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Abstract 

It is weIl known that when subjects with a disease are identified through a 

cross-sectional survey and then followed forward in time until either failure 

or censoring, their estimated survival function of the true survival function 

from onset are biased. This bias, which is caused by the sampling of preva­

lent rather than incident cases, is termed length bias if the onset time of the 

disease forms a stationary Poisson process. While authors have proposed dif­

ferent approaches to the analysis of length-biased survival data, there remain 

a number of issues that have not been fully addressed. The most important 

of these is perhaps that of how to include covariates into length-biased life­

time data analysis of the natural history of diseases, that are initiated by 

cross-sectional sampling of a population. One aspect of that problem, which 

appears to have been neglected in the literature, concerns the effect of length­

bias on the sampling distribution of the covariates. If the covariates have an 

effect on the survival time, then their marginal distribution in a length-biased 

sample is also subject to a bias and is informative about the pararneters of 

interest. As is conventional in most regression analyses one conditions on the 

observed covariate values. By conditioning on the observed covariates in the 

situation described ab ove , however, one effectively ignores the information 

contained in the distribution of the covariates in the sample. We present 

the appropriate likelihood approach that takes into account this information 

and we establish the consistency and asymptotic normality of the resulting 



estimators. It is shown that by ignoring the information contained in the 

sampling distribution of the covariates, one can still obtain, asymptotically, 

the same point estimates as with the joint likelihood. However) these condi­

tional estimates are less efficient. Our results are illustrated using data on 

survival with dementia; collected as part of the Canadian Study of Health 

and Aging. 
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Résumé 

Il est bien connu que lorsque les sujets malades sont identifiés à partir d'une 

étude à coupe transversale et ensuite suivis jusqu'à défaillance ou censure, la 

fonction de survie estimée est biaisée par rapport à la vraie fonction de survie 

à partir du temps de début. Ce biais, dû à l'échantillonnage de cas prévalents 

au lieu de cas incidents, est nommé biais de longueur lorsque les temps de 

début de la maladie forment un processus de Poisson stationnaire. Bien que 

des auteurs aient proposé plusieurs approches pour analyser des données à 

biais de longueur, il reste plusieurs problèmes qui n'ont pas été complètement 

étudiés. Le plus important d'entre eux est possiblement comment inclure des 

covariables dans l'étude de durées de vie dans l'histoire naturelle de maladies, 

qui est initiée par l'échantillonnage à coupe transversale d'une population. 

Un aspect de ce problème, qui semble avoir été négligé dans la littérature, 

concerne l'effet du biais de longueur sur la distribution des covariables dans 

l'échantillon. Si les covariables ont un effet sur la durée de vie, leur distri­

bution marginale dans un échantillon à biais de longueur est également af­

fectée par un biais qui comporte de l'information sur les paramètres étudiés. 

Habituellement, dans la plupart des analyses de régression on conditionne sur 

les valeurs des covariables. Cette approche conditionnelle dans la situation 

décrite ci-dessus fait fi de l'information contenue dans la loi marginale des co­

variables de l'échantillon. On présente une approche par vraisemblance jointe 

qui tient compte de cette information et on établit la consistence ainsi que la 
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normalité assymptotique des estimateurs qui en découlent. On démontre que 

prendre une approche qui ne tient pas compte de l'information contenue dans 

la distribution des covariables donne assymptotiquement les mêmes valeurs 

ponctuelles estimées. Cependant, ces estimateurs conditionnels sont moins 

efficaces. Les résultats sont illustrés avec des données de durée de vie avec 

démence, recueillies à partir de l'Étude canadienne sur la santé et le vieil­

lissement. 
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Chapter 1 

Introduction 

The real life statistical problems one can be faced with often differ in many 

ways from the ideal setting of the basic, college level statistics course. A 

number of the standard assumptions from the sanitized realm of textbook 

problems fail to hold in modern applications. For example, the analysis of 

lifetime data has its own set of common peculiarities. One of them is that 

the variable of interest, time to an event, is a positive random variable that is 

rarely even approximately normally distributed. Another common feature in 

this context is censoring: the variable of interest may not be fully observed. 

It is often impractical, due to time and logistical constraints, to follow every 

single subject to observe the event of interest. That is why information 

collected on sorne subjects is inevitably incomplete. By now, there is a 

vast literature and a number of tools to address statistical inference based on 

censored data. The ideal setting for failure time data is the so-called incident 

3 



studies. The following diagram depicts an incident study. 

1 

1 
1 

X failure 

o censored 

1-1 -----d> ... uu-X 

Beginning 
of study 

1 
i 
1 

End of 
study 

Figure 1.1: Incident study 

In such studies, subjects are recruited or observed from the time of initia-

tion of an event, such as onset of a disease, or turn of a switch for light bulbs, 

and followed until censoring or occurrence of the event. Censoring can occur 

at the end of a study but is not limited to this scenario. Human subjects, 

for example, can be lost to follow-up. This is illustrated in Figure 1.1, the 

bottom subject is lost at sorne time in the study, while the one above would 

have been observed had the study been longer. In such a setting, the tools 

available (such as the Kaplan-Meier estimator) rely on the assumption that 

censoring is noninformative about the survival time. 
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In the case of rare diseases or when other constraints prevent the recruit-

ment of incident cases, the alternative approach is the study of a prevalent 

cohort, collected often through cross-sectional surveys. Under this scenario, 

the subjects have already experienced the initiation of the event prior to en-

tering the study (this is called left truncation) and they are followed until 

failure or censoring. 

b 
OBSERVED 

)( UNOBSERVED 
/~--

Onset OBSERVED -times 

0 UNOBSERVED 
(Unrecorded incident case) 

Beginning 
of Study 

Figure 1.2: Prevalent study 

This is no longer the ideal setting, as longer lived sllbjects are more likely 

to be selected into the study while the shorter lived one may go unobserved. 

This means that prevalent cases are not representative of the incident pOpll-

lation. When interest lies in estimating the survival distribution, from onset, 
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of subjects with the disease one must take into account that the lifetimes as-

certained in such a fashion are left-truncated. Additionally, as the time from 

onset ta recruitment is contained in both the fulllifetime and censoring time, 

the censoring times are informative and the methods applicable ta incident 

cases cannot be used on prevalent cases without adjustment. 

Sampling from a prevalent population is a form of biased sampling. When 

it is possible to assume that there has not been an epidemic of the disease 

over the period of time that covers the onset times of the subject, one may 

assume that the incidence pro cess of the disease is a segment of a stationary 

Poisson process. Under this assumption, the sampled lifetimes are length-

biased, that is, the probability of recruiting a subject is directly proportional 

to its lifetime. Figure 1.3 illustrates how the length-biased density shifts 

the weight of its associated unbiased density toward the higher values of the 

variable. 
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Figure 1.3: Unbiased Weibull density and associated length-biased density 

Ignoring length bias leads to an overestimation of the survival function, 

as shown in Figure 1.4 
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Figure 1.4: Unbiased and length-biased survival functions 

The following example illustrates the concept of length-biased sampling. 

Suppose a graduate student walks by the Schulich School of Music everyday 

at a random time distributed uniformly in a 9 minute interval, the time at 

which a musician practices Bach's Toccata and Fugue in D minor, BWV 

565. So, every day, the student will hear part of this well known musical 

composition. In most interpretations the Toccata lasts about three minutes 

while the Fugue is around six minutes long, so the graduate student will be 

twice as likely to hear part of the Fugue than part of the Toccata because the 
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former occupies more spaee in the interval. Renee this is a case of length­

biased sampling. Additionally, over time, the number of fugues heard by 

the student will be about double the number of toccatas, even though the 

musician plays one of each everyday. But how do es this relate to the main 

point of this thesis? 

While measuring the duration of musical pieces holds litt le scientific in­

terest, the purpose of lifetime data analysis is often not only to describe 

survival distribution but to measure the impact of covariates on survival. 

Wh en the sampling mechanism is subject to a bias relating to the time vari­

able, it also induees a bias in the distribution of the covariates. Figure 1.5 

shows how a mixture of two Weibull densities is affected by length-biased 

sampling: the proportion occupied by the subpopulation with higher mean 

is increased in the biased density. While this might appear natural as it is, 

the implications in regression analysis are more subtle. In standard regres­

sion, the variable of interest is modeled conditionally on the covariates, and 

the marginal distribution of the covariates is left out of the analysis because 

it holds no information on their impact. When the sampling is biased, this 

is no longer the case. 
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Figure 1.5: Unbiased and length-biased mixture of Wei bull densities 

To fully appreciate the impact of this, consider the following illustrative 

example. Suppose a graduate student decides to "reinvent the wheel" and 

makes a project of measuring the impact of gender on survival. Knowing 

a little bit of lifetime data analysis, the student knows the ideal setting is 

an incident study, which translates in the project as sampling individuals at 

birth. This poses sorne difficulties as obtaining permission to follow newborns 

from the maternity ward until their eventual death raises sorne privacy and 

ethical issues which would make the l'ecl'uitment of subjects overly compli-

cated. Additionally, the subjects would likely outlive the zealously motivated 

reseal'chel', so if the project was ended aftel' a few yeal's, most if not aIl ob-

servations would be censored, yielding inconclusive results. Reluctantly, the 
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student realizes that prevalent cases would make the sampling process much 

easier and reduce the project duration greatly. This would mean observa­

tions biased toward those who live longer, but this can be taken care of in 

the analysis. To find subjects who should die in a reasonable amount of time 

for the project, the researcher go es to a residence for the elderly and decides 

to visit every residant there, record their gender and follow them until their 

demise. The student quickly loses his motivation as he realizes that too many 

residents are really delighted to see a visitor, and that it would just be too 

depressing to wait for these new friends to die. 80 he goes home with only 

data on the gender of elderly subjects. Performing sorne basic tests on this 

rudimentary dataset, the researcher realizes that there are significantly more 

women than men at the "old folks home". This discrepancy cannot be the 

result of chance, as genetics have kept the distribution of gender at birth 

uniform. Also, the Charter of Rights and Freedoms prevents the residence 

from using discrimination based on gender to accept tenants. But one has 

to reach a certain age before being admitted into such a care center, which 

means that men having short el' lifetime could explain this imbalance. Renee, 

the student finds information about the effect of gender on survival simply by 

looking at the distribution of gender in a prevalent sample, without collecting 

any lifetime data. 

Using a conditional approach in lifetime regression in the presence of 

length bias discards the information contained in the marginal distribution 
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of the covariates. In this thesis, we propose a new joint likelihood approach 

for the analysis of length-biased, right-censored data that incorporates this 

information from the sampling distribution of the covariates. This thesis is 

organized as follows: in Chapter 2, we review the history of length-biased 

sampling and the analysis of survival data from a prevalent cohort. Because 

it is relevant to the subject, a section on different forms of biased sampling 

is included. In Chapter 3, we derive the likelihood function in the pres­

ence of covariates and expose the relationship between length-bias sampling 

for event-time and mean-lifetime bias for the covariates. We further com­

pare the correct likelihood with the conditional likelihood that disregards 

the sampling distribution of the covariates, showing that both asymptoti­

cally result in the same point estimates. An entire section is devoted to an 

analytical example that shows that estimates obtained through the correct 

joint likelihood are more efficient than parameter estimates computed using 

the conditional likelihood. Chapter 4 focuses on the asymptotic properties 

of the maximum likelihood estimator. We establish the consistency of the 

MLE, and derive the asymptotic normality of the MLE. In Chapter 5, we 

discuss how to adapt two standard regression models in survival analysis 

to length-biased sampling. For the purpose of implementation, we propose 

new algorithms for estimation and simulation for the problem in Chapter 6. 

Chapter 7 is devoted to applications. The methods are tested on simulation 

studies and then applied to a set of real data to estimate the survival func-
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tion of subjects diagnosed with dementia using data collected as part of the 

Canadian Study for Health and Aging (CSHA). The rest of the thesis con­

centrates on other research relating to the main subject; Chapter 8 presents 

a summary of less successful efforts in the domain, while Chapter 9 offers a 

recapitulation and a look at new avenues of research. 
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Chapter 2 

An abridged history of 

length-biased lifetime data 

In this chapter, we present an overview of the literature pertaining to the 

main problem addressed in this thesis, namely how to accommodate covari­

ates in the analysis of length-biased data in the presence of right censoring as 

can occur in survival data analysis. We begin by discussing the first papers 

written on length-biased sampling, then go into how length-bias arises in sur­

vival data through cross-sectional sampling from prevalent cohort. We follow 

this with a discussion on the assumption of stationarity, how to assess its va­

lidity and what tools are available when this assumption fails. The next step 

is exploring the unconditional approach developed initially by Vardi which 

applies when stationarity holds and the data are properly length-biased. Fi­

nally, because incorporating covariates brings another layer of bias in the 
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data, we review sorne of literature on more general biased sampling issues. 

2.1 The early writings 

It is interesting to note that a literature review, being a nonrandom process, 

is subject to biased sampling from the population of articles on the subject 

at hand: long-lived, well-known and popular joumals are more likely to be 

browsed, and heavily cited articles will have a higher probability of being 

noticed. There is also time frame issue, at sorne point, older works either be­

come common knowledge in the field or they sim ply disappear into obscurity. 

A new problem rarely cornes with a name attached to it. Whoever stumbles 

upon it first might not use the same nomenclature that will develop and 

settle as the problem gains in popularity and a single problem might have 

multiple names depending on its field of application. 

Rence there are two questions which can be difficult to answer. One is 

whether a problem has already been solved, or at least studied, which is 

a very important question for a doctoral candidate. The other question, 

given the problem has been identified, is who tackled it first? Even on the 

subject of length-biased sampling, one cannot discount the possibility of that, 

say, Archimedes might have worked on it. There is a remote chance that, 

concealed in a palimpsest buried in sorne medieval Byzantine monastery, 

solutions based on infinitesimals and geometry exist to answer why it appears 

that big ships bum more easily than small ones when targeted by the famous 
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death ray that supposedly defended Syracuse from naval assault. 

To the best of our knowledge, Wicksell (1925) was the first to mathe­

matically describe and resolve a problem involving length-biased sampling. 

Particularly interesting is the setting of his research: anatomy. Wicksell was 

faced with what he called a "corpusele problem": spherical objects (e.g. fol­

lieles) that vary in size are uniformly distributed within the volume of an 

opaque body (in this case, an organ, such as the spleen). The goal is to 

estimate the number and size distribution of the corpuseles contained within 

the body. With today's comput ers and MRIs, this would probably reduce 

to measuring densities inside the body and finding thresholds to isolate the 

follieles, but back in Wicksell's day such tools did not exist, so sampling 

had to be done through simpler means. Take the body, cut it in half, and 

look at the corpuseles that were sliced in the cross-section. There was also 

sorne magnifying and paper tracing involved but those details do not play a 

role in the analysis. This is length-biased sampling as spheres with bigger 

diameter are more likely to appear in the cut, but additionally the projected, 

apparent diameter is smaller than the true diameter. So the problem is three­

dimensional but the data are in two dimensions, and the bias is cou pIed with 

sorne sort of truncation (different than what will be discussed later). Wicksell 

(1926) revisited this problem by extending his previous works to ellipsoids 

corpuscles. 

The systematic theoretical study of length-bias began with McFadden 

15 



(1962). The concern was with the length of intervals in a stationary point 

process. Consider a random sequence of events ... Ti- 1 S Ti S 1i+I'" 

where the distribution of events is invariant with respect to calendar time. 

One can define a random variable for the length of an interval between two 

consecutive events, sampled at a random event Ti to be 

(2.1.1) 

Here all Xi have a common distribution function FI (x) because of station­

arity. The study of this kind of Xi is just basic renewal process theory. 

Another interval length of interest is when one samples at a random time t. 

Now instead of just one interval, there are really two to look at: the time 

from the previous event to t, which we will call the backward recurrence time 

and denote Lü = t - Tü; and the forward reC'urrence time, from t until the 

next even Tl, which will be denoted LI = Tl - t. The intervallength between 

the two event is given by 

(2.1.2) 

McFadden then proceeded to study the fundamental differences between Xi 

and Xt and their relationship. Note that here length bias is induced by sam­

pling at a point in time and assessing the full length of the one-dimensional 

observation, setting quite different from Wicksell's but much more common 
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in the literature. 

