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Abstract

Modelling financial interconnections and forecasting extreme losses are crucial for risk manage-
ment in financial markets. This thesis studies multivariate risk spillovers at the high-dimensional
market network level, as well as univariate extreme risk modelling at the asset level. The first
chapter proposes a novel time series econometric method to measure high-dimensional directed
and weighted market network structures. Direct and spillover effects at different horizons, be-
tween nodes and between groups, are measured in a unified framework. Using a similar network
measurement framework, the second chapter investigates the relationship between stock illiquid-
ity spillovers and the cross-section of expected returns. I find that central industries in illiquidity
transmission networks earn higher average stock returns (around 4% per year) than other indus-
tries. The third chapter proposes a new Dynamic Stable GARCH model, which involves the use
of stable distribution with time-dependent tail parameters to model and forecast tail risks in an
extremely high volatility environment. We can differentiate extreme risks from normal market

fluctuations with this model.



La modélisation des interconnexions financieres et la prévision des pertes extrémes sont es-
sentielles pour la gestion des risques sur les marchés financiers. Cette thése étudie les retombées
multivariées du risque 4 des niveaux de réseau de marché a haute dimension, ainsi que la modéli-
sation de risque extréme univariée au niveau des actifs. Le premier chapitre propose une nouvelle
méthode économétrique en série temporelle pour mesurer les structures de réseaux de marché
dirigées et pondérées de grande dimension. Les effets directs et indirects a différents horizons,
entre nuds et entre groupes, sont mesurés dans un cadre unifié. En utilisant un cadre de mesure
de réseau semblable, le deuxieme chapitre étudie la relation entre les retombées de I'illiquidité des
actions et la section transversale des rendements attendus. Je constate que les industries centrales
des réseaux de transmission d’illiquidité gagnent un rendement moyen plus élevé (environ 4% par
an) par rapport aux autres industries. Le troisieme chapitre propose un nouveau modele GARCH
Dynamic Stable qui implique 1’utilisation d’une distribution stable avec des parametres de queue
dépendant du temps pour modéliser et prévoir les risques de queue dans un environnement de
volatilité¢ extrémement €levée. Nous pouvons différencier les risques extrémes des fluctuations

normales du marché par ce modele.
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Introduction

Since the financial crisis of 2007-09, academic researchers and financial regulators have a grow-
ing interest in investigating interconnections in financial markets and in revisiting extreme losses
prediction methods. This thesis is composed by three papers and studies both multivariate risk
spillovers at the high-dimensional market network level and univariate extreme risk modelling at
the asset level.

Financial market components (markets, banks, products, etc.) are connected with each other,
and these interconnections can be represented by financial network structures. However, many net-
work structures are latent and not readily available in databases. For instance, the relationships be-
tween entities (e.g., detailed information on intra-bank asset and liability exposures) in a financial
network are usually unknown. To empirically study a market network from financial data, we need
an econometric measurement framework to identify and quantify the underlying network struc-
ture. Chapter 1 proposes a novel network econometric measurement framework to better measure
directed and weighted network structures using financial time series data in a high-dimensional
context. Direct and spillover effects, between nodes and between groups, are measured in a unified
framework. Causality at different horizons in the network is measured through a causality measure
at different horizons. With this framework at hand, We provide our estimated market networks
with new econometric connectedness measures. The market systemic risk that is quantified by our
connectedness measures has an intrinsic network foundation. We investigate the S&P 100 implied
volatility network in the US stock market to illustrate the usefulness of our method in network
analysis. We find that 7 out of the 10 most influential firms in the S&P 100 belong to the finan-
cial sector. Top investment banks (Morgan Stanley, Goldman Sachs and Bank of America) have
the greatest influence in the financial sector. Market connectedness is especially strong during the

recent global financial crisis, and this is mainly due to the high connectedness within the financial



sector and the spillovers from the financial sector to other sectors.

In Chapter 2, I estimate the illiquidity interconnections among different industries in the US
stock markets and investigate the relationship between stock illiquidity spillovers and the cross-
section of expected returns. I study industry-level illiquidity spillovers in a directed network that
describes the interconnections among stocks’ bid-ask spreads, where the interconnections are la-
tent and are estimated by a Granger-type measure. In the directed illiquidity transmission network,
the illiquidity of high sensitive centrality (SC) industries, i.e., those active at receiving illiquidity
from others, as well as high influential centrality (IC) industries, i.e., those active at transferring
illiquidity to others, tends to covary with that of their neighbours and neighbours’ neighbours
across different horizons due to illiquidity spillovers. As a result, long run returns of the portfolios
that contain stocks of central (high SC or high IC) industries may be more volatile because of
weak diversification of the liquidity risk across different horizons. Thus, investors would require
compensations for holding these central stocks. I confirm this conjecture and find that central in-
dustries in illiquidity transmission networks do earn higher average stock returns (around 4% per
year) than other industries. Market-beta, size, book-to-market, momentum, liquidity and idiosyn-
cratic volatility effects cannot account for the high average return earned by central industries.

Chapter 3 studies extreme risk measurement and prediction for univariate time series. I pro-
pose a new Dynamic Stable GARCH model, which involves the use of stable distribution with
time-dependent tail parameters to model and forecast tail risks in an extremely high volatility en-
vironment. We can differentiate extreme risks from normal market fluctuations with this model.
Asymptotic inference methods in high volatility environments are unreliable, as standard regularity
conditions may not apply or may hold only weakly. I apply a Monte Carlo test inference proce-
dure to construct the confidence interval of the tail parameter. Empirical analysis on the Nikkei
225 index shows that the Dynamic Stable GARCH model provides the best in-sample and out-
of-sample one-day Value-at-Risk fittings and forecasts at levels above 99% across different model

specifications.



Chapter 1

Multiple Horizon Causality in Network
Analysis: Measuring Volatility

Interconnections in Financial Markets

Abstract

Existing literature does not provide economic and financial networks with a unified measure to
estimate network spillovers for empirical studies. In this paper, we propose a novel time series
econometric method to measure high-dimensional directed and weighted market network struc-
tures. Direct and spillover effects at different horizons, between nodes and between groups, are
measured in a unified framework. We infer causality effects in the network through a causality
measure based on flexible VAR models specified by the LASSO approach. (Non-sparse) network
structures can be estimated from a sparse set of model parameters. To summarize complex esti-
mated network structures, we also proposed three connectedness measures that fully exploit the
flexibility of our network measurement method. We apply our approach to investigate the daily
implied volatility interconnections among the S&P 100 stocks over the period of 2000 - 2015 as
well as its subperiods. We find that 7 out of the 10 most influential firms in the S&P 100 belong to
the financial sector. Top investment banks (Morgan Stanley, Goldman Sachs and Bank of Amer-

ica) have the greatest influence in the financial sector. Market connectedness was especially strong
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during the recent global financial crisis, and this is mainly due to the high connectedness within

the financial sector and the spillovers from the financial sector to other sectors.

1.1 Introduction

Since the financial crisis of 2007-09, academic researchers and financial regulators have a grow-
ing interest in investigating interconnections in financial markets. Network models have become
increasingly popular to study economic interdependence by looking into the market architecture.
Allen and Babus (2008) provide a survey showing a wide range of applications of network analysis
in economics and finance. For example, bankruptcy contagion, volatility spillovers, risk propaga-
tion and amplification can all be studied in economic and financial network frameworks.! As
Andersen, Bollerslev, Christoffersen and Diebold (2012) mention, modern network theory can
provide a unified framework for systemic risk measures.

In macroeconomics, theoretical literature usually takes market structures as given, and then
studies the roles of market architecture in the relationship between idiosyncratic risk and market-
wide risk. In finance, economic links between firms may serve as the channel of gradual infor-
mation diffusion. Individual firm’s returns, return volatilities and credit spreads can be predicted
via firms’ linkages, while these empirical studies require identification of the underlying network
structures, such as those from the Input-Output Surveys of the Bureau of Economic Analysis, the
reported consumer-supplier relationships by public business enterprises or the international trade
flows data from the International Monetary Fund (IMF) Direction of Trade Statistics.2 In fact,
many network structures are latent and not readily available in databases. For instance, the relation-
ships between entities (e.g., detailed information on intra-bank asset and liability exposures) in a
financial network are usually unknown. To empirically study a market network from financial data,
we need an econometric measurement framework to identify and quantify the underlying network

structure. A growing econometric literature is responding to this demand.®> Perhaps surprisingly,

ISee Buraschi and Porchia (2012), Elliott, Golub and Jackson (2014), Acemoglu, Ozdaglar and Tahbaz-Salehi
(2015a), Acemoglu, Akcigit and Kerr (2015¢) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015b) among others.

2See Cohen and Frazzini (2008),Hertzel, Li, Officer and Rodgers (2008), Menzly and Ozbas (2010), Aobdia,
Caskey and Ozel (2014), Gengay, Signori, Xue, Yu and Zhang (2015), Albuquerque, Ramadorai and Watugala (2015)
and Gengay, Yu and Zhang (2016) among others.

3See Billio, Getmansky, Lo and Pelizzon (2012), Hautsch, Schaumburg and Schienle (2015), Diebold and Yilmaz
(2014), Demirer, Diebold, Liu and Yilmaz (2015), Bianchi, Billio and Casarin (2015), Barigozzi and Brownlees (2016)
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however, none of the studies appear to provide a satisfactory tool to measure high-dimensional
market networks for general empirical purposes.

In this paper, we propose a novel network econometric measurement framework to better
measure directed and weighted network structures using financial time series data in a high-
dimensional context. Direct and spillover effects, between nodes and between groups, are mea-
sured in a unified framework. Causality at different horizons in the network is measured through
a causality measure at different horizons. With this framework at hand, we provide estimated
market networks with new econometric connectedness measures. The market systemic risk that is
quantified by our connectedness measures has an intrinsic network foundation.

More concretely, we apply the short run and long run Granger causality measures” as the basic
econometric framework to quantify the strengths of directed edges in a market network. We go
beyond the simple Granger noncausality testing, i.e. whether an edge exists between two nodes,
but explicitly measure the degree of the multiple horizon causality to obtain the strength of inter-
connections between two sets of nodes. Following Dufour and Taamouti (2010), we estimate the
multiple horizon causality in the Vector Autoregressive model (VAR) settings. To overcome high-
dimensionality problems in estimation, we use and extend the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) techniques in the VAR estimations, which are similar to those developed
by Barigozzi and Brownlees (2014) and Barigozzi and Brownlees (2016). Actually, (non-sparse)
network structures, which are measured by our causality measures table, can be estimated from a
sparse set of autoregressive coefficients and errors concentration matrices. Under mild conditions,
we prove the asymptotic consistency of the estimators of our directed and weighted edge measures.

Our network measurement method has the following 7 appealing features:

1. The network edges we measure are directed. Allowing directed network structures provides
us with important insights into the direction of network spillovers, since spillovers and rela-

tionships in economic and financial networks are generally asymmetric.

2. The network edges we measure are weighted. We do not merely identify the edges between

two sets of nodes, but explicitly quantify their economic strengths.

and Giudici and Spelta (2016) among others.
4See Dufour and Renault (1998), Dufour, Pelletier and Renault (2006) and Dufour and Taamouti (2010).
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3. In contrast to correlation-based measures, the directed edges we measure have causality
implications. This is an important feature for theory verifications, model predictions and

policy making.

4. Spillovers at different horizons in an economic network can be identified and measured by
analyzing causality measures at different horizons. The multiple horizon causality measures

gauge the net effects while simultaneously taking direct and indirect effects into account.

5. Our network measurement method overcomes the high-dimensionality problems in estima-
tions. Note that economic and financial network theories usually study the cases in which
the size (number of nodes) of a network is large or even goes to infinity (see, e.g., Ace-
moglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012), Elliott et al. (2014) and Acemoglu et
al. (2015b)).

6. Our network measures provide underlying market network structures with clear graphical
representations. Eichler (2007) shows that the multiple horizon causality in Dufour and
Renault (1998), the base of the multiple horizon causality measures, is well matched to path
diagrams in the multivariate time series context. Thus our network measurement framework

is also consistent with the network analysis in graph theory.

7. Point-wise edges, (i — j), as well as group-wise edges, ([i1,12,-.-,in] = [J1,J2,---» jm]), CaN
be simultaneously analyzed by our unified network econometric framework. In empirical
applications, for example, we can not only measure the relationship between firms, but also
measure the relationship between sectors® by the same data observations at firm level and

the same type of econometric measures.

We argue that a satisfactory econometric framework for studying market networks should at
least satisty Features 1 - 5: the network measurement method should be able to estimate directed
and weighted network structures with causality implications, and it can be applied to study network
spillover effects in a high-dimensional context. Feature 6 and Feature 7 are the extra advantages

of our network measurement method. Moreover, Feature 7 provides us with a new angle to study

3 A sector can be viewed as a group of firms.
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market network connectedness. It is intuitive to decompose market connectedness by the intercon-
nections between different sectors and the connectedness within each sector. This decomposition
is straightforward for economic and financial network analysis. However, the group-wise edges
measurement method for measuring sectors’ interconnections is missing in existing econometric
literature. Our network measurement method can exactly fill this blank with our Feature 7.

Considering the economy of interest, which is modelled by a market network, as an N-dimensional
Euclidean space, we use the causality measures table to provide the coordinates of each firm’s lo-
cation in the multi-dimensional economic space. The interconnectedness of a firm to the network
can be characterized by the firm’s location in the economic space. Total market connectedness
is measured by the mean of the interconnectedness measures of each firm to the economic space.
Similar to Billio et al. (2012) and Diebold and Yilmaz (2014), our market connectedness measures
are built on underlying market network structures, and thus the market systemic risk quantified
by these measures has a market network foundation. Since an economic network can be viewed
as a network connected by firms (firm-wise market), whose interconnections are measured by our
point-wise edges method (i — j), or a network connected by sectors (sector-wise market), whose
interconnections are measured by our group-wise edges method ([iy, 2, ...,in] = [J1, 2, -, Jm])s We
have three types of connectedness measures to gauge network interconnections: i) firm-wise con-
nectedness, which measures the interconnectedness of a firm-wise market; ii) firm-wise connect-
edness within a sector, which measures the interconnectedness within a given sector in a firm-wise
market; and iii) sector-wise connectedness, which measures the interconnectedness of a sector-
wise market. These three types of connectedness measures fully take advantage of the flexibility
of our network measurement method, so they can be applied to study market network connected-
ness in more flexible ways than those connectedness measures proposed by Billio et al. (2012) and
Diebold and Yilmaz (2014).

Our network measurement methods have a wide range of applications and can be applied in
a variety of research areas, including identifying and quantifying economic relationships between
firms, between sectors and between areas; measuring market connectedness; predicting financial
risks; guiding asset allocations in large portfolios; etc. Note that many latent economic and fi-
nancial network structures can be estimated by our flexible network measurement method with

varieties of panel databases, and observing that explicit identified economic network centrality and
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consumer-supplier linkage have been shown to be new risk factors in asset pricing and new de-
terminants to predict financial variables, e.g., stock return, return volatility, and credit spreadf’, we
expect more pricing factors and financial and macroeconomic variables drivers are to be discovered
by network econometric measurement methods.’

To illustrate the usefulness of our method in network analysis, we investigate the S&P 100
implied volatility network in the US stock market. Volatility network in financial markets has been
studied in Diebold and Yilmaz (2014), Demirer et al. (2015) and Barigozzi and Brownlees (2016),
but they mainly focus on realized volatility. For financial practitioners, the VIX index, calculated
from the implied volatilities of S&P 500 index option contracts, is the most popular volatility
measure to gauge market turbulences, and it is also known as a “market fear” index. Our implied
volatility network among the S&P 100 stocks® can thus be naturally viewed as an “individual fear”
network. To the best of our knowledge, implied volatility network has not yet been studied in the
financial literature.

We first look at the static network with the full sample (2000 - 2015). We identify the most
influential firms in the firm-wise market network, the most influential firms in the financial sec-
tor, and the most influential sectors in the sector-wise market network. Using rolling subsamples,
we estimate the time-varying firm-wise market connectedness before, during and after the recent
financial crisis of 2007-09, and compare it with the dynamic patterns of the firm-wise connected-
ness within each sector and the sector-wise connectedness among different sectors. In particular,
we also examine the dynamic interconnections between the financial sector and other sectors.

We find that: i) 7 out of the 10 most influential firms in the S&P 100 belong to the financial
sector, and top investment banks (Morgan Stanley, Goldman Sachs and Bank of America) have
the greatest influence in the financial sector; ii) market connectedness was especially strong during
the recent global financial crisis; iii) the high market connectedness was mainly due to the high
connectedness within the financial sector and the spillovers from the financial sector to other sec-

tors; iv) the financial sector had the highest firm-wise connectedness from 2008 to 2010, while the

6See Cohen and Frazzini (2008), Hertzel et al. (2008), Menzly and Ozbas (2010), Ahern (2013), Aobdia et al.
(2014), Gengay et al. (2015) and Gengay et al. (2016).

"For example, Jian (2016) uses a Granger-type method to identify the illigiudity network in stock markets and finds
centralities in illiquidity networks are priced in the cross-section of expected returns.

8To be included in the S&P 100, the companies should be among the larger and more stable companies in the S&P
500, and must have list options.
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connectedness of other sectors also reaches relatively high level during this period; v) the causality
effects between the financial sector and other sectors were asymmetric and displayed consider-
able variation over time, which stresses the importance of directed and weighted edges settings in
market network analysis.

This paper is motivated by the econometric literatures on the analysis of financial networks and
contributes to different strands of literature. The topic of this paper is related to recent econometric
literature on financial networks (see Billio et al. (2012), Diebold and Yilmaz (2014), Demirer et
al. (2015), Bianchi et al. (2015), Barigozzi and Brownlees (2016), Hautsch et al. (2015), Aheleg-
bey, Billio and Casarin (2015), and Giudici and Spelta (2016) among others). We differ from the
social network econometrics literature, e.g., Bramoulle, Djebbari and Fortin (2009), in the sense
that the nodes in our network setting are represented by time series financial variables (e.g., return
and volatility). The most closely related econometric literature to this paper includes: Billio et al.
(2012), Diebold and Yilmaz (2014), Demirer et al. (2015) and Barigozzi and Brownlees (2016).
Billio et al. (2012) detect the edge of a pair of nodes via testing bilateral Granger noncausality
without taking into account other nodes in the network, and thus may find misleading “spurious”
causality edges and tend to overestimate the number of linkages. Diebold and Yilmaz (2014) and
Demirer et al. (2015) overcome the spurious relation problem. They measure the directed and
weighted network structure by generalized forecast error variance decompositions in a VAR rep-
resentation. The generalized forecast error variance decomposition technique is closely related to
our multiple horizon causality measures. Unfortunately, Diebold and Yilmaz (2014) neglect the
high-dimensionality problem in their study, Demirer et al. (2015) fail to provide the theoretical
validity for their estimations and they both require the joint Gaussian innovation assumption in the
econometrics model. These drawbacks inevitably limit their applications in market network anal-
ysis for general purposes. The time series network estimation settings in Barigozzi and Brownlees
(2016) are similar to what we apply in this paper. Yet, their network structure is assumed to be
sparse and their edges, measured by long run partial correlations, are basically undirected. Among
recent literature®, only the empirical model proposed in Demirer et al. (2015) is able to study a
high-dimensional directed and weighted network structure, and none of them is able to estimate

point-wise edges and group-wise edges in a unified framework.

9 Ahelegbey (2015) provides a recent review on the network econometrics in the context of time series analysis.
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We apply the short run and long run Granger causality measures as our basic network econo-
metric measurement framework. The concept of the noncausality testing introduced by Granger
(1969) and Sims (1972) has been widely used to study dynamic relationships between time series
in economics and finance. Dufour and Renault (1998) and Dufour et al. (2006) extend this no-
tion to multiple horizon cases to study indirect causality effects. Eichler (2007) connects the short
run and long run Granger causality with path diagram in multivariate time series analysis. Based
on Geweke (1982), Dufour and Renault (1998) and Dufour et al. (2006), Dufour and Taamouti
(2010) propose the multiple causality measures to quantify the causality at any forecast horizon
h > 1. Dufour, Garcia and Taamouti (2012) apply this tool in studying the relationship among re-
turns, realized volatility and implied volatility. Dufour and Zhang (2015) further study the multiple
horizons second-order causality. In this paper, we show that market networks, with directed and
weighted edges, can be modelled and measured by the well-developed econometrics framework of
the multiple horizon causality measures. Moreover, unlike Dufour and Taamouti (2010) and Du-
four et al. (2012) who only deal with low-dimensional situations, we estimate the multiple horizon
causality measures with the LASSO approach to better fit the multiple horizon causality measure
framework into high-dimensional network analysis.

One of the motivations of this paper, identifying and quantifying the degree of interconnections
between nodes and between groups in market networks, is to provide a new way to measure market-
based systemic risk. Similar to Billio et al. (2012) and Diebold and Yilmaz (2014), our market
connectedness measures are also built upon the underlying network structure and contribute to the
strand of literature on market-based systemic risk measurement (see Acharya, Pedersen, Philippon
and Richardson (2010), Brownlees and Engle (2015), Adrian and Brunnermeier (2011), Billio et al.
(2012), Diebold and Yilmaz (2014), Hautsch et al. (2015) and Demirer et al. (2015) among others).
Benoit, Colliard, Hurlin and Perignon (2015) provide a comprehensive survey on measurement
methods for systemic risk.

Our key contribution is that we propose a novel time series econometrics network measurement
framework, which can be applied to measure high-dimensional directed and weighted market net-
work structures, without sparsity assumptions on network structures or the Gaussian assumption
on econometric models. We successfully connect the causality literature with the LASSO approach

in application to network measurement. Moreover, to the best of our knowledge, our economet-
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ric framework is the first one in the network econometric literature to explicitly allow point-wise
edges and group-wise edges to be measured in a unified framework.

The rest of this paper is organized as follows. In section 1.2, we provide a brief description of
general directed and weighted network structures and discuss the criteria of a satisfactory network
econometric framework in economic and financial network analysis. In section 1.3, we show that
directed and weighted network structures and network spillovers can be measured by the multiple
horizon causality measures table. In section 1.4, we estimate the causality table with the LASSO
approach in a high-dimensional context and provide asymptotic consistency results. In section 1.5,
we propose new market network connectedness measures for systemic measurement. In section
1.6, we investigate the static structure and the time-varying characteristics of the implied volatility

network in the US stock market. Finally, in section 1.7 we provide a short conclusion.

1.2 General Economic and Financial Network

A network is composed by two basic elements: nodes and edges. Financial institutions, for in-
stance, represented by different nodes, are linked through networks of different types of financial
contracts, such as derivatives, credits and securities. These contracts or business relationships,
between any pair of financial institutions, are represented by their edges in the financial network.
While nodes are given and known as they are always referred to some specific institutions, mod-
elling edges is always an elusive part in financial network analysis. Edges represent some implicit
economic relationships between nodes. The relationship among financial institutions in many cases
are unknown or difficult to specify. When we study the systemic risk in a financial network, edges
could be the position of banks’ loans to each other in their balance sheets, or whether they hold a
large bilateral position of some securities (e.g., credit default swap (CDS)). Without a prior specific
definition of the systemic risk, which financial contract should be selected as the edge to study a
financial network is a difficult decision to make, since loan’s edges and CDS’s edges are both the-
oretically important but their existences can be independent. Moreover, detailed information of the
financial contracts that financial institutions are holding and their counterparties is usually unavail-
able to public. Therefore, what we can measure for the edges from data is at most a proxy of what

we are interested in. This provides a broad space for econometricians to develop different statisti-
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cal network measures for different research objectives. One of the main aspects of research papers
differing from each other in the financial econometrics network literature is in their rationales of
how to construct a statistical measure to quantify the edges in a network.

Despite it, all networks have basic structures in common. A simple static network has a math-
ematical notation: G = {V,E}, where V = {1,2,....N} is the set of nodes and E = {e'/ : (i, j) €
V x V} is the set of edges. Usually, the size of the network, N, is large. Any pair of nodes in V,
(i, j), may be linked by an edge in the edge set, E. When ¢'/ = e/! is assumed, the network is undi-
rected; otherwise, the network is directed. If €'/ is assumed to be indexed by {0, 1}, the network is
unweighted; if e/ is continuous with certain degree of strength, the network is weighted.

The directed edges setting is crucial in economic and financial network analysis. Economic
relations are usually directed and the directed structures play an important role in network anal-
ysis. For instance, the presence of directed intersectoral input-output linkages can explain why
single idiosyncratic shocks may lead to market-wide aggregate fluctuations (see Acemoglu et al.
(2012)). Economic effects and information flows have directions. We use causal relationships to
describe such directed relationships in a economic network. Causality interpretations are required
for economic networks because it is the foundation for theory verifications, model predictions and
policy makings. Intuitively, if two firms have no business relationship, we do not expect there is
a causal relationship between them and vice versa. We notate the directed edges in our network
with arrows, (i — j), which indicates i causes j. Figure 1.1 shows four simple possible relations
between node A and node B in a unweighted setting. If the strength of the edges ¢*2 = €84 =0, we
say node A and node B are unlinked (fig. 1.1a); if they are linked, then either ¢ = 1 or ¢#4 =1
or A8 = ¢PA =1 (fig. 1.1b, fig. 1.1c and fig. 1.1d).

The weighted edges setting is also important. Effects in an economic network are weighted.
In social networks, knowing how well agents know each others is much more informative than
merely knowing whether they know each others, since the probability of information transmissions
is highly correlated with their familiarity. In financial networks, when we say a bank is “too big to
fail”, it implies that this bank has “big” impacts on others. When studying shock propagations or
risk amplifications in a market network, we would be especially interested in quantifying spillover
effects. Since spillovers may grow (or disappear) through edges in a network, unweighted edges

setting is not able to model the quantitative change in spillover processes. Figure 1.2 shows three
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Figure 1.1: Directions of the edges between node A and node B
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Figure 1.2: Strengths of the edge from node A to node B

possible strengths of edge from node A to node B. The strength of the edge could be zero, which
implies there is no relation from node A to node B (see fig. 1.2a). The strength of the edge could
be small and it is represented by a light arrow (see fig. 1.2b); the strength of the edge could also
be large and it is represented by a thick arrow (see fig. 1.2c). The thickness of the edge (i — j) is
weighted scaled by e'/.

Economic and financial network literature usually reports some graphs of the network they
study. The graph representation of a static network does provide us a broad and concise picture
of the underlying network structure. A static network, however, only tells us direct effects. The
indirect effects, a central part in risk spillover analysis, is nontrivial to be revealed from the direct
effects. For instance, suppose there are relations from node A to node B indirectly via two different
paths in an unweighted static network, we may naively say that the risk from node A could cascade
to node B. However, it is possible that node A has no effect on node B if the indirect effects
in those two paths are just cancelled out by each other. Hence, a network graph drawn from

a static network structure may mislead us to a wrong implication about spillover effects in the
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true economic network. Surprisingly, econometric literature on financial networks have not yet
realized this important issue. Most of them just focus on estimating static network structures
without directly measuring spillover effects.

In summary, the size of an economic network is usually large; some plausible causality in-
terpretation for nodes’ relationships in an economic network is desire; a directed and weighted
edges setting is required to uncover the effects in the underlying economic network structures; net-
work spillover effects need to be measured directly. Therefore, a satisfactory network econometric
framework should be able to estimate directed and weighted network structures with causality

implications, and it can be applied to study spillover effects in a high-dimensional context.

1.3 Multiple Horizon Causality and Networks

In this section, we model a complex network structure by causality relations, and apply the short
run and long run Granger causality measures, introduced by Dufour and Taamouti (2010), to iden-
tify and quantify the edges between two sets of nodes in the underlying network structure. We
demonstrate that the multiple horizon causality measures satisfy the criteria of a satisfactory net-
work econometric framework. It is able to estimate directed and weighted network structures with
causality implications and can be applied to study spillover effects in a high-dimensional context
Moreover, our network measurement framework has some other important features.
Suppose we observe a data sample from a jointly strictly stationary process X = { Xy, Xo;, ...,XNz},T:1 .

N is the number of nodes and T is the observable sample size. In context of economic network
analysis, the number of nodes, N, is large. The process of interest, X, can be divided by three sub-
processes as X = {XV, X' X7}, such that X = [Xi, ... X ). X' = (X s1)0 - Xy o )]
and X7 = [X(my+mat 1)e5 -+ X(my4+mo-+my)e]> Where my,my,m3 > 0 and my +my +m3 = N. I denotes
the full information set and /_w denotes the full information set without the information generated
by XW. If we further assume the full information set is generated only by X itself, 7 and I_y can
be denoted by lyyz and Iyz respectively, where lyyyz(t) denotes the information set generated by
the process X = {XW XY X%} up to time ¢, and Iyz(t) denotes the information set generated by

the sub-process {X¥,X#} up to time ¢.

Definition 1.3.1. Mean-square Causality Measure at forecast horizon /4 relative to an information
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set [

For i > 1, where by convention In(0/0) = 0 and In(x/0) = +oo for x > 0,

det{Z[X” (1 +h)|[_w)(1)]}

Qe[ X7 (LRI (1.1)

1044 7>XY|1) :=1In

is the mean-square causality measure from X" to XY (Y = W is allowed) at horizon A, given
information set /.
Since we only consider the mean-square measures in this paper, we will just call it as short run

and long run Granger causality measures or multiple horizon causality measures hereafter.

The multiple horizon causality measure, Cr (X" 7> XY|I), gauges the predictive power of
X" to XY conditional on 1. We say X" causes X" at forecast horizon  if and only if X" helps
to predict X¥ at forecast horizon 4. The value of Cy(XW — X Y|I) measures the degree of the
causal effect from X" to X? at forecast horizon 4. Consequently, the identified edge, (W — Y),
has causality implications.

There are some important properties of this type of measures.

First, generally speaking, Cp (X" — XY|I) # Cp(x¥ - XWII). The effect from W to Y is
not presumed to be equal to the effect from ¥ to W. The edges between W and Y, (W — Y) and
(Y — W), are directed.

Second, Cr(X"W — XY|I) is always nonnegative as I(_y)(t) C I(r). Co(X" — XY|I) =0if
and only if there is no causal effect from X" to XY at forecast horizon h. The value of Cf (X" —
XY|I) is increasingly monotone to the the predictive power of X" to X"'. Thus, the strength of the
edge, (W — Y), measured by the value of Cz (X" 7) XY|I), is weighted.

Third, C (XV —X Y|I) measures the indirect effect from W to Y at horizon h, while Cy (XW —
XY|I) measures the direct effect as there is only one step to be considered. For example, suppose
Cr(x% — XY|I) =0 and C(X" — XY|I) > 0 for a & > 1, it implies there is no direct effect
from W to Y, but there is an indirect effect from W to Y via other node(s) in the network. The
spillover effect from W to Y at any step / can thus be directly measured by Cr (X" — XY|I).

Fourth, the dimensions of X" and XY are arbitrary. To measure the edge from W to Y, we
only require the dimensions of the processes X W and XY, m; and my, such that m;,m, > 1 and

my+my < N. We can let W and Y represent a single node or a set of nodes. The point-wise edges,

22



where X" and XY are univariate variables (m; = my = 1), and the group-wise edges, where X W and
XY are multivariate variables (m,m> > 1), can be analysed in this unified econometric framework.
For instance, we can not only measure the edges between firms (firm-wise edges), where X" and
XY represent firms, but also measure the edges between sectors (sector-wise edges), where X" and
xY represent sectors and m; and m, are the number of firms in the sectors. Therefore, we can use
the same data observations at firm’s level and the same type of econometric measures defined in
Definition 1.3.1 to study firm-wise edges and sector-wise edges in a unified framework. In the past,
weighted aggregation is usually required if we want to study the sector-wise spillover effect with
firm-wise data. However, it would inevitably come to a cost of losing information in firm-wise

interconnections. The econometrics approach proposed in this paper overcomes this limitation.

Remark 1.3.2. If X and X7 are univariate processes denoted by X; and X ; respectively, then for

h>1

CL(X,'TXJ"I) :=1In (1.2)

G2 [X;(t+m)|I(1)]

o> [X;(t +h)ll i)()]]

The variances of the forecast errors of X;(t +h), 6>[X;(t + h)|_;(1)] and 6>[X;(t + h)|1(1)],
are both positive, and 62[X;(¢ +h) [I—iy(®)] > o2 [X;(t+h)|I(t)]. o*[X;(t+h) ENGIEEY 21X;(t+
h)|1(¢)] if the information generated by node i does not help to decrease the forecast error variance
of node j. Cr(X; — X|I) measures the causality strength from node i to node j. For notation
convenience, we hereafter let C{lj =CrL(X; — Xj|I) and C;; := Cj;. :

For any given forecast horizon 4 > 1, we have the multiple horizon causality measures for each
pair of nodes in a network as Table 1.1 shows. Point-wise edges in the network are measured by
the values of CZ, i=1,..,Nand j=1,...,N. Table 1.1 is exactly corresponding to a static network
structure. The ith row and jth column element in Table 1.1 is the strength of the directed edge from
node i to node j. C;; measures the direct effect from node i to node j: S(i — j), where S(i — j)
denote the effect from node i to node j via the path (i — j). For h > 1, Clh] measures the total indirect
effect from node i to node j via every possible path with length h: S(i = k; — kp — ... = kj,_1 —
j) forany k; e Vii=1,...,h— 1, where S(i — k; — ko — ... — k,—1 — j) denote the indirect effect
from node i to node j via the path (i — k; — k» — ... = k,—1 — j). In other words, Clh] measures

the indirect effect from node i to node j with taking into account all the interconnections in the

network. Intuitively, the forecast horizon /4 can be interpreted as the effect-radius when considering
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Table 1.1: Causality table (given forecast horizon /)

nodes 1 2 e l e _] e N
h h h h h

1 C}ll C}l2 C}f ij C}lN

2 G G - G o G i G

i choch ch C{; cly
h h h h h

VA O O Ci Cjj Cin

N Cy Chw Chi Cy,j Chn

the effect between any pair of nodes. For example, when 4 = 1, we only measure the direct effect
(1-step effect); when h = 100, the effect between any pair of nodes could “walk” via as many as
99 different other nodes in the network.!® Another way to understand the difference between Cl-lj
and Clhj (h > 1) is to consider the difference among standard network centrality measures (e.g.,
Degree, Closeness, Betweenness and Eigenvector). These centrality measures differ from each
others mainly in how to weight the importance of the nodes that a node connected to to measure
this node’s importance in the network. For instance, the degree centrality only calculate how
many nodes that a node directly connected to to characterize this node’s importance, while the
eigenvector centrality assigns relative scores to all nodes in the network based on the concept
that connections to high-scoring nodes contribute more to the score of the node in question than
equal connections to low-scoring nodes, thus the degree centrality is a “local” measure, and the
eigenvector centrality is a “global” measure. Similarly, Cl-lj is 1-step locally measuring the direct
effect, and Cf’j is h-steps globally measuring the indirect effect.

