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INTRODUCTION. 

Graphite is perhaps the most m1ique of all solids. It 

has long been Jr..nm.·m that graphite possesses a layer structure. 

Within a layer the carbon atoms are arranged in a continuous 

hexagonal array, each atom having three nearest neighbors at 

a distance of 1.42 A0
• The distru1ce between adjacent layers, 

on the other hand, is 3.3'/ A0
• 'l'he interaction beb1een the 

layers is thus very weak, a fact which results in large an

isotropies in the properties of graphite. Thus the magnetic 

susceptibilities parallel and perpendicular to the graphite 

planes differ by a factor of 40, and the electrical conduc

tivities in these directions differ by a factor of 104- 10'. 

~his large anisotropy is however not the only peculiarity of 

graphite. If the electronic band structure is investigated 

in the tight binding approximation, one finds that to a first 

approximation the valence and conduction bands just touch in 

graphite. Because of this result, graphite has sometimes 

been referred to as a 11 Zero-gap semi-conductor 11
• Hore detailed 

investigations seem to indicate that in fact the valence and 

conduction bands overlap slightly, and that the Fermi surface 

does not lie exactly at the lo1.rest point of the conduction 

band. Thus a certain number of free electrons are present 

even at very lou temperatures, and graphite should be more 

properly referred to as a metal. 

The lamellar structure of graphite may be used as the 
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basis for approximations in a theoretical treatment of the 

electronic band structure. }'or the theoreticians, the struc-

ture of graphite is therefore a simplifying feature. Unfor-

tunately, the same is not true for the experimentalists. On 

the contrary, the extreme anisotropy makes the experiments 

very difficul t. lï'urthermore, the peculiar band structure 

makes most of the properties very sensitive to impurity con-

centration. 'l'he "\>Ti de variety of re sul ts \vüich has be en re-

ported for the various properties of graphite is probably 

due to these tuo complicating features. 

In the present study of graphite, an attempt is made to 

correlate the various effects 1·rhich are observed in external 

electric and magnetic fields. vie shall investigate the 

magnetic susceptibility, the de Haas-Van Alphen effect, the 

ratio of the principal electrical conductivities, the zero

field Hall effect and the lmv--field magneto-resistance i..r1 

order to establish whether all these effects can be explained 

by the same model. \'le -.;vill be led to the conclusion that a 

model of graphite based on an excess number of free electrons 

and a small inter-planar interaction is in good agreement 

with experiment. Perhaps the most striking feature of this 

neioJ' model of graphite is its simplicity. The model, which is 

based on the tight binding approximation, incorporates only 

three inde pendent parameters: ~0 , the nearest 11 in-plane 11 

exchange integral; ))1 , the nearest 11 out-of-plane 11 exchange 

integral; and L;o , the position of the !t'ermi level at 



-3-

absolute zero of temperature. 

Several attempts have been made to explain the diamag

netic susceptibility of graphite (l-3). Most of these cal

culations are based on the Landau-Peierls formula (4,5) which 

predicts a susceptibility much smaller than the observed 

susceptibility (2). The failure of the Landau-Peierls formula 

has been attributed by Adams (6) to the fact that it neglects 

b~~d-to-band transitions. These transitions become important 

whenever there are tvro or more bands in the conduction band 

region. In graphite, Hhere the conduction and valence bands 

touch to first appro:::::i~nation, the band-to-band transition 

terms must be expected to be important. NcClure (3) has 

extended previous investic;ations by taldng these terms into 

account. UsLTl.g the equations of Luttinger and Kolm (7) and 

the t'.vo-dimensional band structure of Wallaceii (ts), he has 

succeeded in solving the equations for the energy relation 

in the presence of an external magnetic field. McClure•s 

work presents a very satisfactory explanation of the diamag

netic susceptibility of graphite at high temperatures. It 

will be seen that a two-dimensional model is also capable 

of explaining the average value of the susceptibility at low 

temperatures and the average period of the fluctuations in 

the de Haas-Van Alphen effect. 

fhe observed average low temperature susceptibility of 

* ïhis paper will hereafter be referred to as A. 



-30 x 10-6 emu/gm (1) requires the Fermi Surface at low temp

eratures to lie about .06 ev from the degeneracy corner, while 

the observed average period in the de Haas-Vru1 Alphen effect 

fluctuations (9,10) of 2.15 x 10-5 gauss-1 requires <;
0 

, the 

zero temperature Fermi level to lie at about .065 ev. \-le 

shall .see that this rather large value of ~0 does not imply 

that the high temperature susceptibility becomes vanishingly 

small, as NcClure supposed. The apparent discrepancy is re-

conciled by taking into account the shift of the Feru:li level 

with temperature. 

We shall see that if a three-di~ensional madel of graphite 

is considered, it is still possible to obtain the energy 

spectrum in the presence of ru1 extcrnal magnetic field. When 

the hizh temperature susceptibility is calculated from this 

three-dimensional model, \·Te 1vill be led to the conclusion 

that the inter-layer interaction is much Heaker than vras pre

viously: supposed (o ,11). If \ve are going to retain any sus-

ceptibility at all, we require 1S'1 , tile nearest "out-of-plane" 
N 

exchane;e integral, < .01 ev. ~'hus "~:le shall find that graphite 

is essentially t\'10-dimensional in structure. An independant 

rough estimate of )(1 can be obtained from the de Haas-Van 

Alphen effectif onP- · uses the semi-classical (Bohr-Sommerfeld) 

approximation (12). In this approximation, the t\-ro periods 

of the de Haas-Van Alphen effect (9,10) determine both l;
0

and 

~ • A simple calculation based on the results of Lifschitz 

and l(osevich (12) yields ~0 1V.065 ev; ~\IV .005 ev. 
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Since è; 
0 

, tl:1e Fermi level at very lm·T temperatures, 

nm·r lies a considerable distance uithin the conduction band, 

the question of the origin of the se e:;::cess electrons arises. 

A tight binding calc-:.1lation of the energy band structure 

reveals that for an infinite crystal there are just enough 

states in the valence band to account for all the electrons 

in the crystal; that is, one finds that the Fermi level lies 

exactly at the degeneracy point betvreen the valence and the 

conduction bands. vfuere then are the extra electrons coming 

from·: Impurities are of course a possible source. Hmvever, 

one could hardly expect any reGularity from crystal to crystal 

if this were the main factor. i··urthermore, it vrould require 

a large amount of impurity to shift the Fermi level .06 ev 

in graphite. Hrozowski (13) Has the first to investigate 

this peculiar state of affairs in graphite. ~y studying the 

resistivities of colced graphite over a 1'lide temperature range, 

he came to the conclusion that the major source of the free 

electrons uas not the impuri ties, but gral;hi te i tself. Let 

us consider an actual (finite) crystal. The carbon atoms 

near the surface of this crystal are unable to form proper 

valence bonds , because there are not sufficient neighboring 

atoms. If proper valence bonds were possible, the electrons 

formin8 these bonds vmuld have their energy lovrered through 

bonding. Thus, the electrons on these surface atoms have 

energies higher than the energies of the electrons in the 

valence band. J.'he surface electrons may thus have energ ies 
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vlhich lie in the conduction band. Supposedly, it ;;.;ould talee 

very little energy to free such an electron coripletely, so 

that it 1,-rould become a conduction electron. 

Our choice of Fermi surface is thus qualitatively explained 

by l·irozo\IS-'-i:i' s surface bonds. Quanti tatively, agreement is 

also good. Using the expression for the density of states 

near the degeneracy corner given in A, it is easily shm·m 

that <;0~.06 ev implies that there are approximately 10-3free 

electrons per atom. Mrozowski esti~at~s that there are 10-2 

to 10-3 free electrons per carbon atom from the thermo-

electric power of carbon. 

Finally, the above explanation of the origin of the 

excess electrons implies of course, a size effect. Generally, 

larger crystals Hill have fewer excess electrons per atom, 

and hence a Fermi energy lOï·Ter tha.n that of smaller crystals. 

Such an effect could hm·1ever be masked by other secondary 

effects, such as a change in the mean free pa th l.fith crystalli te 

size (cf. Mrozowski). 

In order to test our ex9lanation of the susceptibility 

ruJ.d of the de Haas-Va.J. Alphen effect, it 1·rill be desirable 

to investigate the consequences of our small value of ~ and 

large value of ~0 on other properties of graphite. Unfor

tunately, the usual difficul ties l.·Tith the relaxation time 

prevent one from doing tJ.îis satisfactorily. HOi·rever, it 

should still be possible to decide 1:rhet:i.1er a compatible ex-

pla...J.ation is possible, or I>Jhether a completely different 
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choice of parameters is required for each effect. Using 

standard formulae for the electrical conductivities, the 

1ïall coefficient a.t"J.à. the transverse magneto-resistance, it 

1-rill be s.àmm that satisfactory agreement is obtained vrith 

the follo1:;ing choice of parameters: 

~0 = nearest "in-plane" neighbor exchange integralN-2.5 ev. 

~~ = nearest 11out-of-plane 11 neighbor exchange integralN' .005 ev. 

~0 • Fermi level at zero temperature N .06 ev. 

Section I deals l.vith the derivation of a set of coupled 

equations, \orhich upon solution yield the energy spectrum of 

the electrons 1_.;hose energies are near the ~·ermi energy. The 

results of this section are not restricted to graphite, but 

apply to any substance for -vrhich the approximations that are 

made are justifieà.. In section II, the e quations obtained in 

section ~ are solved li1 the case of graphite, for a two

dimensiona l as well as for a t hree-dimensiona l model. It is 

shmm that the results in the t"t-ro-dimensional case agree with 

the results of HcClure (3), and that tl1e t hree-diinensional 

model predicts a spectrum \·Wich approaches tllat obtained from 

a t-vro-dimensional calculation as ~' ~ 0. ln section III i t 

is shm·m that the in.ter-planar interaction must necessarily 

be very small if one vTants to retain agreement vrith the ob

served susceptibility at high temperatures. ~ection IV deals 

wi th the temperature variation of the Ferini level. This 

variation is of utmost importance in the case of graphite. 

We shall see that it is e ssentially this shif t of the Fermi 

.. ---
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level "i'Ûlich is responsible for the observed variation of the 

susceptibility -vrith temperature. In section Vl the suscepti-

bility and the de Haas-Van Alphen ef'fect are calculated. 'l'he 

result is compared Hith that obtained from a semi-classical 

treatment and an interesting difference behreen the t'\-ro 

approaches is noted. The ratio of the t-vro principal elect-

rical conductivities is calculated in section VIl. We shall 

see that the ratio O'ii becomes about 105 11ith our choice of 
o::L 

parameters, in fair agreement 1-rith the experimental results 

of Krishnan and Ganguli (14) and of Dutta (15). Lovrer values 

for this ratio have also been reported, for example by Primak 

and Fuchs (16). It is fel t hmJever, thut the largest reported 

experimental value should be chosen for comparison \•Ii th theory, 

since any slight misalignment durin;; an experiment 1vould 

greatly reduce Llis ratio. ':L'he zero field Hall coefficient 

is calculated in section V Ill. At lm·r temperatures, 1vhere 

the difficulties due to the relaxation time are least severe, 

agreement vri th experiment is excellent. At higher temperatures, 

the calculation beco:nes doubtful because of the simplifying 

assumptions about the rela::ation time, and the experiments 

beco~e difficult to interpret. Finally, section IX deals 

vrith the lo;-r field, transverse magneto-resistance. At loH 

tenperatures, the mean free path cancels out of the expressions 

for the ratio of the conductivities and for the Hall effect, 
~ 

if one assuraes that the relaxation time 'r depends on k 

only through the energy. '.J:his is not tr.ue in the expression 
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for the transverse ;nacneto-resistance. In l'act, ~~ is just 

pro) ortional to t-4
• Comparison 1·ri th e:::1)eri:"aent yields a 

value for t ~1e rela::::ation tioe 1::" , Hl1icf1 can be conpared Hiti.1 

tl1e results of cyclotron reso~1211ce. A.:;ree:nent 1'lit11 e;:lJeriment 

is acain S<J.tisfactory. 

üummarizinG, \·-re s.llall find that a iLiodel of c raphi te 

i:>ased on e::cess electro:1s and a small inter-pla.nar interaction 

is in good ag::..~eeuent ':ri th experiment. '.ihe value of the ';in

pla.."1e11 exchange inteeral ~o is deter:Jined most directly by 

the high temperLlture susceptibility. J.he position of the 

J:i'err:1i surface may be determined independently from each of 

the following effects: 

1. l.'he mean period in tt._e de :-raas-Van Alpl1en _ effect. 

2. The average steady low temperature susceptibility. 

3. The low temperature, zero field Eall effect. 

4. 'l'he transverse mac:neto-resistance (only indirectly). 

On the other band, the srnallness of t!1e inter-planar e.:;::chaï18 e 

integral follo~·rs independently from: 

1. ~he ~igh temperature susceptibility. 

2. '.L'he t~_ro l)eriods in the de Haas-Van Alphen effect. 

3. '.L'he ratio of t .he electrical conductivities. 

~-. 'l'he tra~1sverse magneto-resistance (only indirectly). 

ri 
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I. THE HOTION OF ELECTRONS IN A PERTUH3ED LATTJ:CE. 

In reference A, the band structure of graphite vras de

rived in the tight binding approximation. Such a calculation 

is ahrays based on the assumption of a perfectly periodic 

lattice and a perfectly periodic potential in 1vhich the elec-

trans move. \-le shall nm·T be interested in \vhat happens to 

these electrons 1vhen the periodicity of this potential is 

perturbed, for example through the application of an exter

nally applied electric or magnetic field. Luttinger and Kohn 

(7) have developed a general theory of the motion of electrons 

anà holes in perturbed periodic potentials. Their equations 

form the basis of HcClure•s calculation of the diamagnetism 

of graphite (3). HcClure' s equations (~.'/a and 2. 7b) are a 

special case of Luttinger and r~onn' s equations after certain 

terms are neglected. ~he approximations involved are based 

on the follovring tHo simplifying features: 

a) .dear the degeneracy point of the valence and conduction 
~ -+ 

bands in t;raphite t he E(k) relation has the form E(k)IV CK 

- 2 and not E Uc)rv Ch , vrhich is the more usual form val id 

near the minimum of a band. This allows one to neglect 

terms quadratic in .~. .. for all energies of interest. 

b) In graphite, the susceptibility with the magnetic field 

parallel to the crystallographic c-axis is about 40 times 

larger than the ion core susceptibility. Hence one is 

justified in neglecting any terms which lead to a sus-

ceptibility of the order of the ion core susceptibility 
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in the calculation of this quantity. 

In extending the \Wrk of HcClure, vre shall also make use 

of the fact that the susceptibility \•Te wish to calculate is 

much larger than the ion core susceptibility. 'l'his allm·rs 

one to derive an approxima te set of equations, 'l.vhich upon 

solution yielà the energy s:pectrum in the presence of an applied 

magne tic field. This approach has b,w advantages to recomrnend 

it 1.ilienever it is possible. ïhe derivation shows quite clearly 

that the approximation corresponds to neglecting terms of 

the order of the ion core susceptibility, and the derivation 

re sul ts in a simple prescription \·Thich tells one hm·r the 

equations are to be -vrri tt en do~om from the re sul ts of a tight 

binding calculation, such as that in A. 

