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RESUME 

Cette these examine deux methodes d'estimation parmi les 

plus importantes et les plus souvent utilisees -!'estimation du 

maximum de vraisemblance pour laquelle on supposee connue la dis-

tribution des variables (ou vectors) aleatoires et d'autre part 

c !'estimation des moindres carres ou cette fois la distribution de 

variables aleatoires n'est pas necessairement connue. 

Quelques definitions et resultats preliminaires seront 

presentes dans le premier chapitre. Ceux-ci seront utiles dans les 

chapitres suivants. Le second chapitre portera sur les proprietes 

souhaitables des estimateurs qui seront rencontres aux chapitres 

trois et quatre. 

L'estimation du maximum de vraisemblance sera discutee au 

chapitre trois et l'emphase sera placee sur les proprietes assymptot-

iques des estimateurs. Le quatrieme chapitre traitera de !'estimation 

des moindres carres. Dans une section de ce chapitre, le probleme 

d'estimabilite sera etud:ie. On trouvera de nombreuses references 

dans la bibliographie. 

c Department of Mathematics M. Se. 
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1.15 Theorem: If A is a symmetric matrix, then there exists an 

orthogonal matrix P such that PAP' = A , where A is the 

diagonal matrix of characteristic roots of A and P the 

matrix of characteristic vectors. 

1.16 The singular values .of the matrix B (m x n) denoted by Sg (B) 

are defined to be the positive square roots of the character­

istic roots of the matrix B'B, i.e., Sg(B) = + [ CH(B'B) J '1. 

1.17 Let B (m x n) be an arbitrary real matrix. The rank of B, 

denoted by r (B) is the maximal number of linearly indepen-

dent rows (columns) of B. 

1.18 If n~ m and r (B)= n, then B (m x n) is said to have full 

column rank, if m~ n and r (B)= m, B is said to have 

full row rank. 

. 
1.19 The matrix X (n x m) is said to be a right inverse of A (m x n) 

if AX:I. m If Y (nxm ) is such that YA = In, then Y is 

a left inverse of A. 

1.20 Lemma: If A (m x n) is such that r(A) = n, then there exists 

a matrix X (n x m), called a right inverse of A, such that 

A X = Im; one choice of X ·is A' (AA' f 1 • If r(A) = m, 

then there exists a matrix Y such that YA = In; one choice 

of Y is (A'A)-lA'. 
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1.21 A generalized inverse of A (m x n) is a matrix denoted by 

1.22 

A- of order n x m such that 

A A- A = A • 

The Moore-Penrose generalized inverse of the matrix A (m x n) 

is a matrix G (n x m) such that the follm·ling four conditions 

are satisfied: 

(1) A G A = A 

(2) GAG = G 

(3) (AG)' • AG 

(4) (GA)' = GA 

The matrix G is called a g (A) and is denoted by A~. 
12 34 

If condition (1) is satisfied, G is called a weak generalized 

inverse of A and is denoted by g 1 (A). If conditions (1) and 

(2) are satisfied G is called a symmetric generalized inverse 

of A and is denoted by g12{A). If conditions (1) and (3) 

are satisfied G is called a least squares generalized inverse 

and is denoted by 

1.23 Theorem: Let A (m x n) be an arbitrary real matrix; then 

there exists orthogonal matrices P (m x m) and Q 6.1 x n) 

such that 
D 

r is the 

diagonal matrix of singular values of A, P the matrix of 
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characteristic roots of A'A and Q the matrix of characteristic 

roots of AA' • 

1.24 Lemma: A+ and A- are unique. 
ts 

1.25 Lemma: Using (1.23) we note that one repre-sentation of A+ is 

A+ = 
~-1 Q r 

0 ~ }·. 
1.26 Theorem: For comformable matrices A and B and for any 

-choice of the generalized inverses A and B-, we have 

r(A,B) = r(A) + r( [r-AA -]B), (1.26.1) 

• r(B) + r( [ 1-BB-]A); (1.26.2) 

r[ ~] = r(A) + r( [B(I-A-A)]), (1.26.3) 

• r(B) + r( (A(I-B-B))). (1.26.4) 

1.27 Lemma. r (AB) .:S- r (A) , (1.27 .1) 

(1.27.2) r(AB) .:S- r(B). 

1.28 Lemma: Let the matrix C (m x n), n ~m, have full column 

rank n, and the matrix R (n x m) 1 n ~m, have full row rank n. 

Then for any matrix A (n x m), we have 

r(A} = r(CA} = r(KR). 
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1.29 The trace of a matri~ A (n x n) denoted by tr(A) is defined 

to be the sum of the diagonal elements; alternatively the 

trace of A is the sum of the.characteristic roots of A. 

1.30 Lemma: If A (n x n) is an idempotent matrix of rank r, 

1.31 

then tr(A) = r . 

Lemma: Let <PO and A (m x n) be a real matrix. Then 

lim [A'A +a r]-1A' = (A I A)-A'. 
a·*D 

Proof: by (1.23), we have 

A = {~r ~1Q' 
hence A'A- {D2 ~]Q' - . r . 0 (1. 31.1) 

and A' A+ a I - tr: air 0 1 Q' • -n ar (1. 31.2) n-r 

We note that for all a > o J A' A + a I is invertible. 

Thus 

where 

hence, 

A(a.) = r o +ar ]-
1 

l r r ' 

+ aiJ -lA' = 

. n 

0 ]P' 0 .. 

(1. 31. 3) 

(1. 31.4) 
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1.32 

.... 

but lim 
a-+o 

hence 

A(a) 

= Q [
Dor:..l lim ( A' A + a In] -lA' 

a-+0 

\ 8 

Note: The above lemma can be generalized by replacing a In 

by D( a) a diagonal matrix of positive, not necessarily 

identical elements. 

The density function f(x) is a member of the exponential 

family if 

f.(x) = A(x) B(Q) exp [ C(Q) D(x~ , a< x < b, where 

(1) Q is the vector of parameters, · 

(2) a or b does not depend on Q, 

(3) A(x) and D(x) are continuous for a <x < b, 

(4) c (Q) is a non-trivial continuous function 

Examples of Exponential families are 

(1) {f(x): f(x) =_!_exp(-9x),x~0,9>0} 
9 

of Q. 

(ii) {f(x): n n-1 f(x) = 1 Q x exp(-Qx) ,x ~0, Q > 0, n > 0} • 

~) 
1.33 Two subspaces are said to be virtually disjoint if the.null 

vector is the only vector they have .in common. 
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1. 34 Let A = [: :] with H nonsingular, 

The Schur complement of E in A denoted by A/E is defined as; 

A/E 
-1 

: E-FH G, 

c 
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CHAPTER II 

DESIRABLE PROPERTIES OF ESTIMATORS 

Introduction. The theory of mathematical estimation was 

founded by R. A. Fisher in a series of Papers (1921, 1925, 

1934 and others). We shall discuss some of the important ideas 

developed by Fisher in this and a subsequent Chapter. We shall 

also classify and study the properties of various estimato.rs 

and give some examples to strengthen the discussion. 

2.2 The Problem. Suppose we have obtained a random sample from a 

population, whose distribution has a known mathematical form, 

but involves a certain number of unknown parameters. We would 

like to find estimates for the values of these unknown parameters 

in the parent population based on the information given by the 

sample. 

In general, there will be an infinity of functions 

of the sample values that might be proposed as estimates of the 

parameters. We are faced with the ~ollowing question; '~ow 

should we best combine the data to form these estimates?" This 

question leads to another, namely, "what do we mean by ''best" 

estimates?" 

We might answer impulsively that the best estimates 

will be the ones which are nearest to the true values of the 

parameters to be estimated. However, it must be borne in mind 
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that every suggested estimate is a function of the sample 

values, and hence must be regarded as an observed value of a 

certain random variable. We therefore see that we have no 

means of predicting the individual values assumed by the esti­

mates in any given case, so that the goodness (in the sense of 

being best) of an estimate cannot be judged from individual 

values, but only from the distribution of the values which the 

estimate will assume in the long run, that is, from its sampling 

distribution. 

When most of the "mass" in this distribution is con­

centrated in some small neighbourhood of the true value, there 

is a very small probability that the estimate will differ from 

the true value by more than a small amount. We express this 

probabilistically as P[i tn- e I> e:] < o , where tn is the esti­

mator of the parameter e , and o is a small positive quantity 

depending on nand e:. From this point of view, an estimate 

will be "better" in the same measure as its sampling distribu­

tion shows a greater concentration about the true value. 

We now list some desirable properties, some or all 

of which we would like our estimator to have: 

(a) Consistency, 

(b) Sufficiency, 

(c) Unbiasedness, 

(d) Minimum variance, 

(e) Completeness, 
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(f) Efficiency. 

We now define and give examples of statistics which 

satisfy the properties listed above. 

2.3. Consistency 

Definition: An estimator t computed from a random sample of 
n 

n values is said to be a consistent estimator for the parameter 9, 

if for any given E: > o there exists an N and a o such that 

P(jt- el~e:)~ 1-a (1.3.1) 
n 

for all n ~ N; t is then said to converge in probability or to 
n 

converge stochastically to e. 

Note: As defined, consistency is a large sample property. 

Example 

Consider dF (x) 2 = _!_ exp -(x-9) 
~ 2 

and let x: (x1 x2 •• x) be a random sample of size n taken from , , n 

n 
this population. Then the sample mean t = E Xi is consistent 

i=ln 

for the parameter 9, since, given E: > 0, and using the fact 

that ru ct-9) "' N(O,l), we have 

P(/njt - el < e:ln) 
e:ln = f dF(x) 

-£In 

£In 
2 = f exp(-t ) dt 

-E:In 2 {21T- • 

Clearly this probability can be made as close to one (1) as we 

please, by making n sufficiently large. For example, if 

e:·= 0.1 and n = 400, we have, 



0 

P < z o I t -el ~ 2 > = P c I t - el ~ .1 > 

= 0.9544 • 

It can be shoWl,l that the sample median, x1 , 
2 

13 

is also con-

sistent for the parameter Q in the normal population and 

thus we note that consistent estimators are not necessarily 

unique. In cases where there are several consistent estimators 

it is usual to choose the estimator with the smallest variance. 

In the case of a random sample of size n taken from 
2 

a notmal population with mean/median l1 and variance cr , 

it can be shown that the sample mean/median are both asympto-

tically normal with common expected value J1 and variances 

(J 

n 

2 2 
and no 

2n 
respectively. Thus we see that the sample 

mean will be preferred to the sample median as an estimator 

for the population mean, since the sample mean has asymptoti-

cally smaller variance than the sample median. 

