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Abstract 

 

The use of scaffold materials for reconstructive orthopaedics is a strong candidate for 

promoting tissue regeneration while addressing both mechanical and biological constraints. A 

scaffold's microarchitecture can be specifically tailored to locally match specific properties of the 

host tissue resulting in a biologically fixed implant. As such, the use of an optimized graded 

scaffold mitigates otherwise present issues causing implant failure, such as bone resorption and 

shear stress at the implant interface.  

A 2D hierarchical topology optimization technique has been developed here for the 

design of a cellular bone tissue scaffold that mimics the stiffness of the surrounding bone while 

maximizing permeability for bone ingrowth. The procedure involves sequentially optimizing 

material layout at two scales: 1) the material distribution of the implant, and 2) the cellular 

material used in its construction. In the first stage, an optimal material distribution is obtained for 

the implant such that the stiffness of the structure matches that of bone. In the second stage, the 

optimal relative density distribution from the previous stage is used to interpolate target material 

properties at each location of the implant domain. Target matching topology optimization is used 

to obtain unit cells with desired stiffness and maximum permeability throughout the implant. The 

procedure is currently developed in 2D and can be extended to produce clinically relevant 3D 

implant models.  

A 2D bone fracture fixation plate is designed as a demonstration of the proposed 

methodology, where an in-plane loading scenario is assumed. The plate is optimized at both the 

material and cellular level to achieve target stiffness and permeability properties based on 

physiological requirements. It is shown that by integrating multi-objective optimization with 

multi-scale topology optimization, a bone tissue implant can be created that is both mechanically 

optimal and conducive to bone tissue regeneration. 
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Abrégé 

 

L'utilisation de matériaux d'échafaudage pour l'orthopédie reconstructive est un excellent 

candidat pour la promotion de la régénération des tissus tout en s’occupant des contraintes 

mécaniques et biologiques. La microarchitecture de l’échafaudage peut être spécifiquement 

conçue pour égaliser les propriétés locales spécifiques du tissu de l’hôte résultant en un implant 

biologique fixe. En tant que tel, l'utilisation d'un échafaudage gradué optimisé atténue les 

problèmes autrement présents qui provoquent l'échec de l’implant, telles que la résorption 

osseuse et la contrainte de cisaillement à l'interface de l'implant. 

Une technique 2D d'optimisation hiérarchique de la topologie a été développée ici pour la 

conception d'un échafaudage pour tissu osseux qui imite la rigidité de l'os qui l'entoure, tout en 

maximisant sa perméabilité pour la croissance osseuse. Le procédé consiste à optimiser 

séquentiellement la disposition de matériau à deux échelles: 1) la distribution de matériel de 

l'implant, et 2) le matériau cellulaire utilisée dans sa construction. Dans la première étape, une 

distribution de matériau optimal est obtenue pour l'implant de sorte que la rigidité de la structure 

correspond à celle de l'os. Dans la deuxième étape, la distribution optimale de densité relative de 

l'étape précédente est utilisée pour interpoler les propriétés matérielles ciblées à chaque 

emplacement du domaine de l'implant. Optimisation topologique d'adaptation de cible est utilisée 

pour obtenir des cellules élémentaires avec rigidité souhaitée et la perméabilité maximale tout au 

long de l'implant. Le procédé est actuellement développé en 2D et peut être étendu afin de 

réaliser des modèles d'implants 3D cliniquement pertinentes. 

Une plaque 2D pour la fixation des fractures de l'os est conçue comme une démonstration 

de la méthodologie proposée, où un scénario de chargement complètement dans le plan est 

présumé. La plaque est optimisée à la fois au niveau matériel et au niveau cellulaire pour obtenir 

la raideur et les propriétés de perméabilité ciblées selon les exigences fonctionnelles. Ainsi, en 

intégrant l'optimisation multi-objective avec l'optimisation topologique multi-échelle, un implant 

de tissu osseux peut être créé qui est à la fois mécaniquement optimal et favorable à la 

régénération des tissus osseux. 
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Chapter 1: Introduction 

1.1 Bone Tissue 

Bone tissue serves four important functions in the body: 1) protection of organs, 2) 

structural support of muscle attachment for locomotion, 3) generation of red and white blood 

cells, and 4) calcium and other ion storage. It is apparent that bone serves a large range of 

purposes, and any damage to the skeletal system has widespread effects [1]. Damage due to 

disease, abnormal development, or trauma can be addressed through artificial bone tissue 

scaffolds. The design of such scaffolds is a multidisciplinary area with much research potential. 

Currently, technological and scientific advances in areas such as additive manufacturing and 

biomaterials have allowed for the design and manufacturing of bone tissue scaffolds to become a 

reality. The scope of this thesis is to first review the technology currently used to repair and 

replace bone, and then to propose a design methodology to improve upon the current state of the 

art. It is therefore essential and appropriate to discuss the biology of bone before entering into the 

details of the design of a bone tissue scaffold. 

1.1.1 Structure and composition 

Bone is a composite material made up of an organic phase and inorganic phase, with a 

varying composition depending on anatomic site, age, health and presence of disease. The 

organic phase is a fibrous matrix made up of protein (90% collagen). The matrix is filled with the 

inorganic phase, primarily hydroxyapatite, and serves as a reservoir of calcium and phosphate. 

The inorganic phase is primarily responsible for bone stiffness. The organic phase has a low 

modulus of elasticity, good tensile strength, and relatively poor compressive strength. The 

combination of the two phases results in an anisotropic material which is strongest in 

compression [2].  

On the macroscopic level, the human skeleton consists of long bones, flat bones, and 

cuboid bones (femur, skull, and vertebrae respectively). The structure of bone can be divided 

into two categories: cortical and trabecular (also referred to as cancellous). The spongy 

trabecular bone is the most active component in growth and calcium regulation, and 

mechanically is best suited to resist compression loading. In adults, approximately 80% of bone 

is cortical and 20% is trabecular, percentages that vary throughout the body. Cortical bone is 

mainly located in the shafts of long bones and peripheral linings of flat bones [3]. The structural 
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arrangement of a bone can be described as a hollow tube or bilaminar plate of cortical bone, with 

trabecular “struts” reinforcing the architecture. The configuration of porous and cortical bone in 

this fashion minimizes the weight of the bone while still providing a large bearing area. This is 

advantageous at articular joints, for example, where a large area would reduce bearing stresses at 

the ends of long bones. In the case of the skull or iliac crest, this bone arrangement forms a low-

weight sandwich. Essentially, the presence of cancellous bone allows for a reduced  weight 

structure that contributes to satisfying mechanical requirements [4]. 

On the microscopic level, the structure type of bone can be either woven or lamellar. 

Woven bone is immature and unorganized, abundantly present in newborns and sites of bone 

formation. A remodeling process occurs to organize woven bone into a lamellar form, such as 

Haversian bone [3]. Adult cortical bone has a lamellar collagen fibre arrangement, which is 

densely packed and arranged both circumferentially and in a tubular formation (Figure 1). The 

tubular formation is made of concentric lamellae layers, forming an osteon. Each osteon 

surrounds a central Haversian canal which contains blood vessels. The osteons are arranged 

around branching blood vessels, oriented along the long axis of the bone. Because of this 

orientation, the osteons act as fibres reinforcing the long bone and are essential in resisting 

deformation. Figure 1 shows the components of bone tissue using the femoral head as an 

example to illustrate the hierarchical structure [2]. 

 

Figure 1: Hierarchical structure of bone in the femoral head [5]. 
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Trabecular bone is approximately 25% as dense, 10% as stiff, and 500% as ductile as 

cortical bone. The mechanical properties of the two structural arrangements can differ by at least 

an order of magnitude. Trabecular bone can be described as open-celled porous foam, with an 

interconnected network of rod- and plate-like structures. This bone type is light, and acts as a 

scaffolding allowing room for blood vessels. Trabecular bone density varies greatly based on 

architecture, anatomic location, and age, directly impacting the mechanical properties of the 

tissue [2]. A predominantly rod-like network produces low-density, open cells, whereas a plate 

network gives higher density virtually closed cells. Technically, any bone with a relative density 

less than 0.7 is considered trabecular, and relative density typically ranges from 0.05 to 0.7 [4].  

The biological composition of cortical and trabecular bone is very similar. However, the 

anisotropic structure of cortical bone consists of partial alignment of hydroxyapatite (fibre-like) 

in the longitudinal direction, making that the stiffer and stronger axis. Table 1 summarizes the 

mechanical properties of wet cortical bone, as reported by Gibson and Ashby. When bone is 

dried, elastic moduli increase and strength and strain to failure decrease. Wet cortical bone 

properties are used in all further analysis in this thesis. 

Table 1: Mechanical properties of wet cortical bone [4].  

Property Value 

Young’s Modulus (GPa)  

      Longitudinal 17.0 

      Radial 11.5 

      Tangential 11.5 

Compressive Strength (MPa)  

      Along 193 

      Normal 133 

Tensile Strength (MPa)  

      Along 148 

      Normal 49 

 

Attempts have been made to determine the Young’s modulus of single trabeculae using a 

number of techniques. These methods include direct mechanical testing (tension, bending, 

buckling), ultrasonic wave propagation in trabecular bone specimens, and finite element analysis. 

The solid cell wall properties for trabecular bone as reported by Gibson and Ashby are shown in 

Table 2. The properties shown in Table 2 are not that of a trabecular bone sample, but of 

individual trabeculae. In this table, the strength of individual trabeculae is gathered from the 
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assumption that the ratio of strength (σ) between cortical and trabecular bone is equal to the ratio 

of their respective moduli ( ):  

   
  
  

   

Table 2: Solid cell wall properties for trabecular bone [4]. 

Property Value 

Young’s Modulus (GPa) 12 

Compressive Strength (MPa) 136 

Tensile Strength (MPa) 105 

 

1.1.2 Bone formation and remodeling  

Two distinct mechanisms are responsible for the formation of the skeleton and 

maintenance of bones: intramembranous and endochondral bone formation. Intramembranous 

bone formation is the process by which flat bones, like the skull and scapula, are formed. 

Endochondral bone formation is the mechanism responsible for long bone formation growth. The 

characteristic process of this mechanism is the formation of cartilage preceding bone. The 

process begins with mesenchymal cells (MSCs) condensing and differentiating into chondrocytes 

that produce cartilage matrix. MSCs are progenitor cells that have the ability to differentiate into 

bone or cartilage forming cells. A dense fibrous layer known as the perichondrium covers this 

cartilage. Bone lengthening occurs from the chondrocyte division and matrix production. 

Chondrocytes within the periosteum enter their final stage and become hypertrophic 

chondrocytes, which are involved in the calcification of the matrix [1]. The cartilage matrix 

surrounding the enlarged chondrocytes becomes a site for calcification as the chondrocytes die. 

The result is calcified scaffolding for bone apposition. Concurrently, capillaries form within the 

perichondrium and the perichondrium differentiates into periosteum, responsible for delivering 

pre-osteoblasts. Ossification begins as capillaries and osteogenic cells invade the calcified 

cartilage and deposit osteoid, until almost the entire bone is ossified [3]. Remodeling through 

surrounding of the matrix continues to the point of remodeling the periosteal. The result is 

immature woven bone, which has many osteocytes. At this stage, bone remodeling occurs around 

the newly formed blood vessels, in the form of lamellar bone [1]. 
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Bone remodeling is a dynamic and lifelong process of bone resorption (removal from the 

skeleton) and ossification (formation of new bone). The primary cells involved in bone 

remodeling are osteoblasts and osteoclasts, which specifically orchestrate resorption and 

ossification. Osteoblasts are responsible for the formation of new bone, whereas osteoclasts are 

responsible for digesting bone. Osteocytes are mature bone; osteoblasts become osteocytes. Bone 

cells (except osteoclasts) are highly interconnected by a network of cytoplasmic extensions, and 

together they make the basic multicellular unit of bone. All bone cells on the surfaces near a 

vascular supply are either active or inactive osteoblasts (bone lining cells). Osteocytes are found 

further away from the vascular supply, within the extracellular bone matrix [1]. It is 

hypothesized that the connected cellular network is the site of intracellular stimulus reception, 

signal transduction, and intercellular signal transmission for bone remodeling. Signal reception 

occurs in the osteocyte and the signal is transmitted by the osteoblast [6, 7]. The five distinct 

phases of bone remodeling are described below [1] and are illustrated in Figure 2. 

i. Resting state – Inactive cells line the surface of bone. Osteocytes are trapped within the 

mineralized matrix. 

ii. Activation – Stimuli (hormonal or physical) signal monocytes and macrophages to 

migrate to the site of modelling, which differentiate into osteoclasts. 

iii. Resorption – Osteoclasts remove organic/mineral components of bone to form a cavity in 

the bone. At a characteristic depth (60 microns from the surface in trabecular bone and 

100 microns from the surface in cortical bone) resorption stops.  

iv. Reversal – Osteoclasts disappear and macrophage‐like cells smooth the surface of the site 

of resorption. This is achieved through the deposition of binding substance. Pre‐

osteoblasts begin to appear.  

v. Formation – The cavity is filled in by differentiated osteoblasts and a new osteon begins 

to form. The osteon is formed by the deposition of osteoid followed by mineralization of 

the osteoid once the cavity is filled to 20 microns. At this point, the rate of mineralization 

is higher than the rate of mineral apposition (which still continues) until bone surface 

finally returns to its original state. 
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Figure 2: Bone remodeling process [8]. 

 

It has long been accepted that bone grows in response to stress, as stated most notably by 

Wolff et al. in 1869, but the mechanism is currently not fully understood. Wolff’s law states the 

following: “Every change in the form and function of bone or of its function alone is followed by 

certain definite changes in the bone internal architecture, and equally definite alteration in its 

external conformation, in accordance with mathematical laws” [1]. Essentially, the skeleton adds 

or removes tissue in accordance with functional requirements with the purpose of reducing stress 

or resulting strain. For example, this phenomenon is observed in a scenario of low gravity: 

astronauts who spend an extended period of time in space experience reduced bone density.  

It has been suggested that the piezoelectric nature of bone is a contributing factor to stress 

induced growth; that is, it generates electric potential when stressed. Additionally, it has been 

shown that there are non‐mechanical factors involved in bone remodeling, including fluid flow 

within the bone. It is observed that prolonged immobilization induces bone weakness, whereas 

exercise increases bone strength. Aging has a high impact on the structure of trabecular bone, 

and density decreases significantly. This is partially due to the thinning of the cell walls and the 

remaining loss is attributed to the enlargement of circular perforations within the cell wall, to the 

point of complete loss of some cell walls [4]. As a consequence of decreased energy absorption, 

fracture risk increases. To counter decrease in mechanical properties due to age, bone remodels 

its geometry, thereby minimizing bending stress [2]. 
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It is evident that trabeculae in cancellous bone develop along the principle stress 

trajectories when compared to principle stress trajectories in a similarly loaded solid, as 

supported by finite element analysis studies (Figure 3). It is a generally accepted theory that the 

density of cancellous bone is dependent on the magnitude of the applied load. It is observed that 

a comparison of micrographs of femoral head and density contour maps of the same femur show 

rod like structures (low density, open cell) in regions of low stress and plate like structures in 

regions of high stress (higher density, closed cell) [4]. Groups of trabecular lines are biologically 

developed to withstand tensile and compressive forces during gait (Figure 3). These trabecular 

patterns begin to develop at early stages of walking [2]. 

 

 

Figure 3: Computed stress lines of constant stress (left) [9], and  X-ray image of proximal femur 

cross-section showing trabeculae trajectories (right) [10]. 

 

It is postulated that bone contains sensor cells that recognize mechanical strain and 

determine a corrective biological process for adjusting this value if it lies outside of an 

acceptable range. The general consensus of many investigators’ models is that a mechanical 

stimulus below the acceptable threshold results in the removal of bone, whereas high mechanical 

stimulus results in the addition of new bone. It is suggested that the sensing cells are osteocytes, 

and can produce a signal proportional to the local mechanical loading. Furthermore, it is 

suggested that osteocytes sense fatigue damage and transmit signals to activate remodeling to 

remove the damage and prevent the occurrence of fracture fatigue [11].  
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There are some inconsistences between these current concepts and observations about 

bone remodeling. For example, it is observed that bone remodels with both excessively high and 

excessively low mechanical loading. This is contrary to the assumption that there is a signal 

produced by osteocytes proportional to mechanical stimulus. The new theory assumes that bone 

lining cells are always in a state in which they are inclined to activate remodeling, and 

mechanical loading within a specific range acts as an inhibitor to the transmission of this 

osteocytic signal [11]. Thus, in the cases of both under and over-loading, an inhibitory signal is 

restrained. Remodeling is initiated when signal generation declines due to reduced loading. 

