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• Abstract

This thesis applies the consensus pamdigm to an important problem in modcl-based

vision, that. of primit.ive extmction. Primitive extraction is the process of finding

gcomet.ric primitives in geomet.ric data. Such dnta arc obt.ained directly by active

sensors such as lil.,er mngefindcrs, by processes t.hat operate on passive sensor da,,,

to crea.l.e depth information such as st.ereo vision, or by simple edge detection and

t.11I·esholding of int.ensit.y images. A geometric primit.ive is a curve or surface which

ean be described by an implicit. funct.ion. We show that t.he best solution to thi"

problem is at. the global opt.imum of a cost function which oft.en has very many local

opt.ima.

This global optimum represents t.he best consensus in the data with regard to the

ext.raction problem. The consensus paradigm att.empts to find this global optimum

by randomly choosing small suhsets of the data and evaluating the cost function

for each subset. We apply the consensus paradigm to this l'roblem by randomly

smnpling minimal subsets. This is a simple and general way of finding the best

consensus. For primit.ive extraction a minimal subset is the smallest number of points

necessary to define a geometric primitive. The issues of how to choose the appropriate

cost. function, how to decide on t.he number of random samples, and how to convert

bet.ween a minimal subset and the parameter vector that defines the primitive are

explored in det.ail.

While effective, t.he consensus approach using random sampling often requires

a large number of random samples, and therefore a large number of cost function

evaluations. We address this problem by combining the consensus paradigm with a

genetic algorithm that uses the minimal subset representation. A genetic algorithm is

an optimization method based on the evolutionary metaphor. It has been successfully

applied to difficult optimization problems, where the cost function is noisy, multi­

dimensional, and has many local minima. In our applications the genetic algorithm

is able to use local geometric information to produce a global solution in a way that



• usually a\'oids the prohl(,1ll of Prt'Ill,ltur(' l'011llllitult'lll. TIlt' r.'sult ill)'; ,,,l'thod Oft"11

l'l'qui l'es far fl'wer l'ost fUlldioll ('\'aluatious (hau th., raudolll salllpliu)'; appmal'h,

Somc ways of implenlC'ntillg thes,' aigorithllls on ditf"I'l'ut paralll'! "rl'hit.'dlll'('s al'l'

descri bed,
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• Résumé

Celte th"se applique le paradigme du consensus à un problème important en vision

bic,ée sur des modèles: l'extraction de primitives. L'extraction de primitives est le

processus de repérage de primitives géométriques dans des données géométriques. Ces

données proviennent directement. de capteurs actifs tels que les t.élémètres au laser, de

processus opérant sur des données de capteurs passifs pour en extraire l'information

de profondeur tel qne la vision stéréo, ou par simple détection d'arêtes ct seuillage

d'images d'intensité. Une primitive géométrique est une combe ou une surface qui

pent. être décrite par une fonction implicite. Nous démontrons que la meilleure solu­

tion à cc problème sc trouve à l'optimum global d'une fonction de coût qui possède

souvent de très nombreux optim.,ms locaux.

Cet optimum global représent.e le meilleur consensus obtenu des données en ce qui

conccrne le problème d'extraction. Selon le paradigme du consensus, on cherche à

trouver cet optimum global en choisissant de façon aléatoire de petits sous-ensembles

des données ct en évaluant la fonction de coût pour chaque sous-ensemble. Nous ap­

pliquons le paradigme du consensus à ce problème en choisissant au hasard des sous­

ensembles minimaux. Il s'agit d'une façon simple et générale de trouver le meilleur

consensus possible. Pour l'extraction de primitives, un sous-ensemble minimal est

le nombre minimum de points définissant une primitive géométrique. Nous dis­

cuterons du choix de la fonction de coût, de la détermination du nombre d'échantillons

aléatoires, et de la conversion entre un sous-ensemble minimal et un vecteur de

paramètres définissant la primitive.

Bien qu'efficace, l'approche par consensus utilisant l'échantillonnage aléatoire

nécessite souvent un grand nombre d'échantillons aléatoires, et par conséquent un

graud nombre d'évaluations de la fonction de coût. Nous abordons ce problème

en combinant le paradigme de consensus avec un algorithme génétique qui utilise

la représentation par sous-ensembles minimaux. Un algorithme génétique est une

méthode d'optimisation fondée sm la métaphore de l'évolution. Cette méthode a été

iii



• appliquée avec succès il des pl'Ohlt'nws dillkiles d'optimisation, nll la l'onet inn d,' l'oùt

est bruitée, 1l1l1Iti-dimensionnell(' et posst'de p\usiems minimnnlS lon"lx. Dans nos

applications, l'algorithme g(;nétiqu(' ('st en ml'sme d'utiliser l'information ~(;om"tri'1ne

locale afin de produire uue solution glohale ('u évitant hahituell"!l\f'llt le prohlt'nw d"

décision prématurée. La méthode qni en découle requiert. soun'nt. I)('au('onl' moins

d'évaluations de la fonction d" cmÎt. que la ml;t.hode d \;l'hant.ilIonnagl' a\<;aLoil·('. Nons

décrirons quelques méthodes de réalisation de l'CS algoriLhm('s sm div,'r"" arl'llit.c..­

turcs parallèles.
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• Chapter 1 Introduction

Wc believe that any model-based vision system will require the ability to ex­

tract geomclric primitives. This means fin<ling geometric primitives (such as lines,

planes, spheres, etc.) in gcomclric sensor data. Once this basic capability exists

it can be used to build particular solutions to such model-based vision problems

i~~ segmentation [Roth and Levine, 1990bJ, pose determination and pose relinement

[Roth and Levine, 1991b).

An example of primitive extraclion is shown in Figure 1.1 where two ellipses are

extracled from an image of a cable surrounded byan insulator. Part (a) shows the

initial image, with part (b) indicating a set of edge points computed from this image.

Part (c) presents the two extracled ellipses drawn as dark lines. The fact that the

two ellipses are very close together makes the extraction diflicult. This example will

be discussed in more detail later in the thesis.

Our solution to the extraclion problem is based on the consensus paradigm

[Meer, 1991), which Meer defines as follows:

"Compute a candidate model based on a randomly chosen small subset

of the data. Apply this model to ail the data. Compute a global measure

for the mode!. Optimize the quality measure by repeating the procedure

severaltimes."

This paradigm embodies the concept of feedback [Besl and Jain, 1985), in which each

potential solution is tested against the original geometric data. The first application in

the computer vision field of the consensus approach was the RANSAC algorithm which

was used to register images [Fischler and Bol1es, 1981, Bol1es and Fischler, 1981).

Il was then rediscovered in the statistics field in the form of the Least Me­

dian Squared (LMedS) algorithm [Rousseeuw and Leroy, 1987), and used as the ha­

sis of a number of segmentation algorithms [Kim et al., 1989, Meer et al., 1990,

Roth and Levine, 1990b). In this thesis IVe apply the consensus paradigm to the

1
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1. Introdnction

(a)

(b)

(c)

Figure 1.1: Extracting ellipses from cable image (a) initial intensity image
(h) edge point chains (c) two extracted ellipses

2
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1. Introduction

problem of primitive extraction by performing random sampling of minimal subsets.

We also combine the consensus approach with a genetic algorithm (GA). A GA is an

optimization procedure which is based on an analogy with evolution. We believe that

the resulting solutions to the extraction probtem have a number of unique capabilities

and characteristics.

1.1 Motivation

Bcfore we define this problem more precisely, we will first explain why it is important.

One thing that has become clear in the last twenty years is that if we wish to have

operational computer vision systems there must be constraints on the environment.

Without such constraints it is difficult, if not impossible, to produce clear problem

definitions, and to evaluate potential solutions. In the computer vision field the most

common constraint is that of model-based vision. In this paradigm the simplifying

assumption is made that the environment consists of manufactured objects whose

geometry is known beforehand. This is a reasonable assumption given the fact that

most manufactured objects are created with the aid of a computer-aided design (CAO)

package [Faux and Pratt, 1979].

To reiterate, in model-based vision the assumption is that there exists a model

of every significant object in the environment. Each of these objects is defined as

a set of geometric primitives. A geometric primitive is a curve or surface which is

described by an equation with a number of free parameters. One example of a model

would be the description of a room as a set of line segments, another the description

of a cube as a set of planar patches. More complex models have a wider variety of

defining geometric primitives, but the basic principle is unchanged.

The next essential component in a model-based vision system is sensor data. Here,

we would like to be as general as possible in describing how this data is presented. We

feel that this can best be done by thinking of the sensors as providing an unordered list

of points in two-or three-dimensional Cartesian space, which we cali geometric data.

The fact that the set of points are unordered is important for a number of reasons. The

3
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first reason is that the process that created the sensor data Illay not prodn!"e an)' sndl

ordering. The second reason is that the data may be taken from a IIllll1lwr of dilferent

viewpoints. In this case it is still an open research question as 1.0 how 1.0 produce

an ordering among the data points [Aubry and Hayward, 1988, Happe cl ni., i9B2}.

However, in situations where an ordering between gcomctric data points does l'xist

we will show how it l'an be used advantageously in our algorithlll.

In model-based vision there are threc basic tasks that appear repmüt,dly: ohject.

identification, pose determination and pose refinemeut. übject idcntification is the

process of identifying which objects in the sensed environment arc objects, in the CAO

database. Pose determination assumes that an object has becn so identified, and t1HÜ

wc want to find its pose. The pose of an object is its position and orientation, and this

information is essential for manipulation and planning purposes. Pose refinement is

the process of improving or refining this pose, and is essential for tracking applications.

The assumption here is that the object has becn identified and its approximate pose

has already been determined. There are many dilferent approaches to these three

problems, and they vary depending on the particular application.

Are there any commonalties that link these three l'roblems? That is, is thel'C any

basic capability upon which ail solutions to these problems and other modcl-based

vision problems depend? We believe that there is, and that this basic building block

is the extraction of geometric primitives. This is the process of finding primitives

(such as lines, planes, spheres, etc.) in geometric sensor data. The problems of

object identification, pose determination and pose refinement ail require primitive

extraction. Therefore by focusing on the problems of primitive extraction wc are not

providing solutions to any particular model-based vision pro1>lem. Instead, wc arc

creating a tool which l'an be used to build solutions to a wide variety of tasks in

model-based vision.

4
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1.2 Overview

ln order to better understand the problem of primitive extraction we define an opti­

mi~ation model for this task. The use of such models has reccntly become common in

the computer vision field [Leclerc, 1989). They require the creation of a cost function

which measures the quality of the output produced by a particular algorithm. This

cost function depends on the vaiue of a parameter vector, and the goal is to find the

parameter vector value which optimizes the cost function. For primitive extraction

the cost function measures the quality of the extracted primitive. In the case of ex­

traction the parametcr vector defines the primitive. The best value for the parameter

vector is the one for which the cost function is at its global optimum. This solution

represents the best consensus in the data according to the criteria encoded in the cost

function.

This optimization mode! for extraction gives us a number of important insights.

The first is that this problem does indeed fit into an optimization framework. The

second, is that algorithms for this task must attempt to find the global optimum of

cost functions which have many local optima. Each local optimum partitions the

input into two groups, which we cali inliers and outliers. For primitive extraction

inliers are geometric data points that belong to the primitive, and outliers are the

remaining geometric data points.

lt is important that any algorithm for solving the problems of primitive extraction

be robust. In an intuitive sense robustness is the ability to achieve a good solution

even in the case where there are many outliers. The quality of the solution depends

on how close the optimum value of the cost function found by the algorithm is to

the global optimum. We show how various algorithms for primitive extraction (such

as the Hough transform), can be reCast in this optimization framework by simply

defining the appropriate cost function. This optimization model indicates tbat all

robust algorithms have the goal of finding the global optimum from among many

local optima.

The number of local optima is potentially as large as the number of ways to

5
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partition the input into inliers and outliers. Sinn' this is a "l'l'Y larg.. numlH'r,primiti\'l'

extraction is in many cases compntationally difficnlt.. Whil.. thl'sl' pl'Obll'ms al'<' in

theory solved once a cost function has been defined, an rDicirll1 solntion must lind

a value close 1.0 the global optimnm in as few evalnations of the cost, fundion as

possible.

The minimal subset princip!e states that a subsct of a sl'!. can often enl'Ode th..

characteristics of the entire set. For primitive extraction a minimal subset is the

smallest number of points necessary 1.0 define a geometric primitive. For exmnple, in

the case of a line the minimal subset contains two points, for a plane t,hree l'oints,

etc. We show that for accurate geometric data efficient solntions 1.0 the problem of

primitive extraction can be obtained using minimal subsets.

One way 1.0 solve the problem of primitive extraction is 1.0 evaluate the COSt func­

tion only al. the values of the parameter vector defined by the minimal snbsets, If the

geometric data are without error, then this procedure is gnamnt,eed 1.0 find the trne

global optimum. As the accuracy of the geometric data decreases, the likelihood of

this occurring also decreases. While the requirement for very accurate geomctric data

may seem stringent, il. is the case that modern sensors usually provide such data.

Evaluating the cost function al. all possible minimal subsets is rarely practical.

A more efficient way is 1.0 evaluate the cost function only al. the parameter vector

values defined by randomly chosen minimal subsets. Wc show that this approach,

which we calI minimal subset random sampling, is a simple and general way 1.0 solve

the problem of primitive extraction. Wc discuss a number of important issues in the

implementation of this a!gorithm, including how to mal' between a minimal subRet

and a parameter vector. Wc show how such a mapping can be created efficiently for

a wide variety of geometric primitives by using elimination theory, which is a method

from the field of symbolic algebra.

White effective, minimal subset l'andom sampling still may require 1.00 mauy cost

function evaluations. To overcome this prob!em wc combine the minimal subset

approach with a genetic algorithm (GA). A GA is a procedure which ha.~ been shown

1.0 efficiently find an optimum value which is often close 1.0 the global optimum for
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noisy cost functions which have many local optima. It is based on an analogy with

cvolution, in which the new solutions are created from a population of potential

solutions. In our case a population member defines the parameter vector for the

extraction problem, anel is represented by a minimal subset. We apply a GA to

the problern of primitive extraction. The initial population is created by random

sampling over small components of the geometric data. The GA takes this initial

population and uses genetic operators to create better solutions. It takes advantage

of the local information provided by the initial population to quickly converge to a

global solntion. The resulting extraction algorithm often requires substantially fewer

cost function evaluations than a method which uses only random sampling.

Real-time performance is often necessary in model-based vision applications. For

this reason we show how these algorithms can be implemented on parallel hardware.

We demonstrate that this can be done on a wide variety of parallel architectures,

which is a significant advantage of our approach over other extraction algorithms.

This research has produced a better understanding of the inherent complexity

of the problems of primitive extraction. Our solutions to this problem are already

practical for many applications, and will become more so as parallel hardware becomes

more widely available. We believe that the use of sucll consensus algorithms willlead

to significant advances in the field of model-based vision because of their robust

nature.

1.3 Definitions

Since the terms geometric data and geometric primitives are essential to the under­

standing of this thesis we will explain their meaning in more detai1. We will begin with

the idea of geometric data. This concept is a slightly modified version of the term ge­

ometric signal [Besl, 1990]. Geometrie data are nothing more than an unordered list

of points in two-or three-dimensional Cartesian space. Such data are obtained from

two basic methods. The first is to use a passive sensor (such as an ordinary intensity

camera) followed by processes snch as edge detection or stereo vision. The second is

7
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to use an active scnsor (such as a la:wr rangf'finder) tn prolw t.1lt' t'lI\'il'ol\l1wnt. For

our algorithms neithcr the mcthod used 1.0 produ("(' tht' data uor th., dilllt'usiouality

is important.

There is a number of l'casons why we empha.,izt' the faet, that uo ordt'rill/!: is

assumed for the geomctric data. The first, reasou is that tht' pron'ss that, prodtlt"'s

the geometric data may not crcate such ail Ol·dcriug. Au cxalllple of this is I,ht'

matching proccss of stereo vision. Another example is when tht' st'nsot· it.sdf docs

not produce data on a regular grid [l3lais cl <li., l!ml]. The st'colld \'casoll is t.hat.

sometimes the data may be taken from a number of dilferellt views. In t.his casc

there is no simple way t.o find t.he ordering of t.he point.s bel,wPen t.he dilferenl. views

(see [Aubry and Hayward, 19S5] for research in this area). The thinl reason is l.hat.

we believe that the lack of ordering tnakes it tnuch casier for om a!gOl·it.hllls t.o he

implemented on parallel hardware.

We also argue that it. is oft.en the case t.hat the lIumher of geolllet.ric dal.a point.s

is limitedj that is, in the order of thousands of points. Cert.ainly for geolllet.ric dat.l'

extracted from intensity images by processes such as edge det.ect.ioll or st.ereo I.his

is true. lt is not the case for dense geometric dat.a (somet.imes called mnge dat.IL)

obtained using an active sensor. We bclieve t.hat. dense range dat.l' is Ul1l1eccssary

for many robot vision tasks, and that. relat.ively sparse range dat.a (t.housands versus

millions of points) is more than sufficient. However, for certain inspect.ioll t.asks dense

data is appropriate. For these reasons we have made our defillit.ioll of geomet.l'ic dat.a

general enough to accommodate both sparse and dense geomet.ric dat.a.

We will now define more precisely what. wc mean by a geomet.ric primit.ive. III

model-based vision it is assumed that t.here is a geomctric descript.ion of eaeh sig­

nificant object in the environment.. Each such object. is described as t.he union of

geometric primitives. A geometric primit.ive is a curve or surface whieh is defined by

an equation with a number of free parameters. Examples of such primit.ives in 2D

are lines, circ1es, and ellipses, and in 3D arc planes, spheres, t.ori. If t.he object. were a

cube it could be described as the union of six planaI' pat.ehes. More eomplex objects

need more complex primitives to describe them, but t.he principle is the same.

8
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A geollletric primitive can he ddined in t\Vo different ways: nsing the parametric

fonn or the illlplicit fonn. The pararnetric form is commonly used in computer

graphies and computer-aided design systems. Il is most uscful for generating the

points on a curve or surface, or for manipulating the curve or surface. By contrast,

the implicit form is most nscful for finding whcther a given point is on a particular

curve or surface. A curve or surface in implicit form is defined as the set of points

which arc the zeros of a function. In this thesis the notation used ta describe a

geollletric primitive in implicit form is f(pi a) = O. In this not.ation, P is the datum

point., and a defines t.he parameter vector for this particular primitive. For example, a

2D line is defined implicitly by the eqnation ao +atX +a2Y =0, where the parameter

vedor ais (aO,aha2) and the datum point P is (x,y). Different instances of the

gcometric primitive are produced by changing the parameter vector a. The implicit

fonn naturally divides space into l.hree rcgions, f > 0, the points on one side of the

curve or smface, f < 0, the points on the other side of the curve or surface, and

f = °the points on the curve 01' surface. The implicit form is used in this thesis

when describing gcomet.ric primit.ives. The reason is that for primitive extraction it is

necessary 1.0 efficiently compute the closest distance of a point to a curve or surface.

This can be with the implicit form using an approximation that is adequate for this

application. Since the object modcls in CAD databases are described in parametric

form, il. is necessary ta be able to convl.l't from the parametric ta implicit form in

order ta use our algorithms. This can be donc by using elimination theory, which is

a method from the field of symbolic algebra.

1.4 Related Work

The RANSAC algorithm was the first to use the consensus approach in

the computer vision field [Fischler and Balles, 1981, Bolles and Fischler, 1981].

The consensus approach has also been used in the robust statistics field

[Rousseeuw and Leroy, 1987]. Recently this method has been more wide!y applied

[Meer et al., 1991, Jolion et al., 1991, Mintz, 1991]. Sorne of this research uses con-
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sensus Illethods to sol\'<' t.he segnwnt alion l'l'llhlem [.Iolion ri 1/1.. 1ml! J. lllh"r \l'ork

attacks a variety of coml'nt.er vision l'rohl,'ms [l\Iinlz. l!l!l!j. \V" conn'nlmle llnl)' on

the problem of primitive ext.ract.ion. Olh"r l'Ohnst. stat.islÏl's ml'lllllds ha\'(' alSll ",,'n

applied to problems snch as locall'st.imat.ion of snrfa"e Pl·lll'",·t.i,'s [Ill's\ ri 1/1., 1\lSS].

Such research adhcres closely t.o thl' t.,'rminology of t.he rohnst. st.at.ist.irs approach,

especially in the underst.anding of hrcakdown. Onr \l'(lI'k din"rs in t.he \II\(Il'rst.al\(l­

ing wc have of this concept" whose nt,ility in t.hl' compnt.,'r vision Ii,'hl \l'" l'llnsid,'r

questionable.

Recenlly, sorne work from the field of compnt,at.ional gl'om,'t.ry has I",en

donc to find efficient algorithms fol' robnst est.imat.ion [Dill,'n,·ont'!. ri Ill., lm):!,

Netanyahu, 1992]. These algorithms find t.he exact. solnt.ions t.o ('('rt.ain l'Obnsl, es­

timators without nsing random sampling. IIowcver, t.he cxpect.ed rnnning t.ime is

only achieved with a given probability, and they may execnt.e very slowly. While

these methods hold promise they have been shown to work only fol' rohnst, cst.iumt.OI's

that extract lines, and it is not clear how to extend t.hem t.o dcal with more complcx

primitives.

The Hough transform has had a long history of bot.h t.heorcliral and pract.ical re­

sults in the computer vision field [Illingworth and Kit.tler, 1988]. It. Ims hecn widely

applied to the problem of primitive extract.ion. While onr work considers t.he same

probll'm it does so in a completely dilferent fashion. The Hongh transform nses a pa­

rameter space to accumulate votes for dilferent geometric primitives. Once the vot.ing

is finished the parameter space is analysed to find the best set. of primit.ives. By con­

trast wc do not build a parameter space, but evaluate each hypothesizcd geometric

primitive directly by comparing it against the geometric data. Onr work is thus more

similar to the hypothesize-and-test methodology than the Hough tmnsform. While

this l'valuation process is a potentia1 computationn1 bottleneck, wc helieve that it can

be easily parallelizl'd using parallcl hardware. Recently t.here has heen sorne rcsearch

on overcoming sorne of the deficiencies of the Hough transform hy creating random­

ized versions [Oja and Xu, 1990, Kiryati et (û., 1991, Bergen and Shvaytser, HJ91].

Whill' this approach is similar to ours in that random sampling is used, a voting
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pro""ss ill Pilr'U1H,t"r spac" st,ill occurs. This is not truc for our mcthod, which does

1101. US" a vol.iIlIlPro""ss, huI. illst"ad "valuates each hypothesized geometric primitive

directly allaillsl. the Il,,olll''l.ric data.

Oth"r r"celll. work "xplores t.he use of illlplicit. functions in modcl-based

c()Jllputer visioll ['l'aubin, 1988, 'l'aubin and Cooper, 1990, 'l'aubin, 1991,

!lolle allli Vernuri, l!J!Jl, l\ricglllan and Ponce, 1990, Ponce et al., 1991). The rela­

tionship between parametric and illlpliciL descript.ions of curves and surfaces has al­

ready hcclI lIot.cd and explored [301le and Vemuri, 1991]. The implicit. form can be

obt.aincd by conversion from t.he paramet.ric form [Sederberg and Anderson, 1984),

which is how objects arc dcscribed in convent.ional CAD dr.t.a bases. Given sorne

gcolllclric dat.a, and a curve or surface in illlplicit. form, t.he best. fit. t.o t.he geo­

II\ct.ric ditta point.s can be det.ermined. This fitting process is not. a simple t.ask

['['aubin, 1991, Kriegman and Ponce, 1990, Ponce et al., 1991J, and requires complex

nonlinear opt.imizat.ion algorit.hms. The key point. t.hat. dist.inguishes our work from

t.his body of research is t.hat. wc concent.rat.e on ext.raction as opJlc,od t.o fit.t.ing. Ex­

t.raelion is a gcneralizat.ion of fitting which finds t.he best sltbset of t.he geometric

dal.a described by a mode!. By contrast., in t.he fit.t.ing algorit.hms, t.he assumption is

made t.hat. ail geomet.ric daLa point.s belong to a single primitive.

The area of range image segment.at.ion is a rapidly growing subfield of computer

vision [Besl and .Jain, 1985, Besl, 1990, Besl, 1988, Boulanger and Godin, 1992,

Hoffman and .Jain, 1987, Fan et al., 1987]. While we also process data from laser

rangefinders, our work ext.ends beyond t.his category. The aforementioned papers

conccnt.rat.e only on t.he processing of dense range images. Our ext.raction algorithms

apply t.o bot.h sparse and dense range images. We process more than just range data,

and besides ext.ract.ing surfaces, also ext.ract curves. We lllake no assumptions about

t.he ordering of t.he geomeLric data points. In their most basic form our algorithms

operaLe on unordered data, which is not the case for most segmentation algorithms.

ExLraction is not the same as segmentation, but as we will show, a repeated ap­

plication of our extraction algorithm can produce a segmentation of the geometric

daLa.
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\\'hile the genetic algorithm (GA) t1eld has I)<'con\(' incl't'asinp;ly lll't.lt'r known

[Goldberg, 1988], its use in comput.er vision is st.ill l'are [Ilhanu d al., \!)!ll,

Ankenbrandt cl al" 1990]. Such an approach Ims ue\','r t.o om kuowl,'dp;,' h,'"u us,'d

to solve the problem of primitive ext.raction. The us,' of a minimal snhsl't. chromo­

some representation in a GA is also unique. We bclieve t.hat. fOI' t.ltis applinüion t.his

representation is superior t.o the traditional binary dll'Omosom,' l'l'pl'l'sent.al.ion used

in tlte GA lit.erat.ure [llolland, 19ï5].

1.5 Contributions

The main contribution of t.his t.ltesis is robust algorit.ltms for solving t.lte primit.ive ex­

traction problem. These algoritltms arc based on tlte minimal subsd represent.lttion

of the primitive. One of the solut.ions uses t.he random sampling of minimal sub­

sets. The other uses a genet.ic algorit.ltm, whiclt is oft.en 1110re efficieut. t.hau random

sampling. The minimal subset. represent.at.ion is used in bot.h cases.

The first. cont.ribution is an opt.imizat.ion modcl for primit.ive ext.raction. Wc sltow

that this task is cquivalent. to finding t.he value of a paramct.er vector wlticlt minimizes

a given cost function. Wc describe a variet.y of dilferent. solut.ions t.o t.ltis pl'Oblem by

changing the cost funetion. One implicat.ion of t.his opt.imizat.ion mode! is lL new

understanding of t.he robust st.at.ist.ics concept. of breakdown. Wc show t.hat. t.his im­

portant concept is orten misinterprct.ed, and is not. complctcly adequat.e for comput.er

vision purposes. Another implicat.ion is that a robust. l'OSt. fnnetion will usually have

many local minima. Thus t.here is an int.imat.e link bct.ween rohust.ness and t.he large

number of local minima of a cost. funetion. ln order to he succcssful, an ext.raction

algorithm must be able t.o find a value close t.o t.he glohal opt.imum of t.he cost. func­

tion from among the many local optima. For l'casons of efficiency t.his should he donc

with as few l'valuations orthe cost function as possihle.

Our solution to this optimizat.ion prohlem uses t.he concept. of minimal suhsct.s. Wc

show that for perfectly accurate geometric data, l'andom sampling of minimal subset.s

is probabilistically guaranteed t.o find t.he global opt.imum of t.he cost. function. For

12
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highly accurate geometric data the optimum found by random sampling will still be

dose to the glohal opt.imum. We demonstrate t.hat minimal subset random sampling

is a simple approach to solving the general prohlem of primitive extraction. We

study how ta choose tbe numher of random samples, how ta select a cost function

aud efficiently evaluate it, and how to map from a minimal subset ta a parameter

vedor. This mapping is necessary since evaluating the cast funciion requires the

par.under vector of the curve or surface. We investigate how an efficiep.t closed form

illlplementation of this mapping can be obtained by using elimination theory from

the field of symbolic algebra. Wc show that this can be done for a wide variety of

different geometric primitives.

This means that in theory onr approach could be used to build a general extrac­

tion system which takes the cquation of a geometric primitive to be extracted, and

produces a random sampling and genetic algorithm for extracting this primitive. The

reason for this generality is that the equation that maps from a minimal subset to a

parameter vector is the only part of the extraction algorithm that changes with the

geometric primitive. We demonstrate this in the thesis by using the same basic algo­

rithm for extracting a wide variety of dilferent geometric primitives. In our examples

the actual program that performs this mapping is created manually, and inser!'ed in

the extraction algorithm at the appropriate place. I-Iowever, because we create this

mapping equation in closed form using a symbolic method, it is possible in theory

to automate this procedure to generate the entire extraction algorithm directly from

the equation of the geometric primitive to be extracted.

The random sampling approach sometimes requires too many samples for success.

'1'0 decrease the numher of random samples, and therefore the number of cost function

evaluations, we apply a genetic algorithm (GA) to the extraction problem. Our

implementation of the GA is unique in that it uses a minimal subset chromosome

representation. A GA requires an initial population of potential solutions, and this

is created by a vaflcty of dilferent approaches. The GA operates on this initial

population by applying genetic operators to improve the quality of the solutions.

The resulting algorithm is often substantially more efficient than a purely random

13
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samp!ing approach .

The ability to implement our solutions on paraHl'1 hardwal'<' is ('"sl'nlial [01' r('al­

time performance, or when a large amount of gl'omelric dala is ill\·ol\'l'd. Ily pal'aH('li~­

ing the evaluation of the l'ost function it is possih!l' 10 achie\'l' suhslanlial spe(·dups.

These speedups arc obtained for both the random sampling and g(~n<'l.k algorit.hm

version of our extraction algorit.hm. This part of the algorit.hlll l'an hl' ('asily imple­

mented on a variety of paraHel hardware. Wc descrihe some possihll' impleml'nlat.ions

on a number of common architectures. The Cilse of paraHe1iuüion is 1\11 important

characteristic of our algorithms for primitive extract.ion.

1.6 Thesis Outline

Chapter Two discusses the prob!em of primitive extraction. We int.l'Oducc t.he op­

timization modc1 for primitive extraction and show t.hat. many previous extraction

a!gorithms are described by this mode!. Wc then define t.he concept of minimal

subsets, and show how the l'andom sampling of minimal subsets solves t.he genera!

probkm of primitive extraction.

Chapter Three gives an overview of the field of elimination theory whkh is con­

cerned with finding the symbolic solutions of a system of equations. In our algorithms

it is necessary to efficiently convert between a parameter vector and a minimal subse!.

Wc show that this conversion requires the solution of a l'articulaI' type of system of

equations. Elimination theory, in particular the Crabner basis algorithrn, is nsed to

achieve this goal. We demonstrate the application of eliminat.ion theory for a variety

of extraction examp!es.

Chapter Four applies the extraction algorithm to a variety of sitnat.ions. We deal

with the cases where therc arc mnltiple primitives, and mnlt.iple t.ypes of primitives.

