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Abstract

In Chapter 1, we show that any compact nonpositively curved cube complex Y embeds
in a compact nonpositively curved cube complex R where each partial local isometry of
Y extends to an automorphism of R. We prove a similar result for compact special cube
complexes provided that the partial local isometries satisfy certain conditions.

In Chapter 2, we define the directed height of a mapping of graphs and relate it to the
“algebraic” height of subgroups. We show that a map has finite directed height if and only
if the corresponding mapping torus has negative immersions. We survey related properties
and discuss how they relate to one another.

In Chapter 3, we show that given a bi-order > on the free group F, every non-periodic
cyclically reduced word W € F admits a maximal ascent that is uniquely positioned. This
provides a cyclic permutation of W’ that decomposes as W' = AD where A is an ascent
and D is a descent. We show that if D is not uniquely positioned in W, then it must be an
internal subword in A. Moreover, we show that when > is the Magnus ordering, D = 15 if

and only if W is monotonic.



Résumé

Dans le chapitre 1, nous démontrons que chaque complexe cubique Y qui est compact et
a courbure non-positive, s’intégre dans un complexe cubique R qui est compact et & courbure
non-positive, tel que chaque isométrie locale et partielle de Y s’éttend a un automorphisme
de R. Nous démontrons un résultat similaire pour les complexes cubiques spéciaux sous
conditions que les isométries locales satisfassent certains critéres.

Dans le chapitre 2, nous définissons la notion de hauteur dirigée d’une application de
graphes et nous étudions la relation entre celle-ci et la notion de hauteur d’un sous-groupe.
Nous démontrons qu’une application de graphes a une hauteur dirigée finie si et seulement
si 'extension HNN correspondante a des immersions négatives. Nous finissons le chapitre
par une analyse de propriétés similaires.

Dans le chapitre 3, nous utilisons 'ordre du groupe libre pour démontrer que chaque
mot W qui est non-périodique et réduit se décompose comme un produit de deux sous-mots
W = AD, dont un est uniquement positioné dans W. En particulier, nous montrons que
si I'ordre utilisé est celui de Magnus, le mot D est vide si et seulement si W est un mot

monotone.
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Introduction

This thesis engages with three topics that are presented in three self contained chapters.
In Chapter [1, we establish the Hrushovski property for compact special cube complexes.
A well-known theorem of Hrushovski [Hru92| states that for any finite graph X, there
exists a finite graph Z containing X as an induced subgraph with the property that every
isomorphism between induced subgraphs of X extends to an automorphism of Z. Since then,
various classes of spaces were shown to have this property which came to be known as the
Extension Property for Partial Automorphisms, or the Hrushovski Property. For example,
the Hrushovski property was established for finite metric spaces [Sol05|, structures of a
given finite relational language [Her95|, and various classes of graphs [Her98|. So asking
the question of whether compact special cube complexes have this property is a natural one
to pursue, especially given the important role these spaces played in recent developments in
geometric group theory. The challenge in this case is to preserve specialness and to ensure
that the original space embeds as a locally convex subcomplex of its extension. Our approach
to this question has similarities to the work of Herwig and Lascar who showed in [HLOO] that
the Hrushovski property for certain spaces is related to the profinite topology of free groups.
We make extensive use of this relationship, albeit using a different construction, namely the
horizontal quotients of graphs of spaces. Several statements in this work could be generalized
in various directions, but we focus on compact nonpositively curved cube complexes and
partial local isometries. This is arguably a natural generalization of the original statement
about graphs. To prove the Hrushovski property for compact special cube complexes, we
require that the collection of the partial local isometries be “controlled”. For example, crossing
hyperplanes cannot be mapped to osculating hyperplanes. This mild condition is necessary
in order to avoid creating artificial pathologies that would make specialness fail.

The main results in Chapter [1] are:
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THEOREM 0.1. Let Y be a compact nonpositively curved cube complexr and let O be the
set of injective partial local isometries of Y. Then Y embeds in a compact nonpositively

curved cube complex R where each ¢ € O extends to an automorphism ® € Aut (R).

Theorem [0.1] could be generalized to the category of compact nonpositively curved spaces
instead of cube complexes. See Remark [5.6f But we focus on a generalization towards
special cube complexes as stated in Theorem [0.2] This generalization requires the notion
of “controlled” embeddings, which generalizes subgraphs of graphs. See Definition [3.15] and
Definition

THEOREM 0.2. Let Y be a compact special cube complex and let O be a controlled col-
lection of injective partial local isometries of Y. Then there exists a compact special cube
complexr R containing Y as a locally convex subcomplex such that each ¢ € O extends to an

automorphism ® € Aut (R).

Sections 2] and [3] of Chapter [I] provide definitions and background. Section [4] uses sub-
group separability of free groups to find finite covers whose horizontal quotients have certain
desired properties. In Section [5] we prove Theorem [5.4] and Theorem [5.10]

In Chapter [2, we study properties of a class of HNN extensions of free groups. Specif-
ically, HNN extensions which conjugate a free factor of a free group to another subgroup.
These are typically free-by-cyclic groups, but usually the free group is infinitely generated;
in general it can be locally-free-by—cyclic. Such groups have been of continual interest in
combinatorial and geometric group theory especially because of works of Gilbert Baumslag
[Bau72| [Bau93| and Feighn-Handel [FH99|. Our results introduce a new notion of “di-
rected height” of a mapping which is a directed version of the algebraic notion of height given
in [GMRS98|, which we discuss below. The goal of this chapter is to relate the height to
“negative immersion” which is an Euler characteristic condition related to locally quasiconvex
and coherent groups.

A 2-complex X has nonpositive immersions if for any combinatorial immersion ¥ — X
with Y compact, connected, and collapsed (meaning Y has no free faces), either mY is
trivial or x (V) < 0. A 2-complex X has negative immersions if there exists ¢ > 0 such that

for any combinatorial immersion ¥ — X, where Y is compact, connected, collapsed, and
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with no isolated edges, either mY is trivial or x (Y) < —c|Y'|s where |Y|s is the number of
2-cells in Y. Let F = (S) be a free group over a set S and let H = K be an isomorphism of
subgroups of F. The HNN extension of F with associated subgroups H and K is the group
(S,t : t7'Ht = K), where t is a new generator not in S. The HNN extension is ascending
if H = F, and partially ascending if H is a proper free factor of F. A group is coherent
if each of its finitely generated subgroups is finitely presented. Ascending HNN extensions
were proved to be coherent in [FH99|, and are shown to have nonpositive immersions in
[Wis22].

Given a subgroup H of G, the height of H in G, denoted by Height (#), is the supremal
number of distinct cosets {#Hg;},.,; such that ﬂ?—[g" is infinite. This was introduced in
IGMRS98|. In particular, the height of H n;e[g is 1 precisely when #H is a malnormal
subgroup.

In this chapter, we define a closely related notion of “directed height” of a mapping. Let
H be a subgraph of a finite graph F' and let ¢ : H — F' be a cellular immersion. Let X be
the corresponding mapping torus. Note that m; X is a partially ascending HNN extension.
The directed height of 1 is Iﬁgh‘c () = inf {i : ¢~ (H) is a forest}, where ¢~% = (¢%) "'
whenever the partial composition 1" is defined. See Definition and Definition . Note
that m (¢) < oo if and only if Height (m H) < oo in m X. See Lemma for a proof of
this statement.

The main results in Chapter [2| are:

THEOREM 0.3. Let F' be a finite graph and let H C F be a subgraph. Let X be the
mapping torus of a cellular immersion ¢ : H — F. Then X has negative immersions if and

only if v has finite directed height.

In particular, the simplest nontrivial case of Theorem is the following special case

which is proven in this text as Theorem [3.6}

COROLLARY 0.4. Let F be a finite graph and let H C F be a subgraph. Let X be the
mapping torus of a cellular immersion ¢ : H — F. Suppose 1~ (H) is a forest. Then X

has negative itmmersions.
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Motivated by our desire to verify Property [I1] of Section [5] we note the following conse-
quence of the preceding statements. This does not prove Property [11]since it does not assert
that the edge groups in the splitting of K equal the intersections of XL N HY, for g € m X.

The following statement is proved in this text as Theorem {4.15

THEOREM 0.5. Let F' be a finite graph and let H C F be a subgraph. Let X be the
—

mapping torus of a cellular immersion ¢ : H — F with Height (¢) < oco. Let K C mX be

a finitely generated subgroup. Then K splits over edge groups with uniformly bounded Euler

characteristic.

Our directed height characterization of negative immersions can be re-interpreted in an
attractive way using a natural generalization of fully irreducible partial endomorphisms. A
partial endomorphism ) : H — F is fully irreducible if there does not exist n > 0, a proper
free factor H' C H, and g € F such that " (H') C g~'H'g. See Definition for the
notion of generalized composition explaining ™. The standard notion of fully irreducible
endomorphism focuses on the case where H = F [BH92|. Using this language, we show the
following statement proved in the text as Theorem .12}

THEOREM 0.6. Let H be a proper free factor of a finitely generated free group F, and let
v :H — F be a monomorphism. Let X be the standard 2-complex of the HNN extension of
F with respect to 1. Then X has negative immersions if and only if 1 is fully irreducible.

In Section [2] of Chapter [2| we give some background. In Section [3] we prove a special case
of the main theorem, namely, that a partially ascending HNN extensions of free groups with
malnormal associated subgroups have negative immersions. In Section [ we prove the main
theorems, and in Section [5| we discuss related properties and state three conjectures.

In Chapter 3] we investigate the relationship between orderability and structural property
of nonperiodic words. A word is nonperiodic if it is not a proper power. Weinbaum conjec-
tured in [Wei90]| that any nonperiodic word W of length > 1 has a cyclic permutation that
is a concatenation UV where each of U and V appear exactly once as a prefix of a cyclic
permutation of W and W~!. This conjecture was proved by Duncan-Howie in [DH92| using
the right-orderability of one-relator groups [BH72|. It was also proved in [HNO6| using the
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Critical Factorization Theorem [CVT78| (also see [CP91] and [HNO2|) and basic properties
of Lyndon words |[Lyn54]. This provided the motivation to investigate this question without
the complex machinery used above, but rather using only bi-orderability of the free group.
For this purpose, we introduce the notions of ascents/descents in a cyclically reduced words.
Our result provides a partial proof of Weinbaum’s conjecture and gives some additional
insights into the structure of cyclically reduced nonperiodic words.

A group G is bi-orderable if there is a total order < on G such that for all f,g,h € G, if
f < g then hf < hg and fh < gh. A well known result of Shimbireva [Shi47]| states that
the free group on two generators (and so every non-abelian free group) is bi-orderable. This
result is sometimes attributed to Vinogradov and Magnus as well [DNR14].

Let X = {a,b} and X* = X U X! where X' = {a™!,b7'}. A word W in X* of length
n, is a sequence of n letters W = zy---x,, with n > 0 and z; € X*. The length of W is
denoted by |W| =mn. When n = 0, we call W the empty word. The word W' is reduced if it
contains no parts xz~'. It is cyclically reduced if it is reduced and x; # z,'. We henceforth
consider only cyclically reduced words in X*. A word V is a subword of W it W = SVU
for some reduced words S and U in X* with [W| = |S| + |V|+ |U|. The subword V is a
prefiz of W if S is the empty word and a suffix if U is the empty word. If neither S nor U is
an empty word, then V' is internal in W. The word W is periodic if there exist a cyclically
reduced word U and n > 1 such that W = U™. It is nonperiodic otherwise. A word W’
is a cyclic permutation of W if W' = VU where W = UV, for some prefix U and suffix V
of W. Let R,, be the set of all cyclic permutations of W and W~!. A word V is uniquely
positioned in W if V' is the prefix of exactly one element of R ,.

Following Lyndon-Schupp [LS77], let 7 = F (X) be the free group with basis X. Then
distinct cyclically reduced words in X* represent distinct elements of F, and the empty
word represents the identity element 1x. So a bi-ordering < of F induces a bi-ordering
<* on the set of cyclically reduced words in X* in the following sense: given U,V € X*
representing g,, g, € F (X), we have U <* V <= g, < ¢,. Moreover, the operation of
word concatenation from both the right and the left (followed by cyclic reduction) preserves

the order. For simplicity, we denote both bi-orders by <.
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Given a bi-order < on F, a cyclically reduced word U in X* is an ascent if every non
trivial element of F represented by a prefix of U is > 1 and every element of F represented
by a suffix of U is > 1. The word U is a descent if every element of F represented by a
prefix of U is < 17 and every element of F represented by a suffix of U is < 1z. For a given
cyclically reduced word W, we define the maximal ascent of W to be the greatest ascent
over all subwords in R, with respect to >.

The main result of Chapter 3] is:

THEOREM 0.7. Let F (X) be a bi-ordered free group on the alphabet X = {xy,x9}. Let
W e F(X) be a cyclically reduced nonperiodic word of length > 1. Then W has a cyclic
permutation W' = AD where:

(1) A is the uniquely positioned maximal ascent in W and D is a descent whenever
D # 1.
(2) If D is not uniquely positioned, then it appears as an internal subword of A.

(3) Using the Magnus ordering on F, we have D = 1z if and only if W is monotonic.

Theorem shows that nonperiodic cyclically reduced words have cyclic permutations
that factor as concatenations of maximal ascents and descents. The maximal ascents are
always uniquely positioned, whereas the descents are not necessarily so. In this sense, this
result provides a partial answer to Weibaum’s conjecture since only the maximal ascent is
guaranteed to be uniquely positioned. We show that when the descents are not uniquely
positioned, they appear as internal subwords of the maximal ascents. Consequently, when
the descents are not uniquely positioned, they have shorter lengths than maximal ascents.
We also show that when the Magnus bi-ordering is used, we can assert that the ascents are
equal to W if and only if W is monotonic, in the sense that it only contains letters in X
or X~ but not both. This is all achieved without using any of the machinery of right-
orderability /local indicability of one-relator groups, but rather using only bi-orderability of

the free group and some basic combinatorial arguments.

1. Contributions to original knowledge

The main results in this text are:
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e Chapter [I} Theorem and Theorem [5.10}

e Chapter [2} Theorem Theorem and Theorem
e Chapter [3f Theorem
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CHAPTER 1

The Hrushovski Property For Compact Special Cube Complexes

1. Introduction

A well-known theorem of Hrushovski [Hru92| states that for any finite graph X, there
exists a finite graph Z containing X as an induced subgraph such that every isomorphism
between induced subgraphs of X extends to an automorphism of Z. Since then, various
classes of spaces were shown to have this property which came to be known as the Fxtension
Property for Partial Automorphisms, or the Hrushovski Property. Of particular interest is
the work of Herwig and Lascar who showed in [HLOO] that the Hrushovski property for
certain spaces is related to the profinite topology of free groups. In this paper, we make
extensive use of this relationship, albeit using a different construction, namely the horizontal
quotients of graphs of spaces. Although several statements in this work could be generalized
in various directions, we focus on compact nonpositively curved cube complexes and partial
local isometries. This is arguably a natural generalization of the original statement about
graphs.

