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ABSTRACT

Image deblurring is an inverse problem which has seen a surge of activity

in recent years due to the advent of machine learning-based approaches. As

such, traditional methods consisting of optimizing a fidelity term coupled with

a regularizer over the set of all possible images have fallen in popularity. In the

following, a novel approach to this problem is proposed, based upon the maximum

entropy on the mean method. It consists of optimizing at the level of the set

of probability distributions on the set of all images and employing an entropic

regularization. The theory is first described in the context of barcode deblurring

and, subsequently, for the deblurring of general images. The problem afforded

by the principle of maximum entropy on the mean is intractable (it is finite-

dimensional, but prohibitively large in the former case and infinite-dimensional

in the latter). Nevertheless, a judicious application of the Fenchel-Rockafellar

duality theorem affords a finite-dimensional dual problem which can be solved

using standard optimization software, as well as a formula to recover a solution of

the original problem from that of its dual counterpart. Numerical experiments are

provided to demonstrate the strength of this method.
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ABRÉGÉ

Récemment, le problème inverse de débrouillage d’image a fait l’objet d’une

résurgence due à la popularité de l’apprentissage automatique. Ainsi, les méthodes

classiques, basées sur la régularisation d’un problème d’optimisation sur l’ensemble

de toutes les images, sont de moins en moins étudiées. Dans la présente thèse,

il sera question d’une nouvelle approche basée sur la méthode du maximum

d’entropie sur la moyenne. Cette dernière consiste à optimiser à l’échelle des

lois de probabilité sur l’ensemble des images et d’employer une régularisation

entropique. D’abord, cette méthode sera décrite dans le contexte de débrouillage

de code-barres et, ensuite, pour le débrouillage d’images génériques. Dans le

premier cas, le problème à résoudre a une dimensionalité immense tandis que dans

la seconde, la dimensionalité est infinie. Néanmoins, une application judicieuse du

théorème de dualité de Fenchel-Rockafellar accorde un problème dual de dimension

finie qui peut être résolu numériquement avec des logiciels génériques, ainsi qu’une

formule permettant de passer d’une solution du problème dual à une solution

du problème d’origine. Des résultats numériques sont également fournis afin de

démontrer la puissance de cette méthode.
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CHAPTER 1
Introduction

The problem of image deblurring is perhaps the most ubiquitous inverse

problem encountered in day to day life. Indeed, with the advent of smartphones,

billions of people have the ability to take digital photos at a moments notice. If,

in haste, one captures an image before the camera is stable the resulting image

will likely be corrupted by motion blur. Similarly, if the subject of the image

is in movement, motion blur may manifest itself in the captured photo. These

two examples are among the most common causes of blur in an image. Another

important example is that of out of focus blur, which occurs when the focus of the

camera is incorrectly set.

In addition to salvaging personal photographs, research in deblurring is

motivated by important applications such as medical imaging [1, 2, 9, 50, 59, 60],

astronomical imaging [13, 18, 33, 43] (a particularly exciting application was the

reconstruction of images from the M87 Event Horizon Telescope, yielding the

“first picture” of a black hole [14]), and fast and accurate reading of barcodes

[15, 17, 29, 30, 41, 47, 53] among myriad others.

The deblurring literature is split into two broad categories, the first consists

of methods that are based on machine learning and the second, those that are

not. The method described in this manuscript does not employ the techniques of

machine learning, hence the theory discussed in the sequel will be limited to more
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classical regularization-based techniques. The reader interested in machine learning

may find the following references interesting [12, 36, 44, 45, 48, 54, 61]. The

following section describes the methodology employed by most regularization-based

deblurring software.

1.1 Classical Framework for Image Deblurring

1.1.1 Image Acquisition

In order to deblur a given image, one must first understand the mechanism

by which blurred images are created. Throughout, it is assumed that blurring

occurs on a per channel, thus an RGB image (consisting of one red channel, one

green channel, and one blue channel) would have all three of its channels blurred

independently. As such, let x ∈ R
n×m denote one channel of the ground truth

2-dimensional image and let c ∈ R
k×k k < n,m (k odd) denote the convolution

kernel. Then the blurred image b ∈ R
n×m is obtained via the relation

c ∗ x = b

with ∗ denoting the 2-dimensional linear convolution operator; Figure 1–1 presents

an example of the simulated image acquisition process and an example calculation

is provided subsequently in Example 1. This model represents spatially invariant

blurring as opposed to spatially variant blurring, wherein different segments of the

image are blurred with different kernels (see [8, 11, 34, 58] for examples of methods

tailored to spatially variant blurring). The assumption of spatial invariance is

made throughout this manuscript.
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Figure 1–1: The blurring kernel c on the left, convolved with the original image x
in the middle yields the blurred image b on the right.

Example 1 (2D Convolution). Consider a channel A ∈ R
n×m as well as its

vectorization a ∈ R
nm obtained by taking the rows of A and stacking them together

into a vector, i.e.

a =
(
(AT )1, (A

T )2, . . . , (A
T )n
)
,

with Ai denoting the i-th column of A.

Moreover, let c ∈ R
2�−1×2�−1 denote the convolution kernel. Then the

convolution between c and A can be written componentwise as

[c ∗ A]i,j =
n∑

k=1

m∑
l=1

c�+i−k,�+j−lak,l,

using the convention that ai,j = 0 if i, j < 1, i > n, or j > m and ci,j = 0 if i, j < 1

or i, j > 2�− 1.

3



One can generate a matrix C ∈ R
nm×nm acting on the vectorization a of the

image A as follows. Let

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci,� ci,�−1 . . . ci,1 0 . . .

ci,�+1 ci,� . . . ci,2 ci,1 . . .

. . . . . . . . . . . . . . . . . .

ci,2�−1 ci,2�−2 . . . . . . . . . . . .

0 ci,2�−1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

be n × n matrix blocks for i ∈ {1, 2, . . . , 2� − 1}. Then the convolution matrix C is

the following m block by m block matrix,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C� C�−1 . . . C1 0 . . .

C�+1 C� . . . C2 C1 . . .

. . . . . . . . . . . . . . . . . .

C2�−1 C2�−2 . . . . . . . . . . . .

0 C2�−1 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In practice, convolutions can be efficiently handled using fast Fourier trans-

form based convolution routines (cf. [16]), thus nullifying the need to store the

convolution matrix or to directly perform these sums.

Note that the image acquisition model heretofore described is noiseless. In

order to explicitly account for additive noise p ∈ R
n×m, the model b = c ∗ x + p

can be used. The most common types of noise are white noise and salt-and-pepper

4



noise [38]. White noise is assumed to be drawn from a Gaussian with unknown

variance and mean zero; it is typically caused by issues with the image or by the

analogue to digital conversion of the signal. The latter corrupts the image by

turning a percentage of the pixels black or white. It can be caused by damaged

sensors in the camera.

Throughout, the theory is developed in the assumption that the image is

captured without noise and that the blurring is spatially invariant. Now that the

image acquisition process is well understood, a framework for regularization-based

deblurring methods can be described.

1.1.2 Standard Deblurring Methodology

First, consider the problem of non-blind deblurring (deconvolution), which

consists of taking a given blurred image b and recovering the latent image x when

the convolution kernel c, or an approximation thereof, is known.

1.1.2.1 Deconvolution

In this setting, a naive approach to deconvolution consists of inverting the

convolution operator. As aforementioned (see Example 1) c∗ : Rn×m → R
n×m

can be represented as a matrix C ∈ R
nm×nm acting on a vectorized version of

the image x ∈ R
nm (this notation will be used interchangeably). The blurring

matrix C is typically non-singular [38], however the same reference indicates that

the condition number of C (the square root of the ratio of the largest and smallest

eigenvalues of CTC) is very large, thus inversion is very sensitive to round-off error

[24].
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The standard approach to solving ill-conditioned problems consists of regu-

larizing it by imposing additional structure on solutions. Indeed, the majority of

deconvolution software solve some variant of the following problem

min
x∈Rn×m

{
R(x) +

α

2
||c ∗ x− b||22

}
. (1.1)

In (1.1), R : Rn×m → R is a regularizer which is used to enforce certain constraints

on the optimizer. The second term promotes fidelity of c ∗ x to b without neces-

sarily imposing equality, the parameter α is used to balance the importance of this

term against that of the regularizer. The case where the kernel is unknown can

now be described.

1.1.2.2 Blind Deblurring

For generic blurred images, the convolution kernel c is, a priori, unknown and

thus the problem in (1.1) must be modified. The most common approach [7] is to

solve

min
x∈Rn×m

c∈Rk×k

{
R(x, c) +

α

2
||c ∗ x− b||22

}
, (1.2)

where the optimization is performed over the image and kernel simultaneously.

Often the regularizer is of the form R(x, c) = Rx(x) + Rc(c) such that solving (1.2)

is tantamount to the iterative resolution of the following problems [10]:

min
x∈Rn×m

{
Rx(x) +

α

2
||c ∗ x− b||22

}
,

min
c∈Rk×k

{
Rc(c) +

α

2
||c ∗ x− b||22

}
.

6



Of note is that one must first initialize c (or x if one starts with the kernel

estimation step) with some matrix in order to implement this approach, then

the image x (resp. the kernel c) used in the second problem is taken to be the

solution of the first problem. The routine then continues, using the kernel c (resp.

the image x) obtained from the second problem to solve the first. This iterative

method is repeated until some stopping condition is met. Since the size of the

initial blurring kernel is unknown, a coarse-to-fine approximation is often adopted.

It consists of starting with a small kernel, say 11 × 11 pixels, and increasing the

kernel size after a certain number of iterations [10]. Some common choices of

regularizers will now be discussed.

1.1.2.3 Regularization for Deblurring

The majority of literature pertaining to regularization-based deblurring

consists of proposing different types of regularizers and analysing their effects

on solutions of (1.2). In particular, the image regularizer (Rx) should penalize

the presence of structures in the deblurred image which do not occur in natural

images whereas the kernel regularizer (Rc) should enforce characteristics common

to convolution kernels. For example, in text images the intensity of the pixels is

essentially bimodal with peaks at 0 corresponding to the text and 1 corresponding

to the background. For kernels, a natural assumption is that they have must

non-negative components summing to 1. We list some common regularizers which

can be used for either the image or the kernel estimation (thus, we denote the

regularizer by R and the kernel or image by z) and briefly describe their effects.
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Example 2 (Examples of Regularizers). Throughout, the matrix D : Rd → R
2d

will denote the discrete gradient matrix for vectorized matrices. That is, Dz =

[Dxz,Dyz] with Dx, Dy : Rd → R
d denoting the finite difference approximations of

the derivatives of the image in the horizontal and vertical directions respectively.

For example, for an image A ∈ R
n×m with vectorization a ∈ R

nm, discretizing the

derivatives using first-order forward differences yields

Dxa =

⎡
⎢⎢⎢⎢⎣
0 0 0

1 −1 0

0 0 0

⎤
⎥⎥⎥⎥⎦ ∗ A, Dya =

⎡
⎢⎢⎢⎢⎣
0 1 0

0 −1 0

0 0 0

⎤
⎥⎥⎥⎥⎦ ∗ A.

Figure 1–2 demonstrates the action of these derivative operators on an image.

Figure 1–2: A visual depiction of the derivative operations on 2D images. The bot-
tom left and bottom right images are the horizontal and vertical derivatives of the
top image respectively. Note that the absolute value of the derivatives is taken, as
its magnitude is arbitrary (indeed, first-order backward differences could have been
used).

With this notation in hand, we present some examples of regularizers.

1. Tikhonov Regularization: Perhaps the most well-known regularizer for

ill-posed problems is the �2 penalty, dating back to the work of Tikhonov [49].

Here, R(z) = ||Γz||22 for some matrix Γ. For Γ = D, the result is to enforce

8



smoothness of solutions, effectively minimizing large jumps in intensity

between neighbouring pixels. This assumption is natural for most types of

images, whence justifying its use in many methods [11, 19, 24, 31, 35]. For

Γ = αI with α ∈ R and I the identity matrix, solutions with small coefficients

will be favoured. However, since the norm squares the contribution of each

coefficient, coefficients zi such that |zi| > 1 are over-penalized and those with

0 < |zi| < 1 are under-penalized. Such behaviour is not necessarily desirable,

especially when Γ = D, as smooth textures will have essentially 0 gradient,

whereas edges will have large gradient1 . This behaviour can be improved by

employing the �1 penalty.

2. �1 Penalty: The �1 penalty is given by R(z) = ||z||1 =
∑d

i=1 |zi| [24]. It is
not dissimilar to Tikhonov regularization, however, it is more permissive of

large coefficients and less permissive of small but non-zero coefficients [58].

It is often used in conjunction with other regularizers [23, 25, 46]. Again,

this penalty can be composed with some matrix A in order to regularize some

quantity other than the intensity of the image. The case A = D bears the

name of (anisotropic) total variation regularization.

3. Total Variation: In (anisotropic) total variation regularization, R(z) =

||Dz||1. As aforementioned, the gradient of the image naturally contains

1 This also depends on what numeric representation is being used to store the
intensity values. For example, one can encode the intensity of a channel as a num-
ber in [0, 1] or as an integer between 0 and 255 (8-bit encoding). The maximal
gradient in the first case is 1 whereas in the second it is 255.
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some large components at the edges [24] and thus should not be overly

penalized. The total variation penalty, therefore, yields a sharper restoration

than the Tikhonov regularizer. It has seen much popularity in the field of

image deblurring [20, 28, 37, 51, 52, 55], due in part to the popularity of the

Rudin-Osher-Fatemi method for image denoising [42].

4. �0 Penalty: The �0 penalty is given by R(z) = card(I), with I = {i =

1, . . . , d : zi �= 0} i.e. the number of non-zero components in the signal

[39, 40]. This regularizer clearly promotes sparse solutions and treats all

non-zero components equally. As with other regularizers, one can penalize the

gradient of the image using the �0 penalty.

The approach for image deblurring proposed in this manuscript is based

upon the principle of maximum entropy on the mean as described in the following

section.

1.2 The Principle of Maximum Entropy on the Mean

The principle of maximum entropy has its roots in the study of statistical

mechanics. Put simply, statistical mechanics consists of studying the properties

of large bodies of particles, so large in fact that determining the equations of

motion of each particle (as in classical mechanics) is infeasible [27]. Since the

number of particles is so large, statistical laws which have no analogue in smaller

systems arise due to the larger number of degrees of freedom. Thus, one studies

such systems by means of probability distributions on the set of all possible states

that the system may take; quantities of interest, such as energy, position and

magnetization of the system are described via their expected value.
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In his landmark papers [21, 22] Jaynes extolled the virtues of a reinterpreta-

tion of statistical mechanics based on the principle that thermodynamic entropy

and information-theoretic entropy represent the same quantity. From this view-

point, given partial information about a system, the least biased probability

distribution describing this system subject to the given constraints is that which

maximizes some measure of entropy.

Throughout it will be assumed that such prior information can be encoded

via a prior probability distribution μ. In such a case, the Kullback-Leibler relative

entropy [26] is the canonical choice of entropy, as it permits a measurement of the

discrepancy between two measures.

