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RESUME

Cette thése examine deux méthodes d'estimation parmi les
plﬁs importantes etAles plus souvent utilisées - 1'estimation Qu
maximum de vraisemblance pour laquelle on supposée connue la dis—‘
tribution des variables (ou vectors) aléatoires et d'autre part
1l'estimation des moindres carrés ol cette fois la distribution de
variables aléatoires n'est pas nécessairement connue.

Quelques définitions et résﬁltats préliminaires seront
présentés dans le premier chapitre. - Ceux-cl seront utiles dans les
chapitres suivants. Le second chapitre portera sur les propriétés
souhaitables des esti&éteurs qul seront rencontrés aux chapitres
trois et quatre.

L'estimation du maximum de vraisemblance sera discutée au
chapitre trois et l'emphaée sera placée sur les propriétés assymptot-
iques des estimateurs. Le quatri@me chapitre traitera de 1'eétimation
des moindres carrés. Dans une section de ce chapitre, le probléme
d'estimabilité sera étudié. On trouvera de nombreuses références

dans la bibliographie.

‘Department of Mathematics M. Sc.
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1.15

1.16

1.17

1.18

1.19

1.20

Theorem: If A is a symmetric matrix, then there exists an
orthogonal matrix P such that PAP' = A , where A is the
diagonal matrix of characteristic roots of A and P the

matrix of characteristic vectors.

The singular values of the matrix B (m x n) denoted by Sg(B)
are defined to be the positive square roots of the character-

istic roots of the matrix B'B, i.e., Sg(B) =+ [CH(B'B)] %.

Let B (m x n) be an arbitrary real matrix. The rank of B,
denoted by r () 1is the maximal number of linearly indepen-

dent rows (coiumns) of B.

If n<m and r (B) = n, then B (m x n) is said to have full

“column rank, if m& n and r (B) =m, B is said to have

full row rank.

The matrix X (n x m) is said to be a right inverée of A (m x n)
if A X = %n' If Y (nxm ) is such that YA = I,, then Y jg

a left inverse of A,

Lemma: If A (m x n) is such that r(A) = n, then there exists
a matrix X (n x m), called a right inverse of A, such that
A X = Ip; one choice of X -is A'(AA'YJ'. If r(A) = m,

then there exists a matrix Y such that YA = I,; one choice

of Y is (A'A)‘lA'.



1.21

1.22

1.23

A generalized inverse of A (mx n) is a matrix denoted by

A~ of order n x m such that

AA A=A.

The Moore-Penrose generalized inverse of the matrix A (m x n)
is a matrix G (n x m) such that the following four conditions
are satisfied.

(1) AGAZ-A

(2) GAG=¢G
(3) (AG)' = AG

(4 (GA)' = GA .

The matrix G 1is calléd a glzasA) ‘and is denoted by A+,

If condition (1) is satisfied, G 1is called a weak generalized
inverse of A and is denoted by g;(A). If conditions (1) and
(2) are satisfied G idis called a symmetric generalized inverse
of A and is denoted by glz(A). If conditions (1) and (3)

are satisfied G 1is called a least squares generalized inverse

and is denoted by

g13(A) or AEs‘

Theorem: Let A (m x n) be an arbitrary real matrix; then

there exists orthogonal matrices P (m x=m) and Q & x n)

such that 0 :
P'AQ = [gr 6], where Dr is the

diagonal matrix of singular values of A, P the matrix of



1.24

1.25

1.26

1.27

1.28

characteristic roots of A'A and Q the matrix of characteristic

roots of AA'.

Lemma: A+ and %; are unique.

Lemma: Using (1.23) we note that ome repregentation of At is
bzl o

A -_-Qor o |2 -

Theorem: For comformable matrices A and B and for any

choice of the generalized inverses A  and B~, we have

r(4,8) = r(a) + r([1-aa7]®), (1.26.1)

= r(8) + r([1-837]a). (1.26.2)

r[ g] = r(a) + r([B(T-A"A)]), (1.26.3)

= r(B) + r([A(I-B7B)]). (1.26.4)

Lemma. r(AB) < r(A), (1.27.1)

r(AB) < r(B). (1.27.2)

Lemma: Let the matrix C (m x n), n < m, have full column
rank n, and the matrix R (n x m); n £ m, have full row rank n.

Then for any matrix A (»n x m), we have

r(a) = r(CA) = r(AR).



1.29 The trace of a matrix A (n x n) denoted by tr(A) is defined
to be the sum of the diagonal elements; alternatively the

trace of A 1is the sum of the characteristic roots.of A.

1.30 Lemma: If A (n x n) is an idempotent matrix of rank r,

then tr(A) = r.,

1.31 Lemma: Let 0>0 and A (m x n) bé a real matrix. Then

lim [A'A +o 1) 71A" = (A'M)7A.
a0

Proof: by (1.23), we have
A=PD1"OQ'
0 01}

. 2
hence A'A =0 pr 0 Q'
0 0 (1.31.1)

1
and AA+ o1 =q|r Yo O Q

n 0 al (1.31.2)

We note that for all a > g, A'A + al ~ is invertible.

Thus -1 Aa) 0 ‘
[A'A + aln] =Q| o oI Q' (1.31.3)
) ' n—r
-1
where Ao) = [Dr+-a1r]
hence, [A'A + uI;]_lA' = Q Aéq) G_QI Q'Q[-Dr 0 P
| n-r Lo 0

A(a)D, ©

:Q[0 0

]P" (1.31.4)



but lim A(a) = D;z
o> >
hence )
-1
1im [A'A+aInJ "Iy 2P O
a >0 0 0
= (A'A) A",

Note: The above lemma can be generalized by replacing o I,
by D(q) a diagonal matrix of positive, not necessarily
identical elements.

¥

1.32 The density function f(x) 1is a member of the exponential
- family if
£(x) = A(x) B(8) exp[ C(8) D(x)] , a<x<b, where
(1) 8 is the vector of parameters, -
(2) a or b does not depend on 6,

(3) A(x) and D(x) are continuous for a <x <b,

(4) C (8) 1is a non-trivial continuous function of 8.

Examples of Exponential families are
¢D) {£(x): £(x) =_1 exp(-6x),x 30,8 >0}

-1

2]
(i1) {fx): f(x) ;_lzgnxn exp(-6x),x 30, 60, n > 0} -:

[
1.33 Two subspaces are sald to be virtually disjoint if the null

vector is the only vector they have in common.



E F '
1.34 Let A = {G H] with H nonsingular.

The Schur complement of E in A denoted by A/E is defined as;

AJE = E-FHLg,
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CHAPTER II

DESIRABLE PROPERTIES OF ESTIMATORS

Introduction. The theory of mathematical estimation was

founded by R. A. Fisher in a series of Papers (1921, 1925,
1934 and others). We shall discuss some of the important ideas
developed by Fisher in this and a subsequent Chapter. We shall
also classify and study the properties of various estimators
and give some examples to strengthen the discussion.
The Problem. Suppose we have obtained a random sample from a
population, whose distribution has a known mathematical form,
but involves a certain number of unknown parameters. We would
like to find estimates for the values of these unknown parameters
in the parent population based on the jnformation given by the
sample.

In general, there will be an infinity of functions
of the sample values that might be proposed as estimates of the
parameters. We are faced with the following question; '"how
should we best combine the data to form these estimates?" This
question leads to another, namely, 'what do we mean by "best"
estimates?"

We might answer impulsively that the best estimates
will be the ones which are nearest to the true values of the

parameters to be estimated. However, it must be borne in mind
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that every suggested estimate is a function of the sample
values, and hence must be regarded as an observed value of a
certain random variable. We therefore see that we have no

means of predicting the individual values assumed by the esti-
mates in any given case, so that the goodness (in the sense of
being best) of an estimate cannot be judged from individual
values, but only from the distribution of the values which the
estimate will assume in the long run, that is, from its sampling
distribution.

When most of the "mass" in this distribution is con-
centrated in some small neighbourhood of the true value, there
is a very small probability that the estimate will differ from
the true value by more than a small amount. We express this
probabilistically as P[itn- o> é] <§ , where t  1is the esti-
mator of the parameter 6 , and § is a small positive quantity
depending on n and €. From this point of view, an estimate
will be "better" in the same méasure as its sampling distribu-
tion shows a greater concentration about the true value.

We now list some desirablé properties, some or all
of which we would like our estimator to have:

(a) Consistency,
(b) Sufficiency,
(¢) Unbiasedness,
(d) Minimum variance,

(e) Completeness,
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() Efficiency.

We now define and give examples of statistics wh ich
satisfy the properties listed above.
2.3. | Consistency
Definition: An estimator tn computed from a random sample of
n values is said to be a consistent estimator for the parameter 8,
if for any given € > ¢ there exists an N and a § such tﬁat
vP(|tn- 0|ge)> 1-¢ (1.3,1)
for all n > N; tn is then said to converge in probability or to
converge'stochastically to @. |
Note: As defined, consistency is a largé sample property.

Example

Consider dF(x) = 1 exp —(g:g)z ym ® < X <

J2 T 2

and let x = (x1 X, ..xn) be a random sample of size n taken from
’ ’

n
this population. Then the sample mean t = I xi is consistent
: i=l n

for the parameter 9, since, given € > 0, and using the fact

that vn (t-8) ~ N(0,1), we have

Y5
P(/Elt - 9| < gvn) = fe n dF (x)

-evn
ev/n

=f exp(-t7) dt

-evn 2 Jom "t

Clearly this probability can be made as close to one (i) as we
please, by making n sufficiently large. For example, if

€ = 0.1 and n = 400, we have,
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P(20]t-0| < 2) = P(Jt - 8] <°.1)

n

0.9544

It can be shown that the sample median, xg, is also con-
sistent for the parameter © in the normal population and
thus we note that consistent estimators are not necessarily
unique. In cases where there are several consistent estimators
it is usual to choose the estimator with the smallest variance.
In the case of a random sample of size n taken from
. . 2
a normal population with mean/median 1y and variance o ,
it can be shown that the sample mean/median are both asympto-
tically normal with common expected value u and variances
2 2 '

O _ and 10 respectively. Thus we see that the sample

n 2n
mean will be preferred to the sample median as an estimator

for the population mean, since the sample mean has asymptoti-

cally smaller variancé‘than the sample median.

