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ABSTRACT 

Renal cell carcinoma (RCC) comprises the most common form of kidney cancer. Among 

RCCs, clear cell subtype (ccRCC) accounts for 75-80% of cases, and is characterized by 

heterogeneous clinical outcomes and extreme incidental variances. Though surgery to remove the 

tumor (partial or radical nephrectomy) is considered curative for patients with localized disease, 

30-40% of these patients experience relapse or metastasis post-nephrectomy. Identifying patients 

who may benefit from systemic therapy remains difficult, and there are currently no routine 

biomarkers of disease prognosis. Additionally, global incidence of RCC is highly variable, and 

little is understood about germline predisposition for sporadic RCC. 

 Recent genomic studies have suggested that understanding the genetic heterogeneity 

among RCC tumors may help with prognosis, however, there is a lack of RCC-appropriate 

genomic assays to facilitate the large-scale screening necessary for biomarker development. This 

study aimed to investigate the genomic landscape of RCC to deepen our understanding of the 

genetic evolution of RCC tumors, genetic predisposition to RCC, and the associated clinical 

consequences.  

To facilitate investigating the genomics of RCC progression, we developed a targeted 

sequencing assay and corresponding bioinformatic workflows to detect somatic mutations in RCC-

relevant genes. We demonstrated the ability of the assay to detect somatic tumor mutations through 

sequencing of patient-matched normal, tumor, and liquid biopsies. Additionally, we interrogated 

different liquid biopsy fractions, including soluble cell free DNA (cfDNA) and exosomal DNA 

(evDNA), to compare their ability to capture relevant somatic information from the tumor. 

We next explored the role of tumor genomics as biomarkers for risk prediction. We 

interrogated the somatic mutation status among a large multinational cohort of ccRCC cases, to 

identify recurrently mutated genes, patterns in concurrently mutated genes, and evaluated their 
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associations to clinically relevant endpoints. We identified four genomically distinct groups of 

tumors with divergent rates of relapse. These defined groups account for the ~80% of ccRCC cases 

with mutations in the VHL gene and offer the potential for identifying patients who are at a high 

risk of relapse and should be prioritized for adjuvant therapy, and those at low risk who could 

potentially be spared adjuvant therapy. 

Finally, we aimed to get a deeper understanding into the germline genetic susceptibility to 

sporadic RCC. Within a large Canadian cohort, we interrogated germline pathogenic variants to 

identify potential risk genes for RCC within Canada. We identified CHEK2 and ATM as potential 

risk-genes for clear cell RCC, and the FH gene for non-clear cell subtypes. Notably, we also 

identified an association between germline pathogenic variants in BRCA1, BRCA2, and ATM genes 

and the presence of metastasis. Comparing risk genes among large cohort from various countries 

also revealed global differences in genetic susceptibility to RCC. Lastly, we identified that 

globally, clinical guidelines for genetic screening for RCC fail to include over 70% of patients 

with pathogenic variants, highlighting the need to revise referral criteria.  

Overall, these findings advance our understanding of the genomic factors underlying clear 

cell RCC, and their associations to clinical features and disease recurrence. Through the 

development of NGS methods relevant to RCC, and introducing a genomic classifier for risk-

stratification for RCC, this study provides insight into the clinical utility of genome-based 

prognosis in RCC. Evaluation of germline risk-genes for RCC, along with genetic screening 

criteria, helps to provide a clearer picture of global differences in RCC susceptibility, and how we 

can improve precision preventative strategies in RCC. 
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RÉSUMÉ 

Le carcinome rénal (CCR) constitue la forme la plus courante de cancer du rein. Parmi les 

CCR, le sous-type de cellules claires (CCRcc) représente 75 à 80 % des cas et se distingue par des 

résultats cliniques hétérogènes et des variances fortuites extrêmes. Bien que la chirurgie visant à 

enlever la tumeur (néphrectomie partielle ou radicale) soit considérée curative pour les patients 

atteints d'une maladie localisée, 30 à 40 % de ces patients présentent une rechute ou des métastases 

après la néphrectomie. L'identification des patients susceptibles de bénéficier d'un traitement 

systémique reste difficile et il n'existe actuellement aucun biomarqueur de routine pour le pronostic 

de la maladie. De plus, l’incidence mondiale du CCR est très variable et on sait peu de choses sur 

la prédisposition germinale aux CCR sporadiques. 

Des études génomiques récentes ont suggéré que la compréhension de l'hétérogénéité 

génétique des tumeurs CCR pourrait aider au pronostic. Cependant, il existe un manque de tests 

génomiques appropriés au CCR pour faciliter le dépistage à grande échelle nécessaire au 

développement de biomarqueurs. Cette étude visait à étudier le paysage mutationnel génomique 

du CCR afin d'approfondir notre compréhension de l'évolution génétique des tumeurs du CCR, de 

la prédisposition génétique au CCR et des conséquences cliniques associées. 

Pour faciliter l'étude génomique de la progression du CCR, nous avons développé un test 

de séquençage ciblé et des flux de travail bioinformatique correspondants pour détecter les 

mutations somatiques dans les gènes pertinents pour le CCR. Nous avons démontré la capacité du 

test à détecter les mutations tumorales somatiques grâce au séquençage de biopsies normales, 

tumorales et liquides correspondant à chaque patient. De plus, nous avons interrogé différentes 

fractions de biopsie liquide, notamment l'ADN libre circulant et l'ADN exosomal, pour comparer 

leur capacité à capturer des informations somatiques pertinentes de la tumeur. 
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Nous avons ensuite exploré le rôle de la génomique tumorale en tant que biomarqueurs 

pour la prédiction des risques. Nous avons examiné le statut des mutations somatiques parmi une 

grande cohorte multinationale de cas de CCRcc, afin d'identifier les gènes mutés de manière 

récurrente, les gènes mutés de manière concomitante et évalué leurs associations avec des 

paramètres cliniques pertinents. Nous avons identifié quatre groupes de tumeurs génomiquement 

distincts avec des taux de rechute divergents. Ces groupes définis représentent environ 80 % des 

cas de CCRcc présentant des mutations du gène VHL et offrent la possibilité d'identifier les 

patients qui présentent un risque élevé de rechute et devraient être prioritaires pour un traitement 

adjuvant, et ceux à faible risque qui pourraient potentiellement être épargnés d’un traitement 

adjuvant. 

Enfin, nous avions pour objectif de mieux comprendre la susceptibilité génétique 

germinale au CCR sporadique. Au sein d'une vaste cohorte canadienne, nous avons examiné des 

variants pathogènes germinaux afin d'identifier les gènes de risque potentiel de CCR au Canada. 

Nous avons identifié CHEK2 et ATM comme les gènes de risque potentiel pour le CCR à cellules 

claires, ainsi que le gène FH pour les sous-types de cellules non claires. Notamment, nous avons 

également identifié une association entre les variants pathogènes germinaux des gènes BRCA1, 

BRCA2 et ATM et la présence de métastases. La comparaison des gènes de risque au sein d'une 

grande cohorte de divers pays a également révélé des différences mondiales dans la susceptibilité 

génétique au CCR. Enfin, nous avons identifié qu'à l'échelle mondiale, les directives cliniques pour 

le dépistage génétique du CCR n'incluent pas plus de 70 % des patients présentant des variants 

pathogènes, soulignant la nécessité de réviser les critères de référence. 

Dans l’ensemble, ces résultats font progresser notre compréhension des facteurs 

génomiques sous-jacents au CCR à cellules claires et de leurs associations avec les caractéristiques 
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cliniques et la récidive de la maladie. Grâce au développement de méthodes NGS pertinents pour 

le CCR et à l'introduction d'un classificateur génomique pour la stratification des risques pour le 

CCR, cette étude donne un aperçu de l'utilité clinique du pronostic basé sur le génome dans le 

CCR. L'évaluation des gènes germinaux à risque pour le CCR, ainsi que les critères de dépistage 

génétique, contribuent à fournir une image plus claire des différences mondiales en matière de 

susceptibilité au CCR et à la manière dont nous pouvons améliorer les stratégies préventives 

précises dans le CCR. 
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somatic mutations in RCC-relevant genes. The assay provides a reliable platform to conduct 

parallel mutational analyses of tumor and liquid biopsies, and we provide evidence on the 

feasibility to capture tumor-associated genetic alterations in blood-based liquid biopsies. 

Second, Chapter 3 introduces to the field the largest-to-date cohort of ccRCCs with detailed 

clinical information and genomic characterization. This dataset represents a valuable resource for 

investigating patterns in the genomic landscape of ccRCC and their associations to prognosis. 

Additionally, we define a genomic classifier based on a small panel of genes, and representative 

of evolutionary trajectories of ccRCC, that can identify groups of patients with diverging risk of 

disease recurrence. 

Lastly, Chapter 4 represents the first investigation into risk-genes for RCC within the 

Canadian population. We identify CHEK2, ATM, and FH as risk-genes for RCC within Canada, 

which are not routinely included in genetic screening panels. Notably, we evaluate clinical 

guidelines for genetic screening and identify that >70% of patients with genetic predisposition to 

RCC are not captured within current inclusion criteria.  
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investigates germline susceptibility to RCC and highlights how current guidelines for genetic 

screening exclude the majority of patients with genetic susceptibility to RCC. Bridging statements 

are included between manuscript chapters to describe the connections between each manuscript 

and provide additional context. Chapter 5 is a general discussion of the findings, and Chapter 6 is 

a final summary and conclusions. Chapter 7 is a master bibliography of references included in the 

thesis, however reference lists for in-text citations within manuscript chapters are included within 

the respective chapter.  
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For this work, I developed and optimized the NGS assay, including the protocols for 
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evDNA) with technical assistance from Antoine Paccard and Alfredo Staffa. I established the 
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of somatic variants in IGV. The study was conceived by Yasser Riazalhosseini and Janusz Rak. 

Isolation of EVs and ddPCR experiments were conducted by Maha Maralani and Laura 

Montermini, providing data for Figure 1B and 1C. Xenograft models and animal experiments were 

conducted by Pouria Jandaghi and Brian Meehan, providing data for Figure 1B. Myself, along 

with Yasser Riazalhosseini wrote the initial draft of the manuscript, which was reviewed and edited 

by all authors. Kate Glennon is the first author. 
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Chapter 3: Application of Genomic Sequencing to Refine Patient Stratification for Adjuvant 

Therapy in Renal Cell Carcinoma 

Vasudev NS, Scelo G, Glennon KI, Wilson M, Letourneau L, Eveleigh R, Nourbehesht N, 

Arseneault M, Paccard A, Egevad L, Viksna J, Celms E, Jackson SM, Abedi-Ardekani B, Warren 

AY, Selby PJ, Trainor S, Kimuli M, Cartledge J, Soomro N, Adeyoju A, Patel PM, Wozniak MB, 

Holcatova I, Brisuda A, Janout V, Chanudet E, Zaridze D, Moukeria A, Shangina O, Foretova L, 

Navratilova M, Mates D, Jinga V, Bogdanovic L, Kovacevic B, Cambon-Thomsen A, Bourque G, 

Brazma A, Tost J, Brennan P, Lathrop M, Riazalhosseini Y, Banks RE. Application of Genomic 

Sequencing to Refine Patient Stratification for Adjuvant Therapy in Renal Cell Carcinoma. Clin 

Cancer Res. 2023 Apr 3;29(7):1220-1231. doi: 10.1158/1078-0432.CCR-22-1936.  

 
For this study, I contributed to the sample preparation of C3 (N=474 tumor-normal pairs), 

including library preparation, hybridization capture. Bioinformatic analysis of C3 was conducted 

by me, with support from Robert Eveleigh. All association and statistical analyses (Kaplan-Meier 

analysis, Cox-Proportional Hazards models), and figures included in the manuscript were 

produced by me. Writing of the original manuscript draft was led by Naveen Vasudev, with 

significant contribution by myself. Naveen Vasudev was responsible for curating and validating 

the clinical data. Ghislaine Scelo contributed to conceptualizing the study, providing significant 

resources, and investigating C1 and C2 to identify candidate driver genes. Yasser Riazalhosseini 

and Rosamonde Banks played key roles in the development of the study, acquiring funding, and 

supervision. All other authors were involved in manuscript review, and providing resources such 

as clinical samples. Kate Glennon, Naveen Vasudev, and Ghislaine Scelo are co-first authors. 

Permission from co-authors to include the manuscript in the thesis is included in the Appendix. 

 
Chapter 4: Germline Susceptibility to Renal Cell Carcinoma and Implications for Genetic 

Screening 

Glennon, K.I., Endo, M., Usui, Y., Iwasaki, Y., Breau, R.H., Kapoor, A., Lathrop, M., Tanguay, 

S., Momozawa, Y., Riazalhosseini, Y. 
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I performed all experiments and analyses for these experiments. Mikiko Endo assisted with 

the targeted sequencing experiments, and bioinformatic analysis to identify candidate PVs. 

Yoshiaki Usui provided support for statistical analyses and experimental design. Yusuke Iwasaki 

wrote the bioinformatic pipeline used to process NGS data. Yukihide Momozawa and Yasser 

Riazalhosseini conceived, supervised and financed the study. Rodney Breau, Anil Kapoor, and 

Mark Lathrop provided resources and were involved in coordinating sample selection and 

collection. I prepared figures and wrote the manuscript, and all authors were involved in 

manuscript review. Kate Glennon is the first author. 
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CHAPTER 1. INTRODUCTION 

Renal cell carcinoma (RCC) comprises the most common form of kidney cancer. Among 

RCCs, clear cell subtype (ccRCC) accounts for 75-80% of cases, and is characterized by 

heterogeneous clinical outcomes and extreme incidental variances1. Patients who present with 

localized tumors undergo curative nephrectomy (radical or partial) to remove the tumor, however, 

30-40% of these patients experience relapse or metastasis post-nephrectomy. Due to the 

indeterminate behaviour of ccRCC and the absence of routine biomarkers, it is difficult to identify 

patients who are at high-risk for relapse or metastasis and may benefit from adjuvant therapy, and 

to monitor disease progression. Recent large-scale genomic studies have shed light on the spectrum 

of genomic abnormalities in ccRCC tumors, and have suggested that somatic genetic heterogeneity 

between patients may help with prognosis2. However, there has not been much success with using 

genomic information of tumors in precision risk assessment in RCC. Different factors may 

contribute to this, among which the lack of large-scale studies with matched clinical and genomic 

data that provide power for association analysis is well acknowledged2. Additionally, integrating 

biological features of the disease such as tumor heterogeneity into the analytical approach would 

be more likely to generate translational results from association studies. 

This thesis aims to investigate in depth associations between the genetic evolution and the 

repertoire of common somatic genetic alterations in ccRCC, and will examine their potentials for 

prognosis in ccRCC using the largest to-date single cohort of genomically and clinically annotated 

samples. Given that ccRCC has specific driver genes, including VHL, PBRM1, and BAP1, which 

are not included in commercially available targeted sequencing panels, the development of an 

appropriate genetic screening assay is required to investigate clinically actionable genes relevant 

to RCC. Furthermore, investigating germline predisposition to RCC among cohorts from large 

population studies will help to gain insight into the large difference in RCC incidence globally. 
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1.1 RENAL CELL CARCINOMA 

1.1.1 Epidemiology 

Globally, there are over 400,000 new RCC diagnoses each year, and 180,000 deaths. While 

mortality rates have been decreasing in recent decades, incidence rates have been increasing 

globally since the 1970’s3,4. Incidence of RCC also varies considerably across the globe, with 

higher rates in Europe and North America, and lower incidence in Asia and South America5, 

though the global variations in incidence are not fully understood. Global variations in mortality 

also appear to correspond to differences in incidence, ranging from 30-40%, with higher rates of 

mortality observed in males compared to females6,7. Incidence of RCC also increases with age, 

with approximately half of cases being diagnosed before the age of 65, however for individuals 

with hereditary RCC syndromes (described in Chapter 1.1.3), diagnosis is often 20 years earlier6. 

Established risk factors for RCC include smoking8, obesity9, and hypertension10,11. 

Smoking tobacco is associated with a 30% increased risk of developing renal cancer, while former 

smokers have a 15% increased risk compared to non-smokers12. Obesity is a major risk factor for 

developing renal cancer, with prospective studies reporting as high as 77% increased risk for obese 

individuals13. A medical history of hypertension or chronic kidney disease is also estimated to 

increase the risk of developing renal cancer up to 3-fold14,15. There is also considerable sex-bias in 

kidney cancer incidence, with rates in males being double those observed in females16,17, however 

the biological factors driving these sex-differences are not yet understood. Aside from lifestyle 

and medical risk factors, exposure to carcinogens such as trichloroethylene and aristolochic acid 

is also linked to an increased risk of developing renal cancer18,19. 
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1.1.2 Histological Subtypes 

Kidney cancers are largely categorized based on the location and cell type within the kidney 

from which they develop. Urothelial cancers of the kidney (previously called transitional cell 

carcinomas) originate from urothelial cells within the renal pelvis and ureter, and are treated as 

bladder cancers. Renal sarcomas develop within the connective tissue surrounding the kidneys, 

however are rare. Renal cell carcinomas are a heterogeneous group of cancers originating from 

cells in the nephrons. While the major histological subtype of RCC is clear cell (ccRCC), 

accounting for 70-75% of diagnoses20, non-clear cell subtypes include papillary, chromophobe and 

other more rare subtypes, each having distinct disease etiology, clinical courses, and genomic 

drivers (Figure 1). 

RCC subtypes have traditionally been classified based on predominant morphological 

features; however, as we gain deeper understanding of the molecular features driving each subtype, 

we are beginning to see the introduction of molecular-driven classifications in renal cancer20. Clear 

cell subtype originates from the epithelial cells of the proximal convoluted tubules, and is named 

for its ‘clear’ histological appearance - polygonal cells with a lipid and glycogen-rich clear 

cytoplasm and small central nuclei21 (Figure 1). ccRCCs are often large, fast-growing tumors, and 

are also characterized by a variable clinical course and presentation. Compared to papillary and 

chromophobe subtypes, ccRCCs are more likely to present with metastatic disease, and have 

poorer cancer specific and overall survival compared to papillary and chromophobe subtypes22. 

The molecular landscape of ccRCC is defined by mutations in the von Hippel-Lindau (VHL) gene 

and the loss of the short arm of chromosome 3 (3p)23, with somatic alterations also often foun in 

additional 3p tumor suppressor genes BAP1, PBRM1, and SETD2 (described in depth in Chapter 

1.2.2).  
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Among non-clear cell RCCs (nccRCCs), papillary subtype is the most frequent, making up 

~15% of all RCC diagnoses24. Papillary RCCs originate from epithelial cells of the proximal 

tubules24, with cells appearing organized in a spindle-shaped pattern. Until recently, papillary 

RCCs (pRCCs) were subclassified into Type I and Type II tumors based on morphological 

features; however, the subcategorization has since been eliminated, recognizing that tumors 

frequently present with a mixture of Type I and II features24. Type I papillary RCCs, also called 

‘basophilic’, are typically lower grade, and detected at earlier stages than Type II pRCCs, thus 

have a better prognosis. Histologically, they have small cells with scarce, clear cytoplasm and 

hyperchromatic nuclei, forming a single layer of basophilic cells around the basal membrane21,24 

(Figure 1). Type II papillary RCCs are usually detected as high-grade tumors, often with ganglial 

metastasis present at diagnosis. Histologically, they are described as ‘eosiniphilic’ as their cells 

have granular eosinophilic cytoplasm, and prominent nuclei that are often associated with necrotic 

areas. Genomic characterization of pRCCs has revealed frequent mutations in MET, a proto-

oncogene, and in tumor suppressor gene CDKN2A20,25.  

Chromophobe RCCs (chRCC) are the third most common RCC subtype, representing ~5% 

of diagnoses24. While they are associated with larger tumor size, they are typically early stages (I 

and II) and less aggressive than ccRCC26, with metastasis occurring in only 7% of cases. ChRCCs 

originate from intercalated cells of the distal tubule, and are characterized by large pale cells, 

reticulated cytoplasm, and perinuclear halos21. ChRCCs often have widespread chromosomal 

losses27, and frequently harbour mutations in the two well-established tumor suppressor genes, 

TP53 and PTEN28. However, the somatic mutation rate of chRCCs is considerably low compared 

to most tumors, including ccRCCs28.   
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Other rare subtypes of RCC include collecting duct RCC, and medullary RCC which are 

often extremely aggressive29. Collecting duct RCCs are characterized by irregular and infiltrating 

cells that are arranged in the walls of the collecting ducts29. At diagnosis, metastasis is frequently 

present, and many patients with collecting duct RCCs do not survive two years. Medullary RCCs 

are more frequently identified in adolescents and young adults, and is aggressive and difficult to 

treat.  

Even with the continuous refinement of the RCC classification system and the 

identification of additional rare subtypes of RCC, 4-6% of RCCs still cannot be accurately 

histologically characterized and are labelled as unclassified RCCs. Unclassified RCCs typically 

have a heterogeneous histology and are frequently high-grade tumors associated with poor 

prognosis compared to ccRCC30. Without distinct classification, these lesions represent a clinical 

challenging, as it is difficult to stratify risk and develop management strategies. 
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Figure 1. Major histological subtypes of renal cell carcinoma. Clear cell, papillary, and 

chromophobe subtypes of RCC are primarily distinguished by their histologic architecture, 

however, also have distinctly different prognoses, genomic drivers, and clinical courses. 

1.1.3 Hereditary RCC Syndromes 

In comparison to sporadic RCCs, 5% of cases31 are attributed to familial syndromes with 

associations to germline mutations in specific genes. Common cancer syndromes that present with 

renal tumors include von Hippel-Lindau disease (VHL gene), hereditary papillary RCC (MET 

gene), hereditary leiomyomatosis (FH gene), and Birt-Hogg-Dubé syndrome (FLCN gene)31. 

Hereditary kidney cancer syndromes are typically associated with young age of disease onset (<45 

years), and multifocal or bilateral tumors, features which guide most genetic screening criteria for 

renal cancer32,33.  
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Von Hippel-Lindau disease (VHL) is an autosomal-dominant ccRCC-predisposing 

syndrome cause by germline mutations in the VHL gene31,34. VHL is characterized by the 

development of a spectrum of tumors in multiple organs, including the kidneys, the brain, spinal 

cord, and retinas. Individuals with VHL often develop bilateral ccRCC, sometimes having 

hundreds of kidney lesions. There is also evidence that the type of mutation present in VHL is 

correlated to disease phenotype, with truncating and missense variants being associated with varied 

likelihood of developing RCC or pheochromocytoma (benign tumors of the adrenal gland). 

Frameshift and nonsense mutations in VHL are highly penetrant for ccRCC, while some missense 

mutations do not show association to ccRCC35. Treatment plans for individuals with VHL disease 

include routine imaging to monitor the development and growth of lesions, and aggressive surgical 

approaches. 

Hereditary papillary renal cell carcinoma (HPRCC) and Hereditary leiomyomatosis and 

kidney cell cancer (HLRCC) are autosomal hereditary syndromes associated to papillary subtypes 

of RCC. HPRCC is a rare syndrome caused by germline mutations in the MET gene, and is 

characterized by the development of bilateral and multifocal pRCCs with Type I (basophilic) 

features36,37. HLRCC, caused by mutations in the FH gene, is characterized by the development of 

kidney cancer along with cutaneous and uterine leiomyomas, and is most frequently associated 

with papillary RCCs with histologically Type II (eosinophilic) features38,39. Patients with HLRCC 

often have an early age-of-onset, high grade tumors, and an aggressive disease course. 

Birt-Hogg-Dubé syndrome (BHD), caused by mutations in the FLCN gene, has a variable 

and often mild presentation, but is characterized by the development of fibrofolliculomas, lung 

cysts, spontaneous pneumothorax and kidney cancer40,41. Patients with BHD can develop various 

subtypes of renal cancers, however most frequently are hybrid oncocytic tumors that exhibit 
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chromophobe and oncocytoma features, and are often multifocal. Due to the mild and variable 

presentation of BHD, it is greatly underdiagnosed, and surveillance and treatment strategies are 

dependent on the specific symptoms. 

Several additional hereditary syndromes are associated with an increased risk of 

developing RCC (Table 1), including Cowden Disease (caused by mutations in the PTEN gene), 

SDH-RCC (mutations in SDH genes), TSC-associated RCC (mutations in TSC1/2 genes), and MIT 

family translocation RCC, though they are less common and not often included in genetic 

screening for renal cancers31. 

1.1.4 Treatment 

Though there have been rapid advancements in the diagnosis, treatment, and management 

of renal cancer in the previous decades, RCC still represents a considerable clinical challenge. 

Early diagnosis of RCC remains difficult, as there are few symptoms present at low stages; in fact, 

RCCs are frequently discovered as an incidental finding during other medical procedures42,43. After 

diagnosis, the primary treatment for localized RCC (stages I-III) is surgery, where a partial or 

radical nephrectomy to remove the tumor is considered curative; however, 30-40% of patients will 

develop relapse after the surgery44,45. For advanced disease, nephrectomy can improve overall 

survival, and in some cases surgical resection of metastatic sites (metastectomy) is also feasible 

and effective44. 

Metastatic RCC (mRCC) is resistant to chemo- and radiotherapies, making management 

of aggressive disease after surgery a challenge. Prior to the 2000s, systemic treatment of metastatic 

or advanced RCC was limited to traditional immunotherapy approaches (cytokine therapies), 

which were largely ineffective in managing RCC. Interferon-a (IFNa) had response rates of only 

15%, and increased overall survival (OS) by 6 months46. Treatment with high doses of interleukin-
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2 (IL-2) saw complete remission in a small number of patients (7-10%); however was associated 

with high toxicity47. The past two decades have seen the transition from cytokine approaches to 

targeted therapies, followed by immunotherapy agents, which have seen higher rates of response 

and longer progression-free survival (Figure 2). 

Improved understanding of the biology of ccRCC, including the upregulation of hypoxia-

responsive genes (described in Chapter 1.2.1), has enabled the development of therapies targeting 

molecules that are overexpressed in ccRCC. A major drug target is vascular endothelial growth 

factor (VEGF) and its receptors (VEGFR), which is produced in high levels in VHL-inactivated 

tumors48. The use of tyrosine kinase inhibitors (TKIs) targeting VEGF, sorafenib and sunitinib, 

has improved prognosis compared to cytokine therapies, however many tumors are unresponsive 

and tumor re-growth occurs after some time49. TKIs with increased sensitivity, along with multi-

kinase inhibitors targeting other receptors in addition to VEGFR have also been approved for 

treatment of advanced and metastatic RCC. Still, complete response is rare, and most tumors 

eventually acquire resistance50.  Additional inhibitors targeting the mTOR pathway, rather than 

VEGF, are also approved for RCC though they have very low response rates51. 

The advent of immune checkpoint inhibitors (ICIs) has largely improved therapeutic 

approaches for mRCC. Immune-checkpoint molecules including programmed-cell-death protein 

1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) act to suppress the activity 

of T cells, resulting in cancer cells becoming immunotolerant52. By targeting PD-1, it’s ligand 

(PD-L1) and CTLA-4, ICIs can increase the tumor immune response53. Nivolumab, an anti PD-1 

agent, was the first immunotherapy drug approved for RCC, and showed improved survival 

outcomes for patients with advanced RCC who had previously received treatment54. Several ICIs, 
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including pembrolizumab (anti PD-L1) and ipilumab (anti-CTLA-4) have also shown improved 

survival outcome.  

Despite the success of TKIs and ICIs in improving overall survival outcomes for advanced 

and metastatic RCC, many patients will still develop resistance to individual therapies. 

Combination therapy regimens have become the standard of care, with strategies involving 

treatment with both TKIs targeting and ICIs55. These combinations have more favourable 

outcomes than monotherapy approaches, with improved overall survival outcomes and strong 

responses55. Nonetheless, many patients will still develop resistance to current treatment options, 

and identification of patients who will benefit from adjuvant therapies remains difficult. 

 

 
Figure 2. Timeline of key advancements in the treatment of RCC. Response rates are indicated 

for each agent55.  

1.1.5 Predicting Disease Recurrence 

Tumor histology alone is not a good predictor of disease recurrence, and current prognostic 

algorithms and clinical nomograms that also consider characteristics of the tumor (stage, grade, 
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and size), and symptoms have all been developed retrospectively56-62. Evaluation of existing 

prognostic tools indicate that they are underperforming and inconsistent in identifying RCC 

patients at high risk of disease recurrence63.  

For decades, the TNM (tumor-node-metastasis) classification system played the central 

role in risk-prediction for RCC, however has limited ability to predict individual outcomes. 

Advanced statistical modeling led to the development of several predictive models, with the goal 

of improving individualized risk prediction. Various models for predicting overall survival (OS), 

cancer specific survival (CSS) and recurrence free survival (RFS) have been developed for RCC, 

each based on various clinical and pathologic variables. Commonly used predictive models that 

integrate additional clinic-pathological parameters include SSIGN (Stage, Size, Grade, and 

Necrosis) score61, Leibovich score62, Kattan score58, and UISS (UCLA Integrated Staging 

System)64. Though these models are marginally improved for predicting risk compared to TNM 

staging system, they demonstrate notable variability over time and prospective validation of these 

models shows a substantial decrease in their predictive abilities compared to their original 

estimates63. 