In terms of mathematical definitions, group-wise edges are the generalization of point-wise
edges. They are equivalent when the sizes of the groups equal 1. For any pair of nodes, i

and j, in a node set V, we say i E/-;l Jj if and only if Cl-hj = 0. For any pair of groups of nodes

)

10The forecast time horizon and the length of path are equivalent if we assume that direct effects take and only take
an unit of time to happen. If A does not affect B at horizon one but can affect B at horizon N, which is greater than
one, this implies A affects some other nodes at horizon one and then affects B directly. This is also implied by the
VAR specification using in this paper. Without the above assumption, the length of path depends on the time scale we
use to define time horizon. 1-step in path could represent one day or two days.
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(i1,...y0n,) and (j1,..., jn,), Where (i1,...,in,) = (J1,--s Jn,) O (i1,-eesing) O (ji1,-.s jny) = @ for
(i1seesing ), (J1s--es Jmy) CV, we say (iq,...,in, ) i (j1s -y jn,) if and only if Cl,, =0, where W =
(i1, .osin,) and Y = (j1,...s jiny)- ’

Remark 1.3.3. Let V| = (iy,...,ip,) and V2 = (ji1,..., jn,). For any i € V; and j € V,, because of
Iy, CICly, =01(i1,.  in;) & (j1,+-s Jny)] implies Clt, =0 [i & (J1s+sJny)], and Cfy ;=0
[(i1y e in,) E:Zj] implies Cf’j =0 [ia; Jjl.

Remark 1.3.3 says if a set of node(s) has no effect on some other node(s), any element of this set
of node(s) also has no effect on those node(s). It is worth to emphasize here that Cl-hj =0 871 jl for
any i € V| and for any j € V, does NOT necessarily imply C{}]VZ =01[(i1,...,0n,) 571 (J1s-ees Jnp)]- In
other words, the strength of [(i, j) C—Z k] may be strong even if the strengths of [i C_Z k] and [ C—z k]
are weak. This circumstance is analogous to the difference between pairwise independence and
mutually independence. When X; and X; are contemporaneously highly correlated, X;’s marginal
effect on X, conditional on X, will be very small since all relevant information in X; that helps to
predict X; has been captured by X;.

In fact, studying the role of a group of nodes in a network is an important topic. In social
network literature, for instance, just as looking into who is the center node in a network, which
can be measured by standard centrality measures!! (see, e.g., Freeman (1978) and Jackson et al.
(2008)), we also may want to find which group of nodes is center in a network, which can be mea-
sured by the generalizations of the standard centrality measures (see Everett and Borgatti (1999)).
From measurement perspective, the importance of a group of node(s) has to be based on the in-
terconnections of this group to other nodes in the network (and all other interconnections in the
network). To the best of our knowledge, surprisingly, measuring the effects of a group of nodes
on other nodes in a network is still missing in the network econometric literature. Our network
measurement method can exactly fill this blank. Moreover, our group-wise edges measurement
method is compatible with the classic network literature. Remark 1.3.3 suggests our generation
of pair-wise edges by group-wise edges is in line with the generation of the node centralities in
Freeman (1978) by the group centralities in Everett and Borgatti (1999).

From the discussion in this section, we have seen that the multiple horizon measures in Def-

inition 1.3.1 have causality implications for the edges it measures. It is also sufficiently flexible

'Tn network theory indicators of centrality identify the most important vertices within a graph.
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to be applied to study indirect effects in directed and weighted network structures. Properties of
network analysis, which can be applied to study complex interconnections in an economic system,
have been studied in mathematics and computer science as graph theory. As Eichler (2007) shows,
the multiple horizon causality in Dufour and Renault (1998), the base of the multiple horizon
causality measures, is also well matched to path diagrams in the multivariate time series context.
Thus our network measurement framework is also in line with the network analysis in graph the-
ory. Lastly, point-wise edges, (i — j), and group-wise edges, ([i1,i2,...,in] = [j1,J2,---,jm])> can

be analysed by our multiple horizon causality measures framework.

1.4 LASSO Estimation of Causality Measure

In this section, we estimate the multiple horizon causality measures Cr (X" — X Y1) and Cp (XW —
XY I in a high-dimensional context. Given the network’s nodes processes X = {X1;, Xor, ..., Xnt .
following Dufour and Taamouti (2010) we use the VAR framework in our econometric analysis.
Network estimation under the VAR representation is desirable since the VAR models are natu-
rally developed to investigate the pairwise effect in a complex linear structure. Unlike Dufour and
Taamouti (2010) who only deal with low-dimensional situations, we estimate the multiple horizon
causality measures with the LASSO approach to better fit the multiple horizon causality measures

framework into high-dimensional network analysis.

Assumption 1.4.1. Processes VAR Representations
The unrestricted process X = {XV XY, X7} | = {X1;,Xor, ..., Xn¢ } I is strictly stationary and

has a VAR (o) representation,

X(t) = iAkX(t—k)+u(t), (1.3)
k=1

where X (¢) = [X17,Xor, ..., Xne)' is @ N x 1 vector, Ay is N x N matrix and u(z) ~ w.n.(0,%,). £, is
a N x N positive definite matrix.

The restricted process Xo = {X, X7 }1_, is strictly stationary and has a VAR (o) representation,

(o)

X()(Z)Z ZAkX()(t—k)—{-E(l), (1.4)
k=1
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where Xo(t) = [X',X7]" is a (N —my) x 1 vector, Ay is (N —my) x (N —m) matrix and &(t) ~
w.n.(0,X¢). X¢ is a (N —my) x (N —m) positive definite matrix.

The restricted process has the following expanded representation,

o)

X(t)=Y ALDLX(t—k)+v() (1.5)
k=1
_ AV _ i}
where A,qz = 'k , Ay is defined in (1.4) and A} is the expanded coefficients for X".
Ak Nx(N—m)

J2 = [On—my)smy > Lv—my)x (N=mp) (N=my)xn @nd V(2) ~w.n.(0,Zy). Ey is a N x N positive definite

matrix.

Remark 1.4.2. Under the Assumption 1.4.1, the covariance matrix of the forecast error at horizon

h for the unrestricted model (1.3) is

h—1
IX(+h)]F 0] =) 0,Zu0,, (1.6)
q=0

where ¢, = ZZ:] A @,k and @p = Iy. The covariance matrix of the forecast error at horizon 4 for

the restricted model (1.4) is

h—1
LXo(t+0)|F w)] = Y, 0,20, (1.7)
q=0

where ¢, = ZZ:1Ak¢q—k and @p = In—pm, .

Definition 1.4.3. Under the Assumption 1.4.1 and by the Remark 1.4.2, the multiple horizon

causality measure, from W to Y, at forecast horizon 4 is

det{JoZ[Xo(t + h)|.Z_w (1)]7}}
det{\ Z[X (t + )7 (1)]J1}

cL(xV TXY]I) :=1In (1.8)

where Jo = [Ly,, OMzXWta]mzx(N—ml) and Ji = [Omyxmys Imys Omyxmymyxn- ZIX(t +h)|Z (t)] and
Z[Xo(t+h)|-F_w(t)] are defined in (1.6) and (1.7) respectively.

Remark 1.4.4. Under the Assumption 1.4.1, it can be easy to observe that ¥ = JZZV‘Ié and Xy (1) =
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JoX (). Then the forecast error covariance of X" at horizon &, without its past information, is
h—1
Dy XY+ )T w (0] =55 ) 6Ty | I3, (1.9)
q=0

where (Pq = ZZ:IAI?(P(]*](’AI? :A]?JZa ¢O =Iy,J3 = [Iml Xmy s Omlx(N—ml)]MIXN'

Definition 1.4.5. Under the Assumption 1.4.1 and by the Remark 1.4.4, the multiple horizon

causality measure, from W to W, at forecast horizon £ is

CLXY —s XW|1) 1= In | SSHEW XU+ 1) Fw (1))}

h det{J3Z[X (t + h)|.F (1))} } (1.10)

where Xy [Xo(t + h)|F_w(t)] and Z[X (r + h)|.Z (t)] are defined in (1.9) and (1.6) respectively.

In order to obtain C7 (X" — X Y1) and C (X" — X WII), we just need to know the autore-
gressive matrices, [A,Az,...,A;_1] and [A?,Ag’,...,figfl], and the contemporaneous covariance
matrices, X, and Xy. To estimate these parameters, we consider the truncated models of the unre-

stricted process (1.3) and the expanded restricted process (1.5) as

X(t) = iAfX(t—k)Jrup(t), (1.11)
=1

X() = iAﬁXO(t—k)Jrv”(t). (1.12)
=1

where u? (1) ~w.n.(0,Z4) and v”(t) ~ w.n.(0,X9). AY and XI] are N by N matrices fork=1,2, .., p.
AP'is a N by N —m; matrix and X}, is a N by N matrix for k = 1,2, .., p.

While the dimensions for two groups in group-wise edge analysis, m; and mjy, are fixed, we
assume that the number of nodes, N, and the lag p can be functions of T (i.e., N = O(T¢!) and
pr = O(T*?) for constant cy,cp > 0), but for notation simplicity we do not write the subscript
T explicitly. Under mild assumptions in Barigozzi and Brownlees (2014), the truncated bias is
asymptotically negligible such that [|A? — Akl = o(1) for k =1,2,...,p and |[Z]] — Z,|]. = o(1)
as T — oo. We can therefore estimate the parameters of interest with the truncated models. Similar
arguments can be applied to the expanded restricted truncated model. The unrestricted model and

the expanded restricted model basically share the same estimation procedure.
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The main estimation challenge in a network context is the high-dimensionality problem. We
have N x N x p unknown parameters in the autoregressive matrices A, k =1, ..., p, as well as
w unknown parameters in the contemporaneous covariance matrix X}, but we only have
N x T observations. For a market network, the number of nodes, N, can be large. Traditional
estimation methods are not reliable when N X p is close to T or even infeasible when N x p > T.
One of the popular ways to solve the high-dimensional problem in statistics is by assuming sparsity
such that the effective dimension of the parameter space keeps tractable. The sparsity assumption
is convenient to estimate high-dimensional networks. But one thing we need to emphasize here
is that we do not assume the network structure, measured by the multiple horizon causality mea-
sures table, is sparse. Instead, we only need to assume the autoregressive matrices, and the error
concentration matrix are sparse. Since the multiple horizon causality measures are nonlinear func-
tions of the autoregressive matrices and the concentration matrices, the causality table is generally
nonsparse. The estimation technique in this section is called the Least Absolute Shrinkage and
Selection Operator (LASSO) (see, e.g., Tibshirani (1996)). The sparsity assumption helps us esti-
mate high-dimensional network and the empirical conclusions in this paper rely on this technical
assumption.

Under sparsity assumptions, the autoregressive coefficients and the error concentration matri-
ces could be estimated simultaneously (see Barigozzi and Brownlees (2016)). As the dimension of
the unknown parameter space is huge, however, this estimation procedure could be time intensive.
Note that the multiple horizon causality measures requires estimating as many as N + 1 models
(one unrestricted model and N restricted models) to quantify the effects from one to others. The
estimation efficiency, in terms of computational time, is also an important issue to be concerned
when N is large.

For empirical convenience, we apply a faster two-stage estimation procedure. At stage one, we
use the Adaptive LASSO regression (see, e.g., Zou (2006)) to estimate the autoregressive coeffi-
cients. At stage two, the error concentration matrix can be estimated by the residuals from the stage
one. It comes a cost that the rate of convergence of the estimator in the second stage will depend
on the estimator in the first stage (see Barigozzi and Brownlees (2014)), and thus this method is
theoretically less desirable than the joint estimation method in Barigozzi and Brownlees (2016).

Nonetheless, we do get interesting results even using estimation procedure provided by Barigozzi
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and Brownlees (2014). The investigation utilizing the newly-proposed one-step method is left for

future research.

1.4.1 Autoregressive Matrix Estimation

Each of the N equation of the unrestricted VAR(p) model can be written as

Xi(t) = oz(r) +ul (1), (1.13)

where X;(r) is the ith univariate time series in X (7). z(r) = (X'(t — 1);X'(t = 2);...X'(t — p))’
is the Np x 1 vector of lagged observations. 0 = (01,..., 1N, ..., Cpil, .-, Opin)’ is @ Np x 1
parameter vector, such that vec(o|;...; oy ) = vec([A]; A5, ...;AD]"). For each of the N equation of

the expanded restricted VAR(p) model, similarly,

Xi(t) = &jzo(r) + €7 (1), (1.14)

the unknown autoregressive coefficient vector &; = (651,-1,...,661,~N_ml,...,dp“,...,dpiN,ml)’ s a
(N —my)p x 1 vector, such that vec(@;...; 0y ) = vec([A]; AN ADY). zo(r) = (X(t — 1); X5t —
2);..;X)(t — p)) is the (N —m;)p x 1 vector of lagged observations.

The Adaptive LASSO estimators of o; and @; are defined respectively as

1 T 2’ Np
Ori = argmmf Y xi(r) - olz(1))* + TT Y wrijlaij| fori=1,...,N, (1.15)

o t=1 j=1

N T )LT (N—my)p
og; = arg{ninT Z 1Xi(t) — &lzo(1)]> + Z wrij|0;]  fori=1,...,N (1.16)

a =1

where A7 is an appropriate pre-selected value controlling the overall estimated sparsity level in the
autoregressive models. If A7 equals 0, then the LASSO estimation is simply the OLS estimation
and every element in ¢ has to be estimated; if Ay — oo, the estimates of the parameter ¢; are
all zeros, which means the estimated autoregressive coefficients are perfectly sparse. The choice

of Ar can be made by selecting it by the BIC criterion or by Cross-Validations. wr;; and wr;; are
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pre-estimator weighted penalties to the sparse structures of ¢; and ¢&;. They help to separate zero
coefficients from nonzero coefficients when regressors are highly correlated. Following Zou (2006)
we use wrij = WISSO‘ and wr;; = m as the weighted penalties to || and || respectively,
where diL]ASSO and &5.‘4550 are the standard LASSO estimators when wr;; = 1 for ¢;; and wr;; = 1
for @;;.

In order to maintain asymptotic properties in estimating ¢; and &; in a high-dimensional con-
text, sparsity assumptions are required. We denote the sets of nonzero entries in o; and in @;
as 7, which has q% elements, and <%, which has q%_ elements. Jziic and JZZC are the sets of
zero entries in ¢o; and in @;, respectively. q% and q% are functions of 7. Since the estima-
tion of ¢ is similar to the estimation of &;, we here only discuss the sparsity of ¢;. Following
Barigozzi and Brownlees (2014), the key assumptions on the number of nonzero entries in the
autoregressive coefficients and the pre-selected penalty constant controlling the overall estimated

. logT
sparsity level are ¢, = o (, /%) A g = o l1m )“T logT a7; log T Og =0 (%) and

%\ /q% = O(1) fori =1,...,N. These assumptions provide the restrictions among the the un-

derlying true sparsity level (qu) pre-selected penalty constant controlling the overall estimated
sparsity level (A7) and rate of number of nodes N as T grows to infinity (c;). To identify the zero

entries in ¢;, we also need the following assumption on the signal strength: For all i = l N,

AT \% qu

there exists a sequence of positive real numbers {sTl} such that |o;;| > sTl and l1m

for all oy € 7.
Proposition 1.4.6. Under the Assumption I - 6 in Appendix A.1, as T — oo,
1. l‘fOCijEJMic, Pl’Ob{dTijZO}—)l, i=1,...N
2. l‘f&ijEJ%C, PVOb{&T,'jZO}—)l, i=1,...N
3. o -2 o, and thus A‘;k Ly Ay fork=1,...,p
s P = AP P50 _
4. ori — 0 and thus Ay, — Af fork=1,....p
Proof. See in Appendix A.2. [

Proposition 1.4.6 states that the Adaptive LASSO estimators in (1.15) and (1.16) correctly se-
lect the nonzero coefficients asymptotically, and the estimators are consistent. Even if the dimen-

sion of the network is large, this estimation procedure can still safely concentrate on estimating the
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nonzero coefficients using the limited information from the observable sample, given the sparsity

assumption on the true coefficients vector.

1.4.2 Contemporaneous Covariance Matrix Estimation

The contemporaneous covariance matrix can be estimated by the sparse concentration matrix via
the sparse errors partial correlations. We use the estimation strategy in Peng, Wang, Zhou and
Zhu (2009) and Barigozzi and Brownlees (2014). The errors partial correlations matrix p has
generic component p;;. The concentration matrix in the unrestricted model, S}, = [} ]=1, and the
concentration matrix in the expanded restricted model, S% = [£9]~!, have the following relationship

with their respective errors correlations:

s
pi; = Corr(uf ,u?) = — el (1.17)
shglt.
i jj
sV
p; = Corr(vP vP) = ——2— (1.18)
sVsY

where s}, is the (i, /) component of Sl and s;; is the (i, j) component of ;. Moreover, the errors
correlations can be also expressed as the coefficients of the linear regressions (see Lemma 1 in

Peng et al. (2009)):

N
ul, =Y pf T (1.19)
j#i
N
vi=Y p/; N, r=1,0,T (1.20)
t 1] P ) 9
J#i

We assume the concentration matrices as well as the correlations matrices are sparse and denote
the sets of nonzero entries in the unrestricted and restricted errors correlation matrices as 2, and
9, respectively. 2¢ and 2§ are the sets of zero entries in the unrestricted and restricted errors
correlation matrices. The LASSO estimator of the errors partial correlations in the unrestricted

model (1.3) and the one in the restricted model (1.5) are defined respectively as
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1 N Tu i 2 Yr N i—1
= rgmln? Z Z ZPTU T J + Z Z |pz] (121)
JJ

t=1i=1 JF#i 12]

T N ST N i—1
gmln_ZZ( ZPTU S + Z Z ’plj (122)

li=1 JFi i=2 j=
where i; = X;(t) — &/z(t) and ¥; = X;(t) — &/z0(¢). yr is the tuning parameter controlling the
model sparsity level as A7 in (1.15) and in (1.16). The estimator of the unrestricted concentration

matrix S%, denoted as S and the the estimator of the expanded restricted concentration matrix sP.,

AV Ay 3 ou
denoted as SY., have entries §%. . = i = —PTij\/S1iiSt;; and $7;; = —P1i;1 /5787 jj- The estimators §7;

and §y,; are given respectively by

—1
1 &
s%z[ﬁim,i)z] : (123)

—1
v 1 L
Stii = [ﬁ;(nn) ] (1.24)

A A | 84 /8,
where Ny = Ui _Zﬁéz pTl] ”“” ut} and r’tt = Vi — Zﬁéz ple ‘V vt]

The estimator of the unrestrlcted errors concentration matrix, S%, can be obtained by iterating
between (1.21) and (1.23). The estimator of the expanded restricted errors concentration matrix,
SA¥, can be obtained by iterating between (1.22) and (1.24). For more discussions on the assump-
tions to estimate the correlation matrices, we refer readers to see Peng et al. (2009) and Barigozzi

and Brownlees (2014).
Proposition 1.4.7. Under the Assumption I - 9 in Appendix A.1, as T — oo,
L ifpj € 25, Prob{pf,; =0} =1, i,j=1,..,N
2. ifpli € 25, Prob{p};; =0} =1, i,j=1,.,N
3. pi; - pl, and thus S4 25 S, = X!
4. pri; LN pi;» and thus sy L5, =31
Proof. See in Appendix A.3. 0
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Proposition 1.4.7 states that the LASSO estimators in (1.21) and (1.22) correctly select the
nonzero coefficients in the errors correlation matrics asymptotically and the estimators are consis-
tent. By the relationships between errors correlations and the concentration matrix in (1.17) and
(1.18), we obtain the consistent estimators of the concentration matrices for the unrestricted model

(1.3) and the concentration matrices for the expanded unrestricted model (1.5).

1.4.3 Granger Causality Measures Estimation

Note that each of the multiple horizon causality measures under the Assumption 1.4.1 is mainly
composed by two parts (see Definition 1.4.3 and Remark 1.4.2): 1) autoregressive coefficients
in the unrestricted model (1.3) and in the expanded restricted model (1.5); ii) contemporaneous
covariances in the unrestricted model (1.3) and in the expanded restricted model (1.5). We have
already shown consistency of the estimators in Proposition 1.4.6 and Proposition 1.4.7.

Finally, the estimator of the multiple horizon causality measure, from X W to XV | is defined as

o At S XY (1) Z ()]}
Crww "1“[ det (S X (1 4 1) Z (1) ] (129

where

S[X(t+h)|.F Z ¢y (SH)~ (p;, (1.26)

R h—1 A .
S XY (1 4+ 1) F_w (1) = I3 [Z %(S%)‘%;] I, (1.27)

q=0
A~ 9 a ~
0g =Y (AZ,12) by, (1.28)
k=1
q A
Og =Y ALy, (1.29)
k=1

G0 = Iy, Po = Iy. (1.30)

The estimator of the multiple horizon causality measures, from X" to X7, is defined as
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Al In det{Joi[Xo(t +h)‘9lw (l‘)].](/)}

Ch = -~ , 1.31
wy det{J;£[X (1 + h)|.Z (1)} } (131
where
A h_l A
SX(+n)Z )] =Y ¢(SF) "y, (1.32)
q=0
A h_l A A A
SXo(t+m|F_w(t)] =Y ¢(57)7' ¢, (1.33)
q=0
85 =nSy) ', (1.34)
A g & /2
0y =Y (LAL) @gk, (1.35)
k=1
q A
Py =Y AL Oy, (1.36)
k=1
o =1In, Go=Iy—m,. (1.37)

Theorem 1.4.8. Under the Assumptions 1 - 9 in Appendix A.l, for any given h, h = 1,2, ..., as

T — o,
1. E[X (1 +h)|Z (1)] = Z[X (e 4 1) (1));
2. £[Xo(t +h)| F—w(t) L E[Xo(t +h)|F—w(1)];
3. Sw XV e+ )| Fow(t) 5w XY (e 4+ h)| F_w (1)];
4. Chy o (xV — XD
5. Clhw 2 Co(xV — XY|I).

Proof. See in Appendix A.4. [
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Now, we have the consistent estimators of the multiple horizon causality measures for any given
network. An estimation procedure similar to the one proposed above can be applied to measuring
the point-wise edge strength, i a J, and the group-wise edge strength, (iy, ..., i) C_Z (J1seees Jiny)s

for arbitrary horizon /4 > 1, and has similar limit properties.

1.5 Network Connectedness Measures

The world is not flat. While the relationships of entities in an economy can be modelled by 2-
dimensional network representations, the economy itself, however, is multi-dimensionally struc-
tured. Different firms play different roles. Some of them are alike: insurances companies sell
insurances, even though a wide range of insurance product; some of them are distinctive: restau-
rants serve cuisines while Space X provides space transportation services. We do not assume we
have the prior knowledge of their exact roles, but we have their interconnection structures that can
be measured by our causality table.

We consider an economy of interest as a N-dimensional Euclidean space. For any given firm
i we associate with it a vector in the Euclidean space with coordinates given the row (or column)
entries from the causality table. Since the ith row (column) in the causality table measures the ef-
fects of firm i to (from) others, the direction of a firm’s vector can be interpreted as “what the firm’s
role is”: firm i’s vector direction tends to point to the companies that firm i has more relationships
to; the norm of a firm’s vector can be interpreted as “how strong the firm’s role is”: the norm of
firm i’s vector measures the extent of the firm i’ relationships to all companies in the economy. If
we use the interconnection relationships of a firm to others as a proxy of the role of the firm in an
economy, the causality table gives us the firms’ coordinates of their roles in the space of a multi-
dimensional economy. It helps us to study the structure and strength of the interconnectedness of
an economic network with geometric illustrations, which shares the advantage of using network to
study economic and financial interconnections.

Following this logic, we define our new connectedness measures in the market network base on
the multi-dimensional economy setting. We hereafter take the estimated causality measures table
as given. Note that a network can be divided into several subgroups, the network can be viewed

as a combination of its sub-networks. In a stock market, for example, the market index can be
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viewed as the weighted average of the prices of individual stocks as well as the weighted average
of different sector indices. Since an economic network can be viewed as a network among firms
(firm-wise market), whose interconnections are measured by our point-wise edges method (i — ),
as well as a network among sectors (sector-wise market), whose interconnections are measured
by group-wise edges method ([iy, i, ...,in] = [j1,J2,---, Jm]), We have three types of connectedness
measures to gauge network interconnections: i) firm-wise market connectedness, which measures
the interconnectedness of a firm-wise market; ii) firm-wise connectedness within a sector, which
measures the interconnectedness within a given sector in a firm-wise market; and iii) sector-wise
market connectedness, which measures the interconnectedness of a sector-wise market. These
three types of connectedness measures fully take advantage of the flexibility of our network mea-
surement method, so they can be applied to study market network connectedness in more flexible

ways than Billio et al. (2012) and Diebold and Yilmaz (2014).

1.5.1 Firm-wise Market Connectedness Measures

Market network connectedness can be decomposed by each firm’s connectedness to the market.
Firms’ roles in an economy determine the firms’ connectedness to the market network. As firm
i’s vector direction represents firm i’s connectedness in the economy, we will use firm i’s vector
direction as the foundation to measure the firm i’s connectedness to the market network.

The connectedness, in term of economic role, of firm i to the economy can be measured by the
angle of firm i’s vector to the subspace of the economy composed by all other firms. In Figure 1.3,
we use a simple 3-dimensional economy space to illustrate this idea. The economy has only three
firms: i, k1 and k;. We want to study firm i’s role connectedness to this market. From the causality
table, we choose the vector of i, (C;,Ci,,Ci,). It measures the relationships from i to i, k; and k».
The direction of (C;;,Cy, ,Ci,) in the 3-dimensional space determines firm i’s economic role in this
market. 6; is the angle of i’s vector to the subspace of the economy composed by k| and k;. If we
take k1 and k, as a unit, 6; exactly measures the economic connectedness of firm i to k; and k.
When 6; = %, i has no impact on k; and k;; when 6; = 0, i is fully accounted for by k; and k.

Given forecast horizon A, the ith row of the causality table measures the directed and weighted

edges from the node i to all nodes in an N-dimensional market network, which has a node set
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(Cii,Ci, ,Cik,)

ko

Figure 1.3: Relative connectedness between i and network

V ={1,..,N}. Let OUTih = [Cf’l,Cflz,...,Cl-}]’V]’, OUTih contains information about all the firms
influenced by i. They are the “out” effects from i to all firms in the market. Fori=1,....N €V,
out

we define the “out” connectedness angle of the firm i to the economy as 67}/ (h),

Cch
074 (h) = arcsin ——— (1.38)
v loUT, 12

where we assume ||OU T,-flVHZ > 0, which is equivalent to say there exists j € {1,..., N} such that
Cl £ 0. If [|OUT}, || = 0, we let 674 (h) = 0.

95";’ (h) measures the “out” connectedness from firm i to the economy and is a relative connect-
edness strength since it has been rescaled in [0,7/2]. The connectedness angle 67}/ (h) = /2 if
and only if C* > 0 and Cflj =O0forany j € {l,...,i—1,i+1,..., N}, which implies firm i is isolated
with the economy in the sense that it has no impact on other companies. If Cf’i = 0 and thus the
projection angle 61-‘7’{}’ (h) = 0, it implies all relationships from firm i to the economy are all from its
impacts to other firms in the economy.

The relative connectedness strength of firm i to the economy, measured by 91.‘7"’7 (h), considers
the economic role of firm i to the economy. It is a directional measure, and it is more related to

relative economic connectedness. The extent of how strong the economic connectedness, however,

is not simply captured by 67/ (h). Besides the connectedness angle, we are also interested in
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the absolute connectedness strength. We define a function K,y (||OU T-hV||, 67y (h)) as a general
formula of the absolute connectedness strength of firm i to the economy. Koy (||OUT, hv 1,67 (h))
is a function of firm i’s connectedness angle, 90“’ (h), and its causation strength to the economy,

|oU T VI Kow (||OU T ||, 67y (h)) should at least satisfy the following properties:

Kou (OUTH, |, ):0 (1.39)

Kou (0,605 (h)) =0 (1.40)

ou OUT. h 0()ut
(IouTh .63 ) _ i
dlouTh|

IKou(|OUTH .07 (1) _ s
267 () : |
The firm i has no connectedness to the economy if has no impact on all other firms in the
economy. The absolute connectedness strength between firm i to the economy, should be an non-
decreasing function of its causation strength to the economy and an nonincreasing function of its
connectedness angle to the economy.
A simple functional specification of the absolute connectedness strength of firm i to the econ-

omy we use in this paper is

Kou (|OUTS, |, 6 (h)) = [|OUTy || cos 674 (). (1.43)

and the connectedness angle 67}/ (h). In geometric terms, Koy (||OU 7", 67 (h )) just measures
the norm of the projection of OU Tif‘V on the subspace spanned by the all other firms in the econ-
omy. We again use a simple 3-dimensional economy space to illustrate this idea. The economy
has only three firms: i, k; and k,. The absolute connectedness strength of firm i to this economy is
the projection of the vector (C;;,Ci, ,Cik,) on the subspace spanned by k; and k>, which is shown in

Figure 1.4.
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(Cii,Ci, ,Cik,)

(CiisCir, Cir,) on {k1, k2 }
ko

Figure 1.4: Absolute connectedness between i and network

In summary, our absolute connectedness strength of firm i to the economy simultaneously takes
the firm i’s economic role structure and the economic role strength into account. In addition, the
absolute connectedness strength can be easily decomposed into these two parts. Moreover, it has
nice geometric interpretations in an N-dimensional economic space as illustrated by Figure 1.4.
Therefore, our market connectedness measures, the means of all firms’ connectedness measures to
the economy, will also enjoy these features.

We define our firm-wise market network connectedness as the sum of firms’ connectedness
weighted by number of firms in the market. A common practise in the network literature is to use
the number of nodes to measure the size of a network. This ensures that the connectedness of a

sector will not simply grow with market size and be comparable across different markets.

Definition 1.5.1. Given a market network with node set V = {1,2,...,N}, the Firm-wise Market
Network Relative Connectedness Structure Measure of “out” effects at horizon 4, MRC{}Z” (h), is

defined as following:

1 N
MR (1) = ¥ cos 0 (1) (1.44)
i=1

Definition 1.5.2. Given a market network with node set V = {1,2,...,N}, the Firm wise Market

Network Absolute Connectedness Strength Measure of “out” effects at horizon A, MAC{}Z’ (h), is
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defined as following:

MACY! (h Z |OUT}y || cos 674 (h) (1.45)

Remark 1.5.3. If the edges in a network are unweighted, the connection of node i to the network
can be solely characterized by the connectedness angle, Gom(h) irrespective to its unweighted
absolute connectedness magnitude to the network, ||OUT, VH Therefore, the Firm-wise Market
Network Relative Connectedness Structure Measure is basically equivalent to the Firm-wise Mar-

ket Network Absolute Connectedness Strength Measure in the context of unweighted network.

Note that the edges in our network are directed. Following similar procedures, we can also
define market connectedness measures at “in” direction. Given a forecast horizon £, the ith column
of the causality table measures the directed and weighted edges to the firm i from all firms in the
N-dimensional market network, which has node set V = {1,...,N}. Let IN! = [CI. . Ch.,....C}.],
INih contains all the directed edges information pointed from i. They are the “in” effects to i from
all firms in the market. For i =1,...,N € V, the “in” connectedness angle of the firm i to the
economy, Gl-i’%,(h), and the “in” absolute connectedness strength of the the firm i to the economy,

Kin (|| IN! vl 1V<h))’ are defined respectively as

h

. ct
mn : 11
'y (h) = arcsin ——— (1.46)
: 1IN}y [I2
and
Kin(|IIN}'y |, 6/% (1)) = [[IN}'y || cos 6/ () (1.47)

Definition 1.5.4. Given a market network with node set V = {1,2,...,N}, the Firm-wise Market
Network Relative Connectedness Structure Measure of “in” effects at horizon #, MRC{,”C (h), is

defined as following:

. 1 & .
MRCy).(h) = N Y cos 6/ (h) (1.48)
i=1

Definition 1.5.5. Given a market network with node set V = {1,2,...,N}, the Firm-wise Market
Network Absolute Connectedness Strength Measure of “in” effects at horizon #, MAC{,”C (h), is

defined as following:
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N
MACy;. (h) = ZHI "Il cos 6/ (h) (1.49)

1
N
1.5.2 Firm-wise Sector Connectedness Measures

The structure of an economic market can be viewed as a sort of network of sectors. Furthermore,
there is also a sub-network for each sector in an economy. In this section, we discuss the firm-wise
connectedness within each sector. Without loss of generality, we consider an economic network
with node set V composed by two sectors, Vi and V,, where V = {1,...,N}, Vi = {i1,....,in, },
Vo={j1sesJn > ViNVa =0,V UV, =V and n; +ny = N. V; and V; are disjoint and complete
sub-network elements of V.

