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Abstract

In Chapter 1, we show that any compact nonpositively curved cube complex Y embeds

in a compact nonpositively curved cube complex R where each partial local isometry of

Y extends to an automorphism of R. We prove a similar result for compact special cube

complexes provided that the partial local isometries satisfy certain conditions.

In Chapter 2, we define the directed height of a mapping of graphs and relate it to the

“algebraic” height of subgroups. We show that a map has finite directed height if and only

if the corresponding mapping torus has negative immersions. We survey related properties

and discuss how they relate to one another.

In Chapter 3, we show that given a bi-order ≻ on the free group F , every non-periodic

cyclically reduced word W ∈ F admits a maximal ascent that is uniquely positioned. This

provides a cyclic permutation of W ′ that decomposes as W ′ = AD where A is an ascent

and D is a descent. We show that if D is not uniquely positioned in W , then it must be an

internal subword in A. Moreover, we show that when ≻ is the Magnus ordering, D = 1F if

and only if W is monotonic.



Résumé

Dans le chapitre 1, nous démontrons que chaque complexe cubique Y qui est compact et

à courbure non-positive, s’intégre dans un complexe cubique R qui est compact et à courbure

non-positive, tel que chaque isométrie locale et partielle de Y s’éttend à un automorphisme

de R. Nous démontrons un résultat similaire pour les complexes cubiques spéciaux sous

conditions que les isométries locales satisfassent certains critères.

Dans le chapitre 2, nous définissons la notion de hauteur dirigée d’une application de

graphes et nous étudions la relation entre celle-ci et la notion de hauteur d’un sous-groupe.

Nous démontrons qu’une application de graphes a une hauteur dirigée finie si et seulement

si l’extension HNN correspondante a des immersions négatives. Nous finissons le chapitre

par une analyse de propriétés similaires.

Dans le chapitre 3, nous utilisons l’ordre du groupe libre pour démontrer que chaque

mot W qui est non-périodique et réduit se décompose comme un produit de deux sous-mots

W = AD, dont un est uniquement positioné dans W . En particulier, nous montrons que

si l’ordre utilisé est celui de Magnus, le mot D est vide si et seulement si W est un mot

monotone.
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Introduction

This thesis engages with three topics that are presented in three self contained chapters.

In Chapter 1, we establish the Hrushovski property for compact special cube complexes.

A well-known theorem of Hrushovski [Hru92] states that for any finite graph X, there

exists a finite graph Z containing X as an induced subgraph with the property that every

isomorphism between induced subgraphs of X extends to an automorphism of Z. Since then,

various classes of spaces were shown to have this property which came to be known as the

Extension Property for Partial Automorphisms, or the Hrushovski Property. For example,

the Hrushovski property was established for finite metric spaces [Sol05], structures of a

given finite relational language [Her95], and various classes of graphs [Her98]. So asking

the question of whether compact special cube complexes have this property is a natural one

to pursue, especially given the important role these spaces played in recent developments in

geometric group theory. The challenge in this case is to preserve specialness and to ensure

that the original space embeds as a locally convex subcomplex of its extension. Our approach

to this question has similarities to the work of Herwig and Lascar who showed in [HL00] that

the Hrushovski property for certain spaces is related to the profinite topology of free groups.

We make extensive use of this relationship, albeit using a different construction, namely the

horizontal quotients of graphs of spaces. Several statements in this work could be generalized

in various directions, but we focus on compact nonpositively curved cube complexes and

partial local isometries. This is arguably a natural generalization of the original statement

about graphs. To prove the Hrushovski property for compact special cube complexes, we

require that the collection of the partial local isometries be “controlled”. For example, crossing

hyperplanes cannot be mapped to osculating hyperplanes. This mild condition is necessary

in order to avoid creating artificial pathologies that would make specialness fail.

The main results in Chapter 1 are:

7



8 INTRODUCTION

Theorem 0.1. Let Y be a compact nonpositively curved cube complex and let O be the

set of injective partial local isometries of Y . Then Y embeds in a compact nonpositively

curved cube complex R where each φ ∈ O extends to an automorphism Φ ∈ Aut (R).

Theorem 0.1 could be generalized to the category of compact nonpositively curved spaces

instead of cube complexes. See Remark 5.6. But we focus on a generalization towards

special cube complexes as stated in Theorem 0.2. This generalization requires the notion

of “controlled” embeddings, which generalizes subgraphs of graphs. See Definition 3.15 and

Definition 5.7.

Theorem 0.2. Let Y be a compact special cube complex and let O be a controlled col-

lection of injective partial local isometries of Y . Then there exists a compact special cube

complex R containing Y as a locally convex subcomplex such that each φ ∈ O extends to an

automorphism Φ ∈ Aut (R).

Sections 2 and 3 of Chapter 1 provide definitions and background. Section 4 uses sub-

group separability of free groups to find finite covers whose horizontal quotients have certain

desired properties. In Section 5 we prove Theorem 5.4 and Theorem 5.10.

In Chapter 2, we study properties of a class of HNN extensions of free groups. Specif-

ically, HNN extensions which conjugate a free factor of a free group to another subgroup.

These are typically free-by-cyclic groups, but usually the free group is infinitely generated;

in general it can be locally-free–by–cyclic. Such groups have been of continual interest in

combinatorial and geometric group theory especially because of works of Gilbert Baumslag

[Bau72] [Bau93] and Feighn-Handel [FH99]. Our results introduce a new notion of “di-

rected height” of a mapping which is a directed version of the algebraic notion of height given

in [GMRS98], which we discuss below. The goal of this chapter is to relate the height to

“negative immersion” which is an Euler characteristic condition related to locally quasiconvex

and coherent groups.

A 2-complex X has nonpositive immersions if for any combinatorial immersion Y → X,

with Y compact, connected, and collapsed (meaning Y has no free faces), either π1Y is

trivial or χ (Y ) ≤ 0. A 2-complex X has negative immersions if there exists c > 0 such that

for any combinatorial immersion Y → X, where Y is compact, connected, collapsed, and
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with no isolated edges, either π1Y is trivial or χ (Y ) ≤ −c|Y |2 where |Y |2 is the number of

2-cells in Y . Let F = ⟨S⟩ be a free group over a set S and let H
∼=−→ K be an isomorphism of

subgroups of F . The HNN extension of F with associated subgroups H and K is the group

⟨S, t : t−1Ht = K⟩, where t is a new generator not in S. The HNN extension is ascending

if H = F , and partially ascending if H is a proper free factor of F . A group is coherent

if each of its finitely generated subgroups is finitely presented. Ascending HNN extensions

were proved to be coherent in [FH99], and are shown to have nonpositive immersions in

[Wis22].

Given a subgroup H of G, the height of H in G, denoted by Height (H), is the supremal

number of distinct cosets {Hgi}i∈I such that
⋂
i∈I

Hgi is infinite. This was introduced in

[GMRS98]. In particular, the height of H in G is 1 precisely when H is a malnormal

subgroup.

In this chapter, we define a closely related notion of “directed height” of a mapping. Let

H be a subgraph of a finite graph F and let ψ : H → F be a cellular immersion. Let X be

the corresponding mapping torus. Note that π1X is a partially ascending HNN extension.

The directed height of ψ is
−−−−→
Height (ψ) = inf {i : ψ−i (H) is a forest}, where ψ−i = (ψi)

−1

whenever the partial composition ψi is defined. See Definition 4.1 and Definition 4.2. Note

that
−−−−→
Height (ψ) <∞ if and only if Height (π1H) <∞ in π1X. See Lemma 4.5 for a proof of

this statement.

The main results in Chapter 2 are:

Theorem 0.3. Let F be a finite graph and let H ⊂ F be a subgraph. Let X be the

mapping torus of a cellular immersion ψ : H → F . Then X has negative immersions if and

only if ψ has finite directed height.

In particular, the simplest nontrivial case of Theorem 0.3 is the following special case

which is proven in this text as Theorem 3.6:

Corollary 0.4. Let F be a finite graph and let H ⊂ F be a subgraph. Let X be the

mapping torus of a cellular immersion ψ : H → F . Suppose ψ−1 (H) is a forest. Then X

has negative immersions.
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Motivated by our desire to verify Property 11 of Section 5, we note the following conse-

quence of the preceding statements. This does not prove Property 11 since it does not assert

that the edge groups in the splitting of K equal the intersections of K ∩ Hg, for g ∈ π1X.

The following statement is proved in this text as Theorem 4.15:

Theorem 0.5. Let F be a finite graph and let H ⊂ F be a subgraph. Let X be the

mapping torus of a cellular immersion ψ : H → F with
−−−−→
Height (ψ) < ∞. Let K ⊂ π1X be

a finitely generated subgroup. Then K splits over edge groups with uniformly bounded Euler

characteristic.

Our directed height characterization of negative immersions can be re-interpreted in an

attractive way using a natural generalization of fully irreducible partial endomorphisms. A

partial endomorphism ψ : H → F is fully irreducible if there does not exist n > 0, a proper

free factor H′ ⊂ H, and g ∈ F such that ψn (H′) ⊂ g−1H′g. See Definition 4.1 for the

notion of generalized composition explaining ψn. The standard notion of fully irreducible

endomorphism focuses on the case where H = F [BH92]. Using this language, we show the

following statement proved in the text as Theorem 4.12:

Theorem 0.6. Let H be a proper free factor of a finitely generated free group F , and let

ψ : H → F be a monomorphism. Let X be the standard 2-complex of the HNN extension of

F with respect to ψ. Then X has negative immersions if and only if ψ is fully irreducible.

In Section 2 of Chapter 2, we give some background. In Section 3 we prove a special case

of the main theorem, namely, that a partially ascending HNN extensions of free groups with

malnormal associated subgroups have negative immersions. In Section 4, we prove the main

theorems, and in Section 5 we discuss related properties and state three conjectures.

In Chapter 3 we investigate the relationship between orderability and structural property

of nonperiodic words. A word is nonperiodic if it is not a proper power. Weinbaum conjec-

tured in [Wei90] that any nonperiodic word W of length > 1 has a cyclic permutation that

is a concatenation UV where each of U and V appear exactly once as a prefix of a cyclic

permutation of W and W−1. This conjecture was proved by Duncan-Howie in [DH92] using

the right-orderability of one-relator groups [BH72]. It was also proved in [HN06] using the
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Critical Factorization Theorem [CV78] (also see [CP91] and [HN02]) and basic properties

of Lyndon words [Lyn54]. This provided the motivation to investigate this question without

the complex machinery used above, but rather using only bi-orderability of the free group.

For this purpose, we introduce the notions of ascents/descents in a cyclically reduced words.

Our result provides a partial proof of Weinbaum’s conjecture and gives some additional

insights into the structure of cyclically reduced nonperiodic words.

A group G is bi-orderable if there is a total order ≺ on G such that for all f, g, h ∈ G, if

f ≺ g then hf ≺ hg and fh ≺ gh. A well known result of Shimbireva [Shi47] states that

the free group on two generators (and so every non-abelian free group) is bi-orderable. This

result is sometimes attributed to Vinogradov and Magnus as well [DNR14].

Let X = {a, b} and X∗ = X ∪X−1 where X−1 = {a−1, b−1}. A word W in X∗ of length

n, is a sequence of n letters W = x1 · · ·xn, with n ≥ 0 and xi ∈ X∗. The length of W is

denoted by |W | = n. When n = 0, we call W the empty word. The word W is reduced if it

contains no parts xx−1. It is cyclically reduced if it is reduced and x1 ̸= x−1
n . We henceforth

consider only cyclically reduced words in X∗. A word V is a subword of W if W = SV U

for some reduced words S and U in X∗ with |W | = |S| + |V | + |U |. The subword V is a

prefix of W if S is the empty word and a suffix if U is the empty word. If neither S nor U is

an empty word, then V is internal in W . The word W is periodic if there exist a cyclically

reduced word U and n > 1 such that W = Un. It is nonperiodic otherwise. A word W ′

is a cyclic permutation of W if W ′ = V U where W = UV , for some prefix U and suffix V

of W . Let R
W

be the set of all cyclic permutations of W and W−1. A word V is uniquely

positioned in W if V is the prefix of exactly one element of R
W

.

Following Lyndon-Schupp [LS77], let F = F (X) be the free group with basis X. Then

distinct cyclically reduced words in X∗ represent distinct elements of F , and the empty

word represents the identity element 1F . So a bi-ordering ≺ of F induces a bi-ordering

≺∗ on the set of cyclically reduced words in X∗ in the following sense: given U, V ∈ X∗

representing gu, gv ∈ F (X), we have U ≺∗ V ⇐⇒ gu ≺ gv. Moreover, the operation of

word concatenation from both the right and the left (followed by cyclic reduction) preserves

the order. For simplicity, we denote both bi-orders by ≺.



12 INTRODUCTION

Given a bi-order ≺ on F , a cyclically reduced word U in X∗ is an ascent if every non

trivial element of F represented by a prefix of U is ≻ 1F and every element of F represented

by a suffix of U is ≻ 1F . The word U is a descent if every element of F represented by a

prefix of U is ≺ 1F and every element of F represented by a suffix of U is ≺ 1F . For a given

cyclically reduced word W , we define the maximal ascent of W to be the greatest ascent

over all subwords in R
W

with respect to ≻.

The main result of Chapter 3 is:

Theorem 0.7. Let F (X) be a bi-ordered free group on the alphabet X = {x1, x2}. Let

W ∈ F (X) be a cyclically reduced nonperiodic word of length > 1. Then W has a cyclic

permutation W ′ = AD where:

(1) A is the uniquely positioned maximal ascent in W and D is a descent whenever

D ̸= 1F .

(2) If D is not uniquely positioned, then it appears as an internal subword of A.

(3) Using the Magnus ordering on F , we have D = 1F if and only if W is monotonic.

Theorem 0.7 shows that nonperiodic cyclically reduced words have cyclic permutations

that factor as concatenations of maximal ascents and descents. The maximal ascents are

always uniquely positioned, whereas the descents are not necessarily so. In this sense, this

result provides a partial answer to Weibaum’s conjecture since only the maximal ascent is

guaranteed to be uniquely positioned. We show that when the descents are not uniquely

positioned, they appear as internal subwords of the maximal ascents. Consequently, when

the descents are not uniquely positioned, they have shorter lengths than maximal ascents.

We also show that when the Magnus bi-ordering is used, we can assert that the ascents are

equal to W if and only if W is monotonic, in the sense that it only contains letters in X

or X−1, but not both. This is all achieved without using any of the machinery of right-

orderability/local indicability of one-relator groups, but rather using only bi-orderability of

the free group and some basic combinatorial arguments.

1. Contributions to original knowledge

The main results in this text are:
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• Chapter 1: Theorem 5.4 and Theorem 5.10;

• Chapter 2: Theorem 3.6, Theorem 4.10, and Theorem 4.15;

• Chapter 3: Theorem 3.2.



CHAPTER 1

The Hrushovski Property For Compact Special Cube Complexes

1. Introduction

A well-known theorem of Hrushovski [Hru92] states that for any finite graph X, there

exists a finite graph Z containing X as an induced subgraph such that every isomorphism

between induced subgraphs of X extends to an automorphism of Z. Since then, various

classes of spaces were shown to have this property which came to be known as the Extension

Property for Partial Automorphisms, or the Hrushovski Property. Of particular interest is

the work of Herwig and Lascar who showed in [HL00] that the Hrushovski property for

certain spaces is related to the profinite topology of free groups. In this paper, we make

extensive use of this relationship, albeit using a different construction, namely the horizontal

quotients of graphs of spaces. Although several statements in this work could be generalized

in various directions, we focus on compact nonpositively curved cube complexes and partial

local isometries. This is arguably a natural generalization of the original statement about

graphs.

Our main results are:

Theorem 1.1. Let Y be a compact nonpositively curved cube complex and let O be the

set of injective partial local isometries of Y . Then Y embeds in a compact nonpositively

curved cube complex R where each φ ∈ O extends to an automorphism Φ ∈ Aut (R).

The next statement, proved in the text as Theorem 5.10, requires the notion of “con-

trolled” embeddings, which generalizes subgraphs of graphs. See Definition 3.15 and Defini-

tion 5.7.

Theorem 1.2. Let Y be a compact special cube complex and let O be a controlled col-

lection of injective partial local isometries of Y . Then there exists a compact special cube

14



2. SPECIAL CUBE COMPLEXES 15

complex R containing Y as a locally convex subcomplex such that each φ ∈ O extends to an

automorphism Φ ∈ Aut (R).

Sections 2 and 3 provide definitions and background. Section 4 uses subgroup separability

of free groups to find finite covers whose horizontal quotients have certain desired properties.

In Section 5 we prove Theorem 5.4 and Theorem 5.10.