Though we can divide RCC tumors into distinct groups based on histological examinations, 

this grouping is considerably limited in informing the management and treatment of patients, and 

when it comes to identifying the mechanisms underlying these differences. Even within the clear 

cell subtype, there is a considerable tumor heterogeneity, and aggressive tumors are likely a result 

of distinct molecular processes that can only be identified through characterization of the 

molecular genetics of RCC.  
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1.2 MOLECULAR GENETICS OF CCRCC 

Efforts to sequence large cohorts of RCCs within the last decade have substantially 

advanced our understanding of the genomic landscape of RCC and recurrently mutated genes 

among RCC subtypes. Several genes have been identified as commonly altered in RCC, for both 

hereditary and sporadic forms (described below and summarized in Table 1). Familial RCC 

syndromes are typically associated with a germline mutation within a single gene responsible for 

increasing an individuals’ risk of developing renal cancer, most of which have been identified and 

are well-characterized. For sporadic cases, investigations of somatic mutations, those present only 

within the tumor and not in the germline cells, provide insight into the molecular processes driving 

tumorigenesis. The landscape of somatic variations in RCC includes patterns of genes harbouring 

single nucleotide variations (SNVs), small insertions and deletions (indels), and patterns of 

recurrent copy number alterations (CNAs), large chromosomal losses and amplifications, that have 

been identified within each RCC subtype65-67. Though advances have been made in identifying 

recurrently mutated genes within RCC subtypes, the immense genetic heterogeneity of RCC 

tumors, even within a subtype, and the interactions among driver genes are not well understood. 

Studies of tumor evolution are promising in identifying molecular underpinnings driving RCC 

progression, particularly for ccRCCs, where the distinct patterns are poorly understood.  
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Table 1. Major genes commonly implicated or genomically altered in RCC 

Gene 
Genomic 
Location 

Hereditary disease Frequency in sporadic disease 
Association to 
prognosis Syndrome Subtype 

Clear 
Cell 

Papillary Chromophobe 

VHL67,68 3p25.3 
von Hippel 
Lindau 
disease 

clear cell >70% 1.1% 1.4%  

PBRM120,69,70 3p21.1   35-45% 4.5% -  

BAP120,71-73 3p21.1   5-16% 5.6% - 
Metastatic 
disease 

SETD274,75 3p21.31   13-30%  6.4% 2.7% 

Higher 
frequency in 
metastatic 
disease 

ELOC76 
(also known 
as TCEB1) 

8q21.11   1-4% - -  

MTOR20 1p36.22   6.7% 0.4% 2.7%  
PIK3CA20 3q26.32   2.6% 1.5% 1.4%  
KDM5C20 Xp11.22   6.9% 1.9% 1.4%  

TSC177 9q34.13 
TSC-

associated 
PRCC 

angiomyolipoma 0.6% 1.1% 2.7%  

TSC277 16p13.3 
TSC-

associated 
PRCC 

angiomyolipoma 1.1% 2.3% 2.7%  

MET25 7q31.2 HPRC Type I papillary 0.6% 13-15% -  
CDKN2A20,25 9p21.3   - 13-25% -  
NF220 22q12.2   0.9% 3.8% - Poor prognosis 
TP5328 17p13.1   2.6% 1.5% ~30%  
PTEN20,78 10q23.31 Cowden often clear cell 4.5% 3.4% 8.1%  
FH25,79 1q43 HLRCC Type II papillary - - -  

FLCN80 17p11.2 
Birt–Hogg-

Dubé 

hybrid 
oncocytomas, 
chromophobe, 
papillary, clear 

cell 

- - - 
Syndrome is 

very aggressive 

SDHB, 
SDHD80 

1p36.13; 
11q23.1 

SDH-RCC 
clear cell, 

chromophobe, 
oncocytoma 

- - - 
Syndrome is 
aggressive 

TFE3, TFEB, 
MITF80-82 

Xp11.23; 
6p21.1; 
3p13 

MiT family 
translocation 

RCC 

mixed, often 
overlap of clear 
cell and papillary 

- - - 
Syndrome is 

very aggressive 

*Not an exhaustive list, there are many more genes that are commonly altered or implicated in RCC, 
however this list highlights those that are most frequent, associated to hereditary syndromes, or 
demonstrating prognostic value.  
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1.2.1 VHL 

The defining feature of ccRCCs is inactivation of the von Hippel-Lindau (VHL) gene, 

which is present in >80% of ccRCCs and considered to be the initiating event83. VHL was initially 

identified as the gene responsible for VHL disease, a ccRCC predisposing syndrome caused by 

germline mutations in VHL84. Subsequently, somatic mutations in VHL were identified in sporadic 

ccRCCs, and VHL has since been characterized as a classic two-hit tumor suppressor gene, 

following Knudson’s two-hit model of tumorigenesis23,85. Inactivation of VHL occurs through the 

loss of heterozygosity (LOH), along with inactivation of the second allele through intragenic 

mutations or epigenetic silencing68. 

The product of VHL, VHL tumor suppressor protein (pVHL), is a key regulator of cellular 

response to hypoxia, regulating hypoxia-inducible factors 1α (HIF1α) and 2α (HIF2α)23,86. pVHL, 

along with elongin C and elongin B, both transcription elongation factors, and Cul2 and Rbx1 form 

the VCB-CR complex23. Under normoxic conditions, HIF1α and HIF2α are hydroxylated, 

allowing recognition by the VCB-CR complex, and subsequent ubiquitylation of HIF-α to mark it 

for proteasomal degradation. Alternatively, in hypoxic conditions, the VCB-CR complex does not 

recognize HIF-α due to the lack of hydroxylation. In turn, this enables the stabilization and 

accumulation of HIF-α and subsequent dimerization with HIFβ. HIFα-HIFβ heterodimers 

translocate to the nucleus, and induce expression of HIF target genes by binding to hypoxia-

response elements. The inactivation of VHL results in a pseudo hypoxic state in ccRCCs, and 

constitutive stabilization of HIFα results in the upregulation of HIF target genes (Figure 3). There 

are over 800 HIF target genes87, including those that promote cell proliferation, angiogenesis, and 

glycolysis, whose upregulation contributes to tumorigenesis.  
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Recently, mutations in the gene encoding elongin C, ELOC, have also been described in 

ccRCC23. Mutations in ELOC are present in <5% of ccRCCs, and are almost always accompanied 

by the loss of the second allele on chromosome 888. Notably, mutations in VHL and ELOC are 

mutually exclusive, though they both inactivate the VCB-CR complex. 

 

 
Figure 3. The VHL-HIF pathway under normoxic and hypoxic conditions. Pseudo-hypoxia 

induced by the loss or inactivation of VHL results in upregulation of HIF target genes that promote 

tumor growth. (This figure was adapted from Riazalhosseini & Lathrop, 20162 and Gossage et al. 

201523). 
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1.2.2 3p Tumor Suppressor Genes: PBRM1, BAP1, SETD2 

VHL inactivation alone is not sufficient to cause ccRCC, though it has been the primary 

focus of ccRCC research in the past decades. With improvements in sequencing technologies, 

additional driver genes have been identified and implicated in ccRCC. VHL is located on 3p 

chromosome arm (Figure 4), which is also home to additional tumor suppressor genes that are 

commonly implicated in ccRCC – PBRM1, SETD2, and BAP1. The second allele of these genes 

is often co-deleted along with VHL, with the loss of 3p.  Along with the two-hit hypothesis for 

tumor suppressor genes in this region, an additional mutation in the remaining allele can result in 

reduced or complete loss of protein function, and promote tumorigenesis.  

The second most commonly mutated gene after VHL is Polybromo 1 (PBRM1), mutated in 

35-45% of all ccRCCs. PBRM1 encodes BAF180, a subunit of a SWI/SNF nucleosome remodeling 

complex that is frequently disrupted in cancer. Mutations in PBRM1 are typically truncating, 

resulting in a loss-of-function89; however, how the loss of PBRM1 promotes ccRCC development 

is not yet fully understood.  

Mutations in the SETD2 gene (encoding SET domain containing protein 2) are found in 

10-15% of ccRCCs. SETD2 is a histone H3 lysine 36 (H3K36) trimethyltransferase that plays 

roles in both transcriptional regulation and DNA damage response (DDR), though the tumor 

suppressor role of SETD2 in ccRCC is not fully characterized90. Recent models demonstrate that 

loss of SETD2 increases chromatin accessibility and activates enhancers, creating an epigenetic 

landscape that allows for increased transcriptional output of oncogenic drivers and overall 

promotes metastasis90. Likewise, tumors with mutations in SETD2 are associated with poorer 

disease-free survival and increased risk of disease recurrence in comparison to tumors without 
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SETD2 mutations20. Interestingly, mutations in SETD2 are often observed as co-occurring with 

PBRM1 mutations; however, the molecular basis and whether they cooperate is unknown.  

The BAP1 gene (BRCA1 associated protein-1) is mutated in 10-15% of sporadic ccRCCs, 

and germline mutations in BAP1 have also been associated with familial ccRCC91. Like SETD2, 

BAP1 mutations are also associated to high stage tumors, and worse prognosis, which suggests a 

role in disease progression92,93. BAP1 is a de-ubiquitinating enzyme involved in regulating several 

cellular processes, including DNA repair, replication, apoptosis, and maintaining genome 

stability94. However, the mechanisms explaining how BAP1 mutations specifically drive renal 

carcinogenesis are not well understood. 

While co-occurrence of PBRM1 and SETD2 mutations is common95, possibly indicating 

their cooperation in tumorigenesis or progression, mutations of BAP1 and PBRM1 are mutually 

exclusive95,96. Additionally, mutations in each gene are associated to RCC with differing 

pathological features, including gene expression profiles, and patient outcomes. Though 

uncommon, tumors that do harbour co-occurring BAP1 and PBRM1 mutations are extremely 

aggressive and are associated with poor outcome97. 

 
Figure 4. Tumor suppressor genes located on chromosome 3p in the vicinity of VHL. The loss 

of chromosome 3p is a defining feature of ccRCC, along with the inactivation of VHL (located at 

3p25). Additional tumor suppressor genes SETD2, BAP1, and PBRM1 (all located in the 3p21 
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region) in this region are also frequent targets for inactivation. (This figure was adapted from 

Dizman et al, 202048). 

1.2.3 PI3K/AKT/mTOR Pathway Genes 

The PI3K/AKT/mTOR signalling pathway is also implicated in ccRCC, with ~28% of 

tumors harbouring alterations in genes encoding proteins involved in the pathway68,76. Playing an 

important role in cell survival and growth, dysregulation of this pathway is frequent in cancer, and 

presents a promising potential therapeutic target. mTOR inhibitor drugs have shown some success 

in managing metastatic and locally advanced RCC, however their efficacy is limited98. The somatic 

mutation frequency of individual genes involved in PI3K/AKT/mTOR signaling has not reached 

statistical significance in many studies, though the genes within the pathway are affected by 

somatic mutations in 28% of ccRCCs68,76. In ccRCC, somatic mutations have been identified in 

PTEN (1-5%), PIK3CA (2-5%), TSC1/TSC2 (4%), and MTOR (5%) genes76. While PTEN, TSC1 

and TSC2 are known tumor suppressor genes, the others are suggested to act as oncogenes, and 

demonstrate mutual exclusivity76. 

Interplay between VHL and PI3K/AKT/mTOR pathways may also play a role in ccRCC, 

as they are linked by a negative feedback loop99,100 (Figure 5). In response to hypoxia, mTORC1, 

one of the two complexes nucleated by mTOR, is inhibited by the REDD1 protein. With VHL 

disruption, REDD1 is upregulated99, which leads to a downregulation of mTORC1. Interestingly, 

overexpression of genes within the mTOR signaling pathway is observed in 60-85% of ccRCCs, 

indicating that pathway is activated20,100, which may be due to mutations in additional pathway 

genes that are required for REDD1 signaling, such as TSC1 and PTEN. 
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Figure 5. Interplay between VHL and MTOR pathways. The PI3K/AKT/mTOR pathway plays 

a major role in cell growth and proliferation and is frequently disrupted in cancer. Activating 

mutations in PI3KCA (encoding p110α) and deactivating mutations in PTEN increase PIP3 levels, 

leading to recruitment of AKT. Phosphorylation of TSC2 by AKT releases inhibition of Rheb by 

the TSC1/2 complex, which in turn activates MTORC1. Deactivating mutations in TSC1 or TSC2 

can also act to increase the activity of the pathway. In response to hypoxia or pseudo-hypoxia due 

to VHL inactivation (described in Figure 3), REDD1 is transcriptionally activated by HIF-1 and 

HIF-2. REDD1 inhibits MTORC1 via the TSC1/2 complex. (This figure was adapted from 

Brugarolas, 2014100). 
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1.2.4 Genetic Evolution of ccRCC 

Large scale genomic studies have highlighted the intra-tumoral heterogeneity of ccRCC, 

however only recently have they begun to identify patterns in the ordering of driver mutations and 

conserved features of tumor. Initial studies propose a model of ccRCC development in which the 

initiation event is the loss of chromosome arm 3p, followed by an intragenic mutation of VHL, 

which inactivates the remaining allele. This leaves other genes within 3p, including PBRM1 and 

SETD2 vulnerable to inactivation (Figure 6). One mechanism driving the frequent loss of 

chromosome 3p for an estimated 30-40% of ccRCCs is a chromothripsis event also involving 

chromosome 5q; breakage in multiple chromosomes simultaneously, followed by attempted repair, 

results in the loss of one copy of 3p and the gain of an extra copy of 5q101,102. There is also evidence 

of chromothripsis events leading to concurrent loss of 3p and 6q, and observed unbalanced 

translocations with other chromosomes, along with cases with loss of the entire chromosome 3102.  

 
Figure 6. Model of ccRCC initiation. Following an initial loss of chromosome 3p (often due to 

a chromothripsis event) an intragenic mutation of VHL inactivates the remaining allele. Additional 

3p tumor suppressor genes, such as PBRM1 and BAP1 are left susceptible to inactivation. (This 

figure was adapted Brugarolas, 2014100). 
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Though this model describes the initiation of ccRCC, it does not explain the extreme visible 

intratumoral heterogeneity. ccRCCs are known to have extreme subclonal diversity, with 73-75% 

of somatic mutations being subclonal103. Studies investigating the somatic landscape of RCC have 

also revealed branched evolutionary tumor growth, with key tumor-suppressor genes having 

distinct and separate inactivating mutations within a single tumor103,104. The phylogenetic 

reconstruction of tumors has helped to resolve the subclonal architecture of ccRCCs, identifying 

alterations in VHL as the only consistently truncal mutations103. In some cases, PBRM1 

inactivation occurs early, but all other driver mutations were subclonal103. 

1.2.5 Genetic-Based Risk Assessment 

Increased knowledge of genes frequently mutated in ccRCC has helped us to gain insight 

into the molecular processes driving tumorigenesis, however analyses of individual genes has not 

shown to be successful in identifying robust markers of prognosis for RCC. Mutations in certain 

genes have demonstrated association to differing outcomes, such as mutations in BAP1 and 

PBRM1 being associated with differing outcomes (described in Chapter 1.2.2), however there is 

no single genomic marker of prognosis or response to treatment. There is also extensive 

intratumoral heterogeneity within ccRCC tumors, of which the patterns have not yet been fully 

characterized. Intratumoral heterogeneity, and the corresponding heterogeneous protein function 

may also interfere with targeted therapies and resistance104. Currently, there are no prognostic 

biomarkers for RCC that consider the genetic profile of the tumor, highlighting the need for large-

scale genomic studies investigating genetic patterns underlying RCC subtypes and how they can 

inform outcome. 

More recently, systematic studies focusing on the subclonal diversity of ccRCC have 

identified recurrent patterns of driver event ordering, co-occurrence, and mutual exclusivity. From 
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these patterns, ccRCC tumors could be grouped into 7 distinct evolutionary subtypes, each with 

correlated phenotypes105. These subtypes include tumors with multiple clonal drivers, VHL-

monodrivers, those that are BAP1-driven, tumors with PBRM1 mutations preceding PI3K pathway 

mutations, SETD2, and driver SCNA events (Table 2). These proposed evolutionary trajectories 

for ccRCC are linked to distinct clinical outcomes; presenting a novel and promising opportunity 

for genomic-based personalized management of ccRCC. 
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Table 2. Proposed evolutionary subtypes of ccRCC* 

Evolutionary Subtype Mutational characteristics Associations 

Multiple clonal drivers VHL, followed by mutations in  
³2 of BAP1, PBRM1, SETD2, or 
PTEN 

High levels of wGII, late stage 
disease, smaller number of 
clones, high level 
of %MVI/%G4/%Ki67 

BAP1 driven VHL, BAP1 as lone clonal 
drivers 

Elevated wGII, high tumor 
grade, small number of clones 

VHL wildtype Lack of driver mutations Elevated wGII, frequent 
presence of sarcomatoid 
differentiation, high Ki67% 

PBRM1 ® SETD2 driven Early PBRM1 mutation, 
followed by SETD2 mutations 

Advanced stage, high ITH, 
highly branched trees (many 
clones), frequent parallel 
evolution events, advanced 
disease stage 

PBRM1 ® PI3K driven Early PBRM1 mutation, 
mutational activation of 
PI3K/AKT/mTOR pathway 

Lower grade tumors 

PBRM1 ® SCNA driven Early PBRM1 mutation, 
subclonal SCNAs 

Lower grade tumors 

VHL mono driver VHL, no additional driver 
mutations 

Low wGII, early stage 

*Summarized from Turajlic, et al. 2018105  
wGII: weighted genome instability index; estimates the fraction of the genome affected by somatic CNAs 
ITH: intratumor heterogeneity, measured as the ratio of subclonal to clonal drivers 
%MVI: Percentage of tumors with microvascular invasion 
%G4: Percentage of tumors that are Fuhrman grade 4 
%Ki67: Percentage of cells staining positive for Ki67 
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1.3 NGS TECHNOLOGIES IN CANCER GENOMICS 

An aspect that has revolutionized the molecular characterization of many cancers, 

including RCC, is the advances in next-generation sequencing (NGS) technologies over recent 

decades which have allowed for massively parallel sequencing of tumors. NGS technologies have 

become less expensive, while also becoming faster, more sensitive, and higher throughput. This 

has improved the ability to generate large genomic datasets for individual cancers, enabling the 

identification of recurrent mutations, and increasing the statistical power for investigations of 

associations to prognosis. The ability to sequence at high depths of coverage also enables the 

sensitive detection of mutations present at low allele frequencies, facilitating deeper investigations 

into the subclonal architecture of tumors. Simultaneously, advances in molecular biology 

approaches including DNA isolation, library preparation, and target enrichment methods, have 

enabled tailored NGS workflows for ‘difficult’ sample types, such as Formalin-Fixed Paraffin-

Embedded (FFPE) tissue and liquid biopsies. Bioinformatics tools are also becoming increasingly 

more powerful for analyzing NGS data, and computational approaches more sensitive for 

identifying genomic aberrations. With NGS technologies becoming more powerful, less 

expensive, it is becoming increasingly feasible to bring genome-based personalized medicine to 

clinical practice. 

Traditionally, whole genome (WGS) and whole exome sequencing (WES) approaches 

have been applied for the analysis of tumor DNA. Comparing WGS or WES of matched tumor 

and normal samples from an individual patient allows for simultaneous screening of germline and 

somatic CNAs, SNVs, and small indels, supporting in depth genetic profiling of each individual 

tumor sample. While these allow for a more exploratory approach for gene discovery, recently 

targeted sequencing panels have been developed to allow for deeper sequencing at a lower costs 
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by focusing on specific genes of interest. Targeted sequencing panels offer the advantage of being 

able to obtain a high depth of coverage across genes of interest, without ‘wasting’ sequencing on 

other genomic regions. At the same time, targeted sequencing approaches are more affordable and 

readily applied to the clinic. 

As of yet, there is no convenient NGS approach tailored to renal cancer. The sensitivity of 

a targeted approach is essential to capture the considerable genetic heterogeneity of RCC, where 

subclonal mutations may be present at extremely low mutation frequencies. However, 

commercially available gene panels for cancer are missing key RCC genes. 

1.4 LIQUID BIOPSY 

Liquid biopsies offer a promising opportunity for identifying biomarkers in cancer, as they 

are minimally invasive compared to tissue biopsies, provide real time access to 

diagnostic/actionable mutations, and can be a valuable resource for management of patients with 

cancer. There are considerable limitations to tissue biopsy in cancer - in addition to difficulties 

with obtaining tissue biopsies, or tumors that are inaccessible, a single biopsy is not informative 

of the entire tumor. The extensive intratumoral heterogeneity of RCC dictates that not all subclones 

are present within a single region from a tumor104, which means that characterizing the entire 

genetic landscape of the tumor may not be possible from a single tissue biopsy. Alternatively, 

liquid biopsies may give a better representation of a tumors’ heterogeneity, as they are not limited 

to one spatial region, and are capable of capturing information from the entire tumor106,107.  

Various liquid biopsy components have demonstrated diagnostic, prognostic, and 

potentially therapeutic utility for solid tumors. Studies of biological fluids have identified 

circulating tumor cells (CTCs), cell free DNA (cfDNA) and RNA (cfRNA), extracellular vesicles 

(EVs) including exosomes, and additional tumor derived metabolites and proteins that are 
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informative for cancer. Several of these analytes have also been evaluated in the context of RCC, 

however each has their respective challenges hindering implementation in the clinic (summarized 

in Table 3). In particular, circulating tumor DNA (ctDNA) found within cfDNA, has allowed for 

the identification of tumor-associated genetic alterations in the blood. Analysis of ctDNA in RCC 

is not yet implemented in the clinic, as analyses are lacking in sensitivity, however technical 

advancements in NGS are increasing the sensitivity of ctDNA analysis and there has been success 

in other cancer types, representing a promising future for RCC. 
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Table 3. Liquid biopsy components demonstrating clinical utility for renal cancer and their 

challenges 

Analyte Source Application Analytical Approaches Challenges 

Cell free DNA108-110 Plasma 

Urine 

Prognostic and 
Diagnostic 

Assays consider several 
characteristics of cfDNA, 
including: quantity, promoter site 
methylation, somatic mutations 
and fragmentation 

NGS Assays or RT-qPCR to detect 
genomic alterations 

qMSP assays to evaluate 
methylation 

 

Quantification and 
fragmentation assays have low 
sensitivity (high false-negative 
rate), likely due to the low 
abundance of ctDNA released by 
RCCs 

cfDNA methylation assays are 
costly and timely 

NGS assays interrogating 
genomic alterations have low 
sensitivity, require matched 
tumor and normal biopsies for 
validation 

Heterogeneity of RCC subtypes 
makes biomarker selection 
challenging 

Circulating tumor 
cells108,111-113 

Whole-blood Diagnostic Antibody-based assays (targeting 
EPCAM or CK) 

Physical property-based assays 
(cell size, shape, protein 
expression) 

Difficulty in distinguishing CTCs 
from leukocytes 

Assays have low diagnostic 
sensitivity due to low abundance 
of CTCs in early stages and low 
expression of markers in RCC 
used to identify CTCs 

Extracellular 
vesicles108,114,115  

Plasma 

Serum 

Urine 

Diagnostic Precipitation enrichment via 
ultracentrifugation 

Enrichment via size filtration 
(typically for urine) 

Total EV cargo evaluation as 
biomarkers (RNA, proteins, DNA, 
lipids) 

Identification of protein markers 
via mass spectrometry (proteome, 
lipidome), and validation through 
western blot or ELISA 

Identification of nucleotide 
markers via NGS (mRNA, miRNA, 
DNA) and validation through RT-
qPCR 

Lack of standardization for 
enrichment protocols and 
analyses hinders assay 
reproducibility 

Distinction between benign and 
cancer EVs 

Small size of EVs limits number 
of simultaneously bound 
antibodies for enrichment 

Contamination with non EV-
encapsulated molecules 
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1.4.1 Circulating Tumor DNA 

Cell free DNA, originally identified as ‘non cell bound DNA’ in the blood, represents 

fragments of DNA that have been released by cells into the blood and other biological fluids such 

as saliva, urine, and cerebrospinal fluid. Tumor-derived DNA (ctDNA) is also released into the 

circulation, and makes up a small fraction of all cfDNA. The exact mechanisms responsible for 

releasing ctDNA into the blood are not completely understood, however there is likely a 

combination of passive and active mechanisms. Passive release of cfDNA likely occurs during 

processes of cellular destruction – apoptosis and necrosis116. Evidence of spontaneous, active 

release of DNA into circulation has been reported in cell lines, and through secretion from 

extracellular vesicles116,117. It is hypothesized that active release of ctDNA by cancer cells may 

serve a purpose to promote metastasis at distant sites, affecting the transformation of susceptible 

cells118,119. 

ctDNA can provide valuable information about the primary tumor, and has been 

established as a promising diagnostic marker for molecular profiling of tumors with utility for 

early diagnosis, and a role in monitoring treatment response in real-time. Initial studies of ctDNA 

in several cancer types have demonstrated its potential for monitoring response to treatment, 

detecting minimal residual disease (MRD)120, and monitoring the emergence of drug resistance. 

While tissue biopsies are limited to the spatial region of the tumor that was captured, ctDNA is 

believed to be representative of the entire tumor, making it a better representation of the subclonal 

evolution occurring in the tumor. Serial liquid biopsies have demonstrated that they can be more 

informative than tissue biopsies for evaluating global tumor heterogeneity121. Additionally, as the 

half-life of ctDNA in the blood is under 2 hours122, it represents a real-time representation of the 
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tumor profile. Likewise, the burden of ctDNA is increased with tumor burden; late stage tumors 

are associated with higher loads of ctDNA in the plasma116. 

1.4.2 Clinical Utility of Liquid Biopsies in Cancer 

Various molecular features of ctDNA, including methylation patterns, fragment size, and 

somatic mutations, have demonstrated utility for longitudinal clinical surveillance to predict risk 

of disease recurrence, or detect relapse and resistance to therapies. Quantifying the amount of 

ctDNA and tracking known tumor-associated genetic aberrations are informative for monitoring 

minimal residual disease (MRD)120. Studies of longitudinal surveillance demonstrate the 

association between increasing amounts of ctDNA and disease recurrence123. Additionally, 

longitudinal surveillance of somatic aberrations can track tumor and clonal evolution over time. 

For patients undergoing drug treatments, the emergence of tumor-associated genomic aberrations 

can indicate the emergence of drug resistant cancer cells, which can be detected by ctDNA analysis 

months before when conventional methods are able to detect it124. On the other hand, in cases 

where a tumor biopsy is not available, somatic mutations in relevant genes identified within ctDNA 

can inform treatment selection, prognosis, and risk of disease recurrence through molecular 

profiling125,126. There is also evidence that ctDNA analysis is becoming effectively sensitive for 

screening and early diagnosis for some cancer types127-129. 

Common methods of analyzing ctDNA include digital PCR, genome-wide NGS 

approaches, and targeted NGS approaches. Digital droplet PCR (ddPCR) allows for the highly 

sensitive, targeted amplification of a mutant allele, and is a valuable tool for monitoring ctDNA 

when prior knowledge of the genetic aberration of interest130. Analysis of shallow WGS (sWGS) 

from ctDNA is capable of detecting copy number aberrations of the tumor, and is often used for 

estimating the proportion of cfDNA that is tumor-derived. More recently, analysis of ctDNA 
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fragment sizes from sWGS has identified fragment size differences between healthy cfDNA and 

ctDNA that may be informative131. The study of fragmentation patterns (‘fragmentomics’) is a 

newly active area of liquid biopsy research that identified patterns indicative of tissue-of-origin, 

and offers potential for cancer screening132. Lastly, targeted NGS approaches involving 

commercial or custom targeted sequencing panels are capable of detecting SNVs and small indels 

at low allele frequencies, beneficial for investigating the somatic landscape of ctDNA. 

1.4.3 Challenges for ctDNA in RCC 

RCC presents a particular challenge for ctDNA analysis due to a combination of low 

amounts of ctDNA106 and low mutational burden109. Some studies have indicated that less than 

50% of patients with RCC have detectable ctDNA106,133. Additionally, analysis of cfDNA 

fragmentation features showed that cfDNA fragment sizes in the plasma of patients with late stage 

RCC were much longer, similar to healthy individuals, than in other late-stage cancers131. The 

relatively low tumor mutational burden (TMB) of RCC also means that there are few somatic 

mutations to identify within the already low amounts of ctDNA. RCCs harbour ~1.1 

mutation/Mb131, meaning that many tumor-derived fragments will not have mutations, and be 

indistinguishable from healthy cfDNA fragments. Some studies have also demonstrated a 

discordance between tumor and ctDNA120, however this could be due to low sensitivity of NGS 

techniques used of analysis, long timing between the tumor and liquid biopsies, or clonal and 

spatial heterogeneity that was not captured within the tumor biopsy. 
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1.5 RATIONALE, HYPOTHESIS AND OBJECTIVES 

Hypothesis: We hypothesize that analyzing the mutational status of RCC-relevant genes in large 

and clinically annotated cohorts is required to establish genomic markers of prognosis. 

