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Abstract

In observational studies for causal effects, treatments are assigned to experimental units
without the benefits of randomization. As a result, there is the potential for bias in the estimation
of the treatment effect. Two methods for estimating the causal effect consistently are Inverse
Probability of Treatment Weighting (IPTW) and the Propensity Score (PS). We demonstrate that
in many simple cases, the PS method routinely produces estimators with lower Mean-Square Error
(MSE). In the longitudinal setting, estimation of the causal effect of a time-dependent exposure in
the presence of time-dependent covariates that are themselves affected by previous treatment also
requires adjustment approaches. We describe an alternative approach to the classical binary
treatment propensity score termed the Generalized Propensity Score (GPS). Previously, the GPS
has mainly been applied in a single interval setting; we use an extension of the GPS approach to
the longitudinal setting. We compare the strengths and weaknesses of IPTW and GPS for causal
inference in three simulation studies and two real data sets. Again, in simulation, the GPS appears
to produce estimators with lower MSE.
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1 Introduction

Establishing the causal effect of a time-varying treatment in longitudinal stud-
ies is complicated because of the potential presence of time-varying confound-
ing. Two methods of causal adjustment, inverse probability of treatment
weighting (IPTW) and propensity score (PS) methods are commonly used.
The two methods are constructed in a similar fashion; a model for treatment
received is proposed and fitted, and then a regression model for the conditional
expectation of the response variable is fitted either using weighting (IPTW)
or matching/conditioning (PS). However, the precise implementation details
differ, and our study will demonstrate that the use of the treatment received
model has an influence on the quality of the estimation.

The theoretical properties of these two types of adjustment procedure have
been studied, but rarely directly compared. Tan (2007) shows that, under
correct model specification, the IPTW estimator is no more efficient than the
outcome regression estimator which assumes a parametric model for E[Y |D =
j,X] in estimating the expectations E[Y (j)], j = 0, 1, using the Rao-Blackwell
theorem. Hirano et al. (2003) show that an estimator based on weighting by
the reciprocal of the estimated propensity score is asymptotically equivalent
to an efficient estimator that directly controls for all pretreatment variables,
such as the estimator of Hahn (1998). On the other hand, Robins et al. (1992)
shows that the least-squares estimator based on regressing on the correctly
specified propensity score can have variance no less than the semiparametric
efficiency bound, but possibly larger.

In this paper, we examine these results numerically in a one interval case,
and then for longitudinal data. We look at the performance - specifically, the
bias, variance and MSE - of the two methods for establishing the magnitude of
a direct effect of treatment, that is, the unconfounded and unmediated effect
on expected response. In simulation, we find that propensity score methods
seem to give estimators with smaller variance and lower mean square error.
Note that our focus is on direct effects, as this is the only setting in which
IPTW and PS can be readily compared, although IPTW adjustments also
play a role in the estimation of other causal effects.

We consider a longitudinal study with treatment doses Dij, responses
Yij, and covariates Xij for subjects i = 1, 2, . . . , n on repeated observation
j = 1, . . . , Ki. All variables including dose can be binary, categorical or contin-
uous. A directed acyclic graphic (DAG) representation of the data generating
processes we consider is depicted below:
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Note that Xi confounds the effect of Di on Yi. We also admit the possibility
that the confounder, treatment and response sequences exhibit autocorrela-
tion. Under an assumption of time-homogeneity, the direct effect of D on Y
can be assessed.

1.1 Causal Adjustment Methods

We begin with the following simple setting, identical to Robins, Hernan and
Brumback (2000). For a given subject, let Y (1) denote outcome if treated,
and Y (0) outcome if untreated. The causal effect of treatment on this subject
is Y (1) − Y (0), but in most cases, only one of the outcomes is observed for
each subject.

In the binary outcome case we can use the following (structural) represen-
tation in the form of a logistic regression: Y (d) ∼ Bernoulli(p(d)), and

logit{p(d)} = logit{p(Y = 1|D = d)} = β0 + β1d (1)

so that

E[Y (1)−Y (0)] =
exp{β0 + β1}

1 + exp{β0 + β1}−
exp{β0}

1 + exp{β0 + β1} =
exp{β0}(exp{β1} − 1)

1 + exp{β0 + β1}
when treatment is unconfounded the estimated parameters are unbiased for
the corresponding causal parameters; however, these parameters individually
or jointly are not interpretable as an average treatment effect (ATE) on the
observable scale. Replacing equation (1) by the linear relation

p(d) = β0 + β1d

with the implicit constraints that β0 > 0 and 0 < β0 + β1 < 1 does render
β1 the ATE. This is equivalent to modelling the average causal risk difference
between treated and untreated potential outcomes.
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Inverse Probability of Treatment Weighting (IPTW): If treatment is
confounded, given data on measured confounders X and under the assumption
of no unmeasured confounders, unbiased estimates of the causal parameter can
be obtained using a weighted analysis. IPTW proceeds by using a weighted
regression. For example, for a binary treatment (where subjects are simply
untreated or treated), for each subject i the weight wi = 1 + e−ηi is assigned,
where

