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ABSTRACT

Healthcare systems rely on specialists to solve many medical problems. In my research,

I explore the Operations Management challenges of specialists for acute and chronic patient

care. I develop general models and consider the additional challenges of providing Specialist

Care in Rural Areas. This thesis contains two research projects: the first project focuses on

acute care while the second project focuses on chronic care.

In the first project, I study the workflow decisions of specialists on call in rural hospitals.

Specialists receive consultation requests for new patients in the Emergency Department (ED)

and take care of inpatients in hospital wards. Should specialists give priority to ED con-

sultation requests or give priority to inpatient discharges? I propose a stochastic dynamic

programming framework for Specialist Care that includes a Single Role Model and a Dual

Role Model. In rural hospitals, Internal Medicine Specialists (Internists) typically take on a

dual role as Intensive Care Unit (ICU) physician and Internist on call. I apply the proposed

modeling framework to data sets developed from two corresponding case studies. One hos-

pital uses the traditional rural approach and the other hospital staffs a separate Internist for

the ICU. After observing all Internists working on call, I work with the two physician groups

to obtain ED consultation and inpatient care data and combine it with hospital information

system data. I find that an early inpatient discharge policy suggested by current guidelines

(i.e. discharge inpatients by 11:00AM) is not always a good strategy. In hospitals with the

common challenge of ED congestion and boarding, specialists should sometimes prioritize

inpatient discharges and other times give priority to ED consultations. I find optimal policies

that have different forms throughout the day with boarding thresholds and end-of-horizon

effects.

For the second project, I study the chronic care problem of Dialysis Facility Network De-

sign. Kidney specialists treat chronic kidney failure with dialysis until transplant or death.
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Patients travel to in-centre or satellite hemodialysis (HD) facilities for each four hour treat-

ment, three times per week or participate in home peritoneal dialysis (PD) or home HD.

The travel burden for patients in rural areas can be greater than one hour in each direc-

tion. Regardless of the travel burden, some patients will always opt to go to an in-centre

or satellite facility, while others will always opt for home dialysis. For many, the choice will

vary depending on the location of available facilities. I develop a mathematical model for

the Dialysis Facility Network Design Problem, considering the impact of travel distance on

patient choice for dialysis mode. Using dialysis patient surveys, I obtain patient preference

data for facility-based or home dialysis in Nova Scotia. The model also incorporates the

challenges of capacity management and budget constraints required to find a feasible solu-

tion. I apply the model to identify the best network of facilities to reduce travel time for

those most in need, improving the welfare of the dialysis patient population.
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RÉSUMÉ

Les systèmes de santé comptent sur les spécialistes pour résoudre de nombreux problèmes

médicaux. Dans mes recherches, j’explore les défis de gestion des opérations de spécialistes

pour les soins aux patients aigus et chroniques. Je développe des modèles généraux et

considère les autres défis de la prestation de soins de spécialistes dans les zones rurales.

Cette thèse contient deux projets de recherche: le premier projet se concentre sur les soins

actifs alors que le second projet se concentre sur les soins chroniques.

Dans le premier projet, j’étudie les décisions de flux de travail de spécialistes sur appel

dans les hôpitaux ruraux. Les spécialistes reçoivent des demandes de consultation pour

les nouveaux patients dans le service d’urgence et de prendre soin des patients hospitalisés

dans les services hospitaliers. Est-il préférable de donner la priorité à l’urgence ou aux

rejets d’hospitalisation? Je propose un cadre de programmation dynamique stochastique

pour les soins de spécialistes qui comprend un modèle de rôle unique et un modèle de rôle

double. Dans les hôpitaux ruraux, spécialistes en médecine interne (internistes) prennent

généralement sur un double rôle de l’unité de soins intensifs médecin et interniste sur appel.

Je demande le cadre de modélisation proposé aux ensembles de données mis au point à partir

de deux études de cas correspondantes. Un hôpital utilise l’approche traditionnelle rurale et

l’autre hôpital utilise un interniste distinct pour l’unité de soins intensifs. Après avoir observé

toutes les internistes travaillant sur appel, je travaille avec les deux groupes de médecins

pour obtenir des données de consultation urgence et de soins aux patients hospitalisés et les

combiner avec les données du système d’information hospitalier. Je trouve que la politique

des patients hospitalisés au début de décharge proposé par les lignes directrices actuelles

(à savoir les patients hospitalisés à décharge par 11h00) ne sont pas toujours une bonne

stratégie. Dans les hôpitaux avec le défi commun de la congestion urgence et l’embarquement,

les spécialistes doivent parfois prioriser les rejets d’hospitalisation et d’autres fois donner la

priorité aux consultations à l’urgence. Je trouve des politiques optimales qui ont différentes
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formes tout au long de la journée avec des seuils d’embarquement et les effets de fin d’horizon.

Pour le deuxième projet, j’étudie le problème chronique de soins de l’établissement pour

dialyse, Dialysis Facility Network Design Problem (DFNDP). Spécialistes du rein traiter

l’insuffisance rénale chronique par dialyse jusqu’à ce que la greffe ou la mort. Les patients se

déplacent dans le centre ou l’hémodialyse par satellite d’installations pour chaque traitement

de quatre heures, trois fois par semaine ou participer à la dialyse à domicile péritonéale ou

l’hémodialyse à la maison. Le fardeau de voyage pour les patients dans les zones rurales peut

être plus d’une heure dans chaque direction. Quelle que soit la charge de voyage, certains

patients seront toujours choisir d’aller à un centre ou satellite, tandis que d’autres seront

toujours opter pour la dialyse à domicile. Pour beaucoup, le choix varie en fonction de

l’emplacement des installations disponibles. Je développe un modèle mathématique pour le

DFNDP, compte tenu de l’impact de la distance de voyage sur le choix du patient pour le

mode de dialyse. Utilisation de dialyse sondages auprès des patients, j’obtenir des données de

la préférence du patient pour en établissement ou la dialyse domicile en Nouvelle-Écosse. Le

modèle intègre également les défis de contraintes de gestion et budget capacités nécessaires

pour trouver une solution réalisable. Je demande le modèle pour identifier le meilleur réseau

d’installations pour réduire le temps de voyage pour les personnes les plus dans le besoin,

l’amélioration du bien-être de la population de patients de dialyse.
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Chapter 1
Introduction to Rural Healthcare

Health disparities are associated with socioeconomic status, measured by variables in-

cluding education, occupation, income, wealth and place of residence. Such health disparities

are widespread, and variations by geographic region suggest that disparities are avoidable

(Adler and Rehkopf 2008). In the United States (U.S.), rural residents exercise less, have

less nutritional diets, smoke more and are more likely to be in fair or poor health. Compared

to urban and suburban populations, rural areas have relatively more elderly people, higher

unemployment rates, less education, more poverty and more uninsured. In addition to the

usual challenges of chronic disease management and reduced mobility, the rural elderly also

face geographic isolation. Even though rural communities have greater need for health care

services, they receive much less than their share of health care resources (Ricketts 2000,

Rosenthal and Fox 2000, Hartley 2004, Hart et al. 2005).

With life expectancy among the highest of the Organisation for Economic Co-operation

and Development (OECD) countries, most Canadians live long healthy lives. However,

health disparities by geographic location are also prevalent in Canada. Rural Canadians

have less healthy behaviours including higher proportions of smokers, lower consumption

of fruits and vegetables and a higher proportion of overweight people than those living in

urban areas. Rural residents are also less educated and are more likely to be in poorer

socio-economic conditions (DesMeules 2006).

Overall, both rural Americans and rural Canadians have higher mortality rates than

urban residents. There are considerably higher death rates due to injury and poisoning,

possibly due to certain rural-based industries, such as farming, fishing, logging and mining

that have high levels of occupational hazards. The suicide rate among men in the most rural

U.S. counties is also much higher than the rate among men in suburban counties. Death
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rates from chronic obstructive pulmonary disease (COPD) are higher among men who live

in nonmetropolitan U.S. counties, and in southern US, heart disease death rates are highest

in rural areas (DesMeules 2006, Eberhardt and Pamuk 2004).

1.1 Differentiating Characteristics of the Rural Context for Healthcare

Distance to a primary care provider (PCP) is an important factor in determining the

frequency of patient visits, with greater distance resulting in fewer regular check-ups. Rural

patients also have fewer chronic care appointments and less utilization of preventive care

(Ricketts 2000, Arcury et al. 2005). For example, in absence of early cancer detection

programs, cancer has been diagnosed at more advanced and later stages of disease in rural

populations compared to urban populations (Monroe et al. 1991).

It is well known that physicians, especially specialists, are concentrated in urban areas.

One quarter of the U.S. population lives in rural areas, but only one eighth of physicians work

in rural areas (Ricketts 1999). More than 75% of rural U.S. hospital CEOs have reported

physician shortages including family medicine (58.3%), general internal medicine (53.1%),

psychiatry (46.6%), general surgery (39.9%), neurology (36.4%), cardiology (35.0%) and

obstetrics-gynecology (34.4%). In addition to physician shortages, the three most commonly

needed allied health professions were registered nurses (73.5%), physical therapists (61.2%)

and pharmacists (51%) (Ricketts, 2000). A study of the supply of physicians confirmed that

there is a much lower supply of physicians in rural areas. Rural areas had 5.3 PCPs and 5.4

specialists per 10,000 population compared to 7.8 PCPs and 13.4 specialists in urban areas.

Furthermore, rural patients have longer waits to get specialist appointments (Reschovsky

and Staiti 2005).

With a short supply of specialists even in urban areas, the staffing problem becomes

even more challenging for rural areas. Furthermore, the prevalence of conditions requiring

specialty care is increasing, disorders that previously were untreatable have definitive therapy,

hip and knee replacements are routine, and patients with diseases such as leukemia and

colon cancer survive longer, requiring more care from specialists (Cooper 2002). The gap
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is sometimes filled by international medical graduates (IMGs), defined as physicians who

graduated from medical school outside of the U.S. and Canada. Overall, IMGs account for

approximately one quarter of U.S. physicians, with the remaining 75% graduates from U.S.

or Canadian medical schools. IMGs are significantly more likely to practice internal medicine

(48.2% vs 34.0%), however, the use of IMGs varies by region. In large rural areas, there are

relatively more IMGs compared to the U.S. national percent within states such as Wyoming

(30.5%), New Mexico (13.0%) and Iowa (9%). In small rural areas, there are relatively

more IMGs compared to the U.S. national percent within states such as Maine (24.6%),

Delaware (12.0%) and Kentucky (10.3%). In isolated rural areas, there are relatively more

IMGs compared to the U.S. national percent within states such as Montana (42.0%), North

Dakota (17.2%) and South Dakota (14.5%) (Thompson et al. 2009).

Recruitment and retention efforts to get physicians to practice in rural communities

range from selected rotational experiences to full-time residency training affiliated with urban

academic centers. For example, Dalhousie University based in Halifax, Nova Scotia has a

Family Medicine program that brings medical students to Yarmouth Regional Hospital,

roughly 300 km from Halifax. Such endeavours might help develop familiarity, community,

sense of place, and knowledge of a supportive and nurturing rural environment. However, the

strongest known influence on rural physician recruitment is a rural upbringing and medical

schools have fewer rural-raised students and more urban-raised applicants. Those without a

rural upbringing are both less familiar with rural life and also less likely to become engaged

in communities. As a result, the majority of medical graduates are less likely to choose rural

practice (Hancock et al. 2009, Rosenthal and Fox 2000). For applicants with interest in rural

practice, the recruitment and retention efforts of greatest importance are 1) healthcare is a

major part of the local economy, 2) the community is a good place for family, 3) doctors are

well-respected and supported and 4) people in the community are friendly and supportive

of each other (Ricketts 2000).
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In addition to IMGs, rural communities without enough PCPs sometimes bring in nurse

practitioners (NPs) and physician assistants to fill the gap for outpatient care and hospital-

ists for inpatient care (Cooper 2002). In Nova Scotia, NPs bring an opportunity to improve

primary care access for rural communities. However, barriers to bringing in NPs include

lack of funding for NP positions and restrictions on scope of practice (Martin-Misener et al.

2010). Rural areas also have recruitment and retention challenges for other healthcare work-

ers including nurses. For example, Nova Scotia recently became one of the first Canadian

provinces hit by a nurse shortage, with specialties including critical care nurses (Doucette

2015). Retention is an ongoing challenge in rural Nova Scotia hospitals as new nursing grad-

uates will often work in rural areas temporarily to gain experience and then move to Halifax

or out of the province. More educational opportunities along with good infrastructure, re-

muneration, workplace organisation, professional environment, and other support structures

are all part of the retention strategy for rural health care staffing (Baernholdt and Mark

2009, Buykx et al. 2010).

What exactly is meant by “rural”? The term suggests pastoral landscapes with low

population density due to isolated communities working to support industries such as farm-

ing, fishing, or logging. However, only a small fraction of rural populations are typically

involved in farming with towns ranging from a handful of residents to more than ten thou-

sand residents. Proximity of rural areas to urban centres can range from a few kilometers to

hundreds of kilometers. A small rural town may only have one or two PCPs. Others may

have a community hospital staffed with an Emergency Department (ED) physician but no

specialty services. A larger rural town may have a regional hospital that serves patients from

smaller towns providing access to specialists and surgeons. Such regional hospitals may not

offer all specialty services but can facilitate the transfer of patients to urban centres when

the need arises (Hart et al. 2005, DesMeules 2006).

In the US, there are at least four classification systems used to distinguish rural popu-

lations. The Office of Management and Budgets (OMB) metropolitan and nonmetropolitan
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populations are county-based definitions used to determine reimbursement levels for more

than 30 federal programs including Medicare. A metropolitan area is defined as a central

county with one or more urbanized areas greater than or equal to 50000 residents with out-

lying counties that are tied to the core. With this definition the U.S. has 1090 metropolitan

counties and 2052 nonmetropolitan counties. Another county-based definition that builds

on the OMB dichotomy are Urban Influence Codes (UIC) such that counties are classi-

fied into nine groups: two metropolitan and seven nonmetropolitan. The groups are based

on adjacency to metropolitan counties with a minimum work commuting threshold. The

Census Bureau Rural and Urban taxonomy partitions urban areas into urbanized areas and

urban clusters. Urbanized areas have populations of 50000 or more, urban clusters have pop-

ulations ranging from 2500 to 49999 and smaller populations are rural. The Rural/Urban

Commuting-Area (RUCA) Taxonomy builds on the Census Bureau taxonomy using zip-code

based areas and distinguishes a small town where the majority of commuting is to a large city

from a similar sized town where there is commuting primarily to other small towns. There

are more than 30000 zip code areas (Hart et al. 2005). Canada uses Metropolitan Area and

Census Agglomeration Influenced Zones (MIZ) to define rural and small towns. The rural

definition refers to the population living outside the commuting zones of larger urban centres,

specifically outside census metropolitan areas (CMAs) and census agglomerations (CAs). A

strong MIZ means that 30% or more of the employed labour force lives in a CMA/CA urban

core, while a moderate MIZ has at least 5%, but less than 30% of the employed labour force

living in a CMA/CA urban core. A weak MIZ has more than 0% but less than 5% of the

employed labour force living in a CMA/CA urban core, and no MIZ is used for communities

that do not have any commuters to a CMA/CA urban core (DesMeules 2006).

In order to determine which definitions are better suited for capturing access to health

care services in epidemiology studies, Hall et al. (2006) applied different definitions of rural

to breast cancer incidence rates. Compared to invasive breast cancers, in situ breast cancers
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typically detected through mammography, had rate ratios varying from 1.40 to 1.80 depend-

ing on which definition of rural is used. The basic finding is that dichotomous definitions

may fail to capture variability in rural areas.

Rural hospitals have a patient mix with higher rates of chronic diseases (Hart et al. 2005),

with more adjusted annual hospital admissions than urban residents. Average hospital length

of stay (LOS) does not differ significantly between rural and urban hospitals (Reschovsky and

Staiti 2005), which is expected since patient flow processes and medical procedures usually

follow the same standards as those in urban centres. With fewer health care providers, rural

hospitals typically do not offer the full range of therapies, and technology for some services

may only be justified in urban hospitals due to cost (Ricketts 2000, DesMeules 2006). As a

result, rural hospitals have a limited scope of service and are often involved in a network of

health care facilities and patients are transferred to the appropriate facility when necessary

(Ricketts 2000, Hart et al. 2005). Despite the high costs associated with needed health care

services, U.S. Medicare payments to rural physicians and hospitals are 18% less for the same

services. This is partly due to less available diagnostic services and adjustments for lower

wage levels in rural communities (Ricketts 2000, Rosenthal and Fox 2000, Hart et al. 2005).

1.2 Thesis Structure and Contributions

Most healthcare operations research is focused on urban centres, possibly due to the

proximity of universities to medical centres. This dissertation adopts a rural perspective

which includes some of the same challenges as urban centres, but also additional challenges.

In chapter 2, I begin with a detailed review of the Emergency Department (ED) Operations

Management literature in order to gather a solid understanding of the state of the art con-

cerning emergency care in rural areas. Chapters 3 and 4 are studies in collaboration with

specialists in Nova Scotia, both with patient-centric models. Chapter 3 presents Special-

ist Care in Rural Hospitals: From Emergency Department Consultation to Inpatient Ward

Discharge, where I study ED crowding from the perspective of Internal Medicine Specialists

(Internists) with the objective to reduce patient waiting costs. This is a new perspective in
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part since most ED research considers only patient flow from arrival to the ED until depar-

ture from the ED. The traditional rural situation is particularly challenging since Internists

take on a dual role as the Intensive Care Unit (ICU) physician and Internist on call for ED

consultation and inpatient care in the Medicine wards. In Chapter 4, Dialysis Facility Net-

work Design is presented, with a rural perspective. Here the objective is to design a network

of dialysis facilities that reduces long patient travel times, improving the welfare of dialysis

patients from rural areas. This perspective differs from an urban-centred mindset where the

number of patients needs to meet a certain threshold before service is provided. The model

presented considers the reality that each patient should matter, and provides a framework

to provide the best network of dialysis facilities with consideration of budget and capacity

management constraints. Concluding remarks and future research is specified in Chapter 5.

The projects undertaken in this thesis address understudied research problems, and

as a result, we make a significant contribution to the literature on healthcare operations

research. The models presented in this thesis are of theoretical interest and also provide

practical insight into solutions to address strategic and operational challenges of specialists

in rural areas.

In terms of acute care operations research, Emergency Department (ED) crowding has

been studied extensively for decades, yet the ED crowding problem is still a regular problem

in hospitals around the world. The focus has mostly been on ED patient flow from arrival

until admission or discharge from the ED, leaving little opportunity to address possibly the

most difficult and imporant challenge: how should hospitals manage interdepartmental pa-

tient flow encompassing both the ED and inpatient wards? For the existing studies on ED

outflow to inpatient wards, typically inpatient beds are modeled as servers and inpatient

bed capacity is the targeted resource constraint. However, the most valuable resources in

any hospital are the healthcare professionals who provide appropriate services for patient

care. In the first project of this thesis, we consider the workflow decisions of specialists on

call for acute care purposes. These decisions are interdepartmental since specialists go to
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the ED for consultation and determine if patients can be discharged from the ED or re-

quire admission to inpatient wards. After admission, specialists take care of inpatients in

the wards for several days until inpatient discharge. We provide a stochastic dynamic pro-

gramming framework for the workflow decisions of specialists, and incorporate the additional

challenges for specialists on call in rural hospitals. The problem is particularly challenging

in the traditional rural situation where an Internal Medicine specialist (Internist) takes on

a dual role as ICU physician and Internist on call. Our proposed framework for Specialist

Care encompasses both Single Role and Dual Role models. This decision making problem

could have been specified with more variables resulting in the need to use approximation

methods to identify appropriate solutions. Instead, we develop models with novel elements

and apply appropriate assumptions observed in practice, so that the problems can be solved

by backward induction.

Chronic care is also a significant challenge for healthcare systems around the world. In

the U.S., among the costs to deliver chronic care include more than $27 billion to provide

dialysis services to patients with chronic kidney failure (USRDS 2015). In this thesis, the

strategic problem of dialysis facility network design is studied. Our contribution involves

considering the rural perspective of this problem where dialysis patients may need to travel

great distances in order to receive four hours of treatment, three times per week. In addition

to providing dialysis at facilities, home dialysis is also regularly provided as an option and

patients have the choice of facility-based dialysis or home dialysis. This study provides the

first optimization model for dialysis services planning that incorporates patient choice for

dialysis mode. While cost studies have been conducted to consider the overall average cost of

dialysis by modality, our optimization model includes a more detailed cost constraint, where

costs related to facility location decisions and costs related to per patient treatment costs are

separated accordingly. Our proposed model is a mixed integer program (MIP) that can be

solved with a standard commercial MIP solver such as CPLEX. A feasible solution is always

possible with the proposed model due to our novel formulation that maximizes patient welfare
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as much as possible given system constraints. In the application of our proposed model

through a case study, we find that with the same budget as the existing facility network, it is

possible for considerable reduction of maximum and mean travel times and less variability.

We also illustrate the ability to plan for improvements to the dialysis facility network by

determining the best location and capacity expansion decisions if additional funding is made

available.
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Chapter 2
Operations Research for Emergency Care: A Review

Emergency Department (ED) crowding has been a regular and significant problem in

hospitals for over twenty years (Lynn and Kellermann 1991). More than 1000 studies have

been conducted by emergency medicine, computer science, and operations management re-

searchers to investigate ED crowding. While several years of research has examined causes,

effects, and proposed solutions, the problem has not yet been solved and ED crowding is

getting worse (Pitts et al. 2012).

Hoot and Aronsky (2008) reviewed the medical literature on ED crowding. Commonly

reported causes include increases in patient arrivals, inadequate staffing, and boarding of

admitted patients. The effects are serious: adverse outcomes including patient mortality,

reduction in quality of care, patient dissatisfaction and an increase in the number of patients

who leave without being seen (LWBS) by a physician. When patients LWBS, the risk to

patient safety is a real concern, especially among patients with severe medical conditions.

While the most critical (triage level 1) patients are always given priority and treated in a

separate resuscitation track, ED crowding does create delays for both low-acuity (triage level

4, 5) and high-acuity (triage level 2, 3) patients (McCarthy et al. 2009).

A common misconception is that ED crowding is due to non-emergency patients that

seek care in EDs but should be treated elsewhere. When the medical community first

raised the issue of ED crowding in the United States, policy makers inaccurately concluded

that crowding was due to inappropriate use of emergency services by those with no urgent

conditions (Olshaker and Rathlev 2006). Hospital management was left to use their existing

resources and cope with ED crowding themselves. To help address this misconception,

additional lobbying ensued with supporting research. Noteworthy is a large study of 110 EDs
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by Schull et al. (2007) who showed that typically, low-complexity patients impact non-low-

complexity patients with negligible increases in average time to see a physician and average

LOS. The reality is that diverting low-complexity patients away from EDs is unlikely to

improve the situation for sicker patients.

There is published evidence that ED crowding creates adverse effects on quality of care

including patient mortality. The evidence includes a study of 25 community and teaching

hospitals in Ontario, Canada demonstrating that ED crowding has a real impact on the

time to deliver thrombolysis, with increased door-to-needle time for patients with suspected

acute myocardial infarction (commonly known as a heart attack). In networks of EDs with

moderate crowding, delays were observed attributable to 3 additional deaths per 1000 pa-

tients treated. Higher network crowding was shown to have more severe effects with delays

attributable to 7 additional deaths per 1000 patients treated (Schull et al. 2004).

Emergency Medicine researchers have completed several empirical studies on ED crowd-

ing and its impact on quality of care. Consequences include reduced quality of pain care

(Hwang et al. 2008), delays in analgesia treatment in patients with acute abdominal pain

(Mills et al. 2009), higher risk of adverse cardiovascular outcomes in patients with chest

pain (Pines et al. 2009), increased time to antibiotics for patients with community-acquired

pneumonia (Fee et al. 2007, Pines et al. 2007), and for infants presenting with fever (Ken-

nebeck et al. 2011). For a review of the medical literature from 1989-2007 on the effect of

ED crowding on quality of care, see Bernstein et al. (2009).

Interventions to reduce average length of stay (LOS) in the ED include: physician in

triage (Holroyd et al. 2007), physician orders at triage (Russ et al. 2010), bedside registration

(Gorelick et al. 2005), and point-of-care (POC) testing in the ED rather than central labo-

ratory (Jang et al. 2013). Additional interventions include fast-track facilities (Yoon 2003),

increasing ICU capacity (McConnell et al. 2005) and the introduction of a computerized

consultation management system (Cho et al. 2011).
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We conducted a systematic review of the academic literature with the search criterion:

( “Emergency Department” OR “Emergency Room” AND (Crowding OR Simulation OR

Queuing OR Queueing OR Scheduling OR Staffing).

Sources used for this review include both the Institute for Scientific Information (ISI)

Web of Science (Thomas Reuters) and specific databases for each of the following journals:

• Decision Analysis

• Interfaces

• Management Science

• Manufacturing and Service Operations Management (MSOM)

• Operations Research

• Production and Operations Management (POM)

• The European Journal of Operational Research (EJOR)

• Journal of the Operational Research Society (JORS)

• Health Care Management Science

• Medical Decision Making

• Annals of Emergency Medicine

• Academic Emergency Medicine

The ISI Web of Science search was confined to the following four Research Areas:

• EMERGENCY MEDICINE (EM)

• HEALTH CARE SCIENCES & SERVICES (HCSS)

• COMPUTER SCIENCE (CS)

• OPERATIONS RESEARCH MANAGEMENT SCIENCE (ORMS)

Using this criterion, ISI identified a total of 1368 journal articles. Of those, 1095, 213,

48 and 29 were from EM, HCSS, CS, and ORMS respectively. (The CS results include 10

papers that are also included in HCSS and 7 papers that are also included in ORMS).

Journal-specific searches returned a total of 484 papers, the majority coming from Aca-

demic Emergency Medicine (226) and Annals of Emergency Medicine (148).
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Abstracts of the articles were reviewed to identify papers with a specific focus on opera-

tions research and management science modeling of Emergency Department (ED) processes.

Our key interest is to identify studies that pay particular attention to the rural context.

2.1 Measuring ED Crowding

While ED crowding is a widely reported problem, there is no standard way to measure

it (Hwang and Concato 2004). A group of 74 experts developed 113 potential measures,

reduced to a final list of 38 different measures of ED crowding (Solberg et al. 2003). Measures

include occupancy levels, waiting times, LWBS, and length of stay (LOS). A variety of indices

have been proposed to measure ED crowding including the National Emergency Department

Overcrowding Score (NEDOCS) (Weiss et al. 2004), the Emergency Department Work Index

(EDWIN) (Bernstein et al. 2003), the Demand Value of the Real-time Emergency Analysis

of Demand Indicators (READI) (Reeder et al. 2003), and the Work Score (Epstein and Tian

2006).