Our main results are:

THEOREM 1.1. Let Y be a compact nonpositively curved cube complex and let O be the
set of injective partial local isometries of Y. Then Y embeds in a compact nonpositively

curved cube complex R where each ¢ € O extends to an automorphism ® € Aut (R).

The next statement, proved in the text as Theorem [5.10] requires the notion of “con-
trolled” embeddings, which generalizes subgraphs of graphs. See Definition and Defini-
tion B.7

THEOREM 1.2. Let Y be a compact special cube complex and let O be a controlled col-

lection of injective partial local isometries of Y. Then there exists a compact special cube

14
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complex R containing Y as a locally convex subcomplex such that each ¢ € O extends to an

automorphism ® € Aut (R).

Sections[2] and [3|provide definitions and background. Section [4]uses subgroup separability
of free groups to find finite covers whose horizontal quotients have certain desired properties.

In Section [p| we prove Theorem [5.4] and Theorem [5.10]

2. Special Cube Complexes

2.1. Cube Complexes. An n-cube is a copy of I" where [ = [—1,1] C R and n > 0.
Its faces are restrictions of some coordinates to —1 or 1. A cube complex is a cell complex
built from cubes glued together along their faces. The dimension of a cube complex is the
supremum of the dimensions of the cubes contained in it.

Let v = (¢);_, be a vertex of I"; so each ¢; = 1. The v-corner of I" is the simplex spanned
)
5
Let X be a cube complex and C' C X be the image of a map I — X. An z-corner of C for

by {wj}?zl where each w; is obtained from v by replacing €; by

x € XY is the union of images of v-corners of I™ where v — x.
n

In general, if J = H ¢; is an m-dimensional subcube of 1" where
i=1

€ € { {_1} ) {1} ) [_17 1] }

then the J-corner of I™ is the simplex spanned by the points {w]}?;lm obtained from J as
follows:

Given the center of mass of J, denoted by v = (t;);_, where

0 if Ek:[—l,l]
th=14 1 if e={1}
—1 if e ={-1}

the point w; is obtained from v by replacing the j™ nonzero coordinate ¢ with % Note that
each point w; € {wj};:;n corresponds to a cube containing J as a codimension-1 subcube.

Let D be a subcube of an n-cube C of X. A D-corner of C' is the image of a J-corner of I"
under a map I™ — X, where (I",J) — (C, D). The link of D in X, denoted by linky (D) is
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the union of all D-corners of cubes containing D. Note that linkx (D) is a simplex complex
and it is a subspace of X but not a subcomplex. We write link (D) instead of linky (D)
when X is clear from context.

A cube complex X is simple if the link of each cube in X is simplicial.

LEMMA 2.1. A cube complex X is simple if the link of each cube of X has no loops and

no bigons.

PROOF. Let D C X be an n-cube. Let o and o5 be distinct m-simplices in link (D) with
o1 Noy # 0 and m > 1. If o7 is not embedded then link (D) has a loop. If do; = dog, then
there exists an (n 4+ m — 1)-cube Y D D such that link (Y) contains a bigon. Indeed, the
case m = 1 corresponds to Y = D with a bigon in link (D). For m > 2, the m-simplices o4
and oy are D-corners of distinct (n + m + 1)-cubes A; and A intersecting along their faces.
An (m — 2)-simplex A C 01 N oy is a D-corner of an (n+m — 1)-cube Y D D. Moreover,
two distinct (m — 1)-simplices containing A are D-corners of distinct (n 4+ m)-cubes B D Y
and B’ D Y that are shared faces of A; and As. We can see that the Y-corners of B and B’
are (0-simplices that are boundaries of the 1-simplices corresponding to the Y-corners of A,

and A2 . O

2.2. Nonpositive curvature. A simple cube complex X is nonpositively curved if it
satisfies Gromov’s no-A property |[Gro87|, which requires that 3-cycles in link (D) bound
2-simplices for each cube D C X. An equivalent criterion for nonpositive curvature states
that a cube complex is nonpositively curved if the links of its 0-cubes are flag. A simplicial

complex is flag if any collection of (n + 1) pairwise adjacent O-simplices spans an n-simplex.

2.3. Local Isometries. A subcomplex K of a simplicial complex L is full if any simplex
of L whose O-simplices lie in K is itself in K. A subcubecomplex A C B is locally convez if
link4 (z) C linkp () is a full subcomplex for every 0-cube z € A.

A map X — Y of cube complexes is combinatorial if open cells are mapped homeomor-
phically to open cells, where each homeomorphism is an isometry. It is cubical if for each
k < dim (X), the k-skeleton of X is mapped to the k-skeleton of Y. A combinatorial map
® : X — Y is an immersion if the restriction link (z) — link (® (z)) is an embedding for each

O-cube x € X. If X and Y are nonpositively curved and link () embeds as a full subcomplex
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of link (® (x)) then ® is a local isometry. Equivalently, a combinatorial locally injective map
® : X — Y of nonpositively curved cube complexes is a local isometry if ® has no missing
squares in the sense that if two 1-cubes ay, as at a 0-cube x map to ® (a;), P (az) that bound

the corner of a 2-cube at ® (z), then ay, ay already bound the corner of a 2-cube at z.

2.4. Immersed Hyperplanes. A midcube of an n-cube is the subspace obtained by
restricting one coordinate to 0. Note that a midcube of an n-cube is isometric to an (n — 1)-
cube. An immersed hyperplane H in a nonpositively curved cube complex X is a component
of the cube complex M /., where M denotes the disjoint union of midcubes of X and ~ is
the equivalence relation induced by identifying faces of midcubes under the inclusion map
into X. A 1-cube of X is dual to H if its midcube is a 0-cube of H. We note that the
edges dual to H form an equivalence class generated by elementary parallelisms of 1-cubes,
where two 1-cubes are elementary parallel if they appear on opposites sides of a 2-cube. The
carrier of H, denoted by N (H), is the cubical neighborhood of H formed by the union of

the closed cubes whose intersection with H is nonempty.

2.5. Special Cube Complexes. An immersed hyperplane H in X self-crosses if it
contains two distinct midcubes from the same cube. It is two-sided if the combinatorial
immersion H — X extends to H x I — X. In this case, the 1-cubes dual to H can be
oriented in such a way that any two dual 1-cubes lying in the same 2-cube are oriented in
the same direction. An immersed hyperplane that is not two-sided is one-sided. H self-
osculates if it is dual to two oriented 1-cubes that share the same initial or terminal 0-cube
and do not form a corner of a 2-cube. Two distinct immersed hyperplanes, H, H', cross if they
contain distinct midcubes of the same cube. They osculate if they are dual to two 1-cubes
that share a 0-cube and the 1-cubes do not form a corner of a 2-cube. Two distinct immersed
hyperplanes inter-osculate if they both cross and osculate. See Figure [I A nonpositively

curved cube complex is special if it satisfies the following:

1) No immersed hyperplane self-crosses;

(1)

(2) No immersed hyperplane is one-sided;
(3) No immersed hyperplane self-osculates;
(4)

4) No two immersed hyperplanes inter-osculate.
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DOCHC

FIGURE 1. From left to right: Self-crossing, one-sidedness, self-osculation,

and inter-osculation.

3. Horizontal Quotient of a Graph of Spaces

3.1. Graph of Spaces. An undirected graph T' (V, E) is a 1-dimensional C'W-complex
whose vertices and edges, denoted by V and E, are the 0-cells and open 1-cells, respectively.
There exist two incidence maps 71,7 : E — V mapping each edge e € E to its boundary
vertices, T (€), Ty (e) called initial and terminal vertex, respectively. A graph of spaces X
with underlying graph I' (V, E), vertez-spaces {X,}, ., and thick edge-spaces { X xI}, . p is
a topological space X obtained as a quotient of {X,}, ., and {X.xI} ., in the following
manner: for each edge e € E with boundary vertices v; = 71 (€) ,v9 = 75 (e), the correspond-
ing thick edge-space X, x [ is attached to the vertex-spaces X,,, X,, via attaching maps
which are also denoted by 71 : X, x {—1} = X, and 75 : X, X {1} = X,,,. In this text, we
always assume the attaching maps of edge-spaces are injective and combinatorial. For sim-
plicity, the subspaces X, x {—1} C X,, and X, x {1} C X,, are referred to as edge subspaces
X C X,, and X, C X,,, respectively. The graph I' (V, E) is the quotient of X obtained by
mapping X, to v and X, x (—1,1) to e for each v € V and e € E. We will henceforth denote

a graph of spaces X with underlying graph I'x by the corresponding canonical quotient map

X —TI'x.

3.2. Horizontal Quotient. Let X — I'x be a graph of spaces and let E be the edge
set of I'y. Given an edge e € E, let ~. be the equivalence relation on X, x I where
for all s,t € [—1,1], we have (z,t) ~. (y,s) if and only if z = y. Let X¢ = X/ ~, be
the corresponding quotient. The horizontal quotient of X along the edge e, denoted by
¢e : X — X¢, is the quotient map X — X¢ = X/ ~.. In general, if E' = {ey,...,e,} C E,
then the horizontal quotient of X along E' is the quotient X — X = X/ ~p where ~p is
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the equivalence relation spanned by ~, for e € E'. When E' = E, we call X the seamless
graph of spaces associated to X and the corresponding map is the horizontal quotient which
we denote by ¢ : X — XZ. (This terminology was introduced in [HW22]). Note that the
letter E in X is generic in the sense that it refers to the set of all edges of a given graph.
For example, given two graphs of spaces X — 'y and Y — I'y, their horizontal quotients
will be denoted by X% and Y, respectively, even when I'y # I'y. The horizontal quotient ¢
is strict if the restriction of ¢ to each vertex-space is an embedding. The E-parallelism class
of a subset A C X is ¢7!(q(A)), that is, the set of all points of X mapping to q (A). When
A is a point in an edge-space, ¢~' (¢ (A)) is the horizontal graph associated to A. Note that
the restriction of the map X — I'y to a horizontal graph in X is an immersion since the
attaching maps of edge-spaces are embeddings. In particular, if X — I'x is a tree of spaces,
then ¢ is strict and the horizontal graphs are trees that intersect each vertex-space of X in
at most one point. When X is a graph of cube complexes, an n-cube C' C X is vertical if

q (C) is also an n-cube.

REMARK 3.1. In the case of a graph of cube complexes X, we make the following obser-

vations:

(1) The quotient X is not necessarily a cube complex as cubes of X may be quotiented
to simplices in X7,

(2) When ¢ is strict, it corresponds to an orthogonal projection of cubes (of thick edge-
spaces) onto their faces. Then ¢ is cubical and XZ is a cube complex.

(3) When X is a nonpositively curved cube complex and ¢ is strict, the horizontal
quotient X ¥ is not necessarily nonpositively curved.

(4) If X; — X5 is a cover of graphs of cube complexes, then there is an induced map

XF — XF that is not a cover in general.

LEMMA 3.2. Let X — I'x be a graph of cube complexes with a strict horizontal quotient.
Then for each immersed hyperplane U ER XE there exists an immersed hyperplane V2 X,
with f(U) = (qog) (V). Furthermore,

(1) if V is two-sided then so is U;
(2) if U ENS'L self-crosses, then V2 X self-crosses.
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Consequently, if the hyperplanes of X are two-sided/embedded then so are the hyperplanes

in XE,

PROOF. Since ¢ is strict, it is cubical and so X¥ is a cube complex. Let U Iy XP be an
immersed hyperplane. Then the parallelism class of 1-cubes dual to U lifts to a parallelism
class of 1-cubes in X. The latter corresponds to an immersed hyperplane V' 2% X that maps
onto U, and so f (U) = (qog) (V).

Now suppose V % X is a two-sided immersed hyperplane. If ¢ (V) C X, for some vertex-
space X, then ¢ (g (1)) is two-sided since ¢ is a strict horizontal quotient and thus restricts
to an embedding on each vertex-space. If on the other hand, g (V') has nonempty intersection
with some edge-space X, x I attached to vertex-spaces X, , X,,, then there exist vertical 1-
cubes 4; € X,, and Ay € X,, dual to g (V') that lie on opposite sides of a 2-cube B C X, x I.
Since V' is two-sided, there is a consistent way of orienting A; and A, so that their initial
points lie on the same 1-cube of B. Taking the horizontal quotient along the edge-space
X, x1, induces an orientation on ¢ (4;) = ¢ (As) consistent with the orientation of the vertical
1-cubes of ¢ (g (V). By taking consecutive quotients along all the edge-spaces intersecting
g (V), the two-sidedness is preserved at each stage and the claim follows.

Finally, suppose U Iy X is not injective. Then there exists a 2-cube S C X where f (U)
self-intersects. The preimage of S contains a 2-cube where the immersed hyperplane g (V)

self-intersects. O

REMARK 3.3. Let X — D'y be a graph of cube complexes and let ¢ : X — X% be
the horizontal quotient. Let V' 2% X be an immersed hyperplane. Then (g o g) (V) is not
necessarily the image of an immersed hyperplane in X . Indeed, not all midcubes of X map
to midcubes of X¥. In particular, each immersed hyperplane g (V) = X, x {0} € X, x[-1,1]
projects to a subcomplex ¢ (¢ (V)) € X that is not a hyperplane.

DEFINITION 3.4. Let X — 'y be a graph of cube complexes and ¢ : X — X¥ be
the horizontal quotient. Let € X% be a 0-cube and let ¢~ (z) be the corresponding
horizontal graph. Let I'y C I'x be the image of ¢! (z) under the quotient X — I'x. Let V}
and Ey be the vertices and edges of Ty and let {X, : v € Vp} and {X, : e € Ey} be the

corresponding vertex-spaces and edge-spaces in X, respectively. Let {x1,...} be the 0-cubes
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of g1 (x). The induced graph of links of x is the graph of spaces Y C X with underlying
graph ¢~ (), whose vertex-spaces are linkx, (z;) and whose edge-spaces are linkx, (),
where X,, € {X, : v € V4} is the vertex-space containing x; and X, € {X. : e € Ey} are
the edge-spaces containing ;. Note that taking the quotient X — X% induces a quotient
Y — Y where linkyrs (2) = YE.