ηi = logit{p(D = di|X = xi)} = α0 + α1xi (2)

where (di, xi) are the observed dose and confounder data for subject i, and wi

is the estimated inverse probability of treatment weight. This weight can then
be used in a weighted regression of Y on observed D, and possibly components
of X. Robins et al. (2000) generalized this idea to the cases with multilevel
or continuous treatment. For a continuous treatment one can still obtain the
unbiased estimates of the causal parameter via IPTW by fitting the regression
model for D given X = x to obtain stabilized weights

ws
i ∝

f(di)

f(di|xi)

provided that the model in equation (2) is correctly specified. For example,
for doses on R, f(di|xi) can be modelled using a linear regression model to
yield

f̂(d|x) = (2πσ̂2)−1/2 exp(−(d− (α̂0 + α1x))
2/(2̂ σ2)).̂

To estimate the numerator f(d), one might specify normal density with the
average of observed D and empirical variance as a mean and variance of the
density.

Propensity Score (PS): Another method which gives an unbiased estimator
for causal effect is based on the propensity score. Rosenbaum and Rubin (1983)
define the propensity score for binary treatment as

π(x) = p(D = 1|x)

and demonstrate that it is the coarsest function of covariates that has the
balancing property, that is, where treatment assignment is independent of co-
variates given the propensity score, D ⊥ X|π(X). The ATE can be computed
using iterated expectation

µ = E[Y (1)− Y (0)] = Eπ(X)[E[Y (1)|π(X)]− E[Y (0)|π(X)]] (3)

3
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where Eπ(X) denotes expectation with respect to the distribution of π(X) in
the entire population. That is, under the strong ignorability assumption which
states that (Y (0), Y (1)) ⊥ D|X, subjects with the same value of propensity
score but different treatments can be considered as a controls for each other, in
the sense that the (conditional) expected difference in their responses equals
the average treatment effect for that value of π.

Equation (3) suggests an estimator based on some form of conditional
expectation modelling of Y given π, averaged over the empirical distribution
of π. Typically this is achieved using a stratification (matching) estimator, or
a regression-based estimator. Within each stratum, or in the regression model,
other covariates or confounders may be included.

When treatment dose is a continuous variable, a relevant quantity of inter-
est is the Average Potential Outcome (APO) at dose level d, µ(d). The APO
can be estimated using the propensity score by noting that

µ(d) = E[Y (d)] = EX [E[Y (d)|π(X)]].

A general method for producing an estimate of µ or µ(d) is described in detail
in Section 2; first Model I for π given X is constructed and estimated, and
then Model II for Y given D and π (and possibly X) is considered, with both
models being estimated using the observed data (yi, xi, di), i = 1, . . . , n. The
estimate for µ or µ(d) is then obtained by predicting Y at the counterfactual
dose d in Model II for each observed (xi, πi) pair, and averaging the predictions
over all pairs in the sample. In the case of binary doses

µ = µ(1)− µ(0).

Uncertainty estimates can be obtained by making parametric assumptions, or
using the sandwich variance, or by bootstrap.

For propensity score-type methods, the ATE and the APO can be esti-
mated consistently in the presence of confounding provided that the balancing
property, that is, D ⊥ X|T (X), holds given for some score, T (X) say. Thus,
for the balancing score approach to estimate the causal parameter without
bias, correct specification of π(X) is a sufficient but not necessary condition.
The adequacy of any proposed score model rests on whether or not balance
is achieved; this can be checked by examining (in sample) the distribution of
covariates/confounders X for different values (strata) of D for each of a collec-
tion of values (strata) of π. Note that although any score T (X) that achieves
balance will provide unbiased estimates of µ(d), whose variance will depend
on the specific definition of T (X).
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Assumptions: As with all models for observational data, causal models
require certain modelling assumptions to be appropriately specified (Robins,
1997; Robins et al., 2000). Specifically, we make the stable unit treatment
value assumption (Rubin, 1978), which states that a subject’s outcome is not
influenced by other subjects’ treatment allocation. We further assume weak
unconfoundedness : for all d ∈ D, the potential outcome Yi(d) and the dose
received Di are presumed conditionally independent given the covariates Xi,
that is Yi(d) ⊥ Di|Xi which implies the no unmeasured confounders assump-
tion. Note that weak unconfoundedness is weaker than the strong ignorability
assumption as it does not require joint independence of all potential outcomes.

1.2 Simulated Examples

A simple single interval example illustrates the potential differences between
results obtained for the causal parameter of interest using IPTW and PS meth-
ods. Suppose that the causal (structural) relationship of interest is encapsu-
lated by the equation

Yi = β0 + β1Di + ξi

where Cov[Di, ξi] 6= 0; in fact, suppose that

Di ∼ Bernoulli(expit{α0 + α1Xi})
ξi = γ0 + γ1Xi + σεi

where Xi ∼ N (0, τ). Regressing Y on D without adjustment will lead to
bias; we consider fitting correctly specified models for D in terms of X to
obtain the probability weights/propensity score, and examine in simulation
the bias, variance and mean square error (MSE) of the estimators. We take
two different sample sizes (n = 300, 5000) and use 10000 replicates. The four
causal adjustment methods are