We demonstrate the extraction of 2D curves, 3D curves and surfaces, and pracess

both sparse and dense geometric data. A comparison of our appraach to the Hough

transform, robust fitting approaches, and the minimal length encoding schemes is

made.
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Chapter l'ive introduccs the conccpt of a genetic algorithm (GA). Since GA's have

rarcly bœn used in computer vision, we spend sorne time defining the terminology of

this field. The basic theoretical and practical reasons for the success of the genetic

approach are discussed. We show how minimal subsets can be integrated with a GA,

and how this combined approach has many advantages over a traditional GA. This

hyhrid approach is then applied to the problem of primitive extraction.

Chapter Six discusses various hardware-assisted speedups for these algorithms.

This issue will become increasingly important as parallel architectures become more

widely available. Such hardware is necessary if real-time performance is to be

achieved, or if a large amount of geometric data exists. We show that by concen­

trating on the evaluation of the cost function our algorithms can be implemented

efficiently on a variety of parallcl hardware.

Chapter Seven contains the conclusions in which we expand on the contributions

in order to evaluate our work in a methodical fashion. We also sketch out sorne further

extensions to our work.

The appendices contain the solution to the various examples of elimination theory

described in Chapter Three.
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Chapter 2 Primitive Extraction Using Random
, Sampling

This chapter defines the probl('m of primitive ext.raction and pr(·sl'nt.s a g('n('ml soin­

tion to this problem. Primitive ext.raction is a generali~at.ion of fiUing. The inpnt. t.o

a fitting algorithm is some geometric dat.a, along wit.h a description of t.he primit.ive

to be fit to this data. The output is the primitive which is the best fil. to ail the

geometric data points. The input and output. of au extracl.ion algorit,hm m'e the siune

as for a fitting algorithm, with one important dilference. For litting t.he asslllnpt.ion

is made that ail the points truly be10ng to the geomctric primit.ive. An extmct.ion

algorithm does not make this assumption. Instead, it must choose the best subset

of the geometric data points described by the primitive. This sel. of points is called

inliers, and the remaining geometric data points are called outliers.

Extraction, like fiUing, can be modelled as an optimi~iüion Pl'Occss. In both cases

the criteria used to evaluate the goodness of a geometric primitive arc encoded in it

cost function. This cost function measures the error betwccn the geometric primitive

and the geometric data. The best primitive is the one which optimi~es the value of

this cost function, thus reducing the error. The optimi~ation model applies to both

extraction and fitting. However, for the extraction problem the cost function usually

has a large number of local optima. Each of these local optima l'l'presents a dilferent

division of the geometric data points into inliers and outliers. There are potentially

as many local optima as there are such divisions, which is a very large number. The

actual number of local optima depends on the percentage of outliers, and increa.~es

dramatically with this percentage. For fitting, on the other ham1, the nnmber of

local optima is fixed. In fact, there is often only a single optimnm vaine for a fitting

problem. It is possible to change the definition of the cost function in the extraction

algorithm to use different criteria for evaluating a geometric primitive. However, the

fact that the cost functions normally have a large number of local optima is common

to ail extraction algorithms. Because of the potentially large number of local optima,
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extraction is a computationally intcnsive task.

The goal of an cxtraction algorithm is to find the primitive for which the cost

fundion achieves its global minimum. In t,his case the inliers represent the best

consensus in the gcomet\'Ïc data with regards to the particular type of extracted

primitive. For example, if the primitive to be extracted is a line, the global optimum

represents the best line in the geometric data. Of course, the meaning of best is

intimatc1y rc1ated to the cost function definition. The efficiency of any extraction

algorithm depends on the number of cost function evaluations, sinee this is the most

computationally expensive step of any extraction algorithm. An efficient extraction

algorithm should find this global optimum with as few evaluations of the cost function

as possible.

Our extraction algorithm is based on the random sampling of minimal subsets. A

minimal subset is the smallest number of points necessary to unambiguously define

a geometric primitive. For example, for a line a minimal subset contains two points,

for a circle tlnee points, etc. For accurate geometric data, a minimal subset is a good

representation of ail the points bc10nging to the primitive defined by the subset. This

requirement for accurate data is reasonable given the fact that modern sensors have

a very high resolution, and are thus able to produce such data. The extraction algo­

rithm operates by repeatedly choosing a minimal subset of points randomly from the

geometric data, creating a geometric primitive through these points, and evaluating

the quality of the primitive using a given cost function. The primitive with the best

cost function score is the one returned by the algorithm. The minimal subset random

sampling extraction algorithm is independent of the cost function definition, and will

suceessfully operate with a variety of cost functions.

For perfectly accurate geometric data this approach is guaranteed to find the global

optimum if ail possible random samples are taken. Since there is a large number of

possible minimal subsets evaluating ail of them is not practical. We show that on the

average far fewer than the maximum number of sueh subsets need be evaluated in

order to have a high confidence of success. We diseuss a number of different possible

cost functions, and show when it is appropriate for each to be used. A number of
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simple ways to speed up the algorit.hm wit.hout rc,ort.ing t.o 'Iwl'Ïalllllrp",,' hardwan'

is also described.

Minimal subset. l'andom sampling has as it, basis methods from t.he field of rohust.

statistics (RS). This field is concerncd with the situation iu which the nnderlying

statistical distribution is uot Gaussian. A number of RS algorit.hm, use mndom

sampling, but not in the general fashiou which We descrihe. The rea.~on, for this

are two fold. First, the robust statist.ics communit.y uatlll'ally couccntmt.es on the

st,atistical properties of such approaches, and has less interest. in providing enicieut.

computational methods of solving the associat.ed opt.imization prohtem. Second, t.he

concept of breakdown used by this communit.y is inadequate for t.he computer vision

field. We believe that the current definit.ion of breakdown ignores t.he fact t.hat. an

essential component of any extraction algorithm is deciding on t.he significance of t.he

results. In other words, any extraction process always ret.ul'lls a geomel,ric primit.ive,

but this primitive may or may not. be significant.. It. is possible 1,0 use iL simple

statistical mode! to evaluate the significance of any ext.raction resnlt.. The breakdown

concept has hindered the use of RS-based approaches by ignoring t.his issue, which

wc will discuss later in this chapter.

In the computer vision field, the Hough t.ransform (lIT) also solves t.he primit.ive

extraction problem. The HT has been shown t.o be equivalent. t.o a repeat.ed t.emplat.e

matching process [Stockman and Agrawala, 1977]. The space requirementsof t.he IlT

are exponential in the number of degrees of freedom of t.he primit.ive. This rest.riction

is intrinsic to the operation of the HT, and limit.s it.s applicability t.o simple geomet.ric

primitives, such as lines. The HT is not easily adapt.ed t.o the ext.raction of more

complex primitives. Dy contrast, the minimal subset random sampling algorit.hm is

able to directly extract complex primit.ives, and is t.herdore more genera\.

While extraction is a generalization of fitting it is not equivalent to segment.a­

tion. Traditional segmentation algorithms find ail the primit.ives at. once, while our

extraction algorithm only finds a single primitive at. a time. 'l'his issue will be dealt

with in more detail in the the next. chapt.er. Here we on Iy discuss the problem of

extracting a single geometric primitive of a given type. We begin the chapter by

18



•
2. Primitive Extraction Using Random Sampling

diseussing fitting algorithms and thcir laek of robustness. Then we define the prob­

lem of primitive extradion more precisely, and discuss the liT-and R8-based solu­

tions. We present our optirnization model for fitting and extraction, and explore its

lIlost important implieations. Then we introducc minimal subset random sampling,

and show that this is a simple and general way of solving the extradion problem

[Roth and Levine, 1990a, Roth and Levine, 1992a, Roth and Levine, In Press]. We

discuss a number of important issues in the operation of the minimal subset ex­

tradion algorithm. We explore the issue of robustness and how to decide on the

significance of the extradion results.

2.1 Fitting Versus Extraction

ln bath extraction and fitting the input consists of N geometric data points in Carte­

sian space along with the definition of a geometric primitive as an imp\icit function,

I(Pi a) = O. In this notation pis a datum point, and a is the parameter vector. For

example, a 2D line is defined implicitly by the equation of ao +atX +a2Y = 0, where

the parameter vector is (aO,aha2), and the datum point is (X, y). The output of

the fitting process is the parameter vector a of the primitive which is the best fit to

the input points. In fitting, the assumption is made that ail the input points truly

belong to the geometric primitive. If this is not the case then the resu1ting fit can be

arbitrarily bad. Points which belong to the primitive are called in\iers, while points

which do not belong are called outliers. The ability of a fitting algorithm to t01erate

outliers is what we mean by robustness. A more formaI definition of this concept will

follow in this chapter.

Traditiona1 fitting procedures such as least squares are not robust, as can be seen

from figure 2.1. Part (a) shows a set of points in the plane, with a line fit to these

points. Part (b) shows a single additional point which is not part of the \ine, along

with the a line fit to ail the points. The resulting fit has been dramatically alfected by

this single point, and the estimate of the line is no longer accurate. This demonstrates

the lack of robustness of least squares fitting. This was the motivation for the creation
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Figure 2.1: Non-robust fittiug (a) Fit with ail iulicrs (c) Fit with ;~ siugll~

outlicr.

of robust algorithms for this task.

The extraction process is identical to litting, with one import,ant, dilferencc. In

primitive extraction the assumption is not made that ail of the input poiut.s hclong

to the primitive. Along with the parameter vector Ci t.he extraction algorithm must

choose which subset of the geometric data points are best descrihed by the given

primitive (the inliers) and ignore the rest (the outliel·s). The out.put. of primitive

extraction is the parameter vector Ci of the best primitive, along wit.h a division of

the input points into inliers and outliers. If ail the input points are inliers then an

extraction algorithm should producc the same results as a litting algorithm. Thus

extraction can be seen as a robust version of litting.

This is shown clearly in ligure 2.2 which shows our extraction algoril,hm to the

same data as figure 2.1. In part (a) where there are no outliers the results are the

same as the fitting algorithm. However, in part (b) the outlier has been ignored, and

the correct line has been extracted. Our delinition of extraction is not equivalent 1,0

robust fitting as used by the robust statistics community. This is because we do not

limit the percentage of outliers to 50% as is done in the robust statistics approaches.

Also our optimization model for extraction is able to describe extraction mcthods

from both the robust statistics lield (i.e. robust litting mcthods) and the computer

vision field (i.e. the Hough transform). Before we present this optimization model
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Figure 2.2: Robust extractiou (a) (;;xtraction with ail inliers (c) Extraction
with a single outlier.

wc will discllss in more dctail the Ill' and RS approaches ta primitive extraction.

2.2 Hough Transforrn and Robust Fitting

ln order to compare our methods to the Hl' and RS approaches it is neccssary to

havc a bettcr lInderstanding of these two methods. For this reason we will spend

sorne time explaining them in detail.

2.2.1 Hough Transforrn

The Hl' has had a long and varied history in the computer VISIon field

[Il1ingworth and KittIer, 1988]. Its first, and still main application is the extraction

of geometric primitives. The general principle of the Hl' is that each data point votes

for alI parameter combinations that could have produced it. First the parameter

spacc is partitioned into celIs (lIsllalIy rectangular) by quantizing each of the dimen­

sions of this space. Then each data point votes for every celI whose combination

of parameters could have prodllccd a geometric primitive throllgh the given point.

When alI the data points have been processed, the celIs which have more votes than

a given threshold are selected. The parameter vector associated with each cell de­

fines the extracted primitive, and the points that voted for each celI are the inliers.
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This is the standard description of th" liT that is gin'n in compul,'r "ision l,'xthooks

[Levine, 1985]. When stated in this form tlw algorithm is dillil'ult 10 und,'rstand 1",­

cause it is presented in a manner similar 1.0 the original impl"m,'ntation. lIow,'"er, it.

was later discovered that the liT is nothing more than a form of t,'mplat" matdling

[Stockman and Agrawala, 1!)77]. Since considerahle insight l'an hl' gain,'d into th"

operation and limitations of the liT using this vil'wpoint, this is the approach that,

we will take during our exposition.

An individual ccli in paramcter spal'!' desl'l'ihl's a s"t, of points in dolta space

which could have been prodnccd hy any geometric primitive whose plU'ametl'r "l'dol'

is contained in the ccli. These points taken together define a tl'mplate of the SlUne

shape as the primitive. When this template is applied t,o the gcometric dat,1l it nmtches

the set of points which would vote fol' this ccii in the standard liT algorit,llIn. This

makes it clear that the lIT is simply a Ume elficient, but space Ït\('lIicicnt way to do

template matching. Assnme that the templates defined by each œil of the paramct.er

space were matched against the geomctric data. Then a single point, conld potentially

be a member of many ccli templates, and would therefore be counted many separate

times. By contrast, the lIT processes a point only once by having it vote fol' ail

the cclls for which it is a member. This is more time efficient than direct. template

matching, but is less space efficient, since ail the l'clis must be reprcsented.

The relationship of the nT to template matching makes a number of limitations of

the approach clear. The first problem is that the template pl'Odnccd by a ccII depends

on the parameterization of the geometric primitive, on the ccli shape and on the ccII

size. It was observed that different parameterizations change the template slHLpe

[Duda and lIart, 1971]. Any reetangnlar ccII pl'Oduccs sorne distortion in the template

shape relative to the ideal situation, which is to reproduce exaetly the same shape as

the geometric primitive. When extracting Iines this distortion was lessened by llsing

the (p,O) parameterization instead of the usual slope-intercept pararneterizat,ion.

It is clear that both l'l'II shape and ccII size have a direct elfect on the template.

Because of the distortion produced by rectangular templates, other ccII shapes have

been proposed, but these complicate the voting process to such a degree that they
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are impradical. The template distortion lessens as the ccli size decreases, which

makes small cells desirahle. On the other hand, the smaller the ccli size the greater

the nllmher of cells, spacc and time reqllirements. Thlls ccli size and shape always

reqllire a compromise. Often in arder to have a manageable number of cclls, one

is forccd to lise a large ccli size, which in tum produccs a greater distortion of the

template shape, along with a decrease in the ability to isolate individual primitives.

Schemes in which the qllantization varies dynamically in a coarse to fine strategy have

bccn sllggested in arder ta decrense the storage reqllirements. However, this approach

does not work weil on complex imagery because their larger templates often contain

sp"rious points [Princcn et al., 1989].

The exponential storage reqllirements and distortions in template shape are prob­

lems that arc lInavoidahle when using the Hl'. The relation between the Hl' and

template matching makes it c1ear that these limitations are intrinsic to the Hl' and

cannot be overcome.

2.2.2 Robust Fitting

The field of robust statistics is one that has a long history [Hampel et al., 1986,

Hubei" 1981, Gentleman, 1965], but has only recently been discovered by the com­

puter vision community [Forstner, 1987, Besl et al., 1988]. Traditional fitting algo­

rithms assume that ail the input points are inliers and are not capable of performing

extraction as we have defined it. The robust statistics (RS) methods divide the geo­

metrie data into inliers and outliers, so they can be used for extraction purposes. We

will show however, that there are limitations, sorne more apparent than real, in using

these approaehes for primitive extraction.

The most important measures used by the robust statisties eommunity when dis­

eussing an RS approaeh arc statistiea! efficieney and breakdown point. Statistieal

efficieney is the ability of an algorithm to eorreetly recover the eharaeteristies of

the original data. It is the traditional measure used to evaluate a fitting algorithm.

Geometrie data are usually modelled as consisting of the original uncorrupted data

with noise added. When the distribution of the noise is Gaussian, then the least
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squares estimator is known 10 he Ihe mosl st.alis! kali)' dlkil'nl. l'si imalol' possihll'

[Walpole and Myers, 1989}.

While useful, statislica! efficil'ncy is nol a n\('asnrt' of l'Ohnslnl'ss. :\(,(,ol'llin~ to Iht'

robust statistics titcratlll'e t.his is n1l'asnl'l'd hy t.h,' hreakdown l'oint.. The followin~

explains the concept of hreakdown in int.nit,ive krills, while a mol'l' forlllai ,!Plinit.ion

l'an be found on page 9 of [Roussl'l'UW and Leroy, \!l8i]. 'Iltke a St't. of points whil'h

arc known to be described by a primitive (fol' exalllple, a set. of points whkh m'e ail

on a straight line) and perform a rohust lit t.o t.lll'se points. The l'l'sulting lin" is the

baseline which is assumed t.o be correct. Now, one at, a t.ime, l'l'place t.he good point.s

by outtiers (bad points which arc far frolll the tine) and perron" t.he fil, again using t.he

same robust fiUer. When the addit.ion of a single ont.lier t'an nmke t.he mlllput.,'d lit,

arbitrarily distant l'rom the correct fit" then breakdown has occlII'red. The hreakdown

point is the smallest pereentage of oulliers neeessary t.o nmke this h.~ppen. The bU'ger

this percentage the more robust the algorithm.

According to the titerature the maximum breakdown point of any mlmst fiUer

is 50% [Hampel et al., 1986, Huher, I!J81, Rous"eenw and Leroy, I!J87]. Wc daim

that while theoretically correct, the implications of this idea are not wellnnder"tood.

According to the definition of breakdown the robnst fiUer must he ahle to disregard

any arbitrary configuration of outliers. This means that no chara<:Leristic of the inliers

l'an be used to distinguish bctween them and the outliers, since the outliers could

possibly align themselves to produee a heUer fit to the primitive than the inliers.

This in tum implies that for rohust fitting to be sucees"fnl the inliers lIIust fonn a

majority [Hampel et Ill., 1986, lIuber, 1981, Ronsseeuw and Leroy, W87]. Thus the

50% limit is implied directly by the definition of breakdown.

While it is true that no estimator l'an have a breakdown point greater than 50%,

it is also true that even though breakdown has occurred, this docs not necessarily

mean that the wrong estimate will he produced. For this to happen the outliers Illusl.

actually align themselves to producc a better primitive than the inliers. Depending

on the goodness of fit of the primitive to the intiers, and on the numher of intiers and

outliers, this may or may not happen. Of course, the larger the percentage of outliers
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t.he lIlore likdy t.hat. t.his will occnr. We show wit.h a number of examples t.hat il. is

ind""c1 possible la lolerale 1lI0re lhan 50% oulliers, but. not in lhe absolule sense used

in lhe definilion of hreakdown.

ln slalislical applicalions rohusl fillers are normally used for regression problems,

where lhere is only one primilive (or model) f.l lo the data. In this case lhe tradi·

lional definilion of breakdown is natural, since if lhere is only one primilive and the

filling model is rea.sonable, then il is likely lhal al. leasl 50% of the points will be

inliers. However, for the primitive exlraction problem there may be many geometric

primilive'S in the data, and none may conlain a majority of the total points. In such

cases, a number of dirrerenl primilives may be equally good choices.

We will show thal lhe concept of breakdown is not as relevant 1.0 the computer

vision field as lo lhe slalislics field. We believe that a more important issue in any

robust process is deciding whether the results are significant. In other words, an

extraction algorilhm will always find a geometric primitive, but this does not mean

that this primitive should be accept.ed as valid. This issue is dealt with in more detail

in Section 2.5. We will show with a number of experiments that il. is possible 1.0 have

suceessful extraction with even 80% outliers. This kind of performance however, is

possible only for accurat.e geometric data.

2.2.3 Sorne Robust Fitters

The least squares method is statistically efficient, but has a breakdown point of 0%;

that is, a single outlier can cause the fit ta be arbitrarily bad. The most common ways

of achieving robustness in the RS Iiterature use M-estimators [Hampel et al., 1986,

Huber, 1981J. The idea is ta decrease the influence of outliers by weight.ing ihem

less during the fitting proeess. Let Pl,P2'oo 'PN be the N input points, and let the

geometric primitive be described implicit1y by an equation of the form f(p;ëi) = O.

For this example wc will assume that the error of fit (the residual) for geometric data

point Pi is equal 1.0 ri. To find the best fit using an M estimator il. is necessary 1.0

find the parameter vedor li that minimizes E~l p(ri). Here p is a positive definite

fUllction with a unique optimum al. zero. If p is chosen 1.0 square the residuals then
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the result is the least squares algorithm which Illinilllizes Li'::,\ (1·;)2 o""r CI. 1I0,,",'v,'r,

if p is chosen in such a way that points wit.h a larg,' elTor influenc<' t.he fit. less, t.h,'n

these points (which arc likely t.o be outliers) will be ignorl'll. This m,',U1s that t.h,'

robust fitting process \Ising an III est.imator is perfùl'lning ext.ract.ion, sinee the point.s

which arc c\ltliers arc Illarked as such.

Another common method for rohust fitting is the Least Median of Squarcs

(LMedS) algorithm [Ro\lsseeuw and Leroy, 1987]. This has beon de"doped for deal­

ing with outliers during linear regression, and has been uscd by a numbcr of vision

researchers [Roth and Levine, 1990b, Roth and Levine, 1!)!)Oa, Meer cl. a/., I!HJO,

Kim et a/., 1989, Tirunmalai and Schunk, 1989J.'1'he algorithlll is bcst, uudcrstood

by again considering the case of fitting a line to a set of N points. 'l'wo poims arc

required to uniquely define a line. The algorithm l'andomly selects 1\ sets of two

points (how [( is chosen l'an be found in section 3.1). For cach of the lines dcfillcd

hy these two points the residuals (errors) of ail the N points rdat.ive to this linc arc

computed and squared. Then the median of these squared residnals is found (t.he

median is the middle element of the sorted squared residuals) and associat.cd with

this particular set. The set which i.as the least mediall squared (LMcdS) crror is

the one which will he used 1.0 decide which of the N points arc inliers and which

are outliers. The inlier/outlier selection is made by examining the sqnared residuals

for the line associated with the set and discarding as outliers those whose residual is

1.00 large. The threshold used to discard outliers is labeled T, and is commollly set

1.02.5 X V, where V is the noise variance of the data. The reasoning bchind this is

that any point which is more than two and one half times the distance of t.he noise

variance from the geometric primitive is likely to be an outlier. These two robust

fitters are the most common ones used in the computer vision field.

Another recent example of a robust fitter that has been applied to a number of

computer vision problems is the MF estimator, which is an abbreviation of "model

fitting" [Zhuang et al., 1992]. Here the log likelihood function of the unknown dis­

tribution is modelled. This partial modelling takes place in terms of the Bayesian

statistical decision rule. This rule, along with a number of important hcuristics arc
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added to produce a procedure for actually computing the value of this estimator.

This work is similar to ours in that more robustness than the standard robust statis­

tics fitting procedures is claimed for the MF estimator. However, this issue has not

been addressed thoroughly. There is also little discussion of why the algorithm for

computing this estimator is successful. Thus, while somewhat similar to our work,

this is not a consensus-based approach.

As wc said in the introduction of this chapter, the robust statistics commu­

nity naturally concentrates on the statistical properties of various robust estimators.

This means that given a set of statistical assumptions, the maximum likelihood,

or Dayesian approach, is used to find an expression whose optimum value must be

computed to perform the estimation. However, the issue of how to find an efficient

computational method to actually perform this optimization is often not discussed

in any detail. This is what we concentrate on, and we will show by the optimization

mode! that we present in the next section that the kind of optimization problems

associated with primitive ext.raction have a certain commonality.

2.3 Optimization Model for Extraction

In this section we will describe our optimization model for primitive extraction. It

has long been known that fitting a geometric primitive to geometric data can be

framed as an optimization problem. What we will show is that not just fitting, but

extraction, which is a generalization of fitting, can also be viewed in this optimization

framework.

As we have noted previously the inputs to an extraction algorithm are N geometric

data points labelled PI'''' ,PN' along with the definition of a geometric primitive in

implicit form. The out.put consists of the parameter vector ëi of the best primitive,

along with the subset of the geometric data that belongs to this primitive (the inliers).

According to our optimization model the first step in any extraction algorithm is the

computation of the residual, whieh for point i of the geometric data is labelled Ti. For

a function J, which is a graph function, this residual is equal to J(pjëi) - p. However,
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for other types of functions it is dcsirable ta use thl' dose'st dist.ance' of t.hl' gi\'l'n

point ta the primitive as the residnal value. For planes and ot.hl'r simpll' primit.ivl's

this distance l'an be computed exactly in a c10sed fonn. 110wl'vl'r, t.h., dosl'd' form

solution for the closest distance for more complel' gl'OInet.ric primit.ivl's is sa unwie1dy

as ta be impractical [Nalwa and l'auchon, 198i, Prat.t., 198i]. ln faet, the prohll'm

of finding the closest distance ta a curve or surface is diflicu\t, for bath the paramet.ric

and implicit form [Besl and McKay, 1992].

For this reason the lirst arder approximation ta the closest distance is often used in

its place [Bookstein, 19i9, Sampson, 1982, l'aubin, 1!)91]. For the primitive delined

by implicitly by a function J the lirst order approximat.ion of the closest dist.ance of 1\

point Pta the curve or surface is the absolnte value of t.he function over the magnitude

of the gradient vector (RlIJ(Pia)I/IVJ(pja)ll. This expression is simple t.o calculate

and is frame-invariant, since the gradient opemtor produces the same vector in any

coordinate system. For primitives other than lines or planes this value is only an

approximation. However, as long as the point p is not too far from the curve or surface

the error is not signilicant. This function is adequate for our algorithm because wc

require accurate estimates of the residuals only when a given point p is close to the

curve or surface. This is because for the most common clMs of cast. fuuctions, the

fixed-band cast functions, the residual must be computed accuratc\y only for points

within the band size, which is normally a small distance. Computing these residuals

more accurately is difficult and computationally intensive [Besl and McKay, 1992].

We use this approximation ta compute the residuals for ail the examples iu the thesis

and have found it ta be sufficient for this application.

Given that residuals rh''', rN have been calculated, then an ext.raction algo­

rithm must find the parameter vector a which optimizes the value of a cast fllnction

h(rl, ... rN)' The cast function returns a scalar which measllres the "goodness" of

the primitive with the given parameter vector. The only restriction we make on the

cast function is that h(rh'" rN) '=: 0 for ail a, and that h(r" ... rN) attains its op­

timum value when the residuals rh" ., rN are ail zero. Since each of the residuals is

a function of the parameter vector a this implies that h is an indirect function of a.
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'J'he goal of primitive ext.raction is to find the parameter vector a, which optimizes

the cost function, that is to min. h(rl!oo ,"N) or max. h(rll ' ,. rN) depending on the

cost function.

With this modc1 it is possible to describe many different extraction and fitting

methods by using different cost functions, The following is a list of a number of

extraction and fitting methods, along with their cost functions:

• M-Estimation: h(rl!"" rN) = Ei~~ p(ri2) where p is a symmctric positive-definite

function with a unique optimum at zero.

• Least Median of Squares: h( rI! ' , , , rN) =median(r~, 00 , ,r~).

• Template Matching (HT): h(rI! 00 • ,rN) = E:~~ s(ri2
), where s is step functionj

s = 1 if ri is greater than or equal 1.0 the template width, and s = 0 otherwise.

We will now describe each of these cost functions in more detail. The least squares

approach is the usual non-robust fitting algorithm. It is weil known that the addition

of a single extraneous point (an outlier) to the input can cause the resulting primitive

to be an arbitrarily bad fit. The M-estimation approach [Hampel et al., 1986J and

the Least Median of Squares (LMedS) algorithm [Rousseeuw and Leroy, 1987J are

two methods from the RS field which overcome this lack of robustness. When using

M-estimators, p is chosen in such a way that points with large errors influence the

fit less, so these points (which are likely to be outIiers) are ignored. The LMedS

algorithm is another approach from the RS field, but it is not based on M-estimators.

Instead, the median of the square of the residual values is chosen as the value of the

cost function. If the outliers constitute less than 50% of the geometric data, then this

median operation will discard them. The HT is known to be equivalent to template

matching, where the templates are defined by each of the cells in parameter space. If

the cell size is small enough the templates are of fixed size and shape, and the HT

can be described by the optimization model by using the appropriate cost function.

In this case the cost fllnction reflects the nllmber of geometric data points inside a

template of a given width centered on the geometric primitive. It is dear that this
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optimization mode! can describe various fittiug aud ,'xt.ract.ion algorit.hms hy simply

using different cost functions. 'Ne say a cost. fundion is robust. if it. ean 1", uS"d for

extraction. Such a cost fundion must be able t.o lllark some of t.he points as inti,·rs.

and the rest as outtiers. A cost fundion whie.h is not. t'Obusl. can only be used fOI'

fitting, since il. assumes a1l the points are intiers. The first. cost fnnction we Imve tisted,

the least squares cost function, is not robust, while the ot.her t.hree eost fnnct.ions Me

robust.

For the robust cost functions there are poteutia1ly many 10<'111 opt.ima, which is

not the case for the least squares cost fuuctions. Each local optima cOl'l'esponds to

a different partition of the N gcometric data points into intiers and out\iers. 'l'he

intiers are points that are taken into account by the cost funcl.ion, and the out\iers

are ignored. Wc say that a geometric data point is marked as an outtier if its residual

can be increased 1.0 any arbitrary value, without changing the cosl. fnncl.ion value.

By contrast, an intier is a geometric data point which would change the cost function

value if the residual of this point were increased, even if this change is infinitesimal.

The best such partition into inliers and outliers is the one al. which the cost function

has the global minimum. Since there arc many such possible partitions, this means

that the maximum possible number of such local optima is very large. This maximum

number of local optima is equal 1.0 the number of ways of choosing a subset of size M

or less from N points, where M is the maximum number of possible outliers. M can

take any value from 1 1.0 N - R, where R is the size of the minimal subset. Thus the

maximum number of local optima is equal 1.0 the number of possible subsets, which

is 2(N-Rl. This number of local optima is only possible if the number of ouLliers is

equal 1.0 the maximum value (N - R). However, even for a sma1l number of outliers,

the number of local optima for a robust cost function may be very large.

Next we will consider a simple example which shows the multi-modal nature of a

robust cost function. In Figure 2.3 arc shown two lines that intersect al. the origin.

The lines are parameterized in terms of p and 0, where p is the distance of the line

from the origin, and 0 is the angle relative 1.0 the x-axis. In this case the equation of

the line is xcos(O) +ysin(O) - p =O. For both the lines in the ligure p is zero since
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Figure 2.3: Two orthogonallines in the plane.

the lines pass through the origin. One of the lines has a 0 of *radians, while the

other line has a 0 of 34~ radians. Figure 2.4 shows a three-dimensional plot of the cost

function value for a Hampel influence function versus p and 0, the line parameters.

From this figure we see that the cost function value has two local optima. Each one

of thesf' optima corresponds to one of the 2D lines. For both optima the p value is

zero, and they have the appropriate 0 values for each line. The global optimum is

when 0 equals *, which accords with the geometric data, since this line has the most

points.

We said that a point is an outlier if its residual can be increased arbitrarily without

changing the value of the cost function. This implies that for a given value of the

parameter vector a the following procedure can be used to label each geometric data

point as an inlier or outlier. For the given a, compute rI through rN, and then

compute h(rl,' .. , rN)' Now, for geometric data point i, set the residual ri to 00, and

recalculate the value of the cost function. If this new value of h is the same as the

value with the original ri, then this point is an outlier; otherwise it is an inlier. The

reasoning is that if the cost function value did not change when the residual increased

to 00, then this point has been ignored, and is therefore an outlier. Repeating this

31



2. Primitive Extraction Using Uandom Sampling

Figure 2.4: Hampel cost fnnction value for extraction of two Iines: Axes
are p and 9 value of the line.
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process for each input point categorizes the points as either inliers or outliers.