NEDOCS is scaled from 0 to 200 with 100 set as the cutoff for overcrowding. There are

six levels separated as follows: 0 - 20 = Not Busy, 21 - 60 = Busy, 61 - 100 = Very Busy,

101 - 140 = Overcrowded, 141 - 180 = Dangerous, Above 180 = Disaster. Scores can be

calculated using the following equation:

NEDOCSt = −20 + 85.8 ∗ (TotalPatients/EDBeds)

+600 ∗ (Admits/HospitalBeds) + 13.4 ∗ (V entilators)

+.93 ∗ (LongestAdmit) + 5.64 ∗ (LastBedT ime)
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where:

Total Patients = number of total patients in the ED at the time the
score is calculated

ED Beds = total number of ED beds including hallways, chairs,
fast track and other beds that can be used to serve
patients at the time the score is calculated

Admits = number of holdovers/admits in the ED, at the time
the score is calculated

Hospital Beds = Total number of hospital beds
Ventilators = number of patients on ventilators/respirators in the

ED at the time the score is calculated
Longest Admit = longest admit holdover/boarding (in hours) at the

time the score is calculated
Last Bed Time = wait time (in hours) from arrival to bed for the last

patient called for a bed

Using data from an 8-week period from Vanderbilt University Medical Center, Hoot

et al. (2007) conducted a study to test the usefulness of EDWIN, NEDOCS, READI, and the

Work Score to measure present and predict future ED crowding. A program was developed

in Matlab to query the information system every 10 minutes, extracting occupancy level and

other data needed to calculate the 4 crowding measures. Ambulance diversion was used as

the outcome measure for ED crowding and receiver operating characteristic (ROC) curves

were plotted for the analysis. The area under the ROC curves were 0.81 for EDWIN, 0.88

for NEDOCS, 0.65 for READI, 0.90 for the Work Score, and 0.90 for occupancy level. The

authors conclude that the simplest measure, ED occupancy, performs as well as the more

complicated indices. However, the ambulance diversion policy adopted at the hospital under

study is to go on diversion whenever any of the following apply and are not remedied within

an hour:

• All critical care beds in the ED are occupied, patients are occupying hallway spaces,

and at least 10 patients are waiting

• An acuity level exists that places additional patients at risk

• All monitored beds within the ED are full
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Obviously, ED occupancy is a good predictor of ambulance diversion when the trigger

for ambulance diversion is based primarily on ED occupancy. It may be true that simpler

measures are better suited than more complicated indices to measure ED crowding, but we

still do not have a standard way to measure it.

2.2 ED Patient Flow Process

EDs operate in a complex multi-server environment with time-varying patient arrivals,

abandonments, multiple patient classes with priority queues, and a multi-stage treatment/service

process. ED care can be conceived to have three main components: waiting room time from

arrival up to the time when a patient is placed in an ED bed or other treatment area,

treatment time from ED bed placement up to the admit/discharge disposition decision and

boarding time for admitted patients which runs from disposition decision until the patient

is transferred to a specialty ward for additional care. Figure 2-1 represents the ED patient

flow process.

Patients may walk-in or arrive to the ED by ambulance. Arriving patients are clinically

assessed initially in triage, typically by a triage nurse who assesses the patient’s medical

condition to identify a priority for treatment. Following triage, registration is completed to

identify and record patient information. Due to long waits or other factors, some patients will

leave without being seen (LWBS) by a physician and exit the ED. Patients wait in the waiting

area until they are assigned an ED bed or other area for treatment. Note that the waiting

area is a priority queue since higher risk patients are served first. ED treatment involves

several components, typically beginning with both ED physician and nurse assessments.

After this initial diagnosis, an ED physician may investigate by requesting one or several lab

tests (i.e. blood/fluids or imaging), keep the patient under observation, and may request a

consultation from a physician specialist. Consultations may be for assessment purposes or

for admission approval. Consultations made for assessment purposes may include a clinical

examination of the patient by the specialist and additional lab tests (further investigation).

In order to admit a patient to stay in the hospital in another department, a specialist may
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Figure 2–1: ED Patient Flow
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need to be consulted from an admitting department (inpatient ward). The last step in the

ED treatment process is the disposition decision to either admit the patient to the hospital

for further treatment or to discharge the patient home. A discharge process or admission

and boarding process follows before the patient exits the ED. While admitted patients are

waiting in the ED for an inpatient bed, they are often moved out of the ED bed but remain

boarding in hallways.

2.3 Literature Review

Emergency medicine researchers have been interested in the application of operations

management (OM) techniques to help address the ED crowding issue for more than ten years.

To encourage researchers to examine the problem from a systems perspective, Asplin et al.

(2003) proposed a framework for ED crowding research based on the input-throughput-output

model.

The input component includes three categories of demand for ED care: 1) emergency

care, 2) unscheduled urgent care, and 3) safety net care. Emergency care is provided in

the ED for seriously ill and injured patients. It also includes referrals from other health

care providers who anticipate the need for patient admission to a hospital. Unscheduled

urgent care arises due to inadequate capacity in other parts of the healthcare system. The

delay for an acute care appointment may be longer than patients are willing or able to wait.

Considering that many clinics are only open during day time hours whereas EDs are always

open to the public, 24 hours per day, some patients prefer to wait in the ED and receive

same-day care. Safety net care is provided in the ED to patients who have limited or no

other place to go for medical care. Access barriers are particularly prevalent in countries

such as the United States (US) where a large number of uninsured citizens can only seek care

in EDs. However, even in Canada’s publicly funded health care system, where health care

services are provided universally to all citizens, access issues exist due to other problems.

For example, in the province of Quebec, many citizens do not have access to a primary care

physician, so they seek care in EDs instead.
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The throughput component includes internal ED processes, proposed as two phases.

The first phase includes triage, room placement, and initial evaluation. The second phase

includes diagnostic testing and ED treatment.

The output component focuses on the patient disposition decision to either discharge

home or admit to a hospital ward for further care. From an ED patient flow perspective,

the main bottleneck is the inpatient exit rate, so inpatient boarding of admitted patients

is considered a particularly important research area. For discharged patients, unscheduled

return ED visits may occur due to inappropriate discharge or inadequate access to follow-up

care.

Soremekun et al. (2011) illustrate the concept of the ED efficient frontier. They explain

how the efficient frontier provides a way to compare multiple EDs in terms of responsiveness

(1/wait time) and utilization rates. In line with standard OM practice, three ways are

suggested to move towards the efficiency frontier: 1) eliminate waste, 2) reduce variability

and 3) increase flexibility.

Eliminating waste is the key principle of lean management, where process improvement

teams identify non-value added activities of each process from the patient’s perspective. Sev-

eral examples of successful Lean projects are included in a recent review of lean implemen-

tations from 15 EDs in Australia, Canada, and the United States (Holden 2011). Examples

include both eliminating outdated policies and developing new concepts such as fast-track

for low-complexity patients, patient streaming according to probability of admit/discharge,

streaming into 3 “pods” (complex, medium, and fast), and a new process for pulling patients

into inpatient wards.

Reducing variability includes both demand and service time variability. Considering

the safety net role of the ED, there are few options to reduce demand variability, although

interventions such as ambulance diversion may result in some reduction of ED demand. How-

ever, several interventions exist for reducing ED service time variability. Reducing variation

in physician and other provider practices will clearly lead to lower service time variability.
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Other examples include decreasing test utilization and/or response times and smoothing

surgical schedules.

Increasing flexibility is an important option, especially considering that a significant

amount of ED demand is predictable. Staffing based on models that incorporate time-

varying demand creates the flexibility required to better match demand patterns. Having

an on-call system for additional staff provides reactive capacity to handle unpredictable

demand. Canceling elective surgeries is another example that can reduce ED boarding by

providing reactive inpatient bed capacity.

Most of the remaining papers in the literature review are organized according to ED

patient flow in the following sections: 1) Demand for ED Services, 2) Ambulance Diversion

and Offload Delays, 3) Triage, 4) Care and Treatment, 5) Admission & Boarding. We then

review methodological alternatives.

2.4 Demand for ED Services

The demand for ED services can be considered either from the perspective of one spe-

cific hospital or from the perspective of a government (or other organization) responsible

for multiple hospitals within a geographic area. Most of the studies in this review consider

problems from the perspective of ED demand for a specific hospital; however, in some cases,

major system design changes are also conceived. For example, Congdon (2001) investigates

potential system changes such as the impact of expansion and closure of Accident & Emer-

gency (A&E) departments in England. Patient flows are modeled using gravity models to

match demand from patient populations with the supply of A&E facilities in different hos-

pitals. Both distance and travel time based accessibility models are considered, as well as

an extended distance-based model that incorporates additional factors such as a regional

variation in health need. Facility network design models that incorporate congestion have

also been developed by Zhang et al. (2010) in the context of preventive healthcare.

From the perspective of a given hospital, historical data shows that daily ED census

is cyclical, with predictable patterns depending on time of day, day of week, and time of
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Figure 2–2: ED Census

the year. These patterns are based on time-varying patient arrival rates. For example, in a

Level 1 trauma center in St. Paul, MN, ED census peaks occur in the afternoon and remain

high in the evening. ED census then typically declines until early the next morning when it

begins to gradually increase again. While the trend is similar the next day, the amplitude

is different depending on the day of the week, with Mondays having the highest peak. The

exact timing of peak periods may be different in other EDs, but the patterns shown in Figure

2-2 are typical (Asplin et al. 2006).

Green et al. (2007) examine queueing models for analyzing service systems with time-

varying demand. The focus of the paper is on call centers but includes other application areas

including EDs. Their discussion is centered around the M(t)/GI/s(t) + GI queueing model,

which has a nonhomogeneous Poisson arrival process with a time-varying arrival function

λ(t), independent and identically distributed (i.i.d) service times with a general probability

distribution, time-varying number of servers s(t), with i.i.d times to abandonment following

a general probability distribution. Note that the M(t)/GI/s(t)+GI model also assumes an

infinite waiting area and a first-come first-served (FCFS) queueing discipline.

Classical approaches for dealing with time-varying demand include Pointwise Stationary

Approximation (PSA) and Simple Peak Hour Approximation (SPHA). PSA is an effective

analytical strategy for dealing with time-varying demand in settings with short service times

(e.g. 3 minutes), a high quality of service standard and short staffing intervals. SPHA

20



is appropriate again when services times are short and quality of service is high, but the

staffing interval is long. PSA does not deal with the fact that in practice, staffing levels

generally need to be held constant during each staffing interval. Therefore, an adjusted

approach called segmented-PSA or another similar approach called stationary independent

period-by-period (SIPP) is often used. When services times are moderate (e.g. 30 minutes),

lagged refinements to SIPP and SPHA, called Lag SIPP or Lag SPHA are recommended. In

cases when service times are long (e.g. 300 minutes), then the modified-offered-load (MOL)

approximation should be used instead. The study concludes that much more work is needed

to examine EDs and other more complex service systems.

For an urban ED with an annual census of 25,000 patients, Green et al. (2006b) de-

veloped a queueing model to estimate the number of healthcare providers required in each

shift. The study used an M/M/s model with a single queue to represent the waiting area and

multiple servers to represent healthcare providers. The model does consider time-varying

demands to account for the fluctuation of arrivals over the course of the day. This was done

using Lag SIPP. As noted earlier, SIPP essentially constructs separate queueing systems for

each staffing period. However, considering that peak congestion often lags the peak arrival

rate, the Lag SIPP method was used to provide a better estimate than SIPP. In addition to

variation in demand by time of the day, the overall average volume also varied for each day

of the week. In this case, creating different schedules for each day of the week was consid-

ered impractical, but two separate queueing analyses were performed to identify a weekday

schedule and a weekend schedule.

While the study was successful in reducing LWBS, the authors noted several limitations.

The model did not incorporate priorities based on the triage system or account for any ad-

ditional registration and triage delays. It also assumes service time provided by a healthcare

provider is exponentially distributed and continuous; however patients often see a physician,

then wait in an ED bed for lab test results or consultations and then see the physician again

before admission or discharge. In addition, the authors noted that a more detailed analysis

21



is required, especially in larger EDs, which often include fast track areas and different types

of providers such as resident physicians and nurse practitioners.

2.5 Ambulance Diversion and Offload Delays

In many regions, EDs have the option to go on ambulance diversion. During peri-

ods of peak congestion, ED management will declare diversion status, requesting the emer-

gency medical services (EMS) agency to divert incoming ambulances to another hospital. In

essence, ambulance diversion is an intervention to reduce ED crowding. When ambulances

are diverted from overcrowded EDs to other EDs with more available capacity, resource

pooling benefits should occur and result in a reduction in ED crowding. However, a lack

of pooling benefits exists in practice, possibly since diversion requests may be ignored by

EMS when all EDs are on diversion, commonly referred to as “All on Diversion, Nobody

on Diversion” (ADND).

Deo and Gurvich (2011) studied ambulance diversion in a theoretical network of two

EDs to examine why resource pooling benefits may not always be realized. Their model

embeds a queueing network within a static non-cooperative game between the two EDs,

each with the objective of minimizing their own waiting time. They suggest that a defensive

equilibrium exists such that both EDs do not accept diverted ambulances from the other ED.

The authors propose that pooling benefits could be realized if centralized diversion decisions

were coordinated by a social planner rather than decentralized decisions made by each ED.

For each ED (i=1, 2), ambulance (a) and walk-in (w) patient arrivals are modeled

according to Poisson processes, with rates λia and λiw respectively. The EDs have Ni beds

and service times are assumed to be exponentially distributed with the same mean in both

EDs. Diversion status is declared at time t, if the number of patients in the ED exceeds a

diversion threshold, Ki. In the decentralized situation, the Nash equilibrium of the model is

the threshold pair K=(0,0), which implies that the best response for each ED is to always be

on diversion, resulting in no diversion and no pooling benefits (i.e two independent M/M/N

queues). For the centralized situation, it is difficult to find an analytical solution for the social
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planner’s optimum threshold pair, K = (K∗1 , K
∗
2). Instead, a lower bound of the solution

is solved for a perfectly pooled system and an upper bound of the solution is solved with a

capacity-based static threshold. The lower bound solution is unrealistic for the ED setting

since it allows for: 1) both rerouting of ambulance and walk-in patients and 2) rerouting of

patients after they have already been waiting in the queue. The upper bound solution uses

the number of ED beds as a threshold pair, K = (N1, N2). The authors propose this solution

to be implemented with a policy that EDs cannot divert ambulances if there are available

ED beds.

Ambulance offload delays occur when paramedics cannot immediately transfer patient

care to ED staff upon arrival. When an ED is too crowded, paramedics continue to provide

patient care either in the ambulance or on an ED stretcher. An empirical study by Eckstein

and Chan (2004) found that ambulance offload delays occurred in 12.5% of all transports.

Almehdawe et al. (2013) developed a stochastic queueing network model of the EMS-ED

interface to assess the impact of system resources on ambulance offload delays.

The authors consider a multiple server queueing network model with two customer

classes: ambulance patients and walk-in patients, with priority to ambulance patients. In

the model, ambulance patients arrive to the system according to a Poisson process at rate

λ0. Patients are routed to one of K EDs according to a routing probability pk, k = 1, ..., K.

Walk-in patients are incorporated in separate arrival streams according to a Poisson process

at rate λk for each respective ED, k = 1, , K. All patients in the model are assumed to require

ED beds, so lower acuity patients are excluded with the assumption that they receive care in

a separate “minor treatment” area. Service assumptions include exponentially distributed

service times with rate µk, patients served on a first-come-first-served (FCFS) basis within

each priority class (ambulance or walk-in) with preemptive priority to ambulance patients

over walk-in patients. Ambulance transportation time is assumed negligible and patients are

considered lost if all N ambulances are occupied.
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The state of the system is represented by the following two variables at time t :

qa,k(t): number of ambulance patients in service or waiting in the kth ED

qw,k(t): number of walk-in patients in service or waiting in the kth ED

However, due to the assumption that ambulance patients receive preemptive service over

walk-in patients, the authors analyze ambulance patients separately from walk-in patients.

As a result, the system is analyzed as a continuous time Markov chain (CTMC), quasi-birth-

and-death (QBD) stochastic process (qa,K(t), qa,K−1(t), ..., qa,1(t)), t ≥ 0 with a finite number

of levels. Steady-state distributions are solved using matrix-analytic methods. Performance

measures include the mean number of ambulances in offload delay at the Kth ED and the

probability that all ambulances are in offload delay, referred to as the loss probability, PL.

The CTMC is enhanced by adding the walk-in patient queue of one ED, obtaining a

QBD process (qw,K(t), qa,K(t), qa,K−1(t), ..., qa,1(t)), t ≥ 0 with an infinite number of levels.

The model is tested with three case studies: 1) a small network with infrequent offload

delays, 2) larger network with significant offload delays, and 3) the real EMS-ED network

that motivated the study. In the small network, prioritizing ambulance patients result in

a reduction of offload delays and shorter waiting times for ambulance patients, at the cost

of longer walk-in patient wait times. In the larger network, the authors test the impact of

varying routing probabilities. A balanced scenario where routing probabilities are propor-

tional to ED capacity results in a 14% decrease in offload delays. In the third case study,

the authors investigate the impact of changing LOS by changing service rates. As expected,

offload delays, expected queue lengths and walk-in patient average LOS are all reduced.

Considering that the model has numerous assumptions, the authors also created a sim-

ulation model to relax two main assumptions: 1) ambulance travel times are negligible, and

2) ED service times are exponentially distributed. Ambulance travel times from the study

setting follow a beta distribution. The simulation model tested both beta distributed travel

times as well as exponential distributed travel times, due to previous models of ambulance
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travel times. Service times were modeled based on total flow time, with an assumption that

service time has a similar distribution to total flow time with a different mean. As a result,

the simulated service times follow an Erlang distribution, and are modeled with the pre-

emptive resume service discipline. If the loss probability is small, the simulated results are

not significantly affected by adding ambulance travel times and changing the service time

distribution. The authors conclude that considering that a typical ambulance utilization rate

is approximately 35%, the loss probability is small in practice, and the model is appropriate

under normal EMS operating conditions.

2.6 Triage

ED triage is the process that assesses the severity of patients’ medical conditions and

assigns a priority for treatment. A triage code is established for each patient upon arrival,

typically by a triage nurse based on the severity of patient symptoms. The Emergency

Service Index (ESI) is a 5-level triage level rating system used in the United States (Gilboy

et al. 2005). In terms of validity and reliability, 5-level triage systems are better at assessing

patient severity than three-level triage systems. As a result, more patients are now triaged

using ESI than any other triage system in the United States (McHugh et al. 2012). Other

triage systems include the Australasian Triage Scale (ATS) which, according to FitzGerald

et al. (2010), formed the basis for the Manchester Triage Scale (MTS) in the UK as well as

the Canadian Emergency Department Triage and Acuity Scale (CTAS) in Canada. CTAS

levels are shown in Table 2-1. ESI uses the same levels as CTAS except level V is named

Referred instead of Non Urgent. CTAS includes national guidelines on the maximum time

patients should wait until being seen by provider for each acuity level. The guidelines also

include fractile response objectives for the proportion of patients that should be seen within

the time frame for each level.

According to the Canadian Association of Emergency Physicians (Beveridge et al. 1999),

triage goals are:

1. To rapidly identify patients with urgent, life threatening conditions
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Table 2–1: CTAS levels and guidelines

CTAS Time to physician Fractile response objective
Level I Resuscitation Immediate 98%
Level II - Emergent 15 minutes 95%
Level III Urgent 30 minutes 90%
Level IV Less Urgent 60 minutes 85%
Level V Non Urgent 120 minutes 80%

2. To determine the most appropriate treatment area for patients presenting to the ED

3. To decrease congestion in emergency treatment areas

4. To provide ongoing assessment of patients

5. To provide information to patients and families regarding services, expected care and

waiting times

6. To contribute information that helps to define departmental acuity

Triage requires quick decision-making with limited information, which naturally results

in inaccurate triage codes being assigned to some patients. In a study focused on triage of

children presenting to a pediatric ED with abdominal pain, Wilk et al. (2005) developed an

approach to help improve triage accuracy. Abdominal pain is the main symptom for patients

with acute appendicitis, a serious medical condition with high mortality rates if not treated

promptly. Only a very small number of children with abdominal pain have appendicitis

though, and unnecessary investigations and assessments are costly to hospitals and painful

for patients.

Patients who arrive to the ED with abdominal pain are examined by a triage nurse

practitioner (NP), followed by an evaluation by an ED physician. If acute appendicitis is

suspected, a surgeon is called in for consultation. Otherwise, the evaluation is either not-

yet-diagnosed (NYD) or resolved. Resolution occurs if the child’s abdominal pain subsides

naturally and the patient is discharged. These three evaluations: surgical consult, NYD, and

resolution, correspond to the three main record classes in the study data set of 647 patient

records, each with 12 attributes.
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The proposed methodology is based on rough set theory, fuzzy measures, and game

theory. Rough sets use information tables, where rows represent objects such as patient

charts, and columns represent attributes. These attributes include both condition attributes

and decision attributes. In the studied case, there are 12 condition attributes and one

decision attribute, referred to as the triage outcome: surgical consult, NYD, or resolution.

Using knowledge expressed in the condition attributes, an approximation of knowledge is

established for the decision attribute by the rough set.

How to handle missing values within the data set is stressed as an important issue.

Records with missing values may be quite important and should not be discarded. For

example, the attribute white blood cell count (WBCC) is missing in 44% of the records

with resolution class, but missing in only 3% of the surgical consult class. WBCC is not an

important attribute for diagnosis of patients in the resolution class, but it is quite important

in the surgical consult class. So the attribute may be important depending on the context,

and discarding all records that are missing WBCC would not be appropriate. Traditional

rough set theory does not handle missing values so the rough set is extended to include

missing values.

Fuzzy measures and game theory are used to model the relative value of the information

supplied by each attribute. For the set C of all condition attributes, which represent the

players in a game, the characteristic function µ(A), represents the payoff obtained from a

cooperative game from a coalition of attributes. Shapley values (Shapley 1952) are often

used to calculate solutions for cooperative games, interpreted in this context as the average

contribution of an attribute to all possible coalitions of attributes from C. Therefore, at-

tributes with higher Shapley values are considered to be the most important attributes that

best explain relationships within the data set. Decision rules are then generated using the

Explore algorithm. The NYD class could not be predicted with sufficient accuracy. However,

promising results from the other two classes has led to the development of a decision support

system and further research on improving triage accuracy.
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Opportunities to improve operational efficiency naturally exist at triage, where appropri-

ate information may be utilized to create separate patient streams. For example, many EDs

have separate fast-track facilities designed to serve low-acuity patients whose expected treat-

ment time is shortest (ESI/CTAS levels 4 and 5). Such facilities improve patient throughput,

decrease costs and increase patient satisfaction (Yoon 2003).

In order to compare the fast-track triage approach with an alternative acuity ratio triage

(ART) approach, Connelly and Bair (2004) developed a discrete event simulation model for

a Level 1 trauma center at the University of California, Davis, Medical Center (UCDMC).

Rather than having a separate fast-track facility for low-acuity patients, the alternate ART

approach involves assigning a ratio of high-acuity (HA) to low-acuity (LA) patients to each

health care provider, without a separate fast-track area.

To model the fast-track triage approach, HA and LA patients are treated in completely

separate areas, and if HA/LA healthcare staff members have downtime, they do not cross

over to serve LA/HA patients in the other area. However, imaging and lab facilities are

shared by the HA and FT areas. On the other hand, the model of the ART approach

used a single mixed-acuity treatment area that managed all patients (59% HA and 41%

LA). Otherwise, all other simulated parameters, including patient population, staff, and bed

capacity, were the same for the two scenarios.

Patient inter-arrival times follow an exponential distribution and staff activities are

prioritized in job queues according to patient acuity. In emergency cases for trauma and

resuscitation, preemptive service is provided over lower-priority cases. The model includes

activities for imaging, lab tests, history and physical examination, consultations, and other

procedures. Model accuracy is within 10% for average times, however, individual patient

times are far from accurate with errors of more than 3 hours in more than 50% of cases.

Tested scenarios include comparing the ART and FT triage systems with equal HA:LA

ratio as well as a ratio of 12:8 to represent that actual ratio used in practice during the

study period. The results showed reduction in average wait times for HA patients with ART
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at the cost of much higher average wait times for LA patients. The authors conclude that

definitive conclusions cannot be drawn from their results and further research is needed to

improve the predictive capability for individual patient times.

As part of a system-wide redesign effort by Banner Health (BH) in Arizona, Cochran

and Roche (2009) developed a queueing network model of the ED. In their split patient flow

(SPF) model, high-acuity and low acuity patients are “split” into two separate streams.

High acuity patients are treated in traditional ED beds, while lower-acuity patients are fast-

tracked into a separate stream where they wait in chairs and walk between treatment areas

for physician assessment, procedures, and wait for test results, if required. The authors

analyzed seven BH EDs and report significant reductions in door-to-doc (D2D) times and

the proportion of patients who leave without treatment (LWOT).

The model incorporates 5-levels of patient acuity and has nine nodes in the queueing

network, the first being Registration (R) which includes triage. In the model, high acuity

patients correspond to triage level 1 and 2 patients, while low acuity patients correspond to

triage level 3, 4, and 5 patients. After triage, high acuity patients generally use traditional

“in-patient” ED services, denoted IPED, modeled with the following nodes in the queueing

network: IPED (E), Observation (O), Behavioral Health (B) and Admit Hold (A). On the

other hand, low acuity patients use “out-patient” ED services, denoted OPED and are

routed to a separate set of nodes: Intake (I), OPED Discharge (D), Results Waiting (W),

and Procedures (P).

Node capacity is generally based on the number of beds (or chairs in areas such as

Results Waiting), with the exception of the Intake area of OPED, where capacity is based

instead on the number of physicians. Most routing between nodes is completely separate with

high acuity patients following IPED nodes and low acuity patients following OPED nodes.

However, while all level 4 and 5 patients only use OPED nodes since they are assumed to

be fast-tracked and discharged, a fraction of level 3 patients may move from OPED nodes to
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IPED nodes. In the case of routing level 3 patients from Results Waiting to the IPED, this

fraction is approximated based on admission rates of level 1 and level 2 patients.

Routing matrices are developed for each of the five patient acuity levels, and the prob-

ability of flow from node i to node j for patient acuity type t, is denoted rtij. The SPF ED

model only has forward flow through the queueing network. The arrival rate to each node i

is calculated accordingly using:

λi =
5∑
t=1

γ
(t)
i +

5∑
t=1

9∑
j=1

λ
(t)
j r

(t)
ji

where: γ
(t)
i = the external arrival rate for patient t (0 at all nodes except Registration),∑9

j=1 λ
(t)
j ∗ r

(t)
ji = the arrival rate of patient type t transferred from all other nodes to node i.

