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Introduction

Neurodegenerative diseases are defined by the progressive deterioration of neuronal structure
and function eventually leading to neuronal loss that is thought to underlie most of the
neurological impairments '. In addition to neuronal cell dysfunction and death,
neurodegenerative diseases often share common cellular mechanisms and histopathological
features regardless of their etiology °. For instance, aberrant protein processing, trafficking and
aggregation in neural cells are observed in Alzheimer’s disease (AD), amyotrophic lateral
sclerosis (ALS), Huntington’s disease (HD), Parkinson’s disease (PD), prion diseases as well as
in other neurodegenerative diseases . This disruption in cellular protein homeostasis is often
associated with extracellular plaque build-up that induce local inflammation through astrocyte
and microglia activation > > ®*. Aberrant RNA metabolism is another common feature for several
neurodegenerative diseases: ALS, ataxia, HD and myotonic dystrophy (DM) °*''. Furthermore,
dysfunctional glutamate neurotransmission leading to neurotoxicity and oxidative injury are also
a recurring theme in neurodegenerative diseases, including epilepsy > '*'°. Shared
pathophysiological processes in multiple neurodegenerative diseases raises the possibility that
identifying common molecular regulation across various diseases may lead to approaches for
therapies, which would be effective for multiple indications.

MicroRNAs (miRNAs) regulate hubs of gene expression and are dysregulated in many
neurodegenerative diseases and their animal models '®*°. miRNA biogenesis is a two-step
cleavage process where a hairpin structure is made progressively shorter; the initial cleavage by
ribonuclease Drosha and Dgcr8, and the second cleavage event by Dicer alone to form a miRNA
duplex *'. The duplex is loaded onto an Argonaute protein to form the core of the miRNA-
induced silencing complex (miRISC), where a passenger strand of the duplex is ejected. The
miRISC binds to the 3’-untranslated region (3’UTR) of target mRNA strands, leading to the
degradation or translational repression of mRNAs. Disruption of the miRNA biogenesis
machinery has been used to demonstrate the critical role of miRNAs in the central nervous
system (CNS) **7*. Specifically, deletion of Dicer in different brain regions leads to brain
atrophy, neurodegeneration, gliosis, locomotor deficits, and shortened lifespans > 2> 27 2% 3032,
Similarly, retinal deletion of Dicer or Dgcr8 lead to retinal degeneration and loss of visual
function > ** 2% 2% 3334 Decreased Dicer expression has also been observed in patients with
advanced aged-macular degeneration (AMD), epilepsy, and multiple sclerosis (MS) > 77,
Animal models of epilepsy and MS also exhibit decreased Dicer expression " **. Disruption of
the miRNA-processing machinery provides proof-of-principle evidence that miRNAs are
essential to nervous system function and integrity, and that disruption of miRNA expression
could contribute to deficits identified in some neurodegenerative diseases.

Reviews of the literature describe the disruption of miRNA expression within specific
neurodegenerative diseases but miRNA regulation across neurodegenerative diseases has not
been systematically reviewed °°*'. Identifying shared miRNA dysregulation across
neurodegenerative diseases may lend insight into the conserved molecular pathways affected



during disease and potentially point towards novel targets for creating therapies aimed at general
degenerative mechanisms involved in many neurodegenerative diseases. Here we perform a non-
biased systematic review of studies identifying miRNA dysregulation in neurodegenerative
diseases to facilitate identification of shared patterns of miRNA dysregulation across multiple
neurodegenerative diseases. We recorded miRNA expression from articles that report miRNA
expression spanning 12 neurodegenerative diseases and their animal models: AD, amyotrophic
lateral sclerosis (ALS), AMD, ataxia, non-AD related dementia, DM, epilepsy, glaucoma, HD,
MS, PD, and prion disorders. We describe seven individual miRNAs and one miRNA family
occurring frequently within and across neurodegenerative diseases: miR-9-5p, miR-21-5p, miR-
124-3p, miR-132-3p, miR-146a-5p, miR-155-5p, miR-223-3p, and the miR-29 family.
Interestingly, three of these miRNAs were frequently upregulated in neurodegenerative diseases,
while the other seven miRNAs did not exhibit a conserved direction of dysregulation. We also
report that these miRNAs have roles in both the immune system and CNS, suggesting
inflammation as a major component of neurodegenerative disease.