Furthermore, establishing liquid biopsy assays capable of capturing genomic biomarkers will pave 

the way for clinical application of prognostic markers in RCC. Lastly, a deeper understanding of 

the germline predisposition to sporadic RCC will help to identify at-risk patients and improve 

precision prevention strategies in RCC. 

 

I address this hypothesis through the following three aims: 

 

Aim 1: Developing and optimizing a renal-cancer-appropriate NGS assay and tailored 

bioinformatic analysis solutions for tumor and liquid biopsies. 

 

Aim 2: Investigating the genetic evolution of renal cell carcinoma and the clinical consequences. 

 

Aim 3: Investigating germline predisposition to RCC, and implications for genetic screening. 
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PREFACE TO CHAPTER 2. 

In Chapter 1, we highlighted the need to develop better biomarkers for risk stratification 

for patients with ccRCC, as it remains difficult to identify patients who are at high-risk of 

developing relapse or metastasis after curative surgery. Increasing our understanding of the genetic 

heterogeneity of ccRCCs, by investigating patterns of recurrently mutated genes and their 

associations to prognosis, may help to identify genomic markers of prognosis. To investigate the 

genetic landscape of ccRCCs, large-scale studies are needed to fully capture their considerable 

inter- and intra-tumoral heterogeneity. However, there is a lack of sequencing assays appropriate 

for renal cancers, as many of the commercial panels used in research are missing key RCC genes, 

and whole genome or exome approaches are expensive and may not be feasible at such large scale. 

Limiting investigations to smaller panels of genes also enables more practical application in the 

clinic. Thus, the first aim of this thesis was to develop a targeted sequencing approach, specific to 

renal cancer, to enable deeper investigations into the somatic landscape of RCC. 

Chapter 2 consists of a manuscript describing the development and optimization of a renal 

cancer appropriate targeted sequencing panel for both tissue and liquid biopsies. The panel 

contains genes relevant to clear cell and non-clear cell subtypes that may have diagnostic and 

prognostic value. In this chapter, we demonstrate the assays capability to detect potentially 

actionable mutations within matched tissue and liquid biopsies from patients with ccRCC. 

Notably, we evaluate the ability of both cfDNA and evDNA (exosomal DNA) to capture 

information from the primary tumor. This NGS assay provides a resource to facilitate genomic 

investigations of RCC tumors, as well as a platform for establishing robust liquid biopsy strategies 

for RCC.  
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2.1 SIMPLE SUMMARY 

Among patients affected by renal cell carcinoma (RCC), the most common type of kidney 

cancer, it remains difficult to identify those who are at high risk for relapse or metastasis. This is 

in part due to the absence of reliable clinical biomarkers and robust methods to capture them. The 

aim of our study was to develop an improved assay to capture prognostic genomic biomarkers in 

circulating tumor DNA (ctDNA) in RCC. For this purpose, we first established a next generation 

sequencing (NGS) assay, targeting genes that are tailored for RCC and that are largely excluded 

from commercially available assays. Next, we showed the reliable performance of this assay to 

detect prognostic gene mutations in tumor DNA isolated from plasma, and from extracellular 

vesicles. Thus, our study provides a resource to facilitate ctDNA analysis for precision medicine 

in RCC. 

 

 
Graphical Abstract 
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2.2 ABSTRACT 

Renal cell carcinoma (RCC) is known for its variable clinical behavior and outcome, 

including heterogeneity in developing relapse or metastasis. Recent data highlighted the potential 

of somatic mutations as promising biomarkers for risk stratification in RCC. Likewise, the analysis 

of circulating tumor DNA (ctDNA) for such informative somatic mutations (liquid biopsy) is 

considered an important advance for precision oncology in RCC, allowing to monitor molecular 

disease evolution in real time. However, our knowledge about the utility of ctDNA analysis in 

RCC is limited, in part due to the lack of RCC-appropriate assays for ctDNA analysis. Here, by 

interrogating different blood compartments in xenograft models, we identified plasma cell-free 

(cf) DNA and extracellular vesicles (ev) DNA enriched for RCC-associated ctDNA. Additionally, 

we developed sensitive targeted sequencing and bioinformatics workflows capable of detecting 

somatic mutations in RCC-relevant genes with allele frequencies ≥ 0.5%. Applying this assay to 

patient-matched tumor and liquid biopsies, we captured tumor mutations in cf- and ev-DNA 

fractions isolated from the blood, highlighting the potentials of both fractions for ctDNA analysis. 

Overall, our study presents an RCC-appropriate sequencing assay and workflow for ctDNA 

analysis and provides a proof of principle as to the feasibility of detecting tumor-specific mutations 

in liquid biopsy in RCC patients. 

2.3 INTRODUCTION 

Mutational analysis of plasma circulating tumor DNA (ctDNA) for precision oncology has 

attracted considerable attention over the past decades [1,2,3]. This approach, often referred to as 

‘liquid biopsy’, is of interest due to the fact that it can potentially offer a real time access to 

diagnostic and actionable mutations regardless of the accessibility and number of lesions present 

in a patient [2]. Therefore, liquid biopsy analysis is believed to be a powerful resource in the 
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management of patients with cancer [1]. Whereas ctDNA analysis is producing promising results 

in colorectal and other cancers [1,2,3], there has not been much success with liquid biopsy-based 

analysis of tumor mutations in renal cell carcinoma (RCC), the most common form of kidney 

cancers, in spite of the hypervascular nature of these tumors. A plausible reason for this is the 

absence of RCC-relevant genes in commercially available ctDNA analysis assays, which have 

been used in the previous studies. For example, two recent large-scale (>200 cases) liquid biopsy 

studies in RCC [4,5] have deployed assays that do not include commonly mutated genes in RCC, 

including PBRM1, SETD2, BAP1, and KDM5C, whose mutations are associated with clinical 

outcomes [6]. Thus, an RCC-appropriate liquid biopsy assay, beyond the commercially available 

platforms, needs to be developed and optimized to enable the interrogation of RCC-relevant genes. 

Furthermore, previous studies in other cancers have shown that in addition to soluble plasma, the 

ctDNA-enriched analytes may include circulating extracellular vesicles (EVs) [7,8,9,10], platelets 

[11] and leukocytes known to contain tumor DNA [12]. These observations highlight the fact that 

ctDNA analysis requires robust validation in several technical aspects, which need to be tailored 

to a particular tumor site due to differences in amenable biofluids, abundance and carriers of 

genomic sequences released from cancer cells. Such clinical grade information is lacking for RCC. 

Among other challenges associated with liquid biopsy analysis in RCC is the low 

concentration of cell-free DNA (cfDNA) in the blood stream as well as the low proportion of 

ctDNA present within the cfDNA [13]. Somatic mutations of tumors are often present at very low 

frequencies (<3%) in cfDNA samples [14] and conventional next-generation sequencing (NGS) 

approaches are not optimized for the detection of variants with allele frequency below 5% [15]. 

The implementation of DNA barcoding methods, such as unique molecular identifiers (UMI), 

coupled with deep-sequencing has improved sensitivity for ctDNA detection [14]. However, the 



 62 

optimization of NGS library preparation and bioinformatics pipelines for ctDNA analysis is a 

prerequisite of success in this setting. All together, these factors compound the uncertainties about 

whether liquid biopsy analysis can reflect on status of actionable mutations in RCC tumors. 

In this study, we used animal models of RCC to investigate various compartments of blood 

stream for the enrichment of RCC-associated ctDNA to guide pre-analytical sample preparation 

for liquid biopsy analysis. Furthermore, we developed and optimized an RCC-specific targeted 

NGS assay for parallel mutational analyses of tumor tissue-derived DNA and cfDNA to enable a 

comparison between the status of somatic mutations in tumors as well as in liquid biopsy analytes. 

Finally, we applied our assay to matched tumor, cfDNA, and evDNA trios from eleven RCC 

patients to assess the feasibility of liquid biopsy analysis for capturing information of potentially 

actionable somatic mutations. 

2.4 MATERIALS AND METHODS 

2.4.1 Cell Culture 

The established renal cell cancer cell line 786-O was purchased from the American Type 

Culture Collection (ATCC; Rockville, MD, USA), and was cultured according to the ATCC 

recommendations at 37 °C in humidified air with 5% CO2. Cells were transfected with pLenti 

CMV V5-LUC Blast (w567-1) (addgene #21474, Watertown, MA, USA) using Lipofectamine 

3000 (Invitrogen, Waltham, MA, USA) following the manufacturer’s instructions. Stably tagged 

cells were selected following incubation in medium supplemented with 8 µg/mL blasticidin 

(Sigma-Aldrich, St. Louis, MI, USA) for 15 days. 

2.4.2 Animal Models of RCC 

We established orthotopic models of ccRCC by injecting labelled 786-O cells into the 

subrenal capsule of immune-deficient mice using methods described by Tracz et al. [16]. Briefly, 
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female YFP-SCID mice [17] aged six to eight weeks were anesthetized with isoflurane, and a small 

incision was made between the last rib and the hip joint of a mouse positioned in right lateral 

recumbency. After popping up the kidney, an ultra-fine needle was inserted into the lower pole of 

the kidney and advanced until the needle’s point reached just below the renal subcapsule. One 

million viable cells mixed with 63atrigel were slowly injected (volume: 10 μL). After injection, 

the abdominal wall was closed with a re-absorbable suture and the skin secured with surgical 

staples. Tumor growth and metastatic disease progression was monitored weekly through 

luminescence as described previously [18]. The mice were sacrificed after development of 

metastasis and primary tumors were collected and stored at −80 °C. Blood samples were taken via 

the inferior vena cava (IVC) using 3.8% sodium citrate as anticoagulant, and were centrifuged to 

separate plasma and buffy coat samples. For EV preparation blood was centrifuged at 200× g for 

20 min to sediment blood cells, while the upper portion was transferred to another tube and 

centrifuged at 1500× g for 20 min to remove platelets (platelet-poor plasma) before being passed 

through a 0.45 µm filter, following by ultracentrifugation as described below. All in vivo 

experiments were performed according to the Animal Use Protocol (AUP) approved by the 

Institutional Animal Facility Care Committee and following Guidelines of the Canadian Council 

of Animal Care (CCAC). 

2.4.3 Collection of Blood Samples 

Patient blood samples were drawn directly prior to surgery into K2 EDTA (BD, Franklin 

Lakes, NJ, USA) (cfDNA) and Citrate (BD, Franklin Lakes, NJ, USA) (evDNA) tubes. The tubes 

were inverted to mix and stored at 4 °C until centrifugation. The blood samples were centrifuged 

within 60 min of collection at 2000 RCF for 15 min at 4 °C to separate plasma from buffy coat 
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and erythrocyte layers. Plasma and buffy coat fractions were stored in 2 mL cryovials at −80 °C 

until DNA isolation. 

2.4.4 Isolation of EV DNA from Blood Samples 

Plasma prepared from mouse or patient blood samples was used for isolation of 

extracellular vesicles using ultracentrifugation. Briefly, platelet-poor plasma samples (~500 μL) 

were centrifuged at 110,000× g for 70 min at 4 °C. The resulting pellet was washed with PBS and 

was centrifuged at 110,000× g for 70 min at 4 °C for a second time to precipitate EVs. DNA was 

extracted from EV pellets using the QIAamp DNA Micro kit (Qiagen, Hilden, Germany), 

following the manufacturer’s instructions. 

2.4.5 Digital Droplet PCR (ddPCR) 

Digital droplet PCR assays were established as described earlier [12] for the following 

specific VHL mutation that is present in 786-O cells in consultation with IDT (Integrated DNA 

Technologies, Coralville, IA, USA): VHL, c.311delG, p.G105fsX55. Mutation-specific primers, 

gblocks and probes (Table S2) for these mutations were designed and purchased from IDT. DNA 

samples were subjected to ddPCR for detection of the VHL mutation according to instructions 

provided by BioRad. Annealing temperature and cycling conditions were optimized, LOD and 

assay sensitivity were determined using serially diluted gBlocks. Data analysis was performed 

using QuantaSoft software following the manufacturer’s instructions. 900 nM probes and 250 nM 

primers were mixed with 2×  Droplet PCR Supermix (Bio-Rad Laboratories, Hercules, CA, USA), 

6 ng of template DNA, and H2O to generate 20 μL for each reaction. The reaction mixture was 

placed into the sample well of an DG8 cartridge (Bio-Rad, Hercules, CA, USA). 70 μL of droplet-

generation oil was loaded into the oil well, and droplets were formed in the droplet generator 

(BioRad). After processing, the droplets were transferred to a 96-well PCR plate (Eppendorf, 
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Hamburg, Germany). The PCR amplification was carried out on C1000 TouchTM Thermal Cycler 

(Bio-Rad) with the following thermal profile: hold at 95 °C for 10 min, 40 cycles of 95 °C 30 s, 

55 °C 1 min (ramp 2 °C/s), and 72 °C 30 s, and 1 cycle at 98 °C for 10 min, and ending at 4 °C. 

After amplification, the plate was loaded on the droplet reader (Bio-Rad) and the droplets from 

each well of the plate were read automatically. QuantaSoft software was used to count the PCR-

positive (FAM channel) and PCR-negative (HEX channel) droplets to provide absolute 

quantification of target DNA. 

2.4.6 Isolation of Genomic and Soluble Cell-Free DNA 

Buffy coat, tumor tissues, and plasma samples for 11 RCC patients were provided by 

McGill RCC biobank (Table 1). All samples were received following obtaining written consents 

from the patients and after approval of the study by McGill University Health Centre Research 

Ethics Board (MUHC REB). Genomic DNA was isolated from buffy coats (control) and frozen 

tumor tissue using Dneasy Blood and Tissue kit (Qiagen, Hilden, Germany). We used the same kit 

for isolation of DNA from mouse buffy coat and tumor samples. Soluble cell free DNA was 

isolated from 4 mL and 500 uL of patient and mouse plasma samples, respectively, using the 

QIAseq cfDNA All-in-One kit (Qiagen), following manufacturer’s instructions. EV DNA was 

isolated from plasma sample as described above. Isolated DNA was quantified using Quant-iT 

PicoGreen dsDNA assay. 
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Table 1. Information about 11 enrolled patients in this study. Clinical features of tumors as 

well as genes affected by somatic mutations in each tumor are provided (see Table S1 for details 

of somatic mutations). 

Patient Sex Age RCC Subtype Pathological 
Tumor Stage 

Pathological 
Tumor Grade Mutated Genes 

P1 Male 63 ccRCC T1b 4/4 VHL, PBRM1 
P2 Male 57 ccRCC T1a ¾ VHL, PBRM1 
P3 Female 62 ccRCC T3a ¾ VHL, SETD2, PBRM1, MET 
P4 Female 78 ccRCC T1a ¾ VHL, PBRM1 

P5 Female 58 ccRCC T1a 2/4 
VHL, COL11A1, SETD2, PBRM1, 

TRRAP, ATM 
P6 Male 66 ccRCC T1a ¾ VHL, PBRM1, KDM5C 
P7 Female 58 ccRCC T1a 2/4 VHL 
P8 Male 77 ccRCC T3b 4/4 COL11A1, BAP1, PBRM1 
P9 Female 61 ccRCC T1a ¼ VHL 
P10 Female 57 Unclassified RCC T4 4/4 KDM5C *, SETD2, NF2 * 
P11 Male 43 ccRCC T4 4/4 VHL, PBRM1 *, SETD2 * 
Note: * only detected in liquid biopsies. Genes whose tumor-specific somatic mutations were detected in 
liquid biopsies are indicated in bold. 
 
2.4.7 Targeted Sequencing 

Prior to library preparation, gDNA was sheared by the Covaris ultrasonicator to an average 

peak size of 350 bp. Genomic DNA libraries were generated using the Lucigen NxSeq AmpFree 

library preparation kit, with eight PCR cycles added according to the manufacturer’s guidelines 

for optional PCR amplification. xGen Dual Index UMI Adapters were added during the library 

preparation. cfDNA and evDNA libraries were generated using the xGen Prism DNA library prep 

kit (IDT, Coralville, IA, USA), following the manufacturers guidelines and using the included 

adapters. Libraries were quantified by qPCR, and the average size fragment was determined using 

a LabChip GX (PerkinElmer, Waltham, MA, USA). Target enrichment was performed using the 

xGen Hybridization and Wash Kit (IDT, Coralville, IA, USA) using a custom hybridization panel 

for RCC (IDT). The enriched libraries were sequenced on a NovaSeq 6000 (paired-end 150). 
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2.4.8 Synthetic cfDNA Library Preparation 

Synthetic liquid biopsy samples were generated using the Seraseq ctDNA Mutation Mix 

(v2, AF2%) spiked into the Seraseq ctDNA Mutation Mix WT at known allele frequencies of 

0.1%, 0.5%, and 1%. Libraries were prepared using the Lucigen NxSeq AmpFree, xGen Prism, 

and QIAseq cfDNA library kits, following the manufacturers guidelines for each kit. A PCR 

module was added to amplify libraries generated from the Lucigen NxSeq AmpFree kit. Libraries 

were quantified by qPCR, and the average size fragment was determined using a LabChip GX 

(PerkinElmer, Waltham, MA, USA). The synthetic libraries generated by the xGen Prism kit were 

pooled for hybridization capture with a custom hybridization panel using the xGen Hybridization 

and Wash Kit. The hybridization capture was quantified by qPCR, average size fragment was 

determined using the LabChip GX, before sequencing on a NovaSeq 6000 (paired-end 150). 

2.4.9 Bioinformatic Analysis 

Sequencing reads were processed using the GenPipes DNA-Seq High Coverage pipeline 

[19], with adaptations made for UMI-handling and generation of consensus sequences. Adapters 

and low-quality reads were removed by Trimmomatic [20], and reads were aligned using bwa-

mem2 [21] to the human genome build GRCh37. UMIs were processed using fgbio [22] following 

the analysis guidelines for xGen Dual Index UMI adapters (IDT) to generate consensus reads. 

Indel realignment and mate-pair fixing was performed using GATK [23] and Picard [24]. Somatic 

calls were generated using VarScan2 [25] as well as VarDict [26]. Functional annotation of the 

somatic calls was added by snpEff [27], and genomic annotation by Gemini [28]. Matched patient 

normal (buffy coat) samples were used to eliminate germline variants. Non-silent somatic calls 

underwent manual validation in integrative genomics viewer (IGV) [29] to identify somatic 



 68 

variants present in tumor tissue, circulating cell free DNA, and cell free DNA isolated from 

extracellular vesicles. 

2.4.10 Statistical Analysis 

Pearson’s correlations were used to assess relationships between gene-specific proportions 

of sequencing read in different sample types. Differences in library yields were evaluated using 

Welch’s t-tests. 

2.5 RESULTS 

Tumor DNA may be present in several biofluid fractions such as liquid phase (e.g., 

plasma), EVs (including exosomes), and cells (platelets and leukocytes). To establish a liquid 

biopsy assay appropriate for ctDNA analysis in RCC, we sought to first identify the most 

informative biofluid compartment for ctDNA analysis in RCC, and then optimize an RCC-

appropriate NGS approach for the detection of somatic mutations in tissue and liquid biopsy 

samples. 

2.5.1 Characteristics of the ctDNA Repertoire in RCC Xenografts 

In RCC patients ctDNA represents a modest fraction of cfDNA in blood [13]. We 

questioned whether specific compartments of blood may be enriched for RCC ctDNA, and thereby 

be more appropriate for liquid biopsy analysis. To minimize technical caveats that originate from 

the presence of wild-type (background) cfDNA, released by non-cancer cells, we developed 

orthotopic xenograft models of ccRCC (n = 5 animals), which served as a tool for an unambiguous 

detection of tumor (human) DNA in all fractions of mouse blood (Figure 1A). These models were 

developed using luminescently-tagged 786-O cancer cells with known RCC-specific mutations, 

including VHL c.311delG. Following the development of metastatic RCC lesions, blood was 

collected and subjected to fractionation to isolate blood cells (including leukocytes/WBCs), EVs 
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and soluble cfDNA (Figure 1B). To examine these liquid biopsy fractions for the presence of 

ctDNA, we used digital droplet PCR (ddPCR) to interrogate them for the aforementioned VHL 

mutation. This analysis revealed the presence of the mutated DNA in all of the examined blood 

fractions (Figure 1C). However, while at least 75% of the examined EV samples (four out of five 

animals) and soluble cfDNA (three out of four animals) fractions were positive for the VHL 

mutation, we detected this mutation in only 50% (two out of four animals) of tested blood cell 

fractions. Therefore, we focused on soluble cfDNA and EVs fractions for the analysis of patients’ 

liquid biopsy material. 
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Figure 1. Characterizing the repertoire of ctDNA in RCC. (A) Schematic presentation of the 

in vivo experiments to optimize sample processing for liquid biopsy analysis in RCC. (B) Tumor 

developments in nude mice after orthotropic implantation of 786-O cells. Five mice were 

implanted, and one animal is shown as an example. Blood samples were drawn after the 

development of metastatic tumors. (C) The presence of the VHL c.311delG mutation in human 

DNA was interrogated in different blood compartments (left) and in tumor tissues (right) using 

ddPCR. Each dot represents copy number of mutant allele per mL of blood used for DNA isolation 

from each animal, or per ng of DNA isolated from tumor tissue. Dot colors represent individual 

animals. NC: negative control.  
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2.5.2 Development of the RCC-Appropriate Targeted NGS Assay 

To enable comparison between tumor tissue and liquid biopsies for the status of potentially 

actionable somatic mutations in RCC, we sought to develop an NGS assay that is compatible with 

both genomic DNA (gDNA) and cfDNA samples. Therefore, using custom IDT xGen Lockdown 

Probes, we designed a targeted NGS panel to capture the entire coding regions and exon-intron 

boundaries of a gene panel, including VHL, PBRM1, SETD2, BAP1, TP53, ATM, KDM5C, DMD, 

CDKN2A, MET, NF2, KDM6A, NFE2L3, PTK7, TRRAP, ATP9B, and COL11A1. These genes are 

commonly mutated in RCC tumors (e.g., VHL in ccRCC or MET in papillary RCC), and some of 

them possess prognostic potential based on the previous large-scale genomic studies [6,30,31] 

(Figure 2A). Thus, this panel can serve for both diagnostic and prognostic purposes. First, we 

evaluated enrichment efficacy of the panel for the target genes by generating NGS libraries from 

high-quality gDNA samples using Lucigen NxSeq AmpFree assay, and subjecting them to the 

capture panel, followed by sequencing (average depth 1699×). These DNA samples were isolated 

from buffy-coat (control) or fresh-frozen RCC tumors procured from patients, enrolled in the 

McGill RCC biobank projects (Table 1). Sequencing results confirmed the average on-target rates 

of 87.8% across all samples within a capture (Figure 2B), demonstrating the reliable performance 

of the capture panel to enrich for the desired genes, with no significant difference in sequencing 

coverage of tumor and normal samples (p = 0.255) (Figure 2C). Likewise, matched tumor-normal 

pairs exhibited high correlations (r > 0.97) for gene-specific proportion of sequencing reads 

(Figure 2D), indicating that the capture performance is not biased toward sample type and 

maintains a stable performance across multiple samples. Next, we identified somatic mutations 

within the gene panel by comparing mutation profiles of tumors to those of their matched blood-

driven germline DNA samples (Table S1). Our analysis revealed high prevalence of VHL (82%, 
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9/11), PBRM1 (73%, 8/11) and SETD2 (36%, 4/11) non-silent mutations in our samples, in line 

with previous reports [30,31]. These observations demonstrated the capability of the assay to detect 

somatic mutations in RCC-relevant genes. 
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Figure 2. Development and evaluation of the RCC-appropriate NGS assay. (A) The RCC 

assay was designed to target genes that are commonly mutated in RCC tumors, have demonstrated 

prognostic value in RCC, or have shown association to treatment response in previous large-scale 

studies. (B) The assay showed high efficacy for capturing the targeted regions, with average on-

target rates of 87.8% (SD of 0.01) across 18 samples, pooled together prior to the capture. (C) 

Average sequencing coverage is shown for the same 18 samples (9 tumor-normal pairs), included 
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in a given hybridization capture, with average sequencing coverage depths of 1646× and 1753× of 

the targeted regions for tumor (dotted line) and normal (solid line) DNA samples, respectively. 

(D) High Pearson’s correlations (r > 0.97, p < 0.0001) between gene-specific proportions of 

sequencing reads from tumor and normal samples demonstrates that assay performance is not 

biased by sample type. Error bars show SD within sample types. SD: standard deviation. 
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2.5.3 Optimization of the NGS Assay for ctDNA Analysis 

Next, we sought to optimize the workflow of our RCC-specific targeted assay for the 

reliable analysis of cfDNA. Given the low abundance of ctDNA in the limited amount of cfDNA, 

which can be isolated from plasma of RCC patients, we focused our efforts on two aspects: (1) 

identifying an effective library preparation approach for cfDNA analysis, and (2) improving 

detection sensitivity by ultra-deep sequencing coupled with the implementation of unique 

molecular identifiers (UMIs) in the library preparation workflow to correct for sequencing errors. 

To this end, we compared the efficacy of the Lucigen NxSeq AmpFree, Qiagen QIAseq cfDNA, 

and IDT PRISM methods for generating NGS libraries from synthetic cfDNA control samples, 

which are commercially available. Furthermore, to assess the sensitivity for mutation detection we 

extended our analysis by including control cfDNA templates with known variant allele frequencies 

(VAFs) (0.1%, 0.5%, and 1%) for five cancer-associated TP53 mutations (see the ‘Methods’ 

section for details). Among the examined library preparation methods, the IDT PRISM resulted in 

the greatest library yield in all replicate samples (Figure 3A). In addition, the analysis of library 

profiles confirmed the high quality of the libraries generated by the IDT PRISM approach. 

Therefore, we subjected these libraries to our targeted capture panel, followed by deep-sequencing 

(>70 million reads per sample) in order to assess the capture efficacy and stability across multiple 

samples. This was assessed by evaluating the number of sequencing reads attributed to each target 

gene, across five replicate samples. While the reads per kilobase of target region, per million 

mapped reads (RPKM) values showed variable sequencing depths for individual target genes, it 

maintained a consistent trend across all replicates (Figure 3B). This confirmed the ability of the 

enrichment panel to capture all RCC-genes from control cfDNA samples, and the stability of assay 

performance. 
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Figure 3. Optimization of the RCC NGS assay for liquid biopsy analysis. (A) The comparison 

between yields of NGS libraries generated by three different methods using 10 ng of the control 

cfDNA as the starting material is shown. Three individual cfDNA samples tested are identified by 

numbers (1–3), and technical replicates are marked by letters (a and b). The IDT Prism method 

resulted in far greater library yields compared to Lucigen NxSeq AmpFree (Kit L) (p = 0.007) and 

Qiagen QIAseq (Kit Q) (p = 0.002) methods. (B) Reproducible performance of the capture panel 

was examined by comparing gene-specific number of reads per kilobase per million reads (RPKM) 

values between five replicates (S1–S5) generated from control cfDNA sample using the IDT Prism 

method. (C) The effect of unique molecular identifiers (UMIs) on reducing sequencing errors is 

shown. False positive rates were assessed with (Consensus) and without (Raw) using UMIs (n = 
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5). Implementation of UMIs decreased false positive rates across all substitution mutation classes 

and in indels. (D) The assay limit of detection (LOD) was determined by assessing variant drop-

out in control samples with known VAFs of 1%, 0.5% and 0.1%. Variant drop-out was observed 

for allele frequency of 0.1% in both raw and consensus reads. Blue and grey indicate the presence 

and absence of a given true mutation, respectively. 
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To optimize our bioinformatics pipeline for mutation detection and establishing the 

sensitivity of our liquid biopsy assay, we first examined the utility of the UMIs for reducing 

sequencing errors. For this, we focused on the TP53 gene, for which we knew the exact location 

and type of five somatic mutations in the synthetic cfDNA controls, and therefore were able to 

distinguish them from sequencing errors. Per-base error rates were generated across TP53 for each 

substitution mutation class and total mutations including indels from sequencing data, processed 

once without the implementation of UMIs (raw), and another time with UMIs to generate error-

free consensus sequences (SS). Comparisons between the raw and consensus sequences revealed 

a substantial reduction in per-base error rates in all substitutions classes as well as in indels (Figure 

3C). 

Although the implementation of UMIs vastly decreases the rate of false positives, it can 

also cause variant drop-out at very low allele frequencies due to the greater stringency. To 

determine the limit of detection (LOD) for our assay, we investigated variant dropout of the known 

TP53 mutations in synthetic cfDNA samples with known VAFs for these mutations ranging from 

0.1–1.0%. By obtaining 70 million reads per sample, we were able to detect the TP53 mutations 

with VAFs of 0.5 and 1%, whereas we observed dropout of the same mutations at VAF of 0.1%. 

(Figure 3D). Therefore, at VAFs ≥ 0.5% we were able to detect all true TP53 variants in the 

synthetic cfDNA controls and minimize the number of false positives by implementing UMIs. 