Time-varying ED arrivals are also noted, and the BH study EDs have a 12 hour peak

period from 9am to 9pm. The authors suggest that yearly ED volume can be converted to

hourly patient arrivals using a seasonality multiplier and a peaking multiplier. Performance

measures such as patient wait times (Wq) are calculated using an M/G/c approximation,

and overflow probabilities (pc) are calculated using an M/G/c/c approximation. D2D times

are then calculated using the following formula:

D2Dtime = WqREG
+ LOSREG

+
f (1) + f (2)

f (1) + f (2) + f (3) + f (4) + f (5)
∗ (traveltimeIPED +WqIPED

)

+
f (2) + f (3) + f (4)

f (1) + f (2) + f (3) + f (4) + f (5)
∗ (traveltimeINTAKE +WqINTAKE

)

where: f (t) = fraction of patient type t

Travel times are estimated by hospital staff. Other data used in the SPF model is drawn

from a variety of sources ranging from actual data to hospital staff estimates. In cases when

service time distributions cannot be drawn from actual data, exponential distributions are

used. The model assumes LWBS = 0, with a single patient class, using approximate
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performance measures for wait times (e.g. Wq) and assumes there is no blocking between

areas.

Patient streaming has also been proposed to partition patients into two other streams:

one for “D” patients most likely to be discharged from the ED and another for “A” patients

most likely to be admitted to the hospital (Saghafian et al. 2012). Considering that resource

pooling generally leads to improved resource utilization and better operational efficiency, the

benefits of a patient streaming initiative must outweigh the anti-pooling disadvantage. Mo-

tivated by studies in Australia where triage nurses were able to predict the admit/discharge

disposition decision with roughly 80% accuracy (Holdgate et al. 2007, King et al. 2006),

analytic and simulation models were used to investigate if such a streaming policy can help

improve ED performance.

ED patient flow has multiple phases and the authors refer to two phases of sequencing

decisions. Phase 1 sequencing determines the order that patients are taken from the waiting

area to the examination room. Phase 2 sequencing decisions are made by physicians who

decide the order in which patients are seen (which can be based on time in system, ESI level

and other patient factors).

Considering that ESI 1 patients have serious medical conditions and are already seg-

mented in a separate resuscitation track, and ESI 4 and 5 patients are often already seg-

mented in a separate fast-track facility, the study focuses on ESI 2 and 3 patients. Two

metrics are used in the study: length of stay (LOS), measured as the total time in ED from

arrival to discharge/admit, and time to first treatment (TTFT), measured as the time from

arrival to the first physician assessment. The authors argue that LOS is the key metric

for D patients but TTFT is the key metric for A patients. The analytical models examine

policies, denoted π =PA(Pooling with priority to As), PD (Pooling with priority to Ds),

S(Streaming), and use an objective function: βTTFT (A) + (1 − β)LOS(D), where β =

relative weight placed on TTFT of A patients.
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The first analytical model is a clearing queueing model with a number of simplifying

assumptions for tractability, including that all patients are available at the beginning of the

day, with only two physicians (one for the A stream and one for the D stream), perfect A/D

classification, and patient diagnosis/treatment as a single stage service (phase 1 sequencing

only).

A multistage analytical model is also examined to study the effect of Phase 2 sequencing.

To make this model tractable, additional simplifications include considering only one patient

class (a single ESI level), along with assumptions that: there are enough examination rooms

to hold all patients, all services times in wait and treatment states are i.i.d. (independent and

identically distributed) and exponentially distributed (without any queueing for lab tests or

other services) and preemptive service is allowed. As one might expect with this model, D

stream physicians should adopt a Prioritize Old (PO) policy (since LOS matters most for D

patients) while A stream physicians should adopt a Prioritize New (PN) policy (since TTFT

matters most for A patients).

The simulation model includes multiple customer classes with time-varying arrivals ac-

cording to nonstationary Poisson processes, and a multistage service process with several

phases (up to 7) of patient-physician interactions/treatment followed by tests and prepa-

rations. The number of interactions is simulated based on data from another study (Graff

et al. 1993). The service process is noncollaborative (ED physician generally does not trans-

fer patients to another ED physician) and nonpreemptive (ED physician generally does not

move to another patient in the middle of the current interaction). In the simulation model,

different Protocol/Phase 1/Phase 2 scenarios were considered with:
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Protocol Pooling (P), Streaming (S) or Virtual Streaming (VS)

Phase 1 ESI or (AD + ESI)

Phase 2 Service in Random Order (SIRO) or First Come First Served (FCFS)

or Prioritize New Prioritize Old (PNPO)

Note that the difference between S and VS is that resources are physically segregated and

cannot be shared in S whereas VS is logically segregated with the ability to share resources

across streams. Antipooling effects are so significant in S that streaming is only an attractive

option if implemented as VS. Also note that PNPO represents Phase 2 sequencing in which

A stream physicians prioritize new patients and D stream physicians prioritize old patients.

The results from the simulation analysis found that the VS/AD+ESI/PNPO patient

flow design is an attractive option that can improve ED performance. The authors conclude

that virtual streaming will be most effective in an ED with 1) a high percentage of As,

2) longer service times for As than Ds, 3) long patient boarding times, 4) high day-to-day

variation in patient mix, and 5) high average physician utilization.

2.7 Care and Treatment

Early ED research includes stochastic modeling of ED patient flows. Panayiotopoulos

and Vassilacopoulos (1984) developed a stochastic simulation model of ED patient flow for

hospitals in Greece. They developed a simulation of a (GI/G/m(t)) : (IHFF/N/∞) queue-

ing model with a general independent (GI) arrival distribution, general (G) service time

distribution, variable number of servers, m(t), IHFF queueing discipline, Finite capacity,

N , Infinite customer population, ∞, single arrivals, and no unserved customers leave the

system (implies LWBS=0). Panayiotopoulos and Vassilacopoulos use a variation of Lee’s

extension (Lee 1966) to Kendall’s notation (Kendall 1953) for queueing systems. The stan-

dard A/B/C/D/E/F notation denotes A as the input process, B as the service mechanism,
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C as the number of servers, D as system capacity, E as the size of the customer popula-

tion, and F as the queue discipline. In this case, the standard queueing notation would be

GI/G/m(t)/N/∞/IHFF .

The IHFF queueing discipline adopted by the authors is an abbreviation of

INCRP/HOL/FINCRP/FCFS whereby patients are prioritized according to INCReasing-

Priority (INCRP) numbers with the Faster-INCReasing-Priority numbers (FINCRP) among

the Head-Of-Line (HOL) patients being served first. If there are any ties in priority numbers,

then those patients are served on a First-Come-First-Served (FCSFS) basis. HOL refers to

the patient in the queue with the highest priority number and the queueing discipline adopted

is non-preemptive.

The simulation model represents an ED where service is offered 24 hours per day, with

a finite number of physicians who are each assumed to be present in the ED for one shift

per 24 hours. Coded in Fortran 77, the program simulates a 24-hour period of ED activity

in approximately three minutes of run time. Interestingly, while the model incorporated

arrival and service events which are also included in any recent stochastic queueing system,

the model also includes events corresponding to changes of priority numbers, which are

not included in recent models. According to the authors, this was incorporated since, if a

patient’s condition worsens while waiting, a new higher priority number would be assigned.

Numerical examples are provided in the paper to show how different physician staffing

policies result in a simulated reduction in metrics such as average time in the system and

average time in the queue. The authors state that two Greek hospitals achieved a 30%

improvement after adopting their methodology and other hospitals were also interested in

applying the same technique.

In another early study, Vassilacopoulos (1985) uses dynamic programming models to

allocate doctors to shifts in an accident and emergency (A&E) department in the United

Kingdom (UK). Considering time-varying patient arrivals by hour of day and day of week,

a constant patient arrival rate (λt) for each hour (t) of the week is considered. With the
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assumption that the number of doctors (λt) can only be changed on the hour, a discrete

problem is modeled. The real number (rather than integer number) of doctors to allocate

per hour of week (qt) is calculated to be proportional to the arrival rate using the equation:

qt =
M

λ
λt, t = 1, 2, ..., 168

where N = number of available doctor hours per week

M = N − 168 = number of available doctor hours after allocating

one doctor per hour of week

λ =
∑168

i=1 λi

The integer number of doctors to allocate per hour of week (rt) is solved with a dynamic

programming model which is then used to find the optimal number of doctors to allocate

per shift, also solved by dynamic programming. The author notes that there may not be a

feasible solution and sometimes there are multiple solutions. Therefore, a rough assessment

tool was created by simulating an M(t)/G/m(t) queueing system. Actual service times were

noted as being difficult to measure and when simulated mean service time was more than

30 minutes, queues and wait times became “unrealistically large”. The complexity of the

service process was also noted including that service start time may not occur immediately

following another patient’s departure. This occurs since a new patient may be placed in a bed

and then seen periodically by a physician. It is interesting that these challenges were noted

in this early work as these are some of the persistent challenges receiving recent attention in

current ED research.

In the United States (US), an early stochastic simulation model was developed by Saun-

ders et al. (1989) at Vanderbilt University in Nashville, TN. At that time, the main purpose

of the study was to show that complex features of EDs could be incorporated into a sim-

ulation model that could be run on inexpensive computer hardware and software. Their

discrete-event simulation model was developed with the SIMAN language with supporting

animation from the CINEMA package. Patient arrival times, triage acuity, performed tests
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and procedures and diagnoses were input into the simulation model based on actual histor-

ical data from ED log sheets. The model adopts four levels of preemptive service, assigns

each patient in the simulation to a specific nurse and physician, and incorporates multiple

stages of service with different probability distributions applied to individual stations for

tests, procedures and consultations. Output metrics from the model include patient wait

times, queue lengths at various stages of service, staff utilization rates and patient through-

put times. Simulated scenarios tested include varying the number of nurses, physicians,

treatment rooms, and lab test times. Increasing the number of nurses or physicians showed

a decrease in throughput time up to a certain point when no other decrease was shown.

Increasing the number of treatment rooms did not decrease throughput times, presumably

since the existing number was already adequate. Blood test turnaround times did show a

direct effect on throughput time when the turnaround time was more than 60 minutes, but

was insignificant when the turnaround time was below the 60 minute threshold. Suggestions

for future applications include testing the effect of adding a fast-track for less emergent ED

patients or simulating a community disaster when a sudden rush of serious and complex

patient arrivals may occur.

In another early U.S. study, Tierney et al. (1986) investigated the extent that physi-

cians can estimate the probability of myocardial infarction in ED patients with chest pain.

During their physical examination, ED physicians completed a questionnaire that included

the present complaint, past history, co-morbid diseases, medication history, and also their

estimated probability of acute myocardial infarction. Logistic regression was used and the

receiver operator characteristics (ROC) curve was plotted, which shows the ration of true-

positive and false-positive rates. Physician estimates showed good prediction of myocardial

infarction, and the area under the ROC curve is 0.87. While it was previously presumed

that physicians would err on the side of caution (sensitivity or true positive rate) and admit
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patients with low probability of myocardial infarction, the study results showed that physi-

cians instead maximized the accuracy of patient classification (specificity or true negative

rate).

Somoza and Somoza (1993) developed an artificial neural network to predict the ad-

mission decision in a psychiatric ED. Neural networks generally perform well in tasks that

require pattern recognition and the judgment involved in the decision to admit or not is

based on recognizing behavioral patterns in psychiatric patients. The one year study in-

volves 658 of the 850 walk-in patients from the Department of Veterans Affairs medical

center in Cincinnati, OH. The neural network is trained on the decision making process

based on data collected from patient interviews. In order to determine if patient behaviors

include patterns such as disorganized thinking or suicidal tendencies, data collected include

features such as home, stressor, suicidal, brief psychiatric rating scale (BPRS), and primary

emergency room diagnosis category (PEC).

Home refers to the number of people living with the patient, stressor is a scale of 1

(none) to 6 (catastrophic) of the stress the patient felt from their primary stressor, suicidal

is measured on a scale of 0 (no thoughts of suicide) to 6 (suicide plan, e.g. left a suicide

note), BPRS score is based on 18 items and ranges from 0 to 108 (converted into 6 levels).

PEC has eight categories for the primary diagnosis from the ED. Many of these features are

incorporated in the input later of the neural network.

The neural network is made up of three types of layers: the input layer, one or more

hidden layers, and an output layer. In this case, the input layer includes features and the

output layer represents the admission decision. The middle layer represents the interconnec-

tions between nodes and the strength of each connection is weighted. Weights are simulated

initially with random numbers and an algorithm is used to train the neural network by grad-

ually altering the weights in order to obtain a solution that minimizes the error between the

clinician’s decision and the neural network’s decision.
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The resulting accuracy of the neural network is fairly consistent with clinician decisions,

and generally acts in a conservative fashion. Of the 271 patients that clinicians did not

admit, the neural network’s decision was not to admit 257 (94.8%) of those patients. As a

result, the authors suggest that the neural network might be used as a screening mechanism

and a psychiatric consultation could be requested to confirm if a neural network decision

to admit a patient is valid or not. However, if the neural network were used instead of

clinicians, 14 patients (4.4%) of the entire group would be discharged erroneously, and the

authors question whether or not this is an acceptable level.

While it is well-known that the ED service process is complex, there are very few

empirical studies examining the service process in more detail. Graff et al. (1993) conducted

a time study of ED physician workload to test the hypothesis that physician service time

varies by service category, LOS, and intensity of service. The study was conducted in a

university-affiliated community teaching hospital with an annual census of 45,000 patients.

Of the 12 physicians on staff in the ED, six participated in the study which measured service

times for 1347 patients who received nonselected (514), walk-in (637), observation (52),

laceration repair (102), or critical care (42) service respectively. Physicians recorded the

beginning and end time for each service “interaction” with a given patient, and the total

service time was measured by the sum of all interactions. Intensity of service was calculated

as total service time divided by LOS. Prior to the study, service times were assumed to be

similar for all patients regardless of service category and the American College of Emergency

Physicians (ACEP) reported an average service time of 22 minutes per patient. The time

study demonstrated that case mix does affect service time, and while service time did not

vary significantly for nonselected patients (24.2 minutes) or laceration repair patients (25.0

minutes), it was significantly different for walk-in patients (9.8 minutes), observation patients

(55.6 minutes), and critical care patients (31.9 minutes). The study also reported that walk-

in patients and laceration repair patients typically had a single physician-patient interaction,
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while observation patients had an average of 6.3 interactions and critical care patients had

an average of 2.6 interactions.

Hoot et al. (2008) developed a discrete event simulation model at Vanderbilt University.

The model aims to forecast ED crowding using a patient flow simulation approach that

reports outcome measures including waiting count, waiting time, occupancy level, LOS,

boarding count, boarding time, and ambulance diversion, all forecasted 2, 4, 6, and 8 hours

into the future. Developed using the standard C programming language, the “ForecastED”

simulation model incorporates:

A Time-varying Poisson arrivals for each hour of the day

B LWBS influenced by waiting room count at time of arrival

C Triage acuity level based on multinomial distribution

D Service times higher for “sicker” patients, log-normal distribution

E “Sicker” patients more likely to be admitted

F Poisson process for inpatient boarding

The model incorporates some of the complexity of the ED process, but excludes other

important features including fast-track and a multi-stage service process with time for ob-

servation, consultations and lab tests.

2.7.1 Lab Tests

Point-of-care (POC) testing involves having laboratory tests completed in the ED rather

than in a central laboratory. The goal is to reduce the turnaround time for laboratory test

results providing the opportunity to decrease treatment times, the number of LWBS patients,

and average overall ED LOS. POC testing can help reduce test turnaround times from 90

minutes to less than 10 minutes (Murray et al. 1999) and has become a practical option for

EDs due to the miniaturization of biomedical devices. In a POC testing project at an urban

academic hospital in Boston (Lee-Lewandrowski et al. 2009), the implementation of a blood

quantitative D-dimer test in the ED reduced the test turnaround time from approximately

2 hours to 25 minutes. As a result, ED LOS declined from 8.46 to 7.14 hours and hospital
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admissions were reduced by 13.8%. It is important to note that laboratory tests conducted

in the ED may be more expensive than centralized laboratory tests. Therefore, in addition

to clinical testing to ensure that test results do not reduce the quality of care provided,

careful cost-benefit analysis should also be conducted. In cases where ED efficiency can be

improved significantly, the benefits of POC testing should outweigh the added costs from

having tests carried out in the ED rather than in a central laboratory.

Researchers from Vanderbilt University in Nashville, TN used a system dynamics simu-

lation model to validate the effect of decreasing lab turnaround times on average LOS, daily

throughput, and ambulance diversion (Storrow et al. 2008). The system dynamics modeled

include stocks such as the number of patients waiting at triage, the number in the waiting

room or the total number of patients in the ED, while differential equations are used to

represent the flows of patients through the model. Patient data is collected from electronic

patient records and tracking boards and input into a commercial simulation software (Pa-

tient Flow Center, Apogee Informatics Corp). In the model, ambulance diversion occurs

whenever more than 10 patients are in the waiting room after more than 30 minutes of 100%

ED bed occupancy.

The study was conducted in a large tertiary care adult ED with annual census of 55,000.

Running the simulation model with 90 days of data, scenarios were completed to test the

impact of decreasing lab test turnaround times of 120, 100, 80, 60, 40, 20, and 10 minutes

respectively. Results demonstrated that as turnaround times decreased, ambulance diversion

and ED LOS decreases while daily patient throughput increased. Note that these results

are consistent with Saunders et al. (1989): LOS improves only if above a threshold (e.g. 60

minutes).

2.7.2 Generic Models

While many researchers work directly with one specific hospital to analyze ED patient

flow, others explore the possibility of generic models for multiple settings. Sinreich and

Marmor (2005) conducted a study of five hospital EDs in Israel to explore if there is a
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unified process among EDs that can be integrated into a general simulation model. They

suggest that such a model should be 1) generic and flexible, 2) intuitive and simple to

use, and 3) initialized with reasonable default values for many of the system parameters.

After examining the five EDs in the study, eight different patient types were identified:

fast-track, internal, surgical, orthopedic, trauma, walk-in surgical, walk-in orthopedic, and

internal/surgical. For each of the five EDs, patient flow process diagrams were developed

for each patient type. Similarity measures were calculated and the process diagrams were

found to be very similar. Therefore, a single unified patient flow process diagram was created

incorporating several different elements and transitions including triage, initial examination,

labs, imaging, consultation, treatment, and disposition to admit to the hospital or discharge

home.

The authors also analyzed patient arrival data, found similar trends among hospitals in

the study, and noted time-varying arrivals by hour of day and day of week. They conclude

that patient type has a higher impact in defining the patient flow process than the specific

hospital where the patient is treated. As a result, it is appropriate to develop a general

simulation model based on the unified process.

Fletcher and Worthington (2009) completed a study to compare ‘generic’ and ‘specific’

emergency patient flow models for A&E, Bed Management, Surgery, Intensive Care, and

Diagnostics. Models are classified into four levels: generic principle, generic framework,

generic model, and specific model. An example of a generic principle is a theoretical queueing

model that is not industry specific. A healthcare modeling toolkit in a simulation package is

an example of a generic framework that is industry specific. Examples of generic and specific

models are a simulation model for all A&E departments in the UK, or a simulation model for

one specific A&E department. A more detailed set of dimensions is also presented including,

for example, splitting generic models into models designed for central use or multiple local

use.

41



The analysis is based on a literature review and e-mail survey to healthcare researchers,

mostly members of the European Working Group on Operational Research Applied to Health

Services (ORAHS). The literature review identified more evidence of specific models of A&E

than generic ones. The authors note that model implementation is surprisingly rare, regard-

less of whether the model is generic or specific. In addition, studies that model connectivity

between multiple departments or hospital wide models are much less common than specific

department studies. In the case of A&E, the interaction with labs/imaging and (inpatient)

bed management is usually limited to the impact that the processes have on A&E, rather

than incorporating more detailed sub-models of those processes.

2.7.3 England’s 4-Hour Rule

In England, a national target for A&E performance has been established by the Depart-

ment of Health (DH). DH is responsible for England’s publicly funded healthcare system,

the National Health Service (NHS). The national target states that 98% of all A&E patients

should be discharged, transferred or admitted within 4 hours of arrival. In December 2002,

the national A&E average was 78% completed within 4 hours of arrival, so the 98% target

would be a big challenge for many hospitals. In an effort to better understand specific chal-

lenges, DH developed a simulation model to help identify significant barriers to achieving

the national target (Fletcher et al. 2007).

A generic simulation model was developed in Simul8 of a ‘typical’ A&E department.

Although the Manchester triage system may have been adopted previously, the authors state

that most hospitals had moved to simpler minor/major patient segmentation. As a result,

only three generic patient flows were analyzed: minor, major, and admitted with the most

complex flow for admitted patients.

Upon arrival, patients queue for an initial assessment by a doctor, followed possibly

by diagnostic X-ray and/or blood tests and a second assessment. Treatment is provided

followed by the admission disposition decision by a specialist. After the admit decision,

patients remain boarding in hallways (referred to as “trolley wait” in England) until they
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can be physically moved to the appropriate inpatient unit in the hospital. Note that while

patients queue for assessments, diagnostic testing and admission are modeled as capacity

unconstrained time distributions.

The simulation model uses time-varying arrivals by hour of day with inter-arrival times

drawn from negative exponential distributions with process times modeled as simple trian-

gular distributions. A variety of scenarios have been investigated with the simulation model

and process times required to achieve the 98% target were identified.

In another study examining the feasibility of England’s 98% target, Mayhew and Smith

(2008) use a multi-stage queueing model to evaluate A&E completion times. In the initial

model, patients are assumed to arrive according to a Poisson process at rate λ with exponen-

tially distributed services times at each stage with parameter µ. Since average time spent at

each stage is assumed to be the same, the probability of the total time in system equaling z

is the sum of s random variables, and the probability density function of z follows a gamma

distribution. However, such a model is not accurate for A&E, since the complexity of the

service process is not adequately represented with the assumption that average service time

is the same at each stage. In addition, service times are significantly different depending

on, for example, if a patient is discharged home or admitted to the hospital. Therefore,

the authors developed a more detailed model comprising three different treatment paths :

“no/little”, “short”, and “long”.

The no/little treatment path is modeled with a single stage exponential distribution, the

short treatment path is modeled with a three-stage hypo-exponential distribution, and the

long treatment path is modeled as a two-stage hypo-exponential distribution (later simplified

to one-stage in a re-designated model). The authors use the re-designated model to examine

the average completion times required to achieve various targets. To meet a 90% target

within 4 hours, the required average completion time is 1 hour and 45 minutes. However,

to meet a 98% target within 4 hours, the required average completion time is less than

one hour. The authors argue that to achieve an average reduction of 45 minutes (43%)
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represents a massive challenge for A&E. However, the model does not account for LWBS or

time-varying arrivals. If peak and other variability in service requirements are considered,

then improvements may be possible with flexible staffing policies.

After the implementation of England’s mandate, shorter completion times have been

reported. For example, in a sample of fifteen hospital trusts, the proportion of patients that

were discharged, transferred or admitted within 4 hours increased from 83.9% to 96.3% from

2003 to 2006 (Mason et al. 2012). However, there has been a spike in the proportion of

patients who completed within the last 20 minutes of the 4-hour target, particularly among

elderly and admitted patients. The author’s suggest that England’s EDs “hit the target but

missed the point”.

2.7.4 Staffing

ED physician scheduling problems have been studied by applying both deterministic

and stochastic operations research modeling approaches. Beaulieu et al. (2000) developed a

deterministic mathematical programming approach to model the ED scheduling problem for

the Sacré-Coeur Hospital in Montreal, Canada. Given a fixed number of physicians, planning

period, and set of shifts, a multiple-objective integer program is used to identify an optimal

ED physician schedule. Model constraints are classified as either compulsory or flexible, and

any flexible constraints that are violated come at the cost of some “quality”. The authors

propose to order the constraints according to their relative importance, and formulate the

model as a single-objective optimization problem that seeks to minimize the weighted sum

of all deviations. Constraints of the model are classified in four categories: compulsory con-

straints, ergonomic constraints, distribution constraints, and goal constraints. Compulsory

constraints include ensuring that all shifts are filled, physicians cannot be assigned to more

than one shift per day, physicians assigned to a night shift cannot be assigned to a shift

the next day, as well as vacations and particular shifts requested by physicians. Ergonomic

constraints aim to set a more desirable overall schedule to individual physicians, for example,

by limiting the number of successive working days. Distribution constraints take seniority
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and other rules into consideration so that, for example, senior physicians work fewer weekend

shifts. Goal constraints include setting a target number of hours per week to accommodate

a specific physician’s preference and fairly distributing night shifts among physicians.

Solving the model over a six-month horizon for 20 ED physicians in the study is not pos-

sible due to its dimension (40,000 variables with 75,000 constraints). Instead, six models of

consecutive four-week periods are solved by branch-and-bound. However, due to conflicting

constraints, no feasible solution exists so a heuristic iterative approach is adopted, incorpo-

rating branch-and-bound as a subroutine to iteratively improve the solution by satisfying

more constraints.

In another study also conducted in Montreal, Carter and Lapierre (2001) interviewed

ED physicians from six Montreal hospitals to try to gain a better understanding of the

ED physician scheduling problem. Existing scheduling approaches are classified into three

categories: acyclic, cyclic without rotation, and cyclic with rotation. Acyclic schedules are

created separately for each period and were the most common type among the hospitals in

the study. Cyclic schedules without rotation are schedules where physicians have the same

shift patterns which repeat continuously. A cyclic schedule with rotation involves establishing

a fixed number of schedules and each physician follow the same pattern (shift A, then shift

B, and so on).

Similar to Beaulieu et al. (2000), Carter and Lapierre (2001) propose a model with

“hard” and “soft” constraints. Of the six hospitals in the study, the authors describe their

application of deterministic mathematical programming in two of the hospitals. In the case

of Charles-Lemoyne Hospital, a revised cycle schedule is generated by solving the model

by Tabu search. In the case of the Jewish General Hospital (JGH), acyclic schedules were

necessary due to seniority rules and religious constraints. A revised schedule was proposed

to the scheduler at JGH, with further refinements to be added for future “fine-tuning”.
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Another example of deterministic mathematical programming for ED physician schedul-

ing is a study completed by Ferrand et al. (2011) for the Cincinnati Children’s Hospital Med-

ical Center. Cyclic schedules are created based on an integer programming model that takes

into account factors such as holidays and vacation requests of individual ED physicians. The

model is similar to Carter and Lapierre’s general formulation for cyclic schedules, but in the

Cincinnati case, each ED physician works a different number of hours, so individual schedules

are developed to accommodate this requirement. The model incorporates constraints that

address regulatory constraints, work requirements, and physician preferences. While work

requirements are all hard constraints, some regulatory constraints and physician preferences

are hard constraints while others are soft constraints. For example, the physician preference

to never be assigned to more than two consecutive weekends is modeled as a hard constraint,

while assigning no more than two consecutive overnight shifts during the Monday-Thursday

period is modeled as a soft constraint.

The model was coded in AMPL and solved with CPLEX. An optimal solution for a set

of five physicians was solved in less than six hours. In order to implement the model in the

hospital, the authors also developed Visual Basic for Applications (VBA) macros in Excel

to show the proposed schedule to the physicians. Three months after the implementation of

the new cyclic schedule, physician feedback indicated that the new method provides “well-

balanced” schedules and “relieves stress”.

