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Abstract

DNA profiles have become an extremely important tool in forensic investigations,
and a match between a suspect and a crime scene specimen is highly incriminating.
Presentation of this evidence in court, however, requires a statistical interpretation,
onc which reflects the uncertainty in the results due to measurement imprecision
and sampling variability. No consensus has been reached about how to quantify
this uncertainty, and the literature to date is lacking an objective review of possible
methods.

This thesis provides a survey of approaches to statistical analysis of DN A profile
data currently in use, as well as proposed methods which seem promising. A compar-
ison of frequentist and Bayesian approaches is made, as well as a careful examination

of the assumptions required for each method.




Résumé

Les profils &’A% » oo b s des outils extrémement importants dans les enquetes
criminelles, tu et <2 coed e entre un suspect el un spécimen recenilhi s fa
scéne du crune wo ot oTeg b aatement incriminante, Toutefois, compte tenn de
Pimprécision des yoesires o fa vartabilite de Péchantifonnage, la démonstration
de ce type de preuve devant le tribunal implique une interprétation des statistiques
reflétant Pincertitude des résultats. Jusqu’a présent, il 0’y a pas cn de consensis
sur la maniere de quantifier cette incertitude et la littérature ne fourmt, pas de revae
objective des méthodes possibles.

Cette these fournit un appergu des différentes approches présentement utilisées
pour I'analyse statistique des profils d’ADN. Elle suggere de plus les méthodes les plus
promettcuses. Enfin, une comparaison entre les approches fiégquentiste et Bayesienne

cst présentée aussi qu'un examen détaillé des hypotheses requises pour chacnne de

ces méthodes.
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Chapter 1

Introduction

As DNA profile data presents challenging statistical problems, presentation of this
type of evidence in court has been severely debated. Frequently, the DNA evidence
may be deemed inadmissible on the grounds that there is no acceptable way to analyze
the data. Several possible methods of analysis have been proposed. The purpose of
this thesis is to provide a detailed review of these proposals. and of the assumptions
on which they are based. In Chapter 2 an overview of the laboratory techniques is
provided, along with the basic genetics necessary to understand the procedure.

In Chapter 3 an outline of the frequentist and Bayesian approaches to this problem
is given. The details of these methods are given in Chapters 4 and 5 respectively. In
Chapter 6 a discussion of the possibility of population substructure and its potential
impact on some critical assumptions is presented. Chapter 7 provides a comparison
of the various methods which were discussed in Chapters 4 and 5. Appendix A
briefly describes three statistical concepts which may be unfamiliar, but which are
used in some of the analysis. Appendix B gives a full derivation of a set of estimation
equations used by Devlin, Risch, and Roeder (1991). This derivation is nontrivial

and was not supplied by Devlin et al.



Chapter 2
An Outline of DN A Profiling

A basic understanding of the cell and its components is fundamental to the under-
standing of DNA profile analysis. It is tiie cells which store and transmit the genetic
information which maxes each individual uaique.

Genetic information is stored within the nucleus of each cell. T'he information
is coded in the large molecules known as the nucleic acids, RNA (ribonuclerc acid)
and DNA (deoxyribonucleic acid). RNA is dispersed throughout the nudeus and
the surrounding material known as the cytoplasm. In contrast, DNA is primarly
restricted to the nucleus. Each normal cell in an organism will carry a full copy of
the genetic information.

Both DNA and RNA are composed of repeating units known as nucleotides. Fach
nucleotide is a combination of a deoxyribose sugar, a phosphoric acid, and one of four
possible nitrogen bases : adenine, cytosine, gnanine, or thymine. The only difference
between nucleotides is the nitrogen base present, hence the four types of nucleotides
are denoted A, C, G, and T respectively, depending on the base. The nucleotides ae
joined together sequentially (by chemical bonds) and may occur in any order. There
is thus an endless array of possible sequences which accounts for the vast degree of
genetic variation in human beings.

The physical structure of DNA was described by the Watson-Crick model (1953).

[$%4




It was discovered that the DNA molecule is not made up simply of one long string of
nucleotides but of two such strings bonded together. The two strands twist around
aronnd one another in a spiral formation, or a “double helix”. The adenine (A)
nucleotides in one strand pair only with the thymine (T) nucleotides in the other
strand. Similarly, the guanine (G) nucleotides in one strand pair with the cytosine
(C) nucleotides in the other. The length of these strands are thus referred to in terms
of base pairs. As a result of this preferential base pairing, if the nucleotide sequence
of one strand is known then the sequence of the complementary strand is also known.

[n each cell of the human body. within the nucleus, there are 23 pairs of chro-
mosomes, known as homologous pairs. There is only one DNA molecule present per
chromosome, and it may bhe visualized as a long fiber crossing the length of the chro-
mosome and folding back on itself many times. A gene is simply a stretch of this
DNA fiber. which occupies a specific position on the chromosome known as its locus.
A particular locus will be represented twice per cell, once on each chromosome of the
homologous pair which carries it. Each chromosome of a pair will carry the same
loci, but they do not necessarily have the same genes present at each matching locus.
Alternative forms of the same gene are known as alleles, and they differ from one
another only in the sequence of nucleotide base pairs. If each chromosome in a pair
carries the same allele then the pair is said to be homozygous at that locus. If two
different alleles are found, the pair is heterozygous.

An important aspect of the DNA in eukaryotic cells (found in most plants and
animals) is the appearance of certain sequences of base pairs which repeat themselves
in tandem. These sequences are of a variety of lengths and fall into two classes, mod-
erately repetitive and highly repetitive. In the highly repetitive group the sequence
may repeat over a million times. This group is frequently called satellite DNA. The

term minsatellite is used to refer to any short DNA sequence which repeats itself.




Certain loci were discovered to be hypervariable between individuals due to the differ-
ing number of repeats of the minisatellites. For a particular locus, a different numiber
of repeats corresponds to a different allele. These loc1 are often called variable num-
ber of tandem repeat (VNTR) loci. This lead to the discovery that a characteristic
pattern, based on the number of repeats at each locus, could be constructed for each
individual. Moreover, this “fingerprint”, or “profile”, could be determined from some-
thing as small as a hair root or as degraded as an old blood stam. As will be seen,
although not unique, careful selection of loci can ensure that an individual’s profile
occurs with low frequency in the population.

The main method used to produce these profiles 1s known as Southern blotting.
The DNA is isolated from the samples provided and then exposed to a protein known
as a restriction enzyme which cuts the DNA at specific sites into many smaller frag-
ments (the restriction enzyme will not cut the repeating sequence). These fragments
will have a characteristic length depending on how many minisatellite repeats they
contain. The fragments are placed in an electrophoretic gel, in which the shorter frag-
ments will travel farther than the longer fragments. The result is a line of fragments
in order of length in base pairs. This line is moved onto a nylon membrane where it is
fixed in place, and radioactive probes are used to reveal the positions of the fragments
on the membrane. The fragments will appear as bands and the position of the band
(i.e. how far it traveled in the gel) in theory reveals its length (a series of fragments
of known size is also run through the gel, and the positions of these markers are
compared to the positions of the fragments being examined). This banded pattern
will be the same for a given individual regardless of the kind of tissue present in the
sample.

Two types of probes may be used in the above procedure, single locus probes

(SLP’s) and multi-locus probes (MLP’s). An SLP will reveal only those bands which




are present at one spedific locus. T'hus, either two bands will show for an individual
heterozygous at that locus, or one band for a homozygous individual. An MLP reveals
bands from several loci at once, but is a less sensitive technique than the single locus
probe. Several single locus probes may be combined to produce a profile for multiple
loci.

Many variations on the above technique exist, but the underlying principles are
similar. In addition, a technique known as PCR (polymerase chain reaction) analysis
is ficquently used. This method involves amplification of the hypervariable sequences
and is much less time consuming than the southern blotting approach. It is particu-
larly useful when the sample is degraded since it can be used on very small quantitics
of DNA.

The problem with the above methods is that the translation of “distance fragment
travels in gel” to “length of fragment in repeats” is imprecise. There is measurement
error involved which may be larger (in terms of base pairs) than the size of the
repeat sequence, and misclassification of alleles can occur. In addition, there are
certain technical difficulties which may arise. For example, extremely small fraginents
have been known to migrate off the end of the electrophoretic gel, making them
undetectable. Also, two bands which are very similar in length, though not identical,
may appear as a single band instead of two distinct bands. This phenomenon is
known as coalescence. An additional concern is the occurrence of band shifting which
causes the fragments to appear a uniform amount smaller or larger than they should.

When the DNA from a crime specimen is compared with that of a criminal the two
profiles are lined up beside one another. For example, consider the DNA evidence
for a hypothetical murder investigation depicted in Figure 1. A specimen (e.g. a
bloodstain) was obtained from the crime scene and it can easily be seen by comparing

the DNA profiles of the specimen and victim that the specimen was not contributed



by the victim. It may therefore be used to place the suspect at the scene of the crime.
Two suspects are apprehended and their DNA profiles are constructed and compared
to that of the specimen. It can be seen from Figure 1 that Suspect | may be excluded
from the investigation. while Suspect 2 would be declared a “match”.

A careful study of the statistical methods leading to the declaration of a match
and the implications of this declaration are, in part, the topic of this thesis. Other

statistical viewpoints that do not depend on “match declarations” are also discussed.




Specimen

Victim

Suspect 1

Suspect 2

Figure 1. DNA Profiles for a Hypothetical Murder Investigation




Chapter 3

Statistical Approaches to DNA
Profile Analysis

Consider a criminal investigation in which a single bloodstain is lound at the scene of
the crime. A suspect is apprehended and DNA profiles of both suspect and specimen
are constructed using methods described in Chapter 2. [ow can the information
contained in the DNA evidence best be presented in a courtroom setting? Predictably,
two schools of thought have arisen, one which feels that the DNA evidence should be
evaluated in a frequentist manner, and one which promotes Bayesian methods. These

approaches are outlined in the following sections.

3.1 Frequentist Approach

In this approach it is first necessary to declare whether there is a match between the
two profiles. Since each allele is measured with error, two measurements that are
different, but very similar, may still be two measurements of the same allele. Two
allele measurements are said to match if they meet some predetermined matching
criterion which is based on the distribution of the measurement error (see Section 4.3).
Suppose that at a particular locus the DNA of the suspect has allele measurements

z; and z; and the DNA of the specimen has allele measurements »; and y,. There




is said to be a match at that locus if either z; matches y; and z, matches y,, or z,
matches y; and z, matches y;, since it is impossible to tell from which of the two
chromosomes the measurements arise. The DNA profiles of suspect and specimen are
saifdl to match if there is a match at every locus which was examined. Otherwise an
exclusion is declared and the suspect is released.

It is concervable however, that the two DNA profiles match by “pure chance”
and not because the suspect is actually the guilty party. In order to make a proper
presentation of the DNA evidence in court the probability of this event must be
estimated. That is, the probability that the DNA profile of an individual chosen
at random from the population would match that of the crime specimen. If this
probability is “extremely small” (frequently on the order of 1x10~3) then the suspect
is deemed to have committed the crime “ beyond a reasonable doubt”. To describe the
approach more formally some notation is introduced, and some crucial assumptions

are outlined. Define the following events :

M = the event that the DNA profile of an individual chosen at random from the

population matches the DNA profile of the specimen,

M; = the event that the two alleles found at locus i for an individual chosen at
random from the population match those found at locus i in the specimen.

We have,

L
M=M,

1=1
where,

= total number of loci examined to construct the DNA profiles.

Let Y represent the DNA profile data obtained from the specimen. The probability
which must be estimated is P(M1Y).



3.1.1 Presentation of Evidence

When the evidence is finally presented in the courtroom, the estimated probability
ﬁ(leY) is presented. The jury must then decide, based on 13(.\1|Y) and all other
available evidence, whether they believe the suspect 1s guilty or innocent. Technically

speaking they are actually carrying out a test of the hypotheses,

H, : the suspect was chosen at random from the population (i.e. the suspect is

innocent),
versus,

H, : the suspect was not chosen at random from the population (i.e. the suspect is

guilty).

The data used is the DNA profile evidence and the test statistic is P(M|Y). The null

hypothesis is rejected for “extremely small” values of the test statistic.

3.1.2 Selecting the Loci

Since there are a multitude of loci available it is necessary to decide which ones are
the best suited for analysis. This decision must occur at the design stage of the
experiment (i.e. before viewing the DNA evidence), and thus will be discussed at
this early stage. The following comments on this important topic are due to Lange
(1991).

Consider a single locus. In constructing the DNA profiles it is desirable to include
a locus which has a maximal ability to exonerate an innocent suspect. Let e denote the
exclusion probability, which is the probability that a randomly chosen individual will
not share a matching genotype with the criminal at a particular locus. It is desired to

maximize the exclusion probability. Suppose further that there are n possible alleles at




this locus, with lengths A;,..., A,, and with population relative frequencies p,, j =

1,...,n respectively. It follows that,

e = 2;} ?=k+1 2p,pe(1 — 2p, k) + 2?:1 P?(l - P:})')
= Til mk41 2Pk — 2 ok 2 y=kt1 21’?1’2 + 2=t pi(1 ‘“P?)
= Lk=1 Z?:l PP — Z?:x PJZ - 2{Tkx Z?:l prﬁ - ?=1 Pj}

= 1 = 2T, T PPn} + i Pl
= A 72 + T

The exclusion probability must be maximized with respect to each px, £ =1,...,n,

I

subject to the constraint that Y.7_, p« = 1. By using Lagrange multipliers one must

solve.

—8pd_ P’ + 4pi + e =0

J=1
which implies,

i A
—ZZP? + Pz + Z = Oa
i=1

n A
P = ,IQZPf-Z- (3.1)
=1

Solving 3.1 simultaneously with the constraint Y}, pr = 1 yields,

or equivalently,

Pk = E for k=1,...,n.
n

In other words, loci should be chosen which have alleles that are as close to equally
frequent in the population as possible.

In addition to its ability to exonerate an innocent suspect it is also desired that a
locus have maximal ability to incriminate a guilty one. That is, under the hypothesis
of guilt the inclusion probability should be maximized. However, it is assumed that
the probability of obtaining a match given that the suspect is guilty is one, hence

there is nothing to be maximized. Instead Lange considers the Kullback-Leibler
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information (Kullback and Leibler, 1951) computed under the assumption of guilt
(see Appendix A). This is also a measute of the ability of a locus to point to a guilly
person. For a particular locus with n possible alleles let, X denote the genotype of the
suspect /specimen, and let the operator € be the expectation under the assnmption

of guill. We then define the Kullback-Leibler information,

Kg(lg,IT)) = €{log 2243}

)
A - 2
= Liarlog gl + Ti0 Lioyn 2n,pelog s

= -5 p? logp? - 22;‘;,‘ Y k=y e P 1Og 2, i
= =i Plogp} — (Choi TR mymlogppn — S0y pPlog p?)
= =01 k=t Paiw log pymy

= =2 E;:l D, logp,

This quantity must be maximized with respect to pr, k= 1,...,n, subject to the
constraint 3°p_, pr = 1. Using Lagrange multiplieis the quantity to be maximized is,
n n
Ke(llg, ) = =2 p,logp, + ZA(Z])J - 1).
=1 =1

This yields,
aK

_— = - - A =0
n logpe — 1 4

which implics,
logpe = A =2 (3.2)
Equation 3.2 is solved simultaneously with the constraint $_p_, px = | to obtain
Pe = %, fork=1,...,n.
Thus under both of the hypotheses of guilt, and of innocence the same conclusion

is reached, although through consideration of different, criteria. The best locus to

include in a profile is that for which the alleles are equally frequent,

11



3.1.3 Current Approach

The most commonly used approach to analyzing DNA profile data is known as
“match-binning”, which relies on allele probabilities estimated by “binning”. The
viewpoint is frequentist. The technique of binning will be outlined in Chapter 4
as well as the procedure for calculating P(M|Y) based on binned allele probability

estimates.

3.2 Bayesian Method

The Bayesian approach to the forensic identification problemn is substantially different,
from that of maich binning Consider the same scenatio as depicted previously., That
is. a suspect is apprehended dining a forensic investigation and the DNA profiles of
. hoth the suspect and a crime scene specimen are constructed. It is not attempted to
determine whether or not the two profiles match. Instead it is attempted to assess

the posterior odds of guilt given the evidence. Define the following events,

G = the event. that the suspect is guilty,

I = the event that the suspect is innocent,
and let,

X =all the DNA profile evidence = (x,y, 21,..., z,) where x, y . 2y, ..., z,, are respec-
tively the measurements taken at a specific locus for the suspect, the specimen,
and a simple random sample of n individuals drawn from a relerence population,

and,

E = all other available evidence.