Later, Dacunha-Castelle and Gamboa provided a mathematical formulation

of the principle of maximum entropy on the mean. It consists of seeking the

maximum entropy distribution among all distributions satisfying a moment

constraint. Thus, the principle of maximum entropy on the mean comprises

solving a convex program (in finite or infinite dimensions) subject to finitely many

affine constraints. These constraints can, in turn, be emulated via the addition

of a convex penalty which penalizes deviations from the constraint set. For such

problems, approaches based on Fenchel-Rockafellar duality are often auspicious.

Indeed, the Fenchel-Rockafellar duality theorem establishes a dual problem to

inf
X

{f + g ◦ A} ,

where (X, τ), (Y, τ ′) are separated locally convex spaces with (topological) duals

X∗ and Y ∗ respectively, A is a continuous linear operator from X to Y and
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f : X → R̄ := R ∪ {±∞} and g : Y → R̄ are proper, convex functions.

In the context of the maximum entropy on the mean method, A encodes the

affine constraints, g acts as a fidelity term for these constraints and f acts as a

regularizer (in this case the relative entropy).

The dual problem afforded by this approach is a maximization problem over

Y ∗ which, in some cases, is more readily solved than the original problem. In

particular, if Y = R
d the dual problem is finite-dimensional, this case bears the

name of partially finite convex programming [5, 6]. Under certain assumptions, a

formula can be established that relates solutions of the dual problem to those of

the primal problem. Explicitly, the dual problem reads

max
Y ∗ {−f ∗ ◦ A∗ − g∗} ,

with f ∗ and g∗ denoting the convex conjugates of f and g, and A∗ denoting the

adjoint of A. Of note is that the conjugate of the relative entropy has a well-known

formula which we will derive in the sequel. Indeed, for continuous densities, the

conjugate of the entropy is the Gibbs measure, which is ubiquitous in statistical

physics [27, Eq. 28.8] and probability theory [62]. In the discrete case, it is given

by the softmax function which has seen applications in information theory [21],

statistical mechanics [27, Eq. 28.3], deep learning [63], and economics [64].

With these preliminary notions in hand, the maximum entropy on the

mean method can be applied to the problem of image deblurring. Previously,

the application of the maximum entropy on the mean method for solving linear

inverse problems has been considered [3, 4, 32]; mostly in the context of deblurring
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astronomical images. These approaches differ from the one presented in this

manuscript in the following ways:

• First, they consider the constraint on the mean to be a hard constraint,

that is, the optimization is performed over distributions whose mean, once

convolved with the (known) kernel is equal to the blurred image, so no

fidelity term is needed. This approach necessitates the verification of a

qualification condition which depends on the chosen prior. By penalizing

deviations from this constraint (as in our proposed approached, also called a

soft constraint) rather than strictly enforcing it, an anologous qualification

condition is trivially satisfied for any choice of prior. Moreover, the dual

problem obtained in our setting has a strongly convex objective function,

which is ideal for optimization and permits the derivation of a stability

estimate with respect to the blurred input image and the corresponding

deblurred image. Whether or not such an estimate holds when a hard

constraint is used is unclear (in particular only strict convexity of the

objective is guaranteed in this case [3], the same reference provides a short

sensitivity analysis in the limit of small variations).

• Next, using a soft constraint, it is possible to perform blind deblurring,

that is, both a kernel estimation step as well as a deconvolution step can

be written using a unified framework. An approach using a hard constraint

is not amenable to blind deblurring, as in the deconvolution step one will

have imperfect knowledge of the kernel. In particular, even if the estimated

convolution matrix is non-singular it is not guaranteed that any image (i.e.
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any vector in [0, 1]nm) will be identical to the blurred image once convolved.

The same issues arise when performing the kernel estimation step. With a

soft constraint, one can enforce that the mean of the solution is an image

via the regularizer and use a fidelity parameter to lessen the impact of such

imperfections in the estimated kernel and image.

• Finally, in [3, 4], noise is explicitly accounted for. That is, the image vector

x is augmented with a noise vector n and the image acquisition process is

written as

b =

[
C I

]⎡⎢⎣x
n

⎤
⎥⎦ = Cx+ n.

where I denotes the identity matrix. Thus in the maximum entropy on

the mean method one optimizes over the product measure ρ ⊗ η, with

Eρ[X] approximating the image and Eη[X] approximating the noise. In the

proposed method, noise is handled implicitly by the regularizer. The latter

approach to denoising is favored in contemporary deblurring methods, as one

simply promotes the qualities desired in the image (e.g. smoothness) using

the regularizer. In the explicit model, it is unclear how the corrections from

n interact with the estimate of the image x in the optimization procedure.

These ideas are further developed in the following chapters; a brief summary

of their contents is provided in the following section.

1.3 Summary of Chapters

In Chapter 2, the maximum entropy on the mean method for deblurring

binary images is studied. In this context, the set of all n×m images has cardinality
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2nm, since any given pixel can only take one of two intensity values. Thus, the

problem of interest is 2nm-dimensional and the probability distributions over

the set of images are discrete. The Fenchel-Rockafellar duality theorem affords

a tremendous dimensionality reduction, resulting in a dual problem that is nm-

dimensional, as well as a formula for recovering the mean of the solution of the

original problem from the solution of the dual one. Numerical experiments are

equally performed which demonstrate the strength of this method in both blind

and non-blind deblurring.

In Chapter 3, a generalization of the techniques presented in chapter 2

are presented. Indeed, general images whose channels take intensity values in

[0, 1] are considered. Thus, the set of all possible images is infinite-dimensional

(discounting discretization of colours due to colour spaces) and the probability

distributions on this set are continuous. The deblurring problem is, therefore,

infinite-dimensional, whereas the dual problem afforded by the duality theorem is,

again, nm-dimensional. A recovery formula is also established which permits the

evaluation of the mean of the maximum entropy distribution after the numerical

resolution of the dual problem. Examples are equally provided that serve as a

proof of concept of the potential of this method.
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Author Ordering: Rioux and Scarvelis equally share the role of first author.
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Abstract

Barcode encoding schemes impose symbolic constraints which fix certain

segments of the image. We present, implement, and assess a method for blind de-

blurring and denoising based entirely on Kullback-Leibler divergence. The method

is designed to incorporate and exploit the full strength of barcode symbologies.

Via both standard barcode reading software and smartphone apps, we demonstrate

the remarkable ability of our method to blindly recover simulated images of highly
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blurred and noisy barcodes. As proof of concept, we present one application on a

real-life out of focus camera image.

2.1 Introduction

Deblurring in image processing addresses a notoriously difficult ill-posed

problem. In this article we present a novel algorithm for deblurring and denoising

of barcodes. The strength of our method lies in its effective incorporation (at all

stages) of the precise symbology of barcodes. In principle, our method could apply

to any class of images possessing some a priori set structure. We present and test

the method for barcodes for the following reasons: (i) Barcodes remain ubiquitous

objects for the encoding of information, and are the simplest class of images which

follow a fixed symbology. (ii) For large amounts of blurring and noise, there is

a less ambiguous test of the success of the algorithm than the eye norm – their

readability by standard commercial software and smartphone apps.

One dimensional (1D) UPC barcodes remain popular for coding merchandise

while QR (Quick Response) barcodes, a type of matrix 2D barcode [38, 4], are

increasingly popular because of the ubiquity of smartphone cameras. While bar-

code readers and smartphone apps are well-developed, the issue of deblurring and

denoising barcodes remains of considerable interest with the presence of motion

blur from hand movement and noise intrinsic to the camera sensor. The interplay

between deblurring and barcode symbology is important for the successful use of

mobile smartphones [26, 17, 49, 50, 13, 53]. Methods for deblurring and denoising

of barcode signals are well-developed; for example, many techniques have been pre-

sented in academic articles (see, for example, [12, 9, 16, 18, 51], [21], [25], [24], [27],
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[29], [30], [33], [34], [35], [40], [41], [47], [50], [52]) while implemented algorithms

are hidden in commercial software (for example, open source readers like Zbar and

apps like Apple’s QR Reader).

The majority of general state-of-the-art blind deblurring methods approach

the problem in two steps. The first step is to estimate the blurring kernel and

the second is to use non-blind deblurring methods to estimate the original image

using the approximative kernel (cf. [11], Chapter 1 of [42] and the references

therein, [28]). Our approach follows this structure, however we present novel kernel

estimation and deblurring methods that are based on an approach known as the

Method of Maximum Entropy on the Mean (MMEM) through the Kullback-Leibler

divergence. To this end, we do not attempt to find the cleaned image directly

but rather we find its probability density function over all binary arrays. We

then take, as our best guess of the cleaned image, its (thresholded) expectation.

While this particular use of entropy and the Kullback-Leibler divergence has a

well-established record of success in many areas of information theory (cf. [15, 6]),

we believe this is the first implementation for deblurring of barcodes. In fact, while

the Kullback-Leibler divergence appears in the highly-cited deblurring paper of

Fergus et al. [19], to our knowledge this particular approach is also new within the

wider context of image deblurring. As can be seen in Fig. 2–7-2–10, our method is

quite remarkable in its ability to blindly deblur and denoise data. In each case, the

only information used to reconstruct the barcode from the simulated blurred and

noisy signal is the QR symbology (cf. Fig. 2–1). Software (Zbar and smartphones)

were all unable to read the initial signal; however, all can read our processed
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versions. To our knowledge, we are unaware of any other simple method which can

produce such dramatic results.

Figure 2–1: A depiction of the symbolic constraints in UPC-A and QR codes
(Source (top image): Wikipedia [4] (image by Bobmath, CC BY-SA 3.0).

The principle of maximum entropy was introduced by E.T. Jaynes in 1957

[22, 23]. This principle states that among all probability distributions that are

compatible with given moments, the least biased is the one that maximizes

the entropy. If prior knowledge on the unknown distribution is available, then

the Kullback-Leibler relative entropy is the method of choice. A particular

occurrence of it is named the MMEM which was introduced by Dacunha-Castelle

and Gamboa [15], and implemented later on in various applications (see e.g.

[6, 37]). Applying the MMEM entails solving a convex program in possibly infinite

dimensions under finitely many affine equality constraints. This type of problem

is efficiently approached by means of Fenchel-Rockafellar duality [43, 7, 8, 36]. In
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our application we consider a finite dimensional problem; albeit one of “very high”

dimension.

We briefly outline our entropic barcode method; the details of the algorithm

are presented in Section 2.2.

2.1.1 Outline of our Kullback-Leibler Approach

We model a barcode by a vector x ∈ {0, 1}N of N independent Bernoulli

random variables with xi denoting the i-th bar for a UPC barcode or the i-th

module for a QR code. For UPC barcodes N = 95 while for QR barcodes N ranges

from 441 to 31329. We model the blurring of the barcode x via discrete linear

convolution of the form b = Cx ≡ c ∗ Ux, where C ∈ R
Nm×N , m is an upscaling

factor as explained at the start of Section 2.2 and U ∈ R
Nm×N is the matrix that

upscales x. C is therefore responsible for upscaling and blurring x with point

spread function (PSF) c ∈ R
Nm, also known as the blur kernel, and b ∈ R

Nm the

observed blurry signal. Let us for the moment assume that C is known (this is the

case for non-blind deblurring). The number of possible barcodes is 2N and we let p

be a probability mass function (PMF) defined over the space of barcodes {0, 1}N .
Hence, p ∈ R

2N , where the k-th component of p, denoted pk (this notation will

be used throughout) represents the probability assigned to the k-th barcode in

{0, 1}N . Now, given a prior distribution μ over the space of barcodes, we minimize

the function

p �→
2N∑
i=1

pi log

(
pi
μi

)
+ γ ‖CEp[x]− b ‖2 (2.1)

over all PMFs p. With the solution p̄ in hand, our cleaned (processed) barcode is

then the thresholded expectation of p̄, Ep̄[x]. Ideally p̄ should be a 1-hot vector
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such that it gives full weight to a single barcode. We consider a uniform prior, a

prior based entirely on the symbology (i.e. one which assigns probability 0 to any

x which does not respect the symbology), and for UPC-A barcodes an empirically

generated prior based upon a database of 106 barcodes.

Even with C known, problem (2.1) with our range of N , is numerically

intractable. To this end, we employ the following strategy. First, we exploit

Fenchel-Rockafellar duality with a significantly simplified dual problem which has

Nm degrees of freedom as opposed to 2N for the primal problem (2.1). While this

presents a fundamental reduction in complexity, it is still too costly to compute p̄

via the solution to the dual problem. On the other hand, we do not need to find p̄

but rather its expectation, and to this end we present a probabilistic version of the

dual which allows for the quick and efficient computation of x̄ = Ep̄[x].

The above outlines the method when C is known. For blind deblurring, i.e.

when C is unknown, we perform an iterative process which couples the above with

an entropy based optimization (cf. (2.5) in the following section) to estimate c

from the observed signal b and x̄, where x̄ is the outcome of the previous entropic

image estimation. The iteration begins with an initial estimation of c based upon

b and x̄ = Eμ[x].

2.2 The Entropic Blind Deblurring Method

Throughout, the process of capturing an image will be modeled via b =

c ∗ Ux = Cx where x ∈ {0, 1}N is the original barcode, C ∈ R
Nm×N is a matrix

that upsamples and blurs the image via discrete linear convolution by the PSF

c and b ∈ R
Nm is the acquired image. We model the unknown true barcode x
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as a vector X = (X1, ..., XN) of N independent Bernoulli random variables and

recall N ∈ N is the total number of the barcode modules. We let m ∈ N be an

upscaling factor, as the pixels of a camera will seldom align in a one-to-one manner

with the bars of the barcode. For example, if m = 3, one module of a QR code

will correspond to a block of 3 × 3 pixels rather than just one pixel. Moreover,

upscaling is necessary in our model to consider realistic quantities of blurring as

demonstrated in Fig. 2–4.

We represent the probability mass function as a vector p ∈ Δ2N , where

the i-th component of p corresponds to the probability p(xi) of the i-th binary

sequence in {0, 1}N under some arbitrary ordering of the set. We use the symbol

Δn to denote the unit simplex in R
n defined as

Δn =

{
u ∈ R

n :
n∑

i=1

ui = 1, ui ≥ 0 (i = 1, . . . , n)

}
.

The unit simplex Δn is the space of probability distributions over a finite sample

space of cardinality n.

The Kullback-Leibler relative entropy quantifies the divergence between two

probability distributions and is defined in [31, Eqn. 2.4] as

K (p;μ) =

⎧⎪⎪⎨
⎪⎪⎩
∑

i∈I pi log
(

pi
μi

)
for p ∈ Δ2n

+∞ otherwise

,

where I = {j : μj > 0}. Working in the convention that 0 log 0 = 0 and

that pk = 0 for some k if and only if μk = 0, summing over I is equivalent to

summing from i = 1, . . . , 2N , as if μj = 0 for some j, the j-th summand is 0. These
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constraints ensure that the entropy term is well-defined. Moreover, μ denotes a

prior probability distribution which encodes certain characteristics which a valid

barcode should exhibit.

