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INTRODUCTION,

Graphite is perhaps the most unique of all solids. It
has long been known that graphite possesses a layer structure.
Within a layer the carbon atoms are arranged in a continuous
hexagonal array, each atom having three nearest neighbors at
a distance of 1l.h42 AO. The distance between adjacent layers,
on the other hand, is 3.3/ A°, The interaction between the
layers is thus very weak, a fact which results in large an-
isotropies in the properties of graphite. Thus the magnetic
susceptibilities parallel and perpendicular to the graphite
planes differ by a factor of 40, and the electrical conduc-
tivities in these directions differ by a factor of 104- 105.
This large anisotropy is however not the only peculiarity of
graphite. 1If the electronic band structure is investigated
in the tight binding approximation, one finds that to a first
approximation the valence and conduction bands just touch in
graphite. Because of this result, graphite has sometimes
been referred to as a '"zero-gap semi-conductor". More detailed
investigations seem to indilcate that in fact the valence and
conduction bands overlap slightly, and that the Fermi surface
does not lie exactly at the lowest point of the conduction
band. YThus a certain number of free electrons are present
even at very low temperatures, and graphite should be more
properly referred to as a metal.

The lamellar structure of graphite may be used as the




basis for approximations in a theoretical treatment of the
electronic band structure. Yor the theoreticians, the struc-
ture of graphite is therefore a simplifying feature. Unfor-
tunately, the same is not true for the experimentalists. On
the contrary, the extreme anisotropy makes the experiments
very difficult. Furthermore, the peculiar band structure
makes most of the properties very sensitive to impurity con-
centration. The wide variety of results wihich has been re-
ported for the various properties of graphite is probably
due to these two complicating features.

In the present study of graphite, an attempt is made to
correlate the various effects which are observed in external
electric and magnetic fields. We shall investigate the
magnetic susceptibility, the de Haas-Van Alphen effect, the
ratio of the principal electrical conductivities, the zero-
field Hall effect and the low-field magneto-resistance in
order to establish whether all these effecis can be explained
by The same model. We will be led to the conclusion that a
model of graphite based on an excess number of free electrons
and a small inter-planar interaction is in good agreement
with experiment. Perhaps the most striking feature of this
new model of graphite is its simplicity. The model, which is
based on the tight binding approximation, incorporates only
three independent parameters: 8; , the nearest "in-plane"
exchange integral; 'K] , the nearest "out-of-plane" exchange

integral; and C:; , the position of the rermi level at
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absolute zero of temperature.

Several attempts have been made to explain the diamag-
netic susceptibility of graphite (1-3). Most of these cal-
culations are based on the Landau-Peierls formula (4,5) which
predicts a susceptibility much smaller than the observed
susceptibility (2). The failure of the Landau-Peierls formula
has been attributed by Adams (6) to the fact that it neglects
band-to-band transitions. These transitions become important
whenever there are two or more bands in the conduction band
region. In graphite, where the conduction and valence bands
touch to first approximation, the band-to-band transition
terms must be expected to be important. MNeClure (3) has
extended previous investizations by taking these terms into
account. Using the equations of Luttinger and Kohn (7) and
the two-dimensional band structure of Wallaceﬁ (8), he has
succeeded in solving the equations for the energy relation
in the presence of an external magnetic field. HMecClure's
work presents a very satisfactory explanation of the diamag-
netic susceptibility of grapnite at high temperatures. It
will be seen that a two-dimensional model is also capable
of explaining the average value of the susceptibility at low
temperatures and the average period of the fluctuations in
the de Haas-Van Alphen effect.

The observed average low temperature susceptibility of

& Lhis paver will hereafter be referred to as A.




-30 x 10-6 emu/gm (1) requires the Fermi Surface at low temp-
eratures to lie about .06 ev from the degeneracy corner, while
the observed average period in the de Haas-Van Alphen effect
fluctuations ($,10) of 2.15 x 10'5 gauss'l requires C;o , the
zero temperature Fermi level to lie at about .065 ev. Ve
shall sece that this rather large value of C;o does not imply
that the high temperature susceptibility becomes vanishingly
small, as McClure supposed. The apparent discrevancy is re-
conciled by taking into account the shift of the Fermi level
wita temperature.

We shall see that if a three-dimensional model of graphite
is considered, it is still possible to obtain the energy
spectrum in the presence of an external magnetic field. When
the high temperature suscentibility is calculated from this
three-dimensional model, we will be led to the conclusion
that the inter-layer interaction is much weaker than was pre-
viously supposed (8,11). If we are going to retain any sus-
ceptibility at all, we require X] , the nearest "out-of-plane"
exchange integral, :E .01 ev. <Lhus we shall find that graphite
is essentially two-dimensional in structure. An independent
rough estimate of }ﬂ can be obtained from the de Haas-Van
Alphen effect if one uses the semi-classical (Boar-Sommerfeld)
approximation (12). In this approximation, the two periods
of the de Haas-Van Alphen effect (9,10) determine boﬂlc;oand

¥, . A simple calculation based on the results of Lifschitz

and Kosevich (12) yields QON.Obb’ ev; X‘ ~ 005 ev.
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Since C;o , the Fermi level at very low temperatures,
now lies a considerable distance within the conduction band,
the question of the orizin of these eicess electrons arises.
A tight binding calculation of the energy band structure
reveals that for an infinite crystal there are just enough
states in the valence band to account for all the electrons
in the crystal; that is, one finds that the Fermi level lies
exactly at the degeneracy point between the valence and the
conduction bands. Where then are the extra electrons coming
from* Impurities are of course a possible source. However,
one could nardly expect any regularity from crystal to crystal
if this were the main factor. irurthermore, it would require
a large amount of impurity to shift the Fermi level .06 ev
in graphite. Mrozowski (13) was the first to investigate
this peculiar state of affairs in graphite. By studying the
resistivities of coked graphite over a wide temperature range,
he came to the conclusion that the major source of the free
electrons was not the impurities, but graphite itself. Let
us consider an actual (finite) crystal. The carbon atoms
near the surface of this crystal are unable to form proper
valence bonds, because there are not sufficient neighboring
atoms. If proper valence bonds were possible, the electrons
forming these bonds would have tTheir energy 1owered.through
bonding. Thus, the electrons on these surface atoms have
energies higher than the energies of the electrons in the

valence band. The surface electrons may thus have energies




which lie in the conduction band. Supposedly, it would take
very little energy to free such an electron completely, so
that it would become a conduction electron.

Our choice of Fermi surface is thus qualitatively explained
by lkrozowszii's surface bonds. Quantitatively, agreement is
also good. Using the expression for the density of states
near the degeneracy corner given in A, it is easily shown
that CZOFV.Oé ev implies that there are approximately 10'3free
electrons per atom. irozowski estimates that there are 10-2
to 10'3 free electrons per carbon atom from the thermo-
electric power of carbon.

Finally, the above explanation of the origin of the
excess electrons implies of course, a size effect. Generally,
larger crystals will have fewer excess electrons per atomn,
and hence a Fermi energy lower than that of smaller crystals.
Such an effect could however be masked by other secondary
effects, such as a change in the mean free path with crystallite
size (cf. lirozowski).

In order to test our exvlanation of the susceptibility
and of the de Haas-Van Alpnen effect, it will be desirable
to investigate the consequences of our small value of 8: and
large value of C;o on other properties of graphite. Unfor-
tunately, the usual difficulties with the relaxation time
prevent one from doing this satisfactorily. However, it
should still be possible to decide whethner a compatible ex-

planation is possible, or whether a completely different




choice of parameters is required for eacn effect. Using
standard formulae for the electrical conductivities, the
i1all coefficient and thne transverse magneto-resistance, it
will be saownr that satisfactory agreement is obtained with
the following choice of parameters:
%
L1
Go

nearest "in-plane"” neighbor exchange integral~v-2,5 ev.

nearest "out-of-plane' neighbor exchange integralas.005 ev,

Fermi level at zero temperature ~ .06 ev.

Section I deals with the derivation of a set of coupled
equations, which upon solution yield the energy spectrum of
the electrons whose energies are near the rermi energy. The
results of this section are not restricted to graphite, but
apply to any substance for which the approximations that are
made are justified. In section 1I, the equations obtained in
section 1 are solved in the case of graphite, for a two-
dimensional as well as for a three-dimensional model. It is
shown that the results in the two-dimensional case agree with
the results of iicClure (3), and that the three-dimensional
model predicts a spectrum wnlch approaches tilat obtained from
a two-dimensional calculation as X\—#CL In section IIL it
is shown that tne inter-planar interaction must necessarily
be very smzll if one wants to retain agreement with the ob-
served susceptibility at high temperatures. Section IV deals
with the temperature variation of the Fermi level. This
variation is of utmost.importance in the case of graphite.

We shall see that it is essentially this saift of the Fermi
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level which is responsible for tine observed variation of the
susceptibility with temperature. In section VI the suscepti-
1

bility and the de ilaas-Van Alphen effect are calculated. The

result is compared with that obtained from a semi-classical
treatment and an interesting difference between the two
approaches is noted. The ratio of the two vrincipal elect-

rical conductivities is calculated in section VI1, We shall
Sn
oL
narameters, in fair agreement with the experimental results

see that the ratio becomes about 105 with our choice of
of Krishnan and Ganguli (1k) and of Dutta (15). Lower values
for this ratio have also been reported, for example by Primek
and Fuchs (16). It is felt however, that the largest reported
experimental value should be chosen for comparison with theory,
since any slight misalignment during an eXperiment would
greatly reduce tihis ratio. Yhe zero field Hall coefficient

is calculated in section VILi, At low temperatures, where

the difficulties due to the relaxation time are least severe,
agreement with experiment is excellent. At higher temperatures,
the calculation becomes doubtful because of The simplifying
assumptions about the relaxation time, and the experiments
become difficult to interpret. Finally, section IX deals

with the low fleld, transverse magneto-resistance. At low
temperatures, the mean free path cancels out of the expressions
for the ratio of the conductivities and for the iall effect,

if one assumes that the relaxation time T depends on.z

only through the energy. This is not true in the expression
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for the transverse magneto-resistance. In ract,’%s-is Just
pronortional to 1:2. Comparison with experiment yields a
value for tae relaxation time T , whicn can be compared witn
the results of cyclotron reso:iance. Agreement witih eiveriment
is again satisfactory.

puamarizing, we snall find that a wodel of graphite
based on excess electrons and a small inter-plenar interaction
is in good agreenent with experiment. <The value of the 'in-
plane' exchange integral X; is deteriiined most directly by
tne high temperature susceptibility. whe position of the
rerni surface may be determined independently from each of
the following effects:

1. <Yhe mean period in the de Haas-Van Alpnen effect.

2. The average steady low temverature suscentibility.

3. The low tempercture, zero field Hall effect.

L, ‘Yhe transversec magneto-resistance (only indirectly).
On the other hand, the smallness of the inter-planar eichange
integral follows iandependently Ifrom:

l. <Yhe aigh temperature susceptibility.

2. “The two neriods in the de Haas-Van Alpnen effect.

3. 4Yhe ratio of the electrical conductivities.

L., 'The traaisverse magneto-resistance (only indirectly).
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L. TKEE MOTION OF ELECTRONS IN A PERTUR3ED LATTiCE.

In reference A, the band structure of graphite was de-
rived in the tight binding approximation. ©Such a calculation
is always based on the assumption of a perfectly periodic
lattice and a perfectly periodic potential in which the elec-
trons move. We shall now be interested in what happens to
these electrons when the periodicity of this potential is
perturbed, for example through the application of an exter-
nally applied electric or magnetic field. Luttinger and Kohn
(7) have developed a general theory of the motion of electrons
and holes in perturbed neriodic potentiels. Their equations
form the basis of #cClure's calculation of the diamagnetism
of graphite (3). McClure's equations (2.7a and 2.7b) are a
special case of Luttinger and nonn's equations after certain
terms are neglected. ‘the approximations involved are based
on the following two simplifying features:

a) iear the degeneracy point of the valence and conduction
bands in graphite the E(Z) relation has the form Ea:)v<ﬁi
and not EKESAJ an, which is the more usual form valid
near the minimum of a band. This allows one to neglect
terms quadratic in o for éll energies of interest.

b) In graphite, the susceptibility with the magnetic field
parallel to the crystallograpnic c-axis is about 40 times
larger than the ion core susceptibility. Hence one is
justified in neglecting any terms which lead to a sus-

ceptibility of the order of the ion core susceptibility



in the calculation of this quantity.

In extending the work of MeClure, we shall also make use
of the fact that the susceptibility we wish to calculate is
much larger than the ion core susceptibility. This allows
oite to dérive an approximate set of equations, which upon
solution yield the energy svectrum in the presence of an applied
magnetic field. This approach has two advantages to recommend
it vhenever it is possible. <The derivation shows quite clearly
that the approximation corresponds to neglecting terms of
the order of the ion core susceptibility, and the derivation
results in a simple prescription whicn tells one now the
equations are to be written down from the results of a tight
binding calculation, such as that in A.