. It is desived to find the posterior probability of guilt. That is, the probabilty of G

based on all the available evidence. According to Baves’ Theorem, the posterior odds




of guilt is proportional to the prior odds of guilt. The constant. of proportionality,

denote it R, is known as the likelihood 1atio, or the Bayes factor:

P(GIX,E)  P(G|E) P(N|GL )
=1 here R = b))
RV DR LU M TN T )

Deciding on an appropriate prior is a task for the jury. During a tiial it is essential
that the relationship between prior and posterior odds be made as clear as possible,
As will be discussed in a later section it may not even be necessary for the jury to
choose a specific prior, simply presenting the likelihood ratio with an appropriate
explanation may he acceptable. Alteinatively, Devlin, Risch,and Roeder (1991) also

suggest the use of a frequentist decision 1ale of the form,
|
it e (0, _IT] conclude 11,

It e (—L,I\'] inconclusive
K
R € [K,00) conclude lg.

They claim that the constant ' may be chosen so that the probability of a T'ype
[ error is very small. The statistical problem is thus deciding how to estimate /1.
Three different. approaches are considered in Chapter 5. These are due to Benry

(1991), Berry, Evett and Pinchin (1992), and Devlin, Risch and Roeder (1991,1992).

3.2.1 Selecting the Loci and Restriction Enzymes

Devlin, Risch, and Roeder (1992) use the term “system” to refer to a particnlan
locus/restriction enzyme combination. It is desired to inclnde in the DNA profiles
those systems which provide the most information. In particular, the probability of
rejecting H; when the suspect is innocent should be as close to 0 as possible, while
the probability of rejecting 11; when the suspect is gnilty shonld be as close 1o ]

as possible. Define, 4(#,3]7,5) to be the probability of rejecting I, in favonr of

13




I for a particnlar system S, where & and g represent the DNA measurements for
suspect and specimen respectively and Z = (zy,...,2,) is the reference sample of

measurements. Ideally, for given realizations # and 3,

- 1 under g
r,y) =

0 wunder I1,;.

Similarly, define the following loss function,

(1 = y(#,7]2))* under llg

Loss[y(#,§]Z)] =
et al2) {w(.f-,mzn’ under Hy.

Squared error is chosen to give more weight to large deviations since these will

likely correspond to false conclusions. Define the corresponding risk functions as,
R(llg) = E[(1 = ~(%,§|2))*|1i6]

R(IT) = E[(v(#,312))* 1],

where with a slight. abuse of notation & and 7 are now regarded as random variables
and not as realizations (the averaging being done over the possible data values). The

Bayes visk is then,
r(#) = (1 =B)R(H) + BR(1lg)

where 3 is the prior probabilty of guilt (the further averaging being done over the two
. g y e .

possible hypotheses). The Bayes’ risk may be compared between competing systems,

the system with the lower Bayes’ risk being the appropriate choice.

In the next chapter match-binning is examined in delail.



Chapter 4

Match-binning

In match-binning, the range of possible allele sizes is divided into classes (called
bins), and the sample bin frequency is used as an estimate for the frequency of ecach
allele within the bin. These “binned frequencies” may then be used to estimate the
probability of a match at a particular locus for the “match-binning” approach (they
do not necessarily have to be used in this manner, however this is the current practice

by most forensic laboratories).

4.1 Assumptions
The following assumptions are necessary in order to use match-binmug

Random Mating It is assumed that individuals mate without, regard to genotype,
a phenomenon known as random mating. For example, if there iz information
about the alleles inherited from the mother of a particular individual, this yields
no information about which alleles may have been inherited from the father. In
other words, the maternal and paternal chromosomes are independent. The
most important consequence of this assumption is that, regardless of the oh-
served allele frequencies for a fixed population in any particular generation, after

one generation of random mating a state known as Hardy-Weinberg equilibrium

15




S

(HWE) is reached.

Suppose that the true population frequency of alleles A, and A, are p; and p;
respectively. If the population is in HWE then the expected relative frequencies
of the genotypes A; Ay, A1 Az, and AzA; are respectively p?, 2p1p2, and p? and
these values will not change from one generation to the next. (Note that the
observed frequencies will always differ slightly from those expected under HWE,

but the expected frequencies will remain constant between generations.)

Suppose that alleles A, and Ax are found at locus i in the DNA profiles of
both the suspect and specimen. Let p, and px denote the respective relative
population frequencies of these alleles. Assuming HWE one may write,

2p,px if j#k (suspect heterozygous)

P(M\|A,), Ay) = { p;? if j=k (suspect homozygous)

Henceforth the terms “random mating assumption” and “HWE assumption” will
be used interchangeably as is common in the literature, although the situation is ac-
tually that the random mating assumption leads to the state known as HWE. The
assumption of random mating is a highly contentious issue and its validity will be
discussed further in Chapter 6. It is standard practice to attempt to derive a conser-
vative estimation procedure which deliberately biases the outcome in favour of the
defendant in order to compensate for the uncertainty arising from these assumptions
and other possible sources of error such as sampling variability which will be encoun-
tered. In addition, for the binning approach it is actually the bin relative frequencies
that are of interest and not the true allele relative frequencies. The HWE assumption
is assumed to hold for the bin relative frequencies as well since they are simply esti-
mates of the true allele relative frequencies. Henceforth the notation p; will refer to

the true population relative frequency of alleles in bin j, instead of the true population

relative frequency of allele A,.




Linkage Equilibrium (LE) It will be assumed that the genotypes observed at
one locus are independent of those observed at other loci. This will be referred
to as the linkage equilibrium assumption although actually the assumption of
independence between loci leads to a state known as LE. In this state, given
the true allele relative frequencies in the population, the expected relative fre-
quencies of the various possible genotypes remain constant between generations.

Assuming LE, P(M]Y’) may be written as,

P(M|Y) = P((L] M,Y) = fI P(M,|Y)

1=1 =1

An important consequence of the LE assumption is that only the single locus case
need be considered. The results from distinct loci will simply be multiplied.

Caution must be exercised in applying the LE assumption since loci which are
located on the same chromosome are quite likely to be “linked” (not independent),

particularly if they are positioned close together. This will be discussed further in

Chapter 6.

4.2 Outline of Match-binning Procedure

The basic steps in match-binning are as follows,
(i) Determine the matching criterion.

(i) Determine whether there is a match or an exclusion. (If there is an exclusion

nothing further is required.)
(iii) Establish the bin boundaries.

(iv) Estimate the bin frequencies.

17



(v) Use the assumption of HWE to estimate P(M,|Y) as

20,k if J#k (suspec heterozygous)
m” if j =k (suspec homozygous)

P(ALY) = {
(vi) Use the assumption of LE to estimate P(M|Y') as
~ L ”~
P(M|Y) =[] P(MLIY).
i=1
The actual process of “hinning” involves only steps (iii) and (iv), in which the allele

relative frequencies are estimated. All six steps are described in detail in the following

sections.

4.3 Determining the Match Criterion

Suppose that two allele measurements v, = A, +¢;, and y, = B; + €;, are obtained
from the suspect and specimen respectively. It must be decided whether these are
two measurements of the same allele. In terims of hypothesis testing it is desired to

test,

versus,

H, : A #B,.

It is assumed that ¢, and ¢, are independent, with ¢, ~ N(0, a'?l) and g, ~
2
N(0,0}).
Under H,, E(r, - 5) = 0 and var(x; — y) = var(z;) + var(y,) = 202, where
o; denotes the common standard deviation of #; and y;. Ilence an appropriate test

statistic (given that a; is unknown) is,

Ti—Yi

V26

T =

18




which is assumed to follow a standard normal distribution. The null hypothesis is
rejected for large values of the test statistic. That is, for |T] > zg) where 22y is
the 100(1 — $) percentile point of the standard normal distribution. It remains to
estimate the measurement error standard deviation a,.

Berry, Evett and Pinchin (1992) approach this problem by taking duplicate mea-
surements of a large sample (218) of fragment. lengths (alleles). Suppose that r,, and
i, are two measurementsof an allele of length A, i=1,...218. That is,

r, = A|+ &y
A+ gy, i=1,...,218

It

Thy
where ¢, and ¢, are the errors associated with cach measmement with var(s,,) =
var(e,,) = a2. For each allele of length A, the measntement error will have a different
distribution. It is assumed that the standard deviation of the measurement error (a,)
is directly proportional to the true allele length A, and this assumption appears fo
be supported empirically (Baird et al.; 1986). Since the true allele length is unknown,
it is estimated as the average of the two measutements. Therefore on the one hand

the estimate of g, is given by,

. (¢, + 2, )
Gi = c—-—'Tz—’) Jor i =1,...,218, ¢ an unknown constanl.

On the other hand, using the sample standard deviation based on two observations

yields an estimate of,

BV

g
Fquating the two estimates yields,

fry = vipl - (i) + 74)

Ve 2

or rearranging,

\/il:"!l ""T'zl =c.

Ty +'tiz
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For each estimated allele size this quantity was calculated and the mean value of ¢
was found by Berry et al. to be 0.008. Baird ct al. (1986) estimate ¢ = .0012 bascd
on 70 duplicate measurements.

Thus il |+, — 3| < 0008z¢ \/‘Ziﬁ%’—') then a match bhetween the two alleles
heing measured is declared. Fhe choice of z(g) varies between laboratories but it
is frequently chosen to be an integer k, with a = 0.05. For example, at one time
Lifecodes used k =2 (Baird et al., 1986) bul as of 1989 were using k=3 (Berry, 1991).
This match eriterion is then applied to the entire profile, one locus at a time, and if
there is a match at every individual locus examined then it is said that the profiles

are a match Henceforth it will be assumed that a match has been declared.

4.4 Establishing the Boundaries of the Bins

In general, if a bin is centered around an allele of size A,, the boundaries of the
bin should not be closer than 2 standard deviations of the measurement. error on
cither side. This is to ensure that approximately 95% of the measurements which
could be due to allele A, are incinded in the bin. The exact positioning of the
boundaries seems to be somewhat arbitrary. In Section 3.1.2 it was shown that the
best loci to include in the profiles are those for which the alleles are equally frequent.
In the match-binning approach the allele relative frequencies are estimated by the
corresponding bin relative frequencies which implies that in the ideal situation the bins
would be equipiobable, and loci should be chosen with this it mind. Alternatively,
bin boundaries may be adjusted so as to more closely approximate such a uniform
allele frequency distribution.

The fired bin approachsets the bin boundaries in advance and may use the same
set of bins for different investigations. By contrast the floating bin approach centers

a bin around any allele found in the DNA profile of the suspect/specimen.  For
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each case the floating bin technique requires tabulation of an entirely new set of hin
frequencies. It is important (o note that “matching” and “falling in the samme bin”
arc not precisely equivalent. Alleles which fall in adjacent bins may match, while
alleles falling at opposite ends of the same bin may not necessarily meet the matching

criterion.

4.5 Estimating the Bin Frequencies

In order to estimate the probability of a randomly chosen individual having a DNA
profile which matches that of the suspect. (i.e. P(M[Y)), it is first necessary to
cstimate the individnal allele relative fiequencies. The estimation process has (wo
stages. The fitst. stage, as mentioned previously, consists of estimating the individual
allele relative frequencies by the corresponding bin relative frequencies. The second
stage involves estimation of the bin relative fiequencies using a simple vandom sample
from the population. For cach bin number j, j = 1,...,b, a point estimator (p,) of
the bin relative frequency is obtained. These estimators are shown to he unbiased
and to have small variance for large N. In addition the covariance between two bin
relative frequency estimates is derived since, as will be shown, this is an indsy afion of
the bias in the estimate of heterozygote relative frequency. Confidence intervals for
the bin relative frequency estimates ate also detived since the length of these intervals
gives an indication of the validity of the estimators. Further it has been suggested
by Lander (1989) that the upper 99% confidence limit be used in place of the point,

estimate in an attempt to be conservative.

4.5.1 Point Estimator for p;

A simple random sample of N individuals is taken from the population. Each subject,

is examined at locus i to see which alleles are present on the two chromosomes with
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that locus. For each of the 2N chiomosomes in the sample, the observation recorded
is the index number of the bin into which the allele at locus i falls.

Suppose there are b bins in total. Suppose further that allele A, falls into bin j. Let
X, denote the total number of observations for bin j. Under the current assumptions

(X1,...,X3) has a multinomial distribution with parameters p,, 7 = 1,...,b, and

2N. Thus,
E(X,) = 2Np; Vje(l,...,b)

Var(X;) = 2Np;(1 —p) Vjie(l,...,b)

The maximum likelihood point. estimator for p, is:

. X :
p,:ﬁ Vijie(l,...b). (4.1)

For cach bin, the estimated probability obtained from 4.1 is assigned to all of the
allclic types in the bin. To be conservative, if an allele in the suspect /specimen profile
fies on the boundary of two adjacent bins, or i it could belong to another bin due to
measurement. ertor, it is assigned to the higher frequency bin. Standard multinomial
theory gives the following results :

E(ny) = p, Vje(l,...,b), (p, unbiased)
Var(f,) = 2U2) v je(l,...,b),
Cou(p,.pir) = “BE  Vijie(l,...,b), j#k
Note that the variance is an indication of the bias in the estimated homozygote

frequencies. This is easily seen since (under HWE),
Var(pi,) = EG)-[E@p)? VYjie(,...,b)
= &)~}

= E{estimalcd homozygole frequency}
—{truc homozygote frequency}

Similarly, the covariance is an indicator of the bias in estimated heterozygote
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frequencies since (under HWE),
E(ppe) = E())E(M) Y€ (l,...,b)
= 3E(25,1) - 2p,

= %E'{cstimnl(‘(l heterozygote frequency}

Cov(p,, 1ik)

~{lrue helerozygote frequency)

Hence the estimated heterozygote and homozygote frequencies are asymptotically

unbiased.

4.5.2 Confidence Intervals for p;

Method 1

Confidence intervals for p,, j=1,....b, are usually determined nsing the method of
Goodman (1965). Denoting the lower and upper endpoints of the confidence interval

by L, and U, respectively, Goodman’s method yields,

B +2X, — /BB +1X,(35))

L;= 52N 1 1) Vje(l,...,h) (1.2)
B +2X, +/B(B + X, _ ,
R, = 22N + 1) Vje(l,...,b) (1.3)
where B = \}(§) is the 100(1 — £) percentile point of a chi-square distribution

with 1 degree of freedom. These intervals can be derived in the following way. A
sct. of b confidence intervals are required (one for each p,, j=1,...,b) such that the

simultancons coverage probability of all b intervals is at least | — ov. Lel,
C, = confidence interval for p,,  for j€(1,...,b).

Now let each C,, j=1,...,b , have coverage probability (1 — §).Then it follows from

a simple Bonferroni inequality that,

Pe) 2 1-3 PE) = 1—a,
Jj=1 =1
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whote ¢, denotes the event that p, falls within confidence interval C;. Now,

VINGY —P) 2,7 o N oo where Z~ N(0,1)
V p](l - ]);)

which implies that. as N — oo,

2N(, — p)’ 20y _ @
P nl—m) > ’\'(b)) b

Therefore, set L, and R, equal to the two solutions of the guadratic equation in

p11
2N(p, - 1’1)2

n, (1 —p,) - Xl( ) (4.4)

to obtain an interval such that

P(L, < pi<R) =

sl R

Solving 4.4 yields,

%, B W
py = 25, + 55 i\/B( tav N ), where B=/\’¥(g)
z(,N +1) '

which upon the substitution i, = ZN’ yields after simplification,

B+2X, £ /BB + X, Vi 1
2(2N+13) JG(,---,’), \l()

P, =
These are the interval endpoints given by equations 4.2 and 4.3.

Method 11

Goodman's intervals are the most frequently used although a simpler, and perhaps

more familiar, set of (1 — £)% conflidence intervals are given by,

R U Y
})J:tlﬁ —J-(—zTV—J— ]E(l,,b)



where Z(%) is the 100(1 — ;) percentile point of the standard normal distribution.
These intervals are symmetric about the point estimates (whercas Goodman’s inter-
vals are not) but they may yield endpoints which are less than zero or greater than
one.

To illustrate the differences in the methods just described consider the following

example.