The ED staff scheduling models reviewed so far all deal with staffing only ED physi-

cians, independent of other ED staff schedules. Other models examine the ED nurse staffing

problem separately, such as Grano et al. (2008). However, altering schedules for physicians

may impact the demand for nurses or other ED resources. Sinreich and Jabali (2007) in-

troduce an iterative heuristic algorithm that combines both a simulation and optimization

model to consider staff scheduling for multiple types of resources including physicians, nurses,
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and imaging technicians. The methodology incorporates a staggered scheduling optimiza-

tion model (S-model) and an iterative simulation based Staggered Work Shift Scheduling

Algorithm (SWSSA).

The S-model objective is to minimize the sum of all overstaffing and understaffing penal-

ties. The authors suggest that while understaffing is generally not appropriate in the ED,

an assumption is made that nurses and physicians can be shared between the ED and hospi-

tal wards, whereby the understaffing penalty cost is incurred. The understaffing penalty is

suggested to be greater than the overstaffing penalty as it is also assumed that transferring

available resources to a hospital ward is easier than receiving resources from a hospital ward

to work in the ED.

In each iteration of the SWSSA, eight weeks of data are generated by running three

replications of the simulation model by Sinreich and Marmor (2005). In the initial iteration,

the model is solved with the initial schedule of all resources. A weighted average LOS is

calculated along with a patient flow delay factor, for each resource type. The resource with

the largest delay factor is identified as the critical resource (bottleneck) at each stage of the

algorithm, and the capacity of the critical resource is increased to a large value for the next

stage of the algorithm. Improvements are iteratively obtained for each resource type as the

critical resource changes from one iteration of the algorithm to the next.

The algorithm was tested using data from five Israeli hospitals. Results show that physi-

cian and nurse hours can be reduced by 8-17.5% and 13-47% respectively, while maintaining

LOS values within -19 to 4% of the original values. The authors conclude that selective

downsizing of an ED workforce is possible without impacting ED efficiency. However, the

model does not account for overtime and other flexible staffing costs. Furthermore, the as-

sumption that all physician and nurse resources can be shared between ED and inpatient

units is not realistic. In practice, specialty ward inpatient care cannot be handled by ED

physicians since specialists are the only physicians with the appropriate training to care for

those patients.
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Using similar methodology that also combines simulation and optimization models, Sin-

reich et al. (2012) introduce iterative heuristic algorithms with the objective to reduce patient

wait times by leveling resource utilization. Considering that ED patient care is provided by

physicians, nurses, imaging technicians and other health care professionals over the course

of several hours, arrival time is not a good indicator of when all heath care personnel are

needed. The authors develop a work shift scheduling mixed-integer programming optimiza-

tion model called Sched-Opt. The Sched-Opt objective attempts to level the ratio of available

to required resources units throughout the hours of the day. The purpose of Sched-Opt is to

identify the optimal starting times for a weekday. One of two iterative heuristic work shift

scheduling algorithms, WSSA-1 or WSSA-2, is then used to identify optimal work shifts for

each resource type. The algorithms are similar, except time blocks can be transferred from

one nurse type to another and one physician type to another in WSSA-2, but not in WSSA-1.

Using delay factors for each resource for each hour of the day, a critical resource is identified,

and the simulation model from Sinreich and Marmor (2005) is invoked at each stage of the

algorithm. Work shift schedules are improved for the most critical resource at each stage.

Improvements are essentially achieved by shifting resource capacity from non-peak periods

to peak periods, resulting in more efficient service for ED patients who are treated during

peak periods.

Tests for WSSA-1 and WSSA-2 were completed with data from five hospitals in Israel.

Greater improvements were observed in medium and large hospitals. WSSA-1 resulted in

reduced wait times of 20-45% and reduced LOS of 7-17%, while WSSA-2 resulted in reduced

wait times of 20-64% and reduced LOS of 11-29%.

In another example of a simulation optimization approach for ED staffing, Ahmed and

Alkhamis (2009) determine the optimal number of doctors, nurses, and lab technicians for

a government hospital in Kuwait. Considering budget restrictions and resource constraints,

the authors investigate staffing allocation that maximizes patient throughput and reduces

patient wait times.
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The simulation incorporates time-varying arrivals according to a non-homogeneous Pois-

son process for three patient categories according to acuity level (category 1 patients are

critical and categories 2 and 3 are non-critical). After reception, patients wait for an avail-

able examination room. Patient acuity is determined in the examination room by a doctor

(rather than by a triage nurse), and lab tests are requested if necessary. After assessment,

non-critical patients either wait for minor treatment provided by a nurse (category 2) or re-

ceive medication and are discharged (category 3). Critical patients (category 1) stay under

close observation and are treated by a nurse and a doctor who is called in to the examination

room whenever needed. Some critical patients are discharged and others are admitted to

an inpatient unit in the hospital for further care. The admission rate of all patients in this

ED is 12%. Service time distributions for lab tests are modeled with a triangular distribu-

tion, while other stages including reception, doctor examination and reexamination, nurse

treatment times are modeled with uniform distributions.

In the optimization models, resource constraints are included for each resource type xi,

based on restrictions on physical layout and other factors identified by ED administrators.

In this setting, staffing levels cannot exceed three receptionists (x1), four doctors (x2), five

lab technicians (x3), six treatment room nurses (x4), and 12 emergency room nurses (x5).

Two separate optimization problems are formulated, one with the objective of maximizing

throughput (A-1) and another with the objective of minimizing cost (B-1). Problem A-

1 is a discrete stochastic optimization problem with one stochastic and two deterministic

constraints. A two phase procedure is used to solve the constrained stochastic optimization

problem. In the first phase, a set of solutions satisfying the deterministic constraints is

first determined. Next, this set is updated by setting lower and upper bounds on Q1 in

order to eliminate solutions that violate the stochastic constraint. In the second phase, the

best among the remaining solutions is selected by an optimization algorithm with stopping

criteria for a specified number of iterations or when the solution has not improved after a

specified number of iterations.
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Problem B-1 is a deterministic optimization problem with two stochastic constraints,

and one deterministic constraint. A two phase procedure is also used to solve problem B-1.

However, this time the feasible solution set is found using a different feasibility detection

procedure that handles the case of more than one stochastic constraint. Once the set of

possible solutions is determined, identifying the best solution among them is simply the

solution to a deterministic integer programming problem that can be solved easily with any

solver such as the MS Excel solver add-in.

Most of the studies reviewed so far focus on models to assist ED management in testing

interventions offline before implementation. Models that support real-time ED operations

management have also been developed by Zeltyn et al. (2011) in Israel. The focus of the

paper is on simulation models to address ED staffing challenges over operational, tactical,

and strategic horizons. At the core of the article is an offered load approach for short-term

operational staffing decisions. Tactical problems involve accommodating seasonal factors

such as increased arrivals due to the flu. Strategic problems involve planning for major

design changes such as a physical relocation of the ED within the hospital. We focus our

review on the proposed methodology for operational staffing since it is the core of the paper.

The study is based on field research in nine Israeli EDs with a specific focus on the

large government-affiliated Rambam Hospital, a medical center that serves over 2 million

citizens (one-third of Israel’s population) with approximately 82,000 ED patients per year.

ED patient types are classified in one of six categories: 1) internal acute, 2) internal walking,

3) surgical acute, 4) surgical walking, 5) orthopedic acute, or 6) orthopedic walking. The

walking patients can use chairs, while acute patients require an ED bed. The methodology

used for operational staffing has the following steps:

1. Obtain the initial, current ED state by simulation

2. Generate stochastic patient arrivals

3. Run the simulation model with infinite staffing resources for eight simulated hours

4. Calculate staffing recommendations using an offered load method
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5. Run the simulation model from the current ED state with the recommended staff

6. Calculate performance measures

In step 1, simulated data is necessary since the current ED state is only partially cap-

tured from hospital information systems. Improvements to data accuracy and completeness

may come in the future if real-time tracking systems are successfully adopted. In the mean

time, actual arrival data is fed into the simulation system which is then used to generate

simulated arrivals that are consistent with real arrival patterns. An appropriate initial state

is generated after a simulation warm-up period of three weeks. In step 2, forecasted ED

arrivals are based on long-term moving averages (MA). Considering that arrival rates vary

by both time of day and day of week, long-term MA are calculated based on historical data

for each hour of the week to estimate the arrival rate.

The rest of the methodology relates to the service process and the offered load approach.

While other methods, such as rough cut capacity planning (RCCP), ignore the time lag

between arrivals and the time when service is required, the offered load approach spreads

workload more over time. In EDs, this time lag is significant, and as a result, arrival rates

will reach maximum often before resource workload reaches maximum. In the simplest case

of an M/M/1 queueing system with arrival rate λ and service rate µ, the offered load is

R = λ
µ
. Staffing rules can then be determined in terms of R, such as the square root staffing

rule (Jennings et al., 1996):

n = R + β
√
R

where β is set to ensure a desired service level. The square root staffing rule is commonly

used within the quality and efficiency-driven (QED) regime, for service systems that require

both high service quality and high resource utilization. Considering that the ED has time-

varying demand, a modified offered load (MOL) approximation is used and the square root

staffing function is replaced with a time-varying square root staffing function (Feldman et

al., 2008):
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n(OL, t) = R(t) + βt
√
R(t)

The offered load approach involves first running the simulation model with infinite

staffing capacity (step 3). For each resource type, the number of busy resources required

during each hour is determined from the infinite staffing simulation run, which is used to

estimate R(t) for each resource type. The MOL approximation of R(t) is obtained from

averaging the results of multiple simulation runs, and the time-varying square root staffing

function is calculated to determine the recommended staffing levels for each resource type

during each hour (step 4). The recommended staffing levels are then used to run the simu-

lation again (step 5) and performance measures are calculated (step 6).

Izady and Worthington (2012) propose a similar methodology (that also uses a MOL

approach with infinite server networks, square root staffing, and simulation) to determine the

minimum staffing levels required to meet England’s 4-hour target. Three types of patients

and six staff resource types are considered. Patient types are minor, major, or admitted;

resource types are doctors, emergency nurse practitioners (ENPs), electrocardiogram (ECG)

technicians, lab technicians, radiologists, and nurses.

The patient flow process for minor patients is assumed to begin with a first assessment

by a doctor or ENP, and treatment is assumed to be completed by a nurse. In some cases,

treatment is preceded by diagnostic testing (ECG, lab, or radiology) which is followed by a

second assessment before treatment. All minor patients are assumed to be discharged home

after treatment. Major and admitted patient types are assumed to follow a similar process,

except assessments are only conducted by a doctor and a resuscitation room is available for

patients who arrive with serious conditions. Multiple doctors may be allocated for patients

who require a resuscitation room. All major patients are assumed to be discharged home

and admitted patients are all assumed to be admitted to a hospital ward for further care.

The authors consider an (M(t)/G/sk(t))
K queueing network with service stations k =

1, 2, , K. A stationary Markovian routing process is assumed throughout the network, with

52



fixed probabilities assigned to different routes for the minor, major, and admitted patient

types. Using a MOL approach, an estimate of the offered load, mk
∞(t), is obtained from

the mean number of busy servers for each service station (resource type) k from solving

the corresponding infinite server (M(t)/G/∞)K network. For each resource type, the time-

varying square root staffing function is then applied to determine the recommended number

of servers, sk(t) :

sk(t) = mk
∞(t) + β

√
mk
∞(t)

where β is a quality of service parameter chosen according to the targeted delay prob-

ability α. Note that based on the heavy traffic limit theorem (Halfin and Whitt, 1981), the

relation between α and β is :

α =

[
1 + β

f1(β)

f2(β)

]−1
where f1 and f2 are the density and cumulative distribution function (cdf) of the stan-

dard normal distribution.

The staffing algorithm for achieving the 4-hour target for 98% of patients is as follows:

1. Set α = 1 and calculate mk
∞(t) for each resource type k during each staffing interval t.

2. Find β.

3. Calculate sk(t) using the square root staffing function for each resource type k during

each staffing interval t.

4. Given staffing levels from step 3, run a simulation to estimate the percentage of patients

with completion times within four hours

5. If percentage is less than 98%, decrease α and go back to step 2

The authors tested the approach on a ‘typical’ A&E department in the UK from

Fletcher et al. (2007). The baseline staffing profiles, based on average resource utilization

from the Fletcher et al. (2007) simulation model, achieved completing times within 4-hours

for 96% of patients. After six iterations of the algorithm, the 98% target could be achieved by
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staffing according to a delay probability α = 0.75, corresponding to β = 0.221. Comparing

the resulting balanced staffing profiles to the baseline staffing profiles showed more stable

resource utilization over time. As a result, the 4-hour target can be achieved with the

same number of doctors, one hour more of ECG technicians, and fewer hours of ENPs, lab

technicians, radiologists, and nurses.

However, after determining the desired staffing profiles, the authors note that feasible

shift schedules may not coincide with the balanced staffing profiles. Therefore, an inte-

ger programming approach based on Sinreich and Jabali (2007) is used to determine shift

schedules that are as close to the balanced profiles as possible. The results show that shift

scheduling constraints reduce the amount of staff savings, but the 4-hour target can still be

achieved, while using fewer staff hours than the baseline staffing profiles.

2.8 Admission & Boarding

Patients are admitted to hospital wards through direct admissions from clinics for sched-

uled procedures, transfers from other healthcare facilities, or the ED. From an ED patient

flow perspective, the main bottleneck is the inpatient exit rate which is generally outside

the control of ED management. While patients are waiting in the ED for an inpatient bed,

they are often moved out of the ED bed but remain boarding in a hallway which limits some

ED resources for new patients. During periods of peak congestion, some patients elect to

leave without being seen (LWBS) by a physician which can have negative consequences on

both patient safety and satisfaction. Patient dissatisfaction and ambulance diversion from

overcrowded EDs creates a loss of demand for ED services (Schull et al. 2001). Oddly, this

situation actually may be financially beneficial to healthcare organizations. Considering that

most of the expenses incurred by hospitals are fixed costs, hospitals seek occupancy rates

of 100%. The current system allows hospitals to maximize their profits by operating at full

capacity while keeping an overflow of in-patient demand waiting in the ED to be admitted.

While lost ED revenue seems undesirable, losing or deferring admitted patient revenue from

other sources may be less desirable (Handel et al. 2010). However, Pines et al. (2011) argue
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that dynamic bed management strategies can be developed to reduce inpatient boarding in

a way that is financially beneficial for hospitals.

ED LOS is particularly long for admitted patients who are stuck boarding in hallways

(for several hours or even days), which is clearly a concern from a patient satisfaction per-

spective. Pines et al. (2008) reviewed patient satisfaction surveys and showed that prolonged

boarding times are associated with low satisfaction. Furthermore, it has been shown that

admission delays also increase inpatient LOS and inpatient cost for the admitting unit. In

a study of two Canadian hospitals, admitted patients whose ED LOS exceeded 12 hours

resulted in 12% higher inpatient LOS and 11% greater inpatient cost (?).

Jones et al. (2002) developed a forecasting model to predict the number of inpatient

beds occupied due to emergency admissions. Using six years of data from a UK hospital,

the authors observed both monthly and weekly seasonality. Maximum values were observed

during winter months, while minimum values were observed during summer months. Bed

occupancy levels due to ED patients were highest on Mondays, declining until Thursday

with a small increase on Friday, followed by a decline over the weekend. Using Seasonal

Auto-Regressive Inductive Moving Average (SARIMA) modeling, a relationship was found

between the number of occupied beds and two variables: mean daytime temperature and

the influenza illness rate.

Good forecasts are produced with SARIMA most of the time, but the model fails to

produce good forecasts during a bed crisis. The authors also explored the use of General-

ized Autoregressive Conditional Heteroskedasticity (GARCH) modelling to account for the

volatility from cancelled surgeries and ED congestion. GARCH is used for time series fore-

casting when periods of high volatility, followed by periods that are relatively stable. The

authors found that periods of high volatility can result in pressure for inpatient beds for up

to fourteen days. However, increases in ED waiting times due to inpatient bed occupancy

resulted in much shorter lags of five days or less. Therefore, the authors state that ED

waiting times for inpatient beds are attributed more to volatility than to bed occupancy.
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To gain a better understanding of the influence of volatility on ED wait times, the authors

suggest further research using other methodologies such as system dynamics and discrete

event simulation.

Lane et al. (2000) developed a systems dynamics simulation model to investigate how

changing the number of inpatient beds affects A&E waiting times. The study was conducted

in a U.K. teaching hospital (referred to as “St. Dane’s” for confidentiality reasons) through

collaboration between the University of London and the NHS. System dynamics is used to

examine the interaction between A&E and inpatient wards by considering aggregate system-

level stock and flow variables. The model was built using iThink software on a Macintosh

computer. The model considers two main patient groups: emergency admissions and elective

patients. The arrival rate of emergency patients to A&E and the rate of scheduled elective

admissions were modeled as exogenous variables, based on historical data. Elective patients

include both surgical patients for procedures such as hip replacement, as well as medical

patients for services such as chemotherapy. Emergency patients are typically given priority

over elective patients, so pre-scheduled elective admissions are often cancelled as inpatient

bed occupancy rises.

The model’s causal loop diagram includes 1) loops for patients that depart A&E: dis-

charge or admit to hospital ward, 2) an inpatient bed occupancy level loop: restricting

emergency admissions or elective admissions when all beds are full and 3) loops to reduce

the backlog of scheduled elective patients, either by admission or by cancellation. The core

of the model has nine stock and 160 flow variables. For example, the number of Scheduled

Elective Admissions is a stock variable affected by flow variables for the initial Scheduling

Rate, along with the Drop Out Rate and Elective Cancellation Rate.

Simulated scenarios include changing A&E demand and inpatient bed capacity. Consid-

ering that the government had hypothesized that reducing the number of hospital inpatient

beds would not affect the level of service provided to emergency patients, reducing inpa-

tient bed capacity was an important scenario to test. The results from this scenario did
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counter-intuitively support the government’s hypothesis, as simulated waiting time in A&E

did not vary significantly by varying bed capacity between 700 and 900 beds. However, while

reducing the number of inpatient beds may not increase A&E waiting times, the number of

cancellations for elective patients is increased significantly. In the scenario with 100 fewer

beds, in order to achieve the same A&E wait time, the number of elective cancellation doubles

compared to the base case. Note that this situation is apparent in the model’s causal loop

diagram, corresponding to shifting flow from elective admissions to elective cancellations.

Scenarios to test changes in A&E demand include permanent changes in demand as well

as surges from a crisis event. Small changes in permanent demand resulted in reduction in

the number of elective cancellations, but to a lesser extent than when inpatient bed capacity

is reduced. However, small changes in permanent demand resulted in a large impact on

A&E patients: a 4% demand increase resulted in a 45-minute increase in average LOS.

The crisis event simulation involved a 13% demand surge, modeled based on a real surge

event experienced at St. Dane’s previously. The results showed a 5 day period after the surge

before the system returned to normal operating levels. The simulated results were consistent

with the surge event that St. Dane’s had observed previously. In the scenarios when the

system breaks down due to A&E demand increases, the key bottleneck within A&E was the

first physician assessment.

Other factors influencing A&E waiting times for admitted patients were also noted. A

nurse and porter are required for patient transport between A&E and the inpatient ward.

When A&E is crowded, delays may occur if all nurses or porters are busy. Bed turnover time

may also vary depending on inpatient staff workload. These delays or other factors could

result in elective patients being assigned inpatient beds even when an emergency patient may

be waiting in A&E with a higher priority. Note also that since systems dynamics models

consider aggregate flows, the stochastic variation in processes at the individual patient level

is not captured.
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Recent models have specifically investigated the effect of inpatient boarding on ED

efficiency. Khare et al. (2009) used discrete event simulation to model ED patient flows

for an urban, academic, tertiary care, Level I trauma center in Chicago that receives over

75,000 adult ED patient visits per year. The simulation model was built using MedModel

(ProModel, Orem, UT) and was used to compare the effect of two different interventions on

average ED length of stay (LOS). The study showed that increasing the number of ED beds

did not reduce LOS but increasing the rate that admitted patients depart the ED did result

in a significant reduction in LOS.

The model assumes Poisson patient arrivals with peak and non-peak periods. Patient

flow varies after triage, based on ESI levels. ESI 1 patients skip the queue and go directly to

the Main ED, while other patients sit in the waiting area and queue until an ED treatment

bed is available. ESI 4 and 5 patients wait for the fast-track Urgent Care unit, while ESI 2

and 3 patients wait for the Main ED. Urgent Care patients are assumed to have an initial

time with a physician, followed by a treatment time that does not require a physician. All

urgent care patients are assumed to be discharged home from the ED. On the other hand,

Main ED patients are assumed to have a more complicated service process, which begins

with an initial time with a physician, followed by a treatment time, and a second physician

visit before disposition: discharge or admission & boarding. For admitted patients, boarding

time is modeled with an exponentially distributed inpatient exit rate.

For each ESI level, LWBS patients were modeled using a threshold time that a patient

will wait before leaving without being seen and a probability of LWBS. The authors assumed

that no ESI 1 or 2 patients left without being seen due to the severity of their condition,

but ESI 3, 4, and 5 patients left without being seen based on two rules: 1) 25% of ESI 3

leave if not seen by a physician after 90 min and 2) 50% of ESI 4, 5 leave if not seen by a

physician after 60 min. The base case simulates a 23-bed Main ED with an exponentially

distributed admitted patient departure rate of one patient leaving the boarding area of the

ED every 20 minutes. The authors tested scenarios including 1) increasing the number of
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Main ED beds to 28 and 2) increasing the admitted patient departure rate to one patient

every 15 minutes. The results showed that increasing the number of Main ED beds did not

decrease average LOS. However, increasing the admitted patient departure rate did result

in a significant reduction in average LOS from 240 to 218 minutes. The robustness of the

results were tested by performing sensitivity analysis that varied a number of parameters

including changes to daily census, patient mix, LWBS rates, treatment times, admission

rates, and further changes to the number of ED beds and admitted patient departure rates.

The authors found similar trends and concluded that the rate that admitted patients depart

the ED is the main bottleneck in ED patient flow.

Bair et al. (2010) also developed a discrete event simulation to investigate the effect of

inpatient boarding on ED efficiency. The study was based on a Level I academic trauma

center in California with approximately 60,000 ED patient visits per year. The authors

used NEDOCS and the rate of LWBS patients per day to assess the degree of ED efficiency

in a setting with separate adult and pediatric units. The study investigated the effect of

altering the boarder-released-ratio (r = ratio of admitted patients that do not wait to board

compared to all admitted patients). The results showed a significant decrease in ED crowding

and LWBS after altering the boarder-released-ratio from 0% to 100%.

Inter-arrival times are modeled with a shifted beta distribution with 12 random number

streams, one every two hours throughout the day. The triage process in the model involves

segmentation first between adult and pediatric patients as well as further classification as

one of five triage levels (red, orange, yellow, green, or blue). Patients are prioritized based on

triage level and queue for treatment. Pediatric patients are sent to one treatment area (Area

2), while adult patients are sent to one of three treatment areas (Area 1, 3, or fast-track).

Treatment is non-preemptive and treatment times are fitted to a shifted beta distributed

function. A proportion of patients are discharged from the ED while others are admitted.

Boarders are processed first-in-first-out (FIFO) and inpatients are segmented into ICU and

non-ICU inpatients.
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LWBS patients were modeled in the simulation by applying a probability that an ar-

riving patient leaves without being seen after triage. More patients will leave without being

seen during peak periods when wait times are higher due to ED congestion. To incorporate

the degree of ED crowding, the departure probabilities used in this study were calculated as

a function of the NEDOCS score at time t. Results based on 10,000 simulated days showed

that the boarder-released-ratio had a significant effect on LWBS and ED crowding. Scenarios

involved increasing the boarder-released-ratio in 10% increments from 0 to 100%. For exam-

ple, if 50% of boarders could be admitted directly to an inpatient ward without boarding,

the proportion of overcrowded days according to the NEDOCS score would decrease from

88% to 68%.

Ceglowski et al. (2006) consider an ED modeling approach that combines data mining

and discrete event simulation (DES). The data-driven model uses non-parametric methods to

identify the groups of medical procedures provided to ED patients. Each group of procedures

represents a distinct treatment pathway. The authors identified 20 different treatment path-

ways, and when considering a 5-level triage system, 4 different disposal codes, and patients

in a separate “dead on arrival” category, there are 401 possible patient types. However,

in practice many of the patient types occurred rarely or not at all, with 99% of patients

belonging to one of 161 different patient types.

In the DES model (developed in Simul8), the state of ED treatment sites is tracked

as either occupied are free. Queues form whenever all treatment sites are occupied. The

model results show that the heaviest users of ED beds are patients waiting for admission to a

hospital ward. For those patients, the decision to admit was made earlier in their treatment,

but remain in the ED due to admission delays. The authors note that the treatment and

symptoms of patient records give an indication of the corresponding wards with admission

delays.

The authors conclude by suggesting the following general simple methodology for iden-

tifying ED to ward bottlenecks (without needing simulation) : 1) Gather and prepare data,
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2) Divide patients into homogeneous groups and calculate average bed times, 3) Conduct an

analysis of bed time and the number of patients in each patient group, identifying a utility

function of the demand placed on the system for each group. This simple analysis can iden-

tify the most critical ED to ward interactions. However, the authors note that experimenting

with the utility function may produce inaccurate results without a more sophisticated model

due to the non-linear complexity of the ED system.

In Ireland, Abo-Hamad and Arisha (2013) developed a discrete event simulation model

of a 570-bed adult teaching hospital that serves over 55,000 patients annually. In 2007, the

hospital’s ED performance measures included an LWBS rate of 17%, and average LOS over

9 hours with standard deviation of over 3 hours, which is much longer than the national

6-hour target. The authors combine multi-criteria decision analysis (MCDA) tools along

with simulation and a balanced score card (BSC) to illustrate that unblocking ED outflows

by inpatient bed management is more effective than increasing the physical ED space or ED

workforce.

Many ED studies focus on one performance measure such as LOS, however, in practice

ED managers rely on a variety of key performance indicators (KPIs). KPIs for ED perfor-

mance, as specified by senior hospital management, include patient throughput KPIs such

as waiting time and LOS for admitted and discharged patients, as well as ED efficiency KPIs

such as resource utilization (staff or capacity), layout efficiency (walking distances) and ED

productivity (% treated patients).

After detailed processing mapping, the authors built a simulation model using object

oriented programming with modules for the corresponding processes. Modules include pa-

tient arrival, registration, triage, patient allocation, patient treatment, and patient transfer.

Sub-processes are also created for more detailed resource requirements such as staff and

equipment required at each point of care. For example, patient treatment requires medical

staff, medical equipment, bed/trolleys/seats and cubicles and includes the sub-processes:

seen by a doctor, referred for opinion, referred for admission, and awaiting admission.
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Simulated scenarios include: 1) a zero-tolerance policy for exceeding the national 6 hour

target, 2) increasing the number of trolleys by 50%, and 3) adding one doctor to the overnight

shift. Scenario 1 would involve either improving the inpatient admission and discharge cycle

in the hospital or moving boarders to a short stay unit. Admitted patient LOS reduced from

21 hours to less than 8 hours. Scenario 2 created more physical space and decreased the

number of patients in the waiting room, but increased the number of admitted patients and

resulted in a 5% increase in average LOS. Scenario 3 had a significant reduction in queue

length and wait room time reduced by 44%, and average LOS reduced, but not enough

to meet the national 6-hour target. The authors infer from the results that investing in

improving the admission/discharge cycle within the hospital is the most effective strategy.

