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Abstract 

DN A profiles have become an extremely important tool in forensic investigations, 

and a match bctween a suspect and a crime scene specimen is highly incrirninating. 

Presentation of t.his evidence in court, however, requires a statistical interpretation, 

one which refl(>ctfi the uncertainty in the results due to measurement imprecision 

and sampIing variability. No consensus has been reached about how to quantify 

this uIlcertainty, and the literature to date is lacking an objective review of possible 

methods. 

This thesis provides a survey of approaches to statistical analysis of DN A profile 

data currently in use, as weIl as proposed methods which seem promising. A compar­

i80n of frequentist and Bayesian approaches is made, as weIl as a careful examinat.ion 

of the assumptions reqtlired for each method. 



RésUlllé 

Les rrofib d'A !/'" "f", t, ,,," C!('S olJtils ('Xt.I'i-IlH'II\('llt illl[>oltallts dalls I('s (·Il«IIÎ·j,(·S 

scène du Cl'Une t,l,' J , ,', j ! ' • lII'.('lll('Ut. iilcrilllïuéllllC'. TOllt.dois, (,Ollipt (' t.1'1I1I dl' 

1 'impr~ciRion des 1.' ,''illrP'" ,,~ 

de ce t.ype' de pre'l1V~ devant 1(, tl.hllllai illlpliqlll' \I1J(' illtnpd·t.at.ioll des sf.,II,ist.iqll(·s 

n' l" . 1 l '1 J ,. , 'l' 1 rc ct.ant IIIcertJ1,II( p (CS re:m tats. • US«U il {ln'sellt., 1 Il Y il p,IS {'II ( (' ((llhl'II!'!" .... 

sur la manière dp quant.ifier cette incerl.itlldp d Iii, lit.t.(~1 at III'(' II<' 1'0111'1111. pas dl' J'('VII(' 

objective' dps nH~thodes possibles. 

pour l'analyse sUII ist.ique des profils d'ADN. EII(' sllgg('re de pills I('s IIu"l.hot!(·s les pills 

prom('t.tC't1scs. Enfin, une comparaisoll ellt.re 1('8 ilpproches fi {'qll(·Ilt.ist.(, d BcI'y('Sj('III1(' 

('st présentée aussi qu'un examen détaillé des hypothi·:ws 1('<!lIisps p01l1 dldt 1111/' (h· 

C('s méthodes. 
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Chapter 1 

Introduction 

A:-; DN A profile rlélta presents challenging statistical problems, presentation of this 

typr- of evidPncc in court has been :-;everely debated. Frequently, the DN A evidence 

rnay be deemed inadmissible on the grounds that there is no acceptable way to analyze 

the data. Several possible methods of anéllysis have been proposed. The purpose of 

thi:-; thesis is t.o provide a detailed review of these proposais. and of the assumptions 

on which they are based. In Chapter 2 an overview of the laboratory techniques is 

provid<,d, along \Vith the> basic genetics necessary to understand the procedure. 

In Chapter 3 an ontline of the frequentist élnd Bayesian approaches to this problem 

i:-; givcn. The dctails of these methods are givcn in Chapters 4: and 5 respectively. In 

Chapter 6 a discussion of the possibility of popula.tion substrueture and its potential 

impact on sorne critieal assllmptions is presented. Chapter 7 provides a comparison 

of the varions rnct.hods whieh were discllssed in Chapters 4 and 5. Arpendix A 

brierIy clescribes t1uee statistical concepts which may be unfamiliar, but which are 

user! in sorne of the analysis. Appendix B gives a full derivation of a set of estimation 

equations used by Devlin, Risch, and Roeder (1991). This derivation is nontrivial 

and \Vas not. supplier! by Devlin et al. 
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Chapter '2 

An Outli:ne of DN A Profiling 

A basic understanciing; of the cell alld its components iR fllndélIlH'Ilt.al t,o tlll' undcl­

standing of DNA profile analysis. Tt is the celIs which store and t.ransmit Lh(' J!;(·IH'l.ic 

information which mél.!(es each inclivicll1al u.liquc. 

Genetic informat.ion is stored wit.hin the nucleus of ccU:h cel!. 'l'he i"formation 

IS coded in the large molecules known as the nucleic acids. RNA (rihollllcl('\( Mid) 

and DNA (deoxyribonucleic acid). RNA is dispcrsed I.hrollghont. ;,11<' nll( lells /1111\ 

the surrounding material known as the cytoplasm. In cont.ra:,t., DNA is prilllitl'lly 

restricted to the nucleus. Each normal cell in an organism will carry a fnll copy of 

the genetic information. 

Both ON A and RN A are composed of repeating nnits known clS Illlcleot.id(·s_ Earh 

nucleotide is a combi.nation of a deoxyribose sllgar, a phosphol'ic acid, and Oll(~ of f01l1' 

possible nitrogen bases: adenine, cytosine, guanine, or thyrnin(~. The only diffel'('l1œ 

between nucleotides is the nitrogen base present, hence the four Lypes of I1l1deot.id"H 

are denoted A, C, G, and T respectively, dcpf'!Hling on the basp. The nndeot.ides ,ue 

joined together sequentially (by chemlcal bonds) and may OI:CIII' in any orcier. TlwH! 

is thus an endless array of possible sequences which accounts for t.he Vil.'!!. degf(!(! of 

genetic variation in human beings. 

The physical structure of DNA was described by the Watson-Click model (l~)!):l). 
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ft \Vas discovered that the DNA molecule is not made up simply of one long string of 

nlldf'Otidcs but of two sn ch strings bonded together. The two strands twist around 

arollnd one another in ft spiral formation, or a "double helix·'. The adenine (A) 

nlld('ot.idcs in onp st.rand pair only with the thymine (T) nucleotides in the other 

strand. Similarly, t.he g1lanine (G) nucleotides in one strand pair ,vith the cytosine 

(C) nuclcotid('s in the ot.ht'r. The length of these strands are thus referred to in terms 

of base paIrs. As a resllit of this preferential base palring, if the nucleotide sequence 

of one st.rand is known then the sequence of the complementary strand is also known. 

(n f'ach œil of the 11IIman body. within the nucleus, there are 23 pazrs of chro­

mosomes, known as homologous pairs. There is only one DN A molecule present per 

chromosom(', and it may be visualized as a long fiber crossing the length of the chro­

mosome and folding back on itself many times. A gene is simply a stretch of this 

DNA filwr. whieh occupies a specific position on the chromosome known as its locus. 

A particnlar locus will be represented twice per ceU, once on each chromosome of the 

homologous pair which carries it. Each chromosome of a pair will carry the same 

loci, but they do not necessarily have the same genes present at each matching locus. 

Alternative forms of the same gene are known as alle/es, and they differ from one 

anot.her only in the sequence of nllcleotide base pairs. If each chromosome in a pair 

carries the same aUele then the pair is said to be homozygous at that locus. If two 

different alleles are round, the pair is helerozygous. 

An important. aspect of the DN A in eukaryotic cells (found in most plants and 

animais) is the appparance of certain sequences of base pairs which repeat themselves 

in t.andem. These sequences are of a variety of lengths and faU into two classes, mod­

erately repetitive and highly repetitive. In the highly repetitive group the sequence 

may repeat. over a million times. This group is frequently called satellzte DNA. The 

term mirusatellite is used to refer to any short DN A sequence which repeats itself. 
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Certain loci were discovered to be hypervariable between individuals dm' to tilt' ditfer­

ing number of repeats of the minisatellites. For a part.icular locus, a differe'!lt. Ilumher 

of repeats corrf'sponds to a different aHele. These Ion ;He' oft(311 cal1t'd variùhh' nlll11-

ber of tandem repeat (VNTR) loci. This lead to tlH' disco\'('ry t hat. ,l, chclract.c'rist.ic 

pattern, based on the number of repeats at each locus, .0111<1 \)(> const.ruct.<'d for t'ach 

individual. Moreover, this "fingerprint", or "profile", col\ld be dt,t,t'I'milwd from SOIlJ('­

thing as small as a hair root or as degraded as an old hlood ::;1.,1111. As wll1 h., Set'II, 

although not unique, carefnl selection of loci can cllsure that ,\.11 IIldivldllal's prolile 

occurs with low frequency in the population. 

The main method used to produce t.hese profiles IS knOWll Ils SOllt.hern hlol.l.ing. 

The DNA is isolated from the samples provided and then exposed to il [>rot.ein ImowlI 

as a restriction enzyme which cuts the DNA at specifie sites lIlt.o many small('1' frag­

ments (the restriction enzyme will not eut the repeating 'ieql\el1C1~). Th('~(' fr"gllJ(~Ilt.S 

will have a charact.f'ristic length depending on how many mini~atcllit.(' f('(wal.s t.!H'y 

contain. The fragments are placed in an electrophoret.ic gel, in whlch t.he 'ihort.t'r fI ag­

ments will travel farther than the longer fragments. The result. is a lill(' of fraglllt'lIt.s 

in order of length in base pairs. This !ine is moved onto il. nylon nH~rnbrarH~ where if, i8 

fixed in place, and radioactive probes are uscd to reveal t.he poslt.ions of the fragrrH'lIts 

on the membrane. The fragments will appear as bands and t.he posit.ion of t.he band 

(i.e. how far it traveled in the gel) in theory reveals its length (a s(~ries of fragrnmll.:; 

of known size is also run through the gel, and the positions of t.he~e rnark('rs are 

compared to the positions of the fragments being examined). 'l'lm banded pat.t(!rt1 

will be the same for a given individual regardless of the kind of tisS1le present in the 

sample. 

Two types of probes may be t1sed in the above procedure, single loc1Is prob(!s 

(SLP's) and multi-Iocus probes (MLP's). An SLP will reveal only those bands which 
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iUC prescill al. olle spe( Hic locus. Thlls, eithel' two bands will show fol' ail individual 

lH'kl'Ozygous at. that 10CIIS, or on(' band for a homozygous individua!. Ail t\fLP l'cvC'als 

hallds frolll s('velalloci al ome, but is (\ lC'ss sensitiv(~ technique t.han the sillgl"loclis 

plOhC'. Sc'veral sillgl(' lonls pl'Olws may be combincd t.o produce a profile for mull,iple 

lud. 

Mnuy variations 011 lll(' ahove techlli(\ue exist, but the ulld('r1ying prillciplcs are 

silllilar. III addit.ion, a lC'chnique kllOWII as pert (polymerase chain reaction) analysis 

is flequl'lItly IIS(·(1. This IIwt.hod involvcs alllplification of the hypervariahle sC'quenccs 

"II<I is IIIIICII I('ss Ume consllllling th"l1 the southem blotting élpproadl. Il, is pal't.ku­

I"dy usdlll wll('" 1.11(' samplC' is d('gradC'd since it can he used on very small (\lIant.it.ies 

of DNA. 

T!.e pl'OI»I('III wit!. tll(' ahove Ilwthods is t.hat the translat.ion of '~dist.allw fl'agmcllt 

travc'is in g(·I" 1.0 "11'lIgt h of fragllll'nt i .. repeats" is imprecise. Thel''' is I1WaSlll'l'lI1ent 

('l'l'or illvolv('" whÏ<'h llIay he larger (in tel'lllS of hase pairs) t hall th,· sizc of lhe 

rep"al 8C'1I1«'II('C', a .. " llIisclassificaliol1 of aile les can occur. III addition, t."f·l'e arc 

cerlain tf'dlllicai di fficIl 1 ti('s whidl may arise. For example, extl'emely small fragments 

have h("'1\ kllOWII 1.0 llIigral.e off the end of t.he e1eclrophoretic gel, rnaking lhem 

IlIHId.(·d.ahl(·. Also, t \\'0 hands which arc vcry similar in length, lhough Ilot idcnt.ical, 

lIlay app('ar as a singl(' balld inslcad of two distinct bands. This phenonwnon is 

known as ('()(r1fSCI'IICt'. Ali additional conccl'll is the occurrence of ballll :;1I;JIIII9 wlaicll 

"auses the fragment.s to appedl' a unifol'lll amount smaller 01' larger thall t.hC'y shoul<l. 

Wlu.'u t.ht· DNA from a aime spedmcll is compared with lhal of a criminallhc lwo 

profiles al'(' lillt'd IIp heside one anot.her. For example, consider lhe DNA ('vidcncc 

fur a hypot.hetical mureJcl' invesligat.ion depicted in Figure 1. A specimen (c.g. a 

hloodslaill) was ohl ainC'eJ from the crillle scelle and il can easily he seen hy comparing 

the DNA pl'ofil('s of the specil1wn alld viclim thal the specimen was not contrihllted 
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by the victim. It may therefore be used to place the suspect. at. t.he scelle of the crime. 

Two suspects are apprehended and their ON A profiles are constructed and compared 

to that of the specimen. Tt can be seen From Figure 1 that SUS}wct. l may lw!'xc\ndcd 

from the investigation, while Suspect 2 would be dedared il "mat.ch". 

A careful study of tlw statist.ical methods leading t.a the dt'd,trat.ioll nI' ct mat.ch 

and the implications of this declaration are, in part, t.he t.opie of tll1s t.Iwsis. Ot.lwr 

statistical viewpoints that do not depend on "match declarat.ioTls" are also disCllssed. 
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Specimen Victim Suspect 1 Suspect 2 

Figure 1. DNA Profiles for a Hypothetical Murder Investigation 



Chapter 3 

Statistical Approaches to DNA 
Profile Analysis 

Consider a criminal investigation in which a single bloodst.ain is round ,ü t.he SCI'IIe of 

the crime. A suspect is apprehended and DNA profiles of hot.h suspect. and sp('cÎmen 

are constructed using methods described in Chapt.er 2. IIow mn t.lw informat.ion 

cont.ained in the DNA evidence hest be presented in a court.roolll set.t.lIlg'! Pn'didahly, 

two schools m thought have arisen, one which fcels thal. the DN A /'vidcl1ce "llOlIld 1)1' 

evaluated in a frequentist manner, and one which promotes Bay/'siall mdhods, Tht's(' 

approaches are outlined in the following sections. 

3.1 Frequentist Approach 

In this approach it is first necessary to declare whether t.here is a match bet.wc!'n t.1)(! 

two profiles. Since each allele is measured with error, t,wo measllrements t.hat. ilf(! 

different, but very similar, may still be two measuremcnts of t.h(! saUle allde. Two 

allele measurements are said to match if they meet sorne prcdetcrmJnf'd rnat.ching 

criterion which is based on the distribution of the measurement error (sec Sed ion 4.:1). 

Suppose that at a particular locus the DNA of the suspect has allele rneaSllf('ments 

Xl and X2 and the DN A of the specimen has allele meas1Jf(~m('nt.s YI and Y2. There 
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is said to be a match at that locus if either Xl matches YI and X2 matches Y2, or Xl 

matches Y2 and X2 matches YI, since it is impossible to tell from which of the two 

chromosomes the measurements arise. The DN A profiles of suspect and specimen are 

said to match if there is a match at evcry locus which was examined. Otherwise an 

exclllsion is declar<>d and the suspect is released. 

It is concclV<lhlc however, that the two DNA profiles match by "pure chance" 

and not hecause t.h<> suspect is actually the guilty party. In order to make a proper 

presentation of the D N A evidence in court the probability of this event must be 

estimated. Thal. is, the probability that the DNA profile of an individual chosen 

aL random from the population would match that of the crime specimen. If this 

prohabijity is "extrcmely small" (frequentlyon the order of lxlO-S ) then the suspect 

is dcemcd t.o have committed the crime" beyond a reasonable doubt". To describe the 

approach more formôlly sorne notation is introduced, and sorne crucial assumptions 

are outlined. Deline the following events : 

M = the' event that the DN A profile of an individual chosen at random from the 

population matches the DNA profile of the specimen, 

Mi = the event that the two alleles found at locus i for an individual chosen at 

random from the population match those found at locus i in the specimen. 

We have, 

where, 

L = total number of loci examined to construct the DNA profiles. 

Let Y represent the DNA profile data obtained from the specimen. The probability 

which must be estimated is P(MIY). 
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3.1.1 Presentation of Evidence 

When the evidcnce is finally presented in th~ courtroom, tht' t'st.imated [>l'Ohability 

i\MIY) is presented. The jury must then decidt', based on Pp!Il'") a.nd tl,1I 01.1\('1' 

available evidence, whether they believe the SllSpf'ct. IS guilty or II1Iloc('nt. T(·chnically 

speaking they are actually carrylOg out a test of t.he hypot.lH'ses, 

Ho : the suspect \Vas chosen at random from the population (i.e. tlw snsp('d is 

innocent), 

versus, 

Ha : the suspect Was not chosen at random from the population (i.e. tilt' SI1!-1p~d. il> 

guilty). 

The data used is t.he DNA profile evidence and the test. st.atist.lc is P(MIY). The null 

hypothesis is rejected for "extremely small" values of the test st.atist.ic. 

3.1.2 Selecting the Loci 

Since there are a multitude of loci available it is necessary to decide which olles are 

the best suited for analysis. This decision must occur a.t th(~ drslfJ1l ,lfLfj(' o[ t.Ilt' 

experiment (i.e. before viewing the DNA evidence), a.nd t.hlls wtll he disclIssed al. 

this early stage. The following comments on this important topic are due t.o LiLllgC 

(1991). 

Consider a single locus. In constructing the ON A profiles il is desirabl(~ 1.0 i ndllde 

a locus which has a maximal ability to exonerate an innocent suspect. Let t! denote tJl(~ 

exclusion probability, which is the probability that a randomly chosen individlJal wdl 

not share a matching genotype with the criminal at a particular locus. It is dcsircd tü 

maximize the exclusion probability. Suppose further that thcre are n possible allc1e!i at 
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t.his locus, \Vith Icngths At, ... , An' and with population relative frequencies Pl' ) = 

l, ... ,n respectively. It follows that, 

e - 2:1::: 2.:;:;:;k+I 2PJPk(1 - 2PJPk) + 2.:~=1 p~(l - p;) 

- 2:1::: 2.:;=k+1 2PJPk - 22.:1::: E;=k+l 2p~p% + E;=1 p~(1 - p;) 

- 2:k=l 2.:;:;:;1 PJPk - E;=1 P; - 2{2.:~=1 2.:;=1 P;P~ - L;=1 pH 
+ L?=l p;(1 - p;) 

- 1 2 Lk=l L;=l P;P~ + L;=1 P~ 
- 1 2(L:;=1 p;)2 + L:;=1 P~ 

The exclusion probability must be maximized with respect to each Pk, k = 1, ... , n, 

subjcct to the constraint that Lk=1 Pk = 1. By using Lagrange multipliers one must 

solve, 
n 

-SPk LP; + 4P% + >'Pk - 0 
}=1 

which implies, 

or equivalently, 
n ). 

2I:p; -'4' 
J=1 

Pk = (3.1) 

Solving 3.1 simultaneously with the constraint Lk=1 Pk = 1 yields, 

1 
for k=l, ... ,n. Pk = 

n 

In other words, loci should be chosen which have alleles that are as close to equally 

frequent in the population as possible. 

In addition to its abihty to exonerate an innocent suspect it is also desired that a 

locus have maximal ability to incriminate a guilty one. Thal, is, under the hypothesis 

of guilt the inclusion prohability should be maximized. However, it is assumed that 

the probability of obtaining a match given that the suspect is guilty is one, hence 

there is nothing to be maximized. Instead Lange considers the Kullback-Leibler 
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inrormat.ion (J(ullhark and L('ihl('l', tg!))) rom pu t.('(1 lInc!('\, t.hC' "SSIlI1lp.iOIl or ~lIilt. 

(5('(' App('ndix A). This il' also a 111('a5\11(' or t.h<' ahilily or" loclIs 10 poinl 10 il p;lIilt.y 

person. Fol' a pal't.Ï<'lIlar locus wit.h n possihl(' atJ('les let. .\" dC'lIot.(' 1 lu' g('!lOt.yP(' or 1 lit' 

susp('d/sp('<'ÏII1('n. "lId Ipt. t.h(' Op(,1 alor E he t.JH' ('xpC'datioll IIlld('r 1 II(' "l'Sil III pl iOIl 

of gnilt,. \-Vc 1 h(,ll dc'fin(' t h(' 1\ ullhack- L('ihlel' inrol'l1wt.ion, 

2 

- E;=I]1~ log h~t)2 + "n-I ~n 2 1 2/)JPIr 
L,I=I L...k=] + 1 P]I'k og (2/"pâ'I 

"" 21 2 - - L]=I l'j og l'] 2 E;;I' Lk=)+1 1'.,I'k lop; 21')I'k 

= - E;=I "~ log "~ {L~l=1 Lk=ll'11'1. 10gl',]'A - L;'=ll'::loP;I'~} 

"n "n 1 - LI=I LA'=I 1')I'k op; 1')1'1.. 

-2 E;=, l') log 1') 

This qmlllt.it.y must. he llIaxillli~('d \Vit.h 1'C'51)('d '.0 l'A., ~. = 1, ... ,11, suhj('d to 1 II<' 

ronst.raint. Lk=IIJk = 1. Psillg Lagrangc· nl1llt.ipJiC'ls t.J1C' qllilllt.it.y to Il(' mflxillliiWd is, 

n n 

[(d"a, /Id = -2 LI') log 1') + 2À(LI') - 1). 
)=1 }=I 

This yieldR, 

= - log lJk - 1 + À o 

whkh impli('s, 

10glJk = .À - 2. (:1.2) 

Equation 3.2 iR solvpd sil11t1lt,alleollsly with the rollst.raÎnt. Lk=1 l'k = 1 1.0 ohl ain 

Pk = ~, for k = l, ... , 71. 