Table 1 Confidence Intervals for p,, j = 1,...,5, N=25

Bin Range AW Point 95% LCL | 95%UCL | 95% LCL | 95% UL,
Estimate | Method 1| Method 1] Method 11 ] Method 11

0 - 900 12 0.24 0.1211 0.4198 0.0814 0.3956
901-990 | 8 0.16 0.0682 0.3315 0.0265 0.2935
991-1050 | 17 0.31 0.1955 0.5220 0.1674 0.5126

1051-1200 | 6 0.12 0.0447 0.2813 0.0016 0 2181
1201-1300 | 7 0.14 0.0561 0.3082 00136 0 2661

S W N

For this example there are N=25 subjects hence 2N=50 independent observations,
all of which are made at the same (hypothetical) locus. The range of possible allele
sizes has been divided into 5 bins. The range column indicates the boundary sizes
of the bins in base pairs. It is standard practice to pool the low heguency bins to
obtain a minimum of five occurrences in each bin. This is to avoid having hins with
exceptionally small bin hequeney estimates, since certain rare alleles may not have
appeared in the sample. The bin ranges and counts are completely hypothetical  In
practice there would be many more bins and the observed number in each bin wonld

usually be lower.

4.6 Relaxing the HWE Assumption

The assumption of HWF is cricial to all calculations performed thus far, and the is-

sue of whether this is reasonable is contentions. It is therefore worthwhile to consider




the consequences of falsely assuming HHWE. It will be shown that although the bin
frequency estimators are unchanged (and still unbiased), the estimators of homozy-
gote /heterozygote frequencies will be altered. This is indicated through the variance
and covariance of the bin frequency estimators respectively. That is,
E(P?) = wvar(p,) + )} = var(p,) + p? Joralljk=1,...,b
E2pp) = 2cov(p, ) + 2pyme Vi k=1,....b, j#k.

It is thus important to know how the variance and covariance are affected by an
inaccurate assumption of HWF.

The HWFE assumption allows us to consider all of the 2N trials to be independent.
In particular it ensures that two trials on the same subject, one at each chromosome
with the locus in gquestion, will be independent.  Dropping the TWIE assumption
means that there is only independence between trials on different individuals. The
X,’s no longer come from a multinomial distribution. Mendell and Simon (1984) show
how a departure from HIWE affects the variance (and covariance) of the estimates. A
more general method for calculating the variance is introduced - one which does not.
depend on (X4, ..., Xp) having a multinomial distribution.

The probability p, may be expressed as follows,

| . -
P,=p,+ L Vihe(l,....,b), j#h (4.5)
where,

Py, = probability that a randomly chosen individual is homozygous for an allele in

bin j (note that p,, = p? under HWE), and,

p;n = probability that a randomly chosen individual is heterozygous for an allele in

bin j and an allele from any other bin,
Now let,
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X, = number of individuals in the sample who are homozygous for an allele in hin

j, and,

X,n = number of individuals in the sample who are heterozygous for an allele in hin

j and an allele from any other bin.

Since there is now only one observation heing recorded for each subject there is
independence between all (N) tiials. The random variables X, and X, come from
a multinomial distribution hence the maximum likelihood estimators for p,, and p,,

are given by,

X, Xy ,
Pu="Rt b=t QhE(l L b), j#h

which gives the estimator,

Xy X
N + 2N’

B = p,+ %f{,h = Lhe(l,....h), j#h
This is equivalent to counting all the individual occurrences of alleles in bin j as
before, hence the estimator is unchanged. Standard mmltinomial theoty yields the
results,
EpB) = pytime=p, () unbiased)
Cov(fyn,prm) = “ERP= - jh kome (1,...,b)

where j# &k, and h =k, m = j cannol occur simullancously.

The following theorem indicates that althongh the bin fiequency estimates remain
unbiased, the variance of these estimates is increased.

Theorem 1

2
\/ar(,f,):-’l!(—fzﬁ—"l-) + ”%Vﬁ Vie(,. . ..h
| g N s
variance function of the di f [erence
under between the true probability
HWE of homozygosity and
that predicted under
nweE
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Proof

1.
P]h)

Var(p,) = Vm'(ﬁ”+§

A

1 A
= Var(p,)+ ZV(n'(ﬁ]h) + 2Cov(p,,, %)

Pt =py) + pyr(1 = pyn) _ Dyl

N AN N (4.6)

Now p, = p,; + py implies pn = 2(p, — py;) and hence straightforward substitu-

tion into 4.6 yields the resullt.

Theorem 2V j ke (1,...,b0)

Cov(p,, i) = ———,;;J,L + Pk Imzllbl'k
(g g S
covartance Junction of the difference
under between the true probalnlily
nwi of hetcrozygosity and
that predicted under
nwi
Proof
A . 1., .
Cov(py, i) = Cov(p, + o Pahs Phi + il’km)

where joh,kyme(1,....0), j#h, k#m, j#k
A RO N N A
= El(Pay + 5P} (a4 ikm)] = E@yy + S)E Pk + 5Prm)
. P s PP PP
= E(PyyPua) + 5E(Dybam) + 5E(Pynie) + :ig(l’_ghl’km)

~(Ei) + HEGANEG) + 3E(km))
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P 1 .. L, ..
Cov(pJJ’pkk) + ,—)'COU(I’JJapkm) + :;( "”(pﬂnpkk)
1 . "
+ Zcov(pjh?pk"l) U‘)

where j # h, k£ m, ) #k

Expanding 4.7 further yields,

Cov(g,, pr)

Now recall that,

A om l . | S
CO‘U(ij, pkk) + 3000(7)]]7 pkm) + ;(4 0”(]’_}!13 ]’Lk)
1 A s 1 . L, .
+Zcov(p1hapkm) + T)'COU(pJJ’Pk]) + ;C’ ‘)"(]’jkal’kk) +
1 - n ]- A 1 A ~ )
ZCOU(ij,pkm) + EVar(ka) + IC'ov(th, Pry) (1.8)

Vo hokyme(1,...,0), j#k hs#) h#kom#Ak m#)

PiiPkm

Cov(ﬁ]haﬁkm) = N 3

where j # k and h = k,m = j cannot occur simultancously. Thus 1.3 hecomes,

Cov(p;, Px)

1 1 1 1 |
'—N(PJ'kak + "é?;ﬂ’km + EPJ]PL-J + EY’Jltl’kk + EI’JLPLL ¥

1 1 l 1
ijhpkm + ijkpkm + Ithpk] - :ip]k(] ~ D, )]’

Vi hk,me(1,...0b), J#k h# ) h#Ak m#Ek m+A

1 1 L 1 ] |
_N[Pn (prx + §pkm + §Pk3) + E)"P]h(l)l.k + :}'/)km + Qm,) +

1

1 1 1
’Q‘PkJ(Pkk + 5Pkm + 5Pk) — ZP;I:] (49)

Vihkme(l,...00), 3£k h#j, h#k m#k m#)
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Further,

1 :
p; = pn+3p:h’ Vh#j

1 1 ,
PJ:+§PJh+§PJk, Vh#j h#k

1
Pk = Prkt5Pkms YV FEk
1 1 .
= pkk+7)-pkm+§PkJ Vm#k m#)

Substitution of 4.10 into 4.9 yields,

. 1 1 1 1
Cov(fy, k) = —35(PasPk + SPnP + 5PikPx — 7P]
N 2 2 1

1 1
= —;V[P:Pk - Zpgk]

Substitution of —p,p = ZZE: — 2Pt into 4.1] yields the desired result.

2

(4.10)

(4.11)

Clearly the penalty for falsely assuming HWE depends on the extent to which

HWE conditions are violated.

4.7 Remarks

30

Although match-binning (primarily the fixed bin method) is the most commonly used
approach to DNA profile analysis, it has many drawbacks. Not the least of these is
the necessity of declaring a definitive match or exclusion. Suppose for examgle that
two DNA profiles are identical except at one locus where the allele measurements
do not meet the matching criterion. Regardless of the number of loci that were

used to construct the profile it would be necessary to declare an exclusion. It is




possible however that the one nonmatch could have been due to DNA degradation
or other technical considerations (see Chapter 2). In addition, a match between two
measurements which barely meet the matching criterion is given the same weight as
a match between two that are virtually indistinguishable. Clearly some information
is being lost. It would seem desirable to have an alternative approach in which it
would not be necessary to declare a match or exclusion. Instead the availabic DNA
evidence would simply be expressed in a quantitative manner. Such an approach is

presented in the following chapter.
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Chapter 5

Bayesian Approaches

Each method outlined in this chapter is based on a distinct set of assumptions, al-
though the same Bayesian procedure is followed. Each section will outline the as-
sumptions, the procedure for estimating allele relative frequencies, and the resulting
likelihood ratio. A final section on evaluating the goodness of fit of the models is

included which applies to any of the proposed procedures.

5.1 A Density Estimation Approach

Although the problem of declaring a definitive match or exclusion is avoided by the
Bayesian approach, it is still necessary to estimate the allele distribution in order
to estimate R. Instead of discretizing the problem as done in the match-binning
approach, Berry (1991) assumes a continuous allele distribution and applies a density

estimation technique.

5.1.1 Model and Assumptions

Initially only a single measurement will be considered (i.e. the DNA of the suspect and
specimen is examined at one chromosome locus only ). The approach will be extended
to consider two measurements at the same locus. Let £ and y be measurements of

alleles with true lengths A and B, in the suspect and specimen respectively, at a
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particular locus. Although Berry does not explicitly specify a relationship between

true allele lengths and measurements, it is instructive to consider a model of the form,
T=A+c¢cy

y=B+¢p.

It will be assumed that,
(i) the population is in LE and HWE with random mating,
(ii) &(z) = Aand &(y) = B,

(iii) the measvrement errors ¢4 and ¢p are independent both within a locus and

between different loci, and,

(iv) the measurements are lognormally distributed with constant standard deviation

c. That is,

log(z) ~ NM(v,c?)

log(y) ~ N (u,c?).

The values v and g reflect the true values of the allele sizes in the suspect and specimen
respectively. If the suspect is guilty then v = p.

If the true allele sizes A and B are not equal then assumption (iii) is justifiable since
z and y are then measurements of distinct alleles from DNA examined on two seperate
gels. On the other hand, if the suspect is guilty then z and y are two measurements
of the same allele, and hence the measurement errors are linked through the common

allele. Conditional on the true allele size however, they are independent. That is,

p(z,ylI) = p(z{I)p(y|I) (5.

(1)
—
~—
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and,
p(z,ylmG) = p(z,ylu,p=v) = plzlu,p = v)p(ylp, p = v). (5.2)
A set of duplicate measurements analyzed by Berry support his lognormality as-
sumption. They also support the assumption of a normal distribution with standard

deviation proportional to the allele size (the latter assumption was detailed in Chapter

4), but the lognormality assumption is chosen to simplify calculations.

5.1.2 Estimating the Allele Distribution

To obtain an estimate for the likelihood ratio R one must first obtain an estimate for
the posterior distribution of the allele sizes. Berry approaches the problem as follows.

Let Z = (2,...,2,) be the allele measurements obtained at a specific locus taken
from a simple random sample of % individuals from an appropriate reference pop-
ulation (issues surrounding the choice of this reference population will be discussed
in Chapter 6). Under assumption (iv), log(z,) ~ N (g,, c?) for given py,..., sta. Let
i, ¢t = 1,...,n be independent and identically distributed (i.i.d.) random variables,
and let H(-|Z) denote the (posterior) conditional density of the population of actual
allele lengths given the sample of reference population measurements Z. An estimate
of H(-|Z) must be obtained. Berry suggests four possibilities using a smoothing ap-
proach with normal kernels. The first estimator attempts only to take into account
the effect of measurement error.

By assumption log(z,) ~ M(p,,c?), i = 1,...,n, and hence for each i a reasonable
estimate for y; is log(z,). The z; are measured with error, however, and hence it
would be inappropriate to use the empirical distribution of the log(z), i=1,...,n, as
an estimate of H(:|Z). Instead the contribution of each z, is taken to be a normal

distribution centered about log(z;) and these are averaged across all i, i=1,...,n.
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Define,
>~ NM(log(=)

1=1

This estimator however, does not adjust for the sampling variability. Certain

Hy(

zl*—‘

alleles may be underrepresented in the sample (or may not. be present at all) and this
could bias the likelihood ratio in favour of guilt.

As an attempt to compensate for the sampling variability Berry proposed the

following estimator,

H:(|2) =

]. n 3
N2) + mg/\/'(log(n)m)

where U(Ny, N2) is a uniform density on [V, No]. This range is chosen so as to include
all possible values of log(z,). Clearly Hz(-|Z) is the same type of estimator as If,(-Z)
except that it includes a uniform base to ensure that the rare allele frequencies will
not be underestimated. The value of n* may be chosen according to what it is felt
the minimum allele frequency should be.

An alternative method for dealing with sampling variability proposed by Berry is

of the following form,
Ai(12) = %Z.N(log(:,),(bc)z), where b > 1.
=1

This estimator is of the same form as H;(-|Z) with the smoothing parameter b in-
creased. This allocates more probability to the lower frequency alleles (the “tails”
of the allele distribution). Since Hs(:|Z) reduces to H,(-|Z) when b=1, setting b=1
accounts for measurement error and setting b > 1 accounts for sampling variability
as well. Berry suggests values of b in the range 1 < b < 5.

As a fourth possibility, Berry combines all the above estimators,

B(-|2) =

n 1 n )
n+n_U(NhN2) + n—;—;gN(log(z,),(bc) ).
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The use of smoothers in this densily cstimation process has been criticized on
the grounds that it is nol conservative. Although the probability of rare alleles is
heing hoosted to adjust. for sampling ertor, this is done at the expense of the higher
probability alleles. That. is, the probahility estimates of the more common alleles
are lower as a resnlt of the smoothing. Since it is more likely that the profile of the
snspect. will contain these more common alleles, the procedure puls the delence at a
disadvanlage in this sense. An alternative smoothing technique, suggested to Berry
by FEvell (see Beny, 1991), involves smoothing that increases Lthe Jower fiequency
estimates hut, does not. deciease any of the higher frequencies. This of comse wonld
result in a total density greater than one, but wonld definitely be conservative.

A suggestion made by Chernofl in his comments on the Berry (1991) arlicle, is
to estimate the probability of alleles which do not appear in Lthe sample using the
method of Robbins (1968). According to Robbins the tolal probability which should
be allocated to unobserved events (alleles in Lhis case) in an expetiment with n possible
outcomes may he estimated by the number of singleton outcomes in an expetiment,
with n+ 1 tiials. That is, the number of times there is only one observed event. in
a category (in the forensic selting a category 1eflets to a bin, and an event 1eflers to
observing an allele measurement in that bin). It can be shown that this estimator is
unhiased. FEvelt suggests that this estimator could be used to determine the size of

uniform base to use in Beny's IAIJ(-|Z).

5.1.3 Estimating the Likelihood Ratio

The chosen estimator of 11(-]7) may now be used Lo estimate the likelihood 1atio 12 in
the following way. (Since all probabilitics are calculated conditional on the additional

evidence I, this will be suppressed from the calenlations.)

If the assumption is made thal the event G is independent of the reference sample
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Z (a reasonable assumption), the likelihood ratio R can be rewritten as follows,

R = r(XNIG) . p(z.Z]G)

p(X|I) T plry.ZH)
— p=wZG) _ p(l) — Pzw2.G) p(Ne(?)
r()  p(rwZ0) G (Z) p(zv.Z,1)
—_ plzw,2.G) _p(1,2) — MQ@
rG72)  plrw.2.0) rl2.wl1,2)
— 2!r.y|u=u,Z!
- plrl2) -

Consider the numerator first,

plryly=p,72) = /p(.r,yh/,/t,u = p)dH(p|7)

which by 5.2 becomes,

p(ayly = p,2) = /I’(-"’l"» v = jOplylv, v = pydl (1 7)

= [l = mptali, i = ) ()2)

=/mWMMﬂ%ﬂiﬂmmmum D 411w

= [ = zernll=l(og(x) — 17 + (log(y) ~ )11 (1l 2)

Ty ‘77r(2

where fiogr)(-) and  flogp)(:) denote the common marginal densities of log(.r) and
log(y), letting & and y icfer to both the random variables and the observations for

simplicity. Similarly, using 5.1 the denominator may he written as,
1 1 ,
px,ylZ) = px|Z)p(u|Z) = {/;P(-Tlﬂ)d"(ulz)]{/ ;1»(1/|v)flll(vll)}-

Substituting an estimator for //(-|7) into the expressions for numerator and de-
nominator yiclds an estimator of R. Berry demonstrates that when f15(-]7) is <hosen

as the estimator of the allele distribution then R reduces to a relatively simple form

(see Berry, 1991, p.183).




5.1.4 Extension to Two Independent Measurements at a
Single Locus

Let z; and z; be the measurements of two alleles at a particular locus in the suspect
and similarly let y; and y, be the measurements for the specimen. By assumption
(iii) two measurements performed on the same person are independent (e.g. z; and
z; independent). Realistically this will not often be the case, and factors which affect
the measurement error of one allele will affect the other allele at that same locus.
That is, the measurement errors will tend to be positively correlated. For example,
if one allele size is overestimated this may indicate that all the measurements are
being overestimated by the same amount (a phenomenon known as band shifting).
In section 5.2 the case of two correlated measurements will be considered.