Within a sector V,, z =1 or 2, our sector connectedness measures are defined in a similar
manner as the firm-wise market connectedness measures in section 1.5.1. Sector connectedness is
the sum of firms’ connectedness weighted by sector size. This ensures that the connectedness of a
sector will not simply grow with its size and be comparable across different sectors in an economy.
Of course, sector size can be measured by different ways, such as by the number of firms in the
sector or by the market value of the sector. In this paper, we use the number of firms for simplicity.
This is also in line with the network literature that usually uses the number of nodes to describe

the size of a network.

Definition 1.5.6. Given a sector node set V,, z = 1,2, the Firm-wise Sector Relative Connectedness

Structure Measure of “out” effects within sector z at horizon i, MRC}!" (h), is defined as following:

MRC{" (h Z cos 07y (h (1.50)

where n; = [V| is the number of nodes in the sector node set V; = {i1,...,in, } , i € V,, 83/ (h) =

h
arcsin ———— and OUTi7 =[ch ! Czhinl]/'

HOU IVZ” uy? ~up? tt

Definition 1.5.7. Given a sector node set V,, z = 1,2, the Firm-wise Sector Absolute Connectedness

Strength Measure of “out” effects within sector z at horizon A, MAC{}ZL” (h), is defined as following:

MACY" (h Z |OUT},. || cos 7% () (1.51)
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where OU Tlhv and 67} (h) are defined as above.

Definition 1.5.8. Given a sector node set V,, z = 1,2, the Firm-wise Sector Relative Connectedness

Structure Measure of “in” effects within sector z at horizon h, MRC{}f (h), is defined as following:

MRCy} Zcos (1.52)
nzl
where n; = |V;| is the number of nodes in the sector node set V; = {i1,...,in, } , i €V, 91”\’,(h) =
h h h h
arcsmm and IN}y, = [C}1;,CL, ... Cin,i]/'

Definition 1.5.9. Given a sector node set V;, z = 1,2, the Firm-wise Sector Absolute Connectedness

Strength Measure of “in” effects within sector z at horizon h, MAC{}Z (h), is defined as following:

MAC},! Z IIN}y.|| cos 6%, () (1.53)

where INl-’fV” and Oi{’%,z(h) are defined as above.

The sector connectedness measures are just the blocked firm-wise market network connected-

ness measures for each sector in a firm-wise market .

Remark 1.5.10. For any given A, if we have Cl-hj = Cj?l- =0 foranyi € V) and any j € V,, then

1. (n1+n2)MRCY! (h) = niMRCY" (h) + noMRCyY ()
2. (m +m)MACYY (h) = mMACY (h) + nmaMACYY (h);
3. (m1 4 n2)MRC).(h) = miMRCY; (h) +naMRC (h);
4. (n1 +n2)MACY. (h) = niMACY; (h) + naMAC, (h).

The market network connectedness can be obtained by the sector connectedness if the sectors
are the disjoint and complete decomposition elements of the market network and if there is no
point-wise edge between different sectors. Intuitively speaking, the market connectedness is sim-
ply the weighted sum of sectors’ connectedness when there is no causality edge between firms

across different sectors.
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1.5.3 Sector-wise Market Connectedness Measures

Similar to the firm-wise market connectedness measures, the sector-wise market connectedness
measures also measure market interconnectedness. But the sector-wise market connectedness mea-
sures gauge the interconnectedness among different sectors instead of different firms.

In a sector-wise market, nodes are groups of firms. We assume that any firm can only belong
an unique sector. Suppose we have M sectors: V; fori = 1,2,...,M. Then we have V = Uﬁ-‘i] Vi
and Vs = {V},Va,...,Vir}. In this case, the causality table is an M by M matrix. The i row of
the causality table, (Cy,y,,Cv,v,,...,Cvy,, ), measures the effects from sector i to other sectors. The
sector-wise market connectedness measures are defined in a similar manner as the firm-wise market

connectedness measures in section 1.5.1.

Definition 1.5.11. The Sector-wise Market Relative Connectedness Structure Measure of “out”

effects at horizon h, MRC{};” (h), is defined as following:

MRC)! (h Z cos 67" (h) (1.54)

h

&

out _ ; Vivi h  _ [h h h /

where 67", (h) = arcsin |‘0UT&"/S|‘2, and OUTy . = [Cyy, . Cyy, s - Cry 1
i

Definition 1.5.12. The Sector-wise Market Absolute Connectedness Strength Measure of “out”
effects at horizon h, MAC‘”,;” (h), is defined as following:

1 M
MACE" (h) = Mi; ||0UT‘27VSHCOS 0y (h), (1.55)
h

where 67", (1) = arcsin ,and OUT! o = [Cly ,Clry, s, Chy -

HOUth S

Definition 1.5.13. The Sector-wise Market Relative Connectedness Structure Measure of “in” ef-

fects at horizon h, MRC{,’; (h), is defined as following:

MRCY;, Z cos 6y (h (1.56)

h

where 6/, (h) = arcsin ,and INY, o = [Chy C s CF T

HING VSH

44



Definition 1.5.14. The Sector-wise Market Absolute Connectedness Strength Measure of “in”

effects at horizon h, MAC{,’; (h), is defined as following:

in 1 & in
MACY, (h) = i Y NG, vl cos 67y (h), (1.57)
i=1

h

. C
in _ ; ViVi h  _[h h h /
where 6y, (h) = arcsin |\1N3,-l.vls|\2’ and INy v = [Cy,v.. Cy,ys -, Gy ]

1.6 Application to Implied Volatility Network Structures

In previous sections, we have proposed a flexible network econometric measurement framework,
a reliable estimation procedure designed for high-dimensional contexts and new market network
connectedness measures. In this section, we illustrate the wide range of applications of our market
network measurement methods by investigating a high-dimensional volatility network in the US
equity market. We would like to study how the volatility network is structured and how it changes
over time. Fruitful information extracted from the empirical exercises can be easily visualized by
our reporting figures.

More specifically, we study the static volatility network with the full sample from 2000 to 2015
to see how firms and sectors connect to each other. We investigate the dynamics of the network
structures to see how the interconnections among firms and the interconnections among sectors
varied in the past 15 years. The market connectedness measures proposed in this paper are de-
signed for measuring market systemic risk. It is a common wisdom that the systemic risk played
an important role in the 2007-2009 financial crisis. Thus we examine dynamic market connected-
ness with our measures, and compare it with market indices (i.e. VIX index) before, during and
after the crisis period. Our market connectedness measures are constructed based on the directed
and weighted edges in the market network, and the superiority of the “directed” and “weighted”
edges analysis against the “undirected” and “unweighted” edges analysis is demonstrated by the

asymmetric effects between the financial sector and other sectors in the volatility network.
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1.6.1 Data

Firms and sectors are connected with trade links or business relationships. It is an impossible
mission to collect all qualitative and quantitative business information at firm-level to reveal their
interconnections. As Diebold and Yilmaz (2014) argue, however, stock markets, which reflect
forward-looking assessments of many thousands of smart, strategic and often privately-informed
agents, provide us with feasible information that is close to the true business conditions and in-
terconnections. For instance, there are numerous investment opportunities in the world, and using
the S&P 500 index as a benchmark is almost a convention when evaluating excess returns in as-
set management. Therefore, we will study the crisis-sensitive volatility network in the US stock
market. In addition, we are also interested in examining whether our volatility connectedness mea-
sures can reflect the underlying market systemic risk that plays an important role in the recent
global financial crisis.

The volatility in stock markets is latent, so we need an volatility proxy. The well-known VIX,
which has been widely accepted as a market volatility index by financial practitioners, is calculated
from implied volatilities of the S&P 500 index options. It is sensitive to market turmoils. For each
firm, we also exploit the information in their respective option contracts. We use implied volatility
in our volatility network analysis, rather than using realized volatility estimated from stock intraday
prices (see Diebold and Yilmaz (2014) and Barigozzi and Brownlees (2016)), for the quantities we
are dealing with are more comparable to market indices (e.g., VIX). Similar to the VIX index
known as a “market fear” index, our implied volatility network connectedness can also be viewed
as “individual fear” connectedness. Volatility or implied volatility is sensitive to “terrifying news”
in financial markets. For instance, the 9/11 attack terrified the people in the stock market and
lead implied volatilities to jump up rapidly. Although the 9/11 event had very minor impacts on
most firms’ real business conditions and their interconnections, its shocks would spill over from
firms to firms and from sectors to sectors in stock markets, just because of liquidity concerns and
other risk issues faced by investors. The stock implied volatilities are inevitably contaminated by
shocks in financial markets since risks are traded on markets. Nevertheless, implied volatility is
still an excellent proxy to study the high-dimensional market volatility network. We hope that the

underlying market network structure can be at least partially uncovered by its implied volatility
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network.

We estimate the volatility network of the S&P 100 components stocks quoted on 06/30/2015.
Similar to the VIX index for the S&P 500 stock composite, in this paper the S&P 100 components'?
implied volatilities are constructed with their respective at-the-money option contracts with 30-day
maturity. This implied volatility measures the expected volatility of the underlying stock over the
next 30 days. We hereafter only consider the option contracts with 30-day maturity. Generally
speaking, an at-the-money call (put) option usually has a delta'® at approximately 0.5 (-0.5). A
simple way to get the at-the-money implied volatility is to take the simple arithmetic mean of
the interpolated implied volatility of the call option with delta 0.5 and the interpolated implied
volatility of the put option with delta -0.5:

1
Wig = 5 IV + V). (1.58)

it

where IVLCIO‘5 is firm /’s interpolated implied volatility of the call option with delta 0.5 at time
t, and IVl.f[;‘O'5 is firm i’s interpolated implied volatility of the put option with delta -0.5 at time
t. The data information of the daily implied volatility with different delta levels are provided in
the OptionMetrics - Volatility Surface database. As the firms’ implied volatilities measure the
expected volatility of their stock prices over the next 30 days, the daily sequence of {IV;,}; is a
highly persistent process. In other words, IV; ;| would have a strong predictive power to forecast
1V;;. To remove such self-effect that merely comes from the overlapping of measuring periods, we

analyze the innovation processes by taking daily first differences on each implied volatility series:
AIVi,t :IVi,z —IVi.,t—1~ (1.59)

This manipulation procedure is simple and easy to replicate '*. We will hereafter use AlIV;; to
estimate our implied volatility network.

The date range of the database is from 01/01/1996 to 08/31/2015. The companies whose IPO

12To be included in the S&P 100, the companies should be among the larger and more stable companies in the S&P
500, and must have list options.

3Delta measures the degree to which an option is exposed to shifts in the price of the underlying asset.

14 Ang, Hodrick, Xing and Zhang (2006) use this manipulation approach to deal with the VIX index to test whether
the VIX index is market risk factor
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dates are after 01/01/2000 will be dropped off, so that we can examine the two most important
crises in the US stock market (i.e., the IT Bubble Burst and the Financial Crisis of 2007-09). The
remaining full sample is from 20/08/1999 to 31/08/2015. There are missing values on some dates
for some companies and we take linear interpolations to impute the missing values to get completed
time series processes for estimations. We have 90 companies in the final sample, N = 90. Appendix
B provides the ticker symbol list of nodes and their respective sectors in our implied volatility
network. The Industry Group classification for each node is from the North American Industry
Groups database from MorningStar, LLC.

As Diebold and Yilmaz (2014) point out, latent market network structures may vary with busi-
ness circles or may shift abruptly with market environment (e.g., crisis and noncrisis). Whether
and how much it varies is ultimately an empirical matter and there is no point to just simply assume
it is constant. Hence, we allow the network structure to be time-varying, and thus the elements in
the causality measures table are also allowed to be time-varying.!> To capture time variations, we
will estimate the dynamic implied volatility network structures with rolling samples.

Throughout the empirical exercise, We set the lag p = 1 and apply the VAR(1) model to approx-
imate the unconstrained and the constrained models. Setting the same lag makes the conditional
variance comparable between the unconstrained models and the constrained models. We will first
estimate the static implied volatility network structure with full sample observations (20/08/1999 -
31/08/2015). As mentioned before, market connectedness can be decomposed into the connected-
ness within each sector and the interconnections among different sectors. Firm-wise interconnec-
tions within each sector and sector-wise interconnections are certainly of interest. For example,
studying how financial firms connected to each other and how financial industry affects other in-
dustries is important to understand the recent financial crisis. To investigate the dynamic patterns
of the volatility network structures, there is always a trade-off between estimation accuracies and
more current conditional estimates when choosing the width of estimation windows. To examine
market connectedness dynamics, we set the width of the moving window to be 2 years and update
measures every one month. For example, the estimates on December 2008 are estimated based on

the data from January 2007 to December 2008. By moving the estimation windows forward every

I5This assumption does not contradict the constant parameters setting we made in estimating the multiple horizon
causality measures. The “calendar time” for time-varying measures and the “sampling time” to estimate the measures
are conceptually different. We just require the processes to be estimated are locally stationary.
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month, we can obtain the dynamic pictures of the implied volatility network.
In robustness check, we compare our results with those setting the lag p = 2 and those using
moving estimation windows of 1 year (T = 252). We find our results are robust to these different

pre-selected modelling settings.

1.6.2 Empirical Results

Market network econometric analysis can be worked under two types of network representations:
1) firm-wise market structure (V¢), under which the nodes in the market are the 90 companies; and
i) sector-wise market structure (V) under which the nodes in the market are the 8 sectors that the
90 companies belong to. We will apply the point-wise edge analysis technique in the firm-wise

market structure and apply the group-wise analysis technique in the sector-wise market structure.

Static Implied Volatility Network Structures

Firm-wise market network structures give us a broad picture of how firms connect to each other.
Sub-market network structures zoom in firms’ interconnections within specific sector. Sector-wise
market structures merge the firms in the same sector and give us a simple picture of how different
sectors connect to each other.

In Figure 1.5, we show the firm-wise S&P 100 implied volatility network structure. To examine
this big network (90 nodes and 907 edges), we only keep the directed and weighted edge (i — j)
if its strength is greater or equal to 90% percentile of the strengths of the edges (i — -) and 90%
percentile of the strengths of the edges (- — j). In other words, we only keep an edge if and only if
this edge is important to the pair of nodes being connected by it. If i — j and j — i are both kept,
we only plot the one with greater strength without confusions. At the first glance, edges are denser
around the firms in the financial sector. A majority of the edges being shown in the figure comes
from financial firms. Moreover, the financial firms have more interconnections due to the recent
financial crisis. It is also documented by Barigozzi and Brownlees (2016) in the S&P 100 realized
volatility network. Interestingly, we observe that GE (a major industrial goods company) and SLB
(a major supplier to the oil and gas exploration and production industry) have relatively strong

interconnections with the financial firms. GE was almost bankrupt in 2009 and 2010. The oil price
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is very volatile in the past ten years. As major credit suppliers, financial firms are sensitive to these
economic shocks. Figure 1.5 has reflected some special market situations in the US economy in
the past 15 years.

We identify the 10 most influential firms in Table 1.2. In Table 1.2, we report the minimum
value, the maximum value, the mean value and the quantiles (25%, 50% and 75%) of the entries
in each firm’s “OUT” vector, [Ci1,Cp,...,Ciy]. The mean for almost every firm is greater than
its median and is close to the 75% quantile; the discrepancy within the first 25% quantile is very
small, but the discrepancy within the last 25% (75% - Max) is much larger. This represents strong
evidence for right skewness of the distribution of firms” weighted edges in the “OUT” direction.
Jackson et al. (2008) also documents right skewness in distributions in social networks. We select
the median, rather than the mean, to describe the central tendency of the distributions of firms’
edges!®.

We sort the firms’ tickers by their medians. The most influential firm in the static network is
the BAC (Bank of America). BAC helps to increase the forecast precision of the next-day implied
volatility by 0.07% for more than a half of the firms in the S&P 100, and by at high as 5.33% for
the firm that it affects most. Seven financial firms (BAC, C, BK, AIG, MET, F, JPM and MS) are
listed in the top 10 influential firms at Table 1.2. In Figure 1.5, we have seen that many prominent
edges are from financial firms. The firms in the financial sector have great influence in the S&P
100 network. On the other side, Table 1.3 reports the summary statistics of the entries in the
“IN” vector, [C};,Cy;,...,Cni]. Among the top 10 sensitive firms, only the firm (C) belongs to the
financial sector and the other nine firms belong to the basic materials sector or to the Industrial
goods sector. Therefore, the influential firms in the S&P 100 network are not those that will easily
be affected. The “influential” and “sensitive” we mentioned so far are in the sense of direct effects,
in which the causality measures are at forecast horizon 4 = 1. In Table 1.4, we report the top 10
influential firms at different forecast horizons, h = 1,2,3,4,5, to take spillover effects into account.
The firms and their orders in the list of top 10 influential firms are slightly different at different
forecast horizons. For instance, in the case of only taking direct effects into account (& = 1), the

most influential financial firm is BAC and 7 out of 10 most influential firms are from the financial

16The firm’s centrality described by our median measures is in alignment with the “Degree Centrality” in Freeman
(1978) and Jackson et al. (2008)

50



sector; in the case of taking direct and indirect effects into account (h = 5), the most influential
financial firm becomes AIG and only 4 out of 10 most influential firms is from the financial sector.
The technology firms are actually influential. In the case of 7 = 5, 4 out of 10 most influential
firms belong to the technology sector and the top 2 influential firms are from the technology sector,
if the Apple Inc. is considered as a technology firm. In short, measuring a static network that
only characterizes direct effects in an economic network is far from enough to fully understand
all interconnections and indirect effects. In contrast, jointly measuring direct and indirect effects
with the causality tables at different forecast horizons can provide us with “dynamic” pictures of
interconnections in the S&P 100 network with different effect-radius. In many cases, what is truly
important is the firm’s total effect (direct effect and indirect effect) rather than just its direct effect.

Next, we zoom in the financial sector and investigate the interconnections within the financial
sector. The firm-wise S&P 100 implied volatility network within the financial sector can be visu-
alized by Figure 1.6. In this figure, we only keep the directed and weighted edges with the strength
greater or equal to the 50% percentile of the strengths of edges in this financial network. In other
words, only the “big” edges in this financial sector network will be kept. Again, if both i — j
and j — i are kept, we only show the one with greater strength. We find that the most influential
firms in the financial sector, in the sense of the out-degree (number of edges pointing from the
firms), are the top investment banks: Morgan Stanley (MS), Goldman Sachs (GS) and Bank of
America(BAC). In Table 1.2, Morgan Stanley and the Bank of America are both listed in the top
10 influential firms and Goldman Sachs is the 16th influential firm. The summary statistics of the
entries in the “OUT” vector in the financial network in Table 1.5 confirms their great influence in
the financial sector. Similar to the one in Table 1.2, the edges distributions in the financial sec-
tor are also skewed to right. We again use the median to describe the central tendency of these
distributions. The top 3 influential firms in the financial sector are in order as: BAC (median =
0.42), MS (median = 0.30) and GS (median = 0.25), compared with the 4th influential firms: BK
(median = 0.06). Roughly speaking, we could say that the financial sector is actually controlled
by the top investment banks in the past 15 years. It is also interesting to look at who are the most
sensitive firms in this financial sector. In Table 1.6, we sort the firms by their sensitivities. The
top 3 sensitive financial firms are in order as: C (median = 0.33), ALL (median = 0.32) and BAC

(median = 0.28). C is the only financial firm that is listed in the top 10 sensitive firms in the S&P
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100 network, and it is also the most sensitive firms in the financial sector. BAC not only is the most
influential firms in the S&P 100 network, but also has strong interconnections with other firms in
the financial sector since it is the most influential firm as well as the 3rd most sensitive firm in the
financial sector.

Lastly, Figure 1.7 shows the sector-wise S&P 100 implied volatility network structure. In this
network, the nodes are the sectors that group together their respective firms as V;. We only keep the
directed and weighted edges with the strength greater or equal to the 50% percentile of the strengths
of edges in this sector-wise network. In other words, only the “big” edges in this network will be
kept. Once again, if both V; — V; and V; — V; are kept, we only show the one with greater strength.
An important observation is that all sectors are strongly self-affected. It is in line with our common
wisdom. Four most influential sectors, in the sense of the out-degree (number of edges pointing
from the sectors), are Technology, Consumer Goods, Industrial Goods and Financial. They are also
the key industries that support the growth of the US economy in these 15 years. In Table 1.7, we
sort the sectors by their influences and obtain the top 4 influential sectors: Technology (median =
3.27), Industrial Goods (median = 1.55), Consumer Goods (median = 0.90) and Financial (median
=0.48). Itis similar to what we have found in Figure 1.7. Moreover, Technology, Consumer Goods
and Financial are also on the list of four least sensitive sectors, as reported in Table 1.8. Overall, the
relationships among different sectors in the S&P 100 network are very asymmetric. There are two
groups in this network: the influential sectors (Technology, Industrial Goods, Consumer Goods and
Financial) and the sensitive sectors (Services, Basic Materials, Industrial Goods and Healthcare).
Interestingly, the most influential sector in the sector-wise network (see Table 1.7) is the technology
sector, rather than the financial sector that has the most influential firms in the frim-wise S&P
100 network found in Table 1.2. Note that the causality we measure is based on the marginal
effect on prediction. When firms’ marginal effects are small, their total (sector) marginal effect is
not necessarily small, especially if the component marginal effects are positive correlated. Even
though the technology firms, as single components, are not as influential as the financial firms, the
technology sector, as a whole, can be more influential than the financial sector. This circumstance
is also discussed theoretically in the Section 3. Therefore, the group-wise network measurement
technique is an important complement for the point-wise network measurement technique to help

us understand underlying market network structures.
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Connectedness Dynamics in Firm-wise Market

In Figure 1.8, we show the dynamic patterns of the market relative connectedness structure mea-
sures and the market absolute connectedness strength measures in the firm-wise market structure,
at forecast horizon 1, # = 1, and at forecast horizon 10, # = 10. We only report the “out” connect-
edness measures as the “out” measures and their respective “in” measures are highly correlated.
This is not out of surprise, because one’s “out” causality measures are just someone’s “in” causality
measures, and thus their market connectedness measures will have a similar dynamic pattern.

If our market connectedness measures are truly able to measure the market systemic risk in the
US stock market, they will vary with market conditions that can be reflected by market indices like
the VIX index or the S&P 500 index. The market absolute connectedness strength measures indeed
have significant variations across different periods. Prior to 2007, the absolute connectedness
strength measures are close to zero, while the VIX index is relatively high before 2003 due to
the IT Bubble Burst. Starting from 2007, both the market connectedness strength and the VIX
index start to soar and become fluctuate more at relatively high levels until 2011. This is exactly
the period of the recent global financial crisis. From 2011 to 2015, the market connectedness
strength has a new “normal” level that is lower than the level during the crisis but higher than the
level before the crisis, while the VIX index decreases to the pre-crisis level. Overall, there is an
apparent synchronization between our market connectedness strength measures and the VIX index,
except in the I'T Bubble Burst period. It is actually in alignment with our common wisdom that the
major difference of the financial crisis of 2007-09 from other crises is the recent global financial
crisis is driven and amplified by the systemic risk in financial markets. Our absolute connectedness
strength measure (“individual fear connectedness’) looks to be positive correlated with the “market
fear” level (VIX), but our measures do concentrate more on the systemic risk that comes from the
connectedness in financial markets.

Unlike the absolute connectedness strength measure, the relative connectedness structure mea-
sure concerns more about the network connectedness structure instead of the connectedness strength.
We first look at the relative market connectedness structure at forecast horizon 1 and discuss it in
four periods (2000-2003, 2003-2006, 2006-2009, 2009-2015). During 2000-2003, the level of the

relative connectedness structure measure is relatively high (0.90-0.95) and the stock market slides
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due to the IT Bubble Burst. The S&P 500 gets to a bottom in early 2003 and starts to recover,
and the VIX index also starts to decrease. In this period (2003-2006), the relative connectedness
structure goes down. During the pre-crisis and crisis period (2006-2009), the relative connected-
ness structure climbs up rapidly, and touches a historical record (> 0.95) at the end of 2008 when
is the also the most fearful moment in financial markets as shown by the VIX index touching the
historical peak and the S&P 500 touching the bottom. During 2009-2015, the VIX index goes
down to normal and the S&P 500 fully recovers from the crisis. Interestingly, however, the relative
connectedness structure measure still remains at the crisis level (> 0.95). Our conjecture is that
the financial market is still remaining at a “crisis zone” that can be characterized by the high level
of the market connectedness structure.

When comparing the relative connectedness at different forecast horizons, we find the market
relative connectedness structure measures at forecast horizon 10 are much closer to the upper
bound 1, than at forecast horizon 1. Note that longer forecast horizon allows every node in the
network to have more steps of paths to connect each other, the relative connectedness structure
measure will thus be larger at greater forecast horizons. Hence, we do not expect to find big time
variations for the relative connectedness structure measure at long horizons (e.g., & = 10), while
we still can see that the market connectedness structure measures at horizon 10 has a dynamic
pattern similar to the one at horizon 1.

In Figure 1.8, the market relative connectedness structure measures and the market absolute
connectedness strength measures have striking different dynamic patterns across our sample pe-
riod. Absolute connectedness strength measures can be decomposed into relative connectedness
structure measures and causation strengths. The difference of the relative measures and the ab-
solute measures is totally accounted for by the time-varying causation strengths. By comparing
these two types of measures at different periods, we find the causation strengths are relative large
during the financial crisis. It again confirms our assertion that our causality measures can capture
elements of the market systemic risk.

Also, we provide the 90% bootstrap confidence intervals for the absolute market connectedness

strength measures on some specific dates!” (2004-01-20, 2005-01-20, 2006-01-20, 2007-01-20,

7We do not report the confidence intervals every month in our sample period because the bootstrapping procedure
is time costly.
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2008-01-20, 2009-01-20, 2010-01-20, 2011-01-20, 2012-01-20, 2013-01-20 and 2014-01-20) in
Figure 1.9. We use the bootstrapping procedure that is similar to the one described in Dufour and
Zhang (2015). The raise of the market absolute connectedness strength during the financial crisis
period is statistically significant.

While our market connectedness measures do show dynamic patterns corresponding to dif-
ferent major market conditions (before crisis, during crisis, and after crisis), it still seems to be
counterintuitive that our dynamic connectedness measures are “too volatile”. For instance, one
may find the market connectedness strength measures jump up and down frequently!®, but the
underlying market structures has no way to change at this rate even though the market structures
may change abruptly because of crisis. In fact, our estimated implied volatility network not only
measures the underlying market structures, but also captures the market effects in the stock market
and in the option market. As we have discussed before, firm’s implied volatility is sensitive to
special events in financial markets. One of the regular important events in the equity market is the
quarter earnings announcements. Publicly-traded companies have to release their earning reports
every three months regarding their financial conditions, earning forecasts, etc. It means the firm’s
detailed information is only revealed to the public every three months. This kind of information is
crucial for firm’s credit grade and firm’s stock price target evaluated by equity analysts in the mar-
ket. If an earning report beats market expectations, the firm’s stock price could jump up overnight
and vice versa. As a result, option trading will become much more active during earnings seasons,
and thus the implied volatilities are usually more volatile during this period. Moreover, different
firms could release their earnings reports on different dates during a earnings season. Some in-
vestors would bet on some companies based on others’ released performances, especially when
these firms are in the same sector where they face a similar business environment. The high lever-
age and large possible payoffs of the option trading make a large proportion of active investors
choose to bet on the option market!'®. Therefore, it is very likely that the connectedness measures
of the implied volatility network would become more volatile during earnings seasons. It is mainly
due to shocks in the financial market, rather than changes in the underlying market structures.

Thus, the dynamics of our implied volatility market connectedness measures can be decomposed

8From 2007 to 2011, for example, we find about 10 spikes in the figure.
Donders, Kouwenberg, Vorst et al. (2000) find firm’s implied volatility increases before announcement days and
drops afterwards.

55



into long-run stable market connectedness changes and short-run financial fluctuations, and this is

exactly what we observe in Figure 1.8.

Connectedness Dynamics Within Single Sector in Firm-wise Market

Taking the diagonal block that contains companies in a sector in the firm-wise market causality
measures table, we have the sub-network structure for this sector. We do so for each sector, and
then obtain the sector connectedness measures within every single sector in the firm-wise market.

Figure 1.10 reports the absolute connectedness strength measures within each of the 7 sectors
in our implied volatility network?®. As expected, the financial sector has the highest and the most
persistent absolute connectedness strengths during the financial crisis. Other sectors also have
higher connectedness strengths in this period, but they are very minor when compared with the
financial sector. During the crisis, investors would be more sensitive to news comings, so the im-
plied volatility connectedness could become more fluctuated. Since financial shocks (e.g., quarter
earnings releases) to implied volatilities more easily spill over within a sector, at most of the times
when there are major spikes in the market connectedness strengths in Figure 1.8, we can find their

corresponding ones in one of the sector connectedness strengths in Figure 1.10.

Connectedness Dynamics in Sector-wise Market

As has been emphasized before, the econometric framework proposed in this paper provides the
first unified method to estimate point-wise effects and group-wise effects. The nodes in the sector-
wise network structure (Vs) in this empirical exercise are the 8 sectors?! that the S&P 100 compo-
nents belong to.

In Figure 1.11, we report the dynamic patterns of the market absolute connectedness strengths
and the market relative connectedness structures in the sector-wise market network at forecast hori-
zon 1 (h = 1) and at forecast horizon 10 (2 = 10). The sector-wise market absolute connectedness
strength measure at forecast horizon 1 has a sharp peak at the end of 2008. However, it does not
persistently remain at a high level compared with the absolute connectedness strength measures in

the company-wise market structure during the crisis period shown in Figure 1.8. In other words,

20The “Utility” industry is not included as it only contains one company.
21Basic Materials, Consumer Goods, Financial, Healthcare, Industrial Goods, Services, Technology and Utilities
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even if there is a high persistent market systemic risk during the financial crisis, it is not due to
the connectedness among different sectors. The relative connectedness structure measures and the
absolute connectedness strength measures are positively correlated before 2009, while again, the
market connectedness structure does not decrease with the market connectedness strength after
the crisis. The sector-wise absolute connectedness structure strengths in Figure 1.11 are generally
lower than the firm-wise strengths in Figure 1.8. It is because sector-wise nodes have weaker in-
terconnections than firm-wise nodes in an economic network. Connected firms usually have close

business relationships and they tend to be in the same sector.

Directed and Weighted Edges Dynamics in Sector-wise Market

We now look at the sector-wise network interconnections in more details. In particular, we con-
centrate on the financial sector, which has the greatest influence on the US stock market in the past
10 years due to the global financial crisis, to see how the interconnections between the financial
sector and other sectors looks like.

In Figure 1.12 and Figure 1.13, we report the time-varying direct effects from the financial
sector to other sectors and from other sectors to the financial sector. As expected, the financial
sector has the strongest influence on itself during the financial crisis. At the end of 2008, the
magnitude of the financial sector affecting itself soars to a historical peak with the VIX index
soaring, and it keeps at a relatively high level until 2011. We find the financial sector has an
relatively strong effect on itself from 2009 to 2011, which matches the crisis period of financial
crisis of 2007-09 as our estimates utilize 2 years rolling samples. The financial crisis is actually
not yet over in the global financial market after 2009. Fore instance, the US financial crisis triggers
the European debt crisis in early 2010. From 2011 to 2013, the financial sector still has a relative
strong effect on itself.

The effect from the financial sector on other sectors also increases at the beginning of the crisis,
while the raise only lasts for a few months. In contrast, all other sectors only have negligible effects
on the financial sector, compared with the striking magnitude of the financial sector affecting itself.
The effects between the financial sector and other sectors are quite asymmetric: the financial sector
has a strong effect on others but the reverse is not true. The asymmetry and the time variations

in effects between the financial sector and other sectors confirm the importance of directed and
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weighted edges setting in economic network analysis.

1.6.3 Robustness Check

Finally, we conclude this section with checking the robustness of our market connectedness re-
sults to the choice of lags p in the VAR(p) approximation to the causality estimation models and
to the width of the estimation sample windows. In fact, different lags, p, correspond to different
information sets using in causality estimations; different widths of estimation windows correspond
to different sample market conditions. The estimates of given edges will change with different
choices of them. Therefore, we do not expect that our estimated connectedness measures would be
invariant to different lags and to different widths of estimation windows. Instead, if the underlying
market systemic risk in the volatility network can truly be measured by our market connectedness
measures and the our econometric models are good approximation to the real world, the mea-
sures, under different pre-selected model settings, should have similar dynamic patterns over time
following the changes in the underlying market systemic risk.

In particular, we compare our estimated results with those estimated with VAR(2) models and
with those estimated with 1-year estimation windows. Figure 1.14 reports the market absolute
connectedness strength measures under three different model settings: i) VAR(1) and 2-year es-
timation windows (Benchmark); ii) VAR(2) and 2-year estimation windows; and iii) VAR(1) and
1-year estimation windows. They are estimated at forecast horizon 1 and at forecast horizon 10 in
the firm-wise market network. They all have a similar dynamic pattern (low before 2007, soar up
from 2008, resume pre-crisis level in 2011 and has a mild increasing trend from 2012 to present).
Figure 1.15 shows the robustness of the relative connectedness structure measures with the same
model settings comparison. All of the three relative connectedness structure measures at forecast
horizon 1 have a similar dynamic pattern (relatively high from 2001 to 2003, decline from 2003 to
2006, soar up from 2006 to 2009 and remain at the financial crisis level from 2009 to present). For
the connectedness structure measures at forecast horizon 10, they keep at a high level all the time.