REMARK 3.5. When the edge-spaces of X are embedded locally convex subcomplexes,
the edge-spaces of an induced graph of links are embedded full subcomplexes. However, the

vertex-spaces of an induced graph of links are not necessarily connected.

LEMMA 3.6. Let Y = AU_ B where A, B are simplicial complexes and C embeds as a

full subcomplex in A and B. Then'Y s simplicial and A embeds as a full subcomplex of Y.

PROOF. We show the nonempty intersection of two simplices is a simplex. Let 01,00 C Y
be simplices with oy N oy # (. Each simplex of Y is either in A or in B. Suppose o; C
A, 09 C B with 01 ¢ B and 09 ¢ A. Let Z be the set of O-simplices of o; N oy and note
that Z C C'. Then Z spans simplices ¢; C A and d, C B. Since C'is full in A and B, we see
that 0, and d, are the same simplex of C. That is, 01 N oy is a simplex.
To show A — Y is full, we show that whenever a set of 0-simplices S C A spans a simplex
A, we have A C A. Indeed, suppose A C B, then S C C. But C' is full in B and so
AcCCcCA. O

LEMMA 3.7. Let Y = AU_ B where A, B are flag complexes and C embeds as a full
subcomplex in A and B. Then'Y is flag and A embeds as a full subcomplex of Y.

PROOF. Y is simplicial by Lemma [3.6] To show flagness, let K C Y be an n-clique.
We claim that K C A or K C B. We proceed by induction on n. The base case n = 0 is
trivial. Suppose the claim holds for all cliques of size < n and let K be an (n + 1)-clique.
By induction, every proper subclique of K lies in either A or B. Without loss of generality,
let 01 € K° be a 0-simplex with o1 ¢ A. Then o; € B and for any O-simplex oo € K, the
1-simplex o109 lies in B. Indeed, if o105 lies in A, then o7 lies in A which is a contradiction.
Therefore, 0o € B and so K° C B. Moreover, given 0-simplices o5 and o3 in K°, the 1-

simplex o903 lies in B. To see this, suppose 0903 € A. Then and 05 and 03 liein ANB = C.
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But C is full in A and so o903 € C' C B. Since B is flag, K bounds a simplex.
Let K C Y be a clique such that K° C A. Then by the previous part, K!' C A and it spans
a simplex A C A. Hence A embeds as a full subcomplex of Y. O

LEMMA 3.8. LetY be a tree of spaces where each vertex-space is a flag complex and each

edge-space embeds as a full subcomplex in its vertex-space. Then YF is flag.

PROOF. Any failure of flagness arises in a quotient of a finite subtree. Therefore, it
suffices to prove the claim for finite trees. This follows by induction from Lemma Note

that a full subcomplex of a full subcomplex is full. O

COROLLARY 3.9. Let X — I's be a tree of nonpositively curved cube complexes where
the attaching maps of edge-spaces are injective local isometries. Then XE s nonpositively

curved.

PROOF. Let z be a O-cube in XZ and let Y — I'y be the corresponding induced graph

of links with underlying graph ¢=* (z). Since ¢~! () immerses in ['¢, it is a tree. Then T'y

X
is a tree of flag complexes with embedded full edge-spaces. By Lemma [3.8] the horizontal

quotient Y'* is flag, and so is link g (). O

DEFINITION 3.10. Let X be a graph of cube complexes with horizontal quotient ¢ : X —

X%, Let G be a connected subgraph of a horizontal graph in X. Then:

(1) A hyperplane U osculates with G if U is dual to a vertical 1-cube whose initial or
terminal O-cube lies in G.

(2) A two-sided hyperplane U self-osculates at G if U is dual to oriented vertical 1-cubes
a and b whose initial (or terminal) 0-cubes ¢, and ¢, lie in G, where ¢ (a) and ¢ ()
are not consecutive 1-cubes of a 2-cube in X¥ and q(a) # ¢(b). When t, # t,
the hyperplane U remotely self-osculates at GG, in which case we say X has remote
self-osculation.

(3) A pair of distinct crossing hyperplanes U and V' inter-osculate at G if there are
vertical 1-cubes a and b, with a dual to U and b dual to V', with boundary 0-cubes

t, and t, lying in G, but ¢ (a) and ¢ (b) are not consecutive 1-cubes of a 2-cube in
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XE. When t, # t, the hyperplanes U and V remotely inter-osculate at G in which

case we say X has remote inter-osculation.
Note that Definition [3.10] agrees with the definitions in Section [2.5| when t, = .

REMARK 3.11. Remote self-osculations and inter-osculations in X are not actual self-
osculations and inter-osculations, but they project to self-osculations/inter-osculations under

the horizontal quotient ¢ : X — X whenever ¢ is cubical.

LEMMA 3.12. Let X be a graph of cube complexes and suppose X is special. If the
horizontal quotient q : X — X% is cubical and X* has self-osculation /inter-osculation then

X has remote self-osculation/inter-osculation.

PROOF. Let U L XF be a self-osculating hyperplane. By Lemma , there is a hyper-
plane V % X with go g (V) = f (U). Since X is special, g and (hence) f are embeddings,
and so we can identify U and V' with their images. Since the hyperplanes of X are 2-sided,
and ¢ is orientation-preserving, the 1-cubes of X* can be oriented consistently with the ori-
entations of 1-cubes of X. Let a, and b, be distinct oriented 1-cubes dual to U that share the
0-cube t where the self-osculation occurs. We can assume without loss of generality that ¢ is
the terminal 0-cube of a, and b,. Let a, and b, be oriented 1-cubes dual to V' and mapping
to a, and b,, respectively. Let G = ¢~' () be the horizontal graph mapping to t. Let t,
and t, be terminal points of a, and b,. See Figure 2l Then ¢, and ¢, lie in G and since X is
special, t, # t,. Since q (a,) = ay # by, = q (by,), the hyperplane V' remotely self-osculates at
G.

Let U, and U, be inter-osculating hyperplanes in X, and let V; and V, be the crossing
hyperplanes in X mapping to U; and Us, respectively. Suppose the inter-osculation occurs at
1-cubes a,, and b,, dual to U; and U, and meeting at a 0-cube ¢. Let a,, and b,, be 1-cubes
dual to V; and V5 and mapping to a,, and b,,, respectively. Since X is special, G = ¢! () is
nontrivial and contains the distinct 0-cubes ¢, and t;, of a,, and b,,. Moreover, since a,, and

b, do not form a consecutive pair of edges of a 2-cube, V; and V5 remotely inter-osculate at

G. U
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N, T N

< A i
— 73V

FIGURE 2. The hyperplane V osculates with G = ¢! (¢) at two points ¢, and
tp.

LEMMA 3.13. Let X be a graph of cube complexes and let G be a horizontal graph in X.
Suppose X s special.

(1) If a hyperplane U of X remotely self-osculates at G, then GNN (U) is disconnected.
(2) If crossing hyperplanes U and V' of X remotely inter-osculate at G, then GN(N (U)U
N (V) is disconnected.

PROOF OF (1). Let U be a remotely self-osculating hyperplane in X. Let a and b be the
oriented 1-cubes dual to U with terminal O-cubes ¢, and ¢, in G, as in Definition Then
ta,tp € N(U) and so GN N (U) # 0. We claim that t, and t;, lie in distinct components of
GNN (U). Suppose otherwise. Since t, # t, there is a nontrivial horizontal path v — N (U)
from t, to t,. Express v as a concatenation of horizontal 1-cubes, v = ey ---e,, where e;
contains t, and e, contains t;,. Since the attaching maps of edge-spaces are injective, any
horizontal 1-cube in N (U) lies in a 2-cube whose opposite 1-cube is also horizontal. Since X
is special, the hyperplane U does not self-osculate, and so there is a 2-cube S; C N (U) that
contains a and e;. Let a; and €] be the 1-cubes in S} opposite to a and ey, respectively. Then
e} C N (U) is horizontal and intersects a in in its initial O-cube i,. Furthermore, the 1-cubes
a; C Sy and ey C 7y share a O-cube. By the same argument, there is a 2-cube Sy C N (U)
containing a; and ey, where the opposite 1-cube of ey is a horizontal 1-cube ¢}, that shares
a common O-cube with €] and a;. By induction, there is a sequence of horizontal 1-cubes
el,...,e, in N (U) where ¢ intersects a in its initial 0-cube i, and where €/, intersects b in
its initial 0-cube 4,. We distinguish two cases. See Figure [3]

Case 1: There is a sequence €], ..., e, that forms a connected horizontal path from i, to .
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FIGURE 3. Case 1 on the left. Case 2 on the right.

In this case there is a ladder from a to b showing that ¢ (a) = ¢ (b) which is a contradiction.
Case 2: No sequence €,..., e, forms a horizontal path from i, to i,. Then there is a
sequence €, ..., e, and consecutive 1-cubes e; and e;;; of v meeting at a 0-cube z, where
the corresponding horizontal 1-cubes €} and €’ , do not intersect. Then x is a point of

self~osculation for U which is a contradiction. O

PROOF OF (2). Let U and V' be remotely inter-osculating hyperplanes in X. Let a and b
be the vertical 1-cubes dual to U and V, respectively, with boundary 0-cubes t, # t, in G, as
in Definition .10} We claim that ¢, and ¢, lie in distinct components of GN(N (U) U N (V)).
Suppose otherwise. Then there is a nontrivial horizontal path v — (N (U) U N (V)) from
tq to ty. Let v =7, - Y, where v, — N (U) and v, — N (V), and suppose without loss of
generality that v, is nontrivial. Let x € v, N7, and let a, and b, be the vertical 1-cubes dual
to U and V with boundary 0-cube z. Let v, = ey - - - ¢, be the horizontal path from ¢, to z.
As in part (1), there is a sequence €/, ..., e/, that forms a path in N (U) since otherwise, U
self-osculates which is a contradiction. So, a and a, lie in the same parallelism class.
Similarly, if v, is nontrivial, the 1-cubes b and b, are in the same E-parallelism class. If ,
is trivial, then x = t;, and b = b,. So we have shown that both a and b are in the same E-
parallelism classes as the consecutive 1-cubes a, and b,. By assumption, U and V' remotely
inter-osculate, and so a, and b, do not bound a corner of a square. But this means that U

and V inter-osculate at  which is a contradiction. O
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DEFINITION 3.14. Let X be a cube complex. A subcomplex X' C X self-osculates if
there is a hyperplane U’ of X’ that extends to a hyperplane U of X dual to a 1-cube whose

intersection with X’ consists of 0-cubes.

DEFINITION 3.15. A graph of cube complexes is controlled if for each thick edge-space
X, x I attached to vertex-spaces X,, and X,,, the following hold for each i € {1,2}:
(1) distinct hyperplanes of X, extend to distinct hyperplanes of X, (wall-injectivity);
(2) non-crossing hyperplanes of X, extend to non-crossing hyperplanes of X, (cross-
injectivity);
(3) the edge-space X, is non self-osculating in X,,.
LEMMA 3.16. Let X — ' ¢ be a controlled tree of cube complexes and suppose each vertex-
space of)/(\' has embedded hyperplanes. Then each hyperplane U of)? dual to a vertical 1-cube
splits as a tree of spaces U — 'y so that the following diagram commutes:

U— X

L

FU E— F)’E
Moreover, I'y — ' is an embedding, each hyperplane splits as a tree of connected spaces,
each of which embeds in )A(, and consequently, U embeds in X and U N X, 15 connected for

each vertez-space X, C X.

PROOF. Let U — I'y be a graph of spaces decomposition induced by X—T ¢ Since
U is dual to a vertical 1-cube, U has nonempty intersection with at least one vertex-space.
The vertex-spaces of U are the components of intersections with the vertex-spaces of X , and
likewise for edge-spaces. Wall-injectivity implies that U N X, is a single hyperplane for each
vertex-space X, intersecting with U. So I'y — I'¢ is an immersion and thus an injection.

Therefore, I'y is a tree and U — X is an embedding. U

LEMMA 3.17. Let X — I'¢ be a controlled tree of cube complexes and let X, be an edge-
space in a vertex-space X,. Let U C X be an embedded hyperplane dual to a vertical 1-cube

a € X,. If an X, consists of 0-cubes then U N X, = 0. See Figure [J)

PROOF. By Lemma the intersection U N X, is connected. Since X, is not self-
osculating in X,, we have U N X, = (. O
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FIGURE 4. The edge-space X, osculates with the hyperplane U. If X.NU # 0,
then either X, self-osculates (left) or wall-injectivity fails in some edge-space

Xo (middle). X, NU = 0 (right).

LEMMA 3.18. Let X & I'¢ be a controlled tree of cube complexes with embedded hyper-

planes. Then X has no remote self-osculation /inter-osculation.

PROOF. The horizontal graphs of X are trees that intersect each vertex-space of X in
at most one 0-cube. Suppose U is a hyperplane that remotely self-osculates at a horizontal
tree T. By Lemma [3.13] 7N N (U) is not connected. Let K; and K> be components of
T NN (U). Let t1,ty € T be the closest 0-cubes in T with ¢; € K; and t5 € Ks. Let a; be
the 1-cube dual to U and containing t;. Let v = e;---e, be the shortest horizontal path
in 7" from t; to ty, where each 1-cube e; is in the edge-space X.,. Note that ~ is nontrivial
since t; # ty. The l-cube e; with initial O-cube ¢; does not lie in N (U) for otherwise, the
terminal 0-cube of e; is in K; and is closer to t5. Then a; is not in X.,. By Lemma @,
UNX,, =0. On the other hand, since U splits as a graph of spaces U — 'y where 'y is a
subtree of I' ¢, the image (7 — I’)?) — I'y and so U N X, # () which is a contradiction.
Suppose U and V' are hyperplanes that remotely inter-osculate at a horizontal tree T. By
Lemma [3.13] 77N (N (U) U N (V)) is not connected. Let ¢; € N (U) and ¢, € N (V) be the
closest 0-cubes lying in distinct components of 7N (N (U)U N (V). Let v1 = e;---¢, be
the nontrivial horizontal path from ¢; to ¢o, where each 1-cube e; lies in X,,. Let a; and ay be
the 1-cubes dual to U and V and containing t; and ¢, respectively. As in part (1), we have
a1 ¢ X., and as ¢ X.,, and so by Lemma [3.17} we have UNX,, =@ and VN X,, = 0. Since

X is a tree of spaces, each pair of vertex-spaces is joined by at most one edge-space. Thus,
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UN X, =0 implies UNX,, =0 for all 1 <i < n. Similarly, VN X, =0 forall 1 <i<n.
Since U crosses V, there is a 0-cube z € N (U)N N (V), and a path v = f; - - - f,,, from ¢4 to
t, passing through x, where f; € (N (U)U N (V)). The concatenation =, - 7, projects to a
closed path in the tree I' ¢. Since v; is horizontal, v, 5T < is an embedding. Hence there is
a 1-cube f; € 2 so that p(f;) =p(er). If f; € N(U), then UN X, # 0 and if f; € N (V),
then V' N X,, # 0, both leading to contradictions. O

PROPOSITION 3.19. Let X — I'¢ be a controlled tree of nonpositively curved cube com-
plexes with embedded locally convex edge-spaces. Let q : X — XF be the horizontal quotient.
[f)/(\' is special then so is XE.

