Synthesis of β -Lactams

A Thesis

by

Robert Joseph Zamboni

Submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy

Faculty of Graduate Studies and Research

Department of Chemistry McGill University Montreal, Canada September 1978 Synthesis of β-Lactams Robert Joseph Zamboni Department of Chemistry McGill University Montreal, Quebec, Canada

Abstract

The syntheses of the cephalosporin analogs cis-N-2'carboxyphenyl-3-N-phenylacetamido-4-methoxymethyl-2-azetidinone and 7-β-phenylacetamido-3'-carboxybenzo[3,4]-0-2-isocephem are described. Both compounds possessed no significant antimicrobial activity toward a variety of bacteria.

The reaction of dimethylacryloyl chloride and crotonyl chloride with various Schiff bases afforded cis-β-lactams containing novel and potentially versatile side chains. Cis-N-2',4'-dimethoxybenzyl-3-ethyl-4-carboxymethyl-2-azetidinone, a key intermediate for the synthesis of cephalosporin and penicillin analogs containing an ethyl (PS-5) side chain, was synthesized.

A synthetic scheme for the synthesis of thienamycin analogs is described. Although the synthesis was not completed, the problems which remain to be solved are clearly described. Synthèse de β-Lactames Robert Joseph Zamboni Département de Chimie Université McGill Montréal, Québec, Canada

Résumé

La synthèse des analogues de céphalosporines, la cis-N-2'-carboxyphényle-3-N-phénylacétamido-4-méthoxyméthyle-2azétidinone et le 7-β-phénylacétamido-3'-carboxylbenzo[3,4]-0-2-isocéphem, est décrite. Ces deux produits n'ont démontré aucune activité antimicrobienne contre diverses bactéries.

Les réactions des chlorures diméthylacryloyliques et crotonyliques avec diverses bases de Schiff fournissent des cis-β-lactames possédant des nouveaux groupements fonctionnels ayant un très grand potentiel. La cis-N-2'-4'-diméthoxybenzyle-3-éthyle-4-carboxyméthyle-2-azétidinone, un intermédiaire-clé à la synthèse de composés analogues aux céphalosporines et pénicillines ayant un groupement éthylique (PS-5), a été synthétisée.

On décrit également une séquence synthétique menant à des analogues à la thiénamycine. Les problèmes qui ont empêché le parachèvement de cette synthèse ont été clairement identifiés et décrits.

Acknowledgements

I would like to express my sincere gratitude to my research director, Dr. George Just, for his guidance and continuous encouragement throughout my stay in his laboratory.

I would also like to thank:

The National Research Council of Canada for a postgraduate scholarship (1974-1978).

Tony Ugolini for proofreading the manuscript. Pierre Potvin and Daniel Payette for translating the abstract of this thesis into French. Frank Rothwell, J. Montgomery, Dr. C. Kasakoff and Dr. O. Mamer for recording mass spectra. Dr. G. Hamer for taking some very helpful 90 MHz FT p.m.r.

Mrs. N.A. Kuck, Lederle Laboratories, for biological testing.

Ms. R. Charron for typing the thesis. All my co-workers for their friendship and helpful discussions.

Table of Contents

•

3

C

Introductio	1	
Chapter 1	Synthesis of cis-N-2'-carboxyphenyl-	
	3-N-phenylacetamido-4-methoxymethyl-	
	2-azetidinone	22
Chapter 2	Synthesis of 7- β -phenylacetamido-3'-	
	carboxybenzo[3,4]-0-2-isocephem	. 40
Chapter 3	Synthetic studies toward thienamycin	
	analogues	61
Contributio	90	
General Exp	91	
Experimenta	92	
Experimenta	l Chapter 2	107
Experimenta	l Chapter 3	131
Bibliograph	Y	148

To my parents

.

Introduction

[

.

Preface

 β -Lactams are 4-membered heterocyclic compounds of type 1. They were first synthesized by Staudinger in 1907¹. Penicillin 2, the first of the modern antibiotics, discovered in the late 1920's², was found to contain this ring. In 1955, Abraham

and Newton at Oxford University³ isolated from a cephalosporium species of fungi a new β -lactam antibiotic substance Cephalosporin C(3). The structure was determined by the same workers in 1961⁴ and confirmed by Hodgkin and Maslen⁵ by means of single crystal X-ray diffraction studies.

3

Since their discovery, the penicillins and the cephalosporins have been the drugs of choice for treating bacterial infections in man⁶. They have very low toxicity and the penicillins are easily obtained using fermentation techniques. Because of their importance, there has been an enormous amount of research on the biological and chemical properties of cephalosporins and penicillins. This effort has recently produced 3 new types of β -lactam antibiotics: Norcardicin A and B⁷⁻¹⁰; Thienamycin¹¹ and related compounds PS-5¹², MM4550(MC696-SY2-A), MM13902^{13,14}; and Clavulanic¹⁵ Acid. Norcardicin has interesting antimicrobial activity in vivo. Clavulanic Acid is a potent irreversible inhibitor of various β -lactamases. The thienamycins are not only effective against both Gram positive and Gram negative bacteria at low levels, but show also β -lactamase inhibitory activity.

Norcardicin A

HNH

2

Norcardicin B

Clavulanic Acid

Thienamycin

x=1 MM4550 (MC696-SY2-A)

x=0 MM13902

Mode of action of the β -lactam antibiotics 16,17,18

The low toxicity of the β -lactam antibiotics suggests that the drugs inhibit some bacterial structure which has no counterpart in higher animals. The β -lactam antibiotics are thought to inhibit bacterial cell wall synthesis. The bacterial cell wall, a characteristic bacterial structure entirely lacking in mammals, is a giant macromolecule which envelops the organism, supporting the bacterial cell membrane against lysis caused by the difference in osmolarity between the cell cytoplasm and the culture medium which is relatively hypotonic. A peptidoglycan is an important constituent of the cell wall. Its integrity is required for the maintenance of cell shape in bacteria. The backbone of the peptidoglycan consists of alternating residues of N-acetyl glucosamine and Nacetyl muramic acid. The N-acetyl muramic acid residues are substituted by peptide chains which are cross-linked to give a mesh like character to the peptidoglycan (Fig. 1, page 4). The synthesis of the peptidoglycan can be divided into three stages. The first two steps are the synthesis of the backbone and the attachment of the side chains. In the final stage, the side chains are cross-linked in a reaction catalyzed by a transpeptidase.

In 1965 Tipper and Strominger concluded, on the basis of different studies of the effects of penicillin on peptidoglycan synthesis on S.aureus that penicillin blocked the last crosslinking step in the peptidoglycan synthesis. They proposed that the transpeptidase reacted with the peptide bond between

Fig. 1: Structure of the peptidoglycan of the cell wall of Staphylococcus aureus¹⁸. In this representation, X (acetylglucosamine) and Y (acetylmuramic acid) are the two sugars in the peptidoglycan. Open circles represent the four amino acids of tetrapeptide, L-alanyl-D-isoglutaminyl-L-lysyl-D-alanine. Closed circles are pentaglycine bridges which interconnect peptidoglycan strands. The nascent peptidoglycan units bearing open pentaglycine chains are shown at the left of each strand. TA-P is the teichoic acid antigen of the organism which is attached to the polysaccharide through a phosphodiester linkage. the terminal D-alanines in the pentapeptide chain of uncrosslinked peptidoglycan (Fig. 2). An acyl enzyme intermediate The amino group would be formed and the D-alanine released. from the prospective cross-bridge would next displace the enzyme from the acyl-enzyme intermediate regenerating the free enzyme and form a peptide cross-bridge. Penicillin was hypothesized to be an analogue of the terminal D-alanyl-D-alanine in the pentapeptide chain. The CO-N bond in the highly strained β -lactam ring would correspond to the peptide bond cleaved during transpeptidation, and penicillin might, in fact be an analogue of the transition state in peptide bond cleavage. The transpeptidase would react with the penicillin to open the β -lactam ring and form a penicilloy enzyme intermediate.

Fig. 2: Mechanism of action of penicillin proposed by Tipper and Strominger in 1965¹⁶. A represents the end of the main peptide chain of the glycan strand. B represents the end of the pentaglycine substituent from an adjacent

However, since the penicilloyl enzyme intermediate is stable, the transpeptidase would be inactivated, preventing any further incorporation of cross-linked peptidoglycan into the cell wall. Continuing growth of bacteria in the absence of the synthesis of rigid cross-linked peptidoglycan would then result in the rupture of the wall at the region of active cell wall growth and the release of the cell contents.

Recent studies have shown that the interaction of the β -lactam antibiotics with bacterial cells is very complex^{20,21}. Bacteria do not contain a single penicillin sensitive transpeptidase which is the target for the β -lactam antibiotics but rather a large number of enzymes (transpeptidases, carboxypeptidases, endopeptidases) which are inhibited by the β -lactam The affinity of these enzymes to the β -lactam antibiotics. antibiotics varies. All of these enzymes are thought to have distinct functions in the biosynthesis of the peptidoglycan. Inactivation of these enzymes results in the characteristic effects that the antibiotics produce on the shape and dimension of bacteria. For example, all the morphological effects of β -lactams on E.coli can be explained by the inhibition of three penicillin binding proteins. Inhibition of any of these three penicillin binding proteins, which are most probably enzymes, will result in cell death. The way in which a particular β -lactam antibiotic kills bacteria depends on the affinity of each of the target enzymes for the antibiotic and the function of these enzymes in peptidoglycan synthesis. For example, in the presence of Mellicinam, which binds exclusively to protein

	Morpholog				
Relative affinities of binding proteins 1B, 2 and 3 for a β - lactam antibiotic*	Low concentration	Medium concentration	High concentration	β-lactam showing this behaviour	
1B > 2 or 3	Lysis	Lysis	Lysis	Cephalosporidine	
2 > 1B > 3	Spherical cells	Lysis	Lysis	6-Aminopenicillanic acid	
2 > 3 > 1B	Sperical cells	Filaments with bulges	Lysis	None known	
2 > 1B or 3	Spherical cells	Spherical cells	Spherical cells	Mecillinam	
3 > 1 B > 2	Filaments	Lysis	Lysis	Benzylpenicillin	
3 > 2 > 1B	Filaments	Filaments with bulges	Lysis	Ampicillin	

Table 1. Effects of β -lactam antibiotics on growth of *E. coli* predicted by their relative affinities for penicillin binding proteins²¹

* 1B = cell elongation; 2 = cell shape; 3 = cell division.

2 (Table 1), E.coli bacteria grow into larger and larger spherical cells which finally lyse, while in the presence of Cephalexin, which binds preferentially to protein 3, E.coli cells cease dividing, and ultimately die. The pathways by which inhibition of these enzymes leads to cell death are unknown. Inhibition might trigger autolytic enzymes which destroy the cell¹⁹. Bacterial resistance to penicillins and cephalosporins²³

The general trend over the years has been an increase of penicillin and cephalosporin resistant strains of some pathogens, though not all. Resistant strains of bacteria arise because no species of bacteria is homogeneous. During the treatment of an infection, the few mutants which are less sensitive to the particular β -lactam antibiotic used can survive. These mutants multiply and create a more resistant strain. The resistance of a species of bacteria can be due to the production of β -lactamases, a slight change of the target enzyme which lowers the affinity of a given β -lactam antibiotic or to decreased permeability of the cell. The greater resistance of Gram negative bacteria is largely due to the decreased permeability of their cell walls to the β -lactam antibiotics. Their cell walls are much more complex than those of the Gram positive bacteria.

 β -Lactamases are large proteins produced by bacteria to destroy β -lactam antibiotics²². They hydrolyze the antibiotic before it reaches the target enzyme. Gram positive bacteria produce large amounts of β -lactamases in response to the presence of penicillins or cephalosporins and these β -lactamases are predominantly extra cellular. Gram negative bacteria produce much smaller amounts of β -lactamases and these are cell bound. The β -lactamases of Gram negative bacteria are very effective since they hydrolyze only the antibiotic that penetrates the cell wall. The structure of some β -lactamases has been deduced^{24,25,26} and mechanisms for their mode of action

Fig. 3: Proposed mechanism for the mode of action of β -lactamase from E.coli²⁶

Structure activity relationships

Since the discovery of penicillin and cephalosporin C, thousands of derivatives and analogues have been synthesized²⁷. This has become necessary because of the increasing number of bacteria which are becoming resistant to the known β -lactam antibiotics. The structural features necessary for optimal activity were thought to be until recently^{6,45}:

(a) a cis fused β -lactam ring

- (b) an acylamino side chain which can be considerably varied or an -N-C=N= side chain (amidino penicillins)
- (c) an acidic function, the nature of which does not seem critical since it can be replaced by a tetrazole
- (d) a 5 membered or 6 membered ring containing a double bond conjugated with the β -lactam ring nitrogen, conferring enough ring strain so as to raise the β -lactam i.r. frequency to > 1765 cm⁻¹.

Two recently isolated β -lactam antibiotics do not have all the above structural features. Thienamycin, although it has a trans-fused ring and a novel side chain, posseses high potency toward a large number of Gram positive and Gram negative bacteria. For some bacteria, Thienamycin is 10 to 100 times more potent than the traditional β -lactam antibiotics. It has been proposed based on molecular models, that, although the side chain is trans, the hydroxyl group can occupy the same binding site as the nitrogen atom in the acyl amino side chain. This argument cannot be used for the deoxy derivative of Thienamycin, PS-5, which also has good antimicrobial activity. Although it has a very low β -lactam frequency (1720 cm⁻¹), Norcardicin A is active in vivo against a large number of very resistant bacteria. The discovery of these two types of β -lactam antibiotics indicates that the criteria listed above are too rigid. Compounds that do not fulfil all the criteria might still have significant antimicrobial activity.

Synthesis of β -lactam antibiotics

(a) Fermentation and semi-synthetic⁶

All of the cephalosporins and penicillins used for the treatment of bacterial infections are presently obtained either from fermentation of the appropriate fungi or through a semi-synthetic procedure. Pen G, Pen V and approximately one hundred others are obtained by adding the appropriate substituted acetic acid to the fermentation broth. All the others are obtained through acylation of 6-aminopenicillanic acid (6-APA). The cephalosporins are obtained either through

Fig. 4a Semi-synthetic procedure for the synthesis of penicillins

fermentation, from penicillins using the pen-cephem rearrangement²⁹, or through a semi-synthetic procedure similar to that used for penicillins.

(b) Total synthesis 34,35,33

In the search for better β -lactam antibiotics, there has been considerable activity in the total synthesis of β -lactam antibiotics. Total synthesis allows the formation of many attractive structures not available by fermentation or semisynthetic procedures.

(i) Early developments

5

The first, synthesis of a penicillin was reported by Sheehan³⁰. The key step was the cyclization of 5 to 6 using dicyclohexylcarbodiimide (DCC). A few years later in 1965, Woodward³¹ announced in his Nobel Prize lecture the first

12

successful stereospecific synthesis of Cephalosporin C <u>11</u> and Cephalothin <u>12</u>. By a series of ingenious and stereospecific transformations, L-cysteine <u>7</u> was converted to a key intermediate, the fused thiazolidine <u>8</u>. Reaction of <u>8</u> with dialdehyde <u>9</u>, followed by acid treatment, afforded <u>10</u>. Subsequent manipulations gave <u>11</u> and <u>12</u>. Using intermediate <u>8</u>, Woodward and his co-workers have also synthesized nuclear analogues of cephalosporin^{34,32}. Subsequently several other approaches to

the synthesis of cephalosporins and penicillins have been reported^{28,34,35}. The most useful and versatile have been those using the reaction of imines with acid chlorides or the reaction of olefins with chlorosulphonyl isocyanate to form the β -lactam ring.

(ii) Acid chloride-imine approach

This route to bicyclic β -lactams is based on the well known cycloaddition of ketene precursors with imines¹. It has been developed by Bose³⁶ and co-workers in a total synthesis of \pm methyl epipenicillin. Bose found that treatment of imines with azidoacetyl chloride in the presence of triethylamine afforded azido β -lactams <u>13</u> which were easily transformed to the desired acylamino β -lactam 14. Reaction of 5 or 6 membered

cyclic imines with azidoacetyl chloride afforded directly the bicyclic nucleus of penicillins and cephalosporins respectively. Unfortunately this direct approach gives the trans β -lactam which must be isomerized to the desired, but less stable, cis isomer. Although a procedure for this isomerization has been described in detail by Christensen³⁷, it has been little used by others³⁸. A more successful approach has been to first form the β -lactam ring and then build the remaining ring. Both these approaches have been used by the Merck group to synthesize a large number of Cephalosporin C derivatives with structure A and also some nuclear analogues with structures B, C, and D³⁹⁻⁴⁴. Their approach is illustrated by the

synthesis of <u>15</u>. The antibacterial activity of compounds A, B and C was about the same. The phosphono derivative D was found to be less active than the corresponding cephalosporanic acid.

↓ 1) N₃CH₂COC1 2) H⁺ 3) CH₃COC1/PY

Recently chemists at Bristol Laboratories 45 and later at

Smith, Kline and French Laboratories⁵² reported new approaches toward nuclear analogues of penicillins and cephalosporins. Their key intermediates E and F are similar. An important

a) Bristol Approach

1) O₃/CH₃SCH₃ 2) NaBH₄/EtOH

E

F

b) S.K.F. Approach

feature of both approaches is the <u>exclusive</u> formation in high yield of cis β -lactams. Each group was able to transform their key intermediate into a large number of nuclear analogs of penicillin and cephalosporins^{45-51,52-55}. For example, <u>16</u> was synthesized from E and <u>17</u> from F.

5) φ₃CSH 6) AgNO₃

R = CH₂

HCOR

1) SOC1₂ 2) CF₃CO₂H

(iii) Chlorosulphonyl isocyanate-olefin route⁵⁷

This approach is based on the known formation of β -lactams by cycloaddition of chlorosulphonyl isocyanate and olefins⁵⁶. This reaction has been used to form the β -lactam ring in recent syntheses of thienamycin and clavulanic acid. The approach is illustrated by the Merck synthesis of thienamycin¹¹.

H was transformed in 13 steps to thienamycin. Intermediates G and H are very versatile and should allow the synthesis of many derivatives of thienamycin.

Biosynthesis of penicillins and cephalosporins^{58,59}

Only a few organisms synthesize β -lactam antibiotics. These compounds are secondary metabolites and their role is unknown. Various studies have shown that the formation of penicillins and cephalosporins by Penicillium chrysogenum, Cephalosporium acremonium and Streptomyces spp. is dependent on the presence of 3 amino acids, L-valine, L-cysteine and L-aminoadipic acid. Abraham⁵⁸ has proposed a pathway, consistent with recent studies on cell free systems, in which these amino acids are transformed to the penicillins and cephalosporins.

The process by which the tripeptide is transformed into isopenicillin N $\underline{18}$ and penicillin N $\underline{19}$ is unknown. No intermediates between the tripeptide and the fully formed rings have ever been isolated.

Brief description of project

During the last few years we have been involved in the synthesis of penicillin and cephalosporin analogues with general structures I and J. These analogues have a cis fused β -lactam ring and an acylamino side chain like the cephalosporins but differ in that the acidic function is attached to an aromatic ring and that the strain of the β -lactam ring is generated by electron withdrawing groups attached to the benzene ring, and/or by fusing the aromatic and β -lactam rings by an additional ring as indicated. Compounds of general structure K have been synthesized by Bose⁶⁰ and some possess weak antimicrobial activity. We hoped that attachment of an acidic function and other modifications to increase the β -lactam frequency would increase their antimicrobial activity to useful levels.

This thesis consists of two parts. The first two chapters describe the successful synthesis of 20 and 21. While this work was in progress Doyle published the synthesis of 22. The last chapter describes synthetic studies toward thienamycins.

соон NHCOCH₂Ph

21

Chapter 1

Synthesis of cis-N-2'-carboxyphenyl-3-N-

phenylacetamido-4-methoxymethyl-2-azetidinone

For the synthesis of compounds with the general structure J we decided to use the imine acid chloride approach. This approach allows the use of commercially available substituted anthranilic acids as starting materials (Fig. 5).

Fig. 5: General approach to the synthesis of compounds with general structure J

Although the reaction of Schiff bases of substituted anilines with several acid chlorides has been investigated by $Bose^{60,61,62}$ and others⁶³, ortho substituted anilines have been little studied¹²³. As a model compound, the known benzylidene anthranilic⁶⁴ acid <u>23</u> was condensed with phthalimidoacetyl chloride⁶⁵. Instead of the expected β -lactam <u>25</u>, a crystalline compound, the spectral data of which was consistent with <u>24</u>, was obtained. P.m.r. of 24 showed an AB quartet for the

26

 CH_2 group with J = 16 Hz. The two protons were not equivalent because of the asymmetric centre at C_1 . Compound <u>24</u> was probably formed by trapping of the postulated intermediate 26 in the cycloaddition⁷⁰ by the carboxyl function as indicated. Bose⁶¹ had also discovered that free carboxyl and hydroxyl functions interfered in the cycloaddition but he was unable to isolate any of the products. He⁶¹ found that silylation of all interfering hydroxyl and carboxyl functions in the Schiff base followed by treatment with the appropriate acid chloride afforded good yields of β -lactams. When Schiff base 23 was silvlated in situ before the addition of phthalimido acetyl chloride, the trans β -lactam 25 was obtained in 70% yield. Its structure followed from its spectral and analytical data and the stereochemistry of the ring junction from the fact that

 $J_{3,4} = 2$ Hz. In the p.m.r. spectra of cis β -lactams, $J_{3,4}$ varies from 4 to 6 Hz, while in trans β -lactams, it varies from 1.5 to 2.8 Hz^{66,124}. The acid was characterized as its p-methoxybenzyl ester <u>27</u>, $v_{c=0}$ (Nujol) 1780, 1720 cm⁻¹, obtained by reacting <u>25</u> with p-methoxybenzyl alcohol and 1.2 equivalent of di-neopentyl formamide acetal in acetonitrile⁶⁷. The benzyl ester was converted to the free amine <u>28</u> by means of hydrazine in methylene chloride. In order to isomerize the trans β -lactam <u>28</u> to the desired cis isomer <u>30</u>, we decided to use the Christensen³⁷ isomerization technique for amino β -lactams (page 25), which involves treatment of their p-nitrobenzaldehyde Schiff bases with phenyl lithium, followed by protonation under kinet-ically controlled conditions. Treatment of amine 28 with

Fig. 6: Christensen's isomerization technique for amino β-lactams

predominates

l equivalent of p-nitrobenzaldehyde in refluxing benzene afforded imine 29a i.r. (CHCl₃) $\gamma_{\rm max}$ 1775, 1730, 1620 cm⁻¹, in quantitative yield. The p.m.r. spectrum of 29a showed a characteristic singlet at 8.4 p.p.m. for the imine proton. Unfortunately, deprotonation of 29a with phenyl lithium at -78° followed by quenching with acetic acid/tetrahydrofuran/H₂O afforded a low yield of 29a, and no cis isomer 29b could be isolated

29a

Nakao⁶⁸ et al have recently described a novel route to 7 α -methoxy cephalosporins. They found that oxidation of imine <u>31</u> with lead dioxide afforded quinoidal compound <u>32</u>. Quenching of <u>32</u> with methanol gave imine <u>33</u>. Hydrolysis of <u>33</u> with Girard reagent T afforded 7 α -methoxy amine <u>34</u> which was easily transformed to the desired 7 α -methoxy cephalosporins. We reasoned

<u>31</u>

33

<u>34</u>

that treatment of $\underline{35}$ with PbO_2 followed by quenching with $ZnBH_4$ should give the desired cis β -lactam $\underline{36}$. Reaction of $\underline{28}$

with 1 equivalent of 3,5-di-t-butyl-p-hydroxybenzaldehyde in refluxing benzene afforded 35 in quantitative yield. We were

not able to achieve the transformation of 35 to 36.

We suspected that the difficulties in obtaining cis β -lactams may have been due to the relatively bulky phenyl group, and therefore performed a similar series of reactions using the imino ether <u>37</u>. Heating a solution of methyl anthranilate and 2.2 equivalents of trimethyl orthoformate⁶⁹ under carefully controlled conditions afforded a 43% yield of <u>37</u>, i.r. (neat) 1730, 1660 cm⁻¹. P.m.r. of <u>37</u> showed singlets at 3.7 and 3.8 p.p.m. for the two methyl groups. Addition of

37

phthalimidoacetyl chloride to imino ether <u>37</u> afforded a 35% yield of trans β -lactam, m.p. 175-176.5°, when the reaction was allowed to proceed for 24 hrs. In the p.m.r. spectrum of <u>38</u> each of the β -lactam protons appeared as a doublet with J = 2 Hz. When the reaction was stopped after 2 hrs, a 1:1 mixture of β -lactam <u>38</u> and methyl N-phthalimidoacetyl anthranilate <u>39</u> was obtained in 30% overall yield.

38

COOCH NHCOCH

This suggested that the reaction did not proceed through a 2+2 addition of phthalimido ketene and imine $\underline{37}$, but in two stages, the first intermediate having structure $\underline{40}^{45}$ which is trapped presumably as the chloride $\underline{41}$. Quenching of $\underline{41}$ with

water during work-up would give methyl N-phthalimidoacetyl anthranilate <u>39</u>, whereas a prolonged reaction time may lead to further formation of β -lactam <u>38</u>. No β -lactam was obtained when imine <u>37</u> was treated with azidoacetyl chloride. Removal of the phthalimido protecting group with hydrazine in CH₂Cl₂ afforded amine <u>42</u> in low yield. Isomerization of trans β -lactam 42 via Schiff base <u>43</u> was also unsuccessful.

