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Abstract

This thesis applies the consensus paradigm to an important problem in model-based
vision, that of primitive extraction. Primitive extraction is the process of finding
geomelric primitives in geometric data. Such data arc obtained directly by active
sensors such as laser rangeflinders, by processes that operate on passive sensor dava
Lo create depth information such as sterco vision, or by simple cdge detection and
thresholding of intensity images. A geometric primitive is a curve or surface which
can be described by an implicit function. We show that the best solution to this
problem is at Lhe global optimum of a cost function which often has very many local
optima.

This global optimum represents the best consensus in the data with regard to the
exiraction problem. The consensus paradigm attempts to find this global optimum
by randomly choosing small subsets of the data and evaluating the cost function
for cach subset. We apply the consensus paradigm to this problem by randomly
sampling minimal subsets. This is a simple and general way of finding the best
consensus. For primitive extraction a minimal subset is the smallest number of points
neceessary to define a gcometric primitive. The issues of how to choose the appropriate
cost function, how to decide on the number of random samples, and how to convert
between a minimal subset and the parameter vector that defines the primitive are
explored in detail.

While effective, the consensus approach using random sampling often requires
a large number of random samples, and therefore a large number of cost function
cvaluations. We address this problem by combining the consensus paradigm with a
genctic algorithm that uses the minimal subset representation. A genetic algorithm is
an optimization method based on the evolutionary metaphor. It has been successfully
applied to difficult optimization problems, where the cost function is noisy, multi-
dimensional, and has many local minima. In our applications the genetic algorithm

is able to use local geometric information to produce a global solution in a way that



usually avoids the problem of premature commitment. The resulting method often
requires far fewer cost function evaluations than the random sampling approach.
Some ways of implementing these algorithms on dilferent paratlel architectures are

described.



Résumé

Cetie thése applique le paradigme du consensus a un probléme important en vision
hasée sur des modeles: Pextraction de primitives. L'exiraction de primitives est le
processus de repérage de primitives géométriques dans des données géométriques. Ces
données proviennent directement de capteurs actifs tels que les télémétres au laser, de
processus opérant sur des données de capteurs passils pour en extraire l'information
de profondeur tel que la vision stéréo, ou par simple détection d’arétes et seuillage
d"images d'intensilé. Une primitive géométrique est une courbe ou une surface qui
peul &lre déerite par une fonction implicite. Nous démontrons que la meilleure solu-
tion & ce probleme se trouve & Poptimum global d’une fonction de cofit qui posséde
souvent de trés nombreux optimoms locaux.

Cet optimum global représente le meilleur consensus obtenu des données en ce qui
concerne te probleme d’extraction. Selon le paradigme du consensus, on cherche a
trouver cet optimum global en choisissant de fagon aléatoire de petits sous-ensembles
des données et en évaluant la fonction de coit pour chaque sous-ensemble. Nous ap-
pliquons le paradigme du consensus a ce probleme en choisissant au hasard des sous-
cnsembles minimaux. Il s’agit d'une fagon simple et générale de trouver le meilleur
consensus possible. Pour 'extraction de primitives, un sous-ensemble minimal est
lc nombre minimum de points définissant une primitive géométrique. Nous dis-
cuterons du choix de la fonction de coiit, de la détermination du nombre d’échantillons
aléatoires, et de la conversion entre un sous-ensemble minimal et un vecteur de
parametres définissant la primitive.

Bien qu’eflicace, 'approche par consensus utilisant |’ échantillonnage aléatoire
nécessite souvent un grand nombre d’échantillons aléatoires, et par conséquent un
grand nombre d’évaluations de la fonction de coiit. Nous abordons ce probléme
cn combinant le paradigme de consensus avec un algorithme génétique qui utilise
la représentation par sous-ensembles minimaux. Un algorithme génétique est une

méthode d'optimisation fondée sur la métaphore de 1’évolution. Cette méthode a été

—
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—



appliquée avee succes a des problemes difliciles d'optimisation, on la fonction de canit
est bruitée, multi-dimensionnelle ot posséde plusicurs minimums locanx. Dans nos
applications, I'algorithme génétique est en mesure d'utiliser Pinformation geométrique
locale afin de produire une solution globale en évitant habitucllement le probleme de
décision prématurée. La mcéthode qui en découle requierl souvent heaucoup moins
d’évaluations de la fonction de coiit que la méthode d’échantillonnage aléatoire. Nous
décrirons quelques méthodes de réalisation de ces algorithmes sur diverses architee-

tures parallcles.
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Chapter 1 Introduction

We believe that any model-based vision system will require the ability to ex-
tract geometric primitives. This means finding geometric primitives (such as lines,
planes, spheres, etc.) in geometric sensor data. Once this basic capability exists
it can be used to build particular solutions to such model-based vision problems
as scgmentation [Roth and Levine, 1990b}, pose determination and pose retinement
[Roth and Levine, 1991b).

An cxample of primitive extraction is shown in Figure 1.1 where two ellipses are
extracted from an image of a cable surrounded by an insulator. Part (a) shows the
initial image, with pari (b) indicating a set of edge points computed from this image.
Part (c) presents the two extracted ellipses drawn as dark lines. The fact that the
two cllipses are very close together makes the extraction difficult. This example will
be discussed in more detail later in the thesis.

Our solutien to the extraction problem is based on the consensus paradigm

[Mcer, 1991], which Meer defines as follows:

“Compute a candidate model based on a randomly chosen small subset
of the data. Apply this model to all the data. Compute a global measure
for the model. Optimize the quality measure by repeating the procedure

several times.”

This paradigm embodies the concept of feedback [Besl and Jain, 1985, in which each
potential solution is tested against the original geometric data. The first application in
the computer vision ficld of the consensus approach was the RANSAC algorithm which
was used to register images [Fischler and Bolles, 1981, Bolles and Fischler, 1981).
It was then rediscovered in the statistics field in the form of the Least Me-
dian Squared (LMedS) algorithm [Rousseeuw and Leroy, 1987], and used as the ba-
sis of a number of segmentation algorithms [Kim et al., 1989, Meer et al., 1990,

Roth and Levine, 1990b]. In this thesis we apply the consensus paradigm to the

1



1. lutroduction

Figure 1.1: Extracting ellipses from cable image (a) initial intensity image
(b) edge point chains (c) two extracted ellipses



1. Introduction

problem of primitive extraction by performing random sampling of minimal subsets.
We also combine the consensus approach with a genetic algorithm (GA). A GA is an
optimization procedure which is based on an analogy with evolution. We believe that
Lhe resulting solutions to the extraction problem have a number of unique capabilities

and characleristics.

1.1 Motivation

Before we define this problem more precisely, we will first explain why it is important.
One thing that has become clear in the last twenty years is that if we wish to have
operational computer vision systems there must be constraints on the environment.
Without such constraints it is difficult, if not impossible, to produce clear problem
definitions, and to evaluate potential solutions. In the computer vision field the most
common constraint is that of model-based vision. In this paradigm the simplifying
assumption is made that the environment consists of manufactured objects whose
geometry is known beforehand. This is a reasonable assumption given the fact that
most manufactured objects are created with the aid of a computer-aided design (CAD)
package [Faux and Pratt, 1979].

To reiterate, in model-based vision the assumption is that there exists a model
~ of every significant object in the environment. Each of these objects is defined as
a set of geometric primitives. A geometric primitive is a curve or surface which is
described by an equation with a number of free parameters. One example of a model
would be the description of a room as a set of line segments, another the description
of a cube as a set of planar patches. More complex models have a wider variety of
defining geometric primitives, but the basic principle is unchanged.

The next essential component in a model-based vision system is sensor data. Here,
we would like to be as general as possible in describing how this data is presented. We
feel that this can best be dene by thinking of the sensors as providing an unordered list
of points in two-or three-dimensional Cartesian space, which we call geometric data.

The fact that the set of points are unordered is important for a number of reasons. The
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first reason is that the process that created the sensor data may not produce any such
ordering. The second reason is that the data may be taken from a number of different
viewpoints. In this case it is still an open resecarch question as to how to produce
an ordering among the data points [Aubry and Hayward, 1988, Hoppe et al., 1992].
However, in situations where an ordering between geometric data points does exist
we will show how it can be used advantageously in our algorithwm,

In model-based vision there are three basic tasks that appear repeatedly: object
identification, pose determination and posc refinement. QObject identification is the
process of identifying which objects in the sensed environment are objects in the CAD
database. Pose determination assumes that an object has been so idenlified, and that
we want to find its pose. The pose of an object is ils position and orientation, and this
information is essential for manipulation and planning purposes. Pose refinement is
the process of improving or refining this pose, and is essential for tracking applications.
The assumption here is that the object has been identified and its approximate posc
has already been determined. There are many different approaches to these three
problems, and they vary depending on the particular application.

Are there any commonalties that link these three problems? That is, is there any
basic capability upon which all solutions to these problems and other model-based
vision problems depend? We believe that there is, and that this basic building block
is the extraction of geometric primitives. This is the process of finding primitives
(such as lines, planes, spheres, etc.) in geometric sensor data. The problems of
object identification, pose determination and pose refinement all require primitive
extraction. Therefore by focusing on the problems of primitive extraction we are not
providing solutions to any particular model-based vision problem. Insiead, we arc
creating a tool which can be used to build solutions to a wide variety ol tasks in

model-based vision.
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1.2 Overview

In order to belter understand the problem of primitive extraction we define an opti-
mization model for this task. The use of such models has recently become common in
the computer vision ficld [Leclerc, 1989). They require the creation of a cost function
which measures the quality of the output produced by a particular algorithm. This
cost. function depends on the vaiue of a parameter vector, and the goal is to find the
parameter vector value which optimizes the cost funclion. For primitive extraction
the cost function measures the quality of the extracted primitive. In the case of ex-
traction the parameter vector defines the primitive. The best value for the parameter
vector is the one for which the cost function is at its global optimum. This solution
represents the best consensus in the data according to the criteria encoded in the cost
function.

This optimization model for extraction gives us a number of important insights.
The first is that this problem does indeed fit into an optimization framework. The
second, is that algorithms for this task must attempt to find the global optimum of
cost [unctions which have many local optima. Each local optimum partitions the
input into two groups, which we call inliers and outliers. For primitive extraction
inliers are geometric data points that belong to the primitive, and outliers are the
remaining geomeltric data points.

It is important that any algorithm for solving the problems of primitive extraction
be robust. In an intuitive sense robustness is the ability to achieve a good solution
even in the case where there are many outliers. The quality of the solution depends
on how close the optimum value of the cost function found by the algorithm is to
the global optimum. We show how various algorithms for primitive extraction (such
as the Hough transform), can be recast in this optimization framework by simply
defining the appropriate cost function. This optimization model indicates that all
robust algorithms have the goal of finding the global optimum from among many
local optima.

The number of local optima is potentially as large as the number of ways to
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partition the input into inliers and outliers. Since this is a very large number, primitive
extraction is in many cases computationally difficult. While these problems are in
theory solved once a cost function has been defined, an efficient solution must find
a value close to the global optimum in as few evaluations of the cost function as
possible.

The minimal subset principle states that a subsct of a set can often encode the
characteristics of the entire set. For primitive extraction a minimal subset is the
smallest number of poinis necessary to define a geometric primitive. For example, in
the case of a line the minimal subset contains two points, for a plane three points,
etc. We show that for accurate gcometric data efficient solwtions to the problem of
primitive extraction can be obtained using minimal subsets.

One way to solve the problem of primitive extraction is to evaluate the cost func-
tion only at the values of the parameter vector defined by the minimal subsets. If the
geometric data are without error, then this procedure is guaranteed to find the true
global optimum. As the accuracy of the geometric data decreases, the likelihood of
this occurring also decreases. While the requirement for very accurale geometric data
may seem stringent, it is the case that modern sensors usually provide such data.

Evaluating the cost function at all possible minimal subsets is rarely praclical.
A more efficient way is to evaluate the cost function only atl the paramecter vector
values defined by randomly chosen minimal subsets. We show that this approach,
which we call minimal subset random sampling, is a simple and gencral way Lo solve
the problem of primitive extraction. We discuss a number ol important. issues in the
implementation of this algorithm, including how to map between a minimal subset
and a parameter vector. We show how such a mapping can be created cfficiently for
a wide variety of geometric primitives by using elimination theory, which is a method
from the field of symbolic algebra.

While effective, minimal subset random sampling still may require too many cost
function evaluations. To overcome this problem we combine the minimal subset
approach with a genetic algorithm (GA). A GA is a procedure which has been shown

to efficiently find an optimum value which is often close to the global oplimum for
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noisy cost functions which have many local optima. It is based on an analogy with
evolution, in which the new solutions are created from a population of potential
solutions. In our case a population member defines the parameter vector for the
extraction problem, and is represented by a minimal subset. We apply a GA to
the problem of primitive extraction. The initial population is created by random
sampling over small components of the geometric data. The GA takes this initial
population and uses genctic operators to create better solutions, It takes advantage
ol the local information provided by the initial population to quickly converge to a
global solution. The resulting extraction algorithm often requires substantially fewer
cost. function evaluations than a method which uses only random sampling,.
Real-time performance is often necessary in model-based vision applications. For
this rcason we show how these algorithms can be implemented on parallel hardware.
We demonstrate that this can be done on a wide variety of parallel architectures,
which is a significant advantage of our approach over other extraction algorithms.
This research has produced a better understanding of the inherent complexity
of the problems of primitive extraction. Our solutions to this problem are already
practical for many applications, and will become more so as parallel hardware becomes
more widely available. We believe that the use of such consensus algorithms will lead
to significant advances in the field of model-based vision because of their robust

nature.

1.3 Definitions

Since the terms geometric data and geometric primitives are essential to the under-
standing of this thesis we will explain their meaning in more detail. We will begin with
the idea of geometric data, This concept is a slightly modified version of the term ge-
ometric signal [Besl, 1990]. Geometric data are nothing more than an unordered list
of points in two-or three-dimensional Cartesian space. Such data are obtained from
two basic methods. The first is to use a passive sensor (such as an ordinary intensity

camera) followed by processes such as edge detection or stereo vision. The second is
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to use an active sensor (such as a laser rangefinder) to probe the euvironment. For
our algorithms neither the method used to produce the data nor the dimensionality
is important.

There is a number of rcasons why we emphasize the fact that no ordering is
assumed for the geometric data. The first reason is that the process that produces
the geometric data may not create such an ordering. An example of this is the
matching process of sterco vision. Another example is when the sensor itsell does
not produce data on a regular grid [Blais ef al, 1991]. The sccond reason is that
sometimes the data may be taken from a number of different views. In this case
there is no simple way to find the ordering of the points between the different views
(see [Aubry and Hayward, 1988) for rescarch in this arca). The third reason is that
we believe that the lack of ordering makes it much casicr for our algorithms to be
implemented on parallel hardware.

We also argue that it is often the case thal the number of geometric dala points
is limited; that is, in the order of thousands of peints. Certainly for geometric dala
extracted from intensity images by processes such as edge delection or stereo Lhis
is true. It is not the case for dense geometric data (sometimes called range data)
obtained using an active sensor. We believe that dense range data is unnecessary
for many robot vision tasks, and that relatively sparse range data (Lthousands versus
millions of points) is more than sufficient. However, for certain inspection tasks dense
data is appropriate. For these reasons we have made our definition of gcometric data
general enough to accommodate both sparse and dense geometric data.

We will now define more precisely what we mean by a geomelric primitive. In
model-based vision it is assumed that there is a geometric description of cach sig-
nificant object in the environment. Each such object is described as the union of
geometric primitives. A geometric primitive is a curve or surface which is defined by
an equation with a number of free parameters. Examples of such primitives in 2D
are lines, circles, and ellipses, and in 3D are planes, spheres, tori. If the object were a
cube it could be described as the union of six planar patches. More complex objects

need more complex primitives to describe them, but the principle is the same.
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A geometrie primitive can be defined in two different ways: using the parametric
form or the implicit form. The parametric form is commonly used in computer
graphics and computer-aided design systems. It is most uscful for generating the
points on a curve or surface, or for manipulating the curve or surface. By contrast,
the implicit form is most usclul for finding whether a given point is on a particular
curve or surface. A curve or surface in implicit form is defined as the set of points
which are the zeros of a function. In this thesis the notation used to describe a
geometric primitive in implicit form is f(p;@) = 0. In this notation, 7 is the datum
point, and @ defines the parameter vector for this particular primitive. For example, a
2D line is defined implicitly by the equation ag+ a1 + a2y = 0, where the parameter
vector @ is (ag, a1, ¢z) and the datum point 7 is (z,y). Different instances of the
geometric primitive are produced by changing the parameter vector @ The implicit
form naturally divides space into three regions, f > 0, the points on one side of the
curve or surface, f < 0, the points on the other side of the curve or surface, and
f = 0 the points on the curve or surface, The implicit form is used in this thesis
when describing geometric primitives. The reason is that for primitive extraction it is
necessary to efliciently compute the closest distance of a point to a curve or surface.
This can be with the implicit form using an approximation that is adequate for this
application. Since the object models in CAD databases are described in parametric
form, it is necessary Lo be able to convert from the parametric to implicit form in
order to use our algorithms. This can be done by using elimination theory, which is

a method from the field of symbolic algebra.

1.4 Related Work

The RANSAC algorithm was the first to use the consensus approach in
the computer vision field [Fischler and Bolles, 1981, Bolles and Fischler, 1981].
The consensus approach has also been used in the robust statistics field

[Rousseeuw and Leroy, 1987]. Recently this method has been more widely applied
[Meer et al., 1991, Jolion et al., 1991, Mintz, 1991). Some of this research uses con-
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sensus methods to solve the segmentation problem [Jolion et al, 1991], other work
attacks a variety of computer vision problems [Mintz, 1991]. We concentrate only on
the problem of primitive extraction. Other vobust statistics methods have also been
applied to problems such as local estimation of surface properties [Best ef al., 1988],
Such rescarch adheres closely to the terminology of the robust statistics approach,
especially in the understanding of breakdown. Our work differs in the understand-
ing we have of this concept, whose utility in the computer vision field we consider
questionable.

Recently, some work from the ficld of computalional geometry has been
done to find efficient algorithms for robust estimation [Dillencourt ef al., 1992,
Netanyahu, 1992]. These algorithms find the exact solutions Lo certain robust es-
timators without using random sampling. However, the expected running time is
only achieved with a given probability, and they may execule very slowly. While
these methods hold promise they have been shown to work only for robust estimators
that extract lines, and it is not clear how to extend Lthem to deal with more complex
primitives.

The Hough transform has had a long history of both theoretical and practical re-
sults in the computer vision ficld [[llingworth and Kitller, 1988]. 1t has been widely
applied to the problem of primitive extraction. While our work considers the same
problem it does so0 in a completely different fashion. The Hough transform uses a pa-
rameter space to accumulate votes for different geometric primitives. Once the voting
is finished the parameter space is analysed to find the best set of primitives. By con-
trast we do not build a parameter space, but evaluate cach hypothesized geometric
primitive directly by comparing it against the geometric data. Our work is thus more
similar to the hypothesize-and-test methodology than the Hough transform. While
this evaluation process is a potential computational bottleneck, we believe that it can
be easily parallelized using parallel hardware. Recently there has been some research
on overcoming some of the deficiencies of the Hough transform by creating random-
ized versions [Oja and Xu, 1990, Kiryati et al.,, 1991, Bergen and Shvaytser, 1991).

While this approach is similar to ours in that random sampling is used, a voling

10
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process in parameter space still occurs, This is not true for our method, which does
nol use a voling process, but instead evaluates cach hypothesized geometric primitive
directly against the geometric data.

Other recent work explores the use of implicit functions in model-based
computer  vision [Taubin, 1988, Taubin and Cooper, 1990, Taubin, 1991,
Bolle and Vemuri, 1991, Kriegman and Ponce, 1990, Ponce el al., 1991]. The rela-
tionship between parametric and implicit descriptions of curves and surfaces has al-
ready been noted and explored [Bolle and Vemuri, 1991]. The implicit form can be
obtained by conversion from the parametric form [Sederberg and Anderson, 1984],
which is how objecls arc described in conventional CAD deta bases. Given some
geometric data, and a curve or surface in implicit form, the best fit to the geo-
metric data points can be determined. This fitting process is not a simple task
[Taubin, 1991, Kriegman and Ponce, 1990, Ponce ef al., 1991], and requires complex
nonlinear optimization algorithms. The key point that distinguishes our work from
this body of rescarch is that we concentrate on extraction as opposed to fitting., Ex-
traction is a generalization of fitting which finds the best subset of the geometric
data described by a model. By contrast, in the fitting algorithms, the assumption is
made that all geometric data points belong to a single primitive.

The area of range image scgmentation is a rapidly growing subfield of computer
vision [Besl and Jain, 1985, Besl, 1990, Besl, 1988, Boulanger and Godin, 1992,
Hoffman and Jain, 1987, Fan el al., 1987]. While we also process data from laser
rangefinders, our work extends beyond this category. The aforementioned papers
concentrate only on the processing of dense range images. Our extraction algorithms
apply to both sparse and dense range images. We process more than just range data,
and besides extracting surfaces, also extract curves. We make no assumptions about
the ordering of the geometric data points. In their most basic form our algorithms
operate on unordered data, which is not the case for most segmentation algorithms.
Extraction is not the same as segmentation, but as we will show, a repeated ap-
plication of our extraction algorithm can produce a segmentation of the geometric

data.
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While the genetic algorithm (GA) field has become increasingly better known
[Goldberg, 1988], its usc in computer vision is still rare  [Bhanu ef al., 1991,
Ankenbrandt ef al.,, 1990]. Such an approach has never to our knowledge been used
to solve the problem of primitive extraction. The use of a minimal subset chromo-
some representation in a GA is also unique. We believe that for this application this
representation is superior to the traditional binary chromosome representation used

in the GA literature [Ilolland, 1975).

1.5 Contributions

The main contribution of this thesis is robust algorithums for solving Lhe primitive ex-
traction problem. These algorithms arc based on the minimal subset representation
of the primitive. One of the solutions uses the random sampling of minimal sub-
sets. The other uses a genetic algorithm, which is often more efficient than random
sampling. The minimal subsel representation is used in both cascs.

The first contribution is an optimization model for primitive extraction. We show
that this task is equivalent to finding the value of a parameter vector which minimizes
a given cost function. We describe a variety of different solutions to this problem by
changing the cost function. One implication of this optimization model is a new
understanding of the robust statistics concept of breakdown. We show that this im-
portant concept is often misinterpreted, and is not completely aclcqllmt.c for computer
vision purposes. Another implication is that a robust cost function will usually have
many local minima. Thus there is an intimate link between robustness and the large
number of local minima of a cost function. In order to be successful, an extraction
algorithm must be able to find a value close to the global optimum of the cost func-
tion from among the many local optima. For reasons of efficiency this should be done
with as few evaluations of the cost function as possible.

Our solution to this optimization problem uses the concept of minimal subscts. We
show that for perfectly accurate geometric data, random sampling of minimal subsets

is probabilistically guaranteed to find the global optimum of the cost function. For
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highly accurate geometric data the optimum found by random sampling will still be
close to the global optimum. We demonstrate that minimal subset random sampling
is a simple approach to solving the general problem of primitive extraction. We
study how to choose tl:e number of random samples, how to select a cost function
and cfficiently evaluate it, and how to map from a minimal subset to a parameter
vector. This mapping is necessary since cvaluating the cost funcijon requires the
parameter vector of the curve or surface. We investigate how an efficient closed form
implementation of this mapping can be obtained by using climination theory from
the field of symbolic algebra. We show that this can be done for a wide variety of
different geometric primitives.

This means that in theory our approach could be used to build a general extrac-
tion system which takes the equation of a geometric primitive to be extracted, and
produces a random sampling and genetic algorithm for extracting this primitive. The
rcason lor this generality is that the equation that maps from a minimal subset to a
parameter vector is the only part of the extraction algorithm that changes with the
geometric primitive. We demonstrate this in the thesis by using the same basic algo-
rithm for extracting a wide variety of different geometric primitives. In our examples
the actual program that performs this mapping is created manually, and inserted in
the extraction algorithm at the appropriate place. However, because we create this
mapping equation in closed form using a symbolic method, it is possible in theory
to automate this procedurc to generate the entire extraction algorithm directly from
the equation of the geometric primitive to be extracted.

The random sampling approach sometimes requires too many samples for success.
To decrcase the number of random samples, and therefore the number of cost function
evaluations, we apply a genetic algorithm (GA) to the extraction problem. Our
implementation of the GA is unique in that it uses a minimal subset chromosome
representation. A GA requires an initial population of potential solutions, and this
is created by a varicty of different approaches. The GA operates on this initial
population by applying genctic operators to improve the quality of the solutions.

The resulting algorithm is often substantially more efficient than a purely random

13
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sampling approach,

The ability to implement our solutions on parallel hardware is essential for veal-
time performance, or when a large amount of geometric data is involved. By paralleliz-
ing the evaluation of the cost function it is possible to achieve substantial speedups.
These speedups are obtained for both the random sampling and genetic algorithm
version of our extraction algorithm. This part of the algorithimn can be casily imple-
mented on a varicty of parallel hardware. We describe some possible implementations
on a number of common architectures. The ease of parallelization is an important

characteristic of our algorithms for primitive extraction.

1.6 Thesis Outline '

Chapter Two discusses the problem of primitive extraction. We introduce the op-
timization model for primitive extraction and show that many previous extraction
algorithms are described by this model. We then define the concept of minimal
subsets, and show how the random sampling of minimal subsets solves Lhe gencral
problem of primitive extraction.

Chapter Three gives an overview of the field of climination theory which is con-
cerned with finding the symbolic solutions of a system of equations. In our algorithms
it is necessary to efficiently convert hetween a parameter vector and a minimal subset.
We show that this conversion requires the solution of a particular type of system of
equations. Elimination theory, in particular the Grébner basis algorithin, is used to
achieve this goal. We demonstrate the application of climination theory for a variety
of extraction examples.

Chapter Four applies the extraction algorithm to a variety of situations. We deal
with the cases where there are multiple primitives, and multiple types of primitives.
We demonstrate the extraction of 2D curves, 3D curves and surfaces, and process
both sparse and dense geometric data. A comparison of our approach to the Hough
transform, robust fitling approaches, and the minimal length encoding schemes is

made.
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Chapter Five introduces the concept of a genetic algorithm (GA). Since GA’s have
rarely been used in computer vision, we spend some time defining the terminology of
this ficld. The basic theorctical and practical reasons for the success of the genetic
approach are discussed. We show how minimal subsects can be integrated with a GA,
and how this combined approach has many advantages over a traditional GA. This
hybrid approach is then applied to the problem of primitive extraction.

Chapter Six discusscs various hardware-assisted specdups for these algorithms.
This issuc will become increasingly important as parallel architectures become more
widely available. Such hardware is necessary if real-time performance is to be
achieved, or if a large amount of geometric data exists. We show that by concen-
traling on the evaluation of the cost function our algorithms can be implemented
cfficiently on a variety of parallel hardware.

Chapter Seven contains the conclusions in which we expand on the contributions
in order to evaluate our work in a methodical fashion. We also sketch out some further
extensions to our work.

The appendices contain the solution to the various examples of elimination theory

described in Chapter Three.
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Chapter 2 Primitive Extraction Using Random
¢ Sampling

This chapter defines the problem of primitive extraction and presents a general solu-
tion to this problem. Primitive extraction is a generalization of fitting. The inpul to
a fitting algorithm is some geometric data, along with a description of the primitive
to be fit to this data. The output is the primitive which is the best fit to all the
geometric data points. The input and output of an extraction algorithtn are the same
as for a fitting algorithm, with one important difference. For [itting the assumption
is made that all the points truly belong to the geomelric primitive. An extraction
algorithm does not make this assumption. Instead, it must choose the best subset
of the geometric data points described by the primitive. This sel of points is cailed
inliers, and the remaining gcometric data points are called oulliers.