2.4. Suffciency 

Many decision theoretic problems can be significantly 

simplified by a suitable reduction in the complexity of the 

data. A suitable form of reduction called the criterion of 

sufficiency was introduced by R. A. Fisher (1925). There he 

defined a sufficient statistic as one which effectively sum-

marizes all the relevant information supplied by the data. 

The following definition offers a small extension 
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to Fisher's concept of sufficiency. 

Definition: A statistic is said to satisfy the criterion of 

sufficiency when no other statistic which can be calculated 

from the data provides any additional information as to the 

value of the parameter to be estimated. 

A more rigorous definition is as follows: 

Definition: Let X denote a random variable (vector) '"hose 

distribution depends on a parameter Q e 8 ' ® being the 

parameter space. A real (vector) function T of X is said 

to be sufficient for the parameter Q if the conditional dis-

tribution of X given T = t is independent of Q almost 

everywhere (t). 

The following theorem, due to Fisher, gives us a 

necessary and sufficient condition for a statistic to be suf­

ficient. 

Fisher's Factorization Theorem: 

Let X be a random variable whose p.d.f. (p.m.f) f(x,Q) 

depends on the parameter 9 e (tb . A function T - t (X) is 

sufficient for 9 if and only if the frequency function factors 

into a product of the two functions g and h, where g is a 

function of t(x) and 9 , and his a function of xoniy, i.e., 

f(x,Q) = g(t(x),Q) h(x). 

Proof ( if ) Suppose that T = t (x) is sufficient for Q 

then, 
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f(x,9) = P9 (x = x) 

= P g (X = x, T = t (x)) 

= P9(T = t(x)) P(X = x!T = t(x)) (2.4.1) 

provided that P(X = x IT = t (x)) exists and is well defined. 

Hence for the .x for which f(x,9) = 0 for all 9 

we define 

h(x) = 0 

and for the x for which f(x,9) > 0 for some Q 

we put 

h(x) = P(X = xlr =t(x)) 

which is independent of 9, so that putting 

g(t(x),9) = P9 (T = t(x)) 

gives us the required factorization. 

Proof (only if) Suppose 

f(x,9) = P9 (x = x) 

= P9 (T = t(x)) P(X = xlr = t(x)) 

holds. Fix t 0 for which P
9

(r = t
0

) > 0 

S E.®. Then 

Pg(X =X !r =to) = Pg(X = x,T = to) 

Pg(T = to) 
The numerator of (2. 4. 5) is zero for all 9 

<z.4.2) 

(2.4.3) 

(2. 4. 4) 

for· some 

(2.4.5) 
whenever 

t (x) F-to and is equal to P8 (X= x), whenever t (x) = t 0. 
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We can write the denominator of (2.4.5) as 

Pg(T = to) = 

= 

Hence 

where h (xl) = E 

E P
9

(X = x) 

[x:t(x) = to] 

E g(t(x) ,e).h(x) 

[x:t(x) !!! to] 

t ) 
0 = 0 

= g(t0tG).h(x) , 
g(t0, 9) .h(x1) 

h(x') 
[x' :t(x') .. to] 

Cancelling g(to,e>, we have that, 

16 

. (2.4.6) 

t{x) ~ t 0 

t(x) = t 
0 

is independent of G, for all t
0 

and Q 

for which it is defined. 

We shall see later that using the criterion of sufficiency 

in conjunction with that of completeness, we can construct 

uniformly minimum variance unbiased estimators (UMVUE) for 

estimable functions. We give here two examples' of how to 

find a sufficient statistic using the Fisher Factorization 

Criterion. 
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be a random sample 

from a Poisson Population with parameter 0 > o. Then the 

likelihood function is 

I n Xi 
L(9 x) = IT 9 exp(-9) 

i:l --x:-;-
~. 

n 
r xi 
i-1 

='----,:-...;;.1__ • Q exp ( -.nQ) 
I I t 

xl.x2:···xn. 

= h(x) g(t(x),Q) 

Where h ( x) = [ ~ x . !] -l 
. 1 ~ 
1.: 

n 
and t(x) = r xi, 

i:l 

thus t (x) is sufficient for 0. It is easily seen that 

t (x) 
n 

is a consistent and unbiased estimator for 0. 

E«ample II. Let x = Cx
1

,x2, ••• ,xn) 

from a distribution with pdf 

be a random sample 

f(x,Q) = G(9)M(x) 

- 0 

where [ G(9))-l = e 
{; M(x)dx • 

The likelihood function is: 

n 
LC9Ix> = IT G(9)M(xi) 

i:l 

We can then write L(9!x} 

if 0 <X < "" 

elsewhere1 

if all xiE..(0,9) 

as 

where y1 is the first order statistic, 
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1·s the nth d i · d or er stat st1c, an 

q(a,b) == 1 

= 0 

If 'le nm.; let h(x) 

if a < b 

if a> b 

n = q(O,y
1

) TI M(x.) 
i=l 1 

18 

and g(t(x),e) = q(Yn,e). [c(e)]n, 

th 
we see that the n order statistic Yn is sufficient for the 

parameter e. 

Note: When 
. -1 

G(e) = G and M(x) = 1 ~.;e have the uniform 

distribution. Another specific example of this form is the 

distribution v1ith M(x) = nxn-l and G(e) = e-n. 
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2.5. Unbiasedness 

Definition: An estimator tn of a parameter e is said to 

be unbiased if the expected value of tn is equal to a , 

i.e. if E ( tn) = a ; otherwise the estimator is said to be 

biased with a certain bias, b (a ) • 

We mentioned earlier that it is very desirable to 

choose a consistent statistic as an estimator of the popula­

tion parameter. In general, such estimators are biased for 

the parameter. However, in some cases it is easy to change 

these biased estimators into unbiased estimators by the in­

troduction of a constant scale and or shift factor as the 

case may be. In other instances when the expected value is 

a very complicated function of the parameter it is not so 

easy to determine these scale and shift factors. However, 

Quenouille (1956) has suggested a rather elegant method for 

overcoming this difficulty in many situations. The interested 

reader is referred to "The Theory of Advanced Statistics, Vol. 

II" by M. G. Kendall and A. Stuart. 

We now give an example in which a single scale 

factor is necessary to change a biased estimator into an un­

biased estimator. 

Example: Let x1 ,x2, ••• ,xn be a sample of size n taken from 

a univariate normal population with known mean p and un-

known variance cr2• Then 
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s = 

is the M.L.E for 2 
a • It is however .biased, since E(sl = n-1 a

2
• 

We therefore see that ns .is unbiased 
n-1 

2 n 
for a • 

2.6 Minimum Variance 

We mentioned in the discussion of consistent esti-

mators that when there are two or more consistent estimators 

for a parameter the desirable estimator is the one with the 

smallest variance. This leads us to a very important class of 

estimators, namely, minimum variance estimators. The concept 

of minimum variance has been used since the days of Gauss and 

Laplace. However, in relatively recent times, Cramer, Rao 

and Battacharrya have shown that lower bounds for the variance 

exist. We shall deal with minimum variance estimators which 

are also consistent and unbiased. 

Definition: A consistent estimator tn of a parameter g is 

a minimum variance unbiased estimator if 

and 
' 

(ii) lim Var(t )~ lim Var ( t ) 
n n 

n-+<x> 

for all consistent unbiased estimators tfi. 

We now state and prove a theorem on minimum variance bounds 

and discuss methods of determining such bounds. 
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Theorem: If 1(9) and t satisfy the regularity assumptions 

RA1-RA5 and if E
9

( t) = T (9) 

then Var (t) ~ a T (9) J(Q)-l a T(Q) (2.6.1) 
ae ae' 

The univariate analogue of this theoremis known as the Cramer-

Rao theorem and the quantity on the right of inequality (2.6.1) 

is called the Cramer-Rao (sometimes the Frechet-Cramer-Rao) 

lower bound. 

Proof of the Theorem: Let x1 and x2 be arbitrary random vectors 

with means l-! 1 and v2 covariance mat rice.s E 11 and E22 re-

spectively and cross covariance matrix r12 , we assume that the 

matrix 

E 

I: 

Setting 

and IJ2 

E = E 
12 

E = E 
22 

Thus 

E22 is positive definite. 

Using 1.32, we have the following identity 

11 

11 

= E 
12 

- E 
12 

in 

E-l E + I - E 
22 21 11 12 

I E is the schur complement of 
22 21 

' 

E = r :lj 11 

r 
21 22 

(2.6.2) 

X = t and x2 = S, the score vector, we have IJ 1 = T ( e) 1 

= 0, 

= a T (9) = I: 
t,s ae 21 

. = J(Q), s,s Eu = E 
t,t 

E Ett = _l T (9) J(Q)-1 a T (9} + Var [t-T(9) - I: 
-1 

~ = I: 
11 ae ae' 12 22 
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Hence, Et,t ~a <(9) J(e)-1a T(e), 
ae ae' 

since a covariance matrix is non-negative definite. We have 

equality if and only if 

almost everywhere (t). Q.E.D. 

Note: For non-negative definite matrices A and B, A ~ B 

means that A-B is non-negative definite. 

Example: Let X~ N (v,E). 
. p 

Suppose a random sample of size n is taken from this normal 

population and suppose also that E is positive definite. Then, 

- n X ::: E x1Jn 
i:;J. 

is sufficient for ~' and has minimum variance, 

Proof: 

Therefore, 

= -2E E. (xi -u) -1[ n J 
i=l 

-1 -= -2nE (x - p} 
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Hence, 
at = o =+ x = 1.1 • 
31.1 

Thus x is the maximum likelihood estimator for 1.1 and the 

23 

Cramer-Rao bound L/n is attained by this estimator, a fact 

easy to verify. 

Note that maximum likelihood estimators attain the Cramer-Rao 

lower bound. Furthermore in order to compute the Cramer-Rao 

lower bound, it is not necessary to find the variance of the 

maximum likelihood estimator explicitly. We just set at = 0, 
dll 

divide by the constant,and the coefficient of (t- 1.1) will 

be the Cramer-Rao bound; here, t is the maximum likelihood 

estimator of 1.1· 

Completeness 

The concept of completeness of a parametric family 

was introduced by Lehmann and Scheffe (1950). Completeness 

confers the uniqueness.property on the class of sufficient 

estimators. This property taken in conjunction with that of 

sufficiency will be used to determine uniformly minimum variance 

unbiased estimators for estimable functions of a parameter 9 . 