Tne derivation of these simplified equations will be
cafried through using Lowdin functions (1Y) and is thus carried
out witain the tight binding formalism, although one could
generalize tnis approach. <the prool given here parallels
closely Luttinger's derivation of the "perturbed lattice
equation (1v).

Let us for the present assume that we need to consider
only one band if we wish to study the effect oi tne perturbation.
This case would arise if our crystal had only one atom per
unit cell and only one atomic orbital per atom. An actual
crystal will in general have several bands, but it may still

happen that the particular band of interest contains only
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electrons whose energies are far different from the energies
of' electrons in any other band. In such a case we expect that
it is virtually impossible for an electron in the chosen band
to jumd to any other band, so that we are justified in ignor-
ing the presence of these other bands.

If band-to-band transitions can be neglected and if in
addition the applied perturbation is slowly varying (i.e. if
the perturbation changes only slightly over the dimensions
of one unit cell), then Luttinger's perturbed lattice equation

applies. <This equation may be written

[Eo(-ig—%z)+U(F)]c(?’) = £ c(¥) (1.1)

when the perturbation is due to an electric and a magnetic

—
field. iere, A is the vector potential for the magnetic

B - - —
field H, and for an electric field U(r) = elP(r). Ey (k)
is the energy in the absence of any perturbation and

- e iy . —»
E,(-1iV -iii'A) is the same function with the argument k re-

~ -

placed by -iWV -é%a-ﬂ. In what follows we shall always use
the Landau gauge for the magnetic vector potential, that is
we shall take: Ay = -yH; Ay = A, = 0,

It may sometimes be convenient to transform equation (1.1)

by defining: .
ker L . |
c(¥) = fe d(®) 8k (1.2)

UR)= 7, (™ U@ ae (1.3)




Using the relation

w2 T
\kn\" iKep

i3 ey il o ~Elk s>
Epl-as).(ﬁ-s,,-‘%’-l%]e = [k,—(sbky)kylkz]e (1.4)

equation (1l.1) may be rewritten as:

. - Ny O T V. T T ,
E—.[kx-as%y)khkz]d(k)+fu(k—k)d(k WK = EdRY  .5)

o]
where s =f§ﬂ-.
te

Ihis equation may sometimes be more convenient from the
point of view of solution.

We now turn to the generalization of equations (1.1)
and (1.5) in the case when one is no longer justified in
neglecting band-to-band transitions. For simpiicity, we shall
only treat the case where two bands need to be considered.
Furthermore, we shall assume that these two bands are due to
the fact that there are two atoms per unit cell in our crystal,
and that we are still justified in using just one orbital
per atom. <The results will then be directly applicable to
two-dimensional graphite, if we restrict our f{reatment to
the pZ—bands. The above simplification is only made to avoid
notational difficulties. We shall see that the generalization
to the case of n atoms per unit cell and m orbitals per atom
is a trivial one,

Let us define:

ES“F; A%
U = Sfxtoc ij ac - SU 80(@ (1.6)

Here & and p label the two different atoms in the unit
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cell, and i and J label the ith and jth unit cell in the
crystal. Yhe )( ‘s are atomic orbitals centered on the appro-
priate atoms. Thus )(hx is an atomic orbital centered on the
X th atom in the ith unit cell. Equation (1.6) could also

be written:

=< *
( ! + 5)-_0 = J.\X"O( X‘ d’t‘ (lo 7)
1) ¥ e
1t is easily checked that the functions defined by
~/p BX

LP;X = %g XJX( |+S)3‘ (1.6)

obey

I
Pier Piod™ = 6584 (1.9)

provided the expansion of the matrix (1 + S)E%oqsin powers
af S;i.is convergent., We also note that S;l is not really
a fourth order tensor but simply a matrix. However, 1t 1is
more convenient to label the atoms in the indicated manner.

o

» p
The matrix Sij has the property that:

o
é;? = S?i #é Sf?(or Sg??

Let us first consider the case of a perturbation other
than a magnetic field., The latter case requires special
treatment and will be considered later. We now denote the
two atoms in the unit cell by 1 and 2. The Lowdin function
centered on atom number 1 in the unit cell labelled by the

-

" - #q [} .
lattice vector Rj is denoted by \fy ; —‘fl(r-Rj). Similarly,

b
the Lowdin function centered on atom number 2 in the same

- -
cell is denoted by %?23 = %Dz(r—Rj). following the tight
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binding procedure we now construct an approximate Bloch func-

tion for our problem by taking

V=AM, + 0, (1.10)

where
—,

=§e‘k.%"f)\j 5 Ze iy

and fKi and !Xz are constants to be determined. The re-

@4

]

lation (1.10) is now substituted into the Schrodinger equation

HoW = E¥ (1.11)

liere Hy is the one-particle Hamiltonian operator in the ab-

sence of any perturbation. We now multiply (1.11) alternately
* *

through from the left by \Vl and by \, and integrate all

—
resulting terms over r. The two resulting equations can be

written:
-y — e
. ikeR,  — kR .
X%e bX"(RS) +X2Ze %, (R = \E, (1.12a)
S

)\';ek ® (Q)+>\226 sxzﬂ( ) >\;Eo (1.12Db)

vvhere:

L CARS (DGR ATRCPS

By virtue of the orthogonality of the Lowdin functions we

also have:
H WP =%l‘ ¥,( RJ"RQ)‘-PM + % x,_, (Rj"R,_)LPzL (1.13a)
Ho gy = %‘6,2( R;-R) P, + 2.%, (Ri=R)o,, (1.13b)
7 R,
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These relations are easily verified by multiplying them through
by Lﬂ:%~and integrating over r.

We now introduce the perturbation U(F). Lhe expansion
of Y and VY, in terus of Lowdin functions is still possible
in the presence of tne perturbation, but the phase factors
are now replaced by arbitrary coefficients, which are to be

determined. We thus take:

VY, = ZR_- C.(E{)LP.; (1.14a)
Y, = %czkéz)\% (1.14Db)
J

and ky = Y+ Y, (l.1kc)
{
it 1s no longer necessary to include the constants )\ and

A

» » since these may be incorporated in cq andc,respectively.

Let us now operate with the total Hamiltonian operator H on

the function \\J .

H\v = (Ho+u)~y = By (1.15)

1t is shown in Appendix 1, that the resulting set of coupled

equations for the coefficients cq and cp are:

H, (@)@ +H ) (D) + WD (F) = Ec(¥)  (1.16a)

H, iv)e, (@) +H; 7)o (F) + UF) e, l¥) = Ec,(F)  (1.16D)

wnere: 'fﬁ’s
o - IR
H (k) = 11

(Re (1.17)
@ - e ) 7
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Suppose that we need to take into account one band only.

Then ¢, = 0, and the equations (i.16a) and (1.16b) reduce to:

[ HER) + U@ e () = Ec@®
and since
bu d :k~‘. - ;-
H; (k) =§ AR E.(K)
S
this is exactly Luttinger's result in the absence of a magnetic
field B (cf. equation 1.1).

Again, 1t may be more convenient to replace equations

(1.16a) and (1.16b) by their Fourier transforms. Defining

e, (F) = [T d@®) % (m = 1,2)

and -3, _;Ej:

Uk) = (em)le U d

it is easily shown that the generalization of equation (1.5)

becomes:
HS (R) o, (R)+ HE (D), (8) « [UR-RI 4, (R)dN = E () (1.180)

Edy(®) (1.1050)

H2 (R (4 HE () ()4 [UR-RV e (a2’

In this form our results are easily compared with a tight
binding calculation such as the one in A, Suppose that the
perturbation U(?) ~» 0. Then equations (1.18a) and (1,1ub)
reduce to a set of algebraic equations. The condition for
a non-trivial solution (dy,d;) is then simply:

Hy - B iy, = 0

21 HSo- E
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-
this 1s exactly the secular equation which determines the E(k)
relation in the absence of a perturbation.
We nowv turn to the case of an external magnhetic field.
We shall follow the derivation given by Luttinger (lu). How-
ever, as in the previous case, we shall generalize this de-
rivation by taking‘into account two bands. Wherever it is
possible, we sihall use tne notation emnloyed in reference (13).
In the previous derivation we chose:

Y -_-'% c,(R;) P + Z ACS! s (1.14)
J J

R

this form of \P is no longer suitable for the magnetic field

case, because of the A:.p term in the ilamiltoaian operator.

We shall see that we can approximately remove this term from

the Hamiltonian by replacing (1.14) by

Eexol L6y (B exol &G .-
\\/ .-_-% ci(R_;)exPl“Cfr,Akpu +Z‘a—_jc2(RJ)exp{kcGQALPZJ (1.19)
where: r
G‘x:& = A(P’)o‘\"

o el 9"
is the position vector of the o{th atom in the jth

Here, R°d
unit cell, and the integral is taken along the straight line
-t

S
path from R’ﬁ to r. <The exponential terms essentially re-
center the magnetic potential for each atom, so that this

potential never becomes infinitely large at any atomic site.

The factors G°6 can be represented parametrically:
{

Go(j = L(F’ .§-(j>' A[E«J +>\(»"':§qu] dA (1.20)



We now proceed to evaluate }i*/ . The .damiltonian operator

H has the form:

H= (8- XY+ V() (1.21)

-’
where V(r) is the periodic lattice potential. “hus:

H\‘j = ZC. (2 )H exph;c ‘JX(PU + Z C (3 )HQ*P e GZ_\]LPQJ

—Z c (& )exp[FcG.Atm[p— E(A VG,)1+\/}LQU
+Zc @eselie G5 [B-2(A-Ta )+ V g <122

in Appendix 1 of reference (lo), Y]Gj is computed. For a
constant magnetic field one finds:
e

VG = Al¥) +3 (v- 5«3)><H (1.23)

Substituting (1.23) into (1.22), we see that we have accom-
- o
plished our aim of removing the A+p term. Hence:

Hk}l = % c.(R_;)exps_hcG.j]-{a';;‘\_P+§("-R.j)x§-] + V} P
; 2
- ie - H . -
+ %CZ(RJ‘)exP[RGQS] [ S (\"‘— 2;))(-;-1 +V}L?2_‘ (1.24)
The localization of &?i_\" and k{)zj allows us to put T~ -1?1 . and

J
=g
T A R23 in the operators which act on KQG andtfzg respectively,

provided i is not too rapidly varying. We then find:
V — .‘*- S-% -‘ -
H“P % CI(?J)Q"P[’RCG‘S} Ho“?q
B Tie ‘
+ % Ca (RS)e’(Pl_Fc G‘zj__\ Ho LPzi
3
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This procedure still leaves us with an expression which in-
volves two different phases, due to the terms Glj and ng.
Although it is possible to carry the calculation through in
this case, a considerapvle simplification results under certain
conditions.

Suppose that we ignored the phase changes betwcen the
two atoms in a unit cell and replaced theil by an average phase.

That is, suppose that we put Glj = sz = G Then, since our

jo
(22
Lowdin functions (Pﬁ and t{% are centered at different points

in the jth cell, the localization of these functions would
—-b

no longer cause tneVG‘s terms to vanish in (1.24). Instead,

these terms are now
%(F-P‘})xﬁ
and we are replacing'; by §zj or §Ej, devending on whether
the operator acts on \Pd or qgi . Let us choose the origin
of tae jtn unit cell (given by E}) to be halfway between

the two atoms. In this case, our equation becomes:
. . 2 .
— . - .\_e_ . .,,‘_. 3y _.x). ~3 .

where r12 = RlJ - AZJ in granalte, for example, rqp is l. 4247

—

We would liize To neglect the rla Z H terms in the above

operators. Let us estimate the error involved in this approxi-

mation, ®©ince we are primarily interested in a calculation

of the susceptibility, we see that we are neglecting 4% teras



2]

in the energy which are of the order of

A _¥ ~.
02.
8n\c1 ]

“Yhese terms thus lead to a contribution to the suscevntibility

which is of the order of the ion core susceptipbility. When-
ever the electronic susceptibility is mucn larger than the
ion core contribution, one may neglect the variation of the

phase terms witnin one unit cell and write:
= (2 le .
Ry = % c_|(R_;)exP[-RCGtJ1 Ho @
)
(E)a Tl
-+ ZR:(_2(QJ)&)(P‘_-RCGA HOKP'ZS (1.25)
1]

Substituting (1.13a) and (1.13b) into (1.25) we find:

M= 7 e @ee S a4 E-Rer 0 F B

Ja !.
+Z c (R)exp[m._G&{‘(z(ﬁj—a\npmq;xzz(é’j--'@«(:u} (1.26)
Ry Ry

The resulting equations for ¢ and 02 are derived in Appendix

II. Yhese equations may be written:

Hy -iv-2A) ¢ (V) + Ho (-7 R, (P = Eq(®  .2/2)

o (FiT-2R) G (F) + HY, CiF-2A), () = Ec,(¥) .2/)
Defining
(M) = (e B, (W) d®k (W= 1,2)

the Fourier transiorms of equations (l.2va) and (1.2/b)

become (for tae shecial case oi the Landau cauge):




H (ky- isbky,kv)k VB, +H? (k,- 's*ok k, k)8, = EB, (1.26a)
HZ, (e ._,fk k,, kz) Bt 142, (k -\sbk,k k.)B, = EB,  (1.20b)
lhese equations Torm the basis of our calculation of the
susceptibility. iote, that as s -gﬁ%-—>0, the equations
again become algebraic, and the condition for a non-trivial
solution is the samec as that given earlier.
The generalization of these results to the case of an
m-fold degeneracy 1s straigntiorwvard. In that case one will
obtain a set of m coupled eguations of the same type as the

equations we have considered here.
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1Ii. THE EXERGY SPECTRUI Ii TIIE PRESE:CE 0F A HAGHETIC FIELD,

In this section, we shall be interested in the solution

of equations (l.28a) and (1.28b) in the case of two-dimensional
graphite. We shall also extend the treatment of section I,

so that tne tineory may be applied to three-dimensional graphite.
In both cases, we snall be interested in calculating the mag-
netic susceptibilitly of graphite when the magnetic field‘i?

is applied along the crystallograpnic c-axis; taat is, per-
vendicular to the graphite layers. In this case the observed
susceptibility is much larcer than the ion core contribution,

so that our approximations will be valid. The susceptibility

perpendicular to the c-axis turns out to be of the order of
the ion core contribution, so that the gquantity we shall be
calculating is essentially the difference between these two
susceptibilities, X""'XJ_'-}-’ )C“ .