Extraction, like fitting, can be modelled as an optimization process. In both cases
the criteria used to evaluate the goodness of a gecometric primitive are encoded in a
cost function. This cost function measures the error between the geometric primitive
and the geometric data. The best primitive is the one which optimizes the value of
this cost function, thus reducing the error. The optimization model applies to both
extraction and fitting. However, [or the extraction problem the cost function usually
has a large number of local optima. Each of these local optima represents a different
division of the geometric data points into inliers and outliers. There are polentially
as many local optima as there are such divisions, which is a very large number. The
actual number of local optima depends on the percentage of outliers, and increases
dramatically with this percentage. For fitling, on the oiher hand, the number of
local optima is fixed. In fact, there is often only a single optimum value for a fitting
problem. It is possible to change the definition of the cost function in the extraction
algorithm to use different criteria for evaluating a geometric primitive. However, the
fact that the cost functions normally have a large number of local optima is commeon

to all extraction algorithms. Because of the potentially large number of local optima,
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extraction is a computationally intensive task.

The goal of an extraction algorithm is to find the primitive for which the cost
function achicves its global minimum. In this case the inliers represent the best
consensus in the geometric data with regards to the particular type of extracted
primitive. For example, if the primitive to be extracted is a line, the global optimum
represents the best line in the geometric data. Of course, the meaning of best is
intimately related to the cost function definition. The efficiency of any extraction
algorithm depends on the number of cost function evaluations, since this is the most
computationally expensive step of any extraction algorithm. An efficient extraction
algorithm should find this global optimum with as few evaluations of the cost function
as possible.

Our extraction algorithm is based on the random sampling of minimal subsets. A
minimal subset is the smallest number of points necessary to unambiguously define
a geometric primitive. For example, for a line a2 minimal subset contains two points,
for a circle three points, etc. For accurate geometric data, a minimal subset is a good
representation of all the points belonging to the primitive defined by the subset. This
requirement for accurate data is reasonable given the fact that modern sensors have
a very high resolution, and are thus able to produce such data. The extraction algo-
rithm operates by repeatedly choosing a minimal subset of points randomly from the
geometric data, creating a geometric primitive through these points, and evaluating
the quality of the primitive using a given cost function. The primitive with the best
cost function score is the one returned by the algorithm. The minimal subset random
sampling extraction algorithm is independent of the cost function definition, and will
successfully operate with a variety of cost functions.

For perfectly accurate geometric data this approach is guaranteed to find the global
optimum if all possible random samples are taken. Since there is a large number of
possible minimal subsets evaluating all of them is not practical. We show that on the
average far fewer than the maximum number of such subsets need be evaluated in
order to have a high confidence of success. We discuss a number of different possible

cost functions, and show when it is appropriate for each to be used. A number of

17



2, Primitive Extraction Using Random Sampling

simple ways to speed up the algorithm without resorting to special purpose hardware
is also described.

Minimal subset random sampling has as its basis methods from the field of robust
statistics (RS). This field is concerned with the situation in which the underlying
statistical distribution is not Gaussian. A number of RS algorithms use random
sampling, but not in the general {ashion which we describe. The reasons for this
are two fold. First, the robust statistics community naturally concentrales on the
statistical properties of such approaches, and has less interest in providing efficient
computational methods of solving the associated optimization problem. Second, the
concept of breakdown used by this community is inadequate for the computer vision
field. We believe that the current definition of breakdown ignores the f(act that an
essential component of any extraction algorithm is deciding on the significance of the
results. In other words, any extraction process always returns a geometric primilive,
but this primitive may or may not be significant. It is possible to use a simple
statistical model to evaluate the significance of any extraction result. The breakdown
concept has hindered the use of RS-based approaches by ignoring this issue, which
we will discuss later in this chapter.

In the computer vision field, the Hough transform (HT) also solves the primitive
extraction problem. The HT has been shown to be equivalent to a repeated template
matching process [Stockman and Agrawala, 1977). The space requirementsof the HT
are exponential in the number of degrees of {reedom of the primitive. This restriction
is intrinsic to the operation of the T, and limits its applicability to simple geometric
primitives, such as lines. The HT is not easily adapted to the extraction of more
complex primitives. By contrast, the minimal subset random sampling algorithm is
able to directly extract complex primitives, and is therefore more general.

While extraction is a generalization of fitting it is not equivalent Lo segmenta-
tion. Traditional segmentation algorithms find all the primitives at once, while our
extraction algorithm only finds a single primitive at a time. This issue will be dealt
with in more detail in the the next chapter. Here we only discuss the problem of

extracting a single geometric primitive of a given type. We begin the chapter by
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discussing fitting algorithms and their lack of robustness. Then we define the prob-
lem of primitive extraction more precisely, and discuss the HT-and RS-based solu-
tions. We present our optimization model for fitting and extraction, and explore its
most important implications. Then we introduce minimal subset random sampling,
and show that this is a simple and general way of solving the extraction problem
[Roth and Levine, 1990a, Roth and Levine, 1992a, Roth and Levine, In Press]. We
discuss a number of important issues in the operation of the minimal subset ex-
traction algorithm. We explore the issue of robustness and how to decide on the

significance of the extraction results.

2.1 Fitting Versus Extraction

In both extraction and fitting the input consists of N geometric data points in Carte-
sian space along with the definition of a geometric primitive as an implicit function,
J(7; @) = 0. In this notation p is a datum point, and @ is the parameter vector. For
example, a 2D line is delined implicitly by the equation of ag 4 a1z + a2y = 0, where
the parameter vector is (ag,e),az2), and the datum point is (z,y). The output of
the fitting process is the parameter vector @ of the primitive which is the best fit to
the input points. In fitling, the assumption is made that all the input points truly
belong to the geometric primitive. If this is not the case then the resuiting fit can be
arbitrarily bad. Points which belong to the primitive are called inliers, while points
which do not belong are called outliers. The ability of a fitting algorithm to tolerate
outliers is what we mean by robustness. A more formal definition of this concept will
follow in this chapter.

Traditional fitting procedures such as least squares are not robust, as can be seen
from figure 2.1. Part (a) shows a set of points in the plane, with a line fit to these
points. Part (b) shows a single additional point which is not part of the line, along
with the a line fit to all the points. The resulting fit has been dramatically affected by
this single point, and the estimate of the line is no longer accurate. This demonstrates

the lack of robustness of least squares fitting. This was the motivation for the creation
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(a) (b)

Figure 2.1: Non-robust fitting (a) it with all inliers (¢) it with a single
outlier.
of robust algorithms for this task.

The extraction process is identical to fitting, with one important difference. In
primitive extraction the assumption is not made that all of the input poinis belong
to the primitive. Along with the parameter vector @ the extraction algorithm must
choose which subset of the gcometric data points are best described by the given
primitive (the inliers) and ignore the rest (the outliers). The output of primitive
extraction is the parameter vector @ of the besl primilive, along with a division of
the input points into inliers and outliers. If all the input points are inliers then an
extraction algorithm should produce the same results as a fitting algorithm. Thus
extraction can be seen as a robust version of fitting,

This is shown clearly in figure 2.2 which shows our extlraction algorithm to the
same data as figure 2.1. In part (a) where there are no outliers the results are the
same as the fitting algorithm. However, in part (b) the outlier has been ignored, and
the correct line has heen extracted. Our definition of extraction is not equivalent to
robust fitting as used by the robust statistics community. This is because we do not
limit the percentage of outliers to 50% as is done in the robust statistics approaches.
Also our optimization model for extraction is able to describe extraction methods
from both the robust statistics field (i.e. robust fitting methods) and the computer

vision field (i.e. the Hough transform). Before we present this optimization model
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(a) (b)

Figure 2.2: Robust extraction (a) Extraction with all inliers (¢) Extraction
with a single outlier.

we will discuss in more detail the HT and RS approaches to primitive extraction.

2.2 Hough Transform and Robust Fitting

In order to compare our mecthods to the HT and RS approaches it is necessary to
have a better understanding of these two methods. For this reason we will spend

some time explaining them in detail.

2.2.1 Hough Transform

The HT has had a long and varied history in the computer vision field

[llingworth and Kittler, 1988). Its first, and still main application is the extraction
of gcometric primitives. The general principle of the HT is that each data point votes
for all parameter combinations that could have produced it. First the parameter
space is partitioned into cells (usually rectangular) by quantizing each of the dimen-
sions of this space. Then each data point votes for every cell whose combination
of parameters could have produced a geometric primitive through the given point.
When all the data points have been processed, the cells which have more votes than
a given threshold are selected. The parameter vector associated with each cell de-

fines the extracted primitive, and the points that voted for each cell are the inliers.
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This is the standard deseription of the H'T' that is given in computer vision textbooks
[Levine, 1985]. When stated in this form the algorithm is dileult to understand be-
causce it is presented in a manner similar to the original implementation. However, it
was later discovered that the HT is nothing more than a form of template matching
[Stockman and Agrawala, 1977]. Since considerable iusight can be gained into the
operation and limitations of the H'T using this viewpoinl, this is the approach that
we will take during our exposition.

An individual cell in parameter space describes a set of points in data space
which could have been produced by any geometrie primitive whose parameter vector
is contained in the cell. These points taken together define a template of the same
shape as the primitive. When this template is applied Lo Lhe geometric data it matches
the set of points which would vole for this cell in the standard H'T algorithm. ‘T'his
makes it clear that the H'T is simply a time efficient, but space inellicient way to do
template matching. Assume that the lemplates defined by cach cell of Lhe parameter
space were matched againsl the geometric data. Then a single point could potentially
be a member of many cell templates, and would therefore be counted many separate
times. By contrast, the HT processes a point only once by having it vote for ali
the cells for which it is a member. This is more time efficient than direct lemplate
matching, but is less space efficient, since all the cells must be represented.

The relationship of the II'T to template malching makes a number of limitations of
the approach clear. The first problem is that the template produced by a cell depends
on the parameterization of the geometric primitive, on the cell shape and on the cell
size. It was observed that different parameterizations change the template shape
[Duda and Hart, 1971]. Any rectangular cell produces some distortion in Lhe template
shape relative to the ideal situation, which is to reproduce exaclly the same shape as
the geometric primitive. When extracting lines this distortion was lessened by using
the (p, ) parameterization instead of the usual slope-intercept parameterization.

It is clear that both cell shape and cell size have a direct cffect on the template.
Because of the distortion produced by rectangular templates, other cell shapes have

been proposed, but these complicate the voling process to such a degree that they
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are impractical. The template distortion lessens as the cell size decreases, which
makes small cells desirable. On the other hand, the smaller the cell size the greater
the number of cells, space and time requirements. Thus cell size and shape always
require a compromise. Often in order to have a manageable number of cells, one
is forced to use a large cell size, which in turn produces a greater distortion of the
template shape, along with a decrease in the ability to isolate individual primitives.
Schemes in which the quantization varies dynamically in a coarse to fine strategy have
been suggested in order Lo decrease the storage requirements. However, this approach
does not work well on complex imagery because their larger templates often contain
spurious points [Princen et al., 1989].

The exponential storage requirements and distortions in template shape are prob-
lems that are unavoidable when using the HT. The relation between the HT and
template matching makes it clear that these limitations are intrinsic to the HT and

cannol be overcome.

2.2.2 Robust Fitting

The field of robust statistics is one that has a long history [Hampel et al., 1986,
Huber, 1981, Gentleman, 1965), but has only recently been discovered by the com-
puter vision community [Forstner, 1987, Besl et al., 1988]. Traditional fitting algo-
rithms assume that all the input points are inliers and are not capable of performing
extraction as we have defined it. The robust statistics (RS) methods divide the geo-
metric data into inliers and outliers, so they can be used for extraction purposes. We
will show however, that there are limitations, some more apparent than real, in using
these approaches for primitive extraction.

The most important measures used by the robust statistics community when dis-
cussing an RS approach are statistical efficiency and breakdown point. Statistical
clficiency is the ability of an algorithm to correctly recover the characteristics of
the original data. It is the traditional measure used to evaluate a fitting algorithm.
Geometric data are usually modelled as consisting of the original uncorrupted data

with noise added. When the distribution of the noise is Gaussian, then the least
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squares estimator is known to be the most statistically ellicient estimator possible
[Walpole and Myers, 19389).

While useful, statistical efficiency is not a measure of robustuess. According to the
robust statistics literature this is measured by the breakdown point. 'The following
explains the concept of breakdown in intuitive terms, while a more fornial definition
can be found on page 9 of [Roussccuw and Leroy, 1987]. ‘Take a set of points which
are known to be described by a primitive (for example, a set of points which are all
on a straight line) and perform a robust fit to these points. The resulting line is the
baseline which is assumed to be correct. Now, one at a time, replace the good points
by outliers (bad points which are far from the line) and perform the fit again using the
same robust fitter. When the addition of a single outlier can make the computed fit
arbitrarily distant from the correct fit, then breakdown has oceurred. The bhreakdown
point is the smallest percentage of outliers necessary Lo make this happen. The larger
this percentage the more robust the algorithm.

According to the literature the maximum breakdown point of any robust fitler
is 50% [Hampel et al., 1986, Huber, 1981, Roussceuw and Leroy, 1987]. We claim
that while theoretically correct, the implications of this idea are not well understood.
According to the definition of breakdown the robust fitter must be able to disregard
any arbitrary configuration of outliers. T'his means that no characteristic of the inliers
can be used to distinguish between them and the outliers, since the outliers could
possibly align themselves to produce a belter fit to the primitive Lthan the inliers.
This in turn implies that for robust fitling to be successful the inliers must form a
majority [Hampel et al., 1986, Huber, 1981, Roussccuw and Leroy, 1987]. Thus the
50% limit is implied directly by the definition of breakdown.

While it is true that no estimator can have a breakdown point greater than 50%,
it is also true that even though breakdown has occurred, this does nol necessarily
mean that the wrong estimate will be produced. For this to happen the outlicrs must.
actually align themselves to produce a better primitive than the inliers. Depending
on the goodness of fit of the primitive to the inliers, and on the number of inlicrs and

outliers, this may or may not happen. Of course, the larger the percentage of outliers
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the more fikely that this will occur. We show with a number of examples that it is
indeed possible to tolerate more than 50% outliers, but not in the absolute sense used
in the definition of breakdown.

In statistical applications robust fitters are normally used for regression problems,
where there is only one primitive (or model) fit to the data. In this case the tradi-
Lional definition of breakdown is natural, since if there is only one primitive and the
fitling model is reasonable, then it is likely that at least 50% of the points will be
inliers. However, for the primitive extraction problem there may be many geometric
primilives in the data, and none may contain a majority of the total points. In such
cases, a number of different primitives may be equally good choices.

We will show that the concept of breakdown is not as relevant to the computer
vision ficld as to the statistics field. We believe that a more important issue in any
robusl process is deciding whether the resulis are significant. In other words, an
cxtraction algorithm will always find a geometric primitive, but this does not mean
that this primitive should be accepted as valid. This issue is dealt with in more detail
in Scction 2.5, We will show with a number of experiments that it is possible to have
successful extraction with even 80% outliers. This kind of performance however, is

possible only for accurate geometric data.

2.2.3 Some Robust Fitters

The least squares method is statistically efficient, but has a breakdown point of 0%;
that is, a single outlier can cause the fit to be arbitrarily bad. The most common ways
of achieving robustness in the RS literature use M-estimators [Hampel et al., 1986,
Huber, 1981]. The idea is to decrease the influence of outliers by weighting ihem
less during the fitting process. Let 7,,7,,...Py be the N input points, and let the
geometric primitive be described implicitly by an equation of the form f(p;@) = 0.
For this example we will assume that the error of fit (the residual) for geometric data
point B; is equal to ;. To find the best fit using an M estimator it is necessary to
find the parameter vector @ that minimizes TV, p(r;). Here p is a positive definite

function with a unique optimum at zero. If p is chosen to square the residuals then
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the result is the least squares algorithin which minimizes =N, ()* over a. However,
if p is chosen in such a way that points with a large error influence the it less, then
these points (which are likely to be outliers) will be ignored. This means that the
robust fitting process using an M estimator is performing extraction, since the points
which are cutliers are marked as such.

Another common method for robust fitting is the Least Median of Squares
{LMed$) algorithm [Roussecuw and Leroy, 1987]. This has been developed for deal-
ing with outliers during lincar regression, and has been used by a number of vision
researchers  [Roth and Levine, 1990b, Roth and Levine, 1990a, Meer el al., 1990,
Kim et al., 1989, Tirunmalai and Schunk, 1989]. The algorithm is best understood
by again considering the case of fitting a line to a sel of N points. T'wo poinws are
required to uniquely define a line. The algorithm randomly selects K sets of two
points (how X is chosen can be found in section 3.1). For each of the lines defined
by these two points the residuals (errors) of all the N points relative Lo this line are
computed and squared. Then the median of these squared residuals is found (the
median is the middle element of the sorted squared residuals) and associaled with
this particular set. The set which i.as the least median squared (LMedS) error is
the one which will be used to decide which of the N points arc inlicrs and which
are outliers. The inlier/outlier selection is made by examining the squared residuals
for the line associated with the set and discarding as outliers those whose residual is
too large. The threshold used to discard outliers is labeled 7', and is commonly sel
to 2.5 x V, where V is the noise variance of the data. The reasoning behind this is
that any point which is more than two and one half times the distance of the noisc
variance from the geometric primitive is likely to be an outlier. These two robust
fitters are the most common ones used in the computer vision field.

Another recent example of a robust fitler that has been applied to a number of
computer vision problems is the MF estimator, which is an abbreviation of “model
fitting” [Zhuang et al., 1992). Here the log likelihood function of the unknown dis-
tribution is modelled. This partial modelling takes place in terms of the Bayesian

statistical decision rule. This rule, along with a number of important heuristics are
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added to produce a procedure for actually computing the value of this estimator.
This work is similar to ours in that more robustness than the standard robust statis-
tics fitting procedures is claimed for the MIF estimator. However, this issue has not
been addressed thoroughly. There is also little discussion of why the algorithm for
computling this estimator is successful. Thus, while somewhat similar to our work,
this is not a consensus-based approach.

As we said in the introduction of this chapter, the robust statistics commu-
nity naturally concentrates on the statistical properties of various robust estimators.
This mecans that given a set of statistical assumptions, the maximum likelihood,
or Bayesian approach, is used to find an expression whose optimum value must be
computed to perform the estimation. However, the issue of how to find an efficient
computational method to actually perform this optimization is often not discussed
in any detail. This is what we concentrate on, and we will show by the optimization
model that we present in the next section that the kind of optimization problems

associated with primitive extraction have a certain commonality.

2.3 Optimization Model for Extraction

In this section we will describe our optimization model for primitive extraction. It
has long been known that fitling a geometric primitive to geometric data can be
framed as an optimization problem. What we will show is that not just fitting, but
extraction, which is a generalization of fitting, can also be viewed in this optimization
framework.

As we have noted previously the inputs to an extraction algorithm are N geometric
data points labelled B,,. .., Py, along with the definition of a geometric primitive in
implicit form. The output consists of the parameter vector @ of the best primitive,
along with the subset of the geometric data that belongs to this primitive (the inliers).
According to our optimization model the first step in any extraction algorithm is the
computation of the residual, which for point ¢ of the geometric data is labelled r;. For

a function f, which is a graph function, this residual is equal to f(P; @) — 7. However,
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for other types of functions it is desirable to use the closest distance of the given
point to the primitive as the residual value. For planes and other simple primitives
this distance can be computed exactly in a closed form. lowever, the closed form
solution for the closest distance for more complex geometric primitives is so unwieldy
as to be impractical [Nalwa and Pauchon, 1987, Pratt, 1987]. In fact, the problem
of finding the closest distance to a curve or surface is diflicult for both the parametric
and implicit form [Besl and McKay, 1992].

For this reason the first order approximation to the closest distance is often used in
its place [Bookstein, 1979, Sampson, 1982, Taubin, 1991]. For the primitive defined
by implicitly by a function f the first order approximation of the closest distance of a
point P to the curve or surface is the absolute value of the function over the magnitude
of the gradient vector (= | f(7;@)|/|VS(P;8)|). This expression is simple to calculate
and is frame-invariant, since the gradient operator produces the same vector in any
coordinate system. For primitives other than lines or planes this value is only an
approximation. However, as long as the point 7 is not oo far from the curve or surface
the error is not significant. This function is adequate for our algorithm because we
require accurate estimates of the residuals only when a given point 7 is close to the
curve or surface. This is because for the most common class of cost functions, the
fixed-band cost functions, the residual must be computed accurately only for points
within the band size, which is normally a small distance. Computing thesec residuals
more accurately is difficult and computationally intensive [Besl and McKay, 1992].
We use this approximation to compute the residuals for all the examples in the thesis
and have found it to be sufficient for this application.

Given that residuals r,...,7ny have been calculated, then an exiraction algo-
rithm must find the parameter vector @ which optimizes the value of a cost function
h(r1,...7n). The cost function returns a scalar which measures the “goodness” of
the primitive with the given parameter vector. The only restriction we make on the
cost function is that h(ry,...ry) 2 0 for 2ll @, and that i(ry,...rn) attains its op-
timum value when the residuals 7y, ...,ry are all zero. Since each of the residuals is

a function of the parameter vector @ this implies that & is an indirect function of @.
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The goal of primitive extraction is to find the parameter vector @, which optimizes
the cost function, that is to ming A(ry,...rn) or maxz A(ry,...rx) depending on the
cost function.

With this model it is possible to describe many different extraction and fitting
methods by using different cost functions. The following is a list of a number of

extraction and fitting methods, along with their cost functions:

o Least Squares: h(ry,...,rn) = }:fzfv r

o M-Estimation: h(ry,...,rn) = TN p(r:?) where p is a symmetric positive-definite

function with a unique optimum at zero.
e Least Median of Squares: A(ry,...,rn) = median(r?,...,r%).

e Template Matching (HT): &(ry,...,rn) = TN s(r:2), where s is step function;

s = 1 if r; is greater than or equal o the template width, and s = 0 otherwise.

We will now describe each of these cost functions in more detail. The least squares
approach is the usual non-robust fitting algorithm. It is well known that the addition
of a single extraneous point (an outlier) to the input can cause the resulting primitive
to be an arbitrarily bad fit. The M-estimation approach [Hampel et al., 1986] and
the Least Median of Squares (LMedS) algorithm [Rousseeuw and Leroay, 1987] are
two methods from the RS field which overcome this lack of robustness, When using
M-estimators, p is chosen in such a way that points with large errors influence the
fit less, so these points (which are likely to be outliers) are ignored. The LMedS
algorithm is another approach from the RS field, but it is not based on M-estimators.
Instead, the median of the square of the residual values is chosen as the value of the
cost function. If the outliers constitute less than 50% of the geometric data, then this
median operation will discard them. The HT is known to be equivalent to template
matching, where the templates are defined by each of the cells in parameter space. If
the cell size is small enough the templates are of fixed size and shape, and the HT
can be described by the optimization model by using the appropriate cost function.
In this case the cost function reflects the number of geometric data points inside a

template of a given width centered on the geometric primitive. It is clear that this
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optimization model can describe various fitting and extraction algorithins by simply
using different cost functions. We say a cost function is robust if it can be used for
extraction. Such a cost function must be able to mark some of the points as inliers,
and the rest as outliers. A cost function which is not robust can only be used for
fitting, since it assumes all the points are inliers. The first cost function we have listed,
the least squares cost function, is not robust, while the other three cost functions are
robust,

For the robust cost functions there are potentially many local optima, which is
not the case for the least squares cost functions. Bach local optima corresponds to
a different partition of the N geomeclric data points into inlicrs and outliers. The
inliers are points that are taken into account by the cost function, and the outliers
are ignored. We say that a geometric data point is marked as an outlier if ils residual
can be increased to any arbitrary value, without changing the cost function value,
By contrast, an inlier is a geometric data point which would change the cost [unction
value if the residual of this point were increased, even if this change is infinitesimal.
The best such partition into inliers and outliers is the one at which the cost function
has the global minimum. Since there are many such possible partitions, this means
that the maximum possible number of such local optima is very large. This maximum
number of local optima is equal to the number of ways of choosing a subset of size M
or less from N points, where M is the maximum number of possible outliers. M can
take any value from 1 to N — R, where R is the sizc of the minimal subset. Thus the
maximum number of local optima is equal to the number of possibiec subsets, which
is 2(N-R)_ This number of local optima is only possible if the number of outliers is
equal to the maximum value (N — R). However, even for a small number of outliers,
the number of local optima for a robust cost function may be very large.

Next we will consider a simple example which shows the multi-modal nature of a
robust cost function. In Figure 2.3 are shown two lines that jntcrsecl. at the origin.
The lines are parameterized in terms of p and 0, where p is the distance of the line
from the origin, and 4 is the angle relative to the x-axis. In this case the equation of

the line is z cos(f) + ysin(0) — p = 0. For both the lines in the figure p is zero since
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Figure 2.3: Two orthogonal lines in the plane.

the lines pass through the origin. One of the lines has a # of § radians, while the
other line has a 0 of 3 radians. Figure 2.4 shows a three-dimensional plot of the cost
{unction value for a Hampel influence function versus p and 8, the line parameters.
From this figure we see that the cost function value has two local optima. Each one
of these optima corresponds to one of the 2D lines. For both optima the p value is
zero, and they have the appropriate @ values for each line. The global optimum is
when 8 equals Z, which accords with the geometric data, since this line has the most
points.

We said that a point is an outlier if its residual can be increased arbitrarily without
changing the value of the cost function. This implies that for a given value of the
parameter vector @ the following procedure can be used to label each geometric data
point as an inlier or outlier. For the given @, compute r; through ry, and then
compute k(rq,...,rn). Now, for geometric data point 7, set the residual r; to co, and
recalculate the value of the cost function. If this new value of 1 is the same as the
value with the original r;, then this point is an outlier; otherwise it is an inlier. The
reasoning is that if the cost function value did not change when the residual increased

to oo, then this point has been ignored, and is therefore an outlier. Repeating this
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e

Figure 2.4: Hampel cost function value for extraction of two lines: Axes
are p and @ value of the line.
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process for cach input point categorizes the points as either inliers or outliers.

This oplimization model shows the essential unity of various methods for fitting
and extraction. For a fitling algorithm the assumption is made that all points are
inliers, so a non-robust cost function such as least squares can be used. On the
other hand, for extraction this assumption does not hold, and a robust cost function
must be used. There arc many different robust cost functions, however, they all have
in common the fact that they usually contain many local optima. The goal of an
extraction algorithm is to find the global optimum of a cost function which may have
very many local optima. Because the number of local optima is often very large,
extraction is an inherently difficult problem. This is especially true in comparison to
fitting, where the number of local optima is very small (often one). Since there are
N residuals to calculate, where N is the number of geometric data points, a single
evaluation of a cost function requires at least O(V) time. Since N may be large an
efficient extraction algorithm must be able to find the global minimum, or a value

close to it, with as few evaluations of the cost function as possible.

2.4 Random Sampling for Primitive Extraction

One way to find the global optimum is to evaluate the cost function at the locations in
the parameter space defined by a repeatable grid. This is exactly what the HT does
by computing the cost function at the values of the parameter vector @ associated
with each cell in the parameter space. How confident we are that this procedure
finds the true global optimum depends on the cell size. The smaller the cells the
more evaluations of the cost function, and the more the confidence. As the cell size
approaches zero the number of cost function evaluations approaches infinity., This
brute-force approach can clearly be improved upon. It is also very inefficient for
primitives with high dimensional parameter spaces.