2. Special Cube Complexes

2.1. Cube Complexes. An n-cube is a copy of In where I = [−1, 1] ⊂ R and n ≥ 0.

Its faces are restrictions of some coordinates to −1 or 1. A cube complex is a cell complex

built from cubes glued together along their faces. The dimension of a cube complex is the

supremum of the dimensions of the cubes contained in it.

Let v = (ϵi)
n
i=1 be a vertex of In; so each ϵi = ±1. The v-corner of In is the simplex spanned

by {wj}nj=1 where each wj is obtained from v by replacing ϵj by
ϵj
2

.

Let X be a cube complex and C ⊂ X be the image of a map In → X. An x-corner of C for

x ∈ X0 is the union of images of v-corners of In where v 7→ x.

In general, if J =
n∏
i=1

ϵi is an m-dimensional subcube of In where

ϵi ∈

{
{−1} , {1} , [−1, 1]

}
then the J-corner of In is the simplex spanned by the points {wj}n−mj=1 obtained from J as

follows:

Given the center of mass of J , denoted by v = (tk)
n
k=1 where

tk =


0 if ϵk = [−1, 1]

1 if ϵk = {1}

−1 if ϵk = {−1}

,

the point wj is obtained from v by replacing the jth nonzero coordinate t with
t

2
. Note that

each point wj ∈ {wj}n−mj=1 corresponds to a cube containing J as a codimension-1 subcube.

Let D be a subcube of an n-cube C of X. A D-corner of C is the image of a J-corner of In

under a map In → X, where (In, J) → (C,D). The link of D in X, denoted by linkX (D) is
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the union of all D-corners of cubes containing D. Note that linkX (D) is a simplex complex

and it is a subspace of X but not a subcomplex. We write link (D) instead of linkX (D)

when X is clear from context.

A cube complex X is simple if the link of each cube in X is simplicial.

Lemma 2.1. A cube complex X is simple if the link of each cube of X has no loops and

no bigons.

Proof. Let D ⊂ X be an n-cube. Let σ1 and σ2 be distinct m-simplices in link (D) with

σ1 ∩ σ2 ̸= ∅ and m ≥ 1. If σ1 is not embedded then link (D) has a loop. If ∂σ1 = ∂σ2, then

there exists an (n+m− 1)-cube Y ⊃ D such that link (Y ) contains a bigon. Indeed, the

case m = 1 corresponds to Y = D with a bigon in link (D). For m ≥ 2, the m-simplices σ1

and σ2 are D-corners of distinct (n+m+ 1)-cubes A1 and A2 intersecting along their faces.

An (m− 2)-simplex ∆ ⊂ σ1 ∩ σ2 is a D-corner of an (n+m− 1)-cube Y ⊃ D. Moreover,

two distinct (m− 1)-simplices containing ∆ are D-corners of distinct (n+m)-cubes B ⊃ Y

and B′ ⊃ Y that are shared faces of A1 and A2. We can see that the Y -corners of B and B′

are 0-simplices that are boundaries of the 1-simplices corresponding to the Y -corners of A1

and A2. □

2.2. Nonpositive curvature. A simple cube complex X is nonpositively curved if it

satisfies Gromov’s no-△ property [Gro87], which requires that 3-cycles in link (D) bound

2-simplices for each cube D ⊂ X. An equivalent criterion for nonpositive curvature states

that a cube complex is nonpositively curved if the links of its 0-cubes are flag. A simplicial

complex is flag if any collection of (n+ 1) pairwise adjacent 0-simplices spans an n-simplex.

2.3. Local Isometries. A subcomplex K of a simplicial complex L is full if any simplex

of L whose 0-simplices lie in K is itself in K. A subcubecomplex A ⊂ B is locally convex if

linkA (x) ⊂ linkB (x) is a full subcomplex for every 0-cube x ∈ A.

A map X → Y of cube complexes is combinatorial if open cells are mapped homeomor-

phically to open cells, where each homeomorphism is an isometry. It is cubical if for each

k ≤ dim (X), the k-skeleton of X is mapped to the k-skeleton of Y . A combinatorial map

Φ : X → Y is an immersion if the restriction link (x) → link (Φ (x)) is an embedding for each

0-cube x ∈ X. If X and Y are nonpositively curved and link (x) embeds as a full subcomplex
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of link (Φ (x)) then Φ is a local isometry. Equivalently, a combinatorial locally injective map

Φ : X → Y of nonpositively curved cube complexes is a local isometry if Φ has no missing

squares in the sense that if two 1-cubes a1, a2 at a 0-cube x map to Φ (a1) ,Φ (a2) that bound

the corner of a 2-cube at Φ (x), then a1, a2 already bound the corner of a 2-cube at x.

2.4. Immersed Hyperplanes. A midcube of an n-cube is the subspace obtained by

restricting one coordinate to 0. Note that a midcube of an n-cube is isometric to an (n− 1)-

cube. An immersed hyperplane H in a nonpositively curved cube complex X is a component

of the cube complex M /∼ where M denotes the disjoint union of midcubes of X and ∼ is

the equivalence relation induced by identifying faces of midcubes under the inclusion map

into X. A 1-cube of X is dual to H if its midcube is a 0-cube of H. We note that the

edges dual to H form an equivalence class generated by elementary parallelisms of 1-cubes,

where two 1-cubes are elementary parallel if they appear on opposites sides of a 2-cube. The

carrier of H, denoted by N (H), is the cubical neighborhood of H formed by the union of

the closed cubes whose intersection with H is nonempty.

2.5. Special Cube Complexes. An immersed hyperplane H in X self-crosses if it

contains two distinct midcubes from the same cube. It is two-sided if the combinatorial

immersion H → X extends to H × I → X. In this case, the 1-cubes dual to H can be

oriented in such a way that any two dual 1-cubes lying in the same 2-cube are oriented in

the same direction. An immersed hyperplane that is not two-sided is one-sided. H self-

osculates if it is dual to two oriented 1-cubes that share the same initial or terminal 0-cube

and do not form a corner of a 2-cube. Two distinct immersed hyperplanes, H,H ′, cross if they

contain distinct midcubes of the same cube. They osculate if they are dual to two 1-cubes

that share a 0-cube and the 1-cubes do not form a corner of a 2-cube. Two distinct immersed

hyperplanes inter-osculate if they both cross and osculate. See Figure 1. A nonpositively

curved cube complex is special if it satisfies the following:

(1) No immersed hyperplane self-crosses;

(2) No immersed hyperplane is one-sided;

(3) No immersed hyperplane self-osculates;

(4) No two immersed hyperplanes inter-osculate.



18 1. THE HRUSHOVSKI PROPERTY FOR COMPACT SPECIAL CUBE COMPLEXES

Figure 1. From left to right: Self-crossing, one-sidedness, self-osculation,

and inter-osculation.

3. Horizontal Quotient of a Graph of Spaces

3.1. Graph of Spaces. An undirected graph Γ (V,E) is a 1-dimensional CW -complex

whose vertices and edges, denoted by V and E, are the 0-cells and open 1-cells, respectively.

There exist two incidence maps τ1, τ2 : E → V mapping each edge e ∈ E to its boundary

vertices, τ1 (e) , τ2 (e) called initial and terminal vertex, respectively. A graph of spaces X

with underlying graph Γ (V,E), vertex-spaces {Xv}v∈V , and thick edge-spaces {Xe×I}e∈E is

a topological space X obtained as a quotient of {Xv}v∈V and {Xe×I}e∈E in the following

manner: for each edge e ∈ E with boundary vertices v1 = τ1 (e) , v2 = τ2 (e), the correspond-

ing thick edge-space Xe × I is attached to the vertex-spaces Xv1 , Xv2 via attaching maps

which are also denoted by τ1 : Xe × {−1} → Xv1 and τ2 : Xe × {1} → Xv2 . In this text, we

always assume the attaching maps of edge-spaces are injective and combinatorial. For sim-

plicity, the subspaces Xe×{−1} ⊂ Xv1 and Xe×{1} ⊂ Xv2 are referred to as edge subspaces

Xe ⊂ Xv1 and Xe ⊂ Xv2 , respectively. The graph Γ (V,E) is the quotient of X obtained by

mapping Xv to v and Xe× (−1, 1) to e for each v ∈ V and e ∈ E. We will henceforth denote

a graph of spaces X with underlying graph ΓX by the corresponding canonical quotient map

X → ΓX .

3.2. Horizontal Quotient. Let X → ΓX be a graph of spaces and let E be the edge

set of ΓX . Given an edge e ∈ E, let ∼e be the equivalence relation on Xe × I where

for all s, t ∈ [−1, 1], we have (x, t) ∼e (y, s) if and only if x = y. Let Xe = X/ ∼e be

the corresponding quotient. The horizontal quotient of X along the edge e, denoted by

qe : X → Xe, is the quotient map X → Xe = X/ ∼e. In general, if E ′ = {e1, . . . , en} ⊂ E,

then the horizontal quotient of X along E ′ is the quotient X → XE′
= X/ ∼E′ where ∼E′ is
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the equivalence relation spanned by ∼e for e ∈ E ′. When E ′ = E, we call XE the seamless

graph of spaces associated to X and the corresponding map is the horizontal quotient which

we denote by q : X → XE. (This terminology was introduced in [HW22]). Note that the

letter E in XE is generic in the sense that it refers to the set of all edges of a given graph.

For example, given two graphs of spaces X → ΓX and Y → ΓY , their horizontal quotients

will be denoted by XE and Y E, respectively, even when ΓX ̸= ΓY . The horizontal quotient q

is strict if the restriction of q to each vertex-space is an embedding. The E-parallelism class

of a subset A ⊂ X is q−1 (q (A)), that is, the set of all points of X mapping to q (A). When

A is a point in an edge-space, q−1 (q (A)) is the horizontal graph associated to A. Note that

the restriction of the map X → ΓX to a horizontal graph in X is an immersion since the

attaching maps of edge-spaces are embeddings. In particular, if X → ΓX is a tree of spaces,

then q is strict and the horizontal graphs are trees that intersect each vertex-space of X in

at most one point. When X is a graph of cube complexes, an n-cube C ⊂ X is vertical if

q (C) is also an n-cube.

Remark 3.1. In the case of a graph of cube complexes X, we make the following obser-

vations:

(1) The quotient XE is not necessarily a cube complex as cubes of X may be quotiented

to simplices in XE.

(2) When q is strict, it corresponds to an orthogonal projection of cubes (of thick edge-

spaces) onto their faces. Then q is cubical and XE is a cube complex.

(3) When X is a nonpositively curved cube complex and q is strict, the horizontal

quotient XE is not necessarily nonpositively curved.

(4) If X1 → X2 is a cover of graphs of cube complexes, then there is an induced map

XE
1 → XE

2 that is not a cover in general.

Lemma 3.2. Let X → ΓX be a graph of cube complexes with a strict horizontal quotient.

Then for each immersed hyperplane U f−→ XE, there exists an immersed hyperplane V g−→ X,

with f (U) = (q ◦ g) (V ). Furthermore,

(1) if V is two-sided then so is U ;

(2) if U f−→ XE self-crosses, then V
g−→ X self-crosses.
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Consequently, if the hyperplanes of X are two-sided/embedded then so are the hyperplanes

in XE.

Proof. Since q is strict, it is cubical and so XE is a cube complex. Let U f−→ XE be an

immersed hyperplane. Then the parallelism class of 1-cubes dual to U lifts to a parallelism

class of 1-cubes in X. The latter corresponds to an immersed hyperplane V g−→ X that maps

onto U , and so f (U) = (q ◦ g) (V ).

Now suppose V g−→ X is a two-sided immersed hyperplane. If g (V ) ⊂ Xv for some vertex-

space Xv, then q (g (V )) is two-sided since q is a strict horizontal quotient and thus restricts

to an embedding on each vertex-space. If on the other hand, g (V ) has nonempty intersection

with some edge-space Xe× I attached to vertex-spaces Xv1 , Xv2 , then there exist vertical 1-

cubes A1 ∈ Xv1 and A2 ∈ Xv2 dual to g (V ) that lie on opposite sides of a 2-cube B ⊂ Xe×I.

Since V is two-sided, there is a consistent way of orienting A1 and A2 so that their initial

points lie on the same 1-cube of B. Taking the horizontal quotient along the edge-space

Xe×I, induces an orientation on q (A1) = q (A2) consistent with the orientation of the vertical

1-cubes of q (g (V )). By taking consecutive quotients along all the edge-spaces intersecting

g (V ), the two-sidedness is preserved at each stage and the claim follows.

Finally, suppose U f−→ XE is not injective. Then there exists a 2-cube S ⊂ XE where f (U)

self-intersects. The preimage of S contains a 2-cube where the immersed hyperplane g (V )

self-intersects. □

Remark 3.3. Let X → ΓX be a graph of cube complexes and let q : X → XE be

the horizontal quotient. Let V g−→ X be an immersed hyperplane. Then (q ◦ g) (V ) is not

necessarily the image of an immersed hyperplane in XE. Indeed, not all midcubes of X map

to midcubes of XE. In particular, each immersed hyperplane g (V ) = Xe×{0} ⊂ Xe×[−1, 1]

projects to a subcomplex q (g (V )) ⊂ XE that is not a hyperplane.

Definition 3.4. Let X → ΓX be a graph of cube complexes and q : X → XE be

the horizontal quotient. Let x ∈ XE be a 0-cube and let q−1 (x) be the corresponding

horizontal graph. Let Γ0 ⊂ ΓX be the image of q−1 (x) under the quotient X → ΓX . Let V0

and E0 be the vertices and edges of Γ0 and let {Xv : v ∈ V0} and {Xe : e ∈ E0} be the

corresponding vertex-spaces and edge-spaces in X, respectively. Let {x1, . . .} be the 0-cubes
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of q−1 (x). The induced graph of links of x is the graph of spaces Y ⊂ X with underlying

graph q−1 (x), whose vertex-spaces are linkXvi
(xi) and whose edge-spaces are linkXeij

(xi),

where Xvi ∈ {Xv : v ∈ V0} is the vertex-space containing xi and Xeij ∈ {Xe : e ∈ E0} are

the edge-spaces containing xi. Note that taking the quotient X → XE induces a quotient

Y → Y E where linkXE (x) = Y E.

Remark 3.5. When the edge-spaces of X are embedded locally convex subcomplexes,

the edge-spaces of an induced graph of links are embedded full subcomplexes. However, the

vertex-spaces of an induced graph of links are not necessarily connected.

Lemma 3.6. Let Y = A ∪
C
B where A,B are simplicial complexes and C embeds as a

full subcomplex in A and B. Then Y is simplicial and A embeds as a full subcomplex of Y .

Proof. We show the nonempty intersection of two simplices is a simplex. Let σ1, σ2 ⊂ Y

be simplices with σ1 ∩ σ2 ̸= ∅. Each simplex of Y is either in A or in B. Suppose σ1 ⊂

A, σ2 ⊂ B with σ1 ̸⊂ B and σ2 ̸⊂ A. Let Z be the set of 0-simplices of σ1 ∩ σ2 and note

that Z ⊂ C. Then Z spans simplices δ1 ⊂ A and δ2 ⊂ B. Since C is full in A and B, we see

that δ1 and δ2 are the same simplex of C. That is, σ1 ∩ σ2 is a simplex.

To show A ↪→ Y is full, we show that whenever a set of 0-simplices S ⊂ A spans a simplex

∆, we have ∆ ⊂ A. Indeed, suppose ∆ ⊂ B, then S ⊂ C. But C is full in B and so

∆ ⊂ C ⊂ A. □

Lemma 3.7. Let Y = A ∪
C
B where A,B are flag complexes and C embeds as a full

subcomplex in A and B. Then Y is flag and A embeds as a full subcomplex of Y .

Proof. Y is simplicial by Lemma 3.6. To show flagness, let K ⊂ Y be an n-clique.

We claim that K ⊂ A or K ⊂ B. We proceed by induction on n. The base case n = 0 is

trivial. Suppose the claim holds for all cliques of size ≤ n and let K be an (n+ 1)-clique.

By induction, every proper subclique of K lies in either A or B. Without loss of generality,

let σ1 ∈ K0 be a 0-simplex with σ1 /∈ A. Then σ1 ∈ B and for any 0-simplex σ2 ∈ K0, the

1-simplex σ1σ2 lies in B. Indeed, if σ1σ2 lies in A, then σ1 lies in A which is a contradiction.

Therefore, σ2 ∈ B and so K0 ⊂ B. Moreover, given 0-simplices σ2 and σ3 in K0, the 1-

simplex σ2σ3 lies in B. To see this, suppose σ2σ3 ∈ A. Then and σ2 and σ3 lie in A∩B = C.
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But C is full in A and so σ2σ3 ∈ C ⊂ B. Since B is flag, K bounds a simplex.

Let K ⊂ Y be a clique such that K0 ⊂ A. Then by the previous part, K1 ⊂ A and it spans

a simplex ∆ ⊂ A. Hence A embeds as a full subcomplex of Y . □

Lemma 3.8. Let Y be a tree of spaces where each vertex-space is a flag complex and each

edge-space embeds as a full subcomplex in its vertex-space. Then Y E is flag.