Suffciency

Many decision theoretic problems'can be significantly
simplified by a éuitable reduction in the complexity of the
~data. A suitable form of reduction called the criterion of
sufficiency was introduced by R. A. Fisher (1925). There he
defined a sufficient statistic as one which effectively sum-
marizes all the relevant information supplied by the data.

The following definition offers a small extension
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to Fisher's concept ofbsufficiency.‘

Definition: A statistic is said to satisfy the criterion of
sufficiency when no other statistic which can be calculated
frgm the data provides any additional information as to the
value‘of the parameter to be estimated.

A more rigorous definition is as follows:
Definition: Let X denote a random variable (vector) whose
distribution depends on a parameter 9 € GD , Qb being the
parameter space. A real (vector) function T of X‘ is said
to be sufficient for the parameter 6 if the cénditional dis-
tribution of X given T =‘t is independent of O almost
everywhere (t).

The following theorem, due to Fisher, gives us a
necessary and sufficient condition for a statistic to be suf-

ficient.

Fisher's Factorization Theorem:

Let X be a random variable whose p.d.f. (p.m.f) £(x,0)
depends on the parameter @ ¢ @ . A function T = t&) is
sufficient for 8 if and only if the frequency function factors
into a product of the two functions g and h, where g is a

function of t(x) and 8 , and h is a function of xonly, i.e.,
£(x,8) = g(t(x),0) h(x) »

Proof ( if') Suppose that T = t (x) 1is sufficient for @

then,
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f(x,g) = PQ(X = X)
= Pg(X = x,T = t(x))
= Po(T = t(x)) P(X = x|T = t(x)) (2.4.1)

provided that'P(X = X |T =t (%)) exists and is well defined.

Hence for the x for which f(x,8) = 0. for all @

we define

h(X) = 0

and for the x for which f(x,8) > 0 for some 0

we put

h(x) = (X = x|T = t(x)) (2.4.2)
which is independent of 8, so that putting

g(t(x),G) = Pg (T = t(x)) (2.4.3)

gives us the required factorization.

Proof (only if) Suppose

f(x,0) = Pa(X = x)
= Po(T = t(x)) P(X = [T = t(x)) (2.4.4)
holds. Fix t0 for which PQ(T - to) >0 for some

8e®. Then

Po(X = x IT = ty) = Pg(X = x,T = t)

Po(T = tg) T (249
The numerator of (2.4.5) is zero for all @ whenever

t (x)#£ty and is equal to Py (X = x), whenever t (x) =t
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We can write the denominator of (2.4.5) as

PQ(T = to) = X PQ(X = X)
- [t = tO]
= T g(t(x),e).h(x) . (2.4.6)
[x:t(x) - tO]

Hence

Pg(X = x|T = t) = 0 EELTCO R

B(tgr9).h0) oy ot
T g(tp®) .hix)) | 0
where h (xq) = z h(x') .
[g':t(x') = tO]

Cancelling g(tO,O), we -have that,

Pg(X = x|T = to) is independent of 6, for all tO and ©

for which it is defined.

We shall see later that using the criterion of sufficiency
in conjuhction with that of completeness, we can construct
uniformly minimum variance unbiased estimators (UMVUE) for
estimable functions. We give here two examples of how to
find a sufficient statistic using the Fisher Factorization

" Criterion.
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Example I. Let x = (xl,xz,...,xn) be a random sample
from a Poisson Population with parameter © > 0, Then the

likelihood function is

X
L(9|x) = % e i exp (-6)

.=1 xi!
)
%1
i=]1 *
= 1 .8 exp (-n8)

xllle...xn!
= h(x) g(t(x),9)

n -1 n
where h(x) =| I xi! and t(x) = L x.,
i=1 i=1 *

thus t (x) 1is sufficient for ©. It is easily seen that

t () is a consistent and unbiased estimator for O.
n

Example II. Let x = (xl’x2""’xn) ~ be a . random sample
from a distribution with pdf
f(x,08) = G(O)M(x%) if 0 <x <o

= 0 elsewhere,

where [G(G;]-l = {6 M(x)dx .

The likelihood function is:-

. .
L(8|x) = T G(OM(x,)  if all x.e(0,0)
i=1 .

We can then write L(le) : as
L@ = a0y, ) ¥ M) atv_,0 [c0)]
i-1

V’ xl,xz,...,xn, where yl is the first order statistic,
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t .
v, is the n h order statistic, and

qa,b) =1 if a < b
=0 if a>b .
’ n
If we now let h(x) = q(O,yl)_H M(xi)

l:l
and  g(t(x),0) = av_,0. [c@]",

th , \ .
we see that the n order statistic y, is sufficient for the

parameter. 8.

Note:  When C(Q)v= 9—1 and M(x) = 1 we have the uniform

distribution. Another specific example of this form is the

n-1

distribution with M(x) = nx and G(8) = e ",
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Unbiasedness

Definition: An estimator t, of a parameter 6 is said to
be unbiased if the expected value of t, is equal to 8,
i.e. if E [tn]:= ® ; otherwise the estimator is said to be
biased with a certain bias, b (8 ).

We mentioned earlier that it is very desirable to
choose a consistent statistic as an estimator of the popula-
tion parameter. In general, such estimators are biased for
the parameter. However, in some cases it is easy to change
these biased estimators into unbiased estimators by the in-
troduction of a constant scale and or shift factor as the
case may be. In other instances when the expected value is
a very complicated function of the parameter it is not so
easy to determine these scale and shift factors. However,
Quenouille (1956) has suggested a rather elegant method for
overcoming this difficulty in many situations. The interested
reader is referred to "The Theory of Advanced Statiséics, Vol.
II" by M. G. Kendall and A. Stuart.

We now give an example in‘which a single scale
factor is necessary to change a biased estimator into an un-
biased estimator.

Example: Let xl,xz,...,xn be a sample of size n taken from
a univariate normal population with known mean u and un-

. 2
known variance 0. Then
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S T (xi—u)zln

i=1

is the M.L.E  for 02. It is however = biased, since E[Sl = n-1 02.
n
We therefore see that ns is unbiased for 02.
n-1

Minimum Variance

We mentioned in the discussion of consistent esti-
mators that when there are two or more consistent estimators
for a parameter the desirable estimator is the one with the
smallest variance. This leads us to a very important class of
estimators, namely, minimum variance estimators. The concept
of minimum variance has been used since the days of Gauss and
Laplace. However, in relatively recent times, Cramér, Rao
and Battacharrya have shown that lower bounds for the variance
exist. We shall deal ﬁith minimum variance estimators which
are also consistent and unbiased.

Definition: A consistent estimator t, of a parameter @ 1is

a minimum variance unbiased estimator if

(i) E [tn] -0
and
T
(i) lim Var(t )< lim Var (t,)
n-e n-e
for all consistent unbiased estimators t},

We now state and prove a theorem on minimum variance bounds

and discuss methods of determining such bounds.
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Theorem: If L(8) and t satisfy the regularity assumptions
RA1-RA5 and if Ee[_t] = 1(8)

then Var (t) > 3 1 (8) 5(0)™L 3 r(9) . (2.6.1)
T: o 367

The univariate analogue of this theorem'is'known as the Cramér-
Rao theorem and the Quantity on the right of inequality (2.6.1)
is called the Cramér-Rao (sometimes the Frechet-Cramér—Réo)
lower bound.
Proof of the Theorem: Let Xl and X2 be arﬁitrary random vectors
with means u; and u, covariance matrices I,; and %L,, re-
spectively and cross covariance matrix 212, Qe assume that the
matrix Zzé is positive definite.

Using 1.32, we have the following identity

~1 -1

I =L ¥ 4+ - I
11 12 22 21 11 12 22 21 (2.6.2)

r - I z I is the schur complement of

Setting X, = t and XZ = S, the score vector, we have Hy = 1( 8)

and ", =0,

I = I =93 1(8) =L
12 t,s 90 21
= % = -
L, g, @), Iy =1
Thus
T =3I =31 (8 J®O st (8) + var ['t-r(e) -z 1 tg
11 tt 36 38" 12 22



22

Hence, I, 29 1(8) J(8)73_1(6),
T : a8’
since a covariance matrix is non-negative definite. We have

equality if and only if

t = 1(8) + zlzzgé S
almost evérywhere (t). Q.E.D.

Note: For non-negative definite matrices A and B, A'; B
means that A-B is non-negative definite,

Example: Let X y Np(u,Z).

Suppose a random sample of size n 1is taken from this normal

population and suppose also that y 1is positive definite. Then, .
= n
X =5 X, /n
|
i=1

is sufficient for Y, and has minimum variance.

Proof:

0/
. ~hp
LGnzln) = @ 22 ex"L 1

noes

' -1
(xi—u) pX (xi—u) R
Therefore,

: n -
Lpg L(u,ZIX)=—Eg log 2T-n log |Z| + 2z (x,-m)': l(x -u),
2 2 g=1 1 i

n -1 .

= L (x,-u)'T " (x,-n)

po9p i=1 +
n

= I _3(x;-w) 'E—l(xi—u)

i=193p

n -— -
=z [—22 lxi + 2% 1u]

-1 n
-23 [.Z. (xi —u)]
i=1

L

-2n5 t (x - 1)

I
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Hence, _

2 =0 = x=u.

ou
Thus X is the maximum likelihood estimator for u aﬁd the
Cramér-Rao bound I/n is attained by this estimator, a fact
easy to verify.
Note that maximum likelihood estimatbrs attain the Cramér-Rao
lower bound. Furthermore in order to compute the Cramér-Rao
lower bound, it is not necessary to find the variance of the
maximum likelihood estimator explicitly. We just set 32 = 0,
divide by the constant,and the coefficient of (t- u) 3211

be the Cramér-Rao bound; here, t is the maximum likelihood

estimator of u.