2.5.4 Assay Performance in RCC Liquid Biopsies 

Following assay development and optimization using synthetic cfDNA controls, we 

extended our study to examine the performance of the assay in capturing somatic mutations in 

liquid biopsy samples from our patient cohort of eleven RCC patients (Table 1). The number of 

patients was limited so as to achieve assay validation (present study) before a larger clinical cohort 
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could be rigorously powered and examined. Therefore, we sequenced captured targets in cfDNA 

isolated from plasma and circulating EVs (aiming at 100 M reads/per sample, resulted in more 

than 5000× depth of on-target coverage) from each patient in order to enable a comparison between 

liquid biopsy fractions as well as between them and the tumor. For this purpose, we first compared 

capture efficacy between gDNA and cfDNA fractions for each patient by analyzing proportions of 

sequencing reads that mapped to each gene. We observed high correlations (r > 0.95) between 

liquid biopsy and tumor DNA samples for gene-specific proportion of sequencing reads (examples 

are shown in Figure 4A), confirming that the performance of the gene-enrichment assay is not 

dependent on the sample type, and that the assay can be used to compare genetic data between 

tumor and liquid biopsy samples. Next, we detected somatic mutations in liquid biopsy DNA 

samples by comparing them to germline DNA isolated from buffy coat samples. 
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Figure 4. Evaluating the feasibility of detecting tumor somatic mutations in liquid biopsy in 

RCC. (A) In-patient comparisons between tumor and liquid biopsy-driven DNA samples showed 

high Pearson’s correlation in capture distribution. Example data is shown for two patients (r = 

0.978, p < 0.0001 and r = 0.964, p < 0.0001, for P10 and P11 respectively). Error bars show SD 

within liquid biopsies. (B) Somatic variants identified in both tumor tissue, and in liquid biopsy 

fractions for patients P10 (left) and P11 (right) at variable allele frequencies. The SETD2 variant 

in patient P10 was detected at low frequencies in both ctDNA and evDNA, whereas the KDM5C 

variant was detected only in the evDNA fraction, and the NF2 variant was detected only in the 

cfDNA fraction. The VHL variant identified in P11 tumor, showed an increased allele frequency 

in liquid biopsy fractions, whereas mutations in PBRM1 and SETD2 were only detected in liquid 

biopsy fractions. (C) Somatic variants identified in tumor tissue, ctDNA, and evDNA visualized 

using Integrative Genomics Viewer (IGV) for both patient P10 (left) and P11 (right). These 

somatic variants were not present in the normal (buffy coat) samples (top panel). SD: standard 

deviation. 
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Given the different presentation patterns of ctDNA between patients with advanced tumors 

and those affected with early-stage cancers [13,32,33], we investigated our results in these groups 

separately. Amongst the 11 patients included in our study, 4 were affected with advanced tumors 

(stages T3 and T4; P3, P8, P10 and P11). We detected at least one tumor-specific somatic mutation 

in liquid biopsy fractions from all of these patients (100%, 4/4; Table 1 and Table S1). In patient 

P3 (stage T3a), we detected a frameshift variant in SETD2 (c.913dupA) in both soluble cfDNA 

and evDNA. Similarly, in patient P8 (stage T3b) we detected two somatic missense mutations in 

COL11A1 and BAP1 both liquid biopsy fractions. Interestingly in liquid biopsy samples from P10 

and P11, who are affected with T4 stage tumors, we captured all tumor-specific somatic mutations 

in both cfDNA and evDNA fractions (Table 1 and Table S1, Figure 4B). An interesting 

observation was about a frameshift mutation, c.270dupC, in VHL in patient P11, where allele 

frequency of this mutation was much higher in both liquid biopsy fractions compared to that of 

tumor DNA (3%, 20%, and 21.5% in tumor, cfDNA, and evDNA, respectively (Figure 4B). 

Furthermore, we observed appearance of novel mutations, which were not present in the 

tumor tissues of patients P10 and P11 in their liquid biopsies. For P10, these were a missense 

mutation, c.4207A > C, in KDM5C in the evDNA, and a frameshift mutation in NF2, 

c.814_817delACTA in the cfDNA that were not captured in tumor sequencing data. Likewise, we 

observed frameshift mutations in PBRM1 (c.2616delT) and SETD2 (c.5235dupT), and a missense 

mutation in PBRM1 (c.691A > C) in liquid biopsy fractions of P11, that were not present in the 

sequencing data of the primary tumor (Figure 4C). 

In patients with low stage RCC (stages T1–T2), most somatic mutations captured in the 

tumor tissue were not detectable in either cfDNA or evDNA; however, we did detect a somatic 

stop-gain mutation of VHL (c.481C > T) in cfDNA sample of patient P2 who was affected by stage 
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T1a tumor. These results suggest that optimized liquid biopsy protocol is suitable for interrogating 

RCC progression in patients with high stage cancer. However, even in a limited number of cases 

examined the differential abilities of liquid biopsy analytes to carry mutant signatures (cfDNA, 

evDNA) are readily observed and this factor should be considered in designing future clinical 

studies. 

2.6 DISCUSSION 

The utility of ctDNA analysis in the management of kidney cancers has not yet been deeply 

explored, in part due to the lack of appropriate platforms that enable side-by-side interrogation of 

somatic mutations in RCC-relevant genes in tumors and in liquid biopsies. In this study, we 

developed an RCC-focused NGS assay, and optimized it for parallel tissue and liquid biopsy 

analyses of RCC-relevant mutations. It has been suggested that the most promising use of ctDNA 

analysis in RCC is as a surveillance biomarker for metastases and to determine the risk of disease 

recurrence [34]. Accordingly, the ability to capture the mutational status of RCC-relevant genes, 

including VHL, BAP1 and PBRM1, is critical for the clinical utility of liquid biopsy analysis in 

RCC, as the presence of somatic mutations in these particular genes alone or in combination with 

each other are indicative of distinct disease outcomes [35]. 

In addition, we provided proof-of-principle evidence on the feasibility of capturing tumor-

specific diagnostic and prognostic genomic biomarkers in blood-based liquid biopsies in RCC 

using our assay. Therefore, our assay provides a reliable platform to address key questions that 

should be investigated in order to establish robust liquid biopsy strategies for RCC. One of such 

questions is the interpretation of discordance between tumor DNA and ctDNA analysis results. 

The discordance between somatic alterations detected in RCC tumor tissues and those detected in 

ctDNA has been suggested to stem from RCC clonal and spatial heterogeneity, long time intervals 
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between tissue and liquid biopsy sampling, or simply low sensitivity of NGS approaches used for 

ctDNA analysis [34]. The latter is particularly plausible when a somatic mutation is present in 

tumor DNA but not detected in the liquid biopsy. An explanation for this is that somatic mutations 

can be present at extremely low allele frequencies in liquid biopsies for different reasons, including 

the low fraction of ctDNA within cfDNA [14]. Indeed, a recent study has shown that the abundance 

of ctDNA in RCC is very low, as compared to other cancers [32] and often ctDNA is detectable in 

less than 50% of RCC patients [13,33]. These findings highlight the need for the amplification of 

starting cfDNA material and applying ultra-deep sequencing of generated NGS libraries, both also 

known to induce errors in sequencing results [36]. It is reasonable to suggest that poor ctDNA 

detection is due to methodological factors as there are no compelling biological reasons why highly 

vascularized RCC lesions would not release DNA sequences into blood, passively or actively and 

in various forms. 

Therefore, while exploiting strong amplification and ultra-deep sequencing, we thoroughly 

investigated the associated technical errors, and corrected for them by implementing molecular 

tagging through the use of UMIs in library preparation and bioinformatics workflows. 

Furthermore, the patients included in our study had blood drawn directly prior to surgery, ensuring 

that the liquid biopsy and tissue sampling are representative of the same time point in tumor 

evolution. We optimized sample workflow to establish comparable performances in patient 

matched tumor-normal and liquid biopsy samples, ensuring that potential differences in mutational 

profiles between sample types are not due to shortcomings in experimental procedures, and rather 

are reflecting true differences between these sample types. As such, we showed that the assay 

generates comparable results when applied to tumor DNA and cfDNA from RCC patients with 

advanced disease (stages T3 or T4 tumor). Notably, at least one somatic variant identified in the 
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primary tumors of patients with advanced RCC was also captured by our assay in the liquid biopsy 

fractions. Although very preliminary, due to the limited number of examined samples thus far, this 

result is promising, as it indicates that our assay does not suffer from major caveats that may result 

in false-negative observations in liquid biopsy analysis. 

Strikingly, we also captured somatic mutations in liquid biopsy that were not present in the 

tumor DNA. The observation that these mutations were present in both patient-matched ctDNA 

and evDNA fractions of liquid biopsy argues against the possibility that these are false-positive 

calls. We believe that these mutations are true somatic mutations that were not captured by tumor 

DNA analysis. In fact, it has been suggested that cfDNA is a better representation of the primary 

tumor heterogeneity [33,37,38], as circulating tumor DNA sequences are believed to be shed from 

the entire tumor, while DNA isolated from tumor cells may be spatially biased by the sampling 

process and limited by availability of tissue material. This is of paramount importance when 

considering the clinical utility of somatic mutational analysis, given the spatial heterogeneity that 

is a hallmark of RCC tumors [35,39]. Indeed, ctDNA was shown to be a better predictor of drug 

resistance than tumor tissue in other cancer contexts [38]. Moreover, liquid biopsy offers an 

opportunity to collect multiple longitudinal samples in real time and in a non-invasive manner. As 

such, liquid-biopsy approaches, as compared to direct tumor biopsy, may possess considerable 

advantages in developing genomic-based precision medicine in RCC. However, this possibility 

needs further investigation through parallel analyses of patient-matched tumor DNA and cfDNA 

samples in large sample sets and using assays that generate comparable results from these sample 

types, such as the method that we presented in this study. There is also a need to further optimize 

the detection of ctDNA in patients with low stage RCCs. Previous studies have shown that tumor-

fraction in plasma can be enhanced by size-selection of DNA fragments, thus increasing the 
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sensitivity to detect somatic mutations in renal cancer and other cancers with low amounts of 

ctDNA [40]. Future studies are warranted to examine whether this approach can improve the 

detection of ctDNA in RCC patients with early-stage tumors. 

By emphasizing the assay performance and sensitivity, we explored solutions for some of 

the major caveats of applying liquid biopsy to renal cancer. Notably, and of equal importance, we 

also showed that clinically informative somatic mutations in RCC may be present not only in form 

of soluble ctDNA but also be encapsulated in EVs, suggesting that the analysis of both fractions 

may provide complementary or confirmatory results for liquid biopsy analysis in RCC. Indeed, 

previous studies have shown that in some cancers, tumor-derived extracellular vesicles are 

enriched in tumor DNA [41]. EVs serve as carriers of important clinical information, including 

driver mutations, drug resistance markers, and determinants of immunoregulation [42]. 

Additionally, they may have advantages for biomarker analysis as they protect their cargo from 

degradation [42]; however, harnessing information from EVs for liquid biopsy requires sensitive 

assays given the low abundance of circulating cancer-related EVs. Our results from RCC animal 

studies, as well as those on patient material supported the evidence from previous studies [4,5,32] 

that soluble ctDNA is appropriate for interrogating prognostic biomarkers in RCC; however, also 

indicated that evDNA is a strong candidate and should be considered in future investigations and 

with room for refinements (multiplexing, selective capture, others). Taken together, the current 

study provides a robust workflow and rationale for larger future studies to investigate the utility of 

ctDNA and evDNA for capturing diagnostic and prognostic biomarkers in RCC. 

2.7 CONCLUSIONS 

In this study, we developed and optimized an RCC-appropriate NGS assay applicable to 

both tumor tissue and liquid biopsy fractions. The assay showed consistent performance in all 
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sample types originating from the same patient (buffy coat, tumor tissue, cfDNA, and evDNA), as 

well as consistent performance within each sample type. We successfully applied the assay to 

matched samples from RCC patients with variable clinical features, and captured relevant somatic 

variants present in primary tumors in both ctDNA and evDNA of patients with advanced tumors. 

Notably, we demonstrated that ctDNA encapsulated in EVs may contain clinically-relevant 

mutations in RCC. Furthermore, our assay is the first NGS assay tailored specifically to renal cell 

carcinoma, including a panel of genes with both diagnostic and prognostic values. This study 

serves as a demonstration of the capabilities of ctDNA in capturing relevant biomarkers, and lays 

groundwork for larger studies to further refine the utility of liquid biopsy for enhancing 

personalized care in RCC. 
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Table S2: Mutation-specific probes and primers designed for ddPCR analysis. 

Probe/Primer Sequence Fluorescence label 
VHL_DelA_INDEL_probe /56-FAM/AGA+C+C+CCC+AAA/3IABkFQ/ FAM 
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BRIDGING STATEMENT TO CHAPTER 3 

Current prognostic tools and clinical nomograms for ccRCC are reliant on 

clinicopathological information, and are inconsistent in identifying patients at risk of developing 

relapse or metastasis. Given that up to 40% of patients with localized disease will experience 

relapse or metastasis post-nephrectomy, identifying high-risk patients who will benefit from 

systemic therapies is critical for ‘optimal clinical management’. However, the lack of routine 

prognostic biomarkers makes risk-stratification for ccRCC difficult. 

There are currently no prognostic biomarkers that consider the genetic profile of ccRCC 

tumors. Individual genes such as VHL, PBRM1, BAP1, and SETD2 have been identified as driver 

genes, but the mutation status of any individual gene has not demonstrated substantial prognostic 

value when evaluated in isolation. It is more likely that investigating the subclonal diversity of 

ccRCCs within large cohorts, considering combinations of recurrently mutated genes, will more 

effectively drive biomarker development.  

Previous large studies have been limited by a focus on individual genes, methods that may 

not be sensitive for capturing subclonal mutations at low allele frequencies, or insufficient sample 

sizes for capturing the heterogeneous mutational landscape of RCC. We speculate that approaches 

considering evolutionary patterns in ccRCC may be more successful in identifying robust markers 

of disease prognosis than investigations focusing on individual genes. Recently proposed 

evolutionary trajectories of ccRCC, described in Chapter 1.2.4, appear to have correlated clinical 

phenotypes, but have not been examined at large-scale. 

Chapter 3 comprises a manuscript investigating the associations between the genetic 

evolution and the repertoire of common somatic genetic alterations in ccRCC, and examining their 

potentials for prognosis in ccRCC. Leveraging the RCC-relevant assay described in Chapter 2, we 

characterized the landscape of somatic mutations in a large clinically annotated cohort of ccRCCs, 
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with the aim of identifying biomarkers of prognosis. We define a genomic classifier, consistent 

with evolutionary subtypes of ccRCC, that can identify groups of patients with diverging risks of 

disease recurrence. 
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CHAPTER 3. APPLICATION OF GENOMIC SEQUENCING TO REFINE PATIENT 

STRATIFICATION FOR ADJUVANT THERAPY IN RENAL CELL CARCINOMA 
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3.1 ABSTRACT 

Purpose: Patients with resected localized clear cell renal cell carcinoma (ccRCC) remain at 

variable risk of recurrence. Incorporation of biomarkers may refine risk prediction and inform 

adjuvant treatment decisions. We explored the role of tumor genomics in this setting, leveraging 

the largest cohort to date of localized ccRCC tissues subjected to targeted gene sequencing.  

Experimental design: The somatic mutation status of 12 genes was determined in 943 ccRCC 

cases from a multinational cohort of patients, and associations to outcomes were examined in a 

Discovery (n=469) and Validation (n=474) framework.  

Results: Tumors containing a VHL mutation alone were associated with significantly improved 

outcomes in comparison to tumors containing a VHL plus additional mutations. Within the 

Discovery cohort, those with VHL+0, VHL+1, VHL+2 and VHL+³3 tumors had DFS rates of 

90.8%, 80.1%, 68.2% and 50.7% respectively, at 5 years. This trend was replicated in the 

Validation cohort. Notably, these genomically-defined groups were independent of tumor 

mutational burden. Amongst patients eligible for adjuvant therapy, those with a VHL+0 tumor 

(29%) had a 5-year DFS rate of 79.3% and could, therefore, potentially be spared further treatment. 

Conversely, patients with VHL+2 and VHL+³3 tumors (32%) had equivalent DFS rates of 45.6% 

and 35.3%, respectively, and should be prioritized for adjuvant therapy. 

Conclusions: Genomic characterization of ccRCC identified biologically distinct groups of 

patients with divergent relapse rates. These groups account for the ~80% of cases with VHL 

mutations and could be used to personalize adjuvant treatment discussions with patients as well as 

inform future adjuvant trial design. 
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3.2 STATEMENT OF TRANSLATIONAL RELEVANCE 

Determination of recurrence risk in patients with resected localized renal cell carcinoma 

(RCC) remains reliant on pathologic grounds alone. Despite extensive characterization of these 

tumors at the genomic level, the application of such information for patient benefit has not been 

fully realized. We undertook targeted DNA sequencing of tumor-normal sample pairs from a large 

multinational cohort of patients with localized clear-cell RCC and explored the impact of these 

data on patient outcome. Using a 12-gene classifier, we are able to classify almost 80% of patients 

into one of four groups with highly divergent risk of recurrence or death from RCC, independent 

of tumor stage and grade or patient age. Tumors found to contain a von-Hippel Lindau mutation 

alone were associated with most favorable outcomes and defines a group of patients who may 

potentially be spared adjuvant therapy. Conversely, patients at very high risk of recurrence are 

identified as those who should be managed aggressively.  

3.3 INTRODUCTION 

Renal cell carcinoma (RCC) presents a growing global health problem, with over 400,000 

new cases each year and rising incidence rates worldwide [1, 2]. The majority (70%–80%) of 

RCCs are clear-cell RCC (ccRCC), which are characterized by their highly variable clinical course. 

For clinicians, this heterogeneity poses significant challenges to the delivery of individual patient 

care. 

Most patients (75%–80%) present with apparent localized disease and are offered curative 

intent treatment in the form of surgery or ablation, but 20% to 30% of these patients will 

subsequently relapse [3]. The estimation of likely patient outcomes underpins further decision-

making, guiding patient counselling, length and intensity of follow-up, and the selection of patients 

for adjuvant therapy. 
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Immune checkpoint inhibitors (ICI) have been explored for their efficacy in the adjuvant 

RCC setting within large randomized trials involving thousands of patients [4]. Pembrolizumab, a 

programmed death 1—targeted agent, has recently received approval in both the US and Europe 

for use in patients with resected intermediate-high and high-risk RCC, based on results from the 

ongoing Phase III KEYNOTE-564 study. A significant disease-free survival (DFS) advantage in 

favor of 1 year of adjuvant pembrolizumab versus placebo was demonstrated in this trial [5, 6]. 

Determination of risk was based on tumor–node–metastasis (TNM) stage and tumor grade, with 

the majority (86%) of recruited patients having either pT2 (high grade) or pT3 (any grade) tumors. 

However, 68% of patients in the placebo arm of this study remained free of recurrence at 2 years 

[5], indicating the limitations of current risk-estimation methods. Given the subsequent recent 

publication of three negative adjuvant RCC studies also employing ICIs [7–9], and the financial 

cost and potentially severe immune-mediated adverse events associated with these agents, careful 

consideration must be given to both the risks versus benefits of such therapy. Those at highest risk 

of recurrence should be prioritized whilst sparing those with biologically lower-risk tumors, 

highlighting an urgent need for easily implemented molecular tools to improve individual patient 

stratification [10, 11]. 

ccRCC has been extensively characterized at the genetic, epigenetic, and transcriptomic 

level [12, 13]. Mutation or methylation of the von-Hippel Lindau (VHL) tumor suppressor gene 

occurs in the majority (≈80%) of sporadic cases [13]. In addition, recurrent mutations 

in PBRM1 (≈40%), SETD2 (≈20%), and BAP1 (≈15%) are observed, along with a large number 

of lower frequency events. The application of genomics in ccRCC to inform clinical practice is yet 

to be realized. Clinical association studies to date have typically considered each gene in isolation 

(mutated versus non-mutated tumors), often using small cohorts and much of our current 
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understanding comes from a single dataset, The Cancer Genome Atlas (TCGA) study [12, 14]. 

Recently, distinct evolutionary subtypes of ccRCC have been proposed that appear biologically 

and clinically distinct, including subtypes that are VHL wild-type (WT), VHL monodrivers, and 

those that have multiple clonal drivers [15]. This has advanced our understanding of how genomic 

alterations may impact on disease progression, and has defined a new paradigm in linking genomic 

signatures of tumors to clinical outcome. 

Our recent study “Cancer Genomics of the Kidney (CAGEKID)”, as part of the 

International Cancer Genome Consortium, provided the first comprehensive multinational 

description of the molecular architecture of ccRCC [13]. Using a larger multinational validation 

cohort with extensive associated demographic, clinical, and follow-up data, we have now further 

explored some of the more commonly observed genetic changes in ccRCC to enable their 

molecular classification and demonstrate how such information may be applied in the clinic for 

patient benefit. 

3.4 METHODS 

3.4.1 Patients and samples 

Patients undergoing nephrectomy for suspected renal cancer between March 1998 and 

February 2014 across 17 centers (detailed in Supplementary Methods) in the UK, Czech 

Republic, Romania, Russia, and Serbia donated blood and tissue samples for research following 

written informed consent, based on the Declaration of Helsinki principles. Ethical approvals were 

obtained from the Leeds (East) Local Research Ethics Committee, the International Agency for 

Research on Cancer Ethics Committee, as well as from local ethics committee for recruiting 

centers in Czech Republic, Romania, Russia, Serbia, and Bosnia & Herzegovina. Inclusion and 

exclusion criteria and sampling were as previously described [13]. All samples were subject to 
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panel pathology review. A single frozen tissue block was used for sequencing in the majority 

(86%) of cases, with a minimum cutoff of 70% (cohorts 1 and 2; C1 and C2 – combined to form 

the Discovery cohort) or 50% (cohort 3; C3 – the Validation cohort) viable tumor cells in sections 

flanking the analyzed tissue. For the remaining cases, formalin-fixed, paraffin-embedded (FFPE) 

tissue was used with three targeted 1-mm punches from a single block in each case. 

3.4.2 Preparation of DNA 

DNA was isolated from buffy coats and frozen tumor tissue using FlexiGene DNA Kit and 

Dneasy Blood & Tissue Kit (Qiagen, Toronto, Canada) respectively, following manufacturers’ 

instructions. Chemagic DNA Cell Kit Special (Perkin Elmer) was used to isolate DNA from FFPE 

tissues, and DNA samples were quantified using Quant-iT PicoGreen dsDNA Assay (Life 

Technologies, Burlington, Canada). 

3.4.3 Genomic Sequencing 

Samples from C1 were analyzed using whole-genome sequencing (WGS) as previously 

reported [13]. Libraries were generated using the Nextera Rapid Capture Enrichment library 

preparation Kit (Illumina; 42-gene panel, C2) and the Lucigen AmpFree library preparation kit 

with xGen Dual Index UMI adapters [Integrated DNA Technologies (IDT); 12-gene panel, C3] 

according to the manufacturers’ recommendations. Libraries were quantified using the Quant-iT 

PicoGreen dsDNA Assay Kit (Life Technologies) and the Kapa Illumina GA with Revised 

Primers-SYBR Fast Universal kit (Kapa Biosystems). Average fragment size was determined 

using a LabChip GX (PerkinElmer) instrument. Captured libraries were sequenced on a HiSeq 

2500 (2×100 cycles; C2) or on a NovaSeq 6000 (2×150 cycles; C3), and bcl2fastq (Illumina) was 

used to de-multiplex samples and generate fastq reads. 
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3.4.4 Bioinformatic Analyses 

Data analysis was performed using the GenPipes DNA-Seq High coverage pipeline [16] 

with the default parameters, and an added step for generating consensus reads (described below). 

Adapters and low quality reads were removed using Trimmomatic (RRID: SCR_011848), and 

reads were aligned to the human genome build GRCh37 using bwa-mem. Mapped reads were 

further refined using GATK (RRID: SCR_001876) and Picard (RRID: SCR_006525) for indel 

realignment and verifying mate-pairs. Deduplication (Cohorts 1 and 2) was performed with Picard. 

UMIs (Cohort 3) were processed using fgbio [17] according to the IDT analysis guidelines for 

xGen Dual Index UMI Adapters to generate consensus reads. The consensus reads were input back 

into the pipeline for refining with GATK and Picard. Somatic and germline calls were generated 

using VarScan2 [18] and the identified indels as well as complex variants were re-called using 

VarDict [19] to ensure proper identification of complex variants that were not properly resolved 

by VarScan2. Calls were further processed with the addition of functional annotations using snpEff 

[20] and genomic annotation by Gemini [21] for prioritization of candidate mutations. We 

extracted somatic variants with predicted high or moderate functional impact and filtered the 

candidate somatic mutations for a minimum allele frequency of 5% in tumor samples. Among the 

resulting variants, those with a frequency less than 0.01% in the 1000 Genomes database were 

selected for manual validation in Integrative Genomics Viewer (IGV) to ensure the quality of the 

calls and the absence in patient-matched germline DNA. 

3.4.5 Survival Definitions 

DFS was defined as time from date of surgery to local or regional recurrence, metastases, 

contralateral kidney cancer, or death, whichever occurred first. Any patients without disease 

recurrence were censored at the date they were last known to be recurrence free (for patients who 
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died without recurrence this was date of death). RCC-specific survival was defined as time from 

date of surgery to death from RCC. Non-RCC–related survival was defined as time from date of 

surgery to death from causes other than RCC. 

3.4.6 Statistical Methods 

Cox proportional hazards (PH) models were used to estimate the association between gene 

mutation frequency and the selected endpoints. The Kaplan–Meier method was used to estimate 

survival functions and multivariable survival models were constructed to assess the independence 

of associations between gene mutation status and each endpoint. 

To validate the Cox PH model constructed for comparison of genomically defined groups, 

patients were divided into Discovery and Validation datasets. The Kaplan–Meier curves for each 

dataset were used to confirm good separation between risk groups, and the HRs between risk 

groups were well maintained between the Discovery and Validation datasets. 

Cumulative incidence functions were estimated using the cmprsk package [22], and cause-

specific hazard models were used to assess RCC-related death in the presence of competing risks. 

All statistical analyses were undertaken in the R environment for statistical computing.  

3.4.7 Data Availability 

Clinical information and list of somatic mutations of the 12 genes are included in the 

supplementary data (Supplementary Tables S1 and S2). Raw sequence data are available in the 

European Genome-phenome Archive under accession codes EGAS00001000083 (C1 and C2) and 

EGAS00001007004 (C3). 
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3.5 RESULTS 

3.5.1 Patients 

A total of 943 patients with ccRCC were included in this study. Patient characteristics are 

summarized in Table 1 (detailed in Supplementary Table S3). Most patients (806; 85%) had 

stage I–III disease. Median follow-up was 5.7 years [interquartile range (IQR), 3.8–7.3], with 160 

(17%) recurrences and 192 (20%) cancer-specific deaths recorded.  
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Table 1. Clinical and demographic characteristics in all patients (additional detail in 

Supplementary Table S1). 

 

Characteristic All (n=943) Discovery 
(n=469) 

Validation 
(n=474) 

Age at surgery 
(years) Median (range) 61 (23-86) 62 (23-86) 61 (26-85) 

Sex  
Female 359 (38.1) 193 (41.2) 166 (35.0) 
Male 580 (61.5) 276 (58.8) 304 (64.1) 

Missing 4 (0.4) 0 (0) 4 (0.8) 
Body mass index Median (range) 27.8 (14.9-49.2) 27.8 (14.9-49.6) 27.7 (16-49.2) 

Country  

Czech Republic 342 (36.3) 133 (28.4) 209 (44.1) 
UK 291 (30.9) 150 (32.0) 141 (29.7) 

Russia 197 (20.9) 129 (27.5) 68 (14.3) 
Romania 75 (8.0) 50 (10.7) 25 (5.3) 

Serbia 34 (3.6) 7 (1.5) 27 (5.7) 
Missing 4 (0.4) 0 (0) 4 (0.8) 

Pathological 
tumor size (mm) Median (range) 55 (13-220) 58 (13-220) 55 (12-225) 

Pathological 
tumor stage 

1a 277 (29.4) 128 (27.3) 149 (31.4) 
1b 215 (22.8) 114 (24.3) 101 (21.3) 
2 107 (11.3) 57 (12.2) 50 (10.5) 
3 288 (30.5) 155 (33.0) 133 (28.1) 
4 10 (1.1) 7 (1.5) 3 (0.6) 

Missing 46 (4.9) 8 (1.7) 38 (8.0) 

Overall stage  
(TNM) 

I 486 (51.5) 235 (50.1) 251 (53.0) 
II 95 (10.1) 47 (10.0) 48 (10.1) 
III 225 (23.9) 117 (24.9) 108 (22.8) 
IV 132 (14.0) 70 (14.9) 62 (13.1) 

Missing 5 (0.5) 0 (0) 5 (1.1) 

FFPE Fuhrman 
gradea  

1 122 (12.9) 66 (14.1) 56 (11.8) 
2 405 (42.9) 215 (45.8) 190 (40.1) 
3 279 (29.6) 139 (29.6) 140 (29.5) 
4 91 (9.7) 45 (9.6) 46 9.7) 

Missing 46 (4.9) 4 (0.9) 42 (8.9) 
Follow-up (years)  Median (IQR) 5.7 (3.8-7.3) 6.0 (3.6-7.6) 5.5 (4.1-6.8) 

Note: n (%) unless otherwise stated. 
aAs per original reporting pathologist at each center.  
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3.5.2 Overview of gene sequencing results 

Patient samples were sequenced in three cohorts, as summarized in Fig. 1A. C1 consisted 

of 93 patient sample pairs (tumor and matched germline DNA) subjected to WGS, previously 

reported in a descriptive study [13]. C2 consisted of sample pairs from an additional 376 patients, 

of which 24 were analyzed by exome sequencing and 352 underwent targeted sequencing of 42 

genes, identified as being most frequently mutated in C1 or other large-scale genomic studies [12, 

23; Supplementary Table S4]. C3 consisted of sample pairs from an additional 474 patients, which 

were analyzed by targeted sequencing of 12 genes (ATM, ATP9B, BAP1, COL11A1, DMD, 

KDM5C, PBRM1, PTK7, SETD2, TP53, TRRAP, and VHL), included in an RCC-focused gene 

panel [24]. These genes were selected on the basis of their known role in ccRCC 

biology/previously reported clinical associations (BAP1, KDM5C, PBRM1, SETD2, TP53, VHL), 

and/or our preliminary observed associations with outcome or other clinical parameters in C1 and 

C2 (ATM, ATP9B, COL11A1, DMD, PTK7, TRRAP).  