Additionally, mechanical damage from over-loading, including micro-cracks and disturbance of 

the calcified matrix structure, may interfere with signal transmission by means of disconnecting 

cell to cell signal paths and by disturbing the flow of fluids over osteocytes. It is also 

hypothesized that mechanical damage can result in osteocyte apoptosis, which is death of the 

signal generating/transmitting cell. These mechanisms would be expected to inhibit osteocytic 

signals, leading to an increase in remodeling. A lower level of remodeling consistent with normal 

physiological loading is otherwise maintained [11]. 

The local mechanical environment is crucial in the determination of cell and tissue 

differentiation during bone remodeling. The mechanobiological response is the relationship 

between the mechanical environment and the cellular response, including molecular expression 

and cell differentiation. Depending on the type of mechanical loading, the mechanobiological 

response may result in the formation of bone, cartilage, or fibrotic tissue. The signals received by 

the osteoprogenitor cells will influence the tissue formed during development and healing [11]. 

The current mechanobiological model suggests that mechanical load acting on mesenchymal 

cells at the site of a defect would be directed to a specific response of differentiation into bone, 

cartilage, or fibrous tissue. In a model developed by Prendergast et al., it is assumed that the 

regulation of tissue regeneration is dependent on the magnitude of shear strain and fluidic 

velocity [12]. These factors should be considered in the design of a bone tissue scaffold, as its 

architecture would influence the mechanical environment upon implantation [11].  

1.1.3 Bone as a cellular material 

The composition and mechanical behavior of trabecular bone are important to understand 

for many biomedical applications. For example, in the case of a total hip replacement, most of 

the replaced bone is trabecular. The ideal hip replacement will closely match the properties of the 
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bone it replaces, as a mismatch in properties between an implant and surrounding bone is thought 

to be a source of implant failure. The mechanical behavior of trabecular bone is typical of a 

cellular material, as evident in the characteristic stress-strain plot of both materials. Additionally, 

modulus and strength of trabecular bone vary with density in a similar way to that of a foam [4]. 

Thus, it is reasonable to model trabecular bone using cellular material theory. 

The stress strain curve for trabecular bone in compression shows the three distinct 

regimes of behavior typical of foam (Figure 4). In the first region, small strain and linear 

elasticity are observed. Stress results mainly from the bending of the cell walls. There may also 

be axial and membrane stress, but the stress contribution can be considered negligible, to a 

certain extent. It is important to note that in the case of stress-oriented bone, like the femoral 

head, the structure of the plate and rod like structures would be aligned in the direction of the 

largest principal stress, and loads applied in this direction may mainly extend or compress the 

cell walls, rather than bend, which would occur from a transverse load in this case. Plastic 

collapse marks the end of the linear elastic region, and is the point where rod and plate like walls 

would fail by elastic buckling (due to the high slenderness ratio). As strain progresses, 

compressive collapse is shown by the horizontal plateau until cell walls meet and stress rises 

steeply. This stage is known as densification [4]. 

   

Figure 4: Characteristic compressive stress-strain curve of wet cancellous bone [4]. 
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As can be expected, Young’s modulus, compressive and tensile strength of cancellous 

bone are highly dependent on relative density. Figure 5 shows tensile strength for trabecular 

bone of unspecified orientation as a function of relative density. There is a large variance in the 

data from the studies shown because of trabecular bone anisotropy. Strength of bone also 

depends on strain rate, and the data displayed in the plots are from tests carried out at varying 

strain rates. There is also variance in the degree of dryness of the bone tested, another factor 

contributing to data variance [4]. 

 

Figure 5: Tensile strength of trabecular bone as a function of relative density [4]. 

In summary, trabecular bone has a cellular structure, where the shape and density of the 

cells are biologically governed by the loads that bone must support. Cell walls of trabecular bone 

tend to align and thicken in the direction which will best support load, and the relative density of 

the cells depends on the load magnitude. In regions of low loading, trabecular bone tends to be 
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structured in a rod-like network of open cells, whereas in regions of high loading, the structure 

resembles perforated plates. Parallel plates tend to form along the lines of maximum principal 

stress. The mechanical behavior of trabecular bone is consistent with that expected of a cellular 

material, as shown in the stress-strain plot with three distinct regions of behavior. It is important 

to understand the structure and behaviour of trabecular bone in the field of biomechanics 

especially for the design of bone tissue replacements. With this understanding, a biomimetic 

implant can be designed, which closely matches the properties of the host bone tissue [4].  

1.2 Tissue Engineering 

1.2.1 Bone tissue scaffold 

Bone tissue engineering is defined as any attempt to stimulate bone formation with an 

implant designed according to scientific and engineering principles [3]. Bone tissue implants are 

developed for the repair and replacement of damaged and diseased bone tissue by providing 

structural and cellular support for guided tissue formation. Traditionally, tissue repair was 

achieved by tissue grafting/transplantation, or synthetic material replacement. Bone grafting 

involves using bone from another source to stimulate bone formation at the site of a defect. The 

most preferable source of bone is from elsewhere in a patient’s body; for example, from the 

pelvis (autologous graft). It is also possible to use bone from other humans (allogenic graft) or 

animals (xenogenic graft). Allografts generally undergo several treatments to reduce the 

opportunity for disease transmission and immunogenicity, such as extreme freezing and 

sterilization; however these procedures can reduce the osteoinductivity of the graft. Xenografts 

are used after demineralizing the bone matrix, so that the inorganic material is removed and just 

the organic collagen matrix is left behind. Demineralization results in a more biologically active 

graft than an undemineralized graft; however some mechanical properties are sacrificed [3].  

Clinical outcomes of allografts and xenografts are variable [3]. For a bone graft to be 

successful, it must not interfere with normal physiological bone adaptation. This is why the 

autologous graft is most preferred, as it is not a foreign body. The autologous bone graft has been 

the golden standard for decades, and as such, it is used as a benchmark for alternative methods of 

grafting. It is recognized that there is a need for alternative graft options because of limited 

availability and increased surgical complexity of using autologous bone. Additionally, grafting 

necessitates a second surgical site [3]. 
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The concept of tissue engineering using scaffold material emerged in the 1990s to 

address the limitations explained above [13]. The concept involves using degradable porous 

material scaffolds, sometimes integrated with biological factors, to regenerate tissue. The 

scaffold purpose is to provide temporary support as tissue regenerates and assumes primary 

function [13]. The scaffold architecture can be specifically tailored to provide a biomimetic 

mechanical environment while concurrently providing sufficient porosity for cell migration to 

achieve tissue regeneration [14]. 

Load bearing bone tissue scaffolds present certain design challenges that soft tissue 

scaffolds do not necessarily need to address. In the case of a permanent, non-degradable bone 

tissue scaffold, the implant must withstand relatively high physiological loading conditions as 

well as promote tissue regeneration at the periphery of the implant for fixation [15]. 

Approximately 1mm of bone ingrowth into the scaffold is required for biological fixation at the 

site. Technological advances in additive manufacturing have improved the feasibility of 

designing and fabricating scaffolds meeting these requirements. Combining computer aided 

design with additive manufacturing technology, which constructs structures in a layer by layer 

manner, allows for a fine control of scaffold design at both the macro- and micro-architectural 

level. This is demonstrated by Pasini et al. through the multi-scale and multi-objective design of 

a functionally graded cellular hip implant [16-21]. Pasini et al show that computational methods 

can be used to design a scaffold to meet specific mechanical and biological requirements, which 

are described in the following section. 

1.2.2 Scaffold requirements  

According to Hollister, there are four fundamental requirements that a bone tissue 

scaffold must satisfy, referred to as the 4F’s: Form, Function, Formation, and Fixation. Form 

refers to scaffold shape completely filling a complex 3D anatomical defect. Function means 

supporting mechanical demands, i.e. normal physiological loading conditions. Formation refers 

to the enhancing tissue regeneration by providing a sufficient mass transport environment for 

new tissue growth. Finally, fixation means that the scaffold can be readily implanted and 

attached to a tissue at the defect site. These four requirements must be described in a quantitative 

manner so as to design a tissue scaffold [22]. 

With computer assisted design, the Form requirement can easily be fulfilled. For 

example, a scaffold can be specifically designed to fit an anatomical defect based on a patient CT 
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scan [15]. Factors affecting Fixation include scaffold microarchitecture (pore shape, size, 

interconnectivity), cellular interaction with the scaffold surface, and release of growth factors. 

The basic requirements of a tissue scaffold often present a design trade-off between Function and 

Formation: a denser, mechanically suitable scaffold versus a more porous scaffold which would 

provide better mass transport [13]. The requirements governing Formation are difficult to specify 

quantitatively. Bone regeneration is influenced by mass transport and delivery of biologics. Mass 

transport can be quantitatively expressed as permeability and diffusivity, which are controlled by 

the scaffold microarchitecture. Biologic delivery is dependent on the interaction between the 

scaffold and the local environment, scaffold degradation (if degradable), and mass transport [23].  

It is therefore challenging to design a scaffold that addresses all four requirements for a 

number of reasons.  Properties such as elasticity, permeability, and diffusion are related on a 

hierarchical scale (material and pore level) and require complex computational design and 

fabrication methods [23]. The exact target values for quantitative design requirements are often 

unknown, and in order to establish them, it must be possible to design and manufacture scaffolds 

with specified properties for testing. The factors affecting the 4F requirements are described in 

detail in the following sections. 

Mechanical Properties 

A bone implant must have sufficient mechanical properties to substitute for the loss of 

function of the replaced bone tissue [15, 24]. It is widely accepted that scaffolds should be 

designed to match healthy tissue stiffness and strength while providing a suitable network of 

pores to allow for cell migration and nutrient transport [25].  

Over-designing for mechanical loading can result in a scaffold that is too stiff compared 

to the local tissue environment. In this case, a much stiffer scaffold can have adverse effects on 

local tissue, such as bone tissue resorption. Titanium and stainless steel are often used in 

orthopaedic implants because of their biocompatibility and superior mechanical properties 

compared to bone. However, a solid metal implant may absorb the forces that are required to 

stimulate bone remodeling. This phenomenon is known as stress shielding. The stress shielding 

effect can lead to bone resorption around the implant and prevent implant fixation [3]. Ideally, 

the mechanical properties would be similar to that of the local environment, so that scaffold 

failure would not occur, but structure stresses would be low enough to avoid tissue resorption 

[22].  
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Permeability/Diffusivity 

A scaffold should provide an adequate environment for mass transportation of nutrients 

and metabolic waste [15, 24]. Mass transport can be quantitatively expressed as permeability and 

diffusivity. Permeability relates fluid velocity in a porous medium to the pressure gradient, and 

diffusivity relates ion concentration to chemical concentration gradients. 

The permeability and diffusivity parameters of a scaffold should be targeted to align with 

the metabolic activity of the local tissue. For example, bone is highly vascularized and has 

relatively high metabolic activity. It is reported by Sander et al. that the permeability of 

trabecular bone is 0.003-11e
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, compared to articular cartilage which is 0.01-19.5e
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 [26]. The permeability of a scaffold will influence the oxygen diffusion to the local 

cells. The partial oxygen pressure (PO2) is reported to affect the type of tissue formed from cell 

differentiation. For example, it was shown by Utting et al. that a PO2 of 21% favours bone matrix 

production by osteoblasts rather than a low PO2 of 2% [27] [22]. Therefore, an artificial scaffold 

should be designed with high permeability, similar to that of trabecular bone. 

Osteoconduction/Osteoinduction 

In certain instances, bone tissue scaffolds may be held in place by bone cement (PMMA 

for example), but in recent years, the design of cementless scaffolds has been given particular 

focus [28]. These implants are held in place permanently by bone tissue ingrowth. In addition to 

being biocompatible, a bone tissue scaffold requires optimal surface properties for the 

attachment, migration, proliferation and differentiation of bone cells [15]. Therefore important 

design considerations of a bone tissue scaffold are its osteoconductivity and osteoinductivity.  

Osteoconductivity refers to how well bone cells can attach, proliferate and deposit bone 

on the scaffold. Osteoinductivity refers to the stimulation of osteoprogenitor cells to differentiate 

into osteoblasts, which begin new bone formation. Osteoinductivity can be achieved using 

growth factors that enhance bone healing [3]. Micro-pores increase the surface area of the 

scaffold and have been shown to trigger relevant cells that differentiate into osteoblasts. The 

micro-pores may be responsible for accelerating the process of dissolution/re-precipitation of 

calcium phosphates at the scaffold-bone interface [29]. In other words, the osteoinduction of the 

scaffold is increased as a result of increased surface area. 

Tissue engineered implants can be comprised of a scaffold carrying biologically active 

factors, which may be a combination of cells and growth factors that stimulate host tissue growth 
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[3]. Cell-based bone tissue engineering is a technique that involves harvesting and expanding 

specific cell types in culture, known as bone marrow-derived stromal cells (BMSCs), and 

seeding the cells onto a scaffold. Most BMSCs successfully differentiate into cells of the 

osteogenic linage in vitro; however, it is found that in vivo differentiation is less predictable [3]. 

Growth factors are signaling molecules that influence cellular function, such as osteoinduction, 

by binding to specific receptors on the cell membrane. For example, bone morphogenetic 

proteins (BMPs) are growth factors found in extracellular bone matrix and can induce bone 

growth [3]. 

Microarchitecture 

The need to match complex anatomic shapes and desired physical properties requires the 

separation of a scaffold into the microscopic (<1mm feature size) and macroscopic scales 

(>1mm). Scaffold microarchitecture refers to the microscopic design features that can be 

specifically tailored to achieve desired field properties throughout the scaffold. The division of 

feature sizes into two scales allows the utilization of areas of the design space which are not 

accessible with a solid material [15]. For example, the bounds on effective mechanical and mass 

transport properties are defined by properties of a completely solid material and no material at 

all. The range of possible effective properties fall within these bounds and can be achieved 

through the design of the microarchitecture. Tailoring the microarchitecture allows for the 

achievement of target properties such as elasticity, diffusion, and permeability, which meet the 

4F requirements [30]. Some microarchitecture characteristics that are reported to influence tissue 

regeneration and vascularization include total porosity, pore size, pore interconnectivity, and 

pore geometry [25]. These characteristics are defined in detail below. 

Porosity is crucial to facilitate bone growth. Additional porosity increases surface area 

and allows for mass transport of nutrients and metabolic waste [3]. Porosity is measured as the 

ratio of void space to total bulk volume of a scaffold. The surface of a bone tissue scaffold 

should be approximately 60-70% porous in order to effectively promote bone in growth. 

Inversely, the relative density of a scaffold is measured as the ratio of solid material to total bulk 

area. The optimal average size of a pore for bone tissue ingrowth in a scaffold material is in the 

range of 50-400 microns. Studies examining the effect of pore size found that both amount and 

rate of bone growth increase with decreased pore size, when comparing pores in the pore range 
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200‐500 microns [31]. An interconnected porous architecture is necessary because it allows 

blood vessels and surrounding bone to enter the scaffold [3].  

Many studies have shown that the rate of bone tissue growth by osteoblasts is influenced 

by scaffold geometry, implying that bone cells are able to sense their surroundings and react to 

local curvature, even if the curvature is much larger than themselves (Rumpler, 2008). Rumpler 

et al. examined new tissue growth on hyroxylapatite plates with a designed architecture, cultured 

in osteoblast-like cells. When comparing pores of triangular, square, and hexagonal geometries, 

tissue was found to be thickest in the corners of the triangular cells. Regardless of the original 

shape of the cell, tissue tended to round corners to form a circular central opening. Rumpler et al. 

concluded that the total amount of new tissue formed is highly dependent on the perimeter 

available within the cell: the shorter the perimeter, the more tissue formed at any point (Rumpler, 

2008).  

Similarly, Sikavitsas et al. conducted a study comparing the effect of pore geometry, and 

found that the least amount of tissue growth was shown in the corners of hexagonal shaped pores 

in a scaffold, whereas the highest amount of growth was found in the corners of triangles. Thus, 

the amount of initial tissue growth increases with increasing pore curvature. It is important to 

note, however, that the effect of pore shape on initial tissue growth does not hold true at later 

stages, once the pore shapes have all become circular (Sikavitsas, 2001). It was commented by 

Knychala et al. that it is important to find a balance between high curvature for initial tissue 

growth and porosity for permeability reasons. It may also be beneficial to design a balance 

between narrow aligned channels to achieve rapid tissue formation, and slightly bigger channels 

for the formation of osteons and vascularization [31]. 

A recent study by Van Bael et al. aimed to gain insight into the influence of scaffold pore 

shape, pore size and permeability on growth and differentiation of human periosteum-derived 

cell cultures (hPDC) [32]. The scaffolds were constructed out of Ti6Al4V in six distinct 

geometries: three different pore shapes (triangular, hexagonal, and rectangular) at two different 

pore sizes (500 and 1000 microns). They observed, similarly to Rumpler et al., that cell growth 

was governed by a circular growth pattern regardless of pore shape and size, eventually leading 

to pore occlusion. Qualitative examination of the six different scaffolds through SEM revealed 

that there was higher tissue growth on the periphery of the smaller (500 micron pore) scaffolds, 
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but after 14 days the 1000 micron pore scaffolds had higher living cell density. The pore shape 

caused higher distribution of cells in the corners of all pores. The group concluded that a graded 

scaffold is best for bone tissue regeneration, where the outside should be comprised of small 

pores for initial cell attachment, with large non‐circular pores to avoid pore occlusion and allow 

for mass transport [32]. 