This optimization model shows the essential unity of various methods for fitting

and extraction. For a fitting algorithm the assumption is made that ail points arc

inliers, so a non-robust cost function such as least squares can be used. On the

other hand, for extraction this assumption does not hold, and a robust cost function

must be used. There arc many dilferent robust cost functions, however, they ail have

in common the fact that they usually contain many local optima. The goal of an

extraction algorithm is to find the global optimum of a cost function which may have

very many local optima. Because the number of local optima is often very large,

extraction is an inherently difficult problem. This is especially truc in comparison to

fitting, where the number of local optima is very small (often one). Since there are

N residuals to calculate, whcre N is the number of geometric data points, a single

evaluation of a cost function requires at least O(N) time. Since N may be large an

efficieut extraction algorithm must be able to find the global minimum, or a value

close to it, with as few evaluations of the cost function as possible.

2.4 Random Sampling for Primitive Extraction

One way to find the global optimum is to evaluate the cost function at the locations in

the parameter space defined by a repeatable grid. This is exactly what the HT does

by computing the cost function at the values of the parameter veetor iï associated

with each ceH in the parameter space. How confident we are that this procedure

finds the true global optimum depends on the cell size. The smaller the cells the

more evaluations of the cost function, and the more the confidence. As the cell size

approaches zero the number of cost funetion evaluations approaches infinity. This

brute-force approach can clearly be improved upon. It is also very inefficient for

primitives with high dimensional parameter spaces.

In the computer vision literature there are two widely used methods for

finding the global optimum of funetions with many local optima: continua­

tion methods [Blake and Zisserman, 1987, Leclerc, 1989] and stochastic methods
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[Corana et al., 1987]. While continuatiou methods arc eff,'cth'c, the)' assume a ,'ou­

tinuous l'ost function, which is 1,00 restrictive fol' Olll' optimizatiou modl'1. 'l'Ill')' also

do not actually guarantcc convergence to the global miuiuunu, CVl'n fol' pcrfect.ly ar­

curate data. Fol' these l'casons continuation methods will not be discusscd flll'ther.

The other approaches to finding the global optimum arc stochastically based, which

means the cost function is evaluated at random locations in the paramel.er spacc.

The best known of these stochastic methods is simulated auuealing, which is dcrived

from an analogy 1,0 the physical process of annealing. lt has bcen shown that if the

parameters of the simulated annealing pl'Ocess arc carcfully chosen, then convergeucc

1,0 the global optimum can be theoretically guaranteed. The main drawback is that

the number of evaluations of the cost function required to find t,be global optimum is

very high. Since evaluating the cost function is computationally expensive t,his is l'

significant disadvantage. For this reason wc do not use simulated annealing to solve

the optimization problem that wc have posed.

Given the fact that our cost function need not be continuous, it is dear that some

kind of stochastic process must be used 1,0 find the global minimum. Our approach

is 1,0 evaluate the cost function only al, the values of the parameter vector defined by

randomly chosen minimal subsets of the gcometric data. A minimal snhset contains

the smallest number of points neccssary 1,0 unambiguously define the geometric prim­

itive. If the parameter vector a of the primitive's implicit function J has dimension

R + 1, then J has R degrees of freedom. The reason that the dimension of a is one

greater than the degrees of freedom is that for a given point P, if J(Pi a) is zero, then

c x J(Pi a) is also zero fol' any constant c. R points arc necessary and sufficient to

unambiguously define a finite number of geometric primitives through these points.

Any such R point subset of the geometric data is called a minimal subset. For ex­

ample three points arc necessary and sufficient to define a circle. With two points

the cirde is underconstrained, while with four points the circle is overconstrained. In

this case there is exactly one cirde defined by the minimal subset. While there is

often only a single primitive through a minimal subset, this is not always the ca.~e.

For example, if the cirde has a known radius then the minimal subset is of size two,
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since there arc potentially two circles with the given radius. However, the number of

possible geomctric primitives defined by a minimal subset is fini te, and usually very

small.

There is a significant advantage to evaluating the cost function only at the values

of the parameter vector defined by each minimal subsct. This is the fact that there are

on\y a finite number of such subsets, and this number is equal to (~). For perfectly

accurate data, evaluating the cost function at ail the minimal subsets is guaranteed

to find the global minimum. Since (~) is bounded by NR the number of cost function

evaluations is therefore a polynomial function of the number of geometric data points

N. This is the main theoretical justification for the minimal subset approach. Other

methods of finding the global optimum cannot give any such bounds on the number

of cost funetion evaluations, even for perfectly accurate geometric data. We will show

that it is rarely necessary to evaluate the cost function for ail the minimal subsets in

order for successful primitive extraction. A much smaller number of randomly chosen

minimal subsets is usually sufficient.

The pseudo-code for the basic l'andom sampling extraction algorithm follows. The

input is a set of N points, the definition of the cost function h, and the primitive to

be extracted in implicit form.

For [( randomly c1Josen sets of R points
Do

1. Find t1Je parameter vector a of t1Je primitive t1Jrough all of the R points.
2. Compute the residnals rI, ... , rN of the entire set o[ N points with respect to

the gcometric primitive defined by f(pi a).
3. Rank t1Je goodness of t1Jis primitive by evaluating the cost [unction

h(rh ... ,rN)'
'1. Save the primitive witll the smallest cost along with the associated parameter

vectora.
Enddo

This basic mcthodology is a gcneralization of the resampling algorithms from the

RS field [Rollsseeuw and Leroy, 19871. The output consists of the parameter vector

of the best minimal subset, along with the cost function value. This information,

along with the definition of the cost function h, enables each of the N geometric data

points to be marked as an inlier or an outlier by the method described in Section 2.3.
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The time complexity of the algorit.hm is Olt. hest. 0(1\'1'). wh"n' 1\ is t.1\(· numl"'r of

randomly chosen minimal suhsets. and V is t.he t.ime t.ak,·n t.o evalnat.,· t.lw "ost. fun('­

tion. Wc assume that the1'1' N gcomct.rÏ<'. dat.a point.s, \VI' will show t.hat, <!"p"n<!ing

on the part.icular cost funct.ion the evaluat,ion t.inll' is nsnally O(N). 01' O(N log N),

The space complexity is usually O(N), hnt. for l'ert.ain l'ost. funct.ion it, nHlY Ill' larger,

In the next sections wc will consider cach of the impOl'tant part.s of the algorithm

in more detail. In this chapter we will ignore the issne of how to ,'onvet't bel.ween a

minimal subset and a parameter veetor whidt is ess'mtial for Step 1 of the algorit.hm.

For now, we will simply assume that this ability exists. This proccdlll'e, which is

instrumental 1.0 our approach, will be discussed in det.ail in Chapt.er Three.

2.4.1 Choosing K, the Number of Random Samples

The first question we will consider is how to select. 1\, the number of randomly chosen

minimal subsets. The maximum value of 1\ is (~), but as wc have stated this number

is 1.00 large for any reasonably sized N. Wc will show that. in most cas'lS a vaine of

J( much less than the maximum number is acceptable.

The value of [( depends on the minimum number of geomctric data point.s that

are expected 1.0 be on a single valid geometric primitive. It is usnally possible to set

this number (which we label as Y) direetly from the significance threshold of the cost

function, and this procedure is discussed in detail al. the end of Section 2.5. Let ( be

the probability of a single randomly drawn geolTletric data point. heing on the desired

primitive. The value of E is no less than Y/N, where Y is t.he minimum numher of

points that must be on a single geometric primitive for it 1.0 he accepted as valid, and

N is the number of geometric data points. The prohahility of ail of the R randomly

drawn elements of a single minimal subset heing on the primitive, that is heing inliers,

is ER. The probability of al. lenst one of the set of [( minimal suhsets being ail inliers

is labelled s, and s as a function of E, R, and [( is:

(2,1)
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This formula is a simple application of combinatorial aualysis and the same result has

beeu presentcd c1sewhere [Rousseeuw and Leroy, 1987, Fischler and Bolles, 1981).

The value of J( as a funclion ( and Il is:

J( = In(I-8)
In(l-cR)

(2.2)

If wc wish to have a high confidenee of suceessful extraction then 8 is set to a large

vnlue (nsually .95), and f( is chosen accordingly. However, this is a worst-case value

for /(. The expected value for J(, which can be found by setting 8 equal to .5, will

be less.

For most values of c the value of J( required for successful extraction is much less

than (~). This is demonstrated in Table 2.1 which lists the required [( for the case of

c = .5 (50% inliers) to rcach 95% and 50% confidence of success (8 = .95 and 8 = .5).

That so few minimal subscls are neccssary is surprising. The explanation is that K

as defined in the previous equation exhibits a definite threshold elfect, being close to

(~) only for small values of c. This is demonstrated in Table 2.2 when e is computed

for 8 = .5 and 8 = .95 with varying f( and R. This table shows what fraction of

inliers we are sure to find (95% confident), and what fraction wc are likely to find

(50% confident) with J( randomly sampled minimal subsets. For example, assume

we are searching for a circle, which makes R equal to 3. Then if K is set to 640 we

see from Table 2.2 that we are 95% certain of finding a circle with at least 16% of

ail the points (e of .16) and 50% certain of finding a circle with at least 10% of all

the points (e of .10). This table demonstrates that for many values of e the required

value of K for successful extraction is not excessive.

If it is not possible to estimate e, then there is no principled way to set K. AlI

that can be done is to take as many random samples as are practical. However, the

previous formulae can still be used to compute what size of primitive shouid have

been successfully extracted with K samples. Thus again in relation to the previous

example, if we are searching for a circle and have taken 640 randomIy sampled minimal

subsets, then we are 95% certain that wc will find any circle that has at least 16% of

37



•
2. !'rimiliv,' Extraction llsin~ Handom Samplill~

Si=c of minimal subsd li Numbcl' of '1"';,,1.< h'
."i - .95 s - .50

1 5 2
2 Il :1
:1 2:1 (\

4 ·Iï 12
5 n5 2:1
6 191 45
ï a82 sn
8 ïH6 lï8
9 15:1:1 :156
10 :l06ï ïlO

Table 2.1: The number of trials /\ for 95% a.nd 50% conlidl'nœ \Vith 50%
inliers for a. given size of minimal subset Il.

No. of Subsels J( ( fol' S = .!)5 and s = .50 confidcncc
R-2 R-:I R-4 R-5

10 .50.25 .H:I .'10 .ïl .50 .ï6.58
20 .:lï .18 .51 .32 .61 .'12 .6ï .50
40 .26.13 AI .25 .59.'1,1 .5!) .'14
80 .19.09 .33.20 .'13.30 .51 .38
160 .13.06 .26.16 .3H .25 .'15 .3:1
320 .09.04 .21 .12 .31 .21 .39 .29
640 .06.03 .16 .10 .26.18 .34 .2.~

1280 .04 .02 .13.08 .21 .15 .29.22
2560 .03 .016 .10.06 .18 .12 .25.19
5120 .02 .010 .08.05 .15 .10 .22 .16
10240 .01 .008 .06.04 .1:3 .09 .19 .14

Table 2.2: The fraction of inliers on a single primitive (c) found \Vith 95%
and 50% confidence \Vith J( random sullsets for Il from 2 to 5.

the total number of points.

2.4.2 Selecting and Evaluating the Cost Function

In step 3 of the basic algorithm we must rank the primitives defined hy each of the

minimal subsets. In order to do this a particular l'ost function must he selected. The

input to this l'ost function are the residuals of 11.11 the geometric data, which depend

on the parameter vector a. The l'ost function retllrns a scalar which mcasurcs the

"goodness" of the primitive with a particlliar paramctcr vcctor. The lowcr the l'ost
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flludiou vaIlle, the heller the primitive. In Section 2.3 wc have listed a number of

<:ost fllnclious, hllt this list does not exhaust the possihilities. Even though there arc

lIIauy possihle cost fllnclions in ollr experieucc most of them can be classified into

two categories, fixed·band or variable·band. Each of these categories makes different

iL"surnptions ahout the geomclric data.

We say a cost funclion is in the fixed·band class if any point whose residual value

is greater than a fixed threshold is marked as an otltlier. This threshold defines

what wc cali a fixed-band around the geometric primitive. Outside this band are the

outliers, and inside this band are the inliers. In many applications the band size can

he sensibly set from the variance estimate of the noise present in the geometric data.

This in turn can usually be obtained from an analysis of the sensor and the data

creation process [Amid et aL, 1988J. In our experiments we have found il fixed-band

cost funclion produces good results. The infiuence functions in the RS field are an

example of a fixed·band cost function, as is the cost function used by the HT.

If such a variancc estimate is not available then a variable·band cost function is

a better choire than a fixed·band cost function. An example of such a function is

the Least Median Squared algorithm (LMedS) [Rousseeuw and Leroy, 1987J. Here,

the assumption is made that at least half of the points belong to a single primitive.

Assume the squared residuals of the N points are sorted from smallest to largest.

Then Icl r, be entry number ! in this sorted list of squared residuals. For the LMedS

algorithm 1is set to N/2, which means that the cost function Il = median(r~, . .. ,r~).

This approach can be easily adjusted to situations where a single primitive is known

to contain not half the geometric data, but any specified fraction. This is done by

setting 1 to the minimum number of expected inliers in a single primitive, instead of

using the value of N/2. Such a cost function is equivalent to a variable-band whose

size is adjusted to contain exactly the required percentage of inliers. In the same way

as for a fixed-band cost function, inside this variable band are the inliers, and outside

it arc the outliers.

For the fixed-band cost function the user sets the band size, and for the variable·

band cost function the user sets the required percentage of inliers. In both cases the
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user must decide whether the extraction results ar.- signifieant hy looking at t.11l' cost

function value of the rcturned bcst primit.ivt'. Tht' fixt'd-hand cost fundion vaine

indicates the number of inliers on the best primit.ive, whilt' t.ll<' variabll'-hand <'ost

function indicates the band size of the best primitive. Thns the fixcd-and variable·

band cost functions arc dnals of one another.

2.4.3 Speeding up the Evaluation Process

From the pseudo-code of the random sampling algorit.hm it is clear that. t.lw most

expensive step in our algorithm is the evaluation of the cost. function. If t.here arc

N points, then this operation sccms t.o requires at least O(N) time. For Iixed·band

seoring the cost function evalnation can be c1early donc in O(N) t.ime for both the

average and worst case. The variable-band cost function described in the l'revious

section requires the computation of the clement in position lof the squared residuals,

sorted from the lowest to the highest value. This is known as an order statistic and

algorithms exist to find these in of O(N) time on the average [Aho ct Il/., 1975). It is

clear that since N, the number of geometric data points may be quite large, evaluating

the cost function is a potential computational bottleneck.

We will show that therc arc ways of lowering the time complexity for cost funct.ion

l'valuation. We will described the following methods of achieving this goal:

• Prior Constraints on the Primitive

• Using Primitive Generation Routines

• Local Gradients

• Subsampling

• Hierarchical Da.ta Structures

Note that none of these methods use parallel hardware. Using such hardware to speed

up the cost function l'valuation is an issue that wc will explore in detail in Chapter
il .

Six.

.'"
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Idcally wc would likc to he ahle to discard a primitive through a minimal subset

without cvaluating the cost function. There arc two ways this can be done. The

first way is to use a priori constraints on the primitive, and the second is to use local

gradients. Both those methods are import.ant because avoiding the cost function

evaluation stage can provide a dramatic increase in performance. This is because

generating the equation of a potential primitive from a minimal subset is usually

much faster than actually evaluating the cost function for the primitive, especially

for large N.

There are often prior constraints on the size or orientation of a primitive that is to

be extracted. For example, if the primitive is a circle it may be that the circle center

is known at least approximately, or that the approximate radius of the circle is known.

Then any circle prodllced by a minimal subset which does not mect this constraint

can be discarded withollt evalliating the cost function. A possible constraint for a

line is that its angle relative to one of the axis be in a given range, and Iines which do

Ilot meet this angle constraint could be discarded. By using such prior constraints to

discard a minimal subset we are able to speed up the extraction process considerably.

There is a method which has considerable potential to speedup the fixed-band

cost function evaluation for 20 curves when the sensor data consists of 20 geometric

data, such as the edge points obtained from an intensity image. The extraction of

20 curves such as Iines, circles and ellipses, from such data is a common problem.

This approach can be applied to these and other types of 20 curves. In many curve

extraction applications the cost fllnction that is used most often simply counts the

number of geometric data points within a small band of fixed-size around a given

curve. This type of cost function is equivalent to traditional template matching, and

is a fixed-band cost function. The obvious way to do this matching is to compute

the distance of each of the N data points from the curve, and then to count ail the

points that are within the fixed-band. Using this method the time taken to evaluate

the cost function is O(N).

Our idea is to match these curves against the 20 geometric data by using an

incremental curve generation algorithm. Such algorithms are widely used for drawing
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Figure 2.5: Incremcntal drawing rontincs (:L) Pixels for 1L line (c) Pixels ror
an arc of a circlc.

20 curves on the bit-map screens of graphic displays [Hegron, l!J88, Bresenham, l!Ji7,

Bresenham, 1965, VanAken, 1984]. Two examples of their output arc shown in Figure

2.5. First we take the list of 20 geometric data points and map I.hem onl.o a binary

20 array. This is donc by setting the associated array clement of the geometrk data

point to one, and sctting ail the other array clements to zero. Using this army we

can compute the cost function value for each hypol.hesized curve hy execul.ing an

incremental curve generation routine.

More precisely, the input to this routine is the equation of the cnrve produl'ed by

the random sampling process, and the hinary array containing the 2D geometric data

points. The curve generation routine then produces the array indices of each point

on the curve. This is done by moving along the l'urve to be matched from point to

point in a very efficient manner. Normally these routines arc llsed to draw the l'urve

by setting each pixel in the associated binary array to one. Instead of drawing the

curve, we simply count the number of array points that are a!so l'nrve points. This

count represents the number of 2D geometril' data points thal. arc within the fixed­

band template around the l'urve. If the template is more than one pixcl in widt.h we

simply generate the indices of the pixcls for a t.hicker l'urve [Wallis, 1990]. However,

as the templat.e width inl'reases more and more point.s will he on t.he l'urve. Therefore

this approach will he efficient. only if t.he fixed-hand size is small (four pixels or less).
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l1owevcr, for rnany extraction applications from 20 geomctric data this is indeed the

"iL"'. The rcason is that these 20 gcomctric data points arc usually produced by the

process of edge dctcction in intcnsity images. Such edges arc normally at most a few

pixels in width.

With this approach the matching time is O(Z), where Z is the number of pixels

on the l'urve, instead of O(N), where N is the number of the geometric data points.

The value of Z depends on the curve and the band size. I-1owever, for most curves

and band sizes, Z is fairly small. For example, assume the edge points arc produced

on a standard 512 by 512 intensity image. Then for line extraction with a fixed-band

size of one pixel Z, the maximum number of points on the line is 750. The main

advantage of this method of template matching is that Z is independent of N, the

number of geometric data points. This means that as N increases the execution time

of this method of template matching does not increase. In other words, as long as

the perccntage of points on the curve stays the same, the time taken to extract the

curve does not change as the number of geometric data points N increases.

There are available efficient incremental drawing routines for lines, circles, parabo­

las, and ellipses [I-1egron, 1988, Bresenham, 1977, Bresenham, 1965, VanAken, 1984].

ln fact, some of them have been implemented in VLSI hardware [Asal et al., 1986].

In principle, the same incremental drawing approach can be used for any curve de­

fined byan implicitly [Chandler, 1988]. On seriaI computers the typical rate at which

snch cnrves can be matched is in the order of several hundred l'cr second, while with

VLSI implementations this increases to several thousand. Using fast VLSI drawing

hardware for curve matching in this fashion has the potential to achieve real-time

performance for matching. This means that the primitive extraction algorithm could

also be donc in real-time for these types of curves, since the matching phase is the

most compntationally intensive part of the extraction algorithm.

Another way to discard a primitive without evaluating the cost function is to use

local gradient mformation. Il is often possible to obtain a local gradient estimate for

each geometric data point. For example, if the geometric data consist of edge points

in an intensity image, then these points were produced by thresholding the output of
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a local gradient operator. In this cas!' th!' gradient "l'l'lor is a direct hy-prodnl'l or

this operator. For three-dimensional data il. may be the ca.,,~ that the \ocal sll1'race

normal (the three-dimensional gradient vedor) is available in a similar way.

When available, local gradient !'stimates compnted rmm tlll' gl'omdric data <'an

be compared 1.0 the predicted gradient rrom the implicit rorm or th!' gl'onll'l,ric prim­

itive. Then the cost fnnction evaluation need be done only ir thes!' two ('stinmtes

are approximately the same. The computed gradient is obtained rrom the geOludric

data; the predicted gradient is obtained from the implicit fundion J. 'l'Ill' gradient

vedor consists of the partials derivatives of J with rcspect to a',11 (and:: roI' thrl'e'

dimensional data). This is the predicted gradicnt vcdor, and roI' a givcn geomct.ric

data points il. should be approximatcly the same as the comput!'d gradient vedor.

For perfect data the match should be exact; in reality the degree or acceptable dir·

ference between the two is a threshold set from the l'l'solution of the geometric diÜi,.

The utility of this approach depends on the accuracy of the geomdl'ic data; the more

accurate the better the gradient estimates which means that more miniuml subsets

l'an be discarded in this fashion.

Another way 1.0 speed up l'ost function evaluation is by subsampling the geometric

data. This means using only a subset or the N geometric data points (say Q points

out of N) 1.0 evaluate the primitive. These Q points might be chosen randomly rrom

the N points, or selected in any rashion that is appropriate. Ir Q is considerably less

than N then the decrease in execution time is substantia1. This idea ha.~ been applied

previously 1.0 the HT [Kiryati et al., 1991]. However, the optimal choice of Q, and the

resulting computational savings are problem dependenl. U ha.~ bccn experimentally

found that for complex images, Q may need 1.0 be a.~ large as N12, while for simple

images Q c"n be as small as NilO. For this reason wc do not advocate this rnethod

of speeding up the l'valuation of the l'ost function.

Another method that l'an be used 1.0 speed up the l'valuation of the cost runction

is the use of a hierarchic data structure. The idea is to use such a structure to avoid

processing ail N geometric data points during the l'valuation 01 the l'ost function. In

this way, the time taken 1.0 evaluate the l'ost function decrea.~es. Such a data structure
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Figure 2.6: A kD trcc for a set of points (a) the recursive trcc structure
(b) a line superimposed on the tree structure

describes the geometric data in a hierarchical fashion. The top node in the hierarchy

contains ail the data, which are subdivided in a recursive fashion until finally the

actual points themsclves are obtained [Aho et al., 1975]. The data structure we have

chosen to demonstrate this concept is a kD tree, but the idea will work with any

hierarchical data structure. A kD tree is a recursive binary tree used for storing

and operating on records containing k dimensional keys. In our case, the keys are

simply the N gcometric data points. The creation of such a data structure from the

geometric data points is described in the literature [Samet, 1984]. In figure 2.6 part

(a), wc show part of a kD tree for a set of two-dimensional points. The root of the

trcc is the entire set of points, and each node starting from the root has two children.

Each of these children arc subtrees that contain exactly half of their parents points.

This recursive subdivision process is normally repeated until anode contains a single

point. However, in this example we show the nodes only to a fixed depth in the tree.

In figure 2.6, part (b), a line obtained by the random sampling process is super­

imposed on the kD tree structure. We assume that a fixed-band cost function is used

to evaluate the line. This means that the number of points that are within a fixed

distance of the given geometric primitive must be counted. Normally this requires

the computation of the distance of each point to the primitive to decide if it is within
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the lixed-band. However, we will show that with the kD tree strllcture this is Ilot tilt'

case.

Consider the corners of the bounding box of an)' givell node of th" lrt'<' as shown in

ligure 2.6 and their relationship to the lixed·band surronnding the primitive. For now,

we will assume that the band size is a single pixel. If the corners of the box arc on

the same side of the primitive, then none of the points iu this node or its descendents

l'an be in the lixed-band. This means that evaluating the cast fuuction requirl," not

O(N) time, but O(R+ /og(N» time, where R is the expected number of points in the

lixed-band. This complexity ligure is derived from an analysis of the l'ost of searching

a kD tree (Samet, 1984]. For a small band size the expected number of inliers Il is

considerably less than N, so at least in the asymptotic case (as N becomes large),

this is a signilicant reduction in the time complexity. For the variable-band case, the

time comp!exity is similarly reduced ta become O(/og(S) x (Il + /o[J(N»), where S

is an upper bound on the variable-band size. The idea herc is ta do a binary search

at different band sizes until/ points arc in the band, where / the reqnired number of

points.

Of course, whether such a data structure is warranted depends on the nnmber of

geometric data points N. The complexity ligures only guarantcc that as N increases

there will always be a point where using kD trcc becomes more efficient. However,

this crossover point l'an only be determined experimentally by comparing the rnnning

times of actua! implementations with and without kD trees. The use of a kD tree

shows that it is not strictly necessary to interrogate ail N points to evaluate the cost

function for certain types of geometric primitives.

2.5 Robustness of Extraction Algorithms

An issue which was discussed previously is that of robustness. We have stated in Sec­

tion 2.2.2 that the robust statistics concept of breakdown is inadeqllate for computer

vision purposes. There, wc made the claim that in practice a robustness of more than

50% is indeed po.giLle. In this section wc will discuss the issue of robustness in more
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detail. The robust statistics community has consistently stated that the maximum

possible robustness is 50% outliers, and has used the concept of breakdown to justify

this daim [llampel et al., 1986, Buber, 1981, Rousseeuw, 1984). More recently, an

analysis of the liT has conduded that it can deal with more than 50% outliers, but

uot with the case where the inliers are but a very small fraction of the input data

[Grirnson and Buttenlocher, 1990]. We daim thatthe HT and the influence function

rnethods can both be described by our optimization model with the appropriate fixed­

band cost function. Since the cost functions are both of the same type, the maximum

possible robustness of both approaches should be equal, which does not agree with

the literature [Forstner, 1989].

For lixed and variable-band cost functions we will show that experimental1y a

robustness of greater than 50% is indeed possible, but not in the sense defined by the

idea of breakdown. The question then is what is the maximum possible robustness·

that can be achieved by a robust extraction method? '1'0 answer this question properly

we must look at the question of robustness from a different vièwpoint. A robust

extraction procedure will always return a result for any given problem. We believe

that for primitive extraction the important issue is not robustness as defined by the

concept of breakdown, but how to decide on the significance of the result. Clearly as

the percentage of outliers inc.reascs, at. sorne point .the result will not be significant.

Thus for lixed and variable-band cost functions, we define the maximal robustness as

the largest percentage of outliers for which the result is insignificant.

One way to decide on significance is by using a simple statistical mode\. Assume

that our extraction procedure finds a given geometric primitive with a particular

cost function value. There are a number of inliersj that is geometric data points

that belong to this primitive. Let us assume that the geometric data points are

uniformly distributed. Then the probability of this many inliers being randomly

aligned in such a way that their cost function value is greater than or equal to that

of the extracted primitive can be computed. '1'0 compute this probability it is first

necessary to compute the probability of a single uniformly distributed geometric data

point being an inlier. This is equal to the band size of the cost function (fixed
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or variable-band) divided by the total volume or area ('O\"'l'<'d hy 1.1)(' ~"t'"(}I'. Thi~

computation requires a kuow\edge of the ~eU~or aud it~ operatiug paramet"t·~ aloug

with the definition of the geometric primitive, and of cour~e the hand ~iz".

The following example illustrate~ the approach. For a giwn co~t fund,iou h, \Vl'

tet B equal the inlier band size divided by the total area (or volume) cover"d hy

the sensor. If the geometric data is dist,ributed unifOl'm\y, t,hen the prohahility of a

single point randomly falling in this inlier baud is 8. Givcu N geolllctric data points,

the probability of exactly t of thcm being iuliers is given by the following hiuomial

distribution:

(2.:1)

This means that the probability of 101' more inliers occurring at t'llndom (l'>I) is equal

to:
/-1

P~I = 1- 'EPI
1=0

(2.'1)

Using this last formula (which was also derived in [Grimson and l1ut.t.enlocher, 1990]

and in [Stewart, 1991]) it is possible to compute the significance of any plLl'ticular

extraction result.

As an example, consider the situation where the goal is to extract a line from l'lIge

points. Assume the input consists of edge points from a 2D image in which the sensor

area is 512 by 512 picture e1ements (pixels). Table 2.3 shows P>t. the prolmbitity of

an accidentaI alignment of 1or more inliers when B is compnted for a fixed-band cosl.

function of width one to four pixels. In this example the number of geometric data

points N, is 1000. For line extraction with a fixed-band l'ost function the value of

B is easily computed. For example, if the fixed-band has a width of two pixels, the

total area of this inlier band is 1024 pixels, assuming a maximum line length of 512

pixels. This makes B the probability of a single point falling randomly in this intier

band equal to 1024/512 x 512, which is 2/512. From this table wc sec that at lea.~t

'dght inliers must be present to have a less than 5% chance (4.54% to be exact) that,

! these inliers arc the result of an accidentai alignment.

The same statistical analysis has been made of the HT when it is used for the
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No. of /1llicr.. Prob. of accidc1ltal alig1lmc1lt
1 B = 1/512 B - 2/512 B - 3/512 B - 4/512
1 .8584 .9800 .9971 .9996
2 .5814 .9017 .9804 .9965
3 .3106 .7484 .9314 .9843
4 .1343 .5483 .8355 .9525
5 .0483 .3528 .6948 .8900
6 .0148 .2000 .5300 .7920
7 .0039 .1007 .3692 .6641
8 .0009 .0454 .2349 .5210
9 .0001 .0184 .1368 .3811
10 .0000 .0068 .0732 .2598

Table 2.3: The probability of 1inliers (or more) appearing accidentally for
various valucs of B with N cquals 1000.

purpose of pose determination [Grimson and Huttenlocher, 1990]. The conclusion is

that the HT will not fundion when the percentage of outliers is very large, and this

is said to be a significant drawback of the method. In fad, our analysis shows that

this problem is not particular to the RT, but is inherent in any extraction process. If

the number of inliers is below a certain threshold the result is likely to have occurred

because of an accidentaI alignment of points. The significance threshold increases

with band size since for larger sized inlier bands there are likely to be more accidentai

inliers. This is clearly seen in table 2.3 which shows a rapidly increasing probability

of accidentai alignment for larger inlier bands (increasing E). Rowever, it still may be

the case that a result with more than 50% inliers is significant. This is demonstrated

in Figure 2.7, in which lines are extracted from two-dimensional geometric data. The

original line was created synthetically and the noise points were added uniformly

across the entire image. In part (a) of this figure, the correct line has been found

even when the outliers constitute 80% of the total number of points. Part (b) of the

same figure shows that if enough noise points are added, then eventuaUy breakdown

occurs, and the originalline is not found. However, it took far more than 50% outliers

for this to occur.

