derivation is given in references20, 50. Note that 

hereafter, for convenience, we use ϕ to represent the effective volume fraction of 

tropocollagen—it can be related to the concentration of tropocollagen in units of mg of 

tropocollagen pre ml of solution by C =
ϕ

αc
 where αc is a unit conversion factor. The 

dimensionless mixing free energy density is: 

f̃mxing=f̃iso+f̃h (4 − 20a) 

f̃iso =
ϕln(ϕ)

n
+ (1 − ϕ)ln(1 − ϕ)+χϕ(1 − ϕ) 

(4 − 20b) 

f̃h =
ϕ

n
[
3

4
W𝐐:𝐐-ln(I00(W,S,P))] (4 − 20c) 

where n stands for number of segments on tropocollagen backbone. f̃iso and f̃h describe 

different physics; the former explains the phase separation which is the well-known Flory-

Huggins equation and the latter controls the phase transition (i.e. homogenous contribution). 

In the absence of biaxiality, P=0, the obtained mixing free energy, eqns. (4-20a-c), is reduced 

to the validated free energy functional given in ref. 20 which was validated with experimental 

data of tropocollagen and with previous theoretical studies. It is worth mentioning that with 

further assumptions the obtained free energy density leads to the formulation given in 

reference50 as well as the well-established theory of Onsager—see ESI of reference20 for further 

discussion. For numerical tractability, similar to references53, 62, we make use of a Taylor 
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expansion in vicinity of I/N* to expand eqn. (4-20c) in a power series of order parameters, 

SiPj—the resulting polynomial is the phenomenological Landau-de Gennes (LdG) theory63: 

f̃h =
a

2
Tr(𝐐2) −

b

3
Tr(𝐐3) +

c

4
(Tr(𝐐2))

2
 (4 − 21a) 

a(ϕ) =
3

2

αw

n
(1-

αwϕ

5
) ϕ

2
 (4 − 21b) 

b(ϕ) =
9

70

αw
3

n
ϕ
4
 (4 − 21c) 

c(ϕ) =
αw

10
bϕ (4 − 21d) 

Although self-assembly simulations by use of the eqns. (4-21a-d) is appreciably more 

tractable than with eqn.(4-20c), it should be noted that the used expansion may affect the 

accuracy of simulations in the cases of deep quenches. However, this study only focuses on the 

self-assembly of shallow quenches into biphasic region which is a narrow region around I/N* 

boundary, see Figure 4-1.  

An order-disorder phase transition takes place if and only if W=αwϕ = αwαcC>5  to make 

the coefficient of second invariant of Q-tensor, a, negative. The derived LdG coefficients 

satisfy two general theoretical expectations; 1) the first-order phase transition (i.e.B ≠ 0), and 

2) two minima correspond to isotropic and ordered phases (i.e.A<0and C>0) 48. Furthermore, 

in the cholesteric phase, W can be about 10, and under such conditions the proposed LdG 

coefficients becomes similar to the well-established lyotropic  LCP Doi’s model , were b ≈ c14, 

15, 64.  

 

4.5.4 Total Free Energy Tailored for Tropocollagen Self-Assembly in Acidic Aqueous 

Solutions 

In addition to f̃mxing which is capable of describing phase separation and an order–disorder 

phase transition, for constructing the total free energy of mesogenic solutions, the contributions 

of gradients should be taken to account65-67: 

F̃net = ∫(f̃iso+f̃h + f̃e + f̃cg + f̃c)
Ṽ

dṼ (4 − 22a) 
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f̃e =
1

2
(

ξ

h0
)
2

[[∇̃ × 𝐐 + 4π (
h0
p∞

)𝐐]
2

+ (
L2
L1
) [∇̃ ⋅ 𝐐]

2
] 

(4 − 22b) 

f̃cg =
1

2
L̃ϕ(∇̃ϕ)

2
 (4 − 22c) 

f̃c = L̃ϕ−𝐐(∇̃ϕ) ⋅ (∇̃ ⋅ 𝐐) (4 − 22d) 

ξ=√a3L1β is the coherence length in which a3 stands for the volume of each lattice unit and 

Li are elastic constants. ∇̃= h0∇ is dimensionless gradient in which h0 denotes a macroscopic 

length scale and the spatial domain is scaled by h0, L̃ϕ =
Lϕa

3β

h0
2 and L̃ϕ−𝐐 =

Lϕ−𝐐a
3β

h0
2  where Lϕ 

is cost of interfacial formation and Lϕ−𝐐represents coupling constant.  The total free energy as 

well as the evolution of chiral nematic phase for tropocollagen are mesoscopic because it 

retains both microscopic length scale, ξ, in a nanometer range and macroscopic length scale, 

h0, in the range of micrometers.  

 

4.5.5 Governing Equations for Kinetics of Self-Assembly; Orientational Relaxation, and 

Uphill Diffusion 

Simulations of pattern-formation in fibrous composites, including collagen-based tissues, 

were first carried out by64, 67, 68. Their approaches were based on diffusionless evolution of 

mesophase, and capable of predicting macroscopic architecture of these materials to a great 

extent. However, recent studies have revealed the imperative role of diffusion in accurately 

capturing the growth of order-disorder interface45, 69. Hence, for the purpose of realistic self-

assembly modeling, in this subsection, we formulate the spatio-temporal evolution of 

tropocollagen in which the Q-tensor augmented with a mass transfer equation.  

The cholesteric micro-structures in collagenous biomaterials are formed through the liquid-

crystalline self-assembly stage. Two simultaneous mesoscopic mechanisms govern this 

thermodynamically driven assembly. First, mass transfer mechanism allows tropocollagen 

macromolecules to diffuse into cholesteric phase (i.e. tropocollagen-rich phase) from isotopic 

phase (i.e. tropocollagen-lean phase). The mentioned demixing is known as uphill or non-

Fickian diffusion and reduces the total free energy of system.  Second, orientational relaxation 

mechanism induces cholesteric architecture inside the formed high-concentration domain. To 

describe these two phenomena; two coupled fields are required. First, the conserved scalar field 
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of concentration, C, or equivalently volume fraction, ϕ, governing the phase separation. 

Secondly, the non-conserved tensorial field of Q-tensor by which the orientation of 

tropocollagen biomacromolecules is primarily specified. The spatio-temporal evolution of {Q, 

ϕ } is found using the time-dependent Ginzburg–Landau (TDGL) formalism, also known as 

model C in Hohenberg and Halperin classification40, 41. The dimensionless form of model C 

adjusted for self-assembly simulation reads17, 64, 67, 70, 71: 

∂𝐐

∂t̃
= −

1

(1 −
3Tr(𝐐2)

2
)
2 (

δF̃net
δ𝐐

)

[s]

 

(4 − 23a) 

∂ϕ

∂t̃
=M̃ϕ∇̃ ⋅ ([𝐈 + 𝐐] ⋅ ∇̃

δF̃net
δϕ

) 
(4 − 23b) 

δF̃net

δ𝐐
 represents functional derivative. t̃ is dimensionless time defined as t̃ =

tM𝐐

(a3β)
 where t is 

time,M̃ϕ =
Mϕ

(M𝐐h0
2)

 in which the mobilities of 𝐐 and ϕ are M𝐐and Mϕ,  respectively. 

Additionally, the superscript [s] indicates that the functional derivative must be symmetric 

traceless in order to be consistent with the nature of Q-tensor—for any given second rank tensor   

𝐓[s] =
(𝐓+𝐓t)

2
−
Tr(𝐓)𝛅

3
 where superscript t denotes transpose.  

The system given in eqns. (4-23a-b) is a set of six coupled nonlinear PDEs. Eqn. (4-23a) 

accounts for the spatio-temporal evolutions of the orientational tensor order parameter. This 

equation is the compact tensorial form of five independent second-order PDEs. Furthermore, 

eqn. (4-23b) is a fourth-order PDE, known as the Cahn-Hilliard equation, to describe the 

concentration field by which the chiral nematic and isotropic phases gradually evolve through 

the uphill diffusion mechanism.    

 

4.5.6 Computational details 

Here we elaborate on the simulation of nucleation and growth of an isolated cholesteric 

tactoid in a continuous isotropic phase. This simulation consists of a diffusional phenomenon 

coupled with structural relaxation. The general schematic representation of this implementation 

is illustrated in Figure 4-2. 

As above mentioned, the biomimetic formation of collagen-based tissues starts with 

dissolving tropocollagen in acidic aqueous solutions to obtain the isotropic phase. In such 
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condition, a nucleus is thermodynamically allowed to grow, providing its radius is greater than 

a critical value. In that case, as a single tactoid grows, the tropocollagen rods diffuse from 

collagen-lean phase to collagen-rich phase, in turn, the isotopic and cholesteric phases become 

depleted from and enriched in tropocollagen, respectively. The diffusion of tropocollagen from 

lean phase (isotropic phase) to rich phase (cholesteric phase) continues till a point where the 

chemical potentials of two phases become identical.  

As illustrated in the Figure 4-2, we consider the bulk of system as a square with [-0.5 0.5]×[-

0.5 0.5] normalized by h0. Each pair of sides are subjected to the periodic boundary condition. 

Initially Q=0 and the phase is isotropic. Afterwards, an initial cholesteric tactoid is seeded by 

a circular Gaussian distribution with FWHM (full width at half maximum of Gaussian function) 

greater than the critical drop diameter.  The seeding is expressed: 

𝐐|t=0 = [Se(𝐧e𝐧e − 𝛅/3) +
1

3
Pe(𝐦e𝐦e − 𝐥e𝐥e)] × e

−
1
2
((
x-x0
σx

)
2
+(
y-y0
σy

)
2

)
+ 𝚵 (4 − 24a) 

ϕ|t=0 = (ϕch − ϕ
iso
) × e

−
1
2
((
x-x0
σx

)
2
+(
y-y0
σy

)
2

)
+ ϕ

iso
+ Ξ 

(4 − 24b) 

𝚵 and Ξ, that are respectively a second rank symmetric traceless random tensor and scalar 

random number, are included in the modeling to represent the fluctuations existing in a real 

system. The subscript e indicates the equilibrium condition given by: 

𝐧e = [0 cos (
2π

p∞

x) sin (
2π

p∞

x)] (4 − 25a) 

𝐦e = [0 -sin (
2π

p∞

x) cos (
2π

p∞

x)] (4 − 25b) 

In accordance with 𝐥 = 𝐧 ×𝐦, 𝐥eis computed as [0 0 1]. 

Eqns. (4-24a-b and 4-25a-b) describe a nucleus whose center placed at position (x0,y0) at a 

concentration equivalent to the effective volume fraction of ϕch. For convenience, we choose 

the center at (x=0, y=0). The concentration of tropocollagen from the center, which is a 

cholesteric phase, gradually decreases along the radius to the concentration of continuous 

isotropic phase, ϕiso. This approach for simulating the initial nucleus was adapted from30, 33, 34.  

In order to make sure that the initial drop is sufficiently large, we choose the σx = σy = σ and 

obtain σ in way that FWHM equals two times the critical diameter: FWHM=2√2 ln 2 σ =

2Dc = 4Rc. Classical Nucleation theory72 provides a rough estimation of the critical radius of 

a drop as expressed by Rc = |
2γi

(cAΔμiso-Cho)
| in which γiand Δμiso-Choare the interfacial tension 
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and the chemical potential difference between isotropic and cholesteric phase72, 73. 

Additionally, eqn.(4-24b) yields  the quenched concentration as ϕq =
∬ ϕ|t=0dxdyCD

∬ dxdy
CD

 in which CD 

denotes the entire system (computational domain). Consequently, ϕ
iso

 plays an appreciable role 

in the size of tactoid because its value affects the initial amount of tropocollagen existing in the 

system. 

Furthermore, the total conservation of mass is imposed by: 

d

dt
∫ ϕ
CD

dxdy = 0 
(4 − 26) 

Simulation parameters used in this study are summarized in Table 4-1—also readers are 

referred to the reference20 for detailed account of parameters selection in order to accurately 

capture the available experimental data.  

Although the L̃ϕ−Q, L̃ϕand 
L2

L1
 have not been documented for tropocollagen, we choose 

common values which satisfy the energy transformation constraint74-76: 

(L̃ϕ−Q)
2

L̃ϕ × (
L2
L1
)
< 1 (4 − 27) 

Eqns. (4-24a-b) in conjunction with the above-explained conditions are solved with an 

adaptive finite elements technique with biquadratic basis functions (General PDE solver of 

COMSOL Multiphysics 5.3a). Furthermore, to acquire the acceptable spatial resolution, we 

considered at least 50 elements per pitch which resulted in nearly 104 triangular elements, and 

temporal resolution was carried out by the Backward Euler method. Convergence, accuracy, 

and stability were checked using standard techniques—for further information on the method 

and solution approach, please see the accompanying Supporting Information.  

 

4.6 Results and discussions 

In this section, the dynamics of mesophasic evolution and the resulting equilibrium 

configuration for a shallow quench from the isotropic phase into the cholesteric phase in the 

presence of one small cholesteric seed are given and discussed; see Figure 4-1and Figure 4-2. 
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The panels (a-d) in Figure 4-3 show snapshots of a growing tactoid corresponding to 

dimensionless times 0, 900, 960 and 1100, respectively.  Panel (a) shows the initial condition 

of a small chiral nematic drop seeded in a large isotropic phase area. Note that only a small 

section of the computational domain, in which the self-assembly is supposed to take place, is 

shown in Figure 4-3. The computational domain is actually chosen as a fairly large square with 

length of h0=100µm in order to make sure that the existing amount of tropocollagen in the 

system is sufficient for formation of a single cholesteric tactoid with diameter of the order of 

30µm—as experimentally observed21. The size of initial seed must be greater than a critical 

value in order for the drop to grow based on the mechanism of uphill diffusion, otherwise 

downhill diffusion takes place and the initial drop is dissolved in isotropic phase.  

 

Table 4-1. The material properties and parameter values used in the present paper. The square-

brackets next to the values indicate the corresponding unit, and [-] shows dimensionless. Note: 

for those parameters which have not been documented for solutions of tropocollagen, the 

common values are used instead. Readers are referred to references20, 21, 64-67 for details of 

parameter selection. 

Parameters Values Parameters Values Parameters Values 

𝐧 10 [-] χ 1.4 [-] 
L2
L1

 1[-] 

�̃�𝛟−𝐐 -4.4×10-7[-] L̃ϕ 2.8×10-4 [-] M̃ϕ 1.1×10-5 [-] 

Se 1[-] Pe 10-3[-] h0 100 [µm] 

𝐂ch 98 [mg/ml] Ciso 79 [mg/ml] p∞ 10 [µm] 
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Figure 4-3. The spatial distributions of order parameters, S and P, in conjunction with the 

director configuration at the early growth of cholesteric tactoid shown in panels a), b), c) and 

d). In the first column the uniaxial configuration, n, of tropocollagen macromolecules are 

represented by rods whose color (blue to red) shows the uniaxial order parameter, S. To 

complete the understanding about the configuration of rods in xy-plane, in the second column, 

the z component of n is shown by use of a monochromatic blue spectrum. In last column, the 

monochromatic cyan denotes the variation of biaxial order parameter during the time evolution. 

Panel e) illustrating the color bars for S, nz and P, the used coordination of system and length-

scale bar. 

 

Although the initial configuration of rods is chosen as twisting around x-axis, see panel a1 

of Figure 4-3, the rods prefer to be aligned in a concentric configuration, as shown in panel b1. 

During the early growth of the tactoid, rods attempt to radially twist—the helicoidal axes are 

along the radii of the circular tactoid. Yet, rods placed at the center of drop exhibit orientational 

frustration. This frustration emerges in  t̃=900, panel b1, and yields  a  τ+1 cholesteric defect. 

As the tactoid   grows, the central rods resolve the orientational frustration with an escaped 

configuration (see panel d1) known as a nonsingular 𝜆+1 cholesteric disclination.  These 
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important predictions may be difficult to be captured experimentally due to intrinsic size length 

scale resolutions when using optical methods77-79.  

Figure 4-3 (i.e. panels a2, b2, c2 and d2) shows the z component of uniaxial director, n. The 

figures show that the central director regions evolves slower and lags the radial helix formation 

that results in tangential interfacial orientation experimentally observed for tropocollagen 

tactoids38. The tangential orientation minimizes the interfacial free energy at n.k=0 where k is 

the interfacial normal vector. This tangential configuration, n.k=0, emerges when  the coupling 

coefficient, L̃ϕ−𝐐<021, 75, 76, 80. The structure of the 2D tactoid is a radial helix, with tangential 

interface orientation at the edge and nonsingular escape orientation at its center. 

Of particular interest to this study is incorporation and analysis of biaxial order parameter 

during the evolution of the cholesteric tactoid. In the third column of Figure 4-3, (i.e. panels 

a3, b3, c3 and d3), the spatial variation of biaxial order parameter, P, is shown in the early 

stages of growth. The biaxial order parameter becomes particularly noticeable at the interface 

and at the defect core. Thus, we found that although the equilibrium biaxiality for rod-like 

macromolecules is small27, 53, during the phase ordering it takes a larger value than its 

equilibrium; the difference between dynamical and equilibrium values for biaxiality may be up 

to three orders of magnitude. 

In the course of time, the Q-tensor is relaxed, mass transfer ceases and the structure 

equilibrates, as shown in Figure 4-4. As depicted in panels a1) and b) of this figure, the 

equilibrium configuration of tropocollagen rods becomes concentric, also known as onion-like. 

This defectless configuration, which has a nonsingular 𝜆+1 cholesteric disclination at its center, 

thoroughly matches with the xy-cross-section of Twisted Bipolar Structure (TBS) given in 

reference81. Moreover, the experimental POM image reported in reference21 confirms TBS for 

the 3D tropocollagen tactoids. Consequently, the resulting 2D configuration, shown in Figure 

4-3 and Figure 4-4, is consistent with experimental observation. Panel a1) of Figure 4-4 shows 

that the size of tactoid is also consistent with experimental results given in21. As can be seen, 

the diameter of tactoid contains three pitches that each of which has a length of 10µm. 

Therefore, the tactoid shape becomes a nearly 30µm spherulite. Panel c) in Figure 4-4 

represents the equilibrium concentration field. Although a gradient of concentration exists in 

the interface, the drop remains intact and stable in the isotropic phase. This feature verifies that 

the growth of cholesteric tactoid is according to the mechanism of uphill diffusion. Panel d) of 

Figure 4-4 demonstrates that the equilibrium biaxial order parameter P in the interface is nearly 
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0.04, however its value sharply decreases to 10-4 confirmed by previous theoretical studies27, 

53.  

 

Figure 4-4. The equilibrium spatial distributions of a1) uniaxial order parameter, S, and the 

relaxed uniaxial director, n, b) z component of uniaxial director, c) concentration, and d) biaxial 

order parameter, P. Panel a2) showing the magnified rotation of tropocollagen placed in the 

yellow dash-line box. Panel a3) indicating the non-singular escaped  λ+1 disclination emerges 

at the center of tactoid. Panel e) representing the color bars for S, nz, P, and C, the used 

coordination of system and length-scale bar. 

 

Through the entire evolution we find: (1) the interfacial uniaxial order parameter is 

approximately   Sc=0.39 that is quite close to the critical uniaxial order parameter reported in20, 

21; (2) The biaxial order parameter at the tactoid’s  interface  is at all times  greater than in the 

interior. The only exception is during initial defect nucleation where biaxiality pronouncedly 

appears at the core and edge of the 2D drop. 

According to the principle of minimum free energy, the kinetic of a spontaneous process 

follows a path over which the free energy progressively decreases and ends up in a minimum 

at equilibrium. Figure 4-5 illustrates the averaged free energy contributions through the phase 

ordering process of tropocollagen dispersed in the constant concentration of 2.9M acetic acid. 

These spatial averages are defined as  
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F̄i(t̃) =
∬ f̃i ⋅ dxdyCD

∬ dxdy
CD

;   i ∈ {iso, h, e, cg, c} (4 − 28) 

The formation of the single cholesteric drop is the interplay of five free energy contributions. 

The entropic and enthalpic contributing factors in isotropic phase separation are described by 

Flory-Huggins theory, f̃iso. The LdG theory, f̃h, also accounts for the homogeneous effect of 

phase transition. The spatial averages of these contributions are shown by  F̄iso and F̄h, 

respectively. The monotonic decrease in  F̄isoand F̄h shows that the phase separation and phase 

ordering are energetically favorable. In addition, it emphasizes on the lyotropic nature of phase 

ordering in acidic collagenous dispersions; rods are spontaneously accumulated in cholesteric 

phase, in turn, removed from the isotropic phase. Hence, F̄netwhich is the summation of all 

contributions, is considerably affected by contributions of phase separation and phase ordering. 

 

Figure 4-5. The dynamics of the averaged free energy contributions, given in eqn.(4-28), 

through a shallow quench from an isotropic state into cholesteric phase—the quench point and 

evolution path are shown in Figure 4-1. The solid lines correspond to the left y-axis and dash 

lines should be referred to the right y-axis. 

  

In spite of these energetically favorable contributions, formation of I/N* interface and 

cholesteric configuration inside the tactoid require energy costs which are reflected as penalty 

terms in the net free energy; see eqns. (4-22a-d). The green solid line in Figure 4-5, F̄cg, depicts 

the cost of interface formation (i.e. mass gradient zone shown in the panel (c) of Figure 4-4). 

This cost is nearly 40 percent of the energy reduction in either phase separation, F̄iso, or phase 

ordering, F̄h, thus the interfacial formation cost can be compensated. Furthermore, the black 
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dash line, F̄e, and the purple dash line, F̄c, stand for the average costs for the onion-like 

configuration of rods inside the chiral nematic tactoid and the tangential configuration in 

interface, respectively. As seen, the formation cost of the interfacial parallel anchoring, F̄c, is 

approximately 2 % of the interior cholesteric energy, F̄e.  

 

4.7 Conclusions 

Building on our prior work20, in this study, we have developed and validated a theoretical 

framework to study the spatio-temporal phase ordering of tropocollagen dispersed in acidic 

aqueous solutions into 2D drops. By use of the addition theorem for spherical harmonics (eqn. 

(4-8)), we first incorporated the biaxial order parameter P (eqn. (4-3)) into the orientational 

entropy (eqn. (4-6)), the second virial approximation (eqn. (4-7a-c)), and the intermolecular 

interaction (eqn. (4-10)). We then obtained the LdG coefficients (eqns. (4-21a-d)), and 

formulated the net free energy of system, eqns. (4-22a-d)). To capture the kinetic of the 

emerging 2D tactoids size, shape, and structure, we relied on the proposed net free energy and 

phase ordering/mass transfer process (Model C) to establish the governing equations, eqns. (4-

23a-b), which were numerically solved under the mentioned auxiliary conditions elaborated in 

subsection 4.5.6.  