ThUR 1111<1('1' hot.h or t.llf' hypot.\lf'sps or gllil .. alld or iIlIlOO'IU'(' t.hf' saul(' ('{)IldIlSioll 

iR r('a(·h('d. ait hOllgh t hrough (,ollsid<'r"t ion or diffC'I'C'II1. crit.<'rin. 'l'II(' I)pst IO('lIs I.n 

inrllHIC' in a profllc' is t hnl roI' which 1.\1(' al1c,Ic's <\1'(' ('CJllillly rJ'{~(III(,IIt. 
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3.1.3 Current Approach 

'1'11(' Illm~t cOITlIll(lIlly lISf'<! "pIHO;\{ h (,0 1lI11lly:dng DN;\ profil~ dllta is kllow" as 

"1lI1lt.< h-hilllling", which rf'lif's 011 1l1lC'1f' plOhllbilili<>s C'st.imat.l'd hy "hinning". Thl' 

vi('wpoillt is frC'qll(,"t.ist.. ThC' t.f'clllliquc of hinning will hC' ollt.linC'd in Chflpt.C'r t1 

ilS w(·11 ilS t,II<' pro(C'<!1IJf' for caklll,üing P(MIV) hased on hill,1,,{l all('lC' prohilhilit.y 

('S t. i III il t.{'s, 

3.2 Bayesian Method 

ThC' Bily{'siilll él ppr ml< Il toI IH' fO)'C'lIsic i(lc'lIt.i ficat ion pfohlem is su hst.ant ia IIy cl iffC'fC'llt. 

flOlII t.hilt of IllFltrh hilllling Consid('J' t.JH' Sil 111(' sC<:'lla,io élS r!('pid.C'd prC'viously. Tllat. 

is. a SIIsIH'ct. is flPPIPI1('IUll'<! cl", ing a for{,llsic illvcst.igat.ion and HIC' DN A profi!('s of 

hot.h t.lw sllsl)('d alld a nilTlC' SCC'II{, spf'cimen are construct.f'd, It. is nol. at 1 C'1llpl ('d t.o 

(l<'t.f'I'lllillC' ",hC'1 h('1' or JlOt. t.hC' t.wo profilC's match, Instcad it is aUcmpt.C'd 1.0 assC'ss 

t.hC' post('riOl' o<lds of gllilt. giv(,11 tire C'vid{'nfe, DefiJH' the following ('v('nl.s, 

G = t.lI{' C'\,('nt. t.hill. I.h(' SllSI)('c\. is gllilt.y, 

1 = t.1r(' {'w'nl. , h,\\. t.1I(' SIlSp(,ct. is illnoc('nt., 

ami I('t, 

X = nll 1.11(' D N A profil(' ('vid('lIf(, = (:r,?I, Zr, , • , , zn) where x, ?I • Zl, , , , , Z" ,Uf' r('spf'C­

t.iv('ly t hC' lII{,ilSllrf'IlH'lll.s tak{'J1 nt. a sp{'cific locus fol' t.lre suspect, t.he sl)('cimcll, 

nml a simplf' l'ilndolll snmp1<' of Il iIHlividttals drilwn from a l'('f(,I'('II('C' POPUlilt.ioJl, 

and, 

Il. is df'sirC'd to fi,HI thl' pos'C'riol' pl'ohnhility of guilt. That. iR, t,hC' pl'OhahiHy of G 

has('<! 011 "li ,hC' iH'ililahl(' C'\'i<l('llc(', AccoJ'(ling 1.0 H"y<,s' Thf'orf'ITI, t.h(' pos!('rÎOI' odds 
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or gllilt is proport.ional t,o 1 he' plÏol' odds of gllill. The' ('onst.ant. of plOpOl'I iO"<llil,y, 

dC'note it fi, is known <lS I,IIC' likC'lihood 1 <ll.in, 01' \.Il<' n"yC's f"dol': 

P(GIX, R) = UP(r:IE) 
1'(11.\", I~) P(ll/~')' 

w"ac li = !J~l, l';) 
1'(.\ 1/ , l"~') . 

DC'ciding on éHl apPlopri<lk prinr is a 1 as" fol' I.IH' jury. J)\II'ill~ a Il i<ll il. i., ('s'will iill 

thal. the rdaliollship hf'l,wC'C'n Plior "nd IHl';;kl'iol' odds he' IIl"dp <lS <lc'ill' (10; IlOs"ihl(·. 

As will he' c1isclIssrd in a 1"IC'r sC'dioll it. Illay lloL ('V('II hp IH'(,C'SS<lI)' l'or I.Ilt' Îm)' ln 

choose il specifk plio!', simply pre's('Ilt.ing I.hc' likclihood rat.io wit.h an applOplial(' 

explanat.ion may hC' él('('C'plélhlf'. i\\tC'IIlé'll.iv('ly. J)pvlin, Hisch,flIHl HO('dc'l' (1!)lJl) also 

slIgge'St. t.he' liSe' or a frc'<J"('nt.ist. d('cisioll 1111(' of !.I)(' forlll, 

li E 
1 

(0, 1\'] cour/udr Il, 

li E (J~" 1\'] i 1/conclu.'li l'C 

Il E [1\',00) cOl/cll/dc Ile;. 

They daim t.hat. t,lH' const.ant. 1\' may IH' dlos('11 so t.h"t. Ill(' plohahilit.y of a Typc' 

[ ('ITor il' vcry snlélll. 'l'II(' sl.alist.inll 1'101>1('111 is thlls dc('ielillg ho\\' t.o c'slilllillp n. 

(l9!)1), n('rry, Eve't.!. and Pinchill (1992), anel \)('vlin, Hiseh amI Hm'(kl (1!)!)I,I!)!)2). 

3.2.1 Selectil1g the Loci and Restriction El1?'yln(~s 

Dcvlin, Ril'rh, and Rocd('r (1!)!)2) lise t.he Lerm "sysl.C'rn" 1.0 Idc~1' 1.0 (1 pal t.int!itl 

loclIs/rrl't.riction rm~yrne cOlllhilléltioll, It is dcsirC'd \'0 illdlldf' ill t.ltp DN i\ plofilps 

thosc SystC'fT1R which providC' t.\w lIIost illforlllatioll. III partie \Ilar, t.\J(' PIOllilhilil.y of 

rcjccling Il, ",hen Ihr SIlSIlC'd is inno(('lIt Rl\Ould bC' étR dosc' 1.0 0 mi pOH'Iihlc', whilc' 

t.l1C' pl'Obahilil,y of J'('jC'ding Il, wll('l1 t.Iw sllspcd is gllilt,y shollhl 1)(' flH c1o'l(, 10 1 

as possible'. DC'finC', î,(.i·,üIZ,S) 10 Iw !II(' Jllohabilit.y of l'pipe t.illg III in favo"r of 



1Ir. for Il p1lrtirlllllr RyRtf'1Tl S, w!Jf'\'f' :r and fj reprcscnt the ON A m('aSHrC'rnC'nI.R for 

1lI('llSIIH'!lWlltS. IdC'1llly, for givC'1I \'C'a!izat.iolls fi and ]j, 

(' _) _ {I willer fla 
, .r,Y - 0 1171der 11/. 

Silllilady, dpfine t.hC' folJowillg IOSR fUllrtioll, 

tmdc7' lia 

tmde1' 11/. 

8qUfH'('d C'ITor iR cl!osC'1l 1.0 givC' more' wC'ight. t.o lal'gf' deviations sill('C' t.hcsc will 

likC'ly rOlT('SpOIHI 1.0 f .. lsC' fotlClusions. I)POlle t.he COf)'<,spondillg 1 iRk fllndions aR, 

whC'l'(, wit.h a slight. ahllsC' of lIot. .. t.ioll .1' and 17 flI'(' TlOW TC'gard('d as l'andorn wHiahle's 

and Ilot, a.~ 1'f'"lizat.ions (t.he aVC'I'é\gillg bcing dOTlf' ovel" t.he' possihle dat.a Vahlf's). The 

BaY('R dsk is t.lu'Tl, 

7'(fi) = (1-(3)R(lld+f3R(lla) 

wllf'l'(, ~ is t.l1C' Jll'ior prohahilt.y of gllilt (t.he.' furt.hcl' av<,raging bcing dOliC 0\,('1' t.hf' t,wo 

possihlf' hypot.lwsC'R). 'l'h(' Bayf'R' riRk may be ('omparf'd het.w(,(,Tl ('oo1p('( ing syst.(,IllS, 

t.he syst.f'tn wit.h I.h(' 10\\'('1' nflyes' l'isk bcing the appl'Opl'iate ('hoice, 

III t.he Il(,Xt. ('hapt.('1' mat.rh-hinning is ('xamined in det.ait. 
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Chapter 4 

Mat ch-binning 

In match-binning, the range of possible al1eIc sizes Îs dividcd int,o c1assps (('.tllt·<1 

bins), and the sample bm frequency is used as an estimate for t.he freqt\('IH'Y of (·.tch 

aUele within the bin. These "binned frequcncies" may then he IIst'd 1.0 (·st.im.tI,(· t.he 

probabiIity of a match at a particular locus for the "mal.ch-binIlÎ ng" appl'oi\.ch (t.ht·Y 

do not necessarily have to be used in this manner, however this is t.he t:1lI'1'('nt pritcl.in· 

by most forensic la boratories ). 

4.1 Assumptions 

The following assumptions are necessary in order to use match-hinnlIJ~ 

Random Mating It is assumed that individuals mate without. regard 1.0 genot.ype, 

a phenomenon known as random mating. For example, if I.here i~; informa.l.ioll 

about the alleles inherited from the mother of a particular individuétl, t,his yields 

no information about which alleles may have been inherit.ed from t.he father. In 

other words, the maternaI and paternal chromosomes art' indep(!ndcnt.. The 

most important consequence of this assumption is t.hat, regardless of t.he oh­

served allele frequencies for a fixcd population in any particlliar gencrat.ioll, a,ft.er 

one generation of random mating astate known as Hardy-Weinberg eqllilibrium 
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(IIWE) is rcached. 

Suppose that the true popul:t.tion freq1\ency of alleles Al and A2 are Pl and P2 

rcspectively. If the population is in H\VE then the expected relative frequencies 

of the gcnotypes At Ali Al A2, and A2A2 are respectively P~, 2ptP2, and p~ and 

these values will not change from one generation to the next. (Note that the 

obscrved freCJuencies will always differ slightly from those expected under HWE, 

but the expected freCJuencies will remain constant between generations.) 

Suppose that, alleles AJ and Ak are found at locus i in the DN A profiles of 

both the suspect and specimen. Let PJ and Pk denote the respective relative 

population frequencies of these alleles. Assuming HvVE one may write, 

P( \fIA ") _ {2PJPk if j i k (suspect heterozygotls) 
i 1 J" k - p/ if j = k (suspect homozygotlS) 

Henc:eforth the terms "random mating assumption" and "HWE assurnption" will 

be used int.erchangeably as is common in the literature, although the situation is ac-

tually that t.he random mating assumption leads to the state known as HWE. The 

assumption of random mating is a highly contentious issue and its validity will be 

discussed furt,her in Chapter 6. It is standard practice to attempt to derive a conser-

vative est.imation procedure which deliberately biases the out come in favour of the 

defendant in order to compensate for the uncertainty arising from these assumptions 

and other possible sources of error such as sampling variability which will be encoun­

tered. In addition, for the binning approach it is actually the bin relative frequencies 

that are of interest and not the true allele relative frequencies. The HWE assumption 

is assumed to hold for the bin relative frequencies as well since they are simply esti­

mates of the true al1ele relative frequencies. Henceforth the notation Pi will refer to 

the true population relative frequency of alleles in bin j, instead of the true population 

relative frequency of allele AJ' 
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Linkage Equilibrium (LE) It will be assumed that the genotypes observed al 

one locus are independent of those observed at other loci. This will be referred 

to as the linkage equilibrium assumption although actllally the assumption of 

independence between loci leads to astate known as LE. [n thls state, giVl'll 

the true allele relative frequencies in the population, t,he cxpected relative fre­

quencies of the varions possible genotypes remain constant between gf'n('ratiolls. 

Assuming LE, P(.l/IY) may be written as, 

L L 

P(NlIY) = p(n Atl,IY) = II P(M,IY) 
,=1 1=1 

An important consequence of the LE assumption is that only t.he single locHs case 

need be considered. The results from distinct loci will simply be rnultiplied. 

Caution must be exercised in applying the LE aSSllmptlUn since loci which an! 

located on the same chromosome are quite likely to be "linked" (Ilot ind('p«~ndcnt), 

particularly if they are positioned close together. This will be discussed Curt.hcr in 

Chapter 6. 

4.2 Outline of Match-binning Procedure 

The basic steps in match-binning are as follows, 

(i) Determin~ the matching criterion. 

(ii) Determine whether there is a match or an exclusion. (If there is an exclusion 

nothing furt.her is required.) 

(iii) Establish the bin boundaries. 

(iv) Estimate the bin frequencies. 
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(v) Use Ou' assumption of IIWE to esl,imate P(M.IY) as 

P( " Il') - {2j"",'k (( j f. k (.rm."pecf helerozygotls) 
J 1 - fi~ il j =~: (.rm."pecf homozygo1ls) 

(vi) t1Sf' th(' assmnplion of LE 1.0 estimat.c P(MIY) as 

L 

1'( ""Il') = TI P(Af.IY). 
i=1 

'l'II(' art.lIal proCf'SS of "hinning" involv('s only steps (iH) 1111d (iv), in whkh t.he' al1"l(' 

rdat,i\'f" frf"cI'J('nrif's iH(' l'sI i 11Ifltf'd. 1\ 11 six ste!>s are df'scriherJ i Il ~I('t.ail in t.h(' fol1owing 

sf'dions. 

4.3 Deterlnining the Match Criterion 

Snpposf' t.hal, two all"l(' l11f"aS1l\'(,l11pnt.s:r. = A, + êi l and y, = Bi + êi2 are oht.aincd 

f."om t.h(' suspf'rt. and spf"C"Ïnlf'n l't'spcctiv('ly. ft must. be dccidf'd whE'thel' t.h('sf' arc 

two IIU'aSl1\'f'I1I('nt.s of III(' sal1l(' al1de. III t.cl'lns of hypot.hcsis I,esling il. is df'sil'f'd 1.0 

tE'st, 

VCI'SUS, 

H. i5 asstlll1f'c! t.hat fil and E" are indf'pendent, with Eil '" N'(O, O'?I) and êi, '" 

N(o,l1?,). 

{llIder 110 , f.(.r, - lli) = 0 and tlar(.fi - y,) = t'aJ'(Xi) + t1ar(YI} = 2f1?, whrrc 

(Ti <lrllot(,8 t.hl· common standard deviaf,ioll of :ri and Yi. lIencr an appropriat,f' I,('st. 

shtiRt.ic (givrfl t.hat. (fi is unkl1()"'I1) is, 

XI' - y,' T:: 
V2Ûi 
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which is Ass1Itn('d t.o follow A st.andard normal di~t.l'ihl1t.ion. ThC' 11111\ h~'p(ltlH'sjs I~ 

l'ejcct,ed fol' larg(' valuC's of t.hC' t.('st st.at.istic. That. i~, for 1'1'1 > Z(Ï) wll('J'(' :(~) IR 

t.he' 100(1 - 1) !l('ITC'IIt.il(' poillt of t.hp st.andard nonn,,1 <Iistrihllt.jon. It """'<lins to 

f'st.imat,(' t.1lf' mraSllfPnwnt. ('l'roI' st.andanl drviat.ion "1' 

OC'rry, E\'dt. 1\nd Pillchin (1992) appl'o1\rh t his pl'OhlC'1lI Ily t ilkill~ dllpljnltr f1H'a-

SlIfPmrnt.R of a largC' samplP (218) of frap;l1Irnt. 1C'lIgt.hs (all('lr~). Stlppos(' t.t",t .1',. "fHI 

:ri, are' two meASIIf(,Tnf'nls of ail all('le' of IPngt.h AI' i= l, ... ,218. Thal. is, 

:rI. - AI + ê ll 

:rI, - AI + ê'2 i = l, ... ,218 

whcrc {II and (" arC' t.h(' ('ITors assodilt.rcl \Vit.h ('arh trlC'aSIlIf'fllC'nt. ",ith l'III'(tII) =--

dist. ri hllt.ion. 11 is asslfIllrd t.ha t. t hr st.a ndard dt'viat.ion of t.1J(' lII('aSlln'IIWIl t ('!'l'Of «(1,) 

is dir('rt.ly proport.ional 10 t.lt(' t l'IIr all("l(' IPngt.h AI! ilnd "his asstlmpl ion "PI)(,;lf S 10 

t,he ('st,irnat,p of "1 is gi"rn hy, 

.. (:r'1 + .T'2) 
Ui = C 2 J01' i = 1" .. ,218, (' (l'1lll1lhlOl/I7I ('Ou.~'(l1Il. 

On t.he 01 "pr IUIIHI, m;Îng 1.11(' Rample st.andard d('\'iat,ioll has('(l 011 t.WO ohs('rvat.ions 

yiC'1 ds 1111 ('st. i 111111.(' of, 

Equat,ing t.ll(" t.wo ('st ill111t('S yiC'lds, 

or )·CRt'fa.ngmg, 
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For ('adl ('sf.imat('d aUple sizf' t.llis (1Iléllltit.y WMI cfllclllRf.cd and t.he rnean valllc of (" 

WRR fouml hy n('J'I'Y ('1. al. 1.0 hf" 0.008. Baird ct al. (W86) <,stimat.e c = .0012 bélsf"f! 

on 70 dllplicat,f" fTIf"aSllreJn('lIl,s. 

'1'1 'f 1 1 < 0008 /i}(2:,+1I.) lUS 1 :rI -]J, _ . z~vt. 2 t.hen a mat.ch hrl.wepn I,hf' t,wo allf"l('s 

Iwillg fTlf'asllJ'(,c\ is <!cdarf'd. TIJ(' choice of Z(~) varif's bct.ween lahol'atorif"s bllt. it 

is fJ'f"CJlI('ntly chos(,11 1.0 hf' an inl('g('r k, with 0' ~ 0.05. Fol' ('xamplf', at. on(' tim(' 

Lirf'co("l('s IIsf"cI A· = 2 (Baird d, al., 1986) bill, as of 1989 were IIsing k=~ (Bf"rry, 19!)1). 

This Illat.dl CI il('lion is l.h(,11 flpplif'd 1,0 t.hf' elltirc profile, 011f' locus Rt a 1 ilnf', and if 

t.!J('I'f" is a maldl al. ('\,('ry illcliviclllailoctls l'xi'mined then if. is saÏfI Illal. I.hf" pl'ofilf's 

arf' a matrh Il ('II ('('fOI 1 Il il. will h(' ilsslIlJ1C'd t.hRt a mat.ch has h(,(,11 (lf'r1ar('(1. 

4.4 Establislling the Boundaries of tlle Bins 

ln g('Jl(,l'al, if a hill is c('f1I('I'f'c1 al'OlInd an allcle of size A., t.he hOllnclarif"s of t.he 

bi Il s h otll<l nol. hf' dOS(,l tlUlI1 2 sla 11<1 a .. c1 dev i a t iOlls of t. he meastl!'(,lI1f'n t. ('l'I'or on 

t'ilh('r siclr. This is 10 ('t1Slll'f' t.hal. i'pp,'oximatcly 95% of the measurrmC'nt.s which 

roulc1 1)(' <111(' t,o illl('lf" A, al'f' indud!'d in the hin. The f'xart posilioning of the 

hOlll1clarif's S!'('IllS t.o hp SOI1l{'what. al'hit.I'al·Y. In Sf'cf,ion 3.].2 il was RhoWIl t.hRI the 

hf'sl loci 10 indtldC' in 1 h(' pl'OlÎ1!'s arc lhose fol' which the alleles are f'qllally fJ'('{\IIC'lll. 

IJI t.llC' malrh-hinning appl'Oach t.he all('le relat.ive fr('quencies are est.imatC'd hy t.he 

fOI'rf'spolHl ing bill tf'liI t i \'!' rJ'{'qll('IICirR wh i dl implies lhat. i Il the idea 1 situaI. ion t.1J(' hi ilS 

woulcl hr {'CJuipiOhahl", and lod ::;ho\ll<l he rhosf'1l with this il! mimI. AItC'rlllllÏvC'ly, 

bin hO\ll1<lilri('s may h!' acljust.f'd RO as t.o more dORcly appl'oxilllat.e such a IIl1iform 

(llIde fl'<,qllf'llcy di~t.l'ihution. 

Th(' fi.rrd M" Ol'l",,,urh Rd,:;; 1 h(' hin hOlllldaries in IIdvanc(' and may IISC' t.\j(' same 

8('1, or hins for clilTf'l'f'llt ÎII\'('sl igal.iolls. ny cont,fast thf' floulillg bin Ol'l11''''''(,/' ('f'nt('l'S 

a hin arolllHI an)' all!'l!' rOllnd in t.hf" DNA l>l'ofilr of the slIspect./Ap('dmf"lI. For 
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each case t.hr float.ing hin trchniqt1r n'<\lIir('s tillmlat.ion of an ('IIt.il'f'ly IU'W s('t of hill 

frequrnc1C'f'!. H, if'! import.ant 10 not,(' I,hal. "malching" and "fallinp; in t.1H' sanH' hin" 

arc 1101, prf'ds('ly ('ql1ivalrnt.. Al\rlrs \Vhi..!. filll in adjil(,(,Ilt. hins may lIIat.ch, ",hil.' 

allf'lrs fallil1g éll opposit(' rlHls of t,hr Sillllr hi" lllélY ilOt. 11f'('('ssc\rily n\('rt.IIH' lIlat.dtill~ 

(" ri \.rrioll. 

4.5 Estirnating the Bin Freq\lencies 

ln order to rstimat(' Ih(' prohilhility of" rarHlolllly ('hosf'n individtml havil1K fi UN" 

pror.tr whi('h maf.chrs 1 Ital of 1 hr SIISI)('d, (i.('. P( "'Il')), il is first. II('('('SS<II y t.o 

C'st,illlat.c· t.hr individllal al1('I(' l'plat ivf' fIC'quc'ncÎ('s. 'l'II(' ('st.illlat.ioll PIO('{'SH IlilH Iwo 

st.agrs. Thr O,st. st.agf', as Illf'nl.iollrc\ pn'viollsly, (,ollsisl.s of ('St.illlill.inK t.hp individllill 

a lIc1r 1'('1 a "ivr fl'('ql1f'IH'i('s hy 1 h(' COI'I'('spOIl<li ng hi" n,la I.i v(' fl('<lII('II( i('H. Tilt' S('('Oll( 1 

st.agr invol\'('s ('st imal ion of 1 lU' hin l'<'Iat.ivc· ft ('<\IIf'ncÎps IIsing il simple' 1 arHlom salllpt.· 

froll1 t.he' populatioll. Fol' r"rh hill Il III Il I1r l' j, j = 1, ... ,1" ft poilll. ('st.illlat.ol' (i,,) of 

t.he hin rclilt.iv(' fl'{'CJII{'I1('Y is oht.ailled. Thrsp f'stil1l<ll.ol's <ll'(' show" t.o hf' IIllhias('cI 

and \.0 havp small "<l"iélncr fol' larg(' N. In addil iOIl t.11f' ('0 va 1 iilll(,(' I)('l.w('('1I t.WO hin 

l'dative rl'rq\l{'n(")' ('sl,inu.t rs is <I(,l'i\'(·<I sinn', <lS will tH' ShOWIl, I.ltis is 'lIt iluh' ·",ioll of 

t.he hias in t.h(' rst.im<lt.(' of hrk,07.ygol,r r("I"l.i,,{' rl'('qllC'ncy. COllfitl('IU'(' illt.f'I'Vids fOI 

t,II(' hin l'e'IAI.iw· fr('qllrll('Y rsl illl<ltc's élH' "Iso (1('1 iw'cI sill(,(' I.h(' If'"gt.h of t.It{'s{' illl,c', vals 

givrs an ilHlicat.1ol1 of 1 h(' "<lli<lit.y of t,lw ('st.i III il \'ors. Fllrt.lwr il. ItilS t){'PIt sllgg('st.f'd 

hy LAnde)' (WS!» "Ital. thr "ppc'I' ~m(71) (,cHlfid('IIC(' lilllil. bf> mw<l in plan· of 1 II(' !,oiut. 

estimélt.e in an at.trfllpt. t.o h(' cons(·l'vative. 