Section 1 resulted in a simple prescription, which tells
one how the set of coupled equations, which yileld the energy
spectrun in the presence of a magnetic field, are to be written
down. One simpiy taites the secular deterininant which deter-
mines the E(E) relation in the absence of the magnetic field,
and makXes the elements of this determinant operators by re-

U - er
placing kK, by Kx-lsiﬁzy (s EZE:? ). ‘Yhe elements of the
resulting matrix operator are to be taken in the sense of an

-y
¥Xpansion, and tne operator acts on a column vector ﬁi(k),

whose dimensionality is the multiplicity of the degeneracy

in question.




—oly

Let us first consider the case of two-dimensional graphite.
The secular equation in the two-dimensional approzimation is
given in a4 as:
Hjp - B Mo
Hy) Hy, - B

wnere:
.

Hyg = H3¥ = ro[exp('i%g +2 cos(“5* Jexp( ‘zkv’fﬂ
Hi= M= E, 2% cos(k)a)+2 cos (K528 cos (<32} |

The notation here is the same as that used in A except that

——tpe
our k's are defined differently by a factor of 2TC.
We now expand these elements to lowest order about the

degeneracy corner. Introducing:

27C

k;{= l{%"‘ kX l{% = E a
= xC c o 2T
lcy- }cy+ '{y ky " 3a

we find:

~N /
11 7 Hep ® St 3%

J_qua[k-wk] =hve3{ky4hﬂ

H

Lt
~lz
The notation'ﬁ\/==%§xba was first introduced by McClure (3)
and will be used throughnout this thesis. Furthermore, we
shall from here on measure energy from the degeneracy corner;
that is, we shall put Hyj = Hop = O.
-

Thus, in tne absence of a magnetic field H along the c-axis,

the energy spectrum in the vicinity of the degeneracy point is:




_25-

- A
E(k) ='-"-'F\v[k:+k§.1yz = hvK

Let us now apply a magnetic field along tae z-direction (the
c-axis in graphite). IYFollowing our prescription, our set of

coupled equations is:

-E 'h\/es [k S)’k-_\ B,

hveBEk +|kx+s£k -E B2
ors
fives [k sbk—lB = EB,
T\véu[k +ik +SBR-XB = EB,

these equations are completely equivalent to McClure's
equations (2.va) and (2.Y/b). the solution for 3,, B, and
the allowed enerzies E 1s given by icClure (3). The predicted

energy spectrum near the degeneracy point is:

= thv(2ne)? = + 17 (ns)?

It should be pointed out that the secular determinant used
here neglects overlap. This is clearly eculvalent to assuming
that the Lowdin functions are simply atoiiic orbifals and not
comvinations of atowic orbitals centered on different atoms.
Coulson and Yaylor (11) have estimated the various overlap
integrals for pZ-orbitals in graphite, and have saown that
only nearest neighbor overlaps are important. If this overlap,

vhich we shall call @ , 1s considered, it is easily shown




that the above energy spectrum is replaced by:
= )
_Es = £ 3 (ng)?
kA .

Coulson and Yaylor (11) estimate that 0 2¢ .25. osince we
are interested in energies near the degeneracy corner, 0 & ES-CO,
and since ¥, 2.6 ev, it is clear that overlap contributions
are completely unimportant. It may similarly be verified
that inclusion of second-neigiabor exchange integrals has no
appreciable efrect in the region of E:space wnich is of interest,
namely, near the corners of tae Brillouin zone.

Let us now extend this treatment to three dimensions.
We shall consider only nearest neignbor excnange integrals
in tne plane and nearest out-of-plane eXchange integrals.
Second-nearest in-plane exchange intesgrals again turn out to
be unimportant. %The introduction of the out-of-plane inter-
action, on the other nand, changes tne energy svectrum com-
pletely, since it is tais term whicn introduces toe kz-depen—
dence into the problem. TYhis kz-dependence will have the
effect of spreading the snarp energy levels oi the two-
dimensional calculation.

Under these assumgotions, the secular equation for three-

dimensional grapnite is (cf'. reference A):

H - -¥.S ¥ o
=0 (2.1)
¥, O  HeE -¥%5"
0 o ~-¥,S HsE
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The notation here is again the same as that in A, except for
the slizhtly different definition of —Z We shall measure the
energy from the point where botn S and T are zero; that is,
from the corner of the sBrillouin zone at the points k, = ifg% .

Again, we shall expand S about the corner of the zone and

“ ) . b i 3
replace k., by KX_lSSE; . The resulting set of coupled

equations is:

ﬁD— B, + xBa = €B, (2.2a)
g p'e, = €8, (2.2b)
<B, +§'D+B4 = €8, . (2.2¢)
RD B, = €B, (2.2d)
winere: (x:%\g _ i_x‘ @s<%
e=f; 8 - e
D'= ky+i[kx-is%§y1
D™= ky~ilkx-Ts3-1
The substitution By = bm-exp(:usg&*-), (m=1,2,3,4), results

in a considerable simplification. The set of equations satis-

fied by the Dby's is:

B b, + «b, =¢eb, (2.3a)
g0, = eb, | (2.3D)
xb, +(3"ﬂb4 = ebg (2.3¢)
B b, = eb, ) (2.3d)




In equations (2.3a) to (2.3d), the following notation haé been

used:

+ 3
Q = ky"r‘S'S—-‘ky

-~ i _c 0

Eliminating by, by, and by, the equation for by becomes:

[(n‘}{— &) rLat-<?)- ezazlbi =0 (2.%)
sut
2
Ofa" = -s22 2+ kZas
>k Y
and -t 2 .
No = - 2%—-\:3; +k¢‘5
Putting L =‘S§£;;rk§-e2 , (2.4) becomes:
b
(Lz-%)b, =0 (2.5)
wihere:

N gty €22

Consider now:
(L+N)X =0 and (L——)\\x{) =0

Dotih of these equations can be put into standard harmonic
oscillator form. Clearly, since by ='X+kP is a solution
of equation (2.9), and since by ='X+-q7 involves four arbit-
rary constants, this is in fact the general solution of
equation (2.5). Care must be taien, however, when the boundary
conditions are applied. We want the bp's to satisfy regularity
boundary conditions. Clearly b; will be regular if we choose

both X and (P to be regular; that is, if we build up
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bl from the Hermite polynomials (times an exponential factor).
The question now arises whether it is possible to construct
a rezular set of by's by choosing X and (P to be sepa-
rately irregular. <that this is impossible can be shown by
writing the solutions as linear coabinations of confluent
hyperseometric functions and expanding these abvout the point
at infinity. One finds that the irregularities of 3( and

\p cannot cancel.

dence we conclude that the most general by satisfying

the regularity boundary conditions is bl =’X+-q> , Where

X and Le are independently regular functions.

tiowy, (L~ A )Le = 0 leads to:
(because of the regularity

2 T2 e -
e?4 [ 5%+ «2e2]? = (2p+1)s
] P of @ , p=0,1,2,3...)

while (L4+ X )X = 0 leads to:

2 [ ” , 2];/2 (2 Vs (because of the regularity
-1 8"+ o€ = m+i :

€ of X , m=0,1,2,3...)

It is easily checked that these two energy spectra are mut-

ually ‘exclusive when C<ﬁ£<). solving each of the above re-

lations for the energy E, we {ind:

2 2 oA\2 4 %
by =X: (< =22§-+S('2m+;)+ (2)+D<S(2m+|)+s;k

2 x2\2 g 12
b =@: e = L i slzpa)- [ (5 )% s (2penrs®]
thus, we find that the general, regular, non-trivial B¢ can

be written:

R, v expl 2 evp [ FEH, () 80k )-8 (1e-k2)
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The corresponding energy is:

%
E =thy [92‘—2 +s2ne)t (“—:;4 + o5 @n) +s’-)2} (2.6)

In order to determine whether or not we have missed any
_solutions, we must go bacx to the original set of equations
(2.2a, 2.2b, 2.2¢c, 2.2d). ilaking use of the fact that the
various operators involved in these eguations are the raising
and lowering operators, we find that the general solution is:
By iy By v iy g5 Byavips Buavdy g
(with the convention that H_q = 0).
The solution correszo:nding to the energy eigenvalue zero is:
Byavs Hy; By = O 1’33 = 05 3~ Hy
However, it‘is also possible to find another solution with
energy eigenvalue zero, not Included in tne above set, because
in this case 8y = O. TYhe solution is:
By = 05 By = 03 13‘3 = 035 Byns Hy

Let us now consider the limiting case of &X = 0. In

this case, equation (Z.6) yields:

- &%

E = tRv(2ns) (2.7a)
or:

E

- 7
:':F\VLZ(\'\H)S—XZ (2.70)
In addition to the E = O solution coming from n = O in (2.7a)
above, we nave seen that there is an extra E = O solution

not included in the above relations (2.,7a) and (2.YDb).
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We shall see that the degeneracy of each level (charac-
2Vs _gs

TC 2
arising from (2.7a) with n > 1 can be grouped with those

terized by n and % 1) is Clearly, thne energies

from (2,Y0) with n = 0. The result can then be written:

£ = > hy(2ns)? (2.7¢)

If the extra E = 0 level is included in (2.'/c), the degeneracy
of each level is just gs, in agreement with HeClure's result.

We shall see later that we must choose a very small
value of the inter-layer exchange integral'ﬁ , 1f we wish
to explain the experimentally observed susceptibility. The
energy relation (2.6) is much too complicated for a calcu-
lation of the susceptibility, so that we want to expand
equation (Z.6) for small ¥, . Unfortunately, this cannot be
done for magnetic fields of arbitrary megnitude, since the

condition for the validity of the expansion is:

S
2n +1i

Our results will be meaningful only if we restrict ourselves

o2 <<

to magnetic fields which satisfy this condition. Fortunately,
ve shall never have to consider very large values of n, since
only levels witih small n lie near the degeneracy point and
hence near the Fermi level. We shall never be able to extra-
polate our expansion to tae zero field case, but since
measurenents of the susceptibility usually involve a torsional

technique, fields of several thousand gauss are generally




1
(2
P

employed in these measurements. In this region of magnetic
fields, our expansion will be valid over tiue entire range of

4

Lo This can easily be checikted by substituting the previously
quoted numerical values for tixe various parameters into the
avove condition for the validity of our expansion.

The resulting energy spectrum for simall values of ﬁ

may ve exuressed in the following form:

v 2
. 2 o .
E =1“H\,‘(2ns) {lfl';rs‘.} (2,8)
We have again grouved the levels and included the extra
E = 0 level, so taat the degeneracy of each level (characterized
v n and the external 3+ sign) is just gs.
Hote that the inter-planar interaction has spread each

. 2 i/‘
-ﬁ;: (2ns)2  Thus the

level into a narrovw band of width
levels becomne wider with increasing n values. Then =0
level, however, has remained sharp. This result is independent
of our approximation end follows directly from equation (2.6).
liote also, that the level width depends upon the magnetic
field and that all the levels become sharp as the magnetic
field becomes very large. +his fact has an interesting con-
sequence in the de Haas-Van Alphen effect, and will be discussed
further in a later section.

Eventually, the levels corresponding to the higher n

values will overlap each other even when ¥ is assumed small.

However, the levels near the degeneracy point are discrete
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vhen the inter-layer interaction is small. For example,
. Lo

in a field of 10  gauss, with &, = .005 ev, the levels do

not overlap until one reaches an energy of .0/ ev. Lhis’

occurs between the n = 5 and n = 6 levels.




ey

IITI. APPROXIWATE CALCULATIOW OF THE SUSCEPTIBILIT: AT
1:1GH TEMPERATURES.

