
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly tram the original or copy submitted. Thus. sorne thesis and

dissertation copies are in typewriter face. while others may be from any type of

computer printer.

The quailly of thl. reproduction is dependent upon the quallty of the

copy submitted. Broken or indistinct print. colored or poor quality illustrations

and photographs, print bleedthrough. substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings. charts) are reproduced by

seetioning the original. beginning at the upper left-hand corner and continuing

trom left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

Comparing Electronic Commerce Solutions

for Small Businesses

Yu Xing

School of Computer Science

McGili University, Montreal

March 2001

Thesis submitted ta the

Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

© Yu Xing, 2001

1+1
~uiIitionsand
Bibliographie Services

315 w.IiItgIDn"
oea-ON K1A0N4
c.wII

~nationale
du canada

Acquilitions et
.Mees bibliographiques
_. rue -"--'1gIan
0Ia.- ON K1A 0N4
c..da

The author bas granted a non­
exclusive licence allowiDg the
National Library ofCanada to
reproduce, 10an, distnbute or sen
copies of this thesis in microform,
paper or electroDic formats.

The author retains ownersbip ofthe
copyright in tbis thesis. Neither the
tbesis nor substantial extracts nom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence Don
exç1usive pennettant à la
Bibliothèque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/_ de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'autetu' qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisatioD.

0-612-70532-3

Canadl

•

•

•

Abstract

E-commerce is a new way of doing business. It is beeoming inereasingly imponant to

everybody. The objective of this thesis is to compare various design approaches and to

find out the best solution for small businesses. Sorne eommonly used technologies in

developing e-commerce systems are introduced in the tirst three chapters. The topies

covered are from Web standards and protocols to Web planning and design, froln Web

servers to server side programming, and most imponantly, Java teehnology and IBM's

WebSphere. Based on these technologies, two solutions are presented: building from

scratch with Java servlets and building with IBM's WebSphere. We develop an online

store with each of the solutions. The last pan of the thesis is a comprehensive

comparison. Time, complexity, performance and cost are evaluated in this comparison.

A simple conclusion is drawn afterwards with our suggestions to small businesses

regarding which solution they should choose.

1

•

•

•

Résumé

Le Commerce Électronique est un nouveau moyen de faire le commerce. Il devient de

plus en plus important pour tout le monde. L'objective de cette thèse est de comparer

plusieurs solutions et de trouver la meilleure pour les petits commerces. Certaines

technologies utilisées communément pour développer les systèmes de commerce

électronique sont introduites dans les trois premiers chapitres. Les sujets couvrent des

nonnes et des protocoles de Web aux planifications et aux conceptions de Web, des

serveurs de Web aux programmations de côté serveur, et surtout la technologie de Java et

Websphere de lBM. Basé sur ces technologies, deux solutions sont présentées: la

conception à partir de zéro utilisant les servlets de Java et WebSphere de IBM. Nous

avons développé un magasin-sur-ligne avec ces deux solutions. La dernière partie est une

comparaison compréhensive. Le temps, la complexité, la perfonnance et le coût sont

présentés dans cette comparaison. Une simple conclusion est retirée après, avec nos

suggestions sur quelle solution les petits commerces doivent prendre.

II

•

•

•

Acknowledgements

1 wish to thank my thesis supervisor Professor Monty Newbom for his guidance, advice

and encouragement throughout the research. This thesis would not have been possible

without his support.

1also truly thank Gao Liqian for her collaboration as a partner in this research.

1 would like to thank the School of Computer Science for the graduate courses and the

research environment. Thanks to Teresa De Angelis, Vicki Keirl, Lise Minogue and Lucy

St-James for their great help.

Many thanks also to Zhou Xiaowen, Zhao Hongyu, Babak Mahdavi, Nagi Basha, Wang

Qijia, and Lin Yi. Their support in the survey provided me with plenty of infonnation

necessary in this thesis.

Finally, 1 wish to thank my husband Liu Tao for his support and encouragement during

my study.

m

•

•

•

Table of Contents
ABSTRACT •.•••.•••..•••.•••...•.•••...•••.••••.•••••••••••••••••...••..•••••......•......•..•..•....•.•.•..•.•.•....1

, ,
RESUME ...••.•..........••..•...•..••...•...•.•..•••.•••.•••••••••••.••.•..•••.••••.•••••••••••••.•••.•.•••.•..•..•..11

ACKNOWLEDGEMENTS .••......•.••.•.....•..............•.••....••....•......•........•....••........•.. 111

TABLE OF FIGURES ••••••..•••••..••.•...•••••.•.••....•••..••••••.•••••.•••...•..••.............••........ VII

CHAPTER 1 INTRODUCTION •..•.•..•.••..•.••...•................•..................•..•.•..•..........1

t. t The Development of E-commerce 2

t.2 The Architecture of E-commerce 3
1.2.1 Common Electronic Commerce Components 4
1.2.2 Electronic Commerce Development Team 5

t.3 The Importance of E-commerce 6
1.3.1 The Growth of the Internet 6
1.3.2. Benefits of E-commerce 7
1.3.3 E-commerce is Everybody's Business 8

1.4 E-commerce Solutions ••.••••••.•••..••.•.••.••.•••.•......••..•...••.•••••••••••.........•.....••.••.•••..•...•..•••. 9
1.4.1 Web-Based Store Building Services 9
1.4.2 Building the System from Scratch 10
1.4.3 Ready-made E-commerce Packages Il

1.5 Summary•• 12

CHAPTER 2 UNDERSTANDING THE TECHNOLOGY•••..•••.••..•••.•..••.••••.•••.•.••13

2. t Web Development Overview 13

2.2 Web Standards and Protocols 15
2.2.1 URL 15
2.2.2 HTTP 17
2.2.3 HTML 19
2.2.4 CGI 20
2.2.5 Common Log fonnat 21

IV

•

•

•

2.2.6 Security Measures 21

2.3 Web Planning and Design ..•....•.....••••..•..•..•....•...••..•.•.•..••.•.•.•.••••.•.••.•••.•..•..•..•..•.•..•.• 23
2.3.1 Web Planning 24

2.3.1.1 Environmental Requirements 24
2.3.1.2 Content Requirements 25

2.3.2 Web DesigIl 27
2.3.2.1 Text Content 28
2.3.2.2 Accessibility 29
2.3.2.3 Style Guide 30

2.3.3 Pictures and Color Management 31
2.3.3.1 Choose the Right File Fonnat 32
2.3.3.2 Manipulating GIF Files 33
2.3.3.3 Using a Browser-Safe Color Palette 33
2.3.3.4 Additionai Methods for Decreased Download Time 34

2.3.4 Summary 34

2.4 Database•................•....•....................•..................•............•.......................•......•.•.•..•.•. 34

2.5 Web Se~er••..••.....•.•...••............••............••...•....•............•........•........•....•..•..•.......••. 35

2.6 Programming.••.•.•..•....•...•.••.•.............•........•.•..•.••.•......•..•....•...•......•.••.•..•.•...•......••.•.• 37
2.6.1 JavaScript 37

2.6.1.1 Client Side JavaScript 38
2.6.1.2 Server Side JavaScript 39

2.6.2 ASP 42
2.6.3 Java Servlet & JSP 43

2.6.3.1 Java 43
2.6.3.2 Java Serviet 45
2.6.3.3 JSP 46

CHAPTER 3 WEBSPHERE•......•...•••••..••..•.••....•.•...49

3.1 WebSpbere Studio ..••...••.•.•....••.........•....•.••••....•••••.•.•..••.•••.•.••.•.•....•........••.••.••....•.•.•. 51

3.2 WebSpbere Application Sen'er 53

3.3 WebSpbere Commerce Suile 55

3.4 Summary••.•••.•.•••.•.•••••••••••.••••.••••••••••.••••.•.••••.•.•••...•..•..•.••...•.•.••••.••••••.•••.•••••..•..•....•••.. 56

CHAPTER 4 THE SOLUTION .•....•...•...•...•...•.....••...•..•....•••••.•.•••.•....•......••.•••.•..58

4.1 Requirements•••.••.............•..............................•....•....••....•.•.•...•...•••••••••••.••..•.•••.••.•••.•• 58

4.2 Higb- Level Design •••.•••...•.••..••.•....••••.••.••..•.•..•.••••.••.••••....•.•.••••.•••.••••••••••••••.••••••••••••• S9

v

•

•

•

4.3 Building from Scratch 62
4.3.1 Development Platform 62
4.3.2 Application Architecture 63
4.3.3 Implementation 66

4.3.3.1 Home, Help Page, Contact Page and Wholesale Page 66
4.3.3.2 Shop Online 68
4.3.3.3 Shopping Cart 70
4.3.3.4 Register and Login 72
4.3.3.5 Database 74

4.4 Building witb WebSphere 75
4.4.1 Development Platform 76
4.4.2 Implementation 76

4.4.2.1 Using the Store Creator 77
4.4.4.2 Building on WebSphere Application Server 79

CHAPTER 5 COMPARISON 83

S.1 Time 84

5.1 Complexi~•.••.••••••.••••••••••.•••••••••••.••.••.•••••.••••.••••• 86

S.3 Performance 87

5.4 Cost 89

s.s Summary 91

CHAPTER 6 CONCLUSION AND FUTURE WORK 93

REFERENCES 95

APPENDIX A - SOURCE CODE 99

VI

•

•

•

Table of Figures

Figure 1.1 The Architecture of E-commerce .

Figure 1.2 Dnline Advertising, Direct Marketing Revenues .

Figure 2.1 Web Site Development .

Figure 2.2 Browser-Safe Color Palette .

Figure 2.3 Web Server ..

Figure 2.4 Java Servlet ..

Figure 2.5 Java Server Pages .

Figure 3.1 WebSphere Product Family .

Figure 3.2 WebSphere Application Server .

Figure 4.1 The Buccaneer High Level Design .

Figure 4.2 Application Architecture .

Figure 4.3 Home page .

Figure 4.4 Help Page .

Figure 4.5 Contact Us Page .

Figure 4.6 Wholesale Login Page .

Figure 4.7 Wholesale Page .

Figure 4.8 Shop Dnline Page .

Figure 4.9 Shopping Cart ..

Figure 4.10 OrderPage.java .

Figure 4.11 Register Page ..

Figure 4.12 Login Page ..

Figure 4.13 Database Tables ..

Figure 4.14 Home Page Produced by Store Creator ..

Figure 4.15 Configure a Web Application ..

Figure 5.1 Time Comparison .

Figure 5.2 Complexity .

Figure 5.3 Costs .

VII

4

6

14

34

36

45

47

50

53

60

64

66

67

67

68

68

69

70

71

73

73

75

79

80

85

87

90

•

•

•

Chapter 1 Introduction

Chapter 1

Introduction

The Internet is one of the greatest inventions of the 20th century. It created a new world ­

a virtual Internet world. Based on the Internet, electronic commerce (e-commerce)

emerged as another important technical trend. The power of e-comrnerce affects not only

commerce, but also everybody's life style. Due to its increasingly important role in

businesses, several different solutions have been developed. The objective ofthis thesis is

to compare various solutions and to find out the best solution for small businesses.

In this chapter, we will discuss sorne background infonnation about e-commerce, such as

its development history and architecture. We will briefly talk about various mainstream

solutions later in this chapter, and we will be focusing on two of the good solutions. In

Chapter two and three, sorne necessary technologies \vill be discussed. Most of these

technologies are used in Chapter four to develop two different solutions for a virtual E­

business. We compare these two solutions comprehensively in Chapter live and draw a

conclusion eventually.

1

•

•

•

Chapter 1 Introduction

1.1 The Development of E-commerce

E-commerce has a longer history than j ust the Internet. Business-centered e-commerce

began more than two decades aga with the introduction of electronic data interchange

(EDO between firms. EDI serves as the interface for sending and receiving order,

delivery and payment information. Consumer-oriented e-commerce also has a long

history. We use automatic teHer machines or credit cards for transactions. These

transactions are actually carried out electronically. EDI and ATM, however, operate in a

closed system. They are a convenient communications medium, strictly between the

authorized parties.

The World Wide Web (WWW), created at the CERN Lab for Particle Physics in Geneva

in 1991, opened up a new age by combining the open Internet and the easy user interface.

The rapid development of World Wide Web makes the tenu "electronic commerce"

evolved from its original meaning of electronic shopping to mean ail aspects of business

and market processes enabled by the Internet and the World Wide Web technologies.

Narrowly speaking, e-commerce means selling and buying products and services throUgh

Web storefronts. ln a way, e-commerce is similar to catalog shopping or cable TV

shopping. Products being traded include physical products (such as books and cosmetics)

and digital products (such as audio, video, and software).

ln a wider definition, e-commerce is not limited to buying and selling products online.

Along with customers, an online business will also find its suppliers, accountants,

payment services, govemment agencies and competitors ooline. These online partners

demand changes in the way they do business from production to consumption. Along

with online selling, e-commerce will lead to significant changes in the way products are

customized, distributed and exchanged and the way consumers search and bargain for

products and services and consume them.

2

•

•

•

Chapter 1 Introduction

In short, e-commerce is a new way of doing business. Business-to-consumer processes,

within-business processes (such as manufacturing, inventory, corporate financial

management), and business-to-business processes (such as supply-chain management,

bidding) are aH affected by the e-commerce technology. Many leading software

companies have their own definition ofe-commerce [23]. For example:

Intel's definition: e-commerce ::::;: electronic market + electronic transaction + electronic

service;

IBMls definition: e-commerce = lnfonnation Technology + Web + transaction;

HP's definition: e-commerce is an electronic way to accomplish commercial transactions.

E-commerce sites can be divided into two main types: Business-to-Consumer (nonnally

called B2e) and Business-to-Business (B2B).

For B2C sites, an individual shopper browses through an online catalog, chooses sorne

goods he/she wants to buy, and then enters the credit card number to place an order. The

shopping flow is quite simple.

For B2B sites, the target consumers are business people. They order goods for their office

or their business. Their orders may need to be approved before the order cao be placed.

They may not need to supply a credit card number. [nstead, they enter a purchase order

number. They usually need to register before shopping. This thesis will mainly focus on

B2e sites.

1.2 The Architecture of E-commerce

Although every e-commerce system has a different background, uses different software

and serves different goals, they ail have a common architecture.

3

•
Chapter 1 Introduction

1.2.1 Common Electronic Commerce Components

Most e-commerce systems include a Web server, an application server, databases,

browsers, and usually a backend system. The relationships between these components are

shown in Figure 1.1.

• Web Server: Web servers use HTTP (Hypertext Transfer Protocol) over TCP/IP to

send and receive HTTP requests for pages and return the data to clients' browsers.

HTTP is the protocol that transfers hypertext files (such as html files) across the Web.

The most popular Web servers include Lotus Go, NES, IlS, Apache, etc.

• Database Server: Database servers run database management software. Databases are

kept in a directory that is part of a Web site, and accessed via server side

programming. Popular databases include D82, Oracle, Access, Informix, etc.

Database

ca ca a
...

Application
Server

,J=:Jl
1
-...~..

1- \

Il1ckend System

• 0
Internet Internet

Q..
/ \

Web Server
Oient B"owser

Merchant 8"owser

Figure 1.1 The Architecture of E-commerce

•
• Application Server: Application servers hold and support a set of addressable

resources. The resources couId be JSPs, EJB, or CGI programs depending on

4

•

•

•

Chapter 1 Introduction

different systems. Sorne examples of application servers could be WebSphere

Application Server, MS merchant server.

• Connection to Backend System: Backend systems are usually the existing merchant

systems containing business logic. Databases are kept in a directory that is part of a

Web site, and accessed via CGI or ASP programming. EDI, SAP, IBM MQ series,

CIeS and IMS are nonnally used to connect to backend systems.

• Browser: Browsers are tools used by both consumer and merchant to connect to the e­

commerce system via Internet. The most popular browsers are Internet Explorer and

Netscape.

Most of the above components will be further discussed in the following chapters.

1.2.2 Electronic Commerce Development Team

The previous section talked about the software and hardware architecture of e-commerce

system. More important than that is the human efforts in setting up an e-commerce

system. To develop a fully functional e-commerce system, a development team is usually

necessary. The team can be divided into three groups,

• Internet Marketing and Strategy Fonnulation:

This group works to provide Internet marketing consultation and innovative site

marketing strategies.

• Web Site Design & Development

This group contains both artists and programmers. Members work together to present

site layout and design, create graphics, animations and video production.

Programmers would mainly work on HTML, Java, JavaScript, Shockwave and other

lools.

• Systems Integration & Programming

The group works on database design and programming, multi-platform API

programming and integration of Web-collected data with existing backend systems.

5

•

•

Chapter 1 Introduction

1.3 The Importance of E-eommerce

To oversimplify, e-commerce is actually "Commerce on the Internet". The importance of

e-commerce is largely depended on the growth of the Internet.

1.3.1 The Growth of the Internet

Here is a closer look al this dramatic growth and promising future of the Internet,

• Internet traftic is doubling every 100 days, annual growth rate more than 700 percent.

• The number of Internet users soared to more than 100 million in 1997 from 3 million

in 1993

• Business-ta-business transactions on the Internet could surpass 5300 billion by 2002

• By the end of 1997, 10 million people in the United States and Canada had purchased

something on the Web, up from 7.4 million six months earlier

• Sixteen percent of ail new car and truck buyers used the Internet as part of their

shopping process in 1997. That figure will grow ta 21 percent by 2000

$8.18

$5.68

$4.1B

S500M

Figure 1.2 Dnline Advertising, Direct Marketing Revenues•
1997 1998 1999 2000 2001 2002

6

•

•

•

Cbapter 1 Introduction

• Total Internet commerce in the US will be close to S250 billion in 2002.

• First-year retum on investment for Web applications was 245 percent, compared to

popular clientlserver applications at 95 percent.

• Availability of venture capital to invest in Internet companies will nearly double this

year to over $8 billion

• Online advertising, direct marketing revenues are shown in Figure 1.2.

[14]

1.3.2. ReDefits of E-commerce

E-commerce bas a lot of unique beoefits that traditional commerce could not achieve.

First of ail, e-commerce provides new channels for delivery of products. Traditionally,

products can ooly reach consumer via retailers, store branches. Now with the new

technology of e-commerce, coosumers can browse over the Internet and order online.

Products cao be delivered immediately.

Secondly, distribution costs are reduced. Traditional distribution channels adds 135% to

the cost of a manufactured item; e-commerce enabled manufacturer to consumer will

only add 10% (Manufacturing News, March 17, 1998). Traditional bank transaction costs

are SI.07; e-commerce transaction will cost about 1 cent. Traditional airline ticket costs

S8 to process; e-ticket will cast just Sl(Booz-Allen & Hamilton Study). These differences

make lower cost and higher efficiency possible.

Thirdly, customer services are improved. Like distribution costs, service costs are also

dramatically lo\vered with the help of e-commerce. Merchants and manufacturers are able

to provide high-quality services, and even personalized services. For example, many

online stores provide consumers with customizable storefronts according to every

consumer's wish, which is not possible in traditional commerce.

7

•

•

•

Chapter l Introduction

With e-commerce, stores are no longer limited by geography and time. Any online store

can be accessed by customers all over the world, 24 hours a day, 365 days a year.

1.3.3 E-commerce is Everybody's Business

Until now, a big percentage of the e-commerce participants are so-called digital product

companies such as those in publishing, software, entertainment and information

industries. However, the power ofe-commerce affects ail of us.

More and more smal1 businesses have become involved in e-commerce. Statistics

gathered by Access Media International are shown in Table 1.1.

1997 1998 2000

Number of small businesses that have Web sites 900,000 2M 2.7M

Number of smail businesses conducting e- 400,000 600,000 1.3M

commerce

E-commerce sales captured by these small 53.58 57.58 5258

businesses

Table 1.1 Smal1 8usiness Leverage Electronic Storefronts

Even seemingly mundane bookstores face different challenges in the electronic

marketplace. The case of Amazon.com vs. 8ames & Noble shows the definition of

"stores" has to be re-evaluated. Distributing books require numerous local branches to

provide convenient access to customers. However, with the help of e-commerce,

Amazon.com has become the leading online bookstore, ranking itself as the "largest

bookstore" on earth not by opening numerous branch stores but via the Internet. The

"biggest bookstore", Barnes & Noble with a towering share of revenues and physical

bookstores, has been forced to respond to Amazon.com's challenge by opening ils own

Web store.

8

•

•

•

Chapter 1 Introduction

E-commerce has changed not only business operations, but also every individual in their

way of living. Through Web TV, the way \ve watch TV news and entertainment

programs changed. Changes in telecommunication such as mobile e-commerce affect the

way we receive information. We do shopping online, we pay bills online, and we make

phone caUs online. There is nothing we cannot find on the Internet, there is almost

nothing not yet been affected bye-commerce.