4.5.1 Point Estirnator for ]lj 

A simple' nlllclom sillnplr of N illdividll<lh:; is t.ilkell from I.hC' poplll<ltion. l':adl slIbj(l('t, 

Îs rXfllnÎnrc! élt IO('lIs i to s('r which <l11r'lc's ar(' PH'S('Jlt. OJI t.lI(' t.wo chrolllosOHlf'S wit.h 
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lhal. locus. For f'a('h or t.hf' 2N dllomosomcs in t.he samplf', t.he obsf'rvat.ioll rf'cordcd 

is t.hf' irHIf'x Illllllhf'r of t.lw hill iuln which 1.11<' allf'le al. 10('111'1 i falls. 

SUppOSl' 1 hNf' arf' fi hins in tol.al. Suppose furlher th al allcle A., falls inlo hin j. Let. 

x] <1('1101(' 1 hf' I.o(,al Il\lllll)('r or ohl'l(,J'val.iolll'l for bill j. Under t.he C1I\'I'ellt assmnpt.iol1s 

(XI, ... , X,,) has a mlllt.inomial (lisl.l'ihution wit.h parametel's P1l j = l, ... , fI, and 

2N. Thus, 
['(X)) - 2NIJj Vje(l, ... ,h) 

lIm'(Xj) - 2Nl'j(1-1']) Vje(l, ... ,b) 

'l'II(' maximum likf'lihoo(1 poiut. f'st.imalol' fol' 1'] is : 

1;,=;~ Vje(1, ... ,b). (4.1) 

For ('arh hill, tl1<' f'slilllafc'cI Plohahilit.y ohl.ained from 1.1 is assignf'(1 t.o ail of t.h" 

alll'Iic t.y(Wl'l il1 1.llf' hi". '1'01)(' conl'll'I'vat ivf', if an allelf' in I.h" suspect./spl'cÎl11f'n profi1t:' 

li('s on Hu' hOlllHlm y of I.wo aclj(l(,f'llt. hil1s, or if il. wllld h('long t.o anotllf'1' hin dlle' t.n 

llH'aSllr('lllf'nt. f'1'I01" il is a!ll'lign('(1 t.o th" higllf'1' rl'f'qllf'J1('Y bill. St.andard muJt inomial 

t,)WOI'Y giv('s t.hl' following r(,l'lults : 

['(.7') ) l'} V j E (l, ... , h), (l'J ttnbiased) 

" (lf' (1') ) = J'J(I-PJ) V jE (I, ... ,b), 2N 
, 

Cm J(])} , lÎd - -JlJJlJ VjE(l, ... ,b), j :f k. 2N 

Not.e' t.lIat. thf' varianc(' is an indicat.ion of U\t:' bias III the cst.imat.ed 

fl'('(II1f'I1("i('s, This is ('asily Sl'('n since (undcr IlWE), 

Vm'(];J) = [(l'~)-[[.(p}W VjE(I, ... ,b) 

= ['(]'~) - "~ 
= [. {(',qtimalcd homozygote "'equency} 

- {tfltC homozygote f7'cqucncy} 

homo7.ygot.t:' 

Similtll'Iy, th(' c(l\'arÎanc'(' is Etll inclkat.ol' of t.he bias in ('sf.imalf'd h"t<'fo7.ygo!.(' 
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frc<]uencÎcR sincC' (und('1' I1WE), 

C 01'(1') dÎd = f{J', l'k) - [(,,) )E(I'k) V j E (l, ... , l,) 

~E(21Î}lÎk) - 2"JPk 

= ~f {c8timalcd "dcl'Ozygofc .f1'Cq/lt'1H"!I} 

- {"'lIe IIcft'rozygoff' .f1'eqtlt'lH'Y} 

lIrllcP t.hC' C'stimat('d h('t('ro7.~'got(' and homozygot.(' fl'('(\II('llci('s ar(' aS~'l1Iptol ically 

unbia.qed. 

4.5.2 Confidence Intervals for Pj 

Method 1 

ConRcI('l1cf' int,(,l'vals fol' l'), .i= 1", . ,h, nl'C' mmnlly <I('\,('l'l11ill<'<I 1\sillg t.l1(' Ill('l.ho!\ of 

Goodman (Hlfi:'). OC'1l0t.illg fhC' IO\V('I ami Uppf'f C'lldpoint.s of !.II(' fOllri,I"II!'(' julNv,,1 

by 11) and CT, rf'spf'ct.iv('ly, Goo<llllfln's llH't ho<l yidds, 

lJ + 2X) - J IJ(lJ + IIXJ ( 2~-;;'iJ) 
Lj= VjE(I, ... ,b) (.1.2) 

2(2N + 13) 

/J + 2X} + J 1J( 1J + IIXJ ( 2~-:J» 
R) = 2(2N + IJ) V jE (l" .. ,b) (.t.:l) 

wh('\"(' n = \H~) is t.hC' 100(1 - i) )>(,l'('('IIt.il{' point. of a chi-sqIHH(' distrihlllion 

wit.h 1 df'gl'C'c of fn'l',\ol11. Th(,sl' inl.(,l'va\s ('an b(' d(·I'ÏVl·d in t.h" following \Vay. A 

sct. of b confidC'I1('C' intC'l'\'n\s tUP 1'C'(f1lil,,<I (011(' for ('afh l'J' j=I, ... ,hl SII('h t.Ilf1t. 1.11(' 

siml1\tanf'OIlS cov(,l'ngC' pl'Ohahi\it.y of ail Il iul.c'I'vals is al. Ipasl. 1 - (). 1. .. 1., 

CJ = confidC'I1(,C' iute'l'val for 1')' for j E (1, ... , IJ). 

Now let each C), j=), ... ,b , have' covelïlge probabilit.y () - i ):rhell il fullows f .. uln 

a simple TlonfC'rroni iJlC'q1Jalit.y t.ltal, 

li li 

p(n (')) > 1- E P(ë)) - ] -0', 

j=I 
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wJIi'J(' r) c!f'1I0tC's t.I.C· C'\'('nt I.lIal. Pl falls within confidcnce int.crval Cr Now, 

where Z '" N(O, 1) 

whirh impliC's t.hat, as N --+ 00, 

ThcrC'forC', sd "J and R, ('cillaI t.o th(' t.wo solut.ions of t.he {jlll\drat.ic ('flllat.ion in 

2N(I;J - 1)} )2 

PJ (1 - II}) 

1.0 ollt,ain an int.erval !llIfh thnt 

P(f,} < l)i < RJ) 
{} 

- l-ï;' 

Solving '1 A yif'lds, 

2 " + B ± /ll)(~+ B 2";1
2

) l'} w V.J N @ - N 

Pi = 2( 2~ + 1) , 
o 

whe,'c il = X~( b ) 

whirh IIpOIl tllf' !luhstil.llt,iol1 JI) = fF;, yidds aCter simplificat.ion, 

JJ + 2X) ± VJJ(fJ + IL\'}.;~) 
1') = 2(2N + /3) 

0' 
VjE(l, ... ,IJ), B=xf(ï;)' 

Th('sc are thC' intc'n'al C'ndpoint.s givcn by equations 4.2 and 4.3. 

Method II 

(4.4 ) 

Goodman's intC'l'vals I\rC' t.l1(' most. fl'f'cluently usee! I\It,hough a simplf'f, I\IHI pf'rhaps 

11101'(' fall1iliar, sC't of (l - ~)% ronfidf'lIc(, int.('rvl\ls are given by, 

jE (1, ... ,b) 
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---- ------------------------------------

wherc Z(j\) is t.he' 100(1 - ~,) pC'l'ce'nt,ilC' point, of t.h(' st,andilld 1I0llllal disfrihlljjon. 

Thcs(' intf'rvals ar(' symmC't.ric rlho\lt. the' point. e'st,illlrlt,es (wlH'rc'as Goodlllan's illt('r-

vals ar(' not,) hut. t,h(')' may yi(,ld f'lulpoillt.s which ar(' less t.hall ~C'I'O or !!,f'('ilIPI 111él1l 

one. 

'lb il1ust rate' t!te' clirrf'l'('tI(·(,S ill t he' IIWt.!to<1s just. dl'snilwd ("ollsid<'r (.IU' followillp.!; 

example. 

Tahle 1 Conrid('lIcf' Int,<'rvals for Pl! j = 1 •... ,5, N=1!) 

mn Hangf' XJ Point. 9!;(l() LCL !)!)%UCL m',% L(:L m', 'X, '1(' L 
Est imatf' 1\1 C'f.!toc\ 1 Mpt.!tocl 1 Mpt.hod Il f\ 11'1 ho.! " --

1 0- noo 12 0.1,' 0.1211 OAlns O.()SH n.:m:,(; 
2 901-n90 R o. Hi 0.0682 0.:l:11!) 0.02<i!) ().',w:,r, 
3 m)1-10r,0 li o.:) 1 0.1951) 0.1)220 0, WH n':,12<i 
4 1Or, 1-1200 6 0.12 0.OH7 O,28~:J O,OOJ(i () 1:'H 1 
5 1201-1300 ï 0,1,1 0,0;'61 O,:J082 () () 1:16 Il 1(;(; 1 

---------

Fot, t.his ('xalllpl(' t.h('I(' (lI'(' N=2!) stlhj(·rt.s 11('11<'(' 2N=!)O iIHI<,pf'IH!<'1l1 ()h<;I·I'"at.ioll~, 

ail of which ar(' fIla<1f' at. 1.11(' Srllll(' (hypot.llf't.Ï<'al) loc\ls, 'l'III' .. anpp or possihll' • .11(·1(· 

sizes ha ... h('('n (Iivid('c1 illt.o 1) hills, Th(' l'ange ('olmlln ilH!irat,('s Hu' hOllllflill y si7.(·s 

of th(' hins in has(' p<tirs. It. is st.ancl<tl'll prad,ice t.o pool UI<' low fJ('qlH'IU'y hills t,C) 

obt.ain a minimum or riv(' O('(,,\II'I'C'n('('s ill <'rleh bin. This is I.o'avoid havillp; hillq wit.h 

C'xnpt,ional1y small hill rIPCI'J('lu'y ('sf.illlaf.('s, siu('(' n'I .... ,in tan' rllIl·I,·s may 1101 have' 

app('ar('d in thf' sampl(', 'l'hl' hill rangl's and cOlln"s arc (,()lIIplf'f.('ly hypot Iwtif'al 1" 

pract.ice t h('l'(' \\'ollld hl' m<ln)' ltIoJ'(' hills and t.he ohs(,J'v('d Il lit Jllwl in ('a( Il hi" wOlllfl 

usually he lowC'r. 

4.6 Relaxing the HWE Assumption 

1'11<' assmnption of JI\\'E is (''l'lIcial t,o ail ca\cllla"ions p(,l'rortJl<'fl f.hlls fin, ,,"d flll' i~­

sue of whl'th('1' this is rl'asoll<lhll' is cont,f'lItiolls. It. is UI('I'('rOI'f' wort.hwhill' tn fOlIsidf'r 
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t.he cOl1seqllf'n("('s of frlf.qrly a.sslIlIling JIWE. IL will be shown that althollgh t.h{' hm 

!rrqu"71ry f'st.irnators arc IInrhangf'd (and stillunbiascd), the est.imators of homozy­

gol,f'/Iwl.f'ro7.ygol.f' frf'cI'lf'nrif's will he il 1 1.f'l'ed. This is indicated t.hrollgh thf' VéHian('(' 

and {'ovariall(,(, of t.hf' hill frf'f!IIf'ncy ('stimators respcctively. That. is, 

f(i'~) "(l7'(IÎ)) + f{pJ)2 = t'm'U))) + 1'~ f orall j, k = l, ... ,1, 

ê(2f;J1Îk) = 2COl'(IÎ), Pk) + 21')I'k TI j, k = 1, ... ,11, j f; k. 

ft is t.hus import.ant. 1.0 know how t.hf' variance and covariancf' arc rt(ff'cfc·fI hy an 

inrt(,clII'rtt.f' rtSSll 111 pl iOIl of I1WE. 

Thf' IIWE <lsslIInpt.ion allows liS 10 (,ollsidel' ail of the 2N trirtls t.o bf' indf'!>f'lldf'nf.. 

ln piut.iclIlal' il. ('IIS1II'('S t.hat. Iwo t.rials on t.he same suhjf'ct, one rtt crtch chromosome 

wit.h t.hf' locus ill qllc'st iOll, will 1)(' indf'pclldf'J1t.. Dropping t.he nWE élSSlIlIlpt.ion 

l1If'ilnS thal. I.h('rf' is only in<lf'!>f'ndf'llc(, hf't.w(,{,11 t.rirtls on d;ffe1'fml individuals. Th(' 

x) 's no lOl1gf'r ('OIl1f' from rt nlllltinoHliai dist.rihlltion. Mcndcll rtnd Simon (1981) show 

how rt df'partllrc from "WE afff'd.s thC' variance (<lncl rovariancf') of t.he f'sl.imal.f's. A 

more' gf'llf'rai Jllf't.hod for cilklllilt.illg t he variance is illt.roduced - one which clof's not. 

dep{'ncl on (X" ... ,Xh ) having il mlllt.inomial distribution. 

The prob<lhility l') may he f'xprcssecl as follows, 

l 0 

l') = 1'11 + '2.1'.lh V j," E (1, .. . ,b), j f; h (4.5) 

wherc, 

l'JJ = prohahi!it.y t.h~t fi rilJl(!omly ('hos(,11 individual is homozygolls for fll1 ~11('1(' in 

bin j (not.e t.h.\I. l'JJ = r; uml{',' IIWE), and, 

l'J" = prohahilit.y t.hilt a rallclomly chose Il inclividual is heterozygous for an al1c1e in 

hin j and ail a 11('!(' fl'OIII n1l y ot.her hill. 

Now 1<'1., 
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KJJ = nurnh('I' of individuals in t.h(' samplp who ar(' hontm~ygol1s for élIl allel(· i" hi" 

j, and, 

K)h = nmnh('r of il1<1ivifillals il1 I.h(' sampl(' who t\I'C )H't.(,I'07.ygolls fol' an all(·I.' ill hin 

.i and an all('l(' from ony Ot.ll(,1' bill. 

Since th('l'(, is now only on(' ohs<'l'vat.ion h('ing 1'('('ol'(l('d fol' (,t\ch slIhj('d, 1.11('1'(' is 

ind('p('nd('nc(' hf't, W('('11 ail (N) Il it\ Is. 'l'Ile' 1 éllUlolll Vél l'ia hl('s X JJ ilIul X ,l, ('0111(' [1'0111 

a rnlllt,inomilll distrihllt.iol1 h(,I1<'(' Ilw llIélXillll1l11lik<,lihood ('stilll1lt.OIS fol' l'/) <111<1",1. 

arc giv(,11 hy, 

A S)) 
T')) = N' 

which giv('s t.h<, ('st.il1lat.or, 

j, Il E (1, . .. , 1,), j i- ". 

This is NllIivill('l1t. 1.0 (·ount.illg "II t.!1<' illdividl1ill 0(,('1II'I'('II('('S of illl(·I(':; ill hin i as 

bdol'e, h('II('(' t.hr f'st.imal.ol' is 1IIlcltallg('(1. St.élml;lI'd 1111IIt inollliai t.lwOIy yi('lds t.ht' 

resnlt,s, 

j,", ~~,m E (1, ... , b) 

whn'e j '# ~., (lnd Il = ~., m = j rfl7mol O('Cl/1' ,qimlllf(/11f'oll,Qly, 

The following t1WOI'('1II i"dinll.('s t.ha!. alt.hollgh the bill fH'qIH'II('y (·sf.illlaf.f'H J'('IIw,ill 

IIlIbiasf'd, t.hf' val'imu'(' of t.lU'S(' ('sUllla!.(·s is illcu·ascd. 

Theorem 1 

\1 ( ') l'} (1 - l') ) 
al' l' = 

J 2N 
~ 

t..'ar;'mce 
mu/rr 
/lIVE 

+ 
2 

l'u - 7J) 
2N 

-------fUlId;on of the dil ference 
br/",cru thr true prolmlnhly 

of homozygosity and 
tI/ni l'f'(~rlid('rl tUlllcr 

IIWE 

2; 

VJE(I, .. "b) 



Proof 

1 ( , ) l' (A 1 A ) 1 (Ir lJ1 - 1 (17' IJ]) + "2l'Jh 

_ "a7"(I;1)) + ~ \1 (I1'(jJ)h) + 2COv(j'11 , ij~h ) 

11)](1 -IJ))) + IJ)h(1 - PJ/t) _ Pnl'Jh 
N 4N N 

(4,6) 

Now P; = l')) + ~IJJII illlplic·s 1')1t = 2{]») -l'n) and hf'l1c(, straight,rO!"WiHd suhstit.lI­

t,ion int.o ,1.6 yic'Ids t.he !"('Stall., 

Theorem 2 

Proof 

v j,~' E (1"",,,) 

-l';l'k 
2N -.....,........ 

(,OI'm'l (111 ce 
t/7ule.,. 
IIlV 1~ 

+ PJk - 2PiPIc 

~ 
fuucfion of the diffcrence 

bd 1/1('"n ," f 1 ru (' 1)7"0/)(1 hi 1 il JI 
ol hdC1'oz1l9o, .. itll and 
lirai lwcdirtrd 1mdcl' 

IJW /.; 

wh('f'e j, h, ~', 111 E (1, , .. , l,), j i: h, A· i: m, j f. ~. 

f[U'n + ~i')I' )(i'u + ~Pkm)] - C{TÎJJ + ~lÎjh )f(pkk + ~i)I.'m) 

f( A A) l "( A A) 1 C'('" A) l ,,(... A ) 
- l'nl'H + 2'"' P))l'km + '2(;. 1')hT'kk + 4'(;. l'J/,l'km 
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= Cov(Pn,Pkd + ~COV(]jn,Jhm) + ~C()P(PJh,';U) 

+ ~COV(Plh,Pkm) 

where j i= h, 1..- i= m, J =1= k 

Expanding 4.7 further yields, 

C ( '~) C (~ ~) le (A • ) 1", (' ') ov P." Pk = ov PiJ, Pkk + 2. ou Pl]' PI.m +"2 C 0/1 P)h, l'u 

( I.~) 

V J, h, k, mE (l, ... , b), j i= k, h =1= J, fi =1= ~'. III i= ~'. 111 i- J. 

Now recall that, 

C ( A ') PlltPkm 
OV Plh,Pkm = - N ' 

where j i= k and h = k, m = j cannot occur simultancolIsly. Thlls 1.8 1H'('oll lI'S , 

1 1 1 1 1 
Cov(pj, Ih) = - N[Pj3Pkk + '2PnPkm + '2PJJPk1 + :ip)ItPH + ~I')I.PU l' 

1 1 l l 
-PJhPkm + -PJkPkm + -PJhlJJ..l - -pJdl - IJJd], 4 4 4 4 . 

V j,h,k,mE (l, ... ,b), j i= k, IL =1=), h i- ~:, m f.:. ~:, TIl i J 

1 1 l 1 ) 1 
= - N[PJJ(Pkk + '2Pkm + '2PkJ) + '2PJh(PI.I .. + },IJl.rn + ~PI.J) f-

III 1 
2Pkl(Pkk + '2Pkm + '2Plk) - 4P1k1 (II !J) 

V j,h,k,m E (l, ... ,b), ) i= k, h =1= j, h =1= 1.:, m f=.1.', m =f.) 
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Further, 

1 
'rIh=l-j Pl = P11 + 2"PJh, 

1 1 
'ri h =1- j, h =1- k = Pn + '2PJh + '2PJJ" 

1 
'rIm=l-k Pk = Pkk + 2Pkm, 

1 1 
'ri m =1- k, m =1- j = Pkk + 2 Pkm + 2Pk] (4.10) 

Suhstitution of 4.10 into 4.9 yields, 

1 1 1 1 
- - N (PnPk + 'iPlhPk + 'iPlkPk - 4Plk ] 

1 1 
- - N(P1Pk - 4"Plk ] ( 4.11) 

Substit.ution of -PJPk = -Pt' - 2P~'Pk into 4.11 yields the desired result. 

Clearly the ppnalty for falsely assuming HWE depends on the extent to which 

HWE condi tions are violated. 

4.7 Remarks 

Although match-binning (primarily the fixed bin method) is the most commonly used 

approach to DNA profile analysis, it has many drawbacks. Not the least of these is 

the necessity of declaring a definitive match or exclusion. Suppose for example that 

two ON A profiles are identical except at one locus where the allele measurements 

do not meet the matching criterion. Regardless of the number of loci that were 

used to construct the profile it would be necessary to declare an exclusion. It is 
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possible however that the one nonmatch cou Id have been due to 0 N.-\ degradat.ion 

or other technical considerations (see Chapter 2). In addition, d match bctWt'ell two 

measurements which barely meet the matching criterion is given t.he sanlt' weight a.s 

a match hetween two that are virtually indistinguishable. Clearly sOllle informat.ion 

is heing lost. It would seem desirable to have an alternative d.pproach in which it. 

would not he necessary to declare il. match or exclusion. Instt'ad t.he iwailal1ip ON A 

evidence would sim ply he expressed in a quantitative manne\'. Snch ,ln a.pproilch is 

presented in the following chapter. 

31 



Chapter 5 

Bayesian Approaches 

Each mcthod outlined in this chapter is based on a distinct set of assumptions, al­

thongh the samc Baye~ian procedure is followed. Each section will outline the as­

sumpt,ions, the procedure for estimating allele relative frequencies, and the resulting 

likelihood ratio. A final section on evaluating the goodness of fit of the models is 

included which arrlies to any of the proposed procedures. 

5.1 A Density Estimation Approach 

Although the problem of declaring a definitive match or exclusion is avoided by the 

Bayesian approach, it is still necessary to estimate the allele distribution in order 

to estimate R. Instead of discretizing the problem as do ne in the match-binning 

approach, Berry (1991) assumes a continuous allele distribution and applies a density 

estimation technique. 

5.1.1 Model and Assumptions 

Initially only a single measurement will be considered (i.e. the DNA of the suspect and 

specimen is examincd at one chromosome locus only ). The approach will be extended 

to consider two measurements at the same locus. Let x and y be measurements of 

alleles with true lengths A and B, in the suspect and specimen respectively, at a. 
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particular locus. Although Berry does not explicitly specify a rdationship bct-ween 

true allele lengths and measurements, it is instructive to consider a model of the fOrlll. 

x = A+E".4 

y = B + E"B. 