42 R, R=H

43 R, R =CH
Not having been able to prepare a cis fused β -lactam using the approaches described, we investigated the method recently described by Doyle et al⁴⁵, which consisted in reacting azidoacetyl chloride with cinnamylidene Schiff bases, and which has been reported to give exclusively cis β -lactams. Treatment of anthranilic acid with redistilled cinnamaldehyde in refluxing benzene afforded a highly unstable Schiff base 44. Reaction of

the silylated cinnamylidene Schiff base <u>45</u>, prepared in situ from <u>44</u>, with azidoacetyl chloride gave a low yield of trans β -lactam <u>46</u>, which was characterized as its methyl ester <u>47</u>. P.m.r. of the crude product only showed the presence of trans β -lactam. This was very surprising since the reaction of stable Schiff base <u>48</u> with azidoacetyl chloride afforded exclusively crystalline cis β -lactam <u>49</u>⁸⁰ in good yield. Since the key dif-

49

29

ference between <u>45</u> and <u>48</u> was that <u>48</u> contained an electron donating group on the aniline ring while <u>45</u> contained an electron withdrawing group, it was decided to repeat the sequence using the readily available o-aminobenzyl alcohol <u>50</u> as starting material and to oxidize the alcohol to the carboxylic acid at a later stage.

<u>50</u> R=H <u>51</u> R= -si+

52

Silylation of <u>50</u> with tert-butyl dimethyl silyl chloride/ imidazole⁷⁶ in dimethyl formamide afforded silyl ether <u>51</u> in quantitative yield. Amine ether <u>51</u> was converted to Schiff base <u>52</u> with 1 equivalent of cinnamaldehyde in refluxing benzene. Treatment of <u>52</u> with 1.2 equivalents of triethylamine followed by 1.15 equivalents of azidoacetyl chloride afforded β -lactam <u>53</u>, m.p. 91-92, v_{C=0}(KBr) 1745 cm⁻¹, in excellent yield. In the p.m.r. spectrum of <u>53</u> (page 31), the β -lactam protons appeared as a multiplet at 5 p.p.m. Addition of Eu(fod)₃ did not separate

30

Fig. 7: The 60 MHz p.m.r. spectrum of azide 53

Fig. 8: The 60 MHz p.m.r. spectrum of amide 54

the signals for the two protons. In general, the stereochemistry of the cinnamyl azido β -lactams of type K could not be determined by p.m.r. at this stage because the β -lactam protons appeared as a multiplet which could not be separated. The stereochemistry could, however, be determined at later stages of the synthesis. The mass spectrum of <u>53</u> showed a molecular ion (M⁺) at m/e 434, peaks for the loss of nitrogen and a t-butyl group from the molecular ion at m/e 406 and 377 respectively.

Reduction of <u>53</u> with hydrogen sulphide/triethylamine⁴⁵ followed by acylation with phenylacetyl chloride afforded amide <u>54</u>, m.p. 108.5-109, $v_{c=0}$ 1750, 1680 cm⁻¹, in 60% yield based on <u>53</u>. In the p.m.r. spectrum of <u>54</u> (page 31), H₃ appeared as a quartet (J_{3,4} = 5 Hz, J_{3,5} = 7 Hz), characteristic of cis acylamino β -lactams, at 5.6 p.p.m. H₄ also appeared as a quartet (J_{3,4} = 5 Hz, J_{4,6} = 7 Hz).

By changing the ortho substituent in 45 from an electron withdrawing ester to an electron donating ether group, the stereochemistry of the cycloaddition changed from trans to cis and the yield of the reaction went from 10-20% to 77%. We de-

cided to investigate this effect further and the sequence was repeated with other substituted anilines. The results are summarized in Table 2 (page 34). Substituted anilines with pKa's \geq 2.4 seemed consistently to afford exclusively cis β -lactams. Anilines with pKa's less than 2.4 afforded either mixtures of cis and trans β -lactams or pure trans β -lactams. These results suggested that there were two distinct pathways for the reaction of cinnamylidene anilines with azidoacetyl chloride. In pathway 1 (page 35), the imine reacted with azidoacetyl chloride to give intermediate W. Deprotonation of W by triethylamine gave zwitterion Z. Electrostatic attraction between the negative charge density of the azido group and the positive charge density on the cinnamyl component stabilized the transition state leading to cis β -lactam⁷⁰ and therefore ring closure of Z afforded only cis β -lactam. In pathway 2, the imine reacted probably with azido ketene, formed from azidoacetyl chloride and triethylamine, and afforded trans β -lactam⁷⁷. Imines derived from amines (a-h) with pKa's >2.4 reacted with azidoacetyl chloride exclusively by pathway 1 and afforded cis β -lactams. In amines with pKa's less than 2.4 (i,j,m,n), electron withdrawing substituents and ortho substituents on the aniline ring, which destabilize W, decreased the rate of pathway 1 sufficiently that pathway 2 became important and trans β -lactams were also Imines derived from amines k and l reacted so slowly formed. with azidoacetyl chloride that pathway 2 became the exclusive reaction pathway and only trans β -lactams were formed.

R−NH ₂ → N Ph	→		
$\mathbf{R} = \mathbf{r}$	рКа	yield cis isolated (NMR)	yield trans isolated (NMR)
(a) X=Y=H ^a	4.6 ^d	50% (90%)	
(b) X=p-Cl, Y=H ^a	4.0 ^d	40% (90%)	
(c) X=o-CH ₂ OTBDMS, Y=H	> 3 ^e	70% (95%)	
(d) X=o-OTBDMS, Y=H ^a	> 3 ^e	60% (90%)	
(e) X=o-CH ₂ OTBDMS, Y=o'-OTBDMS	> 3 ^e	81% (90%)	
(f) X=Y=o-OTBDMS ^a	> 3 ^e	40% (70%)	
(g) $X=m-NO_2$, $Y=H^a$	2.46 ^d	80%	
(h) X=o-OME, Y=p-COOMe ^a	2.4 ^f	85%	
(i) X=p-Cl, Y=o-Cl ^a	2.05 ^d	(60%)	(15%)
(j) X=o-COOH, Y=o'-OMe	2.0 [°]	(1,5%)	(15%)
(k) X=0-COOH, Y=H	2.2 ^C		(30%), (30%,THF) ^b
(1) X=o-OTBDMS, Y=p-NO ₂ ^a	<1.5 ^e		(2%), 50% (70%,THF)
(m) $x=p-NO_2$, $y=H^a$	l d	(50%)	(25%)
(n) $X=p-NO_2$, $Y=O-CH_3^a$	∿l ^e	(5%)	(50%)

a = results obtained by A. Ugolini in our laboratories

b = cycloaddition performed in THF

- c = measured on corresponding methyl esters 73
- $d = from literature^{72}$
- e = estimated
- f = measured

36

To transform 54 to the desired carboxylic acid 60 the cinnamylidene group had to be ozonolyzed and the silyl ether had to be oxidized to a carboxylic acid. Ozonolysis of 54 in ethanol, methanol, or methylene chloride gave a poorly defined mixture of oxidation products. Since we thought that the amide group interfered with the ozonolysis, the ozonolysis of the azide 53 was investigated. Ozonolysis of 53 in methanol, followed by sodium borohydride reduction⁴⁵, afforded an inseparable mixture of alcohol 55 and varying amounts of some other unidentified products. However, ozonolysis of azide 53 in redistilled isopropanol, followed by sodium borohydride reduction, gave, after work-up with pH 4.5 buffer, a reasonable yield of alcohol 55. Work-up with 1% HCl⁴⁵ instead of pH 4.5 buffer lead to hydrolysis of the silvl ether. Later we found that by using methylene chloride/ethanol 1:5 as solvent instead of isopropanol and purging with N_2^{74} , crystalline alcohol <u>55</u>, m.p. 95-96°, could be obtained in 76% yield by simple crystallization of the crude product.

 $\frac{56}{57} = \frac{R=N_3}{R=NHCOCH_2Ph}$

In order to differentiate the two alcohol functions, 55was converted to its methyl ether 56 by means of excess diazomethane-boron trifluoride etherate⁷⁵ in 76% yield after chromatography. Reduction and acylation of the azide function gave amide 57, $v_{c=0}$ 1750, 1655 cm⁻¹. Removal of the silyl protecting group by treatment with aqueous trifluoroacetic acid in tetrahydrofuran gave alcohol 58 in good yield. Oxidation of 58 with pyridinium chlorochromate⁷⁸ afforded aldehyde 59in 70% yield. Because of its mildness and selectivity we decided to first try Corey's method $(NaCN/Ag_2O_2)^{79}$ for the conversion of aldehyde 59 to the desired carboxylic acid 60. Unfortunately, oxidation of 59 with silver oxide/sodium cyanide opened the β -lactam ring. The aldehyde in 59 activated the

58 R=CH₂OH 59 R=CHO

 β -lactam ring towards ring opening by nucleophiles like CN⁻. Attempts to oxidize either 58 or 59 with potassium permanganate⁸¹ or with sodium periodate/ruthenium tetroxide⁸³ in aqueous acetone were also unsuccessful. In all these attempts the oxidation stopped at the aldehyde stage. Carboxylic acid 60, $v_{c=0}$ (CHCl₃) 1755, 1710, 1670 cm⁻¹, could be obtained in low yield from 58 using chromium trioxide in acetic acid/water⁸². T.l.c. showed that in the oxidation of alcohol 58, the conversion to aldehyde 59 was very rapid, whereas the oxidation of aldehyde 59 to carboxylic acid 60 was slow. P.m.r. of 60 (page 39) showed a quartet at 5.8 p.p.m. for H_3 ($J_{3,4} = 5 Hz$, $J_{3,5} = 7$ Hz) and a broad doublet for H_4 along with all other appropriate signals. Treatment of 60 with ethereal diazomethane afforded the corresponding methyl ether 61. The mass spectrum of 61 showed a molecular ion, a peak at M^+ -31 which is consistent with a methyl ester and peaks at m/e 205 and 177 for the fragmentation shown on 61^{71} . Carboxylic acid 60 showed no activity toward a variety of bacteria. This is not unexpected if we consider that $v_{c=0}$ of <u>60</u> is only 1755 cm⁻¹, while known active cephalosporins have $v_{c=0}$ of at least 1765 cm⁻¹.

Fig. 10: The 90 MHz p.m.r. spectrum of carboxylic acid 60

C

Chapter 2

Synthesis of 7β -phenylacetamido-3'-carboxy-

benzo[3,4]-0-2-isocephem

In the previous chapter we described the synthesis of bicyclic anthranyl azetidinone <u>60</u>, in which the β -lactam frequency was 1755 cm⁻¹ and which, not surprisingly, showed no significant antimicrobial activity. It was decided to prepare the tricyclic anthranyl azetidinone <u>120</u> which we expected to absorb at considerably higher frequency and which should therefore be similar to classical β -lactams except for the position of the carboxylic acid.

Our basic plan for the synthesis of <u>120</u> is illustrated below. We decided to start with a protected hydroxyl anthranilic acid L, form the β -lactam M as before, transform the styryl group to a mesylate N, deprotect the phenol, and cyclize the

resulting compound 0 by treatment with base. Because of the electron-donating nature of the methoxy group, it was anticipated that some cis-fused compound may form.

The commercially available 3-methoxy-2-nitrobenzoic acid $\underline{62}$ was reduced to amine $\underline{63}$ with platinum oxide in ethanol and the resulting aminobenzoic acid $\underline{63}$ transformed to its methyl ester 64 with diazomethane.

Attempts to convert <u>64</u> to its cinnamylidene Schiff base <u>65</u> failed. The free amino acid <u>63</u> was therefore directly converted to highly unstable Schiff base <u>66</u> by reaction with cinnamaldehyde in refluxing benzene using a Dean Stark apparatus. Reaction of crude <u>66</u> with trimethyl silyl chloride-triethylamine in methylene chloride followed by azidoacetyl chloride gave, after work-up, a mixture of β -lactams <u>67</u> and <u>69</u>, amino acid <u>63</u> and some other unidentified products, presumably azidoacetyl chloride self-condensation products. Column chromatography afforded only partial separation. Methylation of the partially purified products and re-chromatography finally afforded an inseparable mixture of cis and trans β -lactams <u>68</u> and <u>70</u> in approximately 25% yield.

The p.m.r. spectrum in benzene d_6 , after addition of Eu(fod)₃, clearly showed the presence of the cis isomer, $J_{3,4} = 5$ Hz, and of the trans isomer, $J_{3,4} = 2$ Hz. Since we could not separate the desired cis isomer from the trans isomer, it was decided to reduce the electron withdrawing carboxyl function, which was responsible for the low yield of the cycloaddition and the formation of the trans isomer, to an alcohol before carrying out the cycloaddition, and to eventually reoxidize the benzyl alcohol to the corresponding benzoic acid.

3-Methoxy-2-nitrobenzoic acid was reduced to the corresponding benzyl alcohol $\underline{71}$ with excess borane in tetrahydrofuran⁸⁴ in 65% yield. Treatment of $\underline{71}$ with excess methylal/phosphorus pentoxide afforded ether $\underline{72}$ in good yield. Catalytic hydrogenation (PtO₂) of the nitro group afforded amine $\underline{73}$ in excellent yield.

R=CH2OH 72 R=CH_OCH_OCH_

42

73 R=CH2OCH3

CH,OR

74 R=CH2OCH3

75 R=CH2OCH2

Aniline $\underline{73}$ was transformed to its cinnamylidene Schiff base $\underline{74}$ which, as expected, gave cis β -lactam $\underline{75}$ in good yield upon reaction with azidoacetyl chloride and triethylamine at -20°. The stereochemistry of the β -lactam in $\underline{75}$ could not be determined by p.m.r. The β -lactam protons showed up as a multiplet. Ozonolysis of $\underline{75}$ in isopropanol/methylene chloride followed by sodium borohydride reduction, afforded alcohol $\underline{76}$, i.r. (CHCl₃) 3300, 2100, 1760 cm⁻¹, in 56% yield. Treatment of $\underline{76}$ with methanesulfonyl chloride (MsCl)/triethylamine afforded mesylate $\underline{77}$. In the p.m.r. spectrum of $\underline{77}$, H₃ clearly appeared as a doublet with J = 5 Hz at 5.0 p.p.m. Therefore, $\underline{77}$, $\underline{76}$ and $\underline{75}$ were cis β -lactams. We had now reached the key steps in our synthesis, the removal of the protecting groups and the cyclization of the resulting diol mesylate $\underline{78}$.

<u>76</u> R=H

77 R=SO2CH3

Unfortunately, treatment of either $\underline{77}$ or $\underline{75}$ with boron tribromide⁸⁵ or boron trichloride⁸⁶ led to destruction of the β -lactam ring. We therefore had to change the protecting groups on aniline $\underline{73}$.

Recently Corey reported a new alcohol protecting group, the β -methoxyethoxymethyl (MEM) group⁸⁷. It was easily introduced and selectively removed in the presence of other alcohol protecting groups under mild conditions with zinc bromide or titanium tetrachloride. This group seemed ideal for our purposes. The required aniline was easily synthesized from 3-methoxy-2-nitrobenzaldehyde <u>79</u>. Aldehyde <u>79</u> was quantitatively demethylated with excess boron tribromide in methylene chloride to phenol <u>80</u>. Treatment of <u>80</u> with MEM chloride⁸⁷ <u>81</u> and diisopropylethylamine in methylene chloride afforded aldehyde <u>82</u>. Reduction of <u>82</u> with sodium borohydride in ethanol afforded alcohol <u>83</u> in 90% yield. Protection of the alcohol with MEM chloride/diisopropylethylamine afforded the MEM ether <u>84</u> in 60% yield after column chromatography.

Catalytic hydrogenation of <u>84</u> afforded the desired amine <u>85</u>. Treatment of the crude Schiff base, obtained by heating amine <u>85</u> for 8 hrs with cinnamaldehyde in refluxing benzene, with azidoacetyl chloride/triethylamine afforded the cis β -lactam <u>86</u> in good yield. Ozonolysis of <u>86</u> in isopropanol/ methylene chloride, followed by reduction with sodium borohydride, afforded alcohol <u>87</u>. Alcohol <u>87</u> was further characterized as the mesylate <u>88</u>. To our surprise the MEM ether

85

87 R=H 88 R=SO₂CH₃

groups in either <u>88</u> or <u>86</u> could not be removed using the conditions described by Corey. When these compounds were added to a slurry of zinc bromide in methylene chloride, the zinc bromide clumped together and the reaction stopped. We later found out that nitrogen in the compounds probably interfered⁸⁸ with the formation of the complex <u>89</u>, which is thought to be responsible for the cleavage of MEM ethers with Lewis acids like zinc

86

bromide. The MEM ethers in <u>86</u> and <u>88</u> were also very resistant to acid hydrolysis. They could not be removed without destruction of the β -lactam ring.

The sequence was repeated with amine <u>94</u> in which the alcohol functions were protected as benzyl and silyl ethers. Both these groups could be removed in the presence of the β -lactam ring. Amine <u>94</u> was synthesized in the following way from 3-hydroxy-2-nitrobenzaldehyde <u>80</u>. Treatment of <u>80</u> with benzyl bromide/potassium carbonate in dimethyl sulfoxide afforded benzyl ether <u>90</u>, m.p. 77-79°, in 50% yield. Sodium borohydride reduction gave alcohol 91 in quantitative yield.

<u>90</u> R=CHO, R^1 =CH₂Ph <u>91</u> R=CH₂OH, R^1 =CH₂Ph <u>92</u> R=CH₂OH, R^1 =H

CH2OR

<u>93</u> R=H, R¹=NH₂ <u>94</u> $R=(CH_3)_2SiBu^t$, $R^1=NH_2$

Catalytic hydrogenation of <u>91</u> in ethanol using platinum oxide as catalyst afforded amine <u>93</u> contaminated with approximately 10% of phenol <u>92</u>. Washing with 5% sodium hydroxide removed the phenol and afforded pure <u>93</u>. The success of the catalytic hydrogenation depended entirely on the activity of the platinum oxide used. Adams catalyst obtained from Matheson Coleman and Bell and from Anachemia (Montreal) gave excellent results while platinum oxide obtained from Ventron gave overreduction. The platinum oxide from Ventron was too active and therefore not selective. It reduced the nitro group and cleaved the benzyl ether at about the same rate. Silylation with t-butyldimethylsilyl chloride afforded the desired amine <u>94</u> in 40% overall yield from <u>80</u>. Treatment of amine <u>94</u> with cinnamaldehyde in refluxing benzene afforded Schiff base <u>95</u>, approximately 85-90% pure by p.m.r. Reaction of the crude Schiff base <u>95</u> with azidoacetyl chloride/triethylamine at -20° afforded fairly pure cis β -lactam <u>96</u> after column chromatography. Ozonolysis of <u>96</u> in ethanol/methylene chloride at -78° followed by sodium borohydride reduction, afforded analytically pure alcohol <u>97</u>, i.r. (film) 3400 (OH), 2100 (N₃), 1760 cm⁻¹ (β -lactam), after column

95

96 R= CH=CH-Ph R= CH₂OH 97

chromatography. The ozonolysis was much cleaner (little polar by-products by t.l.c.) when N₂ was passed into the ozonolysis vessel at the same time as ozone in oxygen was bubbled through. In the p.m.r. spectrum of <u>97</u>, H₃ appeared as a doublet, J = 5 Hz; <u>95</u>, <u>96</u> and <u>97</u> were therefore cis β -lactams. Alcohol <u>97</u> was easily transformed to mesylate <u>98</u>. Treatment of <u>98</u> with aqueous trifluoroacetic acid in tetrahydrofuran afforded

benzyl alcohol <u>99</u> in good yield. Oxidation of <u>99</u> with chromium trioxide in acetic acid/water gave carboxylic acid <u>100</u>, m.p. 153-155°, in 42% yield. The i.r. spectrum of <u>100</u> in KBr was misleading and lead us to believe that the β -lactam had been hydrolyzed during the oxidation. It had only a broad band at 1740 cm⁻¹ in the carbonyl region. However in solution there were two bands, one at 1720 cm⁻¹ for the carboxylic acid and one at 1755 cm⁻¹ for the β -lactam. In the solid state there must have been an intermolecular hydrogen bond which lowered the β -lactam frequency. Reaction of acid <u>100</u> with a slight excess of diphenyl diazomethane in acetonitrile afforded ester <u>101</u>, $v_{c=0}$ (CHCl₃) 1780, 1730 cm⁻¹. Reduction with hydrogen sulphide/triethylamine and acylation with phenylacetyl chloride afforded amide <u>102</u>, $v_{c=0}$ (KBr) 1770, 1720, 1660 cm⁻¹.

 $\begin{array}{c} \underline{100} \quad R=H, \ R^{1}=N_{3} \\ \underline{98} \quad R^{1}=(CH_{3})_{2}SiBu^{t}, \ R=SO_{2}CH_{3} \\ \underline{99} \quad R^{1}=H, \ R=SO_{2}CH_{3} \\ \end{array} \qquad \begin{array}{c} \underline{101} \quad R=CH(Ph)_{2}, \ R^{1}=N_{3} \\ \underline{102} \quad R=CH(Ph)_{2}, \ R^{1}=NHCOCH_{2}Ph \\ \end{array}$

Attempts to remove the benzyl groups by catalytic hydrogenation and to cyclize the resulting phenol mesylate with DBU⁵⁰ or triethylamine in acetonitrile failed, as evidenced by p.m.r. which showed the presence of the mesylate group. The cyclization was not investigated further because we were successful in synthesizing the desired carboxylic acid by another route.

103

Since we had indications, based on model studies⁸⁰, that the desired cyclization proceeded well, when it was effected on a silyl mesylate of type <u>109</u>, the sequence was repeated with a t-butyldimethylsilyl ether instead of a benzyl ether. Reduction of <u>80</u> with sodium borohydride in ethanol afforded alcohol <u>104</u>. Catalytic hydrogenation of <u>104</u> afforded, after silylation with t-butyldimethylsilyl chloride, amine 105 in

- 80 R=CHO
- 104 R=CH_OH

106

107

68% yield from <u>80</u>. Aniline <u>105</u> was transformed to its cinnamylidene Schiff base <u>106</u>, which upon treatment with azidoacetyl chloride/triethylamine afforded, after chromatography, fairly pure cis β -lactam <u>107</u> in 80% yield. Ozonolysis of <u>107</u> in ethanol/methylene chloride, followed by reduction with sodium borohydride afforded, after chromatography, pure alcohol <u>108</u>, m.p. 112-112.5°, v_{C=0} 1770 cm⁻¹, in 53% yield. It was transformed into its mesylate <u>109</u> in excellent yield. The p.m.r. spectrum of <u>109</u> showed a characteristic doublet at 5.0 p.p.m., J = 5 Hz, for H₃ and a three proton singlet at 2.75 p.p.m. for the mesylate, in addition to all other appropriate signals (page 51).

<u>108</u> R=H <u>109</u> R=S0₂CH₃

109 R=CH_OSi(CH_)_But 111 R=H 112 R=CH2OSi(CH3)2But 110 R=H

A. Ugolini in our laboratories found that treatment of 110 with 1 equivalent of tetra-n-buty1 ammonium fluoride in tetrahydrofuran afforded tricyclic β -lactam lll in good yield. We decided to try these conditions on our mesylate 109. Cyclization of 109 with 1 equivalent of tetra-n-butyl ammonium fluoride afforded 112 in good yield. Unfortunately, the yield was not very reproducible. The yield depended on the quality of the tetra-n-butyl ammonium fluoride used⁸⁹. We therefore decided to investigate other fluoride salts. Treatment of 109 with excess caesium fluoride in tetrahydrofuran or acetonitrile did not give any cyclized product but treatment of 109 with 2 equivalents of potassium fluoride and .3 equivalents of 18crown-6 in acetonitrile afforded consistently 112 in yields of greater than 90%. Unlike the cyclization with tetra-n-butyl ammonium fluoride, the amount of potassium fluoride used was not critical as long as 2 equivalents or more were used. Potassium fluoride/18-crown-6 only removed the phenolic silyl ether. The t.l.c. of the reaction mixture only showed the presence of 112 and the mesylate <u>109</u>. The 60 MHz p.m.r. of <u>112</u> in benzene d_6

(page 54) clearly showed the presence of only one t-butyldimethylsilyl ether and no mesylate. Due to hindered rotation about the aryl-CH, bond, the hydrogens of the benzyl CH, were not equivalent and appeared as an AB quartet (J = 15 Hz) at 5.2 p.p.m. Analysis of the 100 MHz p.m.r. (page 54) allowed us to determine all the coupling constants between protons H3, H_4 , H_5 and H_6 . H_3 was only coupled to H_4 (J = 5 Hz). H_4 was coupled to H_3 (J = 5 Hz), to H_5 (J = 4 Hz) and to H_6 (J = 10 Hz). H_5 was coupled to H_4 (J = 4 Hz) and to H_6 (J = 10 Hz). H_6 was coupled to H_4 (J = 10 Hz) and to H_5 (J = 10 Hz). Since $J_{3,4}$ was 5 Hz after the cyclization, the stereochemistry of the ring junction had been preserved and was still cis. The cyclization of 109 to 112, as expected, increased the β -lactam i.r. absorbtion frequency from 1770 cm⁻¹ to 1780 cm⁻¹. Cyclization of 109, by decreasing the planarity of the β -lactam nitrogen, decreased the amide resonance in the β -lactam amide bond. This decrease in amide resonance reduced the double bond character of the β -lactam bond and therefore increased the i.r. absorbtion frequency of the β -lactam⁹⁰.

There were two possible routes from <u>112</u> to our desired carboxylic acid <u>120</u>: the silyl ether could be first transformed to the carboxylic acid, and then the azido group reduced and acylated, or the sequence could be reversed. We chose to reduce and acylate the azido group first. This route eliminated the need to protect the carboxylic acid during acylation. Reduction (hydrogen sulphide/triethylamine) and acylation with phenylacetyl chloride of 112 afforded amide 113 in good yield.