For the main analysis presented here, we focus on the final selected 12 genes only, 

irrespective of sequencing approach/panel. Amongst all cases (n = 943), the most frequently 

mutated genes were VHL (76%), PBRM1 (39%), SETD2 (18%), BAP1 (14%), and KDM5C (8%). 

Our VHL mutation detection rate is notably higher than that reported in previous studies [14, 25–

27] and is likely to reflect the high depth of sequencing coverage in our targeted sequencing 

approach (average 296X and 1475X in C2 and C3, respectively), sensitivity for detection of indel 

mutations, and the exclusion of non-ccRCCs. Furthermore, the similar rates of gene mutations 

between cohorts and irrespective of whether frozen or FFPE tissue, confirm the sensitivity of our 

screen, and consistency of genomic results across examined cohorts (Supplementary Table S4). 

Therefore, to identify reproducible and robust associations, we combined cases from C1 and C2 



 111 

to form a Discovery cohort (n = 469) and considered C3 as a Validation cohort (n = 474). The 

Discovery and Validation cohorts showed no significant differences in mutation rates for each 

gene, and for relevant clinical features such as tumor stage, grade, and patient age (Fig. 

1B and Table 1). 

 

Figure 1. Study summary (A) and mutational profiling of the Discovery and Validation 

cohorts (B).  
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3.5.3 Association of gene mutation status with survival 

In multivariable models stratified for TNM stage, and incorporating patient age, mutations 

in BAP1 were found to be significantly associated with DFS in the Discovery cohort (q = 0.02). 

However, no genes retained significance in both cohorts once adjusted for multiple testing 

(Supplementary Table S5). When conducting a competing risks analysis using cause-specific 

hazards models, no genes retained significant associations with RCC-specific survival in either 

cohort (Supplementary Tables S6 and S7).  

3.5.4 Genomically-defined subgroups in ccRCC 

Following the recently proposed evolutionary trajectory of RCC [15], we next explored the 

classification of tumors based on the number of identified mutated genes to create genomically 

defined groups. Specifically, we focused on cases with a VHL mutation (n = 720) detected in 

isolation (VHL+0; n = 245; 26%) versus those with a VHL mutation plus other driver 

events; VHL+1 (n = 284; 30%), VHL+2 (n = 148; 16%), and VHL+≥3 (n = 43; 5%). VHL WT 

cases (n = 218; 23%) were excluded from the analysis due to the potential differences in biological 

drivers and associated clinical behavior that are suggested to exist between VHL-mutated 

and VHL WT ccRCCs, including the prevalence of sarcomatoid features and copy-number 

aberrations in tumors that are VHL WT [15]. 

The characteristics of tumors in each group are presented in Table 2, illustrating the ability 

to identify clinically distinct subgroups of ccRCC. Tumors with a VHL mutation alone (VHL+0) 

were predominantly composed of stage I and II (n = 175; 72%), low-grade (grade 1 or 2; n = 154; 

63%) cancers, with none (0/245) reported as containing sarcomatoid and/or rhabdoid change. By 

comparison, half of tumors containing a VHL mutation plus 2 or more other mutations (VHL+2 

and VHL+≥3) were stage III or IV or high-grade cancers (n = 96; 50%) and 9.9% (19/191) 
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contained sarcomatoid and/or rhabdoid change. Tumors containing a VHL mutation plus only one 

additional mutation were a mix of low-stage (n = 177; 63%) and high-stage cancers (n = 88; 31%), 

with 4.2% (12/284) reported as containing sarcomatoid and/or rhabdoid change. 

 

Table 2. Clinical characteristics of cases by gene group. 

 
 Genomically-defined groups 

Pb 
 
Characteristic 

VHL+0  
(n=245) 

VHL+1  
(n=284) 

VHL+2  
(n=148) 

VHL+³3  
(n=43) 

Age at surgery 
(years) Median (range) 60 (23-86) 62 (26-85) 63 (38-83) 64 (43-83) <0.001 

Sex 
Female 86 (35.1) 118 (41.5) 46 (31.1) 16 (35.2) 

0.157 Male 158 (64.5) 165 (58.1) 102 (68.9) 27 (64.8) 
Missing 1 (0.4) 1 (0.4) 0 (0) 0 (0) 

Pathological 
tumour size (mm) 

Median (range) 50 (15-160) 55 (12-170) 60 (22-225) 65 (18-165) 0.002 

Fuhrman Grade 

1 30 (12.2) 46 (16.2) 11 (7.4) 3 (7.0) 

<0.001 
2 124 (50.6) 116 (40.8) 61 (41.2) 12 (27.9) 
3 75 (30.6) 80 (28.2) 42 (28.4) 18 (41.9) 
4 8 (3.3) 25 (8.8) 27 (18.2) 9 (20.9) 
Missing 8 (3.3) 17 (6.0) 7 (4.7) 1 (2.3) 

Overall Stage 
(TNM) 

I 147 (60.0) 148 (52.1) 66 (44.6) 16 (37.2) 

<0.001 
II 28 (11.4) 24 (8.5) 11 (7.4) 2 (4.7) 
III 43 (17.6) 71 (25.0) 43 (29.1) 17 (39.5) 
IV 26 (10.6) 39 (13.7) 28 (18.9) 8 (18.6) 
Missing 1 (0.4) 2 (0.7) 0 (0) 0 (0) 

Sarcomatoid and/or 
rhabdoid changea 

Present 0 (0) 12 (4.2) 15 (10.1) 4 (9.3) 
<0.001 Absent 238 (97.1) 264 (93.0) 130 (87.8) 39 (90.7) 

Missing 7 (2.9) 8 (2.8) 3 (2.0) 0 (0) 
Note: n (%) unless otherwise stated. 
aSeven tumors containing sarcomatoid and/or rhabdoid change were reported as grade 2 or grade 3 by 
original diagnostic pathologist. 
bBased on comparisons using Kruskal–Wallis test. 
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3.5.5 Survival outcomes amongst genomically-defined groups 

We explored whether consideration of these gene groups would allow stratification of 

patients by outcome. Within both the Discovery and Validation cohorts, we observed that with an 

increasing number of mutations in driver genes, the risk of disease recurrence increases. In the 

Discovery cohort, the 5-year DFS rate was 50.7% [95% confidence interval (CI), 32–80%] for 

patients with VHL+≥3 tumors, 68.2% (95% CI, 57%–82%) for patients with VHL+2 tumors, and 

80.1% (95% CI, 73%–88%) for patients with VHL+1 tumors, compared with 90.8% (95% CI, 

85%–97%) for patients with only mutations in VHL (Fig. 2A). A similar trend was observed within 

the Validation cohort, with 5-year DFS rates of 61.5%, 73.7%, 84.7%, and 90.4% for patients 

with VHL+≥3, VHL+2, VHL+1, and VHL+0 tumors, respectively (Fig. 2B). Furthermore, this 

association remained independently significant when accounting for stage and patient age. We 

observed within both cohorts increasing risk of disease recurrence from VHL+1 to VHL+≥3 (Figs. 

2A and B), and association with disease recurrence was significant for VHL+2 [Discovery HR = 

4.3 (1.8–10.2), P = 0.000862; Validation HR = 2.5 (1.1–5.7), P = 0.02883] and VHL+≥3 

[Discovery HR = 6.7 (2.4–18.3), P = 0.000212; Validation HR = 4.6 (1.5–13.5), P = 0.00615] 

groups (Figs. 2A and B). These observations were independently replicated amongst the 247 VHL-

mutated ccRCCs from the TCGA dataset (ref. 12; Supplementary Fig. S1).  

We observed a similar association between these genomically defined groups and risk of 

RCC-related death. A competing-risks analysis showed that risk of RCC-related death increases 

with the number of mutated genes, whereas the cumulative incidence curves for patients 

with VHL+0 tumors were almost identical for RCC-related death and death from other causes (Fig. 

2C). This pattern was also demonstrated in the Validation dataset (Fig. 2D). When stratifying for 

tumor stage, and considering patient age as a covariate, a cause-specific hazards model showed 
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increasing risk with additional driver mutations and a significant association with RCC-related 

death for VHL+2 [HR = 3.4 (1.6–7.2), P = 0.00190] and VHL+≥3 groups [HR = 4.1 (1.6–

10.5), P = 0.00286], which was also seen in the Validation cohort (Figs. 2C and D). This trend 

was not observed for non-RCC–related death. 
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Figure 2. DFS outcomes and Competing Risks Analysis for RCC-related death amongst 

patients with VHL mutations stratified into genomically defined groups. Kaplan–Meier 

survival curves comparing DFS amongst VHL+0, VHL+1, VHL+2, and VHL+≥3 groups within the 

(A) Discovery and (B) Validation cohorts. Cox PH models estimating association between 

genomically defined groups and 5-year DFS within the Discovery (left) and Validation (right) 

cohorts. Cumulative incidence functions amongst VHL+0, VHL+1, VHL+2, and VHL+≥3 groups 

comparing risk of death caused by RCC (solid line) compared with other causes (dotted line) 

within the (C) Discovery and (D) Validation cohorts. Cox PH models estimating association 

between genomically defined groups and 5-year RCC-related death compared with death from 

other causes within the Discovery (left) and Validation (right) cohorts.  
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Because tumors containing both a BAP1 and PBRM1 mutation are known to be associated 

with poor outcomes [28, 29], we examined the effects of mutations in PBRM1, BAP1, and in both 

genes on DFS in patients with somatic VHL mutations in our cohort. In line with previous reports, 

we observed poorer DFS when tumors harbored PBRM1 [HR 1.72 (95% CI, 1.09–2.72); P = 0.20] 

or BAP1 mutations [HR 2.59 (95% CI, 1.51–4.44); P = 0.0006], compared with those without 

these mutations, whereas patients with co-occurrence of BAP1 and PBRM1 mutations were 

associated with the poorest survival [HR 7.29 (95% CI, 3.03–17.54); P < 0.0001; Fig. 3A]. To 

assess the added value of our classifier to these known associations, we divided patients 

with VHL+2 tumors into two groups: those with PBRM1 and BAP1 mutations and those whose 

tumors harbor mutations in any two other genes from our 12-gene classifier, except 

both PBRM1 and BAP1. We then compared DFS outcomes of these groups with that of patients 

with VHL+0 status. We observed that whilst BAP1/PBRM1–mutated tumors are associated with a 

higher risk of recurrence [HR 12.08 (95% CI, 3.95–136.95); P < 0.0001], remaining VHL+2 

tumors continue to be associated with significantly poorer outcomes [HR 2.74 (95% CI, 1.49–

5.01); P = 0.001; Fig. 3B; Supplementary Table S8]. Given that VHL+2 tumors account for 

approximately 20% of all classifiable tumors in our cohort, and PBRM1/BAP1 co-occurrence 

accounts for just 7% (8/115) of these cases, our genomic classifier allows for the stratification of 

a greater proportion of patients by outcome. We performed similar analyses for tumors containing 

both a PBRM1 and SETD2 mutation [30] and observed comparable results (Fig. 3C and D; 

Supplementary Table S9). 
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Figure 3. DFS outcomes by BAP1/PBRM1 and PBRM1/SETD2 mutation status. Kaplan–

Meier survival curves based on (A) BAP1 and PBRM1 mutation status and (B) VHL+0 

tumors, VHL+2 tumors containing both a BAP1 and PBRM1 mutation, and remaining VHL+2 

tumors (i.e., those not containing both a BAP1 and PBRM1 mutation). Kaplan–Meier survival 

curves based on (C) PBRM1 and SETD2 mutation status and (D) VHL+0 tumors, VHL+2 tumors 

containing both a PBRM1 and SETD2 mutation, and remaining VHL+2 tumors (i.e., those not 

containing both a PBRM1 and SETD2 mutation). 
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3.5.6 Risk stratification among patients eligible for adjuvant therapy 

We investigated the potential utility of the genomic classifier for selection of patients for 

adjuvant therapies (clinically eligible defined as pT2 grade 3–4; pT3 or pT4 (any grade); any pT, 

any grade, N+). DFS rate at 5 years amongst the 397 patients not considered eligible for adjuvant 

therapy was 90.6% (95% CI, 88%–94%) versus 63.6% (95% CI, 57%–71%) for the 196 patients 

eligible for adjuvant therapy (Fig. 4A). Patients defined as being eligible for adjuvant therapy 

could be further stratified by risk of relapse based on the genomic classification of their tumors. 

Five-year DFS rates were 79.3% (95% CI, 69%–91%) amongst the 56 (29%) patients with VHL+0 

tumors, 69.4% (95% CI, 60%–81%) amongst the 77 (39%) patients with VHL+1 tumors, 45.6% 

(95% CI, 33%–63%) amongst the 46 (23%) patients with VHL+2 tumors, and 35.3% (95% CI, 

19%–67%) amongst the 17 (9%) patients with VHL+≥3 tumors (Fig. 4B).  

Notably, the VHL+2 and VHL+≥3 groups had significantly poorer survival compared with 

the VHL+0 group (P = 0.00055 and P < 0.0001, respectively). The potential clinical application of 

these findings, to inform individual patient counselling and decision making, is depicted in Fig. 

4C. Groups of patients who may be both spared (VHL+0) versus prioritized (VHL+2 and VHL+≥3) 

for adjuvant treatment, based on risk of recurrence, are identified. 
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Figure 4. Patients eligible for adjuvant therapy stratified by the genomic classifier. A, DFS 

amongst patients considered eligible [pT2 grade 3–4; pT3 or pT4 (any grade); any pT, any grade, 

N+] versus ineligible [pT1 (any grade); pT2 grade 1–2] for adjuvant therapy. B, DFS 

by VHL+0, VHL+1, VHL+2, and VHL+≥3 groups amongst patients considered eligible for 

adjuvant therapy. C, Flow diagram demonstrating potential clinical application. Application of the 

genomic classifier to patients typically considered eligible for adjuvant therapy allows sub-

stratification of patients into groups with highly divergent risk of relapse. This information could 

usefully inform individual patient discussions around the benefit versus risks of adjuvant therapy.  



 123 

We also explored the added utility of our genomic classifier when first considering the 

Leibovich score, a validated prognostic nomogram that incorporates tumor stage, grade, size, 

necrosis, and lymph node status [31], available in 181/196 (92%) patients. As expected, patients 

with high-risk disease had significantly poorer DFS rates in comparison with those with 

intermediate-risk disease (P < 0.001; Supplementary Fig. S2A; Supplementary Table S10). We 

found that our genomic classifier retains the ability to meaningfully substratify within these 

groups. For example, amongst patients with Leibovich score defined intermediate-risk 

disease, VHL+0 patients had a 5-year DFS rate of 89% (95% CI, 80%–99%) compared with 66% 

(95% CI, 47%–92%) for patients with VHL+2 tumors (P = 0.02) and 25% (95% CI, 5%–100%) 

for VHL+≥3 tumors (P < 0.0001), although it should be noted there were only 4 patients in the 

latter group (Supplementary Fig. S2B). 

Finally, we examined outcomes by our classifier amongst patients with stage I disease, who 

are not usually considered for adjuvant therapy. Patients with stage I VHL+0 tumors (140/365; 

38%) were associated with excellent outcomes, with a 5-year DFS rate of 96% (95% CI, 93%–

99%). By contrast, patients with a stage I VHL+≥3 tumor had relatively poorer outcomes, with a 

5-year DFS of 78% (95% CI, 59%–100%; P = 0.01), although the wide CIs reflect the small 

number of patients in this group (16/365; 4%) and should be considered an exploratory finding. 

Outcomes by tumor stage stratified by our genomic classifier are shown in Supplementary Fig. 

S3 and Supplementary Table S11. 

3.5.7 Genomic classifier independence from tumor mutational burden 

To investigate whether the increasing number of driver mutations in RCC-focused genes 

act as a classifier independent of tumor mutational burden (TMB), a known prognostic marker in 

some cancers, we compared TMB values between the genomically defined groups. TMB differed 
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only between the VHL+0 and other groups within the WGS samples (Cohort 1). Notably, TMB 

was not significantly different between VHL+1, VHL+2, and VHL+≥3 tumors (Supplementary 

Table S12). This analysis was replicated using the publically available TCGA dataset, which 

showed only marginally significant difference between the VHL+0 and VHL+2 groups, and no 

differences between the VHL+1, VHL+2, and VHL+≥3 tumors (Supplementary Table S12). In 

addition, whereas TMB alone did not show a significant association to DFS, when incorporating 

TMB as a covariate, VHL+2 and VHL+≥3 groups showed significantly poorer DFS in both the C1 

cohort (P = 0.025 and P = 0.043 for VHL+2 and VHL+≥3, respectively) and TCGA (P = 0.002 

and P = 0.046 for VHL+2 and VHL+≥3, respectively) cohorts (Supplementary Table S13). These 

results demonstrate that the performance of the classifier is independent from TMB. 

3.6 DISCUSSION 

The prospect of offering effective adjuvant therapy to patients with RCC represents a major 

step forward in the management of this disease. With this, however, comes the challenge of 

deciding who should or should not be treated, based on risk of cancer recurrence. In this 

multinational study, comprising final data from a total of 943 patients, we have examined the role 

of targeted gene sequencing to improve individual risk stratification. We show that by considering 

a panel of 12 RCC-focused genes, clinically and biologically distinct groups can be identified, 

accounting for 76% of cases in our cohort, that can be used to refine individual risk-estimates with 

potential immediate application for selection of patients for adjuvant therapy. Importantly, these 

findings were observed in both the Discovery and Validation cohorts, and were independent from 

patient age, tumor stage, and TMB. 

Studies examining the clinical impact of somatic mutations in localized ccRCC have 

consistently revealed the association of mutations in specific genes, such as BAP1 and SETD2, 
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with poorer outcomes [28, 32]. However, few studies have examined their independent prognostic 

value. In a pooled analysis of 1,049 patients with ccRCC, incorporating four independent cohorts 

(including patients from C1 of the current study), only mutations in SETD2 remained marginally 

significant for recurrence-free survival in a model including TNM stage and patient age [33]. We 

found mutations in BAP1, but not SETD2, to retain significance on multivariate testing when 

considering DFS. However, this finding failed to replicate between our Discovery and Validation 

cohorts. Given these inconsistencies, the value of considering the mutation status of any single 

gene to inform clinical practice remains uncertain. 

The existence of seven distinct, genomically defined, evolutionary subtypes of ccRCC was 

proposed in a study employing multi-region sampling of primary tumors, elegantly described 

amongst 63 cases [15]. These included tumors containing multiple clonal drivers (n = 12; defined 

as tumors with mutations in 2 or more of BAP1, PBRM1, SETD2, or PTEN clonal mutations), 

demonstrating limited intra-tumor heterogeneity (ITH) and associated exclusively with higher-

stage disease. Another 11 tumors were defined as VHL monodrivers, again demonstrating limited 

subclonality and predominantly composed of stage I cancers. A third group (n = 6), defined 

as VHL WT, were associated with increased somatic copy-number alterations and enriched for 

tumors containing sarcomatoid differentiation [15]. 

These intriguing exploratory observations led us to examine our data using a similar 

principle, in our much larger sample set, but subject to single region sequencing. Most patients 

within the CAGEKID cohort demonstrated a mutation in the VHL gene (n = 718; 76%) and could 

be classified as those with tumors containing a VHL mutation alone (VHL+0), or a VHL mutation 

plus additional driver events (VHL+1, VHL+2, VHL+≥3), within the sequenced region and equate 

to the ‘VHL monodriver’ and ‘multiple clonal driver’ subtypes proposed above. These genomic 
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groups showed striking divergence in terms of their clinical behavior. Importantly, whilst a 

preponderance of either early stage, low grade, or high stage, high grade cancers were found 

in VHL+0 and VHL+2/VHL+≥3 tumors, respectively, no exclusivity was observed and all groups 

were represented across the disease spectrum. 

Determination of recurrence risk in localized RCC currently remains reliant on 

clinicopathologic criteria alone. TNM stage and tumor grade provide useful broad stratification of 

patients into low-, intermediate-, and high-risk groups, but ultimately fail to adequately account 

for individual variance in tumor biology and outcomes. Efforts to improve risk prediction has led 

to the development of several prognostic nomograms [31, 34, 35], incorporating additional tumor 

or clinical characteristics, which have also been widely adopted. However, their predictive 

accuracy appears, at best, only marginally better than TNM alone and their performance has 

declined over time [36–38]. 

These deficiencies lead to a significant risk that many patients may be overtreated in the 

adjuvant setting. The ability of the current genomic classifier to identify over a quarter of such 

patients (VHL+0) with a 5-year DFS rate approaching 80% is therefore important. Potential 

avoidance of adjuvant therapy carries significant benefits to both patients and healthcare systems, 

given the costs and toxicity of ICI-based therapies. Conversely, patients with tumors containing 

multiple driver mutations appear to be at extremely high risk of recurrence (5-year DFS rate 35%–

46%), representing a group who may benefit most from adjuvant treatment. Our findings also carry 

important implications for the design, costs, and success of future adjuvant RCC trials. 

This study adds to a growing literature in ccRCC demonstrating the ability to infer tumor 

biology from genomic data derived from a single tumor region [33, 39–42]. The impact of spatial 

ITH, well characterized in ccRCC [43], on clinical association studies such as ours remains poorly 
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understood. Whilst multi-region sequencing would almost certainly increase mutation detection 

[15], in all but the VHL gene, the clinical impact of a small subclonal driver event within the 

context of an otherwise largely clonal tumor, for example, remains unknown [44]. 

Our gene panel is not definitive and it is likely that further refinement is possible. For 

example, other than COL11A1, we did not consider genes within the PI3K/AKT/mTOR pathway. 

Furthermore, the significance, at an individual level, of the lower frequency events included in our 

panel could not be robustly established despite the size of our cohort and will require even larger 

studies to achieve this. Analysis of other known genomic features, such as copy-number 

alterations, were not undertaken and may allow further refinement of genomic groups. 

Whilst VHL+2 and VHL+≥3 tumors are associated with the highest risk of disease recurrence, the 

benefit of adjuvant ICI in these patients remains unknown and warrants investigation. The TCGA 

sample set represents the next largest available cohort of genetically defined ccRCC and was useful 

in validating our findings and in investigating associations to TMB, but ideally a larger cohort, 

with a similarly high VHL mutation rate to our study (notably the TCGA cohort reported a rate 

of VHL mutation of 52.3%; ref. 14), would have been employed. 

In conclusion, this study establishes the ability to define biologically distinct molecular 

subgroups of ccRCC that could be used to better inform patients and their physicians regarding 

individual risk of tumor recurrence following nephrectomy. These genetic groups can be defined 

based on the mutation status of a small panel of genes captured within a single tumor region and, 

therefore, readily applied to the clinic. Further prospective evaluation of these findings is 

warranted. 
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3.7 STUDY CENTERS 

Patients were recruited from the following centers (with lead investigator(s) at each site): 

St James's University Hospital, Leeds, Dr. Naveen Vasudev; Newcastle Upon Tyne Hospitals NHS 

Foundation Trust, Professor Naeem Soomro; Stockport NHS Foundation Trust, Mr. Adebanji 

Adeyoju; Nottingham University Hospitals NHS Trust, Professor Poulam Patel; NHS Lothian, 

Professor Grant Stewart; Charing Cross Hospital, Mr. David Hrouda; Oxford University Hospitals 

NHS Foundation Trust, Mr. Mark Sullivan; Northwick Park Hospital, Mr. Jeff Webster; University 

Hospital Motol, Dr. Antonin Brisuda; General University Hospital, Dr. Roman Sobotka; Masaryk 

Memorial Cancer Institute, Dr. Lenka Foretova; Palacký University Hospital, Dr. Vladimir Janout; 

České Budějovice Regional Hospital, Dr. Vladimir Janout; Th. Burghele Hospital, Bucharest, Dr. 