Like ail statistical models the usefulness of computing the significance threshold

in this way depends on whether the data meets the assumptions, which are that of
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Figure 2.7: Extracting lines from noisy dat;~ (a) 80% ontliers (b) 95%
outliers.

a uniform distribution. In any realistic situation this statistical model does not hold

perfectly and the actual setting of the significance thrcshold is nsnally determined

empirically. It will always be a tradeoff bctween the number of false alarms and

the ability to find geometric primitives. What we have shown, is that an extraction

result may be statistically significant even with fewer than 50% ont.liers. Thus while

breakdown is an intuitively appealing concept, it obscures the important point that

the user of any robust method is still responsible for determining whcther the primitive

returned by the extraction algorithm is significant.

The setting of the significance threshold also has another important use for a

fixed-band cost function. This is to provide an estimate of f, the probability of a

single randomly drawn geometric data point being an inlier. This issue was discussed

briefiy in Section 2.4.1, in which f is used to compute [(, the required number of

randomly sampled minimal subsets. For a fixed-band cost function the signilicance

threshold (which we have called Y), is the minimum number of inliers that must be

in a primitive in order for it to be accepted as valid. If therc arc N geometric data

points, then the probability of a randomly drawn point being an inlier is Y/No This

is the value of f, from which [(, the maximum number of randomly sampled minimal
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subsets ncœssary for successful extraction, can be computed. If J( random subsets

arc choscn and no primitive is found with at least Y points, then we can be confident

that therc is no such primitive (sec Section 2.4.1). Since there is always an implied

significance threshold for any extraction algorilhm, using this threshold to estimate

( is a principled way of computing [(, the required number of randomly sampied

minimal suhsets.

2.6 Summary

ln this chapter wc have defined the concept of primitive extraction. We have shown

that the problem of primitive extraction is a generalization of fitting. In extraction

the goal is to find the hest subset of the geometric data points that belong to a given

type of geometric primitive. We showed that this is equivalent to finding the global

optimum of a cost function which usually has many local optima. This optimiza­

tion modcl is applied to a nnmber of extraction algorithms. The minimal subset

principle is then defined, and is the hasis of our minimal subset random sampling

algorithm for extraction. This algorithm is guaranteed to find the global optimum

for perfectly accurate data if ail possible random samples are evaluated. The num­

her of random samples necessary for successful extraction is usually considerably less

than the maximum. Sorne ways are described to decrease the execution time of this

process without using parallel hardware. The issue of the robustness of an extraction

algorithm is discussed in detai!.
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• Chapter 3 Elimination Theory for Solving Conversion
Equations

This chapter discusses the use of c1iminat.ion t.heory t.o conVl'rt. hdween t.\". mini·

mal subsct points and the parameter vectOl' dcfining t.he gl'omdric primit.ive, Ily

using elimination theory the equations mappiug a minimal suhse!. 1.0 a pamme!.,·r

vect\lr arc produced in c10sed form, which makes t.hem very d!icieut t.o evalnat.e.

This is an important advantage of a symbolic approach over a numerical appl'Oach

[Buchberger, 1989], The abilit.y 1.0 producc this mappiug, and t.o evalual,e it. ellicient.ly,

is essential t.o t.he operation of our primitive ext.raction algOl'i'.lull.

The general issue of how gcomet.ric primit.ives al'e represented is an important. one,

and is discussed in the beginning of the chapter. We t.hen give an overview of t.he field

of elimination theory, and describe the l'articulaI' appl'Oach wc have choscn. This is

called the Grobner bases approach [Buchberger, 1985), and wc show why wc prcfcr

il. over resultants, the other main alternat.ive, The first. use wc make of e1iminal,ion

theory is 1.0 convert from t.he parametric 1.0 the implicit. form of a geometric primit.ive,

This is followed by a number of applications of eliminat.ion theory using examples fl'Om

Charters Two and Four.

3.1 Representing Geometrie Primitives

In model-based vision the assumption is that each object is described by a set of ge­

ometric primitives. This degcription is normaily containcd i') ~. CAD database. The

gcometric primitives in such a database are usually defined in paramet.ric form. How·

l'ver, I)ur algorithms require that these primit.ives be in implicit. form. The paramet.ric

form is also sometimes called the explicit form, since each coordinat,e is writtell ex·

plicitlyas a fundion of a number of parameters. A 2D curve is defined in parametric

form as a set of points S in the following fashion:

S = {(x,y): x = f(t),y = g(t),t E R} (3.1)
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Silllilarlya :lD curve is defined as:

s = {(x, y, z) : x = J(t), y = 9(t), z = h(t), tER}

A :11) surface is defined as:

(3.2)

s = ((x,y,z): x = J(u,v),y = 9(U,V),z = h(u,v),(u,v) E R2
} (3.3)

ln this notation the domain of the paramcters t, u, and v is R, the set of real numbers.

A curve is parameterized by a single variable (t), while a surface requires two (u, v).

The parametric form is ideal for generating and manipulating the shape of a curve

or surface. The points on the curve or surface can be generated by varying the

parameter(s) through a range of real values. The curve or surface can be 1"'1anipulated

hy rewriting the parametric form in terms of control points. Then the shape of the

curve or surface can he easily and naturally modified by moving these control points.

Since generation and manipulation arc the most common activities in CAD systems,

the parametric form is very useful [Foley and Dam, 1982, Faux and Pratt, 1979].

A curve or surface in implicit form is defined as the set of points whieh are the

zeros of a function(s). A 2D curve in implicit form is a set of points S defined in the

following fashion:

S = {(x,y): J(x,y) = O}

Similarly a 3D surface is defined as:

S = ((x,y,z): J(x,y,z) = O}

A 3D curve is defined as the intersection of two 3D surfaces as fol1ows:

S = ((x,y,z): J(x,y,z) = 0, g(x,y,z) = O}

(3.4)

(3.5)

(3.6)

The notation wc use for a single implicit function is J(Pi a). Here Pis the datum point,

and adefines the parameter vector for this particular primitive. This parameté.>vector
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is not the same as t.he parJ,mot.ers uSt'd to geut'rat.t' a cur\'e or surfan' iu paraull'tri<­

fonn. For the impiicit form, differt'nt. curves or surfal'l's are ddhll'd hy changing

the value o~ the parameter vector a. As lUI examplt' of t.his not.ation, a 2)) line is

defined implicitly by the equation CIO +CI\,r +CI2Y = 0, where the paramel.t'r vedor« is

(ao,CI\, a2) and the datum point ji is (x,y). The implicit formnaturaiiy di,'idt's space

into threl' regions: f > 0, the points on one side of the curve or surface; f < 0, the

points on the other side of the curve or surface; and f = 0, the points on the cul'v,~ or

surface. As wc ha....e shown in Chapter Two it is easy to find IUl approximation to the

c1"stlst distance of a point to a curve or slll'face when the implicit form is availahle.

So far nothing has been said about the parti<:ular types of functions that arc used

in the parametdc or the implici!. form. In this chapter wc will discuss in detail the

situation where the functions in the 1,,,ramdric or implicit forlll arc polynomials,

or ratios of polynomiak A polynomial function in a single unknown x is written

as ao + alX + a2x2 + ... + an;,;n. While restricting these functions to polynomial

form may seem significant, the polynomial representation is widcly used and is very

general. In most CAD systems the basic parametric form is a rational polynomial.

This is because the different parametric surfaces such as the Bézier surface, Coons

pat.ches, and B-Spline surfaces, and Nurbs can ail be rewritten in the forlll of a rat.ional

polynomial [Besl, 1988, Piegl, 1991). For a curve, each coordinatc is writtell in the

form a(t)/b(t), where a and b are polynomial expressions in a parameter t. Similarly,

for a surface, each coordinate is written in the form of Cl(U, v)/b(u, 11), where Cl and b

are polynomial in the parameters u and v. This representation is general enough to

l'l'present a wide variety of curves and surfaces.

It is possible to use elimination theory to convert any parametric form defined as

a rational polynomial to its equivalent implicit form [Sederberg and Anderson, 1984).

For model-based vision, the assumption is that each object is defined by a set of

geometric primitives in a CAD database. However, as we have stated these primitives

are in parametric form, while our algorithms require the implicit form. Therefore

converting from parametric to implicit form is the first application of elimination

theory that we will demonstrate.
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3.2 Essentials of Elimination Theory

Elimination theory is conccrned with finding symbolic solutions to systems of equa­

tions, It concentrates on finding the solution of systems of algebraic equations, where

an algebraic eqllation is one where the implicit function is a polynomial. However,

elimination theory also studies the general requirements for finding the solution of

any system of eqllations. While the basis of elimination theory is a eentury old, its

modern revival is due to reccnt discovcries [Buchberger, 1985, Canny, 1987]. These

new approaches have becn litlle used outside of their field, but th:s is changing as

they become better known [I<riegman and Ponce, 1990]. In the previous discussion

on the r~presentation of geometric primitives we considered a single equation of the

form f(pj 'Ii), In this notation 'fi is a datum point, and here we will assume tlut it

is an m dimensional datum point which makes'fi = (XI,"" xml, In this discussion

we will assume that f is a polynomial. Thus, if m is two, then the unknowns are XI

an" X2, and the equation of f is equal to Ei,j aijXI i X2
j = O. Similarly, when m is

. . k
three the unknowns are Xl, X2 and X3, and f equals Ei,j,k aijkxI'X2JX3 . =O. Each of

the individual produets of unknown~ !!' these sums is called a term. The degree of a

term is the SUIll of t,he degl'ecs of the individual unknowns in that term. For example

the term al,3,2xllx23x32 has a degree of six, since this is the sum of the powers of

the unknowns Xl, X2 and X3' The degree of an equation is that of the term with the

highest degl'ee.

A system of equations is simply a list of individual equations. For an algebraic

system the total degree of the system is the product of the individual degrees of each

equation, Consider the following system of n algebraic equations in m unknowns:

f.(xl, ,Xm ) = 0

h(xl, ,xm ) = 0

(3.7)
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Such an algebraic system either has no solutions, au illfinite nllmber of solut.iolls, or a

finite number of solutions. If the nllmber of solutions is finite, then from t.he t.heorem

of Bezout wc know tha.t the number of uniqne solut.ions must. be less t.han or equal

to the total degree of the system [Holfmau, 19B!)].

Elimination theory can be used to find a symbolic solution to a system of alge­

braie equations. In a symbolic solution a closed fonn expression exists for each of the

unknown variables in terms of the known variables. Traditionally nlllllericalmethods,

such a Newton-Raphson, have been used to solve such systems of equations. liow­

ever, in order to achieve convergence these mcthods require ail initial estimate which

must be close to the final solution. Another commoll lIumerical appl'Oach for solv­

ing an algebraic system are homotopies [Morgan, 198ï, Renegar, 198ïl. Even though

homotopies find a11 possible solutions, they arc computationa11y costly and Imve a

significant number of operating paramcters. By contrast, once a sYlllbolic solution is

generated, it is a very efficient way to find the solution. As its name illlplies dim­

ination theory produces a symbolic solution by repeatedly cOlllbining equations to

eliminate unknowns. The final result is an algebraic equation in a single unknown. If

the degree of this final equation is four or less direct solutions exist; if Ilot the solu­

tions can be found by fast numerical methods [Hook aud McAree, 1990J (sec Section

3.5). The solution to the final algebraic equation is back-substituted into the previous

algebraic equations. Ali the unknowns arc solved for in this recursive fashion.

The traditional elimination theory approach uses resultants to eliminate unknown

variables. A resultant operation eliminates a single variable from two equations by

creating a new eCjuation which is a logical consequence of the original equations. The

fo11owing example illustrates how elimination theory using resultants operates. The

goal is to find the point of intersection between a line and a circle. The eqllation of

a line defined implicitly is ao +atX +a2Y = 0 and the equation of a circle of radius

r and center (xc, Yc) defined implicitly is (x - xc)2 + (y - Yc? - r2 = O. A single

application of the resultant operator can be used to eliminate either y or x from these

two equations. The resulting equation dennes the point of intersection between the

line and the circ1e. We choose to eliminate y, and the equation produced by the
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resultant operator is the following:

(3.8)

This is an algebraic equation of degree two in a single unknown x. It is implied by

the t\Vo original equations in the sehJe that it must be satislied if the value of x

satisfies both the original two equations. Since the equation is a polynomial of degree

two in a single unknown, it is a quadratic equation. Therefore a formula is available

for finding x, and by substituting each value of x into either of the two original

equations, y can also be found. This (x, y) pair is the intersection point between the

line ao +alx +a2Y = 0, and the circle (x - xc)2 + (y - Yc)2 - r2 = O.

The difficulty with the resultant approach is that it becomes impractical for a

system with more than two or three equations. The reason is that when using re­

sultants the final algebraic equation always has a degree equal to the total degree of

the system. The total degree is the product of the degrees of each of the equations

in the system. The theorem of Bezout says that the number of distinct solutions

to an algebraic system is less than or equal to its total degree. However, because

there are multiple roots, it is often the case that the number of distinct solutions is

considerably less than the total degree. The resultant approach does not take this

into account. Thi~ means that the degree of the final equation is often unnecessarily

large, since it contains multiple raots. This problem is inherent in ail resultant based

methods, including multi-variable resultants [Canny, 1987]. What we would like is an

elimination method which takes this into account to produce a polynomial in a single

unknown of the lowest possible degree. There is such a method, and it is called the

Grobner bases approach.

3 2 1 r' "b b.. ,~ ..r') ner ases

,The"Grobner bases method is a new and powerful approach to solving an algebraic sys­

tems of equations [Buchberger, 1985]. The method has implications beyond equation

solving, and has been applied to a wide variety of difficult and important problems
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[Hoffman, 1989]. In the general case computing the Grobn~r bas~s is "cry computa·

tionally intensive. Howcver, for certain systems of algebmic equations morc e!lident

versions of the algorithm exist. Such a situation occurs wlll'n thc algebraic systcm is

known to have a finite number of solutions. The system of equations produccd hy the

minimal subset algorithms has this charaet.el"istic, and l'an tlms be solved more cas­

ily than other algebraic systems. While the nnderlying theOl'y of the Grohner hases

method is complex, the output of the algorithm is easy to understand. Whcn applied

to a system of algebraic equations the algorithm is glmranteed to eventually tenui­

nate with a Grobner basis, which is another system of algebraic eqnations. When the

original system has at least one solution then the number of equations in this new

system is the same as in the original. It has bccn proven tluü any solution to the

original system is also a solution of the Grobner basis system, and vice-versa.

However, the Grobner basis system l'an be forced to be in triangnlar form. In this

form the last equation has a single unknown, the second last has two unknowns, one

of which is the unknown in the last equation, and so on. For a triangulaI' system of

equations back substitution l'an be used to find the solutions to ail the roots to any

desired level of accuracy. Since the last equation has a single unknown it l'an he solved

directly using a formula, or hy fast numerical methods (sec Section 3.5). When the

solution for the last equation is suhstituted into the second to last equation, then this

equation in tum only has a single unknown, and it can also he solved. This process

is called hack suhstitution, and can he applied repeatedly to lind ail the solutions for

the system. Wc use the example of finding the intersection hetwccn a line and a ci l'cie

to demonstrate this method. The resulting Grohner hasis consists of the following

two equations. Here the lirst memher of the hasis is the same as the lirst equation in

the original system, but this is not always the case.

(3.9)

(3.10)
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Th" hL,t equiLtion of the two has only one unknown, which is x. It is identical to the

equiLtion l'roduced by the resultant al'proach, but this is not always the case.

Ilecause it produces equations of the lowest possible degree, the Grobner bases

iLl'proiLch ia potentially able to solve much larger systems than the resultant method.

The difliculty iB that the computational time neccssary to produce the basis is very

large. The running time of the Grobner bases algorithm is doubly exponential in

the total degree of the system. The algorithm has been proven to always terminate,

but there is no way of knowing how long this will take [Buchberger, 1985]. However,

the symbolic solution need only be generated onu., and can thereafter be used to

efliciently solve the system. Considerable research is being done on producing faster

versions of the Grobner bases method [Gatermann, 1990, Hoffman, 1989].

3.3 Conversion Examples

The first use of elimination thcory is to convert from the parametric to the implicit

form of a curve or surface. In CAD systems gcometric primitives are represented in

parametric form. For our algorithms we need these equations in implicit form. The ba­

sic parametric form used in many CAD systems is the rational polynomial [Besl, 1988].

When a curve is defined in this way each coordinate is written as a(t)/b(t), where a

and barc polynomials in the parameter t. Similarly, when defining a surface, each co­

ordinate is written in the form of a(u, v)/b(u, v), where a and bare polynomials in the

parameters u and v. Strictly speaking curves and surfaces in parame~ric form are not

directly represented as rational polynomials in many CAD systems, but are stored in

B-Spline, Bézier , or Nurb form [Farin, 1993]. However, it is possible to convert these

descriptions into the rational polynomial form by using numerical methods described

in the Iiterature [Farin, 1993].

The conversion of a geometric primitive given in parametric form to the implicit

form is demonstrated in the following example. The rational polynomial representa­

tion of a circle with the origin at the center and radius r is x =r((1 - t2 )/(1 +t2
))
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and 1/ = 1'((2/)/(1 +12
)). This implies that. t.he fol\owing t.wo equat.ions hold:

x - r((1 - 12)/(1 +12
)) = 0

1/ - r((2/)/( 1+12
)) = 0

(:1. 11)

'1'0 convert from the parametric to implicit form it is ouly uecessary to use elimiuatiou

theory to remove the variable 1 from these two equatious. This l'an be doue lIy using

either resultants or the Grôbner bases method. The l'l'suIt of this eliminat.ion process

is the equation of the circle in implicit fonn which is x 2 +1/2 = 1.2• This approach l'an

also be used to convert a rational polynomial description of a surface to il.s cquivalcut

implicit form. For a surface there are three paramctric equatious, instead of two, so

two variables must be c1iminated. The ability to convert from parametric to implicit.

form is important because our algorithm l'l'qui l'es the implicit form, and the geometric

models of objects in most CAD databases arc defined parametrical\y.

A difficulty with this conversion process is that the resulting algebraic equations

are sometimes of a very high degree. For a 2D curve in the X,1/ plane ddined para­

metrically in terms of a degree n rational polynomial in l, the implicit fonll is a

degree n algebraic equation in x and 1/. Similarly, for a surface defined parametrical\y

as a degree m rational polynomial in u and v, the resulting irnplicit surface is an

algebraic equation of degree 2m2 in X,1/ and z. The rnost cornmon surfaces defined

parametrically have degree 3, and these are equivalent to degree 18 polynomials in

implicit form. Such a high order polyr.ûmial has very many terms (over 1000). This

makes the number of points in the minimal subset for this surface far 1.00 large for

our algorithm.

The high degree of the associated implicit surfaces for various paramet.ric forms

leads us to believe that such geometric primitives have more degrees of freedom

than are necessary. This has led to research in the use of certain parametric

forms that convert to lower order implicit functions, such as the Steiner surface

[Sederberg and Anderson, 1985]. There has also been interest in the direct use of

lower order implicit polynomial functions as design surfaces, instead of Ilsing the
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paramclric forms [Bajaj and Ihm, 1992, Sederberg, 1985]. The advantages of having

both the parametric and irnplicit form of a surface available in a CAO system are

significant. For this reason the description of the patches defining objects may in the

future be in parametric forms that can be converted to low order implicit polynomi­

ais. This will make our algorithm more practical for extracting the surfaces defining

frce-form objects found in many CAO systems.

3.4 Extraction Examples

ln the primitive extraction algorithm it is necessary to convert from a minimal subset

to the parameter vedor that defines a primitive. Each of the R points in a minimal

subset must be on the curve or surface. Therefore the system of R equations f('PI i a) =
oto f('rn, a) = 0 created by replacing the variable p by Pl to Pn in f must hold. The

ullknown in this system is the parameter veetor a, and the solution to this system

defines the mapping between a minimal subset and a parameter vector.

We will consider the solution of this system for two different types of imp\icit

fUlletions. In the first case, J is restrieted to be a \inear combination of a possibly

Ilonlinear set of basis functions. In the second case, f is a polynomial, which cannot

necessarily be written as a \inear function. These two cases cover a wide variety of

curves and surfaces. It should be noted that they are not mutually exclusive, and

sorne geometric primitives (such as a circle) can be written in both forms.

3.4.1 Linear Combination of Basis Functions

We first consider the case where J is restricted to be a linear combination of a possibly

nOlllillear set. of basis functions. If there are R basis funetions labelled bl to bn then

f(p) = aD + L:i;;;~ aibi(p), In this notation bi(P) is basis funetion bi evaluated at p,

and ai is the coefficient of this basis funetion. The dimension of the parameter vector

Ci = (aD, ••• , an) is R +1, where the minimal subset is of size R. Thus the size of the

minimal subset always equals the number of basis functions. Such a representation

is general enough to describe a wide variety of curves and surfaces. Table 3.1 gives
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Shape Basis FUllcliolls
line x,y
cirde 2 ')x,y,x +y.
conie x,y,x2 ,xy,y2
cubic 2232.23x,y,x ,a~!I,Y ,J~ ,;r y,.I~!I ,y
plane x,y,z
sphere x,y,z,x2 + y2 + Z2
quadric x,y,z,x2,y2,z2,xy,yz,zx

Table 3.1: Some common shapes and their associate<1 basis Vl'ctOfS.

sorne common shapes and their associated basis functions [Pmtt., I!)S7].

If we substitute PI,P2'" 'Pn for p in f wc have Il equations. However, f(pja)

must hold for any point Pon f, and if this equation is added 1.0 the set wc obtltin the

following linear system:

1 bl(p) bn(P)
00 0

1 bl ('rd bn(pt)
= (3.12)

011 0
1 bl (Pn) bn(Pn)

Even though the basis funetions are not necessarily linear, the above system is

linear in the unknowns ao, ... , an. The fundamenta\ theorem of c1imination says

that a non-trivial solution for a linear system exists only if the dcterminant of the

associated matrix l'quais zero [Macaulay, 1916]. This means that by expanding the

following deterr:linant, setting il. l'quai 1.0 zero, and colleeting terms, the unknowlls

can be solved for:

1 bl("r) b,(p)

1 bl (PI) b,(PI)
(Hl)

1 bl(Pn) b,(Pn)

As an example, consider the case of a line which is described by the implicit

equation ao + alx + a2Y = O. Here the basis functions arc x and y, whieh makes bl

l'quai 1.0 x and b2 l'quai 1.0 y. Two input points Pi = (Xi> yt} and P2 = (X2' Y2) arc
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nccessary and suflicient to deline a unique line. Expanding the fol1owing determinant

and scHing it to zero produccs the cquation of the line.

1 x y

1 Xl YI

1 X2 Y2

The expansion of this determinant is the fol1owing equation.

(3.14)

(3.15)

from which it can be seen that aD = X2YI - X.Y2, al = (YI - Y2), and a2 = (X2 - XI)'

This mcthod of expanding determinants will produce a c10sed form solution for

pach clement of the parameter vector iï as a function of the R points in a minimal

subset. This technique will work whenever f is a linear combination of basis functions,

which may themselves be nonlinear. This method of computing the parameter vector

was used for the line, circ1e, ellipse, plane, sphere and quadric extraction examples

described in Chapters Two and Four.

3.4.2 Polynomial Function

We will now Consider the case where f is a polynomial function, which is an important

case for two reasons. The first reason is that algebraic equations describe the geomet-
"

rie primitives implemented in many CAO systems. In Section 3.3 we noted that when

parametric surface patches delined as rational polynomials are converted to implicit

form the result is an algebraic equation [Sederberg and Anderson, 1984]. In addi­

tion, it has been shown that the outlines of objects modelled by such surface patches

are also curves which are defined by algebraic equations [Kriegman and Ponce, 1990].

Thus the ability to extract geometric primitives defined by algebraic equations is

important if our approach is to apply to a wide variety of geometric primitives.

Sorne of the curves delined in the previous section as a linear combination of basis

vectors can also be written as polynomials. When there are no constraints on these
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curves, then the linear form is the more usdu!. 1I0\\'c""I", \\'ll<'n th.'rc arc constmiuts

these equations are usual\y not linear in the paran1l't<'l" "edor, and must be \\'ritt,'n

in their polynomial form. It is important to be able to sol"e such algcbraie syst.ems

because when these constraints exist, they lower tbe degrces of frccdom of t,he pl"Îm·

itive. For example, a circ1e wit.h a known radius has t.\\'o degrees of frccdom, versus

three for an unconstrained circ1e, and a cylinder (which is a const.mincd '1IHulrie) ha.'

six degrecs of freedom, verses nine for a quadric. The number of point.s in a minimal

subset l'quais the degrecs of frccdom of the geometric primitive. In Chapter Two wc

showed that the number of random samples neccssary to achieve succcssfui extraction

is an exponential funclion of the number of poiuts in a mininutl snhset. 'l'herefore

reducing the size of a minimal subset enables the required nnmber of mndoll1 smuplcs

to be significantly reduccd.

We will consider further the example of extracling a cit'c1e which lms a known

radius. An unconstrained circ1e can be written as a linear combilHtlion of basis

functions, with these functions consisting of x, y, x 2 + ,,2. lIowever, if the radius

is known the elements of the parameter veclor a arc const.rained, and this linear

description of the circ1e is no longer valid. Instead, the circ1e mnst be written as

f(x,y) = (x - Cx )2 + (y - C.)2 - r2, where the unknowns are the coordinates of the

circ1e center (Cx , C.). In this case f is a polynomial but is not a lincar function of the

parameter vector (Cx , C.). Therefore the previous approach to finding the parameter

vector a, which uses determinants will not work. To solve such algebraic systems wc

use the Grobner basis method described in Section 3.2.1.

If the two minimal subset points, (xo, Yo), and (XI> yd on the constrained circ1e

are substituted into the circ1e equation, then the following algebraic system is the

result.

(xo - Cx )2 +(yo - C.)2 - r 2 =0

(Xl - Cx? +(YI - C.)2 - r 2 = 0

(3.16)

Here the known, or given variables, are Xo, Yo, XI> YI and r, since the radius is fixed.
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The lInknown variahles are the circle center Cx and Cy • The Grabner basis method

is uscd to find two solutions in c10sed fonn, and hoth arc listed in Appendix A.l.

Wc will now demonstrate how the Grahner hasis approach works by solving the

system of equations for a number of the extraction examples that will be described

in more detail in Chapter Four. [n the first example wc ~onsider an ellipse where the

center and one of the axes is constrained to a given value. Without loss of generality,

wc can assnme that the center of the ellipse is at the origin. Then the equation of

the ellipse is the following:

(3.17)

The two axes of the ellipse have length a and b respectively. If the ellipse is rotated

about the origin by an angle 0, then by substituting SI = cos(O) and S2 = sin(O) the

following polynomial is obtained:

(3.18)

For an unconstrained ellipse the free variables are the center, the two axes, and the

orientation, which gi"es five degrees of freedom. Then the ellipse can be represented

by the conic equation listed in Table 3.1. However, here the center of the ellipse,

and one of the axes (a) are known. Thus the free variables are the rotation angle

(0) and the otller axis (b). This means that the constrained ellipse has two degrees

of freedom, and two points arc necessary and sufficient to define this curve. If the

two points arc (xo,Yo) and (XhYl), and they are substituted one at a time into the

above equation, then the following algebraic system with unknowns Sh S2, and b, is

the result:

b2(XOSI - YOS2)2 +a2(xos2 +Yosd2 - a2b2 =0

b2(xlsl - YIS2? +a2(xls2 +YISI? - a2b2 =0

s~ +s~ -1 = 0

(3.19)
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(a)

•

(b)

•

Figure 3.1: Constrained ellipses Lhrongh Lwo points (al Ci l'de and Lwo
points (b) Two ellipses throngh two poinLs with drclc "cnLer and nmjor
axis.

The last equation simply encodes the constmint tlmt cos2 (O) + sin2 (O) = 1. There

are two different solutions to the system and they arc deseribed in Appcndix A.2. In

Figure 3.1 part (a), a circle is shown along with two points on sueh a constmincd

ellipse. We constrain the ellipse to have as its center the circle cent.er, and as its

major axis the circle diameter. In part (b) of the ligure, wc draw t.he two ellipses

produced from the solution of the above set of equations, and they hoth satisfy these

constraints. This example demonstrates that constraint,s on the geomet.rie primitive

reduces the size of minimal subset, in this case from live point.s to t.wo point,s.

Consider the case where the geomet.ric primitive is a eurve in :lD space. Sneh

curves are defined as the intersection of two surfaces, and the rcsult.ing syst.em of

equations is rarely linear. As an example consider a circlc in 3D Cartcsian space.

It can be described as the intersection of a sphere and a plane t.hrough the sphere's

origin. This is shown in Figure 3.2, where the plane and sphere arc drawn. The size of

the minimal subset is three, since three points arc neccssary and snfficient to uniqucly

define this curve. The equation of a plane is aO+alx+a211+a:lz = 0, and t.he equat.ion

of a sphere with radius r and center (xc, Yc, zc) is (x - xc)2 +(y - yc)2 +(z - zc)2 = 1.
2

•

We assume that the normal 1.0 the plane is a unit normal, which adds the eqnation
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,,~ + ,,~ 1"<15 = 1 ta the set. The faet that the plane passes through the center of the

circle adds the equation "a + ",X, + a21/, + "3Z, = 0 ta the sel. Each point on the

:lD circle must satisfy hoth the sphere and phu;e equations. Let us:..sume that the

points (xa, Yo, za), (x" y" ZI), and (X2, 1/2, Z2) arc those points on the circle. Then the

following syst.em of equations is the result of substituting the points into each of the

I.wo eqnat.ions.

aa +alXa +"21/a +"3Za =0

"a +"IXI +a21/1 +a3zl = 0

aa +"IX2 +a21/2 +a3Z2 = 0

(xa - xc)2 + (Ya - 1/c)2 + (za - zc? - r 2 = 0

(xa - xc)2 + (1/a - 1/c)2 + (zo - zc)2 - r 2 = 0

(xo - xc)2 + (1/0 - 1/c)2 + (zo - zc)2 - r 2 = 0 '

ao +alxc+awc +a3Zc = 0

a~ +a~ +a5 - 1 = 0

(3.20)

•

This system can he solved using the Grobner basis method, and it has exactly one

solution which is listed in c10sed form in Appendix A.3.

We have described methods of converting from the minimal subset points to a

parameter vedor when either f is a linear combination of basis functions, or when

f is a polynomial. While not every implicit function meets these criteria, these

types of fundions do coyer a wide variety of commonly used shapes. The ability ta

hamlle polynomial equations is practically important because they are the basis of

the descriptions in many CAO systems.