In the computer vision literature there are two widely used methods for
finding the global optimum of functions with many local optima: continua-

tion methods [Blake and Zisserman, 1987, Leclerc, 1989] and stochastic methods
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[Corana et al., 1987]. While continuation methods are effective, they assume a con-
tinuous cost function, which is too restrictive for our optimization model. They also
do not actually guarantee convergence to the global minimum, even for petflectly ac-
curatc data. For these reasons continuation methods will not be discussed further.
The other approaches to finding the global optimum are stochastically based, which
means the cost function is evaluated at random locations in the paramecter space.
The best known of these stochastic methods is simulated annealing, which is derived
from an analogy to the physical process of anncaling. 1l has been shown that if the
parameters of the simulated annealing process are careflully chosen, then convergence
to the global optimum can be theoretically guaranteed. The main drawback is thal
the number of evaluations of the cost function required to find the global optimum is
very high. Since evaluating the cost function is compulationally expeunsive this is a
significant disadvantage. For this reason we do not use simulated annealing to solve
the optimization problem that we have posed.

Given the fact that our cost function need not be continuous, it is clear that some
kind of stochastic process must be used to find the global minimum. Our approach
is to evaluate the cost function only at the values ol the parameter vector defined by
randomly chosen minimal subsets of the gcometric data. A minimal subsel contains
the smallest number of points necessary to unambiguously define the geometric prim-
itive. If the parameter vector @ of the primitive’s implicit function [ has dimension
R 41, then f has R degrees of freedom. The reason that the dimension of @ is one
greater than the degrees of freedom is that for a given point 5, if f(7@) is zcro, then
¢ X f(p;a) is also zero for any constant ¢. R points arc necessary and sufficient 1o
unambiguously define a finite number of geometric primitives through these points,
Any such R point subset of the geometric data is called a minimal subset. For ex-
ample three points are necessary and sufficient to define a circle. With two poinis
the circle is underconstrained, while with four points the circle is overconstrained. In
this case there is exactly one circle defined by the minimal subset. While there is
often only a single primitive through a minimal subsel, this is not always the case.

For example, if the circle has a known radius then the minimal subset. is of size two,
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since there are potentially two circles with the given radius. However, the number of
possible geometric primitives defined by a minimal subset is finite, and usually very
small.

There is a significant advantage to evaluating the cost function only at the values
of the parameter vector defined by each minimal subset. This is the fact that there are
only a finitc number of such subsets, and this number is equal to (g) For perfectly
accurate data, evaluating the cost function at all the minimal subsets is guaranteed
to find the global minimum. Since (ﬁ) is bounded by N* the number of cost function
cevaluations is therefore a polynomial function of the number of geometric data points
N. This is the main theoretical justification for the minimal subset approach. Other
methods of finding the global optimum cannot give any such bounds on the number
of cost function evaluations, even for perfectly accurate geometric data. We will show
that it is rarely necessary to evaluate the cost function for all the minimal subsets in
order for successful primitive extraction. A much smaller number of randomly chosen
minimal subsets is usually sufficient.

The pseudo-code for the basic random sampling extraction algorithm follows. The
input is a set of IV points, the definition of the cost function A, and the primitive to

be extracted in implicit form.

For K randomly chosen sets of R points
Do
1. Find the parameter vector @ of the primitive through all of the R points.
2. Compute the residuals ry,...,ry of the entire set of N points with respect to
the gecometric primitive defined by f(B;a).
3. Rank the goodness of this primitive by evaluating the cost function
h(ry,...,vN).
4. Save the primitive with the smallest cost along with the associated parameter
vector @,
Enddo

This basic methodology is a generalization of the resampling algorithms from the
RS field [Rousseeuw and Leroy, 1987]. The output consists of the parameter vector
of the best minimal subset, along with the cost function value. This information,

along with the definition of the cost function k, enables each of the N geometric data

points to be marked as an inlier or an outlier by the method described in Section 2.3.
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The time complexity of the algorithm is at best O(A'V), where A is the number of
randomly chosen minimal subsets, and V' is the time taken to evaluate the cost func-
tion. We assume that there N geometric data points. We will show that depending
on the particular cost function the evaluation time is usually Q(N), or O(N log N).
The space complexity is usually O(N), but for certain cost [unction it may be larger.
In the next sections we will consider cach of the important parts of the algorithm
in more detail. In this chapter we will ignore the issuc of how to convert between a
minimal subset and a parameter vector which is essential {or Step | of the algorithm.
For now, we will simply assume that this ability exists. This procedure, which is

instrumental to our approach, will be discussed in detail in Chapter Three.

2.4.1 Choosing K, the Number of Random Samples

The first question we will consider is how Lo select K, the number of randomly chosen
minimal subsets. The maximum vaiuc of K is (f’;), but as we have stated this number
is too large for any reasonably sized N. We will show that in most cases a value of
XK much less than the maximum number is acceptable.

The value of K depends on the minimum number of geometric data points that
are expected to be on a single valid geometric primitive. It is usnally possible to set
this number (which we label as Y) directly from the significance threshold of the cost
function, and this procedure is discussed in detail at the end of Section 2.5. Let ¢ be
the probability of a single randomly drawn geometric data point being on the desired
primitive. The value of ¢ is no less than Y/N, where YV is the minimum number of
points that must be on a single geometric primitive for it to be accepled as valid, and
N is the number of geometric data points. The probability of all of the R randomly
drawn elements of a single minimal subset being on the primitive, that is being inliers,
is e, The probability of at least one of the set of X minimal subsets heing all inlicrs

is labelled s, and s as a function of ¢, R, and K is:

s=1—(1=-cM¥ (2.1)
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‘I'his formula is a simple application of combinatorial analysis and the same result has
been presented elsewhere  [Roussceuw and Leroy, 1987, Fischler and Bolles, 1981].

The value of K as a funclion ¢ and R is:

_In(l —3s)

K==

(2.2)

If we wish to have a high confidence of successful exiraction ihen s is set to a large
value {usually .95), and K is chosen accordingly. However, this is a worst-case value
lor K. The expected value for K, which can be found by setting s equal to .5, will
be less.

For most values of ¢ the value of K required for successful extraction is much less
than (ﬁ) This is demonstrated in Table 2.1 which lists the required K for the case of
¢ = .5 (50% inliers) to reach 95% and 50% confidence of success (s = .95 and s = .5).
That so few minimal subsets are necessary is surprising. The explanation is that KX
as defined in the previous equation exhibits a definite threshold effect, being close to
(ﬁ) only for small values of ¢. This is demonstrated in Table 2.2 when € is computed
for s = .5 and s = .95 with varying K and R. This table shows what fraction of
inliers we are sure to find (95% confident), and what fraction we are likely to find
(50% confident) with K randomly sampled minimal subsets. For example, assume
we are searching for a circle, which makes R equal to 3. Then if K is set to 640 we
see [rom Table 2.2 that we are 95% certain of finding a circle with at least 16% of
all the points (€ of .16) and 50% certain of finding a circle with at least 10% of all
the points (¢ of .10). This table demonstrates that for many values of e the required
value of K for successful extraction is not excessive.

If it is not possible to estimate ¢, then there is no principled way to set K. All
that can be done is to take as many random samples as are practical. However, the
previous formulae can still be used to compute what size of primitive should have
been successfully extracted with X samples. Thus again in relation to the previous
example, if we are searching for a circle and have taken 640 randomly sampled minimal

subsets, then we are 95% certain that we will find any circle that has at least 16% of

37



2. Primitive Extraction Using Random Sampling

Size of minimal subset R | Number of Trials K
s=895[ s=.50

1 5 2

2 l 3

3 23 6

4 A7 12
5 a5 23
6 191 45
7 382 89
8 766 178
9 1533 356
10 3067 710

Table 2.1: The number of trials A for 95% and 50% conlidence with 50%
inliers for a given size of minimal subset K.

No. of Subsels K | ¢ for s = .95 and s = .50 confidence
R=2 | R=3] R=4| R=5

10 50 .25 | .63 40| .71 .50 | .76 .58
20 37 .18 | .51 .32} .61 .42} .67 .50
40 26 .13 | 41.25 [ .59 44 | .59 44
80 19.09 (.33 .20 [ 43.30 | .51 .38
160 A3 .06 .26 .16 | .36 .25 | .45 .33
320 .09.04 [ .21 .12 .31 .21 | .39 .29
640 .06 .03 }.16.10{.26 .18 .34 .25
1280 .04 .02 | .13 .08 (.21 .15 | .29 .22
2560 .03 .016 | .10 .06 | .18 .12 | .25 .19
5120 02.010 | .08 .05 ) .15.10 ] .22 .16
10240 .01.008 | .06 .04 [ .13.09| .19 .14

Table 2.2: The fraction of inliers on a single primitive (¢) found with 95%
and 50% confidence with K" random subsets for I from 2 to 5.

the total number of points.

2.4.2 Selecting and Evaluating the Cost Function

In step 3 of the basic algorithm we must rank the primitives defined by each of the
minimal subsets. In order to do this a particular cost function must he selected. The
input to this cost function are the residuals of all the geometric data, which depend
on the parameter vector @. The cost funclion returns a scalar which measures the

“soodness” of the primitive with 2 particular parameter vector. The lower the cost
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function value, the better the primitive. In Section 2.3 we have listed a number of
cost functions, but this list does not exhaust the possibilities. Even though there are
many possible cost functions in our experience most of them can be classified into
Lwo categories, fixed-band or variable-band. Each of these categories makes different
assumptions aboutl the gecometric data.

We say a cost function is in the fixed-band class if any point whose residual value
is greater than a fixed threshold is marked as an outlier., This threshold defines
what we call a fixed-band around the geometric primitive. Outside this band are the
outliers, and inside this band are the inliers. In many applications the band size can
be sensibly set from the variance estimate of the noisc present in the geometric data.
This in turn can usually be obtained from an analysis of the sensor and the data
creation process [Amid et al., 1988]. In our experiments we have found a fixed-band
cost function produces good results. The influence functions in the RS field are an
example of a fixed-band cost function, as is the cost function used by the HT.

If such a variance cstimate is not available then a variable-band cost function is
a better choice than a fixed-band cost function. An example of such a function is
the Least Median Squared algorithm (LMedS) [Rousseeuw and Leroy, 1987]. Here,
the assumption is made that at least half of the points belong to a single primitive.
Assume the squared residuals of the N points are sorted from smallest to largest.
Then let r; be entry number ! in this sorted list of squared residuals. For the LMedS
algorithm { is set to N/2, which means that the cost function h = median(r?,...,r}).
This approach can be easily adjusted to situations where a single primitive is known
to contain not hall the geometric data, but any specified fraction. This is done by
sctting { to the minimum number of expected inliers in a single primitive, instead of
using the value of N/2. Such a cost function is equivalent to a variable-band whose
size is adjusted to contain exactly the required percentage of inliers. In the same way
as for a fixed-band cost function, inside this variable band are the inliers, and outside
it are the outliers,

For the fixed-band cost function the user sets the band size, and for the variable-

band cost function the user sets the required percentage of inliers. In both cases the
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2. Primitive Extraction Using Random Sampling

user must decide whether the extraction results are significant by looking at the cost
function value of the returned best primitive. The fixed-band cost function value
indicates the number of inliers on the best primitive, while the variable-band cost
function indicates the band size of the best primitive. Thus the fixed-and variable-

band cost functions are duals of one another.

2.4.3 Speeding up the Evaluation Process

From the pseudo-code of the random sampling algorithm it is clear that the most
expensive step in our algorithm is the evaluation of the cost function. If there are
N points, then this operation seems to requires at least O(N) time. lor fixed-band
scoring the cost function evaluation can be clearly done in O(N) time for both the
average and worst case. The variable-band cost funclion described in the previous
section requires the computation of the element in position { of the squared residuals,
sorted from the lowest to the highest value. This is known as an order statistic and
algorithms exist to find these in of O(N) time on the average [Aho e al., 1975]. 1t is
clear that since IV, the number of geometric data points may be quite large, evaluating
the cost function is a potential computational bottlencck.

We will show that there are ways of lowering the time complexity lor cost function

evaluation. We will described the following methods of achieving this goal:
o Prior Constraints on the Primitive
e Using Primitive Generation Routines
o Local Gradients
e Subsampling
o Hierarchical Data Structures

Note that none of these methods use parallel hardware. Using such hardware to speed

up the cost function evaluation is an issue that we will explore in detail in Chaptler
i ;

Six.
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2. Primitive Extraction Using Random Sampling

Ideally we would like to be able to discard a primitive through a minimal subset
without evaluating the cost function. There are two ways this can be done. The
first way is to use a priori constrainls on the primitive, and the second is to use local
gradients. Both those methods are important because avoiding the cost [unction
evaluation stage can provide a dramatic increase in performance. This is because
gencrating the equation of a potential primitive from a minimal subset is usually
much faster than actually evaluating the cost function for the primitive, especially
for large N.

There arc often prior constraints on the size or orientation of a primitive that is to
be extracted. For example, if the primitive is a circle it may be that the circle center
is known al lcast approximately, or that the approximate radius of the circle is known.
Then any circle produced by a minimal subset which does not meet this constraint
can be discarded without evaluating the cost function. A possible constraint for a
line is that its angle relative to one of the axis be in a given range, and lines which do
not. meet this angle constraint could be discarded. By using such prior constraints to
discard a minimal subset we are able to speed up the extraction process considerably.

There is a method which has considerable potential to speedup the fixed-band
cost function evaluation for 2D curves when the sensor data consists of 2D geometric
data, such as the edge points obtained from an intensity image. The extraction of
2D curves such as lines, circles and ellipses, from such data is a common problem.
This approach can be applied to these and other types of 2D curves. In many curve
extraction applications the cost function that is used most often simply counts the
number of geometric data points within a small band of fixed-size around a given
curve. This type of cost function is equivalent to traditional template matching, and
is a fixed-band cost function. The obvious way to do this matching is to compute
the distance of each of the NV data points from the curve, and then to count all the
points that are within the fixed-band. Using this method the time taken to evaluate
the cost function is O(N).

Our idea is to match these curves against the 2D geometric data by using an

incremental curve generation algorithm. Such algorithms are widely used for drawing
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Figure 2.5: Incremental drawing routines (i) Pixels for a line (c) Pixels for

an arc of a circle.
2D curves on the bit-map screens of graphic displays [Hegron, 1988, Bresenham, 1977,
Bresenham, 1965, VanAken, 1984]. Two examples of their output are shown in Figure
2.5. First we take the list of 2D geometric data points and map them onlo a binary
2D array. This is done by setling the associated array element of the geomnetric data
point to one, and sctting all the other array eclements to zero. Using this array we
can compute the cost function value for each hypothesized curve by executing an
incremental curve generation routine.

More precisely, the input to this routine is the equation of the curve produced by
the random sampling process, and the binary array containing the 2D geometric data
points. The curve generation routine then produces the array indices of each point
on the curve. This is done by moving along the curve to be matched from point to
point in a very efficient manner. Normally these routines are used to draw the curve
by setting each pixel in the associated binary array to one. Instead of drawing the
curve, we simply count the number of array points that are also curve points. This
count represents the number of 2I) geometric data points that are within the fixed-
band template around the curve. If the template is more than one pixel in width we
simply generate the indices of the pixels for a thicker curve [Wallis, 1990]. However,
as the template width increases more and more points will be on the curve. Therefore

this approach will be efficient only if the fixed-band size is small (four pixels or less).
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2. Primitive Extraction Using Random Sampling

However, for many extraction applications from 2I) geometric data this is indeed the
case. The reason is that these 2D geometric data points are usually produced by the
process of edge detection in intensity images. Such edges are normally at most a few
pixels in widlh.

With this approach the matching time is O(Z), where Z is the number of pixels
on the curve, instead of O(N), where N is the number of the geometric data points.
The value of Z depends on the curve and the band size. However, for most curves
and band sizes, 7 is fairly small. For example, assume the edge points are produced
on a standard 512 by 512 intensity image. Then for line extraction with a fixed-band
size of one pixel Z, the maximum number of points on the line is 750. The main
advantage of this method of template matching is that Z is independent of N, the
number of geometric data points. This means that as NV increases the execution time
of this method of template matching does not increase. In other words, as long as
the percentage of points on the curve stays the same, the time taken to extract the
curve does not change as the number of geometric data points N increases.

There are available efficient incremental drawing routines for lines, circles, parabo-
las, and ellipses [Hegron, 1988, Bresenham, 1977, Bresenham, 1965, VanAken, 1984].
In fact, some of them have been implemented in VLSI hardware [Asal et al., 1986).
In principle, the same incremental drawing approach can be used for any curve de-
fined by an implicitly [Chandler, 1988]. On serial computers the typical rate at which
such curves can be malched is in the order of several hundred per second, while with
VLSI implementations this increases to several thousand. Using fast VLSI drawing
hardware for curve matching in this fashion has the potential to achieve real-time
performance for matching. This means that the primitive extraction algorithm could
also be done in real-time for these types of curves, since the matching phase is the
most computationally intensive part of the extraction algorithm.

Another way to discard a primitive without evaluating the cost function is to use
local gradient information. It is often possible to obtain a local gradient estimate for
cach geometric data point. For example, if the geometric data consist of edge points

in an intensity image, then these points were produced by thresholding the output of
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a local gradient operator. In this case the gradient vector is a direct by-product of
this operator. For three-dimensional data it may be the case that the local surface
normal (the three-dimensional gradient vector) is available in a similar way.

When available, local gradient estimates computed from the geometric data can
be compared to the predicted gradient from the implicit form of the geometric prim-
itive. Then the cost function evaluation need be done ouly if these Lwo estimates
are approximately the same. The computed gradient is obtained from the geometric
data; the predicted gradient is obtained from the implicit function f. The gradient
vector consists of the partials derivatives of f with respect to @,y (and = for three-
dimensional data). This is the predicted gradient vector, and for a given geometric
data points it should be approximately the same as the computed gradient vector.
For perfect data the match should be exact; in reality the degree of acceptable dil-
ference between the two is a threshold sct [rom the resolution of the geometric data.
The utility of this approach depends on the accuracy of Lthe geometric data; the more
accurate the better the gradient estimates which means that more minimal subscts
can be discarded in this fashion.

Another way to speed up cost function evaluation is by subsampling the gcometric
data. This means using only a subset of the N geometric data points (say @@ points
out of V) to evaluate the primitive. These @ points might be chosen randomly [romn
the N points, or selected in any fashion that is appropriate. Il ) is considerably less
than N then the decrease in execution time is substantial. This idea has been applied
previously to the HT {Kiryati et al., 1991). However, the optimal choice of @, and the
resulting computational savings are problem dependent. i has been experimentally
found that for complex images, @ may nced to be as large as N/2, while lor simple
images () can be as small as N/10. For this reason we do not advocate this method
of speeding up the evaluation of the cost function.

Another method that can be used to speed up the evaluation of the cost function
is the use of a hierarchic data structure. The idea is to use such a structure to avoid
processing all N geometric data points during the evaluation of the cost function. In

this way, the time taken to evaluate the cost function decreases. Such a data struciure
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Figure 2.8: A kD tree for a sct of points {(a) the recursive tree structure
(b) a line superimposed on the tree structure

describes the geometric data in a hierarchical fashion. The top node in the hierarchy
contains all the data, which are subdivided in a recursive fashion until finally the
actual points themselves are obtained [Aho et al., 1975]. The data structure we have
chosen to demonstrate this concept is a kD tree, but the idea will work with any
hierarchical data structure. A kD tree is a recursive binary tree used for storing
and operating on records containing & dimensional keys. In our case, the keys are
simply the N geometric data points. The creation of such a data structure from the
geometric data points is described in the literature [Samet, 1984]. In figure 2.6 part
(a), we show part of a kD tree for a set of two-dimensional points. The root of the
tree is the entire set of points, and each node starting from the root has two children.
Each of these children are subtrees that contain exactly half of their parents points.
This recursive subdivision process is normally repeated until a node contains a single
point. However, in this example we show the nodes only to a fixed depth in the tree.

In figure 2.6, part (b), a line obtained by the random sampling process is super-
imposed on the kD tree structure. We assume that a fixed-band cost function is used
to evaluate the line. This means that the number of points that are within a fixed
distance of the given geometric primitive must be counted. Normally this requires

the computation of the distance of each point to the primitive to decide if it is within
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the fixed-band. However, we will show that with the kD tree structure this is not the
case.

Consider the corners of the bounding box of any given node of the tree as shown in
figure 2.6 and their relationship to the fixed-band surrounding the primitive. For now,
we will assume that the band size is a single pixel. If the corners of the box are on
the same side of the primitive, then none of the points in this node or its descendents
can be in the fixed-band. This means that evaluating the cost funclion requives not
O(N) time, but O(R+1log(N)) time, where R is the expected number of points in the
fixed-band. This complexity figure is derived from an analysis of the cost of scarching
a kD tree [Samet, 1984]. For a small band size the expected number of inliers R is
considerably less than N, so at least in the asymptotic case (as N becomes large),
this is a significant reduction in the time complexity. For the variable-band case, the
time complexity is similarly reduced Lo hecome O{log(S) x (R + log(N)), where S
is an upper bound on the variable-band size. The idea here is to do a binary scarch
at different band sizes until { points are in the band, where { the required number of
points.

Of course, whether such a data structure is warranted depends on the number of
geometric data points N. The complexity figures only guarantee that as N incrcases
there will always be a point where using kD trec becomes more eflicient. However,
this crossover point can only be determined experimentally by comparing the running
times of actual implementations with and without kD trees. The use of a kD tree
shows that it is not strictly necessary to interrogate all NV points to evaluate the cost

function for certain types of geometric primitives.

2.5 Robustness of Extraction Algorithms

An issue which was discussed previously is that of robustness. We have stated in Sec-
tion 2.2.2 that the robust statistics concept of breakdown is inadequate for computer
vision purposes. There, we made the claim that in practice a robustness of more than

50% is indeed poseibie. In this section we will discuss the issue of robustness in more
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detail. The robust statistics community has consistently stated that the maximum
possible robustness is 50% outliers, and has used the concept of breakdown to justify
this claim {Hampel et al., 1986, Huber, 1981, Roussccuw, 1984]. More recently, an
analysis of the HT has concluded that it can deal with more than 50% outliers, but
not with the case where the inliers are but a very small fraction of the input data
[Grimson and Huttenlocher, 1990]. We claim that the HT and the influence function
methods can both be described by our optimization model with the appropriate fixed-
band cost function. Since the cost functions are both of the same type, the maximum
possible robustness of both approaches should be equal, which does not agree with
the literature {Forstner, 1989].

For fixed and variable-band cost functions we will show that experimentally a
robustness of greater than 50% is indeed possible, but not in the sense defined by the
idea of breakdown. The question then is what is the maximum possible robustness’
that can be achieved by a robust extraction method? To answer this question propérly
we must look at the question of robustness from a different viewpoint. A robust
extraction procedure will always return a result for any given problem. We believe
that for primitive extraction the important issue is not robustness as defined by the
concept of breakdown, but how to decide on the significance of the result. Clearly as
the percentage of outliers increases, at some point the result will not be significant.
Thus for fixed and variable-band cost funcg.ioiis; we define the maximal robustness as
the largest percentage of outliers for which the result is insignificant.

One way to decide on significance is by using a simple statistical model. Assume
that our extraction procedure finds a given geometric primitive with a particular
cost function value. There are a number of inliers; that is geometric data points
that belong to this primitive. Let us assume that the geometric data points are
uniformly distributed. Then the probability of this many inliers being randomly
aligned in such a way that their cost function value is greater than or equal to that
of the extracted primitive can be computed. To compute this probability it is first
necessary to compute the probability of a single uniformly distributed geometric data

point being an inlier. This is equal to the band size of the cost function (fixed
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or variable-band) divided by the total volume or arca covered by the sensor. This
computation requires a knowledge of the sensor and its operating parameters along
with the definition of the geometric primitive, and of course the band size.

The following example itlustrates the approach. For a given cost function h, we
let B equal the inlier band size divided by the total arca (or volume) covered by
the sensor. If the geometric data is distributed uniformly, then the probability of a
single point randomly falling in this inlicr band is B. Given N geometric dala points,

the probability of exactly ¢ of them being inliers is given by the following binomial

py = (T) B"(l - B)N_t (2.3)

This means that the probability of [ or more inliers occurring at random (py1) is equal

to:

distribution:

-1
pa=1-3p (2.4)
t=0

Using this last formula (which was also derived in [Grimson and Huttenlocher, 1990

" and in [Stewart, 1991}) it is possible to compute the significance of any particular

extraction resuit.

As an example, consider the situation where the goal is to extract a line from edge
points. Assume the input consists of edge points from a 2D image in which the sensor
area is 512 by 512 picture elements {pixels). Table 2.3 shows pyi, the probability of
an accidental alignment of [ or more inliers when B is computed for a fixed-band cosl,
function of width one to four pixels. In this example the number of geometric data
points N, is 1000. For line extraction with a fixed-band cost function the valuc of
B is easily computed. For example, if the fixed-band has a widih of two pixels, the
total area of this inlier band is 1024 pixels, assuming a maximum line length of 512

pixels. This makes B the probability of a single point falling randomly in this inlier

. band equal to 1024/512 x 512, which is 2/512. From this table we sce that at least
cight inliers must be present to have a less than 5% chance (1.54% to be exact) thai

/ these inliers are the result of an accidental alignment,

The same statistical analysis has been made of the HT when it is used for the
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No. of Inliers Prob. of accidental alignment

! B=1/512 | B=2/512 | B=3/512 | B = 4/512
1 8584 .9800 9971 .9996
2 5814 9017 9804 9965
3 3106 7484 9314 9843
4 1343 .5483 .8355 .9525
5 L0483 3528 .6948 .8800
6 0148 .2000 .5300 .7920
[ .0039 1007 3692 6641
8 .0009 0454 2349 5210
9 .0001 0184 1368 3811
10 .0000 .0068 0732 2598

Table 2.3: The probability of { inliers (or more) appearing accidentally for
viatious values of B with N equals 1000.

purposc of pose determination [Grimson and Huttenlocher, 1990]. The conclusion is
that the HT will not function when the percentage of outliers is very large, and this
is said to be a significant drawback of the method. In fact, our analysis shows that
this problem is not particular to the HT, but is inherent in any extraction process. If
the number of inliers is below a certain threshold the result is likely to have occurred
because of an accidental alignment of points. The significance threshold increases
with band size since for larger sized inlier bands there are likely to be more accidental
inliers. This is clearly seen in table 2.3 which shows a rapidly increasing probability
of accidental alignment for larger inlier bands (increasing B). However, it still may be
the case that a result with more than 50% inliers is significant. This is demonstrated
in Figure 2.7, in which lines are extracted from two-dimensional geometric data. The
original line was created synthetically and the noise points were added uniformly
across the entire image. In part (a) of this figure, the correct line has been found
even when the outliers constitute 80% of the total number of points. Part (b) of the
same figure shows that if enough noise points are added, then eventually breakdown
occurs, and the original line is not found. However, it took far more than 50% outliers
for this to occur.

Like all statistical models the usefulness of computing the significance threshold

in this way depends on whether the data meets the assumptions, which are that of
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Figure 2.7: Extracting lines from noisy data (a) 80% outliers (b) 95%

outliers.
a uniform distribution. In any realistic situalion this statistical model does nol hold
perfectly and the actual setting of the significance threshold is usnally delermined
empirically. It will always be a tradeofl between the number of false alarms and
the ability to find geometric primitives. What we have shown, is thal an extraction
result may be statistically significant even with fewer than 50% outliers. Thus while
breakdown is an intuitively appealing concept, it obscures the important point that
the user of any robust method is still responsible for determining whether the primitive
returned by the extraction algorithm is significant.