Definition: A parametric family of distributions f (x,9), 

depending on the value of the parameter 9, is said to be 

complete if, for h (x) any statistic independent of the para-

meter 9 , the expected value of h(x) being equal to zero 

implies that h(x) = 0 almost everywhere ('x). 
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If the expected value of h(x) = 0 implies that 

h ( x) = 0 only for bounded h {x) , then f(x, Q ) is said to be 

boundedly complete. 

Definition: A statistic t = ~ ( x) is complete, if the family 

of distribution functions of t is complete. 

He list here with proofs a few standard examples of 

complete families of distribution functions. 

2.7.1 The family of binomial distributions with 

p.m.f ( ~)P 
X (l-p)n-x, 

0 < p < 1, is complete, since, if 

0 then th~s nth d 1 · 1 · • egree po ynom~a 1n . p must be the unique zero 

polynomial. That is, the coefficients of each power of p must 

be zero. 

Now, 
n 

(n) x n-x z: h(x) x p (1-p) 
X=0 

n n-x 
(-l)j(:)(njx) h(x) x+j 

= z: E p 
x=o j=O 

= 0 

We therefore have 

1 0 
: p .zt X ::: 0, j : 0 

hence, h(O) = 0. 

0 
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p 1 -+ x = 0, j = 1 or x = 1, j = 0 

hence 

or h(l) = 0, since h(O) = 0 • 

Continuing in this manner we see that 

h(O) = h(l) = ... = h(n) = 0. 

Q.E.D. 

2.7.2. The family of all Poisson distributions with 

X 
p.m.f. ~.exp(-9), x = 0,1 ... e > 0 is complete. 

Proof: x! 

X 
f ( x, Q) = Q . exp ( -9) , x = 0 , 1 , 2 , • • • 9 > 0 • 

x! 
If h( x) is any function of the data, we have 

00 

X - E h(x)Q exp(-9) 
x=O x! = 0 . 

If we expand exp (- 9) as a Taylor series about zero, we get 

00 

= E h(x).f(Q) = 0 
x=O 

hence, h( x) = 0 almost everywhere ( x), because of the 

uniqueness of the Taylor series expansion of f(Q). 

The family of normal distributions with mean zero and variance 
2 

a > o is not complete, since any odd function h(x ) has ex-

pectation zero. We now state and prove two theorems, the first 

of which gives us a means of improving on an arbitrary unbiased 

estimator while the second theorem .gives us two ways in which 

we can determine a uniformly minimum variance estimator. 
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2.7.3. Completeness and the Rao-Blackwell Theorem 

Theorem: If the statistic t is sufficient for the parameter 

and E
6 

( t' J = g (9), then, 

t"=E9[t'ltJ 
is such that t" is an unbiased estimator of g ( 9); t" is 

therefore 9 -free and is a function of t only, 

say, t" = h (t) such that 

Var ( t'~ ~ Var (t') 

With equality holding if and only if t' and t are dependent 

with probability one. 

Proof: t sufficient for 9 implies that the distribution of 

t' 1 t is 9 -free, hence, E 
9 

[ t' t t J 
is 9 -free; so that, E

9
[t'lt] is a statistic. 

Now, t ' • En [t ' I t] + € , , 
~ t) t 

is the error due to where 

the regression of t' on t and = t'' 

is the regression function of t 'on t. Also, 

= g(9), say. 

Furthermore1 since h(t) and Et't are uncorrelated (this is im­

' 
mediate from regression theory), we have 

Var (t') = Var (t") + Var (t'-h(t)), 

hence, 

Var (t') E Var (t") 

wlth equality holding if and only if t' = h(t). (i.e. t' and 



0 

0 

27 

t are functionally dependent) with probability one. 

We note that the Rao-Blackwell theorem gives us a way of im­

proving an arbitrary unbiased estimator t' of g(Q) when a 

sufficient statistic t for 9 exists and is functionally inde­

pendent of 9; t" calculated from t' and t by the. above method 

is unbiased. for the parameter 9 and it has variance less than the 

variance of t', for all sufficient statistics t. We also note 

that in seeking a uniformly minimum variance unbiased estimator of 

g(9), we only need consider unbiased estimators which are functions 

of the sufficient statistic t, since any other estimator for Q can­

not be a uniformly minimum variance unbiased estimator. The above 

idea will now be used in the second theorem. 

2.7.4 The Lehmann-Scheffe Theorem. 

We have previously mentioned that completeness confers 

the uniqueness property on sufficient statistics. The following 

theorem, due to Lehmann and Scheffe, characterizes this uniqueness 

property. 

Theorem. If the statistic t is complete and sufficient for a 

parameter QJand g(9) is an estimable function of 9, then the 

function g(9) has a uniformly minimum variance unbiased estima-

tor h(t), a function of t only, which can be determined essentially 

in either of the following two ways. 

(i) If t' is any unbiased estimator of the function g(9), which 

is functionally independent of the statistic t, then 

h(t):=: E9[t'Jt] 
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(ii) h(t) is the solution of the equation 

Proof. U is the set of all unbiased 
t 

estimators of g(9) which are functionally dependent on t and Ut 

is the set of all unbiased estimators of g(Q) which are func-

tionally independent of t. U is the set of unbiased estimators. 

Then~ utn Ut=~~ ~ denotes the null set. S.ince g(.) is an 

estimable function and u*q>, ut and ut cannot both be empty. 

-(i) Assume Ut is not empty. and let t' E. Ut, then, by the Rao-

Blackwell theorem, 

t" = E
9 

[t' ft] = h(t), say, 

is an unbiased estimator for g(Q)~ and h(t) is an element of Ut 

which has uniformly smaller variance than t'. Moreover~ since t 

is complete for 9, h(t) is an essentially unique member of Ut 

and is determined by the relationship 

Thus h(t) is a uniformly minimum variance unbiased estimator of 

g (9). 

(ii) Suppose Ut is hot empty, then as in (i) Ut contains 

essentially only one element t" = h(t), which is determined by 

and hence t 11 is a uniformly minimum variance unbiased es-

timator for g(Q). We are now in a position to prove the 
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uniqueness of a uniformly minimum variance unbiased estimator 

for a parametric function. 

Proof: Suppose there are two such estimators of g(Q ), t1 

and t2, say. Then t3 = (tl + t2)/2 is also unbiased for 

g( Q). 

Let V by the common variance of t1 and tz 

Then, 

Var(t3) = (2V + 2 Cov (tl, t2)) /4 

- (V + Cov(tl,t2))/2 • 

Now, by the Cauchy-Schwarz inequality 

Cov (tl, tz) ~ I(Var ~1 Var tz) =V • 

Thus Var ( t 3) ~ V, which contradicts the assumption that 

t1 and tz are minimum variance unbiased estimators. 

Hence, Cov(tl, tz) = V 

and Var (t3) = V • 

This can only be so if 

t1 - g( e > = k(Q) ( t2-g(Q)) , 

i.e., if t1 is proportional to t 2 , but then, 

Cov (tl, t2) = k(Q).V =V 

hence k ( Q) = 1, and so tl = tz. 

Q.E.D. 
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We now give an example of how to determine the uniformly 

minimum variance estimator. 

Example: Let x1 , . x2, ••• , Xn be a random sample from a uniform 

distribution on (0, 9), 0 < 9 < eo, let t :: max (Xb X2, •.• Xn). 

It can be shown that t is complete and sufficient for the 

parameter 9. 

We are to determine a uniformly minimum variance unbiased 

estimator of 9r , r =f. -n. 

By the Lehmann-Scheffe theorem some function of the 

statistic t will be such an estimator. 

Assume tr is an estimator of 9r. 

then, 

E9 [ tr] 
9 

= 1 trg(t)dt 

= f r n-1 
t .nt 

7 
= lr n tn-rJQ 

9nLn-r o 

= n 
n-r 

dt 

Thus n-r tr is unbiased for Qr and will be the uniformly 
n 

minimum variance unbiased estimator. 
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2.8 Efficiency 

We noticed earlier that the sample mean x and 

median x! were two consistent estimators for the population 
2 

mean of a normal distribution with mean ~ and variance o • 

and that these two estimators were both asymptotically normal 

2 
with the same mean ~ and variance o /n 2 and ~o /2n respec-

tively. 

There is a large and important class of consistent 

estimators whose sampling distributions are asymptotically 

normal and for which the variance decreases as the sample size 

increases, so that the properties of such estimators can be 

characterized by the variance and bias. The bias will not be 

considered, since it must tend to zero as the sample size in-

creases, or in the first case we could have made a correction 

for the bias, as noted earlier. We are not so fortunate when 

it comes to the variance, since the variance is invariant 

under a constant shift. We therefore seek a criterion which 

will enable us to choose an estimator from among competing 

ones. 

The concept of efficiency as defined by R. A. Fisher 

(1921) requires that the fixed value to which n times the 

estimator tends, shall be as small as possible. An efficient 

estimator will be such that this property is satisfied. 

If the variance of any efficient estimator is known, 

then, the efficiency of any other estimator of the same 
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parameter is calculated as the ratio of the variance of the 

efficient estimator to that of the other estimator. 

Definition: In the class of all unbiased estimators of a 

parameter 9, 9 is efficient if 

Var ( 9 ) :s 
... , 

Var (9 ) 

that is, 9 is efficient if it is a uniformly minimum variance 

unbiased estimator. 

Example. Consider again a normal population with mean ~ and 

variance 
2 

cr • Let be a random sample of size 

n chosen from this population. As mentioned earlier, the sam-

ple mean x and the sample median x! are both unbiased con­

sistent estimators for the population mean ~ • However, the 

variance of the sample mean is cr
2
/n and that of the sample 

2 
median is ncr /2n. Hence the efficiency of the median is 

cr
2
/n = 2 :::<.637 • -z-

ncr /2n n 

This means that from 1000 observations the sample median will 

produce a value which will be as accurate as that produced by 

the sample mean for only 637 observations, and therefore as 

mentioned in the discussion of consistency, the sample mean 

would be a better choice as an estimator for the population 

mean in the normal population. 

Sometimes, it is more difficult to calculate an 

efficient estimator than an inefficient one, and the labour 

involved in calculating this efficient estimator might out-
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weigh the cost of taking additional observations needed for 

the inefficient estimator. In such cases, the additional ob-

servations may be taken and the inefficient estimator chosen 

as the estimator for the population parameter. 