3.5 Numerical Solutions

ln our extradion examplcs c1imination theory is used ta eliminate unknowns in arder

to produce an algebraic equatioll with on1y a single unknown. The solution of this

algebraic equation must be found and substituted back into the previous equation of
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Figure 3.2: Three dimensional circle is the intersection of ;~ ph~ne and ;~

sphere

the triangular Grobner basis syst.em. The previous equat.ion now has only ;~ single

unknown, and the solutions for il. must be found. This procedure is applied recursivcly

until ail the solutions are found to the entire algebraic system. The assumpt.ion IS

that an algebraic equat.ion in a single unknown can be solved eit.her symbolically or

numerically. While correct, there are sorne ways of solving such an cquiLtion which

are particularly weil suited to our application.

If the degree of the algebraic equation with a single unknown is four or less

then there are c10sed form solutivns available. Bowever, if the equation has a

degree higher than four numl'rical methods must be used to lind the solutions.

There is a numerical approach which is particularly useful in our appli<:at.ion. Il.

is based on Sturm sequences, and implementations are described in the lit.eral.ure

[Book and McAree, 1990]. For the extraction application we are only intercst.ed in

the real solutions. When the solutions have a complex component. this implies t.hal.

the minimal subset does not meet the required constraints. This is illustrated byour

example of linding a circ1e with a given radius through two points. In this case a

complex solution means that no circ1e through the two planar points exist.s. Thus, we

want 1.0 find only the rcal solutions of an algebraic: equation with a single unknown.

It iB also truc that there are often constraints on the range of possible values of each
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unknown .

IJsing a Sturm sequence is th') preferred ways of achieving this goal. It is superior

to other lIlet.hods in the literature for two rea.~ons [Press and Flannery, 1988]. First,

this appraach finds only the real raots, second it can deal with very iIl-conditioned

equations, and third it can acccpt. constraint.s on the solutions. Informally, a system

is ill-conditiolled if a small change in the coefficients of a polynomial can dramatically

change t.he nUlTlber of real raots, and their locat.ions. Often if a polynomial has real

roots, it will he ill-conditioned. The following algebraic equation is an example of

this situation:

W(x) = (x+ l)(x+2) ... (x+20) = x2°+210x I9 + ... + 20! = 0 (3.21 )

Clearly there are twenty real roots ranging from minus one to minus twenty to this

equation. Let us change the coefficient of X l9 slightly to produce a new algebraic

equation U(x) defined as follows.

U(x) = W(x) + 2-23x t9 = x20 + (210 + 2-23
)X

t9 + ... + 20! = 0 (3.22)

It would seem that such a trivial change in a single coefficient would have little impact

on the raots. However, this new equation has only ten real raots, and the imaginary

parts of the other roots are fairly large [Wilkinson, 1959]. The fact that aU the real

roots of such an equation can be found reliably using a Sturm sequence demonstrates

the robustness of this root finding method.

There is public domain software available to compute the Sturm sequence

[Hook and McAree, 1990]. Once the Sturm sequence has been computed aU the real

roots arc found by a simple bisection aigorit.hm. The use of the Sturm sequence

for finding the real roots of an algehraic equation with a single unknown makes the

elimination theory approach much more practical in many more applications.
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3. Elimination Till'ory for Sol\'illg COI\\'l'fsion Equations

This chapter has conccntrated on the applicat.ion of diminat.ion t.h,·ory t.o our ,·xt.rac­

t.ion algorithm. This theory is nsed to prodne<' the c10sed from solutious t.o a syst.'·1ll

of equatious defined using minimal subsct.s. The solut.ion t.o SUdl a syst.em IIHtpS from

the minimal subset points to the paralllct.er vector defining a geollldric prilllit.Ï\·c.

While elimination theory is computationally int"nsive, it. I\l'ed only be applied on""

to produce the clnsed form solution. Thereafter this solllt.ion cali be IIs,·d rep,·,\t.edly

in the extraction algorithm, and is usually very efficient.. The examples ill this dmpt,er

were processed using the Grobner basis routines found ill Maple, a symbolïe algebm

package 1.

We first discussed our l'l'presentation of geomct.ric prilllit.ives alld t.ransfol'llmt.iolls.

Then we gave an overview of the field of elimillat.ion theory. This was followed by

a number of extraction examples that showed how eliminat.ioll theory is applied. '1'0

actually solve the resultillg Grooner basis il. is neccssary 1.0 repeatedly find the r"al

roots of an algebraic equation with a single unknown. We concluded by sitowing how

the Sturm sequence method can be used t.o achieve t.his goal in a very rdiahle fa.~hion.

1Maple is a product of the Symholic Cc",putation Group, Computer Science O"pt., UniverKity
of Waterloo, Canada

70



• Chapter 4 Extraction Applications Using Random
Sampling

Primitive extraction a.~ wc have defined it is a generalization of fitting. A single

invocation finds a single gcometric primitive in the gcometric data. How can we use

our extraction algorithm to deal with the situation in which there is more than one

gcometric primitive, or where the primitives are not necessarily ail of the same type?

This problem is doser to the traditional definition of segmentation [Levine, 1985].

By itscIf, our extraction algorithm is not a segmentation algorithm. However, in

this chapter we will show how a number of dilferent segmentation algorithms can be

built using our extraction algorithm. Before we do this we will first discuss sorne

deficiencies of current segmentation algorithms.

In our opinion the following are what we consider to be the most desirable char­

acteristics of a segmentation algOl'ithm:

• The algorithm should have no restrictions on the type of geometric primitives,

and should be able to find both curves and surfaces.

• The algorithm should be able to operate on both single view and multiple view

data.

• The algorithm should operate on both sparse and dense geometric data.

• The algorithm should be able to handle geometric data of varying noise levels

produced by dilferent geometric sensors.

• The algorithm should have a formai mathematical basis.

• The algorithm should be simple thereby permitting others to implement it easily

and to verify the experimental results.

• The algorithm should have a small number of operating parameters.
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In light of these criteria, the existing segmentation algorithms in tll<' litl'ra·

turc each have a nnmber of drawbacks [Uesl, l!l88, Ilorfman and .Jain, l!l8i,

Yokoya and Levine, 1989, Boulanger and Godin, l!l!l2]. The most SI'I'iOUS is t,h.. n',

quirement that the geometric data be in standard image format. This nl<'i\l1S t.hat,

the data must be presented in the form of a dense set of points described by a gmph

function as z = J(x, y). Wc have defined geometric dala in a very geneml way, in

which the data arc not neccssarily available as a graph fnnction. This is hecanse

wc want to accommodate a wide variety of dirrerent met.hods of prodndng geomet,l'ic

data..

We believe that. by nsing onr ext.raction algorithm it is possible t.o creat.e varions

segmentation algorithms which satisfy the above crit.eria beUer than ot.her met.hods

described in the literature. In thi ~hapter wc will describe how t.his is accolllplishcd.

This will be followed by a number of experiment.al results. They will demonstrat.e

the extraction of geometric primitives for a variety of geometric data. Finally, wc

will compare our methed in detail wit.h the robust stat.istics approaches, the minimal

length encoding schemes, and the Hongh t.ransform (lIT).

4.1 Multiple and Different Primitives

The first case wc consider is that in which there are multiple primitives to be ext.racted

which are ail of the same type. The second case is a generalizat.ion of the lirst, in

which there are m',li.iple primitives that arc not neccssarily ail of the same type. Wc

will consider the two cases separately.

If there is more than one geomet.ric primitive of the same type to be extraet.ed, the

obvious approach is to apply the random sampling extraction algorithm repeatedly.

Following the first application, the inliers arc removed, and the next application has

as input the remaining geometric data points. This process continues a.~ long a.~ the

extraction is successful, where success means that the value of the l'ost func;t.ion of the

best primitive is significant. However, if the number of geometric primitives or the

size of a minimal subset is large, then an excessive number of random samples rnay
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he lIecessary. In order to decrease this number, we propose to divide the geometric

data into lorally connertcd subscts. Each such connected subs~t is likely to consist

of a small number of curVes or surfaces. 'l'herefore performing random sampling on

cach cunnectcd subset instead of ail the geomctric data should require fewer samples

for successf'll extraction. The disadvantage of using local connectivity is that the

optimal solution may not be found. 1I0wever, the advantage is that when there are a

signilicant number of gcometric primitives to extract the number of random samples

is greatly reduced.

The particular connectivity algorithm used depends on the type of geometric data.

For two-dimensional geomctric data consisting of edge points from an intensity image,

standard algorithms can '1uick1y produce ail of tll(: connected subsets [Levine, 1985].

If the geomeLric data aIe dense range data taken from a single view we find the

largest connected region bounded by edge points. For dense range data, an edge

point is a discontinuity in depth or orientation, and these points can easily be found

by local operators [Godin and Levine, 1989, Boulanger et al., 1990]. Each of these

Lwo approaches to using local connectivity is illustrated in Section 4.2. The actual

data produced by a connectivity algorithm often depends dramatically on the settings

of certain pnrameters (such as whether the connectivity is four-or eight-connected).

110wever, because of the underlying robustness of the extraction algorithm, ultimatdy

the samc geometric primitives are likdy to be extracted even when the parameters of

the connectivity algorithm vary. An example of this will be shown in Section 4.2.

The following pseudo-cou•. describes the modified extraction algorithm for multi­

ple primitives of the same type. The iiipnt is the definition of the geometric primitive

to be extraeted along with the geometric data.

While there is suŒcient geometric data
Do

./. Find t!w largest. conneeted subset of the geometric data.
2. Extract aIl the geometric primitives from this subset.
3. Save tlw associated parameter veetors and inliers of the extraeted primitives.
'1. Remove the inliers from the geometric data.

Enddo

A more complex situation exists when there are not only multiple primitives, but
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also different types of primitives. For example, thl' goal may hl' to extmd Ilot jll"t

lines, ::'ut also circles and ellipses. One "ollltion is to "ear.,h for ail the primitiv.'" of a

certain type, and then when no more exi"t, go to the I\1'X\ type. For exampl." \\'h"11

extracting lines, circles and ellipses, fir"t extrad ail 1.1\1' lilles, th"11 wl\l'II 110 mon'

lines are found (according to the significallce threshold) l'l'trad, ail the cil-'-\.,s, dl'.

The problem with this approach is that if the sigllificallce threshold is 1.00 low thell a

complex primitive (such as a circle with a large radius) may hl' mistakell for simpl",'

one (i.e. a line).

An alternative is to attempt the simultaneous extraction of each differellt type of

primitive, and then aceept only the best one. This is the approach wc have I.aken. III

terms of our previous example this would meall applyillg l,he extmctioll algol'Îthm for

lines, circles and ellipses simultaneollsly 011 the same geometl'Îc data. 'l'he primitive

with the most inliers would be the one returtled hy t.he algorit.hm, ru; 10llg as it. was

deemed to be significant. If the number of inliers for two differellt primit.ives is equal or

close to equal, then the simplest primitive is chosen (cg. a lille is simpler thall a circle).

This procedure is very simi!ar to that used in the millimal length encoding schemes

[Darrell et al., 1990, l'ednault, 1989], and wc will cornpitre the two approaches in

more detai! in Section 4.3.

4.2 Experimental Results

In this section wc present a number of examples of primitive ext.raction for varions

kinds of geometric data. The two-dimensional examples show the ext.raction of lines,

circles and ellipses. The three-dimensional examples show the extraction of planes and

quadrics from range data provided by a laser rangefinder [Rioux, 198.5]. Ali examples

were processed using a fixed-band l'ost function whose size was deterrnined from a

study of the resolution of the geometric sensor data. [n sorne ca.~es there is more tha.n

one geometric primitive to be extracted, and in other ca.~es therc are diffcrent types

of primitives to be extracted.
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... ... ..
....

(a) (b)

Figure 4.1: "xtracting a circlc (a) Initial data points (h) Extractcd circlc.

4.2.1 Two-Dimensional Data

The first set of exampks will demonstrate the extraction of tines, circ1es and ellipses

from two-dimensional geometric data. For some examples the data was created syn­

thetically, and for others the geometric data were obtained by processing intensity

images.

The first examples show the extraction of a single circ1e and ellipse from a set of

points in the plane. The results are shown in Figures 4.1 and 4.2. In both figures

part (a) shows the data points and part (b) shows the extracted primitive. In both

cases the number of nndom samples used to the extract the primitive was seventy.

This value of J(, th'~ number of random samples, was computed using the formula

discussed in the Chapter Two. Note that in ail the examples so far the percentage

of intiers (points on the tine, circ1e or ellipse) is less than 50% of the total numbp.r of

points.

In Figure '1.3 we show the extraction of a number of circ1es from synthetic data

in the plane. Part (a) of the figure shows the data points and parts (b) and (c) show

the extracted circ1es. A fixed-band scoring function was used with a band size of

teu pixels and with seventy random samples. Part (b) shows the extradion results

without gap checking, and part (c) shows the extraction results with gap checking.
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(a) (h)

Figure 4.2: Extracting an ellipse (a) Initial dat;, points (h) Extraded
ellipse.

Gap checking is an extra parameter of the fixed-band seoring fm'd.ion for a two­

dimensional curve which ca.1 be enabled or dis<Lbled. When en<Lbled the curve defined

by a minimal subset is seored using only the eonneeted inliers. This IIlCiLns that. the

longest sequence of points on the curve that are within <L cert.ain dist.anee of each other

are counted, and this distance is called the gap value. This value is a pammet.er which

must be set by the "sel'. By contrast, the usual type of seoring is non-eonneded, which

means that ail the inliers are considered to be on t.he same curve, regardless of their

separation. The e(fect of gap checking can be seen in part (c), where three circles arc

extraeted in the place of the single ci l'cie extraeted in p<Lrt (b). The single ci l'cie W;L~

extracted without gap checking because three disconnected part.s of the oUler eircles

made up a large circle, which had many point.s, and thns a good cost fnndion vainc.

However, from the figure it is clear that there are actually three dist.ind eircles, allli

not one large circle. When gap checking is used the correct result is obtained since

the gap between the disconnected portions of the larger eircle is too large for thern

to be considered as part of the same ci l'cie. Gap checking rnay or lTlay not be usefnl

depending on the application. While we have demonstratcd gap dllleking for circle

extraction it can also be added to the extrzction algorithm for other curves, sueh iL~

\ines and ellipses.
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(a)

(b)

(c)

Figure 4.3: Mu\tipie circle extraction (a) initiai data points (b) Extracted
drcle without gap checking (c) Extractcd circles with gap checking
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In the fourth examp!e ellipses and drd,'s are "xtract"d from ail illt"nsity ill\1l~" of

a bail of about 50 pixels size. The outlille of the hall is a cirdl" alld a lIuml"'r of ~r<'at

circles painted on the bail projccts 1.0 ,~ lIumllL'r of ,·lIips"s. Th,' moti,·at.ioll for this

example comes from a tracking applicatiou. The ohjedive is 1.0 t.rack \.lu' positiou alld

orientation of the bail from image to image. This cali he dOlle by Iilldill~ tl\(' pol,'s of

the bail, which arc the intersections of the great. cil·cles. Silice the l'oies compll't.ely

define the position and orielltation of the bail. t.his informat.ioll is suflieiellt, fOI' t,rackill~

purposes. The input consists of the edge poiuts creat.ed from t.he illt.'·lIsil.y imag,· by

standard edge dctectors. The small ,ize of the bail, the sp.uselless of t.he edge POillt.S,

and the closeness of the ellipses makcs this exl.raction ex<unple particulady diflieult.

The following two-step proccss extracts the dlipses from t.he geometric dal.a. First.,

the cil'cie which defines the out.line of the bail is ext.ract.edj then using iufornHttiou

from the circle the ellipses arc extract.ed. The centers of the ellipses arc coust.rained

to be at the center of the bail with their major axis equal to the radins of t.he Imll.

This means that once t.he circle defining t.he outline of the bail is extract.ed I,here arc

only two degrees of freedom for each ellipse (as opposed to five for a general ellipse).

This makes the size of the minima! suhset Il two, instead of live. The procedure used

to create the parameter vector of the ellipse through two randomly sampled p',iiut.s

was discussed in detail in Chapter Thl'cc. Part (a) of Figure 4,4 shows t.he init.ial

image, part (b) shows the initial edge pixels, part (c) shows the extract.ed ellipse and

drcles, while part (d) shows the extracted ellipses and circle superimposed 011 the

image data. As can be seen from the figure, the correct ellipses have been found, ami

from these it is a simple matter to find the l'oies of the bail.

The fifth example shows the extract.ion of circles from edg(~ dat.a. Because of

the relative!y large number of cirdcs, the l'andom sampling process is Iilllited to

locally connected segments. As described in Section 4.1 t.his enables t.he drcles 1.0

be extraeted with fewer random samples than if ail the geomet.ric dal,a were used as

input. The results are shown in Figure 4..5. Part (a) shows the initial imagll, part (b)

shows the edge points, part (c) shows the extracted circles, and part (d) shows the

extracted circles superimposed on the edge points. Again, as can he seen from the
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(a)

(c)

(b)

(d)

Figure 4.4: Extracting ellipses and drcles (a) initial image (h) initial edge
pixels (c) extracted ellipses and drcles (d) extracted ellipses and drcles su­
perimposed on edge data.
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(a) (h)

eD"- :
• •

a
(c) (d)

Figure 4.5: Extracting circles (a) initial image (h) initial cdge pixels (el
extractcd circlcs (d) cxtractcd circlcs supcrimposcd on Cllgc dat.a.

figure the correct circles have been found.

4.~~.2 Three-Dimensional Data

•

Now we will discuss extraction examples from data taken from a varicl.y of laser

rangefinders. The first example has as input three-dimensional geometric data pro­

duced by a laser rangefinder mounted on a robot wrist [Rioux and Blais, I!JSG]. This

rangefinder collects parallel profiles, where the number of profiles and the spacing

between the proflles is controllable. Such data are relativcly Sparse since the spacing
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(b)

(c) (d)

Figure 4.6: Plane extraction from range data (a) initial range data (h) (c)
(d) extracted planes.

between profiles is fairly large. This example demonstrates the extraction of planes

from such data. Three points defines a unique plane sa a minimal subsct is of size

thrcc in this example. The results are shawn in Figme 4.6. Part (a) of t.he figure

shows the initial range profiles, and parts (b), (c), and (d) show t.he point.s bclonging

ta thrcc extraeted planes. These planes were extracted by repeated application of the

minimal subset random sampling algorithm ta a11 of the geomctric dat.a. Since t.he

data is relatively sparse no connect.ivit.y informat.ion is available, nor is it. necessary

since the expected number of planes is smal!.

It is also possible ta extraet three-dimensional curves from t.hese para.11c1 profiles.

In arder ta do this, a subset of t.he profile data, ca11ed t.he jump sl.eps arc used as t.he

input geometric data points. Jump steps are point.s which have a significant. difference

in depth from their neighbours. These jump point.s define t.he t.hree-dimensional

outline of the abject as seen from t.he rangefinder. In Fig. 4.7 a pict.ure of an abject.

cal1ed an "H-Fixturc", which is the approximate shape and size of one of the grapple
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Figure 4.7: Picture of the II-fixture usecl for space grappling applications.

fixtures for t.he space st.at.ion. In Fig. 4.8(a) are shown a number of parallel profiles

of t.his object. collected by a laser rangefinder. Fig. 4.8(b) shows t.he jump point.s

obt.aiued from t.his dat.a, aud t.hese arc point.s arc highlight.ed as small dark circles. In

Fig. 4.8(c) t.he jump point.s belonging t.o a t.hree-dimensionalline arc highlighted, and

in part.(rl) t.he jump point.s belong t.o a t.hree-dimensional drcle are similarly shown.

ln bot.h cases t.hese primit.ives were ext.racted using minimal subset random sampling,

but. wit.h t.he jump steps shown in part. (b) as input, instead of ail the geomet.ric

dat.a show in part. (a). For a. t.ltree-dimensionalline the minimal subset is of size two,

while for a t.hree-dimensional circle t.he minimal subset is of size three. The equations

rc!at.ing t.he minimal subset. t.o the paramet.er vect.or of the t.hree-dimensional drcle

were derived in Chapter Three.

The next. example shows t.he ext.raction of planar and quadric pat.ches from dense

mnge dat.a. Such dat.a differ from t.he previous examples because the colleeted profiles

arc 1l0W very close to each ot.her. The data, as shown in Figure 4.9, consist of sorne

planar blocks, a cylindrical block and il. spherical block. This figure has four parts,

wit.h part. (a) showing the original range image. Since the contrast of such images

is low, t.hey arc redrawn in a shaded fashion in part (b). In this method of display

t.he brightness is proportional to the angle the local surface normal creates with the

viewing direction. This shading process makes it much easier to distinguish the

content.s of t.he images.

Since t.he amount of geomet.ric dat.a is very large, local conneetivity is used to

82



•
.1. Extraction .\pplicalillll~ lJ~in~ Han<fom Sal1lplill~

(a)

(c)

(h)

(d)

Figure 4.8: The points on a three-dimensional line and circle extracted
from thejump step points (a) Initial parallel profiles of II-Fixtllrc (h) Initial
jump points (c) Thrce-dimensional line jllmp points (d) Three-dimensional
circle jump points
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(a)

(c)

(b)

(d)

Figure 4.9: Plane and quadric extraction from range data (a) range image
(b) shaded rendering of range image (c) region boundary pixels (d) shaded
rendering of extracted planes and quadrics.
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select Gubscts of the data 1.0 be processed by \hl' l'xl. l'art ion algorithm. This is dllll<' hy

finding the largest connected Sl't of points honndl'd by jnmp and roof l'dgl' points in tilt'

range image [Godin and Levine, 1fl89 J. '[ 'Il<' jnmp l'dgl' poilOts art' local dist'llntinnitit's

in depth while the roof edges points arl' local di""ol'tinnitil's in the nomm!. Tht'

method used to detect these edge points is very simpll'. The point.s nHtrkt'd as jllmp

edges arc those that have a dilferencc in depth from their neighbollfs grt'lItt'r \,h;m

a threshold, and the roof edge points arc those that have a normal whose angnliu'

dilferencc from their n"lighbollfs is greater than a tI\I'(~shold. The largest conneded

set of points not containing cither a jump or a roof edge point arc present.ed 1.0 the

extraction algorithm. The extraction algorithm linds the planes and qlladrics in this

data, and the points belonging to t.he extract.ed primitive arc removed. The process

is repeated wit.h the next largest connected set, and cont.inues nnt,il no more points

remain. The regions prodnced by the final segmentation are shown in part (d), while

t.he boundary point.s bet.ween these ext.racted regions arc shown in part. (c). It. can he

seen t.hat t.he segment.at.ion is correct in t.erms of identifying the appropriate Jl1'khes

for each object. It should be noted t.hat the black areas around sorne of t.he ohjecl.s

in part (b) are due t.o shadows [Godin and Levine, l!J89]. These arc art.ifacl.s of the

range sp,nsor which occur when t.he laser detector is blocked from seeing the projecl.ed

laser spot by an object, i.e., the object occludes the laser beam. In the image IIl1der

consideration, these shadow regions are intel'polated in a nonsl.andard way, and t.hey

are not fit successfully by a plane or a quadric. For this reason, in Figures 4.9 (d)

these regions are drawn in black to dist.inguish t1u rn from t.he other regions which

have been successfully extracted.

Figure 4.10 shows the tolerance of the rnethod to the setting of the threshold thal.

computes the edge points which delineate the connecl.ed regions. The planaI' patches

in the middle block of the image shown in Figure 4.9 arc correctly found even when

three different connected regions arc produced by dilferenl. edge t.hresholds. Figures

4.10 (a),(c),(e) shows the edges that. are created by each of the three dilferent edge

thresholds. The largest connected region dilfers considerably for each of these thresh­

olds. In Figure 4.10 (a) the largest. connected region contains t.hree faces, in Figure
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'1.10 (c) it cont.ains two faces (there is a gap in the edge pixels), and in Figure 4.10 (e)

it contains only one face. Figures 4.10 (b),(d),(f) show the pixels at the boundaries

of t.he planar regions extracted by the segmentation algorithm using the associated

cdge threshold on the Icft. Even though on\y the last edge threshold (Figure 4.10

(e)) ~orreclly isolates the tllrce planar faces of the block, the final segmentation is the

same for ail thrcc thresholds. Because of the inherent robustness of the extraction

process, having different connecled regions as input has not affecled the final results.

4.3 Comparison with Other Approaches

ln this seclion we will compare our extraclio:l algorithms to other approaches. We

will concentrate on comparisons with robust fitting, the minimal length encoding

schemes and the Hough transform. These three methods are what we consider to be

the closest competitors to our approach. Because of the ubiquitous nature of the HT,

we will spend the most effort on a comparison with this approach.

4.3.1 Robust Fitting

The robust fitting community has concentrated on investigating the statistical prop­

erlies of different cost functions [Hampel et aL, 1986, Huber, 1981]. In terms of the

aclual algorithms to compute the global optimum of these cost functions the sug­

gestion is to run a non-linear optimization algorithm, in particular, the reweighted

least-squares algorithm [Beaton and Tukey, 1974]. This algorithm, however, requires

a starting point in the parameter space which is close to the global optimum in order

for it to converge properly. But as we have shown, there are orten many local optima,

so finding the right starting point is not a simple task. This is where the minimal

subset random sampling algorithm can be used effectively. The parameter vector of

the best primitive produced by the random sampling process can be used to provide

the initial estimate for the reweighted least-squares process. The quality of the results

obtained by robust fitting algorithms that use reweighted least-squares depends on

this initial estimate [Press and Flannery, 1988]. Therefore using random sampling to
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(a.)

(c)

(e)

(h)

(d)

(f)

Figure 4.10: Block from range image (a),(c),(e) edge pixels from local
operator (b),(d),(f) edge pixels from segmentation.
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find an init.ial est.imat.e for t.he reweight.ed !east.-squares process will definitely improve

t.he chauces of a successfu\ result using any robust st.atist.ics fitting algorithm.

From a comput.at.ional point of view, minimal suhset. random sampling is com­

pletdy compatible with previous rohust. fitting algorithms. The real reason that

t.hese algorit.hms arc not used for primitive extraction where there are more than 50%

outliers is the concept of hreakdown. Wc have shawn that this idea is not completely

transferahle from statistics ta the computer vision field. It ignores the fact that for

any rohust algorithm sorne threshold must be placed on the returned cost function

value in arder ta decide on the significance of the result. We have discussed this issue

at length iu the Chapter Two. It is in the interpretation of breakdown that we differ

from the robust statistics community. With our interpretation the essentia1 unity of

various extraction algorithms is clear. With the robust statistics interpretation the

robust fitting algorithms and the extraction algorithms such as the HT are of a fun­

damentally different nature [Forstner, 1989J. From a statistica1 point of view this is

truc, but not from a computational point of view. However, l'ven without agreement

on this issue, minimal subset random sampling is still a useful numerical method that

can be used with robust fitting algorithms.

4.3.2 Minimal Length Encoding

Recently approaches based on minimal description length (MDL) have become popu­

lar for segmentation [Darrell ct al., 1990, Pednault, 1989, Leclerc, 1989]. The MDL

princip1e states that the best description is the one that is the shortest in a given

language. In order 1.0 use the MDL principle il. is first necessary 1.0 define a language

along with a way of measuring the 1ength of a string in that language. Once this is

done, segmentation becomes an optimization problem where the attempt is made 1.0

minimize the sum two terms, L(8) +L(E) . Here L(8) is the length of strings that

define the segmentation, and L(E) is the length of the segmentation error. The length

in both cases is usually measured by computing the number of bits necessary 1.0 en­

code the given quantity. This makes the optimum segmentation the one that has the

minimum length, where Iength is the total number of bits. This is the explanation of
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the origin of the term "minimallength l'lH'oding'·. This tl'rhniqul' has h"l'n applil'd to

both two-and threc-dimensional geometrir data, thongh the thrt'l'-diml'nsional data

arc assumed to be graph functions taken from a singll' \"i,'w [Dam'II t'I ,,1., l!Hllll. 'l'hl'

main difficulty with the approach is the timl' compll'xity. I-:\"l'n simpll' s"gn"'llI.ations

of two-dimensional curves take considerahle compnt.l"· tinlL'.

Our way of applying t.he ext.raction algorit.hm t.o t.he prohlem of ext.ract.ing dilf,'r­

ent types of geomctric primit.ives uses ideas similar to t.he minimal lengt.h encoding

algorithms. At each stage of the extraction st.ep wc att.empt to lind ail the geomel.rk

primitives. If two primitives arc equally good according t.o the l'ost fundion value,

then the simplest description is chosen. For example, if a set of poinloH is pl:'.IHtr, t.hen

both a planaI' patch or a quadric patch arc equally good descripl,ious, but. t.he platHtr

description is siml'1er. Our measure of lengt.h (simplicit.y) is t.he si~e of t.he mininml

subset. The fewer the points in a minimal subscl., t.he simplet· t.he primit.ive. Thns

our segmentation algorithm does return t.he simplest descript.ion in :t ccl·t.ain sense.

However, it is not the best description according to t.he opt.imi~ation crit.eria used in

the MDL literature.

The MDL approach does not return a single primit.ive at a time, hut. inst.ead re­

turns ail the primitives at once. This makes t.he associat.ed optimi~ation prohlem

much more diflicult ta solve than for primitive extraction. The result is Lhat. MDL

algorithms execute very slowly, even on massivcly parallel hardware. This is not ac­

ceptable for robot vision. The other major difliculty is that the MDL approach is

only a general principle which leaves open exactly how the complexit.y alld error arc

ta be measured. While progress has been made in applying MDL to range images

[Darrell et al., 1990], it is tao carly ta say that such an approach rnects the segmen­

tation criteria described in the previous section.

4.3.3 Hough Transforrn

The HT is historically the most common method of perforrning primitive extraction.

It was discussed in detail in Chapter Two, where it was shown to he nothing more

than a repeated template match [Stockman and Agrawala, 1977]. This meana that
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tll" lIT is '''Illivalentto a rcpeated application of primitive extraction with the appro­

priate lixed-band cost function. Because the lIT is so common we will spend elfort

cornparing it to our randorn sampling method. We will rnake this comparison in the

categories of ro!>ustness, computational complexity, sensitivity to parameters, paral­

Ielisrn, and generality. We bclievc that for primitiv('s other than lines our approach

is delinitcly superior to the HT. For lines the issue is less clear, but we believe the

r;.ndorn sampling algorithm is still preferable in many cases.

The first category of comparison is robustncss, which according to our optimiza­

t.ion modcl described in Chapter Two, depends on how well the global optimum can

found from among many possible local optima. The HT attempts to find the global

optimum by performing template matching (evaluating the cost function) cnly at ccll

locations. The likclihood that t.he good global optimum will be found depends on

t.he ccll quant.ization. Finer quantization of the Hough space mean a better chance of

finding the global optimum, but. requires more space than coarse quantization. As­

sume that the HT has a given ccll size and that the band size for random sampling

is set to produce the same size template. If the number of sampIes J( of the ran­

dom sampling approach is set equal to the number of cells of the I-IT, then random

sampling is at least as Iikely as the HT (and probably more Iikely) to find the global

optimum. This is because for random sampling the matching is done only at the

values of the parameter vector defined by a minimal subset. It is at least as likely

that a primitive will exist at the value of the parameter veetor defined by a minimal

subset than at an arbitrary location in parameter spacc defined by the cells of the

HT. Therefore, for the same number of cost function evaluations our approach is at

least as robust, and often more robnst than the BT.