Completeness

The concept of completeness of a parametric family
was introduced by Lehmann and Scheffé (1950). Completeness
confers the uniqueness property on the class of sufficient
estimators. This property taken in conjunction with that of
sufficiency will be used to determine uniformly minimum variance
unbiased estimators for estimable functions of a parameter O .
Definition: A parametric family of distributions £ (x,0),
depending on the value of the parameter @, 1s said to be
complete if, for h (x) any statistic independent of the para-
meter @ , the expected value of h(x) being equal to zero

implies that h(x) = 0 almost everywhere (x).
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If the expected value of h(x) = 0 implies that
h(x) = 0 only for bounded h(x);>then f(x,8) is'said to be
boundedly compléte.
Definition: A statistic t =¢ (x) is complete, if the fémily
of distribution fuﬁctions of t 1is complete.

We list here with proofs a few‘standard examples of

gomplete families of distribution functions.
2.7.1 ‘The family of binomial distributions with
p.m.f (’n) px (l—p)n—x, x =0,1,...,n

%/

0<p <1, is complete, since, if

' n ™ x n-x

En[h(xﬂ =X h&x)|x/p (1-p) =0Vp, 0gp<l.
: x=0

then this nth degfee polynomial in. p must be the unique zero

polynOMial. That is, the coefficients of each power of p must

be zero.
Now,
. n n X n-x
I h(x)(x)p (1-p)
X=0
0 n-x s ™ \(n-
=z @ AN e M
X=0 j:() (X)( J )
=0 -

We therefore have
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p1 +x=0,j=1 or x=1, j=0

hence (r})h(O) 4 n)h(l) =0
1 0

or - h(l) = 0, since h(0) =0 -
Continuing in this manner we see that
h(0) = h(1) = ... = h(n) =0 .
0.E.D.
2.7.2. The family of all Poisson distributions with

p.m.£f, _Q?exp(—g), x=0,1 ... 06 >0 is complete.

L
Proof: X

£(x,0) = 0" .exp(-0), x = 0,1,2,... 050,
x!

- If h( x) is any function of the data, we have

™ 38

By [ b ()] 3 h(0@exp(-8) = O -

0 X

If we expand exp (- 0) as a Taylor series about zero, we get

B, [h0] = I he.£e) =0
x=0

hence, h(x) = 0 almost everywhere (x), because of the
‘uniqueness of the Taylor series expansion of f£(0). |

The family of normal distributions with mean zero and variaﬁce
02 > ¢ is not complete, since any odd function h(x ) has ex-
pectation zero. We now state and prove fwo theorems, the first
of which gives us a means of improvingvdn an arbitrary unbiased

estimator while the second theorem gives us two ways in which

we can determine a uniformly minimum variance estimator.
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2.7.3. Completeness and the Rao-Blackwell Theorem

Theorem: If the statistic t 1is sufficient for the parameter
@ and Eb [t'] = g(0), then,
t" = Ee[t’ [t]

is such that t" is an unbiased estimator of g (8); t" is
therefore 0 -free and is a function of t only,
say, t" = h (t) such that

Var (t" g Var (¢")
with equality holding if and only if t' and t are dependent
with probability one.
Proof: t sufficient for @ implies that the distribution of
t'| t 1is @ -free, hence, E9 Et' | t]
is 8 -free; so that, Ee[;'lt] is a statistic.
Now, t' = Eg[?'|€]+ et}t’ where st',t is the error due to
the regression of t' on t and Eg [t'lﬁ]= h(t) = ¢''

is the regression function of t 'on t. Also,
. "
Ee[h(t)J = Eg[t J = g(08), say.

Furthermore,since h(t) and ¢ are uncorrelated (this is im-

1
tht
mediate from regression theory), we have

Var (t') = Var (t") + Var (t'-~h(t)),

hence,
Var (t') ¢ Var (t")

with equality holding if and only if t' = h(t). (i.e. t' and
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t are functionally dependent) with probabilityvone.

We note that the Rao-Blackwell theorem gives us a way of im-
proving an arbitrary unbiased estimator t' of g(8) when a
éufficient‘statistic t for O exists and is fﬁnctionally inde-
pendent of 8; t'" calculated from t' and t By thevabové method

is unbiased. for the parameter 8 and it has variance less than the
variance of t', for all sufficient statistics t. We also note
that in seeking a uniformly minimum variance unbiased estimator of
g(0), we only need consider unbiased estimators which are functions
of the sufficient statistic t,-since any dther estimafor for 8 can~-
not be‘a uniformly minimum variance unbiased estimator. The above
idea will now be used‘in the second theorem.

2.7.4 The Lehmann-Scheffé Theorem.

We have previously mentioned thét completeness confers.
the uniqueness property on sufficient statistics. The following
theorem, due to Lehﬁann and Scheffé, characterizes this uniqueness
property.
Theorem.  If the statistic t is complete and sufficient for a
pafameter 9)and g(G) is an estimable function of 8, then the
function g(8) has a uniformly minimum variance unbiasea estima-
tor h(t), a function of t only, which can be determined essentially
in either of the following two ways.
(i) If t' is any unbiased estimator of the fﬁnction g(8), which

is functionally independent of the statistic t, then

v pyler]e]
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(ii) h(t) is the solution of the equation

£y [h(6)] = g(8)
Proof. Define U = UtLJﬁt, where Utis the set of all unbiased
estimators of g(B8) which are functionally dependgnt on t and Bt
is the set of all unbiased estimators of g(8) which are func-
tionally independent of t. U is the set of unbiased_estimators.
Then, Utﬂ ﬁt= ¢ s (b denotes the null set. Since g(.) is an
estimable function and U#(b, U, and I_Jt cannot both be empty.
(i) Assume Bt is not empty and let t'E€ ﬁt’ then, by the Rao-

Blackwell theorem,
"w - 1] ey
t" = Eg [t_lt] = h(t), say,
is an unbiased estimator for g(8), and h(t) is an element of Ut

which has uniformly smaller variance than t'. Moreover, since t

is complete for 8, h(t) is an essentially unique member of Ut

and is determined by the relationship
Eg[n()] =@

Thus h(t) is a uniformly minimum variance unbiased estimator of

g(@).

(ii) Suppose Ut is not empty, then as in (i) Ut contains

| essentially only one element t" = h(t), which is determined by
Eg[h(e)] = g(o)

and hence t" is a uniformly minimum variance unbiased es-

timator for g(8). We are now in a position to prove the
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uniqueness of a uniformly minimum variance unbiased estimator
for a parametric functionm.
Proof: Suppose there are two such estimators of g(@ ), tj
and t2, say. Then t3 = (t] + tp)/2 1is also unbiased for
g(8).
Let V by the common variance of t; and ¢ty
Then,

Var(t3)= (2V 4 2 Cov (t1,t2))/4

= (V + Cov(ty,tp))/2 .

Now, by the Cauchy-Schwarz inequality

Cov (t1, t3) ¢ V(Vart] Var t3) =V .

Thus Var (t3).s v, which contradicts the assumption that
t] and tp are minimum variance unbiased estimators.

Hence, Cov(ty, t3) =V

and Var (t3) V.

This can only be so if
t1 - 8(8) = K(0) (t,-2(0) ,

i.e., if t3 is proportional to ts, but then,

Cov (tl, t2) = k(@).V=y

hence k (©8) =1, and so t1 = t2.
Q.E.D.
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We now give an exampie of how to determine the uniformly -
minimum variance estimator.
Example: Let Xlg.Xz, +v+s X5 be a random sample from a uniforﬁ
distribution on (0, 8), 0<0< o, let t = max (X1, X2, ...Xn).
It can be shown that t 1is complete and sqfficient for the
pafameter 0.
We are to determine a uniformly minimum variance unbiased
estimator of OT, r# -n.

By the Lehmann-Scheffé& theorem some function of the

statistic t will be such an estimator.

"Assume tT is an estimator of @F.

then,

Eg[ tr] =

1"
3
B[
—
;':s
n
(w d
5
T
o o©

r . .
Thus n-r t is unbiased for @
n
minimum variance unbiased estimator.

and will be the uniformly
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Efficiency

We noticed earlier that the sample mean x and
median x% were two consistent estimators for the population
mean of a normal distribution with mean 1y and variance 02,
and that these two estimators were both asymptotically normal
with the same mean u and variance 02/n and ﬂbz/Zn respec-
tively.

There is a large and important class of consistent
estimators whose sampling distributions are asymptotically
normal and for which the variance decreases as the sample size
increases, so that the properties of such estimators can be
characterized by the variance and bias. The bias will not be
considered, since it must tend to zero as the sample size in-
creases, or in the first case we could have made a correction
for the bias, as noted earlier. We are not so fortunatevwhen
it comes to the variance, since the variance is invariant
under a constant shift. We therefore seek a criterion which
will enable us to choose an estimator from among competing
ones.,

The concept of efficiency as defined by R. A. Fisher
(1921) requires that the fixed value to which n times the
estimator tends, shall be as small as possible. An efficient
estimator will be such that this property is satisfied.

If the variance of any efficient estimator is known,

then, the efficiency of any other estimator of the same
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parameter is calculated as the ratio of the variance of the
efficient estimator to that of the other estimator.
Definition: In the class of all unbiased estimators of a

~ .

parameter 6, 8 is efficient if

Var (8 ) < Var (8’ )

~

that is, @ 1is efficient if it is a uniformly minimum variance
unbiased estimator.

Example.- Consider again a normal population with mean u and
variance 02. Let Xys XQseeeXy be a random sample of size

n chosen from this population. As mentioned earlier, the sam-
ple mean x and the sample median x% are both unbiased con-
sistent estimators for the population mean u . However, the
variance of the sample mean is 02/n and that of the sample
median is ﬂ62/2n. Hence the efficiency of the median is

02/n =2 =,637.
-z -
o f2n ™

This means that from 1000 observations the sample median will
produce a value which will be as accurate as that produced by
the sample mean for only 637 observétions, and therefore as
mentioned in the discussion of consistency, the‘sample mean
would be a better choice as an estimator for the population
mean in the normal population.
Sometimes, it is more difficult to calculate an

efficient estimator than an inefficient one, and the labour

involved in calculating this efficient estimator might out-
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weigh the cost of taking additional observations needed for
the inefficient estimator. In such cases, the additional ob-
servations may be taken and the inefficient estimator chosen

as the estimator for the population parameter.,

2.8.1. Properties of efficient estimators.

(i) The correlation between any two statistics, both efficient
estimators of the same parameter 8 , tends to = 4 1,as the
sample size increases. For if t; and t) are two such statis-
tics whose variances are 62/n, say, and the correlation is

r, we choose t3 = (tj 4 tp)/2. Then, the statistic tj
will be an efficient estimator of the parameter 8 . The
variance of t3 is (1 + r)ozln, ,and this, by hypothesis,

must be at least 02/n. Hence, r must be at least + 1, but

r 1is at most + 1, therefore r = ¢ 1. This property implies
that for large samples all efficient statistics (estimators)
are equivalent. |

(ii) 1If we relax the constraint of unbiasedness in the defin-
ition of efficiency and replace the variance by the mean square
error, we note that since maximum likelihood estimators have

asymptotically smaller variances (see Kendall and Stuart, Vol.II)

they are therefore efficient.
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CHAPTER III

MAXTMUM LIKELTHOOD ESTIMATION

Introduction. One of the most important methods of estimation

of population parameters is the method of Maximum Likelihood.
This method of estimation was formally introduced by Fisher, R.A.
in a short paper in 1912, and was further developed in a series
of papers (Fisher (1922, 1925, 1934)) by the same author. Several
other authors have since made important contributions to the
theory.