1.2.3 Design conflict: mechanical vs. mass transport function 

Scaffold design is challenging because effective properties for mechanical support 

typically conflict with mass transport properties, which are essential for tissue regeneration. The 

increase in stiffness and strength of a scaffold comes at the expense of mass transport, and the 

opposite is also true (Figure 6). 

 

Figure 6: Normalized diffusivity and bulk modulus bounds for an isotropic two-phase material 

(e.g. solid-void) conflict as a function of volume fraction (relative density) [33] 

Cellular material provides a unique advantage in addressing this trade-off because both 

macroscopic and microscopic features can be specifically tailored for mechanical and 

permeability properties using computational methods [13]. It is desirable to turn to optimization 

techniques to determine the material layout of a scaffold that can achieve these target effective 

properties [30]. In the past years, solid freeform fabrication techniques have increased in 

capability and are readily available for the production of scaffolds with highly controlled 

microarchitecture. In conjunction with computer assisted design, it is possible to manufacture a 

specifically tailored bone tissue scaffold [25]. 
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1.3 Thesis Objective 

The objective of this thesis is to illustrate that cellular material can be designed to address 

the multi-scale requirements of a bone tissue scaffold. In order to design a biomimetic bone 

tissue scaffold, the hierarchical structure of bone necessitates multi-scale design techniques. 

Using computational methods, both the scaffold geometry and its microarchitecture can be 

designed to achieve specific effective mechanical and mass transport properties. A porous 

scaffold can be manufactured using a biocompatible material (e.g. Ti-6Al-4V) by available 

additive manufacturing techniques, such as electron beam melting (EMB). EMB, and other 

additive manufacturing technologies, can create detailed metal constructs with extremely fine 

features on the micrometer scale. This thesis proposes a novel hierarchical topology optimization 

scheme as a computational method for the multi-scale design of bone tissue scaffold, and 

illustrates a 2D application. 

The proposed procedure is applied to the design of an internal bone fracture fixation 

plate. Internal fracture fixation plate and screw systems are a method of treating fractured long 

bones. The purpose of the mechanism is to provide necessary stabilization and a critical amount 

of compressive stress at the bone fracture site to facilitate healing. Additionally, the plate must 

minimize devascularisation at the site, and allow early motion and partial loading to restore some 

load bearing capacity of the bone [34]. Compression also helps prevent transverse displacement 

of bone fragments and torque about the long axis of the bone [35]. The compression plate and 

screw components are typically made of solid, rigid, biocompatible materials such as stainless 

steel, cobalt chromium, titanium, and composites.  

Ongoing concerns with fracture fixation plates are (1) excessive stiffness resulting in 

stress shielding, and (2) osteoporosis of underlying bone. The resulting decrease in bone mass 

and density increases the risk of re-fracture at the site [36]. One cause of osteoporosis beneath a 

fracture fixation plate is disruption of the periosteal capillary network at the fracture site. Areas 

of bone in contact with the plate receive insufficient blood supply and necrosis follows. Low 

contact surface plates and limited contact dynamic compression plates have previously been 

designed to reduce the disruption of blood flow [36]. Stress shielding results from the mismatch 

of mechanical properties between the bone and plate, resulting in bone resorption. Lower 

stiffness and functionally graded bone plates have been investigated to address this issue with 

varying success in results [37] [38]. 
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It is hypothesized in this thesis that a hierarchically designed plate of cellular material can 

address both the stress shielding and osteoporosis problems with current fracture fixation plates. 

The porous nature of the cellular material reduces disruption of blood flow to the bone, while the 

mechanical properties are specifically tailored at the unit cell level to match that of the local 

tissue and reduce stress shielding. A hierarchical topology optimization approach will be used to 

design the plate at both the macro and micro scales; that is, at the material distribution of the 

implant and at the cellular material making it up. The design and optimization are performed in 

two dimensions, as the dominant forces acting on a fracture fixation plate are in-plane.  

1.4 Thesis Organization 

Chapter 2 of this thesis details the methods and theory involved in the design and analysis 

of bone tissue scaffold. The computational mechanics of cellular materials is discussed, followed 

by a description of topology optimization and hierarchical topology optimization theory. 

Previous literature on this topic is reviewed. Chapter 3 describes the proposed methodology for 

hierarchical design of bone tissue scaffold. A detailed flow chart illustrates the procedure. 

Design assumptions are discussed to define the scope and limitations of the proposed procedure.  

Chapter 4 shows the application of the methodology to the design of a fracture fixation 

plate. Firstly, the optimal material distribution and geometry of the implant is determined. 

Secondly, each unit cell of the material is optimized based on bone tissue scaffold requirements 

described in Chapter 1. The result is a hierarchically optimized bone tissue scaffold, illustrating 

the novel design procedure proposed in this thesis. Finally, Chapter 5 discusses the relevance and 

validity of the design procedure and results, as well as proposes future extensions for this work. 
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Chapter 2: Methods and theory 

The hierarchical structure of bone necessitates multi-scale design of a bone tissue 

scaffold. The hierarchical design of a cellular bone tissue implant is treated here as a material 

distribution problem at two geometric scales, as shown in Figure 7: (1) macro-architecture: 

topology of the implant, and (2) micro-architecture: topology of each unit cell. Firstly, the 

geometry of the implant is determined. The goal is to then realize this geometry using a cellular 

material with non-uniform unit cells, such that the implant can mimic the non-homogeneous 

material properties of bone. The implant geometry is mapped with unit cells which are 

specifically designed for the functional requirements at each location of the implant.  

 

Figure 7: Hierarchical design of a structure using cellular material [39]. 

This chapter first discusses methods used to determine effective stiffness and 

permeability properties of cellular materials, as the design goal here is achieving a structure with 

specific effective properties. Next, topology optimization is discussed as a technique used for 

determining the optimal distribution of material to achieve a specific function. In general this 

involves finding an optimal material layout within a prescribed design space under defined 

constraints. In the proposed methodology, topology optimization is used at both the macro and 

micro scales to design a cellular structure guided by bone tissue scaffold requirements. The 

formulation of a multi-objective optimization problem to achieve conflicting stiffness and 

permeability properties is reviewed. Finally, an overview of existing hierarchical topology 

optimization methods is included in this chapter, as a reference for current state of the art in 

hierarchical structure design. 

(1) 

(2) 

(2) 
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2.1 Computational mechanics for scaffold material 

The macroscopic behaviour of a composite material is largely dependent upon its 

microstructure. However, the analysis of the structural mechanics of a cellular material is 

challenging due to large geometric heterogeneity at the microscopic level [40]. Extensive work 

on the characterization and structural analysis of lattice materials has been conducted by Pasini et 

al., and is used as a foundation for the techniques used in this thesis [41-49]. This section is 

focused on the computational methods used to determine effective (or equivalent) cellular 

material properties. Techniques to determine effective stiffness and permeability are discussed 

and a model of the mechanobiological behaviour of bone growth is reviewed.  

2.1.1 Effective Stiffness 

Analysing large cellular structures on a microstructural level is challenging because the 

highly complex geometry requires a large computational effort. Finite element analysis of 

microscopic behaviour is generally unfeasible, as it would be very computationally expensive to 

create, mesh, and analyse each strut of a discrete lattice [50]. As such, homogenization methods 

are developed to accurately approximate the behaviour and properties of a composite cellular 

structure based on the smallest repeating element of the structure: the unit cell, or the RVE 

(representative volume element).  

Asymptotic homogenization is one among the several methods available in literature to 

determine an equivalent homogenous structure representing its detailed cellular counterpart [51]. 

Asymptotic homogenization is based on decoupling the analysis of a cellular material into 

analyses at the micro (local) level, and the macro (global) level. The method involves first 

analyzing one unit cell to determine its effective properties, by finding its unique behavioural 

response to a specified loading condition under periodic boundary conditions. To determine the 

effective stiffness matrix (  ) of a unit cell, a load is applied in each of the unique normal and 

shear directions, a process equivalent to imposing unit strains. The unit cell can then be treated as 

an equivalent homogeneous structure with the behavioural response equivalent to that of the 

detailed unit cell. Then, the entire macro structure can be mapped with equivalent homogeneous 

cells. This allows for a much simpler analysis of the structure at the global level.  

The two explicit assumptions made in homogenization theory are: 1) fields vary on 

multiple spatial scales due to the existence of a microstructure, and 2) the microstructure is 
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spatially periodic [50]. Using the assumption of periodicity, the differential equations with 

rapidly oscillating coefficients that represent the microstructure are replaced with differential 

equations with slowly varying or constant coefficients, in such a way that the solutions for both 

sets of equations are approximately identical. Homogenization can be used for any periodic 

physical property, and is used to calculate effective stiffness in the proposed methodology [50]. 

The detailed derivation of the homogenization equations has been purposely included in 

Appendix A to avoid text flow disruption.  

2.1.2 Effective permeability  

Stokes flow homogenization 

One approach to determining effective permeability of a cellular material is a 

homogenization technique based on the Stokes flow analysis of a unit cell. On the macroscopic 

scale, Darcy’s law governs flow through a porous material. Darcy's law states that there is a 

proportional relationship between the instantaneous discharge rate through a porous medium, the 

fluid viscosity and the pressure drop over a given distance. At the microscopic scale, Stokes 

equations govern fluid flow through void areas of the unit cell. That is, the conservation of 

momentum is satisfied, acceleration of fluid is zero and there is a no slip condition at the fluid-

solid interface. Sanchez-Palencia derived Darcy’s law from Stokes equations using 

homogenization [52]. This works shows that an effective permeability tensor (K
H
) of a porous 

medium can be expressed as an ensemble average of fluid velocities in the unit cell. The 

ensemble average refers to an average of fluid velocities over specifically chosen states of 

applied pressure to fluid in a unit cell. Similarly to the homogenization process to determine 

effective stiffness, unit pressure gradients are applied to a unit cell to determine characteristic 

flow fields. The ensemble average of the characteristic flow fields gives the homogenized 

effective permeability tensor of a porous medium [53]. 

Monte Carlo simulation  

A study by Sinh Trinh et al. shows that the effective diffusivity coefficient of a porous 

media can be computationally determined using Monte Carlo simulations [54]. The procedure 

involves finding effective diffusivity of a Brownian tracer in a unit cell using Monte Carlo 

simulations. With the unit cell topology defined a priori, particles are modelled to execute 

Brownian motion through the material. Einstein’s explanation of Brownian motion describing 

the dynamics of a particle justifies the simulation of the particle using a ‘random walk’. The 
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theory says that the particle, suspended in a fluid distributed throughout the pores of a medium, 

will move about as a result of collisions of surrounding particles. Effective diffusivity can then 

be determined using a probability density function based on the simulation of many particles. 

The function is governed by the equation for mean square displacement of a particle: 

 〈  〉       [1] 

where   is the molecular diffusion coefficient in the fluid of the void space,   is the dimension, 

and   is time. Fick’s law describes diffusion in a porous medium in terms of the effective 

diffusion coefficient   . Thus, the mean square displacement becomes: 

 〈  
 〉        [2] 

where   is the displacement of the particle. To non-dimensionalize the expression for   , it is 

recognized that when porosity is equal to unity (no obstacles), the effective diffusion coefficient 

is equal to the molecular diffusion coefficient. The step-length   of particle “steps” is chosen 

such that the molecular diffusion coefficient from the simulation agrees with the given molecular 

diffusion coefficient. Dimensionless displacement   and time   are then defined as follows:  
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Finally, substituting the dimensionless equations into the governing mean squared displacement 

equation gives: 

 
〈  〉  

  

 
  

[4] 

The mean square displacement of the Brownian particle executing a random walk in porous 

media is now given by  . Monte Carlo simulations are used to obtain 〈  〉 and then the diffusion 

coefficient ratio      can be determined. The simulation is conducted for 100 particles 

randomly walking for a given amount of time. As expressed in Equation [4], the slope of the line 

of dimensionless time versus mean squared displacement is the ratio of effective diffusion 

coefficient to the free molecular diffusion coefficient. It was determined that in structured, 

isotropic media, effective diffusivities can be accurately characterized in this manner. 

Sinh Trinh et al. compared effective diffusivity calculated for 2D porous media to 

experimental and theoretical data. When geometry and dimension of obstacles are consistent 

with those used in experiment, Monte Carlo simulations agree with experimental data. Figure 8 

shows that the Monte Carlo simulations yield slightly lower effective diffusivities than 



 

24 

 

theoretical predictions by Maxwell and Weissberg, and postulate that differences arise from 

variance in geometries of media used to obtain results. The results in Figure 8 show that a 

“percolation threshold” exists in the data, which is the porosity at which a diffusing molecule can 

be trapped in an isolated pore, within the unit cell. At the percolation threshold, effective 

diffusivity as calculated in the Monte Carlo simulation vanishes. It is observed that for isotropic 

systems above a “percolation threshold”, effective diffusivity is affected solely by porosity.  

 

Figure 8: Effective diffusivities as a function of porosity obtained by experimental and 

theoretical methods and Monte Carlo simulations of flow in 2D porous media [54]. 

Weissberg’s approximation 

Weissberg’s formula is an approximation that was originally derived to determine the 

effective diffusion coefficient through a bed of randomly overlapping spheres of uniform or non-

uniform shape, and is solely a function of porosity,    [55]: 
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It is valid to use Weissberg’s formula to approximate effective diffusivity in 2D porous 

media if the following assumptions can be made: (1) the media is isotropic and (2) the media 

porosity is above the percolation threshold. Because of good agreement of simulation results to 

the theoretical predictions in the range of 60-80% porosity shown in Figure 8 (above the 

percolation threshold and in the required bone ingrowth range), it is assumed that theoretical 

predictions can be used as an estimate of effective diffusivity. If the unit cells of a designed 

scaffold are constrained to be isotropic then assumption (1) will hold. As described in section 

2.3.1, the desired outcome of this research is to optimize an overall anisotropic cellular medium 

with isotropic unit cells. Therefore, the Weissberg approximation will be used in the proposed 

optimization procedure to calculate unit cell diffusivity. 

2.1.3 Mechanobiological Model 

As an additional parameter for describing scaffold properties, a mechanobiological model 

can be used to characterize tissue growth. Chen et al. studied the effect of unit cell topology on 

the differentiation of stem cells into various tissue types in a scaffold [12]. It was found that 

scaffold microarchitecture is an influential factor in the direction of tissue differentiation because 

it directly affects mechanical stimulus experienced by surrounding tissue. Based on the 

mechanobiological model described by Prendergast [56], it is assumed that mechanical stimulus 

S in the unit cell is regulated by octahedral shear strain   and fluidic velocity  : 

   
 

 
 
 

 
 

[6] 

Variables   and   are empirical constants [56]. The value of S can predict the differentiation of 

stem cells within the unit cell into various phenotypes using the following criteria based on 

experiment: 

 

             Mature bone 

            Immature bone 

       Cartilage 

     Fibrous tissue 

If S is lower than 0.01, bone resorption occurs according to this model. Varying topologies to 

either favour stiffness or permeability properties show a range of tissue regeneration response, 

supporting the theory that microarchitecture has a strong influence on neo-tissue formation. 
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It is noted by Chen et al. in further work that cellular materials for tissue regeneration 

should possess cell-favourable microfluidic properties in terms of flow velocity and wall shear 

stress (WSS) [28] . The magnitude of wall shear stress can be calculated as a function of 

dynamic viscosity. Chen et al. used computational fluid dynamics analysis to obtain WSS, and 

their results support the hypothesis that unit cell designs which elicit uniform WSS can enable 

cells to differentiate and grow into tissue in a desirable uniform fashion. 

2.2 Inverse Homogenization 

As discussed in section 2.1.1, homogenization theory is used to calculate the effective 

properties of a bulk material based on knowledge of the topology of a repeating unit cell. 

Recalling the goal of designing a bone tissue scaffold with specific effective properties, it is 

therefore necessary to solve an inverse homogenization problem [53]. Inverse topology 

optimization was originally introduced by Ole Sigmund who formulated the problem as a 

minimization of the difference between homogenized material properties and target material 

properties of a unit cell. The goal is to seek a microstructural configuration that attains desired 

effective material properties [57]. This procedure is described below. 

At the microscopic level, the problem becomes determining material distribution within 

the design domain of the unit cell. The unit cell is discretized into uniform mesh elements, each 

of which possesses a relative density: a fraction indicating how much solid material phase is 

present in that element. A relative density of 1 indicates completely solid material, and a relative 

density of 0 indicates a void element where no material is present. The connection of solid 

elements defines the topology of the unit cell and consequently the effective properties. Relative 

densities of the elements of the unit cell are typically the design variables when using topology 

optimization to solve the inverse homogenization problem.  