Proof. Any failure of flagness arises in a quotient of a finite subtree. Therefore, it

suffices to prove the claim for finite trees. This follows by induction from Lemma 3.7. Note

that a full subcomplex of a full subcomplex is full. □

Corollary 3.9. Let X̂ → ΓX̂ be a tree of nonpositively curved cube complexes where

the attaching maps of edge-spaces are injective local isometries. Then X̂E is nonpositively

curved.

Proof. Let x be a 0-cube in X̂E and let Y → ΓY be the corresponding induced graph

of links with underlying graph q−1 (x). Since q−1 (x) immerses in ΓX̂ , it is a tree. Then ΓY

is a tree of flag complexes with embedded full edge-spaces. By Lemma 3.8, the horizontal

quotient Y E is flag, and so is linkX̂E (x). □

Definition 3.10. Let X be a graph of cube complexes with horizontal quotient q : X →

XE. Let G be a connected subgraph of a horizontal graph in X. Then:

(1) A hyperplane U osculates with G if U is dual to a vertical 1-cube whose initial or

terminal 0-cube lies in G.

(2) A two-sided hyperplane U self-osculates at G if U is dual to oriented vertical 1-cubes

a and b whose initial (or terminal) 0-cubes ta and tb lie in G, where q (a) and q (b)

are not consecutive 1-cubes of a 2-cube in XE, and q (a) ̸= q (b). When ta ̸= tb,

the hyperplane U remotely self-osculates at G, in which case we say X has remote

self-osculation.

(3) A pair of distinct crossing hyperplanes U and V inter-osculate at G if there are

vertical 1-cubes a and b, with a dual to U and b dual to V , with boundary 0-cubes

ta and tb lying in G, but q (a) and q (b) are not consecutive 1-cubes of a 2-cube in



3. HORIZONTAL QUOTIENT OF A GRAPH OF SPACES 23

XE. When ta ̸= tb, the hyperplanes U and V remotely inter-osculate at G in which

case we say X has remote inter-osculation.

Note that Definition 3.10 agrees with the definitions in Section 2.5 when ta = tb.

Remark 3.11. Remote self-osculations and inter-osculations in X are not actual self-

osculations and inter-osculations, but they project to self-osculations/inter-osculations under

the horizontal quotient q : X → XE whenever q is cubical.

Lemma 3.12. Let X be a graph of cube complexes and suppose X is special. If the

horizontal quotient q : X → XE is cubical and XE has self-osculation/inter-osculation then

X has remote self-osculation/inter-osculation.

Proof. Let U f−→ XE be a self-osculating hyperplane. By Lemma 3.2, there is a hyper-

plane V g−→ X with q ◦ g (V ) = f (U). Since X is special, g and (hence) f are embeddings,

and so we can identify U and V with their images. Since the hyperplanes of X are 2-sided,

and q is orientation-preserving, the 1-cubes of XE can be oriented consistently with the ori-

entations of 1-cubes of X. Let au and bu be distinct oriented 1-cubes dual to U that share the

0-cube t where the self-osculation occurs. We can assume without loss of generality that t is

the terminal 0-cube of au and bu. Let av and bv be oriented 1-cubes dual to V and mapping

to au and bu, respectively. Let G = q−1 (t) be the horizontal graph mapping to t. Let ta

and tb be terminal points of av and bv. See Figure 2. Then ta and tb lie in G and since X is

special, ta ̸= tb. Since q (av) = au ̸= bu = q (bv), the hyperplane V remotely self-osculates at

G.

Let U1 and U2 be inter-osculating hyperplanes in XE, and let V1 and V2 be the crossing

hyperplanes in X mapping to U1 and U2, respectively. Suppose the inter-osculation occurs at

1-cubes au1 and bu2 dual to U1 and U2 and meeting at a 0-cube t. Let av1 and bv2 be 1-cubes

dual to V1 and V2 and mapping to au1 and bu2 , respectively. Since X is special, G = q−1 (t) is

nontrivial and contains the distinct 0-cubes ta and tb of av1 and bv2 . Moreover, since au1 and

bu2 do not form a consecutive pair of edges of a 2-cube, V1 and V2 remotely inter-osculate at

G. □
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Figure 2. The hyperplane V osculates with G = q−1 (t) at two points ta and

tb.

Lemma 3.13. Let X be a graph of cube complexes and let G be a horizontal graph in X.

Suppose X is special.

(1) If a hyperplane U of X remotely self-osculates at G, then G∩N (U) is disconnected.

(2) If crossing hyperplanes U and V of X remotely inter-osculate at G, then G∩
(
N (U)∪

N (V )
)

is disconnected.

Proof of (1). Let U be a remotely self-osculating hyperplane in X. Let a and b be the

oriented 1-cubes dual to U with terminal 0-cubes ta and tb in G, as in Definition 3.10. Then

ta, tb ∈ N (U) and so G ∩N (U) ̸= ∅. We claim that ta and tb lie in distinct components of

G∩N (U). Suppose otherwise. Since ta ̸= tb, there is a nontrivial horizontal path γ → N (U)

from ta to tb. Express γ as a concatenation of horizontal 1-cubes, γ = e1 · · · en, where e1

contains ta and en contains tb. Since the attaching maps of edge-spaces are injective, any

horizontal 1-cube in N (U) lies in a 2-cube whose opposite 1-cube is also horizontal. Since X

is special, the hyperplane U does not self-osculate, and so there is a 2-cube S1 ⊂ N (U) that

contains a and e1. Let a1 and e′1 be the 1-cubes in S1 opposite to a and e1, respectively. Then

e′1 ⊂ N (U) is horizontal and intersects a in in its initial 0-cube ia. Furthermore, the 1-cubes

a1 ⊂ S1 and e2 ⊂ γ share a 0-cube. By the same argument, there is a 2-cube S2 ⊂ N (U)

containing a1 and e2, where the opposite 1-cube of e2 is a horizontal 1-cube e′2 that shares

a common 0-cube with e′1 and a1. By induction, there is a sequence of horizontal 1-cubes

e′1, . . . , e
′
n in N (U) where e′1 intersects a in its initial 0-cube ia and where e′n intersects b in

its initial 0-cube ib. We distinguish two cases. See Figure 3.

Case 1: There is a sequence e′1, . . . , e′n that forms a connected horizontal path from ia to ib.



3. HORIZONTAL QUOTIENT OF A GRAPH OF SPACES 25

Figure 3. Case 1 on the left. Case 2 on the right.

In this case there is a ladder from a to b showing that q (a) = q (b) which is a contradiction.

Case 2: No sequence e′1, . . . , e
′
n forms a horizontal path from ia to ib. Then there is a

sequence e′1, . . . , e′n and consecutive 1-cubes ej and ej+1 of γ meeting at a 0-cube x, where

the corresponding horizontal 1-cubes e′j and e′j+1 do not intersect. Then x is a point of

self-osculation for U which is a contradiction. □

Proof of (2). Let U and V be remotely inter-osculating hyperplanes in X. Let a and b

be the vertical 1-cubes dual to U and V , respectively, with boundary 0-cubes ta ̸= tb in G, as

in Definition 3.10. We claim that ta and tb lie in distinct components of G∩(N (U) ∪N (V )).

Suppose otherwise. Then there is a nontrivial horizontal path γ → (N (U) ∪N (V )) from

ta to tb. Let γ = γu · γv, where γu → N (U) and γv → N (V ), and suppose without loss of

generality that γu is nontrivial. Let x ∈ γu∩γv and let ax and bx be the vertical 1-cubes dual

to U and V with boundary 0-cube x. Let γu = e1 · · · en be the horizontal path from ta to x.

As in part (1), there is a sequence e′1, . . . , e′n that forms a path in N (U) since otherwise, U

self-osculates which is a contradiction. So, a and ax lie in the same parallelism class.

Similarly, if γv is nontrivial, the 1-cubes b and bx are in the same E-parallelism class. If γv

is trivial, then x = tb and b = bx. So we have shown that both a and b are in the same E-

parallelism classes as the consecutive 1-cubes ax and bx. By assumption, U and V remotely

inter-osculate, and so ax and bx do not bound a corner of a square. But this means that U

and V inter-osculate at x which is a contradiction. □
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Definition 3.14. Let X be a cube complex. A subcomplex X ′ ⊂ X self-osculates if

there is a hyperplane U ′ of X ′ that extends to a hyperplane U of X dual to a 1-cube whose

intersection with X ′ consists of 0-cubes.

Definition 3.15. A graph of cube complexes is controlled if for each thick edge-space

Xe × I attached to vertex-spaces Xv1 and Xv2 , the following hold for each i ∈ {1, 2}:

(1) distinct hyperplanes of Xe extend to distinct hyperplanes of Xvi (wall-injectivity);

(2) non-crossing hyperplanes of Xe extend to non-crossing hyperplanes of Xvi (cross-

injectivity);

(3) the edge-space Xe is non self-osculating in Xvi .

Lemma 3.16. Let X̂ → ΓX̂ be a controlled tree of cube complexes and suppose each vertex-

space of X̂ has embedded hyperplanes. Then each hyperplane U of X̂ dual to a vertical 1-cube

splits as a tree of spaces U → ΓU so that the following diagram commutes:

U X̂

ΓU ΓX̂

Moreover, ΓU → ΓX̂ is an embedding, each hyperplane splits as a tree of connected spaces,

each of which embeds in X̂, and consequently, U embeds in X̂ and U ∩Xv is connected for

each vertex-space Xv ⊂ X̂.

Proof. Let U → ΓU be a graph of spaces decomposition induced by X̂ → ΓX̂ . Since

U is dual to a vertical 1-cube, U has nonempty intersection with at least one vertex-space.

The vertex-spaces of U are the components of intersections with the vertex-spaces of X̂, and

likewise for edge-spaces. Wall-injectivity implies that U ∩Xv is a single hyperplane for each

vertex-space Xv intersecting with U . So ΓU → ΓX̂ is an immersion and thus an injection.

Therefore, ΓU is a tree and U → X̂ is an embedding. □

Lemma 3.17. Let X̂ → ΓX̂ be a controlled tree of cube complexes and let Xe be an edge-

space in a vertex-space Xv. Let U ⊂ X̂ be an embedded hyperplane dual to a vertical 1-cube

a ∈ Xv. If a ∩Xe consists of 0-cubes then U ∩Xe = ∅. See Figure 4.

Proof. By Lemma 3.16, the intersection U ∩ Xv is connected. Since Xe is not self-

osculating in Xv, we have U ∩Xe = ∅. □
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Figure 4. The edge-space Xe osculates with the hyperplane U . If Xe∩U ̸= ∅,

then either Xe self-osculates (left) or wall-injectivity fails in some edge-space

Xe′ (middle). Xe ∩ U = ∅ (right).

Lemma 3.18. Let X̂ p−→ ΓX̂ be a controlled tree of cube complexes with embedded hyper-

planes. Then X̂ has no remote self-osculation/inter-osculation.

Proof. The horizontal graphs of X̂ are trees that intersect each vertex-space of X̂ in

at most one 0-cube. Suppose U is a hyperplane that remotely self-osculates at a horizontal

tree T . By Lemma 3.13, T ∩ N (U) is not connected. Let K1 and K2 be components of

T ∩ N (U). Let t1, t2 ∈ T be the closest 0-cubes in T with t1 ∈ K1 and t2 ∈ K2. Let a1 be

the 1-cube dual to U and containing t1. Let γ = e1 · · · en be the shortest horizontal path

in T from t1 to t2, where each 1-cube ei is in the edge-space Xei . Note that γ is nontrivial

since t1 ̸= t2. The 1-cube e1 with initial 0-cube t1 does not lie in N (U) for otherwise, the

terminal 0-cube of e1 is in K1 and is closer to t2. Then a1 is not in Xe1 . By Lemma 3.17,

U ∩Xe1 = ∅. On the other hand, since U splits as a graph of spaces U → ΓU where ΓU is a

subtree of ΓX̂ , the image
(
γ → ΓX̂

)
↪→ ΓU and so U ∩Xe ̸= ∅ which is a contradiction.

Suppose U and V are hyperplanes that remotely inter-osculate at a horizontal tree T . By

Lemma 3.13, T ∩ (N (U) ∪N (V )) is not connected. Let t1 ∈ N (U) and t2 ∈ N (V ) be the

closest 0-cubes lying in distinct components of T ∩ (N (U) ∪N (V )). Let γ1 = e1 · · · en be

the nontrivial horizontal path from t1 to t2, where each 1-cube ei lies in Xei . Let a1 and a2 be

the 1-cubes dual to U and V and containing t1 and t2, respectively. As in part (1), we have

a1 /∈ Xe1 and a2 /∈ Xen , and so by Lemma 3.17, we have U ∩Xe1 = ∅ and V ∩Xen = ∅. Since

X̂ is a tree of spaces, each pair of vertex-spaces is joined by at most one edge-space. Thus,
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U ∩Xe1 = ∅ implies U ∩Xei = ∅ for all 1 ≤ i ≤ n. Similarly, V ∩Xe1 = ∅ for all 1 ≤ i ≤ n.

Since U crosses V , there is a 0-cube x ∈ N (U)∩N (V ), and a path γ2 = f1 · · · fm from t2 to

t1 passing through x, where fj ∈ (N (U) ∪N (V )). The concatenation γ1 · γ2 projects to a

closed path in the tree ΓX̂ . Since γ1 is horizontal, γ1
p−→ ΓX̂ is an embedding. Hence there is

a 1-cube fj ∈ γ2 so that p (fj) = p (e1). If fj ∈ N (U), then U ∩Xe1 ̸= ∅ and if fj ∈ N (V ),

then V ∩Xe1 ̸= ∅, both leading to contradictions. □

Proposition 3.19. Let X̂ → ΓX̂ be a controlled tree of nonpositively curved cube com-

plexes with embedded locally convex edge-spaces. Let q : X̂ → X̂E be the horizontal quotient.

If X̂ is special then so is X̂E.

Proof. By Corollary 3.9, X̂E is nonpositively curved. Since X̂ is a tree of spaces,

the horizontal quotient q : X̂ → X̂E is strict. By Lemma 3.2, each hyperplane of X̂E

is embedded and two-sided. By Lemma 3.12, self-osculation/inter-osculation in X̂E arise

from remote self-osculation/inter-osculation in X̂. By Lemma 3.18, X̂ has no remote self-

osculation/inter-osculation. □

4. Subgroup Separability

The collection of finite index cosets of a group F forms a basis for the profinite topology

on F . The multiplication and inversion are continuous with respect to this topology. A

subset S ⊂ F is separable if it is closed in the profinite topology. A subgroup H ⊂ F is

separable if and only if H is the intersection of finite index subgroups.

Theorem 4.1 (Ribes-Zalesskii [RZ93]). Let H1, . . . , Hm be finitely generated subgroups

of a free group F . Then H1H2 · · ·Hm is closed in the profinite topology.

It follows that g1H1g2H2 · · · gmHm is also closed in the profinite topology, for finitely

generated subgroups Hi ⊂ F and gi ∈ F with 1 ≤ i ≤ m.

Starting with a tree of nonpositively curved cube complexes X̂ → ΓX̂ and using separability

properties of the free group action on X̂, we find compact quotients X̂ → X where the the

horizontal quotient X → X
E is cubical, XE is nonpositively with well-behaved hyperplanes

whenever X̂ is controlled and special.
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Lemma 4.2. Let X → ΓX be a compact graph of cube complexes with one vertex-space

Y . Then X has a finite regular cover X such that:

(1) X is a graph of spaces whose vertex-spaces are isomorphic to Y ;

(2) The restriction of the horizontal quotient X → X
E to each vertex-space is injective.

Proof. We find a covering space that splits as a graph of cube complexes with vertex-

spaces isomorphic to Y and whose horizontal quotient is strict.

The underlying graph X → ΓX is a bouquet of circles. Let Γ̃X → ΓX be the universal

covering map and let X̂ → X be the corresponding covering map so that the following

diagram commutes:

X̂ ΓX̂ = Γ̃X

X ΓX

Then π1ΓX acts freely and cocompactly on X̂. Let N ⊂ π1ΓX be a finite index normal

subgroup, and let N\X̂ = X → X be the covering map induced by N\ΓX̂ = ΓX → ΓX so

that the following diagram commutes:

X ΓX

X ΓX

Then X is a graph of cube complexes where each vertex-space is isomorphic to Y .

We need to choose X, and thus N , so that no vertex-space has two points in the same

parallelism class. In our cubical setting, it is sufficient to ensure that no two 0-cubes of

a vertex-space of X lie in the same parallelism class. Recall that the attaching maps of

edge-spaces are assumed to be injective.