Consider a random sample X = (X1, X3, ..., Xp)' taken
from a population with parameter ©, and known probability den-
sity (mass) function (p.d.f.) f . The joint probability of
the observations regarded as a function of the unknown parameter
0 1is called the 1likelihood function, and is denoted by

L (X | @), or simply by L (0), and is given by

n
L®) =1 f (x; | 0, i=1,2,...,n.
i=1 )
We note here that since L (8) is the moduct of p.d.f.)S
(p.m.£'s) it is necessarily positive.
The method of Maximum Likelihood in its simplest form

-~

leads us to take as estimate of the parameter 0, that value 6
which lies within the range of admissible values of the parameter

6 and makes the likelihood function L(8) as large as possible,
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that is,

L(é)z.L(Q) for all values of 6 € éi

the parameter space, and 5 GGED.

If we assume that L(G)A is a twice differentiable‘function

(in the range of 6) with respect to- 0, then under suitable con-
ditions we can use calculus to find 8. Namely, we solve the

following constrained system

3 L(8) = O, (3.1.1)
38 :

subject to .

. ,y - .
3° L(e) < 0. (3.1.2)
EELEN

We note that the condition (3.1.2) is only a sufficient condi-
tion for maximality of @, and that it is not a necessary con-

dition. For consider

b 4

- = h '

g(g) - —Gl _92 ’ °] (91:92) ’
then

3 g(0) = (<403, - 40))

36 1
and

3 g(®) = -12 2

2600" 0 6

8 = (0, 0)' can be shown to be the point of maximum of g(8),

however 2
3_ g8

2038 e = (0,0)'

The matrix inequality < indicates negative definiteness.
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is not negative definite.

In many situations the system of equations obtained

by setting _3L(8) = 0 is quite
ad

complicated and rather difficult to solve. In some of these
cases it is much easier to work with the logarithm of the like-
lihood function denoted by ¢(8). This is possible because a
positive function and its logarithm attain their maxima (minima)
at the same point. Thus we solve the following constrained
system;

_9%(8) =0, (3.1.3)
98 '
subject to

2 ~
3 2(e)< 0. (3.1.4)
2638"

. 69
We know from (1.7) that

3 2(8) = S,
o6
and from (1.8) that

2
-E| 3 2| = 3.

3
36236

Regularity Assumptions

Before discussing iterative methods for the solution
of the likelihood equation, we mention here some.regularity
assumptions which we place on the likelihood function L(8),
and discuss the properties of the score vector, S(8), and the

information matrix, J(6).
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RAL. 8 €@,)vhere C:&' is a subset of |RY (Euclidean %-space)
possibly equal to _IRR.

RA2. For all samples X, _9L(®), j = 1,...,2, exists

aej

for all Gé@texcept perhaps for a set of points in @£
 with probability measure zero.

RA3. f L(9) dx (orZL(8)) can be differentiated under the

X .
integral (summation) sign with respect to Qj, j=1,

RA4. J ty L(8) dx (or I tj L(®))can be differentiated under

integral (summation) sign with respect to 8i, 3 =1, ...

where (tj), i=1, ..., m is a sufficient statistic for
the parameter t(9).
RA5.  The score vector S5(8) = 3 4 (0) has a positive definite

: 20
covariance matrix for each 964@

Properties of the Score Vector

(1) Let x4 (mi x1)i=1, ...,q be independent vectors,
where the distribution of each x4 involves the same 8.

Let X' - (xi, x;,. ‘e y x;). Denote the score vectors of X,

and X by Si(Q) and 5(9) respectively. Then

S(@) = ¥ S.(0) . ‘
(9) i i(e) (3.3.1)

Proof:  L(6,X) = iﬂi L(8,x4).

Hence, log L(8,X) =13110g L(8,x ).

v

s

L,
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Whence, 3 log L(8,X) = g _9 log L(O,xi) j=1,...,%.

: i=]1
aej 893

Thus
S(®) = g S @).
i=1

(ii) For all values of @ e@i, the expected value of the

score vector is zero.

Proof: Since L(O) is a probability density, we have

SL@®)dx =1 .

X
Hence, using RA2 and RA3, we see that

S 3 L(®) dx =0, j =1,...,% .
X

aej

S 3 L(®) dax =/ _1 .3L(8) .L(8)dx
X aej X 1L(8) 36

S S (8).L(8)dx .
X

But,

Hence E [S (9)]

(iii) The covariance matrix Zt S between S and any unbiased
)

estimator t is given by

I . =23 1(9),
t,S 96

where T7(8) = E[ t] . 1In particular; for 7(8) = 9,

we have zt,S = I.
Proof. E[ t] =/t.L(8)dx = 1(8).
X

Thus using RA3 and RA4, we have

Jt3 L0 dx = _3 1(9),
X 38 30
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ice.y / tl 3 L(@) L(8) dx = 3 1(8) )
X L(@) 39 90
or I tS(8)L(8) dx = 3 1(9)
X 30
= Ies

Properties of the Information Matrix

(i) Additivity:
If J1(0), Jp(8), +.., J(8) are the information

matrices for n independent random experiments, then the infor-

mation matrix J(8) for the combined experiment is given by

n
J(@®) =z J,(00) .
(®) =1 J,(9)
1
If X' = (Zi,Z',...,Zn), where X is the ordered observations
from the combined experiment, and Zl’ ZZ’ ceny Zn is a random

sample from a distribution with p.d.f. (p.m.f) £(x,8), then
J(Q) = nJO(Q),

1
where JO(O) = E 3 log £|3 log £ .
36 30

JO(Q) is called the information matrix per unit observation.

Proof

Let Si(O) i ~-1,...,n be the score vector for the
ith experiment, and let S(8) be the score vector for the com-

bined experiment.
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(Then'J(Q) fs(g) S(Q)J

"
o

_ gl ¥ s (e) z S, (e)_}
L_
_ E| I s, NOLROMES. zj s, (e)sj(e);]

i=1

: n
= .E E [Si(G)Si(G)']
i=1l

Ji(Q), since Si(G) and Sj(G) are

i
[ pagtal

i=1

independent for 1i#3j, being functions of Zi and Z, respec-

3
tively, with Zi and Zj independent by hypothesis.

(ii) If in addition to the assumptions RAl to RA5 we assume

2
that 3 L(© ) exists almost everywhere (x) for all 9 € QE%
2030~

and if fL(B)dx can be differentiated twice under the integral
X

sign, then
2
J(@®) =E [- _9_ L(G)] ‘
3630"

Proof: 3 log L(8) = __l_ 9 L(8) ,

. 38 L(0)30
thus, 32 log L(8) = l__ium-l 3 L(6)| 3 L(O)|"

3630 L(8) 3698’ 12 ey 28 20

and 2
El- 3 1ogrL@|=E| 1 3@ s 1)
[ 3606" [}7(9)36 [ae ] ]

if both expectations on the right hand side exist.
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9 L(e)[_a__ L(e)]'L(e)dx

1 sr@[ar@]’| =5 1 o
"2'(9)3'9‘ [ae ]J X 1Z(e) a8 36

—

38

1
L(8) .38

"
Lo T

2 L) 1 |3 L(®)| L(®)ax
(o)

‘]
/ 3 Log L(8)| 3 Log L(8)|L(6)dx
X 96 00

ARORIO

J (9)

and

32L(9).L(9)dx

2
E{1 2 n@|= s 1
L(8) 36306 X ©L(B) 93830"

2
9 L(8)dx
20386"

Ea IR

2
9 S L(9)dx

0600"' X

0

2
= 9.1
3690"

= 0.
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Iterative Methods for the Solution of the Maximum Likeli-

hood Equation: The Single Parameter Case.

In many instances it is very difficult to find an
explicit solution of the Maximum Likelihood equation. 1In
these cases the Maximum Likelihood Estimate is approximated
by using iterative techniques. The most popular technique
for approximating the Maximum Likelihood Estimate is the method
of scoring for parameters. This technique was suggested by
Fisher (1925). Several other methods are also used. These in~
clude the Newton-Raphson method, the fixed derivative Newton
method and the Regula Falsi method and its modifications.

Kale (1961) discusses the Newton-Raphson method; the
fixed derivative Newton method and tﬁe method of scoring for
parameters. He gives sufficient conditions for the convergence
of these iterative schemes and applies the three techniques to
the solution of a particular problem. Barnett (1966’ also dis-
cusses these three methods together with the Regula Falsi method,
and notes that the Regula Falsi method will be preferred to these
three schemes in cases where the likelihood equation has multiple
roots. This is so since the Regula Falsi method can be made to
scan the range of the likelihood equation to find all the
relative maxima.

We now give a brief discussion of a general iterative

scheme of which the Newton-Raphson method, the method of scoring
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for parameters, the fixed derivative Newton method and the
Regula Falsi method are special cases.

The idea is to choose an initial solution t,, which
lies in a neighbourhood of the Maximum Likelihood Estimate, and
use an iterative scheme to find the Maximum Likelihood Estimate.
to 1is usually chosen to be an unbiased, consistent estimator.

A possible iterative scheme is as follows:

Define 6 (8)=8 - ¥ (8)_d 2(8)
‘ de .

where £ (8) = log L(8).