Blumenthal (1967) studied the implications of "proportional sampling" in 

life Iength studies. This author wanted to estimate the mean life of electron 

tubes that are sam pIed while operating sinee some prior date, which means 

that those sam pIed tubes tend to live longer than the population intended 

for study. This is again a renewal proeess setting, as the model involves 

replacing a component that has failed by another one which has aIready 

been in use. The backward and forward recurrenee times are noted U(T) and 

V (T), the sum of which is denoted L(T). As the inter est lies in estimation, 

sinee U(T) and V(T) are theoretically identically distributed but U(T) is 

available immediately while measuring the remaining life time is inherently 

time consuming, Blumenthal ansked, "Why should one bother with obtaining 

V(T)?" His answer is that sinee U(T) and V(T) are not independent, using 

both U(T) and V(T) should give estimates with less variance. Blumenthal 

applied the theory to Gamma and Wei bull life times, deriving sorne MLEs 

and moments for those distributions. 

The last paper we consider in this section was by Cox (1969). He described 

what induces Iength-biased sampling (again, under the name of "proportional 

sampling") in industry. Like Wicksell's probIem, those are generally techno­

Iogical issues. The particular experiment und el' scrutiny was the sampling 

of fibers in fabric, and Cox described the moments of the sam pIed Iengths 

in terrns of the unbiased (unweighted) distribution moments. Cox discussed 
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estimation of parameters from unbiased and length-biased sampling with 

Log-Normal and Gamma distributions, showing that length-biased sampling 

gives more efficient estimates of the upper tail of the distributions. That 

is expected as this is where there will be more observations through the bi­

ased sampling mechanism. None of the aforementioned author considered 

censoring, as few dealt with applications where censoring can occur. 

2.2 Length biased sarnpling: sorne applica­

tions 

With the basic theory established, the applications multiplied over time. 

Goldsmith (1966) found that Wicksell's anatomy problem had equivalents in 

physics. He calculated true particle sizes observed from thin slices, working 

with discrete and continuous true size distributions. Similar issues arose in 

astrophysics on the problem of cataloging galaxies and biology on the sub­

ject of carcinogenesis (Neyman 1969). But length bias often occurs when 

the variable of interest or sampling mechanism involves time. In economics, 

while time might not be the main focus of a study, it often can play a role 

in sampling. Nowell, Evans and McDonald (1988) studied how length-biased 

sampling affects contingent value studies which are used to quant if y the 

value of non monetary variables, such as environmental commodities and 

non traded goods. Sampling users of such commodities (e.g. a fishing resort) 
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often involves being on site while individuals are in the middle of an activity, 

which means that those who spend more time and thus put more value on 

the contingents are more likely to be sampled. Nowell and Stanley (1991) 

observed similar length bias in man intercept surveys. They also pointed 

out that while sampling shoppers inside a shopping center rather than at 

the entrance exhibits sorne properties of length bias, other bias mechanisms 

might be involved (e.g. individu aIs who visit many different stores will be 

sam pIed more easily than those who sim ply spend a lot of time in a single 

shop then leave). 

When it cornes to literature on medical and epidemiological data, length­

biased sampling cornes in more than one form. These applications can at 

least be traced back to Fisher (1934) and N eyman (1955) on prevalence­

incidence bias. Zelen's work on screening tests in the late 60's and early 70's 

were landmarks in recognition of implications of biased sampling in medical 

and epidemiological studies. Davidov and Zelen (2001) studied relative risk 

and family history, showing how analyzing family registries will pick up ob­

servations proportionally to the family size. But the main concern of this 

thesis is survival data where time is the variable of interest. In this setting, 

length bias arises through the study of prevalent cohorts. Such data are left­

truncated as subjects are sampled after the initiation of the event of interest. 

Applications of prevalent cohorts includes AIDS, studied by Lagakos, Barraj 

and De Gruttola (1988) (the data in this case are originally right-truncated 
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but the authors use the reverse time to analyze it as left-truncated data), 

and Alzheimer's disease. Gao and Hui (2000) used two-phased sampling to 

estimate incidence of dementia. Stern et al. (1997) analyzed prevalent co­

hort data for Alzheimer but did not correct for length-bias. Wolfson et al. 

(2001) used data from the Canadian Study of Health and Aging (CSHA) and 

demonstrated that, when length-bias is taken into account, the median sur­

vivallifetime for individuals diagnosed with dementia is considerably shorter 

than was previously estimated. 

2.3 The conditional approach and stationar­

ity 

While the early works on length-biased sampling emphasized parametric 

models, their theoretical developments have since mainly focused on non­

parametric methods. One necessary assumption required for left-truncated 

data to be properly length-biased is stationarity of the pro cess generating 

the ons et times. When this assumption does not hold, there will still be a 

bias in the prevalent population compared to the underlying incident cases, 

but the tools based on purely length-biased data will not be valid. Brook­

meyer and Gail (1987) described the relationship between the distribution 

of onset times and the prevalent-incident bias. Without the stationarity as­

sumption, one can deal with the general problem of left truncation from a 
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conditional perspective. This approach was developed initially by Turnbull 

(1976) as an extension of nonparametric product limit estimator proposed 

by Kaplan and Meier (1958). It was further investigated by Wang, Jewell 

and Tsai (1986) who derived the asymptotics of the product limit estimate in 

the presence of random truncation. Wang (1991) extended this to nonpara­

metric maximum likelihood estimation of the truncation distribution. Other 

works in that area include Anderson, Borgan, Gill and Keiding (1993) and 

Tsai, Jewell and Wang (1987). Hazard regression for length-biased data has 

also been studied by Wang (1996), while Huang and Wang (1995) examined 

competing risk models for prevalent data. Sorne authors have forayed into 

semiparametric territory. Wang (1989) has investigated a semiparametric ap­

proach for randomly truncated data. Other related work has been done by 

Tsokidov (1998), Van der Laan and Hubbard (1998), and Gilbert, LeIe and 

Vardi (1999). These works are all based on the so-called quasi-independence 

assumption. Martin and Betensky (2005) have proposed methods for testing 

quasi-independence between failure and truncation times using Kendall's tau. 

Zelen (2004) modeled recurrence time distributions for prevalent cases, and 

includes sorne generalization of length-biased sampling. Huang and Wang 

(2004) jointly modeled recurrence event pro cess and failure times. Though 

the conditional approach enables one to work with left-truncation of unspeci­

fied distribution, it does not offer the most efficient estimates for the survival 

function when the stationarity assumption holds. Consequently this has led 

21 



to sorne exploration of the subject. Asgharian, Wolfson and Zhang (2006) of­

fered a characterization and informaI test for stationarity, while Addona and 

Wolfson (2006) proposed the first formaI test for the stationarity of incidence 

rate in prevalent cohort studies. 

2.4 The unconditional approach 

When the assumption of stationarity is reasonable or formally verified, the 

analysis of left truncated data can proceed through an unconditional maxi­

mum likelihood approach that allows one to recover the underlying incident 

and unbiased distribution of the lifetime. This approach was pioneered by 

Vardi (1982, 1985) and Gill, Vardi and Wellner (1988). Vardi (1989) de­

rived the NPMLE (obtained through an EM algorithm) for length-biased 

right-censored data and Vardi and Zhang (1992) presented the asymptotics 

for this NPMLE. The setting of these papers however is not a realistic set­

ting for prevalent cohort study with follow-up. Vardi's algorithm relies on 

fixed number of uncensored and censored observations (that is, whether a 

subject will be completely observed or not is known a priori, which is quite 

a strong assumption), and the author mentions that under other conditions 

such asymptotics will not hold and have to be derived separately, though 

the likelihood remains the same. This work was accompli shed by Asgharian, 

M'Lan and Wolfson (2002) and Asgharian and Wolfson (2005), who have 

derived asymptotic results for the NPMLE of the length-biased and unbi-
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ased survival functions when the data are length-biased and subject to right 

censoring. 

2.5 Covariates and other kinds of bias 

Wh en covariates are to be modeled, however, the ostensible choice is be­

tween semiparametric and fully parametric models such as the Weibull model. 

There are different settings in which length-bias must be taken into account 

and at the same time covariates allowed for. These include treatment stud­

ies (Wang et al. 1993) and natural history of disease studies (Alioum and 

Commenges, 1996; and Cnaan and Ryan 1989). In addition, Brookmeyer 

and Gail (1981) examined the effect of using prevalent cohorts on relative 

risk. However, there has been no satisfactory way proposed to use the Cox 

proportional hazards model when the natural history of a disease is of in­

terest and the data are length-biased. The assumptions that must be made 

are rather restrictive. Wang (1996) showed how the Cox model may be fit to 

length-biased data and partial (quasi) likelihood inference made about the 

regression parameters when there is no censoring. For full discussion of these 

and related issues, see Addona (2001). 

In the context of common regression analysis, when sampling do es not 

suffer from any bias, the sampling distribution of the covariates holds no 

information about the covariate effects. It is therefore natural to exclude 

this uninformative distribution from the likelihood and carry out a condi-
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tional analysis which considers the data as coming from independent but 

non-identically distributed random variables given the covariates, though 

the sam pIed observations come from the joint distribution of the variable 

of interest and the covariates. This conditional point of view allows for a 

reduction of the dimensionality of the problem at hand. In the context of 

prevalent cohorts, as the observed data are sampled with a bias, the covari­

ates are also not representative of the population of interest. The problem 

thereby extends beyond the length bias category. Sorne of the related sam­

pling issues were discussed by Patil and Rao (1978), and Patil, Rao and Zelen 

(1988), with examples relating to family size estimation and zoology. Sackett 

(1979) offers an extensive and detailed catalog of the different kinds of bias 

that can occur in analytical research. Smith (1993) discussed the difficulties 

of defining target populations and the role of selection in inference. On a 

lighter note, Breslow (2003) discussed selection bias in epidemiology and the 

apparent lack of recognition of statistics in medicine. 

The development of techniques taking into account biased sampling in 

specific problems and the underlying theory has grown through the years. 

Bickel and Ritov (1991) studied biased sampling and regression models when 

covariates have known finite support and offered large sam pIe asymptotics 

for nonparametric linear regression. Zhou et al. (2002) proposed semipara­

metric empirical likelihood methods for out come dependent sampling where 

they treat the distribution of the covariates as a nuisance parameter. Other 
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works relating to outcome dependent sampling include Breslow and Hol­

ubkov (1997), Breslow, McNeney and Wellner (2003). Begg and Greenes 

(1983) studied selection bias and diagnostic tests, while Glesby and Hoover 

(1996) addressed the issue of treatment selection bias in observational stud­

ies. The use of biased samples to estimate treatment effect was investigated 

by Robbins and Zhang (1988), and estimation of incidence rates under bi­

ased sampling was studied by Berger, Bodian and Hirsch (1996). Lawless, 

Kalbfleisch and Wild (1999) proposed semiparametric methods for regression 

of problems with response-selective and missing data, and Chen (2001) in­

troduced parametric models for response biased sampling. Recently, Baker, 

Fitzmaurice, Freedman and Kramer (2006) investigated informative covari­

ates giving rise to missing outcomes. 

As far as we know, very few authors have specifically addressed the sam­

pling bias in the covariates with length-biased data. It is the case of Begg 

and Gray (1987) for case-control studies with prevalent cases, with the goal 

of estimating odds ratio relating exposure to disease incidence which is a very 

different problem from that of modeling the survival distribution. Crist6bal 

and Alcala (2000) and Cristoba,l et al (2004) who proposed methods of non­

parametric regression for length-biased observations based on a moment ap­

proach, also include the sampling bias in the covariates. They did not, how­

ever, consider censoring and therefore the remarks about Wang's approach 

applies to them as weIl. 
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When the stationarity assumption holds, it is possible to formalize the 

relationship between length-bias in the lifetimes and the bias in the covariates 

to show that the sampling distribution of the covariates depend on their 

effects. This then allows us to incorporate the extra information in the 

sampling distribution of the covariates and arrive at more efficient estimates. 
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Chapter 3 

The likelihood function 

In this chapter the likelihood function for length-biased data taken from 

prevalent cohort with right censoring including covariates is constructed, first 

through an extension of the likelihood of Vardi (1989) then it is formally 

derived from first principles. A comparison between this likelihood and the 

likelihood that ignores the contribution of the sampling distribution of the 

covariates is offered, both theoretically and through one analytic example. 

3.1 Notation and preliminaries 

3.1.1 Length-biased sampling 

Let Y be a positive random variable (true event time) with distribution Fu. 
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Define, for y 2': 0, the c.d.f. 

1 lY FLB(y) = - xdFu(x), (3.1.1) 
p, . 0 

where p, = J~oo xdFu(x) < 00. 

The c.d.f. FLB is called the length-biased distribution function of Fu and 

arises if a r.v. Y, with c.d.f. Fu is observed with probability proportional to 

its length (Cox (1969)). Let Y have c.d.f. FLB . The c.d.f. FLB can also be 

described as the c.d.f of the randomly left-truncated r.v. 's Y in the stationary 

case described by Wang (1991). 

Now consider a sample YI, ... , Yn of independent random variables with 

- -
c.d.f FLB . In the applications considered, the Yi's are of the form Yi = 

Ti + Ri, where Ti is the truncation variable (backward recurrence time) and Ri 

the observed residuallifetime (forward recurrence time). These correspond, 

respectively to the observed "onset" to the date of the cross sectional survey, 

and the observed time from the latter date until "failure". Suppose that 

the residual lifetimes are subject to censoring by the random variables Ci, 

with c.d.f Fc(c), so that only the minimum of Ri and Ci is observed. Then 

the observed and possibly censored data are {(Xi, 6i ), i = 1,2, ... ,n} where 

Xi = Ti + Ri 1\ Ci and where 

6i = {1' 
0, 

(3.1.2) 
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These kinds of data can arise in survival analysis from sampling of preva­

lent cases, where subjects are selected at sorne point in time after onset and 

then followed until failure or censorship. Censoring may occur at the end of 

the follow-up period but is not restricted to this scenario. As mentioned in 

the previous chapter, for the observed lifetimes from a prevalent cohort to be 

properly length-biased, an important assumption is that, prior to the start 

of the study, the occurrences of initiations are assumed to follow a stationary 

Poisson process (Asgharian et al. 2006). A similar setting can occur in the 

sampling of renewal processes, when the pro cess is observed from a starting 

time in between renewal events. 

3.1.2 Introducing covariates 

Now consider a cross-sectional survey, where the lifetimes are measured 

and, for each observation, a vector of covariates of interest, Zi, is assessed. 

The goal is to estimate Fu, by observing the data {(Ti, Ri 1\ Ci, Zi, 6i), i = 

1, ... , n}, including the estimation of covariate effects on survival from initia­

tion. Under this setting, the lifetimes given Zi are not marginally identically 

distributed, but the samples come from a joint population of the lifetimes and 

covariates, having sampling distribution FLB(x, z) coming from the unbiased 

joint distribution Fu(x, z) with parameters () = ({3, 'ljJ). Here, {3 encompasses 

the covariate effects and 'ljJ represents the parameters of the "baseline" life­

time distribution, that is, the unbiased distribution of lifetime from onset 
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when aH covariates are set to o. 

In the usual, unbiased sampling case, the marginal sampling distribution 

of the covariates do es not depend on the parameters of interest (in particular, 

j3), and one can carry out a conditional analysis to model the effect of the 

covariates on lifetimes, though the observations, sampled cross-sectionally, 

come from the joint distribution of the lifetime and covariates. When the 

covariates have an influence on the lifetime and the observations are sampled 

with length-bias, then the sampling distribution of the covariates is also 

subject to a bias and differs from the marginal distribution of the covariates 

in the (unbiased) population of interest, say Fz(z). The marginal sampling 

distribution of the covariates, noted FB(z) will in fact be subject to a "mean 

lifetime" bias (as it will be shown in the next section), in the sense that 

the probability of observing the vector z will be proportional to the mean 

lifetime of an individu al with covariates z, and thus FB(z) will depend on 

O. Consequently, the sampling distribution of the covariates has to be taken 

into account in the likelihood for inferential purposes. 

3.2 From a conditional to a joint approach 

Deriving the likelihood for length-biased observations subject to censoring 

in the presence of covariates needs careful consideration. While the issue 

of informative censoring (given the complete failure or censoring time from 

onset) can be dealt with using the approach of Vardi (1989), one cannot 
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naively extend this likelihood to a likelihood that considers the covariates 

conditionally, because the distribution of the covariates in the sample also 

depends on the parameters of interest. 

1, ... ,n, rather than the conventional (Xi, 6i, Zi), where Xi = Ti + Ri 1\ Ci. 

While complete lifetimes and complete censoring times are not independent 

(because of the common backward recurrence time), the residuallifetimes R 

and residual censoring times Ci are, in most practical situations. Further, we 

shall assume that the residual censoring times are independent of the (Ti, Ri) 

pairs, i = 1, ... , n, and so the Wi's are assumed to be independent. 