We shall now estimate the susceptibility of grapaite at
high temperatures in a manner analogous to the estimate made
by iicClure (3) for the two-dimensional case. Such a calcu-
lation snows very clearly why the inter-layer interaction
must necessarily be very weak.

Let us now calculate the energy gain of our system when
the magnetic field is turned on. For this purpose we need
only the general features of our energy spectrum as predicted
by equation (2.6). 1In particular, we note that then = 0O
level 1is sharp and that the spacing between this level and
the two n = 1 levels is larger than the spacing between any
other two levels. Iiurthermore, it will be shown later that
at high temperatures the Fermi level is very near the n = O
level. It follows that most of the energy galn of the system
is due to the electrons, which in the presence of the fiela,
occupy the n = O level.

-

When a magnetic field i is applied, there is room for
gs electrons in the n=0 level. <The number ot electrons in
the n = O level is thus qsi(0), where f(0) is the value of
the Fermi distribution function at energy zero. The total
energy of these gqsf(vu) electrons is clearly zero. sSefore
the field was applied, these electrons had enargies between

-A and +A , the negative energy states being preferentially
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occupied, because of the Fermi distribution function. The
total energy of tiiese electrons in the absence of the field

tras thus:
+A

E =NEfEEdE 3.1)
-4
where W(E) 1s tne density of states in the absence of a field,

and is given by:

' ”z . e E
N(E)=T%¥EJ)Q[(4X,2-E2)2+“:|EI + 2E 5‘“.('2_1:.)] E<2Y% (3.2a)
4V f
=1r_c(‘ﬁv)2.’EI (3.3b)

The relation (3.2a) is given in A; (3.2p) is easily calculated
in a manner analogous to the calculation in A.

¥urthermore, A is determined by the condition:

+A
JN(EW(E)AE = qsf(o) (3.3a)
A .

At high temperatures, this condition simply becomes:

+A

JN(E)dE = gs (3.3b)

LN
since we can replace f(E) by £(0) and factor it outside the
integral. ©Specifically, we are assuming that the integration
range in (3.3b), whicn is of the order of the magnetic level
spacing, is much smaller than the thermal energy.

We now consider two separate cases. First, let us

choose a high value for the inter-layer exchange integral X} 3
say ¥ .1 ev., Since the integrations in (3.1) and (3.3b)
extend over a range of the order of the magnetic level spacing,

all energies involved in the integrals will then satisfy
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g E . v ey s . . .
the condition: 3 49( 1. ZHence the H(E) in question is given
i
by (3.2aJ. In fact, we only require this relation for small
& and hence we may expand in powers of . e find:

oy 4V, 2V
N(E) ~ T2 c(hv)? * xc T

it is easily clhec.ied that under these circumstances

E
\

\el (3.%)

2
A w(hv)s 3.5)
£ )
and that the increase in energy contaiins no term proportional

to s°. This result has a simple nhysical interpretation.

We note that in the taree-dimensional case tne density of states
Ain tne absence of a field does not approacnh zero as tiie energy
‘approaches zero (cf. equation 3.lt). Instead, it approaches
a value propnortional to B} . ..ence tinere are already some
electrons whose energies are zero before the field is applied.
In fact, there are too many of them. 'the result is that the
energy of the system cannot be raised much througn the appli-
cation of the field, since A becoues very small and advan-
tage cennot be taxen of the preferential occupation of the
lower energy states.

It is clear what one has to do in order to retain a sus-
ceptibility in the three-diiensional case. ‘e need to reduce

the nuwaber of electrons whose energies are zero before the

oy

field is applied; that is, we need to reduce ¥, . 1t is
. . xS . .
easily shown that if X|<<Tw 2 , the susceptibility is just

equal To that predicted by iMcClure in the two-dimensional
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This simple argument does not depvend on the detailed
structure of the energy spectrum and is indewnendent of any
approximations. We are thus led to the conclusion that
grapnite is essentially two-dimensional in structure. We
shall see that ¥, & .005 ev is consistent with all the
observed properties of graphite. An upper limit of about
.01 ev can be put on ¥, in this way. Our value of ¥, is
about twenty tines smaller than that used in A. A theoretical
estimate of ¥, was made by Godin (19). His value for ¥
is ,007 ev, but no other estimate of this order of magnitude

seems to have appeared in the literature.
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IV. CALCULATIO.{ OF THE FREE ENERGY.

In order to be able to carry through a proper calculation
of the susceptibility, we need to obtain an expression for
the free energy of our system in the »resence of an applied
magnetic field. 4An evaluation of this free energy function
involves a xnowledge of the density of states in tihe presence

of the magnetic field. We shall write:

a(e) = 2ig(e,) (1.1)
vhere g(E) is the density of states in question; g(E,) is
the density of states within the nth level, and the sum extends
over all levels n vhich contribute at the energy E. Ior a

general n, g(E ) is simply:

9le.) = 2" dE, (4.2)

The factor of o accounts for the various degeneracies in
graphite: spin degeneracy (a factor of 2) and site degeneracy
(a factor of 4). The total number of states for each value

of n and choice of sign is Just:

8Vs _ 2 4Vs '
_411_‘__‘:_2)( CTC = —=¢ = 9s , (%.3)

For the n = 0 level, which we have seen 1is always sharp,
(.2) is simply replaced by a ¢ ~function. This level
also contains gs states, exactly as in the two-dimensional
casec.

The above arguments are completely analogous to those
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nade in the counting of states in the free electron case.
This is a direct consequence of the form of our solutions

-
ﬁm(k). We note that k, and k, enter these solutions only

parametrically. Thus the S(Ic}; - k;;) and S(I:Z - ka) factors
lead to exp(iky;+x) and exp(ik,+z) in the spatial functions.
Furthermore, the complex exponential factor exp(:ihigﬁL— )

Ky

S

centers these functions at y = . Thus we can anply

cyclic boundary conditions in the x and z directions. Limit-
ing y to lie within the crystal then limits ky and hence
equation (3.2) follows.

Following equation (2.8), we taixe E, to be:

Py kze
2% C"sz( ) ] (31)

E. = w(ns)? [

Evaluating EHEF , 1t becomes convenient to introduce three
n
new symbols. Let:
. 2%%
Hinimum energy of nth level = A, = L(ns) ";:25
. ( ‘)'/z
Average energy of nth level = C, = VY ns

Y% 2.¥7
V(ns)z[H-Fs ]

The resulting g(E,) may then be written:

Maximum energy of nth level

é,'j.

q(g,) = }fi‘% [(E—An)(cn-e)—_\ A,=E<C, (4+.5a)
= %%[(Bn- E)(E—C.nsyyé Ch4E < B, (4. 5Db)

We are now ready to evaluate the expression for the

free energy of our system. Following licClure (3), we write:




_LO-

+ o0
F =NG +E, +:(jE ¢(E)(' %E.) (4.6)
where: o
N = N,‘_oT VT J g(x) dx (k. 7)
o “ E(o)
E°= j‘x-g(x)dx (k. 5)
E(c) e
$(8) = {(x-2) g(x)ax (4.9)
(o)

In these exoressions, energy is measured from the degeneracy
point, and E(o) is the enersy of the lowest state in the
valence band. It has been assumed that C:- E(0)>>» kT, Ve
shall be primarily interested in C‘)(E) for EXL (:o ~ ,06 ev.
. ) . . 2¥2x R

Since (4.4) involves the assumption that gsé L1, it is
easy to see that the magnetic energy levels corresponding to
the first few n values do not overlap at all. <hus, for

E < C:o , the integration in (4+.9) never involves a sum over

various n. Carrying out the integrals in 47(1’1.‘), we find:
. m
@(E) = qs{—(m+'/2)E +£'—,r:4‘::(Ah+B,, +2Cn\ + 3}
H ]
= - ! e+ F AC + }
qs{_ (m+4) 4.€§; " %

: m
' . V2
= qs{—(rm-yz)E + 227(ns) + § } (%+.10)
h=}
2
2. E
»2s
The term $ indicates the departure from the two-dimen-

where: m = <r2> = maximun integer £ r

sional model. In general this teram will involve contributions
from several levels, but as long as the levels do not overlap
S wlll involve at most a fractional contribution from one

level.
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In this case:
1.
- % B “26 (oo~ (Bm Cm
=0 Bn¢E%Ama (4.11b)

= E::_r [[(Cm." EXE—AN.\]I:’: A"““+2C""“- 2E[§+ sin ‘(A"“*"+ C""“ﬂs)ﬂ (4.11c)

A= Covr A\‘nﬂs E<Chnu

OQur expression (4.10) is in agreement with ilcClure's

result when § = O. We shall see that & is an unimportant
correction term for the high temperature susceptibility and
for the average low temperature susceptibility. However,

this term does play a role in the fluctuations of the sus-
ceptibility at low temperatures, where it serves to reduce

the amplitudes of tine oscillations and introduces an aperiodi-
city when the results are plotted against the reciprocal of

the magnetic field.
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V. THE SHIFT OF T:E FERuil LEVEL WITH TEMPERATURE.

Before we go on to calculate the susceptibility at
various temperatures, we will need to know the position of
the Fermi surface at these temperatures. We shall now cal-
culate the shift of the Fermi level with temperature. The
calculation will be based on a two-dimensional model. The
error made in such a calculation is very small, since it is
caused solely by the use of an approximate W(E) relation in
the region 0 € E £ 27, . In general, we can have confidence
in our result, provided G (T)> 2% . As we shall see, this
condition is satisfied up to a temperature of about &O0°K.

The total number of electrons, iiy, is given by:
+ o0

[
No = jN(E)JF(E)dE = gN(E)dE (5.1)
N S

where:

- \VA
N(e) = m)z'lEl

Using the above density of states, one can rewrite equation

(5.1) as:

o > »
XE['-F(E)]dE 4—}&4—‘(5)&:—: =2
- oQ o

The integrals on the left-hand side of the above equation

can be evaluated by standard methods. Here, we are interested
in transforming this condition in such a way that it will be
suitable for numerical evaluation,

If we make the substitution E = (kT).x + § , our condition

may be written:
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Fig. 1. The Variation of the Fermni Level with Temperature. The upper and

lower curve corresponds to §_3.06 ev and § =.055 ev respectively.
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The individuesl integrals can now be done by expanding the

integrands in a power series of exponential factors. Writing

6:% and Q =g—f’-‘_ , one finds:

9:= 29&3[“& ] 30 +4g-€n3(\+e*)o\x (5.2)

This expression can be approximated for large and small & .
Gf ~ O Logi6 <<\ (5.2a)
e8> ~ o+ T_;_’ 8>>\ (5.2b)

By cnoosing a value ofC:c, one can plot C: as a function
of temperature using equation (5.2). This is done by giving
© a value and solving the equation for ©, . If Ge
assuned smown, tThis procedure yields (: and the corresponding
temperature T.

the results are plotted in Fig. 1 for two different
values of &G . The shift of the Fermi level plays an im-
portant role in the susceptibility of graphite. Without
this variation of the rermi surface one could not reconcile
the high and low temperature results. 1t 1s also this shift
with temperature which is primarily responsible for the

observed variation of the Hall coefficient with femperature.
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Thus at high temperatures, one finds that the ilall coefficient
approacnes zero, since the Fermi level is approaching the
degeneracy point and the ratio of electrons to holes is
approaching unity.

The variation of the lermi surface with temverature is
often neglected in theoretical treatments of this kind. The
case oif graphite shows that one may not always be justified
in making this approximation, and that it is precisely this
variation which in sraphite accounts for some of the general

features of the experimental results.
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VI. CALCUuLATION OF T#E SUSCEPTIBILITY AND TuE
DE HAAS-VAN ALPHE.{ EFFECT.

The magnetic moment and the susceptibility are defined

in terms of the free energy by the following relations:

_ _oF :
M = Y (6.1)
__1 ¢ _ M
X="Hw- W (6.2)

Our calculation of thnese quantities will thus be based on
equation (4.6) and the additional relation (3.10); The
correction term 8 , which is a measure of the devarture
from the two-dimensional model, is given by (4.11). However,
this relation is far too complicated to be treated exactly.
At high temperatures, this term need not be considered at
all, since it does not contribute appreciably to the sus-
ceptipnility. This can be seen as follows: At high temp-
eratures the Fermi level is very near the n = O level (see
Fig. 1). In this region the energy levels are very nearly
sharp and the spacing between these levels is large. It
follows that the correction term 8 1s defined primarily
by equation (L4.11b) and can thus be ignored completely.
Therefore, at hign temperatures the susceptibility is Jjust
equal to that calculated by HMcClure on the basis of a two-
dimensional model and is given by (cf. reference 3):

X =-. 044—qv2(;?:_ 2%— Sechz(%':f) (6.3)
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The Variation of the Susceptibility with Temperature. The dashed
curve is taken from Ganguli and Krishnan. The two solid curves
represent the theoretical variation of the susceptibility corres-

ponding to G,=.06 ev and &,=.055 ev. The latter value results in
slightly better agreement with experiment.
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Converted to emu/gm, (6.3) becomes:

X = ~'O$_sed_\2(_2% emy [gm (6.4)
We have used =.22 gm/cm3 for the density of graphite and we
have put: a = 2.46 A%9; ¢ = 6./% AC and X; =-2,6 ev.

the condition for the validity of this result is that
the level splitting be small compared to the thermal energy;
that is, kIS8 In a field of 10% gauss, YsBar .03 ev, so
that the relation (6.4) is valid at temperatures higher than
about 400°K.