Consider the iterative scheme

ter = ¢ (&) (3.5.1)
=t - w{tn) _d 2 (8 . (3.5.2)
de 8=t
n
Let e = Itn-§| be the error at the nth iteration, then we

choose y (@) such that e < e ande-» 0 asn > o
n n

nt+l
Householder (1953) has shown that it is sufficient that:
(1) There exists an €—neighbourhood N (8) of §, such that

[
if 91 and 8, are in % (0), then for some k 30, we have

6 (8) = ¢ (8] s k<1,
@) teN (®
£
for (3.5.2) to conyerge .
The Newton-Raphson method, the method of scoring for

parameters, the fixed derivative Newton method and the secant
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method* are all special forms of (3.5.1). 1In the Newton-

Raphson method, b(0) = d2 2.(0) .
462

In the method of scoring for parameters P(8) = E d2 L(8)],
d62

ie., Y (0) = - J(a). In the fixed derivative Newton method
P (8) = k, where k is a constant such that the conditions

for convergence of (3.5.2) hold.

v(8) = [g_z(e) - (g z(e)) "/' (6-t) 1in the secant
de \ de e = t,|

me;hod, here t is a consistent estimator of 8 -

It is well known that the Newton-Raphson method
converges quadratically, i.e., el o« ei , whereas the orders
of éonvergence‘of the other methods lie in the half open in-

“terval [1,2). Thus it might seem that the Newton-Raphson
method should be preferred to the other methods. However, as
pointed out by Barnett (1966) the first three methods listed
above ;11 have the same undesirable qualities; and are there-
fore not’recommended in cases where it is suspected that the
likelihood equation has multiple roots. Barnett (1966) shows
that the Regula Falsi method (and hence its modified forms)
works well in many cases where the first three methods fail.
For further discussions of iterative techniques the reader is

referred to Conte and deBoor (1972) and Hildebrand (1956).

We now use the Newton-Raphson method, the Modified

N :
This is a modified form of the Regula Falsi method.
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Regula Falsi method and the Secant method to solve the
genetical example given by Fisher (1954) based on Carver's

data for two factors in com; Starchy vs. Sugary and Green vs.

White.

~

We must evaluate the Maximum Likelihood Estimate € of

® when the probability of belonging to one of the four classes

listed below are

Starchy Sugary
Green WhiteA Green White
p1=(2+9)/4 p2=(1-9)/4‘ p3=(1—9)/4 P,= e/4 .

A random sample of size 3839 was taken and the numbers falling

into each class are given in the following table:

Starchy Sugary.
Green White Green White
a = 1997 b = 906 c = 904 d = 32 .

Since the distribution is multinominal, we have

where k is a constant.

Hence

d (@) = _a -b+tc -
de 2¢6 1 -6

(3.5.3)

Assuming that 0<08 <1, it is easy to show that the Maximum
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Likelihood Estimate 8 can be obtained by solving the following

quadratic equation;

n6% 4 (2b+2ctd-a)6-2d = 0.

8 is taken to be the solution which -lies in @)y and maximizes 12(9).
For the above data Fisher (1950) has shown that 8 = .035712
to six decimal places; Norton (1956) and Kale (1961) use the
Newton-Raphson method sfarting from t, = (a-b-c+d)/n = .057046,
and after five itérations.obtain 9 = .035712 and .035713 re-
spectively. We shall start iterating from to = (a+5d-b-c) /2n
= .045194, In the modified Regula Falsi and secant methods we
shall use as our two initial estimates t = 4d/n = .033342
-and tO = (a+5d-b-c)/2n :.045194. It is observed that ty and

tO are both unbiased and consistent estimators for 8, and
that the choice of t_1 is justified since

de =t

d 2(0) = 69.446846 and[é_l(e{] =-211.178969 ,
dé 18 =ty e o

iced, OG[E_l,tq] . The results for these methods are pre-

sented in the table below.
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Successive Iterations by the Three Different Methods.

Iterates 1 IT ITT

t_q - .033342 .033342
t, . 045194 .045194 .045194
tq .033546 .036275 .036275
t, .035591 .035379 .035580
t3 .035712 .035717 .035714
ty - .035712 .035712

I denotes the Newton-Raphson Method.
II denotes the modified Regula Falsi Method.
III denotes the secant method.
It is observed that the secant method performs just as well as
the Newton-Raphson method. We also observe that the Newton-
Raphson method with our choice of t, takes one less iteration
than with the t, used by Kale (1961) and Norton (1955).

We note here that the Newton-Raphson method, the method
of scoring for parameters, and the fixed derivative Newton method

can be applied to the multiparameter case.

Properties of MLE'S Obtained from Dependent Observetions

Under certain regularity conditions (mentioned earlier)
Cramér (1946) proved that the MLE obtained from independent ob-
servations is:

(i) weakly consistent, and
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(ii) asymptotically efficient and normally distributed.
These results were later extended by other authors, some of
whom relaxed a few of Cramér's condition, while others imposed
additional conditions on the likelihood equation.

In recent times Silvey (1961), Bar-Shalom (1970) and
Bhat (1973) considered the asymptotic properties of MLE'S ob-
tained from dependent observations. Bar Shalom (1970) imposed two
conditions on the likelihood equation in addition to those
stated by Cramér. He then used a version the the weak law of
large numbers for dependent random variables to prove the con-
ﬁergence of b, and by (defined below). Bhat (1973) used the
central limit theorem for Martingale sequences to prove the
convergence of bg and bj.

We now list the Regularity conditions as given by

Bar-Shalom (1970).

Notation and Listing of Regularity Conditions.

Let the set of (possibly dependent) observations be
" =(zl,z2,...,zn), where zys i=1,..., n, are real valued
random variables with joint probability density function
(p.d.f) with respect to a o - finite (i.e., finite with re-
n ' ’ .
spect to the ¢ — algebra generated by Z ) measure u,, gilven
by

- n
P(zl,zz,...,zn!e) = P(Z |8) (3.6.1)

where O 1is a real valued constant with unknown, but true
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value Qoeﬁ,with @ an open subset of IRl. The Borel
measurable function §n(Zn) obtained by maximization of the

likelihood function
n n
L,(6) = p(z'[6) =T p.(8) ,
i1 1
where pi(9)=Li(9)/Li_l(9) is used as an estimator for 6.
We now list the following regularity conditions

which are needed to prove the asymptotic properties of the

mJE.

RCl. For almost all Zk 31 log pk(O), i=1,2,3, exist
spl

for all 0 € @.
RC2. E [a log pk(e)]

E||3_ log p, (9)
[(ée k ]

k
ll{k [3 log pk(Q)] Lk(O) H u(dyi)< C. <o,

RC3. Jk(G)

where C1 is independent of 0, and Jk(O ) is Fisher's

information measure (see for example Rao (1973)).

2

RC5. There exists a function, Bk(Zk), measurable with respect

k
to the product measure iHlu(dyi) ’

3
such that 3 log p,(@8)| < B (Zk) for all 0,
30° k k

and Bk(zk) is finite almost everywhere, i.e., there

exists a constant, N<w, independent of © and Kk,
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such that for all €>0, P(Bk(Zk) >N) < €.

RC6. E| 3 log pi(Q) Q)log pj(O) = 0, for all i ¢ j.
, 30 30

A milder version of RC6 is;
RC7. lim E | 3 log p,(8) 3 logp.(®)| =0,

|i-3]> e E 30 J

2
RCS8. Var [_a%z log pi(G)] ES C2 <

where C2 is a constant independent of i, and

2 2
1im Cov §_2 log pi(Q) Q_z log p,(8)] =0 .
|i-9]~> « 20 26 3

Note: In the above regularity conditions all the expectations
are evaluated at, 6 = 6_ , the true value. Conditions RCl.
to RC5 are similar to the conditions RAl to RA5 given by
Cramér (1946). Conditions RC6 to RC8 are needed because of
the possible dependence among the observations.

| We are now in a position to state and prove the
foilowing theorem.
Theorem: Under regularity conditions RC1l to RC8,'the Maximum

Likelihood Estimator 'én(z“) is weakly consistent, i.e.,
~ n p
On(Z ) > 90,
(where P denotes convergence in probability) and asymp-
_totically efficient, i.e., for sufficiently large n the

mean square of Qn(Zn) is equal to the reciprocal of the

total information, i.e.,
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- 2 n -1
E [‘%'%) ] :[iilJi(Go)I .

Proof: Following Cramér, by conditions RC1l to RC6

2 log py(8) =[§blog pk(e%\9 +(9-90)[%?2 log pk(e)]

a0 =90 L] 0=0

0

2. .k '
b 10,0007, (2 ,  (3.6.2)

where B, is defined above, and |A| < 1.

k
Thus the likelihood equation (3.6.2) may, after multiplication

by 1 and summing, be written as

n
1 5L (6) =b,+ (8-0)b +A6-8)% =0,
TR 0 071 T 507 P2
n
where by = 1 Z ]:g_ log p.(B)]
n 1=1/36 * lo=e
n 2 0
by =1 I [3 , log p.(eﬁ
n i=1[36 * Je=o
0
by = 1 Izllsi(zl).
n i=1

We now use a version of the weak law of large numbers for de-
pendent random variables (Parzen (1969), p. 418) to prove the
convergence of b, and bj. This law states that if for all {1
the random variable x; has finite mean and bounded variance

n
and lim 1 i§ E(xi) < o , then a sufficient

n->o n
. n P
condition for i I X, - i z E(xi) —»0 ,
n i=1 n i=1 '
is lim 1 & Cov (xi’xj) =0.

n+e ni=l
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Using this theorem, it follows from RC2, RC3 and RC7 that,

bo -—ELP 0,

P
and from RC4 and RC8 that, b, —» - J(GD), where

1

n
J(Qo) =1lim 1 X Ji(OO) exists by virtue of
n—}mni_l

RC3. From RC5, it follows that for all ¢£> 0O, there exists N
such that

P(bzz N) <Ee

We now use these results to show that the estimator
5n(zn) is weakly consistent.
Let § and ¢ be given arbitrarily small positive

numbers. For sufficiently large n(n > ny(§,e), say)

we have .
2
P, = P(|bo[> §) < &
Py =P(b; > - 3 J(8))) < £ , (3.6.3)

Py = P(|b,[2 2M) <g .