îüe derivation of these simplified equations will be 

carried through using Léh;din functions (1'1) and is thus carried 

out 1-ri ti.1i..n the tight binding formalism, al though one could 

generalize this approach. ~he proof given here parallels 

closely Luttinger's derivation of the 11 perturbed lattice 

equation" (lb). 

Let us for the present assume that vre need to consider 

only one band if l.·re "I:Jish to study the effect o.t' the perturbation. 

1.'his case 'l.vould arise if our crystal had only one atom per 

unit cell and only one atomic orbital per atom. An actual 

crystal will in general have several bands, but it may still 

happen that the particular band of interest contains only 
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electrons vrhose energies are far different from the energies 

oi' electrons in any other band. L'Yl such a case we expect that 

it is virtually impossible for an electron in the chosen band 

to jl..llt1~) to any other band, so that vre are j ustified in ignor

ine the presence of tJ.1ese other ba..r1ds. 

If band-to-oand transitions can be neglected and if in 

addition the applied perturbation is slovrly varying (i.e. if 

the perturbation changes only slightly over the dimensions 

of one unit cell), then Luttinger 1 s perturbed latt ice equation 

applies. 1'his equation may be \·Tritten 

[E0(-iv-~A)+U(t)1c(r) = Ec(;) ne 1J (1.1) 

1,.rhen the perturbation is due to an electric and a raagnetic 
~ 

field. dere, A is the vector potential for the magnetic 
-+ -l> -+ ...... 

field B, and for an electric field U(r) = e~(r). E0 (k ) 

is the energy in the absence of any perturbation and 
~ -+ ...... 

E (-iV -~·A) is ti1e same f u..'1.c t ion 1:ri t i1 the argument k re-o l\c 
- e. ~ placed by -iV -1\c.: A. In 'tvhat fol1m.vs "tve shall always use 

the Landau cauee for t he magnetic vector potential, t"hat is 

\·re shall t ake: Ax = -y Ii ; Ay = Az = 0. 

It may so~etDnes be convenient to transform equation (1.1) 

by defining: ... ..., 

= f eik-r cl ( k\ dsk (1. 2 ) -.... 
'U ( k}= (~ir')~ Je-ik•r UltLJ•r (1. 3 ) 
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Usli1g the relation 

(1.4) 

equation (1.1) may be rewritten as: 

E. [k -is~ k k ]d(k)+fU(k-k')d(k')J~k· =- Ed(k) 
0 i( ~ky') y.). z 

(1. 5) 

where s = ~ • 
~c 

~his equation may sometimes be more convenient from the 

point of view of solution. 

He nmr turn to the generalization of equations (1.1) 

and (1. 5) in the case vrhen one is no longer justifieà 1.:.'1 

neglecting band-to-band transitions. For simplicity, He shall 

only treat the case vrhere two bands need to be considered. 

Furthermore, \·Je shall assume that the se two bands are due to 

the fact that the re are t\vO ator.1s per unit cell in our crystal, 

and that 'tve are still justified in using just one orbital 

per a tom. 'l'he re sul ts uill th en be dir ectly applicable to 

two-dimensional graphite, if we restrict our treatment to 

the p
2

- bands. ;l'he above sim.plification is only made to a void 

nota tional difficulties. We shall see that the generalization 

to the case of n atoms per m1it cell and m orbitals per atom 

is a trivial one. 

Let us define: 

(1.6) 

Here OC and (3 label the t'w different atoms in the unit 
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cell, and i and j label the ith and jth nnit cell in the 

crystal. The ·:x. 1 s are atomic orbitals centered on the appro

priate atoms. Thus Xio< is an atomic orbital centered on the 

o< th atom in the itl1 unit ce11. Equation (1.6) could also 

be 1.1ritten: 

(1.7) 

It is easily checked that the functions defined by 

-~ 'l)o( 

lf\« -=- ~ X j~ ( i+ s) j
2

~ 
j;>O 

obey 

provided the expansion of the matrix 
~b 

1 o('~ 
(1 ·~ S)i~ rin powers 

. '6b . 
of Skl . is convergent. \·Je also note tnat Skl lS not real1y 

a fourth order tensor but simply a matrix. riovrever, it is 

more convenient to label the atoms in the iildicated manner. 
o(~ 

'ihe matrix sij has the property that: 

s~~ = s ~~ =f- sr;' or s7f 
Let us first cons iàer the case of a perturbation other 

than a magnetic field. The latter case requires special 

treatment and 1-rill be considered later. VIe nm.; denote the 

t1.vo atoms in the unit cell by 1 and 2 . 'l'he Lo\vdiil function 

centered on atom number 1 in the unit cell labelled by the 
_.,. ~ ~ 

lattice vector Rj is denoted by 'flj = lf 1 (r-Rj). Similarly, 
•• 

the Lo· .. rdi.n function c entered on atœn number 2 in the same 

.... -cell is denoted by f 2 j = f 2 (r-Rj). .J:t'ollovring the tight 
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binding procedure 'l:Te novr construct an approximate Bloch func-

tion for our pro blem by talüng 

-vrhere 
..... "'""">-

. " \k.Rj_ 
'\-12. = ~ e \f2j 

Rj 
constants to be determined. 

(1.10) 

The re-

lation (1.10) is no\·r substituted into the SchrodL1ger equation 

ll.ll) 

llere H0 is the one-particle Harniltonian operator in the ab

sence of any perturbation. We now multiply (1.11) alternately 
• V: 

through from the left by '-\11 and by '\J2 and integrate all 
..... 

resultinr; terms over r. The t-vw resulting equations can be 

written: 

(1.12a) 

(l.l2b) 

'·rhere: 

By virtue of the orthogonali ty of the Lo~·rdin functions l·re 

also have: 

(l.l3a) 

(1.13 b) 
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'l'hese relations are easily verified by multiplying them through 

b l() "*' d . t t . ~ y TO<'i<' an rn egra mg over r. 

\ve nm-r introduce the perturbation u(t). 'l'he· expansion 

of 4'1 and '-\1.2. in terms of Lo"t·Tdin functions is still possible 

in the presence of the perturbation, but th~ phase factors 

are nm·r replaced by arbitrary coefficients, uhich are to be 

àetermined. ~.{e thus tal-ee : 

'\f, - .Z c CR·)t.p. (l.l4a) 
R· 1 J lj 

:.1 

t'2 - ~ c2 l .Rj)~2j (l.l4b) 
R· 
~ 

aild t - ~1 + o/2 (1.111-c) 

It is no longer necessary to include the constants Â 1 and 

À2 , since these may be incorporated in c1 andc~respectively. 

Let us nm.·r opera te uith the total hamil tonian opera tor H on 

the function q; • 

(1.15) 

It is s~lm·m in Appendix l, that the resulting set of coupled 

equations for the coefficients c1 and c 2 are: 

(l.l6a) 

(1.16b) 

where: 

(1.1'7) 
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Suppose tha t \·re need to talŒ into account one band only. 

îhen c2 • 0, and the equations (l.l6a) and (1.16b) reduce to: 

and since 

e (-+) ~ ik.~ (- · c--) Hu k = ~ e r Rs) = Eo ,k 
Rs 

t!J.is is exactly Luttinger's result in the absence of a magnetic 

field ïr' (cf. equation 1.1). 

Again, it may be more convenient to replace equations 

(l.l6a) and (1.16b) by their Fourier transforms. Defining 

and a _,_ -+ 

U( k) = (2rr\Të 1 
k· yU (;)ela~ 

it is easily shm·m that the generalization of equation (1. 5) 

becomes: 

H~(k)d,(k)+ H~2 (k)d2(k)-t-ju(k'-'k')d,(k')d\( --- Ed.O<) (l.H>a) 

H~(k)c(,(k)+ H;
1
(lt}d

2
(k)-4-furk-k')d2(k;)a\3 k'. = Ed2(t) <l.lbb) 

In this form our re sul ts are easily compared 't.ri th a tight 

binding calculation such as the one in A. Suppose that the 
~ 

perturbation U(r) ~ O. Then equations (l.loa) and (l.lbb) 

reduce to a set of algebraic equations. The condition for 

is then simply: 

H~2 1 = o 
H~ 2- E 
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~ 

'l'his is exactly the secular equation which determin.es the E(k) 

relation in the absence of a perturbation. 

',le nm·r turn to the case of an external magnetic field. 

\ve shall follovr the derivation given by Luttinger (lu). Ho-vr-

ever, as in the previous case, we shall generalize this de

rivation by takin.g into account b .. ro bands. ~fuerever it is 

possible, vre shall use tne notation e ::nployed in reference (lt$ ). 

ln the previous derivation "~:re chose: 

~ = ·~ c 1 l'R) <.p,1 + .f. c2 (~') l?~j (l.llt) 
J J 

'l'his form of \fi is no longer sui table for the magnetic field 
-+~ 

case, because of the A·p tero in the Ha:.1ilto~1ian operator. 

We shall see that 1:1e can approximately remove this term from 

the hamiltonian by replacing (l.l!.J-) by 

'-\J = ~ c,t'R;)e><pl ~G,J1l(i,j + f. c/R;>ellp[~: G2Ù if2 j ( 1 .19) 
J ~ j 

where: r 

0(~ 
G . = ~Alr')or~' ·- . Here, R«j is the po;Îtion vector of the o<th atom in the jth 

unit cell, and the integr a l is t aken along the straight line 
~ ..... 

path from R«j to r. ïhe exponential terms essentially re-

center the magnetic pot ential for ea ch atom, so that this 

potential n ever becomes infinitely l a rge at any a tomic site. 

The factors G«j can be represented parametrically: 

1 

G . = r c~- -R ·)· A[R . + Â(r- :R ~)·:1 dÀ 
O(j J -<J -<j O(j '..\ 

0 

(1.20) 
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We noi:T proceed to evalua te H ~ • :rhe itamil tonian opera tor 

H has the form: 

. )2 
\-\ = *' ( -p- ~A + vc;) (1.21) 

~ 

~lere V(r) is the periodic lattice potential. ïhus: 

Ht· = i:c/~·l H e)(pt~:Ci.Jq>1j + ~ c1(Rj)H~xp\~ G2j)lf2j 

= ~·c,tR;)el'\'l~"e_G,Jlt.;,[P- i<Â- VG,;~~ v}lf,j 
J 

+ ~c2(Rjl""f'[~: G.J{t;;[P- ~(Â-VG~)]\ V }'f2j (1.22) 

J --
in Appendix 1 of reference (lb), V G j is col-;J.puted. For a 

constant magnetic field one finds: 

(1. 23) 

Suostituting (1.23) into (1.22), we see that \·re have accom-

--~ plished our a im of removing the A·p term. Hence: 

HI\J = ~ c,<R;)ey.rl~G~}{tlP+~cr-R.j)x ~]~v }'f•ï 

+ .f:c/~le•r[!~G..~}[~[J."+~<-;-~i)x~r ... v h~j (1. 24) 

~ 
-~ ....,.. 

allo\·rs us to put r .-v Rlj ï'he localization of~~; and l(>~ and 

·-r rv H2 j in the opera tors •:rhich act on \.{) ;j and \{>2,i respecti v ely, 

provided li is not too rapidly varying. lve then find: 

1-\~j~ = { c, (R;) e..pl ~ G,~1 Ho~~~ 
+ ~ c~ CRi)~[~: G2.i 1 Ho 'f2j 

J 
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'l'his procedure still leaves us "~:Tith an expression which in-

volves two different phases, due to ti1e terms Glj and G2 j. 

Although it is possible to carry the C8.lculation through in 

this case, a considerable simplification results under certain 

COilditions. 

Suppose that \fe ignored the phase changes betHcen the 

tvro ator.1s in a unit cell and replaced them by an average phase. 

That is, suppose that -vre put Glj = G2 j -= Gj. Then, since our 

·~ Lm·rdin functions Y'cj ruJ.d tf1~ are centered u.t different points 

in the jth cell, the localization of these functions '\vould 
-+ 

no longer cause the VG~j terms to vanish in (1.24). Instead, 

these terms are no~:r 

.e. (~ --) ·~ 
-r-RJ~xH 
2.C. - ... --and vl8 are replacing r by R1 · or R2J., depend:LYlg on 't·Thether 

-J 

the operator acts on "{>1j or \.{>'l-1 Let us choose the origin 
_,. 

of t!le jtb unit cell (given by Hj) to be halfi·ray bet'tveen 

the tl,'fO a toms. In this case, our equation becomes: 

+ f. c2(R;)expl~ec. fi-;1t i;; L P-~ t;~ >< H 1 '+v} lf~.i 
" --- ~ 0 'tvhere ri2 • Rlj - H2 j. In graphite, for example , r 12 is l.l.~2A. -- ~ 

~·le uould lL:e to neglect t!le r 
12 

x II terms :LYl the ab ove 

operators. Let us estimate the error involved :LY1 this approxi

mation. Since ::e are primarily intere sted i n a calculation 

of the susceptibility, '\·Te see that \·re are nec;lecting H2 terms 
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in the energy \•Thicil. are of the order of 

"-' . e2. r "H x 6i]!1. 
Sll'\ c:·l l .2 

J.'hese terms thus lead to a contribution to t l1e susceytibility 

,.,hich is of the order of tJ.1e ion core s-:..:.sceptibi1ity. idhen-

ever the e1ectronic susceptibi1ity is much 1arger than the 

ion core contribution, one may neg1ect the variation of the 

p!lase terms '1.-li thin one unit ce11 ru.1d ;-;ri te: 

~~ = ~ c,(~j)e.xpL~~ Gj.} \-\o'{>tj 
:J 

+ ~ c2CRj)e)ê.~l~GJ Ho \f·2~ 
Rj .., 

(1.25) 

8ubstituting l1.13aJ and (1.13b) into (1. 25) \ve find: 

Ht = ~ c,(~ie"f[~:_ Gj1lt.,<~-RL)lf1t+ 1f2 SRi -"Rt)~,,_l.. 
R.)) ~t. . J 

+ L. c/ît;)e><p[~ Gï{ ~/"Rj-R~)IlJ1q_+r2.2 \R:i -Rt)'ft.} 
~.R~ . 

(1.26) 

The resultine equations for c
1 

und c
2 

are derived in Appendix 

II. '1'hese equations may be 'i>rritten: 

(1. 2 '/a) 

Def'ining 
.... -.or 

c., ( ;-) =Se i\t:.. ~ 8"' C~) & 3k (m -= 1, 2 ) 

the Fourier trans:i:'orms of equation s (1. 2 '/a ) and (1. ~/b) 

become (f or t iJ.e s ) ecial case oi t he Landau r:-a· ·oe ): - ,_, L.l6 
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E.B, (l.2lJaJ 

(l.2ôb) 

T.hese equations form the basis of our calculation of the 

susceptibility. i.'fote, that as s - ~~ ~ 0, the equations 

again become alr;ebraic, a...'1d the condition for a non-trivial 

solution is the sanc as that given earlier. 