1icClure (3) did not consider the variation of the Fermi

G

2T

level with temperature and simply replaced the sechz(
Tactor by one. Using the results of section V, we can now
obtain the deviation of the high temperature susceptibility

from an inverse 1 law (for temperatures higher than about

&
2KT
for various temperatures from Fig. 1, and substituting the

400°K)., This is done simply by obtaining the value of

result into equation (6.4). The theoretical and experimental
susceptibilities are illustrated in Fig. 2.
At low temperatures there 1is no a priori reason why
one can neglect the correction term 5 . However, it will
be seeﬁ that even at low temperatures the average value of
the susceptibility is not affected by this term. On the
other hand, the fluctuations of the susceptibility are affected.
Let us for the present deal with the two-dimensional model

and consider the correction later. We thus choose for @(Eh
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m .
: ¥
$(e) = gs{ 2, v (ns)® = (mew)m | (6.5)
=0
=2
Here m is the maximum integer & ;-’S . The notation
=2
= w2 S 2
5ig =" m {e2)

will be convenient. We shall now evaluate the sum involved
in (6.5) by the Poisson summation formula (20).
One form of this formula is:
o b Iximx
D) = 2, G‘(x)e Ax
h=0 MNe-o0 ©
where: 1. f(x) is of bounded variation in the interval (0, oo)

and f(x) = 0 for x<£ 0,
2. j?(x)dx exists
3. ;(x) is continuous at least near the points where
x is an integer; i.e. & [f(q+)+ f(n_ﬂ = f(n)
We see how we havé to define f(x) in our case. Let us intro-

duce the step function P(x) defined by:

P(x) = 1 x40
P(x) =0 x>0

Then we may define f(x) to be the function:
£(x) = %2 eP(x)P(x-12) (6.6)

With this definition one clearly has:

™m oQ
Zn% = 280 (6.7)
h=o

n=o
Just exactly where we ‘chop" the function between (rg) and

<r2>+1 1s immaterial. By choosing the point to be I'2 we

2

know that our result is exact provided r“ is not an integer.
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In that case the continuity condition is not satisfied, but
this clearly does not matter since these points coincide with
the points of discontinuity of our original sum.

In this way we find:

m
;E:Y; 22: _fxyh 2wwnx ]
h=o m=—-02 o X
st (2R N 62) = 3/2
-§.~ + "mz.. = - ELZ; Slornt ) (6.0)
where:

\
S()= (sin (E2)at

le can now substitute (6.5) into (6.5). The result is:

3 a4 A .
CP(E) = qusé{—é—‘a-‘ra - 5‘;2 ma’2 S(2rmyz)} (6.9)
=t

In the above substitution, we have made use of the relation

Z 3(4'\(21mr)

2
e+ —p% 5 ()< r2< {r2) 40
quatlon (6.9) is exact. For large energies r =~ oo , and

S(Zrm&) R S(w)='/z
Thus in the limit of large energies, (6.9) becomes:
$(e) ~ qu [‘ér - a= G(%)}

3 3
qu""[-‘/s'r - .'208] (6.10)
Here C: is the Riemann dZeta-function.
the above result agrees with kceClure's equation (3.9).

We note that of the two terms in equation (6.10), the first




1s independent of the magnetic field and the second i1s inde-
pendent of the enerzy. Hence the first term does not contri-
bute to the susceptibility. One can easily verifyy that the
term independent of the energy just cancels that part of EO
which depends upon the maginetic field when this term is
integrated in (4.6) Again following ucClure, we write:
. g2 3,

JiEe) = die) +3+ 9% +.206qws/z (6.11)

Neglecting the field dependenée of C; , the susceptibility

is then given by:

— =l 3F — =i 2 =<t -2f
X="38 = Tx(F-NG) 5\\/(53 bE)AE (6.12)

Since we are interested only in very low temperatures for the

present, (6.12) simply becomes:

X = -L20(e) (6.13)

Here,qJCE) is given by equation (6.11). We now anticipate
‘where the Fermi surface will lie at low temperatures. lhis
information can be obtained for instance, from the Hall effect.
Thus our A, the zero field Hall coefficient, will show that
C;ocg.06 ev. Another independent estimate can be obtained
from the period of the de Haas-Van Alphen effect fluctuations
(cf. reference 3). 4again we find ch .06 ev. Thus in fields
of the order of 10% gauss, r & 2. We shall nov expand V(B
asymototically for large r. <This asymptotic form of QV(E)

willl be completely adequate at E = C;.
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We now proceed to expand S(’Lrﬁ\‘) asymptotically using

the method of integration by parts. <Yhus:
2Pmu2-

S(2rm?) = u(‘J“.‘SJ\'/\n("%Z’Z)cslz

o0
= 4 - [son(Zz9az

Zrmyz
~ L _ 23 . cos(ewme?)
) 2 " (anmr2)'a
When this result is substituted into (6.11) one finds:
%[ i < cos(zwmr?)
b cos(2rme
V() ~ qus [4"2rmz' 2 ] (6.1%)
=1

It may be verified by actual numerical computation that \(E)
as given by (o.14) differs from the exact q/(E) defined by

(6.11) and (6.5) by less than one percent when rZ +%. Hence

we are completely justified in using (6.14) at low temperatures,

even in very large magnetic fields.
The magnetic moment and the susceptibility are now
easily evaluated at low temperatures. #Haking use of the

relation

w0 2
Z c.os(2"n‘mr) 1
T2 m?2 T C

+ [\""— (r*’)—_l-[rﬁ- {e?) —;l s (%)< v < Kr2) +y
M=
we find, using equations (6.1), (6.13) and (6.14):

M= ~S8(2) " - 25(2) D) | 025

The first factor in this relation is proportional to the
magnetic field and yields the average value of the magnetic

moment. JLhe second factor, when plotted against the magnetic
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field, oscillates about zero. The oscillatory part of the

»3g

g‘oﬂ

The observed behaviour is characteristic of a two-dimensional

magnetic moment is plotted against r52 = in ¥Fig. 3.
calculation and should be compared with the results of Seitz
(21) for free electrons. The susceptibility resulting from

(6.15) is thus:

X = e 2efealce]-2larl] e

The first factor is independent of the magnetic field and
yields the average value of tine susceptibility at low tempera-
tures. ‘rhe second factor in (6.16) is periodic in H-1 with
period £ ol E; . A plot of the oscillatory part of (6.16) is

given in rig. 4. Converting the quantities in (6.16) to

emu/gm, we find that the first factor leads to:

a 2 _
X )~ —27.2 x 1S © emu fam (6.17)
av \2(; 3

We have chosen C:,= L6 ev., In order that the period of
our oscillations azree with the experimental period of
2.1 x 10~ 5 gauss’l wve require C: ~,065 eve On the other
hand, the theoretical amplitude of the susceptibility oscil-
lations is approximately 300 x 10=© emu/gm in a field of 10%
gauss. <Lthe experimentally observed amplitude is only 2 - 3
x 10=° emu/gm. This discrepancy between theory and experiment
will be discussed later.

the average value of the low tenmperature susceptibility

is in good agreement with the experimental value of
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-30 x 10-6 emw/gm (1). Yhe experimental value tends to vary
from crystal to crystal, the range being about -26 x 10-6 emu/gm
to =34 10~ emu/gm. Such a variation is easily interpreted
witnin our model, since the exact position of the lermi level
is determined by impurities and the size of the crystal.
Equation (6.17) allows one to ovredict gualitatively, the de-
pendence of the susceptibility on crystal size. Because
large crystals nave a smaller number oi excess electrons per
atom,(:; will be somewnat smaller for these crystals and
hence large crystals will have a larger susceptibility than
smaller crystals.

Lifschitz and Hosevich (12) have developed a semi-
classical theory of susceptibility. Lf their results are
applied to graphite, one finds a period for the susceptibility
oscillations which is in agreement with our result. The
oscillation amplitudes, however, are infinite in their
approximation. We shall return to their treatment when we
consider the introduction of the third dimension into our
problem.

Before we go on to consider these three-dimensional
effects, we shall calculate the temperature variation of the
average susceptibllity at low temperatures. We have already
seen that at high temperatures the suscepfibility is given
by (6.4). In calculating the temperature dopendence of the
susceptibility at low temperatures, we shall not be interested

in the oscillatory part of the susceptibility, since these
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oscillations are observable only at very low temperatures
(Tar L9K), because of temperature damping (cf. reference 12).
Hence we snhall retain only that part of \P(E) which gives
rise to the part of the magnetic moment which 1s proportional

to H. In this case \P(E) simply becomes:
W(E) = - quts® (6.18)
24 E
Actually W(E) is a symmetric function of E, so that E should
be replaced by (El (cf. reference 3). However, at low temp-
eratures the contribution to X from the E < O region is
completely neglizible because of the position of the Fermi

level at these temperatures. Using (6.18) the expression

(6.12) for the susceptibility becomes:

— 2(G~E
X = 3¢ 46 kT wc) I e\ ech(zm‘

~ Zﬁ kT (Twc JdE Sech” Cﬂj) (6.19)

The integral in (6.1¢) is easily evaluated approximately in

terms of a power series in kT. The method is the same as
that used for evaluating the integrals in equation (5.1) of

section V. Upon evaluation one finds:

X > - qw "(.ﬁcz‘ -5 1092] (6.20)

Converted to emu/gm, equation (6.20) becomes:

—1.63x
X x _‘ig"ﬂ_{\_

where C: and kT must be measured in cv. The result, together

%rf.o321 emufgm (6.21)
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with the variation at high temperatures, is plotted in Fig. 2.
Because of the method of evaluation, the expressions (6.20)
and (6.21) are valid only if x<T< & . 1In Fig. 2, these
exlpressions have been used to obtgin the theoretical curves

at temperatures below 200°K. Above 400°K the curves are

based on equations (6.3) and (6.%), and between 200°K and 400°K
the high and low temperature curves have been Jjoined by the
best-fitting smooth curve. Fiz. 2 shows that Q:gx.OSS ev
results in a slightly better fit to the experimental curve.
liowever, the uncertainties of the measurements are such that
the curve with Ci;z.06 ev cannot be excluded. Thus the
experimental measurements determine ¢, to within about 10k,

We ha&e seen that a two-dimensional model of graphite

is capable of explaining all the features of the suscepti-

bility except the amplitude of the oscillations at very low
temperatures, which turn out to be 100-150 times too large.

There are three main factors which serve to reduce this

amplitude. These are:

1. Introduction of k,-dependence by a three-dimensional
model. This has the effect oi broadening the energy
levels in the presence of a magnetic field and hence
reduces the ampilitude of the susceptibility fluctuations.

2. Temperature damping of the oscillations at temperatures
for which the thermal energy becomes of the order of or

greater than the mean level spacing.




3. Collision damping of the oscillations. The effect of
collisions is also to broaden the energy levels by an
amountauzg , where ¥ 1is the relaration time for electrons
whose energies lie near the Fermi energy.

The last two of these factors are unimportant at very low
temperatures. We shall éee later that the relaxation time

in graphite at such temperatures is of the order of 10-11

seconds. If one uses this value for = , and estimates the

collision damping factor in the manner of Dingle (22), one
finds that the amplitudes are only reduced by about 5% through
the collision process. ©Similarly, temperature damping can

be made arbitrarily unimportant by going to sufficiently

low temperatures. We shall now study the three-dimensional

model of graphite, in order to asttempt to find an explanation

of the discrepancy between the observed and the previously
calculated amplitudes of the susceptibility fluctuations.

it is interesting to apply the theory of Onsager (23)
and of Lifschitz and Kosevich (12) to graphite. As we shall
see, their theory, together with the usually assumed band
structure, affords a very nice picture for the origin of

tne two periodicities in the de Haas-Van Alphen effect of

graphite. Unfortunately; since their approach is based on

Bonr-dommerfeld quantization, one cannot have faith in their

results when the theory is applied to graphite. ©Such an

approach can in general only be trusted wvhen the Efg)

relationsnip 1s quadratic, as in the case of free electrons.
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We shall find important differences between such a semi-
classical treatment and a treatment based on the results
of sections L+ and 1l of this thesis. Let us first outline
tne semi~classical approach.