If we let S denote the set of all .points z" such that,

2
|b0|'< é ’hl <—J(QO)/2 and |b2|<<ZN are all
satisfied, then the complementary set S' will comnsist of all
points ip, such that at least one of the inequalities is not
satisfied. Therefore, by an elementary law of probability,

we have that

P(s')s pgptP tp, <€ .
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Hence, P(5) > 1-&, and thus P(Zn€:S)>IL-€ whenever

‘n> no(ﬁ,e).

For 8 = 8, * § , the right hand side of equation (3.6;2)

becomes

Hence for every point Z ¢ S,

2 2
|bo+;\b26|<(N+l)6 ,

“and b, & < J(QO)G/Z .

1

Now if § < J(85)/2(N+1), the sign of the right hand side of
(3.6.2) will be determined by the sign of + bla , for 8 = g446,
hence 3 Lp(8)> 0 for 6 = 6,- § and 3 Lp(8)< O

30 36
for 6 = Gd+6 . Furthermore, by RCl, the function 3 _ Ln(Q)

28

is a.e.(Z")* a continuous function of 9e (. Therefore,
for sufficiently small § and ¢, the likelihood equation has a
root (in the open interval (6,-§, 0,68 )) with probability
larger than 1-e, for n >ny(8,¢).
~ The proof of asymptotic efficiency follows Bar-

Shalom (1970).

Let §n be a root of the likelihood equation (3.6.2)
in the interval (8,-8, 65+8 ). We can arrange equation (3.6.2)

as follows

a.e. denotes almost everywhere
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0 -6 = - bo by + _A_ (8-8,)by] . (3.6.4)
"e J(90)/[3(90) 23@p *© ’ :‘

Since for n>ngy(8,e ), '|5n- 90|< § with probability exceeding
1-£ . Using (3.6.3) we can show that the denominator of
(3.6.4) converges to 1. From RC2, it follows that the numerator

of (3.6.4) has mean value zero and variance given by

E | (by/J(0 )2] = [1 3 log P, (0) }

\: of %) (J(Qo)) (il s 1)
-2 2

[nJ(QO)] E| (£ 2 log p,;(8))

i=1 30

which)for n>n (8,¢ ),1is equal to the variance of §n.
Hence the total information for the parameter © from n de-

pendent observations is given by
2 T 3 log p,(0) |
n _ - % logp .
37(8y) = (n3(6o)) /E [5.:1 76 1 J 0 =0, (3.6.5)

It is easily seen from the additivity property of information
that the tofal information is equal to the sum of the infor-
mation contained in each observation, if and only if condition
RC6 is satisfied.

The denominator of (3.6.5) can be written aé

E [.gl [5% 108 Py (eﬂ + 2 igj gelog p;(O) gelog j(gi], when
on using RC6, with n no(5, ¢), becomes

n 2
. E[ 3 1log p.(G)] = 3.(8,)
i=1 [ae * 10

) I acl=]
[y

i
nJ(0

NE
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Thus, for n >nb( § se)s We may rewrite equation (3.6.5) as
n .
J (90) =n J(QO)’
and so
E [(On 00)] nJ(Go)
: n

1=1
Q.E.D.
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CHAPTER IV

LEAST SQUARES

Introduction. In most scientific investigations it is fre-

quently necessary to determine the values of certain parameters
by means of actual measurements., The observations may be made
directly on the values of the unknown quantities (dependent
variables) or on certain functions of these quantities. In
the latter case, the values of the required quantitiesbmust
be computed from the observed values of the functions. In
order to obtain reasonably accurate results, the observations
are'usually repeated, either in the same way under the same
conditions, or in different ways under varying conditionms.
Under these circumstances it will be found that
different measurements of the same quantity usually give dis-
cordant results, the amount of discrepancies varying with the
mode of observation. The question, we are faced with now, is
how to determine from these discordant results the true values
of the required parameters. Becausé of these discrepancies in

the observations, we cannot expect to obtain our parameters

with absolute accuracy. All that we can hope for is to obtain

those values which are rendered most probable when all the ob-
servations are taken into account.
We illustrate the above difficulties with a concrete

example. We are required to determine the coefficient of linear
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expansion of a certain metal rod, based on measurements of the

length of the rod at various temperatures.

Temperature in oC Observed Length in m.m.
20 1000.22
40 1000.65
50 1000.90
60 1001.05

Let ¢ denote the required coefficient of linear expansion and
2, the length of the rod at 0°C. The length & of the rod at

any other temperature t may be represented by the equation:
L= 26-+ ct (4.1.1)

Using this model the data can be transformed into the following

set of equations:

L4 20c = 1000.22 (4.1.2)
%, + 40c = 1000.65 (4.1.3)
L0 4+ 50c = 1000.90' (4.1.4)
b, +60c =1001.05 . (4.1.5)

We can use any two of the above equations to determine the
values of g0 and c, but these values will depend on the par-
ticular pair of equations used, and in general will be different
for each pair. For example, we may find from the following

pairs of equations, the different values for 20 and c:
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Equations 20 (m.m.) c(m.m./OC)
(4.1.2) and (4.1.3) 999.790 .02150
(4.1.2) and (4.1.4) 999.767 .02267
(4.1.3)\ and (4.1.4) 999.805 .02025
(4.1.4) and (4.1.5) 1000.150 .01500

etc. etc. etc.

We are faced with the problem of ghoosing the best (in the
sense of fitting the observations most closely) pair of results.
However, in such a situation, we would be disregarding the bulk
of the observations thereby losing the majority of the informa-
tion available. 1In order to make use of all the data, we
choose as our estimates of the parameters those values which
make the sum of squared deviations of the observed values from
the predicted values a minimum. The name given to this process
is the method of Least Squares.

The theory of Least Squares was first discussed by
Legendre (1805) and Gauss (1805) who used it as a tool of es-
timation. Markov and many other authors have since made sig-
nificant contributions to the general theory.

The underlying assumption in the models of Gauss and
Markov is that the error covariance matrix is the identity matrix.
Aitken (1934) proposed a model in which the error covariance
matrix was a symmetric positive definite matrix, not necessarily

the identity. This model was later shown to be equivalent to
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the model of Gauss and Markov. Rao (1972) developed a unified
theoryvof Least Squares by which any problem involving regres-
sion coefficients can be analysed.

The theory of Least Squares, unlike the method of
Maximum Likelihood, has no general optimum properties to re-
commend it in the finite.sémple case. However, there exists an
important class of situations in which it does provide unbiased
estimators (which are linear functions of the observations) with
minimum variaﬁce. We shall also see that, contrary to Kendall
and Stuart Vol. II (1960), Least Squares estimators do have
asymptotic properties akin to those of Maximum Likelihood es-
timators.

The solution of the Least Squares Equation is discussed in
many standard texts. We shall therefore not discuss its solution
explicitly. Instead, we shall discuss properties of Least

Squares estimators under different conditions.

Asymptotic Properties of Least Squares

Eicker (1962) considers the linear regression model

y = XnB + ¢ (4.2.1)

where the subscriﬁt n denotes the dependence of the matrix X
on the sample size. It is assumed that the components of the
error vector ¢ are either (a) uncorrelated or (b) independent
with E [e] = 0O0and 0 < Var (¢ ) ¢ =, The distributions

of the components ekof € are not assumed to be known, nor are
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they assumed to be identical. However, it is assumed that

the €1 are elements of a certain set F of distribution
functions. With these assumptions Eicker (1962) gives con-
ditions on the set F and on the matrix X, such that the least
squares estimators of the parameters Bl,..., Bq are con-
sistent in case (a) or aéymptotically normal in case (b).

Cox and Hinkley (1967) consider a similar model.
However, they assume that the first column of the matrix X,
consists of all ones and that the components X of the error
vector € ére independent and identically distributed with
known probability density f( e,A ), with zero mean, where
A is an unknown parameter which gives the spread and pos-
sibly also the shape of the distribution of f . They then
give a condition under which the least squares estimators of
81,62,..., Bq are asymptotically normal, and then use
the fact that the maximum likelihood estimators of Bl,...,Bq
are asymptotically normal (see Chapter 3), to show the
asymptotic efficiency of the Least Squares estimators.

We shall follow Cox and Hinkley (1967) for the dis-
cussion of asymptotic efficiency, and Eicker (1962) for the
discussion of consistency.

As noted by Cox and Hinkley (1967), the general mean,
although included in the linear regression model, is seldom

a parameter of primary interest. We therefore can, without

loss of generality, assume that the first column of X, consist
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of all ones and that the other column sums of X, are zero.
We can also take the parameters 82,---, Bq to be orthégonal
to 81-, the general mean.

Since the distributions of the errors are known,
we can use‘the method of Maximum Iikelihood to obtain the
least squares estimators of the parameters Bl""’qu
The likelihood function L is given by

'n
L=T f(ei’l) . (4.2.2)

i=l
Thus the log-likelihood is given by
; n
g = 8 log f(e.,A) =¥ g(e,2), (4.2.3), say .
‘= 1 . 1
i=1 i= 1

We shall assume that the range of regularity of £ does not

depend on the parameters Bl 82 cvesB
b 9

q.
Let j, k =1, ..., q. Then for fixed A
) n
2 = I g'(e,,A) 3¢
— - — k, (4.2.4)
agk i=1 ask )
d 2 n
an 3 L =z g'(eﬂk) e 3sk
28,08, 1%1 —3 =
BBj BBk
=5 g"(e,,)) X,. X, '
i=1 i ik ¥ (4.2.5)
since g, = ¥y g B )
i =g Tk k
Th 2 XX
us E [-3 2 =) A, (4.2.6)
3B, R 1 3 ke ”
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Wwhere Ty is the jth column of X.n and

2 N
A = f f(Ei,)\) 3 log f(E,,A)dEi .
1 Rl de?, t

If X, is a component of the parameter X , we have

1
2 n
34 =-1I 3 g'(e;,)) x,
38,3 i=1 3% £y 0 | (4.2.7)
j 1 1 :
n
and since b Kij =0, j -~ Z,ﬁ..,q we have
i=1
2
B[ 202 ] -0 .
Simiiarly, aBjaAL
5
3 2 .
E[aﬂp] = 0, 17=2,...,q.
3% .
Thus the information matrix for [:AJ is

J[i] ={E 0| , where E is the
information matrix for the parameters B; and 2}, and H

the information matrix for the parameters 82,...,80, with

H=|[X X A hy2 = 2,...,9
[j k ei]h,!L ’

By the orthogonality condition, the covariance matrix of the

Least Squares estimators of 82,...,Bq is

' -1
X, X . o
5 %6 |1,k Var ( €)

Thus using the fact that the maximum likelihood estimators of

82,...,8q5 have covariance matrix

[(‘{j xk)' ,k]—l

-1
we have that the asymptotic efficiency is .[ A Var(siﬂ
e
i
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which 1is independent of the design matrix ZXp.