The setting of the significance threshold also has another important use for a
fixed-band cost function. This is to provide an estimate of ¢, the probabilily of a
single randomly drawn geometric data point being an inlier. This issuc was discussed
briefly in Section 2.4.1, in which ¢ is used to compute K, the required number of
randomly sampled minimal subsets. For a fixed-band cost function the significance
threshold (which we have called Y), is the minimum number of inliers that must be
in a primitive in order for it to be accepted as valid. If there are N geomelric daia
points, then the probability of a randomly drawn point being an inlier is Y/N. This

is the value of ¢, from which K, the maximum number of randomly sampled minimal
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subsets necessary for successful extraction, can be compuied. If K random subsets
are chosen and no primitive is found with at least ¥ points, then we can be confident
that there is no such primitive (see Section 2.4.1). Since there is always an implied
significance threshold for any extraction algorithm, using this threshold to estimate
¢ is a principled way of computing K, the required number of randomly sampled

minimal subsets,

2.6 Summary

In this chapter we have defined the concept of primitive extraction. We have shown
that the problem of primitive extraction is a generalization of fitting. In extraction
the goal is to find the best subsct of the geometric data points that belong to a given
type of geometric primitive. We showed that this is equivalent to finding the global
optimum of a cost function which usually has many local optima. This optimiza-
tion model is applied to a number of extraction algorithms. The minimal subset
principle is then defined, and is the basis of cur minimal subset random sampling
algorithm for extraction. This algorithm is guaranteed to find the global optimum
for perfectly accurate data if all possible random samples are evaluated. The num-
ber of random samples necessary for successful extraction is usually considerably less
than the maximum. Some ways are described to decrease the execution time of this
process without using paraliel hardware. The issue of the robustness of an extraction

algorithm is discussed in detail.
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Chapter 3 Elimination Theory for Solving Conversion
Equations

This chapter discusses the use of elimination theory to convert between the mini-
mal subset points and the parameter vector defining the geometric primitive. By
using elimination theory the equations mapping a minimal subset to a parameter
vector are produced in closed form, which makes them very eflicient to evaluate.
This is an important advantage of a symbolic approach over a numerical approach
[Buchberger, 1989]. The ability to produce this mapping, and to evaluale it efficiently,
is essential to the operation of our primitive extraction algorithm. .

The general issue of how geomelric primitives are represented is an important one,
and is discussed in the beginning of the chapter. We then give an overview of the field
of elimination theory, and describe the particular approach we have chosen. This is
called the Grobner bases approach [Buchberger, 1985], and we show why we prefer
it over resultants, the other main alternative. The first use we make of climination
theory is to convert from the parametric to the implicit form of a geometric primitive.
This is followed by a number of applications of elimination theory using examples from

Chapters Two and Four.

3.1 Representing Geometric Primitives

In model-based vision the assumption is that each object is described by a set of ge-
ometric primitives. This description is normaily contained in » CAD database. The
geometric primitives in such a database are usually defined in parametric form. How-
ever, nur algorithms require that these primitives be in implicit form. The parametric
form is also sometimes called the explicit form, since each coordinate is written ex-
plicitly as a function of a number of parameters. A 2D curve is defined in parametric

form as a set of points S in the following fashion:

S= {(may) = f(t)ﬂf = g(")vt € R} (3‘1)
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Similarly a 31) curve is defined as:
S={(x,y,z):z=[(),y = g(1), 2= h(1),L € R} (3.2)
A 3D surface is defined as:
S ={(z,y,2): z = f(u,v),y = g(u,v), z = h(u,v),(u,v) € R*} (3.3)

In this notation the domain of the parameters £, «, and v is R, the set of real numbers.
A curve is parameterized by a single variable (), while a surface requires two (u,v).
The parametric form is ideal for generating and manipulating the shape of a curve
or surface. The points on the curve or surface can be generated by varying the
parameter(s) through a range of real values. The curve or surface can be manipulated
by rewriting the parametric form in terms of control points. Then the shape of the
curve or surface can be easily and naturally modified by moving these control points.
Since gencration and manipulation are the most common activities in CAD systems,
the parametric form is very useful [Foley and Dam, 1982, Faux and Pratt, 1979].

A curve or surface in implicit form is defined as the set of points which are the
zeros of a function(s). A 2D curve in implicit form is a set of points S defined in the

following {ashion:

S ={(z,y): f(z,y) =0} (3.4)

Similarly a 3D surface is defined as:
S ={(z,v,2): f(z,y,2) = 0} (3.5)
A 3D curve is defined as the intersection of two 3D surfaces as f;llows:
S = {{z,y,2) : f(z,y,2) =0, g(z,y,2) = 0} - (9

The notation we use for a single implicit function is f(7;@). Here 7 is the datum point,

and @ defines the parameter vector for this particular primitive. This paramete.- vector
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1s not the same as the paramters used to generate a curve or surface in parametric
form. For the implicit form, different curves or surfaces are defined by changing
the value of the parameter vector @. As an example of this notation, a 2D linc is
defined implicitly by the cquation ag+ aj + a3y = 0, where the parameter vector @ is
(@0, a1, e2) and the datum point § is (x,y). The implicit form naturaily divides space
into three regions: f > 0, the points on one side of the curve or surface; f <« 0, the
points on the other side of the curve or surface; and f = 0, the points on the curve or
surface. As we have shown in Chapter Two it is easy to find an approximalion to the
clusest distance of a point to a curve or surface when the implicit form is available,

So far nothing has been said about the particular types of functions that arc used
in the parametric or the implicit form. In this chapter we will discuss in detail the
situation where the functions in the parametric or implicit form are polyunomials,
or ratios of polynomials. A polynomial function in a single unknown z is written
as ag + 17 + a2 + ... + a,c™. While restricting these functions to polynomial
form may seem significant, the polynomiai representation is widely used and is very
general. In most CAD systems the basic parametric form is a rational polynomial.
This is because the different parametric surfaces such as the Bézier surface, Coons
patches, and B-Spline surfaces, and Nurbs can all be rewritten in the forin of a rational
polynomial [Besl, 1988, Piegl, 1991]. For a curve, each coordinate is written in the
form a(t)/b(t), where a and b are polynomial expressions in a parameter . Similarly,
for a surface, each coordinate is written in the form of a(u,v)/b(u,v), where ¢ and b
are polynomial in the parameters u and v. This representation is general enough to
represent a wide variety of curves and surfaces.

It is possible to use elimination theory to convert any parametric form defined as
a rational polynomial to its equivalent implicit form [Sederberg and Anderson, 1984].
For model-based vision, the assumption is that each object is defined by a sct of
geometric primitivesin a CAD database. However, as we have stated these primitives
are in parametric form, while our algorithms require the implicit form. Thercfore
converting from parametric to implicit form is the first application of elimination

theory that we will demonstrate.
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3.2 Essentials of Elimination Theory

Elimination theory is concerned with finding symbolic solutions to systems of equa-
tions. It concentrates on finding the solution of systems of algebraic equations, where
an algebraic equation is one where the implicit function is a polynomial. However,
climination theory also studies the general requirements for finding the solution of
any system of equations. While the basis of elimination theory is a century old, its
modern revival is due to recent discoveries [Buchberger, 1985, Canny, 1987]. These
new approaches have been little used outside of their field, but this is changing as
they become better known [Kricgman and Ponce, 1990]. In the previous discussion
on Lthe representation of geometric primitives we considered a single equation of the
form f(p;@). In this notation 3 is a datum point, and here we will assume that it
is an m dimensional datum point which makes = (21,...,2,). In this discussion
we will assume that f is a polynomial. Thus, if m is two, then the unknowns are =z,
and xz, and the cquation of f is equal to ¥;; ai;z1'zy? = 0. Similarly, when m is
three the unknowns are z,, 22 and 3, and f equals 3_; ;. a;_,-kmlf:ngjma" = 0. Each of
the individual products of unknowns in these sums is called a term. The degree of a
term is the sum of the degrees of the individual unknowns in that term. For example
the term ay3,7'22%23% has a degree of six, since this is the sum of the powers of
the unkrowns z,z; and z3. The degree of an equation is that of the term with the
highest degree.

A system of equations is simply a list of individual equations. For an algebraic
system the total degree of the system is the product of the individual degrees of each

equation. Consider the following system of n algebraic equations in m unknowns:

filzy,...y2m) =0 (3.7)
fg(ml,...,xm) =0

fn(mh- . .,Em) = 0
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Such an algebraic system cither has no solutions, an infinite number of solutions, or a
finite number of solutions. If the number of solutions is finite, then from the theorem
of Bezout we know that the number of unique solutions must be less than or equal
to the total degree of the system [Hoffman, 1989].

Elimination theory can be used to find a symbolic solution to a system of alge-
braic equations. In a symbolic solution a closed form expression exists for each of the
unknown variables in terms of the known variables. Traditionally numerical methods,
such a Newton-Raphson, have been used to solve such systems ol cquations. How-
ever, in order to achieve convergence these methods require an initial estimate which
must be close to the final solution. Another common numerical approach for solv-
ing an algebraic system are homotopies [Morgan, 1987, Renegar, 1987). Even though
homotopies find all possible solutions, they are computationally costly and have a
significant number of operating parameters. By contrast, once a symbolic solution is
generated, it is a very cfficient way to find the solution. As ils name implies clim-
ination theory produces a symbolic solution by repcatedly combining equations to
eliminate unknowns. The final result is an algebraic equation in a single unknown. If
the degree of this final equation is four or less dirccl solutlions exist; if not the solu-
tions can be found by fast numerical methods [Hook and McAree, 1990} (sce Section
3.5). The solution to the final algebraic equation is back-substituled into the previous
algebraic equations. All the unknowns are solved for in this recursive fashion,

The traditional elimination theory approach uses resultants to eliminate unknown
variables. A resultant operation eliminates a single variable from two cquations by
creating a new equation which is a logical consequence of the original equations. The
following example illustrates how elimination theory using resultants operales. The
goal is to find the point of intersection between a line and a circle. The equation of
a line defined implicitly is a, + @17 + a2y = 0 and the cquation of a circle of radius
r and center (z.,y.) defined implicitly is (z — z.)? + (y — yc)* — r* = 0. A single
application of the resultant operator can be used to eliminate cither y or z from these
two equations. The resulting equation defines the point of intersection between the

line and the circle. We choose to eliminate y, and the equation produced by the
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3. Flimination Theory for Solving Conversion Equations

resultant operator is the following:

(a2 + af)z? + (2apa) ¥ 2a)apy.—2a3z. )z + aja? + aj + asyi—air® + 2agasy. = 0

(3.8)
This is an algebraic equation of degree two ir a single unknown z. It is implied by
the two original equations in the selse that it must be satisfied if the value of z
satisfies botk the original two equations. Since the equation is a polynomial of degree
Lwo in a single unknown, it is a quadratic equation. Therefore a formula is available
for finding z, and by substituting each value of z into either of the two original
cquations, y can also be found. This (z,y) pair is the intersection point between the
line a, + @1z + azy = 0, and the circle (z — z.)2 + (y — y)? =2 = 0.

The difficulty with the resultant approach is that it becomes impractical for a
system with more than two or three equations. The reason is that when using re-
sultants the final algebraic equation always has a degree equal to the total degree of
the system. The total degree is the product of the degrees of each of the equations
in the system. The theorem of Bezout says that the number of distinct solutions
to an algebraic system is less than or equal to its total degree. However, because
there are multiple roots, it is often the case that the number of distinct solutions is
considerably less than the total degree. The resultant approach does not take this
into account. This means that the degree of the final equation is often unnecessarily
large, since it contains multiple roots. This problem is inherent in all resultant based
methods, including multi-variable resultants [Canny, 1987]. What we would like is an
climination method which takes this into account to produce a polynomial in a single
unknown of the lowest possible degree. There is such a method, and it is called the

Grébner bases approach.

3.2.1 ~£lrsbner bases

-The Grébner bases method is a new and powerful approach to solving an algebraic sys-
tems of equations [Buchberger, 1985]. The method has implications beyond equation

solving, and has been applied to a wide variety of difficult and important problems
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[Hoffman, 1989]. In the general case computing the Grdbuer bases is very computa-
tionally intensive, However, for certain systems of algebraic equations more efficient
versions of the algorithm exist. Such a situation occurs when the algebraic system is
known to have a finite number of solutions. The system of equations produced by the
minimal subset algorithms has this characteristic, and can thus be solved more eas-
ily than other algebraic systems. While the underlying theory of the Grébner bases
method is complex, the output of the algorithm is easy to understand. When applicd
to a system of algebraic equations the algorithm is guarantced to eventually termi-
nate with a Grobner basis, which is another system of algebraic equations. When the
original system has at least one solution then the number of equations in Lhis new
system is the same as in the original. It has been proven that any solution to the
original system is also a solution of the Grébner basis system, and vice-versa.
However, the Grobner basis system can be forced to be in triangular form. In this
form the last equation has a single unknown, the second last has two unknowns, one
of which is the unknown in the last equation, and so on. For a triangular system of
equations back substitution can be used to find the solutions to ali the roots to any
desired level of accuracy. Since the last equation has a single unknown it can he solved
directly using a formula, or by fast numerical methods (sce Scction 3.5). When the
solution for the last equation is substituted into the second to last equation, then this
equation in turn only has a single unknown, and it can also be solved. This process
is called back substitution, and can be applied repeatedly to find all the solutions lor
the system. We use the example of finding the intersection betwecen a line and a circle
to demonstrate this method. The resulting Grobner basis consists of the following
two equations. Here the first member of Lhe hasis is the same as the first equation in

the original system, but this is not always the case.
ag + a,T -+ daY} = 0 (39)

a22? + aZy?—air? + 2a042y. + af + (2apay—2a3z, + 2aya0y. )T + (¢ + @}z =0

(3.10)
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The last equation of the two has only one unknown, which is x. It is identical to the
cquation produced by the resultant approach, but this is not always the case.
Because it produces equations of the lowest possible degree, the Grobner bases
approach is potentially able to solve much larger systems than the resultant method.
The difficulty is that the computational time necessary to produce the basis is very
large. The running time of the Grobner bases algorithm is doubly exponential in
the total degree of the system. The algorithm has been proven to always terminate,
but there is no way of knowing how long this will take [Buchberger, 1985]. However,
the symbolic solution need only be generated once, and can thereafter be used to
cfficiently solve the system. Considerable research is being done on producing faster

versions of the Grabner bases method [Gatermann, 1990, Hoffman, 1989).

3.3 Conversion Examples

The first use of elimination theory is to convert from the parametric to the implicit
form of a curve or surface. In CAD systems geometric primitives are represented in
parametric form. For our algorithms we need these equations in implicit form. The ba-
sic parametric form used in many CAD systems is the rational polynomial [Bes], 1988].
When a curve is defined in this way each coordinate is written as a(t)/b(t), where a
and b are polynomials in the parameter {. Similarly, when defining a surface, each co-
ordinate is written in the form of a(u, v)/b(u,v), where a and b are polynomials in the
parameters u and v. Strictly speaking curves and surfaces in parametric form are not
directly represented as rational polynomials in many CAD systems, but are stored in
B-Spline, Bézier , or Nurb form [Farin, 1993]. However, it is possible to convert these
descriptions into the rational polynomial form by using numerical methods described
in the literature [Farin, 1993].

The conversion of a geometric primitive given in parametric form to the implicit
form is demonstrated in the following example. The rational polynomial representa-

tion of a circle with the origin at the center and radius r is z = r({1 — t2)/(1 + {2))

59



3. Elimination Theory for Solving Conversion Equations

and y = #((2¢)/(1 + t*)). This implies that the following two equations hold:

r—r((1 -1+ =0 (3.11)
y=r(Q)/(1+ ) =0

To convert from the parametric to implicit form it is only necessary to use elimination
theory to remove the variable ¢ from these two equations. This can be done by using
either resultants or the Grébner bases method. The result of this climination process
is the equation of the circle in implicit form which is 2% + y? = 2. This approach can
also be used to convert a rational polynomial description of a surface to its equivalent
implicit form. For a surface there are three parametric equations, instead of two, so
two variables must be eliminated. The ability to convert from parametric to implicit
form is important becanse our algorithm requires the implicit form, and the geometric
models of objects in most CAD databases are defined parametrically.

A difficulty with this conversion process is that the resulting algebraic equations
are sometimes of a very high degree. For a 2D curve in the z,¥ planc defined para-
metrically in terms of a degree n rational polynomial in {, the implicil form is a
degree n algebraic equation in z and y. Similarly, for a surface defined parametrically
as a degree m rational polynomial in v and v, the resulting implicit surface is an
algebraic equation of degree 2m? in z,y and z. The most common surfaces defined
parametrically have degree 3, and these are cquivalent Lo degree 18 polynomials in
implicit form. Such a high order polyr.emial has very many terms (over 1000). This
makes the number of points in the minimal subset for this surface far too large for
our algorithm.

The high degree of the associated implicit surfaces for various parameltric forms
leads us to believe that such geometric primilives have more degrees of freedom
than are necessary. This has led to research in the use of certain parametric
forms that convert to lower order implicit functions, such as the Steiner surface
[Sederberg and Anderson, 1985]. There has also been interest in the direct use of

lower order implicit polynomial functions as design surfaces, instead of using the

60



3. Elimination Theory for Solving Conversion Equations

parametric forms [Bajaj and Thm, 1992, Sederberg, 1985]. The advantages of having
both the parametric and implicit form of a surface available in a CAD system are
significant. For this rcason the description of the patches defining objects may in the
future be in parametric forms that can be converted to low order implicit polynomi-
als. This will make our algorithm more practical for extracting the surfaces defining

free-form objects found in many CAD systems.

3.4 Extraction Examples

In the primilive extraction algorithm it is necessary to convert from a minimal subset
to the parameter vector that defines a primitive. Each of the R points in a minimal
subset must be on the curve or surface. Therefore the system of R equations f(3,;d) =
0 to f(Pr,a) = 0 created by replacing the variable 7 by 71 to P in f must hold. The
unknown in this system is the parameler vector @, and the solution to this system
defines the mapping between a minimal subset and a parameter vector.

We will consider the solution of this system for two different types of implicit
functions. In the first case, f is restricted to be a linear combination of a possibly
nonlinear set of basis functions. In the second case, f is a polynomial, which cannot
necessarily be written as a linear function. These two cases cover a wide variety of
curves and surfaces. It should be noted that they are not mutually exclusive, and

some geometric primitives (such as a circle) can be written in both forms.

3.4.1 Linear Combination of Basis Functions

We first consider the case where f is restricted to be a linear combination of a possibly
nonlinear set of basis functions. If there are R basis functions labelled &, to bg then
J(@) = ao + TER a;0;(5). In this notation b;(P) is basis function b; evaluated at 7,
and a; is the coefficient of this basis function. The dimension of the parameter vector
a = (ao,...,ar) is R+ 1, where the minimal subset is of size R. Thus the size of the
minimal subset always equals the number of basis functions. Such a representation

is general enough to describe a wide variety of curves and surfaces. Table 3.1 gives
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Shape | Basis Functions

line T,y

circle | x,y, 2%+ 3?

conic | z,y,x% 2y, y°

cubic | z,y, 2% xy, y? &3,y ay? vt

plane T,y 2
sphere | z,y,z, 2%+ y* -+ 2%
quadric | z,¥, z, 2%, y%, 2%, oy, y2, 2w

Table 3.1: Some common shapes and their associated basis vectors.

some common shapes and their associated basis functions [Pratt, 1987].
If we substitute §,,P,,...pg for P in f we have R cquations. However, f(p;@)
must hold for any point $ on f, and il this equation is added to the sct we obtain the

following linear system:

1 h(p) ... br(P) W
L¢1)]) 0

1 b(p) ... ba(Py) = (3.12)
ap 0

U i) e balrn)

Even though the basis functions are nol necessarily linear, the above system is
linear in the unknowns ag,...,an. The fundamenta! thecorem of climination says
that a non-trivial solution for a linear system exists only if the determinant of the
associated matrix equals zero (Macaulay, 1916]. This means that by expanding the
following deterriinant, setting it equal to zero, and collecting terms, the unknowns

can be solved for:

(3.13)

L bulpp) - b(pp)

As an example, consider the case of a line which is described by the implicit
equation ap + a1z + a2y = 0. Here the basis functions are z and y, which makes b

equal to z and b, equal to y. Two input points 7y = (z,,4) and Pz = (zq,12) are
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necessary and sufficient to define a unique line. Expanding the following determinant

and setting it to zero produces the equation of the line.

1l z ¥
1 = 1 (314)

1 22 2

The expansion of this determinant is the following equation.
zayh — Tiya + 2(h —y2) +y(z2 —21) = 0 (3.15)

from which it can be seen that ap = zoy — 2132, @1 = (11 — ¥2), and az = (T2 — z1).

"This method of expanding determinants will produce a closed form solution for
rach element of the parameter vector @ as a function of the R points in a minimal
subset. This technique will work whenever f is a linear combination of basis functions,
which may themselves be nonlinear. This method of computing the parameter vector
was used for the line, circle, ellipse, plane, sphere and quadric extraction examples

described in Chapters Two and Four.

3.4.2 Polynomial Function

We will now consider the casc where f is a polynomial function, which is an important
casc for two reasons. The first reason is that algebraic equations describe the geomet-
ric primitives implemented in nzla.ny CAD systems. In Section 3.3 we noted that when
parametric surface patches defined as rational polynomials are converted to implicit
form the result is an algebraic equation [Sederberg and Anderson, 1984]. In addi-
tion, it has been shown that the outlines of objects modelled by such surface patches
are also curves which are defined by algebraic equations [Kriegman and Ponce, 1990}
Thus the ability to extract geometric primitives defined by algebraic equations is
important if our approach is to apply to a wide variety of geometric primitives.
Some of the curves defined in the previous section as a linear combination of basis

vectors can also be written as polynomials. When there are no constraints on these
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curves, then the linear form is the more useful. However, when there are constraints
these equations are usually not linear in the parameter vector, and must be written
in their polynomial form. It is important to be able to solve such algebraic systems
because when these constraints exist, they lower the degrees of freedom of the prim-
itive. For example, a circle with a known radius has two degrees of freedom, versus
three for an unconstrained circle, and a ¢ylinder (which is a constrained quadric) has
six degrees of freedom, verses nine for a quadric. The number of points in a minimal
subset equals the degrees of freedom of the geometric primitive. In Chapter Two we
showed that the number of random samples necessary Lo achieve successful extraction
is an exponential function of the number of points in a minimal subset. Thercfore
reducing the size of a minimal subsect enables the required number of random samples
to be significantly reduced.

We will consider further the example of extracting a circle which has a known
radius. An unconstrained circle can be written as a lincar combination of basis
functions, with these functions consisting of z,y,z® -+ 4. However, il the radius
is known the elements of the parameter vector @ are constrained, and this lincar
description of the circle is no longer valid. Instcad, the circle must be written as
f(z,y) = (z — Cz)* + (y — Cy)? — r*, where the unknowns are the coordinates of the
circle center (Cy, Cy). In this case [ is a polynomial but is not a linear function of the
parameter vector (Cz, Cy). Therefore the previous approach to finding the parameter
vector @, which uses determinants will not work. To solve such algebraic systems we
use the Grobner basis method described in Section 3.2.1.

If the two minimal subset points, (z¢,%0), and (z,,¥;) on the constrained circle
are substituted into the circle equation, then the following algebraic system is the

result.

(20— Cz)2 +(po—Cy)2 =72 =0 (3.16)
(31— Co) + (31 = Gy )P =1 = 0

Here the known, or given variables, are zo, %0, %1, and 7, since the radius is fixed.
b ] ] 1
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The unknown variables are the circle center C; and C,. The Grébner basis method
is used Lo find two solutions in closed form, and both are listed in Appendix A.l.
We will now demonstrate how the Grobner basis approach works by solving the
system of cquations for a number of the extraction examples that will be described
in more detail in Chapter Four. In the first example we consider an ellipse where the
center and one of the axes is constrained to a given value. Without loss of generality,
we can assume that the center of the ellipse is at the origin. Then the equation of

the cllipse is the following:
br? + a%y? - a®? =0 (3.17)

The two axes of the ellipse have length e and b respectively. If the ellipse is rotated
about the origin by an angle 8, then by substituting s; = cos() and s; = sin() the

following polynomial is oblained:
b{xs) —ys2)? + d¥(zs2 +ys))  —a?H? =0 (3.18)

For an unconstrained ellipse the free variables are the center, the two axes, and the
orientation, which gives five degrees of freedom. Then the ellipse can be represented
by the conic equation listed in Table 3.1. However, here the center of the ellipse,
and one of the axes (a) are known. Thus the free variables are the rotation angle
(0) and the other axis (b). This means that the constrained ellipse has two degrees
of freedom, and two points are necessary and sufficient to define this curve. If the
two points are (xp,yo) and (x1,¥;), and they are substituted one at a time into the
above cquation, then the following algebraic system with unknowns s;, s, and b, is

the result;

b*(z08) — Y052) + a(x0S2 + yos1)? — a?b? =0 (3.19)
B (x151 — y182)? + a¥(zs2 + 181)P — a?bP =0

s$t4+s2—-1=0
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(a) (b)

Figure 3.1: Constrained ellipses through two points (a) Circle and two
points (b) Two cllipses through two points with circle center and wmajor
axis.
The last equation simply encodes the constraint that cos*(#) + sin®(0) = 1. "There
are two different solutions Lo the system and they are described in Appendix A2, 1o
Figure 3.1 part (a), a circle is shown along with two poinls on such a constrained
ellipse. We constrain the ellipse to have as ils center the circle center, and as ils
major axis the circle diameter. In part (b) of the figure, we draw the two cllipses
produced from the solution of the above sct of equations, and they both satisly these
constraints. This example demonstrates that constraints on the geometric primitive
reduces the size of minimal subset, in this case from five points Lo two points.
Consider the case where the geometric primitive is a curve in 31 space. Such
curves are defined as the intersection of two surfaces, and the resulting system of
equations is rarely lincar. As an example consider a circle in 31} Cartesian space,
It can be described as the intersection of a sphere and a plane through the sphere’s
origin. This is shown in Figure 3.2, where the plane and sphere are drawn, The size of
the minimal subset is three, since three poinis are necessary and sufficient to uniguely
define this curve, The equation of a planc is ag+ a1z + ayy + ¢z = 0, and the equation
of a sphere with radius r and center (Zc, ¥e, 2¢) 18 (z — 2c)? + (y — ye )2 + (2 — 2,)? = 7°.

We assume that the normal to the planc is a unit normal, which adds the equation
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a? 4 a} + 23 = 1 to the set. The fact that the plane passes through the center of the
circle adds the equation ag + a,z. + azy. + @32, = 0 Lo the sct. Each point on the
3D circle must satisfy both the sphere and plaiie equations. Let us iwsume that the
points (£, Yo, 20), (Z1,, 21), and (T2, ¥2, 22) are those points on the circle. Then the
following system of equations is the resull of substituting the points into each of the

Lwo cquations,

ap + a1To + azyg + azze = 0 (3.20)
a9+ a1y + agyy +axzn = 0
ao + a1z + azy, + azzo =0
(o= 2)?+ (o —e)? + (20— 2) =12 =0
(@0 — o)+ (yo = 9e)* + (20— 2)* ~1* =0
(2o — ) + (Yo — ¥}’ + (20— 2)> — 77 =0
ag + a1Tc + a2y, + azz. =0

ar+ai+ai—1=0

This system can be solved using the Grébner basis method, and it has exactly one
solution which is listed in closed form in Appendix A.3.

We have described methods of converting from the minimal subset points to a
parameler vector when either f is a linear combination of basis functions, or when
f is a polynomial. While not every implicit function meets these criteria, these
types of functions do cover a wide variety of commonly used shapes. The ability to
handle polynomial equations is practically important because they are the basis of

the descriptions in many CAD systems.