The ceneralization of these results to the case of an 

m-fold degeneracy is straightforuard. ln that case one vrill 

obtain & set of rn coupled equations of t~1e same type as the 

e quations ue have cons idered here. 
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II. THE E?~~ERGY SPECTRUH LJ ~HE PfŒSK~CE 01.i' A 1·lAGlJETlC FIELD. 

In this section, i·re sh2ll be intere ste à L'l the solution 

of equations (l. 2üa) and (1.2ob) in the case of t\m- dimensional 

graphite. We shall also ex:tend the treatment of section I, 

so that t!1e t~1eory mo.y be applieà. to three-dimensional graphite • 

.Ln both cases, \"le shall be interested in calcula ting the mac__,. 
ne tic susceptibili ty of r;raplü te ~·rhen the magne tic field H 

is applied alonc the crystalloeraphic c-axis; that is, per-

pendicular to the graphite layers. ln this case the o·oserved 

susceptibility is much lal~ :: er than the ion core contribution, 

so that our approximations will be valid. The susceptibility 

perpendicular to the c-axis turns out to be of the order of 

the ion core contribution, so that the quantity we shall be 

calculati.ne is essentially the difference behreen these two 

susceptibilities' xli- x.L '::::!x,, . 
Section :L re sul ted in a simple prescription, 1vhich tells 

one ho1:1 the set of coupled equations, i·rhich yield the energy 

spectrwn in t:i:le presence of a mat;netic field, are to be written 

dmm. One siml)ly tal~es the secular determinant \vhich deter-
~ 

mines the E(lc) relation in the absence of the magnetic field, 

and mal.;:es the elemel:ts of tilis determinant operators by re

placine kx by k -is 2._ (s =_:cH ) . '.L'he elements of the 
x ~ky- " 

resulting matrix operator are to be taken in the sense of an 
~ 

expansion, and the opera tor acts on a colunm vector .di (k), 

l·rhose dii:1ensionality is the multiplicity of the deg-eneracy 

in question. 
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Let us first consider the case of two-dimensional graphite. 

'l'he secular equation in the b:ro-dimensional appro:;~irJation is 

given in .A as: 

where: 

H' 21 

H]_2 
= 0 

H22 - E 

;l'he notation he re is the same as · tJ:1at used in A except that 
~ 

our k 1 s are defined differently by a factor of 2lt. 

Ïfle nou expand these elements to loHest arder about the 

degeneracy corner. lntroducinc: 

1 
1<:~ 

2lC 
kx= k5t+ kx = Sq 

1 

~+!<:y kc 2n: 
ky= =--y aQ 

1ve find: 

1 .-...J ··- + v' = H. ., , = ~0 3 o. c:..c:.. 0 

•. 1 

--1~ 

'l'he notation ~V = f3t a 1vas first introduced by NcClure (3) 
2 0 

and will be used throughout this the sis. Furthermore, vre 

shall from here on measure energy from the degene racy corn er; 

tha t is, \ve shall put I-I]_l = H22 = 0. _. 
'l'hus, in tne absence of a magnetic field H along the c-axis, 

the energy spectrum in the vicinity of the degeneracy point is: 
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Let us nm·r apply a magnetic field along t .:1e z-direction (the 

c-axis in t;raphite). li'ollowing our prescription, our set of 

coupled equations is: 
.. 

.=0 
-E -\=\ Œ[k .. d l V e~ -ïk -s-

Y x ~ky 

-E 

or: 

= EB..2 

~hese equations are completely equivalent to McClure• s 

equations (2. ·;a) and (2. '/b). '.i.'he solution for :a1 , B2 and 

the allovred energies E is given by 1-i.cClure (3). The predicted 

energy spectrum near the deGeneracy point is: 

It should be pointed out that the secular determinant used 

here neg lects overlap. 'l'his is clearly equivalent to asswning .. 
that the Lm·Tdin functions are simply ator.üc orbital~ and not 

coinL>inations of ato~rtic orbitals centered on different atoms. 

Coulson and 'l'aylor (11) have e stimated the various overlap 

i.1J.tegrals for Pz-orbitals in sraphite, and have s :1o1·m that 

only nearest neighbor overlaps are i m}Jortant . If this overlap, 

uhich \·re shall call a- , is cons idere d, i t is easily shovm 



that the above energy spectrum is replaccd by: 

E. 

- Eo
"Yc:" 

~ = ±v(ns):2 

Coulson and '1'aylor (11) estima. te that c:J"::::! • 25·. L.iince He 

are interested in energies ne ar the degeneracy corner, 0 ~ E f. l:o, 
and since YG~ 2.6 ev, it is clear that overlap contributions 

are completely nnimportant. lt may similarly be verified 

that i1•1clusion of second-neig.hbor exchange integrals has no -appreciable effect in the region of k-space vrhich is of interest, 

namely, near the corners of tüe .i:lrillouin zone. 

Let us now extend this treatment to three dimensions. 

·'l'le shall consider only nearest neighbor excnange integrals 

in the plane and 11earest o-u.t-of-plane exchange intet: rals. 

Second-nearcst in-plane e:;:change intec;rals again turn out to 

be unimportant. l'he introduction of tl"le out-of-plane inter-

action, on the other nand, changes tne ener gy spectrwn corn-

pletely, since i t is t :üs t e rm 1.vhicl1 introduces t.i.le k -depen
z 

denee into the problem. 'J.'nis 1-.:
2
-dependence vrill have the 

effect of spreading the snarp energy levels of ti.1e t ·t-ro-

dimensional calculation. 

Under these assumptions, the secular eq_uation for three-

dirnensional gr aphite is lcf. refe r ence A): 

\-\ - E -)( s Y.r 0 c 0 1 

-)) s• \-+CJ- E 0 0 c 
=0 (2.1) 

.lS' r 
1 0 \-\0 -E -'(. s~ 

0 

0 0 -'( 5 
(} \-\-E G 
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The notation here is again the same as that in A, except for ... 
the sli[;htly different definition of l::. He shall measure the 

energy from the point where both s and r are zero; that is, 

from the corner of the .t:lrillouin zone at the points l~z = ±~ • 

Ag ain, '!:le silall expand S abo-:1t t he corner of the zone and 

replace kx by lex-is dè"'-t 

equations i3: 

~o- 6 2 +~a?> 

-\ 

D+B, ~ 
o<B, + ~'o+a4 
(3D-B~ 

vTllere: 

The 

the resulting set of coupled 

- E:B, ( 2. 2a) 

E B2. (2.2b) 

- E83 
(2.2c) 

- E.B (2.2d) 
4 

), (rn~ 1,2 ,3,4), results 

in a considerable simplifica tion. The set of equations satis-

fied by the bm' s is: 

~.rf b2 + o( b3 
_, -+ ' 

(3 .n. b, 

o<b, + ~f~b4 
~ -n-b3 

(2 .3a) 

(2 .3 b) 

( 2 .3c) 

(2 . 3d) 
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.· . 

In equations (2.3a) to (2.3d), the follo\'ling notation i.1as been 

used: 

+ n = 

n--

. ), 
k'/ + S·~ 

~ky 

. à 
k -& ·-

'/ b\(y 

Eliminatin~ o2 , o3 , and b4, the equation for b1 becomes: 

.Dut 

and 

vrhere: 

r'\+ -
..l L. .fl 

Consider no~·r: 

(L+~)·x-o 

beco:nes: 

(2. 5) 

and 

.both of these equations can be put into standard harmonie 

oscilla tor form. Clearly, since b1 = "X+'f is a solution 

of equation (2. 5), and since b1 = 'X+\{' involves four arbit

rary constants, this is in fact the general solution of 

equation (2. 5 ). Gare must be taken , ho1:rever , '.·rhen the boundary 

conditions are applied. :·le vrant the bm• s to satisfy regularity 

bolUldary conditions. Clearly b1 \vill be r e e; ular if ue choose 

botll 'X. and <f to be r eGular ; that is, if \ve build up 
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b1 from the rlerrni te polynomials ( tü:.1es a.! e::::ponential factor). 

The question nou arises \•rhether it is possible to construct 

a re~ular set of bm' s by choosing 'X ~!d lp to be sepa

rately irregular. '.L'hat this is impossible can be shm:m by 

':rriting the solutions as linear co;.:abL1ations of confluent 

hyper.::;eometric functions a.11d expanding these about the point 

at infinity. One finds that the irregularities of rx_ and 

\f ca1mot cancel. 

denee ~re conclude that the most general o1 satisfying 

the resulari ty boundarJ conditions is b1 = X+~ , \vhere 

and lf are independentl~·· regular functions. 

Ho-vr, (1 - >.. ) \.(> = 0 leads to: 

2 [ 2 ]X E: + S + cx2.€.2 2 = (2p+1)S 

ivhile (1 + Â ) X = 0 leads to: 

e. 2 -[s2.+0(2 e 2}~ = (2m+l)s 

(because of the regularity 

of lf , p = 0,1,2,3 ... ) 

(because of the regularity 

of)( , m = 0,1,2,3 ..• ) 

It is easily checked that these tlvo energy spectra are mut

ually ·exclusive ;·rhen 0(-:/= O. l:lolving each of the above re-

lations for the energy E, -r..;e find: 

b1 ~'X: E.
2 = "(/+ S(2m+Ù+ t (";2

)\ o<5(2tn·+l) +s~ i1, 

1. 0("2. ( [ { 0(:2. )2 2. ~1y2 
b1 = 4J: €. = 2. + s 2p+•)- Ç2 + o< s (2.p+,)+s 

J:hus, ·He find that the general, reeular, non-trivial B1 can 

be ~,rritten: 
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The corresponding energy is: 

[ 
2 . (o<4 2 )Y.:z\ ~2 E = ± "Rv ~ + s (2.n-t-,) :t 4 + o<s(::tn-+ \) ""s 2 j (2.6) 

In order to determine 1;lhether or not He have :nissed any 

solutions, ·ue must go back to the original set of equations 

(2.2a, ~.2b, 2.2c, 2.::::d). l"ia.King use of the fact that the 

various operators involved in these equations are the raising 

and lm·rering opera tors, 1.ve find that the general solution is: 

(with the convention that H_1 = 0). 

1'he solution corres;sœ1dinr; to the energy eigenvalue zero is: 

Bl IV H0 ; B2 •· 0 ; :o3 • 0 ; 3 4 IV cil 

Hmfever, it is also possible to find another solution \vith 

energy eigen value zero, not inc l ·tlded in ti1e aoove set, because 

in this case Dl • O. '.i;he solution is: 

Dl = 0 ; n2 = 0 ; :s3 = 0 ; i:l4- N H0 

Let us nm·r consider the limi ting case of o<. = 0. In 

this case, equation ( 2 .6) yields: 

- + - ~ t=. = ± t'\ V ( 2ns) 

o;r: 

(2.7b) 

In addition to the E = 0 solution coming from n = 0 in (2.7a) 

above, \·re have seen that there is an extra E • 0 solution 

not included in the above r e lations (2 . '/a) and (2. '/b). 
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We shall see that the degeneracy of each level (charac

terized by n and + 1) is 2..Vs = ~. Clearly, the energies 
TC C 2.. 

arisinr:; from (2.'/a) with n ~ 1 can be grouped "11rith those 

from (2.'/b) -vrith n ~ O. 'i'i1e result can t hen be vrritten: 

( . )y:2. 
E = ± 1\v 2ns (2.'/c) 

If the extra E = 0 level is included in (2. '/c), the degeneracy 

of ~ach level is just qs, in agreement \·ri th HcClure' s result. 

~le shall see later that \ve must choose a ver:~ small 

value of the inter-layer exchange integral ·ta , if He 1.vish 

to explain the experimentally observed susceptibility. The 

energy relation (2.6) is much too complicated for a calcu-

lation of the susceptibility, so that -vre 1.1ant to expand 

equation (2.o) for small ·r,. Unfortunately, this cannat be 

done for lllagnetic fields of arbitrary maenitude, since the 

condition for the validity of t~e expansion is: 

Our r e sul ts 1.vill be mea.üingful only i f 1.·rc restrict ours el ves 

to :nagnetic fields 'i.vhicll sat i sfy this condition. Fortunately, 

ue shall never have to consider ve r y large values of n, since 

only levels Hitl.1 small n lie n ear the de6eneracy point and 

hence near the Fermi level . \-le shall never be able to extra-

polate our expansion to tne zero field case, but since 

measurements of the susceptibility usually involve a torsional 

technique, fields of several thousand gauss a re generally 
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employed in these measurements. In this regio::J. of magnetic 

fields, our e::pansion •:Till be valid over tL-le en tire range of 

k 2 • This can easily be checked by substituting the previously 

quoted numerica.l values for tl:e various :Jara:-:Ieters into the 

above condition for the validity of our expru1sion. 

'l'l1e resultin2 energy spectrULl1 for Si;lall values of ~ 

may be ex:;_; ressed in the follm-ring form: 

x { 0(~} E = ·± i=lv (2ns) 
2 

1 ± 4s (2.1:$) 

:·le have at;ain grou~)ed the levels and inclucied the extra 

E • 0 level, so tjat the degeneracy of each level (characterized 

by n B.-l'ld the external + sign) is just qs. 

Hote that tl1e inter-planar interaction has spread each 
. 2 Y. 

level into a narrm·r band of Hidth ~(2ns):2. Thus the 
2.5 

levels becor.1e ï.·rider uith increasins n values. 'l,he n = 0 

level, hmrever, has remained sharp. This re sul t is inde pendent 

of our appro::imation and follm·rs directly from equation (2.6). 

Note also, that the level width depends upon the magnetic 

field and that all the levels become sharp as the magnetic 

field be cornes very laree. '1.'his i'act has an interesting con-

sequence in the de Haas-Van AlpJ.1en effect, and ivill be discussed 

further in a later section. 

Eventually, the levels corresponding to the higher n 

values uill overlap each other even \·rhen ~' is assumed small. 

However, the levels near the degeneracy point are discrete 
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vrhen the inter-layer interaction is small. For example, 
h 

in a field of 10 · gauss, iorith ~1 • .005 ev, the levels do 

not overlap un til one reaches an energy of • 0'/ ev. 'l'his · 

occurs betueen the n = :i and n = 6 levels. 
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III. APPROXIdATE CALCULATIOH OF THE SùSCEPTIBILIT:.:. AT 

EIG~1 TEHPERATURES. 

We shall now estimate the susceptibility of grapi ite at 

high temperatures in a manner analogous to the estimate made 

by· He Cl ure (3) for the tvro-dimensional case. Such a cal cu-

lation shows very clearly -vrhy the inter-layer interaction 

must necessarily be very weak. 