Viorel Jinga; N.N. Blokhin Cancer Research Center, Dr. David Zaridze; Clinical Center of Serbia 

(KCS), Dr. Ljiljana Bogdanovic; Military Medical Academy, Dr. Bozidar Kovacevic. 
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3.11 SUPPLEMENTAL MATERIALS 

3.11.1 Supplementary Tables 

The below supplementary tables are available online at: 
https://aacrjournals.org/clincancerres/article/29/7/1220/718766/Application-of-Genomic-
Sequencing-to-Refine/ 
 
 

Supplementary Table S1. Clinical information and 12 gene mutation status for cohorts C1-

C3 

Supplementary Table S2. Somatic mutations detected in 12 interrogated genes for cohorts 

C1-C3 
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Supplementary Table S3. Patient and tumor characteristics 

Characteristic All n=943 Discovery Validation 
Age at surgery 
(years) median (range) 61.42 (23.4-86.1) 61.7 (23.4-86.1) 61.1 (25.6-85.1) 

Sex n (%) 
Female 359 (38.1) 193 (41.2) 166 (35.0) 
Male 580 (61.5) 276 (58.8) 304 (64.1) 

 Missing 4 (0.4) 0 (0) 4 (0.8) 
Body mass 
index (BMI) median (range) 27.8 (14.9) 27.8 (14.9-49.6) 27.7 (16-49.2) 

BMI categorised 
n (%) 

<24.9 222 (23.5) 102 (21.7) 120 (25.3) 
25-29.9 344 (36.5) 167 (35.6) 177 (37.3) 
30-34.9 199 (21.1) 101 (21.5) 98 (20.7) 

>35 84 (8.9) 44 (9.4) 40 (8.4) 
Missing 94 (10.0) 55 (11.7) 39 (8.2) 

Tobacco 
exposure n (%) 

Never 468 (49.6) 245 (52.2) 223 (47.0) 
Ex-smoker 258 (27.4) 115 (24.5) 143 (30.2) 

Current smoker 206 (21.8) 105 (22.4) 101 (21.3) 
Missing 11 (1.2) 4 (0.9) 7 (1.5) 

Country  

Czech Republic 342 (36.3) 133 (28.4) 209 (44.1) 
UK 291 (30.9) 150 (32.0) 141 (29.7) 

Russia 197 (20.9) 129 (27.5) 68 (14.3) 
Romania 75 (8.0) 50 (10.7) 25 (5.3) 

Serbia 34 (3.6) 7 (1.5) 27 (5.7) 
 Missing 4 (0.4) 0 (0) 4 (0.8) 
Pathological 
tumor size (mm) median (range) 55 (13-220) 58 (13) 54.5 (12-225) 

Pathological 
tumor stage 

1a 277 (29.4) 128 (27.3) 149 (31.4) 
1b 215 (22.8) 114 (24.3) 101 (21.3) 
2 107 (11.3) 57 (12.2) 50 (10.5) 
3 288 (30.5) 155 (33.0) 133 (28.1) 
4 10 (1.1) 7 (1.5) 3 (0.6) 

Missing 46 (4.9) 8 (1.7) 38 (8.0) 

pN stage n (%) 
0/X 866 (91.8) 449 (95.7) 417 (88.0) 
1 37 (3.9) 16 (3.4) 21 (4.4) 

Missing 40 (4.2) 4 (0.9) 36 (7.6) 

pM stage n (%) 
0/X 823 (87.3) 430 (91.7) 393 (82.9) 
1 83 (8.8) 37 (7.9) 46 (9.7) 

Missing 37 (3.9) 2 (0.4) 35 (7.4) 

Necrosis n (%) 
Absent 678 (71.9) 360 (76.8) 318 (67.1) 
Present 228 (24.2) 108 (23.0) 120 (25.3) 
Missing 37 (3.9) 1 (0.2) 36 (7.6) 
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FFPE grade n 
(%) 

1 122 (12.9) 66 (14.1) 56 (11.8) 
2 405 (42.9) 215 (45.8) 190 (40.1) 
3 279 (29.6) 139 (29.6) 140 (29.5) 
4 91 (9.7) 45 (9.6) 46 9.7) 

Missing 46 (4.9) 4 (0.9) 42 (8.9) 

Overall TNM 
stage n (%) 

I 486 (51.5) 235 (50.1) 251 (53.0) 
II 95 (10.1) 47 (10.0) 48 (10.1) 
III 225 (23.9) 117 (24.9) 108 (22.8) 
IV 132 (14.0) 70 (14.9) 62 (13.1) 

Missing 5 (0.5) 0 (0) 5 (1.1) 

Rhabdoid or 
sarcomatoid 
change n(%) 

Absent 874 (92.7) 447 (95.3) 427 (90.1) 
Present 46 (4.9) 18 (3.8) 28 (5.9) 
Missing 23 (2.4) 4 (0.9) 19 (4.0) 

Laterality n (%) 

Right kidney 436 (46.2) 224 (47.8) 212 (44.7) 
Left kidney 434 (46.0) 221 (47.1) 213 (44.9) 

Bilateral 2 (0.2) 0 (0) 2 (0.4) 
Missing 71 (7.5) 24 (5.1) 47 (9.9) 

Nephrectomy 
type n (%) 

Partial 116 (12.3) 46 (9.8) 70 (14.8) 
Radical 811 (86.0) 416 (88.7) 395 (83.3) 
Missing 16 (1.7) 7 (1.5) 9 (1.9) 

Relapse n (%) 

No 622 (66.0) 291 (62.0) 331 (69.8) 
Yes 160 (17.0) 84 (17.9) 76 (16.0) 

Missing 27 (2.9) 22 (4.7) 5 (1.1) 
Not applicable 134 (14.2) 72 (15.4) 62 (13.1) 

Dead n (%) 
No 609 (64.6) 286 (61.0) 323 (68.1) 
Yes 327 (34.7) 180 (38.4) 147 (31.0) 

Missing 7 (0.7) 3 (0.6) 4 (0.8) 

RCC related 
death n (%) 

No 125 (13.3) 62 (13.2) 63 (13.3) 
Yes 192 (20.4) 109 (23.2) 83 (17.5) 

Missing 17 (1.8) 12 (2.6) 5 (1.1) 
Not applicable 609 (64.6) 286 (61.0) 323 (68.1) 

Total mutations* 
(out of 12) n (%) 

0 91 (9.7) 44 (9.4) 47 (9.9) 
1 331 (35.1) 154 (32.8) 177 (37.3) 
2 319 (33.8) 155 (33.0) 164 (34.6) 
3 158 (16.8) 87 (18.6) 71 (15.0) 
4 40 (4.2) 27 (5.8) 13 (2.7) 
5 3 (0.3) 1 (0.2) 2 (0.4) 
6 1 (0.1) 1 (0.2) 0 (0) 
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Supplementary Table 4. Gene mutation frequencies across cohorts 

Gene Mutated 
(N/Y) 

All n=943 
n (%) 

Cohort 1 
WGS 
n=93 
n (%) 

Cohort 2 
42 genes 
n=376 
n (%) 

Cohort 3 
12 genes 
n=474 
n (%) 

ATM No 907 (96.2) 88 (94.6) 363 (96.5) 456 (96.2) 
Yes 36 (3.8) 5 (5.4) 13 (3.5) 18 (3.8) 

ATP9B No 935 (99.2) 90 (96.8) 374 (99.5) 471 (99.4) 
Yes 8 (0.8) 3 (3.2) 2 (0.5) 3 (0.6) 

BAP1 No 812 (86.1) 82 (88.2) 324 (86.2) 406 (85.7)  
Yes 131 (13.9) 11 (11.8) 52 (13.8) 68 (14.3) 

COL11A1 No 915 (97.0) 87 (93.5) 366 (97.3) 462 (97.5)  
Yes 28 (3.0) 6 (6.5) 10 (2.7) 12 (2.5) 

DMD No 909 (96.4) 88 (94.6) 361 (96.0) 460 (97)  
Yes 34 (3.6) 5 (5.4) 15 (4.0) 14 (3) 

KDM5C No 869 (92.2) 86 (92.5) 339 (90.2) 444 (93.7)  
Yes 74 (7.8) 7 (7.5) 37 (9.8) 30 (6.3) 

PBRM1 No 579 (61.4) 57 (61.3) 221 (58.8) 301 (63.5)  
Yes 364 (38.6) 36 (38.7) 155 (41.2) 173 (36.5) 

PTK7 No 934 (99.0) 90 (96.8) 373 (99.2) 471 (99.4)  
Yes 9 (1.0) 3 (3.2) 3 (0.8) 3 (0.6) 

SETD2 No 774 (82.1) 75 (80.6) 312 (83.0) 387 (81.6)  
Yes 169 (17.9) 18 (19.4) 64 (17.0) 87 (18.4) 

TP53 No 910 (96.5) 89 (95.7) 361 (96.0) 460 (97)  
Yes 33 (3.5) 4 (4.3) 15 (4.0) 14 (3) 

TRRAP No 925 (98.1) 87 (93.5) 368 (97.9) 470 (99.2)  
Yes 18 (1.9) 6 (6.5) 8 (2.1) 4 (0.8) 

VHL No 220 (23.3) 14 (15.1) 86 (22.9) 120 (25.3)  
Yes 720 (76.4) 76 (81.7) 290 (77.1) 354 (74.7)  
Missing 3 (0.3) 3 (3.2) 0 (-) 0 (-) 

ABCA13 No (-) 89 (95.7) 352 (93.6) (-)  
Yes (-) 4 (4.3) 24 (6.4) (-) 

ANK2 No (-) 89 (95.7) 361 (96.0) (-)  
Yes (-) 4 (4.3) 15 (4.0) (-) 

ANPEP No (-) 88 (94.6) 370 (98.4) (-)  
Yes (-) 5 (5.4) 6 (1.6) (-) 

ARID1A No (-) 88 (94.6) 363 (96.5) (-)  
Yes (-) 5 (5.4) 13 (3.5) (-) 
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CACNA1I No (-) 89 (95.7) 366 (97.3) (-)  
Yes (-) 4 (4.3) 10 (2.7) (-) 

COL12A1 No (-) 88 (94.6) 366 (97.3) (-)  
Yes (-) 5 (5.4) 10 (2.7) (-) 

CSMD3 No (-) 85 (91.4) 364 (96.8) (-)  
Yes (-) 8 (8.6) 12 (3.2) (-) 

DNAH7 No (-) 88 (94.6) 369 (98.1) (-)  
Yes (-) 5 (5.4) 7 (1.9) (-) 

DOCK8 No (-) 89 (95.7) 372 (98.9) (-)  
Yes (-) 4 (4.3) 4 (1.1) (-) 

DST No (-) 89 (95.7) 363 (96.5) (-)  
Yes (-) 4 (4.3) 13 (3.5) (-) 

FAT1 No (-) 88 (94.6) 367 (97.6) (-)  
Yes (-) 5 (5.4) 9 (2.4) (-) 

FAT3 No (-) 86 (92.5) 355 (94.4) (-)  
Yes (-) 7 (7.5) 21 (5.6) (-) 

FAT4 No (-) 88 (94.6) 365 (97.1) (-)  
Yes (-) 5 (5.4) 11 (2.9) (-) 

FRAS1 No (-) 89 (95.7) 368 (97.9) (-)  
Yes (-) 4 (4.3) 8 (2.1) (-) 

GUCY1A2 No (-) 90 (96.8) 375 (99.7) (-)  
Yes (-) 3 (3.2) 1 (0.3) (-) 

KMT2C No (-) 87 (93.5) 359 (95.5) (-)  
Yes (-) 6 (6.5) 17 (4.5) (-) 

LRP1B No (-) 88 (94.6) 363 (96.5) (-)  
Yes (-) 5 (5.4) 13 (3.5) (-) 

MDN1 No (-) 88 (94.6) 364 (96.8) (-)  
Yes (-) 5 (5.4) 12 (3.2) (-) 

MTOR No (-) 86 (92.5) 353 (93.9) (-)  
Yes (-) 7 (7.5) 23 (6.1) (-) 

NRXN1 No (-) 87 (93.5) 369 (98.1) (-)  
Yes (-) 6 (6.5) 7 (1.9) (-) 

PEAK1 No (-) 90 (96.8) 372 (98.9) (-)  
Yes (-) 3 (3.2) 4 (1.1) (-) 

PIEZO2 No (-) 87 (93.5) 367 (97.6) (-)  
Yes (-) 6 (6.5) 9 (2.4) (-) 

PRKDC No (-) 89 (95.7) 370 (98.4) (-)  
Yes (-) 4 (4.3) 6 (1.6) (-) 

PTEN No (-) 89 (95.7) 367 (97.6) (-) 
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Yes (-) 4 (4.3) 9 (2.4) (-) 

TENM1 No (-) 88 (94.6) 367 (97.6) (-)  
Yes (-) 5 (5.4) 9 (2.4) (-) 

USP24 No (-) 88 (94.6) 368 (97.9) (-)  
Yes (-) 5 (5.4) 8 (2.1) (-) 

WDFY3 No (-) 87 (93.5) 369 (98.1) (-)  
Yes (-) 6 (6.5) 7 (1.9) (-) 

ZAN No (-) 88 (94.6) 371 (98.7) (-)  
Yes (-) 5 (5.4) 5 (1.3) (-) 

ZFHX4 No (-) 84 (90.3) 363 (96.5) (-)  
Yes (-) 9 (9.7) 13 (3.5) (-) 

ZNF469 No (-) 86 (92.5) 361 (96.0) (-)  
Yes (-) 7 (7.5) 15 (4.0) (-) 

WGS – whole genome sequencing 
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Supplementary Table 5. Multivariable disease-free survival analysis 

  Disease-free survival (Discovery) Disease-free survival (Validation) 
Predictor Levels HR 95% CI p-

value 
q-

value 
HR 95% CI p-

value 
q-

value 
ATM 0 1.00 - - -  1.00 - - -  
 1 1.13 [0.35;3.62] 0.838 1.000 0.98 [0.24;4.02] 0.975 1.000 
Age  1.00 [0.98;1.02] 0.970 1.000 1.00 [0.98;1.03] 0.806 1.000 
ATP9B 0 1.00 - - -  1.00 - - -  
 1 4.06 [1.26;13.10] 0.019 0.455 (-) (-) (-) (-) 
Age  1.00 [0.98;1.02] 0.990 1.000 1.00 [0.98;1.03] 0.845 1.000 
BAP1 0 1.00 - - -  1.00 - - -  
 1 2.68 [1.50;4.78] 0.001 0.020 1.92 [1.11;3.30] 0.019 0.458 
Age  1.00 [0.98;1.02] 0.870 1.000 1.00 [0.98;1.03] 0.727 1.000 
COL11A1 0 1.00 - - -  1.00 - - -  
 1 0.91 [0.22;3.72] 0.893 1.000 3.47 [1.08;11.19] 0.037 0.893 
Age  1.00 [0.98;1.02] 0.951 1.000 1.00 [0.98;1.03] 0.866 1.000 
DMD 0 1.00 - - -  1.00 - - -  
 1 1.86 [0.68;5.13] 0.228 1.000 1.64 [0.59;4.55] 0.344 1.000 
Age  1.00 [0.98;1.02] 0.990 1.000 1.00 [0.98;1.03] 0.742 1.000 
KDM5C 0 1.00 - - -  1.00 - - -  
 1 1.50 [0.76 ;2.96 0.240 1.000 0.86 [0.27;2.75] 0.803 1.000 
Age  1.00 [0.98;1.02] 0.981 1.000 1.00 [0.98;1.03] 0.811 1.000 
PBRM1 0 1.00 - - -  1.00 - - -  
 1 1.22 [0.76;1.98] 0.414 1.000 1.26 [0.77;2.08] 0.355 1.000 
Age  1.00 [0.98;1.02] 0.937 1.000 1.00 [0.98;1.03] 0.883 1.000 
PTK7 0 1.00 - - -  1.00 - - -  
 1 2.90 [0.70;11.97] 0.141 1.000 (-) (-) (-) (-) 
Age  1.00 [0.98;1.02] 0.962 1.000 1.00 [0.98;1.03] 0.768 1.000 
SETD2 0 1.00 - - -  1.00 - - -  
 1 1.56 [0.88;2.77] 0.128 1.000 2.23 [1.33;3.76 0.003 0.060 
Age  1.00 [0.98;1.02] 0.769 1.000 1.00 [0.98;1.03] 0.781 1.000 
TP53 0 1.00 - - -  1.00 - - -  
 1 3.38 [1.35;8.45] 0.009 0.221 0.69 [0.17;2.84 0.605 1.000 
Age  1.00 [0.98;1.02] 0.932 1.000 1.00 [0.98;1.03] 0.759 1.000 
TRRAP 0 1.00 - - -  1.00 - - -  
 1 2.65 [0.96;7.36] 0.061 1.000 1.81 [0.25;13.13 0.558 1.000 
Age  1.00 [0.98;1.02] 0.924 1.000 1.00 [0.98;1.03] 0.798 1.000 
VHL 0 1.00 - - -  1.00 - - -  
 1 1.43 [0.76;2.67] 0.268 1.000 0.85 [0.50;1.46] 0.559 1.000 
Age  1.00 [0.98;1.02] 0.870 1.000 1.00 [0.98;1.03] 0.787 1.000 
* Cox PH model includes a stratification by tumor stage; Bonferroni adjustment was made to account for 
multiple testing 
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Supplementary Table 6. Multivariable cause-specific survival analysis (Discovery) 

  RCC-related death Non-RCC-related death 
Predictor Levels HR 95% CI p-

value 
q-

value 
HR 95% CI p-value q-

value 
ATM 0 1.00 - - -  1.00 - - -  
 1 2.66 [1.12 ;6.33] 0.027 0.638 (-) (-) (-) 1.000 
Age  1.00  [0.98;1.03] 0.734 1.000 1.06 [1.02;1.09] 0.003 0.079 
ATP9B 0 1.00 - - -  1.00 - - -  
 1 6.21 [1.87;20.68] 0.003 0.070 2.90 [0.39;21.64] 0.299 1.000 
Age  1.01 [0.98;1.03] 0.541 1.000 1.05 [1.02;1.10] <0.005 0.111 
BAP1 0 1.00 - - -  1.00 - - -  
 1 1.84 [1.09;3.10] 0.022 0.534 0.72 [0.23;2.38] 0.590 1.000 
Age  1.01 [0.99;1.03] 0.450 1.000 1.05 [1.02;1.09] 0.005 0.117 
COL11A1 0 1.00 - - -  1.00 - - -  
 1 2.29 [0.92;5.72] 0.076 1.000 1.90 [0.45;8.00] 0.381 1.000 
Age  1.01 [0.98;1.03] 0.537 1.000 1.05 [1.02;1.09] <0.005 0.112 
DMD 0 1.00 - - -  1.00 - - -  
 1 1.74  [0.70;4.31] 0.234 1.000 0.80 [0.11;5.94] 0.832 1.000 
Age  1.01 [0.99;1.03] 0.444 1.000 1.05 [1.02;1.09] <0.005 0.108 
KDM5C 0 1.00 - - -  1.00 - - -  
 1 1.23 [0.65;2.33] 0.533 1.000 1.25 [0.43;3.58] 0.682 1.000 
Age  1.01 [0.98;1.03] 0.510 1.000 1.05 [1.02;1.09] <0.005 0.118 
PBRM1 0 1.00 - - -  1.00 - - -  
 1 0.81 [0.51;1.29] 0.384 1.000 1.10 [0.55;2.18] 0.785 1.000 
Age  1.01 [0.99;1.04] 0.404 1.000 1.05 [1.02;1.09] 0.005 0.126 
PTK7 0 1.00 - - -  1.00 - - -  
 1 4.07 [1.47;11.27] 0.007 0.168 (-) (-) (-) 1.000 
Age  1.01 [0.98;1.03] 0.475 1.000 1.06 [1.02;1.09] 0.004 0.102 
SETD2 0 1.00 - - -  1.00 - - -  
 1 1.24 [0.72;2.13] 0.441 1.000 1.29 [0.57;2.92] 0.534 1.000 
Age  1.01 [0.98;1.03] 0.582 1.000 1.05 [1.01;1.09] 0.006 0.154 
TP53 0 1.00 - - -  1.00 - - -  
 1 1.74 [0.83;3.64] 0.144 1.000 1.70 [0.40;7.24] 0.472 1.000 
Age  1.01 [0.99;1.03] 0.451 1.000 1.06 [1.02;1.10] 0.004 0.103 
TRRAP 0 1.00 - - -  1.00 - - -  
 1 2.87  [1.24;6.66] 0.014 0.333 1.93 [0.46;8.10] 0.370 1.000 
Age  1.01 [0.98;1.03] 0.555 1.000 1.05 [1.02;1.09] 0.005 0.120 
VHL 0 1.00 - - -  1.00 - - -  
 1 1.34 [0.75;2.39] 0.327 1.000 0.89 [0.40;1.97] 0.772 1.000 
Age  1.01 [0.99;1.03] 0.462 1.000 1.06 [1.02;1.10] 0.004 0.104 
* Cox PH model includes a stratification by tumor stage; Bonferroni adjustment was made to account for 
multiple testing 
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Supplementary Table 7. Multivariable cause-specific survival analysis (Validation) 

  RCC-related death Non-RCC-related death 
Predictor Levels HR 95% CI p-

value 
q-

value 
HR 95% CI p-value q-

value 
ATM 0 1.00 - - -  1.00 - - -  
 1 1.04 [0.25;4.24] 0.961 1.000 0.62 [0.09;4.51] 0.636 1.000 
Age  1.02 [1.00;1.04] 0.114 1.000 1.06 [1.03;1.10] 0.00015 0.004 
ATP9B 0 1.00 - - -  1.00 - - -  
 1 2.42 [0.33;17.87] 0.387 1.000 (-) (-) (-) (-) 
Age  1.02 [1.00;1.04] 0.104 1.000 1.06 [1.03;1.10] 0.00017 0.004 
BAP1 0 1.00 - - -  1.00 - - -  
 1 2.22 [1.28;3.85] 0.005 0.112 0.86 [0.34;2.22] 0.762 1.000 
Age  1.02 [1.00;1.05] 0.076 1.000 1.06 [1.03;1.10] 0.00015 0.004 
COL11A1 0 1.00 - - -  1.00 - - -  
 1 2.96 [0.91;9.63] 0.071 1.000 2.40 [0.57;10.03] 0.230 1.000 
Age  1.02 [1.00;1.04] 0.092 1.000 1.06 [1.03;1.10] 0.00017 0.004 
DMD 0 1.00 - - -  1.00 - - -  
 1 1.55 [0.37;6.51] 0.551 1.000 2.27 [0.54;9.51] 0.263 1.000 
Age  1.02 [1.00;1.04] 0.107 1.000 1.07 [1.03;1.10] 0.00013 0.003 
KDM5C 0 1.00 - - -  1.00 - - -  
 1 0.47 [0.17;1.30] 0.145 1.000 0.59 [0.14;2.50] 0.470 1.000 
Age  1.02 [1.00;1.04] 0.091 1.000 1.06 [1.03;1.10] 0.00014 0.003 
PBRM1 0 1.00 - - -  1.00 - - -  
 1 0.93 [0.56;1.53] 0.766 1.000 1.01 [0.54;1.89] 0.981 1.000 
Age  1.02 [1.00;1.04] 0.108 1.000 1.06 [1.03;1.10] 0.00016 0.004 
PTK7 0 1.00 - - -  1.00 - - -  
 1 0.83 [0.114;6.07] 0.856 1.000 5.13 [0.64;40.99] 0.123 1.000 
Age  1.02 [1.00;1.04] 0.113 1.000 1.06 [1.03;1.10] 0.00020 0.005 
SETD2 0 1.00 - - -  1.00 - - -  
 1 1.91 [1.14;3.19] 0.014 0.327 0.56 [0.20;1.62] 0.286 1.000 
Age  1.02 [1.00;1.04] 0.183 1.000 1.06 [1.03;1.10] 0.00018 0.004 
TP53 0 1.00 - - -  1.00 - - -  
 1 1.18 [0.37;3.82] 0.777 1.000 (-) (-) (-) (-) 
Age  1.02 [1.00;1.04] 0.123 1.000 1.07 [1.03;1.10] 0.00013 0.003 
TRRAP 0 1.00 - - -  1.00 - - -  
 1 3.77 [0.51;27.90] 0.194 1.000 (-) (-) (-) 1.000 
Age  1.02 [1.00;1.04] 0.112 1.000 1.06 [1.03;1.10] 0.00015 0.004 
VHL 0 1.00 - - -  1.00 - - -  
 1 1.04 [0.60;1.81] 0.883 1.000 0.91 [0.44;1.87] 0.793 1.000 
Age  1.02 [1.00;1.04] 0.114 1.000 1.06 [1.03;1.10] 0.00016 0.004 
* Cox PH model includes a stratification by tumor stage; Bonferroni adjustment was made to account for 
multiple testing 
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Supplementary Table 8. Multivariable disease-free survival analysis investigating BAP1 & 

PBRM1 co-occurrence within the overall cohort and within VHL+2 tumors.  

BAP1/PBRM1 co-occurrence 
 Disease-free survival  
Predictor                          Levels N HR 95% CI p-value 
Mutation 
Status 

None 289 1.00  -  - 
PBRM1 only 221 1.72 [1.09;2.72] 0.020 
BAP1 only 71 2.59 [1.51;4.44] 0.0006 

BAP1 & PBRM1 12 7.29 [3.03;17.54] <0.0001 
Age   593 1.00 [0.98;1.02] 0.874 

BAP1/PBRM1 co-occurrence & other VHL+2 scenarios 
 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Mutation 
Status 

VHL+0 208  1.00  -  - 
VHL+2** 107 2.74 [1.49;5.01] 0.001 

BAP1 & PBRM1 8 12.08 [3.95;136.95] <0.0001 
Age   323 1.01 [0.98;1.037] 0.589 

* Cox PH model includes a stratification by tumor stage  
**VHL+2 group excludes co-occurring BAP1/PBRM1 mutations  
 

Supplementary Table 9. Multivariable disease-free survival analysis investigating PBRM1 & 

SETD2 co-occurrence within the overall cohort and within VHL+2 tumors. 

PBRM1/SETD2 co-occurrence 
 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Mutation 
Status 

None 311 1.00  -  - 
SETD2 only 49 1.80 [0.96;3.38] 0.067 
PBRM1 only 174 1.30 [0.81;2.08] 0.283 

SETD2 & PBRM1 59 2.68 [1.54;4.67] 0.0005 
Age   593 1.00 [0.98;1.02] 0.937 

PBRM1/SETD2 co-occurrence & other VHL+2 scenarios 
 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Mutation 
Status 

VHL+0 208  1.00  -  - 
VHL+2** 76 3.44 [1.84;6.44] 0.0001 

SETD2 & PBRM1 39 2.30 [1.02;5.21] 0.045 
Age   323 1.01 [0.98;1.04] 0.599 
* Cox PH model includes a stratification by tumor stage;  
**VHL+2 group excludes co-occurring SETD2/ PBRM1 mutations 
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Supplementary Table 10. Multivariable disease-free survival analysis stratified by Leibovich 

risk group, and by genomic classifier within intermediate- and high-risk Leibovich groups 

Eligible for adjuvant therapy stratified by Leibovich Risk Group 
 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Leibovich Intermediate 106 1.00   -  - 

High 75 3.19 [1.89;5.38] <0.0001 
Age   181 0.99 [0.97;1.02] 0.639 

Genomic classifier within Leibovich Intermediate-Risk Group 
 Disease-free survival 
Predictor Levels N HR 95% CI p-value 
Genomic 
Classifier 

VHL+0 39  1.00  -  - 
VHL+1 44 2.64 [0.79; 8.81] 0.114 
VHL+2 19 4.72 [1.27;17.55] 0.021 
VHL+≥3 4 22.59 [4.46;114.49] 0.0002 

Age   106 0.98 [0.95;1.01] 0.202 
Genomic classifier within Leibovich High-Risk Group 

 Disease-free survival 
Predictor Levels N HR 95% CI p-value 
Genomic 
Classifier 

VHL+0 15 1.00  -   - 
VHL+1 12 1.14 [0.43;3.05] 0.792 
VHL+2 15 2.62 [1.00;6.83] 0.050 
VHL+≥3 7 2.80 [0.92;8.47] 0.0689 

Age   49 0.99 [0.95;1.02] 0.431 
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Supplementary Table 11. Multivariable disease-free survival analysis stratified by genomic 

classifier within stage I-III tumors 

Genomic classifier within Stage I tumors 
 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Genomic 
Classifier 

VHL+0 140 1.00 -   - 
VHL+1 146 2.22 [0.78;6.35] 0.137 
VHL+2 63 2.64 [0.80;8.73] 0.111 
VHL+≥3 16 6.45 [1.53;27.27] 0.011 

Age   365 1.01 [0.97;1.05] 0.623 
Genomic classifier within Stage II tumors 

 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Genomic 
Classifier 

VHL+0 26  1.00 -  -  
VHL+1 22 1.73 [0.56;5.34] 0.338 
VHL+2 11 1.31 [0.31;5.54] 0.710 
VHL+≥3 2 3.67 [0.42;31.78] 0.237 

Age   61 0.98 [0.92;1.03] 0.390 
Genomic classifier within Stage III tumors 

 Disease-free survival  
Predictor Levels N HR 95% CI p-value 
Genomic 
Classifier 

VHL+0 42 1.00 -  -  
VHL+1 68 2.07 [0.83;5.17] 0.117 
VHL+2 41 5.38 [2.19;13.25] 0.0003 
VHL+≥3 16 7.33 [2.65;20.27] 0.0001 

Age   167 1.00 [0.97;1.02] 0.707 
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Supplementary Table 12. Wilcoxon Rank Sum Tests comparing Tumor Mutation Burden 

(TMB) within genomically-defined groups  

 
Cagekid C1 Cohort TCGA 

 VHL+0 VHL+1   VHL+2  VHL+0 VHL+1   VHL+2 
VHL+1 0.0065 (-) (-) VHL+1 0.110 (-) (-) 
VHL+2 0.0020 0.6032 (-) VHL+2 0.048 0.172 (-) 
VHL+³3 0.0179 0.6032 0.7451 VHL+³3 0.110 0.290 0.798 

 

 

Supplementary Table 13. Multivariable disease-free survival analysis including Tumor 

Mutation Burden (TMB) 

 
  Disease-free survival (C1) Disease-free survival (TCGA) 
Predictor Levels HR 95% CI p-value HR 95% CI p-value 
VHL 
Category 

VHL+0 1.00   1.00   
VHL+1 1.66 [0.28;10.04] 0.579 1.70 [0.88;3.30] 0.117 
VHL+2 6.59 [1.26;34.30] 0.025 3.10 [1.50;6.40] 0.002 

VHL+³3 8.83 [1.07;72.80] 0.043 3.00 [1.02;8.57] 0.046 
TMB  0.92 [0.65;1.30] 0.643 1.05 [0.76;1.47] 0.754 
  



 143 

3.11.2 Supplementary Figures 

 
Supplementary Figure S1. Disease-Free Survival outcomes amongst genomic groups 

when applied to the 247 VHL mutated ccRCCs from the TCGA dataset. 
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Supplementary Figure S2. Disease-Free Survival amongst Leibovich risk groups stratified 

by genomic classifier. Kaplan Meier survival curves amongst A) All eligible adjuvant patients by 

Leibovich intermediate- or high-risk group, B) Leibovich intermediate-risk patients stratified by 

genomic group, and C) Leibovich high-risk patients stratified by genomic group. 
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Supplementary Figure S3. Disease-Free Survival by tumor stage stratified by genomic 

classifier. Kaplan Meier survival curves for A) Stage I, B) Stage II, and C) Stage III tumors. 
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3.11.3 Supplementary Methods 

Study Centres 

Patients were recruited to the study from the following centres: St James’s University 

Hospital, Leeds, UK; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon 

Tyne, UK; Stockport NHS Foundation Trust, Stockport, UK; Nottingham University Hospitals 

NHS Trust, Nottingham, UK; NHS Lothian, Edinburgh, UK; Charing Cross Hospital, London, 

UK; Oxford University Hospitals NHS Foundation Trust, Oxford UK; Northwick Park Hospital, 

Harrow, UK; University Hospital Motol, Prague, Czech Republic; General University Hospital, 

Prague, Czech Republic; Masaryk Memorial Cancer Institute, Brno, Czech Republic; Palacký 

University Hospital, Olomouc, Czech Republic; České Budějovice Regional Hospital, České 

Budějovice, Czech Republic; Th. Burghele Hospital, Bucharest, Romania; N. N. Blokhin Cancer 

Research Centre, Moscow, Russia; Clinical Center of Serbia (KCS), Belgrade, Serbia; Military 

Medical Academy, Belgrade, Serbia. All were recruited to the study after obtaining informed 

consent. Recruitment in Central and Eastern Europe was coordinated by the International Agency 

for Research on Cancer. Ethical approvals were obtained from the Leeds (East) Local Research 

Ethics Committee, the International Agency for Research on Cancer Ethics Committee, as well as 

from local ethics committee for recruiting centres in Czech Republic, Romania, Russia, Serbia and 

Bosnia & Herzegovina. 