Panels (a)-(d) in Figure 4-3 reveal two findings. First, the physical origin for the non-

singular escaped λ+1 disclination. Basically, in the early evolution a τ+1 defect emerges at center 

of nucleus. As time progresses, the central directors go through a defect shedding stage and the 

τ+1 cholesteric defect evolves into the escaped λ+1 disclination. Second, at the interface and 

defect core region, the biaxial order parameter takes appreciably large value in the early 

evolution.  Furthermore, panels (a1)-(a3) and (b) in Figure 4-4 demonstrate that the resulting 

equilibrium state of collagen tactoid is an approximately 30µm spherulite in which the rod-

shaped macromolecules are aligned in concentric configuration, consistent with experimental 

observations21. Taken together, these results contribute to the development of optimized 

processing protocols for collagen-based materials and their material property characterization. 
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4.8 Nomenclature 

Symbol Units Description 

a3 m3 volume of each lattice unit 

B2(ψ(𝐮)) [-] 
second virial approximation to represent the 

excluded-volume effect 

cA m-3 number density 

C mg/ml concentration of tropocollagen 

Deff m effective diameter 

D m bare diameter 

dΩ radian solid angle  

Ei [-] exponential integral 

f̃ [-] Dimensionless free energy density  

Fs j free energy of solution 

F̄i [-] 
average of total dimensionless free energy 

contribution i 

h [-] magnitude of the twisting effect 

ε molar ionic strength  

kB m2.kg.s-2.K-1 Boltzmann constant, 1.38064852 × 10-23  

𝐥 [-] 𝐥 = 𝐧 ×𝐦 

L m contour length 

L1and L2 j/m elastic constants 

�̃�𝛟−𝐐 [-] dimensionless coupling parameter  

L̃ϕ [-] dimensionless cost of interfacial formation 

𝐦 [-] biaxial director  

M(ψ(𝐮)) [-] 
the orientation-dependent intermolecular 

interactions 

M̃ϕ [-] dimensionless mass-transfer mobility  

mi molar molar concentration of ith mobile ion 

Navo mol-1 Avogadro’s number, 6.022140857 × 1023 

NAand NI [-] 
number of chiral mesogens and isotropic 

component 

NT [-] total number of lattice site 
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Symbol Units Description 

n [-] 
number of segments in the backbone of 

mesogen 

𝐧 [-] uniaxial director 

P [-] biaxial director 

p∞ m pitch 

P2(cos(γ)) [-] 
second Legendre polynomial of angle between 

the macromolecules  

𝐐 [-] 
quadrupole moment tensor, well-known as Q-

tensor 

S [-] macroscopic uniaxial order parameter 

U j.m-3 
potential of orientation-dependent 

intermolecular interaction 

Ui j The net one-body mean field potential of  ith rod  

U′MS j.m-3 
positive constant independent of temperature 

related to Maier-Saupe parameter 

UMS j.m-3 
positive constant independent of temperature, 

Maier-Saupe parameter 

Ui
elc j 

one-body mean field potential of  ith rod for 

electrostatic interactions (i.e. repulsion and 

twisting) on the other existing rods in the 

system 

U′elc j.m-3 
strength of electrostatic potential (i.e. repulsion 

and twisting) 

Uelc j.m-3 
strength of electrostatic interaction among the 

rods (i.e. repulsion and twisting) 

𝐮 and 𝐮′ [-] 
The orientations of two rod-like 

macromolecules  

V m3 volume of system 

W [-] net cholesteric potential 

x m x-component of space  

Zi [-] charge number of ith mobile ion 

α [-] double-layer thickness parameter 
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Symbol Units Description 

αW [-] 

dimensionless constant defined as  αW =

5

ϕ∗
where ϕ

∗
is the effective volume fraction of 

tropocollagen 

αc ml/mg 

Unit conversion used for converting the 

effective volume fraction to concentration in 

unit of mg/ml 

β j-1 thermal energy 

γ radian angle between rods 

γ
E
 [-] Euler constant, 0.5772 

𝛅 [-] Kronecker delta 

η [-] 
constants determined by normalization of 

distribution function 

θ radian polar angle 

κ-1 m Debye screening length 

λB m Bjerrum length 

Λ 
charge number per 

meter 
linear charge density 

μo  j standard particle chemical potential 

ξ m coherence length or correlation length 

σ(ψ(𝐮)) [-] effect of orientational entropy 

υAA, υIAand 

υII 
m3 

average excluded-volume between mesogen-

mesogen, mesogen-isotropic component and 

isotropic component- isotropic component. 

υAand υI m3 
molecular volumes of mesogen and isotropic 

component  

φ radian azimuthal angle 

ϕ  [-] effective volume fraction of mesogen  

χ [-] isotropic Flory-Huggins parameter 

ψ(𝐮) [-] single-rod orientational distribution function 
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4.10 Supplementary Information 

4.10.1 Sequential Steps of Self-assembly Simulations 

In this subsection we provide sufficient and necessary details on the computational 

methodology and software used in this work. The commercial and open source software are 

standard in scientific computations. Figure 4-6 depicts all steps carried out to simulate the 

liquid-crystalline self-assembly of tropocollagen for a shallow quench into biphasic zone.  
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Figure 4-6. Sequential steps of numerical solving of governing equations, data processing and 

data visualization. 

 

 

Step 1. 

The governing equations (4-23a-b), the auxiliary conditions described in section 4.5.6, and 

the simulation parameters summarized in Table 4-1 are implemented in the General PDE solver 

of COMSOL Multiphysics 5.3a. The results of COMSOL simulation—we call it COMSOL 

data— are 5 independent elements of Q-tensor and collagen concentration as function of time 

and space. 
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Step 2. 

Having finished simulations in COMSOL, MATALB and COMSOL are integrated to 

transfer the COMSOL data onto MATLAB for next processing. Thereafter, based on 

information given in section 4.5.1, the COMSOL data are converted to S, P, n, m and collagen 

concentration as function time and space. Finally, the results must be rewritten in readable 

format for the sake of visualization. The Unstructured Grid (*.vtu) format was used in this 

study, and a sample of this data type is: 

Sample of vtu file describing values of S, P, n, m and concentration: 

<?xml version="1.0" encoding="UTF-8"?> 

<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian"> 

<UnstructuredGrid> 

<Piece NumberOfPoints="..." NumberOfCells="..."> 

<PointData> 

<DataArray type="Float64" Name="S" NumberOfComponents="1" Format="ascii"> 

... 

</DataArray> 

<DataArray type="Float64" Name="P" NumberOfComponents="1" Format="ascii"> 

... 

</DataArray> 

<DataArray type="Float64" Name="UniaxialDiraction" NumberOfComponents="3" Format="ascii"> 

...     ...     ... 

</DataArray> 

<DataArray type="Float64" Name="BiaxialDiraction" NumberOfComponents="3" Format="ascii"> 

...     ...     ... 

</DataArray> 

<DataArray type="Float64" Name="Concentration" NumberOfComponents="1" Format="ascii"> 

... 

</DataArray> 

</PointData> 

<CellData/> 

<Points> 

<DataArray type="Float64" NumberOfComponents="3" Format="ascii"> 

...     ...     ... 

</DataArray> 

</Points> 

<Cells> 

<DataArray type="Int32" Name="connectivity" Format="ascii"> 

...     ...     ... 

</DataArray> 

<DataArray type="Int32" Name="offsets" Format="ascii"> 

...     ...     ...     ... 

</DataArray> 

<DataArray type="UInt8" Name="types" Format="ascii"> 

............ 

</DataArray> 
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</Cells> 

</Piece> 

</UnstructuredGrid> 

</VTKFile> 

 

Step 3. 

ParaView and Python were used together to visualize the obtained vtu files—S, P, n, m and 

concentration data. 

 

4.10.2 Technical Details of Numerical Simulations 

We used the General PDE solver of COMSOL Multiphysics 5.3a which is based on 

Generalized Finite Element Method with quadratic Lagrangian basis functions and standard 

Gaussian quadrature methods. For having an acceptable spatial resolution, we considered at 

least 50 elements per pitch (i.e. equivalently around 104 triangular elements).  Time steps were 

carried out by the Backward Differentiation Formula with variable order (1st to 5th) to attain 

the specified relative tolerance set at 10-5. Mesh independency, convergence, accuracy, and 

stability were checked using standard techniques. Furthermore, the computational time is 

highly affected by the mass transfer equation due to its nonlinearity and high order. Typically, 

the memory usage ranged from 10 to 14 GB and the CPU time was approximately around 12 

hours by use of a PC with Core i7 and 16 GB RAM. 

We note that the values of parameters used in this study are summarized in Table 4-1, also 

readers are referred to references1-5 for further information about the mesoscopic parameters in 

self-assembly simulations.  
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Chapter 5. Nucleation and growth of cholesteric collagen tactoids: 

A time-series statistical analysis based on integration of direct 

numerical simulation (DNS) and long short-term memory 

recurrent neural network (LSTM-RNN) 

This chapter is reproduced with permission from Sayyed Ahmad Khadem and Alejandro D. 

Rey - Nucleation and growth of cholesteric collagen tactoids: A time-series statistical analysis 

based on integration of direct numerical simulation (DNS) and long short-term memory 

recurrent neural network (LSTM-RNN) - Journal of Colloid and Interface Science 582 (2021) 

859–873. DOI: 10.1016/j.jcis.2020.08.052. Copyright 2020 Elsevier. 
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5.1 Preface 

Motivated by lack of knowledge about the nucleation-and-growth zone in the biphasic zone 

of the collagen phase diagram, we employ the governing equations developed in Chapter 4 to 

determine and exhaustively characterize the nucleation-and-growth zone in the collagen phase 

diagram developed in Chapter 3. Although the Direct Numerical Simulation (DNS) of self-

assembly is considerably accurate, DNS is computationally demanding. The challenges 

associated with computational cost are addressed by proposing a hybrid approach based on a 

combination of DNS in conjunction with a machine learning technique. Because the 

characterizations are computationally expensive, wide-range correlations corresponding to the 

characterizations are developed by the use of classical and symbolic regressions. Additionally, 

the physical origin behind the nucleation and growth mechanism is revealed in detail through 

free energy analyses.  

 

5.2 Graphical Abstract 

 

 

 

5.3 Abstract 

Hypothesis. Liquid-crystalline phase separation by nucleation and growth (NG) is a crucial 

step in the formation of collagen-based biomaterials. However, the fundamental mechanisms 

are not completely understood for chiral lyotropic colloidal mesogens such as collagen. 

Methodology. To capture the dynamics of NG under a quenching process into the biphasic 

equilibrium zone, we use direct numerical simulation based on the time-dependent Ginzburg-

Landau model allowing minimization of the total free energy comprised of five key 

contributions: phase separation (Flory-Huggins), ordering (Landau-de Gennes), chiral 

orientational elasticity (Frank-Oseen-Mermin), interfacial and coupling effects.  LSTM-RNN 
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is applied as a surrogate model to greatly enrich the results.  Significant correlations are 

established using Symbolic Regression. 

Findings. We quantify the NG boundaries existing in the collagen phase diagram that has 

recently been developed and validated by our thermodynamic model1. We characterize the 

three NG stages (induction, nucleation, and coarsening) in terms of tactoids’ shape, 

morphology, growth laws, and population across the NG zone. Wide-range generic correlations 

are developed, revealing the quench depth dependence of NG characteristics and connecting 

the sequential NG stages. We confirm experimental observations on time-dependent growth 

law exponent changes from an initial n≈0.5 for the mass transfer limited regime to n≈1 for the 

volume-driven phase ordering regime upon increasing quench depth during the nucleation 

period and having exclusively a value of n≈0.5 for the coarsening period regardless of quench 

depth. We lastly uncover the underlying physics behind the NG phenomena.  

 

5.4 Keywords 

Biological chiral lyotropic liquid crystals, Biomimetic collagen-based biomaterials, Liquid-

crystalline self-assembly, Chiral nematic tactoids, Cholesteric nucleation, growth and 

coarsening, Universal growth laws, Uphill diffusion, Time-dependent Ginzburg-Landau 

model, Long Short-Term Memory Recurrent Neural Network, Symbolic Regression 

 

5.5 Introduction 

Collagen-based tissues, ubiquitously found in both soft and hard humans’ organs2, possess 

enhanced structure-related properties such as the mechanical properties of bone, tendon, and 

teeth3-5. Owing to the necessity of having these materials artificially available and the fact that 

collagen as a primary precursor is readily accessible through both mammalian and non-

mammalian resources6, a significant amount of research has been conducted to tailor, optimize 

and control the fabrication of the versatile collagen-based biomaterials, in particular artificial 

bone7-10 and cornea11,12.  

Phase separation is an indispensable and non-trivial part in material processing and 

interfacial science, particularly for structural material synthesis and design because the 

dynamics of phase separation (liquid/liquid demixing) is inextricably coupled with the 

dynamics of phase transition (disorder/ordered transformation), involving a variety of 
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mesoscopic phenomena such as interface formation, bulk and surface elasticities, bending and 

torsion curvatures, surface anchoring, and more13-20.  

The concentration-driven processing of collagen-based biomaterials starts from a dilute 

acidic collagen dispersion in which collagen fibers do not have spatial or orientational ordering, 

a state called isotropic phase (I). Through the water removal process, the isotropic phase is 

gradually concentrated and transformed into an ordered phase which is known as chiral nematic 

or cholesteric phase (N*). In this liquid-crystalline phase where the collagen dispersion retains 

both the fluidity of a viscous liquid and the anisotropy of crystals, the primary structural motif 

of collagen-based biomaterials is formed7,21-23. Hence, the fundamental understanding of I/N* 

phase separation and chiral ordering in colloidal collagen dispersions is of paramount 

importance, paving the way for the science-based fabrication of high-performance 

biomaterials. It should further be noted that many of biological lyotropic LCs (e.g. collagen, β-

lactoglobulin amyloid, and cellulose nanocrystals) fall into “colloidal” LCs because their fibers 

size are considerably larger than that of widely-used thermotropic mesogens like 5CB (e.g. the 

average length of collagen fibers and 5CB are >300nm and ~1.8nm, respectively)1,5,24-28. 

Notwithstanding the above-mentioned importance, except for a few studies29,30, the coupling 

of phase separation and ordering in biological chiral lyotropic LCs have not been adequately 

addressed as in thermotropic LCs31-37. 

Quenching into the biphasic thermodynamic equilibrium zone may result in phase 

separation via two well-established mechanisms: nucleation and growth (NG) or spinodal 

decomposition. Through NG mechanism, drops (referred here as tactoids even if spherically 

shaped) nucleate where the energy fluctuation overcomes the energy barrier and then go 

through the coarsening stage, known as Ostwald ripening. Over time, phase separation leads to 

the formation of chiral tactoids coexisting with the continuous isotropic phase. In contrast, 

when the isotropic phase undergoes bicontinuous spinodal decomposition (BSD), the unstable 

isotropic phase unmixes into two phases characterized by interconnected domains38,39.  There 

is also the droplet spinodal decomposition (DSD) typically in between the NG and 

bicontinuous.  The focus and scope of the present study is the NG mechanism that generates 

two-dimensional tactoidal cholesteric drops in chiral lyotropic mesophases based on acidic 

aqueous solutions of collagen. The main objectives of this work are:   
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1. Establish the NG zone in the equilibrium thermodynamic phase diagram of acidic 

collagen solutions, whose binodal lines were validated experimentally in our previous 

work1. Identifying this zone is a primordial task for any collagen processing platform.  

2. Characterization of the three NG stages (induction, nucleation, and coarsening) in terms 

of tactoids’ distribution, shape, morphology, growth laws, population, and more across 

the NG zone. Establishing the quench depth dependence of these global and local 

quantities associated with the NG using accurate computing generates the broad data to 

integrate phase separation and chiral phase ordering. 

3. Development of wide-range generic correlations for induction time, nucleation 

duration, growth laws, and tactoids population distribution function.  

4. Characterizing and elucidating the fundamental NG mechanisms of collagen chiral 

tactoids growth in the isotropic matrix phase.   

To achieve the objectives, we apply two dimensional Direct Numerical Simulation (DNS) 

to simulate quenches into the biphasic zone of the collagen phase diagram that we have recently 

obtained by developing, implementing, and validating a collagen thermodynamic model1. The 

DNS used in this study is based on the time-dependent Ginzburg-Landau relaxation model, 

allowing for the minimization of the total free energy during the spontaneous quenching 

process40. Despite the significant computational complexities, to find the realistic insights into 

the NG of collagen tactoids, we retain five key contributions in the total Helmholtz free energy 

associated with phase separation, chiral phase ordering, bulk orientational elasticity, interfacial 

energies, and coupling effects. The first three contributions are described by well-established 

continuum theories as follows; Flory-Huggins, Landau-de Gennes, and Frank-Oseen-Mermin, 

respectively41.  

Artificial Neural Network (ANN) modeling has recently been used in a wide range of 

science and engineering applications. ANNs are an effective technique to quickly provide an 

accurate estimation of target quantities in both experimental and theoretical fields42-46. On the 

other hand, the dynamic simulation of NG by DNS is computationally expensive owing to the 

need for High-Performance Computing hardware for long run times and more importantly for 

being intrinsically a multiscale problem, with spatial scales ranging from nanoscale for defect 

cores and interfaces, to micron ranges for tactoids, to hundreds of microns for the confinement 

geometry. Likewise, to resolve the fast and slow time scales inherent in chiral ordering, even 

adaptive time-stepping is insufficient to achieve tractable schemes.  To tackle these 

computational challenges, we employ a combination of DNS with Long Short-Term Memory 
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(LSTM) Recurrent Neural Networks (RNNs) for some simulations to significantly shorten the 

run time. After collecting the quench results by either DNS or combination of DNS and LSTM-

RNN, we employ symbolic and classical regressions to develop correlations describing the 

essential quantities of NG including induction time, nucleation period, tactoid population peak, 

growth laws, and tactoids’ population statistics. 

The paper is organized as follows. In section 5.6, the modeling and simulation methodology 

is explained in detail. Section 5.7 discusses the results. Section 5.7.1 characterizes the NG zone 

in the collagen biphasic zone.  Sections 5.7.2-5.7.4 analyzes the three stages of NG; induction, 

nucleation, and coarsening, respectively.  Section 5.7.5 discusses the mechanisms behind the 

quench depth dependence of NG characteristics. Finally, section 5.7.6 reveals the fundamental 

physics driving the growth law exponents.  

 

5.6 Methodology 

5.6.1 Direct numerical simulation (DNS); energy landscape and governing equations 

The total dimensionless free energy F̃net  for chiral LCs dispersed in a small-sized solvent 

consists of five contributions: (1) isotropic demixing f̃iso, (2) I/N* phase transition  f̃h, (3) 

elasticity f̃e, (4) the thermodynamic penalty associated with interface formation  f̃cg, and (5) the 

coupling effect, f̃c 
1,41,47,48: 

F̃net = ∫(f̃iso+f̃h + f̃e + f̃cg + f̃c)
Ṽ

dṼ (5 − 1) 

f̃iso =
ϕln(ϕ)

n
+ (1 − ϕ)ln(1 − ϕ)+χϕ(1 − ϕ) (5 − 1a) 

f̃h =
a(ϕ)

2
Tr(𝐐2) −

b(ϕ)

3
Tr(𝐐3) +

c(ϕ)

4
(Tr(𝐐2))

2
 (5 − 1b) 

f̃e =
1

2
(

ξ

h0
)
2

[[∇̃ × 𝐐 + 4π (
h0
p∞

)𝐐]
2

+ (
L2
L1
) [∇̃ ⋅ 𝐐]

2
] (5 − 1c) 

f̃cg =
1

2
L̃ϕ(∇̃ϕ)

2
 (5 − 1d) 

f̃c = L̃ϕ−𝐐(∇̃ϕ) ⋅ (∇̃ ⋅ 𝐐) (5 − 1e) 

 

Eq. (5-1a) describes the Flory-Huggins theory that accounts for mixing free energy of 

constituents. ϕ, n and χ are the effective volume fraction of collagen fibers, number of segments 

on the collagen backbone, and the Flory–Huggins interaction parameter, respectively. The first 
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two terms and last term in eq. (5-1a) take into account the translational entropy and enthalpic 

contribution, respectively. 

Eq. (5-1b) is known as the phenomenological Landau-de Gennes (LdG) theory which 

describes the phase transition. Tr( )is trace operation. a(ϕ),b(ϕ)and c(ϕ) stand for the LdG 

coefficients and their concentration dependence has recently been quantified for I/N* 

transformation of collagen in [1]1. 𝐐 is a second rank symmetric traceless tensor whose 

eigenvalues describe orientational order and whose eigenvectors describe the average fiber 

orientation.  For defect-free mono-domain equilibrium cholesteric phases, the Q-tensor is 

biaxial, spatially periodic, and possesses handedness. Owing to the extremely small value of 

biaxiality for needle-like fibers forming the cholesteric phase, the biaxiality effect is neglected 

in this study. The spatial periodicity is the pitch p∞ and the handedness is left or right according 

to the twist sense of the director n (main eigenvector of Q).  For processes associated with 

length scales much larger than p∞, the N* behaves as a layered material. 

To consider the energy content of fibers’ configuration the Frank-Oseen-Mermin (FOM) 

theory, eq. (5-1c), is employed. ξ, h0, and Li denote coherence length, an arbitrary macro-meter 

value representing the sample size, and Frank elastic constants, respectively. L̃ϕ and L̃ϕ−𝐐 stand 

for interfacial and coupling constants, respectively. Note that the tilde symbol indicates that 

the quantity is dimensionless. For detailed information on the formulation of these 

contributions, see refs 1,39,41,47-54. 

NG is a spontaneous process through which the total free energy of the system  F̃net  is 

minimized. To describe this thermodynamically-driven phenomenon, we use the time-

dependent Ginzburg-Landau relaxation model which captures the coupled spatio-temporal 

evolution of the conserved order parameter (OP)  ϕ  and the non-conserved order parameter Q. 

Thus, the corresponding mixed OP model read21,40,41,47,55-59 

∂𝐐

∂t̃
= −

1

(1 −
3
2Tr

(𝐐2))

2 (
δF̃net
δ𝐐

)

[s]

 
(5 − 2a) 

∂ϕ

∂t̃
= M̃ϕ∇̃ ⋅ ([𝐈 + 𝐐] ⋅ ∇̃

δF̃net
δϕ

) (5 − 2b) 
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where M̃ϕ is the constant dimensionless relative mobility constants of mass diffusion to 

orientational relaxation. ΔF̃net/δ𝐐 and δF̃net/δϕ are the functional derivatives with respect to 

Q and ϕ, respectively. [s] is the symmetric traceless operator defined as 𝐓[s] =
(𝐓+𝐓t)

2
−
Tr(𝐓)𝛅

3
 

in which 𝛅 is the second rank identity tensor. The actual time, t, is scaled by t=t̃
η

ckBT
where η, 

kB, and T stand for rotational viscosity coefficient, Boltzmann constant, and absolute 

temperature, respectively. In this model, we neglect bulk flows that may be generated by 

couplings between the Q-tensor velocity 
∂𝐐

∂t
 and translational flow velocity v and its gradients 

∇𝐯 during NG59-63.  The extremely large viscosity of cholesteric permeation flow64,65, the large 

rotational viscosity of collagen, the essentially vanishing Ericksen number (flow-to-elasticity 

ratio)66, the solid-like behavior along the cholesteric helix axis67, and an a posteriori validation 

of the predictions with experimental data justify neglecting self-generated transient bulk 

convection. 

The governing equations, eqs.(5-1 and 5-2), are subjected to the following auxiliary 

conditions. 

Initial Conditions: {
𝐐(t̃=0) = Ξ

ϕ(t̃=0) = ϕ
q
+ Φ

 (5 − 3) 

where ϕq is the volume fraction of fibers at the quenching point, Ξ is an arbitrary traceless 

tensor that represents infinitesimal white noise, and similarly, Φ stands for a scaler white 

noise2. The initial conditions, given in eq.(5-3), indicate that fibers are initially configured 

without any correlation, and concentration is then quenched into the NG zone. In other words, 

the system is initially isotropic, t<0. Thereafter, quench into the NG zone takes place at t=0, 

meaning that while fibers are still in the isotropic phase, 𝐐(t̃=0) = Ξ (i.e. no orientational 

order), the dispersion is concentrated to ϕ(t̃=0) = ϕq +Φ where isotropic/cholesteric phases 

can coexist and gradually be separated via the NG mechanism as time elapses. Regarding the 

boundary conditions, we use periodic boundary conditions for the Q-tensor and the closed-

system thermodynamic restriction for mass transfer, ϕ, on the boundaries. 