Methods

Search strategies- A systematic and comprehensive search of the literature was conducted by a
librarian (AA-Z) to retrieve articles discussing neurodegenerative conditions and miRNA. A
search strategy was developed for Medline via Ovid and adapted to other databases: Embase,
PSYCinfo and Biosis Previews, all also via Ovid. The Medline search strategy searched in
controlled vocabulary where possible, along with text in the title, abstract, or author-supplied
keyword fields. Searches conducted subsequent to Medline excluded the articles already found.
The searches were initially run on 2017-07-13 and were updated with additional terms on 2017-
11-07 and 2019-03-22. The updated Medline strategy is included in Supplementary File 1.
Reference lists of included studies were also evaluated. Search terms were selected to be
inclusive of all neurodegenerative diseases.

Data management and screening- Results of the literature searches (6421 publications) were
imported into an Endnote library. Duplicate publications were removed prior to review. Two
independent reviewers assessed the eligibility of articles using a policy of liberal acceleration:
only one reviewer’s approval was necessary to advance a publication to the next stage of
screening, but both reviewers had to agree on the exclusion of a publication, as previously
described for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
% This strategy was chosen to ensure that every rejected article was validated as unrelated to
the topic of this review by a second reviewer.

Articles went through four rounds of evaluation (Fig. 1). The first two rounds assessed the
relevance of the article to the review topic (miRNA and neurodegenerative disease) and the type
of article (review, conference abstract, primary research article, etc.) based on the information in
their title and abstract. At the title and abstract stages, articles were excluded if they were not
primary research articles, or if they did not refer to either miRNA or neurodegenerative disease.

At the manuscript stage papers were evaluated using a more rigorous set of exclusion criteria:
not a primary research article; no in vivo or ex vivo results; no reporting of differential expression
data of mature miRNA or only reporting differential miRNA expression data taken from
previous studies or from online repositories; not related to neurodegenerative disease; a
duplicate; and/or inaccessible. These criteria were chosen to identify papers that reported new
miRNA regulation data of biological material from neurodegenerative diseases and their models.
Following the manuscript evaluation, papers were sorted into categories based on the
neurodegenerative diseases studied. Any neurodegenerative disease category with fewer than 10
papers were excluded from further analysis as this was determined to be below the threshold for
synthesis and analysis. This resulted in 641 accepted articles making up 12 disease categories:
AD, ALS, AMD, ataxia, dementia, DM, epilepsy, glaucoma, HD, MS, PD, and prion disorders

(Fig. 1).

Next, we wanted to determine what miRNAs were frequently dysregulated across these diseases.
For each of the 641 accepted manuscripts, we recorded the miRNAs that were reported as
significantly dysregulated, and the direction of dysregulation relative to control in a
neurodegenerative disease and/or its animal model. We also list the identify of the profiled tissue



or bodily fluid (Supplementary File 2). When miRNAs were identified by microarray or next-
generation sequencing, only miRNA regulation that was validated by qPCR was recorded.
Studies incorporating miRNA overexpression or knockdown in an animal model of
neurodegenerative disease were also recorded. miRNA annotation was confirmed using the
miRbase Database **. We recorded a total of 2318 dysregulated miRNAs identified in the 641
manuscripts. We then assessed which miRNAs occurred in over half (7/12) of the disease
categories and found 52 miRNAs that fit this criterion. Of these 52 miRNAs, some also occurred
more frequently within the diseases. In order to identify the miRNAs occurring most frequently
both across and within neurodegenerative diseases, we applied cut-offs per disease category
based on the number of publications (Supplementary File 2, tab 1; Fig. 1). This identified 7
individual miRNAs that are miR-9-5p, miR-21-5p, miR-124-3p, miR-132-3p, miR-146a-5p,
miR-155-5p, miR-223-3p. We also identified three miRNA families that occurred within our 52
miRNAs. From those three miRNA families, the miR-29 family occurred most frequently, and it
was included for analysis with the 7 individual miRNAs.