In the absence of covariates, and under a scheme of multiplicative cen-

soring, which is informative, Vardi derives the likelihood as, 

n 

J:(8) = II J: i (8), (3.2.1) 
i=l 

where 

(3.2.2) 

and fu is the density function of Fu, while f-l(8) the mean of fu. A detailed 

description of Vardi's problem and the derivation of 3.2.1 is given in section 

6.l. Under cross-sectional sampling, the likelihood is proportional to J:( 8), 

though the setup differs from multiplicative censoring, as Vardi explicitly 

states. The asymptotic properties of MLE's obtained from J:( 8) under cross-
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section al sampling without covariates are derived by Asgharian et al (2002a). 

When covariates are introduced in the model, the following likelihood: 

(3.2.3) 

where /-l(Zi; (J) = IE(XIZi), seems natural, as it conditions over the observed 

covariates as is done in most corn mon regression contexts. This likelihood, 

however, ignores the informativeness of the sampling distribution of the co-

variates (hence the subscript 1 in LI). 

Going back to first principles to properly include covariates, in the most 

general setting, the likelihood can be seen as the joint density of the data. 

Let f denote a generic joint density, by independence of the observations: 

n 

LJ((J) = II f(Xi, t i , zil X 2 T; (J). (3.2.4) 
i=l 

Here, the subscript J is used to denote the joint approach, as the sampling 

distribution of the covariates is not conditioned out. The condition X 2 T 

takes into account the fact that every observation is randomly truncated, 

and essentially refiects the sampling mechanism. 

There are three approaches one can take to go from 3.2.4 to something 

with a form similar to 3.2.2 (in fact the former should reduce to the latter 

when there are no covariates). AlI three approaches lead to the same likeli-

hood, though the formula may be written in different ways. These aesthetic 
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adjustments depend on the intended emphasis: for optimization purposes, 

all parts not involving 8 may be ignored, while theoretical results are easier 

to perceive through a fully joint likelihood. 

The first approach consists of applying the definition of conditional prob-

ability in its most basic form, (looking at just one observation for simplicity): 

.c (8) = f( IX > T· 8) = f(x, t, z; 8) = f(x, tlz; 8)fz(z) 
J X, t, z -, P(X 2: T; 8) P(X 2: T; 8) (3.2.5) 

As fz(z) do es not depend on 8, this reduces t~: 

l' (8) f(xlz; 8)f(tlz; 8) 
'-'J oc P(X 2: T; 8) . (3.2.6) 

We can assume that the truncation time is independent of the covariates, so 

f(tlz; 8) = fr(t; 8). In fact, the assurnption of stationary incidence of onset 

tirnes implies uniforrn truncation which in turn is equivalent to length-bias 

sarnpling, so fr(t; 8) is proportional to a constant. Thus, 

f(xlz; 8) 
.cJ (8) oc P(X 2: T; 8)· (3.2.7) 

The second approach uses the relationship between joint and conditional 

density (once again, considering only one observation for sirnplicity): 

.cJ (8) = f(x, t, zlX 2: T; 8) = f(x, tlz, X 2: T; 8)f(zIX 2: T; 8). (3.2.8) 

33 



This approach enables us to see that 

(3.2.9) 

So let us look at fB(Z; 0), the aH important distinction between [,1(0) and 

f ( 1
0) = f( IX > T' 0) = P(X 2:: Tlz; O)fz(z) 

B Z Z - , P(X 2:: T; 0) 

So we need to find P(X 2:: Tlz; 0). 

P(X 2:: Tlz; 0) = ('XJ t fu(x, tlz; 0) dt dx 
./0 ./0 

(3.2.10) 

(3.2.11) 

Since the unbiased random variables X and Tare independent, and, as stated 

ab ove , the truncation is assumed to be uniform (and independent of the 

covariates), we get: 

P(X 2:: Tlz; 0) = .fo
oo 

.fo
x 

fu(xlz; O)fT(t) dt dx (3.2.12) 

Let T be sorne large constant, covering the range of possible lifetimes 

in the population of interest (as we want the truncation to have a proper 

distribution, though the distribution of the lifetimes might have in theory 
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unbounded support on the positive realline). 

l OO lX 1 loo 1 f-1(z· 8) 
P(X ~ Tlz; 8) = fu(xlz; 8)- dt dx = -xfu(xlz; 8) dx = ' 

.0 .0 T .0 T T 

(3.2.13) 

Henee, 

f ( . 8) = f( IX > T· 8) = P(X ~ Tlz; 8)fz(z) 
B Z, Z -, J~ P(X ~ Tlz)fz(z) dz (3.2.14) 

(3.2.15) 

where f-1(8) = 1E(IE(XIZ)) = IE(X), the overall mean lifetime of the unbiased 

population. Note that, as mentioned earlier, the eovariates are sampled pro-

portionally to the mean lifetirne of a given set of eovariates. Substituting 

3.2.15 baek into 3.2.9, one gets: 

L (8) L (8)f-1(z;8)fz(z) 
J ex: 1 f-1( 8) (3.2.16) 

Considering a full sam pie the likelihood is thus: 

(3.2.17) 

After sorne algebraie manipulation, eliminating all terms not depending on 
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o and canceling the conditional expectations, yields: 

(3.2.18) 

As one can notice in 3.2.15, P(X 2:: T) is proportional to J-l(0) , and therefore 

3.2.7 also gives ri se to 3.2.18. 

The third approach is a natural extension of 3.2.2 into a sample space 

X of higher dimension. Here we keep (X, Z) as joint, though marginally 

the unbiased distribution of Z holds no information about 0, working in a 

higher dimension simplifies the proofs seen in the next chapter. We have IID 

observations of length-biased times accompanied by covariates, so J-l( 0) is 

indeed the mean lifetime of the entire population with distribution Fu(x, z). 

Under this approach, we obtain: 

(3.2.19) 

3.3 Formal derivation of the likelihood func-

tion 

Following is the actual derivation of the likelihood function. 
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Let Bdzi (Zi) be a ball of radius dZ i centered at Zi' 

P( X > x) = .l P (X > x, Z = z) dz = .l P(T + R /\ G > x, Z = z) dz 

= .l.1000 

P(T + R /\ G > x, Z = ziG = c)fc(c) dcdz 

= .l.loo P(T + R /\ c > x, Z = z)fc(c) dcdz. 

(3.3.1) 

and 

P(T + R /\ c > x, Z = z) = .l P(T + R /\ c > x, Z = z, R = r) dr 

= r r fT,R,Z(t, r, z) dt dr . 
.Ir .Jt>x-(r/\c) 

(3.3.2) 

Thus, 

Sx(x) = r i rI fT,R,z(t, r, z)fc(c) dt dr dc dz .1 z . c .Ir. t>x-(r/\c) 

=1 r r r fT,R,z(t,r,z) dtdrdzfc(c) dc 
. c.Jz.Jr .Jt>x-(r/\c) 

=1[1 r r fu(t+r,Z)dtdrdz]fc(C)dC 
c z .Ir .Jt>x-(r/\c) M 

(3.3.3) 

= lEc [<px(G)] , 

where 

<px(c) = r r r fu(a + r, z) dt dr dz. (3.3.4) 
.Jz.Jr .Jt>x-r/\c M 
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The distribution of T + C, the censoring time, is 

h+c(w) = .l.fow fT,Z(W - c, z)fc(c) dcdz = (fT * fc)(w), (3.3.5) 

where * is the convolution operator. 
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The likelihood function is 

n 

[, = II POi(Ti E (ti, ti + dti], Ri E (ri,Ti + dri], Zi E Bdzi(Zi)) x 
i=l 

p1-Oi(Ti E (ti,ti+dti],Ci E (Ci,Ci+dci],Zi E Bdzi(Zi)) 

= II P(Ii E (ti , ti + dti], Ri E (ri, ri + dri], Ri :s; Ci, Zi E BdZi (Zi)) x 
iEUC 

II P(Ti E (ti , ti + dti], Ci E (Ci, Ci + dei], Ri > Ci, Zi E Bdzi(Zi)) 
iEC 

= II P(R:S; Ci IIi E (ti,ti+dti],Ri E (ri,ri + dri],Zi E Bdzi(Zi)) X 

iEUC 

iEUC 

iEC 

P(Ti E (ti, ti + dti], Ri E (ri, ri + dri], Zi E Bdzi(Zi)) X 

IIp(Ri > Ci 1 Ti E (ti,ti+dti],C E (Ci,Ci+dci],Zi E Bdzi(Zi)) X 

iEC 

p(Ii E (ti,ti+dti],Zi E Bdzi(Zi))P(Ci E (Ci,Ci+dci]) 

= II p( Ci ~ ri)P(Ti E (ti , dti], Ri E (ri, dri], Zi E BdZi (Zi)) x 
iEUC 

iEC 

(3.3.6) 
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As C do es not contain any information about 0, we obtain 

C ex II P(Ti E (ti , dti], Ri E (ri, dri], Zi E BdZi (Zi)) x 
iEUC 

II P(Ri > Ci, Ti E (ti , dt i ], Zi E Bdz;(Zi)) 
iEC 

iEUC iEC 

U sing the fact that 

f ( ) - fu(t + r, z) 
T R Z t, r, Z - ~'----'-, , fJ if a > 0, r > O. 

we obtain 

L ~ g (fu( li : ri, Zi) t (Lê" lu (li :, 1iJ, Zi) dw r-6
' 

~ g eu (li : ri, Zi) t (L,,+G; lu(:, Zi) dw r-", 
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In a parametric setting, 

(3.3.11) 

and 
n 

L(O) = II Li(O), (3.3.12) 
i=l 

3.4 Relationship between LI(O) and Lj(O). 

It is worthwhile to compare the likelihood that ignores the sampling distri-

bution of the covariates and this new joint biased-sampling likelihood. One 

may notice that 3.2.18 differs from 3.2.7 only in the replacement of P,(Zi; 0) 

by p,( 0). By definition, 

(3.4.1) 

so we go from n conditional expectations to one unconditional mean, but this 

does not say mu ch about the context of biased sampling. A more intriguing 

result arises from 3.2.15: 

fB(Z;O) 
p,(z; 0) . 
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Integrating over Z on each side, one gets: 

_1_ = r fB(Z; (}) dz = lE
B 

( 1 ) 
p,((}) ./z p,(z;(}) p,(Z;(}) , 

(3.4.3) 

and so we have the relation between p,((}) and p,(z; (}) in the presence of 

"expected-lifetime" bias in the sampling distribution of the covariates. Equa-

tion 3.4.3 suggests that 

(3.4.4) 

is a natural estimate for p,((}). Replacing p,((}) by i',((}) in 3.2.19 one can 

obtain a tractable profile likelihood. In Chapter 5, we discuss why it can be 

difficult to use this estimate for p,( (}) to find MLEs. 

In the interest of implementation and asymptotics, we can now compare 

[,I((}) and [,J((}). Since it is easier to work on the log scale, one can write: 

n 

i!I( (}) = i!n - L log (P,(Zi; (})), (3.4.5) 
i=l 

(3.4.6) 

where the common part of the two log-likelihoods is given by 

in = t ";log (ju(x,lz,; li)) + t (1 ~ J,) log (.L~x, fu(wlz,; li) dw ). 

(3.4.7) 
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Now, considering the biased sampling of Z, 

(3.4.8) 

On the other hand, considering the Strong Law of Large Numbers, 

Using Jensen's inequality, by concavity of the logarithm, we can see that for 

large enough samples 

(3.4.10) 

The last question that cornes to mind with respect to the comparison be-

tween the two likelihoods is what about the maximum likelihood estimates? 

In particular, how would ih,n and ÔJ,n compare in matters of bias and vari-

ance? 

Theorem 1. Suppose e is a bounded, open subset of JRk. Let fu(xlz; 8) 

be identifiable on e, the closure of e. Let f-l(z; 8) : e ~ (0, +00) be a 

differentiable function of 8 and suppose there exists an integrable function 

m(z,8) such that 1 tef-l(z, 8) 1 ::; m(z, 8). Then, under sampling from the 
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joint biased distribution of (X, Z) 

(3.4.11) 

Prao! As mentioned earlier in this chapter, both log-likelihoods can be 

expressed in terrns of a common log-likelihood plus the sum of n log mean 

lifetimes. Looking at their gradients yields (here we use the ' notation as 

short-hand for first derivative with respect to B): 

and 

Now, 

Of-L( B) 0 1 
fjj) = oB. f-L(z; B)fz(z) dz, (3.4.14) 

At this point it becomes imperative to interchange integration and differen-

tiation. In order to do so, we imposed a smoothness condition on f-L(z, B) 

through the existence of an integrable function m(z,8) which dominates 

f-L(z, B). See Folland (1999), Theorem 2.27 page 56 for details. 

Of-L(8) 1 0 l ' fjj) =. o8f-L(z, 8)fz(z) dz =. f-L (z; 8)fz(z) dz. (3.4.15) 
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Note that, by 3.2.15, 

(3.4.16) 

therefore 

(3.4.17) 

80 

(3.4.18) 

and 

(3.4.19) 

When sampling from the biased distribution Z, the strong law of large num-

bers gives us that 

(3.4.20) 

Theorem 1 essentially states that the distance between the score func-

tions of the likelihoods tends to O. Given identifiability of the parameters, 

the asymptotics of LI( 8) as derived by Asgharian et al. (2002a) and the 

asymptotic properties of LJ (8) we derive in Chapter 4 of this thesis, this 

means that both likelihoods have the same maximizers, and therefore will 
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give the same point estimates for (), as the sam pIe size n tends to infinity. 

The issue of efficiency is more subtle. It is shown in the next section with an 

analytic example and by simulation in Chapter 6 that one can obtain more 

efficient estimates using .cJ (()) when Fz(z) is known. 

A A 

3.5 Efficiency of () J over () 1: an analytic ex-

ample 

In Theorem 1, we showed that, at least asymptotically, maximization of .cl 
will result in the same point estimates for () as maximizing of .cJ under 

sampling from the joint biased density of X and Z. We now address the 

issue of efficiency by looking at the variances of (}J and () 1 in a particular 

case, practically the simplest possible case for the regression of length-biased 

lifetimes. Consider exponentially distributed lifetimes (in the unbiased pop-

ulation) with a binary covariate that is known to have a discrete uniform 

distribution in the unbiased population. Suppose we have no censoring that 

is, 8 = 1 with probability 1. Using a proportional hazards model, the hazard 

function for the unbiased exponential population is given by: 

À(xlz) = e~z À. (3.5.1) 

46 



Note that we essentially have a mixture of two exponentially distributed 

populations, one with rate e!3 À and the other with rate À. 

With a little algebra, it can be shown that the length-biased density of 

an exponential random variable with rate À is a Gamma density with shape 

parameter 2 and rate À: 

fu(x; À) = À exp( -Àx); (3.5.2) 

f ( . ') - xÀexp(-Àx) _ ,2 (_' ) _ À2
X

2
-

1 exp(-Àx) ( ) 
LB X, /\ - * - /\ X exp /\x - f(2) . 3.5.3 

For our model, this means the conditional length-biased density of the 

lifetimes, given z is: 

(3.5.4) 

Without loss of generality, let Z E {O, 1}. The sampling probability of Z is: 

(3.5.5) 

The me an lifetime given z is 

(3.5.6) 
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/----

end the overall unbiased mean lifetime is 

(3.5.7) 

We consider the conditiona1 likelihood first. As there is no censoring, the 

likelihood reduces to: 

f' ( 1f3 \) = rrn 
fu(xilzi) 

J...., 1 X, Z , /\ ( . f3 ,,\) 
i=l f1 Z, , 

= rrn 
e(3zi,,\ exp( _e(3zi "\Xi) 

. ( e(3zi ,,\)-1 
~=1 

n 

= rr e2(3zi,,\2 exp (_e(3zi"\Xi)' 

i=l 

The 10g-likelihood is given by: 

n 

fI(x, zlf3,"\) = L (2f3Zi + 2 log ,,\ - e(3zi "\Xi)' 
i=l 

The score function is then 

(3.5.8) 

(3.5.9) 

(3.5.10) 

At this point, it is relevant to look at the expectation of 3.5.10 under length-

biased sampling, to verify that it is zero. Without 10ss of generality, we drop 
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/--" 

the subscript and consider only one observation. Three separate expectations 

need to be computed. First, 

1 

IELB(Z) = 2:: ZPB(Z; (3) 

Similarly, 

- ---:-

1 + ef3 ' 

z=o 
e-f3 

=lx----=-
1 + e- f3 

1 
1 + ef3' 

(3.5.11) 

(3.5.12) 

by integrating out the density of a Gamma(3,e f3 À) in the fourth line ab ove. 
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The third expected value is slightly more tricky: 

= .10
00 

XhB(xIO; (3, À) 1 +lc /3 dx + .10
00 

e/3 x hB(xI1; (3, À) 1 :-:-/3 dx 

= 1+11, say. 