Study overview 

Cohort 1 (C1) consisted of 93 patient samples subject to whole genome sequencing, 

previously reported in a descriptive study [1]. C2 consisted of an additional 376 patient samples, 

of which 24 were analysed by exome sequencing and 352 underwent targeted sequencing of 42 

genes, identified as being most frequently mutated in C1 (Supplementary Table 2). C3 consisted 
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of an additional 474 patient samples, all of which were analysed by targeted sequencing of 12 

genes (ATM, ATP9B, BAP1, COL11A1, DMD, KDM5C, PBRM1, PTK7, SETD2, TP53, TRRAP, 

and VHL), included in an RCC-focused gene panel [2]. These genes were selected on the basis of 

their known role in ccRCC biology, previously reported clinical associations, and/or our 

preliminary observed potential associations with outcome or other clinical parameters in C1 and 

C2. 
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BRIDGING STATEMENT TO CHAPTER 4. 

In the previous chapter, we focused on characterizing the somatic mutation profiles of 

ccRCC tumors to identify biomarkers of disease prognosis that demonstrate clinical utility. 

Germline mutations in cancer predisposition genes are also informative for the clinical 

management of RCC. Screening schedules for individuals with germline pathogenic variants (PVs) 

that confer a higher risk of developing renal cancer enables early diagnosis. PVs in certain genes 

may also be associated to specific phenotypes and clinical outcomes that can be informative for 

risk-stratification, with recent evidence also suggesting that PVs may be more frequent in 

metastatic cancers134. For patients with advanced RCC or at high-risk for disease recurrence, the 

presence of PVs in certain genes can guide systemic therapy decisions. Tumors with germline 

mutations in MET have a more active tyrosine kinase inhibitors targeting MET135, while those with 

mutations in BRCA1/2 are more vulnerable to PARP inhibitors136; knowledge of such mutations 

allows clinicians to prioritize certain systemic therapies. Identifying additional genes with PVs 

associated to RCC may also reveal additional therapeutic targets, and increase our understanding 

of RCC pathogenesis. 

In Chapter 4, we investigate germline susceptibility to sporadic RCC within a large cohort 

of RCC patients from Canada. We identified risk-genes for clear cell and non-clear cell RCCs that 

are prevalent in Canada, and investigated their associations to clinical phenotypes and outcome. 

Additionally, to shed light on the visible global differences in RCC incidence, we compared gene 

burden for risk genes among large available cohorts from various countries. Lastly, we evaluated 

clinical guidelines for genetic screening to assess their capability to identify individuals with 

heritable predisposition to renal cancer. 
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4.1 ABSTRACT 

Background: Genetic susceptibility to non-syndromic renal cell carcinoma (RCC) remains poorly 

understood, especially for different histological subtypes. Furthermore, no comparative analysis 

between genetic data from different cohorts has been reported to date.  

Methods: We conducted targeted sequencing of 19 RCC-related and 27 cancer predisposition 

genes for 960 RCC patients from Canada, and identified genes enriched in rare germline PVs in 

RCC compared to cancer-free controls. We combined our results with those reported in patients 

from Japan, the UK, and the USA to investigate PVs variations in different patient populations. 

Furthermore, we evaluated the performance of referral criteria for genetic screening for including 

patients with rare PVs in Canada, the USA, and the UK. 

Results: We identified 39 germline PVs in 56 patients (5.8%) from the Canadian cohort. 

Compared to cancer-free controls, PVs in CHEK2 genes were significantly enriched in patients 

with clear cell RCC, whereas PVs in FH were enriched in patients with non-clear cell RCC. PVs 

in BRCA1, BRCA2 and ATM were associated with metastasis. Comparisons of gene-burden to 

other large cohorts revealed an enrichment for PVs in TP53 in patients from Japan, in CHEK2 and 

ATM in patients from Canada, USA and the UK, and in FH and BAP1 in USA. 

Conclusions: CHEK2, ATM, and FH were identified as risk-genes for RCC within the Canadian 

population, while germline PVs in BRCA1/2 and ATM are associated with metastasis. Globally, 

clinical guidelines for genetic screening in RCC fail to include over 70% of patients with rare 

germline PVs. 
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4.2 INTRODUCTION 

Renal cell carcinoma (RCC) accounts for over 400,000 new cancer diagnoses, and almost 

200,000 deaths each year [1]. RCC is characterized by heterogeneous tumor biology and clinical 

outcomes, with clinical characteristics varying by RCC histological subtype [1-3]. The majority of 

renal cortical tumors are clear cell RCC (ccRCC; ~75%), whereas non-clear cell subtypes 

(nccRCC) include papillary (~10%), chromophobe (~5%), and other histology. Genetic 

susceptibility to RCC remains poorly understood, despite evidence that having a family history of 

renal cancer doubles risk [4]. 

Germline genetic variation contributes strongly to individual differences in susceptibility 

to cancer. Approximately 5-8% of RCCs are associated to known hereditary kidney cancer 

syndromes, including von Hippel Lindau disease, Birt-Hogg-Dubé syndrome, and hereditary 

leiomyomatosis; each of which are characterized by germline mutations in known renal cancer 

genes [5,6]. While genetic drivers of these syndromic forms of the disease are well-established, 

genetic factors predisposing to sporadic RCC are less known and have only recently been 

investigated at large scales. Additionally, non-syndromic germline predisposition to RCC subtypes 

is not fully understood. 

There are unexplained variations in RCC incidence across the globe, which highlight the 

need for RCC studies that have diverse geographic representation. Recent RCC studies limited to 

specific populations report contrasting results about the prevalence of germline pathogenic variants 

(PVs) [7-9]. Additionally, previous studies lack statistical power or are missing pathological 

information required to explain variations in PV incidence among patients with RCC subtypes.  
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Here, we investigated the prevalence of germline PVs in RCC-related and cancer-

predisposing genes within a Canadian cohort and examined differences in risk-genes between RCC 

patients from Canada and other large population studies.  

4.3 MATERIALS AND METHODS 

4.3.1 Patient Cohort 

Clinical information and buffy-coat driven DNA samples were obtained for 997 unrelated 

RCC patients (790 with ccRCC and 207 with non-ccRCC), collected through the Ontario Tumour 

Bank between 2005 and 2019, following informed written consent. Pathology review to confirm 

subtypes was performed by accredited clinical pathologists at each of the hospital sites where 

samples were collected. Patients with known hereditary syndromes at the time of sample collection 

were excluded from the study. Ethical approval was obtained from the Faculty of Medicine and 

Health Sciences Institutional Review Board at McGill University, the Hamilton Integrated 

Research Ethics Board, and the ethics committee of the RIKEN Center for Integrative Medical 

Sciences. 

4.3.2 Targeted Sequencing and Bioinformatic Analysis 

We conducted targeted sequencing of 19 RCC-related and 27 cancer predisposition genes 

using multiplex PCR-based amplification followed by next-generation sequencing as described 

previously [8] (Supplementary Table 1). Genes with established associations to cancer 

predisposition or to RCC were included in this study [8]. We sequenced all coding regions, with 

2-bp flanking sequences, with a total target region of 145,459bp. Sequencing was conducted on an 

Illumina NovaSeq to an average sequencing depth of 902.81X. Raw sequencing data was 

processed using a tailored bioinformatic pipeline as previously described [10], to identify germline 

genetic variants. Variants listed as ‘Pathogenic’ or ‘Likely Pathogenic’ in ClinVar, and those with 
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a predicted ‘HIGH’ impact from SnpEff [11] were included as Pathogenic Variants. For the MITF 

and HOXB13 genes, HIGH impact variants with predicted ‘loss-of-function’ effects were not 

included, as there is evidence that they do not cause cancer [12]. After quality control measures to 

ensure adequate sequencing depth and quality, data from 960 patients was included in the analysis 

of pathogenic germline variants. Mutations in the MUTYH gene were not considered in the 

analyses, as the gene follows an autosomal recessive inheritance pattern, and all identified 

germline variants in MUTYH were heterozygous. 

4.3.3 Statistical Analyses 

Patient samples were divided into ccRCC and nccRCC subtypes for the majority of 

statistical analyses. All histological subtypes other than traditional clear cell RCC were categorized 

as nccRCC, including those with notably mixed histology, such as clear cell papillary features. 

Gene-based association tests were conducted between patients with RCC and non-cancer control 

data from the gnomAD public database (gnomAD_v2.1.1 non-cancer dataset, European (Non-

Finnish) population) [13]. Gene burden and PV burden to RCC was evaluated using Firth’s logistic 

regression, with a Bonferroni correction applied to correct for multiple testing. Associations to 

clinical characteristics were assessed using Fisher’s Exact tests. Adjusted p-values <0.05 were 

considered significant for all analyses. 

4.4 RESULTS 

4.4.1 Cohort Demographics and Clinical characteristics 

We analyzed germline mutation status for 960 Canadian patients with renal cell carcinoma. 

The cohort consisted of 759 patients with ccRCC, and 201 patients with nccRCC. Patients with 

nccRCC more frequently had a personal history of other cancers (29.1%) compared to patients 

with ccRCC (21.1%) (p=0.028). Alternatively, ccRCC patients had a greater incidence of family 
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history of RCC compared to patients with nccRCC (2.3% and 1.6% respectively) (p=0.040) 

(Supplementary Table 2). 

4.4.2 Identification of Germline Pathogenic Variants 

We identified 39 different germline pathogenic variants (PVs) in 5.8% of studied patients 

(56/960), with no patients harbouring multiple germline PVs in the examined genes (Figure 1) 

(Supplementary Table 3). We observed no significant differences in the overall number of 

germline PVs between ccRCC (5.8%, 44/759) and nccRCC (6.0%, 12/201) patients (Figure 2A). 

The most frequently mutated gene was CHEK2, with 69% of CHEK2 mutations being the known 

c.1100delC variant (11/16 patients), an established breast cancer susceptibility allele, which has 

also been suggested to increase the risk of developing other cancers [14-18]. Within ccRCC cases, 

germline PVs were most commonly found in CHEK2 (14), ATM (7), BRCA2 (6), and MITF (5). 

In patients with nccRCC, the most commonly mutated genes were FH (4) and CHEK2 (2). For 

variants identified in multiple patients and reported in gnomAD, we compared the frequency of 

PVs in our cohort with that of 118,148 cancer-free controls to identify variants with association to 

RCC (Supplementary Table 4). Notably, the CHEK2 c.1100delC variant was found in 11 RCC 

patients and showed to be significantly enriched in RCC compared to cancer-free controls (OR: 

4.7, 95% CI: 2.4-8.1, p=0.0009). The MITF p.E318K variant did not show significant enrichment 

in RCC compared to cancer-free controls (OR: 2.9, 95% CI: 0.2-1.8, p=0.586). 

Additionally, 8 RCC patients harbored low-penetrance CHEK2 variants p.Ser428Phe (1) 

and p.Ile157Thr (7) (Figure 2B). These variants have traditionally been excluded from association 

analyses due to high population frequencies and conflicting interpretations regarding their 

pathogenicity [19]. However, recent studies in RCC continue to suggest an enrichment for these 

variants within ccRCC patients [20]. 
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Figure 1. Oncoplot for RCC patients with germline pathogenic variants. Mutation rates are 

shown for general cancer susceptibility genes (Cancer) and RCC-related genes (RCC).   
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Figure 2. (A) Mutation frequency of pathogenic variants in ccRCC and nccRCC for general 

cancer genes (Cancer) and RCC-related genes (RCC). Germline variants observed in (B) 

CHEK2 and (C) MITF genes. 
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4.4.3 Gene Burden within the Canadian Cohort 

We conducted gene burden analyses to identify genes significantly mutated within ccRCC 

and nccRCC subtypes in our cohort. CHEK2, and ATM genes were significantly enriched for PVs 

in ccRCC (Table 1). Furthermore, FH gene was significantly enriched for PVs in the nccRCC 

subtypes, with 2% of nccRCC patients carrying germline PVs in FH, while the similar figure in 

cancer-free controls was only 0.01% (Table 1). Interestingly, germline MITF mutations were 

identified in 0.66% of ccRCC patients (6/759) and 0.5% of nccRCC patients (1/201), all of which 

had the known p.E318K variant, which has previously been linked to melanoma and RCC [21,22], 

and is present in 0.24% of cancer-free controls (Figure 2C). Although the gene-burden analyses 

did not show significant enrichment for MITF PVs in ccRCC or nccRCC, the frequency of the 

p.E318K variant is more than 2-fold higher among RCC patients than in the cancer-free control 

cohort (Supplementary Table 5). 

Table 1. Gene-burden association tests between patients with RCC and non-cancer controls. 

Number of subjects with pathogenic variants are presented among all ccRCC (n=759), nccRCC 

(n=201) and Control cases (n=118,148). 

ccRCC 
Gene No. of Patients  

(%) 
No. of Controls 

(%) 
P-value OR (95% CI) 

CHEK2 14 (1.84) 474 (0.40) 3.94 × 10−5 4.8 (2.7 – 7.9) 
ATM 7 (0.92) 259 (0.22) 0.016 4.5 (2.0 – 8.7) 

nccRCC 
Gene No. of Patients  

(%) 
No. of Controls 

(%) 
P-value OR (95% CI) 

FH 4 (2.0) 12 (0.01) 6.14 × 10−9 215.1 (64.4 – 597.8) 

SETD2 1 (0.50) 3 (0.00) 0.003 219.6 (21.2 – 1341.8) 

SDHB 1 (0.50) 20 (0.02) 0.033 43.1 (4.8 – 169.1) 
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4.4.4 Clinical characteristics of patients with germline PVs 

We investigated the association between germline PVs and clinical characteristics by 

comparing germline PV carriers to RCC patients without any PVs (Supplementary Table 6). We 

did not observe significant differences between germline carriers and non-carriers for personal and 

familial cancer history, cancer stage, patient sex, or smoking status. Next, we examined PVs in 

any genes associated with the presence of metastasis. In patients with ccRCC, we observed a 

significant association between metastasis and the presence of PVs in BRCA1/2 and ATM 

(p=0.004). This association was even stronger when we considered all patients, including those 

with non-ccRCCs (p=0.003). 

 
4.4.5 Global Differences in RCC Susceptibility Genes 

To develop an understanding of global differences in germline susceptibility to RCC, we 

compared gene burden for significantly mutated genes in patient cohorts from Canada (our study), 

the UK [7], Japan [8], and the USA [9] individually to all others combined. RCC patients from 

Japan were enriched for PVs in TP53 compared to other cohorts (OR: 7.7, 95% CI: 2.3-39.7, 

p=0.004), while they were depleted for PVs in CHEK2 (OR: 0.2, 95% CI: 0.1-0.5, p<0.0001) 

compared to the combination of other cohorts (Canada, USA, and UK) (Table 2, Supplementary 

Table 7). RCC patients from USA were enriched for PVs in BAP1 (OR: 8.2, 95% CI: 1.9-29.0, 

p=0.04) and FH (OR: 11.0, 95% CI: 4.1-28.2, p<0.0001, Table 2, Supplementary Table 7) 

compared to the combination of other cohorts. RCC patients from Canada and UK were not 

enriched for any specific genes when compared to other cohorts (Figure 3A,3B). 
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Table 2. Comparing gene burdens in RCC cohorts from Japan and USA to the pool of 

other cohorts. Numbers of PV carriers for each gene are shown for the comparison groups. 

Fractions of carriers are shown in parentheses. 

 
Japan 

Gene Japan Patients  
n=1532 

Others  
n=2550 

P-value OR (95% CI) 

TP53 11 (0.72) 2 (0.08) 0.004 7.7 (2.3 – 39.7) 

MITF 0 (0) 16 (0.63) 0.003 0.1 (0.0 – 0.4) 
CHEK2 7 (0.46) 52 (2.04) 7.3 × 10-5 0.2 (0.1 – 0.5) 

 

USA 
Gene USA Patients     n=254 Others  

n=3828 
P-value OR (95% CI) 

FH 7 (2.76) 10 (0.26) 9.3 × 10-5 11.0 (4.1 – 28.2) 

BAP1 3 (1.18) 6 (0.16) 0.040 8.2 (1.9 – 29.0) 
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Figure 3. Differences in pathogenic variant frequency in RCC patients from Canada, Japan, 

USA, and the UK. (A) Mutation rate by study cohort, and (B) Most frequently mutated genes by 

geographical region. 
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4.5 DISCUSSION 

We performed targeted sequencing of 19 RCC-associated genes and 27 cancer-

predisposition genes in a cohort of 960 unrelated Canadian patients with RCC, including 759 

patients with ccRCC, and 201 patients with nccRCC. Patients with ccRCC showed enrichment for 

pathogenic variants in CHEK2, and ATM, while patients with nccRCC were enriched for FH 

mutations, when compared to cancer-free controls. These results support observations reported in 

a recent study that different genes predispose to clear cell and non-clear cell RCC subtypes [8]. 

Furthermore, we observed a novel association between metastasis and germline mutations in 

BRCA1/2, and ATM genes in our cohort. Importantly, tumors with germline mutations in BRCA1 

and BRCA2 have been shown vulnerable to PARP inhibitors, leading to the prioritized use of 

PARP inhibitors for BRCA-positive patients in multiple cancer types [23]. Recent clinical trials 

have already begun to investigate the utility of PARP inhibitors for the treatment of metastatic 

RCC for patients harboring mutations in DNA repair genes (including BRCA genes) (Trial ID: 

NCT03786796). In this context, our results may provide utility for identifying patients at an 

increased risk of developing metastases and may open new avenues for personalized prevention 

of metastasis in carriers of BRCA1/2 mutations through treatment with PARP inhibitors.  

Our study reveals similar patterns for rare germline variants that predispose to RCC 

between Canadian and the European patients. We detected three common CHEK2 European 

founder variants at high frequency within Canadian RCC patients. The most well-known CHEK2 

variant, c.1100del, has frequently been studied within the European population, showing 

association to breast cancer risk and enrichment within other cancer types, including kidney cancer 

[15,17,18]. We observed a significant association between CHEK2 and ccRCC, with the c.1100del 

variant being the most common PV within the cohort. Other CHEK2 founder variants, p.S428F 
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and p.I157T, have conflicting interpretations regarding their pathogenicity, partly due to their 

higher frequencies among the cancer-free individuals. Recent studies indicate that these variants 

are enriched in RCC [20]; however, functional studies would be required to determine their 

pathogenicity potentials.  

Germline translocations in MITF have been linked to a rare and aggressive subtype of 

RCC; MiTF/TFE translocation renal cell carcinoma (tRCC) [24]. Although MITF variants did not 

show significant enrichment in our patient cohort as compared to cancer-free individuals, all 

MITF-mutated patients within the Canadian cohort harbored the p.E318K variant, which is known 

as a predisposition locus for familial melanoma, but has also been associated with RCC [21]. This 

variant was also captured at a relatively high frequency (0.7%) among European RCC patients [7], 

and functional studies have demonstrated that the variant results in MITF upregulation, which in 

turn can induce overexpression of hypoxia-inducible factor 1α (HIF1α) [22]. Although it has been 

proposed that the p.E318K may predispose for co-occurring melanoma and RCC [22], only 1 of 

the 6 patients with the p.E318K variant in our study had a personal history of melanoma, while 

none had a family history of melanoma. This suggests that germline MITF p.E318K variant may 

predispose to RCC without the co-occurrence of melanoma; however, the relative high frequency 

of this variant among cancer-free individuals may indicate that it is a low-penetrance mutation. In 

line with the aforementioned similarities that we observed between Canadian and European 

patients, our gene-burden analyses did not show any significant differences between these cohorts. 

This is likely due to the largely European ancestry of Canadians. However, recent studies highlight 

the necessity for finer-scale population stratification [20], as variants are likely to have varying 

population frequencies even throughout Europe. On the other hand, our global gene-burden 

analysis highlighted key differences in genes which are enriched in patients from Japan and USA 
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as compared to other cohorts; whereas TP53 germline PVs are enriched in RCC patients from 

Japan, FH and BAP1 variants have significantly higher frequencies in the USA cohort. Although 

the lack of information regarding ethnicity of patients did not allow us to report on population-

based genetic differences, our findings bring new insights into global differences in germline 

susceptibility to RCC, which may be used for refining gene lists for clinical genetic screening for 

RCC based on country and population-specific data.  

The identification of at-risk patients is important for surgical decisions, as well as decisions 

regarding follow-up for both the patient and at-risk family members. In this context, characterizing 

the germline susceptibility to RCC, as reported here, can help refine guidelines for genetic 

screening for renal cancer. The current Canadian guidelines rely primarily on an early age-of-onset 

(<45 years), the presence of bilateral or multifocal tumors, or a first- or second-degree relative 

with a history of renal cancer [25]. A previous study assessing criteria for genetic screening in 

Canada identified PVs in 35% of RCC patients who were referred for genetic testing; however, 

the available data did not allow for an investigation on the fraction of patients with PVs who did 

not meet referral criteria [26]. We realized that within the 56 Canadian patients with identified 

germline PVs in our study, only 15 (27%) meet the Canadian criteria for referral for genetic 

screening. Notably, most of those that are eligible are patients with nccRCC (Figure 4). As such, 

73% of patients with PVs within the Canadian cohort do not meet any of the Canadian criteria. 

Similarly, when we applied UK [27] and the US American College of Medical Genetics 

(ACMG)[28] guidelines to our cohort, they identified only 20% (11/56) and 36% (20/56) of 

Canadian cases with germline PVs eligible for genetic testing, respectively. We noted that the 

higher inclusion rate of ACMG guideline is due to the higher minimum age-of-onset applied in 

these criteria; <50 years in the AMCG vs. <45 years in the Canadian vs. <40 years in the UK 
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guidelines. Strikingly, Carlo et al. reported similar results for USA and Yngvadottir et al. for UK, 

with only 54% (14/26) of USA cases, and 17% (13/76) of UK cases with rare germline PVs 

meeting criteria for referral for genetic screening based on their country’s guidelines [7,9]. Our 

findings together with those reported by these studies demonstrate that the current guidelines for 

RCC genetic testing fail to include majority of RCC cases that are affected by rare germline PVs. 

Specifically, combining data from our study with those from that of the UK and USA (2550 study 

participants) reveals that 73.4% (116 out of 158) of patients with rare germline PVs are currently 

excluded from genetic screening, highlighting the need for revising the inclusion criteria to capture 

more patients affected by actionable mutations.            
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Figure 4. Patients from the Canadian RCC cohort meeting criteria for referral for genetic 

screening. Increasing the age-of-onset from 45 to 50 years will identify 5 of the 41 patients who 

do not meet current referral criteria.    
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In addition to more inclusive guidelines for genetic screening, our results indicate that 

expanding the current list of genes to include BRCA1/2, CHEK2 and ATM for germline screening 

in Canada will identify more RCC patients that are carrier of rare germline PVs. Similar 

observations have been noted in other studies, such as within the UK, where CHEK2 and MITF 

are not routinely included, despite their high mutation rates. Additionally, BRCA1 and BRCA2 are 

not routinely included in germline screening for RCC. Given the observed association between 

BRCA1/2 and metastasis, and the vulnerability to PARP inhibitors, identifying RCC patients with 

germline variants in these genes would provide valuable information to guide treatment decisions, 

and may warrant their inclusion in genetic testing strategies. Overall, revisions to both the criteria 

for germline genetic susceptibility to RCC, as well as the inclusion of additional relevant genes 

have high potentials to identify higher number of at-risk patients and improve precision preventive 

strategies in RCC. Besides the lack of information about ethnicity of patients, limitations of our 

study include the consolidation of all nccRCC subtypes into one group, as larger cohorts of 

nccRCC tumors would be needed to define risk genes specific to each subtype such as papillary 

and chromophobe RCC. Application of whole-exome or whole-genome sequencing approaches 

may identify additional risk-genes that were not included in our targeted gene panel. 
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4.11 SUPPLEMENTARY MATERIALS 

Supplementary Table S1. RCC-related and Cancer predisposition genes analyzed in this 

study. 

Gene Inclusion criteria  Gene Inclusion criteria 
BAP1 RCC-related  MSH6 Cancer susceptibility 
CDC73 RCC-related  MUTYH Cancer susceptibility 
FH RCC-related  NBN Cancer susceptibility 
FLCN RCC-related  NF1 Cancer susceptibility 
KDM5C RCC-related  PALB2 Cancer susceptibility 
MET RCC-related  PMS2 Cancer susceptibility 
MITF RCC-related  PTEN Cancer susceptibility 
MTOR RCC-related  RAD51C Cancer susceptibility 
PBRM1 RCC-related  RAD51D Cancer susceptibility 
SDHA RCC-related  SMAD4 Cancer susceptibility 
SDHB RCC-related  STK11 Cancer susceptibility 
SDHC RCC-related  TP53 Cancer susceptibility 
SDHD RCC-related  

SETD2 RCC-related  

SMARCB1 RCC-related  

TSC1 RCC-related  

TSC2 RCC-related  

VHL RCC-related  
WT1 RCC-related  

APC Cancer susceptibility  

ATM Cancer susceptibility  

BARD1 Cancer susceptibility  

BMPR1A Cancer susceptibility  

BRCA1 Cancer susceptibility  

BRCA2 Cancer susceptibility  

BRIP1 Cancer susceptibility  

CDH1 Cancer susceptibility  

CDK4 Cancer susceptibility  

CDKN2A Cancer susceptibility  

CHEK2 Cancer susceptibility  
EPCAM Cancer susceptibility  

HOXB13 Cancer susceptibility  

MLH1 Cancer susceptibility  

MSH2 Cancer susceptibility  
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Supplementary Table S2. Clinical information for ccRCC and nccRCC groups.  

Clinical Features  ccRCC nccRCC p-value lower CI upper CI OR 

Sex 
Female 277 63 

0.185 0.9 1.8 1.3 
Male 482 138 

Smoking 
No 237 78 

0.044 0.5 1.0 0.7 
Yes 410 95 

Stage of Cancer 

I 409 114 

0.009       
II 41 32 
III 269 41 
IV 11 2 

Personal 
History of RCC 

No 664 168 
0.127 0.8 4.1 1.9 

Yes 23 11 
Personal history 
of other cancers 

No 542 127 
0.028 1.0 2.2 1.5 

Yes 145 52 

Family history 
of RCC 

No 418 124 
0.040 0.0 1.0 0.2 Yes 28 2 

Not Available     

Family history 
of other cancers 

No 201 53 
0.612 0.7 1.7 1.1 Yes 245 73 

Not Available     

nccRCC 
Subtype 

Papillary - 103 

        

Chromophobe  - 50 
Mixed histology - 15 
Unclassified  - 17 

Other - 16 
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Supplementary Table S3. Germline pathogenic variants. 

 

Chr Pos Ref Alt snp151 Annotation 
Annotation 
Impact Gene nHET nHomAlt 

22 29091856 AG A rs555607708 frameshift HIGH CHEK2 11 0 

1 45797228 C T rs36053993 
missense 
&splice_region MODERATE MUTYH 6 0 

1 45798475 T C rs34612342 missense MODERATE MUTYH 5 0 

3 70014091 G A rs149617956 missense MODERATE MITF 5 1 

1 241663833 CT C rs398123163 frameshift HIGH FH 2 0 

22 29121230 C T rs121908698 
splice_donor 
&intron HIGH CHEK2 2 0 

1 17359573 G A rs74315366 stop_gained HIGH SDHB 1 0 

1 241661223 A ATCCATTTT rs863223994 frameshift HIGH FH 1 0 

1 241671944 G A rs587781682 missense MODERATE FH 1 0 

2 47601174 C T rs397514661 stop_gained HIGH EPCAM 1 0 

2 215595231 C T rs773223671 
stop_gained 
&splice_region HIGH BARD1 1 0 

3 10183748 C T rs869025619 stop_gained HIGH VHL 1 0 

9 21971114 
CGGGTCGGG 
TGAGAGTGGCG C rs730881674 frameshift HIGH CDKN2A 1 0 

11 108119829 G A rs587779813 
stop_gained 
&splice_region HIGH ATM 1 0 

11 108121625 CAG C . frameshift HIGH ATM 1 0 

11 108121752 CAG C 
rs1374409941; 
rs587779817 frameshift HIGH ATM 1 0 

11 108142134 G T rs192810283 
splice_donor 
&intron HIGH ATM 1 0 

11 108199929 T G rs28904921 missense MODERATE ATM 1 0 

11 108205832 T C rs587782652 missense MODERATE ATM 1 0 

11 108216623 ACTT A 
rs1340074139; 
rs786203976 

conservative 
_inframe 
_deletion MODERATE ATM 1 0 

13 32907420 G GA 
rs1253401667; 
rs80359306 frameshift HIGH BRCA2 1 0 

13 32913648 A AT rs80359489 frameshift HIGH BRCA2 1 0 

13 32944580 AC A rs398122605 frameshift HIGH BRCA2 1 0 

13 32972321 T TA 
rs1423835974; 
rs80359773 frameshift HIGH BRCA2 1 0 

16 23649275 T C rs730881897 
splice_acceptor 
&intron HIGH PALB2 1 0 

17 17122407 AG A rs878855221 frameshift HIGH FLCN 1 0 

17 29667521 A G rs864622509 
splice_acceptor 
&intron HIGH NF1 1 0 

17 33433425 G A rs387906843 stop_gained HIGH RAD51D 1 0 

17 41245159 C A rs62625306 stop_gained HIGH BRCA1 1 0 

17 56787218 A G rs587780259 
splice_acceptor 
&intron HIGH RAD51C 1 0 

17 59763414 TATGG T rs760551339 frameshift HIGH BRIP1 1 0 

17 59878709 C G rs149364097 missense MODERATE BRIP1 1 0 



 177 

Continued Supplementary Table S3. Germline pathogenic variants. 