Heat map- To determine if a miRNA was regulated in a distinct direction within our 10 assessed
neurodegenerative diseases, either upregulated or downregulated during disease compared to
control, we generated a heat map synthesizing their expression. If a study assessed the expression
at multiple stages of diseases, or within multiple tissue, this was included as an additional data
point. For each disease when a miRNA was upregulated in a distinct tissue, it was assigned 1,
and if downregulated it was assigned -1. The sum was taken for each miRNA for a disease, and
then divided by the amount of times it was identified as differentially dysregulated to determine
a rank. If a miRNA has a rank closer to 1, this implies that it was mainly upregulated. If a
miRNA has a rank closer to -1, this implies it was mainly downregulated. If a miRNA has a rank
close to 0, this implies that it was reported as significantly upregulated and downregulated in an
approximately equal number of tissues. Data that compared miRNA expression between patients
treated with a disease-modifying therapies (DMTs) versus baseline were not included; nor were
animal studies where the miRNA expression was manipulated. Data was compiled into an CSV
file read by a python script with pandas (http://pandas/pydata.org/) to create a dataframe. We
used Plotly’s python API (http:/plot.ly/) to create a heatmap from the dataframe **.




Results

Our initial search strategy of the systematic review resulted in a sum of 6421 publications, of
which 989 were reviewed at the manuscript level (Fig. 1). Diseases that had fewer than 10
manuscripts were excluded as they were below our threshold for synthesis. This resulted with
641 manuscripts covering 12 disease categories: AD, ALS, AMD, ataxia, dementia, DM,
epilepsy, glaucoma, HD, MS, PD, and prion disorders (Fig. 1).

To identify frequently dysregulated miRNAs spanning multiple neurodegenerative diseases, for
each of the final 641 analyzed manuscripts, we identified the profiled tissue and if the miRNA
was significantly upregulated or downregulated relative to control in neurodegenerative disease
and/or its animal model. Animal models are an important consideration for some
neurodegenerative diseases such as AMD, ataxia, dementia, glaucoma, epilepsy, HD, and prion
disorders where there are few studies investigating dysregulation of miRNA in human material.
All accepted manuscripts sorted by disease and denoting manuscripts that profiled miRNA
expression in multiple neurodegenerative diseases are presented in Supplementary File 2. Studies
incorporating miRNA overexpression or knockdown in an animal model of neurodegenerative
disease were also recorded.

Using this set of 641 manuscripts we identified 10 miRNAs that were differentially regulated in
at least 50% of the neurodegenerative diseases and/or their animal models that were also
frequently dysregulated within the individual disease categories: miR-9-5p, miR-21-5p, miR-
29a-3p, miR-29b-3p, miR-29¢c-3p, miR-124-3p, miR-132-3p, miR-146a-5p, miR-155-5p, and
miR-223-3p. We reviewed the manuscripts describing regulation of these miRNAs during
neurodegenerative diseases in greater detail and summarized the miRNA expression profiles in
Table 1. We found that miRNA expression data from the animal models did not confound the
human data, but rather supported it. To visualize the expression of these 10 miRNAs across
neurodegenerative diseases and their animal models we generated a heat map to represent
changes in expression (Fig. 2). A limitation of these studies is the small number of studies for
some miRNA in individual diseases. For example, miR-29b-3p and miR-132-3p are reported in
a single study for AMD as upregulated, resulting in a score of 1 on the heat map.

To generate hypotheses about how these 10 frequently dysregulated miRNAs may contribute to
neurodegenerative disease we thoroughly reviewed the papers and their known mechanism of
action. Figure 3 summarizes the validated targets and pathways identified by these studies,
breaking down the pathways by immune and neural components.



Upregulated miRNAs

Within the top ten miRNAs, we found the miRNAs miR-146a-5p, miR-155-5p, and miR-223-3p
to be generally upregulated across the 12 investigated diseases (“miRNA sum” > 0.5; Fig. 2)
(Table 1). Upregulation of these miRNAs across neurodegenerative disease raises the possibility
that they may contribute to common mechanisms underlying disease pathogenesis and the
possibility that they are upregulated as a response to neurodegeneration itself. Here we discuss
the known functions of these three miRNAs in more detail.