PrOOF. By Corollary , XF is nonpositively curved. Since X is a tree of spaces,
the horizontal quotient ¢ : X — XPZ is strict. By Lemma each hyperplane of X?
is embedded and two-sided. By Lemma self-osculation /inter-osculation in X% arise
from remote self-osculation/inter-osculation in X. By Lemma m, X has no remote self-

osculation /inter-osculation. O

4. Subgroup Separability

The collection of finite index cosets of a group F' forms a basis for the profinite topology
on F. The multiplication and inversion are continuous with respect to this topology. A
subset S C F is separable if it is closed in the profinite topology. A subgroup H C F' is

separable if and only if H is the intersection of finite index subgroups.

THEOREM 4.1 (Ribes-Zalesskii [RZ93|). Let Hy,. .., H,, be finitely generated subgroups
of a free group F'. Then HiHy--- H,, is closed in the profinite topology.

It follows that g1Hi1goH> - -+ gnH,, is also closed in the profinite topology, for finitely
generated subgroups H; C F and g; € F' with 1 <7 < m.
Starting with a tree of nonpositively curved cube complexes X T < and using separability
properties of the free group action on X , we find compact quotients X — X where the the
horizontal quotient X — X7 is cubical, X7 is nonpositively with well-behaved hyperplanes

whenever X is controlled and special.
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LEMMA 4.2. Let X — I'x be a compact graph of cube complexes with one vertezx-space

Y. Then X has a finite reqular cover X such that:

(1) X is a graph of spaces whose verter-spaces are isomorphic to'Y ;

(2) The restriction of the horizontal quotient X — X7 to each vertex-space is injective.

PrROOF. We find a covering space that splits as a graph of cube complexes with vertex-
spaces isomorphic to Y and whose horizontal quotient is strict.
The underlying graph X — T'x is a bouquet of circles. Let 1:;( — I'x be the universal
covering map and let X — X be the corresponding covering map so that the following

diagram commutes:

X —TI'x

Then mI'x acts freely and cocompactly on X. Let N C mI'x be a finite index normal
subgroup, and let N\)A( = X — X be the covering map induced by N\I's =T'x = I'x so

that the following diagram commutes:

7—>Fy

| ]

X—)FX

Then X is a graph of cube complexes where each vertex-space is isomorphic to Y.

We need to choose X, and thus N, so that no vertex-space has two points in the same
parallelism class. In our cubical setting, it is sufficient to ensure that no two O-cubes of
a vertex-space of X lie in the same parallelism class. Recall that the attaching maps of
edge-spaces are assumed to be injective.

By compactness, there are finitely many O-cubes {C;}! , € X° Fix a O-cube C; and let
K; be the subgroup generated by the horizontal closed paths based at C;. Then K; is
finitely generated since X is compact. Moreover, since horizontal paths immerse in the
underlying graph, the map X — I'x induces an injective homomorphism K; — m['x.
Identify K; with its image. Let {%j};”:l be the set of all embedded non-closed horizontal
paths between 0O-cubes C; and C;. Each 7;; maps to an essential closed path in I'y and
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thus represents a nontrivial element w;; € mI'y. Furthermore, w;; ¢ K;. Indeed, since
the attaching maps of edge-spaces are injective, the horizontal graphs immerse in 'y, and
so the elements represented by +;; are distinct from elements of K;. In particular, the
products of finitely many cosets K,w;; K;w;.K;--- does not contain the identity element.
Note that there are finitely many such products of cosets. By Theorem [1.1], there exists a
finite index normal subgroup N < m['x that is disjoint from all such multiple cosets. Let
p: X — X be the covering map corresponding to N. Let Z C X be a vertex-space and
C;,C; € Z be 0-cubes mapping to 0-cubes C;,C; € Y. Then C; and C; are not in the
same parallelism class of X. Indeed, if 7 is a horizontal path in X from C; to Cj, then

p(7) is a horizontal path v in X which represents an element in K;w; Kwg Ky - - “wp K

where wjs, Wy, ..., w,; are the elements of mI'x representing non closed embedded paths
between 0-cubes Cj, Cs, Cy - - -, ., Cj, respectively. But N contains no such elements, and
thus ¢ : X — X7 is strict. 0

REMARK 4.3. In the proof of Lemma 4.2, we found a covering map X — X that cor-
responds to a finite index normal subgroup N C mI'x. Note that any normal finite index
subgroup N’ C N induces a finite cover X — X — X with the same properties as X. That
is, X splits as a graph of spaces with vertex-spaces isomorphic to Y and horizontal quotient

~/ /£ . .
X — X s strict.

LEMMA 4.4. Let X — I'x be a graph of nonpositively curved cube complexes and q :
X — X be a strict horizontal quotient, where X is nonpositively curved. LetY be a
vertex-space of X. If X has no inter-osculating hyperplanes, then q(Y) C X% is a locally

conver subcomplex.

PROOF. It suffices to show that ¢ (Y) has no missing squares in X¥. To do so, we show
that for each 0-cube y € ¢ (Y'), the inclusion linkyyy (y) C linkxe (y) is full.
Let y € ¢(Y) be a 0-cube, and let e € linkyr (y) be a 1-simplex whose boundary 0-simplices
x1 and x, lie in linkgyy) (y) with e ¢ linkyy) (y). Since ¢ is strict, there are consecutive
1-cubes a1, a2 € ¢ (Y) containing y that are identified with consecutive 1-cubes of a 2-cube
S, ¢ q(Y). Since X¥ is nonpositively curved, e is the only 1-simplex containing z; and

and so a; and ay are not consecutive 1-cubes of a 2-cube in ¢ (V). Then the preimage ¢~ (S.)
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FIGURE 5. Inter-osculation arising from consecutive 1-cubes not bounding a

2-cube in Y, attached to ladders meeting at S..

contains inter-osculating hyperplanes since ¢! (a;) and ¢! (as) contain ladders attached to

a 2-cube, contradicting the assumption. See Figure [f U

The strategy for obtaining X" that is special, is to use multiple coset separability proper-
ties of F' acting on X to obtain a compact special cube complex X whose horizontal quotient
X7 is special. The property that hyperplanes are embedded and 2-sided is preserved under
the map X — X" However, non-inter-osculation and non-self-osculation are not necessarily
preserved by X — X7, We are therefore forced to revisit and prove a more powerful form
of Theorem , that provides an intermediate cover X for which X" retains all desired

properties.

LEMMA 4.5. Let X — I's be a controlled tree of compact nonpositively curved cube
complexes with isomorphic vertex-spaces. Let F' be a free group acting freely and cocompactly
onI'g and )?, so that X — I'¢ is F-equivariant. Suppose X is special. Then there is a finite
mdex normal subgroup N C F' and a covering map X = N\)? = X where X splits as a graph
of cube complexes whose horizontal quotient X" contains no self-osculating hyperplanes and

no inter-osculating hyperplanes.

PROOF. Since X has no self-crossing hyperplanes, we can identify each immersed hyper-
plane with its image in X. We first find a finite graph of cube complexes X whose horizontal
quotient has no inter-osculating hyperplanes. We do so by finding an appropriate finite
index subgroup N C F' and taking the quotient N \)/(\' = X. Note that Lemma allows
us to pass to a finite cover, if necessary, to ensure that the horizontal quotient is a cube
complex. By Lemma , the horizontal quotient X" has inter-osculation if X has remote
inter-osculation. Remote inter-osculation in X occurs if there are crossing hyperplanes A, B

of X and an element g € F such that gB and A osculate with a horizontal graph T in X.
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FIGURE 6. The hyperplane B, j;, crosses A;; which osculate with the horizontal

graph T;. The element g maps B;j; to A; which also osculates with 7;

Such an element is called a remote inter-osculator at T'. Let R C F be the set of remote
inter-osculators. We characterize the elements of R and use subgroup separability to find a
finite index subgroup of F' that is disjoint from the set R.

By F-cocompactness, there are finitely many F-orbits of horizontal graphs. Let {T;}.", be
their representatives. For each tree T; € {T;}", there are finitely many Stab (T;)-orbits of
hyperplanes that osculate with T;. Let {A,;; };;1 be their representatives. Similarly, for each

hyperplane A;; € {A4;;}'",, there are finitely many Stab (A;;)-orbits of hyperplanes crossing

T
j=1
Ajj. Let {Bijx};2, be their representatives. See Figure @

For each B;j;, and A;,, if there is an element h;j,. mapping B;jr- to A;, then the set of

all elements g with ¢B;;;, = A;, is:
Oijkr = Stab (A”«> hijkr Stab (szk)

Furthermore, by precomposing g € O, with elements of Stab (A4;;) Stab (7;), postcom-
posing g with elements of Stab (7;), and then taking the union over j, k, r, we obtain the set

of remote inter-osculators at T;:

O; = | Stab (T;) Stab (Ay) iz Stab (Biji) Stab (Aj;) Stab (T5)

Jkr

Let O = UO"‘ Each horizontal graph 7' is a translate of some 7;. Thus each remote

)

inter-osculator at 7" is conjugate to an element of . By assumption, X contains no inter-
osculating hyperplanes. By Lemmam X has no remote inter-osculation and thus, 1p ¢ O.
By Theorem the set O is closed in the profinite topology, and so there exists a finite



4. SUBGROUP SEPARABILITY 33

index normal subgroup N disjoint from O, and hence disjoint from R. Then the horizontal
quotient of N \)? — <N \)? >E has no inter-osculating hyperplanes.

Similarly, to find X — X" with no self-osculating hyperplanes, we use the same method
and follow the steps sketched below.
An element g € F gives rise to self-osculation in X" if gA = A’ where A and A’ are
hyperplanes osculating with the same horizontal graph 7. Such elements are called remote
self-osculators at T'. The set of remote self-osculators at T; is:

S; = JStab (T;) Stab (A;) hyjr Stab (A;;) Stab (T;)

gr

Then any remote self-osculator is conjugate to an element of § = USZ" By Lemma [3.18,

we have 1p ¢ S. Then there exists a finite index normal subgroup N’ C F such that

~ \E
N\X — (N "X ) has no self-osculating hyperplanes and the following diagram commutes:
55 — T <
y E— Fy

The map X — (N N N')\X = X provides the desired covering map. O

REMARK 4.6. By taking double covers, if necessary, we can ensure that the hyperplanes
in X are two-sided, which, by Lemma , means that the hyperplanes of X" are two sided

as well.

Up until this point, we have shown how to find a compact quotient where the pathologies
precluding specialness do not appear in the horizontal quotients. In the remainder of this

section, we show how to ensure that the horizontal quotient is nonpositively curved.

DEFINITION 4.7 (k-corners). For k € {1,2,3}, a k-cycle of squares is a planar com-
plex Sj formed by gluing k squares around a vertex v. A k-cycle of squares has k hyper-
planes {a; | 1 <i <k} and k codimension-2 hyperplanes {5; | 1 < j < k}. Recall that a
codimension-2 hyperplane is the intersection of two pairwise intersecting hyperplanes, and
the carrier of a codimension-2 hyperplane is the cubical neighborhood containing the inter-

section. See Figure [7]
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FIGURE 7. 1-cycle, 2-cycle, and 3-cycle of squares with their dual curves.

Let X be a cube complex and D C X be an n-cube. An (n + 2)-dimensional k-corner
of X at D is a combinatorial immersion (Zg, I") — (X, D) where Zy = S x I" and I" is
identified with {v} x I" in Zj.

A k-corner is empty if (Z;,,I") — (X, D) does not extend to (I"*3, I") — (X, D). Note
that 1-corners and 2-corners are always empty.

We write Z, — X when the map I™ — D is clear from the context.
Note that under the immersion 7, — X, hyperplanes map to hyperplanes and crossing

hyperplanes map to crossing hyperplanes.

REMARK 4.8. Nonpositive curvature can be expressed in terms of k-corners. Specifically,
a cube complex is nonpositively curved if it has no empty k-corners. Indeed, if linkx (D) has
a loop |a bigon| then X has a l-corner [a 2-corner| at D. Furthermore, if the no-A property
fails at D, then X has an empty 3-corner at D.
We also note that if X has an empty k-corner at D, then linkx (x) is not flag for each 0-cube
x of D.

DEFINITION 4.9 (k-precorners). Let X — I'y be a graph of cube complexes and let
g : X = X¥ be the horizontal quotient where ¢ is cubical. Let Z, = X be an (n+ 2)-
dimensional k-corner and let {A; = a; x I™ | 1 < i < k} be hyperplanes of Z;, = Sy x I" where
{a; | 1 <i <k} are the hyperplanes of S,. Let {B; = ; x I" | 1 < j <k} be codimension-
2 hyperplanes of Z, = Sj, x I"™ where {f; | 1 < j <k} are the codimension-2 hyperplanes
of Si. Let {Hi hiy x |1<i< k} be the immersed hyperplanes of X such that ¢ (A;) C
(qoh;)(H;), and let N (H;) — X be their immersed carriers.
The (n + 2)-dimensional k-precorner Py over the (n + 2)-dimensional k-corner Zj is the

disjoint union of the corresponding immersed carriers N (H;) — X amalgamated along the
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carriers of the codimension-2 hyperplanes of H; that contain the preimages h; ' (¢~ (B;)).
See Figure [§l Note that there is a global map h : P, — X that restricts to h; on each
immersed hyperplane H;.

A k-precorner Py % X over a k-corner Zy 5 XEPis empty if Z, 5 X¥ is empty. P, NS
is trivial if if ¢ lifts to a combinatorial map Z; — X and such that the following diagram

commutes:

P - X

e

Zy —2— XE

REMARK 4.10. The map P4 2 X induces a splitting of P, as a graph of spaces as in the

following commutative diagram:

Pk E— Ppk

[

Specifically, the vertex-spaces of P, are the components of the preimages of vertex-spaces
of X and the edge-spaces of P, are the components of the preimages of edge-spaces of X.
The graph I'p, is the quotient of P obtained by identifying vertex-spaces and edge-spaces
of P, with vertices and edges of I'p,, respectively. The composition P, — X — I'x induces

a graph morphism I'p, — I'x that maps vertices to vertices and open edges to open edges.