• IPTW: Inverse probability weighting, with weight wi given by

w−1
i = π̂i =

exp{Di(α̂0 + α̂1Xi)}
1 + exp{(α̂0 + α̂1Xi)}

• IPTW.t: Inverse probability weighting, with data point retained only if
fitted probability of treatment received satisfies 0.05 < π̂i < 0.95
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• PS (match): propensity score quintile matching, where estimator is

1

5n

5∑
s=1





n∑
i=1

I{Di = 1 & π̂i ∈ Qs}Yi

n∑
i=1

I{Di = 1 & π̂i ∈ Qs}
−

n∑
i=1

I{Di = 0 & π̂i ∈ Qs}Yi

n∑
i=1

I{Di = 0 & π̂i ∈ Qs}





where Q1, . . . , Q5 form the quintile partition of the sample space, and

π̂i =
exp{(α̂0 + α̂1Xi)}

1 + exp{(α̂0 + α̂1Xi)}

• PS (regress): propensity score regression, where estimator is OLS esti-

mator of β
(R)
1 in the model

Yi = β
(R)
0 + β

(R)
1 Di + β

(R)
2 π̂i + εi

In fact, β
(R)
1 is identical to the causal parameter β1 in this model, as,

using the earlier argument

µ(d) = E[Y (d)] = Eπ[E[Y (d)|π]] = Eπ[β
(R)
0 + β

(R)
1 d+ β

(R)
2 π]

= β
(R)
0 + β

(R)
1 d+ β

(R)
2 Eπ[π]

and hence
β
(R)
1 = µ(1)− µ(0) = µ = β1.

The parameter settings used were arbitrarily chosen to introduce relatively
high dependence between D and X. This simulation is somewhat unrealistic,
as X would be typically conditioned upon in the regression equation as well
as the treatment model, but serves to illustrate the strengths of the various
estimators.

In a second simulation, the same causal relationship is used, but where

Di ∼ Bernoulli(expit{α0 + α1Xi + α3Zi})
ξi = γ0 + γ1Xi + γ2Zi + σεi

where Xi, Zi ∼ N (0, τ). Table 2 contains results for the different adjustment
methods with the confounder Z omitted from the estimation models.

In the first simulation, all adjustment methods are effective in bias removal,
but there is a marked difference in terms of variance and MSE with PS re-
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Table 1: Bias, Variance and MSE for β1 = 10 using a correctly specified model.
Settings of the other parameters are γ0 + β0 = 10, γ1 = 0.8, α0 = 1.0, α1 =
0.6, σ = τ = 0.5.

n = 300 n = 5000
Bias s.d. MSE Bias s.d. MSE

Unadjusted 5.574 0.688 31.545 5.572 0.168 31.071
IPTW 0.873 1.985 4.702 0.178 1.135 1.321
IPTW.t 0.022 1.060 1.123 0.001 0.262 0.069
PS (match) 0.640 1.226 1.911 0.708 0.402 0.663
PS (regress) 0.008 0.894 0.798 0.003 0.218 0.048

Table 2: Bias, Variance and MSE for β1 = 10 in incorrectly specified model.
Settings of the other parameters are γ0 + β0 = 10, γ1 = 0.8, γ2 = 0.1, α0 =
1.0, α1 = 0.6, α3 = −0.4, σ = τ = 0.5.

n = 300 n = 5000
Bias s.d. MSE Bias s.d. MSE

Unadjusted 5.039 0.739 25.940 5.050 0.183 25.531
IPTW -0.084 1.993 3.980 -0.663 1.002 1.444
IPTW.t -0.955 1.129 2.186 -0.974 0.275 1.024
PS (match) -0.313 1.294 1.773 -0.234 0.412 0.224
PS (regress) -0.961 0.935 1.799 -0.951 0.228 0.956

gression providing the estimator with the lowest MSE, outperforming IPTW
with truncation, IPTW.t, as its nearest competitor, with the discrepancy di-
minishing as sample size increases. In the second simulation, significant finite
sample bias remains even for very large sample sizes due to the unmeasured
confounding; however, again, PS methods seem to produce estimators with
lower mean square error. In this example, matching outperforms regression,
but both methods seem superior to IPTW. About 35 % of the IPTW samples
are excluded by the truncation mechanism in these simulations, but note the
MSE reduction achieved by truncation; note also that truncation increases
the magnitude of bias, but reduces variance. Note also that the experimen-
tal treatment assignment assumption - that each subject has a non-negligible
probability of being treated and of not being treated - is required for IPTW,
and may explain some of the bias observed in the IPTW results. This assump-
tion is also required for PS matching, and may explain the larger bias in the
PS (match) results. Note, however, that PS matching still appears to produce
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a smaller mean-square error than IPTW when the experimental treatment
assignment assumption is violated, and that PS regression is unaffected.

The issue addressed in this paper is the variance/MSE improvement of
PS regression methods over IPTW. The simulation in Tables 1 and 2 implies
that PS regression methods produce estimators with lower variance for even
moderately large sample sizes, at least when treatment models are correctly
specified. We investigate this supposition in longitudinal studies.