There are two common approaches to defining objective functions for finite element 

based inverse homogenization. The first is minimizing or maximizing critical components of a 

homogenized tensor. This is formulated for the stiffness tensor as minimizing these parameters 

(or their reciprocal). For example maximizing bulk modulus can be formulated as:  
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where   is relative density and      
  is the homogenized stiffness tensor. The second approach is 

using the least squares formulation, where the square of the difference between homogenized 

tensor and target tensor is minimized. It is mathematically formulated in the following way: 
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[8] 

where       is a weighting factor to vary roles of different stiffness components and      
  is a 

target stiffness tensor. 

The method of inverse homogenization is well suited for our application of specifically 

designing a bone tissue scaffold. The goal in such design problems is typically to match the 

stiffness of the surrounding tissue while maximizing permeability. The hierarchical design of the 

bone tissue scaffold is addressed by using multi-functional inverse homogenization at both the 

macro and micro scales, with topology optimization used to solve the inverse homogenization 

problem. 

2.3 Topology optimization for bone tissue scaffold 

Bendsøe and Sigmund describe in detail the theoretical basis for topology optimization in 

their book “Topology Optimization: Theory, Methods, and Applications” [58]. The following 

section and many published works in this area are based on their derivative of the topology 

optimization approach to inverse homogenization. Topology optimization is the basis of the 

proposed technique for designing a bone tissue scaffold with desired stiffness and permeability. 

2.3.1 Definition and derivation 

A structural design problem can be broken into categories of sizing, shape, or topology 

optimization, each addressing different aspects of the design as depicted in Figure 9. An example 

of a sizing problem is finding the optimal thickness distribution of a plate, with the goal of 

minimizing or maximizing a certain physical quantity subject to equilibrium and other 

constraints on the state. For example, the optimal material distribution for the plate may 

minimize mean compliance, subject to a deflection state constraint, where the design variable is 

plate thickness. The characteristic feature of a sizing problem is that the design model domain 

and state variables are known and fixed a priori. In contrast, the goal of a shape optimization 

problem would be to find the optimum shape of this domain, where the domain boundary 

becomes the design variable. Shape optimization problems are restricted in that the topology (the 
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location and formation of holes) does not change from the initial design to the final design. In 

many cases, however, the introduction and removal of holes without violating design constraints 

has an advantage compared to shape optimization since it can lead to a better  optimal layout 

[59]. 

 

Figure 9: The three categories of structural optimization: a) Sizing of a truss structure, b) shape, 

and c) topology. Initial designs are shown on the left and final designs are shown on the right 

[58]. 

Topology optimization refers to the determination of the connectivity of the design 

domain, through features such as number, location, and shape of holes in a structure. The goal of 

topology optimization is to determine the optimal placement of an isotropic material in a given 

design space. It should be noted that although the base material is isotropic, the desired outcome 

of this research is to optimize an overall anisotropic cellular material. In a topology optimization 

problem, the known quantities would include applied loads, boundary conditions, desired volume 

of the structure (or desired compliance), and any specific structural design restrictions such as 

areas of solid material or holes. The connectivity and shape of the structure are unknown. A set 

of distributed functions defined on the fixed design domain are used to represent the topology, 

size, and shape of the structure.  

A general shape optimization problem formulated as a material distribution problem is a 

starting point for topology optimization. A widely applicable material layout problem consists of 

designing for minimum compliance with material constraints. The problem formulation is 

described below. 
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A solid body occupying a domain Ωmat is part of a larger reference domain Ω in R
2
 or R

3
. 

The problem of finding an optimal design in this context is finding the optimal choice of the 

stiffness tensor Eijkl(x) of the solid body, which is variable over the domain. A typical approach 

to finding the minimum compliance problem is to discretize the problem using finite elements. A 

problem that arises automatic generation of holes in a design space is that re-meshing capabilities 

must be embedded to account for the iterative changes in topology (i.e. the introduction of a 

hole). To address this issue, a fixed mesh can be used where void elements can be assigned very 

low stiffness properties, so that re-meshing is avoided and holes can be introduced [59]. Both the 

displacement and stiffness fields are discretized using identical prescribed mesh. The 

minimization problem becomes: 

       
    

    

                  

       

[9] 

Where   and   are the load and displacement vectors respectively, the stiffness matrix   is a 

function of    in an element  , and     is the set of admissible stiffness tensors for the given 

problem. The stiffness matrix   can be written as a sum of stiffness of each element in the form: 
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[10] 

where element   is numbered as         and    is the global level element stiffness matrix. 

In a discretized design space, the topology of a structure can be visually represented as a 

black and white rendering of the pixels (or voxels, in 3D). In these terms, the design problem 

involves finding the optimal subset Ωmat of material pixels. The set of admissible stiffness tensors 

consists of those tensors for which: 
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The inequality expression [12] imposes a limit on the volume fraction   of material that can be 

used in the design, resulting in a minimum compliance design for a fixed volume. The stiffness 

tensor      
  is for a given isotropic material, which varies with point   over the domain. Solving 
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this problem is most commonly achieved by replacing the integer variables (       with 

continuous variables, and applying a penalty that will direct the solution to have a binary 0-1, 

void-solid material distribution. With a fixed domain, the problem becomes a sizing problem by 

modifying the stiffness matrix to depend on a continuous function representing the density of the 

material. The function representing density is the design variable.  

2.3.2 Solid Isotropic Material with Penalization method 

The introduction of a penalty allows for the design of a structure with regions of either 

solid material or void space, as opposed to an intermediate value. A popular and efficient 

penalization method is called “Solid Isotropic Material with Penalization”, i.e. SIMP. Using the 

SIMP method, the sizing problem would be reformulated with penalization factor   as: 
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The continuous density function      is the design variable and      
  is the isotropic base 

material stiffness. The stiffness tensor        interpolates between 0 (void space) and      
 . The 

penalization method is commonly used in structural optimization where intermediate values of 

material density do not have physical meaning, and a completely solid-void design is desired. 

With the exponent on the density function    , values of density that are in the intermediate 

range are penalized because a smaller stiffness is obtained for a given material volume. Thus, it 

becomes uneconomical to use intermediate density values[60].  

 

Figure 10: Effect of penalty factor p in SIMP method. 
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Often,     is used to obtain designs that are 0-1. Rietz shows that for a large enough  , there is 

a global optimum solution in 0-1 form, as long as the volume constraint is compatible [61]. Too 

severely penalizing the function, however, can result in a design that is a local minimum which is 

overly sensitive to the choice of the initial design. That is, the design jumps too quickly to a 0-1 

design. The choice of   is dependent on the design problem. A method of slowly raising the 

power   through the computations is suggested, until the final design is reached [60].  

The physical interpretation of SIMP-model can be visualized using a composite or 

cellular material. If each pixel of a mesh is regarded as one unit cell, a design which has some 

grey regions can be achieved by designing the topology of each unit cell to match the required 

relative density.  

2.3.3 Stress constraint 

 It is common that topology optimization will lead to designs that have high stress 

concentrations or even stress singularities [62]. Often, shape optimization and design 

adjustments are conducted a posteriori to fulfil stress constraints. It is shown in literature that 

stress constraints can also be included in topology optimization to circumvent or simplify a 

posteriori the material design. In 2013, Holmberg et al show that by including a stress inequality 

constraint in the topology optimization statement, designs can be achieved to avoid stress 

concentrations [62]. Avoiding stress concentrations is essential to the longevity of a bone tissue 

scaffold, as plastic deformation could lead to fatigue and failure. In topology optimization where 

there may be intermediate values of local relative density, stress constraints cannot be defined a 

priori because local material properties change as a function of relative density. Using the SIMP 

model, the stress constraint can be formulated as: 

         

where      is the von Mises equivalent stress,   is local relative density,   is the penalty factor 

(see section 2.3.2) and    is local stress [58]. This formulation has not been implted in the current 

thesis and will be part of future study. 

2.3.4 Optimization methods  

Common algorithms specific to topology optimization include the Optimality Criteria 

(OC) method, the Method of Moving Asymptotes (MMA), and the Level Set Method (LSM) 

[57]. Evolutionary Structural Optimization (ESO) and Genetic Algorithms (GA) are alternatives 
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to the gradient based methods, but are currently not as commonly used in topology optimization 

procedures for multi-functional bone tissue scaffolds. Two gradient based optimization 

procedures are described below that are compatible with topology optimization: OC and MMA. 

Optimality Criteria Method 

In topology optimization, an iterative method is used to update relative density of each 

element. The relative densities are updated independently from the other elements and with 

respect to conditions of optimality, based on a previously computed design. The conditions of 

optimality for minimum compliance design of a structure using the SIMP interpolation scheme is 

described in this section.  

The derivation of the conditions of optimality begins with an expression of energy in the 

bilinear form. Energy as an expression of the internal virtual work of an elastic body at the 

equilibrium   and for an arbitrary virtual displacement   is given by. 
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The minimum compliance problem with SIMP is formulated in weak form as: 

 

    
     

     

                                  

                            
  

           ∫       
 

                      

[16] 

Strain        and load      in linear form, respectively are: 
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The load      is the work done by body forces   and traction   at the boundary. The variable   

describes the body forces, and   is the boundary tractions on the traction part    of the 

boundary   .   is the space of admissible displacement fields and the subscript E on the energy 

equation indicates that it is dependent on the design variables. Relative density   must be greater 

than zero to avoid singularities in the equilibrium problem. It is sufficient to set      = 10
-3

.  
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Reformulating the problem in Lagrangian form allows the conditions for optimality of   

to be derived from the stationary conditions of the Langrange function. Using Lagrange 

multipliers  ,      , and       for the constraints of the minimum compliance problem, the 

Lagrangian function is written as follows: 
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   ∫            
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[19] 

For the equilibrium constraint,  ̅ is the Lagrangian multiplier. Assuming that         , the 

optimality condition for variations of the displacement field   gives   ̅   . To determine the 

optimality conditions for  , the derivative of the equation is taken and set to zero       : 

       

  
                      

[20] 

The detailed calculation for the derivative of       with respect to   is shown in Appendix C. The 

derivatives for each point are localized, but have influence from the surrounding elements 

through the displacement  . Both sides of Equation [20] have an integral over   which can be 

dropped. By inspection, the inequality constraints with multipliers    and    are not active for 

intermediate values of  . That is, when         , the optimality condition is: 

              
                [21] 

This shows that the term on the left side of the equation, similar to the strain energy density, is 

constant and equal to  , the volume constrain multiplier, for intermediate densities. For an 

iterative scheme, the design variable   can be updated based on these optimality criteria to 

achieve a stationary Lagrangian system. Such an update scheme can be written as follows: 
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The subscript of    is the value of density at iteration n, and    represents the optimality 

expression: 
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Here,    is the displacement field at iteration n. A local optimum is reached when      for 

intermediate densities. The update scheme can be interpreted as adding material to areas which 

have high strain energy (when     ) and removing material when strain energy is low. 

Otherwise,    is close to unity, and the optimality condition is satisfied for that design variable. 

It is shown that the update scheme accounts for the upper and lower bounds on allowable relative 

density (     and 1). There are two additional parameters in the update scheme:   and η. The 

variable   is a “move limit” which enforces a control on the amount that a design variable can 

change in one iteration. The tuning parameter η is chosen by experiment to obtain a stable and 

efficient convergence scheme based on the specific problem. The typical values used for η and   

respectively are 0.5 and 0.2.  

The steps of topology optimization with the Optimality Criteria method can be 

summarized as follows: 

1. Define the reference domain, and specify the areas which will be subject to optimization. 

2. Create a finite element mesh of the domain for both the displacements and design 

variables (preferably the same size mesh). 

3. Define initial distribution of material. This may be a homogeneous distribution. Begin the 

iterative process: 

4. Apply load and boundary conditions, and calculate resulting strains by finite element 

analysis. 

5. Compute the compliance of the design.  

6. Check for design convergence – if the change between this structure and the previous is 

very small, stop the iteration. Otherwise, update the design variable based on the 

optimality criteria. Repeat the iterative process. 

The optimality criteria (OC) method is effective for large scale topology optimization. 

However, the algorithm is not suitable for certain structural optimization problems. For example, 

multiple objectives and constraints, and constraints of geometric nature, may require a more 

costly, but more robust mathematical programming method. The method of moving asymptotes 

is a versatile algorithm, well suited to address the limitations of the OC method.  

Method of Moving Asymptotes 
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The method of moving asymptotes (MMA) is a mathematical programing method, 

similar to Sequential Linear Programming and Sequential Quadratic Programming, which is well 

suited for topology optimization [58]. These methods solve smooth, non-linear optimization 

problems by using a sequence of subproblems which are simpler approximations. MMA uses 

separable and convex subproblems, which are chosen based on the sensitivity of a given design 

point and knowledge of previous iterations. Subproblems can be solved each iteration using 

algorithms such as the dual method, or the interior point algorithm. Optimization with MMA can 

be summarized in the following steps: 

1. Choose a starting point      and let iteration index k=0. 

2. Calculate the behaviour constraints     
     and gradients      

     for given iteration 

point      for i=0,1,…,m 

3. Generate subproblem      by replacing the implicit functions    by approximating 

explicit functions   
   

 based on calculations from step 2.  

4. Solve the subproblems and let the optimal solution of this subproblem be the next 

iteration point       . Let k=k+1 and go back to step 2. The process ends when user 

specified convergence criteria are met. 

As shown in Equation [24] below, the approximations   
     in step 3 are found by a 

linearization of    in variables 1/(     ) and 1/(     ) which are dependent on the signs of the 

derivatives    at     . The parameters    and    are “moving asymptotes” and change between 

iterations. The approximation is formulated as: 
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The parameters    and    are chosen based on the following criteria: 

   
  

   
                              

   
  

   
                       

   
  

   
                                                 

     
 
  

   
     

The separable property of the approximation subproblems means that the design variables 

are not coupled by the optimality conditions of the subproblems, and subproblems have a unique 

solution. The convexity property of the subproblems is what allows dual methods or primal-dual 
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methods to be used for solving. The combination of these properties results in a computationally 

efficient method for topology optimization [63].  

This method may be slower than OC, but the MMA offers an advantage over OC because 

geometry considerations and situations with limited knowledge of the physical space can be 

accommodated, and the MMA can efficiently handle a large number of design variables. The 

method can also handle complex min-max functions. The method of moving asymptotes has one 

main disadvantage: convergence cannot be guaranteed [63]. A common experience with MMA is 

that if it converges, a solution is found quickly with steadily improving designs, but often the 

solution will diverge.  

Numerical instabilities in topology optimization  

Topology optimization approaches often suffer from a variety of numerical instability 

problems, such as checkerboard patterns, mesh dependence, and computational inefficiency. 

Checkerboard patterns refer to the case where solid and void elements appear in alternating 

fashion, only connected by a corner, and create artificially high stiffness regions. To avoid this 

problem, higher order mesh elements can be used. Techniques such as local gradient constraints, 

filtering, and various material interpolation schemes such as SIMP are also used to eliminate the 

presence of checkerboard regions [57]. 

Mesh dependency is a numerical instability illustrated in Figure 11, which shows that 

increased mesh refinement results in a larger number of holes appearing in the optimal topology.  

 

Figure 11: Dependence of optimal topology on mesh refinement. Solution is shown with a mesh 

of a) 2700 b) 2800 and c) 17200 elements [58]. 

Ideally, mesh refinement would result in a better modelling of boundaries of the same 

optimal topology. In the case shown in Figure 11, there is a non-existence of numerical solutions. 
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One way to efficiently achieve mesh independent designs is to reduce the design space of 

admissible design vectors with a global or local restriction on the variation of density. This can 

be achieved by either adding constraints to the optimization problem, reducing the parameter 

space directly, or applying filters in the optimization method. Convergence of finite element 

approximations can be found with the addition of one of these solutions [58].  

One highly efficient filter to ensure mesh-independency is to modify design sensitivity in 

such a way that the sensitivity of a specific element is based on a weighted average of the 

neighboring element sensitivities in a defined fixed range. This is a heuristic method of filtering 

but it is computationally efficient and simple to implement. It is reported that results are very 

similar to those obtained by a local gradient constraint to achieve the same effect [58]. 

A minimum length scale constraint can also be applied so that there are no features on a 

similar length scale of a mesh element [53]. This helps to address manufacturing issues arising 

from small feature sizes, and is a method to avoid the ill-posed nature of topology optimization. 

The design space is thus restricted but it ensures that checkerboard free solutions can be found 

with mesh independence.  