Let us noH calculate the energy gain of our system when 

the magnetic field is turned on. For this purpose \ve need 

only the general features of our energy spectrwn as predicted 

by equation (2 .6). ln particular, ,.,e note that the n = 0 

level is sharp and that the s pacing betHeen this level and 

the h·lO n • 1 levels is larger than the spae;ing bet-vreen any 

ether t Ho levels. li'urthermore, it 1·Till be s:.1ovm l a t e r that 

at high tempe ratures the :B'ermi level is very near the n • 0 

level. It follmvs that most of the enercy gain of the system 

is due to the electrons, which in the presence of the field, 

occupy the n • 0 l evel. 
~ 

When a magnetic field II is applied, the r e i s rooJl for 

qs electrons in the n=O level. 'J:he nwnbe r of electrons in 

the n • 0 l evel is thus qsi' (O), where f( O) i s the value of 

the Fe rmi distribution function a t energy zero. 1'he total 

energy of t hese qsf(û) electrons is clearly zero. ~efore 

the field was applied, these electrons had en~rg ies between 

-il and + Â , t he n eGative energy s t a t es being prefe rentially 



-3:)-

occupied, because of the Fermi distribution fnnction. The 

total energy of t l:1e se electrons in the absence of the field 

Has thus: 
+A 

E = JN(E)f(E)EcAE 
-A 

(3 .1) 

Hhere lHE) i s the density of states in t !1e absence of a field, 

and is given by: 

E<2~, (3. 2a) 

(3. ~b) 

ïhe relation (3.2a) i s given in A; t3.2b) is easily calculated 

in a ~arn1er ana log ous to the calculation Ln A. 

l!'urthermore, 6. is determined by the condition: 
·t-A 

J'N(e)f'(E)l(E qsf(o) (3.3a) 
-A 

At high te:.npe r ature s, t!1i s condi t i on simply becomes: 
·+A 

JN(E)dE = qs (3.3b) 
·-b 

since \fe ca..'1. r eplace f (E ) by f (O) and factor i t outside the 

int eg r a l . Spec ifically, -r.·re are as smnin g that t he integration 

range i n (3 .3 b), Hhicn i s of the orde r of the magnetic level 

s pacing , is much smal ler t han t he t hermal energy . 

He n o'.'r consider tHo sepa r a te cas e s. lt'irst , let us 

choose a high va lue i'or the inter-layer exchange integral )(, , 

say '6;~.1 ev. Since the intec rat ions i n (3. 1 ) and (3.3b) 

exten d ove r a range o1' the order of t he ;nagnet i c level spacing , 

a ll ene rgies involve ci i n t he inte[; ral s \:Ti ll then sat i sfy 
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the condition: E << 1. ~-2.ence t:he U(E) i n question is given 15, 
by (3. 2a). In fact, 'i.ve only require this relation for small 

E. -
~\ 

\le find: E and hence 11e may e:;::pand in pouers of 

it is easily c:1ec~;:ed that under these circUJïlstances 

A ~ 1t:(1\v)~ 
~ - )(, 

(3 .4) 

u.5) 

and that t i1e increase in el1C!'GY con tali1s no term proportional 

to s 2 • This rest;_l t he,s a simple physical i n t erpretation . 

:ve note that in. the t.;uee-diGensional case the density of states 

.in tne absence of a field does not approaci1 zero as tJ.1e energy 

·approaches zero (cf . equation 3 .4). lnstead, i t approaches 

a value proportiona.l to lS'\ . __ ence there are already some 

electrons whose energies are zero before the field is applied. 

In fact, tnere arc too many of them. 'l'he result is that the 

enerc;y of t he systeri1 c annot be raised much throug:L1 t he appli-

cation of the field, since ~ beco:Jes very small and advru'1-

tage c aruwt be ta~;:en of the preferential occ upatim1 of the 

l ower cnergy states . 

It is clear "l:rhat one has to do in order to retai.i"1 a sus-

ceptibility in the three-dL1ensional case. ',fe n eed to reduc e 

the nwnber of electrons Hhose energies are zero before the 

field is applied ; t~1at is, ue need to reduce 1{1 • lt is 

easily shm-m that if ~t«~v~!f.' , the susceptibilit y is just 

equal to t hat preclicted by HcClure in tüe tl·ro-dimellsional 

c ase . 
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This simple arguraent does not depend on t he detailed 

structure of the energy spectrum and is inde) endent of any 

approximations. We are .thus led to the conclusion that 

graphite is essentially tvro-di:nensional in structure. ive 

shall see that (f1 ':::! .005 ev is consistent Hith all the 

observed properties of graphite. An. uppe r limit of about 

.01 ev can be put on t, in this -.. .. ray. Our value of l'1 is 

about tHenty ti~ne s smaller than that used in A. A theoretical 

estimate of ~ was made by Godin (19). His value for l\ 

is .007 ev, but no other estLnate of this arder of magnitude 

seems to have appeared in the literature. 
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IV. CALCULATIOl7 OF THE FREE ENERGY. 

In order to be able to carry through a proper calculation 

of the susceptibili ty, 1ve need to o btain an expression for 

the free enerGy of our system in the presence of an applied 

mac;netic field. An evaluation of this free energy function 

involves a ~m.mrledce of the density of states in t!1e presence 

of the r.1agnetic fielù. We sllall -vrrite: 

l'lhere g(E) is the density of states in question; g(~) is 

the density of states within the nth level, and the sum extends 

over all levels n Hhich contribute at the energy E. Ii'or a 

general n, g(En) is sirnply: 

(~-. 2) 

The factor of o accounts for the various degeneracies in 

graphite: spin degeneracy (a factor of 2) and site degeneracy 

(a factor of 4). The total number of states for each value 

of n and choice of sign is jus t: 

8\is 2TL 4Vs 
4TC2. X C = TI: C - 9 5 (4.3) 

For ti1e n = 0 level, \vhich 1;1e have se en is al ways sharp, 

(ll . • 2) i s simply r eplaced by a Ô -function. This level 

also con tains qs states, exactly as in the hro-dimensional 

case. 

The above ar guments are completely analogous to those 
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made in the counting of states in the free electron case. 

This is a direct consequence of the form of our solutions 
-+ 

.Jm Od. ~·Je note that lex and k
2 

enter the se solutions only 
("' 1 (' 1 

parallletrically. Th us the o (lex - l-::x) ru1d . o (k2 - k 2 ) factors 

lead to exp (ik;:·x) and exp(ik~·z) in the spatial functions. 

Furthermore, the comple.x: exponentia l factor expCi\<,c;y ) 

centers these functions at y • k: . Thus ue can apply 
s 

cyclic boundary conditions in the x and z directions. Limit-

ing y to lie Hithin the crystal then limits kx and hence 

equation (3 .2) follm·rs. 

Follouing equation (2.1:5), •..re tal~e E:n to be: 

E - ( ))-2[. 1 i- 2 'lr,2eoJ(~) 1 
n - )J' ns - J)"z. s (l.r-. 4) 

Evalua ting dd kx , it becomes convenient to introduce three 
En 

new s~nbols. Let: 

21 . · ~ 2~, 
Hinimum energy of nth level = An = JY(ns.) l \-P'2 S 

. . ~ 

Average energy of nth level - Cn = 27 ( ns) 2 

ha:x:imum eners y of nth lev el • Bn - ~[ 2'6~1 y-(ns)
2 

1+ P~~ 

The resulting g (~) may then be vTritten: 

-~ 

9(En) = ~ [(E-A..,){Cn-E~ A.,: E ~ C"' (4.5a) 

~r(a -EXe.-c )J-~ c" ~ E ~ s"' 
- 2.1't n 11 ~ 

(4. 5b) 

We are nm-r ready to evaluate the expression for the 

fre e energy of our systein. Follovring HcClure (3), vre write: 
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+oo 

F = N 4 + E0 +IdE cp(t!){- ~~) (4.6) 
-o4 

l·rhere: 

N= 

In the se ex~)ressions, energy is measured from the degeneracy 

point, ~"ld E(o) is the enercy of the lm,rest state in the 

valence band. It has been assumed that l;- E(o)>)kT. We 

shall be primarily interested in <\> (E) for E f Co "::::' .06 ev. 

Since (1~.4) involve s the assumption that ;~~ (<. 1, it is 

easy to see that the magnetic energy levels corresponding to 

the first few n values do not overlap at all. ~hus, for 

E < C:o the integ ration in (1+.9) never involves a sum over 

various n. Carry:L.1g out the integrals in <\'>CE), we find: 

~( '2) = ~ 5 {- ( rh+~) E + ~ ~ ( An 1- B, ~ 2 C n') + ~ 1 
n.:, 

- os{-<l"n+}2)E + ~ ~4C., + h} 
1 h ... l 

m y, 1.. 
- 9s {-( tn i- Y2) E + ~~ V' ( n s) 2 

+ ~ j (4.10) 

'E.:2. 
vrhere: m = (r2) = maxi mum integer 6 r 2 = )T~S 

The term b indicate s the departure from the tv.ro-dimen-

sional mo del. In general this ter:.:t ~.-Till in volve contributions 

f rom several l evels, but as long as the levels do not overlap 

~ ~ill involve at most a fractional contribution from one 

level. 
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In this case: 

~= ;~ [((B.;- ,;_Xe- C,~ \ B..,+~.,-2
" [ ~ + s; n'(~::~~:&)~ c;.," <; ~ S.,( lt .lla) 

=0 

= ;~ r(cc.r,~ EXE-Ah\+1~~ Aft\tl+ ~-2E[!" + s\o'(~tt ... ~r'A+I-2E:)~ (4-.llc) ll 2. Âmt~ c"'+' ) j I:J.. 'r::.,;. c 
, 'tn+t- !;:;;. - tn-+t 

Our expression (~-.10) is in agreement vlith IlcClure• s 

result Hhen b = o. \ve shall see that b is an unir:1portant 

correction terrn for the high temperature susceptibility and 

for the averase low temperature susceptibility. Hmvever, 

this term does play a role in the fluctuations of the sus-

ceptibility at lou tem:peratures, ,.,here it serves to reduce 

the amplitudes of the oscillations and introduces an aperiodi-

city 'i·Then the re sul ts are plotted asainst the reciprocal of 

the rnagnetic field. 
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V. THE SH:LFT OF T:-IE FERrii LEVEL WITH TEHPERATLJRE. 

Before \"le go on to calculate the susceptibility at 

various temperatures, He 1.vill need to knm·r the position of 

the Fermi surface at these temperatures. We shall now cal-

culate the shift of the Fermi level with temperature. The 

calculation 1·rill be based on a two-dimensional model. 'l'he 

error made in such a calculation is very s::1all, since it is 

caused solely by the use of an approximate l'f(E) relation in 

the region 0 ~ E ~ 2 Y, • In general, 1::e can have confidence 

in our result, provided Ç'(T))• 2~ • As He shall see, this 

condition is satisfied up to a temperature of about b00°K. 

The total number of 
·1-oO 

No= S N(E~).f(E)dE = 
·-cO 

\·The re: 

electrons, 
l;o 

SN(E)cAE 
-oC 

H0 , is given by: 

Usine the above density of states, one can reHrite equation 

(5.1) as: 
0 

5" E[l- f(E)]ctE 
-oO 

Q(]> 

+-sE. {:lE)dE - C,CJ2.. 
o -T 

'l'he integrals on the left-hand side of the above equation 

can be evaluated by standard methods . He re, ~:re are int erested 

in transfo r ïJ.ling t his condi tion in such a uay t hat it ivill be 

suitable for numerical evaluation. 

If ·~:re make t he substitution E = (kT) • X + l; , our condition 

may be writ t en: 



.06 ~~--t-------+----+-------1----+---

.os 

.04 

> Q1.03 

c ·-
JJ" 

.02 

.01 

100 aoo ~00 400 Soo 600 7'00 T °K 

Fig. 1. The Variation of the Ferni Level with Temperature. The upper and 
lower curve corresponds to ~o~.o6 ev and c;

0
=.055 ev respectively. 
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integrands in a pm·rer series of exponential factors. ~·fri ting 

e = l; and e = ~c- one finds: 
k\ · c "T ' 

e a e:- 2e&3(::;e] -3e" + 4~-t..g(l+e")ol>< (5.2l 

This expression can be approximated for large and small 9 . 

9 2 l'V e u __ _ 
0 ~\6 9<< \ (). 2a) 

2. 2 1t.2 
8 "'9+--

0 3 
( 5. 2b) 

By cnoosing a value of C:o , one can plot è; as a function 

of temperature using equation \5.2). This is done by giving 

9 a value and solving the equation for 90 • If ~o is 

assu~ed ~o~m, this procedure yields ~ and the corresponding 

temperature 1' . 

1'he results are plotted in :Fig. 1 for t1vo different 

values of l;c. . 1.1he shift of the Fermi level plays an im

portant role in the susceptibility of graphite. Without 

this variation of the li'ermi surface one could not reconcile 

the high and lovr temperature results. It is also this shift 

vrith temperature vrhich is primarily responsible for the 

observed variation of the Hall coefficient with temperature. 



j_'hus at high temperatures, one finds that the Irall coefficient 

approaches zero, s Lll.ce the Fermi lev el is approaching the 

degeneracy point and the ratio of electrons to holes is 

approaching unity. 

'l'he variation of the Fermi surface ~:Tith temperature is 

often neglectec~ in theoretical treatments of this kind. 'l'he 

case o.f' graphite sho1:rs that one may not ahrays be justified 

in inaking this alYproximation, and that it is precisely this 

variation 1:1hich in graphite accounts for sorne of the general 

features of the exper~ilental results. 
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VI. CALCuLATION OF TiiE SUSCEPTIJILITY AND TliE 

DE HAAS-VAN ALPHEiT EFFECT. 

The raagnetic mOi!lent and the susceptibili ty are defined 

in terms of the free energy by the follm1ing relations: 

3J=' M = -
~H 

X = __ f ~F -
H "ôK 

(6.1) 

M -H 
(6.2) 

Our calculation of tJ.1ese quantities '\-Till thus be based on 

equation (lt-.6) and the additional relation (3 .10). The 

correction term Ô , vrhich is a measure of the deSJarture 

from the t"\vo-dioensional model, is given by (4.11). Hmvever, 

this relation is far too complicated to be treated exactly. 

At high temperatures, this term need not be considered at 

all, since it does not contribute appreciably to the sus-

ceptibility. This can be seen a s f ollows: At high temp

eratures the Ferilli level is very near the n • 0 level (see 

Fig. 1). In this region the enercy levels are very nearly 

sharp a..'1.d the spacinc beb1een the se levels i s large. It 

f ollmvs that the correc t ion term & is defined primarily 

by equation (4.llb) and can thus be ignored completely. 

Therefore, a t high temperatures the susceptibility is just 

e qual to t hat ca lculated by 1-fcClure on the basis of a b.-10-

dimensional model anà is g iven by (cf. reference 3): 

V J.( e \2 
, 2.( C. ) 

A=-. 044cp' ne) kT sech ffi (6 .3 ) 
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Fig. 2. The Variation of the Susceptibility with Temperature. The dashed 
curve is taken fron Ganguli and Krishnan. The two solid curves 
represent the theoretical variation of the susceptibility corres
ponding to ·~0 =.06 ev and ~o=.055 ev. The latter value results i~ 
slightly better agreement with experiment. 