By compactness, there are finitely many 0-cubes {Ci}ni=1 ⊂ X0. Fix a 0-cube Ci and let

Ki be the subgroup generated by the horizontal closed paths based at Ci. Then Ki is

finitely generated since X is compact. Moreover, since horizontal paths immerse in the

underlying graph, the map X → ΓX induces an injective homomorphism Ki → π1ΓX .

Identify Ki with its image. Let {γij}mj=1 be the set of all embedded non-closed horizontal

paths between 0-cubes Ci and Cj. Each γij maps to an essential closed path in ΓX and
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thus represents a nontrivial element wij ∈ π1ΓX . Furthermore, wij /∈ Ki. Indeed, since

the attaching maps of edge-spaces are injective, the horizontal graphs immerse in ΓX , and

so the elements represented by γij are distinct from elements of Ki. In particular, the

products of finitely many cosets KiwijKjwjtKt · · · does not contain the identity element.

Note that there are finitely many such products of cosets. By Theorem 4.1, there exists a

finite index normal subgroup N ⊴ π1ΓX that is disjoint from all such multiple cosets. Let

p : X → X be the covering map corresponding to N . Let Z ⊂ X be a vertex-space and

Ci, Cj ∈ Z be 0-cubes mapping to 0-cubes Ci, Cj ∈ Y . Then Ci and Cj are not in the

same parallelism class of X. Indeed, if γ is a horizontal path in X from Ci to Cj, then

p (γ) is a horizontal path γ in X which represents an element in KiwisKswstKt · · ·wrjKj

where wis, wst, . . . , wrj are the elements of π1ΓX representing non closed embedded paths

between 0-cubes Ci, Cs, Ct · · · , Cr, Cj, respectively. But N contains no such elements, and

thus q : X → X
E is strict. □

Remark 4.3. In the proof of Lemma 4.2, we found a covering map X → X that cor-

responds to a finite index normal subgroup N ⊂ π1ΓX . Note that any normal finite index

subgroup N ′ ⊂ N induces a finite cover X ′ → X → X with the same properties as X. That

is, X ′ splits as a graph of spaces with vertex-spaces isomorphic to Y and horizontal quotient

X
′ → X

′E is strict.

Lemma 4.4. Let X → ΓX be a graph of nonpositively curved cube complexes and q :

X → XE be a strict horizontal quotient, where XE is nonpositively curved. Let Y be a

vertex-space of X. If X has no inter-osculating hyperplanes, then q (Y ) ⊂ XE is a locally

convex subcomplex.

Proof. It suffices to show that q (Y ) has no missing squares in XE. To do so, we show

that for each 0-cube y ∈ q (Y ), the inclusion linkq(Y ) (y) ⊂ linkXE (y) is full.

Let y ∈ q (Y ) be a 0-cube, and let e ∈ linkXE (y) be a 1-simplex whose boundary 0-simplices

x1 and x2 lie in linkq(Y ) (y) with e /∈ linkq(Y ) (y). Since q is strict, there are consecutive

1-cubes a1, a2 ∈ q (Y ) containing y that are identified with consecutive 1-cubes of a 2-cube

Se ̸⊂ q (Y ). Since XE is nonpositively curved, e is the only 1-simplex containing x1 and x2

and so a1 and a2 are not consecutive 1-cubes of a 2-cube in q (Y ). Then the preimage q−1 (Se)
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Figure 5. Inter-osculation arising from consecutive 1-cubes not bounding a

2-cube in Y , attached to ladders meeting at Se.

contains inter-osculating hyperplanes since q−1 (a1) and q−1 (a2) contain ladders attached to

a 2-cube, contradicting the assumption. See Figure 5. □

The strategy for obtaining XE that is special, is to use multiple coset separability proper-

ties of F acting on X̂ to obtain a compact special cube complex X whose horizontal quotient

X
E is special. The property that hyperplanes are embedded and 2-sided is preserved under

the map X → X
E. However, non-inter-osculation and non-self-osculation are not necessarily

preserved by X → X
E. We are therefore forced to revisit and prove a more powerful form

of Theorem 5.8 , that provides an intermediate cover X for which X
E retains all desired

properties.

Lemma 4.5. Let X̂ → ΓX̂ be a controlled tree of compact nonpositively curved cube

complexes with isomorphic vertex-spaces. Let F be a free group acting freely and cocompactly

on ΓX̂ and X̂, so that X̂ → ΓX̂ is F -equivariant. Suppose X̂ is special. Then there is a finite

index normal subgroup N ⊂ F and a covering map X̂ → N\X̂ = X where X splits as a graph

of cube complexes whose horizontal quotient XE contains no self-osculating hyperplanes and

no inter-osculating hyperplanes.

Proof. Since X̂ has no self-crossing hyperplanes, we can identify each immersed hyper-

plane with its image in X̂. We first find a finite graph of cube complexes X whose horizontal

quotient has no inter-osculating hyperplanes. We do so by finding an appropriate finite

index subgroup N ⊂ F and taking the quotient N\X̂ = X. Note that Lemma 4.2 allows

us to pass to a finite cover, if necessary, to ensure that the horizontal quotient is a cube

complex. By Lemma 3.12, the horizontal quotient XE has inter-osculation if X has remote

inter-osculation. Remote inter-osculation in X occurs if there are crossing hyperplanes A,B

of X̂ and an element g ∈ F such that gB and A osculate with a horizontal graph T in X̂.
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Figure 6. The hyperplane Bijk crosses Aij which osculate with the horizontal

graph Ti. The element g maps Bijk to Air which also osculates with Ti

Such an element is called a remote inter-osculator at T . Let R ⊂ F be the set of remote

inter-osculators. We characterize the elements of R and use subgroup separability to find a

finite index subgroup of F that is disjoint from the set R.

By F -cocompactness, there are finitely many F -orbits of horizontal graphs. Let {Ti}mi=1 be

their representatives. For each tree Ti ∈ {Ti}mi=1 there are finitely many Stab (Ti)-orbits of

hyperplanes that osculate with Ti. Let {Aij}rij=1 be their representatives. Similarly, for each

hyperplane Aij ∈ {Aij}rij=1, there are finitely many Stab (Aij)-orbits of hyperplanes crossing

Aij. Let {Bijk}
sij
k=1 be their representatives. See Figure 6.

For each Bijk and Air, if there is an element hijkr mapping Bijkr to Air, then the set of

all elements g with gBijk = Air is:

Oijkr = Stab (Air)hijkr Stab (Bijk)

Furthermore, by precomposing g ∈ Oijkr with elements of Stab (Aij) Stab (Ti), postcom-

posing g with elements of Stab (Ti), and then taking the union over j, k, r, we obtain the set

of remote inter-osculators at Ti:

Oi =
⋃
jkr

Stab (Ti) Stab (Air)hijkr Stab (Bijk) Stab (Aij) Stab (Ti)

Let O =
⋃
i

Oi. Each horizontal graph T is a translate of some Ti. Thus each remote

inter-osculator at T is conjugate to an element of O. By assumption, X̂ contains no inter-

osculating hyperplanes. By Lemma 3.18, X̂ has no remote inter-osculation and thus, 1F /∈ O.

By Theorem 4.1, the set O is closed in the profinite topology, and so there exists a finite



4. SUBGROUP SEPARABILITY 33

index normal subgroup N disjoint from O, and hence disjoint from R. Then the horizontal

quotient of N\X̂ →
(
N\X̂

)E
has no inter-osculating hyperplanes.

Similarly, to find X → X
E with no self-osculating hyperplanes, we use the same method

and follow the steps sketched below.

An element g ∈ F gives rise to self-osculation in X
E if gA = A′ where A and A′ are

hyperplanes osculating with the same horizontal graph T . Such elements are called remote

self-osculators at T . The set of remote self-osculators at Ti is:

Si =
⋃
jr

Stab (Ti) Stab (Air)hijr Stab (Aij) Stab (Ti)

Then any remote self-osculator is conjugate to an element of S =
⋃
i

Si. By Lemma 3.18,

we have 1F /∈ S. Then there exists a finite index normal subgroup N ′ ⊂ F such that

N ′\X̂ →
(
N ′\X̂

)E
has no self-osculating hyperplanes and the following diagram commutes:

X̂ ΓX̂

X ΓX

The map X̂ → (N ∩N ′) \X̂ = X provides the desired covering map. □

Remark 4.6. By taking double covers, if necessary, we can ensure that the hyperplanes

in X are two-sided, which, by Lemma 3.2, means that the hyperplanes of XE are two sided

as well.

Up until this point, we have shown how to find a compact quotient where the pathologies

precluding specialness do not appear in the horizontal quotients. In the remainder of this

section, we show how to ensure that the horizontal quotient is nonpositively curved.

Definition 4.7 (k-corners). For k ∈ {1, 2, 3}, a k-cycle of squares is a planar com-

plex Sk formed by gluing k squares around a vertex v. A k-cycle of squares has k hyper-

planes {αi | 1 ≤ i ≤ k} and k codimension-2 hyperplanes {βj | 1 ≤ j ≤ k}. Recall that a

codimension-2 hyperplane is the intersection of two pairwise intersecting hyperplanes, and

the carrier of a codimension-2 hyperplane is the cubical neighborhood containing the inter-

section. See Figure 7.
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Figure 7. 1-cycle, 2-cycle, and 3-cycle of squares with their dual curves.

Let X be a cube complex and D ⊂ X be an n-cube. An (n+ 2)-dimensional k-corner

of X at D is a combinatorial immersion (Zk, I
n) → (X,D) where Zk = Sk × In and In is

identified with {v} × In in Zk.

A k-corner is empty if (Zk, In) → (X,D) does not extend to (In+3, In) → (X,D). Note

that 1-corners and 2-corners are always empty.

We write Zk → X when the map In → D is clear from the context.

Note that under the immersion Zk → X, hyperplanes map to hyperplanes and crossing

hyperplanes map to crossing hyperplanes.

Remark 4.8. Nonpositive curvature can be expressed in terms of k-corners. Specifically,

a cube complex is nonpositively curved if it has no empty k-corners. Indeed, if linkX (D) has

a loop [a bigon] then X has a 1-corner [a 2-corner] at D. Furthermore, if the no-△ property

fails at D, then X has an empty 3-corner at D.

We also note that if X has an empty k-corner at D, then linkX (x) is not flag for each 0-cube

x of D.

Definition 4.9 (k-precorners). Let X → ΓX be a graph of cube complexes and let

q : X → XE be the horizontal quotient where q is cubical. Let Zk
φ−→ XE be an (n+ 2)-

dimensional k-corner and let {Ai = αi × In | 1 ≤ i ≤ k} be hyperplanes of Zk = Sk×In where

{αi | 1 ≤ i ≤ k} are the hyperplanes of Sk. Let {Bj = βj × In | 1 ≤ j ≤ k} be codimension-

2 hyperplanes of Zk = Sk × In where {βj | 1 ≤ j ≤ k} are the codimension-2 hyperplanes

of Sk. Let
{
Hi

hi−→ X | 1 ≤ i ≤ k
}

be the immersed hyperplanes of X such that φ (Ai) ⊂

(q ◦ hi) (Hi), and let N (Hi) → X be their immersed carriers.

The (n+ 2)-dimensional k-precorner Pk over the (n+ 2)-dimensional k-corner Zk is the

disjoint union of the corresponding immersed carriers N (Hi) → X amalgamated along the
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carriers of the codimension-2 hyperplanes of Hi that contain the preimages h−1
i (q−1 (Bj)).

See Figure 8. Note that there is a global map h : Pk → X that restricts to hi on each

immersed hyperplane Hi.

A k-precorner Pk
h−→ X over a k-corner Zk

φ−→ XE is empty if Zk
φ−→ XE is empty. Pk

h−→ X

is trivial if if φ lifts to a combinatorial map Zk −→ X and such that the following diagram

commutes:
Pk X

Zk XE

h

q

φ

Remark 4.10. The map Pk
h−→ X induces a splitting of Pk as a graph of spaces as in the

following commutative diagram:
Pk ΓPk

X ΓX

h

Specifically, the vertex-spaces of Pk are the components of the preimages of vertex-spaces

of X and the edge-spaces of Pk are the components of the preimages of edge-spaces of X.

The graph ΓPk
is the quotient of Pk obtained by identifying vertex-spaces and edge-spaces

of Pk with vertices and edges of ΓPk
, respectively. The composition Pk → X → ΓX induces

a graph morphism ΓPk
→ ΓX that maps vertices to vertices and open edges to open edges.

Lemma 4.11. Let X̂ → ΓX̂ be a tree of nonpositively curved cube complexes where the

attaching maps of edge-spaces are injective local isometries. Let X̂ → X̂E be the horizontal

quotient and let Pk → X̂ be a k-precorner over a k-corner Zk
φ−→ X̂E. Then Pk is trivial and

hence nonempty.

Proof. Let T ⊂ X̂ be a minimal connected subtree of spaces containing k cubes

{Ci ⊂ Pk}ki=1 that map onto φ (Zk). Then T is finite since any k cubes mapping onto φ (Zk)

must lie in a finite connected subcomplex of X̂. Note that the minimality is under inclusion

and over all possible collections of k cubes mapping onto φ (Zk). Let T → ΓT be the under-

lying tree. We claim that ΓT is a vertex. Note that if k = 1 then there is only one cube that

lies in a single vertex-space which by the minimality of T , implies that ΓT is a vertex. So we



36 1. THE HRUSHOVSKI PROPERTY FOR COMPACT SPECIAL CUBE COMPLEXES

Figure 8. A 2-precorner and a 3-precorner.

can assume 2 ≤ k ≤ 3. Suppose that ΓT has a spur e incident on vertices v1 and v2, where

deg (v1) = 1. Let Te be the corresponding edge-space attached to the vertex-spaces Tv1 and

Tv2 . By the minimality of T , we can assume without loss of generality that Tv1 contains

exactly one cube Ci. There exist distinct immersed hyperplanes H1 → X̂ and H2 → X̂ that

cross in Ci and extend to Tv2 through Te. Since the attaching maps are local isometries, Ci

must be in the edge-space. But in that case, the edge-space Te× [−1, 1] contains Ci× [−1, 1]

and so the vertex-space Tv2 contains Ci × {−1}. Therefore, there exists a proper subtree

T ′ ⊂ T containing k cubes mapping onto φ (Zk), contradicting the minimality of T .

Since T is finite and has no spurs, it is a vertex-space. Moreover, X̂ is a tree of spaces,

and so the restriction of the horizontal quotient q|
T

in X̂ → X̂E is an isomorphism. This

provides the required map Zk → Xv ⊂ X̂, for some vertex-space Xv. So Pk is trivial. By

assumption, the vertex-spaces of X̂ are nonpositively curved. By Remark 4.8, Zk (and hence

Pk) is a nonempty k-corner (k-precorner). □

Definition 4.12. Let X → ΓX be a graph of cube complexes and let F be a group

acting on X. Given k ∈ {1, 2, 3}, a k-chain is an ordered (k + 1)-tuple of distinct immersed

hyperplanes (Ht)
k
t=0 where Ht−1 crosses Ht for all 1 ≤ t ≤ k. See Figure 9.
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Figure 9. From left: 1-chain, 2-chain, and 3-chain.

An element g ∈ F is a closing element if g maps Hk in some k-chain (Ht)
k
t=0 to H0 giving

rise to an empty k-precorner. We say (Ht)
k
t=0 is closed by g.

Remark 4.13. Given the setting of Lemma 4.11, let F be a free group acting freely

and cocompactly on ΓX̂ , and thus on X̂, provided that the vertex-spaces are compact and

isomorphic. If for some subgroup G ⊂ F , the quotient G \ X̂ has an empty k-precorner,

then G contains a closing element of some k-chain in X. Note that closing elements map

codimension-2 hyperplanes to codimension-2 hyperplanes.

Definition 4.14. Let B be a compact bouquet of circles and let F = π1B act freely and

cocompactly on the universal cover B̃. Let X̂ → ΓX̂ = B̃ be a tree of compact isomorphic

cube complexes. Then the free cocompact action F ↷ B̃ induces a free cocompact action

F ↷ X̂. We fix a finite collection of immersed hyperplanes L = L0 ∪ L1 ∪ L2 ∪ L3 where:

L0 = {H1, . . . , Hn0} are F -representatives of hyperplanes;

L1 =
⋃
i

{Hi1, . . . , Hini
} are Stab (Hi)-representatives of hyperplanes crossing Hi, for 1 ≤

i ≤ ni;

L2 =
⋃
i,j

{
Hij1, . . . , Hijnij

}
are Stab (Hij)-representatives of hyperplanes crossing Hij, for

1 ≤ i ≤ ni and 1 ≤ j ≤ nij; and

L3 =
⋃
i,j,t

{
Hijt1, . . . , Hijtnijt

}
are Stab (Hijt)-representatives of hyperplanes crossing Hijt, for

1 ≤ i ≤ ni, 1 ≤ j ≤ nij, and 1 ≤ t ≤ nijt.