2.4 Multi-objective optimization 

In multi-objective optimization, a set of optimal solutions is sought. This optimal set is 

called the Pareto front. Pareto optimal solutions means that X* is an optimal solution if there 

exists no feasible solution X which can decrease some objective without causing at least one 

other objective function to increase. Many methods can be used to obtain Pareto optimal 

solutions, the easiest of which to implement is the weighted sum method. As described in the 

Chapter 1, the design of a bone tissue scaffold presents a multi-objective design conflict in the 

requirement for maximized stiffness and permeability. Multi-objective optimization of lattice 

materials is illustrated by Faragelli et al. [64], and by Khanoki et al [19, 20] specifically to 

address bone scaffold requirements. 

2.4.1 Weighted sum method 

A multi-objective function can be formulated as a weighted sum of more than one 

(possibly conflicting) objective functions, each assigned a weighting a priori, where the total of 

the weights adds to 1. This method formulates a multi-objective problem as a single objective 

function. It should be noted that this method is not reliable for non-convex problems [65]. Chen 
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and Wu implement this method to address conflicting design requirements of minimum 

compliance and maximum eigenvalue [65].   

While designing for maximum effective stiffness or maximum fluid permeability has 

been successfully attempted, the multi-objective problem of designing for both is more difficult 

[53]. In work by Guest et al. this multi-objective goal is formulated as a weighted sum. Three 

dimensional porous materials are simultaneously optimized for stiffness and fluid permeability 

while achieving target elastic and flow symmetries. The problem is formulated as an inverse 

homogenization problem, with relative density as the design variable. The objective function is a 

maximization of summed terms (effective stiffness and permeability) and an error function to 

enforce symmetries on both elastic properties and fluid flow. It is assumed that fluid velocities 

are uncoupled from matrix deformation, and homogenization of Stokes flow is used to calculate 

effective permeability. The MMA is used to solve the optimization problem with the SIMP 

penalty function. Solutions to this multi-objective design problem show that a range of materials 

can be designed within the design parameters by varying the weights of each objective in the 

objective function. 

 

2.4.2 Theoretical bounds 

A strategy used in multi-objective optimization is determining cross-property bounds 

between conflicting requirements a priori, to be used as a reference that can restrict the design 

space. Theoretical bounds on various conflicting properties can be calculated, and used in 

topology optimization to design cellular materials that extend the cross-property design space. 

Effective bulk modulus and isotropic diffusivity cross property bounds are defined by 

Hashin and Shtrikman (among others), based on a given material volume fraction [33]. Hashin 

and Shtrikman derived these well-known bounds using variational principles. The upper bounds 

of these properties are theoretically defined as: 
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where   is relative density,   and  are bulk and shear moduli of the solid phase, and   is the 

free isotropic diffusion coefficient of a solute in the fluid phase [33]. Kang et al. use these cross 

property bounds as design targets for their topology optimization procedure. 

In other work, Challis et al. perform topology optimization of two phase periodic multi-

functional composites in three dimensions using the level set method and cross property bounds 

[66]. The material studied has two phases: one stiff and insulating, and the other conductive and 

mechanically compliant. Cross property bounds were calculated and used here to demonstrate 

near-optimality of optimization microstructures.  

Further work by Challis et al. computes Pareto fronts to estimate upper bounds of bulk 

modulus and permeability for cross-property space for periodic porous materials for a range of 

porosities. The Hashin-Shtrikman bounds on effective magnetic permeability of composites are 

analogous to electrical conductivity, thermal conductivity, and diffusion coefficient. This paper 

shows that the bulk modulus and fluid permeability cross property space is not convex and 

therefore the full Pareto front cannot be realized [67]. A study by Hollister et al. compared their 

optimal designs to bounds on effective elastic modulus for isotropic and cubic symmetry cases 

[30]. It was shown that a significant portion of theoretical bounds for effective stiffness can be 

achieved with topology optimization. 

2.5 Target matching topology optimization 

In target matching topology optimization, the goal is to design a material with predefined 

structural properties. This can be expressed using the least squares formulation, where the square 

of the difference between a homogenized property and target property is minimized. Using this 

method, specific elastic and permeability matrices chosen based on the scaffold application can 

be achieved. Methods for comparing matrices for target matching are detailed in Appendix D.  

Kang et al. [33] use a homogenization based topology optimization approach for the 

design of 3D unit cells of a tissue scaffold. The mechanical and mass transport environments 

were quantified using effective bulk modulus and isotropic diffusivity. Design targets were 

computed using Hashin-Shtrikman cross property bounds between bulk modulus and diffusivity 

for a given porosity [33]. Local microstructural topology optimization based on the SIMP 

method was used to for target optimization. An objective function for target stiffness (C*) and 

target diffusivity (D*) is formulated as follows:  
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The cubic error function        is defined to minimize the differences among the three normal 

components, three off-diagonal components, and three shear terms in the stiffness matrix. The 

lower and upper bounds on porosity are given by     and     respectively. 

MMA was used to update the design variables and a nonlinear filtering technique was 

applied to the sensitivity derivatives to address checkerboard pattern issues and mesh 

dependencies. The results were unit cells with properties close to the cross property bounds, 

showing that unit cells can be tailored to meet various requirements for porosities from 30-60% 

[33].  

In another study by Lin et al., a target matching method was developed to design a 

scaffold unit cells to have specified elastic and porosity properties, using a homogenization based 

topology optimization algorithm [14]. With the target material to be used for bone tissue 

engineering, it was shown that highly porous structures can be made that match human 

trabecular bone stiffness using biomaterials. In this study, MMA is used as the optimization 

solver, with the objective function a weighted summation of minimization of error between the 

target and homogenized stiffness matrix components. A porosity constraint is enforced. The 

objective function is defined as: 
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The design variable is relative density and weighting factors are used to normalize the objective 

functions to the same scale.      
  is the target stiffness tensor and      

  is the homogenized 

stiffness tensor. The L2 norm operator is defined as the square of the difference between target 

and homogenized stiffness components.  

Because of the existence of non-unique solutions, the result is highly dependent on the 

initial material distribution in the design space. To address this problem, the design procedure 



 

41 

 

uses an initializing procedure to find a suitable initial material layout. In the initial loop, 

topology optimization is performed with a coarse mesh of initially uniform material distribution. 

The coarse result is then used as an initial guess for the main topology optimization which uses a 

much higher resolution mesh. It is suggested that a series of optimization trials be conducted 

with difference initial guesses to study the relation between initial guess and final topology. 

2.6 Alternative to topology optimization 

An alternative approach to the material layout problem is to define the topology a priori 

based on engineering knowledge. Instead of iteratively designing the architecture until the 

desired properties are reached, this ad hoc approach involves first designing the architecture and 

then computing its effective properties. In a study by Hollister et al., instead of using topology 

optimization, it is assumed that the basic unit cell structure consists of intersecting cylindrical 

pores and the pores have continuous connectivity [25]. A degradable bone tissue scaffold was 

then designed to meet conflicting design requirements.  

Ad hoc and topology optimized design approaches for scaffold architecture were 

compared to theoretical bounds on stiffness in another study by Hollister et al. [30]. The 

topology optimization results here did not show great improvement over the ad hoc design with 

spherical voids. In the topology optimization approach, different initial guesses led to very 

dissimilar final designs, even with the same effective properties. As expected, these results show 

that the optimization did not generate global optima and the final design is initial guess 

dependent.   

A possible solution to meet manufacturing and functional constraints is to develop a 

library of unit cells with a wide range of properties [25]. An advantage of having a restricted set 

of topologies is that scaffolds with heterogeneous property distributions can be designed by cells 

from the library, each satisfying continuous connectivity. All microstructures would provide a 

connected pathway for cell migration and nutrient flow. On the other hand, topology 

optimization schemes may not necessarily produce connected pores, unless specifically 

implemented as a constraint in the optimization model.  

2.7 Hierarchical topology optimization  

This section will review current methodologies to approaching the hierarchical topology 

optimization problem, drawing on theory described in the previous sections. As discussed in 

Chapter 1, bone tissue is a hierarchical structure, with features ranging in size from the nano-
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scale to centimeters. The hierarchy in structure allows for large variation in function and 

physiology of bone [68]. It is a well held paradigm that tissue replacements should closely mimic 

the natural tissue structure and function. Thus, controlling the hierarchical features of an artificial 

scaffold can allow for the optimization of function and tissue regeneration [25]. The analysis of 

hierarchical lattice materials is demonstrated by Pasini et al. [69-72] as well as in the work 

described below. 

A porous scaffold with structural hierarchy is proposed by Chen et al. to optimize tissue 

regeneration [73]. Chen et al. hypothesize that including hierarchy in scaffold is necessary to 

achieve the mechanical response of tissue. The premise of this work is the following: if the unit 

cell of a cellular material is called the first level of hierarchy, the mechanical properties of the 

first level can be deduced from its constituent materials. This can be conducted for multi-levels. 

For the N
th

 level structure, the (k-1)
th

 level, where k=1...N, can be treated as a continuum media 

to study the k
th

 level properties. It is assumed that the unit cell length scale at the (k-1)
th

 level is 

much less than the k
th

 level. The results show that as the hierarchical level number increases, 

porosity increases and strength decreases, approaching cortical bone Young’s modulus and 

strength when using constituent material properties (that is, of individual trabeculae).  

This hierarchical approach is applied in a study by Rodrigues et al., where topology 

optimization was used to determine material distribution and local material properties of a 

cellular structure. The method employed here uncouples the topology design problem into two 

scales. The outer (global) problem is concerned with the spatial distribution of material, and the 

inner (local) problem addresses the optimal design of the unit cells. At the global level, the 

design goal is the determination of the optimal distribution of material in space with variable 

relative density [74].  The global problem is defined as a minimum compliance design problem, 

formulated as a weighted average of compliance values for the case of multiple loads. To obtain 

a hierarchical structure, the problem is formulated such that the strain energy is maximized at 

each point of the structure. This pointwise maximization is treated as the inner subproblem. The 

global problem determines the macroscopic spatial distribution and the inner subproblem 

determines effective properties of the optimal microstructure. At each spatial location, the design 

of a unit cell is sought with a given density of material. The stiffness interpolation between void 

and the given material properties is found using SIMP as             .      is the stiffness 



 

43 

 

for a unit cell with a given relative density  , with penalty factor p and solid material stiffness 

     . 

After initialization, subproblems are solved and the homogenized stiffness is computed 

for each element. The global problem is solved and a global displacement field is calculated. 

Each element is updated (by means of the design variable, relative density), and then new 

homogenized stiffness is calculated. A check for convergence is performed. Thus, the numerical 

procedure involves two finite element models: one discretized in the global domain and one 

discretized in the local domain. Local and global displacement fields are approximated with iso-

parametric elements and design variables are interpolated as constant in each respective element. 

Because the local problems are independent, using parallel processing allows them to be solved 

simultaneously.  

An improvement on this work was conducted by Coelho et al in 2007, with similar 

problem formulation but in three dimensions rather than two [39]. The optimization model works 

at two interconnected levels (global and local) to find the optimal structure and its material. 

Asymptotic homogenization is used to determine effective properties and SIMP based approach 

is used. Optimality conditions are approximated using finite element discretization at the local 

and global levels. Checkerboard patterns are addressed by a filtering technique based on a 

weighted average of design gradient values. 

In 2010, a similarly formulated hierarchical topology optimization problem was solved, 

but a permeability constraint is introduced [75]. The problem again is formulated as a structural 

compliance minimization problem subjected to a material volume constraint, and subjected to 

local material constrains. The structure and its material are simultaneously optimized. The MMA 

is employed for the global problem, as it is capable of handling local material design constraints 

(such as manufacturing, symmetry, and permeability). The local problem is solved using a 

similar mathematical programming method called CONLIN, from which MMA is derived. In 

this study, a permeability constraint is enforced as a lower bound constraint, where permeability 

is calculated from the homogenized permeability tensor. Orthotropic symmetry on the tensor is 

enforced. Permeability control is found to lead to more convoluted solutions, which better 

resemble real trabecular bone patterns.  
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 Further motivation for hierarchical design is that enhanced bone growth is found in 

random structures [76]. In hierarchical topology optimization, the microarchitecture of each unit 

cell is designed independently of its neighbour, resulting in a non-homogenous scaffold. This 

introduces heterogeneity throughout the structure, found to be a beneficial factor in bone 

ingrowth. 

In summary, multi-objective optimization for both stiffness and permeability for bone 

tissue scaffolds has been explored by Hollister, Guest, Challis, et al. [13, 14, 25, 33, 53, 66] and 

methods have been developed that can produce unit cells close to the theoretical cross property 

bounds [33, 67]. Hierarchical topology optimization for bone tissue scaffolds has a strong 

biological motivation, and methods have been developed by Coelho, Rodrigues, Chen, et al. [39, 

73-75, 77, 78] which demonstrate the capability of multi-scale modeling for target properties. 

One natural next step in exploring the computational design of bone tissue scaffolds is dictated 

by the gap in current literature: the multi-objective optimization of stiffness and permeability of a 

hierarchical bone tissue scaffold. Currently, no published work describes the combination of 

hierarchical topology design with multi-objective topology optimization for bone tissue scaffold 

design, the focus of this work. 
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Chapter 3: Hierarchical topology optimization algorithm 

Based on the methods and theory described in Chapter 2 as well as previous algorithms 

reported in literature, a unique 2D hierarchical topology optimization routine is proposed in this 

chapter for the design of a bone tissue scaffold. The objective of the proposed methodology is 

the design of a scaffold that has stiffness close to that of bone and maximum permeability. This 

chapter will provide a description of each step of the algorithm and discuss the model 

assumptions. In Chapter 4, the methodology is applied to the design of a bone fracture fixation 

plate. 

3.1 Algorithm structure 

This section provides an overview of the proposed algorithm and respective assumptions. 

The procedure is divided into sequential material layout problems at two scales: (1) the topology 

of the implant, and (2) the topology of each unit cell to meet functional requirements at each 

location of the cellular material. Although some methods in literature perform these searches in 

parallel, this procedure involves designing each unit cell after the optimal topology of the 

scaffold is determined. The SIMP method is used to interpolate target material properties for 

each unit cell based on the optimal material distribution found in the implant optimization stage. 

The optimization procedure is performed using MATLAB, in combination with ANSYS for 

finite element analysis. A simple schematic depicting the overall procedure is shown in Figure 

12, with a more detailed flowchart shown in Figure 13.  

 
Figure 12: General schematic of optimization procedure. 

3.1.1 Initial guess 

 The convergence of topology optimization problems can be highly dependent on the 

initial material layout in the design space. Due to the nonexistence of a unique solution to the 

optimal topology of a unit cell for maximum stiffness and permeability, local minima for the 

objective function may be found with different initial material distributions. In both stages of the 

proposed procedure, a uniform distribution of material within the design space is chosen as an 

initial guess.  

(1) Implant 

Optimization SIMP 
(2) Unit cell 

Optimization 

Relative density 

distribution 

Target material 

properties 
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Initialize implant design space: 

• Discretize with finite element mesh 

• Define initial material layout 

• Apply loading and boundary conditions 

m n  ∶
𝒙
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Evaluate objective function: 
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Convergence? 
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Update design variables: 

Optimality Criteria method (Equation [22]) 
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Figure 13: Hierarchical topology optimization flowchart. 

Initialize unit cell design space: 

• Discretize with finite element mesh 

• Define initial material layout 

• Apply periodic boundary condition 

m n  ∶
𝜌

   𝑓 𝝆  𝑤  𝑪
𝐻  𝐶  

𝐿 
 𝑤 (

𝑃𝐻

𝑃 
  )

 

 

Evaluate objective function: 

subject to :   𝑽𝑚𝑖𝑛  𝑽  𝑽𝑚𝑎𝑥 

                 :    𝟎  𝝆𝑚𝑖𝑛  𝝆  𝟏  
 

Convergence? 

Yes 
No 

Update design variables: 

Method of moving asymptotes () 
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3.1.2 Filtering 

A filter to modify objective function sensitivity is applied to ensure mesh-independency 

and avoid a checkerboard pattern. In the topology optimization routine, the gradients are 

calculated for each mesh element independently of one another. The sensitivity of each element 

is then recomputed taking into account a weighted average of the neighboring element 

sensitivities within a fixed range. This is a heuristic method of filtering but it is computationally 

efficient and simple to implement.  

3.1.3 Unit cell symmetry constraint 

It is advantageous and convenient to design unit cells of a scaffold with an imposed 

symmetry constraint. Computational effort can be reduced by designing one quarter of a unit cell 

based on symmetry assumptions. Additionally, structures without square symmetry may have 

directions with low material properties such as stiffness or permeability, and weak directions 

may not be desirable. A symmetry constraint is a method to ensure that the stiffness and 

permeability do not change in both normal directions. This is included in the unit cell topology 

optimization as a weighted term of the following objective function: 

 
  (

   
 

   
   )

 

 
[29] 

In a study by Rose et al., scaffolds were shown to have enhanced cell and tissue 

regeneration both in vitro and in vivo  with a random porous structure, as opposed to a periodic 

structure [76]. In hierarchical topology optimization, the microarchitecture of each unit cell is 

designed independently of its neighbour, resulting in a non-homogenous scaffold. This 

introduces anisotropy in the scaffold as a whole, with unit cells conveniently designed with a 

symmetry constraint. 