We address direct effects of treatment, but this may not reflect the infer-
ential objective of the study in all cases. In longitudinal studies, treatment
regimes followed over time may have different effects on overall outcome, that
is, some response measured only at the end of the study. Marginal structural
models (MSMs) are a class of causal models for the estimation from observa-
tional data, of the causal effect of a time-dependent exposure in the presence
of time-dependent covariates. Typically, MSMs are utilized to estimate the
total (causal) effect of treatment on an end of study outcome. The parameters
of MSMs can be consistently estimated using IPTW, but not by PS methods,
as conditioning on the propensity score explicitly blocks (in DAG terms) the
path between treatment and subsequent response.

1.3 Binary Treatment with a Mediating Variable

Another case where PS performs better than IPTW in terms of MSE is in
the presence of mediating variable, and it also appears that PS method is
more successful in removing bias. In this section we report results of a small
simulation study with a mediating variable. We have one time independent
covariate Xi, one posttreatment intermediate variable Mi that may serve as a
mediator for the treatment outcome, a treatment indicator Di and response
Yi. We use the following densities:

Xi ∼ N (2, 10)

Mi ∼ N (di, 5)

Di ∼ Bernoulli(p(xi)) p(xi) =
1

1 + expit{−2− 0.2xi}
Yi ∼ N (−di + xi +mi, 5)
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for i = 1, ..., n. Note that M can be written as di +N (0, 5) so the true ATE
is zero. A DAG representation of the data generating processes is as follows:

X //

ÃÃA
AA

AA
AA

D //

²²

M

~~}}
}}

}}
}}

Y

We generated 1000 data sets of size 300 and 5000. We have used the following
models for response variable using PS and IPTW and propensity score:

logit{πi} = logit{p(Di = 1|X)} = α0 + α1xi

yi = β0 + β1di + β2πi + εi (PS)

w−1
i =

exp{Di(α0 + α1Xi)}
1 + exp{(α0 + α1Xi)}

yi = β′
0 + β′

1di + β′
2mi + εi (IPTW)

We also utilize the truncated version of IPTW, IPTW.t, in which we have
retained only those observations with either 0.05 ≤ πi ≤ 0.95, where πi = w−1

i .
Using the idea in VanderWeele (2009) we fitted another model considering M
as a response variable to deal with counterfactuals in M ,

m̂i = λ0 + λ1di

so that the total causal effect using IPTW is β′
1 + β′

2λ1. Table 3 shows the
estimated ATE based on IPTW, IPTW.t and PS.

Table 3: ATE estimates based on IPTW, IPTW.t and PS for causal parameter
β∗ = 1, yielding ATE = 0.

n = 300 n = 5000
ATE s.d. MSE ATE s.d. MSE

IPTW 1.729 4.083 19.657 0.207 2.017 4.113
IPTW.t 0.174 1.907 3.667 0.015 0.435 0.190
PS 0.088 1.402 1.973 0.001 0.332 0.110

Under the assumption of correct model specification for the probability of
treatment, IPTW has larger bias and standard deviation compared to PS for
n = 300 and n = 5000. In the presence of the mediator, the PS method is

9

Ertefaie and Stephens: Comparing Inverse Probability Weighting and Propensity Scores



more successful in removing the bias and also has smaller variance than the
IPTW methods.

The remainder of this paper is structured as follows: Section 2 introduces
generalized propensity score (GPS) methodology. Section 3 develops the GPS
for repeated measures data. Section 4 compares the repeated measures GPS
with traditional regression and IPTW methods via simulations, two real data
sets. Our simulation studies will help us to see the performance of these two
estimators under correctly specified models and real data data examples show
if one of them can outperform the other method in the presence of possible
model misspecification.

2 The Generalized Propensity Score

In this section we define the Generalized Propensity Score which is the gener-
alization of the classical binary treatment propensity score. We first examine
the single interval case. When treatment is a continuous random variable,
it is possible to construct a balancing score using an approach based on the
Generalized Propensity Score (GPS). Following Imbens (2000) and Hirano and
Imbens (2004), we define the (observed) GPS, π(d, x) for dose d and covariate
x by

π(d, x) = fD|X(d|x) (4)

that is, the conditional mass/density function for D given X = x evaluated at
D = d. Additionally π(d,X) and π(D,X) are corresponding random quan-
tities. It has been shown by Hirano and Imbens (2004) that GPS random
quantity π(d,X) acts as a balancing score, in that D and X are conditionally
independent given π(d,X). Secondly, for any d, the allocation of the treatment
dose is conditionally independent of the potential response, given the propen-
sity score, Y (d) ⊥ D |π(d,X), that is, we have unconfoundedness of Y (d) and
D given π(d,X). Therefore π(d,X) breaks the dependence between D and X,
and hence the causal effect of D on X can be estimated by conditioning on
π(d,X) for each d in turn, and then averaging over the distribution of π(d,X).
The role of the GPS in estimating the APO is made clear by identity given in
Imbens (2000)

µ(d) = E[Y (d)] = EX [E[Y (d)|π(d,X)]] = Eπ(d,X)[E[Y (d)|π(d,X)]]

We used the same algorithm to estimate the APO as Moodie and Stephens
(2010) here:

10
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I Form the GPS Model: Using the regression approach, construct the
propensity model for D given X, π(d, x) = fD|X(d|x, α). Estimate pa-
rameters α using data {(di, xi), i = 1, . . . , n}.