3.5 Numerical Solutions

In our extraction examples elimination theory is used to eliminate unknowns in order
to produce an algebraic equation with only a single unknown. The solution of this

algebraic equation must be found and substituted back into the previous equation of
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Figure 3.2: Three dimensional circle is the intersection of a plane and a

sphere
the triangular Grobner basis system. The previous equalion now has only a single
unknown, and the solutions for it must be found. This procedure is applicd recursively
until all the solutions are found to the entire algebraic system. The assumption s
that an algebraic equation in a single unknown can be solved cither symbolically ov
numerically. While correct, there are some ways of solving such an equation which
are particularly well suited to our application.

If the degree of the algebraic equation with a single unknown is four or less
then there are closed form solutiuns available. However, if the equation has a
degree higher than four numerical methods must be used to find the solutions.
There is a numerical approach which is particularly useful in our application. It
is based on Sturm sequences, and implementalions are described in the literature
[Hook and McAree, 1990). For the extraction application we are only interested in
the real solutions. When the solutions have a complex component this implies thal
the minimal subset does not meet the required constraints. This is illustrated by our
example of finding a circle with a given radius through two points. In this casc a
complex solution means that no circle through the two planar points exists. Thus, we
want to find only the real solutions of an algebraic equation with a single unknown.

It is also true that there are often constraints on the range of possible values of cach
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unknown.

Using a Sturm sequence is the preferred ways of achieving this goal. Tt is superior
10 other methods in the literature for two reasons [Press and Flannery, 1988)]. First,
this approach finds only the real roots, second it can deal with very ill-conditioned
equations, and third it can accept constraints on the solutions. Informally, a system
is ill-conditioned if a small change in the coeflicients of a polynomial can dramatically
change the number of real roots, and their locations. Often if a polynomial has real
roots, il will be ill-conditioned. The following algebraic cquation is an example of

this situation:
Wr)=(z+1)(z+2)...(z+20) =z +2102"9 +... 420! =0 (3.21)

Clearly there are twenty real roots ranging from minus one to minus twenty to this
cquation. Let us change the cocfficient of z'® slightly to produce a new algebraic

equation U(z) defined as follows.
Ulz) = W(z)+ 222 =220 4 (210 + 2" B)21% ... + 20! = 0 (3.22)

It would seem that such a trivial change in a single coefficient would have little impact
on the rootls. However, this new equation has only ten real roots, and the imaginary
parts of the other roots are fairly large [Wilkinson, 1959). The fact that all the real
roots of such an equation can be found reliably using a Sturm sequence demonstrates
the robustness of this root finding method.

There is public domain software available to compute the Sturm sequence
[Hook and McAree, 1990]. Once the Sturm sequence has been computed all the real
rools arc found by a simple bisection aigorithm. The use of the Sturm sequence
for finding the real roots of an algebraic equation with a single unknown makes the

elimination theory approach much more practical in many more applications.
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3.6 Summary

This chapter has concentrated on the application of elimination theory to our extrac-
tion algorithm. This theory is used to produce the closed from solutions to a system
of equations defined using minimal subsets. The solution to such a system maps from
the minimal subset points to the paramecter veclor defining a geometric primitive.
While elimination theory is computationally intensive, it need only be applied once
to produce the clased form solution. Thereafter this solution can be used repeatedly
in the extraction algorithm, and is usually very eflicient.. The examples in this chapter
were processed using the Grobner basis routines found in Maple, a symbolic algebra
package '.

We first discussed our representation of geometric primilives and transformations.
Then we gave an overview of the field of elimination theory. This was followed by
a number of extraction examples that showed how climination theory is applied. To
actually solve the resulting Grobner basis it is necessary to repeatedly find the real
roots of an algebraic equation with a single unknown. We concluded by showing how

the Sturm sequence method can be used to achieve this goal in a very reliable fashion.

'Maple is a product of the Symbolic Cemputation Group, Computer Science Dept., University
of Waterloo, Canada
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Chapter 4 Extraction Applications Using Random
Sampling

Primitive extraction as we have defined it is a generalization of fitting. A single
invocation finds a single geometric primitive in the geometric data. How can we use
our cxtraction algorithm to deal with the situation in which there is more thar one
geometric primitive, or where the primitives are not necessarily all of the same type?
This problem is closer to the traditional definition of segmentation [Levine, 1985].
By itself, our extraclion algorithm is not a segmentation algorithm. However, in
this chapter we will show how a number of different segmentation algorithms can be
built using our extraction algorithm. Before we do this we will first discuss some
deficiencies of current segmentation algorithms.

In our opinion the following are what we consider to be the most desirable char-

acleristics of a segmentation algorithm:

o The algorithm should have no restrictions on the type of geometric primitives,

and should be able to find both curves and surfaces.

o The algorithm should be able to operate on both single view and multiple view

data.
o The algorithm should operate on both sparse and dense geometric data.

¢ The algorithm should be able to handle geometric data of varying noise levels

produced by different geometric sensors.
¢ The algorithm should have a formal mathematical basis.

e The algorithm should be simple thereby permitting others to implement it easily

and to verify the experimental results.

¢ The algorithm should have a small number of operating parameters.
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In light of these criteria, the existing segmentation algorithms in the litera-
ture each have a number of drawbacks [Besl, 1988, Hoffman and Jain, 1987,
Yokoya and Levine, 1989, Boulanger and Godin, 1992]. The most serious is the re-
quirement that the geometric data be in standard image format. This means that
the data must be presented in the form of a dense set of points described by a graph
function as z = f(z,y). We have dcfined geometric dala in a very general way, in
which the data are not necessarily available as a graph function. This is because
we want to accommodate a wide variety of different methods of producing geometric
data.

We believe that by using our extraction algorithm it is possible to create various
segmentation algorithims which satisfy the above criteria better than other methods
described in the literature. In thi <hapter we will describe how this is accomplished.
This will be followed by a number of experimental results. They will demonstrale
the extraction of geometric primitives for a varicty of gcometric data. Finally, we
will compare our methed in detail with the robust statistics approaches, the minimal

length encoding schemes, and the Hough transform (H'T).

4.1 Multiple and Different Primitives

The first case we consider is that in which there are multiple primitives to be extracted
which are all of the same type. The second case is a gencralization of the first, in
which there are mnliiple primitives that are not necessarily all of the same type. We
will consider the two cases separately.

If there is more than one geometric primitive of the same type to be extracted, the
obvious approach is to apply the random sampling extraction algorithm repeatedly.
Following the first application, the inlicrs are removed, and the next application has
as input the remaining geometric data points. This process continues as long as the
extraction is successful, where success means that the value of the cost function of the
best primitive is significant. However, if the number of geometric primitives or the

size of a minimal subset is large, then an excessive number of random samples may
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be necessary. In order to decrease this number, we propose to divide the geometric
data into locally connected subsets, Each such connected subset is likely to consist
of a small number of curves or surfaces. Therefore performing random sampling on
cach connected subset instead of all the geometric data should require fewer samples
for successhy] extraction. The disadvantage of using local connectivity is that the
optimal solution may not be found. However, the advantage is that when there are a
significant number of gecometric primitives to extract the number of random samples
is greatly reduced.

The particular connectivity algorithm used depends on the type of geometric data.
For two-dimensional geometric data consisting of edge points from an intensity image,
standard algorithms can quickly produce alt of the connected subsets [Levine, 1985].
If the geometric data are dense range data taken from a single view we find the
largest connected region bounded by edge points. For dense range data, an edge
point is a discontinuity in depth or orientation, and these points can easily be found
by local operators [Godin and Levine, 1989, Boulanger et al., 1990]. Each of these
two approaches to using local connectivity is illustrated in Section 4.2. The actual
dala produced by a connectivity algorithn often depends dramatically on the settings
of certain parameters (such as whether the connectivity is four-or eight-connected).
However, because of the underlying robustness of the extraction algorithm, ultimately
the same geometric primitives are likely to be extracted even when the parameters of
the connectivity algorithm vary. An example of this will be shown in Section 4.2.

The following pscudo-coq\-._ describes the modified extraction algorithm for multi-
ple primitives of the same type. The input is the definition of the geometric primitive

to be extracted along with the geometric data.

While there is sufficient geometric data
Do
1. Find the largest connected subset of the geometric data.
2. Extract all the geometric primitives from this subset.
3. Save the associated parameter vectors and inliers of the extracted primitives.
4. Remove the inliers from the geometric data.

Enddo

A more complex situation exists when there are not only multiple primitives, but
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also different types of primitives. For example, the goal may be to extract not just
fines, but also circles and cllipses. One solution is Lo sear-h for all the primitives of a
certain type, and then when no more exist, go to the nexa type. For example, when
extracting lines, circles and ellipses, first extract all the lines, then when no wmore
lines are found (according to the significance threshold) extract all the circles, ele.
The problem with this approach is that i the significance threshold is too low then a
complex primitive (such as a circle with a large radius) may be mistaken for simpler
one (i.e. a line).

An alternative is to attempt the simultancous extraction ol cach different type of
primitive, and then accept only the best one. This is the approach we have taken, In
terms of our previous example this would mean applying Lhe extraction algorithm lor
lines, circles and ellipses simultancously on the same geometric data. The primitive
with the most inliers would be the one returned by the algorithm, as long as it was
deemed to be significant. If the number of inliers for two dilferent primitives is equal or
close to equal, then the simplest primitiveis chosen {eg. a lineis simpler than a circle).
This procedure is very similar to that used in the minimal length encoding schemes

[Darrell et al., 1990, Pednault, 1989], and we will compare the two approaches in

more detail in Section 4.3,

4.2 Experimental Results

In this section we present a number of examples of primitive extraction for various
kinds of geometric data. The two-dimensional examples show the extraction of lines,
circles and ellipses. The three-dimensional examples show the extraction of planes and
quadrics from range data provided by a laser rangefinder [Rioux, 1985]. All examples
were processed using a fixed-band cost function whose size was determined from a
study of the resolution of the geometric sensor data. In some cases there is more than
one geometric primitive to be extracted, and in other cases there are different types

of primitives to be extracted.

74



4. Extraction Applications Using Random Sampling

(a) (b)

Figure 4.1: Yxtracting a circle (a) Initial data points (b) Extracted circle.

4,2.1 Two-Dimensional Data

The first set of examples will demonstrate the extraction of lines, circles and ellipses
from two-dimensional geometric data. For some examples the data was created syn-
thetically, and {or others the geometric data were obtained by processing intensity
images.

The first examples show the extraction of a single circle and ellipse from a set of
points in the plane. The results are shown in Figures 4.1 and 4.2. In both figures
part (a) shows the dala points and part (b) shows the extracted primitive. In both
cascs the number of random samples used to the extract the primitive was seventy.
'This value of K, thz number of random samples, was computed using the formula
discussed in the Chapter Two. Note that in all the examples so far the percentage
of inliers (points on the line, circle or ellipse) is less than 50% of the total number of
points.

In Figure 4.3 we show the extraction of a number of circles from synthetic data
in the plane. Part (a) of the figure shows the data points and parts (b) and (c) show
the extracted circles. A fixed-band scoring function was used with a band size of
ten pixels and with seventy random samples. Part (b) shows the extraction results

without gap checking, and part (c) shows the extraction results with gap checking,
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(a) (b)

Figure 4.2: Extracting an ellipse (a) Initial data points (b) Extracted

ellipse.
Gap checking is an extra parameter of the fixed-band scoring furction for a two-
dimensional curve which caa be enabled or disabled. When enabled the curve defined
by a minimal subsct is scored using only the connected inliers. This means that the
longest sequence of points on the curve that are within a certain distance of cach other
are counted, and this distance is called the gap value. This value is a parameter which
must be set by the »ser. By conirast, the usual type of scoring is non-connected, which
means that all the inliers are considered to be on the same curve, regardless of their
separation. The effect of gap checking can be seen in part (c), where three circles are
extracted in the place of the single circle extracted in part (b). The single circle was
extracted without gap checking hecause three disconnected parts of the other circles
made up a large circle, which had many points, and thus a good cost function value.
However, from the figure it is clear that there are actually three distinct circles, and
not one large circle. When gap checking is used the correct result is obtained since
the gap between the disconnected portions of the larger circle is too large for them
to be considered as pari of the same circle. Gap checking may or may noi be useful
depending on the application. While we have demonstrated gap checking for circle
extraction it can also be added to the extraction algorithm for other curves, such as

lines and ellipses.
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Figure 4.3: Multiple circle extraction (a) initial data points (b) Extracted
circle without gap checking (c) Extracted circles with gap checking

7
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In the fourth example cllipses and circles are extracted from an intensity image of
a ball of about 50 pixels size. The outline of the ball is a civele, and a number of great
circles painted on the ball projects to a number of ellipses. The motivation for this
example comes from a tracking application. The objective is to track the position and
orientation of the ball from image to image. This can be done by finding the poles of
the ball, which are the intersections of the greal circles. Since the poles completely
define the position and orientation of the ball, this information is sufficient for tracking
purposes. The input consists of the cdge points created from the intensily image by
standard edge detectors. The small size of Lthe ball, the sparseness of the edge points,
and the closeness of the ellipses makes this extraction example particularly diflicult.

The following two-step process extracts the cllipses {from the geometric data, First,
the circle which defines the outline of the ball is extracted; then using information
from the circle the ellipses are extracted. The centers of the cllipses are constrained
to be at the center of the ball with their major axis equal to the radius of the ball.
This means that once the circle defining the outline of the ball is extracted Lthere are
only two degrees of freedom for each cllipse (as opposed to five for a general ellipse).
This makes the size of the minimal subset R two, instead of five. The procedure used
to create the parameter vector of the ellipse through two randomly sampled points
was discussed in detail in Chapter Three. Part {a) of Figure 4.4 shows the initial
image, part (b) shows the initial edge pixels, part (¢) shows the extracted ellipse and
circles, while part (d) shows the extracted cllipses and circle superimposed on the
image data. As can be seen from the figure, the correct ellipses have been found, and
from these it is a simple matter to find the poles of the ball.

The fifth example shows the extraction of circles from edge data. Because of
the relatively large number of circles, the random sampling process is limited Lo
locally connected segments. As described in Section 4.1 this enables the circles Lo
be extracted with fewer random samples than if all the geometric data were used as
input. The results are shown in Figure 4.5. Part (a) shows the initial image, part (b)
shows the edge points, part (c) shows the exiracted circles, and pari (d) shows the

extracted circles superimposed on the edge points. Again, as can he scen from the
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Figure 4.4: Extracting ellipses and circles (a) initial image (b) initial edge
pixcls (c) extracted ellipses and circles (d) extracted ellipses and circles su-
perimposed on edge data.

79




A, Extraction Applications Using Random Sampling

(c) (d)

Figure 4.5: Extracting circles (a) initial image (b} initial edge pixels (c)
extracted circles (d) extracted circles superimposed on edge data.

figure the correct circles have been found.

4.2.2 Three-Dimensional Data

Now we will discuss extraction examples from data taken from a varicly of laser
rangefinders. The first example has as inpui. three-dimensional geometrie data pro-
duced by a laser rangefinder mounted on a robot wrist [Rioux and Blais, 1986). This
rangefinder collects parallel profiles, where the number of profiles and the spacing

between the profiles is controllable. Such data are relatively sparse since the spacing
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Figure 4.6: Plane extraction from range data (a) initial range data (b) (c)
(d) extracted planes.

between profiles is fairly large. This example demonstrates the extraction ol planes
from such data. Three points defines a unique plane so a minimal subset is of size
three in this example. The results are shown in Figure 4.6. Part (a) of the figure
shows the initial range profiles, and parts {b), (c}, and {(d) show Lhe points belonging
to three extracted planes. These plancs were extracted by repealed application of the
minimal subset random sampling algorithm to all of the geometric data. Since the
data is relatively sparse no connectivily information is available, nor is it necessary
since the expected number of planes is small.

It is also possible to extract three-dimensional curves from these parallel proﬁlés.
Tn order to do this, a subset of the profile data, called the jump sleps are used as the
input geometric data points. Jump steps are points which have a significant difference
in depth from their neighbours. These jump points define the three-dimensional
outline of the object as seen from the rangefinder. In Fig. 4.7 a picture of an object

called an “H-Fixture”, which is the approximate shape and size of one of the grapple
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Figure 4.7: Picture of the H-fixture used for space grappling applications.

fixtures for Lthe space station. In Fig. 4.8(a) are shown a number of parallel profiles
of this object collected by a laser rangefinder. Fig. 4.8(b) shows the jump points
oblained [rom this data, and these are points are highlighted as small dark circles. In
Fig. 4.8(c) the jump points belonging to a three-dimensional line are highlighted, and
in part(d) the jump points belong to a three-dimensional circle are similarly shown.
In both cases these primitlives were extracied using minimal subset random sampling,
but with the jump steps shown in part (b) as input, instead of all the geometric
data show in part (a). For a three-dimensional line the minimal subset is of size two,
while for a three-dimensional circle the minimal subset is of size three. The equations
relating the minimal subset to the parameter vector of the three-dimensional circle
were derived in Chapter Three.

The next example shows the extraction of planar and quadric patches from dense
range data. Such data differ from the previous examples because the collected profiles
are now very close to each other. The data, as shown in Figure 4.9, consist of some
planar blocks, a cylindrical block and a spherical block. This figure has four parts,
with part (a) showing the original range image. Since the contrast of such images
is low, they are redrawn in a shaded fashion in part (b). In this method of display
the brightness is proportional to the angle the local surface normal creates with the
viewing direction. This shading process makes it much easier to distinguish the
contents of the images.

Since the amount of geometric data is very large, local connectivity is used to
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Figure 4.8: The points on a three-dimensional line and circle extracted
from the jump step points (2) Initial parallel profiles of H-Fixture (b) Initial
jump points {(c) Three-dimensional line jump points (d) Three-dimensional
circle jump points
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(c) (d)

Figure 4.9: Plane and quadric extraction from range data (a) range image
(b) shaded rendering of range image (c) region boundary pixels (d) shaded
rendering of extracted planes and quadrics.
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sclect subsets of the data to be processed by the extraction algorithm. This is done by
finding the largest connected set of poinis bounded by jump and roof edge points in the
range image [Godin and Levine, 1989]. '['he jumip edge points ave local discontinuities
in depth while the roof cdges points are local disvortinuities in the normal. The
method used to detect these edge points is very simple. The points marked as jump
cdges are those that have a difference in depth from their neighbours greater than
a threshold, and the roof edge points are those that have a normal whose angular
difference from their neighbours is grealer than a threshold. The largest connected
set of points not containing cither a jump or a rool edge point are presented Lo the
extraction algorithm. The extraction algorithm finds the planes and quadries in this
data, and the points belonging to the extracted primitive are removed. The process
is repeated with the next largest connected set, and continues until no more points
remain. The regions produced by the final scgmentation are shown in part (d), while
the boundary points between these extracted regions are shown in part (c). It can !)c
scen that the segmentation is correct in terms of identifying the appropriate pa.tch.cs
for each object. It should be noted that the black arcas around some of the objects
in part (b) are due to shadows [Godin and Levine, 1989]. These are artifacts of the
range sensor which occur when the laser detector is blocked [rom sceing the projected
laser spot by an object, i.e., the object occludes the laser beam. In the image under
consideration, these shadow regions are interpolated in a nonstandard way, and they
are not fit successfully by a plane or a quadric. For this rcason, in Figures 4.9 (d)
these regions are drawn in black to distinguish them from the other regions which
have been successfully extracted.

Figure 4.10 shows the tolerance of the method to the setting of the threshold that
computes the edge points which delineate the connected regions. The planar patches
in the middle block of the image shown in Figure 4.9 are correetly found even when
three different connected regions are produced by different edge thresholds. Figures
4.10 (a),(c),(e) shows the edges that are created by each of the three different edge
thresholds. The largest connected region differs considerably for cach of these thresh-

olds. In Figure 4.10 (a) the largest connected region contains three faces, in Figure
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4.10 (c) it contains two faces (there is a gap in the edge pixels), and in Figure 4.10 ()
it contains only one face. Figures 4.10 (b),(d),(f} show the pixels at the boundaries
of the planar regions extracted by the segmentation algorithm using the associated
cdge threshold on the lefi. Even though only the last edge threshold (Figure 4.10
(e)) correctly isolates the three planar faces of the block, the final segmentation is the
same for all three thresholds. Becausc of the inherent robustness of the extraction

process, having different connected regions as input has not affected the final results.

4.3 Comparison with Other Approaches

In this seclion we will compare our exiraction algorithms to other approaches. We
will concentrate on comparisons with robust fitting, the minimal length encoding
schemes and the Hough transform. These three methods are what we consider to be
the closest competitors to our approach. Because of the ubiquitous nature of the HT,

we will spend the most effort on a comparison with this approach.

4.3.1 Robust Fitting

The robust fitting community has concentrated on investigating the statistical prop-
erties of different cost functions (Hampel et al., 1986, Huber, 1981]. In terms of the
actual algorithms to compute the global optimum of these cost functions the sug-
gestion is to run a non-linear optimization algorithm, in particular, the reweighted
least-squares algorithm [Beaton and Tukey, 1974]. This algorithm, however, requires
a starting point in the parameter space which is close to the global optimum in order
for it to converge properly. But as we have shown, there are often many local optima,
so finding the right starting point is not a simple task. This is where the minimal
subset random sampling algorithm can be used effectively. The parameter vector of
the best primitive produced by the random sampling process can be used to provide
the initial estimate for the reweighted least-squares process. The quality of the results
obtained by robust fitting algorithms that use reweighted least-squares depends on

this initial estimate [Press and Flannery, 1988]. Therefore using random sampling to

86



4. Extraction Applications Using Random Sampling

~a— 4 gy = = § < LE—

Figure 4.10: Block from range image (a),(c),(e) edge pixels from local
operator (b),(d),(f) edge pixels from segmentation.
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find an initial estimate for the reweighted least-squares process will definitely improve
the chances of a suceessful result using any robust statistics fitting algorithm.

From a computational point of view, minimal subset random sampling is com-
pletely compatible with previous robust fitting algorithms. The real reason that
these algorithms are not used for primitive extraction where there are more than 50%
outlicrs is the concept of breakdown. We have shown that this idca is not completely
transferable from statistics to the computer vision field. It ignores the fact that for
any robust algorithm some threshold must be placed on the returned cost function
value in order to decide on the significance of the result. We have discussed this issue
al length in the Chapter Two. It is in the interpretation of breakdown that we differ
from the robust statistics community. With our interpretation the essential unity of
various cxiraction algorithms is clear. With the robust statistics interpretation the
robust fitting algorithms and the extraction algorithms such as the HT are of a fun-
damentally different nature [Forstner, 1989]. From a statistical point of view this is
truc, but not from a computational point of view. However, even without agreement
on this issue, minimal subset random sampling is still a useful numerical method that

can be used with robust fitting algorithms.

4.3.2 Minimal Length Encoding

Recently approaches based on minimal description length (MDL) have become popu-
lar for scgmentation [Darrell et al., 1990, Pednault, 1989, Leclerc, 1989]. The MDL
principle states that the best description is the one that is the shortest in a given
language. In order to use the MDL principle it is first necessary to define a language
along with a way of measuring the length of a string in that language. Once this is
done, segmentation becomes an optimization problem where the attempt is made to
minimize the sum two terms, L(S) + L(E) . Here L(S) is the length of strings that
define the scgmentation, and L(E) is the length of the segmentation error. The length
in both cases is usually measured by computing the number of bits necessary to en-
code the given quantity. This makes the optimum segmentation the one that has the

minimum length, where length is the total number of bits. This is the explanation of
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the origin of the term “minimal length encoding”. This technique has been applied to
both two-and three-dimensional geometric data, though the three-dimensional data
are assumed to be graph functions taken from a single view [Darcell et al., 1990]. The
main difficulty with the approach is the time complexity. Even simple segmentations
of two-dimensional curves take considerable computer time.

Our way of applying the extraction algorithm to the problem of extracting differ-
ent types ol geometric primitives uses ideas similar to the minimal length encoding
algorithms. At each stage of the extraction step we attemipt to find all the geometric
primitives. If two primitives are equally good according Lo the cost function value,
then the simplest description is chosen. For example, il a set of points is planar, then
both a planar patch or a quadric patch are equally good descriptions, bul the planar
description is simpler. Our measure of length (simplicity) is the size of the minimal
subset. The fewer the points in a minimal subset, the simpler the primitive. Thus
our segmentation algorithm does return the simplest descriplion in a certain sense.
However, it is not the best description according Lo Lhe optimization criteria used in
the MDL literature.

The MDL approach does not return a single primitive al a time, but instead re-
turns all the primitives at once. This makes the associated optimization problem
much more difficult to solve than for primitive extraction. The result is that MDL
algorithms execute very slowly, even on massively parallel hardware. This is not ac-
ceptable for robot vision. The other major difficulty is that the MDL approach is
only a general principle which leaves open exactly how the complexity and error are
to be measured. While progress has been made in applying MDL to range images
[Darrell et al., 1990, it is too carly to say that such an approach meets the segmen-

tation criteria described in the previous section.

4.3.3 Hough Transform

The HT is historically the most common method of performing primitive extraction.
It was discussed in detail in Chapter Two, where it was shown to be nothing more

than a repeated template match [Stockman and Agrawala, 1977]. This means that
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the IFT s equivalent to a repeated application of primitive extraction with the appro-
priate fixed-band cost function. Because the HT is so common we will spend effort
comparing it to our random sampling method. We will make this comparison in the
calegories of robustness, computational complexity, sensitivity to parameters, paral-
lelism, and generality. We believe that for primitives other than lines our approach
is definitely superior to the HT. For lines the issue is less clear, but we believe the
random sampling algorithm is still preferable in many cases.

The first category of comparison is robustness, which according to our optimiza-
tion model described in Chapter Two, depends on how well the global optimum can
found from among many possible local optima. The HT attempts to find the global
optimum by performing template matching (evaluatling the cost function) enly at cell
locations. The likelihood that the good global optimum will be found depends on
the cell quantization. Finer quantization of the Hough space mean a better chance of
finding the global optimum, but requires more space than coarse quantization. As-
sume that the HT has a given cell size and that the band size for random sampling
is sel Lo produce the same size template. If the number of samples K of the ran-
dom sampling approach is set equal to the number of cells of the HT, then random
sampling is at least as likely as the HT (and probably more likely) to find the global
optimum. This is because for random sampling the matching is done only at the
values of the parameter vector defined by a minimal subset. It is at least as likely
that a primitive will exist at the value of the parameter vector defined by a minimal
subset than at an arbitrary location in parameter space defined by the cells of the
HT. Therefore, for the same number of cost function evaluations our approach is at
least as robust, and often more robust than the HT.

‘The next category is computational complexity, which are the time and space
complexity of each algorithm. The space requirements of the HT are exponential in
R, the degrees of freedom of the primitive, and the dimension of the parameter space.
This is the most significant drawback of the HT. If each dimension of the parameter
space is quantized equally into P values, then the space requirements are O(PR). By

contrast, the random sampling approach requires only O(N) space, where N is the
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number of data points. This makes it possible to process primitives which have many
more degrees of freedom than the HT,

This is most clearly shown in the application of the HT to circles and ellipses
extraction, which is still an active area of rescarch  [Huang, 1989, Yuen ¢f al., 1939,
Davies, 1987, Kierkeggaard, 1992, Yip ef al, 1992]. Because the number of degrees
of freedom of these primitives is higher than two a direct implementation of the HT
is not practical because of the space requirements. There are three approaches thal,
have been used to modify the HT in order to deal with this problem. The first is
to use a very coarse quaniization of the paramecter space. Then the II'T for cllipse
extraction have difficulty in finding closcly separated cHipses because of the coarse
quantization [Yuen et al., 1989]. Our algorithm has no such difficulty and is able to
incorporate available constraints on the gecometric primitive in a natural fashion. The
second approach is to make extraction using the H'T a multistep process, where each
step operates on some subset of the parameter space. However, this is clearly less
accurate since parameters of a previous step do nol necessarily provide the correct
information for successive steps. The third, and most practical approach, is to use
the gradient information at each edge point along with the edge point itsell, However,
since this gradient information is a derivative the result is less accurate than if just
the edge points were use. Our extraction algorithm, by contrast, does not require
gradient information, and is as robust as a higher dimensional HT.