To summarize, our robustness check shows that the time-varying characteristics of our market
connectedness measures for the implied volatility network investigated in this paper are robust to

the choices of p in the VAR(p) approximation, and also robust to the choices of the widths of the
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estimation windows for the modelling settings we examine above.

1.7 Conclusion

Economic and financial network analysis requires a well developed time series econometric frame-
work for empirical studies. Weaker restrictions on network settings, fewer assumptions on the
time series identification models and more empirical flexibility of the measurement framework
would be favoured. In this paper, we propose a novel time series econometric method to measure
high-dimensional directed and weighted market network structures. Direct and spillover effects
at multiple horizons, between nodes and between groups, are measured in a unified framework.
We argue that a satisfactory network econometric framework to study market networks should be
able to estimate directed and weighted network structures with causality implications, and it can
be applied to study network spillover effects in a high-dimensional context. Indeed, our network
estimation method not only satisfies all these criteria, but also enjoys other appealing features.

We measure causality at different horizons in a network through the multiple horizon causality
measures based on flexible VAR models specified by the LASSO approach. (Non-sparse) network
structures can be estimated from a sparse set of autoregressive coefficients and concentration matri-
ces. Asymptotic consistency results of the estimators of our directed and weighted edges measures
are also provided in this paper. We do not require sparsity assumptions on network structures or the
Gaussian assumption on econometric models. We successfully connect the causality literature with
the LASSO approach in application to economic and financial network measurement. Moreover, to
the best of our knowledge, our econometric framework is the first one, in the network econometric
literature, to explicitly allow point-wise edges (relationships between firms) and group-wise edges
(relationships between sectors) to be measured in a unified framework.

With this framework at hand, we also provide the estimated market network with new connect-
edness measures that are built upon the underlying network structures. Since an economic network
can be viewed as a network among firms as well as a network among sectors, we propose three
types of connectedness measures to gauge network interconnections. These types of connected-
ness measures fully take advantage of the flexibility of our network measurement method, so they

can be applied to study market network connectedness in flexible ways
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Our network measurement methods have a wide range of applications and can be applied in
a variety of research areas, including identifying and quantifying economic relationships between
firms, between sectors and between areas; measuring market connectedness; predicting financial
risks; guiding asset allocations in large portfolios; etc. Note that many latent economic and fi-
nancial network structures can be estimated by our flexible network measurement method with
varieties of panel databases. Specifically, observing that explicitly identified economic network
centrality and consumer-supplier linkage have been shown to be new risk factors in asset pricing
and new determinants to predict financial variables, we expect more pricing factors and financial
and macroeconomic variables drivers are to be discovered by our network econometric measure-
ment methods.

To illustrate the usefulness of our method in network analysis, we investigate the S&P 100
implied volatility network in the US stock market, which can be viewed as a “individual fear”
network and has not yet been studied in existing literature. We find that: i) 7 out of the 10 most
influential firms in the S&P 100 belong to the financial sector, and top investment banks (Morgan
Stanley, Goldman Sachs and Bank of America) have the greatest influence in the financial sector; i1)
technology firms are influential when we consider indirect effects in the S&P 100 implied volatility
network; iii) market connectedness was especially strong during the recent global financial crisis;
iv) the high market connectedness was mainly due to the high connectedness within the financial
sector and the spillovers from the financial sector to other sectors; v) the financial sector had the
highest firm-wise connectedness from 2008 to 2010, while the connectedness of other sectors also
reach relatively high level during this period; vi) the causality effects between the financial sector
and other sectors were asymmetric and displayed considerable variation over time, which stresses

the importance of directed and weighted edges settings in market network analysis.

60



Table 1.2: Summary statistics of causality measures from each firm to other firms. This table
reports the summary statistics of each row of the firm-wise causality table [C;_,.]. The causality
table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the firms of
selected S&P 100 components. For each firm i, we report the minimum value, the maximum
value, the mean value and the quantiles (25%, 50% (median) and 75%) of the entries in its “OUT”
vector. The reported values are 100 times of the raw values, and are kept with two digits. We sort
the tickers by their median values and identify the top 10 influential firms.

Sector® Ticker Median Mean Min 25% 75% Max Sector® Ticker Median Mean Min 25% 75% Max

BAC  0.07 043 0.00 0.00 051 5.33 LMT 0.00 0.03 0.00 0.00 0.01 1.80
AAPL 0.07 0.16 0.00 0.02 020 1.03 KO 0.00 0.02 0.00 0.00 0.00 134
CSCO 0.07 027 0.00 0.00 031 2.63 AGN 0.00 0.03 0.00 0.00 0.01 227
C 0.07 020 0.00 0.00 021 277 CVX 0.00 0.04 000 000 0.01 1.59
BK 0.06 033 0.00 0.00 033 5.75 HPQ 0.00 0.00 0.00 0.00 0.00 O0.16
AIG 0.03 0.15 0.00 0.00 0.15 2.28 0):4¢ 0.00 0.08 000 0.00 0.02 3.81
MET 0.03 0.11  0.00 0.00 0.07 132 BAX 0.00 0.10 0.00 0.00 0.02 4.88
F 0.03 0.12  0.00 0.00 0.10 4.04 DVN 0.00 0.01  0.00 0.00 0.00 0.10
JPM  0.03 0.11  0.00 0.00 0.08 0.83 BMY 0.00 0.01 000 0.00 0.02 0.08
MS 0.02 038 0.00 0.00 0.17 4.83 CMCSA 0.00 030 0.00 0.00 0.14 6.38
GILD 0.02 0.09 0.00 0.00 0.10 1.39 ALL 0.00 020 0.00 0.00 0.07 4.67
GE 0.02 0.17 0.00 0.00 0.08 3.63 USB 0.00 0.16 0.00 0.00 0.04 2.62
WFC  0.02 0.15 0.00 0.00 0.12 3.96 SLB 0.00 0.09 0.00 0.00 0.00 328
TGT  0.02 0.06 0.00 0.00 005 0.37 TXN 0.00 0.09 0.00 0.00 0.01 493
IBM 0.02 0.07 0.00 0.00 0.06 1.02 SBUX 0.00 0.07 0.00 0.00 0.01 6.14
GS 0.02 0.12 0.00 0.00 0.08 1.70 MSFT 0.00 0.06 0.00 0.00 0.02 296
vz 0.02 0.07 0.00 0.00 0.03 4.11 DIS 0.00 0.06 000 0.00 0.01 5.11
SPG 0.02 0.14 0.00 0.00 0.07 5.63 ACN 0.00 0.06 0.00 0.00 0.01 3.49
TWX  0.01 0.07 0.00 0.00 0.05 247 UNH 0.00 0.06 0.00 0.00 0.01 278
DOW  0.01 0.09 0.00 0.00 0.03 252 EXC 0.00 0.06 0.00 0.00 0.01 4.19
BA 0.01 0.11 0.00 0.00 0.03 7.36 CVS 0.00 0.05 0.00 0.00 0.01 297
EMC 0.01 0.04 0.00 0.00 0.03 0.78 AMZN  0.00 0.05 0.00 0.00 0.03 097
AXP  0.01 0.16  0.00 0.00 0.07 2.78 LLY 0.00 0.05 0.00 0.00 0.01 3.86
ORCL 0.01 0.05 0.00 0.00 0.02 3.26 ABT 0.00 0.04 0.00 0.00 0.00 3.48
PFE 0.00 0.06 0.00 0.00 0.03 251 APC 0.00 0.04 0.00 0.00 0.00 1.71
COST 0.00 0.02 0.00 0.00 0.02 098 QCOM  0.00 0.03 0.00 0.00 0.01 0.74
CELG 0.00 0.03 0.00 0.00 0.01 1.14 XOM 0.00 0.02 0.00 0.00 0.00 0.86
INTC 0.00 0.04 0.00 0.00 0.03 0.68 HON 0.00 0.01  0.00 0.00 0.00 0.29
SO 0.00 0.09 0.00 0.00 0.01 7.63 WMT 0.00 0.01  0.00 0.00 0.00 037
COF  0.00 0.10  0.00 0.00 0.04 4.63 BIIB 0.00 0.01  0.00 0.00 0.01 0.13
UNP  0.00 0.04 0.00 0.00 0.01 1.93 NKE 0.00 0.01 0.00 0.00 0.00 0.31

MCD  0.00 0.08 0.00 0.00 0.01 6.30 HD 0.00 0.01 0.00 0.00 0.00 0.14
HAL  0.00 0.10  0.00 0.00 0.02 6.68 MON 0.00 0.00 0.00 0.00 0.00 0.11
T 0.00 0.05 0.00 0.00 0.02 3.70 CL 0.00 0.00 0.00 0.00 0.00 0.20
MRK  0.00 0.02 0.00 0.00 0.01 0.69 GD 0.00 0.00 0.00 0.00 0.00 0.10

FOXA 0.00 0.10 0.00 0.00 0.01 6.94
CAT 0.00 0.01 0.00 0.00 0.01 045
v 0.00 0.11  0.00 0.00 0.04 798

AMGN  0.00 0.00 0.00 0.00 0.00 0.13
UTX 0.00 0.00 0.00 0.00 0.00 0.03
COpP 0.00 0.00 0.00 0.00 0.00 0.01

EMR  0.00 0.01  0.00 0.00 0.00 0.27 DD 0.00 0.00 0.00 0.00 0.00 0.01
EBAY 0.00 0.17  0.00 0.00 0.08 3.26 FDX 0.00 0.00 0.00 0.00 0.00 0.01
WBA  0.00 0.02 0.00 0.00 0.01 0.70 MO 0.00 0.00 0.00 0.00 0.00 0.01

MMM 0.00 0.03 0.00 0.00 0.03 0.44
INJ 0.00 0.07 0.00 0.00 0.01 4.87
RTN 0.00 0.07 0.00 0.00 0.01 5.79
NSC 0.00 0.12  0.00 0.00 0.01 878

LOW 0.00 0.00 0.00 0.00 0.00 0.01
MDT 0.00 0.00 0.00 0.00 0.00 0.01
PEP 0.00 0.00 0.00 0.00 0.00 0.01
PG 0.00 0.00 0.00 0.00 0.00 0.01
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* B: Basic Materials; C: Consumer Goods; F: Financial; H: Healthcare; I: Industrial Goods; S: Services; T: Technology; U: Utilities.
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Table 1.3: Summary statistics of causality measures to each firm from others firms. This table
reports the summary statistics of each column of the firm-wise causality table [C._,;]. The causality
table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the firms of
selected S&P 100 components. For each firm i, we report the minimum value, the maximum
value, the mean value and the quantiles (25%, 50% (median) and 75%) of the entries in its “IN”
vector. The reported values are 100 times of the raw values, and are kept with two digits. We sort
the tickers by their median values and identidy the top 10 sensitive firms.

Sector® Ticker Median Mean Min 25% 75% Max Sector® Ticker Median Mean Min 25% 75% Max

OXY 0.02 0.19  0.00 0.00 0.17 3.81 BIIB 0.00 0.01  0.00 0.00 0.01 0.04
RTN 0.02 0.09 0.00 0.01 0.03 5.79 WMT 0.00 0.01 0.00 0.00 0.01 0.11
LMT 0.01 0.02 0.00 0.00 0.02 022 SO 0.00 0.09 0.00 0.00 0.01 7.63
SLB 0.01 025 0.00 0.00 0.10 3.26 INJ 0.00 020 0.00 0.00 0.01 4.88
GD 0.01 0.05 0.00 0.00 0.05 0.9 NKE 0.00 0.02 0.00 0.00 0.03 025
C 0.01 0.18 0.00 0.00 0.07 3.34 EBAY 0.00 0.04 000 0.00 0.02 1.14
DIS 0.01 0.17 000 0.00 0.03 5.11 AMZN  0.00 0.10 000 0.00 0.01 493
WEFC 0.01 0.15 0.00 0.00 0.07 3.52 CELG 0.00 0.02 000 0.00 0.00 1.14
Ccop 0.00 0.09 000 0.00 0.09 132 HAL 0.00 0.11  0.00 0.00 0.02 6.68
EMR 0.00 0.04 0.00 0.00 0.04 0.51 BK 0.00 0.17 000 0.00 0.01 5.75
GE 0.00 0.18 0.00 0.00 0.04 213 FOXA 0.00 0.15 0.00 0.00 0.01 694
ALL 0.00 026 0.00 0.00 0.07 3.96 UNP 0.00 0.15 0.00 0.00 0.02 2.87
DD 0.00 0.05 0.00 0.00 0.03 0098 CMCSA 0.00 0.13  0.00 0.00 0.01 6.38
BA 0.00 0.14 0.00 0.00 0.04 7.36 NSC 0.00 0.13 000 0.00 0.02 8.78
T 0.00 0.10  0.00 0.00 0.03 3.70 BAC 0.00 0.13  0.00 0.00 0.04 533
MET 0.00 0.09 000 0.00 0.03 1.52 F 0.00 0.11  0.00 0.00 0.01 4.04
MDT 0.00 0.02 000 0.00 0.02 0.18 CVX 0.00 0.11  0.00 0.00 0.08 1.06
WBA 0.00 0.02 000 0.00 0.02 0.20 DVN 0.00 0.09 000 0.00 0.05 1.84

HON 0.00 0.02 000 0.00 0.01 040 v 0.00 0.09 000 0.00 0.00 798
SPG 0.00 0.15 0.00 0.00 0.03 5.63 MCD 0.00 0.09 000 0.00 0.01 6.30
COF 0.00 0.08 0.00 0.00 0.01 4.63 KO 0.00 0.09 0.00 0.00 0.01 336
UNH 0.00 0.12  0.00 0.00 0.03 422 PFE 0.00 0.07 0.00 0.00 0.02 2.63

APC 0.00 0.11 000 0.00 0.07 171
MSFT  0.00 0.07 000 0.00 0.02 296
AXP 0.00 0.12  0.00 0.00 0.04 275
ABT 0.00 0.02 000 0.00 0.02 0.30
CVS 0.00 0.06 000 0.00 0.01 297
USB 0.00 0.08 000 0.00 0.02 223
DOW  0.00 0.05 0.00 0.00 0.01 252

TWX 0.00 0.07 0.00 0.00 0.02 1.11
XOM 0.00 0.05 0.00 0.00 0.04 0.62
MON 0.00 0.05 0.00 0.00 0.01 0.70
EMC 0.00 0.05 000 0.00 0.00 217
ORCL 0.00 0.05 000 0.00 0.01 3.26
HD 0.00 0.05 0.00 0.00 0.04 0.63
ACN 0.00 0.04 000 0.00 0.00 3.49

GS 0.00 0.08 0.00 0.00 0.02 1.70 CAT 0.00 0.04 0.00 0.00 0.01 0.76
SBUX  0.00 0.17 0.00 0.00 0.04 6.14 TGT 0.00 0.04 0.00 0.00 0.04 041
CL 0.00 0.02 0.00 0.00 0.02 0.39 LOW 0.00 0.04 0.00 0.00 0.02 0.50

FDX 0.00 0.03 000 0.00 0.03 0.46
MS 0.00 0.17 0.00 0.00 0.05 3.63

JPM 0.00 0.03 0.00 0.00 0.00 1.21
AGN 0.00 0.03 0.00 0.00 0.00 227

QCOM 0.00 0.04 000 0.00 0.02 093 AIG 0.00 0.03 000 0.00 0.00 1.86
EXC 0.00 0.13 000 0.00 0.02 4.19 vz 0.00 0.03 0.00 0.00 0.00 0.96
COST  0.00 0.13  0.00 0.00 0.03 259 PEP 0.00 0.02 000 0.00 001 0.64

MMM  0.00 0.03 0.00 0.00 0.02 0.9
AMGN 0.00 0.03 0.00 0.00 0.02 0.66
AAPL  0.00 0.02 0.00 0.00 0.01 020
INTC 0.00 0.01 0.00 0.00 0.01 0.15
BAX 0.00 0.09 0.00 0.00 0.01 348

MRK 0.00 0.02 0.00 0.00 0.01 028
UTx 0.00 0.02 0.00 0.00 0.01 045
HPQ 0.00 0.02 0.00 0.00 0.02 0.18
TXN 0.00 0.02 0.00 0.00 0.02 024
CSCO 0.00 0.01 0.00 0.00 0.01 020
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BMY  0.00 0.01 000 0.00 0.01 0.09 PG 0.00 0.01 0.00 0.00 0.00 0.29
LLY 0.00 0.08 0.00 0.00 0.02 3.86 GILD 0.00 0.01 000 0.00 0.01 0.13
IBM 0.00 0.03 000 0.00 0.02 1.17 MO 0.00 0.01  0.00 0.00 0.00 0.08

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Healthcare; I: Industrial Goods; S: Services; T: Technology; U: Utilities.
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Table 1.4: Top 10 influential firms at different forecast horizons. This table reports the top 10
influential firms and their respective sector at different forecast horizons, 7 =1,2,3,4,5. Given the
forecast horizon h, we obtain the summary statistics of each row of the firm-wise causality table
[Clh *,.]. The causality table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes
are the firms of selected S&P 100 components. For each firm i, we have the median value of the
entries in its “OUT” vector. For each given forecast horizon 4, we sort the tickers by their median
values and identify the top 10 influential firms.

h=1 h=2 h=3 h=4 h=5
Rank Sector® Ticker Sector* Ticker Sector* Ticker Sector® Ticker Sector® Ticker

1 F BAC T CSCO T CSCO T CSCO T CSCO
2 C AAPL C AAPL C AAPL C AAPL C AAPL
3 T CSCO F C F AIG F AIG F AIG
4 F C F AlIG F C F C F C

5 F BK F GS F GS F GS F GS

6 F AIG I GE I GE I GE I GE
7 F MET F MS F JPM F JPM F JPM
8 C F F JPM C F C F C F

9 F JPM F MET T IBM T IBM T IBM
10 F MS C F F MET T EMC T EMC

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Healthcare; I: Industrial Goods; S: Services; T: Technology; U: Utilities.
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Table 1.5: Summary statistics of causality measures from each financial Firm to other financial
Firms. This table reports the summary statistics of the firm-wise causality table blocked by the
financial sector [C;, ], where i, j € Financial Sector. The causality table is estimated by the full
data sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P 100 components. For
each financial firm i, we report the minimum value, the maximum value, the mean value and the
quantiles (25%, 50% (median) and 75%) of the entries in its “OUT” vector truncated within the
financial sector. The reported values are 100 times of the raw values, and are kept with two digits.
We sort the tickers by their median values and identify the top 3 influencial firms in the financial
sector.

Ticker Median Mean Min 25% 75% Max

BAC 042 1.21  0.00 0.04 1.66 5.33
MS 0.30 1.19 0.00 0.04 221 4.83
GS 0.25 043 0.00 0.00 0.82 1.70
BK 0.06 091 0.00 0.00 0.98 5.75
WEFC  0.03 049 0.00 0.00 0.38 3.96
ALL  0.01 0.30 0.00 0.00 0.37 1.46
SPG  0.01 0.54 0.00 0.00 0.08 5.63
AXP  0.00 043 0.00 0.00 0.24 278
C 0.00 042 0.00 0.00 0.53 2.77
AIG  0.00 0.14 0.00 0.00 0.12 0.74
COF  0.00 0.39 0.00 0.00 0.12 4.63
JPM  0.00 0.10 0.00 0.00 0.15 0.51
MET 0.00 0.31 0.00 0.00 0.58 1.32
USB  0.00 0.11 0.00 0.00 0.03 0.55
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Table 1.6: Summary statistics of causality measures to each financial firm from other financial
firms. This table reports the summary statistics of the firm-wise causality table blocked by the
financial sector [C;_,;], where i, j € Financial Sector. The causality table is estimated by the full
data sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P 100 components. For
each firm i, we report the minimum value, the maximum value, the mean value and the quantiles
(25%, 50% (median) and 75%) of the entries in its “IN” vector truncated within the financial
sector. The reported values are 100 times of the raw values, and are kept with two digits. We sort
the tickers by their median values and identify the top 3 sensitive firms in the financial sector.

Ticker Median Mean Min 25% 75% Max

C 0.33 0.65 0.00 0.03 094 3.34
ALL  0.32 1.02 0.00 0.02 221 3.96
BAC 0.28 0.64 0.00 0.00 0.63 5.33
SPG  0.22 0.85 0.00 0.13 0.64 5.63
MET 0.07 0.36 0.00 0.00 0.49 1.52
MS 0.01 0.38 0.00 0.00 0.62 1.75
WFC  0.01 0.66 0.00 0.00 1.00 3.52
BK 0.00 096 0.00 0.00 0.75 5.75
AXP  0.00 044 000 0.00 031 2.75
AIG  0.00 0.04 0.00 0.00 0.01 0.30
COF  0.00 046 0.00 0.00 0.18 4.63
GS 0.00 0.23 0.00 0.00 0.24 1.70
JPM  0.00 0.06 0.00 0.00 0.01 047
USB  0.00 023 0.00 0.00 0.00 2.23
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Table 1.7: Summary statistics of causality measures from each sector to other sectors. This table
reports the summary statistics of each row of the sector-wise causality table [Cy,_.v ]. The causality
table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the sectors whose
firms are selected in the S&P 100 components. For each sector V;, we report the minimum value,
the maximum value, the mean value and the quantiles (25%, 50% (median) and 75%) of the entries
in its “OUT” vector. The reported values are 100 times of the raw values, and are kept with two
digits. We sort the sectors by their median values and identify the top 4 influential sectors in the
economy.

Sector Median Mean Min 25% 75% Max

Technology 3.27 575 0.00 0.00 740 18.84
Industrial Goods 1.55 328 0.00 0.01 3.16 15.04
Consumer Goods 0.90 1.07 000 043 147 3.02

Financial 0.48 9.61 0.00 005 546 57.89
Utilities 0.08 1.59 0.00 0.00 0.27 11.83
Services 0.00 7.74 0.00 0.00 2.67 52.77
Healthcare 0.00 3.15 000 0.00 0.25 24.58

Basic Materials 0.00 3.07 0.00 0.00 043 2282

Table 1.8: Summary statistics of causality measures to each sector from other sectors. This table
reports each column of the summary statistics of the sector-wise causality table [Cy _,y.]. The
causality table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes are the
sectors whose firms are selected in the S&P 100 components. For each sector V;, we report the
minimum value, the maximum value, the mean value and the quantiles (25%, 50% (median) and
75%) of the entries in its “IN” vector. The reported values are 100 times of the raw values, and
are kept with two digits. We sort the sectors by their median values and identify the top 4 sensitive
sectors in the economy.

Sector Median Mean Min 25% 75% Max

Services 1.12 1091 0.00 0.00 16.09 52.77
Basic Materials 1.11 443 0.00 0.00 3.63 22382
Industrial Goods 0.69 272  0.00 0.06 2.28 15.04

Healthcare 0.57 379 000 0.00 1.84 24.58
Technology 0.36 264 000 0.00 0.77 18.84
Consumer Goods  0.09 073 0.00 0.00 084 3.02

Utilities 0.06 208 0.00 0.00 125 11.83
Financial 0.00 796 0.00 000 145 57.89
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Figure 1.5: Firm-wise S&P 100 implied volatility network. This is a direct effect network corre-
sponding to the causality table, [Cllj] The causality measures table is estimated by the full data
sample (20/08/1999 - 31/08/2015). Nodes are the firms of selected S&P 100 components. Differ-
ent colors of the nodes correspond to different sectors that the nodes belong to (skyblue: financial;
lawn green: healthcare; pink: industrial goods; purple: services; blue: technology; plum: utilities;
orange: basic materials forest green: consumer goods). We only keep the directed and weighted
edges (i — j) if Cj; is greater or equal to the 90% percentile element in OU Ti1 (C;.) and the 90%
percentile element in IN} (C.j). When i — j and j — i are both kept, only the edge with greater
strength will be shown in this figure. The colors of the edges correspond to the colors of the source
nodes. The thickness of the edges are weight rescaled.
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Figure 1.6: Firm-wise S&P 100 implied volatility network within financial sector. This is a direct
effect network corresponding to the blocked causality table, [Cl-lj] where i, j € Financial (both node
i and node j are the firms that selected from S&P 100 components and belong the financial sector).
The causality measures table is estimated by the full data sample (20/08/1999 - 31/08/2015). Nodes
are the firms that selected from S&P 100 components and belong to the financial sector. We only
keep the directed and weighted edges (i — j) if C;; is greater or equal to the 50% percentile element
in the blocked causality measures table, [Cilj] where i, j € Financial. The darkness of the nodes
corresponds to the out-degree of the nodes in this filtered network (e.g., MS, BAC and GS have
higher out-degree). When i — j and j — i are both kept, only the edge with greater strength will
be shown in this figure. The thickness of the edges are weight rescaled.
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Figure 1.7: Sector-wise S&P 100 implied volatility network. This is a direct effect network cor-
responding to the causality table, [CVV |. The causality table is estimated by the full data sample
(20/08/1999 - 31/08/2015). Nodes are the sectors of the firms selected from S&P 100 components.
We only keep the directed and weighted edges (V; — V) if Cy,y; is greater or equal to the 50%
percentile element in the causality measures table, [CVV |. The darkness of the nodes corresponds
to the out-degree of the nodes in this filtered network (e.g., Consumer Goods, Financial, Industrial
Goods and Technology have higher out-degree). When V; — V; and V; — V; are both kept, only
the edge with greater strength will be shown in this figure. The thickness of the edges are weight
rescaled.
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Chapter 2

Centralities in Illiquidity Transmission
Networks and the Cross-Section of

Expected Returns

Abstract

This paper investigates the relationship between stock illiquidity spillovers and the cross-section
of expected returns. I study industry-level illiquidity spillovers in a directed network that describes
the interconnections among stocks’ bid-ask spreads, where the interconnections are latent and are
estimated by a Granger-type measure. In the directed illiquidity transmission network, the illiquid-
ity of high sensitive centrality (SC) industries, i.e., those active at receiving illiquidity from others,
as well as high influential centrality (IC) industries, i.e., those active at transferring illiquidity to
others, tends to covary with that of their neighbours and neighbours’ neighbours across different
horizons due to illiquidity spillovers. As a result, long run returns of the portfolios that contain
stocks of central (high SC or high IC) industries may be more volatile because of weak diversifi-
cation of the liquidity risk across different horizons. Thus, investors would require compensations
for holding these central stocks. I confirm this conjecture and find that central industries in illig-
uidity transmission networks do earn higher average stock returns (around 4% per year) than other

industries. Market-beta, size, book-to-market, momentum, liquidity and idiosyncratic volatility
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effects cannot account for the high average return earned by central industries.

2.1 Introduction

Liquidity plays a central role in the functioning of financial markets. Stock market liquidity is
documented as being closely related to business cycles (Ns, Skjeltorp and degaard (2011)), stock
market returns (Amihud (2002)) and cross-sectional returns (Pastor and Stambaugh (2003)). In
a financial market where everyone is probably connected to everybody else, the illiquidity risk
exposure for a firm is not only related to its idiosyncratic liquidity level and its correlation to
market liquidity conditions, but also closely related to the properties of the connected individual
firm. For example, a firm’s poor liquidity condition could be a result of drops in liquidity of its
connected firms due to illiquidity transmissions (see Oh (2013) and Cespa and Foucault (2014)
among others). Current literature on illiquidity transmissions is mainly focusing on undirected
commonality and aggregated contagion in liquidity,! and on directed illiquidity spillovers between
two firms, two stocks and two markets.? In the recent financial crisis, however, we observe that
a major market-wide liquidity problem could be a result of illiquidity spillovers originated from
“important” industries, e.g., the financial industry. Not much attention is paid to understanding
the heterogeneity in market-wide illiquidity spillovers. To better understand this issue, this paper
investigates the spillover risk of illiquidity through modeling the market-wide illiquidity spillovers
in a directed network that describes the interconnections among industries’ idiosyncratic illiquidity
risks.? Then I examine the relationship between the heterogeneous roles of industries in illiquidity
spillovers and the cross-section of expected returns.

When studying illiquidity spillovers in network analysis, we can explore the architecture of the
spillovers as a mechanism of how individual illiquidity evolves within an “illiquidity network”.
This exploration involves looking into the underlying illiquidity transmission structure, rather than
just superficially treating the aggregated market illiquidity as a given outcome. In network analy-

sis, centrality is a concept referring to a node’s position in the functioning of network spillovers.

ISee Cifuentes, Ferrucci and Shin (2005), Brockman, Chung and Pérignon (2009), Hameed, Kang and Viswanathan
(2010), Karolyi, Lee and van Dijk (2012), Koch, Ruenzi and Starks (2016) among the most recent studies.

%See, e.g., Goyenko and Ukhov (2009), Oh (2013) and Cespa and Foucault (2014).

3Hameed et al. (2010) document inter-industry spillover effects in liquidity, which are likely to arise from capital
constraints in the market making sector.
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Actually, a directed network assumption is straightforward but implicit when considering network
spillovers as any financial spillover must have a direction with a source and a target. In this regard,
I study network centrality in two directions: i) sensitive centrality (SC), which measures the de-
gree of an industry being affected by others, and 1i) influential centrality (IC), which measures the
degree of an industry affecting others. In an illiquidity transmission network, high SC industries
are the ones whose illiquidity can easily be affected by the illiquidity of other industries, while
high IC industries are the ones whose illiquidity can easily affect others’ illiquidity. As a result,
central (high SC or high IC) industries tend to play a major role in network spillovers, compared
to those that are isolated from others.* I also assume a neighbour effect: being affected by high SC
industries makes an industry more likely to be a high SC industry, and affecting high IC industries
makes an industry more likely to be a high IC industry as well. Thus, an industry’s centrality also
takes its connected industries’ centralities into account, sharing the characteristics of what kind
of neighbours it is connected to in terms of the role in network spillovers. Implications of influ-
ential centrality in network analysis have drawn growing attention in the literature on financial
systemic risk. For example, Acemoglu et al. (2012) and Acemoglu et al. (2015b) use asymmetric
network structures to show the possibility that aggregate fluctuations may originate from idiosyn-
cratic shocks to high IC firms. However, research on sensitive centrality is missing in the existing
literature on financial network. I argue that SC is least as important as IC in terms of asset pricing.
In this paper, I provide a comprehensive analysis of sensitive centrality and influential centrality
simultaneously in a directed illiquidity network context.

Intuitively speaking, illiquidity spillovers would lead the illiquidity of a central industry to co-
vary with that of its connected neighbours and neighbours’ neighbours across different horizons
due to illiquidity spillovers, thus long run returns of the portfolios that contain these central stocks
may be more volatile due to weak diversification of the liquidity risk across different horizons.
Since a high SC industry’s illiquidity is easily affected by the illiquidity of other industries, in-
vestors will demand a premium for holding this high SC stock as agents demand compensation
for not being able to use this stock to diversify the liquidity risk of others. Similarly, since it is
difficult to find other stocks to diversify a high IC industry’s liquidity risk as the high IC industry’s

illiquidity would easily affect others’ illiquidity, the high IC stocks should also earn a premium.

4 An industry is isolated in a network means it is not connected to anybody in this network.
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The goal of this paper is to investigate whether such illiquidity centralities (SC and IC) are risk
factors in asset pricing where industries are connected in an illiquidity network. I resolve this is-
sue by examining the cross-sectional relationship between the illiquidity centralities and expected
returns. Based on the argument stated above, my conjecture is that central stocks will earn higher
average returns. The IC measured from other economic networks has already been documented
as a risk factor in recent literature on network and asset pricing (see, e.g., Buraschi and Porchia
(2012) and Ahern (2013)), but the result about SC is still missing. Indeed, the empirical result in
this paper provides strong evidence to support my conjecture that both SC and IC industries do
earn higher average returns. Interestingly, my robustness check suggests the effects of SC are even
more robust than IC.

In this paper, illiquidity spillovers, network centralities and cross-sectional expected returns are
to be explored together. To verify my previous conjecture, we need a new analytical procedure that
includes four main steps: i) measuring industry’s illiquidity, ii) estimating the illiquidity transmis-
sion network among different industries, iii) calculating centralities in the illiquidity network, and
iv) examining the cross-sectional relationship between illiquidity centralities and expected returns.

First, liquidity has many dimensions; this paper focuses on a dimension associated with bid-
ask spreads in stock markets, which reflects the difficulty (cost) of stocks’ transactions. I use
Corwin and Schultz (2012)’s bid-ask spreads estimate to measure firms’ daily illiquidity. Industry’s
illiquidity is measured by the simple average of the individual bid-ask spreads estimates of the firms
that belong to this industry.

Then adapting the financial network estimation technique suggested by Billio et al. (2012)
and Dufour and Jian (2016), I use a Granger-type measure to estimate the directed relationships
between every pair of industries in the stock market.> I identify the directed illiquidity spillover
from industry A to industry B by testing whether the marginal effect of industry A’s past illiquidity
on industry B’s current illiquidity is positive. The estimated illiquidity transmission network can
be represented by an adjacency matrix.

Once we have the estimate of the adjacency matrix of the illiquidity transmission network, I
take it as given and use Bonacich (1987)’s generalized eigenvector centrality measure, which is

built on the neighbour effect assumption, to calculate industries’ sensitive centralities and influ-

3 Actually, I focus on the industry level just for feasibility of implementation.
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ential centralities in the illiquidity network. I re-estimate industries’ centralities each year by the
subsample in that year, then I obtain the annual series (1963 - 2015) of industries’ centralities (SC
and IC). In fact, high SC and high IC tend to coexist and are persistent in an industry. I find that
industries’ illiquidity sensitive and influential centralities are positively correlated in time-series
and in cross-section.