2.8.1. Properties of efficient estimators. 

(i) The correlation between any two statistics, both efficient 

estimators of the same parameter 9 , tends to + l,as the 

sample size increases. For if t1 and t2 are two such statis-
2 

tics whose variances are a /n, say, and the correlation is 

r, we choose t3 = (tl + t2)/2. Then, the statistic t3 

will be an efficient estimator of the parameter 9 • The 
2 

variance of t3 is (1 + r)cr /n, ,and this, by hypothesis, 

2 
must be at least o /n. Hence, r must be at least t 1, but 

r is at most f 1, therefore r • t 1. This property implies 

that for large samples all efficient statistics (estimators) 

are equivalent. 

(ii) If we relax the constraint of unbiasedness in the defin-

ition of efficiency and replace the variance by the mean square 

error, we note that since maximum likelihood estimators have 

asymptotically smaller variances (see Kendall and Stuart, Vol.Il) 

they are therefore efficient. 
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CHAPTER III 

MAXIMUM LIKELIHOOD ESTIMATION 

Introduction. One of the most important methods of estimation 

of population parameters is the method of Maximum Likelihood. 

This method of estimation was formally introduced by Fisher, R.A. 

in a short paper in 1912, and was further developed in a series 

of papers (Fisher ( 1922, 1925, 1934 )) by the same author. Several 

other authors have since made important contributions to the 

theory. 

Consider a random sample X= (xl, x2, ••• , Xn)' taken 

from a population with parameter Q, and known probability den-

sity (mass) function (p.d.f.) f • The joint probability of 

the observations regarded as a function of the unknown parameter 

Q is called the likelihood function, and is denoted by 

L (X I 9), or simply by L (Q), and is given by 

n 
L(9) =1tf (xi I 9), i=l,2, ••• ,n. 

i=l 
We note here that since L (9) is the p:-oduct of p.d.f.'S 

(p.m.f!s) it is necessarily positive. 

The method of Maximum Likelihood in its simplest form 

leads us to take as estimate of the parameter Q, that value Q 

which lies within the range of admissible values of the parameter 

9 and makes the likelihood function L(Q) as large as possible, 
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that is, 

L(S)~ L(9) for all values of 9 ~ ~ 

the parameter space, and Q £(8}. 
If we assume that 1(9) is a tvdce differentiable function 

(in the range of 9) with respect to 9, then under suitable con-
~ 

ditions we can use calculus to find 9. Namely, we solve the 

following constrained system 

subject to 

_! L(Q) = O, 
ae 

.i_ L(G) < o*. 
ae1:le' 

(3.1.1) 

(3.1. 2) 

vle note that the condition (3 .1. 2) is only a sufficient condi-

tion for maximality of 9, and that it is not a necessary con-

clition. For consider 

then 

and 

2 g(Q) 
ae 

~ ( e~ o ] _! g(9) = -12 2 
aeae' o 92 

9 = (0, O)' can be shown to be the point of maximum of g(9), 

however 2 
a g(e) I 

ae ae' . e = eo ,o)' 

The matrix inequality < indicates negative definiteness. 
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is not negative definite. 

In many situations the system of equations obtained 

by setting _lL(9) = 0 is quite 
ae 

complicated and rather difficult to solve. In some of these 

cases it is much easier to work with the logarithm of the like-

lihood function denoted by 1(9). This is possible because a 

positive function and its logarithm attain their maxima (minima) 

at the same point. Thus we solve the following constrained 

system; 

a 1(9) = o, 
ae 

subject to 
2 

a t(9)< o . 
aeae' 

We know from (1. 7) that 

a 1(9) = S, 
ae 

and from (1.8) that 

-E[_l t<e>] = J(9). 
aeae' 

3.2 Regularity Assumptions 

(3.1. 3) 

(3.1. 4) 

Before discussing iterative methods for the solution 

of the likelihood equation, we mention here some regularity 

assumptions which we place on the likelihood function L(Q), 

and discuss the properties of the score vector, S(Q), and the 

information matrix, J(Q). 
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RAl. Q E®.c,where ®~., is a subset of IRJI. (Euclidean Jl.-space) 

Jl. possibly equal to .IR • 

RA2. For all samples X, __2_L(Q), j = 1, • •• ,JI. 1 exists 
aej 

for all Q ~ @.texcept perhaps for a set of :Points in ®-e. 
with probability measure zero. 

RA3. f L(Q) dx (or I: L(Q))' can be differentiated under the 
X 

integral (summation) sign with respect to Qj, j = 1, ... , l· 

RA4. f ti L(Q) dx (or L: t1 1(9)) can be differentiated under 

RA5. 

integral (summation) sign with respect to Qj, j = 1, ... , t, 

~vhere (ti), i=l, .•• , m is a sufH.cient statistic for 

the parameter T (Q), 

The score vector S(Q) = ~JI.(0) has a positive definite 
()El 

covariance matrix for each· El£ cB}, • 

3.3. Properties of the Score Vector 

(1) Let Xi (miX 1) i = 1, ... ,q be independent vectors, 

where the distribution of each xi involves the same Q. 

Let X' = (x~, x~ ••• , x~). Denote the score vectors of xi 

and X by Si(Q) and S(Q) respectively. Then 

Proof: L(Q,X) 

s (9) = ~ si (9) • 
i=l 

= S. L(G,x.i). 
i:!ll 

Hence, log L(Q,X) = ~ log 1(9,~ 1 ). i=l 

(3.3.1) 
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Whence, a log L(9,X) = t a log L(9,.Jtr), j = 1, ••• ,R.. 
aej i•l aej 

'lhus 
s(9) = t si (9). 
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(ii) For all values of 9 cdD~, the expected value of the 

score vector is zero. 

Proof: Since L(9) is a probability density, we have 

f L(9)dx = 1 • 
X 

Hence, using RA2 and RA3, we see that 

But, 

f _1.. L(9) 
x aej 

f __£_ L(9) 
x aej 

dx = 0, j = l, ••. ,R.. 

dx = f 1 .aL(9) .L(9)dx 
x L(e) aaj 

= i_ Sj(9).L(9)dx • 

Hence E [s<e>] = 0 • 

(iii). The covariance matrix Et,S between S and any unbiased 

estimator t is given by 

where 1:(9) : E ( t] • In particular; for -r{9) : 9, 

we have 

Proof. E [ t] :jt..L(9)dx = -r(9). 

X 

Thus using RA3 and RA4, we have 

f t a L(9) dx = a -r(9), 
x as as 
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i.e • ., 

or 

f t 1 l L(Q) 
x L(Q) ae 

L(Q) dx = l T(Q) ) 
ae 

! tS(Q)L(9) dx = l T(Q) 
x ae 

3.4 Properties of the Information Matrix 

(i) Additivity: 
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matrices for n independent random experiments, then the infor-

mation matrix J(Q) for the combined experiment is given by 

n 
J(9) = l: Ji(Q) • 

i=l 
I 

If X'= (Zi,Z2,···,z.n>, where X is the ordered observations 

from the combined experiment, and z1 , z
2

, .•• , Zn is a random 

sample from a distribution with p.d.f. (p.m.f~ f(x,9), then 

J(9) = nJ
0

(9), 

where J 0 (9) = E [ ;/og f [ :/og fJ] . 
J (9) is called the information matrix per unit observation. 

0 

Proof 

Let Si(Q) i: l, ••• ,n be the score vector for the 

ith experiment, and let S(Q) be the score vector for the com-

bined experiment. 



Then J(Q) = E[s(Q) S(Q) ~ 

= 

= 

= 

E~~ s1 (ti)~~Sj(Q)J ~=1 J:l 

Er ¥ S. (tl) Si_ (Q)' + Li·l 1 

i~l E [Si (Q)S i (9) •] 

n 
L J

1
(fl), since s

1
(9) and Sj· (9) are 

i=l 
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independent for i # j, being fu.nctions of z
1 

and Zj respec­

tively, with Z. and Z. independent by hypothesis. 
1 J 

(ii) If in addition to the assumptions RAl to RA5 we assume 

2 
that __ a __ L(8 ) exists almost everywhere (x) for all g ~ ~~ 

aeae"' 
and if f L(tl)dx can be differentiated twice under the integral 

X 

sign, then 

Proof: 

thus, 

and 

J(Q) = E [-~ L(9)] • 
aeae' 

2_ log L(e) :. 
. ae 

1 a L(S) 
L(e)ae 

a2 log L(9) = !_ __i_ L(9) - !_ ___! L(tl) [_g_ L(e)l' 
i.HJae' L(9) aeae' L2(tl) ae a.e . J 

E [- _i_ log L(Q)J = E r 1 __! L(9)[~L(9~ ~ 
aeae' LLZ<e)ae ae J J 

. Erl L , L(9)]. 
- ~(Q)aeae 

.if both expectations on the right hand side exist. 
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But, Ell _l. L(Q) [2.. L(Q)J '] 
~2(e)aa ae 

I 

: I 1 _l. L(Q)[a L(Q)] L(Q)dx 
x 1 2(e) ae ae 

and 

= I 1 ! L(G)_!_ [!. L(e)J' L(Q)dx 
x L(e) ,ae L(e) ae 

= I _.2.. Log L(Q{! Log L(9),
1

L(9)dx 
x ae @e J 

: E [s(Q) S(Q)~ 

= J {e) 

Er 1 .1_
2 

L(Q)J = I 1 a 
2
L(9) .L(Q)dx 

~(e) aeae x L(Q) aeae' 

2 = I a L(Q)dx 
x aeae' 

2 
= a I L(Q)dx 

aeae' X 

2 
= a .1 

aeae' 

= 0 • 
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3.5 Iterative Methods for the Solution of the Maximum Likeli­

hood Equation: The Single Parameter Case. 

In many instances it is very difficult to find an 

explicit solution of the Maximum Likelihood equation. In 

these ca~es the Maximum Likelihood Estimate is approximated 

by using iterative techniques. The most popular technique 

for approximating the Maximum Likelihood Estimate is the method 

of scoring for parameters. This technique was suggested by 

Fisher (192~). Several other methods are also used. These in­

clude the Newton-Raphson method~ the fixed derivative Newton 

method and the Regula Falsi method and its modifications. 

Kale (1961) discusses the Newton-Raphson method, the 

fixed derivative Newton method and the method of scoring for 

parameters. He gives sufficient conditions for the convergence 

of these iterative schemes and applies the three techniques to 

the solution of a particular problem. Barnett (1966) also dis­

cusses these three methods together with the Regula Falsi method, 

and notes that the Regula Falsi method will be preferred to these 

three schemes in cases where the likelihood equation has multiple 

roots. This is so since the Regula Falsi method can be made to 

scan the range of the likelihood equation to find all the 

relative maxima. 