Fig. 12: The 60 MHz p.m.r. spectrum of β -lactam <u>112</u>

Hydrolysis of the silyl ether with trifluoroacetic acid afforded alcohol <u>114a</u>, m.p. 183-185°, $v_{c=0}$ (KBr) 1775, 1660 cm⁻¹, in good yield. Attempts to oxidize alcohol <u>114a</u> with chromium trioxide in acetic acid/water, potassium permanganate in pyridine⁸¹, or sodium periodate/ruthenium tetroxide gave the corresponding aldehyde <u>114b</u> (by t.l.c.) and no acid. Since the oxidation did not give the desired product we investigated the other route to carboxylic acid 120. Hydrolysis of 112 with

 $\frac{113}{114a} = \text{R}=\text{H}$

<u>114b</u>

trifluoroacetic acid afforded benzyl alcohol <u>115</u>, m.p. 128-129°, m.s. m/e 246 (M^+), in 75% yield. After many unsuccessful attempts it was found that <u>115</u> could be oxidized to carboxylic acid <u>117</u> using chromium trioxide in acetic acetic/water. The oxidation took two days and afforded a mixture of the desired acid and aldehyde 116 in approximately 60% yield. Increasing

the reaction time did not improve the yield of acid 117. Carboxylic acid 117 was not purified at this step. The crude reaction mixture was treated with a slight excess of diphenyldiazomethane in acetonitrile. Purification by preparative thick layer chromatography afforded 39% of ester 118, i.r. (CHCl₃) 1795, 1730 cm⁻¹, and 10% of aldehyde <u>116</u>. In the 90 MHz p.m.r. spectrum of 118 (page 57), the peaks and coupling constants for protons H_3 to H_6 were very similar to those for the same protons in 112. Therefore, in oxidizing 112 to 117, the tricyclic cis-fused ring structure of 112 had not been altered. The mass spectrum of 118 showed a molecular ion, and peaks for the fragmentation shown on structure 118.

In summary, we were able to oxidize <u>115</u> to <u>117</u> but not <u>114a</u> to <u>120</u>. The amide group, presumably because of steric hindrance, interfered with the oxidation of aldehyde <u>114b</u> to carboxylic acid <u>120</u>. The rate of oxidation of alcohols to aldehydes with chromium trioxide and other oxidizing agents is known to be accelerated by steric hindrance, while the rate of oxidation of aldehydes to carboxylic acids is slowed down by steric hindrance⁹¹. Reduction (H_2S/Et_3N) and acylation

Fig. 15: The 90 MHz p.m.r. spectrum of 119

with phenylacetyl chloride of azide <u>118</u> afforded amide <u>119</u> in 72% yield. In the p.m.r. spectrum of <u>119</u> (page 57), H₃ appeared as a quartet ($J_{3,4} = 4.8$ Hz, $J_{3,7} = 7$ Hz), characteristic of cis-fused acylamino β -lactams, at 5.4 p.p.m. We had almost reached our goal and only the ester protecting group had to be removed. Attempts to remove the benzhydryl ester with trifluoroacetic acid/anisole failed and resulted in the decomposition of the β -lactam ester <u>119</u>. However, catalytic hydrogenation, using palladium on charcoal in ethanol⁹², gave the desired acid <u>120</u>, $v_{c=0}$ (KBr) 1780, 1685, 1650 cm⁻¹, fully

<u>119</u> R=CH (Ph)₂ <u>120</u> R=H <u>121</u> R=CH₃

characterized as its methyl ester <u>121</u>. In the p.m.r. spectrum of <u>121</u> (page 59), the peaks for H_3 to H_6 were identical to those for the same protons in <u>119</u>. The mass spectrum of <u>121</u> showed a molecular ion, a peak at M⁺-31 which is consistent with a methyl ester and peaks at 175 and 192 typical of the fragmen-

Fig. 16: The 90 MHz p.m.r. spectrum of 121

C

tation of β -lactams⁷¹ as indicated in structure <u>121</u>.

120

122

To our surprise carboxylic acid <u>120</u> showed no activity toward a variety of bacteria, while phenol <u>122</u>⁸⁰, although it had a lower β -lactam i.r. absorption frequency (1760 cm⁻¹), displayed weak activity toward two bacteria. Phenol <u>122</u> has a hydroxyl group in the same place as the natural cephalosporins <u>123</u>, while in carboxylic acid <u>120</u> the hydroxyl group is displaced by one carbon. It therefore seems probable that the position of the carboxyl function in cephalosporins is critical for antimicrobial activity.

Chapter 3

Synthetic studies toward thienamycin analogues

Since the double bond in <u>125</u> would allow the synthesis of many interesting analogues of thienamycin <u>126a</u>, <u>126b</u> and <u>126c</u>, we decided to investigate this reaction further. We were especially

interested in the reaction of <u>124</u> with cinnamylidene Schiff bases. The β -lactams that would be formed could be transformed into useful intermediates for the synthesis of cephalosporin and thienamycin analogues⁴⁵. To our surprise, the reaction of cinnamylidene aniline <u>127</u>, easily obtained by refluxing 1 equivalent of cinnamaldehyde and 1 equivalent of aniline in benzene, with crotonyl chloride/triethylamine afforded approximately a 5:1 mixture of cis β -lactam <u>128</u> and trans β -lactam <u>129</u> in 30% yield by p.m.r. Purification of the reaction mixture by flash chromatography⁹⁴ afforded a low yield of pure cis β -lactam <u>128</u>. In the p.m.r. spectrum of <u>128</u> (page 63), H₄ appeared as a quartet (J_{3,4} = 6 Hz, J_{4,5} = 7 Hz) at 4.8 p.p.m., while H₃ appeared as a triplet (J_{3,4} = 6 Hz, J_{3,7} = 6 Hz)

127

129

at 4.2 p.p.m. Since the p.m.r. spectrum of the crude reaction mixture showed that not all of the Schiff base had reacted at room temperature, the reaction was repeated at reflux. To our surprise an approximately 1:5 mixture of cis β -lactam <u>128</u> and trans β -lactam <u>129</u> was obtained in 40-45% yield (by p.m.r.). Purification by flash chromatography⁹⁴ afforded a small amount of pure trans β -lactam <u>129</u>. In the p.m.r. spectrum of <u>129</u>,

(page 63), H_4 appeared as a quartet ($J_{3,4} = 2.5 \text{ Hz}$, $J_{4,5} = 7 \text{ Hz}$) at 4.4 p.p.m. and H_3 appeared as a broad doublet at 3.6 p.p.m.

64

The i.r. spectrum of the two isomeric β -lactams 128 and 129 were identical while their mass spectra were similar. Both mass spectra showed strong molecular ions at m/e 275 and peaks at m/e 156 and 119. The two mass spectra only differed in the intensity of the peaks at m/e 206-208. The mass spectrum of the trans β -lactam showed intense peaks at m/e 207 (57.1%) and 208 (21.72%), while the mass spectrum of the cis β -lactam 128 had intense peaks at m/e 206 (100%) and m/e 207 (38.04%). The peaks at m/e 156 and 119 in both mass spectra were due to the fragmentation shown in 128 and 129 as a solid line. The peak at m/e 207 in the mass spectrum of 129 was probably due to the fragmentation shown in structure 129 as a dotted line. The origin of the intense peak at m/e 206 (M^+-69) in the mass spectrum of 128 is unknown.

These results made us doubt the result obtained by Bose for the cycloaddition of crotonyl chloride on benzylidene aniline. However, when we repeated the reaction in refluxing methylene chloride we also obtained exclusively trans β -lactam <u>125</u>, m.p. 100-102°, in 40% yield after recrystallization. In the p.m.r. spectrum of <u>125</u>, H_A appeared as a doublet (J = 2.5 Hz) at 4.9 p.p.m.

Since, like cinnamylidene β -lactams, furfurylidene β -lactams⁴⁸ can also be transformed into useful intermediates for the synthesis of cephalosporin derivatives, the cycloaddition was repeated with furfurylidene aniline <u>130</u>. The Schiff base <u>130</u> was easily obtained in quantitative yield by refluxing for 4 hrs a solution of aniline in benzene with 1 equivalent of furfuraldehyde and removing the water formed with a Dean Stark trap. Treatment of <u>130</u> with crotonyl chloride/triethylamine in refluxing methylene chloride afforded a good yield of trans β -lactam <u>131</u>. In the p.m.r. spectrum of <u>131</u>, H₄ appeared as a doublet (J = 2.5 Hz) at 4.8 p.p.m.

Since we were also interested in the synthesis of Thienamycin itself, we investigated the reaction of dimethylacryloyl chloride <u>132</u> with imines. Ozonolysis of the resulting β -lactam 133 followed by sodium borohydride reduction would afford

65

135

 β -lactam 134 having the thienamycin side chain.

Treatment of <u>130</u> with acid chloride <u>132</u> and triethylamine afforded trans β -lactam <u>135</u>, m.p. 84-86°, $v_{c=0}$ 1750 cm⁻¹. The mass spectra for <u>131</u> and <u>135</u> were very simple and showed peaks for the molecular ion and for the fragmentation shown in <u>135</u> as a dotted line.

To test the generality of these results, the reaction of crotonyl chloride <u>124</u> or dimethylacryloyl chloride <u>132</u> was investigated on a number of Schiff bases. Schiff bases <u>136</u>, <u>138</u>, <u>141</u> and <u>143</u> derived from amino esters and Schiff base <u>145</u> derived from an amino phosphonate were chosen because similar Schiff bases have been used in the synthesis of cephalosporin analogues (Bristol approach, p. 16, and Merck approach, p. 14), while Schiff base <u>147</u> derived from 2,4-dimethoxybenzylamine has been used to synthesize a key intermediate used for the synthesis of many cephalosporin and penicillin analogues (S.K.F. approach, p. 16). If dimethylacryloyl chloride and crotonyl chloride were to react with these Schiff bases, then these acid chlorides could be used instead of azidoacetyl chloride in preparing classical β -lactams with a thienamycin or PS-5 (ethyl) side chain.

Reaction of <u>136</u> with dimethylacryloyl chloride/triethylamine afforded very little β -lactam <u>137</u> (by p.m.r. and i.r.) even when the cycloaddition was performed in refluxing dichloroethane.

The synthesis of Schiff base <u>138</u> proved to be difficult. Addition of 1 equivalent of cinnamaldehyde to ethyl glycinate in methylene chloride gave approximately a 1:1 mixture of the desired Schiff base <u>138</u> and some other unidentified products, presumably derived from 1,4 additon of ethyl glycinate. After much experimentation, we found that slow addition of 1 equivalent of cinnamaldehyde to ethyl glycinate¹²² in methylene chloride containing magnesium sulphate at 0° afforded Schiff base <u>138</u> in approximately 85-90% yield (by p.m.r.). The reaction time was somewhat critical. Stirring for more than 2 hrs gave less Schiff base. Treatment of <u>138</u> with dimethylacryloyl chloride <u>132</u> and triethylamine afforded a good yield of cis β -lactam <u>139</u>. In the p.m.r. spectrum of <u>139</u>, H₄ appeared as a quartet

COOC₂H₅

138

 $(J_{3,4} = 5 \text{ Hz}, J_{4,5} = 7 \text{ Hz})$ at 4.5 p.p.m. The mass spectrum showed a molecular ion at m/e 299 and peaks at m/e 82, 129, 170, 217 and 218 for the fragmentation shown in structure 139.

Treatment of Schiff base $\underline{141}^{95}$, easily obtained from amine $\underline{140}$ and 1 equivalent of cinnamaldehyde, with dimethylacryloyl chloride also gave a good yield of β -lactam $\underline{142}$. Like for the cycloaddition with azidoacetyl chloride⁹⁵, only one diastereomer was formed, as shown by p.m.r.

Reaction of amine <u>140</u> with 1 equivalent of furfuraldehyde in refluxing methylene chloride gave an excellent yield of Schiff base <u>143</u>. To our surprise, reaction of Schiff base <u>143</u> with dimethylacryloyl chloride <u>132</u> in refluxing methylene chloride gave a low yield of cis β -lactam <u>144</u>. There was no trace of the corresponding trans β -lactam, as shown by p.m.r. of the crude reaction mixture. In the p.m.r. spectrum of <u>144</u> (page 69), H₄ appeared as a doublet at 5.1 p.p.m. The chemical shift of the

142

68

<u>143</u>

Fig. 19: The 60 MHz p.m.r. spectrum of β -lactam 135

144

PO(OC₂H₅)₂

163

methyl group in the side chain was also consistent with the presence of a cis fused ring in <u>144</u>. The methyl group in <u>144</u> (underlined) appeared at 1.5 p.p.m. which was .6 p.p.m. lower than it appeared in the p.m.r. of trans β -lactam <u>135</u>. The shielding of the methyl group in <u>144</u> was probably due to the furan ring which was cis to the methyl group.

Unlike <u>138</u>, Schiff base <u>145</u> was easily synthesized in quantitative yield by the addition of 1 equivalent of cinnamaldehyde to amino phosphonate <u>163</u>³⁹ in methylene chloride containing magnesium sulphate. Addition of dimethylacryloyl chloride <u>132</u> to Schiff base <u>145</u> afforded cis β -lactam <u>146</u> in good yield. The p.m.r. spectrum of <u>146</u> was complicated by phosphorus coupling but could be interpreted by comparing it to that of <u>139</u>. H₄ appeared as a doublet of quartets (J₄, p = 1 Hz, J₃, 4 = 5 Hz, J₄, 5 = 7 Hz). Like the β -lactams derived from amino esters, the mass spectrum of <u>146</u> showed a very strong molecular ion at m/e 363 (99%) and peaks at 282 (100%), 170 (43%), and 82 (15%) for the usual β -lactam fragmentation.

147

Treatment of Schiff base $\underline{147}^{52,96}$ with crotonyl chloride and triethylamine in refluxing methylene chloride afforded exclusively cis β -lactam $\underline{148}$, m.p. 68-69°, in 40% yield. In the p.m.r. spectrum of $\underline{148}$ (page 72), H₄ appeared as a doublet (J = 5 Hz) at 4.0 p.p.m. while H₃ appeared as a broad doublet (J = 5 Hz) at 3.7 p.p.m. Repeating the cycloaddition with dimethylacryloyl chloride also afforded cis β -lactam $\underline{149}$, m.p. 72-72.5° in fair yield. The p.m.r. spectrum of $\underline{149}$ was identical to that of $\underline{148}$ except for the signals due to the different side chains. The mass spectrum of each β -lactam showed a molecular ion and a peak at m/e 193 for the fragmentation shown in $\underline{148}$ and 149.

Catalytic hydrogenation (PtO_2) of <u>148</u> in ethanol at 30 psi afforded <u>150</u> in good yield. The p.m.r. spectrum of <u>150</u> (page 72) clearly showed a doublet (J = 5 Hz) for H₄ at 3.9 p.p.m. along with all other appropriate signals. β -Lactam <u>150</u> is perhaps the most useful of all the β -lactams synthesized up until now in this

149

Fig. 21: The 60 MHz p.m.r. spectrum of β -lactam 148

151

chapter. Use of <u>150</u> instead of the corresponding azido β -lactam <u>151</u> in the Smith, Kline and French approach to cephalosporin and penicillin nuclear analogs (see p. 16) should allow the synthesis of analogs containing the ethyl (PS-5) side chain.

To summarize: unlike Schiff bases derived from anilines which gave either cis or trans β -lactams, Schiff bases derived from amino esters 138, 141, 143, amino phosphonate 145 and benzyl amine 147 afforded only cis β -lactams, when reacted with dimethylacryloyl chloride or crotonyl chloride which therefore behave like azidoacetyl chloride. The similarity of dimethylacryloyl chloride and crotonyl chloride to azidoacetyl chloride might be due to their ability to stabilize the transition state leading to cis β -lactams (see p. 74). While cinnamylidene Schiff bases react with azidoacetyl chloride at -20° or lower, the cycloaddition of these Schiff bases with dimethylacryloyl chloride or crotonyl chloride gave best results in refluxing methylene chloride. The higher reaction temperature necessary for completion of the cycloaddition was probably due to the decreased acylating ability of dimethylacryloyl chloride and crotonyl chloride or to a decreased acidity of the proton, which has to be abstracted for β -lactam formation.

Fig. 23: Possible mechanism for the formation of cis β -lactams in the cycloaddition of acryloyl chlorides with cinnamylidene Schiff bases.

Having been successful in synthesizing β -lactams by reacting imines with acryloyl chlorides, we decided to use this reaction in the synthesis of thienamycin analogs. Our initial plan is shown on page 75. We planned to start from phosphonate 152 and form Schiff base 154 by reaction with aldehyde 153. Treatment of Schiff base 154 with dimethylacryloyl chloride should afford cis β -lactam 155. We felt that the transformation should occur because Christensen found that the reaction of a similar Schiff base 15644 with azidoacetyl chloride afforded the corresponding β -lactam in fair yield. Ozonolysis of 155, sodium borohydride reduction, protection of the resulting alcohol, followed by hydrolysis of the acetal should afford aldehyde 157. Cyclization of the aldehyde with sodium hydride should afford protected thienamycin analog 158. Deprotection would afford thienamycin analog 159.

75

156

<u>155</u>

<u>152</u>

 \bigcirc

<u>157</u>

We first turned our attention to the synthesis of 152^{39} . Treatment of triazine 160 with diethyl phosphite, followed by work-up with ethereal hydrogen chloride gave hydrochloride 161. Catalytic hydrogenation (Pd/C) of 161 gave hydrochloride 162. Neutralization of the hydrochloride with ammonia in chloroform gave amino phosphonate 163 in excellent yield. The p.m.r. and i.r. spectra of 163 were identical to those reported by Christensen. Stirring a solution of amine 163 and 1 equivalent of benzaldehyde in methylene chloride with magnesium sulphate afforded Schiff base 164 in excellent yield. Christensen reported³⁹ that treatment of 164 with 1 equivalent of phenyl lithium followed by addition of 1 equivalent of benzyl chloroformate gave a mixture of 164 and 165 which could be separated by chromatography on silica gel. Hydrolysis of 165 would then afford amino phosphonate 152. After much experimentation we found

CI[−] RNH⁺2[→]PO(OC₂H₅)₂

161 R=CH_Ph 162 R=H

PO(OC2H3)2

<u>164</u> R=H <u>165</u> R=C0₂CH₂Ph

PO(OC2H3)2

163

that, although treatment of <u>164</u> with phenyl lithium and quenching of the anion with benzyl chloroformate afforded a mixture of <u>164</u> and <u>165</u>, chromatography on silica gel, even at 5°, afforded only a 5% yield of fairly pure <u>165</u>. Most of the Schiff base probably hydrolyzed on the silica column.

Unable to synthesize <u>152</u> in a reasonable yield, we decided to synthesize a similar phosphonate <u>170</u>. If we used <u>170</u> instead of <u>152</u> in our scheme (page 75), we would obtain β -lactam <u>166</u> instead of <u>155</u>. Ozonolysis of <u>166</u> at room temperature, protection of the resulting carboxylic acid and sodium borohydride reduction of the methyl ketone would then afford <u>167</u>. Protection of the alcohol, hydrolysis of the ketal and cyclization with sodium hydride would again give 158.

The traditional method for the synthesis of amino phosphonates with general structure M involves the treatment of the appropriate aldehyde with diethyl phosphite and ethanolic ammonia

in a pressure bottle at approximately 100^{97} . We found that under these conditions furfuraldehyde did not afford any amino phosphonate. Recently Rachon and Wasielewski^{98,99} have described a novel route to amino phosphonates <u>169</u> a and b. They found that heating a solution of the appropriate aromatic azine <u>168</u> a and b in neat diethyl phosphite containing .1 equivalent of sodium for 8 hrs and work-up with etheral hydrogen chloride gave amino phosphonates <u>169a</u>, <u>b</u>. Using their conditions furfuraldehyde azine <u>168c</u>¹⁰⁰ afforded the amino phosphonate hydro-

RCH=N_N=CHR a) 169 a) 168 R= R= b) b) c) R= c) R=

chloride <u>169c</u> in fair yield. Neutralization of <u>169c</u> with ammonia afforded the desired amino phosphonate <u>170</u>. We next turned our attention to the synthesis of aldehyde <u>153</u>. Self condensation of ethyl vinyl ether under the conditions described

171

in a Japanese patent¹⁰¹, afforded acetal 171 in 55% yield. Ozonolysis of 171¹⁰² in ethyl acetate followed by hydrogenation of the ozonide in situ with palladium on calcium carbonate as catalyst afforded the desired aldehyde 153 in 45% yield. Condensation of 153 with amino phosphonate 170 afforded Schiff base 172a in quantitative yield. The p.m.r. spectrum of 172a showed a characteristic multiplet at 7.9 p.p.m. for the Schiff base pro-To our surprise treatment of 172a with dimethylacryloyl ton. chloride or even with azidoacetyl chloride in refluxing methylene chloride, afforded very little β -lactam. The i.r. spectrum of the reaction mixture showed only weak absorption at 1770 cm⁻¹ where we expected the β -lactam to absorb. Repeating the reaction in boiling dichloroethane with 2 or 3 equivalents of the acid chloride did not significantly increase the amount of β -lactam formed. The lack of reactivity of 172a could have been due to the phosphorane or due to the aldehyde component. When we repeated the cycloaddition on the corresponding cinnamylidene Schiff base 172b, a good yield of β -lactam 173 was obtained. The lack of reactivity of Schiff base 172a was therefore probably due to the aldehyde component.

<u>172a</u>

79

<u>173</u>

Since the key difference between the two aldehyde components was that Schiff base <u>172b</u> was derived from an unsaturated aldehyde while <u>172a</u> was not, it seemed likely that this double bond was necessary for the success of the cycloaddition. In our synthetic scheme the aldehyde component, therefore, had to have general structure N. Treatment of the corresponding Schiff base with dimethylacryloyl chloride would then afford β -lactam <u>174</u>. We were therefore faced with the problem of finding an α,β -unsaturated aldehyde N such that <u>174</u>, which is derived from it, could be transformed to 175.

Since the aldehyde N in the synthesis had to have a double bond we were also faced with the problem of differentiating the two double bonds in <u>174</u>. Our plan was to attack the two problems separately. We, therefore, decided to work out the transformation first with azidoacetyl chloride. The use of azidoacetyl chloride allowed us to concentrate on the problem of the transformation. Its use also simplified the p.m.r. spectra of the β -lactams formed. After solving the transformation problem we would return to the problem of differentiating the two double bonds in <u>174</u>.

A solution might be to start with aldehyde 176^{103} . However, even if we could synthesize the corresponding Schiff base <u>177</u>, and from it the desired β -lactam <u>178</u>, the conditions required to hydrolyze the vinyl ether in <u>178</u> to an aldehyde would almost certainly destroy β -lactam 178.

Another simple solution would be to start with acrolein and form Schiff base <u>179</u>. Reaction with azidoacetyl chloride should afford β -lactam <u>180</u>. Hydroboration of <u>180</u> followed by oxidation of the resulting alcohol would afford the desired aldehyde β -lactam <u>181</u>. The synthesis of Schiff base <u>179</u> proved to be difficult. Addition of 1 equivalent of acrolein to a solution of amino phosphonate <u>170</u> in methylene chloride containing magnesium sulphate afforded only a 40% yield of Schiff base <u>179</u> contaminated with some other unidentified, presumably 1,4 addition, products. After many other unsuccessful attempts we found that addition of a large excess (greater than 10 equiva-

PO(OC2H3)

179

lents) of acrolein to amino phosphonate 170 in methylene chloride containing sodium sulphate afforded a good yield (greater than 90% by p.m.r.) of Schiff base 179. Treatment of 179 with azidoacetyl chloride/triethylamine at room temperature afforded a 40% yield of β -lactam <u>180</u>, $v_{c=0}$ 1770 cm⁻¹. Because of the complexity of the p.m.r. spectrum of 180, the stereochemistry of the ring junction could not be determined but was most probably cis. The mass spectrum showed a very weak molecular ion and peaks at m/e 327 for the loss of the vinyl group from the molecular ion and at m/e 327 for the loss of nitrogen from the molecular ion. Unfortunately treatment of 180 with 3 equivalents of borane/tetrahydrofuran complex in tetrahydrofuran followed by oxidation with trimethyl amine N-oxide¹⁰⁴ in refluxing tetrahydrofuran afforded a complex mixture of products. The i.r. spectrum showed a weak absorption at 1770 cm⁻¹. The β -lactam had not survived the hydroboration conditions. The approach was abandoned. We had to try another substituent X in α , β unsaturated aldehyde N.

We thought that if X were CH_2OCH_3 , treatment of the resulting β -lactam <u>185</u> with palladium on charcoal¹⁰⁵ should isomerize the double bond to the corresponding vinyl ether <u>186</u>. Ozonolysis of <u>186</u> would then afford the desired aldehyde 181. In order

82

to synthesize β -lactam <u>185</u> we had to first synthesize the α,β unsaturated aldehyde <u>183</u>, which would be our starting material. Aldehyde <u>183</u> was synthesized from 2-butene-1,4 diol. Methylation with dimethyl sulphate/sodium hydroxide afforded the monomethyl ether <u>182¹⁰⁶</u> in low yield. Alcohol <u>182</u> has been oxidized to <u>183</u> using a modified Oppenhauer oxidation with cinnamaldehyde/ Al(i-OPr)₃¹⁰⁶. We were unable to oxidize <u>182</u> to <u>183</u> using these conditions but we found that alcohol <u>182</u> could be oxidized to aldehyde <u>183</u> using pyridinium chlorochromate⁷⁸. Condensation of <u>183</u> with amine <u>170</u> afforded Schiff base <u>184</u> in approximately 90% yield by p.m.r. Treatment of Schiff base <u>184</u> with azidoacetyl chloride/triethylamine at room temperature afforded β -lactam <u>185</u>, $v_{C=0}$ 1770 cm⁻¹, in 42% yield after column chromatography.