Following the classic procedure used by Fama and French (1992), I examine the cross-sectional
relationship between the illiquidity centralities and expected returns at portfolio level as well as at
industry level. Sorting industries by their respective SC and IC at the beginning of each year, I
form portfolios in 10 deciles based on SC and IC, respectively. I find that with the portfolios rebal-
anced annually, average return differences between industries in the highest and lowest SC deciles
and average return differences between industries in the highest and lowest IC deciles exceed 4%
per year. The corresponding Fama-French-Carhart four-factor alphas also exceed 4% per year.
Both the return differences and the four-factor alpha differences are economically and statistically
significant at all standard significance levels. Not surprisingly, industries’ centralities have relation
with some well-known risk factors. For example, high SC industries tend to be those industries
with small average firm size and high average book-to-market and low liquidity. To ensure that
it is not these characteristics, but the illiquidity centralities (SC and IC), that drive the return dif-
ferences documented in this paper, I perform a battery of bivariate sorts and re-examine the raw
return and alpha differences. These results are robust to controls for market-beta, size, book-to-
market, momentum, liquidity and idiosyncratic volatility. Results from cross-sectional regressions
corroborate this evidence. The risk premium between the highest and the lowest deciles of SC
and the premium of IC estimated by the Fama-MacBeth two-step procedure are approximately 9%
per year and 12% per year, respectively. A robustness check for different subperiods (1970 - 2015,
1980 - 2015, 1990 - 2015 and 2000 - 2015) suggests the effects of SC are even more robust than IC.
In short, the illiquidity centralities (SC and IC) do earn premiums in the cross-section of expected
returns.

The rest of this paper is organized as follows. Section 2.2 discusses the contributions of this
paper relative to related literature. Section 2.3 proposes a new analytical framework for empirical
studies. Section 2.4 provides the univariate portfolio-level analysis, the bivariate analysis and

industry-level cross-sectional regressions that examine a comprehensive list of control variables.
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Section 2.5 makes a short conclusion.

2.2 Related Literature

This paper contributes to four strands of the literature: i) financial systemic risk with network
analysis and its asset pricing implications, ii) commonality in liquidity, illiquidity contagions and
illiquidity spillovers, iii) gradual information diffusion, and iv) financial network estimation.

The first stream studies financial systemic risk with network analysis and its asset pricing im-
plications. As Andersen et al. (2012) mention, modern network theory can provide a unified frame-
work for systemic risk measures. For example, Acemoglu et al. (2012), Elliott et al. (2014) and
Acemoglu et al. (2015b) show that market architectures may function as a potential propagation
mechanism of idiosyncratic shocks throughout the economy. Many of the efforts in this stream
are concentrated on studying the effect of influential centrality because high IC firms (or sectors)
are very likely to be a source of market turbulences. Motivated by this intuition, Buraschi and
Porchia (2012) and Ahern (2013) conduct empirical analysis on firms’ fundamentals networks and
on input-output networks, respectively, and find evidence that supports the theory implications.
They document that high IC firms do earn higher expected returns. This paper differs from theirs
in two aspects. First, I stress that sensitive centrality is at least as important as influential centrality
in terms of asset pricing. Sensitive centrality and influential centrality can be seen as twin concepts
that built on directed network structures, but respectively characterize nodes’ importance in a net-
work in distinct directions. As discussed before, both high SC and high IC firms should earn risk
premiums according to their network implications. In this paper, I provide a comprehensive anal-
ysis on high SC and high IC industries. The result related to IC is consistent with the implication
of Acemoglu et al. (2012) and Acemoglu et al. (2015b)’s theory in asset pricing, while SC turns
out to be a more robust risk factor than IC in explaining cross-sectional returns and is thus of great
importance as well. Second, I focus on a well-known risk, illiquidity risk, and its transmission
structures. The illiquidity network structure is directly identified by illiquidity spillovers. Thus the
interpretation of the network effects in terms of risk spillovers is more straightforward.

The second stream of literature studies commonality in liquidity, illiquidity contagions and

illiquidity spillovers in financial markets. Liquidity has been shown to covary strongly across
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stocks® and commonality in liquidity can influence expected returns’. Both illiquidity comove-
ments and illiquidity spillovers may describe the phenomenon of covaried illiquidity across stocks.
But illiquidity comovements characterizes the contemporaneous relationship among cross-sectional
illiquidity, while illiquidity contagions and spillovers focus more on the relationships across differ-
ent horizons. Cifuentes et al. (2005) explore liquidity risk in a system of interconnected financial
institutions and find contagious failures can result from small shocks. Oh (2013) presents a model
in which the contagion of a liquidity crisis between two nonfinancial institutions occurs because
of learning activity within a common creditor pool. Cespa and Foucault (2014) show that cross-
asset learning generates a self-reinforcing positive relationship between price informativeness and
liquidity, which can lead when a small drop in the liquidity of one security can, through a feed-
back loop, spill over and result in a large drop in market liquidity. Longstaff (2010) conducts an
empirical investigation into the pricing of subprime asset-backed collateralized debt obligations
(CDOs) and finds that strong evidence of contagion in financial markets was propagated primarily
through liquidity and risk-premium channels. These studies provide theoretical and empirical evi-
dences of why illiquidity can spill over and cause contagions in financial markets across different
horizons. In fact, illiquidity spillovers can happen even if there is no contemporaneous illiquidity
comovement, and vice versa. The main departure of this paper from this literature is primarily in
the emphasis on the network structure of illiquidity transmissions. Specifically, I focus on the asset
pricing implications of the heterogeneity of illiquidity spillovers.

The third stream of the literature studies gradual information diffusion in financial markets.
It has been documented that economic links between firms can serve as the channel of gradual
diffusion of information. Individual firm’s returns, return volatilities and credit spreads can be
predicted via firms’ linkages (see Cohen and Frazzini (2008),Hertzel et al. (2008), Menzly and
Ozbas (2010), Aobdia et al. (2014), Gengay et al. (2015), Albuquerque et al. (2015) and Gengay
et al. (2016) among others). This literature implies potential effects of network structures on asset
pricing, since they find that firm’s returns can be predicted by the returns of the firms it is connected
to. Actually, gradual information diffusion may also provide a channel for risk spillovers.

The fourth strand of the literature studies the estimation on financial network structures. After

6See Brockman et al. (2009), Hameed et al. (2010), Karolyi et al. (2012), Koch et al. (2016) among the most recent
studies.
’See, e.g., Pastor and Stambaugh (2003) and Acharya and Pedersen (2005).
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all, most of financial relationships in financial markets are latent and need to be estimated from an
appropriately identified model. Billio et al. (2012) use the Granger noncausality testing to meausre
connectedness in financial markets. Hautsch et al. (2015) measures the downside risk relation-
ship from A to B by estimating the marginal effect of the Value-at-Risk (VaR) of A’s returns on B’s
returns. Diebold and Yilmaz (2014) and Dufour and Jian (2016) propose general network measure-
ment frameworks to measure directed financial relationships. In this paper, illiquidity networks are
estimated by a Granger-type procedure that identifies illiquidity transmissions by measuring the
illiquidity prediction among industries. This method is in line with Billio et al. (2012) and Du-
four and Jian (2016). We share the same estimation logic: if industry A’s illiquidity transmits to
industry B, then industry B’s illiquidity can be predicted by industry A’s illiquidity.® However,
measuring network centrality also requires positive spillovers: if industry A’s illiquidity transmits
to industry B, a higher current illiquidity of industry A should increase the future illiquidity of in-
dustry B. Therefore in this paper, I estimate the direct effect in the illiquidity transmission network
by testing positive prediction effects. Causality at multiple horizons could measure the illiquid-
ity spillovers from one industry to another while simultanenously considering direct and indirect
effects (see, e.g., Dufour and Jian (2016)). But the adjacency matrix representing the underlying
network structure in terms of all bilateral direct effects is sufficient to calculate network centralities
when we use eigenvector centrality measure that will be discussed in the next section. So I estimate
the direct effect that is measured by forecasting at horizon one: if industry A’s illiquidity transmits
to industry B, a higher today’s illiquidity of industry A should increase tomorrow’s illiquidity of

industry B.

2.3 Analytical Framework

In this section, I provide an analytical framework to formalize and quantify illiquidity centrality
for empirical analysis. I use an adjacency matrix to represent a general illiquidity transmission
network. Since any illiquidity transmission has direction, I categorize network centrality by: 1)

sensitive centrality, which measures how sensitive is a node to a random shock in a network; i1) in-

8Goyenko and Ukhov (2009) also use a Granger-type procedure to study the illiquidity spillovers between stock
and bond markets.
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fluential centrality, which measures how influential is a node’s shock affecting others in a network.
Given directed network structures represented by an adjacency matrix, I use Bonacich (1987)’s
generalized eigenvector centrality to measure nodes’ network sensitive centrality and influential
centrality. Note that illiquidity transmission networks are latent, I use Corwin and Schultz (2012)’s
bid-ask spreads estimate to measure firms’ daily illiquidity and apply a specification method that
is similar to Granger causality measures to empirically identify directed illiquidity network struc-

tures.

2.3.1 Illiquidity Transmission Network

Network analysis can be used to model and explain financial contagions. For example, Allen and
Gale (2000) show that the possibility of contagion depends strongly on the completeness of the
underlying network structure. For the complete network shown in Figure 2.1a, individuals can
be insured by each others following Lucas (1977)’s diversification argument, such that microeco-
nomic shocks would average out and thus have negligible aggregate effects. For the incomplete
network shown in Figure 2.1b, idiosyncratic shocks may propagate throughout the entire system

and an individual problem can cause a systemic failure.

A B A B
D C D C
(a) Complete Network (b) Incomplete Network

Figure 2.1: Financial Contagion and Network Structures

In this paper, I focus on illiquidity spillovers. Industries’ illiquidity may transmit to other
industries via an illiquidity network. I examine financial network structures in at industry level
and focus on industries’ centralities in their illiquidity network. Sensitive centrality (SC) measures
the degree of a node being affected by others: how sensitive is a industry to a random shock in
a network. In Figure 2.2a, industry A is a high SC firm as illiquidity from other industries can

directly transmit to it. Influential centrality (IC) measures the degree of a node affecting others:

86



how influential of the shock of an industry affecting others in this network. In Figure 2.2b, industry
A is a high IC industry as its illiquidity can directly transmit to all other industries. Note that a high
SC industry is not necessarily low IC. Figure 2.2¢ shows a case where industry A is both high SC
and high IC. I call it absolute centrality (AC). In Figure 2.2c, illiquidity from any other industries
can directly transmit to industry A, meanwhile, industry A’s illiquidity can also directly transmit to
all other industries in this network. Intuitively speaking, an industry being affected by a high SC
industry tends to be sensitive central as well. In Figure 2.3a, industry C is a high SC industry and
it affects industry A. Illiquidity can easily transmit to industry C and then spillovers to industry A
via industry C. Thus industry A is also a high SC industry due to industry C being sensitive central.
Likewise, an industry affecting a high IC industry also tends to be influential central. In Figure
2.3 industry A’s illiquidity can transmit to every industry in this network: directly to industry C
and indirectly via industry C. Industry A is high IC since industry C is relatively influential central
in the rest of the network. In this sense, our illiquidity centrality (SC and IC) has simultaneously

taken directed direct effects and directed indirect effects into account.

B1—>A<—B3 B1<—A—>B3 B1<—>A<—>B3
By By By
(a) Sensitive Centrality (b) Influential Centrality (c) Absolute Centrality

Figure 2.2: Network Centrality

1‘

RN

(a) Affected by a sensitive central industry (b) Affecting a influential central industry

@)

Figure 2.3: Neighbour to a high sensitive (influential) central industry
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In view of asset pricing, both high SC and IC industries’ stocks are not desirable assets to
hedge against a deterioration in investment opportunities. High SC stocks tend to have low liquid-
ity once others experience illiquidity during bad times. For high IC stocks, their illiquidity may
spread to the whole financial network and cause market-wide illiquidity and aggregate turbulences.
Influential centrality could also be viewed as a source of market beta (see Ahern (2013)). Thus,
as a “victim” of the illiquidity of others and a “villain” of market turbulences, high SC stocks and
high IC stocks should both earn higher expected returns. In this paper, I will empirically examine
whether illiquidity network centralities (SC and IC) are risk factors priced in cross-sectional stock
returns. For now, I use a simple network setting to further illustrate the intuition of why high SC

and high IC firms should earn premiums, even if there is no risk or return comovement.

Example 2.3.1. Suppose there are only three assets (i, j, k) in the market where investors are risk-
averse. Asset i’s illiquidity transmits to asset j, but they are independent from asset k. In this
network as shown in Figure 2.4, asset i and asset j are connected, and asset k is isolated. Thus,
asset i is a high IC asset as it affects asset j; asset j is a high SC asset as it is affected by asset i;
asset k is neither high IC nor high SC asset as it is isolated with the spillovers from asset i to asset

J. I compare asset k with asset i and asset j. Asset k is a benchmark asset in this example.

J

k

Figure 2.4: Simple network with high SC, high IC and isolated nodes

I assume the return of asset k at time #, Ry, is independently drawn from the standard nor-
mal distribution N(0,1). For asset i, its return at time ¢, R, is also drawn independently from
N(0,1). The return of asset j at time f, Rj, is correlated to R;_; as asset i’s illiquidity at
time ¢ — 1 can transmit to asset j’s illiquidity at time 7. Without loss of generality, I simply let
Rj; = Ri—1. In this case, they all have the same expected return: E(R;) = E(Rj;) = E(Ri) = 0;
and the same variance of returns: Var(R;) = Var(Rj;) = Var(Ry) = 1. Moreover, there ex-
ists a financial spillover, (i — j), but no contemporaneous comovement of illiquidity or returns:
Cov(R;1,Rj;) = Cov(Rk,Rj;) = Cov(Rjs,Ryr) = 0. Given the size (number of chosen assets) of

portfolios, all of these equal-weighted portfolios seem to be equivalent to investors. However, this
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is not true because the spillover from asset i to asset j does play a big role in affecting long run
returns.

Suppose investors can only update their portfolio (p) every two periods and let’s assume the
interest rate is zero for simplicity; investors will be concerned about the average return over two

periods, (Rp +RP ), instead of the current return, R”. Now, we consider the cases when investors

t+1
have to hold a given asset z, z =i, j,k, and are randomly assigned another asset with equal proba-
bility of 0.5 at the beginning of day ¢. I denote this random two-asset portfolio as (z,-). Investors
hold the realized portfolio of (z,-) over day ¢ and day ¢ + 1.

There are three possible portfolios with two assets: (i, j), (i,k) and (, k) whose corresponding
returns on day ¢ are denoted by RY, Ri* and R/¥, respectively, where R = 3(Ri +Rj,), Rk =
Q(Rit +Ry,) and R,]k = %(R jt + Ry, ). For example, (i,-) implies investors have to hold a random
portfolio composed by asset i with probability 1 and either asset j or asset k with equal probability
0.5. At the beginning of day ¢, the realized portfolio could be (i, j) or (i,k), then investors hold the
realized portfolio over 2 periods: day ¢ and day ¢ + 1 and obtain the average return 5 (R’ + Rt oy )=
LR +RY )+ L(RF+RE ) = L(2Ri + Ryt + Ry + 2Rir1 + Rjrs1 + Rygy1). Similarly, the
average return of holding asset j for sure is 5 (RJ +R/ +1) (2R it +Rit + Ry + 2R j1 + Rir1 +
Ri:+1) and the average return of holding asset k for sure is Z(Rk + R} +1) = %(2Rkt +Ri+Rji +

2Ry 41+ Ritp1 +Rjr11).

e The random portfolio (k,-) is superior to the random portfolio (j,-):
The expected average return of (k,-) over two periods and the expect average return of (j,-)
over two period are equal: E(%(RF + R! k) = E(3 (R + R/ +1)) = 0. But the variance
of the two-period average return of (k,-) is less than (Jj,-): Var( (RF + R +1)) 7» While
Var( (RJ +R, +1)) = 2. Thus, the high SC asset j is less attractive to investors than the
isolated asset k, because asset j will carry the shock from asset i on day ¢ to day ¢+ 1;
this results in the portfolios with asset j having higher positive correlation across different

periods, which increases the variance of return of holding asset j in their portfolios.

e The random portfolio (k,-) is superior to the random portfolio (i,-):
The expected average return of (k,-) over two periods and the expect average return of (i, -)

over two period are equal: E((Rf +R¥,|)) =E(5(R +R!", |)) = 0. However, the variance
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of the two-period average return of (k,-) is less than (i,-): Var(%(Rf" —kaJ'r D)) = %, while

Var(%(Rf' +R;”+])) = 2. Thus, the high IC asset i is less attractive to investors than the
isolated asset k, because asset i will transmit its shock on day ¢ to other(s) on day ¢ + 1;
this results in the portfolios with asset i having higher positive correlation across different

periods, which increases the variance of return of holding asset i in their portfolios.

In summary, the isolated asset k is more attractive to investors than the high SC asset j and
the high IC asset i, thus investors would demand compensations for holding high SC and high
IC assets. In fact, the risk diversification argument in classic portfolio theory requires weakly
correlated assets, such as the isolated asset k in this example. Therefore, high SC or high IC assets
may not be considered as desirable components in a portfolio in a network environment to diversify

financial risks in the long run. 0

To model network structures mathematically, I use an adjacency matrix to model all the di-
rect relationships in a network. Suppose there are N industries in an illiquidity network, A =
[Aijli j=1,..~ is an N by N matrix indicating which pairs of industries have direct illiquidity trans-
mission. We let A;; = 1 if and only if industry i’s illiquidity will directly transmit to industry j;
otherwise, A;; = 0 if industry i’s illiquidity does not directly transmit to industry j. For example,
the network structures in Figure 2.1a and in Figure 2.1b can be represented by the matrices in Table

2.1 and in Table 2.2 respectively.

Table 2.1: adjacency matrix and the network structure in Figure 2.1a

A D
0 1
1 1
1 1
1 0

QW
—_—— O = | T
—_ o = = | 0

2.3.2 Eigenvector Centrality Measure

In network literature, there are some centrality measures to gauge a node’s “central importance”

in a network from different aspects. Among them, I use the generalized eigenvector centrality
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Table 2.2: adjacency matrix and the network structure in Figure 2.1b

A
0
0
0
1

ol @Rl

SO O~ | W
co~o|l0O
o~ oo | T

measures proposed by Bonacich (1987) to better measure illiquidity spillovers centrality in stock
markets.

Given an adjacency matrix of a directed network, A = [A; j],-7 j=1,...N> where N is the size of the
network. A;; = 1if and only if industry i affects industry j, otherwise, A;; = 0. Following Bonacich
(1987), we define industry i’s sensitive centrality, SC;, as the sum of values of a linear function of

the sensitive centralities of all the other industries that affect industry i:

SCi= ), (a++ SC ]ZV: Ajila+~ SC) (2.1)
JAji=1 j=1

where oo > 0, 2 > 0. Being affected by a high SC industry j (SC; is large) can increase industry i’s

sensitive centrality (SC;) in this network. 1/A is the weight of one’s sensitive centrality measure

on others’. A smaller A means the influence of the neighbour effect is greater. In a given network,

we say industry 7 is more sensitive central than industry j if and only if SC; > SC;.

In matrix notation, let SC = [SCy, ..., SCy]’, we have
1 / /
(1— A ) SC = aA'l, 2.2)

where I is an N x N identity matrix and / is a N x 1 column vector of ones.

When o = 0, we have (I — %A’ ) SC = 0 then SC is an eigenvector of the transpose of the adja-
cency matrix A with its eigenvalue A. If A is an irreducible non-negative matrix, Perron-Frobenius
theorem states that the only eigenvector whose components are all positive is the one associated
with the biggest eigenvalue Amax. In practice, we do require positive centrality measures in order
to determine which nodes are more central in a network. Hence, the eigenvector sensitive centrality

is the eigenvector associated with the biggest eigenvalue of A’
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When o > 0, it is simply the scale of the centrality vector. Without loss of generality, we could
let « = 1. If A is an irreducible non-negative matrix and A is greater than the biggest eigenvalue

of A’ in magnitude, the sensitive centrality vector has the following representation,

1 -1
SC=(1--A") Al
(1=5¥)

1 1
=A'l+ (A1 + (—

2
x A) A)1+... 2.3)

All elements in the sensitive centrality vector SC are positive as all the elements in equation (2.3)
are nonnegative and A is irreducible. Moreover, the parameter 1 /A can be interpreted as a proba-
bility and SC as the expected number of directed paths in a network activated directly or indirectly
to each individual.

To obtain a positive sensitive centrality vector from equation (2.3), the weight of one’s sensitive
centrality measure on others’, 1/, is at most 1/Amax, where Amax is the biggest eigenvalue of
A’ If we wish to put more weight on considering the effect of being a neighbour to a high SC (IC)
industry in a network, a greater weight parameter 1/A should be selected. Therefore, in order to
capture the neighbour effect as much as possible I will focus on the eigenvector centrality measure
in empirical analysis hereafter.

Similar arguments apply to defining a industry’s influential centrality (IC). We define industry
i’s influential centrality, /C;, as the sum of linear functions of the influential centralities of all the

other industries who are affected by industry i:

N
Ici= ), (a+—1c Z o+ IC) (2.4)

JAij=1 J=1
Affecting a high IC industry j (IC; is large) can increase industry i’s influential centrality (/C;)
in this network. In matrix notation, let IC = [ICy,...,ICy]', we have (I — /ITA) IC = aAl. The

eigenvector influential centrality is the eigenvector associated with the biggest eigenvalue of the

adjacency matrix A.

Example 2.3.2. In Figure 2.5, I show a small but complex network to illustrate how the eigenvec-

9Given o > 0, if 1 /A > 1/Amax, the equation (2.3) does not converge and SC is not well defined in this case.
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tor centrality measures, sensitive centrality (SC) and influential centrality (IC), can point out the

central components in this network and quantify their degrees.

A

/ \
B C
\ /

D

E

Figure 2.5: Eigenvector centrality of a small but complex network

The network shown in Figure 2.5 can be represented by the adjacency matrix in Table 2.3. This
table also presents the calculated values of their respective eigenvector sensitive centrality and
eigenvector influential centrality. The most sensitive central node is D (0.57) because it is affected
by two main nodes B and C. Node A and node E are equally second sensitive central (0.45) as they
are both only affected by node D. Node B and Node C are the least sensitive central (0.36) as they
are only affected by node A. In terms of influential centrality, node A is the most central (0.64)
because its effect can spillover to everyone in this network. Node D is second most central (0.51)
as it can transmit node A’s effect spilling via node B and node C to node E and back to node A. The
influential centralities of node B and node C equal (0.40) as they only affect node D. Interestingly,

the influential centrality of node E is zero, because it affects no one in this network.

Table 2.3: adjacency matrix and eigenvector centrality measures

IC

E

0 0.64
0 040
0

1

0

0.40
0.51
0.00

A D
0 0
0 1
0 1
1 0

moaQx >
cooco~—|w
coocoo~=|0

0 0
SC 045 036 036 057 045
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2.3.3 Bid-Ask Spreads Measure for Illiquidity Risk

In general, illiquidity risk in financial markets is a financial risk that a given financial asset or
security cannot be traded quickly enough in the market without impacting the market price. Liq-
uidity has many dimensions. This study focuses on a dimension associated with bid-ask spreads.
In stock markets, the spread is the difference between the bid and ask prices for a particular stock.
The bid price corresponds to the highest price the demand side is willing to pay; the asking price
corresponds to the lowest price the supply side is willing to sell. In other words, the bid-ask spread
reflects the divergence of the demand side and the supply side for a stock. Wider divergence makes
the transactions more difficult to make, since investors have to pay more “spread cost” to buy or
sell a stock.

Thus, the level of the illiquidity risk of a stock increases with the size of its bid-ask spreads.
The interconnections of industries’ bid-ask spreads can be interpreted as industries’ illiquidity risk
transmission network.

In this paper, I use Corwin and Schultz (2012)’s bid-ask spreads estimate, which only requires
stock’ daily high and low prices, to measure firms’ illiquidity risk. Moreover, since tick data is
not available before 1990s but We assume that there is a spread of S%. Because of the spread,
observed prices for buys are higher than the actual values by (S/2)%, and observed prices for
sells are lower than the actual values by (S/2)%. If we further assume that the daily high price is
buyer-initiated and the daily low price is seller-initiated, then we will have H® = H*(1+5/2) and
LO =IA(1—S/2), where HO(L?) is the observed high (low) price and H4 (L") is the actual high

(low) price. Following Corwin and Schultz (2012), the bid-ask spread estimate on day ¢ is

2(e%—1)
St = I EVCE (2.5)

) 2
N e e S 04 HONTZ o [ ((maxe?, sy
where ot = 3002\ 3 p=|In LtQII + [ln (L? )] andy= |In min{L? 1 L?} '

t—1°

This bid-ask spread estimate has several advantages for our empirical analysis. First, this
estimate is very easy to compute. No optimization problem needs to be solved. Second, this
estimate only requires the daily observations of high price and low price. High price and low

price are available in almost all stock databases. Third, the daily bid-ask spreads S; for any given
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stock can be estimated from low-frequency (daily) sample observations and high-frequency tick
data is not available before 1990s. Fourth, Corwin and Schultz (2012) document that their bid-
ask spread estimate provides the best approximation to the bid-ask spreads computed by high-
frequency tick data. This liquidity measure enable us to avoid many problems (e.g., limited time-
series observations in datasets'® and incomparable liquidity measure across different sectors!'!) if

we other alternative measures.

2.3.4 Granger Causality and Network Estimation

Once we have firms’ estimates of their respective daily bid-ask spreads, we want to uncover the
underlying network structures of how firms’ bid-ask spreads spill over to each other. Following
Billio et al. (2012) and Dufour and Jian (2016), this paper uses a Granger-type procedure (see, e.g.,
Granger (1969) and Sims (1972)) to identify the existence of directed relationships between every
pair of nodes in the illiquidity risk network.

To identify the dynamic structures of the underlying illiquidity transmission network, I divide
the whole daily panel sample into annual subsamples. Suppose in year y we have 7, days in
this annual subsample, and we have N, firms’ estimates of their respective daily bid-ask spreads:
[S1¢, S, ...,Sth]tTL 1~ T'assume the illiquidity risk network structure is fixed in each given year but
can vary year by year. In year y, the network structure can be represented by an N, by N, adjacency
matrix: AY = [Aly j]i., j=1,...Ny- where Aly ;= 1 if and only if firm i’s bid-ask spreads can affect firm j’s
bid-ask spreads; otherwise, Aly ;= 0.

To estimate the directed relationship from firm i to firm j, A;;, I use the following regression

model,

Sjt = ﬁ()+BiSit,p+ﬁijl,p+ﬁZZl,p+8jtv = 17"'7Tk7 (26)

where S, is firm j’s spread on day ¢, Si;,, = [Sir—p, ...,Sis—1]’ is the past recent p days’ observations
of firm i’s spreads, and Sj; , = [Sj,_p, ...,Sj,_l]’ is the past recent p days’ observations of firm j’s
spreads. Z; , = [Z]

1.
2

.,Zg p]’ is the past recent p days’ observations of § state variables, Z , =
,Zy ] fors =1,...,S. B is a scalar parameter, 3; is a row vector correspond to S ,, B;

is a row vector correspond to Sj; , and 7 is a row vector correspond to Z; ,. Then the general

10High-frequency trading data.
"Liquidity measures that computed by trading volume.
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Granger-type procedure for identifying network structures becomes a testing problem (Hy : §; = 0,
Hy : Bi # 0):
Ak 1, reject Hy @7
ij .
0, can not reject Hy

Some notes of caution are needed here. First, selecting state variables Z is important. One
of the drawbacks of using the bilateral Granger noncausality testing in network estimation comes
from spurious effects. If the regression model in equation (2.6) does not include the common
factor(s) that are orthogonal to firm j’s past spreads but correlated to firm i’s past spreads and firm
J’s current spread, we may reject Hy even if there is no effect from firm i to firm j.

Second, the choice of day lag p is somewhat arbitrary, however, I suggest p = 1 for the network
analysis in this paper. Setting Afj = 1 implies we expect to see firm i’s spread yesterday will affect
firm j’s spread today. When p = 1, the noncausality implication is in line with the direct effect
interpretation in network adjacency matrix. Moreover, note that we only have one year daily ob-
servations in each subsample, thus small p can increase the estimation precision, especially when
we add some state variables in the regression model. Furthermore, measuring network centrality
requires positive spillovers: if firm i’s illiquidity transmits to firm j, a higher today’s illiquidity of
firm i should increase tomorrow’s illiquidity of firm j. When f3; is univariate, a more appropriate
way to identify network structures is by testing whether f3; > 0.

Third, in order to ensure the adjacency matrix to be irreducible, the underlying illiquidity risk
network should be strongly connected and not too sparse. Thus, the significance level selected for
testing cannot be too low, otherwise the estimated network may be too sparse.

Fourth, illiquidity is unobservable and I use the bid-ask estimate to measure it. In the regression
both the regressand and regressors are estimated with error; this may lead to biased estimates. To
deal with this measurement error issue we need to verify our data for some econometric assump-
tions that ensure valid statistical inferences, and this is beyond the scope of this paper and I leave

it for future research.
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2.4 Illiquidity Network Centrality and the Cross-Section of Ex-

pected Returns

In the previous section I have discussed how to estimate illiquidity network structures by daily
bid-ask spread estimates and how to apply eigenvector centrality measure to measure nodes’ cen-
tralities in the network. This section explores the empirical relation between the cross-section of
expected returns and the illiquidity centrality (SC and IC). For feasibility of implementation, the

illiquidity network and the cross-section of expected returns are examined at industry level.

2.4.1 Data

The first dataset includes all the stock information from the Center for Research in Securities Prices
(CRSP) for stocks traded in New York Exchange (NYSE), American Stock Exchange (AMEX),
and NASDASQ with share codes 10 or 11 from January 1963 through December 2015. I use daily
stock high prices and low prices to calculate daily bid-ask spread estimates. I use share prices and
shares outstanding to calculate market capitalization. The first 3 digits of the Standard Industry
Classification (SIC) code indicate the industry level. Industry’s returns and bid-ask spreads are de-
fined as the simple average of the returns and bid-ask spreads for the stocks belong to the industry.
The second dataset is COMPUSTAT, which is used to obtain the equity book values for calculating
the book-to-market ratios of individual firms and the book-to-market ratios of industry defines as
the simple average of the book-to-market ratios of individual firms belong to the industry. The third
dataset is from the Kenneth French’s data library to obtain risk-free rates and four-factor portfolios
returns. These variables are defined in detail in the Appendix C and will be discussed when they

are used in the analysis.

2.4.2 Illiquidity Network Centralities

Using daily stock high prices and low prices I calculate daily bid-ask spreads estimates S;,, for in-
dividual stock iy that belongs to industry i on date ¢, with the adjustments suggested in Corwin and
Schultz (2012). For the purpose of this exercise I assume industry i’s bid-ask spread estimate on

datet, Sy = ni Y., €iSiyt>» where n; is the number of stocks belong to industry i on date 7. In year y, we
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have 7, daily observations of N, industries’ daily bid-ask spreads estimates: [S1¢, S, ...,SNy,]tTy: 1
To identify N, industries’ illiquidity network structure AY = [Aly j],-7 j=1....N, in year y, [ use the

following regression equation:
Sit=Bo+ BiSit—1+BjSjr—1+BzZi—1 + €, t=2,..7. (2.8)

The directed relationship from industry i to industry j is specified as: Aly =1 if and only if B; > 0;
otherwise, Aly ;= 0. The state variable Z,_; includes: 1) average bid-ask spreads estimates of the
stocks belong to the major group of industry j on day ¢ — 1, where the major group is indicated by
the first two digits of SIC codes; 2) average bid-ask spreads estimates of all stocks on day ¢ — 1.
By controlling major industry average illiquidity and market average illiquidity of industry j, a
positive marginal effect (; > 0) of the illiquidity of industry i on day ¢t — 1 on the illiquidity of
industry j on day ¢ can be safely interpreted as the illiquidity spillover from industry i to industry
J: increase in the illiquidity of industry i today leads the illiqudity of industry j up tomorrow. I use
the simple t-statistic on one tail test at significance level 0.1 to test whether ; > 0 in equation (2.8).
I repeat this procedure for every pair of industries. After implementing Ny X Ny, OLS regressions
and testings on equation (2.8), we find all the directed relationships in the network and uncover the
underlying illiquidity transmission network structure in year y, A”.

Given each year y, we already have its adjacency matrix A” by the procedure described above.
I calculate sensitive centralities and influential centrality for each industry by the eigenvector cen-
trality measure. More central industry will have a higher centrality measure in cross-section, how-
ever note that the eigenvector is set to have unit norm, thus eigenvector centrality measures are not
comparable directly across different years. To fix this problem, I rescale the industries’ centrality
measures for each year, such that the sum of squares of industries’ centrality measures in year y
equals the size of the network in this year (Ny). After rescaling, more central industries given a year
will still have higher centrality measures in cross-section as they are rescaled by the same weight.
In addition, centrality measures in different years are comparable in terms of relative centrality
in their respective networks. If the centrality measure of an industry is greater than 1, which is
the root mean square of all industries’ centrality measures in the network, it implies the industry

is a relatively central industry, and vice versa. In any given year y, we have industry i* sensitive
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centrality measure (SCjy) and its influential centrality measure (/C;y) such that 1% Y, SCl-zy =1 and
le Y, ICl-Zy = 1. §C;y = 1 (IC;, = 1) means (approximately) that industry i does not have an unusu-
ally large or small degree of centrality in year y, irrespective of the number of industries in the
illiquidity network in year y (NVy), and I call these industries as “middle-industry”.