We now give a brief discussion of a general iterative 

scheme of which the Newton-Raphson method, the method of scoring 
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for parameters, the fixed derivative Newton method and the 

Regula Falsi method are special c·ases. 

The idea is to choose an initial solution t 0 , which 

lies in a neighbourhood of the Maximum Likelihood Estimate, and 

use an iterative scheme to find the Maximum Likelihood Estimate. 

t 0 is usually chosen to be an unbiased, consistent estimator. 

A possible iterative scheme is as follows: 

Define ~ (9)= 9 - ~ (9) d ~(9), 
de 

Where ~ (9) • log L(9). 

Consider the iterative scheme 

(3.5.1) 

= t - 1/1-( t ) [ d R. (9)] • 
n n d9 9 = t 

n 

(3.5.2) 

Let e = I t -9 I be the error at the nth iteration, then we n n 

choose 1jJ (9) such that and e -+ 0 as n > oo. 
n 

Householder (1953) has shown that it is sufficient that: 

(1) There exists an e:- neighbourhood N (Q) of 9, such that 
e: 

if 91 and e2 are in ~ (G), then for some .k ? 0, we have 

I~ <91> - ~ <92> I ~ k < 1, 

(2) t
1 

E Ne: (9) 

for (3.5.2) to conyerge • 

The Newton-Raphson method, the method of scoring for 

parameters, the fixed derivative Newton method and the secant 
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method* are all special forms of (3.5.1), In the Newton-

Raphson method, 1/!(9) -

In the method of scoring for parameters $(9) = EJ d
2 t(e)l, 

'd1)2 J 
i.e., 1jJ (9) =- J(Q). In the fixed derivative Newton method 

1p (9) = k, where k is a constant such that the conditions 

for convergence of (3.5.2) hold. 

1/!(9) = [£_9.(9) - (! 9.(9)) l / (9-t) 
d9 d9 9 = ~ 

in the secant 

method, here t is a consistent estimator of Q • 

It is ~vell known that the Ne~rton-Raphson method 

converges quadratically, i.e., 2 
entl ~ en , whereas the orders 

of convergence of the other methods lie in the half open in-

c · terval [1,2). Thus it might seem that the Newton-Raphson 

method should be preferred to the other methods. However, as 

pointed out by Barnett (1966) the first three methods listed 

above all have the same undesirable qualities, and are there-

fore not recommended in cases where it is suspected that the 

likelihood equation has multiple roots. Barnett (1966) shows 

that the Regula Falsi method (and hence its modified forms) 

works well in many cases where the first three methods fail. 

For further discussions of iterative techniques the reader is 

referred to Conte and deBoor (1972) and Hildebrand (1956). 

We now use the Newton-Raphson method, the Modified 

* This is a modified form of the Regula Falsi method. 
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Regula Falsi method and the secant method to solve the 

genetical example given by Fisher (1954) based on Carver's 

data for two factors in corn; Starchy vs. Sugary and Green vs. 

White. 

-We must evaluate the Maximum Likelihood Estimate 9 of 

9 when the probability of belonging to one of the four classes 

listed below are 

Starchy Sugary 

Green White Green White 

A random sample of size 3839 was taken and the numbers falling 

into each class are given in the following table: 

Starchy Sugary 

Green White Green White 

a = 1997 b = 906 c"" 904 d = 32 • 

Since the distribution is multinominal, we have 

where k is a constant. 

Hence 

d t(Q) = a - b + c - d 
d9 2+9 1 - 9 Q 

(3.5.3) 

Assuming that 0 < 9 < 1, it is easy to show that the Maximum 
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Likelihood.Estimate Q can be obtained by solving the following 

quadratic equation; 

2 n9 t (2bt2ctd-a)9-2d = 0. 

Q is taken to be the solution which·lies in~~ and .maximizes t(e) • 

... 
For the above data Fisher (1950) has shown that 9 = .035712 

to six: decimal places. Norton (1956) and Kal~ (1961) use the 

Newton-Raphson method starting from t
0 

= (a-b-c+d)/n = .057046, 
... 

and after five iterations obtain 9 = .035712 and .035713 re-

spectively. We srall start iterating from t = (a+5d-b-c)/2n 
0 

= .045194. In the modified Regula Falsi and secant methods we 

shall use as our two initial estimates t_1 = 4d/n = .033342 

and t
0 

= (at5d-b-c)/2n =·045194. It is observed that t_1 and 

t are both unbiased and·consistent estimators for 9, and 
0 

that the choice of t_
1 

is justified since 

t_l 

= 69·446846 and[d t(Q)] =-211.178969 , 
[d9 9 = t

0 

i.e., The results for these methods are pre-

sented in the table below. 
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Successive Iterations by the Three Different Methods. 

Iterates I 

.045194 

.033546 

.035591 

.035712 

!I 

.033342 

.045194 

.036275 

.035379 

.035717 

.035712 

I denotes the Newton-Raphson Method. 

III 

.033342 

.045194 

.036275 

.035580 

.035714 

.035712 

!I denotes the modified Regula Falsi Method. 

III denotes the secant method. 
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It is observed that the secant method performs just as well as 

the Newton-Raphson method. We also observe that the Newton­

Raphson method with our choice of t 0 takes one less iteration 

than with the t 0 used by Kale (1961) and Norton (195.6). 

We note here that the Newton-Raphson method, the method 

of scoring for parameters, and the fixed derivative Newton method 

can be applied to the multiparameter case. 

3.6 Properties of MLE'S Obtained from Dependent Observetions 

Under certain regularity conditions (mentioned earlier) 

Cramer (1946) proved that the MLE obtained from independent ob­

servations is: 

(i) weakly consistent, and 
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(ii) asymptotically efficient and normally distributed. 

These results were later extended by other authors, some of 

whom relaxed a few of Cramer's condition, while others imposed 

additional conditions on the likelihood equation. 

In recent times Silvey (1961), Bar-Shalom (1970) and 

Bhat (1973) considered the asymptotic properties of MLE'S ob-

tained from dependent observations. Bar Shalom (1970) imposed two 

conditions on the likelihood equation in addition to those 

stated by Cramer. He then used a version the the weak law of 

large numbers for dependent random variables to prove the con-

vergence of b0 and b1 (defined below). Bhat (1973) used the 

central limit theorem for Martingale sequences to prove the 

convergence of b0 and b1. 

We now list the Regularity conditions as given by 

Bar-Shalom (1970). 

Notation and Listing of Regularity Conditions. 

Let the set of (possibly dependent) observations be 

Zn =(z1 ,z2 , ••• ,zn), where zi' i = 1,_. •• , n, are real valued 

random variables with joint probability density function 

(p.d.f) With respect to a cr- finite (i.e., finite with re-

spect to the cr- algebra generated by n 
Z ) measure ~n' given 

by 

(3.6.1) 

where 9 is a real valued constant with unknown, but true 
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value Q0 E.d:},with (8) an open subset of IR1 • The Borel 

measurable function 9 (Zn) obtained by maximization of the 
n 

likelihood function 

n 
Ln(Q) = P(Znje) = n p.{Q) , 

i:l J.. 

where pi {Q)=Li (Q) /Li-l (Q) is used as an estimator for Q. 

We now list the following regularity conditions 

which are needed to prove the asymptotic properties of the 

MLE. 

RCl. 

RC2. 

RC3. 

For almost all k i Z , a log pk(Q), i=l,2,3, exist 
ail 

for all Q E. ®. 

E [fa log pk (Q~ = o . 
ve) = E [Be log pk(9)J21 

= f k r..l. log pk (Q)l ~ (Q) 
IR L ae j 

k 
n ~{dyi)~ c < m ' 

i=l J.. 

where c
1 

is independent of Q, and Jk{Q ) is Fisher's 

information measure {see for example Rao {1973)). 

RA4. E Ia!~ log pk(9) 1 = - Jk(90 ). 

RCS. There exists a function, Bk {Zk), measurable with respect 
k 

to the product measure n ~{dy ) , 
i:l i 

I ::3 log pk(9) I < 1\(Zk) for all 9 > such that 

k 
and Bk(Z) is finite almost everywhere, i.e., there 

exists a constant, N <oo, independent of Q and k, 
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such that for all e:>o, P(Bk(Zk) >N) < e:. 

E [a log p.(G) a log p.(Q)]:: O, for all if j. 
RC6. ae 1 ae' J 

A milder version of RC6 is; 

RC7. E r a log p. (9) a log p. {9)] 
Lae 1 ae' J 

= 0 • 

RC8. Var La~ log pi (Q)] ~ c2 < • 

\vhere c
2 

is a constant independent of i, and 

Cov[2_
2

2 log pi(9) 2._
2 

log p.{G)] 
ae ae 2 J · 

= 0 . 

Note: In the above regularity conditions all the expectations 

are evaluated at, 9 - 9 , the true value. - 0 
Conditions RCl 

to RC5 are similar to the conditions RAl to RA5 given by 

Cramer (1946). Conditions RC6 to RC8 are needed because of 

the possible dependence among the observations. 

We are now in a position to state and prove the 

following theorem. 

Theorem: Under regularity conditions RCl to RCS, the Maximum 

Likelihood Estimator ·g (Zn) is weakly consistent, i.e., 
n 

(where ~ denotes convergence in probability) and asymp­

totically efficient, i.e., for sufficiently large n the 

mean square of - n 
Qn(Z ) is equal to the reciprocal of the 

total information, i.e., 
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Proof: Following Cramer, by conditions RCl to RC6 

=~ log pk (9,~ +(9-90) ~£.2 2 log pk (9)] 
ae =9 ae 9=9 0 0 

2 k + t (9,90).(9-90) Bk(Z) (3.6.2) 

Where Bk is defined above, and I >d < 1. 