The model given in eqs.(5-1, 5-2) consists of six-coupled nonlinear partial differential 

equations that describe the spatio-temporal behavior of the six component solution vector: five 

independent components of the symmetric traceless tensor order parameter Q(x,t) and the 

scalar collagen concentration ϕ (x,t) . The independent variables are time (t) and the spatial 

coordinates (position vector x). In this work we restrict the physical space to two dimensions 
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and the position vector in rectangular coordinates is x=(x,y). In short, the solution vector for 

the model used in this paper has six components that depend on time “t” and two spatial 

coordinates: “x” and “y”. In this study, we carry out two dimensional simulations owing to two 

reasons; (1) the two-dimensional simulations are capable of revealing the underlying physics 

and accordingly have been widely used in literature31,33,68-70, (2) the three-dimensional 

simulations of the NG processes on a statistically large space require unavailable high-

performance supercomputers running for enormously long times. As can be seen in the 

Supplementary Note S1, the two-dimensional simulations studied in the present work are 

computationally demanding; obviously, three-dimensional simulations require much more 

computational power than the two-dimensional ones. To obtain reliable statistical results we 

solve the governing equations on a realistic 500µmx500µm square domain representing 

experimental samples used for the long pitch length biological LCs29,71-73.  The two-

dimensional DNS is executed using the finite element technique implemented in the General 

PDE solver of COMSOL Multiphysics 5.3a on our in-house supercomputer (see the 

Supplementary Note S1 for details of DNS; including the standard material properties used in 

this study). 

 

5.6.2 Characteristic length 

The tactoids population and tactoids area are obtained as two time-series using Image 

Processing explained in the Supplementary Note S1. Having these time-series, the 

characteristic length, ⟨L(t̃)⟩, is thus computed by37,74 

⟨L(t̃)⟩ = 2√
⟨A(t̃)⟩

π
 (5 − 4) 

 

where ⟨A(t̃)⟩indicates the arithmetic average of the tactoids area at a given time, t̃. Since 

this study focusses on the NG of cholesteric tactoids embedded in the isotropic phase, the 

characteristic length ⟨L(t̃)⟩ represents the time-dependent average tactoids diameter. 

 

5.6.3 Surrogate model 

An alternative to address computationally expensive and hardly tractable simulations is to 

engineer a fast surrogate model predicting the simulation results75-78. As explained below, the 
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most computationally demanding stage of the NG process is the coarsening period, which is 

the last stage in this process (see sections 5.7.2-5.7.4). For this reason, the effective surrogate 

model is one that enables the forecasting of the target time-series (i.e. tactoids population and 

characteristic length) for a major interval of the coarsening period. 

In this regard, as can be seen in Figure 5-1(a), the entire time-series of each target quantity 

is split into two segments, an early time-series, and a remaining time-series. The entire time-

series contains all NG stages of the material transformation process: induction, nucleation, and 

coarsening until the steady or long time quasi-steady state is reached. The early time-series 

captures induction, nucleation, and the early coarsening; hence, the remaining time-series is 

the remainder obtained by subtracting the early time-series from the entire time-series; see 

Figure 5-1(a). In addition, provided that DNS is used, acquisition of the early time-series 

requires less computational time than that of the remaining time-series. The effective strategy 

for fast acquisition of the entire time-series of a target quantity is thus based on a hybrid 

approach as follows: (1) DNS computes the early time-series which is relatively 

computationally inexpensive, and (2) the surrogate model deploys the early time-series as the 

dynamical history of the target quantity in order to rapidly forecast the future of the target 

quantity (i.e. the remaining time-series); see Figure 5-1(b). The proposed hybrid approach 

significantly accelerates the NG time-series acquisition owing to the fact that the remaining 

time-series of the target quantity is rapidly forecasted by the surrogate model in lieu of being 

computed by the time-consuming DNS. 

In general, ANNs are suitable to be considered as the surrogate model in data-driven 

problems79-83. To complete the strategy of fast data acquisition, we thus rely on ANNs that 

meet the surrogate model’s requirements discussed above. The surrogate model required in this 

study should be capable of time-series forecasting, meaning that the surrogate model learns the 

dynamical behavior of target quantity from its history (i.e. the early time-series) and then 

forecasts the future of time-series (i.e. the remaining time-series); see Figure 5-1. In view of 

time-series forecasting, it has been shown that RNNs often outperform feed-forward neural 

networks because RNNs benefit from both feed-back and feed-forward connections, leading to 

memory-based networks84-89. Furthermore, LSTM is a special RNN architecture that can 

effectively deal with the vanishing gradient problem88,90-93. We, therefore, selected LSTM-

RNNs as the surrogate models and implemented the network models in Python using the Keras 

library94. The LSTM-RNN is trained using the early time-series and then the trained network 
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is exceptionally capable of predicting the remaining time-series; see Figure 5-1. Readers are 

referred to the Supplementary Note S2 for further implementation details.  

 

 

Figure 5-1. (a) Schematic illustration of the terminologies used in this study; squares indicate 

a time-series of each target quantity (i.e. tactoids population or characteristic length). (b) The 

input/output of the LSTM-RNN used as a fast surrogate model. The LSTM-RNNs are trained 

by the early time-series of target quantities and then the trained networks forecast the future of 

time-series (i.e. remaining time-series). 

 

5.6.4 Symbolic regression 

The Symbolic Regression, which is also termed as Symbolic Data Mining using Genetic 

Programming, is the standard technique to explore the mathematical model that best fits data. 

In this technique, the essence of the search engine is based on the Genetic Algorithm95. In this 

work, we rely on our in-house package96 which is significantly faster than conventional Genetic 

Programming. The operations used to find the tactoids’ population are [+, -, *, /, exp]. The 

“exp” was included in the operations set because “exp” in conjunction with the four basic 

mathematical operations can accurately produce a variety of increasing/decreasing and 

convex/concave functions. Moreover, the standard hyperparameters were chosen for the 

evolutionary optimizer; mutation (0.1), crossover (0.8), and migration (0.1)—readers are 

referred to reference [96]96 for further information regarding the implementation. 

 

5.7 Results and discussions 

5.7.1 Cholesteric tactoids zone in Collagen’s equilibrium thermodynamic phase diagram 

The miscibility boundaries or binodal lines in the phase diagram of aqueous acidic collagen 

dispersions are required to predict and characterize the NG of cholesteric tactoids without the 
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use of trial and error. We have recently developed and validated this phase diagram1. Based on 

the phase diagram and the phase separation regimes (NG, DSD, and BSD) obtained at various 

quench depths in the biphasic zone, the NG regime existing therein is then identified, as shown 

by the green zone in Figure 5-2. In the NG regime, multiple chiral nuclei unconditionally 

nucleate, grow and coarsen in the continuous isotropic phase. This spontaneous phenomenon 

takes place as the chiral microstructure emergence lowers system energy, meaning that the 

cholesteric phase is low-energy phase while the isotropic phase is higher. Moreover, the chiral 

microstructures mainly form rounded shapes which eventually end up as circle-like shapes 

from a 2D perspective. As explained in the following sections, this study focuses on the NG 

processes. 

 

 

Figure 5-2. The acidic aqueous collagen solution phase diagram in terms of acetic acid (mM) 

versus collagen concentration (mg/ml). The left and right solid black curves represent the lower 

and upper binodal curves denoted by Ci and Cch, respectively. The green zone is a computed 

estimate where the NG regime exists. The red circle is an arbitrary quench point inside the NG 

zone (green zone), for which the phase separation follows the red arrows. Regardless of where 

the quenching point is, phase separation leads to two phases; collagen-lean and collagen-rich 

phases which yield a continuous isotropic matrix phase and dispersed cholesteric tactoids, 

respectively.  

 

The emergence of cholesteric tactoids in the continuous isotropic phase takes place near the 

lower binodal (isotropic) curve.  Furthermore, this behavior has lately been reported for 

chromonic LC97-99. To quantify the quench depth, we define the quench percentage as  

η
q
=
(Cq − Ci)

(Cch − Ci)
×100 (5 − 5) 
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where Cq, Ci, and Ch are concentrations of the quenching point, lower and upper binodal 

boundaries, respectively. Hence, ηq=0% and ηq=100% exhibit the isotropic phase (lower 

binodal curve) and the fully cholesteric phase (upper binodal curve), respectively. We 

performed an exhaustive DNS to accurately characterize the biphasic zone, as opposed to 

solving thermodynamic instability thresholds, as the former proved tractable and accurate.  

Approximately, 0%<ηq<10% represents the metastable isotropic phase. Quenching into this 

zone does not result in any phase separation and ordering as the maximum concentration 

fluctuation therein can’t overcome the energy barriers; the existence of the metastable isotropic 

phase is consistent with the classical phase separation theory100. The NG regime, illustrated by 

the green zone in Figure 5-2, corresponds to approximately 10%<ηq<30%, thus, the width of 

the NG zone is about 20% of the biphasic width. As discussed below, despite its narrowness, 

the NG regime retains rich liquid-crystalline behaviors in terms of tactoids shape, morphology, 

interactions, growth, and population. 

 

5.7.2 Induction period 

The simulation results show that phase separation via NG mechanism starts with an 

induction (lag) period during which tactoids reach the critical size and the thermodynamical 

driving force directs the growth, in excellent agreement with previous theoretical and 

experimental studies17,101-103.  The induction time t̃l is defined as the elapsed time after 

quenching for the emergence of detectable tactoids with a population number N(t̃l) ≥ 1.  

Simulation results indicate that, for given material properties, the induction time inversely 

depends on the quench depth (or quench percentage, ηq; see Figure 5-3) and the corresponding 

correlation obtained by Classical Regression reads: 

t̃l = 2202+4.242 × 10
+9η

q
-5.14 (5 − 6) 

indicating a strong sensitivity to quenching depth. 
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Figure 5-3. The graphical and tabular (inset) representations of induction times at various 

quench percentages. The induction period takes place during the early stage of the NG 

processes. The power law is approximately t̃l ≈ η
q
-5, showing a strong sensitivity to quenching 

depth. 

 

5.7.3 Nucleation 

Following the induction period, phase separation goes through the nucleation process during 

which multiple chiral nuclei spontaneously emerge and grow throughout the continuous 

isotropic phase. Hence, both the tactoids population N(t) and the characteristic length <L(t)> 

(time-dependent averaged diameter) of tactoids increase during the nucleation period (see 

Figure 5-4). The latter is a manifestation of the expected sequential nucleation. 
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Figure 5-4. (a) Evolution of the uniaxial director field at a shallow quench (ηq = 12.5%) and 

a deeper quench (ηq = 30.0%). The first and last columns indicate the beginning, t̃ = t̃l, and 

the end, t̃ = t̃l + t̃n, of the nucleation period, respectively. The blue-to-red spectrum and black 

color show the order parameter, S, and isotropic phase, respectively. See the Supplementary 

Movies S1 through S4 for all the time sequences corresponding to the nucleation period of  

ηq = 12.5%, 15%, 25% and 30%, respectively. (b) Size distribution at ηq = 12.5%. The size 

distributions of other quenches has a similar trend. (c) The quench depth dependence of 

characteristic length, 〈L〉. See the Supplementary Note S3 for the corresponding log-log plots.  

(d) The quench depth dependence of tactoids population,  N. (e) The quench depth dependence 

of tactoids population peak, Nm, and nucleation duration, t̃n. (f) The tabular representation of 

panel (e). NB: the information shown in all panels corresponds to the nucleation period.   
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Table 5-1. Proposed correlations describing tactoids population, N, and growth laws 〈L〉, 
during nucleation periods. N and 〈L〉 are obtained by Symbolic Regression and Classical 

Regression, respectively. 

Nucleation 

Period 

t̃l ≤ t̃
≤ t̃l + t̃n 

Tactoids Population (N) Growth laws (〈L〉) 

N=
c1

1 + exp(c2(t̃ − t̃l) + c3)
 ⟨L⟩ = ⟨L⟩0+a(t̃-t̃l)

n 

ηq(%) c1 c2 × 10
3 c3 R2 〈L〉0 a × 10 n R2 

12.5 51.53 -10.03 3.325 0.996 3.393 8.225 0.4799 0.970 

15 75.04 -13.08 3.334 0.996 3.558 6.983 0.5046 0.980 

20 99.01 -31.49 3.668 0.998 4.552 3.391 0.6670 0.976 

25 118.9 -43.56 4.428 0.999 3.393 2.762 0.7512 0.971 

30 128.10 -49.52 4.450 0.996 2.422 2.749 0.8065 0.970 

 

Increasing the quench depth affects key descriptors of the nucleation period (see Figure 5-4 

and Table 5-1): 

• Tactoids Distribution, Shape, and Morphology. As shown in Figure 5-4(a) and the 

Supplementary Movies S1-S4, for shallow quenches (e.g. ηq=12.5%) tactoids sparsely 

nucleate and grow; even when the dilute tactoids population reaches its maximum (Nm), 

the relatively mature tactoids are distant from each other. Moreover, tactoids adopt the 

circular shape and the fibers therein self-select concentric configuration, which is perfectly 

consistent with experimental observations29,71. On the other hand, for deeper quenches 

(e.g. ηq=30%), the isotropic phase is more densely populated by chiral tactoids whose 

shapes are more elongated and even in some cases irregular. The fibers configuration 

remains almost concentric, see Figure 5-4(a).  

• Size Distributions, Universal Growth Laws, and Tactoids Population. The size 

distribution follows nearly a Gaussian distribution moving from a small number of small-

sized tactoids toward a multitude of bigger tactoids as time elapses. Hence, the 

characteristic length, which in this study is the average tactoids diameter, and tactoids 

population grow over time, as seen in Figure 5-4(b). These results are quantified as 

follows. 

The DNS results, shown in Figure 5-4(c) and Table 5-1, accurately confirm the 

experimental observations35,36,74,104,105 that: (1) The characteristic length evolves as per the 

universal growth laws  given by 

⟨L⟩ = ⟨L⟩0+a(t̃-t̃l)
n 

t̃l ≤ t̃ ≤ t̃l + t̃n 
(5 − 7) 
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(2) Within the NG zone, as quench depth increases the universal growth laws exponent, n, 

increases from n ≈ 0.5, and ultimately approaches n ≈ 1. Interestingly, simulation results 

reveal that the smallest tactoids which can grow retains the average diameter around 

〈L〉0 = 2.4~4.5μm. This result is of great significance for material processing through the 

seeding method. Furthermore, the tactoids can reach the size of 19~23μm by the end of 

the nucleation period which coincides with the beginning of the coarsening period. 

Supported by Symbolic Regression, it is found that the tactoids population obeys a 

sigmoidal growth during the nucleation period; see Figure 5-4(d) and Table 5-1. The upper 

limit of the sigmoidal growth is determined by c1 which is a dimensionless coefficient; 

thus c1 provides insights into the maximum tactoids population which takes place by the 

end of the nucleation period. The trend of c1 unequivocally signifies that the deeper quench 

depth is, the denser the isotropic phase is populated by chiral tactoids. c2 is also a 

dimensionless coefficient due to the fact that both t̃ and t̃l are dimensionless. The absolute 

value of c2 defines the growth rate or steepness of the tactoids population; hence, as can 

be seen in Figure 5-4(d) and Table 5-1, the absolute value of c2 and the steepness of the 

tactoids’ population increase upon increasing the quench percentage (i.e. quench depth). 

Lastly, c3 is a dimensionless coefficient varying slightly with respect to quench percentage 

and therefore c3 weakly affects the curve. 

It should further be noticed that the correlations proposed for the tactoids population and 

the growth laws (see Table 5-1) are generic and cover the entire NG regime because the 

fitting coefficients monotonically vary according to the quench percentage. Hence, the 

fitting parameters for other quench percentages can be accurately obtained by 

interpolation. 

• Tactoids Population Peak and Nucleation Duration. Figure 5-4(e) shows that 

increasing the quench depth drives the emergence of more tactoids over a shorter period. 

Knowing the tactoids population peak is important as discussed in the subsequent section. 

Accordingly, by using the Classical Regression, the quench depth dependence of the 

tactoids population peak which takes place at the end of the nucleation period, 

N(t̃ = t̃l + t̃n) = Nm, and nucleation duration, t̃n, read 

Nm = 167.4 − 2770η
q
-1.262 (5 − 8) 

t̃n=149.6 + 9.839 × 10
5η
q
-2.861 (5 − 9) 

It is difficult to determine the exact boundaries of the NG zone shown in Figure 5-2since 

these boundaries are acquired by DNS through a fine scanning procedure. Eq. (5-8) can 

also serve to determine the lower boundary of the NG zone. In principle, at the lower 
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boundary of the NG zone, the tactoids population tends to one (Nm ⟶ 1); 

correspondingly, the extrapolated value of quench percentage using eq. (5-8) is  ηq ≈

10%. DNS also confirms this quench percentage leads to the NG regime with a very few 

tactoids. 

These results can be also gleaned from other panels in Figure 5-4; Figure 5-4(a) also shows 

quench depth directly affects the tactoids population, and Figure 5-4(c) also implies that 

quench depth inversely affects the nucleation period. 

 

5.7.4 Coarsening 

The outline of this section is as follows. In section 5.7.4.1, we first analyze and characterize 

coarsening behaviors of a shallow quench (ηq=15%) and a deeper quench (ηq=25%). Section 

5.7.4.2 elaborates on the incorporation of LSTM-RNN with DNS to build a large dataset of 

NG results, followed by the development of correlations based on the constructed dataset by 

making use of Symbolic Regression and Classical Regression.  

 

5.7.4.1 Coarsening analysis 

Shortly after the nucleation period, phase separation is carried out through coarsening in 

which the Ostwald ripening phenomenon takes place35,37. In this long-term process, small 

tactoids progressively become smaller over time and accordingly redeposit onto larger tactoids 

on account of reaching a more thermodynamically stable state by minimizing the contact 

surface of the two phases106. Hence, during the coarsening period, the tactoids population 

decreases while the averaged diameter of tactoids increases. Figure 5-5 and the Supplementary 

Movies S2 and S3, show that the tactoids coarsening process obeys with high fidelity the 

Ostwald ripening phenomenon. 
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Figure 5-5. (a) Evolution of the uniaxial director field during the coarsening period at a shallow 

quench (ηq=15%) and a deeper quench (ηq=25%). The first column indicates the beginning of 

coarsening which is coincident with the end of the nucleation period, t̃ = t̃0C = t̃l + t̃n. The 

blue-to-red spectrum and black color exhibit order parameter, S, and isotropic phase, 

respectively. See the Supplementary Movies S2 and S3 for all the time sequence corresponding 

to the three NG stages for ηq=15% and 25%, respectively. (b) Size distribution at ηq=25% 

during the coarsening period. The size distributions of other quenches have a similar trend 

during coarsening.  (c,d) The characteristic length, 〈L〉, during the entire quench process at a 

shallow quench (ηq=15%) and a deeper quench (ηq=25%), respectively. See the Supplementary 

Note S3 for the corresponding log-log plots during the coarsening period. (e,f) The tactoids 

population during the entire quench process at a shallow quench (ηq=15%) and a deeper quench 

(ηq=25%), respectively. General Note regarding panels (c-f): the excellent performances of the 
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LSTM-RNN and the proposed correlations are shown by solid black and blue curves moreover 

all NG stages obtained by DNS are distinguished by different colors with the circle marker, 

refer to the legends shown in the graphs. 

Increasing the quench depth also affects the coarsening period according to various criteria 

(see Figure 5-5 and Table 5-2): 

• Tactoids Depopulation Mechanisms, Shape, and Morphology. As explained above, the 

tactoids population peak increases with increasing the quench magnitude. This maximum 

point, N(t̃ = t̃l + t̃n) = Nm, is also coincident with the beginning of the coarsening period. 

For convenience, the peak time is denoted by t̃0C = t̃l + t̃n.  

For shallow quenches, e.g. ηq=15%, small tactoids progressively shrink, and consequently, 

large tactoids grow. More precisely, the small tactoids dissolve into the isotropic phase 

and then fibers existing in isotropic phase diffuses onto larger tactoids through uphill 

diffusion mechanism. Hence, the tactoids population decreases solely via the dissolution 

of small tactoids into the isotropic phase.  This type of tactoids population decline reflects 

the Ostwald ripening phenomenon. Moreover, because there is no coalescence among 

tactoids, tactoids self-select nearly a circular shape with a concentric or a 2D configuration 

which is consistent with 3D Radial Spherical Structure (RSS)107  (see Figure 5-5(a) and 

the Supplementary Movie S2) 

For deeper quenches, e.g. ηq=25%, the Ostwald ripening is performed via two 

mechanisms; (1) Dissolution of small tactoids into the isotropic phase, which also takes 

place for shallow quenches and (2) Coalescence of small tactoids with larger tactoids. 

More importantly, the coalescence results in elliptical tactoids with more defects such as 

τ
±
1

2.  Note that the elliptical tactoids evolve into nearly circular ones provided that they 

become isolated from further coalescence and are given sufficient time. Regarding the 

orientational ordering, in addition to the configurations captured for the shallow quenches, 

other 2D cholesteric configurations are also observed such as a 2D configuration presented 

in 3D Planar Bipolar Structure (PBS)107 ( see Figure 5-5(a) and the Supplementary Movies 

S3). 

• Size Distributions, Universal Growth Laws, and Tactoids Depopulation. The time-

series size distributions indicate a time-marching Gaussian distribution moving from a 

large number of small-sized tactoids to fewer larger tactoids; see Figure 5-5(b). These 

results are quantified as follows. 
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Our DNS results confirm the experimental observations35,37,74,105,108-110 that, regardless of 

quench depth, the power laws with exponent n ≈ 0.5 describes the growth law for liquid-

crystalline materials during the coarsening period in the NG processes; see Figure 5-5(c,d) 

and Table 5-2. It should, however, be noted that Table 5-2 may indicate a subtle systematic 

dependence of the exponent, n, on the quenching depth, ηq, because as quench depth 

increases from 12.5% to 30%, the exponent varies from 0.56 to 0.45. The slight deviation 

of the exponent from 0.5 during the coarsening period has also been reported in the 

literature105,108,110; however, to the best of authors’ knowledge, the reason behind such 

behavior has not yet explained. In partial summary, based on available results in our 

simulations and past experimental studies, an indisputable conclusion cannot be drawn on 

the subtle dependence of the exponent on the quench depth, since the unavoidable 

indeterminacy through the estimation of the exponent values may induce a slight deviation 

from 0.5. The important examples of indeterminacy are; (1) Regression errors; the 

exponents, n, are obtained by the regression analysis in both theoretical and experimental 

studies. (2) Errors corresponding to the determination of each tactoid size at a given time; 

the characteristic length of each tactoid is determined by counting pixels for which the 

color intensity exceeds a certain threshold. (3) The intrinsic errors due to the numerical 

simulations and experimental measurements. 

Figure 5-5(e,f) demonstrate the tactoids population for the entire time-series, including 

induction, nucleation, and coarsening. Regardless of the quench depth, the tactoid 

population declines according to the Ostwald ripening phenomenon during the coarsening 

period. The decreasing trend of the tactoids depopulation captured for the coarsening 

period in our simulations, e.g. Figure 5-5(e,f), is in excellent agreement with experimental 

observations37. 