The time requirement of both methods require more analysis in order to make a
sensible comparison. For each data point, the HT increments the count of every cell
in parameter space that could have produced this data point. Therefore, the time
complexity depends on how many cells are visited for each data point. An exact
answer depends on the primitive and its paramelerization. However, an approximale
answer comes from the realization that each data point is associated with a surface
in the parameter space of the HT. If this space has dimension /2 then the largest
subspace has dimension £ — 1. For example, in two dimensions, the number of cells
is P? so the expected number of cells in any one dimensional surface (a curve) is

P. Here P is the quantization of each dimension of the Hough parameter space.
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Thus the expected number of cells visited by cach point during the voting process is
PR Since there are N points this makes the expected time complexity of the vote
acenmulation part of the H'T' equal to Q(N PR,

Once this voting process is complete it is still necessary to search the parameter
space to find all the cells which are deemed to be significant. Traditionally, this
process is called peak detection since thie largest value, or peak, in the parameter
space was is the most significant cell. In practice, the usual approach is that cells
which have more than votes than a given threshold are returned as valid primitives.
"This process takes time proportional to the number of cells, which is O(P?). However,
il is independent of N, the number of geometric data points.

Since the HT produces the same resull as repeated template matching it is in-
teresting to compare the complexity of a direct template matching approach to the
IIT. There are PR possible templates (one for cach cell) that can be matched against
the geometric data. If the number of data points is NV, then the time complexity for
template matching is O(N PR), while the space complexity is O(N). For the HT the
cxpected time complexity is equal to O(NPR-1) and the space complexity is O(P*?).
The extraction time of the HT is therefore proportional to N, the number of geomet-
ric data points. This shows that the HT is nothing more than a way of performing
template matching that trades off time for space.

For random sampling with a fixed-band cost function each value of the parame-
ter vector computed from the 2 minimal subset points defines a template. A direct
implementation of the evaluation procedure for a fixed-band cost function requires
O(N) time. In Chapter Two we showed this can be improved upon, but for com-

parison purposes with the HT we will accept the more conservative O(N) figure. In

N
P

bound for (’;), then the worst case time complexity is O(NF+!). This is equivalent

the worst case the number of random samples is ( ), and if we take N as an upper
to a direct template matching implementation of the HT with the quantization P set
to the number of samples .

However, we note that these figures are for the worst case, with the maximum

number of possible random samples. Typically the number of random samples K is
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considerably less since maximum robustuess is usually not requived, Thus the time
complexity of the random sampling method is O(AN). By comparison the expected
time complexity of the ' is equal to O(N PP, However, the HT finds all the
geometric primitives at once, while our approach finds them one at a time,

It is also the case that the HT is most commonly used for the extraction of Hnes,
circles and ellipses. For extracting these curves the method deseribed in Section
2.4.3, of performing the template matching by incremental curve generation changes
the execution time of our method to O(K Z), where Z is a fixed value that does ot
depend on N. This means that as the number of geometric data points increases, the
execution time of our extraction algorithm is unchanged. It is proportional Lo N, the
number of random samples.

We sec that a time comparison with the H'T is difficult without specifying the
expected number of primilives in the geometrie data. The smaller the number of
expected primitives, the smaller the value of K, and the faster our approach will be
verses the HT. At some point as the number of primitives increases the HT will be
faster than our approach. The number of primitives al which this occurs depends on
the size of the minimal subset, but in general is in the order of a dozen primitives,
However, for 2D curve extraction if the number of primitives remains fixed but Lhe
number of geometric data points increases, then at some point our method will be
faster than the HT. This is because the exccution time for the H'T is proportional i
the number of geometric data points. When incremental curve generation is used for
2D curve extraction this is not the case,

The previous analysis assumed that both the HT and the random sampling method
were running on a single processor with no special hardware. However, if real-time
performance is to be obtained special purpose hardware will often be necessary. In
the previous Chapter we showed that using VLSI implementations of incremental
curve generation routines would enable real-time exlraction of lines,circles and el-
lipses. This can be achieved without parallel hardware, which is not the case for the
HT. Since extracting such curves is the most common application of the H'T, this

is an important fact. However, the incremental drawing approach applies only to
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21 curves, for other types of geometric primitives we require parallel hardware to
achieve real-time performance. The issue of running the random sampling algorithm
on parallel hardware will be dealt with in detail in Chapter Six. Here, we will provide
a short summary of our conclusions from this Chapter.

For the H'T, the obvious approach would be to dedicate a processor to each point.
If the number of processors equals the number of points then the maximum possible
speedup is obtained. However, because of memory contention the time to access global
memory in a parallel architecture increases with the number of processors. Since the
cells of the HT must he kept in global memory, cach processor must be able to access
this memory to perform the voting process. This rapidly leads to contention, and
decreases the potential speedup which can be realized for multiple processors. Any
algorithm which has a large number of accesses to global memory is very difficult
to parallelize. In fact, parallel approaches to the HT have only been implemented
on special purpose hardware for line extraction [Fisher and Highnam, 1989]. This
implementation exploits the fact that for lines both the image array and the Hough
array arc Lwo-dimensional. This scheme does not seem to be extendable to higher
order primitives. The fact that the HT uses a large amount of global data makes it
very difficult to parallelize [Illingworth and Kittler, 1988].

The random sampling approach can be parallelized most directly by concentrating
on the ranking step. Normally this takes O(N) time, but a direct implementation
using N processors can decrease this time to O(1). This assumes that a global broad-
cast facility exists in which a message can be sent in fixed time to all the processors.
Significant speedup is still possible if such a facility does not exist. Because the ran-
dom sampling algorithm requires no access to global memory it is easy to decrease
its execution time on parallel hardware. With the requirements for global memory
this can not be said of the HT.

The next criterion for comparison is the number of parameters on which each
algorithm depends and the sensitivity to the settings of each parameter. As we have
stated earlier, the key parameters in the HT are the parameterization of the geometric

primitive, the cell size and the cell shape. The cell size is a choice of scale and as
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such must be set by the user, but the others are arbitrary and have a dramatic effect
on the results.

The random sampling approach has as its operating parameters the number of
samples, and the band size. The latter is equivalent to the cell size of the H'T. However,
unlike the HT the random sampling method does not depend on the parameterization
of the primitive. For example, whether a line is parameterized in slope-intercept form
or in distance-angle form has no effect. As opposed to the II'T, the template always
has the correct shape, the shape of the desived primitive.

The kinds of primitive that can be extracted by cach method is what we mean
by the generality. The HT votes for cach point by traversing parameler space in a
way defined by the original implicit form of the gecometric primitive. The difficulty is
that this traversal process is not always simple. It is more appropriately done using
parametric equations, but producing a parametric form from the implicit form is
not always possible {[Sederberg and Anderson, 1984, Hoffman, 1989]. The traversal
process is possible if the implicit form is a first or second order polynomial, since
in this case the associated parametric form can casily be produced. Because only a
very restricted subset of all possible surfaces has been processed with the HT, the
difficulty of actually voting for each point by traversing parameter space has not been
a problem, but it is in fact a limitation of the method.

One suggested way of making the HT more general is to use a table containing a
list of points on the outline of an object along with Lheir distance and angle from a
reference point. The peaks in the accu..tulator are then the possible locations of the
reference point. This is known as the generalized HT [Ballard, 1981]. However, this
method is applicable only to a single instance of a given shape, and is not capable of
extracting an entire class of shapes defined by the implicit form. For example, this
method could extract an ellipse of a particular size and orientation, but would not be
effective for any other ellipse. The generalized HT can not extract different families
of curves or surfaces, where a family is defined implicitly by a given equation. Thus,
it does not actually deal with the problem of extraction, which is the focus of our

algorithm.
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The random sampling algorithm requires the ability to produce the parameter
vector of the primitive through R points. The details of our approach for converting
from a minimal subset to a parameter vector were discussed in Chapter Three. In
that chapter we discussed the class of primitives for which we can currently perform
this mapping, and this class is large enough to contain a wide varicty of geometric
primitives.

We believe that our algorithm is simpler and more general than the HT. It can
handle a wider variety of geometric primitives. Its main drawback is the execution
titne, while the main drawback of the HT are the space requirements. Thus as
processor speed increases our method will become more competitive. This is not
true for the HT, since for complex primitives its space requirements are difficult to
maeel even on future processors. For a reasonably small number of primitives, often
in the order of a dozen, the execution time of our method is comparable to the HT',
In many situations both will require implementation on parallel hardware, and here
our method has the advantage over the HT. This issue is so important that it is dealt
with in detail in Chapter Six, which discusses parallel hardware implementations of

our approach.

4.4 Summary

The extraction algorithm described in the previous chapter finds a single geometric
primitive. In this chapter we showed how to apply it when there are multiple prim-
itives of the same type or of different types. The most straightforward approach is
to repeatedly apply the extraction algorithm and remove the inliers found at each
iteration. This process continues until no more primitives are found. Sometimes the
number of primitivesin the geometric data is so large that very many random samples
arc necessary. In this case we use local connectivity to divide the geometric data into
components, and then perform extraction on each connected component. A num-
ber of experimental results for both two-and three-dimensional geometric data are

shown. They show that extraction can be performed successfully on a wide variety of
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curves and surfaces. Finally a detailed comparison is made between our approach and
the robust fitting methods, the Hough transform and the minimal length encoding

methods.
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Chapter 5 Genetic Algorithm for Extraction

In this chapter we will discuss the use of a Genetic Algorithm (GA) for primitive ex-
tracltion. Since GAs have rarely been applied in the computer vision field we will first
give a general overview of their operation. Then we will show how a GA can be com-
bined effectively with the minimal subset representation [Roth and Levine, 1991a).
The resuiting approach is often much more efficient than the extraction algorithm
that uses only random sampling. The GA combines inaccurate local information to
create a more accurate global interpretation in a natural fashion. The GA does this
by emulating the process of evolution to improve the quality of a set of potential solu-
tions. While convergence to the best solution is not guaranteed, a very good solution
is often quickly found.

The combination process is reminiscent of a traditional computer vision grouping
algorithm [Levine, 1985]. However, such algorithms generally have a complex control
structure, and also suffer from the problem of premature commitment. A GA is a
form of directed random search or learning, and this random component of the search
process means that in many cases premature convergence is avoided. A GA also
has a very simple control structure in which the best geometric primitive emerges
spontaneously. We spend some time discussing why the GA works, and compare it
to other search methods such as simulated annealing. Some experimental results are
presented for primitive extraction using a GA, and the parameters settings of the GA

algorithm are discussed in detail.

5.1 Genetic Algorithm Overview

A GA is a method of solving hard optimization problems in a way that attempts to
mimicnature, It is based on an evolutionary metaphor, which has its own terminology,
so some explanations of this terminology are necessary. In evolution, a population

of individuals selectively mates, and in doing so evolves. This evolutionary process
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is guided by feedback from the environment. This means that fitter individuals live
longer, and therefore reproduce more often. As time goes on the population becomes
dominated by these fitter individuals and their descendents, Conceptually, a GA is
nothing more than a procedural codification of this evolutionary process, albeit in a
simplified form [Holland, 1975).

A GA has the following threc essential compouents [Goldberg, 1983)]:

¢ A population of individuals which are candidate solutions to the given opti-

mization problem.

¢ A competitive selection method for choosing individuals for reproduction, based

on the fitness of each individual.

o A set of genctic operators that combine the sclected individuals to create new

individuals for further testing.

Individuals are defined by a chromosome string which is a list of genes, where cach
gene takes on a single value from a set of tokens. The chromosome encodes all the
possible values of the parameter(s) being optimized. In traditional GA literature the
set of tokens for a gene is either zero or one, which makes the chromosome a bit string.
Instead of using a binary encoding we use the minimal subset encoding discussed in
previous chapters to define a chromosome. Since the basic operation of the GA does
not depend on the particular chromosome representation, we will postpone discussion
of the representation issue until later in this chapter.

Feedback from the environment is provided by means of a fitness function. This
function has as input the chromosome definition, and as output a scalar whose mag-
nitude is the fitness of the particular individual. The fitter the individual, the larger
this scalar value. How this fitness function is implemented is completely application-
dependent. In optimization terms this fitness function is nothing more than the cost
function. Thus the GA approach is naturally adopted to optimization problems. In
fact, the optimization field is the one in which the most experience with GAs has

been obtained [Goldberg, 1988].
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In order to explain the actual operation of the GA we will assume that a popu-
lation of individuals exists, along with their fitness values. Later we will show how
this inilial population of individuals is obtained for our application. During execu-
tion of the GA two individuals are repeatedly selected at random from the current
population. The key point is that this random selection process is not uniform, but
is in proportion to the fitness values of the individual. Let us say that f(M) is the
fitness of a given population member, and f(T') is the sum of the fitness values for
all the population members. Then this population member will be selected with a
probability f(M)/f(T). Thus the probability of selection is “biased” by the fitness
valuc of that population member. This means that fitter population members are
selccted to mate more often, which is how evolution operates in the natural domain.

The GA takes two individuals selected in this fashion and applies genetic operators
o their chromosomes to create two new individuals. The most important of these
operators is called crossover. This takes the chromosomes of two individuals (the
parents) and crosses them over to create the chromosomes of two new individuals
(the children). For example, assume that the parents have binary chromosomes of
(010110) and (110011). Then a single application of crossover might produce two
children, whose chromosomes are (110010) and (010111). In this example the genes in
the first and third position of the parents’ chromosomes are crossed-over or switched.
The actual genes which are crossed-over are also selected randomly according to an
algorithm which we will describe. Figure 5.1 illustrates how crossover is applied to
the parents’ chromosomes. Here the chromosomes of two parents are drawn on top
of each other, one shaded in solid black, and the other shaded in a cross-hatched
patiern. The crossover operator crosses-over the parents’ chromosomes in a random
fashion to create the chromosomes of two children. This figure shows one possible set
of children’s chromosomes produced by the crossover operation.

The second genetic operator is called mutation, and is nothing more than a ran-
dom change of the genes in a chromosome. For example, 2 chromosome string of
(110110) might become (010111) by the mutation of the first and last gene. The mu-

tation operator is applied to the children’s chromosomes after crossover. There are
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Figure 5.1: Crossover operating on the parents’ chromosomes to create the

children’s chromosomes
other more specialized genetic operators, but they are nol always present in any GA
implementation. The operators of crossover and mutation constitute the core genetic
operators. Of the two, crossover is the more important, so much so that some GAs
perform no mutation at all. In our application this is indeed the case, and we do nol
use the mutation operator. Mutation is useful only for an application in which the
GA is run for many iterations. This is not the case for primitive extraction, since the
number of iterations of the GA is relatively small.

The fitness of the two children is evalualed using the cost [unction, and they
are returned to the population pool. In order to keep the population at a fixed
size, the two least fit individuals are removed. The GA allows identical population
members, and in fact population members generally become more similar as time
goes on. This is because the population becomes dominated by a small number of fit
individuals. The GA loop of selection, crossover and mutation is exccuted until the
fittest population member has not changed in a given number of iterations. When
this occurs the GA is said to have converged.

The following pseudo-code describes the basic GA loop.

Create the initial population members
For a number of iterations
Do
1. Choose two parents to mate in proportion to their cost function value.
2. Apply genetic operators to the parents’ chromosomes to create two children.

3. Rank the children by using the cost function and add them to the population.
Enddo

When the algorithm is terminated the fittest population member is taken as the

solution. The GA acts as a form of adaptive search, but one in which the adaptation
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proceeds in an evolutionary fashion, This basic methodology, with some variations has
been applied to a wide range of problems, often quite successfully [Goldberg, 1988].
The question that needs to be answered is when and why this approach is superior
to traditional optimization measures such as gradient descent, or other stochastic
approaches such as simulated annealing {Corana et al., 1987).

In relation to gradient descent methods the answer is clear. For cost functions
which are noisy, and have many local minima, a gradient descent procedure will not be
effective. In order to avoid local minima it is necessary to have a degree of randomness
in the scarch procedure. Any deterministic approach to searching such a function is
likely to be trapped in a local minimum. In computer vision terms, being trapped in
a local minimum is an example of premature commitment to a particular solution.
This phenomenon has been a problem with many computer vision algorithms in the
past. The GA does not guarantee that this will not happen, however, in practice,
random selection based on fithess often avoids premature commitment.

The answer to the second question is more subtle. There are other random search
procedures, such as simulated annealing, which are also used in the optimization
ficld. When and why is a genetic algorithm superior? There are both theoretical, and

practical answers to this question.

5.2 Schemata and Their Implications

The main tool that has been used to achieve this understanding is the concept of
schemata [Holland, 1975). Schemata are simply generalized chromosomes. Normally
the tokens for each gene in a chromosome are drawn from a given set. For schemata,
an extra token, which is given the label #, is added to this set. For example, if the
token set for a gene were {0,1}, then the token set for schemata would be {0, 1, *}.
The * is a don’t care, or wild card symbol that matches any of the other tokens
in the set. An individual instance of a schemata is called a schema. It represents
all the chromosomes that are matched by the schema pattern. For example, using

binary tokens the schema (1 * 0), matches the chromosomes 100 and 110. There are
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many possible chromosomes matched by each schema and there are many possible
schemata. If the chromosome has [ genes, and there are normally & ditferent tokens
for a gene, then there are (k + 1) possible schema.

To illustrate this concept we will list all the possible schemata for a binary chro-
mosome of length two. There are nine possible schemata, four of which are the
chromosomes (0,0), (0,1}, (1,0), and (1,1), which are simply schemata without a *
token. The schemata that contain a * arc (*,*}, which matches (0,0), (0,1), (1,0,
and (1,1); (1,#), which matches (1,0) and (1,1); (0,%), which matches (0,0) and
(0,1); (*,0), which matches (1,0) and (0,0); (*,1), which matches (0,1} and (1,1).
Since schemata are generalized chromosomes, they can represent different regions of
the search space. These regions can be very general (Lhe entire space, which is a
schema with all *’s) or very specific (a single chromosome, which is a schema with no
*’s). Schemata will be used to show how random selection according to fitness, along
with application of genetic operators, dirccts the GA scarch process. However, before
these issues are explored, some further notation needs to be defined. When a single
schema is referenced it is given the label /. The order of the schema H is called
o(H). This notation o, should not be confused with the computer science notation
O, which represents algorithm complexity. o(I) equals the number of fixed (non *)
positions in the schema. For example, with the schema (1 *0), the order is two. The
order is an integer from zero to I, where [ is the length of the chromosome. Assume
that the current population operated upon by the GA has » members, and that it is
given the label A. Let A(%) be the population of the GA algorithm at itcration L. The
variable t starts at one, and increments by one for cach iteration of the GA. Here an
iteration is the process of selecting two parents and creating two children by applying
genetic operators. The size of the population A stays constant, but the composition
changes as ¢ increments. Let m(H,t) be the number of population members matched
by schema H in the population A(t). For example assume the population at iteration
t is (101), (001), (110), and the schema H is (¥01). Then m(ff,t) equals 2, since only
population members (101) and (001) are matched by H. Clearly, m(fi,t) is always

less than or equal to , the number of members in the GA population.
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Recall that an individual population member will be selected for mating with a
probability of f(M)/f(T) where f{M) is the fitness of the population member, and
S(') is the sum of the fitness values for all population members. Since the rule of
sclection according Lo fitness also applies to the population members matched by a

schema, we expect the following equation holds:

rf(d)
m(H,t+1)=m(H, )=~ 5.1
(H,t+ 1) = m(H, ) s (51)
In this notation f(/7) is the average fitness value of all the members of the population
A(t) matched by schema H, so r f{ 1) is the total fitness of all the members matched
by this schema. Since the average fitness of the entire population f (T) is defined by
J(T) = J(T")/r, the previous equation becomes:

m(f,t+1) =m(H,t)M?—) (5.2)

J(T)
"This equation is the basic reproduction equation of a GA [Holland, 1975]. It says
that the number of population members matched by schema H grows in proportion
Lo the ratio of the fitness of the average schema member to the average fitness of the
population. A Schema which has above average fitness will Lave more representatives
in the population as time goes on, and those with below average fitness will have
fewer. Assume that a particular schema always has a fitness value which remains
above the average fitness by a constant amount c. Then f(H) equals f(T") + ¢ f(T)

and the above equation becomes:

f(T)+ e £(T)

m(H,t + 1) = m(H,1) )

={1+c)m(H,1t) (5.3)

If we start at { = 0, and assume a constant value of ¢ then equation (5.3) becomes:
m(H,t) = (1 + c)'m(H,0) (5.4)

This is simply a geometric progression over i, which is the discrete version of an expo-
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nential equation. This shows that the selection by fitness allocates an exponentially
increasing (or decreasing) number of population members to schemata that are above
(or below) the average fitness value. Since a schema can represent regions of the
search space, this implies that regions which have on the average very fit members
are rapidly allocated more attention by the GA. This explains why such a simple
reproduction scheme converges so quickly.

While interesting, this analysis has so far neglected the effects of genelic operators
by assuming that at each GA iteration the children are simply duplicates of Lhe
parents. This is not triie because genetic operators are applied to the parents’ genes
in order to create the children. After their application the children may no longer
be members of the same schema as their parents. ‘T'hus the general reproduction

equation must be multiplied by a factor s to become:

m(H,t+ 1) = m(f, t)ws (5.5)
J(T)

In this equation s is called the survival probability. This is the probability that afler
the genetic operators have been applied the new population members are still matched
by the given schema H. This will happen only if the genes of non * members of the
schema are unchanged by these genetic operators. For example, a chromosome of
(101) is matched by a schema of (¥01). Assume that the crossover operator had this
chromosome as one of the two parents, and thal onc of the resulting children had a
chromosome of (111). The second gene of the chromosome changed, and since it is
not matched by a * in the schema definition, this child is no longer a member of the
schema H. The value of s can be computed, and doing so gives considerable insight,
into the how genetic operators work.

Before this is done the operation of the crossover operator will be explained in
more detail. As stated previously for primitive extraction the only genetic operator
used is crossover, and no mutation is performed. The justification is that the number
of iterations of the GA necessary in this application is too small for mutation to

have a significant effect. A uniform crossover operator is used, which means that
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there is a uniform probability p., of crossing over any of the parents’ genes. In
this application p. is set Lo .5, so there is a 50% chance of crossing over any given
gene. This is not the usual crossover operator, but a growing body of theoretical
and practical work points Lo its superiority over traditional GA crossover operators

[Syswerda, 1989, Spears and Delong, 1991]. However, the basic conclusions of the
schema analysis are the same even when more traditional genctic operators are used
[Holland, 1975, Holland, 1992, Goldberg, 1988). The final difference from a standard
GA is that the crossover operator is always applied to the parents, instead of applying
il only a certain percentage of the time. Again, the justification is that since there are
a rclatively small number of iterations of the GA, crossover should be done as often
as possible. Assumc that two parents are chosen randomly in proportion to their
fitness. The following pseudocode shows how crossover is applied to the parents’

chromosomes to create the children’s chromosomes.

For Each Gene of the Two Parents’ Chromosome
Do
1. Draw a random number from zero Lo one.
2. If this number if less than p,, the two children’s genes are the same as the
parents; otherwise they are the parents’ genes crossed-over.

Enddo

The result of this process are the chromosomes of the two new children.

Now the question is how this crossover operator affects the basic reproduction
equation. Remember that o{ /), the order of schema H, is the number of non *
positions in the schema. To make a schema that matches the parent’s chromosome
to fail to match the child’s, the crossover operator must change a gene which does
not have a * in the schema. The probability of this occurring, i.e., of all o(H) non
* genes surviving crossover unchanged, is (1 — p.)°'"), where p. is the probability of
crossover changing a gene. This is the survival probability s and when this value is
substituted in equation (5.5) it becomes the following:

f()

m(H,t+1) = m(H, t)(—T)(l — pe)eth (5.6)

'-.,‘

This new schema equation shows the effects of crossover on the number of population
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members matched by a given schema, which is m (1, 1). Crossover tends to destroy
{or disrupt) a long schema, where long means one that has a large values of of It).
Disruption is a decrease in the number of individuals in the population that are
matched by the schema. This means a disruptive process will make m(H, # + 1)
less than m(H,t). The longer the schema, the greater o( 1) and the greater the
chance of disruption, and the less the chance of schema survival. The probability
s of surviving crossover decreases exponcentially as o( /) iuncreases. lowever, Lhis
disruptive tendency is counterbalanced by the basic reproductlive process, in which
above average schemata (those with large f( )/ (")) dominate the population at an
exponentially increasing rate. What can be concluded from this? That short schema
of above average fitness are the ones that will be favoured by a genetic algorithm.
These represent regions of the search space where good solutions cluster, and these
regions arc searched more thoroughly by the GA. Thus the rate at which a GA
samples different regions of the search space depends on Lhe probability of finding
a good solution in that region. The higher this probability, the more attention the
GA expends in searching Lhis region. This is exactly what one would like in a search
procedure. In contrast, a completely random search process places equal effort in all
parts of the search space regardless of how promising the solutions are in any given
area.

Short schemata of above average fitness are the basic building blocks of a GA.
Because they rapidly dominate the population, the crossover operator repealedly
combines them to try and produce fitter individuals. This analysis also suggests the
type of problem for which a GA will not work well. Assume the best solution stands
alone as a “spike” in the search space, and has neighbours of below average fitness.
Then the fitness of the population members matched by a schema containing this
solution and its neighbours will likely be below average. This means the GA will
probably not find the best solution, since it will not spend much effort on the part of
the search space represented by a below average schema.

It is clear that the success of a GA depends critically on the effectiveness of the

crossover operation. The “building blocks hypothesis” says that crossover helps when

107



5. Genetic Algorithm for Extraction

short, fit schemata combine to form even more highly fit schemata [Holland, 1975].
Whether this actually happens depends on the problem and the choice of chromo-
sotne representation. The choice of a GA representation appropriate for a particular
application is still largely an experimental process. The claim is that for the min-
itnal subsct representation this “building block hypothesis” holds, and this will be
demonstrated experimentally. If the “building blocks hypothesis™ does not hold then
the crossover operator accomplishes little, and a GA is likely to be no better than a
purely random search procedure.

This lcads back to the original question of how well a GA performs relative to
other stochastic scarch procedures, in particular, in relation to simulated annealing.
The expectation is that, for a good choice of chromosome representation, a GA will
be superior, since the “building block hypothesis™ will be true. However, the is-
sue of whether a GA is superior to simulated annealing is far from being decided
[Bramlette and Cusic, 1989]. What is accepted by both sides in the debate is that a
GA is inherently a parallel process, while simulated annealing is inherently sequential.
Thus 2 GA can usec parallel hardware to advantage, and it is not clear whether this

is the case for simulated annealing. This reason alone may be sufficient to prefer the

GA.

5.3 GA Applied to Primitive Extraction

In this section we show how the GA is applied to the problem of primitive extraction.
In Chapter Two we discussed how random sampling using minimal subsets can solve
this problem. Here, we will describe the GA extraction algorithm in which minimal
subsects are used as a chromosome representation. Traditionally, GAs have used bit
strings Lo represent chromosomes where each gene is one of two tokens, either zero or
one. We will show that for accurate geometric data the minimal subset representation
is superior to the bit string representation for this application. First, we will describe
the minimal subset chromosome representation in detail.