It will be assumed that, 

(i) the population is in LE and HWE with random mating, 

(ii) &(x) = A and &(y) = B, 

(iii) the meaSl1fement errors E"A and êB are independcnt. hoth withill a 10clIs alld 

between different loci, and, 

(iv) the measurements are lognormally distributed with constant. standard deviat.ioll 

c. That is, 

log(x) '" N(v, c2
) 

log(y) '" JV(/1-,c2
). 

The values v and Jl reftect the true values of the allele sizes in t.he sllspect and specimen 

respectively. If the suspect is guilty then v = /1-. 

If the true allele sizes A and B are not equal then assurnption (iii) is justifiablc! since 

x and y are then measurements of distinct alleles from DNA examined on t.wo spr)(!ral.e 

gels. On the other hand, if the suspect is guilty then x and y are two mcasurcrnents 

of the same allele, and hence the measurement errors are linkcd th1'Ough th" commrHL 

allele. Conditional on the true allele size however, they are independent.. ThiLt is, 

p(x, yi!) = p(xlI)p(yII) (5.1 ) 
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and, 

p(x,ylp,G) ::: p(x,ylp,p == v) ::: p(xlp,p = v)p(ylp,p ::: v). (5.2) 

A set of duplicate measurements analyzed by Berry support his lognormality as­

sumption. They also support the assumption of a normal distribution with standard 

deviation proportional to the allele size (the latter assumption was detailed in Chapter 

4), but t.he lognormality assumption is chosen to simplify calculations. 

5.1.2 Estimating the Allele Distribution 

To obtain an estimate for the likelihood ratio R one must first obtain an estimate for 

the postcrior distribution of the allele sizes. Berry approaches the problem as follows. 

Let Z ::: (z}, ... , zn) be the allele measurements obtained at a specifie locus taken 

from a simple random sam pIe of ~ individuals from an appropriate reference pop­

ulation (issues smrounding the choice of this reference population will be discussed 

in Chapter 6). Under assumption (iv), log(z,) l'V N(p" c2 ) for given Pl! .. , ,Pn. Let 

Pi, Z = 1, ... ,n be independent and identically distributed (i.j.d.) random variables, 

and let H(·I Z) denote the (posterior) conditional densi ty of the population of actual 

allele lengths given the sample of reference population measurements Z. An estimate 

of H('IZ) must be obtained. Berry suggests four possibilities using a smoothing ap­

proach with normal kernels. The first estimator attempts only to take into account 

the effect of m('asurement error. 

By assumption log(z,) '" N(p"c2
), i = 1, ... ,n, and hence for each i a reasonable 

estimate for Ili is log( .:,). The Zj are measured with error, however, and hence it 

would be inappropriate to use the empirical distribution of the log(zt}, i=l, . . , ,n, as 

an estimate of H( ·IZ). Instead the contribution of each z, is taken to be a normal 

distribution centered about log(zd and these are averaged across an i, i=l, ... ,no 
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Define, 

This estimator however, does not adjust for the sampling variability. Certa.in 

alleles may he underrepresented in the sample (or may not. he present. al. ail) and t.his 

could bias the likelihood ratio in favour of guilt. 

As an attempt to compensate for the sampling variabilit.y Berry proposed the 

following estimator, 

where U(Nt, JV.2) is a uniform density on (N" N'2]' This range is chosen <;0 as t.o include 

aIl possible values oflog(=I)' Clearly H2( 'IZ) 1S the same type of estimator as IÎ'('IZ) 

except that it includes a uniform base to ensure that the rare all,'le frcqllcllcies will 

not be underestimated. The value of n* may be choscn accol'ding 1.0 wh.Lt it Îs relt 

the minimum allele frequency should be. 

An alternative method for dealing with sampling variability proposcd hy Berry Î:; 

of the following form, 

This estimator is of the same form as H1('IZ) with the smoothing paramder h in­

creased. This aUocates more probability to the lower freqllcncy alldes (the "tails" 

of the allele distribution). Since Îf3 ('IZ) reduces to lÎ'('IZ) whcn h=1, set.t.ing 0=1 

accounts for measurement error and setting b > 1 accounts for sarnpling variahilit,y 

as weIl. Berry suggests values of b in the range 1 ::; b :S .5. 

As a fourth possihility, Berry combines aU the above estimators, 
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The lise or slIIoot.llf'rs in t.his df'lIsit.y csl.illlfltioll process llil!~ bf'f'1I nit ici?f'd on 

I.he grolllHI" 1.1",1 il. is nol, fOIlS(·Ival.ive·, "Il.hough the Plohahilit,y or rnlr alh·lrR is 

\'f'illg hooslrd ln fI(ljust. for snmplillgf'nor, I.his is donc at, t.he f'xpcnsf' of thf' highf'r 

prohrtbilily ;t1l(·I(·s. Thal. is, t.hf' pl'Ohrthilil.y eRtimal.cs of tllf' morf' (0111111011 allrlrs 

",'C lowpr M fi rf's"It. of thp slT1oo1 hing. Sin('f' il. is 1110rf' lil<dy t.hat. t.hr promf' of t.lIP 

s""prd. will colltaill I.hrRe morf' common flllf'IpR, the 1>!'OcpfltII'f' pttts t.hf' d(·r(·lIff' .. 1. fi. 

,Iis;ulv;tIll.agr in 1 his sr!Hw. "" .. It'·l'Imt.i\'f' sllloot.hing t.rdllliqnr, sllgg'·Rh·fI tn B"II'y 

hy E\'('U (S('(' \J,." ". H)!)!), in,·oh·f's sll1ooll,illg U,;tl. ilH'I'(·;ts(·s t.hr lowrl f"'q,u'II('y 

,·still1;tt.f'R huI. dnf'R Ilot. ,lf'('If'rtsc ally of t,hl' highr.r frp(IIH'nrÎf'S, This or ('omsf' wo,,"1 

lesnlt, in ;t t ol.;tl "rllsity Alf';th'r 1 han OIlC', hut, wonlel ddillit,ply he cons(·rv;tt,ivp. 

A sIIggrstion n!;t,lr hy Clarl norT ill his C'OIIlmrllts on t.hr l1('rry (1 mu ) fII,tid(', is 

t.o rst,i",nl,r t Ilf' plO\,;thilily of allf'h's which do not. flpprin in t.hr snmph' w:;ing t.hr 

",rt,hml or Hohhim:; (l!)ftR). AnOlding to Hohhins t.hf' fof"/proh;thility ",hid, sllo"I(1 

1)(' ;tllm'ntJ'd to IIl1o\'s('I'\'('d ('",rnls (alh'lrR in Ulis C;tSf') in ,ln rxpf'I imrlll, ",il h Il possihlf' 

ontcolllf'S may Iw f'sl ÏlI1i\h'd Ily IIIf' numh"r of singlet.on OIl(.(OIllC'R in ail rXIH'IÎmrllt, 

wit,h II-II t ti .. IR. Th .. l, is, III(' nllllll)('1' of lilllrs t.llf'rr is ollly olle ohsf'l'vrd f'\'t'Ill. in 

.. (· .. kgory (in Utf' rOf('nsÎf sl'l 1 illg .. n,I('golY l('r('IS t.o .. hin, ami m, r\'('II1. f(·r"Is t.u 

ohsr.ving ill1 ;tl\('lr I11rilS1ll'f'I1H'IIt, in t.h;tl bill). II. ('ail hr sh()w" Ihill. "his ('s'illl"tol' if! 

IIllhiilS(·'1. E\·(·tt. f!11~grRf.s t h;tl • hif! (,Rt i" ... !.ot' coulfl he "s('d "0 (let.l'flllillr I.h,' si?(· or 

Imiro"" hilR(' 'n "R" ill B('IIY'f! Îll(·IZ), 

5.1.3 EstÎlnating t.he Likelihood Rat.io 

The cho!1f'll (,f!lÎlIlilt,()f' of II( ·I~) ilia}' no", hl' tlf!rd t.o cst.imilt.e I.Ilf' likdihood lalif) /1 ill 

'hl' following \Vay, (Sin('(',,11 pl'oh"hilil.ics MC (,;tIcIlIi\t.C'd conditioll .. 1 011 t.hr il,l(lil iouill 

p"id(,I1(," E, I.hif! will Il(' SIlPIU ('s!1rc! f,ol1l I.hr rétlc"lat.ions.) 

If 1 hl' ilRSlIlIlP' iOIl is fIl"d" 1 hall hr ("'f'II' G is ilHlrprncJf'III, of I.h(' If'frt'rlH'f' R;tll1plr 
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Z (a. reasonahle a.~slllnption), the likt'lihood rat.io H can h(' r('wriU('n ilS follo\\'s, 

R 1>(XIG) _ ,,(r,y,ZIG) 
,,(XII) - p(r,y.ZI/) 

,,(r,y,Z,G) ,,(/) 
,,((i) ,,(r,fltZ,/) -

p(r,y,Z.G) l1!.ù1?1-
r(G)r(Z) p(r,v,Z./) 

p(r,yIG,Z) = p(x.y,Z,G) p(/,Z) 
,,(G,7,) ,,(r,y,Z,/) - ,,(l tyl/.Z) 

= p{r,I/II/=II,Z) 
"(".1117.) 

Considcr t.he numcrat.or rin~t., 

which hy 5.2 I)('comcs, 

p(:1',1I11' = JL,Z) - f 1'(:dl"l', " = JL)rI(lIl",JL,11 = ,,)dll(,LIZ) 

f ,,(·1:11', Il = 1,)II(yI/L, l' = Il)(I//(,tlZ) 

f iJ( log( :r: ) ) f) log( '1) , 
- lln~(r,( log(.l'» ~ llo~(y, (Iog(y)) ô' d 1/ (/IIl-) 

cr 11 

wl1('rc !loS{.T)( .) and lI08(1/)( .) <1('1101.(' t.he mm mon IlHlI"gilli\1 (I('w;it.i('s of log(.r) .",fI 

log(]J), I('f.t.illg :r atHl 11 Id('r t,o hot h t.1H' l'illldolll variahl('s illHI t.IJ(' ohSNvat.iolls roI' 

si m plkit.y. Si mita rly, IIsi IIg r,. 1 t.h(' (1(' Il o III i Il é\ t.01 llIily he wri t.t.('11 as, 

Subst.ilut.ing an ('st.illlat.or fol' 1/( 'Il) int.o t.he expressions for nlllll('l'ilt.or é\llfl ,If'· 

nominalor yi('lds ail ('st.imat.or of R. Bf'l'l'y (I('monstrat.cs thal. wlwlI i/~( ·lIq is ( hos('11 

(see ncrry, lnnl, p.18~). 
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5.1.4 Extension to Two Independent Measurements at a 
Single Locus 

Let Xt and X2 be the measurements of two alleles at a particular locus in the suspect 

and similarly let YI and Y2 be the measurements for the specimen. By assumption 

(iii) two measurements performed on the same person are independent (e.g. Xl and 

X2 independent). Realistically this will not often be the case, and factors which affect 

the measurement error of one allele will affect the other allele at that same locus. 

That is, the measurement errors will tend to be positively correlated. For exampIe, 

if one allele size is overestimated this may indicate that aIl the measurements are 

being overestimatf'd hy the same amount (a phenomenon known as band shifting). 

In section 5.2 the case of two correlated measurements will be considered. 

During the DNA analysis it is not possible to distinguish between the maternaI 

and patcrnal chromosomes and hence even if the suspect is guilty it is not known 

whether Xl and YI are two measurements of the same allele or whether Xl actually 

belongs with Y2. Let RI1 denote the likelihood ratio given the data XI and Yj' In this 

case there are two possible pairings : XI with YI and X2 with Y2, or Xt with Y2 and X2 

with Yt. Each of these pairings is equally likely and hence the overalllikelihood ratio 

(denote it R) for the locus is, 

R _ !P(Xllyt!G, Z)P(X2, Y2IG, Z) + !p(XI'Y2IG, Z)P(X2' ydG, Z) 
- ~p(Xll YtII, Z)P(X2, Y2II, Z) + ~p(xt, Y2II, Z)P(X2, YIII, Z) 

However, in order to use the likelihood ratios previously defined (RI1 , i = 1,2, j = 1,2) 

Berry defines the overall likelihood ratio R as, 

R - !RllR22 + !R12R21 

_ ! p(XI ,IIIIG,Z)P(X2,Y2IG,Z) + ! p(xl,y,IG,Z)P(Z2,IIt1G.Z) 
2 P(XIoIIIII,Z)p(,r',II2II,::) 2 P(,rhll,II,Z)p(,r',lIdI,Z) • 

If several single locus probes are used (as is usually the case), then if the mea­

surements taken at distinct loci are independent the likelihood ratios for each locus 
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are sim ply calculated as above and are multiplied together. 

5.1.5 Remarks 

The Bayesian approach works qui te naturally in the forensic setting, where ("rrors in 

measurement do OCClU, and Berry's method has many advantages over t.hat of ma.t,dl-

hinning. It does rely heavily however on the assumption t.hat for a givcn individllal, 

two measnrements taken at the same locus are independent. This is not, likely t.o he 

the case and in fact studies have shown (e.g. Berry, Evett and Pinchin, l!HJ2) that. 

these measurements may be highly correlated. The next section Jescribcs a met.hod 

which attempts to take this correlation into accollnt. 

5.2 Taking Measurement Error Correlation Into 
Account 

Empirical studies indicate that there may nut be independencc bctween llIf',Umrc-

ments of alleles at the same locus. In fact the measurement errar:; may be highly 

correlated, in which case a new approach is needed. This method (Berry, Evctt, and 

Pinchin, 1992) attempts to take this correlation into aCCollnt by estimat,ing t.he joint. 

distribution of two measurements taken at the same locus. 

5.2.1 Assumptions 

Once again consider only a single locus and suppose that, 

are the two measurements taken for the suspect at that locus, and similarly that, 
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are the corresponding measurements for the specimen. 

The following assumptions will be made. 

(i) There Îs linkage equilibrium in the population. 

(ii) The standard deviation of a single measurement error is directly proportional to 

the allele size. That is, sd(cx,} = cA" and sd(cy.} = CBi for i=1,2. 

(Hi) MeaslIrement errors are independent between different individuals but are not 

necessarily independent between two measurements taken at the sarne locus for 

one individual. That is, (eXp ê X2 ) is assumed to be independent of (CY11C1/2) but 

corr(êX1 ' CX2) = corr(êyJ , CYl) = e where e is not necessarily zero. 

(iv) The joint distribution of two measurement errors (within a locus) is bivariate 

normal \Vith zero mean. Equivalently, 

Similarly, 

Assumptions (i) and (ii) were outlined in detail in Chapter 4 and the estimator of 

the constant of proportionality for assurnption (ii) is ê = .008. Berry et al. estimate 

the measurement er~or correlation e in assumption (iii) from a sample of 218 individ­

uals exhibiting double band patterns. For each individual, duplicate measurements 

were made of each of the two bands. For a particular individuallet Xu and X12 denote 

the two measurernents of one allele, and let X2I and X22 denote the two measurements 

of the other band. The differences X1l - X12 and X2I - X22 reflect the size of the mea-

surement error. Now, for any two random variables v and w, the correlation between 
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them ( corr(v.w) ) may be estimated by the slope of the least squares regression line 

for the standardized variables. This is clear sinee, letting sd(·) denot.e the estimaicd 

standard deviation, 

_( ) ~(v-Û)(W-IV) 
corr v, w = 

sd( v ),sd( w) 

while the slope (~) of the least squares regression line for the standardizcd va.riables 

(w = â + pv) is given by, 

A scatterplot of the standardized differences, 

~«v - ü)(w - ÜJ) 

sd( v)sd( w) 

( v'2( Xn - X12) v'2( X21 - X22) ) 
c(Xl1 + X12) , C(X21 + X22) 

shows a large positive correlation which is estimated (by the slope of t.he lcast. squares 

regression tine) as ~ = 0.904. This phenomenon of a large positive correlat.ion be-

tween measurement errors i5 quite common in laboratory worle The plot. is weil 

approximated by a bivariate normal distribution which supports dssumpt.ion (iii). 

An important point is that assuming that there is correlation between measure­

ment errors does llot violate an assumpt.ion of HWE. The assumptÎon of HWE mercly 

states that the true population allele frequencies are independent and makes no st.at.(~-

ments about the measurement error. For this method the assumption of HWE is 

omitted sim ply because it is not necessary. 

5.2.2 Estimating the Likelihood Ratio 

Let Z = {(Zn,Z2.),(Z12,Z22)"",(Zln,Z2n)} be a reference sam pie of fragment pairs 

taken at random from the population. If individual i is homozygolls then z .. = 
Z2i. This is completely analogous to the reference sam pie in the approach of Berry 

(of Section 5.1) except that since the two measurements fol' one individual are now 
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correlatcd they must be considered in pairs. Aiso let E once again denote aU evidence 

othcr than the DNA evidence. The likelihood ratio is given by, 

R = p(x, filG, Z, E) 
p(x,fiII, Z,E) 

(5.3) 

where the hypotheses of guilt and innocence are once again denoted by Gand 1 

respectively, and where, 

denotes the fragment lengths obtained from the suspect, and 

denotes t.he corrf'sponding fragment lengths obtained from the specimen. For conve­

nience the addit.ional evidence E is suppressed from the notation since it only influ-

enccs the posterior likelihood through a multiplicative factor. Further let, 

represent the corrcsponding mean vectors of x and fi respectively. It is important to 

keep in mind that here fi and v refer to the true allele lengths, whereas in Section 

5.1 they were the means of a lognormal distribution which merely reflected the true 

allele lengths. 

Let the joint density of Xl and X2 be denoted by !(xIJi) where f('I') is a bivariate 

normal density. That is, 

f(xlM - 1 1 (_ .)T(~)-l(- ~) 
1 exp - - X - 1-' ~ X - 1-' 

1l:12(21r) 2 

where E = c2 ( I-'~ 
e,ltl-'2 

denoted f(filv). 

el-'tf2 ). Similarly let the joint density of YI and Y2 be 
1-'2 
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Consider first the numerator of R, (see equation 5.3) wherc tht-' likt'Iihood IS ht'ing 

evaluated under the hypothesis of guilt. Under this hypotlwsis ii = il. Sinet' it. is 

assumed that measnrement errors are independent bt·t.wcen indi\'idllals, conditional 

on the true allele sizes p, the measurements .r amI if are indt'!wndcnt (SCt' Sl,ct.ion 

5.1.1). Using the independence of the reference sam pIe and tht' <tllt,ll' IllcaSIlI't'llll'nts 

i and fi the numerator of R becomes, 

p(i, filC, Z) = J J p(i, ylii, ii, a, Z)dH(jiJiIG, Z) 

- J J p(iIP, c, Z)p(fiIP, c, Z)dll(fllC:, Z) 

- J J f(ilii)f(ylii)dH(jiIZ). 

AH that is required for evaluation of this expression 15 an t'stillléLt.e of t.!H' ,dl!'I(' fr{·­

quency distribution H( ·IZ), whlch will be discllsscd in th(' next. :wctlOII. A <;illlilar 

approach may be used to deal with the denomlnator of R which is t!val\J<I.t.{~d IIIHh'r 

the hypothe5is of innocence. Under r,.i: and y are independcnl. (sec Section !l.l.I). 

p(x, ülI, Z) p(xll, Z)p(yII, Z) 

- p(xIZ)p(yIZ) 

- J J p(ilii, Z)dH(j1.IZ) f J p(ÜI /i , Z)dJ/(iiIZ) 

Using the LE assumption, the values of R obtained for the varions loci in I.h{~ profil('s 

may be multiplied together to obtain the ove raIl likelihood ratio. 

5.2.3 Estimating the ABele Distribution 

The same methods are llsed as in Section ,5.1, except that inl:it.ead of sTJloot.hing with 

univariate normal kernels, bivariate normal kernels are used. This yields an estimalor 

of the form, 

Î/(·IZ) - ;; t.N ( ( ;:: ) , (be)' (zJ' z].)) 
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wherc b is the smoothing parameter. As previously described, b=l accounts for 

mca.surement error while b > 1 adjusts for sampling variability as weIl. The correlation 

bdween Zia and Z'll is taken to be zero although this is not usually the case. This 

is (jonc as sampling variability is by far the dominant reason for performing the 

smoothing (the reference sam pie will by necessity be much smaller than desired). 

The correlation betwecn Zh and =2" caused by measurement error. is insignificant in 

comparison and is thus omitted to simplify calculations. A further attempt to adjust 

for sampling variability is made by including the fragment lengths of the suspect in 

the rcference sam pIe Z. This avoids the situation in which the fragment length of 

the suspect falls in a region where there were no observed fragment lengths in the 

reference sam pie. This estimator ~,f the allele distribution may now be substituted 

for H('IZ) in the numerator and denominator of R. 

5.2.4 Single Band Profiles 

Up to this point ail methods have assumed that if the suspect/specimen exhibits a 

single band pattern then it is that of a true homozygote rather than a heterozygote 

witi! one band which for sorne reason was not visible. The likelihood ratio estimation 

procedure may be adjusted to take this phenomenon into account. 