miR-155-5p

miR-155-5p is described as a master regulator of the immune response, specifically driving
myeloid cell polarization to a pro-inflammatory state ** *’. Deletion of miR-155 prolonged
survival in SOD19”** mice, prevented Experimental Autoimmune Encephalomyelitis (EAE)
induction, and attenuated microgliosis and neuronal loss in an a-synuclein-driven PD model **°.
In the PD model, miR-155-5p deletion was associated with a reduction of MHCII expression in
microglia and attenuated iNOS upregulation in response to a-synuclein®®. Improvements in the
SOD1°** and EAE models upon miR-155 deletion were associated with decreased expression
of proinflammatory cytokines interferon-y (IFN-y) and interleukin-17 (IL-17) (Fig. 3) *~°. miR-
155 deletion also causes increased expression of targets that block myeloid cell proliferation and
survival, Th17 development, oxidative stress, and blood brain barrier (BBB) permeability 53,5638
Increased miR-155-5p expression across the profiled neurodegenerative diseases, and its well-
known roles in promoting neuroinflammation raises the possibility that increased miR-155-5p
expression may exacerbate neurodegenerative disease pathology via an inflammatory
mechanism.

miR-223-3p

miR-223-3p is a well-characterized hematopoietic miRNA, regulating myeloid cell and
granulocyte differentiation, and dendritic cell activation ****. In MS and EAE, miR-223-3p
upregulation is associated with pathogenic polarization of immune cells and increased
inflammation. miR-223 -/- EAE animals possess diminished populations of pathogenic Thl and
Th17 cells, due to a larger population of myeloid-derived regulatory cells and reduced dendritic
cell activation®®. These lines of evidence suggest that upregulation of miR-223-3p within
immune components may be deleterious in neurodegenerative disease. However, early work
characterizing miR-223-3p suggest that the roles of miR-223-3p may be more nuanced since
both overexpression or deficiency of miR-223 leads to granulocyte overproduction and
widespread inflammation > ®°, miR-223-3p targets and inhibits components within the NF-xf
pathway, including TRAF6, Tabl, and Culla/b, which are part of the canonical pathway; and
IKKa, which controls both canonical and non-canonical activation of NF-kB > °. Through
suppression of the canonical NF-kB pathway, miR-223-3p expression is shown to dampen
neutrophil activation, suggesting anti-inflammatory effects °°. Conversely, miR-223-3p also
targets IKKo, an anti-inflammatory factor that may prevent spontaneous activation of



macrophages, thus promoting inflammation ®. The involvement of miR-223-3p in both the pro-
and anti-inflammatory NF-kB cascades demonstrates the divergence in its immune regulatory
roles.

In addition, miR-223-3p appears to promote neural repair and regeneration. In an animal model
of ischemia, miR-223 -/- mice showed contextual memory deficits, enhanced excitotoxicity, and
neuronal death ©’. miR-223-3p overexpression blocked these effects by targeting GluR2 and
NR2B, AMPA receptor and NMDA receptor subunits, respectively (Fig. 3). Similarly, miR-223
overexpression in the retina and optic nerve blocked the formation of EAE-driven pathological
axonal swellings, attributed to decreased excitotoxicity by reduced GluR2 and NR2B expression
% In models of regeneration, miR-223-3p is upregulated, specifically in mouse DRGs post
sciatic nerve lesion, and in the regenerating optic nerve of zebrafish 7
miR-223-3p may play a direct role in the neuronal response to injury.

. These results suggest

miR-146a-5p

miR-146a-5p is also a major regulator of the NF-kB pathway ''. The pre-miR-146a gene is
positively regulated by NF-kB transcription factor and the mature miRNA-146a-5p product
operates in a negative feedback loop by inhibiting IRAK1 and TRAF6, two upstream NF-xB
signaling components (Fig. 3) ''. This regulatory loop operates as a brake against rampant
myeloid-driven inflammation. Indeed, miR-146a -/- animals had worsened motor pathology with
a massive 10-fold increase in myeloid cell proliferation and T-cell activation caused by relief of
inhibition on IRAK1 and TRAF6 "> . miR-146a-5p targeting of IRAK1 and TRAF6 also
reduces T-cell adhesion in vitro, indicating that miR-146a-5p may impair the ability of immune
cells to cross the BBB 7*. These functions of support a model whereby upregulation of miR-
146a-5p may play a neuro-protective role in neurodegenerative disease. This is further supported
by a report that miR-146a-5p overexpression promotes remyelination of axons in the cuprizone
model of demyelination .