Thus the likelihood equation (3.6.2) may, after multiplication 

by l and summing, be written as 
n 

where 

We now use a version of the weak law of large numbers for de-

pendent random variables (Parzen (1969), p. 418) to prove the 

convergence of b0 and b1. This law states that if for all i 

the random variable xi has finite ·mean and bounded variance 

and then a sufficient 

condition for 

is lim 1 E Cov (xi,xj) = 0 • 
n +eo n i=l 
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Using this theorem, it follows from RC2, RC3 and RC7 that, 

ho ~ o, 
p 

and from RC4 and RC8 that, b1 __, - J(9n), where 

RC3. From RC5, it follows that for all e: > O, there exists N 

such that 

We now use these results to show that the estimator 

Q (Zn) is weakly consistent. 
n 

Let o and c:: be given arbitrarily small positive 

numbers. For sufficiently large n(n > n0 (o,c::), say) 

we have . 
2 

P. = P(l hol ~ o ) < ~ 
0 3 

Pl = p (b 1 ~ - ! J ( 9 0)) < ! (3.6.3) 

< .£.. • 
3 

If we let S denote the set of all points Zn such that, 

2 
lb0 l < o ,b_t <-J(90)/2 and lh2 1 < ZN are all 

satisfied, then the complementary set S' will consist of all 

points il, such that at least one of the inequalities is not 

satisfied. Therefore, by an elementary law of probability, 

we have that 

P(S')~ Po t pl + p2 < e: • 
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Hence·, P(S) > 1- e: , and thus n P (Z e: S) > 1- e: whenever 

n > n (o,e:). 
0 

For 9 = 90 ± o , the right hand side of equation (3.6.2) 

becomes 

Hence for every point n z €. s, 

and 

2 2 I b + A b26 I < (N + 1) 0 
0 2 
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Now if o < J(90 )/2(Nf1), the sign of the right hand side of 

(3.6.2) will be determined by the sign of ± blo • for 9 = 8o±o, 

hence j_ Ln (9) > 0 for 9 = 90 - o and JL Ln (9) < 0 
ae ae 

for 9:9
0
+6. 

is n * a.e.(Z) 

Furthermore, by RCl, the function () L (9) as n 

a continuous function of f) e ®· Therefore, 

for sufficiently small o and e: > the likelihood equation has a 

root (in the open interval (90 - o , 00 + o ) ) with probability 

larger than e: , for n > n0 ( o, e;). 

The proof of asymptotic efficiency follows Bar-

Shalom (1970). 

Let 9 be a root of the likelihood equation (3.6.2) 
n 

in the interval (90 -o, 90 fo ). We can arrange equation (3.6.2) 

as follows 

a.e. denotes almost everywhere 
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(3.6.4) 

A 

Since for n> n0 (6 ,e: ) , j9n- 90 I< 6 with probability exceeding 

1-t. Using (3.6.3) we can show that the denominator of 

(3.6.4) converges to 1. From RC2, it follows that the numerator 

of (3.6.4) has mean value zero and variance given by 

n > n (6~e: )~is equal to the variance of 
0 

9 . 
n 

Hence the total information for the parameter 9 from n de-

pendent observations is given by 

i'<eo) = (nJ(9o)l2/G L!l a~ log Pi (9)1! g = g~ (3.6.5) 

It is easily seen from the additivity property of information 

that the total information is equal to the sum of the infor-

mation contained in each observation, if and only if condition 

RC6 is satisfied. 

The denominator of (3.6.5) can be written as 

E [ ~ f _i log pi (9)12 + 2 ~ 2_ log pi (9) ~log pj {9)], which 
i=l u~e J i<j ae . ae 

on using RC6, with n > n ( 5, e:), becomes 
0 

E[ a 
ae 

n 
= I: J. (90) 

i•l 1 

= nJ(90). 
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Thus, for n >n ( 5 ,eJ, we may rewrite equation (3.6.5) as 
0 

n J (90) = n J(9
0
), 

and so 

E [<e - 0 ) 2l = nJ(9 ) 
n o J o 

n = E J (90 ). 

i=l 
Q.E.D. 
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In most scientific investigations it is fre-

quently necessary to determine the values of certain parameters 

by means of actual measurements. The observations may be made 

directly on the values of the unknown quantities (dependent 

variables) or on certain functions of these quantities. In 

the latter case, the values of the required quantities must 

be computed from the observed values of the functions. In 

order to obtain reasonably accurate results, the observations 

are usually repeated, either in the same way under the same 

conditions, or in different ways under varying conditions. 

Under these circumstances it will be found that 

different measurements of the same quantity usually give dis­

cordant results, the amount of discrepancies varying with the 

mode of observation. The question, we are faced with now, is 

how to determine from these discordant results the true values 

of the required parameters. Because of these discrepancies in 

the observations, we cannot expect to obtain our parameters 

with absolute accuracy. All that we can hope for is to obtain 

those values which are rendered most probable when all the ob­

servations are taken into account. 

We illustrate the above difficulties with a concrete 

example. We are required to determine the coefficient of linear 
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expansion of a certain metal rod, based on measurements of the 

length of the rod at various temperatures. 

Temperature in °c Observed Length in m.m. 

20 1000.22 

40 1000.65 

50 1000.90 

60 1001.05 

Let c denote the required coefficient of linear expansion and 

t 0 the length of the rod at 0°C. The length ! of the rod at 

any other temperature t may be represented by the equation: 

t = 1 + et 
0 

(4.1.1) 

Using this model the data can be transformed into the following 

set of equations: 

1 + 20c 
0 = 1000.22 (4.1.2) 

10 + 40c = 1000.65 (4.1.3) 

io + 50c = 1000.90 (4.1.4) 

R., + 60c = 1001.05 (4.1.5) 
0 

We can use any two of the above equations to determine the 

values of to and c, but these values will depend on the par-

ticular pair of equations used, and in general will be different 

for each pair. For example, we may find from the following 

pairs of equations, the different values for t and c: 
0 
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0 
Equations t 0 (m. m.) 0 c (m. m./ c) 

(4.1.2) and (4.1.3) 999.790 .02150 

(4.1.2) and (4.1.4) 999.767 .02267 

(4.1.3) and (4.1.4) 999.805 .02025 

(4.1. 4) and (4.1.5) 1000.150 .01500 

etc. etc. etc. 

We are faced with the problem of choosing the best (in the 

sense of fitting the observations most closely) pair of results. 

However, in such a situation, we would be disregarding the bulk 

of the observations thereby losing the majority of the informa-

tion available. In order to make use of all the data, we 

c choose as our estimates of the parameters those values which 

make the sum of squared deviations of the observed values from 

the predicted values a minimum. The name given to this process 

is the method of Least Squares. 

The theory of Least Squares was first discussed by 

Legendre (1805) and Gauss (1805) who used it as a tool of es-

timation. Markov and many other authors have since made sig-

nificant contributions to the general theory. 

The underlying assumption in the models of Gauss and 

Markov is that the error covariance matrix is the identity matrix. 

Aitken (1934) proposed a model in which the error covariance 

matrix was a symmetric positive definite matrix, not necessarily 

the identity. This model was later shown to be equivalent to 

0 
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the model of Gauss and Markov. Rao (1972) developed a unified 

theory of Least Squares by which any problem involving regres-

sion coefficients can be analysed. 

The theory of Least Squares, unlike the method of 

Maximum Likelihood, has no general optimum properties to re-

commend it in the finite sample case. However, there exists an 

important class of situations in which it does provide unbiased 

estimators (which are linear functions of the observations) with 

minimum variance. We shall also see that, contrary to Kendall 

and Stuart Vol. II (1960), Least Squares estimators do have 

asymptotic properties akin to those of Maximum Likelihood es-

timators. 

The solution of the Least Squares Equation is discussed in 

many standard texts. We shall therefore not discuss its solution 

explicitly. Instead, we shall discuss properties of Least 

Squares estimators under different conditions. 

4.2 Asymptotic Properties of Least Squares 

Eicker (1962) considers the linear regression model 

y = X B + e; n (4. 2 .1) 

where the subscript n denotes the dependence of the matrix X 

on the sample size. It is assumed that the components of the 

error vector e: are either (a) uncorrelat.ed or (b) independent 

with E [ e: J = 0 and 0 < Var ( e: ) < oo. The distributions 

of the components e:kof e: are not assumed to be known, nor are 
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they assumed to be identical. However, it is assumed that 

the Ek are elements of a certain set F of distribution 

functions. With these assumptions EiCker (1962) gives con-

ditions on the set F and on the matrix Xn such that the least 

squares estimators of the parameters 6 ••• , sq are con­
h 

sistent in case (a) or asymptotically normal in case (b). 

Cox and Hinkley (1967) consider a similar model. 

However, they assume that the first column of the matrix Xn 
consists of all ones and that the components of the error 

vector E are independent and identically distributed with 

known probability density f( e,A ), with zero mean, where 

A is an unknown parameter which gives the spread and pos-

sibly also the shape of the distribution of f They then 

give a condition under which the least squares estimators of 

are asymptotically normal, and then use 

the fact that the maximum likelihood estimators of e
1

, ••• ,Sq 

are asymptotically normal (see Chapter 3), to show the 

asymptotic efficiency of the Least Squares estimators. 

We shall follow Cox and Hinkley (1967) for the dis-

cussion of asymptotic efficiency, and Eicker (1962) for the 

discussion of consistency. 

As noted by Cox and Hinkley (1967), the general mean, 

although included in the linear regression model, is seldom 

a parameter of primary interest. We therefore can, without 

loss of generality, assume that the first column of Xn consist 
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of all ones and that the other column sums of Xn are zero. 

We can also take the parameters f32, ••• , sq to be orthogonal 

to sl ' the general mean. 

Since the distributions of the errors are known, 

we can use the method of Maximum likelihood to obtain the 

least squares estimators of the parameters s1 , .•• ,sq. 
The likelihood function L is given by 

n 
L =1r f(c >..) 

i=l 
1

' 

Thus the log-likelihood is given by 

t = f log f(E. ,A.) = ~ g(E _;> .. ), (4.2.3), say • 
i=l 1 i= 1 r 

(4.2.2) 

We shall assume that the range of regularity of t does not 

depend on the parameters 131 i32 ••• ' 13 , , q. 

Let j,k :1, ... ,q. Thenforfixed ,\ 
n 

and 

since e:
1 

Thus 

at = r g'(E
1

,:>..)_!Ek 
at\. i=l ar\ ~, 

n 
= r g' (c.p>..) 
i=l 

n 

(h. dEk 
_J_ 

as j ask 

= r g"(e:
1
• ,t.) x .. x.k 

i=l 1J 1 ' 

(4.2.4) 

(4.2.5) 

(4.2.6) 
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Where '~ j is the j th column of X n and 

2 
A = J f(EiJA) a log f(t:.,X)d£i , 
£i IR1 ;,;z. 1 

1 

If x1 is a component of the parameter A. 
2 
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a t = 
asjax 1 

(4.2.7) 

and since n 
I X.ij = 0, j = 2, ... ,q 

i=l 

Similarly, 

Er a 
2 

t ] = 0 
LasjdAJ.... 

we have 

0 , i=2, ... ,q. 