The next category is computational complexity, which are the time and space

complexity of each algorithm. The space requirements of the BT are exponential in

n, the degrees of frecdom of the primitive, and the dimension of the parameter space.

This is the most significant drawback of the I-IT. If each dimension of the parameter

space is quantized equally into P values, then the space requirements are O(pH ). By

contrast, the random sampling approach requires only O(N) space, where N is the
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number of data ~oints. This makes it. possible 10 Pl'Ol'l'SS prilllilil't,s \\'hich havt' Illan)'

more degrees of freedom than t.he liT.

This is most clearly shown in the application of t.h,' liT 1.0 l'Ïrclt's and t'Ilipst's

extraction, which is still an active arca of l'l~sl'arch [Huang, I!l~!l, Ynt'n ri tl/., l!l~!l,

Davies, 1987, Kierkeggaard, 1992, Yip ct al., I!H12]. IIt'nlust' the nUIll\lt'r of d,'gl'l't'S

of freedom of these primitives is higher t.han t.wo a dil'l'd illlplt'Illl'nt.at.ion of the liT

is not practical because of the space re'luirelllents. TIll're arc t.hrec appl'Oachcs t.\mt.

have been used to modify the Hl' in orcier to deal wit.h t.his pl'Oblelll. The Iirsl. is

to use a very coarse quantization of the parallleter space. Th'~n the liT fOI' l'ilipse

extraction have dimculty in finding c10scly separated ellipses beClluse of t.he coarsc

quantization [Yuen ct al., 1989]. Our algorithlll ha.• no snch dillicult.y and is able 1.0

incorporate available constraints on the geolllctric prilllit.ive in a nat.ural fashion. The

second approach is to make extraction using the liT a lIIultistep process, where each

step operates on sorne subset of the paramcter space. However, t.his is c1early less

accurate since parameters of a previous step do not necessarily provide the correct.

information for successive steps. The thir<l, and most. practical approach, is to use

the gradient information at each edge point along with the edge point itself. However,

since this gradient information is a derivative the result is less accurate than if just

the edge points were use. Our extraction algorithm, by contrast, does not require

gradient information, and is as robust as a higher dimensional Hl'.

The time requirement of both methods require more analysis in order to make a

sensible comparison. For each data point, the Hl' increments the count of every cell

in parameter space that could have produced this data point. Therefore, the time

complexity depends on how many cells are visited for each data point. An exact

answer depends on the primitive and its parameterization. However, an approximate

answer cornes from the realization that each data point is associated with a surface

in the parameter space of the Hl'. If this space has dimension R then the largcst

subspace has dimension R - 1. For example, in two dimensions, the number of cells

is p 2 so the expected number of cells in any one dimensional surface (a curve) is

P. Here P is the quantization of each dimension of the Hough parameter spacc.
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TlllIs the exp"c:t."d 1IIl1nh"r of œlls visite" hy each point during the voting process is

/,/1-,. Sinœ there arc N points this makes the expect.ed time complexity of the vote

ac:nllllulation part of the liT equal to O(N 1'/1-').

Once this voting process is complete it is still neccssary to search the parameter

space to find ail the cells which are dccmed to be significant. Traditionally, this

pmcess is called peak rlekct.ion since the largest value, or peak, in the paramcter

spacc was is the most significant celi. In pract.ice, the usual approach is that cells

which have more than votes than a given threshold arc rcturned as valid primitives.

This proccss takes time proportional to the number of cells, which is O(pR). IIowever,

it is independent of N, the number of geometric data points.

Since the HT produces the same result as repeated template matching it is in­

teresting to compare the complexity of a direct template matching approach to the

liT. There are pR possible templates (one for each ccli) that can be matched against

the geometric data. If the number of data points is N, then the time complexity for

template mat.ching is O(NpR), while the space complexity is O(N). For the lIT the

expected time complexity is equal to O(NPR-l) and the space complexity is O(pR).

The extraction time of the lIT is therefore proportional to N, the number of geomet­

ric data points. This shows that the lIT is nothing more than a way of performing

template matching that trades off time for space.

For random sampling with a fixed-band cost function each value of the parame­

tel' vector computed from the R minimal subset points defines a template. A direct

implementation of the evaluation procedure for a fixed-band cost function requires

O(N) time. In Chapter Two we showed this can be improved upon, but for com­

parison purposes with the HT we will accept the more conservative O(N) figure. In

the worst case the number of random samples is (~), and if we take NP as an upper

bound for (~), then the worst case time complexity is O(NP+t). This is equivalent

to a direct template matching implementation of the HT with the quantization P set

to the number of samples N.

However, we note that these figures are for the worst case, with the maximum

number of possible l'andom samples. Typically the number of random samples J( is
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considerably kss silll'c m1lximnm robUStlll'SS is IIslI1IlIy Ilot l'l'qllil'l'd. 'l'hlls Iht' till\<'

complexity of the random sampling m<'l hod is 0(1, N). Ily rOlup1lrison II\<' t'xp",·,,'d

time complexity of the Il'!' is ('<]lIal to O(NI'/I-'). llo\\'t'\"'I" tht' Il'!' lituls ail tl\<'

geometric primitives at, once, while 0111' appro1lch litllis tllt'm tlllt' al. a tinll',

It is also the case that the IlT is most commonly us,'d for tht' ('xtrart,ion of lint's,

circles and ellipses, For extract.ing thest' nll'\'cs \.Ill' nlt'thod dl'sl't'ibl'd in S,'ction

2.'1.3, of performing the template matching by ilu'l'cml'ntal Cll\'V" gl'IIl'mt.ion dmng.,s

the execution time of om mcthod 1.0 O( l, Z), wh"rc ;1, is a Iixcd valm' that do,'s not,

depend on N. This means that as the number of geomct.rîc data points inl't'ea,<t's, t.he

execution time of om extraction algorithm is unchanged. lt. is propOI't.ional t.o 1\, t.he

number of random samples,

Wc sec that a time comparison with the IlT is dillieult wit.hollt. speeifying t.he

expected number of primitives in t.he geomctl'Îc dat.a. The smaller t.he nUluhcr of

expected primitives, the smaller the value of [(, and the fa.,t.er Oll\' approach will he

verses the HT. At sorne point. as t.he number of primit.ives increa.,es the lIT will be

faster than our approach. The nllmber of primitives at whieh t.his OCCll\'S depends on

the size of the minimal subset, but in genera\ is in the order of a dozen primit.ives.

However, for 2D curve extraction if the nnmher of primit.ives remains Iixcd but. the

number of geometric data points increases, then at some point. onr mcthod will he

faster than the Hl'. This is because the execution time for the IlT is proportio1li1l t'l

the number of geometric data points. When incremental cmve generation is used for

2D curve extraction this is not the case.

The previous analysis assumed that both the HT and the l'andom sampling method

were running on a single processor with no special hardware. However, if real-time

performance is to be obtained special pmpose hardware will ort.en he nec:essary. In

the previous Chapter we showed that using VLSI implementations of incremental

curve generation routines would enable real-time extraction of lines,eircles and el­

lipses. This ean be aehieved without parallel hardware, whieh is not the case for t.he

Hl'. Sinee extracting such eurves is the most common application of the HT, this

is an important facto However, the incremental drawing approach applies only to
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~J) l'\lrves, for otller types of geornetl'ic primitives wc require l'araBe! hardware ta

al'hieve real-time performauce. The issue of runniug the random sampling algorithm

on paralld hardware will be dealt with in detail in Chapter Six. Here, wc will provide

a short sUllllnary of 0\11' conclllsions from this Chapter.

For the lIT, the obviolls approach would be ta dedieate a proccssor ta each point.

If t.he nllmber of proccssors equals the number of points then the maximum possible

speedllp is obtained. However, because of memory contention the time ta access global

melllory in a paralle! architecture inl'l'cases with the number of processors. Since the

cdls of the HT must be kept in global memory, each processor must be able ta access

t.his lllemory to perform the voting proccss. This rapidly leads ta contention, and

decreases the potential spccdup which l'an be realized for multiple processors. Any

algorithlll which has a large number of accesses ta global memory is very difficult

ta paralle!ize. In fact, paralle! approaches ta the Hl' have only been implemented

on special purpose hardware for line extraction [Fisher and Highnam, 1989]. This

illlplementation exploits the fact that for lines bath the image array and the Hough

array arc two-dimensional. This scheme does not seem ta be extendable ta higher

order primitives. The fact that the Hl' uses a large amount of global data makes it

very difficult ta pal'alle!ize [Illingworth and Kittlel', 1988].

The random sampling approach l'an be pal'allelized most dil'ectly by concentrating

on the l'anking step. NOl'mally this takes O(N) time, but a direct implementation

using N prol'essors l'an decrease this time ta 0(1). This assumes that a global broad­

cast facility exists in which a message l'an be sent in fixed time to ail the pl'ocessors.

Significant speedup is still possible if such a facility does not exist. Because the ran­

dom sampling algorithm requires no access to global memory it is easy to decrease

its execution time on parallel hardware. With the requirements for global memory

this can not be said of the HT.

The next criterion for comparison is the number of parameters on which each

algorithm depends and the sensitivity to the settings of each parameter. As we have

stated earlier, the key parameters in the HT are the parameterization of the geometric

primitive, the ccli size and the l'l'II shape. The l'l'Il size is a choice of scale and as
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such must be set by the user, but the otll<'rs an' arbitrary and ha\',' a dramatir ,'lf,'rI,

on the results.

The l'andom sampling approach ha., as its opcratiug paranwtcrs LIll' unml"'r of

samples, and the band size. The latter is cqnivalent to the œil sizc of t.he liT. lIow,'vl'r,

unlike the liT the random sampling mclhod does not. depcnd on t.he paramct.crizat.ion

of the primitive. For example, whet.her a line is paramclerized in slope·int,crccpt fonn

or in distance·angle form has no effect. As opposcd t.o t.he liT, the t.cmplat.c always

has the correct shape, the shape of the dcsired primit.ive.

The kinds of primitive that can be ext.racted by each met.hod is wlmt we mean

by the generality. The liT votes for each point by traversing paramel,cr spaœ in a

way defined by the original implicit. form of the geometric primit.ive. The dimculty is

that this traversai process is not always simple. Il. is more appropriatcly donc using

parametric equations, but producing a paramclric form from the implicit form is

not always possible [Sederberg and Anderson, 198~, 1I0ffman, 1989]. The traversai

process is possible if the implicit form is a first or second order polynomial, since

in this case the associated parametric form can easily be produccd. Because only a

very restrieted subset of all possible surfaces has been processed with t.he liT, the

difficulty of aetually voting for each point by traversing parameter space has not been

a problem, but il. is in fact a limitation of the method.

One suggested way of making the liT more general is to use a tahle containing a

list of points on the outline of an object along with their distance and angle from a

reference point. The peaks in the accu.• lUlator arc then the possihle locations of the

reference point. This is known as the generalized liT [Ballard, 1981). 1I0wever, this

method is applicable only to a single instance of a given shape, and is not capahle of

extraeting an entire c\ass of shapes defined by the implicit form. For example, this

method could extract an ellipse of a l'articulaI' size and orientation, hut wOllld not he

effective for any other ellipse. The generalized liT can not extract different families

of curves or surfaces, where a family is defined implicit1y hy a given equation. Thus,

il. does not aetually deal with the problem of extraction, which is the foclls of 0111'

algorithm.
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'l'he rillld"rn sarnpling algorithm requires the ability ta producc the paramcter

vecl.or of the primitive through R points. The dctails of our approach for converting

from a millimal suhset ta a paramcter vedar were discussed in Chapter Thrœ. In

that chapter wc discussed the c1ass of primitives for which wc can currently perform

t.his mapping, and this c1ass is large enough t.o cont.ain a wide varicty of geometric

primit.ives.

Wc bclieve that our algorithm is simpler and more geneml than the liT. It can

h,~ndle a wider variety of geometric primitives. !ts main drawback is the execution

time, while the main drawback of the lIT are the space requirements. Thus as

processor sperd increases our mcthod will become more competitive. This is not

true for t.he liT, since for complex primitives its space requirements are difficult ta

m~et even on future processors. For a reasonably small number of primitives, often

ill the arder of a dozen, the execution time of our method is comparable ta the RT.

ln many situations bath will require implementation on parallel hardware, and here

our method has the advantage over the I-lT. This issue is sa important that it is dealt

with in detail in Chapter Six, which discusses parallel hardware implementations of

our approach.

4.4 Summary

The extraction algorithrr. described in the previous chapter finds a single geometric

primitive. In this chapter wc showed how ta apply it when there are multiple prim­

itives of the same type or of different types. The most straightforward approach is

ta repeatedly apply the extraction algorithm and remove the inliers found at each

iteration. This process continues until no more primitives are found. Sometimes the

number of primitives in the geometric data is sa large that very many random samples

arc necessary. In this case wc use local connectivity ta divide the geometric data into

components, and then perform extraction on each connected component. A num­

bcr of cxperimental results for bath two-and three-dimensional geometric data are

shawn. They show that extraction can be pcrformed successfully on a wide variety of
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curves and surfaces, Finally a dctailed compal'ison is mad.. l",tw",'n onl' apl'wal'h and

the robllst fitting rncthods, the HOllgh transform and th.. minimal I,'ngth ,'nl'o<!ing

l11ethods,
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III this chapter we will discuss the use of a Genclic Algorithm (GA) for primitive ex­

t.raction. Siuce GAs have rarcly bccn applied in the computer vision field we will first

give a geueral overview of their operation. Then we will show how a GA can be com­

bincd elfeclivc1y with the minimal subset representation [Roth and Levine, 199111.].

The resulting approach is often much more efficient than the extraction algorithm

that uses only random sampling. The GA combines inaccurate local information to

create a more accurate global interpretation in a natural fashion. The GA does this

by emulating the process of evolution to improve the quality of a set of potential solu­

tions. While convergence to the best solution is not guaranteed, a very good solution

is often quickly found.

The combination process is reminiscent of a traditional computer vision grouping

algorithrn [Levine, 1985]. However, such algorithms generally have a complex control

structure, and also suifer from the problem of premature commitment. A GA is a

form of direcled random search or learning, and this random component of the search

process means that in many cases premature convergence is avoided. A GA also

has a very simple control structure in which the best geometric primitive emerges

spontaneously. We spend sorne time discussing why the GA works, and compare it

to other search methods such as simulated annealing. Sorne experimental results are

presented for primitive extraction using a GA, and the parameters settings of the GA

algorithm are discussed in detai1.

5.1 Genetic Algorithm Overview

A GA is a method of solving hard optimization problems in a way that attempts to

mimic nature. It is based on an evolutionary metaphor, which has its own terminology,

50 sorne explanations of this terminology are necessary. In evolution, a population

of individuals seleclively mates, and in doing 50 evolves. This evolutionary process
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is guided by fccdback from the environnll'nt. This nH'ans lhal litll'r individnills liv,'

longer, and therefore reproducc more ort.l'n. As lin1l' gOl'S on th,' Ilopnlalion lll'conH's

dominated by these filler individua!s and lhl'ir dl'SCl'lllll'nls. Conc"pluillly, a GA is

nothing more than a procedura! codificalion of lhis evolnliouilry procl'SS, illl1l'il in il

simplified fonn [Bolland, 1975].

A GA has the following Huee essenti"l componenls [Goldberg, 1!l8S]:

• A population of individuals which arc candidale solulions 10 the givcn opt.i­

mization problem.

• A competitive selection method for choosing individuals for reproduction, ha"cd

on the fitness of each individn,,!.

• A set of genetic operators that combine the sclectcd individultls to creiüe new

individuals for further testing.

Individuals are defined by a chromosome string which is a Iist. of genes, where e"ch

gene takes on a single value from a set of tokens. The chromosome encodes ail the

possible values of the parameter(s) being optimized. In traditional GA Iitemture the

set of tokens for a gene is either zero or one, which makes the chromosome a bit string.

Instead of using a binary encoding wc use the minima! subset encoding discusseci in

previous chapters to define a chromosome. Since the basic operation of the GA does

not depend on the particular chromosome representation, we will postl'one discussion

of the representation issue until later in this chapter.

Feedback from the environment is provided by means of a fit.ncss function. This

function has as input the chromosome definition, and as output a scalar whose mag­

nitude is the fitness of the particular individua!. The fitter l.he individual, the larger

this scalar value. Bow this fitness function is implemented is completcly application­

dependent. In optimization terms this fitness function is nothing more than the l'ost

function. Thus the GA approach is naturally adopted to optimization problems. In

fact, the optimization field is the one in which the most experience with GAs ha.~

been obtained [Goldberg, 1988].
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ln order to explain the actual operation of the GA we will assume that a popu­

lation of individuals exists, along with thcir fitness values. Later we will show how

this initirû population of individuals is obtained for our application. During execu­

tion of the GA two individuals are repeatedly selected at random from the current

population. The key point is that this random selection process is not uniform, but

is in proportion to the fitness values of the individual. Let us say that f(M) is the

fitness of a given population member, and f(T) is the sum of the fitness values for

ail the population members. Then this population member will be selected with a

probability f(M)f f(T). Thus the probability of selection is "biased" by the fitness

value of that population member. This means that fitter population members are

selected to mate more often, which is how evolution operates in the natural domain.

The GA takes two individuals selected in this fashion and applies genetic operators

to their chromosomes to create two new individuals. The most important of these

operators is called crossover. This takes the chromosomes of two individuals (the

parents) and crosses them over to create the chromosomes of two new individuals

(the children). For example, assume that the parents have binary chromosomes of

(010110) and (110011). Then a single application of crossover might produce two

children, whose chromosomes are (110010) and (OlOl11). In this example the genes in

the first and third position of the parents' chromosomes are crossed-over or switched.

The actual genes which are crossed-over are also selected randomly according to an

algorithm which we will describe. Figure 5.1 illustrates how crossover is applied to

the parents' chromosomes. Bere the chromosomes of two parents are drawn on top

ûf each other, one shaded in soHd black, and the other shaded in a cross-hatched

pattern. The crossover operator crosses-over the parents' chromosomes in a random

fashion to create the chromosomes of twû children. This figure shows one possible set

of children's chromosomes produced by the crossover operation.

The second genetic operator is caned mutation, and is nothing more than a ran­

dom change of the genes in a chromosome. For example, a chromosome string of

(110110) might become (010111) by the mutation of the first and last gene. The mu­

tation operator is applied to the children's chromosomes after crossover. There are
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Figure 5.1: Crossover operating on the (lllrents' chromosomes to create li",
children's chromosomes

other more specialized genetic operators, but they arc not. always preseut in lUlY GA

implementation. The operators of crossover and mutation constitute t.he core genet.ic

operators. Of the two, crossover is the more important, so much sa that saille GAs

perform no mut.at.ion al. ail. In our application this is indeed the case, and wc do not

use the mutation operator. Mutation is usdul only for lUI application in which the

GA is l'un for many iterations. This is not the case for primitive extraction, since the

number of iterations of the GA is relatively small.

The fitness of the two children is evaluated using the cast function, and they

are returned 1.0 the population pool. In order 1.0 keep the population at a fixed

size, the two least fit individuals arc removed. The GA allows identical population

members, and in fact population members generally become more similar as time

goes on. This is because the population becomes dominated by a small number of fit

individuals. The GA 1001' of selection, crossover and mutation is executed until the

fit test population member has not changed in a given number of iterations. When

this occurs the GA is said 1.0 have converged.

The fol1owing pseudo-code describes the basic GA loop.

Create the initial population members
For a number of iterations
Do

1. Choose two parents 1.0 mate in proportion 1.0 their cost function value.
2. Apply genetic operators 1.0 the parents' chromosomes 1.0 create two children.
3. Rank the children by using the cost function and add them ta the population.

Enddo

When the algorithm is terminated the fittest population member is taken as the

solution. The GA acts as a form of adaptive search, but one in which the adaptation
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proce"ds in an evolutionary fashion. This basic methodology, with some variations has

been appli"d to a wide range of problems, often 'luite successfully [Goldberg, 1988].

Th" question that nceds to be answercd is when anù why this approach is superior

to traditional optimization measures such as gradient descent, or other stochastic

approaches such as simulated annealing [Corana el al., 1987].

In relation to gradient descent methods the answer is clear. For cost functions

which arc noisy, and have many local minima, a gradient descent procedure will not be

effective. In order to avoid local minima it is necessary to have a degrec of randomness

in the search procedure. Any deterministic approach to searching such a function is

likely to be trapped in a local minimum. In computer vision terms, being trapped in

a local minimum is an example of premature commitment to a particular solution.

This phenomenon has been a problem with many computer vision algorithms in the

pasto The GA does not guarantee that this will not happen, however, in practice,

random selection based on fitness often avoids premature commitment.

The answer to the second question is more subtle. There are other random search

procedures, such as simulated annealing, which are a1so used in the optimization

field. When and why is a genetic algorithm superior? There are both theoretical, and

practical answers to this question.

5.2 Schemata and Their Implications

The main tool that has been used to achieve this understanding is the concept of

schemata [Holland, 1975J. Schemata are simply generalized chromosomes. Normally

the tokens for each gene in a chromosome are drawn from a given set. For schemata,

an extra token, which is given the label *, is added to this set. For example, if the

token set for a gene were {O, 1}, then the token set for schemata would be {O, 1, *}.

The * is a don't care, or wild card symbol that matches any of the other tokens

in the set. An individual instance of a schemata is called a schema. It represents

ail the chromosomes that are matched by the schema pattern. For example, using

binary tokens the schema (1 *0), matches the chromosomes 100 and 110. There are
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many possible chromosomes matched by each sch,'ma and t.ht'l'l' art' many possiblt'

schemata. Ir the chromosome has / genes, and tl1<'l"t' an' normally ~. dilft'l'l'nt. t.okt'ns

for a gene, then there arc (k + 1)1 possible schema.

1'0 illustrate this concept wc will list ail the possibll' schemata for a binary chro­

mosome of length two. There are nine possible schemata, fOllr of which are t.llt'

chromosomes (0,0), (0,1), (1,0), and (1,1), which arc simply schemata withollt a *
token. The schemata that contain a * arc (*, *), which makhes (0,0), (0, 1), (1,0),

and (1,1); (1,*), which matches (1,0) and (1,1); (0,*), which matches (0,0) and

(0,1); (*,0), which matches (1,0) and (0,0); (*, 1), which matches (0, l) and (1,1).

Since schemata are generalized chromosomes, they can represent dirrercnt, regions of

the search space, These regions can be very general (the entire space, which is a

schema with ail *'s) or very specifie (a single chromosome, which is il schema with no

*'s). Schemata will be IIsed to show how random selection according to fitness, along

with application of genetic operators, directs the GA search process. However, bcfol'e

these issues are explored, sorne further notation needs 1.0 be delined. When a single

schema is referenced it is given the label Il. The order of the schema li is calicd

o(Il). This notation 0, should not be confused with the computer science notation

0, which represents algorithm complexity. o(Il) equals the number of fixed (non *)

positions in the schema. For example, with the schema (1 * 0), the order is two. The

order is an integer from zero to /, where / is the length of the chromosome. Assume

that the current population operated upon by the GA has r mernbers, and that it is

given the label A. Let A(t) be the population of the GA algorithrn at iterationt. The

variable t starts at one, and increments by one for each iteration of the GA. Herc an

iteration is the process of selecting two parents anJ creating two children by applying

genetic operators. The size of the population A stays constant, but the composition

changes as t increments. Let m(Il, t) be the number of population members rnatched

by schema Il in the population A(t). For example assume the population at iteration

t is (101), (001), (110), and the schema Il is (*01). Then m(lf, t) equals 2, since only

population members (101) and (001) are matched by If. Clearly, m(Il,t) is always

less than or l'quai t.o r, the number of members in the GA population.
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Ilccall that an individual population member will be se1ected for mating with a

probability of J(M)/ f('I') where J(M) is the fitness of the population member, and

f('I') is the sum of the fitness values for ail population members. Since the rule of

selection according to fitness also appHes 1.0 the population members matched by a

schema, we expeet the following equation holds:

r f( lÎ)
m(II,I+I)=m(lI,t) f(T) (5.1)

ln this notation f( lÎ) is the average fitness value of ail the members of the population

A(t) matched by schema Il, so r f(Îl) is the total fitness of ail the members matched

by this schema. Since the average fitness of the entire population f(1') is defined by

f('!') = f('1')/1', the previous equation becomes:

m(lI, t+ 1) = m(H, t/U!)
f(T)

(5.2)

This equation is the basic reproduction equation of a GA [Holland, 1975J. It says

that the number of population members matched by schema H grows in proportion

to the ratio of the fitness of the average schema member to the average fitness of the

population. A Schema which has above average fitness willl.ave more representatives

in the population as time goes on, and those with below average fitness will have

fewer. Assume that a particular schema always has a fitness value which remains

above the average fitness by a constant amount c. Then f(H) equals f(1') +c f(1')

and the above equation becomes:

m(lf, t +1) = m(II, t/(1') +: 1(1') = (1+ c) m(II, 1) (5.3)
f(T)

If we start att = 0, and assume a constant value of c then equation (5.3) becomes:

m(H, t) =(1 +c)Lm(H, 0) (5.4)

This is simply a geometric progression over l, which is the discrete version of an expo-
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nential equation. This shows that the se1,'dion by lit nl'SS alloeat.l's an ,'xl"llll'nt ially

increasing (or decreasing) number of populat.ion memlll'rs t.o sclll'nlilt.n t.hat. al'l' aho\'"

(or bclow) the average fitness value. Sinel' a sc!wma l'an l'l'Il\'('SI'I1t l'l'~iolls of t.h"

search space, this implies that regions whkh have on t.h,' aVl'l'age vl'ry lit. ml'lIl1ll'I'S

are rapidly allocated more attention by th,' GA. This ex plains why sueh a simpl,'

reproduction scheme converges so quickly.

While interesting, this analysis has so far ncglect.ed t.he e[eds of gellcl.ic opemt.OI's

by assuming that at each GA iteration t.he children are simply dllplimt.es of \.Ill'

parents. This is not trùe because genctic operators are applied to t.he parellt.s' genl'S

in order to creat.e the children. Aft.er thcir applicat.ion the childrell IImy 110 10llger

be members of the same schema as their parents. Thlls t.he gelleral rl'prodllction

equation must be multiplied by a factor s to become:

J(/i)
m( II, 1+ 1) = m( II, 1)-.-.•

J(T)
(5.5)

In this equation s is called the survival probabilit.y. This is the probabilit.y t.hat. aft.er

the genetic operators have been applied the new poputtl.ion members arc stilll1latched

by the given schema Il. This will happen only if the gelles of non * members of the

schema are unchanged by these genctic operators. For example, a chromosome of

(101) is matched by a schema of (*01). Assume that the crossover operator Imd t.his

chromosome as one of the two parents, and that one of the resulting children Imd il

chromosome of (Ill). The second gene of the chromosome chiLnged, alld sincc it is

not matched by a * in the schema definition, this child is no longer a memher of I.he

schema Il. The value of scan be computed, and doing 50 gives considerable insighl.

into the how genetic operators work.

Before this is donc the operation of the crossover operator will be explained in

more detai1. As stated previously for primitive extraction the only genetic operator

used is crossover, and no mutation is performed. The justification is that the number

of iterations of the GA necessary in this application is tao small for mutation to

have a significant effect. A uniform crossover operator is used, which means that
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there is a uniform probability Pc, of crossing over any of the parents' genes. In

this application Ile is set to .5, so there is a 50% chance of crossing over any given

gcnc. This is not the usual crossover operator, but a growing body of theoretical

and practical work points to its superiority over traditional GA crossover operators

[Syswcrda, 1989, Spcars and DeJong, 19!1IJ. However, the basic conclusions of the

schema analysis are the same even when more traditional genctic operators are used

[Holland, 1975, Holland, 1992, Goldberg, 1988J. The final dilference from a standard

GA is that the crossover operator is always applied to the parents, instead of applying

it only a certain percentage of the time. Again, the justification is that since there are

il rclativcly small number of iterations of the GA, crossover should be donc as often

as possible. Assume that two parents arc chosen randomly in proportion to their

fitness. The following pseudocode shows how crossover is applied to the parents'

chromosomes to create the children's chromosomes.

For Each Gene of the Two Parents' Chromosome
Do

1. Draw a random number from zero to one.
2. If this number if less t.han Pc, the two chi/dren 's genes are the same as the

parents; otherwise they are the parents' genes crossed-over.
Enddo

The result of this process are the chromosomes of the two new children.

Now the question is how this crossover operator affects the basic reproduction

equation. Remember that o(Il), the order of schema Il, is the number of non *
positions in the schema. '1'0 make a schema that matches the parent's chromosome

to fail to match the child's, the crossover operator must change a gene which does

not have a * in the schema. The probability of this occurring, Le., of ail o(H) non

* genes surviving crossover unchanged, is (1 - Pc)"(H), where Pc is the probability of

crossover changing a gene. This is the survival probability oS and when this value is

substituted in equation (5.5) it becomes the following:

m(H, t +1) = m(H, t/(~) (1 - Pc)"(H)
J(T)

(5.6)

This new schema equation shows the elfects of crossover on the number of population
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members matched by a given srll"ma, which is m( /1,1). Crossovl'r t.,'nds t.o d"stToy

(or disrupt) a long schema, wh('r" long ml'ans on(' t.hal lms il lilrgl' \'ill\ll's of 0(11).

Disruption is a decrei\.<e in the I1Ilmbl'r of individnals in t.11<' popnlilt.ion t.hilt. ill'l'

matched by the schema. This means a disl'llptive 1'I'O""5S will mak,' m( /l, 1 + 1)

less than m(/1, 1). The longer the schema, the greilü'l' o( /1) and t.h.. gr".l!.l'r t.h.,

chance of disr\lption, and the less the chance of schenH\ slll'vivai. 'l'h,' pl'OlllIhilit,y

s of surviving crossover decreases exponent.ially aS o( /1) inneMes. lIowever, t.his

disruptive tendency is cO\lnterbalanced by t.he basic repl'Odnct.ive proc,~ss, in which

above average schemata (those with large J(lÎ)/J('Î')) dominat,e the popnlat,ion al, .\Il

exponentially increasing rate, What l'an be conrluded from t.his? That. short. schema

of above average fitness arc the ones that. will he favolll'ed by a gendic algorit.hm.

These l'l'present regions of the search space where good solutions duster, and t.hese

regions are searched more thoroughly by the GA. Thns t.he mt.e .tl. which lt GA

samples different regions of the search space depends on t.he probabilit.y of finding

a good solution in that region, The higher t.his probabilit.y, t.he more at.t.ent.ion t.he

GA expends in searching t.his region. This is exact.ly what. one wO\lld like in 't search

procedure. In contrast, a complct.ely l'andom search process places eq\lal crfort. in ail

parts of the search space regardless of how promising the sol\lt.ions arc in any given

area.

Short schemata of above average fitness are the basic building blocks of a GA.

Because they rapidly dominate the population, the crossover operat.or repeatedly

combines them to try and produce fitter individuals. This analysis also snggests t.he

type of problem for which a GA will not work weil. Ass\lme the best sol\ltion stands

alone as a "spike" in the search space, and has neighbours of bclow average litness.