Let C be the set of all k-chains of hyperplanes of L. For each hyperplane A ∈ L,

there are finitely many Stab (A)-representatives of codimension-2 hyperplanes in N (A). For

each k-chain C = (At)
k
t=0, with At ∈ Lt, let JC be the set of elements of F that map the
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chosen Stab (Ak)-representatives of codimension-2 hyperplanes of Ak to the chosen Stab (A0)-

representatives of codimension-2 hyperplanes of A0. Note that JC is finite.

Lemma 4.15. Let B be a compact bouquet of circles and let X → B be a graph of cube

complexes with one compact vertex-space. Let X̂ → ΓX̂ = B̃ be the tree of cube complexes

where B̃ → B is the universal covering map such that the following diagram commutes:

X̂ ΓX̂ = B̃

X B

Let F = π1B be the free group acting freely and cocompactly on X̂ and let g ∈ F be a closing

element. Then there exist a k-chain C = (At)
k
t=0 with At ∈ Lt, and f ∈ F such that

f−1gf ∈ Stab (A0) JC Stab (Ak) Stab (Ak−1) · · · Stab (A0)

Proof. Let (Bt)
k
t=0 be the k-chain in X̂ closed by g. Let V and U be codimension-2

hyperplanes in N (B0) and N (Bk), respectively, such that gU = V . The hyperplane B0

lies in the F -orbit of some representative A0 ∈ L0 and so B0 = fA0 for some f ∈ F .

Let {Vs | 1 ≤ s ≤ n0} be Stab (A0)-representatives of orbits of codimension-2 hyperplanes in

N (A0). Let a0 ∈ Stab (A0) and Vs ∈ {Vs | 1 ≤ s ≤ n0} such that V = fa0Vs. Let A1 ∈ L1

and a′0 ∈ Stab (A0) such that B1 = fa′0A1.

Case k = 1: Let {Ur | 1 ≤ r ≤ n1} be Stab (A1)-representatives of orbits of codimension-2

hyperplanes inN (A1). Then U = fa′0a1Ur for some a1 ∈ Stab (A1) and Ur ∈ {Ur | 1 ≤ r ≤ n1}.

So gU = V ⇒ gfa′0a1Ur = fa0Vs ⇒
(
a−1
0 f−1gfa′0a1

)
Ur = Vs. Therefore

(
a−1
0 f−1gfa′0a1

)
∈

JC , for C = (At)
1
t=0, and so

f−1gf ∈ Stab (A0) JC Stab (A1) Stab (A0)

Case k = 2: We have B2 = fa′0a1A2 for some A1 ∈ L1 and a1 ∈ Stab (A1). Then U =

fa′0a1a2Ur where a2 ∈ Stab (A2) and Ur is a Stab (A2)-representative in {Ur | 1 ≤ r ≤ n1}.

So, gU = V ⇒ g (fa′0a1a2)Ur = fa0Vs. Therefore,

f−1gf ∈ Stab (A0) JC Stab (A2) Stab (A1) Stab (A0)
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Figure 10. Case k = 2

Case k = 3: Similarly, U = fa′0a1a2a3Ur where a3 ∈ Stab (A3) and Ur is a Stab (A3)-

representative in {Ur | 1 ≤ r ≤ n1}. Thus, (gU = V ) ⇒ g (fa′0a1a2a3)Ur = fa0Vs, and

so

f−1gf ∈ Stab (A0) JC Stab (A3) Stab (A2) Stab (A1) Stab (A0)

See Figure 10 for case k = 2. □

Lemma 4.16. Let B be a compact bouquet of circles and let X → B be a graph of cube

complexes with one compact nonpositively curved vertex-space and embedded locally convex

edge-spaces. Let X̂ → ΓX̂ = B̃ be the tree of cube complexes where B̃ → B is the universal

covering map such that the following diagram commutes:

X̂ ΓX̂ = B̃

X B

Let F = π1B be the free group acting freely and cocompactly on ΓX̂ inducing a free cocompact

F -action on X̂. Then there exists a compact graph of cube complexes X → ΓX and a regular

covering map X̂ → X such that the following diagram commutes and the horizontal quotient

X → X
E is nonpositively curved:

X̂ ΓX̂

X ΓX
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Furthermore, any intermediate covering map X̂ → X
′ → X induced by a finite index normal

subgroup of π1ΓX splits as a graph of spaces with nonpositively curved horizontal quotient.

Proof. Using Lemma 4.2, we can ensure that any finite cover X we find below admits

a cubical horizontal quotient. Fix collections L and C as in Definition 4.14. Let

O =
⋃

1≤k≤3

⋃
C∈C

(Stab (A0) JC Stab (Ak) · · · Stab (A0))

where C = (At)
k
t=0 and JC is as in Definition 4.14. Note that the elements of O are closing

elements by definition. Any empty k-precorner in X results from a k-chain in X̂ that is

closed by some element g ∈ F . By Lemma 4.15, any closing element in F is conjugate to

some element in O. By Lemma 4.11, X̂ admits only trivial k-precorners where each trivial

k-precorner is over a k-corner that lies in a single vertex-space of X̂. By assumption, the

vertex-spaces of X̂ are nonpositively curved and thus contain only nonempty k-corners. So,

1F /∈ O. By Theorem 4.1, there exists a finite index normal subgroup G ◁ F that is disjoint

from O. Let X = G\X̂ → G\ΓX̂ = ΓX and X̂ → X be the corresponding compact quotient

and the regular covering map, respectively. By Remark 4.13, X has only trivial nonempty

k-precorners, and thus the horizontal quotient XE has no empty k-corners. By Remark 4.8,

XE is nonpositively curved.

Finally, we note that any finite index normal subgroup of G contains no closing elements

and so, the corresponding finite covers splits as a graph of spaces with nonpositively curved

horizontal quotient. □

5. The Construction

Definition 5.1. Let Y be a compact nonpositively curved cube complex, and let Y ′ ⊂ Y

be a subcomplex. The map φ : Y ′ ⊂ Y → Y is a partial local isometry if φ is a local isometry

and both Y ′ and φ (Y ′) are locally convex subcomplexes of Y .

Definition 5.2. Let Y be a nonpositively curved cube complex and let

O = {φj : Yj ⊂ Y → Y }nj=1 be a collection of injective partial local isometries of Y where

each Yj is connected. The realization of the pair (Y,O) is the cube complex X obtained as

the following quotient space (See Figure 11):
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Figure 11. The construction of X from Y with two partial local isometries.

X = Y

n⊔
j=1

(Yj × I)
/
{(y, 0) ∼ y, (y, 1) ∼ φj (y) , ∀ y ∈ Yj}nj=1

The space X decomposes as a graph of spaces via the map X → B with Y 7→ v and

Yj × I 7→ γj where B is the bouquet of n circles {γj}nj=1 incident to a vertex v.

Lemma 5.3. Let X → ΓX be a compact graph of cube complexes with a strict horizontal

quotient X → X
E and isomorphic vertex-spaces. Let Φ ∈ Aut (ΓX) and Φ ∈ Aut (ΓX) be

automorphisms that map cubes to cubes isometrically. Suppose that the left square of the

diagram below commutes. Then there exists an automorphism Φ
E ∈ Aut

(
X
E
)

such that

the right square of the diagram below commutes:

ΓX X X
E

ΓX X X
E

Φ

q

Φ Φ
E

q

Proof. Define Φ
E
: X

E → X
E by Φ

E
(y) = q

(
Φ (q−1 (y))

)
. Then Φ

E is well-defined.

Indeed, q−1 (y) is either a point or a horizontal graph. By the commutativity of the left

square, the automorphism Φ maps points to points and horizontal graphs to horizontal

graphs. In both cases, q (q−1 (y)) is a single point. Moreover, for each point y ∈ X, we

have Φ
E
(q (y)) = q

(
Φ (q−1 (q (y)))

)
. Since q (y) is a point, q−1 (q (y)) is either the point

y or a horizontal graph containing y. In both cases, q
(
Φ (q−1 (q (y)))

)
= q

(
Φ ((y))

)
and

thus the right square commutes. By the commutativity of the left square, Φ permutes the

vertex-spaces of X which makes Φ
E an automorphism of XE that permutes copies of the

vertex-spaces. □
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Theorem 5.4. Let Y be a compact nonpositively curved cube complex and let O be the

set of injective partial local isometries of Y . Then Y embeds in a compact nonpositively

curved cube complex R where each φ ∈ O extends to an automorphism Φ ∈ Aut (R).

Proof. We construct a compact graph of spaces X whose horizontal quotient XE
= R

has the desired properties.

Let O = {φj : Yj ⊂ Y → Y }nj=1 be the collection of injective partial local isometries of Y

and let X → B be the realization of the pair (Y,O). Let γj be the loop in B corresponding

to φj. Let F = π1B and let X̂ → X be the covering map induced by the universal covering

B̃ → B such that the following diagram commutes:

X̂ B̃

X B

Then X̂ → ΓX̂ = B̃ is a nonpositively curved tree of cube complexes. By Lemma 4.2,

Remark 4.3, and Lemma 4.16, there exists a finite regular cover X → X that splits as a

graph of spaces according to the following commutative diagram and such that the horizontal

quotient X → X
E is strict and X

E is nonpositively curved. Note that each vertex-space of

X is a copy of of Y according to some fixed isomorphism.

X̂ ΓX̂

X ΓX

X B

Fix a vertex v ∈ ΓX and let Xv be the corresponding vertex-space of X. By subgroup

separability of free groups, we can assume that ΓX has no loops. Thus Xv is adjacent to

2n vertex-spaces
{
Xvj

}2n

j=1
where each Xvj is joined to Xv by a copy of Yj × I attached as

follows: Yj × {0} is identified with a copy of Yj ⊂ Xv and Yj × {1} is identified with a copy

of φ (Yj) ⊂ Xvj . Each Yj × I corresponds to a unique map φj ∈ O and thus to a unique

circle γj in B. The lift of γj at v specifies a unique automorphism Φj ∈ Aut (ΓX) that maps



5. THE CONSTRUCTION 43

Figure 12. The construction of XE.

v to vj. Then there is an automorphism Φj ∈ Aut
(
X
)

that maps Xv to Xvj such that the

following diagram commutes:

X X

ΓX ΓX

Φj

Φj

In particular, Φj maps a copy of Yj ⊂ Xv to a copy of φj (Yj) ⊂ Xvj . By Lemma 5.3,

any automorphism Φ ∈ Aut
(
X
)

induced by an automorphism of the underlying graph Φ ∈

Aut (ΓX) descends to an automorphism Φ
E ∈ Aut

(
X
E
)
. So Φ

E

j

(
q
(
Xv

))
= q

(
Φj

(
Xv

))
=

q
(
Xvj

)
. Since q

(
Xv

) ∼= Y and q
(
Xvj

) ∼= Y are embedded subcomplexes of XE amalga-

mated along Yj = φj (Yj), the restriction Φ
E

j |Yj equals φj. See Figure 12. □

Remark 5.5. Note that dim
(
X
E
)
= dim (Y ).

Remark 5.6. Following the Simple Local Gluing Lemma in [BH99], Theorem 5.4 can be

generalized to nonpositively curved metric spaces provided that some finiteness conditions

are satisfied and the edge-spaces are locally convex, closed, and complete subspaces.

Definition 5.7. Let Y be a compact nonpositively curved cube complex. A collection of

injective partial local isometries O = {φj : Yj ⊂ Y → Y }nj=1 is controlled if the corresponding

realization X → B is a controlled graph of spaces.
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Theorem 5.8 (Haglund-Wise [HW10]). Let X decompose as a finite graph of spaces,

where each vertex-space Xv and edge-space Xe is special with finitely many hyperplanes. Then

X has a finite special cover provided the attaching maps of edge-spaces satisfy the following:

(1) the attaching maps Xe → Xι(e) and Xe → Xτ(e) are injective local-isometries;

(2) distinct hyperplanes of Xe map to distinct hyperplanes of Xι(e) and Xτ(e);

(3) noncrossing hyperplanes map to noncrossing hyperplanes;

(4) no hyperplane of Xe extends in Xι(e) or Xτ(e) to a hyperplane dual to an edge that

intersects Xe in a single vertex.

Remark 5.9. For a compact special cube complex Y with a controlled collection of partial

local isometries O, the realization of the pair (Y,O) satisfies the conditions of Theorem 5.8

and thus has a finite special cover.

Theorem 5.10. Let Y be a compact special cube complexe and let O be a controlled

collection of injective partial local isometries of Y . Then there exists a compact special cube

complex R containing Y as a locally convex subcomplex such that each φ ∈ O extends to

some automorphism Φ ∈ Aut (R).

Proof. The claim follows from Remark 5.9 Theorem 5.8, Theorem 5.4 Lemma 4.5,

Lemma 4.4, and Lemma 3.2. □



CHAPTER 2

Negative Immersions and Finite Height Mappings

1. Introduction

A 2-complex X has nonpositive immersions if for any combinatorial immersion Y → X,

with Y compact, connected, and collapsed, either π1Y is trivial or χ (Y ) ≤ 0. A 2-complex

X has negative immersions if there exists c > 0 such that for any combinatorial immersion

Y → X, where Y is compact, connected, collapsed, and with no isolated edges, either π1Y is

trivial or χ (Y ) ≤ −c|Y |2 where |Y |2 is the number of 2-cells in Y . Let F be a free group and

let α : H
∼=−→ K be an isomorphism of subgroups of F . The HNN extension of F with respect

to α is the group presented by ⟨F , t : t−1Ht = K⟩. The HNN extension is ascending if

H = F , and partially ascending if H is a proper free factor of F . Ascending HNN extensions

which were studied in [FH99], are shown to have nonpositive immersions in [Wis22].

The height of a subgroup H in a group G, denoted by Height (H), is the supremal number

of distinct cosets {Hgi}i∈I such that
⋂
i∈I

Hgi is infinite [GMRS98]. In this chapter, we

define a closely related notion of “directed height” of mappings. Let H be a subgraph of

a finite graph F and let ψ : H → F be a cellular immersion. Let X be the mapping

torus representing the partially ascending HNN extension. Then the directed height of ψ is
−−−−→
Height (ψ) = inf {i : ψ−i (H) is a forest}. We will show in Lemma 4.5 that

−−−−→
Height (ψ) <∞

if and only if π1H has finite height in π1X. Our main results are:

Theorem. Let H be a subgraph of a finite graph F . Let X be the mapping torus

of a cellular immersion ψ : H → F . Suppose ψ−1 (H) is a forest. Then X has negative

immersions.

Theorem. Let F be a finite connected graph and let H ⊂ F be a subgraph. Let

ψ : H → F be a cellular immersion. Then the mapping torus of ψ has negative immersions

if and only if ψ has finite directed height.

45
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Theorem. Let F be a finite graph and let H ⊂ F be a subgraph. Let X be the

mapping torus of a cellular immersion ψ : H → F with
−−−−→
Height (ψ) <∞. Let K ⊂ π1X be a

finitely generated subgroup. Then K splits over edge groups with uniformly bounded Euler

characteristic.

In Section 2, we give some background. In Section 3 we prove a special case of the main

theorem, namely, that a partially ascending HNN extensions of free groups with malnormal

associated subgroups have negative immersions. In Section 4, we prove the main theorem,

and in Section 5 we discuss related properties and state two conjectures.

2. Background

We work in the category of CW -complexes. Let Y be a CW -complex. We denote by

Y k the k-skeleton of Y and by |Y |k the number of k-cells in Y . Given complexes X and

Y , a map Y → X is cellular if it maps Y k into Xk for all k. It is combinatorial if it maps

open cells of Y homeomorphically onto open cells of X. It is an immersion if it is locally

injective. A complex is collapsed if it has no free faces. A 1-cell (edge) is isolated if it is not

a face of a 2-cell. A 2-complex X has negative immersions if there is c > 0 such that for any

combinatorial immersion Y → X with Y compact, connected, collapsed (containing no free

faces), and containing no isolated edges, either π1Y is trivial or χ (Y ) ≤ −c|Y |2 where |Y |2
is the number of 2-cells in Y and χ (Y ) is the Euler characteristic of Y .

A group G is coherent if every finitely generated subgroup of G is finitely presented. The

proof of Theorem 2.1 can be found in [Wis20].

Theorem 2.1. Let X be a compact 2-complex with negative immersions. Then π1X is

coherent.

A graph F is a 1-dimensional CW -complex whose vertices and edges are the 0-cells and

1-cells, respectively. There exist two incidence maps τ1, τ2 : F 1 → F 0 mapping each edge

e ∈ F 1 to its boundary vertices, τ1 (e) , τ2 (e) called initial and terminal vertex, respectively.

Each edge is oriented from its initial vertex to its terminal vertex. The degree of a vertex

v relative to the graph F , denoted by degF (v), is the number of edges in F 1 containing v

as an initial or terminal vertex. An edge whose initial and terminal vertices coincide with
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v counts twice in degF (v). A leaf is a vertex of degree 1 and a spur is an edge containing

a leaf. A graph is trivial if it is a union of vertices. A tree is a non-empty graph with no

embedded circles and a forest is a disjoint union of trees. The empty graph is the graph with

no edges and no vertices. We consider the empty graph as a forest.