3.2 Implant topology optimization (1) 

The first stage of optimization in the hierarchical technique is to determine an optimal 

material layout for an implant with minimal compliance (or strain energy), to reduce the 

difference between the strain energy of the base material (Ti6Al4V) and bone. Bone is much less 

stiff than titanium alloys used in implant design. The objective function      to minimize 

compliance using a power based topology optimization approach is formulated as follows: 
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            ∑    
   

     

 

   

 

subject to   :   
    

 0
                         

                 :   𝐊𝐔  𝐅     

                                  :   𝟎         𝟏 

where   is the design variable (relative density) of each element e, U is displacement and K is 

stiffness.  The optimization scheme is governed by the structural elasticity equation 𝐊𝐔  𝐅. 

This formulation is widely used in literature for minimizing compliance, specifically in the 99 

line topology optimization code developed by Sigmund (2001) which is used as a starting point 

in this analysis. 

 A volume fraction constraint is applied as an equality constraint, with target volume    

defined by the user. Volume fraction is measured as the ratio of solid material      to the size of 

the design domain    . An inequality constraint on the design variable   is imposed to restrict 

values of relative density to lie between a value close to zero and 1. A small number, 10
-3

, is 

chosen as the minimum value of   to avoid singularities in the finite element calculations. 

Otherwise, re-meshing would be required to exclude void elements. A penalty factor     is 

chosen, based on the suggestion by Sigmund et al. to ensure convergence [58]. The effect of 

changing penalty factor   is discussed in section 3.4. 

Topology optimization at the implant level is described below, as depicted in Figure 13. 

A design space is first defined with both the displacement and stiffness fields discretized without 

changing mesh. Identical four-node quadrilateral mesh elements are used, and a uniform relative 

density distribution is initially defined. Material properties of the solid phase are defined with 

Young’s modulus and Poisson’s ratio, which are used to calculate the material stiffness. Plane 

stress is assumed in this two-dimensional analysis. Loading and boundary conditions are 

specifically applied depending on the expected physiological loading of the implant. The 

topology optimization procedure is highly sensitive to loading and boundary conditions, so 

careful selection is essential. 

The iterative procedure begins with the evaluation of the objective function for the initial 

material distribution within the design space. The sensitivity of the objective function is 

calculated, and a filtering technique is applied to smooth the gradients, as described in section 
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3.1.2. The design variables are updated based on the filtered sensitivities, according to the 

Optimality Criteria method described in section 2.3.2. A convergence check is performed, which 

evaluates the maximum change in relative density for each element from its current value to its 

value from the previous design. Convergence is found when the maximum change in relative 

density of all elements is below a defined threshold, in this case 0.02. When the design variables 

have stabilized within the prescribed tolerance, the optimal material distribution is achieved.  

With the optimal relative density for each unit cell determined, the target stiffness at each 

location of the implant is calculated. A relative density of 1 indicates that the desired stiffness of 

that unit cell is equal to the predefined base material stiffness. Similarly, a relative density near 

zero indicates that no stiffness is required at that location. The SIMP relation is used to interpret 

intermediate values of relative density as material properties for each unit cell: 

            [30] 

where penalty factor    ,    is the interpreted stiffness matrix of a unit cell with a given 

relative density  , and       is the solid material stiffness. With target stiffness for each location 

of the implant defined, unit cells can be specifically designed to match these local requirements 

in the next stage of optimization. 

3.3 Unit cell topology optimization (2) 

The second stage in the topology optimization routine is to design unit cells to achieve 

local target stiffness and permeability, based on bone ingrowth requirements. Each unit cell is 

designed independently of surrounding unit cells. The objective function is formulated as 

follows: 

m n  ∶
 

     𝝆    ‖ 
    ‖

  
   (

  

  
  )

 

   (
   
 

   
   )

 

 

subject to :               

                         :    𝟎  𝝆    𝝆  𝟏  
 

Where   is porosity of the unit cell and 𝝆  is relative density of each mesh element. The first 

term of the minimization problem is difference between target stiffness and effective stiffness of 

the unit cell. The L2 norm is calculated as the square of the difference between target (    and 

homogenized (    components. The target stiffness matrix is determined from Equation [30]. 

The effective stiffness is calculated using asymptotic homogenization, implemented with 
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ANSYS mesh and finite element solver. The second term of the objective function is the squared 

difference between target and effective permeability of the unit cell. Effective permeability is 

calculated using Weissberg’s formula (Equation [5]). The target permeability is also calculated 

using Weissberg’s formula, which is solely a function of porosity, ϕ. The acceptable range of 

porosity for bone ingrowth is 60-80%, so the maximum porosity (80%) is used to determine the 

target permeability. The third term in the objective function ensures square symmetry of the unit 

cell, as described in section 3.1.3. The acceptable range of porosity is enforced using an 

inequality constraint, where     =60% and     =80%. An inequality constraint is also used to 

ensure that the relative density of each mesh element is between 𝝆   =0.001 and 1. 

The design space is initialized with a uniform finite element mesh of four-node 

quadrilateral elements. In-plane stress is assumed. A periodic boundary condition is applied to 

the unit cell for the calculation of effective stiffness properties. The iterative procedure begins 

with evaluating the objective function for the initial material distribution, based on calculation of 

effective stiffness and permeability properties. The method of moving asymptotes is used to 

update the design variables, as described in section 2.3.2. A convergence check is performed to 

evaluate the maximum change in relative density for each element, from its current value to its 

value from the previous design. Convergence is reached when the maximum change in relative 

density of all elements is below a prescribed tolerance of 1%. This procedure is conducted for 

each unit cell, which can then be mapped to their respective locations within the implant 

structure. Further discussion on unit cell mapping is found in section 4.4. 

3.4 Model validation  

To verify the validity of the topology optimization routines developed here, it is essential 

to qualitatively and quantitatively compare the numerically determined results to closed-form 

solutions from  benchmark problems of optimal material layout [59]. A set of well-known 

benchmarks of optimum structural layouts are the Michell trusses, which are theoretically solved 

optimal truss structures for bending. Among the various benchmark problems, Figure 14 and 

Figure 15 show two examples of an initialization of the design space with the relative optimal 

material distribution.  

Quantitative verification of a solution consists of the following procedure: (a) for a given 

problem, numerically derive the optimal topology for various volume fractions and various 
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numbers of mesh elements, (b) calculate structural volume for each solution, (c) extrapolate the 

volume for zero volume fraction and infinite number of elements, and finally (d) compare this 

extrapolated value with that calculated analytically for exact benchmarks [79]. In a study by 

Kikuchi et al., the inverse homogenization method with SIMP for topology optimization that is 

used in this thesis was verified for the generalized layout problem by showing it can reproduce 

the Michell truss shown in Figure 14 [59]. As shown in Figure 14, a bending force F must be 

optimally transferred to a non-deforming circular support by constructing some truss structure.  

   

Figure 14: Design space initialization and analytical solution of the Michell truss [59]. 

A qualitative examination of a solution for a second Michell truss structure (Figure 15) 

was conducted. Table 3 shows the effect of mesh resolution and relative density on the optimal 

design. A change in topology can be observed with an increased mesh resolution, indicating that 

it is essential to use a mesh density high enough to avoid mesh dependency. Table 4 shows the 

influence of the penalty factor  . It is observed that a low penalty factor (   ) yields optimal 

designs where many mesh elements have intermediate values of relative density. It is also 

observed that with a high penalty factor, the design procedure may converge too quickly to a 

solid-void design, finding a local minimum which is overly sensitive to the choice of initial 

design. Numerical instabilities are found with higher penalty factors (   ) due to ill 

conditioned matrices. 

         

Figure 15: Design space initialization (left) and analytic solution (right) of the Michell truss [59]. 
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The analytical solutions of Michell trusses have an infinite number of bars; however 

finite solutions are found numerically. One reason for the limited number of bars is the type of 

mesh element used. Using uniform square elements restricts material distribution because it 

necessitates a very fine mesh in order to represent the sharp corners between the bars, as shown 

in Figure 15. However, the use of square elements is very convenient for simplicity of 

programming and finite element analysis. The sensitivity filtering that is imposed to reduce mesh 

dependency also reduces the development of detailed features, but it is necessary for 

convergence. From Table 4, it is apparent that higher penalty factors can result in a topology 

with more bars, however as discussed above, numerical instabilities are observed with    . 

Therefore, it is valid to use the proposed topology optimization procedure with     to achieve 

meaningful results, althoughit is important to note that the limitations of the procedure can be 

attributed to mesh resolution, element type, and filtering. 

 

Table 3: Effect of mesh resolution and relative density on the topology optimization of a Michell 

truss problem, with penalty factor p=3. 

 Relative density 

Mesh resolution 20% 30% 40% 

40x40 

   

60x60 

   

80x80 
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Table 4: Effect of penalty factor p on the topology optimization of a Michell truss problem. 

Mesh size is 60x60 and relative density is 30%. 

p  p  p  

1 

 

2 

 

3 

 

4 

 

5 

 

6 
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Chapter 4: Results 

 This chapter shows the application of the hierarchical topology optimization routine 

described in Chapter 3 to the design of a cellular bone fracture fixation plate. First, the material 

distribution of the plate is determined. Secondly, a sample of unit cells for various locations 

throughout the plate are designed for target stiffness and permeability based on bone ingrowth 

requirements (Figure 16). Finally, the mapping of unit cells into the plate structure is illustrated 

and discussed.  

 

 

 

             

Figure 16: Schematic of fracture fixation plate optimization scales [80]. 

 

4.1 Fracture fixation plate design motivation 

A compression fracture fixation plate provides a locking force across a fracture site to 

which it is applied. The plate is attached to bone fragments using screws, resulting in tension of 

the plate, and compression at the site (parallel to the plate). The purpose of the plate is to provide 

increased stability of the fractured bone fragments, reduce the gap space that must be healed by 

new forming tissue, protect the blood supply in the area, and  prevent sliding by increasing 

friction. The plate alone is not necessarily designed to resist torsion well. The stiffness of the 

plate should be close to that of bone with sufficient strength. Often, Ti-6Al-4V or stainless steel 

(316L) is used for the plate. These are both biocompatible materials; however, titanium offers a 

higher strength to stiffness ratio and is used here [81]. 

112 mm 

1mm 
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Figure 17: Lateral view of humerus with dynamic fracture fixation plate and screw system [82]. 

Ongoing concerns with fracture fixation plates are (1) excessive stiffness resulting in 

stress shielding, and (2) osteoporosis of underlying bone. The resulting decrease in bone mass 

and density increases risk of re-fracture at the site [36]. Osteoporosis beneath a fracture fixation 

plate can be caused by disruption of blood flow to the fracture site. Stress shielding results from 

the mismatch of mechanical properties causing delayed callus formation and bone healing. The 

Young’s modulus of cortical bone is approximately 20 GPa, compared to 110 GPa for Ti-6Al-

4V. The porous nature of a cellular fracture fixation plate reduces disruption of blood flow to the 

bone, while mechanical properties can be specifically tailored at the unit cell level to match those 

of the local tissue to reduce stress shielding.  

4.2 Plate topology optimization 

The plate design space is initialized based on the dimensions of a small fragment locking 

compression plate system by Synthes, Inc [80]. For an 8-screw plate with 3.5mm hole diameter, 

the plate length is 112mm and width is 12mm. It is reported that a compression plate should 

provide approximately 600N of compressive force [35]. In this analysis, completely in-plane 

loading is assumed, and 600N is distributed as a tensile force on the outer face of each screw 

hole, as shown in Figure 18. Symmetry is exploited and only half of the plate is modeled, using a 

symmetric boundary condition (right side in Figure 18).  

 

Figure 18: Schematic of loading and boundary conditions for half of the fracture fixation plate.  
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The mesh resolution was varied and finally chosen as 48 elements by 448 elements. At 

higher mesh resolutions, no difference in topology was observed. One mesh element is 

equivalent to 0.25mm in length and width. Each hole is prescribed to have void elements with a 

solid material boundary for screw threading. Elsewhere, the initial material distribution is 

uniformly 50% relative density. The target stiffness for the implant is that of the in-plane tensile 

stiffness of cortical bone: approximately 20092 N/mm. This was determined by a tensile stiffness 

analysis conducted in ANSYS for a solid plate with cortical bone properties (       , 

     ). Table 5 shows the optimal Ti-6Al-4V plate topologies found using a 50% material 

fraction equality constraint, with various penalty factors used to interpolate material properties. 

The first entry in the table shows a solid plate with 8 screw holes for comparison. Table 6 

summarizes the strain energy and stiffness for the optimal plates, calculated in ANSYS. The 

solid plate has significantly higher stiffness than cortical bone, and is an order of magnitude 

greater than the target. Intuitively, lower stiffness is observed with a 50% material fraction 

constraint. By using less material and allowing for intermediate values of relative density (e.g. 

with      ), a titanium plate can be designed with stiffness much closer to cortical bone.  

 

Table 5: Optimal plate topologies with 50% material fraction. 

Design Optimal topology 

(a) Solid  

 

(b)     

 

(c)        

 

(d)       

 

(e)     
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Table 6: Strain energy and stiffness for 50% material fraction plates. 

Design 
Material 

fraction 

Penalty 

factor,   

Strain energy 

(N/mm) 

Tensile stiffness 

(N/mm) 

(a) Solid  94.11% N/A 10974 204857 

(b)     50% 3 4494 83905 

(c)        50% 1.25 3215 60013 

(d)       50% 1.1 1715 32021 

(e)     50% 1 783 14621 

For a 50% material fraction constraint, it appears that the penalty factor should lie 

between 1 and 1.1 in order to achieve the target stiffness of cortical bone. Changing the material 

fraction constraint can also result in plates with stiffness closer to the target. For example, the 

optimal plates with a 45% material fraction constraint are shown in Table 7 and Table 8, with the 

penalty factors of the the 50% volume fraction plates. Table 8 shows that with      , plate 

stiffness is 18910 N/mm, which is approximately 6% less than that of cortical bone. The 

adjustment of input parameters allows for fine tuning of the optimal results, so as to achieve 

target stiffness. Appendix D shows optimal topologies obtained for a range of material fractions. 

Table 7: Optimal plate topologies with 45% material fraction. 

Design Optimal Topology 

(a) Solid  

 

(b)     

 

(c)        

 

(d)       

 

(e)     
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Table 8: Strain energy and stiffness for 45% material fraction plates. 

Design 
Material 

fraction 

Penalty 

factor,   

Strain energy 

(N/mm) 

Tensile stiffness 

(N/mm) 

(a) Solid  94.11% N/A 10974 204857 

(b)     45% 3 4080 76161 

(c)        45% 1.25 2654 49555 

(d)       45% 1.1 1013 18910 

(e)     45% 1 620 11586 

 

In general, a lower penalty factor   yields more graded material distribution in the 

optimal design, which can be realized by designing further at the unit cell level for each location, 

to achieve target material properties. The SIMP relation is used to interpolate effective material 

properties from intermediate values of relative density. This allows for new areas of the design 

space to be accessible, beyond what is achievable with completely solid material. Design (d) in 

For a 50% material fraction constraint, it appears that the penalty factor should lie between 1 and 

1.1 in order to achieve the target stiffness of cortical bone. Changing the material fraction 

constraint can also result in plates with stiffness closer to the target. For example, the optimal 

plates with a 45% material fraction constraint are shown in Table 7 and Table 8, with the penalty 

factors of the the 50% volume fraction plates. Table 8 shows that with  =1.1, plate stiffness is 

        mm, which is approximately 6% less than that of cortical bone. The adjustment of 

input parameters allows for fine tuning of the optimal results, so as to achieve target stiffness. 

Appendix D shows optimal topologies obtained for a range of material fractions. 

Table 7 is chosen as the optimal plate topology, and is further designed at the unit cell 

level in section 4.3.  

4.3 Unit cell topology optimization  

The unit cell optimization procedure was conducted for a range of input parameters. 

Target stiffness properties were used based on relative densities ranging from 10% to 90%, in 

increments of 10%. Penalty factor p was also varied between 1 and 3 in increments of 0.5, with 

the goal of achieving a completely solid void design. Each combination of penalty factor and 

relative density was repeated three times to observe the repeatability of the procedure. Stiffness 

and permeability components of the object function were initially weighted equally. A mesh size 

of 26x26 elements was used. 
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Convergence to an optimal topology was challenging to find. As reported in literature, 

convergence using the method of moving asymptotes is often not found [63]. Adjusting the 

MMA parameters, including step length for moving the asymptotes, were ineffective in yielding 

converging results. The best convergence was found with target stiffness properties determined 

by a relative density of 60%. As shown in Table 9, stiffness can be found within the range of 3-

13% of this target, and permeability is found within 0.5-3.5%. Porosity is also within the 

acceptable range of 60-80%. Appendix E shows further optimal unit cell designs at a mesh 

resolution of 26x26 elements as well as 16x16 elements. 