182

185

184

The p.m.r. spectrum of <u>185</u> was very complicated and the stereochemistry of the ring junction could not be determined by p.m.r. Since all the β -lactams formed from imines derived from α,β -unsaturated aldehydes and azidoacetyl chloride up until now were cis, we could safely assign the cis stereochemistry to <u>185</u>. The presence of two peaks for the methyl ether in the p.m.r. spectrum of <u>185</u> was, therefore, probably due to the presence of two diastereomers.

Unfortunately, treatment of <u>185</u> in refluxing ethanol with palladium on charcoal¹⁰⁵ or with tris-triphenylphosphine rhodium chloride using the conditions described by $Corey^{107}$ did not afford any of the expected rearranged product <u>186</u>. Only starting material <u>185</u> was recovered. Steric hindrance in <u>185</u> probably prevented the isomerization. The isomerization of allyl ethers to vinyl ethers has been found to be sensitive to steric hindrance ¹⁰⁸.

188

R Si-

187

RCH2CHO

189

We next investigated the possibility of transforming the double bond to an aldehyde using the known transformation of vinyl silanes <u>187</u> to aldehydes <u>189</u>. Stork found¹⁰⁹ that epoxidation of <u>187</u> to <u>188</u> with m-chloroperbenzoic acid, followed by treatment with acid, afforded good yields of aldehydes 189. He

also found¹¹⁰ that the transformation of <u>190</u> to <u>191</u> occurred during epoxidation when an appropriate neighbouring group was present and that there was no need for the strong acid treatment for the rearrangement of the epoxy silane to the aldehyde. To explain these results Stork postulated that the carbonyl group participated in the rearrangement as shown. This observation made the use of this transformation even more at-

tractive. The phosphonate in the expected β -lactam <u>192</u> should also participate in the rearrangement of <u>192</u> to the desired aldehyde as shown.

The required α , β -unsaturated aldehyde 196 was easily synthesized from propargyl alcohol. Treatment of propargyl alcohol with 2 equivalents of n-butyl lithium followed by quenching with 2 equivalents of trimethylsilyl chloride gave, after work-up with aqueous acid, silyl alcohol <u>194</u>^{111,112}. Reduction of <u>194</u> with 2 equivalents of lithium aluminum hydride in refluxing tetrahydrofuran afforded fairly pure alcohol 195¹¹³. Oxidation of alcohol 195 with pyridinium chlorochromate⁷⁸ afforded trans aldehyde 196¹¹⁴ in 45% yield based on 194. Condensation of aldehyde 196 with amino phosphonate 170 afforded Schiff base In the p.m.r. spectrum of 197, the Schiff base proton ap-197. peared as a multiplet at 7.9 p.p.m. Treatment of 197 with azidoacetyl chloride afforded β -lactam <u>198</u>, v_{c=0} 1770 cm⁻¹, in 70% yield. The stereochemistry of the β -lactam could not be determined by p.m.r., but was most probably cis. We were unable to

<u>194</u>

195

196

epoxidize <u>198</u> with m-chloroperbenzoic acid at room temperature¹⁰⁹ or in refluxing dichloroethane^{115,116}. Attempts to epoxidize <u>198</u> with peracetic acid were equally unsuccessful. Steric hindrance in <u>198</u> probably prevented the epoxidation of the double bond.

Another way to achieve the desired transformation would be to start with aldehyde 201, and form β -lactam 203. Oxidation of 203 would give sulphone 204. Treatment of 204 with mild base should afford the α,β -unsaturated sulphone 205. Ozonolysis of 205 would give the desired aldehyde 181. Aldehyde 201 was synthesized from 2-butene-1,4 diol. Treatment of 2-butene-1,4 diol with thionyl chloride/pyridine afforded the monochloro derivative 199¹¹⁷. Heating 199 with thiophenol and sodium hydroxide¹¹⁸ afforded alcohol 200 in 50% yield. Oxidation of 200 with pyridinium chlorochromate⁷⁸ gave fairly pure trans aldehyde 201. Attempts to purify aldehyde 201 by distillation lead to its decomposition while chromatography only afforded aldehyde 201 in

199

204 x=2

PhSCH2

200

∙CH₂OH

PhSCH₂

201

сно

about 90% purity. Treatment of impure aldehyde 201 with amino phosphonate 170 gave Schiff base 202. Reaction of 202 with azidoacetyl chloride/triethylamine at room temperature gave a small amount of β -lactam (by p.m.r. and i.r.). Separation by column chromatography failed to give pure β -lactam. The failure of the reaction to give a reasonable yield of β -lactam was very This might have been due to the reaction of the surprizing. sulphur with the acid chloride.

An interesting way to achieve the desired transformation would be to start with aldehyde 206 and form the β -lactam 207. Treatment of 207 with p-toluenesulphonic acid would give the isomerized β -lactam 208¹¹⁹. Ozonolysis or treatment with osmium tetroxide/sodium periodate should then afford the desired aldehyde 181. Aldehyde 206 has not been described in the literature. We envisioned two possible routes to aldehyde 206.

PO(OC₂H₅)₂

207

206

209

PO(OC₂H₅)₂

208

They are illustrated in Figure 24. The first route uses the new approach for the synthesis of substituted acroleins recently described by G. Tadema et al.¹²⁰ which involves reaction of propiolaldehyde diethyl acetal with Grignard reagents followed by acid hydrolysis of the resulting allene. The second is based on the route used for the synthesis of the new carboxylic acid protecting group 209^{121} . Due to lack of time, these routes could, unfortunately, not be explored experimentally. This approach to achieve the desired transformation will be explored by A. Ugolini in Dr. Just's laboratory.

Fig. 24: Possible routes to aldehyde 206

Contributions to Knowledge

- (1) The stereochemistry of the β -lactams formed by reacting azidoacetyl chloride with cinnamylidene Schiff bases derived from substituted anilines, was found to depend on the substituent. Schiff bases derived from electron rich anilines with pKa \geq 2.4 afforded exclusively cis β -lactams.
- (2) Cephalosporin analogs <u>60</u> and <u>120</u> were synthesized. The key step in the synthesis of <u>120</u> involved the novel cyclization of t-butyldimethylsilyl ether mesylate <u>109</u> with potassium fluoride/18-crown-6.
- (3) The reaction of dimethylacryloyl chloride and crotonyl chloride with various Schiff bases afforded cis β-lactams in fair to good yields.
- (4) β-Lactam <u>150</u>, a key intermediate, for the synthesis of cephalosporin and penicillin analogs containing the PS-5 side chain was synthesized.

General Experimental

Melting points were determined on a Gallenkamp block and are uncorrected. Mass spectra (m.s.) were obtained on an AE1-MS-902 mass spectrometer or on an LKB-900 mass spectrometer at 70 eV using a direct insertion probe. Infrared (i.r.) spectra were obtained on Unicam SP1000, Perkin Elmer 257 and 297 spectrophotometers. Proton magnetic resonance (p.m.r.) spectra were recorded on Varian T-60, T-60A, HA-100 and on Brucker FT 90 spectrometers using tetramethylsilane (TMS) as an internal standard. Chemical shifts are given in the δ scale in parts per million. Doublets ('d'), triplets ('t') and quartets ('q') were recorded at the center of the peaks, and multiplets ('m') as their range of absorption; other abbreviations used: singlet ('s') and broad ('b').

Analytical thin layer chromatography (t.l.c.) was performed on silica gel-coated plates (Machery Nagel Polygram G or Merck Silical Gel 60) and on a preparative scale on silica gel (Merck HF 254) coated glass plates (20 cm x 20 cm x 1 mm). Merck silica gel 60, Woelm alumina (neutral) and Camag alumina (supplied by Ventron) were used for normal chromatography. Silica Woelm 32-63 was used for flash chromatography.

Solvents were reagent grade unless otherwise specified. All evaporations were done under reduced pressure (water aspirator) with a bath temperature of 25-40° unless otherwise specified.

Elemental analyses were performed by Heterocyclic Chemical Corporation, Missouri and Midwest Microlab Ltd., Indianapolis, Indiana.

Experimental

Chapter 1

Lactone 24

To a solution of benzylidene anthranilic acid 23 (900 mg) in dry benzene (25 ml) containing triethylamine (.8 g) was added dropwise a solution of phthalimidoacetyl chloride (.9 g) in dry benzene (6 ml) over a period of 20 min. The reaction mixture was stirred for one more hour and the salt filtered off. The filtrate was washed with 1% HCl (2 x 10 ml), dried and evaporated. Chromatography of the filtrate on thick layer plates using CHCl₃/ether 3:1 as eluent afforded \sim 100 mg of lactone 24, m.p. 185° (dec.); p.m.r. (DCCl₃): δ 4.9 (q, 2H, CH₂), 7.0-8.0 p.p.m. (m, 14H, aromatic + OCHPh); i.r. (HCCl₃): γ_{max} 1780 (weak), 1740 cm⁻¹; m.s.: m/e 412 (M⁺).

Phthalimido β -lactam 25

To Schiff base 23 (1.7 g, 7.6 mM) and triethylamine (1.8 g, 18 mM) in dry CH_2Cl_2 (50 ml) was added quickly trimethylchlorosilane (1.75 g, 16 mM) in CH₂Cl₂ (5 ml). The mixture was stirred for 5-10 min and then triethylamine (.8 g, 8 mM) was added. To the solution was added over l_2^1 hours a solution of phthalimidoacetyl chloride (1.7 g, 7.6 mM) in dry CH_2Cl_2 (100 ml). After the addition was complete the mixture was stirred for two more hours. After the addition of methanol (3 ml), the solution was washed with H_2O (50 ml), saturated NaCl solution (50 ml), dried (MgSO₄) and evaporated. The resulting solid was chromatographed on 60 g silica gel act III. Elution with CH₂Cl₂, and then ethyl ether-chloroform (1:1) afforded, after crystallization with CHCl₃-CCl₄, 1.7 g (55%) of β -lactam <u>25</u>, m.p. 214-215°; p.m.r. $(DCCl_3)$: δ 5.3 (d, 1H, CH, J = 2.5 Hz), 5.6 (d, 1H, CH, J = 2.5 Hz, 6.9-8.0 (m, 13H, $C_6H_4 + C_6H_5$), 11.2 p.p.m. (bs, lH, COOH); i.r. (Nujol): Y_{max} 2300-3500 (COOH), 1770 (β-lactam), 1720 (phthalimide), 1690 cm⁻¹ (COOH); m.s.: m/e 412 (M⁺), 249, 225, 187, 163. Anal. Calcd for C₂₄H₁₆N₂O₅: C, 69.90; H, 3.91; N, 6.79. Found: C, 70.29; H, 4.09; N, 7.03.

Ester 27

To acid <u>25</u> (2.47 g, 6 mM) in dry acetonitrile (60 ml) was added p-methoxybenzyl alcohol (.91 g, 6.6 mM) and dineopentyl N,N-dimethyl formamide acetal (2.04 g, 8.7 mM). After sealing the flask under nitrogen, the solution was stirred at room temperature 24 hrs. Concentration down to 20 ml and filtration afforded 2.1 g (66%) of pure ester <u>27</u>, m.p. 189-190°; p.m.r. (DCCl₃): δ 3.7 (s, 3H, OCH₃), 5.0 (d, 1H, CH, J = 2.5 Hz), 5.6 (d, 1H, CH, J = 2.5 Hz), 5.1 (bs, 2H, CH₂), 6.4-7.8 p.p.m. (m, 17H, aromatic); i.r. (Nujol): γ_{max} 1780 (β -lactam), 1720 cm⁻¹ (ester and phthalimido).

Amine 28

To ester <u>27</u> (1.59 g, 3 mM) in CH_2Cl_2 (75 ml) was added hydrazine (120 µl, 3.8 mM). The solution was stirred 48 hrs at room temperature and the solid that formed was filtered off. Evaporation of the solvent afforded an oil which was chromatographed on silica gel act III using first $CHCl_3/CH_2Cl_2$ 1:1 as eluent. Elution with chloroform-ether (3:1) afforded .66 g (50%) of amine <u>28</u> as an oil. P.m.r. (DCCl_3): δ 1.9 (bs, 2H, NH₂), 3.9 (d, 1H, <u>CHNH₂</u>, J = 2.5 Hz), 4.8 (d, 1H, <u>CHPH</u>, J = 2.5 Hz), 5.2 (s, 2H, CH₂), 6.6-7.7 p.p.m. (m, 13H, aromatic); i.r. (CHCl_3): γ_{max} 3400 (NH₂), 1770 (β -lactam), 1730 (ester), 1120 cm⁻¹.

Schiff base 29a

A solution of amine <u>28</u> (210 mg, .52 mM) and p-nitrobenzaldehyde (78 mg, .52 mM) in benzene (50 ml) was refluxed l $\frac{1}{2}$ hrs using a Dean Stark trap. Removal of benzene afforded Schiff base <u>29a</u> in quantitative yield; p.m.r. (DCCl₃): δ 3.8 (s, 3H, OCH₃), 4.7 (m, 1H, CH-N=C), 5.3 (bs, 2H, CH₂), 5.5 (s, 1H, CHPh, J = 2.5 Hz), 6.7-7.5 (m, 13H, C₆H₄ and C₆H₅), 8.0 (q, 4H, NO₂C₆H₄), 8.4 p.p.m. (s, 1H, HC=N); i.r. (CHCl₃): γ_{max} 1775 (β -lactam), 1730 (ester and phthalimido), 1620 cm⁻¹ (C=N).

Schiff base 35

A solution of amine <u>28</u> (210 mg, .52 mM) and 3,5-di-tertbutyl-4-hydroxybenzaldehyde (128 mg, .55 mM) in benzene (50 ml) was refluxed $l\frac{1}{2}$ hrs using a Dean Stark trap. Removal of benzene afforded Schiff base <u>35</u> in quantitative yield; p.m.r. (CDCl₃): δ 1.4 (s, 18H, Bu^t), 3.6 (s, 3H, OCH₃), 4.35 (bs, 1H, CH-N=C), 5.0-5.2 (m, 3H, CH₂, <u>CH</u>Ph), 5.2-5.5 (m, 1H, OH), 6.6-7.6 (m, 15H, aromatic), 8.05 p.p.m. (s, 1H, CH=N); i.r. (film): γ_{max} 3650 (OH), 1770 (β -lactam), 1730 (ester), 1630 cm⁻¹ (C=N).

Formimidate 37

Into methyl anthranilate (10 g, 66 mM) and trimethyl orthoformate (15 g, 141 mM) was bubbled HCl gas for a few seconds. The mixture was heated at 110° and the methanol formed distilled off. Near the end of the distillation a few crystals of TsOH were added. When 4 g of methanol was collected, the distillation was stopped and 2 g of anhydrous K_2CO_3 was added. Excess orthoformate was then distilled off at \sim 60° (60 mm). Fractional distillation of the residue gave 5.5 g (43%) of almost colourless formimidate $\frac{37}{17}$; p.m.r. (DCCl₃): δ 3.7 (s, 3H, OCH₃), 3.8 (s, 3H, OCH₃), 6.4-7.8 m (5H, C₆H₄ and HC=N); i.r. (film): γ_{max} 3000, 1730 (C=O), 1660 cm⁻¹ (C=N); m.s.: m/e 193 (M⁺).

β -Lactam ester 38

To formimidate <u>37</u> (9 g, 46 mM) in CH_2Cl_2 (150 ml) and triethylamine (5.0 g, 50 mM) under N₂ was added dropwise over 2 hrs phthalimidoacetyl chloride (12.25 g, 54 mM) in CH_2Cl_2 (100 ml). After 16 hrs, the solution was washed with H_2O (2 x 100 ml), dried (MgSO₄) and evaporated. Crystallization from $CHCl_3$ /hexane, afforded 6 g (33%) of β -lactam <u>38</u>, m.p. 175-176.5°; p.m.r. (CDCl₃): δ 3.3 (s, 3H, OCH₃), 3.81 (s, 3H, COOCH₃), 5.4 (d, 1H, CH, J = 2 Hz), 5.9 (d, 1H, CH, J = 2 Hz), 7.0-7.8 p.p.m. (m, 8H, C_6H_4); i.r. (CHCl₃): γ_{max} 1775 (β -lactam), 1730 (ester), 1400 cm⁻¹; m.s.: m/e 380 (M⁺).

When the reaction was stopped after 2 hrs, a crystalline side product, methyl N-phthalimidoacetyl anthranilate 39, could be isolated by repeated chromatography on SiO₂ act III and recrystallization from CHCl₃-hexane, m.p. 188-190°; p.m.r. (DCCl₃): δ 3.8 (s, 3H, OCH₃), 4.7 (s, 2H, CH₂), 7.0-9.0 (m, 8H, C₆H₄), 11.5 p.p.m. (s, 1H, NH); i.r. (CHCl₃): γ_{max} 3300 (NH), 1780, 1725 (phthalimido, ester), 1690 cm⁻¹ (amide).
Amine β -lactam 42

To β -lactam <u>38</u> (2.7 g, 7.1 mM) in CH₂Cl₂ (50 ml) was added hydrazine (.246 ml, 7.6 mM). After stirring at room temperature for 3 days, the orange solid was filtered off and washed with CH₂Cl₂. The filtrate was extracted with ice-cold 1% HCl (2 x 100 ml). After neutralization with 1N NaOH, the aqueous phase was extracted with chloroform (2 x 200 ml). Drying (MgSO₄), and evaporation afforded 500 mg (28%) of amine <u>42</u> as an orange gum. P.m.r. (DCCl₃): δ 1.8 (s, 2H, NH₂), 3.4 (s, 3H, OCH₃), 3.8 (s, 3H, COOCH₃), 4.1 (bs, 1H, <u>CHNH₂</u>), 5.2 (bs, 1H, <u>CHOMe</u>), 7.0-7.8 (m, 4H, C₆H₄); i.r. (CHCl₃): γ_{max} 3400 (NH), 1770 (β -lactam), 1730 cm⁻¹ (COOCH₃); m.s.: m/e 250 (M⁺), 192.

Schiff base 43

A solution of amine β -lactam <u>42</u> (125 mg, .5 mM) and p-nitrobenzaldehyde (76 mg, .5 mM) in benzene (30 ml) was heated at reflux for 2 hrs using a Dean Stark trap. Evaporation of benzene afforded Schiff base <u>43</u>; p.m.r. (DCCl₃): δ 3.3 (s, 3H, OCH₃), 3.7 (s, 3H, CO₂CH₃), 4.8 (t, 1H, CHN=C), 5.5 (d, 1H, <u>CHOCH₃</u>), 7.0-8.1 (m, 8H, C₆H₄), 8.3 p.p.m. (bs, 1H, N=CH); i.r. (neat): γ_{max} 1775 (β -lactam), 1730 (ester), 1620 cm⁻¹ (C=N).

β -Lactams <u>46</u> and <u>47</u>

Anthranilic acid (2.7 g, 20 mM) and cinnamaldehyde (2.64 g, 20 mM) was heated for 4 hrs using a Dean Stark trap, and the solvent evaporated. To the resulting Schiff base 44 was added triethylamine (6 g, 60 mM) in dry CH_2Cl_2 (200 ml) and then dropwise trimethylsilyl chloride (4 g, 37 mM) in CH₂Cl₂ (10 ml) at -5°. After stirring for 10 minutes a solution of azidoacetyl chloride (2.4 g, 20 mM) in CH₂Cl₂ (50 ml) was added at -5°. After stirring 30 more minutes at room temperature, methanol (5 ml) was added. The solution was washed with H_2O (2 x 100 ml), dried, and evaporated. Chromatography on SiO₂ (200 g) act III using first CH₂Cl₂ and then ether afforded 1 g of impure acid 46. An ethereal solution of 46 was treated with CH_2N_2 . Chromatography on SiO₂ act III (20 g) using CHCl₃ as eluent gave 250 mg of ester 47 as a red oil. P.m.r. (CDCl₃): δ 3.8 (s, 3H, OCH₃), 4.5 (d, 1H, CHN_3 , J = 2 Hz), 4.7 (q, 1H, <u>CHCH=CHPh</u>, J₁ = 2 Hz, $J_2 = 7 \text{ Hz}$, 6.0 (q, 1H, $J_1 = 7 \text{ Hz}$, $J_2 = 18 \text{ Hz}$, CHCH=CHPh), 6.7 (d, lH, $HC=\underline{CH}Ph$, J = 18 Hz), 6.9-7.5 p.p.m. (m, 9H, C_6H_5 and $C_{6}H_{4}$; i.r. (CHCl₃): γ_{max} 1760 (β -lactam), 1725 cm⁻¹ (ester); m.s.: m/e 320 (M^+).

Silylether amine 51

To o-aminobenzyl alcohol <u>50</u> (1.23 g, 10 mM) in dry DMF (15 ml) was added imidazole (1.75 g, 25 mM) and tertbutyldimethylsilyl chloride (1.65 g, 11 mM). The solution was stirred at room temperature and partitioned between H_2O (50 ml) and ether (100 ml). The ether layer was washed with water (4 x 50 ml), dried and evaporated. A quantitative yield of silylether amine <u>51</u> was obtained. P.m.r. (DCCl₃): δ 0.05 (s, 6H, Si(CH₃)₂), 0.9 (s, 9H, SiBu^t), 4.0 (bs, 2H, NH₂), 4.6 (s, 2H, <u>CH₂O</u>), 6.9-7.0 p.p.m. (m, 4H, C₆H₄); i.r (film): γ_{max} 3460, 3370, 2910, 1630, 1420, 1050 cm⁻¹.

Schiff base 52

A solution of amine <u>51</u> (4.72 g, 20 mM) and cinnamaldehyde (2.7 g, 20 mM) in benzene (50 ml) was heated at reflux for 8 hrs using a Dean Stark trap. Evaporation of benzene afforded a quantitative yield of Schiff base <u>52</u> as a yellow oil. P.m.r. (DCCl₃): δ 0.05 (s, 6H, SiMe₂), 0.9 (s, 9H, SiBu^t), 4.9 (s, 2H, -CH₂O-), 6.8-7.4 (m, 9H, aromatic), 7.9 p.p.m. (t, 1H, <u>HC</u>=NPh); i.r. (film): γ_{max} 2910, 1640 (C=N) cm⁻¹.

β -Lactam azide 53

To a solution of Schiff base 52 (7.0 g) and triethylamine (2.4 g, 1.2 eq) in CH_2Cl_2 (200 ml) at -20° under nitrogen was added dropwise over 1 hr azidoacetyl chloride (2.8 g, 1.15 eq) in CH_2Cl_2 (100 ml). The solution was stirred for 1 hr at room temperature, washed with H_2O (2 x 100 ml), dried (MgSO₄) and evaporated. Treatment of the red oil with charcoal in ether gave, after crystallization from pentane, 6.0 g (74%) of β -lactam <u>53</u> as a white solid, m.p. 91-92°; p.m.r. (DCCl₃): δ 0.1 (s, 6H, SiMe₂), 0.95 (s, 9H, SiBu^t), 4.8 (s, 2H, CH₂O), 4.8-5.2 (m, 2H, CH-CHN₃), 6.0-6.9 (m, 2H, Ph<u>CH=CH</u>-), 7.2-7.6 p.p.m. (m, 9H, aromatic); i.r. (KBr): γ_{max} 2900, 2100 (N₃), 1745 cm⁻¹ (C=O); m.s.: m/e 434 (M⁺), 406 (M⁺-N₂), 377 (M⁺-57). Anal. Calcd for $C_{24}H_{30}N_4O_2Si$: C, 66.40; H, 6.97; N, 12.92. Found: C, 66.31; H, 6.85; N, 12.91.

β -Lactam amide 54

Hydrogen sulphide was bubbled into a solution of azide 53 (450 mg, 1.1 mM) and triethylamine (150 mg, 1.5 mM) in CH₂Cl₂ (20 ml) at 0°. After 1 hr, the solution was purged with N_2 , washed with H_2O (2 x 20 ml), dried and evaporated. To the crude product in CH_2Cl_2 (20 ml) and triethylamine (150 mg, 1.5 mM) was added dropwise phenylacetyl chloride (.237 g, 1.5 mM) in CH₂Cl₂ (1 ml). After stirring for 30 more minutes, the solution was washed with pH 4.5 buffer (20 ml), water (20 ml), dried (MgSO₄) and evaporated. The crude product was chromatographed on SiO₂ (20 g) act III using first CH₂Cl₂ as eluent. Elution with CHCl₃/ether 1:1 afforded after crystallization from pentane-chloroform 300 mg (60%) of amide 54 as a white solid, m.p. 108.5-109°; p.m.r. (DCCl₃): δ 0.1 (s, 6H, SiMe₂), 0.95 (s, 9H, Si-Bu^t), 3.4 (s, 2H, CH₂Ph), 4.8 (s, 2H, <u>CH₂</u>-OTBDMS), 4.9 (q, 1H, <u>CHCH=CHPh</u>, $J_1 = 7$ Hz, $J_2 = 5$ Hz), 5.6 (q, 1H, <u>CHNH</u>, $J_1 = 5$ Hz, $J_2 = 7 Hz$, 6.2 (q, 1H, <u>CH</u>=CHPh, $J_1 = 7 Hz$, $J_2 = 16 Hz$), 6.5 (d, CH=CHPh, 1H, J = 16 Hz), 7.0-7.5 p.p.m. (m, 10H, $C_{6}H_{5}$, $C_{6}H_{4}$ and NH); i.r. (HCCl₃): γ_{max} 3450 (NH), 2900 (N₃), 1750 (β -lactam), 1680 (amide), 1080 cm⁻¹; m.s.: m/e 524 (M⁺), 467 $(M^+ - 57)$.