A graph of graphs X with underlying graph ΓX , vertex-spaces {Xv}v∈Γ0
X
, and edge-

spaces {Xe}e∈Γ1
X

is a topological space X obtained as a quotient of graphs {Xv}v∈Γ0
X

and

{Xe × I}e∈Γ1
X

in the following manner: for each edge e ∈ Γ1
X with boundary vertices v1 =

τ1 (e) , v2 = τ2 (e), the edge-space Xe × I is attached to the vertex-spaces Xv1 , Xv2 via an

outgoing attaching map Xe × {0} → Xv1 and an incoming attaching map Xe × {1} → Xv2 .

The Euler characteristic of the resulting space is given by

χ (X) =
∑
v∈Γ0

X

χ (Xv)−
∑
e∈Γ1

X

χ (Xe)

A subgroup H ⊂ G is malnormal if gHg−1∩H = 1G whenever g /∈ H. The pair H,K ⊂ G

is malnormal if gHg−1 ∩ K = 1G for all g ∈ G. An HNN extension is malnormal if the

associated subgroups form a malnormal pair.

3. Malnormal Partially Ascending HNN Extension

Definition 3.1. Let H be a subgraph of a graph F . The boundary of H in F is

∂H =
{
v ∈ H0 : degF (v) > degH (v)

}
.

Lemma 3.2. Let H ⊂ F be a subgraph of a finite leafless graph F with no trivial compo-

nents. Then:

χ (F )− χ (H) ≤ −1

2
|∂H|0

Proof. A graph J satisfies χ (J) =
∑
v∈J0

(
1− deg (v)

2

)
. We temporarily use χ to denote

the number of vertices minus the number of open edges. Let J =

(
F − H

) ⋃
v∈∂H0

S1
v be

obtained by removing H and adding a circle at each vertex of ∂H. Then

χ (F )− χ (H) = χ (F −H) = χ (J) ≤ −1

2
|∂H|0. □
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Lemma 3.3. Let H be a subgraph of a finite graph F . Let ψ : H → F be a cellular

immersion with H ⊂ ψ (H). Suppose H has no tree component and ψ−1 (H) is homeomorphic

to a forest. Then ψ (T ) ∩ ∂H ̸= ∅ for each component T ⊂ ψ−1 (H). Consequently, there

exists M=M (F,H, ψ) > 0 such that |H|1 ≤ M |∂H|0.

Proof. Note that ψ−1 (H) is not necessarily a subgraph of F . Each tree T ⊂ ψ−1 (H)

can be subdivided into a tree T̄ so that ψ|T̄ is combinatorial. Let

d = max
{
Diam

(
T̄
)

: T ⊂ ψ−1 (H) , where T̄ is the subdivision of T
}

Since H has no tree components, each component T ⊂ ψ−1 (H) has a leaf that maps to

∂H. So H ⊂
⋃
v∈∂H

Nd (v) where Nd (v) is a ball of radius d centered at v. Let M =

max
{
|Nd (v) |1 : v ∈ F 0

}
. Then |H|1 ≤ M |∂H|0. □

Definition 3.4. Let F be a graph and let H ⊂ F be a subgraph. The mapping torus

of a map ψ : H → F is the 2-complex X obtained as follows:

X = (F ⊔ (H × [0, 1])) / {(x, 0) ∼ x, (x, 1) ∼ ψ (x) : x ∈ H}

The 2-complex X decomposes as a graph of spaces X → ΓX , where ΓX is a circle with one

vertex v and one edge e. Let Xv = F and Xe = H×[0, 1] be the vertex-space and edge-space,

respectively, where Xe is attached to Xv via the maps H×{0} → Xv and H×{1} → Xv. We

refer to the images of H×{0} and H×{1} in Xv as the outgoing and incoming edge-spaces,

respectively. An edge e of X is vertical if e ⊂ F , and horizontal otherwise. Note that each

vertex of H gives rise to a horizontal edge of X, and each edge of H gives rise to a 2-cell of

X. Moreover, each horizontal edge and each 2-cell of X arises in this manner.

Remark 3.5. Let X be the mapping torus of a cellular immersion ψ : H → F , where

H is a subgraph of a finite graph F . Let Y → X be a combinatorial immersion where Y

is a nontrivial compact, connected, and collapsed 2-complex with no isolated edges. The

decomposition X → ΓX induces a decomposition Y → ΓY whose vertex-spaces are the

components of the preimage of F and whose open edge-spaces are the components of the

preimage of H × (0, 1). Let Yv be the disjoint union of the vertex-spaces, and let Ye ⊂ Yv be
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the disjoint union of the outgoing edge-spaces. Then there is a cellular immersion Ψ : Ye → Yv

whose mapping torus is Y and the following diagram commutes:

Ye Yv

H F

Ψ

ψ

Define the boundary of Y , denoted by ∂Y , as the union of the boundary vertices of Ye in Yv.

We make the following remarks:

(1) The 2-cells of Y are in correspondence with the edges of Ye.

(2) Distinct outgoing edge-spaces in a vertex-space are disjoint. This holds since Y → X

is an immersion and the outgoing edge-space in X is an embedding. In particular,

each edge of Yv is in at most one outgoing edge-space.

(3) Since Y is collapsed and has no isolated edges, each edge in Yv lies in image (Ψ).

Indeed, if there is a non-isolated edge e ̸⊂ image (Ψ), then by Remark (2), e lies in

a unique outgoing edge-space. However, outgoing edge-spaces are embedded and so

e is a free face, contradicting that Y is collapsed.

(4) No edge-space of Y has a leaf, since a leaf would give rise to a free face.

(5) No edge-space (vertex-space) is a single vertex since otherwise Y would have an

isolated edge, a free face, or be trivial.

(6) Outgoing edge-spaces are embeddings and Ψ is an immersion since these mappings

pull back from the combinatorial immersion Y → X.

(7) No vertex-space in Yv has a leaf. Indeed, by Remark (3), each edge of Yv lies in an

incoming edge-space. By Remark (4), no edge-space has a leaf. By Remark (6),

the attaching maps of edge-spaces are immersions. Since the image of an immersed

leafless graph contains no leafs, the claims holds. Furthermore, by Remark (5), no

vertex-space of Y is a tree, and so, χ (Yvi) ≤ 0 for all vertex-spaces Yvi of Y .

Theorem 3.6. Let H be a subgraph of a finite graph F . Let X be the mapping torus of

a cellular immersion ψ : H → F . Suppose ψ−1 (H) is homeomorphic to a forest. Then X

has negative immersions.

Proof. Let Y → X be a combinatorial immersion where Y is a nontrivial compact,

connected, and collapsed 2-complex with no isolated edges. As in Remark 3.5, let Y → ΓY
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be the induced graph-of-spaces decomposition, and let Ψ : Ye → Yv be the map whose

mapping torus is Y . By Remark 3.5.(3), we have Ye ⊂ image (Ψ). By Remark 3.5.(6),

the map Ψ projects to ψ and so Ψ−1 (Ye) is homeomorphic to a forest. Each component

T ′ ⊂ Ψ−1 (Ye) can be subdivided to form a tree T̄ ′ so that Ψ|T̄ ′ is combinatorial. Since

Y → X is a combinatorial immersion, the subdivided trees of Ψ−1 (Ye) embed into the

subdivided trees of ψ−1 (H) (as in Lemma 3.3), and so for each component T ′ ⊂ Ψ−1 (Ye),

we have Diam
(
T̄ ′) ≤ d, where d = max

{
Diam

(
T̄
)

: T is a component in ψ−1 (H)
}
.

Moreover, since X is compact, there is an upper bound M =M (d) on the number of edges

in any d-ball in Yv. By Remarks 3.5.(4)-(5), Ye has no tree component. By Lemma 3.3, we

have |Ye|1 ≤ M |∂Ye|0. By Lemma 3.2, and Remark 3.5.(1), we have:

χ (Y ) = χ (Yv)− χ (Ye) ≤ −1

2
|∂Ye|0 ≤ −1

2M
|Ye|1 =

−1

2M
|Y |2. □

4. Finite Height Mappings

Definition 4.1. The generalized composition of the functions α : A→ B and β : C → D,

where C ⊆ B, denoted by β • α, is β • α = β ◦ α|α−1(C).

Definition 4.2. Let F be a connected graph and let H ⊂ F be a subgraph. Let

ψ : H → F be a cellular immersion. For each i ≥ 0, let ψi denote the generalized composition

of ψ with itself i times, where ψ0 = idF : F → F . Let ψ−i (H) = (ψi)
−1

(H).

Let Zi denote the domain of ψi. Then Zi+1 = {x ∈ Zi : ψi (x) ∈ H}= ψ−i (H), for each

i ≥ 0. The combinatorial domain Di of ψi is the largest subgraph in Zi. Note that Zi is not

necessarily a subgraph of F , Zi+1 ⊆ Zi, and Di+1 ⊆ Di for all i ≥ 0. Moreover, Zi has a

part that deformation retracts to Di and a part that is a disjoint union of closed intervals

and singletons. Thus, when Zi is not homeomorphic to a forest, at least one component of

Di is not a tree. Let D∞ ⊂ H be the subgraph whose edges and vertices map into H under

all powers of ψ. Note that ∅ ⊆ D∞ ⊆ Di+1 ⊆ Di.

The directed height of ψ is:

−−−−→
Height (ψ) = inf

{
i : ψ−i (H) is a forest

}
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Note that
−−−−→
Height (ψ) = 0 if and only if H is a forest. We use the following notation:

∥ψ∥ = max
{
|ψ (e) |1 : e ⊂ H1

}
Remark 4.3.

−−−−→
Height (ψ) = ℓ < ∞ if and only if the length of embedded directed paths

in the Bass-Serre tree with infinite stabilizers is bounded by ℓ. Note that the Bass-Serre

tree is directed because of the map to the underlying graph of the HNN extension which is

a directed loop.

Definition 4.4. The height of a subgroup H in G, denoted by Height (H), is the supremal

number of distinct cosets {Hgi}i∈I such that
⋂
i∈I

Hgi is infinite.

Lemma 4.5. Let H be a subgraph of a finite graph F and let ψ : H → F be a cellular

immersion. Let X be the mapping torus of ψ. Then π1H has finite height in π1X if and

only if ψ has finite directed height.

Proof. Let H = π1H and F = π1F . Suppose H has finite height in π1X. Then

Height (H) bounds the number of distinct cosets {Hgi} such that |Hg1 ∩ · · · ∩ Hgn| is infi-

nite. So the number of edges in the Bass-Serre tree T with a common infinite stabilizer is

likewise bounded. Hence Height (H) bounds the length of embedded paths in T with infinite

stabilizer. Thus
−−−−→
Height (ψ) <∞.

Suppose
−−−−→
Height (ψ) < ∞. Then

−−−−→
Height (ψ) bounds the length of embedded paths in T

with infinite stabilizers. There is a uniform upper bound on the degree of vertices of any

subtree T ′ ⊂ T with point-wise stabilizer of T ′ infinite. Indeed, the number of incoming edges

of each vertex in T ′ is bounded by r = Height (ψ∗ (H)) in F , since every finitely generated

subgroup of a free group has finite height [GMRS98]. Thus T ′ is a rooted tree of length

≤
−−−−→
Height (ψ) and incoming degree ≤ r. So the number of edges in T ′ is ≤ r

−−−−→
Height(ψ). Any

set of cosets of the edge group corresponds to a set of edges in T . The intersection of the

corresponding conjugates point-wise stabilizes those edges, and thus point-wise stabilizes the

smallest tree T ′ containing them. Hence the number of cosets is bounded by ≤ r
−−−−→
Height(ψ). □

Lemma 4.6. Let H be a subgraph of F . Let ψ : H → F be a cellular immersion with
−−−−→
Height (ψ) = ℓ <∞. Then D∞ is a (possibly empty) forest.
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Proof. We have D∞ ⊆ Dℓ+1. So, it suffices to show that Dℓ+1 is a forest. Suppose C ⊂

Dℓ+1 is an embedded circle. Then ψℓ (C) ⊂ H and so ψ−ℓ (H) is not a forest, contradicting

the assumption. □

Lemma 4.7. Let F be a connected graph and let H ⊂ F be a finite subgraph. Let X be the

mapping torus of a cellular immersion ψ : H → F . If ψ has infinite directed height, then H

contains a connected subgraph D ⊂ H with χ (D) ≤ 0 such that ψ (D) = D. Consequently,

X contains a subcomplex Y ↪→ X, where Y is a connected, compact, and collapsed 2-complex

with no isolated edges and χ (Y ) = 0.

Proof. Since ψ has infinite directed height, for each i ≥ 0, we have ψ−i (H) is not a

forest. So each Di contains an embedded circle. Since H is finite and Di+1 ⊆ Di, there is an

integer p such that for all j > p we have Dj+1 = Dj. Then Dj contains a component D with

χ (D) ≤ 0 and ψ (D) = D. In particular, since ψ is an immersion, ψ (Dcore) = Dcore, where

Dcore is the core of D. The mapping torus of ψ restricted to Dcore provides Y . □

Definition 4.8. Let Q → ΓQ be a graph of spaces where ΓQ is equal to a subdivided

interval [0, k] directed from 0 to 1 ≤ k ≤ ∞. Suppose each vertex-space Qvi is a tree where

Qv0 has exactly one edge f0. For each edge-space Qei × I there is an outgoing attaching map

Qei × {0} → Qvi−1
and an incoming attaching map Qei × {1} → Qvi . When each outgoing

attaching map is an embedding onto a single edge f of the vertex-space, then Q is a ladder

and f is a connecting edge. When each attaching map is bijective, then Q is a fan. The rim

of a fan Q, denoted by Rim (Q), is Qvk . The length of Q is Length (Q) = k. We allow the

case k = ∞ and say that Q is an infinite ladder/fan. We say Q arises from f0, and f0 gives

rise to Q.

The space Q is a cell complex as follows: we have already declared each Qvi is a tree

and so it remains to describe the additional 1-cells and 2-cells of Q. Each open edge-space

Qei × (0, 1) has a product structure induced by the graph Qei . See Figure 1. The edges

in the vertex-spaces are vertical and the remaining ones are horizontal. Each vertex in the

image of Qei → Qvi−1
gives rise to a horizontal edge in Q. Each edge f in the image of

Qei → Qvi−1
gives rise to a 2-cell S ⊂ Q. We say S arises from f .
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Figure 1. Left: A ladder of length 4 emerging from e1. Right: A fan of

length 3 emerging from e.

Let X be a 2-complex with a graph-of-spaces structure whose 1-skeleton is partitioned

into horizontal and vertical edges, where the vertical edges are the edges of vertex-spaces,

and the horizontal edges are the remaining ones. An immersed ladder of X is a combinatorial

immersion λ : L→ X that maps vertical/horizontal edges of a ladder L to vertical/horizontal

edges of X. An immersed fan φ : Q → X is defined analogously. An edge e ⊂ X has a

k-ladder (resp. k-fan), if there is an immersed ladder λ : L → X (resp. immersed fan

φ : Q → X) of length k emerging from e′ such that λ (e′) = e (resp. φ (e′) = e). When X

is the mapping torus of ψ : H → F , we require that immersions preserve the orientation of

horizontal edges.

Let X be the mapping torus of ψ : H → F . Let Hi = Di −Di+1 be the subgraph whose

edges give rise to i-fans but not (i + 1)-fans. When Hi = ∅, we have Di = Di+1 = D∞ is

the subgraph whose edges give rise to infinite fans. Then D∞ is ψ-invariant. Let m = m(ψ)

denote the supremum of lengths of maximal finite fans in X. Note that when H is finite we

have m <∞ since any maximal finite fan is determined by the edge it arises from.

Lemma 4.9. Let H be a subgraph of a finite connected graph F . Let X be the mapping

torus of a cellular immersion ψ : H → F with
−−−−→
Height (ψ) < ∞. Let m = m (ψ) be the

maximal length of immersed finite fans in X. Let Y → X be a combinatorial immersion,

where Y is a nontrivial, compact, connected, and collapsed 2-complex with no isolated edges.

Let Y → ΓY be the induced graph-of-spaces decomposition and let ∂Y be the associated

boundary. Then there exists M=M (H,F, ψ) > 0 such that each 2-cell S of Y lies in the

image of an immersed ladder λ : L → Y with Length (L) ≤ m + 1 emerging from e where

Dist (λ (e) , ∂Y ) ≤M .
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Figure 2. On the left: Case 1, and on the right case 2.