Using Symbolic Regression, the tactoids population during the coarsening period reads 

(the Supplementary Note S4 provides details of the development) 

N=Nm −
α(t̃-t̃0C)

(t̃-t̃0C)+β
, t̃ ≥ t̃0C (5 − 10) 

where α and β are positive fitting parameters tabulated in Table 5-2. Eq.(5-10) is developed 

based on a large data set. For this reason, the developed correlation is remarkably 

applicable for a long-term coarsening period as lim
t̃⟶∞

N = Nm − α > 0; see Figure 5-4(f) 

and Table 5-2. Furthermore, both fitting parameters (α and β) are dimensionless. Upon 

increasing α while α < Nm, the tactoids depopulation is accelerated; therefore, α directly 

affects tactoids depopulation. On the contrary, β inversely affects tactoids depopulation; 
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the tactoids’ depopulation slows down as β becomes larger, and the tactoids’ depopulation 

accelerates as β decreases. As can be seen in Table 5-2, as the quench depth increases, α 

and β increase and decrease, respectively, leading to faster tactoids’ depopulation. 

 

5.7.4.2 Correlations development of the universal growth laws and tactoids population 

during coarsening period 

The acquisition of the entire time-series of a quenching process using DNS is 

computationally very demanding even for a high-performance computing facility. In particular, 

obtaining the simulation results of the coarsening period is significantly more time-consuming 

compared to induction followed by nucleation; in the present study, simulation of each 

quenching process approximately takes three weeks and the acquisition of coarsening results 

takes more than 75% runtime, see the Supplementary Note S1 for more information. On the 

other hand, a large dataset is required to develop wide-range robust correlations, making 

correlations development difficult if results are exclusively obtained via DNS.  

Furthermore, Figure 5-5(c-f) demonstrate the excellent performance of LSTM-RNN in the 

estimation of major time-series of the coarsening period, which is the most time-consuming 

part of the simulation as already mentioned. Remarkably, the LSTM-RNN has exceptional 

effectiveness in the identification of times at which stair-like decrease and increase take place 

in the tactoids depopulation and characteristic length, respectively.  

The successful performance of LSTM-RNN can be leveraged for building a sufficiently 

large dataset by a combination of the two methods: DNS and LSTM-RNN. Rather than 

obtaining the entire time-series using DNS, the early time-series is acquired by DNS which 

takes relatively short runtime (roughly one week per simulation) thereafter the remaining time-

series is quickly estimated using the LSTM-RNN trained by the early time-series; see 

subsection 5.6.3 and Figure 5-1. The LSTM-RNN is a fast surrogate model (which requires 

nearly an hour for being trained and a minute for estimating the remaining time-series with an 

ordinary PC) while the computation of the remaining time-series by DNS takes considerably 

long runtime (approximately two weeks per simulation with a powerful high-performance 

supercomputer). Having built the dataset, we then employ first the Symbolic Regression to find 

the best mathematical model representing the tactoids population, and second, Classical 

Regression to find the optimal fitting parameters for universal growth laws. The details and 

results of this approach are shown in Figure 5-6and Table 5-2, respectively. 
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Figure 5-6. Overview of the workflow applied to develop the correlations. 

 

Table 5-2. The proposed correlations describing the tactoids population, N, and the growth 

laws, 〈L〉, during coarsening periods. N and 〈L〉 are obtained by Symbolic Regression and 

Classical Regression, respectively. 

Coarsening 

Period 

t̃ ≥ t̃0C 

Tactoids Population (N) Growth laws (〈L〉) 

N=Nm −
α(t̃-t̃0C)

(t̃-t̃0C)+β
, t̃

≥ t̃0C 

⟨L⟩ = ⟨L⟩0+a(t̃-t̃0C)
n 

ηq(%) α β R2 〈L〉0 a n R2 

12.5 52.06 6595 0.989 22.80 0.0951 0.56 0.989 

15 69.92 3923 0.998 19.48 0.1219 0.55 0.998 

20 91.46 2929 0.989 19.35 0.1981 0.51 0.979 

25 111.30 2284 0.997 19.39 0.3274 0.47 0.979 

30 115.20 2195 0.998 19.36 0.4725 0.45 0.979 
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where, as pointed out earlier, t̃0C = t̃l + t̃n stands for the time at which the coarsening 

begins, see Figure 5-3and Figure 5-4(f) to obtain the induction time, t̃l, and the nucleation 

duration, t̃n, respectively. The tactoids population peak, Nm, is also given in Figure 5-4(f). 

 Like correlations developed for the nucleation period (Table 5-1), the salient feature of the 

proposed correlations for the coarsening period is that the fitting parameters are monotonic 

with respect to the quench percentage; thus, other quenches can be accurately estimated by 

interpolation; see Figure 5-7 and Table 5-2. Additionally, Figure 5-7(a) vividly reconfirms the 

growth law exponent n ≈ 0.5 for the coarsening period. 

 

 

Figure 5-7. The graphical representation of correlations developed for (a) the growth laws and 

(b) the tactoids population during coarsening periods. Note that see the Supplementary Note 

S3 for the log-log plot of the panel (a).   

 

5.7.5 Mechanisms and principles governing the quench depth dependence of the NG 

characteristics 

On the basis of the above discussion, the quench depth dependence of the NG characteristics 

is summarized in Table 5-3. 
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Table 5-3. Summary of quench depth dependence of the NG characteristics. Upward and 

downward arrows qualitatively signify increase and decrease, respectively. 

Quench percentage, ηq ↑ 

Induction time, t̃l ↓ 

Nucleation duration, t̃n ↓ 

Tactoids population peak, Nm ↑ 

Growth law exponent, n 

(During the nucleation period) 
↑ 

Number of coalescences ↑ 

Tactoids circularity ↓ 

Number of defects ↑ 

The physical origin of these behaviors can be explored using free energy analysis. Thus, we 

formulate the system energy F as the spatial average of the total free energy:  

F=
∬ (f̃iso+f̃h + f̃e + f̃cg + f̃c)dAA

∬ dA
A

 (5-11) 

where A represents the domain in which the NG processes take place; all terms in eq.(5-11) 

are dimensionless. Figure 5-8 illustrates the variation of the system energy over two complete 

quenching processes. 

 

Figure 5-8. Time evolution of system energy at a shallow quench (ηq=15%) and a deeper 

quench (ηq=25%), see the graph legend. 

As shown in eqs. (5-2a, 5-2b), phase separation and ordering are directly governed by free 

energy driving force, δF̃net. The free energy difference between initial and steady states can be 

an excellent representative of free energy driving force; hence, the free energy driving force is 

defined as ∆F = F(t̃ = 0) − F(t̃ = ∞). Increasing the quench percentage directly makes the 

free energy driving force larger, meaning that the spontaneous tendency for the quenching 
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process increases. For example, ∆F|ηq=25% ∆F|ηq=15%⁄ ≈ 1.7, see Figure 5-8. The deeper 

quenches thus result in faster self-assembly dynamics, leading to shortening induction and 

nucleation periods. It should further be noted that the intermediate metastable states are absent 

during the NG processes studied in the present work; for this reason, the reasoning utilized 

above (i.e. the higher free energy driving force is imposed on the system, the faster fibers are 

self-assembled) is valid for our study. 

 As the quenching process is spontaneous, the system energy initially has a high level due 

to unstable thermodynamic state imposed by quenching (i.e. isotropic phase while 

concentration exceeds the order-disorder threshold, see eq.(5-3)), and as self-assembly 

progresses the system energy goes to a lower level until a plateau is reached. In other words, 

the free energy driving force  ∆F  can also be interpreted as the excess energy that should be 

relieved through the NG process. Hence, the deeper the quench depth is, the more excess energy 

is imposed on the system; see Figure 5-8. Furthermore, the chiral phase is thermodynamically 

favorable owing to the lower energy level compared to the isotropic phase. For this reason, it 

is energetically more favorable that the system increases the amount of the chiral phase (low 

energy) to relieve more excess energy imposed by increasing quench depth. The system 

spontaneously does that via two mechanisms; increasing the population of chiral nuclei and 

making the growth of chiral nuclei faster. That is why upon increasing quench depth, the 

tactoids population peak and the growth law exponent increases. 

So far, from the system energy point of view, it is rationalized why increasing quench depth 

leads to the emergence of more chiral tactoids. Owing to the fact that the system is 

thermodynamically closed, increasing in tactoids population gives rise to increasing the 

tactoids population density. Based on this, the probability of tactoids collision thus goes higher, 

in turn, the resulting tactoids more deviate from the circular shape and more defects are also 

formed. Since the energy penalty of the tactoids interface is higher than that of defects existing 

inside the tactoids, the tactoids have more tendency to become circular and minimize the 

contact surface between isotropic and cholesteric phases over time, however, defects may be 

trapped. 
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5.7.6 Mechanisms and principles governing the growth law exponent, n, during the 

nucleation period 

According to the significant agreements and broad consistency between the results obtained 

so far and the experimental studies29,35-37,71,74,104,105, the conclusion can be drawn that the 

physics of the NG processes can accurately be described by the coupled order parameter model 

used in this study; see subsection 5.6.1. This coupled order parameter model, known as model 

C in statistical mechanics40,  comprises of two governing equations: (1) orientational ordering, 

eq(5-2a), describing the non-conserved order parameter Q, and (2) conservation of mass, eq. 

(5-2b), describing the conserved order parameter, ϕ. We found that the non-diffusive model, 

meaning the sole consideration of orientational ordering, exclusively results in n = 1, which is 

known as volume-driven regime31; see Figure 5-9. Therefore, the lower exponents that are 

captured using the diffusive model stem from the coupling of mass diffusion and orientational 

ordering. 

 

Figure 5-9. (a) The time-series images showing the evolution of fibers configuration in a 

growing cholesteric tactoid. The blue-to-red spectrum and black color exhibit order parameter, 

S, and isotropic phase, respectively. See the Supplementary Movie S5 for all the time sequence. 

(b) The characteristic length of the growing tactoid depicted in panel (a). NB: the results 

illustrated in both panels are obtained by the non-diffusive model (i.e. only Q-tensor equation 

is numerically solved). 

Taken altogether, for chiral lyotropic LCs, the growth law exponent corresponding to the 

nucleation period evolves from the mass limited regime (n ≈ 0.5) to the volume-driven regime 
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(n ≈ 1) as quench depth increases. Furthermore, the coarsening period is mainly governed by 

the mass diffusion mechanism as the growth law exponent is independently n ≈ 0.5. 

 

5.8 Conclusions 

Owing to a broad number of promising applications of collagen-based biomaterials and the 

significance of I/N* phase separation in the processing of these versatile biomaterials, this study 

focuses on the underlying understanding of phase separation and ordering via the NG 

mechanism in acidic colloidal collagen dispersions. We employed the DNS technique to 

dynamically capture the phase separation and ordering of chiral nuclei growing from the 

unstable isotropic phase. Our study was performed on a two-dimensional square 

(500µmx500µm) which is statistically large enough to acquire realistic results. In the light of 

the realistic domain and the proposed hybrid approach (DNS/LSTM-RNN), the findings not 

only are consistent with available experimental studies but also reveal original physics behind 

the NG quenching processes. 

Through systematic simulation and analysis of various quench depths guided a previously 

experimentally validated thermodynamic model1, we found and targeted the NG regime 

existing in the biphasic zone of the acidic aqueous collagen solution phase diagram.  

The NG regime occupies ≈ 20% of the biphasic zone and emerges near the isotropic binodal 

curve, see Figure 5-2. Quenching into the NG regime results in two coexisting phases; 

cholesteric tactoids (collagen-rich dispersed phase) and isotropic phase (collagen-lean 

continuous phase). Thereafter, we characterized all the three NG stages (induction, nucleation, 

and coarsening) across the NG zone and developed generic, wide-range, and robust correlations 

for crucial quantities. The characterization results are summarized as follows; (also see the 

Supplementary Movies S1-S4 showing the simulation of the NG quenching process at different 

quench percentages, facilitating the understanding of the quench depth dependence of NG 

characteristics).  

Induction. The quenching process starts with the induction period that is inversely 

proportional to quench depth; see Figure 5-3. The quench depth dependence of the induction 

period is also formulated by regression as shown in eq.(5-6). 

Nucleation. Increasing quench depth leads to increasing the tactoids population density, 

moreover, more elongated tactoids are formed while the fibers’ configuration independently 
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remains largely concentric; see Figure 5-4(a). During the nucleation period, both the tactoids 

population and the average diameter increase; see Figure 5-4(b). By using Symbolic 

Regression, we found that the tactoids population sigmoidally grows to eventually reach a 

maximum, moreover, classical regression analysis confirms that the average diameters of 

tactoids increase according to universal growth laws (eq. (5-7)). The growth law exponent 

varies from n ≈ 0.5 to n ≈ 1 for shallow to deep quenches, agreeing with experimental 

observations35,36,74,104,105. The growth law results reveal that tactoids with average diameter 

2.4~4.5µm are practically able to grow and the average diameter roughly reaches 19~23µm by 

the end of nucleation, see Figure 5-4(c,d) and Table 5-1. Furthermore, the tactoids population 

peak and nucleation duration are directly and inversely correlated with quench depth, see 

Figure 5-4(e,f) and eqs.(5-8, 5-9). 

Coarsening. During the coarsening period, tactoids depopulation takes place while the 

average diameter of tactoids grows. It was found that the tactoids depopulation, i.e. the Ostwald 

ripening phenomenon, takes place via two mechanisms; (1) Dissolution of small tactoids into 

the isotropic phase, then redeposition onto larger tactoids through uphill diffusion. (2) 

Coalescence of small tactoids with larger ones. The former is predominant for shallow 

quenches while both mechanisms are involved for deeper quenches. The shallow quenches 

result in more circular tactoids with concentric or RSS configurations and deeper quenches 

induce more elongated tactoids retaining richer chiral nematic morphologies such as PBS in 

addition to concentric and RSS. Regarding defect, the deeper quench depth is, the more defects 

are formed, see Figure 5-5(a,b). To capture the coarsening results, we employed a combination 

of LSTM-RNN and DNS for the certain quenches to reduce the computational costs and build 

a large dataset of results. Afterward, similar to the nucleation period, Symbolic Regression and 

Classical Regression were employed to explore the mathematical model representing the 

tactoids population and the growth laws, respectively. It was revealed that the tactoids 

population decline follows a fractional model, eq.(5-10), and the growth law exponent is n ≈ 

0.5 regardless of quench depth, agreeing with experimental studies35,37,105, see Figure 5-5(c-

f),6,7 and Table 5-2. In our study, the generality of the exponent of growth laws during both 

nucleation and coarsening periods for LCs becomes clearer because our simulations were 

tailored for collagen whereas the experimental studies cited for the validation employed 

different classes of LCs. It should further be noted that all the chiral nematic configurations 

captured throughout both nucleation and coarsening periods are in excellent agreement with 

experimental studies29,71,111. 
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Having obtained the NG results, a free energy analysis was utilized to shed light on the 

physics governing the captured behaviors. It was demonstrated that increasing quench depth 

leads to increasing the free energy driving force, making the dynamics of self-assembly faster, 

see Figure 5-8. For this reason, induction and nucleation periods are inversely affected by 

quench depth. Furthermore, it was rationalized that the system favors having more chiral phase 

(low energy) in response to increasing quench depth because this behavior facilitates the relief 

of more excess energy imposed by quenching, leading to increasing the tactoids population and 

making the growth faster during the nucleation period. As the tactoids population goes higher 

in the given closed system, the number of coalescences goes higher, in turn, more elongated 

tactoids with more defects are formed. 

We then showed that the non-diffusive model (only considering the orientational ordering 

model given by eq.(5-2a)) exclusively produces the growth law exponent n ≈ 1; see Figure 5-9 

and Supplementary Movie 5. Thus, the non-Fickian mass transfer incorporated into the 

simulation, eq.(5-2b), has a profound effect to deliver realistic results, moreover, it was 

concluded that the lower growth law exponents are due to the coupling of orientational 

ordering, eq.(5-2a), and mass transfer, eq.(5-2b). 

Taken together these simulation results, scaling laws, mechanisms, and principles governing 

nucleation and growth of chiral collagen drops are a significant and novel contribution to the 

ongoing biomimetic efforts in bioengineering and medical applications. 

In our future studies, aiming at the development of collagen-based biomaterials processing, 

we will target two objectives. (1) In the present study, we have delineated and characterized 

the NG zone in the biphasic region of the collagen phase diagram (see the green region in 

Figure 5-2). The exhaustive DNS investigation should also be carried out to explore other phase 

separation mechanisms and patterns formation processes existing across the biphasic zone. (2) 

Integration of DNS and artificial intelligence methods to reduce the numerical complexity 

required to solve the governing equations, eqs.(5-1 and 5-2), has been shown to be accurate 

and efficient. In the future, we plan to build on the current approach to map out the extensive 

parametric space and condense our results into practical scaling laws and engineering 

correlations.  These crucial results effectively guide the existing trial-and-error fabrications of 

the sought-after collagen-based biomaterials. 
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5.10 Supporting Information  

5.10.1 Supplementary Note S1: Details of obtaining results from DNS 

1 

The governing equations either diffusive or non-diffusive 

is implemented in the General PDE solver of COMSOL 

Multiphysics 5.3a. The important numerical settings are 

listed below:  

(1) Basis functions are biquadratic. 

(2) Time stepping is carried out by the Backward Euler 

method. 

(3) The stability of numerical solutions and mesh-

independence are satisfied by having at least 60 elements 

per pitch length, p∞=20μm. 

NB: each of the simulations approximately uses 200 GB 

RAM with 32 Processors and takes three weeks (roughly 

five days for nucleation and sixteen days for coarsening). 

 

COMSOL Multiphysics 

 

2 

MATLAB is used to communicate with COMSOL in 

order to extract dependent variables (five independent 

elements of Q-tensor and one concentration field) and 

independent variables (mesh, time and space). 

Note that, in this stage, the Q-tensor elements are 

converted to uniaxial order parameter and director 

field1-3. 

Finally, the extracted data are written in unstructured 

file format(.vtu) as described in our previous work1. 

MATLAB 

 

3 

By using interactive communication of ParaView and 

Python, all the scaler fields (uniaxial order parameter 

and concentration field) along with the director filed 

(uniaxial director field representing fibers 

orientation) can be dynamically visualized. All the 

time-series images are produced in this stage. 

ParaView & Python 

 

4 

In this stage, OpenCV and Python are used for the 

sake of Image Processing to extract the time-series 

quantities such as tactoids population and their sizes 

from the time-series images. 

OpenCV & Python 

 

Figure 5-10. The overview of workflow applied to obtain results; from computing the results 

using DNS to Image Processing in regards to data extraction. 
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Furthermore, the material properties used in DNS are 

Table 5-4. The material properties and parameter values used in the DNS. The square-brackets 

show the corresponding unit. 

Parameters Values Parameters Values Parameters Values 

𝐧 5 [-] χ 1.6 [-] 
L2
L1

 21[-]** 

�̃�𝛟−𝐐 -8×10-8[-] L̃ϕ 7×10-4 [-] M̃ϕ 2.5×10-5 [-] 

𝐂ch 98 [mg/ml] Ciso 79 [mg/ml] p∞ 20 [µm] 

**
L2

L1
= 2

k

k2
-1,

k

k2
= 11 where k1=k3=k and k1, k2, and k3 are Frank elastic constants3. 

 

5.10.2 Supplementary Note S2: Details of LSTM-RNNs implemented in the present study 

Table 5-5. Hyperparameters used for the LSTM-RNNs 

 <L> N 

LSTM layers 2 2 

units 30 15 

dropout-rate 0.2 0.2 

activation function hyperbolic tangent hyperbolic tangent 

loss 'mean_squared_error' 'mean_squared_error' 

optimizer 'adam' 'adam' 

learning rate 0.01 0.01 

epochs 200 100 

The dropout-rate of 0.2 was applied to avoid model-overfitting. 

 

5.10.3 Supplementary Note S3: Log-log plots of the universal growth laws 

Since the power laws are transformed into linear laws in a log-log coordinate system, it is 

advantageous to plot the universal growth laws in the log-log scale. As can be seen in Table 

5-1 and Table 5-2, the universal growth laws follow a generic power law as follows. 

⟨L⟩ = ⟨L⟩0+a(t̃-t̃0)
n (S1) 
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t̃0 = t̃l, t̃l ≤ t̃ ≤ t̃l + t̃n,Nucleation period 

t̃0 = t̃0C = t̃l + t̃n, t̃ ≥ t̃0C,Coarsening period 

 

where ⟨L⟩0is the initial tactoid size at the beginning of each period, a and n stand for fitting 

parameters. Taking the log operator from both sides of eq.(S1) reveals the linearity behind the 

growth laws in logarithmic coordinates. 

Y=A + nX 

A=ln(a) 

X = ln(t̃-t̃0) 

Y= ln(⟨L⟩ − ⟨L⟩0) 

(S2) 

 

Given the mapping above, universal growth laws are transformed as follows. 

 

• Nucleation Period, Figure 5-4(c) 

 

Figure 5-11. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the nucleation period for η
q
= 12.5%, R2=0.970. 
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Figure 5-12. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the nucleation period for η
q
= 15.0%, R2=0.980. 

 

Figure 5-13. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the nucleation period for η
q
= 20.0%, R2=0.976. 



164 

 

 

Figure 5-14. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the nucleation period for η
q
= 25.0%, R2=0.971. 

 

Figure 5-15. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the nucleation period for η
q
= 30.0%, R2=0.970. 
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• Coarsening Period, Figure 5-5(c) 

 

 

Figure 5-16. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the coarsening period for η
q
= 15.0%, R2=0.998. The green zones 

in the panels (a) and (b) correspond to the same time interval, moreover, the pink zones show 

the remaining time interval. At the beginning of the coarsening period, the slight deviation of 

the curve fitted with the DNS results is magnified in the logarithmic scale (see the green zones). 

• Coarsening Period, Figure 5-5(d) 

 

Figure 5-17. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during the coarsening period for η
q
= 25.0%, R2=0.979. The green zones 

in the panels (a) and (b) correspond to the same time interval, moreover, the pink zones show 

the remaining time interval. At the beginning of the coarsening period, the slight deviation of 

the curve fitted with the DNS results is magnified in the logarithmic scale (see the green zones). 
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• Coarsening Period, Figure 5-7(a) 

 

Figure 5-18. (a) Linear and (b) logarithmic scale plots of the characteristic length (i.e. tactoids 

average diameter) during coarsening period for ηq(%) =12.5, 15.0, 20.0, 25.0, and 30.0, and 

the corresponding R2are 0.989, 0.998, 0.979, 0.979, and 0.979, respectively. 

 

 

5.10.4 Supplementary Note S4: Formulation of the tactoids depopulation during the 

coarsening period 

As tactoids population starts with Nm and declines over time, we introduce N − Nmas the 

independent variable to the Symbolic Regression algorithm. Then, the algorithm found a 

fractional model as −(p1t̃ + p2) (t̃ + p3)⁄ . The obtained model excellently meet the boundary 

condition between nucleation and coarsening periods; N − Nm = 0 at t̃ = t̃0C, leading to p2 =

−p1t̃0C. Doing further mathematical operations, the tactoids depopulation is rewritten as eq.(5-

10). 
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5.10.5 Supplementary Movies 

Movie S1 
12.5% Quench 

Nucleation Period & Early Coarsening 
https://youtu.be/A-rFdNGaIGo  

Movie S2 
15.0% Quench 

Induction & Nucleation & Coarsening Periods 
https://youtu.be/11vp384sx20  

Movie S3 
25.0% Quench 

Induction & Nucleation & Coarsening Periods 
https://youtu.be/SGbJeT-os8I 

Movie S4 
30.0% Quench 

Nucleation Period & Early Coarsening 
https://youtu.be/51DkRlhcJ3E  

Movie S5 Non-diffusive Model https://youtu.be/3IGt8fzhQcg  
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Chapter 6. Relaxation dynamics in bio-colloidal cholesteric liquid 

crystals confined to cylindrical geometry 

This chapter is reproduced with permission from Sayyed Ahmad Khadem, Massimo Bagnani, 

Raffaele Mezzenga and Alejandro D. Rey - Relaxation dynamics in bio-colloidal cholesteric 

liquid crystals confined to cylindrical geometry – Nature Communications 11, 4616 (2020). 