Treating land II separately: 

Renee, 

l = a X À 2 X exp ( - ÀX) d.::C 1 loo 
1 + e- fJ • 0 

1 
--~aIE(Y), where Y rv Gamma(2, À) 
1 + e- fJ 

1 2 
1 + e-/3 À' 

----
1 + e-/3 e/3 À 

e-/3 2 
-

1 + e-/3 À' 

l II 2 (1 e-(3) 2 + - + --)." 1 + e-/3 1 + e-/3 -).". 
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(3.5.14) 

(3.5.15) 

(3.5.16) 



Taking expectation of 3.5.10, plugging in 3.5.11, 3.5.12 and 3.5.16, we get: 

(3.5.17) 

Having verified this fact, we move on to the information matrix, which is 

given by 

n 

L z; e(3zi ÀXi 

i=l 
n L Zi e (3zi xi 

'i=l 

(3.5.18) 

Again, this expectation is taken with respect to the sampling distribution of 

(X, Z), i.e., hB(xlz; (3, À)PB(Z; À) dx. This time, computations are easier, as 

we see that 

(3.5.19) 

1 + e(3' 

using the same trick as in 3.5.12, and 

(3.5.20) 

(1 + e(3)À' 
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once more using 3.5.12. In the end,we obtain: 

(3.5.21 ) 

The variance of () l is given by the inverse of the information matrix: 

(3.5.22) 

One can take the determinant of the matrix above: 

(3.5.23) 

The joint likelihood, knowing the true distribution of the covariates, is given 

by: 

(3.5.24) 
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The log-likelihood is: 

n 

fJ(x, z; /3,)..) = L (/3 Zi + 2 log ).. - ef3z
i )..Xi + log 2 -log(l + e-(3)). (3.5.25) 

i=l 

Taking the derivative once to get the score function: 

(3.5.26) 

Using 3.5.11 and 3.5.12, it is clear that 

(3.5.27) 

The information matrix is given by minus the expectation over the sampling 

distribution of the second derivative of the log-likelihood: 

~ zef3zi x· L.....J ~ ~ 

i=l 

= n l+ei3 + (1:ei3 )(1+e-i3 ) 

( 

2 1 

(l+e i3 ),\ 

i=l 
n 2 

L)..2 
i=l 
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Note that this is very similar to 3.5.21 but with an extra, positive term in the 

first diagonal element of the matrix. Notice that this "gain" in information 

is maximized at (3 = O. To get the variance of the MLE, we invert J J.n (0): 

(3.5.29) 

The determinant of 3.5.29 is given by 

(3.5.30) 

which is clearly smaller than 3.5.23. In fact, the relative efficiency for the (3, 

covariate effect is 

V ar(~I,n) = 1.5, 
Var ((3J,n) 

(3.5.31) 

while the relative efficiency for the rate parameter is a function of (3: 

Var(~I,n) 3(1 + e- fJ ) 

Var(~J,n) 3 + 2e- fJ ' 
(3.5.32) 

which is bounded below by 1 as (3 ------+ 00 and bounded above by 1.5 as 

(3 ------+ -00. Similarly the ratio of 3.5.23 over 3.5.30 is 1.5. 

54 



Chapter 4 

Asymptotic Properties of the 

MLE from LJ(O) 

Now that the proper joint likelihood has been established, it is imperative to 

derive the asymptotic properties of the resulting estimator. 

4.1 Consistency of the MLE 

In this section, we establish the cOIlsistency of the MLE of 8. It is shown 

that the MLE is consistent even if aU the observations are censored. This 

property holds whether covariates are included or not, as this is possible 

because the censoring mechanism is informative, and censored observations 

contain "extra" information about the unknown parameters. It is well known, 

however, that the MLE based only on censored observations is Ilot consistent 
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under non-informative censoring. 

We shall use ,c, dropping the subscript J, to denote the likelihood for this 

section and the next. Then using 3.2.19, 

where Ui = t i + ri and Vi = t i + Ci. Let hB be the density function of FLB 

and define 

! fu(w, z; 0) ! 1 
h(v,z;O) = (0) dw = -FLB(dw,dz;O) . 

. w;:::v IL . w;:::v w 

The density function h is called the forward recurrence time density. It is 

now evident that 

(4.1.1) 

n 

II fiB(Ui' Zi; O)h1-Oi(Vi, Zi, 0) (4.1.2) 
i=l 

To establish the consistency of the MLEs we adapt the approach used 

by Ibragimov and Ha'sminskii (1981, pages 35-38). We make the following 

assumptions: 

A.l The parameter space, e is a bounded open subset of JRk; 

A.2 The probability density function, hB(x, z; 0) is a continuous function 
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of e on e, the dosme of e, for almost aIl x E X, the sample space; 

A.3 The density !LB(X, z; (J) is identifiable with respect to (J; 

A.4 For any (J E e, there exists é > 0 sueh that 

r sup !LB(X, z; (J + ()dxdz < 00 . 
.J.~ 11(II<é 

It should be noted that if A.l -A.4 hold for !LB, they hold for fu. 

Theorem 2. Suppose that A.l-A.4 are fulfilled. Let Ôn be the MLE of (J. 

Then (Jn -7 (J almost surely as n -7 00. 

The main idea of the proof is as follows. Define the likelihood ratio, 

where ç is located in a small sphere in U = e - (J, assuming that (J is 

the "true" parameter value. Show that with probability approaehing zero 

supZn(Ç) 2: 1 where the supremum is taken over ç in this sphere. Using a 

eompactness argument show that sUPÇEe_eZn(Ç) 2: 1 with probability ap­

proaching zero as n -7 00. FinaIly, using an argument similar to that of 

Ibragimov and Ha'sminskii(1981, page 36) condude that Ôn -7 (J W.p. 1 as 

n -7 00. 

In order to carry out the above steps two lemmas are needed to establish 
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the key bound, 

for positive k's and w's that tend to zero. This bound, in turn, opens the 

way for an application of Markov's inequality to complete the pro of along 

the lines of Ibragimov and Ha'sminskii. 

Pro of of Theorem 2. We first established the two lemmas mentioned. 

Lemma 1. Suppose assumptions A1-A4 hold, then 

a) For all e E 8 and alll > 0, 

where cjJ(x) = ;. J~x Sc(w)dw, and Sc(w) is the survival function of the cen­

soring random variable C. Note that cjJ(x) = P(o = liT + R = x). 

b) For all e E e, 

as é ---+ O. 

Proof of Lemma 1. We first notice that the Dominated Convergence The­

orem (DCT), A.2 and A.4 imply that r~,hB,</J(e, e+() is a continuons fnnction 

of ( for any e E 8. Part (a) then follows from A.3 and the compactness of 
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e. On the other hand, A.2 implies that for any 0 E e, 

for all (x, z) E X. A.4 and the DCT now complete the proof of (b). 0 

Lemma 2. Suppose A.l-A.4 hoid for hB' Then the same conditions hoids 

for h tao. 

Proof of Lemma 2. A.l is automatically fulfilled. To verify A.2 we notice 

that hB is a density function and 

hB(S, z; 0) l () hB(S, z; 0) 
S [y,oo) s:S; y , 'r;/S 2: o. 

The DCT therefore implies the continuity of h(x, z; 0) for almost all x E 

X. By A.3, g(x, z; 0) is identifiable with respect to O. To verify identifiability 

of h, suppose 

h(y, z; 0) = h(y, z; Of) 'r;/(y, z), 

Then tyh(y, z; 0) = tyh(y; Of) which results in 

hB(y, z; 0) hB(y, z; Of) 
y Y 

'r;/(y, z) S.t. y =F 0 

and hence hB(y, z; 0) = hB(y, z; Of), 'r;/(y, z), which implies 0 = Of. 
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To prave A.4 holds for h, observe that 

1 hB(S,z;8+() 
sup h(y, z; 8 + () :::; sup ds. 

11<II<e . s?v 11<II<e s 

Thus, 

r sup h(y, z; 8 + ()dydz:::; r r sup hB(S, z; 8 + () dsdydz 
.lx 1I<II<ê .lx Js?v 11<II<e s 

l
ools g(s,z;8+()d d d 

= sup ,y z s 
. 0 . 0 1I<II<e s 

10
00 hB(S,z;8+() Iosd d d = sup y z s 

. 0 11<II<e s . 0 

= roo r sup hB(S, z; 8 + ()dzds < 00 (using A.4) Jo Jz 11<II<ê 

Now the DOT completes the verification of A.4 for h. 0 

Corollary 1. If Assumptions Al-A4 hold) then 

a) For aU 8 E e and all '"Y > 0) 

inf r~hFc(8,8') = inf r (hl/2(X,z;8)-hl/2(X,z;8/))2Fc(x)dxdz = k~b) > 0, 
110-0'11>1 " 110-o'II>YJ x 

where F c( x) is the distribution function of the random variable T. 

b) For all 8 E e) 

( r sup [h 1
/
2 (X, z; 8+()-h1

/
2(X, z; 8WFc(x)dxdz) 1/2 = W~(E) -70 as E -7 O . 

.lx 1I<II::;e 
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Proof. The result follows immediately from Lemmas 1 and 2.0 0 

Details of the proof of Theorem 2. 

We can now establish consistency of the MLE. Let r be a sphere of small 

radius E situated in its entirety in the region lçl > ~r. Suppose ço is the 

center of r. Define 

(4.1.3) 

where 

(4.1.4) 

Thus 

n N 

- TI L~1/2(e) II [L~/2(e + ço) + sup IL~/2(e + ço + () - L~/2(e + ço)I]· 
i=l i=l 11(11::;1': 

Let L be the generic Li. It then follows from the above inequality that 
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On the other hand, 

IEO{.c-1/2({}) [.c 1/2 ({} + ça) + sup !.c1/2 ({} + ça + () - .c1/2 ({} + ça)!]} 
11(11:::;" 

IEo [.c-1/2({}).c1/2({} + ça)] + IEo [.c- 1/2 ({}) sup !.c1/2 ({} + ça + () - .c1/2 ({} + ça)!] 
11(11:::;" 

- 1+11, say. 

We simplify l & II and obtain bounds for them in terrns of k~b) and w~(c5) 

for l = hB, h. 

where X is the sam pIe space defined by the quadruple X = (T, R, C, Z) and 

À(dx) is the density of X. Note that the definition of the sample points as 

X = (T, R, C, Z) rather than as X = (T + R, C, Z) is precisely what facilitates 

our pro of. 

First, 

.L .c-1/2({}).c1/2({} + ça)À(dx) 

= r r ri (fu(t + r, z; (})) -8/2 ( f !u(w, z; (}) dW) -(1-8)/2 

.Jz .Jt .Jr. c p,( (}) . w~t+c p,( (}) 

(
fu(t + r, z; {} + ça)) 8/2 ( f fu(w, z; {} + ça) d ) (1-8)/

2
, (t )d d dtd 

(
{} C) ({} C) W /\0 ,r, C, Z c r z, 

p, + <"a . w~t+c P, + <"a 

.{Ili M(t, r, c, z; {}, ça)dcdrdtdz, say, 
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where 6 is a generic 6i , and 

fu(t + r, z; 0) 
Àe(t, r, c, z) = fT,R,Z(t, r, z; O)fc(c) = /-l(O) fc(c), 

We then have 

.Ix [,-1/2(0)[,1/2(0 + ço)À(dx) 

- .l.ll.l~r M(t, r, c, z; 0, ço)dcdrdtdz 

+ 1111 M(t, r, c, z; 0, ço)dcdrdtdz 
z t r. c>r 

- LUt (L+, !v~(:t)~) -1/2 (LH f~~~~~:)O)dW) 1/2 

fu(t+r,z;O)j.()d d d d 
/-l( 0) ccc r t z 

+ If [f (fu(t + r, z; 0)) -1/2 (fu(t + r, z; 0 + ço)) 1/2 

. z. t. r c>r /-l(O) /-l(O + ço) 

fu(t + r, z; 0) j ( )d d d d 
/-l( 0) ccc r t z 

- A+B, say. 

Now 

A= fif(! fu(w,z;O)dw)-1/2(! fu(w,z;O+ço)dw)1/2 X 
./Z t. c . w;:::t+c /-l(O) . w;:::t+c /-l(O + ço) 

1 fu(t + r, z; 0) d j ( )d d d 
(0) r ccc t z r;:::c /-l 

= f f f ( ! fu(w, z; 0) dw) 1/2 ( ! fu(w, z; 0 + ÇO) dw) 1/2 fc(c)dcdtdz . 
./z. t. c . w;:::t+c /-l( 0) . w;:::t+c /-l( ° + ÇO) 
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Define v = t + c and w = c. Then 

A ill ( f fu(w, z; 0) dw) 1/2 (! fu(w; 0 + ço) dw) 1/2 fc(w)dwdvdz 
z v. w:::;v • w?v p( 0) . w?v p( 0 + ço) 

.[.Iv h1/2(V, z; 0)h1/2(V, z; 0 + ço)Fc(v)dvdz . 

Since 

B = 111 (fu(t + r, z; 0)) 1/2 (fu(t + r, z; 0 + ço)) 1/2 Sc(r)drdtdz , 
z t r p(O) p(O+ço) 

we may let v = t + rand w = r to obtain, 

B - fIl (fu(v,Z;0))1/2(f(v,z;0+çO))1/2 Sc(w)dwdvdz 
.Jz. v. w:::;v p(e) p(O+ço) 

Il (fu(v,Z;0))1/2(fu(v,z;0+çO))1/2 r Sc (w)dwdvdz 
.z.v p(O) p(o+ço).Jo 

.l.1 fl;;(v,z;O)fl;;(v,z;O+ço)~ .lav 
Sc(w)dwdvdz, 

where hB(V, z; 0) = V!U
Jl
('(è);8) is the length-biased density. Thus 

I=A+B 

= .[.Iv h1/2(V, z; 0)h1/2(V, z; 0 + ço)Fc(v)dvdz+ 

f 11/2( .) 1/2(. ) 1 r ) .Jz. v f LB v, Z, 0 f LB v, Z, 0 + ço -;;.J
o 

Sc(w dwdvdz. 
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On the other hand, 

A ~ (l.l h(v, z; 8)Fc(v)dvdz +.l ,Iv h(v, z; 8 + ço)Fc(v)dvdz 

-.l ,Iv (h1/2(V, z; 8) - h1/2(V, z; 8 + ço)) 2Fc(V)dvdz) 

and 

= 111/2( . )fl/2(. ) 1 ru () B . z. v f LB V, Z, 8 LB V, Z, 8 + ço ;'/0 Sc w dwdvdz 

= ~ (.l.i hB(V, z; 8)~ .la
v 

Sc(w)dwdvdz 

+ .l.1 hB(V, z; 8 + ço)~ .la
v 

Sc (w)dwdvdz 

-.l.1 (fl~(v, z; 8) - fl~(v, z; 8 + ço)) 2 ~ .la
V 

Sc (w)dwdvdz ). 

We now note that 

.l.l h(v, z; 8)Fc(v)dvdz + .l.1 hB(V, z; 8)~ .la
V 

Sc (w)dwdvdz 

.l.l,l?v ~hB(W, z; 8) Fc(v)dwdvdz + .l.l.l<v ~hB(V, z; 8)Sc(w)dwdvdz 

.l.l.l?v ~hB(W, z; 8)Fc (v)dwdvdz + .l.l.l?w ~hB(V, z; 8)Sc(w)dvdwdz 

- ,l ,l.l?w ~hB(V, z; 8)dvdwdz 

.l.L h(w, z; B)dwdz 

1. 
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This then implies that 

l = A+B 

= ~(2 -.li (h1/2(V,Z;O) - h1/2(v,Z;O+ço)r Fe(v)dvdZ 

-.l.1 (fl~(v, z; 0) - fl~(v, z; 0 + ço)) 2 t .laV 

Se (w)dwdvdz ) 

khB (1_) + kh(1_) 
= 1 - () 2 2 () 2, (using Lemma 1 and Lemma 2). (4.1.6) 

In similar fashion it may be shown that 

II - IE() [,e-l/2(O) sup l,el/2(O + ço + () - ,el/2(O + ço)l] 
11(II:Sé 

r ,e-l/2(O) sup l,el/2(O + ço + () - ,el/2(O + ço)IÀo(dx) 
J:t 11(II:Sé 

r r r r (f fu(w(,O~; 0) dw ) -1/2 sup Ih1/ 2(t + c, z; 0 + ço + () 
.Jz.Jt.Jr.Jc:sr . w2:t+c f-L 11(II:Sé 

\, .; 

v 

h(t+c,z;O) 

_h1
/
2(t + c; 0 + ço) 1 fu(:~~; 0) fe(c)dcdrdtdz 

+ r r r r (fu(t+c,z;O))-1/2 sup l(fu(t+c,z;O+ço+()r/2 

.Jz.Jt.Jr.Jc>r f-L(O) 11(II:Sé f-L(O+ço+() 

_(fu(t+c,z;O+çO))1/2I fu (t+c,z;O) f ( )d d d d 
f-L(O + ço) f-L(O) Je c c r t z 

C+D, say. 