Alcohol 55

Ozone was passed for $1\frac{1}{2}$ hrs through a solution of azide 53 (4 g) in CH₂Cl₂ (80 ml) and ethanol (160 ml) at -78°. After purging with N₂, NaBH₄ (.8 g) was added and the solution allowed to warm up to room temperature (2 hrs). The reaction was quenched with pH 4.5 buffer (150 ml), evaporated and partitioned between CHCl₃ (200 ml) and H₂O (100 ml). Evaporation and drying (MgSO₄) afforded, after crystallization from hexane-CCl₄, 2.5 g of alcohol <u>55</u> (76%), m.p. 95-96°; p.m.r. (DCCl₃): δ 0.15 (s, 6H, SiMe₂), 0.9 (s, 9H, SiBu^t), 2.6 (bs, 1H, OH), 3.8 (bs, 2H, <u>CH₂OH</u>), 4.3 (q, 1H, <u>CHCH₂</u>), 4.7 (s, 2H, <u>CH₂OTBDMS</u>), 4.8 (d, 1H, CHN₃, J = 5 Hz), 7.0-7.4 p.p.m. (m, 4H, C₆H₄); i.r. (HCCl₃): γ_{max} 3350 (OH), 2900, 2100 (N₃), 1755 (C=O), 1050 cm⁻¹.

Methyl ether 56

To a solution of alcohol $\underline{55}$ (450 mg) in dry CH_2Cl_2 (50 ml) at 0° was added 5 drops of a solution containing 0.5 ml BF₃.Et₂O in ether (25 ml). To this pink solution was added excess (\sim 10 eq) of CH_2N_2 in ether over 30 min. After stirring for an additional hour, the suspension was filtered, washed with H_2O (25 ml), dried (MgSO₄) and evaporated. Chromatography of the residue on SiO₂ act III (20 g) using chloroform as eluent afforded 340 mg (74%) of methyl ether <u>56</u> as a clear colourless syrup. P.m.r. (DCCl₃): δ 0.1 (s, 6H, SiMe₂), .95 (s, 9H, Si-Bu^t), 3.2 (s, 3H, OCH₃), 3.3-3.7 (m, 2H, <u>CH₂OCH₃), 4.3 (q, 1H, <u>CH</u>CH₂OCH₃), 4.5 (q, 2H, <u>CH₂OTBDMS</u>), 4.6 (d, 1H, CHN₃, J = 5 Hz), 6.9-7.4 p.p.m. (m, 4H, C₆H₄; i.r. (neat): γ_{max} 2900, 2100 (N₃), 1760 (C=0) cm⁻¹.</u>

Methoxy amide 57

Into a solution of methoxy azide 56 (340 mg, .9 mM) in CH_2Cl_2 (20 ml) and Et_3N (.25 ml, 2.5 mM) at 0°C was bubbled hydrogen sulfide for 5 min. The ice bath was removed and the solution let stand 1 hr, washed with H_2O (2 x 25 ml), dried (Na2SO4) and evaporated. To the crude product in CH_2Cl_2 (10 ml) was added pyridine (.5 ml, 6 mM) and then phenylacetyl chloride (.2 ml, 1.5 mM). After stirring at room temperature for 20 min, the solution was washed with pH 4.5 buffer (25 ml), dried (MgSO₄) and evaporated. The crude product after chromatography on SiO, act III using chloroform as eluent afforded 280 mg (65%) of amide 57 as a yellow syrup. P.m.r. (DCCl₃): δ 0.15 (6H, d, SiMe₂), 0.9 (s, 9H, SiBu^t), 2.9 (s, 3H, OMe), 3.2-3.6 (m, 2H, CH₂OCH₃), 4.2-4.4 (m, 1H, CHCH₂OMe), 4.8 (q, 2H, CH₂OTBDMS), 5.7 (q, 1H, <u>CHNH</u>, $J_1 = 5 Hz$, $J_2 = 7 Hz$), 7.0-7.5 p.p.m. (m, 10H, C_6H_5 , $C_{6}H_{4} + CHNH$; i.r. (HCCl₃): γ_{max} 3350, 2900, 1750 (β -lactam), 1665 (amide), 1100 cm^{-1} .

Benzyl alcohol 58

To a solution of amide 57 (280 mg) in THF (10 ml)/H₂O (2 ml) was added dropwise trifluoroacetic acid (2 ml). After stirring 10 minutes at room temperature the solution was poured onto 5% NaHCO₃ (50 ml) and extracted with ethyl acetate (2 x 50 ml). Drying (MgSO₄), evaporation and chromatography on thick layer plates (SiO₂, 20 x 20 cm) using ether/ethyl acetate (2:1) as eluent afforded 110 mg (52%) of alcohol 58 as a colourless syrup. P.m.r. (DCCl₃): δ 2.95 (s, 3H, OCH₃), 3.2-3.6 (m, 2H, CH₂OCH₃), 3.7 (s, 2H, CH₂Ph), 3.8-4.2 (m, 1H, CH₂OH), 4.3-4.5 (m, 1H, CHCH₂OCH₃), 4.6 (s, 2H,'CH₂OH), 5.7 (q, 1H, CH<u>NH</u>, J₁ = 5 Hz, J₂ = 7 Hz), 6.7-7.6 p.p.m. (m, 10H, NH, aromatic); i.r. (CHCl₃): γ_{max} 3350 (NH), 1745 (C=O), 1670 cm⁻¹ (amide C=O).

Aldehyde 59

To a slurry of pyridinium chlorochromate (100 mg, .46 mM) and NaOAc (24 mg, .3 mM) in CH_2Cl_2 (2 ml) was added a solution of alcohol <u>58</u> (100 mg, .3 mM) in CH_2Cl_2 (1 ml). After stirring for l hr, the reaction mixture was poured into ether (50 ml). The solution was filtered (celite), washed with H_2O (2 x 50 ml) and dried (Na₂SO₄). Evaporation of ether gave 70 mg (70%) of aldehyde <u>59</u>, m.p. 137-138°; p.m.r. (CDCl₃): 2.9 (s, 3H, OCH₃), 3.4 (m, 2H, <u>CH₂OMe)</u>, 3.7 (s, 2H, <u>CH₂Ph), 4.4-4.7 (m, 1H, CHCH₂OMe), 5.8 (q, 1H, CHNH, J₁ = 5 Hz, J₂ = 7 Hz), 6.7 (bd, 1H, NH, J = 7 Hz), 7.0-8.0 (m, 9H, aromatic), 10 p.p.m. (s, 1H, CHO); i.r. (KBr): γ_{max} 3300, 2880, 1755 (β-lactam), 1680 cm⁻¹ (amide and aldehyde); m.s.: m/e 352 (M⁺), 351 (M⁺-1), 205, 146.</u>

Carboxylic acid 60 and methyl ester 61

To a solution of alcohol 58 (85 mg) in acetic acid (4 ml) was added 1 ml of a solution of CrO₂ (800 mg) in AcOH (9 ml) and H₂O (1 ml). The solution was stirred overnight at room temperature, poured into H₂O (50 ml) and extracted with HCCl₃ (3 x 50 ml). The organic phase was washed with water (2 x 20 ml), and then extracted with NaHCO₃ (2 x 50 ml). Neutralization of the $NaHCO_3$ extracts with dilute HCl to pH l and extraction with chloroform (2 x 100 ml) afforded after drying (MgSO₄) and evaporation 25 mg of acid <u>60</u>; p.m.r. (DCCl₃): δ 2.85 (s, 3H, OCH₃), 3.4 (bd, 2H, CH₂OCH₃), 3.7 (s, 2H, CH₂Ph), 4.6 (bd, 1H, \underline{CHCH}_2OCH_3), 5.8 (q, 1H, \underline{CHNH} , $J_1 = 5 Hz$, $J_2 = 7 Hz$), 6.8 (d, 1H, NH, J = 7 Hz), 6.8-7.8 (m, 9H, aromatic), 9.5 p.p.m. (bs, lH, COOH); i.r. (HCCl₃): γ_{max} 2500-3500 (NH, OH), 1755 (β -lactam), 1710 (COOH), 1670 cm⁻¹ (amide C=O). Treatment with diazomethane in ether gave methyl ester 61; m.s.: m/e 382 (M⁺), 351 (M⁺-31), 205 (base peak), 177.

106

Experimental

Chapter 2

.

.

β -Lactams <u>68</u> and <u>70</u>

3-Methoxy anthranilic acid 63 (.8 g, 5 mM) and cinnamaldehyde (.66 g, 5 mM) in 50 ml benzene were heated at reflux for 24 hrs using a Dean Stark trap. After evaporation of the benzene, Me₃SiCl (.65 ml, 5.1 mM) in 10 ml CH₂Cl₂ was added dropwise to a solution of <u>66</u> in 50 ml CH₂Cl₂ containing Et₃N (1.4 g, 15 mM). The mixture was then cooled to -20° and azidoacetyl chloride (.6 g, 5 mM) in CH_2Cl_2 (10 ml) was added dropwise over 15 min. The reaction mixture was stirred for an additional 30 minutes and after the usual work-up, the crude product was chromatographed on SiO₂ act III (40 g). Elution with CH_2Cl_2 , and then with CHCl3-ether (1:1) afforded crude acid 67 and 69 as a mixture. An ethereal solution of the acid was methylated with CH2N2, washed with 5% HCl (4 x 50 ml) to remove anthranilic acid, and purified by thick layer plates (20 x 20 x 1 mm, SiO₂) using CHCl₃/ ether (5:1). Yield 300 mg of <u>68</u> and <u>70</u>; p.m.r. (CHCl₃): δ 3.8 (d, 6H, OCH₃), 4.2-5.0 (m, 2H, CH and CHN₃), 6.0-6.6 (m, 2H, PhCH=CH, 6.8-7.5 p.p.m. (m, 8H, C_6H_3 and C_6H_5); i.r. (CHCl₃): γ_{max} 1750, 1730 cm⁻¹; addition of Eu(fod)₃ separated the doublet at 3.8 into 4 singlets and multiplets at 4.2-5.0 to a doublet (1H) for CHN_3 of cis $(J_{3,4} = 5 Hz)$ and doublet (1H) for CHN_3 of trans $(J_{3,4} = 2 Hz)$.

3-Methoxy-2-nitrobenzyl alcohol 71

Borane (1 Molar) in tetrahydrofuran (28 ml) was added dropwise to a solution of 3-methoxy-2-nitrobenzoic acid (4 g, 22 mM) in tetrahydrofuran (75 ml). The solution was stirred overnight and methanol was added to destroy the borane. After several co-evaporations with methanol, the residue was dissolved in ethyl acetate (100 ml), washed with 10% NaHCO₃ (2 x 100 ml) and dried (MgSO₄). Evaporation afforded 2.4 g (65%) of 3-methoxy-2nitrobenzyl alcohol; p.m.r. (acetone d₆: δ 3.8 (s, 3H, OCH₃), 4.5 (bs, 1H, CH₂O<u>H</u>), 4.7 (s, 2H, <u>CH₂OH</u>), 7.0-7.4 p.p.m. (m, 3H, C₆H₃).

Methoxymethyl ether 72

Alcohol <u>71</u> (2.4 g), phosphorus pentoxide (7 g) and methylal (10 ml) in methylene chloride (30 ml) were shaken 1 hr at room temperature. The solution was decanted from the solid residue. The solid residue was washed with methylene chloride (100 ml). The combined methylene chloride fractions were washed with 5% NaHCO₃ (100 ml), dried (MgSO₄) and evaporated. Chromatography of the residue on Al₂O₃ act III using methylene chloride as eluent afforded 2.25 g (76%) of methoxymethyl ether <u>72</u>; p.m.r. (CDCl₃): δ 3.2 (s, 3H, CH₂O<u>CH₃</u>), 3.7 (s, 3H, OCH₃), 4.5 (d, 4H, <u>CH₂O<u>CH</u>₂OCH₃), 6.8-7.4 p.p.m. (m, 3H, C₆H₃); i.r. (film): γ_{max} 2940, 1610, 1530, 1140 cm⁻¹.</u>

Amine <u>73</u>

Alcohol $\underline{72}$ (2 g) in ethanol (50 ml) containing 50 mg of PtO₂ was hydrogenated at 40 psi in a Parr hydrogenator for 1 hr. Filtration and evaporation afforded a quantitative yield of amine $\underline{73}$; p.m.r. (CDCl₃): δ 3.4 (s, 3H, CH₂O<u>CH₃</u>), 3.7 (s, 3H, OCH₃), 4.4 (bs, 2H, NH₂), 4.6 (d, 4H, <u>CH₂OCH₂OCH₃</u>), 6.6 (t, 3H, C₆H₅); i.r. (film): γ_{max} 3440, 3360 (NH₂), 1620, 1490, 1040 cm⁻¹.

β -Lactam 75

Amine $\underline{73}$ (3.8 g, 20 mM), cinnamaldehyde (2.64 g, 20 mM) and a crystal of p-toluene sulphonic acid in benzene (100 ml) were heated at reflux using a Dean Stark trap for 5 hrs. Evaporation of the benzene afforded Schiff base $\underline{74}$. To the Schiff base in methylene chloride (200 ml) and triethylamine (3 ml, 20 mM) at -20° was added dropwise over 1 hr a solution of azidoacetyl chloride (2.4 g) in methylene chloride (100 ml). After stirring for an additional 45 min the solution was washed with H₂O (2 x 100 ml), dried (MgSO₄) and evaporated. Chromatography of the residue on Al₂O₃ act III eluting with methylene chloride afforded 5.6 g (70%) of β -lactam $\underline{75}$; p.m.r. (CDCl₃): δ 3.2 (s, 3H, CH₂O<u>CH₃</u>), 3.7 (s, 3H, OCH₃), 4.5 (d, 4H, <u>CH₂O<u>CH</u>₂OCH₃), 4.7-5.0 (m, 2H, <u>CH</u>CH=CHPh, CHN₃), 6.0-7.5 p.p.m. (m, 10H, C₆H₃, C₆H₅, <u>CH=CH</u>-Ph); i.r. (film): γ_{max} 2915, 2100 (N₃), 1760 (C=O), 1100 cm⁻¹.</u>

β -Lactam alcohol 76

Azide $\underline{75}$ (1.2 g) was dissolved in methylene chloride (30 ml) and isopropanol (150 ml). The solution was cooled to -65° and ozone was bubbled through for 1 hr and 15 min. After purging excess ozone with nitrogen, sodium borohydride (150 mg) was added and the solution was allowed to warm up to room temperature. After the addition of pH 4.5 buffer (40 ml) the solution was evaporated. The residue was partitioned between $CHCl_3$ (100 ml) and water (50 ml). The organic phase was dried (MgSO₄) and evaporated. Chromatography of the residue on thick layer plates using $CHCl_3$ /ether 3:1 afforded 550 mg (56%) of alcohol <u>76</u>; p.m.r. ($CDCl_3$): δ 3.4 (s, 3H, CH_2OCH_3), 3.8 (bs, 1H, CH_2OH), 4.0 (d, 2H, \underline{CH}_2OH), 4.0 (s, 3H, OCH_3), 4.5-4.7 (m, 1H, \underline{CHCH}_2OH), 4.8 (q, 2H, \underline{ArCH}_2O), 4.8 (s, 2H, OCH_2O), 5.0 (d, 1H, CHN_3 , J=5 Hz), 7.0-7.5 p.p.m. (m, 3H, C_6H_3); i.r. ($CHCl_3$) 3300, 2100 (N₃), 1760 cm⁻¹ (C=O).

Mesylate 77

Mesyl chloride (114 mg, 1 mM) in methylene chloride (5 ml) was added dropwise to a solution of alcohol <u>76</u> (330 mg, 1 mM) and triethylamine (100 mg, 1 mM) in methylene chloride (20 ml) at -78°. The solution was allowed to warm up to room temperature (1 hr) and washed with H_2O (2 x 20 ml). Drying (MgSO₄) and evaporation afforded mesylate <u>77</u> in quantitative yield. P.m.r. (CDCl₃): δ 2.8 (s, 3H, SO₂CH₃), 3.4 (s, 3H, CH₂O<u>CH₃</u>), 3.8 (s, 3H, OCH₃), 4.2-4.4 (m, 1H, <u>CH</u>CH₂O), 4.6 (q, 2H, Ar<u>CH₂O), 4.7 (s, 2H, CH₂O<u>CH₂OCH₃</u>), 5.0 (d, 1H, CHN₃ J=5 Hz), 6.6-7.4 p.p.m. (m, 3H, C₆H₃).</u>

3-Hydroxy-2-nitrobenzaldehyde 80

To a suspension of 3-methoxy-2-nitrobenzaldehyde (12 g, 66 mM) in CH_2Cl_2 (300 ml) at -78° was added dropwise over 1/2 hour a solution of BBr₃ (20 ml, 210 mM) in CH_2Cl_2 (200 ml). After the addition was complete, the dry ice acetone bath was removed and the red solution allowed to warm up to 20° (3 hrs). The red solution was poured into crushed ice (500 g) and extracted with ethyl acetate (1 ℓ). Drying (MgSO₄) and evaporation in vacuo afforded 11 g (94%) of crude 3-hydroxy-2-nitrobenzaldehyde <u>80</u>, m.p. 140° (decomp); p.m.r. (DMSO d₆): δ 7.4-7.8 (m, 3H, C₆H₃), 10.4 (s, 1H, CHO), 11.4 p.p.m. (s, C₆H₃<u>OH</u>); i.r. (CH₂Cl₂): γ_{max} 3300 (OH), 3000, 1710 (C=O), 1610 cm⁻¹.

Aldehyde 82

Diisopropylethylamine (2.1 g, 18 mM) and MEMCl (2.1 g, 18 mM) was added to a suspension of phenol <u>80</u> (2.1 g, 13 mM) in CH_2Cl_2 (50 ml). After stirring at room temperature for 3 hrs, the solution was washed with water (50 ml), dried (MgSO₄) and evaporated. Chromatography of the residue with $CHCl_3$ on Al_2O_3 act III afforded 1.6 g (53%) of aldehyde <u>82</u>; p.m.r. (CDCl₃): δ 3.4 (s, 3H, OCH₃), 3.4-4.0 (m, 4H, -OCH₂CH₂O-), 5.5 (s, 2H, OCH₂O), 7.7 (m, 3H, C₆H₃), 10.3 p.p.m. (s, 1H, CHO); i.r. (KBr): γ_{max} 2900, 1710 cm⁻¹ (CHO)

Alcohol 83

NaBH₄ (280 mg, 7.6 mM) was added to (1.6 g, 6.8 mM) of aldehyde <u>82</u> in EtOH (75 ml). After stirring 30 minutes at room temperature, 40 ml pH 4.5 buffer was added and the ethanol was removed on a rotary evaporator. The residue was extracted with ethyl acetate (2 x 50 ml). Drying (MgSO₄) and evaporation under vacuo afforded 1.4 g (88%) of alcohol <u>83</u>; p.m.r. (DCCl₃): δ 3.4 (s, 3H, OCH₃) 3.4-4.0 (m, 5H, OCH₂CH₂O, OH), 4.6 (bs, 2H, <u>CH₂OH</u>), 5.3 (2H, -O<u>CH₂O) 7.0-7.5 p.p.m. (m, 3H, C₆H₃); i.r. (film): γ_{max} 3100-3600 (OH), 2900, 1560 cm⁻¹.</u>

MEM Ether 84

To 1.4 g (6.0 mM) of alcohol <u>83</u> in CH_2Cl_2 (40 ml) was added MEMCl (l g, 8.3 mM) and diisopropylethylamine (l g, 8.3 (mM). The reaction mixture was stirred 3 hrs, washed with H_2O (2 x 50 ml), dried (NaSO₄) and evaporated. Chromatography of the residue on Al_2O_3 act III using ether/ CH_2Cl_2 l:10 afforded 1.15 g (60%) of the MEM ether <u>84</u>; p.m.r. (DCCl₃), δ 3.4 (d, 6H, OCH₃), 3.4-4.0 (m, 8H, OCH₂CH₂O), 4.7 (s, 2H, $ArCH_2O$), 4.9 (s, 2H, OCH₂O), 5.4 (s, 2H, $ArOCH_2O$), 7.2-7.6 p.p.m. (m, 3H, C_6H_3).

Amine 85

Nitro MEM ether <u>84</u> (1 g) was hydrogenated 1½ hrs at 35 psi with 200 mg PtO₂ in a Parr hydrogenator. The reaction mixture was filtered through celite. Evaporation of the filtrate afforded 900 mg (100%) of amine <u>85</u>; p.m.r. (DCC1₃): δ 3.4 (s, 6H, OCH₃), 3.4-4.0 (m, 8H, OCH₂CH₂O), 4.0-4.5 (bm, 2H, NH₂), 4.6 (s, 2H, Ar<u>CH₂O)</u>, 4.8 (s, 2H, OCH₂O), 5.3 (s, 2H, ArOCH₂O), 6.4-7.2 p.p.m. (3H, C₆H₃); i.r. (film): γ_{max} 3440, 3340 (NH₂), 2900, 1050 cm⁻¹.

β -Lactam 86

Amine 85 (2.95 g, 10 mM) was heated for 8 hrs with 1.32 g (10 mM) of cinnamaldehyde and a few crystals of p-toluenesulfonic acid in 50 ml of benzene using a Dean Stark trap. Evaporation of the benzene afforded crude Schiff base. то the crude Schiff base in 50 ml of dry CH₂Cl₂ and 1.0 g (10 mM) of Et₃N at -20° was added dropwise over 45 min 1.2 g (10 mM) of azidoacetyl chloride in 25 ml of CH2Cl2. After stirring for an additional hour at -20°, the reaction mixture was washed with H_2O (2 x 50 ml), dried (MgSO₄) and evaporated. Chromatography of the residue on Al₂O₃ act I using 10% Et₂O in CH_2Cl_2 afforded 3.0 g (60%) of β -lactam <u>86</u>; p.m.r. (CDCl₃): δ 3.4 (d, 6H, OCH₃), 3.4-4.0 (m, 8H, OCH₂CH₂O), 4.7 (s, 2H, Ar<u>CH</u>₂O), 4.8 (s, 2H, OCH₂O), 5.0 (m, 2H, CHN₃, <u>CH</u>CH=CHPh), 5.4 (s, 2H, ArOCH₂O), 6.4-7.7 (m, 2H, CH=CHPh), 7.0-7.6 p.p.m. (m, 8H, C_6H_3 , C_6H_5); i.r. (film): γ_{max} 2900, 2100 (N₃) 1770 cm^{-1} (C=O).

Alcohol 87

O₃ (8 mM/hr) was bubbled into a solution of β-lactam <u>86</u> (500 mg, 1 mM) in CH₂Cl₂ (10 ml) and isopropanol (100 ml) cooled to -65° for 17 min. After purging excess ozone with nitrogen, NaBH₄ (40 mg) was added, and the solution allowed to warm up to room temperature (2 hrs). Buffer (pH 4.5) was added and the solution was almost evaporated to dryness. The residue was partitioned between water (20 ml) and CHCl₃ (50 ml). The CHCl₃ layer was dried (MgSO₄) and evaporated. Chromatography of the residue on thick layer plates using U.S.P. ether afforded 200 mg (50%) of alcohol <u>87</u>; p.m.r. (CDCl₃): δ 3.4 (d, 6H, OCH₃), 3.4-4.0 (m, 11H, OCH₂CH₂O, CH₂OH), 4.4-4.6 (m, 1H, CHCH₂OH), 4.6-5.1 (5H, CH₂OCH₂O, CHN₃), 5.4 (s, 2H, ArO<u>CH₂</u>) 7.0-7.5 p.p.m. (m, 3H, C₆H₃); i.r. (CH₂Cl₂): γ_{max} 3400 (OH), 2100 (N₃), 1760 cm⁻¹ (C=O).

Mesylate 88

To alcohol <u>87</u> (100 mg, .23 mM) at -78° and 70 µl (.5 mM) of Et₃N in 10 ml of CH_2Cl_2 was added dropwise 35 µl (.4 mM) of MsCl in CH_2Cl_2 (2 ml). After 15 min, the cold bath was removed, the reaction mixture was allowed to warm up to room temperature (l 1/2 hrs) and washed with H_2O (2 x 10 ml). The CH_2Cl_2 layer was dried (Na_2SO_4) and evaporated. Yield 110 mg (95%) of mesylate <u>88</u>; p.m.r. (CDCl_3): δ 2.8 (s, 3H, SO_2CH_3), 3.4 (s, 6H, OCH_3), 3.4-4.0 (m, 8H, OCH_2CH_2O), 4.4-4.8 (m, 5H, <u>CHCH_2OMs ArCH_2O</u>), 4.8 (s, 2H, OCH_2O), 5.2 (d, 1H, J = 5 Hz, CHN_3), 5.4 (s, 2H, ArO<u>CH_2O</u>), 7.0-7.4 p.p.m. (s, 3H, C₆H₃).

3-Benzyloxy-2-nitrobenzaldehyde 90

To 3-hydroxy-2-nitrobenzaldehyde (5 g, 29 mM) in DMSO (17 ml) was added benzyl bromide (5 g, 29 mM) and K_2CO_3 (5 g, 36 mM). The suspension was stirred overnight at room temperature. The reaction mixture was poured into water (500 ml) and extracted with ether (2 x 300 ml). The ether layer was washed with water (4 x 100 ml). Drying (MgSO₄) and evaporation afforded, 7 g of crude benzyl ether. Crystallization from chloroform-ether afforded 3.6 g (50%) of <u>90</u>, m.p. 77-79°; p.m.r. (CDCl₃): δ 5.2 (s, 2H, CH₂O), 7.0-7.5 (m, 8H, C₆H₅ and C₆H₃), 9.8 p.p.m. (s, 1H, CHO); i.r. (KBr): γ_{max} 3000, 2900, 1705 cm⁻¹ (CHO).