The constraint on the mean can be rephrased by noting that Ep(x) = Ap

where A ∈ {0, 1}N×2N is a matrix formed by ordering the set of all binary

sequences of length N and letting the i-th column of A be the i-th element of

this ordering. Thus, A computes the expectation value. This constraint will be

enforced by means of the penalty function

p �→ γ ||c ∗ UAp− b||2 . (2.2)

Here, γ > 0 is a scalar which can be varied in order to penalize deviations from

the mean to a variable extent. We make precise that the standard Euclidean norm

will be used throughout. This form of penalization is flexible enough to permit

the presence of additive noise in the image acquisition process without needing

to explicitly account for it. Indeed, with noise, the observed barcode b will not

generally be equal to c ∗ UAp for any p, hence a hard constraint on the mean

enforcing that c ∗ UAp must equal b is inadequate.

In the case of blind deblurring, we seek to determine the PMF p̄ and the

convolution kernel c̄ which solve

infp,c
{
K (p;μ) + K (c; ν) + γ ||c ∗ UAp− b||2} , (2.3)

as p̄ will allow us to estimate the original barcode and the PSF responsible for

the blurring is unknown. In this equation, μ and ν are distinct prior probability
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distributions and the particular characteristics that μ and ν encode will be

discussed in the following sections, as they play a fundamentally different role.

In this framework, the Kullback-Leibler divergence also guarantees that p̄, c̄ are

elements of the 2N -simplex by its very definition. The utility of this property

will be made clear later. Our approach to tackling problem (2.3) is by iteratively

coupling the following subproblems.

1. Image estimation based on c (non-blind deblurring): Determine p̄ as a

solution of

infp
{
K (p;μ) + α

2
||c ∗ UAp− b||2} . (2.4)

Here, based on the PSF c we determine an approximation of the image

trough Ap̄.

2. Kernel estimation based on p: Determine c̄ as a solution of

infc
{
K (c; ν) + β

2
||c ∗ UAp− b||2} . (2.5)

Here, based on the image Ap we approximate the PSF c̄.

Alternating between image and kernel estimation is common in state of the art

deblurring methods (see e.g. [10], [39]). In the following section we first discuss

how to solve the problems (2.4) and (2.5), respectively, and then we discuss the

coupling mechanism which constitutes the basis for our algorithm.

2.2.1 The Image Estimation

Throughout this section, (2.4) will be referred to as the primal problem.

Recalling that both the convolution and expectation operators can be written in

matrix form, we define M = CA with M ∈ R
Nm×2N for the sake of convenience.
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We note, moreover that solving this problem is not a straightforward endeavour,

as it is a 2N -dimensional minimization problem. Even in the simpler case of UPC-

A encoding, a barcode is composed of 95 bars, hence p ∈ R
295 . In such a high

dimensional minimization problem, attempting to compute a solution directly is

infeasible and thus an alternative method must be determined to solve (2.4).

2.2.1.1 A Convex Analytic Approach to Solving the Primal
Problem

We employ Fenchel-Rockafellar duality for a first simplification of the problem

(2.4). To this end, we present a brief exposition of this duality scheme following

[44, Example 11.41]: For φ : R� → R ∪ {+∞} its domain is dom φ := {x ∈
R

� | φ(x) < +∞}. Its conjugate φ∗ : R� → R ∪ {±∞} is given by φ∗(y) =

supx{yTx − φ(x)} and the subdifferential of φ at x̄ ∈ dom φ is ∂φ(x̄) := {v |
g(x) ≥ g(x̄) + vT (x− x̄) (x ∈ dom φ)}.

Given two lower semicontinuous convex functions with nonempty domain

k : Rn → R ∪ {+∞}, h : Rm → R ∪ {+∞}, a matrix A ∈ R
m×n and b ∈ R

m this

duality scheme makes a connection between the optimization problem

minx k(x) + h(b− Ax), (2.6)

called the primal problem, with its associated dual problem

maxy bTy − k∗(ATy)− ψ∗(y). (2.7)
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Fenchel-Rockafellar duality now states that, under the qualification condition

b ∈ int (Adom k + dom h) ,

the optimal value of the primal and dual problem coincide and that, given a

solution ȳ of the dual problem, a solution of the primal can be recovered from the

relation x̄ ∈ ∂k∗(AT ȳ). We will from now on refer to (2.4) as the primal problem.

To apply the Fenchel-Rockafellar scheme, we need to compute the conjugates of

the functions in play. The conjugate of K (·;μ) can be computed by considering

the log exp function log exp : y �→ log (
∑n

i=1 exp(yi)) and noting that

log exp∗(q) =

⎧⎪⎪⎨
⎪⎪⎩
∑n

i=1 qi log(qi) for q ∈ Δn

+∞ otherwise

,

as discussed in [44, Ex. 11.12]. Observe that we can express the Kullback-Leibler

entropy as

K (p;μ) =
2N∑
i=1

pi log(pi)− 〈p, log μ〉.

As log exp is finite-valued and convex (hence lower semicontinuous and proper),

the Fenchel-Moreau theorem (see e.g. [44, Theorem 11.1]) yields log exp =

(log exp∗)∗. Therefore, also using [44, Eq. 11(3)], the conjugate of K (·;μ) is given
by

K ∗(q;μ) = log

⎛
⎝ 2N∑

i=1

μi exp (qi)

⎞
⎠ . (2.8)

The same reference [44, Eq. 11(3)] together with [44, Ex. 11.11] also gives

(α
2
|| · ||2

)∗
=

1

2α
|| · ||2 (α > 0).
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We now obtain the dual problem by setting

k = K ( · , μ), h = α
2
|| · ||2. Hence

supλ

{
〈b,λ〉 − (α

2
|| · ||2)∗ (λ)− K ∗(MTλ;μ)

}
,

is the resulting dual problem with λ denoting the dual variable, b the acquired

image, M = CA and μ the prior. Substituting the conjugates computed previously

into this expression, this problem can be written explicitly as

supλ

⎧⎨
⎩〈b,λ〉 − 1

2α
||λ||2 − log

⎛
⎝ 2N∑

i=1

μi exp
(
MT

i λ
)⎞⎠
⎫⎬
⎭ . (2.9)

We note that, on R
m, the domain of α

2
|| · ||2 is the entire space, so

b ∈ int
(
M dom (K ) + dom

(α
2
|| · ||2

))

is trivially satisfied. This condition ensures that the optimal value of (2.4) is

attained for at least one p̄ ∈ Δ2N , this is a property of the duality scheme that

has been used. Note moreover that p̄ is guaranteed to be an element of the unit

simplex as otherwise the Kullback-Leibler divergence takes on a value of infinity.

Similarly, since

0 ∈ int
(
MT dom

(α
2
|| · ||2

)∗
− dom (K ∗)

)
,

the optimal value of (2.9) is also attained for at least one λ̄. Together, these con-

ditions ensure that these problems share the same finite optimal value. Moreover,

given a solution λ̄ of (2.9) one can perform primal-dual recovery via
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p̄ = ∇K ∗(MT λ̄;μ), (2.10)

which is another property of this duality scheme. The previous equation

is formulated in terms of the gradient, as K ∗ is differentiable at every point of

its domain such that its subgradient at a given point is a singleton, namely its

gradient at that point by [45, Thm. 25.1].

One of the advantages of this dual formulation is that solving the primal

problem, a minimization problem in p ∈ R
2N , is now analogous to solving the dual

problem, a maximization problem in λ ∈ R
Nm and recovering a solution to the pri-

mal problem via (2.10). This foray into Fenchel-Rockafellar duality has therefore

yielded a tremendous dimensionality reduction. Despite this amelioration, solving

the dual problem is still intractable as the conjugate of the entropy contains an

immense sum over 2N elements and the matrix M has dimensions Nm × 2N hence

it cannot be stored in memory for computations for large N .

2.2.1.2 Exploiting the Probabilistic Structure of the Dual Problem

Recall that, by definition, M = CA where A is a N × 2N matrix whose

columns consist of the binary sequences of length of N . In particular, AT
i is the

i-th binary sequence in some arbitrarily chosen ordering of {0, 1}N . The sum in

(2.9) can therefore be rewritten as

2N∑
i=1

μ(AT
i ) exp(〈AT

i , C
Tλ〉). (2.11)
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This expression equals Eμ

[
exp〈CTλ,X〉] with Eμ[h(X)] denoting the expected

value of the random variable h(X), where X has probability distribution μ [46,

Def. 1 p.141]. This expectation is simply the moment generating function (MGF)

MX of X evaluated at CTλ. By assumption, X = (X1, . . . , XN) where the Xi are

independent Bernoulli random variables. Therefore, using [46, Thm. 5 p.155], the

MGF in (2.11) can be written as

N∏
i=1

MXi
(CT

i λ). (2.12)

The MGF of a Bernoulli random variable is made explicit in [46, Sect. 5.2.2 p.180].

Hence (2.12) is equivalent to

N∏
i=1

(1− ρi + ρi exp(C
T
i λ)),

where ρi is the probability that the i-th bar in x is white. Replacing the sum in

(2.8) with this product yields the following expression for the conjugate of the

Kullback-Leibler divergence:

K ∗(MTλ;μ) =
N∑
i=1

log
(
1− ρi + ρi exp (C

T
i λ)
)
. (2.13)

This expression is easily evaluated given some λ. Using this form for K ∗ renders

the dual problem (2.9) tractable via standard numerical optimization algorithms.

However, we recall that p̄ ∈ Δ2N , hence determining an expression for p̄ is

infeasible regardless of the fact that we can solve the dual problem. We opt

therefore to recover the original image directly from λ̄.
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2.2.1.3 Determining the Original Image From the Argmax of the
Dual Problem

In the following we seek to compute the expectation of (2.10) which serves

as the estimate of the original image. Performing this calculation naively leads to

(2.14) which includes the large matrix M . Thus we use the probabilistic argument

of the previous section to derive an analogous expression (2.15) which can be

computed explicitly.

Given an optimal solution p̄ of the primal problem (2.4), we can recover an

estimate of the original image x via x̄ = Ap̄. We refer to x̄ as an estimate of x, as

the penalty function (2.2) does not guarantee that Cx̄ = b. Using our expression

from (2.10), we can write

x̄ = A∇K ∗(MT λ̄;μ).

We first write ∇K ∗(MT λ̄;μ) componentwise yielding

[∇K ∗(MT λ̄;μ)
]
k
=

⎧⎪⎪⎨
⎪⎪⎩

μk exp(MT
k λ̄)

∑2N

i=1 μi exp(MT
i λ̄)

for k ∈ I,

0 otherwise

such that x̄ can be written componentwise by multiplying the previous expression

by A, i.e.

x̄k =

∑2N

i=1 akiμi exp (M
T
i λ̄)∑2N

i=1 μi exp(MT
i λ̄)

. (2.14)

Here aij is the value in the i-th row of the j-th column of A. We now consider

∇ log

⎛
⎝ 2N∑

i=1

μi exp 〈AT
i , · 〉

⎞
⎠ ,
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the k-th component of which is simply

∑2N

i=1 akiμi exp〈AT
i , · 〉∑2N

i=1 μi exp〈AT
i , · 〉

.

Evaluating this expression at the point CT λ̄ demonstrates that it is equivalent to

(2.14) (since M = CA) with the advantage that we can simplify it using the same

probabilistic argument that was derived previously. Thus, x can be estimated

whilst bypassing the matrix A via:

x̄ = ∇
N∑
i=1

log(1− ρi + ρi exp(C
T
i λ̄)). (2.15)

Consequently, once the argmax of the dual problem has been determined we can

estimate the original image directly, without determining A or the PMF p̄.

Each step of the image estimation has now been made computationally

tractable.

2.2.1.4 A Summary of the Steps for Image Estimation

The previous developments can be summarized in the following procedure for

deblurring an image for which the convolution kernel is known or approximated.

First, a prior μ must be formed. This prior will assign a probability of being

white to each bar, so encoding the symbolic constraints of the barcode of interest

into the prior will ensure that the solution to (2.4) is at least correct on these bars.

Other types of priors and a more detailed discussion of the construction of this

symbolic prior is found in the results section.
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Next, the dual problem (2.9) with the expression for the conjugate of the

Kullback-Leibler divergence given in (2.13) is solved. This step can be performed

efficiently by standard optimization software. Our choice of algorithm is discussed

in the results section.

Finally, an estimate of the initial image is determined via (2.15). The re-

sulting image will not be identical to x due to rounding errors and the choice of

tolerance in the optimization algorithm.

We choose to subsequently perform a thresholding step to guarantee that

all of the segments of the barcode are either 0 or 1. This step ensures that the

barcode will be readable if it was accurately deblurred and thus the information

encoded in the original image can be extracted if our method has succeeded.

2.2.2 The Kernel Estimation

We now focus on solving (2.5), keeping in mind that it shares a similar

paradigm to (2.4). Again, since the convolution is linear and discrete, c ∗ UAp

can be written as Xc. We enforce that c ∈ R
Nm, as the convolution kernel should

not be larger than the size of the image. Thus, X ∈ R
95m×95m such that (2.5)

can be solved directly as a constrained minimization problem, since it is not as

high-dimensional a problem as (2.4). However mimicking the previous foray into

Fenchel-Rockafellar duality will yield a simpler unconstrained analogue to this

primal problem.

2.2.2.1 Advantages of the Dual Formulation
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The dual problem to (2.5) is nearly identical to (2.9), hence we simply state

the dual problem using the same duality scheme:

supλ

{
〈b,λ〉 − 1

2β
||λ||2 − K ∗(XTλ; ν)

}
. (2.16)

The same argument used to show that (2.4) and (2.9) share the same optimal

value and that this solution is attained in both problems implies that (2.5) and

(2.16) satisfy the same property. Consequently, the argmin c̄ of (2.5) is given by

c̄ = ∇
(
log

(
95m∑
i=1

νi exp(X
T
i (·))

))
(λ̄), (2.17)

in the same vein as (2.10). Here, λ̄ denotes the argmax of the unconstrained dual

problem.

Regularizing problem (2.5) via a Kullback-Leibler divergence term guarantees

that the optimal kernel estimate c̄ is nonnegative and that its elements sum to 1

as explained. This property is characteristic of any normalized blur kernel which

is precisely the type of PSF that occurs in image acquisition. Moreover, ν is

used to limit the size of the considered kernel by setting all but a square of the

desired width centred at the middle of its matrix representation to 0 and setting

uniform values summing to 1 in this square. Hence, adopting a coarse-to-fine

approach as in [21], [48] is analogous to simply increasing the size of the kernel

being considered at each step which can be accomplished by varying ν.