1.4 E-eommerce Solutions

E-commerce is important to every business, but e-commerce does not Mean the same

thing to every business. Different companies have different requirements on their Internet

activities; therefore, they would require diverse e-commerce solutions. For many

companies, the only aim oftheir Internet activities is to create an Internet presence, which

usually is somewhat equivalent of an "electronic brochure". This may include a

description of the company, a description of the company's product lines and contact

information. If properly advertised, even these simple sites can bring new business to the

companies. More companies need commerce-enabled Web sites. Internet users are

becoming more and more willing to make purchases online. If the users could not buy the

products or services immediately, the selling opportunities may be missed. Sorne large

sized or well-organized companies need more complicated e-commerce solutions that cao

reformat and improve their business processes.

Based on these different requirements, there are drree main kinds of solutions to choose

from: (1) using Web-based store building services, (2) building from scratch or (3) using

ready-made e-commerce packages.

1.4.1 Web-Based Store Building Serviees

Many smail businesses are looking for a way to launch e-commerce without having to get

too involved in the technical issues of online Web site development. Several companies

have begun offering all-în-one Web-based solutions for setting up an online store. These

9

•

•

•

Chapter 1 Introduction

solutions involve building sites entirely online so there is no software to download, install

or configure. What businesses need to do is just pick a look, fill in product infonnation

and choose sorne settings. These solutions are frequently inexpensive and include Many

common features. They have so-called "instant storefront" because they are fast. The

whole store is set up and administered through the Web. The development cost is close to

zero. However, for ail the services, there is a monthly maintenance fee of between $50

and $200.

The downside is that these services provide very limited functions. They May not support

the features a specifie business wants. They saved the work of dealing with the

cornplexities of installation and configuring, but that's because they only offer limited

ways to do these things.

Sorne successful examples of these services are "Microsoft bCentral" al

http://www.bcentral.com, "Vahoo Store" at http://www.yahooslore.com, "Bigstep" at

http://www.bigstep.com, and "freemerchant" al http://www. freemerchant.com.

These online services are still in their beginning stages, but are making progress towards

providing a simple and cheap solution to build online stores. Now, they are only a good

choice for very small stores.

1.4.2 Building the System from Scratch

An alternative to these Web-based services is to build the system from scratch using

sorne of the many software tools available. The advantage is that this approach could

provide the exact solution a business needs with greater flexibilities. The business could

build the features and functions they need to be unique and competitive in the

marketplace.

This solution requires expertise, time, and a sizable budget to develop an e-commerce

system. The developers need to work from interface design to database design, from main

10

•

•

•

Chapter 1 Introduction

application development to integrating tax, shipping and payment processing software

modules. There are a series of tools and standards in developing Web systems. An e­

commerce system can be developed in aimost any programming language. Many early

Web-based business interfaces were created in PERL or C++. More recently, a lot of

work has been done with Microsoft's Active Server Pages (ASP) and Sun's Java Server

Pages (JSP). Also, new standards like CORBA (Common abject Request Broker

Architecture) and ActiveX are becoming more mature.

1.4.3 Ready-made E-commerce Packages

The high end solution is to buy a ready-made software package. Medium and large

companies require more comprehensive solutions. They need an e-commerce system that

can streamline their existing business processes, improve their efficiency and handle

heavy load transactions. These companies will usually choose dedicated or co-Iocated

hosting and a whole set of e-commerce package. However, this option will generally

require more technical kno\vledge. The installation and configuration of these packages

are normally much more complicated than in the previous solution, let alone the

programming.

The advantage of these packages is that there are not normally many restrictions on the

applications or functionality they can offer to the Web site. The only restrictions are what

the company can afford and what the technical experts can manage.

Almost every Ieading software company has its own integrated e-commerce solutions

package. These packages include Microsoft's Site Server Commerce Edition, IBM's

WebSphere, Netscape's CommerceXpert, Intel's iCat Pro. lBM's WebSphere, for

example, has facilities for establishing and maintaining a large e-commerce site incIuding

payment manager, security server, catalog architecture management, database and

sophisticated tools for analyzing usage patterns. These packages varied in price from

$10,000 to $50,000.

Il

•

•

•

Chapter 1 Introduction

1.5 Summary

In this chapter, we talked about the development, the architecture and the importance of

e-commerce. Sorne possible e-commerce solutions are also discussed. These are the basis

ofthis thesis.

As mentioned earlier, there are basically three kinds of solutions to e-commerce. The first

one, "Web-Based Store Building Services", is pretty limited and involves little technical

issues. Although it could sometimes be a good choice for very small stores, it is out of the

scope of this thesis and we will not discuss it furthennore.

The second kind, namely "Building from Scratch", has many implementation possibilities

and involves a whole bunch of technologies. We will talk about sorne commonly used

technologies in Chapter two. After a brief comparison between these technologies, we

will present a detailed solution in Chapter four.

The last solution is to use well-made packages. Many packages are available in the

market. Although they each has sorne strong points, [BM's WebSphere tumed out to be

the most complete and reliable package. We will introduce WebSpherc in Chapter three

and develop a functional Web site with WebSphere in Chapter four.

For the two solutions presented in Chapter four, it is very hard to say which one is better.

When evaluating these solutions, only considering the developing cost is far from

enough. Various other factors should be considered, such as development time,

maintenance fee, performance and a lot more. In Chapter five, we are going to compare

the two solutions comprehensively in order to find out which one is better. Chapter six

will be a conclusion and future work.

12

•

•

•

Chapter 2 Understanding the technology

Chapter 2

Understanding the Technology

In this chapter, sorne essential technologies in e-commerce are discussed. These

technologies include Web standards and protocols, the steps in setting up a Web site

(Web planning, Web design, creating pictures and animations, dynamic Web site using

JavaScript), database, Web server, server side programming (server side JavaScript, CGI,

ASP, JSP) and Web security.

2.1 Web Development Overview

Before any introduction to the technology, a brief overview of the Web development is

shown in Figure 2.1. We can see when ail the technologies are developed and how they

contributed to the World Wide Web.

The Web has three main development cycles. The first one is Hypertext Web, where Web

servers served as URL based static HTML file servers. Users could access a static HTML

page by a Web address. This structure works well in electronic publishing. The

tremendous amount and diversity of hyperlinked infonnation available on the \Vorld

Wide Web has proved its success. Actually the new Web structures are ail based on

Hypertext Web.

13

•
Chapter 2 Understanding the technology

However, the infonnation on the Hypertext Weh is static and is served directly from

HTML files. The infonnation in these files only changes when the site administrator

updates the contents. Such statie pages allow for little interactivity. They reduce much of

Web exploring to a semi-passive activity.

Hypertext Web Simple Response Web
EJectronic Publishing FiIl-in Forms

------, ,,---------

Object Web
"Full-BIown" Client/Server

•

=.s:I!­tJ
§

t..-

• URL-Based
File Server

• Forms
• CGI

E6
• Java Beans/Applets
• ActiveX Controls
• ORB-Blsed Interactions

Via COR8'\. or OCOM
• Dynamic Hn&.
• Scripts
• Cookies/Sessions

• ASPs

Law

Interactive Responsiveness

High

Figure 2.1 Web Site Development

•

As the user requirements increase, more interactivity becomes necessary. From online

ordering, feedback meehanisms, database aecess, to searching eapabilities, the most

interesting Web sites depend on interactions between users and Web servers. Common

Gateway Interface (CGI) protocols and Active Server Pages (ASP) are the most

commonly used standards to implement interactivity. We can cali these Web sites Simple

Response Web sites.

Because the World Wide Web is developing al a rapid speed, aIl kinds of platfonns and

hardware are possible on the net. A platform-independent language like Java has become

the new trend of Web development. Reusability has always been a big issue in software

engineering. It also becomes more and more important in Web developmenl. Due to the

14

•

•

•

Chapter 2 Understanding the technology

previous two reasons, a so-called Object Web appears. The Object Web is based on sorne

new technologies like Java Beans, Java Applets, JSP, ActiveX, and Common Object

Request Broker Architecture (CORBA).

Most of the essential technologies mentioned above are discussed later in this chapter.

2.2 Web Standards and Protocols

The Web encompasses many standards and protocols. Users may access information

using any one of them. More importantly, the Web hides protocol layers from the users.

The users see a standard interface and don't have to know whether sorne information is

coming from one protocol or another. In addition, the Web does not restrict the types of

objects that cao be sent. Although several standardized content types already exist (GIF

images, MPEG video, HTML text, etc.), theoretically any content type cao be transmitted

over the Web.

The Web is primarily defined by four standards: URLs (Unifonn Resource Locators).

HTTP (Hypertext Transfer Protocol), HTML (Hypertext Markup Language), and CG[

(Common Gateway Interface). Servers and clients on the Web use these standards as

simple mechanisms for 10cating, accessing, and displaying information. Standards have

also emerged for a Common Log Format, so that programs could be written to analyze

the 10gs of any server. Security standards are the hottest issue under debate currently, but

it will probably be a while before one encryption or authentication standard is widely

accepted.

2.2.1 URL

URL stands for Uniform Resource Locators. [t is a standard way of specifying the

location of an object, typically a Web page on the Internet [25]. URLs are the forro of

addresses used on the World Wide Web. They are used in HTML documents to specify

the target of a hyperlink, which is often another HTML document (possibly stored on

15

•

•

•

Chapter 2 Understanding the technology

another computer). By means of a standardized addressing scheme, Unifonn Resource

Locators can be used to locate and retrieve infonnation anywhere on the Internet. URLs

can also be used to specify FTP file retrieval, find newsgroups and other data objects.

Here are sorne sample URLs:

http://www.greenecommerce.com/index.html

http://www.geocities.com/clickcall/bg.jpg

http://search.yahoo.com/bin/search?p=computer

http://www.geocities.com/clickcall/energica/product.htm#productl

gopher://infomcgill.mcgill.ca

mailto:xyu@cs.mcgill.ca

telnet://willy.cs.mcgill.ca

The part before the first colon specifies the access scheme or protocol. Commonly

implemented schemes include ftp, http or gopher. The "file" scheme should only be used

to refer to a file on the same host. Other less commonly used schemes include news,

telnet or maillo (e-mail).

The part after the colon is interpreted according to the access scheme. In general, two

slashes after the colon introduce a hostname (host:port is also valid, or for ftp,

user:passwd@host or user@host). The port number is usually omitted and defaults to the

standard port of the scheme. For exarnple, port 80 for HTTP.

For an HTTP or FTP URL, the next part is a pathname, which is usually related to the

pathnarne of a file on the server. The file can contain any type of data but only certain

types are interpreted directly by most browsers. These include HTML and images in GIF

or IPEG format. The file's type is given by a MIME type in the HTTP headers returned

by the server, for example, "textlhtml" or "image/gif'. The file type is usually also

indicated by its file name extension. A file whose type is not recognized directly by the

browser may be passed to an external"viewer" application, e.g. a sound player.

16

•

•

•

Chapter 2 Understanding the technology

The last part of the URL may be a query string preceded by "?" or a "fragment identifier"

preceded by "#". The later indicates a particular position within the specified document.

2.2.2 HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

collaborative, hypermedia infonnation systems. HTTP has been in use by the World

Wide Web global information initiative since 1990. The tirst version of HTTP, referred

to as HTTP/O.9, was a simple protocol for raw data transfer across the Internet. HTTP/l.0

improved the protocol by allowing messages to be in the format of MIME-like messages,

containing meta-information about the data transferred and moditiers on the

request/response semantics. [26]

HTTP is a relatively simple, highly flexible protocol. To deliver requested information

from a server to a client, HTTP defines a simple transaction that consists of four parts:

1. The client establishes a connection to the server.

2. The client issues a request to the server specifying a particular document to

retrieve.

3. The server sends a response containing a status code and the text of the document,

if it is available.

4. Either the client or the server disconnects.

One of the main goals of HTTP is to provide a simple algorithm that makes fast response

times possible. To achieve this goal, HTTP is defined as a stateless protocol that does not

retain infonnation about a connection from one request to the next. A lot of protocols do

retain state infonnation, i.e. FTP. When a user uses FTP, he/she can change the directory

he/she is working in, and the server remembers that directory \vhen il gets hislher next

request. With HTTP, on the other hand, the server does not remember the directory

because the protocol does not allow the server to retain information from a previous

connection.

17

•

•

•

Chapter 2 Understanding the technology

HTTP is limited to one request per connection. Unlike other protocols such as FTP, the

connection between server and client is broken after each request is made. Every time a

client wants to fetch a document, it has to establish a new connection to the HTTP server.

This is one of the main reasons why it takes so long to load HTML pages that have a lot

of graphies even if those graphies are similar. A separate connection must be established

for each graphie. Establishing a connection is not usually time-consuming, but it cao

seriously affect performance at distant or heavily loaded sites.

The primary difference between HTTP 0.9 and HTTP l.0 is greater flexibility, which is

made possible by two new enhancements. The tirst is the addition of transaction headers,

and the second is the addition of several new methods. Headers make it possible to pass

along information for facilitating authentication, encryption, and user identification. The

new methods offer additional capabilities.

HTTP 1.0 adds headers to ail transactions., whether they are client requests or server

responses. When a client requests data, the request transaction header can include the

name of the client software making the request (Le., the browser type, whether it be

Mosaic, Netscape Navigator, or another browser,), which type of the data the client

understands (i.e., data fonnats), and what languages the client understands.

Similarly, when the server responds to a request, it cao retum a header along with the

requested data. A response header can include information about the status of the request

(whether it was successful or not), the length of the data being retumed (i.e., the number

of bytes transmitted, not including the header), the content type, the language of the

content, and the date that the content was last modified.

When a client makes a request to a server, it chooses a requesting method based on the

purpose. Under HTTP 0.9, the only valid method was GET. HTTP 1.0 adds six new

methods: POST, HEAD, PUT, DELETE, LINK, and UNLINK.

18

•

•

•

Chapter 2 Understanding the technology

2.2.3 HTML

HTML means HyperText Markup Language. [t is a hypertext document fonnat used on

the World Wide Web. HTML is built on top of SGML (Standard General Markup

Language). SGML is a generic markup language for representing documents. SGML is

an International Standard that describes the relationship betw.een a document's content

and its structure. SGML allows document-based infonnation to he shared and re-used

across applications and computer platforms in an open fonnat. [25] HTML is a subset of

SGML. The World Wide Web Consortium (W3C) is the international standards body for

HTML.

HTML contains commands, called "elements" or "tags", to mark text as headings,

paragraphs, lists, quotations, and so on. A tag consists of a "<", a "directive" (case

insensitive), and a">". Matched pairs of directives, like "<TITLE>" and "</TITLE>" are

used to define area oftexts with a special place or style.

There are no rendering restrictions on browsers, so a browser can render the tagged text

according to its own definition. For example, a piece of text can he identified as a first­

level header with a pair of HTML tags. Each browser is free to render that text in

whatever format it uses for first-Ievel headers. For example, one browser might center

first level headers, and another browser might underline them.

More important than semantic markups, HTML provides the capability to create

hypertext links between one document and another document or object, or even between

locations in a single document. Links are the information threads that fonn the structure

of the World Wide Weh. The HTML links are specified through URLs as referred to in

Section 2.2.1.

Like any other programming language, features were added to HTML to meet needs that

were not met under previous versions. HTML 1.0, the tirst version, was a basic document

markup including links. HTML did not support fonns until version 2.0. With version 3.0

19

•

•

•

Chapter 2 Understanding the technology

cornes support for tables and mathematical equations. Version 3.0 also offers much

greater control over layout. Text cao be wrapped around graphies and figures. New

features gave the user even more control over the rendering of Web pages, and new tags

allowed users to center text and specify font sizes. These new tags were not in the official

HTML specification, but many have become de facto standards.

2.2.4 CGI

Although many Web sites are pure static infonnation publishing, the Web is designed as

an interactive medium. To make themselves more interactive, sorne sites generate HTML

pages "on the tly" based on client input. Generally, this functionality is achieved through

the CG1(Common Gateway Interface) protocol. CGI is not a prograrnming language. It is

a standard for running external programs from a World Wide Web HTTP server. CGI

specifies how to pass arguments to the executing program as part of the HTTP request. Il

also defines a set of environment variables. To make the definition simpler, CGI actually

defines an interface through which the server can pass infonnation to a program, and the

program can retum infonnation to the server.

Initially, each server had its own standards. Scripts wriuen for one server could not be

used on aoother server without major modification. But once the CGI standard was

defined, it became possible to take a script or program written for one server and

successfully run it on a different server. CGI is a good exarnple of how standards can

help bridge the incompatibilities inherent in systems with many participants who use lots

of different software.

CGr programs make interactive features such as infonnation gateways, feedback

mechanisms, database access, ordering capabilities, personalized documents, and

searching capabilities much more possible. Il is the main tool for creating truly interactive

experiences on the \Veb.

20

•

•

•

Chapter 2 Understanding the technology

Commonly, the program will generate sorne HTML that will be passed back to the

browser. It can also request URL redirection. CGI allows the retumed HTML (or other

document type) to depend in any arbitrary way on the request. The CGI program can, for

example, access information in a database and format the results as HTML. A CGI

program can be any program that can accept command line arguments. Sorne HTTP

servers require CGI programs to reside in a special directory, often "/cgi-bin" but better

servers provide ways to distinguish CGI programs so they can be kept in the same

directories as the HTML files to which they are related.

2.2.5 Common Log Format

The Common Log Fonnat is a standard fonnat for access logs. Il was developed 50 that

programs couId be written to analyze the logs of any server. The Common Log Fonnat

specifies what infonnation is logged and in what sequence the information appears. The

standard also describes delimiters, such as square brackets and quotation marks, which

are used to help identify the data. For example, the standard calls for date and time

information to be placed inside square brackets, and requests to be enclosed by quotation

marks.

The server automatically gathers the available data into the log. It lists which data was

requested7 when it was requested, what host the user was on when requesting the data7

and whether the request was successful. The log might also record user names, but it does

that only if you have modified your server software or if the server automatically requires

that requests for documents and objects be authenticated.

2.2.6 Seturity Measures

E-commerce is based on the Internet. Unlike traditional procedures, electronic transaction

information transmits among clients7 merchants and banks through the open Internet. The

method of transmission raised a lot of potential security problems,

21

•

•

•

Chapter 2 Understanding the technology

• Internet is an open system without a central control system. The net could be down or

congested, which would lead to malfunction.

• Internet data transmission is based on TCP/IP. The protocol itself does not provide

any security measure to insure no information is stolen during the transmission.

• Electronic information is virtual information. It is harder to identi fy the true origin

and destination.

Both providers and customers on the Internet want to transfer credit card numbers and

other private data securely. The Security Working Group was formed in December 1994

in San Jose by IETF. They worked on providing security services to HTTP. Three of the

protocols were developed to meet the security needs of commercial providers on the

Internet: Shen, S-HTTR (Secure HTTP) and SSL (Secure Sockets Layer). Each protocol

works in a different way.

The Shen approach, cal1s for three separate security-related mechanislns:

• Weak authentication with low maintenance overhead and without patent or export

restrictions

• Strong authentication via public-key exchange

• Strong encryption of message content

Shen is built on top of the existing HTTP 1.0 specifications. Il simply extends HTTP by

defining new HTTP headers that can be used in the request response to perform these

functions.

The second security protocol, S-HTTP, was developed by Enterprises Integration

Technologies (EIT). S-HTTP was designed to provide encryption and to authenticate the

content, but it is not very popular yet.

The third protocol is SSL (Secure Socket Layer). SSL is base on PKI tech (Public Key

Infrastructure). PKI tech is a classic algorithm. Now it is widely used on the Internet.

22

•

•

•

Chapter 2 Understanding the teehnology

Normally, when a person (A) wants to send an encoded message to another person (B),

he/she uses a passwordlkey/sin/pin (seeure identify number or personal identify nurober)

to enerypt it: E«(plain Text), keyA) => Cipher Text. After person B receives the encoded

message, B uses the same key to decode it: D«Cipher Text), keyB) => plain text. (keyA

= KeyB, E and D are algorithms). How to send the key to the other person in a safe way

is the big problem. Public key can solve this problem. Person A has a pair of keys, say

keyl and key2, the message eneoded by keyl can only be decoded by key2. E«Plain

Text), keyl) => Cipher Text, D«Cipher Text), key2) => plain text. Keyl is different than

key2, and there is no way to find out key2 from key1. If B wants to get message from A,

he/she let A know keyl (public key). Person A encodes message by keyl, and sends it to

B. Buses key2 (private key) to get the plain text. In this way, B won't have to worry

about the keyl being peeked by any third part during transmission, sinee keyl (public

key) is useless in decoding the cipher text. Only person 8 has key2, the private key. Only

8 can get the plain text.

Sorne Web address starts from "https:I/" instead of ''http://''. Https:// means this Web site

uses SSL. The public key algorithm has sorne limit. Itts relatively slow and cannot

encrypt long message, so it normally works together with other encrypt algorithms,

1) The SSL server gives its public key (in certificate) to the browser.

2) The browser produces a fresh nonnal key, and encrypts it by the server public key.