Asymptotic Efficiency

In the model considered by Eicker (1962) the design
matrix X, (n x q) is assumed to be of full rank q < n.
1

The normal equations obtained by minimizing e'e

are N
1 - 1
Xn y XanB } (4.2.8)

4"
where B = %; is the vector of least squares estimators of
B . Let H, =X} X,; by virtue of the rank assumption on

Xns Hn—l exists, and so

\ R
B- B = Hn X.n € (4.2.9)
2 = 41 ¥ vx 5-1 '

Var (B g) = Hn XnVXnHn , (4.2.10)

where V = var ( € ).

We now state and prove a theorem which gives necessary and
sufficient conditions for the consistency of least squares esti-
mators.

Theorem: A necessary and sufficient condition for the least
squares estimator g to estimate B consistently on F, is
that Ch Hn + o . Yhere Chmi;nHn is the smallest

min
characteristic root of H, .

Proof:

- . -1 a
Sufficiency: Since E Hn Xn € = 0, the estimator g is
unbiased. Now, the variance of each component of the vector

-1 _9 1t
H Xn € tends to zero if and only if El:e'xnﬂnzxn e} tends to
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Zero.

2
Since E{ek ] is assumed constant (i.e., independent of k and

n), we have

- 1
E [S'X H 2X e}
nn'n

-2t
0 (tr(XnHn Xn))

0 (tr(H;l))

0 (l/Chmian) P (4.2.11
where 0(n) = constant x n.
Therefore, since Ch pjp Hy -+« , we have

vop
B > 8 onF.

2
Necessity: 1If we choose all € v N(0,0 ) E€F

we see that 1 - 2 1
XevN L 0,0 H ] .
n q n
n
Hence the variance of the ith component of B -Bis given by

B -B = H

n 2
Var (B - Bl =0c (Hnl)ii s which because of consistency must

tend to zero for every i = 1”’? .
-1 q -
Therefore tr H = ¥ Ch.H
n i=1 im

must tend to zero and so Ch in H must tend to infinity.
m n

1

Q.E.D.
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Robustness of the Method of Least Squares.

A statistical procedure is said to be robust if it
is insensitive to departures from the assumptions which under-
lie it.

In the case of the general linear model, if the error
vector has méan zero and dispersion matrix 021n s where 02
is an unknown constant, then the estimates of the parameters
and their variances will remain valid even if the error vector
is not normally distributed; i.e., the method of least squares
is robust to non-normality. Box and Watson (1962) have studied
the robustness of tests on the regression coefficients with
respect to the non-normality of the error vector. They mention
that for a particular design matrix X(nxp), the variance mean-
square ratio Rp (obtained in comparison of means), and R,
(obtained in comparison of variances) have distributions which
may be approximated by F distributions with modified degrees
of freedom. Box and Andersen (1955) showed that the degrees
of freedom for the distribution of Ry are V;= ﬁnp
and Y9 = Gm (n -p-1) and for R.V are v;= va and
02= 5v~(n‘P‘1), where for mild departures from normality and
for moderate numbers of observations,

1~ -
%1 =1 - (1/n) B, and le =1+ 3% 8, , where

B1 and B2 are measures of kurtosis, which have values zero
when the distribution is normal. It is therefore seen that

Ry will be insensitive to non-normality because the corrective
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factor is of order n .
When the assumption of uncorrelated homoscedastic
errors is not satisfied, the least squares estimate of Y,

Y = (x'x)'lx'Y

is still unbiased; however it no longer has the property of
minimum variance. Thus, heteroscedasticity and correlation
of the errors still leaves the least squares estimétor un-
biased. However, the efficiency of such estimators is reduced.
It should be pointed out here that the method of least squares

is not robust with respect to biased observations.

A Different Computational Technique

There are many sophisticated techniques available
for solving the normal equations. These techniques include,
singular value decomposition and Householder transformation.

We present here an algorithm which finds least squares esStimates

by minimization of the error sum of squares, rather than by solving

the normal equations. The method involves the use of an

iterative scheme, and it can also be used to find Ridge esti-

mates.
Consider the general Gauss-Markov model
Y=XY+u
where X is an n x q matrix with q < n for which

r=r(X) s q, E[ul] =0 and Var{u] =0 1

The least squares estimator ; of Y is obtained by mini-
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mizing )
' \
[y-x¥|[ = u . (4.4.1)
- 2 2 ' )
Now, [Iy =xxv[[) = y'y-2y X'¥ + /XX v, (4.4.2)
2 2
So consider ||y—Xyl|2 + a||X||2. (4.4.3)

It was shown in Chapter I (1.31) that as g tends td zero the
least squares estimate ?(q) of (4.4.3) converges to the least
squares estimate ¥ of (4.4.2). We shall use this fact and an
iterative techniqpe called the Davidon-Fletcher-Powell Method

(DFp), (see Walsh (1975)),to solve (4.4.2).

Using (4.4.3), we have,

2 2 o
[y = xrll 4 allvll, =v' xxvfay’y - 2y'X'y +y'y

| ] A
Y'I'_XX'POLI]'Y -2Y Xy (4.4.4)

!

+yy .
Davidon considers quadratic functions of the form

1 YGa )Y+ Y'b + c, . (4.4.5)

Where G(g ) is symmetric and positive definite;
here G(q) = X' X+ a1 >0 for all 4 > 0.

(4.4.3) is minimized when

9 £(v,0) = 26(a)a - 2X'y =0, (4.4.6)
Y :

|

: - ~1
which gives y(a) = [G(a) ] X y. However, for n > 3, it is

usually difficult to invert G( ), and so we use other methods

to find ; (a) explicitly.
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Notation:
Let gx = gly ) =3 £(v,0)
Y Y =Y
The Method
1/ Set dk = —Hkgk ’

with Hy = I. Then dg is in the direction of search

from the current point Yk.

*
Find Ak‘ which minimizes f(yk + Ak dk).

Set Ck»= kdk .

Set + 0,

Yer1 = Yk T %

Evaluate f(kal) and 8yl ° noting that

Byl 1S orthogonal to = 0.

. [
Ops l.e. g K1 Ty

Set W, = gk+1 - gk.
. - ' '
Set (i) Ak % % /0k w
Py — 1 )
(ii) B, = 'Hk‘”k‘Dk_Hk / o Heow

(iii) H , = H + A t B .

Set k =k +1.
Check [|oy || or |[d) ||, if either satisfies the desired
stdpbing criterion,then stop, else return to Step 1 and
repeat the process.

For an n xn system (i.e. n variables), the
scheme will converge in at most n steps. Fletcher and
Powell recommend that we perform one extra jteration

after the apparent minimum is attained. This will help
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to avoid false minima.

A Further Application of the Davidon-Fletcher-Powell Method.

We noted in Chapter two that a desirable property of
estimators is that of unbiasedness. However, as shown by Hoerl,
Kennard and others, in many problems in multiplg regression,
the Least Squares estimates have a high probabilitonf being
unsatisfactory, or even incorrect, especially when the matrix
X' X 1is singular. Hoerl and Kennard (1970) have shown that
the addition of a scalar matrix kIp, k » 0, to X' X usually
corrects this problem, and for a particular choice of .k, we
obtain a point estimate of the regression parameter which has
a smaller mean square error than than the Least Squares Estimate.
This i1s a particular case of biased estimation and is called
Ridge Regression. We note here that in view of (1.31), the
Davidon-Fletcher-Powell method can be modified so as to produce
Ridge éstimatés and’calculate the mean square error.

Example (Goldberger): -

Consider the following macro-economic production

function

+ By X + €

yt = leti+ 32 th + B3 X t4

t t’

3

where 7yy 1is the real gross national product in billions of
dollars. Xj = 1, Xp is labour inputs in millions of man-years,
X3 1is real capital in billions of dollars, measured from an

arbitrary origin and X, 1s the time in years measured from
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1929 = 1, as the base year. The sample consists of 23 annual
observations for the United States from 1929 to 1941 and 1946
to 1955.

The observations are as follows.

X, Xy X, | y
47 54 1 142
43 59 2 127
39 57 3 113
34 48 4 98
34 36 5 94
36 24 6 102
38 19 7 116
41 18 8 128
42 22 9 140
37 24 10 131
40 23 11 143
42 27 12 157
47 36 13 182
51 9 18 1209
53 25 19 214
53 39 20 225
50 51 21 221
52 62 22 243
54 75 23 257

54 94 24 265
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55 108 25 276
52 118 26 271
54 124 27 291

This data was analysed using the Davidon-Fletcher-Powell method,
and convergence was achieved after four iterations.

The solution is

+ 3.8474 X,

y = -61.6196 + 3.8116 X, + .3121 X 4

3

The solution given by Goldberger is

y = - 61.728 + 3.8191 X, + .3219 X, + 3.7862 X, -
Golberger's computation was done using six decimal digit
accuracy whereas our computation was done using 15 decimal
accuracy and is therefore more accurate.

The error sums of squares is 163827.8

The computations were made on the IBM 360/370 computer of

the McGill Computing Center.