Suppose there is a situation in which the suspect has fragment length measure­

ments (Xl. X2) with Xl < X2, while the specimen has only one measurement y, which 

is close to X'l' Berry, Evett, and Pinchin (1992) give a complicated formula for cal­

culating the likelihood ratio R in this situation. It may be derived as follows. First, 

the numerator of R is considered, which is evaluated under the hypothesis that the 

suspect is guilty. That is, it is necessary to compute the likelihood that the specimen 

actually had two hands (close to (Xt,X2)), one of which did not appear. By the Law 

44 



--~- --------------------, 

of Total Pl'ohahilit.y the' 1111111<'1',,101' of Il h<'('omcs, 

Using Ihs. 1 he condil ion"l illll"!>('IHI"Il(,(' lIud,'1' <: nI' ,r alld !I gÎVI'II t lU' t l'lit' "I\"lc' 

lcngl hs ji, (\1111 s('('oncl 1 he assll III pt iOIl t.hat. the allc,I(' llu·aSlll'l'IIH'llt.S "l't' illdl'lu'lIdc'lIt 

of t.he f('f"l'cnce S('1. (1,) alld t.\u' hypot.lH'sis of gllilt, yidds, 

l)(X, ylG, Z) - f J 11( i 10, Z, it )p(!lIU, Z, Il )clll (j'IZ) 
- f J !(,i'IMI'(uIMcl//(fiIZ), 

(5..1 ) 

W"CI'e' f( "') l'('f(,l's sl)('c'ifirally 10 a lIol'lllal dC'lIsit.y 1 Il Il ct iOIl éllld II( ,l,) l'(·f(·l's Hilliply 10 

the pl'Obahility of an (·vent. Let, 

11I(/i) = tlJ(' pl'ohabilily of OhSl'l'villg a (Iollhlc halld P"U('I'II ",h(,11 allc'I,'s of le'II~1 hH 

Sin('e y is clos(' 10 J"~ il will h(' asslllllcd 1 hal y is a I1WaSlII'('III('IIt. of iIIl ,,11t·1,· or lt'IIgl Il 

1'2' Wilh lhis lIot.al ion 5..1 I)('('(uncs, 

l'('qui l'('S ('si Îmal iOIl of 111 (Ii) ",hich lIlély pl'ove a di flic Il Il 1 ask, As illl "It l· ..... 11 i V(' 

appl'oach, c'onsidcl' 1.11(' followillg, Il is I\IIOWII t.llitl, lIlIdel' (l, t.ht' oliwi "1II1:-'SÎllg" 

band mllst. h(~ appl'oxÎmat.ely of It'lIgth :/'1 sill(,(! I.11l' sllIgle! 1IJ(',11HlI'('IIH'lIt ,1/ \VilS do:.,,' 

m = the prohahilit.y Ihal. t.he slIIallel' band (of 1('lIglh approximal('ly ;1'1) wOIII" lIav,· 

shoWIl gi vcn G, 

ln t II(' {'xt l'('me, if IJJ= Illien t Il(> sllsped ('ollld Ilot have ('ollllllit t.ee! 1 lu' crill\(, sin('(' if 

he/sile IIad t.lwn allot 11('1' hand wOllld havc' hec'II vi:.i\'I(', wJ.irl! it WilS ilOt.. 'l'III' (JI iii III it.y 
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JII lIIi\y 1)(' IISNI as ''IIl ('st.illlat(· of m(ji). This (·s!.illlal(' will he V<'ry af(,lIrat<' fol' 1 rue 

allde lengt.hs 1'1 tllal arC' silllilar 1.0 :1'11 wltirh arc th(! lcngths of most. import anrc. For 

those I('ngl hs whkh arc ilOt. do~e 10 ;,." J(ilii) will be small, reducing t h<, adverse 

(·rr(·rts of poorly (·sl.imat.ing 711(;"). The 1l11IJWrat.or of the likelihood he('()m~s, 

A lt,hol1gh n<'ITY, EvcU, alld Pilld.ill do ilOt. explicitly stat(' tha!. Hw)' al'c \Ising 

!.II(' (l'lallt.it.y 11) as ail c'sl Îlnal(' of SOIllC Illorc ('omplirat.cd fUlictioll which d<'lwnds Oll 

t.he t.rlle alle'le 1('lIglhs (111(,;)), il is Sllsp(~ded lhal t.hey also followed the ahovC! line 

of l'easoning. 

Now rollsidc'r III(' d('llOlllillal.or or R, ('olllplIlcd 1111<1('1' the hypothcsis of illll()('(·llcc. 

ll( .i', Y Il, Z) 1I( .i·11 , Z)I'(Y 1 J , Z) 

- ll(yl/,Z) J J J(.rliL)dll(,iIZ). (5.5) 

'l'II(' douhle illt('gl'allllay hf' ('vaillat('d usillg the t'slilllated allde dClIsit.y Il (,illn an<l 

with .f( -1-) as a normal (I(·nsit.y flilldion. It l'l'mains to estimatc p(yl/, Z). l Tn<!('1' t Iw 

hypot.lH'sis of inno('('lu'c lh(' ohs('rved fl'agnwnt lengt.hs cOlild have ;uis"l1 fl'om two 

difr(·J"(~nt. Sf(·néHios. Eil hcr, 

(a) t.h" SP('('ÎIlH'1I is 11)('a811I'ahly homozygolls (i.e. has fragments which arc so close 

su élS to he 1I11J'('solvé\bl(' hy ('\liTent techniques), or, 

(b) t.lw SP('('ill\t'1I is )U'l.crozygolls \Vit.h a sCfOnd band which did Ilot appear. 

J)"fillf' 1 Ilf' following (·\,(·IIt.S. 

Il = t!U' ('VClIt. t.hal t lu' t.wo bands are 1l1(~asurab)y homozygous, 

IJ = th(' ('\'('nl t hat. Il hand lightt'r than y appears in the profile. 

------------------------------------------ -- ----



In t.('l'ms of thC' ('v~nt.s A and IJ 1.111'1'(' al'(' th."c'(! di~joillt possihiltti('s t.h"t (·"pl.,ill 1111' 

O("("lIl'1'(,IIC(, or a singl(' lIIC'asun'lIlC'lIl !1. Lf'lling;\~ de'note' tl ... COlIIl'Ic'IlWllt of C'\,('lIt A, 

these t.Il1'ee possihilitic's JJ1ay be.' Wl'iUc'lI ilS, A<'W, 1\ [J':' ami 1\11. Ld., 

m.- = 1J(BI/,Z), and 

h = 1)(/tll, Z). 

Using t.his notat.ion and the fMt. t.hat Nlr u ABC U AJJ = AL /Jc U" 0111' oht.\iIlS, 

- l)(yll, Z, AC W)lI(A r l/, Z )p(WI/, Z) + JI(yll, h, A),,( Ail, Z) 

(rdi) 

Now, 

p(yIJ,Z,NJJC
) = f jP(UI/,Z,NJJc ,(II,Jt))P((I"/I)lI,Z,ACW)I/'/(llt 

= f 1 p(yl/, Z, fiC Be, (v, Il) )J)( (l', It )11, Z, AC IJL )("1/1/1 + 
11<1' 

= f p(yl/, h, Il)p(,tll, Z)llit. (1).7) 
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A Iso, 

1'(yl/, Z, A) 

(5.8) 

Now suhst if lIling !l.7 i\IHI 5.8 illt.o 5.6 yields, 

IJ(yl/,Z) = (1 -111°)(1-11)/ l)(yIJ,Z,/t)l'(ltl/,Z)dl' + 

J ' (]'(Jtl/, Z))2 
" p(yIJ, Z,/l) f(1)(/tl/, Z) )2(JJl . (5J)) 

Suhstitllt.ion of .~.H into .1}) yi('lds Bprl'y's l'esult fol' t.he cl"llOminatol' of n. 

5.2.5 Remarks 

Although mali)' pI'OpC'J'I j,·s of t II(' DNA pl'ofiling dat.a arc incol'pol'ated into this modd, 

a phellolllt'llOlI knowlI i\S flallking l'('gioll polymorphism has Ilot becn addl'('sscd. This 

is ('ollsidl'I'('c1 ill the followillg sectioll. 

5.3 Considering Flanking Region Polymorphisnl 

ln "('i\lity, ",Iwn the' DNA is cnt. wit.h a rest.riction enzyme, the l'cslllting fl'agnl<'lIts 

hi\v(' Ilot only an illt('gral llulllhC'1' of l'('\lcat nnits, but. also a stl'C't.rh of DN A 011 
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either side of these repeats which is called the flanking rcgion. For certain restriction 

enzymes only one flan king region size 1S possible. For others. howt~ver, there art· 

many possible flanking region sizes which may result. Devlin, Risch, and Roeder 

(1991, 1992) incorporate this flanking region polymorphism mlo lheir Il\odt·l. Tlwy 

take a mixture model approach, and the EM algorithm for mixturt's i8 IIs(·d t,o obt.ain 

maximum likelihood estimates of the model parameter8. 

5.3.1 Assumptions 

Suppose that Xl = al + &al and X2 == a2 + €a2 are the two measurl'ment.R oht,ained 

from an individual at a particular locus, where al reprcsents the t.rue allcle length. 

The following assumptions are made, 

(i) Random Matiny: It is again assumed that individuals mat.e at. random with 

respect to their genotypes and hence that there i8 indcpendence betw('cn all<'i{'s 

within loci. For example, al i8 independent of a'l. 

(ii) It is assumed that there is independence across loci which lmplics linkage cqui­

librium (LE). 

(iii) Measurement errors are assumed to be correlated within a locus hllt. IIncorrelat,ed 

between different loci and different individuals. Let tal and t'll have correlat.ion 

coefficient ç. One procedure for estimating e was outlined in Section 5.2.1. An 

alternative estimation technique may be found in Devlin, Risch, and Roeder, 

1992. 

(iv) The individual measurement errors are normally distribllted wit.h rnean l.cro and 

standard deviation proportional to the size of the allele. That is, 

ê a , 'V N(O,ca,). 
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From repeated measurements of the same aile le Devlin, Risch, and Roeder es­

timate c to be .5x 10-3 • 

(v) The joint distribution of two measurement errors (for an individual at a single 

locus) is bivariate normal. Let g,)(Xl, X2) denote the joint density of the pair 

(XI, Xl) given that Xl and X2 are measurements of alleles of size A, and Aj 

respectively. It follows that 91) (Xl, X2) is a bivariate normal density with mean 

vcctor (A" AJ)T and covariance matrix, 

(vi) It is assumed to be impossible to obtain Xl > X2 if Al < A2 • If Al and A 2 are 

very sirnilar then the correlation between Xl and X2 will be close to one hence 

the measurements will be very tightly clustered with Xl < X2 at virtually al! 

times. Conversely, if Al and A2 are not very similar then observing Xl > X2 

is very unlikely and is not allotted any significant amount of probability in the 

joint normal distribution. Henceforth Xl ::; X2 will imply Al $ A2 • 

5.3.2 Model 

Let .r == (Xl' X2) denote two measurements obtained from an individual at a particular 

locus. In the multiple flanking region scenario it is possible that two alleles with 

differf'nt n11mbers of repf'ats may still have the same len~. If there are b possible , 
numbers of repeats and L possible flanking region sizes then there are at most bL 

possible allelic types. Let the unique allele lengths be denoted by a(l), ... ,a(A), where 

A ~ bL. If coalescence is ignored for the moment then the probability density of a 

pair of measurements is approximately given by, 

(5.10) 
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This is only an approximation because the extremely rare case \Vhen Al = .4'2 but. 

Xl =1 X2 is ignored. This density may easily be modified to takc the possibility of 

coalescence into account. The modified probahility dellsity for a. single band pattern 

may he written as, 

where 8(t, z) denotes the probability that two measurcments of size :: + t and:: - t 

would coalesce. The first summation in f*(::,::) is the probahi\ity that t.he mea-

surement actually represents a true homozygote. The second slIInmation Il'present.s 

the probability that there were actllally two distinct measurcments which ,·oalcsccd. 

Hence the probahility density for a pair of measurements taking coalesCf'lIt'e inl.o 

account may be very accurately approximated by, 

5.3.3 Estimating the Likelihood Ratio 

Let HI denote the null hypothesis that the suspect is innocent, and let HG dcnot.c the 

alternative hypothesis that the suspect is guilty. Let the likelihood rat.io he clenot.ed 

R, 
R = L(x,üIHG) 

L(x, [jIHI) 

where x = (Xl, X2) and fi = (Yh Y2) are the measurements obtained from the slJsped 

and specimen respectively. Furthcr let PI denote the probability of observing an alleic 

of length a(i) in the population. Consider the numerator first. 

L(x, fjlHJ) = f(x )f(fj), (5.12) 
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where J(-) is defined as in 5.11. If coalescence is ignored, use f(·) as defined in 5.10. 

Now consider the denominator of R. If coalescence is ignored. this may be written 

as, 

Xl = X2, YI = Y2 

otherwise 
(5.13) 

where 9i(') denotes the density function for a N( ai, 0';) distribution. This likelihood 

may be casily modified to account for coalescence. An important feature to note is 

that if either Xl =1 x2 or YI =1 Y2 then, under /fa, it is known that the suspect/specimen 

is hetcrozygous (since it is assumed to be impossible for a true homozygote to exhibit 

a double bémd pattern). Thus, 5.13 becomes, 

L(i, filHa ) = 

E~=11)~91(zd91(Z2)+ 
EI<J 2p,p; J~ 91;(Z1 - t, Zl + t)8(t, z1)dt· 

f~ 9,)(=2 - t, Z2 + t)8(t, z2)dt 

Ea<J 2PIP;9aJ(Xt, X2) J~ 9i,(Z2 - t, z2 + t)8(t, z2)dt Xl =1 X2, YI = Y2 = Z2 

La<J 2plPj9iJ(Yb Y2) Jooo 
gi,(=l - t, Zl + t)8(t, zt}dt Xl = X2 --'= ZI, YI =1= Y2 

Given an estimate of the measurement error correlation ç (see Section 5.2.1), 

it remains only to estimate the aIle le distribution (i.e. to obtain estimates Pi for 

j = 1, ... , A) in order to estimate R. 

5.3.4 Estimating the Allele Distribution 

Suppose that in the reference set (of allele measurements for n randomly chosen 

individuals at a particular locus), n* double band patterns were observed, and let 

them be denoted by xJ = (xJll X l2 ), j = 1, ... , n*. Under the assUlnption of random 

mating these 2n* measurements are aU independent. In addition, suppose that the 
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reference sample contains (n - n'") single band patterns, and let them be indexed hy 

j = n- + 1, ... ,n. That is, the single band measurements in the reference sill11pl(' 

maybe written as Zn.H'''',';n, where =, = (z],z]), ) = n"+ l,. ,Il. Let.\ = 

(XI, . •. ,xn., zno+1! ... , zn) denote the entire reference sam pIc of measurpnwnts. In 

the multiple flanking region case different alleles may have the same Icngt.h, where.ts 

in the single flanking region case, alleles may be uniqucly indexed by t.he IImnher of 

repeats. The two cases will thus be considered scparately. 

Additional Assumption 

The errors for two meaSl1f€'ments taken at a single locus will be assulllcd to be uncor­

related. This greatly simplifies the calculations for this section <tnd Oevlin, Risch, a.\HI 

Roeder feel that it will not affect the results in a significant manne!". This élHS1\J11pt.ioll 

is not made for the other parts of the analysis, only for the estimat.ion of the .tllde 

distri bu tion. 

The Model for One Flanking Region 

Suppose that cutting the DN A (at a particular locus) with a pal'ticular enzyme rcsult.s 

in only one possible flanking region size, denoted by u. Let, 

ar = u + rp 

where ar is the length of the allele with r rt!peats, each repeat of length (J, and u is the 

single flanking region size. Unless coalescence has occurred, the observed measure­

ment of an allele of length ar is u+rp+e where ê is approximately normally distributccl 

with mean zero and standard deviation O'r={5.75x10-3)ar • Let 9r{') denotc a. normal 

density function with mean ar and variance 0';. 
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Let R* denote the random variable for the numher of repeats and let ~r denote 

the relative frequency of an allele of length ar • That is, 

7r r = p( R· = r), r = 1, ... , b. 

Since only one nanking region size is possible, the different values of r index aIl the 

diffcrent allele sizes. That is, 

Pi = 7r1 , i = 1, ... ,A = b. 

This will not hold true in the multiple flanking region case. 

Letting x = lt + rp + ê, the probabilty density function of a single measurement 

x may be wriUen as, 

f(xl?r, u) - L.~=lP(R· = r)p(X = xl?r, u, R* = r) 
- L.~=l7rrgr(X). 

Using the additional assumption that errors for a pair of measurements at a locus are 

independent, then for a given double band pair (xJll x J2 ) = (u + rlP+êll u + r2P+ê2), 

the joint probability density of (xJJl xJ2) may be written as, 

where ir denotes the vector of allele relative frequencies, (?rI, ... , ;rb). 

The probabili ty of coalescence is modelled as a function of average measurement 

length (= = ~(XJl + xJ2)) and the difference between the two measurements (t = 

~IXJl - xJ2 1)· This estimation procedure is outlined in this section. Letting 8(t,z) 

den ote the conditional probability of coalescence given t and z, and letting C denote 

the ev(>nt of such coalescence, the likelihood of the data if a double band pattern 

(x II , X ;2) is observed is, 

L(xJll x;2Iir, u) - f(x JtI xh 1*', u, C)p( C) + f(x11l xJ2 lir, u, ë)p( ë) 

- J(xJJ 1*, u)f(xJ2 1*, u)[l - 8(t;, =;)], 
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where ë denotes the complement of C. Simtlarly, the likelihood fo\' a. single ba.nd 

measurement =J is, 

L(=,li, u) - f~ f(=J - t\i, u)f(=J + tli, u)8(t, ::))dt 

::::: l:~tf(::J - tkl1i-, u)f(::J + tkl ff , Il)(5(tk, ::J)~1. 

where tl, ... ,tM is an evenly spaced grid, and ~k = tk+t - fk. Hence t.lw likelihootl 

of the entire set of data may be written, 

L(dataliT,u) ~ n;:t(f(xJliT,u))(J(YjliT,u))[l- (5(lk,::j)] 
n;=no +1 ~f:tf(=j - tkl iT , u)f(::j + tkl ir , U)b(tb ::j)~k, 

(5.1.1 ) 

With prior estimates of band 8( t,::) the quantities tt and 1i- may he cst.imat.ed hy 

using the EM algorithm (see Appendix B for details). 

The Model for Multiple Flanking Regions 

Suppose that now an enzyme is used to eut the DN A which result.s in L difrel'(hlli. 

flanking region sizes. The allele lengths may be written as, 

arl = UI + rp r = 1, ... , b, 1 = l, ... , fI 

where UI is the [th flanking region size. Let ù == (ut, ... , ILL) denole t.he Vl'dor of 

ordered flanking region sizes. The observed measurement of Ilrl may be wril.t.en iLS 

x = UI + rp + e, where e "-J .N(O,t7;I) with {Jrl =(.5.ï5xlO-:.I)ar /. Let !Jr/(-) dŒlOle 

a normal density with mean ar/ and variance t1';/. Let "Irl denot.e the allele rdat.iVf' 

frequency of an alle1e of size arl and let cPl dcnote the proportion of d.lleles wit.h flan king 

reglon SIze U,. Again let 7rr denote the proportion of allclcs wit.h r rcpea.!.:;. Clea.rly, 

and, 

b 

cPt = E ,rt, 
r=t 

L 

7rr = I:: ïr/' 
1=1 
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----------------

Rccall that in the multiple flanking region case the probabilities 7rr , r = 1, ... , b 

are not completcly analogous to the PI 's, i = 1, ... ,A as they are in the single flanking 

region case. Instead, 

PI = L "tri, 

whcrc t.he summation is over ail rand 1 sueh that arl = a(I)' 

Analogous to the single ftanking region case. the probability density of a fragment 

measurerncnt x = UI + rp + ê may be written as, 

L b 

f(xlü, ii', 4» = 2: L ''Irlgr/(X - UI - rp). 
/=1 r=l 

As a simplifying asslImption it will be assumed that the variation in flanking 

l'egion size and number of repeats are independent. That is, 

Irl = rPl'rrr V l=l, ... ,L, r=l, ... ,b. 

The probability density of a single fragment may then be written as, 

L b 

f(.1;I7i',~, ù) = L 1>1 L 7rr gr l(X - UI - rp). 
1=1 r=l 

The likdihood of the data may be written exactly as in 5.14 but \Vith f('li, u) replaced 

by J(·Iii',~,ii). That is, 

L(d(lialii',4>,ù) ~ n;~l(f(x)Iii',J,ù))(f(YJli,J,ü))[l- 8(tk,Z))]' 

+ n;=ne+l E'::lf(zJ - tkl i , J, û)f(z) + tkl ir , J, Û)8(tk, :J)Llk. 
(5.15) 

If prior estimates of L, b, and 8( t, z) are obtained (discussed in the following 

sections) then the ENI algorithm may again be used to obtain estimates of i, il, and 

~ (see Appendix B for details). 

Estimating the Number of Flanking Regions (L) 

The number of possible flanking regions L may be estimated by cutting a sample 

of DNA fragments with two different enzymes and comparing the results (Devlin, 
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Risch, ami Hoed{''', 1991). Lc'I '-.:1 t!t'lIot" ail t'IIZ)'lIlI' whid, Il'sUIt:; ill /, dill'l,It'l1l 

flallkillg n'gioll si:,ws al a jlnrticular locus, L lI11kIlOWIl. Ld ":1 dC'IIOI" .111 l'IlZYIIH' 

which rf'sulls in oilly olle r1allkillg rq~i()11 :,i~I', Fm'tlu'I'Iet. (XI" X l.d ilnd (Xl" Yu) 

dCllolc llw ohsprvc<I fragnH'1I1 It'Ilgt Ils al. il palli( ulal' Im'lIs u:;illg ('IlZylllt'S /.; •• 1IIt! "-'1. 

respcd,ively, Thal 18, 

Taking di ff('rcllccs yicl<ls, 

wl)('r(' t. Il is <Iiffc'l'c'lICt' is lIorlllillly cl ist ri bu (Pd wit.h IlW(\1l III - W alld vill'i.ult'(' (1 (UIII//') f 

O"fwtTJP)' For ('ach individual in t lU' sa III pic' t.ht.'se dill'l,I't'l1c(,:; art' comp"lt'd, and tilt' 

l'f!slIlt should yield /, diff('I'('lIt dll~t.t'I'S, silH'C' 1.11<' l'freds of /'1 alld l'l h.IV(' IH'('II l't'III()\'t'd 

Estimating the Number of Possible Alleles (b) 

As an C'stilllai (' of tlH' 1H11Il1)('r of possible a Hele si~cs, l)C'vliu, H is('h, alld Uc)('dt'r ( 1 !)~) 1 ) 

suggcst, 

b = (L - S) 

fi 

wllC're Land H arc 1.11(' If'ngt.hs of t.he IOllgc'st. and shorlC'sl ohs(!rvc'c\ fragll)(,lIts I('SI)('( -

tivcly, and fi is t.he le'lIgt.h of tlle rcpeat. 

Estimating the Coalescence Pl'obability 

ln order to estilllatc t.he prohahilily of cOoles«'uce for two élllde Hl('aSIln"IIH'II1.s ,,. alld 

y, Dev1ill, ni~('h, i\lIti l(o('()('1' (!!)!)O) modc') il as éI fllllClioll of Uu' ilVl'r.ll.!;t' dislall( (' 

(T) hptwC'C'n t.he' two IllC'aSUrt'IIIC!lIts, T = I.L;YI, Fol' ally pail' of IIWaSIII('/JU'1I1s ,f) il/Id 
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YJ th~ probability of coalescence is reflected by (1 - ~) where 0; and H) are the 
) 

ohserv~d and expcct(~d number of heterozygotes for the interval containing T. Let CJ 

dl'not.e the midpoint of this interval. Devlin. Risch, and Roeder found that a plot 

of (1 - 7t) vers1Is c] for various pairs x) and YJ was weIl approximated by a logistic , 
mo(ld. For the exact model see Devlin, Risch, and Roeder (1990). The fitted model 

rcprc')ents the estimated probabilitles of coalescence (h"(T. =)) for various values of T. 