3) The server decodes the normal key.

4) Now the server and browser get the same key. They start up a seeure SSL session.

2.3 Web Planning and Design

Building a Web site is a complex process. A single Web site may have to fulfill many

roles from document delivery to business process automation. It also has to be built to

suit the needs of diverse groups including potential customers or departments in an

organization. The work ineludes the efforts from not only technieal people, but also

business people, artists and etc. as described in Section 1.2. This thesis only focuses on

the technical part. From the technieal point of view, the work of setting up a Web site

23

•

•

•

Chapter 2 Understanding the technology

ranges from planning, design, client side programming, database programming, to Web

server set up and programming. Each step will be presented with more details in the

following sections.

2.3.1 Web Planning

Like any other software development, the tirst step to set up a Web site is Requirement

Analysis and Specification.

2.3.1.1 Environmental Requirements

The environmental requirements will influence the Web site in many ways. Before we

begin to design a Web site, we need to know the end-user system requirements of

browser, connection speed, and monitor size as weil as the server-side requirements.

Determining the target platfonn for a Web site could be difficult. While some general

assumptions about the target users cao be made, surveying a sample of the user

population or analyzing the statistical reports for the existing site can be very useful. For

example, a consumer-oriented site is likely to be accessed via a modem connection, and

the users probably have only 15-inch monitors. Conversely, a Web site for a large

components company probably will be accessed primarily by well-equipped engineers

with high-speed connections. [22]

One way to solve the problem is to identify the most likely least common denominator

platform. However, it will be a waste for those who are using high-resolution monitors

and high-speed connection users. Another option is to provide a separate site for each

type of browser. It is possible to design a site that can sense connection bandwidth,

browser type, screen size and other such variables. However for sorne \Veb sites, the cost

and difficulty of this method would outweigh the benefits. The costibenefit ratio of the

engineering effort to support ail possible platforms must he considered. The best way to

24

•

•

•

Chapter 2 Understanding the technology

solve this problem is to identify the most common platfonn and design around it. For a

business to consumer site, sorne common Web design conventions, such as designing for

800·600 resolution in order to prevent the need for horizontal scrolling and avoiding the

use of proprietary tags can be useful. Also, designers should always try to avoid dealing

with the difference between browsers, only use their common characteristics.

ln addition to end-user system requirements, the server-side requirements for the site

should be considered. A different type of server could make the Web site design totally

different. The server-side requirements will be detennined by the functionality demands

of the site, corporate standards, and performance requirements.

The functionality of the Web site must be considered when detennining what Web server

. to use. For a dynamic site, the database platfonns must be compatible with the server.

The server should be chosen with consideration for the number of transactions that will

be occurring. Existing business back-ends will also influence decisions such as what

database, hardware platfonn and software should be used. Sorne business may require a

certain platfonn ta ensure compatibility with other company processes. Performance

issues will affect the server-side requirements as weil. For example, a simple static site

would have a totally different server requirement than an interactive retail site with

product ordering functionality.

After choosing a specifie server according to the above requirements, compatible

software, programming languages and technologies cao then be decided.

2.3.1.2 Content Requirements

When most users surf the Web, they are looking for infonnation. To them, content is the

most important component in a Web site. Every day the Web is becoming a more

powerful tool to help these people, as the content becomes stronger and more complete.

However, the problem is that as Web content becomes more complete, it is also

becoming alarmingly confusing. Every site takes users through a new navigation process

25

•

•

•

Chapter 2 Understanding the technology

to find what they're 100king for. Search engines return results in the thousands. Many

times, when a user gets through this Maze to the information he/she is looking for9itls out

of date or irrelevant. Therefore, a content requirement analysis in the early stages of Web

planning becomes extremely important.

The number one concem should be "what to include". NormallY9 Web site builders tend

to simply digitize ail the existing information and put it online. However9a Web site is

not the same as the business in real world9thus the presentation format should not be the

same, either. A site builder needs to analyze the customer demographics. What custorners

is the Web site trying to attract? Are these customers using the Web? What are they

expecting to get from the Web? How useful the content will be for them?

Here are sorne useful content suggestions for a Web site. Publishing sorne of this

information online can save in customer service costs [3]:

• Detailed information about products or services

• Customer-service information and applications. For example9product rnanuals9how­

to materials9and frequently asked customer questions

• A newsletter that talks about events9sales9or other time-critical information about the

business

• Online catalogs9ordering information, and ordering systems

• Archives of publications

• Job openings

• A library of press releases or lists of the partners and clients

• Information for stockholders

After the contents are defined9 the fonnat May be an issue. Web site builders need to

organize these contents into groups. Research has generally shown that five or fewer

options at one time seem to he the hest number to present to a user. (27] So always try to

get the number of groups to five or fewer. These five groups will form the top levels of

the information architecture for the Web site. The main principle for any design is to be

26

•

•

•

Chapter 2 Understanding the technology

user friendly. The organization of the contents should make it easy for the users to catch

the information they are looking for.

Another important thing to do is to establish an ongoing content development process. Il

makes no sense to spend the time and money to build a Web site and then not maintain it.

Many companies devote a lot oftime and resources to building Web sites that quickly go

out of date and become useless to customers. If a company does not have the lime,

money, and people assigned to maintain their Web site, this company will very quickly

be dead to the World Wide Web. A plan for editing and updating the Web site should be

made. Someone in the development team needs to ensure that the Web site is

communicating the right message, presenting the up-to-date contents.

On a Web site, the job of maintenance is to keep the site useful, develop the correct

content, leam and respond to customer feedback. Consider the following questions about

the continuing life cycle of a Web site when figuring out how to maintain it on an

ongoing basis [3),

• Who will ensure that outdated content is removed from the site?

• Who will ensure that content from ail the different groups in the organization looks

and sounds as though it came from one company?

• Who will continually post changes and updates?

• Who willlisten to what customers are saying and respond appropriately?

• Who will ensure the site is always fresh with new content?

• Who will add the very important "Iast updated" dates to every page on the Web site?

An up-to-date, fresh Web site will not only attract customers to the site, but also keep

them coming back.

2.3.2 Web Design

After aIl the content plans are decided, a big part of developing a Weh site is how to

present these contents. Print media are full of examples of well-presented content. For

27

•

•

Chapter 2 Understanding the technology

instance, most advertising in print magazines and newspapers aims to attract the passing

viewer's attention by using a simple concept contained in a short phrase or striking

graphic. Most newspaper paragraphs are relatively short to help the reader scan easily.

Content presentation is just as important on the Web. In fact, content presentation may be

even more important in this new medium, where speed of information access is key for

users. There are sorne basic guidelines for content layout on the Web [27].

2.3.2.1 Text Content

How the text looks like helps determine whether users spend time with the pages or hit

the Back button.

People encounter a lot of text in their lives and do not have time to read from beginning

to end. lnstead, they scan quickly. If they don't find what they want quickly, they quit.

So, the text should be structured, and the structure should be visible.

Ta structure the test: Organize content in short chunks, typically a paragraph or so, with

each chunk aimed at helping a user take one step toward a decision. Arrange the chunks

in logical order: for example, a sequence in time, or the steps in making a decision. If

information presented elsewhere is crucial ta understanding a particular chunk, repeat it.

Label the chunks clearly so that the user can instantly know what theyrre about. Highlight

the most important points. Use these points of entry into a page ta identify, summarize,

and promote the surrounding text:

• Images and captions

• Links

• Headlines, subheads

• Tables and listings and forms

• Boxes and sidebars

• Bullet lists, numbered lists

• Very short text•
28

•

•

•

Chapter 2 Understanding the technology

Clear is more important than clever. Make headlines and labels perfectly obvious and

make sense.

Try to write Lists: structured collections of infonnation. Table 2.1 compares nonnal

paragraphs and lists,

Paragraphs Lists

Oral, linear fonn that works best orally or in print Visual, non-linear fonn that works best in

interactive media

Hard to scan quickly Easy to scan quickly

Hard to update, nonnally have short shelf life Easy to update, often have long shelf life

Long, unstructured text repels the eye Short. structured text (bullets, numbers) attracts the

eye

Hyperlinks'detract from narrative Hyperlinks make lists more useful

Table 2.1 A Comparison between Nonnal Paragraphs and Lists

Write tight is also important. How long is too long? It varies by topic and level of reader

interest. Pages on the upper levels of a site attract more casual passersby, so they should

be shorter and faster. As users go deeper on a topic, they're willing to accept more and

denser information on a page. Even so, one rule is that text should be half as long online

as it would be in print.

2.3.2.2 Accessibility

The World Wide Web is supposed to be a place where everyone has the ability to find

information or shop. The designers need to be mindful of how accessible the Web pages

are. For example, if a user's mouse happens to be out of order, the software must be

accessible via the keyboard.

29

•

•

•

Chapter 2 Understanding the technology

So, ail clickable elements should be keyboard accessible (for those who cannot use a

mouse), ail non-textual elements should have a caption (that cao be read), 2-D layouts

should he able to resize properly. Also consider creating a "text-only" version of the site.

This is an important accessibility fealure for users who are running a browser that

displays only text.

2.3.2.3 Style Guide

• Frames

Avoid frames. Frame slows down the loading and displaying of a Web page, as weil as

making it more difficult for the user to "bookmark" a specifie view and be able to easily

retum to it.

When frames are necessary, always use three. The tirst frame should lie across the top of

the page and contain the corporate logo and links to the base level pages of the site.

Undemeath that go the other two frames. On the left should be a section menu to provide

links to additional details about this area. On the right should be the main content frame,

which should take up at least 75 percent of the content area and display the document the

user selected.

• Images: Keep image files as small as possible. Types of files are best fonnatted as

JPEG and GIF.

• Use less animated GIFs: Animated GIFs should be used to draw attention to

something, or enforce a message. If ail the images are animated on the Web site, it

not only confuses the users, but adds unnecessary download time.

• Scripting: Use scripting to add "functionality" to the Web site, not just for the fun of

it. Use the appropriate scriptiog language to meet the user' s needs. Be aware that

sorne people might hit the Web site with browsers that do oot support scripting of any

fashion.

30

•

•

•

Chapter 2 Understanding the technology

• Font: Avoid requiring special fonts. The user might not have installed the font

specified on the Weh. If a particular font must be used, provide the appropriate

altemate font names that include names for "common" fonts.

• Avoid message boxes: Using the alert function in JavaScript or VBScript to put up a

message box is usually annoying to the user. Limit the use of this function to

occasions.

• Print: A lot of users love to print out Web pages and read them later at their

convenience. This makes it important how the Web page prints out. Contlicts in

background color and font color will make ail the information on the page totally

unreadable when printed on a black and white printer.

• Other browsers and platforms: Not everybody is using the same browser. At least, the

Web page should be OK on the latest versions of Microsoft Internet Explorer and

Netscape Navigator, using Windows or Mac.

2.3.3 Pictures and Color Management

The time required to download a page is a big problem for users, and should he the major

concem for designers. Large graphies files make the downloading slower. Craig Kosak,

Art Director for the Microsoft Developer Network points out, "You'll make a big

difference in the user's experience and your cHent's happiness if you make your images

download quickly." [3]

But making little tiny images is apparently not a good solution. Users need beautiful

pages. What a designer should do is to make those beautiful pages' size as small as

possible so that the pages download quickly. Web color management techniques are

techniques to do this.

31

•

•

•

Chapter 2 Understanding the technology

Creating an image that downloads quiekly depends on two things: ehoosing the right file

format and working with that image until getting the right balance between download

time and image quality.

2.3.3.1 Choose the Rigbt File Format

Currently, two graphies file formats are dominant on the Web, JPEG and GIF.

• lPEG: lPEG (Joint Photographie Expert Group) is a method for compressing color

bitmapped images that allows for variable compression. lPEG is also the name of the

file fonnat for storing the resulting image. With lPEG, a designer can select

compression setting for each image. The marvel of lPEG compression is that the

format works with 24-bit images (16.7 million colors) cao be significantly smaller

than the same image saved in GIF fonnat that works with only 8·bit or less (256

colors) images.

When the Web content is about pictures, as in a site about fine art or photography, the

images need to be as high quality as possible. ln this situation, save in lPEG at the

Maximum quality setting (lowest compression) for the sharpest and most accurate

color. But do not use lPEG for line drawings or for images with large areas of flat

color because lPEG compression causes distortion in the flat color areas on machines

running 256 colors. Even though JPEG can display over 16 million colors, users with

only 8-bit color (most users) will still see the image at only 256 colors at best. This

affects the user's experience adversely.

One confusing behavior of lPEGs is that, even when a lPEG is smaller than a GIF,

the lPEG cao take longer to load. This is because the JPEG decompresses in the

browser. 50 a smaller JPEG file with more colors might take longer to download and

decompress than a bigger GIF file with fewer colors.

32

•

•

•

Chapter 2 Understanding the technology

• GIF: CompuServe's GIF (Graphics Interchange Format) is the industry standard for

Web pages. With GIF, designers can easily move Indexed Color, Gray Scale, or

Bitmap images between computer platfonns. GIF files support only 8-bit, or 256

colors. For flat color graphics, use GIF.

2.3.3.2 Manipulating GIF Files

• Using an adaptive palette: Adaptive palette GIF may be used if the image contains

sharp edges and type, or if it requires transparency. The process of downsizing a GlF

file is straightforward in PhotoShop:

1. Change the mode from RGB to Index Color to convert the image to 256 colors.

2. In the Indexed Color dialog box, under Resolution, check 8-bitIPIXEL for the

color bit depth. (Experiment from 3-8 bits, depending on the image.) Under

Palette, choose Adaptive.

3. Experiment with specifyjng fewer than 256 colors to reduce file size.

• Using an exact palette: Because using ail 256 colors creates a large GIF, consider

using an exact palette whenever possible. ln sorne cases designers may be able to

abandon the exact palette for an adaptive palette where they specify even fewer

colors, but going with an exact palette is usually a safe choice.

2.3.3.3 Using a Browser-Safe Color Palette

If an image uses a color that is not available fron1 one of the color slots in a browser's

256-color palette, the browser \vill use the closest match that it can find on the palette. In

an exact palette, if the colors are way off-scale with the colors in the browser's palette, the

browser won't recognize the colors, and will change them in completely unexpected

ways. The best approach to avoid this is to select the colors for the image from the colors

that the user's browser is prepared to use. There are sorne browser-safe palettes available

for designers. They contain only 216 colors out of the possible 256 colors eliminating the

40 colors that vary on Macs and peso

33

•

•

•

Chapter 2 Understanding the technology

• •••••••••••••••••••••••••••••••••B~
•••••••••••••••••••••••••••••••Be~2~
••••••••••••••••••••••••••• Il~ Èi ~:r:i :.:=;>
••••••••••••••••••••••••••~~2
••••••••••••••••••••••~~g
••••••••••••••••• II.~~~~]~~:::.·;

Figure 2.2 Browser-Safe Color Palette

2.3.3.4 Additional Metbods for Decreased Download Time

• Reuse common components. The tirst time an image is used, it is stored in the user's

computer cache, and thus can be redisplayed quickly.

• When creating a gradated or textured background, choose gradations or textures that

are subtle and continuous in tone.

• Create small files for the background so that the background loads quickly.

• Use speci fic color schemes. The fewer colors, the better the compression.

2.3.4 Summary

Web planning and design is the first step toward a sueeessfui e-eommerce solution. The

point of this phase is to figure out exactly what should be done. The structure of the site

should be weil considered, along with how the user will navigate the site. There is no one

right way to design things, but there is one right principle to follow: always be user

friendly. Users will be attracted to those easy to navigate, easy to catch infonnation,

fresh, simple and beautiful sites. Only after ail these planning and design are complete

should the site be implemented. Implementing too soon usually leads to a poor Web site.

2.4 Database

Many Web sites have functions like search index, yellow pages, portfolio tracking,

product support infonnation, catalog ordering and etc. Ali of these functions require that

data be retained and made available based on specifie requests. There are a number of

34

•

•

•

Chapter 2 Understanding the technology

different ways to approach this, but by far the most structured and straightforward one is

to use databases. A database is one or more structured sets of persistent data, usually

associated with software to update and query the data [25]. A database might be as simple

as a single file containing Many records, each of which contains the same set of fields

where each field is a certain fixed width. More complex database couId occupy a whole

server and serve several different systems.

Nowadays, the commonly used databases are typically relational databases. Relational

databases allow the definition of data structures, storage and retrieval operations and

integrity constraints. In such a database the data and relations between them are

organized in tables. A table is a collection of records and each record in a table contains

the same fields. Certain fields may be designated as keys, which means that searches for

specific values ofthat field will use indexing to speed them up.

Usually, SQL (Structured Query Language) is used to access relational databases. SQL is

an industry-standard language for creating, updating and, querying relational database

management systems. SQL was developed by IBM in the 1970s. ft is the de facto

standard as weil as being an ISO (International Organization for Standardization) and

ANSI (American National Standards Institute) standard. It is often embedded in general

purpose programming languages.

ln a Web site, a database is kept in a directory that is part of the site, and accessed via

programs like CGI, ASP or JSP. We choose to use two specifie databases, DB2 and

Access, in Chapter 4, The Solution.

2.5 Web Server

The Internet is a worldwide network of computers that send and recelve files and

information over a Tep/IP based network. An intenvoven system of IP gateways, or

routers, directs client requests to their destinations and back. Computers on the Internet

are identified by their numeric IF address (for example, 216.55.463.51). Those IP

35

IP Gateway

•

•

•

Chapter 2 Understanding the technology

addresses and each machine's corresponding domain name are managed by DNS

(Domain Name Service) servers on the Internet. World Wide Weh trafflc accounts for

much of the traffle on the Internet today. As Figure 2.3 shows, the Web server on the

Internet is part of a worldwide network.

Client Request

hlIP:lnO~site.com l1 ~ Web Server
~ _ 111.11.111.11

DNS server +
at ISP t

~ ...r ~ =111.11.111.11

a a
Client Client Other Web

Server

Figure 2.3 Web Server

A Web server is also called an HTTP server. Web servers are connected directly to the

Internet via high-speed communication lines. These servers run Web server sofhvare that

uses HTTP (Hypertext Transfer Protocol, as described in Section 2.2.2) over TCP/IP to

send and receive HTTP requests for pages and retum the data to clients' browsers. If one

site runs more than one server they must use different port numbers. Alternatively,

several hostnames may be mapped to the same computer in which case they are known as

ftvirtual servers".

There are ail kinds of servers for practically any combination of hardware and operating

system. Servers differ mostly in the "server-side" features they offer such as SSL (server

36

•

•

•

Chapter 2 Understanding the technology

side include), and in their authentication and access control mechanisms. We will build

our Web site on mM HTTP Server and Apache in Chapter four.

2.6 Programming

The heaviest work in Web implementing is programrning, which includes client side and

server side programming. Client side programming mainly deals with the browser. The

program describes how all the contents should be presented on the browser. HTML

(Hypertext Markup Language) is the dominant language for client side programming. A

large percentage of Web sites contain merely HTML. However, HTML provides no

capabilities to design pages that dynamically respond to user inputs. To achieve sorne

simple interactivities, like obtaining user input and sending emails.client side JavaScript

can be used. For more complicated functionality, we will have ta program on the server

side. CGI, ASP, JSP are sorne of the comman ways ofserver side programming. We have

already talked about HT~IL in Section 2.2.3 and CGI in Section 2.2.4. In this chapter, we

mainly focus on JavaScript, JSP and servlet, which will be used in Chapter 4. We will

also cover another related server side programming methad ASP.

2.6.1 JavaSeript

JavaScript is a scripting language that enables the developer to embed programming

commands ioto Web pages, integrate Java applets, Browser plug-ins, server scripts and

other Web abjects. This allows the developer to create pages capable of high levels of

interaction with their users, and access advanced browser capabilities such as multimedia,

VRML, layers, and style sheets.

JavaScript was developed by Sun Microsystems and Netscape Communication

Corporation as a cross-platform language, that is, a language enabling the same program

to run on different types of computers and operating systems. The European standards

body ECMA has released a language specification, ECMA-262, derived from JavaScript.

37

•

•

•

Chapter 2 Understanding the technology

It has been submitted to the International Standards Organization for adoption as an

international standard [2].

JavaScript supports the development of both client and server component of a Web site.

JavaScript that is interpreted within the reader's browser is known as client side

JavaScript. Web pages written in HTML with embedded JavaScript commands are no

different from normal HTML pages. They are both downloaded from a server to the

user's browser. The browser displays the HTML and executes the JavaScript commands.

Server side JavaScript commands are also embedded within the HTML, but they are

processed on the server. Server side JavaScript can process information submitted by a

Web browser and then update the browser's display accordingly. ln other words, the Web

pages' responses to actions perfonned and infonnation provided by their users take place

on the server as opposed to the user's computers. Client side and server side JavaScript

can be mixed within the same Weh page.