Iterate

B1

. 00000
. 01198
. 03816
. 02924

. 61956

Results for Goldberger's Example

By

5.00000
4.44023
3.36594
3.48767

3.81155

B3

- 0.0

-0.60235

0.26694

0.31627

0.31214

By

5.00000

4.81897

4.59982

4.04777

3.84736

P (I

133682.0 345052.00

940607.1 33455.75
-300116.2 1145.11
~245180.0 5.91
' -10

163827.8 < 10

. 000004
.000065
2.092224

.7550133

44
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Estimability of Linear Contrast in the General Linear Model (GLM)

The concept of estimability, that is, the existence
of unbiased linear estimators for linear contrasts in the
general linear model with less than full rank, was introduced
by Bose (1944). This concept was developed because the con-
ventional methods, which relied on the inversion of a matrix
could not be applied when the matrix is singular. The concept
was later discussed by many other authors: Roy and Roy (1959,
1961) who gave a condition for estimability; Searle (1965) who
seems to be the first author to use generalized inverses to
characterize estimable functions; Miliken (1971) who gives two
equivalent conditions for estimability which are specific forms
of the éondition given by Roy and Roy (1961) and Rao (1972)
who developed a unified theory of Least Squares.

In this section we shall discuss some of the many
results stated by these and other writers. We shall also prove
some theorems on the various characterizations of estimability.

We consider the general linear model

y=XB + ¢
where y is an n x 1 random observation vector, X is an nx p
matrix of known constants, of rank q (q<p),B isa px 1
vector of unknown parameters defined in Rp , and € is an uneob-
2

servable random vector with mean 0 and covariance matrix o Vv

2
where ¢ 1is positive and unknown, and V 1is a non-negative
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definite matrix. When V 1is positive definite,vwe can re-
parameterize the model so that the resulting error vector has
covariance matrix 021; we sﬁall therefore restrict our dis-
cussion to the latter case.

A considerable amount of research has been recently
done on the general linear model in which the error vector
has a singular covariance matrix. The most important discus-
sions on this model aré due to Rao (1971, 1972, 1973a, 1973b,
19735, 1974, 1975). This model was also stﬁdied by severai
other authors, including Zyskind (1967), Zyskind and Martin
(1969), and Alalouf (1975), who,noting that the unified theory
developed by Rao (1971, 1972, 1973a) failed to provide an ex-
plicit algebraic criterion for a function A'Y to be unbiased
for the linear contrast L'B , developed a theory similar to
Rao's unified theory of Least Squares to handle this problem.
We shall present some of the main ideas from Rao (1971, 1972,
1973a, 1973b, 1973c) and Alalouf (1975).

We now.stafe and prove some theorems relevant to .
the forthcoming discussion.
Definition: The linear contrast L'R 1is said to be estimable,

whenever there exists a linear unbiased estimator A'¥Y, such that;
] 1 '
L [Ay] =L8=axg (4.5.1)

for all values of g . Then L' = A'X, if and only 1if L'g 44

estimable,
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Theorem (Roy and Roy (1961)):

The linear contrast L'B 1is estimable if and only if

r(XT) = rX) - r(L), (4.5.2)
where T e M(L) *

Proof: Using (1.26), we have,

X

r[L,}'-'- r@) + [ X - @wHH] . (4.5.3)

The quantity on the right of equation (4.5.3) is equal to r(X)
if and only if

r{x@-aHnH] =@ - r@),
but I - (L") L'€éA(L') so I -(L') L' is a possible
choice of T. We now show that XT is invariant under any
choice of T.

Let T = I-(L')"L' = yV'(a full rank decomposition)

where U and V are q x t matrices each of rank

t = r(T) =q - r(L) .

Then

r(XT) = r(XUV")

> r(X UV'V(V'V)-]‘) :

> r(Xvu)

>r(Xuv') = r(X1) .,

Hence, r(XT) = r(XU), where the columns of U are a
basis for the column space of T. Any other choice of T must
admit the columns of U as a basis. Q.E.D.

*
N () denotes the null space.
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Theorem I (Miliken (1971)).

The linear contrast L' B is estimable, if and only
if r[xa-anf] =@ - . (4.5.4)
This theorem is equivalent to the theorem of Roy and Roy (1961)
since I - (L')+ L'eN(L').

Theorem II (Miliken (1971)).

The linear contrast L' g is estimable if and only if

tr [X(I—(L')+L'){X(I—(L')+L')}{I = g-t. (4.5.5)

Proof: Note that the matrix in (4.5.4) is idempotent, hence

r [xa-@nHryxa-ah L]

er [ x(-@H i xaE-an )]

r [x(-@H* ]

r(X) - r(L)

q_tu
Q.E.D.

Theorem (Searle (1965)).

The linear contrast L' g is estimable if and only if

L'X~-X=1" (4.5.6)

for some and hence for every X~ =g; &).

Proof; If L' = L'X "X then choosing A' = L'x]

we have L' = A'x , thus L' B is estimable.
Conversely, L' X~ X = A' X X~ X, and putting L' = A'X

A'x

L'.

Q.E.D.
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Theorem: Let M be a symmetric matrix such that

(& x'Mv) C Q(X'MX) N in which case
(y-XB) 'M(y -XB) as a function of B , has stationary
values.

Let B be a'stationary point.
If 2'8 1is the BLUE of 4'R for every g 6<a(x} then it is
necessary that

r(X'MX) = r(X) (4.5.10)

and M is of the form

(V+ XUX) +K (4.5.11)

for any symmetric choice of g- inverse, where U and K are

symmetric matrices such that

Qw0 =G+ xuxn, : (4.5.12)
VKX = 0, X'KX = 0. (4.5.13)
Conversely if M 1is of the form (4.5.11) with 4.5.12) and
(4.5.13), then r(X'MX) = r(X) and 2'f is the BLUE of 2'B
- for every JLGQ(X').
Proof: Following Rao (1972), we have, on equating the
derivative of. (y - XB)'(y - XB) to zero

x'mx g = x'My . (4.5.14)
This system is consistent since (:)Q(X'MV)C&(X MX)

and yefé(V;X), w.p. 1, hence

B = (X'MX) X'My (4.5.15)
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is a stationary point. Let ¢ = X'L. Then g'g 1is the BLUE

of £8 , hence by Searle's theorem

L'X(X'MX) X'MX = L'X.

Since L is arbitrary, we have

X(X'MX) X'MX = X, hence (4.5.16)

r(X) = r[X@M0)7 x'MX] € r(X'vx) s (%),

i.e.;, r(X'MX) = r(X), which proves (4.5.10) .

1f '8 1is the BLUE of g'g for every?® EG(X') , them

‘

applying the lemma on pp. 317 of Rao (1973a), we have

L'XX'MX)” x'Mvz = 0 (4.5.17)
for any L, where Z 1is a matrii of maximum rank such that
ZeN(X'). Therefore (4.5.17) implies that

X(X'MX)” X'MVZ = 0
if and only if X' MVZ = 0, this implies that

WX = X.'P (4.5.18)
for some P. Now, there exists a symmetric matrix U, such that
X'™M(V + XUX')MX = X'Mx . (4.5.19)
One choice of U is (X'MX) (X'MX - X'MVMX) (X'MX), since

X'"MXUX "MX

X'MX(X"MX) X'MX(X'MX) X'MX - X"MX(X'MX) X'MVMX(X'MX) X'MX

X'™X - X'"MX(X'MX) X'"MXRX'MX) X'MX

X'MX - X'MXP(X'MX) X'MX
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= X'MX - X'"MVMX(X'MX) X'MX
= X'MX - X"MVMX by (4.5.16) .

Multiplying both sides of (4.5.19) by X(X'MX) and

using (4.5.8) and (4.5.18), we obtain

(V + XUX')MX = X. (4.5.20)
If p' (V+XUX'") =0, then from (4.5.20) p' X = 0, and
hence p'V = 0 and vice versa, proving (4.5.12). Choosing
a g9 (V+XUX') and a symmetric. matrix K,
let

M= (V+ XUX) 4K, (4.5.21)

substituting (4.5.21) in (4.5.20), we obtain (4.5.13).
The converse is easily verified by using lemma 2.

let G=X'X+ZI =X'X +IT where

G = gl(G)
S = X'GT
H = H, +H,

where  H) = (I - ss)x'c", B, = (s")' &,

Alalouf (1975) states and proves a lemma which gives the
properties of the matrices G, S, H0 and Hl" We shall use
these results in the sequel and refer the reader to Alaiouf
(1975) for the proofs. He then uses these results to obtain
the following decomposition of the vector space into four

virtually disjoint subspaces in terms of four projectors;
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Projector Subspace Dimension

XH, Q )N &(1‘) dim[Q_<x)n Q(P)J

X, 1,6 (o) r(0-atm[QONG(]
such that Tl. (r) =0 ) )

G -x T,C (’Q(x) such that r(C) - dim [Q(x)n Qz(r.)]
T,N Q) = 0

I-GG T,C R" such that n - r(X,T)

7, Q(x,r) =0

He then gives the following theorem which justifies the above

decomposition.

Theorem. Let G, H, Ho’ H1 be as defined above.

Then

(1) HOY = HOXB w.p.1l. (4.5.22)

(i1) Cov[XHly, (66 - xn)y] = 0, Cov[ XHy, (GG~ -_XH)Y] =0-
(11i) (I - GG ) y = 0 with probability one (w.p.l) .
Using the decomposition and the previous : theorem we obtain

the following decomposition of y;

y = XHy + XH ¥ + (GG - XH)y + (I~ GG )y (4.5.23)

and note that the fourth term is identically zero and so provides
us with no information, while the first and second terms provide in-

formation about B. The third term has mean zero and so gives no

information about B.
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The following lemma gives an expression for the
permissible values of 8.

Lemma. The vector Bvsatisfies

B =H,y+ (I—HOX) a, (4.5.24)

0
where ¢ is an arbitrary vector and Hoy is fixed w.p.1
Proof. Using parts (iv) and(vi) of Lemma 5.1 (Alalouf)
we have that (4.5.24) is the general solution of (4.5.22).
Theorem. A'y 1is an unbiased estimator of L'B

if and only if

ax[1-wx]=vla -z, (4.5.25)
and

. - r .
A’XI'I(? - L Hoy . (4.5.26)

Proof. If A'y 1is unbiased for L'B, then for all B
satisfying (4.5.24), we have, A'XR = L'B.

Thus A'XH

qy +A'x[1- BX]a = L'HY + L1 - HOX] a

must hold for every o«. Hence (4.5.25) and (4.5.26)."
Conversely, if A' and L' satisfy (4.5.25) and(4.5.26),

then

E [a'y]

A'X8 = A'XHy - A'X[1 -"Hox]a

- 11 - T -
=L HOY L' (1 HOX)a

L'B-

Q.E.D.
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