66 



We now simplify C and D as follows. 

C r f r r (f fu(~,~; 8) dw) -1/2 sup Ih 1/ 2 (t + c, z; 8 + Ça + () 
.Iz. t.lr.lc~r . w~t+c jL 11(II~ê 

_h1/ 2(t + C, z; 8 + ça) 1 fu(t ;;) z; 8) fc(c)dcdrdtdz 

- 1 fjh1/2(t + c, z; 8) sup Ih1/2(t + c, z; 8 + ça + () 
z. t C 11(II~é 

_h1
/
2(t + c, z; 8 + ço)lfc(c)dcdtdz 

1I h1/2(v, z; 8) sup Ih1/2(V, z; 8 + Ça + () - h1/2(V, z; 8 + ça) 1 Fc(v)dvdz 
z. v 11(II~ê 

by setting v = t + c and w = c. Next, 

D r r r fl~(t+r,z;8)sup Ifl~(t+r,z;8+ço+() 
.Iz.lt.lr 11(II~ê 

- fl~(t + r, z; 8 + ço)I-1-Sc(r)drdtdz 
t+r 

1 fl~(v, z; 8) sup Ifl~(v, z; 8 + Ça + () 
• V 1I(II~é 

- fl~(v, z; 8 + ça) 1 t .lav 

Sc(w )dwdvdz. 

by setting v = t + r, and w = r. 
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It then follows from the Cauchy-Schwarz inequality that 

11= C+D 

= 11 h1/2
( v, z; 8) sup Ih I/2 (v, z; 8 + ço + () - h1/2

( v, z; 8 + ço)IFc(v)dvdz 
z v 11(11 S;c 

+ l ffl~(v, z; 8) sup Ifl~(v, z; 8 + ço + () - fi~(~), z; 8 + ço)l~ r Sc(t)dtdvdz 
. z· v 11(IIS;c ./0 

(using Lemma 1 and Lemma 2) . 

Using (4.1.6), (4.1.7) and the elementary inequality 1 + a :::; ea , -00 :::; 

a :::; 00, we obtain 

The pro of is now completed in similar fashion to the pro of of Theorem 4.3 

of Ibragimov and Has'minskii(1981, page 36-38) and by referring to Remark 

4.1 by the same authors. 0 

4.2 Asymptotic Normality of the MLE 

In this section we establish the asymptotic normality of the MLE under ap-

propriate regularity conditions. While the pro of relies on the usual approach 

via a Taylor expansion of the score function, once again, the difficulties posed 
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by informative censoring and covariates need to be resolved. 

Define 1/J(x, z; 8) = log iLB(X, z; 8) and let 

First and second partial derivatives of 1/J are accordingly denoted by 1/Jp and 

1/Jpq. We make the following assumptions: 

A.5 

(a) Suppose 1/J admits all third order partial derivatives for aH 8 E e. 

(b) For any p,q = 1,2, ... ,k, the third moments of 1/Jp(X,Z;8) and 

1/Jpq (X, Z; 8) exist for all 8 E e. 

(c) There exists lC(x) = O(eX
) as x -7 00, such that 

I.i 1/Jpqr(x, z; 8)dz l ::; lC(x) for all 8 E e 

for p,q,r = 1,2, ... , k, where 

Ee[lC3(X)] < (X) for aH 8 E e . 

A.6 

(a) The following equations hold: 

Ee [1/Jr (X, Z; 8)] = 0 for r = 1,2, ... ,k , 
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and 

for p, q = 1,2, ... ,k. 

(b) The information matrix 'J1(O) = ['J~q(O)lpq=1,2, ... ,k is positive definite 

for l = hB, h and all 0 E e. 

Notice that A.6(a) merely concerns the interchanging of "j''' and "8". 

Assumption A.6(b) is, however, of a different nature. Except for members of 

an exponential family, checking positive-definiteness of the information ma­

trix can be difficult. It is comforting, however, that identifiability (A.3) along 

with smoothness, ensures that positive-definiteness of the information ma­

trix rarely fails to hold (Asgharian 2001). On the other hand, using Lemma 

2, assumption A.3 holds for h if hB fulfills the same condition. This then 

means that A.6(b) holds for h if it holds for hB. Finally, assumption A.5(b) 

is needed to establish differentiability of h. 

Theorem 3. Suppose Conditions A.1 and A. 3-A. 6 are fulfilled. Then 

where 00 and il are, respectively, the true parame ter value and its maximum 
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likelihood estimator. Let U be a generic Ui and J = JI + J2) where 

Jij = COV(6 O~l log hB,oo(U, Z), 6 O~j log hB,oo(U, Z)) 

o 0 
= E [6 (OOl log hB,oo(U, Z)) (oOj log hB,oo(U, Z)) ] 

and 

2 (0 0) 'Jlj = COy (1 - 6) OOl log hoo(U, Z), (1 - 6) oOj log hoo(U, Z) 

= E [(1- 6) (O~l log hoo(U, Z)) (O~j log hoo(U, Z))]. 

l,j = 1, ... ,k. 

Proof. In the sequel we use the following notations, 

( ) 
_ fu( U, z; 0) 

90 U, z - f-L(O) , h( ) =[ fu(w,z;O)d 
o v, z (0) w. 

. w?v f-L 

Define, 

and 

fori=1,2,··· ,no 

Using the regularity conditions contained in Lemma 3 one may derive the 
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first order Taylor expansions, 

and using the fact that 

n 

L [6iU[(Ô) + (1- 6i )V[(Ô)] = 0, 
i=l 

we obtain the key equation, 

0= Jn t [6i U[(00) + (1- 6i )V[(00)] 
~=1 

r:::( A T 1 ~ [ fj T fj T] 1 +v n 0-(0) ;'f;t bifjOUi (00) + (l-bJfjOVi (00)) +Op(v'n)' 

(4.2.1) 

Once equation (4.2.1) has been established the main task is to show that 

(4.2.2) 

find 

(4.2.3) 
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show that 

~ tSi:oUT(Oo) ~ Var [SUT(Oo)] as n ~ (Xl , ( 4.2.4) 
~=l 

and that 

A t [Si :0 uT (00 ) + (1 - Sd :0 vT (Oa)] ~ Var [SUT (Oa) + (1 - S)VT (Oa)] 
~=l 

(4.2.5) 

as n ---7 (Xl. 

It is in these steps that the informative censoring needs careful consid-

eration. The details are contained in the appendix. The pro of is finally 

completed, using (4.2.1) by applying the Central Limit Theorem to 

(4.2.6) 

o 

It is worth noting that 

This shows that Var ( S 8~ log 980 (U, Z)) depends on the censoring distri-
J 

bution. The dependence is not just through P(S = 1), i.e., the proportion of 
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censored observations. 

Details of the proof of Theorem 3. One lemma is needed in the pro of for 

asymptotic normality. 

Lemma 3. Suppose A.5 and A.6(a) hold for g. Then A.5(a,c) and A.6(a) 

hold for h. 

Remark. An inspection of the pro of of Lemma 3 shows that the condition 

K(x) = O(eX
) as x -> 00, imposed on K in Assumption A.5(c), can be 

replaced by 

K(x) l'V .1; K(s)ds . 
x 

Praof of Lemma 3. We first note that 

8
3
3'ljJ(y,z;8) = (fi~(y,Z;8)) -3 (fi~(y,Z;8)) (fi~(Y'Z;8))+2 (fi~(Y'Z;8))3 

88 hB(Y, z; 8) hB(Y, z; 8) hB(Y, z; 8) hB(Y, z; 8) 

Using A.5 and a Taylor expansion, the first three derivatives of hB(X, z; 8) 

are bounded by sorne function of x whose moment exists. Therefore h(x, z; 8) 

possesses the first three derivatives and we can interchange l and 8. This 

implies that A.5(a) holds for h. 

In order to establish assumption A.5(c) for h we notice that 

J, 1 a f (s z' 8)ds 
810g h(y, z; 8)/88 = . s~Y s~ LB , , 

.1S'2Y shB(S, z; 8)ds 
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and therefore, 

lim alog h(y, z; 8)/08 = l. 
y-'>OO a log hB (y, z; 8) / 08 

This means that a log h(y; 8) / 08 t'V a log g(y, 8) / 08 for large values of y. It is 

then not hard to see that 

h(kl (y,z;8) fi~(y,z;8) 
t'V -='::'-'---'--

h(y,z;8) fLB(y,z;8) 
as y -'7 00, Vk. 

This implies that te: log h(y; 8) rv ~ log g(y; 8) as y -'7 00, Vk. Thus for 

large values of y, 1 ~~k~ log h(y; 8)1 :s; JC(y), if the same condition holds for g, 

i.e., I~~~ logg(y;8)1:S; JC(y). 

It remains to show that Eh[JC(Y)] exists if EhB [JC(Y)] < 00. We have, 

by the definition of h, 

where 

Eh[JC(Y)] = 1100 

h(y, z; 8)JC(y)dydz 

= 1.1000 

.l2Y ~hB(S, z; 8)JC(y)dsdydz 

(Using Fubini) = (oo [J~s JC(y)dy hB(S, z; 8)dzds 
.Jo . z S 

(OO[K:(S) =.Jo . z -s-hB(S, z; 8)dzds 

= E [K:(X)] 
hB X ' 

K:(S) = r JC(y)dy . 
.Jo 
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Now lC(y) = O(eY ) implies that K,(s)/s = O(e8
), and therefore Eh[lC(Y)] < 

00. Assumption A.6(a) for h readily follows from Fubini's theorem and the 

fact that 

k k 1 1 [Jk [J h(y,z;O)/[JO = -~hB(S,Z;O)ds 
s?y s [JO 

for k = 1,2,3 

This completes the pro of. 0 

Completion of the praof of Theorern 3. 

The j-th component of the score function is 

[J 
[JO. log L( 0) 

J 

Now taking expectation we obtain 
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We show that lE [ a~j log Li (8)] = O. Define 

ç = P(6 = 1) = P(R :::; C) = rX) FR(C)fc(c)dc, 
Jo 

Sinee C ~ (T, R, Z), we have 

dP(x, Z, 6 = 1) = P(T E (t, t + dt], R 1\ CE (r, r + dr], Z E Bdz(Z), 6 = 1) 

= P(T E (t, t + dt], RE (r, r + dr], Z E Bdz(z), R:::; C) 

= fT,R,Z(t, r, z)Sc(r) dtdrdz 

= S ( ) fu(t + r, z; 8) d d d 
c r /-l( 8) t r z , 

which readily implies 

Then we have (dropping the subscript for convenience): 

. [ a fu(U, Z; 8) 1 ] lloo lOO a fu(t + r, z; 8) 
t = lE 08 log (8) 6 = 1 = 08 log (8) dP(t, r, zl6 = 1) . 

J /-l .z.O.O J IL 
(4.2.7) 
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Thus 

. = ~ /00 /00 ~l fu(u,z;B)S ( )fu(t+r,z;B)d d d 
t aB. og (B) c r (B) t r z ç.o.o J f-L f-L 

=~ {{(X) {(X) ~(Sc(r)fu(t+r,z;B))dtdrdz 
ç .J z .Jo .Jo aB j f-L ( B) 

= 0, 

as 

ll
OO loo f(t+r,z;B) ! -Sc(r) (B) dtdrdz = dP(t,r,z,6 = 1) = 1. 

. z. 0 . 0 f-L . {t,r,z} 

and 

ii = lE [a~. log ({ fU(~'B~; B) dw) lb = 0] 
J .Jw?y f-L 

ll
oo lOO a ( / fu(w, z; B) ) = aB log (B) dw dP(t,c,zlb=O) . 

. z· 0 . 0 J • w?,v f-L 

(4.2.8) 
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where 

dP(x, z; b = 0) - P(T E (t, t + dt], R 1\ CE (e, e + de], Z E Bdz(z), R > T) 

- P(T E (t, t + dt], CE (e, e + de], Z E Bdz(z), R > C) 

- P(T E (t, t + dt], z E Bdz(z), R > e)fe(e) de 

- [.100 
fT,R,Z(t, r, z)dr]fe(e) dedtdz 

_ F ( ) [00 fu(t + r, z; 0) d d d d 
Je e (0) rte z 

, t f1 

_ fe(e) (00 fu(~,o~; 0) dw dtdedz 
.Jt+c f1 

()j fu(w,z;O) 
- fe e (0) dw dtdedz 

w:;:'v f1 

Thus, 

ii = ( (00 (00 [~log (l' fu(w, z; 0) dw)] 1 fu(w, z; 0) dw fe(e)dtdedz 
.Jz.Jo.Jo aOj , w:;:'v f1(0) , w:;:'v f1(0) 

= 1.100 loo le; L:;:.v fU~(è);e) dw j fu(w; 0) dw F (c)dtdcdz 

J
, fu(w z'e) (0) Je 

z 0 ,0 w:;:'v /-l(l])' dw w:;:'v f1 

= ( (00 (00 ~! fu(w, z; 0) dwdtdedz 
.Jz./o ./0 ao j , w:;:'v f1(0) 

=0 

as 

where v = t + e, 
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Next we find Var(oiUT(eo)) , where the variance is to be interpreted as 

the vector of component-wise variances of uT(e). We first note that 

The above equation and the strong law of large numbers imply that 

On the other hand, 
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Thus as n ---+ 00, 
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Chapter 5 

Covariates and length-biased 

sampling 

With the asymptotic properties of the MLEs established, the focus of this 

chapter is the development of parametric models that take into account 

length-biased lifetimes with covariates, and the expression of the likelihood 

for those models. 

5.1 Regression in survival analysis 

Before looking at specifie models, a few more preliminaries are needed. When 

it cornes to modeling lifetimes, the objects of interest differ from more com­

mon statistical settings. For example, as mean lifetimes tend to be infiuenced 

by long living individuals, median lifetimes are more likely to be used as a 
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measure of average. Also, the distribution function F(x), gives the probabil-

ity of living at most up to time x, which is of little use to patients, doctors 

and governments alike. This is why the survival function S(x), giving the 

probability of living for at least x amount of time, is a much more meaningful 

measure to consider. 

One particular notion that is central to survival analysis is the concept 

of hazard, which one can express as an instant rate of failure (or whichever 

is the event under study), denoted by ). (x). It is formally defined by: 

). (x) = lim p {x ::s; X < x + dx 1 X 2: x} . 
dx-+O dx 

One can then extend this idea into the notion of cumulative hazard: 

A(x) = r ).(s) ds. 
.Jo 

(5.1.1) 

(5.1.2) 

A number of relationships can be established, the most use fuI for this thesis 

being the following: 

S(x) = exp ( - A(x)) = exp ( -lX )'(s)ds), (5.1.3) 

and 

f(x) = À(X)S(x). (5.1.4) 

Note that, as one can write the mean through integration of the survival 
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function, it can also be written using only hazard: 

M = (OO S(x) dx 
./0 

= {OO exp ( _ A(x)) dx 
./0 

= 100 

exp ( -lx À(S)dS) dx 

(5.1.5) 

One can use 5.1.4 to rewrite the likelihood in terrns of the hazard and 

survival function: 

(5.1.6) 

(5.1.7) 

The number of commonly used parametric models for which À(xlz; 8), S(xlz; 8) 

and M(Z; 8) have a closed form is limited. They include Wei bull and Pareto 

models which will be discussed in the next sections. 

One of the basic regression models in survival analysis is the proportional 

hazards model. Modeling hazard has advantages over working directly with 

the survival function, as the hazard function can assume a variety of shapes 

while the survival function is inevitably monotone decreasing and bouded. 

This means hazard is more flexible and its different forms are easier intu-

itively conceptualize and interpret. The proportion al hazard model makes 

the assumption that covariates change the hazard only through multiplica-

84 



tion by a constant factor. Mathematically, 

(5.1.8) 

While very popular due to the use of Cox's model which is semiparametric 

and do es not impose any structure on the baseline hazard, one should always 

check if this assumption of proportionality of hazard holds before employing 

such a model. 