DOI: 10.1038/s41467-020-18421-9. http://creativecommons.org/licenses/by/4.0/. Copyright 

2020 Nature.  

https://urldefense.proofpoint.com/v2/url?u=http-3A__creativecommons.org_licenses_by_4.0_&d=DwMFAw&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=a2QpA740iElktN9G9J2bv63D8H35IlUKlD-sYNB4h-5Eloa7R_RT2QdQJSk8Kqkw&m=5M3-0P228KRnbXhomdOwlgaWatVhSBapo-nKeiXgnHY&s=-OzYNYkPCpUqnpvpfK8fxx4gXyHOY6nOy720jKFCY1E&e=
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6.1 Preface 

Through an experimental study carried out by our ETH-Zurich collaborator, two distinct 

relaxation dynamics are identified for β-lactoglobulin amyloid fibrils (BLG) and cellulose 

nanocrystals (CNC), which are called slow-fast and smooth relaxation, respectively. Building 

on the governing equations formulated in Chapter 4, the relaxations are simulated. The 

excellent agreement between simulation results and experimental observations confirms the 

success of the proposed modeling and numerical techniques used to solve the governing 

equations. We then rely on the simulation to explore the physics behind the distinct relaxation 

dynamics; thereby generalizing the relaxation dynamic behaviors in terms of material 

properties such as pitch length and coherence length. Additionally, a systematic approach based 

on the combination of simulation and experiment is proposed to estimate viscoelastic properties 

such as Landau elastic constant (L1) and rotational viscosity.   

 

6.2 Abstract 

Para-nematic phases, induced by unwinding chiral helices, spontaneously relax to a chiral 

ground state through phase ordering dynamics that are of great interest and crucial for 

applications such as stimuli-responsive and biomimetic engineering. In this work, we 

characterize the cholesteric phase relaxation behaviors of β-lactoglobulin amyloid fibrils and 

cellulose nanocrystals confined into cylindrical capillaries, uncovering two different 

equilibration pathways. The integration of experimental measurements and theoretical 

predictions reveals the starkly distinct underlying mechanism behind the relaxation dynamics 

of β-lactoglobulin amyloid fibrils, characterized by slow equilibration achieved through 

consecutive sigmoidal-like steps, and of cellulose nanocrystals, characterized by fast 

equilibration obtained through smooth relaxation dynamics. Particularly, the specific 

relaxation behaviors are shown to emerge from the order parameter of the unwound cholesteric 

medium, which depends on chirality and elasticity. The experimental findings are supported 

by direct numerical simulations, allowing to establish hard-to-measure viscoelastic properties 

without applying magnetic or electric fields.  

 

 



170 

 

6.3 Introduction 

Unwinding the helices of a chiral nematic liquid crystal drives the cholesteric phase (N*) to 

a para-nematic phase (PN)1, characterized by a higher energy state compared to the equilibrium 

chiral nematic phase. Thus, the para-nematic phase thermodynamically tends to relax by 

relieving the excess free energy2. Through this thermodynamically driven relaxation, unwound 

helices forming a para-nematic state are spontaneously self-reconstructed leading to a chiral 

ground state; the PN-N* transition is thus self-driven. The dynamics of self-reconstruction 

(relaxation) in biological chiral lyotropic liquid crystals (BCLLCs) is of particular interest for 

forming retarder films and cholesterol color filters3, plasmonic mesostructured materials4, 

stimuli-responsive materials design2,5-8, and processing of advanced materials9 such as 

biomimetic film formation10,11 replicating, for example, structural motifs of cortical bone and 

cornea12,13. Despite its importance, the prediction and quantification of the relaxation dynamics 

of BCLLCs have remained up to date non-trivial and challenging both experimentally and 

theoretically. 

The confinement geometry can potentially affect relaxation dynamics as it has a 

considerable impact on the relaxed configuration14-22.  The confinement geometry considered 

herein is a micron-sized cylindrical capillary for which the ground states of chiral mesogens 

have been extensively studied17,18,23. Given that the capillary diameter in our study is greater 

than the pitch length (i.e. 
D

p∞
= 6 and 

D

p∞
= 13 for BLG and CNC, respectively), the ground 

state of fibers macroscopic orientation eventually ends up into a concentric configuration in 

which the chiral helices are aligned along the cylinder diameters 17,19,24. This microstructure is 

of importance in biomimicry as it, for example, mimics the osteon architecture which is the 

essential part of compact bone13.  

Furthermore, viscoelastic properties, such as elastic constants and rotational viscosity, play 

significant roles in the relaxation dynamics of liquid crystals (LCs). Another importance of 

viscoelastic properties is their usages in LC rheology nematodynamics, and flow-processing of 

fibers and films1,25-31 such as biomimetic material design through coating10.  Yet, the estimation 

of these properties has been a long-lasting challenge in the area of mesogenic solutions32,33. In 

particular, these properties strongly depend on concentration regimes; dilute (c < ℓ-3), 

semidilute (ℓ-3 < c < d-1ℓ-2), and concentrated (c > d-1ℓ-2) where c, ℓ and d denote number 

density, length, and diameter of fibers, respectively32. The first two regimes have been partially 

understood whereas the last one, in which a liquid-crystalline phase emerges, has not been 
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adequately addressed, particularly for BCLLCs32-34. The difficulty in the estimation of 

viscoelastic properties of BCLLCs stems from the fact that standard techniques for viscoelastic 

properties measurements are based on applying a magnetic or electrical field to reorient 

mesogenic constituents35-39 and, in general, these techniques are not readily applicable for 

BCLLCs due to their low diamagnetic and dielectric susceptibilities39,40. In this case, the 

convenient alternative is flow-alignment1,41-43. To destabilize and unwind the chiral helices, 

rather than employing external fields such as magnetic or electric field, we thus rely on the 

surface tension-driven flow-induced orientation (FIO)25 created during capillary filling. 

In the present study, we execute a methodology that allows quantifying spatio-temporal 

relaxation of chiral biological LCs confined to cylindrical capillaries, which corresponds to the 

spontaneous PN-N* transition. In particular, we characterize the relaxation behavior of BLG 

and CNC. Surprisingly, we uncovered that these two similar bio-colloidal LCs relax through 

considerably different pathways. BLG slowly relaxes through consecutive steps; each of these 

steps corresponds to a temporary slow formation of cholesteric layers, followed by a rapid 

equilibration which forms a sequence of plateaus, yielding slow-fast mode. The second system 

investigated, CNC, relaxes faster and with a smoother and continuous behavior characterized 

by the absence of plateaus, yielding smooth mode. The section ‘Distinct relaxation dynamics’ 

elaborates these findings along with other different relaxation behaviors in detail. Thereafter, 

in the section ‘Mechanisms of BLG and CNC relaxations’, we characterize and explain the 

essential mechanisms behind the novel relaxation dynamics. In this regard, we use direct 

numerical simulations showing that we can quantitively predict these relaxation dynamics in 

excellent agreement with experimental observations. After establishing the relaxation 

mechanisms, we reveal the physics behind the explored mechanisms and generalize the 

physical rules governing the relaxation dynamics in the section ‘Understanding the physical 

origins of relaxation mechanisms’. In this section, our results reveal that the relaxation 

dynamics of BCLLCs confined to cylindrical capillaries generically obey the slow-fast or the 

smooth behaviors governed by a delicate interplay of chirality, viscoelasticity, and confinement 

geometry. Lastly, in section ‘Properties estimation and relaxation time controllers’, we propose 

a systematic framework to estimate fundamental viscoelastic properties without applying 

magnetic or electric fields, which is of particular interest for the BCLLCs. In addition to 

validating the estimated properties acquired by the proposed framework, the physical factors 

controlling the relaxation time are discussed.  
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6.4 Results 

6.4.1 Distinct relaxation dynamics 

Figure 6-1(a-l) show the sequences of microscopy images analyzed by PolScope46. The 

analysis allows extrapolating the average of fibers’ orientation over the thickness of capillary 

tube and the 2D fibers’ orientation is represented according to the colormap shown in Figure 

6-1(f); for example, the pink color which is ubiquitous in the POM images indicates that fibers 

are aligned parallel to the central axis (y-axis), Figure 6-1(a-l,o). Initially (right after filling 

capillaries), the fibrils located close to the center of the cylindrical capillary form a para-

nematic phase with a director field parallel to the central axis of the cylinder due to flow-

induced alignment during capillary filling (described by pink color). Shortly thereafter (within 

the first 20 minutes), dark zones emerge in the center of the capillaries and some cholesteric 

fingerprints are already visible near the walls.  

During equilibration, chiral fronts form and propagate from the wall inwards and gradually 

replace the dark areas, showing how the system is progressively equilibrated by the self-

reconstruction of unwound chiral helices, Figure 6-1(a-l),Supplementary Movies 1,2. The 

physical origin of the initial dark areas emerging from the para-nematic phase cannot be 

interpreted unequivocally since the absence of birefringence can correspond to different 

scenarios. In fact, the fibers’ orientation in the dark areas (i.e. capillary middle) can represent 

three different situations: (1) Fibers do not possess mesogenic correlation and the phase could 

be isotropic although the fibers’ concentration is a constant equal to the cholesteric bulk (i.e. 

the upper binodal miscibility boundary). (2)  Fibers are aligned normal to the plane and thus 

the phase is nematic; (3) The cholesteric helices are aligned normal to the plane and the light 

path, thus the phase could be already cholesteric. Determining the fibers’ configuration in the 

dark areas is addressed below.  

To rationalize the observations, we define the dimensionless normalized relaxation 

progress:R(t) =
q̄(t)

q∞
, where q̄(t) =

2π

p̄(t)
, q̄(t) and p̄(t)are the spatially-averaged chiral 

wavevector and pitch length, respectively. This quantity, R, provides insight into the amount 

of space occupied by the cholesteric phase at any given time in the system. The relaxation 

progress, R, ranges from 0 to 1; for R=0, there is no chiral nematic phase in the system, and 

when R=1, the chiral nematic phase fills the sample and the system reaches the ground state. 

To obtain q̄(t), each time-series POM snapshot is partitioned into approximate monodomains, 

and q̄(t) is then computed as the weighted average of local chiral wavevectors:q̄(t) = ∑
Aiqi

A
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where A, Aiand qi indicate the total area of the snapshot, area of the cholesteric zone and chiral 

wavevector for the i-th partition, respectively. Figure 6-1(m,n) show the time evolution of R 

for BLG and CNC, respectively. R starts with an initial value representing the chiral nematic 

layers that are near the bounding surface at the very beginning of the experiment. Eventually, 

R reaches unity, indicating the equilibration is complete all over the field of view and the 

concentric and monodomain configurations are formed in circular cross-sections and lateral 

planes, respectively; schematically shown in Figure 6-1(o). Note that the monodomain 

fingerprint gradually appearing from top and bottom toward the center in the POM images is 

due to the spatial average of concentric configuration progressively forming from the capillary 

wall towards the capillary center. In other words, the 2D fingerprint on the lateral plane 

provides insight into the 3D configuration exiting inside the capillary; see Figure 6-1(a-l,o). 

 

Figure 6-1. Slow-fast and smooth relaxation dynamics corresponding to BLG and CNC, 

respectively. (a-f) Time-series snapshots of BLG microscopy (POM) images. (g-l) Time-series 

snapshots of CNC microscopy (POM) images. The images shown in panels(a-l) were 

experimentally acquired using the LC PolScope device and different colors represent different 

director field orientations which are appreciated according to the colormap depicted as the inset 

in the panel (f). See Supplementary Note 1 for the detailed discussion on the mapping between 

fibers orientation and colormap. Note that the colormap shown as the inset in the panel (f) is 
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applicable for all the microscopy images studied in this work.  Over the relaxation time, 

cholesteric fingerprints progressively propagate into the unwound state (dark zone). Times 

elapsed from the beginning of relaxation are shown on top-left corners; min and hr stand for 

minutes and hours, respectively. (m) Experimental observation and numerical simulation on 

the normalized relaxation progress curve, R, for BLG. The labels B1 to B6 correspond to Figure 

6-2. (n) Experimental observation and numerical simulation on the normalized relaxation 

progress curve, R, for CNC. The labels C1 to C4 correspond to Figure 6-3. (o) The coordinate 

system used throughout this study along with a schematic illustration of a capillary tube 

indicating the ground state of fibers configuration in a circular cross-section in the xz-plane, 

known as concentric, and the averaged fibers configuration in a lateral plane in the xy-plane, 

known as chiral monodomain. The averaged fibers configuration on the lateral plane is 

representative of the colormap PolScop analysis shown in the panels (a-l). 

 

BLG and CNC are similar from various viewpoints; these BCLLCs are aqueous solutions 

of semi-rigid rod-like bio-colloidal LCs characterized by a long pitch length (p∞,BLG=43µm 

and p∞,CNC=20µm), high aspect ratio (ℓBLG=652nm and ℓCNC=325nm, DBLG=4nm, 

DCNC=4.6nm, (ℓ D⁄ )BLG=163, and (ℓ D⁄ )CNC=71), similar polydispersity, critical 

concentrations, and densities (Supplementary Note 2, Table 6-1)14,21,22,44,45. Lastly, as estimated 

in this study, BLG and CNC possess similar rotational viscosity coefficients, L1 Landau elastic 

constants, and coherence lengths (Table 6-1 and Table 6-2). Surprisingly, although BLG and 

CNC have multiple physical properties that are similar and are confined into an identical 

capillary tube, D=260μm, they manifest remarkably different relaxation according to these 

three criteria: 

 The first difference is the characteristic time required for the spontaneous PN-N* transition 

during which the fibers equilibrate from the unwound state (i.e. non-equilibrium para-nematic) 

to the chiral ground state, see Figure 6-1. BLG closely reaches the equilibrium state 4 days 

after capillary filling. In the time span of 4 to 7 days, relaxation has minor progress and defects 

may be released over this period; see Figure 6-1(a-f,m). The relaxation of CNC suspension 

only takes 1 day to reach equilibrium; see Figure 6-1(g-l,n). Hence, the relaxation time of BLG 

is nearly four times longer compared to CNC. It is important to notice that at the beginning of 

the relaxation process, when compared with BLG, CNC has more intact chiral helices near the 

walls; see Figure 6-1(b,h). This fact is also highlighted in Figure 6-1(m,n), where R, evolves 

from 0.6 to 1 as relaxation progresses for CNC, while it goes from 0.3 to 1 for BLG. Indeed, 

the higher initial relaxation progress is, the shorter time would be expected for achieving the 

relaxed state; thus, the higher initial relaxation progress of CNC, R=0.6, certainly plays role in 

shortening the relaxation time. To achieve a quantitative comparison between the two 
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relaxation behaviors, we compute the relaxation rates for the two systems. The relaxation 

progress of CNC evolves by 40% over 1 day for reaching the equilibrium point (R=1), while it 

evolves by 70% over 4 days for BLG and therefore the relaxation rates are 40% and 17.5% per 

day respectively confirming that CNC relaxation is more than two times faster compared to 

BLG. 

The second difference between these two systems involves the number of trapped defects at 

equilibrium. As shown in Figure 6-1(a-l), the ground state of BLG shows fewer defects 

compared to CNC. It has already been shown that, for a given pitch length, more defects emerge 

provided the geometric size increases47, here the geometric size is the diameter of the 

cylindrical capillary. Similarly, at a fixed capillary diameter D=260μm, the number of defects 

increases when the pitch length is shorter. For BLG, p∞,BLG = 43μm, and for CNC, p∞,CNC =

20μm, corresponding to zero and four defects respectively; see Figure 6-1(f,l). The ratio of 

geometric size to pitch length is thus an indicator for the number of generated defects; BLG 

relaxation gives rise to fewer defects compared to CNC suspension owing to 
D

p∞,BLG
= 6 and 

D

p∞,CNC
= 13. Another factor controlling the number of trapped defects is the relaxation time. 

Faster relaxation dynamics lead to more trapped defects as defects do not have time to be 

expelled. Thus, the CNC faster relaxation dynamic should also be taken to account as a 

promoter of trapped defects. Taken together, the number of defects is directly and inversely 

proportional to 
D

p∞
 and the relaxation time, respectively. Therefore, it is ideally expected that 

the defect-less ground state can be achieved as long as 
D

p∞
 and the relaxation time are sufficiently 

small and long, respectively. It should also be taken into  consideration that the defect-less 

structure is achieved on a defined region of interest  (260µm×260µm) for BLG as shown in 

Figure 6-1(a-f), Figure 6-2; however, it is impractical to reach the defect-less structure on a 

large domain (e.g. 600µm×260µm) even after equilibration, see Supplementary Note 3.  

Although the defect analysis discussed above was performed on the region of interest 

(260µm×260µm), Supplementary Note 3 demonstrates that the chosen system size is 

statistically large enough to extend the concluded results regarding the number of trapped 

defects to larger regions. As shown in Supplementary Figure 3, the number of defects trapped 

in the BLG system is less compared to CNC on a larger region (600µm×260µm) after 

equilibration (10 days for BLG and 3 days for CNC). Additionally, the defects existing in the 

capillary are mobile and thus can translate in and/or out the system investigated 
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(260µm×260µm); however, the results already discussed are always statistically valid; see 

Supplementary Movies 1,2, Supplementary Note 3.  

Finally, these two materials differ on how the speed of relaxation changes over time. As 

shown in Figure 6-1(m), BLG relaxes over consecutive steps consisting of four plateaus, which 

we described as slow-fast relaxation behavior. During each plateau, there is no discernible 

change in the total area of the striped zone, reflecting that cholesteric phase formation slows 

down considerably, as discussed below. However, in the CNC suspension, the relaxation is 

characterized by a smooth behavior, where no clear plateau can be detected, see Figure 6-1(n). 

The liquid crystal rotational viscosity is the resistance to rotations of the average 

macroscopic director orientation32,33. For this reason, it is expected that the longer relaxation 

time observed for BLG can be attributed to higher rotational viscosity of BLG. However, there 

has not yet been any report on rotational viscosities and relaxation trends of these two bio-

colloids, and the physical origins behind the different behaviors remain up to date unexplored. 

The solid lines shown in Figure 6-1(m,n) are the predictions obtained by direct numerical 

simulations of the time-dependent Q-tensor continuum model of cholesteric liquid crystals that 

describes the total free energy minimization.  In our work, the net free energy of the system is 

comprised of free energy functionals given by the well-established continuum theories of 

Landau-de Gennes (LdG) and Frank-Oseen-Mermin (FOM)25,32,48,49; see section ‘Direct 

numerical simulation’. As shown in Figure 6-1(m,n), the adopted theoretical approach predicts 

both the slow-fast and smooth relaxation dynamics for BLG and CNC, respectively. Hence, we 

rely on continuum liquid crystal theory to first explore the physics behind the observations and 

secondly to estimate viscoelastic properties, including rotational viscosity coefficient which 

allows us rationalizing the fast and slow relaxation behaviors of CNC and BLG, respectively.  

 

6.4.2 Mechanisms of BLG and CNC relaxations 

As shown in Figure 6-2, the theoretical and experimental results consistently show that 

cholesteric layers (i.e. the striped bands in POM images) are gradually formed from the top and 

bottom walls on the lateral plane. As can be seen in our results, the relaxation (the PN-N* 

transition) spontaneously takes place through the chiral front propagation; the cholesteric 

fingerprints radially propagate from the circular wall inward through the unwound para-

nematic medium until the concentric configuration is achieved. This configuration is expected 
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since the capillary diameter is larger than pitch length17,19, 
D

p∞
= 6 (Supplementary Note 4 and 

Movie 3).  

The mechanism of BLG relaxation generally consists of two phases (Supplementary Movies 

3, 4) that can be described as 

Phase (I): This phase takes place over a considerably short time span in the early relaxation. 

During Phase (I), all fibers, which are in the para-nematic state, lose their initial order 

parameter, Si=0.6
42, and then turn into a low-order-parameter para-nematic state (nearly 

isotropic), Sd, BLG ≈ 0.33 (Figure 6-2,Supplementary Movies 3,4).  

Phase (II): Right after rapid formation of the para-nematic medium with a low order 

parameter (i.e. Phase (I)), relaxation goes through Phase (II) in which a circular chiral front 

propagates and rewinds the fibers. As can be seen in Supplementary Movies 3,4, Phase (II) in 

BLG relaxation follows a time-periodic mechanism in which one half-pitch cholesteric layer is 

formed.  The formation of each half-pitch consists of four stages; these stages are discussed in 

Supplementary Note 5 . 



178 

 

 

Figure 6-2. Mechanism of slow-fast dynamic in BLG relaxation. (a) The colormap 

indicating the fibers orientation in the experimental POM panels captured by the LC PolScope 

device (see Supplementary Note 1 for further information), the blue-to-red spectrum showing 

the order parameter, S, computed by direct numerical simulation (see Supplementary Note 6 

for further information), and the coordinate system. (b) Initialization of director field in direct 

numerical simulation, representing the initial configuration of fibers. (c, e, g, i, k) The 

experimental POM panels corresponding to the B2 to B6 stages shown in Figure 6-1(m). (d, f, 

h, j, l) The schematic fibers orientation and their order parameter computed by direct numerical 

simulation in the lateral plane for the B2 to B6 stages shown in Figure 6-1(m). . General Note: 

the label numbers from B1 through B6 are marked in Figure 6-1(m). 

The slow-fast relaxation observed for BLG consists of 4 sigmoid-like steps, and each of 

which ideally corresponds to the formation of a circular half-pitch, 
p∞

2
. In particular, the label 

numbers B2, B3, B4, and B5 in Figure 6-1(m) and Figure 6-2correspond to the circular formation 

of 
3p∞

2
, 
4p∞

2
, 
5p∞

2
 and 

6p∞

2
, respectively (see more details in Supplementary Note 4). This 

behavior is confirmed by simulations and is consistent with the experimental analysis 

concerning both fibers configuration and trapped defects; however, the simulation prediction 

of cholesteric layers formation is slightly overestimated. For this reason, the theoretical 

prediction of relaxation progress, R, is slightly higher than the experimental data. 
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Figure 6-3 illustrates representative images of the equilibration sequence for CNC fibers, 

showing that this system relaxes through similar mechanisms, achieving concentric 

configuration as expected from previous works17,19, see Supplementary Note 4. During Phase 

(I), the order parameter of CNC fibers that are in the para-nematic medium is dramatically 

dropped to Sd, CNC ≈ 0 at the beginning of relaxation despite their initial order parameter 

Si=0.6
42 and as a consequence, isotropic phase emerges from the para-nematic medium, 

followed by Phase (II), where the chiral front propagates into an isotropic medium 

(Supplementary Movie 5).  

 

Figure 6-3. Mechanism of smooth dynamic in CNC relaxation. (a) The colormap indicating 

the fiber orientation in the experimental POM panels captured by the LC PolScope device (see 

Supplementary Note 1 for further information), the blue-to-red spectrum showing the order 

parameter, S, computed by direct numerical simulation (see Supplementary Note 6 for further 

information), and the coordinate system. (b) Initialization of director field in direct numerical 

simulation, representing the initial configuration of fibers. (c, e, g) The experimental POM 

panels corresponding to the C2 to C4 stages shown in Figure 6-1(n). (d, f, h) The schematic 

fibers orientation and their order parameter computed by direct numerical simulation in the 

lateral plane for the C2 to C4 stages shown in Figure 6-1(n). General Note: the label numbers 

from C1 through C4 are marked in Figure 6-1(n). 