Converted to emu/gm, (6.3) becomes: 

(6.4-) 

lie have used :::. . 22 gm/cra3 for the den si ty of graphite and -vre 

have put: a = 2.4-6 A0 ; c • 6.·;4 A0 and (
0 

•-2.6 ev. 

~'he condition for the validity of this result is that 

the level splitting be small compared to the thermal energy; 

that is, k'I') VS~. In a field of 104 gauss, ))5" C!t • 03 ev, so 

that the relation (6.4-) is valid at temperatures higher than 

about 400°K. 

hcClure (3) did not consider the variation of the Fermi 

level vrith temperature and simply replaced t he sech2 ( 2:.T ) 
factor by one. Using the re sul ts of section V, 1.-re can now 

obtain the deviation of the high temperature susceptibility 

from an inverse t lat·T (for temperatures higher than about 

400°K). This is done simply by obtaining the value of 2~T 
for various temperatures from F'ig. 1, and substituting the 

result into equation (6 .4). The theoretical and experimental 

susceptibilities are i l lustrated in Fig . 2 . 

At lovr temperat ures there i s no a priori reason vrhy 

one can neglect the correction term b . Ho1:1ever, i t ~:lill 

be seen that even at lovr temperatur es t he aver age value of 

the susceptibility i s not af f ected by this t er m. On the 

other hand, the fluctuations of the susceptibility are aff ected. 

Let us fo r the present deal vrith the tHo-dimens ional model 

and consider the correct ion l a t er. We t hus choose f or cpCE): 
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m . 
<P(E) = qs{ ~ Y"(ns)~ - ( m+ Y2)e.} 

h•o 
-.2. 

Here rn is the maximum integer 6 ;-,
5 

E:l. 
= rz. v:2.s 

(6. 5) 

'l'he notation 

Hill be convenient. 'vle shall nm:T evalua te the sum in vol ved 

in (6 .5) by the Poisson summation f ormula ( 20). 

One form of this f ormula is: 

od + o4 r. Ztt\ 11\X · L:-rcn) = L }f<x)e ax 
h:O l'ne-CO 0 

1·1here: 1. f(x) is of bounded variation in t he interval (0 , oo) 

and f(x) • 0 for x(O. 
po 

2 . j f( x )dx exists 
0 

3. f( x ) is 

x is an 

con tinuous at 

integer; i.e. 

l east near the point s 1:rhere 

-~- [ f(n+)+ f(n_1 • f(n) 

We see hm:! we nave to de fine f ( x ) in our case . Le t us intro-

duce t he s t ep function P(x) defined by : 

P(x ) = 1 x 6-0 

P(x ) = 0 x')' 0 

Then 1.-re may de fine f (x ) to be t he f unction : 

f ( x ) • x-~- · P (-x ) •P(x-r2 ) 

With thi s definition one clearly has: 
CQ 

Lf(n) 

(6. 6 ) 

Just exactly 1-1here \·Te ;;chop'' the function be t Heen <r2) and 

(r~+ 1 is i mmaterial. By choosing the point to be r 2 vre 

kn mv t hat our result is exac t pr ov i de d r 2 is not an integer. 
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ln that case the continuity condition is not satisfied, but 

this clearly does not matter since these points coincide "tvith 

the points of discontin uity of our orig inal surn. 

In this 1-my ·vre find : 

m +cO "2. 
'S' h~ __ ~ s ~ .:2.ltimx 
~ 6 x 2 e d')( 
h~o m=-~ o 

\·The re: ~ 

S(~)-= f%(~t2)dt 
0 

'Je can n ou substitute (6.b) into (6.5). 1'he result is: 

~lE) = 9~:~{-~ r-
3

- ~-tm% S(2.w-m!12)} 

ln:.t 

(6.9) 

In the above substitution, vre have made use of the relation 

~ sLn ( 2Titnr~) 
L... 1ttn = (v-~) +}2 -r2 ) (r:l}< r 2 < (r2)+\ 
tn;j 

Ecruation (6. ) ) is exact. For large energ ies r- co , and 

~hus in the limit of large energies, (b.9) becomes : 

th · ) % [ ' a 1 r ( '!l. );{ 't' ( E ~ 9 ))"S - /§ r - 41(- ~ '7~ 'j 

rv 9 ))" s 36 [- }'3 r 3 - . :2 o e1 
Here (; i s the Riemann Zeta-function. 

(6.10) 

'l'he above re sul t ae rees "~:ri th HcClur e' s equat i on (3 . 9). 

1·Je note that of the t1·ro terms in eq_uation (6 .10), the first 



is inàependent of the macnetic field and the second is inde-

pendent of the energy. Renee the first term does not contri-

bute to the susceptibility. One can easily verify that the 

terr:1 independent of the energy just cancels that part of E0 

,.,hich depends upon the magaetic field 'vhen this term is 

integrated in (4.6) Again folloHing dcClure, '\·re urite: 

Ea 3· 
+(E) = <f>(E) +$-'J).)'2 +.208q~s~ (6.11) 

Neglecti;1g the field dependence of c; , the susceptibility 

is then given by: 

X= ~ .'èF = -:.L .l. ( F-NÇ) 
H b\1 HM\ 

+~ 

- -:..!.. ~ r\\.t(e)(-))f)de 
\-\~~~~ ~E 

·-.a 
(6.12) 

Since u·e are interested only in very lm·r temperatures for the 

present, (6.12) simply becomes: 

(6 .13) 

Here, o/CE) is given by equation (6.11). \ve nmr anticipate 

,.,here the Fermi surface will lie at lo,., temperatures. l'his 

information cru1 be obtained for instance, from the Hall effect. 

Thus our A, the zero field U:all coefficient, 1·rill sl101v that 

c;0 ~.06 ev. ffi1other independent estiillate can be obtained 

from the period of the de Haas-Van Alphen effect fluctuations 

(cf. reference 3). Ag ain we find Çe ~ .06 ev. Th us in fields 

of the order of 10lt gauss, r ~ 2. We shall nm·.r expand t<E) 
asymptotically for lar[;e r. 'l

1his asyr.1ptotic form of '\' (E) 

't'lill be complet ely adequate at E • Çc. 

1 

j 
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!,ve nm·T proceed to e}:pand S(2..rfin') asymptotically using 

the method of integration by parts. l'hus: 
2rmV.:Z.. 

·S(2rmY2 ) = S ~ (~ :z:2 )clz 
0 

00 

- ~ -S ~ ( I z2.) dz 
21-m Y2 

"'-" .L _ _, . cos (2wmr2.) 
.2. 2·n- (~rn r 2. )Va. 

Wnen this result is substituted into (6.11) one finds: 

QG 
3/2. r 1 ~ COS{2.1H1"lr2.)] 

o/{E) 0:! 9})'5 4 n2r- ~ tn2. (6.14) .,..,., 
It may be verified by actual nurnerical computation that "+<E) 

as given by (b.l4) differs from the exact ~(E) defined by 

(6 .11) and (6.5) by less than on e percent 1.vhen r~-~~ . rlence 

~·re are completely justified in usine (6 .14) at low temperatures, 

even in very large magnetic fields. 

J:he magne tic moment and the susceptibility are no\v 

easily evaluated at lm·,r temperatures. l·Iaking use of the 

relation 

~ cos ( 21\m'r 
2

) 
L...a 1t2rn~ =i- +(r2.__<.l'2~{r4-("'l.)-1; (r2.)<r~'(rll·)+\ 
~ .... ~ 

we find, usL~G equations (6.1), (6.13) and (6.14): 

(6 .15) 

The first factor LD this relation is proportional to the 

magn etic field and yields the average value of t he maznetic 

moment. 'l'he second fac tor, ltrhen plotted agains t the magnetic 
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field, oscillates about zero. The oscillatory part of the 
l72S 

magnetic moment is plotted against r;2 = c;,; in Fig. 3. 

ïhe observed behaviour is characte ristic of a two-dimensional 

calculation and should be compared 'i'lith the results of Seitz 

(21) for free electrons. The susceptibility resulting from 

(6 .15) is th us: 

(6 .16) 

~he first factor is independent of the magnetic field and 

yields the averag e value of the susceptibility at low tempera

tures. 'l'he s econd factor in (6. 16) is periodic in H-1 with 
2. 

neriod .f. · _))"' 
... ne. <;~ 

given in l',iE . 4. 

A plot of the oscilla tory :gart of (6 .16) is 

ConvertLDg the quantities in (6 .16) to 

emu/gm, we fincl that t he first i'actor leads to: 

X - 9)1~ (~ \'- "--' - b 
qv- ,2 ço tl c) - -27.2 x \0 ern~ /sm (6.1'/) 

'!le h ave chosen c;"" = . 06 ev. In order that the period of 

our oscilla tions a gree with the experimental period of 

2 .1) x l0-5 gauss-1 \'Te require cc>~.06 5 ev. On the ether 

hru1d, the the ore tical amplitude of the susceptibility oscil

lations is appro~d!!lately 300 x 10-6 emw'gm in a field of 1ol.t· 

gauss. 1'he expe rimen tally observed ampli tude is only :::: - 3 

x 10-6 emu/.gm . '.ihis discrepancy beb .. reen theory and experiment 

will be discussed later. 

'.1.'he averaee value of the low teDperatur e suscept ibility 

is in g ood ag r eement ~·rith the experimental v alue of 
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-30 x 10-6 emu/gm (l). 1'he experimental value tends to vary 

from crJstal to crystal, the range being about - 2b x l0-6 emu/gm 

to -3l~ :~ 10-6 emu/gm. i:iuch a variation is easily interpreted 

1vitl:1in our rnodel, since the exact position of the l''eruü level 

is determined by impurities a:.r1d the size of the crystal . 

Equation (6 .l() allo~.rs one to predict q_uali tati vely, the de

pendence of the susceptibility on crystal size. Because 

large crystals have a smaller number of excess electrons per 

atom, é;c '\vill be somei:That smaller for these crystals and 

hence large crystals will have a larger susceptibility than 

smaller crystals. 

Lifschitz ancl iCosevich (12) have developed a s emi

classical theory of susceptibility. if their results are 

applied to graphite , one f inds a period for the susceptibility 

oscillations Hhich is in ag reement 1:rith our result . The 

oscillation amplitudes, hm·rever, are infinite in the ir 

approximation. We shall return to their treatment '\·rhen vre 

consider the introduction of the third. dimension into our 

problem. 

Before ue go on to consider these three-dimensional 

effects, 1·re shall calcula te the temperature variation of the 

average susceptibili ty at lm1 temperatï..~res. ':le have already 

seen that at hi gh temperatures the susceptibility i s given 

by (6.4). I n calculating the temperature dopendence of the 

susceptibili ty at lmr temper atures , vre shall not be interested 

in the oscillatory part of the susceptibility, since these 
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oscillations are observable only at very law temperatures 

(T ~ l.:-°K), because of temperature damping (cf. reference 12). 

Hence 1:Je s.hall retain only that part of ~(E) Hhich gives 

rise to the part of ti1e magnetic moment \·rhich is proportional 

to H. In this case ~(E) simply becomes : 

2 2 
l\ 1 ( E) = .J_ 'l ))' s 
T 2.4 E 

(6.18) 

Actually ~(E) is a symmetric function of E, so that E should 

be replaced by (El (cf. reference 3). Hmrever, at lovr temp-

eratures the contribution toX from the E ( 0 region is 

completely negliGible because of the position of the Fermi 

level at these temperatures . Using (6.1~) the expression 

(6.12) for the susceptibility becomes: 
+..o 

V' _ -1 2.2.(e )2.J dE \2.(<;"- E ) 
,.A, - 4e kT ~c \E \ secn 2 kT 

-of) 

~ 7-.L u.2.(~)2J'de SI2Ch2(~-E) 
4a kT 1\c e 2.kT 

0 

(6.19) 

The integral in (6.1)') is easily evaluated appro:ximately in 

terms of a pm·rer series in kT. The method i s the same as 

that us ed for eval~ating the integrais in equation (5.1) of 

section V. Upon evaluation one finds: 

x ~ ~ 9))"~(~)~~ [ ,_ ~ ~21 (6. 20) 

Converted to ernu/gm, equation (6.20) becornes: 

X -t.~'3x\o-'-r kT 1 
~ <; l \- ç:iog2 emu./grn (6 .21) 

\·rhere Ç and kT mus t be measured in cv . The result , together 
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with the variation at high temperatures, is plotted in Fig. 2. 

Because of the method of evaluation, the expressions (6.20) 

and (6.21) are valid only if kT< ~ • ln Fig. 2, these 

e::::pressions have been used to obtai:n t he theoretical curves 

at temperatures belm.,r 200°K. Above 400°K the curves are 

based on equations (6.3) and (6 .4), and bet1.·reen 200°K and 400°K 

the high and lo1.·r temperatt<.re curves have been joined by the 

best-fitting smooth curve. Fig. 2 shm·rs that c;:,'l.C.055 ev 

r esults in a slightly better fit to the experimental curve. 

I-Io1.lever, the uncertainties of the meas ;.œements are such that 

the curve 1.'1ith C: ~ .06 ev cannot be excluded. 1'hus the 
0 

experimental measurements determine C:"' to ivithin abov .. t 10/~ . 

He have seen that a two-diiï1ensional model of graphite 

is capable of explaining all the features of the suscepti-

bility except the amplitude of the osc illa tions at very low 

temperatures, ivhich turn out to be 100-150 times too large. 

There are three main factors Hhich serve to reduce this 

amplitude. These are: 

1. Introduction of l;:2 -dependence by a three-dimens ional 

model. This has the effect o.r broadening the energy 

levels in the presence of a magnetic field and hence 

r educes the amplitude of the susce1;tibility fluctuations. 

2 . Temperature damping of tl1e osc illat ions at temperatures 

for which the thermal energy becomes of the order of or 

greater than the mean level spacing. 
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3. Collision daopins of the oscillations. The effect of 

collisions is also to broaden the energy levels by an 

amount tv.!. , 1-rhere t' is the relazation time for electrons 
't:-

1·Those energies lie near the Fermi energy. 

'l'he last t1·ro of these factors are unimportant at very lov.r 

temperatures. We shall see later that the relaxation time 

in graphite at such teillperatures is of the order of 1o-ll 

seconds. If one uses this value for ~ and estimates the 

collision damping factor in the rnruLDer of Dingle l22), one 

finds that tl.1e amplitudes are only reduced by about 5/o through 

the collision process. Similarl~', temperature dnmping can 

be made arbitrarily unimportant by going to sufficiently 

lol.·T temperatures. 1ie shall nm-r study the three-dimensional 

model of graphite, in order to attempt to find an explanation 

of the discrepancy beb . ..reen the observed and the previously 

calculated amplitudes of the susceptibility fluctua tions. 