This procedure cloes not take into account the fact that the probability of coales­

cence depends 011 the mean fragment pair size, ;; = X';Y'. Larger fragments will be 

more likcly to coalcscc thil,n shorter fragments since they do not travel as far in the 

gel and hflnfC do not have as much time to separate properly. Although they daim 

that this dl'pcndence on = will have little impact on the results, Devlin, Risch. and 

Roeder (1!J90) suggest a method of including it in the model. assuming there is a 

linear relationship between = and the probability of coalescence. 

Identifiability of the Model 

Let H = 2:;=1 Pl F) (0) denote any finite mixture. For known k, H is identifiable if 

and only if the F;( O)'s are distinct for j = 1, ... , k. If the model is not identifiable 

thcn diffcrent values of iJ may result in the same value for H. 

Consider the probability density function of an allele measurement x given by, 

L b 

f(xlti. rr, ch) = L L ;rl9rl(X - u/ - rp). 
/=1 r=l 

If either Lor b is lInknown. the modellacks identifiability. Procedures for estimating 

these quantities were outlined earlier in this section. 

ln addition. in the multiple flanking region case, there may be overlap in the allele 
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and the model is not identifiable. Two special c~es exist in which the overlap in 

the allele distributions (and resulting lack of identifiability) may be ignort'd. l'hes(' 

situations may be described ~ follows. 

(i) If the amount of overlap between the allele distributions IS 8111,\.11, Dt'vlin, Hisch, 

and Roeder recommend proceeding as though there \Vere actually 110 overlap. 

Measurements of length ar!1 1 = ar.l. would contnbutc to t.he estlnl,ltc'S of both 

"'frlll and Ir.l.' This is effectively "double counting" thesc measurt'tllC'llts but. il 

is impossible to tell whether they are measurements of an alieIe with "1 rt'P('jtLli 

and a flanking region of length Utl' or an allclc with 1"z rl'pc<\.ts and ,l flan king 

region of length Ut •• 

(ii) If for one of the overlapping distributions cPI is small, t.hen Devlin, Risch, ilnd 

Roeder recommend ignoring the rare allele distnbution, :"ince il wIll re~mlt. in 

very few observations. For example. if as before (Zr!l! = ar.l. and 01
1 

is smitll, 

then ail observations of length ar,l, (= ar2 12 ) will contribute to t.he estifllilte of 

"'fr2 12' \Vith '"'/r1 11 taken to be zero. 

Furthermore, there is a special case In which although the allele di:'!.1 iblltions 

overlap, the model is still identifiable (for known Land b). Let U and Il denote t./If: 

random variables for ftanking region size and number of repeats respecti vdy. Tf U a.nd 

Rare independent (i.e. "'frl = 7rr rpt) then the model is identifiable even if the a.lld(~ 

distributions overlap. With this assumption the probability density of il. meilsurernent. 

x may be written as, 

f(x!û, i,~) - L.t:1 L.~=I A/rl9rl(X - u( - rp) 

- L.t:1 rpl L.~=I 7rr 9rl(X -u, - rp). 

The density f(xlu, i,~) is still a mixture, only now the densities being mixcd arc, 

b 

F, = L 7rrgrl{X - 111 - rp) for 1 = 1, ... , L. 
r=l 
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To sœ thi\t. 1 1 If' 1II0c"·1 is iclcnl ifii\hlc considcl' lhe fullowing. Suppose lhal Fi. = F'2 

b b 

L 7r r !JrI.(.r - tli. - "p) = E 7rr!Jr/2(:r - Ul2 - J'p), 
r=l r=l 

This illlplic·s, 
b 

L 71", Igrl. (3' - 1t1. - 7'p) - 9r12(X - '/lll - rp)] = 0, 
r=l 

wil.t. 1\"r > 0 V,. = 1, ... , b. lIencc 1t1. = U/ 2 , 01' eqllivalelltly Il = 12 , a contradiction. 

Ali IIH'lIIhc'I'S "" 1 = 1, ... , /., IIIllsl t.llel'cfol'c he dislill<'l" alld the model i:; idcntifiahle 

(for knowlI /. aJl(1 b). 

Smoothed Estimators 

If t.I)(,l'e al'(' 1Hi\lIy all('''' fl'C'(I"c'ncics lo he estimal{'cI ili il pal'ticulal' 10CIIS the val'ianC(! 

of t.IH'se (·sHmatc·s ilia)' 1)(' high (due to sampling vi\lÎahility). Also, allele fl'cqu(!ncy 

c~st.illlat.(·s will 1('lId 10 1)(' lJ('gativcly cOl'rclatcd wil h Ilc'ighbolll'ing estimates (due 1.0 

IlIC·ilSIlI'ClIIc·nt. c·ITor). As an (\(Ijuslmelll, Devlin, Bi~('h, and Hocdel' (lH92) suggest 

Slll()ot.hillg III<' all(·I(· fl('clII('JI('y ('s1.illlales with an clIlpirical Bayes approach to shl'ink-

age ('slimal iOIl, 10 pr()clllcc~ est.illlat.ors wilh a redlJ('('d avemgc lI1('all s<jual'cd ('l'HW. 

If wc' a~sullw Ihal Ilu' 7I"r'S, l' = I, ... ,b, ha\'(' prim dislribution N(IJ,r:l) and 

t.hat. t.he c'ollclitiOlléd dis! l'ibut.ioll of llu" estil11ate ;r,., given the true allele fl'equcllcy 

7I"r is N(7I"r,n'l), fol' J' = 1, ... , b, theu an impl'oved (·stimat.c of 1\"T) cali il. 1\";, may he 

oht.aincd Ily shl'inking lowarcls the meall or t.he l~ost('riOl' distribution (i,c. towarcls 

t.he mean of l he' concli 1 ioual (lis' rihn tion of 1\" r gi V('11 t1w estilllate ,r r)' This yiclds ail 

{~st.illlat.or of t.1H' fOl'lII, 

,r; = (1 - il) if' r + BI', fol' J' = l, .. " b (5.16) 
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wh('re, 

/J = (!l.17) 

is knowJI as t.he shrillkagc fador. Tht' Siein shrinkag(\ factor giVl'II hy, 

18 éUl est.imalt' of 5.17. If,l is 1I11kllOWII ail t'lIIpil i, al Bay('s .lpplOadl COli Id h(' ma'" 

with V ("slimal<:d hy ~~~=I1Tr. This is 1I0llC'('Ollllllt'IHkd hy Devlill, Hil>ch, ,\lHI Hot'dt'r 

how('v<'I' sinœ mally of III(' a lit ,1(' prohahi li 1 Y (,tili III a "'S 'In' IJ('M ~t·1O (IISlId Il y 1 t'lIt'j 1 ill!!; 

lmly small allele relal i\'(' fr('(I'WIl<'ies), alld shrillkillg lowar<ls t1H' i1V<'ragt' will Ot.SClllt' 

lhis l'cal lire. TI\(' {'sl illlillt's shoultl l'<'ally 1)(' slI\oollwc! lo('.dly That. 1:-', l'tH t'Mh 

1rr , ('hoose a s<'paralc' t'sI illlé\t.P ;i" ,. = 1, ... , b. \)('\,1111, Hisdl, dlltl HOt'tlt'1 sll~g(':-.I. 

ohlaillillg t.11<' vr 's IIsillg 1l0npa",ullet rie l,t'I'IIt'1 rq~J'(':-.:-.ioll, wllt'J'(·by ,Î, 1:-' .1 \Vt'Ighl,'" 

avcrag(' of i,. and Il<'ighhouring ('st.imal('s n-" 1 =f. 1', wilh wC'ighls t!C't'lt,.ISillg .IS l' --,.\ 

Încr('ascs. Lel, 
b 

II; = L 1\', .fr" j'ur /' = l, ... , h, 
1=1 

whcre Kr! d('noh's IIJ(' wC'ight. allolted lo irl' Silln' tilt' dllde plObélhilili(':; • lit , IIt'ÎlIg 

est.i ma t.C'd IllI'li<' Il,· 's shoul<I SUIll 1 () Olle, IH'II(,(~ t.Ilt' si i"I<I .. I't"~t·t1 ('sti 1 Il ,al ('S ,II(' "SC't! 

given by, 

II~ = 
" 

Il; 
Lb .' fur 7' = l" •. , b. 

r=1 'Ir 

A reasollahlc choi('(\ for /\'r, i:, a lIorlllal c1(,llsity flllu'l iOIl with IIWilI' if' .\IId variflllt (' 

O'~, evalllal"c1 al. 7'". That. is, 

for " = l, ... , b, i = 1, ... , Il. This dloÎ<'e of /\', , ,dl('('t,s the rael Ulil!. 1IIf' t'01l1.1 i· 

Imt.ion of fl('ighholllÏlIg (·slilllit«·s shollld dc'pelld 011 1 he Sl.dllditl'(l (I('viil! iOIl of tllf: 
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mcaSllremcnt error, (7" i = 1, ... , b. That is, it should depend on how much false 

mcasurements of aIlcles of length a, couid have contributed to the estimate of the 

relative frcquency of alleles of length ar • Since kernel functions must sum to one, the 

f(;, '5 are standardized to obtain, 

rn f(;, 
ll.r. - ,",b }'.' for r = 1, ... , b. 

~r=l \rt 

With thcse choices the improved estimates of the form 5.16 become, 

where, 

B . [ bs; ] 
r = mzn ~b (A _ Il)2' 1 , 

"-J r=l 1rr Vr 

and where s; is the bootstrap estimate of the variance of rr-t. Since the 1rr 'S are 

probabilities the improved estimates should be standardized and written as, 

A. 
Ali 1rr f b 

1r r = ,",b A. ' or r = l, ... , . 
....,Jr=l1rr 

Devlin, Risch, and Roeder perform several simulations which indicate that the em­

pirical Bayes smoothing approach improves on the unadjusted maximum likelihood 

estimates obtained from the EM algorithm procedure. 

5.3.5 Remarks 

Although this method incorporates flanking region polymorphism and obtains max­

imum likelihood estimates of the allele relative frequencies, additional assumptions 

were required. It is not obvious which approach is the most appropriate. In order 

to decide which method is best suited to a particular set. of data it is necessary to 

evalllate the goodness of fit of each of the models. The next section describes sorne 

potential goodness of fit tests. 
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5.4 Evaluating the Goodness of Fit of the Model 

lt is neCf'SSiuy 1,0 f'vaillat(· 1 II(' goo<ln<'ss of fit uf 1 lU' esl illl.tlc·d dC'lIslly fil lit'! ion 

IVli;, 7Î", ~). 1f rtallkillg n'sion polYlIlorphism is 1101 he'ing illcOi pOfat('d, /Î éIIltl J llIay 

he rernov('d fJOrn t!\(' d('lIsity. A standard ('hi-sqllal(' goodll('ss of fit. clllcllysis \\'011111 

pro('t~ed as follows. Parl,it.ioll 1 lU' rculge of possihlt· allt'Ie siz(' IIH'é\SlIn'llIt'lIls illto 1\ 

l1olloverlapping slIhinl('rvals l'" ... , r,\. L('l (h d('lIol(' t.he· I1l1l11he'l' of ohM'l'vc'd ll\('él-

SlII'C'IlWnts fiillil1S in Il ... illlC'rval 1\, and Id. 1';1.. d"lIote, 11Il' nlllllhc'I' of 1I\('(lSIII'('III('lIls 

which woulcl he CXI)C'd('d 10 l'cllI in illkl'val 1\ if /(.; 11Î, ir, J) Wt'\(' t.11t' 11111' tll'lIsil y of 

the mcaS\II'f'IlU'IÜS. COllsid('J' t II(' t('st st.at.istic, 

J\ (0 _ li' )2 
'1' = L 1.., Ik 

1..=1 1~1.. 

In the lIRual sœnario, 1I11c1C'1' t.llt' IIllll hYI)ot.hC'sis t.hal f(.i'IÎt, 7Î',~) is t.tH' 1 l'III' d'·lIsil.y, 

this test st.al istic wOllhl he iisym pt otic-ct Il Y d ist.l'ihllt (·d as il dl i-sqlliH (' l'clIIdOIII ViII i-

able provid('d ail paréllllPIC'l's W('\'(' ('St.illliit.('d IIsilig t II(' ('(J/tIlts, (h. Tills is IIslIcdly 

very (liffinili. and 1",1'(' 1 h(' pal'allH'I('l's hél\'(' 1)('('11 ('~t illlal.e'cI fl'olll the' 01 iglllcii d.II II. 

lIenœ, as is w,,11 !wOWII, 1.11(' aS)'lIIpt.ol.i( dbl.l'ihlllioll of X~ is Ilot dli-s<JIIIII('. 1"111-

ther, coalc's('('lIce has O(,fllrl'C'c1 ill I.he lIu'aSUJ'('llIt'lIls whifh III ct Y he III1iI( ('011111('" 101 

in the d('llsit.y. The 111111 dist.rihul.ÎolI of the I,('st slalislic is thml IIllkIlOWII. lIowe'v('I, 

it may hf' eslimated IIsing MOllte Callo lIIet.hods. ;\ glOlIp of .., dat. .. ~d.s 01 ~izl' Il 

are gt>lwralC'd frolll f(.1·lit, n-, ~). Fol' ('itch of the s d,IliI S('1.8 tilt! Il oh~('1 val iOlls <11(' 

pairC'd al. l'anc!om alld tlu'lI ('oitl('sfed iH'(,OI (Iillg 1.0 t IH' est illlélled <Octll'S( ('III (' dt'lIsil.y 

b(l,.:). Forc'Mh dalit sc'I., compute!'/:, i = l, ... ,,';. T"e('llIpil'l(rtldi~t.liIJlll.ioll oft.lH! 

'/: 's may no\\' he lIs(·(1 10 (·sl.illlitl(' t.he (Iisl l'iblltioll of 1 he! (.e'st. sl.atist.i< IIl1de'l t IIC' 111111 

hypot hesis, The JI valtl(' for the goodlless of fit t.est. is 1 he proport.ioll of t.l1I' '/: 's whidl 

are large· .. t.han t.he te'st st a t.islic fol' the ol'igi liai d,II a set. Dev li Il, H iSI ", élrlll Uew"('/ 

suggest t.hal any vahlC' of s > 30n should he slIffkiC'lI1.. 



As an additional method of judging the suitability of the model Devlin, Risch, 

and Roeder (1991) discuss a way to estimate the variance of the allele probability 

estimates in the single flanking region case (var('lÎ',) for i = 1, ... , b), using a para­

rnct.ric bootstrap. Generate 8 data set3 of size n from f( ·1'lÎ', il). The n observations 

in each data set are paired at random and coalesced according to the estimated co­

alescence probability 8(t,z). The data sets are generated from the density !(·I,r,û) 

instead of from j( ·I,r, ii,~) because, to sirnplify computations, the flanking region size 

i5 assumed to be constant (i.e. a single flanking region size u). This is reasonable 

sinee variation in the flanking region will not contribute significantly to the variance 

of the aile le probability estimates. For each of the 8 data sets, the vector of allele 

probability estimates (TIJ = ('lÎ'Jll ... ,'lÎ'Jb), J = 1, ... ,B) is obtained and the vector 

of sample variances of these estirnates is used to estimate var( ,rI) for i = 1, ... ,b. 

As an important alternative approach to the parametric bootstrap, Devlin, Risch, 

and Roeder point out that an ordinary bootstrap resarnple could he performed on 

the original set of paired data. This would be a significantly better approach if the 

population is not in HWE, sinee the dependence hetween allele pairs would then he 

autornatically included in the calculations. 

Although these goodness of fit techniques give an indication of how weIl the mod­

els approximate the distribution of the DN A profiling data, concerns regarding the 

underlying assumptions of these models have not been addressed. Sorne of these 

issues will be discussed in the following chapter. 
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- ----- ---------------------------

Chapter 6 

Presence and Effects of 
Population Substructure 

6.1 The Hardy-Weinberg Equilibrium Assump­
tion 

Deviations from IHVE result primarily from population substructure. It. is oCt,en 

claimed that humans do in ract tend to form groups based on religion, ethnicity, or 

geography, and to mate within those groups. They arc inadvert.antly mat.illg lIon­

randomly with respect to their genes. ABele frequencics within a group will tend t.o 

be similar and follow HWE expectations, but treating these dist.inct. groups ilS one 

larger population may invalidate the HWE assumption. It has I)('en ..,hown t.h,tf, I.herc 

are significant differences between the allele relative freqllencies III the Caucasian, 

Black, and Hispanic populations in the United States (see for exarnple, BéLlil~H et, a.i., 

1989). In forensic calculations the reference population is often taken t.o be olle of 

these three subpopulations. It has been argued, however, that these groups are them­

selves composed of smaller subpopulations which differ with fPspect 1.0 t.heir ail de 

frequencies. 

Various statistical methods have been proposed to examine this issue, but no 

consensus has been reached. Certain groups of population geneticists feel t,hat the 
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issue can be resolved by applying statistical goodness of fit tests of HWE expectations, 

and tests for population substructure. Others feel that these tests lack the power to 

f/('t('ct Harcly- Weinberg disequilibrium when it does exist, and that the issue can only 

be rcsolved by extensive sampling from aIl these sm aller subpopulations. Clearly 

sampling from a wide variety of subpopulations could virtually resolve the debate 

bllt this is a very time consuming process and there are still issues of how far to go 

with t.ltis sampling. As Caskey (1991) puts it, "Do we use a Neapolitan or Sicilian 

data base on a fourth-generation ltalian defendant?". Statistieal testing, at least in 

t.h(' interim, provides valuable information in this regard. 

In spite of extensive work in this area, no agreement has been reaehed about 

whct.her there is a signifieant amount of population substructure, and if there is, how 

much impact il actually has on genotype relative frequencies. For illustration sorne 

statistical tests are presented in this section which have been applied with vary mg 

results. 

Hcrmindez and Weir (1989), propose a test based on disequilibrium coefficients 

(DI))' whieh measme the departure of the relative frequency of heterozygotes from 

the HWE expectcd frequeney (2pdJ)), where Pi is the estimated relative frequency of 

im aIlde of size a,. The test does not consider departures of homozygotes from HWE 

expectations sinee. to be conservative, 2p, is usually used as the estimated probahility 

of a homozygote instead of p~. The HWE assumption is thus invoked only for double 

band patterns, and departures from HWE expectations for homozygotes lS not a 

concern. The disequilihrium coefficients may he written as, 

where b is the number of possible alleles at the locus, and PIJ i5 the relative frequency 

of individuals heterozygou5 for alleles of size al and a). For two particular alleles with 
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estimate<l rrf'quenci<,s P. and i)l t.he hypotlwscs lo Il(! Il'sted (ll'<', 

versus, 

The t.C'st. :;;1 a t.islic is, 

(Le. DIl = 0) 

(i.(·. D"l"f:. 0). 

D'J. 
12 

wllf'rc 0 13 and J)23 MC' UU' clisc'CJllilihrilllll ('oc'flieic'llls hflsc'd 011 P:I = - l'. - 1'1. 

Vnder t,Il(' null hypot.llC'sis, t.llis st,fll ist.ic has asymplol indly a ('hi-s(IUal'(' disl 1 ilHlt,ioll 

wil,h one "C'grec or fr('('dom. 

This t('st was appli('d t.o t.11C' déll.a sets of the FIlI (Weil', I!)!'~, I!)!':l), ('C'III1I,'I''' 

Diagnostics (\Vcit', Wn2), alld Life'codes (Weil', H)!)2). For lhe FBI dat.a IIIC' fix('ci bill 

approarh was IIsec! 10 oht.aill t.he allelt, )'('Iflt.ive fn'(IIJ('I)('y est.illlflt.es. 'l'lU' Lifc'c od('s 

and Ccllmal k Diagnost ie c!flt.fl \V('re allalyzc'" \Vit.h t lu' (loflt.illg hill applotlc h. Ea('h 

(Iat.a set. consisted of lIU'aSUJ'('IIH'I)\.S 1'01 fl Cau('asiall, Black, allcl lIispallic' SlIbpOplll" 

lion al a vari('ly of loci. 'l'lU' FBI dflla set \Vas flll'tll('l' slIhdivided illt.o 'I('xils, "'Iol'icl", 

and Califol1lia suhpopllial iOlls. Fol' eél<'h of the loci, 1 he lIulI hypoLlU'si:-. of 110 clisc'-

quilihrilllll was t't'jc·ch'cI flpproxilllat.dy f>% of 1 he t.illU' ilt. t.he .1% IcV('1 ut sigllifi('rIlU'C, 

whid. is whal olle would expc'ct. if t.he 111.11 hypoll!t'sis W('U! t.1'1IC!. 

A crilkislll of tI.is I('sl is thal il. is do lo( al tcsl (i.C'. test.s ollly 011(' pi1il of allc'Ic's 

al a t,inll') with only olle d('gr('e of fl'cc·do"., alld as a result. may haV<' low l)(n"'(·I. 

The noncenl.ral chi-scl'lar" (\ 2) dist.rihllt.ioll lIlay hc' IIsed to (!xalllillc' !.II(' POW('I of 

this lest.. Thal is, t)U' minimulI1 lev(') of clis('quilihriIlHl (f)~IIN) thal will I){' d(·t.(·d,(·d 

Ci7 



by the above (.5 percent level) test with a certain probability may be worked out. If 

there is disequilihrillm then X 2 will have, asymptotically: a noncentral ,,2 distribution 

with nonœntrality parameter &(X2
). For a specified significance level 0', and desired 

power 100(1 - ;3)% it is necessary that, 

PH,,(X2 < c) = f3 

where c defines the critical region such that PHo(X2 > c) :5 0'. Equivalently, 

(6.1) 

where À = &(X2) is the noncentrality parameter (which will depend on DI))' Solving 

6.1 for Di] yields the minimum departure from HWE (D~IN) which will be detected 

with 100( 1 - f3)% prohability. This may be calculated for a specifie application of the 

test and if D~f1N is small it may be used to address concerns about lack of power. 

Clearly for any spf3cific significance level 0', and level of disequilibrium DiJl the power 

may he calculated by solving, 

with respect to f3. 

The above disequilibria test may also be modified to be a test for an overall 

departure from HWE, by using the classical test statistic, 

Under the null hypothesis that aIl the disequilibrium coefficients are zero, X 2 has a 

X2 distribut.ion with b(b;l) degrees of freedom. 

As an alternative to the above disequilibria tests, Hernândez and Weir (1989) also 

suggest taking a likelihood ratio approach. The likelihood of the data is computed 
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under the hypothesis of H'WE and HvVD (Hardy-Weinberg dist'quilihrium). Denot.e 

these likeIihoods by Lo and L1 respectively. The test statistic is, 

G2 LI 
= -21n( Lo)' 

Under the nun hypothesis of HWE, G'l. is approximately distl'iblltC'd as a. \,2 randol11 

variable with b(b;t) degrees of freedom. This approximation is avoided by WI'11' (!!)!)2) 

in his analysis, and the empirical distribution of a set of boot.strapp(·d data. i5 115('<1 

instead. For the FBI data set with probability estimat.cs donc by t.he fix('d bill ap­

proach, in the results of Weir (1992) approximatelyone quart,C'r of tl1<' t.('st.s sho\Vcd 

significant departure from HWE. 