According to the LdG theory, the critical order parameter at the order-disorder phase 

transition can be considered as Sc=0.25
32, which means that, if S > Sc fibers possess 

orientational ordering, otherwise fibers lose their correlations and the phase becomes isotropic, 

see Supplementary Note 7. The simulation results reveal that, during the early relaxation, order 

parameters of BLG and CNC fibers in the para-nematic mediums have dropped to Sd, BLG ≈

0.33 and Sd, CNC ≈ 0, respectively. Hence, at the beginning of the relaxation, the fibers in the 
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para-nematic state in the middle of the capillary decrease their order parameter during Phase 

(I) and the solutions become weakly anisotropic and nearly isotropic for BLG and CNC, 

respectively. These theoretical predictions are in excellent agreement with POM images 

because the dark zone in POM images of BLG is slightly blended with a faint reddish color 

indicating that the fibers therein possess an extremely week orientational ordering and are 

aligned parallel to the central axis of the capillary, see Figure 6-1(a-f) and Figure 6-2(c,e,g,i,k). 

On the other hand, the middle of POM images of CNC is almost dark without any other color 

denoting that the fibers therein are in the completely isotropic phase, see Figure 6-1(g-l) and 

Figure 6-3(c,e,g). Consequently, this supports the assumption we made in the experimental 

analysis on the dark zones observed in the microscopy images; the dark zones should be 

considered isotropic areas or para-nematic with extremely low order parameter, and not 

nematic nor cholesteric with axes parallel to the light path. 

 

6.4.3 Understanding the physical origins of relaxation mechanisms 

As above-mentioned, it is found that the relaxation mechanisms can generally be described 

by two consecutive phases. This section reveals the physics behind the explored mechanisms 

in terms of the free-energy landscape. 

According to Equations(6-7 through 6-9), two factors mainly govern relaxation dynamics; 

pitch length and coherence length. For a given cylindrical capillary, the impacts of these factors 

are shown in Figure 6-4(a,b). The simulations suggest that smooth relaxation can change to 

slow-fast relaxation and vice versa. For instance, for a given pitch length, smooth relaxation 

gradually switches to (emerges from) slow-fast relaxation, upon decreasing (increasing) the 

coherence length.  
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Figure 6-4. The generic mechanism of relaxation dynamics. (a, b) Parametric analyses of 

the normalized relaxation progress, R, showing that smooth relaxation dynamics arise, 

provided coherence length is greater than a threshold. η stands for the rotational viscosity 

coefficient. (c, d) The interplay between homogeneous and elastic free energies, and the 

resulting net free energy. The grey-hatched zones indicate the period over which the order 

parameter of the para-nematic phase is dropped, Phase (I), and the remaining white-hatched 

zones correspond to front propagation, Phase (II).  During the former and the latter, as can be 

appreciated by net free energy behavior, elastic and homogeneous contributions mainly control 

net free energy, respectively. Note that all graphs exhibit the spatial-averaged quantities and 

the panels (c) and (d) correspond to the BLG and CNC relaxations, respectively. (e-h) POM 

images showing no significant change in the cholesteric zone during each of the four BLG 

plateaus marked in Figure 6-1(m). These POM images were experimentally acquired using the 

LC PolScope device. Scale bar is p∞=43µm. 

 

In liquid-crystalline phases, the coherence length ξ describes the distance over which long-

range orientational order varies49 and is expected to be in the nano-meter range for small-sized 

rod-shaped mesogens such as 5CB (ℓ5CB=1.8nmand ξ5CB ≈ 7nm)50. In particular, ξ is directly 

correlated with length of rod-shaped mesogen51, and ξ is thus expected to be in the micro-meter 

range for long fibrous mesogens since their contour lengths are two orders of magnitude longer 

compared to small-sized mesogens (e.g. ℓBLG=652nmand ℓCNC=325nm). As illustrated in 

Figure 6-4(a,b), the parametric analyses shed light on the fact that the observed relaxation 

dynamics are induced for a micro-meter range of coherence length defined in Equation(6-2). 
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The coherence lengths that best fit the experimental data of BLG and CNC shown in Figure 

6-1 (m,n) are: ξBLG = 2.7μm and ξ
CNC

= 1.75μm, respectively.  

Before proceeding in elucidating the mechanism of cholesteric layers formation, it is 

important to quantify the impact of order parameter reduction on the free energy contributions. 

The homogeneous and gradient elastic free energy contributions to the net free energy are  

given  by the LdG and FOM theories are16,25,52-55: 

fnet = fh + fg (6 − 1) 

The homogeneous free energyfh decreases when the order parameter increases from a low 

to the equilibrium value, therefore, this contribution promotes orientational ordering. The 

gradient elastic free energy fg is the energy cost of orientational configuration and is minimum 

when the ground state is achieved. The decreasing order parameter results in decreasing fg 

since  Equation(6-9) shows that there is a factor of S in all the terms of fg (see Supplementary 

Note 8 for more discussion about the impact of order parameter reduction on the free energy 

contributions). In partial summary, the order parameter reduction increases the homogeneous 

contribution and decreases the gradient elastic contribution. 

As mentioned earlier, the mechanisms behind the relaxation dynamics are described by two 

consecutive phases as follows:  

Phase (I): early relaxation depicted by the grey-hatched zones in Figure 6-4(c,d). During 

this short period, fibers in the para-nematic medium decrease their order parameter. This 

unexpected behavior can be explained by analyzing the free energy contributions. The ground 

state is inherently chiral nematic, thus the para-nematic alignment, which represents unwound 

chiral helices, gives rise to an excess elastic free energy and, in consequence, rises the net free 

energy immediately before relaxation starts; see t=0 in Figure 6-4(c,d). Because the elastic free 

energy is weighted by the coherence length squared and the para-nematic alignment is 

unfavorable owing to the concentric ground state, the excess elastic energy is intensified by 

increasing of coherence length and/or decreasing of pitch length; see Supplementary Notes 8 

for the detailed discussion.  

To reduce the total excess energy imposed by the initial para-nematic alignment, fibers 

existing in the para-nematic phase decrease their order parameter to decrease the dominant 

gradient elastic free energy, although an order parameter reduction is energetically unfavorable 

for the less costly homogeneous contribution; see Figure 6-4(c,d). The order parameter of the 
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para-nematic medium thus drops to a low value, Sd, shortly after the relaxation starts. 

Therefore, the more excess elastic energy, the more the order parameter of the para-nematic 

medium should drop. Taken altogether, the pitch length and coherence length are directly and 

inversely proportional to the order parameter of the para-nematic medium, Sd, respectively 

(Supplementary Notes 8,9). 

Since Sd is either close to or lower than the order parameter at the phase transition, Sc=0.25, 

a dark zone emerges and persists in the POM images while the relaxation continues; for 

example,  Figure 6-1(a-b,g-h) shows that Phase (I) is completed during the first 15-20 minutes 

for both BLG and CNC.  When the emergence of dark zones in the time-series POM images is 

completed, Phase (I) terminates. Also, during the early relaxation, i.e. Phase (I), the order 

parameter reduction largely affects the gradient elastic contributions compared to 

homogeneous contribution; hence order parameter reduction results in reducing the net free 

energy, see Figure 6-4(c,d). 

Phase (II): front propagation illustrated in Figure 6-4(c,d). As the front propagates inward 

through the para-nematic medium with the order parameter of Sd, the dark zone progressively 

shrinks, see Figure 6-1(a-l),Figure 6-2,Figure 6-3,Figure 6-4(e-h).Sd, which depends on both 

the pitch length and the coherence length, is a key factor to determine whether relaxation 

dynamics become slow-fast or smooth. Numerical simulation supported by experimental 

observations shows that if Sd ≈ 0, the para-nematic phase becomes essentially isotropic and 

the smooth relaxation takes place as discussed for CNC relaxation. As Sd gradually increases, 

the plateaus are more pronounced. Eventually, relaxation ends up with slow-fast mode in cases 

that Sd ≈ 0.3 − 0.4like such as BLG relaxation having Sd, BLG = 0.33 (Supplementary Note 9).  

As can be seen in Figure 6-4(e-h), during the plateaus, there is an insignificant change in the 

formed cholesteric layers, which slows down the relaxation. 

Because, as already explained, Sd directly and inversely depends on the pitch length and 

coherence length, we conclude that a decrease (an increase) in the pitch length and/or increase 

(decrease) of the coherence length drives the relaxation toward smooth (slow-fast) dynamics, 

see Supplementary Figure 12. Finally, regardless of the Sd value, Phase (II) ends by reaching 

the self-selected ground state of a concentric due to 
D

p∞
> 1, which is in agreement with 

previous studies17,19.  
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In addition to the coherence length and pitch length, geometric confinement is expected to 

have a significant impact on relaxation(Supplementary Note 10). This effect is beyond the 

scope of this work, which is based on a single diameter capillary. 

 

6.4.4 Properties estimation and relaxation time controllers 

The quantitative agreement between experimental observations and theoretical predictions 

(Figure 6-1(m,n)) provides a way to obtain quantitative estimates of the rotational viscosity 

coefficient η and coherence length ξ. Knowing the coherence length, Equation(6-2)25,49,53,56-60  

ξ=√
L1
ckBT

 (6 − 2) 

where kB and T stand for Boltzmann’s constant, and temperature, it is then possible to calculate 

the elastic constant L1(Supplementary Note 11). 

Table 6-1. BLG and CNC properties obtained by the experiment and/or simulation. See 

Supplementary Note 2 for further information on the properties.  

 wf(%)† ρ
f
(g.ml-1)† ℓ(nm)† d(nm)† Se ξ(μm) η(P) L1(N) 

BLG 2.8 1.3 652±400 3.75±0.8 0.66 2.70 
1.1
× 106 

7.8
× 10−11 

CNC 2.7 1.5 325±168 4.5±1.0 0.61 1.75 
5.6
× 105 

4.2
× 10−11 

Table 6-1 shows that the equilibrium order parameter computed by numerical simulation is 

consistent with the results of the analytical equation formulated in previous theoretical 

studies25,49. The elastic constantL1, which is related to Frank’s elastic constants52, is in the range 

used in other studies24,61-63. To the best of authors’ knowledge, there has not been any report in 

the literature concerning rotational viscosity coefficients of BCLLCs. There, however, exists a 

few studies where rotational viscosity coefficients have experimentally been measured for large 

molecular-weight LCs, reporting 2.8×105P and 9.9×105P for PBLG and mesogenic 

polyesters, respectively35,36. As justified in reference36, in comparison to thermotropic LCs, 

BCLLCs possess a large rotational viscosity coefficient because the relaxation time of 

thermotropic LCs is in range of milliseconds while BCLLCs ranges from hours to days. 

Having rotational viscosity coefficients of BLG and CNC estimates, we can answer whether 

lower rotational viscosity of CNC is the reason behind its fast relaxation dynamic. The 

rotational viscosity γ   is 25,32 
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γ = η(1 − S2)2 (6 − 3) 

and increases with decreasing S. The results shown in Table 6-2 confirm that the rotational 

viscosity of BLG is larger than that of CNC throughout the relaxation in the order of 
γCNC

γBLG
≈

0.57 − 0.64. Therefore, lower rotational viscosity of CNC speeds the relaxation.  

Table 6-2. Order parameter and rotational viscosity of para-nematic mediums.  ‡ signifies the 

local minima, see Supplementary Note 5 and Movies 4, 6. 
 

Phase (I) Phase (II) Equilibrium 

BLG 

Sd 0.33 0.23‡ 0.33 0.66 

γ(P)

× 10−5 
8.73 9.87‡ 8.73 3.5 

CNC 

Sd 0 0 0.61 

γ(P)
× 10−5 

5.6 5.6 2.2 

The free-energy driving force also contributes to the relaxation kinetics as the phase ordering 

rate is (see section ‘Direct numerical simulation’ and Equation(6-5)) 

ordering rate =
free energy driving force

rotational viscosity
 (6 − 4) 

The difference between initial and equilibrium net free energy is representative of the free-

energy driving force, ΔF. Based on Figure 6-4(c,d), we conclude that the free-energy driving 

force for relaxation of CNC is also larger than that of BLG, 
ΔFCNC

ΔFBLG
= 1.28. Consequently, CNC 

relaxation is faster because of two synergetic effects; (1) lower rotational viscosity and (2) 

higher free-energy driving force.  

 

6.5 Discussion 

We integrated theoretical and experimental approaches to elucidate the relaxation dynamics 

(i.e. the spontaneous PN-N* transition) of cylindrically confined BCLLCs with planar 

anchoring. The analyses of the relaxation dynamics of BLG and CNC reveal that, despite the 

noticeable similarities between these two biological mesogens, their relaxation behaviors differ 

considerably. Specifically, BLG slowly relaxes through a slow-fast dynamic while CNC 

relaxation is fast with a smooth dynamic, Figure 6-1. Given the success of liquid-crystal 

continuum theory in the prediction of relaxation dynamics, we employed standard models to 

rationalize the mechanisms of relaxation in cylindrical confinement governed by a spontaneous 

interplay of chirality and viscoelasticity. The following two points should be taken into account 
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regarding the modeling and simulation implemented in this study. First, the results presented 

here are based on the strong planar anchoring supported by experimental observations.  

Previous studies64-66 have shown that the effect of anchoring can be significant. Regarding our 

study, we also anticipate that different anchoring may affect relaxation dynamics; however, it 

requires future studies. Second, the hydrodynamics is reasonably neglected from the modeling 

(see section ‘Direct numerical simulation’). This reasonable simplifying assumption leads two 

deviations in the simulation results from experimental observations; (1) simulation predicts 

that the chiral fronts almost evenly propagate inward while the POM images show that the front 

propagation is slightly uneven, see Figure 6-2 and Figure 6-3. For this reason, the simulations 

can overestimate or underestimate R over the time evolution, see Figure 6-1(m,n). (2) The 

defect motion cannot be fully tracked since the weak orientation-induced backflow is not 

considered. However, this insignificantly affects R. 

The relaxation generally takes place through two phases; see Figure 6-2 and Figure 6-3. 

Phase (I); this phase describes the early relaxation. The para-nematic alignment existing at the 

beginning of relaxation leads to increase of the elastic free energy fg as the system is away from 

the equilibrium; see Figure 6-4(c,d). The excess energy of fg is then relieved (decreased) to 

some extent as the order parameter of the unwound medium decreases to a low value, Sd, 

Supplementary Note8. Even though the order parameter reduction also increases the 

homogenous contribution, fh, the net free energy, fnet, decreases because fnet is significantly 

affected by fg compared to fh during Phase (I), see Figure 6-4(c,d). The dark zones emerging in 

the middle of the POM images are thus attributed to the low value of Sd. Sdis directly and 

inversely affected by the pitch length and the coherence length, respectively (Supplementary 

Notes 8,9). Phase (II); during this phase, the chiral front propagates through the low-order-

parameter medium. As the front propagates, the cholesteric layers are formed and their order 

parameter evolves from a low value, Sd, into the equilibrium valueSe(Supplementary Movies 

4,5). As can be seen in Figure 6-4(c,d), during Phase (II), fh dominates the net free energy; for 

this reason and the fact that fh decreases upon ordering, cholesteric layers formation leads to 

further decrease of net free energy. Besides, we found that the type of relaxation dynamics can 

be determined by the value of Sd; the propagation through the significantly low-order-

parameter para-nematic medium (i.e. the isotropic medium), Sd ≈ 0, results in a smooth 

relaxation dynamic, and higher values of  Sd lead to slow-fast dynamics (Supplementary Notes 

8,9).   
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Lastly, we proposed a systematic framework to estimate elastic constants and rotational 

viscosity.  Besides the reasonable estimations shown in Table 6-1 and Table 6-2, we showed 

that two factors control the relaxation time: rotational viscosity and free-energy driving force. 

Therefore, our study introduces a new general methodology where the experimental mapping 

of cholesteric pitch evolution over time, benchmarked by numerical simulations, allows 

recovering fundamental properties of the filamentous chiral bio-colloid under investigation, 

some of which are notably difficult to obtain via alternative methods. 

 

6.6 Methods 

6.6.1 Preparation of BLG cholesteric bulk 

Amyloid fibrils were prepared by heating a pH 2, 2 wt% β-lactoglobulin solution at 90° for 

5 hours. Mature amyloids were shortened and homogenized using an immersion mixer for one 

minute. The amyloid solution was purified with dialysis against pH 2 milliQ for 5 days using 

semipermeable membranes (MWCO 100kDa) and then up-concentrated to reach the isotropic 

nematic coexistence regime with reverse osmosis against 5 wt % 35KDa PEG solution using 

semipermeable membranes (MWCO 6-8kDa). The solution was equilibrated for several weeks 

until complete phase separation was reached (see Supplementary Note 12). 

 

6.6.2 Preparation of CNC cholesteric bulk 

Cellulose nanocrystal solution was prepared by mixing 2.5 wt% freeze-dried CNC 

(FPInnovations) in milliQ water. To disperse CNC, the solution was ultra-sonicated for 2 

minutes and centrifuged for 20 minutes at 12 000 rcf. The supernatant was collected, and the 

solution equilibrated for several days until a macroscopic phase separation was achieved (see 

Supplementary Note 12). 

 

6.6.3 Preparation of BLG and CNC samples for optical microscopy 

The cylindrical capillaries (VitroTubes, Vitrocom) of inner diameter 260 µm were filled 

with bulk cholesteric phase (BLG:2.8 wt% and CNC:2.7 wt%) through capillary suction, by 

immersion of the capillaries into the anisotropic solutions (see Supplementary Note 12). The 

capillary tubes were immediately sealed with UV glues to avoid evaporation. 
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6.6.4 PolScope 

The relaxation dynamic was recorded using an optical microscope combined with an LC-

PolScope universal compensator, allowing the quantitative analysis of birefringence46. In 

particular, after focusing on a region of interest in the middle of the cuvettes, time-series images 

with a specific time step were collected and analyzed with PolScope. The device is used for 

birefringence imaging to analyze with high sensitivity and high resolution the spatial and 

temporal variations of the phase delay in anisotropic materials and to provide pixel-by-pixel 

information of local optical anisotropy together with a mapping of the slow axis orientation of 

birefringence regions. 

 

6.6.5 Direct numerical simulation 

The capillaries are exclusively filled with the fully cholesteric phase existing at the constant 

equilibrium concentration and then immediately sealed (see the section ‘Preparation of BLG 

and CNC samples for optical microscopy’); hence, the concentration of the system remains a 

constant equal to the upper binodal concentration throughout the relaxation time. Moreover, 

during the relaxation, it is impossible that the system spontaneously splits into two distinct 

concentrations, meaning that the low-order-parameter phase (dark zone) and high-order-

parameter phase (fingerprint zones) are depleted and concentrated, respectively. This can be 

proven by proof by contradiction; based on the mass conservation law, if the dark zone becomes 

fiber-lean then the fingerprint zones become more fiber-rich. Under this condition, the 

fingerprint zones sharply approach the gel phase. However, time-series POM images do not 

point to such condition (see Supplementary Movies 1,2). Altogether, the relaxation dynamics 

presented in this study takes place in a thermodynamically closed system at constant 

concentration field without appreciable variation. Owing to the insignificant mass exchange, 

the mass continuity equation is reasonably neglected. 

The essential physics which is necessary to be taken to account is the spatio-temporal 

dynamics of fibers orientation. The liquid-crystalline ordering is described by the second-order 

symmetric traceless tensor, 𝐐(𝐱, t), whose eigenvalues and eigenvectors correspond to the 

order parameters and the macroscopic orientation of mesogens, respectively. The spatio-

temporal orientational relaxation follows the time-dependent Ginzburg-Landau (TDGL) model 

whereby 𝐐(𝐱, t)is thermodynamically allowed to evolve toward equilibrium25.  



189 

 

∂𝐐

∂t⏟
ordering rate

= −
1

γ
(
δFnet
δ𝐐

)

[s]

⏟      
driving force

 (6 − 5) 

∂𝐐

∂t̃
= −

1

(1 −
3Tr(𝐐2)

2
)
2 (

δF̃net
δ𝐐

)

[s]

 (6 − 6) 

Equation(6-6) is the dimensionless form of Equation(6-5). The actual time, t, and the 

dimensionless time, t̃,  are related by t =
t̃ηξ2

L1
. [s] and Tr indicate symmetric traceless and trace 

tensorial operations, respectively. δF̃net/δ𝐐 shows the functional derivative of total 

dimensionless free energy, F̃net, with respect to Q-tensor. F̃netis comprised of two 

contributions; homogeneous effect of phase ordering, f̃h, described by the LdG theory and the 

gradient effect of elasticity, f̃g, given by the FOM theory25,32,49:  

F̃net = ∫(f̃h + f̃g)
Ṽ

dṼ (6 − 7) 

f̃h =
1

2
(1-

U

3
)Tr(𝐐2) −

1

3
UTr(𝐐3) +

1

4
U(Tr(𝐐2))

2
 (6 − 8) 

f̃g =
1

2
(

ξ

h0
)
2

[[∇̃ × 𝐐 + 4π (
h0
p∞

)𝐐]
2

+ α[∇̃ ⋅ 𝐐]
2
] (6 − 9) 

U denotes the nematic potential parameterized as U =
3c

c∗
 in which the asterisk shows the 

order-disorder phase transition. h0 is an arbitrary macroscopic length scale which is 

representative of sample size. αis the anisotropic ratio defined as α =
L2

L1
 in which Li are elastic 

constants52. In our present simulations, we found that the contribution of [∇̃ ⋅ 𝐐]
2
 was not 

significant. 

As can readily be appreciated through the POM images, both BLG and CNC have strong 

planar anchoring with the inner capillary surface. To capture this state, the governing equations 

are subjected to  

𝐐(𝐱, t)|surface =

[
 
 
 
 
 
−1

3
0 0

0
2

3
0

0 0
−1

3 ]
 
 
 
 
 

 (6 − 10) 
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Equation(6-10) indicates that fibers located on the bounding surface are aligned parallel to 

the central axis of the capillary with strong anchoring, S=1. Furthermore, as shown in Figure 

6-2(b) and Figure 6-3(b), fibers existing in the bulk are initially aligned along the central axis 

of the capillary; thus, the initial condition is set as 

𝐐(𝐱, t=0)|bulk = Si

[
 
 
 
 
 
−1

3
0 0

0
2

3
0

0 0
−1

3 ]
 
 
 
 
 

 (6 − 11) 

where Si, as mentioned earlier, stands for initial order parameter and equals to 0.642. Readers 

are referred to Supplementary Note 13 for a detailed discussion on the numerical simulation 

methods. 

Lastly, the relaxation progress, R(t), can also be parameterized in terms of Q-tensor. 

R(t) =
∫
𝐐: ∇ × 𝐐
𝐐:𝐐 dA

A

(∫
𝐐: ∇ × 𝐐
𝐐:𝐐 dA

A
)
e

 (6 − 12) 

where subscript e indicates equilibrium, and integration is over the lateral plane in which 

the striped pattern (twisting monodomain) is formed, see Figure 6-1(o) and Supplementary 

Note 14. 