During the DNA analysis it is not possible to distinguish between the maternal
and paternal chromosomes and hence even if the suspect is guilty it is not known
whether z; and 3, are two measurements of the same allele or whether z, actually
belongs with y,. Let R,, denote the likelihood ratio given the data z, and y,. In this
case there are two possible pairings : z; with y; and z; with y,, or z; with y; and z;
with y;. Each of these pairings is equally likely and hence the overall likelihood ratio
(denote it R) for the locus is,

— %p(zl’ylle Z)p(x% y?lGa Z) + ‘;‘P(Q?l, y2|G7 Z)P(Jfg,y]IG, Z)
%p(xl»ylll’ Z)p($2,y2|1, Z)+ %p(zlayﬂlv Z)P((Bz,yllI,Z) .

However, in order to use the likelihood ratios previously defined (R,,,7 = 1,2,j =1,2)
Berry defines the overall likelihood ratio R as,

R = ';'RuRn + %ItIQRQI

1 p(x1,u1|G. 2)p(z2,42|G.2) 1 p(z1,1|G.2)p(z2,11|G.Z)

2 p(zr i |L,2)p(z2.4211,7) + 2 p(z1w2il . 2)p(z2,0 | 1,2)

If several single locus probes are used (as is usually the case), then if the mea-

surements taken at distinct loci are independent the likelihood ratios for each locus
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are simply calculated as above and are multiplied together.

5.1.5 Remarks

The Bayesian approach works quite naturally in the forensic setting, where errors in
measurement do occur, and Berry’s method has many advantages over that of match-
binning. It does rely heavily however on the assumption that for a given individual,
two measurements taken at the same locus are independent. This is not likely to he
the case and in fact studies have shown (e.g. Berry, Evett and Pinchin, 1992) that,
these measurements may be highly correlated. The next section describes a method

which attempts to take this correlation into account.

5.2 Taking Measurement Error Correlation Into
Account

Empirical studies indicate that there may nut be independence between measure-
ments of alleles at the same locus. In fact the measurement errors may be highly
correlated, in which case a new approach is needed. This method (Berry, Evett, and
Pinchin, 1992) attempts to take this correlation into account by estimating the joint,

distribution of two measurements taken at the same locus.

5.2.1 Assumptions

Once again consider only a single locus and suppose that,
Ty = Ay +eg

22 = A2 +€zz

are the two measurements taken for the suspect at that locus, and similarly that,

n = Bi+tey,
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y2 = Batey,
are the corresponding measurements for the specimen.
The following assumptions will be made.

(i) There is linkage equilibrium in the population.

(ii) The standard deviation of a single measurement error is directly proportional to

the allele size. That is, sd(ez,) = cA,, and sd(e,,) = ¢B; for i=1,2.

(iii) Measurement errors are independent between different individuals but are not
necessarily independent between two measurements taken at the same locus for
one individual. That is, (¢z,,¢z,) is assumed to be independent of (g,,,¢,,) but

corr(€z, ,€z,) = corr(ey, ,£y,) = € where ¢ is not necessarily zero.

(iv) The joint distribution of two measurement errors (within a locus) is bivariate

normal with zero mean. Equivalently,
( T ) ~ N(( Ha ),02( I Pﬂ12#2 ))
T2 H2 Pi1p2 K3
n ~ ./\/ ( 1751 , C2 V12 pl/lzl/'; ‘
Y2 \\ 2 pnv, vy

Assumptions (i) and (ii) were outlined in detail in Chapter 4 and the estimator of

Similarly,

the constant of proportionality for assumption (ii) is ¢ = .008. Berry et al. estimate
the measurement error correlation ¢ in assumption (iii) from a sample of 218 individ-
uals exhibiting double band patterns. For each individual, duplicate measurements
were made of each of the two bands. For a particular individual let z,; and z,; denote
the two measurements of one allele, and let z; and 3, denote the two measurements
of the other band. The differences z,; — ;3 and zo; — 92 reflect the size of the mea-

surement error. Now, for any two random variables v and w, the correlation between
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them ( corr(v.w) ) may be estimated by the slope of the least squares regression line
for the standardized variables. This is clear since, letting sd(-) denote the estimated

standard deviation,
(v - 0)(w — w)

sd(v)sd(w)

corr(v,w) =

-

while the slope () of the least squares regression line for the standardized variables

(w=a+ Bv) is given by,

B - E(sdi(lv) - sd’zv))(-’d}"w) - -’dl(bw)) —_ E((U — 6)(10 _ u‘}) = CT)F]'(U IU)
\/E(ﬁﬂ,—) _ $)2 sd(v)sd(w)

A scatterplot of the standardized differences,

\/‘2(3311 - 1?12) \/‘z(&'zx - Izz))

c(Tun +z12) | c(zn + L2

shows a large positive correlation which is estimated (by the slope of the least squares
regression line) as € = 0.904. This phenomenon of a large positive correlation be-
tween measurement errors is quite common in laboratory work. The plot is well
approximated by a bivariate normal distribution which supports assumption (iii).

An important point is that assuming that there is correlation between measure-
ment errors does not violate an assumption of HWE. The assumption of HWE merely
states that the true population allele frequencies are independent and makes no state-
ments about the measurement error. For this method the assumption of HWE is

omitted simply because it is not necessary.

5.2.2 Estimating the Likelihood Ratio

Let Z = {(z11,221), (212, 222), - - -, (21ny 220) } be a reference sample of fragment pairs
taken at random from the population. If individual ¢ is homozygous then 2z, =
29;. This is completely analogous to the reference sample in the approach of Berry

(of Section 5.1) except that since the two measurements for one individual are now
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correlated they must be considered in pairs. Also let E once again denote all evidence

other than the DNA evidence. The likelihood ratio is given by,

(5.3)

where the hypotheses of guilt and innocence are once again denoted by G and 1

= ()

denotes the fragment lengths obtained from the suspect, and

“ N
y <y2>

denotes the corresponding fragment lengths obtained from the specimen. For conve-

respectively, and where,

nience the additional evidence E is suppressed from the notation since it only influ-

ences the posterior likelihood through a multiplicative factor. Further let,

- () 7= ()

represent the corresponding mean vectors of £ and 7 respectively. It is important to

t

keep in mind that here ji and 7 refer to the true allele lengths, whereas in Section
5.1 they were the means of a lognormal distribution which merely reflected the true
allele lengths.

Let the joint density of r, and z, be denoted by f(Z|i) where f(-|-) is a bivariate

normal density. That is,

1

f(zl@) = M

exp—3(& ~ BT (D)7(& — )

2

where ¥ = ¢t M f.u12ﬂ % ). Similarly let the joint density of y; and y; be
Eppr  p3

denoted f(7|P).
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Consider first the numerator of R, (see equation 5.3) where the likelihood 1s being
evaluated under the hypothesis of guilt. Under this hypothesis & = 7. Since it is
assumed that measurement errors are independent between individunals, conditional
on the true allele sizes j1, the measurements & and j are independent (see Section
5.1.1). Using the independence of the reference sample and the allele measurements

Z and y the numerator of R becomes,

p(%,7|G, Z)

/ / p(&, jlit, 7, G, Z)dH (1, |G Z)
= [ [»(@la, G, 2)p(ili G, Z)dH (GG, 7)

= [ [ FGIRf@IRdH G 2).
All that is required for evaluation of this expression 1s an estiinate of the allele fre-
quency distribution H(:|Z), which will be discussed in the next section. A similar
approach may be used to deal with the denominator of R which is evaluated under

the hypothesis of innocence. Under I, & and § are independent {see Section 5.1.1).
p(&,911,2) = p(E|l, Z)p(y|], %)
p(2|2)p(iZ)

= [ [p@la 2)d(512) [ [ plais, 2)di(312)

i

Using the LE assumption, the values of R obtained for the various loci in the profiles

may be multiplied together to obtain the overall likelihood ratio.

5.2.3 Estimating the Allele Distribution

The same methods are used as in Section 5.1, except that instead of smoothing with

univariate normal kernels, bivariate normal kernels are used. This yields an estimator

- n 2
A(¢12) = %2_:1 ((2:),<bc)’(z(;' ZO))
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where b is the smoothing parameter. As previously described, b=1 accounts for
measurement error while b > 1 adjusts for sampling variability as well. The correlation
between z;, and z, is taken to be zero although this is not usually the case. This
is done as sampling variability is by far the dominant reason for performing the
smoothing (the reference sample will by necessity be much smaller than desired).
The correlation between z;, and z;,, caused by measurement error. is insignificant in
comparison and is thus omitted to simplify calculations. A further attempt to adjust
for sampling variability is made by including the fragment lengths of the suspect in
the reference sample Z. This avoids the situation in which the fragment length of
the suspect falls in a region where there were no observed fragment lengths in the
reference sample. This estimator of the allele distribution may now be substituted

for H(:|Z) in the numerator and denominator of R.

5.2.4 Single Band Profiles

Up to this point all methods have assumed that if the suspect/specimen exhibits a
single band pattern then it is that of a true homozygote rather than a heterozygote
with one band which for some reason was not visible. The likelihood ratio estimation
procedure may be adjusted to take this phenomenon into account.

Suppose there is a situation in which the suspect has fragment length measure-
ments (z,,2) with z; < z, while the specimen has only one measurement y, which
is close to z;. Berry, Evett, and Pinchin (1992) give a complicated formula for cal-
culating the likelihood ratio R in this situation. It may be derived as follows. First,
the numerator of R is considered, which is evaluated under the hypothesis that the
suspect is guilty. That is, it is necessary to compute the likelihood that the specimen

actually had two bands (close to (z1,z2)), one of which did not appear. By the Law
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of Total Probability the numerator of I hecomes,

PG, 2) = [ [, oG, 2, idi G 2).

Using first the conditional independence under G of & and y given the true allele
lengths ji, and second the assumption that the allele measurements arve independent

of the reference set (Z) and the hypothesis of guilt, yields,

p(&ylG,2) = []p(|GZ, f)plylC, Z, f)dl (i) Z) (5.4)
, P (alipyli)di (7 2), '

where f(-]-) vefers specifically to a normal density function and p(-|-) refers simply to

the probability of an event. Let,

m(51) = the probability of observing a double band pattern when alleles of lengths
} y g l B

{1 and yiy are measured.

Since y is close to a4 it will be assumed that y is a measurement of an allele of length

2. With this notation 5.4 becomes,

pliylG2) = [ [ GO = mGiatula)d (712),

where g(ylp,) is a wnivariate normal density with parameters gy and p5. This
requires estimation of m(ji) which may prove a diflicult task. As an alternative
approach, consider the following. It is known that, under G, the other “missing”

band must be approximately of length a; since the simgle measurement y was close

to ay. Let,

m = the probability that the smaller band (of length approximately @y) would have

shown given G.

In the extreme, if m=1 then the suspect could not have committed the erime sinee if

he/she had then another band would have been visible, which it was not. “Fhe quantity
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m may be used as an estimate of m(jr). This estimate will be very accurate for true
allele lengths gy that are similar to @y, which are the lengths of most importance. For
those lengths which are not close to ay, f(#|jt) will be small, reducing the adverse

effects of poorly estimating m(ji). The numerator of the likelihood becomes,

P16, 2) = (1=m) [ [ Jliglylie)din(@2).

Although Berry, FEvett, and Pinchin do not explicitly state that they are using
the quantity mi as an estimate of some more complicated function which depends on
the true allele lengths (an(f1)), it is suspected that they also followed the above line
of reasoning.

Now consider the denominator of R, computed under the hypothesis of innocence.

gl 2) = pEL Do)l 2)
= i1, 2) [ [ f@lidiz). (5.5)

The double integral may be evaluated using Lhe estimated allele density H (j1]72) and
with f(-]-) as a normal density function. It remains to estimate p(y|/, 7). Under the
hypothesis of innocence the observed fragment lengths could have arisen from two

different scenarios. Fither,

(a) the specimen is measurably homozygous (i.e. has fragments which are so close

$0 as to be unresolvable by current techniques), or,
(b) the specimen is heterozygous with a second band which did not appear.
Define the following events.
A = the event that the two bands are measurably homozygous,

B = the event that a band lighter than y appears in the profile.



In terms of the events A and B there are three disjoint possibilities that explain the
occurrence of a single measurement y. Letting A° denote the complement of event A,

these three possibilities may be written as, 4B, ABE, and AB. Let,
m* = p(B|I,Z), and
h = p(All, 2).
Using this note?t,ion and the fact that A°B°U AB U AB = A“B°U A one obtains,
pll,Z2) = plll, Z, AB)Wp(ABYN, Z) + p(yl 1, Z, A)p(A|1, Z)
= plyll, Z, AB (AN Z)p(BN, Z) + pyl L, 2, p(All, Z)
= (L=m™)(1=M)pyll, Z, A°B) + hp(yll, Z, A). (5.6)
Now,
Pl Z,4°8°) = [ [ 0ol 2, A1, (o, gDl )11, 2, AC15° )l
= / / MU 2B ) 2, A1 Yl
| R N O T
= [ [ ool 2ol 2, 4 B+
[ [, poll ZopCld, 2, 45w

= [ o012, )0plpl1, Z)dp. (5.7)
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Also,
pll, Z, A)
= plyl 1, Z,lv —pl <€)

= [ [oul 1, 2,00, = 0l < ()| 1w =l < e, 1, Z)dvily

p((v ) \v — pl < ell, Z)p1, Z)

= '4 - 3 [
//l’(!]l 1, Z,(vy0), [v = p| <€) v - il < & 1. Z)p(1, 2) dvdp

- ' . P, M, Z)

~ //p(!/ll,A,(/:,/t))p“u_ <el I’Z)([V(l[t

- , (p(pll,2))’

- /p(y“’4’”)fl)((/t,/t)ll»Z)d/t

_ . (r(rell,2))? .

= [tz gt (58)
Now substituting 5.7 and 5.8 into 5.6 yields,

Pl 2) = (1 =o)1 = b [ L Zowplul, Z)dp +
L (pull, Z))? (
i ol (59)

Substitution of 5.9 into 5.5 yiclds Berry’s result for the denominator of R.

5.2.5 Remarks

Although many properties of the DNA profiling data are incorporated into this model,
a phenomenon known as flanking region polymorphism has not been addressed. This

is considered in the following section.

5.3 Considering Flanking Region Polymorphism

In rveality, when the DNA is cut with a restriction enzyme, the resulting fragments

have not only an integral number of repeat units, but also a stretch of DNA on
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either side of these repeats which is called the flanking region. For certain restriction
enzymes only one flanking region size is possible. For others. however, there are
many possible flanking region sizes which may result. Devlin, Risch, and Roeder
(1991, 1992) incorporate this flanking region polymorphism into their model. They
take a mixture model approach, and the EM algorithm for mixtures is used to obtain

maximum likelihood estimates of the model parameters.

5.3.1 Assumptions

Suppose that z; = a; + &,, and z; = a3 + £,, are the two measurements obtained
from an individual at a particular locus, where a, represents the true allele length.

The following assumptions are made,

(i) Random Mating : It is again assumed that individuals mate at random with
respect to their genotypes and hence that there is independence between alleles

within loci. For example, a, is independent of a,.

(i1) It is assumed that there is independence across loci which implies linkage equi-

librium (LE).

(iii) Measurement errors are assumed to be correlated within a locus but uncorrelated
between different loct and different individuals. Let ¢,, and ¢,, have correlation
coefficient £. One procedure for estimating £ was outlined in Section 5.2.1. An

alternative estimation technique may be found in Devlin, Risch, and Roeder,

1992.

(iv) The individual measurement errors are normally distributed with mean zero and

standard deviation proportional to the size of the allele. That is,
Ea. NN(O, Ca").
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From repeated measurements of the same allele Devlin, Risch, and Roeder es-

timate ¢ to be 5x1073.

(v) The joint distribution of two measurement errors (for an individual at a single
locus) is bivariate normal. Let g¢,,(z1, z2) denote the joint density of the pair
(z),z2) given that zr; and z, are measurements of alleles of size A, and A;
respectively. It follows that g,,(z),z,) is a bivariate normal density with mean
vector (A,, A,)T and covariance matrix,

o[ AT A,
"\ eaA, Al

(vi) It is assumed to be impossible to obtain z; > z, if A; < A;. If A; and A, are
very similar then the correlation between z; and z, will be close to one hence
the measurements will be very tightly clustered with z; < z3 at virtually all
times. Conversely, if Ay and A, are not very similar then observing z, > z,
is very unlikely and is not allotted any significant amount of probability in the

joint normal distribution. Henceforth z; < z, will imply A, < A,.