It is interesting to apply the theory of Onsager (23) 

and of Lifschitz and Kosevich (12) to graphite. As 't·re shall 

see, the ir the ory, together i·.ri th the usually asswned band 

structure, afforàs a very nice picture for the origin of 

tl1e bvo periodicities in the de Haas-Van Alphen effect of 

graphite. Unfortunately, since their approach is based on 

bohr-Sommerfeld quantization, one cannot have faith in their 

re sul ts 1.,rhen the tJ.1eory is applied to graphite. Such an 
-~ 

approach can in general only be trust ed Hhen the E(k) 

relationship is quadratic, as in the case of free electrons. 
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li'ig. 5. The Nature of the Enerey :Jurfaces in 
Gr a phi te. T\·To BrillouL'l Zones are 
shO\·.r.l. Actunlly 1/3 of the surfaces 
shovl!l lies at cach cor11er of the zone, 
re sul tL1g in a two-fold dege~1eracy of 
the illustrated surfaces, \'r:üch have 
been 9ieced toGether for clarity. 
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'He shall find important differences betvreen such a semi-

classical treatment and a treatment based on the results 

of sections :L and ii of this thesis. Let us first outline 

tne semi-classical approach • .. 
'i;he E(k) relation near the corner of the .drillouin zone 

is given in A as: 

(6.22) 

J~ 

As bef ore, l~ = (k~+ k~) 2 is measured from the corner of the 

zone, while k
2 

is measured from the half-vmy point on the 

vertical edge. 1he surfaces of constru1t energy described 

by (6. 22) are illustrated in i:t'ig. 5. Hhen E ( 2 '!1 the 

surfaces are closed and capsule-shaped i·ri th the long axis 

of the capsule parallel to the vertical edge of the zone. 

Hm·rever, for E > 21S', the surfaces are open at the upper 

and lm·rer ends of the zone, so that if all zones are con-

sidered, the surfaces become endless tubes of variable 

cross-section. 

Now cons ider a magnetic field applied along the c-axis 

in grap!1i t e . In the act ual gr a phi te crystal, the electrons 

will then move in helical orbits, the axis of the helix being 

along the direction of the magnetic field. It follows from 

the Lorentz equation that kz is a constant of the motion for 

an electron in one of t nese orbits. Such ~D electron thus 
..... 

moves in an orbit in l\:-space ~orhich is the i..Dtersection of 

a constant en er gy surface Hi th the plane lez = constant. 
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In the theory of Lifschitz and Kosevich (12), the periods of 

the susceptibility oscillations are tnen determined by the 

e::::treme cross-sectim1al areas of the planes k
2 

= constant 

'ltJith the surface of constant energy for E = Çc . It is clear 

that tHo different periodicities can result only if l:;o >2 0., 
since othenrise the minimum cross-sectional area is zero and 

gives no ~)eriodicity. 'l'he extremal areas in question are 

the shaded areas in Fic. 5. 

Applyi..'1~ the theory of Lifschitz and :ï.~osevich (12) to 

equation (6. 22) l:Je find: 

f. 'ic.zC1 51 E 1. ) = 1tELE+2~1 eos T" = 2 ( ) 
\ > ~:z (ioiv)2. lt h+~ S (6. 23) 

Here S(E,k2 ) is the cross-sectional area of the plane kz= 

constant vriti1 the surface of constant energy corresponding 

to enerey E. 'l'he maxinwn and minimum areas in question are 

thus: 

= lt C:~ ( Ço ± 2'1S'~ 
(t-.vYr. 

(6.24) 

It is L'1teresting to note that (6.23) predicts the energy 

spectrum in the presence of a magnetic field. Solving (6.23) 

for Eln,H,k
2

) "~:re find: 

(6. 25) 

T:lhen ·~ = 0 this relation a grees \·ri th our result for the 

tHo-diHlensional spectrum, provided the para:neter )( is chosen 

to be zero. Hmfever, if )(
1 

::::j. 0, the above energy spectrum 
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is radically different from that found in section II (cf. equ

ation 2.0). 1-·lhen t. is small, (6.25) predicts a "~:ridth of rv 2)(1 

for the higher n levels, independently of t he magnetic field, 

,.rhile in our treatment the level ·uiàth increases Hi th n and 

depends on the magnetic field. We shall see later how this 

differe:1.ce affects the de Haas-Van Alphen effect. 

Since in the semi-classical treatc1e11.t the periods of the 

susceptibility oscillations are completely dc;termined by the 

ti·To values of Sext ( c;o), a lm011ledge of the t1vo periods com-

pletely determines <;c and 1f, in this approximation. 

Using the formulae of Lifschitz and .K.osevich (12) and the 

experimental periods (9,10) one finds: 

and 

'l'he amplitudes of the oscillations may also be determined 

by an application of the results of r eference (1~ ). At 

1' = l .3'/°K an evaluation y ields approxiinately 20 x 10-6 emu/gm 

for the amplitudes in a field of 104 gauss. This is a factor 

of about 10 l arger than t ne observeci ampl itudes ( 9 ,10). 

An exact ca.lculation of the three-dimensional de Haas-

Van Alphen effect is impractical because of the complex 

nature of the correction term Ô in equation (~-. 10). We 

can hovrever construct a simplified model by noting hovT the 

density of states varies within the nth l evel. Note that 

t his density function is highly peaked at the extremes and 

at the center of t he nth level. We shall replace g (Eh) 
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defined by (1: . • Sa) alld (4-. 5b) by t he simpler relation: 

(6.26) 

It is easily checked that this e~pression gives the correct 

degeneracy for the nth level, namely qs. 

If (6. 26) is used in place of l~-. )a) and (4. )b) , the 

correction term ~ can be sho1;m to be: 

(6.27) 

I'.There: m =- (r 2 ) 

. 2 
m'= ( t 2 ( \-AS ) 

m ;' = ( r 2 ( \+Af2
) 

It is a straightfonrard matter to calcula:te the con-

tribut ion of (6. 2'/) to the lm·r temperature susceptibility. 

'l'he calculation is completely analogous to the b.-ro-dimensional 

madel calculation carried out e2-..rlier. In calculating the 

derivative with respect to H, it is not necessary to differen-

tiate the various (1 ~ 6. ) factors, since these vary very 

slowly with h . ~he result is that to the oscillatory part 

of X fro:n ( 6 .16) one must add t he follm-rin g term: 

}'ig. 6 shovrs the three-diw.ensional de 1iaas-Van Alphen 
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Fig. 6. The De Haas-Van Alphen Bffect in three-dimensional Graphite. 
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effect in graphite, as calculated fro:n this simplified three

dirnensional model. L1 the plot of Fig. 6, A has been chosen 
2 . 

to be .Ol4r0 , 1-·rhich corresponds to r,~.005 ev and ~0~.06 ev. 

It can be seen that the simple periodicity in n-1 has been 

destroyed. Semi-classically this pattern ".·ras interpreted 

in te rus of t\·Jo slightly different periods, bot!1 houever, 

strictly periodic in H-1 . Hote that the amplitudes have been 

reduced by a factor of about tuo in a field of 104 gauss 

( 'l.vhich corresponds to r~ ~ 4). 'J.'hey are, .i1o1.-rever, still far 

too large to be in agreement with experiment. 

'l'.i1e detailed features of F'ig. 6 are not to be interpreted 

too closely, since they are partly due to our simplifying 

assu.m)tion about g (~). Furt!1ermore, 'i:re have completely 

neelected te:1llierature and collision daml)ing effects, vrhich 

l:.rould tend to smear out the features of l.o'ig. 6. 'l'hus in 

com~'Jarison 1-ri th experi::aent one would need to replace the 

discontL1uous plot of Fi;_;. 6 by sorne sort of aver2ge smooth 

curve. It is mainly intended to be shmm he re that an 

L."l.terference e:t':.t'ect or roughly the right periodicity is ob-

tained, even from a crudely oversi~plified threc-dimensional 

model. 

Pernaps the most s ignificant thing in the three-dimensional 

ca lculation is the behaviour of t h e oscill~tions i:q very 

large !J.asnet i c fields (r; < 1). Our calculation indicates 

that in these fie lds g raphite ·Hill not displ ay vrhat looks 

lil\:e t\.'JO diffe r ent periods . Instead, the os c i lla t i ons ·Hill 
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be strictly periodic ü1 H-l the period being just that pre

dicted by the two-dimensional model. ~he semi-classical 

treatE1ent on the other hand, predicts t1·10 periods regardless 

of the masnitude of tne magnetic field. This result is inde

pendent of our si:nplifyin~ assumptions and follous directly 

from tne fact that the energy levels become s:1arp in very 

large macnetic fields (cf. equntion 2.ü). 

It seems possible that this difference could be investi

gated experinentally by the recently developed pulsed f ield 

tecru1iaue. A c2reful analysis of the oscillations may be 

required, since the difference between tjese two predictions 

is not appar?nt on every half-cycle. 
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VII. TEE ELECTRlCAL CŒ-mUCTIVITIES OF GRAPl-HTE. 

Let us novr evaluate the electrical conductivity of 

graphite parallel ru1d perpendicular to the graphite planes. 

1.ve shall assume that t i1e relaxation time '1;-- does not depend 
·-+ 

significantly on k. 

Follo1:.ring tne theory in A, '\ve vrrJte for the conductivity 
-+ 

in the direction of the unit vector u: 

<J( û") = -2e
2

'f: J~fo [J<J. ~)~ 1 ~~ E\· ds.) dE 
h2 dE E K J ( '/.1) 

'l'he inner inteeral in ( '/.1) is ta~-:en over a surface of constant 
- -+ 

energy, and n•dSk is the vector element of area on this 

surface. 
~ 

:B'or our E(ld relation vre shall use equation (6.22), 

-vrhich is valid provided E<< G0 = 2.6 ev. (cf . r e ference A). 

The integral in ( ·;.1) is easily transformed int6 an 

integral over J:( ru1d an integral over E, by projectLn.g the 

suri'ace oî constant energy onto the plane kz = O. A factor 

of 4- is introàuced because of the equivalence of the six 

corners of tDe ~rillouin zone, and because of the two pro

jections onto the plane 1->:z • 0 coming from above and below 

this plru1e . 
• ,.. -+ 
,·,11en u is chosen in the graphite plane and perpendicular 

to it, 1-re find res:;Jectively: 

('be)2 
().; = -e'-t_ fclfo [ s ~K • 8'\t.Kc::.(K]c\E 

li 21t h2. dE l'bE 1 
'bkoz; 

(7. 2) 



-63-

-2è~ f'Ho[fl~e 1 } ~ = 2n: h!l dE J ()kz. 6-rc. Kc::H< dE ('/.3) 

Be fore the irmer intecrals ca.n be evaluated, ·ue must evalua te 
()E 

an à. ~~~z~ from equation (6.22) in such a that k 
~K 

\·ray z 

is eliminated from these expressions. One finds: 

=~ 

2 
2(?.v) · E · K 
E ~ + ( l\v \o<):.z. 

('/.4) 

cE [4E2 '6'.~- { E 2 -[t..vK12)
2 J ~ 

y· E.,_ + ("t\vK)2 

Let us now loolc at the range of t he i..rL.1er integrals in 

('/.2) and ('/.3). As long as vre are dealing 1dth lo>I tempera-

t dfo ures, will be a sharply peaked function at E = Co , 
dE 

and l·re lmovr that Ç() ">) 2 't1 • F'rorn (b. 22) it follm·rs that the 

sur faces of constant energy f or E > 2 ~, are open, endles s 

tubes of variable cross-section. hence the range of .i:\. is: 

~ ~ 
~v l E 2

- 2-t,E1 ~ K 6- ~" t E2.+ 2't1 E 1 :2 :, E '>2't, 

2-Io~;rever, for J.1igher temperatures ~ is not sufficiently 

pea1Œd t o exclude contributions to the conductivity from 

E < 2'01 • l'le then l·rrite: 

'1. -2t, 0 2~1 ""' 

- ~:: = s ~:c, c.te +-1+~ C2 dE 4- J -Ç: C~ dE -+r-f: C4 dE (7 .6) 
-QI) -2CS, o 2~ 1 

2 -2l, 0 2'1, OQ 

-2tt.~<ii._ (f'D c.t- · Jf''D G4- ff'D dE -+ J--t'D &t:: ('?.7) 2e2."C"' - J c • t:. -T c 2 t:: + J "' 3 u 4 
·-.0 -2t, 0 u, 

·uhere CK(E) and D"(E) stand f or the inner integrals in ('/.2) 

and ( / .3) respectively, 1-rith the proper range of integration 
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substituted in each case. Thus in c1 (E), C4-(EJ, D1 (E) and 

D4- (E) the range of K is the san1e as t.ilat used at very lm·; 

temperatures, 't·rhile in C2 (E), C3 (E), J2 ('2':) and D3 (E) the 

ra.."l.ge of K is: 

Because of the simplification of ( 7 .6) and ( '/ .'/) at very low 

temperatures, the zero temperatures conductivities are easily 

evaluated. Usin.Ç equations ('/.lt-), ('/.).) and the defining 

relations ('/.2) a.."1.d ('/.3) one finds at zero temperature: 

()7, (o) = ((.ts) 

~(o) = 

And hence: 

( 7 .10) 

1:/·H-~1 a = 2 .l•,-6 A0 ·, c = o' • ·;h, A0 , ·~ - 0 1 · ev and v - 00 5 ev 
• ..&.. v• Vc - c:. • ) 0 \ - • ' 

one finds: 

<31\ (o) = lOS 
<!i (o} 

(7 .11) 

.r~rishna11 and Œan::;uli (ll.r) have fotmd a ratio of about 

105 e::perinentally . Dut ta (15) repOl'ts a ratio of 10!;-- 105, 

~·rl:lile Primak and l<'uchs (lb) rel)Ort a cons i derably lm1er ratio. 

The e~:pe riment is hm·rever a difficul t one , and it is easy, 

bec a use of t ~1e l arge anisotropy, to underestimate the ratio 

of CS\\ , Hhile it seems i mpo ssible to obtain too l a rge a 
Gi 

value in any ex~)eriment . J.'his 1·ras pointed out by i.·irozowski (13). 
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\ve nou proceed to the evaluation of tJ.1e ratio of the 

two principal con ductivities for arbitrary t emperature. The 

inner integrais in equations ('/.6) and ( / . '1 ) can a ll be eva-

luated analytically. ;l'he procedure is someHllat l en e thy but 

coinpletely straightfor\vard and ,,.rill not be g iven he re. 

Because of the analytic i'orm of the integ r M d s , it is neces-

sary to split the range of integra tion not on:ry at 2Y. but 

also at 't 1 • 'l'he final results can be \·Jritten in. the follm·ring 

form: 

( '7 .13) 

X~2 

( G (}:) i s syr.1r.1etric a bout :\: • 0 .) 
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Equations V/.12) anâ. (7.13) can nm.v be eva1ua ted nurneri-

ca11y for any temperature. This is done as fol1m;s: F(x) 

ru1d G(x) are eva1uated once and for all, for the entire range 

of x required (this range is about: - 70 < x< '/0 at 600°1\.). 

Throughout, Y, is chosen to be . 005 ev. ~'hen T and ~('l') 

are chosen (the latter from l!,iG. 1) and the integrals can be 

ev.:..luated by any of the stande.rd approxü:tate me t hoà.s. The 

l1Wî1erical values for these integrals at various teuporatures 

are tabulated in Table 1 below . The third integral tabulated 

here doe s not appear in the conductivity theory but occurs 

later, lilien we consider the Hall effect. 