Weir proposes and applies several other tests with varying re~mlts (Sl'f! for ('x am-

pie, Weir, 1991). Other examples of studies of this Issue incllldc J3,til'd ilnd Bal,ll,S 

(1986), Weil' (1993), OevIin, Risch, and Roeder (1990), Cohen (1990), and (~('iSH(!1' ,lIId 

Johnson (1993). The issue of population substructur(' and its ('ff('ct on iLllel(~ 1"(·lat.ive 

frequencies for VNTR loci has clearly not been resolvcd as of yct.. It may 1)(' possi-

ble, through these various statistical tests, t.o idcntify loci which consistent.ly ~(,I'1T1 t.o 

conform to HWE expectations, and restrict at.t.ention t.o those for DNA profiling. 

If a departure from HWE frequency is detected ail i8 ilOt. lost. Ot.lWI' lIIet.hocis 

have been suggested which do not require the HWE assumptioll to be made ( .. g. Se«! 

Section 5.2). One frequently suggested approach is to compute t.he nnmber of times, 

say x, that a particular single locus genotype was observed in a s<l.rnple of S mdividIJals. 

The quantity max[~, ~J may then be useJ as an estimélt.e of the ff(~qllency of that, 

genotype, rather than estimating the individual allcle freqIJencies and multiplying. 

Nichois and Balding (1991) also provide an interesting alternative approach in which 

they attempt to find an upper bound for the effect of pop1\lat.ion subst.ructure on the 

probability of obtaining a match between two randomly chosen individuals. 
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6.2 Linkage Equilibrium 

The assllmpt,ion of linkage eqllilibrillm (LE) allows the multiplication of probabilities 

of events at diffcrent loci. If, for example, there is natural selection in the population 

which favollrs cert.ain genotypic combinations over others, this assumption may be 

invalid. Mllch investigation has been carried out in this area and two tests for linkage 

discquilibrium (LD) with results are outlined in this section. 

Risch and Ocvlin (1992) performed tests for LO on data obtained from the FBI and 

from Lifecoocs. The Lifecodes data was divided into Caucasian, Black, and Hispanie 

sllbpopulations, with the Hispanie population further separated into Southeastern and 

Southwestern Hispanics. Two by two tables were constructed for each pair of loci, 

with the cells containing the observed number of matches and nonmatches for each 

of the two loci. For cxample, consider two loci 01S7 and D2S44, for the Caucasian 

subpopulation. The table constructed wou Id be, 

Match at DlS7 No Match at D1S7 
Match at D2S44 

No match at D2S44 

The expected value for each cell (under the null hypothesis of LE) is given by, 

t'{mll) - (N)p(match at D2S44, match at DlSï) 

== (N)p(match at D2S44)p(match at DlS7) 

== (N)k(#matching at D2S44) k(#matching at DlS7) 

== ~ (#matching at D2S44)( #matching at DlS7) 

where N is the total number of comparisons. For each table, a chi-square goodness 

of fit test statistic was calculated and its distribution (under the nu11 hypothesis of 

LE) was obtained by bootstrapping. 

70 



Since data \wre a"ailablC' 011 ;) lori for tilt' FHl cldl aIMM" 1 he\'(' Wl'\'(' ( ~ ) == III 

tablC's COllst l'lIdcd fOI' fladl of 1 III' 1'011 l' SlIhl'o(>lIla 1 ion:;, 1H'1lC<' c\ 101 (II of 1'011 y 1 l'sI S 

were perfol'llH'd. Of \lu'sc forly 1('l>ls (111)' tht'l'(' gaVI' sigIlÎlic.\111. )'('slIlls Fol' thl' 

Lif('cod('s data sc·t t1w\'(' wc\'(' I.h)('l' loci IIS('<I \'c:mltillg in ( ~ )==:, Iwo Ily Iwo l.,hkli 

fol' each of t.he t.hree suhpopuJal.ions. Of Ih('se lIille t.ests, 110 l't'slIlts Wl'rt' :.iV,lIllil,1\I1 

(i,e. p> 0.05 for ail tests). 

Weil' (tg!)}) examines dcüa oht.ail)('d l'rom t!u' FBI t1at.rlhaM' for wltillt alh'Jl' l'Il" 

qUC'llcies wen' ;\etermÎlll'd hy dw fix(·<1 bill dppl'OclCll. A likC'lillool! J'ri 1 io \1':-.1 WilS Il:'1'11 

obsel'vccI s('t. of two 10('lIs gf'llOlyp('s \Vas ("I( IIlated ulldl'\' tlle hypol h"M's 01 LI': (1.(1) 

and Ln (Ld. The t.('st sl.atistic lIs(·d was '/' = -'!.(I1/I'1 - htl'Il) wit.h ,1 hoo\:.trappl·d 

dist.rihut.ion for T us('cI 1.0 t.ahlliatl' p-valul·s. Datcl \\'('1(' aVclilahle 011 :.ix lot 1 whirh 

\'('sult,ed in ( ~ ) = 1 F) pain'cI (,ollllltl\'isOIlS fot' ('Mil of t.lle sllbpoplllatll>ll:'. 'l'Ill' elata 

were sepal'atc'd iuto CcllI('cH:iiélll, Black, alld lIispc\lIu' poplllc\t.ioIlS. '1'1\(':,(· \VI· ... 11111111'1 

SlIhdividC'd int.o l'('xas and Floriela, as wc'1I as Califorllia in :m,,\(' CdSC·S. III 101,11 tH 

tests were (wrfol'lTIf'(1 wil.h appl'Oxinlal.<·ly (i0 sigllificélllt. results. All.holJglt IllIs I~ Idl 

more than would hc' ('xpeclc'd IIl1der \.II<' LE élSSIlIlIpt.ioll, Weil' shows tll,lI If olll'y 

the double hal\d paUc'I'IIS al (',\( h locus ,1\1' ('ollsid(')('cl 1.11<'11 110 sigllific (1111 v,.tl\(':' ail' 

obtainecl. TllÎs secllls t.o suggt'st. tltat t.he aplhir<'lIt. d(·Jlclrt.IIJ(· 1'1011/ LE II> dtlc' 10 1.111' 

exist.ence of pS('II<!o-hOll\o;.-.ygol('s dll<l 1101. 1.0 éI lad, 01 illd('IH'lIdc'II('c! 1H't.W(·('1I lo( i 

Weil' (I9!)2) appli('s a dis('qllilihl illlll t(·~t (Weil, 1 H7!J) to data oht.ailH'cI fICHII Lif!'-

codes and Cdllllark Diagllost.in,. Tite dc\t.i1lléls(· WclS divided iJlt.o CalI< a:'I(11I éllld BI(,d-; 

suhpopulat.ions and clllc'Ie rn'quC'IICil'!' wC'\'C' c'st.illlaled hy lhe (loat.illg I.ill ilppl'OiI('h. 

Hesults were consistellt wit.h 1 hc' Itypothe:,is of lillkagc! eqlliltlmlllll. 

Allhough \.he \.('s\.s OIIt.lilwd 11<'\'(' S(!('1ll 10 sll'OlIgly slIppor\. t.he LE c\SStl III pt iOIl, 
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there are rnany (e.g. Cohen, 1990) who feel that there is evidence to the contrary. 

Sirnilar to the Hardy-Weinberg equilibrium debate the issue remains unresolved. 
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Chapter 7 

Comparison of Approaches 

The mam advantage of the frequentist approaeh is the simplicit.y \Vith which lIw 

results of the analysis may be presented in court. The statistic P(A11\"') dl'scribed 

in Section 3.1 may be easily explained to the jury membNs whclcas in a \3ayesiall 

analysis the relationship between prior and posterior odds must be careflllly d(·scrihcd. 

In faet, a "weak" Bayesian format may be used (Ellman and I\aye, 19ï!)) in which 

the jury is not required to choose a specifie prior distribution. Hat.her they ,HI' simply 

provided with the value of the likelihood ratio R, along \Vith pCl"haps Cl few IIlustratiolls 

of how various choices of priors afrect the posterior odds. Evett (se(~ discussioll of 

Berry, 1991) promo tes a convpntion for which differcnt valu('') of t.he li kelihood rat.io 

R correspond to different statements about the strength of the (~v\(lellc(! agaillst. the 

suspect, For example, a particuldr range of (large) values of R wOllld correspond 1.0 

"strong evidence", while a range of smaller values of R may correspond to "wcak 

evidence" or even "no evidence". 

An advantage of the Bayesian methods presented is thal, thcy makc a seriolls at­

tempt to model the observed properties of the data (e.g. measurernent error). The 

match-binning approach merely tries to o1Jercompensate for t.!teo.;c propertics in order 

to produce conservative estimates. Numerical comparisons het.w(~cn the freqlJ(mtist 

and Bayesian methods are difficult sinee they differ fundamentally. In the frccl'wntisl 
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approach a formai match is declared (or the suspect is excluded ) and the probabil­

ity that su ch a match could have occurred between the specimen and a randomly 

sclerted individual is estimated. In the Bayesian approach however, no formai match 

is dcclared. Instead the relative weight of the DNA profile evidence in favour of G 

or 1 is givcn. It is clearly not appropriate to compare these two quantities. Berry 

(1991), howcver, describes a way in which the frequentist approach may C-~ put in a 

Baycsian context as follows. Consider a single locus. Let "match" denote the event 

t,hat the observed alleles x and y (for the suspect and specimen respectively) meet 

the matching criterion described in Section 4.3, and let "exclusion" denote the event 

that this criterion was not met. The DNA information obtained from the frequentist 

approach may be expressed as, 

XM = (match, y, Z\, ••• , zn) 

wherc ::1, ... , Zn is the reference sarnple of measurements for the locus. Further, 

suppose that p(XNIG) = 0 and p(XMIG) = 1 (i.e. no false exclusions). The quantity 

p( XM 1 I) is referred to as the match proportion and is the quantity calculated in the 

frequentist approélch to estimate the proportion of people who cou Id have contributed 

the incriminating sample. Examining the formula for the likelihood ratio R = ~((~',~::l 
it is clear that in the match binning context the DNA profile evidence X is either X M 

or XiV. If an exclusion is declared, the likelihood ratio would thus be calculated as, 

while if a match is declared, 

R = p(XMIG) _ 1 
p(XM II) match proportzon· 
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Numerical comparÎson~ between the two methods are now possIble. Ont' Îm port,ult 

feature is immediately oovious: if. for example, t.he DNA prOm\':5 axe itlt'I\t.i,'a.l ,tt aH 

but one locus. then the frequentist method will be fon'cd to dedan' ail \''(cll1~i()11 cUld 

the corresponding likelihood will be zt'ro. On tht' ot.her hand tilt' Bay('sian llwt.ho<l 

yiclds a likelihood ratio which may st.ill be quitc large dependil\~ Oll llOW lllany ot.ht'" 

loci were examincd. Since, as mentioned in Section .1.ï, tilt' Ollt' Ilolllllal.ch ('0111<1 

have been due to DNA degradation or other technical col\sid~rclli()IlH it. do(',; not. :;('('m 

appropriate to have a likelihood ratio of zero. In this sens(~ t.11t' Bay<'siilll ''1>proach 

wou Id seern superior. 

Comparisons amongst the variùu:i Bayesian rncthods arc abo ilOt. st.raight,forward. 

The method of B~rry, Evett, and Pinchin (1992) (see Section 5.:.!) w01l1d ,>('pm 1.0 he an 

improvementover that of Berry (1991) (see Section .li1) since dl(' 1'(';t:-iOIlIIlI!; IS similal 

but the assumption of no correlation between rneasurement:-> t.,tlœl\ d,t, ,t !>ill/!,I(~ 10('lIs 

is no longer necessary. In addition, the controversial assumptlOlI of HWE is d.I:;O !lO 

longer necessary. While Devlin, Risch, and Roeder (l!)f)l, J 99:!) extpnd thei!' <lnalysis 

even further to include flanking region polymorphism (sec Sedioll !).:l), U\t~y assulllP 

measurement errors are uncorrelated when estirnating t,he allple di:,t.ri hlll,ioll. Silice il. 

is possible to choose a restriction enzyme which rcsults in liUle or 110 ni:llking J'('gioll 

it may be preferable to use the approach of Berry, Evett. and Pir)(:hill. On I.he ot.her 

hand, the mixture model approach of Devlin, Risch, and ROf·del' is illtllit.lvdy mOJ(! 

appealing than the continuous mixture mode! of Berry, EvC't.t., cintl Pi nchln. Tlw t.I'IH! 

allele sizes do have a discrete distribution, and it i5 wmbined wit.h t.!w cont.inuolI:> 

measurement error dist.ribution. Theyalso obtain the maximum lilwlihood (!~t.irni\tf!s 

of the allele probabilities rather than using a simple ilveragf! of I!orm,d kerrwlH 1,0 

estimate the allele distribution. In addition, flanking region polyrnorphisrn r(!~lJlt.s in 

a larger number of possible alleles at a locus, and thus yields greater discriminat.ory 



power. The properties of the three Bayesian models are compared in Table 2. 

The method chosen for analysis of the ON A profiling data should depend on which 

assumptions one is willing to accept. In general this will de pend on the specifie prop­

erties of the loci chosen to construct the profiles. Although the method considering 

flan king region polymorphism appears more appealing, sorne extra assumptions are 

necessary which may make it less attractive from a population genetics point of view. 
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Table 2 Comparison of Bayesian Methods 

Method Presentation of Evidence Primary Assumption') Method of Estimatlng the 
Allele Distribution 

Berry (1991) Likelihood Ratio (i) HWE Density averaging 
(see Seclion 5 1) =R (ii) LE (normal kernels) 

1 

= P(X 1 G)/P(X 1 1) (iii) measurement errors are 
! 

where X is the DNA profile independent 
evidence (iv) measurements are 

lognormally distributed 

Berry, Even, and Pinchin Likelihood Ratio (i) LE Density averaging 

(1992) =R (ii) measurement errors are (bivariate normal kernds) 
(Sec! Section 5.2) = P(X 1 G)/P(X 1 1) correlated within a locus 

where X is the DNA profile ,iii) joint distribution of two 
eVldence measurement errors is 

bivariate normal 

Devlin, Risch, and Roeder Likelihood Ratio (i) HWE EM Aigorithm 

(1991, 1992) =R (Ii) LE (with additional smoothing) 
(see Secuon 5 3) =P(X 1 G)fP(X 1 1) (i1l) measurement errors are 

where X is the DNA protile corn:lated within a locus* 
evidence (Iv) measurement errors are 

normally dl5.tributed 
(v) Jomt distribution of two 

measurement t!rrors is . 
blvariare normal 1 

Il 
*F"r est=tmg the allelc prC)b3blhty distnbullon the rn.:asurernent errors are asswn.:d ta be uncorrdated ",nhm a locu~ 



Chapter 8 

Concluding Remarks 

Theoretically, the approaches presented here seem more than adequate for dealing 

with the analysis of DN A profile data, and yet the debate is still raging over the 

admissibilityof this t.ype of evidence in court. The real controversy ta be resolved is 

not one of "frequcntist versus Bayesian" but whether either of these two approaches 

can adequatcly quantify the DNA profile evidence. 

Resolution of this issue will require further research in a number of areas. An ex­

tensive investigation of the specifie population eharacteristics of a few loci eommonly 

uscd for ON A profilin~ would be highly benefieial. For example, an investigation of 

whether significant population substructuring does exist at these loci. If the HWE 

and LE assumptions could be established as reasonable for even these few loci then at 

the very least a base profile could be constructed for which the previously described 

mcthods would be reasonable. While OTie would not obtain the vanishingly small 

probabilities which are often reported for multiple locus profiles, a matching profile 

of only a few loci is still important evidence. It has aiso been suggested (see Risch 

and Oevlin, 1992) that even if significant population substructuring does exist that it 

does Dot have much of an impact on the validity of the results. Further application of 

the proposed approaches to simulated datasets with significant substructuring could 

find evidence to support this daim. This would alleviate fears about the consequences 
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of violating the assumptions. 

It is also an appealing possibility that further statist.ical models COli Id bl' de­

veloped that would require less controversial asslImptions. Thes(' nlodpls ("ouid 1)(' 

tested extensively on simulated datasets. To evaluate exist.ing lIH'thods .\11 l'\I\pirical 

comparison based on realistic, simulated data should 1)(' pcrformec!. In addit,ion to 

illnstrating which method is superior. the study may also point. towards shorl.mlllings 

which are common to aIl the methods. 

In light of the ract that many other fonns of evidcnce (t'.p;. l1lot.iw·, charader 

witnesses, etc.) are admissible which are rlot subject t.o t.he saille sort. of scient.ific 

scrutiny, it would seem reasonable that the DN A cvidence, a.i. Il'itsl. in sortie fOI m, hl! 

admissible in court even while the statistical contl'Oversy remaills l\1I1"(·solv<·d. 
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Appendix A 

Statistical Appendix 

While analysis of DN A fingerprinting data en compasses a wide variety of statistical 

t.echniques, three concepts (Kullback-Leibler information, the EM algorithm, and 

bootstrapping) are given doser scrutiny. 

A.l K ullback-Leibler (K-L) Information 

Suppose ,y = (Xl"'" X n ) are independent and identically distributed observations 

with density function i(X, iJ), 0 unknown. The K-L information (Kullback and 

Leibler, 1951), denoted [(,(Ho, Hl) is a measure of the average discrepancy between 

two hypothesized distributions !o(,t, Ô) and fI (.X, 0). This quantity is used at the 

design stage of an experiment to decide where to draw the data .Y. It may be written 

as, 

I(i((Ho,Hd = e[log(fo(~,~»]. 
h(X,(}) 

where e is the expected value calculated under the null hypothesis Ho. !( g{Ho, Hl) 

represents t.he mean information per observation in X for discriminating between Ho 

and Hl when Ho is true. Sorne properties of K-L information are as follows. 
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Properties 

(i) If Kf( (Ho, Hl) is large then the discrepancy between fo{.\", 0) and fl (.\", Ô) is larg(' 

and the probability of a Type 1 error (i.e. falscly rejectmg lIo) will lw STlli\.ll. 

That is, the data will be informative. 

(ii) If I<'g(Ho, Hl) is very small (close to zero) the test wlll h(tVe low power sinc.:e 

fo(X,fJ) and fl(X,O) will be virtually indistinguishablc fol' dat.a in t.his l'cgioll. 

That is, the data will be uninformati ve. 

(iii) Kg,(Ho,Hd is additive for independent random VCct.OI'H .X'" l = 1. ... , N. Th;~I, 

IS, 

= E~lJ('(, (Ho,ll-.) 

= "N '"[1 (io(.t .. J))] 
L.J1=1'" og ijt.\: .. O) 

where t('X" 0) is the density of .X"" i = 1, ... , N. 

In terms of DN A profile analysis it has been suggest.ed (Lange, 1 !.m 1) Lhat, the 

K-L information may be used to decide between competing lo.:ijrest.l'ictioll enzyme 

coœbinations (see Section 3.1.2). 

A.2 The Expectation-Maximization (EM) AIgo­
rit hm. 

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a rncthod of perforrning 

maximum likelihood estimation in the presence of missing dat.a. Supp()~e it. is nec· 

essary to make inference about a parameter 7p based on an 0l:lserved data vcctor X 

in which missing values are present. Since the likelihood function (Jf the incomplete 

data, L(XI.,p), is difficult to work with, it is expressed in terms of the likelihood func­

tion for a hnothetical complete set of data Y. For a givcn vector of observa.tions X, 
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th(~re are many possible associatcd complete data vectors Y. It is assumed however 

that once ,X- is observed, Y is known to lie in sorne subspace Y(Y) of the set of aH 

possible complete rlata vectors. 

The aJgorithm 

Let f(YIt/J) dcnote the density of the (hypothetical) complete data Y, and let g(XI'l/J) 

denote the dcnsity of the incomplete observed data X. 

g(XIt/J) = f _ f(fït/J)dY 
}Y(X) 

For a. given g( .. Xït/J), f(}/Ît/J) is not unique and may be chosen for convenience. 

The conditional density of Y ~iven .IX- is, 

k(YI.\' t/J) = f(~It/J). 
, g(XI-,p) 

Taking logarithms in A.1 and rearranging yields, 

where l( ,1,) denotes the logarithm of the likelihood. 

(A.1) 

Now let l/Jr\ denot.e an arbitrary va.lue of tP and take expected values with respect 

to k(YI .. t, 11') to obtain, 

(A.2) 

where, 

and, 
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For any given ~'..t the function H (lb 11/'.4) can be shown to be maxi mized w hen ri' = ~'.\ 

(Rao, 1965). The value of'ljJ for which Q( 1/'1'1/14) is maXIITIlzt>t! will bl~ a function of 

If t/J* denotes the maximum likelihood estimate of ~, (i.e. 1/'- maxillliz('~ l( .\'1 11') 

with respect to t/J), then the right hand side of A.~ will be maximizl'd wh<'l1 lt' = 

t/J* (since this will maximize both H('I/II'I/I.) a.nd 1(.\'î'ljJ)). Helice q(l/'III'.d Illllst Iw 

maximized at t/J = t/J •. This yields the fixed point equation, 

(A.:l) 

Equation A.3 suggests an algorithm of the form ,j,(m+l) = M( ,{,(ml) :iincl' if t.hi:i 

algorithm converges (discussed below) t.hen assuming continuity of '" (.), 

lim I/'(m+l) = lim il'(7j,(m). 
rn-oo m~oo 

That is, 1/J. = Nf( '1/1*) where 1/J* = lim lp(m) and hence Ip* is .l solut.ion of t.ht' fixed 

point equation A.3. 

Once an initial estimate 'lj;(Q) of 'lj;. is chosen, Q( lpl7jJo) is computed (the eXp('cL.lt.ioll 

step) and then maximized with respect ta lP ta obtain lp(l) (the rnaximi~mt.ioll :it.ep). 

This process is continued until hopefully sorne convergence critcrion is rnf't. 

Convergence of the algorithm 

A drawback of the algorithm is that it do es not necessarily cOllverg(~. In faet, when il. 

does converge it is not guaranteed ta be at a global m axi mil rn. SlIcœssl ve it~ra.tions of 

the algorithm will never reduce the likelihood howevcr, so t.hat il. will never COIIVt!rge 

to a local minimum. For a discussion of conditions for convergellcc t.o local ;wel globa.l 

maxima see, for example, Wu (1983) or CoupaI (1992). 

It has been sllggested (Devlin, Risch, and Roeder, 1991) that the EM ;llr.;orithrn 

may be used to estimate the allele relative frequency distrihution (sl!e A PI)(~ndix 13). 
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A.3 Bootstrapping 

Consider a sample of observations X = (x" ... , x n ) from a distribution F(X,O), 

and suppose that Ô is an estimator of the unknown parameter 0 (possibly a vector). 

lJootstrapping (Efrort, 1982) provides a way to assess the sampling properties of () 

when the distribution of () is unknown. 