Table 2.4 presents summary statistics of the empirical distributions of illiquidity network cen-
tralities in cross-section across different years from 1963 to 2015. The network centralities are
estimated for every year from January 1963 to December 2015. There are 53 years from 1963 to
2015. In these years, there are 310 industries in illiquidity networks on average. Panel A presents
summary statistics for sensitive centrality. The yearly median of the medians of cross-sectional
sensitive centrality measures is 0.96, which is close to 1 of middle-industry. In contrast, for influ-
ential centrality in panel B the yearly median of the medians of cross-sectional influential centrality
measures is only 0.73, but the yearly median of the 75% quantiles of cross-section influential cen-
trality measures is 1.09, which is close to 1 of middle-industry. It implies high influential industry
(IC; > 1) 1s in the minority in illiquidity networks in average years. Compared to the sensitive cen-
trality median ‘max-min’ spread (1.29 = 1.71 - 0.42), the influential centrality has a wider median
‘max-min’ spread (2.54 = 2.71 - 0.17). In cross-section, illiquidity influential centralities have a
wider spread than illiquidity sensitive centralities. For both sensitive centrality and influential cen-
trality, most of their cross-sectional empirical distributions from 1963 to 2015 are right-skewed and
have heavier tails than normal distribution. Right-skewed network distribution is often documented
in economic and social network literature (see e.g., Jackson et al. (2008)).

To investigate the empirical relation between sensitive centrality and influential centrality of
a given industry in illiquidity networks, Table 2.5 presents the descriptive statistics of industries’
time-series correlations. I only calculate the time-series correlations between sensitive centrality
and influential centrality for those industries have more than 10 years centralities observations
in sample. Then we have 395 industries’ sensitive centralities and influential centralities time-
series correlations and their respective p-values to null hypothesis of no correlation. The average
sensitive centrality and influential centrality correlation is 0.42; the 25% quantile of the sensitive
centrality and influential centrality correlations is 0.32; for most (> 75%) industries the p-values
are less than 0.1. It means the changes of illiquidity sensitive centrality for most industries tends to

go with the direction of their changes in influential centrality. If an industry gets more connections
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to others, its illiquidity will have more chances to affect others as well as being affected by others.

High SC (or IC) industries in the illiquidity network tend to be high absolute centrality.

2.4.3 Univariate Portfolio-Level Analysis

Table 2.6 presents the equal-weighted and value-weighted average monthly returns of decile port-
folios that are formed by sorting the industries based on the illiquidity network centralities (SC and
IC) respectively estimated in past calendar year. Centrality measures are estimated every year from
January 1963 to December 2014. Industry’s returns are calculated by the equal-weighted returns
of stocks belonging to the industry, and value-weighted portfolios are the average industry returns
weighted by industry’s total market capitalizations. For example, I estimate industries’ centrality
measures in 2000 with the sample from January 2000 to December 2000, and form the portfolios
from January 2001 to December 2001 based on the industries’ centrality measures in 2000. Portfo-
lios are rebalanced yearly. Portfolio 1 (Low SC (IC)) is the portfolio of industries with the lowest
SC (IC) in the past calendar year, and portfolio 10 (high SC (IC)) is the portfolio of industries with
the highest SC (IC) in the past calendar year.

In Panel A sorted by sensitive centrality, the equal-weighted raw return difference between
decile 10 (high SC) and decile 1 (low SC) is 0.36% per month (4.32% per year) with a correspond-
ing Newey-West (1987) t-statistics of 3.66. In addition to the raw returns, Table 2.6 also presents
the intercepts (Fama-French-Carhart 4-factor alphas) from the regression of the equal-weighted
portfolio returns on a constant, the excess market return, the size factor, the book-to-market factor,
and the momentum factor, following Fama and French (1993) and Carhart (1997). The differ-
ence in alphas between the high SC and low SC equal-weighted portfolios is 0.45% per month
(5.40% per year) with a Newey-West t-statistic of 3.72. This difference is economically signif-
icant and statistically significant at all conventional levels. Similar significant results also apply
to value-weighted portfolios. The value-weighted raw return difference between decile 10 (high
SC) and decile 1 (low SC) is 0.38% per month (4.56% per year) with a corresponding Newey-
West t-statistics of 2.15; the difference in alphas between the high SC and low SC value-weighted
portfolios is 0.49% per month (5.88% per year) with a Newey-West t-statistic of 2.65.

Taking a closer look at the value-weighted average returns and alphas across deciles, it is clear
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that they are not strictly monotonic increasing as SC increases. The average returns of decile 1 to
9 are very close, in the range of 1.24% to 1.47% per month, but decile 10 (high SC) average return
jumps significantly to 1.82% per month. The alphas for the first 9 decile are close too, from 0.61%
to 0.84%, but again the alpha for the decile 10 jumps up to 1.23%. A similar pattern also exists for
equal-weighted average returns and alphas. The average return and alpha for the high SC decile
portfolio are significantly higher than those in decile 1 to 9. It implies investors dislike the high SC
portfolio industries’ stocks especially. The most sensitive central industries are the most exposed
to idiosyncratic illiquidity spillovers from other industries, thus investors may demand a premium
to hold these high SC portfolio due to with they too sensitive to others’ illiquidity.

In Panel B sorted by influential centrality, the equal-weighted raw return difference between
decile 10 (high IC) and decile 1 (low IC) is 0.40% per month (4.80% per year) with a Newey-
West t-statistic of 3.19. The difference in alphas between the high IC and low IC equal-weighted
portfolio is 0.48% per month (5.67% per year) with a t-statistic of 3.35. Similar significant re-
sults also apply to value-weighted portfolios. The value-weighted raw return difference between
decile 10 (high SC) and decile 1 (low SC) is 0.31% per month (3.27% per year) with a corre-
sponding Newey-West t-statistics of 2.33; the difference in alphas between the high SC and low
SC value-weighted portfolios is 0.31% per month (3.27% per year) with a Newey-West t-statistic
of 2.31. The difference of average returns and alphas between high IC and low IC portfolios are
economically and significant and statistically significant.

Again, the average returns and alphas across deciles for the equal-weighted and value-weighted
portfolios are not strictly monotonic increasing as IC increases. But the high (low) IC portfolio still
has the highest (lowest) average return and alpha across deciles. The highest influential centrality
industries transfer their idiosyncratic illiquidity risk to many others and leave investors no place to
hide in the stock market. Therefore, the illiquidity risk with holding the high IC portfolio is the
most difficult to be hedged. The high IC stocks should earn a premium.

Comparing Panel A and Panel B, we can see that the average returns and alphas spreads be-
tween high SC and low SC and the spreads between high IC and low IC are close. Moreover, the
patterns of average returns and alphas across deciles sorted by SC and by IC are similar. Note that
we have already found the changes of illiquidity sensitive centrality for an industry tends to go with

the direction of its change in influential centrality across different years in Table 2.5. Even though

101



we find high SC and high IC portfolios earn significantly higher average returns and alphas com-
pared with low SC and low IC portfolios respectively, these spreads may be generated from similar
portfolios components. Table 2.7 presents the distribution of industries across deciles sorted by SC
and sorted by IC. The ith row and jth column element in the table is the time-series average of the
percentage ratios of the number of the industries in portfolio j sorted by IC, as well as in portfolio
i sorted by SC, over the total number of the industries in portfolio i sorted by SC. We can find
from the table that industries in high (low) decile portfolios sorted by SC are more likely to be in
high (low) decile portfolios sorted by IC. The table entries around the diagonal are clearly greater
than those in off-diagonal positions. On average, 23.02 percent of decile 1’s industries sorted by
SC belong to decile 1 portfolio sorted by IC; 28.89 percent of decile 10’s industries sorted by SC
belong to decile 10 portfolio sorted by IC. In other words, about 3/4 of the industries that belong
to the decile 1 (10) portfolio sorted by SC do not belong to the decile 1 (10) portfolio sorted by IC.
These industries could help to separate the risk associated with SC from the risk associated with IC
in their respective 10-1 portfolio!?. The return and alpha differences of the 10-1 portfolios sorted
by SC and IC respectively are not generated from similar portfolio components.

The 10-1 portfolios are constructed to capture the risk premium associated with sensitive cen-
trality and influential centrality in the illiquidity network. In Table 2.6, we have found solid ev-
idence that the 10-1 portfolios sorted by SC and sorted by IC are respectively both statistically
and economically significant, however, it is still possible that we may just by “luck” pick up the
well-performed industries in decile 10 and poor-performed industries in decile 1 as our portfolio
formations are rebalanced annually. It is desirable for a trading strategy to utilize annually rebal-
anced portfolio as its transaction cost will be much lower than the strategies rebalanced monthly or
even daily. But annually rebalancing does not provide many opportunities for changes in portfolio
components. It would cast doubt on the reliability of the statistical properties for a trading strategy
with low turnovers.

To examine this issue more carefully, we look at the transition matrix of industries in portfolios
sorted by SC and sorted by IC. Table 2.8 presents the probability transition matrix of industries
in different decile portfolios in successive two years. The ith row and jth column element in the

10 by 10 table is the time-series average of the percentage ratios of the number of the industries

"2Long the high decile portfolio and short the low decile portfolio.
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in portfolio i in year y shifting to portfolio j in year y + 1 over the number of the industries in
portfolio 7 in year y. If portfolio formations are purely random, industries are equally distributed in
different deciles; all the entries in the transition matrix should equal 10(%). The range of the table
entries is from 7.22 to 12.44 for deciles sorted by SC in Panel A; the range of the table entries is
from 5.64 to 15.44 for deciles sorted by IC in Panel B. The maximum probability of an industries
stay at the same decile in two successive years is only 12.44 (15.44) for decile sorted by SC (IC).
In other words, it is quite unlikely that we pick up the well-performed industries consistently in
decile 10 and poor-performed industries in decile 1 just by “luck” in Table 2.6 because most of
industries do not stay at the same decile in two successive years and go to other different deciles
with approximately equal probability. Taking a closer look at the tables, we can find the table
entries around diagonal are a little bit greater than those in off-diagonal positions. In Panel A,
for example, the probability of an industry in decile 10 (High SC) shifting to decile 1 (Low SC)
next year has the lowest value of 8.25% for industries from decile 10, while the probability of an
industry in decile 10 (High SC) staying at decile 10 (High SC) next year has the highest value of
12.44%. It is in line with our intuition since we expect a relatively low (high) SC industry in this
year will be more likely to be relatively low (high) SC industry in next year. Similar arguments
also apply to deciles sorted by IC in Panel B. In conclusion, the results documented in Table 2.6
appear to be trustworthy in term of statistics since industries in different deciles reshuffle enough in
each year, even though our annually rebalancing does not provide many opportunities for changes
in portfolio components.

In finance literature, market beta, book-to-market, illiquidity, momentum and idiosyncratic
volatility are well-known risk factors of pricing returns in the cross-section at firm level (see Fama
and French (1992), Fama and French (1993), Amihud (2002), Pastor and Stambaugh (2003), Je-
gadeesh and Titman (1993), Ang et al. (2006) among others). Though I study illiquidity network
centralities at industry level, it would be important to investigate whether industries’ sensitive cen-
trality measures and influential centrality measures have relation with these well-know risk factors.
To get a clearer picture of the component in portfolios sorted by sensitive centrality and influential
centrality, Table 2.9 presents summary statistics for the industries in the deciles sorted by SC in
Panel A and those sorted by IC in Panel B. Specifically, the table reports for each decile the sim-

ple average across the years and across the industries of various characteristics for the industries:
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the average firm market capitalization (in millions of dollars, labeled FSIZE), the industry market
capitalization (in millions of dollars, labeled ISIZE), the market beta (labeled BETA), the book-to-
market (labeled BM), the average stock bid-ask spreads estimate (in percent, labeled SPREAD),
the average Amihud (2002) illiquidity measure (scaled by 10%, labeled RTV), the average industry
monthly return in the past calendar year prior to portfolio formation (in percent, labeled MOM),
and the industry idiosyncratic volatility over the past calendar year prior to portfolio formation
(labeled IVOL). Definitions of these variables are given in the Appendix.

In Panel A sorted by sensitive centrality, as SC increases across deciles industry market capi-
talization increases but firms’ average market capitalization exhibits little change in a range from
1.13 millions of dollars to 1.22 millions of dollars with less than 10% in variation. In others words,
an industry’s sensitive centrality appears to be irrelevant to its average firm size, but a bigger in-
dustry, which has more firms and has bigger market capitalization, tends to have a higher sensitive
centrality measure. It can be partially explained by the fact that an industry with more firms would
have greater exposure to illiquidity spillovers in stock market. In contrast to the conjecture that
sensitive centrality may serve as a source of market beta in financial network analysis (see Ah-
ern (2013)), industries’ market betas are almost the same across different deciles in our illiquidity
network. Momentum and idiosyncratic volatility are also almost the same across deciles. As SC
increases across the deciles, firms’ average book-to-market ratio increases slightly. The value in-
dustries, which have higher average firms’ book-to-market ratios, tend to have higher sensitive
centrality measure. In additon to Corwin and Schultz (2012)’s bid-ask spreads estimate to measure
illiquidity, I also consider a more widely used illiquidity measure proposed by Amihud (2002),
which measures firm’s illiquidity as the sensitivity of firm’s absolute returns to its trading volume
in dollars. Not surprisingly, those industries with higher sensitive centrality measures tend to have
greater bid-ask spreads and return-to-volume (RTV). These results may provide an explanation
of the value-premium known at least since Fama and French (1992). A motivation of the value-
premium is that value firms are consistent bad performers in periods of systemic downturns. It may
be because in the periods of systemic downturns value firms are more sensitive to market illiquidity
thus poor liquidity make their returns further lower during these periods.

In Panel B sorted by influential centrality, as IC increases across deciles firms’ average market

capitalization decreases. Industries with small firms are more suitable distress vehicles than in-
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dustries with large firms whose relatively large trading volumes could serve as temporary buffers
to slow down illiquidity propagation.!? Interestingly, the industry market capitalization exhibits
an U-shape across deciles. A bigger industry, which has more firms and small caps on average,
tends to has a higher influential centrality measure. As IC increases across deciles, industries’ mar-
ket betas decrease slightly (influential industries are less correlated to market returns); industries’
book-to-market increases slightly (high book-to-market industries may be a source of systemic dis-
tress). Similar to the pattern across deciles sorted by SC, as IC increases across deciles illiquidity
measures (SPREAD and RTV) are higher. Momentum and idiosyncratic volatility are also almost
the same across deciles.

Given these differing characteristics, there is some concern that the 4-factor model used in
Table 2.6 to calculate alphas is not adequate to capture the true difference in risk and expected
returns across the portfolios sorted by SC and the portfolios sorted by IC. The 4-factor model does
not control for the differences in expected returns due to differences in industry size or illiquidity.
In the following two subsections I provide different ways to deal with the potential interaction of

the illiquidity centrality measures with industry size, book-to-market and liquidity.

2.4.4 Bivariate Portfolio-Level Analysis

In this section I examine the relation between illiquidity causality measures and future industry re-
turns after controlling for average firm market capitalization, industry market capitalization, market
beta, book-to-market, illiquidity measured by return-to-volume, average industry monthly return
in the past calendar year prior to portfolio formation, and industry idiosyncratic volatility over the
past calendar year prior to portfolio formation. For example, I control for industry capitalization
by first forming 5 decile portfolios ranked based on industry capitalization. Then, within each in-
dustry size decile, I sort industries into portfolio ranked based on sensitive centrality and portfolio
ranked based on influential centrality so that decile 1 (decile 10) contains industries with lowest
(highest) centrality measures.

Table 2.10 presents average industry return across the 5 control deciles to produce decile port-

folio with dispersion in SC but with similar levels of the control variables. For each column

3Buraschi and Porchia (2012) find small firms have higher influential centrality in a network connecting firms’
fundamentals.
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controlling variables, the equal-weighted average return difference between the high SC and low
SC portfolios are still all economically and statistically significant. After controlling for firms’ av-
erage size, industry size, market beta, book-to-market, momentum and idiosyncratic volatility, the
equal-weighted average return differences between the high SC and low SC portfolios are 0.29%
(3.14%), 0.32% (3.84%), 0.28% (3.36%), 0.28% (3.36%), 0.29% (3.48%), and 0.30% (3.60%) per
month (per year), with Newey-West t-statistics of 2.83, 3.27, 2.78, 2.83, 3.19 and 3.17, respec-
tively. The corresponding values for the equal-weighted average risk-adjusted return differences
are 0.40% (4.80%), 0.39% (4.68%), 0.31% (3.72%), 0.37% (4.44%), 0.35% (4.20%) and 0.40%
(4.80%) per month (per year), with t-statistics of 2.71, 2.97, 2.93, 2.76, 3.46 and 2.67, which are
also highly significant. Note that the absolute return to trading volume in dollars (RTV) illiquidity
measure proposed by Amihud (2002) is a much more popular way to measure illiquidity in litera-
ture, for brevity hereafter I only use Amihud (2002)’s RTV measure to control the illiquidity risk
to make the results in this paper comparable to existing studies.'* T find that industries sensitive
centralities are positively correlated with industry size, book-to-market and illiquidity (SPREAD
and RTV)in Panel A of Table 2.9. After controlling each of these variables (ISIZE, BM and RTV),
the average returns and alphas of the 10-1 portfolios sorted by SC remain significant. But the aver-
age return and alpha of the 10-1 portfolios decrease most after controlling RTV. After controlling
RTYV, the average return of the 10-1 portfolios decreases to 0.20% per month (2.4% per year) with
a Newey-West t-statistic of 2.20; the alpha of the 10-1 portfolios decreases to 0.29% per month
(3.48% per year) with a t-statistic of 2.11. Nevertheless, these results of high-low spread of the
portfolios sorted by SC are still economically and statistically significant. For the double sorted
value-weighted decile returns portfolios exhibit very similar significant results, except after con-
trolling industry size the average returns of the 10-1 portfolios decrease to 0.21% per month (2.52%
per year) with a t-statistic of 1.54, which is insignificant for conventional significance levels.
Table 2.11 presents average industry return across the 5 control deciles to produce decile port-
folio with dispersion in IC but with similar levels of the control variables. For each column control-
ling variables, almost all the equal-weighted average returns and alphas of 10-1 IC portfolios are
economically and statistically significant, and are close to those sorting only by SC in Table 2.6.

After controlling for firms’ average size, industry size, market beta, book-to-market, momentum

14The results of using SPREAD to control illiquidity risk are very similar.
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and idiosyncratic volatility, the equal-weighted average return differences between the high SC
and low SC portfolios are 0.35% (4.2%), 0.36% (4.32%), 0.31% (3.72%), 0.34% (4.08%), 0.35%
(4.20%), 0.25% (3.00%) per month (per year), with t-statistics of 3.16, 2.99, 2.60, 2.85, 3.37, 2.11,
respectively. The corresponding 10-1 alphas are 0.45% (5.40%), 0.45% (5.40%), 0.34% (4.08%),
0.44% (5.28%), 0.38% (4.56%) and 0.34% (4.08%) per month (per year), with t-statistics of 3.41,
3.11, 2.59, 3.21, 3.51 and 2.67, which are also both economically and statistically significant. The
only exception is the average return of the 10-1 portfolio after controlling RTV, which is 0.16%
per month with a t-statistic of 1.42. But the 10-1 alpha after controlling RTV is 0.27% per month
(3.24% per year) with a t-statistic of 2.24, which is also significant. However, the 10-1 IC portfo-
lios are not always significant for the value-weighted portfolio returns, even though their averages
returns and alphas are all positive.

In summary, these results indicate that for both the equal-weighted and value-weighted portfo-
lios, the well-known cross-sectional effects at firm level such as size, market beta, book-to-market,
liquidity, momentum and idiosyncratic volatility can not explain the high returns to high SC in-
dustries, while similar robust results do not apply to the high returns to high IC industries except
for the case of equal-weighted portfolios sorted by IC. So that the constructed centrality measures

here have some valid interpretation.

2.4.5 Industry-Level Cross-Section Regressions

So far we have tested the significance of illiquidity sensitive centrality (SC) and illiquidity influ-
ential centrality (IC) as determinants of the cross-section of future returns at portfolio-level. The
portfolio-level analysis has the advantage of being non-parametric in the sense that we do not im-
pose a functional form on the relation between illiquidity centrality measures and future return. But
the portfolio-level analysis misses a large amount of information in the cross-section via aggrega-
tion. Moreover, it fails to control for multiple effects simultaneously. In this section, I examine the
cross-sectional relation between the centrality measures (SC and IC) and expected returns at the
industry level using Fama and MacBeth (1973) two-step regressions.

I present the time-series averages of the slope coefficients from the regression of industry re-

turns on sensitive centrality (SC), influential centrality (IC), market beta (BETA), average of logs
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of firms’ market capitalizations (FSIZE), log of industry market capitalization, average of logs of
firms’ book-to-market (BM), illiquidity (RTV), momentum (MOM), and idiosyncratic volatility
(IVOL). The average slopes provide standard Fama-MacBeth tests for determining which explana-
tory variables on average have non-zero premiums. Monthly cross-sectional regressions are run

for the following econometric specification and nested versions:

Rity+1 =201y +M1ySCiy+ A2 yICiy + A3+ yBETA, y + Aa, yFSIZE; y + A5, ,ISIZE,

+ 6.1 yBMiy + A7, yRTViy+ A3, yMOM; y + A9 yIVOL; y + €1 y+1

where R;; 1 1s the realized return on industry i in month 7 in year y + 1, the predictive cross-
section regression are run on the lagged values of SC, IC, BETA, FSIZE, ISIZE, BM, RTV, MOM,
and IVOL, which are all calculated or estimated with the sample from January to December in year
y. This setting assures the associated trading strategy is rebalanced annually.

Table 2.12 reports the time-series average of the slope coefficients A;; , (i = 1,...,9) over the
624 months from January 1964 to December 2015 for all industries in the illiquidity networks
that are estimated annually from 1963 to 2014. The Newey-West adjusted t-statistics are given
in parentheses. The univariate regressions show a positive and statistically significant relation be-
tween illiquility sensitive centrality and the cross-section of future industry returns; and a positive
and statistically significant relation between illiquility influential centrality and the cross-section
of future industry returns. The average slope, A1 y, from the monthly regressions of realized returns
on SC alone is 0.82 with a t-statistic of 2.05. The economic magnitude of the associated effect is
higher than that documented in Table 2.6 and Table 2.10 for the univariate and bivariate sorts. The
spread in average SC between decile 10 and decile 1 is 0.93 (1.50 - 0.57). Multiplying this spread
by the average slope yields an estimate of the monthly risk premium of 0.76% per month (9.12%
per year). The average slope, A, ,, from the monthly regressions of realized returns on IC alone is
0.69 with a t-statistic of 1.70. The economic magnitude of the associated effect is also higher than
that documented in Table 2.6 and Table 2.11. The spread in average IC spread between decile 10
and 1 is 1.64 (1.96 - 0.32). Multiplying this spread by the average slope yields an estimate of the
monthly risk premium of 1.13% month (13.56% per year).

Conditional on 6 other variables (BETA, FSIZE, BM, RTV, MOM and IVOL), the economic
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magnitudes and the significance levels of A;, and A, , remain almost unchanged. The average
slope coefficient on SC, )q,y, conditional on the 6 control variables, is 0.88 with a t-statistic of
2.14; the average slope coefficient on IC, lzy, conditional on the 6 control variables, is 0.79 with
a t-statistic of 1.95. Since we have found in Table 2.7 that SC and IC are cross-sectional positively
correlated, our primary interest is the full specification with SC, IC, and the 6 control variables. In
this specification, the average slope coefficient on SC is 0.83 with a t-statistic of 2.00; the average
slope coefficient of IC is 0.62 with a t-statistic of 1.92.!5 Theses results are very similar to those in
the univariate regressions.

In the last specification in Table 2.12, I exclude SC and IC in the full specification regression
to investigate the effect of dropping SC and IC to other control variables in explaining the cross-
section returns at industry level. In the last specification, the average slope coefficient on RTV is
0.81 and significant, while those average slope coefficient on RTV in the specification with either
SC or IC or both are smaller than 0.81 and statistically insignificant. It implies the illiquidity
risk premium associated with RTV can be captured by SC and IC but the illiquidity risk premium
associated with SC and IC is not captured by RTV.

The table shows that only SC, IC and MOM are consistently significant under the regressions
of all specifications in the table. Many well-known cross-sectional effects at firm level such as
market-beta, size, book-to-market, liquidity, and idiosyncratic volatility are not robustly significant
in explaining the cross-section returns at industry level. The size effect measured by ISIZE is
significantly positive with a t-statistic of 2.10 only in the full specification; the book-to-market
effect measured by BM is significantly positive only in the full specifications excluding either
SC or IC; the liquidity effect measured by RTV is significantly positive only in the specification
without SC and IC. The signs of these effects are in line with those documented in literature.
Note that these variables in this paper are measured at industry level and renewed annually, return
dispersions associated with these variables could be small due to firms’ aggregations into industry
level. The momentum effect, however, is surprisingly robust at industry level.

As a robustness check for the significant effects of SC and IC, Table 2.13 presents the cross-

sectional regression results of the full specification model under different subperiods (1970 -2015,

SControlling SPREAD instead of RTV in the full specification has little effect on the results. In such specification,
the average slope coefficient on SC is 0.94 with a t-statistic of 2.18; the average slope coefficient of IC is 0.76 with a
t-statistic of 2.27.
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1980 - 2015, 1990 - 2015 and 2000 - 2015). SC is positive and statistically significant at the level
of 0.1 in all subperiods. IC is also positive and statistically significant at the level of 0.1 in all
subperiods except the most recent and shortest subsample period of 2010 - 2015, while the mean
of coefficients for IC of 2010 - 2015 is still positive. Another observation is the effects of SC and
IC measured by their respective mean coefficients are even larger in recent decades.

The clear conclusion is that the cross-sectional regressions provide strong corroborating ev-
idence for an economically and statistically significant positive relation between the illiquidity
centrality measures (SC and IC) and future returns, consistent with our conjecture that illiquidity
centralities (sensitive centrality and influential centrality) are an important idiosyncratic risk that
should be priced in financial markets, and they indeed earn risk premiums in the cross-sectional
stock returns at industry level. Moreover, SC is a more robust risk factor than IC in explaining

cross-sectional returns.

2.5 Conclusion

This paper proposes a new analytical framework to study centralities in an illiquidity transmission
network and its asset pricing implication in the cross-section of expected stock returns. I document
a statistically and economically significant relation between lagged illiquidity centralities (sensi-
tive centrality and influential centrality) and future returns. This result is robust to controls for
numerous other potential risk factors. The result related to influential centrality is consistent with
the asset pricing implication of Acemoglu et al. (2012) and Acemoglu et al. (2015b)’s theory, while
I find sensitive centrality is an even more robust risk factor than influential centrality in explaining
cross-sectional returns. In summary, I find strong evidence that the illiquidity network centralities
(SC and IC) may be important risk factors in asset pricing with network structures of securities.
This paper differs from the existing literature studying commonality in liquidity, illiquidity
spillovers and contagions in that I consider illiquidity spillovers in a network environment with
focus on industries’ illiquidity interconnections, instead of basing it on simple two-agents settings
or on contemporaneous correlation-based analysis. Moreover, I consider network centrality in two
directions: 1) sensitive centrality (SC), which measures the degree of a node being affected by

others; and ii) influential centrality (IC), which measures the degree of a node affecting others.
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The existing literature related to financial network centrality is mostly motivated by the systemic
risk studies that suggest idiosyncratic shocks to an influential firm may cause aggregate market
failures, so it tends to only consider influential centrality. I argue that sensitive centrality is at least
as important as influential centrality in terms of asset pricing. Indeed, I find strong evidence in
illiquidity network to support this conjecture. I find that SC and IC are positively correlated in
time-series and in cross-section and each adds to the explanation of cross-sectional returns even
given the other measure.

The approach used in this paper can be applied to study many other financial networks, such as
return network, volatility network, and credit-spread network. An interesting direction for further
research may be studying direct and indirect network effects in a unified framework with the gen-
eral network measurement method proposed by Dufour and Jian (2016). After all, the adjacency
matrix can only tell us about direct effects. If we want to study financial spillovers and propaga-
tions in depth, measuring indirect effects is also necessary. In this paper I assume the illiquidity
network is unweighted. But weighted economic effects of financial spillovers could provide us
more insights to understand the strength of underlying financial networks. Of course, different
network centrality measures have to be selected accordingly. I leave a detailed analysis of these

issues to future work.
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Table 2.4: Summary statistics of illiquidity network centralities panels. Centrality measures are
estimated every year from January 1963 to December 2015. Column descriptive statistics provide
characteristics of the empirical distribution of cross-section centrality measures in a given year.
Row descriptive statistics provide characteristics of each column’s descriptive statistics across dif-
ferent years (1963 - 2015). Skewness is unbiased skew, for those are greater than O are right-
skewed; kurtosis is unbiased kurtosis using Fisher’s definition of kurtosis (kurtosis normal = 0).
Panel A presents summary statistics for sensitive centrality; Panel B presents summary statistics
for influential centrality.

Panel A: Sensitive Centrality

Cross-section Centrality Measures
count mean std min 25% 50% 75% max skewness kurtosis

count 53 53 53 53 53 53 53 53 53 53
mean 31028 095 0.28 039 075 090 1.12 1.83 0.51 0.21
std 4287 005 0.13 0.14 0.15 0.12 0.04 0.30 0.40 0.59
min 222 0.81 0.15 0.15 035 054 101 1.44 -0.26 -0.74
25% 282 094 0.19 025 067 0.89 1.10 1.60 0.24 -0.14
50% 311 098 021 042 083 09 111 1.71 0.45 0.08
75% 332 098 034 052 086 097 1.14 2.09 0.80 0.43
max 393 099 059 062 088 1.00 124 247 1.69 2.99

Panel B: Influential Centrality

Cross-section Centrality Measures
count mean std min 25% 50% 75% max skewness kurtosis

count 53 53 53 53 53 53 53 53 53 53
mean 31028 0.85 049 0.18 052 072 105 284 1.38 2.34
std 4287 0.10 0.14 0.11 0.17 0.17 0.14 0.62 0.53 2.22
min 222 041 022 0.00 005 0.11 026 1.62 0.27 -1.14
25% 282 0.82 041 0.12 041 063 101 246 1.09 1.16
50% 311 0.87 049 0.17 051 073 1.09 271 1.37 1.78
75% 332 091 057 023 065 0.84 1.12 3.18 1.54 2.55

max 393 098 091 044 084 097 135 4.92 3.57 11.94
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Table 2.5: Summary statistics of the time-series correlations of sensitive and influential centralities
of given industries. Centrality measures are estimated every year from January 1963 to December
2015. I only calculate the time-series correlations between sensitive centrality and influential cen-
trality for those industries have more than 10 years centralities observations in sample. Column
statistics provide time-series correlations of any given industry and its p-value to null hypothesis of
no correlation. Row descriptive statistics provide characteristics of each column’s statistics across
different industries.

corr  p-value

count 395 395
mean 0.42 0.09
std 0.19 0.19
min -0.37 0.00
25% 0.32 0.00
50% 045 0.00
75%  0.55 0.07
max  0.82 0.96
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Table 2.6: Return and alpha on portfolios of stocks sorted by illiquidity network centralities. Decile
portfolios are formed every year from January 1964 to December 2014 by sorting industries based
on the sensitive centrality (SC) in Panel A and based on the influential centrality (IC) in Panel B.
Centrality measures are estimated every year from January 1963 to December 2014. Industry re-
turns are calculated by the equal-weighted returns of stocks belong to the industry. Portfolio 1 (10)
is the portfolio of industries with lowest (highest) centralities in the past calendar year. The tables
reports the equal-weighted and value-weighted average monthly returns, the 4-factor Fama-French-
Carhart alphas on the equal-weighted and value-weighted portfolios, and the average centrality of
industries in the past calendar year. The last two rows present the differences in monthly returns
and the differences in alphas with respect to the 4-factor Fama-French-Carhart model between
portfolios 10 and 1 and the corresponding t-statistics. Average raw and risk-adjusted returns are
given in percentage terms. Newey-West (1987) adjusted t-statistics are reported in parentheses.

Panel A: Sorted by sensitive centrality

Equal-Weighted Value-Weighted
Decile  Average Return  4-factor Alpha Average Return  4-factor Alpha  SC
Low SC 1.06 0.31 1.44 0.74 0.57
2 1.11 0.42 1.35 0.64 0.68
3 1.18 0.42 1.36 0.67 0.75
4 1.26 0.52 1.44 0.76 0.81
5 1.24 0.53 1.47 0.82 0.87
6 1.07 0.33 1.32 0.61 0.94
7 1.28 0.59 1.42 0.80 1.02
8 1.26 0.62 1.26 0.72 1.12
9 1.12 0.47 1.43 0.84 1.26
High SC 1.42 0.76 1.82 1.23 1.50
10-1 0.36 0.45 0.38 0.49
(3.66) (3.72) (2.15) (2.65)
Panel B: Sorted by influential centrality
Equal-Weighted Value-Weighted
Decile  Average Return  4-factor Alpha Average Return  4-factor Alpha IC
Low IC 1.05 0.33 1.26 0.62 0.32
2 1.20 0.52 1.55 0.89 0.44
3 1.18 0.47 1.42 0.74 0.52
4 1.20 0.48 1.37 0.76 0.60
5 1.22 0.53 1.50 0.83 0.68
6 1.18 0.45 1.45 0.82 0.77
7 1.17 0.49 1.54 0.87 0.89
8 1.19 0.48 1.41 0.76 1.06
9 1.16 0.45 1.35 0.72 1.33
High IC 1.44 0.81 1.57 0.93 1.96
10-1 0.40 0.48 0.31 0.31
(3.19) (3.35) (2.33) (2.31)
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Table 2.7: Distribution of industries across deciles sorted by sensitive centrality and sorted by in-
fluential centrality. Centrality measures are estimated every year from January 1963 to December
2014. Decile portfolios are formed every year from January 1964 to December 2015 by sorting
industries based on the sensitive centrality (SC) and based on the influential centrality (IC). Port-
folio 1 (10) is the portfolio of industries with lowest (highest) centralities in the past calendar year.
The ith row and jth column element in the table is the time-series average of the percentage ratios
of the number of the industries in portfolio j sorted by influential centrality, as well as in portfo-
lio i sorted by sensitive centrality, over the total number of the industries in portfolio i sorted by
sensitive centrality.