Additional scenarios based on combinations of scenarios 1-3 were also tested, and tradeoffs

between competing PKIs were noted by the authors. The preferences of ED management

for weighting the PKIs was unclear, so the authors used preference ratios in multi-attribute

evaluation (PRIME), a methodology to handle MCDA when there is incomplete information

about decision maker preferences.

In a Canadian study of the Toronto General Hospital, Wong et al. (2010) built a system

dynamics (SD) simulation model to examine the effect of smoothing inpatient discharges from

the general internal medicine (GIM) ward. The simulation model results demonstrated that

ED congestion could be significantly reduced if hospital discharges of GIM inpatients could

be spread evenly over the course of the week. In the study hospital, 98% of GIM patients are

admitted from the ED and represent almost half of the total number of inpatient admissions

from the ED. Bed blocking is also prevalent due to GIM patients with approximately 25% of

GIM patients occupying beds while waiting for alternate level of care (ALC) facilities. The

model was built using one year of historical data (2005) and validated with a second year of

data (2006).
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GIM patients are either discharged from the ED or transferred to an inpatient ward, with

three main patient pathways considered for inpatients: Discharge Home, Discharge Inter-

Facility, and Discharge Other. Discharge Other includes intra-facility transfers, in-hospital

deaths and patients who leave against medical advice. Corresponding stock variables include

the number of GIM patients in the ED, as well as the number of GIM home, inter-facility,

and other patients respectively. Three endogenous functions are included: 1) Discharge

from ED Probability, 2) Bed-Turn-Around Time and 3) ALC Occupancy. Discharge from

ED Probability is modeled as a function of GIM patient occupancy in ED which occurs

when boarding times are so long that patients stabilize and discharge from the ED. Bed-

Turn-Around Time is modeled as a function of the number of ward discharges, including the

time required for housekeeping staff to prepare bed and for nursing to accept a new patient.

ALC Occupancy is approximated in the model based on stock of inter-facility patients.

Note that ALC patients occupy an inpatient bed while waiting for space in long-term care,

rehabilitation care, or other facility.

Tested scenarios include a smoothed average case and an “every day is a weekday” case.

In the smoothed average case, demand is smoothed using the 7-day weekly average discharge

proportion. The “every day is a weekday” is similar, except that the 5-day weekday average

discharge proportion is used. In the smoothed average case, the GIM in ED stock variable

reduced from 7.4 to 5.4 (27% decrease), and average ED LOS for GIM patients reduced from

24 hours to 17 hours (31% decrease). Larger reductions were shown with the simulation

results for the “every day is a weekday” case: GIM in ED reduced by 48-57% and ED LOS

for GIM patients reduced by 51-60%.

While the potential benefits of smoothing inpatient discharges over the course of the

week are clear, there are important implementation challenges. Weekend inpatient discharges

are less common that weekday inpatient discharges not only due to ward staff availability,

but also due to resource capacity of external facilities and for patient safety considerations.

Transfers to long term care and other facilities may simply not be possible since few of
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those facilities accept new patients on weekends. Patient safety concerns may also reduce

the ability for patients to be discharged home, since less community and other resources

are available on weekends. Also note that the model uses average weekly rates for hourly

admissions and discharges rather than day-of-week rates, and that the inpatient discharge

pathway (home, inter-facility, or other) is assumed to be known when transferred out of the

ED.

In addition to day of week inpatient discharge timing, time of day inpatient discharge

timing also affects ED congestion. Powell et al. (2012) examined inpatient discharge timing

and found that discharging more inpatients from the hospital earlier in the day could signif-

icantly reduce and possibly eliminate ED boarding altogether. In a retrospective analysis,

pre-existing patient records were extracted from hospital information systems for the month

of September 2007. The analysis included weekday inpatient bed demand from three sources:

ED Admission, Elective Surgical Admission, or ICU Transfer Admission. The authors devel-

oped a simplified model of the interaction between the ED and inpatient units, based on the

average hourly mean values of the three sources of inpatient demand (inflow) and inpatient

discharges (outflow). Model assumptions include: priority for elective surgery patients over

ED patients, priority for ED and elective surgery patients over patients transferred from the

ICU, and no bed specialization (any unit can take care of any type of inpatient admission).

In the hospital’s current practice, 70.5% of ED patients, 85.6% of elective surgical pa-

tients, and 82.8% of ICU transfer patients are admitted to the hospital between noon and

midnight. Inpatient discharge timing policies include “Discharge by Noon”, “Dayshift Uni-

form Discharge”, and shifting the hospital’s actual discharge distribution curve 1, 2, 3, or

4 hours earlier. Specifically, the “Discharge by Noon” policy is modeled such that 75% of

inpatients are discharged uniformly between 8:00 AM and 12:00 noon, with the remaining

25% discharged uniformly between 12:00 noon and 8:00 PM. In the “Dayshift Uniform Dis-

charge” policy, inpatients are discharged uniformly from 8:00 AM to 4:00 PM (corresponding

to normal inpatient physician working hours).
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The primary outcome measure is total daily admitted patient boarding hours. In the

model base case, the total boarding hours per day is 77: 56.3 hours for ED patients and 20.7

hours for surgical patients. Shifting the hospital’s actual discharge distribution curve by one

hour earlier eliminated surgical patient boarding and reduced ED patient boarding to 34.4

hours per day. To eliminate ED boarding altogether, the curve would need to be shifted

four hours earlier. The “Discharge by Noon” and “Dayshift Uniform Discharge” policies

resulted in eliminating surgical patient boarding and reduced total ED patient boarding to

3 hours per day. The authors note that future work could identify physician and nurse

staff shift schedules required to achieve the proposed or other optimal inpatient discharge

policies under different hospital-specific constraints. Recently, Shi et al. (2015) developed

a stochastic processing network model of the admission process. Their simulation studies

also showed that improvements could be obtained through early discharge strategies. They

suggest that a patient’s medical needs determine the required number of nights for their

hospital stay, but operational policies affect time of day admission and discharge timing.

In a study focused on ambulance diversion, Allon et al. (2013) propose a two-station

queueing network model of the interface between the ED and inpatient ward. The first

station represents the ED and the second station represents the inpatient department. In

their model, patients arrive to the ED by walk-in or ambulance according to a Poisson process

with priority given to ambulance patients. ED beds are modeled as servers and after receiving

exponential-distributed service in the ED, a fraction of patients are admitted to the hospital

while the rest are discharged home from the ED. For the inpatient department, patients

arrive from the ED or directly to the inpatient department according to a Poisson process.

Priority to ED patients is always assumed and inpatients beds are modeled as the servers

with exponential-distributed service times. When all inpatient beds are full, it is assumed

that ED boarders occupy ED beds until an inpatient bed is available. In practice, ED

boarders often wait on stretchers in hallways for admission to the inpatient wards. Further

assumptions are made and the model is reduced to two separate single-station queueing
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systems. The simplified system is then analyzed using heavy traffic approximations and

applied to hospitals in California. The study findings highlight the fact that ED crowding

is a multi-departmental problem: the extent that a hospital goes on diversion varies on the

size and occupancy of both the ED and inpatient departments.

Mandelbaum et al. (2012) modeled the interface between EDs and internal wards (IWs)

in a large Israeli hospital as an inverted-V queueing system with a single centralized queue

and multiple heterogeneous server pools: the pools represent the wards and servers are

beds. The authors analyze patient allocation from the ED to IWs from the perspective of

fairness towards ward staff (rather than fairness towards patients). The ED-to-IW process

is analyzed within the quality-and efficiency-driven (QED) regime (Halfin and Whitt 1981)

applicable for mid-to-large scale queueing systems that require both high levels of service

quality and resource efficiency. QED is natural in this setting since wait times (ED boarding

times, measured in hours), are significantly shorter than service times (average LOS in wards,

measured in days) and high bed occupancy is the norm. Note that while the servers in the

model are heterogeneous since the number of beds in each ward may be different, all of the

wards have similar medical capabilities and offer similar services. This is common in Israeli

hospitals but may not be applicable elsewhere.

The model considers a single customer class and assumes that ward arrivals occur ac-

cording to a Poisson process with exponentially distributed ward LOS. As noted by the

authors, these assumptions are inaccurate in practice, but are included in order to charac-

terize a tractable analytical model. The queueing discipline is first come first serve (FCFS),

nonpreemptive (service cannot be interrupted once started) and work conserving (no idle

servers when patients are in the queue). Three routing algorithms are considered, all with

the work conserving goal of reducing the length of the queue of patients boarding in the ED.

As the name suggests, the longest-idle-server-first (LISF) policy routes the next customer

to the server that has been idle for the longest. This policy is commonly used in call cen-

ters and considered fair (Armony and Ward 2010); however, implementation is not trivial
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in hospitals. To implement LISF, hospitals would need to keep track of the number of idle

beds in each ward, ordered by idle time. Queues-and-idleness-ratio (QIR) policies (Gurvich

and Whitt 2009) were also considered where the next patient is routed to the server pool

with the highest number of idle servers. While this policy can be used to achieve the same

level of fairness as LISF, it is also not straightforward for the hospital setting, due to pool

capacities varying over time. Therefore, a new policy was introduced in the paper, named

the randomized most-idle (RMI) routing policy. In RMI, a patient is assigned to an available

pool, with probability equal to the fraction of idle servers in the system. For example, if

pool i has two available servers and pool j has three available servers, the patient will be

routed to any one of the five available servers with probability 1/5 (which is within pool

i with probability 2/5 or within pool j with probability 3/5). The authors propose RMI

as a routing algorithm that can easily be implemented in hospitals, possibly using patient

ID numbers as sources of randomness. However, fairness does come at a cost of a higher

probability of delay. Therefore, before implementation of RMI rather than a more efficient

but less fair faster-servers-first (FSF) policy, it is important to determine if higher delays are

acceptable.

One of the challenges of patient flow management from the ED to inpatient ward is that

average patient LOS in the ED is typically measured in hours whereas the average LOS in

an inpatient department is measured in days. This aspect of the problem was studied by

Ramakrishnan et al. (2005) who were the first to propose a two-time-scale model for hospital

patient flow from the ED to inpatient wards. Recently, Dai and Shi (2014) proposed another

two-time-scale model for hospital patient flow management. They apply their model to

assess the impact of inpatient discharge timing and bed capacity on ED boarding. The

approach focuses on the changes that occur to the midnight census due to the medically

required number of days in the patient’s LOS along with the time of day that patients are

admitted and discharged from the hospital. This work highlights the operational challenges

in balancing inpatient admission and discharge timing.
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2.9 Methodological Alternatives

In a review on ED modeling in the Emergency Medicine (EM) literature, (Wiler et al.

2011) refer to common approaches as formula-based, regression-based, time-series analysis,

queueing theory, or discrete event simulation (DES). Formula-based approaches include ED

crowding measures such as EDWIN. The authors note that regression-based and time-series

forecasting methods are fairly well understood, but queueing theory and DES are not well

understood and considered difficult to develop and use. However, in terms of ability to

predict process improvement impact, queueing theory and DES are highlighted as better

approaches. Therefore, the authors conclude that more collaboration between OM and EM

researchers is needed in order to improve existing approaches.

In the studies reviewed so far, common methodologies include queueing, simulation, and

optimization. As shown below in Table 2-2, most researchers use a single methodology, but

some ED models incorporate multiple methodologies. For example, Zeltyn et al. (2011) use

simulation, but adopt an MOL approach inspired by queueing theory. Some authors also

create analytical queueing models based on a simplified process and test the robustness of

their results with simulation (Almehdawe et al. 2013, Saghafian et al. 2012). Others use

simulation optimization to incorporate the stochastic nature of the ED staff shift scheduling

problem (Ahmed and Alkhamis 2009, Izady and Worthington 2012, Sinreich and Jabali 2007,

Sinreich et al. 2012).

In most cases, the different methodology (denoted “Other” in Table 2-2) is forecasting

or other statistical methods. Exceptions include the input-throughput-output framework

(Asplin et al. 2003), the queueing network model of two EDs in a non-cooperative ambulance

diversion game (Deo and Gurvich 2011), and the use of rough set theory, fuzzy measures,

and cooperative game theory to help improve triage accuracy (Wilk et al. 2005). Other

methodologies also include data mining (Ceglowski et al. 2006), gravity models with Bayesian

updating (Congdon 2001), lean management (Holden 2011) and neural networks (Somoza

and Somoza 1993).
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Table 2–2: Methodological Alternatives

Study Queueing Simulation Optimization Other
Green et al. (2006) X
Green, Kolesar and Whitt (2007) X
Mayhew and Smith (2008) X
Cochran and Roche (2009) X
Mandelbaum et al. (2012) X
Allon et al. (2013) X
Deo and Gurvich (2011) X X
Zeltyn et al. (2011) X X
Saghafian et al (2012) X X
Almehdawe, Jewkes, and He (2013) X X
Izady and Worthington (2012) X X X
Panayiotopoulos and Vassilacopoulos (1984) X
Saunders, Makens and Leblanc (1989) X
Lane, Monefeldt and Rosenhead (2000) X
Connelly and Bair (2004) X
Sinreich and Marmor (2005) X
Eldabi, Paul, and Young (2007) X
Fletcher et al. (2007) X
Hoot et al. (2008) X
Storrow et al. (2008) X
Fletcher and Worthington (2009) X
Khare et al. (2009) X
Bair et al. (2010) X
Paul, Reddy, and DeFlitch (2010) X
Wong et al. (2010) X
Klein and Reinhardt (2012) X
Abo-Hamad and Arisha (2013) X
Shi et al. (2015) X
Vassilacopoulos (1985) X
Beaulieu et al. (2000) X
Carter and Lapierre (2001) X
Ferrand et al. (2011) X
Sinreich and Jabali (2007) X X
Ahmed and Alkhamis (2009) X X
Sinreich, Jabali, and Dellaert (2012) X X
Ceglowski et al. (2007) X X
Tierney et al. (1986) X
Graff et al. (1993) X
Somoza and Somoza (1993) X
Congdon (2001) X
Jones, Joy, and Pearson (2002) X
Asplin et al. (2003) X
Schull et al. (2004) X
Ramakrishnan et al. (2005) X
Wilk et al. (2005) X
Asplin, Flottemesch and Gordon (2006) X
Hoot et al. (2007) X
Schull, Kiss, and Szalai (2007) X
Holden (2011) X
Soremekun, Terwiesch, and Pines (2011) X
Wiler, Griffey, and Olsen (2011) X
Powell et al. (2012) X
Dai and Shi (2014) X
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Considering the complexity of the ED patient flow process, it is not surprising that

simulation is the most commonly used methodology in Table 2-2. Additional ED-specific

examples are also identified in a systematic review of simulation projects investigating ED

crowding from 1970 to 2006 (Paul et al. 2010). A key point both from that ED specific review

and healthcare simulation modeling in general (Eldabi et al. 2007) is that most research

incorporates only one part of the healthcare system such as an ED, without consideration

of the complex interconnections that exist among healthcare system components. It is also

important to note that there are a variety of simulation techniques available and while

discrete event simulation (DES) is often used for micro-level analysis of a specific department,

system dynamics (SD) simulation is used for aggregate analysis of the interaction between

components. In this review, the main example of SD simulation is in modeling the interface

between the ED and inpatient units for admitted patients who remain boarding in ED

hallways (Lane et al. 2000, Wong et al. 2010).

DES models are traditionally developed using specialized simulation software programs

such as Arena, MedModel, or Simul8. However, Klein and Reinhardt (2012) have shown

that the complexity of the ED patient flow process can be modeled with spreadsheet simu-

lation. Developed using Microsoft Excel 2007 (Microsoft, Redmond, WA), the spreadsheet

simulation was compared to the Khare et al. (2009) MedModel simulation and a statisti-

cal equivalence test formally demonstrated that spreadsheet simulation is equally effective.

Spreadsheet software is easy to use and widely available, at a fraction of the cost of DES soft-

ware. Coding spreadsheet simulations may be more challenging since it requires a different

and more novel expertise than traditional computer programming. However, spreadsheets

can be organized to reference existing datasets thus minimizing the burden of copying and

likelihood of transcription errors and information leakage. Output analysis can also be cus-

tomized with user-specific performance statistics and charts.

For a two-week horizon, the spreadsheet simulation model reserves a set of rows where

each row represents a minute: 1, 2, 3, ..., 21, 600 where that last number represents fifteen
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days worth of minutes [(1 + 14) ∗ 24 ∗ 60] which includes an initial warm-up period of 1,440

minutes (= 24 ∗ 60 = one day). From a modeling perspective, the key insight comes from

understanding the difference in how Excel processes a simulation rather than a more tra-

ditional program such as MedModel. In Excel, the entire system state is summarized in a

minute sequence, where each rows is based on its own random number results along with

its preceding minute’s values. Performance statistics are derived based on the time series

of the states of the system at each minute. In MedModel, the focus is on the stay of a

patient through the ED, from arrival to admission or discharge, and statistics are tallied and

updated based on the performance of the ED resources for that patient.

2.10 Emergency Care in Rural Areas

In this systematic review of the literature, we have provided a detailed account of the

state of Operations Research for Emergency Care. There have been many studies completed

on this topic, however, research on emergency care has only considered the urban context.

Surprisingly, none of the studies included in this comprehensive review investigated Emer-

gency Care in Rural Areas. In urban areas, studies have been completed to consider some

of the unique features of ED patient flow including triage and lab tests, but urban ED pa-

tient flow research is not exhaustive. In particular, we also identified from our review that

the ED consultation process has not been studied. In the next chapter, we study the ED

consultation process by considering the workflow decisions of specialists. ED consultations

and inpatient ward care are handled by specialists, so we are very interested in Specialist

Care. In both of the next two chapters, we examine understudied healthcare challenges for

specialists in rural areas.
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Chapter 3
Specialist Care in Rural Hospitals: From Emergency Department Consultation

to Inpatient Ward Discharge

3.1 Introduction

This chapter contributes to the literature on Emergency Department (ED) outflow to

inpatient wards. To the best of our knowledge, this is the first study examining ED crowding

from the specialist’s perspective. The multi-departmental process from the ED to inpatient

ward begins when specialists receive ED consultation requests. Previous models of inpatient

operations do not consider the importance of ED consultations, focusing instead on bed-

based capacity management considering only patient flow after admission has been confirmed.

Furthermore, while most research is conducted in urban hospitals, we study the additional

challenges faced by specialists in rural hospitals.

We propose a stochastic dynamic programming framework for specialist care that in-

cludes a Single Role Model and a Dual Role Model. Should specialists give priority to ED

consultation requests or give priority to inpatient discharges? Defining C-Priority as the

Single Role Model policy where specialists always give priority to ED consultations and D-

Priority as the policy where specialists always give priority to inpatient discharges, we can

compare the effectiveness of these and other decision making policies to the optimal policy.

We apply the proposed modeling framework to data sets developed from two corresponding

case studies. The traditional rural case is more complex since Internal Medicine Specialists

(Internists) take on a dual role as the Intensive Care Unit (ICU) physician and Internist on

call for ED consultations and inpatient care in the medicine wards.

In the remainder of the chapter, we review the most relevant literature in section 3.2,

define our stochastic dynamic programming models in section 3.3 and describe the structure

of optimal policies in section 3.4. We then describe our study setting and data sources in
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section 3.5, and report results of the application of our Single and Dual Role Models to two

study hospitals in section 3.6. A discussion is provided in section 3.7 and we summarize our

findings with concluding remarks in section 3.8.

3.2 Literature Review

One of the main ED patient flow bottlenecks is getting admitted patients out of the ED.

The medical community have been reporting this ED boarding problem with calls for system

wide solutions to manage the challenges of patient populations with increasing severity of

illness (Forster et al. 2003, Trzeciak and Rivers 2003, Falvo et al. 2007). At Northwestern

Memorial Hospital in Chicago, Khare et al. (2009) used simulation to study the effectiveness

of ED patient flow strategies on throughput and output. Their analysis demonstrated that

increasing the number of ED beds did not reduce length of stay (LOS) but increasing the rate

that admitted patients depart the ED did result in a significant reduction in LOS. In order

to investigate potential solutions to reduce boarding times, models have been developed to

test smoothing inpatient discharge timing by day of week (Wong et al. 2010) or by time of

day (Powell et al. 2012, Shi et al. 2015). Along with early inpatient discharge policies, new

institutional guidelines are putting pressure on specialists to provide faster ED consultation

response times. In a Pennsylvania study of the impact of an institutional guideline for timely

ED consultations, Geskey et al. (2013) found that reduced ED consultation response times

were obtained after implementation of the guideline. However, the guideline also resulted in

longer inpatient discharge times, leaving unanswered questions on how to best manage the

timing of specialist care considering both ED consultations and inpatient discharges.

One of the challenges of patient flow management from the ED to inpatient ward is

that average patient LOS in the ED is typically measured in hours whereas the average

LOS in an inpatient department is measured in days. This aspect of the problem was

studied by Ramakrishnan et al. (2005) who were the first to propose a two-time-scale model

for hospital patient flow from the ED to inpatient wards. Recently, Dai and Shi (2014)

proposed another two-time-scale model for hospital patient flow management. They apply
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their model to assess the impact of inpatient discharge timing and bed capacity on ED

boarding. The approach focuses on the changes that occur to the midnight census due to

the medically required number of days in the patient’s LOS along with the time of day that

patients are admitted and discharged from the hospital. This work highlights the operational

challenges in balancing inpatient admission and discharge timing. Additional bed-based

capacity management approaches include Mandelbaum et al. (2012) and Allon et al. (2013).

Based on a large Israeli hospital, Mandelbaum et al. (2012) propose an inverted-V queueing

system with a single centralized queue and multiple server pools: the pools represent the

wards and servers are beds. Allon et al. (2013) propose a two-station queueing network

model with the first station as the ED and the second station as the inpatient department.

Using heavy traffic approximations applied to hospitals in California, the study findings

highlight the fact that ED crowding is a multi-departmental problem: the extent that a

hospital goes on ambulance diversion varies on the size and occupancy of both the ED and

inpatient departments.

The relevant healthcare operations management literature also includes studies that

model healthcare providers as servers. Although these studies do not necessarily involve

inpatient operations, they are equally relevant to our work. Green et al. (2006a) developed a

discrete time finite horizon dynamic programming framework to model the decision making

challenges for patient selection in diagnostic medical facilities. Over the course of the day,

these services are provided to scheduled outpatients and non-scheduled inpatients as well

as emergency patients from the ED. ED patients are given priority in the model, and the

main challenge is to determine who to serve next when there are both inpatients and outpa-

tients waiting for diagnostic services. The modeled decision making challenge incorporates a

probability of no-shows for scheduled outpatients and the uncertainty in the time of arrivals

of emergency and inpatient requests for diagnostic services. Optimal policies and heuris-

tics are developed to evaluate various capacity management strategies including threshold

appointment schedules where service slots before a threshold time are used for scheduled
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appointments with later slots left open. The optimal policies indicate that the decision on

which patient to serve next depends on the time of the day and the number of outpatients

and inpatients waiting for diagnostic services.

Yankovic and Green (2011) proposed a queueing system with two types of servers: beds

and nurses. With this model, the authors show how admissions and discharges may be

blocked when inpatient beds are occupied or due to a lack of nurse availability. The system

is modeled as a quasi-birth and death (QBD) process which is then solved with matrix

analytical methods. Performances measures derived for the system include the probability

of delay for a bed or a nurse, bed utilization, nurse utilization, and the probability that

discharges are blocked.

We are not the first to study the workflow decisions of physicians. Dobson et al. (2013)

study the workflow decisions of ED physicians and consider the impact of interruptions

on physician workload. ED physicians perform an initial assessment and order lab tests

for new patients after triage. Once lab tests are returned, ED physicians also need to re-

assess and determine a treatment plan. Faced with an overloaded system of new patients

waiting at triage and existing patients waiting for re-assessment, ED physicians choose which

patient to see next. If an ED physician decides to serve new patients after triage, it will

reduce the door-to-doctor time for the new patient. However, that decision will also increase

the LOS for the existing patient whose ED care may have been completed sooner if seen

first. While the model does not consider the role of specialists in the admission process and

other complexities of ED patient flow, the analysis does highlight the important trade-off in

serving new or existing ED patients. The model also considers aspects rarely included in

other ED patient flow models such as patient reneging for those who leave without being

seen (LWBS) and the impact of interruptions on physician workload. Recently, Huang et al.

(2015) also modeled workflow decisions of ED physicians. They propose decision making

policies regarding when to serve new triage patients who have not yet been seen and when

to serve in process patients who require re-assessment after lab tests or other investigation
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has been completed. Again, while not all complexity of the ED service process is considered,

the authors do consider multiple patient classes with time deadlines for new patients after

triage and the feedback component of ED patient flows where patients may require service

multiple times during their ED LOS before the disposition decision to discharge from the

ED or admit the patient to a speciality ward for further hospital care.

However, to the best of our knowledge we are the first to study the workflow decisions of

specialists. In previous studies, the admission process is considered to start with an admission

request. However, in studying the admission process from the specialist’s perspective, it is

clear that the admission process really begins when a specialist receives an ED consultation

request. Specialist consultation is an important part of ED patient flow which has received

little research attention. We study the role of specialists in patient flow management from

the ED to inpatient wards, and consider the impact of ED consultation, inpatient care, and

inpatient discharge timing.

3.3 Stochastic Dynamic Programming Models

Figure 3–1: Specialist Workload in the Hospital

Specialists work on call in the hospital, with duties spanning multiple departments as

shown in Figure 3-1. In some cases, patients who arrive to the ED can be treated and
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released under the care of an ED physician. After triage and registration, the ED physician

and nurse complete their assessments. The ED physician may investigate by requesting one or

several lab tests (i.e. blood/fluids or imaging) or keep the patient under observation. When

uncertainty or complexity arises in diagnosis or treatment, ED physicians call on specialists

to come to the ED for consultations. When a specialist goes to the ED for consultation, the

specialist consultation includes an admission order or a discharge order from the specialist.

For patients requiring further treatment, specialists take over care from the ED physician

once admitted to the inpatient ward. Meanwhile, specialists need to provide follow-up care

to patients in specialty wards and decide when inpatients are ready for discharge. In rural

hospitals, specialists are responsible for the ICU, providing follow-up care and admission and

discharge decisions for ICU patients as well. While specialists also offer outpatient clinics and

perform specialty procedures including surgeries, such work is typically scheduled separately

from the on call duties depicted in Figure 3-1.