When assuming a proportional hazard model for the unbiased population, 

in the length-biased environ ment things are much different: 

, (1) - iLB(xlz) 
ALB x z - SLB(xlz) 

xfu(xlz) 
p,(z) 

J'OO sfu(slz) ds 
x p,(z) 

xÀo(x) exp ( - e,B'zAo(x)) 

J~OO sÀo(s) exp ( - e,B'zAo(s)) ds 

(5.1.9) 

Fortunately, as one can write the likelihood in tenns of the unbiased 

distribution (and related quantities), this does not pose a problem in terms 

of implementation. 

The other basic regression model in survival data analysis is the acceler-

ated failure-time model (AFT). It can be expressed in terrns of the survival 

function: 

S(xlz; j3) = So(xe-,B'Z), (5.1.10) 
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where So (x) is the baseline survival function when the covariates are aIl 

O. This model assumes that covariates modify the time-scale of the event 

of interest. Though it can be seen as an extension of linear regression for 

positive random variables through a logarithm transformation, the number of 

parametric error distributions it can accommodate in closed form is limited. 

If one assumes an accelerated failure-time on an unbiased population, the 

resulting length-biased population also follows an accelerated failure-time 

model with the same covariate effects, if taken conditionally. First, we have 

to go to the density function: 

f ( 1 

. (3) = _ dS(xlz; (3) = _ dSo(xe- f3'Z ) 
u x z, dx dx 

(5.1.11) 

where fu,o(x) = -dSo(x)jdx. For aIl AFT models, f-L(z; (3) can be expressed 

as 

f-L(Z; (3) = .loo S(xlz; (3) dx 

= (OO So(xe-f3'Z ) dx 
./0 

=ef3lz (OOSo(w)dw 
Jo 

= ef3lz f-L( 0), 

(5.1.12) 

where f-L(O) is the baseline mean lifetime. 80 the length-biased density of an 
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AFT model is given by: 

f (1 · f.I) = xfu(xlz; (3) 
LB X Z, fJ p,(z; (3) 

xe-{3'z fu,o(xe-{3'Z) 

e{3'zp(O) 

= (xe-{3'z ~(~\xe-{3'Z)) e-{3'z 

= hB,O(Xe-{3'Z)e-{3'z, 

h f () xfuo(x) H w ere LB,O x = Mio) . ence 

as desired. 

(5.1.13) 

(5.1.14) 

Because of this apparent equivalence between unbiased and length-biased 

AFT models, one might be tempted to sim ply apply the methods available 

for incident cases (right-censored with no truncation) to the length-biased 

distribution and estimate the covariate effects. This would be wrong for 

two reasons. First these methods rely on the assumption that censoring is 

uninformative, which is not the case with prevalent cohort. Secondly it would 

still ignore information about the covariate effects contained in the sampling 
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distribution of the covariates. Speaking of which, following 5.1.12: 

f ( . (3) = p,(z; (3)fz(z) 
B z, J~ p,(z; (3)fz(z) dz 

e{3'z p,(O) fz (z) 
J~ e{3l z p,(O)fz(z) dz 

e{3'z fz(z) 
lE(e{3IZ) 

(5.1.15) 

holds for an AFT models, which means the sampling distribution of the 

covariates depends only on the covariate effects regardless of the lifetime dis-

tribut ion. The implications of this compared to proportional hazard models 

are discussed in the next section. 

5.2 Length-biased sampling and Weibull mod-

els 

Because of its wide use and versatility, it is appropriate to consider the 

Wei bull distribution. Recall that, for positive x, the Wei bull density is given 

by 

(5.2.1) 
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~ .. 

One may note that the me an of a Weibull(a, À) parametrized as in 5.2.1 is 

( ,)=f(l+l/a) 
f-L a,/\ À' (5.2.2) 

One ean express a Wei bull model as a proportional hazards model: 

(5.2.3) 

Renee, when given a veetor of eovariates z, this is the hazard function of a 
(3' z 

Weibul1(a, eu À), with me an 

( 
. ) _ exp ( - f3~ Z) f (1 + 1/ a ) 

f-L z, a, À, (3 - À . (5.2.4) 

Assuming a Wei bull model in the incident population (the population of 

interest) do es not lead to a Weibull distribution for a length-biased prevalent 

eohort. It should be mentioned that the Weibull distribution is a special 

ease of the Generalized Gamma distribution (henceforth denoted GG) with 

density given by 

(5.2.5) 

Correa & Wolfson (1999) demonstrate that the length-biased distribution of 

a GG(a, À,~) is a GG(a, À, ~ + l/a). 

The marginal sampling density of the covariates, from an unbiased Wei bull 
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.~. 

population, can be expressed as 

fB(Z; a, À, f3) = f. (f3~Z) , 
exp - - fz(z)dz 

. z a 

exp ( - (3' z ) fz ( z ) 
(5.2.6) 

where, wh en Z is univariate, the denominator reduces to Mz ( -{Jla), the 

moment generating function of Z provided it exists. Note that this sampling 

density not only depend on the covariate effects but it also involves a, the 

shape parameter of the Wei bull density of the lifetimes. In particular, as 

fB(Z) depends only on the ratio of f3 and a, it is possible that this might 

le ad to some identifiability problems. 

We can now write the likelihoods for Wei bull data, starting with the one 

that ignores the informativeness of the covariates as it has an explicit formula: 

CI ( ((Xl, Zl), ... , (Xn, Zn)); a, À, f3) 

= fr . 1 (e(3IZiaÀO:xf-I)Oi exp ( - e(3IZi (ÀXi)O:) 
i=l fL(Zi, a, À, f3) 

n @3 

= II e Q À (e(3lziaÀO:x9'-I)Oi exp (_ e(3I Zi (Àx')O:) 
. f(1+1) ~ 1 
~=l 0: 

(5.2.7) 
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The correct likelihood is not so elegant: 

The difficulty here is that p,( a, À, (3) does not have an explicit formula 

unless one knows fz(z) a priori, which not often the case in real applications. 

When fz(z) is unknown, there are at least two ways to approach p,(a, À, (3) 

in .LJ. The first way is to use 3.4.3 and obtain 

1 À r f3'z 

( À (3) = ( 1) Joz ea fB(Z)dz. p, a" r 1 + a . Z 

(5.2.9) 

The density fB(Z) has a natural nonparametric estimate through the sample 

distribution of the covariates. Unfortunately this cannot be used for imple­

mentation, as numerically, L~l te~ will explode for positive (3/z as a -7 O. 

The second approach to express p, is through 3.4.1: 

r (1 + 1) r ( (3/ Z ) 
p,(a, À, (3) = À a .Jz exp - -a- fz(z)dz. (5.2.10) 

The expression now involves finding the unbiased expectation of exp( _ ,B~Z), 

which will be numerically more stable, provided one has some knowledge of 

fz(z). In this form, one might want to simply assume that fz(z) is known 

under reasonable circumstances but in most cases it will have to be estimated. 
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To that end, a new method to estimate fz(z) nonparametrically is proposed 

in the next chapter. 

One can also express a Weibull model as an AFT model. Let So(x) be 

the survival function of a Weibull(a, À), then 

which is the survival function of a Weibull(a, Àe-,B'Z). 

As observed in the previous section, the sampling density of the covariate 

do es not depend on a: 

As 

( . \ (3) = f(l + l/a) = ,B'z(f(l + l/a)) = ,B'z (0) 
M z, a, A, Àe-,B'z e À e M . 

e,B'z fz(z) 
IE(e,B'Z) , 

(5.2.12) 

(5.2.13) 

only depends on (3, the covariate effects, the foreseen difficulties in numeri-

cally maximizing the likelihood for proportional hazard models may not occur 

for AFT models. Note how the overall me an is proportional to IE( e,B'Z) and 

M(a, À, (3')-1 ex IEB(e-,B'Z), the interpretation of the parameters for covariate 

effect is the opposite of the proportional hazard case. 
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5.3 Length-biased sampling and Pareto mod-

els 

While perhaps less widely used than Wei bull models, the Pareto distribution 

also has sorne interesting properties when it cornes to regression, both with 

AFT and proportional hazard models. Using the same set of parameters 

as before (which might not be standard notation), the probability density 

function is given by this: 

where 0: > 0, À > ° and x > À. The mean exists only if 0: > 1: 

aÀ 
fJ(a, À) = --. 

a-l 

(5.3.1) 

(5.3.2) 

Interestingly, the length-biased distribution of a Pareto distribution is also 

Pareto with parameters (0: - 1, À): 

f (
. \) - :cfu(x) _ a).l:t a - 1 _ (a - l)ÀQ-l 

LBx,a,/\- -x +1 \-
fJ x Q a/\ x Q 

A Pareto model can be expressed as a proportional hazards model: 

, ef3'za 
À(xlz; a, (3) = ef3 Z Ào(x; a) = -­

x 
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which is the hazard of a Pareto(e,L3'za, '\). In this case the mean conditional 

on the covariates z is: 

e,L3'Za'\ 
p,(z; a,'\, (3) = -a--C-'-­

efJ Za - 1 

a'\ 
(5.3.5) a - e-,L3'z' 

for e,L3'za > 1. The sampling density of the covariates depends on (3 and ex: 

(5.3.6) 

An AFT model based on a Pareto distribution yields a Pareto model: 

(5.3.7) 

S( 1 ) 
- S ( -,L3'Z) _ ,\Cl< 

X Z - 0 xe - ( a') xe- fJ Z Clé 
(5.3.8) 

which is the survival function of a Pareto( a, e,L3'z '\). Consequently its mean 

is 

. _ ae,L3'z,\ _ ,L3'z 
p,(z,a,'\,(3) - - e p,(a,'\), 

a-1 
(5.3.9) 

as predicted by 5.1.12. 
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Chapter 6 

Algorithms 

6.1 Nonparametric estimation of fz(z) 

Before discussing the simulation of length-biased data with covariates, we 

introduce an algorithm to find an estimate for the unbiased distribution of 

the covariates, which is necessary for the implementation of [.](8). Consider 

Vardi's Problem A, where there are M complete independent observations 

UI , ... , U M with distribution Gand N independent incomplete observations 

VI, ... , VN , in the sense that Vi = WiCi , where Wi has distribution G and Ci 

is independently drawn from a uniform distribution on (0,1). The likelihood 

for the observations in Problem A is given by: 

M N r 1 
[(G) = II G(dUi) II l . . -;G(ds). 

i=l i=l . s?v, 
(6.1.1) 
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Note that, in this problem, the number of censored and uncensored obser-

vations is known a priori, and that the setting appears completely different 

than prevalent cohort data. Nevertheless, once we rewrite 3.2.2 in terrns of 

6.1.1, we can proceed to the nonparametric likelihood. While the data we are 

considering consist of observations of the form (Xi, Zi, Oi), one may ignore the 

covariates for the time being, and split the sam pIe in two groups. The pairs 

(Xi, 1) are the uncensored observations, so they can be relabeled as ui's, and 

the (Xi, 0) pairs will be the v/s. We can write n = M + N, where M and N 

fit Vardi's original problem. Since the likelihood considers the observations, 

in particular the Ui 's, as constants, the distribution that maximizes 3.2.2 also 

maximizes 

(6.1.2) 

Letting G be the length-biased distribution of the data, in other words, 

ufu(u) 
G(du) = du = FLB(du), 

fJ 
(6.1.3) 

the equivalence between 3.2.2 and 6.1.1 becomes evident. 

As shown by Vardi, the likelihood 6.1.1 can be maximized nonparametri-

cally, by assigning positive weights only on the observed Ui'S and Vi'S, because 

giving mass anywhere else would decrease the likelihood. Let xi < x2 < ... < 

x::n represent aU the sorted distinct times (both complete and incomplete). 

Note that m :::; M + N, with equality if and only if there are no ties in the 
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observed times (which in theory occurs with probability 1 when the underly-

ing distribution is absolutely continuous, though in real applications we may 

observe ties). Let Ç,j be the number of complete observations at x; and (j be 

the number of censored observations at Xj, define p* = (pr, ... ,p~)' to be a 

probability vector, where p; = P(x;) = G(dx;), then 6.1.1 can be expressed 

as: 

(6.1.4) 

Since we have incomplete data (which contains both complete observa-

tions through the observed failure times and incomplete observations in the 

censored subjects), but the form of the complete data is known, Vardi notes 

that the EM algorithm comes as a natural solution to maximizing the likeli-

hood in 6.1.4. If an the observations were uncensored (i.e. complete data), 

the maximum likelihood distribution would be the empirical distribution of 

the data, with mass proportional to the number of observations at each time 

point. Given a previous estimate for p*, say p*,old, the EM algorithm assigns 

to each pj,new the expected conditional number of complete-data-observations 

at x; given the observed data and the previous probability vector p*,old, di­

vided by the total number of observations, so that p*,new is also a probability 

vector. The mathematical formulation can be written in two points. 

Algorithm 1. 
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• Start with an initial guess probability vector p*,old with positive mass at 

each time point. 

• Update p* at each time point using 

(6.1.5) 

One might note that if none of the observations are censored, all (i's are 

0, p* is fixed and there is no iteration. By virtue of the EM algorithm, 6.1.5 

will converge to p*, the unique maximizer of 6.1.4, which in turn yields a con-

sistent estimate for the length-biased distribution. To recover the unbiased 

distribution, one needs to readjust the probabilities in p* using the inverse 

length-bias transformation: 

(6.1.6) 

In the same way 3.2.2 was extended to 3.2.19, one can consider the ob-

servations as points in a space of dimension 1 + k, the positive realline joint 

with the space of the covariates. As such, Vardi's estimate can be taken as 

an estimate of the joint unbiased distribution of time and the covariates. It 

should be noted that, in the case of ties in time, the weight of each time 
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point has to be spread over each distinct observation at that time point: 

(6.1.7) 

One can obtain an estimate for the unbiased distribution of the covariates 

by taking the right marginal: 

pz(z) = (6.1.8) 

j S.t. Zj=Z 

6.2 Simulating length-biased data with co-

variates 

In this section, we discuss how to simulate length-biased data with covariates 

when the times come from an unbiased mixture of Wei bull populations. As 

explained in Section 6, a proportional hazard model on a Weibull distribu-

tion yields a Wei bull distribution for given a covariate z. When covariates 

are discrete, this mean that the incident population cornes from a finite or 

countable set of distinct Weibull distribution with the same shape param­

eter a but a rate parameter À(z) which depends on a baseline rate À, the 

covariate effects 13 and the common a. We can look at the joint density in 

mathematical terms: 

fu(x, z; a, À, (3) = fu(xlz; a, À, (3)pz(z). (6.2.1) 
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Now this is clearly a mixture distribution but as the covariates are observed 

we have no difficulty ascertaining which observation belongs to which sub-

population as the mixture probabilities are given by the marginal covariate 

probabilities and contain no parameter of interest. When we sample with 

length-bias, we again have a mixture of distinct distributions (now GGs which 

can be expressed in tenns of the unbiased Weibull distributions): 

( ) x!u(xlz; a, À, f3) ( ) 
hB X, z; a, À, f3 = ( 'f3) PB z; a, À, f3 . 

~L z; a, /\, 
(6.2.2) 

Now the mixture probabilities are again just the marginal probabilities of 

the covariates but depend on the parameters that need to be estimated and 

the unbiased probability distribution of the covariates which now cannot be 

brushed aside as it influences the unbiased mean of the incident population. 

Note that the same principles ho Id with continuous covariates. 

There are at least two ways to generate length-biased data with covari-

ates, though in both cases, the issues of truncation and censoring are handled 

in the exact same manner. The first approach is to start by generating a very 

large set of observations from the unbiased population including covariates 

and then sam pIe from this superset a group of observations of the desired 

sample size with weight proportional to the time variable of each observation. 

This approach has the advantage that it can be applied to any distribution, 

and involves generating observations from models for incident data. Simu-

lating observations from proportional hazard models is discussed by Bender, 
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Augustin and Blettner (2005). The disadvantage of this method is that it is 

computationally expensive and inefficient. 

The second approach involves sampling directly from the length-biased 

population. Correa & Wolfson (1999) give a simple algorithm to generate 

length-biased data from an unbiased Weibull(a, À) population. 

Algorithm 2. Let 

(6.2.3) 

To generate the desired length-biased data requires two steps: 

• Generate W say, from a Gamma(l + l/a, 1). 

• Set Y = g(W), where 9 is from 6.2.3. 

Then Y is distributed according to a GG (a, À, 1 + 1/ a) as required. 

As we know the general form of the biased distribution of the covariates, 

the problem of simulation reduces to using the most efficient algorithm to 

generate from the marginal fB(Z), From that point, the simulation of joint 

length-biased times and covariates, with uniform left-truncation and right­

censoring can be performed in a straight-forward way. 