22 29091226 TA T rs587780174 frameshift HIGH CHEK2 1 0 

22 29121326 T C rs28909982 missense MODERATE CHEK2 1 0 

1 17380442 C G . 
splice_donor 
&intron HIGH SDHB 1 0 

2 47601092 C CA . frameshift HIGH EPCAM 1 0 

3 47058584 CA C . 
frameshift 
&stop_lost HIGH SETD2 1 0 

17 17118345 CCA C . frameshift HIGH FLCN 1 0 

17 59793412 G A rs137852986 stop_gained HIGH BRIP1 1 0 

22 29083920 TG T rs587781519 frameshift HIGH CHEK2 1 0 

8 90983441 ATTTGT A rs587776650 frameshift HIGH NBN 0 1 
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Supplementary Table S4. Association analysis - pathogenic variants compared to gnomad 

control cohort. 

Variant Info Allele carriers Firth Logistic Regression 

Chr Pos Ref Alt Gene 
Carriers 
RCC 

Non 
Carriers 
RCC 

PV  
Carriers 
gnomad 

Non 
Carriers 
gnomad p-value 

lower 
CI 

upper 
CI OR p.adjust 

22 29091856 AG A CHEK2 11 949 302 116902 3.62E-05 0.9 2.1 4.7 9.41E-04 

3 70014091 G A MITF 6 954 278 118076 0.023 0.2 1.8 2.9 0.586 

22 29121230 C T CHEK2 2 958 16 118000 0.002 1.3 4.1 18.7 0.051 

2 47601174 C T EPCAM 1 959 1 102474 0.002 2.2 7.2 106.8 0.043 

2 215595231 C T BARD1 1 959 1 102576 0.002 2.2 7.2 106.9 0.043 

11 108119829 G A ATM 1 959 1 15414 0.033 0.3 5.3 16.1 0.865 

11 108121752 CAG C ATM 1 959 8 102512 0.017 0.7 4.4 18.9 0.430 

11 108142134 G T ATM 1 959 0 102228 0.001 2.8 10.8 319.6 0.015 

11 108199929 T G ATM 1 959 10 117860 0.018 0.6 4.3 17.5 0.472 

11 108205832 T C ATM 1 959 4 118110 0.005 1.4 5.4 41.0 0.137 

11 108216623 ACTT A ATM 1 959 0 102458 0.001 2.8 10.8 320.3 0.015 

13 32907420 G GA BRCA2 1 959 0 95590 0.001 2.8 10.7 298.9 0.017 

13 32972321 T TA BRCA2 1 959 1 102220 0.002 2.2 7.2 106.5 0.043 

17 33433425 G A RAD51D 1 959 5 117418 0.007 1.2 5.1 33.4 0.183 

17 41245159 C A BRCA1 1 959 1 102196 0.002 2.2 7.2 106.5 0.043 

17 56787218 A G RAD51C 1 959 6 118076 0.009 1.1 4.9 28.4 0.231 

17 59763414 TATGG T BRIP1 1 959 3 118056 0.004 1.6 5.8 52.7 0.097 

17 59878709 C G BRIP1 1 959 1 118044 0.001 2.3 7.3 123.0 0.034 

22 29091226 TA T CHEK2 1 959 10 117514 0.018 0.6 4.3 17.5 0.474 

22 29121326 T C CHEK2 1 959 22 117950 0.058 -0.1 3.5 8.2 1.000 

17 59793412 G A BRIP1 1 959 29 116500 0.089 -0.4 3.2 6.2 1.000 

22 29083920 TG T CHEK2 1 959 3 115554 0.004 1.6 5.7 51.6 0.101 

8 90983441 ATTTGT A NBN 1 959 44 117832 0.162 -0.8 2.7 4.1 1.000 
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Supplementary Table S5. Gene burden by RCC subtype compared to gnomad control 

cohort. 

ccRCC 
Carrier Info Logistic Regression 

Gene Carriers 
ccRCC 

Non  
Carriers 
ccRCC 

PV 
Carriers 
gnomad 

Non 
Carriers 
gnomad 

p-value lower 
CI 

upper 
CI 

OR p.adjust 

MITF 5 754 279 117720 0.027 1.2 6.5 3.1 0.439 
CHEK2 14 745 474 117672 2.46E-06 2.7 7.9 4.8 3.94E-05 
ATM 7 752 259 117903 0.001 2.0 8.7 4.5 0.016 
VHL 1 758 3 102739 0.003 5.6 353.3 58.1 0.051 
CDKN2A 1 758 14 111396 0.022 1.7 61.6 15.2 0.356 
SDHB 1 758 20 118064 0.034 1.3 44.4 11.4 0.552 
BRCA2 4 753 230 117852 0.047 1.0 6.9 3.1 0.753 
BRIP1 2 757 82 118048 0.052 1.0 13.6 4.7 0.835 
RAD51D 1 758 28 117390 0.058 0.9 31.0 8.1 0.925 
BARD1 1 758 49 118051 0.133 0.5 17.4 4.7 1.000 
BRCA1 1 758 138 118046 0.558 0.2 6.1 1.7 1.000 
EPCAM 1 758 86 118044 0.299 0.3 9.8 2.7 1.000 
FLCN 2 757 124 118026 0.132 0.7 8.9 3.1 1.000 
NBN 1 758 44 118046 0.113 0.6 19.5 5.2 1.000 
PALB2 1 758 85 118095 0.294 0.3 9.9 2.7 1.000 
RAD51C 1 758 63 118113 0.192 0.4 13.5 3.7 1.000 

nccRCC 
Carrier Info Logistic Regression 

Gene 

Carriers 
nccRCC 

Non 
Carriers 
nccRCC 

PV 
Carriers 
gnomad 

Non 
Carriers 
gnomad 

p-value lower 
CI 

upper 
CI OR p.adjust 

FH 4 197 12 118016 7.67E-10 64.4 597.8 215.1 6.14E-09 
SETD2 1 200 3 102749 3.82E-04 21.2 1341.8 219.6 0.003 
MITF 1 200 279 117720 0.239 0.4 11.4 3.2 1.000 
SDHB 1 200 20 118064 0.004 4.8 169.1 43.1 0.033 
NF1 1 200 34 118082 0.009 2.9 96.8 25.6 0.074 
BRIP1 1 200 82 118048 0.037 1.2 39.2 10.7 0.294 
EPCAM 1 200 86 118044 0.040 1.2 37.4 10.2 0.317 
CHEK2 2 199 474 117672 0.133 0.6 8.8 3.1 1.000 
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Supplementary Table S6. Clinical information for germline carriers vs non-germline 

carriers. 

Clinical Features No 
Germline Germline P-value lower 

CI 
upper 
CI OR 

Sex 
Female 324 16 

0.315 0.8 2.7 1.4 
Male 580 40 

Smoking 
No 291 24 

0.242 0.4 1.3 0.7 
Yes 477 28 

Stage of Cancer 

I 492 31 

0.560       
II 71 2 
III 292 18 
IV 10 3 

Personal History of 
RCC 

No 785 47 
0.134 0.5 6.7 2.2 

Yes 30 4 
Personal history of 
other cancers 

No 628 41 
0.731 0.4 1.7 0.8 

Yes 187 10 

Family history of 
RCC 

No 504 38 
0.250 0.0 1.8 0.0 Yes 30 0 

Not Available   

Family history of 
other cancers 

No 240 14 
0.399 0.7 3.0 1.4 Yes 294 24 

Not Available   
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Supplementary Table S7. Gene burden comparison among significant risk-genes within 

different population cohorts.  

Canada vs Other LRF 

Gene 

Allele 
Carriers 
Canadian 

Non-Allele 
Carriers 
Canadian 

Allele 
Carriers 
Other 

Non-Allele 
Carriers 
Other p-value CI.min CI.max OR p.adjust 

CHEK2 16 944 43 3079 0.473 0.7 2.1 1.2 1.000 
MITF 6 954 10 3112 0.176 0.7 5.3 2.0 1.000 
ATM 7 953 15 3107 0.322 0.6 3.7 1.6 1.000 
FH 4 956 13 3109 0.884 0.3 2.9 1.1 1.000 
BAP1 0 960 9 3113 0.108 0.0 1.3 0.2 0.650 
TP53 0 960 13 3109 0.036 0.0 0.9 0.1 0.217 

UK vs Other LRF 

Gene 

Allele 
Carriers 
UK 

Non-Allele 
Carriers 
UK 

Allele 
Carriers 
Other 

Non-Allele 
Carriers 
Other p-value CI.min CI.max OR p.adjust 

CHEK2 27 1309 32 2714 0.034 1.0 2.9 1.8 0.203 
MITF 10 1326 6 2740 0.014 1.3 9.4 3.3 0.085 
ATM 10 1326 12 2734 0.197 0.7 4.0 1.7 1.000 
FH 3 1333 14 2732 0.207 0.1 1.4 0.5 1.000 
BAP1 0 1336 9 2737 0.030 0.0 0.8 0.1 0.182 
TP53 2 1334 11 2735 0.210 0.1 1.5 0.4 1.000 

US vs Other LRF 

Gene 

Allele 
Carriers 
US 

Non-Allele 
Carriers 
US 

Allele 
Carriers 
Other 

Non-Allele 
Carriers 
Other p-value CI.min CI.max OR p.adjust 

CHEK2 9 245 50 3778 0.009 1.3 5.6 2.9 0.051 
MITF 0 254 16 3812 0.532 0.0 3.4 0.5 1.000 
ATM 1 253 21 3807 0.956 0.1 4.1 1.0 1.000 
FH 7 247 10 3818 1.55E-05 4.1 28.2 11.0 9.28E-05 
BAP1 3 251 6 3822 0.007 1.9 29.0 8.2 0.040 
TP53 0 254 13 3815 0.654 0.0 4.2 0.6 1.000 

Japan vs Other LRF 

Gene 

Allele 
Carriers 
Japanese 

Non-Allele 
Carriers 
Japanese 

Allele 
Carriers 
Other 

Non-Allele 
Carriers 
Other p-value CI.min CI.max OR p.adjust 

CHEK2 7 1525 52 2498 1.22E-05 0.1 0.5 0.2 7.30E-05 
MITF 0 1532 16 2534 0.001 0.0 0.4 0.1 0.003 
ATM 4 1528 18 2532 0.061 0.1 1.0 0.4 0.366 
FH 3 1529 14 2536 0.095 0.1 1.2 0.4 0.571 
BAP1 6 1526 3 2547 0.079 0.9 13.0 3.1 0.472 
TP53 11 1521 2 2548 0.001 2.3 39.7 7.7 0.004 
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CHAPTER 5. GENERAL DISCUSSION 

This thesis focused on identifying and characterizing genomic patterns underlying RCC 

tumors, and their clinical implications. In Chapter 2 we developed and optimized an NGS assay 

targeting RCC-relevant genes, applicable to various sample types including tissue and liquid 

biopsies. This provided a much-needed tool to facilitate future investigations into the genomics of 

RCC, and its clinical utility. We also demonstrate the potential of liquid biopsies for capturing 

relevant somatic mutations from primary RCC tumors. In Chapter 3 we generated and analyzed 

profiles of somatic mutation of RCC-relevant genes within the largest-to-date cohort of ccRCCs 

with detailed clinical annotations. Based on patterns of genes harbouring mutations, we defined a 

genomic classifier capable of identifying groups of ccRCC patients with divergent relapse rates. 

We proposed how this classifier could be used for personalized approaches to adjuvant therapy 

based on the risk of disease recurrence. In Chapter 4, we expanded our analysis to germline 

pathogenic variants that increase the risk of developing RCC. We identified risk genes for RCC 

within Canada and characterized differences in risk genes among cohorts from various countries. 

Lastly, we identified the global need to revise clinical genetic screening guidelines for RCC, as 

they fail to identify over 70% of patients with rare germline pathogenic variants. 

Chapters 2.6, 3.6, and 4.5 discuss the biological relevance and highlight the translational 

findings of each chapter independently. Here we discuss how these findings relate to each other, 

limitations and analyses addressing these limitations that were not included in the published 

manuscripts, and finally how the findings are relevant for integrating genomics into public health 

approaches for RCC. 
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5.1 LEVERAGING TUMOR EVOLUTION FOR PROGNOSTIC MARKERS 

Current clinical nomograms and prognostic algorithms for RCC are based solely on 

clinicopathological aspects56-62, and are not very successful in assessing risk of relapse. The 

genomic classifier defined in Chapter 3 demonstrates how considering the underlying biology of 

a tumor may provide more accurate risk prediction, and how genomics can be feasibly integrated 

into the clinic for risk-assessment by informing decisions for adjuvant therapy. Additionally, the 

CAGEKID cohort presented in this chapter represents the largest-to-date cohort of ccRCCs with 

high confidence in the detection of somatic mutations, and in-depth clinical information.  

Aside from associations to disease outcomes, the genomic patterns identified in Chapter 3 

provide insight into the evolution of RCC tumors at a large scale, supporting the proposed 

evolutionary subtypes of ccRCC defined within the TRACeRx Renal cohort105. In particular, the 

clinical phenotypes correlated with multiple clonal driver and VHL monodriver subtypes are 

characterized within the genomic classifier. Of note, Turajlic et al. suggested that four to eight site 

biopsies would be required in order to capture the majority of subclones within a tumor105, which 

is not feasible in a clinical setting. However, we demonstrate that within a single tumor biopsy, we 

could capture enough information about the evolutionary patterns within the tumor to be able to 

classify them into risk groups.  

The genomic classifier does not encompass all evolutionary subtypes of ccRCC, notably 

due to the exclusion of genes within the PI3K/AKT/mTOR pathway, and CNAs, which are 

defining features of PBRM1-driven subtypes. The PI3K/AKT/mTOR pathway, which is 

implicated in ~28% of ccRCCs68,76 is a defining feature of the PBRM1 ® PI3K evolutionary 

subtype of ccRCC. However, mutation rates of individual genes within this pathway are low, and 

would call for an even larger patient cohort to reach sufficient statistical power for association 



 188 

analyses. Additionally, as detection of somatic CNAs (sCNAs) from a small, targeted sequencing 

panel is not conclusively sensitive, CNAs were not integrated into the classifier. Notably, the 

incorporation of CNAs with known associations to prognosis would likely improve the genomic 

classifier performance, in particular for evaluating the metastatic potential of ccRCCs. Analyses 

of metastatic ccRCCs have indicated that elevated levels of somatic CNAs, rather than increased 

driver SNVs/indels, are associated with metastatic competence. Specifically, the loss of 

chromosome 9p has been identified as a driver of metastasis and is associated with increased 

mortality risk1, with loss of 14q showing a similar trend. Overall, incorporating PI3K/AKT/mTOR 

pathway genes and sCNAs into the classifier offers the opportunity for refinement, particularly for 

PBRM1-driven tumors, which may have different risks of disease recurrence. The VHL+≥3 risk 

group also has the potential for further refinement into subgroups, as combinations of clonal 

drivers may drive outcome in diverse manners.  

Given the considerable sex-bias that exists in RCC, evaluating if genomic evolutionary 

trajectories act in a sex-dependent manner could provide insight into the molecular mechanisms 

driving this bias. Several sex-dependent trends have been observed across cancer types in both the 

context of patient survival and tumor evolution. It is likely that male and female tumors acquire 

mutations of different types, or at different rates137, and pan-cancer analysis of TCGA data 

identified sex differences in coding and non-coding drivers, mutation prevalence, mutational 

signatures, and in the timing of truncal structural variants and indels137,138. As sex-dependent 

incidence rates and outcome are hallmark of RCC139-141, it is also important to investigate 

evolutionary subtypes in the context of patient sex. Therefore, we expanded on the analyses 

described in Chapter 3 to evaluate sex-differences that may be captured by the genomic classifier. 

Analyzed independently, both male and female patients follow the previously described genomic 
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classification based on the number of driver mutations, with increased risk of disease-recurrence 

and RCC-related death increasing with the number of mutated driver genes (Figure 1A-B). 

Interestingly, within the VHL+≥3 groupings, females may have a greater risk of RCC-related death 

than male patients (Female HR: 10.24 [3.00;34.95], p=0.0002; Male HR: 3.46 [1.39 ;8.61]; 

p=0.007) (Table 1, Figure 1C-D). As in Chapter 3, multivariable models were stratified for TNM 

stage, and incorporated patient age, to account for differences in the makeup of male and female 

cohorts. Additionally, the mutation rates of genes in VHL+≥3 patients differ between male and 

female patients (Figure 1E). Mutations in ATM are more frequent in female patients within the 

VHL+≥3 group, whereas mutations in KDM5C are more frequent in male patients (Table 2). This 

provides evidence that the genes driving poor outcome in ccRCC may differ between male and 

female patients, and evolutionary trajectories of RCC should be evaluated in the context of patient 

sex.  
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Figure 1. Genomic classification in the context of patient sex. 5-year Competing risks analysis 

of RCC-related death compared to non-RCC-related death (“other”) for our genomic classifier in 

the context of patient sex. We see a similar trend as seen in the overall cohort within both (A) male 

patients (N=445) and (B) female patients (N=260) with. Male and female patients show similar 

disease-free survival within the VHL+2 group (C). Female patients show a greater probability of 

RCC-related death within the VHL+≥3 group (D). (E) Mutation rates of genes within VHL+≥3 

category for male (N=27) and female (N=16) patients within the CAGEKID cohort. Fisher’s exact 

tests compare mutation frequency between sexes. (* p <0.05)  



 192 

Table 1. Cox-Proportional-Hazards model for RCC-related and non-RCC related death 

within female and male groupings.  

Female 
 RCC-related death Non-RCC-related death 
Predictor Category HR 95% CI p-value HR 95% CI p-value 
VHL Category VHL+0 1.00 - - 1.00 - - 
 VHL+1 2.89 [0.94;8.83] 0.063 0.82 [0.29;2.30] 0.708 
 VHL+2 3.71 [1.18;11.69] 0.025 7.6 [0.19;3.08] 0.704 
 VHL+≥3 10.24 [3.00;34.95] 0.0002 - [0.0000; Inf] 0.997 
Age  1.00 [0.97;1.04] 0.938 1.06 [1.01;1.12] 0.0232 

Male 
 RCC-related death Non-RCC-related death 

Predictor Category HR 95% CI p-value HR 95% CI p-value 
VHL Category VHL+0 1.00   1.00   
 VHL+1 1.65 [0.8795;3.089] 0.119 0.26 [0.1109;0.6287] 0.003 
 VHL+2 2.54 [1.3042;4.950] 0.006 0.46 [0.1938;1.1054] 0.083 
 VHL+≥3 3.46 [1.3944 ;8.605] 0.007 1.21 [0.4428;3.2997] 0.711 
Age  1.00 [0.9776;1.026] 0.893 1.07 [1.0307;1.1021] 0.0002 

*Evaluated over a 5-year time-period 
 

Table 2. Fisher’s exact test for genes mutated within male and female VHL+≥3 patients. 

Gene 
Male 
(N=27) 

Female 
(N=16) p-value 

ATM 3 7 0.02437 
ATP9B 0 0 - 
BAP1 5 7 0.09204 
COL11A1 5 2 0.695 
DMD 7 3 0.719 
KDM5C 12 2 0.04471 
PBRM1 22 12 0.706 
PTK7 2 1 1 
SETD2 22 10 0.2781 
TP53 3 3 0.6546 
TRRAP 2 2 0.6208 
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5.2 LIQUID BIOPSY SOLUTIONS FOR MANAGEMENT OF RCC 

Facilitating side-by-side comparisons of tissue and liquid biopsies is crucial for evaluating 

the utility of liquid biopsies, in particular ctDNA analysis. Chapter 2 focused to investigate the 

application of the RCC-NGS assay to blood-based liquid biopsies, while also demonstrating how 

the assay is robust when applied to genomic DNA from various sources including buffy coat, fresh 

frozen and FFPE tissues. We further demonstrate this in Chapter 3, through application to tumor-

normal pairs from 474 patients (Cohort 3). By developing an RCC-appropriate targeted NGS 

assay, we have provided a robust workflow for future large-scale studies investigating the utility 

of ctDNA analysis in the management of kidney cancer. These studies should include longitudinal 

approaches and surveillance strategies for early diagnosis of relapse in at-risk individuals, and 

large-scale investigations of the concordance between tumors and ctDNA, including the ability to 

capture genomic classifiers within ctDNA. 

Analysis of ctDNA has the opportunity for a role in screening and diagnosis, 

prognostication, and guiding treatment decisions for RCC. Screening of healthy individuals to 

detect the presence of ctDNA in blood-based liquid biopsies offers a solution for early detection 

and diagnosis of RCC, especially for those with genetic susceptibility to RCC. For individuals 

carrying rare germline pathogenic variants, ctDNA in the blood may be detected earlier than by 

imaging methods, and prior to the onset of any symptoms131. Liquid biopsies may also play a 

prognostic role in identifying patients at high-risk of disease recurrence. Even in the absence of a 

tumor biopsy, the somatic mutational analysis of ctDNA may be a minimally invasive method for 

capturing genomic classifiers for risk-stratification. ctDNA analyses may even provide more 

sensitive classification due to the ability of ctDNA to represent diverse subclonal mutations 

without the bias of spatial heterogeneity in tumor biopsy107. Lastly, ctDNA analysis is valuable for 
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post-operative screening for the detection of minimal residual disease (MRD), to monitor for 

disease recurrence142, particularly for individuals who are at high risk of disease recurrence, and 

for real-time monitoring of response to treatment and the development of drug resistance. 

However, work to increase the sensitivity for ctDNA detection in low stage RCCs, along with 

establishing a background false-positive rate through a panel of healthy controls would be 

necessary for the implementation of ctDNA-based surveillance strategies. 

A major limitation of the NGS assay presented in Chapter 2 was the inability to detect 

mutations in cfDNA from low-stage RCCs. We highlighted the need to increase assay sensitivity 

in this group, however the low fraction of ctDNA in the plasma of RCC patients renders this 

extremely difficult. Since this manuscript was published in 2021, research in liquid biopsy has 

explored new areas including investigating differences in fragment sizes between healthy cfDNA 

and tumor-derived ctDNA. The fragment size of ctDNA is slightly smaller than cfDNA from 

healthy cell, and studies have demonstrated the ability to enrich for smaller DNA fragments using 

size-selection methods, which results in increasing the fraction of tumor-derived fragments within 

a cfDNA sample131. Other studies have focused on characterizing the properties of ctDNA through 

‘fragmentomics’, examining genomic regions with recurrently altered fragment profiles in ctDNA, 

and motifs in conserved regions that also could be leveraged to enrich for ctDNA132,142,143  

We demonstrated the proof-of-principle for size-selection enrichment for RCC, increasing 

the tumor-fraction within a cfDNA NGS library by implementing a size selection step prior to 

library generation. To select for smaller fragment sizes, we used the BluePippin DNA Size 

Selection System, with a 3% agarose gel cassette. We applied size selection to samples from 3 

RCC patients to investigate the differences the tumor fraction in cfDNA samples with and without 

the implementation of size-selection. We prepared libraries from size-selected and non-size-
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selected cfDNA from the same patient, and conducted shallow WGS of all libraries to evaluate the 

tumor fraction detected within each sample. We observed that the insert-sizes for each library were 

representative of the size-selection (Figure 2A). Lastly, we estimated tumor fraction of each 

library using ichorCNA, and though the tumor fraction is low in all samples, we see an increase in 

tumor fraction in the size-selected samples (Figure 2B).  Though preliminary, this analysis 

demonstrates how integrating information about the biological features of ctDNA may offer a 

solution for increasing the sensitivity of the assay for low stage RCCs. 

 

 
Figure 2. Enrichment of ctDNA with size-selection. (A) Insert sizes from cfDNA libraries 

prepared with (red) and without (grey) size-selection. (B) Estimated tumor fraction of cfDNA 

libraries with no size-selection (‘None’) and with size-selection (‘Size Selected’). 

5.3 IMPROVED GENETIC SCREENING FOR RCC  

In Chapter 3, we highlighted the need to refine clinical guidelines for referral to genetic 

screening in RCC. Our results show that current criteria fail to identify >70% of individuals with 

rare germline pathogenic variants associated to RCC, indicating that we are underestimating the 
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susceptibility to RCC within Canada. Indeed, the clinical impact of the Kidney Cancer Research 

Network of Canada (KCRNC) criteria32 has never been assessed, and the criteria have not been 

validated for their ability to capture patients with germline susceptibility to RCC144. Other studies 

have also highlighted the need for more inclusive screening guidelines in the US145, though in 

smaller study cohorts. Efforts to improve screening for RCC should focus on expanding criteria to 

capture more individuals carrying rare PVs, and in turn, their family members who may be at risk 

of developing RCC. Additionally, re-evaluation of gene panels used for genetic screening of RCC 

to include additional risk-genes and those that may guide treatment decisions will expand the 

impact that genetic screening offers. However, adaptations to screening guidelines must also 

consider the feasibility of screening large numbers of individuals, along with the available 

resources. Evaluation of the selection criteria for genetic screening for RCC should integrate 

information regarding PV frequencies within the population, how altering specific selection 

criteria impacts detection rates, the added benefit that a surveillance plan may have for affected 

carriers, and available public funding and infrastructure. 

To improve the impact that genetic screening for RCC can have on public health, a focus 

must also be made to improve healthcare provider knowledge about genetic testing. A survey of 

healthcare providers across Canada revealed limited knowledge surrounding genetic testing for 

renal cancer, with 47.7% of healthcare providers not knowing which screening tests are available, 

identifying lack of provider knowledge as the main barrier to genetic screening for Canadian RCC 

patients146. This lack of knowledge is also evident through evaluation of referral rates within 

Canada. When the risk criteria were applied to a large prospective database of RCC patients, only 

2% of patients meeting criteria actually had documentation of genetic testing144. The low 

proportion of patients referred for screening, in combination with the KCRNC criteria’s failure to 
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identify majority of at-risk patients, indicates that susceptibility to RCC is greatly underestimated 

in Canada. 

Improved screening for germline genetic susceptibility among RCC patients, and their at-

risk family members can also “open the door” for improved preventative strategies. Screening 

programs for PV carriers may increase early detection of RCC, and improve survival outcomes, 

however there are currently no screening programs in Canada. Though improvements to the 

sensitivity of ctDNA detection methods are still necessary, searching for ctDNA in the blood of 

those at risk of developing RCC could be a potential minimally invasive screening strategy.   
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

The broad aim of this thesis was to characterize genomic patterns underlying RCC and 

their translational relevance. Chapter 2 presents an NGS assay tailored to the analysis of tissue and 

liquid biopsies for RCC, providing a sensitive tool for investigating genomic patterns. Chapter 3 

applies this assay to the largest-to-date cohort of ccRCCs to interrogate their genomic status, and 

defines a genomic classifier capable of predicting risk of disease recurrence. Notably, this classifier 

aligns with evolutionary subtypes of ccRCCs, and offers potential for further refinement to include 

additional genomic features. Lastly, Chapter 4 identifies risk genes for RCC within Canada, 

summarizes differences in global risk genes, and highlights the inadequate identification of at-risk 

individuals through current clinical guidelines for genetic screening.  

Future studies should prioritize characterization of ctDNA properties in RCC, including 

fragmentation features that may offer solutions for increasing the sensitivity of liquid biopsy 

analysis for low stage tumors. Physical properties of ctDNA may also offer translational impact 

for quantifying MRD142. It is likely that an approach combining information from various liquid 

biopsy analytes (CTCs, ctDNA, exosomes) will offer an improved translational impact. 

Longitudinal studies to evaluate tumor dynamics post-surgery through ctDNA analysis will also 

be valuable for assessing the potential of ctDNA as a prognostic marker for RCC. 

The genomic classifier is representative of some of the evolutionary trajectories of ccRCC 

tumors, however the integration of additional features can help to refine the classifier even further. 

Inclusion of additional information including CNAs, and additional genes from the 

PI3K/ATM/MTOR pathway can help to isolate BAP1- and PBRM1-driven evolutionary subtypes 

from the multiple clonal drivers. Investigation within even larger cohorts may also allow for 

‘weighting’ of specific genes, such as BAP1/PBRM1 co-occurrence within the classifier. Lastly, 

investigation of genomic classification in the context of response to treatment would be valuable 
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to assess if we can predict response to adjuvant therapy based on tumor evolutionary features. Next 

steps would also include assessing the feasibility for identifying genomic classifiers within liquid 

biopsies. 

Ultimately, this study addresses key caveats that had slowed down progress in genome-

based personalized medicine in RCC, including the lack of appropriate targeted NGS panels and 

large matched genomic/phenomic datasets, providing power for association analysis.  
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