As defined in Chapter Two, a minimal sulset is the smallest subset of geomet-
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ric data that produces a unique geometric primitive, We assume that there are N
geometric data points in the input. Each point is identified by its index, which is
a number from 1 to N. Therefore the points in a minimal subset are defined by a
list of their indices. For example, assume there are a total of ten input points and
that points one, six and nine are the minimal subset points defining a circle. Then
the minimal subset representation of this civcle is (1,6,9). This minimal subset rep-
resentation is a chromosome if we think of cach point as a gene. The length of the
chromosome, that is the number of genes, is equal Lo the size of the minimal subset.
The token set for each gene is then {1,..., N}, instead of {0,1}. Note that this chro-
mosome definition is order independent, since any permutation of the genes produces
the same geometric primitive,

This chromosome representation is not the obvious way to represent a geometric
primitive, which is to encode the parameter vector @ as a bit string. However, in this
case every possible value of the parameter vector @ would be a potential solution.
When using a minimal subsets with P elements, only the (?{) values of @ defined by
vach minimal subset are possible solutions. This is essentially the same reason that
‘we use minimal subsets for primitive extraction in Chapter Two. The disadvantage
of using minimal subsets is that as the accuracy of the data decreases, the chance of
the best primitive being defined by a minimal subsel also decreases. However, as we
have argued in previous chapters, for modern sensors the accuracy of the geometric
data is usually good. This means that the best geometric primitive is likely to be
very close to the one defined by a minimal subset.

The other component necessary for a GA is a fitness function. This takes the
chromosome defining the primitive, and outputs a scalar which is the fitness of that
individual. For primitive extraction the fitness function is equal to the cost function
used in our optimization model for extraction described in Chapter Two. While many
cost functions for extraction were discussed in chapter two the simplest counts the
number of data points in a fixed-band template around the curve or surface. This
is a sensible way to score a geometric primitive, since the more points matched by

it, the less likely that this alignment of points is random, and the hetier the chance
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of a valid primitive. Since this cost function is the most common one we have used
previously, we will also use it in our examples in the next section. However, any cost
function defined in Chapter Two could have been used.

We will now describe cach of the steps in the basic GA algorithm as applied to the
problem of primitive extraction. The first step is the creation of the initial population
for the GA. For the extraction application, we divide the geometric data into parts,
where cach part contains a relatively small number of points. To create the initial
population of geometric primitives random sampling of minimal subsets is performed
on cach part. Since these samples are taken over a small amount of geometric data
the points on a minimal subset have a good chance of falling on a single primitive.
However, since the minimal subset points are close together the primitive defined by
these points is not likely to be accurate.

There are different ways of partitioning the geometric data. If connectivity infor-
mation is available, then standard procedures exist to find connected components. For
cxample, il the geometric data consist of edge points from an intensity image created
by a digitizer, then a simple algorithm produces connected chains [Giraudon, 1987].
Random sampling of the points on each chain can be used to create the initial popu-
lation of gecometric primitives. If such connectivity information is not available, then
a hicrarchic data structure, such as an octree or a k-d tree [Samet, 1984], can be used
to partition the geometric data. In the same way as for chains, random sampling of
the points on each terminal node of the data structure can be used to create the initial
population of geometric primitives. In our experiments, we will demonstrate both ap-
proaches to creating the initial population for the GA. Other approaches could also be
used; all that is important is that the initial population be chosen over a local portion
of the geometric data. In this case the chance of a randomly sampled minimal subset
falling on a single primitive is high, so a relatively small number of random samples
is necessary to create the initial population [Roth and Levine, 1990b], However, as
we stated in the last paragraph, these locally sampled minimal subsets are unlikely to
produce the best descriptions of a geometric primitive for anything except perfectly

accurate data.
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Figure 5.2: The crossover operation (a) Two different genes and their
associated circles (b) The new gene from crossover and the new circle. The
defining minimal subset points are indicated by the arrows,

This is where the GA comes in, it uses the crossover operator Lo improve these
local estimates. First, the GA chooses two primitlives to mate randomly, with their
selection probability biased by their fitness function values. Once two primitives are
chosen to mate, the crossover operation is applied to create two new primitives. As we
have discussed previously crossover is the key component in the GA algorithm. For a
GA to work well, partial solutions (chromosome substrings) must be used as building
blocks which are combined to create better solutions [Goldberg, 1988]. In our case
these partial solutions are the local estimates of the primitivein the initial population.
The crossover operation does indeed combine them to produce primitives which are
often better than either parent. Figure 5.2 shows how crossover accomplishes this
task. In this figure, it is assumed that all the points belong to a single circle. In
part (2) of the figure are two circles, described by two different chromosomes, cach
consisting of three points. The points that make up the chromosome of the first circle
are shaded in black, the second circle are shaded in grey and the remaining points
are not shaded. Assume that both chromosomes were part of the initial population
obtained by choosing geometric data points over local portions of the image, which
explains why the minimal subset points of the chromosome are close to cach other.

It is clear from the figure that while each chromosome is a good estimate of a local
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portion of the circle, neither chromosome defines a circle which is a good description
of all of the points that make up the complete circle. Crossover has the potential to
improve on this estimate by combining the two chromosomes, In part (b) of the figure,
one of the possible children produced by the crossover operator is shown. The new
chromosome points are the three shaded points (two black and onc grey) marked by
the arrows. The crossover operation has spread the minimal subset across more of the
geometric data, As is the case here, this spreading often produces a better primitive
than the one defined by cither of the parents. In this case better means a primitive
which fits more of the points on the curve or surface. This demonstrates that the
crossover operator is indeed able to use partial solutions (chromosome substrings) as
building blocks to produce bettler global solutions.

It is important to note that crossover is much more likely to produce a better
geometric primitive when the two parents are similar to each other. In other words
a crossover operation applied to two widely differing circles is much less likely to
produce a better circle than either of the parents, For this reason we augment the
selection process by using a compatibility filter. This chooses two parents to mate
in the normal GA fashion, but disallows the mating if the parents fail to pass a -
compatibility test (Goldberg, 1988]. The reasoning is that the children of incompatible
population members are unlikely to be fitter than their parents. While this is not
true in all applications, it is the case for primitive extraction. The compatibility
function measures the similarity of the parents by computing the average distance
of the minimal subset points of one parent to the curve or surface defined by the
other parent. The more similar the two primitives, the less this average distance,
and the more compatible the parents. For identical primitives this compatibility
function returns zero, and its value increases as the primitives differ. According to
this measure the two circles shown in Figure 5.2 are compatible. This means that
performing crossover on the minimal subset chromosomes of these two circles has a
good chance of producing children who are fitter than their parents. Whether the two
parents can mate is decided by thresholding this compatibility function. In this way

compatibility checking speeds up convergence of the GA by only allowing mating of
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compatible parents.

The fitness function is applied to the two children produced by the crossover
operation. The two primitives with the smallest cost function values (the least fit)
are then removed from the population pool to keep it a fixed size. The basic GA
loop is repeated until there is some indication of convergence. In our experiments
this is indicated when the best population member has not changed in fifly mating
opecrations. Experiments show that convergence is very fast, in the order of a few
hundred iterations. The theoretical reason is that an exponentially increasing amount
of effort is afforded to the dominant population members, as was explained in the
previous section [Goldberg, 1988].

The population member with the best score is the final result of this process.
The chromosome of this individual completely defines the gecometric primitive since
the parameter vector @ can be obtained from it, as was shown in Chapter Three.
This parameter vector, along with the definition of the cost function, enables each
of the geometric data points that belong o the primitive to be labelled using the
procedure described in the Chapter Two. In order Lo extract all the primitives, the
genetic algorithm is run repeatedly on the remaining geometric data points not on
any primitive. This procedure is repeated until there are too few geometric data

points remaining for a significant primitive to be extracted.

5.4 Experimental Results

There is a number of parameters that must be set in order o use this algorithm,
and we will now discuss how they are chosen. As discussed in the previous section,
the cost or fitness function we use counts the number of data points with a small
template around the curve or surface. The first parameter is the size of this template.
For the circle and ellipse extraction examples that follow, the template size is set Lo
one pixel, while for the plane and sphere extraction the template size is set to one
millimeter. We set the template size to the accuracy of the geometric data, which

was estimated by studying the characteristics of the sensor used to create the data.
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The difference in units is due to the fact that different sensors were used to create the
geometiric data in different examples. The next important parameter is the size of the
initial population. Experience has shown that the initial GA population should be
at least thirty and at most a few hundred geometric primitives [Goldberg, 1988]. In
our cxamples, we demonstrate three different ways of creating this initial population,
For the circle extraction example we use a k-d tree, for the ellipse extraction we
use connected chains, and for the plane and sphere extraction we divide the data
into small windows. In all these cases the parameters (k-d tree size, chain size, and
window size) were set to give an initial population of at least thirty primitives. If
the initial population of the GA is lower then there is a significant chance that some
primitives will be missed.

The first examples have as input the edge points extracted from an intensity
image produced by a digitizer. These are places where there is a significant image
discontinuity, and they consist of an unordered list of 2D points. They were created
using a public domain image processing package with the default threshold settings.
No attempt was made to optimize the results in any way by experimenting with
these settings. We demonstrate the extraction of circles and ellipses from edge data
in which there are a significant number of such primitives. For some examples the
edge points have been divided into chains, where a chain is a connected set of such
points {Giraudon, 1987]. The initial population for the GA is then created by the
random sampling of minimal subsets on each of these connected chains. Since a chain
is likely to be a part of only a single primitive, this method of creating the initial
population is very effective. For other examples the edge points have been partitioned
by using a k-d tree [Samet, 1984). This is a recursive data structure which is created
by subdividing the image until each terminal node of the k-d tree contains no more
than a certain number of points. For a hierarchic data structure a terminal node is
the lowest level of this structure. Again the initial population is created by random
sampling of minimal subsets, but this time using the edge points that belong to each
terminal node of the k-d tree as the input.

The first image is of a number of coins, and the task is to extract the circles defined
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by these coins. In Figure 5.3, part (a) is the original intensity image of the coins. In
part (b) of this figure are the edge pixels produced by the image processing package.
Note that there are gaps in the circles, along with some spurious points produced by
the markings on the coins. Part (c) of this figure shows the k-d tree decomposition
of the edge points, with each of the smallest boxes defining the terminal nodes of the
tree that coniribute to the initial population. The points that make up the initial
population are obtained by random sampling of minimal subsets on these terminal
nodes, and are shown in part (d). Part (¢) of this figure shows the circles that have
been extracted by the GA, and they are superimposed on the original edge points
in part ([). The circles were obtained by repeatedly running the GA, removing the
points that belong to the highest scoring population member, and stopping when the
number of remaining edge points is below a threshold.

The rapid convergence of the GA for circle extraction is demonstrated in Figure
5.4. In this figure all the minimal subset points for the circle extraction problem are
drawn as small dots. The best current circle in the population is drawn as three large
dots. Part (a) of this figure shows the initial population, while parts (b) through
(d) show how the population evolves as the GA exccutes. Each of these figures is
separated by forty crossover operations. In a very short number ol iterations the GA
population has converged to a single answer. Note that in part (b} the best circle is
different than the one in part (a) as a result of the crossover operator. This circle
remains the best one until the convergence of the GA in parl (d). Once the entire
population is identical, convergence has definitely occurred; however, the GA need
not be run until this point. Usually it is run until the best population member has
not changed in a given number of iterations.

Instead of using the GA mechanism of random selection by fitness, it is possible
to always combine the two best primitives in the population. Such an algorithm
would have the same basic structure as the GA, but be completely deterministic.
It would resemble a traditional computer-vision grouping algorithm [Levine, 1985].
However, such grouping algorithms commonly suffer from the problem of premature

commitment which occurs when a particular solution is chosen too carly in the search
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process. The underlying cause is the deterministic control structure in which the
two best primitives are repeatedly combined. The best geometric primitive is not
necessarily produced in Lhis way. An example of this situation is shown in figure 5.5.
In part (a) of this figure are two circles. The one on the left has two disconnected
parts, and the one on the right has four. Even though each part of the smaller circle
contains more points than any single part of the larger circle, the total number of
points on the larger circle is greater than the smaller. Thus the larger circle is the
better solution, and is the one that should be found first by the extraction process.
Assume that the initial population was created by random sampling on connected
chains. A grouping algorithm that combined the two best circles at each iteration
would extract the smaller circle. This is because initially the two longest chains,
and therefore the two best circles, are on the smaller circle. These would be merged
together, and the grouping algorithm would have prematurely found a sub-optimal
solution.

The GA by contrast finds the larger circle. The initial population of the GA are
the small dots in part (b), and the chromosome of the best circle is defined by the
three large dots. It was created by random sampling on the connected chains of 2D
cdge points. In the initial population the best chromosome is on the smaller circle
since this chain contains the most points. However, after a number of iterations the
best chromosome is on the larger circle because crossover has created a chromosome
that spans the various parts of the circle. Similarly in part (c) the population after
ten ilerations of the GA is shown, along with the chromosome defining the best
circle. Premature convergence was avoided because the selection process of the GA
still allocated some effort to the parts of the larger circle, even when the current best
population member was on the smaller circle. This is because the GA selection process
is not deterministic. Instead, the GA explores a number of possible alternatives in
parallel and slowly evolves to what it considers to be the best solution. As time
gocs on, the diversity of the population decreases, but this happens slowly. If the
initial population is too small then premature convergence can occur; if too large,

convergence takes a long time. If the population size is reasonable (between fifty
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and three hundred members) then the GA method usually does not suffer from the
problem of premature commitment and still converges quickly.

In our experiments an extraction procedure that relies only on random secarch
is noticeably slower than the GA. Further experiments must be done to quantify
the speedup. We can say that the difference between a GA and random search is
significant when there are many primitives to extract or the primitives are complex,
that is they have large minimal subsets. This is nol surprising, since we have shown
in Chapter Two that in these cases many random samples ave necessary for snceessful
extraction [Rousseeuw and Leroy, 1987]. Thus the more complex the scene, the better
the GA will perform in comparison to random scarch. When a single geometric
primitive contains a significant percentage (more than 30%) of all the data points the
GA extraction algorithm is not noticeably faster than random search.

An example of the llexibility of the GA approach is shown in Figure 5.6, where in-
stead of extracting circles, we extract two ellipses [rom an image of a cable surrounded
by an insulator. The original intensity image was shown in Figure 1.1 in Chapter One.
In this case the initial population is found by random sampling over a chain, which is
a connected set of edge points. While using chains produces better results than a k-d
tree, they have the disadvantage of taking longer to create. In part (a) of this figure
are shown the initial chains. Parts (b) and (c) show the two extracted ellipses, along
with the minimal subset points that define cach ellipse drawn as black dots. The
fact that the two ellipses are very close together makes this a particularly difficull
example. Since the ellipse has five degrees of freedom, an extraction algorithm that
used only random sampling approach would require an excessive number of samples.
The only change necessary to the GA algorithm in order to cxtract ellipses instead
of circles was to use a chromosome with five points, instead of three.

The last example has as input a number of three-dimensional poinis produced by a
laser rangefinder mounted on a robot wrist [Rioux and Blais, 1986]. This rangefinder
collects parallel profiles, where the number of profiles and the spacing between them
is controllable. In practice, such data are relatively sparse since the spacing between

profiles is usually fairly large. This example demonstrates the extraction of a sphere
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from such laser rangefinder data. The initial data is shown in Figure 5.7, part (a),
with the sphere heing the topmost object. The white arca below the points on the
sphere is the area where the laser beam is blocked by the sphere. Part (b) of this
figure shows the points belonging to the extracted sphere shaded in black. The same
GA algorithm was used as in the 2D examples, except that the initial population was
crealed by random sampling on ten by ten windows spread over all the geometric
data.

The main conclusion we have drawn from these experiments is that the quality
of the results depends a great deal on the quality of the initial population. This in
turn, depends primarily on how the initial population is obtained. For example, when
using k-d trees most of the circle extraction examples are successful; however, ellipse
extraction is less successful. This is because ellipse extraction is inherently more
difficull than circle extraction since the size of the minimal subset is five for an ellipse,
versus three lor a circle. Thus a better initial population is necessary for extracting
cllipses, which is provided by the use of chains. For the three-dimensional data we
have found that using small windows to create the initial population gives reliable
plane and sphere extraction. This is because the three-dimensional laser rangefinder
data is accurate enough to make the initial population members obtained in such
small windows reasonably accurate. The more difficult the extraction problem, the
more carc that must be taken in creating the initial population. This is not surprising,
since it is the points in the initial population that the GA uses to make new population

members.

5.5 Summary

The GA succeeds because it uses the local estimates of the curve or surface pro-
vided by the initial population as a building block to find a better global estimate.
[t requires a good chromosome representation to function properly. In our case, this
representation encodes a geometric primitive by the minimal set of points necessary to

define the primitive uniquely. This is much more efficient than coding the parameters
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of the primitive as a bit string. It is the same representation we have used for our ran-
dom sampling extraction algorithm. i has not, to our knowledge been used ina GA,
We have shown examples of circle, ellipse and plane extraction, but can also extract
spheres, cylinders and ellipse from threc-dimensional data using the same approach.
In fact, the GA algorithm can be used to extract the same primitives as the basic ran-
dom sampling algorithm. All that is necessary is that the chromosome representation
be transformed into a parameter vector, which can be done for many different types of
primitives. We have not shown how to usc the GA for correspondence computation,
which is a future area of research.

Genetic algorithms have rarely been employed in the computer vision field (for
two recent exceptions see [Bhanu el al., 1991, Hill and ‘Taylor, 1992]). This is surpris-
ing since the use of simulated annealing, a closely refated technique, is widespread
[Geman and Geman, 84, Corana ef al., 1987]. Once it is understood Lhat primitive
extraction is actually an optimization problem, the usc of a GA suggests itself. We
have shown that using a GA is a very effective approach to solving the primitive ex-
traction problem. Since it is based on the cvolutionary metaphor it often avoids the
problem of premature commitment. Instead, the best solution emerges spontancously

from the population over time.
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(e) ()

Figure 5.3: Extracting circles from a complex image (a) The original image
(b) The edge pixels (c) The k-d tree used to create the starting population
(d) The points in the initial population (e) The extracted circles (f) The
extracted circles superimposed on the edge pixels
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Figure 5.4: Population of a GA during exccution of circle extraction. The
points defining the best circle in the population are drawn as three large
dots. (a) The original population (b) After 50 crossovers and mutations (c)
After 90 crossovers and mutations (d) After 130 crossovers and mutations
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Figure 5.5: An example of how a GA avoids premature convergence. The
points defining the best circle in the population are drawn as three large
dots. (a) two circles (b) the initial GA population and best member (c)
the population and best member after a number of crossover and mutation
operations
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Figure 5.8: Extracting ellipses [rom cable image (a) initial image (b) first
extracted ellipse (c) second extracted cllipse
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Figure 5.7: Sphere extraction from range data (a) initial range data with
sphere on top (b) extracted sphere points shaded in black.
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Chapter 6 Parallel Implementations of Extraction

[t is important to be able to parallelize an extraction algorithm. One reason is thal
parallel architectures are becoming more widely available. Another reason is that as
shown by our optimization model, extraction is inherently a computationally intensive
problem. Parallel architectures will be necessary when processing a large amount of
geometric data, or when attempting to achicve real-time performance. There are
many different types of parallel architectures, and it is not yet clear that any single
one will be used to the exclusion of others. Thus it is necessary to consider the
problem of parallclization for a wide variety of architectures.

In this chapter we will discuss ways of parallelizing the primitive extraction al-
gorithm. A large percentage of the exccution time of both the GA and the random
sampling version of this algorithm is spent in the evaluation of the cost function. If
there are N geometric data points, then this evaluation takes O(N) time for most
cost functions. For any significant sized N this is the most expensive part of the
algorithm in computational terms. Therelore we concentrate our efforts on paralleliz-
ing this cost function evaluation. In the ideal case this should be done in O(1), as
opposed to O(N) time. We will show that, depending on the architecture, this idcal
can indeed be achieved. The less time taken in cost function evaluation, the more
evaluations that can be done per unit time, and the better the extraction algorithm
will work.

In this chapter we will discuss ways of parallelizing the fixed-band cost function,
and the variable-band cost function evaluation for primitive extraction. Since most
of our examples of Chapter Two were processed using the fixed-band cost function,
we will naturally concentrate on it’s parallelization. The result returned by any fixed-
band cost function is the sum of a simple function applied to each dala point. In
other words, if there are Ngeometric data points then k = TV g(r;), where g is

the simple cost function applied to each data point. The most common simple cost

125



6. Parallel Implementations of Extraction

function g, is equivalent to template matching. However, this is not the same as
traditional template matching. In traditional template matching a template is a two-
dimensional array which is applied to an image, that is itself a larger two-dimensional
array |Levine, 1985]. This makes the template matching a discrete cross correlation
procedure. Algorithms which claim to implement template matching on parallel hard-
ware are based on this description of template matching [Kumar and Krishnan, 1989].
In our case the templates are fixed size arcas around a given geometric primitive. The
shape of such a template changes with the primitive. Therefore, this template cannot
be matched by a simple convolution process since the template shape changes.

Our parallclization algorithm approach also differs from other approaches
applied to parallelizing genctic algorithms (GAs) [Ackley, 1987, Tanese, 1989,
Manderick and Speissens, 1989)]. To parallelize a2 GA each processor usually executes
the entire GA program, including the evaluation of the cost (or fitness) function. For
many traditional GA applications the cost function evaluation is very cheap computa-
tionally, so this approach makes sense. In our situation this is not true since this cost
[unction evaluation stage dominates the computation time of the GA, which explains
our attention to it.

Parallelizing only the cost function evaluation has two other important advantages.
First, it is possible to accomplish this task on a wide variety of different architectures.
If the entire extraction algorithm were to be parallelized this would be more difficult to
achieve. Second, this speeds up both the random sampling, and the GA version of the
extraction algorithm. If we attempted to parallelize the entire extraction algorithm
it would be necessary to use different approaches for the random sampling and the
GA versions. In this chapter we will describe parallel implementations of the cost
function of the extraction algorithm on a variety of different architectures. We will

start with the simplest architectures, and move on to more complex ones.
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6.1 Vector Architectures

Some of the carliest parallel architectures were vector machines [Duncan, 1990).
These had as their basic data structure a vector, whose elements could be oper-
ated on in parallel. While superseded by multi-processor architectures there are still
many vector machines in operation. Recently the vector model has been revived
[Little et al., 1989]. The justification for this revival is two-fold. First, it is now
possible to map vector operations to a number of different multi-processor architec-
tures. Thus, a description of an algorithm as a set of vector operations is in some
sense architecture-independent. Second, the common and inexpensive Digital Signal
Processor (DSP) can be thought of as a vector machine. These DSP's can be cas-
ily cascaded together to perform vector operations very quickly. We will describe a
model that defines a set of operations on veclors, and return cither a vector or a
scalar as their output. Then the cost function evaluation is described in terms of
these abstract vector operations. To make these programs run on a specific vector ar-
chitecture it is necessary to map thesc abstract vector operations to this architecture.
Since these abstract vector operations are relatively simple this is not a difficult task.

The following are the abstract vector operations that we need for our algorithm:
¢ Binary Operations (+,—, /,*)
e Sort
o Count
o Index
¢ Dot Product
A more detailed description of each of these operations is given below,

1. Arithmetic - takes two vectors as input and outputs a vector which is the pair-

wise arithmetic operation applied to each of the elements, for example:

A = [51343926)
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B = [25381362]
A+ B = [7661241288)]
A* B = [1059323271212]

2. Sort - takes a single vector as input and outputs a vector, with the individual

elements sorted in order from the smallest to the largest, for example:

A = [51313926]
Sort{A) = [12334569]

3. Count - takes a single vector and a scalar as input and outputs a scalar which is
a count of the number of vector elements less than or equal to the input scalar,

for example:

A = [51343926]
Count(A,3) =4

4. Tudex - takes a single vector and a scalar as input and outputs the Nth element

of the first vector, for example:

A = [51343926]
Constant = 5

Indez(A,Constant) = 3

5. Dot Product - takes two vectors as input and outputs a scalar which is their

dot product, for example:

A = [51343926)
B = [25381362)
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4"1.B= ].10

With only these simple vector operations it is possible to parallelize both the fixed-
band, and variable-band scoring functions for primitive extraction.

First we will show how to parallelize the computation of the distances of cach point
to a particular geometric primitive. The method we describe will work for geometric
primitives which are defined as a linear combinations of basis vectors, For this types
of primitive the implicit function f can be written as f(5;@) = @ o b, where @ is the
coefficient vector, and b is the basis veclor. For example, consider the case where
the primitive is a line. Then the basis vector is (1, z,y) and the coellicient vector
is ag, a1, az. If there are N geometric data points then f(ax,31) = o + ayx; + aain,
f(z2,42) = ao + a172 + azy2, and so on till f(zn,yn) = a0 + aizn + asyn. This set
of equations can be rewritten as a sequence of operations on veclors of dimension
N. In our notation we take @3 to be a vector of dimension N with N identical
entries; that is, @g is [ao,...,a0). Similarly T = [z1,...,zny] and T = [31,...,yn]. Lel
Funcvect = [f2,..., f#] be an N-dimensional vector whose clements are the values of
the implicit function f evaluated at each geometric data point. For the case of a line
Funcvect = @g + @7 * T + @ * 7. Thus funcvecl can be computed by the operations
of our vector machine, using only + and *, the abstract vector operations described
above. Similarly gradvect = [|Vfi[%,...,|V/~|?] is an N-dimensional vector whose
elements are the square of the magnitude of the gradient vector of f evaluated at cach
geometric data point. Similar arguments can be used Lo show that gradvect can also
be computed by the operations of our vector machine in the same way as Juncvect.

Given the fact that the vectors Juncvecl and gradvecl arc available the

cost function evaluation is straightforward. Then funcvectfgradvecl is equal
to distvect, which is a vector of size N whose clements are the square of
the approximate distance of each geometric data point to the geometric prim-
itive using the approximation described in Chapter Two. Applying the count
operation on this vector produces the score for fixed-band template match

cost function. This equals count(distvect, Fixed — Band — Size — Squared), where
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Fixed — Band — Size — Squared is the square of the fixed-band distance. Similarly
for variable-band scoring applying the sort operation followed by the Nth element
returns the variable-band score. This equals indez(sort(dist), Inlier — Fraction x N),
where Inlier — Fraction is the variable-band parameter. These parameters are de-
scribed in more detail in Chapter Two. From this discussion it is clear that when
the geometric primitives are lincar combinations of basis vectors the evaluation of the
cost function using fixed-or variable-band scoring can be achieved by the operations
of this abstract vector machine.

All the operations of this vector machine, except the sort, can be implemented in
O(1) time on the appropriate hardware. Thus for fixed-band scoring the evaluation
of the cost function can be done in O(1), as opposed to O(N) time. The sort can be
done in O(log N) time, so for variable-band scoring the cost function can be evaluated
in Olog N) time. This of course does not take into account the time necessary to
transfer the geometric data points into vecior form. If the number of geometric data
points N is very large, the required vectors may be so large that the hardware is not
capable of performing these operations at the maximal speed. Nevertheless, the ease

and efliciency of the implementation of our algorithm on a vector machine is clear.

6.2 Multi-Processor Architectures

The term multi-processor architecture describes a wide family of modern architectures
whose components consist of multiple processors that are connected together in some
fashion. Because of their diversity various attempts have been made to describe these
architectures at a more abstract level, so that parallel algorithms could be written
in a fashion that is independent of the particular hardware implementation. The
most common of these descriptions is the Parallel Random Access Machine (PRAM)
model [Vishkin, 1983). In this model there is a number of processors, each with local
memory along with some global memory. Each processor is capable of executing a
program and can access local and global memory as shown in figure 6.1.

The bottleneck in the execution of a parallel program is usually in the access
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Local Local Local Local
Memory Memory ... Memory Memory]
1 2 n-1 n
Processor Processor]  «ereens Processor Processor
1 2 n-1 n
Global Memory

Figure 6.1: PRAM Model - Parallel Random Access Machine

of global memory. Assume that the N geometric data points were placed in global
memory, and that each of the L processors were instructed to evaluate N/ L of these
points. Then at best there would be an L fold speedup in the cost function evaluation.
However, in any physical multi-processor system there will be a memory access bot-
tleneck if all the processors attempt to reference global memory. This fact is not casily
represented by the PRAM models. While this model is useful theoretically, the level
of abstraction is so high that many questions regarding its practical implementalion
on physical hardware are left unanswered.