Algorithm 3. The samples are generated as follows: 

• First, pick values for a, À, and {3, fix the sample size to n. 

• Generate n covariates z, from 5.2.6. 
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• For each Zi, generate a length-biased tirne Yi frorn the appropriate GG. 

• For each Yi, generate the truncation t'irne ti frorn a U (0, Yi) . 

• The Tesidual lifetirne faT each observation. is set ta Ti = Yi - ti · 

• Generate the censoTing tirnes Ci (01' pick c and let Ci = C faT constant 

censoTing t'irne). 

The variable J serves as an "event-tirne" indicator, that is Ji = 1 when 

Xi is an event-tirne, and Ji = 0 when Xi is a censored observation. For the 

purpose of our sirnulation, which is for the irnplernentation of {,I and {,J, 

it is not essential to keep track of the truncation tirnes. The data have the 

forrn (Xi, Zi, Ji)' 

6.3 Semiparametric bootstrap 

Here, we propose a new sernipararnetric bootstrap rnethod to obtain con­

fidence bands for the estirnated survival function. The use of bootstrap 

rnethods has grown with the advent of cornputational statistics. As their 

concept is easy to understand and because they are versatile and usually not 

very hard to prograrn, it is of little surprise that bootstrap rnethods have 

gained rnuch notoriety in ernpirical research. Efron & Tibshirani (1986) and 

Efron (1987) studied how to use bootstrap as a mean for obtaining variance 

102 



estimates and confidence intervals as we want to do here. Semiparametric 

bootstrap methods have been developed for simulating extreme order statis­

tics (see Zelterman, 1993) and to obtain confidence intervals for the Hurst 

coefficient (Hall et al., 2000). The issue of accuracy in bootstrap simulations 

has been looked into by Andrews and Buchinsky (2000) who proposed a 

method to select the number of bootstrap repetitions in a variety of settings. 

In the context oflifetime data analysis, Efron (1981) offered bootstrap meth­

ods for censored but not truncated data, Bilker and Wang (1997) extended 

that work to nonparametric bootstrap of left-truncated and right-censored 

data (in this case, with a general, unspecified truncation scheme). 

In our case, the truncation distribution is defined to be uniform under 

the stationarity assumption. Since we have a parametric model for the sur­

vival times, it is likely more efficient to bootstrap length-biased lifetimes 

parametrically while nonparametrically sampling the covariates and censor­

ing times. Unlike the simulated samples from the previous section, one needs 

to have the observed times from onset to recruitment and residuallifetimes 

(or censoring), not just the time from onset until death (or loss to follow- up). 

The set up is similar to algorithm 3, but with () and fc(c) being estimated 

from the data instead of being known a priori. Note that, as the residual 

lifetimes Ri's and the residual censoring times Ci's are independent, one can 

use symmetry to view the Ci's as being right-censored by the Ri's, and obtain 

an estimate for Sdc) using the Kaplan-Meier estimator (Kaplan & Meier, 
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1958). Because of the relationship between (J and fB(Z; (J), the distribution 

of the covariates is kept fixed in the bootstrap sample. 

Aigorithm 4. To obtain a bootstrap sample of length-biased data with uni-

form left truncation, right censoring and covariates from a sample of size 

n: 

• Obtain Ô = (&, 5,,13) from the orig'inal data Hsing LI or L J . 

• Estimate Sc ( c) using the K aplan-Meier estimator of the residual cen-

soring times 

-• Generate n censoring times Ci '5 from Sc(c). 

• Reproduce n covariates Zi as they are distributed in the observed data. 

• For each Zi, generate a length-biased time Yi from the appropriate GG. 

• For each Yi, generate the truncation time ti from a U(O, Yi)' 

• The residuallifetime for each observation is set to ri = Yi - ti. 

Generating covariates from the empirical distribution (hence nonpara-

-metric) FB(z) is problematic as it causes bias in the bootstrap estimates 

-for (J. Alternatively, one could replace FB(z) through a combination of the 

algorithm of section 7 and 5.2.6 using (&,13); that is, obtain a semiparamet­

ric estimate for the biased distribution of the covariates. While this takes 
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into account the relationship between () and me an lifetime bias in the co­

variates, it also requires more work and is probably inefficient statistically, 

as it involves estimating the unbiased distribution of the covariates which is 

sensitive to the inverse length-bias transformation when f3 is small, thereby 

inducing spurious variation in the bootstrap samples.If the unbiased distri­

bution of the covariates was known a priori, then a parametric estimate for 

f B (z) might be useful. 

Finally, by repeating the procedure of Algorithm 4 a large number of 

times, one can obtain new bootstrap estimates for the parameters and get 

confidence bands for the estimated survival curve, as well as compare the 

efficiency of LJ over LI for estimation of survival curve at each point in 

time. 
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Chapter 7 

Applications 

7.1 Simulation studies 

To illustrate the behaviour of LI and LJ under different parameter values 

and censoring schemes, the results of a number of simulations of three types 

are presented. In the first case, we assume fz(z) is known and the two 

likelihoods are tested on binary mixture data, i.e. the data come from a 

population consisting of two distinct subpopulations, identified by a factor 

Z which is either 0 or 1, with equal probability in the unbiased population. 

The biased distribution of the covariates is then: 

(7.1.1) 

In the second type of simulation, we repeat the same kind of experiment, 
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but assume the unbiased distribution of the covariates is unknown and es-

timate it with the algorithm proposed in the previous section. The third 

type of simulation explores the behaviour of .cl and .c j with a continuous 

covariate which follows a uniform density on the unit interval in the unbiased 

population, resulting in this mean lifetime bias density: 

(7.1.2) 

Once again, the unbiased density of the covariates is estimated. 

For the first type of simulation, one thousand samples of size n E {100, 1000} 

were generated, for f3 values of {O, 1,2, 4}, with Weibull parameters Cl: and 

À set to 2 and 1 respectively. The interest is to evaluate relative efficiency 

of .c j and .cl in estimating the covariate effect f3 in terrus of ratio of mean 

squared error of the MLEs. A Newton-Raphson type of algorithm was used 

to maximize the likelihoods. The results are summarized in Table 7.1. 
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n Censoring f3 Average f3~ Average f3I S.d(;JJ) S.d. (;JI) Eff'(SJ : SI) 

t'V 15% 0 0.011 0.003 0.165 0.179 1.172 

l'V 30% 0 -0.005 -0.008 0.177 0.195 1.211 

t'V 15% 1 1.030 1.025 0.193 0.200 1.067 

100 l'V 30% 1 1.035 1.027 0.197 0.210 1.112 

t'V 20% 2 2.066 2.055 0.276 0.284 1.039 

t'V 15% 4 4.139 4.119 0.475 0.482 1.009 

t'V 30% 4 4.165 4.149 0.509 0.511 0.988 

l'V 15% 0 -0.001 -0.002 0.049 0.053 1.139 

l'V 30% 0 -0.0002 -0.001 0.054 0.058 1.190 

l'V 15% 1 1.006 1.006 0.060 0.063 1.107 

1000 l'V 30% 1 1.002 1.000 0.064 0.068 1.099 

l'V 20% 2 2.009 2.006 0.083 0.087 1.084 

rv 15% 4 4.013 4.011 0.142 0.145 1.040 

cv 30% 4 4.013 4.011 0.151 0.154 1.044 

Table 7.1: Efficiency results for discrete covariate with known fz(z) 

A few comments are in order. For a discrete covariate with a known unbiased 

distribution, the MLEs obtained from L J seem generally more efficient than 

those obtained using LI, though the method used seem to induce a slight bias 

(an overestimate), possibly because the longer living subpopulation tends to 

be more censored. The gain in efficiency seems also inversely proportional 

to 1f31. This is expected due to the fact that the sampling proportion of 
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the shorter lived subpopulation will go to zero as 1,01 ----t 00. Incidentally, 

it is not clear whether censoring has an effect on the relative efficiency of 

the estimates. While there could sorne bias caused by lopsided censoring as 

1,01 -----+ 00, the variance of /3 J appears less affected by increases in censoring, 

as the information held in the sampling distribution of the covariates is not 

lessened by censoring. Note that the variance of the estimates increases with 

the amount of censoring and ,o. 

For the second set of simulations, we kept the amount of censoring ap­

proximately to the same proportion (rv 30%), and red uced the number of 

simulations as estimating the unbiased distribution of the covariates is com­

putationally time consuming. We also reduced the number of simulations 

per set of parameters to 100, with 1000 observations per simulation. The 

results are shown in Table 7.2. 

,0 Average (3J Average ,01 S.D.(,o~ ) S.D.((3I) Eff,(SJ : SI) 

0 0.006 0.004 0.055 0.052 0.915 

1 0.997 0.995 0.066 0.064 0.958 

2 2.006 2.008 0.084 0.083 0.987 

4 3.996 4.002 0.150 0.149 0.992 

Table 7.2: Efficiency results for discrete covariates with fz(z) 

In the third type of simulations, 1000 simulations with 1000 observations 

per set of parameters were performed. The amount of censoring was kept 

around 30%. The results are displayed in Table 7.3. 
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(3 Average (3J Average (31 s.d·Ui] ) S.d.(~I ) Eff.(t3J : t3I) 

0 -0.001 -0.001 0.102 0.102 1.000 

1 1.001 1.001 0.108 0.108 1.000 

2 2.014 2.014 0.115 0.115 1.000 

4 3.996 3.996 0.162 0.162 1.000 

Table 7.3: Efficiency results for continuous covariate 

It is clear that the gain in efficiency we saw when we made the correct 

assumption about the unbiased distribution of the covariates is lost when 

we have to estimate it nonparametrically using the modification to Vardi's 

algorithm. Having to estimate fz (z) induces variability in the estimation of 

the parameters. In the discrete case, it is possible that the combination of 

censoring of the longer lifetimes and the inverse length-bias transformation 

giving more weight to the shorter lived subpopulation results in a tendency 

to overestimate Pz(Z = 1) in the setting of these simulations. Note that 

the efficiency appears to increase with (3. The greater the covariate effect, 

the more pronounced demarcation between the two subpopulation is, con se­

quently, the estimated unbiased marginal distribution will be less affected by 

the inverse length-bias transformation. It should be mentioned that the esti­

mates from the correct likelihood take much more computational resources. 

For the continuous covariate case, the MLEs are practically identical 

across the scale (there were small numerical discrepancies that the table ob­

fuscates through truncation of the displayed numbers), but the conditional 
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likelihood is computationally much simpler and quicker. AIso, in about 2% 

of the simulations, the Newton-Raphson method failed to iterate for the joint 

likelihood with continuous covariates, and therefore in those cases both sets 

of estimates were omitted from the table. 

Though we used what appeared to be the most natural approach to imple­

ment the correct likelihood when the unbiased distribution of the covariates is 

unknown and did not show a gain in efficiency over the conditional approach, 

it appears feasible to gain efficiency using the correct likelihood provided we 

can develop a more efficient estimate of fz(z). Possible options include kernel 

density estimates or a Bayesian approach. The issue is how the parameters 

and unbiased marginal distribution of the covariates affect maximization the 

joint likelihood. When the covariate effects are small, the sampling marginal 

distribution of the covariates holds little information about the parameters, 

so that gain in information is small compared to the difficulties of working 

in a higher dimension. When the covariate effects are large, obtaining a 

representative sample becomes difficult as one subpopulation will be heavily 

underrepresented, reducing the effective sample size greatly. 

7.2 Application to survival with dementia 

In 1991 a nation wide prevalence study of dementia was carried out as part 

of the Canadian Study of Health and Aging. The first phase of the study was 

termed CSHA-l. Over a short period of time subjects were examined and 
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classified into several dementia categories, including "probable Alzheimer's 

Disease", "possible Alzheimer's Disease" , and "vascular dementia". All sub­

jects with dementia were then followed until 1996 when the second phase 

began with a follow-up ex am on those who were still alive, termed CSHA-2. 

Amongst the many aims of the study was the estimation of the survival dis­

tribution of individuals with dementia of any type, as well as an assessment 

of covariates that could possibly affect survival. 

The relevant data for this aspect of the study included approximate date 

of onset, date of death or censoring and the usual death indicator. Subjects 

were censored if still alive at the end of the study or were lost to follow-up. 

There were 816 (possibly censored) observed survival times. The difficulty 

with such data is that they are length-biased, the diagnosis of dementia 

having been made on prevalent rather than incident cases. Since it can be 

reasonably assumed that the incident rate of dementia has remained constant, 

it follows that the times from onset of dementia to CSHA-1 (the random left 

truncation times) are uniformly distributed. That is, we may invoke the 

stationarity assumption referred to in the introduction. See Asgharian et al. 

(2006) for detailed discussion on stationarity. 

Asgharian et al. (2002) proposed an unconditional approach to analyze 

right-censored length-biased data. They found the NPMLE of the survivor 

function and established its asymptotic behaviour. They compared their 

unconditional NPMLE with the conditional NPMLE (Wang, 1991), in the 
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estimation of the survival function underlying the observed survival times of 

the CSHA. Wolfson et al. (2001), more concerned with substantive issues of 

dementia, analyzed the CS HA survival data using the conditional parametric 

MLE and the conditional NPMLE. They also assessed the effect of covariates 

on survival which were included in a Wei bull model. 

Here, we find the unconditional parametric (Weibull) MLE of the survival 

function of the group of patients diagnosed with dementia, in the CSHA using 

both the correct joint likelihood and the likelihood that is conditional on the 

covariates. It is easy to check that Assumptions A1-A6 are satisfied for the 

Wei bull model. The details are omitted. Finally we assess the effect of 

type of dementia on survival from onset, by estimating the parameters of a 

length-biased Wei bull model with the covariate, "final diagnosis". 

Let the covariates Zn r = 1,2,3, be defined as follows: 

{

1' 
Zr = 

0, 

if the subject has the rth disease 

if the subject do es not have the rth disease 

where 1= "probable Alzheimer's", 2=" possible Alzheimer's", and 3=" vascu-

lar dementia". In our application (Zl, Z2, Z3) reduce to a vector of dimension 

2, as the covariates for "probable Alzheimer's" gets absorbed into the baseline 
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hazard. For the ith subject: 

(0,0), if the subject has "probable Alzheimer's" 

Zi = (1 0) , , if the subject has "possible Alzheimer's" 

(0,1), if the subject has "vascular dementia" 

Asymptotic confidence intervals were found using the observed information 

matrix, which is justified by the results given in section 4 and 5. For the 

joint likelihood, we estimated fz(z) using the method proposed in section 7. 

The time scale for survival was set in years. The results are given in Table 

7.4 and Table 7.5. 

Parameter Estimate Standard Deviation Confidence Interval 

0: 1.226 0.046 (1.136, 1.317) 

.À 0.208 0.010 (0.188, 0.228) 

!32 -0.150 0.065 (-0.277, -0.024) 

!33 0.073 0.072 (-0.069, 0.214) 

exp (!32) 0.861 (0.758, 0.977) 

exp (!33) 1.075 (0.934, 1.238) 

Table 7.4: Parameter estimates and 95% confidence intervals using LI 
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Parameter Estimate Standard Deviation Confidence Interva1 

a 1.226 0.002 (1.223, 1.229 ) 

À 0.208 0.0004 (0.207, 0.209) 

(32 -0.150 0.002 (-0.155, -0.146) 

, (33 0.073 0.003 (0.068, 0.078) 

exp ((32) 0.861 (0.857, 0.864) 
: 
1 

1 exp ((33) 1.075 (1.070 , 1.081) 
1 

Table 7.5: Parameter estimates and 95% confidence intervals using .c j 

Comparing the two tables, we see that the estimates from either likeli-

hood are practically identical. The correct likelihood however appears to be 

uncannily precise, but that is probably a numerical optimization issue. 

We checked the stationarity assumption using the method suggested by 

Wang(1991), to estimate the distribution function of the 1eft truncation 

times, and found this assumption to be reasonable (see Asgharian et al., 

2002). New methods devised by Asgharian, et al (2006) to check stationarity 

of incidence rate has further validated this assumption for the CS HA data. 

Figure 7.1 below compares the unbiased nonparametric estimate of the 

survival curve to the parametric estimate. 
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Figure 7.1: Nonparametric and parametric estimates of S(x) 

Eschewing Andrews and Buchinsky's aforementioned guidelines for the 

number of bootstrap repetitions (as their methods only cover standard boot-

strap techniques, and hence not this semiparametric approach to length-

biased right censored Wei bull data), we opted to do one thousand bootstrap 

samples with 816 observations (the original sample size), and estimated the 

model parameters using LI and L J in each case. There is one caveat: the 

unbiased distribution of the covariates estimated using Algorithm 1 from the 

original data was assumed to be the true unbiased distribution for aIl boot-

strap samples (hence it was not re-estimated in the maximization of L J ). 