Proof. Let S be a 2-cell of Y . Since Y is collapsed, there is an immersed ladder

λ : L→ Y with Length (L) = m+1 and whose (m+1)-th 2-cell maps to S. Let {e1, . . . , em+1}

be the connecting edges of L. For 1 ≤ i ≤ m + 1, let Ovi be the outgoing edge-space

containing λ (ei) and let Yvi be the vertex-space containing Ovi . Let φ : Q → Y be the

maximal immersed fan emerging from λ (e1). See Figure 2.

Case 1: If Length (Q) = k ≤ m, then λ (ek+1) ⊂ φ (Rim (Q)) ∩ Ovk+1
. Since Q is

maximal, image
(
Rim (Q) → Yvk+1

)
̸⊂ Ovk+1

, and so φ (Rim (Q)) ∩ ∂Ovk+1
̸= ∅. Since fans

in Y project to fans in X, we have |Rim (Q) |1 ≤ ∥ψ∥m. Thus, Dist (λ (ek+1) , ∂Y ) ≤ ∥ψ∥m.

Case 2: If Length (Q) > m, then the image of Q → Y → X is an infinite fan of X.

Let T ⊂ Ov1 be the maximal connected subgraph containing λ (e1) and whose edges give

rise to (m + 1)-fans in Y . Hence T immerses in D∞. Since
−−−−→
Height (ψ) < ∞, it follows

from Lemma 4.6 that D∞ is a forest. So T is a tree with Diam (T ) ≤ Diam (D∞). Let

u ∈ T be a leaf. Since Y is collapsed, outgoing edge-spaces have no leaves. So there

is an edge f ⊂ Ov1 containing u with f ̸⊂ T . By maximality of T , the maximal fan

φ′ (Q′) emerging from f has length k ≤ m. So φ′ (Rim (Q′)) ∩ ∂Ovk+1
̸= ∅. Hence,

Dist (λ (ek+1) , ∂Y ) ≤ Diam (D∞) + ∥ψ∥m.

The claim follows with M = Diam (D∞) + ∥ψ∥m. □

Theorem 4.10. Let F be a finite connected graph and let H ⊂ F be a subgraph. Let X

be the mapping torus of a cellular immersion ψ : H → F . Then X has negative immersions

if and only if ψ has finite directed height.
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Proof. The “only if” direction holds by Lemma 4.7.

Suppose
−−−−→
Height (ψ) < ∞. Let Y → X be a combinatorial immersion where Y is a

nontrivial compact, connected, and collapsed 2-complex with no isolated edges. Let Y → ΓY

be the induced graph-of-spaces decomposition. For each v ∈ Γ0
Y , let Yv be the corresponding

vertex-space and let Ov be the disjoint union of outgoing edge-spaces in Yv. Let m = m (ψ)

be the supremal length of maximal finite fans in X. By Lemma 4.9, there exists M > 0 such

that each 2-cell of Y lies in a ladder of length ≤ m+ 1 emerging from a vertical edge e with

Dist (e, ∂Y ) ≤ M . Let ∂′Y be the set of boundary points of Y that are at a distance ≤ M

from such edges e. So ∂′Y ⊆ ∂Y =
⊔
v∈Γ0

Y

∂Ov. Since Y → X is a combinatorial immersion,

there is an upper bound N on the number of edges in an M -ball in the vertex-spaces of

Y . Note that N = N (F,M) is a function of F and M . Consider the M -balls centered at

vertices of ∂′Y . In each such ball, there are at most N edges and each edge gives rise to at

most ∥ψ∥m ladders of length ≤ (m+1). The number of 2-cells in each ladder is ≤ (m+1).

Then:

|Y |2 ≤
∑
v∈∂′Y

(m+ 1)∥ψ∥mN = (m+ 1)∥ψ∥mN |∂′Y |0 ≤ (m+ 1)∥ψ∥mN |∂Y |0

and so
|Y |2

(m+ 1)∥ψ∥mN
≤ |∂Y |0

By Remark 3.5.(7), the vertex-spaces of Y have no leaves. Then the conclusion holds

by the following double inequality. Its first equality is straightforward. Its last inequality

follows from above, and its middle inequality holds by Lemma 3.2.

χ (Y ) =
∑
v∈Γ0

Y

(χ (Yv)− χ (Ov)) ≤ −1

2
|∂Y |0 ≤ −1

2(m+ 1)∥ψ∥mN
|Y |2 □

Definition 4.11. Let F be a free group. There is a natural generalization of fully

irreducible endomorphisms of free groups to fully irreducible partial endomorphisms. A

partial endomorphism ψ : H → F is fully irreducible if there does not exist n > 0, a proper

free factor H′ ⊂ H, and g ∈ F such that ψn (H′) ⊂ g−1H′g. See Definition 4.1 for the

notion of generalized composition explaining ψn. The standard notion of fully irreducible

endomorphism focuses on the case where H = F [BH92].
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The standard 2-complex associated to a presentation of a group G is a 2-dimensional cell

complex formed by a single vertex, one circle at the vertex for each generator of G, and a

2-cell for each relation in the presentation. The attaching maps of the 2-cells are determined

by the presentation.

In the language of Definition 4.11, our result shows the following:

Theorem 4.12. Let H be a proper free factor of a finitely generated free group F , and

let ψ : H → F be a monomorphism. Let X be the standard 2-complex of the HNN extension

of F with respect to ψ. Then X has negative immersions if and only if ψ is fully irreducible.

Proof. The proof follows from Lemma 4.5, Lemma 4.6, Lemma 4.7, and Lemma 4.9. □

Remark 4.13. If c =
1

2(m+ 1)∥ψ∥mN
is the constant in χ (Y ) ≤ −c|Y |2, then 0 <

c < 1.

Remark 4.14. In the proof of Theorem 4.10, we assume that Y has no isolated edges, as

required by the definition of Negative Immersions. However, the claim that χ (Y ) ≤ −c|Y |2
holds even if we allow Y to have isolated edges. This follows from a simple induction on the

number of isolated edges in Y . Indeed, the base case holds by Theorem 4.10. Now, let e be

an isolated edge of Y . Then either e is not separating and Y = Y1 ∪ e, or e is separating and

Y = Y1 ∪ e ∪ Y2. In the former case, we have

χ (Y ) < χ (Y − e) = χ (Y1) ≤ −c|Y1|2 = −c|Y |2

where the last inequality holds by induction. In the latter case, we have

χ (Y ) = χ (Y1) + χ (Y2)− 1 < χ (Y1) + χ (Y2) ≤ −c (|Y1|2 + |Y2|2) = −c|Y |2

where the last inequality holds by induction.

Motivated by our desire to verify Property 11 of the next section, we note the following

consequence of the preceding statements. This does not prove Property 11 since it does

not assert that the edge groups in the splitting of K equal the intersections of K ∩ Hg, for

g ∈ π1X.
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Theorem 4.15. Let F be a finite connected graph and let H ⊂ F be a subgraph. Let

X be the mapping torus of a cellular immersion ψ : H → F with
−−−−→
Height (ψ) < ∞. Let

K ⊂ π1X be a finitely generated subgroup. Then K splits over edge groups with uniformly

bounded Euler characteristic.

Proof. By Theorem 4.10, X has negative immersions. By Theorem 2.1, π1X is coherent.

So there is a combinatorial immersion Y → X, with π1Y
≃−→ K where Y is compact and

connected. We can assume that Y is collapsed since collapsing is a homotopy equivalence. Let

Y → ΓY be the graph-of-spaces decomposition induced by the decomposition X → ΓX . Let

VY and OY be the disjoint union of vertex-spaces and outgoing edge-spaces of Y , respectively.

We show that χ (OY ) is uniformly bounded by a function of rank (π1Y ). In fact, we show

that χ (OY ) ≥ χ (Y )

c
. By Theorem 4.10, Remark 4.13 and Remark 4.14, there is a constant

c ∈ (0, 1) such that χ (VY ) − χ (OY ) ≤ −c|Y |2. So χ (OY ) ≥ χ (VY ) + c|Y |2. We have

χ (Y ) = χ (VY ) − E + |Y |2, where E are the number of the horizontal edges in Y . Since

c− 1 < 0, we have

χ (OY ) ≥ χ (Y ) + E − |Y |2 + c|Y |2 ≥ χ (Y ) + (c− 1)|Y |2 ≥ χ (Y )

c

where the last inequality follows by By Theorem 4.10. □

5. Discussion of Related Properties

Let H be a subgraph of a finite connected graph F and let H = π1H and F = π1F .

Let X be the mapping torus of a cellular immersion ψ : H → F . Consider the following

properties:

(1) π1X is locally quasiconvex.

(2) F and H are quasiconvex.

(3) F and H have finite height.

(4) π1X has the finitely generated intersection property.

(5) X has negative immersions.

(6) π1X contains no subgroup isomorphic to an ascending HNN extension of a finitely

generated free group.

(7) π1X is hyperbolic.
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(8) π1X contains no Baumslag-Solitar subgroup BS (1,m) for m > 0.

(9) π1X has a quasiconvex hierarchy.

(10) π1X is virtually special.

(11) K ∩H is finitely generated whenever K ⊂ π1X is finitely generated.

(12) Each finitely generated subgroup of π1X is tamely generated.

(1)⇒ (2) is immediate. When π1X is hyperbolic, we have (2) ⇐⇒ (3), where (⇒) holds

by [GMRS98] and (⇐) holds by [Mit04]. A group has the finitely generated intersection

property (FGIP) if the intersection of any two finitely generated subgroups is also finitely

generated. For instance, free groups have the FGIP [How54]. (4)⇒(6) holds by [BW22]

and (1) ⇒ (4) holds by [Sho91]. (5)⇒(6) since ascending HNN extensions of free groups

have Euler characteristic zero, and (6)⇒(3) by Lemma 4.5 and Lemma 4.7. (5) ⇐⇒ (3)

holds by Theorem 4.10, and (5)⇒(8) is a special case of (5)⇒(6). It is well known that

(7)⇒(8), e.g [ABC+91]. (7) + (9)⇒(10) by [Wis12]. (11)⇒(12) since if K ∩ H is finitely

generated for each finitely generated K, then Kg ∩H is finitely generated for each g, and so

K∩Hg is finitely generated for each g. See [BW13] for the definition of “tamely generated”.

(12)⇒ (1) holds by [BW13]. (5) ⇒ (9) holds by the following argument: (5) ⇒ (6) and by

[CW22], we have (6)⇒ π1X ⊂ π1X
′ where X ′ is the mapping torus of a fully irreducible

nonsurjective map of a graph and X ′ is hyperbolic relative to X. By [Rey11], this implies

π1X
′ is hyperbolic since it contains no BS (1,m) and so (5)⇒ (7) holds. Since (5)⇒(2), we

have (2)+(7) ⇒ (9) since π1X splits along H and the vertex-group is free.

We end this chapter by stating the following conjectures:

Conjecture 5.1. (5) ⇒ (1) and hence (5) ⇒ (11).

Conjecture 5.2. If X is a 2-complex with negative immersions, then π1X has a finite

index subgroup that is isomorphic to the fundamental group of a mapping torus of a finite

height immersion of graphs ψ : H → G.

Conjecture 5.3. If G is a locally quasiconvex hyperbolic group, then G has a finite

index subgroup that is isomorphic to the fundamental group of a mapping torus of a finite

height immersion of graphs ψ : H → G.



CHAPTER 3

Maximal Ascents

1. Introduction

Weinbaum conjectured in [Wei90] that any nonperiodic word W of length > 1 has a

cyclic permutation that is a concatenation uv where each of U and V appear exactly once as a

prefix of a cyclic permutation of W and W−1. This conjecture was proved by Duncan-Howie

in [DH92] using the right-orderability of one-relator groups [BH72]. This provided the

motivation to investigate whether maximal ascents are uniquely positioned in nonperiodic

words. Our main result is:

Theorem Let X = {x1, x2} be an alphabet and let W ∈ F (X) be a cyclically reduced

nonperiodic word. Then W has a cyclic permutation W ′ = AD where:

(1) A is the uniquely positioned maximal ascent in W .

(2) If D is not uniquely positioned, then it appears as an internal subword of A.

(3) Using the Magnus ordering on F , we have D = 1F if and only if W is monotonic.

2. Ascents and Descents

Let X be an alphabet and let W = y1 · · · yn be a word in X∗ = X ∪X−1. We say W is

reduced if yi ̸= y−1
i+1 for all 1 ≤ i < n. It is cyclically reduced if W is reduced and x1 ̸= x−1

n .

We henceforth consider only cyclically reduced words. Each W represents an element g in

the free group F = F (X), and each g ∈ F is represented by a unique reduced word W . For

simplicity, we shall use W to denote both the element of F and its representation in X∗.

The spelling of W is W = y1 · · · yn where yi ∈ X∗. The empty word is denoted by 1F . The

length of W , denoted by |W |, is n if W = y1 · · · yn for yi ∈ X∗. We also represent a word

W as a finite graph denoted by W , that is linear, directed, and labeled in X∗. The empty

word is then represented by a single vertex. A word V is a subword of W if W = SV U for

some reduced words S and U with |W | = |S| + |V | + |U |. Note that each subword V of W

59
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Figure 1. We represent words as line segments. Here we see W and W ′

overlap along U and V .

is represented by a connected subgraph V ⊂ W .The subword V is a prefix if S = 1F and a

suffix if U = 1F . If both S ̸= 1F and U ̸= 1F , then V is internal in W . Subwords U and

V of W are equivalent if they have the same spelling and appear in different positions in

W .. We write U ≡ V . Two subwords of W overlap if a nonempty suffix of one is a prefix

of the other and neither is a subword of the other. We shall represent words and overlaps

diagrammatically as line segments. See Figure 1. W is periodic if there is a cyclically reduced

word (period) U ∈ F with Uk = W for some k > 1. If U is a prefix of W , with W = UV ,

then the word W ′ = V U is a cyclic permutation of W . Working in the free group, we have

W ′ = U−1WU , where W ′ is reduced if and only if W is cyclically reduced. Let R
W

be the

set of cyclic permutations of W and W−1. A nontrivial reduced word U ∈ F is a uniquely

positioned in W if U is the prefix of exactly one element of R
W

. For example, aa is uniquely

positioned in W = baaba. The word aba is not uniquely positioned in W since it is a prefix

in both ababa and abaab.

A bi-ordered group is a pair (G,≺) where G is a group and ≺ is a total order on G that

is invariant under both right and left group translation. A well known result of Shimbireva

[Shi47] states that the free group on two generators (and so every non-abelian free group)

is bi-orderable. This result is sometimes attributed to Vinogradov and Magnus as well

[DNR14].

Definition 2.1. Let F = F (X) be the free group on an alphabet X. Let ≺ be a bi-

order on F . A word U ∈ F is an ascent if each prefix and each suffix of U is ≻ 1F , and U
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is a descent if each prefix and each suffix of U is ≺ 1F . The maximal ascent A of W is the

greatest ascent over all subwords of R
W

.

The peak (resp. low) in W is the largest (resp. smallest) prefix of W with respect to ≺.

Remark 2.2. Let W be a cyclically reduced word representing an element in F . Let ≺

be a bi-order on F . Then:

(1) The maximal ascent of W is the largest subword in R
W

with respect to ≺.

(2) The inverse of an ascent is a descent.

(3) If two ascents in a given word overlap, then the overlap is also an ascent.

(4) Ascents and descents in a given word have no overlaps.

(5) Ascents and descents are always nontrivial. Peaks and lows, on the other hand can

be trivial.

Lemma 2.3. Let W be a cyclically reduced word of (F(X),≺). Let A be the maximal

ascent in W . Let M and m be the peak and low of W . If A is a subword of W , then W ≻ 1F

and M = mA. Consequently, W has exactly one subword equivalent to A and no subword of

W−1 is equivalent to A. Moreover, if W = AD with D ̸= 1F , then D is a descent.

Proof. Let W = PAQ, where P and Q are subwords of W . If W ≺ 1F , then A ≺

P−1Q−1. But P−1Q−1 is an initial subword of a conjugate of W−1. Indeed, we have W−1 =

Q−1A−1P−1. Then AQ (Q−1A−1P−1)Q−1A−1 = P−1Q−1A−1 is a cyclic permutation of W−1.

This leads to a contradiction since A is the maximal ascent in W . Thus, if A is a subword

of W , then W ≻ 1F and so A is not a subword of conjugates of W−1 ≺ 1F .

Let W = y1 · · · yn and let gi = y1 · · · yi. Suppose gj = giA for some 0 ≤ i, j ≤ n. Then

gj ⪯M and gi ⪰ m. So g−1
i ⪯ m−1. Since ≺ is a bi-order, A = g−1

i gj ⪯ m−1M .

We now show that m−1M is a subword of W . Note that m−1M is a subword of W

whenever |m| < |M |. Let m = y1 · · · ys and M = y1 · · · yt. Then s ̸= t. Suppose s > t.