2.6.1.1 Client Side JavaScript

Client side JavaScript scripts are included in HTML documents via the <SCRIPT> tag.

When a browser loads an HTML document containing scripts, it evaluates the scripts as

they are encountered. The scripts may be used to create HTML elements or to define

functions, called event handler, that respond to user action, such as mouse clicks and

keyboard entnes. Scripts may also be used to control plug-ins and Java applets.

Simple JavaScript programs couId consist of only a single commando For example, the

following script displays a message to the user,

<HTML>

<HEAD> <rITLE> Hello world! </TITLE>

</HEAD>

<BODY>

<SCRIPT language = "JavaScript">

document.write ("Hello World!")

38

•

•

•

Chapter 2 Understanding the technology

</SCRIPT><IBODY>

</HTML>

JavaSeript can also be complex. They can process infonnation provided by the user in

sophisticated ways to add value, and then display the results. They can be triggered by

actions performed by users as they read the Web page, for example, clicking buttons,

moving the mouse over sorne specifie areas, or selecting from options. Basically, the

functions JavaScript can provide are listed below,

• Obtaining information from users: knowing when a Hypertext link is clicked, when a

button is c1icked or moved over, when a user gets to or leaves a page, using a form,

prompting the user for entries, confirming whether something is truc, etc.

• Processing the information: Storing and retrieving information over time, text and

form processing, doing math, comparing entnes, validating user input, etc.

• Communicating the results to the users: updating Web pages "on the fly", opening or

c10sing windows, writing information to forms, loading ne\v documents and images,

sending e-mails, etc.

2.6.1.2 Server Side JavaScript

JavaScnpt can be executed on the server as opposed to the browser. Server side

JavaScnpt can take information from the client, process it to add value, then generate and

send HTML, incorporating the results of this processing to the client browser. The fact

that this processing has taken place on the server rather than the browser is irrelevant to

the user because the display of information is the same.

Server side programming is much powerful than client side. First of aIl, servers are

usually more powerful computers than clients are, although il is not always the case.

39

•

•

•

Chapter 2 Understanding the technology

Running JavaScript on the server cao therefore be appropriate for applications requiring

more speed, power, and memory.

The advantages of server side JavaScript is not limited to power, size, and speed. Server

side JavaScript can offer functions not available to client side JavaScript. It enables read

and write access to files and databases stored on the server as weIl as calls to C libraries.

Client side JavaScript, for security reasons, has no such access.

Client side JavaScript is particularly suitable for smaller tasks. It is ideal for validating

and preprocessing user input to HTML fonns. These client side processing can often

reduce bandwidth when sending the results to the server. Processing and storing

infonnation about large numbers of visitors using client side JavaScript can reduce load

on the server.

Like client side JavaScript, server side JavaScript is written as text embedded in HTML,

except that it uses <SERVER> tag instead of <SCRIPT> tag. The text file is sent to the

JavaScript compiler, where the file is compiled into byte code and stored on the server.

When a client requests the Web page, the HTML and client side JavaScript are sent to the

client and interpreted on the client browser. The server side JavaScript, however, is

executed on the server. Commands in the server side JavaScript to write infonnation to

the client browser generate HTML and send it to the client browser for display as nonnaI.

Server side JavaScript functions cao also be divided into three main groups, obtaining

infonnation, processing the infonnation and communicating the results to the client, but

with additional features. Listed below are sorne of these features,

• Obtaining Information:

1. Server side objects: Server side JavaScript automatically creates a number of objects

that are usefui in enabling effective interaction between client and server. For

example, when a reader requests a Web page from the server, the server creates a

40

•

•

•

Chapter 2 Understanding the technology

request object relating to that interaction. The request object stores information as

follows:

request.ip: The IF address of the client.

request.agent: The name and version of the client browser.

request.imageX: The horizontal position of the mouse when the client clicked an

image map.

request.imageY: The vertical position of the mouse when the client clicked an image

map.

request.method: The HTTP method associated with the request (POST, GET or

HEAD).

request.protocol: The HTTP protocollevel supported by the client software.

request.auth_type: The authorization type.

request.auth - user: The name of the local HTTP user of the browser, if HTTP access

authorization is active for the URL.

request.query: Information from the request; material that appears after the question

mark.

request.url: URL of the request, minus the protocol, host name, and optional port

number.

There are also client abject, project abject and server Object. We won't list ail the

details in this thesis.

2. Storing client infonnation more permanently

3. Creating other objects and variables

4. Accessing files

5. Accessing databases

• Processing the information

Server side JavaScript can use all the client side adding value techniques. It can also

be injected into the process of adding value information retrieved from files and

databases accessible by the server.

41

•

•

•

Chapter 2 Understanding the technology

• Communicating the results to the users

1. Writing HTML dynamically

2. Writing JavaScript and variable values

3. Redirecting the user

4. Sending email via server account

2.6.2 ASP

Active Server Page technology is a scnptmg environment for Microsoft Internet

Information Server in which you can combine HTML, scripts and reusable ActiveX

server components to create dynamic Web pages.

An Active Server Page is a Web page with an extension of ASP instead of HTM. In

addition to the HTML contained in the page, the file contains either JavaScript or

VBScript. The script in the file is executed by the server when the page is invoked.

Typically, the script will perfonn sorne processing and generate HTML statements. The

only thing passed to the user is the resulting HTML. There is no visibility into the script

code, not even if the user looks at the source code with the browser.

An example of the usefulness of ASP is the processing of a form. Instead of invoking a

CGI program, the form data can be provided to an ASP file. That file can then process the

data, mail it in a formatted message, and generate an acknowledgment page.

There are a lot of advantages to using ASP. Il is easy, not requiring much programming

expertise. It is easy to maintain. It is interpreted instead of being compiled, which means

only a text editor is needed for debugging. AIso, ASP support is built into NT server; no

extra effort is needed to run ASP.

The largest drawback to ASP currently is that it is only fully supported on Microsoft NT

or Windows series servers. A platform-free alternative to ASP is JSP (Java Server Pages),

42

•

•

•

Chapter 2 Understanding the technology

which will be discussed in the following section and will be used as our e-commerce

solution in Chapter four.

2.6.3 Java Servlet & JSP

Java servlet and JSP are based on platform-independent programming language Java.

serviet is Java technology's answer to CGI, so is JSP to ASP.

2.6.3.1 Java

The Java programming language was developed by Sun Microsystems. What makes Java

unique is the fact that instead of beiog compiled ioto maehioe-dependent code, it is

compiled ioto intermediate bytecode, whieh is identical from platform to platform. On

each platfonn is a machine-dependent Java Virtual Machine (Java VM) that can run these

bytecodes. Java bytecode help make "write once, run anywhere" possible. A programmer

can compile his/her program into bytecodes on any platform that has a Java compiler.

The bytecodes can then be run on any implementation of the Java VM. That means that

as long as a computer has a Java VM, the same program written in the Java programming

language can run without modification, no matter whether the computer is a Windows

2000, a Solaris workstation, or an iMac.

There are a lot of different types of programs written in the Java programming language,

such as applets, applications, servlet, JSP, JavaBeans.

An applet is a program that runs within a Java-enabled browser. Origjnally applets were

used for impressive graphies or sophisticated user input, but they have also been used for

complex client programs. A disadvantage of applets is that they usually need to be

downloaded from a server which rneans they must be kept very small to minimize

download lime.

43

•

•

•

Chapter 2 Understanding the technology

An application is a standalone program that runs directly on the Java platfonn.

A servlet, as we will discuss in the next section, is a specialized program that nms on the

server side. Similar to the way applets run on a browser and extend the browser's

capabilities, servlets run on a Java-enabled Web server and extend the server's

capabilities. Java servlets are a popular choice for building interactive Web sites,

replacing the use ofCGI and ASP.

Java Server Pages (JSP) are HTML documents with imhedded tags and Java code. At

runtime, the JSP Page is compiled into a Java servlet and executed. JSP will be further

discussed in session 2.6.3.3.

JavaBeans are Java programs that follow the JavaBean specification from Sun

Microsystems. They are reusable components that cao be called from other Java

programs.

How does the API (Application Program Interface) support ail these kinds of programs?

It does so with packages of software components that provide a wide range of

functionality. Every full implementation of the Java platform has the following features

[28],

• The essentials: Objects, strings, threads, numbers, input and output, data structures,

system properties, date and time, and so on.

• Applets: The set of conventions used by applets.

• Networking: URLs, TCP (Transmission Control Protocol), UDP (User Datagram

Protocol) sockets, and IP (Internet Protocol) addresses.

• Internationalization: Help for writing programs that can be localized for users

worldwide.

• Security: Both low level and high level, including electronic signatures, public and

private key management, access control, and certificates.

• JavaBeans: Can plug into existing component architectures.

44

•

•

•

Chapter 2 Understanding the technology

• Object serialization: Allows lightweight persistence and communication via Remote

Method Invocation (RMI).

• Java Database CODneetivity (JDRC™): Provides unifonn access to a wide range of

relational databases.

2.6.3.2 Java Servlet

Servlets are programs that run on a Web server and build Web pages. The architecture is

shown in Figure 2.4.

(S.~let) (Cws)

(Se~Jet)

JavaEiqpœ

Figure 2.4 Java Servlet

Compared to traditional CGI, Java servlets are more efficient, easier to use, more

powerful, more portable, and cheaper than traditional CGI and than many alternative

CGI-like technologies.

• Efficient: With traditional CGI, a new process is started for each HTTP request. If

the CGI program does a relatively fast operation, the overhead of starting the process

cao dominate the execution time. With servlets, the Java Virtual Machine stays up,

45

•

•

•

Chapter 2 Understanding the technology

and each request is handled by a lightweight Java thread, not a heavyweight operating

system process. Similarly, in traditional CGI, if there are N simultaneous request to

the same CGI program, then the code for the CGI program is loaded into memory N

times. With servlets, however, there are N threads but only a single copy of the

servlet class. Servlets also have more alternatives than CGI programs for

optimizations such as caching previous computations, keeping database connections

open, etc.

• Convenient: Servlets have an extensive infrastructure for automatically parsing and

decoding HTML fonn data, reading and setting HTTP headers, handling cookies,

tracking sessions, and Many other such utilities.

• Powerful: Servlets cao talk directly to the Web server. This simplifies operations that

need to look up images and other data stored in standard places. Servlets can also

share data among each other, making useful things like database connection pools

easy to implement. They cao also maintain information from request to request,

simplifyjng things like session tracking and caching of previous computations.

• Portable: Servlets are written in Java. Consequently, servlets written for one server

can run virtually unchanged on another. Servlets are supported directly or via a plug­

in on almost every major Web server.

• Inexpensive: Once there is a Web server, adding servlet support to it (if it doesn't

come with the server) is generally free or cheap.

2.6.3.3 JSP

JSP (Java Server Page) allows Web developers to mix regular, slatie HTML with Java

lechnology. Here is a sample JSP program,

<HTML>

46

•
Chapter 2 Understanding the technology

<HEAD><TITLE> Hello World! </TITLE> </HEAD>

<BODY>

<Hl> Hello,

<!-- User name is "New User" for first-time visitors -->

<% out.println(Utils.getUserNameFromCookie(request»; 0/0>

</Hl>

</BODY>

</HTML>

As we can see in the above example, JSP separates the user interface from content

generation. This enables designers to change the overall page layout without altering the

underlYing dynamic content.

• Client
7. HTrvn... is sent back to

the client
Web Server

2. Server sends requests!6. HTflJIL is sent
ta Java Engine ta server

Storage

3. Java Engine fetches .jsp file
if itls not a1ready there

4..jsp file is compiled into a servlet

Figure 2.5 Java Server Pages

(ser?Mt) (CWJ)

(SelVlet) 5 The servlet
. . generates HTML

JavaFJ'liœ

•
As part of the Java family, JSP technology enables rapid development of Web-based

applications that are platform independent. JSP is an extension of the Java servlet

technology. Together, JSP technology and servlets provide an attractive alternative to

other types of dynamic Web programming that offers platform independence, enhanced

47

•

•

•

Chapter 2 Understanding the technology

perfonnance, separation of logic from display, ease of administration, extensibility into

the enterprise and most imponantly, ease of use. Figure 2.5 shows how JSP and Java

servlets work together with Web servers.

Sun has made the JSP specification freely available to the public, so that every Web

server and application server will support the JSP interface. JSP pages share the "write

once, run anywhere lt characteristics of Java technology. It aise has a lot of advantages

over other Web developing methods,

• JSP vs. ASP:

Firstly, the dynamic part is written in Java, not Visual Basic or other MS·specific

language, so it is more powerfui and easier to use. Secondly, it is portable to other

operating systems and non·Microsoft Web servers.

• JSP vs. Pure Servlets:

JSP cannot do anything that couldn't be done with a servlet. But it is more convenient

to write and to modify regular HTML than to have a whole bunch of statements that

generate the HTML. Plus, by separating the look from the content, different people

can work on different tasks: the Web page designers can build the HTML, leaving

places for the servlet programmers to insert the dynamic content.

• JSP vs. Server-Side IDcludes (SSI):

SSI is a widely supported technology for including extemally defined pieces into a

static Web page. It only supports simple inclusions. JSP is better because it use

servlets instead of a separate program to generate that dynamic part, and it supports

more complicated programs that use fonn data, make database connections, etc.

• JSP vs. Static HTML:

It is obvious that regular HTML cannot contain dynamic infonnation. JSP cao he

much powerful by only insertion of a small amount ofdYnamic program.

48

•

•

•

Chapter 3 WebSphere

Chapter 3

WebSphere

WebSphere is an e-commerce software platfonn developed by IBM. It links together ail

the applications including fulfillment, logistics, distribution, and accounting processes. It

helps businesses build, manage and grow e-commerce sites. The WebSphere software

platform for business offers specifie solutions for the B2B and B2C markets. For B2C

sites, WebSphere has solutions that include catalog and storefront creation,

merchandising, relationship marketing and payment processing. For B2B sites, the

WebSphere software platform includes sell-side applications to help them sell goods and

services to other businesses, exchange key business documents with partners and

vendors, and address key areas of content management, such as profiling and

personalization. Because of the focal point of this thesis is B2C sites, we will only talk

about WebSphere B2e part.

B2e e-commerce is more than putting up a storefront. In addition to catalog and

storefront creation, the WebSphere software platfonn helps ensure a successful e­

commerce solution by making the most of payment processing and electronic and

marketing techniques that attract and retain the customers. The WebSphere product

family consists of multiple integrated applications to assist with building, running and

managing complex Web sites. Figure 3.1 shows an overview of the WebSphere product

family. We can assoit ail the tools iota three catalogs: build, run and manage. [35]

49

•
Chapter 3 WebSphere

Business Application Components

Commerce Syite and Payment Mgr.

Wcb5pb.",
llIUIfg

.Workbench

.Wizards
• Content

Authoring
.Site Dcvelopment
• Content

Management

WU Standard
Edition

• Database Connection
Manager

.Java Servlet Run-time
and services

WAS Ady.nced
Edltign

• ElB. Java Servlct
Run·timc and Services

.Clustering and Scaling

.CMP Entity ElBs
• Database Connection

Manager
• ElB Rclationships

WA$ Ent.rprl"
Edition

• Distributed Business
Components

• ClustL-nng and
scaling

• Host connection
manager

• Databasc
Connection
Manager

• ElB. Java Servlet
Run-time and
services

.CORBAORB

Site Analyzer

• Content AnalysÎs
• Usage Analysis
• Reponing

VisualAge for
Java • Caching

• Load Balancinll.

WebSphere Edge Server

• Filtcring

Tivoli

•
• Application

Programming
.Component

Dcvclopmcnt
• Team

Dcvclopment

Build

IBM HTTP Server. NClScape.llS. Apache. Domino go

NT AIX HP·UX Salans Linux Nctwan: OS/2 OS/~OO 05/390

Run

Figure 3.1 WebSphere Product Family

Manage

•

• Build

Building tools include WebSphere Studio and VisualAge for Java. WebSphere Studio

provides a project-based environment for managing complex Web sites consisting of

statie and dynamic content. VisualAge for Java provides a single-user or team

environment for developing Java applications, servlets, Java Beans and Enterprise Java

Beans (EJBs).

• RUD

Applications for running Web sites include several kinds of servers. WebSphere

Application Server provides the infrastructure for deploying enterprise Web applications

consisting of servlets, Java Server Pages and Enterprise JavaBeans with connections to

50

•

•

•

Chapter 3 WebSphere

databases and transactional systems. WebSphere Edge Server provides network

dispatcher technology and a caching proxy server. IBM HTTP Server combines the

popular Apache Web server with performance, security and manageability enhancements.

WebSphere Commerce Suite and WebSphere Payment Manager provide the e-commerce

business functionality and tools ta create and manage standalone or hosted merchant

sites.

• Manage

WebSphere Site Analyzer provides tools for analyzing Web site content and usage.

WebSphere Commerce Suite is Tivoli ReadyTM, which means Tivoli solutions can be

used to manage the e-commerce solution. Tivoli's e-business management products

enable businesses to speed deployment, ensure security, maintain availability and

optimize performance of the business systems.

In the following sections, we will discuss three essential components of WebSphere:

WebSphere Studio, WebSphere Application Server and WebSphere Commerce Suite.

They have been highlighted in Figure 3.1. These components are necessary in ail

WebSphere projects, and are most relevant to our solutions in Chapter four.

3.1 WebSphere Studio

WebSphere Studio is a suite of tools that help teams design, develop, and publish Web

applications. WebSphere Studio is the tirst tool in the industry for visual layout of

dynamic Web pages. [39] Studio supports JSPs, full HTML, JavaScript and DHTML,

uses wizards (for generating database-driven pages), and updates and corrects links

autornatically when content changes. WebSphere Studio allows developers ta integrate

their favorite content creation tools, and provides local and rernote debugging with the

industry's tirst JSP debugger. Here listed sorne of the Studio features:

• Page designers, graphie artists, and programmers ail work on the same projects with a

common view

51

•

•

•

Chapter 3 WebSphere

• The Web site is composed of independent parts, so it is easier to maintain

• Any tools can plug in, so developers can work with their favorites

• Web development tools include:

• Page Designer to visually create and edit HTML and JSP files

• Applet Designer, a visual authoring tool that makes it easy to build new Java

applets

• WebArt Designer for creating images, buttons, and other graphics for the Web

page

• AnimatedGifDesigner for assembling GIF animations

• Wizards are provided to import a site into Studio and to create server-side Java

programming logic for database access or JavaBeans

• Includes an integrated Debugger to find JSP and Java code problems in real lime

• Integration with popular source control management software like IBM VisualAge

Team Connection, Rational ClearCase, Microsoft Source Safe, PVCS, and Lotus

Domino

WebSphere Studio version 3.0 is fully integrated with IBM VisualAge for Java. They

work together to reduce the time and effort in creating, managing, debugging and

deploying Web applications. These tools are not only integrated with each other, but also

with the new versions of the IBM WebSphere Applications Servers for creating and

deploying EJB applications that developers can test and debug fully. Tasks can be done

either from within the VisualAge for Java integrated development environment (IDE) or

remotely on WebSphere.

A major goal of WebSphere Studio is to make it easy for developers to organize and

manage Web development and deployment so they can save time and avoid errors. The

Studio has Java servlet and JSP generation wizards for easy creation of dynamic Web

pages using Java technology. The Studio workbench provides easy, powerful tearn­

enabled site creation and management. Web page designers, graphic artists~ and

programmers can a11 work on the same project with common views of files and

relationships.

52

•
Chapter 3 WebSphere

3.2 WebSphere Application Server

WebSphere Application Server provides the "platfonn" for Web applications based on

Java technologies such as servlets, Java Server Pages and Enterprise JavaBeans. It is the

basis of WebSphere application services. Figure 3.2 shows a number of possible

relationships among the elements of a Web application. [36]

•

Clients

Java Applications

Web Server

WebSphere
Application Server

ReJatJonal
Databases

• •

•

Figure 3.2 WebSphere Application Server

WebSphere Application Server Standard Edition provides support for running non­

transactional server side Java applications based on Java servlets and Java Server Pages,

incorporating database access, personalization and seeurity. The Standard Edition lets

developers use Java servlets, Java Server Pages and XML to quickly transform statie

53

•

•

•

Chapter 3 WebSphere

Weh sites into vital sources of dynamic Weh content. Standard Edition is appropriate for

a single node site. Its features include,

• Support for Weh applications:

• Java servlets 2.1 runtime

• Java Server Pages 0.91 and 1.0 runtime

• JDBC database access \vith connection pooling

• JNDI naming services

• XML support

• Integrated security using LDAP

• HTTP Session and User Profile Support

• Administration tools

• Java based graphical administration interface

• Distributed debugging support

• Works with ail major Web servers

• IBM HTTP Server, lIS, Netscape, Apache, Domino

WebSphere Application Server Advanced Edition extends the capabilities of Standard

Edition by providing Enterprise JavaBeans support, transaction services and clustering

support. The Advanced Edition is a high·perfonnance EJB server for implementing EJB

components that incorporate business IOgÎc. Il has ail features of Standard Edition plus,

• Scalable, highly-available transactional runtime

• Clustering with multiple replicated nodes

• Workload management

• Built·in Object Request Broker

• Supports DB2 transactional JDBe driver

• Enterprise JavaBeans support

• Full EJB support, including container managed persistence, entity, and session

beans

• EJB security

• Integrates with DB2, Oracle, and Sybase databases

S4

•

•

•

Chapter 3 WebSphere

WebSphere Application Server Enterprise Edition provides support for building

distributed, transactional applications that can integrate Weh and non-Web systems. The

Enterprise Edition integrates EJB and CORBA components to build high-transaction,

high-volume e-business applications. Enterprise Edition provides the features of

Advanced Edition plus sorne powerful product components like Component Broker,

TXSeries and IBM MQSeries. According to our project requirements, we will be using

the Advanced Edition in Chapter four.