Then the fitness of the population members matched by a schema containing this

solution and its neighbours will likely be below average. This means the GA will

probably not find the best solution, since it will not spend m\lch effort on the part of

the search space represented by a below average schema.

It is clear that the success of a GA depends critically on the elfect.iveness of the

crossover operation. The "building blocks hypothesis" says that crossover helps when
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short, fit sc:I""nata combinc to form even more highly fit schemata [Holland, 1975J.

Wbetl",r tbis adnally happens depcnds on the problcm and the choice of chromo­

SOllle reprCHentation. The choice of a GA rcpresentation appropriate for a particular

application is still largdy an experimental process. The claim is that for the min­

inml snbset rcpresentation this "bnilding block hypothesis" holds, and this will be

delllonstrated experimenl.ally. If the "building blocks hypothesis" does not hold then

the crossover operator accomplishes little, and a GA is likely to be no better than a

purcly random search procedure.

This leads back 1.0 the original question of how weil a GA performs relative to

other sLochasLic search procedures, in parLicular, in relation to simulated annealing.

The expectation is that, for a good choice of chromosome representation, a GA will

be superior, since the "building block hypothesis" will be true. Rowever, the is­

sne of whether a GA is superior to simulated annealing is far from being decided

[Bramlette and Cusic, 19891. What is accepted by both sides in the debate is that a

GA is inherently a parallel process, while simulated annealing is inherently sequentia1.

Thus a GA can use parallel hardware to advantage, and it is not clear whether this

is the case for simulated annealing. This reason alone may be sufficient to prefer the

GA.

5.3 GA Applied to Primitive Extraction

In this section we show how the GA is applied to the l'roblem of primitive extraction.

In Chapter Two we discussed how random sampling using minimal subse!s can solve

this problem. Rere, we will describe the GA extraction algorithm in which minimal

subsets are used as a chromosome representation. Traditionally, GAs have used bit

strings to represent chromosomes where each gene is one of two tokens, either zero or

one. We will show that for accurate geometric data the minimal subset representation

is superior to the bit string representation for this application. First, we will describe

the minimal subset chromosome representation in detail.

As defined in Chapter Two, a minimal suLset is the smallest subset of geomet-
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l'il' data that produces a unique geonH'tric primiti\"l'. We assnnll' t.hat. t.1ll'rt, art' IV

geomctric dat.a points in the input. Earh point is idl'nt.ilit'd hy it.s index, which is

a number from 1 to N. Therefore the points in a minimal snhst'!. art' ddillt'd h)' <1

list of their indices. For example, assnme tllt're are a t.ot.al or t.t'n inpnt. point.s and

that points one, six and nine are t.he minimal snbset points delining a ci l'de. Then

the minimal subset represent.ation of this circle is (\,6,9). This minimal snhsc!. l'ep­

resentation is a chromosome if wc think or each point as a gcne. 'l'Ill' \engt.h or the

chromosome, that is the number or genes, is eqnal t.o the size or the mininHtl snhset.

The token set for each gene is then {l, ... , N}, instead or {a, \}. Note that this chro­

mosome definition is order independent, sincc any permntation or the genes prodnœs

the same geometric primitive.

This chromosome representation is not the obvious way t.o represent a geometric

primitive, which is to encode t.he parameter veet.or Ci as a bit string. Ilowever, in l.his

case every possible value of the parameter veetor Ci wonld be a potential solution.

When using a minimal subsets with P clements, only the (~) vaIncs of Ci delined hy

'~ach minimal subset are possible solutions. This is essentially the smue rea50n thal.

'/le use minimal subsets for primitive extraction in Chapter Two. The disadvantage

of using minimal subsets is that as the accuracy or the data decreases, the C!Htncc or

the best primitive being defined by a minimal subset also decreases. Ilowever, as wc

have argued in previous chapters, roI' modern sensors the accuracy of the geomctric

data is usually good. This means that the best geometric primitive is likcly to be

very close to the one defined by a minimal subset.

The other component necessary roI' a GA is a litness funetion. This takes the

chromosome defining the primitive, and outputs a scalar which is the litness or that

individual. For primitive extraction the fitness function is equal to the l'ost runction

used in our optimization model for extraction described in Chapter 'l'wo. While many

cast functions for extraction were discussed in chapter two the simplest counts the

number of data points in a fixed-band template around the curve or surface. This

is a sensible way ta score a geometric primitive, since the more points matched by

it, the less likely that this alignment of points is random, and the better the chance
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of a valid primitive. Since this cost function is the most commOn one we have used

prcviollsly, we will also lise it in our examples in the next section. However, any cost

fllndion defined in Chapter Two could have becn used.

We will now describe each of the steps in the basic GA algorithm as applied to the

problem of primitive extraction. The first step is the creation of the initial population

for the GA. For the extraction application, we divide the geometric data into parts,

where each part contains a relativcly small number of points. Ta create the initial

population of geometrir. primitives random sampling of minimal subsets is performed

on each part. Since these samples are taken over a sIllall amount of geometric data

the points On a minimal subset have a good chance of falling On a single primitive.

However, since the minimal subset points are close together the primitive defined by

these points is not likcly ta be accurate.

There are dilferent ways of partitioning the geometric data. If connectivity infor­

mation is available, then standard procedures exist ta find connected components. For

example, if the geometric data consist of edge points from an intensity image created

by a digitizer, then a simple algorithm produces connected chains [Giraudon, 1987].

Random sampling of the points On each chain can be used ta create the initial popu­

lation of geometric primitives. If such connectivity information is not available, then

a hierarchic data structure, such as an octree or a k-d tree [Samet, 1984], can be used

to partition the geometric data. In the same way as for chains, random sampling of

the points On each terminal node of the data structure can be used ta c.eate the initial

population of geometric primitives. In our experiments, we will demonstrate bath ap­

proaches ta creating the initial population for the GA. Other approaches could also be

usedj ail that is important is that the initial population be chosen over a local portion

of the geometric data. In this case the chance of a randomly sampIed minimal subset

falling On a single primitive is high, so a relatively small number of random samples

is necessary to create the initial population [Roth and Levine, 1990b]. However, as

we stated in the last paragraph, these locally sampIed minimal subsets are unlikely to

produce the best descriptions of a geometric primitive for anything except perfectly

accurate data.
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(h)

Figure 5.2: The crossover operation (a) Two dilferent genes ami thcir
associated circles (b) The new gene from crossover and the new circle. The
defining minimal subset points arc indicated by the arrows.

This is where the GA comes in, it uses the crossover opemtor to ill1J>rove these

local estimates. First, the GA chooses two primitives to mate randomly, with theÏ\'

selection probability biased by their fitness funelion values. Once two primitives arc

chosen to mate, the crossover operation is applied to create two new primitives. As we

have discussed previously crossover is the key component in the GA algorithm. For a

GA to work weil, partial solutions (chromosome substrïngs) must be used as building

blocks which are combined to create better solutions [Goldberg, 1988]. In our case

these partial solutions are the local estimates of the primitive in the initial population.

The crossover operation does indeed combine them to produce primitives which are

often better than either parent. Figure 5.2 shows how crossover accomplishes this

task. In this figure, it is assumed that ail the points belong to a single circle. In

part (a) of the figure are two circles, described by two different chromosomes, each

consisting of three points. The points that make up the chromosome of the first circle

are shaded in black, the second circle are shaded in grey and the remaining points

are not shaded. Assume that both chromosomes were part of the initial population

obtained by choosing geometric data points over local portions of the image, which

explains why the minimal subset points of the chromosome are close to each other.

It is clear from the figure that while each chromosome is a good estimate of a local
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portion o[ the circle, neither chromosome defines a circle which is a good description

o[ ail of the points that make up the complete circle. Crossover has the potential to

improveon this estimate by combining the two chromosomes. In part (b) of the figure,

one of the possible children produced by the crossover operator is shown. The new

chromosome points are the throc shaded points (two black and one grey) marked by

the arrows. The crossover operation has spread the minimal subset across more of the

gcometric data. As is the case here, this spreading often produces a better primitive

than the one defined by cither of the parents. In this case better means a primitive

which fits more of the points on the curve or surface. This demonstrates that the

crossover operator is indeed able to use partial solutions (chromosome substrings) as

building blocks to produce better global solutions.

It is important to note that crossover is much more likely to produce a better

gcometric primitive when the two parents are similar to each other. In other words

a crossover operation applied to two widely differing circles is much less likely to

produce a better circle than either of the parents. For this reason we augment the

selection process by using a compatibility filter. This chooses two parents to mate

in the normal GA fashion, but disa110ws the mating if the parents fail to pass a

compatibility test [Goldberg, 1988]. The reasoning is that the children of incompatible

population members are unlikely to be fiUer than their parents. While this is not

true in a11 applications, it is the case for primitive extraction. The compatibility

function measures the similarity of the parents by computing the average distance

of the minimal subset points of one parent to the curve or surface defined by the

other parent. The more similar the two primitives, the less this average distance,

and the more compatible the parents. For identical primitives this compatibility

function returns zero, and its value increases as the primitives differ. According to

this measure the two circles shown in Figure 5.2 are compatible. This means that

performing crossover on the minimal subset chromosomes of these two circles has a

good chance of producing children who are fitter than their parents. Whether the two

parents can mate is decided by thresholding this compatibility function. In this way

compatibility checking speeds up convergence of the GA by only a110wing mating of

112



•
5. GPIH.'t.ir Al~orit.hm for Extrartion

compatible parents.

The fitness function is applied to the two childl'<'n produl'ed by t.he Crossovl'r

operation. The two primitives with the smallest l'ost funl't.ion vnlues (t.he least Ht.)

arc then removed from the population pool to keep it a Hl'ed size. The basic GA

1001' is repeated until there is sorne indicatiou of convergence. In our el'periments

this is indicated when the best population membe\' lms not changed in Iifty mating

operations. Experiments show that convergence is very fast, in the order of a few

hundred iterations. The thcoretical reason is that IlIl exponentially increasing nmount

of effort is afforded to the dominant population members, Ils was explained in the

previous section [Goldberg, 1988].

The population member with the best score is the final result of this process.

The chromosome of this individual complete\y defines the geometric primitive since

the parameter vector a l'an be obtained from it, as WilS shown in Chapter Thrcc.

This parameter vector, along with the definition of the l'ost function, enables each

of the geometric data points that bclong to the primitive to be labelled using the

procedure described in the Chapter Two. In order ti> extract all the primitives, the

genetic algorithm is l'Un repeatedly on the remaining geometric data points not on

any primitive. This procedure is repeated until there arc too few geometric data

points remaining for a significant primitive to be extracted.

5.4 Experimental Results

There is a number of parameters that must be set in order to use this algorithm,

and we will now discuss how they arc chosen. As discussed in the previous section,

the l'ost or fitness function wc use counts the number of data points with a Bmall

template around the curve or surface. The first parameter is the Bize of thiB template.

For the circ1e and ellipse extraction examples that follow, the tempiate size iB Bet to

one pixel, while for the plane and sphere extraction the template size iB set to one

millimeter. We Bet the template Bize to the accuracy of the geometric data, which

was estimated by studying the characteristics of the BenRor uRed to l'reate the data.
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The dirrerence in units is due to thc fact that different sensors were used to create the

geomctric data in different examples. The next important parameter is the size of the

initial population. Experience has shown that the initial GA population should be

at least thirty and at most a few hundred geomctric primitives [Goldberg, 1988]. In

our examples, we demonstrate thrcc different ways of creating this initial population.

For the circle extraction example we use a k-d tree, for the ellipse extraction we

use connected clJains, and for the plane and sphere extraction we divide the data

into smail windows. In ail these cases the parameters (k-d tree size, chain size, and

window size) were set to give an initial population of at least thirty primitives. If

the initial population of the GA is lower then there is a significant chance that sorne

primitives will be missed.

The first examples have as input the edge points extracted from an intensity

image produced by a digitizer. These arc places wherc there is a significant image

discontinuity, and they consist of an unordered list of 2D points. They were created

using a public domain image processing package with the default threshoId settings.

No attempt was made to optimize the results in any way by experimenting with

these settings. Wc demonstrate the extraction of circles and ellipses from edge data

in which therc arc a significant. number of such primitives. For sorne examples the

edge points have been divided into chains, where a chain is a connected set of such

points [Giraudon, 1987J. The initial population for the GA is then created by the

l'andom sampling of minimal subsets on each of these connected chains. Since a chain

is likely to be a part. of only a single primitive, this method of creating the initial

population is very effective. For other examples the edge points have been partitioned

by using a k-d trce [Samet, 1984]. This is a recursive data structure which is created

by subdividing the image until each terminal node of the k-d tree contains no more

than a certain number of points. For a hierarchic data structure a terminal node is

the lowest level of this structure. Again the initial population is created by random

sampling of minimal subsets, but this time using the edge points that belong to each

terminal node of the k-d trce as the input.

The first image is of a number of coins, and the task is to extract the circles defined
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by these coins. In Figure 5.3, part (a) is t.he original inknsit.y imagl' of t.11<' foins. ln

part (b) of this figure arc t.he edge pixels prodncl'd hy t.hl' imag., pro"l'ssing p/lt"kagl',

Note that there are gaps in the circles, along with some spurious point.s produl'l'd hy

the markings on the coins. Part (l') of this figme shows the k-d t.rœ decomposition

of the edge points, with each of the smallest boxes defining t.he t.erminal nodes of the

tree that contribute 1.0 the initial population. The point.s that. make up the init.ial

population are obtained by random sampling of minimal subsel.s on these termilHtl

nodes, and are shown in part (d). Part (e) of this figure shows the circles that have

been extracted by the GA, and they are supel'Ïmposed on l.he original edge points

in part (f). The circles were obtained by repeatedly running the GA, removing the

points that belong 1.0 the highest scoring population member, and st.opping when t1w

number of remaining edge points is below a threshold.

The rapid convergence of the GA for circle ext.raction is demonstrated in Figure

5.4. In this figure ail the minimal subset points fol' the circle extraction problem are

drawn as small dots. The best current circle in the population is drawn as t.hrec large

dots. Part (a) of this figure shows the initial population, while parts (b) through

(d) show how the population l'volves as the GA executes. gach of these figures is

separated by forty crossover operat.ions. In a very short. number of it.erations the GA

population has converged 1.0 a single answer. Note that in part (b) the best circle is

different than the one in part (a) as a l'l'suit of the cl'Ossover operator. This circle

l'l'mains the best one until the convergence of the GA in part (d). Once the entire

population is identical, convergence has definitcly occurredj however, the GA nccd

not be l'un until this point, Usually il. is run until the best population member has

not changed in a given number of iterations.

Instead of using the GA mechanism of random selection by fitness, it is possible

1.0 always combine the two best primitives in the population. Such an algorithm

would have the same basic structure as the GA, but be completcly dcterministic.

II. would l'l'semble a traditional computer-vision grouping algorithm [Levine, 1985J.

However, such grouping algorithms commonly suifer from the l'roblem of premature

commitment which occurs when a l'articulaI' solution is choscn too carly in the scarch
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process. The underlying cause is the deterministic control structure in which the

I.wo hest primitives arc repeatedly combined. The best geometric primitive is not

Il"cessarily produced in this way. An exarnple of this situation is shown in figure 5.5.

ln part (a) of this figure are two circles. The one on the left has two disconnected

parts, and the one on the right has four. Even though each part of the smaller circle

contains more points than any single part of the larger circle, the total number of

points on the larger circle is greater than the smaller. Thus the larger circle is the

better solution, and is the one that should be found first by the extraction process.

Assume that the initial population was created by random sampling on connected

chains. A grouping algorithm that combined the two best circles at each iteration

would extract the smaller circle. This is because initially the two longest chains,

and thercfore the two best circles, are on the smaller circle. These would be merged

together, and the grouping algorithm would have prematurely found a sub-optimal

solution.

The GA by cont.rast finds the larger circle. The initial population of the GA are

the small dots in part (b), and the chromosome of the best circle is defined by the

three large dots. It was creatcd by random sampling on the connected chains of 2D

edge points. In the initial population the best chromosome is on the smaller circle

since this chain contains the most points. However, after a number of iterations the

best chromosome is on the larger circle because crossover has created a chromosome

that spans the various parts of the circle. Similarly in part (c) the population after

ten iterations of the GA is shown, along with the chromosome defining the best

circle. Premature convergence was avoided because the selection process of the GA

still allocated sorne effort to the parts of the larger circle, even when the current best

population member was on the smaller circle. This is because the GA selection process

is not deterministic. Instead, the GA explores a number of possible alternatives in

parallel and slowly evolves to what it considers to be the best solution. As time

goes on, the diversity of the population decreases, but this happens slowly. If the

initial population is too small then premature convergence can occuri if too large,

convergence takes a long time. If the population size is reasonable (between fifty
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and three hundred nl<'mbers) tll<'n the GA Illl't.hod usually dops uot. sulfpr fmm t.h,­

problem of premature commitment and still cOI\\'prgps 'luil'kly,

In our experiments an extraction pmcedll1'P that l't-Ii,,s only on randoll\ s,',"'ch

IS noticeably slower thall the GA. Fnrther "l'perinlt'nt.s must. b" dOIl" t.o 'luant.ify

the speedup. Wc l'an say that the dilTerencc bclw",'n a GA and random search is

significant when there arc many primitives to el'tract. or th" primitiv"s arc complel',

that is they have large minimal subscls. This is not sll1'prising, sin"" wc have shown

in Chapter Two that in these cases many ntndom samples arc necessary for s"""essfnl

extraction [Roussccuw and Leroy, 198ï]. Thus the more camplel' the scene, l,he beUer

the GA will perform in comparison to random seal'c11. When a single geometri<:

primitive contains a significant percentage (more than 30%) of ail the data points the

GA extraction algorithm is not noticcably faster than random search.

An example of the nexibility of the GA approach is shown in Fignre 5.li, where in­

stead of extracting circles, wc el'tract two ellipses from an image of a cable sll1'ronnded

by an insulator. The original intensity image was shown in Figll1'e 1.1 in CIllLpter One.

In this case the initial population is found by random sampling over a chain, which is

a connected set of edge points. While using chains produccs better results t.han a k-d

tree, they have the disadvantage of taking longer to creat.e. In part (a) of this fignre

are shown the initial c1Jains. Parts (b) and (l') show the two ext.racted ellipses, .~Iong

with the minimal subset points that define each ellipse drawn as hlack dots. The

faet that the two ellipses arc very close together makes this a part.icularly diflicult

example. Since the ellipse has five degrees of freedorn, an ext.raction algorit.hrn that

used only random sampling approach would reqnire an eXlCssive number of samples.

The only change necessary to the GA algorithm in order to extract ellipses instead

of circles was to use a chromosome with five points, instead of three.

The last example has as input a number of three-dimensional points produced bya

laser rangefinder mounted on a rohot wrist [Rioux and Blais, 1986]. This rangefinoer

collects parallel profiles, where the number of profiles and the spacing bet.ween t.hem

is controllable. In practice, such data are relativcly sparse sincc t.he spacing betwœn

profiles is usually fairly large. This example demonstrates the extraction of il. sphem
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from such hL,er rangefinder data. The initial data is shawn in Figure 5.7, part (a),

with the sphere being the toprnost object. The white area bclow the points on the

sphere is the area where the laser bearn is blocked by the sphere. Part (b) of this

figure shows the points belonging to the extracted sphere shaded in black. The same

GA algorithrn was used as in the 2D examples, except that the initial population was

created by random sarnpling on ten by ten windows spread over ail the geometric

data.

The main conclusion wc have drawn from these experiments is that the quality

of the results depends a great deal on the quality of the initial population. This in

tUrtl, depends primarily on how the initial population is obtained. For example, when

using k-d trees most of the circle extraction examples are successful; however, ellipse

extraction is less successful. This is because ellipse extraction is inherently more

difficult than circle extraction since the size of the minimal subset is five for an ellipse,

versus three for a circle. Thus a better initial population is necessary for extracting

ellipses, which is provided by the use of chains. For the three-dimensional data we

have found that using small windows to create the initial population gives reliable

plane and sphere extraction. This is because the three-dimensionallaser rangefinder

data is accurate enough tO make the initial population members obtained in such

small windows reasonably accllrate. The more difficult the extraction problem, the

more care that must be taken in creating the initial population. This is not surprising,

since it is the points in the initial population that the GA uses to make new population

members.

5.5 Summary

The GA sllcceeds because it uses the local estimates of the curve or surface pro­

vided by the initial population as a building block to find a better global estimate.

It reqllires a good chromosome representation to function properly. In our case, this

representation encodes a geometric primitive by the minimal set of points necessary to

define the primitive lIniquely. This is much more efficient than coding the parameters
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of the primitive as a bit string. It is tlll' sanll' n'pn's"nt.at.ion Wt' ha\'" ns"d for Olll" mn­

dom sampling extraction algorithm, It. has not., t.o onr knowl('d~t' h",'n uSt'd in a GA,

'vVe have shown examples of circ1e, ellips" and plalH' ,'xt.raction, hut. nUl also "l't.ract.

spheres, cylinders and ellipse from three-dimensional dat.a nsin~ l,he s<un" appl'oach,

In fact, the GA algorithm can be used to el't.ract t.he s<une pl'imit.i""s as t.he hasic mu­

dom sampling algorithm, Ali that is necessary is that. the chromosome repn's,'utat.ion

be transformed into a paramct.er vector, which can be doue fOI' llIany dilferent. t.ypes of

primitives. We have not shown how to use the GA for cOl'l'espondence comput.ation,

which is a future area of research.

Genetic algorithms have rarcly been employed in t.he compnt.er vision lidd (for

two recent exceptions sel' [Bhanu cl, Ill., 1!J91, Hill and Taylor, l!)!)2j). This is surpris­

ing since the use of simulated annealing, a c10scly l'e1ated technique, is widespread

[Geman and Geman, 84, Corana cl Ill., 1!)87]. Once it. is underst.ood l.hat. primit.ive

extraction is actually an optimization problem, t.he use of a GA suggest.s il.self. We

have shown that using a GA is a very effective approach to solving t.he primit.ive ex­

traction problem. Since it is based on the evolut.ionary metaphor it. oft.en avoids t.he

problem of premature commitment. Instead, the hest solntion emcrgcs spontaneonsly

from the population over time.
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Figure 5.3: Extracting drcles from a complex image (a) The original image
(b) The edge pixels (c) The k-d tree used to create the starting population
(d) The points in the initial population (e) The extracted drcles (f) The
extracted drcles superimposed on the edge pixels
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Figure 5.4: Population of a GA during execution of circle extraction. The
points defining the best circle in the population are drawn a.~ three large
dots. (a) The original population (b) After.50 crossovers and mutations (c)
After 90 crossovers and mutations (d) After 1:J0 crossovers and mutations
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Figure 5.5: An example of how a GA avoids premature convergence. The
points defining the best circle in the population are drawn as three large
dots. (a) two circles (b) the initial GA population and best member (c)
the population and best member after a number of crossover and mutation
operations
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Figure 5.6: Extracting ellipses from cable image (a) initial image (h) first
extracted ellipse (c) second extracted ellipse
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Figure 6.7: Sphere extraction from range data (a) initial range data with
sphcrc on top (b) cxtracted spherc points shaded in black.
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It is important to be able to parallelize an ext.raction algorithm. One reason is t.hat.

parallel architectures arc becoming more widdy availahle. Auother reason is thil\. ilS

shown by our optimization model, extraction is in\",rent,\y a computatiOlHllly iu\.<onsive

problem. Parallel architectures will be necessary when processing a large il\nount of

geometric data, or when attempting to achieve real-time perfol'llHlnce. Therc arc

many different types of parallel architectures, and it is not yct clear t1Hlt. any single

one will be used to the exclusion of others. Thus it is neccssary to considcr t.he

problem of parallelization for a wide varicty of architectures.

In this chapter we will discnss ways of parallclizing the primitive extmction al­

gorithm. A large percentage of the execution time of both the GA and the mndom

sampling version of this algorithm is spent in the evaluation of the cost fnndion. If

there are N geometric data points, then this evaluation takes O(N) I,ime for most,

cost functions. For any significant sized N this is the most expensive part of the

algorithm in computational terms. Therefore we concentrate our efforts on parallcliz­

ing this cost function evaluation. In the ideal case this should be donc in O( 1), as

opposed to O(N) time. We will show that, depending on the architectnre, this ideal

can indeed be achieved. The less time taken in cost function evalnation, the more

evaluations that can be done pel' unit time, and the better the extraction algorithrn

will work.

In this chapter we will discuss ways of parallelizing the fixed-band cost function,

and the variable-band cost function evaluation for primitive extraction. Since most

of our examples of Chapter Two were processed using the fixed-band cost fundion,

we will naturally concent',rate on it's parallclization. The result returned by any fixed­

band cost function is the sum of a simple function applied to each data point. In

other words, if there arc Ngeometric data points then h = Ei:::i" 9(ri), where 9 is

the simple cost function applied to each data point. The most common simple cost
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fuuctiou [J, is equivalent ta ternplate matching. However, this is not the same as

traditional templatc matching. In traditional tcmplate matching a template is a two­

dimensionalarray which is applied ta an image, that is itsclf a larger two-dimensional

army [Levine, 19851. This makes the template matching a discrete cross correlation

procedure. Algorithms which daim ta implement template matching on parallel hard­

ware are ba.,ed on this description of template matching [Kumar and Krishnan, 1989].

ln our case the templates are fixed size areas around a given geometric primitive. The

shape of such a template changes with the primitive. Therefore, this template cannat

be matched by a simple convolution process since the template shape changes.

Our parallelization algorithm approach also differs from other approaches

applied ta parallelizing genelic algorithms (GAs) [Ackley, 1987, Tanese, 1989,

Manderick and Speissens, 1989]. 1'0 parallelize a GA each processor usually executes

the entire GA program, induding the evaluation of the cost (or fitness) function. For

many traditional GA applications the cast function evaluation is very cheap computa­

tionally, so this approach makes sense. In our situation this is not true since this cast

function evaluation stage dominates the computation time of the GA, which explains

our attention to it.

Parallelizing only the cost function evaluation has two other important advantages.

First, it is possible to accomplish this task on a wide variety of different architectures.

If the entire extraction algorithm were ta be parallelized this would be more difficult to

achieve. Second, this speeds up both the random sampling, and the GA version of the

extraction algorithm. If we attempted to parallelize the entire extraction algorithm

it would be necessary to use different approaches for the random sampling and the

GA versions. In this chapter wc will describe parallel implementations of the cost

fllnction of the extraction algorithm on a variety of different architectures. We will

start with the simplest architectures, and move on to more complex ones.
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6.1 Vector Architectures

Sorne of the earliest parallel architectures ",cre "edor llIachines [Dnncan, WHO].

These had as their basic data structure a "edor, ",hose d"llIents conld he opel"

ated on in parallel. White superseded by multi-proCl'ssor archit,t'ctlll'es there arc still

many vector machines in operation. Recently the "ec\.or 1lI0dcl Ims heen revivcd

[Little ct al., 1989). The justification for this l'evival is two·fold. First, il. is now

possible 1.0 map vector operations 1.0 a number of dilferent llIulti-proCl'ssor architec­

tures. Thus, a description of an algorithm as a sc\. of veetor operations is in sollle

sense architecture-independent. Second, the common and inexpensive Digital Siglllli

Processor (DSP) can be thought of as a vector machine. These DSP's can be ca."

ily cascaded together 1.0 perform veetor operations very quickly. We will describe a

model that defines a set of operations on veetors, and retu1'll either a veetor or a

scalar as their output. Then the cost funetion l'valuation is described in tel'lns of

these abstraet veetor operations. '1'0 make these programs l'un on a specifie veetor M­

chiteeture il. is necessary 1.0 map these abstraet vector operations 1.0 this architeetnre.

Since these abstraet vector operations are relativcly simple this is not a dimcult task.

The following are the abstraet veetor operations that wc need for our algorithm:

• Binary Operations (+,-,/,*)

• Sort

• Count

• Index

• Dot Produet

A more detailed description of each of these operations is given bclow.

1. Arithmetic - takes two veetors as input and outputs a veetor which is the pair­

wise arithmetic operation applied to each of the elements, for example:

A =[51343926J
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il = [2538[362]

A + il = [7661241288]

A * il = [1059323271212]

2. Sort - takes a single vector as input and outputs a vector, with the individual

clcmcnts sorted in ordcr from the smallest ta the largest, for example:

A = [51343926]

Sort(A) = [12334569]

3. Count - takes a single vector and a scalar as input and outputs a scalar which is

a count of the number of vector elements less than or equal ta the input scalar,

for exampic:

A = [51343926]

Count(A, 3) = 4

4. Index - takes a single vector and a scalar as input and outputs the Nth element

of the first vector, for example:

A = [51343926]

Constant = 5

Index(A, Constant) =3

5. Dot Product - takcs two vectors as input and outputs a scalar which is their

dot product, for cxamplc:

A = [51343926]

B = [25381362]
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1\.8= 110

With only these simple vedor operations it is possible to paralldize both t.1lt' fixed­

band, and variable-band scoring fundions for primit.ive l'l'tradion.

First wc will show how to parallelize the comput.ation of the distauces of ('ach poiut

to a particular gcomct.ric primitive. The mct.hod wc describe will work for gcollletric

primitives which are defined as a Iinear combinations of basis vedors. For this t.ypes

of primitive the implicit function f can be written as f(pj a) = a. ïi, where a is the

coefficient vector, and ïi is the basis vedor. For example, consider the case whet'e

the primitive is a line. Then the basis vedor is (l, x, 9) and t.he coefficient vedor

is ao, ab a2' If there arc N gcometric data points then f(Xb 9.) = ao +a.xl + (129.,

f(X2,92) = ao +alx2 +a2Y2, and so on till f(XN, YN) = ao +alxN +a2YN. This set

of equations can be rewritten as a sequence of operations on vedors of dimension

N. In our notation we take ao to be a vector of dimension N with N identical

entries; that is, ao is [ao, ... , ao]. Similarly'if = [x., .. . , XN] and y = [Yb" . ,YN]. Let

funcveet = [If, ... ,f'k1be an N -dimensional vedor whose clements arc the values of

the implicit function f evaluated at each gcometric data point. For the ca.~e of a line

funcveet = ao + al * 'if + a2 *y. Thus f uncvcet can be computed by the operations

of our vector machine, using only + and *, the abstrad vedor operations described

above. Similarly gradveet = [IV' fd 2, .. . ,IV' fN1 2] is an N-dimensional vedor whose

clements are the square of the magnitude of the gradient vedor of f evaluated at each

geometric data point. Similar arguments can be used to show that gradveet can also

be computed by the operations of our vedor machine in the same way a.~ f unC1Jeet.