LEMMA 4.11. Let X — I's be a tree of nonpositively curved cube complexes where the
attaching maps of edge-spaces are injective local isometries. Let X — XP be the horizontal
quotient and let P, — X bea k-precorner over a k-corner Zj 2 XE. Then P, is trivial and

hence nonempty.

PROOF. Let T C X be a minimal connected subtree of spaces containing k cubes
{C; C Pk}le that map onto ¢ (Zx). Then T is finite since any k cubes mapping onto ¢ (Zy)
must lie in a finite connected subcomplex of X. Note that the minimality is under inclusion
and over all possible collections of k cubes mapping onto ¢ (Z;). Let T'— T'y be the under-
lying tree. We claim that I'r is a vertex. Note that if £ = 1 then there is only one cube that

lies in a single vertex-space which by the minimality of T, implies that ['y is a vertex. So we
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2 _Pre,wrmuL,

B- i:rc,r_drmy\,

FIGURE 8. A 2-precorner and a 3-precorner.

can assume 2 < k < 3. Suppose that I'r has a spur e incident on vertices v; and vy, where
deg (v1) = 1. Let T, be the corresponding edge-space attached to the vertex-spaces T, and
T,,. By the minimality of 7', we can assume without loss of generality that 7, contains
exactly one cube C;. There exist distinct immersed hyperplanes H; — X and Hy — X that
cross in C; and extend to T, through 7,. Since the attaching maps are local isometries, C;
must be in the edge-space. But in that case, the edge-space T, x [—1, 1] contains C; x [—1, 1]
and so the vertex-space T,, contains C; x {—1}. Therefore, there exists a proper subtree
T" C T containing k cubes mapping onto ¢ (Zy), contradicting the minimality of 7.

Since T is finite and has no spurs, it is a vertex-space. Moreover, X is a tree of spaces,
and so the restriction of the horizontal quotient ¢|,. in X — XFPis an isomorphism. This
provides the required map 7, — X, C X , for some vertex-space X,. So Py is trivial. By
assumption, the vertex-spaces of X are nonpositively curved. By Remark , 7, (and hence

P;) is a nonempty k-corner (k-precorner). O

DEFINITION 4.12. Let X — I'y be a graph of cube complexes and let F' be a group
acting on X. Given k € {1,2,3}, a k-chain is an ordered (k + 1)-tuple of distinct immersed
hyperplanes (Ht)fzo where H; ; crosses H; for all 1 <t < k. See Figure |§|
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FIGURE 9. From left: 1-chain, 2-chain, and 3-chain.

An element g € F is a closing element if g maps Hy in some k-chain (Ht)fzo to Hy giving

rise to an empty k-precorner. We say (Ht)fzo is closed by g.

REMARK 4.13. Given the setting of Lemma [4.11] let F' be a free group acting freely
and cocompactly on I'g, and thus on X , provided that the vertex-spaces are compact and
isomorphic. If for some subgroup G C F', the quotient G \ X has an empty k-precorner,
then G contains a closing element of some k-chain in X. Note that closing elements map

codimension-2 hyperplanes to codimension-2 hyperplanes.

DEFINITION 4.14. Let B be a compact bouquet of circles and let F' = m B act freely and
cocompactly on the universal cover B. Let X » T 2= B be a tree of compact isomorphic
cube complexes. Then the free cocompact action F' ~ B induces a free cocompact action
F ~ X. We fix a finite collection of immersed hyperplanes L = Ly U L U Ly U L3 where:
Ly={H.,...,H,,} are F-representatives of hyperplanes;

L, = U {H;,..., H;,,} are Stab (H;)-representatives of hyperplanes crossing H;, for 1 <
1 < ng; Z

L, = U {Hm, ooy Hijny, } are Stab (H,;)-representatives of hyperplanes crossing H;;, for
1<z<nzand1<]<n2],and

U {Hwﬂ, ey Hijing, t} are Stab (H;;;)-representatives of hyperplanes crossing H;;;, for

1,55t
1<i<n;, 1 <5 <ng,and 1 <t < nyjy.

Let C be the set of all k-chains of hyperplanes of L. For each hyperplane A € L,
there are finitely many Stab (A)-representatives of codimension-2 hyperplanes in NV (A). For
each k-chain C' = (At)fzo, with A; € Ly, let Jo be the set of elements of F' that map the
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chosen Stab (Ay)-representatives of codimension-2 hyperplanes of Aj, to the chosen Stab (A)-

representatives of codimension-2 hyperplanes of Ay. Note that Jo is finite.

LEMMA 4.15. Let B be a compact bouquet of circles and let X — B be a graph of cube
complexes with one compact vertex-space. Let X - I's = B be the tree of cube complexes

where B — B is the universal covering map such that the following diagram commutes:

)?—)FXZE

]

X — B

Let ' = m B be the free group acting freely and cocompactly on X and let g € F be a closing
element. Then there exist a k-chain C = (At)fzo with Ay € Ly, and f € F such that

f‘lgf € Stab (Ao) JC Stab (Ak) Stab (Ak—l) .- - Stab (Ao)

PROOF. Let (B,)}_, be the k-chain in X closed by g. Let V and U be codimension-2
hyperplanes in N (By) and N (By), respectively, such that gU = V. The hyperplane By
lies in the F-orbit of some representative Ag € Ly and so By = fAq for some f € F.
Let {Vi | 1 < s <mng} be Stab (Ap)-representatives of orbits of codimension-2 hyperplanes in
N (Ag). Let ag € Stab (Ag) and Vs € {V; | 1 < s <mnp} such that V = faoV;. Let Ay € L4
and aj, € Stab (Ag) such that By = fayA;.

Case k =1: Let {U, |1 <7 <n;} be Stab (A;)-representatives of orbits of codimension-2
hyperplanesin N (A;). Then U = faya U, for some a; € Stab (Ay) and U, € {U, | 1 <r < ny}.
SogU =V = gfayaU, = faVy = (ag' f'gfajar) U, = V;. Therefore (ag' fgfapar) €
Jo, for C = (A;),_,, and so

f'gf € Stab (Ay) Jo Stab (A;) Stab (Ay)

Case k = 2: We have By = fapa; As for some A; € Ly and a1 € Stab (A;). Then U =
fabaiasU, where ay € Stab (Ag) and U, is a Stab (Ay)-representative in {U, | 1 <r < mn;}.
So, gU =V = g(fajaiaz) U, = faoVs. Therefore,

ftgf € Stab (Ay) Jo Stab (Ay) Stab (A;) Stab (Ag)
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FIGURE 10. Case k =2

Case k = 3: Similarly, U = fagajasasU, where a3 € Stab (A3) and U, is a Stab (As)-
representative in {U, |1 <r <ny}. Thus, (gU = V) = g(fapaiasas) U, = faeVs, and

SO
f~tgf € Stab (Ag) Jc Stab (A3z) Stab (A,) Stab (A;) Stab (Ag)

See Figure [I0] for case k = 2. O

LEMMA 4.16. Let B be a compact bouquet of circles and let X — B be a graph of cube
complexes with one compact nonpositively curved vertex-space and embedded locally convex
edge-spaces. Let X - I's = B be the tree of cube complexes where B — B s the universal
covering map such that the following diagram commutes:

X —— I's = B

|

X —B
Let F' = m B be the free group acting freely and cocompactly on I' ¢ inducing a free cocompact

F-action on X. Then there ezists a compact graph of cube compleres X — I's and a regular
covering map X — X such that the following diagram commutes and the horizontal quotient

X > X7 is nonpositively curved:

| —— >

—>F)A(
— I'x
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Furthermore, any intermediate covering map X - X — X induced by a finite index normal

subgroup of mI'sy splits as a graph of spaces with nonpositively curved horizontal quotient.

PROOF. Using Lemma , we can ensure that any finite cover X we find below admits
a cubical horizontal quotient. Fix collections L and C as in Definition [4.14] Let

o= U U (Stab (Ay) Je Stab (Ay) - - - Stab (Ay))

1<k<3 CeC

where C' = (At)f:[) and J¢ is as in Definition m Note that the elements of O are closing
elements by definition. Any empty k-precorner in X results from a k-chain in X that is
closed by some element ¢ € F. By Lemma [4.15] any closing element in F' is conjugate to
some element in O. By Lemma m, X admits only trivial k-precorners where each trivial
k-precorner is over a k-corner that lies in a single vertex-space of X. By assumption, the
vertex-spaces of X are nonpositively curved and thus contain only nonempty k-corners. So,
1r ¢ O. By Theorem [4.1] there exists a finite index normal subgroup G < F that is disjoint
from O. Let X = G\)A( — G\I'¢ =T'x and X — X be the corresponding compact quotient
and the regular covering map, respectively. By Remark , X has only trivial nonempty
k-precorners, and thus the horizontal quotient X" has no empty k-corners. By Remark ,
X ¥ is nonpositively curved.

Finally, we note that any finite index normal subgroup of GG contains no closing elements
and so, the corresponding finite covers splits as a graph of spaces with nonpositively curved

horizontal quotient. U

5. The Construction

DEFINITION 5.1. Let Y be a compact nonpositively curved cube complex, and let Y/ C Y
be a subcomplex. The map ¢ : Y’ CY — Y is a partial local isometry if ¢ is a local isometry

and both Y’ and ¢ (Y”) are locally convex subcomplexes of Y.

DEFINITION 5.2. Let Y be a nonpositively curved cube complex and let
O={p;:Y,;CY — Y}?:1 be a collection of injective partial local isometries of ¥ where
each Y; is connected. The realization of the pair (Y, O) is the cube complex X obtained as

the following quotient space (See Figure :
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FIGURE 11. The construction of X from Y with two partial local isometries.

X = YUOD Jig,00~, 1)~ ), vy e v
j:
The space X decomposes as a graph of spaces via the map X — B with Y — v and

Y; x I — ~y; where B is the bouquet of n circles {%}?:1 incident to a vertex v.

LEMMA 5.3. Let X — I'ss be a compact graph of cube complexes with a strict horizontal
quotient X — X” and isomorphic vertexr-spaces. Let ® € Aut (I'y) and ® € Aut (I'y) be
automorphisms that map cubes to cubes isometrically. Suppose that the left square of the
diagram below commutes. Then there exists an automorphism $” € Aut <7E> such that

the right square of the diagram below commutes:

I+ < X —4,X"
Cbl q{ 37
Iy < X 45 X7

PROOF. Define & : X~ — X by & (y) = q(® (¢ (y))). Then 3" is well-defined.
Indeed, ¢! (y) is either a point or a horizontal graph. By the commutativity of the left
square, the automorphism @ maps points to points and horizontal graphs to horizontal
graphs. In both cases, ¢(¢7* (y)) is a single point. Moreover, for each point y € X, we
have & (q(y) = q(® (¢ (¢(y)))). Since g (y) is a point, ¢~ (¢ (y)) is either the point
y or a horizontal graph containing y. In both cases, ¢ (® (¢7* (¢(y)))) = ¢ (®((y))) and
thus the right square commutes. By the commutativity of the left square, ® permutes the
vertex-spaces of X which makes 3" an automorphism of X" that permutes copies of the

vertex-spaces. U



42 1. THE HRUSHOVSKI PROPERTY FOR COMPACT SPECIAL CUBE COMPLEXES

THEOREM 5.4. Let Y be a compact nonpositively curved cube complexr and let O be the
set of injective partial local isometries of Y. Then Y embeds in a compact nonpositively

curved cube complex R where each ¢ € O extends to an automorphism ® € Aut (R).

PROOF. We construct a compact graph of spaces X whose horizontal quotient X"=R
has the desired properties.
Let O = {p;:Y; CY = Y}7_, be the collection of injective partial local isometries of Y’
and let X — B be the realization of the pair (Y, O). Let 7; be the loop in B corresponding
to ¢;. Let ' = m B and let X — X be the covering map induced by the universal covering

B — B such that the following diagram commutes:

—

P <)
o +—

l

Then X — I's = Bis a nonpositively curved tree of cube complexes. By Lemma ,
Remark 7 and Lemma , there exists a finite regular cover X — X that splits as a
graph of spaces according to the following commutative diagram and such that the horizontal
quotient X — X7 is strict and X is nonpositively curved. Note that each vertex-space of

X is a copy of of Y according to some fixed isomorphism.

r

|

X

|

I's

;

Fix a vertex v € I'y and let X, be the corresponding vertex-space of X. By subgroup

f@
i

separability of free groups, we can assume that I'y has no loops. Thus X, is adjacent to
2n vertex-spaces {7%}321 where each 7%. is joined to X, by a copy of Y; x I attached as
follows: Y; x {0} is identified with a copy of ¥; C X, and Y; x {1} is identified with a copy
of p(Y;) C YU].. Each Y; x I corresponds to a unique map ¢; € O and thus to a unique
circle v; in B. The lift of 7; at v specifies a unique automorphism ®; € Aut (I'y) that maps
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£

FIGURE 12. The construction of YE.

v to v;. Then there is an automorphism 6]» € Aut (7) that maps X, to 7%. such that the

following diagram commutes:

In particular, 5]- maps a copy of Y; C X, to a copy of w; (Y;) C ij. By Lemma ,
any automorphism ® € Aut (7) induced by an automorphism of the underlying graph ® €
Aut (I'y) descends to an automorphism 3" € Aut <7E) So 5;5 (¢(X.) =q(®; (X,)) =
q (71,].). Since ¢ (70) =Y and ¢ (7%.) 2 Y are embedded subcomplexes of X" amalga-
mated along Y; = ¢, (Y;), the restriction Eﬂyj equals ¢,. See Figure . O

REMARK 5.5. Note that dim (7’3) — dim (V).

REMARK 5.6. Following the Simple Local Gluing Lemma in [BH99], Theorem [5.4] can be
generalized to nonpositively curved metric spaces provided that some finiteness conditions

are satisfied and the edge-spaces are locally convex, closed, and complete subspaces.

DEFINITION 5.7. Let Y be a compact nonpositively curved cube complex. A collection of
injective partial local isometries O = {¢; : Y; C Y — Y}?:l is controlled if the corresponding

realization X — B is a controlled graph of spaces.
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THEOREM 5.8 (Haglund-Wise [HW10|). Let X decompose as a finite graph of spaces,
where each vertex-space X, and edge-space X, s special with finitely many hyperplanes. Then
X has a finite special cover provided the attaching maps of edge-spaces satisfy the following:

(1) the attaching maps X. = X, and X, — Xr(e) are injective local-isometries;

(2) distinct hyperplanes of X, map to distinct hyperplanes of X,y and X ();

(8) moncrossing hyperplanes map to noncrossing hyperplanes;

(4) no hyperplane of X, extends in X,y or X;() to a hyperplane dual to an edge that

intersects X, in a single vertex.