2.2.3 The Algorithm

We summarize the development of the prior probability distributions and

outline an algorithm that implements our blind deblurring method.
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Barcode symbologies impose constraints which typically fix certain segments

of an image. We outline a method to generate a prior which captures these con-

straints. Recall that we have modeled a barcode by a vector of N independent

Bernoulli random variables. The distribution of a Bernoulli random variable

is completely determined by a single parameter ρ. As a barcode is a vector of

independent Bernoulli random variables, its distribution is determined by N

parameters ρi as in equation (2.13) above, where each ρi represents the proba-

bility that the i-th bar in a barcode is white. This suggests that a natural prior

distribution μ has the following probability mass function

μ(x) =
N∏
i=1

ρxi
i (1− ρi)

1−xi

where xi is the i-th bar of x. We let ρi = 0 if the i-th bar is fixed as black by the

barcode symbology, ρi = 1 if the i-th bar is fixed as white, and ρi =
1
2
if the i-th

bar is not fixed by the symbology. (This choice reflects our lack of prior knowledge

of the state of the i-th bar when it is not fixed by a symbology.)

The algorithm is summarized with references to the relevant equations in Alg.

1. The algorithm features two loops. The outer loop iterates through a set of fixed

widths for our kernel estimate. The inner loop repeatedly solves problems (2.4)

and (2.5).

We begin by setting i = 1 and hence initially assume that the size of the

convolution kernel is 2i + 1 = 3. We take our initial best guess of the true barcode

to be the image which is black or white in regions which are fixed as such by the

relevant barcode symbology, and gray in all other regions. (See the lower image in
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Fig. 2–1 for an example of such an initial guess for UPC barcodes.) We substitute

this image for Ap̄ in the kernel estimation step (2.5), solve its dual problem (2.16),

and then compute (2.17) to obtain our initial estimate c̄ of the true convolution

kernel. We then use this estimate c̄ to solve the image estimation problem (2.4)

via the methods outlined in the previous sections and obtain a first estimate x̄ of

the true barcode.

This estimated barcode is subsequently read by a software barcode scanner.

If the barcode is readable, the algorithm terminates successfully. If the algorithm

does not terminate after the first iteration of the inner loop, we continue to

iterate through the alternating kernel estimation and image estimation steps, each

time substituting our image estimate for Ap̄ in the kernel estimation step, and

our subsequent kernel estimate for c in the image estimation step. This yields

progressive improvements in the estimates of the convolution kernel and the image.

If the barcode is still not readable after a fixed number of iterations (5 in our

implementation), we infer that the initial width 2i+ 1 of the estimated convolution

kernel was too small. We therefore increment i and iterate through the inner loop

once again. We iterate through the outer loop until the width of the convolution

kernel reaches that of the image. If the barcode is still not readable at this point,

the algorithm terminates unsuccessfully.

We have therefore set up a framework that permits blind deblurring for

both QR and UPC-A barcodes that effectively utilizes prior knowledge of their

respective structure.
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Algorithm 1 Entropic Blind Deblurring

Require: Blurred image b, prior μ
for i = 1 to (width of b)/2, do
x̄ ← μ
width ← (2i+ 1)
for j = 1 to 5 do
c̄ ← (2.17) at argmax of (2.16) with size width
C ← c̄ written as a convolution matrix
x̄ ← (2.15) at argmax of (2.9) using expression (2.13)
threshold x̄
if x̄ is readable then
return x̄

end if
end for

end for
return x̄

Ensure: approximated image x̄

2.3 Results

In the following, we will discuss some of the results obtained while testing our

method. We will refer to graphs in the online supplementary material for more

details of our experiments. First, we explain the methodology used to generate all

of the relevant quantities used for testing.

2.3.1 Implementation Details

We began by generating barcodes in both the UPC-A and QR symbologies. In

the case of UPC-A barcodes, we considered 200000 valid barcodes from the Open

Product Data database [2]. In the case of QR codes, we chose various phrases

to encode and used an online QR code generator to get the relevant images.

Each phrase was encoded in all four levels of error tolerance supported by the
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symbology, namely low (7% tolerance), medium (15% tolerance), quartile (25%

tolerance) and high (30% tolerance) as explained in [4].

In order to blur images synthetically, normalized PSFs were generated. For

Gaussian convolution kernels, this process is straightforward in both the 1D and

2D cases, as for a PSF of width k one need only sample a 1D or 2D Gaussian

function with mean 0 at k points on an interval centred at 0. For box blurs in

the 1D case, we simply initialize all k points of the PSF to the value 1
k
. For linear

motion blurs in the 2D case, the motion blur is simply a line through the centre

of the kernel at a prescribed angle. Examples of these kernels are compiled in Fig.

2–2.

Figure 2–2: A graphical depiction of the the types of kernel used with width 5.
The left kernel generates Gaussian blur and the right one generates linear motion
blur at an angle of π

4
. Note that they are normalized such that the intensity values

sum to 1.

Moreover, general motion blur kernels such as those in [32] were tested on QR

codes, yielding adequate results on barcodes of a reasonable size relative to the

kernel as demonstrated in Fig. 2–3 (other examples are presented in Fig. Sup. 1

of the supplementary material). In what follows we concentrate on Gaussian and

linear motion blur as their testing can be readily automated.
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Figure 2–3: The leftmost image is a general motion blur kernel. The center image
is the corresponding blurred QR code. The rightmost image is the result obtained
by applying our method which is readable. The kernel was normalized such that
it’s intensity values summed to 1 prior to blurring and the QR code was upscaled
by a factor of 3.

The barcodes are upscaled prior to convolution in order to access a greater

range of blurring magnitudes. Indeed, even blur kernels of width 3 (the smallest

tested) produce dramatic quantities of blur when one bar is the size of one pixel

as demonstrated in Fig. 2–4. Thus, upscaling allows us to consider more realistic

levels of blurring.

Figure 2–4: This figure presents an image blurred with the smallest 2D Gaussian
kernel on the left hand side performed on a QR code which has not been upscaled.
Note that this magnitude of blur is rather large, hence the need for upscaling the
image prior to convolution. The right hand side is the result we obtain upon ap-
plying our blind deblurring algorithm with a symbolic prior. The right hand QR
code can be read by any conventional QR code reader.
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In preliminary testing, the PSF was turned into a convolution matrix C

by examining the result of the discrete convolution as demonstrated in [20, Fig.

4.7] and inferring a matrix that performs the same operation. A similar method

was used to determine the matrix X in (2.16). We worked with the 0 boundary

conditions in the formation of these matrices, as it is simpler to construct the

convolution matrix in this case. In reality the barcode is encased in a white

quiet zone so one can simply invert the colours of the captured signal such that

the 0 boundary condition in the inverted image is equivalent to a 1 boundary

condition in the original. Hence, in a real image, the 0 boundary condition would

be sufficient, as the barcode would not be convolved with data outside this quiet

zone for blur kernels of a reasonable size.

Thereafter, the convolutions were performed by means of the fftconvolve

method from the scipy python library [1]. The advantage to this approach is that

it is both faster and less memory intensive than forming the convolution matrix

and storing it in memory. We make precise that the Hermitian adjoint of the

discrete convolution operator is obtained by performing a discrete convolution

with one of the arrays reversed about its axes as discussed in [14, Sect. 5.1.1].

Hence, passing from the matrix methodology to this one is akin to replacing the

transposed matrices in the dual problems and the recovery of the solutions to the

primal problems by the adjoint of the corresponding convolution.

We employ a downscaling step once we have estimated our image by averaging

together the blocks of pixels that correspond to one pixel once upscaled. We

subsequently round the pixel intensities to the nearest integer as discussed

39



previously. The utility of this step is highlighted in Fig. 2–5. The critical task

of decoding the QR estimate is delegated to the Zbar Python implementation

provided by [5] which permits automation for checking readability of the iterates

during testing. Hence, if a barcode is readable post thresholding, we terminate

the algorithm and return the data which has been decoded. We use both Zbar

and various smartphone applications in order to compare the performance of our

algorithm to state of the art QR code scanners.

Figure 2–5: This figure demonstrates the utility of the thresholding step. The
left hand side is the deblurred image prior to the downscaling and rounding. The
original image was subjected to linear motion blur with large kernel size at an
angle of −π

4
. Note that some degree of distortion along a diagonal axis remains

prior to thresholding and downscaling. The right side displays the barcode post-
thresholding; it is readable.

We equally examine how our method performs in the presence of noise. We

consider both additive Gaussian and salt and pepper noise throughout, as they are

the most common in practice. To generate Gaussian noise, we generate a matrix

of the same size as the image to which each pixel is associated a random sample

from a normal distribution with prescribed variance and simply add both matrices

to add noise to the image. Similarly, to generate salt and pepper noise of a given

percentage, we generate at each pixel a random real number between 0 and 1.
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If this number is higher than our prescribed percentage, we add nothing to the

image. If it is lower, we randomly choose between 0 or 1; if 0 is selected, the pixel

is made black in the image, if 1 is selected, it is made white. Visuals are provided

below to better illustrate the magnitude and types of noise.

Figure 2–6: A demonstration of types and magnitudes of noise tested. The left-
most image represents the noiseless case, the centre-left image depicts 1% salt
and pepper noise, the centre-right image is 0.01 variance Gaussian noise and the
rightmost image is 0.05 variance Gaussian noise.

All that remains before our algorithm can be tested is to make explicit how

the various priors are generated in the different symbologies. Without considering

the intricacies of the various encoding schemes, it is possible to form a uniform

prior in which every bar is given a probability of 0.5 of being white. It is obvious

that such a prior will not perform as well as a symbolic one which encodes all

of the fixed modules within a symbology and assigns a uniform probability of

0.5 to the bars that have not been fixed. Note that QR codes have varying size,

hence a prior must be generated for the various sizes. In the UPC-A case, a

third prior was equally constructed in which our library of more than 200000

UPC-A barcodes was analyzed and each bar was given a probability reflecting the

percentage of barcodes of the library having that bar white, this prior is referred to

as empirical. Testing for UPC-A barcodes was performed first and it was deemed
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that the symbolic and empirical priors yield similar performance. As no tangible

performance improvements were expected, we did not construct an empirical prior

for QR codes.

With this framework in place to generate blurred and noisy barcodes, we are

ready to test the performance of our method.

2.3.2 Non-Blind Deblurring

As mentioned previously, non-blind deblurring can be done by performing

the image estimate step with the exact kernel c known. We wish to determine the

performance of our method for this step and examine the effects of prior choice.

Moreover, we wish to quantify the flexibility of our method with respect to the

presence of noise in the acquired image.

2.3.2.1 Non-Blind Deblurring for UPC-A barcodes

In order to gauge the performance of this method for non-blind deblurring of

1D barcodes, we begin by observing its noiseless performance.

We do so by choosing 5 random barcodes, upscaling them by a factor of 5

and blurring them with progressively larger blur kernels until the barcode was no

longer successfully readable when using the method. We repeat this process for

every prior as well as with both Gaussian and box blurs. The results of the five

barcodes are then averaged in order to provide a general idea of the non-blind,

noiseless performance. We set α = 1000000 in order to give great importance to

the error term thus incentivizing the proximity of CEp[x] to b. The results of this

test are shown in Table 2–1.
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Prior
Type of Cut-off
Blur Width

Uniform
Gaussian 173.0

Box 129.8

Symbolic
Gaussian 259.8

Box 210.6

Empirical
Gaussian 259.4

Box 259.4

Table 2–1: This table compares the performance of the various priors in the pres-
ence of both types of blur. The cut off width is the width of the kernel at which
the method first fails.

We note that the empirical prior outperforms the symbolic prior in the case

of box blur specifically and that they both outperform the uniform prior by a

significant margin. Clearly, the structure encoded in the non-uniform priors

account for their superior performance. Moreover, despite the assumption that the

empirical prior should encode some form of correlation between the various bars,

it performs essentially identically to the symbolic prior. Therefore, the intrinsic

symbology of the barcode appears to take precedence over any additional structure

gained by a statistical learning approach. Finally, the blur widths at which these

priors first fail are so large that they would not occur in real life applications,

this is a testament to the strength of our method in the case of noiseless image

acquisition for UPC-A barcodes.

As for the performance of this method as it pertains to a noisy image acqui-

sition process, we determine a cutoff variance for Gaussian noise for various blur

widths before which we can read all of the blurred and noisy barcodes generated.
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Again, we pick 5 random barcodes and begin by blurring with blur width 3 Gaus-

sian noise. Next, we iteratively increase the variance of the additive Gaussian noise

that is added to the image until we first fail to successfully deblur the barcode. We

then increase the blur width by 2 and repeat this procedure until we reach a width

such that even the lowest variance noise (0.005) cannot be read. At this point, we

repeat the entire process with a box blur.

We note that salt and pepper noise was not tested for the UPC-A symbology,

as in our one-dimensional formulation, this type of noise is equivalent to changing

the color of the entire bar. In practical applications this noise would only effect a

segment of a bar which our model is not designed to account for.

In these tests, α = 1000 in order to account for the fact that b will not be

in the range of C. These tests are performed with the three different priors and

the results are compiled in Fig. Sup. 2 of the supplementary material. We note

again that the symbolic and empirical priors outperform the uniform prior by a

significant margin for larger blur widths.

We note again that the symbolic and empirical priors outperform the uniform

prior by a significant margin for larger blur widths.

2.3.2.2 Non-Blind Deblurring for QR Codes

We test our method for QR codes by picking five of the encoded messages

and determining the blur width at which our method first fails to recover the

information contained in the QR code. The barcodes are upscaled by a factor of

3 in order to consider a greater range of blurring kernels. We proceed similarly
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to the UPC-A testing, however, rather than considering different types of priors,

we compare the different levels of error tolerance and use only a symbolic prior.

We equally compare our method to the ZBar algorithm by attempting to read the

blurred barcode prior to deblurring it. If it fails to read, we deblur the barcode

using our method and verify if the image is now readable. Throughout these tests,

we set α = 10000000 in order to enforce the constraint on the mean. The averaged

results of this testing are shown in Table 2–2.

Error Type of Cut-off Width Cut-off Width
Tolerance Blur (ZBar) (Ours)

Low
Gaussian 5.0 29.4
Motion 6.6 30.6

Medium
Gaussian 5.4 32.2
Motion 7.0 37.8

Quartile
Gaussian 5.4 33.8
Motion 7.0 50.2

High
Gaussian 5.8 35.4
Motion 7.0 65.8

Table 2–2: This table compares the performance of the various error tolerances in
QR codes in the presence of different types of blur. The cut off width is the width
of the kernel for which the method first fails.

We note in particular that the algorithm performs noticeably better in the

presence of motion blur as compared to Gaussian blur. Letting l denote the width

of the blur, motion blur kernels yield convolutions such that the value at one point

is determined by the values of l points, whereas in the Gaussian case, l2 points

are considered. Hence, Gaussian blurs produce more dramatic blurring for the

same size of kernel, so this observation is reasonable. The various error tolerances

perform as expected, with the low tolerance performing the worst and the high
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tolerance performing the best. We note, moreover, that with every error tolerance,

we are able to successfully recover images that are blurred far beyond what can be

considered normal for real life applications.