Given the fact that the vectors f uncvcct and gradveet arc available the

cost function evaluation is straightforward. Then f unC1Jcet/gradvcet is l'quai

to distvect, which is a vector of size N whose clements are the square of

the approximate distance of each geometric data point to the geornetric prim­

itive using the approximation described in Chapter Two. Applying the count

operation on this vector produces the score for fixed-band ternplate match

cost function. This l'quaIs count(distvcct, Fixed - Band - Size - Squared), where
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Fixed - Band - Size - Squared is the square of the fixed·band distance. Similarly

for variable-band scoring applying the sort operation followed by the Nth clement

returns the variable-band score. This equals index(sort(dist), Inlier - Fraction x N),

where Inlier - Fraction is the variable·band parameter. These parameters are de·

scribed in more detail in Chapter Two. From this discussion it is clear that when

the gcometric primitives are linear combinations of basis vectors the evaluation of the

cost function using fixed-or variable-band scoring can be achieved by the operations

of this abstract vector machine.

Ail the operations of this vector machine, except the sort, can be implemented in

0(1) time on the appropriate hardware. Thus for fixed·band scoring the evaluation

of the cost function can be donc in 0(1), as opposed to O(N) time. The sort can be

donc in O(log N) time, 50 for variable-band scoring the cost function can be evaluated

in O(log N) time. This of course does not take into account the time necessary to

transfer the geometric data points into vec',or form. If the number of geometric data

points N is very large, the required vectors may be 50 large that the hardware is not

capable of performing these operations at the maximal speed. Nevertheless, the ease

and efliciency of the implementation of our algorithm on a vector machine is clear.

6.2 Multi-Processor Architectures

The term multi.processor architecture describes a wide family of modern architectures

whose components consist of multiple processors that are connected together in sorne

fashion. Because of their diversity variolls attempts have been made to describe these

architectures at a more abstract level, 50 that parallel algorithms could be written

in a fashion that is independent of the particular hardware implementation. The

most common of these descriptions is the Parallel Random Access Machine (PRAM)

model [Vishkin, 1983]. In this model there is a number of processors, each with local

memory along with sorne global memory. Each processor is capable of executing a

program and can access local and global memory as shown in figure 6.1.

The bottleneck in the execution of a parallel program is usually in the access
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Local Local Local Local
Memory Memol) ......... Memol) Memol)

1 2 n -1 n

.... -'-
_....

proc~ssor) ( proc~ssor) ......... 1Processor) (Processor
n -1 n

Global Memory

Figure 6.1: PRAM Model - Parallel Randolll Access Machine

of global memory. Assume that the N geometric data points wcre placed in global

memory, and that each of the L processors were instructed to evaillatc N/ f, of these

points. Then at best there wOllld be an L fold speedup in the cost fUllction evaillation.

However, in any physical multi-processor system there will be a memory access bot·

tleneck if ail the processors attempt to reference global memory. This fact is Ilot easily

represented by the PRAM models. While this model is useful theoretically, the level

of abstraction is so high that many questions regarding its practical implemeutatiou

on physical hardware are left unanswered.

Given this drawback of PRAM model the questioll remains as to whether there

are any ways of characterizing dilferent architectures. The following are what we

believe are the basic dichotomies that can be used for this purpose.

• Coupling - Processors communicate with each other across communications

channels. The degree of coupling between processors is measurcd by the band·

width of the communications channel. A loosely coupied architecture has a

low bandwidth between processors (such as a local area nctwork) and a c10Bely

coupled architecture has a high bandwidth (such as thoBe that share the same
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addrcss space on a cornmon bus) .

• Grallularity - The llumber of processors is an indication of the granularity. In

general, if there are fewer than a dozen processors then this is a coarse grained

architecture, and if there from a dOZCll to a few dozen this is a medium grained

architecture. When there are more than a few dozen processors the system is

classified as a fine grained architecture.

• Instruction Stream - If each processor must execute the same instruction se­

quence then this is called an SIMD (single instruction, multiple data) machine.

If on the other hand, each processor can execute different instruction sequences

then this is an MIMD (multiple instruction, multiple data) machine.

• Topology - This the way in which the processors are connected to each other.

There are many possible topologies, and sorne examples are the star (one pro­

cessor at center with many wings), hypercube (three-dimensional cube), or sys­

tems that can implement arbitrary topologies such as the Connection Machine

[lIillis, 1985J.

Given these different ways to categorize a parallel architecture, the question is what

is the most important characteristics of an algorithm for it to be easily parallelizable.

We believe that it is that the algorithm should make as few demands on the inter­

processor communication bandwidth as possible. The input should be partitioned

into separate components which are given to each processor. The processors should

operate independently on their portion of the data, and not communicate with each

other during execution. If these reqnirements are not met then as the number of pro­

cessors increases more and more time is spent on communications overhead, and the

throughput does not increase proportionally. We daim that our primitive extraction

algorithm has these characteristics, and can easily be parallelized on many different

architectures. By contrast the lIT is diflicult to parallelize since its use of global mem­

ory during execution makes very high demands on the inter-processor communication

bandwidth [Rosenfeld et al., 1988).
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Figure 6.2: Mesh Topology Interconnection

For the multi-processor architectures we will only discuss the parallclization of

the fixed-band cost function. This is the most common cost fundion, and was used

in most of the examples in Chapter Two. We will describe a numbel' of dHferent

categorizations of architectures using the above dichotomies. For each of these cate­

gories we will show how to parallelize the fixed-band cost function. Our lis!. will not

be exhaustive, but will cover what we consider to be the most important, and most

common parallel architectures. The architectures are presented in increasing order of

complexity.

6.2.1 Mesh Connected SIMD Architectures

This is probably the first, and still the most widely used multi-processor architecture

for machine vision purposes. The mesh topology is shown in Figure 6.2. It is weil

suited to the processing of intensity images, with the usual approach being to allocate

a single processor to each picture clement (pixel) of the image. In the mesh topology
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..ach pro"","or can communieate directly \Vith any of its neighbours in the mesh .

This is ideal for performing local operations, such as convolutions, on an image.

Since there are many pixels and thercfore many processors, this is dassified as a

line-grained architecture. Each processor in the mesh normally executes the same

instruction sequence so meshes are usually SIMD (single instruction, multiple data)

architectures.

The difliculty with a mesh topology is that it is not easy for processors to perform

operations which require information from processors other than their neighbours on a

mesh. Thus algorithms that req'lire global access to memory, such as the RT, cannot

be eflicienl1y implemented on a mesh [Rosenfeld et al., 1988]. However, because a

rnesh architecture is simple and relatively inexpensive it is still useful for many other

computer vision algorithms. For this reason any algorithm which can be run efficiently

on il mesh has the pot~ential to achieve widespread usage.

We assume that the goal is to extract a 2D curve, and that edge detection has

alrearly taken place. Thus each edge element is associated with a particular proces­

sor on the mesh. In order to perform the fixed-band cost function l'valuation for a

geometric primitive its parameter vector must be broadcast to ail the processors si­

multaneously. For the fixed-band scoring this can be done most efficiently if a global

broadcast and collection facility is available on the mesh. Given the parameter vector

those processors which have a valid edge point must decide whether their edge point

is in the fixed-band. This wouId be done by calculating f /\1f as described in Chap­

ter Two, and computing the approprialc fixed-band cost function. Then the global

collection function would simply sum the appropriate fixed-band cost function value

computed by each processor. This sum is the resulting value of the fixed-band cost

function for the primitive with the given parameter vector. If there is a processor

associated with each pixel element then ail these operations can occur simultaneously.

Thus the cost fundion l'valuation would require 0(1) instead of O(N) time, where

N is the mlmber of geometric data points. Since each processor in the mesh already

has an associated geometric data point no initialization stage in which these points

am distributed among the processors is necessary. Ali that needs to be added to the
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mesh architecture is a global bl'Oadca.,t and roll,·ctioll farilily, II'hil'h is 1101 ditlil'lIlt..

It should be noted that t.his ability t.o perform (ix<'d-balld sl"llrill~ is actnally v<'ry

usdul for many modcl-based vision applirat.iolls. A ~eoml'tril' modd is lIot.hin~ mM<'

than a list of gcometric primitives. Often the PI'<'Sl'II(,<' of ail objt'ct. d<'St'l'ilH'd hy

such a modcl has bccn hypothesized fl'Om sonte of t.he t'xt.l'ilc\",d ~l'ometril' primit.iv<'s.

Then the presence of each primitive in the modcll"1t1l hl' vl'l'Îli(,d a~ainst. t.h" ~l'OnH't.l'Îc

dat.a by evaluat.ing the l'ost function for each hypot.hesized primit.ive.

6.2.2 Medium and Coarse Grained 'fransputer-Like Archi­

tectures

Under this category are another common class of parallel at'l'hit.ecl.ures. There lU'e ar­

chitectures with anywhere from a half-dozell to a few dozen processors. These t.ypes of

architectures often, but not always, have high bandwidt,h channels bet.wl'ell processors,

with each processor being of MIMD (multiple illstrncl.ion, multiple dat.a) type. SlIch

architectures are more nexible than the SIMD type, bnt the pl'Îce paid is iUl incl'ei"'"

in the difficulty of programming. Since therc arc multiple illstructioll st.reams t.he SYII­

chronization of the processors must now be donc in soft.ware, which re'lnires advallccd

muIti-processor operating systems [Gentleman et tll., 19871. I1owever, becallse of t.he

limited success in using mesh connected SIMD architectures MIMD syst.ems Imve be­

come more common in the computer vision field. In part.icular, t.hey have beeu 115er!

for implementations of the lIT [Aust.in et tll., 19!Jl, Ben-Tzvi et tll., I!J891. In t.erms

of topology these systems vary, wit.h a mesh and st.ar being common. The degree

of coupling between proces'sors also varies. Sorne syst.ems arc very t.ight.ly coupled.

Examples of this are situations where the processors occupy t.he same physical bus.

In other situations, such as when processor communicate across an ethernet. Iink, tbe

coupling is loose.

Any fixed-band cost function can be evaluated in a distributed fashion by parti­

tioning the geometric data equally among the processors. Then for a single evaluation

of the cost function, each processor is given the value of the parameter veclor, along
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wilh 1.1", mst function ddinition. Each processor must then evaluate the cost func­

l.ion for cach il.s subset of the gcometric data. The sum of the answers from ail the

proces""s is the value of the cost function for ail the geomctric data. Once the ge­

omelric dal.a points have becn distribul.ed, the number of data transfers necessary

during execution of the algorithm is very small. Since this is the case, there is very

littl,' overhead as additional processors arc added. Therefore the speedup should be

proportional to the number of processors, which is the ideal.

This ie essentially the saille parallelization approach as was taken for the SIMD

mesh architecture, with the only dilference being that more than one geometric data

point is assigned to each processor. However, because the processors in a MIMD

system arc more powerful and have Illore global memory than an SIMD system other

approaches arc also possible. One of these is to distribute ail the geometric data

points to ail the processors at initialization. Then each processor could evaluate

a dilferent primitive than the other proeessors. This would happen if each proces­

sor were given a dilferent parameter vector to evaluate, as opposed to sending the

same parameter vector to ail the processors. This makes minimal demands on inter­

proeessor communication bandwidth, except for the initialization phase, when ail

the gcomelric data must be sent to each proeessor. This approach is similar to the

paralld guessing strategy in whieh a number of proeessors interact via a blackboard

[Fischler and Firschein, 1987]. However, if the amount of geometric data is large this

approach is not practical, sinee the time taken to initially distribute the geometric

data among the processors will be e"cessive. Thus we see that for more complex

architectures cost function evaluation can be parallelized in a number of different

ways.

6.2.3 Pyramid Architectures and Other Topologies

The most complex architectures such as the Connection Machine have a large num­

ber of small processors whose basic topology can be reconfigured [Hillis, 1985]. These

proeessors may be SIMD, or MIMD machines. The only requirements our algorithm

makes on the topology of the parallel architecture is a requirement for a global broad-
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cast and colkc:tion facility. This can be illlpll'Illl'nt.<'d on many topologi,'s, bnt tilt'

exact implementation does depend on tl\(' partÎ<'nlar topology. A common topology

for parallel architectures is a pyramid. ln this archited.Ul"·, a.' shown in Iignn' {i.:!,

there is a hierarchy of processors, which can commnnieate with (,hdr d,'scend"nts

and predecessors in a pyramid. Recently it has been shown that a pyramid architec·

ture can be implemented on a connection machine [Billis, 1985]. A global broadca.,t

and collection facility can be built into a pyramid architecture in a very natural ,ulli

straightforward fashion. Once this fadlity is available the implement.al.ion of the

fixed·band scoring is trivial.

We assume that each geometric data points is distributed 1.0 each of N proccssors

at the lowest level of the pyramid. The function of the upper levc1s of the pyramid is

to implement the global broadcast and collection fadlil.y. The top processor receives

the parameter vector of the primitive to be evaluated. This is pa.,sed down ta t.he

processors at the next lowest levcl, and so on, ta the lowest level processors. They

each perform the cost function l'valuation, and retul'll the rcsults upward. The top

processor in the pyramid receives the value of the cast fnndion for ail the geomctric

data. Thus it is easy to compute the value of the fixed·band cost function nsing a

pyramid architecture. Since pyramid architectures arc very Oexible, they arc used for

many other computer vision applications. Therefore as hardware costs decrea.,e, snch

architectures will become more common.

6.3 Summary

In this section we have discussed how to implement the extraction algorithm on

various parallel architectures. We have concentrated on speeding up the evaluation

of the cost function since it is the most expensive computational component of our

extraction algorithm for both the l'andom sampling and the GA version. The fact that

for many types of cost functions the data" an be partitioned into sets that arc operated

on independentIy makes our algorithm simple to parallelize. The speedup should he

proportional to the numher of proccssors, since there is very little r.ommunication
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Figure 6.3: Pyramid Architecture Model

ovcrhcad IIcccssary.
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• Chapter 7 Conclusion

This thesis has analysed the problem of prilllit,h'c <'xt.ra('\.ion in detail. ln doinp; so "',.

have described sorne new algorithms for solving t.his pl'OhlclIl. Wc Illtvc also p;aitlcd

insight into the basic comptltational complexit.yof t.hc pl'Ohlcm of prilllit.ivecxt.ra('\.iotl.

7.1 Contributions Revisited

In this research wc have accomplished a lltlmber of t.hitlgs, and wc SUllllllari~l' t.hcnl

below:

• We showed that primitive extraction is really an opt.imi~atioll pl'Ohlem.

• We generalized the solution to primitive extractiou hased on t.he randolll sam­

l'Jing of minimal subsets to apply to a much wider variety of curves atld surfaces.

• We introduced a genetic algorithm, and showed how it can he applied to prim­

itive extraction using the minimal subset representation.

• We showed how these algorithms can be paralleli~ed on a variety of dirrerent.

parallel architectures.

This thesis has demonstrated that primitive extraction can he C;L~I. in an opt.i­

mization framework. The goal is to find the global optimum of a cost function which

usually has many local optima. A robust algorithm must be ahle t.o find a value close

to the global optimum from among these local optima. Using this optimi~ation 1Il0dcl

wc obtain a deeper understanding of the complexity of this prohlelTl. Wc showed that.

primitive extraction is computationally difficult, and this difficulty is inlierllnt in I.he

problem definition.

The second thing wc have donc is to l'l'ovide a general solution 1.0 the prohlem

of primitive extraction based on minimal subsels. Minimal subsets arc good repre­

sentations when the geometric data arc accurate. In fact, for perfectly accurate data
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1.11" nLudOlu sampling of miuimal subsets is probabilistically guaranteed to find the

glolml optimum of the associated cost functiou. As the accuracy of the data decreases

the probability of fiuding the global optimum also decreases. A key requirement of

our approach is the ahility to efficiently convert between a minimal subset and the

parameter vector that describes the primitive or correspondence. We showed that

using elimination theory, efficient, closed form solutions of these conversion equations

can be generated. We compared our approach in detail with others in the literature,

especially the 1I0ugh transform and the methods based on robust statistics.

We then introduccd a genetic algorithm (GA) version of the primitive extraction

algorithm. A GA is an approach to solving optimization prob!ems which is based on

an analogy with evolution. It enables the number of cost function evaIuations, and

thus the running time of the extraction algorithm to be substantially reduced. A GA

rcpresents individua! solutions to the underlying optimization problem by means of a

chromosome. Our chromosome representation is unique in that it is based on minimal

subscls. A GA combines local solutions together using the crossover operator in a way

that often avoids the problem of premature convergence. The best solution emerges

spontancously without a complex control structure guiding the algorithm. However,

while the GA often converges to a good solution, there is no l'roof that it will converge

to the global optimum. Thus, while it is often more efficient than random sampling

it is still a heuristic approach.

The cost function evaluation is the most computationally intensive part of our

algorithm. We showed that this can be parallelized on a wide variety of different

parallel architectures. This is a significant advantage of our approach over other

extraction algorithms. We described possible implementations on a wide range of

parallel architectures.

The issue of robustness is central to our work. Our optimization model explains

formally what robustness is, along with its computational cost. The model applies to

any a!gorithm that attempts to solve the problem of primitive extraction. By dealing

with the simplified case in which the geometric data have perfect accuracy, we gain

an understanding of the basic complexity of this problem. For perfectly accurate
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data l'andom sampling is probahilistically guaraute,'d to fiud the optimum vahl<' of

the cost function. The required number of raudom sampl,'s gl'Ows ,'xpoll<'utially with

the size of the minimal subset. However, for a fixed siw minimal suhset, the numl"'r

of random samples necessary to extract the best primiti"" is a polynomial fnuct.iou

of the number of gcometric data points.

7.2 Future Work

There is a number of unexplored issues that need to be addressed. The first is to

implement and test various parallel versions of our algorithms. Some preliminary

work in this direction has already been donc, [Meygret cl, al., 1992], but fmther ex­

perimentation is necessary. Therc is as yct only a limited thcoretical understanding

of the GA. More work is necessary to quantify under what conditions it will con­

verge to the global optimum. Further experimentation also needs to be donc to

quantify the dilference between the GA and other stochastic search methods, such

as simulated annealing. Another limiting factor is the inability to solve some of the

minimal subset equations of certain geometric primitives 'Ising elimination thcory.

As more efficient versions of the Grobner basis algorithm become available this prob­

lem should be alleviated. A related issue is how to apply this approach directly to

curves and surfaces defined parametrically in order to create a robust version of the

fitting algorithms for such curves and surfaces [Sarkar and Menq, 19!J2]. Another

potential area of application for our algorithms are the problems of pose determi­

nation and refinement. Sorne preliminary work has already heen done in this area

[Roth and Levine, 1991c, Roth and Levine, 1992b], but more needs to be donc.

7.3 Summary

Philosophically our approaches are members of a family of so called "weak meth­

odsn which are currently enjoying a resurgence in the field of Artificial Intelligence.

Another member of this family are the connectionist algorithms typified by neural

networks. Historically, these weak methods fell out of favour because of the inability
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Lo exlend lhelll Lo more cornplex problems lhan Lhe one for which they were originally

developed. This prodllccd the generally held hypothesis that the creation of intelli­

gence reqllires a large arnount of knowledge, and gave birth to the so called "strong

lIlethods" of Artificial Intelligence, somclimes rderred to as the knowledge-based ap­

proaches. Ilowever, the difficulty of extracting and encoding knowledge, and the lack

of robustness of the algorithms that use such knowledge, remain significant unsolved

problems of the knowledge-based paradigm.

The problem of the lack of robustness in many machine vision algorithms has

been noted in the research community [Sklansky, 1991]. For primitive extraction

mbustness is the ability to deal with outliers, and this requires the ability to find

the global optimum, or a value close to it, of a cost function which has many

local optima. Our main thesis is that robust and efficient solutions to primi­

tive extraction can be obtained by simple algorithms running on fast hardware.

Thus our contributions are three-fold. First, a deeper understanding of the prob­

lem of primitive extraction [Roth and Levine, 1990a, Roth and Levine, 1992a), sec­

ond, our extensions of the solutions based on the random sampling of minimal

subsets [Roth and Levine, 1990b, Roth and Levine, 1991b, Roth and Levine, 1991c,

Roth and Levine, 1992d, Roth and Levine, In Press] and third, the use a genetic

algorithm for solving the primitive extraction problem [Roth and Levine, 1991a,

Roth and Levine, 1992c, Roth and Levine, 1992b).
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• Appendix A Solutions of Systems using Grobner Bases

In Chapter Three there are a numberof l'l'amples of algebraic systems that wert' solved

by the Grobner bases approach, In this appendix wc describe in more detail how thcsc

solutions are obtained. Because of the length of the Griibncr basis pradueed by this

method we willlist only the last e1ement of eaeh basis. For this dement there is only

one unknown, which l'an be solved for using a c1osed·form or numerical solut.ion. lu

ail these examples the solution was found using the lexicographie ordering to producc

the Grobner basis on the Maple symbolie algebm system [Char ct ni., 1!)Ssj. The

number of equations in each of the Grobner basis equals the nnmber of nnknowns

in the system. With the lexicographic ordering the number of unknowns in the lirst

basis equation is maximum, and decreases by one, till the last ba.,is equilt.ion llil$

only one unknown. Thus by solving the last equation lirst, and then repcat.edly back

substituting the solutions into the previous equations ail the solutions of t.he system

l'an be found.

A.l Constrained Circle

(Xa - C.)2 + (ya - C.? - 7.
2

( 2 ( c2 2XI - C.) + YI - .) - r

(A.I)

The known variables are xo, Yo, XI, YI, r and the unknowns arc COl C•. The Ia.,t.

element of the basis is below, and it ha.~ one unknown, which is Cu'

6 222224224 aXI Xa + XI YI - XI r - XI Xa

4 2 8 2 4+2 22 4 22- XI xa YI + XI xa r +xa Xa YI - xa r

4 3 422242 2 22
- XI Xa + XI + XI YI - YI xa XI + YI xa

(A.2)
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+Y14 _ 2y,2 y/ 2+ y,4

+(8 X, y, Xo - 4 YI XI 2 - 4 y, xo 2 - 4 XI 2y,

-4 y,3 + 4 y,2 YI - 4 X0 2YI

+4 Y/ 2y, - 4 y,3 +8 YI Xo x,)Cy

+(4 XI 2 - 8 Xo XI + 4 Xo 2 + 4 YI 2

-8 YI YI +4 Y1
2
)Cy

2

A.2 Constrained Ellipse

b2(XOSt - YoS2)2 +a2(xos2 +Yostl2 - a2b2 =0

b2(XtSI - YtS2)2 +a2(xls2 +Ytstl2 - a2b2 = 0

s~ +s~ -1 = 0

(A.3)

The known variables are Xo,Yo,Xt,Yt and the unknowns are st,s2,a,b. The !ast

clement of the basis is below, and it has one unknown, which is b.

44.143436224224343YI a Xo - XI YI Yo a Xo + XI YI a Yo Xo - Yo a YI XI Xo (A.4)

+ 4 4 4 + (4 4 2 2 2 + 2 4 4 2 2· ~ 2 4 8 3 2 3 +4 3 4a Yo XI Xo XI YI a Xo YI a -., Xo YI a - Xo Yo YI a XI xa (1 Yo XI YI

+4 x0 2Y0 2xI 'la2 - 4 xo2Yo2YI2xI2a2 - 2 X0 2xI 2YI 2a4

-2 Xo 2a4yo2YI2 +4 Xo Yo X/ 3YI a4 +4 Xo Yo Y/ 3XI a4
- 8 Xo y,.3YI3a2xl

+4 Xo a4Yo 3xI YI +2 Yo'1 xI 4a2 - 2Y0 2x/ 4a4

-2 x1 2Y/ 2a·I Yo 2+4 YI 2Yo'1a2xI 2 - 2a4yo 4X/ 2)b2

+(4xo3yo a2xI YI - 2xo2Yo2a2xI2 +4xo YI Yo a2x/ 3

+4 Xo XI Yo a
2

Y/
3

- 8 Xo Yo a
4

YI XI +4 Xo XI YI Yo
3
a

2

_2xo2x12Y12a2 _2xo2Yo2a2Y/2 _2xo4a2Y12

-2 xo
2
y/1a

2 +2 xo 2a4YI 2 +2 xo 2Yo 2a4
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+X1 4a4+a4Yo'l - 2a2Y0 2xl·1+2 xI 2a4YI 2

+2x/ 2
Yo 2a'l- 2xI 2Yo 2a2Yl 2 + yl4a4

_2Yo 2a4Y1 2 -4xo Y0 3Xl 3YI +6X02Y02XI2YI2

-4xo3yo YI 3X/ + X0 4YI 4+Y0 4X/ 4)b'l = 0

A.3 Three Dimensional Circle

(xo - xc)2 + (Yo - Yc)2 + (zo - zc)2 - 1,2 = 0

(xo - xc)2 + (yO - Yc)2 + (zo - zc)2 - 1,2 = 0

(xo - xc)2 + (Ya - Yc? + (zo - zc)2 - 1,2 = 0

(A.5)

The known variables are and

the unknowns are aO,alla2,a3,Xc,Yc,Zc' The last element of the basis is helow, and

it has one unknown, which is zc,

3 2 2 2 2Yt Zt y/ - Yt YI Zl - X2 Zt YI

2 2 3 2 2-Yt Zt YI +Yt Z/ y/ - X2 YI %J

2 2 2 2 3 2-Xl Xt Zl - Xl Yt Zl - %2 y/
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2 222 22 2 22+ YI Xt + XI Zt + Zt YI

A.4 Points to Lines

ao +al (XOIl1 - Y01l2 +h) +a2(x01l2 +Y01l1 +k) = 0

bo + b,(XI1l1 - YI1l2 +h) +b2(X11l2 +Yl1l1 +k) = 0

Co +CI(X21l1 - Y21l2 +h) +C2(X21l2 +Y21l1 +k) = 0

111
2 +112

2
- 1 = 0

(A.6)

The known variables are xo,Yo,XllYllX2,Y2,aO,alla2,bo, bllb2,Co,CllC2 and the un­

knowns are Ilh 1l2, h, k. The last element of the basis is below, and it has one unknown,

which is 1l2.

b 2 2 2 2 2b 2b 2 2- 1 at Yt - al Co 1 - al 1 XI

222
-al at YI

2 2 2 2 2b-al CI Xt - ao CI a

b 222 222 2
- 1 XI CI - at YI CI - al

22 2 2 b b 2 2 2ae Ye - al Co a - 1 CI Xe

+2 al C/2Xt2bl - 2 al
2
cI Xt at Yt

+2 al
2

CI Xe b l XI - 2 al C/2Xe bl XI +2 al
2
cI Xe at YI

(A.7)
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-2 bl CI X~ al a~ Y, +2 bl C/2X~ a~ YI - 2 b,2<1~ Y~ <II .r,

+2 bl2a~ Y~ XI CI - 2 bl a~2y~ al YI +2 bl <I~2 Y~ YI CI

+2al bl2Xl2CI -2a12bl XI a~ YI +4(/1 bl XI <I~!JI CI

b 2 2 2 2 2
-2 1 XI Cl a~ YI +2 a, a! YI CI - 2 ao CI bl - 2 bl Co <la

? b2 + 22+ 22-_ al a Cl al Co ao CI

+b 2 2 + 2b 2 + b 2 2 2b 2 ?1 Co al a a c, + ao 1 - - <II Co <la CI

+2 al Co bo Cl +2 al Co ao bl +2 (la CI bl Co

+2 ao CI al bo + 2 bl Co al bo - 2 bl Co bo CI

-2 al bo ao bl +2 bo CI ao bl + (2 al 2co <I~ X~

2 2 2-2 al Co a~ XI - 2 al Co CI Y~ +2 al Co bl YI

-2 al Co bl YI CI - 2 ao CI al a~ X~ +2 ao CI (II a~ XI

2 2+2 ao CI al y! - 2 ao CI al bl YI - 2 (la CI (I! XI

+2bl Co al a! XI -2b12CO al YI -2bl Co a! XI CI

+2b1
2CO a! X! -2b12cO Cl y! +2b12COYI Cl

-2 al 2bo a! X! +2 a/bo a! Xl +2 al
2

bo Cl y!

-2a/bo b, YI -4al bo a! Xl CI +2(1/ bo bl a! X!

-2 al bo bl CI y! +4 al bo bl YI CI +2 bo Cl (LI (L! X!

-2 bo CI 2 al y! +2 bo C/ 2a! XI - 2 bo CI bl (I! x!

+2bo cI
2bl y! -2bo Cl 2bl YI +2ao bl al a! X!

-2ao bl al a! Xl -2ao bl al CI y! +2ao bl 2al YI

+2 ao bl a! Xl CI - 2 ao bl
2
a! Xf +2 ao bl

2
CI y!

2 b 2 ) + (b 2 2 2 + 2 2 2 + 2b 2 2- ao 1 YI CI IL! 1 a! y! al a! X! al 1 XI

147



•
A. Solutions of Systcms using Grobncr Bascs

1 2 2 2 2 2 2b 2 2 b+ 'JI Cl Yf - a, Cl Xe J - a, CI Xe 1 X,

2 2 2
XI CI +2 aJ a2 XJ b l X2 - 2 aJ CJ Y2 b l YI

-2111 CI
2

Y2 a2 XJ - 2 al CI2Y22bl +2 al CJ 2Y2 b l YJ

-2aJ b l
2

YI a2x2 +2al b J 2YI CJ Y2 -2al bJ2YJ2CJ

-2 a~2xl CI b l X2 +2 a2 XI CJ 2bJ Y2 +2 bJ 2 a2 X2 YI CJ

-2b12CJ2Y2 yd U2
2

A.5 Points to Line-Circle

(Xo + Il)2 +(Yo+ k)2 - r 2 = 0

(Xl + Il)2 + (YI + k)2 - r 2 = 0

(A.8)

(A.9)

The known variables are XO,YO,Xhr and the unknowns are Il,k,r. The last element of

the basis is below, and it has one unknown, which is k.

(A.lO)
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3 l '.2'.-4 Xo X, + xo' +2x" !la·

2 ",.,
-4 !la Xl Xo +2 !lo· x,· + !la'

? 2 2 "(1 . 2--!la YI + YI + . !I1 Xo

~ ,~ , '.2-8 Xo Y, X, + ,1 !II x,· +.\ Xo !la

322+4 Yo - 4 Yo y, +.\ X, Yo

2 2+(4Xo - 8X, Xo + 4 X,

2 2) 2+4 Yo - 8 Yo y, + ,1 ", ~,

(X2111 - Y2112 +h) - l' - l' = 0

11~ + 11~ - 1 = 0

(A.II)

(A.12)

The known variables are X2,Y2,1',P and the unknowns are 111>112. The lasl, clement

of the basis is below, and it has one unknown, whieh is 112'

+(21'Y2 +21'k +2PY2 +2pk)lL2

+(X2 2+2X2 h +h2+ Y2 2 +2Y2k+ k2)lL2"'

A.6 Three Dimensional Lines to Planes

(A.I:!)

(A.14)
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'l . 1"', + IV2 - 1 = 0
2 ,s, + "2 - 1 = 0

The knowll variahles are rnr ,my,nlz,n,r,uy,u.: and the unknowns arc S},S2, W2,Wt.

The I,L,t element of the basis is below, and it bas one lInknown, which is Wl'

2222 222+1Il. Il, + Ill. Il, - 2 m. Il, 111, ". + m., ". )101

(A.15)
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