REMARK 5.9. For a compact special cube complex Y with a controlled collection of partial
local isometries O, the realization of the pair (Y, Q) satisfies the conditions of Theorem

and thus has a finite special cover.

THEOREM 5.10. Let Y be a compact special cube complexe and let O be a controlled
collection of injective partial local isometries of Y. Then there exists a compact special cube
compler R containing Y as a locally conver subcomplex such that each © € O extends to

some automorphism ® € Aut (R).

PROOF. The claim follows from Remark Theorem [5.8] Theorem Lemma [4.5]
Lemma [£.4] and Lemma [3.2] O



CHAPTER 2

Negative Immersions and Finite Height Mappings

1. Introduction

A 2-complex X has nonpositive immersions if for any combinatorial immersion ¥ — X,
with Y compact, connected, and collapsed, either mY is trivial or x (Y) < 0. A 2-complex
X has negative immersions if there exists ¢ > 0 such that for any combinatorial immersion
Y — X, where Y is compact, connected, collapsed, and with no isolated edges, either m Y is
trivial or x (Y') < —c|Y'|2 where |Y|5 is the number of 2-cells in Y. Let F be a free group and
let o : H — K be an isomorphism of subgroups of F. The HNN extension of F with respect
to « is the group presented by (F,t : t7'Ht = K). The HNN extension is ascending if
‘H = F, and partially ascending if H is a proper free factor of F. Ascending HNN extensions
which were studied in [FH99], are shown to have nonpositive immersions in [Wis22|.

The height of a subgroup H in a group G, denoted by Height (#), is the supremal number
of distinct cosets {Hg;},.; such that ﬂ?—[,g" is infinite [GMRS98|. In this chapter, we

define a closely related notion of “direzcetled height” of mappings. Let H be a subgraph of
a finite graph F' and let v» : H — F be a cellular immersion. Let X be the mapping
torus representing the partially ascending HNN extension. Then the directed height of v is
m () =inf{i : ¢~ (H) is a forest}. We will show in Lemmathat m (V) < 00

if and only if m H has finite height in 7;X. Our main results are:

THEOREM. Let H be a subgraph of a finite graph F. Let X be the mapping torus
of a cellular immersion ¢ : H — F. Suppose ¥ ~' (H) is a forest. Then X has negative

lmmersions.

THEOREM. Let F' be a finite connected graph and let H C F be a subgraph. Let
¥ : H — F be a cellular immersion. Then the mapping torus of ¢ has negative immersions

if and only if ¢ has finite directed height.

45
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THEOREM. Let F' be a finite graph and let H C F be a subgraph. Let X be the
L

mapping torus of a cellular immersion ¢ : H — F with Height (1)) < co. Let K C m X be a

finitely generated subgroup. Then K splits over edge groups with uniformly bounded Euler

characteristic.

In Section [2, we give some background. In Section [3| we prove a special case of the main
theorem, namely, that a partially ascending HNN extensions of free groups with malnormal
associated subgroups have negative immersions. In Section f] we prove the main theorem,

and in Section [o| we discuss related properties and state two conjectures.

2. Background

We work in the category of C'W-complexes. Let Y be a C'W-complex. We denote by
Y* the k-skeleton of Y and by |Y|; the number of k-cells in Y. Given complexes X and
Y,amap Y — X is cellular if it maps Y* into X* for all k. It is combinatorial if it maps
open cells of Y homeomorphically onto open cells of X. It is an immersion if it is locally
injective. A complex is collapsed if it has no free faces. A 1-cell (edge) is isolated if it is not
a face of a 2-cell. A 2-complex X has negative immersions if there is ¢ > 0 such that for any
combinatorial immersion Y — X with Y compact, connected, collapsed (containing no free
faces), and containing no isolated edges, either mY is trivial or x (Y) < —c|Y'|s where |V,
is the number of 2-cells in Y and x (V) is the Euler characteristic of Y.

A group G is coherent if every finitely generated subgroup of G is finitely presented. The
proof of Theorem [2.1| can be found in [Wis20].

THEOREM 2.1. Let X be a compact 2-complex with negative immersions. Then m X 1is

coherent.

A graph F is a 1-dimensional C'W-complex whose vertices and edges are the 0-cells and
1-cells, respectively. There exist two incidence maps 71,7 : F! — F° mapping each edge
e € F! to its boundary vertices, T, (e), T (e) called initial and terminal vertex, respectively.
Each edge is oriented from its initial vertex to its terminal vertex. The degree of a vertex
v relative to the graph F', denoted by degy (v), is the number of edges in F' containing v

as an initial or terminal vertex. An edge whose initial and terminal vertices coincide with
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v counts twice in degp (v). A leaf is a vertex of degree 1 and a spur is an edge containing
a leaf. A graph is trivial if it is a union of vertices. A tree is a non-empty graph with no
embedded circles and a forest is a disjoint union of trees. The empty graph is the graph with
no edges and no vertices. We consider the empty graph as a forest.

A graph of graphs X with underlying graph I'y, wertex-spaces {Xv}vel“g(7 and edge-
spaces {Xe}eerﬁ( is a topological space X obtained as a quotient of graphs {Xy}verg( and
{X.x 1 }eef‘%( in the following manner: for each edge e € T'}, with boundary vertices v; =
71 (e),v9 = T (e), the edge-space X, x [ is attached to the vertex-spaces X, , X,, via an
outgoing attaching map X, x {0} — X,, and an incoming attaching map X, x {1} — X,,.

The Euler characteristic of the resulting space is given by

0 1
vely e€l'y

A subgroup H C G is malnormal if gHg ' NH = 1g whenever g ¢ H. The pair H,K C G
is malnormal if gHg ' N K = 1g for all g € G. An HNN extension is malnormal if the

associated subgroups form a malnormal pair.

3. Malnormal Partially Ascending HNN Extension

DEFINITION 3.1. Let H be a subgraph of a graph F'. The boundary of H in F is
OH ={ve H" : degy (v) > degy (v)}.

LEMMA 3.2. Let H C F be a subgraph of a finite leafless graph F with no trivial compo-

nents. Then:

X(F)~x(H) < HoHl,

d
PROOF. A graph J satisfies x (J) = Z (1 — egQ(U))‘ We temporarily use x to denote
veJo

the number of vertices minus the number of open edges. Let J = (F - H ) U S! be

vEOHPO
obtained by removing H and adding a circle at each vertex of 0H. Then

X(F) = x(H) = x(F~H) = x(J) < —3[oH]s =
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LEMMA 3.3. Let H be a subgraph of a finite graph F. Let v : H — F be a cellular
immersion with H C 1 (H). Suppose H has no tree component and ¢)~* (H) is homeomorphic
to a forest. Then v (T) N OH # 0 for each component T C ' (H). Consequently, there
exists M= M (F, H,1) > 0 such that |H|, < M |0H|o.

PROOF. Note that ¢)~! (H) is not necessarily a subgraph of F'. Each tree T' C ¢! (H)

can be subdivided into a tree T so that | is combinatorial. Let
d = max {Diam (T) : T C ¢~' (H), where T is the subdivision of T}

Since H has no tree components, each component 7" C 1~ (H) has a leaf that maps to

OH. So H C U Ny (v) where Ny (v) is a ball of radius d centered at v. Let M =
vedH

max {|Ny (v) |1 : veE€ F°}. Then |H|;y < MI|0H]|o. O

DEFINITION 3.4. Let F' be a graph and let H C F' be a subgraph. The mapping torus
of a map ¢ : H — F' is the 2-complex X obtained as follows:

X =(FU(H x[0,1])) /{(x,0) ~x, (z,1) ~(x) : x € H}

The 2-complex X decomposes as a graph of spaces X — ['x, where 'y is a circle with one
vertex v and one edge e. Let X, = F and X, = H x[0, 1] be the vertex-space and edge-space,
respectively, where X, is attached to X, via the maps H x {0} — X, and H x{1} — X,. We
refer to the images of H x {0} and H x {1} in X, as the outgoing and incoming edge-spaces,
respectively. An edge e of X is vertical if e C F, and horizontal otherwise. Note that each
vertex of H gives rise to a horizontal edge of X, and each edge of H gives rise to a 2-cell of

X. Moreover, each horizontal edge and each 2-cell of X arises in this manner.

REMARK 3.5. Let X be the mapping torus of a cellular immersion ¢ : H — F, where
H is a subgraph of a finite graph F. Let Y — X be a combinatorial immersion where Y
is a nontrivial compact, connected, and collapsed 2-complex with no isolated edges. The
decomposition X — ['y induces a decomposition ¥ — I'y whose vertex-spaces are the
components of the preimage of F' and whose open edge-spaces are the components of the

preimage of H x (0,1). Let Y, be the disjoint union of the vertex-spaces, and let Y, C Y, be
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the disjoint union of the outgoing edge-spaces. Then there is a cellular immersion ¥ : Y, — Y,
whose mapping torus is Y and the following diagram commutes:

Y, Y,

|

H-—"%F
Define the boundary of Y, denoted by 9Y, as the union of the boundary vertices of Y, in Y,,.

We make the following remarks:

(1) The 2-cells of Y are in correspondence with the edges of Y.

(2) Distinct outgoing edge-spaces in a vertex-space are disjoint. This holds since Y — X
is an immersion and the outgoing edge-space in X is an embedding. In particular,
each edge of Y, is in at most one outgoing edge-space.

(3) Since Y is collapsed and has no isolated edges, each edge in Y, lies in image (V).
Indeed, if there is a non-isolated edge e ¢ image (¥), then by Remark , e lies in
a unique outgoing edge-space. However, outgoing edge-spaces are embedded and so
e is a free face, contradicting that Y is collapsed.

(4) No edge-space of Y has a leaf, since a leaf would give rise to a free face.

(5) No edge-space (vertex-space) is a single vertex since otherwise Y would have an
isolated edge, a free face, or be trivial.

(6) Outgoing edge-spaces are embeddings and W is an immersion since these mappings
pull back from the combinatorial immersion ¥ — X.

(7) No vertex-space in Y, has a leaf. Indeed, by Remark , each edge of Y, lies in an
incoming edge-space. By Remark , no edge-space has a leaf. By Remark @,
the attaching maps of edge-spaces are immersions. Since the image of an immersed
leafless graph contains no leafs, the claims holds. Furthermore, by Remark , no

vertex-space of Y is a tree, and so, x (Y,,) < 0 for all vertex-spaces Y,, of Y.

THEOREM 3.6. Let H be a subgraph of a finite graph F. Let X be the mapping torus of

a cellular immersion v : H — F. Suppose 1)~' (H) is homeomorphic to a forest. Then X

has negative immersions.

PROOF. Let Y — X be a combinatorial immersion where Y is a nontrivial compact,

connected, and collapsed 2-complex with no isolated edges. As in Remark let Y = IT'y
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be the induced graph-of-spaces decomposition, and let ¥ : Y, — Y, be the map whose
mapping torus is Y. By Remark [3.5(3), we have Y, C image (¥). By Remark [3.5(6),
the map ¥ projects to ¢ and so U~!(Y,) is homeomorphic to a forest. Each component
T' C U1 (Y,) can be subdivided to form a tree T” so that W|; is combinatorial. Since
Y — X is a combinatorial immersion, the subdivided trees of ! (Y,) embed into the
subdivided trees of 1y~ (H) (as in Lemma [3.3)), and so for each component 7" C ¥~ (Y,),
we have Diam (7") < d, where d = max {Diam (T) : T is a component in ¢! (H)}.
Moreover, since X is compact, there is an upper bound M = M (d) on the number of edges
in any d-ball in Y,. By Remarks —, Y, has no tree component. By Lemma , we
have |Y.|; < M|8Y.|o. By Lemma 3.2 and Remark [3.5] (1), we have:

—1 -1 -1
V) = x(Yy) = x(Ye) < —|0Yelo < s1Yeh = 551V U
Y) = ()= x (%) £ SAOVilo £ Vel = IV,

4. Finite Height Mappings

DEFINITION 4.1. The generalized composition of the functionsa: A — Band 5 : C' — D,

where C' C B, denoted by e, is fea = o al,-1).

DEFINITION 4.2. Let F' be a connected graph and let H C F' be a subgraph. Let
1 H — F be a cellular immersion. For each i > 0, let ¢/ denote the generalized composition
of 1 with itself i times, where ¢° = idp : F — F. Let ¢~ (H) = ()" (H).

Let Z; denote the domain of ¢". Then Z;,; = {z € Z; : ¢'(z) € H} = " (H), for each
i > 0. The combinatorial domain D; of 1 is the largest subgraph in Z;. Note that Z; is not
necessarily a subgraph of F', Z,,; C Z;, and D;,; C D; for all © > 0. Moreover, Z; has a
part that deformation retracts to D; and a part that is a disjoint union of closed intervals
and singletons. Thus, when Z; is not homeomorphic to a forest, at least one component of
D; is not a tree. Let D, C H be the subgraph whose edges and vertices map into H under
all powers of . Note that ) € D, C D,y C D;.

The directed height of 1 is:

Height (1) = inf {i : ¢~ (H) is a forest}



4. FINITE HEIGHT MAPPINGS 51

—
Note that Height (¢) = 0 if and only if H is a forest. We use the following notation:
4| = max {[¢(e) |, : eC H'}

REMARK 4.3. m (1) = ¢ < oo if and only if the length of embedded directed paths
in the Bass-Serre tree with infinite stabilizers is bounded by ¢. Note that the Bass-Serre
tree is directed because of the map to the underlying graph of the HNN extension which is
a directed loop.

DEFINITION 4.4. The height of a subgroup H in G, denoted by Height (#), is the supremal
number of distinct cosets {Hg;},., such that m%gi is infinite.
iel
LEMMA 4.5. Let H be a subgraph of a finite graph F and let v : H — F be a cellular
immersion. Let X be the mapping torus of 1. Then mi H has finite height in m X if and

only if v has finite directed height.

PROOF. Let H = mH and F = mF. Suppose H has finite height in 7;X. Then

Height () bounds the number of distinct cosets {#Hg;} such that |H% N --- N HI"| is infi-

nite. So the number of edges in the Bass-Serre tree T with a common infinite stabilizer is
likewise bounded. Hence Height (#) bounds the length of embedded paths in 7" with infinite
stabilizer. Thus m () < o0.