5.3.2 Model

Let & = (1, ;) denote two measurements obtained from an individual at a particular
locus. In the multiple flanking region scenario it is possible that two alleles with
different numbers of repeats may still have the same lenff;’. If there are b possible
numbers of repeats and L possible flanking region sizes then there are at most bL
possible allelic types. Let the unique allele lengths be denoted by aqy, . ..,a(4), where
A < bL. If coalescence is ignored for the moment then the probability density of a
pair of measurements is approximately given by,

M pig.(z Ty = I
[z, 22) = { =1Pig(3) (5.10)

Eﬁ?12£1+12p.'p1g"(a:1,x2) I < T2
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This is only an approximation because the extremely rare case when A, = Ay but
T, # z7 is ignored. This density may easily be modified to take the possibility of
coalescence into account. The modified probability density for a single band pattern

may be written as,
o0
f*(z,2) = ZL,plalz) +‘22.<1pr1/0 gip{z —tz+ )6t 2)dt &y ==z,

where §(t, z) denotes the probability that two measurements of size = + ¢ and = — ¢
would coalesce. The first summation in f*(z, =) is the probability that the mea-
surement actually represents a true homozygote. The second summation epresents
the probability that there were actually two distinct measurements which coalesced.,
Hence the probability density for a pair of measurements taking coalescence into

account may be very accurately approximated by,

Ef;,p?g.-(z) + 25,00, [0 9i (2 =tz + )68, 2)dt Ty =Ly =2

M—-1vM p
23‘:1 S;=J+12P-PJ9:J(21,$2) Ty << Iy

f(zlaxZ) -] {
(5.11)

5.3.3 Estimating the Likelihood Ratio

Let H; denote the null hypothesis that the suspect is innocent, and let H¢ denote the
alternative hypothesis that the suspect is guilty. Let the likelihood ratio be denoted

R,
L(z,j|Hg)

R=————
L(z,§|H)

where # = (z1, ;) and § = (y1,y2) are the measurements obtained from the suspect
and specimen respectively. Further let p, denote the probability of observing an allele

of length a(;) in the population. Consider the numerator first.

L(z, | Hr) = f(2) f(3), (5.12)
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where f(-) is defined as in 5.11. If coalescence is ignored, use f(-) as defined in 5.10.
Now consider the denominator of R. If coalescence is ignored. this may be written
as,
L(3, | Hg) = { Sh.pia(z1)g(n) Ty =% Y1 =12 (5.13)
Yi<:2mp 96 (1, T2)g9,; (Y1, y2)  otherwise
where g;(-) denotes the density function for a M (a;,0?) distribution. This likelihood
may be casily modified to account for coalescence. An important feature to note is
that if either =, # 2 or y; # ys then, under Hg, it is known that the suspect/specimen
is heterozygous (since it is assumed to be impossible for a true homozygote to exhibit
a double band pattern). Thus, 5.13 becomes,
L(z,§|Hg) =

[ T PPg(=0)9.(z2)+
2 205 5 91 (21 — 2+ 2)6(E, zy)di- Ty =22=2,, Y1 == 22
107 9u(z2 =t 22 + 1)6(2, zp)dt

i 294 (T1, T2) 5 Gig(22 — 8, 22 +8)6(2, 22)dt Ty # Ty Y1=y2 =2

T 2005950, ¥2) o gis(1 =t 21 +1)6(, 21)dt Ty =125 =2, 1 F 2

| Z.q 2”!]’]9:](331’$2)ng(yhy2) Ty # T2, N # Y2
Given an estimate of the measurement error correlation £ (see Section 5.2.1),
it remains only to estimate the allele distribution (i.e. to obtain estimates p; for

j=1,...,A) in order to estimate R.

5.3.4 Estimating the Allele Distribution

Suppose that in the reference set (of allele measurements for n randomly chosen
individuals at a particular locus), n* double band patterns were observed, and let
them be denoted by Z, = (z,,,z,,), j =1,...,n". Under the assunption of random

mating these 2n" measurements are all independent. In addition, suppose that the
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reference sample contains (n — n") single band patterns, and let them be indexed by
J=n"+1,...,n That is, the single band measurements in the reference sample
may be written as Zn.iq,...,3n, where 3, = (z;,5)s, 2 =n~+1,. ,n. Let N =
(£1y. -+ EneyZneg1y- .., n) denote the entire reference sample of measurements. In
the multiple flanking region case different alleles may have the same length, whereas
in the single flanking region case, alleles may be uniquely indexed by the number of

repeats. The two cases will thus be considered separately.

Additional Assumption

The errors for two measurements taken at a single locus will be assumed to be uncor-
related. This greatly simplifies the calculations for this section and Devlin, Risch, and
Roeder feel that it will not affect the results in a significant manner. This assumption
is not made for the other parts of the analysis, only for the estimation of the allele

distribution.

The Model for One Flanking Region

Suppose that cutting the DNA (at a particular locus) with a particular enzyme results

in only one possible flanking region size, denoted by u. Let,
ar =u+rp

where a, is the length of the allele with r repeats, each repeat of length p, and u is the
single flanking region size. Unless coalescence has occurred, the observed measure-
ment of an allele of length a, is u+rp+¢ where ¢ is approximately normally distributed

with mean zero and standard deviation 0,=(5.75x10"%)a,. Let g,(-) denote a. normal

2

density function with mean a, and variance o2.
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Let R denote the random variable for the number of repeats and let =, denote

the relative frequency of an allele of length e,. That is,
=p(R"=r), r=1,...,b

Since only one flanking region size is possible, the different values of r index all the

different allele sizes. That is,
pl‘ = 7rl, z = 1,...,A= b,

This will not hold true in the multiple flanking region case.
Letting ¢ = u + rp + ¢, the probabilty density function of a single measurement
z may be written as,
flalr,u) = T0_p(R* =r)p(X = zlr,u, B =)
= 2?:17‘%91-(37)-
Using the additional assumption that errors for a pair of measurements at a locus are
independent, then for a given double band pair (z,,,z,,) = (u+ri1p+e1, u+r2p+e2),

the joint probability density of (z,,,z,,) may be written as,

f(mJnxleﬁ'v u) = f(zh[ﬁ"u)f(wnlﬁ" u)

where T denotes the vector of allele relative frequencies, (71,..., 7).

The probability of coalescence is modelled as a function of average measurement
length (z = i(x,, + z,,)) and the difference between the two measurements (¢t =
3z, — x,]). This estimation procedure is outlined in this section. Letting 6(t, z)
denote the conditional probability of coalescence given t and z, and letting C denote
the event of such coalescence, the likelihood of the data if a double band pattern
(z,,,z,,) is observed is,

L(z,,T,,|%u) = f(x,,2;,|%,u,C)p(C) + f(z,,, 7,7, u,C)p(C)
= f(z, |7, u) f (2|7, u)[l = 8(t;, )],

54



where C' denotes the complement of C. Simularly, the likelihood for a single band
measurement z, is,
L(zim,u) = [5° £z — 7, u)f(z, + U7, u)é(t, =,)dt
~ IM f(z = tel® u) f(z + telF, w)8(t, ) A
where ti,...,ta is an evenly spaced grid, and Ay = tg4q — ti. Hence the likelihood
of the entire set of data may be written,

L(datal#,u) ~ ?ll( (|7, w))(f (17, w))(1 — 8(txs 2,)]

— |, u) F(2, + el Fy w)o(th, 2)) A, (5.14)

J—n *+1 “‘kalf(
With prior estimates of b and 6(¢,z) the quantities « and # may be estimated by

using the EM algorithm (see Appendix B for details).

The Model for Multiple Flanking Regions

Suppose that now an enzyme is used to cut the DNA which results in L different

flanking region sizes. The allele lengths may be written as,
a=w+rp r=1,...,b, [=1,...,1

where v; is the lth flanking region size. Let 4 = (uy,...,uL) denote the vector of
ordered flanking region sizes. The observed measurement of a,; may be written as
r = w + rp+ ¢, where ¢ ~ N(0,0%) with &y =(5.75x107%)a.;. Let gu(-) denote
a normal density with mean a,; and variance o?. Let v, denote the allele relative
frequency of an allele of size a,; and let ¢; denote the proportion of alleles with flanking
region size u;. Again let 7, denote the proportion of alleles with r repeats. Clearly,
b
= T
r=1

and,

L
Tr = z ri-
{=1
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Recall that in the multiple flanking region case the probabilities r,, » =1,...,b
are not completely analogous to the p,’s, ¢ = 1,..., A as they are in the single flanking

region case. Instead,

P = Z')’rl,

where the summation is over all » and [ such that a,; = a(,).
Analogous to the single flanking region case, the probability density of a fragment

measurement z = u; + rp + ¢ may he written as,

. L b
flali, 7, 8) = D> gz — wi — rp).

=1 r=1

As a simplifying assumption it will be assumed that the variation in flanking

region size and number of repeats are independent. That is,
Y = ¢, Y I=1,...,L, r=1,...,b
The probability density of a single fragment may then be written as,

X L b
f('vlﬁ'ad” ) = Z & Zﬂ'rgrl(m - U — 7'/))'
=1

r=1

The likelihood of the data may be written exactly as in 5.14 but with f(-|#, u) replaced
by f(-|%,&,%). That is,

L(datal®, §,1) =~ TI75,(f(z,|#,,2))(f (5|7, &, @)L — 6t 2,)]-

+ Mene s SHLF (2 = tal7, 8, 8) f(2; + tel?, 6, 5)8(tk, 2,) Ak
(5.15)

If prior estimates of L, b, and é(¢,z) are obtained (discussed in the following

sections) then the EM algorithm may again be used to obtain estimates of #, @, and

-~

¢ (see Appendix B for details).

Estimating the Number of Flanking Regions (L)

The number of possible flanking regions L may be estimated by cutting a sample

of DNA fragments with two different enzymes and comparing the results (Devlin,
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Risch, and Roeder, 1991). Let £ denote an enzyme which results in L different
flanking region sizes at a particular locus, I, unknown. Let F, denote an enzyme
which results in only one flanking region size. Further let (N, Ny p) and (X, N22)
denote the observed fragment lengths at a particular locus using enzymes /< and 1,

respectively. That is,
(X, Xiz) = (u+riptenw+rp + )

(X1, X22) = (wH rip+n,w +rap + 1)

Taking diiferences yields,
L ’ =
Xy— Xy = w-wte -y

where this difference is normally distributed with mean iy — w and variance n(‘“”,”,) i
a(zw“m). For each individual in the sample these differences are computed, and the

result should yield L different clusters, since the effects of 1y and r, have been removed

Estimating the Number of Possible Alleles (b)

As an estimate of the nmimberof possible allele sizes, Devhing Risch, and Roeder (1991)
suggest,,

= (L -5)
!

where L and S ave the lengths of the longest and shortest observed fragments tespec-

tively, and pis the length of the repeat.

Estimating the Coalescence Probability

In order to estimate the probability of coalescence for two allele measurements r and
y, Devlin, Risch, and Roeder (1990) model it as a function of the average distance

(7) between the two measurements, 7 = 1‘—;”1 For any pair of measwements ¢, and
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y, the probability of coalescence is reflected by (1 — %;—) where O, and H, are the
observed and expected number of heterozygotes for the interval containing 7. Let ¢,
denote the midpoint of this interval. Devlin. Risch, and Roeder found that a plot
of (1 — %j) versus ¢, for various pairs , and y, was well approximated by a logistic
model. For the exact model see Devlin, Risch, and Roeder (1990). The fitted model
represents the estimated probabilities of coalescence (§(7. z)) for various values of 7.

This procedure does not take into account the fact that the probability of coales-
cence depends on the mean fragment pair size, z = 5—;5’1 Larger fragments will be
more likely to coalesce than shorter fragments since they do not travel as far in the
gel and hence do not have as much time to separate properly. Although they claim
that this dependence on = will have little impact on the results, Devlin, Risch, and

Roeder (1990) suggest a method of including it in the model. assuming there is a

linear relationship between = and the probability of coalescence.

Identifiability of the Model

Let H = Z;‘:, p,F,(0) denote any finite mixture. For known k, H is identifiable if
and only if the ﬂ(é)’s are distinct for j = 1,...,k. If the model is not identifiable
then different values of § may result in the same value for H.

Consider the probability density function of an allele measurement = given by,

L b
f(rlu.7,0) = Z Z'legrl(x —w = rp).
I=1r=l
If either L or b is unknown, the model lacks identifiability. Procedures for estimating
these quantities were outlined earlier in this section.
In addition, in the multiple flanking region case, there may be overlap in the allele

distributions in which case there exist pairs a,;, = u;, + 710 and a,,, = wi, +r2p such

that a,,i, = a,,, but ry # ro, Iy # 5. Inthis case g, 1, (z—ut, —119) = grot,(T—1,—12p)
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and the model is not identifiable. Two special cases exist in which the overlap in
the allele distributions (and resulting lack of identifiability) may be ignored. These

situations may be described as follows.

(i) If the amount of overlap between the allele distributions 1s small, Devlin, Risch,
and Roeder recommend proceeding as though there were actually no overlap.
Measurements of length a,,;, = a,,;, would contribute to the estimates of both
Yryty and “r,,. This is effectively “double counting” these measurements but it
is impossible to tell whether they are measurements of an allele with ry repeats

and a flanking region of length u,, or an allele with r; repeats and a flanking

region of length u,.

(ii) If for one of the overlapping distributions ¢; is small, then Devlin, Risch, and
Roeder recommend ignoring the rare allele distribution, since it will result in
very few observations. For example. if as before a,,;, = a,,;, and &, is small,
then all observations of length a,,;, {= a.,;,) will contribute to the estimate of

Yralay With vy, taken to be zero.

Furthermore, there is a special case in which although the allele distiibutions
overlap, the model is still identifiable (for known L and b4). Let I/ and R denote the
random variables for flanking region size and number of repeats respectively. If U and
R are independent (i.e. v,; = m.¢;) then the model is identifiable even if the allele
distributions overlap. With this assumption the probability density of a measurement,
r may be written as,

flali,®,8) = Ty Liai tignlz — w —rp)
= T A Teai Tegei(T —wi — Tp).

The density f(z|a,#, JJ) is still a mixture, only now the densities being mixed are,

b
F, = Zw,grl(z—u;—rp) forl=1,...,L.

r=1
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To see that the model is identifiable consider the following. Suppose that £, = F,
for some {, # ;. That is,

b b

Z ”r.(/rll(‘r i 7/‘) = Z ”r!lrlz(:l' - Uy - 1‘p).

r=1 r=1
This implies,

b
3w lge (7 — wy — vp) = gty (x — i, —7p)} =0,

r=i

with 7, >0 Vr=1,...,b llence v, = uy,, or equivalently {, = I3, a contradiction.
All members 1y, U= 1,.. ., L, must therelore be distinet, and the model is identifiable

(for known L and b).

Smoothed Estimators

If there are many allele frequencies to be estimated at a particular locus the variance
of these estimates may be high (due to sampling variability). Also, allele frequency
sstimates will tend to be negatively correlated with neighbouring estimates (due to
measurement error).  As an adjustment, Devlin, Risch, and Roeder (1992) suggest
smoothing the allele fiequency estimates with an empirical Bayes approach to shrink-
age estimation, to produce estimators with a redinced average mean squared error.
Il we assume that the 7', r = 1,...,b, have prior distribution N (v, 7?) and
that the conditional distribution of the estimate #,, given the true allele frequency
m is N(m,,0%), for » = 1,...,b, then an improved estimate of ., call it 77, may be
obtained by shrinking towards the mean of the posterior distribution (i.e. towards
the mean of the conditional distribution of 7, given the estimate #,). This yicelds an

estimator of the form,

i = (1-B)a, +Bv, forr=1,...,b (5.16)
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where,

ol

B = —— (5.17)

o? + 12
is known as the shrinkage factor. The Stein shrinkage factor given by,

(b-2s*
G-

r=|\

Bs = min|

is an estimate of 5.17. If » is unknown an empnical Bayes approach could be used
with v estimated by %Sf’:lfr,. This is not tecommended by Devling Risch, and Roeder
however since many of the allele probability estimates are near zero (usually vefledcting
truly small allele relative frequencies), and shrinking towards the average will obscure
this feature. The estimates should really be smoothed locally  That s, for cach
7., choose a separate estimate &, r = 1,...,b. Devim, Risch, and Roeder suggest
obtaining the #,.'s using nonparametric kernel regression, whereby #, 15 a weighied
average of 7, and neighbouring estimates ,, ¢ # 7, with weights decieasing as |1 - r|

increases. Let,

b
v, = Zl\',,fr,, for r=1,...,b

where K, denotes the weight allotted to #r,. Since the allele probabilities are being
estimated these s should sum to one, henee the standardized estimates are used
given by,

v, = ———, forr=1,...,b

A reasonable choice for i, is a normal density function with mean ip and varviance

a?, evaluated at rp. That is,

‘. ! 2
L}, = ————-—ma' exp ;)—(E(rp— 1p)°,

for v = 1,...,b, i = 1,...,b. This choice of K,, 1eflects the fact that the contii-

bution of neighbouting estimates should depend on the standard deviation of the
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measurement error, ,, ¢ = 1,...,b. That is, it should depend on how much false
measurements of alleles of length a, could have contributed to the estimate of the
relative frequency of alleles of length a,. Since kernel functions must sum to one, the

K:’s are standardized to obtain,

., _ K,
K, = ot

ru !
Ur:lj‘rt

forr=1,...,b.
With these choices the improved estimates of the form 5.16 become,
#r = (1 — B,)#, + B,v,,

where,
bs?
B, = min - 1
’ S e

and where s? is the bootstrap estimate of the variance of #,. Since the =,’s are

probabilities the improved estimates should be standardized and written as,

Devlin, Risch, and Roeder perform several simulations which indicate that the em-
pirical Bayes smoothing approach improves on the unadjusted maximum likelihood

estimates obtained from the EM algorithm procedure.