The E(E) relation near the corner of the Brillouin zone

is given in A as:

. '
E(®) = -%,cos(=)+ [\sf-cos‘(“—!z-c—) +(hy K)“] g (6.22)

As before, L = (k%i—k%)% is measured from the corner of the
zone, while kz is measured from the half-way point on the
vertical edge. YThe surfaces of constant energy described
by (6.22) are illustrated in rig. 5. When E £ 2%, the
surfaces are closed and capsule-shaped with the long axis
of the capsule parallel to the vertical edge of the zone,
However, for E > 2%, the surfaces are open at the upper
and lower ends of the zone, so that if all zones are con-
sidered, tne surfaces become endless tubes of varlable
cross~section.

i{ow consider a magnetic field applied aloﬁg the c-axis
in grapnite. In the actual graphite crystal, the electrons
willl then move in helical orbits, the axis of the helix being
along the direction of the magnetic field. It follows from
the Lorentz equation that k, 1s a constant of the motion for
an electron in one of thnese orbits. ©Such an electron thus

-y
moves In an orbit in k-space wnich 1s the intersection of

a constant energy surface with the plane k, = constant.
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In the theory of Lifschitz and iosevich (12), the periods of
the susceptibility oscillations are tnen determined by the
extreme cross-sectional areas of the planes kz = constant
with the surface of constant energy for E = C:e . 1t is clear
that two different periodicities can result only if 2;0522;",
since otherwlise the minimum cross-sectional area 1s zero and
gives no veriodicity. <Yhe extremal areas in question are
the shaded acreas in ¥ig. 5.

Applyins the theory of Lifschitz and sosevich (12) to

equation (6.22) we find:

- _wE|E+2% cos "5 |
S(E,ky) s

Here S(E,k,) is the cross-sectional area of the plane kz=

=2n(n+¥)s 3 E>z2y, (6.23)

constant witn the surface of constant energy corresponding
to energy E. The maximum and minimum areas in question are

thus:

IR A LIRS (6.2
A\

It is interesting to note that (6.23) predicts the energy
spectrum in the »resence of a magnetic field. Solving (6.23)
for Ein,H,k,) we find:

i1 2 2 2
E(n H, kz) -_-.—-.x‘ws("}iS)‘\_-_{m cos("-;—‘)-»vs(mx)] (6.25)
When ¥ = O this relation agrees with our result for the
two-dimensional spectrum, provided the parameter Y is chosen

to be zero. However, if X} qé O, the above energy spectrum
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is radically different from that found in section LI (cf. equ-~
ation 2.8). When X;is small, (6.25) predicts a width of ~ 2X|
for the higher n levels, independently of the magnetic field,
while in our treatment the level width increases witn n and
depends on the magnetic field., We shall see later how this
difference affects the de Haas-Van Alphen effect.

Since in the semi-eclassical treataent the periods of the
susceptibility oscillations are comnletely dcterinined by the
two values of Sext(c;a)7 a knowledge of the two periods com-
pletely determines G, and ¥, 1in this approximation.

Using the formulae of Lifschitz and Kosevich (12) and the

- experimental periods (9,10) one finds:

C:o ~ 065 ev  and % e 1k
)

the amplitudes of the oscillations may also be determined
by an application of the results of reference (12). At
L= 1.370K an evaluation yields approxiimately 20 x lO’6 ehu/gm
for the amplitudes in a field of lOLF gauss., This is a factor
of about 10 larger than the observed amplitudes ($,10).

An exact calculation of the three-dimensional de Haas-
Vann Alphen effect is impractical because of tne complex
nature of the correction term & in equation (4.10). We
can nowever construct a simplified model by noting how the
density oi states varies within the nth level. Iote that
this density function is highly peaited at the extremes and

at the center of the nth level. We shall replace g(En)
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defined by (‘:.5a) and (&.5b) by the simpler relation:

g(E,)) = C{S{Z{‘S(E—Arﬁ*i‘ s(e-8,) +-}2-S(E—c“)} (6.26)
it is easily checiked that this expression gives tne corregt
degeneracy for the nth level, namely gs.

If (6.26) is used in place of (%.va) and (4.5b), the

correction tern 3 can be shown to be:

' m .
= 32{(2m—-m'—-m”) +ZAh*‘z Bn‘x (6.27)
4 m !
where: m =<r2)
= { v2( 1~ AV? - 2%°
Cr2(1-a)") A= 23

m?= {r2(1+a)%)
It is a straightforward matter to calculate the con-
tribution of (6.27) to the low temperature susceptibility.
The calculation is completely analogous to the two-dimensional
model calculation carried out earlier. In calculating the
derivative with respect to H, it is not necessary to differen-
tiate the various (1¥ A ) factors, since these vary very
slowly witir i, <he result is that to the oscillatory part

of X from (6.16) one must add the following term:

e 2
- g% 1%'_ { [2<"°> <(\+A)2> <(t-A) >]‘2( >+(‘+A) <(H—A)2>

+(1- )2< \b 2(x%) +(\+A\<( 1_M,_>+(\ -6) <( &b} (6.28)

#ig. 6 shows the three-dimensional de raas-Van Alphen




-t
-+

r;Z

1 b L
T

=
/i

Fig. 6. The De Haas-Van ilphen Effect in three-dimensional Graphite.
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effect in graphite, as calculated from this simplified three-
dimensional model. In the plot of Fig. 6, A has been chosen
to be .Ol%rg, vhich corresponds to ¥,¥.005 ev and & .06 ev.
It can be seen that the simple periodicity in i~1 has been
destroyed. Semi-classically this pattern was interpreted

in terias of two slightly different periods, botn however,
strictly periodic in HLl. Hote that the amplitudes have been
reduced by a factor of about two in a field of :LO)+ gauss
(which corresponds to rgzx 4). ‘they are, nowever, still far
too large to be in agreement with experiment.

The detailed features of Fig. 6 are not to be interpreted
too closely, since they are partly due to our simplifying
assumotion about g(En). Purthermore, we have completely
neglected teaperature and collision damping effects, wiich
would tend to smear out the features of i'ig. 6. Thus in
compnarison with experiment one would need to replace the
discontinuous plot of Fig. 6 by some sort of average smooth
curve. It 1s mainly intended to be shown here that an
interference effect of roughly the right periodicity is ob-
tained, even from a crudely oversiaplified threc-dimensional
model.

Pernaps the most significant thing in the three-dimensional
calculation is the behaviour of the oscillations in very
ce masnetic fields (rg £ 1). Our calculation indicates
that In these fields graphite will not display what looks

like two different periods. Instead, the oscillations will
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be strictly periodic in -1 the period being just that pre-
dicted by the two-dimensional model. “The semi-classical
treatment on the other hand, predicts two neriods regardless
of the magnitude of tiae magnetic field. This result ié inde-
pendent of our simplifying aésumptions and follows directly
from tane fact that the energy levels becoine sharp in very
large magnetic fields (cf. equation 2.8).

It seems possible that this difrference could be investi-
gated experimentally by the recently developed pulsed field
techniqgue. A careful analysis of the oscillations may be
required, since the difference between these two predictions

1s not apvar=nt on every half-cycle.
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VII., T:&ZE ELECTRICAL CONDUCTIVITIES OF GRAPHITE.

Let us now evaluate the electrical conductivity of
graphite parallel and pervendicular to the graphite planes,
We shall assume that the relaxation time T does not depend
significantly on"QZ

Following thne theory in A, we write for the conductivity

- " - - 2% ¥ . ‘-’
in the direction of tne unit vector u:s

(@)= '261?[‘” H( )%I%AMKE\-ASK]GIEI (7.1)

The inner integral in (/.1) is taien over a surface of constant
P . . .
energy, and n+dS, is the vector element of area on this
surface.
-

For our E(k) relation we shall use equation (6.22),
which is valid provided EK ¥ = 2,6 ev. (cf. reference A).

The integral in (/.1) is easily transformed intd an
integral over i and an integral over E, by projecting tine
surface of constant energy onto the plane k, = 0. A factor
of 4 is introduced because of the equivalence of the six
corners of the Jrillouin zone, and because of the two pro-
jections onto the plane k, = O cowming from above and below
this plane.

1 —‘- \ . b .. = o

Wnen u is chosen in the gravhite plane and perpendicular

to it, we [ind respectively:

(7.2)

2
Gy = ‘2: ":’2 d‘c°[ _’_ BmKdK] E
dk
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_ ~2éxw d-F.,IbE . ,
LT e 1t J 9B lakzl's-rr.KdK d't? (/.3)
Before the inner integrals can be evaluated, we must evaluate
dE 2
P’ Sl P Y
is eliminated from these expressions. One finds:

from equation (6,22) in such a way that k,

2y e K (7.14)
K T g2 . (fiv K)? . .
0B _ | cE C4e* K. (e2- [T‘VK]Q)L’]Z (7.9)
Yy 2 2 & (WvK)?

Let us now look at the range of the inner integrals in
(V.2) and (7.3). As long as we are dealing with low tempera-
tures, f%s will be a sharply peaked function at & = C;o
and we know that &, »2¥, . From (6.22) it follows that the
surfaces of constant energy for E > 2¥, are open, endless

tubes of variabie cross-section. hence the range of K is:
\ 2 5y % . i 2 ‘/2
e Le25e]" 2 K éa[E +2%E|" 5 E>2¥,
However, for nigher temperatures ?-é is not sufficlently /
peaked to exclude contributions to the conductivity from

E £ 2%, . We then write:

-2% 2%,
“2““"7‘ j# C, de +§+‘ C, dE +jc C,de +f\° de (7.6)
“28| o 2% 2K|
- 2 - l I i
—ZL‘%— ——f“: D de + J—F D,dE + ‘FJDSdE + X-E,'DAdE (7.7)
2e“t . >

vhere C, (8) and D _(E) stand for the inner integrals in (7.2)

and (7.3) respectively, with the proper range of integration
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substituted in each case. Thus in C{(E), CL(E), D{(E) and
D) {E) the range of K is the same as thal used at very low
temperatures, while in C,(E), C3(E), D5(E) and D3(E) the

range of K is:

Cz Ke #j{e% zvsiE]i/z; E<2Y,
Because of the simplification of (7.6) and (/.7) at very low
temperatures, the zero temperatures conductivities are easily
evaluated. Using equations (/.4%), (/.5) and the defining

relations (7.2) and (7.3) .one finds at zero temperature:

2
oy (o) = i‘ﬁec—“‘-“ it (7.8)
& (o) = axcelr  ¥Zc* o (7.9)
- Wee (Rv)2 7°
And hence:
| S _ 4 (k) (7.10)
0y (o) ¥2 c?

With a = 2,46 A%; ¢ = 6./4 A®, ¥, = 2.5 ev and ¥, = .005 ev,
one finds:

QT!(O) iOE (7.11)

o (o)
frishnan and Sansuli (1%) have found a ratio of about
109 experimentally. Dutta (15) reports a ratio of 10%- 105,
wihile Primak and #ucns (16) report a considerably lower ratio.
The experiment is however a difficult one, and it is easy,
because of tie large anisotropy, to underestimate the ratio
of :%g. , wnile it seems impossible to obtain too large a

L
value in any experiment. 4Yhis was pointed out by rirozowski (13).
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We now proceed to the evaluation of the ratio of the
two nr1n01oal condtctivities for arbitrary temperature. The
inner integrals in equations (/.0) and (/.7/) can all be eva-
luated analytically. 4Yhe procedure 1s somewnat lengthy but
coimpletely straightforward and will not be given here.
Because of the analytic form of the integrands, 1t i1s neces-
sary to split the range of integration not only at Q)ﬁ but

also at ¥ . The final results can be written in the following

Tforn:
) = 4821:' 0 (g h( /’“ < F(x) dx (7.12)
O’;‘ T)= - (% T) ec zk'\'
vhere:
4—x2)(i~ “)) *2-X
F(x)=x{ rein'(3)- 20 201 -w2]’ IA{][( : < h’ Oexel
— 2% _ V3 .
= £\ __ 32 R=\
3 2
_X{.E + v < 3() ‘.__ "‘(2. X )‘).} lex<?2
- (E e G- g LS )
= X{K-— %[xl_‘]ifz} xz2

(F(x) is syumetric sbout xz = 0.)

e ~c 64 ‘o0 g
[be i et e——— ]
o, ) = v D) o fSec\-\( 2kT ) G(x) dx (7.13)

RN
where: )
. ' Z ) : % i b -

G(x)= xz{— (42 s Zx[T—z‘: + Sin (%}]4—2(\—)(2)2[03[((4 i xi)) 32 xz}} O¢ X< |
— 4T
= 5 *Jsi

% - -

= x2{~(4—x2)2+2x[1—; +5m‘(%3] 2(x2-1) [W ; \ l< Xe2
= Xz{?.'r(x - z-ﬁ(xﬁ-\)vz } %z 2

(G(xx) is symmetric about = = O.)
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Bquations (7.12) and (7.13) can now be evaluated numeri-

F(x)

1))

cally for any temgerature. This is doue as follois:
and G(x) are evaluasted once and for all, for the entire range
of x required (this range is about: -70< x< 70 at 600°%) .
Throughout, ¥, is chosen to be .005 ev. Uthen T and G(T)
are chosen (the latter from Fig. 1) and the integrals can be
evaluated by any of the standard approxinate methods. The
numerical values for these integrals at various tenperatures
are tabulated in Table 1 below. The third integral tabulated
here does not appear in the conductivity theory but occurs

later, wvhen we consider the Hall effect.