II Compute the Fitted GPS Model: Compute the estimated GPS,

π̂i = fD|X(di|xi, α).̂

III Form the Observable Model: Using the regression approach, con-
struct a predictive model for the conditional expectation of density

fY |D,π(d,X)(y|d, π(d, x), β).

Estimate parameters β using data {(yi, di, π̂i), i = 1, . . . , n}.
IV Estimate the APO: Estimate the APO for each d by

µ̂(d) = Ê[Y (d)] =
1

n

n∑
i=1

EY |D,π(d,X)[Yi(d)|d, π̂i, β̂]

then µ̂(d) is the GPS-adjusted estimated dose-response function.

An alternative approach proposed by Hirano and Imbens (2004) suggests
that the APO may be approximated by estimating the dose-response effect
within strata defined by the linear predictor of the treatment density function,
and then combining these estimates to form a single, weighted average. This
approach is straightforward to implement and often provides an estimate of
the dose-response relationship that has little or no residual bias, although it
may be less efficient than the regression approach described above.

3 Causal Adjustment for Repeated Measures

Data

3.1 The Multivariate GPS

In the case of dose response estimation from repeated measures or multi-
interval data because of correlation structure in the data the potential patterns
of time-varying confounding are more complex that can be dealt with using
a univariate GPS approach. The GPS approach introduced in this section
is suitable for the analysis of repeated measures response data with interval-
dependent dosing. We denote Yij as a response of ith unit, i = 1, ..., n in

11
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interval j, j = 1, ..., ni; dose and covariate variables are similarly subscripted.
Furthermore, sequential weak unconfoundedness can be defined as

Yij(d) ⊥ Dij|Xi1, ..., Xij.

That is, at each interval, assignment to dose Dij is weakly unconfounded with
the response during interval j given covariates, previous response, and dose
values measured up to the start of the jth interval. Moodie and Stephens
(2010) show that if we define X̄ij = (X1j, ..., Xij) as a history of covariates,
response and previous doses and let πij(d, X̄ij) be the multivariate GPS then,
for every dose d,

Yij(d) ⊥ Dij|πij(d, X̄ij)

that is, for d ∈ D, current potential response Yij(d) is conditionally indepen-
dent of the distribution of dose received Dij given the MGPS πij , for all i
and j. In the same paper, it has also been shown that the APO obtained
by averaging E[Yij(d)|π(d, X̄ij)] over the distribution of the covariates X̄ij, is
an unbiased estimator of the dose response function µ(d) = E[Yij(d)]. Note
that a univariate GPS analysis that does not construct π by conditioning on
X̄ij = x̄ij for each j does not necessarily achieve bias removal.

We have carried out extensive testing of the MGPS approach and per-
formed comparisons with non-causal and standard GPS methods. Our exam-
ples demonstrate the importance of the use of the multivariate extension of
the GPS.

3.2 The IPTW Estimator for Repeated Measure Data

To implement IPTW in the repeated measures setting, the following model is
fitted for response variable to estimate the total treatment effect,

E[Yij|Dij = dij] = β0 + β1dij

with the stabilized weights

ws
ij =

p(Dij = dij|Di(j−1) = di(j−1))

p(Dj = dij|Di(j−1) = di(j−1), Xk = xij)

where D−1 = 0. Thus the outcome at interval j is weighted with the inverse
probability of treatment at that interval, modelled as a function of previous
covariates, responses and doses. This is the natural extension of IPTW to the
time-homogeneous repeated measures setting.
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Note the difference between the approach here and the typical MSM ap-
proach. Here we do not have a single response at the end of follow up, but
responses and weights corresponding to each interval. Our weighted model
produces the pseudo-populations based on observed treatment doses at each
time point, rather than the pseudo-population through received treatment
doses path up to end of follow-up.

4 Simulation Studies and Examples

4.1 Binary Treatment

In this section we report results of a small longitudinal simulation study carried
out to evaluate the performance of the IPTW and PS explained in this paper.
We have one time independent covariate Xij, treatment indicator Dij and
response Yij with the following densities:

Xij ∼ N (1, 2)

Dij ∼ Bernoulli(expit{I{j = 1}(2− xij) + I{j > 1}(2− 0.2Yi(j−1) − xij)})
Yij ∼ N (Dij + 2Xij, 5)

for i = 1, ..., n and j = 1, ..., 5, where expit{x} = exp(x)/(1+exp(x)) and I{.}
is an indicator function. We generated 1000 data sets of size 300 and 5000.
Table 4 shows the estimated ATE based on IPTW and PS.

Table 4: ATE estimates based on IPTW, IPTW.t and PS for causal parameter
β∗ = 1, yielding ATE = 1.

n = 300 n = 5000
ATE s.d. MSE ATE s.d. MSE

IPTW 0.536 1.511 2.499 0.949 0.589 0.349
IPTW.t 0.946 0.952 0.910 1.004 0.235 0.055
PS 0.948 0.910 0.627 0.997 0.193 0.037

Under the assumption of correct model specification for weights and propen-
sity score, IPTW method has larger bias and standard deviation compare to
PS for n = 300 and n = 5000. Although weight truncation helps the IPTW
method to reduce the MSE, it still has a slightly larger MSE than PS method.
As we expected both methods are successful in removing the bias in the large
sample size, n = 5000.
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4.2 Simulation: Nonlinear, Nonadditive Treatment Ef-
fect

Here, we use the same simulation study as in Moodie and Stephens (2010)
which is a version of the study presented in Hirano and Imbens (2004) extended
to a two interval setting.