100°K 200°K 300°K 4-0oo .. ~ 500°i{ 600°K 

".! 149 2'13 400 575 790 1110 

g 304 555 tn5 11'/0 1610 2260 

~ 23 .l.f- 41.2 46.5 4l.b 37-5 34.3 

Table 1. Humerical values of the various integrals in 
the conductivity and Hall effect of Graphite. 

The notation in Table l is as follO\·rs: 
-toC) t:.. 

·~ = S Sech2
( x~·) • F( x)dx 

-~ ~ +w ~ 

~ =J Sech
2

( ,.~~'). G(-"')dx 
+oO <: -QO 'ISi 

JG == S Sec.h~( l( ~ic') · K (x) GA ·,; 
-OC1 )SI 

(The function K(x) appears in section VIII ,· .. rhich deals vrith 

t he 2a11 eff ect.) 
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When the numerical values in Tuole 1 are substituted 

into equations ('/.12) and (7.13) one finds that the ratio 
ait 
0"" ..&.. 

is almost independent of temperature betHeen U0 1( aJ.1d 

6000K. Th us; 

Oï, (o) = 10 s 
o-.L {o) 

('/.14) 

Experimcntally, Dutta reports a variation by a factor of 2 

over this temperature range (15). 

Thus, our results shovr that ott and a:î_ ex.hibit the same 

temperature dependence (-vrithin. 1 or 2/6). Agreement \vith ex-

periment could of course be obtained by attributing different 

temperature ùependences to the t\vo relaxation times parallel 

and perpendicular to the graphite planes. 
-+ 

I-Iowever, such an assignment implies that '1::' is 1;:-dependent 

and thus violates our original assumption. It is reasonable 

to assume that in graphite, the relaxation time is indeed a 
-+ 

markedly anisotropie function of le. lJntil more is knmm 

about this quantity it does not seem profitable to extend 

this simple calculation. 

An appro~dmation, uhich is sometimes made is the follmf-
-+ 

ing: one assumes that the relaxation time "t' depends on k, 

but only through the e:ner gy; that is, one assumes 't' • 't(E). 

ln this case, 1::'" factors outside the inner integrals in 

equations ( 7. 2) and ( '! .3) , since the se are inteG;rals over 

surfaces of constant energy and hence of constant ""t' • 1'hen, 

at loH temperatures, the ratio of Ol& is inde pendent of 
~J.. 
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t' , sin ce the outer integrations in equa tians ( 7. 2) and 

(7 .3) Hill involve a b -function. At J.1igher tempera tures, 

the ratio o;. l'Till hm·rever still depend slightly on '1::" 
<r.J... 

even in t~is approximation. 

on ·;·[e conclude tl1a t t he lm·! temperature value of pre-
o-.~.. 

dicte d by our choice of ~' ~. and ë;a i s in good agreement 

"i:Jith experime:nt. It is interesting to note that the ratio 

()\\(o) . . ~ 
-- do es not depend e:x:pllCJ. tly on '-?o. Hm.,ever, this 
Q'i(O) . 

ratio does depend on the assumption that C:c ~ 2 )(, , s ince 

this condition determines the range of the K-integration. 

At higher temperatures, our calcul ation becomes doubtful 

becau~e of the s i mplifying assumptions a bout the relaxation 

time. 'l'hus, conducti vi ty data do es not viola te our choice 

of the parameters 'Oc. , (, and è;c. . 
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V:U.l. 'l'IlE ~IALL COEFFiCIEr<'f OF GHAPI-IITE. 

We shall new evaluate t he zero field Eall coefficient 

of graphite. We shall make use of t~e sa~e approximation 

as l·re used in calculating the ratio of the principal con-

ductivities, namely that the relaxation time is assmned to 
~ 

be inàependent of ~>:. 

';J}··wn a inagnetic field is applied along the z-axis (the 

c-axis in t!1e case of graphite), t l:e ceneral formula for the 

zero field Hall coefficient is (24): 
'2 . 'l. 

(' ~E' . .r ()E (!.!._) _ ;)E { ~ \1 dfu d~k 
-a·rr:~ J bky L 'okv \'bk~ àl<x~H de A = --~--~------------~-----

"' .. 0 2. e r(~E. \2. c:lfo d\ . \('bE.)~ dfo d3 k 
J 'o'r<xl dE J ~\<y dé. 

(~.1) 

--+ 
üsing t he E(l\:) relation given 

~E ~'E ~:LE ) 2 E 

by equation (6.22), one 
~'2.e 

and ~k ~k in terms of ca11 e:::press -
- ()\..· ' bk '"bk 2 '~k2. 

"" y x y )C y 

cylindrical coordinates .!~, lez and e . l'hus: 

(~.2a) 

(tl.2b) 

(b.2c) 

Co. 2d) 

(b . 2e) 

Relation (o.2e) is not required ~1ere, but Hill occur in 

section .LX. 
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~ 
We no1v re~:üace the integral over k in (b.l) by an integral 

over E and a surface integral over a surface of constant 

energy. As in the case of the conductivities, \·Te vrill carry 

out the integral over the constant energy surface by pro-

jecting this surface onto ti:le plane ic2 = 0. Symbolically 

\·Te can express this transformation as: 

J ~ r f \< d\<; ~e 
d k ) 2 c\ E 1 !~z 

1 
Here, the angular integral extends from 0 to 4lt, because 

the Brillouin zone has six corners and the surface extends 

1/3 of the \-ray around each of the se corners. :rhe factor of 

2 is due to the hm projections of the surface, coming from 

a bove and belo\v the plane l;:z = 0. 

Illien the above transformation is applied to equation 

(b.l) using the expressions (o.2a)-(b.2d), the angular 

integrations are easily carried out and the result is: 

A = 
H~o 

-;r• s ~; [J(~;)~ ~&~1 dE 
--------------~~~----~~----

{S~lH~~f Kl::11dE y 
bk;z; 

e 

As in the case of t l:1e conductivities, the integrals 

involved here are easily evaluated at very lm:r temperatures, 

because of our assurnption that (;c~.06 ev')) ~~.005 ev. The 

result for the zero field Hall coefficient at absolute zero 

of temperature is: 

'); -. 705 err{( ccv.\omb (b.4) 
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'l'he numerical value is obtaincd if 1:re use: 

a • ~. 46 A 0 ; c = 6. '/4 A 0 ; ~ = 2. 5 ev; ~o = • 06 ev. 

Kinchin (~5) has measurcd the zero field Hall coefficient 

for a sin:;;le crystal of graphite, and reports a value of 

- .6)! cm3 /coulomb at very lma1 temperatures, in eood agreement 

with the value predicted by equation (o.4). 

ln the general case of arbitrary temperature, t~1e integ-

rations over energy in (b.3) must again be carried out numeri-

cally. ny a process completcly analogous to the conductivity 

calculation, one ca.11 Hri te: 

vrhere: 

\~xf2 

(l\. ~x) is anti-symrnetric about :x: • 0.) 

'l'he :L.'1tegral in the denominator of (t>. 5) is the same 

as the int egral vrhich occurs in <S'ii • 'i 'he function F(x) is 

defined by equation ('/.12). 

A numerical evaluation of A( '.L' ) y ields Fig . '/. 'l'he 

values of ti1e various integrals in (o. ) ) are tabulated as a 

function of temperature in 'l'abl e 1. .Dasically , the behaviour 
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of the Hall coefficient is due to the shift of the Fermi level 

with tem9erature. As the temperature is r~ised, the ~ermi 

level maves tm·rards the degeneracy point, and hence more and 

more positive carriers contribute. ü.m-rever, there \vill al~·rays 

be an excess of negative carriers, and hence the Hall coef

ficient approaches zero for high temperatt:res, but remains 

negative. 'l'ne peculiar behaviour of the i1all coefficient 

between 100°J~ and 300°K is due to tne nwnerator of equation 

(o.)). ·rhis integral has a maximum value in this temperature 

range (cf. 'l'able l), vrhic.h results in a Hall coefficient 

slightly lo"~;rer thru1 the zero temperature value. l'he exact 

shape of the A(T) curve in Fig. 7 is a fairly sensitive 

function of ~. in this temperature range. JJy choosing a 

slightly different value for this parame ter ( 1,:rhich has been 

chosen to be .005 ev) it is possible to mal;:e the bump in the 

A ('l') curve less pronotmced, so that A( 'l') is essentially 

constant belmr room teml)erature and then falls of f roughly 

in the same fashion as in lt'i s . 'i. 

:L~inchin finds that the zero field ilall coefficient 

become s positive bet\·reen 25°K and l'/5°K (cf. Fig. {). He 

attributes t lüs behaviour to the presence of accepter im

purities. Hm·rever, 1~inchin' s curves for polycrystalline 

samples do not shovr this peak in the Hall coefficient dmm 

to a temperature of '17°l'>... bis craphite IV sample shm·rs no 

such pea~;: dovm to t!-. 2°K, while the very lm-r temperature 

range foi' the othe r samples is not discussed. It is not 



-'13-

clear to the author hoH a sine;le crystal sample and a poly

crystalliJle sa.:1ple can be so ::1arlwdly different, since only 

éll1 averagin0 factor is involved in the cœ1version. Hennig 

(26) has ~easured the Hall coefficient in graphite as a 

function of oxidation. J:..'or zero oxidation at room temperature, 

i.1e fincls A • -.65 c~n3/coulomb, in good agreement Hith the 

theoretical value at this te~pcrature. ~em1iz' s experimental 

value at room temperature has been included in Fig. '7. 

Perhaps the most significant feature of our crude cal

culation is that our value for t!1e position of the Fermi 

level at very lov temperatures is verificd by the Hall coef

ficient. Previous explanations of the ne~ative Hall coef

ficient have ahrays de11ended on assigni.YJ.[; different mobilities 

to the electrons and to tàe hales. 'i'here seems to be no 

reas on 1vhy the se mobilities should be different, since the 

bands are very nearly symmetric about the degeneracy point. 

While the Hall effect does not exclude an e.xplanation based 

on different mobilities, '\·re have seen that there could be 

no de !-iaas-Van Alphen effect if the l;'ermi surface '\·re re at 

the degeneracy point. Thus, a madel of graphite based on 

excess electrons is necessary if one 1vishes to e;cplaitï 

these properties siuultaneously. 



IX. THE TRAHSVERSE l'iAGl'JETO-RESlSTAl\)"CE o:r, GRAPHITE. 

Finally, let us evaluate the transverse ::nagneto-resistance 

of eraphite l·rhe.i.1 the magnetic field is applied along the 

c-axis of the crystal. From the point of view of yielding 

usei'ul i:1formation about our choice of parameters, this cal

culation uill turn out to be not very instructive, since we 

shall be able to infer the correctness of our choice only 

indirectly. '1'his is due to the fact that tl.1e magneto-resistance 

ratio, 6/, depends more radically on the relaxation time 

than either the ratio of the principal conductivities or the 

zero field Hall coefficient. :1e found that both of the last 

b.<To expressions vrere essentially independent of the relaxation 

time, at least at lou temperatures. '.L'his is not true of the 

magaeto-resistance ratio. In fact, vre shall see 'j:;hat Af 
'2 

is proportional to 1:' if vre mai;:e the same assumptions about 

the relaxation time as \:Te :nade in the t1vo previous cases. 

:i.i'ollo-vring Jones and Zener (24-) , \ve v.rri te for the ratio 

of the change in resistivity to the re s istivity: 

~{> (eH~t r~ (9.1) == 
f n2.c. I, · I 2 

uhere: 

s d-f (èE )2 
g I = -f dfoCE. Jl~< If = - d'E.o ~k)( d k . 

) 2. "'E: ~ky 
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The transi'orr:1ation of these integrals into integrals 

over E a.Y!d .1.\. is straig~1tforï.Tard but tedious. '.i.'he met!wd is 

completely ru1alogous to that used in converting the L~tegrals 

vrhich enter the expression for the ~Iall coefficient, and 

\·Till not be rcpeated he re. At lm·r temperatures, \·rhere the 

derivative of the Fer:-:.;i function is sharply peal;:ed, ue find: 

[s( ()E 3 ~ \ 2 J(~Ef KdK • Îl(~e\4 dK 
- ~) ~~z.~ fr ~t<) '*J j~ bK JK lfk1l (9.2) 

{ f(llE \2 K dK }2 
l bK} ~~~ 

Under the · assumption that ~o '> 2 'lS', , the integrals all have 

j_ r ~- ·]~ r ~ 1~ the range: 1=\v \.l:;;-2-t,c;~ ~ K ~ ~vll;o+2",Ço R. 

'l'he se i ntegrals are easily evaluated in terms of a pm·rer 
"1,2 

series in 1 1
1

1
0 the lm-rest non-zero order ue find: 

~· 
~ 4 '2. 

AP ( eHt:). (1-.v) 'C, (9.3) = p t~c 2 ~1/r 
This re sul t may nm-r be comyared T:ri th t he e::peri::nent s 

of i~L'lchin (2;:i). UsinG the various values of ~ and H 
p 

given in Kli1chli1 1 s paper, ru1d our previous choi ce of the 

par ameters <f0 , 1>, , nnd Co , equation ( 9 .3) predicts a 

relaxation tü::te: 

t ~ 4-6 x lo-11 seconds (T - 4.2°K) 

Gal t et al. l27) report a relaxation tiue of approximately 

10-ll s econds , using ~he cyclotron r esonance t ec:O.niq_ue . 

~'hus, agreement is ag ai..Yl. satisfactory. ~'le shall discuss 

the results of c.yclotron resonance a little mor e fully in 

the conclusions . 
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SuHi··iARï Aim CülJCLUSIO:!S. 

The basis of our oodel of graphite is a small inter

pla,."1ar interaction plus a certain nu.rnber of excess electrons. 

Perhaps the most strildnc feature of this madel is its simp

licity. Only t:i1ree parameters are incorpora ted in it ( !'0 , 

~ and ~o ) , yet it e~cplains the basic features of most of 

the properties of graphite in e~::ternal fields. 'l'he most nn

satisfactory result is obtained for the amplitudes of the 

de Haas-Van Alphen effect fluctuations, 1.vhich turn out to be 

far too large, even uhen esti:nated from a simplif ied t hree

dirnensional madel. It may be argued that if the density of 

states v.rithin the nth level had not been replaced by the sum 

of three ~ -fnnctions, the amplitudes Hould have been further 

reduced. Although sorne reduction of t he amplitudes -vmuld 

occur, the L'1ajor source of the trouble lies elsm-rhere. As 

lone as the magnetic enerey levels are narrm·r compared to 

their mutual spacing, lare e fluctuations (and discontinuities) 

1.vill occur in t he àe I-Iaas-Van Alphen effect. -r:le must con

elude t hat t here is some other source of level broadening, 

vrhicl1 ue have not considered. 