In some rural hospitals including one of our study hospitals, ICU physicians and In-

ternists are staffed at the same time, each taking on a single role. However, the traditional

situation for rural hospitals involves one specialist taking on both roles at the same time,

serving as the ICU physician and Internist on call. This dual role requires the specialist

to consider additional work, and as a result, our corresponding Dual Role Model is more

complicated than our Single Role Model. While our focus in this study is on rural hospitals,

our proposed Single and Dual Role Models would also be appropriate for urban hospitals

that have practices similar to either of our study hospitals. We begin with a description of

the Single Role Model and then describe the Dual Role Model as an extension to the Single

Role Model.

3.3.1 Single Role Model

Consider a one day model with the specialist’s time on a given day divided into N

discrete time slots (periods). The state of the system is represented by (c, b, d) where c

represents the number of patients waiting in the ED for specialist consultation, b represents
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the number of patients boarding in the ED for admission (ED boarders), and d represents

the number of patients in the hospital ward waiting for their last care visit from a specialist.

One of our modeling goals is to minimize the number of state variables so that the model

can be solved more efficiently. One novel element in our model is that we do not need an

additional variable to keep track of inpatient bed capacity. When the hospital ward is full

with no inpatient beds available, b has a positive value for the number of ED boarders.

When there is available inpatient bed capacity, we use the same b variable with a negative

value to represent inpatient bed capacity. In that case, -b represents the number of available

inpatient beds in the hospital ward. In the case of a full hospital ward with all inpatient

beds filled but no ED boarders, the value of b is zero. The patients included in the d variable

are those who are expected to be discharged from the hospital ward today. This variable is

determined at the beginning of the horizon, possibly during morning rounds. These patients

will be ready for discharge after the specialist completes their final care visit and issues

a discharge order. Note that our state space excludes the number of patients waiting for

follow-up specialist care for those patients who we already know will remain in the hospital

ward overnight. We assume that these follow-ups will be handled by the specialist when the

state space is (0, b, 0). That is to say, ED consultations and inpatient ward discharges are

given priority over regular follow-up hospital ward care.

Let γi = C,D represent the action taken by the specialist in period i where C =

Emergency Department Consultation and D = Hospital Ward Care (for Discharge). The D

action represents the last care visit required before discharge for a patient in the hospital

ward. We also define wc, wb, and wd to represent the per period waiting costs for patients

waiting for ED consultation, boarding for admission, and waiting for discharge, respectively.

At the end of the day, we also define an end of horizon penalty cost function denoted g(c, b, d).

In this model, there is one on call specialist available to handle the C and D actions in

each period. We assume that the C and D actions take the same amount of time, occupying
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the specialist for one period. New consult requests are assumed to arrive before the special-

ist’s decision at the beginning of each period. Our models are most appropriate for inpatient

departments such as Internal Medicine which receives almost all admissions from the ED.

Therefore, we assume that there are no elective admissions and the only input source is from

the ED. We assume, as observed in practice, that high acuity ED consultations have the

highest priority. We handle this situation without requiring an additional variable in our

state space. While urgent requests are of great importance, from a decision making point of

you, the decision is trivial. When there is an urgent request from the ED, no matter what

the state of the system, the specialist’s action will be C. While boarding is very common

when waiting for admission to medicine wards, boarding for admission to ICU is much less

common and ICU bumping (Dobson et al. 2010) is assumed to ensure that ICU capacity is

always available for high acuity admissions. The final model assumption is that an inpatient

bed is available upon discharge for use in the next period. In practice, there may be longer

bed turnaround times due to cleaning, or other delays if patients need to wait for pick up or

if a patient is waiting for an alternate level of care (ALC) ward downstream which does not

have space available.

For the arrival process, we denote the arrival probability for ED consultation requests

by λc and let (1 − z) represent the fraction of high acuity ED consultation requests. We

assume that all high acuity ED consultation requests result in admission to ICU and for

the remaining consultation requests, denote pa as the admission probability to the medicine

wards. We can now define the Single Role Model with the following stochastic dynamic

program:
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V ∗ = min
γ

[V γ1
1 (c, b, d)] (3.1)

V γi
i (c, b, d) = cwc +max(0, b) · bwb + dwd

+(1− z)λc[V
γi+1

i+1 (c, b, d)] + zλc[H
γi+1

i+1 (c+ 1, b, d)]

+(1− λc)[Hγi+1

i+1 (c, b, d)], i = 1, ..., N. (3.2)

Hγi
i (c, b, d) =



min

 pa(V
γi
i (c− 1, b+ 1, d))

+(1− pa)V γi
i (c− 1, b, d),

V γi
i (c, b− 1, d− 1)

 if c ≥ 1, d ≥ 1,

pa(V
γi
i (c− 1, b+ 1, 0))

+(1− pa)V γi
i (c− 1, b, 0) if c ≥ 1, d = 0,

V γi
i (c, b− 1, d− 1) if c = 0, d ≥ 1,

V γi
i (0, b, 0) if c = d = 0

(3.3)

HγN
N (c, b, d) = V γN

N (c, b, d) = g(c, b, d) (3.4)

The objective is to minimize the total expected daily waiting costs. For a given period

i, the waiting costs are the sum of the first three terms in (3.2). The second term accounts

for the situation when b is negative (i.e. no ED boarders possibly with available inpatient

bed capacity). In that case, whenever b ≤ 0, the second term is zero, and we ensure that

the waiting cost is nonzero only if there are boarders. The possible transitions to and from

state (c, b, d) included in (3.2),(3.3) are illustrated in Figure 3-2.

In period i, if there is a new ED consultation request and the specialist’s action is D,

the process will transition to state (c+ 1, b− 1, d− 1) for the next period. Similarily, if the

specialist’s action is D but there is no new ED consultation request, the next state will be

(c, b − 1, d − 1). If there is no new ED consultation request and the specialist’s acton is C,

the process will transition to state (c− 1, b+ 1, d) with probability pa or to state (c− 1, b, d)

with probability (1 − pa). Similarily, if there is a new ED consultation request and the

specialist’s action is C, the process will transition to state (c, b+ 1, d) with probability pa or
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Figure 3–2: State Transitions for the Single Role Model

remain in state (c, b, d) with probability (1− pa). Note in Figure 3-2 that there are the same

number of transitions in to node (c, b, d) as there are from node (c, b, d), so the state space

will not explode. The boundary condition (3.4) includes the end of day penalty function

which depends on the state of the system (c, b, d) at the end of the day.

3.3.2 Dual Role Model

Next, we describe the Dual Role Model, applicable to rural hospitals that have one

Internist staffed to handle both the role of ICU physician and Internist on call at the same

time. Here we extend the model described in the previous section, highlighting the additional

variables required to handle the additional complexity of the dual role.

With appropriate assumptions as observed in practice, we identified a state space with

only one additional variable, denoted f . Therefore, the state of the system is represented by

(c, b, f, d) where f represents the number of patients in the ICU waiting for follow-up visit

from a specialist. We also update the action space to reflect the work required for follow-up

specialist care in the ICU, denoted F . Let γi = C,F,D represent the action taken by the

specialist in period i where C = Emergency Department Consultation, F = ICU Follow-up

Care and D = Hospital Ward Care (for Discharge). Finally, we add an additional waiting

cost variable denoted wf to represent the per period waiting costs for patients waiting for
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ICU follow-up care. At the end of the day, we also update the end of horizon penalty cost

function to g(c, b, f, d). We can now define the Dual Role Model as follows:

V ∗ = min
γ

[V γ1
1 (c, b, f, d)] (3.5)

V γi
i (c, b, f, d) = cwc +max(0, b) · bwb + fwf + dwd

+(1− z)λc[V
γi+1

i+1 (c, b, f, d)] + zλc[H
γi+1

i+1 (c+ 1, b, f, d)]

+(1− λc)[Hγi+1

i+1 (c, b, f, d)], i = 1, ..., N. (3.6)

Hγi
i (c, b, f, d) =



min


pa(V

γi
i (c− 1, b+ 1, f, d))

+(1− pa)V γi
i (c− 1, b, f, d),

V γi
i (c, b, f − 1, d),
V γi
i (c, b− 1, f, d− 1)

 if c ≥ 1, f ≥ 1, d ≥ 1,

min

 pa(V
γi
i (c− 1, b+ 1, f, d))

+(1− pa)V γi
i (c− 1, b, f, d),

V γi
i (c, b− 1, f, d− 1)

 if c ≥ 1, f = 0, d ≥ 1,

min

 pa(V
γi
i (c− 1, b+ 1, f, d))

+(1− pa)V γi
i (c− 1, b, f, d),

V γi
i (c, b, f − 1, d)

 if c ≥ 1, f ≥ 1, d = 0,

min

 V γi
i (c, b− 1, f, d− 1),
V γi
i (c, b, f − 1, d)

 if c = 0, f ≥ 1, d ≥ 1,

pa(V
γi
i (c− 1, b+ 1, 0, 0))

+(1− pa)V γi
i (c− 1, b, 0, 0) if c ≥ 1, f = d = 0,

V γi
i (0, b, f − 1, 0) if c = 0, f ≥ 1, d = 0,

V γi
i (0, b− 1, 0, d− 1) if c = f = 0, d ≥ 1,

V γi
i (0, b, 0, 0) if c = f = d = 0

(3.7)

HγN
N (c, b, f, d) = V γN

N (c, b, f, d) = g(c, b, f, d) (3.8)
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Figure 3–3: State Transitions for the Dual Role Model
.

As in the Single Role Model, the objective is to minimize the total expected daily waiting

costs. For a given period i, the waiting costs are the sum of the first four terms in (3.6).

The possible transitions to and from state (c, b, f, d) included in (3.6),(3.7) are illustrated in

Figure 3-3.

The transitions where f does not change are analagous to those in the Single Role Model.

There are two additional transitions when the specialist’s action is F . In period i, if there is

a new ED consultation request and the specialist’s action is F, the process will transition to

state (c+ 1, b, f − 1, d) for the next period. Similarily, if the specialist’s action is F but there

is no new ED consultation request, the next state will be (c, b, f − 1, d). Note that we only

have transitions for decrementing the value of f , similar to d. We originally thought that we

would need to extend the state space to account for new arrivals of ICU patients to the ICU

and consider state transitions where f is incremented. However, this is not necessary since

the specialist will see the new ICU patients in the ED, which we cover in our model as high

acuity ED consultation requests. Typically, the ICU nursing staff takes care of the patient in

the ICU after admission. The ICU staff follows the specialist’s documented treatment plan

and calls the specialist if clarification is required. New ICU patients stay in the hospital for

several days, so the specialist’s workload for the next day will include follow-ups for the ICU

patients admitted on the previous day, which is included in the initial value of f established
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at morning rounds. We also update the boundary condition to consider f , so that (3.8)

includes the end of day penalty function which depends on the state of the system (c, b, f, d)

at the end of the day.

3.4 Optimal Policy Structure

Consider the Single Role Model with waiting cost parameters such that wc > wb > wd

and an end of day penalty cost function g(c, b, d) = cyc + byb + dyd such that yd > yb > yc.

That is to say, during the day per period waiting costs are highest for patients waiting

for ED consultation and lowest for patients waiting for discharge in the inpatient ward.

However, overnight waiting costs are higher for patients who need to stay an extra night in

the ward, and lower for patients who stay overnight in the ED. As described in section 5,

these parameters reflect that an ED physician is available overnight but there is no doctor

staffed overnight in the medicine wards.

Our optimal policy then has the following form:

γi =



C if c > 0, d = 0,
or c > 0, d > 0, i ≤ i∗, b ≤ bX ,
or c > 0, d > 0, i∗ ≤ i ≤ j∗, b ≤ bY ,
or c > 0, 0 < d ≤ d∗i , i

∗ ≤ i ≤ j∗, bY ≤ b ≤ bX ,
or c > 0, 0 < d ≤ d∗i , i > j∗, bY ≤ b ≤ bX ,

D if c > 0, d > 0, i∗ ≤ i ≤ j∗, b > bX ,
or c > 0, d > d∗i , i

∗ ≤ i ≤ j∗, bY ≤ b ≤ bX ,
or c > 0, d > d∗i , i > j∗, bY ≤ b ≤ bX ,
or c > 0, d > 0, b > bX ,
or c = 0, d > 0

(3.9)

Figure 3-4 illustrates an example of the optimal policy for the N-period discrete time

finite horizon model when the patient waiting costs per period for ED consultation, boarding,

and discharges are 5, 3, and 1 respectively. In this example, the initial state is (0,0,15) and

the end of day (overnight) penalty costs for patients waiting for ED consultation, boarding

for admission, or waiting for discharge are 10, 20, and 40 respectively. This example also

has the expected total number of new ED consultation requests set to 15 for the day and an

admission probability of 0.7 after ED consultation.
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Figure 3–4: Optimal Policy Structure: Single Role Model

The optimal action depends on the period number i and the state variables (c, b, d).

We observe that the optimal policy has different forms throughout the day (horizon), with

boarding thresholds and end-of-horizon effects. At the beginning of the horizon up to i∗,

the optimal policy is mainly based on a boarding threshold (i.e. D if d > 0 and b > bX ; C

if c > 0 and b ≤ bX). As the end-of-horizon approaches, the policy changes such that 1)

the boarding threshold is reduced and 2) the end-of-horizon effect also matters. We then

have an optimal policy of the form: D if d > 0 and (b > bX or (b > bY and d > d∗i ); C if

c > 0 and b <= bY or (b <= bX and d <= d∗i ). From period j∗ to the end of the day, the

end-of-horizon effect becomes more prominent and the optimal policy takes on the form:D if

d > 0 and (b > bX or d > d∗i ; C if c > 0 and (b <= bX and d <= d∗i ). Typically, d∗i = N − i.

As a result, the optimal policy will usually avoid the end-of-day penalty costs and ensure

that those patients are discharged before the end of the horizon.

3.5 Study Setting and Data Sources

We apply our models to two regional hospitals in Nova Scotia, Canada. Each region also

has two additional community hospitals staffed with ED physicians but Internal Medicine

inpatient care is not provided in the community hospitals. When inpatients at community
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hospitals require Internal Medicine consultation or Intensive Care, they are transferred to

the regional hospital by ambulance.

In both regional hospitals, Internists work on call for ED consultations, provide inpatient

care in the medicine wards, and also provide Intensive care in the ICU. In South Shore

Regional Hospital (SSRH), the traditional rural approach is used with one Internist on call

for ICU, ED consultations and inpatient care in the medicine wards. SSRH Internists cover

on call day shifts from 8am-5pm and/or on call night shifts from 5pm-8am. Due to ED

crowding, in Yarmouth Regional Hospital (YRH), management decided to staff a separate

Internist for the ICU similar to an urban hospital. YRH staffs Internists on call for 24 hour

shifts with one Internist on call for ICU, and another Internist generally works on call to

handle ED consultations and inpatient care in the medicine wards.

We observed the work of all Internists on call in the two regional hospitals. Decision

Support Analysts extracted data from hospital information systems. During the period from

November 1, 2014 to June 30, 2015, SSRH had 12062 ED visits and YRH had 17178 ED

visits.

Specialist consultation and service times are not recorded in hospital information sys-

tems, so we worked with the two physician groups to collect Internist data including service

times for ED consultations and inpatient follow-up care. Before observing Internists, we

thought that specialists would have a setup time to walk to the ED and back to the wards

which could lead to batching consultation requests. However, we timed the setup time while

observing Internists and discovered that the time was at most two minutes. While we did

not observe this as an issue in our study hospitals, if the setup time is considerably long

in other hospitals, then the service time could be adjusted to incorporate the setup time.

After observing Internists, it also became clear that service time is much more than a pa-

tient visit. Indirect care operations are often overlooked, but we determined that both direct

and indirect care operations must be considered to accurately reflect specialist workload.

Therefore, service times include reviewing patient charts, x-rays and medical history, patient
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visits, updating progress notes, written orders, prescriptions, tests, procedures, recording

the decision to admit, follow-up / re-assess or discharge, and dictation on the phone to com-

plete the assessment. It is also worth noting that the discharge process is more than just

signing-off. Internists need to visit each patient and complete an assessment to ensure that

they are ready to go home. The Internist also updates progress notes, checks to ensure that

all prescriptions are appropriate before completing written orders and dictation by phone to

complete the assessment.

Table 3–1: Single Role Model Parameters

Description Variable YRH SSRH
Number of Periods per day N 20 20
Fraction of High Acuity ED Consult Requests 1-z 0.22 0.33
Admission Probability to Medicine Wards pa 0.38 0.42
Waiting Costs (base case) (wc, wb, wd) (3,2,1) (3,2,1)
End of day Penalty Costs g(c, b, d) 10c+ 20b+ 40d 10c+ 20b+ 40d

Parameters for the Single Role Model are shown in Table 3-1. Each day has 20 time

slots: 45 minute periods from 9:00AM to 11:59PM. We selected the 45 minute time slots

based on what we observed in practice. Our Internist data from YRH include 538 patients

visits, including 63 ED consultations resulting in admission to medicine wards and 101 ED

consultations resulting in discharges from the ED. The mean (standard deviation) for those

ED consultations are 46.93 minutes (16.60 minutes) and 39.54 minutes (16.78 minutes) re-

spectively. For inpatient discharges from the medicine wards, our Internist data includes

54 observations with mean (standard deviation) of 27.55 minutes (17.06 minutes). While

discharges from the medicine wards do take less time than ED consultations, inpatient dis-

charges from the medicine wards take much longer than regular follow-ups in the medicine

wards. In 137 observations, regular follow-ups occupied the specialist for a mean (standard

deviation) of only 12.36 minutes (7.90 minutes).

We also use our Internist data to determine the values of two important model parame-

ters: the fraction of high acuity ED consultation requests (1-z) and the admission probability
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to medicine wards (pa). Recall that no matter what the state of the system, whenever there

is a high acuity ED consultation request, the specialist’s next action will be C. Those ur-

gent consultation requests typically result in admission to the ICU. On the other hand, the

remaining regular ED consultation requests require admission to the medicine wards with

probability pa. The rest of the ED consultation requests result in discharge from the ED

with probability 1− pa.

Hospital information systems data is used to determine the other parameters required

for the model. In each day with the initial state of the system (c, b, d), c includes new consult

requests from 12:00AM to 8:59AM. While the initial value of b depends on the actions of the

previous day, the initial value of the d variable is established from hospital discharge data for

each day. In practice, the specialist knows the value of the d variable at period 0 since this

is the number of patients that are ready for discharge on a given day. The specialist knows

this information either from taking care of inpatients on previous days or it is determined

during morning rounds. Recall that the d variable is only decremented throughout the day

since new inpatient admissions will have a LOS greater than one day.

The arrival rate of new consultation requests is λc, taken from hospital data with a

different rate depending on the day. We assume that consultation requests follow a Poisson

process. While we did observe time-varying arrivals to the ED by time of day, the requests

for specialist consultation do not follow the same pattern. Figure 3-5 shows YRH Internist

data collected on ED consultation requests by hour of day for 215 ED consultation requests

from 65 different days. After accounting for the overnight batch of consultation requests

captured in our inital c variable at period 0, the remaining ED consultation requests are

relatively homogeneous throughout the day.

The model parameters are the same for the Dual Role Model with the addition of the

f variable for ICU follow-up care requirements. Our Internist data includes 93 regular ICU

follow-ups and 44 ICU follow-ups resulting in discharge. The mean (standard deviation) for

those ICU follow-ups are 21.87 minutes (10.94 minutes) and 17.68 minutes (5.65 minutes)
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Figure 3–5: YRH - ED Consultation Requests by Hour of Day

respectively. As a result, we assume that an ICU follow-up occupies the specialist for half of

a 45 minute period. Suppose that at morning rounds, the specialist determines that there

are four patients waiting for follow-up in the ICU. In that case, it would take two 45 minute

periods for the specialist to complete all four ICU follow-ups. We use hospital information

systems data to determine the number of ICU follow-ups required for each of the 242 days.

In our base case, the waiting costs are (wc, wb, wd) = (3, 2, 1) for the Single Role Model

and (wc, wb, wf , wd) = (3, 2, 5, 1) for the Dual Role Model. These parameters are not available

through the data from the two study hospitals. For our purposes, it is the relative magnitude

of these variables in comparison with each other that is more important than the precise

values for these parameters. The relative values were set subjectively in consultation with

the physician coauthors based on their conceptions of medical priorities.

We take a patient health perspective in establishing our base case parameters. The

sickest patients with applicable daytime waiting costs are those waiting for ICU follow-up

and we give this group the highest waiting cost. Note that high acuity ED consultations are

excluded here since those patients are always given the highest priority and do not accumulate

waiting costs. For the remaining patients, during the day, per period waiting costs are likely

highest for patients waiting for ED consultation and lowest for patients waiting for discharge
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in the inpatient ward. However, overnight waiting costs are likely higher for patients who

need to stay an extra night in the ward, and lower for patients who stay overnight in the ED.

From a patient health perspective, it is reasonable to assume that patients waiting in the ED

for specialist consultation during the day will have a high waiting cost. It is also reasonable to

assume that waiting cost is lower when boarding since the patient has received an assessment

from a specialist during their ED consultation and the requirement for admission has been

confirmed. Meanwhile patients in the ward waiting for discharge likely have the lowest

daytime waiting cost as they have had several days of care and treatment with improved

health. On the other hand, waiting costs could be different overnight. Considering that the

ED is staffed through the night with an emergency physician, an ED patient can be seen by

the emergency physician whenever the need arises. If the patient has trouble sleeping, an

ED patient can have a prescription for sleeping pills, for example. However, in an inpatient

ward, typically there is no doctor staffed during the night, so the overnight waiting cost for

these patients is highest, and those who have trouble sleeping need to wait until morning to

see a doctor. ED boarders have access to an emergency physician overnight, but boarding in

a hallway is less comfortable than waiting in a private ED treatment space, so waiting cost

is likely higher for boarders than other ED patients.

In the case studies that follow in the next section, we include a parametric analysis on

the waiting cost parameters: wc = 3, 4, 5; wb = 1, 2, 3; and wd = 1, 2, 3. The end of day

penalty costs are g(c, b, d) = 10c + 20b + 40d for the Single Role Model and g(c, b, f, d) =

10c+ 20b+ 80f + 40d for the Dual Role Model.

3.6 Case Studies

Our Single Role Model represents the current practice of YRH and the Dual Role Model

represents the current practice of SSRH. We apply the Single Role and Dual Role Models to

both hospitals and analyze the effectiveness of different policies with each model. Under the

Single Role Model, we illustrate the application of our models by comparing C-priority, D-

priority, Hybrid batch and optimal policies for 8 months (242 days) from November 1, 2014
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to June 30, 2015. Similarly, with the Dual Role Model we compare F-C-D, F-D-C, Hybrid

batch and optimal policies for the same 242 days. The Hybrid batch policy is of the form

{Cbatch2 if d > 0} for the Single Role Model or {F-Cbatch2 if d > 0} for the Dual Role Model.

Under these Hybrid batch policies, the specialist gives priority to inpatient discharges over

regular ED consultations until there are two patients waiting for ED consultation. If there

are two patients waiting for ED consultation, then the specialist will complete the batch

of ED consultations until the consultation queue is empty. However, the specialist will not

batch ED consultations if there are no inpatient discharges.

We developed a simulation model which we use to simulate the 242 days under each

policy and compare the results. The 242 days are simulated for each policy 1000 times and

results are provided with the average of the 1000 replications for each policy. For the optimal

policies, the action at each period is determined by solving the appropriate dynamic pro-

gramming model by backward induction. At each simulated period, the backward induction

algorithm is used to recursively solve equations (3.1) - (3.4) for the Single Role Model or

equations (3.5) - (3.8) for the Dual Role Model.

3.6.1 Single Role Model Results

Single Role Model results are shown in figures 3-6 to 3-11. In the figures, each bar

represents the average waiting and end of day penalty cost of 1000 replications for the the

242 simulated days under each policy. The base case parameters are (wc, wb, wd) = (3, 2, 1).

Figures 3-6 and 3-7 show Single Role Model results for the parametric analysis on

wc = 3, 4, 5 applied to YRH and SSRH respectively. In the base case for YRH, the D-

Priority policy is closer to optimal than the C-Priority policy. As we increase the weight of

wc, C-Priority becomes closer to optimal than D-Priority. In SSRH, we see that C-Priority

is always better then D-Priority. However, the magnitude of the difference changes: with

higher weight to wc, D-Priority gets worse.

Figures 3-8 and 3-9 show the results for the parametric analysis on wd = 1, 2, 3 for YRH

and SSRH respectively. In YRH, D-Priority is usually closer to optimal than C-Priority. This
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Figure 3–6: YRH, Single Role Model,
wc = 3, 4, 5

3 4 5
5

6

7

8

wc

T
ot

al
W

ai
ti

n
g

C
os

ts
(0

00
s)

Figure 3–7: SSRH, Single Role Model,
wc = 3, 4, 5

seems to indicate that an early inpatient discharge strategy suggested by current guidelines

is a good strategy for YRH. However, this is not always true. We also conducted a 30-day

analysis for YRH for the month of April 2015. Contrary to the 8-month period, we found

that the C-Priority policy achieved results that were closer to optimal than the D-Priority

policy. The reason is that YRH inpatient units are commonly overloaded for extended

periods throughout the winter months. In the case of an overloaded inpatient department,

many consecutive days begin and stay above the boarding threshold, bX . Consistent with our

description of the structure of the optimal policy in section 4, this implies that the optimal

policy D if b > bX is the same thing as the D-Priority policy in the case when an inpatient

department is consistently overloaded.

In the base case for SSRH, the C-Priority policy is closer to optimal than the D-Priority

policy. With increasing weight to wd, the D-Priority policy becomes closer to optimal than

the C-Priority policy only when wd = 3.

Figures 3-10 and 3-11 show the results for the parametric analysis on wb = 1, 2, 3. Recall

that the base case has wb = 2. In both YRH and SSRH, all results are sensitive to wb. No

matter what policy is adopted, higher wb will result in higher waiting costs. As we increase

wb, we see different results at the two hospitals. In YRH, as we increase wb, we find that
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Figure 3–8: YRH, Single Role Model,
wd = 1, 2, 3
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Figure 3–9: SSRH, Single Role Model,
wd = 1, 2, 3

the D-Priority policy is closer to optimal than the C-Priority policy. However, at SSRH, we

find that the C-Priority policy is always closer to optimal than the D-Priority policy.

In figures 3-6 to 3-11, we notice that the Hybrid batch policies are sometimes closer

to optimal than the C-Priority and D-Priority policies. This indicates the need to some-

times give priority to ED consultations and other times give priority to inpatient discharges.

However, these hybrid batch policies are not consistently better than the C-Priority and

D-Priority policies. The conditions of the optimal action depend not only on the number of

patients waiting for consultation, it depends on all of the model parameters, (c, b, d).

3.6.2 Dual Role Model Results

Dual Role Model results are in Figures 3-12 to 3-17. Each bar represents the average

waiting and end of day penalty cost of 1000 replications for the the 242 simulated days under

each policy. The base case parameters are (wc, wb, wf , wd) = (3, 2, 5, 1).