100°K | 200°K | 300°K | 400°si | 500°K | 600°K

¥ |9 |23 w0 575 |70 | 1110

¢ 304 555 515 1170 | 1610 | 2260

)7 23 . Li.2 46,5 b1.8 37.5 34.3
Table 1. Kumerical values of the various integrals in

the conductivity and Hall effect of Graphite.

The notation in Table 1 is as follows:

of X - )
S = fSeChz( MK') » F(x)dx
Yoo *

+o0 _ ~¢
§ =] seer?(® sz/K) Glx)dx

+ o0 S
X - X,
K = sectt{ZT5 ) K(x) dx
-0 A 1)
(The function K(x) appears in section VIII which deals with

the all effect.)
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When the numerical values in Table 1 are substituted

into equations (v.12) and (7.13) one finds that the ratio
S
Tl
6009k, Thus:

is almost independent of temperature between O°K and

GT.(T) 0')';(0) LY .
- ~— . = ! ] )‘*‘
am = o ° (7.1)

Experimentally, Dutta reports a variation by a factor of 2
over this temperature range (19).

Thus, our results show that Oy and 67 exnibit the same
temperature dependence (within 1 or 2%). Agreement with ex-
periment could of course be obtained by attributing different
temperature dependences to the two relaxation times parallel
and perpendicular to the graphite planes.

However, such an assignment implies that is.ﬁldependent
and thus violates our original assumption. It is reasonable
to assume that in graphite, the relaxation time is indeed a
markedly anisotropic function oflﬁi Until more is known
about this quantity it does not seem profitable to extend
this simple calculation.

An approximation, which is sometimes made is the follow-
ing: one assumes that the relaxation time T depends on‘ﬂz
but only through the energy; that is, one assumes T = T(E).
In this case, T factors outside the inner integrals in
equations (7.2) and (/.3), since these are integrals over

surfaces of constant energy and hence of constant T . Then,

at low temperatures, the ratio of-%?i is independent of
P
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T , since the outer integrations in equations (7.2) and
(7.3) will involve a § -function. At higher temperatures,

the ratio _E; 7111 however still depend slightly on T |,
i
even in tals approximetion.

0w
#e conclude tnat the low temperature value of <. Pre-
L

dicted by our choice of ¥, ¥ and ¢, is in good agreement

with exveriment. It is interesting to note that the ratio
oy (o)
030)
ratio does depend on the assumption that & » 2%, , since

does not depend explicitly on C:;. However, this

this condition determines the range of the K-integration.
At higher temperatures, our calculation becomes doubtful
because of the simplifying assumptions about the relaxation
time. <Yhus, conductivity data does not violate our choice

of the parameters ¥, ¥ and C:o.
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Viel, THE HALL COEFFiCIE.T OF GRAPHITE,

We

of graphite.

shall now evaluate the zero field Hall coefficient

We shall make use of the samne approximation

as we used in calculating the ratio of the principal con-

ductivities, namely that the relaxation time 1s assumed to

-
be indenendent of i.

When a magnetic field is applied along

c-axis in the case of graphite)
zero field iHall coefficient is (24):

2 (Ve

the z-axis (the

, the general formula for the

j‘gg.{é\:-(ﬁf—_)
_gr J Oky L oky \OKRE/ T R, kg 2k
2e

ﬂ dtf. 42k

(8.1)

nh+o

SOV o - J G5 4 o

—>< .
Using the E(k) relation given by equation (6.22), one

E JE Y¥E YE E .
can express %I; ’ SE; R {EE ’ Xﬁé bkxak,ln terms of
cylindrical coordinates k, k, and © . Thus:
E JE 4
_— B.2a)
Y 3K cos © (g.2a
a 1 4
g—ﬁyg b& S O (8.2b)
O E ®E 2.1 dE ,
k2 cos'© ez re K a2k
DE RE 4 i%l
= SO ccs® (6.24d)
Bk ok, 3 TRk
EZE ° ‘ae bQE { .bE .
° 5 _ sune = cos O L (8.2e)
bk: dK=2 N K Kk

Relation (¢.2e) is not required here, but will occur in

section iX,
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We now renlace the integral over-z in (¥.1) by an integral
over E and a surface integral over a surface of coastant
energy. As in the case of the conductivities, we will carry
out the intezral over the constant energy surface by pro-
jecting this surface onto tihe plane i, = 0. Symbolically
we can express tnis transformation as:

stk — 2 fdef‘(—"‘%‘;‘—e

54
Here, the angular 1ntegral extends from O to 4T, because

the Brillouin zone has six corners and the surface extends
1/3 of the way around each of these corners. The factor of
2 1s due to the two projections of the surface, coming from
above and below the plane i, = O.
When the above transformation is applied to equation
(6.1) using the expressions (o.2a)-(v.2d), the angular
integrations are casily carried out.and the result is:

_ —-7? d\‘ U ]d

AH-‘ro e
{a‘%m “:Ejla}

As in the case of tne conductivities, the integrals

(8.3)

involved nere are easily evaluated at very low temperatures,
because of our assumption that C;Jy.06 ev)}'ﬁcx.005 ev. The
result for the zero field Hall coefficient at absolute zero

of temperature is:

2

«h .
A\_(“’) = -W_Zc__efc\;_) ~ -, 705 c:mg/ccu\omb (8.4)
) S




A, em /coul.

Fig. 7. The Variation of the Hall Coefficient with Temperature. The
dashed curve is taken from Kinchin, the dotted one from
Johnston. The solid curve shows the result of the present
calculation. The point at 300°K is taken from Hennig.
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The numerical value is obtained if we use:
a = =246 A9 ¢ = 6./ A9 W = 2.5 evy; G, = .06 ev.

Kinchin (25) has measured the zero Tield Hall coefficient
for a siﬁgle crystal of graphite, and reports a value of
-.69 cm3/coulomb at very low temperatures, in good agreement
with the value predicted by equation (o.4).

In the general case of arbitrary temperature, tae integ-
rations over energy in (8.3) must again be carried out numeri-
cally. oy a process completely analogous to the conductivity

calculation, one can write:

%,
AGr) = TeOkr PP ks (5.5
e 2 + 0 - 2
R Y ("akf-"")F(x)Ax}
vhere: X {
oo — 2ld? o) [ - .
(X)— |- x2 [(-_-x’]%.&s X O« x<l
= ‘Ig w=\
[4- ?P@ (2 x2) Ll g2
+xx :: x e [r\- ( X )] lEx£2

= 'tx(x’-—z)(xz—l) Ve

(nlx) is anti-symmetric about x = 0.)

The integral in the denominator of (5.5) is the same
as the integral which occurs in Sy . the function F(x) is
defined by equation (/.12).

A numerical evaluation of A(Y) yields Fie., Y. The
values of tihie various integrals in (v.%) are tabulated as a

function of temperature in iable 1. oSasically, the behaviour
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of the Hall coefficient is due to the saift of the f'ermi level
witn Temverature. As the temverature is rcised, the rermi
level moves towards the degeneracy point, and hence more and
more positive carriers contribute. .iowever, there will always
be an excess of negative carriers, and hence the Hall coef-
ficient approaches zero for high temperatures, but remains
negative. 1lne peculiar behaviour of the iiall coefficient
between 100°K and 300°K is due to tne numerator of equation
(v.5). This integral has a maximum value in this temperature
range (cf, rable 1), whicn results in a Hall coefficient
slightly lower than the zero temperature value. The exact
shape of the A(T) curve in Fig. 7 is a fairly sensitive
function of K. in this temverature raunge. Iy choosing a
slightly different value for this parameter (which has been
chosen to be .005 ev) it is possible to make the bump in the
A(r) curve less pronounced, so that A(L) is essentially
constant below room temperature and then falls off roughly
in the same fasnhion as in Fis. Y

wninchin finds that the zero field iiall coefficient
becomes positive between 25°K and 1/5°: (c¢f. Fig., 7). He
attributes this behaviour to the presence of acceptor im-
purities. However, wninchin's curves for polycrystalline
samples do not show this peak in the Hall coefficient down
to a temperature of Y/7°n. &is graphite iV sample shows no
sucihh peai down to 4,29K, while the very low temperature

range for the other samples is not discussed. It is not
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clear to the author how a single crystal sample and a poly-
crystalline sample can be so markedly different, since only
an averaging factor is involved in the coaversion. iHennig
(26) has umeasured the Hall coefficient in graphite as a
Tunction oi oxidation. r'or zero oxidation at room temperature,
ne finds A = -,65 cm3/coulomb, in good agreement witn the
theoretical value at this temperature. =ennig's experimental
value at room temverature has been included in Fig, 7.

| Perhaps the most significant feature of our crude cal-
culation is that our value for tie position of the Fermi
level at very low temperatures is verified by the Hall coef-
ficient. Previous explanations of the negative Hall coef-
ficient have always depended on assigning different mobilities
to the electrons and to tne holes. 'Yhere seems to be no
reason why these mobilities should be different, since the
bands are very nearly symmetric about the degeneracy point.
While the Hall effect does not exclude an explanation based
on different mobilities, we have seen that there could be
no de xHaas-Van Alphen effect 1f the lermi surface were at
the degeneracy point. Thus, a model of graphite based on
excess electrons is necessary if one wishes to explain

these properties simultaneously.
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IX. THE TRANSVERSE 1AGHNETO-RESISTANCE OF GRAPHITE.

Finally, let us evaluate the transverse magneto-resistance
of grapihite when the magnetic field is applied along the
c-axis of the crystal. ZFrom the point of view of yielding
useful ianformation about our choice of parameters, this cal-
culation will turn out to be not very instructive, since we
shall be able to infer the correctness of our choice only
indirectly. “his is due to the fact that the magneto-resistance
ratio, 432’ depends more radically on the relaxation time
than eitner thne ratio of the principal conductivities or the
zero field Hall coefficient. Ve found that botn of the last
two expressions were essentially independent of the relaxation
time, at least at low temperatures. This is not true of the
magneto-resistance ratio. In fact, we shall see that QPE
is proportional to 't2 if we maikke the same assumptions about
the relaxation time as we made in the two previous cases.
Following Jones and Zener (24%), we write for the ratio
of the change in resistivity to the resistivity:

Is
Il' 1,

2

N (et%t)'
e ke

j de ( ) 3 Iz=: - éég(%%:idi(
b f Rk (e
o [5G

de
3
- _Ek)_lZ —( ;k,,

wnere:
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Tne transformation of these integrals into integrals
over E and un is straigntforvard but tedious. <The metnod is
completely analogous to that used in coaverting the integrals
which enter the expression for the Hdall coeificient, and
will not be repeatedihere. At low temperatures, where the

derivative of the Ferzi function is sharply peaiked, we find:

I, _ {Rst‘dbe; |} X(AK) T%f(%i&%g
e {16 K|§§|}

Under the assumption that (;'>22K, , the integrals all have

(9.2)

Y
the range: -é;i.co-'?d,(:o]é <K [C2+2‘6 G } 2
These integrals are easily evaluated in terms of a vower
2
series in ZT‘li . Yo the lowvest non-zero order e find:
(-3 2 4 2
80 _ (P—H't). () ¥, (9.3)
e R2c 208

This result may now be compared with the experiments
of Kianchin (25). Using the various values of %; and i
given in Kinchin's paper, and our previogs choice of the
parameters ¥, ¥, , and Z:o , equation ($.3) predicts a
relaxation time: |

T ~ 4-6 x 101l seconds (T = 4,29K)

Galt et al. (27) report a relaxation time of apvroximately
10741 seconds, using the cyclotron resonance tecnnique.
+hus, agreement is again satisfactory. We shall discuss

the results of cyclotron resonance a 1little more fully in

the conclusions.
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SUMi{ARY AND CONCLUSIOIS.

The basis of our model of grapnite is a small inter-
planar interaction plus a certain number of exXcess electrons.
Perhaps the most striking feature of this model is its simp-
licity. Only taree parameters are incorporated in it ( ¥, ,

¥ and §,), yet it explains the basic features of most of
the properties of graphite in external fields. “The most un-
satisfactory result is obtained for the amplitudes of the
de Haas-Van Alphen effect fluctuations, which turn out to be
I'ar too large, even when estimated from a simplified three-
dimensional model. It may be argued that if the density of
states within the nth level had not been replaced by the sum
of three S—functions, the amplitudes would have been further
reduced. Although some reduction of the amplitudes would
occur, the major source of the trouble lies elsevhere. As
long as the macnetic energy levels are narrow compared to
their mutual spacing, large fluctuations (and discontinuities)
will occur in the de Haas-Van Alpnen eifect. ‘e nmust con-
clude that there is some other source ol level broadening,
whicii we have not considered. |

tne fact that the observed oscillations are smaller
than the theoretically predicted ones is in line with what
has been found to be the case in many other substances. In
Li, Ma, Cu, Ag and Au for example, no oscillations have yet

been observed, although one nhas reason to expect them on
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theoretical grounds. 'nese and otner cdifficulties with the
vresent theory have been discussed in a review article by
Chambers (2¢).