Then m−1M = y−1
s · · · y−1

t+1 is a subword in W−1. By the maximality of A, we have A ⪯

m−1M ⇒ A = m−1M . So A is a subword of W−1, which is a contradiction. Thus, s < t and

A = m−1M is a subword of W .
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It remains to show that A does not appear twice in W . Following [DH92], if gj = giA,

then:

gj = gi
(
g−1
i gj

)
⪰ m

(
g−1
i gj

)
= m(m−1M) = M

and so gj =M and gi = m. Thus A appears exactly once in W .

Suppose W = AD where A is the maximal ascent in W and D ̸= 1F . Then D ≺ 1F

since otherwise AD > A contradicting the maximality of A. If D has a prefix U ≻ 1F , then

AU ≻ A which is a contradiction. If D has a suffix U ≻ 1F then UA ≻ A contradicting the

maximality of A. Thus D is a descent. □

Remark 2.4. When W = AD, the peak M is A and the low m is 1F .

Each cyclic permutation of W = AD appears as a subword of W n with n ≥ 2. To show

that A is uniquely positioned in W , it suffices to show that W 2 has exactly 2 subwords

equivalent to A. That is, A appears as a subword of W 2 in only the expected positions

which are W 2 = ADAD. In general, there are n ≥ 2 occurrences of the subword A in

W n = AD · · ·AD︸ ︷︷ ︸
n times

. To prove the main theorem, we will show that W 2 contains exactly two

occurrences of the maximal ascent A.

Definition 2.5. Let W = AD and W ′ = AD′ be overlapping cyclic permutations in

W n where W ′ = U−1WU and n ≥ 2. A cascade in W n induced by the shift U is a sequence

of concatenated subwords {Ui}i≥0 in W where Ui ≡ U for each i. See Figure 2.

Proposition 2.6. Let W ∈ F (X) be a cyclically reduced nonperiodic word. Then the

maximal ascent in W is uniquely positioned.

Proof. Let A be the maximal ascent in W and suppose without loss of generality that

W = AD. If D = 1F , then W = A and so A is uniquely positioned in W since W is

nonperiodic and thus all its cyclic permutations are distinct. If D ̸= 1F , then by Lemma 2.3

D is a descent. Following Remark 2.4, suppose W 2 = ADAD contains a third occurrence

of A. Since A appears exactly once in each W , the third occurrence of A begins in the first

factor W and ends in the second one. Let W ′ = AD′ be a cyclic permutation of W starting

with A. Then D′ is a descent with |D′| = |D|. Since W is nonperiodic, it has distinct
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Figure 2. Since U is a prefix in AD, it is a prefix in AD′. The rightward

shift of AD′ by U induces a cascade U = U0, U1, U2, . . . in AD, where the Ui

concatenate and Ui ≡ U for each i.

conjugates, and so D′ ̸≡ D. Moreover, W has a prefix U0 such that W ′ = U−1
0 WU0. The

shift U0 induces a cascade U0, U1, U2, . . . in W = AD.

Claim : |D| < |U0| < |A| and |U0| is not a divisor of |W |.

Proof of Claim. We have W ′ = AD′ = U−1
0 ADU0 with |U0| < |W | = |A| + |D|. If

|U0| > |A|, then W ′, and thus A, begins in the interior of D. Since ascents and descents do

not overlap, the ascent A is internal in D, and so A is not unique in W , which contradicts

Lemma 2.3. If |U0| < |D|, then the ascent A appearing in W ′ ends in the interior of D which

is a contradiction. If |U0| = |D|, then A and D have a common suffix which is impossible.

Since the subwords Ui are concatenated, if
|W |
|U0|

= k ∈ N, then W = Uk
0 which is a

contradiction. □

Note that U0 = A1D
′ where A1 is an ascent. Indeed, U0 is a prefix of A (in W ) and so

each prefix of A1 is ≻ 1F ; and A1 is a suffix of A (in W ′) and so each suffix of A1 is ≻ 1F .

Consider the cascade induced by U0 = A1D
′. Then W = AD is a proper subword of Un

0

for some n > 1. Indeed, the cascade ensures that the ascent A in W appears as a subword

of Un
0 for some n > 1. However, since U0 ≡ A1D

′ where A1 is an ascent and D′ is a descent,

and A1 does not overlap with D in W = AD, the only possibility is for A1 to be long enough

so that the last occurrence of A1 in W = AD must begin in A, contain D, and end in the
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Figure 3. The cascade induced by U0 = A1D
′ terminates with D appearing

as an internal subword of A1. See the region inside the ellipse. So A1 has a

prefix U2 = A2D which itself is a shift that induces a cascade in A1D
′. In this

example, the cascade induced by A2D immediately leads to a contradiction

since it forces an overlap between the ascent A2 and the descent D′. See the

region inside the circle.

interior of the second W factor in W 2. Let Un be the first term that is not in W . Then

Un ≡ A1D
′ and W = AD overlap. So D appears as a subword of U0. For D to appear

as a subword of U0, it is necessary that D appears as an internal subword of A1, since D

is not equivalent to D′ and D does not overlap with the ascent A1. So we have a new

overlap of two subwords equivalent to U1. See Figure 3. The shift U2 = A2D induces a new

cascade that follows the same pattern as above with the difference being that U2 = A2D is

a concatenation of an ascent A2, with |A2| < |A1| < |A|, and D instead of D′. Note that

by the above Claim, |D′| = |D| < |U2| < |A1|. Once again, the cascade of copies of A2D

requires that the copies of D must not coincide with D′ and cannot overlap with A2. So D

appears as a subword of A2. Thus A2 contains a subword U3 = A3D
′ where |A3| < |A2| is an

ascent. As this process repeats, the shift Uj will be a concatenation of an ascent Aj and the
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descent D if j is even, and Uj will be a concatenation of an ascent Aj and the descent D′ if

j is odd. For each cascade, the ascent Aj in the shift Uj = AjD (or Uj = AjD
′) has shorter

length. Since |W | < ∞ and by induction, this process terminates with either an overlap of

an ascent and a descent, or by forcing D = D′. Both lead to contradictions. □

3. Magnus Bi-order

The following describes an explicit bi-order on free groups due to Magnus [MKS66]. Let

F = F (x1, x2) be the free group on generators x1, x2. Let Λ = Z[[X1, X2]] be the ring of

formal power series in the non-commuting variables X1 and X2, one for each generator of F .

Define the multiplicative homomorphism µ : F → Λ as:

µ :

xi 7→ 1 +Xi

x−1
i 7→ 1−Xi +X2

i −X3
i + · · ·

For example:

µ
(
x1x

−1
2

)
= (1 +X1)(1−X2 +X2

2 −X3
2 + · · · )

= 1 +X1 −X2 +O (2)

where O (n) refers to the sum of all terms of order ≥ n. Then µ is injective and F embeds

in the group of units 1 + O (1) ⊂ Λ. Order the elements of Λ as follows. First adopt the

convention of writing the elements of Λ in standard form starting from lower degree terms

in an increasing order. Then, order the terms with the same degree lexicographically where

X1 ≻ X2. Compare two elements of Λ according to the coefficients of the first term at which

they differ. For example, 1 +X1 + 3X2 + O(2) ≻ 1 +X1 +X2 + O(2) since the first term

at which they differ is X2, and the coefficient of X2 in the first element is greater than the

coefficient of X2 in the second one. Under this order, 1 +O(1) ⊂ Λ is a bi-ordered group.

Define an ordering ≻ on F by:

v ≻ w ⇐⇒ µ (v) ≻ µ (w)

It is readily verified that ≻ is both left and right invariant.
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Definition 3.1. A word W = y1 · · · yn ∈ F (X) is monotonic if either yi ∈ X for each

1 ≤ i ≤ n, or yi ∈ X−1 for each 1 ≤ i ≤ n.

Theorem 3.2. Let X = {x1, x2} be an alphabet and let F = F (X) be the free group on

X equipped with a bi-order ≺. Let W ∈ F be a cyclically reduced nonperiodic word of length

> 1. Then W has a cyclic permutation W ′ = AD where:

(1) A is the uniquely positioned maximal ascent in W .

(2) If D is not uniquely positioned, then it appears as an internal subword of A.

(3) Using the Magnus ordering on F , we have D = 1F if and only if W is monotonic.

Proof. Let A be the maximal ascent inW . By Proposition 2.6, A is uniquely positioned.

Let W ′ = AD where D is not uniquely positioned in W . If D ̸= 1F , then by Lemma 2.3,

D is a descent. Suppose D′ ≡ D is a subword in AD. By Remark 2.2, D′ has no overlap

with A, and so it appears as an internal subword of A. Moreover, if D = 1F , then W = A

and D is the empty word between any concatenated subwords of W . Thus D appears as an

internal, albeit trivial, subword of W . Note that by assumption, |W | > 1 and so W has at

least two subwords.

Choose the Magnus bi-ordering corresponding to x1 ≻ x2 ≻ 1F . Then any nonempty

word in X is ≻ 1F . If W is monotonic, then so is each cyclic permutation of W . Suppose

without loss of generality that W ′ = y1 · · · yn with yi ∈ X, for 1 ≤ i ≤ n. By the maximality

of A, if D ̸= 1F , then it is a descent, which is impossible since all monotonic words are ≻ 1F .

Suppose D = 1F . Then W ′ is the maximal ascent. Suppose W ′ is not monotonic. Then

W = Ux−1
1 V for some words U, V ∈ F . The case W = Ux−1

2 V is similar. Let

µ(U) = 1 +M1X1 +M2X2 +O(2) and µ(V ) = 1 +N1X1 +N2X2 +O(2)

where Mi, Ni ∈ Z. Then

µ (V U) = 1 + (M1 +N1)X1 + (M2 +N2)X2 +O(2)

Moreover, we have

µ (W ′) = (1 +M1X1 +M2X2 +O(2))(1−X1 +O(2))(1 +N1X1 +N2X2 +O(2))

= 1 + (M1 +N1 − 1)X1 + (M2 +N2)X2 +O(2)
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Hence W ′ ≺ V U . But V U is a prefix of the cyclic permutation x1U
−1W ′Ux−1

1 = V Ux−1
1

contradicting the maximality of W ′. □



Bibliography

[ABC+91] J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short.

Notes on word hyperbolic groups. In Group theory from a geometrical viewpoint (Trieste, 1990),

pages 3–63. World Sci. Publ., River Edge, NJ, 1991. Edited by H. Short.

[Bau72] Gilbert Baumslag. A non-cyclic, locally free, free-by-cyclic group all of whose finite factor groups

are cyclic. Bull. Austral. Math. Soc., 6:313–314, 1972.

[Bau93] Gilbert Baumslag. Topics in combinatorial group theory. Lectures in Mathematics ETH Zürich.

Birkhäuser Verlag, Basel, 1993.

[BH72] R. G. Burns and V. W. D. Hale. A note on group rings of certain torsion-free groups. Canad.

Math. Bull., 15:441–445, 1972.

[BH92] Mladen Bestvina and Michael Handel. Train tracks and automorphisms of free groups. Ann. of

Math. (2), 135(1):1–51, 1992.

[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature. Springer-Verlag,

Berlin, 1999.

[BW13] Hadi Bigdely and Daniel T. Wise. Quasiconvexity and relatively hyperbolic groups that split.

Michigan Math. J., 62(2):387–406, 2013.

[BW22] Jacob Bamberger and Daniel T. Wise. Failure of the finitely generated intersection property for

ascending HNN extensions of free groups. Internat. J. Algebra Comput., 32(5):885–893, 2022.

[CP91] Maxime Crochemore and Dominique Perrin. Two-way string-matching. J. Assoc. Comput. Mach.,

38(3):651–675, 1991.

[CV78] Yves Césari and Max Vincent. Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris

Sér. A-B, 286(24):A1175–A1177, 1978.

[CW22] William Chong and Daniel T. Wise. Embedding of one-sided clean hnn extensions in ascending

hnn extensions. 32(5), 2022.

[DH92] Andrew J. Duncan and James Howie. Weinbaum’s conjecture on unique subwords of nonperiodic

words. Proc. Amer. Math. Soc., 115(4):947–954, 1992.

[DNR14] Bertrand Deroin, Andrés Navas, and Cristóbal Rivas. Groups, orders, and dynamics. 2014.

[FH99] Mark Feighn and Michael Handel. Mapping tori of free group automorphisms are coherent. Ann.

of Math. (2), 149(3):1061–1077, 1999.

68



BIBLIOGRAPHY 69

[GMRS98] Rita Gitik, Mahan Mitra, Eliyahu Rips, and Michah Sageev. Widths of subgroups. Trans. Amer.

Math. Soc., 350(1):321–329, 1998.

[Gro87] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst.

Publ., pages 75–263. Springer, New York, 1987.

[Her95] Bernhard Herwig. Extending partial isomorphisms on finite structures. Combinatorica, 15(3):365–

371, 1995.

[Her98] Bernhard Herwig. Extending partial isomorphisms for the small index property of many ω-

categorical structures. Israel J. Math., 107:93–123, 1998.

[HL00] Bernhard Herwig and Daniel Lascar. Extending partial automorphisms and the profinite topology

on free groups. Trans. Amer. Math. Soc., 352(5):1985–2021, 2000.

[HN02] Tero Harju and Dirk Nowotka. Density of critical factorizations. Theor. Inform. Appl., 36(3):315–

327, 2002.

[HN06] Tero Harju and Dirk Nowotka. On unique factorizations of primitive words. Theoret. Comput.

Sci., 356(1-2):186–189, 2006.

[How54] A. G. Howson. On the intersection of finitely generated free groups. J. London Math. Soc.,

29:428–434, 1954.

[Hru92] Ehud Hrushovski. Extending partial isomorphisms of graphs. Combinatorica, 12(4):411–416,

1992.

[HW10] Frédéric Haglund and Daniel T. Wise. Coxeter groups are virtually special. Adv. Math.,

224(5):1890–1903, 2010.

[HW22] Frédéric Haglund and Daniel T. Wise. Vh-ification. pages 1–33, 2022.

[LS77] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Ergebnisse der Mathematik

und ihrer Grenzgebiete, Band 89. Springer-Verlag, Berlin-New York, 1977.

[Lyn54] R. C. Lyndon. On Burnside’s problem. Trans. Amer. Math. Soc., 77:202–215, 1954.

[Mit04] Mahan Mitra. Height in splittings of hyperbolic groups. Proc. Indian Acad. Sci. Math. Sci.,

114(1):39–54, 2004.

[MKS66] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory: Presenta-

tions of groups in terms of generators and relations. Interscience Publishers [John Wiley & Sons,

Inc.], New York-London-Sydney, 1966.

[Rey11] Patrick Reese Reynolds. Dynamics of irreducible endomorphisms of F(N). ProQuest LLC, Ann

Arbor, MI, 2011. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

[RZ93] Luis Ribes and Pavel A. Zalesskii. On the profinite topology on a free group. Bull. London Math.

Soc., 25(1):37–43, 1993.

[Shi47] H. Shimbireva. On the theory of partially ordered groups. Rec. Math. [Mat. Sbornik] N.S.,

20(62):145–178, 1947.



70 BIBLIOGRAPHY

[Sho91] Hamish Short. Quasiconvexity and a theorem of Howson’s. In É. Ghys, A. Haefliger, and A. Ver-

jovsky, editors, Group theory from a geometrical viewpoint (Trieste, 1990), pages 168–176. World

Sci. Publishing, River Edge, NJ, 1991.

[Sol05] S. Solecki. Extending partial isometries. Israel J. Math., 150:315–331, 2005.

[Wei90] C. M. Weinbaum. Unique subwords in nonperiodic words. Proc. Amer. Math. Soc., 109(3):615–

619, 1990.

[Wis12] Daniel T. Wise. From riches to raags: 3-manifolds, right-angled Artin groups, and cubical ge-

ometry, volume 117 of CBMS Regional Conference Series in Mathematics. Published for the

Conference Board of the Mathematical Sciences, Washington, DC, 2012.

[Wis20] Daniel T. Wise. An Invitation to Coherent Groups. In Dylan Thurston, editor, What’s Next?:

The Mathematical Legacy of William P. Thurston, pages 1–89. Princeton University Press, 2020.

To appear.

[Wis22] Daniel T. Wise. Coherence, local indicability and nonpositive immersions. J. Inst. Math. Jussieu,

21(2):659–674, 2022.


	Introduction
	1. Contributions to original knowledge

	Chapter 1. The Hrushovski Property For Compact Special Cube Complexes
	1. Introduction
	2. Special Cube Complexes
	3. Horizontal Quotient of a Graph of Spaces
	4. Subgroup Separability
	5. The Construction

	Chapter 2. Negative Immersions and Finite Height Mappings
	1. Introduction
	2. Background
	3. Malnormal Partially Ascending HNN Extension 
	4. Finite Height Mappings
	5. Discussion of Related Properties

	Chapter 3. Maximal Ascents
	1. Introduction
	2. Ascents and Descents
	3. Magnus Bi-order

	Bibliography