'.Lhe fact t hat t J.1e observed oscillations are smaller 

than t he theoretically predicted ones is in line Hith vrhat 

has been fonnd to be t~1e case in many other substances. In 

Li, Ha, Cu, Ag and Au for example, no oscillations have yet 

been obs erveà , although one has r eason to expect them on 
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theoretical Grounds. '.L'he se and ether clifficul ti es Hi th the 

present theory have been discussed in a revie·u article by 

Chambers (2o). 

'.l . .'he forill of the energy relations used in this thesis 

"'rere derived Hit:lin t.he tight binding formn.lism. i:Imrever, 

Sloncze1.·rs:ci (2)' ) has shovm that t:he sar:1e for;n for the se re

lations can be obtained by grou) theoretical methods using 

perturbation theory. It therefore seems improbable that 

the àifficulties -vrith t i:1e susce:;:::tibility oscillations have 

their origin in this approxi;J.ation. It may be that electron

electron correlations are important if one vrishes to explain 

these finer features, and ono ;nay have to abandon the one

electron a::;proximation altoeether in arder to fin<.: an 

eX!Jlanat ion. 

J.'he experimental results on t he Hall effect are difficult 

to interpret. in vie~·! of the complet el:," different re sul ts 

obtaineà by .iCincl1in (25) and lielli'1ig (26) at 300°1\., the author 

feels that the theoretical curve cannat be excluded. It is 

true that Hennig ( 26) measured his Hall coefficient in rather 

large fields (ll~,ooo gauss). llo~<rever, l\.inchini s curves for 

the àall coefficient as a function of ~nagnetic field indicate 

that at 300°~ this coefficient displays virtually no field 

varia tion. Johnston (30) llas also calculated the Hall 

coefficient. Iiis cu.rve is included in Fig. '/. Although 

his calcula tion is restricted to temperatures betvreen 150°.i.C 

and 350 lC, his r esult is r.1arL::edly different from ours in 
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this range. l<'urther experirnents seem necessary bef ore one 

Ca:L1. decide ,,.rhich curve best fi ts tile re sul ts. 

\.Je have calculated the magneto-resistance to order H2 

only. An exact calculation, Hhich leads to a saturation 

factor, is possible for gra:phite. ho\·rever, since such a 

calculation is based on the .dol tzmru111 equation, one can have 

no confideace in the results ;:rhen the wagnetic fields become 

laree enough so that quantum effects are important. (The de:~i

vation of the saturation terrn is outlined in Appendix III.) 

In Graphite, the condition for the validity of the .Doltzmann 
2. 

equation is: ~~ c;~ « 1. At lm·r temperatures, this condition 

breai\:s dmm in fields bet~·;een 103 and 104 gauss. l'his con-

dition agrees \·Tell Hi th t~1e experimental fact, that one can 

observe quantwn effects such as the de Haas-Van AJ.phen effect 

in fields of ti1e order of 5000 gauss (9,10). 

ii~1ally, \·re have stated that our mag11eto-resistance 

re sul t corresponds to a rela::ation time uhich is in good 

agree:Jent uith the value found by Galt et al. (2'/) by cyclotron 

resonance. Cyclotron resonance results also seem to indicate 

the presence of positive carriers in graphite. In their 

publication, Galt et al. (2~) state that the presence of these 

carriers is uncertain , since a sir.lilar effect can under certain 

circrunstru1ces be due to extremely eccentric energy surfaces. 

ln a recent priva te cor.ununication \ ·Ti th Professor P .R. \.oJ'allace, 

Gal t ex::?re ssed t he vievr that the la tt er explanation is not 
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applicable to graphite and that positive carriers are almost 

certainly present. ~urthermore, Galt no~ believes that the 
0 

rela}~ation time may be as long as 10- 7 seconds at lm·r tempera-

tures. lf these more recent finàings are correct, they are 

difficult to reconcile with our model of graphite. rlecause 

of our position of the ~ermi surface, -...·re '.·rould certainly not 

expect positive carriers at very lo~:r te,Jperatures. If no 

positive Cê.rriers are present, hm·r then is one to e.:::~plain 

the symmetric dip L'1. the a ·osorption curve a t I-I = 0, ·Hhich 

is obtained by cyclotron resonance? 

lt may be tJ.1at ti.1is reduction in absorption near H = 0 

is a magneto-resistél.L!Ce effect, and not a true cyclotron reso-

nance. Cha:·1bers (32) has proposed that such an effect exists 

in Bismuth. His a.rgw-aent is the follo·.ring: In poor metals, 

such as Jismuth, there are in general too many carriers 

present to o.ttain the classical condition of cyclotron reso-

nance. 'l'ne s~dn depth is s imply not large enough in such 

substances. :rovrever, Cha:,lbers ~1as shmm that the s:dn depth 

i s proportional to t l1e surfac e iupedance. If for sorne reason 

t ?1e ii::l_!:1edance is considerably lare:;er in a magnetic field 

than i t is ühen tJ.1e magne tic field is zero or very small, 

the11 the s~::in depth Hill also be a function of the magnetic 

field. îhis case is realized i f the sample has a large 

magneto-resistance. In such a case a syrmnetric dip in the 

absorption curve is to be expected nea r H • O. Now if our 
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mode l of graphite is correct, then .i.Jismuth and graphite 

should bel1ave qui te similarly; ti1.at is, gral·:hite s hou.J..d be

~:.ave more li~-:e a poor metal than like a semi-conductor, and 

hence C~1amber' s e:::planation r:1ay also a pply to srapilite. 

l"urther investigation seoms necessar~r before ti1ese diff erences 

can -oe unders tood. In this cmmection, the previously 

mentionGd measurement of the de I:aas-Van Alphen ef fect Hould 

be of interest, since such an e.xperirnent \muld test one of 

the ~eneral features of our model. 
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APPEHDIX I 

Derivation of _t):..e coupled equations in t he case of a 

non-maGnetic perturbation. 

\fe start uith the Schrodinger equation in the presence 

of t he perturbation. 

(1.15) 

Suosti tu ting the relations ( 1.1t1- ) into this equation, 11e 

shall first consider only the H0 part of H. 

Ho''' Ive malce use of the equations (l.l3a) and (l.l3b). Then 

- - --replace the sums over Rj and R1 by swns over R1 and R8 • Thus 

H0 'f = E 'fit ~1\ ( R~Jc 1 ( R,t-t R.) -+ :2; <.f2 ( lÇ, (~) c/.R0+.Rs) 
R.a ,Rs. R,, 'Rs . 

+ R G <ft.t ~2. ( Rs) s_CR~.·~R~) +- 2: 4'~e ))22. ( R5) c2 Ci,+Rs) 
:t,Rs ~J;Rs 

Let us now make use of the operator i dentity .... -
..... ...- Rs • V ( ..... ) 

c( Rf+Rs) = e · c R_t 

1,·1here t he gradient ope r ato r operates on the position vector 
-+ 
R1 • Ther efore , 1.-re can 'i'lrite: 
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l-\o t = :LR ~Hl H~ (-\q.) c.< R1) + ~ tf2 t H~, (-·,~) c, (~) 
~ l 

+ 2:: lf,t H~2. (-iv) c2 u~·.t) + L lf21!. H.
0 

(-··v) c2( i';) 
R~ Rt 22 

vle novt add the terms coming from u '{1 to H
0
'{1 and equate 

the result to E 'V . He find: 

L.tfLt [H:(-~v) c;CR'1) + H:2 (-·,v)c2{R1) -~ U(~)c,<~"-)1 
~l -

.... L ~2.Q. [ H:, (-·,9) c.·< R.l) + H;2 (-\v) c~ ( ~) + U( r) c2 ( R',t)1 
R.( 

= E [ .Z c, CR".t) lf," + L. c2(R1)'f~.t l R~ Rt j 
~ 

At this stage, .,,,e ma1;:e the assum)tion that u (r) is a slm.Jly 

varying potential. "\Je assume that vrithin the jth unit cell -the potential à if'fers little from the value lJ(Rj). If this 

-- -i s the case, Ive can replace U(r) by u (R1 ) in the coefficient 

of ~«.l , sin ce this function is rJeal-;::ed in the 1 th cell. 

Next, we shall make use of t he orthogonality of the 

\fO{j 1'his allous us to equate coefficients of tfofll. on the 

two sides of the equation. 1herefore: 

H~ (-ïv)c1<R.t) + H~2(-\v)c~(R2_) + U(Rt)c1 (~) = Ec,<~,_) 

H~1 (-iv) c
1 
{Rt.) + H: (-·,V) c~ <~,_) + Ut R".t) c2 lRtt) = E. c.2CRl) 
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1'his coupletes the proof of equations (l.l6a) and 

( 1.16 b) and si:1m1s th at the approxima te a11mved enere ie s in 

the lJresence of a slm·rly varying, non-magneti c perturbation 

are obtained from the solution of this set of coupled 

equations. 

APPENDIX II 

Derivation of the çoupled equations in the case of a 

magnetic uerturbation. 

Starting ·t..rith equation (1. 26), 1.ve rename the latti ce 
..... -- ~ -

vectors. Let Rj - R1 • Rs and replace the sums over Rj 
....... ~ ......... 

and R1 by swns over R1 and R
5

• Hence: 

Let us again use the operator identity - ·-
c( Rt+ Rs) = €.R,.-vcCRJ) 

Furthermore, ;·re sà.all a g ain invoke the localization of ~\.t 

rul.d lf2t to s i mplify t he Gl+ s f actors. 

c:r. = f
1

d À (r- RL- ~s1·Â( ~ + R.+ Â c; -1.-Rs)) 
A..'t-5 0 



-\fuen such a term is multiplied by <f,t or ~2.~ 1ve replace r - -by R11 or R21 respecti vely. But \ ·Te have previously ignored 

phase ch~~~es between the two atoms in the s ame unit cell. 
...... ~ 

This is equivalent to putting r equal to R1 in both cases, 

and involves an error of the order of the ion core suscepti-

bility. Hence vre find: 

1 

G:e."'-s (-; =- fi.t) - - f crx "R:· i~ ( R.t + < ,_ i\).Rs) 
0 

Let À
1 = l - Â ; th en 

' 
G,_.._5 ( r = ~- ) = - Jt-tÂ' Rs·Â(~t+ XRs) 

0 

Substituti.ng this rela tion into E'\' , '!:Te get: 

1-.rhere: 

It is sh01·.rn in Appendix II of reference (1~) that: 

Us ing this relation and equation (1.1'/ ) vre find: 



-o5-

H~= L <f\e H ~ (-.. ,~ - ~ A1) c,( R,t) 
~.2 

+ OCÇ"'1 - HC) (. . ... e ...... ) -
· ~ <f:u 2' -,~- cAJ. c,<R~) 

Rl 

+ L lf>u H,~(-i~- ~ AJ) c2 (RJt) 
Re 

+ L. 'f:ù H~(--\~- ~ Â$t) <; (R,) 
R._ 

Writing H 4 = E f , and making use of the orthogonality of 

the ~K to equate the coefficients of' the se functions, one 

obtains equations (1.2'/a) and (1.2'/b). 

APPE.LIDIX III 

Saturation Factors in Har;neto-Electric Ef f ects. 

~ve seek a solution of the :.Ooltzmann equation 

-~rÊ .. ~;;,. 14}V~{ = \.f 
by putting: 

....... 
iJow 'V~.f Elay be vlritten : 

Vt(f = (~-t1 + ~~ ... E == 
E ... eocv~i'"'nt 

- .1.~ Using the relat i on V= i\ V\1: E. 

( ~ -)-V')(,H ~'V .ç = 
" 

...... , )·M~ -ce.
()E. 

, one ea sily finds: 

- -- -+ '.i'he relation bet'\veen k and v is determined by the E(k) re--·- 1:\ k lationship . For f r ee electrons one has, of course,·" ~ m • 

- ""'\t :ve shall nm·r '\·rri te V= ü:) , \·rl.1e re ~ is some constant, or 
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function of energy, but does not depend on the direction of 
~ 
k. it is not possible to use such a relation for an arbitrary 
~ ~ 

E(k) relation, but one is able to do so 1:.-rhenever the E (k) 
-+ 

relation de~)ends only on the magnitude of k. For grapnite, 

for instance, 't·re J.1ave (in the t·uo-dimensional case): 

E = 1iv\K\ 
Let us noi·r use t~1is re sul t in the .Dol tz;:uann equation. One 

easily finds: 

(
tù J ...... .... = ~ v. C.(t:) 
·nt 

We have used the fact that it is never necessary to consider -pm·rers of €. higher than the first, so that one can put 

f = f 0 for t11ese terms. vle nm.,r note ti.lat the vector 1·rhose 

~ 
scalar product 1.ri th v occurs in our equation, do es not depend 

~ 

on the direction of k. This clearly allovlS one to \vri te: 

~ 

~he solution of this equation for the vector c(E) is very 

simple. One simply ta.kes scalar and vector products with --the vector H. Using elementary vector identities, one finds: 

{( 
c.:l )'2 2.}- w ·-- ._ - ~ " .... 4- -+ ( eH ) 

1\ -c + S c ( e) = ~ F + .: H x F + '--e "t'~ ( H · F) H ) s = ~ 
nt' ne "w ~ 

Let us now consider the special case 1·rhere the magnetic field 

is applied along tl1e z-axis, 1.:-hile the electric field is in --- -the xy-plane. 'rhen the H· F' term is zero and the vector c (E) 
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has only x ru1d y components. The equations for these corn-

ponents are: 

Upon solving these equations, one f inds: 

c)( = 
{~)ç)(-sFv 
s2 + (Ç)2 ~-

To illustrate hm·r the saturation factor s enter the integrals 

for the various magneto-conductivity expressions, let us --look at the el ectric c urrent density vector J. Thus: 

Neglecting t he Hall t e r m, this gives for the x-component of 
~ 

J, f or exampl e : 

The r ole of the saturation f actors is now clear. The usual 

treatment in ter ras of a pm·rer ser ies in H 1-rould correspond 

to expanding the denominator of Cx i n pOvJ"ers of n2• Si milar 

expr ess i ons are valid f or the various other integrals '.·rhich 

ar e derived in this manner. 

It nas been shmm by '~tfilsou (33) t hat t he condition 

f or the validity of t he Boltzmann equat ion f or free electr ons 

is : e:~ << This is sim ply t he coaêii t i on that 
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quantum effects are unimportant; that is, no electron shall 

have time to complete a quantized orbit before it suffers a 

collision. In graphite at lm-r temperatures this condition 

is: s~(~~)-l.<< i . It is interestins that this is just the 

condition for the validity of the e:;::pa11sion in pmrers of H2 

of the functions cx and cy, a,sain at lmr temperatures. At 

high teuperatures, in graphite, the F'ermi surface is near 

the degeneracy point and the Boltzmann equation is certainly 

not valid, because of the increased possibility of band-to-

band transitions. 

One must conclude that 1·rhenever one is justified in 

applying the Boltzmann equation, one is also justified in 

usiilg an expa..."lsion L'l pm·rers of l-i2. 'fhis makes the saturation 

factors meaningless from a practical point of vie1·r. 
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