miR-146a-5p overexpression can also indirectly lead to the promotion of pro-inflammatory non-
canonical NF-xB signaling '°. Specifically, downregulation of TRAF6 and IRAK1 of the NF-kB
pathway by miR-146a-5p overexpression is compensated by an upregulation in IRAK2, in turn
activating myeloid cells and promoting cytokine release that perpetuates TLR-IL-1R-mediated
NF-kB activation, as shown in AD models "°. Thus, miR-146a-5p may be a protective response
to disease by limiting NF-xB signaling and promoting remyelination. However, the complexity
of the negative feedback loop between miR-146a-5p and NF-kB suggests that increased levels of
miR-146a-5p can indirectly contribute to other pro-inflammatory responses. Increased levels of
miR-146a-5p coincide with increased AD clinical scores77; and in AD mouse models, miR-146a-
5p positively correlates with clusters of activated microglia’®. In EAE, an animal model of MS,
stress-exposure that exacerbated disease also further increased miR-146a-5p expression’” 7.
Thus miR-146a-5p upregulation may have a dichotomous role with both pro-inflammatory and
anti-inflammatory responses with divergent effects in neurodegenerative disease progression.



Mixed Regulation

The remaining miRNAs, miR-9-5p, miR-21-5p, the miR-29 family, miR-124-3p, and miR-132-
3p demonstrate mixed level of expressions across tissue and animal models of the 12
investigated neurodegenerative diseases (-0.5 < “miRNA sum” < 0.5; Figure 2). Their regulation
and functions are further described below.

miR-9-5p

Many miR-9-5p functions are related to CNS development, including the proliferation and
differentiation of neural stem cells, and levels remain enriched throughout adulthood (Fig. 3) **
8182 In SOD19** mice, an ALS model, degeneration of motor neurons promotes the
proliferation and differentiation of neuronal progenitors. This effect has been proposed as a
compensatory neurogenesis response against motor neuron loss * . Elevated levels of miR-9-
5p within CNS tissue may reflect the accelerated proliferation and differentiation of progenitors
8586 " Accordingly, miR-9-5p upregulation within CNS tissue is also negatively correlated with
STATS3 activation, a factor known to inhibit neuronal cell fate *> *’. The role of miR-9-5p in
modulating neuronal fate in neurodegenerative disease is further supported by miR-9-5p
targeting transcription factor REST **. REST suppresses neural fate and promotes miR-9-5p
expression, which targets and inhibits REST expression in a negative feedback loop. This
homeostasis is disrupted in HD, contributing to disease pathogenesis **. Neurodegenerative
diseases AD, HD, MS and PD also show signs of altered neurogenesis 8992 " This raises the
interesting possibility that dysregulation of miR-9-5p and subsequent changes in neuronal
progenitor populations may be a common altered mechanism between neurodegenerative
diseases.

miR-21-5p

In animal studies modelling aspects of MS (EAE) and PD (MPTP), miR-21-5p downregulation
appeared to be neuroprotective”™ >, miR-21-5p expression is downregulated in an EAE-resistant
rat strain, and miR-21 -/- mice were resistant to EAE induction and exhibited defects in Th17
differentiation (Fig. 3) °**°. In MPTP-treated mice, miR-21-5p knockdown resulted in increased
neuronal survival **. This neuroprotective effect was mediated by increasing the expression of
the miR-21-5p target LAMP2A. LAMP2A promoted autophagy of a-synuclein, thereby limiting
pathogenic aggregation . miR-21-5p downregulation also relieved its target PPARa, a
transcription factor that promotes the expression of neuroprotective factors such as brain-derived
and glial derived neurotrophic factors (BDNF and GDNF, respectively), and limited the
expression of neuroinflammatory factors including NF-kB *°. These studies suggest that miR-21-

S5p inhibition dampens the inflammatory response and promotes neuroprotection.

Conversely, miR-21-5p was often downregulated in AD patients and animal models *"'%’. In an

animal model of AD, overexpression of miR-21-5p promoted functional recovery '*'. Likewise,
overexpression of miR-21-5p in a mouse model of glaucoma, induced by increased intraocular



pressure (IOP), prevented loss of retinal neurons ', Increased IOP in the glaucoma model is

associated with increased AB-deposition in apoptotic retinal neurons, which can be targeted to
reduce disease pathogenesis '**. Thus, in AD and glaucoma models, miR-21-5p dysregulation is
likely related to AP pathology. Ultimately, the dichotomous dysregulation of miR-21-5p points
to a complex role in neurodegenerative disease and additional research in its functional
contributions to disease would offer clarity.