<ne form of the energy relations used in this thesis
were derived within the tight binding formalism. iowever,
Slonczewski (2¢) has shown that the same forin for these re-
lations can be obtained by group theoretical methods using
perturbation theory. Lt therefore seems improbable that
the difficulties with tae susceptibility oscillations have
their origin in this approximation. It may be that electron-
electron correlations are important if one wishes to explain
these finer features, and one gy nave to abandon the one-
electron anproximation altogether in order to find an
explanation.

Yhe experimental results on the Hall effect are difficult
to interpret. 1in view of the completely differeat results
obtained by Kinchin (25) and Hennig(26) at 300°L, the author
feels that the theoretical curve cannot be excluded. 1t is
true that flennig (26) measured nis Hall coefficient in rather
large fields (1%,000 gauss). IHowever, hinchin's curves for
the dall coefficient as a function of magnetic field indicate
that at 300%s this coefficient displays virtually no field
variatioan. Johnston (30) has also calculated the Hall
coefficient. dis curve is included in Fig. /. Although
nis calculation is restricted to temperatures between 150°K

and 350 K, his result is narkedly different from ours in
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this range. i#urtiner experiments seem necessary before one
can decide wvmnich curve best fits the results.

We have calculated the magneto-resistance to order He
only. An exact calculation, which leads to a saturation
factor, is possible for graphite. However, since such a
calculation is based on the Boltzmann equation, one can have
no coniidence in the results wnen the magnetic fields become
large enough so that guantum effects are important. (The deri-
vation of the saturation term is outlined in Apvendix III.)

In graphite, the condition for the validity of the Soltzmann

o sy? . o
equation is: —S«l. At low temperatures, this condition

2h g

breaits down in fields between lO3 and 10)+ gauss. <1his con-
dition agrees well with tae exverimental fact, that one can
observe quantum effects such as the de Haas-Van Alphen effect
in fields of the order of 5000 gauss (9,10).

Pinally, we have stated that our magneto-resistance
result corresponds to a relaiation time which is in good
agreenent with the value found by Galt et al. (2Y/) by cyclotron
resonance. Cyclotron resonance results also seem to indicate
the presence of positive carriers in grapnite. In theilr
publication, Galt et al. (27) state that the presence of these
carriers is uncertain, since a similar effect can under certain
circumstances be due to extremely eccentric energy surfaces.

In a recent private communication with Professor P.R. Wallace,

Galt exnressed tne view that the latter explanation is not
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applicable to graphite and that positive carriers are almost
certainly present. IFurthermore, Galt now believes that the
relaxation time may be as long as 1077 seconds at low tempera-
tures. Lf these more recent findings are correct, they are
diificult to reconcile with our model of grapnite. Because
of our position of the Fermi surface, we would certainly not
exvect vositive carriers at very low te.peratures. If no
positive carriers are present, how then is one to explain

the symmetric dip in the absorption curve at H = O, vhich

is obtained by c¢yclotron resonance?

It may be that this reduction in absorption near I = O
is a magneto-resistance effect, and not a true cyclotron reso-
nance. Chambers (32) has proposed that such an effect exists
in Bismuth. His argument is the following: In poor metals,
such as oismuth, there are in general too many carriers
present to attain the classical condition of cyclotron reso-
nance. <ne sikin depth is simply not large enough in such
substances. Iowever, Chaubers has shown that the skin depth
is proportional to the surface impedance. 4Iif f‘ér some reason
the impedance is considerably larger in a magnetic field
than it is when tie magnetic field is zero or very small,
tihen the siin dewvnth will also be a function of the magnetic
field. This case is realilzed if the sample has a large
magneto-resistance. In such a case a symmetric dip in the

absorption curve is to be expected near H = O. Now if our
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model of graphite is correct, then osismuth and graphite

snould behave quite similarly; tnat is, grarhite snould be-
nave more lilte a poor metal than like a semi-conductor, and
hence Chamber's explanation may also apply to grapinite.
Further investigation secms necessary before tiese diflerences
can pe understood. 1In tais connection, the vreviously
mentioned measurement of the de Ilaas-Van Alvhen effect would
be of interest, since such an experiment would test one of

the general features of our model.
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APPEINDIX I

Derivation of the coupled equations in the case of a

non-narnetic percurbation.

We start with the SchrBdinger equation in tihe presence
of tie perturbation.
Hy = [H+uly = Ey (1.15)

Substituting the relations (1.14) into this equation, we

shall first consider only the i, part of d.

Ho\(/ = ;C,(%)Hckﬂj o Zcz(Ei)Ho(?:j
) R3

low we make use of the equations (1.13a) and (1.13b). Then

o\{, Z C(R,_W (R’J Rz)‘f’u +Z ¢ (?,_ ,(Ej -i‘?;') ©re

JJR-'.
+ Zc,(el)lf (R e)p,, +Zc (P,\X (R R,Mfau
R;.R,
We now rename the lattice vectors. Let Ri - Rl = ?%, and

e = ——— P N

enlace the sums over Rj and Rl by sums over Rl and RS. Thus

How = 21 i, 8, (R, (Rt Ry +Z TR ACALIONS

Re\Rs

+ 2, Qg 'b"z(Rchz( R£+R,.,.) + Z $aq %,,(Rs) ¢, (R4 &)
Rll 3 ' Ry, R
Let us now make use of thg’operator identity
RV
- S -

where the gradient operator operates on the position vector

—

Rl‘ Therefore, we can write:
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Hy = Z\hin“(e)eEsZ ]+ZL921[ZXQ,(R\Q c(RL)‘_\
+Z&m[z (R)e cz(Rz] Z%AZKM(R\ (R)]

Using the relatlon (1.17), this equation becoues:
. OFf o> ~ Sl P . N A~
Ho+= % Qi Hu ("‘V)C\(Rl\ +%l‘ Pog Hay (49 ¢, (R
j1
1 ] . ¢ o -t -
% %__, Py H”_(-N)cz((?‘) + ;Leu H_za(-av)cz(R)

We now add the terms coming from Uy to HO\{J and equate

the result to By . We find: <
24 LB () (8 + W, 6 &) + U, @) )
¢ :
4~§ K?zQ[H (~ \V)C (], )+ sz( i) (R,_\+U(r)c2(R£)1
2 4

E[Zm SCAINED B |

At this stage, we make the assumvtion that U(—r") is a slowly
varying potential. Ve assume that within the jth unit cell
the potential differs little from the value U(E;). If this
is the case, we can replace U(;) by U(Ei) in the coefficient
of k?o«l , since this function is neaied 1n the 1tin cell.

Hext, we shall make use of the orthogonality of the
L&XS . This allows us to equate coefficients Of(ﬁq&, on the

two sides of the eguation. t‘herefore:
P -— R 4 ->» ~ - —_
Hy (7)) (R + HL(-19) e, (R + U(RY ¢ (R) = Ec (R

HS (59) (R + HO(5¥) ¢, (B) + U(RD R = Ecff)
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Lthis coupletes the proof of equations (1.16a) and
(1.16b) and shows that the approximate allowed energies in
the presence of a slowly varying, non-magnetic perturbation

are obtained from the solution of this set of coupled

equations.,

APPEHDIX II

Derivation of the couvled egquations in the case of a

magnetic verturbation.

Starting with equation (1.26), we rename the lattice
- — —
vectors. Let Rj - Ry = ﬁ; and re»lace the sums over Rj
and'ﬁi by sums overﬁﬁi and'ﬁé. fence:
Hy = Z‘?lz QXPLFC l.-r-l\‘u(R\C(RJ'RS\

R‘i RS

+ Z q’zz e“PLﬁc L+s] Xza(é.s)c' (.é'l"'z-s\

ll S
+ g'e Pie e"P[ e L+s] Xm(Rs) Co (R +R5)
s
"\'e_ -m . - .
+ RZEE Pop %P [Fc G&-s] 7rzzfz(Rf’) Cz(Rz"' l?s)
S

Let us again use the operaEQr identity
| . ReV
—_ P S —
c(Rp+R)=e (R
Furthermore, we shall again invoke the localization of {fy,

and q&z to simplify the Glﬂ- factors.

—fd?«[f‘ R -R l A(Q +R +A(F-§ RSD
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When such a term is multiplied by 4%2 OT ,, We replace T
by-ﬁzl Qr“ﬁél respectively. But we have vpreviously ignored
phase changes between the two atoms in the same unit cell.
This is equivalent to putting';'equal tongi in both cases,
and involves an error of the order of the ion core suscepti-

bility. ilence we find:
\
G, (F=§) = - [ R-A(R + (-0
Let A'=1~2A ; then
‘ .
GL+5(F= é.l) = -—_{‘d')" Rt.i’;s‘(él"')\,é;)
o

Substituting this relation into EWY , we get:

v

-
Re-V

Hy = %%e[% 5, Boe: e ¢, (&)
+ Z%![Z (Re. :. (Ee'ﬁ\]
+ Z%[Z (R)eQ e Cz(é;)z
+§%1[sz CARBUR AN
¢ Rs

where:

< 0n '4#

Q= 1? de Re - AR+ ARL)
It is shown in Appendix 1L of reference (18) that:

% & iw{.e [ - 2R &N

Using this relation and equation (1.17) we find:




Writing nk{J = E&‘J , and making use of the orthogonality of
the L&(K to equate the coefficients of these functions, one

obtains equations (l.2%a) and (1l.2Yb).

APPEDIX IIX

Saturation Factors in Masneto-Electric Effects.

We seek a solution of the Boltzmann equation
- to~4

- E + --V P H} V {

* v

by putting:

—f - k. olg) e
=1 - k.c&)F
iiow %:-(-‘ may be written:

Vf = [V-F] * 5V E = *'C(E.)B —V&E,
E-cond’qnt -

Using the relation W ——‘;\VKE , one easily finds:

(Tx)5,6 = = Yo . [Fn Zuol]

-~ o b d
The relation between X and v is determined by the E(k) re-

iy
lationship. For free electrons one has, of course,V =
— -
We shall now write V= == , wnere 3 1is some constant, or

()



=06 -

function of energy, put does not depend on the direction of
E: 1t is not possible to use such a relation for an arbitrary
E(E) relation, but one is able to do so whenever the E (k)
relation devends only on the magnitude of'zz For grapnite,

for instance, we have (in the two-dimensional case):

— Eul N = _ UK _ G
= FviK\ \YJ = \\'E = V‘K| e K

Let us now use this result in the Boltzmann equation. One

easily finds:

-e {_F\v £ - L3 Hx c(aﬂ} \/ ()

We have used the fact that it is never necessary to consider
—

powers of & higher than the first, so that one can put

f = o Tor these terms. We now note tnat the vector whose

—>
scalar product with v occurs in our equation, does not depend

on the direction of k. This clearly allows one to write:

-
F + ch(e} _‘_:‘-IIC.QE) (F- —eE>

The solution of this equation for the vector c(W) is very

simple. One simply takes scalar and vector products with
——p

the vector H. Using elementary vector identities, one finds:

i)z 2}* wE e 2.8 (15N eH
: = =0 - . “ S ==—
{(‘r\nc + S C(E) e r +’hCHXF +’hu_*;(_9‘,(H )’ ) ( #\C\

Let us now consider the special case where the maﬂnetic field

is applied along tne z-axis, while the electric field is in

-l oy

the xy-plane. Then the HeF term is zero and the vector c(E)
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has only x and y components. The equations for these com-

ponents are:

(1%

fr Cx vscy=Fh
(L) .
Sty T3z G = K,
Upon solving tnese equations, one finds:
o W\ -
('ht)‘:x"sr‘:, _ SFy +(m:)"

Tl T e

To illustrate how the saturation factors enter the integrals
for the various magneto-conductivity expressions, let us
look at thne electric current density vector J. Thus:

-

T —2e [>» _ +2eR (1 J(T 2 PL
J = e v’k = (23 Lo v(v. &) Se a7k

Neglecting the Hall term, this gives for the x-component of

v

J, for example:
y =20 j.—‘—v v, c, ofe 43k

x  (2w)® BE
The role of the saturation factors is now clear. The usual
treatment in terms of a power series in H would correspond
to expanding the denominator of cy in powers of e, Similar
exnressions are valid for the various other integrals which
are derived in this manner.

It nas been shown by Wilson (33) that the condition
for the validity of the Boltzmann equation for free electrons

et

ist —=<¢ i . This is simply the condition that
C




quantum effects are unimportant; that is, no electron shall
have time to complete a quantized orbit before it suffers a
collision. In graphite at low temveratures this condition
is: §$ﬁfﬂﬂz<<( . It is interesting that this is just the

LYo .
condition for the validity of the expansion in vowers of He
of the functions cy and Cys acain at low temperatures. At
nigh teuperatures, in graphite, the Fermi surface is near
the degeneracy point and the boltzmann equation is certainly
not valid, because of the increased possibility of band-to-
band transitions. _

One must conclude.that whenever one is justified in
applying the Boltzmann equation, one is also justified in
using an exXpansion in powers of He., This makes the saturation

factors meaningless from a practical point of view.
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