Given this drawback of PRAM model the question remains as to whether there
are any ways of characterizing different architectures. The following arc what we

believe are the basic dichotomies that can be used for this purpose.

o Coupling - Processors communicate with each other across communications
channels. The degree of coupling between processors is measured by the band-
width of the communications channel. A loosely coupled architecture has a
low bandwidth between processors (such as a local area network) and a closely

coupled architecture has a high bandwidth (such as those that share the same
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address space on a common bus).

¢ Granularity - The number of processors is an indication of the granularity. In
general, if there are fewer than a dozen processors then this is a coarse grained
archilecture, and if there from a dozen Lo a few dozen this is a medium grained
architecture, When there are more than a few dozen processors the system is

classified as a fine grained architecture.

¢ Instruction Streamn - If each processor must execute the same instruction se-
quence then this is calied an SIMD (single instruction, multiple data) machine.
If on the other hand, each processor can execute different instruction sequences

then this is an MIMD (multiple instruction, multiple data) machine.

s Topology - This the way in which the processors are connected to each other.
There are many possible topologies, and some examples are the star (one pro-
cessor at center with many wings), hypercube (three-dimensional cube), or sys-

tems that can implement arbitrary topologies such as the Connection Machine

[Hillis, 1985).

Given these different ways to categorize a parallel architecture, the question is what
is the most important characteristics of an algorithm for it to be easily parallelizable.
We believe that it is that the algorithm should make as few demands on the inter-
processor communication bandwidth as possible. The input should be partitioned
into separate components which are given to each processor. The processors should
operate independently on their portion of the data, and not communicate with each
other during execution. If these requirements are not met then as the number of pro-
cessors increases more and more time is spent on communications overhead, and the
throughput does not increase proportionally. We claim that our primitive extraction
algorithm has these characteristics, and can easily be parallelized on many different
architectures. By contrast the HT is difficult to parallelize since its use of global mem-

ory during execution makes very high demands on the inter-processor communication

bandwidth [Rosenfeld et al., 1988].
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Figure 6.2: Mesh Topology Interconnection

For the muiti-processor architectures we will only discuss the parallelization of
the fixed-band cost function. This is the most common cost function, and was used
in most of the examples in Chapter Two. We will describe a number of dilferent
categorizations of architectures using the above dichotomies. For each of these cate-
gories we will show how to parallelize the fixed-band cost function. Our list will not
be exhaustive, but will cover what we consider to be the most important, and most
common parallel architectures. The architectures arc presented in increasing order of

complexity.

6.2.1 Mesh Connected SIMD Architectures

This is probably the first, and still the most widely used multi-processor architecture
for machine vision purposes. The mesh topology is shown in Figure 6.2. It is well
suited to the processing of intensity images, with the usual approach being to allocate

a single processor to each picture element (pixel) of the image. In the mesh topology
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cach processor can communicate directly with any of its neighbours in the mesh.
This is ideal for performing local operations, such as convolutions, on an image.
Since there are many pixels and thercfore many processors, this is classified as a
fine-grained architecture. Each processor in the mesh normally executes the same
instruction sequence so meshes are usually SIMD (single instruction, multiple data)
architectures.

'The difliculty with a mesh topology is that it is not casy [or processors to perform
operations which require information from processors other than their neighbours on a
mesh. Thus algorithms that require global access to memory, such as the HT, cannot
be efficiently implemented on a mesh [Rosenfeld et al., 1988]. However, because a
mesh architecture is simple and relatively inexpensive it is still useful for many other
compuler vision algorithms. For this reason any algorithm which can be run efficiently
on a mesh has the potential to achieve widespread usage.

We assume that the goal is to extract a 2D curve, and that edge detection has
alrecady taken place. Thus each edge element is associated with a particular proces-
sor on the mesh. In order to perform the fixed-band cost function evaluation for a
geometric primitive its parameter vector must be broadcast to all the processors si-
multaneously. For the fixed-band scoring this can be done most efficiently if a global
broadcast and collection facility is available on the mesh. Given the parameter vector
those processors which have a valid edge point must decide whether their edge point
is in the fixed-band. This would be done by calculating f/V f as described in Chap-
ter Two, and computing the appropriatc fixed-band cost function. Then the global
collection function would simply sum the appropriate fixed-band cost function value
computed by each processor. This sum is the resulting value of the fixed-band cost
{function for the primitive with the given parameter vector. If there is a processor
associated with each pixel element then all these operations can occur simultaneously.
Thus the cost function evaluation would require O(1) instead of O(N) time, where
N is the number of geometric data points. Since each processor in the mesh already
has an associated geometric data point no initialization stage in which these points

are distributed among the processors is necessary. All that needs to be added to the
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mesh architecture is a global broadcast and collection facility, which is not ditlicult.
It should be noted that this ability to perform Axed-band scoring is actually very
useful for many model-based vision applications. A geometrie model is nothing more
than a list of geometric primitives. Often the presence of an object described by
such a model has been hypothesized from some of the extracted geometric primitives,
Then the presence of each primitive in the model can be verified against the geometric

data by evaluating the cost function for cach hypothesized primitive.

6.2.2 Medium and Coarse Grained Transputer-Like Archi-

tectures

Under this category are another common class of parallel architectures. There are ar-
chitectures with anywhere from a half-dozen Lo a few dozen processors, These types of
architectures often, but not always, have high bandwidth channels between processors,
with each processor being of MIMD (multiple instruction, multiple data) type. Such
architectures are more flexible than the SIMD type, but the price paid is an increase
in the difficulty of programming. Since there are multiple instruction streams the syn-
chronization of the processors must now be done in software, which requires advanced
multi-processor operating systems [Gentleman el al., 1987]. However, because of the
limited success in using mesh connected SIMD architectures MIMD systems have be-
come more common in the computer vision field. In particular, they have been nsed
for implementations of the HT [Austin et al., 1991, Ben-Tuvi el al., 1989]. In terns
of topology these systems vary, with a mesh and star being common. The degree
of coupling between processors also varies, Some systems are very Lightly conpled.
Examples of this are situations where the processors occupy the same physical bus.
In other situations, such as when processor communicate across an ethernet link, the
coupling is loose.

Any fixed-band cost function can be evaluated in a distributed fashion by parti-
tioning the geometric data equally among the processors. Then for a single evaluation

of the cost function, each processor is given the value of the parameter vector, along
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with the cost function definition. Each processor must then evaluate the cost func-
tion for cach its subset of the geometric data. The sum of the answers from all the
processors is the value of the cost function for all the geometric data. Once the ge-
ometric data points have been distributed, the number of data transfers necessary
during exccution of the algorithm is very small. Since this is the case, there is very
little overhead as additional processors are added. Therelore the speedup should be
proportional to the number of processors, which is the ideal.

This is essentially the same parallelization approach as was taken for the SIMD
mesh architecture, with the only difference being that more than one geometric data
point is assigned to each processor. However, because the processors in a MIMD
system are more powerful and have more global memory than an SIMD system other
approaches arc also possible. One of these is to distribute all the geometric data
points to all the processors at initialization. Then each processor could evaluate
a different primitive than the other processors. This would happen if each proces-
sor were given a different parameter veclor to evaluate, as opposed to sending the
same parameter vector to all the processors. This makes minimal demands on inter-
nrocessor communication bandwidth, except for the initialization phase, when all
the geometric data must be sent, to cach processor. This approach is similar to the
parallel guessing strategy in which a number of processors interact via a blackboard
[Fischler and Firschein, 1987]. However, if the amount of geometric data is large this
approach is not practical, since the time taken to initially distribute the geometric
data among the processors will be ecessive. Thus we see that for more complex
architectures cost function evaluation can be parallelized in 2 number of different

ways.

6.2.3 Pyramid Architectures and Other Topologies

The most complex architectures such as the Connection Machine have a large num-
ber of small processors whose basic topology can be reconfigured [Hillis, 1985]. These
processors may be SIMD, or MIMD machines. The only requirements our algorithm

makes on the topology of the parallel architecture is a requirement for a global broad-

136



G. Parallel Implementations of Extraction

cast and collection facility. This can be implemented on many topologics, but the
exact implementation does depend on the particular topology. A common topology
for parallel architectures is a pyramid. In this architecture, as shown in figure 6.3,
there is a hicrarchy of processors, which can communicate with their descendents
and predecessors in a pyramid. Recently it has been shown that a pyramid architec-
ture can be implemented on a connection machine [Hillis, 1985]. A global broadeast
and collection facility can be built into a pyramid architecture in a very natural and
straightforward fashion. Once this facilily is available the implementation of the
fixed-band scoring is trivial.

We assume that each geometric data points is distributed to each of N processors
at the lowest level of the pyramid. The function of the upper levels of the pyramid is
to implement the global broadcast and collection facility. The top processor receives
the parameter vector of the primitive to be evaluated. This is passed down lo Lhe
processors at the next lowest level, and so on, to the lowest level processors. They
each perform the cost function evaluation, and return the results upward. The top
processor in the pyramid receives the value of the cost function for all the geometric
data. Thus it is easy to compute the value ol the fixed-band cost function using a
pyramid architecture. Since pyramid architectures are very flexible, they are used for
many other computer vision applications. Therefore as hardware costs decrease, such

architectures will become more common.

6.3 Summary

In this section we have discussed how to implement the extraction algorithm on
various parallel architectures. We have concentrated on speeding up the evaluation
of the cost function since it is the most expensive computational component of our
extraction algorithm for both the random sampling and the GA version. The fact that
for many types of cost functions the data ~an be partitioned into sets that are operaled
on independently makes our algorithm 'sir-nple to parallelize. The speedup should be

proportional to the number of processors, since there is very little communication
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Figure 6.3: Pyramid Architecture Model

overhead necessary.
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Chapter 7 Conclusion

This thesis has analysed the problem of primitive extraction in detail. In doing so we
have described some new algorithms for solving this problem. We have also gained

insight into the basie computational complexity of the problem of primitive extraction.

7.1 Contributions Revisited

In this research we have accomplished a number of things, and we summarize them

below:
e We showed that primitive extraction is really an optimization problem.

s We generalized the solution to primitive extraction based on the random saun-

pling of minimal subsets to apply to a much wider variety of curves and surfaces.

e We introduced a genetic algorithm, and showed how it can be applicd to prim-

itive extraction using the minimal subset representation.

o We showed how these algorithms can be parallelized on a variety of different

parallel architectures.

This thesis has demonstrated that primitive extraction can be cast in an opli-
mization framework. The goal is to find the global optimum of a cost lunction which
usually has many local optima. A robust algorithm must be able to find a value close
to the global optimum from among these local optima. Using this optimization model
we obtain a deeper understanding of the complexity of this problem. We showed that
primitive extraction is computationally difficult, and this difficulty is inherent in the
problem definition. 7

The second thing we have done is to provide a general solution Lo the pfoblcm
of primitive extraction based on minimal subsets. Minimal subsets are good repre-

sentalions when the geometric data are accurate. In fact, for perfectly accurate data
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the random sampling of minimal subsets is probabilistically guaranteed to find the
global optimum of the associated cost function. As the accuracy of the data decrecases
the probability of finding the global optimum also decreases. A key requirement of
our approach is the ability to efficiently convert between a minimal subset and the
parameter vector that describes the primitive or correspondence. We showed that
using climination theory, efficient, closed form solutions of these conversion equaiions
can be gencrated. We compared our approach in detail with others in the literature,
especially the Hough transform and the methods based on robust statistics.

We then introduced a genetic algorithm (GA) version of the primitive extraction
algorithm. A GA is an approach to solving optimization problems which is based on
an analogy with evolution. It enables the number of cost function evaluations, and
thus the running time of the extraction algorithm to be substantially reduced. A GA
represents individual solutions to the underlying optimization problem by means of a
chromosome. Qur chromosome representation is unique in that it is based on minimal
subscts. A GA combines local solutions together using the crossover operator in a way
that often avoids the problem of premature convergence. The best solution emerges
spontancously without a complex control structure guiding the algorithm. However,
while the GA often converges to a good solution, there is no proof that it will converge
to the global optimum. Thus, while it is often more efficient than random sampling
it is still a heuristic approach.

The cost function evaluation is the most computationally intensive part of our
algorithm. We showed that this can be parallelized on a wide variety of different
parallel architectures, This is a significant advantage of our approach over other
extraction algorithms. We described possible implementations on a wide range of
parallel architectures.

The issue of robustness is central to our work. Our optimization model explains
[ormally what robustness is, along with its computational cost. The model applies to
any algorithm that attempts to solve the problem of primitive extraction. By dealing
with the simplified case in which the geometric data have perfect accuracy, we gain

an understanding of the basic complexity of this problem. For perfectly accurate

140



7. Couclusion

data random sampling is probabilistically guaranteed to find the optimum value of
the cost function. The required number of random samples grows exponentially with
the size of the minimal subsct. However, for a fixed size minimal subset, the number
of random samples necessary to extract the best primitive is a polynomial function

of the number of geometric data points.

7.2 Future Work

There is a number of unexplored issues that need to be addressed. The first is to
implement and test various parallel versions of our algorithms. Somec preliminary
work in this direction has already been done, [Meygret et al., 1992], but further ex-
perimentation is necessary. There is as yet only a limited theoretical understanding
of the GA. More work is necessary to quantify under what conditions it will con-
verge to the global optimum. Further cxperimentation also needs to be done to
quantify the difference between the GA and other stochastic search methods, such
as simulated annealing. Another limiting lactor is the inability to solve some of the
minimal subset equations of certain geomeltric primitives nsing elimination theory.
As more efficient versions of the Grdobner basis algorithm become available this prob-
lem should be alleviated. A related issue is how to apply this approach directly to
curves and surfaces defined parametrically in order to create a robust version of the
fitting algorithms for such curves and surfaces [Sarkar and Menq, 1992]. Another
potential area of application for our algorithms are the problems of pose determi-
nation and refinement. Some preliminary work has already heen done in Lhis arca

[Roth and Levine, 1991¢c, Roth and Levine, 1992b], but more nceds to be done.

7.3 Summary

Philosophically our approaches are members of a family of so called “weak meth-
ods” which are currently enjoying a resurgence in the ficld of Artificial Intelligence.
Another member of this family are the connectionist algorithms typified by neural

networks. Historically, these weak methods fell oui of favour because of the inability
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to extend them to more complex problems than the one for which they were originally
developed. This produced the generally held hypothesis that the creation of intelli-
gence requires a large amount of knowledge, and gave birth to the so called “strong
methods” of Artificial Intelligence, sometimes referred to as the knowledge-based ap-
proaches. However, the difficulty of extraclting and encoding knowledge, and the lack
ol robustness of the algorithms that use such knowledge, remain significant unsolved
problems of the knowledge-based paradigm.

The problem of the lack of robustness in many machine vision algorithms has
been noted in the resecarch community [Sklansky, 1991}, For primitive extraction
robustness is the ability to deal with outliers, and this requires the ability to find
the global optimum, or a value close to it, of a cost function which has many
local optima. Qur main thesis is that robust and efficient solutions to primi-
tive extraction can be obtained by simple algorithms running on fast hardware.
Thus our contributions are three-fold. First, a deeper understanding of the prob-
lem of primitive extraction [Roth and Levine, 1990a, Roth and Levine, 1992a}, sec-
ond, our exiensions of the solutions based on the random sampling of minimal
subsets [Roth and Levine, 1990b, Roth and Levine, 1991b, Roth and Levine, 1991c,
Roth and Levine, 1992d, Roth and Levine, In Press| and third, the use a genetic
algorithm for solving the primitive extraction problem [Roth and Levine, 1991a,

Roth and Levine, 1992c, Roth and Levine, 1992b].
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Appendix A Solutions of Systems using Grobner Bases

In Chapter Three there are a number of examples of algebraic systems that were solved
by the Grobner bases approach. In this appendix we describe in more detail how these
solutions are obtained. Because of the length of the Grabner basis produced by this
method we will list only the last element of cach basis. For this clement there is only
one unknown, which can be solved for using a closed-form or numerical solution. In
all these examples the solution was found using the lexicographic ordering to produce
the Grobner basis on the Maple symbolic algebra system [Char et al,, 1988]. The
number of equations in each of the Grébuner basis equals the number of unknowns
in the system. With the lexicographic ordering the number ol unknowns in the first
basis equation is maximum, and decreases by one, till Lthe last basis equation has
only one unknown. Thus by solving the last equation first, and then repeatedly back
substituting the solutions into the previous equations all the solutions of the system

can be found.

A.1 Constrained Circle
(2o — C:)2 + (yo — Cy)? = 1? (A.1)
(.’L‘; - Cx)z + (yl - Cy)2 - 7'2

The known variables are zq, o, 21, #1, © and the unknowns are C,, C,. The last

element of the basis is below, and it has one unknown, which is C,.

62202 + 22 %y,  — 4zt — Az p° (A.2)
Az 2yl + 8z zar + 2ot + 22y 2 — 4%t

—43131‘0 + 4 +2$12?}:2 —4?}123'0 T +2'U12-"-'02
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et =29 %y + y”

+Bz yrm — Ayt —dy 2o — Az y,
4y +4yty -4zt

+4yty — 4y + 8y z7,)Cy

4422 —8xpzy +4z® +4y,°

—8y, v +4y,%)Cy?

A.2 Constrained Ellipse

b (2081 — ¥052)° + a®(zos2 + yos1)? —a?b? =0 (A.3)
b (zy8) — y152)° + @* (2182 + 1151)2 — 2?2 =0

SS4s2-1=0

The known variables are zg,y0,71,71 and the unknowns are si,s2,a,6. The last

element of the basis is below, and it has one unknown, which is b.

ytatzyt — 4z, 4ty a'ze® + 62,0y, 2atyo Pay? — 4 y_gaa"y; 2,32, (A.4)
+a'yo'z + (4 20"z, 2y, 2 a® + 220"y, Ya® ",;,?5«:&"-“?):204 —8x0°yo 1 a®x,® + 420t yo 2, yi
+4 zo2yo z, *a® — 4 2p%ypy, 2z, Pa? — 2257, 2y, 2!

—2a,%al g2, — 2252y, 0" + 4 20 ye 2y, a?

—225%a yo 42 + 42 yo 2,3y, @' + 4 20 yo i P2y @' — 82 ¥y, Patsy

+4zp atyszy y + 2902, Y0 — 29022, et

=2z %y % yo® + 4y *yo Pt — 2a yp'e, )W

+(4 z0yy a®zy y; — 2202 y0%a%n) 2 + 4 2o s yo °z,°

+zp 7 yo @®y,® — 8zp yoatyr 2 + 420 71 ys yooa?

~2 0%z, 2y %a? — 2292y, %0y, — 220 aly,

2, 4.2
~2xp%y % + 225y, ® + 230 %o’
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—2x20%z, % + 2ptat — 22, yp'a®

tztat 4 atyet — 2atyete,t + 24, %%y,
+2z. %y et — 22,y %y, + yita?
—2yp%aty? — dzg yolr, Py + 620 yo eyt

—d2o%y0 yr°z; + 2oyt + yo'z )b =0

A.3 Three Dimensional Circle

ag + a;to + azyo + azzp = 0 (A.5)
ag + ayx + agyy +azny =0
ap + a1T2 + agyz + azz = 0
(20— 2e)* + (o — ¥e)* + (0 — z)° —1? = 0
(o= :)*+ (Yo — ye)* + (20— 2)° =12 = 0
(zo — @) + (o — ¥e)* + (20— 2)* —r* =10
g+ a1 &c + oy + azz. =0

af+a§+a§—1=0

The known variables are Z0, Y0, 1,¥1,E2,0f2 and
the unknowns are ag,a1,a2,83,%c,Ye,2.. The last clement of Lhe basis is below, and

it has one unknown, which is z..

3 2, 2 2 2
Yo Zelft " — Yo Y1 2y — T2 22 Yy
2 2 3 2. 2
=Y zZo YT Y2t 2 Ys — T2°YL "7
2, 2 2, 2 3,2
—I % % X Yl 22 Y
2,3 2,23 2,3
—Y2 % — T E — I 2
2 2 L2
tYe 2o Yr 2"+ 222 Y1 Yo o+ 28

3 22
Zy Yy Yo X 2T — Ty T Te 2
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—z,%ye%ze + 7,020 2

+2,2ys 2o ys + %) Y1 T 22 + @y Yo©z Tp
2y 222 Te + 2y To 7020 + (22 20’
—Az Yo y1 Ts — 4 Yo 2, Yr 20 + 29227
+2y 227 + 22,2207 + 2207y,

—4z; 202 o + 22 %20%) 2,

A.4 Points to Lines

ag + ar{woiy — youz + h) + az(zous + you, + £

bo + bi(z1wy — i + h) + ba(zrun + yyuy + £

i

)=0
1=0
co + 1(T2uy) — Yotz + h) + co(@aus + 2 + k) =0
-1=0

w? + up?

(A.6)

The known variables are zg,Y0,Z1,81,22,¥2,20,81,82,00, b1,b2,¢0,¢1,€2 and the un-

knowns are u,, 12, b, k. The last element of the basis is below, and it has one unknown,

which is u,.

~b%as?ys? — 245 ¢o?b; — a,%b, %z,
"“ﬁ.rzﬂezy:?

—(112012322 -2 ap C;zba
—512$12012 - ﬂ22y12c12 - ‘112
a2%ys? —2a,%co by — by %c;2xs”
+4 ay c; T2 by az Yo

+2a; ci®ze®b; —20a,%c T ag Yo

+2artcr2a by —2a; e by v + 20 % ez

—2a; ¢;%zp as Yy +2a; aslye®h; + 20,200 40 by 3y

(A7)
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; 2,2 . 2
—2(1; Az UYe b; Iy €; +2ﬂj ,(Ig Ys Yy ""2(!; (Ig,yg W €

2 . 2.2
—'261 C; In Q2 3—261281 Is 1, I,+2b,'c,’.rg;r,
b . 2
—2b; ¢y xs apasyy +2by erxs a2y — 2b, a2 ye ay 1y
+2 blzﬂs e & ¢ — 2y aﬁy: ar yr +2b fl:.']y:: Y €
+2a; b;%e,? 2a;%bh la;b
2a; 0,°z1%¢) = 20,0 2y a0y +lag by 1y as Yy
—2b; 7 ¢1%as yr + 20 as?yle; —2a0tc by — 20,7 ¢y a

2 2.2 2

—2a; bo’cy + artes® + agicy
+b;2092 -+ ﬂ.;2502 + 602612 + (lg'zb;z -2 Ay Cg g Cy
+2a, CabaC;+2l11 coagb;-l-‘.!ugc,b, Cg
+2a06101 bg+2b1 Caﬂ;ba'—?,b; CubgC;
-2 @y bg ag bf +2bg € Qg b; -+ (2 (1;200 s Ta
—2a,? —%a,? 2a,%c, b

a;°cpazxy —2ar cocp Ya-t2a,°¢co by Yy
+2a; copas; ¢r ~4acobyaszetdarcobycye
—20‘.1 Cab; Y C;—?ﬂgC; @y a9$3+2agc; iy Ao Iy
42 ag C;zﬂ.; Ye — 20.0 Cy @y b; Y — 2(10 012(13 Ty
+2ag ¢y by as e —2ag ¢;%br y2 +2 a0 ¢/ %b; Yy
+2b; Cp Q) a3$1—2b;260(l1 y;—Qb; Cg tin Ty C;
+2b,2 25,2 2b,°

1“cosTs — 20, Cocr ye + 20,79 Yy 4
—2a,%by as zs +2a;%b +2a,%b

1709 Q2 T2 @y 0g 82 & @y Op Ct Yn
‘—'2(1}2bg b; y;—‘ld,l bgﬂ_?x; c,+2a, bgb; o T»
—2a, bpbyeyyat4arbobyyrcr +2bp ¢ 0y azas
-2 bg 612(1; Yo +2bg 6;20.2 ry — 2bg Cy bl g Ta
+2ba C]zb; yg—Qba 01261 y1+2aob; d; s In
~2a9 by ag ag® —2a9b; ay ¢y ys +2a9 by%ay yy
+2ag by apzy ¢y ~2a9 bylagzs +20a0 biler ye

2 2 2 2 2,2, 2 2; 2,2
—2a9 b %yy e )us + (b %an’ye® + a)%as” 2" + 4, %0 %z,
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etz e + b bt 4 atas?y)?

tartertre? 4+ a%a’nt + a’cr %yl

+b,22 % + a?yiter? + bt astze?

dartb ty? + atatys? + bitesize?

+b;2(,‘;2y22 - 2(!; 0[223261 -2 u;zc; e b; Iy

+2ar cilza by —2arc; 2paz Y + 20 ¢/ 0T Az Yy
—2a; ag?ye’b; ~2a,2as ya by 31 — 20,2 axye i
+2a; astysyrc; +2b%c 2o a; 7 — 26, %) e 3y
—2b e/ *zeany +2b s Y2 ar 7 ~ 20, %2 g2 3y ¢
+2b; as?ys ay y —2b; alyo yr o1 —2a5 bzt — 20 asty e
—2a,%ara 7y +20a,%as 22 by yy + 2 a4 asze 2 ¢4
—2a; as’ze2b; +2ala2 2 ¢; yo — 2 a5 ast

z1%er +2a; a2’z by xe —2ar%c ya by i

~2a; ¢, ys a2 2y — 2@ ¢/ ye?by +2a5 crtyn by ys
~2a; by, aexe +2a; by o1 y2 — 205 bty
—2a:%z ¢ b 2o+ 2027 ¢ 2b; Yo+ 2020 ey ¢

-2 b;26;2y2 J;)?lg2 (A.S)

A.5 Points to Line-Circle
(to+ R+ (o+ k)2 =1t =0 (A.9)
(z1+ R+ (n+k)2=r2=0

The known variables are zq,y0,21,7 and the unknowns are h,k,r. The last element of

the basis is below, and it has one unknown, which is &.

63202212 +2.’302y12 —4:]:021‘2 (A.].O)
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—drgrt=drr w80t
+r 200y — Lt

—4 ;rg:’m, +oarpt 2 .nﬁyﬁ

—4 yf:r; 20+ 200t + o'

-2 yﬁy:’ -+ y:" + (A ry?
8oy wr + Ay & + 4ty
+ye® = dyoty + 1wy
—dylye +4y° —8yox mp)k
+{d2g? =8z zp 41y ?

+4yo® —8yo yr + 4Pk (A

(zotty —youz+h)—r—p=10 (A.12)

uf-l-nug—l =0

The known variables are z2,y,,r,p and the unknowns are u,us. The last element
W2.T.p 1

of the basis is below, and it has one unknown, which is us;.

— g2 =2 h— B2 1P 4 20p 4 (A.13)
+(2rys + 217k + 2pya + 2pk)us
(22 4220 b+ RE 4 Y22 + 2y ke + £ uy”

A.6 Three Dimensional Lines to Planes

(mzsy — ma82)wy + myuwp =0 (A.14)

(nz81 — nzs2)wy + nyw, =0
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A. Solutions of Systems using Grobner Basces

wi4+wy—1=0

s'f-}-s.i—l=0

The known variables are mzmy,m:,nznyn: and the unknowns are s),82, we,mwy.

The last element of the basis is below, and it has one unknown, which is w;.

2m, n, myn, — m_.2nr2 - m,‘,zu,2 - 711_,,21:.,2 (A.15)
p 22

+2my ne mp ny — mny

+(m it — 2m mnp ny + w2 imt 4 m:i"u,,2 -2m. ny, my n;

y s 9
+my2n,2 -+ m,,znr —2my gy myny + m.,znyz)w,2
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