3-Benzyloxy-2-nitrobenzyl alcohol 91

To aldehyde <u>90</u> (8 g, 48 mM) suspended in EtOH (300 ml) and MeOH (50 ml) at 0° was added NaBH₄ (.4 g, 41 mM) in portions. After stirring for 1 hr, excess NaBH₄ was destroyed with acetic acid (2 ml). The residue, after evaporation of the solvent, was partitioned between 1% HCl (200 ml) and ethyl acetate (300 ml). Drying (MgSO₄) and evaporation afforded in quantitative yield alcohol <u>91</u>; p.m.r. (acetone d₆): δ 2.8 (bs, 1H, CH₂OH), 4.4 (s, 2H, <u>CH₂OH), 5.1 (s, 2H, PhCH₂O), 6.4-7.2 (m, 3H, C₆H₃), 7.3 p.p. (s, 5H, C₆H₅); i.r. (film): γ_{max} 3550, 3350 (OH), 2900 cm⁻¹.</u>

Amine 93 and amine 94

A solution of alcohol 91 (5.2 g) and PtO2 (400 mg) in ethanol (100 ml) was hydrogenated at 40 psi, using a Parr hydrogenator, for 2 hrs. The residue, after filtration of catalyst through celite and evaporation, was dissolved in ethyl acetate (200 ml) and washed with 5% NaOH (2 x 100 ml). Drying (MgSO_A) and evaporation of the ethyl acetate afforded 3.7g (16 mM) of almost colourless amine 93 as a semi solid. The amine in DMF (75 ml) was immediately treated with tert-butyldimethylsilyl chloride (3.0 g, 20 mM), and imidazole (3.3 g, 48 mM). After stirring overnight at room temperature, the solution was partitioned between ether (200 ml) and water (500 ml). The ether layer was washed with water (4 x 100 ml), and dried (MgSO4). Evaporation afforded a quantitative yield of silyl amine $\underline{94}$; p.m.r. (CDCl₃): δ 0.05 (s, 6H, SiMe₂), 0.90 (s, 9H, Si-Bu^t), 4.4 (bs, 2H, NH₂), 4.7 (s, 2H, <u>CH</u>₂OTBDMS), 5.0 (s, 2H, Ph<u>CH</u>₂O), 6.6-6.8 (m, 3H, C₆H₃), 7.4 p.p.m. (s, 5H, C_6H_5 ; i.r. (film): γ_{max} 3370, 3460 (NH₂), 2960, 2940 cm⁻¹.

Azide β -lactam <u>96</u>

A solution of cinnamaldehyde (3.3 g, 25 mM), amine <u>94</u> (8.3 g, 24 mM) and a few crystals of TsOH in benzene (200 ml) was heated at reflux overnight using a Dean Stark trap. Evaporation of the solvent afforded Schiff base <u>95</u> as a light yellow oily solid. To the Schiff base dissolved in CH_2Cl_2 (200 ml) and triethylamine (3.3 g, 33 mM) at -20° under N₂ was added dropwise over 1 hr azidoacetyl chloride (3.6 g, 30 mM) in CH_2Cl_2 (100 ml). The red brown solution was stirred at -20° for one more hour. Washing with water (2 x 100 ml), drying (MgSO₄) and evaporation afforded after treatment with charcoal and filtration through Al_2O_3 (300 g) using CH_2Cl_2 as eluent, ll g (84%) of fairly pure azido β -lactam <u>96</u>, as an orange oil; i.r. (film): γ_{max} 2900, 2100 (N₃), 1770 cm⁻¹ (C=0).

Alcohol <u>97</u>

Ozone (8 mM/hr) was bubbled through a solution of crude β -lactam <u>96</u> (1.7 g) in EtOH (100 ml) and methylene chloride (20 ml) at -78° for 35 minutes. Excess ozone was removed with N_2 and $NaBH_4$ (850 mg) was added. After warming to room temperature (2 hrs), 100 ml of pH 4.5 buffer was added. Removal of solvent on a rotary evaporator and extraction with CH_2Cl_2 (2 x 300 ml) afforded, after drying (MgSO₄) and evaporation, crude alcohol (1.6 g). Careful column chromatography on SiO₂ act III (30 g) using chloroform as eluent afforded 850 mg (58%) of pure alcohol <u>97</u>; p.m.r. (DCCl₃ + D₂O): δ 0.1 (s, 6H, s, SiMe₂), 0.95 (s, 9H, Si-Bu^t), 3.7 (d, 2H, <u>CH₂OH</u>), 4.2-4.5 (m, 1H, \underline{CHCH}_2OH), 4.6 (d, 1H, \underline{CHN}_3 , J = 5 Hz), 4.71 (q, 2H, <u>CH</u>₂OTBDMS), 5.0 (s, 2H, Ph<u>CH</u>₂), 6.8-7.3 (m, 3H, C₆H₃), 7.4 p.p.m. (s, 5H, C₆H₅); i.r. (film): γ_{max} 3400 (OH), 2900, 2100 (N₃), 1760 (C=O), 1240, 1100 cm⁻¹; m.s.: m/e: 411 (M⁺-57). Anal. Calcd for C24H32N4O4Si: C, 61.54; H, 6.84; N, 11.95. Found: C, 61.41; H, 7.12; N, 12.17.

Mesylate <u>98</u>

To alcohol <u>97</u> (130 mg) in CH_2Cl_2 (10 ml) and triethylamine (80 µl) at -78° was added methane sulphonyl chloride (35 µl). After warming to 20°, usual work-up afforded a quantitative yield of mesylate <u>98</u>; p.m.r. (DCCl₃): δ 0.15 (s, 6H, SiMe₂), 1.0 (s, 9H, SiBu^t), 2.6 (s, 3H, SO₂CH₃), 4.5 (d, 2H, <u>CH₂OSO₂CH₃), 4.8 (q, 1H, <u>CHCH₂</u>), 4.8 (s, 2H, <u>CH₂OTBDMS</u>), 4.9 (d, 1H, CHN₃, J = 5 Hz), 5.1 (s, 2H, <u>OCH₂Ph</u>), 6.9-7.3 (m, 3H, C₆H₃), 7.4 p.p.m. (s, 5H, C₆H₅); i.r. (CHCl₃): γ_{max} 2900, 2100 (N₃), 1770 cm⁻¹ (C=O).</u>

Benzyl alcohol 99

To mesylate <u>98</u> (850 mg) in THF (25 ml) and H₂O (10 ml) was added dropwise trifluoroacetic acid (3 ml). The homogeneous solution was stirred at room temperature 20 min and poured into 5% NaHCO₃ (200 ml). Extraction with ethyl acetate (2 x 200 ml), drying (MgSO₄) and evaporation afforded crude mesylate benzyl alcohol <u>99</u>. The crude benzyl alcohol was chromatographed on SiO₂, act III using first CHCl₃-ether (1:1) as eluent. Elution with ether afforded 470 mg (72%) of alcohol <u>99</u> as a colourless syrup; p.m.r. (DCCl₃): δ 2.7 (s, 3H, CH₃), 3.2 (bs, 1H, CH₂<u>OH</u>), 4.4 (d, 2H, <u>CH₂OMs), 4.6 (s, 2H, CH₂OH), 4.7 (q, 1H, CH-CH₂), 4.9 (d, 1H, CHN₃, J = 5 Hz), 5.1 (s, 2H, <u>CH₂Ph</u>), 6.8-7.4 (m, 3H, C₆H₃), 7.4 p.p.m. (s, 5H, C₆H₅); i.r. (film): γ_{max} 3450 (OH), 2900, 2100 (N₃), 1770 (C=O), 1350, 1180, 1100 cm⁻¹.</u>

Carboxylic acid 100

Alcohol <u>99</u> (440 mg, 1 mM) was dissolved in acetic acid and 4.4 ml (2.6 mM) of a CrO_3 solution (600 mg CrO_3 in 9 ml AcOH ml H₂O) was added. After stirring overnight at room temperature, most of the acetic acid was evaporated. The residue was poured into pH 1.8 buffer (30 ml) and extracted with CHCl₃ (3 x 100 ml). Drying (MgSO₄), evaporation of CHCl₃ and trituration with ether, afforded 190 mg (42%) of acid <u>100</u> as a nearly white solid, m.p. 153-155°; p.m.r. (DCCl₃) δ : 2.7 (s, 3H, SO₂CH₃), 4.3-4.7 (m, 3H, CHCH₂), 4.9 (bd, 1H, CHN₃), 5.1 (s, 2H, Ph<u>CH</u>₂O), 7-7.4 (m, 8H, C₆H₃ and C₆H₅), 10.8 p.p.m. (s, 1H, CO₂H); i.r. (CHCl₃): γ_{max} 2700-3200 (CO₂H), 2080 (N₃), 1775 (β-lactam), 1720 cm⁻¹ (acid); i.r. (KBr): γ_{max} 1740 cm⁻¹ (b, C=O).

Ester 101

Acid <u>100</u> (400 mg, .9 mM) was suspended in CH_3CN (20 ml) and treated with a 1 M solution of Ph_2CHN_2 in CH_3CN (1 ml). After stirring 1 hr at room temperature a few drops of acetic acid was added. Chromatography of the crude product on thick layer plates (20 x 20 cm) using $CHCl_3$ -ether (5:1) as eluent afforded 420 mg (77%) of ester <u>101</u> as a white foam; p.m.r. (CDCl_3): δ 2.6 (s, 3H, SO_2CH_3), 4.2-4.6 (m, 4H, $CHCH_2$ and CHN_3), 5.1 (s, 2H, OCH_2Ph), 7.2-7.6 p.p.m. (m, 19H, $CHPh_2$ + aromatic); i.r. (CHCl_3): γ_{max} 2100 (N₃), 1780 (β -lactam), 1730 cm⁻¹ (ester).

Amide <u>102</u>

 $\rm H_2S$ was bubbled into a solution of <u>101</u> (390 mg, .6 mM) in 20 ml CH₂Cl₂ and Et₃N (.1 ml, .7 mM) at 0° for 5 min. After stirring 1 hr at 20°, the solution was purged with nitrogen (5 min). The reaction mixture was washed with H₂O (20 x 20 ml), dried and evaporated. To the crude product in CH₂Cl₂ (10 ml) and Et₃N (.1 ml, .7 mM) was added dropwise a solution of phenylacetyl chloride (108 mg, .7 mM) in CH₂Cl₂ (2 ml). After stirring for 1 hr at 0°, the solution was washed with H₂O (2 x 20 ml), dried and evaporated. Chromatography of the residue on SiO₂, act III (20 g) afforded after elution with ether, 275 mg (64%) of amide <u>102</u>, m.p. 128-129° (dec.), n.m.r. (CDCl₃-DMSO-d₆): δ 2.90 (s, 3H, CH₃), 3.75 (s, 2H, CO<u>CH</u>₂Ph), 4.7 (m, 3H, CHCH₂), 5.4 (s, 2H, O<u>CH</u>₂Ph), 5.4 (m, 1H, <u>CHNH</u>), 7.25 (s, 1H, <u>CHPh</u>₂), 7.25-8.0 p.p.m. (m, 19H, aromatic + NH); i.r. (KBr): γ_{max} 3300 (NH), 1770 (β-lactam), 1720 (ester), 1660 cm⁻¹ (amide). 3-Hydroxy-2-nitrobenzyl alcohol 104

Crude phenol <u>80</u> (11 g, 65 mM) was dissolved in absolute ethanol (500 ml) and cooled to 0°. NaBH₄ (5g, 131 mM) was added in portions. The ice bath was removed and the red slurry stirred for 2 hrs at 20°. Acetic acid (5 ml) was added and the ethanol was removed on a rotary evaporator. The residue was dissolved in water (200 ml) and acidified with HCl to pH < 1. Extraction with ethyl acetate (2 x 300 ml), drying (MgSO₄) and evaporation afforded 10 g (90%) of 3-hydroxy-2-nitrobenzyl alcohol <u>104</u>, m.p. 104-110° (dec.); p.m.r. (acetone-d₆): δ 4.6 (s, 2H, <u>CH₂OH</u>), 4.5 (bs, 1H, CH₂<u>OH</u>), 6.8-7.5 (m, 3H, C₆H₃), 10.4 p.p.m. (bs, 1H, C₆H₃<u>OH</u>).

Amine 105

Alcohol 104 (10 g, 57 mM) was dissolved in ethanol (200 ml) and PtO2 (.7 g) was added. The mixture was hydrogenated for 2 hrs in a Parr hydrogenator at 40 psi and filtered through celite. Evaporation of the filtrate afforded 8 g of the amine as a brown semi-crystalline solid. The amine was added to a solution of tert-butyldimethylsilyl chloride (21 g, 136 mM) and imidazole (23.5 g, 350 mM) in dry DMF (75 ml). The solution was stirred overnight at room temperature and partitioned between ether (300 ml) and water (750 ml). The ether layer was washed with water (4 x 200 ml), dried (MgSO₄) and evaporated. The crude product was chromatographed at SiO_2 act III (300 g). Elution with methylene chloride afforded 16 g (77%) of amine 105; p.m.r. (CDCl₃): δ .05 (s, 6H, Si(CH₃)₂), .25 (s, 6H, Si(CH₃)₂), .9 (s, 9H, Si-Bu^t), 1.0 (s, 9H, Si-Bu^t), 4.2 (bs, 2H, NH₂), 4.6 (s, 2H, CH₂O), 6.3-6.8 p.p.m. (m, 3H, C_6H_3); i.r. (film): γ_{max} 3500, 3400 (NH₂), $3000, 1630 \text{ cm}^{-1}$.

Azide β -lactam <u>107</u>

Amine <u>105</u> (4.4 g, 11 mM) and cinnamaldehyde (1.6 g, 12 mM) and a few crystals of TsOH dissolved in dry benzene (150 ml) were refluxed overnight using a Dean Stark trap to remove the water formed. The crude product, after evaporation of benzene, was dissolved in CH_2Cl_2 (100 ml) and Et_3N (1.8 ml, 13 mM). To the solution under N₂ at -20° was added dropwise azidoacetyl chloride (1.5 g, 13 mM) in CH_2Cl_2 (80 ml) over 1 hr. The reaction mixture was stirred for 1 more hour and washed with H_2O (2 x 50 ml). Drying (MgSO₄) and evaporation afforded the crude product. Filtration through 100 g of Al_2O_3 , act III, using CH_2Cl_2 as eluent afforded 5.5 g (81%) of β -lactam azide <u>107</u>, suitable for the next reaction; i.r. (film): γ_{max} 2900, 2100 (N₃), 1770 cm⁻¹ (C=O).

Alcohol 108

Into a solution of crude azide 107 (2.8 g) in ethanol (150 ml) and CH_2Cl_2 (30 ml) at -78° was passed ozone (8 mM/hr) for 45 minutes. After removing excess ozone with nitrogen (15 min), NaBH_{A} (400 mg) was added. The solution was allowed to warm up to room temperature over a period of 2 hrs. To the slight yellow solution was added pH 4.5 buffer (150 ml). The ethanol was removed on a rotary evaporator and the residue extracted with CHCl₃ (2 x 100 ml). Drying (MgSO₄) and evaporation afforded 2.5 g of crude alcohol. Chromatography of the crude alcohol on SiO₂, act III (45 g), using CHCl₂ as eluent, afforded, after crystallization from pentane, 1.3 g (53%) of pure alcohol 108, m.p. 112-112.5°; p.m.r. (CDCl₃): δ 0.05 (d, 6H, SiMe₂), 0.25 (d, 6H, SiMe₂), 0.90 (s, 9H, Si-Bu^t), 1.0 (s, 9H, Si-Bu^t), 3.1 (bs, 1H, OH), 3.7 (bd, 2H, <u>CH</u>₂OH), 4.2-4.4 (m, 1H, CHCH₂OH), 4.7 (q, 2H, CH₂OTBDMS), 4.7 (d, 1H, CHN_3 , J = 5 Hz), 6.6-7.2 p.p.m. (m, 3H, C_6H_3); i.r. (KBr): 3450 (OH), 2900, 2150 (N_3) , 1770 (C=O), 1600 cm⁻¹ (C=C); m.s.: m/e 435 (M⁺-57), 407 (M⁺-57-28); Anal. Calcd for C₂₄H₄₀N₄O₄Si: C, 56.06; H, 8.18; N, 11.36. Found: C, 55.95; H, 8.03; N, 11.38.

Mesylate 109

To alcohol <u>108</u> (2 g, 4.1 mM) in CH_2Cl_2 (50 ml) and Et_3N (.8 ml, 5.6 mM) at -78° was added dropwise MsCl (.35 ml, 4.5 mM) in CH_2Cl_2 (5 ml). The solution was stirred for 30 minutes at -78° and allowed to warm up to room temperature (1 hr). The reaction mixture, after washing with water 2 x 50 ml), drying (MgSO₄) and evaporation under vacuo, afforded 2.2 g (95%) of mesylate <u>109</u> as an oily solid; p.m.r. (CDCl₃): δ 0.15 (d, 6H, SiMe₂), .25 (d, 6H, SiMe₂), .9 (s, 9H, Si-Bu^t), 1.0 (s, 9H, Si-Bu^t), 2.75 (s, 3H, CH₃), 4.4 (m, 2H, <u>CH₂OSO₂CH₃), 4.7 (m, 1H, CH₂<u>CH</u>), 4.7 (s, 2H, <u>CH₂OTBDMS</u>), 5.0 (d, 1H, CHN₃, J = 5 Hz), 6.7-7.4 p.p.m. (m, 3H, C₆H₃).</u>

Azido β -lactam <u>112</u>

To mesylate <u>109</u> (1 g, 1.7 mM) in CH_3CN (20 ml) was added KF (116 mg, 2 mM) and 18-crown-6 (75 mg, .3 mM). After stirring 5 hrs at room temperature, more KF (50 mg) and 18-crown-6 (75 mg) was added. After 4 more hours at room temperature, the reaction mixture was poured into water (200 ml) and extracted with CH_2Cl_2 (2 x 200 ml). Drying (MgSO₄) and evaporation afforded crude product contaminated with 18-crown-6. Chromatography on SiO₂, act III (20 g), using CH_2Cl_2 as eluent, afforded 580 mg (92%) of cyclized β -lactam <u>112</u> as a colourless oil; p.m.r. (benzene d₆): δ 0.2 (s, 6H, SiMe₂), 1.1 (s, 9H, Si-Bu^t), 2.8-4.0 (m, 3H, OCH₂CH), 4.0 (d, 1H, CHN₃, J = 5 Hz), 5.2 (q, 2H, <u>CH₂OTBDMS</u>, J = 16 Hz); 6.6-7.6 (m, 3H, C₆H₃); i.r. (CHCl₃): γ_{max} 2900, 2100 (N₃), 1780 (C=0), 1600 cm⁻¹ (C=C).

Amide <u>113</u>

Into azide <u>112</u> (500 mg, 1.4 mM) dissolved in CH_2Cl_2 (20 ml) and Et_3N (.2 ml, 1.4 mM) at 0° was bubbled H_2S for 5 min. After stirring for 1 hr at room temperature, the solution was washed with H_2O (2 x 20 ml) dried (MgSO₄) and evaporated. To the crude product at 0° in CH_2Cl_2 (20 ml) and Et_3N (.2 ml, 1.3 mM) was added dropwise phenylacetyl chloride (.23 g, 1.5 mM) in CH_2Cl_2 (2 ml) over a period of 5 min. After stirring for 1 hr at room temperature, the solution was washed with pH 4.5 buffer (30 ml) and H_2O (30 ml), dried (MgSO₄) and evaporated. Chromatography of the residue on SiO_2 act II (20 g) using CH_2Cl_2up to $CH_2Cl_2/$ ether (1:1) afforded 530 mg (80%) of amide <u>113</u> as a colourless foam; p.m.r. (DCCl₃): δ 0.05 (s, 6H, Si-(CH₃)₂), .90 (s, 9H, Si-Bu⁺), 4.3 (s, 2H, <u>CH₂Ph)</u>, 3.6-4.6 (3H, m, CH₂CH), 4.8 (q, 2H, CH₂O), 6.6-7.2 (m, 3H, C_6H_3), 7.3 p.p.m, (bs, 6H, C_6H_5 and <u>NH</u>); i.r. (CHCl₃): γ_{max} 3400 (NH), 2900, 1765 (β -lactam C=O), 1680 cm⁻¹ (amide C=O).

Alcohol amide <u>114a</u>

To amide <u>113</u> (180 mg) in THF (5 ml) and H₂O (2 ml) was added dropwise trifluoroacetic acid (.8 ml). After stirring at room temperature 15 min, the solution was poured onto 10% NaHCO₃ and extracted with chloroform (2 x 50 ml). Drying (MgSO₄), evaporation and trituration with ether afforded 80 mg (60%) of alcohol amide <u>114a</u> as white solid, m.p. 183-185°; p.m.r. (acetone d₆): δ 3.6 (s, 2H, <u>CH₂Ph</u>), 4.0-4.6 (m, 3H, CH₂CH), 4.8 (bs, 3H, CH₂OH), 5.6 (q, 1H, <u>CHNH</u>, J₁ = 4.5, J₂ = 7 Hz), 6.6-7.2 (m, 3H, C₆H₃), 7.2 p.p.m. (s, 5H, C₆H₅); i.r. (KBr): γ_{max} 3400 (OH), 3350 (NH), 1775 (β-lactam) C=O), 1660 cm⁻¹ (amide C=O), m.s.: m/e 338 (M⁺).

Benzyl alcohol 115

To azide <u>112</u> (580 mg) in THF (20 ml) and H₂O (6 ml) was added dropwise trifluoroacetic acid (3 ml). After stirring for 20 minutes at room temperature the reaction mixture was poured into 5% NaHCO₃ (200 ml) and extracted with CH_2Cl_2 (2 x 100 ml). The combined organic phases were dried (MgSO₄) and evaporated. Trituration of the oily residue with ether afforded 300 mg (75%) of alcohol <u>115</u>, m.p. 128-129°; p.m.r. (CDCl₃-DMSOd₆, few drops D₂O): δ 3.8-4.4 (m, 3H, CH₂CH), 4.8 (q, 2H, <u>CH₂OH</u>, J = 17 Hz), 5.6 (d, 1H, CHN₃, J = 5 Hz), 7.0 p.p.m. (m, 3H, C₆H₃); i.r. (KBr): δ_{max} 3380 (OH), 2900, 2100 (N₃), 1775 cm⁻¹ (C=O); m.s.: m/e 246 (M⁺), 218 (M⁺-28), Anal. Calcd for C₁₁H₁₀N₄O₃: C, 53.66; H, 4.09; N, 22.76. Found: C, 53.57; H, 4.32; N, 22.44.

127

Ester 118

To alcohol 112 (420 mg, 1.7 mM) in AcOH (5 ml) was added 4.5 ml of CrO₃ solution (1 g CrO₃ in 1 ml H₂O and 9 ml AcOH). After stirring at 20° for 24 hrs, more CrO₃ solution (2.5 ml) was added. After a total time of 48 hrs the acetic acid was evaporated at 20°. The residue was partitioned between pH 1.8 buffer (20 ml) and chloroform (100 ml). The aqueous phase was extracted again with $CHCl_3$ (2 x 50 ml). The combined $CHCl_3$ extracts were washed with pH 1.8 buffer (2 x 20 ml), dried (MgSO₄), and evaporated. To the crude acid 117 (260 mg) dissolved in CH₃CN (20 ml) was added 9 ml (1.8 mM) of a solution of diphenyl diazomethane in CH₃CN (2 g Ph₂CN₂ in 100 ml CH₃CN). The red reaction mixture was stirred 1 hr at room temperature and quenched with acetic acid (3 drops). The crude product after evaporation of the solvent was chromatographed on thick layer plates (SiO₂) using CHCl₃/ether (9:1) as eluent. Extraction of band with r.f. \simeq .7 afforded 280 mg (39%) of ester <u>118</u> as a colourless foam; p.m.r. (C_6D_6 90 MHz): δ 3.0-3.4 (m, 1H, CH_2CH), 3.3 (t, 1H, CHHCH, $J_1 = J_2 = 10$ Hz), 3.8 (q, 1H, CHHCH, $J_1 = 3 Hz$, $J_2 = 10 Hz$), 4.1 (d, 1H, CHN₃, J = 5 Hz), 6.4-7.6 p.p.m. (m, 14H, aromatic + $CHPh_2$); i.r. ($CHCl_3$): γ_{max} 2100 (N_3) , 1795 $(\beta$ -lactam), 1730 (ester); m.s.: m/e 426 (M^+) , 397 $(M^{+}-28)$, 343 $(M^{+}-N_{3}CHCO)$, 215 $(M^{+}-CO_{2}CHPh_{2})$. Extraction of the band with r.f. \simeq .5 afforded 40 mg (10%) of aldehyde 116; p.m.r. (CDCl₃): δ 3.8-4.7 (m, 3H, CH₂CH), 5.2-5.4 (m, 1H, CHN₃), 7.0-7.6 (m, 3H, C₆H₃), 10.2 p.p.m. (s, 1H, CHO).