[ 
sl 

Tc1us the information mntrix for AJ is 

JL n =I~ ~J where 

information matrix for the parameters sl and 

E is the 

;\, and H 

the information matrix for the parameters s2, ••• ,8q' with 

H : [X~ X k A£ i] h, t h,t=2, .•. ,q. 

By the orthogonality condition, the covariance matrix of the 

Least Squares estimators of S2,•••,B is 
q 

[ [x; xkJ j,~-l Var ( <) • 

Thus using the fact that the maximum likelihood estimators of 

S2, ••• ,s , have covariance matrix 
q 

[ ( x~ xk )j , k] -l [ 1 
we have that the asymptotic efficiency is A

01 
Var(e1~-



0 

0 

c 

63 

which is independent of the design matrix Xn• 

Asymptotic Efficiency 

In the model considered by Eicker (1962) the design 

matrix Xn (n x q) is assumed to be of full rank q ~ n. 

The normal equations obtained by minimizing e'e 

are 

'V 

'V 

X' Y = X'X S n n n (4.2.8) 

where s = S' is the vector of least squares estimators of n 

8 Let ~In - ~ Xn; by virtue of the rank assumption on 

Xn, Hn 
-1 exists, and so 

'V 
Var(S 

'V -1 ' 
13- 13 = H X E n n 

' 8) = H-1 X VX H-1 
n n n n ' 

where V= var ( E). 

(4.2.9) 

(4.2.10) 

We now state and prove a theorem which gives necessary and 

sufficient conditions for the consistency of least squares esti-

mators. 

Theorem: A necessary and sufficient condition for the least 
'V 

squares estimator 8 to estimate 6 consistently on F, is 

that Ch. H + ~ # ~ere Ch :r· H is the smallest 
minn mnn 

characteristic root of Hn • 

Proof: 

Sufficiency: Since is 

unbiased. Now, the variance 

-1 ' 

of each component of the vector 

H Xn E tends to zero if and only if E[ e'X H-2x' e] n n n 
tends to 
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zero. 

Since Ele~ ] is assumed constant (i.e., independent of k and 

n), we have 

E [ e: 'X H-2x' e] = 0 (tr(X H-2x' )) 
n n n n n n 

= 0 (tr(H-1)) 
n 

= 0 (1/ChminHn) ' (4.2.11 

where O(n) = constant x n. 

Therefore, since Ch min Bu +eo , we have 

'\, p 
13 + 13 on F. 

2 
Necessiti: If we choose all ek "' N(O,a) EF 

we see that 
S -13 = H-lx' e "'N [ O,a

2
H-l] • 

n n q n 
'\, 

Hence the variance of the ith component of 13 -13 is given by 

'\, 2 -1 
Var (13- Si =a (Hn )ii , which because of consistency must 

tend to zero for every 

Therefore = 
i = 1, .. • )q. 

~ Ch. H-l 
in 

must tend to zero and so Ch . H must tend to infinity. 
m~n n 

Q.E.D. 
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0 
4.3 Robustness of the Method of Least Squares. 

A statistical procedure is said to be robust if it 

is insensitive to departures from the assumptions which under-

lie it. 

In the case of the general linear model, if the error 

2 2 
vector has mean zero and dispersion matrix a In , where a 

is an unknown constant, then the estimates of the parameters 

and their variances will remain valid even if the error vector 

is not normally distributed; i.e., the method of least squares 

is robust to non-normality. Box and Watson (1962) have studied 

the robustness of tests on the regression coefficients with 

respect to the non-normality of the error vector. They mention 

that for a particular design matrix X(nxp), the variance mean-

square ratio Rro (obtained in comparison of means), and Ry 

(obtained in comparison of variances) have distributions which 

may be approximated by F distributions with modified degrees 

of freedom. Box and Andersen (1955) showed that the degrees 

of freedom for the distribution of 

and UZ = om (n -p-1) and for R are u1 = o p and 
V V 

u2= 0v (n-p-1), where for mild departures from normality and 

for moderate numbers of observations, 

~-l ~ 1 - (1/n) ~l and 

~1 and ~2 are measures of kurtosis, which have values zero 

when the distribution is normal. It is therefore seen that 

c Rm will be insensitive to non-normality because the corrective 
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• 

When the assumption of uncorrelated homoscedastic 

errors is not satisfied, the least squares estimate of T , 

Y = (X'X)-lX'Y 

is still unbiased; however it no longer has the property of 

minimum variance. Thus, heteroscedasticity and correlation 

of the errors still leaves the least squares estimator un-

biased. However, the efficiency of such estimators is reduced. 

It should be pointed out here that the method of least squares 

is not robust with respect to biased observations. 

4.4 A Different Computational Technique 

There are many sophisticated techniques available 

for solv.Ug the normal equations. These techniques include, 

singular value decomposition and Householder transformation. 

We present here an algorithm which finds least squares estimates 

by minimization of the error sum of squares, rather than by solving 

the normal equations. The method involves the use of an 

iterative scheme, and it can also be used to find Ridge esti-

mates. 

Consider the general Gauss--Ma.rkov model 

Y:XY+u 

where X is an n x q matrix with q ~ n for which 

r = r (X) ~ q, E [ u] 
2 

= 0 and Var [ u] • a I • 

The least squares estimator y of Y is obtained by mini-
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mizing 
2 I 

11 v-XY 11 = u u, 
" 2 

2 I 

Now, IIY -xr 11 = y'.Y:-2Y x'Y + r"x'x y. 
2 

2 . 2 
So consider lly-XYII + allxll. 

2 2 
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(4.4.1) 

(4.4.2) 

(4.4.3) 

It was shown in Chapter I (1.31) that as a tends to zero the 

least squares estimate Y(rt) of (4.4.3) converges to the least 

squares estimate y of (4. 4. 2). He shall use this fact and an 

iterative technique called the Davidon..:.Fletcher-Powell Hethod 

(DFp), (see Walsh (1975)),to solve (4.4.2). 

Using ( 4.4.3), ,.,e have, 

2 2 ' ' 
lly-XYII

2
tai!YII, =y' XXY1-ayy-2y'X'yty'y 

= y' [X 
1 

X ..,. a I] Y -2 Y 
1 

X 
1 

y 

+ y y • 

Davidon considers quadratic functions of the form 

! Y'G(a )Y + y'b + c, 

"Where G(a ) is symmetric and positive definite; 

here G (a ) = X' X + a I > 0 for all a > 0. 

(4.4.3) is minimized when 

a 
ay -

f(Y,a) = 2G(a)a- 2X'y = 0, 

(4.4.4) 

(4.4.5) 

(4.4.6) 

which gives y(a) [ ]
-1 ' 

= G(a) Xy. However, for n > 3, it is 

usually difficult to invert G( a), and so we use other methods 

""' to find y (a) explicitly. 
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Notation: 

Let gk = g(yk) = l f(y,a) 

The Method 
ay Y = Yk 

2/ 

3/ 

4/ 

5/ 

6/ 

7/ 

with H1 = I. Then dk is in the direction of search 

from the current point Yk. 

Set 

Set 

Evaluate f (yktl) and gk+l ' 
noting that 

gktl is orthogonal to (Jk' i.e. ' g ktl (Jk = 0. 

Set wk = gk+l - gk. 

Set (i) ~ = ok o~ /ok wk , 

(ii) Bk = -~ w k w ~ ~ I wk_ Hk wk 

8/ Set k = k + 1. 

9/ Check !I ok 11 or 11 <1c.ll, if either satisfies the desired 

stopping criterion,then stop, else return to Step 1 and 

repeat the process. 

For an n x n system (i.e. n variables), the 

scheme will converge in at most n steps. Fletcher and 

Powell recommend that we perform one extra iteration 

after the apparent minimum is attained. This will help 
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to avoid false minima. 

A Further Application of the Davidon-Fletcher-Powell Method. 

We noted in Chapter two that a desirable property of 

estimators is that of unbiasedness. However, as shown by Hoer!, 

Kennard and others, in many problems in multiple regression, 

the Least Squares estimates have a high probability of being 

unsatisfactory, or even incorrect, especially when the matrix 

X' X is singular. Hoerl and Kennard (1970) have shown that 

the addition of a scalar matrix kip, k ? 0, to X' X usually 

corrects this problem, and for a particular choice of . k, we 

obtain a point estimate of the regression parameter which has 

a smaller mean square error than than the Least Squares Estimate. 

This is a particular case of biased estimation and is called 

Ridge Regression. We note here that in view of (1.31), the 

Davidon-Fletcher-Powell method can be modified so as to produce 

Ridge estimates and calculate the mean square error. 

~xample (Goldberger): 

Consider the following macro-economic production 

function 

where Yt is the real gross national product in billions of 

dollars. xl = 1, x2 is labour inputs in millions of man-years, 

X3 is real capital in billions of dollars, measured from an 

arbitrary origin and X4 is the time in years meas~red from 
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1929 = 1, as the base year. The sample consists of 23 annual 

observations for the United States from 1929 to 1941 and 1946 

to 1955. 

The observations are as follows. 

x2 x3 x4 y 

47 54 1 142 

43 59 2 127 

39 57 3 113 

34 48 4 98 

34 36 5 94 

36 24 6 102 

38 19 7 116 

0 41 18 8 128 

42 22 9 140 

37 24 10 131 

40 23 11 143 

42 27 12 157 

47 36 13 182 

51 9 18 209 

53 25 19 214 

53 39 20 225 

50 51 21 221 

52 62 22 243 

54 75 23 257 

54 94 24 265 

0 
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55 

52 

54 

108 

118 

124 

25 

26 

27 

276 

271 

291 
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This data was analysed using the Davidon-F1etcher-Powell method, 

and convergence was achieved after four iterations. 

The solution is 

y = -61.6196 + 3.8116 x2 + .3121 x3 + 3.8474 x4 

The solution given by Goldberger is 

y =- 61.728 + 3.8191 x2 + .3219 x3 + 3.7862 x4 • 

Golberger's computation was done using six decimal digit 

accuracy whereas our computation was done using 15 decimal 

accuracy and is therefore more accurate. 

The error sums of squares is 163827.8 . 