The bootstrap parameter estimates are given in Tables 7.6 and 7.7 be-
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Parameter Value Estimate Standard Deviation Bias 
a 1.226 1.234 0.050 0.008 
À 0.208 0.207 0.011 -0.001 

(32 -0.150 -0.151 0.067 -0.001 
(33 0.073 0.075 0.072 0.003 

Table 7.6: Bootstrap parameter estimates from .cl 

Parameter Value Estimate Standard Deviation Bias 
a 1.226 1.234 0.050 0.008 
À 0.208 0.206 0.010 -0.002 

(32 -0.150 -0.132 0.047 0.019 
(33 0.073 0.094 0.050 0.021 

Table 7.7: Bootstrap parameter estimates from .cJ 

low. The relative efficiency of the bootstrap parameter estimates is given in 

Table 7.8 in terms of ratio of variances and in terrns of ratio of mean squared 

errors (as the bootstrap estimates appear to be biased). For each set of pa-

rameters, a survival curve from the mixture of Weibull was computed (using 

the unbiased proportion of covariates estimated from the original data set), 

the point-wise confidence bands displayed in Figure 7.2 below were obtained 

by taking the desired quantiles of the bootstrap survival curves at each sam-

pIe time point. Finally, though the confidence bands for the survival curves 

obtained through .cJ and .cl appear indistinguishable, Figure 7.3 gives the 

relative efficiency of the joint approach over the conditionai approach for the 

survival function at each sam pIe time point. 
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Parameter ex À /32 /33 
Var ( e I,i) jVar( e J,i) 1.000 1.140 2.032 2.015 

MSE( e I,i) jMSE( e J,i) 1.002 1.086 1.754 1.711 

Table 7.8: Relative efficiency of LJ compared to LI for the bootstrap param­
eter estimates 
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Figure 7.2: Estimated parametric survival function and its bootstrap point-

wise confidence bands 
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Figure 7.3: Estimated efficiency of .cJ over .cl for estimation of the survival 

function over time 

A few comments are in order. The first thing to be noticed is that the 

bootstrap standard deviations for .cl match the estimated standard devia-

tions from the original data, while those for .cJ differ (the original estimates 

being dubious because of numerical issues related to the optimization cri-

terion). While the correct likelihood gives less variable estimates than the 

incorrect one, it is more prone to bias when the unbiased distribution of the 

covariates is fixed in the optimization. The bias might be due to the mixture 

effect when the covariate effects are small. The short el' observed lifetimes 

carry more weight in the length-bias to unbiased conversion, both for the 

lifetime distribution and the unbiased covariate distribution. When the sub-
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populations are distinct (i.e. the covariate effects are away from zero), only 

one subpopulation will consistently have shorter observed lifetime than the 

others and the unbiased covariate distribution will appear the stable over 

many samples. When the covariate effects are small, the estimated unbiased 

distribution of the covariates will be skewed toward whichever subpopulation 

had shorter lifetimes in a sample, and so the unbiased covariate distribution 

will be harder to estimate consistently. 

To illustrate this, we use two simulated samples with only one covariate, 

one with a very small effect ((3 = 0.1) and one with a large effect ((3 = 4). We 

estimate the parameters and the unbiased distribution of the covariate then 

generate one thousand new samples through our semiparametric bootstrap 

method and obtain new bootstrap parameter estimates to look at the bias 

for ~I and ~J compared to the (3 used to generate the bootstrap samples (not 

the true (3 of the original population). The results are given in Table 7.9. 

(3 Bias(~I ) Bias(~J ) 

0.1 0.003 -0.019 

4 -0.013 0.015 

Table 7.9: Comparison of bias in bootstrap estimates 

Note that for small (3, ~I has almost no bias, which is expected as fl(Z = 

1; 0) ~ fl(Z = 0; 0) ~ fl(O) and .c[ is almost equal to .cJ (they would be 

equal if (3 was exactly 0). The bias in ~ J is significant for small covariate 

120 



effect. On the other hand, for a large effect, the biases are comparable, 
~ ~ 

though the absolute bias has increased for fh but decreased for (3J. 

The efficiency curve is rather interesting. It appears that the joint like-

lihood approach gives indistinguishable results compared to the conditional 

approach for the first 9 years, then gradually becomes increasingly more effi-

cient after this point, making it overall more efficient, as suggested by looking 

at the bootstrap parameters estimates. 
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Chapter 8 

What ended up on the cutting 

room floor 

In this chapter we overview what avenues of research were explored in the 

development of this thesis but did not yield much fruitful results. Though 

they were abandoned for various reasons, they might still prove useful in the 

future. 

8.1 A semiparametric approach 

This thesis was originally meant to exp and the work do ne in Bergeron (2003), 

and find a semiparametric approach for regression in the context of length­

biased and right-censored lifetime data analysis. This could also be taken as 

an extension of the semiparametric approach of Cox (1969), as it is based 
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on proportional hazard models and profile likelihood. The main difficulty of 

this approach is that, when one do es not impose a parametric model on the 

baseline hazard, the conditional mean lifetime (given the covariates) does not 

have a closed form. Writing the likelihood in terrns of hazard: 

n (e,B1ZiÀo(Xi))Oi exp ( - e,B'ziAo(Xi)) 
,CJ(x, Z; (3) = il fL((3) 

= fr (e,B1ZiÀo(Xi))Oi exp ( - e,B'ziAo(Xi)) , 

i=l .l fL(Z; (3)fz(z) dz 

(8.1.1) 

where 

(8.1.2) 

Minimally, this requires fL(Zi; (3) for every Zi in the sample. 

One possible approach to find this me an is the use of an approximation. 

This would result in an approximate likelihood, such as discussed by Chen 

and Jennrich (2002). The ostensible choice is a Laplace type of approxima-

tion, which applies to integrals of the form: 

.l exp ( - ng(x)) dx, (8.1.3) 

where D is sorne domain in RP and g(x) is a unimodal infinitely differentiable 

real valued function with a unique minimum at sorne point Xo, and n is 

sorne large constant (in statistical contexts, it is often the sample size). In 
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8.1.3, g(x) is the cumulative hazard, which is monotone increasing and has a 

minimum at x = 0 (this is a one-dimensional integral over time). However, in 

order to use a Laplace approximation, sorne constraints have to be imposed 

on Ao(x). 

One such approximation is given by Erdélyi (1956, pp. 36-38), requires 

Ao(x) to be approximately polynomial at the origin. This approximation 

actually reduces to imposing a model which behaves like a Weibull model 

close to the origin. 

Another possibility is to consider the conditional likelihood LI, if one 

could assume that the results of Theorem 1 hold for an infinite dimensional 

parameter space. While it should not yield the most efficient estimates, its 

formulation might be more suitable for algebraic manipulation, as it works 

in a space of smaller dimension than L;: 

(8.1.4) 
i=l 

using Fubini's theorem (see Billingsley 1995, p. 233) the denominator can 
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be rewritten as 

(8.1.5) 

which is an integral in Rn. This allows to use another Laplace approxima-

tion given by Wong (1989, pp. 494-498), under sorne extra conditions on Ao, 

namely that 0 < À~(O) < +00. Extra care should be taken when such an as-

sumption is imposed as it effectively eliminates the possibility of a Cox model 

(where the estimated hazard is null except at event times). It also eliminates 

any Weibull model with shape parameter a > 2 (in fact, this approximation 

by Wong is equivalent to a Weibull model with a = 2). Furthermore, as 

the dimension of the integral increase linearly with n, there is no hope for it 

to converge with an increasing sample size, as Shun and McCullough (1995) 

have shown that a multidimensional Laplace approximation can converge 

only if the number of integrals is O(n1/ 2 ). It might be worthwhile to look 

at a generalized version of Laplace's method, such as proposed by Fu and 

Wong (1980) or the use of asymptotic modes and fully exponential Laplace 

approximations introduced by Miyata (2004). 

Since the approximation approach did not prove fruitful,obtaining JL(Zi; (3) 

through computational methods was considered. The idea was to use jack-

knife pseudo-values such as proposed by Andersen, Klein and Rosth0j (2003). 

While an elegant approach to dealing with {t(8) and JL(z; 8), it cannot be eas-

ily adjusted in the presence of length bias. The issue is that, though one can 
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nonparametrically obtain fl({3) and a leave-one-out P-i ({3), using 

(8.1.6) 

will not yield a conditional mean that is necessarily positive. Various similar 

tricks, such as doing jackknife in the length-biased space, then using inverse 

length bias transformation, grouping observations with same z, working with 

survival functions, or using sorne basic transformations do not result in es­

timates exhibiting the necessary properties. The two main causes of these 

setbacks are that we are dealing with bounded quantities and that each ob­

servation do es not carry the same weight in the unbiased population, together 

making any use of jackknife a delicate endeavour. We hope to explore this 

line of thought further in the future. 

As a semiparametric approach involves an infinite dimensional hazard or 

a profile likelihood, there are still many directions to explore. Goldwasser, 

Tian and Wei (2004) proposed methods of estimating cumulative hazard 

through asymptotically pivotaI estimating functions. Barndorff-Nielsen and 

Jupp (1988) used a geometric approach for models involving profile likeli­

hood, while Severini and Wong (1992) developed a general approach to esti­

mate the parametric components in semiparametric models. Fan, Gijbels and 

King (1997) estimated hazard locally in both parametric and semiparametric 

proportional hazard models. If the conditional approach can be considered 

a valid option, Cox and Reid (1987) offered an approximate method of con-
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ditional inference through parameter orthogonality. Another option is to 

investigate residuals in length-biased data, thereby extending the work of 

Schoenfeld (1982). 

8.2 A measure of dependence for length-biased 

right-censored data 

Without a semiparametric model, the adaptation of the information gain 

based measure of dependence of Kent (1983) to uniformly left-truncated 

and right-censored data has to be reduced to parametric models. Kent and 

O'Quigley (1988) used Fraser information (Fraser 1965) to extend the work of 

Linfoot (1957) (itself based on Shannon information, see Khinchin 1957) and 

introduced methods that could take into account censoring in both para­

metric and semiparametric models to obtain a measure of dependence for 

survival data. This could be accomplished as estimating information gain 

reduces to a problem of maximum likelihood, or of partiallikelihood in the 

case of Cox's model. However, this particular measure is based on a condi­

tional model hence it cannot apply for length-biased data through a trivial 

modification. 

Instead, we go back to Kent's p} measure based on a joint model for the 

variable of interest X and the covariates Z. Consider y to be a random 

variable with true distribution g(y)dy. Suppose we have two families of 
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parametric models {f(y;8),8 E 8d, 'i E {a, 1}, and 8 0 C 8 1 . Let 8 i be 

the maximizer of the expected log-likelihood, 

e(8) = .1 log f(y; 8)g(y) dy, (8.2.1) 

for 8 E 8 i . Note that 8.2.1 is called the Fraser information and 8 i is a theo­

retical equivalent to a maximum likelihood estimate. Define the information 

gain to be twice the Kullback-Leibler (1951) information gain b will be used 

instead of r to avoid confusion with Euler's Gamma function): 

(8.2.2) 

Note that '"'((81 : 80 ) increases as the family {f(y; 8), 8 E 8 0 } approaches 

g(y)dy compared to {f(y; 8), 8 E 8 0 }, and is analogous to 2 log A where A is 

the generalized likelihood ratio. Now consider Y = (X, Z) and 8 0 to be the 

parameter space in which X and Z are independent, then '"'((81 : 80 ) gives 

the information gain from an independent model to one with dependence. 

Kent's joint correlation coefficient is then 

p'}(X, Z) = 1- exp ( -'"'((-81 : 80 )). (8.2.3) 

When we have length-biased lifetime data with right censoring, one can 

obtain an estimate ê1 through maximization of .cJ , while 8 0 is equivalent 
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to setting the covariate effects f3 to zero. Kent suggests using a "fitted" 

estimate for 00 , using the fitted lifetime values to accommodate censored 

observations: 

(8.2.4) 

Similarly, there is a "fitted" estimate for information gain: 

Implementing this measure of dependence and ascertaining its asymptotic 

properties will be pursued in the near future. 
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Chapter 9 

New horizons 

To bring this thesis to a closing point, we reflect on what has been accom­

plished and explore in which directions this research will lead us. 

In the beginning, we started with a regression problem: how to measure 

the effect of covariates on the lifetime of subjects sampled from prevalent 

cohorts subject to right censoring. Under the stationarity assumption of the 

onset times, the observed lifetimes are length-biased, which we showed im­

plies that the covariates are also sampled with a bias and are informative 

of the parameters that are to be estimated. While reviewing the literature, 

it appeared that this natural feature of biased sampling had been largely 

ignored in the context of survival analysis. Expanding our focus to include 

more general biased sampling issues allowed us to see more clearly how to 

construct the proper likelihood, going from a traditional conditional approach 

to a joint modeling point of view. By doing so, the insidious nature of mak-
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ing the mistake of ignoring the sampling distribution of the covariates was 

exposed: this misguided approach still yields asymptotically valid point es­

timates. And so it was demonstrated that the correct approach gives more 

efficient parameter estimates. We derived the asymptotic properties of the 

MLE and adapted widely used models for incident population to length­

biased populations through this joint likelihood approach. In the interest 

of implementation, a number of algorithms were introduced: a modification 

of Vardi's EM algorithm to recover the unbiased distribution of the covari­

ates nonparametrically, algorithms to generate length-biased lifetimes with 

covariates and a semiparametric bootstrap algorithm to get confidence bands 

for the estimated survival function. We analyzed the performance of these 

through simulation and applied our theory to the CSHA data. Finally, we 

discussed what appeared to be dead ends at the moment in our research. 

But what has been accomplished so far is only to scratch the surface of 

this investigation. There are numerous avenues of research from this point. 

Certainly, a number of theoretical resuIts regarding rates of convergence of 

estimators are already being worked on. But what appears to be most needed 

is a systematic approach to implement the likelihood. In the light of the re­

lationship between length-bias in the lifetime and mean lifetime bias in the 

covariates, the relationship between the lifetime distribution and the covari­

ate distribution should be explored further, to see what can be generalized 

and to find formulae for fB(Z; B) given different fz(z). To that effect, in 
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parametric models, a Bayesian approach could be usefu1. Another approach 

could be more computational, such as the use of kernel density estimators. 

Still, going from a likelihood to an estimating equations approach seems a 

fruitful possibility which will be the next task after this thesis. 

There is also the issue of models. So far, proportional hazard models 

and accelerated failure time models were considered. However, there are 

many other possibilities to extend the applicability of our approach. Sorne 

possible developments include accelerated hazard models, proposed by Chen 

and Wang (2000) and discussed by Chen and Jewell (2001). These models 

can be useful in clinical trials where treatment necessitates sorne time to be 

fully effective. Other models in prevalent cohorts focus on residuallifetime, 

such as the proportional mean residuallifetime models (see Oakes and Dasu 

2003; Chen and Cheng 2005; Chen et al. 2005). As mean lifetimes are 

sensitive to length-bias, it could be possible to develop a median residual 

lifetime approach that should theoretically be more robust. As mentioned 

in the previous chapter, a satisfactory extension of Cox's semiparametric 

proportional hazard model remains the Holy Grail of the subject. 

On the practical side, the computational aspects of the problems could 

be investigated further. There are difficulties in finding a general method 

to write down the likelihood so that to minimize numerical problems. Sub­

sequently, this might require the creation of new optimization algorithms 

specifically designed for this setting, as the currently available methods are 
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not completely up to the task. A Monte-Carlo approach, such as suggested 

by Geyer (1994) could be considered. 

One could always try to relax the assumption of stationarity and see how 

this affects the behaviour of the bias both in the lifetime and the covari­

ates. This would complexify the likelihood in this setting. Another relaxable 

assumption of our problem is to have a mixture of unbiased and biased obser­

vations. Asymptotics for the likelihood in this case have not been assessed. 

Finally, while the tools are being developed, they also need to be used in 

real applications. The combination of length-bias and covariates is not lim­

ited to lifetime data analysis and the methods developed in this thesis could 

extend to other topies. These include genetics (see Terwilliger et al. 1997) 

and problems in economics such as unemployment data. Further applica­

tions involve longitudinal data. As suggested by McFadden (1962) there are 

cases of recurrent events where the initial observation may be biased while 

subsequent events are not, and there exists problems of biased follow-up, as 

in Lin, Scharfstein and Rosenheck (2004). 
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