Amide <u>119</u>

Hydrogen sulphide was bubbled into a solution of ester 118 (250 mg, .6 mM) and Et_3N (.1 ml, .7 mM) in CH_2Cl_2 at 0° for 5 min. The ice bath was removed and the orange solution stirred at room temperature. After 1 hr, excess H2S was purged with nitrogen. The yellow solution was washed with H20 (2 x 25 ml), dried (MgSO₄) and evaporated. To the resulting yellow gum dissolved in CH_2Cl_2 (20 ml) and Et_3N (.1 ml, .7 mM) was added at 0° phenylacetyl chloride (90 μl , .68 mM). After stirring for 1 hr at 0°, the solution was washed with pH 4.5 buffer (2 x 25 ml). Drying (MgSO₄), evaporation and chromatography on thick layer plates using CHCl3-ether (10:1) afforded 235 mg (77%) of amide 119 as a slight yellow foam; p.m.r. (CDCl₃, 90 MHz): 6 3.5 (s, 2H, CH₂Ph), 3.6 (t, 1H, CHHCH, $J_1 = J_2 = 10 \text{ Hz}$, 4.0-4.3 (m, 1H, CH_2CH), 4.5 (q, 1H, CHH, $J_1 = 3.5 \text{ Hz}, J_2 = 10 \text{ Hz}), 5.3 (q, 1H, CHNH, J_1 = 4.5 \text{ Hz}, J_2 =$ 7 Hz), 6.8 (d, 1H, NH, J = 7 Hz), 7.0-7.6 p.p.m. (m, 19H, aromatic and $CHPh_2$; i.r. (CHCl₃): γ_{max} 3400 (NH), 2900, 1785 $(\beta-lactam)$, 1730 (ester), 1690 cm⁻¹ (amide).

Carboxylic acid 120 and ester 121

Ester <u>119</u> (250 mg) in EtOH (50 ml) containing 10% Pd/C (250 mg) was hydrogenated for 1 hr at 40 psi using a Parr hydrogenator. Filtration through celite and evaporation of the ethanol gave the crude acid. Trituration of the residue with ether afforded (65%) of acid <u>120</u> as a pale yellow solid, m.p. \sim 140° (dec.); i.r. (KBr): γ_{max} 3350 (NH), 2500-3600 (OH), 1780 (β -lactam), 1685 (acid), 1650 (amide), 1380 cm⁻¹.

Treatment with ethereal CH_2N_2 and chromatography on thick layer plates using $CHCl_3$ /ether (1:1) afforded after crystallization with benzene (70%) of ester <u>121</u> as a solid, m.p. 148-150°; p.m.r. (CDCl₃, 90 MHz): δ 3.6 (s, 2H, <u>CH</u>₂Ph), 3.7 (t, 1H, <u>CH</u>HCH, J = 10 Hz), 3.9 (s, 3H, OCH₃), 4.0-4.3 (m, 1H, <u>CH_2CH</u>), 4.5 (q, 1H, <u>CHHCH</u>, J₁ = 3.5 Hz, J₂ = 10 Hz), 5.5 (q, 1H, <u>CHNH</u>, J₁ = 4.8 Hz, J₂ = 7 Hz), 6.8 (bd, 1H, NH, J = 7 Hz), 7.0-7.6 p.p.m. (m, 8H, C₆H₃ and C₆H₅); i.r. (CHCl₃): γ_{max} 3300, 1780 (β -lactam), 1730 (ester), 1680 cm⁻¹ (amide); m.s.: m/e 366 (M⁺), 355 (M⁺-31), 192, 175, 160. Anal. Calcd for C₂₀H₁₈N₂O₅: C, 65.56; H, 4.95; N, 7.65. Found: C, 65.59; H. 5.45; N. 7.09. Experimental

Chapter 3

.

.

Schiff base 127, 130

The aldehyde (20 mM) and aniline (1.86 g, 20 mM), in benzene (50 ml) were refluxed for 4 hrs using a Dean Stark trap to remove the water formed. Evaporation of the benzene afforded the Schiff base in quantitative yield.

Schiff base 127

P.m.r. $(CDCl_3): \delta$ 7-7.6 (m, 12H, $C_6H_5 + CH=CH$), 8.3 p.p.m. (t, 1H, CH=N); i.r. $(CDCl_3): \gamma_{max} = 1630 \text{ cm}^{-1}$ (C=N).

Schiff base 130

P.m.r. $(CDCl_3)$: δ 6.1 (m, 1H, furan), 6.6 (m, 1H, furan), 6.8-7.2 (m, 5H, C_6H_5), 7.3 (m, 1H, furan), 7.9 p.p.m. (s, 1H, CH=N); i.r. $(CDCl_3)$: γ_{max} 1630 cm⁻¹ (C=N).

Schiff base 138

Cinnamaldehyde (2.64 g, 20 mM) in CH_2Cl_2 (5 ml) was added dropwise to a solution of ethyl glycinate (1.8 g, 20 mM) in CH_2Cl_2 (40 ml) at 0° containing MgSO₄ (\sim 1-2 g). After stirring for 2 hrs at 0°, the solution was filtered through celite. Evaporation of the methylene chloride afforded Schiff base <u>138</u>, approximately 85-90% pure by p.m.r; p.m.r. (CCl_4): δ 1.2 (t, 3H, CH_3), 4.0-4.5 (m, 4H, OCH_2CH_3 , CH_2), 7.0 (d, 2H, <u>CH=CH</u>-Ph), 7.2-7.6 (m, 5H, C_6H_5), 7.8-8.0 p.p.m. (m, 1H, CH=N).
Schiff base 143

A solution of furfuraldehyde (.96 g, 10 mM) and amine <u>140</u> (2.33 g, 10 mM) in CH_2Cl_2 (50 ml) was refluxed overnight using a Dean Stark trap filled with 4A molecular sieves. Evaporation afforded Schiff base <u>143</u> in approximately 90% yield by p.m.r; p.m.r. (CCl_4) : δ 0.05 (s, 6H, Si $(CH_3)_2$), 0.90 (s, 9H, SiBu^t), 3.7 (s, 3H, OCH₃), 3.7-4.2 (m, 3H, CHCH₂O), 6.4 (s, 1H, furan), 6.8 (d, 1H, furan), 7.5 (m, 1H, furan), 8.0 p.p.m. (s, 1H, CH=N); i.r. (film): γ_{max} 2950, 1740 (ester), 1640 cm⁻¹ (C=N).

β -Lactam 128

Crotonyl chloride (1.0 g, 10 mM) in methylene chloride (20 ml) was added dropwise over 30 min to a solution of Schiff base <u>127</u> (2 g, 10 mM) in methylene chloride at room temperature. After stirring for 1 more hour, the dark solution was washed with water (2 x 25 ml), dried (MgSO₄), and evaporated. P.m.r. showed that the product contained approximately 30% <u>128</u>. Flash chromatography of the residue afforded 500 mg (15%) of pure cis β -lactam <u>128</u>; p.m.r. (C₆D₆): δ 4.2 (t, 1H, CHCH=CH₂, J = 6 Hz), 4.8 (q, 1H, CHCH=CHPh, J_{3,4} = 6 Hz, J_{4,5} = 7 Hz), 5.2-6.0 (m, 3H, -CH=CH₂), 6.2 (q, 1H, CH=CHPh, J_{4,5} = 7 Hz, J_{5,6} = 16 Hz), 6.8 (d, 1H, CH=CHPh, J = 16 Hz), 7.0-7.7 p.p.m. (m, 10H, C₆H₅); i.r. (film): γ_{max} 2950, 1750 (C=O), 1600 cm⁻¹ (C=C); m.s.: m/e 275 (13.70%), 207 (38%), 206 (100%), 156 (92.9%). Preparation of Schiff bases 145, 164, 172a, 172b, 184, 197 and 202

The aldehyde (10 mM) was added to a solution of the amino phosphonate (10 mM) in methylene chloride (25-30 ml) at room temperature, containing magnesium sulphate. The mixture was stirred at room temperature for 2 to 5 hrs, until the i.r. spectrum of the reaction mixture did not change. The solution was filtered. Evaporation of the filtrate afforded the Schiff base in 85-95% yield by p.m.r. All Schiff bases were used without further purification for the cycloaddition. The p.m.r. spectrum showed a multiplet at approximately 7.8 p.p.m. for the Schiff base proton, along with all other appropriate signals. The i.r. spectrum of the Schiff bases showed absorption at approximately 1650 cm⁻¹ for the C=N bond.

Schiff base 179

Acrolein (2 ml) was added to a solution of amino phosphonate <u>170</u> (1.2 g, 5 mM) in methylene chloride at room temperature containing sodium sulphate (1 g). After stirring for 2 hrs the solution was filtered. Evaporation of the filtrate afforded Schiff base <u>179</u> in approximately 90% yield by p.m.r. P.m.r. (CDCl₃): δ 1.2 (d of t, 6H, OCH₂CH₃), 3.6-4.2 (m, 4H, OCH₂CH₃), 4.8 (d, 1H, CHPO(OEt)₂, J = 20 Hz), 5.4-6.4 (m, 5H, furan, CH=CH₂), 7.3 (m, 1H, furan), 7.7 p.p.m. (q, 1H, CH=N); i.r. (film): γ_{max} 1620, 1650 (C=N) cm⁻¹. Preparation of β -lactams <u>125</u>, <u>129</u>, <u>131</u>, <u>135</u>, <u>139</u>, <u>142</u>, <u>144</u>, <u>146</u>, <u>148</u>, <u>149</u> and <u>173</u>

To the appropriate Schiff base (10 mM) and triethylamine (1.0 g, 10 mM) in methylene chloride (50 ml) at reflux under nitrogen was added dropwise over 45 minutes a solution of the acid chloride (10 mM) in methylene chloride (25 ml). The reaction mixture was refluxed for 1 more hour and then washed with H_2O (2 x 50 ml). The methylene chloride layer was dried (MgSO₄) and evaporated. Recrystallization or chromatography of the residue afforded the β -lactam in the indicated yield.

β-Lactam 125

yield 40%, m.p. 100-102°; p.m.r. $(CHCl_3)$: 4.2 (bd, 1H, <u>CH</u>-CH=CH₂), 4.9 (d, 1H, <u>CH</u>-Ph, J = 2.5 Hz), 5.2-6.5 (m, 3H, CH=CH₂), 7.2-7.5 p.p.m. (m, 10H, C₆H₅); i.r. (CHCl₃); γ_{max} 2950, 1750 (C=O), 1600 cm⁻¹ (C=C).

β-Lactam 129

40% yield by p.m.r., isolated yield 20%; p.m.r. $(C_6D_6): \delta 3.6 (bq, 1H, CHCH=CH_2), 4.3 (q, 1H, CHCH=$ CHPh, $J_{3,4} = 2.5 Hz$, $J_{4,5} = 7 Hz$), 5.0-6.0 (m, 3H, CH=CH₂), 6.2 (q, 1H, CH=CHPh, $J_{5,6} = 16 Hz$, $J_{4,5} =$ 7 Hz), 6.6 (d, 1H, CH=CHPh, J = 16 Hz), 6.8-7.4 p.p.m. (m, 10H, C_6H_5); i.r. (film): γ_{max} 2950, 1750 (C=O), 1600 cm⁻¹ (C=C); m.s.: m/e 275 (12.2%), 208 (21.7%), 207 (57.11%), 156 (100%).

β-Lactam 131

50% yield, m.p. 98-99°; p.m.r. $(CDCl_3): \delta 4.05$ (bq, lH, <u>CHCH=CH</u>2, 4.8 (d, lH, J = 2.5 Hz, <u>CH</u>-furyl), 5.7-6.2 (m, 3H, CH=CH₂), 6.3-6.5 (m, 2H, furan), 7.0-7.5 p.p.m. (m, 6H, C₆H₅, furan); i.r. $(CH_2Cl_2): \gamma_{max}$ 1750 (C=O), 1600 cm⁻¹ (C=C), m.s.: m/e 239 (M⁺), 120, 119.

β-Lactam 135

30% yield recrystallized, greater than 70% by p.m.r., m.p. 84-86°; p.m.r. $(CDCl_3): \delta 1.85$ (s, 3H, $CH_3-C=CH_2$), 4.1 (bd, 1H, $CH-C(CH_3)=CH_2$), 4.9 (d, 1H, CH-furyl, J = 2.5 Hz), 4.9-5.1 (m, 2H, $C(CH_3)=CH_2$), 6.2-6.4 (m, 2H, furan), 6.8-7.4 p.p.m. (m, 6H, C_6H_5 and furan); i.r. $(CH_2Cl_2): \gamma_{max}$ 1750 (C=O), 1600 cm⁻¹ (C=C); m.s.: m/e 253 (M⁺), 171, 134, 119.

β-Lactam 139

yield 50%; p.m.r. $(CDCl_3): \delta 1.3 (t, 3H, OCH_2CH_3), 1.7$ (s, 3H, $CH_2=C-CH_3$), 4.2 (AB quartet, 2H, J = 18 Hz, CH_2CO_2Et), 4.0-4.4 (m, 3H, OCH_2CH_3 and $CHC(CH_3)=CH_2$), 4.5 (q, 1H, CHCH=CHPh, $J_1 = 5$ Hz, $J_2 = 7$ Hz), 5.1 (bd, 2H, $C(CH_3) = CH_2$), 6.1 (q, 1H, CH=CHPh, $J_1 = 7$ Hz, $J_2 = 16$ Hz, 6.7 (d, 1H, CH=CHPh, J = 16 Hz), 7.2-7.5 p.p.m. (m, 5H, C_6H_5); i.r. (film): γ_{max} 3000, 1755 cm⁻¹ (C=O), m.s.: m/e 299 (M⁺), 282, 170, 82. 70% yield: p.m.r. $(CDCl_3): \delta 0.05 (d, 6H, Bu^{t}Si(\underline{CH}_{3})_{2}),$.95 (s, 9H, $Bu^{t}Si(CH_{3})_{2}$), 1.8 (s, 3H, $CHC(\underline{CH}_{3})=CH_{2}$), 3.5 (s, 3H, OCH₃), 3.8-4.0 (m, 3H, $CH_{2}O$, $\underline{CHC}(CH_{3})=CH_{2}$), 4.3 (t, 1H, $\underline{CHCH}_{2}O$), 4.4 (q, 1H, $\underline{CHCH}=CHPh$, $J_{3,4} = 5$ Hz, $J_{4,5} = 7$ Hz), 4.8 (bd, 2H, $CHC(CH_{3})=\underline{CH}_{2}$), 5.8 (q, 1H, $\underline{CH}=CHPh$, $J_{4,5} = 7$ Hz, $J_{5,6} = 16$ Hz), 6.4 (d, 1H, $CH=\underline{CHPh}, J = 16$ Hz), 6.8-7.0 p.p.m. (m, 5H, $C_{6}H_{5}$); i.r. (film): γ_{max} 2900, 1760 (β -lactam), 1740 cm⁻¹ (ester).

β-Lactam 144

30% yield by p.m.r., 10% recrystallized, m.p. 79-80°; p.m.r. $(CDCl_3): \delta -0.1 (d, 6H, Bu^{t}Si (CH_3)_2)$, .80 (s, 9H, $Bu^{t}Si(CH_3)_2$), 1.3 (bs, 3H, $C(\underline{CH}_3)=CH_2$), 3.7 (s, 3H, OCH_3), 3.8 (t, 2H, CH_2O), 4.2 (bd, 1H, <u>CHC(CH_3)=CH_2</u>), 4.4 (t, 1H, <u>CHCH_2O</u>), 4.9 (bd, 2H, $C=\underline{CH}_2$), 5.1 (d, 1H, CH-furyl, J = 2.5 Hz), 6.2 (m, 2H, furyl), 7.2 p.p.m. (m, 1H, furyl); i.r. (CHCl_3) γ_{max} 2900, 1760 (β -lactam) 1740 cm⁻¹ (ester); m.s.: m/e 336 (M⁺-41).

β -Lactam 146

yield 60%; p.m.r. $(DCCl_3): \delta 1.4$ (d of t, 6H, OCH_2CH_3), 1.7 (s, 3H, $CH_2=CCH_3$), 3.4 (d of AB quartet, 2H, $J_1 = 18$ Hz, $J_2 = 10$ Hz, $CH_2PO(OEt)_2$), 4.2 (m, 5H, OCH_2CH_3 , $CHC(CH_3)=CH_2$), 4.5 (d of q, 1H, CHCH=CHPh, $J_1 = 1$ Hz, $J_2 = 5$ Hz, $J_3 = 7$ Hz), 5.1 (bd, 2H, $CH_2=CCH_3$), 6.0 (q, 1H, $J_1 = 7$ Hz, $J_2 = 16$ Hz, CH=CHPh), 6.8 (d, 1H, CH=CHPh, J = 16 Hz), 7.3 p.p.m. (m, 5H, C_6H_5); i.r. (film): γ_{max} 3000, 1760 (C=O), 1000 cm⁻¹; m.s.: m/e 305 (M⁺), 193, 151. yield 40%, m.p. $68-69^{\circ}$; p.m.r. $(C_6D_6): \delta 3.4$ (s, 6H, OCH₃), 3.5 (s, 3H, OCH₃), 3.7 (bd, 1H, <u>CH</u>CH=CH₂), 4.0 (d, 1H, J = 5 Hz, CHCO₂CH₃), 4.5 (2H, AB quartet, CH₂), 4.9-6.0 (m, 3H, CH=CH₂), 6.2-7.2 p.p.m. (m, 3H, C₆H₃); i.r. (KBr): γ_{max} 2950, 1750 (C=O), 1610 cm⁻¹; m.s.: m/e 305 (M⁺), 193, 151.

β -Lactam 149

yield 30%, m.p. 72-72.5°; p.m.r. (C_6D_6) : δ 1.6 (s, 3H, $CH_2=C\underline{CH}_3$), 3.3 (s, 6H, OCH₃), 3.4 (s, 3H, OCH₃), 3.6 (bd, 1H, $\underline{CHC}(CH_3)=CH_2$), 3.9 (d, 1H, J = 5 Hz, \underline{CHCO}_2CH_3), 4.5 (AB quartet, 2H, CH_2), 5.0 (bd, 2H, $\underline{CH}_2=CCH_3$), 6.0-7.0 p.p.m. (m, 3H, C_6H_3); i.r. (KBr): γ_{max} 2950, 1750 (C=0), 1610 cm⁻¹; m.s.: m/e 319 (M⁺), 193, 151.

 β -Lactam 173

yield 60%; p.m.r. $(CDCl_3): \delta 1.2-1.6$ (m, 6H, OCH_2CH_3), 1.6 (bs, 3H, $C(\underline{CH}_3)=CH_2$), 4.0-4.8 (m, 5H, $O\underline{CH}_2CH_3$, $\underline{CHC}(CH_3)=CH_2$), 4.9 (d of q, 1H, $\underline{CHCH}=CHPh$, $J_1 = 2$ Hz, $J_2 = 5$ Hz, $J_3 = 7$ Hz), 5.2 (bd, 2H, $\underline{CH}_2=CCH_3$), 5.3 (d, $\underline{CHPO}(OEt)_2$ of one diasteriomer, J = 20 Hz), 5.5 (d, $\underline{CHPO}(OEt)_2$ of other diasteriomer, J = 20 Hz), 5.4-7.6 p.p.m. (m, 10H, CH=CHPh, furan); i.r. (CHCl_3): γ_{max} 1760 cm⁻¹ (C=O).

β-Lactam 150

A solution of <u>148</u> (200 mg) in ethanol (20 ml) was hydrogenated at 30 psi in a Parr hydrogenator using PtO_2 (20 mg) for 1 hr. The catalyst was filtered and the filtrate was evaporated. Flash chromatography of the residue afforded 140 mg (70%) of <u>150</u> as a colourless oil; p.m.r. (C_6D_6) : δ .8-1.2 (m, 3H, CH_2CH_3), 1.3-1.8 (m, 2H, <u>CH</u>₂CH₃), 2.6-3.2 (m, 1H, <u>CHCH</u>₂CH₃), 3.35 (s, 3H, OCH₃), 3.4 (s, 3H, OCH₃), 3.5 (s, 3H, OCH₃), 3.95 (d, 1H, <u>CHCO</u>₂CH₃, J = 5 Hz), 4.5 (AB quartet, 2H, <u>CH</u>₂C₆H₃), 6.2-7.2 p.p.m. (m, 3H, C₆H₃); i.r. (film): 2950, 1750 (C=O), 1610 cm⁻¹; m.s.: m/e 307 (M⁺), 193, 151.

Amino phosphonate hydrochloride 161

A solution of diethylphosphite (8.28 g, 60 mM) and triazine 7.14 g, 20 mM) was heated for 5 hrs at 100°. The reaction mixture was dissolved in ether (500 ml) and ether saturated with HCl gas (300 ml) was added. The ether was decanted from the oil and the oil was dissolved in methylene chloride. Evaporation of the methylene chloride afforded an oily solid. Trituration with ether and filtration afforded 13 g (75%) of <u>161</u> as a white solid; p.m.r. (D₂O): δ 1.2 (t, 6H, OCH₂CH₃), 3.3 (d, 1H, <u>CHPO(OEt)</u>₂, J = 15 Hz), 4.0 (d of q, 4H, <u>OCH₂CH₃</u>), J₁ = 8 Hz, J₂ = 2 Hz), 4.2 (s, 2H, <u>CH₂Ph</u>), 7.4 p.p.m. (s, 5H, C₆H₅).

Amino phosphonate 163

Amino phosphonate hydrochloride <u>161</u> (5 g) in ethanol and 5% palladium on charcoal (1.7 g) was hydrogenated at 40 psi in a Parr hydrogenator overnight. The mixture was filtered through celite and evaporated. The residue was dissolved in chloroform (100 ml) and dry ammonia was bubbled in for 10-15 min. The resulting milky suspension was evaporated. Trituration with ether and filtration of the ammonium chloride afforded 2.6 g (90%) of amine <u>163</u> as a mobile oil; p.m.r. (CDCl₃): δ 1.3 (t, 6H, OCH₂<u>CH₃</u>), 2.2 (bs, 2H, NH₂), 3.0 (bd, 2H, J = 12 Hz, <u>CH₂NH₂), 4.1 p.p.m.</u> (d of q, 4H, J₁ = 8 Hz, J₂ = 1 Hz, PO(O<u>CH₂CH₃)</u>₂).

Amino phosphonate hydrochloride 169c

Azine 168c (9.4 g) was added very slowly to a solution of sodium (400 mg) in redistilled diethyl phosphite (25 ml) under N2. The reaction was instantaneous and very exothermic. The redbrown solution was heated 5 hrs at 85-90°. The solution was dissolved in ether (500 ml) and the resulting solid filtered. Ethereal HCl (300 ml) was then added to the filtrate at 0°. The ether was decanted from the red-brown oil and the oil was dissolved in CH₂Cl₂ (200 ml). Evaporation of the CH₂Cl₂ afforded a red-brown oil. Trituration with methylene chloride/ether afforded 11.8 g (44%) of the hydrochloride salt 169c as a tan to light orange solid; p.m.r. (DCCl₃): δ 1.2-1.6 (m, 6H, OCH₂CH₃), 3.9-4.5 (m, 4H, OCH2CH3), 5.2 (d, 1H, CHPO(OEt)2, J = 18 Hz), 6.3-6.5 (m, 1H, furan), 6.8-7.0 (m, 1H, furan), 7.4-7.6 (m, 1H, furan), 8.5-9.5 p.p.m. (bs, 3H, NH_3^+).

Amino phosphonate 170

Ammonia was bubbled through a cloudy solution of hydrochloride <u>169c</u> in chloroform (150 ml) for 20-30 minutes. The resulting milky solution was evaporated, ether (200 ml) was added and the precipitate filtered off. Evaporation of the filtrate afforded 2 g (77%) of the amine as a light yellow oil; p.m.r. (DCCl₃): δ 1.2 (d of t, 6H, OCH₂<u>CH₃</u>), 2.3 (bs, 2H, NH₂), 3.8-4.2 (m, 4H, O<u>CH₂CH₃</u>), 4.2 (d, 1H, -<u>CH</u>PO(OEt)₂, J = 18 Hz), 6.3-6.5 (m, 2H, furan), 7.3-7.5 p.p.m. (m, 1H, furan); i.r. (film): γ_{max} 3400, 3300 (NH₂), 3000, 1600, 1250, 1050 cm⁻¹.

Olefin acetal 171

To a mixture of acetone (29 g), HgO (1 g) and .2 to .3 ml BF_3 . Et_2O at 0° was added dropwise under nitrogen ethyl vinyl ether (108 g) keeping the temperature between 4-6° (6 hrs). The mixture was stirred 3 more hrs at 6-10°. Na_2CO_3 (1 g) was added, the mixture was stirred 20 min and filtered. Distillation of the residue afforded 6.0 g (55%) of 4,4-diethoxy-2-butene <u>171</u>, b.p. 70°/50 mm, lit. b.p. 71.5°/60 mm. P.m.r. (DCCl₃): δ 1.0 (t, 6H, OCH₂CH₃), 2.2 (t, 2H, CH₂CH=CH₂), 3.0-3.6 (m, 4H, OCH₂CH₃), 4.3 (t, 1H, CH), 4.8-5.1 (m, 2H, CH₂=CH), 5.3-6.0 p.p.m. (m, 1H, CH=CH₂).

3,3-Diethoxy propionaldehyde 153

Ozone was passed for 2 hrs into a solution of <u>171</u> (6.2 g) in ethyl acetate (100 ml). Excess ozone was removed by purging with nitrogen. After warming to room temperature, ethanol (100 ml) and Pd/CaCO₃ (1.5 g) was added. The mixture was hydrogenated at 40 psi in a Parr hydrogenator. The catalyst was removed by filtration through celite. Distillation of the filtrate afforded 2.8 g (45%) 3,3-diethoxy propionaldehyde <u>153</u>, b.p. 70-72°/15 mm, lit. b.p. 74.5°/19 mm; p.m.r. (CDCl₃): δ 1.2 (t, 6H, OCH₂CH₃), 2.5 (m, 2H, CH₂CHO), 3.2-3.8 (m, 4H, OCH₂CH₃), 4.8 (t, 1H, J = 5 Hz, CHCH₂CHO), 9.2 (m, 1H, CHO).