Suppose Iﬁght> (¥) < co. Then IthE (1) bounds the length of embedded paths in T
with infinite stabilizers. There is a uniform upper bound on the degree of vertices of any
subtree T C T with point-wise stabilizer of 7" infinite. Indeed, the number of incoming edges
of each vertex in 7" is bounded by r = Height (¢, (H)) in F, since every finitely generated
subgroup of a free group has finite height [GMRS98|. Thus 7" is a rooted tree of length
< PTght (1) and incoming degree < r. So the number of edges in 7" is < rlm(w. Any
set of cosets of the edge group corresponds to a set of edges in T. The intersection of the
corresponding conjugates point-wise stabilizes those edges, and thus point-wise stabilizes the

ﬁ.
smallest tree 7" containing them. Hence the number of cosets is bounded by < rHeight(®)

LEMMA 4.6. Let H be a subgraph of F. Let vy : H — F be a cellular immersion with
s
Height () = ¢ < 0o. Then Dy, is a (possibly empty) forest.
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PrROOF. We have D, C Dy,q. So, it suffices to show that Dy, is a forest. Suppose C' C
Dy, is an embedded circle. Then *(C) C H and so ¢~ (H) is not a forest, contradicting

the assumption. O

LEMMA 4.7. Let F' be a connected graph and let H C F' be a finite subgraph. Let X be the
mapping torus of a cellular immersion ¢ : H — F. If 1 has infinite directed height, then H
contains a connected subgraph D C H with x (D) < 0 such that 1 (D) = D. Consequently,
X contains a subcompler' Y — X, where Y is a connected, compact, and collapsed 2-complex

with no isolated edges and x (V) = 0.

PROOF. Since v has infinite directed height, for each i > 0, we have ¥~ (H) is not a
forest. So each D; contains an embedded circle. Since H is finite and D; ;1 C D;, there is an
integer p such that for all j > p we have D, = D;. Then D, contains a component D with
X (D) <0 and ¢ (D) = D. In particular, since ¥ is an immersion, ¥ (Deore) = Deore, Where
Dcore 18 the core of D. The mapping torus of v restricted to Dcye provides Y. O

DEFINITION 4.8. Let ) — I'g be a graph of spaces where I'g is equal to a subdivided
interval [0, k| directed from 0 to 1 < k < co. Suppose each vertex-space @,, is a tree where
(Qv, has exactly one edge fy. For each edge-space )., x I there is an outgoing attaching map
Q., x {0} = Q,,_, and an incoming attaching map Q., x {1} — Q,,. When each outgoing
attaching map is an embedding onto a single edge f of the vertex-space, then Q) is a ladder
and f is a connecting edge. When each attaching map is bijective, then @) is a fan. The rim
of a fan @, denoted by Rim (Q), is Q,,. The length of @ is Length (Q) = k. We allow the
case k = oo and say that @ is an infinite ladder/fan. We say @ arises from fo, and fy gives
rise to Q).

The space @) is a cell complex as follows: we have already declared each (), is a tree
and so it remains to describe the additional 1-cells and 2-cells of (). Each open edge-space
Qe x (0,1) has a product structure induced by the graph Q.,. See Figure [l The edges
in the vertex-spaces are wvertical and the remaining ones are horizontal. Each vertex in the
image of Q., — (., , gives rise to a horizontal edge in (). Each edge f in the image of

Qe; — Qu,_, gives 1ise to a 2-cell S C Q). We say S arises from f.
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FIGURE 1. Left: A ladder of length 4 emerging from e;. Right: A fan of

length 3 emerging from e.

Let X be a 2-complex with a graph-of-spaces structure whose 1-skeleton is partitioned
into horizontal and vertical edges, where the vertical edges are the edges of vertex-spaces,
and the horizontal edges are the remaining ones. An immersed ladder of X is a combinatorial
immersion A : L — X that maps vertical /horizontal edges of a ladder L to vertical /horizontal
edges of X. An immersed fan ¢ : Q — X is defined analogously. An edge e C X has a
k-ladder (resp. k-fan), if there is an immersed ladder A\ : L — X (resp. immersed fan
¢ @ — X) of length k& emerging from e’ such that A (¢’) = e (resp. ¢ (¢’) =e). When X
is the mapping torus of ¢ : H — F, we require that immersions preserve the orientation of
horizontal edges.

Let X be the mapping torus of ¢ : H — F. Let H; = D; — D;,1 be the subgraph whose
edges give rise to i-fans but not (i + 1)-fans. When H; = (), we have D; = D;;1 = D, is
the subgraph whose edges give rise to infinite fans. Then D, is ¢-invariant. Let m = m(v)
denote the supremum of lengths of maximal finite fans in X. Note that when H is finite we

have m < oo since any maximal finite fan is determined by the edge it arises from.

LEMMA 4.9. Let H be a subgraph of a finite connected graph F'. Let X be the mapping
torus of a cellular immersion ¢ : H — F with I?ght)(z/)) < 00. Let m = m(v¢) be the
mazimal length of immersed finite fans in X. Let Y — X be a combinatorial immersion,
where Y is a nontrivial, compact, connected, and collapsed 2-complex with no isolated edges.
Let Y — T'y be the induced graph-of-spaces decomposition and let JY be the associated
boundary. Then there exists M= M (H, F,1) > 0 such that each 2-cell S of Y lies in the
image of an immersed ladder \ : L — Y with Length (L) < m + 1 emerging from e where
Dist (A (e),0Y) < M.
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FIGURE 2. On the left: Case 1, and on the right case 2.

PROOF. Let S be a 2-cell of Y. Since Y is collapsed, there is an immersed ladder
A L — Y with Length (L) = m+1 and whose (m+1)-th 2-cell maps to S. Let {e1,...,€m11}
be the connecting edges of L. For 1 < 7 < m + 1, let O,, be the outgoing edge-space
containing A (e;) and let Y, be the vertex-space containing O,,. Let ¢ : @ — Y be the
maximal immersed fan emerging from A (e1). See Figure 2]

Case 1: If Length (Q) = k < m, then A(ep1) C ¢ (Rim(Q)) N O,,,,. Since Q is
maximal, image (Rim (Q) — Y,,,,) ¢ O,,.,, and so ¢ (Rim (Q)) N 9O,,,, # 0. Since fans
in Y project to fans in X, we have | Rim (@) |1 < |[¢]|™. Thus, Dist (A (ex11),0Y) < [[¥]|™.

Case 2: If Length () > m, then the image of @ — Y — X is an infinite fan of X.

Vk+1

Let T C O,, be the maximal connected subgraph containing A (e;) and whose edges give
rise to (m + 1)-fans in Y. Hence T immerses in D,,. Since ITght (1) < oo, it follows
from Lemma that Dy, is a forest. So T is a tree with Diam (T) < Diam (D). Let
u € T be a leaf. Since Y is collapsed, outgoing edge-spaces have no leaves. So there

is an edge f C O,, containing v with f ¢ T. By maximality of 7', the maximal fan

¢’ (Q') emerging from f has length & < m. So ¢ (Rim (Q')) N 90,,,, # 0. Hence,
Dist (A (éx41),0Y) < Diam (D) + [[20||™.
The claim follows with M = Diam (D) + ||¢]|™. O

THEOREM 4.10. Let F' be a finite connected graph and let H C F' be a subgraph. Let X
be the mapping torus of a cellular immersion v : H — F. Then X has negative immersions

if and only if ¥ has finite directed height.
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PROOF. The “only if” direction holds by Lemma [£.7]

Suppose Ithi):(w) < o0. Let Y — X be a combinatorial immersion where Y is a
nontrivial compact, connected, and collapsed 2-complex with no isolated edges. Let Y — I'y
be the induced graph-of-spaces decomposition. For each v € T'Y, let Y, be the corresponding
vertex-space and let O, be the disjoint union of outgoing edge-spaces in Y,. Let m = m (¢)
be the supremal length of maximal finite fans in X. By Lemma[4.9] there exists M > 0 such
that each 2-cell of Y lies in a ladder of length < m 4+ 1 emerging from a vertical edge e with
Dist (e,0Y) < M. Let 'Y be the set of boundary points of Y that are at a distance < M

from such edges e. So 0'Y C 9Y = |_| 00,. Since Y — X is a combinatorial immersion,
vEF%
there is an upper bound N on the number of edges in an M-ball in the vertex-spaces of

Y. Note that N = N (F, M) is a function of F' and M. Consider the M-balls centered at
vertices of @Y. In each such ball, there are at most N edges and each edge gives rise to at
most || || ladders of length < (m+ 1). The number of 2-cells in each ladder is < (m+1).
Then:

Y < Y (m+ D[N = (m+ D" N@Y]e < (m+ 1| N[oY ]y

ved’Y

and so
Y2
(m+1)[|]
By Remark ., the vertex-spaces of Y have no leaves. Then the conclusion holds

by the following double inequality. Its first equality is straightforward. Its last inequality
follows from above, and its middle inequality holds by Lemma |3.2]

1
CES T

—1
(V) = 3 () -x(0) £ SVl < 5 vl, O

0
vel'y,

DEFINITION 4.11. Let F be a free group. There is a natural generalization of fully
irreducible endomorphisms of free groups to fully irreducible partial endomorphisms. A
partial endomorphism v : H — F is fully irreducible if there does not exist n > 0, a proper
free factor H' C H, and g € F such that ™ (H') C g 'H'g. See Definition for the
notion of generalized composition explaining ™. The standard notion of fully irreducible

endomorphism focuses on the case where H = F [BH92].
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The standard 2-complex associated to a presentation of a group G is a 2-dimensional cell
complex formed by a single vertex, one circle at the vertex for each generator of G, and a
2-cell for each relation in the presentation. The attaching maps of the 2-cells are determined

by the presentation.
In the language of Definition [4.11} our result shows the following:

THEOREM 4.12. Let H be a proper free factor of a finitely generated free group F, and
let  : H — F be a monomorphism. Let X be the standard 2-complex of the HNN extension
of F with respect to . Then X has negative immersions if and only if ¥ is fully irreducible.

PROOF. The proof follows from Lemma[4.5 Lemma[4.6] Lemma[d.7, and Lemmal[4.9} O

1
(m + D[¢[mN

REMARK 4.13. If ¢ = 5 is the constant in x (Y) < —c¢|Y]s, then 0 <

c < 1.

REMARK 4.14. In the proof of Theorem [4.10] we assume that Y has no isolated edges, as
required by the definition of Negative Immersions. However, the claim that y (Y) < —c|Y|y
holds even if we allow Y to have isolated edges. This follows from a simple induction on the
number of isolated edges in Y. Indeed, the base case holds by Theorem [£.10] Now, let e be
an isolated edge of Y. Then either e is not separating and Y = Yj Ue, or e is separating and

Y =Y, UeUY5. In the former case, we have
X(Y) <x (Y —e) = x(V1) < =c|Yi]a = =Y
where the last inequality holds by induction. In the latter case, we have
X (V) =x(M) +x(¥2) =1 <x (1) +x (¥2) < —c([V1]2 + [Yal2) = —c[Y]>
where the last inequality holds by induction.

Motivated by our desire to verify Property [T of the next section, we note the following
consequence of the preceding statements. This does not prove Property since it does
not assert that the edge groups in the splitting of I equal the intersections of I N HY, for
gemX.
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THEOREM 4.15. Let F' be a finite connected graph and let H C F be a subgraph. Let
s

X be the mapping torus of a cellular immersion ¢ : H — F with Height (¢) < oco. Let

K C mX be a finitely generated subgroup. Then IC splits over edge groups with uniformly

bounded Euler characteristic.

PROOF. By Theorem[4.10] X has negative immersions. By Theorem [2.1] 71 X is coherent.
So there is a combinatorial immersion Y — X, with mY = K where Y is compact and
connected. We can assume that Y is collapsed since collapsing is a homotopy equivalence. Let
Y — I'y be the graph-of-spaces decomposition induced by the decomposition X — I'y. Let
Vi and Oy be the disjoint union of vertex-spaces and outgoing edge-spaces of Y, respectively.
We show that x (Oy) is uniformly bounded by a function of rank (mY"). In fact, we show
that x (Oy) > @ By Theorem [4.10, Remark 4.13|and Remark |4.14] there is a constant
¢ € (0,1) such that x (Vy) — x (Oy) < —c|Y]o. So x(Oy) > x(Vy)+ c|Y]o. We have

x(Y) = x(Vy) — E+ Y]y, where E are the number of the horizontal edges in Y. Since

c—1 <0, we have

X(O) 2 X 4B~ [VhtdVl = x () + (e~ Dy > X

where the last inequality follows by By Theorem [4.10} 0

5. Discussion of Related Properties

Let H be a subgraph of a finite connected graph F' and let X = mH and F = m F.
Let X be the mapping torus of a cellular immersion ¢ : H — F. Consider the following

properties:

1) m X is locally quasiconvex.

2) F and H are quasiconvex.

)
)
3) F and H have finite height.
)
)
)

(
(
(
(4) m X has the finitely generated intersection property.
(5) X has negative immersions.

(6) m X contains no subgroup isomorphic to an ascending HNN extension of a finitely

generated free group.

(7) m X is hyperbolic.
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(8) m X contains no Baumslag-Solitar subgroup BS (1, m) for m > 0.
(9) m X has a quasiconvex hierarchy.
(10) m X is virtually special.
(11) K NH is finitely generated whenever K C 7 X is finitely generated.
(12) Each finitely generated subgroup of m X is tamely generated.

()= (@) is immediate. When m X is hyperbolic, we have <= (3), where (=) holds
by [GMRS98| and (<) holds by [Mit04]. A group has the finitely generated intersection
property (FGIP) if the intersection of any two finitely generated subgroups is also finitely
generated. For instance, free groups have the FGIP [Howb4]. (4)=-(6) holds by [BW22]
and = holds by [Sho91]. (5)=-(6] since ascending HNN extensions of free groups
have Euler characteristic zero, and @: by Lemma and Lemma —
holds by Theorem , and :> is a special case of :>@ It is well known that
M=), e.c [ABCT91]. + (@O)=(10) by [Wis12]. ([11)=(12) since if K N H is finitely
generated for each finitely generated K, then K9 NH is finitely generated for each g, and so
ICNHY is finitely generated for each g. See [BW13] for the definition of “tamely generated”.
(12)= holds by [BW13]. = (9) holds by the following argument: = () and by
[CW22|, we have @: mX C mX’ where X’ is the mapping torus of a fully irreducible
nonsurjective map of a graph and X’ is hyperbolic relative to X. By [Rey11], this implies
m X' is hyperbolic since it contains no BS (1, m) and so :> holds. Since =>, we
have + = @ since m X splits along H and the vertex-group is free.

We end this chapter by stating the following conjectures:

CONJECTURE 5.1. = and hence = (L1).

CONJECTURE 5.2. If X is a 2-complex with negative immersions, then 71 X has a finite
index subgroup that is isomorphic to the fundamental group of a mapping torus of a finite

height immersion of graphs ¢ : H — G.