3.3 WebSphere Commerce Suite

WebSphere Commerce Suite is actually a new version of Net.commerce. It provides ail

of the tools and services needed to build scaleable, high functional e-commerce Web sites

for businesses. The package also includes a Web server, DB2 database and Payment

Server. The WebSphere Commerce Suite functionality includes an extensible server

providing the store flow business logic, a comprehensive data model for merchant data,

an administration interface including store creation tools, catalog architect for defining

product catalog data, Product Advisor for producing intelligent catalog views, sorne

sample stores and backend integration samples.

WebSphere Commerce Suite Start Edition helps businesses develop compelling e­

commerce sites that allow customers to set preferences, navigate catalogs, drop items in

shopping carts, check out, select paymcnt and shipping methods and pay for purchases by

credit card. An administrative interface is provided for managing Web site, stores or

malis. Developers can create interactive catalogs that can help sell anything (including

hard goods, soft goods and services) and guide customers through efficient shopping

flows. Credit card can he processed with IBM WebSphere Payment Manager.

WebSphere Commerce Suite Pro Edition can increase site functionality, accommodate

high transaction volumes and leverage the back-end systems. WebSphere Commerce

Suite Pro Edition contains ail the features and functionality of the Start Edition plus these

features:

55

•

•

•

Chapter 3 WebSphere

• Integrate existing middleware and systems using accepted industry standards like

Java technology, Java Server Pages, Enterprise JavaBeans and XML.

• Create effective up-sen and cross-sell techniques that drive sales by presenting

products complementary to initial purchases or that invite customers to purchase

more expensive items than the original selection in the same product category.

• Offer time-based promotions that allow a business to move more products ln a

speci lied time or inventory condition.

• Reach global customers by providing infonnation based on preferred language and

cultural preference.

• Serve the customers, regardless of location, time or device, by extending the

applications to wireless users through rn-commerce capabilities.

• Build associations (such as accessories or replacements for out-of-stock items) to

increase revenue; create one-priee packages at attractive priees; assemble bundles that

support convenience and offer guidance to the customers.

• Customize catalogs that cater to specific buYÎng preferences and purchasing patterns

through the produet advisor feature

• Conduct open-cry, sealed-bid and Dutch auctions, providing a new channel to move

excess inventory and discontinued products. Set the mies of the auctions and establish

an auction gallery for buyers to view, search and specify bids for items on the auction

block. The end result is not only a win for the highest bidder but also a win for the e­

business.

3.4 Summary

An successful e-commerce must navigate a set of four phases: quiek start, growth and

maturation, differentiation, and continuous integration. From a technical perspective,

businesses need a platforrn that supports a wide range of solutions, features, and change

management. With an the features discussed in previous sessions, WebSphere software

platfonn stands out among ail the similar e-commerce software packages. It has emerged

as a flexible and robust platfonn for strategic e-commerce. Instead of forcing

S6

•

•

•

Chapter 3 WebSphere

organizations to assemble pieces, it provides a comprehensive platfonn. As ail good e­

commerce platfonns should, WebSphere supports key industry standards, including

J2EE, XML, LDAP, and WAP.

WebSphere provides Studio and VisualAge development tools for quick start application.

It offers a variety of scalability and reliability features required for ail e-commerce

solutions. WebSphere also includes enhanced and advanced features for those businesses

trying to differentiate themselves.

57

•

•

•

Chapter 4 The Solution

Chapter4

The Solution

The Web site we are going to set up is named "The Buccaneeru
• The Buccaneer is a Web­

based discount store. Unlike businesses that use the Web as part of a sales and marketing

strategy, The Buccaneer will use the \Veb for its business in general. The Buccaneer

mainly focuses on discount car accessories, but it has a potential to extend its products to

other categories. As described in the previous chapters, the major phases in a Web site

development cycle would be requirements gathering, design and implementation. ln this

chapter, we will go thought these steps and present two different implementations.

4.1 Requirements

The requirements gathering phase is one of the most significant phases in development.

The design is based on the requirements and the construction is based on the design. So

the requirement specification is the foundation of the entire project. After an intense

communication with The Buccaneer's managers, a close investigation into the project and

a comprehensive survey on similar Web sites, we concluded the requirements as Iisted

below,

1. Introduction to The Buccaneer as weIl as infonnation on using the site.

58

•

•

•

Chapter 4 The Solution

2. The presentation of an initial list of categories, providing the ability to navigate

down through subsequent levels of subcategory.

3. The ability to navigate from subcategories up towards the initiallist.

4. A shopping cart for users to check their selections.

5. A customer online registration process.

6. OnHne shopping abilities such as customer login, priee calculation, credit card

processing.

7. A wholesale page with password protect, where authorized wholesale buyers

could access for wholesale priees and information.

8. An OOBe database on the server to store the customer infonnation and

transaction records.

9. A help page provides information on how to shopping online, means of delivery

and any other useful guides.

10. An overall design to make The Buccaneer's image consistent.

Il. The description of the copYright ownership for the site.

12. The description ofboth marketing and technical contact infonnation.

13. The development platform should be based on existing hardware conditions: PC

Pentium [II 500M.

14. A message showing that the Web site is up-to-date.

15. Fast downloading time.

16. A server capacity ofabout 50 to 1000 visits a day.

17. An assumption that the uses have low to average level of computer knowledge,

average speed connection to the Internet, a 15 inch monitor and a resolution of

800*600 or higher.

4.2 High- Level Design

Based on the requirements listed above, we came up with a high level functional design

as shown in Figure 4.1 .

59

•
Chapter 4 The Solution

The "home" page is the tirst page users would surf and the most important page in a Web

site in terms of capturing users' attention. The Home page aimed at browsers should be

analogous to magazine covers. The home page is the focal point for the rest of the site.

Ali the links on the home page should point inward, toward pages within the site. A very

clear and concise statement of what is in the site that might interest the user will he

provided. Menus will he organized in a c1ear way presenting ail six possible choices as

drawn in Figure 4.1. Current date information and a description of the copYright

ownership will be on the homepage as weil.

• Wholesale
Buyer

HOME

Figure 4. 1 The Buccaneer High Level Design

Help

•

The "register" page will he a fonn to gather user's personal information. The users will he

asked to choose a user name, a password and provide infonnation such as name, address

and phone number. The users need to till out this fonn before they buy anything online.

With the user name and password they chose, they do not need to provide these

information when they shopping again. This page can be accessed al anytime from the

menu, and it will be launched automatically when users check out from their shopping

cart.

60

•

•

•

Chapter 4 The Solution

The "shop ooline" page actually includes a series of category pages. Ali the available

product categories will be organized in a hierarchical style. Navigation buttons will be

placed on every page for easy access.

The "Shopping cart" page will give users a list of products they chose to buy. They can

check their shopping cart at any time during their surf. No registration is needed for

accessing the cart. This page also leads to real transaction pages when users click "check

out" button. Transaction pages include "Iogin" or "registration", verification of the item

list and payment methods, and a confinnation of the transaction result page. In other

scenarios, if users click "continue shopping" button, the "shopping cart" page will guide

them back to "shop online" page.

For wholesale buyers, the "wholesale" page serves as an infonnation board to list aIl the

up-to-date wholesale products and priees. There is no ooline transaction function in this

page because most wholesales are not paid by credit cards. This page is password

protected. Only authorized users cao access this page.

The "Contact Us" page provides infonnation on how to contact The Buccaneer's sales

and Webmaster. The users cao use this information should they have any question about

The Buccaneer.

The "Help" page will provide information on how to shop online, how to calculate the

price, how to order offline, the delivery regulations, security concems, FAQ (frequently

asked questions) and etc. The objective is to make sure that the users never feel confused

and helpless when they shop at The Buccaneer.

To summarize this section, we derived a high-Ievel design from the requirements analysis

highlighting the functions that will he available to users. We will skip the layout and art

design parts since they are not our main focuses in this thesis. Low-Ievel design and

different implementations will he presented in the following sections.

61

•

•

•

Chapter 4 The Solution

4.3 Building fram Scratch

As mentioned in Chapter one, this approach enables the developers to shape the system to

the exact specifications. It requires more technical know-how but al10ws far greater

flexibility in the development.

4.3.1 Development Platform

There are many possible ways to set up a Web site from scratch. A different choice of

hardware or programming language could lead to the same storefront, however, the cost,

performance and maintenance would be very different. Our objective is to find a solution

with low cost and high perfonnance.

As described in Chapter two, Java technology (JSP, servlet) has more advantages in Web

development than any other possibilities. Therefore, we decided to use Java as the main

programming language in our solution. Based on the consideration of cost, performance

and compatibility, we require the following development environment,

• Hardware: Pentium III PC

• Operating System: Window 98 (Basic)

• Web Server: Apache (Free)

• Java Runtime Environment: Java Development Kit 1.3 (Free)

• Java Engine: Allaire JRun (Free)

• Java Editor: Allaire JRun Studio (Free)

• HTML editor: Note Pad (Included in Windows98)

• Database: Microsoft Access (Basic)

• Picture editor: Adobe Photo Shop (Basic)

• Browser: Internet Explorer (Free)

As we can see, these software are either free or basic, which means most probably they

are pre-installed on the hardware. This development platfonn ensures a very low start-up

62

•

•

•

Chapter 4 The Solution

cost. Besides, ail the software are well-developed, mature products. We can assume that

they are highly reliable.

4.3.2 Application Architecture

Now it is time to break down the high-Ievel design in Section 4.2. A detailed chart of the

application architecture is shown in Figure 4.2. In this chart, each page on the Web site

and the navigation that leads to the given page are identified. Each box represents a Web

page. The bold texts are page titles. The italic texts are the names of the files that support

the pages. There are Hnes connecting pages. The arrowheads on the lines indicate flow

direction. A solid Hne means that the movement is triggered by the users, typically by

clicking a hypertext link or submitting a forme A broken line means that the movement to

the destination page is a function of the Web site not controlled by the users, which could

be a request forwarding or a tile being loaded.

The top seven boxes are links on the menu bar that will be on top of every page.

Customers cao go to these pages at any time, from any page in the Web site. Therefore,

every page should have a link to these boxes. However, there would be no point to draw

ail these trivial details in the chart and so we did not do that. Typically, a Web page

contains one file. However, the "shopping cart" page is relatively more complicated and

needs the support from several servlets. The database connections are not shown in this

chart, but will be discussed later in this chapter. Il is worth mentioning that because of the

complicated logic in our programs, we decided to use servlets instead of JSP.

Before we begin the real implementation, we need to make sure that the design we have

been talking about so far fully supports ail the requirement specifications. Here is the list

ofrequirernents. In the bracket following each requirement are the supporting Web pages

or sorne specifie comments

1. Introduction t,") The Buccaneer as weIl as infonnation on using the site. (Home,

Help)

63

• • •

Retuming
user login

correct 1 · ~ Incorrect
Login - - - - - - - --.1 Logln agatn

l , 1 t 1
,,r "Home Shop Online ShoPpinll Cart Register Wholesale Help

ind€x.html producl.htm OnierPageJava r€gister. hlm heypa&Word.hlm help.hlm
ItemJava
ItemOrdel'Java 0
!fervlet- 1r

Confirrn Utihti~sJtNa
transaction ShappingCarl.. Wholesale 1Ist

java
finish.htm list.htm

..

(j
:T
~-~
~

~
tIlo
ë-o'::s

contact.htm

Contact

Select another
username

usernametaken.htmRegislerJava

Usemame
I-R-e-co-r-d-u-s-e-r-d-at-a-~ !~~~ __,--------1

in database

checkoutagain.htm

ewuser
egister

LoginJava

~
choose login
or re2ister

checkoUl.htm

Record transaction
in database

Finish. java
jl

Collect payment
inCornation "

payment.htm

~

1
lm,.
~

~..,
1::
"1)
c.c
~

~
"im
"
~
tD

0'\
~

•

•

•

Chapter 4 The Solution

2. The presentation of an initial list of categories, providing the ability to navigate

down through subsequent levels of subcategory. (Shop Online)

3. The ability to navigate from subcategories up towards the initial list. (Shop

Online)

4. A shopping cart for users to check their selections. (Shopping Cart)

5. A customer online registration process. (Register, Record user data in database,

Select another user name)

6. Online shopping abilities such as customer login, price calculation, credit card

processing. (Choose logjn or regjster, Login, Login again, Collect payment

infonnation, Record transaction in database, confirm transaction)

7. A wholesale page with password protect, where authorized wholesale buyers

could access for wholesale prices and information. (Wholesale, Wholesale list)

8. An OOBC database on the server to store the customer information and

transaction records. (Record user data in database, Login, Record transaction in

database)

9. A help page provides information on how to shopping online, means of delivery

and any other useful guides. (Help)

10. An overall design to make The Buccaneer's image consistent. (Ali pages)

II. The description of the copyright ownership for the site. (Home)

12. The description ofboth marketing and technical contact information. (Contact)

13. The development platform should be based on existing hardware conditions: PC

Pentium III 500M. (Specified in the Oevelopment Platfonn)

14. A message showing that the Web site is up-to-date. (Home)

15. Fast downloading time. (AlI pages)

16. A server capacity of about 50 to 1000 visits a day. (Specified in the Oevelopment

Platform)

17. An assumption that the uses have low to average level of computer knowledge,

average speed connection to the Internet, aiS inch monitor and a resolution of

800·600 or higher. (AlI pages)

65

•
Chapter 4 The Solution

4.3.3 Implementation

ln this section, we will briefly go through the implementation of sorne important pages in

the Web site and the structure ofdatabase tables.

4.3.3.1 Home, Help Page, Contact Page and Wbolesale Page

•

The reason we talk about these four pages together is that they are all statie pages. They

have no database requiremcnt and no Java programming. We programmed these pages in

Notepad with HTML and sorne JavaScript. The JavaScript is used to present the current

date on every page and prompt eustomers for password in the Wholesale page. These

pages aU look similar, except the texts and sorne pictures are different. Figure 4.3 to

Figure 4.7 show home page, help page, contact page, wholesale login page and wholesale

page, respectively.

•
~.. ~dit_~.. F...,ariIn yoc* ~-:..Ip _

1
.... ~ @ ~ ~

Beek F~ 5Iop - Ren." Home

J~."1iï_Mftp ï-'.IOcaJ~ost~l OO/.buccane.er/lnd.ex tlrml

tpr"~
fwanl., Il.
YCIIIW...'t_...
""ultl ~

50 ~1iCuo Of' l.,H' l •••

Wam .. shon l:UC ro .bop or browse rhm cJidc. rhe
foDoWlll& •QUlCIt SUIf' box.

Tlred of payma fùIl pnce when an l1em IS 111 seuon1
Thm l;ome abo.d and wbl1e q~es Iart.we bet 1"u
cm't relUt our dealsl Sunply regJmt' and men brow.e
and shop If your 11!:1SUfe. ~'hether you are sbopp=a: for
yourseJf or loolcsla for .. &1ft. the orclenn& proc:ess IS euy
Supply Ils lII'ltb a .hIpPIlli addren and memod of
paymenl. and we'U dehvu your order 10 your door For
your l;OnVemenl:e. we are open 24 hours a day. sevm
dlys a _eic. The Bucl;aneers' prOmlSes salUÛC1lon and
cuanmee. a 'n<) hMde In.)!lev refund' ,policy.

_ -.Mt

---------------4...-a&l ofW.,

5". suppa~:~ -~~ -- -- _. - - - J
,:pe 0«"90-,. <lœup Cu.tome.. O.dlc.ted: D."'ilner" ' ••'0 fcgmm.",__" I·<.omrn.~••olu~on.

cornp."tt

----------------- ------_._-_. --- ------ --------------- ---------- ~

rr.~..... #.

Figure 4.3 Home Page•
66

Pladng YOUl- First Ordel-

111'1

:li flu, l """'"' r)",1 II1H11 MII,1I ,oiT Ird,'rrll'II OJdll"" ...~ (3,

i
1

1

!
1

:1
Ifyou want to order m Item. chclt the "Add to ShoPPIIl8 Cin" button on the nght
side orthe product. Use the cart', "Conlinue shoPPIIlI- button to keep selt'Ching
or broW1izlg unlI1 your cartco~~ ofthe Items you WInt to order. You cm
access the conlenlS ofvout ShOIlIlUlSl Cm at mv!:me bv cliclcirur the ShODtllJ1Qrr.Locel i...-

Figure 4.4 Help Page

Adding Items [0 VOU" Shopping c.~·u·t

Finding 1tems

We're happy to welcome you as a new customer to the Buccmeer's'p~your
6rst order is easy. 'There's no need to creue m ~ccoum first You W!Il have done
tUt once you've plAced your first order onhne

rint youri need to browse or search for the Items you would bke to order You
can do this by going to the "Product" pige or li'om the quicksurthnb on the home
Pige

li 1 E'" ~dit ~_ Favcritel Iooli ttalp li.
Il .~ .. @ ŒJ t1\ (il .L%iI -:
1 Beek For.....ed S1ap fWr8.lh Home Saorch Fawritn 1

UA4cn··I!t~tlpu~~~~~~~~o~~~~~~~c:~~__.__ ._u ••• u •••.•_ ••_. __•• 3 ~Go 1Jlinkl ~

Chapter 4 The Solution

•

•

S,te SUPllorted by
~RN p'Jlsn.,? Group. Custom., O.dJat.d O••iQn_"; 'd"." lçomm9rel an E-comm.rca salutsans

$1 Pr od..,<:ts

..t praduetll
faronly Il.
yauwon·tu
"".. It! ~

C....CIU.

e Em.d: ,"fo9'ï,.enecommerce.com

e Tell (~14) .87·7'4.

e im ••h robel'tdp <)9"x.hoo.<:orn

e Tel: (4'0) 6:11-.'97

e im••h d.do.CAlI19~."oo.c"rn

e 00 ot 0,,11,.. •• d,ck "'",e.

Fo,'-"'*..........

Fo'

................--------------------1 0"...1

Iii r rliLoceI i!*enat_
Figure 4.5 Contact Us Page•

67

•

•

•

Chapter 4 The Solution

1 'plllrl" ll',I'r f 'fllmp' [3
,__ , ... _ r. ~ - ':: ., . _ ~ , 'f·....~ • .: ' .. '. ~ ,l,.·"'I' -"""1'. ~ ~. _ • ,

Figure 4.6 Wholesale Login Page

he followlng items are offered exclusively ta wholesale
uyers.Terms are cash and merchandise is shipped FOB
ontreal.AII pnces are quoted in Canadian dollars. This list is

nstantly updated when shipments are made,

W.'.I'I.I Pr,••cII
Desrriptioll Sïze Q!! Orillinal Sale

Available Retail Priee

001 De-Îcer re61l for scraper

002 Micro scraper

062 Scraper set

1 ltfi lacaJ intranet

Figure 4.7 Wholesale Page

4.3.3.2 Sbop Golioe

Shop Online page shows customers the product lists. There is a category table at the

upper part of the page. Customers cao navigate down from these top categories to real

68

•
Chapter 4 The Solution

product lists. There are also "Back to top" buttons below every list enabling customers to

navigate back to the top categories.

For each product, a product ID, a short description, a regular price and a buccaneerrs price

are listed. There is an active link. of"Add to cart" for each product. Once an "add to cart"

link is invoked, a query is sent to the shopping cart programs. For example, for a product

named "De-icer buster combo" which costs $4.99 and has a product ID of 150, the query

would be href="../servlet/OrderPage?itemID=150&shortDescription=De-icer+

buster+combo& cost=4.99". Figure 4.8 shows the top part of the shop online page.

:lillullllfll'l'r (ll',llIllnl 11.111 III oIilllfl"'rlll" t qJlt''''r Plr-lŒ:J

..............
Cf,. ~SS'!!9";"

.._IIft......
Prl.ICII

.•1-1......