miR-29 family

The miR-29 family consists of two miRNA clusters, miR-29ab1 and '**. The clusters produce
miR-29a, miR-29b and miR-29c; these miRNAs share the same seed sequences and thus the
ability to target the same genes. Animal studies suggest miR-29 is necessary for proper motor
function. miR-29ab loss-of-function shows severe motor impairment ' ', Disease modifying
treatments of both PD and MS patients resulted in miR-29a-3p upregulation relative to untreated
controls'”"®. This suggests that these disease-modifying treatments (DMTs) may aid in
restoring normal expression of miR-29a-3p. However, challenging this are experiments showing
that miR-29ab1 deletion in EAE mice led to an improvement in the EAE disease course '**. This
could be a result of a negative feedback loop formed by miR-29 and IFN-y, where IFN-y induces
pathogenic Th1 biology in EAE mice (Fig. 3) '°*''’. This falls in line with decreased miR-29-a-
3p and miR-29¢c-3p in the peripheral blood mononuclear cells (PBMCs) of MS patients
following treatment with the DMT IFN- ',

miR-124-3p

miR-124-3p expression is predominantly expressed in the CNS and most articles profiled its
dysregulation in CNS tissue (Table 1) ''2. Overexpression of miR-124-3p led to symptomatic
recovery in animal models of AD, AMD, glaucoma, HD, MS, and PD H2-120 Functionally, miR-
124-3p has been implicated in apoptotic signaling, autophagy, neurogenesis, glutamate signaling,
and immune modulation (Fig. 3). miR-124-3p overexpression in these animal models appears to
regulate these functions to limit or prevent disease pathogenesis.

In an AD model, miR-124 overexpression reduced expression of BACE1; decreased pathological
tau; restored autophagy function by reducing Bax; and restored or improved behavioural outputs
such as memory ''> ' ' In a PD animal model, miR-124-3p directly targeted and inhibited
Bim, a protein that mediates translocation of Bax to both mitochondrial and lysosomal
membranes, mediating both apoptotic and autophagic pathways, respectively '*'. Thus,
upregulation of miR-124 may inhibit apoptotic processes through inhibition of Bim and
indirectly through Bax.

In a PD model, miR-124-3p delivery to the subventricular zone by nanoparticles enhanced
neurogenesis and neural cell differentiation by targeting cell-fate proteins Sox9 and Jaggedl
(Fig. 3) ' In vitro these nanoparticles also promoted axonogenesis through modulation of the
c-Jun N-terminal kinase (JNK) pathway. Likewise, in ALS and HD mouse models, Sox9



downregulation was associated with increased miR-124-3p *> ''°. Similar to miR-9-5p, this
suggests miR-124-3p may enhance neurogenesis and differentiation of NPCs, perhaps to
compensate for neuronal loss within ALS and HD mouse models.

miR-124-3p is also suggested to limit glutamate excitotoxicity by targeting AMPA receptors
(AMPAR) (Fig. 3) "**'**. In an AD mouse model, miR-124-3p upregulation in the brain was
associated with a decrease in target PTPN1 '*2. PTPN1 inhibition lead to decreased AMPAR
membrane-insertion, resulting in AMPAR downregulation. miR-124-3p can also directly target
GluR2, an AMPAR subunit'®. This was observed in an animal model of dementia and in
demyelinated MS lesions'* '**. In dementia, miR-124-3p overexpression or GluR2 knockdown
rescued behavioural deficits; and in the lesions of human MS and in demyelinated mouse
hippocampi, increased miR-124-3p was associated with AMPAR downregulation' '**.
Remyelination of mouse hippocampus reversed these changes. These findings suggest a
neuroprotective mechanism in which miR-124-3p downregulates AMPAR to reduce glutamate

excitotoxicity in regions of demyelination.