CONJECTURE 5.3. If G is a locally quasiconvex hyperbolic group, then G has a finite
index subgroup that is isomorphic to the fundamental group of a mapping torus of a finite

height immersion of graphs ¢ : H — G.



CHAPTER 3

Maximal Ascents

1. Introduction

Weinbaum conjectured in [Wei90| that any nonperiodic word W of length > 1 has a
cyclic permutation that is a concatenation uv where each of U and V' appear exactly once as a
prefix of a cyclic permutation of W and W~!. This conjecture was proved by Duncan-Howie
in [DH92| using the right-orderability of one-relator groups [BH72|. This provided the
motivation to investigate whether maximal ascents are uniquely positioned in nonperiodic
words. Our main result is:

Theorem Let X = {z7,22} be an alphabet and let W € F (X) be a cyclically reduced

nonperiodic word. Then W has a cyclic permutation W' = AD where:

(1) A is the uniquely positioned maximal ascent in W.
(2) If D is not uniquely positioned, then it appears as an internal subword of A.

(3) Using the Magnus ordering on F, we have D = 1# if and only if W is monotonic.

2. Ascents and Descents

Let X be an alphabet and let W = y; -- -y, be a word in X* = X U X~!. We say W is
reduced if y; # y;rll for all 1 < i < n. It is eyclically reduced if W is reduced and z; # x, '
We henceforth consider only cyclically reduced words. Each W represents an element g in
the free group F = F (X), and each g € F is represented by a unique reduced word W. For
simplicity, we shall use W to denote both the element of F and its representation in X*.
The spelling of W is W =y - - - y,, where y; € X*. The empty word is denoted by 1. The
length of W, denoted by |W|, is n if W = y; -+ -y, for y; € X*. We also represent a word
W as a finite graph denoted by W, that is linear, directed, and labeled in X*. The empty
word is then represented by a single vertex. A word V' is a subword of W if W = SV U for
some reduced words S and U with |W| = |S| + |V| + |U|. Note that each subword V' of W
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FIGURE 1. We represent words as line segments. Here we see W and W’

overlap along U and V.

is represented by a connected subgraph V' C W .The subword V is a prefiz if S = 17 and a
suffic if U = 1x. If both S # 1 and U # 1z, then V is internal in W. Subwords U and
V of W are equivalent if they have the same spelling and appear in different positions in
W.. We write U = V. Two subwords of W overlap if a nonempty suffix of one is a prefix
of the other and neither is a subword of the other. We shall represent words and overlaps
diagrammatically as line segments. See Figure[ll W is periodic if there is a cyclically reduced
word (period) U € F with U* = W for some k > 1. If U is a prefix of W, with W = UV,
then the word W' = VU is a cyclic permutation of W. Working in the free group, we have
W' = U"'WU, where W’ is reduced if and only if W is cyclically reduced. Let R, be the
set of cyclic permutations of W and W~!. A nontrivial reduced word U € F is a uniquely
positioned in W if U is the prefix of exactly one element of R . For example, aa is uniquely
positioned in W = baaba. The word aba is not uniquely positioned in W since it is a prefix
in both ababa and abaab.

A bi-ordered group is a pair (G, <) where G is a group and < is a total order on G that
is invariant under both right and left group translation. A well known result of Shimbireva
[Shi47| states that the free group on two generators (and so every non-abelian free group)
is bi-orderable. This result is sometimes attributed to Vinogradov and Magnus as well

[DNR14].

DEFINITION 2.1. Let F = F (X) be the free group on an alphabet X. Let < be a bi-
order on F. A word U € F is an ascent if each prefix and each suffix of U is = 17, and U
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is a descent if each prefix and each suffix of U is < 1. The mazimal ascent A of W is the
greatest ascent over all subwords of R, .

The peak (resp. low) in W is the largest (resp. smallest) prefix of W with respect to <.

REMARK 2.2. Let W be a cyclically reduced word representing an element in F. Let <
be a bi-order on F. Then:

1) The maximal ascent of W is the largest subword in R, with respect to <.
2) The inverse of an ascent is a descent.

(1)
(2)
(3) If two ascents in a given word overlap, then the overlap is also an ascent.
(4) Ascents and descents in a given word have no overlaps.

(5) Ascents and descents are always nontrivial. Peaks and lows, on the other hand can

be trivial.

LEMMA 2.3. Let W be a cyclically reduced word of (F(X),<). Let A be the maximal
ascent in W. Let M and m be the peak and low of W. If A is a subword of W, then W = 1
and M = mA. Consequently, W has exactly one subword equivalent to A and no subword of

WL is equivalent to A. Moreover, if W = AD with D # 17, then D is a descent.

PROOF. Let W = PAQ, where P and () are subwords of W. If W < 1z, then A <
P7'Q~'. But P~'Q~! is an initial subword of a conjugate of W~!. Indeed, we have W~ =
Q7 'A71P7. Then AQ (Q'AT'P™H)Q7'A™! = P71Q 1A' is a cyclic permutation of W1,
This leads to a contradiction since A is the maximal ascent in W. Thus, if A is a subword
of W, then W = 17 and so A is not a subword of conjugates of W1 < 1.

Let W =y;---y, and let g; = y; - - - y;. Suppose g; = g;A for some 0 < 4,7 < n. Then
g; = M and g; = m. So g;' < m~!. Since < is a bi-order, A = g; 'g; < m~'M.

We now show that m='M is a subword of W. Note that m~'M is a subword of W
whenever |m| < |M|. Let m = y;---ys and M = y;---y;. Then s # t. Suppose s > t.
Then m™*M = y;1-- -y} is a subword in W~1. By the maximality of A, we have A <
m M = A=m"1M. So A is a subword of W~!, which is a contradiction. Thus, s < ¢t and

A =m"'M is a subword of W.
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It remains to show that A does not appear twice in W. Following [DH92], if g; = ¢;A,
then:

g = 9i(97'9) = m(g;'g;) = m(m™'M) = M

and so g; = M and g; = m. Thus A appears exactly once in WW.

Suppose W = AD where A is the maximal ascent in W and D # 1x. Then D < 17
since otherwise AD > A contradicting the maximality of A. If D has a prefix U > 1, then
AU > A which is a contradiction. If D has a suffix U > 17 then UA > A contradicting the
maximality of A. Thus D is a descent. O

REMARK 2.4. When W = AD, the peak M is A and the low m is 1x.

Each cyclic permutation of W = AD appears as a subword of W" with n > 2. To show
that A is uniquely positioned in W, it suffices to show that W2 has exactly 2 subwords
equivalent to A. That is, A appears as a subword of W? in only the expected positions
which are W2 = ADAD. In general, there are n > 2 occurrences of the subword A in

W™ = AD--- AD. To prove the main theorem, we will show that W?2 contains exactly two
—_—

n times
occurrences of the maximal ascent A.

DEFINITION 2.5. Let W = AD and W’ = AD’ be overlapping cyclic permutations in
W™ where W = U='WU and n > 2. A cascade in W™ induced by the shift U is a sequence
of concatenated subwords {U;},., in W where U; = U for each i. See Figure

PROPOSITION 2.6. Let W € F (X) be a cyclically reduced nonperiodic word. Then the

maximal ascent in W is uniquely positioned.

PROOF. Let A be the maximal ascent in W and suppose without loss of generality that
W = AD. f D = 17, then W = A and so A is uniquely positioned in W since W is
nonperiodic and thus all its cyclic permutations are distinct. If D # 1, then by Lemma [2.3]
D is a descent. Following Remark , suppose W? = ADAD contains a third occurrence
of A. Since A appears exactly once in each W, the third occurrence of A begins in the first
factor W and ends in the second one. Let W' = AD’ be a cyclic permutation of W starting
with A. Then D’ is a descent with |D’| = |D|. Since W is nonperiodic, it has distinct
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FIGURE 2. Since U is a prefix in AD, it is a prefix in AD’. The rightward
shift of AD’ by U induces a cascade U = Uy, Uy, Us, ... in AD, where the U;

concatenate and U; = U for each i.

conjugates, and so D’ # D. Moreover, W has a prefix Uy such that W’ = Uy *WU,. The
shift Uy induces a cascade Uy, Uy, Us, ... in W = AD.
Claim : |D| < |Up| < |A] and |Uy| is not a divisor of |W]|.

PROOF OF CLAIM. We have W' = AD' = U;'ADU, with |Uy| < |W| = |A| +|D|. If
|Uo| > |A|, then W', and thus A, begins in the interior of D. Since ascents and descents do
not overlap, the ascent A is internal in D, and so A is not unique in W, which contradicts

Lemma [2.3] If |Uy| < |D|, then the ascent A appearing in W’ ends in the interior of D which

is a contradiction. If |Uy| = |DJ, then A and D have a common suffix which is impossible.
W
Since the subwords U; are concatenated, if % = k € N, then W = U} which is a
0
contradiction. 0

Note that Uy = A D" where A; is an ascent. Indeed, Uy is a prefix of A (in W) and so
each prefix of Ay is > 17; and A; is a suffix of A (in W’) and so each suffix of A; is > 1£.

Consider the cascade induced by Uy = A;D’. Then W = AD is a proper subword of U
for some n > 1. Indeed, the cascade ensures that the ascent A in W appears as a subword
of Uy for some n > 1. However, since Uy = A; D" where A; is an ascent and D’ is a descent,
and A; does not overlap with D in W = AD), the only possibility is for A; to be long enough

so that the last occurrence of Ay in W = AD must begin in A, contain D, and end in the
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-

FIGURE 3. The cascade induced by Uy = A; D’ terminates with D appearing
as an internal subword of A;. See the region inside the ellipse. So A; has a
prefix Uy = A, D which itself is a shift that induces a cascade in A;D’. In this
example, the cascade induced by A, D immediately leads to a contradiction
since it forces an overlap between the ascent A, and the descent D’. See the

region inside the circle.

interior of the second W factor in W2. Let U, be the first term that is not in W. Then
U, = AiD" and W = AD overlap. So D appears as a subword of U,. For D to appear
as a subword of Uy, it is necessary that D appears as an internal subword of A;, since D
is not equivalent to D’ and D does not overlap with the ascent A;. So we have a new
overlap of two subwords equivalent to U;. See Figure [3| The shift Uy = A, D induces a new
cascade that follows the same pattern as above with the difference being that Uy = Ay D is
a concatenation of an ascent A, with |As| < |A;| < |A|, and D instead of D’. Note that
by the above Claim, |D'| = |D| < |Us| < |A;]. Once again, the cascade of copies of Ay D
requires that the copies of D must not coincide with D’ and cannot overlap with A,. So D
appears as a subword of Ay. Thus A contains a subword Uz = A3D’" where |Az| < |As] is an

ascent. As this process repeats, the shift U; will be a concatenation of an ascent A; and the
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descent D if j is even, and U; will be a concatenation of an ascent A; and the descent D’ if
J is odd. For each cascade, the ascent A; in the shift U; = A;D (or U; = A,;D’) has shorter
length. Since |IW| < oo and by induction, this process terminates with either an overlap of

an ascent and a descent, or by forcing D = D’. Both lead to contradictions. 0

3. Magnus Bi-order

The following describes an explicit bi-order on free groups due to Magnus [MKS66]|. Let
F = F (z1,22) be the free group on generators xy,xs. Let A = Z[[X1, X3]] be the ring of
formal power series in the non-commuting variables X; and X5, one for each generator of F.

Define the multiplicative homomorphism p : F — A as:

U
ot = X+ XP - XD+

For example:

p(neyt) =1+ X)(1 - Xo+ X2 = X5 +---)

— 14X~ X+ 0(2)

where O (n) refers to the sum of all terms of order > n. Then p is injective and F embeds
in the group of units 14+ O (1) C A. Order the elements of A as follows. First adopt the
convention of writing the elements of A in standard form starting from lower degree terms
in an increasing order. Then, order the terms with the same degree lexicographically where
X1 > X5. Compare two elements of A according to the coefficients of the first term at which
they differ. For example, 1 + X; +3Xy +0(2) = 1+ X; + X5 + O(2) since the first term
at which they differ is X5, and the coefficient of X5 in the first element is greater than the
coefficient of X, in the second one. Under this order, 1 + O(1) C A is a bi-ordered group.
Define an ordering > on F by:

vo=w <= pv) = p(w)

It is readily verified that > is both left and right invariant.
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DEFINITION 3.1. A word W =y -- -y, € F (X) is monotonic if either y; € X for each
1<i<n,ory; € X !foreach1<i<n.

THEOREM 3.2. Let X = {1, x2} be an alphabet and let F = F (X) be the free group on
X equipped with a bi-order <. Let W € F be a cyclically reduced nonperiodic word of length
> 1. Then W has a cyclic permutation W' = AD where:
(1) A is the uniquely positioned mazimal ascent in W.
(2) If D is not uniquely positioned, then it appears as an internal subword of A.

(8) Using the Magnus ordering on F, we have D = 1z if and only if W is monotonic.

PROOF. Let A be the maximal ascent in W. By Proposition[2.6] A is uniquely positioned.

Let W’ = AD where D is not uniquely positioned in W. If D # 1z, then by Lemma [2.3]
D is a descent. Suppose D’ = D is a subword in AD. By Remark 2.2 D’ has no overlap
with A, and so it appears as an internal subword of A. Moreover, if D = 17, then W = A
and D is the empty word between any concatenated subwords of W. Thus D appears as an
internal, albeit trivial, subword of W. Note that by assumption, || > 1 and so W has at
least two subwords.

Choose the Magnus bi-ordering corresponding to x; > x5 > 1x. Then any nonempty
word in X is > 17. If W is monotonic, then so is each cyclic permutation of W. Suppose
without loss of generality that W’ =y, - - -y, with y; € X, for 1 <1i < n. By the maximality
of A, if D # 17, then it is a descent, which is impossible since all monotonic words are > 1x.

Suppose D = 1. Then W' is the maximal ascent. Suppose W’ is not monotonic. Then

W = Uz 'V for some words U,V € F. The case W = Ux,'V is similar. Let
p(U) =1+ MX, + MyXo+0(2) and p(V) =1+ N X; + NoXo+ O(2)
where M;, N; € Z. Then
p(VU) =1+ (My + Ni)X1 + (My 4+ No)Xo + O(2)
Moreover, we have

p(Wh =1+ MX,+ MX,+0(2)(1— X, +0(2)(1 4+ N1 X1+ NoXo + 0(2))

=1+ (M + N —1)X; + (My + N2)Xp + O(2)
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Hence W' < VU. But VU is a prefix of the cyclic permutation 2,U " *W'Uz;! = VUx]*
contradicting the maximality of W". O
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