In order to gauge the effects of additive noise on this method, we again

approach the problem in a similar fashion to the 1-dimensional problem. The

effects of salt and pepper noise can now be studied, as QR codes include a degree

of error correction. Hence, even if the noise does not permit us to reconstruct the

same QR code as the original, the deblurred image may still be read. We compile

our results in Fig. Sup. 3 of the supplementary material, here α was set at 750 to

promote flexibility.

We note that, as expected, our method is more robust to Gaussian noise as it

is less dramatic, changing the value of almost every module by a small amount as

opposed to salt and pepper noise which makes a certain number of modules black

or white. In comparing the various error tolerances, it is clear that the low level

performs much worse than the others which perform almost identically. Regardless,

the amounts of noise considered are far larger than those that would occur in

realistic applications hence, this method performs adequately for reasonable noise

levels.

Finally, the method employed by ZBar performs exceptionally well for very

small quantities of blur. However our method greatly outperforms it for every blur

width other than the smallest one.
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2.3.3 Blind Deblurring

We now test the performance of our method as it pertains to the problem of

blind deblurring.

2.3.3.1 Blind Deblurring for UPC-A Barcodes

We wish to quantify the performance of our blind deblurring method in the

presence of additive noise at various blur widths. We employ an identical series of

tests to those used in the non-blind case. The only difference is that we utilize our

non-blind method to deblur the resulting images. The noiseless results are shown

in Table 2–3.

Prior
Type of Cut off
Blur Width

Uniform
Gaussian 19.4

Box 19.0

Symbolic
Gaussian 76.6

Box 75.0

Empirical
Gaussian 74.2

Box 89.0

Table 2–3: This table compiles the blur widths at which our method first fails
to recover the information contained in the UPCA barcode when using the blind
deblurring method.

Comparing these results to those obtained with the non-blind method reveals,

unsurprisingly, that the blind method is not as robust to the size of the blur width.

This is to be expected, as the blur kernel is being estimated rather than provided.

However, we note that these results are certainly adequate for real life conditions.
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We equally examine the case in which noise is present in the image acquisition

process by performing tests identical to those used in the non-blind section. The

results are compiled in Fig. Sup. 4 of the supplementary material.

We note that the symbolic and empirical priors perform nearly identically.

Notably, they greatly outperform their uniform counterpart. Moreover, this

blind method actually appears to outperform the non-blind method. This slight

improvement may be due to the fact that the non-blind method enforces the use

of the original convolution kernel of which b is often not in the range of. The blind

deblurring method offers greater flexibility in terms of the convolution kernel and

hence with the thresholding step we employ, it is conceivable that performance is

improved.

2.3.3.2 Blind Deblurring for QR Barcodes

In the noiseless case, we employ the same tests as we did in non-blind

deblurring. The results are shown in Table 2–4.

As expected, the results of this method are not as good as those obtained

with its non-blind analogue. They are however acceptable for real world image

acquisition.

We equally perform the same tests as those considered in the non-blind case

and compile the results in Fig. Sup. 5 of the supplementary material.

The various levels of error tolerance perform as expected and we note that

the flexibility with respect to both the Gaussian and salt and pepper noise is
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Error Type of Cut-off Width Cut-off Width
Tolerance Blur (ZBar) (Ours)

Low
Gaussian 5.0 9.0
Motion 6.6 25.0

Medium
Gaussian 5.0 10.2
Motion 7.0 27.0

Quartile
Gaussian 5.4 10.2
Motion 7.0 33.8

High
Gaussian 5.8 10.6
Motion 7.0 31.8

Table 2–4: This table compares the performance of the various error tolerances in
QR codes in the presence of different types of blur. The cut off width is the width
of the kernel for which this blind method first fails.

considerable, as they greatly surpass what could be considered reasonable at low

widths of blur.

Figure 2–7: This figure demonstrates the strength of our method even in the case
where very large Gaussian blur is present. The right hand side is the result we
obtain upon applying our blind deblurring algorithm with a symbolic prior. The
right hand QR code can be read by any conventional QR code reader.

2.3.4 Possible Improvements

Given that our aim throughout was to explain our method and demonstrate

the power of symbology in barcode reconstruction, we did not explore some

avenues for improving it. We list some improvements for those who wish to
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Figure 2–8: This figure presents a blurred image on the left hand side. The blur-
ring is a linear motion blur of kernel size 9 with angle −π

4
which has been per-

formed on a 29 × 29 pixel QR code upscaled to 87 × 87 pixels. The right hand
side is the result we obtain upon applying our blind deblurring algorithm with a
symbolic prior. The right hand QR code can be read by any conventional QR code
reader.

Figure 2–9: On the left, a QR code with an upscaling factor of 3, subject to width
11 motion blur at an angle of π

4
with 1% salt and pepper noise is presented. The

right hand side is the result we obtain upon applying our blind deblurring algo-
rithm with a symbolic prior. The right hand QR code can be read by any conven-
tional QR code reader.

implement them. First, we did not attempt to optimize solving either of the dual

problems of interest, opting rather to implement the stock l-bfgs algorithm from

the scipy package [54]. A further analysis of these two problems could yield a

tailor-made approach to solving these problems that outperforms our current

approach. This modification could significantly improve the run time of the
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Figure 2–10: On the left, a QR code with an upscaling factor of 3, subject to
width 7 Gaussian blur with 0.05 variance Gaussian noise is presented. The right
hand side is the result we obtain upon applying our blind deblurring algorithm
with a symbolic prior. The right hand QR code can be read by any conventional
QR code reader.

algorithm, but would not likely improve its accuracy in terms of reproducing the

original barcode.

Next, our preliminary tests were performed in the Python programming lan-

guage using the Jupyter Notebook application as well as in the Matlab computing

environment. All final testing was performed in Python, which is known to be

slower than C/C++ especially as speed was not the main consideration when the

code was written, as explained in [3]. One could conceivably decrease runtimes

in a significant fashion by rewriting the code in a different language or simply by

optimizing the code already written.

Moreover, the parameters α and β used during testing were determined

empirically during testing. A more detailed analysis of these parameters may prove

fruitful in enhancing the performance of this method depending on the context in

which it is used.
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Furthermore, recall the algorithm terminates either when the approximate

barcode has been read or when the iterations terminate. Thus, no supplementary

processing is performed on the intermediate approximations of the image before

attempting to read them. In the case of UPC-A barcodes, we are simply verifying

each segment against a dictionary of digits, hence if even a single bar fails the

entire barcode will fail to read and the algorithm will continue to run. It would

be possible to implement a method that would attempt to correct errors in the

barcode prior to the reading step which could improve performance. Moreover,

determining optimal values for the number of iterations to perform and verifying if

one could increase the size of the blurring kernel quicker could significantly reduce

runtime.

2.4 Conclusion and Real World Applications

Throughout this article, our focus here has been on developing and testing

a novel entropy-based method to solve a difficult ill-posed problem: blind and

non-blind barcode deblurring of barcodes. The strength of our method lies in its

effective exploitation of the symbology innate to barcodes. Using various barcode

reading software packages, our results were tested on simulated images with

moderate amounts of noise and large amounts of blurring. A natural question is

to what extend our method can be used for real life camera images, i.e. industrial

applications. Such applications are in no way immediate from our current set

up. Note that our method depends heavily on the symbology and it is assumed

that the scaling is uniform throughout the image; thus any implementation

would require a significant amount of preprocessing to obtain data to which
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our algorithm can be directly applied. This dependence on symbology suggests

that our method is ill-suited for situations where the blur is not uniform. While

the general details of such preprocessing are beyond the scope of this article,

we include, as proof of concept for the applicability of this method to real life

situations, one example in Fig. 2–11. Here, we present a picture of a barcode with

significant out of focus blur. Zbar and our smart phones are unable to read this

picture. Fig. 2–12 is the readable barcode obtained by applying our method after

isolating the barcode from the image. As explained in Section 2.3.1, the boundary

conditions were accounted for by inverting the colours of the signal before the

method was applied.

Figure 2–11: Out of focus image of a QR code.
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Interlude

With this method for barcodes and, more generally, binary images in hand,

it is natural to consider an extension for generic images. This transition appears

rather daunting at first, as it represents a passage from a finite, albeit dimen-

sionally immense, primal problem to an infinite-dimensional primal problem.

However, at least heuristically, one assumes that every finite-dimensional formula

should have an infinite-dimensional analogue and that the two should not be overly

dissimilar. This is indeed the case, although the analysis is more delicate in the

latter case and, as such, the extension is non-trivial. Moreover, a stability result is

derived with respect to pertubations in the input (blurred) image in this setting.

The following chapter is therefore devoted to extending the previously

described method. Throughout, the assumption that some known symbology has

been embedded into the image is made. The author concedes that, unlike in the

case of barcodes, this assumption is rather strong and limits the applicability of

the method. However, the author is hopeful that different choices of prior may

permit blind deblurring in the absence of symbology.
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Paper 2: The Maximum Entropy on the Mean Method for Image

Deblurring
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Abstract

Image deblurring is a notoriously challenging ill-posed inverse problem. In

recent years, a wide variety of approaches have been proposed based upon regu-

larization at the level of the image or on techniques from machine learning. We

propose an alternative approach, shifting the paradigm towards regularization at

the level of the probability distribution on the space of images. Our method is

based upon the idea of maximum entropy on the mean wherein we work at the

level of the probability density function of the image whose expectation is our es-

timate of the ground truth. Using techniques from convex analysis and probability

theory, we show that the approach is computationally feasible and amenable to

very large blurs. Moreover, when images are embedded with symbology (a known

pattern), we show how our method can be applied to approximate the unknown
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blur kernel with remarkable effects. While our method is stable with respect to

small amounts of noise, it does not actively denoise. However, for moderate to

large amounts of noise, it performs well by preconditioned denoising with a state of

the art method.

3.1 Introduction

Ill-posed inverse problems permeate the fields of image processing and

machine learning. Prototypical examples stem from non-blind (deconvolution)

and blind deblurring of digital images. The vast majority of methods for image

deblurring are based on some notion of regularization (e.g. gradient-based) at

the image level. Motivated by our previous work [28] for barcodes, we address

general image deblurring at the level of the probability density function of the

ground truth. Using Kullback-Leibler divergence as our regularizer, we present a

novel method for both deconvolution and kernel (point spread function) estimation

via the expectation of the probability density with maximum entropy. This

higher-level approach is known in information theory as maximum entropy on

the mean and dates back to E.T. Jaynes in 1957 [15, 16]. Our approach is made

computationally tractable as a result of two observations:

(i) Fenchel-Rockafellar duality transforms our infinite-dimensional primal

problem into a finite-dimensional dual problem;

(ii) the sought expectation of the maximal probability distribution can be simply

written in terms of known moment generating functions and the optimizer of

the dual problem.
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What is particularly remarkable about our higher-level method is that it

effectively restores images that have been subjected to significantly greater levels

of blurring than previously considered in the literature. While the method is stable

with respect to small amounts of noise, it does not actively denoise; however,

for moderate to large amounts of noise, it can readily be preconditioned by first

applying expected patch log likelihood (EPLL) denoising [40].

We test and compare our method on a variety of examples (cf. Section 3.5).

To start, we consider deconvolution with small to significant additive noise. We

show that we can precondition with EPLL denoising to attain deconvolution

results comparable with the state of the art (cf. Figure 3–1). We then address

blind deblurring with the inclusion of a known shape (analogous to a finder

pattern in a QR barcode [28]). In these cases, we can, preconditioning with EPLL

denoising, blindly deblur with large blurs (cf. Figures 3–2, 3–3, 3–4). Given that

our method relies on symbology, comparison with other methods is unfair (in our

favour). However, we do provide comparison with the state of the art method

of Pan et al. [24, 25] to demonstrate the power of our method in exploiting the

symbology (finder pattern) to accurately recover the blur (point spread function).

Overall, we introduce a novel regularization methodology which is theoreti-

cally well-founded, numerically tractable, and amenable to substantial generaliza-

tion. While we have directly motivated and applied our higher-level regularization

approach to image deblurring, we anticipate that it will also prove useful in solv-

ing other ill-posed inverse problems in computer vision, pattern recognition, and

machine learning.
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Let us first mention current methods, the majority of which are based upon

some notion of regularization at the level of the set of images. We then present a

paradigm shift by optimizing at the level of the set of probability densities on the

set of images.

3.1.1 Current Methods

The process of capturing one channel of a blurred image b ∈ R
n×m from a

ground truth channel x ∈ R
n×m is modelled throughout by the relation b = c ∗ x,

where ∗ denotes the 2-dimensional convolution between the kernel c ∈ R
k×k

(k < n,m) and the ground truth; this model represents spatially invariant blurring.

For images composed of more than one channel, blurring is assumed to act on a

per-channel basis. We, therefore, derive a method to deblur one channel and apply

it to each channel separately.

Current blind deblurring methods consist of solving

inf
x∈Rn×m

c∈Rk×k

{
R(x, c) +

α

2
||c ∗ x− b||22

}
, (3.1)

where R : Rn×m × R
k×k → R serves as a regularizer which permits the imposition

of certain constraints on the optimizers and α > 0 is a fidelity parameter. This

idea of regularization to solve ill-posed inverse problems dates back to Tikhonov

[36]. Approaches that are not based on machine learning differ mostly in the

choice of regularizer, examples include L0-regularization, which penalizes the

presence of non-zero pixels in the image or gradient [25]; weighted nuclear norm

regularization, which ensures that the image or gradient matrices have low rank

[27], and L0-regularization of the dark channel, which promotes sparsity of a
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channel consisting of local minima in the intensity channel [24]. As it pertains

to machine learning methods, other approaches have been employed including

modelling the optimization problem as a deep neural network [34] and estimating

the ground truth image from a blurred input without estimating the kernel using

convolutional neural networks [22, 23, 35] or generative adversarial networks

[18, 26].

The results achieved in these papers are comparable to the state of the art.

However, to our knowledge, such methods have not been successfully applied to

the large blurring regimes considered in this paper.

3.2 Preliminaries

We begin by recalling some standard definitions and establishing notation.

We refer to [39] for convex analysis in infinite dimensions and [30] for the finite-

dimensional setting. We follow [33] as a standard reference for real analysis.

Letting (X, τ) be a separated locally convex space, we denote by X∗ its

topological dual. The duality pairing between X and its dual will be written as

(·, ·) : X ×X∗ → R in order to distinguish it from the canonical inner product on

R
d, 〈·, ·〉 : Rd ×R

d → R. For f : X → R̄ ≡ R∪{−∞,+∞}, an extended real-valued

function on X, the (Fenchel) conjugate of f is f ∗ : X∗ → R̄ defined by

f ∗(x∗) = sup
x∈X

{(x, x∗)− f(x)} ,

using the convention a− (−∞) = +∞ and a− (+∞) = −∞ for every a ∈ R. The

subdifferential of f at x̄ ∈ X is the set

∂f(x̄) = {x∗ ∈ X∗|(x− x̄, x∗) ≤ f(x)− f(x̄) ∀x ∈ X} .
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We define dom f := {x ∈ X|f(x) < +∞}, the domain of f , and say that f is

proper if dom f �= ∅ and f(x) > −∞ for every x ∈ X. f is said to be lower

semicontinuous if f−1([−∞, α]) is τ -closed for every α ∈ R.