5.3.5 Remarks

Although this method incorporates flanking region polymorphism and obtains max-
imum likelihood estimates of the allele relative frequencies, additional assumptions
were required. It is not obvious which approach is the most appropriate. In order
to decide which method is best suited to a particular set of data it is necessary to
evaluate the goodness of fit of each of the models. The next section describes some

potential goodness of fit tests.
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5.4 Evaluating the Goodness of Fit of the Model

It is necessary to evaluate the goodness of fit of the estimated density function
f(¥)a, 7, d)) If flanking region polymorphism is not being incorporated, it and $ may
be removed fiom the density. A standard chi-square goodness of fit analysis would
proceed as follows. Partition the range of possible allele size measurements into K
nonoverlapping subintervals 'y, ... ', . Let Ox denote the number of observed mea-
surements fallipg in the interval Iy, and let ) denote the number of measurements
which would be expected to fall in interval g if f(i ]|, fr,J)) were the tiae density of
the measurements. Consider the test statistic,
A=1 A

In the usunal scenario, under the null hypothesis that f(i]a, 7, &) is the true density,
this test statistic would be asymptotically distributed as a chi-square random vaii-
able provided all parameters were estimated using the counts, Oy, ‘I'lns is usually
very difficult and here the parameters have been estimated from the original data.
Hence, as is well known, the asymptotic distribution of X? is not chi-square. 1wt
ther, coalescence has occurred in the measurements which may be unaccounted fo
in the density. The null distribution of the test statistic is thus unknown. However,
it may be estimated using Monte Cailo methods. A group of s data sets ol size n
are generated from _[(.i'lft,fr,g;)). For cach of the s data sels the n obscrvations are
paired at random and then coalesced according to the estimated coalescence density
8(L, ). For each data set, compute 1, i = 1,...,s. The empirical distribution of the
1,’s may now be used 1o estimate the distribution of the test statistic under the null
hypothesis. The p value for the goodness of fit test is the proportion of the T,’s which

are larger than the test statistic for the original data set. Devlin, Risch, and Roede

suggest that any value of s > 300 should be sufficient.
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As an additional method of judging the suitability of the model Devlin, Risch,
and Roeder (1991) discuss a way to estimate the variance of the allele probability
estimates in the single flanking region case (var(#,) for i = 1,...,b), using a para-
metric bootstrap. Generate B data sets of size n from f(-|%,%). The n observations
in each data set are paired at random and coalesced according to the estimated co-
alescence probability §(t,z). The data sets are generated from the density f(-|#,)
instead of from f(:|%, &, &) because, to simplify computations, the flanking region size
is assumed to be constant (i.e. a single flanking region size u). This is reasonable
since variation in the flanking region will not contribute significantly to the variance
of the allele probability estimates. For each of the B data sets, the vector of allele
probability estimates (IIJ = (#,1,-.-,%p), 7 =1,...,B) is obtained and the vector
of sample variances of these estimates is used to estimate var(#,) for 2 =1,...,b.

As an important alternative approach to the parametric bootstrap, Devlin, Risch,
and Roeder point out that an ordinary bootstrap resample could be performed on
the original set of paired data. This would be a significantly better approach if the
population is not in HWE, since the dependence between allele pairs would then be
automatically included in the calculations.

Although these goodness of fit techniques give an indication of how well the mod-
els approximate the distribution of the DNA profiling data, concerns regarding the
underlying assumptions of these models have not been addressed. Some of these

issues will be discussed in the following chapter.
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Chapter 6

Presence and Effects of
Population Substructure

6.1 The Hardy-Weinberg Equilibrium Assump-
tion

Deviations from HWE result primarily from population substructure. It is often
claimed that humans do in fact tend to form groups based on religion, cthnicity, or
geography, and to mate within those groups. They arc inadvertantly mating non-
randomly with respect to their genes. Allele frequencies within a gronp will tend to
be similar and follow HWLE expectations, but treating these distinct groups as one
larger population may invalidate the HWE assumption. It has been shown that there
are significant differences between the allele relative frequencies in the Caucasian,
Black, and Hispanic populations in the United States (see for example, Balazs et al.,
1989). In forensic calculations the reference population is often taken to be one of
these three subpopulations. It has been argued, however, that these groups are them-
selves composed of smaller subpopulations which differ with respect to their allele
frequencies.

Various statistical methods have been proposed to examine this issue, but no

consensus has been reached. Certain groups of population geneticists feel that the
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issue can be resolved by applying statistical goodness of fit tests of HWE expectations,
and tests for population substructure. Others feel that these tests lack the power to
detect Hardy-Weinberg disequilibrium when it does exist, and that the issue can only
be resolved by extensive sampling from all these smaller subpopulations. Clearly
sampling from a wide variety of subpopulations could virtually resolve the debate
but this is a very time consuming process and there are still issues of how far to go
with this sampling. As Caskey (1991) puts it, “Do we use a Neapolitan or Sicilian
data base on a fourth-generation Italian defendant?”. Statistical testing, at least in
the interim, provides valuable information in this regard.

In spite of extensive work in this area, no agreement has been reached about
whether there is a significant amount of population substructure, and if there is, how
much impact it actually has on genotype relative frequencies. For illustration some
statistical tests are presented in this section which have been applied with varying
results.

Hernandez and Weir (1989), propose a test based on disequilibrium coefficients
(D,;), which measure the departure of the relative frequency of heterozygotes from
the HWE expected frequency (2p,p,), where p; is the estimated relative frequency of
an allele of size a,. The test does not consider departures of homozygotes from HWE
expectations since. to be conservative, 2p, is usually used as the estimated probability
of a homozygote instead of p2. The HWE assumption is thus invoked only for double
band patterns, and departures from HWE expectations for homozygotes is not a

concern. The disequilibrium coefficients may be written as,

(=

-

Dy =pp,— 5Py ivji=1,...,b

where b is the number of possible alleles at the locus, and P,, is the relative frequency

of individuals heterozygous for alleles of size a, and a,. For two particular alleles with
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estimnated frequencies py and p, the hypotheses to be tested are,
H,: P =2pp, (ice. Dy =0)

versus,

Hy: P #2pmpr (i.e. Dyy £ 0).

The test stalistic is,

2
Dn

2 = ey
& var(Dy;)

2n D’f.z

Prpad(1 = PO = o) + Pube] 4+ (P Dy + P2D13)

where Dy and Dy are the disequilibrinm coeflicients based on py = | — py - p,.
Under the null hypothesis, this statistic has asymptotically a chi-square distiibution
with one degree of freedom.

This test was applied to the data sets of the I'BI (Weir, 1992, 1993), Cellimark
Diagnostics (Weir, 1992), and Lifecodes (Weir, 1992). For the FBI data the lixed bhin
approach was used to obtain the allele relative frequency estimates. The Lifecodes
and Cellmaik Diagnostic data were analyzed with the floating bin approach. EFach
data set consisted of measurements for a Caucasian, Black, and Hispanic subpopula
tion at a variety of loci. The FBI data set was further subdivided into ‘Texas, Florida,
and California subpopulations. lor cach of the loci, the null hypothesis of no dise-
quilibrium was rejected approximately 5% of the time at the 5% level of significance,
which is what one would expect if the null hypothesis were true.

A criticism of this test is that it is a local test (i.e. tests only one pain of alleles
al a time) with only one degree of freedowm, and as a result may have low power,
The noncentra! chi-square (\?) distribution may he used Lo examine the power of

this test. That is, the minimum level of disequilibrinm (DMV) that will be detected
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by the above (5 percent level) test with a certain probability may be worked out. If
there is disequilibrium then X2 will have, asymptotically, a noncentral y? distribution
with noncentrality parameter £(X?). For a specified significance level «, and desired

power 100(1 — 3)% it is necessary that,
. pH.(X? <) =8
where ¢ defines the critical region such that pg,(X? > ¢) < a. Equivalently,

pr.(X*(A) <c)=§ (6.1)

where A = £(X?) is the noncentrality parameter (which will depend on D,;). Solving
6.1 for D;, yields the minimum departure from HWE (Df‘]“N) which will be detected
with 100(1 — 3)% probability. This may be calculated for a specific application of the
test and if D,AJ’ IN is small it may be used to address concerns about lack of power.
Clearly for any specific significance level a, and level of disequilibrium D;,, the power

may be calculated by solving,
pH (X <c)=8

with respect to 3.
The above disequilibria test may also be modified to be a test for an overall
departure from HWE, by using the classical test statistic,

g Py = by

‘Y2 = Eb =1 A A
bip;

1=1

Under the null hypothesis that all the disequilibrium coefficients are zero, X? has a
x? distribution with ﬂb—;—ll degrees of freedom.
As an alternative to the above disequilibria tests, Hernandez and Weir (1989) also

suggest taking a likelihood ratio approach. The likelihood of the data is computed
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under the hypothesis of HWE and HWD (Hardy-Weinberg disequilibrium). Denote
these likelihoods by Lo and L; respectively. The test statistic is,

G = —an(y,

0

Under the null hypothesis of HWE, G? is approximately distributed as a \* random
variable with 5@’7'11 degrees of freedom. This approximation is avoided by Weir (1992)
in his analysis, and the empirical distribution of a set of bootstrapped data is used
instead. For the FBI data set with probability estimates done by the fixed bin ap-
proach, in the results of Weir (1992) approximately one quarter of the tests showed
significant departure from HWE.

Weir proposes and applies several other tests with varying results (see for exam-
ple, Weir, 1991). Other examples of studies of this issue include Baird and Balazs
(1986), Weir (1993), Devlin, Risch, and Roeder (1990), Cohen (1990), and Geisser and
Johnson (1993). The issue of population substructure and its effect on allele relative
frequencies for VNTR loci has clearly not been resolved as of yet. It may be possi-
ble, through these various statistical tests, to identify loci which consistently seem to
conform to HWE expectations, and restrict attention to those for DNA profiling.

If a departure from HWE frequency is detected all is not lost. Other methods
have been suggested which do not require the HWE assumption to be made (e.g. sce
Section 5.2). One frequently suggested approach is to compute the number of times,
say x, that a particular single locus genotype was observed in a sampleof S individuals.
The quantity mam[%, £] may then be used as an estimate of the frequency of that
genotype, rather than estimating the individual allele frequencies and multiplying.
Nichols and Balding (1991) also provide an interesting alternative approach in which
they attempt to find an upper bound for the effect of population substructure on the

probability of obtaining a match between two randomly chosen individuals.
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6.2 Linkage Equilibrium

The assumption of linkage equilibrium (LE) allows the multiplication of probabilities
of events at different loci. If, for example, there is natural selection in the population
which favours certain genotypic combinations over others, this assumption may be
invalid. Much investigation has been carried out in this area and two tests for linkage
disequilibrium (LD) with results are outlined in this section.

Risch and Devlin (1992) performed tests for LD on data obtained from the FBI and
from Lifecodes. The Lifecodes data was divided into Caucasian, Black, and Hispanic
subpopulations, with the Hispanic population further separated into Southeastern and
Southwestern Hispanics. Two by two tables were constructed for each pair of loci,
with the cells containing the observed number of matches and nonmatches for each
of the two loci. For example, consider two loci D1S7 and D2S44, for the Caucasian

subpopulation. The table constructed would be,

Match at D1S7 No Match at D1S7
Match at D2544 mn Mi2

No match at D2S44 ma ma2

The expected value for each cell (under the null hypothesis of LE) is given by,

E(my1) = (N)p(match at D2544, match at D1ST)
= (NN)p{(match at D2544)p(match at D1S7)
= (N)%(#matching at D2S44)+ (#matching at D1S7)
= & (#matching at D2544)(#matching at D1S7)
where N is the total number of comparisons. For each table, a chi-square goodness
of fit test statistic was calculated and its distribution (under the null hypothesis of

LE) was obtained by bootstrapping,.
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Since data were available on 5 loci for the FBI database, there were ('
tables constructed for each of the four subpopulations, hence a total of foirty tests
were performed. OfF these lorly tests only three gave significant vesults  For the

Lifecades data set there were thiee loci used resulting in {1 J=3 two by two tables
for each of the three subpopulations. Of these nine tests, no results were signiticant
(i.e. p>0.05 for all tests).

Weir (1991) examines data obtained from the I'BI database for which allele fie-
quencies were determined by the fixed bin approach. A likelihood ratio test was used
to test the null hypothess of LIS, Loci were analyzed in pairs and the likelihood ot the
observed set of two locus genotypes was calcnlated under the hypotheses of LIS (Ly)
and LD (L;). The test statistic used was ' = ~2(ln Ly — nlgy) with a bootstrapped

1

distribution for 1" used to tabulate p-values. Data wete available on six loa which

resulted in g =15 paired comparisons for each of the subpopulations. ‘The data
were separated into Caucasian, Black, and Hispanie populations. ‘These were urther
subdivided into Texas and Florida, as well as California in some cases. Tn total 141
tests were performed with approximately 60 significant results. Althongh this s ta
more than would be expected under the LIS assumption, Weir shows that af only
the double band patterns at cach locus are considered then no significant valnes are
obtained. This seems to suggest that the apparent departure from LIS s due to the
existence of psendo-homozygotes and not to a lack of independence hetween loci

Weir (1992) applies a disequilibrium test (Weir, 1979) to data obtained fiom Life-
codes and Cellmark Diagnostics. The database was divided into Caucasian and Black
subpopulations and allele frequencies were estimated by the floating bin approach,
Results were consistent with the hypothesis of linkage equilibriam.

Although the tests outhined here seem to strongly support the LE assumption,
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there are many (e.g. Cohen, 1990) who feel that there is evidence to the contrary.

Similar to the Hardy-Weinberg equilibrium debate the issue remains unresolved.




Chapter 7

Comparison of Approaches

The main advantage of the frequentist approach is the simplicity with which the
results of the analysis may be presented in court. The statistic P(M1Y) described
in Section 3.1 may be easily explained to the jury members wheteas in a Bayesian
analysis the relationship between prior and posterior odds must be carefully described.
In fact, a “weak” Bayesian format may be used (Ellman and Kaye, 1979) in which
the jury is not required to choose a specific prior distribution. Rather they are simply
provided with the value of the likelihood ratio R, along with perhaps a few illustrations
of how various choices of priors aflect the posterior odds. Evett (see discussion of
Berry, 1991) promotes a convention for which different values of the likelihood ratio
R correspond to different statements about the strength of the evidence against, the
suspect. For example, a particular range of (large) values of R would correspond to
“strong evidence”, while a range of smaller values of R may correspond to “weak
evidence” or even “no evidence”.