Figures 3-12 and 3-13 show Dual Role Model results for the parametric analysis on

wc = 3, 4, 5 applied to YRH and SSRH respectively. Lower waiting costs can be achieved

with the Single Role Model rather than the Dual Role Model regardless of the specific policy

adopted. As we increase the value of wc, we observe the most profound benefit from working

with a Single Role rather than a Dual Role. If a Dual Role Model was still used at YRH, the
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Figure 3–10: YRH, Single Role Model,
wb = 1, 2, 3
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Figure 3–11: SSRH, Single Role Model,
wb = 1, 2, 3

F-D-C policy would achieve results closer to optimal than the F-C-D policy. In SSRH, where

the Dual Role model is current practice, the F-C-D policy is always closer to optimal than

the other policies. The gap between the C-Priority policy and the optimal policy becomes

smaller as we increase the weight of the waiting cost for ED consultations. At SSRH, the

highest waiting cost occurs if a hybrid batch policy is adopted, however batching is worse

under the Single Role Model than the Dual Role Model.

Figures 3-14 and 3-15 show the results for the parametric analysis on wd = 1, 2, 3 for

YRH and SSRH respectively. Similar to the Single Role model for YRH with wd = 1, the

F-D-C policy is closer to optimal than the F-C-D policy. As we increase the weight of wd,

the F-D-C policy is much closer to optimal than the F-C-D policy with the Dual Role Model.

With the Single Role Model, the results are not as sensitive to increases in wd. Once again

we note that while the results seems to indicate that an early inpatient discharge strategy

suggested by current guidelines is a good strategy for YRH, this is not always true. With

the 30-day analysis for the month of April 2015, we found that the F-C-D policy achieved

results that were closer to optimal than the F-D-C policy at YRH. In the case of SSRH, the

F-C-D policy is always better than the F-D-C policy, although the magnitude of the benefit

is smaller with increasing weights to wd.
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Figure 3–12: YRH, Dual Role Model,
wc = 3, 4, 5
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Figure 3–13: SSRH, Dual Role Model,
wc = 3, 4, 5

Figure 3-16 and 3-17 show results for the parametric analysis on wb = 1, 2, 3 for YRH

and SSRH respectively. As with the Single Role Model, in both YRH and SSRH, all results

are sensitive to wb. In YRH, the F-D-C policy is closer to optimal while at SSRH, the F-C-D

policy is always closer to optimal than the F-D-C policy. We also notice that the Hybrid

batch policies under the Dual Role Model are sometimes closer to optimal than the F-C-D

and F-D-C policies, but not consistently better. It is also worth noting that if a hospital

similar to SSRH adopts a Single Role Model, it is more important to avoid batching ED

consultations than it is under the Dual Role Model.

Overall, our results confirm that YRH provides a lower waiting cost with the Single

Role Model than the Dual Role Model and that SSRH could provide a lower waiting cost to

patients with the Single Role Model. The results also show that an early inpatient discharge

strategy suggested by current guidelines is not a good strategy for SSRH and not always

a good strategy for YRH. In the case of SSRH, we observe that the D-Priority (F-D-C)

policy is only better than the C-Priority (F-C-D) policy if the weight of the waiting cost for

patients waiting for inpatient discharge is as high as the waiting cost for patients waiting for

ED consultation. Hospitals are typically congested and concerns include health impacts for
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Figure 3–14: YRH, Dual Role Model,
wd = 1, 2, 3
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Figure 3–15: SSRH, Dual Role Model,
wd = 1, 2, 3

ED patients waiting for consultation. Therefore, our results with wd < wc are more relevant

in any hospital with the common challenge of ED congestion.

3.7 Discussion

With one specialist serving as the ICU physician while on call for ED consultations

and inpatient ward care, prolonged waits for specialist care are inevitable. In this Dual Role

situation, the Internist’s morning typically begins with a queue of patients waiting in the ED

for specialist consultation and a queue of patients waiting for follow-up care in the ICU. The

patients in the ED arrived overnight with a condition that might require admission but the

specialist was not called in to the hospital in the middle of the night for those consultations.

Although the condition of those ED patients is likely not critical enough to require admission

to the ICU, these patients have already been waiting in the ED for several hours for specialist

consultation. Naturally, ED management’s concern is that these patients will continue to

occupy space and ED resources needed for new patient arrivals. On the other hand, the

ICU patients are the sickest patients in the hospital and the specialist is responsible for ICU

patient rounds and timely follow-up care. Ideally, specialist care would be provided to all

of these patients first thing in the morning, but unfortunately this is not possible with only

one specialist.
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Figure 3–16: YRH, Dual Role Model,
wb = 1, 2, 3
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Figure 3–17: SSRH, Dual Role Model,
wb = 1, 2, 3

While higher patient volume contributes to a greater need for multiple Internists on call,

our results show that both of our study hospitals would be better off with a separate Internist

for the ICU. The greatest benefit is early in the morning, and with two to three hours of

additional on call coverage at SSRH, one specialist could handle ICU rounds while another

specialist clears the queue of overnight ED consultation requests. The models presented in

this thesis chapter provide the ability to quantify how much better off a hospital is when

specialists work with a single role rather than dual role. Furthermore, the effectiveness of

different decision making policies within the single role or the dual role can be measured

with these models. We believe that measurement of decisions that effect multiple hospital

departments is in need of more research and we hope this study will provoke further discussion

on this topic.

In practice, changing the policies adopted by physician groups can take time. In the case

of YRH, it took several months of meetings among the Internal Medicine specialists before

the group agreed to have a separate ICU physician. Hospital management’s motivation to

change from the Dual Role Model to the Single Role Model included improving Internist

responsiveness for ED consultations and improving continuity of care for ICU patients. The

importance of reducing fatigue among clinicians and minimizing the risk of medical errors
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in intensive care is well known (Gaba and Howard 2002, Rothschild et al. 2005). With the

Dual Role Model, Internists can only be on call for a maximum of three consecutive days due

to the fatigue of covering both roles. In this case, ICU patient handoffs from one specialist

to another are more frequent than in the Single Role Model, where the same specialist can

serve as the ICU physician for a week at a time.

However, challenges for increasing on call coverage include concerns about impact on

physician lifestyle, continuity of patient care and maximizing specialist utilization. For

physicians interested in having a balanced lifestyle, the idea of being on call twice as often

may not be an attractive proposition, and the burden is greater for smaller physician groups

in rural areas. The continuity of care concern exists especially in the case of only a few

hours of additional on call coverage, where one specialist would need to handoff patients

to the other specialist for further care. There is evidence that adverse events occur when

important information is missed during patient handoffs in Internal Medicine wards (Horwitz

et al. 2008). However, if appropriate measures are taken to account for this risk, the benefits

of reduced ED congestion can be achieved with minimal affect on quality of care and patient

safety. There is also concern that some mornings begin without any queue of overnight ED

consultations, resulting in specialist idle time that might be better spent with other patients.

Furthermore, there may be specialist compensation challenges to implementation. In

some hospitals, challenges of maintaining on call coverage have resulted in more stipends

being paid to some specialists for on call coverage (McConnell et al. 2007). With the Dual

Role Model, Internists earn more per day than with the Single Role Model since they receive

a stipend to serve as the ICU physician plus an additional on call stipend. These two stipends

are paid in full regardless of the amount of work done. Internists also keep track of fee for

service billing for ICU, medicine ward inpatients and ED consultations. If a daily fee for

service amount exceeds the ICU stipend, then the physician gets the fee for service amount

plus the on call stipend on top of that amount. This compensation mechanism is in place so

that Internists do not get underpaid when they are very busy. Under the Single Role Model,
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if a specialist is on call solely for ED consultations, some mornings could result in little or

no work. While some specialists would welcome idle time, a different compensation strategy

may be required to increase on call coverage. However, many specialists, particularly those

working in rural areas, are driven less by financial incentives and more by the impact on their

lifestyle or by the contribution that they can make in effectively providing health services to

their communities. Nevertheless, specialist compensation could be less for some on call days

and more for others, so long as it averages out in the long run.

3.8 Conclusion

In this chapter, we present two models for the workflow decisions of specialists. With

the Single Role Model, we consider the situation where specialists handle ED consultations

and inpatient ward care. In the Dual Role Model, we consider the more complex rural

setting when the specialist has additional responsibility serving both as the ICU physician

and specialist on call. The modeling efforts are particularly noteworthy in the Dual Role

Model, where the process model could include a much larger state space, requiring the use of

approximation methods to determine optimal actions. With the proposed models, optimal

actions can be computed by backward induction. One example is the case when the specialist

receives an urgent request for a high-acuity ED consultation. The decision is important but

trivial: the specialist’s next action will always be to address the high-acuity ED consultation

request. We account for this reality in the models without the need for another state variable.

After observing every Internist working on call in two regional hospitals in rural Nova

Scotia, we worked with the two physician groups to gather ED consultation and inpatient

care data that is not available in hospital information systems. We also worked with decision

support analysts to obtain the ED and inpatient data that is available in hospital information

systems. With these data collection efforts, we were able to apply the two models, perform

a parametric analysis and report on the results.

YRH is similar to an urban hospital with a separate ICU physician, so we applied the

Single Role Model first. However, since YRH Internists previously worked with the typical

99



dual role, we also applied the Dual Role Model to YRH. We found that management’s

decision to staff a separate ICU physician in YRH does provide a lower waiting cost for its

patients. The magnitude of this benefit depends on the relative weights of the per period

waiting cost parameters for patients waiting for ED consultation, boarding for admission,

and waiting for inpatient discharge. SSRH currently has the typical rural strategy with one

Internist working with the dual role of ICU physician and Internist on call. Our results show

that SSRH patients could benefit if the ICU physician had assistance to handle the overnight

queue of ED consultations requests.

In YRH, we found that in most cases, the D-Priority (F-D-C) policy results in waiting

costs that are closer to optimal than the C-Priority (F-C-D) policy. However, in SSRH, we

found the reverse situation with the C-Priority (F-C-D) policy more often being closer to

optimal than the D-Priority (F-D-C) policy. These results seem to indicate that an early

inpatient discharge strategy suggested by current guidelines is a good strategy for YRH but

not for SSRH. A closer look indicated that YRH had an overloaded inpatient department

during the winter months with many consecutive days beginning and staying above the

boarding threshold. In the case of a consistently overloaded inpatient department, the D-

Priority policy is close to optimal. However, at other times such as the month of April 2015,

an early inpatient discharge strategy is also not a good strategy at YRH.

Our analysis of the optimal policy under the Single Role Model also determines that an

early inpatient discharge strategy (i.e. discharge inpatients by 11:00AM) is generally not a

good strategy. Such a strategy implies that priority should be given to inpatient discharges

over ED consultations which is not always true. Instead, specialists should sometimes give

priority to ED consultations and other times give priority to inpatient discharges. We observe

that the optimal action depends on the period number and our model state variables (c, b, d),

with different forms throughout the day.

Our future research includes examining continuous time models for the workflow de-

cisions of specialists rather than the discrete time models proposed here. We observe a

100



quasi-birth-and-death (QBD) structure which may be best analyzed in continuous time as

an extension to the models proposed in this thesis chapter.
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Chapter 4
Dialysis Facility Network Design

4.1 Introduction

Chronic kidney disease (CKD) has increasing levels of severity with the fifth and final

stage classified as End Stage Renal Disease (ESRD). ESRD is treated with dialysis until

transplant or death. In 2013, there were 661,648 ESRD patients in the United States. Of

those ESRD patients, 29% had a functioning kidney transplant with the remaining 71%

on dialysis. The 2013 annual cost for ESRD was $30.9 billion accounting for 7.1% of all

U.S. Medicare costs. $27.4 billion of these costs are for dialysis patients (USRDS 2015).

In Canada, the 2013 ESRD patient population was 41,913, 42% with a functioning kidney

transplant with the remaining 58% on dialysis (CIHI 2015).

With hemodialysis (HD), blood is withdrawn by a machine and passed through an

artificial kidney called a dialyzer. To get blood to the dialyzer, a surgeon makes an access

(entrance) into the blood vessels. One tube carries blood to the dialyzer where it is cleaned

and the other tube returns the cleaned blood to the patient. Conventional HD is a four

hour treatment, three times per week. HD is usually done at a facility under the care

of a nephrologist (kidney specialist) with nephrology nursing support. While HD uses an

external machine to clean the patient’s blood, peritoneal dialysis (PD) cleans blood inside the

patient’s body. A dialysate solution is put inside the patient’s abdomen through a catheter.

Waste and excess fluid is filtered into the dialysate solution which stays in the patient’s

belly for two hours or more. Then the cleansing fluid is drained from the patient’s body

through the catheter into an empty bag and discarded. PD has two methods: continuous

ambulatory peritoneal dialysis (CAPD) and continuous cycling peritoneal dialysis (CCPD).

With CAPD, fluid exchanges are done three to four times per day. With CCPD, fluid
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exchanges are completed overnight by a machine called a cycler. PD is usually done at home

after patient training is provided by nephrology nurses.

Patients travel to in-centre or satellite HD facilities three times per week or participate in

home PD or home HD. Dialysis facilities tend to be clustered where there is high population

density and are much harder to find in rural areas. This is true in all geographic regions

of the U.S. As a result, rural patients travel much longer distances for dialysis than urban

patients. Access to alternative facilities, if required, greatly increases rural patient travel

time, but has little impact on urban patients. For rural patients, the average distance to

the closest and second closest facility is 2.5 times and 4 times farther, respectively. The

percentage of patients traveling more than 30 minutes each way to an alternative facility

ranges from 2% to greater than 30% depending on the region (Stephens et al. 2013). In

Canada, most dialysis patients live within 50 km of their nephrologist, but a substantial

proportion (12%) live more than 150 km away.

While the likelihood of receiving a kidney transplant in Canada is not influenced by

residence location (Tonelli et al. 2006), living in a remote area is a risk factor for mortality

among patients receiving hemodialysis (Tonelli et al. 2007). A large international study

also demonstrated that longer travel time is associated with significantly greater mortality

risk and decreased quality of life for dialysis patients. The study used a sample of adult

hemodialysis patients from 307 dialysis facilities in twelve countries from the Dialysis Out-

comes and Practices Patterns Study (DOPPS). Patients traveling longer than 60 minutes

have a 20% greater risk of death compared with those traveling 15 minutes or less. The study

also found that those with the longest travel times were more likely to have problems with

transportation resulting in skipped or shortened treatments (Moist et al. 2008). Dialysis is

a life-saving treatment and canceling or reducing the length of treatment times clearly has

a higher mortality risk. A recent study in a rural area outside New Taipei City in Taiwan

showed an association between increased travel distance to dialysis units and the risk of

anemia in chronic dialysis, especially among elderly patients. The study found that with
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every additional km increase in travel distance, there is an increased risk of anemia (Chao

et al. 2015).

Patients have the choice of dialysis mode. This choice is with the patient rather than

provider since there are similar health outcomes with HD and PD (Mehrotra R et al. 2011).

Regardless of the travel burden, some patients will always opt to go to an in-centre or

satellite facility, while others will always opt for home dialysis. For many, the choice will

vary depending on the location of available facilities. In this chapter, a case study is included

for the province of Nova Scotia, where the travel burden for patients in rural areas can be

greater than one hour in each direction. As a result, communities are lobbying for satellite

facilities to be provided closer to home. For example, Barrington area residents presented

the Nova Scotia Health and Wellness Minister with 1200 letters to request a satellite dialysis

facility (Woolvett 2015a). These letters come after a patient drove into a snow bank trying

to get to Yarmouth for a dialysis appointment (Woolvett 2015b).

We study the Dialysis Facility Network Design Problem (DFNDP) where the objective

is to design the best possible network of dialysis facilities for all existing patients. We

consider the challenge of providing reasonable patient travel time given budget and capacity

management constraints and patient choice for facility-based or home dialysis. Considering

that HD is a frequent treatment where patients travel three times per week, shorter travel

times are ideal from a patient welfare perspective. However, since the average cost for home

dialysis is less than the average cost for facility-based dialysis, healthcare management may

prefer home dialysis from a cost perspective. If a satellite facility is created, will it reduce

participation in home therapy? While establishing satellite facilities requires an initial setup

cost due to construction, home dialysis also require a setup cost for home renovations and

also for patient training before dialysis can be done at home. We develop the DFNDP model

to identify the optimal location of dialysis facilities and determine the capacity requirements

for dialysis stations at the facilities. We provide a general model that can be used for the

establishment of a new network of dialysis facilities. Alternatively, with a few additions
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the model can be used to consider a subset of the DFNDP. For example, in the case study

we focus on the problem of identifying the optimal network of satellite facilities without

changing the locations of an existing network of in-centre facilities. In that case, we consider

the possibility to establish new satellite facilities and/or expand capacity at the in-centre

facilities beyong the minimum capacity required for acute care purposes.

In the remainder of the chapter, we begin with a brief history of dialysis treatment in

section 4.2, review the most relevant literature in section 4.3, and define our mathematical

model for the DFNDP in section 4.4. We then describe our study setting and data sources

in section 4.5, report results of the application of the DFNDP in a case study in section 4.6,

and summarize our findings with concluding remarks in section 4.7.

4.2 A Brief History of Dialysis Treatment

Dialysis as a treatment for acute renal failure first became possible in 1943 with the

development of the artificial kidney by Willem Kolff in Kampen, Netherlands (Kolff et al.

1944). From March 17, 1943 to July 27, 1944, fifteen patients were treated with the artificial

kidney and one survived. For the patient that survived, the patient’s wife believed that

the artificial kidney saved his life, but Dr. Kolff did not think so. The development and

experiments with the artificial kidney occurred during World War II (WWII). To protect the

risk of losing all eight artificial kidneys that he made from bombing, Kolff hid the artificial

kidneys in different parts of Kampen. After WWII, Kolff sent one artificial kidney to the

Hammersmith Hospital in London, one to Mount Sinai Hospital in New York, and one to

the Royal Victoria Hospital in Montreal (Kolff 1965).

Long-term dialysis for chronic renal failure first became possible with the development

of the Teflon shunt by Belding Scribner and colleagues at the University of Washington in

1960 (Quinton et al. 1960). The Seattle Artificial Kidney Center was the first outpatient

dialysis center which opened in 1962. Many of the important medical developments for

dialysis followed in Seattle in the 1960s. The first chronic dialysis patient in Seattle was

Clyde Shields, a Boeing machinist, who died from a heart attack after eleven years on
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dialysis. Dialysis also worked for subsequent patients including the first three chronic dialyis

patients who all lived for more than ten years on dialysis. However, demand for the new

life-saving therapy far exceeded supply, and the first bioethics committee was established

to determine who shall live. The patient selection committee included one physician (not

a nephrologist), one lawyer, one housewife, one businessman, one labor leader, and one

minister. The committee was in place for a decade until 1972 when all patients referred

for dialysis treatment could be accepted, making the committee no longer necessary. Note

however, that at that time, referrals for dialysis included only 10% of patients aged 56 years

or older and few diabetics were accepted then.

Home HD was initiated in Boston in 1963, then in London and Seattle in 1964. When the

bioethics selection committee turned down a 15 year old girl with renal failure, Dr. Scribner

worked with Professor Babb and colleagues to make a single patient automated machine

which made home HD feasible. Caroline, whose father was a friend of Professor Babb,

became the first Seattle home HD patient who lived on home dialysis for six years. This

single patient automated machine developed for home HD turned out to be the prototype

for single patient equipment which is still used today for facility-based HD.

Other important medical developments include the replacement of the Scribner shunt

with a surgically created arteriovenous fistula (AVF) in 1966 (Brescia MJ et al. 1966). Success

of chronic dialysis depends on repeated access to blood vessels to provide continuous flow of

up to 250 to 300 ml. per minute. While the external Teflon shunt did make chronic dialysis

possible, it presented clinical and psychological problems which were eliminated with AVF.

Medical and technical developments in PD also occurred in the 1960s and 1970s. The first

automated PD equipment and peritoneal access devices were developed when Dutch PD

pioneer Fred Boen came to Seattle in 1962. The peritoneal catheter was then developed

by Henry Tenckhoff in 1968 (Tenckhoff and Schechter 1968) after he came to Seattle and

continuted to work on PD when Dr. Boen returned to the Netherlands in 1963. Another

important development in PD occurred with the introduction of continuous ambulatory
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peritoneal dialysis (CAPD) in 1978 (Popovich et al. 1978). For further details on the history

of dialysis, see Blagg (1999) and Blagg (2007).

4.3 Literature Review

The operations management (OM) literature includes models of transplant wait lists and

organ allocation for kidney (Zenios et al. 2000) and liver (Alagoz et al. 2007). OM studies

on therapy initiation and management include liver transplant timing (Alagoz et al. 2004),

HIV (Shechter et al. 2008), and dialysis therapy (Lee et al. 2008). Recently, Skandari et al.

(2015) developed a continuous time dynamic programming model for vascular access choice

for HD. AVF has lower infection and mortality rates than a central venous catheter (CVC),

however AVF surgery needs to be done three months in advance and it may be unsuccessful.

On the other hand, CVC can be used immediately after a patient begins HD. The authors

found that the optimal policy to maximize quality-adjusted life expectancy is immediate

AVF surgery up to a threshold time, after which CVC becomes the optimal vascular access

choice.

The health economics and health services literature on patient preferences is also note-

worthy. Early studies include identifying travel time as a barrier to access hospital care

(Bosanac et al. 1976) and examining health care priorities among rural patients (Kane 1969).

More recent patient choice studies use multinomial logit (MNL) models for hospital choice

among rural patients (Adams et al. 1991, Tai et al. 2004, Roh et al. 2008) and cataract

patients (Sivey 2012). Another example is a choice-based survey used to identify attributes

affecting hospital choice among patients from five Canadian teaching hospitals (Cunningham

et al. 2008). However, these studies do not consider patient preferences within the context

of a facility network design problem.

Relevant studies on facility network design include models for preventive care (Verter

and Lapierre 2002, Zhang et al. 2009, 2010, 2011), primary care (Graber-Naidich et al. 2014,

Parker and Srinivasan 1976) and access to public sector services (Aboolian et al. 2015). From

a methodological perspective, our model includes some elements that are common with the
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preventive care models proposed in Zhang et al. (2011). In that study, the objective is

to design a network of preventive care facilities to maximize participation in a preventive

care program. The authors apply their models to breast cancer screening for the city of

Montreal and analyze the impact of client choice on the facility network. In the preventive

care setting, clients have the choice of which facility to patronize. In that study, the authors

assume that proximity to facility is the main attractiveness feature and apply an MNL model

for the patient choice function. In the case of dialysis, the objective function is different since

all patients who wish to survive will participate in some mode of dialysis. However, since

patients can choose dialysis mode (i.e. to go to a facility or home dialysis), we have an

interesting patient choice problem included in the DFNDP.

To our knowledge, there is only one previous study on dialysis facility network design.

In their early work, Eben-Chaime and Pliskin (1992) considered two models: 1) minimize

costs subject to welfare constraints and 2) maximize patient welfare subject to resource

constraints. Consideration for patient welfare is consistent with the model proposed in

this chapter, however, our model also considers patient choice for dialysis mode. Home

dialysis and satellite facilities are not considered by Eben-Chaime and Pliskin (1992) and

their objective function minimizes a simple travel time measure such as the longest travel

time. Furthermore, the model proposed in this chapter has a novel objective function that

considers the travel time for all patients with greater weight given to minimizing longer travel

times. Our model is designed so that the best possible solution can be determined for the

dialysis facility network given available resources.

4.4 Dialysis Facility Network Design Problem (DFNDP) Model

We develop a mathematical model for the dialysis facility network design problem

(DFNDP), considering the impact of patient choice for dialysis mode. We incorporate the

challenges of capacity management and budget constraints required to find a feasible solu-

tion. We identify the optimal network of facilities using a patient welfare objective to provide

reasonable travel time to all patients.
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Consider the problem of planning a network of dialysis facilities for patients residing

in n health regions. Ir represents the set of patient residential locations in health region r

and there are J potential facility locations. We define two types of decision variables: 1)

location decisions, yjk, if dialysis facility is opened at location j with k dialysis stations and

2) allocation decisions, xij, if patient i is allocated to facility j. However, with the DFNDP,

patients can also choose home dialysis, and we use index J + 1 if the allocation decision is

for home dialysis. With respect to patient choice, we have Ir1 ⊂ Ir for patients who prefer

to go to a facility regardless of travel time, Ir2 ⊂ Ir for patients who prefer home dialysis

regardless of travel time, and Ir3 ⊂ Ir for patients whose choice for dialysis mode depends

on travel time. For patients in Ir3 , we assume that patients will choose home dialysis if their

travel time exceeds a threshold time U .

Budget and cost are a part of the DFNDP as well, and we set our cost parameters

according to a multi-year planning horizon, e.g. 30 years. In this general model, we assume

that there are no existing facilities, so the budget parameter, B, represents the total amount

available to build and operate facilities and provide dialysis to patients over the planning

horizon. If there are existing facilities, the DFNDP can be extended as we have done in the

case study, for example, to plan for a set of new satellite dialysis facilities, given an existing

set of in-centre facilities. In that case, the cost to build new facilities, operate existing and

new facilities and provide dialysis to patients over the planning horizon can be considered.

We also assume that patient locations are a steady state over the planning horizon, such

that if a patient dies or receives a transplant, a new patient at (almost) the same residential

location develops ESRD and requires dialysis such that the costs would be continuous over

the planning horizon.

DFNDP model parameters are given in Table 4-1.
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Table 4–1: DFNDP Model Parameters

r = 1, ..., n Index for n health regions
Ir Set of patient residence locations in health region r
i ∈ Ir Index for patient residence locations in health region r
j = 1, .., J, J + 1 Index for J potential facility locations,

including J + 1 for home dialysis
k = 1, ..., K Index for K potential dialysis stations at a facility
Ir1 ⊂ Ir Set of patient residence locations in health region r

for patients who prefer to go to a facility regardless of travel time
Ir2 ⊂ Ir Set of patient residence locations in health region r

for patients who prefer home dialysis regardless of travel time
Ir3 ⊂ Ir Set of patient residence locations in health region r

for patients whose choice for dialysis mode is unknown
hr Number of patients residing within health region r
tij Travel time from patient residence i to facility j
T Target for reasonable travel time
U Threshold travel time for patients whose choice for

dialysis mode is unknown
w Number of patient treatment time slots per dialysis

station per week
B Budget
Fjk Cost per k-station facility at location j
Vj Cost per patient at location j
xij 1 if patient i is allocated to facility j,

0 otherwise,
yjk 1 if facility j has k dialysis stations,

0 otherwise.
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min
∑J

j=1

∑I
i=1 xij(e

tij−T ) (4.1)

s.t. ∑J+1
j=1 xij = 1, i = 1, ..., I, (4.2)∑K
k=1 yjk <= 1, j = 1, ..., J, (4.3)

xij <=
∑K

k=1 yjk, i = 1, ..., I, j = 1, ..., J, (4.4)

tijxij <= tip +G(1−
∑K

k=1 ypk), i = 1, ..., I, j, p = 1, ..., J, (4.5)∑J+1
j=1

∑Ir

i=1 xij = hr, r = 1, ..., n, (4.6)

xi,J+1 = 0, i ∈ Ir1 , r = 1, ..., n, (4.7)

xi,J+1 = 1, i ∈ Ir2 , r = 1, ..., n, (4.8)

tijxij <= U, i ∈ Ir3 , j = 1, ..., J,

r = 1, ..., n, (4.9)∑I
i=1 xij ≤ w

∑K
k=1 kyjk, j = 1, ..., J, (4.10)∑J

j=1

∑K
k=1 Fjkyjk +

∑I
i=1

∑J+1
j=1 Vjxij ≤ B, (4.11)

xij = {0, 1}, i = 1, ..., I, j = 1, 2, ..., J,

yjk = {0, 1}, j = 1, ..., J, k = 1, 2, ..., K.