A proper function f is convex provided for every x, y ∈ dom f and λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

if the above inequality is strict whenever x �= y, f is said to be strictly convex. If f

is proper and for every x, y ∈ dom f and λ ∈ (0, 1),

f(λx+ (1− λ)y) + λ(1− λ)
c

2
||x− y||2 ≤ λf(x) + (1− λ)f(y),

then f is called c-strongly convex.

For any set A ⊆ X, the indicator function of A is given by

δA : X → R ∪ {+∞}, x �→

⎧⎪⎨
⎪⎩

0, x ∈ A,

+∞, otherwise.

For any Ω ⊆ R
d, we denote by P(Ω) the set of probability measures on Ω. Let

η be a signed Borel measure on Ω, we define the total variation of η by

|η| (Ω) = sup

{∑
i∈N

|η(Ωi)| | ∪i∈N Ωi = Ω,Ωi ∩ Ωj = ∅ (i �= j)

}
.

The set of all signed Borel measures with finite total variation on Ω will be

denoted by M(Ω). We say that a measure is σ-finite (on Ω) if Ω = ∪i∈NΩi with

|μ(Ωi)| < +∞.
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Let μ be a positive σ-finite Borel measure on Ω and ρ be an arbitrary Borel

measure on Ω, we write ρ � μ to signify that ρ is absolutely continuous with

respect to μ, i.e. if A ⊆ Ω is such that μ(A) = 0, then ρ(A) = 0. If ρ � μ there

exists a unique function dρ
dμ

∈ L1(μ) for which

ρ(A) =

∫
A

dρ

dμ
dμ, ∀ A ⊆ Ω measurable.

The function dρ
dμ

is known as the Radon-Nikodym derivative (cf. [33, Thm. 6.10]).

The Kullback-Leibler divergence between ρ, μ ∈ M(Ω) is the functional

K(ρ, μ) =

⎧⎪⎨
⎪⎩
∫
Ω
log
(

dρ
dμ

)
dρ, ρ, μ ∈ P(Ω), ρ � μ,

+∞, otherwise.
(3.2)

For Ω ⊆ R
d, η ∈ M(Ω) we denote, by a slight abuse of notation, Eη[X] to be

a vector whose kth component is (Eη[X])k =
∫
Ω
xkdη(x). Thus, E(·)[X] is a map

from M(Ω) to R
d whose restriction to P(Ω) is known as the expectation of the

random vector X = [X1, · · · , Xd] associated with the input measure.

Finally, the smallest (resp. largest) singular value σmin(C) (resp. σmax(C)) of

the matrix C ∈ R
m×n is the square root of the smallest (resp. largest) eigenvalue of

CTC.

3.3 The MEM Method

3.3.1 Kullback-Leibler Regularized Deconvolution and the Maximum
Entropy on the Mean Framework

Notation: We first establish some notation pertaining to deconvolution.

The convolution operator c∗ will be denoted by the matrix C : Rd → R
d acting

on a vectorized image x ∈ R
d for d = nm and resulting in a vectorized blurred
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image for which the kth coordinate in R
d corresponds to the kth pixel of the image.

We assume throughout that the matrix C is nonsingular, as is standard in image

deblurring.

We recall that traditional deconvolution software functions by solving (3.1)

with a fixed convolution kernel c. Our approach differs from previous work by

adopting the maximum entropy on the mean framework which posits that the

state best describing a system is given by the mean of the probability distribution

which maximizes some measure of entropy [15, 16]. As such, taking Ω ⊆ R
d to be

compact, μ ∈ P(Ω) to be a prior measure and b ∈ R
d to be a blurred image, our

approach is to determine the solution of

inf
ρ∈P(Ω)

{
K(ρ, μ) +

α

2
||b− CEρ[X]||22

}
= inf

P(Ω)
{f + g ◦ A} , (3.3)

for

f = K(·, μ), g =
α

2
||b+ (·)||22 , A = −CE(·)[X]. (3.4)

The following lemma establishes some basic properties of f .

Lemma 1. The functional f : M(Ω) → R̄ is proper, weak∗ lower semicontinuous

and strictly convex.

Proof. We begin with strict convexity of f . Let x ∈ Ω and t ∈ (0, 1) be arbitrary

moreover let ρ1 �= ρ2 be elements of P(Ω) and ρt = tρ1 + (1− t)ρ2. We have

log

(
dρt
dμ

(x)

t+ (1− t)

)
dρt
dμ

(x) = log

(
tdρ1
dμ

(x) + (1− t)dρ2
dμ

(x)

t+ (1− t)

)(
t
dρ1
dμ

(x) + (1− t)
dρ2
dμ

(x)

)

≤ t log

(
dρ1
dμ

(x)

)
dρ1
dμ

(x) + (1− t) log

(
dρ2
dμ

(x)

)
dρ2
dμ

(x).
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The inequality is due to the log-sum inequality [9, Thm. 2.7.1], and since ρ1 �= ρ2,

dρ1
dμ

and dρ2
dμ

differ on a set E ⊆ Ω such that μ(E) > 0. The strict log-sum

inequality therefore implies that the inequality is strict for every x ∈ E. Since

integration preserves strict inequalities,

f(ρt) =

∫
Ω\E

log

(
dρt
dμ

)
dρt
dμ

dμ+

∫
E

log

(
dρt
dμ

)
dρt
dμ

dμ < tf(ρ1) + (1− t)f(ρ2)

so f is, indeed, strictly convex.

It is well known that the restriction of f to P(Ω) is weak∗ lower semicontinu-

ous and proper (cf. [10, Thm. 3.2.17]). Since f ≡ +∞ on M(Ω)\P(Ω), f preserves

these properties.

Problem (3.3) is an infinite-dimensional optimization problem with no obvious

solution and is thus intractable in its current form. However, existence and

uniqueness of solutions thereof is established in the following remark.

Remark 1. First, the objective function in (3.3) is proper, strictly convex and

weak∗ lower semicontinuous since f is proper, strictly convex and weak∗ lower

semicontinuous whereas g ◦ A is proper, weak∗ continuous and convex.

Now, recall that the Riesz representation theorem [12, Cor. 7.18] identifies

M(Ω) as being isomorphic to the dual space of (C(Ω), ||·||∞). Hence, by the

Banach-Alaoglu theorem, [12, Thm. 5.18] the unit ball of M(Ω) in the norm-

induced topology1 (B∗) is weak∗-compact.

1 The norm here is given by the total variation, we make precise that the weak∗

topology will be the only topology used in the sequel.
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Since dom f ⊆ P(Ω) ⊆ B
∗, standard theory for the existence of minimizers

of τ -lower semicontinuous functionals on τ -compact sets [1, Cor. 3.2.3] imply that

(3.3) has a solution and strict convexity of f guarantees that it is unique.

Even with this theoretical guarantee, direct computation of solutions to (3.3)

remains infeasible. In the sequel, a corresponding finite-dimensional dual problem

will be established which will, along with a method to recover the expectation

of solutions of (3.3) from solutions of this dual problem, permit an efficient and

accurate estimation of the original image.

3.3.2 Dual Problem

In order to derive the (Fenchel-Rockafellar) dual problem to (3.3) we provide

the reader with the Fenchel-Rockafellar duality theorem in a form expedient for

our study, cf. e.g. [39, Cor. 2.8.5].

Theorem 1 (Fenchel-Rockafellar Duality Theorem). Let (X, τ) and (Y, τ ′) be

locally convex spaces and let X∗ and Y ∗ denote their dual spaces. Moreover, let

f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be convex, lower semicontinuous (in

their respective topologies) and proper functions and let A be a continuous linear

operator from X to Y . Assume that there exists ȳ ∈ A dom f ∩ dom g such that g is

continuous at ȳ. Then

inf
x∈X

{f(x) + g(−Ax)} = max
y∗∈Y ∗ {−f ∗(A∗y∗)− g∗(y∗)} (3.5)

with A∗ denoting the adjoint of A. Moreover, x̄ is optimal in the primal problem if

and only if there exists ȳ∗ ∈ Y ∗ satisfying A∗ȳ∗ ∈ ∂f(x̄) and ȳ∗ ∈ ∂g(−Ax̄).
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In (3.5), the minimization problem is referred to as the primal problem,

whereas the maximization problem is called the dual problem. Under certain

conditions, a solution to the primal problem can be obtained from a solution to the

dual problem.

Remark 2 (Primal-Dual Recovery). In the context of Theorem 1, f ∗ and g∗ are

proper, lower semicontinuous and convex, also (f ∗)∗ = f and (g∗)∗ = g [39, Thm.

2.3.3]. Suppose additionally that 0 ∈ int(A∗ dom g∗ − dom f ∗).

Let ȳ∗ ∈ argmaxY ∗ {−f ∗ ◦ A∗ − g∗}. By the first order optimality conditions,

[39, Thm. 2.5.7]

0 ∈ ∂ (f ∗ ◦ A∗ + g) (ȳ∗) = A∂f ∗(A∗ȳ∗) + ∂g(ȳ∗),

the second expression is due to [4, Thm. 2.168] (the conditions to apply this

theorem are satisfied by assumption). Consequently, there exists z̄ ∈ ∂g∗(ȳ∗)

and x̄ ∈ ∂f ∗(A∗ȳ∗) for which z̄ = −Ax̄. Since f and g are proper, lower

semicontinuous and convex we have [39, Thm. 2.4.2 (iii)]:

A∗ȳ∗ ∈ ∂f(x̄), ȳ∗ ∈ ∂g(z̄) = ∂g(−Ax̄).

Thus Theorem 1 demonstrates that x̄ is a solution of the primal problem, that is if

ȳ∗ is a solution of the dual problem, ∂f ∗(A∗ȳ∗) contains a solution to the primal

problem.

If, additionally, f ∗(A∗ȳ∗) < +∞ [4, Prop. 2.118] implies that,

x̄ ∈ ∂f ∗(A∗ȳ∗) = argmaxx∈X {(x,A∗ȳ∗)− f(x)} . (3.6)

71



We refer to (3.6) as the primal-dual recovery formula.

A particularly useful case of this theorem is when A is an operator between

an infinite-dimensional locally convex space X and R
d, as the dual problem will

be a finite-dimensional maximization problem. Moreover, the primal-dual recovery

is easy if f ∗ is Gâteaux differentiable at A∗ȳ∗, in which case the subdifferential

and the derivative coincide at this point [39, Cor. 2.4.10], so (3.6) reads x̄ =

∇f ∗(A∗ȳ∗). Some remarks are in order to justify the use of this theorem.

Remark 3. It is clear that P(Ω) endowed with any topology is not a locally convex

space, however it is a subset of M(Ω). Previously, M(Ω) was identified with the

dual of (C(Ω), ||·||∞), thus the dual of M(Ω) endowed with its weak∗ topology

(M(Ω), w∗)∗ can be identified with C(Ω) [8, Thm. 1.3] with duality pairing

(φ, ρ) ∈ C(Ω) ×M(Ω) �→ ∫
Ω
φdρ. Since dom f ⊆ P(Ω), so the inf in (3.2) can be

taken over M(Ω) or P(Ω) interchangeably.

In the following we verify that A is a bounded linear operator and compute its

adjoint.

Lemma 2. The operator A : M(Ω) → R
d in (3.4) is linear and weak∗ continuous.

Moreover, its adjoint is the mapping z ∈ R
d �→ 〈

CT z, ·〉 ∈ C(Ω).

Proof. We begin by demonstrating weak∗ continuity of E(·)[X] : M(Ω) → R
d.

Letting πi : R
d → R denote the projection of a vector onto its i−th coodinate, we

have

Eρ[X] = ((π1, ρ), . . . , (πn, ρ)) (3.7)

Thus, A is the composition of a weak∗ continuous operator from M(Ω) to R
d and

a continuous operator from R
d to R

d and hence is weak∗ continuous.
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Eq. (3.7) equally establishes linearity of A, since the duality pairing is a

bilinear form.

The adjoint can be determined by noting that

〈Eρ[X], z〉 =
d∑

i=1

∫
Ω

xidρ(x)zi =

∫
Ω

d∑
i=1

xizidρ(x) = (〈z, ·〉 , ρ),

so,

〈CEρ[X], z〉 = 〈Eρ[X], CT z
〉
= (
〈
CT z, ·〉 , ρ),

yielding A∗(z) =
〈
CT z, ·〉.

We now compute the conjugates of f and g, respectively and provide an

explicit form for the dual problem of (3.3).

Lemma 3. The conjugate of f in (3.4) is f ∗ : φ ∈ C(Ω) �→ log
(∫

Ω
exp(φ)dμ

)
. In

particular, f ∗ is finite-valued. Moreover, for any φ ∈ C(Ω),

argmaxP(Ω) {(φ, ·)−K(·, μ)} = {ρ̄φ} ,

the unique probability measure on Ω for which

dρ̄φ
dμ

=
expφ∫

Ω
expφ dμ

. (3.8)
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Proof. We proceed by direct computation:

f ∗(φ) = sup
ρ∈M(Ω)

{(φ, ρ)−K(ρ, μ)}

= sup
ρ∈P(Ω)

{(φ, ρ)−K(ρ, μ)}

= sup
ρ∈P(Ω)

{∫
Ω

log

(
expφ

dρ
dμ

)
dρ

}
,

where we have used the fact that dom f ⊆ P(Ω) as noted in Remark 3. Note that

expφ ∈ C(Ω) ⊆ L1(ρ) and since t �→ log t is concave, Jensen’s inequality [33, Thm.

3.3] yields

f ∗(φ) ≤ sup
ρ∈P(Ω)

{
log

(∫
Ω

expφ
dρ
dμ

dρ

)}
= log

(∫
Ω

expφ dμ

)
(3.9)

Letting ρ̄φ be the measure with Radon-Nikodym derivative

dρ̄φ
dμ

=
expφ∫

Ω
expφ dμ

,

one has that

(φ, ρ̄φ)−K(ρ̄φ, μ) = (φ, ρ̄φ)−
∫
Ω

log

(
expφ∫

Ω
expφdμ

)
dρ̄φ = log

(∫
Ω

expφ dμ

)
,

so ρ̄φ ∈ argmaxP(Ω) {(φ, ·)−K(·, μ)} as ρ̄φ saturates the upper bound for f ∗(φ)

established in (3.9), thus f ∗(φ) = log
(∫

Ω
expφ dμ

)
. Moreover ρ̄φ is the unique

maximizer since the objective is strictly concave.
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With this expression in hand, we show that dom f ∗ = C(Ω). To this effect, let

φ ∈ C(Ω) be arbitrary and note that,

exp (φ(x)) ≤ exp
(
max
Ω

φ
)
, (x ∈ Ω).

Thus,

f ∗(φ) = log

(∫
Ω

expφdμ

)
≤ log

(
exp
(
max
Ω

φ
))

= max
Ω

φ < +∞,

since C(Ω) = Cb(Ω) by compactness of Ω. Since φ is arbitrary, dom f ∗ = C(Ω)

and, coupled with the fact that f ∗ is proper [39, Thm. 2.3.3], we obtain that f ∗ is

finite-valued.