The computations were made on the IBM 360/370 computer of 

the McGill Computing Center. 
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Results for Goldbergerts Example 

Iterate ~1 82 83 (34 F 

1 -50.00000 5.00000 o.o 5.00000 133682.0 

2 -50.01198 4.44023 -0.60235 4.81897 940607.1 

3 -50.03816 3.36594 0.26694 4.59982 -300116.2 

4 -50.02924 3.48767 0.31627 4.04777 -245180.0 

5 -61.61956 3.81155 0.31214 3.84736 163827.8 

I IN I! 
345052.00 

33455.75 

1145.11 

5.91 

< 10-lO 

C5 

• 000004 

.000065 

2.092224 

.7550133 

() 

"-­
N 
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4.5 Estimability of Linear Contrast in the General Linear Model (GLM) 

The concept of estimability, that is, the existence 

of unbiased linear estimators for linear contrasts in the 

general linear model with less than full rank, was introduced 

by Bose (1944). This concept was developed because the con-

ventional methods, which relied on the inversion of a matrix 

could not be applied when the matrix is singular. The concept 

was later discussed by many other authors: Roy and Roy (1959, 

1961) who gave a condition for estimability; Searle (1965) who 

seems to be the first author to use generalized inverses to 

characterize estimable functions; Miliken (1971) who gives two 

equivalent conditions for estimability which are specific forms 

of the condition given by Roy and Roy (1961) and Rao (1972) 

who developed a unified theory of Least Squares. 

In this section we shall discuss some of the many 

results stated by these and other writers. We shall also prove 

some theorems on the various characterizations of estimability. 

We consider the general linear model 

y = XB + e: 

where y is an n x 1 random observation vector, X is an n x p 

matrix of known constants, of rank q (q < p), B is a p x 1 

vector of unknown parameters defined 

servable random vector with mean 0 

in R 
p 

, and e: is an unob-

2 
and covariance matrix o v 

2 
where o is positive and unknown, and V is a non-negative 
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definite matrix. When V is positive definite, vle can re-

parameterize the model so that the resulting error vector has 

2 
covariance matrix cr I, we shall therefore restrict our dis-

cussion to the latter case. 

A considerable amount of research has been recently 

done on the general linear model in which the error vector 

has a singular covariance matrix. The most important discus-

sions on this model are due to Rao (1971, 1972, 1973a, 1973b, 

1973c, 1974, 1975). This model was also studied by several 

other authors, including Zyskind (1967), Zyskind and Martin 

(1969), and A1alouf (1975), who,noting that the unified theory 

developed by Rao (1971, 1972, 1973a) failed to provide an ex-

plicit algebraic criterion for a function A' Y to be unbiased 

for the linear contrast L' B, developed a theory similar to 

Rao's unified theory of Least Squares to handle this problem. 

We shall present some of the main ideas from Rao (1971, 1972, 

1973a, 1973b, 1973c) and Ala1ouf (1975). 

We now state and prove some theorems relevant to 

the forthcoming discussion. 

Definition: The linear contrast L'S is said to be estimable, 

whenever there exists a linear unbiased estimator A'Y, such that; 

I I f 

E [Ay] =te=Axs (4.5.1) 

for all values of f3. Then L' = A'X, if and only if L's is 

estimable. 
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Theorem (Roy and Roy (1961)): 

The linear contrast L' ~ is estimable if and only if 

r(XT) = r(X) - r(L), 

T E.)I/(L) *. 
(4.5.2) 

where 

Proof: Using (1.26), we have, 

(4.5.3) 

The quantity on the right of equation (4.5.3) is equal to r(X) 

if and only if 

r l X (I - (L' ) - L ' ) ] = r (X) - r (L) , 

is a possible 

choice of T. We now show that XT is invariant under any 

choice of T. 

Let - ' T = I- (L') L' = U V (a full rank decomposition) 

where U and V are q x t matrices each of rank 

t = r(T) = q - r(L) • 

Then 

r(XT) = r(XUV') 

~ r(X U) 

~ r (X U V' ) = r (XT) • 

Hence, r(XT) = r(XU), where the columns of U are a 

basis for the column space of T. Any other choice of T must 

admit the columns of U as a basis. 

* )V'< • ) denotes the null space. 

Q.E.D. 
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Theorem I (Miliken (1971)). 

The linear contrast L' S is estimable, if and only 

if r [x(I-(L')+L'] = r(X) - r(L). (4 .5. 4) 

This theorem is equivalent to the theorem of Roy and Roy (1961) 

since I- (L')+ L'£N(L'). 

Theorem II (Miliken (1971)). 

The linear contrast L' S is estimable if and only if 

(4.5.5) 

Proof: Note that~ matrix in (4.5.4) is idempotent, hence 

= r(X) - r(L) 

= q - t • 

Q.E.D. 

Theorem (Searle (1965)). 

The linear contrast L' S is estimable if and only if 

L' X - X = L' (4.5.6) 

for some and hence for every x- = g 1 (x) • 

Proof; If L' = L'X -x then choosing A' = L'x­
' 

we have L' = A'x , thus L' S is estimable. 

Conversely, L' x- X = A' X x- X, and putting L' =~X 

= A'x 

= L' • 

Q.E.D. 
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Theorem: Let M be a symmetric matrix such that 

(k. (X'MV) C. Q<x'MX) , in which case 

(y-X8) 1 M(y -X8) t as a function of S , has stationary 

values. 

Let 8 be a stationary point. 

If R, I 13 is the BLUE of R, I a for every R, ~<k (X~ then it is 

necessary that 

r(X'MX) = r(X) {4.5.10)• 

and M is of the form 

(V+ XUX) + K {4.5.11) 

for any symmetric choice of g- inverse, ~vhere U and K are 

symmetric matrices such that 

a (V; X) = a (V + xux I ) , 

VKX = 0, X'KX = 0. 

(4.5.12) 

(4.5.13) 

Conversely if H is of the form (4.5.11) with 4.5.12) and 

(4.5.13), then r(X'MX) = r(X) 

for every tt:Q.<x') • 

and t'B is the BLUE of t'B 

Proof: Follovling Rao (1972), He have, on equating the 

derivative of (y - XB)' (y - X8) to zero 

X
1

MX 8 = X'MY • (4.5.14) 

This system is consistent since (l (X'MV)C{l(x MX) 

and y £~(V; X) , w. p. 1, hence 

(4.5.15) 
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is a stationary point. Let t = X'L. Then t's is the BLUE 

of (a , hence by Searle's theorem 

L'X(X'MX)-X'MX = L'X. 

Since L is arbitrary, we have 

X(X'MX)-X'MX = X, hence 

r(X) = r [X(X'MX)- X'MX] ~ r(X1 MX) ~ r(X), 

i.e., r(X'MX) = r(X), which proves (4.5.10). 

If 1 'S is the BLUE of t 'a for every t E~x') , thee 

applying the lemma on pp. 317 of Rao (1973a), we have 

L'X(X'MX)- X'~IVZ = 0 

(4.5.16) 

(4. 5.17) 

for any L, where Z is a matrix of maximum rank such that 

Z t: N'(X'). Therefore ( 4. 5 .17) implies that 

X(X'MX)- X'MVZ = 0 

if and only if X' MVZ = O, this implies that 

VMX = X'P (4.5.18) 

for some P. Now, there exists a s~etric matrix U, such that 

X'M(V + XUX')MX = X1MX . (4.5.19) 

One choice of U is (X'MX)-(X'l~- X'MVMX)(X'MX)-, since 

X'MXUX"MX 

= X'l-~(X'MX) -X'MX(X'MX) -X'MX - X'MX(X'MX) -X'MVMX(X'MX) -X'MX 

= X'MX - X'MX(X'MX) -X'MX:I(X'MX) -X'MX 

= X'MX - X':HXP(X'MX) -X'HX 
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= X'MX - X'HVMX(X'MX) -X'MX 

: X'MX- X'MVMX by (4.5.16) 

Multiplying both sides of (4.5.19) by X(X'MX) and 

using (4.5.8) and (4.5.18), we obtain 

(V + XUX' )MX = X. (4.5.20) 

If p' (V +X U X') = 0, then from (4.5.20) p' X= 0, and 

hence p'V = 0 and vice versa, proving (4.5.12). Choosing 

a g12 (V +X U X') and a symmetric matrix K, 

let 

M = (V + XUX' ) - + K, 

substituting (4.5.21) in (4.5.20), we obtain (4.5.13). 

The converse is easily verified by using lemma 2 • 

• Let G : X'X + E : X'X + ff where 

G- : gl (G) 

S : X'G-f 

H : H
0 

+ Hl 

where HO : (I - SS'f")X' G-, H, = {S+)' fG-. 

Ala~ (1975) states and proves a l~mma which gives the 

(4.5.21) 

properties of the matrices G, S, H and H1 ~ We shall use 
0 

these results in the sequel and refer the reader to Alalouf 

(1975) for the proofs. He then uses these results to obtain 

the following decomposition of the vector space into four 

virtually disjoint subspaces in terms of four projectors; 
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Projector Subspace Dimension 

XHl G. cx>n (lcr> dim [~{X)(\ l?e< r) J 
XHo T1C (tx) r (X)-dim [ (€ (X)n ~{r) J 

' 
such that Tl (r) - 0 

GG--XH T2C (Qcx> such that 

T2 0 G_(r) = 0 

I-GG T3 C Rn such that 

T3 n ~ (X,r) = 0 

He then gives the following theorem which justifies the above 

decomposition. 

Theorem. Let G, H, H
0

, H
1 

be as defined above. 

Then 

w.p.l. (4.5.22) 

{ii) Cov[XHJ!, {GG-- XH)y] = 0, Cov[ XHy,(GG-- XH)y] = 0 • 

(iii) {I - GG-) y = 0 with probability one {w.p.l) • 

Using the decomposition and the previous theorem we obtain 

the following decomposition of y; 

(4.5.23) 

and note that the fourth term is identically zero and so provides 

us with no information, while the first and second terms provide in-

formation about a. The third term has mean zero and ~o gives no 

information about a. 
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The following lemma gives an expression for the 

permissible values of a. 
Lemma. The vector a satisfies 

where a is an arbitrary vector and H0y is fixed w.p.l 

Proof. Using parts (iv) and(vi) of Lemma 5.1 (Alalouf) 

(4.5.24) 

we have that (4.5.24) is the general solution of (4.5.22). 

Theorem. A'y is an unbiased estimator of L'B 

if and only if 

(4.5.25) 

and 

(4.5.26) 

Proof. If A'y is unbiased for L'.S, then for all B 

satisfying (4.5.24), we have, A'XS = L'B. 

Thus A' XH().Y + A' X [I - H0X )a : L 'H0_y t L' ( l - H0X] a 

must hold for every a. Hence (4.5.25) and (4.5.26). 

Conversely, if A' and L' satisfy (4.5.25) and(4.5.26), 

then 

E (A'Y] = A'XS = A'XH y- A'x[r -H x]a . 0 0 

= L' B • 

Q.E.D. 
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