In the modeling used in this study based on Equations(6-5 through 6-11), there is no external 

stress, see Supplementary Note 15. Furthermore, hydrodynamics is reasonably negligible 

because of three reasons. First, as already explained, the orientational relaxation takes place in 

the closed system in which; there does not exist any external velocity driving force such as 

pressure difference, gravity (the filled capillaries were kept horizontally throughout the 

experiments), moving surface, and so on. Second, as above-mentioned, there is no appreciable 

concentration gradient in the system; hence, the hydrodynamics induced by mass transport 

becomes negligible. Third, the self-generated transient bulk convection is insignificant owing 

to following reasons; the viscosity of cholesteric permeation flow is extremely large31, the 

rotational viscosity of BLG and CNC is also considerably large (see Table 6-2), the essentially 

vanishing Ericksen number (flow-to-elasticity ratio)67, the solid-like behavior along the 

cholesteric helix axis68, and the a posteriori validation and high fidelity of the predictions with 

experimental data. 
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6.8 Supporting Information (Chapter 6) 

Supplementary Figure 1. 

 

Supplementary Figure 1 | Mapping between microscopy (POM) image and the colormap. 

(a) Representative microscopy (POM) image, and (b) the colormap. 
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Supplementary Figure 2. 

 

Supplementary Figure 2 | Amyloid and cellulose length distributions. The length 

distributions of particles extracted from AFM measurements are plotted as histograms and 

fitted as log-normal distributions (black lines) for BLG amyloid fibrils and CNC in (a) and (b), 

respectively. The average contour length results 652±400 nm and 325±168 nm for BLG and 

CNC, respectively. The average heights of the fibrils (corresponding to the diameter of the 

rods) resulted 3.75±0.8 and 4.5±1.0 nm for BLG and CNC, respectively.
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Supplementary Figure 3. 

 

Supplementary Figure 3 | Defects Analysis. The PolScope images depicting the movement 

of defects for (a-d) β-lactoglobulin amyloid fibrils (BLG) and (e-h) cellulose nanocrystals 

(CNC). In the panels (a-h), the circles show defects, and each defect is shown with a unique 

color. (i) The representative POM images of BLG and (j) PolScope colormap representation 

for CNC. In the panels (i, j), the dashed circles show defects; hence, there are 5 defects for 

BLG and 11 defects for CNC on the larger region (600µm×260µm) after equilibration (10 days 

for BLG and 3 days for CNC). 
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Supplementary Figure 4. 

 

Supplementary Figure 4 | Circular chiral front propagation and fibers configuration 

along the capillary radius. (a, c) Sequential snapshots of a circular cross-section through the 

capillary tube demonstrating y-component of the director filed, ny. Yellow and blue thus exhibit 

where fibers are parallel and perpendicular to the central axis of the cylinder, respectively. (b, 

d) Fibers orientation along the radius of circular cross-sections depicted in the panels (a, c), 

respectively. General Note: (a, b) and (c, d) correspond to BLG and CNC, respectively.
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Supplementary Figure 5. 

 

Supplementary Figure 5 | First essential stage in BLG front propagation, i.e. Phase(II). 

(a, b) Fibers configuration along the radius of the capillary cylinder at two different angles of 

view and color shows z-component of the director field, i.e. fiber configuration. (c) 

Quantitative representation of z-component, bottom axis, and order parameter, top axis, along 

the helix depicted in panel (b).  (d) Order parameter, top axis, and net free energy, bottom axis, 

along the helix depicted in (b). Note: y-axes in the panels (c, d) are the length of the helix 

shown in the panel (b).
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Supplementary Figure 6. 

 

Supplementary Figure 6 | Second essential stage in BLG front propagation, i.e. Phase(II). 

(a, b) Fibers configuration along the radius of the capillary cylinder at two different angles of 

view and color shows z-component of the director field, i.e. fiber configuration. (c) 

Quantitative representation of z-component, bottom axis, and order parameter, top axis, along 

the helix depicted in panel (b).  (d) Order parameter, top axis, and net free energy, bottom axis, 

along the helix depicted in (b). Note: y-axes in the panels (c, d) are the length of the helix 

shown in the panel (b).
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Supplementary Figure 7. 

 

Supplementary Figure 7 | Third essential stage in BLG front propagation, i.e. Phase(II). 

(a, b) Fibers configuration along the radius of the capillary cylinder at two different angles of 

view and color shows z-component of the director field, i.e. fiber configuration. (c) 

Quantitative representation of z-component, bottom axis, and order parameter, top axis, along 

the helix depicted in panel (b).  (d) Order parameter, top axis, and net free energy, bottom axis, 

along the helix depicted in (b). Note: y-axes in the panels (c, d) are the length of the helix 

shown in the panel (b).
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Supplementary Figure 8. 

 

Supplementary Figure 8 | Fourth essential stage in BLG front propagation, i.e. Phase(II). 

(a, b) Fibers configuration along the radius of the capillary cylinder at two different angles of 

view and color shows z-component of the director field, i.e. fiber configuration. (c) 

Quantitative representation of z-component, bottom axis, and order parameter, top axis, along 

the helix depicted in panel (b).  (d) Order parameter, top axis, and net free energy, bottom axis, 

along the helix depicted in (b). Note: y-axes in the panels (c, d) are the length of the helix 

shown in the panel (b).
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Supplementary Figure 9. 

 

Supplementary Figure 9 | Representative numerical simulation results. (a) Fibers 

orientation is schematically shown by the director filed and their corresponding order 

parameter is represented by the blue-to-red spectrum. (b)  The blue-to-red spectrum.
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Supplementary Figure 10. 

 

Supplementary Figure 10 | A typical order parameter behavior. The order parameter 

abruptly drops to zero if the concentration is less than a critical value.
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Supplementary Figure 11. 

 

Supplementary Figure 11 | A typical homogenous free energy behavior. Homogenous free 

energy variation with respect to order parameter at various nematic potentials, U =
3c

c∗
.
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Supplementary Figure 12. 

 

Supplementary Figure 12 | General mechanism governing relaxation dynamics. 

Summarizing scheme of the impact of coherence length and pitch length on the order parameter 

of the para-nematic, Sd, and the resulting relaxation dynamics. Upward and downward arrows 

qualitatively indicate increase and decrease, respectively.
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Supplementary Figure 13. 

 

Supplementary Figure 13 | Schematic of an unconfined planar geometry. The bottom line 

indicates the substrate and the top dash line is the upper boundary condition.
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Supplementary Figure 14. 

 

Supplementary Figure 14 | Relaxation dynamics in an unconfined planar geometry. The 

normalized relaxation progress, R, has the first-order dynamic in an unconfined planar 

geometry.
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Supplementary Figure 15. 

 

Collecting the time-series 

POM images  

Simulation of the relaxation 

dynamic 

Computing R by using the 

partitioned POM images 

𝑅(𝑡) = 𝑞ത(𝑡) 𝑞∞⁄  

𝑞ത(𝑡) =∑ 𝐴𝑖𝑞𝑖
𝑖

𝐴⁄  

Computing R by using 

Equation (6-12) 

Finding the best curve 

fitting the experimental 

and theoretical Rs 

Estimating coherence 

length, ξ 

Estimating rotational 

viscosity coefficient, η 

Estimating L1 by using 

Equation (6-2) 

Note: c and T come from 

experiment 

Estimating rotational 

viscosity by using 

Equation (6-3) 

Note: S comes from 

simulation 

Supplementary Figure 15 | The systematic framework of estimating viscoelastic properties.  
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Supplementary Figure 16. 

 

Supplementary Figure 16 | Photograph of phase-separated BLG or CNC dispersion 

sandwiched between crossed polarizers. From the top to the bottom, phases are Air, Isotropic 

and Cholesteric, respectively. Note BLG and CNC exactly look like each other in the shown 

container.
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Supplementary Figure 17. 

 

Supplementary Figure 17 | Summary of the geometries used in the present study. (a) The 

list of Figures and Movies, and the corresponding dimensionalities. (b) Representative 3D 

simulation box. (c)  Representative 2D simulation box.
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Supplementary Figure 18. 

 

Supplementary Figure 18 | Representative simulation results for BLG. A representative 

snapshot depicting the BLG relaxation and the corresponding R, q, S, and director field (n).
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Supplementary Figure 19. 

 

Supplementary Figure 19 | Representative simulation results for CNC.  A representative 

snapshot computed for the CNC relaxation and the corresponding R, q, S, and director field 

(n).
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Supplementary Figure 20. 

 

Supplementary Figure 20 | The snapshot visualized for the Supplementary Figure 19. 
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Supplementary Table 1. 

Supplementary Table 1. Impact of parameters on the elastic free energy. Upward and 

downward arrows qualitatively indicate increase and decrease, respectively.  

p∞ ↓ and if the phase is para-nematic (e.g. in our simulation, the 

initial phase is para-nematic specified by 𝐧 = [0 1 0]) 
f̃g ↑ 

S ↓ f̃g ↓ 

ξ ↓ f̃g ↓ 
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Supplementary Table 2. 

Supplementary Table 2. Parameters used in the present study to capture the dynamics of 

orientational relaxation. 

Parameter Value 

U 4.5 

α 19 
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Supplementary Note 1.  

Figure 6-1 (a-l), Figure 6-2(c, e, g, i, k), Figure 6-3(c, e, g), and Figure 6-4(e-h) depict 

microscopy (POM) images captured experimentally. The fibers orientation at each point of the 

POM image can be appreciated by the correspondence between the color of that point and the 

colormap. For example, region 1 in Supplementary Figure 1(a) is approximately between 

yellow and green. By color mapping with the colormap, we conclude that fibers therein nearly 

make 45° with the horizontal axis, see the representative arrow shown in the Supplementary 

Figure 1(b). Similarly, the pink color which is dominant shows the horizontal alignment.  

 

Supplementary Note 2. 

The mass fractions, wf(%), were gravimetrically measured as triplicate, giving the same 

results so there is no error bar available. 

The volume densities, ρ
f
(g.ml-1), were extracted from the literature1,2. 

The length distributions of the rods studied in this paper have been extracted from the atomic 

force microscopy (AFM) analysis. In particular, 20 µL of 0.01 wt% rods solutions were 

deposited on freshly cleaved mica for two minutes, rinsed with milliQ water, and scanned with 

a Multimode VIII scanning probe microscope (Bruker, USA). The images were acquired in 

tapping mode at ambient condition and the distributions of amyloid fibrils and cellulose 

nanocrystals (Supplementary Figure 2) were extracted using the open-source code FiberApp3. 

 

Supplementary Note 3. 

We observed that: (1) defects can move throughout the samples, Supplementary Figures 

3(a-h), (2) defects may be trapped even after the equilibrium, and (3) number of the trapped 

defects for CNC is greater than BLG, Supplementary Figures 3(i, j).
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Supplementary Note 4. 

Supplementary Figures 4(a, c) show that for both BLG and CNC, the chiral front propagates 

radially, and the ground state domain becomes concentric.  

Supplementary Figure 4(b) and Figure 6-1(m) show that each plateau corresponds to the 

formation of a half-pitch cholesteric layer; new layers are highlighted by red brackets.  

Supplementary Figure 4(d) shows the front propagation of CNC through the para-nematic 

medium with an extremely low order parameter (i.e. isotropic medium). 

 

Supplementary Note 5. 

In order to reveal the mechanism of front propagation during Phase (II) for the BLG 

relaxation, we examined the formation of the cholesteric layers and found that the formation 

of each half-pitch, 
p∞

2
, which is equivalent to one sigmoid-like step, obeys four stages 

(Supplementary Movie 6 reveals the mechanism in full detail). 

 During Phase (II), the orientational order parameter reduction increases the net free energy 

since this is largely controlled by the homogeneous free energy, see Figure 6-4(c, d) and 

Supplementary Note 8.  

Stage (1) in Phase (II): Formation of a weakly chiral layer. During this stage, the chiral front 

propagates radially inwards replacing the para-nematic phase, see panels (a-c) of 

Supplementary Figure 5. Across the formed chiral layer, the order parameter decreases and, in 

turn, the net free energy increases, see panels (c, d) of Supplementary Figure 5. As discussed 

below, the equilibrium order parameter is Se = 0.66, therefore the configuration of the fibers 

in Stage 1 is not as robust as that of the ground state and, in consequence, the formed layer is 

weakly chiral.  

Stage (2) in Phase (II): Formation of a weakly chiral layer twisting oppositely. While the 

weakly chiral front (Stage 1) propagates further, a subtle chiral front emerges with the opposite 

twisting direction which can be seen by comparison of the panel (a) in Supplementary Figure 

5 and Supplementary Figure 6. As a result, there exist two maxima in the z-component of the 

director field; top and bottom peaks correspond to the formed chiral layers in Stage 1 and Stage 

2, respectively. Where these two chiral fronts meet, the order parameter further drops locally 

which leads to a further increase of net free energy; see panels (c, d) of Supplementary Figure 
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6. The chirality of Stage 2 is weaker than that of Stage 1 because the thickness and the order 

parameter of the chiral layer in Stage 2 are less compared to Stage 1. Therefore, the chirality 

formed in stage 2 is extremely weak, for this reason, the layer formed in this stage is weakly 

chiral. We note that this opposite twisting front is a short-lived transient state formed across a 

few micrometers of the helix and, as can be seen through the Stage 3 and Stage 4, does not 

affect the overall handedness of cholesteric phase. 

Stage (3) in Phase (II): Local order parameter destruction. Fibers located at the intersection 

of two chiral fronts further lose their order parameter and become essentially isotropic (S ≤

Sc=0.25); thereby locally gaining further excess energy. As shown in panels (c, d) of 

Supplementary Figure 7, loss of order parameter (i.e. being isotropic) and energy accumulation 

at the intersection are reflected as a minimum and a maximum in order parameter and net free 

energy profiles, respectively. Interestingly, these extrema take place at 
7p∞

4
 where the 

orientation of the fibers is supposed to be in azimuthal direction (i.e. perpendicular to the 

central axis of the capillary). 

Stage (4) in Phase (II): Simultaneous formation of two 
p∞

4
 cholesteric layers. The locally 

stored energy at 
7p∞

4
, where the order parameter is also minimum and the fibers’ configuration 

is essentially isotropic, is relieved. This excess energy relief then creates two local propagating 

chiral fronts at 
7p∞

4
 by which two one-fourth of the pitch, 

p∞

4
, are formed both inward and 

outward, see panels (a-c) of Supplementary Figure 8. 

Supplementary Figure 8 also corresponds to the beginning of the formation of the next chiral 

layer. Supplementary Movies 4, 6 confirm that these four stages are periodically repeated until 

reaching to the ground state.  

 

Supplementary Note 6. 

Figure 6-2(b, d, f, h, j, l) and Figure 6-3(b, d, f, h) show the order parameter of fibers by use 

of the blue-to-red spectrum. The blue and red color display low and high order parameter, 

respectively. Supplementary Figure 9 shows a representative fibers orientation and their order 

parameter captured by simulation.  Note that, throughout our work, the order parameter was 

obtained by direct numerical simulation.
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Supplementary Note 7. 

The order-disorder phase transformation is considered as a first-order transition because 

physical quantities undergo a sharp change through the interface4. In this study, we employed 

the LdG and FOM theories; for this approach, the order parameter has been analytically derived 

as 5 

S =
1

4
+
1

4
√9 −

24

U
−
96

U
π2 (

ξ

p∞

)
2

 (1) 

The unique role of the pitch on S was previously discussed 5. The typical behavior of the 

order parameter thus looks like Supplementary Figure 10. If concentration does not reach the 

phase transition threshold, the phase is isotropic and S=0. Upon exceeding the concentration 

threshold, the liquid-crystalline phase emerges, and S achieves a finite value less than unity.  

The order parameter at this jump is called the critical order parameter which has been 

substantially discussed 6-10. The relatively low critical order parameter in our study is thus Sc =

1

4
. 

In this study, S<Sc takes place while the concentration remains at the cholesteric bulk (see 

section ‘Direct numerical simulation’). 

 

Supplementary Note 8. 

The homogeneous free energy is a polynomial of uniaxial, S, and biaxial, P, order 

parameters because of6,11 

Tr(𝐐2) =
2

3
(S2 +

1

3
P2) (2) 

Tr(𝐐3) =
2

9
(S3 − SP2) (3) 

In order to understand the behavior of the homogeneous free energy, f̃h, with respect to the 

order parameter, it is reasonable to use the widely-accepted assumption of neglecting the 

biaxial contribution because the biaxial order parameter is considerably smaller compared to 

uniaxial order parameter, P ≈ 07. Thus, the homogeneous free energy is expressed as 

f̃h =
1

3
(1-

U

3
) S2 −

2U

27
S3 +

U

9
S4 (4) 



222 

 

Supplementary Figure 11 shows that homogenous free energy decreases when the order 

parameter evolves from a low value to the equilibrium point. Hereafter, for the sake of 

simplicity, we use the order parameter rather than the uniaxial order parameter throughout the 

article. 

Given the formulation of gradient elastic free energy along with the Q-tensor definition, one 

can see that there is a factor S in all terms. 

𝐐 = S (𝐧𝐧 −
𝛇

3
) (5) 

f̃g =
1

2
(

ξ

h0
)
2

[[∇̃ × 𝐐 + 4π (
h0
p∞

)𝐐]
2

+ a[∇̃ ⋅ 𝐐]
2
] (6) 

where 𝛇 is the 3D unit dyadic. Reduction in the order parameter leads to decrease of the  Q-

tensor, Supplementary Equation (5), in turn, all penalty terms in gradient elasticity, 

Supplementary Equation (6), become smaller. For simplicity to show the impact of order 

parameter reduction on the gradient elastic free energy contribution, it is reasonable to assume 

that the order parameter is independent of space. In this case, the long-range elastic free energy 

is rewritten as 

f̃g =
1

2
(

ξ

h0
)
2

S2 [[∇̃ × (𝐧𝐧 −
𝛇

3
) + 4π (

h0
p∞

) (𝐧𝐧 −
𝛇

3
)]
2

+ a [∇̃ ⋅ (𝐧𝐧 −
𝛇

3
)]
2

] (7) 

More specifically, the elastic-free energy is weighted by the squared order parameter and 

the squared coherence length. Therefore, a reduction in the magnitude of the order parameter 

leads to a lower gradient elastic free energy. 

Aside from the impact of order parameter and coherence length on the elastic free energy, 

the pitch length can also have an impact on elastic free energy, especially affecting the early 

relaxation. The excess elastic free energy is higher for smaller pitch lengths as the deviation 

from the ground state increases. Supplementary Table 1 summarizes how elastic free energy is 

affected by the order parameter, coherence length, and pitch length. It should, however, be 

mentioned that we did not apply the simplifying assumption of the constant order parameter in 

direct numeric simulations. 
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Supplementary Note 9. 

In the given confinement, the relaxation dynamics depend on pitch length and coherence 

length. In this section, we focus on how a relaxation dynamic gradually switches from a slow-

fast relaxation dynamic to a smooth relaxation dynamic and vice versa. 

The impact of pitch length, coherence length, and order parameter on the elastic free energy 

are summarized in Supplementary Table 1. Interaction between these parameters determines 

the type of relaxation dynamics, see Supplementary Figure 12. Depending on material-related 

properties of pitch length and coherence length, an excess elastic free energy is induced at the 

beginning of relaxation as a result of the non-equilibrium configuration of fibers (i.e. para-

nematic phase). As explained in the Supplementary Note 8 and shown in Supplementary Table 

1, Supplementary Figure 12, the excess elastic free energy is positively and inversely affected 

by the coherence length and pitch length, respectively. The next step in the relaxation is to 

relieve excess energy by reducing the order parameter. This step takes place to cancel out, or 

at least to alleviate the initial excess energy. So far Phase (I) is completed. Phase (II) is chiral 

front propagation. Using direct numerical simulations, we found that there can be three cases 

for type of relaxation dynamics as illustrated in Supplementary Figure 12. 

 

Supplementary Note 10. 

The purpose of this section is to show that confinement, i.e. curvature of the capillary, has 

a considerable impact on relaxation dynamics. The well-established Frank-Oseen (FO) free 

energy can also describe the relaxation dynamics of a single helix12. 

fFO =
1

2
K1(∇ ⋅ 𝐧)

2 +
1

2
K2(𝐧 ⋅ (∇ × 𝐧) + q∞)

2 +
1

2
K3(𝐧 × (∇ × 𝐧)) ⋅ (𝐧 × (∇ × 𝐧)) (8) 

K1, K2, K3 stand for splay, twist and bend modes of deformation, respectively. n is unit 

vector representing the fibers’ orientation. Before proceeding to reveal the curvature role in 

relaxation dynamics by making use of Frank-Oseen, it should be mentioned that Frank-Oseen 

is a subset of the Q-tensor Frank-Oseen-Mermin gradient energy, Equation (6-9). These two 

methods, FO and FOM, can be converted to each other by use of Q-tensor definition, 

Supplementary Equation (5), and mapping between Li and Ki discussed in references12,13. 
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To meet the constraint of unit length, the unit vector is considered as 𝐧 =

[sin(φ(y, t)) 0 cos(φ(y, t))] where φ(y, t) is the angle between the director and x-axis. 

This consideration simplifies the elasticity free energy as 

fFO =
1

2
K2 (q∞ −

∂φ(y, t)

∂y
)

2

 (9) 

By use of Supplementary Equation (9), the Leslie–Ericksen model reduces to 

∂φ

∂t
=
K2
Γ

∂2φ

∂y2
 (10) 

where Γis rotational viscosity of a single helix. Given Supplementary Figure 13, the initial and 

boundary conditions are expressed by 

IC:φ(y, 0) = 0 (11) 

BC: {
 φ(0, t) = 0

φ(L, t) = q∞L
 (12) 

 

Therefore, the analytical solution of relaxation dynamics reads   

φ(y, t) = q∞y +∑Ak sin (
kπ

L
y)

∞

k=1

exp (−
K2
Γ
(
kπ

L
)
2

t) (13) 

Ak = 2
(−1)kLq∞

kπ
 (14) 

Note that the upper boundary condition comes from the steady solution, φ(L) = q∞L. 

Knowing the steady-state solution yields the instantaneous chiral wavevector definition as 

q(y, t) =
φ(y,t)

y
 which meets both boundaries of relaxation (i.e. q(y, 0) = 0 and q(y,∞) = q∞). 

Therefore, the relaxation progress, R, is expressed as 

R =
q̄(t)

q∞

= 1 +∑(
2(−1)k

kπ
)(∫

sin (
kπ
L ζ)

ζ

L

0

dζ)

∞

k=1

exp (−
K2
Γ
(
kπ

L
)
2

t) (15) 

The Supplementary Figure 14 illustrates that relaxation generally obeys the first-order 

dynamic in an unconfined planar geometry. Thus, slow-fast relaxation does not emerge for the 

unconfined planar system. 

In conclusion, relaxation dynamics also depend on the curvature. Characterizing the 

curvature impact on relaxation is beyond the scope of this work. 
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Supplementary Note 11. 

As can be seen in Supplementary Figure 15, the best curves fitting the experiment and 

simulation result in estimation of rotational viscosity coefficient, η, and coherence length, ξ. 

Then, L1 and rotational viscosity are estimated by use of Equation (6-2) and Equation (6-3), 

respectively. 

 

Supplementary Note 12. 

The capillaries were filled with the birefringent solution which is the bulk cholesteric. 

According to the thermodynamics of phase equilibria, the bulk cholesteric is at a constant 

concentration equal to the upper binodal curve, see Supplementary Figure 16. 

 

Supplementary Note 13. 