Data Generation: Suppose that at first and second interval, have

Y1(d)|X11, X12 ∼ N (d+ (X11 +X12) exp(−d(X11 +X12)), 1)

Y2(d)|X21, X12 ∼ N (d+ (X21 +X12) exp(−d(X21 +X12)), 1)

The marginal distribution of each of X11, X12, and X21 are all unit exponential
and the marginal mean of the response in both intervals is identical. Let
D1 ∼ Exp(X11 +X12), D2 ∼ Exp(X21 +X12). The APO at dose d, µ(d), can
be obtained by integrating out the covariates analytically, yielding

µ(d) = d+
2

(1 + d)3
.

In this section we want to compare the performance of estimators of APO based
on IPTW, GPS and MGPS. As suggested by Robins et al. (2000), stabilized
weights are estimated using a normal density for the IPTW analysis, and
weighted splines has been used to fit the model for responses on dose. In GPS
analysis, a multivariate GPS analysis, involves the GPS vector πM = (π1, π2):

π1 = (X11 +X12) exp(−d(X11 +X12))

π2 = (X21 +X12) exp(−d(X21 +X12))

where consists of correctly specified models. A univariate GPS analysis might
fail to include information from the previous interval and hence the GPS used
would be πU = (π1, π

∗
2) where π1 is as before, but π∗

2 = X21 exp(−dX21).
We generated 1000 data sets of size 250. The estimated APO using MGPS

are exactly correct, while the UGPS and IPTW analysis are clearly biased.
The general shape of the UGPS and IPTW APO are correct, however these
estimators do not catch the curve (see Figure 1).

Table 5 shows the bias, variance and MSE’s of the estimated APO using
IPTW and MGPS. The bias and MSE obtained by MGPS are significantly
smaller. As pointed out by Hirano et al. (2003), the efficiency of the GPS
estimator can be improved by using the estimated GPS. In this simulation, the
GPS can be estimated using a Gamma generalized linear model, for example.
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Figure 1: Simulated Example 2: The dose-response APO curves for the IPTW
and GPS analyses.

4.3 Example: The MSCM Study

Alexander and Markowitz (1986) studied the relationship between maternal
employment and paediatric health care utilization. The investigation was mo-
tivated by the major social and demographic changes that have occurred in the
US since 1950. The Mothers’ Stress and Children’s Morbidity Study (MSCM)
enrolled 167 preschool children between the ages of 18 months and 5 years that
attended an inner-city paediatric clinic. Each individual provided information
regarding their family and work outside the home. Daily measures of mater-
nal stress and child illness were recorded during 4 weeks of follow-up. We use
these data to determine casual effect of stress on child illness. We used logistic
regression to fit the model for weights and propensity score over each interval
with employment (e), married (m), previous stress (s) and previous illness (i)
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Table 5: Pointwise bias estimates for causal curve based on IPTW using splines
and GPS.

IPTW MGPS
µ(d)− µ̂(d) Var MSE µ(d)− µ̂(d) Var MSE

d = 0.05 -0.595 0.063 0.417 0.001 0.043 0.043
d = 0.10 -0.519 0.030 0.300 0.001 0.030 0.030
d = 0.20 -0.350 0.019 0.141 0.000 0.016 0.016
d = 0.55 -0.037 0.018 0.020 0.000 0.005 0.005
d = 0.65 -0.016 0.023 0.024 0.000 0.005 0.005
d = 1.00 -0.012 0.030 0.030 0.000 0.006 0.006
d = 2.50 -0.053 0.102 0.105 0.001 0.006 0.006
d = 5.50 -0.023 0.317 0.317 0.000 0.009 0.009

as covariates, as follows:

logit{p(si1 = 1)} = α0 + α1e+ α2m

logit{p(sit = 1)} = β0 + β1si(t−1) + β2ii(t−1) + β3e+ β4m

for t = 1 and t > 1 respectively. Since our response, illness, is a dichotomous
random variable we fitted the following logistic models for IPTW and PS
methods:

logit{p(iit = 1)} = γ0 + γ1sit (IPTW)

logit{p(iit = 1)} = θ0 + θ1sit + θ2πi(x) (PS)

where π(x) is the propensity score. In order to see the effect of sample size in
our estimators, we estimate the ATE for different sample sizes by randomly
deleting individuals. Results are presented in Table 6.

Table 6: Parameter estimates based on IPTW and MGPS for MSCM study.

γ̂1 s.e.(γ̂1) θ̂1 s.e.(θ̂1)
n = 50 0.708 0.144 0.622 0.205
n = 70 0.644 0.129 0.617 0.189
n = 100 0.520 0.109 0.576 0.150
n = 167 0.547 0.083 0.537 0.115

As the sample size increases estimators become more similar, and for each
sample size the IPTW standard errors are slightly smaller. Since there is a
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large overlap between estimated parameter confidence intervals using IPTW
and PS, neither is preferable to the other one in this example. We have also
checked the truncated weights, IPTW.t, estimators, but the results are omitted
because they were fairly similar.