C,r ACÇ"'9f1'J

rfil."Ed~ ·~-FAwrit8. loGl' ltelp - ..-' - . ,', '., -.- Id
1

.~, ,'''; ... ~ @ .@). ..~ " -~ 'Lii' - '»
. Baèk ;' ~_~9~~/.!~ ._,'___~p, .__~~~~__ ~!!'!- ~~_~awritas ,

1Add'llIlll http://locelhost8100/bucceneer/produas.htm ~ »

•

•
Figure 4.8 Shop Dnline Page

69

•
Chapter 4 The Solution

4.3.3.3 Shopping Cart

The shopping cart is one of the most important parts in this Web site. A shopping cart

allows customers to select products, keep track of their previous selections and make

changes to their interest lists. A shopping cart can also automatically calculate prices and

distinguish different customers. Figure 4.9 is an sample shopping cart.

SO 12

,t4 99

, Ta~
Ca.'

Numbel'

Tow: $5.11

Contiftue Shopping 1

PtcCHd tg CbedcOut 1

Your Shopping Cart

1---"---_.-.-. __ ..

1 Ium- :! ! Unit 1De.criptioll i Con

'--' r--r
1001 :De-lcer re5ll for ;$0 12 :. U-..0nMr

1

;scraper 1 -
1 ! 1

i:----r--r
:062 ,SenpeS' set :$4.99: UpdetltOn*

~:;' ~':*t::.. I::=·"'*~ ,. .' Il
1-.~ •• .@·üL· ~ '. Il' ..~ .. :' '.~ '(j 'I~· ffj' i
J .; 8Kk. . FO;Vrmo9Dp lW'Utt Home., s-dt F"'a HI1aIy PMI 1

........Iiî htIp/IIOcal~~~~~:om-;~~on.screp8r'set&~=~ 3 ~Qo' 1Lir*a -;

:d

•
[iîDane

Figure 4.9 Shopping Cart

•

The most important technology used in Shopping Cart is "Session Tracking". HTTP is a

stateless protocol. Every time a client retrieves a Web page, it opens a separate

connection to the Web server. The server does not automatically maintain contextual

information about clients. This lack of context makes online transaction more difficult.

The customers cannot choose multiple products, because when they choose a second one,

the information for the tirst one is lost. When they check out, the server would not know

which previously created shopping carts are theirs. To solve this problem, servlets

provide the HttpSession API. The API is buBt on top of HTTP Cookies and URL·

70

•
Chapter 4 The Solution

rewriting. Servlet developers do not need to manipulate these details. We can look up an

HttpSession by:

HttpSession session = request.getSession(true);

There are also a lot of predefined methods to get and set information to a session.

The main program for the Shopping Cart is "OrderPage". The program logic is shown in

Figure 4.10.

• T

• Figure 4.10 OrderPage.java

71

•

•

•

Chapter 4 The Solution

The whole Shopping Cart structure includes several other classes. Here is a very brief

introduction to these classes. Only c1ass names and c1ass variables are listed. For class

functions and complete programs, please refer to Appendix A.

J* class Item is the prototype of each product item. Every object of class Item is a record

of a real product*J

public class Item {

private String itemID;

private String shortDescription;

private String longDescription;

private double cost;

J* class ItemOrder deals with the item ordered. For a same product, if a customer ordered

three times, there would be three objects of c1ass Item, but only one object of c1ass

ltemOrder*/

public class ItemOrder {

private Item item;

private int numItems;

/* class ShoppingCart manipulates the shopping cart. Ils functions include creating a new

shopping cart, adding items or changing the shopping cart. *J

public class ShoppingCart {

private Vector itemsOrdered;

4.3.3.4 Register and Login

The main technology involved in these two pages is database manipulation. Take

register.java as an example. After getting a user's infonnation from the regÏstration forro,

we need to check whether the usemame has been taken. If so, the program will redirect

the user to another page to choose an alternative username. Otherwise, the program saves

72

•
Chapter 4 The Solution

ail the infonnation inta the database. Figure 4.11 shows the register page. Figure 4.12

shows the Login page.

3

•

,. v.... L..... lnfonnaIion

User N;am.

Plisword

CanlirmP...ward

2. v.... ' ..onll Informlllon

3. V..."'nglnlonnlllon

SIr..' Addr.,s j
c.ty ;"1------------

Prawo"Ce/SIU. 1
POSlal COd./Zitl Cod. r-j---

"country Ii-.C&I:--ed-a----------::J~.

~:~:~gT:::~n:~:.~umO ..1

Figure 4.11 Register Page

~Irr....-,LaQI,.---:-:·-..-·-..---=~1

•

1 ~ @ }l ~L B.x ::.:.· ':Ild S1Dp ~ Hame

j Adl*1 @_~~i'~OcaJIH)~t8_1[J~/~uo;M_••r/ch__d<outhtm1

•

Please Lo&in

Password: 1

If '{ou are a ne.. customer.
ple,iSe reglster first. tnen go
back 10 vour snopp,ng cart
and check out ~ajn.

Figure 4.12 Login Page

73

•

•

•

Chapter 4 The Solution

The database part of the program is shown below:

try

{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");}

catch(ClassNotFoundException cnfe)

{ out.print("Sorry, our database is experiecing sorne problerns. Please come again");}

try

{ String sourceURL = "jdbc:odbc:buccaneer";

Connection databaseConnection =DriverManager.getConnection (sourceURL);

Statement staternent = databaseConnection.createStatementO;

String queryl = "select * from Customer where UserName= Ut + usemame + "'et;

ResultSet result = statement.executeQuery (query1);

if(result.nextO)

gotoPageC'Ibuccaneer/usemametaken.htm", request, response);

else

{ String query2 =ninsert into Customer et + nvalues(Ut + usemame + nt, lU + password +

n., n, + firstname + "t, tU + lastname + "', tU + email + Ut, tU + addressl + Ut, '" + city

+ nt, tU + province + 'u, '" + postalcode + nt, '" + country + ur, '" + dayphone + lU)";

staternent.executeUpdate (query2);

databaseConnection.closeO;

catch(SQLException e)

{out.print("Sorry, our database is experiecing sorne problerns. Please come again latern);}

4.3.3.5 Database

According to the requirernent specification, an average-perfonnance database is quite

enough. To minirnize the development cost, we chose Microsoft Access. Access is a part

of Microsoft Office, which is available on almost every PC. Besides, the user-friendly

interface makes it easier to set up and maintain than Many other databases. Although

Access uses a technology that makes it a poor choice for large amounts of traffic, The

74

•
Chapter 4 The Solution

Buccaneer site isn't expecting a high level of concurrent traffic according to our

requirement specification.

We developed two tables in The Buccaneer database. The structure is shown in Figure

4.13. Note that we do not have a product table in the database. Due to the fact that there

are less than SO kinds ofproducts in The Buccaneer's Web site, and most ofthem are not

Iikely to change, we hard-eoded them in the HTML files.

•

:_~·;'(-CuÎto.er"
. ,- ,",',',;:': .: . ~,-:. .'., - -, .' :: ..

Usemame

Password

First Name

Last Name

Email

Addressl

City

Province

Postal Code

Country

Day Phone

-:·::-,"9r~~n:;:. ': '~:~~.
-' , ,,<.-.0, ,........ " .' -

Usemame

Credit Cart Type

Credit Card Num

Card Holder

Exp Date Mon

Exp Date Year

Produet ID

Quantity

Total Priee

•

Figure 4.13 Database Tables

4.4 Building with WebSphere

We have spent a whole chapter (Chapter three) on WebSphere. WebSphere is a typical

and one of the best e-eommerce solution packages on the market. We are going to set up

The Buccaneer Web site on WebSphere in tbis section.

75

•

•

•

Chapter 4 The Solution

4.4.1 Development Platform

ln the previous solution, we needed to choose an appropriate development environment.

ln WebSphere, however, everything is bundled together. Developers can use them as a

whole, or choose sorne of them to go with each company's requirements. The Buccaneer

Web site does not have specifie environment requirements, so we will use everything that

cornes with WebSphere. Letts take a look at the settings:

• Hardware: Pentium li PC (As specified in requirements specification)

• Operating System: Window NT4.0

• Web Server: IBM HTTP Server (based on Apache)

• Java Runtime Environment: Java Development Kit 1.1.7

• Application Server: WebSphere Application Server

• Java Editor: VisualAge for Java

• HTML editor: IBM Homepage Builder

• Database: DB2 Universal Database

• Picture Editor: IBM PerfectPhoto

• Browser: Internet Explorer

Amazingly, ail the above listed are IBM software except the operating system, browser

and JRE. Therefore, these software can he expected to work together more smoothly and

efficiently.

4.4.2 Implementation

There are plenty of ways to set up a Web site on WebSphere. For example, if we work

with WebSphere Commerce Suite, we have three methods: using the Store Creator, using

the Store Profile Editor or using the Commerce Suite Administrator. As an alternative,

we can directly configure IBM HTTP server and WebSphere Application Server. Or, we

can even skip HTTP Server, and set up the whole Web site on WebSphere Application

Server. In the following sections, we try two of the methods.

76

•

•

•

Chapter 4 The Solution

4.4.2.1 Using the Store Creator

This is the simplest and quickest way to set up a Web site. A Wizard will guide us

through ail the necessary steps in setting up a fiL'lctional Web site. We only need to do

whatever we are prompted to do. After the Web site is created, we can modify it using

WebSphere Commerce Suite Administrator templates or directly modify the Net.Data

files.

Here are the steps we went through in setting up The Buccaneer's Web site:

1. Going througb tbe store creator wizard

• Select a store model. We selected "Retail Store" model. This store model allows

users to browse and search the catalog, choose from several registration options,

create an address book, view the interest list, view order status, view customer

service infonnation.

• Enter store infonnation., which includes store name, store directory and default

currency

• Enter contact infonnation, such as address, phone number

• Select a registration type. We selected "Register when ordering". With this type,

shoppers can browse without registering, but must register and log on before

placing an order.

• Select payment options. In this step, we enabled The Buccaneer to accept both

online and offline payment.

• Select a store style. We selected "New wave - denim" for our store.

• Select the location of the navigation bar. We chose to put the navigation bar on

the left side.

• Select images. In this step, we can choose store logo and banner inlage.

• Select colors and background images

• Add sample products, taxes, and shipping

77

• Delete sample products

• Specify shipping services

• Set tax rates as 14.50/0

• Create product categories in

•

•

•

Chapter 4 The Solution

2. Publish the store

• Publish the store in WebSphere Studio. WebSphere automatically produces

detailed publishing report.

• Test the store with the sample products

3. Modiry store settings in the WebSphere Commerce Suite Administrator

Store Manager, Product Categories. WebSphere

organize the categories in a tree structure and number ail the categories in its own

manner. We need to input ail the category names, descriptions, parent category

information, and assign display ternplates.

• Input product information in Store Manager, Product Information. For each

product, there are four fonns to fill out: Attributes, Priees, Templates and Parent

Categories. It was a long and tedious work.

4. Modirying Web pages

• Modify navigation bar. We deleted sorne unnecessary links like "Address book".

Sorne of the menu names are changed to go with The Buccaneer's style. For

example, we changed "Customer Services" to "Contact Us", "Categories" to

"Shop Dnline". Ali these changes are made with Net.Data.

• Modify instructions and confirmation. We modified sorne instructions on the

ordering page and the confirmation after an order is made. Ail these changes are

made for the purpose of serving the shoppers better when they go through the

ordering processes.

Figure 4.14 shows the homepage of The Buccaneer's Web site developed by Store

Creator. The look and feel ofthis Web site is very different than the one we developed in

the previous section. This is because Store Creator has its own selection of styles. Il saves

78

•

•

•

Chapter 4 The Solution

a lot of time to use one of these existing styles. However, it is difficult to personalize the

style. The main menu is not the same as the previous one either due to the same reason.

To customize the functions, developers need to manually modify the Net.Data files

created by Store Creator. It is a time-consuming task. We talk more about this in Chapter

five.

1"11I Qf Il.ylllg rûll1nU wt\.n ln Il.m Il ln l"la"~ Th.n com. lbolld and
..ew. qt.I,1tlMlfi lasa.... b'l ~ou ~nllt$i~tour dtal~1 W..... a $hOft '''1 to ,hep
Qf brows. th.n ckk th. Jollowift; q&ôick lulf bOJt Slmplr "gill.' Ind then
brClWIt and .hop al JOUt I.i,u,.. Whtih.r you art Ihopping ta, ycursdor
looh'9 for • giI. lhe ordefing ptQ(en is '151. Suppl, uSith 1 shiPPlt\9
Iddress Ind ml1lu:d d pIJmtnt. Ind ...11 deI.....' 'GUr old., tCl JOur doo,. For
JOUI comenifftc.... art open 2~ heur' a doly.,...." daJ' a wtelc.Tho
8ucCiMtn' p,omlses Silis'ietlcn and gUllant." i no husl. man., fI!und
pohey.

Figure 4.14 Home Page Produced by Store Creator

4.4.4.2 Building on WebSphere Application Server

To set up a Web site on WebSphere Application Server requires higher technical skills,

but it provides great flexibility. Here is how we set up the site:

79

•

•

Chapter 4 The Solution

1. Configure a Web application

Firstly, we need to configure a Web application in the WebSphere Advanced

Administrative Console as shown in Figure 4.15.

In this task wizard, we went through four steps: One, name the Web application,

select system servlets to add to the Web application, select JSP version. Two, choose

a servlet engine, which is WCS servlet Engine in our case. Three, specify the virtual

host and a unique Web path for invoke the Web application. Four, specify advanced

settings such as the servlet context attributes, reload intervals and whether to

automatically reload servlet classes that have been modified. After the wizard, the

command "WebApplication.create" will be running and a new application is

recorded.

~_' t!tft _

:_1 t,Il' • 11:1

Lu.Ju--.-__-.. - ...~ -------:-::7c=-IIctr~----;-;IJ= ..=... NIIII=.=..»=..=..;-..------F~----~I
ConIDI......

2/14101 3:33 PK : AlI)lT [ro.aeoJVÔS,Mfe C_rce '.&Vu): 5.lt"he• .ava11tlb1e.l!clI:...zvin:.'"l" 1.0
'lIeu.or"
2/14101 3:33 'lI : AlZllT (co.l.n/_.C:U"'.ltVu): tIctISphece ~ut;f.eaOI'l .a.cnc open foc .-b\Q1nu.a

.~-_._.__.-- _._- -_. _. __._._..-_.__ - . -- ... -_. _o__ ._ .. __ ____-- J - .

•
!

3

•
Figure 4.15 Configure a Web Application

2. Add a "file" Servlet

After setting up the application, we need to add a servlet called "File" to the

application. The "File" servlet deals with the process of common files such as HTML,

80

•

•

•

Chapter 4 The Solution

JPG and GIFy communicates with HTTP Server, ensures a correct output to the

clients. The servlet can be added in the WebSphere Advanced Administrative

Console by specifying its servlet name, class name and Web path list.

3. Create Web pages

In this method, we do not have the help from Store Creator or any other wizards or

templates. We need to develop every page by ourselves. We developed the HTML

files in Homepage builder and Java files in VisualAge for Java. The application

architecture is exactly the same as we described in Section 4.3.2. Ali the HTML files

and Java files are similar to those developed in JRun Studio except the directory

addresses and hyperlinks are different.

4. Save pages according to the application structure

To avoid further configuration, we need to store ail the pages in a particular directory

structure. For The Buccaneer's Web site, ail the HTML, JGP and GIF files should be

in the directory:

WAServer Root\hosts\default_host\buccaneer\web

Ail the Java and Class files should be in:

WAServer Root\hosts\default_host\buccaneer\servlets

s. Database

We use DB2 Universal Database in this solution. DB2 is a fully functional database.

We can use the DB2 Control Center to set up The Buccaneer's database. The database

structure is the same as the one shown in Figure 4.5. We set ail the tables as "Low

maintenance - system managed space". This will save us from a lot of other

configuration.

Now, we have finished the development with WebSphere Application Server. At the

client side, the look and feel of this Web site is exactly the same as the one shown in

Figure 4.3. Users will not notice any difference between them. However, at the server

side, theyare two totally different systems with almost notbing in commODo

81

•

•

•

Chapter 4 The Solution

We have developed The Buccaneer's Weh site with the two solutions: building from

scratch and building with WebSphere. In the latter case, we used two different methods.

These implementations provided part of the research hasis for the comparison in Chapter

five.

82

•

•

•

Chapter 5 Comparison

Chapter 5

Comparison

For businesses, especially those small businesses that do not have extra money to bum,

the biggest challenge is choosing the right e-commerce development solution. Ultimately,

the solution they choose will detennine whether money is made or lost on the Web.

However, to find out the best solution is not an easy task. There are plenty of aspects we

should consider. ln this chapter, we will compare the two solutions we developed in

Chapter four: building from scratch or building with WebSphere.

The comparisons are mainly based on our experience in developing The Buccaneer's Web

site using the above-mentioned methods. But only one sample is not convincing. To

make the results statistically correct, we surveyed two other e-commerce projects built

from scratch. These two projccts are similar to the one we did in Chapter four. We also

surveyed five WebSphere development groups. Ail the members in these groups are

university students majoring in computer science. Each group developed an e-commerce

Web site with WebSphere. Three of the sites require only basic e-commerce functions

and minimum personalization. These sites are built by Store Creator. The other two

groups developed their own Web pages and configured their applications on WebSphere

HTTP Server and WebSphere Application Server. These two sites have their own styles

and unique functions.

83

•

•

•

Chapter 5 Comparison

In the following sections, we will compare the time, complexity, perfonnance and cost of

the two solutions. As we mentioned before, some sites have minimum requirements of

personalization while sorne other sites require their own styles or even need to integrate

with the existing systems. These two scenarios have very different development

processes. Therefore we need to separate them in the following comparisons. Let us cali

the tirst one "simple sites", the second one "moderate sites". Surely there are also

"comprehensive sites", but this thesis mainly focuses on small businesses. We will not

cover those comprehensive sites in this comparison.

5.1 Time

Time i5 an objective factor in comparing the solutions. We will compare the time

involved in the whole development process as weil as the time in upgrade and

maintenance periods.

Apparently, experienced programmers will spend less time than entry-Ievel programmers;

Web developers will spend less time than normal programmers. To make the results

objective, we assume the developers are familiar with Java, database and basic Web

design, but do not have experience in servlet or WebSphere, neither do they have

previous experience in e-commerce system programming. Thus the "time" we are

comparing here includes not only development lime, but time to leam the new

technologies.

For those simple sites, ifwe develop them from scratch, we need to learn Java servlet and

JSP, which will cost about 3-5 days. To select, learn and configure a development

platform probably requires 4-5 days. Requirement collection and design normally cost 2

weeks. Implementation costs 3-5 days. That is a total of 21-25 days. It will not costs a lot

of time to maintain and upgrade these sites, because no new technology is necessary. The

"upgrade" we were talking about here only includes those within the "simple sites"

definition, like enlarge the database or add more links. If a simple Web site is becoming

84

•

•

Chapter 5 Comparison

50 successful that it needs an upgrade ioto a major fully functional Web site, then that is

another story.

An estimation of the time is shown in Figure 5.1. The vertical axis shows the update and

maintenance time. The horizontal axis shows the development time. The positions of the

four boxes roughly indicate the time required by these solutions.

If we develop these simple sites with WebSphere, we still need 2 weeks for requirement

collection and design. Learning and installing WebSphere will cost 4-6 weeks.

Implementation with Store Creator costs 10 minutes. Sorne simple personalization costs

1-2 days. That is a total of about 31-42 days. To maintain and upgrade these sites will

cost lots of time because all the files generated by Store Creator are written in Net.Data

language. Net.Data is lBM's solution to JSP. However, it is exclusively used in

WebSphere. Developers need to spend extra lime in leaming Net.Data when they upgrade

those sites.

o
.§-

Simple sites,
building from
scratch

Moderate
sites, building
from scratch

Simple sites,
Building with
WebSphere

Moderate sites,
building with
WebSphere

•
Development time

Figure 5.1 Time Comparison

85

•

•

•

Chapter 5 Comparison

Likewise, for moderate sites, ifwe develop them from scratch, we also need to leam Java

servlet and JSP, which will cost about 3-5 days. To select, leam and configure a

development platfonn probably need 4-5 days. Requirement collection and design will

cost a little bit longer than those simple sites, nonnally about 3 weeks. Implementation

costs 8-10 days. That is a total of 30-35 days. To maintain and upgrade these sites

sometimes is not an easy task. Sorne functions like Product Advisor, marketing

administrator are very complicated and time consuming. We gave out our estimation in

Figure 5.1.

To develop a moderate site with WebSphere, we still need about 3 weeks for requirement

collection and design. Leaming and installing WebSphere will cost 8-10 weeks.

Implementation with WebSphere Application costs 8-10 days. That is a total of about 63­

75 days. It seems that to start with WebSphere takes more time than to build from

scratch. However, to maintain and to upgrade these sites are relatively easier because a

lot of the e-commerce functions are already included in WebSphere. Developers only

need to integrate them into the system.