Lemma 4. The conjugate of g from (3.4) is g∗ : z ∈ R
d �→ 1

2α
||z||22 − 〈b, z〉.

Proof. The assertion follows from the fact that 1
2
||·||22 is self-conjugate [29, Ex.

11.11] and some standard properties of conjugacy [29, Eqn. 11(3)].

Combining these results we obtain the main duality theorem.

Theorem 2. The (Fenchel-Rockafellar) dual of (3.3) is given by

max
λ∈Rd

{
〈b, λ〉 − 1

2α
||λ||22 − log

(∫
Ω

exp
〈
CTλ, x

〉
dμ(x)

)}
. (3.10)

Given a maximizer λ̄ of (3.10) one can recover a minimizer of (3.3) via

dρ̄ =
exp
〈
CT λ̄, ·〉∫

Ω
exp
〈
CT λ̄, ·〉 dμ dμ. (3.11)
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Proof. The dual problem can be obtained by applying the Fenchel-Rockafellar

duality theorem (Theorem 1), with f and g defined in (3.4), to the primal problem

inf
ρ∈M(Ω)

{
K(ρ, μ) +

α

2
||b− CEρ[X]||22

}
,

and substituting the expressions obtained in Lemmas 2, 3 and 4. All relevant

conditions to apply this theorem have either been verified previously or are clearly

satisfied.

Note that 0 ⊆ dom g∗ = R
d and A∗0 = 0 ∈ C(Ω), so

A∗(dom g∗)− dom f ∗ ⊇ − dom f ∗ = {φ| − φ ∈ dom f ∗} = C(Ω),

since dom f ∗ = C(Ω) by Lemma 3. Thus 0 ∈ int (A∗ dom g∗ − dom f ∗) = C(Ω), and

Remark 2 is applicable. The primal-dual recovery formula (3.6) is given explicit

form by Lemma 3 by evaluating dρ̄〈CT λ̄,·〉.

The utility of the dual problem is that it permits a staggering dimensionality

reduction, passing from an infinite-dimensional problem to a finite-dimensional

one. Moreover, the form of the dual problem makes precise the role of α in (3.3).

Notably in [5, Cor. 4.9] the problem

inf
ρ∈P(Ω)∩domK(·,μ)

K(ρ, μ) s.t. ||CEρ[X]− b||22 ≤
1

2α
(3.12)

is paired in duality with (3.10). Thus the choice of α is directly related to the

fidelity of CEρ[X] to the blurred image. The following section is devoted to the
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choice of a prior and describing a method to directly compute Eρ̄[X] from a

solution of (3.10).

3.3.3 Probabilistic Interpretation of Dual Problem

If no information is known about the original image, the prior μ is used to

impose box constraints on the optimizer such that its expectation will be in the

interval [0, 1]d and will only assign non-zero probability to measurable subsets of

this interval. With this consideration in mind, the prior distribution should be

the distribution of the random vector X = [X1, X2, . . . ] with the Xi denoting

independent random variables with uniform distributions on the interval [ui, vi]. If

the kth pixel of the original image is unknown, we let [uk, vk] = [0 − ε, 1 + ε] for

ε > 0 small in order to provide a buffer for numerical errors.

However, if the kth pixel of the ground truth image was known to have a

value of �, one can enforce this constraint by taking the random variable Xk to be

distributed uniformly on [� − ε, � + ε]. Constructing μ in this fashion guarantees

that its support (and hence Ω) is compact.

To deal with the integrals in (3.10) and (3.11) it is convenient to note that (cf.

[31, Sec. 4.4]) ∫
Ω

exp
(〈
CTλ, x

〉)
dμ = MX [CTλ],

the moment-generating function of X evaluated at CTλ. Since the Xi are inde-

pendently distributed, MX [t] = Πd
i=1MXi

[t] [31, Sec. 4.4], and since the Xi are

uniformly distributed on [ui, vi] one has

MX [t] =
d∏

i=1

etivi − etiui

ti(vi − ui)
,
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and therefore the dual problem (3.10) with this choice of prior can be written as

max
λ∈Rd

{
〈b, λ〉 − 1

2α
||λ||22 −

d∑
i=1

log

(
eC

T
i λvi − eC

T
i λui

CT
i λ(vi − ui)

)}
, (3.13)

with CT
i denoting the transpose of the i-th column of C. A solution of (3.13) can

be determined using a number of standard numerical solvers. We opted for the

implementation [6] of the L-BFGS algorithm due to its speed and efficiency.

Since only the expectation of the optimal probability measure for (3.3) is

of interest, we compute the ith component of the expectation (Eρ̄[X])i of the

optimizer provided by the primal-dual recovery formula (3.11) via

∫
Ω
xie

〈CT λ̄,x〉dμ∫
Ω
e〈CT λ̄,x〉dμ

= ∂ti log

(∫
Ω

e〈t,x〉 dμ
)∣∣∣∣

t=CT λ̄

.

Using the independence assumption on the prior, we obtain

Eρ̄[X] = ∇t

d∑
i=1

log (MXi
[t])

∣∣∣∣∣
t=CT λ̄

such that the best estimate of the ground truth image is given by

(Eρ̄[X])i =
vie

CT
i λ̄vi − uie

CT
i λ̄ui

eC
T
i λ̄vi − eC

T
i λ̄ui

− 1

CT
i λ̄

. (3.14)

With (3.13) and (3.14) in hand, our entropic method for deconvolution can be

implemented.

3.3.4 Exploiting Symbology for Blind Deblurring

In order to implement blind deblurring on images that incorporate a sym-

bology, one must first estimate the convolution kernel responsible for blurring the

image. This step can be performed by analyzing the blurred symbolic constraints.
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We propose a method that is based on the entropic regularization framework

discussed in the previous sections.

In order to perform this kernel estimation step, we will use the same frame-

work as (3.3) with x taking the role of c. In the assumption that the kernel is of

size k×k, we take Ω = [0−ε, 1+ε]k
2
for ε > 0 small (again to account for numerical

error) and consider the problem

inf
η∈P(Ω)

{
γ

2

∣∣∣∣∣∣Eη[X] ∗ x̃− b̃
∣∣∣∣∣∣2

2
+K(η, ν)

}
. (3.15)

Here, γ > 0 is a parameter that enforces fidelity. x̃ and b̃ are the segments of

the original and blurred image which are known to be fixed by the symbolic

constraints. That is, x̃ consists solely of the embedded symbology and b̃ is the

blurry symbology. By analogy with (3.3), the expectation of the optimizer of

(3.15) is taken to be the estimated kernel. The role of ν ∈ P(Ω) is to enforce the

fact that the kernel should be normalized and non-negative (hence its components

should be elements of [0, 1]). Hence we take its distribution to be the product of

k2 uniform distributions on [0 − ε, 1 + ε]. As in the non-blind deblurring step,

the expectation of the optimizer of (3.15) can be determined by passing to the

dual problem (which is of the same form as (3.13)), solving the dual problem

numerically and using the primal-dual recovery formula (3.14). A summary of the

blind deblurring algorithm is compiled in Algorithm 2. We would like to point out

that the algorithm is not iterative, rather only one kernel estimate step and one

deconvolution step are used.
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This method can be further refined to compare only the pixels of the sym-

bology which are not convolved with pixels of the image which are unknown. By

choosing these specific pixels, one can greatly improve the quality of the kernel

estimate, as every pixel that was blurred to form the signal is known; however, this

refinement limits the size of convolution kernel which can be estimated.

Algorithm 2 Entropic Blind Deblurring

Require: Blurred image b, symbology x̃, prior μ, kernel width k, fidelity parame-
ters γ, α;

Ensure: Deblurred image x̄
ν ← density of k2 uniformly distributed independent random variables
λc̄ ← argmax of analog of (3.13) for kernel estimate.
c̄ ← expectation of argmin of (3.15) computed via analog of (3.14) for kernel es-
timate evaluated at λc̄

λx̄ ← argmax of (3.13)
x̄ ← expectation of argmin of (3.3) with kernel c̄ computed via (3.14) evaluated
at λx̄

return x̄

3.4 Stability Analysis for Deconvolution

In contrast to, say, total variation methods, our maximum entropy method

does not actively denoise. However, its ability to perform well with a denoising

preprocessing step highlights that is “stable” to small perturbations in the data. In

this section, we show that our convex analysis framework readily allows us to prove

the following explicit stability estimate.

Theorem 3. Let b1, b2 ∈ R
d be images obtained by convolving the ground truth

images x1, x2 with the same kernel c. Let

ρi = argminρ∈P(Ω)

{
K(ρ, μ) +

α

2
||CEρ[X]− bi||22

}
(i = 1, 2),
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then

||Eρ1 [X]− Eρ2 [X]||2 ≤
2

σmin(C)
||b1 − b2||2 .

Where σmin(C) is the smallest singular value of C.

The proof will follow from a sequence of lemmas. To this end we consider the

optimal value function for (3.3), which we denote v : Rd → R, as

v(b) := inf
ρ∈P(Ω)

{
K(ρ, μ) +

α

2
||CEρ[X]− b||22

}
= inf

ρ∈P(Ω)
{k(ρ, b) + h ◦ L(ρ, b)} ,

(3.16)

where

k : (ρ, b) ∈ M(Ω)× R
d �→ K(ρ, μ), h =

α

2
||·||22 , L(ρ, b) = CEρ[X]− b. (3.17)

The following results will allow us to conclude that ∇v is (globally) α-

Lipschitz.

Lemma 5. The operator L in (3.17) is linear and continuous in the product

topology, its adjoint is the map z �→ (
〈
CT z, ·〉 ,−z) ∈ C(Ω)× R

d.

Proof. Linearity and continuity of this operator follow from the linearity and

weak∗ continuity of the expectation operator (cf. Lemma 2). The adjoint is

obtained as in Lemma 2,

〈CEρ[X]− b, z〉 = (
〈
CT z, ·〉 , ρ) + 〈b,−z〉 .

Next, we compute the conjugate of k + h ◦ L.
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Lemma 6. The conjugate of k + h ◦ L defined in (3.17) is the function

(φ, y) ∈ C(Ω)× R
d �→ (K(·, μ))∗(φ+

〈
CTy, ·〉) + 1

2α
||y||22 , (3.18)

where (K(·, μ))∗ is the conjugate computed in Lemma 3.

Proof. Since domh = R
d, h is continuous and k is proper, there exists x ∈

L dom k ∩ domh such that h is continuous at x. The previous condition guarantees

that, [39, Thm. 2.8.3]

(k + h ◦ L)∗(φ, y) = min
z∈Rd

{k∗((φ, y)− L∗(z)) + h∗(z)} . (3.19)

The conjugate of k is given by

k∗(φ, y) = sup
ρ∈M(Ω)

b∈Rd

{(φ, ρ) + 〈y, b〉 − K(ρ, μ)} .

For y �= 0, sup
Rd 〈y, ·〉 = +∞. Thus,

k∗(φ, y) = sup
ρ∈M(Ω)

{(φ, ρ)−K(ρ, μ)}+ δ{0}(y) = (K(·, ρ))∗(φ) + δ{0}(y).

The conjugate of h was established in Lemma 4 and the adjoint of L is given in

Lemma 5. Substituting these expressions into (3.19) yields,

(k + h ◦ L)∗(φ, y) = min
z∈Rd

{
(K(·, μ))∗((φ− 〈CT z, ·〉) + δ{0}(y + z) +

1

2α
||z||22

}

= (K(·, μ))∗(φ+
〈
CTy, ·〉) + 1

2α
||y||22 .
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The conjugate computed in the previous lemma can be used to establish that

of the optimal value function.

Lemma 7. The conjugate of v in (3.16) is v∗ : y ∈ R
d �→ (K(·, μ))∗(〈CTy, ·〉) +

1
2α

||y||22 which is 1
α
-strongly convex.

Proof. We begin by computing the conjugate,

v∗(y) = sup
b∈Rd

{
〈y, b〉 − inf

ρ∈M(Ω)
{k(ρ, b) + h ◦ L(ρ, b)}

}

= sup
ρ∈M(Ω)

b∈Rd

{(0, ρ) + 〈y, b〉 − k(ρ, b)− h ◦ L(ρ, b)}

= (k + h ◦ L)∗(0, y).

In light of (3.18), v∗(y) = (K(·, μ))∗(〈CTy, ·〉) + 1
2α

||y||22 which is the sum

of a convex function and a 1
α
-strongly convex function and is thus 1

α
-strongly

convex.

Remark 4. Theorem 2 establishes attainment for the problem defining v in (3.16),

so dom v = R
d and v is proper. Moreover, [4, Prop. 2.152] and [4, Prop. 2.143]

establish, respectively, continuity and convexity of v. Consequently, (v∗)∗ = v [39,

Thm. 2.3.3] and since v∗ is 1
α
-strongly convex, v is Gâteaux differentiable with

globally α-Lipschitz derivative [39, Rmk. 3.5.3].

We now compute the derivative of v.

Lemma 8. The derivative of v is the map b �→ α (b− CEρ̄[X]), where ρ̄ is the

solution of the primal problem (3.3), which is given in (3.11).
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Proof. Remark 4 guarantees that v is differentiable on R
d, so in particular ∇v(b)

exists. Let y = ∇v(b), by [39, Thm. 2.4.2 (iii)], y ∈ R
d is the unique vector for

which 〈b, y〉 = v(b) + v∗(y). Note that

v(b) =

∫
Ω

log

(
exp
〈
CT λ̄, ·〉∫

Ω
exp
〈
CT λ̄, ·〉 dμ

)
dρ̄+

α

2
||CEρ̄[X]− b||22

=
〈
λ̄, CEρ̄[X]

〉− log

(∫
Ω

exp
〈
CT λ̄, ·〉 dμ)+

α

2
||CEρ̄[X]− b||22 ,

and

v∗(λ̄) = log

(∫
Ω

exp
〈
CT λ̄, ·〉 dμ)+

1

2α

∣∣∣∣λ̄∣∣∣∣2
2
.

Thus

v(b) + v∗(λ̄) =
〈
λ̄, CEρ̄[X]

〉
+

α

2
||CEρ̄[X]− b||22 +

1

2α

∣∣∣∣λ̄∣∣∣∣2
2
.

The first order optimality conditions for (3.10) imply that λ̄ = α(b− CEρ̄[X]), so

v(b) + v∗(λ̄) =
〈
λ̄, b− 1

α
λ̄

〉
+

1

α
||λ||22 =

〈
b, λ̄
〉
.

Thus, λ̄ is the unique vector satisfying v(b) + v∗(·) = 〈b, ·〉 and thus ∇v(b) = λ̄ =

α(b− CEρ̄[X]).

We now prove Theorem 3.