In the next example we have a longitudinal data set with continuous re-
sponse and treatment dose and we will compare the performance of univariate
GPS, multivariate GPS and IPTW approaches.

4.4 Example: MOTAS Amblyopia Study

Amblyopia is a common childhood vision disorder characterized by reduced
visual function in one eye which is often treated by occlusion therapy (patch-
ing) of the properly functioning eye. The Monitored Occlusion Treatment of
Amblyopia Study (MOTAS) (Stewart et al. 2004) was the first clinical study
aimed at quantifying the dose response relationship of occlusion, facilitated
by the use of an electronic occlusion dose monitor. The MOTAS design and a
full description of the study base have been published previously (Stewart et
al. 2002, 2004); see also Moodie and Stephens (2010). The response variable,
visual acuity was measured for each child at the ends of approximately two
week intervals, and improvement corresponded to a decrease in the value of
the response variable. We analyze the data of the 68 children who took part
in the occlusion phase of MOTAS, who were prescribed six hours of occlusion
daily, but received varying doses because of incomplete concordance. For child
i, the response, Yij, is the change in visual acuity during interval j, and Dij is
the random occlusion dose (in hours) received in interval j.

In the study, 60 out of 404 (about 15%) of intervals in the occlusion phase
had a zero dose, so we assume

Dij
L
= ψ(x̄ij, γ)I{d = 0}+ (1− ψ(x̄ij, γ))I{d 6= 0}D+

ij

where D+
ij is strictly positive random variable and 0 < ψ(x̄ij, γ) < 1 is a mixing

weight which can be estimated using logistic model on binary (Dij = 0/Dij >
0) dose data.

Following the fitted model by Moodie and Stephens (2010), we included
the visual acuity at start of interval, age, sex, interval number, length of
interval (in days), and amblyopic type (anisometropic, strabismic, mixed) as
a covariate in the GPS or IPTW model and if we add the previous dose to
these covariates MGPS can be fitted. These covariates were used to predict
both the probability of having any occlusion at all (D/D > 0) in a logistic
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Table 7: Estimated parameters in APO models based on UGPS and MGPS,
estimated variances are in brackets.

UGPS MGPS
β1 -0.107(0.031) -0.135(0.046)
β2 9.00e-6(1.84e-4) 1.740e-4(2.28e-4)
β3 2.917(1.580) 5.668(2.264)
β4 0.080(0.047) 0.069(0.066)

model and the probability of receiving a particular dose (greater than zero) of
occlusion in a Gamma model. The UGPS used is

π̂(d, xij) = ψ̂(xij, γ̂)I{d = 0}+ (1− ψ̂(xij, γ̂))I{d 6= 0}f(d|xij, φ̂, α̂)

where f(d|xij, φ̂, α̂) is a Gamma density with shape φ and scale determined by
α. We used the same model to assign the weights for each individual in IPTW
method. The fitted model model for MGPS is identical with xij replaced by
x̄ij which includes the previous dose.

π̂(d, xij, di(j−1)) = ψ̂(xij, di(j−1), γ̂)I{d = 0}

+(1− ψ̂(xij, di(j−1), γ̂))I{d 6= 0}f(d|xij, di(j−1), φ̂, α̂)

As response in the MOTAS is the vector of changes in visual acuity, there is
little observed serial correlation in the data. The observable model for change
in visual acuity, Y , in the GPS method is modelled via the expectation

EY |D,π[Y |D = d, π, β] = β0 + I{π < 0.05}(β1 + β2d+ β3π + β4d.π)

and in order to decrease the bias in IPTW estimator, we have used the semi-
parametric regression using weighted splines to fit the model for Y on D. A
plot of the dose-response curve is presented in Figure 2. The MGPS, univari-
ate GPS and IPTW APOs are plotted for comparison with 95% confidence
interval based on MGPS.

As Figure 2 shows, there is no significant difference between the estimated
APO using either IPTW or GPS method. Numerical values of the estimated
parameters using least square estimates, β1, ..., β4, are presented in Table 7 for
UGPS and MGPS.

The plot indicates that the direct effect of dose on visual acuity, when
confounding between dose and the responses is adjusted for using the GPS ap-
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Figure 2: MOTAS data: The estimated average potential change in visual
acuity (APO) vs dose for multi-interval IPTW (MIPW), UGPS and MGPS.
Pointwise 95% confidence interval (light dashed) computed for MGPS.

proach, is appreciable; the average potential effect on change in visual acuity
measurement Yij is significantly negative (corresponding to vision improve-
ment) over the entire range of positive doses considered.

5 Summary

Our studies clearly demonstrate that in a range of simulation studies in sin-
gle and multiple interval settings, PS methods outperform IPTW in terms
of MSE. Therefore, in the context of moderate to high-dimensional covari-
ate/confounder vectors, the scalar propensity score provides a straightforward
causal adjustment approach which seems to have superior finite dimensional
performance.