An advantage of the Bayesian methods presented is that they make a scrious at-
tempt to model the observed properties of the data (e.g. measurement error). The
match-binning approach merely tries to overcompensate for these properties in order
to produce conservative estimates. Numerical comparisons between the frequentist

and Bayesian methods are difficult since they differ fundamentally. In the frequentist

73



approach a formal match is declared (or the suspect is excluded ) and the probabil-
ity that such a match could have occurred hetween the specimen and a randomly
selected individual is estimated. In the Bayesian approach however, no formal match
is declared. Instead the relative weight of the DNA profile evidence in favour of G
or | is given. It is clearly not appropriate to compare these two quantities. Berry
(1991), however, describes a way in which the frequentist approach may b= put in a
Bayesian context as follows. Consider a single locus. Let “match” denote the event
that the observed alleles z and y (for the suspect and specimen respectively) meet
the matching criterion described in Section 4.3, and let “exclusion” denote the event
that this criterion was not met. The DNA information obtained from the frequentist

approach may be expressed as,
Xp = (match,y,zn,...,z5)
Xy = (exclusion,y,z,...,2,),

where =z,,...,z, is the reference sample of measurements for the locus. Further,
suppose that p(Xy|G) = 0 and p(Xy|G) =1 (i.e. no false exclusions). The quantity
p(Xar|T) is referred to as the match proportion and is the quantity calculated in the
frequentist approach to estimate the proportion of people who could have contributed
the incriminating sample. Examining the formula for the likelihood ratio R = %%,l%

it is clear that in the match binning context the DNA profile evidence X is either Xy

or Xiv. If an exclusion is declared, the likelihood ratio would thus be calculated as,

P(XN|G1E)

R = ~
p(Xw|I)

= 0,

while if a match is declared,

_p(Xwm|G) 1

R = = .
p(Xm|I) match proportion

74




Numerical comparisons bhetween the two methods are now possible. One important
feature is immediately obvious : if, for example, the DNA profiles are identical at all
but one locus. then the frequentist method will be forced to declare an exclusion and
the corresponding likelihood will be zero. On the other hand the Bavesian method
yields a likelihood ratio which may still be quite large depending on how many other
loci were examined. Since, as mentioned in Section 1.7, the one nonmatch could
have been due to DNA degradation or other technical considerations it does not seem
appropriate to have a likelihood ratio of zero. In this sense the Bayesian approach
would seem superior.

Comparisons amongst the various Bayesian methods are also not straightforward.
The method of Berry, Evett, and Pinchin (1992) (sece Section 5.2) would seem to be an
improvernent over that of Berry (1991) (see Section 5.1) since the reasonmg 1s similar
but the assumption of no correlation between measurements taken at a single locus
is no longer necessary. In addition. the controversial assurnption of HWF is also no
longer necessary. While Devlin, Risch, and Roeder (1991, 1992) extend their analysis
even further to include flanking region polymorphism (sce Section 5.3), they asswme
measurement errors are uncorrelated when estimating the allele distribution. Since it
is possible to choose a restriction enzyme which results in little or no flanking region
it may be preferable to use the approach of Berry, Evett and Pinchin. On the other
hand, the mixture model approach of Devlin, Risch, and Roeder is intuitively more
appealing than the continuous mixture model of Berry, Evett, and Pinchin. The trme
allele sizes do have a discrete distribution, and it is combined with the continuous
measurement error distribution. They also obtain the maximumlikelihood estimates
of the allele probabilities rather than using a simple average of normal kernels to
estimate the allele distribution. In addition, flanking region polymorphism results in

a larger number of possible alleles at a locus, and thus yields greater discriminatory
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power. The properties of the three Bayesian models are compared in Table 2.

The method chosen for analysis of the DN A profiling data should depend on which
assumptions one is willing to accept. In general this will depend on the specific prop-
erties of the loci chosen to construct the profiles. Although the method considering
flanking region polymorphism appears more appealing, some extra assumptions are

necessary which may make it less attractive from a population genetics point of view.
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Table 2 Comparison of Bayesian Methods
Method Presentation of Evidence Primary Assumptions Method of Estimating the
Allele Distribution
" Berry (1991) Likelihood Ratio () HWE Density averaging
(see Section 5 1) =R (i) LE (normal kernels)
=P(X | GYP(X | I) (iii) measurement errors are
where X is the DNA profile independent

evidence

(iv) measurements are
lognormally distributed

Berry, Evett, and Pinchin
(1992)

(see Section 5.2)

Likelihood Ratio
=R
=P(X | GYP(X | 1)
where X is the DNA profile

evidence

(i) LE
(ii) measurement errors are

correlated within a locus
{iii) joint distribution of two

measurement errors is
bivariate normal

Density averaging
(bivariate normal kernels)

Devlin, Risch, and Roeder
(1991, 1992)

(see Section 5 3)

Likelihood Ratio

=R

=P(X | GYP(X | 1)
where X is the DNA profile
evidence

(i) HWE

(i) LE

(i11) measurement €rrors are
correlated within a locus*

(1v) measurement errors are

normally distributed
(v) jomnt distribution of two
measurement errors is

bivariate normal

EM Algorithm
(with additional smoothing)

*For estimating the allele probatihity distnibution the measirement errors are assumed (o be uncorrelated within 2 locus

]
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Chapter 8

Concluding Remarks

Theoretically, the approaches presented here seem more than adequate for dealing
with the analysis of DNA profile data, and yet the debate is still raging over the
admissibility of this type of evidence in court. The real controversy to be resolved is
not one of “frequentist versus Bayesian” but whether either of these two approaches
can adequately quantify the DNA profile evidence.

Resolution of this issue will require further research in a number of areas. An ex-
tensive investigation of the specific population characteristics of a few loci commonly
used for DNA profiling would be highly beneficial. For example, an investigation of
whether significant population substructuring does exist at these loci. If the HWE
and LE assumptions could be established as reasonable for even these few loci then at
the very least a base profile could be constructed for which the previously described
methods would be reasonable. While ore would not obtain the vanishingly small
probabilities which are often reported for multiple locus profiles, a matching profile
of only a few loci is still important evidence. It has also been suggested (see Risch
and Devlin, 1992) that even if significant population substructuring does exist that it
does not have much of an impact on the validity of the results. Further application of
the proposed approaches to simulated datasets with significant substructuring could

find evidence to support this claim. This would alleviate fears about the consequences

7



of violating the assumptions.

It is also an appealing possibility that further statistical models could be de-
veloped that would require less controversial assumptions. These models could be
tested extensively on simulated datasets. To evaluate existing methods an empirical
comparison based on realistic, simulated data should be performed. In addition to
illustrating which method is superior, the study may also point towards shortcomings
which are common to all the methods.

In light of the fact that many other forms of evidence (e.g. motive, character
witnesses, etc.) are admissible which are not subject to the same sort of scientific
scrutiny, it would seem reasonable that the DN A cvidence, at, least in some form, be

admissible in court even while the statistical controversy remains unresolved.
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Appendix A

Statistical Appendix

While analysis of DNA fingerprinting data encompasses a wide variety of statistical
techniques, three concepts (Kullback-Leibler information, the EM algorithm, and

bootstrapping) are given closer scrutiny.

A.1 Kullback-Leibler (K-L) Information

Suppose X = (z1,...,2,) are independent and identically distributed observations
with density function f()~(,6’~), § unknown. The K-L information (Kullback and
Leibler, 1951), denoted K ¢(Ho, Hi) is a measure of the average discrepancy between
two hypothesized distributions fo(X,8) and f1(X,6). This quantity is used at the
design stage of an experiment to decide where to draw the data X. It may be written

as,

fo(X,8)
h(X,0)
where £ is the expected value calculated under the null hypothesis Ho. K 3(Ho, Hy)

I(\"(Ho, H]) = S[log(

)l

represents the mean information per observation in X for discriminating between Hy

and H, when Hj is true. Some properties of K-L information are as follows.
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Properties

(i) If K % (Ho, H1) is large then the discrepancy between fo(X,6) and f,(.X,8) is large
and the probability of a Type I error (i.e. falsely rejecting Hy) will be small.

That is, the data will be informative.

(ii) If K¢ (Ho, H,) is very small (close to zero) the test will have low power since
fo(X,6) and fi(X,8) will be virtually indistinguishable for data in this region.

That is, the data will be uninformative,

(iii) K g, (Ho, Hy) is additive for independent random vectors Xy, 0 = 1.....N. That

is,

K.\",,...,,\"N(HOsHl) = Etj\;ll(,\-'.(jiﬁafl})

where f*(X,, 8) is the density of X,, s =1,..., N.

In terms of DNA profile analysis it has been suggested (Lange, 1991) that the
K-L information may be used to decide between competing loci/restriction enzyme

combinations (see Section 3.1.2).

A.2 The Expectation-Maximization (EM) Algo-
rithm

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a method of performing
maximum likelihood estimation in the presence of missing data. Suppose it is nec-
essary to make inference about a parameter i) based on an nhserved data vector X
in which missing values are present. Since the likelihood function of the incomplete
data, L( X [4), is difficult to work with, it is expressed in terms of the likelihood func-

tion for a hypothetical complete set of data Y. For a given vector of observations X,
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there are many possible associated complete data vectors Y. It is assumed however
that once X is ohserved, Y is known to lie in some subspace y(f’) of the set of all

possible complete data vectors.

The algorithm

Let f(Y]1#) denote the density of the (hypothetical) complete data ¥, and let g(X|4)

denote the density of the incomplete observed data X.

9(Xl¥) = F(Ylw)dY

Y(X)

1), f(Y|1) is not unique and may be chosen for convenience.

For a given g(.X

The conditional density of ¥ given X is,

_ o) (A1)

Taking logarithms in A.l and rearranging yields,
(Yp) = UXIp) +UYIX, %)

where [(+]-) denotes the logarithm of the likelihood.
Now let 14 denote an arbitrary value of 3 and take expected values with respect

to k(Y|X,¢) to obtain,
Qlba) = UXIY) + H(l$a) (A-2)

where,

Q) = ENYI¥)IX,al

and,

H($la) = EUVIX, )X, pal.
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For any given i the function H (|t 4) can be shown to be maximized when ¢ = ¢,
(Rao, 1965). The value of ¥ for which @Q(¥|4) is maximized will be a function of
Pa, say M(a).

If ¥* denotes the maximum likelihood estimate of ¢ (i.e. " maximizes l(.('|z/v)
with respect to i), then the right hand side of A.2 will be maximized when ¥ =
1* (since this will maximize both H(i|:.) and [(X]$)). Hence Q(y]4p,) must be

maximized at ¥ = ¢*. This yields the fixed point equation,

P = M(YT). (A3)
Equation A.3 suggests an algorithm of the form @™+ = Af(4p(™) since il this

algorithm converges (discussed below) then assuming continuity of M (-),

lim ™) = Lim Af(5p™),

m-—-00 m—oo

That is, ¥* = M()*) where ™ = lim (™ and hence * is a solution of the fixed
point equation A.3.

Once an initial estimate $(?) of 1* is chosen, Q(%|1g) is computed (the expectation
step) and then maximized with respect to 1 to obtain %" (the maximization step).

This process is continued until hopefully some convergence criterion is met.

Convergence of the algorithm

A drawback of the algorithm is that it does not necessarily converge. In fact, when it
does converge it is not guaranteed to be at a global maximum. Successive iterations of
the algorithm will never reduce the likelihood however, so that it will never converge
to a local minimum. For a discussion of conditions for convergence to local and global

maxima see, for example, Wu (1983) or Coupal (1992).

It has been suggested (Devlin, Risch, and Roeder, 1991) that the EM algorithm

may be used to estimate the allele relative frequency distribution (see Appendix B).
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A.3 Bootstrapping

Consider a sample of observations X = (z,...,2,) from a distribution F(X,0),
and suppose that § is an estimator of the unknown parameter ¢ (possibly a vector).
Bootstrapping (Efron, 1982) provides a way to assess the sampling properties of é
when the distribution of § is unknown.

Suppose it is desired to estimate some property of 0, say g(9) (e.g. g(f) = var(é)).

Ideally, an estimation procedure based on simulation would be,
(i) draw B random samples of size n from F(X.8)
(ii) calculate d,, for each bootstrap sample,2=1,...,B

(iii) estimate g(f) based on the observed distribution of 01,....08 (eg. if 9(f) =

‘ var(0) then estimate g(0) by the sample variance of the é,’s).

Unfortunately, this procedure is inadequate due to the fact that F(X,0) is unknown.
Instead F(X,0) is replaced in the above steps by its nonparametric maximum likeli-
hood estimator £'(X), the empirical distribution function of the data. F(X) assigns
a probability of % to each observed data value. Each of the B bootstrap samples
drawn from F(X) is equivalent to n independent draws from zy,...,z, taken with
replacement. For each bootstrap sample, let the corresponding value of the estimator
(calculated in step (ii)) be denoted by éf, fori=1,...,B. Now g(é) may be esti-
matced based on the observed distribution of the é: s, t = 1,...,B. For example, if
g(0) = var(0) then estimate g(f) by the sample variance of the f*'s.

The bootstrap technique can also be performed parametrically. For example, if it
is suspected that the data are normally distributed then the same steps as above are

. followed except that the B bootstrap samples are drawn from a normal population
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with mean vector (/i) and covariance matrix (¥) estimated from the original set of

data (i.e. the sample mean and covariance).

Convergence

As B — oo, fl‘(é) would approach g(0) if F(\) were in fact the true disttibntionof the
data. Usually F(X) will estimate F(.Y,0) imperfectly, but it is the nonparametric
maximum likelihood estimator (mle) of F(X,0). Thus asymptotically §*(0) is the
nonparametric mle of g(é) In fact, Efron and Tibshirani (1986) illustiate how even

fairly small values of B (e.g. B < 100) give quite accurate results.

Confidence Intervals

The following are three of the methods discussed by Efron and Tibshirani (1986), for
constrncting 100(1 —20)% confidence intervals for 0 using bootstrapping techniques.
Let G(s) be the cumulative distribution function of the bootstiap cstimates 07,1 =
1,...,B.

(i) the standard method

A 100(1 - 2a)% cenfidence interval for 0 is given by,
[0 — 672, 46z,

where &* is the bootstrap estimate of the standard deviation of  and =) is the

100(1 — ) percentile point of the standard normal distribution.

(ii) the percentile method

A 100(1 - 2a)% confidence interval for 4 is given by,

(G~ Ya), G~ - a)],




where G~'(a) and G~'(1 — a) are the 100 and 100(1 — a) percentile points of (3(s)

respectively.

(iii1) the bias-corrected percentile method (BC method)

A 100(1 - 2a)% confidence interval for # is given by,
(G (@250 + =), G(0(2z0 + 1)),

where,

o(s) = [ h(i)dy,

-0

with h(7) a standard normal density function, and where,

2 = 0N(G(D)).

If G(s) is a normal distribution function then the standard and percentile methods
are exactly equivalent, otherwise they may give very different results. 'The percentile
intervals are transformation invariant while the standard intervals are not. That is,

if ¢ = g(0) then the corresponding percentile interval for ¢ will simply be,

[9(G~(a)), g(G7!(1 — a))).

Thus, provided f is approximately normally distributed, the percentile confidence
intervals for # will be transformation invariant.

If 0 is a biased estimator of 0 then the percentile intervals can be misleading.
The BC intervals attempt to compensate for this. Suppose for example that G(s) is
perfectly symmetric about §. Then G(f) = 0.5 and 2z = ®='{G(0)} = 0. In this
case the BC intervals will be equivalent to the percentile intervals. Otherwise the

BC intervals are adjusted accordingly to account for the skewness of the distribution

G(s).
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Several other methods were discussed by Efron (1982a), and a full evaluation and

comparison of numerous methods was given by Hall (1988).

In the course of modelling the DNA fingerprinting data, many parameters are
estimated and technical problems (e.g. coalescence) may have occurred. Goodness
of fit test statistics may thus not have their standard distributions. Bootstrapping
may be used to estimate the distribution of these test statistics either under the null
hypothesis or a specified alternative (as the empirical distribution of the B bootstrap

test statistics, see Section 5.4), or it may be used to construct confidence ‘ntervals.
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Appendix B

Estimating « and = Using the EM
Algorithm

The DNA profiling data lend themselvesto an “incomplete data” interpietation. I'he
information available is a set of allele measurements, but it is not known (becanse
of measurement crror) which true allele sizes correspond to these measmements. In
addition, for single band measurements, it is not known which measurements were
actually obtained, only that they coalesced to an intenmediate value, z,, = n" |
1,...,n. The EM algorithm provides maximum likelihood estimates of i and 7 by

using the likelihood function of a hypothetical “complete” set of data (V).