The finite element (FE) technique with biquadratic basis functions was employed to carry 

out the simulations. In this regard, the governing equations, Equations (6-5 through 6-9), along 

with axillary conditions, Equations (6-10 and 6-11), and parameters tabulated in 

Supplementary Table 2 were implemented in the General PDE solver of COMSOL 

Multiphysics 5.3a on our in-house supercomputer. Note that the model used in this study is a 

tensorial equation, leading to five second-order time-dependent nonlinear coupled PDEs. Time 

stepping was executed using Backward Differentiation Formula (BDF) with varying orders 

from one (known as the backward Euler method) to five.  

All simulations are performed in a 3D computational domain except those which are 

intended for comparison with the POM images. Supplementary Figure 17 shows the geometries 

and the simulation type used in this study.  
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Supplementary Note 14. 

The dimensionless normalized relaxation progress curve, R, is computed in the lateral plane 

(xy-plane), see Figure 6-1(o). The ideal director field representing a monodomain along with 

x-axis reads 

𝐧 = [sin(q∞z) −cos(q∞z) 0] (16) 

Moreover, we have 𝐐: ∇ × 𝐐 = S2𝐧𝐧: ∇ × 𝐧𝐧—this identity is proven in accordance with 

Q-tensor definition and tensorial operations, explained as follows. 

The Q-tensor is defined as 𝐐 = S (𝐧𝐧 −
𝛅

3
) in which 𝛅 denotes the second rank unit dyadic. 

Substitution of Q-tensor definition in 𝐐: ∇ × 𝐐 yields  

𝐐: ∇ × 𝐐 = S(𝐧𝐧 −
𝛅

3
) : ∇ × 𝐐 = S𝐧𝐧: ∇ × 𝐐 − S

𝛅: ∇ × 𝐐

3  
(17)

 

As 𝛅: ∇ × 𝐐 = Tr(∇ × 𝐐) and Tr(∇ × 𝐐) = 0due to the symmetric traceless property of the 

Q-tensor, Supplementary Equation (17) reduces to 

𝐐: ∇ × 𝐐 = S𝐧𝐧: ∇ × 𝐐 (18) 

Once again using the Q-tensor definition to find the equivalent form of the curl of Q-tensor, 

∇ × 𝐐 = S∇ × 𝐧𝐧, and Supplementary Equation (18) finally gives  

𝐐: ∇ × 𝐐 = S2𝐧𝐧: ∇ × 𝐧𝐧 (19) 

Having substituted Supplementary Equation (16) into Supplementary Equation (19), the 

relation between Q-tensor and the relaxed chiral wavevector becomes q∞ =
−𝐐:∇×𝐐

S2
. In 

addition, knowing the fact that 𝐐:𝐐 =
2S2

3
 leads to 

q∞ = −
2

3

𝐐: ∇ × 𝐐

𝐐:𝐐
 (20) 

Because the quantity on the right-hand side approaches to the definite value of the relaxed 

chiral wavevector in the course of time, in order to quantify the relaxation, we define the 

dimensionless spatio-temporal chiral wavevector as  

q̃(�̃�, t̃) = −
2

3

𝐐: ∇̃ × 𝐐

𝐐:𝐐
 (21) 

Supplementary Equation (21) satisfactorily meets the limits of relaxation because it is 

simplified to q̃(�̃�, t̃) = 0 (equivalently p̃∞(�̃�, t̃) = ∞) and q̃(�̃�, t̃) = q̃∞ =
2π

p̃∞
for achiral and 
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chiral nematic phases, respectively. The tilde symbol denotes dimensionless quantities (e.g.  

∇̃= h0∇). Hereafter, we omit the tilde for brevity. 

Owing to fact that Supplementary Equation (21) is derived for the ideal director field 

represented in Supplementary Equation (16), and knowing that q̄(t)is computed by direct 

numerical simulation, there could be a slight difference in the prediction of q∞ at equilibrium. 

In this regard, we re-define the chiral wavevector as q(𝐱, t) = −
χ𝐐:∇×𝐐

𝐐:𝐐
 and therefore 

q̄(t) = −
χ

At
∫
𝐐:∇ × 𝐐

𝐐:𝐐A

dA (22) 

where At stand for the total area of the lateral plane (xy-plane).  χ plays a scaling role in 

order to reach q∞. χ is quite close to the ideal value that is 0.67, see Supplementary Equation 

(21). For example, χBLG = 0.63 and χCNC = 0.59. The exact value of χ can also be formulated 

by the use of the relaxation boundary condition that q∞ = −
χ

At
(∫

𝐐:∇×𝐐

𝐐:𝐐A
dA)

e
in which 

subscript e shows the equilibrium point. Therefore, the relaxation progress, R(t) =
q̄(t)

q∞
, is 

expressed by 

R(t) =
∫
𝐐: ∇ × 𝐐
𝐐:𝐐 dA

A

(∫
𝐐: ∇ × 𝐐
𝐐:𝐐 dA

A
)
e

 (23) 

Now that the normalized relaxation progress, Supplementary Equation (23) or Equation (6-

12), is formulated and our experimental-theoretical approach reveals that the dark zone in the 

POM images is a para-nematic phase with the order parameter of nearly 0 to 0.4, the conceptual 

understanding of this quantity (R) deserves more discussion. As explained in the paper, when 

R is computed via the discretization of the time-series POM images, R is taken to be 0 and 1 

in dark and fingerprint partitions, respectively. R=0 is equivalent to q=0 signifying that the 

phase is para-nematic and R=1 indicates q=q∞ representing that the phase is cholesteric. In the 

case of BLG relaxation (i.e. Figure 6-2), the R distribution theoretically becomes as what is 

shown in Supplementary Figure 18.  

In the case of CNC, the para-nematic phase loses its order parameter to an extremely low 

value, S~10-2, see Supplementary Figure 19. 

The actual fibers’ orientation can be understood in light of two factors. First, the uniaxial 

director field, n, representing the average fibers’ orientation. Second, the uniaxial order 
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parameter, S, describing the strength of fibers alignment around n. Fibers lie perfectly parallel 

to n if S=1 and the resulting phase becomes more crystal-like. In the case of S≈Sc~0.7, fibers 

retain both fluidity and crystallinity (orientational order), corresponding to the liquid-

crystalline phase. Finally, S<Sc indicates that the actual fibers’ orientation can be less aligned 

around n; hence, the phase possesses more fluid-like characteristics rather than crystalline 

ones5,8,10,14-16. As explained in the Supplementary Note 7, there is no unanimous agreement on 

the Sc value; however, Sc=0.25 suits for the theory used in our study. Accordingly, wherever 

S<Sc, the fibers’ orientation is randomly visualized in order to emphasize the concept of critical 

order parameter and the fact that orientational ordering is weak, see Supplementary Figure 20.  

Wherever S<Sc, the phase can also be called isotropic due to the fact that the correlation 

existing among fibers is insignificant. However, the distinguishing point that should be taken 

into account is that the concentration of the isotropic phase is still at the upper binodal curve, 

which is unequivocally greater than the critical order-disorder transition, see “Direct numerical 

simulation” section for discussion on the concentration field in the present study.  

 

Supplementary Note 15. 

The purpose of this note is to show that the Q-tensor spatio-temporal evolution equation can 

be projected into the vector force balance equation containing the divergence of the total stress 

tensor. The spatio-temporal orientational ordering is expressed by 

γ
∂𝐐

∂t
= −(

∂f

∂𝐐
)

[s]

+ (∇ ⋅ (
∂f

∂∇𝐐
))

[s]

= 𝐇[s] (24) 

where f is the Helmholtz free energy density per unit volume and H is the molecular field. 

To derive the 3D force balance equation, the double inner product of Supplementary Equation 

(24) and ∇𝐐 yields 

γ(∇𝐐): (
∂𝐐

∂t
) = −(∇𝐐): {(

∂f

∂𝐐
)

[s]

+ (∇ ⋅ (
∂f

∂∇𝐐
))

[s]

} (25) 

Knowing that Q is symmetric traceless leads to dropping [s], and using the transpose of 

third-order tensors, we rewrite Supplementary Equation (25) as:  

γ (
∂𝐐

∂t
) : (∇𝐐)T = −(

∂f

∂𝐐
) : (∇𝐐 )T + (∇ ⋅ (

∂f

∂∇𝐐
)) : (∇𝐐)T = 𝐇: (∇𝐐)T (26) 
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Given that f can be considered as homogenous and gradient contributions, we then formulate 

the gradient of f. 

f = f(𝐐, ∇𝐐) = fh(𝐐) + fg(𝐐, ∇𝐐) (27) 

∇f =
∂f

∂𝐐
: (∇𝐐)T +

∂f

∂∇𝐐
⋮ (∇∇𝐐)T (28) 

Now we focus on the last term 
∂f

∂∇𝐐
⋮ (∇∇𝐐)Twhich can be written as 

∂f

∂∇p𝐐mo
⋮ ∇i∇p𝐐mo by 

making use of a dual index notation method (Einstein and indicial free) to facilitate the 

subsequent tensor derivations: 

∂f

∂∇p𝐐mo
⋮ ∇i∇p𝐐mo =

∂f

∂∇p𝐐mo
⋮ ∇p∇i𝐐mo = 

∇p ⋅ {
∂f

∂∇p𝐐mo
: ∇i𝐐mo} − (∇p ⋅ (

∂f

∂∇p𝐐mo
)) : ∇i𝐐mo 

(29) 

Or equivalently 

∂f

∂∇𝐐
⋮ (∇∇𝐐)T = ∇ ⋅ {

∂f

∂∇𝐐
: (∇𝐐)T} − (∇ ⋅ (

∂f

∂∇𝐐
)) : (∇𝐐)T (30) 

Substituting Supplementary Equation (30) into Supplementary Equation (28) yields  

−∇f + ∇ ⋅ {
∂f

∂∇𝐐
: (∇𝐐)T} = −

∂f

∂𝐐
: (∇𝐐)T + (∇ ⋅ (

∂f

∂∇𝐐
)) : (∇𝐐)T (31) 

Comparing Supplementary Equations (26, 31) results in 

γ (
∂𝐐

∂t
) : (∇𝐐)T = −∇f + ∇ ⋅ {

∂f

∂∇𝐐
: (∇𝐐)T} = 𝐇: (∇𝐐)T (32) 

Additionally, we know that the mechanical bulk total elastic stress tensor T is 

𝐓= f 𝐈 +𝐓E (33) 

𝐓E = −
∂fg

∂∇𝐐
: (∇𝐐)T (34) 

 where TE is the Ericksen stress tensor, and the pressure p=-f is minus the free energy 

density. Then, the  bulk vector force balance Supplementary Equation (25) reads: 

−γ(∇𝐐): (
∂𝐐

∂t
) = ∇ ⋅ 𝐓 (35) 
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The total stress tensor, Supplementary Equations (33, 34), carries information on f and 

−
∂fg

∂∇𝐐
: (∇𝐐)T. The vector mechanical force balance, Supplementary Equation (35), carries less 

information than the original tensorial Q-tensor equation, Supplementary Equation (24) since 

the former is a vector equation and the latter a tensor equation. Consequently, when we simulate 

the Q-tensor process in the absence of mass velocity (v=0), the Q-tensor model carries more 

information by just focusing on the tensorial variational derivative of the free energy instead 

of the vectorial divergence of the stress. 

The total elastic stress T is always present 𝐓 ≠ 𝟎 and, in consequence, the elastic force F 

which is the divergence of the total bulk elastic stress is also nonzero, 𝐅 = ∇ ⋅ 𝐓 ≠ 𝟎 as F is 

balanced by γ (
∂𝐐

∂t
) : (∇𝐐)T + 𝐅 = 𝟎.  To sum up, there is no applied external stress in this 

experiment or in this model, and there is only internal stress (T) properly embedded in the 

modeling used in this study.  
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Chapter 7. Conclusions and Outlook 

7.1 General Conclusions 

In summary, we have successfully developed a Helmholtz free energy that is capable of 

accurately determining the isotropic-to-cholesteric thermodynamic equilibrium concentration 

boundaries for chiral rod-like mesogens dispersed in an aqueous solution; notably, the resulting 

model is applicable to  BCLLCs. The developed thermodynamic model was then carefully 

tested and validated for collagen fibers dispersed in acidic aqueous solutions. The results were 

in great agreement with available experimental data as well as fully consistent with 

fundamental   LC theory and polymer science. 

Building on that thermodynamic model, which was developed from first principles and 

validated, we thereafter proceeded to formulate and solve governing equations for  BCLLCs 

self-assembly to finally obtain a full mesoscopic (ranging from nano to micro length scale) 

description of the BCLLCs structure and concentration as a function of time and space—the 

equations are time-dependent nonlinear Partial Differential Equations (PDEs); five second-

order PDEs and one fourth-order PDE for describing the orientation of fibers and mass transfer, 

respectively. Solving the governing equations yielded the following outcomes : (1) An in-depth 

understanding of the cholesteric growth in the meta-stable isotropic zone (i.e. the zone bounded 

between the lower binodal boundary and the lower NG boundary) was obtained. (2) The NG 

zone existing in the biphasic zone, where multi tactoids grow unconditionally, was explored. 

After that, the NG zone was thoroughly discussed in fundamental terms such as tactoids’ size, 

morphology, population, growth laws, and more. (3) Dynamical relaxations of BCLLCs, 

especially BLG and CNC, from para-nematic to cholesteric (PN-N*) were explored and 

elucidated in detail. 

The specific technical conclusions that can be drawn from each research chapter are 

summarized as follows.  

 

Chapter 3 : Thermodynamic modelling of acidic collagenous solutions: from free energy 

contributions to phase diagrams 

Several simultaneous physics are involved in the BCLLCs self-assembly: excluded volume 

affecting orientational and translational entropy (i.e. Onsager’s theory), the orientation-

dependent attractive interactions due to van der Waals interactions (i.e. Maier–Saupe theory), 
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the Columbic repulsion as a result of like-charges attached on the fibers’ backbone, elasticity, 

chirality, and enthalpic contribution. Except for Columbic repulsion, the other phenomena 

come from previous well-known theories. To avoid computationally demanding approaches 

such as Poisson–Boltzmann theory, we developed a simplified model to take into account the 

contribution of Columbic repulsion. Finally, all these phenomena and interactions were 

integrated to develop the net Helmholtz free energy tailored for colloidal rod-like 

cholesterogens dispersed in a small-sized monomeric solvent. Having completed the theory 

and modeling formulation stage, the model was evaluated according to a variety of criteria: 

available experimental data and consistency with the previous well-established theories in both 

liquid crystal and polymer science. In this regard, for collagen fibers dispersed in acidic 

aqueous solutions, LC concentration as a function of solvent concentration and temperature as 

a function of LC concentration binodal lines were constructed. The former is in excellent 

agreement with the partial experimental phase diagram reported. The latter shows a chimney-

like shape which is consistent with the principles of polymeric solutions comprising rod-like 

rigid polymers dispersed in a monomeric solvent. The proposed model is also consistent with 

the past well-known theories such as Landau–de Gennes (LdG) and Onsager. Furthermore,  the 

validation was successful in fulfilling other criteria such as the isotropic-to-cholesteric (I/N*) 

order parameter, first-order phase transition, and agreement with other past impactful studies.  

We then proceeded to understand the impact of each physics contributing to the isotropic-

to-cholesteric phase transition. In this regard, we found that phase ordering is mainly affected 

by the excluded-volume, the impact of the intermolecular interactions (repulsion, twisting, and 

attraction) is moderate, and the impact of macroscopic chirality is negligible. We additionally 

explored that, as acid concentration increases, i.e. pH decreases, in consequence, the linear 

charge density increases, leading to narrowing the biphasic zone.  

 

Chapter 4 : Theoretical Platform for Liquid-Crystalline Self-Assembly of Collagen-Based 

Biomaterials 

Building on Chapter 3, we included biaxiality into the Helmholtz free energy.   Consistent 

with previous theoretical studies, the biaxiality of chiral nematic liquid crystals was found 

negligible at the ground state. We then formulated the dynamical governing equations through 

which both the conserved field (LC concentration) and the non-conserved field (fibers 

orientation) can be captured as a function of time and space. We thus relied on the Helmholtz 
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free energy and the governing equations to elucidate the cholesteric growth of small chiral seed 

growing in an isolated fashion – meaning that no tactoidal collisions take place. The salient 

feature of the proposed modeling and simulation is that the self-assembly is precisely captured 

in multi-scale time and space. As a result, we explored that a τ+1 defect forms in the center of 

the growing tactoid at the beginning of growth—The defect size and tactoid size are in the 

range of nanometer and micrometer, respectively. As time elapses, the frustration effect that 

generated a singular defect vanishes, and a low energy non-singular escaped λ+1 disclination 

appears in a short time span. This finding is of prime importance for nano-particle dispersed in 

cholesterics since the high energy spot like a τ+1 defect attracts nano-particle to relieve excess 

energy.  

 

Chapter 5 : Nucleation and growth of cholesteric collagen tactoids: A time-series 

statistical analysis based on integration of direct numerical simulation (DNS) and long 

short-term memory recurrent neural network (LSTM-RNN) 

In Chapter 5, we employed the governing equations developed in Chapter 4 to investigate 

the kinetics of phase separation and ordering associated with the NG mechanism for colloidal 

collagen fibers dispersed in acidic solutions. Through simulations of self-assembly at different 

quenches (i.e. different concentrations) in the biphasic zone of the equilibrium phase diagram 

developed in Chapter 3, we first identified the NG zone. Each NG quench contains three stages: 

induction, nucleation, and coarsening. For each of these stages, we then revealed the quench 

dependency of fundamentals quantities such as induction time, nucleation duration, and 

tactoids’ size, population, morphology, growth laws, and more across the NG zone. After 

delivering exhaustive characterization of the NG zone, we used the free energy analyses to 

rationalize the quench dependence of fundamentals quantities. Owing to the fact that the DNS 

of each NG quench is computationally expensive, we used a hybrid method based on DNS and 

LSTM-RNN in the cascade fashion to reduce the computational cost. This hybrid approach not 

only further expands the results associated with the tactoids’ population, but also proposes a 

systematic framework to use LSTM-RNN as a surrogate fast-response model by which part of 

time-dependent results is estimated significantly faster compared to DNS. Having obtained a 

rich database on the characterization, we then used classical and symbolic regression to 

formulate wide-range engineering correlations for the characterizations, facilitating future 

studies.  
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We furthermore addressed a fundamental question that what physics governs the growth 

laws’ exponent during nucleation and coarsening for BCLLCs. We demonstrated that the non-

diffusive model (i.e. the model without mass transfer consideration) only results in n ≈ 1. In 

other words, we concluded that if n→1 indicates that a self-assembly mechanism in which 

orientational ordering is dominant and mass transfer is weak. Also, the lower exponents are 

due to interactions between conserved and non-conserved fields, i.e. mass transfer and long-

range orientational ordering, respectively. 

  

Chapter 6 : Relaxation dynamics in bio-colloidal cholesteric liquid crystals confined to 

cylindrical geometry 

Through an experimental study performed by our ETH-Zurich collaborators, two distinct 

dynamics were observed for the relaxation from para-nematic to cholesteric (PN-N*) in BLG 

and CNC dispersions. We then found that DNS is capable of accurately predicting the 

observations. Building on DNS and free energy analyses, we revealed that the different 

dynamics are due to the interplay between chirality, viscoelasticity, and confinement. The 

interplay consequently affects the order parameter of the mesophasic medium, leading to 

different dynamics. Moreover, we generalized that there can be considered two prime 

categories for PN-N* relaxations of BCLLCs, depending on the chirality and elasticity for 

given cylindrical confinement. We called these categories slow-fast and smooth relaxation, 

taking place for BLG and CNC, respectively.   

In addition, owing to the accuracy of DNS in the prediction of the relaxation dynamics, a 

systematic approach was proposed by which some of the mesophasic properties including 

viscoelastic ones can be estimated (e.g. rotational viscosity, rotational viscosity coefficient, 

coherence length, elastic constant (L1), and order parameter of the medium). It should be further 

noted that the proposed method for measuring viscoelastic properties is by far more convenient 

in comparison with the conventional ones. 

 

7.2 Contributions to Original Knowledge 

The current Ph.D. thesis contributed to the findings of both thermodynamics and kinetics of 

BCLLCs self-assembly. We particularly focused on the phase diagram, cholesteric growth in 

absence of tactoidal collisions, cholesteric nucleation and growth in which tactoidal collisions 
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are inevitable, and dynamics of relaxation from para-nematic to cholesteric, which all have not 

been understood before despite their vital roles in material science and engineering.  

The following list is a summary of the original contributions to knowledge emanating from 

the present Ph.D. thesis. 

• Developed, implemented, and validated the Helmholtz free energy which is capable 

of accurately providing a full mesoscopic description of BCLLCs self-assembly in 

both thermodynamic and kinetics contexts. 

• Determined the lower and upper binodal phase transition boundaries for collagen 

dispersions through which the isotropic, biphasic, and cholesteric zones are 

delineated in the phase diagram. These phase transition boundaries are presented in 

the phase diagrams as follows; LC concentration vs. solvent concentration and 

temperature vs. LC concentration. 

• Explored the physics controlling the phase transitions in collagen dispersions; the 

phase transition is mainly controlled by excluded volume, and moderately by 

interchain attractive and repulsive interactions, and almost unaffected by 

macroscopic chirality.  

• Explored the defect formation and escape through the evolution of a cholesteric 

tactoid. At the center of the growing tactoid, a nanometer-sized τ+1 defect is formed 

in the early growth regime, thereafter over a short time span, the defect is 

transformed into a non-singular escaped λ+1 disclination and the tactoid then evolves 

to micrometer size. 

• Determined the nucleation and growth zone in the biphasic zone of the collagen 

phase diagram. 

• Characterized the nucleation and growth zone in the terms of fundamental quantities 

such as induction time, nucleation duration, droplets’ size, morphology, population, 

growth laws, and more. 

• Proposed a hybrid approach based on DNS and LSTM-RNN to reduce 

computational cost in self-assembly simulations. 

• Formulated wide-range correlations showing the quench dependence of fundamental 

quantities named above. 
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• Elucidated the physical origins behind the nucleation and growth mechanism notably 

the quench dependence of fundamental quantities and growth laws’ exponents 

during nucleation and coarsening. 

• Revealed the mechanisms and the governing physics of PN-N* relaxations in 

BCLLCs dispersions. 

• Proposed a systematic novel approach to measure viscoelastic properties such as 

Landau elastic constant (L1) and rotational viscosity, which are barely measurable 

for BCLLCs with conventional methods. 

 

7.3 Recommendations for Future Work 

The following list summarizes suggested research avenues for future studies. These 

suggestions are derived from the current Ph.D. thesis. 

• In addition to nematic and cholesteric phases, it has recently been reported that the 

collagen dispersions may possess other liquid crystalline phases such as orthogonal 1. 

It is thus legitimate to explore the location of other liquid crystalline phases in the phase 

diagram presented in Chapter 3.  

• As explained in Chapter 5, DNS is computationally demanding. In this chapter, LSTM-

RNN is utilized as a surrogate model by which tactoids’ population is estimated 

considerably faster. Therefore, devising fast-response techniques such as applying 

machine learning methods to predict other quantities deserve consideration. 

• We investigated cholesteric growth in the meta-stable isotropic zone and the NG zone. 

It is recommended that future studies are defined to characterize the rest of the biphasic 

zone in which other mechanisms of phase separation and ordering can take place (e.g. 

negative tactoids)  

• Our results for the relaxation of BCLLCs from PN-N* were obtained for cylindrical 

confinement. However, we showed that confinement geometry can have an impact on 

the relaxation dynamics. As a result, future works on the confinement impact on the 

relaxation dynamics can be beneficial, leading to the generalization of the results 

obtained in Chapter 6. 
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