Suppose it is d(>sircd to estimate sorne property of Ô, say g(Ô) (e.g. g(Ô) = var(Ô)). 

Idcally, an est.imation procedure based on simulation would be, 

(i) draw B ranoom samples of size n from F(S.O) 

(ii) calculate Ô\, for each bootstrap sample, z = l, ... , B 

(iii) estima!.c g(Ô) bascd on the observed distribution of Ôll ... , ÔB (e.g. if g(Ô) = 

var (Ô) th en estimate g(Ô) by the sample variance of the Ô\'s) . . 
Unfortunatcly, this procedure is inadequate due to the fact that F(.X, 0) is unknown. 

Instead F(.Y, 0) is rpplaced in the above steps by its nonpararnetric maximum likeli­

hood estimator FeX), the empirical distribution function of the data. F(.X) assigns 

a prohability of ~ to each observed data value. Each of the B bootstrap samples 

drawn from FeY) is equivalent to n independent draws from Xll' .. , Xn taken with 

replacement. For each bootstrap sam pie, let the corresponding value of the estimator 

(calclllatcd in st.ep (ii)) be denoted by Ô~, for i = 1, ... ,B. Now g(Ô) may be esti­

matcd based on the observed distribution of the Ô~ 's, i = l, ... , B. For example, if 

g(Ô) = var(Ô) then estimate g(Ô) by the sample variance of the Ô~'s. 

The bootstrap technique can also be performed parametrically. For example, if it 

is suspccted that the data are normally distributed then the same steps as above are 

followed except that the B bootstrap sarnples are drawn from a normal population 
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with mean vector (jl) and covariance matrix (~) estimated from t.he original set. of 

data (Le. the sample mean and covariance). 

Convergence 

As B --+ 00, g*(Ô) wOllld approach g(Ô) if F(.Y) were in rac!. t.he truc disl,lihllt.ioll orthe 

data. Usually F(.t) will estimate F(.Y,O) imperfectly, hut it is the llonpa.l'a11l1'LI'i<.' 

maximum Iikelihood estimator (mIe) of F(.Y,O). Thus aSylllpt.oti<:'ally g"'(tJ) iH the 

nonparametric mIe of g(O). In fact, Efron and Tibshirani (l!JHti) illllsl.l.lt,e how ('V('11 

fairly small values of B (e.g. B < 100) give 'luite accurate re:mlts. 

Confidence Intervals 

The following are thrpe of the methods discussed by Efron and Tib:;hiralli ( 1 !)SII), fOl' 

constrncting 100(1 -20')% confidence intervals for 0 usillg bool.st,ra.pping t.edllliqups, 

Let G(s) be the cumulative distribution function of t.he boot.stla.p e.,t.i11la.l.es ()~, L = 

1, ... ,B. 

(i) the standard method 

A 100(1- 2a)% confidence interval for 0 is given by, 

where û* is the bootstrap estimate of the standard dcviatioll of 0 .1IJd z((') iH LIu-

100(1 - 0) percentile point of the standard normal distribution. 

(H) the percentile method 

A 100(1 - 2a)% confidence interval for () is given by, 
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where G-l(a) and G-1(1- a) are the 1000' élnd 100(1- 0) pt'rCt'ntile poin(.s of (;(.~) 

respectively. 

(iii) the bias-corrected percentile rnethod (Be method) 

A 1 OO( 1 - 20)% confidence Înterval for 0 is gi ven by, 

where, 

~(s) = i~XJ h(iJ)diJ, 

with h(fi) a standard normal density funct.ion, and where, 

If G( s) is a normal distribution function then the sta.ndard .U1d p!~rcent.ile Illdhods 

are exactly equivalcnt, otherwise they may give very differc'nt l'I'sults. 'l'Ir!! percenf.il(· 

intervals are transformation invariant while the standard inl,pl'vals an! not.. 'l'bat. is, 

if ~ = g( 0) then the corresponding percentile interval for ~ wJ!1 sirnply be, 

Thus, provided ê is approximately normaJly distributed, the pcrccntile collfidmœ 

intervals for 0 will be transformation invariant. 

If Ô is a biased estimator of 0 then the percentilc Întcrvals r,an hl! rnisleading. 

The Be intervals attempt to compensate for this. Suppose fOI exam pIe I.h,1I. (J(.~) is 

perfectly symmetric about Ô. Then G(Ô) = 0 .. 5 and Zn = <t>-I{G(Ô)} = O. [n t.ltis 

case the Be intervals WIll be equivalent to the percentile intervals. OUJerwise tJJe 

Be intervals are adjusted accordingly to account for the skcwnes:; of th!! dist.ribution 

G(s). 

85 

• 



Severa! ot.hpr methods were discussed by Efron (1982a), and a full evaluation and 

comparison of numerous methods \Vas given by Hall (1988). 

In the course of modelling the DNA fingerprinting data, many parameters are 

estimated and tcC'hnical problems (e.g. coalescence) may have occurred. Goodness 

of fit test statistics may thus not have their standard distrihutions. Bootstrapping 

may be lise.:! to cstim,Üe the distribution of these test statistics either under the null 

hypot.hesis or a sp('C1ficd alternative (as the empirical distribution of the B bootstrap 

test stat.i~tics, see Spction .5.4), or it may be used to construct confidence ;ntervals. 
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Appendix B 

Estimating il and 7r U sing the EM 
Algorithm 

The DNA pl'Ofiling data Icnd t.lu'l1lse!vŒ; 10 ail "ilJ('OIupld(! clat.c1" inle'l'plPlal iOIl. TI", 

illfoJ'lllat,ion availablt> is a sd, of alle'le llH'êtSUrellwllts, hllt. it is /lot klloWIi (h(·( (IIIS(' 

of nWllsur('menl. errol") which 1.\'\1(' alle·Je siz('s (,ol'\'('spond t.o tIWH(' IIl<'ilSIIII'II\('II\'S. III 

addit.ion, fOI" single hand HU'aSIII'{·IJlCIlt.S, if. is Ilot k 1I0WII wh kil III<'<tSIII ('III('JI t S \\,('1 (' 

act.llally oht.aill('d, ollly f.hat. t.1H'y co,d('s('C'd t.o ail illt.('''llI'dial(~ vahH', :':)' 1 ~ 1'· 1 

l, ... ,no The EM dlgorithlll provide·:; IIlélXilllll1ll lil'wlihood (·:,t.illlal.('s of ti alld ir hy 

using t.he like·Jihood fllllctioJl of a hypothcticill "romplt'I.e" sPI. of data 0''). 

B.I Single Flal1king Region Case 

Using t.he inclepend('nce of IIH'ilSIlI'(·lllCllt.S l'Will difrcl'cnl, ill<lividuals, lhe lik"lillOOd of 

the incomplcte data may he wrillclI as, 

L(·\'lw) 
n~~l f(a'J.I'{I)/(xn l'f1)[I- 6(t,z)J . 
n~l=n.+l E~~,f(zJ - ll.llJI)f(z) + td'll)6(ll., ZJ)Llk 

n;I~, (E~=,1T r9,(.!') 1 »)( ).;~= ,11" r9r( :1')2» [1 - 6( t, z)] . 

n~=II.+l Et~, (E~=,1I" r9r( z) + ld )(~~=,1T r9r( zJ - id )h( h, ZJ ).6.k 

whel'c \fi = (u,1Ï")T. 
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The complete data may be written as, 

for j = 1, ... ,na, 

for j = n· + 1, ... , 12 

whcre 1;' is an indicatar variable equal ta one if the measurement (x J. for j = 1, ... , n -, 

z) for j = n· + l, ... , n) corresponds to a true allele length ar = U + r p, and zero 

of.herwise. Similal'Iy 1; is an indicator variable equal ta one if the true measurements 

which coal('sced t.o z} were =J + tk and z) - tk. With this notation, the likelihood of 

the complete data may be written as, 

= 

Taking logarithms and letting l(yI~) denote the log likelihood of the complete 

data yields, 

L:;~1 L:~=1 {/;]log1rr g r (XJ]) + 1;2 log 7rrgr(xJ2 ) + log[l - 8(t,z)]} + 
L:;=n'+l I:2~1 l:~=1 {1; 1;] log 1rrgr(z) + tk) + 1; 1;2 log 1r rgr(Zj - tk) + 
1; log[8(tk, =J)~k]}. 

Since the quantities log[l- 8(t,:)] and I;log[8(tk'=J)~d do not contain any of 

the relevant parameters (i.e. u or 1i') they will disappear during the rnaxirnization 

process and will not affect the maximum likelihood results. For simplicity they will 

hcnceforth be sl1ppressed frorn the notation. 

Taking the expected value of the log likelihood conditional on the in complete data 

.t' and current parame ter estimates t/J(m) yields, 
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n· b 

L 2)t'(I;1IxJllljJ(m») log i'l"rgr(xJ1 ) + [(l~JrJ2' lp(III») log i'l"r!lr(.I')\ )} 1-
;=1 r=l 

n M b 

L L L{t'(I;I;1 11jJ(m),zJ) logi'l"rgr(Z] + td + 
;=n·+lk=l r=l 

n· b 

L ~)Vl/;: (1jJ(m») log 7l'rgr(xJ1 ) + W~ (1jJ(m») log 7l'r.llr(.Z:J2)} + 

n M b 

L L L {W~k( 1jJ(m») log 1f'rgr(zJ + lk) + 

where, 

lV;: (1jJ(m») = t'(I;.lx J.' lp(m»), for j = 1, ... ,n' 

W;:k(1p(m») = &(1;, I;lz], 7p(m») for J = n' + l, ... ,IL 

These expected values may be evaluated as follows. For J = l, ... ,n*, 

liVr = t'U;,llp(m), x J.) J. 

= p(I;, = 111jJ(m), XJ.) 

= p(true allele size i8 ar I1p(m),XJ,) 

= p( ar , x J.I1j;(m») p( x J. ~1P(m») 

p(x
J
,lar ,1j;(m»)p(ar I7p(m l ) 

- p(xJ,1 7p lml) 

p( x J.lar , lp(m»)p( ar 17p(m)) 
= 

l:~=l p(x;, lar, 1p(ml )p( ar I1p(m») 

7l'(mlg(m) (x ) r r J, 
= r:} (m) (m l ( ) r=l Kr gr XJ, 
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For] = n* + 1, ... , n, 

W;.k (lp(m)) == ê(J;.I:lz),1jJ(m)) 

== pU;, = l,IJk = llz], 't/-.(m) 

== p(I;, = llzJ' l:!)(m), f; = l)p(I; == llz], ~(m)) 

Now, givcn J; = 1 and ZJ only two possibilities exist for the measurement : either it 

is Z] + tk or it is ZJ - tk. These two events are (conditional1y) equiprobable. That is, 

Bence hy the law of tota.l probabihty, 

(I r - 11- .I.(m) rk - 1 .,. - t ) ( t 1- ((m) fk - l)} p J. - ""]10/ ,1; - ,-, k pz,- 1..-,,'IjJ ,,-

_ ~p(I;, = 1,z.1'!; = 1,z; +tkltP(m))p(I; = llz;,~(m)) + 
2 p(z),I; = 1, z) + tkl~(m») 

1 p(J;. = 1, zJ,!; = 1, zJ - tkltP(m))p(I; == 11zJ' ~(m)) 
"2 p(z],!; == l,zj - tkl~(m)) 

(B.3) 

Now, 

b b 

- [2: 7r~m)g~m)(zJ + tk)][L: 1l'~m) g~m)(z; - tk)J8(tk, Zj)~k 
r=l r=l 

p(I; = llz}, ~(m») 

= 
p(IJk = 1, z}I~(m» 

p(ZJI~(m») 

[r:~=l 7r~m)g~m)(zJ + tk)][L~=11l'~m)g~m)(ZJ - tk)]b"(tk, Zj)6k 
= 
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and, 

b 
,t~f, .,fl'I}(~ ±J )\·~..,.lml (m l (_ t )]"(t )" 

"'P' -} I·kl~"r gr -J- k (1 ~,:;) '-lk· 
r:::;l 

Substitutinu thf'5C qu~·,rtl~ies intû B.3 yields after simplification, 

" , ."'~-.7"':."r~ ..... ' __ ./ _ ~ 

l.' •• ",'1\ ,"t ~ 

~k)][I:~~1 7rr9r(::J + 1 k )]b(lk, ZJ)~~ • (B.l) 
} z} - f~)][L~::':l Trr9r(Z) + fk)]Ô(fk,ZJL\k l<- ..... ......' i. ~ 'i ~ f 

Three important features oi B.2 and BA are, 

(iii) W~k(1/J(m») = W;2k(1/J(m») The corn mon value of W;.k(lj)(m l ) for z = 1,2 will be 

denoted vV;k(lp(m»). 

Estimating if 

Differentiating Q(lj'!lp(m») (see equation 8.1) with respect \'07rr sllhject. to LIu! con­

straint that L~=l ÎÏr = 1 yields, 

n' ~VT(lp(m») wr (1/J(m)) - I:{ JI + 12 } + 
1=1 11'r 'Ir,. 

(B.5) 
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Sctting B..5 cqual to zero and solving for 7rr using the fact that L~=l W;' ('!/J(m») == l 

and L:Z!:1 2::;=1 W;k(1t,(m» = l yields, after simplification, 

t [Lt!:\ 7r;.ng;:'(zJ + tk)L=~=l 7r;.ng;:'"(zJ - tk)8(tk,ZJ)~k + 
2n ;=n'+l Lt!:l(L~=l 7r;:ng~(zJ + tk))(L~=l 7r~g::n(zJ - tk)) 

L:t~\ 7r;ng~(::J - tdL:~=l 7r~g~(::J + td8(tk,ZJ)~k] 
Lt~l(L:~=\ 7r~g~(ZJ + tl';})(L:~=l 7r~g~(::) - td) . 

(B.6) 

This is identical to the iterative equation given in Devlin, Risch, and Roeder (1991). 

Estimating u 

Differentiating Q(lj'11p(m») (see equation B.l) with respect to u yields, 

t f i)W;k(~(m»)alOggr(1:J + tk) + 
J=n'+l k=1 r=1 â 

ltV;k( lp(m») a log g~2 -tl:)}. 

This is a complicated expression since u appears in both the mean (u + rp) and 

standard deviation (ur =(5xlO-3 )(u + rp)) of gr(·). The procedure was carried out 

using two different simplifying assumptions. Either, 

(i) assume that the standard deviation of the measurement elror is a constdnt (i.e. 

(jr = a, r = 1, ... , b), or, 

(H) assume that Ur may be replaced by (j~m) =(5xlQ-3)(u(m)'+ rp) at each step of 

the algorithm. 
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The first assumption. although mllch stronger, results in a simple iterative 8<:h(,111<' 

for est.imating Il. Under this assumption, the derivat.ive of Q( rbl't,(m)) \Vith respect t.l> 

u becomes, 

(B.7) 

Setting B.7 equal to zero and solving fol' Il using the fact t.ha.1, 2:~=1 W;' (r/,(II1)) = 1 

and L:t~l E~=l W;k( 1jI(m)) = 1 yields, aftel' simplification, 

Using assumption (ii), although more realistic, yields a more complicated it.emtÎve 

equation for u of the form, 

1 n* b (m) (m)( ) ( ) (m) (m)( ) (_ ) __ '"' "[ ïrr gr X'I XJI - rp ~_ gr .1:12 XJ2 - rp ] , 
D(X) L.-i '-' b (m) (m)( ) [(m)]2 + ",b (m) (m l ( ) [(m)j2 ï 

J=1 r=l Lr::l 7rr gr XlI (Jr L....r=l7rr !1r ·1:J2 Ur 

[7r!m)g!m)(z] - tk)][2:~=l ïr~m)g!m)(Zl + tk)]8(tk,Z])~k ~:~:.:~} 
Ez!'l[[L~=l7r~m)g!m)(Zl + tk)][2:~=l7r!m)g~m)(Zl - tk)]6(tk,Z])6k

l 
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whcre, 

') n b AI W;k(1/,I(m)) 
- 2:J=n'+1 Lr=l Lk=l fO'~rn)J2 

These results for 11. are similar, but not identical, to those of Devlin, Risch, and 

l10cder (1991) which may have involved fUl',ther approximations or a slightly different 

approach. 

B.2 Multiple Flanking Region Case 

In the case of multiple flanking regions, the incomplete data t needs to be augmented 

by three indicator variables. The complete data is given by, 

{ 
(xJPxmIJ1,IJ2,!;I,!;2) for j = l, ... ,n*, 

y = 
J (ZJ'!;I' 1;2,1;,1;1,1;2) for j = n* + 1, ... , n 

whcre 1;, is an indicator variable equal to one if the measurement (x J, for j == 1, ... , n·, 

::J for j = n* + 1, ... ,n) corresponds to a true allele length ar = 1L + rp, and zero 

otherwise. 1; is an indicator variable equal to one if the true measurements which 

coalesccd to zJ were =; + tk and ::J - tk. 1;, is an indicator variable equal to one if the 

flan king region size is Ut and zero otherwise. 

From 5.15 the likelihood of the incomplete data ma.y be written as, 

L(Xî\ll) 
~ n;~t (Lt:t <PI L~=l 7rrgr(X]1 ))(Lt:l <Pl L~=l 7rr9r(xJ2 ))[1 - 8(t, z)] . 

n;=n'+! I:~~t {(2:f'::1 <PI 2:~=1 11'rgr(::] + tk)) 
(2:f'::\ <Pl 2:~=1 7rr9r(::J - tk))6(t/ç, ZJ)~k 

where \li = {il, ir. J)T. The likelihood of the complete data is thus, 

== 
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Taking logarithms and letting [(Yllp) denote t.he log likelihood of the (omplt·", 

dat.a yields, 

n° L b 

= L L L {I;J~\ log <P1 7rrgr('Z:]\) + I;2 / ;2 log <Pl 7rr gr ( 1')1) + log[ 1 - 8(1. ::)]} + 
J=l 1=1 r=l 

n M L b 

L L 2:L{I;I;J;\ logd>/7rr gr (.:) + tk) + [;I;J~2Iog(PI1l"Jgr(::1 - Id -1-
J=no+1 k=1 /=1 r=1 

Since the quant.ities log[l - 8(t, z)] and I; log[8(tk,::) ).6k] do Ilot ('onl,.lill ,IllY ur 
the relevant parameters (i.e. il, 1i" or ~) they will disappear dllring the ma'(illJi:r..ÜIOII 

process and will not a.ffect the maximum likelihood results. For simplicit.y t.hey will 

henceforth be suppressed from the notation. 

Taking the expeded value of the log likelihood cOll<Jitional 011 t.h(~ IIH olllpl .. t.(· d.II,d, 

g and current parameter estimates Ib(m) yields, 

nO L b 

- L L I)&(I;J;llxJP 1/J(m») log <P11l"r9r(XJ\) + 
;=1 /=1 r=1 

&(I;J~\IX)2' l/,(m)) log <P/1l" rg, (XlI)} + 
n M L b 

L LI: L{&(l;I;J;\ 11/J(m) , Zl) log <P17rrgr(Z; + 'k) + 
;=nO+1 k=ll=l r=l 

nO L b 

- L L L {W~I(1p(m») log rt'/7rrgr(x;l) + W~I(1/;(m») log 1/7rr9r(:"]2)} + 
1=1 /=1 r=1 

n M L b 

L LI: 2:{W;/k(1/J(m)) log <p/1l"rgr(ZJ + tk) + 
J=n·+l k=1/=1 r=1 

( B.S) 

Analogous to the single flanking region case the expected values may he evaillat.ed 
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fjllil,c easJ1y. For] = l, ... , n', 

Wrl (1 1,(m») _ &(r Il 1,1.(m) x ) 
li f/ Jr Jr 'fi , J, 

- pU;, = 1,1;, = 111/J(m),xJ,) 

p( F = 1 1/ = 1 x 1,I,(m») 
Jo ')J 'J. '1-

p(XJI !.,p(m») 

cPl11"~m) g~m) (X JI) 
\"L ""b ), (m) (m)( ). 
L/=l L...r=l 'f'17r r gr X J, 

Similarly, for j = n* + l, ... , n, 

= 
p( Ir = 1,]1 = l]k ::; Il,·(m)) 

JI Jo 'JI' J P 

(B.9) 

= ""M [[\"L \"b ,(ml (m) (m)( )J[\"L 'rh ),(m) (m) (m)( )] '( ):\ + 
L...k=l LI=l L...r=l 'PI 11"r gr Z) + tk LI=l L...r=l '1'1 7rr gr ZJ - t k 0 tk, ZJ i..l.k 

1 [.(m) (m) (m)(~ t )J[\"L \"b ...l(m) (m) (m)(_ + t )]'(t "')" '2 <Pl 11"r gr -j - k LI::l Gr=l (j./I 11"r gr -) k U k, -J L.l.k 

""lU [[\"L "h ,,!,(m} (m) ( 17t)( )][,\"L 'rb ),(m) (m) (ml( )]'( ) A . 
L...k=l L...1=1 Gr=1 'fil 11"r gr z) - tk LI=l L...r=1 '1'1 7rr gr ,Z) + tk U tk,ZJ t..lk 

Three important features are, 

(ilï) ,,!vi \"L "b rUrlk(o/,(m») = 1 
L...k=l L.../=1 L...r=1 rr J 'fi • 
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Estimating ~ and 7r 

Differentiating Q(~11p(m)) (see equation B.8) \Vith respect, 1.0 <:)1 ~\IhJ('ct. t.n t.llt' ("011-

straint that Lr:l = 1 yields, 

(IL 10) 

Setting B.lO equal to zero and solving for ~I yiclds artel" simplili(";II,lo\l, 

In an analogous way one obtains for 7rr the itcrative <'qllatlOll, 

7r(mt l) 
r 

1 n M L L L L W;lk (~(m)). 
n J=:n"tl k=l /=1 

Estimating iL 

In order to simplify the problem (as in the single flanking lel;10n ca:w) il. will b(~ 

assumed that O"r may be replaced by O"~m). The stronger asslITnpt.ioll that rTr IH il. 

constant for aIl r does not result in as much simplification III t.he rnult,ip)(! flanking 

region case as it did in the single flanking region case, so it will be avoided. Wilh 

this convention, differentiating Q(1pl1j;(m») (see equation B.8) with respect. t.o 111 ()l)(~ 
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aQ( 1/J !1j;(m)) 

()Ut 

Setting R.Il cqual to zero and solving for Ut yields, 

(m+l) _ 
Ut -

Values for W;/k( lt,(m)) and W~I( '1,(m)) may be substituted in. Again these equations 

are similar but not identical to those obtained in Devlin, Risch. and Roeder (1991). 
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