5.2 Complexity

According to computer dictionaries, "Complexity" nonnally indicates the level in

difficulty in solving mathematically posed problems as measured by the time, number of

steps or arithmetic operations, or memory space required. Those are called time

complexity, computational complexity, and space complexity, respectively. The

"complexityt' we are talking about in this section is the level of difficulty in developing a

Web site, which includes the following issues: installation and implementation,

administration and maintenance, catalog and product development, personalization and

customer relations, marketing and merchandising. They are measured by development

time, technologies used, programming involved, and experiences needed.

Sorne solutions are easy to install and implement, but May be hard to personalize. The

site we did with WebSphere Store Creator was an example for that. Sorne solutions are

86

•
Chapter 5 Comparison

more difficult to stan up, but they become easier when the Web site grows, for example

the WAS solution we presented for moderate Web sites. The complexity of a Web site

normally decides what kind of developers are needed, entry level or experienced. Figure

5.2 shows the complexity of each solution in developing Web sites. Please note, the smalt

sites building from scratch is not applicable for the category 66marketing and

merchandising"'. We only compared the other three in this category.

•

~-0;:;;

~

ë.
E
8

High

Medium

Low

Building from scratch:
Simple sites: _
Moderate sites:----

- _.
-_. - _.

With WebSphere:
Simple sites: ••••••••
Moderate sites: - - •

-_.
........

installation and administration catalog and personalization
implementation and product

maintenance

Figure 5.2 Complexity

5.3 Performance

marketing and
merchandising

•

The word "Perfonnance" has different meanings in different circumstances. In the \Veb

development domain, perfonnance means the fulfillment of the request specification, the

ability to perform efficiently, and the potential to perfonn better.

In terms of the fulfillment of the request specification, both solutions are satisfying. They

May vary in time, cost and effort in achieving that goal, as we described in other sections,

but at (east both ofthem cao provide the functions that they are supposed to provide.

87

•

•

•

Chapter 5 Comparison

The ability to perfonn efficiently, however, is different with the two solutions. The ability

to perform efficiently includes various aspects such as multiple platfonn support, easy

administration and functionalities. Those that supported multiple platfonn and databases

were awarded extra points. We took points away for limited platfonn support, difficulty

during installation. ln order to get a score of very good in the administration, a solution

should be easy to conduct administrative functions such as monitoring or reporting. We

took points away for solution that has poor functionality, such as poor database

perfonnance in terms of dealing with large amounts of traffic.

For the tirst solution, building from scratch, we chose the development environment as

economically as possible. As a result, the overall performance is not as good as

WebSphere. As long as the Web site is small and the transactions online are moderate,

the perfonnance problem is not a big issue. However, as the Web site grows, the

difference between the two solutions will become more and more apparent.

To attract new customers and business partners, a simple shopping cart system for the

Web storefront will eventually become insufficient. For a strong e-commerce presence,

we should drive shoppers to the site via sophisticated site analysis, offer shoppers

personalization features, and keep those shoppers coming back with a competitive and

intuitive design, one-to-one marketing features, and Web-based customer service. The

ability to adopt ail these functions is the so-called "potential to perform better".

WebSphere has the great advantage in this area. Almost ail the above-mentioned

functions are weil integrated into WebSphere. For example, WCS Pro let the developers

intuitively create discount and promotional rates, shopper groups, and product auctions;

for shopper personalization, it includes an interactive catalog builder that lets shoppers

have a more personalized shopping experience. WebSphere is definitely the winner in the

long run in tenns of the performance.

88

•

•

•

Chapter 5 Comparison

S.4Cost

Cost is the outlay or expenditure made to achieve an objective. The reason that we put

this topic last is that ail the above-mentioned factors eventually lead to the difference of

costs. For example, the more complicated a solution is, the more experienced developers

must be to develop the site. More experienced developers nonnally have higher salaries.

Thus the cost of the whole development cost will be higher. Development time is also a

big factor in detennining the cost. The longer the time is, the higher the cost will be.

Performance seems to be irrelevant with the develllpment cost. However, that is not true.

If a solution fails to meet the requirement specification, the cost for redesign could be

significantly high. Furthermore, perfonnance is closely related with the maintenance and

upgrade costs. Therefore, when evaluating these various solutions, we should not only

consider the cost of the package but the considerable amount of money on e-commerce

development environment, necessary additional hardware, the salary for the developers,

the cost to integrate the site with existing systems, the cost to customize it to suit any

individual needs. Often what looks like an inexpensive setup at the beginning can end up

being a big budget when trying to add new features or redesign.

The start up price for our tirst solution is pretty low. Costs of all the software and

hard\vare add up to a total ofno more than $5,000. For simple sites, the development cost

is calculated on an assumption of $280 a day (a typical entry-Ievel contractor's salary).

For a moderate site, the development cost is calculated as $400 per day (a typical

medium-level contractor's salary). The WebSphere Pro edition is sold at $38,000, which

is reasonably priced for a software package of its kind. Most of the similar packages on

the market are priced in the same range. The start up cost is the package price plus

hardware priee plus development price. The development price is also ealculated as $280

per day for simple sites and S400 per day for moderate sites. Table 5.1 shows how we

calculated the total development cost of each methods.

89

•

•

Chapter 5 Comparison

Simple sites Moderate sites

Building from Building witb Building from Building with

scratch WebSphere scratch WebSphere

Software cost $1000 $38,000 $1000 $38,000

Hardware $2,000 $2,000 52,000 $2,000

cost

Developer's $6,160 $9,800 $12,800 $28,000

salary ($280 per day ($280 per day ($400 per day ($400 per day

for 22 days) for 35 days) for 32 days) for 70 days)

Total $9,160 $49,800 $15,800 $68,000

Table 5.1 Development Cost Comparisons

The upgrade and maintenance costs for every solution are closely related to their

performance because the ability to adopt new functions (as we described in the

"performance" section) is the main factor in determining these costs. Figure 5.3 shows a

rough comparison of the costs for the two solutions.

•

.4~

Moderate
sites, building
from scratch

Simple sues,
building from
scratch Simple sites,

Building with
WebSphere

Moderate sites,
building with
WebSphere

...-Development costs

Figure 5.3 Costs

90

•

•

•

Chapter 5 Comparison

5.5 Summary

As more and more companies become involved in e-commerce, choosing the right e­

commerce solution becomes increasingly important. Our goal is to find out the best

solution for small companies. We looked for solutions that provide an environment for

developing a competitive Web site and give comparues room for growth and integration

with an existing infrastructure. We presented and compared two e-commerce solutions

that fit the goal: building from scratch with Java servlet on Apache and JRun, and

building with IBM WebSphere.

We installed them on appropriate hardware platfonns, operating systems, and databases.

To test our solutions, wc created an online discount store: The Buccaneer. With the first

solution, we programmed everYthing from scratch and linked to the Access database. For

the second solution, wc accessed Store Creator wizards and sample templates to complete

our online store. We modified store code using Net.Data to evaluate the skills a user

would need to customize a site. We also developed another version of the store using

WebSphere Application Server. To make our comparisons more accurate, we surveyed

two e-commerce projects building from scratch and five WebSphere projects. We

consulted their developers for the development time, development plans, developers'

experiences, programs, costs, and project performance. We used these data in the

comparison.

We evaluated the time spent, the complexity, the perfonnance and costs to develop the

Web sites with each solution. Ali the solutions made a strong showing with impressive

features and a good degree of scalability. Building from scratch with Java servlets is

economical, efficient and flexible. It is a really good solution for small companies who

need a standard-functioning Web site to extend their selling channels. WebSphere is

functionally stronger, but the start up cost is way too much for sorne of the small

businesses according to Figure 5.3. Also, if what these businesses need is only shopping

cart and online transaction systems, they may never need most of the fancy functions in

91

•

•

•

Chapter 5 Comparison

WebSphere. It would be a waste of time and money to buy a huge package like

WebSphere.

On the other hand, WebSphere offers the widest array of tools out of the box, including

the Payment Manager transaction server and a remarkably easy-to-use auction-building

feature; it also makes site customization a smooth process. It assembles mM products

that are already mature, inc1uding DB2 Universal Database. so components are weil

integrated and easy to manage. Those medium companies who are concemed with setting

up competitive Web sites, streamline their business processes and paving a road to a

successful future should definitely select WebSphere. They will have to spend a

considerable amount of money on starting up, but they will sec that WebSphere is worth

every penny they spent. According to Figure 5.3, we can c1early see that in the

maintenance and upgrade period, the cost for the WebSphere solution will eventually turn

out to be lower than the other solution.

92

•

•

•

Chapter 6 Conclusion and Future Work

Chapter 6

Conclusion and Future Work

This thesis mainly focused on tinding a good e-commerce solution for small businesses.

We introduced sorne commonly used technologies in developing e-commerce systems.

The topics covered from Web standards and protocols to Web planning and design, from

Web servers to server side programming. We also introduced an e-commerce software

package WebSphere. Using these technologies, we found out two good solutions:

building from scratch with mainly Java technologies and building with IBM's

WebSphere. We developed an onHne store with each of the solutions. ln order to find out

the advantages and disadvantages of these solutions, we made a comprehensive

comparison. Developing time, complexity, performance and cost are evaluated in our

comparison. From these comparisons, we concluded that building from scratch with Java

servlets is econornical, efficient and flexible. Il is a really good solution for small

companies who need a standard-functioning Web site to extend their selling channels. On

the other hand, WebSphere offers the widest array of tools. Those medium companies

who are concemed with setting up competitive Web sites, streamline their business

processes and paving a road the successful future should definitely select WebSphere.

We hope this conclusion is helpful to businesses.

93

•

•

•

Chapter 6 Conclusion and Future Work

There are plenty of other e-commerce solutions available. We only compared two of

them. It is definitely possible that there are better solutions than ours. Future research

should be conducted to include more possible solutions and to test more functions.

Solutions for comprehensive Web sites should also he studied.

E-commerce is developing so fast that aIl kinds of new tools and software packages are

emerging every day. A TV may still look like a TV in twenty years, but e-commerce

could become a totally different thing in ten years. No matter whether we are business

people or Web developers, we should always he aware of the fast development of e­

commerce technology in order to provide the clients with the best services.

94

•

•

•

References

1. Web Security, Amrit Tiwana, Digital Press 1999

2. Using HTML 4, Java 1.1 and JavaScript 1.2, Second Edition, Eric Ladd and Jim

O'Donnell, Que Corporation, 1998

3. Survival Guide to Web Site Development, Mary Haggard, Microsoft Press, 1998

4. Mastering JavaScript, James Jaworski, Sybex loc., 1997

5. Active Server Pages Bible, Eric A. Smith, IDG Books Worldwide, lnc., 2000

6. Building Professional Web Sites with the Ritht Tools, Jeff Greenberg, J.R.

Lakeland, Hewlett-Packard Company, 1999

7. Bulid a Web Site, The Programmer's Guide to Create, Building, and Maintaining

a Web Presence, Net.Genesis and Devra Hall, Net.Genesis 1995

8. A Windows NT Guide to The Web, Richard Raucci, Springer-Verlag New York,

Inc., 1997

9. Developing Java Beans, Robert Englander, O'Reilly & Associates, Inc., 1997

10. Guide to Building Intelligent Websites with JavaScript, Nigel Ford, John Wiley &

Sons, loc., 1998

11. How to Set Up and Maintain a World Wide Web Site, The Guide for Information

Providers, Lincoln D. Stein, Addison-Wesley Publishing Company, 1995

12. How to Set Up and Maintain a Web Site - Second Edition, Lincoln D. Stein,

Addison-Wesley Longman, Inc., 1997

13. Java How to Program - Second Edition, H.M. Deitel, P.J. Deitel, Prentice-Hall,

lne., 1998

14. http://www.online-eommerce.com/tutorial.html

15. http://hotwired.lycos.com/webmonkey/e-business/tutorials/tutorial3.html

16. Core Java Web Server, Chris Taylor, Tim Kimmet, Prentice Hall PRT, 1999

17. UNIX Web Server, second edition, R.Douglas Matthews, Paul Jones, Jonathan

Magid, Donald A. Bail, JR., Michael J. Hammel, Ventana, 1997

95

•

•

•

18. Web Site Engineering, Thomas A. Powell, David L. Jones, Dominique C. Cutts,

Prentice Hall PTR, 1998

19. Programming.java An Introduction to Programming Using Java, Rick Decker,

Stuart Hirshfield, PWS Publishing Company, 1998

20. HTML 4.0 Sourcebook, lan S. Graham, John Wiley&Sons, Inc, 1998

21. The Windows NT Web Server Handbook, Tom Sheldon, McGraw-Hill, me.,

1996

22. The Non-Designer's Web Book, Robin Williams, John Tollett, Peachpit Press,

1998

23. Introduction to E-Commerce, Tan Zheng, pptph.com, 2000

24. Security Electronic Transaction, http://www.setco.org

25. On-lîne computer dictionary, http://wombat.doc.ic.ac.uk

26. RFC Hypertext Transfer Protocol,

http://src.doc.ic.ac.ukIcomputing/intemet/rfc/rfc2068.txt

27. Interface Design in E-commerce, Yu Xing, McGill University, 2000

28. Java, http://java.sun.com/

29. Collaborative Web Development, Strategies and Best Practices for Web Teams,

Jessaca Burdman, Addison Wesley Longman, lnc., 1999

30. The World Wide Web Complete Reference, Rick Stout, McGraw-Hill, Inc., 1996

31. Web Server Technology, The Advanced Guide for World Wide Web lnfonnation

Providers, Nancy J. Yeager, Robert E. McGrath, Morgan Kaufmann Publishers,

Inc.,1996

32. Programming Web Components, Reaz Hoque, Taron Sharm~ The McGrau-Hill

Companies, lnc., 1998

33. Database Driven Web Sites, Jesse Feiler, Academie Press, 1999

34. Developing an E-business Application for the WebSphere Application Server,

John Akerley, Murtuza Hashim, Alexander Koutsoumbos, Angelo Maffione,

International Technical Support Organization, http://www.redbooks.ibm.com

35. Creating a Store, 1Bl\t1 WebSphere Commerce Suite documentation

36. WebShpere Application Server standard edition, Getting Started, IBM

WebSphere Commerce Suite documentation

96

•

•

•

37. WebSphere Application Servers: Standard and Advanced Editions, Barry

Nusbaum, Matias Djunatan, Wakako Jinno, Peter Kelley, International Technical

Support Organization, http://www.redbooks.ibm.com

38. Web-Based Specification and Integration of Legacy Services, Ying Zou, Kostas

Kontogiannis, Dept. of Electrical & Computer Engineering, University of

Waterloo, November, 2000

39. IBM WebSphere Commerce Suite Fundamentals, International Business

Machines Corporation, 2000

40. IBM WebSphere Commerce Suite Pro Edition for Windows NT Installation

Guide, International Business Machines Corporation 1996, 2000

41. IBM WebSphere Performance Pack Usage and Administration, Marco Pistoia,

Vincenzo lovine, Stefano Pischedda, International Technical Suppon

Organization, http://www.redbooks.ibm.com

42. NCSA World Wide Web Server: Design and Performance, R.E.McGrath,

D.A.Reed, IEEE Computer, Volume 28, Number 11, November 1995

43. Designing Multinational Online Stores: Vhallenges, Implementation Techniques

and Experience, Yumman Chan, mM Toronto Lab, CASCON 2000, November,

2000

44. End-to-end E-commerce Application Development Based on XML Tools, W.KU

et.al., IEEE Data Engineering, Vol. 23, No.l

45. Universal Resource Identifiers in WWW: A Unifying Syntax for the Expression

of Names and Addresses of Objects on the Network as Used in the World-Wide

Web, Berners-Lee, T. RfC 1630, CERN June, 1994

46. The World Wide Web, Berners-Lee, T., T. Cailiar, H.F.Nielsen, Communications

of the ACM, Volume 37, Number 8, August, 1994

47. The Secure Hypertext Transfer Protocol, Rescorla,E., A.Schiffinan, Internet

Oraft, July 1995

48. Witan Web and the Software Engineering of Web-based Applications, J Howard

Johnson and Stephen A. Mackay, Institute for Information Technology, National

Research Council, November, 2000

97

•

•

•

49. Security models for Web-based applications, James B. D. Joshi, Walid G. Aref,

Arif Ghafoor and Eugene H. Spafford, Communications of the ACM, Volume 44,

No. 3, March 2001

50. Conversational interfaces for e-commerce applications, Mark Lucente,

Communications of the ACM, Volume 43 , No. 12, December 2000

51. A cost and perfonnance model for Weh service investment, Kai R. T. Larsen and

Peter A. Bloniarz, Communications of the ACM, Volume 43, No. 2, February

2000

98

•

•

•

APPENDIX A - Source Code

The source codes listed here are the java files used in Section 4.3.3. They are part of the

implementation of our first solution: building from scratch. We also wrote many HTML

files in that solution~ but because they are lengthy and simple, we will not list them in the

appendix. The Java files written for the WebSphere solution are similar to the files listed

here. Ail the files are sorted in alphabetic order.

1. Finish.java

/* Finish.java
* Project: Buccaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 */

import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
irnport java.util.*;
import java.text.NumberFormat;
irnport java.lang.*;
irnport java.lang.String.*;
import java.lang.Double.*;

public class Finish extends HttpServlet
{
public void doGet(HttpServletRequest request~ HttpServletResponse response)

throws ServletException, IOException
{ PrintWriter out =response.getWriter();
HttpSession session = request.getSession(true);
String usemame = (String)session.getValue("usemame");
ShoppingCart cart;
cart = (ShoppingCart)session.getValue("shoppingCartlt

);

if(cart != null)
{

String type = request.getParameter("type");
String cardholder = request.getParameter("cardHolder");

99

•

•

•

String cardnumber = request.getParameter("cardNumbern
);

String expdatemonth = request.getParameter("expiryDateMonth");
String expdateyear = request.getParameter("expiryDateYearn

);

Vector itemsOrdered = cart.getitemsOrderedO;
ItemOrder order;

/* Database connection*/
try {Class.forName("sun.jdbc.odbc.JdbcOdbcDrivern

);}

catch(ClassNotFoundException cnfe){ out.print("Sorry, our database is experiecing
sorne problems. Please conle again");}

try
{ String sourceURL = "jdbc:odbc:buccaneer";

Connection databaseConnection =DriverManager.getConnection (sourceURL);
Statement statement = databaseConnection.createStatementO;
out.print("database ready. If);

/* save orders in database*/
for(int i=O; i<itemsOrdered.sizeO; i++)
{ order = (ItemOrder)itemsOrdered.elementAt(i);

String query ="insert into Orders " +
"values(m + usemame

+ "', lU + type
+ "', lU + cardnumber
+ "', "' + cardholder
+ ''', lU + expdatemonth
+ "', ." + expdateyear
+ "', 'If + order.getItemIDO
+ "', m+ order.getNumitemsO
+ "', ut + order.getTotalCostO
+ "')";

statement.executeUpdate (query);
}

databaseConnection.closeO;
session.invalidateO;
gotoPage("Ibuccaneer/finish.htm", request, response);

}
catch(SQLException e){out.print("Sorry, our database is experiecing sorne

problems. Please come again later");}

} else out.print("no shopping cart");

100

•

•

•

private void gotoPage (String address, HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException
{
RequestDispatcher dispatcher = getServletContextO.getRequestDispatcher(address);
dispatcher.forward(request, response);
}

j* POST and GET requests handled identically. *j

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
doGet(request, response);

}

101

•

•

•

2. Item.java

/* Item.java
III Project: Buccaneer
* Author: Yu Xing
* Data: 20~ Jan. 2001 */

public class Item
{
private String itemID;
private String shortOescription;
private String longDescription;
private double cost;

public Item(String itemID, String shortDescription, String longDescription, double cost)
{

setItemID(itemID);
setShortDescription(shortDescription);
setLongDescription(longDescription);
setCost(cost);

}

public String getItemIDO
{

retum(itemlD);
}

protected void setItemID(String itemID)
{

this.itemID = itemID;
}

public String getShortDescriptionO
{

retum(shortDescription);
}

protected void setShortDescription(String shortDescription)
{

this.shortDescription = shortDescription;
}

public String getLongDescriptionO
{

retum(longDescription);

102

•

•

•

}

protected void setLongDescription(String longDescription)
{

this.longDescription = longDescription;
}

public double getCostO
{

retum(cost);
}

protected void setCost(double cost)
{

this.cost ::::: cast;
}

}

103

•

•

•

3.ItemOrder.java

/* ItemOrder.java
* Project: Buccaneer
* Author: Yu Xing
- Data: 20, Jan. 2001 -/

public class ItemOrder
{
private Item item;
private int numItems;

public ItemOrder(Item item)
{

setItem(item);
setNumItems(1);