We outlined the Generalized Propensity Score, a generalization of the clas-
sical binary treatment propensity score, and showed that since the confounding
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pattern is more complex in longitudinal data, the GPS needs to take into ac-
count the correlation between observations. We explained how the GPS can be
modified to keep the balancing property in the context of repeated measures
data. We compared the performance of the IPTW and GPS approach to es-
timate the average potential outcome through simulation studies, MSCM and
MOTAS data. Our studies reveal that the ATE estimator using propensity
score regression adjustment has a smaller variance and is more successful in
removing bias than corresponding methods that use weighting, under correct
model specification.

Our studies here are entirely empirical, but theoretical results demonstrat-
ing the superiority of PS-based estimators are also available. It can be shown
using results from the theory of semiparametric estimation that, under the
assumption of a correct model for treatment assignment, the PS matching or
regression estimator has asymptotic variance which equals the semiparamet-
ric efficiency bound of Chamberlain (1987), whereas the variance bound for
IPTW estimators - see Hahn (1998) and Hirano et al. (2003) - exceeds the
Chamberlain bound. See Ertefaie and Stephens (2010) for further details. One
limitation of PS methods at this stage is that they have only been developed
for use in the estimation of direct effects, and cannot be used for the estimation
of total effects, whereas the marginal structural models approach that utilizes
IPTW does allow the estimation of total effects.

References

Alexander, G. S. and Markowitz, R. (1986) “Maternal employment and use
of pediatric clinic services”, Medical Care, 24(2), 134-147.

Chamberlain, G. (1987) “Asymptotic efficiency in estimation with conditional
moment restrictions”, Journal of Econometrics, 34, 305334.

Ertefaie, A. and Stephens, D. A. (2010) “On the Efficiency of Propensity
Score Matching”, Technical Report, Department of Mathematics and Statis-
tics, McGill University.

Hahn, J. (1998) “On the role of the propensity score in efficient semiparamet-
ric estimation of average treatment effects”. Econometrica 66 (2), 315-331.

Hirano, K. and Imbens, G. W. (2004) “The Propensity Score With Contin-
uous Treatments”. In Gelman, A. and Meng, X.-L. (eds.), Applied Bayesian

20

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 2, Art. 14

DOI: 10.2202/1557-4679.1198



Modeling and Causal Inference from Incomplete-Data Perspectives”, 73-84.
Oxford, UK: Wiley.

Hirano, K. Imbens, G. W. and Ridder, G.(2003) “Efficient Estimation of
Average treatment Effects Using the Estimated Propensity Score”, Econo-
metrica, 71, 4, 1161-1189.

Imbens, G. W. (2000) “The Role of the Propensity Score in Estimating Dose-
Response Functions”, Biometrika, 87:706-710.

Moodie, E. E. M. and Stephens, D. A. (2010) “Estimation of Dose-Response
Functions for Longitudinal Data”, Statistical Methods in Medical Research.
To Appear.

Rosenbaum, P. R. and Rubin, D. B. (1983)“The central role of the propensity
score in observational studies for causal effects”, Biometrika, 70:41-55.

Robins, J. M. “Analytic methods for HIV treatment and cofactor effects”,
AIDS Epidemiology Methodological Issues. Eds. Ostrow DG; Kessler R.
Plenum Publishing, New York. pp. 213-290.

Robins, J. M. (1997). “Causal inference from complex longitudinal data”, In
M. Berkane (Ed.), Latent Variable Modeling and Applications to Causality,
pp. 69-117. New York: Springer-Verlag.

Robins, J. M., Hernan, M. A. and Brumback, B. (2000). “Marginal structural
models and causal inference in epidemiology”, Epidemiology, 11, 550-560.

Robins, J. M., Mark, S. D. and Newey, W. K. (1992) “Estimating exposure
effects by modeling the expectation of expisure conditional on confounders”,
Biometrics 48, 2, 479-495.

Rubin, D. B. (1978). “Bayesian inference for causal effects: The role of ran-
domization”, Annals of Statistics 6, 34-58.

Stewart, C. E., A. R. Fielder, D. A. Stephens, and M. J. Moseley (2002).
“Design of the monitored occlusion treatment of amblyopia study (MOTAS)”,
British Journal of Ophthalmology, 86, 915-919.

Stewart, C. E., M. J. Moseley, D. A. Stephens, and A. R. Fielder (2004).
“Treatment dose response in amblyopia therapy: the monitored occlusion
treatment of amblyopia study (MOTAS)”, Investigations in Ophthalmology
and Visual Science 45, 3048-3054.

21

Ertefaie and Stephens: Comparing Inverse Probability Weighting and Propensity Scores



Tan, Z. (2007). “Comment: Understanding OR, PS and DR”, Statistical
Science, 22, 4, 560-568.

VanderWeele, T. J. (2009). “Marginal structural models for the estimation of
direct and indirect effects”, Epidemiology 20, 1, 18-26.

22

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 2, Art. 14

DOI: 10.2202/1557-4679.1198


	The International Journal of Biostatistics
	Causal Inference

	Comparing Approaches to Causal Inference for Longitudinal Data: Inverse Probability Weighting versus Propensity Scores
	Comparing Approaches to Causal Inference for Longitudinal Data: Inverse Probability Weighting versus Propensity Scores
	Abstract