Table 9: Optimal unit cells with target stiffness determined by a relative density of 60%. 

 Porosity p 
% Difference in the stiffness 

matrix components 

% Difference in 

permeability 

 

65.23 1 

-5.52 4.80 0 

4.80 -5.52 0 

0 0 2.14 
 

-0.45 

 

65.77 1.5 

-10.98 5.16 0 

5.16 -10.98 0 

0 0 2.92 
 

-1.42 

 

 

 

65.50 2 

-13.72 -3.87 0 

-3.87 -13.72 0 

0 0 -6.53 
 

-0.91 

 

66.95 2.5 

-13.17 -10.22 0 

-10.22 -13.17 0 

0 0 -8.60 
 

-3.46 
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It was observed that higher penalty factors lead to more checkerboard patterns in the 

optimal design. The convergence to an optimal design with properties in the approximate range 

of the target was achieved; however regions of disconnected material within the unit cells and 

regions of intermediate material properties are present. An attempt to enforce connectivity 

between unit cells was made by prescribing certain regions of the design space to be solid, and 

these regions were not iteratively updated. With this constraint, a unit cell can be found with a 

percent difference in permeability of -2.35%, and percent difference in components of the 

stiffness matrix less that 5.5%. However, a completely solid-void topology was not achieved 

(Figure 19). Material tended to distribute uniformly throughout the unrestrained regions of 

relative density. Further suggestions for enforcing connectivity are discussed in Chapter 5. 

  

Figure 19: Prescribed regions of material (dark grey) to ensure connectivity between unit cells. 

An optimal unit cell that has a maximum percent difference in stiffness of 7.43% and a 

1.43% difference in permeability was compared to the Hashin-Shtrikman theoretical bounds of 

bulk modulus and diffusivity (Table 10). 

Table 10: Optimal unit cell compared against Hashin Shtrikman bounds. 

 Porosity p 
% Difference in the stiffness 

matrix components 

% Difference in 

permeability 

 

65.79 2 

-7.43 -1.44 0 

-1.44 -7.43 0 

0 0 -1.56 
 

-1.43 

Figure 20 shows that the effective bulk modulus for this unit cell falls beneath the 

theoretical bounds; however, effective permeability lies well outside the predicted maximum 

value. This may be indicative of an error in calculating permeability solely as a function of 

porosity. The error may be reduced by using a more robust method to calculated permeability, 

which also takes into account the geometric features of the unit cell. Modification to the 

permeability calculation method are further discussed in Chapter 5.  
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Figure 20: Comparison of optimal unit cell effective properties to theoretical bounds [33]. 

It was found that the optimal topologies found were highly dependent on the initial 

material distribution. This is illustrated in Table 11, where three different optimal topologies 

were found for given input parameters. 

Table 11: Unit cells with varying optimal topologies from same initial parameters. 

 Porosity p 
% Difference in the stiffness 

matrix components 

% Difference in 

permeability 

 

64.34 1.5 

-13.52 -3.61 0 

-3.61 -13.52 0 

0 0 0.32 
 

1.19 

 

65.77 1.5 

-10.98 5.16 0 

5.16 -10.98 0 

0 0 2.92 
 

-1.42 

 

65.15 1.5 

-12.78 -0.01 0 

-0.01 -12.78 0 

0 -100 6.72 
 

-0.30 

Diffusivity bounds Bulk modulus 

bounds 

Effective permeability 

(0.6030) 

Effective bulk modulus 

(0.2332) 
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4.4 Mapping of unit cells 

This section discussed the procedure of mapping unit cells into the optimal implant 

topology domain. As stated in Chapter 2, the optimal scaffold environment for bone ingrowth 

has pore sizes of 50-400 microns and is 60-80% porous, where the porosity constraint is 

addressed in the unit cell optimization procedure. Theoretically, cell size can be tailored to meet 

pore size constraints during the procedure of mapping unit cells onto the optimal plate topology. 

Practically, manufacturing constraints on minimum allowable feature size govern the mapping 

procedure. Limits on the smallest possible pore and strut size determine the allowable unit cell 

dimensions. Currently, the nominal minimum strut size is approximately 200 microns for the 

additive manufacturing technique Electron Beam Melting. To address these constraints, instead 

of representing each mesh element as one unit cell, target material properties can be averaged 

over a region that is the size of the smallest manufacturable cell. For example, assuming the 

minimum cell length is 1mm and the mesh element length is 0.25mm, 1mm square unit cells are 

mapped to the implant based on the average relative density over a 4x4 element region.  

To create implant models for manufacturing, computer-aided design (CAD) can be used 

to construct the optimized unit cells as solids. Table 12 shows three optimal unit cells that have 

been recreated using SolidWorks CAD Software. Refined boundary interpretation methods, such 

as the level set method [83] can be used to translate the optimal material distribution to a solid-

void unit cell topology. However, due to low mesh size and prevalence of a checkerboard pattern 

in the results shown, the implant topology is interpolated heuristically for simplicity. A 

tessellation of each unit cell is also shown to illustrate the respective scaffold topologies. Figure 

21 shows a CAD model of an optimized implant, prior to mapping of unit cells, with solid 

material temporarily representing areas of relative density greater than ~20%, and all other 

regions considered void. An example of the mapping procedure is shown in Figure 22-Figure 24. 

Once the procedure is capable of optimizing unit cells to meet target properties based on the 

entire range of relative densities (from 0-100%), the entire implant can be mapped by this 

method. 
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Table 12: CAD representation of optimal unit cells with tessellation. 

Optimized unit cell CAD unit cell Tesselation 

1 

   

2 

   

3 

   

 

 

(a) 

 

(b) 

 

Figure 21: CAD representation of optimized implant (material fraction 45%, p=1.1). 
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                                (a)                    (b)                   (c) 

 

Figure 22: (a) Optimized implant material layout where 1mm x 1mm region (b) is highlighted in 

red, with mesh element relative density shown in (c).  

 

           
 

(a)                              (b)                                          (c) 

 

Figure 23: (a) 1mm x 1mm region of optimal material distribution, with average relative density 

60%. (b) 1mm x 1mm region of uniform relative density 60%. (c) Optimal unit cell with target 

material properties based on relative density of 60%. 

 

      
 

(a)                                                                   (b) 

 

Figure 24: (a) CAD model of Figure 22 (a). (b) Mapping of optimal unit cell. 
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Effective permeability and stiffness were calculated for the CAD unit cells shown in 

Table 12 and the weighted objective function combining stiffness and permeability for each 

design was computed. The value of the weighted objective function for each CAD design was 

compared to its respective optimal unit cell design. Table 13 shows the optimal and CAD unit 

cells, and the percent difference between the values of the weighted objective function in each 

case. Sample calculations are shown in Appendix G, including how the percent difference is 

assessed. The large discrepancies in objective function value show that the CAD models of the 

optimized unit cells are not the best approximations. This can be attributed to the heuristic 

method used to interpret the optimal material distribution into a solid-void topology. Error may 

result from the translation of grey areas into a defined region of solid material. As previously 

discussed, by improving filtering and mesh size, the occurrence of checkerboard patterns will be 

reduced and a more distinct solid-void boundary is expected. This will allow for a more accurate 

representation of the optimal unit cell using CAD. 

Table 13: CAD unit cell properties compared to targets. 

Optimized unit cell CAD unit cell Difference in objective function 

1 

  

96.85% 

2 

  

57.81% 

3 

  

95.65% 
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Chapter 5: Discussion and Conclusion 

5.1 Summary 

The capabilities and limitations of the proposed hierarchical topology optimization 

routine for the design of a bone tissue scaffold were demonstrated in Chapter 4. The first stage of 

the topology optimization shows convergence to optimal solutions for the minimization of 

compliance. Several optimal fracture fixation plate topologies were designed as a demonstration 

of the procedure. It was shown that by varying the penalty factor   and allowing for intermediate 

material properties between solid and void material, the design space is expanded. That is, for the 

same total amount of material, a large range of stiffness properties can be achieved and can be 

tailored to match the nonhomogeneous properties of bone. Optimal plate designs with 

intermediate material properties can be realized with multi-scale design by specifically tailoring 

a unit cell to meet the functional requirements of a given location. The multi-objective design of 

unit cells for targeted stiffness and permeability is based on bone ingrowth requirements. 

Optimization convergence is not always found at the unit cell level, and several improvements to 

the procedure are suggested below. However, with the target properties based on a relative 

density of 60%, optimal unit cells can be found within the range of 3-13% of desired stiffness 

and within 0.5-3.5% of desired permeability. CAD models of a sample of three unit cells were 

created to illustrate the next step towards manufacturing. A large discrepancy between target 

properties and proposed CAD model properties was found. Accurately translating the optimal 

unit cells to CAD models will require a finer mesh with more effective filtering imposed during 

optimization so that solid-void boundaries are clearly identified.  

5.2 Discussion 

Several adjustments can be made to the proposed procedure to improve convergence and 

reduce discrepancy between target and achieved properties. As shown in Figure 20, the method 

used to calculate permeability results in values that lie outside of theoretical bounds with 

stiffness, indicating a possible error in the calculation. Currently, permeability is determined 

using Weissberg’s formula and is solely a function of porosity. A more sophisticated method for 

calculating effective permeability should be implemented, such as Stokes flow homogenization, 

which takes into account the geometry of the unit cell (section 2.1.2). It is hypothesized that 



 

67 

 

using Stokes flow homogenization may alter calculations for the permeability objective function 

and its sensitivity, improving problem convergence.  

It is also apparent that a more effective filtering technique is required at the unit cell 

level. The sensitivity filtering method described in section 3.1.2 is highly effective with the 

optimality criteria method used in the first stage of optimization. However, it is less effective at 

the unit cell level and checkerboard patterns are often observed. There are other filtering 

techniques available that should be explored for possible improvement of this stage. For 

example, limitations can be imposed on the allowable variation in density distribution. 

Restrictions to the gradient can be imposed with pointwise bounds on the derivatives of relative 

density with respect to location in the mesh. Also, limits on the perimeter of mechanical 

elements in the design space can prevent solid material from appearing separately from the main 

structure. These techniques would have to be specifically catered to this design problem, but can 

potentially reduce checkerboard patterns. 

It is observed that the optimal material distribution in the unit cell design space is highly 

dependent on the initial material distribution at the beginning of the optimization. This 

dependency is not necessarily a drawback in this case, because many local minima of the 

function may exist that all exhibit target material properties. The additional variation in topology 

is advantageous in that many different optimal unit cells can be mapped to the implant topology 

and a less periodic pattern is preferable for bone ingrowth.  

 Connectivity of material within the unit cell can be imposed using available software 

packages on the market, such as the visualization toolkit image-processing library (vtkPolyData-

ConnectivityFilter) by Kitware, Inc. This software is used in the iterative design of unit cells by 

Lin et al [14] to ensure inner structure connectivity. One way that this software can be used is to 

identify the largest connected region in the design space and treat it as the main unit cell 

topology, disregarding unconnected material. FEA would be performed on this connected region 

and the material fraction constraint would be modified to apply to only the identified region. 

Connectivity between cells can be enforced with prescribed regions of solid and void material 

which are maintained throughout the iterative procedure. However, as illustrated in Figure 19, 

this limits the available design space and convergence to a minimum is more challenging. 

Ideally, a unit cell library with prescribed connectivity and optimized inner structures could be 

compiled, as proposed in the work by Hollister et al. [30].  
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  The translation of theoretical optimal unit cells to CAD models for manufacturing can be 

eased by improving filtering. An appropriate filter will reduce checkerboard patterns and result 

in a design with a distinct boundary between solid and void regions. It was also shown by 

Sundararajan in 2010 that B-Spline based parametric smoothing functions are effective filters in 

topology optimization to control the size of the voids throughout the design domain, avoiding 

sharp changes in topology [84]. Furthermore, it is proposed by Sigmund et al. to perform a 

secondary shape optimization problem after topology optimization, with the optimal unit cell as 

an input. The shape optimization problem would smooth sharp corners in the optimal design, 

making manufacturing easier and eliminating stress concentrations [85]. 

There are many clinical considerations for the practical implementation of the proposed 

fracture fixation plate. The scope of this work is limited to two dimensions, so comparing the 

stiffness and material properties to a 3D plate is not valid. The thickness of the plate is an 

important contributing factor to stiffness, and bending and torsion should not be ignored. 

However, the benefit of designing with a cellular material is supported by showing an increase in 

the accessible design space, allowing for specific tailoring of mechanical and permeability 

properties. It is important to note that the optimal implant topology resulting from this procedure 

is highly sensitive to the applied loads during optimization, so a more realistic and complex 

loading scenario may improve implant design and performance. 

Many fracture fixation plates are removed two years after being implanted. In this case, 

bone ingrowth into the plate is not desirable. A thin solid skin can therefore be designed around 

the scaffold so that it is shielded from the biological surfaces, preventing ingrowth. In the case of 

a permanent plate, the cellular design offers advantage in that fixation can be achieved through 

bone ingrowth into specific areas of the plate. However, the outer side of the permanent plate 

should also be covered with a solid skin so that the roughness of the microarchitecture does not 

irritate the soft tissue and cause further inflammation. The inner cellular structure is still 

beneficial in both permanent and non-permanent implants in that graded material properties can 

be achieved. This is especially advantageous in the design of a trabecular bone replacement, 

which would require a specific distribution of mechanical properties to match its non-

homogeneity. Future trabecular bone applications of the methodology include the design of the 

stem of a hip or knee implant. These applications can suffer from stress-shielding induced 

failure, which is directly addressed by the proposed design. 
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5.3 Conclusion 

In conclusion, cellular material provides a unique advantage in bone tissue scaffold 

design because material properties can be tailored to match non-homogeneous properties of 

bone. Inspired by the natural hierarchy of bone structure, a multi-scale designed scaffold can 

closely mimic the physiological and mechanical response of bone tissue. Hierarchical topology 

optimization can be used to design a scaffold with stiffness properties close to those of bone and 

high permeability for mass transport requirements. This was illustrated in a two-dimensional 

capacity through the design of a fracture fixation plate. The optimized cellular design can reduce 

stress shielding by tailoring mechanical properties to match bone, and reduce the occurrence of 

osteoporosis by minimizing disruption of blood flow. Future steps towards testing and 

manufacturing are discussed below. Addressing the identified limitations and next steps for the 

proposed methodology may allow for the introduction of hierarchically optimized bone tissue 

scaffold to the market.  

5.4 Future work 

Firstly, technical improvements including permeability calculations, filtering techniques, 

and imposing connectivity should all be addressed through the methods proposed in section 5.2. 

It is hypothesized that applying appropriate filtering at the unit cell level will reduce 

checkerboard patterns and a more distinct boundary between solid and void material will be 

produced. This will ease the translation of theoretical optimal unit cells to CAD models and 

reduce the discrepancy in performance shown in Table 13. Expansion of the proposed model into 

three dimensions will improve the clinical validity of the optimal results obtained, and more 

realistic loading and boundary conditions can be applied in the 3D design domain. The complex 

optimized topologies may have non-intuitive fracture and fatigue behaviour, as holes in the 

structure will act as stress concentrators [86]. Thus, a detailed stress analysis of all optimal 

designs is essential to ensure the mechanical performance is suitable for its application. 

Introducing a stress inequality constraint in the optimization statement may also improve the 

performance of the optimized designs (section 2.3.3). Samples of scaffold material should be 

built via additive manufacturing, such as electron beam melting, for in vitro and in vivo testing. 

Compliance with relevant ISO and FDA standards must be ensured throughout the design and 

testing procedure.
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Appendices 

Appendix A: Asymptotic homogenization 

In general form, field variables in a unit cell can be approximated by: 

   
                                                [31] 

where   
  is the exact value of the field variable,     is the macroscopic (average) value of the 

field variable (for example, continuum level displacements),    ,    , etc. are perturbations in the 

field variables due to the microstructure (microstructural displacements),    are the global level 

coordinates,    are the micro level coordinates, and   is the ratio of the microstructure size to the 

total size of the analysis region (RVE). The two scales (macro and micro) are related by: 

    
  
 

 
[32] 

Regular periodicity of a field variable of a heterogeneous medium is defined as having the 

following property: 

              [33] 

where   is a position vector (        ) of a point,   is a 3 x 3 diagonal matrix: 

 

  [
    
    
    

] 
[34] 

with       and    as arbitrary integer numbers, and   is a constant vector that describes the 

period of the structure. A cellular body with a periodic structure is shown in Figure 4. The 

function   of the position vector   can be scalar, vectorial, or tensorial. In the case of a 

composite material with repeating unit cell  , constitutional relations describe the mechanical 

behaviour in the form: 

              [35] 

where       is a tensor, a periodic function of   such as: 

                      [36] 

This can also be written as: 

                                                [37] 

Here,          is  -periodic, and     and     are the stress and strain tensors respectively. 
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Figure 25: Cellular body with a periodic structure [40]. 