Finally, miR-124-3p was identified to have an immunomodulatory effect both in MS and PD,
where its overexpression reduced macrophage/microglia activation to limit disease progression
(Fig. 3) "> ' In sum, overexpression of miR-124-3p appears to predominantly promote
functional repair in various animal models of neurodegenerative disease.

miR-132-3p

miR-132 and miR-212 form a cluster, where the two miRNAs have similar sequences and thus
seed regions; however, miR-132 is the major functional species in the brain '*°. miR-132-3p was
predominantly downregulated in CNS tissue (Table 1), suggesting it may be required for proper
CNS function. miR-132-3p expression is promoted by CREB — a transcription factor typically
associated with promotion of neurotrophic factors — and is downregulated by REST (Fig. 3) '*°.
Through CREB, miR-132-3p promotes neurite outgrowth, dendritic growth, and maintenance of
the circadian clock '*7'*. The importance of miR-132-3p has been demonstrated through loss-
of-function experiments. miR-132-3p deletion promotes apoptosis in neurons . AD mouse
models crossed with miR-132/212 -/- mice display worsened long-term memory, enhanced Af
burden, and increased tau pathology; where multiple genes of the tau subnetwork are miR-132-
3p targets 125 131132

EAE mice treated with anti-inflammatory agent tetrachlordodibenzo-p-dioxin (TCDD) exhibited
decreased clinical deficits and these treatment effects were lost with miR-132 loss-of-function,
thus demonstrating that miR-132-3p is involved in anti-inflammatory attenuation of EAE by
Th2-promoting TCDD ', TCDD upregulation of miR-132-3p decreases target
acetylcholinesterase, relieving hydrolysis of acetylcholine, a key suppressor of pro-inflammatory
cytokines '** ', However, like TCDD, proinflammatory FICZ also promoted miR-132-3p
upregulation'> **. miR-132-3p’s protective roles in inflammatory modulation is further



complicated by its involvement in Thl and Th17 immune cells. miR-132/212 -/- mice showed a
resistance to EAE induction, affiliated with lower frequencies of Thl and Th17 cells (Fig. 3) B34
Th1/Th17 dominant paradigms, expressing higher IL-17, IFN-y, and TNF-a levels, have elevated
miR-132-3p *>"*". These results demonstrate that miR-132-3p has context-dependent roles in

both anti-inflammatory and pro-inflammatory pathways.
Disease trends

Interestingly, global trends for the predominant miRNAs taken collectively were uncovered
within some disease categories. In the AMD, MS and prion disease categories, the predominant
miRNAs surveyed were more frequently reported to be upregulated (“Disease sum” > 0.5).
Inversely, in DM and HD disease categories the different miRNAs surveyed were predominantly
reported to be downregulated (“Disease sum” < - 0.5; Figure 2). For the remaining (7 out of 12)
disease categories, no clear global trends emerge out of the reports for the miRNAs surveyed (-
0.5 < “Disease sum” < 0.5; Figure 2). Whether this suggests anything about the pathogenesis of
the disease is unclear. It is possible that there are disease mechanisms that generally interfere
with miRNA homeostasis.



Discussion

MiRNAs are pervasive post-transcriptional regulators and their involvement in
neurodegenerative disorders is supported by a vast literature. With this systematic review of the
literature, we identified miRNAs that are commonly dysregulated across neurodegenerative
diseases. We identified miR-9-5p, miR-21-5p, the miR-29 family, miR-124-3p, miR-132-3p,
miR-146a-5p, miR-155-5p, and miR-223-3p as the miRNAs predominantly reported to be
dysregulated in 12 categories of neurodegenerative disease and related animal models (Fig.1).

One of the main findings of this review is that three miRNAs, miR-146a-5p, miR-155-5p, and
miR-223-3p, are predominantly upregulated across the neurodegenerative disease categories.
However, the other miRNAs identified as predominant in the reviewed literature are either
subject to conflicting reports within disease categories or exhibit opposing trends between
categories. We also identified directional regulation of the predominant miRNAs within diseases.
MS, prion, and AMD disease categories demonstrated a general upregulation of the predominant
miRNA species. Conversely, HD and DM demonstrated an overall downregulation of these
species. This may indicate specific disease mechanisms have overarching effects on miRNA
homeostasis. Indeed, one can speculate that HD and DM, both being trinucleotide repeat
disorders resulting in aberrant RNA and protein production and degradation, may result in
similar interference in miRNA homeostasis. However, since miRNAs are frequently studied in
isolation, there is very little known about the mechanisms behind the dysregulation of multiple
miRNAs in neurodegenerative diseases. Since the scope of this article was limited to the
predominant miRNAs across neurodegenerative diseases as well, we cannot say whether this
dysregulation is conserved when looking at the whole list of miRNAs dysregulated within a
specific disease.