B.1 Single Flanking Region Case

Using the independence of measurements from different individuals, Lthe likelihood of

the incomplete data may be written as,

~

L(X|¥)

Q

ren S (@ [9) [ (2, W)[1 — 8(4,2)] -
reneat Zaea (25 = W) (2, + L[ W)b(L, 2,) A

;l;l():b.:l’rr!/;(-"n ))(2€=l7rrgr(3'12))[] - 6(¢, 2)] ’
n;lzn‘-f] Ei‘il(glr):l”ryr(z) + tk))(xb=|7rrgr(z) - t‘))(s(lk,ZJ)Ak

where ¥ = (u,#)7.
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The complete data may be written as,

{ ($]17x]27 n! ]2) for J —'l 7

(~]’I;1,1]r2’1‘/») forj:n‘+l,.. s 1

Y =

where I7 is an indicator variable equal to one if the measurement (z,, forj = 1,...,n"7,
z, for 5 = n" 4+ 1,...,n) corresponds to a true allele length a, = u + rp, and zero
otherwise. Similarly IJk is an indicator variable equal to one if the true measurements
which coalesced to z, were z, + ¢, and z, — t;. With this notation, the likelihood of

the complete data may be written as,

L(Y1$)
= H?;.x( l::][’”rgf (0, )] “ )IT? -1[7”91'(33:2 ) ”)[1 - 6(t, )] -

n e
IT)=ne 41 ML r-l[’rrgr('v 'Hk)] i ’) g:l[”r!]r( — )]z’ ) -

[8(tx, z,) A" i
Taking logarithms and letting /(Y]+)) denote the log likelihood of the complete
data yields,
(Y1)
= LT logman(e) + 1 log mo(ra) + ol = 80,2} +

ot Z,\, by {IE log mege(z; + t) + TET7, log mrge(z; — ti) +
I]" log[&(tk, z, 1A}

Since the quantities log[l — &(¢,2)] and I} log[§(tx, =,)As] do not contain any of
the relevant parameters (i.e. u or #) they will disappear during the maximization
process and will not affect the maximum likelihood results. For simplicity they will
henceforth be suppressed from the notation.

Taking the expected value of the log likelihood conditional on the incomplete data

X and current parameter estimates (™) yields,
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Q1 ™)

where,

These expected values may be evaluated as follows. For ) = 1,...,n*,

n*

> ZZ{S IfI;l Y™, 2 ) log Trge (2, + ) +

J=n*+1k=1 r=1
E(IFL1Wt™, z,) log mrg: (=, + ti))

n* b

S SWL (™) log Trge (25, ) + WL (9™ log 7,0, (2),) ) +

1=1r=l
b

n M
S Y W@ ™) log mege(z; + t) +

=n*+lk=1r=

VIEW™ ) log 1,9, (2, + 1)}

—~—t

I/V;;(z/)(m)) = S(I;,ng.ﬂ/)(m)), for j=1,...,n
W;:k(w(m)) = g(I;.IﬂzJa’p(m)) for j=n"+1,....n

Wy = & 1™, z,,)

Il

= p(J], = 1™, z,)

= p(true allele size is a, '™, z,)
1
p(z, [ptm)

p(z,, |ar, $™)p(a. (™)
p(zy, [1b'™)

p(:l:,. |arv 7/)("1))17(0‘7"7/)(7“))
b1 P, |ar, B0™)p(a,ihtm))

= plar,z,[p"™)

W(m)g'f'm) (x]l)

b 7r'('m)g7('m)($1t) ‘
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Z Z{E(IL |z, p(m) log mrgr(zy,) + E(I7, 1 ,,, p™) log el )} F
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Forj=n"+1,...,n,
Wik(ptm) = €15 IFzy, ™)
= p(IT =1,IF =1]z,v(™)
= p(I}, = Lz, ™, I} = L)p(I} = 1|z, p(™))
Now, given IJ" =1 and z, only two possibilities exist for the measurement : either it

is 2, + ¢tk or it is z, — tx. These two events are (conditionally) equiprobable. That is,

N

Pz + iz, ™, I = 1) = pla; = telzy, ™, IF = 1) =
lIence by the law of total probability,
Wik = {p(I7 = 1z, ™, 15 = 1,2, + ti)p(z, + telz,, ™, IF = 1) +
L, = 1lz,9 e, rk = 1,2 ~ t)p(z — tklz.n’l”(m’?[;k =1)} -
(I} = 1z, ™)

p(I;' = 1,27,1]k = 1,..] +tkl¢(m))p(_[]l“ = ]_I:;J’w(m))
(ZJ’I = 1,2_1 + tkhb(m))

1
5 +

1005, = 1,2, I = 1, 2 = ep™Np(I} = 1)z, 9))
2 Pla IF = 1,2; — tal ™) |

(B.3)
Now,

p(z;, ff =1,5+ tklw(m))
b
= (L Ry + LS e~ )8 )

r=1

= P(L’J’I;k =1,z + L™y,

p(If = 1]z, %™

P(IJk =1, z]l‘/’(m))
p(s[¥tm)

[0 wEgtm (s, + t)T0 o, 7™ g (2, — £4)]6(t, 25) D
Mt 1™ g™ (2 + t)[She 7Y™ (2, = 80)]6(tk, 2,) A%
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and,

Al = “J’Ijk Loy & tifpt™)

b
=Mz S g™ (25 - )16, ) A

r=1

Substituting these quir¢ties inte B.3 yields after simplification,

—

R [: 5+ tk\][Zﬁ_ Tege (2 = 8]t =)
2y T e (5 B e (5 — )] (k 5y )

V’rk(¢ m)) +

AT tk)]{mr— Trge (5 + 16)]8(ke, 25) 00 (B.1)
R A L }[Zrzl mrge (2 + ()8 (0, 25) A

Three important features ot B.2 and B.4 are,
(i) o= Wi (™) = 1,
(if) Tl Tie WH™) = 1, and,
(iii) Wrk(p™) = Wrk(™) The common value of WT*()pi™) for v = 1,2 will be
denoted W *((™),
Estimating 7

Differentiating Q(4»™) (see equation B.1) with respect to 7, subject to the con-

straint that ZL] 7 = 1 yields,

Q(lp™) & W'('b‘”") W, (™)

o, - ]-"'-1{ T T b+
n M Wfk (m)
2 > Y wwT) A (B.5)
1=n*+1 k=1 Tr
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Setting B.5 equal to zero and solving for =, using the fact that 3°°_, WJ"(w("‘)) =1

and TM v, Wrk(sptm)) = 1 yields, after simplification,

W£m+l) — [Z T, g;n(le) + ll' 9r (‘1".12) ]+
= r-..l ngr (rh) r—l gr (‘sz)

__l_ Zn: zk‘-l 71" Jr ("] + t’\) r—-l Ty gr ("‘J - tk)a(tk""])Ak
2n J=n® 41 ‘k‘/-l-'l( t—l T g1 (ZJ + tk))(Z(::x W;ngr ("] —tk))

ZI‘W‘ 7:- Gr ( tk)z'r-l 7!' gr ("'.7 + tk)&(tk,Z])Ak
‘wl(zb—l ngr (‘] + t’\-))( r=1 Trmgr ("'J - tk))

). (B.6)

This is identical to the iterative equation given in Devlin, Risch, and Roeder (1991).

Estimating u

Differentiating Q([1)(™)) (see equation B.1) with respect to u yields,

(m) l T\ T m l r\+vJ2
3Q(1g|f ) Z:Z{" w(m) d oggu(x )+"V (w( )5 ogagu(x )}+

n M b
Z EZ“V:'L ,(/)(m aloggf(“1+tk)+

J=n*+41 k=1r=1 au

T m aloggr(‘: _tk)
Wt 210895 Z el

This is a complicated expression since u appears in both the mean (u + rp) and

standard deviation (o, =(5x107%)(u + rp)) of ¢,(-). The procedure was carried out

using two different simplifying assumptions. Either,

(i) assume that the standard deviation of the measurement e.ror is a constant (i.e.

or =0,r =1,...,b), or,

(i) assume that o, may be replaced by o(™ =(5x10-3)(u(™ + rp) at each step of
the algorithm.
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The first assumption. although much stronger, results in a simple iterative scheme

for estimating u. Under this assumption, the derivative of Q(1]1t™) with respect to

u becomes,

(m) n* b T, — U —1T e — T
6Q(‘g'j _._)_ = ZZ{‘ (w("‘))u + ‘V]Z(?b(m)).(__ﬁ__o‘_z___f_)_} +

1=1r=1

n

M2 ks o (2 Fte—u —rp)
X W) —— +

1=n*+1 k=1 r=1 g

rk m (: —tk—u—-rp)
Wk (pimh) =2 - 1.

(B.7)
Setting B.7 equal to zero and solving for u using the fact that ¥b_, W;(z/v(’")) = |
and ©M S50 Wrk(yp(m)) = 1 yields, after simplification,

u(m""l) —_

(m) (m) (m) (m)
1 n* b Ty gr (311) Ty ’Ir {1 )2)
-yl = = > r, —rp)+ — £, —=rp)+
2n =1 r—l[me xs.m'gs.m’(m“)( J1 ,0) Z (el (m) ( 12 /)]

p=y T (z 2)

(m) m)

Lyn L TMose TR TY) D (2 = )}8(tk12, ) B (3)=rp)
g=n*+1 k=1 =1 Z [[Zr= 7|_s-m) (m) +tk)][zr_ (rm) m)(_ —0)J5(thrzy ) Ok

(™™ 2y =)0 7™ o™ (2 41008142, ) Ak (2, —70)
S 5 ™ o™ (bt e ™ 0™ (2, —ta)]6(tkez, ) Ak

Using assumption (ii), although more realistic, yields a more complicated iterative

equation for u of the form,

== Yoy vri’"’gi""(x,,) PRSI X TP RO

]+

1 Z": izb: [r{mg{m (2, + )] [02y 7™ glm™ (2, — 1)) 6( Ik,zJ)Akjﬁ,—;:—]";!
—_— — +
D(X) J=n*+1k=1r=1 Zk—l[[zb-—x 7r$m) 1£m)(ZJ + tk)][ b =1 "i 'y ( ) - ) ]6(’& z,) Ak

[rim™gim)(z, — t)][Th, 7i™glm)(z, + t4)]6 (tk»ZJJAkj‘r%-fj?
SIS i ™gt™ (2 4 )18, 7M™ (2, — )6 (8, 2,) B
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where,

Wr () W ()
[ob™)2 [ov™')

D(‘\.,) = _771;1 Zb=1

 wtm)

wr

Z =n*+1 Zr—l ZM _J_('m_)]'{"
These results for 1 are similar, but not identical, to those of Devlin, Risch, and
Roeder (1991) which may have involved further approximations or a slightly different

approach.

B.2 Multiple Flanking Region Case

In the case of multiple flanking regions, the incomplete data X needs to be augmented

by three indicator variables. The complete data is given by,

(me’xJz’I;,aI;;,IJI,aIJg) forj'—-" 1,...,n7,
Yy, =
J IFI L) forj=mnm+1,...,n

("1’ n’ 12’ n''n

=

where I} is an indicator variable equal to one if the measurement (z,, for j = 1,...,n",
z, for j = n* 4+ 1,...,n) corresponds to a true allele length a, = u + rp, and zero
otherwise. IJ" is an indicator variable equal to one if the true measurements which
coalesced to z, were =, +t, and z, — t;. I; is an indicator variable equal to one if the
flanking region size is u; and zero otherwise.

From 5.15 the likelihood of the incomplete data may be written as,

L(X|¥)

¢

Q

n. (ZJL 1 ¢le= ”rgr(l'n))(zl[:— ol Zb_l Wrgr(zn))[l - 5(t,z)] )
n_.n‘+1 ZM 1 {(Zl_ ¢l zb—l ”rgr(“J + tk)) :
(Zl= ] zr:l Trgr (25 ~ tk))6(tk, 2,) A

where ¥ = (&, 7, é)T The likelihood of the complete data is thus,
L(Y|y)
= J'l(nl" Hr—l[gb“’rfgr(xh )] n ") Hl_.l Hb— [¢17rrgf(xJ2 )] 7 J2)[1 - 6(tv z)]

]—n‘+l n (nl=l r=1 [¢l7rfgf ] + tk)] “ 1 ) :
(nl:l nr=1 [¢lﬂ.7‘gr(21 - tk)]l;.2 IJ I” )[6(tk‘i ZJ)A"] I: *
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Taking logarithms and letting /(Y'|w) denote the log likelihood of the complete

data yields,

(Y1)
n_“ L b |
Y > AL log dimegy ;) + Ih[;2 log ¢imege(r),) + log[l — 8(1. )]} +
1=1I=1r=1
n M L b
) YOS {IEL L log dimege(z, + tk) + ¥ 1 og dym, g, (=) - 14)
J=n*+1 k=1 I=] r=1

IJk log[8(tk, z,)A] }

Since the quantities log[l — 6(t, z)] and I*log[6(tr, z,)Ax] do not contain any of
the relevant parameters (i.e. i, ¥ or q;) they will disappear during the maximization

process and will not affect the maximum likelihood results. For simplicity they will

henceforth be suppressed from the notation.

Taking the expected value of the log likelihood conditional on the mcomplete data

X and current parameter estimates (™ yields,

Qvlyp'™)
n* L b
ZZ{ 1;1 [§1|m11’¢(m))log ¢I7r’g"(x11) +
1=1 [=] r=1
eI, 1, lxn, 3™) log gimr, (x,,)} +

n M b
Z ZZ Z{ ];c[;" 1;1 Iw(m) ) og ¢l7r"JT(“J + ,k) +

=n*<+1 k=1 =1 r=1

EIEI I 1™ ) log dimege(2, + ti)}

\TrTntn

“

n.

L
= Y3 AW ™) log ditege(zy) + WH™) log fimrg, (2,)} +

1=1l=1r=1

M L b
Z ZZ Y AWK ™) log dimege (2, + te) +
Wk (™) log gim,g. (2, + ti)}- (B.8)

Analogous to the single flanking region case the expected values may be evaluated
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quite easily. For j =1,...,n",
W™ = (L1, ™, z,)

= pI}, =11, = 1p"™, z,,)
oI, = LI =1,z, ™))
p(z,, [ ™)
ir™glm)(z, )

= — . (B.9)
TE b et ()

Similarly, for j =n*+ 1,...,n

rik m
Wtk (ptm)y

L1 1™, 2)

p(In = LI, = 1,1¢, = jptm)

J1

p(=l (m))

[¢(m) m)J(m) + tk)][Zl—l Zb— (m)ﬂ.(m (rn)( - tk)]é(tk, ZJ)Ak

2-,_-1[[Zl=1 l;_l@fm) (m) (m)( +tk)][zl =1 (m) ‘(m (m)("J— tk)]‘s(tk’zJ)Ak

HpMrtmgm) (2 — 1 )[DE, T2 ‘""ﬂm) () (2, 4 £0))6(Es 2,) A

Mk, b, o™t ""’ (s tk)][le b o w2 )8ty 2,) A

Three important features are,
(1) Tizy o= W) = 1,
(i) W) = W), and,

(iii) TpL, Ty oo, Wrik(pm) = 1.
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Estimating ¢ and #

Differentiating Q(x{1™) (see equation B.3) with respect to o; subject to the con-

straint that YL, = 1 yields,

0Q (b |v™) ‘V}"(d)""’) Wl
+ ,
O le Z { Pl bt
n M ‘/Vrlls Am)
2 ) > Z w ! — A (13.10)

]—n’+l k=t r=1

Setting B.10 equal to zero and solving for ¢; yields alter simplification,

n* b
m+1) l T m T m
5 %EEWMW+WWW+
J=1lr=
n M
LSS S
]—n‘-H k=1r=l
‘ In an analogous way one obtains for 7, the iterative cquation,
1 n* L . l
1 r m T ™m
wmH) = 5 ”L:W (™) + W™+
I=1l=

L

- Z vvrlk(w(m)

J== *+1k=1 I=1
Estimating 4

In order to simplify the problem (as in the single flanking iegion case) it will be

assumed that o, may be replaced by o{™). The stronger assumption that 7, is a
constant for all 7 does not result in as much simplification n the multiple flanking
region case as it did in the single flanking region case, so it will be avoided. With
this convention, differentiating Q@ (3|p(™) (see equation B.8) with respect to u one

obtaius, |
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W/rl w(m) er W {m)
v w—rp)+—i’-(—ui——)(( n = u=rplht
[agm)]2

AQ (1) |p™ nt
QQ_(M = ZZ{T:(_m_)]_g__(xﬂ—

aul Jj=lr=1
n erk(w(m))
2 2 ZZ oFE G w ) (B.11)
j=n*+1i k=1r=1 ]
Setting B.11 equal to zero and solving for u; yields
u§m+l) -
wr (¢('"’) WH{yt™)
" l{ o ("U]'z r]l - rp) + [}os_"l!]z ((T]2 - T‘p)}
n* W"(w("‘) W'z'(tl' " )} Moo WR(m) +
l{ [0 tm)]z [ (m)]z +2 Z]-n‘-{»l k=1 r=1 [as_m)]z
Af b Vrlk(w(m))
"Zn—n F1 Z‘ r= [ ‘milg - T‘p)
u/rl(u(m]) Hrrl(w(m ) I b ‘V'“‘(w("‘)) .
} +2 Z]—n *+1 k=1 =1 [U&-mjlz

71' =1 { (m)lz ("‘)]2
Values for W (ip(™)) and W (™)) may be substituted in. Again these equations

are similar but not identical to those obtained in Devlin, Risch. and Roeder (1991)
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