Alcohol 182

Butenediol (40 g) was dissolved in an aqueous solution of sodium hydroxide (24 g in 100 cc of H₂O). Dimethylsulphate (31 g) was added dropwise with stirring at a temperature less than 70°. After stirring at 80° for a further 2 hrs, the reaction mixture was extracted continuously with ether for - 24 hrs. The ether was dried (MgSO₄) and evaporated. Distillation of the residue afforded 13 g (29%) of alcohol <u>182</u>; p.m.r. (CDCl₃ + few drops of D₂O): δ 3.3 (s, 3H, OCH₃), 3.9-4.3 (m, 4H, CH₂), 5.4-6.0 p.p.m. (m, 2H, CH=CH).

α , β -Unsaturated aldehyde <u>183</u>

4-Methoxy-2-butenol <u>182</u> (8 g) in methylene chloride (20 ml) was added to a slurry of pyridinium chlorochromate (24 g) in methylene chloride (200 ml). After stirring for 2 hrs, ether (200 ml) was added. The mixture was filtered through celite and Florisil. Distillation of the filtrate afforded 3.0 g (37%) of 4-methoxy-2-butenal <u>183</u>, b.p. 50-52°/12 mM, lit. b.p. 72-75°/ 26 mM; p.m.r. (CDCl₃): δ 3.4 (s, 3H, OCH₃), 4.1-4.3 (m, 2H, <u>CH₂OCH₃), 6-6.4 (m, 1H, CH=CH</u>-CHO), 6.6-7.0 (m, 1H, <u>CH</u>=CH-CHO), 9.4 p.p.m. (d, 1H, CHO, J = 7 Hz); i.r. (film): γ_{max} 1690 cm⁻¹ (C=O).

Silyl alcohol 194

n-Butyl lithium (150 ml of 1.6 M sol) was slowly added to tetrahydrofuran (150 ml) at -78°. To the stirred yellow solution was added dropwise a solution of propargyl alcohol (7 ml, 120 mM) in tetrahydrofuran (50 ml). Near the end of the ad-The dition, the stirring stopped (the solution formed a gel). mixture was shaken manually for 10-15 min. After 1 hr at -78° trimethylsilyl chloride (30 ml, 240 mM) in tetrahydrofuran (30 ml) was added slowly over 45 minutes. The solution was allowed to warm up to room temperature (2 hrs) and 2% HCl (50 ml) was added slowly. After stirring for 15-20 min, the tetrahydrofuran layer was separated and the aqueous phase was reextracted with ether (100 ml). The combined organic phases were dried (MgSO₄). Vacuum distillation afforded 10.2 g (67%) of alcohol 194, b.p. 68-70°/7 mm, lit. 65°/10 mm; p.m.r. (DCCl₃ and few drops D_2O): δ (s, 9H, Si(CH₃)₃), 4.0 p.p.m. (s, 2H, <u>CH₂OH</u>).

α , β -Unsaturated aldehyde 196

To a refluxing suspension of lithium aluminum hydride (.6 g) in tetrahydrofuran (100 ml) was added dropwise over 10 minutes a solution of the alcohol 194 (3.7 g) in tetrahydrofuran (25 ml). After refluxing for $2\frac{1}{2}$ hrs saturated sodium chloride (10 ml) was added. The solution was decanted from the white sticky residue. The residue was thoroughly washed with tetrahydrofuran (3 x 50 ml). The combined tetrahydrofuran fractions were washed with satd. NaCl (20 ml), dried $(MgSO_A)$ and evaporated. The residue was dissolved in methylene chloride and added to a slurry of pyridinium chlorochromate (6.5 g) and celite (6 g) in methylene chloride (100 ml). After stirring for $l\frac{1}{2}$ hrs, ether (100 ml) was added. The mixture was filtered through a pad of Florisil and evaporated on a rotary evaporator (temperature < 20°). Vacuum distillation of the residue afforded 1.6 g (43%) of α , β -unsaturated aldehyde 196, b.p. 40-42°/ 8 mm; p.m.r. (DCCl₃): δ 0.1 (s, 9H, (CH₃)₃Si), 6.4 (q, 1H, $J_1 = 7 \text{ Hz}, J_2 = 18 \text{ Hz}, \underline{CH}=CH-Si(CH_3)_2), 7.0$ (d, 1H, J = 18 Hz, $CH=CH-Si(CH_3)_2$, 9.4 p.p.m. (d, 1H, J = 7 Hz, CHO); i.r. (film): γ_{max} 2950, 1690 cm⁻¹ (C=O).

Alcohol 200

Sodium hydroxide (4.2 g, 105 mM) was added slowly to a vigorously stirred mixture of chloride <u>199</u> (12.5 g, 90 mM) and thiophenol (10 ml, 100 mM) in water (40 ml) at 100°. The mixture was stirred for 5 hrs at 100°, extracted with ether (2 x 200 ml), dried (MgSO₄) and evaporated. Distillation of the residue afforded 12.5 g (50%) of alcohol <u>200</u>, b.p. 115-120°/.2 mm, as a mixture of isomers (approximately 9:1 cis/trans); p.m.r. (CDCl₃ + few drops D_2O): δ 3.4-3.7 (m, 2H, <u>CH</u>₂OH), 3.8-4.2 (m, 2H, PhS<u>CH</u>₂), 5.0-6.0 (m, 2H, CH=CH), 7.0-7.5 p.p.m. (m, 5H, C₆H₅).

α , β -Unsaturated aldehyde 201

Alcohol <u>200</u> (3.6 g) in methylene chloride (10 ml) was added to a slurry of pyridinium chlorochromate (5.5 g, 1.4 eq) and 5 g of celite in methylene chloride (200 ml). After stirring 2 hrs at room temperature, ether (200 ml) was added. The mixture was filtered through a pad of celite and Florisil. Column chromatography of the residue on SiO_2 act II using methylene chloride afforded 2.2 g (60%) of fairly pure aldehyde; p.m.r. (CDCl₃): δ 3.6 (d, 2H, <u>CH</u>₂-CH=CH, J = 7 Hz), 6.0 (q, 1H, CH=<u>CH</u>CHO, J₁ = 16 Hz, J₂ = 7 Hz), 6.9 (d of t, 1H, <u>CH</u>=CHCHO, J₁ = 16 Hz, J₂ = 7 Hz), 7.0-7.6 (m, 5H, C₆H₅), 9.8 p.p.m. (d, 1H, CH=CH-<u>CH</u>O, J = 7 Hz); i.r. (film): γ_{max} 1690 cm⁻¹ (C=O).

Synthesis of β -lactams 180, 185, and 198

Azidoacetyl chloride (1.2 g, 10 mM) in methylene chloride (25 ml) was added dropwise over 30 minutes to a solution of the Schiff base (10 mM) and triethylamine (1 g, 10 mM) in methylene chloride (50 ml). The brown to black solution was stirred 1 hr, washed with H_2O (2 x 50 ml), dried (MgSO₄) and evaporated. Chromatography of the residue on 80 g of SiO₂ act II using CHCl₃/1-2% MeOH as eluent afforded the β -lactam in the indicated yield as a mixture of diasteriomers.

 β -Lactam 180

40% yield; p.m.r. $(CDCl_3): \delta 1.3$ (bq, 6H, OCH_2CH_3), 4.0-4.5 (m, 4H, OCH_2CH_3), 4.5-5.6 (m, 6H, $CHPO(OEt)_2$, CHN₃, CHCH=CH₂), 6.3-6.6 (m, 2H, furan), 7.4-7.5 p.p.m. (m, 1H, furan); i.r. (film): γ_{max} 3000, 2100 (N₃), 1770 cm⁻¹ (C=O); m.s.: m/e 354 (M⁺), 327 (M⁺-27), 326 (M⁺-28), 271. 43% yield; p.m.r. $(CDCl_3): \delta 1.3 (bq, 6H, OCH_2CH_3)$ 3.3 (d, 3H, OCH₃), 3.8 (bd, 2H, CH_2OCH_3), 4.0-4.5 (m, 4H, OCH_2CH_3), 4.8-6.0 (m, 5H, $CHPO(OEt)_2$, CHN_3 , <u>CHCH=CHPh</u>), 6.3-6.6 (m, 2H, furan), 7.3-7.4 p.p.m. (m, 1H, furan); i.r. $(DCCl_3): \gamma_{max}$ 2900, 2100 (N_3) , 1770 cm⁻¹ (C=O); m.s.: m/e 370 (M^+-28) , 316, 315.

 β -Lactam 198

yield 70%; p.m.r. $(CDCl_3): \delta -.1 (s, Si(CH_3)_3, of$ one diasteriomer); 0.0 (s, Si(CH₃)₃, of the other diasteriomer), 1.0-1.4 (m, 6H, OCH₂CH₃), 3.8-4.3 (m, 4H, OCH₂CH₃), 4.4-4.75 (m, 2H, CHN₃, CHCH=CH-Si(CH₃)₃), 5.0 (d, CHPO(OEt)₂ of one diasteriomer, J = 20 Hz), 5.3 (d, CHPO(OEt)₂ of the other diasteriomer, J = 20 Hz), 5.5 (q, 1H, CH=CH-Si(CH₃)₃, J₁ = 7 Hz, J₂ = 16 Hz), 5.8 (d, 1H, CH=CH-Si(CH₃)₃, J = 16 Hz), 6.0-6.5 (m, 2H, furan), 7.2-7.4 (m, 1H, furan); i.r. (film): γ_{max} 2950, 2100 (N₃), 1770 cm⁻¹ (broad, C=O); m.s.: m/e m/e 411 (M⁺-15), 398 (M⁺-28), 343.

Bibliography

- 1. H. Staudinger, Liebigs Ann. Chem., 356, 51 (1907).
- T.H. Clark, J.R. Johnson and R. Robinson, "The Chemistry of Penicillin", Princeton University Press, Princeton, New York (1949).
- G.G.F. Newton and E.P. Abraham, Nature (London), <u>175</u>, 548 (1955); Biochem. J., 62, 651 (1955).
- 4. G.G.F. Newton and E.P. Abraham, Biochem. J., 79, 393 (1961).
- 5. D.C. Hodgkin and E.N. Maslen, Biochem. J., 79, 393 (1961).
- E.H. Flynn, "Cephalosporins and Penicillins, Chemistry and Biology", Academic Press, New York, London (1972).
- 7. H. Aoki, H. Sakai, M. Kohsaka, T. Konomi, J. Hosada,
 T. Kubochi, E. Iguchi and H. Imanaka, J. Antibiotics, <u>29</u>,
 492 (1976).
- M. Hashimoto, T. Komori and T. Kamiya, J. Amer. Chem. Soc., 98, 3023 (1976).
- 9. M. Hashimoto, T. Komori and T. Kamiya, J. Antibiotics, <u>29</u>, 890 (1976).
- Y. Mine, S. Nonoyama, H. Kojo, S. Fukada and M. Nishida,
 J. Antibiotics, <u>30</u>, 932 (1977).
- 11. D.B.R. Johnston, S.M. Schmitt, F. Aileen Bouffard and B.G. Christensen, J. Amer. Chem. Soc., 100, 314 (1978).
- K. Okamura, S. Hirata, Y. Okumura, Y. Fukagawa, Y. Shimauch,
 K. Kouno, T. Ishimura and J. Leun, J. Antibiotics, <u>31</u>,
 480 (1978).
- A. Brown, D.F. Corbett, A.J. Eglington and T.T. Howarth,
 J. Chem. Soc. Chem. Comm., 523 (1977).

- 14. K. Maeda, S. Takahashi, M. Sezaki, K. Imuma, H. Naganawa, S. Kondo, M. Ohno and H. Umezawa, J. Antibiotics, <u>30</u>, 770 (1977).
- 15. T.T. Howaith and A.G. Brown, J. Chem. Soc. Chem. Comm., 266 (1976).
- P.M. Blumberg and J.L. Strominger, Bacteriol. Rev., <u>38</u>, 291 (1974).
- D.J. Tipper and J.L. Strominger, Proc. Nat. Acad. Sci.
 U.S.A., <u>54</u>, 1133 (1965).
- 18. J.L. Strominger, P.M. Blumberg, H. Suginaka, J. Umbeit and G.G. Wickus, Proc. Roy. Soc. Ser. B, 179, 369 (1971).
- 19. A. Tomasz and S. Waks, Proc. Nat. Acad. Sci. U.S.A., <u>72</u>, 4162 (1975).
- 20. D. Boyd, Proc. Nat. Acad. Sci. U.S.A., 74, 5239 (1977).
- 21. B.G. Spratt, Sci. Prog. Oxford, 65, 101 (1978).
- 22. M.H. Richmond and N.A.C. Curtis, Annuals of the N.Y. Academy of Sciences, 235, 553 (1974).
- 23. G.V. Rolinson, Proc. R. Soc. London B, 179, 403 (1971).
- 24. R.P. Ambler, Biochem. J., 151, 197 (1975).
- 25. R. Virden, A. Bristow and R.H. Pain, Biochem. J., <u>149</u> 397 (1975).
- 26. G.K. Scott, Biochem. Soc. Trans., 1, 159 (1973).
- 27. "Progress in Medicinal Chemistry", edited by G.P. Ellis and G.B. West, Vol. 12, pp 395-477, American Elsevier Publishing Company Inc., New York, 1975.
- 28. P.G. Sammes, Chem. Rev., 133 (1976).
- 29. "Recent Advances in the Chemistry of β -Lactam Antibiotics", edited by J. Elks, special publication no. 28, the Chemical Society, Burlington House, London (1977).

- 30. J. Sheehan and Henry Logan, J. Amer. Chem. Soc., <u>84</u>, 2983 (1962).
- 31. R.B. Woodward, K. Heusler, J. Gosten, P. Naegli, W. Opplizer, R. Ramage, S. Ranganathan and H. Vorburggen, J. Amer. Chem. Soc., 88, 852 (1966); Science 153, 487 (1966).
- 32. K. Heusler in ref. 6, pp 273-279.
- 33. P.G. Sammes, Chem. Rev., 76, 113 (1976).
- 34. B.G. Christensen, "Annual Reports in Medicinal Chemistry", edited by F.H. Clarke, p 271, Academic Press, New York, 1976.
- 35. M. Hashimoto and T. Kamiya, The Japanese Journal of Antibiotics, s-218, 1977.
- 36. A.K. Bose, G. Spiegelham and M.S. Manhas, J. Amer. Chem. Soc., 90, 4506 (1968).
- 37. R.A. Firestone, N.S. Maciejewicz, R.W. Ratcliffe and B.G. Christensen, J. Org. Chem., 39, 437 (1974).
- 38. Y. Yashman and J.A. Edwards, J. Org. Chem., 43, 1538 (1978).
- 39. R.W. Ratcliffe and B.G. Christensen, Tetrahedron Lett., 4645 (1973).
- 40. R.W. Ratcliffe and B.G. Christensen, Tetrahedron Lett., 4649 (1973).
- 41. R.W. Ratcliffe and B.G. Christensen, Tetrahedron Lett., 4653 (1973).
- 42. R.W. Ratcliffe and B.G. Christensen, Tetrahedron Lett., 3567 (1974).
- 43. L.D. Cama and B.G. Christensen, J. Amer. Chem. Soc., <u>96</u>, 7582 (1974).
- 44. R. Firestone, J.L. Fahey, N.S. Maciejewicz, G. Patel andB.G. Christensen, J. Med. Chem., 551 (1977).

- 45. T.W. Doyle, B. Belleau, B.-Y. Luh, C.F. Ferrari, M. Menard, J.L. Douglas, D.T.-W. Chu, G. Linn, L.R. Morris, D. Rivest and M. Casey, Can. J. Chem., 55, 484 (1977).
- 46. T.W. Doyle, B. Belleau, B.-Y. Luh, T.T. Conway, M. Menard, J.L. Douglas, D.T.-W. Chu, G. Linn, L.R. Morris, P. Rivest and M. Casey, Can. J. Chem., <u>55</u>, 484 (1977).
- 47. T.W. Doyle, B.-Y. Luh and A. Martel, Can. J. Chem., <u>55</u>, 2700 (1977).
- 48. T.W. Doyle, A. Martel and B.-Y. Luh, Can. J. Chem., <u>55</u>, 2708 (1977).
- 49. T.W. Doyle, B.-Y. Luh, D.T.-W. Chu and B. Belleau, Can. J. Chem., <u>55</u>, 2719 (1977).
- 50. T.W. Doyle, Can. J. Chem., 55, 2714 (1977).
- 51. T.W. Doyle, J.L. Douglas, B. Belleau, J. Meunier and Bing-Yu Luh, 55, 2873 (1977).
- 52. W.F. Huffman, K.G. Holden, T.F. Buckley III, J.G. Gleason and L. Wu, J. Amer. Chem. Soc., <u>99</u>, 2352 (1977).
- 53. D.B. Bryan, R.F. Hall, K.G. Holden, W.F. Huffman and J.G. Gleason, J. Amer. Chem. Soc., 99, 2353 (1977).
- 54. J. Finkelstein, K.G. Holden, R. Sneed and C.D. Perchonock, Tetrahedron Lett. 1855 (1977).
- 55. J. Finkelstein, K.G. Holden and C.F. Perchonock, Tetrahedron Lett., 1629 (1978).
- 56. J.K. Rasmussen and A. Hassner, Chem. Rev., 76, 389 (1976).
- 57. Ref. 29, p 46
- 58. Ref. 29, p 1
- 59. D.J. Aberhart, Tetrahedron, 33, 1545 (1977).

- 60. A.K. Bose, M.S. Manhas, J.C. Kapur, S.D. Sharma and S.G. Amin, J. Med. Chem., 17, 541 (1974).
- 61. A. K. Bose, S.D. Sharma, J.C. Kapur and M.S. Manhas, Synthesis, 216 (1973).
- 62. A.K. Bose, B. Anjaneyulu, S.K. Bhattacharya and M.S. Manhas, Tetrahedron, 23, 4769 (1967).
- 63. D.A. Nelson, J. Org. Chem., 37, 1448 (1972).
- 64. G. Stacy and R. Morath, J. Amer. Chem. Soc., 74, 3885 (1952).
- 65. J. Sheehan and V.S. Frank, J. Amer. Chem. Soc., <u>71</u>, 1856 (1949).
- 66. H.B. Kagan, J.J. Basselier and J.L. Lucke, Tetrahedron Lett., 941 (1964).
- 67. H. Buchi, K. Steen and E. Eschenmoser, Helv. Chim. Acta,48, 1746 (1965).
- 68. H. Yanagisawa, M. Fukushima, A. Ando and H. Nakaô, Tetrahedron Lett., 2705 (1975).
- 69. R.M. Roberts and P.S. Vogt, J. Amer. Chem. Soc., <u>78</u>, 4778 (1956).
- 70. H. Moore, L. Hernandez Jr. and R. Chambers, J. Amer. Chem. Soc., <u>100</u>, 2245 (1978).
- 71. M.S. Manhas and A.K.Bose, "Synthesis of Penicillin, Cephalosporins and Analogs", Marcel Decker, 1969, pp 23-26.
- 72. M. Kamlett and R. Minesinger, J. Org. Chem., <u>36</u>, 610 (1971).
- A.I. Biggs and R.A. Robinson, J. Chem. Soc.,
 388 (1961).
- 74. Developed by G. Hakimelahi in our laboratories.
- 75. E. Muller, R. Heischkeil and M. Bauer, Ann. Chem., <u>677</u>, 55 (1964).

- 76. E.J. Corey and A. Venkateswarlu, J. Amer. Chem. Soc., <u>94</u>, 6190 (1970).
- 77. J.L. Lucke and H.B. Kagan, Bull. Soc. Chim. (France), 2450 (1968).
- 78. E.J. Corey and J.W. Suggs, Tetrahedron Lett., 2647 (1975).
- 79. E.J. Corey, N.W. Gilman and B.E. Ganem, J. Amer. Chem. Soc., 90, 5616 (1968).
- 80. A. Ugolini and G. Just, unpublished results.
- 81. C.H. Robinson, L.E. Finckenor, R. Tiberi and E.P. Oliveto, Steroids, 3, 639 (1964).
- 82. L. Fieser and M. Fieser, "Reagents for Organic Synthesis", Vol. 1, p 144, John Wiley and Sons, N.Y., 1967.
- J. Smejkal and L. Kalvoda, Coll. Czechoslov. Commun., <u>38</u>, 1981 (1973).
- 84. L. Fieser and M. Fieser, "Reagents for Organic Synthesis", Vol. 1, p 200, John Wiley and Sons, N.Y., 1967.
- J.F. McOmie, M.L. Watts and D.E. West, Tetrahedron,
 24, 2289 (1968).
- 86. F.M. Dean, J. Goodchild, L.E. Houghton, J.A. Martin, R.B. Morton, B. Parton, A.W. Price and N. Somvichien, Tetrahedron Lett., 4153 (1966).
- 87. E.J. Corey, J.L. Gras and P. Ulrich, Tetrahedron Lett., 809 (1976).
- 88. Personal Communication, P. Ulrich, Harvard University.
- 89. Best results were obtained with (nBu)₄NF prepared according to the procedure of J. Pless, J. Org. Chem, <u>39</u>, 2644 (1974).

90. Ref. 6, p 302

- 91. "The Chemistry of the Carbonyl Group", edited by S. Patai, Vol. 1, pp 461-505, Interscience, New York, 1966.
- 92. R.E. Bowman and W.D. Fordham, J. Chem. Soc., 2758 (1951).
- 93. A.K. Bose, G. Spiegelman and M.S. Manhas, Tetrahedron Lett., 3167 (1971).
- 94. W. Still, M. Kahn and A. Mitra, J. Org. Chem., <u>43</u>, 2923 (1978).
- 95. G. Just and T.J. Liak, Can. J. Chem., 56, 211 (1978).
- 96. J. Gleason, W.F. Huffman and K.G. Holden, U.S. patent 4,000,154, Dec. 28, 1976.
- 97. M.I. Kabachnik and T. Ya. Medved, Doklady Akad. Nauk. S.S.S.R., 83, 689 (1952).
- 98. J. Rachon and C. Wasielewski, Z. Chem., 254 (1973).
- 99. J. Rachon and C. Wasielewski, Tetrahedron Lett., <u>18</u>, 1609 (1978).
- 100. N.I. Shuikin, M.V. Yushkeirch and G.S. Belikova, Sbornik Statei Obshchei Khim., <u>2</u>, 1112 (1953); C.A., <u>49</u>, 4616e (1955).
- 101. Saburo Hattori (to Mitsubishi Chemical Industries Ltd), Japanese patent 5069, July 17, 1957; C.A., <u>52</u>, 10159d (1958).
- 102. Subori Hattori, Yûki Gôsei Kogaku Kyôkai Shi, <u>19</u>, 453 (1961); C.A. <u>55</u>, 20927c (1961).
- 103. A.P. Skoldinov, A.P. Arendaruk and T.M. Godzhello, J. Org. Chem. USSR, 6, 421 (1970).
- 104. G.W. Kabalka and H.C. Hedgecock, J. Org. Chem., <u>40</u>, 1776
 (1975).
- 105. R. Boss and R. Scheffold, Angew. Chem. Int. Ed., <u>15</u>, 558 (1976).

- 106. I. Ichikizaki, C.C. Yao, Y. Fujita and Y. Hasebe, Bull. Chem. Soc., Japan, 28, 80 (1965).
- 107. E.J. Corey and W. Suggs, J. Org. Chem., 38, 3224 (1973).
- 108. P. Colborn and F. Scheinman, J. Chem. Soc. Perkin 1, 2870
 (1973).
- 109. G. Stork and E. Colvin, J. Amer. Chem. Soc., 93, 2080 (1971).
- 110. G. Stork and M.E. Jung, J. Amer. Chem. Soc., 96, 3683 (1974).
- 111. E.J. Corey, G. Fleet and M. Kato, Tetrahedron Lett., 3963
 (1973).
- 112. V.F. Mironov and N.G. Maksimova, Izv. Akad. Nauk, S.S.S.R.
 Otd. Khim. Nauk, 2059 (1960).
- 113. G. Stork, M.E. Jung, E. Colvin and Y. Noel, J. Amer. Chem. Soc., 96 3685 (1974).
- 114. R. Mantione and Y. Leroux, J. Organometallic Chem., <u>31</u>, 5 (1971).
- 115. Y. Kishi, M. Aratani, H. Taninio, T. Fukayama, T. Goto, S. Inoue, S. Sugiura and H. Kakoi, Chem. Comm., 64 (1972).
- 116. Paul Donnini, Ph.D. thesis, page 72, McGill University, Montreal (1976).
- 117. J. Colonge and G. Porlane, Bull. Soc. Chim. France, 953
 (1955).
- 118. Y. Besace and I. Marszak, Bull. Soc. Chim. France, 2275
 (1971).
- 119. I. Fleming, personal communication, see also Chem. Comm., 679 (1976).
- 120. G. Tadema, P. Vermeer, J. Meyer and L. Brandsma, Rec. Trav. Chem. Pays Bas, 95, 66 (1976).

- 121. Peter Sieber, Helv. Chim. Acta, 60, 2711 (1977).
- 122. E.F. Rothgery and L.F. Hohnstedt, Inorg. Chem. <u>10</u>, 181
 (1971).
- 123. M.S. Manhas, S. Jeng and A.K. Bose, Tetrahedron, <u>24</u>, 1237 (1968).
- 124. J.L. Luche, H.K. Kagan, R. Parthasarathy, G. Tsoucaris,C. de Rango and C. Zeliver, Tetrahedron, <u>24</u>, 1275 (1968).