Proof of Theorem 3. By Lemma 7, v∗ is 1
α
-strongly convex, so ∇v computed in

Lemma 8 is globally α-Lipschitz (cf. Remark 4), thus

||∇v(b1)−∇v(b2)||2 ≤ α ||b1 − b2||2
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and

||∇v(b1)−∇v(b2)||2 = α ||b1 − b2 + C(Eρ2 [X]− Eρ1 [X])||2
≥ α ||C (Eρ2 [X]− Eρ1 [X])||2 − α ||b2 − b1||2
≥ ασmin(C) ||Eρ1 [X]− Eρ2 [X]||2 − α ||b1 − b2||2 .

Consequently, ||Eρ1 [X]− Eρ2 [X]||2 ≤ 2
σmin(C)

||b1 − b2||2.

3.5 Numerical Results

(a) PSNR: 20.83 dB (b) Cho et al[7],
PSNR: 27.50 dB

(c) Ours,
PSNR: 26.68 dB

Figure 3–1: Deconvolution with noise: Original image is 512×512 pixels. (a)
is the blurred image which is further degraded with 1% Gaussian noise along with
the 23 pixel wide convolution kernel. (b) is the result obtained using Cho et al’s
deconvolution method [7]. (c) is the result obtained from the blurred image via our
non-blind deblurring method.

We present results obtained using our method on certain simulated images.

We begin with deconvolution, i.e. when the blurring kernel c is known. Figure

3–1 provides an example in which a blurry and noisy image has been deblurred

using the non-blind deblurring method. We note that the method does not

actively denoise blurred images when a uniform prior is used, so a preprocessing
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step consisting of expected patch log likelihood (EPLL) denoising [40] is first

performed. For the sake of consistency, the same preprocessing step is applied

prior to using Cho et al’s deconvolution method [7] (this step also improves the

quality of the restoration for this method). The resulting image is subsequently

deblurred and finally TV denoising [32] is used to smooth the image in our case

(this step is unnecessary for the other method as it already results in a smooth

restoration). Note that for binary images such as text, TV denoising can be

replaced by a thresholding step (see figure 3–3).

3.5.1 The Effects of Noise

In the presence of additive noise, attempting to deblur images using methods

that are not tailored for noise is generally ineffective.

Indeed, the image acquisition model b = c ∗ x is replaced by b = c ∗ x + p

where p denotes the added noise. The noiseless model posits that the captured

image should be relatively smooth due to the convolution, whereas the added noise

sharpens segments of the image randomly, so the two models are incompatible.

However, Figures 3–1 and 3–2 show that our method yields good results in

both deconvolution and blind deblurring when a denoising preprocessing step (the

other methods are applied to the preprocessed version of the image as well for the

sake of consistency) and a smoothing postprocessing step are utilized.

Remarkably, the blind deblurring method is more robust to the presence of

additive noise in the blurred image.
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PSNR: 13.79 dB
Liu et al[20]

PSNR: 16.39 dB
Pan et al[24]

PSNR: 16.49 dB

Yan et al[38]
PSNR: 16.54 dB

Ours
PSNR: 29.44 dB

(a)
PSNR: 13.54 dB PSNR: 25.98 dB PSNR: 23.39 dB PSNR: 23.71 dB PSNR: 27.79 dB

(b)
PSNR: 15.37 dB PSNR: 23.17 dB PSNR: 21.60 dB PSNR: 20.97 dB PSNR: 25.67 dB

(c)

Figure 3–2: Blind deblurring with and without noise: Original image is
256×256 pixels. The performance, with varying amounts of noise and different
blurring kernels, of our blind deblurring method with EPLL denoising preprocess-
ing and TV denoising postprocessing to that of other contemporary methods with
the EPLL denoising preprocessing step. The blurred and noisy image is on the
left with the original convolution kernel below it. (a) is noiseless with a 33 pixel
wide kernel. (b) has 1% Gaussian noise with a 27 pixel wide kernel. (c) has 5%
Gaussian Noise with a 13 pixel wide kernel.
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Indeed, accurate results were obtained with up to 5% Gaussian noise in

the blind case whereas in the non-blind case, quality of the recovery diminished

past 1% Gaussian noise. This is due to the fact that the preprocessing step

fundamentally changes the blurring kernel of the image.

(a) (b)

Figure 3–3: Blind text deblurring with and without noise: Original image
is 500×155 pixels. Top: Blurred and noisy image. Middle: Original convolution
kernel on the left and estimated kernel on the right. Bottom: Deblurred image
obtained using our method with an EPLL denoising preprocessing step and a
thresholding postprocessing step. (a) is noiseless with a 57 pixel kernel. (b) has 1%
Gaussian noise with a 45 pixel wide kernel.

We are therefore attempting to deconvolve the image with the wrong kernel,

thus leading to aberrations. On the other hand, the estimated kernel for blind

deblurring is likely to approximate the kernel modified by the preprocessing step,

leading to better results. Moreover, a sparse (Poisson) prior was used in the kernel
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PSNR: 14.61 dB

(a)

Liu et al[20]
PSNR: 26.87 dB

(b)

Pan et al[24]
PSNR: 23.97 dB

(c)

Yan et al[38]
PSNR: 24.67 dB

(d)

Ours
PSNR: 39.66 dB

(e)

Figure 3–4: Blind deblurring in color: Original image is 512×512 pixels. (a)
is the image which has been blurred with a 17 × 17 kernel. (b)-(e) are the latent
image and estimated kernel obtained with different methods.

estimate for the results in Figure 3–2 so as to mitigate the effects of noise on the

symbology.

Finally, we note that there is a tradeoff between the magnitude of blurring

and the magnitude of noise. Indeed, large amounts of noise can be dealt with only

if the blurring kernel is relatively small and for large blurring kernels, only small

amounts of noise can be considered. This is due to the fact that for larger kernels,

deviations in kernel estimation affect the convolved image to a greater extent than

for small kernels.

3.6 The Role of the Prior

Our method is based upon the premise that a priori the probability density

ρ at each pixel is independent from the other pixels. Hence in our model, the

only way to introduce correlations between pixels is via the prior μ. Let us

first recall the role of the prior μ in the deconvolution (and ν in the kernel
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estimation). In deconvolution for general images, the prior μ was only used to

impose box constraints; otherwise, it was unbiased (uniform). For deconvolution

with symbology, e.g. the presence of a known finder pattern, this information was

directly imposed on the prior. For kernel estimation, prior ν was used to enforce

normalization and positivity of the kernel; but otherwise unbiased.

Our general method, on the other hand, facilitates the incorporation of far

more prior information. Indeed, we seek a prior probability distribution μ over the

space of latent images that possesses at least one of the following two properties:

1. μ has a tractable moment-generating function (so that the dual problem can

be solved via gradient-based methods such as L-BFGS),

2. It is possible to efficiently sample from μ (so that the dual problem can be

solved via stochastic optimization methods).

As a simple example, we provide examples of the use of Bernoulli priors

to model binary data and of Poisson priors to model sparsity. The moment-

generating functions for these priors are

MXi
[t] = 1− pi + pie

ti , and MXi
[t] = eλi(e

ti−1),

respectively with pi denoting the probability that the i-th pixel is white and

λi denoting the mean of the Poisson distribution. Thus to deblur images with

these priors, one simply substitutes these expressions into the dual problem and

the recovery formula, as in (3.13) and (3.14). Figure 3–5 presents a comparison

of deblurring a binary text image using different priors with the same choice of

α = 2 × 1011. In this case, sparsity has been used to promote the presence of a
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white background by inverting the colours of the channel during the deblurring

process.

Figure 3–5: Deconvolution with different priors: (a) is the original 480 × 240
binary text image. (b) is the 207 × 207 pixel convolution kernel. (c) is obtained
by blurring the text with the convolution kernel. (d) and (e) are the results of per-
forming deconvolution on the previous blurred image using Bernoulli and Poisson
priors respectively using α = 1010. (f) and (g) were obtained by deconvolving
with α = 106 with the two priors. (e) presents the fine detail of the deconvolution
with α = 106 with the Bernoulli prior on the left and the Poisson prior on the
right. Pixels which were black in the Bernoulli prior, but were gray in the Poisson
prior have been made white manually in order to demonstrate the effect of a sparse
prior.

More generally, we believe our method could be tailored to contemporary

approaches for priors used in machine learning. In doing so, one could perform

bling deblurring without the presence of any finder pattern. A natural candidate

for such a prior μ is a generative adversarial network (GAN) (cf. [14])

trained on a set of instances from a class of natural images (such as face images).

GANs have achieved state-of-the-art performance in the generative modelling of

natural images (cf. [17]) and it is possible by design to efficiently sample from

the distribution implicitly defined by a GAN’s generator. Consequently, when

equipped with a pre-trained GAN prior, our dual problem (12) would be tractable
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via stochastic compositional optimization methods such as the ASC-PG algorithm

of Wang et al. in [37].

3.7 Discussion

It is surprising that inference schemes of the type considered in this paper

have only seen limited popularity in image deblurring (see [2, 3, 21]). Indeed, the

principle of maximum entropy was first developed in a pair of papers published by

E.T. Jaynes in 1957. Furthermore, the theory of Fenchel-Rockafellar duality is well

established in the convex analysis literature and has found applications to solving

maximum entropy estimation problems (cf. [11]).

Since our algorithm models blur as the convolution of the clean image with a

single unknown blur kernel, it relies crucially on the spatial uniformity of the blur.

This assumption may not hold in certain cases. For example, an image captured

by a steady camera that contains a feature that moves during image capture will

exhibit non-uniform motion blur. It may be of interest to explore extensions of this

algorithm that divide the observed image into patches and estimate different blur

kernels for each patch (cf. the motion flow approach proposed in [13])

Finally, our method is flexible with respect to the choice of prior and as

we briefly discussed in Section 3.6, this strongly alludes to future work on the

incorporation of empirical priors obtained from techniques in machine learning.

Implementation Details

All figures were generated by implementing the methods in the Python pro-

gramming language using the Jupyter notebook environment. Images were blurred

synthetically using motion blur kernels taken from [19] as well as Gaussian blur
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kernels. The relevant convolutions are performed using fast Fourier transforms.

Images that are not standard test bank images were generated using the GNU

Image Manipulation Program (GIMP), moreover this software was used to add

symbolic constraints to images that did not originally incorporate them. All test-

ing was performed on a laptop with an Intel i5-4200U processor. The running time

of this method depends on a number of factors such as the size of the image being

deblurred, whether the image is monochrome or colour, the desired quality of the

reproduction desired (controlled by the parameter α) as well as the size of the

kernel and whether or not it is given. If a very accurate result is required, these

runtimes vary from a few seconds for a small monochrome text image blurred with

a small sized kernel to upwards of an hour for a highly blurred colour image.
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2014 the MEM approach for deblurring of barcodes (cf. [28]).

REFERENCES

[1] H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev

and BV Spaces. Society for Industrial and Applied Mathematics, 2014.

[2] J. F. Bercher, G. L. Besnerais, and G. Demoment. The Maximum Entropy

on the Mean Method, Noise and Sensitivity. In Skilling, John and Sibisi,

Sibusiso, editor, Maximum Entropy and Bayesian Methods, pages 223–232.

Springer Netherlands, 1996.

93



[3] G. L. Besnerais, J. F. Bercher, and G. Demoment. A New Look at Entropy

for Solving Linear Inverse Problems. IEEE Trans. Inf. Theory, 45(5), 1999.

[4] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization

Problems. Springer, 2000.

[5] J. Borwein and A. Lewis. Partially finite convex programming, Part I: Quasi

relative interiors and duality theory. Math.l Program., 57:15–48, 1992.

[6] R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory Algorithm for

Bound Constrained Optimization. SIAM J. Sci. Comput., 16:1190–1208, 1995.

[7] S. Cho, J. Wang, and S. Lee. Handling outliers in non-blind image deconvolu-

tion. In 2011 IEEE International Conference on Computer Vision, pages 1–8,

2011.

[8] J. B. Conway. A Course in Functional Analysis. Springer, 2007.

[9] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 2006.

[10] J.-D. Deuschel and D. W. Stroock. Large Deviations. Academic Press, 1989.

[11] M. Dudik, S. Philips, and R. Schapire. Maximum Entropy Density Estimation

with Generalized Regularization and an Applicationto Species Distribution

Modeling. Journal of Machine Learning Research, 8:1217–1260, 2007.

[12] G. B. Folland. Real Analysis: Modern Techniques and Their Applications.

Wiley, 1999.

[13] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. Hengel, and Q. Shi.

From motion blur to motion flow: a deep learning solution for removing

heterogeneous motion blur. CPVR 2016, 12 2016.

94



[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative Adversarial Networks. Proceedings

of the International Conference on Neural Information Processing Systems

(NIPS), pages 2672–2680, 2014.

[15] E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106:

620–630, May 1957.

[16] E. T. Jaynes. Information Theory and Statistical Mechanics. II. Phys. Rev.,

108:171–190, Oct 1957.

[17] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for

generative adversarial networks. In 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4396–4405, 2019.

[18] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin., and J. Matasi. Deblur-

GAN: Blind Motion Deblurring Using Conditional Adversarial Networks.

CVPR 2018, pages 8183–8192, 2018.

[19] A. Levin, Y. Weiss, F. Durand, and W. Freeman. Understanding and

Evaluating Deconvolution Algorithms. CVPR 2009, pages 1964–1971, 2009.

[20] J. Liu, M. Yan, and T. Zeng. Surface-aware blind image deblurring. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2019.
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CHAPTER 4
Conclusion

In summary, this manuscript has outlined a novel method for both binary and

generic image deblurring. This approach is based upon the principle of maximum

entropy on the mean, yielding a problem which is a priori intractable due to its

immense dimensionality. The Fenchel-Rockafellar duality theorem affords a finite-

dimensional dual problem (with dimensionality equal to that of the image being

deblurred), along with a formula to recover solutions of the primal problem upon

solving its dual analogue. The resolution of the dual problem is made tractable

by noting that the convex conjugate of the Kullback-Leibler divergence evaluated

at the adjoint of the expectation operator is simply the moment-generating

function of the prior measure being used. Hence, for many choices of prior, the

dual problem can be solved numerically using black-box optimization software (the

L-BFGS algorithm was used throughout). Once this solution is acquired, a formula

is provided to recover the expectation of the solution of the primal problem.

In the case of barcode deblurring, the maximum entropy on the mean deblur-

ing method performs exceedingly well in both blind and non-blind deblurring with

and without noise. This performance is aided by the embedded finder patterns,

which are used to great effect in both the kernel estimation and deconvolution

steps.

98



For general images, the deconvolution results obtained by this method are

particularly striking. However, the supplementary assumptions posited to enable

the kernel estimation in this context are admittedly rather restrictive. Indeed,

the number of situations in which symbology is naturally embedded in an image

is limited. However, it should be stressed that these results should be taken as a

proof of concept for the potential of this method. In effect, additional study of

the method could reveal prior measures which are better adapted to the kernel

estimation step and remove the need for symbolic constraints.

To conclude, the maximum entropy on the mean method provides a novel and

mathematically elegant framework for blind and non-blind image deblurring. The

potential of this methodology is demonstrated through multiple examples, however

additional study will be necessary in order to fully characterize its strengths and

weaknesses.
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