We also summarized pathways known to be targeted by the miRNAs commonly dysregulated in
neurodegenerative diseases (Fig. 4). There lies important functional overlap between these
miRNAs in regulating differing cellular pathways with multiple miRNAs often converging on
the same pathways. Pathways targeted by multiple miRNAs include AP genesis, regulation of
AMPAR subunits, autophagy homeostasis, apoptosis, microglial activation, NF-kB signaling,
BBB maintenance, and neurogenesis. The largest shared convergence occurs with AP genesis,
where miR-146a-5p, the miR-29 family, miR-124-3p, and miR-9-5p all limit AP genesis. miR-9-
5p, miR-124-3p, miR-29a-3p, miR-29b-3p, and miR-29c-3p target BACEI. Target site
cooperation is a fundamental characteristic of miRNA-mediated silencing suggesting these
miRNAs are likely to be functioning synergistically to facilitate repression of their shared
targets "> '*°. We also see miRNAs converging on the same pathways but with alternate outputs.
For example, miR-29 family members, miR-223-3p, miR-155-5p, and miR-132-3p all regulate T
cell activation and proliferation. However, while miR-223-3p and miR-155-5p promote a
Th1/Th17 profile, the miR-29 family inhibits Th1 promotion by blocking IFN-y signaling. miR-
132-3p promotes or blocks development of a Th1/Th17 inflammatory milieu depending on the
stimuli. We suggest that these miRNAs likely function cooperatively to directly repress



individual targets, as well as indirectly by targeting different mRNAs from within the same
pathways.

In summarizing the known functions of these predominant miRNAs, we identified roles for each
miRNA in regulating distinct neuronal and immune aspects of disease. A major pathway
intersecting both immune system regulation and the CNS was the NF-xB pathway (Fig. 4). miR-
146a-5p and miR-223-3p targeted multiple components of this pathway regulating both pro-
inflammatory and anti-inflammatory responses'*” '*!. However, the other predominant miRNAs
could contribute indirectly by regulating promoters of NF-kB signaling such as AP, excess
glutamate, and inflammatory cytokines'*'. Non-canonical NF-kB signaling in microglia mediates
the production of more inflammatory cytokines and neurotoxic molecules such as glutamate and
ROS, which only feeds back into pathological microglial activation'*" '**. Microglia represent
the innate immune cells of the CNS contributing to both defence and maintenance of the CNS
' We identified miR-9-5p, miR-124-3p, miR-132-3p, miR-155-5p, and miR-223-3p as
regulators of microglial activation. Our systematic review thus complements previous reports of
miR-9-5p, miR-124-3p, miR-132-3p, miR-146a-5p, and miR-155-5p as “NeurimmiRs”, which
are defined as gatekeepers of both the nervous and immune system '**. We suggest that miR-21-
5p, the miR-29 family, and miR-223-3p to be similarly considered NeurimmiRs as they also
simultaneously modulate immune cell activation and neuronal function. Many of the
predominant miRNAs also were involved in T-cell differentiation and activation further
emphasizing their immune roles. Overall these results suggest there is a robust immune response
during neurodegenerative disease that may be underestimated in the literature.

In summary, we identified trending miRNAs across neurodegenerative disease. We noted
overlapping functions for these miRNAs, suggesting that they work in concert across the
diseases. We also noted a strong role for each miRNA in both the neuronal and immune
compartments during disease. There are many ways to parse miRNA dysregulation within and
across neurodegenerative diseases. By conducting a systematic review of articles discussing
miRNA dysregulation in neurodegenerative disease, we have made available a wealth of
information to be further exploited in the interest of identifying miRNA dysregulation within or
across neurodegenerative disease (Supplementary File 2). Our analysis supports the hypothesis
that the identification and future characterization of miRNAs involved in pathological
mechanisms common to multiple neurodegenerative diseases may help improve our
understanding of commonalities in disease pathogenesis and may aid in novel hypotheses
relating to cross cutting DMTs.
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Figure 1. PRISMA flowchart of the systematically reviewed manuscripts with differential miRNA expression
in neurodegenerative disease and their animal models. Initial library searches identified 6421 articles. Accepted
papers were categorized based on the neurodegenerative disease, and disease categories with less than 10 results
were excluded from the review. Diseases marked with # indicates shared papers between assessed diseases.
Supplementary File 2 contains all accepted manuscripts.
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