By influential centrality

By sensitive

centrality  Low IC 2 3 4 5 6 7 8 9 High IC

Low SC 23.02 1629 1207 11.18 832 795 566 561 4.53 3.48
2 16.90 1353 1294 1258 1057 798 8.18 6.04 5.11 4.28
3 1432 12.15 12.86 1099 1121 954 957 724 6.21 4.01
4 9.84 11.61 12.89 11.64 12.13 10.87 10.05 7.19 7.29 4.60
5 8.64 1220 9.82 1054 10.57 11.52 10.15 11.29 7.29 6.10
6 8.15 922 1090 11.18 10.69 1036 12.57 10.84 8.36 5.84
7 5.25 849 845 11.13 10.81 1091 1142 11.77 11.28 8.60
8 4.84 623 697 722 10.87 1054 1221 12.82 1295 1347

9 4.34 477 691 594 734 851 1090 1298 17.38 19.05
High SC 3.01 388 472 612 6.06 687 794 12.68 1794 28.89

115



Table 2.8: Transition matrix of industries in portfolios sorted by illiquidity network centralities.
Centrality measures are estimated every year from January 1963 to December 2014. Decile port-
folios are formed every year from January 1964 to December 2015 by sorting industries based
on the sensitive centrality (SC) in Panel A and based on the influential centrality (IC) in Panel B.
Portfolio 1 (10) is the portfolio of industries with lowest (highest) centralities in the past calendar
year. The ith row and jth column element in the table is the time-series average of the percentage
ratios of the number of the industries in portfolio i in year y shifting to portfolio j in year y + 1
over the number of the industries in portfolio i in year y.

Panel A: Sorted by sensitive centrality

To
From Low SC 2 3 4 5 6 7 8 9 High SC
Low SC 11.39 10.58 11.05 10.56 7.22 8.75 8.78 9.12 8.91 8.25
2 10.90 904 996 9.78 9.79 981 8.19 8.77 8.96 8.96

9.95 898 10.60 889 1030 962 982 872 933 8.64
9.35 11.01 865 999 1019 813 958 9.56 9.33 9.36
9.05 9.65 843 1024 1027 9.78 1041 9.10 9.13 9.04
10.00 979 942 901 9.06 887 1030 980 9.24 9.13
8.63 9.01 1028 955 1043 828 10.06 9.18 10.50 9.67
8.78 843 837 951 944 1063 920 1086 9.87 10.44

9 7.78 933 9.06 814 1026 9.67 946 1033 10.52 10.99
High SC 8.25 857 857 922 853 861 10.13 1133 10.19 12.44

[c <IN Be) N I

Panel B: Sorted by influential centrality

To
From  Low IC 2 3 4 5 6 7 8 9 High IC
LowIC 10.86 11.20 11.28 10.77 9.83 9.86 1007 7.41 6.52 7.54
2 10.87 11.64 10.74 9.74 1171 747 995 811 7.69 7.15

1292 985 1043 9.17 1058 845 889 939 7.62 8.07
9.42 10.82 11.33 1055 9.73 894 864 8.60 847 7.94
1127 999 991 9.62 824 890 876 9.17 9.61 8.90
8.70 88 819 842 991 1049 950 11.03 9.80 9.81
8.69 11.38 851 849 948 958 990 858 11.21 9.63
8.05 776 856 971 842 1091 10.14 1058 11.72  10.16

9 6.27 755 864 932 836 840 1150 10.85 11.34 13.09
HighIC  7.05 564 7.08 817 9.00 931 923 1228 12.13 15.14

[c BN B e RV I S
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Table 2.9: Summary statistics for decile portfolios sorted by illiquidity network centralities. Cen-
trality measures are estimated every year from January 1963 to December 2014. Decile portfolios
are formed every year from January 1964 to December 2015 by sorting industries based on the sen-
sitive centrality (SC) in Panel A and based on the influential centrality (IC) in Panel B. Portfolio 1
(10) 1s the portfolio of industries with lowest (highest) centralities in the past calendar year. The
table reports for each decile the simple average across the years and across the industries of various
characteristics for the industries: the average stock market capitalization (in millions of dollars, la-
beled FSIZE), the industry market capitalization (in millions of dollars, labeled ISIZE), the market
beta (labeled BETA), the book-to-market (labeled BM), the average stock bid-ask spreads estimate
(in percent, labeled SPREAD), the average Amihud (2002) illiquidity measure (scaled by 10°,
labeled RTV), the average industry monthly return in the past calendar year prior to portfolio for-
mation (in percent, labeled MOM), and the industry idiosyncratic volatility over the past calendar
year prior to portfolio formation (labeled IVOL).

Panel A: Sorted by sensitive centrality

Decile  FSIZE($10°) ISIZE($10°) BETA BM SPREAD(%) RTV(10°% MOM(%) IVOL

Low SC 1.22 14.86 0.89  2.59 1.84 4.82 0.08 0.28
2 1.13 16.05 0.87 3.17 2.09 6.63 0.08 0.29
3 1.18 15.51 0.87 3.19 2.16 6.56 0.07 0.28
4 1.25 19.02 0.87 2.89 2.25 7.11 0.08 0.27
5 1.19 18.00 0.87 341 2.11 7.70 0.08 0.28
6 1.17 20.97 0.88  3.08 221 7.25 0.08 0.27
7 1.13 20.06 0.88  2.77 2.32 7.85 0.09 0.28
8 1.28 25.64 0.86 3.82 241 7.51 0.08 0.28
9 1.18 20.25 0.85 3.28 2.55 6.02 0.08 0.26
High SC 1.18 30.09 0.87 4.36 2.64 7.53 0.08 0.27

Panel B: Sorted by influential centrality

Decile FSIZE($10°) ISIZE($10°) BETA BM SPREAD(%) RTV(10~%) MOM(%) IVOL

Low IC 1.37 21.20 094 293 1.59 4.63 0.08 0.26
2 1.29 23.67 0.89 2.76 1.75 6.74 0.08 0.28
3 1.34 20.01 090 3.10 1.76 4.78 0.08 0.27
4 1.27 17.25 0.88  4.06 1.92 6.64 0.08 0.27
5 1.15 15.75 087 292 1.88 6.06 0.08 0.28
6 1.12 16.97 0.87 3.32 2.12 6.58 0.07 0.28
7 1.26 18.67 0.85 3.23 243 7.35 0.08 0.28
8 1.00 18.96 0.84 2.88 2.57 8.14 0.08 0.28
9 1.16 19.12 0.84 3.72 3.06 8.70 0.07 0.28
High IC 0.94 28.72 0.82 3.68 3.48 9.34 0.07 0.28

117



811

Table 2.10: Returns on portfolios of industries sorted by sensitive centrality after controlling for FSIZE, ISIZE, BETA, BM, RTYV,
MOM, and IVOL. Centrality measures are estimated every year from January 1963 to December 2014. Double-sorted, equal-weighted
and value-weighted decile portfolios are formed every year from January 1964 to December 2015 by sorting industries based on sensitive
centralities after controlling for average firm market capitalization, industry market capitalization, market beta, book-to-market, return-
to-volume, industry momentum, and industry idiosyncratic volatility. In each case, I first sort the industries in to 5 deciles using the
control variable, then within each decile, I sort industries into 10 decile portfolios based on the sensitive centralities over the previous
calendar year so that decile 1 (10) contains industries with the lowest (highest) SC. This table presents average industry returns across
the 5 control deciles to produce decile portfolio with dispersion in SC but with similar levels of the control variable. “10-1 Return” is
the difference in average monthly returns between the High SC and Low SC portfolios. “10-1 Alpha” is the difference in 4-factor alphas
on the High SC and Low SC portfolios. Newey-West (1987) adjusted t-statistics are reported in parentheses.

Equal-Weighted Returns Value-Weighted Returns

Decile FSIZE ISIZE BETA BM RTV MOM 1IVOL FSIZE ISIZE BETA BM RTV MOM IVOL

Low SC 1.10 1.04 1.05 1.03 1.13 1.04 1.07 1.57 1.50 1.29 1.28 1.40 1.27 1.47

2 1.12 1.15 1.15 1.18 1.17 1.09 1.13 1.54 1.54 1.38 1.45 1.41 1.30 1.31
1.18 1.19 1.22 1.19 1.12 1.27 1.14 1.57 1.57 1.31 1.33 1.37 1.43 1.45
1.23 1.19 1.24 1.25 1.23 1.21 1.28 1.55 1.62 1.48 1.51 1.43 1.49 1.51
1.13 1.20 1.12 1.09 1.31 1.17 1.18 1.57 1.64 1.31 1.30 1.59 1.37 1.44
1.08 1.04 1.13 1.21 1.11 1.16 1.12 1.39 1.35 1.38 1.33 1.35 1.32 1.33
1.22 1.32 1.18 1.19 1.19 1.13 1.28 1.59 1.64 1.34 1.27 1.34 1.45 1.59
1.25 1.19 1.16 1.28 1.15 1.29 1.13 1.63 1.61 1.20 1.40 1.31 1.34 1.35

9 1.21 1.24 1.36 1.27 1.22 1.25 1.28 1.62 1.63 1.55 1.58 1.48 1.37 1.49
High SC 1.39 1.36 1.33 1.31 1.33 1.33 1.37 1.84 1.71 1.55 1.50 1.68 1.51 1.75

10-1 Return 029 032 028 028 020 029 030 027 021 026 023 029 024 029
(2.83) (327) (278) (2.83) (220) (3.19) (3.17) (2.05) (1.54) (1.94) (1.71) (2.41) (1.95) (1.85)
10-1 Alpha 040 039 031 037 029 035 040 038 029 034 033 039 031 040
Q71) (297) (2.93) (276) (2.11) (3.46) (2.67) (2.41) (1.96) (2.46) (2.26) (2.41) (2.57) (2.10)
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Table 2.11: Returns on portfolios of industries sorted by influential centrality after controlling for FSIZE, ISIZE, BETA, BM, RTYV,
MOM, and IVOL. Centrality measures are estimated every year from January 1963 to December 2014. Double-sorted, equal-weighted)
and value-weighted decile portfolios are formed every year from January 1964 to December 2015 by sorting industries based on influ-
ential centralities after controlling for average firm market capitalization, industry market capitalization, market beta, book-to-market,
return-to-volume, industry momentum, and industry idiosyncratic volatility. In each case, I first sort the industries in to 5 deciles using
the control variable, then within each decile, I sort industries into 10 decile portfolios based on the sensitive centralities over the previous
calendar year so that decile 1 (10) contains industries with the lowest (highest) SC. This table presents average industry returns across
the 5 control deciles to produce decile portfolio with dispersion in SC but with similar levels of the control variable. “10-1 Return” is
the difference in average monthly returns between the High SC and Low SC portfolios. “10-1 Alpha” is the difference in 4-factor alphas
on the High SC and Low SC portfolios. Newey-West (1987) adjusted t-statistics are reported in parentheses.

Equal-Weighted Returns Value-Weighted Returns

Decile FSIZE ISIZE BETA BM RTV MOM 1IVOL FSIZE ISIZE BETA BM RTV MOM IVOL

Low IC 1.10 1.12 1.15 1.12 1.14 1.07 1.15 1.53 1.54 1.29 1.27 1.43 1.37 1.42

2 1.17 1.19 1.14 1.14 1.22 1.24 1.08 1.60 1.59 1.36 1.38 1.35 1.42 1.34
1.23 1.12 1.15 1.22 1.19 1.15 1.15 1.75 1.57 1.41 1.41 1.49 1.42 1.37
1.20 1.19 1.23 1.14 1.15 1.11 1.18 1.61 1.47 1.40 1.32 1.37 1.37 1.51
1.12 1.23 1.13 1.21 1.20 1.24 1.21 1.53 1.77 1.35 1.38 1.46 1.41 1.59
1.04 1.19 1.21 1.16 1.19 1.16 1.36 1.34 1.58 1.42 1.38 1.43 1.38 1.58
1.15 1.12 1.16 1.15 1.22 1.17 0.95 1.67 1.58 1.46 1.43 1.51 1.38 1.29
1.29 1.25 1.26 1.20 1.12 1.19 1.36 1.61 1.74 1.43 1.46 1.42 1.47 1.68

9 1.14 1.12 1.15 1.17 1.25 1.22 1.21 1.59 1.52 1.30 1.37 1.42 1.50 1.52
High IC 1.45 1.47 1.46 1.45 1.30 1.42 1.40 1.68 1.69 1.57 1.47 1.53 1.48 1.51

10-1 Return 035 036 031 034 016 035 025 014 015 027 020 009 011 0.09
(3.16) (2.99) (2.60) (2.85) (1.42) (3.37) (2.11) (1.36) (1.26) (241) (1.82) (0.92) (1.03) (0.65)
10-1 Alpha 045 045 034 044 027 038 034 021 024 030 024 021 013 0.8
(341 3.11) (259 (321) (224) (3.51) (2.67) (1.85) (1.62) (2.38) (2.07) (1.90) (1.12) (1.38)
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Table 2.12: Industry-level cross-sectional return regressions. Each month from January 1964 to
December 2015 I run an industry-level cross-section regression of the return in that month on
subsets of lagged predictor variables including sensitive centrality (SC), influential centrality (IC),
FSIZE, ISIZE, BETA, BM, RTV, MOM, and IVOL. Centrality measures (SC and IC) are estimated
every year from January 1963 to December 2014. Industry returns are calculated by the equal-
weighted returns of stocks belong to the industry. For example, the industry return of each month
in 2001 are regressed on the the lagged predictor variables estimated with the sample from January
2000 to December 2000. In each row, the table reports the time-series averages of the cross-
sectional regression slope coefficients and their associated Newey-West (1987) adjusted t-statistics
(in parentheses).

SC IC BETA FSIZE ISIZE BM RTV MOM IVOL

0.82
(2.05)
0.69
(1.70)
0.88 0.48 0.47 -0.52 0.91 0.50  0.66 0.04
(2.14) (1.41) (1.02) (-1.30) (2.18) (1.32) (2.57) (0.06)

0.79 0.49 0.47 -0.52 0.90 0.50  0.63 0.13

(1.95) (@1.43) (@1.02) (-1.3) (2.18) (1.32) (2.38) (0.20)

0.83 0.62 049 -0.58 0.87 0.57 0.68 0.65 0.27
(2.00) (1.92) (1.02) (-1.46) (2.10) (1.52) (1.45) (2.52) (0.39)
0.65 0.45 0.51 -0.44  0.81 0.64 0.50

(1.52) (@141 (1.10) (-1.09) (1.93) (2.44) (0.71)
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Table 2.13: Industry-level cross-sectional return regressions in subperiods (1970 -2015, 1980 -
2015, 1990 - 2015 and 2000 - 2015). Each month from January in each starting year (1970, 1980,
1990 and 2000) to December 2015 I run an industry-level cross-section regression of the return in
that month on lagged predictor variables including sensitive centrality (SC), influential centrality
(IC), FSIZE, ISIZE, BETA, BM, RTV, MOM, and IVOL. Centrality measures (SC and IC) are
estimated every year from January 1963 to December 2014. Industry returns are calculated by the
equal-weighted returns of stocks belong to the industry. For example, the industry return of each
month in 2001 are regressed on the the lagged predictor variables estimated with the sample from
January 2000 to December 2000. In each row, the table reports the subsample time-series aver-
ages of the cross-sectional regression slope coefficients and their associated Newey-West (1987)
adjusted t-statistics (in parentheses).

Subperiods SC ~ IC BETA FSIZE ISIZE BM RTV MOM IVOL
10702015 089 068 050 062 097 065 075 070 -0.09
(1.89) (1.87) (0.93) (-1.36) (2.05) (1.50) (1.39) (2.74) (-0.14)
10802015 090 070 046 083 087 053 068 067 -0.11
(1.69) (1.75) (0.75) (-1.69) (1.70) (1.14) (1.14) (2.49) (-0.16)
l090.2015 124 094 081 08 116 084 08 050 -029
(1.94) (1.80) (1.03) (-1.49) (1.78) (1.45) (1.12) (1.83) (-0.36)
000-0015 193 096 115 032 143 146 126 083 -LI3
(2.10) (1.34) (091) (-0.52) (1.51) (1.76) (1.11) (2.14) (-0.91)
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Chapter 3

Dynamic Stable GARCH Model with
Time-Dependent Tails

Abstract

Predicting volatility conditional on current observables is crucial for financial risk management,
from trading desks to financial institutions. This paper proposes a new Dynamic Stable GARCH
model, which involves the use of stable distribution with time-dependent tail parameters to model
and forecast tail risks in an extremely high volatility environment. We can differentiate extreme
risks from normal market fluctuations with this model. Asymptotic inference methods in high
volatility environments are unreliable, as standard regularity conditions may not apply or may
hold only weakly. This paper applies a Monte Carlo test inference procedure to construct the
confidence interval of the tail parameter. Empirical analysis on the Nikkei 225 index shows that
the Dynamic Stable GARCH model provides the best in-sample and out-of-sample one-day Value-

at-Risk fittings and forecasts at levels above 99% across different model specifications.

3.1 Introduction

To measure and predict volatility conditional on current observables is a crucial issue for financial
institutions, from the desk level to the firm level. For instance, a reliable risk model for trading

desks has to be based on well-developed volatility models. From the financial crisis in 2008, we
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learned that the risk models used by the industry may significantly underestimate the risks we are
supposed to be dealing with. A correct risk model cannot prevent us from facing occasional losses,
but it can provide management with a sense of how much risk we are exposed to. Managing
tail risk, corresponding with possible extreme events, is necessary to avoid unexpected sudden
margin calls and insufficient capital reserve against large losses in the trading book. In discussions
of risk management issues, we are now more and more concerned about the extreme risk which
corresponds to the tail part of the underlying distribution, instead of the central part.

In this paper, I propose a new type of GARCH model, whose innovations are driven by the
stable distributions with time dependent tail parameters, to model tail risk dynamics. The family of
stable distributions is a rich class and includes the Gaussian distributions, the Cauchy distributions
and the Levy distributions as subclasses. Moreover, it is the only class of distribution to which we
can apply the general central limit theorem, an appealing feature which is of great practical use in
portfolio allocations. Even in high volatility environment, the non-normal stable distribution can
easily model the cases with nonexistence of the second moment.

Two of the most important stylized facts of financial return data are heavy tails and volatility
clustering. Extreme events occur more often than predicted by simple models, and they usually oc-
cur successively. The generalized autoregressive conditional heteroskedasticity (GARCH) model
is the most commonly used financial econometric model to model these stylized facts. However,
fitted standardized returns in the Normal-GARCH model are still usually found to be heavy-tailed.
A flexible heavy-tailed distribution is needed to model the GARCH innovations. In high volatil-
ity environments, the tail could be so heavy that the second moment of the underlying innovation
distribution does not even exist. In such cases even the traditional heavy-tailed distributions (e.g.,
student’s t distributions and generalized error distributions) in the existing literature' may not be
well defined and the misspecification could lead to underestimation of the tail risk.

Furthermore, the probability of extreme events is controlled by the tail parameter in my model.
Modelling the dynamics of the tail parameter is useful for tail risk prediction since extreme events
usually occur successively. The traditional volatility models with a single volatility measure (i.e.,

variance) cannot differentiate the usual market fluctuations (central risk) and unusual extreme

IFor theoretical convenience, many empirical studies on financial heavy-tail distribution remain assuming that the
second moment exists.
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events (tail risk). To the best of my knowledge, existing literature has not investigated the time
dependence of tail parameters in the stable GARCH framework. Actually, our model can also
easily be extended to characterize the skewness dynamics.

The asymptotic distribution of the maximum likelihood estimator in our model is unknown, and
the difficulty of inference in the context of the stable model is a long standing problem. However,
the stable distribution can be easily simulated and our model is fully specified, and this permits
implementation of Monte Carlo simulations and Monte Carlo testing. The test procedure is valid
even under a small sample size. In practice, we always only have a limited sample and should
avoid asymptotic inference procedure if possible. Moreover, asymptotic inference methods in high
volatility environments are unreliable, as standard regularity conditions may not apply or may hold
only weakly. This paper applies a Monte Carlo test inference procedure to construct the confidence
interval of the tail parameter.

Based on this dynamic model, I investigate the performance of our risk model by empirical
studies in the Japanese stock markets. I use the Dynamic Quantile test to examine the performance
of the proposing model in modelling and predicting Value-at-Risk at extreme levels. I find that
our model provides the best out-of-sample prediction for the VaR at low quantiles, and the stable
distribution is better than the normal distribution and the t-distribution in terms of in-sample VaR

fittings and out-of-sample VaR predictions at levels above 99%.

3.2 Related Literature

It’s often found that the standardized GARCH residuals distribution are still heavy-tailed. GARCH
models with heavy tail distributions have been proposed in many literatures. One of the most com-
mon used heavy-tailed distribution is the student’s t distribution. Bollerslev (1987) first applies
student’s t distribution in GARCH model for empirical analysis [also see Baillie and Bollerslev
(1989), Beine, Laurent and Lecourt (2002) and Franses, van der Leij and Paap (2008)]. McDonald
and Newey (1988) propose the generalized student’s t distribution which includes the power ex-
ponential or Box-Tiao, normal, Laplace, and t distributions as special cases. Skewed generalized
student’s t distribution proposed by Theodossiou (1998) is a skewed extension of the generalized

t distribution. Several other skewed extension of student’s t distribution have been proposed for
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financial and other applications [see for example Ferndndez and Steel (1998), Branco and Dey
(2001), Jones and Faddy (2003), Bauwens and Laurent (2005) and Aas and Haff (2006)]. The
other important class of distributions incorporated heavy tail skewness properties for financial ap-
plications is the generalized error distribution (GED) which includes normal as a special case.
Many financial applications of the GED as well as its skew extensions have been considered in
Hsieh (1989), Nelson (1991), Theodossiou (2000), Ayebo and Kozubowski (2003), Christoffersen,
Dorion, Jacobs and Wang (2010), Komunjer (2007) and others. To allow separate parameters
to control skewness and the thickness of each tail, Zhu and Zinde-Walsh (2009), Zhu and Gal-
braith (2011) and Zhu and Galbraith (2010) propose asymmetric exponential power distribution
and asymmetric Student’s t distribution and find evidence for the usefulness of these general dis-
tributions in improving fit and prediction of downside market risk.

Volatility dynamics in financial market is usually modelled by ARCH Engle (1982) type mod-
els and GARCH Bollerslev (1986) type models, which are mainly focused on how to model vari-
ance dynamics. However, a single volatility measure (i.e., variance) cannot differentiate the usual
market fluctuations (central risk) and unusual extreme events (tail risk). It’s natural to extend the
(G)ARCH frameworks to model the tail risk separately in a time-vary setting. Hansen (1994) pro-
poses Autoregressive Conditional Density (ARCD) model in GARCH framework and studies the
time dependent skewness by skewed student’s t distribution. After that, a substantial amount of
empirical studies have discussed econometric specifications in modeling time dependent skewness
and kurtosis. Harvey and Siddique (1999, 2000) use the conditional mean and skewness to com-
pute noncentrality parameter in concentral-t distribution. Some other researches directly model
the dynamics of time dependent Skewness and kurtosis in autoregressive form, see Jondeau and
Rockinger (2003), Ledn, Rubio and Serna (2005), Brooks, Burke, Heravi and Persand (2005), Bali,
Mo and Tang (2008), Cheng and Hung (2011) and Lin, Changchien, Kao and Kao (2014). Almost
all these empirical studies assume t class distributions as the underlying distribution and the sec-
ond moment exists. They find significant time dependence of skewness, or kurtosis, or both. But
very few people has ever investigate the time dependence of tail and skewness for the non-normal
stable distribution in the GARCH framework. Stable GARCH model with time dependent tail and
skewness is a blank in previous studies. In this paper, I will study the Stable GARCH model with

time-varying tail .
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Even thought student’s t class distributions and GED class distribution embed flexibility to
model skewness and tail, they are generally not closed under summation, a appealing feature which
is of great practical use in portfolio allocation; see e.g., Doganoglu, Hartz and Mittnik (2007) and
Giacometti, Bertocchi, Rachev and Fabozzi (2007). If a sum of independently identically distri-
bution random variables has a limiting distribution, then it must be a stable distribution. In other
words, stable distribution, which includes normal as a special case, is the only class of distributions
to which the generalized central limit theorem applies. Mandelbrot (1963) and Fama (1965) first
apply the stable distribution to financial time series to model unconditional heavy tail property.

A main critique of the use of the non-normal stable distribution is that it has infinite variance.
This seems to contradict empirical studies [see, for example, Hols and De Vries (1991), Lore-
tan and Phillips (1994) and Pagan (1996)]. However, these findings are almost always based on
inference of the Hill and related tail estimators. McCulloch (1997) points out this inference is
invalid and tail index estimates greater than 2 are to be expected for stable distributions with o
as low as 1.65. The misleading problem for the tail index estimates with stable distributions has
been discussed in depth by [McCulloch (1997), Mittnik, Paolella and Rachev (1998a) and Weron
(2001)]. On the other hand, Mittnik, Rachev and Paolella (1998b) fit a return distribution using a
number of parametric distribution and find the stable Paretian law is a more realistic assumption,
which holds for unconditional, conditional homoskedastic and the conditional heteroskedastic dis-
tributions; Mittnik and Paolella (2003) demonstrate the effectiveness of stable GARCH in VaR.
Whether stable distribution is suitable for financial studies, is still an open question.

Estimation of stable distribution is relatively difficult since it only has a characteristics func-
tion definition without a closed form of density function except for some special cases: Normal,
Cauchy and Levy. It’s well known that Maximum Likelihood Estimation method is the most effi-
cient estimation method under certain conditions. Even though the stable density function is not
known in closed form in general, DuMouchel (1973) shows that the nice properties (/n asymp-
totic normality and Cramer-Rao lower bounds) of maximum likelihood method are still valid under
looser restrictions. Actually, maximum likelihood estimation can be still implemented by numeri-
cal methods. Zolotarev (1966) gives the integral representation of the standard stable distribution
function. Nolan (1997) provides a more convenient computational formula for the stable den-

sity by Zolotarev’s (M) parameterization. McCulloch (1985) studies the adaptive conditional het-
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eroskedastic (ACH) model and estimates it with symmetric stable maximum likelihood method.
Panorska, Mittnik and Rachev (1995) and Mittnik, Paolella and Rachev (2002) discuss necessary
and sufficient conditions of stationarity of stable GARCH processes. Liu and Brorsen (1995) esti-
mate the Stable GARCH model using Zolotarev (1966)’s integral representation formula, but they
assume the conditional stable innovations are identically independently distributed. Broda, Haas,
Krause, Paolella and Steude (2013) go further and study the stable mixture GARCH model.
Several alternative methods, (quantile-based estimator (McCulloch (1986)), generalised method
of moment with a finite set (see Hansen (1982), Feuerverger and McDunnough (1981a), Feuerverger
and McDunnough (1981b) and Besbeas and Morgan (2008)) or continuum of moment conditions
(see Carrasco and Florens (2000), Carrasco and Florens (2002) and Carrasco, Chernov, Florens
and Ghysels (2007)) , the iterative Koutrouvelis regression method (see Koutrouvelis (1980) and
Koutrouvelis (1981)), constrained indirect inference estimation method (see Gourieroux, Mon-
fort and Renault (1993) and Garcia, Renault and Veredas (2011)) and the exact confidence sets
and goodness-of-fit methods (see Dufour and Kurz-Kim (2010) and Beaulieu, Dufour and Kha-
laf (2014))), have been proposed to estimate the stable distribution without using its likelihood

function.

3.3 Models

Extreme risk measures (e.g., VaR) are sensitive to tail parts of the underlying distribution. Misspec-
ification may lead to incorrect inference and incorrect forecasting. In high volatility environments,
the second moment of financial variables of interest could be not well-defined. In this section, I
develop a stable GARCH model with time dependent tails to measure and forecast the extreme

risks where the second moment is infinite to model such high volatility cases.
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3.3.1 Stable Distribution

The most common used parameterization of stable distribution is the one in Samoradnitsky and

Taqqu (1994) which have the characteristic function ¢ (¢) with the form:

. exp{—oc®*|t|*[1 —iBsign(r)tan(%*)] +-ipr} ,for a # 1

0(r) = Elexp(itX)] = S |
exp{—o|t|[l +iB(5)sign(t)In|r|] 4 it} Jora=1

where X is the stable random variable, X ~ S(u,o0,0o, ), a € (0,2] and B € (—1,1), and sign(r)

is the sign function. u is the location parameter, ¢ is the scale parameter, « is the tail parameter

and f3 is the skewness parameter. A standard stable random variable Z takes the form: Z = )% ~

S(0,1,a,B).

3.3.2 Model Specification

The random variable asset returns 7, follow stable distribution S(u, oz, oy, ), where u, o;, a; and
B represent location, scale, tail and skewness parameters at each period ¢, ¢ = 1,...,T. In addition,
I assume the processes are demeaned (1 = 0) and the skewness parameter is constant (3, = f3).

Then the dynamic Stable GARCH model could take the general form:

T = 0%t 3.1

7z~ 80,1, 0, 8) 3.2)

0 = 86(%—1,2—2++-32—pg»Ot—1,01—2, --+s Or—q; ) (3.3)
O = 8ot (Zt—1,21=25 s Zi—pg> Ot—1, 0—25 oy Ct—gp,) (3.4)

where g and g, are deterministic functions which govern the scale and the tail dynamics respec-
tively. They are the functions of the past stable innovations with lags py and the past parameter
values with lags g, (y = o,a). In high volatility environment, the tail parameter ¢ could be
smaller than 2.

For traditional GARCH models with time-varying moments, innovations z; follow generalized t

type distributions, in which E(z,)? < eo. Here, z, ~ S(0, 1, oy, 8;) and in general, E(z,)? = o except
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for oy = 2. In the stable GARCH models proposed by Liu and Brorsen (1995), the tail and the
skewness parameter are assumed to be constant, a; = & and 8; = . In such case, z; s 0,1,,B).
The volatility dynamics are accounted entirely by the the time dependent scale parameter ¢;. Scale
parameter is a well known measure to describe the central spread of a distribution. It’s most
common to model variance to study volatility dynamics as almost all the GARCH type models
do so. However, variance (or scale parameter) is just a proxy of volatility, not the volatility itself.
Variance is a good index to measure the spread of a distribution for its central part, but it is relatively
insensitive to tail changes. We are used to taking variance (or scale parameter) as volatility measure
since the volatility of normal distributions is fully determined by its second moment. For stable
distributions, volatility is characterized by the scale parameter o, the tail parameter o and the
skewness parameter . The study of the tail parameter, ¢, is at least as important as the scale
parameter, o;, to model the tail risks. It helps to better capture the dynamics of extreme movements,
which is crucial for prediction of the tail risk conditional on current observables. In our model,
the tail parameter can also be a general function of the past innovations and their respective lagged
values. The innovations, z;, are no longer independent and identically distributed. We would like
to model the tail dynamics (o) to model and predict the extreme risks.

There is usually a trade-off between in sample fitting and forecasting precision. Note that the
purpose to develop this model is for better modelling and predicting the tail risk. The desired model
specification for the dynamic Stable GARCH model should be simple enough while allowing to
characterize standard stylized facts of financial data as well as the tail dynamics. In this paper, the

model specification takes the following functional form:

ry = Oy, tzl,,T (35)

2t NS(Oalaal‘?ﬁ) (36)

0y =bo+ b1 |ri—1 — | +ba(ri—1 — 1) +b30,_ (3.7)
2—m 2

0y = —m[—arctan(&t)+1]+m (3.8)
m T

0 =co+cyl|z—1|+ el 3.9

The scale parameter o; keeps the asymmetric power 1| GARCH dynamics. The domain of the
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tail parameter o4 is in (m,2), when m is a constant in (1,2) given by econometricians. The choice
of m is necessarily constrained by the regularity conditions discussed in Panorska et al. (1995) and
Mittnik et al. (2002) for the special case of ¢; = 0. In this paper, I set m = 1.6 based on some pre-
liminary simulation studies.? It’s small enough to allow heavy tails and big enough to guarantee
the stationarity of the underlying GARCH process. @ is the unrestricted tail parameter and it could
be unbounded in general for computation convenience. Transformation between restricted param-
eters and the unrestricted parameters are monotone and continuous mappings as in equation(3.8).
I let the skewness parameter 3 be a constant in (-1,1). Of course, it’s easy to extend 3 to be time-
varying as o as well. My model nests the Normal-GARCH model (¢ = +e,c; = 0,¢; = 0) and
the Stable-GARCH model (¢; = 0,¢c; = 0).

Note that the conditional volatility in this model is determined by two parameters, the scale
parameter o; and the tail parameter oy, b captures the leverage effect and (b3,cy) captures the
volatility clustering effect.