}

public Item getltemO
{

retum(item);
}

protected void setltem(Item item)
{

this. item = item;
}

public String getItemIDO
{

retum(getItemO·getItemIDO);
}

public String getShortDescriptionO
{

retum(getltemO·getShortOescriptionO);
}

public String getLongDescriptionO
{

retum(getItemO·getLongDescriptionO);
}

104

•

•

•

public double getUnitCostO
{

retum(getitemO·getCostO);
}

public int getNurnItemsO
{

retum(numltems);
}

public void setNumItems(int n)
{

this.numItems = n;
}

public void incrementNurnIternsO
{

setNumltems(getNumItenlsO + 1);
}

public void cancelOrderO
{

setNumltems(O);
}

public double getTotalCostO
{

retum(getNumltemsO * getUnitCostO);
}

}

lOS

•

•

•

4. Login.java

/* Login.java
* Project: Buccaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 */

import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
importjava.text.NumberFormat;
import java.lang.*;
import java.lang.String.*;
import j ava.lang.Double.*;

public class Login extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{ PrintWriter out = response.getWriterO;

String username = request.getParameter("userName");
String password = request.getParameter("password");

if «username != null) && (password != null »
{
/* check whether the user name and password pair is valid*/

try{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");}
catch(ClassNotFoundException cnfe) {};

try { String sourceURL = "jdbc:odbc:buccaneer";
Connection databaseConnection =DriverManager.getConnection (sourceURL);
Statement statement = databaseConnection.createStatementO;
String query = "select * from Customer where UserName = III

+ username + '" and Password = '"
+ password + '" ";

ResultSet result = statement.executeQuery (query);

if(result.nextO)
{

HttpSession session = request.getSessionO;
session.putValue("username", username);
gotoPage("Ibuccaneer/payment.htm", request, response);

106

•

•

•

databaseConnection.closeO;}
else
{

gotoPage(nIbuccaneer/checkoutagain.htm", request, response);
databaseConnection.closeO;}

}
catch(SQLException e){};

}
else
{

out.print("no input");
gotoPage("Ibuccaneer/checkoutagain.htm", request, response);}

private void gotoPage (String address, HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException
{

RequestDispatcher dispatcher = getServletContextO.getRequestDispatcher(address);
dispatcher. forward(request, response);

}

/* POST and GET requests handled identically. */

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
doGet(request, response);
}

107

•

•

•

5. OrderPage.java

/* OrderPage.java
* Project: Buccaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 */

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.text.NumberFonnat;
import java.Jang.*;
import java.lang.String.*;
import java.lang.Double.*;

public class OrderPage extends HttpServlet
{ public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{
HttpSession session = request.getSession(true);
ShoppingCart cart;
synchronized(session)
{

cart = (ShoppingCart)session.getValue("shoppingCart");
if (cart = null)
{

cart = new ShoppingCartO;
session.putValue("shoppingCart", cart);

}
String itemID = request.getParameter("itemID");

String shortDescription = request.getParameter("shortDescription");
String longDescription = "";
String itemcost = request.getParameter("cost");
double cost = 0 ;
if (iterncost != null)
{ cost = (Double.valueOf(iterncost».doubleValueO;}
Item newitem;
newitem = new Item(itemID,shortDescription, longDescription, cost);

if (itemID != null)
{

String numltemsString = request.getParameter("numltems");

j* Shoppers come from "add to cart" button"·/

lOS

•

•

•

if (numItemsString = null)
{

cart.addltem(newitem);
}

/* Shopper came from "update order" button*/
else
{

int numitems;
try
{

numItems = Integer.parselnt(numItemsString);
} catch(NumberFonnatException nfe) {
numltems = 1;

}
cart.setNumOrdered(newitem, numltems);

/* Output*/
response.setContentType("textlhtml");
PrintWriter out = response.getWriterO;
String title = "Your Shopping Cart";
out.println(ServletUtilities.headWithTitle(title) +

"<BODY BGCOLOR=\n#FFFFFF\">\n" +
"<table width=\"70O/o\" border=O cellspacing=O cellpadding=O>" +
"<tr><td height=\"3\" bgcolor=\"#3F388F\"></td></tr>" +

"<tr><td>" +
"<table border=O width=1000/0 cellspacing=O cellpadding=O> <tr>" +
" <td width=\"2\" bgcolor=\"#3F388F\'t rowspan=\"2\n> </td>" +
" <td width=\"120\" bgcolor=\"#321B5F\" align=\"right\n valign=\"top\">" +
n <table width=\" 120'" border=O cellspacing=O cellpadding=O>" +
n<tr><td height=80> </td></tr>n +
n<tr><td align=\"right\">
</td></tr>1t +

"<tr><td align=\"rightV'>
</td></tr>" +

"<tr><td align=\"right\">
</td></tr>" +
"<tr><td align=\nright\">
</td></tr>" +
n<tr><td align=\nright\">
<a href=\" ../buccaneer/heypassword.htm\n

onMouseOver=V'window.status=tnonet ;return true\n >

109

•

•

•

<la></td></tr>" +
"<tr><td align=\"right\">
<la></td></tr>n +
"<tr><td align=\nright\n>
<la><ltd><ltr>n +
u<tr><td height=\"80\"> <ltd><ltr><ltable><ltd>" +
" <td bgcolor=\"#OOOOOO\" width=\"2\"> </td>" +
" <td align=left valign=top height=lOOo/o>" +

"<table border=\"o\n width=100% height=lOO%
background=\"../buccaneer/bg_map.jpg\" cellspacing=\UO\" cellpadding=\"O\">\n" +

"<tr><td>\nn +
"
 \n" +
"
 \n" +
u<P><Hl ALIGN=\nCENTER\n>" + title + "<!Hl>");

synchronized(session)
{
Vector itemsOrdered = cart.getItemsOrderedO;
if (itemsOrdered.size() = 0)
{

out.println("<center><H2><I>No items in your cart...</I></H2>" +
"<fonn action=\" ../buccaneer/products.htm\n>,. +
"<input type=submit name=back value=\"Continue Shopping\">
</fonn></center>");

}
else
{

/. Show every item in the cart·/
out.println
("<TABLE BORDER=l ALIGN=\"CENTER\">\nu +
n<TR BGCOLOR=\"#FFFFCE\n>\nn +
n<TH>Item ID<TH>Description\n" +
u<TH>Unit Cost<TH>Number<TH>Total Costn);
ItemOrder order;

NumberFonnat fonnatter =
NumberFonnat.getCurrencyInstanceO;

String formURL =n/servlet/OrderPage";
formURL = response.encodeURL(formURL);

double totalcost = 0;

for(int i=O; i<itemsOrdered.sizeO; i++) {
order = (ItemOrder)itemsOrdered.elementAt(i);

110

•

•

• }
}

out.println
("<TR>\n" +
" <TO>" + order.getItemIDO + "\n" +
" <TD>" + order.getShortDescriptionO + "\n" +
" <TO>" +
fonnatter.fonnat(order.getUnitCostO) + "\n" +

" <TD>" +
"<FORM ACTION=\'''' + fonnURL + "\">\n" +
"<INPUT TVPE=\"HIDDEN\" NAME=\"itemID\"\n" +
" VALUE=\'''' + order.getItemIDO + "\">\n" +
"<INPUT TVPE=\"TEXT\" NAME=\"numItems\"\n" +
" SIZE=3 VALUE=\"" +

order.getNumItemsO + "\">\0" +
"<SMALL>\n" +
"<INPUT TVPE=\"SUBMIT\"\n "+
" VALUE=\"Update Order\">\n" +
"</SMALL>\n" +
"</FORM>\n" +
" <TO>" +
formatter. fonnat(order.getTotaICostO»;
totalcost=totalcost + order.getTotaICostO;

}
out.println("<tr><td colspan=4 align=right> Total: <Itd><td>" +
fonnatter.fonnat(totalcost) + "<Ib></td></tr>");
String checkoutURL = response.encodeURL(" ../buccaneer/checkout.htm");

out.println
("</TABLE>\n" +

"<FORM ACTION= ../buccaneer/products.htm>\n" +
"<BIG><CENTER>\n" +

"<INPUT TVPE=\"SUBMIT\"\n" +
" VALUE=\"Continue Shopping\">\n" +
"</CENTER></BIG><IFORM>" +
"<FORM ACTION=\"" + checkoutURL + "\">\n" +
"<BIG><CENTER>\n" +

"<INPUT TYPE=\"SUBMIT\"\n" +
" VALUE=\"Proceed to Checkout\">\n" +
"</CENTER></BIG><IFORM>");

}
out.println

("<ltd><td width=l align=left bgcolor=\"#3F388F\"> </td> </tr><ltable>"+
"</td></tr> <tr>
<td bgcolor=\"#3F388F\" height=\"4\" valign=center colspan=\"4\"></td></tr>" +
"<ltable><!td></tr></table> </BOOY><IHTML>");

III

•

•

•

J* POST and GET requests handled identically. */

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{ doGet(request, response);
}

112

•

•

•

6. Payment.java

j* Payment.java
* Project: Buccaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 • j

import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.text.NumberFormat;
import java.lang.*;
import java.lang.String.*;
import java.lang.Double.*;

public class Payment extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{
response.setContentTypeCttext/html");
PrintWriter out = response.getWriterO;
String tide = "Payment methodU

;

out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\n#FFFFFF\n>\n" +
"<table width=\"70%\U border=O cellspacing=O cellpadding=O>" +
"<tr><td height=\"3\" bgcolor=\"#3F388F\n></td></tr>n +
n<tr><td>u +
u<table border=O width=100% cellspacing=O cellpadding=O> <tr>" +
n <td width=\t1 2\" bgcolor=\"#3F388F\" rowspan=\n2\n> </td>u +
n <td width=\U 120\" bgcolor=\t1#321 B5F\" align=\"right\" valign=\lttop\,,>n +
" <table width=\" 120\n border=O cellspacing=O cellpadding=O>u +
n<tr><td height=80> </td></tr>1t +
n<tr><td align=\"right\">
</td></tr>1t +
U<tr><td align=\nright\u>
</td></tr>" +
n<tr><td align=\uright\n></td>
</tr>U+
u<tr><td align=\"right\t1>
<la><ltd><ltr>" +
n<tr><td align=\nright\u>

113

•

•

•

<a href=\"../buccaneerlheypassword.htm\" onMouseOver=\nwindow.status='none'
;retum true\" >

<Itd></tr>" +
"<tr><td align=\"right\">
<irng src=\n ../buccaneerlhelp.jpg\n border=O></td></tr>" +
"<tr><td align=\"right\n>
</td></tr>" +
"<tr><td height=\"80\"> </td></tr></table></td>" +
" <td bgcolor=\"#Oooooo\n width=\"2\"> </td>" +
" <td align=left valign=top height=1000/0>" +
"<table border=\"O\" width=100% height=100%

background=\"../buccaneer/bg_map.jpg\" cellspacing=\"O\" cellpadding=\"O\">\n" +
"<tr><td>\n" +
n
 \n" +
"
 \n" +
n</td></tr></table>\n" +
n<table border=O align=center bordercolor=\n#321 B5F\" cellspacing=O

cellpadding=O>\n" +
n <Form action=\"gotoPage(/servletIFinish\" method=\npüst\"><tr>
<td Colspan=2 align=left>\n" +

"" +
"Your Credit Card Information<IB>
\n" +
"

Ali information are required

</td>\n" +
"</tr> <tr bgcolor=\"#FFFFCC\"> <td>
Type

</td>\n" +
n<td><select name='type' value="><option value=">
<option value=\" 1\">Visa</option><option value=\"2\">MasterCard</option>
<option value=\"3\">American Express</option>\n" +
"</select></td></tr>\n" +
"<tr bgcolor=\"#FFFFCC\"><td>
Credit Card Number:
</td>\n" +
"<td> <input name=\ncardNumber\" size=40 MAXLENGTH=20 value=\,,\n >
<ltd></tr>\n" +

" <tr bgcolor=\"#FFFFCC\"> <td>

Card Holder</td>\n" +

"<td> <input name=\"cardHolder\" size=40 MAXLENGTH=40 value=\"\" >
</td></tr>\n" +

"<tr bgcolor=\"#FFFFCC\"> <td>
Expiry Date
</td>\n" +
"<td Valign=top>

114

•

•

•

<input size=2 MAXLENGTH=2 name=\"expiryDateMonth\" VALUE=\"\"
>f\:n" +

n<input size=2 MAXLENGTH=4 name=\nexpiryDateYear\" value=\"\" >
<ltd><ltr></table></center>\n" +
"<CENTER> <table border=O align=center width=\"80%\" cellspacing=O

cellpadding=2>\n" +
"<tr> <td align=center>

<input type=\"submit\" value=\"Continue\" name=\"Submit\"

alt=\"Submit\"> \n" +
"<input type=\"reset\" value=\"CLEAR\" name=\"reset\" alt=\"reset\">
</td></tr> </table> </form> </CENTER>\n" +

"</td> <td width=l align=left valign=top bgcolor=\"#3F388F\">
</td></tr></table>\n" +

" </td></tr><tr>
<td bgcolor="#3F388F" height="4" valign="center" colspan="4">
</td></tr></table><ltd></tr></table>");

private void gotoPage (String address, HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException
{ RequestDispatcher dispatcher = getServletContextO.getRequestDispatcher(address);
dispatcher.forward(request, response);
}

/* POST and GET requests handled identically. */

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
doGet(request, response);
}

115

•

•

•

7. Register.java

/* Register.java
* Project: Buccaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 */

import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
importjava.text.NumberFormat;
import java.lang.*;
import java.1ang.String.*;
import java.1ang.Double.*;

public class Register extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{ PrintWriter out = response.getWriterO;
String usemame = request.getPararneter("userNamen

);

String password = request.getParameter("passwordn
);

String firstname = request.getParameter("firstNamen
);

String lastname = request.getParameterC'lastName");
String email = request.getParameter("email");
String addressl = request.getParameter("addressl");
String city = request.getParameter("city");
String province = request.getParameter("province");
String postalcode = request.getParameter("postaICode");
String country = request.getParameter("country");
String dayphone = request.getParameter("dayPhone");

try {Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");}
catch(ClassNotFoundException cnfe)
{ out.printC'Sorry, our database is experiecing sorne problerns. Please come again");}
try
{ String sourceURL = "jdbc:odbc:buccaneer";

Connection databaseConnection =DriverManager.getConnection (sourceURL);
Statement statement = databaseConnection.createStatementO;
String queryl = "select * from Customer where UserName= nt + usema.rne + 1"";
ResultSet result = staternent.executeQuery (queryl);

116

•

•

•

if(result.nextO) gotoPage("/buccaneer/usemametaken.htm", request, response);
else

{
String query2 ="insert into Customer" +

"values(''' + usemame
+ "', '" + password
+ "', fit + firstname
+ ''', nt + lastname
+ 'It, fit + email
+ ''', nt + address 1
+ "', 'fI + city
+ ''', nt + province
+ tu, 'rI + postalcode
+ "', III + country
+ 'ft, III + dayphone
+ ,It)";

statement.executeUpdate (query2);
databaseConnection.closeO;
response.setContentType("textlhtm1");
String htmltitle = "Register";
out.println(ServletUtilities.headWithTitle(htmltitle) +

"<BODY BGCOLOR=\"#FFFFFF\">\n" +
"<table width=\"70%

\" border=O cellspacing=O cellpadding=O>" +
"<tr><td height=\"3\" bgcolor=\"#3 F388F\"></td></tr>" +
"<tr><td>" +
"<table border=O width=100% cellspacing=O cellpadding=O> <tr>" +
" <td width=\"2\" bgcolor=\"#3F388F\" rowspan=\"2\"> </td>" +
" <td width=\" 120\" bgcolor=\"#321 B5F\" align=\"righl\" valign=\"lOp\">" +
" <table width=\n 120\" border=O cellspacing=O cellpadding=O>" +
n<tr><td height=80> </td><ltr>" +
n<tr><td align=\"right\n>
</td></tr>n +

"<tr><td align=\nright\">
</td></tr>" +
n<tr><td align=\"right\">
<ltd></tr>" +
"<tr><td align=\"right\">

</td></tr>" +
"<tr><td align=\"right\">
<a href=\" ../buccaneerlheypassword.htm\"

o~ouseOver=\"window .status='none' ;retum true\" >
<la></td></tr>" +

"<tr><td align=\"right\">
</td><ltr>" +

"<tr><td align=\"right\">

117

•

•

•

<la></td></tr>" +
"<tr><td height=\"80\"> <ltd></tr></table></td>" +
" <td bgcolor=\"#Oooooo\n width=\"2\n> </td>" +
" <td align=left valign=top height=100%>" +

"<table border=\"O\" width=100% height=100°,/0
background=\n../buccaneer/bg_map.jpg'" cellspacing=\"O\" cellpadding=\"O\">\n" +

"<tr><td valign=top>\n" +
"
 &nbs!,;\n" +
"
 \n" +
n<p>
You are successfully registered!<Ib><P>
 Please remember your username:<[>"+ username+"
</[> and password:<[>" + password + "<Ib>");

out.println
("</td><td width=l align=left bgcolor=\"#3F388F\"> </td>

</tr></table>" +
"</td></tr> <tr><td bgcolor=\"#3F388F\" height=\"4\" valign=center

colspan=\"4\n></td></tr>" +
"</table></td></tr></table> </BODY></HTML>");

}
catch(SQLException e){out.print("Sorry, our database is experiecing sorne problems.

Please come again later");}

private void gotoPage (String address, HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException
{ RequestDispatcher dispatcher = getServletContextO.getRequestDispatcher(address);
dispatcher. forward(request, response);
}

1* POST and GET requests handled identically. */

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

doGet(request, response);

}

118

•

•

•

8. ServletUtiiities.java

j* ServletUtiiities.java
* Project: Buceaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 */

import javax.servlet.*;
import javax.servlet.http.*;

/* Some simple time savers*/
public c1ass ServletUtilities
{
public statie final String DOCTVPE =

"<!DOCTVPE HTML PUBLIC \"-/1W3C/IDTD HTML 4.0 ft +
"TransitionalllEM">";

public statie String headWithTitle(String title)
{

retum(DOCTVPE + "\n" +
"<HTML>\n" +
"<HEAD><TITLE>lt + title + "</TITLE></HEAD>\nlt);

public statie int getIntParameter(HttpServletRequest request,String paramName,
int defaultValue)

{
String paramString = request.getParameter(paramName);
int paramValue;
try {

paramValue = Integer.parselnt(paramString);
} eateh(NumberFonnatExeeption nfe)
{ // null or bad format

paramValue = defaultValue;
}
retum(paramValue);

}

public statie String getCookieValue(Cookie[] eookies, String eookieName,
String defaultValue)

{
if (eookies != null)
{

for(int i=O; i<eookies.length; i++)
{

Cookie eookie = cookies[i];

119

•

•

•

if (cookieName.equals(cookie.getNameO»
retum(cookie.getValueO);

}
}
retum(defaultValue);

}
public static Cookie getCookie(Cookie[] cookies, String cookieName)

{
if(cookies != null)
{

for(int î=O; i<cookies.length; i++)
{

Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getNameO»

retum(cookie);
}

}
retum(null);

}
public static String filter(String input)

{
StringBuffer filtered = new StringBuffer(input.lengthO);
char c;

for(int i=O; i<input.lengthO; i++)
{

C = input.charAt(i);
if(c = '<Il
{
filtered.append("&It;");

} else if(c = '>')
(
filtered.append(">");

} else if (c = "")
{
fiItered.append("" If);

} else if(c = '&')
{
fi ltered.append("&");

} else
{
filtered.append(c);

}
}
retum(filtered.toStringO);

}
}

120

•

•

•

9. ShoppingCart.java

/* ShoppingCart.java
* Projeet: Bueeaneer
* Author: Yu Xing
* Data: 20, Jan. 2001 */

import java.util.*;

public c1ass ShoppingCart
{
private Veetor itemsOrdered;

public ShoppingCartO
{

itemsOrdered = new VeetorO;
}

public Veetor getItemsOrderedO
{

retum(itemsOrdered);
}

public synehronized void addltem(ltem newitem)
{

ItemOrder order;
for(int i=O; i<itemsOrdered.sizeO; i++)
{
order = (ltemOrder)itemsOrdered.elementAt(i);
if (order.getltemIDO.equals(newitem.getltemIDO»
{
order. inerementNumltemsO;
retum;

}
}
ItemOrder newOrder = new ItemOrder(newitem);
itemsOrdered.addElement(newOrder);

}

121

•

•

•

public synchronized void setNumOrdered(Item newitem. int numOrdered)
{

ItemOrder order;
for(int i=O; i<itemsOrdered.sizeO; i++)
{
order = (ItemOrder)itemsOrdered.elementAt(i);
if (order.getItemID{).equals(newitem.getItemIDO»
{
if (numOrdered <= 0)
{
itemsOrdered. removeElementAt(il;

}
else
{
order.setNumltems{numOrdered);

}
retum;

}
}
ItemOrder newOrder =
new ltemOrder(newitem);

itemsOrdered.addElement(newOrder);
}

}

122