Equation [31] is substituted into the governing differential equations, and terms of the same 

order are separated and set equal to zero. The resulting equations govern the mechanical 

behaviour of the RVE at both the micro and macro levels. In general, the derivatives of any 

function                  with respect to x are written using the chain rule as follows:  

    

   
 

  

   
 
 

 

  

   
 

[38] 

Eq. [38] can be applied to the asymptotic expansion of the displacement u in Eq. [31] to obtain 

the small deformation strain tensor: 
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[39] 

where h.o.t. denotes higher order terms and the other terms are as previously defined. The 

following strain tensors can be defined from [39] (neglecting terms of O(η) and higher). 

       ̅     
 ,      ̅  

 

 
(
  0 

   
 

  0 

   
),        

  
 

 
(
    

   
 

    

   
), 

[40a-c] 

where     is the micro strain tensor,   ̅  is the macro strain tensor and    
  is the fluctuating strain 

tensor. It is assumed that the fluctuating strain tensor varies periodically. The higher order terms 

can be neglected by assuming the material regime of interest be linear elastic. The virtual strain 

       is also expanded asymptotically as a function of x and y (where v is virtual displacement). 
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[41] 

Similarly to Eq. [40a-c], the following definitions of virtual strain components are made: 

           
        

    ,       
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),     

   
     

 

 
(
    

   
 

    

   
). 

[42a-c] 

The standard weak form of the equilibrium equation is given by: 

 

∫                    
  ∫       

   

 

[43] 

Where       is the stiffness tensor,    represents the total macroscopic and microscopic domain 

of the composite material, and the tractions    (as well as any boundary displacements) are 

applied only to the macroscopic boundaries of the composite, not to any interior boundaries in 

the microstructure. The expanded forms of the strain tensor Equations [40a-c] and [42a-c] are 

substituted into Eq. [43] to obtain: 

 

∫          
        

        ̅     
      ∫       

   

 

[44] 

The function   can be chosen to vary only on the macroscopic or the microscopic level. If   

varies only on the microscopic level and is constant on the macroscopic level (i.e.    
    =0), 

then the microscopic equilibrium equation is obtained as: 

 

∫         
       ̅     

       

  

 

[45a] 

 

 

Similarly, if   is chosen to only vary on the macroscopic level and is constant on the microscopic 

level (i.e.    
        the macroscopic equilibrium equation is obtained: 
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∫         
       ̅     

      ∫       

   

 

[45b] 

 

Since    
  varies periodically, [45a] and [45b] can be rewritten assuming   in the limit goes to 

zero as: 

 

∫
 

|    |
 

∫         
       ̅     

           

    

 

[46a] 

 

 

 

∫
 

|    |
 

∫         
       ̅     

          ∫       

     

 

[46b] 

Eq. [46a] will be satisfied if the integral over the RVE is zero, so [46a] can be rewritten as: 

 

∫         
       

        ∫         
      ̅      

        

 

[47] 

 

Any arbitrary   ̅  is written as a linear combination of unit strains. Assuming that the base 

material of the lattice material is linearly elastic, these unit strain cases are applied and combined 

to determine the overall behaviour of the RVE. In 2D, the 4 unit strain cases are written as: 

  ̅ 
    [

  
  

],   ̅ 
    [

  
  

],    ̅ 
    [

  
  

],    ̅ 
    [

  
  

]. 

These unit strain cases are substituted into the right hand side of [47] to then obtain a stress 

tensor from: 

    
           ̅ 

   [48] 

An auxiliary equation to solve for    
  in [47] using [48] is: 

 

∫         
       

            ∫    
       

        
        

 

[49] 

 

The periodic boundary condition is applied to the strain field    
    by ensuring that the 

displacements at opposite sides of the RVE are equal. Once    
    is determined, the solution to 

[47] is recovered by: 

    
      

     ̅  [50] 
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Recalling Eq. [42a-c], the relationship between the local RVE strain and the average strain may 

be written using the local structure tensor as: 

            ̅ ,          
 

 
(             )     

    [51a,b] 

where δ is the Kronecker delta. The relationship between the local strain and the average strain 

[51a,b] is then substituted into the macroscopic level equilibrium equations: 

 

∫
 

|    |
 

∫                   
      ̅    ∫       

     

 

[52] 

where   ̅  and    
     are outside the integral over the RVE since they have constant values over 

the RVE. Finally, the homogenized stiffness tensor is formulated as: 

 

     ̅    
 

|    |
∫                 

    

 

[53] 

 

Appendix B: Standard mechanics homogenization 

The standard mechanics approach is a mathematically simpler alternative to asymptotic 

homogenization for determining effective stiffness of a cellular material. The boundary 

conditions are specifically chosen so that an average strain (if displacement BC) or average stress 

(if traction BC) is produced within a homogeneous material with the size of the RVE. It is 

important to note that   ̅    calculated here is dependent on the RVE size, unlike asymptotic 

homogenization where   ̅     is independent due to the periodicity assumption used in 

determining      . 

A displacement based finite element formulation was used by Hassani et al. to compare 

homogenization and standard mechanics analyses for period porous composites [40]. It was 

found that for one dimensional analysis of composite bars, the two methods are equivalent. 

Analysis of two and three dimensional periodic structures yield differences between  the two 

methods, standard mechanics is based solely on applied boundary conditions, whereby local 

stress and strain state are not fully captured. It is suggested that the asymptotic homogenization 

theory is superior to the standard mechanics method. 



 

75 

 

The following expression, based on the divergence theorem, relates the average strain and 

the displacement BCs: 

 

  ̅  
 

|    |
∫    

    

      
 

|    |
∫

 

 
(         )     

    

 

[54] 

Here,   ̅  is average strain,     is local strain in the RVE,    is the displacement imposed on the 

RVE boundary,    is the normal vector to the RVE boundary, and      is the RVE boundary. 

Generally, the actual local boundary conditions are not known, and as such, the displacements 

are chosen to be uniform. The standard weak form of the equilibrium equations is then solved to 

calculate the local RVE strain. For the case of applied boundary displacements, the weak form of 

the RVE equilibrium equations is:  

 

∫               
          

    

 ∫    (  
     

  )     
    

 

[55] 

 

The variables used above are defined as follows:       is the stiffness tensor of the RVE,        is 

the virtual strain,    
      is the total microstructural strain (for the klth displacement),   is a 

penalty factor, where displacements are implemented using a penalty method,    is the virtual 

displacement   
   is the boundary displacement, and   

   is the specified displacement that would 

produce a uniform average strain   ̅ in a  and the local structure tensor       can then be 

calculated to relate the average strain   ̅ 
   to the local strain    

  : 

    
          ̅ 

   [56] 

With       determined, the local strain at any point in the RVE can be calculated from an 

arbitrary applied strain using:  

            ̅  [57] 

 

The effective stiffness tensor   ̅    can also be calculated.   ̅    relates the average strain to the 

average stress: 

  ̅     ̅     ̅  [58] 

Using Hooke’s Law at the microscopic level,            , we can integrate both sides of the 

equation above: 
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[59] 

Substituting the relations for average stress and strain, and equation [23] gives: 

 

 ̅   
 

|    |
∫                 ̅  

    

 

[60] 

 

Finally, the effective stiffness tensor can be defined as: 

 

 ̅     
 

|    |
∫                

    

 

 

[61] 

Appendix C: Optimality criteria sensitivity calculation 

Implementing the optimality criteria method for a minimum compliance problem requires 

computing the sensitivity of the objective function. This procedure involves writing the FEM 

form of the minimum compliance problem: 

    
    

    

      (∑  
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         ∑      

 

   

                     

[62] 

 

Rewriting this as a problem in the design variables only results in: 

    
  

      

       ∑      

 

   

                     

[63] 

where       is compliance. Here, the equilibrium constraint is considered part of the FEM 

function: 

 

                                ∑  
      

 

   

 

[64] 
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The optimization algorithm requires gradients only in relative density, which can easily be 

derived from the above equation. The adjoint method is used to calculate the derivative, 

beginning by adding the zero function: 

           ̃        [65] 

where  ̃ is an arbitrary fixed vector. Using this equation the gradient of compliance is obtained 

as: 

   

   
      ̃   

  

   
  ̃ 
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[66] 

where  ̃ satisfies the adjoint equation     ̃    . For compliance, we see in this case that 

 ̃   , and the compliance gradient can be written simply as: 

   

   
     

         
[67] 

This formulation makes derivatives of the compliance problem straightforward to calculate.  
 

 

Appendix D: Methods of comparing matrices for target matching 

To minimize the difference between two matrices, it is necessary to find an appropriate 

representation of each matrix for comparison. There are various methods for representing a 

matrix, several of which are described below. 

Matrix norm 

The norm of a tensor can be calculated and used for comparison with another tensor. A 

norm to a matrix is what the absolute value is to a real number, and can be defined in various 

ways. For example, the Euclidean norm (2-norm, or spectral norm) is the square root of the 

largest non-negative eigenvalue    of the positive-semidefinite product of the matrix by its 

transpose (AAT). A is a n x n square matrix. 

 ‖ ‖     
 

{√  } [68] 

Note that positive semi-definite means that for matrix A, the following must be true for all x in 

Rn, where x* is the conjugate transpose of x: 

        [69] 

The Frobenius norm is the square root of the sum of the squares of the entries of the matrix: 
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[70] 

The Chebyshev norm or infinity norm is the maximum absolute value of the entries of the 

matrix: 

 ‖ ‖     
   

{|   |} [71] 

The p-norm is defined as the following: 
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[72] 

Sum of components 

A tensor can be represented as a single number, which is a weighted sum of all or some 

of its components. The procedure described by Lin et al. (2003) target matches the 3D stiffness 

matrix with six orthotropic elastic properties (three Young’s moduli and three shear moduli). In 

2D, the plane stress stiffness matrix is represented as: 
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] 
[73] 

In this study, the difference in target and effective stiffness matrices is represented as a weighted 

sum of the difference in two Young’s moduli and one shear moduli: 
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) 
[74] 

where ρ is the design variable, relative density, superscript H represents effective property and 

superscript * represents target property. The    norm (or Euclidean norm) operator is defined 

above. Each component is normalized with base material properties. 

Condition number 

The condition number is a property of a matrix that indicates the sensitivity of the 

solution of a linear equation to errors in the data. For example, in the linear equation Ax = b, the 

condition number of A gives an upper bound on the inaccuracy of x. The condition number   of 

a target matrix is a unique property of that matrix and all of its multiples, because it is calculated 

based on the matrix norm.  
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In the linear equation Ku=f, where K is stiffness, u is displacement and f is force, the 

condition number of the stiffness matrix would give an indication of inaccuracy in displacement 

as a result of variability in force measurement. A large condition number indicates that a small 

error in f may cause a large error in u, and a small condition number indicates that error in u will 

not be significantly larger than error in f.  

In the case of a square matrix, error in K-1f  is K-1e, where e is error in f. The condition 

number is calculated as the maximum ratio of relative error in u (the solution) divided by relative 

error in f: 

 ‖    ‖   ‖    ‖

‖ ‖   ‖ ‖
 

[75] 

This is equal to: 

  ‖    ‖   ‖ ‖   ‖ ‖   ‖    ‖  [76] 

The maximum value of the equation above (with nonzero f and e) is the product of the two 

operator norms (any consistent norm, where       ): 

      ‖   ‖  ‖ ‖ [77] 

This method of comparing matrices using condition number maybe unreliable because the 

condition number of the effective stiffness matrix may be the same as the target, but the stiffness 

matrix could be any multiple of the target.  

Bulk Modulus 

For the case of isotropic linear elastic materials, there are a variety of properties other 

than the stiffness matrix than can be compared to achieve a target material. For example, Kang et 

al (2010) compare bulk modulus,   for the purpose of topology optimization with target 

matching          If the design is constrained to be isotropic, bulk modulus can be calculated 

based on homogenized   and   (Young’s modulus and Poisson’s ratio, respectively) and used for 

target matching:  

 
  

 

       
 

[78] 
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Appendix E: Optimal topologies - fracture fixation plate  

Table 14: Optimal fracture fixation plates with varying material fraction and penalty factor. 

Material 

fraction, 

   (%) 

Penalty 

factor, p 
Optimal topology 

40 1 

 

40 1.1 

 

40 1.25 

 

40 3 
 

55 1 

 

55 1.1 

 

55 1.25 

 

55 3 

 

60 1 

 

60 1.1 

 

60 1.25 

 

60 3 
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Appendix F: Optimal topologies - unit cells 

Table 15: Optimal unit cell topologies with target stiffness determined by relative density of 

60%. Mesh size 26 x 26. 

 Porosity P Stiffness % Difference 
Permeability % 

Difference 

 

64.86 1 

-9.30 7.40 0 

7.40 -9.30 0 

0 0 6.59 
 

0.254 

 

65.23 1 

-5.52 4.80 0 

4.80 -5.52 0 

0 0 2.14 
 

-0.447 

 

65.14 1 

-6.43 5.27 0 

5.27 -6.437 0 

0 0 0.95 
 

-0.265 

 

64.34 1.5 

-13.52 -3.61 0 

-3.61 -13.52 0 

0 0 0.32 
 

1.191 

 

65.77 1.5 

-10.98 5.16 0 

5.16 -10.98 0 

0 0 2.92 
 

-1.417 

 

65.15 1.5 

-12.78 -0.01 0 

-0.01 -12.78 0 

0 -100 6.72 
 

-0.298 
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65.49 

2 

-15.08 -4.83 0 

-4.83 -15.08 0 

0 0 -6.50 
 

-0.900 

 

65.79 2 

-13.37 -4.13 0 

-4.13 -13.37 0 

0 0 -5.21 
 

-1.451 

 

65.50 2 

-13.72 -3.87 0 

-3.87 -13.72 0 

0 0 -6.53 
 

-0.910 

 

65.87 2.5 

-16.61 -10.77 0 

-10.77 -16.61 0 

0 0 -10.58 
 

-1.571 

 

66.95 2.5 

-13.17 -10.22 0 

-10.22 -13.17 0 

0 0 -8.60 
 

-3.463 

 

65.13 2.5 

-17.83 -12.74 0 

-12.74 -17.83 0 

0 0 -10.90 
 

-0.248 
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Table 16: Optimal unit cell topologies with target stiffness determined by relative density of 60 

%. Mesh size 16 x 16. 

 Porosity P Stiffness % Difference 
Permeability % 

Difference 

 

65.27 1 

-14.81 5.46 0 

5.46 -14.81 0 

0 0 11.12 
 

-0.530 

 

66.26 1 

-5.28 5.22 0 

5.22 -5.28 0 

0 0 2.52 
 

-2.350 

 

 

65.64 1 

-9.72 7.33 0 

7.33 -9.72 0 

0 0 5.55 
 

-1.244 

 

66.66 

 

 

1.5 

-8.68 6.52 0 

6.52 -8.68 0 

0 0 4.30 
 

-2.992 

 

64.85 1.5 

-11.11 3.90 0 

3.90 -11.11 0 

0 0 2.73 
 

0.197 

 

65.08 1.5 

-6.92 1.11 0 

1.11 -6.92 0 

0 0 0.90 
 

-0.192 
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64.60 2 

-10.16 -6.18 0 

-6.18 -10.16 0 

0 0 -3.94 
 

0.678 

 

64.97 2 

-7.80 5.25 0 

5.256 -7.80 0 

0 0 6.04 
 

-0.072 

 

65.79 2 

-7.43 -1.44 0 

-1.44 -7.43 0 

0 0 -1.56 
 

-1.434 

 

67.54 2.5 

-11.06 -9.54 0 

-9.54 -11.06 0 

0 0 -7.35 
 

-4.476 

 

66.22 2.5 

-15.20 -13.45 0 

-13.45 -15.20 0 

0 0 -13.63 
 

-2.192 

 

64.01 2.5 

-17.82 -17.08 0 

-17.08 -17.82 0 

0 0 -13.56 
 

1.651 
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Appendix G: Objective function comparison – sample calculation 

In general, the objective function for each unit cell is evaluated as: 
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where           in the case shown in section 4.4. The homogenized (effective) stiffness 

   and the target stiffness   are 3x3 matrices.    is effective permeability and    is target 

permeability. 

The objective function is evaluated iteratively via scripts written MATLAB. For Unit Cell 

2 in Table 13, the final value of the objective function is calculated as follows: 
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The interpreted CAD model of Unit Cell 2 was meshed in ANSYS and the effective 

properties were determined. The objective function was calculated in the same way: 
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To compare the CAD model to the original optimal unit cell, the percent difference of their 

objective function values is found as follows: 
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