The fixed and unknown parameter is 8 = (b, b1,b2,b3,co,c1,¢2,B) € ©. The whole parameter
space is ®. Given 0, the data generating process of the dynamic Stable GARCH is fully deter-

mined, then we can easily compute and predict the tail risk by Monte Carlo simulation method.

3.4 Estimation

The main difficulty to estimate stable distribution is the lack of closed form of density function.
Several alternative methods® have been proposed to estimate the stable distribution without using
its likelihood function. These methods are good enough to estimate the four parameters of a stable
distribution but none of them can be easily extended to estimate the a dynamic model with de-
pendent stable innovations. For instance, it’s very difficult to derive a closed form expression of

the characteristic function for the model specification of our interest; the slackness restriction for

2I simulate processes with different m given a range of scale dynamic parameters around the values of those
documented in literature.

3Quantile-based estimator (McCulloch (1986)), generalised method of moment with a finite (see Hansen (1982),
Feuerverger and McDunnough (1981a), Feuerverger and McDunnough (1981b) and Besbeas and Morgan (2008)) or
continuum moment conditions (see Carrasco and Florens (2000), Carrasco and Florens (2002) and Carrasco et al.
(2007)) , the iterative Koutrouvelis regression method (see Koutrouvelis (1980) and Koutrouvelis (1981)), constrained
indirect inference estimation method (see Gourieroux et al. (1993) and Garcia et al. (2011)) and the exact confidence
sets and goodness-of-fit methods (see Dufour and Kurz-Kim (2010) and Beaulieu et al. (2014))
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constrained indirect inference in Garcia et al. (2011) would become very complicated because I
introduce time dependent tail in this paper. Capturing the dynamics of the tail parameter in the con-
ditional distribution is very difficult by these methods but is fairly easy once we have conditional
density for stable distribution. Actually, it’s still feasible to compute the density value of the stable
distribution with numerical methods. Nolan (1997) applies the (M) parameterization of Zolotarev
(1986) and derives numerical formulas for the computation of the stable density. The performances
of this numerical MLE method for stable distribution have been examined by Nolan (1997), Nolan
(2001) and Calzolari, Halbleib and Parrini (2014). The criticism of this numerical method is about
its accuracy. The density function only has a integral expression and thus it’s computationally in-
tensive to make it accurate. In addition, the numerical optimization routine searching the optimum
point over the whole parameter space for a large sample size could be even more time consuming.
However, these difficulties will be partially overcome in this section to make the numerical MLE

method be a suitable candidate to estimate the complicated dynamic model.

3.4.1 Numerical Density Computation for Stable Distribution and Simula-

tion Method for Stable Distribution

The main difficulty to apply MLE method to stable distribution is its lack of closed expression
of density function. Nolan (1997) provides computational formulas for the stable density by
Zolotarev’s (M) parameterization. A detailed discussion about different parameterizations of stable
distribution and a simple relation between the stable distribution with parameterization as described
above and the one with Zolotarev’s (M) parameterization can be found in Nolan (2015). In this
paper, our stable innovations follow the parameterization in Samoradnitsky and Taqqu (1994).
For a standard stable random variable under M parameterization Z ~ S(0, 1, c, 8;0), its density

function is defined as fz(z; &, ). Following Nolan (1997), define

T

C:C((x,ﬁ):—ﬁtaHT (3.10)

1 o
= —arct tan — 3.11
_jar an(f tan 5 ) (3.11)

do = ¢o(ax, B)
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cos ¢ )fxal cos(ago+ (x—1)9) (3.12)

sina (o + @) cos ¢

then when o € (1,2) the standardized stable density has the following calculation formula,

Vig;a,B) = (cosocq)o)ﬁ <

a(;(—a_c_)f‘)*l ,%%V(‘P;OC, )exp(—(z—g)%v(d,;a,ﬁ)) forz> ¢

fz(zo,B) = —F((li‘_c)z():?/s(i()) forz=¢
Fr(—z0,—B) Jforz <.

The stable random variable under the parameterization in Samoradnitsky and Taqqu (1994)

r~S(u,o,a,pB;1) has the density

£(ru,0.6,B) = fz (r —Btan( Y. a [3) (3.13)

Even though computing density for stable distribution may be a challenging task, simulating
stable distribution is relatively much easier. Simulation of stable distribution formulas can be found
in Chambers, Mallows and Stuck (1976) and Weron (1996). Based on them, we can simulate the

stable random variable under the parameterization in Samoradnitsky and Taqqu (1994).

3.4.2 Maximum Likelihood Estimation Method

Pt—Di—1
Di—1

We would like to model the conditional distribution of the daily returns. The maximum likelihood

Let’s assume that we observe daily prices, i.e., p1, p2,.... The daily return is defined as r; =

estimator is given as

A 1 &
OMLE — argmax — Z Infr(re|ri—1,r1—2,...,7150). (3.14)
oco T /=

3.4.3 Confidence Interval

The asymptotic distribution of the maximum likelihood estimator in our model is basically un-
known. Moreover, asymptotic inference methods are unreliable in high volatility environment, for

standard regularity conditions may not apply or may hold only weakly. In this section, I describe a
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Monte Carlo procedure to construct confidence interval for the parameters of interest.*

Once the unknown parameter is fixed and a test statistic, which is a function of data, can be
generated by Monte Carlo simulation method. An exact test based on this idea is called Monte
Carlo test method. Inverting the test we can obtain an exact confidence set for unknown parameter
at arbitrary levels in finite sample.

Let S = S(Y),...,Yr) be a continuous test statistic for testing an hypothesis Hp, with critical
region of the form S > ¢, then the test has level o if P(Sy > ¢) < o, where S is the test statistic

based on the observed data. Suppose we can generate by simulation N iid replications of S under

T 1(s.
Hy, S1,...,Sn. If N is chosen so that a(N + 1) is an integer, under Hy, P[%ﬁl&)”l

Let #(x) — ZL LSi=0)+1 : : .
et p(x) = ==577~—, then the test which rejects Hy when p(Sp) < o has level o exactly. We

<al=cq.

can always control the size of test by picking the suitable number of simulation replications, N.
The validity of this inference approach is independent from the sample size 7', thus it’s a finite
sample method.

Suppose we have a test for hypothesis Hy(6p) : 0 = 6y with level a, 6 € ©, where © is a
fixed parameter space. By the definition of test level, we have P[reject Hy(6p)|0 = 6] < . Let
Coq = {6 € ®: cannotreject Hy(6y)}. P[0 € Cyq] =1—P[0 ¢ Cy] > 1 — . Hence, Cq is the

confidence set of 6 with level 1 — ¢.

3.5 Empirical Analysis

In this section, I use the Nikkei 225 returns series to investigate the performance of my risk models,
and compare with the traditional GARCH models with the Normal distribution and the T distribu-
tion. Specially, I will focus on the tail part.

I collect the daily adjusted closed prices (p;) of the Nikkei 225 from 04/01/1984 - 07/03/2017

from Yahoo Finance. Daily returns are calculated as r; = - ’l and also demeaned.
-

“For those who want to know more about the Monte Carlo test methods, Dufour (2006) provides a comprehensive
discussion.
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3.5.1 Tail Parameter

In this section, I study the thickness of tails in distributions of returns and return innovations.
Specifically, I fit the returns processes (7;) and estimated innovations processes (Z; = g—’t) using the

stable distribution and construct the confidence intervals of their respective tail parameters:

r;—r[50]

= m does not

e ;. Suppose r; ~ S(a, B, 1, 0), then following Beaulieu et al. (2014) 7

depend on u and o, where r|x| refers to the xth quantile of r.

e 2y, where 2, = r; /61, and 6y, is estimated by the asymmetric power I GARCH model
with iid normal innovations [r; = 0;z;, 6; = bg+ by |ri—1 — |+ ba(ri—1 — L) + 3641, 2t ~

N(0,1)]. If this model is true, then 2, ~ §(2,0,0,+/2).

e 7y, where %, = r; /6y and 6y is estimated by the asymmetric power 1| GARCH model
with iid stable innovations [r; = 6;z;, 6; = bg + by |ri—1 — 1| +ba(r—1 — L) +b304—1, 7 ~

S(a,B,0,1)]. If this model is true, then 2, ~ S(a, 3,0, 1).

In order to construct confidence intervals for the tail parameters of r;, Z1; and Zo;, I consider

quantile-base criterion: ¢ = %, y = 11,211,221, Where J[x] refer to the xth quantile of J. 1

construct confidence intervals using the following Monte Carlo test inference procedure:

—

. Fix (a, ) to be (g, Bo)-
2. Draw 999 iid samples of size T from a stable distribution imposing step 1.

3. For each sample drawn, construct the quantiles which appear in the formulas for ¢; these

yield 999 realizations of the measures under consideration.
4. Then average across the 999 simulated values [¢;( 0, Bo),i = 1,...,999] to yield ¢ (o, Bo).

5. Compute 1,000 test statistics (ﬁi(oco,ﬁo) = |¢;(0,Bo) — @ (o, Bo)|, i = 0,1,...,999, where
(00, Bo) = 9.

6. Reject (g, Bo) if do(ao,Bo) > #[95], where $[95] is the 95th quantile of {d; (o, Bo),i =
0,...,999}.
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7. Repeat steps 1-6 and consider all values of (¢, o) € (1,6,2) x (—1,1), then the 95% con-
fidence interval of (¢, B) is all the (0w, Bo) that cannot be rejected: Cosq (ct, B) = { (00, Po) :
(a, Bo) cannot be rejected by step 6}.

8. The 95% confidence interval of ¢, Cosg, (o) = {0 : there exists By such that (o, o) € Cosq(t,B)}.

Using the procedure described above, Table 3.1 reports the 95% confidence intervals of the
tail parameters of r;, Zj; and Zp; with fitting in iid stable distributions. Not surprisingly, the return
distribution r; shows heavy tail, whose tail parameter’s 95% confidence interval is [1.40,1.52].
GARCH models can in part explain the heavy tails in unconditional return distribution. Conditional
on estimated scale parameters and assuming innovation terms follow the iid normal distribution and
1id stable distribution, the 95% confidence interval of the tail parameters of the distributions of the
estimated innovations Zj, and 25, are [1.68,1.80] and [1.69,1.82] respectively. Yet, note that the
tail parameters are statistically smaller than 2, the estimated innovations still exhibit strong heavy
tail pattern. General volatility clustering may be well modelled by conditional scales models, but
the dynamics of extreme events still lacks an appropriate explanation, and this is crucial for risk

management conditional on current observables.

Table 3.1: Confidence Intervals

NIKKEI 225

rr o [1.41,1.54]
Z1; [1.68,1.80]
Zy [1.69, 1.82]

3.5.2 In-Sample VaR Estimation

I use the Dynamic Quantile test to examine the performance of the proposed model in modelling
and predicting Value-at-Risk at extreme levels. The Dynamic Quantile test is a joint test of uncon-

ditional coverage and conditional independence. Let I; be the hitting function

I if —r, <VaR,
0 ,if —r, >VaR,.
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I, = 0 if the loss —r; exceeds the given level that is measured by VaR, and I; = 1 if the loss —r;
is under the reserved level VaR,, where VaR, is the q quantile of the loss function —r;. The large
quantile level g > 0.95 is of interest. If our risk model can correctly characterize the underlying
tail risks, then I is a martingale process, which implies 1) E(I)) = 0, 2) I’ is uncorrelated with
variables included in the past information set, where I/ = I, — g. The joint test can be done using the
artificial regression I] = XB+ & where X is a T X k matrix whose first column is a column of ones,
and the remaining columns are additional explanatory variables. Some risk models fail as they
predict clustering of exceeding to the VaR level while they satisfy the unconditional requirement.
I include five lags of I, current VaR and four lags of VaR. Under the null, B = 0191, the test
statistic DQ = % ~ x?(11), where B is the OLS estimate of B. Specifically, I check the tail
parts in distributions: ¢ = 0.01,0075,0.005,0.0025,0.001.

Table 3.2 provides the in-sample DQ test statistics for the four competing models: 1) the
GARCH model with iid Normal innovations (NGARCH), 2) the GARCH model with iid T in-
novations (TGARCH), 3) the GARCH model with iid Stable innovations, and 4) the GARCH
model with Stable innovations with time-dependent tail parameters (DSGARCH).

As expected, the NGARCH model is always significantly rejected. Heavy-tailed models pro-
vide better in-sample fit in the tails. Since the SGARCH model is nested by the DSGARCH model,
the DSGARCH model is always superior to the SGARCH model in terms of fitting at all quan-
tiles. For g = 0.0075,0.005, the SGARCH model is rejected while DSGARCH model cannot be
rejected. An important observation is that both TGARCH and SGARCH models cannot fit these
small quantiles very well and in contrast, the DSGARCH model provides a very good in-sample
fit to the low quantiles. It implies the usefulness of applying time-dependent tail parameters in
modelling processes. However, the better fit in sample may be explained by the fact that there are
more parameters. We need to conduct out-of-sample analysis to further examine the performance

of our model.

3.5.3 Out-of-Sample VaR Forecasting

A precise estimation of time-dependent tails requires large sample to ensure extreme events occur.

The Dynamic Quantile test also requires large sample as we expect to observe certain extreme re-
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Table 3.2: In-Sampel DQ

q NGARCH TGARCH SGARCH DSGARCH

1% 28.5** 32.3* 23.3* 21.6*
0.75% 33.7* 26.8* 22.5% 15.6
0.5% 43.4** 24 .4* 18.9* 11.8
0.25% 64.0** 26.3** 12.7 5.8
0.1% 114.8** 4.7 5.7 3.9

* Denote significance at the 5% level.
x% Denote significance at the 1% level.

turns would exceed VaR at certain levels. In this section, I examine the out-of-sample performance
of the four competing models in VaR prediction. In Table 3.3, I use the daily observations from
01/01/1984 - 31/12/1998 to estimate the models and use the estimated coefficients to predict the
daily VaRs from 01/01/1999 - 07/03/2017. This strategy ensures that the size of the training set is
approximately equal to the size of the test set, and the sizes of them are as large as possible.

Table 3.3 shows that the NGARCH model is always rejected again, since it fails to model
the heavy-tail property with the standard normal distribution. The TGARCH model cannot well
predict the VaR at low quantiles (it is rejected at g = 0.005,0.0025). In contrast, the SGARCH
model and the DSGARCH model can well predict the VaR at low quantiles (they are not rejected
at g = 0.005,0.0025,0.001), but they cannot well predict the VaR at relative high quantiles (they
are rejected at ¢ = 0.01,0.0075). At g = 0.0075, the SGARCH is rejected at the significance level
of 1% while the DSGARCH is rejected at the significance level of 5%. Overall, the dynamic
Stable GARCH proposed in this paper provides the best out-of-sample prediction for the VaR at
low quantiles, and the stable distribution is better than the normal distribution and the t-distribution

in terms of in-sample VaR fittings and out-of-sample VaR predictions.

Table 3.3: Out-of-Sampel DQ

q NGARCH TGARCH SGARCH DSGARCH

1% 87.2** 19.6 36.0** 40.2*
0.75% 84.4** 18.0 25.2** 22.3%
0.5% 89.7* 30.7* 17.8 16.5
025%  117.1* 60.1** 6.0 4.5
0.1% 131.2** 1.2 2.9 2.9

* Denote significance at the 5% level.
x% Denote significance at the 1% level.
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3.6 Conclusion

Many financial econometric models are unable to measure correctly the very heavy-tail return
distributions that are used to model high volatility environments. In this paper, I propose a dynamic
stable GARCH model with dynamic tail parameters to measure and forecast extreme risks. Using
this model, we can differentiate the tail risk dynamics from normal market fluctuations. Using
a Monte Carlo test inference method, I construct confidence intervals for the tail parameters of
returns and estimated innovations and find these distribution exhibit strong heavy-tail property.
In terms of one-day VaR modelling at low quantiles ¢ = 0.01,0075,0.005,0.0025,0.001, I find
our dynamic Stable GARCH model provides the best in-sample fit and out-of-sample forecasting
across different model specifications, and our model performs well in capturing both the rate of

occurrence and the extent of extreme events in the Japanese stock markets.
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Appendix A

Proof

We apply an assumptions set that is similar to the one used in Barigozzi and Brownlees (2014).
The proofs of the Proposition 1.4.6 and the Proposition 1.4.7 can thus follow their results. The

proof of Theorem 1.4.8 is based on Proposition 1.4.6 and Proposition 1.4.7.

A.1 Assumptions

1. The N-dimensional random vector process X (¢) is non-deterministic, has zero mean, and is

covariance stationary. Moreover,

(a) here exist constants M| and M, such that for each N, 0 < M} < Umin(Tx) < tmax(Tx) <
M, < oo, where I'y is the covariance matrix of X and Umin () and tmax(-) are the small-
est and the largest eigenvalues operators respectively.

(b) there exists constants M3(®) and My (@) such that, for each N and for any @ € [, 7],
we have 0 < M3(®) < Umin(sx(®)) < Umax(sx(@)) < M4(@) < o0, where sx (o) is the
spectral density matrix of (1.3).

(c) define B = sup{c: Y5 h¢sup; ;|E[X (1) X (t —h);]

}, then B > 0.

(d) the process has three representation forms (1.3), (1.4) and (1.5) as stated in Assumption

1.4.1.

2. There exist constants ¢; > 0 and ¢; > O such that N = O(T“") and p = O(T?). B > %. The

dimension of the two parties W and Y of analysis, m| and mo, is fixed.
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(a) The set of nonzero entries in @;, .7, has q“‘TZ{ elements, and CI% satisfies the following

conditions:

o _ T Ar qrilogl logT Ar o _
qri —0<\/ logT) az; = 11m logT =o(7 )and Tl T\t =

o(l) fori=1,...,N.

(b) The set of nonzero entries in &;, .7, has q“‘TZ{ elements, and q%_ satisfies the following

Q/ —
qulogT T o __
oo, \/ (T)andT, Ll\/qu.—

conditions:

e T A A
qTi_0< logT) TT\/q 11m T

o(l) fori=1,...,.N—m;.

(@) Foralli=1,...,N, there exists a sequence of positive real numbers {sTl} such that

|OCU|>STI and hm = oo for all o;; € 7.

)LT V qu

(b) For all i =1,...,N —my, there exists a sequence of positive real numbers {sTl} such

that |og;| > sTl and hm

s
- = oo for all @&;; € d.

o AT [ o

T\ 41i

(a) Foreachi=1,...,N, |af4550 — ;| = 0,(T~°) with 6 € [1,3] forany j=1,...,N.
(b) Foreachi=1,...,N, |Gf550 — ayj| = 0,(T~%) with 6 € [}, 3] forany j=1,...,N.

(a) The set of nonzero entries in p“, 2, has q’T@” elements, and q}@” satisfies the following

conditions:

2y T 2y @ 10gT
qr :0<1/@)’¥V‘1T =o(1), hmYT logT—ooand\/ I e

(b) The set of nonzero entries in p¥, 2y, has g7 2y elements, and g7 2v satisfies the following

conditions:
P) Vieg T
17 =0 () B =0 i e =00 B o)

(a) For all p;‘j € 9, there exists a sequence of positive real numbers {s’T@”} such that

|pt| > s7* and I‘L‘Lw\ﬁ

(b) For all pi"j € 2y, there exists a sequence of positive real numbers {s?v} such that
Qv

I
8

\4
] > s7* and hm Ly
qr

(a) Let D be a N(I\g_l) x 1 vector such that it has generic component dy;; = /%u,, and
JJ

let I'p = E[(D})'D{], then there exists a constant M, < 1 such that for any p; € ¢,
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1. 9°T
T, (P)Tho,o,(p)] " sign(p )| < My, where I, (p") = T odr, | =ptt dt,

—_ . . ;Av" A
(b) Let D} be a N(Nz D 1 vector such that it has generic component d);; = ;vﬂvti and
\/ Tjj

tij —

let I'p = E[(D})'Dy'], then there exists a constant My < 1 such that for any pj € 2,

:ps"lq .

-1 . . 9°T
Thijo, (P ) ho,0,P")] Lsign(pY )| < My, where T, (pY) := m|dt‘£i:pi‘;,dlvsq:ps‘;~

9. (a) Forany 9 > 0, there exists a constant K such that for 7' large enough, we have P <1 Lni%
SISINT

1-0(T9).

(b) Forany 6 > 0, there exists a constant K such that for 7' large enough, we have P <1 Lneg]
<i<Nr

1-0(T%).

A.2 Proof of the Proposition 1.4.6

Proof. Under assumption Sa, the weighted penalty wz;; = I&TISSOI in (1.15) satisfies the condition
Tij
1 for the pre-estimator in Barigozzi and Brownlees (2014). Then under assumptions 1, 2, 3a, 4a

and Sa, using the result in the Theorem 1 in Barigozzi and Brownlees (2014), we have

1. for T large enough and for any 6 > 0, &7; = 0 for o € szfl-c with at least probability 1 —
O(T_5), where @; is defined in (1.15), and

2. for T large enough and for any & > 0, there exist a constant k;, such that ||&7; — a4, <

K,/ITT g%, with at least probability 1 — O(T?).

From assumption 3a, we know )“TT \/;% =0(1). Thus we have Prob{&r;; =0if i;; € sz%lc} —1
and &r; 25 o fori=1,...,N. Note also that vec(],...,ay) = vec([A], AL, ..., A]"), and by the
Lemma 2 in Barigozzi and Brownlees (2014) the truncated bias ||A‘,’<7 —AkHw = o(1). Therefore,
AL, Ly Apfork=1,...,p.

Similarly, for the expanded restricted process, under the assumptions 1, 2, 3b, 4b and 5b,
we have Prob{&ﬂj =0if oy € QZC} — 1, ar; L a; fori=1,...,N and thus K’;k ini,‘f for

k=1,...,p. [
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A.3 Proof of the Proposition 1.4.7

Proof. For the p; considered in (1.21), under the assumptions 1, 2, 3a, 4a, 5a, 6a, 7a, 8a and 9a,

using the result in Theorem 2 in Barigozzi and Brownlees (2014), we have

1. for T large enough and for any 6 > 0, p}. ;=0forp;; € 9C€ with at least probability 1 —
O(T~9), and

2. for T large enough and for any & > 0, there exists a constant k, such that ||p} —p“||, <

Ky ? \/ q‘Q“ , or equivalently,

For assumption 6a, we know % q}@“ = o(1). Then we have Prob{p7;; = 0if p;; € 201 =1

Sy — su | < x % q}@”With at least probability 1 — O(T %)

and ﬁ%j LN pl?‘j fori,j=1,...,N. Therefore, we also have S”} LN S,=x, 1.
Similarly, for the ;3¥ considered in (1.22), under the assumptions 1, 2, 3b, 4b, 5b, 6b, 7b, 8b
and 9b, we have Prob{py;; = 0if p; € 26} —1and P1ij LN pi; fori,j=1,...,N. Therefore,

we also have §}. - 5, =¥ O

A.4 Proof of the Theorem 1.4.8

Proof. Under the assumptions 1, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b, 8a, 8b, 9a, and 9b, which
have been used in Proposition 1.4.6 and 1.4.7, and by these propositions, we have the consistent
estimators, A’;k, 2‘;,{, Su., SY. for Ay, A,‘f, S“, SV respectively.

Note that from the Remark 1.4.2 and from the Remark 1.4.4, we have

1. The covariance matrix of the forecast error at horizon /4 for the unrestricted model is

h—1
IX(+h)]F (0] =) 0,Zue,, (A.1)
q=0

where @, =Y, Ax@,_x and @y = Iy.
2. The covariance matrix of the forecast error at horizon # for the restricted model is
h—1
Xo(t+M)|F-w ()] =) §Ze®,, (A2)

q=0
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where @, = Y{_ Ax@y—r and §o = Iy,
3. The forecast error covariance of X", without its past information, at horizon /4 is
h—1

Zw XY (e + )| Fw(0)] = T3 (Z ‘PqZV‘P(;) T3, (A.3)

q=0

where ¢, = ZZ:IAI?Q)‘I*/" A,qcj ZA,?Jz, G0 = In, I3 = [Dny sy s Oy sc(N—my)lmy xN-
4, Eg = JZZvJé and Ak = (JZAZ)/, where Jr = [O(N—ml)xmla I(N—ml)X(N—ml)](N—ml)xN
As AL, L5 Agand ($2)71 2 (5971 =3, @, is iteratively defined as ¢, = Y7, A?, @, &
forg=1,...,h—1, then ¢, SN ¢, and thus

b (A.4)

EX(t+h)|Fw(t)] = ZX(t + 1) F—w ()],
where S[X(t-+ )7 (1)) := T3 6,(54)' ¢ and Gy = I,
As 2’},{ LH}Z’ and ($¥)~1 25 (8V) "1 =%, @, is iteratively defined as §, = ¥7_, (K’T’kh)éq,k

forg=1,...h—1,then ¢, %> ¢, = YI_ (A2)2)9, . and thus

SwixW (e +h)|.Z_w ()] 2 ZwXY (t +h)|.Z_w ()], (AS)

where Sy (X" (¢4 ) .7 (1)] := J3 (A= 64(SY) 1 6;) J5 and §o = Iy.
As 2’;,( LMTZ’, (S¥y)~! Ly =3, T = LEyJy and Ay = (Jzﬁf)’, then £ 2+ ¥, and

(szip ) LAY (JZA,?)’ , where £¢ = J5(S%) 1. Also @, is iteratively defined as ¢, = Y7, (JQK’T’,C)’ @yt
then ¢, > @, = LI_ Ax@, 4, and thus

S[Xo(t+h)|.Z_w(t)] LAY L[Xo(t+h)|F_w(1)], (A.6)

where £[Xo(t +h)|.Z_w(t)] == ZZ;(I) (ﬁqﬁg(f)c’[ and @y = Iy_p,.

Finally, we have
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oy | detoEXo( 1) 7w ()5}
rwy = det{1E[X (t +h)|.F ()]}
N {det{Joz[Xo(Hh)!ﬁw<t>]fé}]
det{\ Z[X (t +)|-7 (1)]J1}

and

Ah _
CTWW -

det{Sw XY (t +h)|.F_w (1))}
det{\Z[X (¢ + h)|.Z ()]}
(

p o [det{Zw XV (t+h)|.Z_w(D)]}
{ det{J\1Z[X (¢t +h)|.Z (1)]J] }

Therefore,

Clyy L (xV TXYV)»
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Appendix B

S&P 100 components (selected)

Ticker Company Sector Ticker Company Sector

AAPL Apple Inc. Consumer Goods ~ HPQ Hewlett-Packard Co Technology
ABT Abbott Laboratories Healthcare IBM Intl Business Machines Corp Technology
ACN Accenture plc Technology INTC Intel Corp Technology
AGN Allergan plc Healthcare INJ Johnson & Johnson Healthcare

AIG American Intl Group Inc Financial JPM JP Morgan Chase & Co Financial

ALL Allstate Corp Financial KO Coca-Cola Co Consumer Goods
AMGN Amgen Inc Healthcare LLY Lilly Eli & Co Healthcare
AMZN Amazon.com Inc Services LMT Lockheed Martin Industrial Goods
APC Anadarko Petroleum Corp Basic Materials LOW Lowe’s Cos Inc Services

AXP American Express Co Financial MCD McDonald’s Corp Services

BA Boeing Co Industrial Goods MDT Medtronic plc Healthcare

BAC Bank of America Corp Financial MET Metlife Inc Financial

BAX Baxter Intl Inc Healthcare MMM 3M Co Industrial Goods
BIIB Biogen Inc Healthcare MO Altria Group Inc Consumer Goods
BK The Bank of New York Mellon Corp Financial MON Monsanto Co. Basic Materials
BMY Bristol-Myers Squibb Healthcare MRK Merck & Co Inc Healthcare

C Citigroup Inc Financial MS Morgan Stanley Financial

CAT Caterpillar Inc Industrial Goods MSFT Microsoft Corp Technology
CELG Celgene Corp Healthcare NKE NIKE Inc B Consumer Goods
CL Colgate-Palmolive Co Consumer Goods  NSC Norfolk Southern Corp Services
CMCSA  Comcast Corp Services ORCL Oracle Corp Technology

COF Capital One Financial Financial OoXY Occidental Petroleum Basic Materials
COoP ConocoPhillips Basic Materials PEP PepsiCo Inc Consumer Goods
COST Costco Wholesale Corp Services PFE Pfizer Inc Healthcare
CSco Cisco Systems Inc Technology PG Procter & Gamble Consumer Goods
CVS CVS Health Corporation Healthcare QCOM  QUALCOMM Inc Technology
CVX Chevron Corp Basic Materials RTN Raytheon Co Industrial Goods
DD E. I. du Pont de Nemours and Company  Basic Materials SBUX Starbucks Corp Services
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DIS
DOW
DVN
EBAY
EMC
EMR
EXC

FDX
FOXA
GD
GE
GILD
GS
HAL
HD
HON

Walt Disney Co

Dow Chemical

Devon Energy Corp

eBay Inc.

EMC Corp

Emerson Electric Co
Exelon Corp

Ford Motor Co

FedEx Corp

Twenty-First Century Fox, Inc
General Dynamics
General Electric Co
Gilead Sciences Inc
Goldman Sachs Group Inc
Halliburton Co

Home Depot Inc

Honeywell Intl Inc

Services

Basic Materials
Basic Materials
Services
Technology
Industrial Goods
Utilities
Consumer Goods
Services
Services
Industrial Goods
Industrial Goods
Healthcare
Financial

Basic Materials
Services

Industrial Goods

SLB
SO
SPG

TGT
TWX
TXN
UNH
UNP
USB
UTX

vZ
WBA
WEC
WMT
XOM

Schlumberger Ltd

Southern Co

Simon Property Group
AT&T Inc

Target Corp

Time Warner Inc

Texas Instruments Inc
Unitedhealth Group Inc
Union Pacific Corp

US Bancorp

United Technologies Corp
Visa Inc

Verizon Communications Inc
Walgreens Boots Alliance Inc
Wells Fargo & Co

Wal-Mart Stores

Exxon Mobil Corp

Basic Materials
Utilities
Financial
Technology
Services
Services
Technology
Healthcare
Services
Financial
Industrial Goods
Services
Technology
Services
Financial
Services

Basic Materials
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Appendix C

Variable Definitions

1. SPREAD: SPREAD is the average of daily Corwin and Schultz (2012)’s bid-ask spreads
estimates within a year for the firms belong to the same industry specified by the first three

digits of SIC codes.

2. RTV: RTV is the average of daily Amihud (2002)’s illiquidity estimates (RTV;,) within a

year for the firms belong to the same industry specified by the first three digits of SIC codes.

R |
VOLV;,

RTV;, = (C.1)

where RTV;; is firm i’s illiquidity estimate on day ¢. R;, is firm i’s return on day t. VOLV;;
is firm i’s trading volume in dollars on day 7.
3. ISIZE: ISIZE is the average of daily sum of market capitalizations within a year for the firms

belong to the same industry specified by the first three digits of SIC codes:

ISIZE;; = ) MC;,, (C.2)

ix€i

where MC;, ; is firm i;’s market capitalization (stock’s price times shares outstanding in

millions of dollars) on day ¢, and firm i, belongs to industry i.

4. FSIZE: FSIZE is the average of daily average of market capitalizations within a year for the
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firms belong to the same industry specified by the first three digits of SIC codes:

1
FSIZE;; = — ) MC;,, (C.3)
Nijci
where MC;, ; is firm i;’s market capitalization (stock’s price times shares outstanding in
millions of dollars) on day ¢, and firm i; belongs to industry i. n; is the number of firms

belong to industry i.

5. BM: Following Fama and French (1992), I compute a firm’s book-to-market ration in month
t using the market value of its equity at the end of December of the previous year and the
book value of common equity plus balance-sheet deferred taxes for the firm’s latest fiscal

year ending in prior calendar year.

1
BM;; = — ) BM,,, (C.4)
i ix€i
where BM;; is industry i’s book-to-market in month z. BM;, ; is firm i;’s book-to-market
in month ¢, for firm i; belongs to industry i. n; is the number of firms belong to industry
i. Industry’s book-to-market in year y is the simple average of monthly industry’s book-to-

market in year y.

6. BETA: To take into account nonsynchronous trading, I follow Scholes and Williams (1977)
and Dimson (1979) and use the lag and lead of the market portfolio as well as the current

market when estimating beta:

Rig—rra=0i+P1i(Rna—1—7fa—1)+BiRma—7ra)+ B3i(Rmar1 —Tfas1) + Eids
(C.5)
where R; 4 is the average return of the stocks belong to industry i on day d, ry 4 is the risk-
free rate on day d and Ry, 4 is the market return on day d. I use simple OLS to estimate
equation C.5 for each industry using daily returns within a year. The market beta of industry

i in year y is defined as 3,- = 317i + 327,' + 33,,‘-

7. IVOL: I use a simple CAPM model specification to estimate the yearly idiosyncratic volatil-
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ity of a firm:

Rig—rpa=0i+Bi(Rma—7ra)+ €a (C.6)

where §€; 4 is the firm i” idiosyncratic return on day d. The idiosyncratic volatility of firm i in

year y is defined as the standard deviation of daily OLS residuals in year y:

—

IVOL,‘J = Var(énd). (C7)
The idiosyncratic volatility of an industry in year y is the average of the idiosyncratic volatil-
ities of the firms belong to that industry in year y.

. MOM: The momentum variable of firm i for every months in year y+ 1 is the simple average
of firm i’ daily returns in year y. The momentum of an industry is the simple average of the

momentums of the firms belong to that industry.
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Appendix D

Data and Code

All data and python codes related to this thesis are shared on the Google Drive with the following
URL:
https://drive.google.com/drive/folders/0B9eEne9KGIv_Y VNoSWkwM1hYNDg?usp=sharing
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