Our objective in (4.1) is to minimize long travel times to improve patient welfare. Given

a target T for reasonable travel time, our objective is to minimize patient travel times above

the target. If the travel time, tij = T , then etij−T = e0 = 1. If the travel time tij < T ,

then etij−T will be a small fractional value between zero and one. On the other hand, if the

travel time tij > T , then etij−T will be a large value with larger values of tij resulting in

exponentially larger values. These large values represent the very long travel times which

we seek to avoid to improve patient welfare. The longer the travel time the more we seek

to avoid them. Constraints (4.2) ensure that all dialysis patients will be allocated to one
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of the J facilities or participate in home dialysis (J + 1). Constraints (4.3) ensures that

only one capacity configuration can be located in facility j. For each facility, at most one

of the yjk values can be one, so we have at most one facility located at location j. The

number of dialysis stations at facility j is represented by k, so if yjk = 1, the location and

capacity decision is to open a k-station facility at location j. If
∑K

k=1 yjk = 0 for facility j,

then there will be no facility opened at location j. Constraints (4.4) ensure that patients are

allocated only to open facilities. Constraints (4.5), where G denotes a big number, indicate

that patients who are allocated to a facility choose the closest open facility. G can be set to

the longest travel time in the network.

Constraints (4.6) indicate that all patients in each health region are allocated to a facility

or home dialysis. Constraints (4.7) ensure that allocation decisions for the subset of patients

from health region r who choose to go to a facility regardless of travel time are not allocated

to home dialysis. Similarly, constraints (4.8) ensure that allocation decisions for the subset of

patients from health region r who choose home dialysis regardless of travel time are allocated

to home dialysis. For the remaining patients in health region r, constraints (4.9) represent

the patient choice function for dialysis mode for the remaining patients whose choice depends

on travel time. For the remaining Ir3 subset of patients for health region r, the corresponding

allocation decisions are determined by constraints (4.9) together with constraints (4.2), (4.4)

and (4.5). For example, if a patient’s travel time is greater than U , then the allocation

decision will be for home dialysis according to constraints (4.2) and (4.9). Otherwise, the

patient will be allocated to the closest open facility according to constraints (4.2), (4.4),

(4.5) and (4.9).

Constraints (4.10) are for capacity management and constraint (4.11) is the budget

constraint. Constraints (4.10) ensures that for each facility j, the supply of dialysis ma-

chines is sufficient to handle the current demand for dialysis. With facility-based HD, each

patient requires 4 hour treatment, 3 times per week occupying a dialysis machine 12 hours

per week. For example, in Yarmouth Regional Hospital, HD patients have treatment time
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slots on Monday-Wednesday-Friday mornings (M-W-F AM), Monday-Wednesday-Friday af-

ternoons (M-W-F PM), Tuesday-Thursday-Saturday Mornings (Tu-Th-Sa AM), or Tuesday-

Thursday-Saturday afternoons (Tu-Th-Sa PM). If the dialysis machine operating time is 8

hours per day, 6 days per week totalling 48 hours per week, then each dialysis machine can be

used for w = 4 patient treatment time slots per week. The budget constraint (4.11) includes

Fjk, the cost to open and operate a k-station facility at location j, and costs per patient

included in Vj. For home dialysis, since there is only one facility per patient, we incorporate

all setup and ongoing operating costs in VJ+1. However, in the case of in-centre or satellite

facilities, costs that are incurred independent of the number of patients receiving treatment

are included in Fjk, while per patient treatment costs are separated and included in Vj.

The proposed model is a mixed integer program (MIP) that can be solved with a stan-

dard commercial MIP solver such as CPLEX. In the next two sections, we demonstrate the

application of the proposed DFNDP model.

4.5 Study Setting and Data Sources

Our study setting is the Canadian province of Nova Scotia. The largest population

centre is the Halifax Regional Municipality (HRM), an urban centre with almost half of

the province’s residents. Halifax is physically located in the centre of the province. Nova

Scotia also has many smaller rural communities, comprised mostly with an aging population

with growing needs for healthcare services. There are 39 hospitals located throughout the

province, however, most do not have dialysis facilities. Nova Scotia has had five in-centre

renal dialysis facilities for adults and nine satellite dialysis facilities. One in-centre facility

is located in the Western Zone at Yarmouth Regional Hospital, two are in the Central Zone

within HRM at the QEII Health Sciences Centre in Halifax and Dartmouth General Hospital,

and two are in the Eastern Zone at Cape Breton Regional Hospital in Sydney and Northside

General Hospital in North Sydney. Figure 4-1 provides a map with the locations of in-centre

facilities numbered 1 to 5 and satellite dialysis facilities numbered 6 to 14.
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Figure 4–1: Nova Scotia Dialysis Facility Locations

The Nova Scotia Renal Program (NSRP), established as a provincial program of the

Nova Scotia Department of Health and Wellness, has the mandate to improve renal health

and care for all Nova Scotians. In rural areas, the travel burden to dialysis facilities can be

greater than one hour in each direction. Communities are lobbying for facilities closer to

home to relieve the travel burden for patients who require hemodialysis three times per week

for each four hour treatment. The NSRP currently reviews requests from rural communities

to determine whether or not to add a new satellite dialysis facility. Factors influencing these

decisions include patient travel times as well as the level of adoption of home dialysis. When

home dialysis adoption is high, there may be a reluctance to create a satellite dialysis facility

closer to patient homes due to the possibility that fewer patients will choose home dialysis.
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Ethics approval was obtained from the Nova Scotia Health Authority (NSHA) Research

Ethics Board (REB), file no.: 1020103 and the McGill REB, file no.: 415-0316. Our data re-

quirements include 1) patient preferences for dialysis mode 2) patient locations and potential

facility locations and 3) budget and cost data.

4.5.1 Patient Preferences

We obtain patient preferences through a Dialysis Patient Survey, shown in the Appendix.

We include all dialysis patients from the Western Zone’s Renal Program as potential partic-

ipants for the patient survey. There were 59 patients on dialysis within the Western Zone

during the study timeframe. We excluded two patients with dementia and two patients

signed a consent form but died before completing the survey. Out of the remaining 55 possi-

ble participants, we obtained 47 completed surveys resulting in an 85.5% participation rate.

63% of the survey participants are male. The mean age of all participants is 67.4 years old

with standard deviation of 10.9 years. For the survey participants, the mean travel time to

HD facility is 39.5 minutes with standard deviation of 23.9 minutes.

Training for home dialysis is currently only offered in Halifax. The survey results showed

that patients from the Western Zone would not switch to home dialysis if training remains

only offered in Halifax. However, if training for home dialysis is offered in Yarmouth, the

survey results indicate that some patients would switch to home dialysis. Considering the

responses that assume that training for home dialysis is offered in all in-centre HD facilities

including Yarmouth, 42.6% of patients always prefer HD (in-centre or satellite) regardless

of travel time, 12.8% always prefer home dialysis, and the choice depends on travel time for

the remaining 44.6% of participants.

Survey responses also revealed some of the reasons that patients do not use home dialysis,

including:

Do not have room at home.

I have iron in my [well] water.

I prefer going to a centre. Home dialysis would cause too many anxieties for me.
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I don’t want to because it is too much work for me and to do a full time job.

[The patient] is living [alone]. I think [the patient] has a hard time understanding

instruction.

I do not want to [go to] Halifax for training.

I do not want the responsibility of operating a dialysis machine.

Traveling to hospitals for issues such as peritonitis would create a hardship for me

and my family. One hospital is 25 miles away, the other with dialysis support is about

60 miles away.

Our water is provided by a well, our drainage is a personal septic tank.

My [spouse] is elderly and would add stress.

4.5.2 Patient Locations and Potential Facility Locations

We requested province-wide data from the Canadian Institute for Health Information

(CIHI) in July 2015. CIHI maintains ESRD data within the Canadian Organ Replacement

Registry (CORR). At the begining of 2016, CIHI determined that the scope of the request

could be covered under the Graduate Student Data Access Program (GSDAP). We obtained

signatures from required McGill personnel including the Chief Technology Officer (CTO). A

laptop was prepared with full disk encryption and a secure case was purchased for the laptop

to satisfy CIHI’s security requirements. In August 2016, CIHI and the privacy branch of the

Nova Scotia Department of Health and Wellness decided not to authorize the release of data

for this study.

Subsequent efforts included developing the following methodology for generating loca-

tion data for province-wide patient residences. First, we begin with the number of dialysis

patients for each health region. The number of dialysis patients by district health authority

(DHA) in fiscal year 2011-2012 is publicly available on the NSRP website. This information

is shown in Table 4-2. Next, we obtain population density from the Canadian census which

is publicly available on the Statistics Canada web site. The 2011 census includes popu-

lation data for more than 15000 dissemination blocks in Nova Scotia, each geocoded with

X,Y coordinates. After associating the corresponding DHA for each dissemination block,
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we can assign appropriate weights for each dissemination block based on census population

with the resulting weights summing to 1. For each patient, we used the rand() function

in Excel (Microsoft, Redmond, WA) to generate a random number between 0 and 1. The

dissemination block that is closest to the random number is assigned as the patient residence

location. Repeating for all of the 581 dialysis patients that were in Nova Scotia in fiscal year

2011-2012, we generated patient residence locations as depicted in figure 4-2.

Table 4–2: Number of Dialysis Patients in Nova Scotia by District Health Authority (DHA)

District Health Authority (DHA) In-Centre and Satellite Facility Home Dialysis
South Shore 30 8
South West 40 7
Annapolis Valley 28 8
Colchester East Hants 25 8
Cumberland 13 < 5
Pictou County 20 < 5
Gusborough Antigonish Strait 16 5
Cape Breton 97 14
Capital 220 37
Total 489 92

For potential facility locations, we use 40 locations: all of the 39 existing hospital

locations in Nova Scotia and one existing satellite dialysis facility location. New satellite

facilities could be created elsewhere too. Therefore, we tested the model with additional

potential facilities initially. However, we found that the base case of the optimal solution

selected a subset of the 40 locations so we focused on these 40 potential facilities for this

study. These 40 locations are shown in figure 4-3.

4.5.3 Budget and Cost

We worked with NSHA Renal Program Management for budget and cost information.

In the medical literature, dialysis cost analysis studies typically compute an overall average

annual cost per patient by modality. Examples of dialysis cost analysis studies include Lee

et al. (2002), Mcfarlane et al. (2002), Klarenbach and Manns (2009), and Komenda et al.

(2010). Similar to these studies, NSHA Renal Program Management provided average an-

nual cost per patient by modality as shown in Figure 4-4. Note that these costs include
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Figure 4–2: Generated Patient Locations

both per treatment costs, including dialysis supplies, but also include costs related to oper-

ating the facility. However, construction costs to build a new satellite facility are excluded

from Figure 4-4. The largest portion of the cost comes from staffing and dialysis supplies.

Consistent with the cost analysis studies in the medical literature, home dialysis appears to

be considerably cheaper overall and in-centre HD appears to be the most expensive modal-

ity overall. Although the cost for dialysis supplies is much higher for home dialysis, this

additional cost is offset by a greater reduction in other costs.

To incorporate satellite facility construction costs, we consider the cost over a 30 year

horizon. Construction costs are incurred initially but the satellite facility can be used for

many years in the future. An example of the total cost for a 6-station facility or home

dialysis over a 30 year horizon is shown in Figure 4-5. These costs include both the costs

to operate the facility regardless of the number of patients as well as the cost per patient.

The per patient cost is calculated for 24 patients over the 30 year horizon, assuming that
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Figure 4–3: Potential Facility Locations

the 6-station facility has four shifts per week and there are always patients using the dialysis

stations during the four shifts. In-Centre HD has the highest cost, followed by Satellite HD

and Home Dialysis respectively.

However, in order to use the cost data in our model, we need to consider the cost per

facility and cost per patient separately. The facility location decision is to have a dialysis

facility or not at a potential location and the costs associated with this decision are incurred

regardless of the number of patients that use the facility. The treatment cost per patient

relate to the patient allocation decisions to open facilities and capacity management plays a

role. For example, if a 6-station facility has 20 patients allocated to that facility, the facility

cost is incurred and the per patient cost is incurred for 20 patients. If the 6-station facility

is at full capacity, then the facility cost is the same but the per patient cost is for those 24

patients. We separate the cost per facility and per patient cost accordingly, providing an ex-

ample of the 6-station facility cost in figure 4-6 and the per patient cost in figure 4-7. For the
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In-Centre HD Satellite HD Home Dialysis
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40,000

60,000 Staffing
Physician
Drugs
Laboratory and Medical Imaging
Dialysis Supplies
Overhead and Support
Capital
Maintenance
Other

Figure 4–4: Average Annual Cost per Patient (including facility cost, except construction)

In-Centre HD Satellite HD Home Dialysis
0

2 · 107

4 · 107

Figure 4–5: Total cost for 24 patients at 6-station facility or home (30 year horizon)

facility costs, we assume that staffing (excluding physician), construction, capital (including

dialysis stations), overhead, support, and maintenance costs are incurred regardless of the

number of patients allocated to the facility. We observe that staffing costs are the largest

component of the facility costs with in-centre facilities having considerably higher staffing

costs. In-centre facilities are already built so construction cost only applies to satellite fa-

cilities. Considering that home dialysis supports only one patient, we include all costs for

home dialysis in the per patient cost in figure 4-7. In the case of per patient costs depicted

in figure 4-7, we have dialysis supplies, physician treatment, drugs, laboratory and medical

imaging and other for all dialysis modes. For home dialysis we also include operation costs

including 1) the cost of home renovations required to support dialysis at home, 2) staffing

costs due to training patients to use home dialysis, 3) capital (including dialysis stations),
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and 4) overhead, support, and maintenance. The home renovations can include electrical

and plumbing requirements to handle the additional water needed to support dialysis. These

costs are reimbursed by the healthcare provider. We assume that the home renovation and

staffing costs for home dialysis training are incurred six times over the 30 year horizon. We

assume that the cost is incurred six times over a 30 year horizon since five-year patient

survival rates are commonly reported for dialysis patients. While home dialysis is usually

more expensive overall, the per treatment cost is more than the other modalities mainly due

to higher dialysis supply costs. As a result, if an existing facility has available capacity, it

may be cheaper to allocate a patient to a facility since the facility costs have already been

incurred. Therefore, home dialysis is not always the cheapest modality.

In-Centre HD Satellite HD
0

1 · 107

2 · 107

Staffing
Construction
Capital (incl. dialysis stations)
Overhead + Support + Maintenance

Figure 4–6: 6-station Facility Cost (30 year horizon)

In-Centre HD Satellite HD Home Dialysis
0

5 · 105

1 · 106
Dialysis Supplies
Physician
Drugs
Laboratory and Medical Imaging
Other
Home Renovations
Staffing
Capital (incl. dialysis stations)
Overhead + Support + Maintenance

Figure 4–7: Cost per Patient excluding Facility Cost (30 year horizon)
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The budget for our case study is the sum of all facility and patient costs that would be

incurred over a 30 year horizon for the existing dialysis facilities. We obtained the number

of stations at each existing facility so that capacity costs are also incorporated.

4.6 Case Study

In this case study, we consider the DFNDP applied to Nova Scotia assuming that there

are no existing satellite facilities. We do this in order to gain a better understanding on the

optimal location and capacity decisions for satellite facilities. However, considering that in-

centre facilities have additional acute care requirements, we assume that all existing in-centre

facilities are open at the current locations. We did not have information on the proportion

of in-centre facilities that need to be reserved for acute care purposes, so we assume that the

existing in-centre capacity is the minimum required capacity. Defining Sj as the minimum

required capacity for each in-centre facility, j = 1, ..., 5, we can add the following constraints

to the DFNDP for our case study:∑K
k=1(kyjk) ≥ Sj, j = 1, ..., 5

The list of DFNDP tests is provided in Table 4-3. Our base case has 1) the target for

reasonable travel time, T = 45 minutes, 2) the threshold for patients whose choice depends on

travel time, U = 45 minutes and 3) the budget, B =base budget. We then run a parametric

analysis on T = 30, 45, 60, 75, 90, U = 30, 45, 60, 75, 90 and B =base budget + 2%, + 4%, +

6%, + 8%, and + 10% respectively.

In order to quantify and compare our DFNDP solutions to our test case and the existing

dialysis facility network, we provide the objective value, home dialysis proportion, maximum,

mean, and standard deviation for patient travel time, tij. We also calculated the number

of patients with tij > T . These results are provided in Table 4-4. To obtain the ”Existing

Facilities” results, we use our generated patient locations and manually allocate patients

to the existing facilities (1 to 14). We used the same parameters as the base case for

the DFNDP model, T = 45, U = 45. Consistent with the DFNDP model, we attempted to
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Table 4–3: DFNDP Tests

Name T U B
base case 45 45 base budget
T = 30 30 45 base budget
T = 60 60 45 base budget
T = 75 75 45 base budget
T = 90 90 45 base budget
U = 30 45 30 base budget
U = 60 45 60 base budget
U = 75 45 75 base budget
U = 90 45 90 base budget
budget + 2% 45 45 base budget + 2%
budget + 4% 45 45 base budget + 4%
budget + 6% 45 45 base budget + 6%
budget + 8% 45 45 base budget + 8%
budget + 10% 45 45 base budget + 10%

allocate patients to the closest facility, but this was not always possible as there is insufficient

capacity to meet that constraint. We then allocated patients to the second closest facility

and there was also insufficient capacity in some cases, so some patients were allocated to

the third closest facility. Such allocation challenges could be eliminated with the use of the

DFNDP model since it includes the constraint that all patients are allocated to the closest

facility. The results show that with the existing facilities, patients would experience a mean

travel time of 23.50 minutes with standard deviation of 18.62 minutes. 53 patients would

need to travel more than 45 minutes to get to a dialysis facility. In the worst case, a patient

would need to travel 102 minutes to a dialysis facility.

We noticed that the home dialysis proportion with existing facilities is 18.9% whereas

the home dialysis proportion in the DFNDP results is typically more than 30%. Achieving

such home dialysis proportions may or may not be possible in practice. Our patient survey

results showed that some HD patients would switch to home dialysis if training is available

in Yarmouth. If the need to travel to Halifax for dialysis training remains, then the home

dialysis proportion will be less. It is also possible that some survey participants may prefer

home dialysis, but nephrologists can recommend facility-based dialysis for clinical reasons.
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Table 4–4: DFNDP Unadjusted Test Results

Objective Value Home max(tij) mean(tij) stdev(tij) Number of
(Normalized to Dialysis (minutes) (minutes) (minutes) patients with

base case) tij > T

Existing Facilities 438,647,290,079,851,000,000 18.9% 102 23.50 18.62 53
T = 30 3,269,019 31.7% 54 16.51 11.54 58
T = 45 (base) 1 31.2% 54 16.53 11.40 8
T = 60 0.0000003 30.5% 54 17.22 11.83 0
T = 75 0.0000000 39.1% 59 18.71 13.35 0
T = 90 0.0000000 42.5% 71 18.24 15.95 0
U = 30 1.8329138 32.9% 55 16.28 11.22 7
U = 60 1.0000031 29.9% 54 16.77 11.63 8
U = 75 1.0000000 31.2% 54 16.38 11.43 8
U = 90 1.0000000 31.2% 54 16.50 11.39 8
budget + 2% 0.0043054 34.1% 48 15.05 10.30 4
budget + 4% 0.0017928 29.3% 48 16.10 10.31 2
budget + 6% 0.0013142 29.4% 48 15.42 9.75 1
budget + 8% 0.0012528 29.4% 48 15.62 9.50 1
budget + 10% 0.0012221 30.5% 48 5.28 9.38 1

Furthermore, it is possible that since the survey participants all live in rural areas within the

NSHA Western Zone, they may find home dialysis relatively more attractive and be more

willing to participate in home dialysis compared with dialysis patients from other parts of the

province. Therefore, we ran additional conservative tests. We increased the proportion of

dialysis patients who always go to an in-centre or satellite facility regardless of travel time by

25%. We report the remaining results and figures with this adjustment and still demonstrate

the possibility for considerable improvements with our DFNDP model compared to existing

facilities. We report the conservative test results in Table 4-5.

In the conservative case of the DFNDP model, we still find a lower mean travel time of

approximately 20 minutes with less variability and significantly lower worst case of 73 to 74

minutes compared to existing facilities. These results are obtained with the same budget as

found with existing facilities. As the budget is increased, the extent that mean travel times

and variability are further reduced are shown in the table. We observe that the maximum

travel time can be reduced to less than 60 minutes with a 4% increase in budget. We also

observe that in the base case, 45 patients would need to travel more than 45 minutes, and
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Table 4–5: DFNDP Conservative Test Results

Objective Value Home max(tij) mean(tij) stdev(tij) Number of
(Normalized to Dialysis (minutes) (minutes) (minutes) patients with

base case) tij > T

Existing Facilities 2,451,079,308,408 18.9% 102 23.50 18.62 53
T = 30 3,269,019 22.9% 73 20.15 15.46 103
T = 45 (base) 1 21.3% 73 20.37 15.50 45
T = 60 0.0000003 22.0% 73 20.24 15.42 6
T = 75 0.0000000 21.2% 73 20.51 15.41 0
T = 90 0.0000000 21.0% 74 19.92 15.46 0
U = 30 1.0000000 22.9% 73 20.04 15.46 45
U = 60 1.0000000 22.9% 73 20.04 15.45 45
U = 75 1.0000000 22.4% 73 20.11 15.40 45
U = 90 1.0000000 22.2% 73 20.15 15.41 45
budget + 2% 0.0102206 21.2% 69 19.35 14.41 39
budget + 4% 0.0000005 20.1% 59 17.63 12.65 23
budget + 6% 0.0000001 20.0% 57 17.09 11.96 23
budget + 8% 0.0000001 20.3% 57 16.53 11.18 9
budget + 10% 0.0000001 20.0% 57 15.80 10.15 6

increasing the budget could result in a dialysis facility network where fewer patients would

need to travel more than 45 minutes. For example, with a 4% increase in budget, 23 patients

would need to travel more than 45 minutes, whereas with an 8% increase in budget, 9 patients

would need to travel more than 45 minutes with the optimal network of dialysis facilities.

A map representing the facility location decisions for the optimal solution of the base

case is provided in Figure 4-8. The locations numbered above 14 represent potential facility

locations that have never had dialysis facilities. Within the Western Zone, the optimal

solution includes the existing satellite facility in Liverpool (6), plus satellite facilities in

Digby (27) and Kentville (24). While Kentville (24) seems to replace Berwick (7) within

the Annapolis Valley, Digby seems to be an important location that is missing from the

existing dialysis facility network. The optimal solution also includes an additional facility to

accomodate rural areas in the Eastern Zone (32) but fewer satellite facilities in the Northern

Zone. Interstingly, the optimal solution also includes additional satellite facilities at (or

near) the East Coast Forensic Hospital in Dartmouth (30) and at the Musquodoboit Valley
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Memorial Hospital in Middle Musquodoboit (31) within the Central Zone. Therefore, the

solution seems to accomodate improvements for patients from both rural and urban areas.

Figure 4–8: Facility Locations for Optimal Solution (base case)

Capacity decisions for In-Centre Facilities are provided in Figure 4-9. The optimal

solution includes expanding in-centre capacity at the Dartmouth General Hospital (3) and

leaving capacity at existing minimum levels for the other in-centre facilities. If the minimum

in-centre capacity requirement constraints are relaxed, the optimal solution would have lower

capacity in some of the in-centre facility locations. However, some or all of this additional

capacity may be required for acute care purposes.

The parametric analysis on T and U has little impact on the facility location decisions,

but some impact on capacity decisions for satellite facilities. Increasing T results in some

moderate changes in the optimal capacity decisions for the satellite facility locations as shown

in Figure 4-10. The only facility location change occurs for facility (24) which is replaced

by nearby facility (7) when T > 60. Similarly, the parametric analysis on U has the same
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Figure 4–9: In-Centre Facility Location and Capacity Decisions, tests with B =base budget

optimal facility location decisions but there are some changes to capacity decisions for the

satellite facilities as shown in Figure 4-11.
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Figure 4–10: Satellite Facility Location and Capacity Decisions, T = 30, 45, 60, 75, 90, U =
45, B =base budget

When we increase the budget parameter we find that the optimal facility network

changes as shown in the map figures 4-12 to 4-16 for increases of 2%, 4%, 6%, 8%, and

10% respectively. Increases to the available budget would result in the ability for additional

facilities to be built. Among the facilities that are added to the dialysis facility network are

the existing facilities, with the exception of facility (14) which never appears in the optimal
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Figure 4–11: Satellite Facility Location and Capacity Decisions, T = 45, U =
30, 45, 60, 75, 90, B =base budget

solution. Interestingly, facility (14) was closed but probably would never have been opened

if the DFNDP model was used as a planning tool in Nova Scotia.

4.7 Conclusion

Planning a network of dialysis facilities in a budget constrained health care system can

be challenging. Adding the fact that patients can choose to go to a facility or perform

dialysis at home makes the dialysis facility location and capacity management problem more

challenging. With these constraints, it may seem impossible to provide reasonable travel

times to patients in rural areas. However, with the DFNDP model, we provide a way for the

design of a network of dialysis facilities that is the best possible network given the system

constraints. The proposed model does not use hard constraints on maximum or average

travel time, and as a result we always find an optimal solution with the proposed DFNDP

model.

Our application of the DFNDP model to the province of Nova Scotia, Canada shows

significant improvements compared to the existing facility network. We find that while the

DFNDP ensures that sufficient capacity exists so that all patients visit the closest facility,

the existing facility network results in some patients having to be allocated to their second

closest or third closest facility. Overall, we find that the DFNDP results in reduction in
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Figure 4–12: Facility Locations for Optimal Solution (base budget + 2%)

maximum and mean travel times and less variability in travel times compared to existing

facilities. We found that considerable improvements are possible with the same budget.

Furthermore, we illustrate the best location and capacity expansion decisions if additional

budget is available. This would be particularly helpful to quantify the benefit of additional

funding to support improvements to the dialysis facility network.

Although the case study considered the situation of planning satellite dialysis facilities

before there were any satellite facilities, the model can be used for other purposes as well.

For example, the model can be used to determine the location and capacity for a new satellite

facility to be added to an existing network of satellite dialysis facilities. One would simply

need to add constraints to the model for satellite facilities as we have done for the existing

in-centre facilities in the case study presented within this chapter.

We also note that the static model proposed in this chapter does not account for the fact

that the number of patients changes over time and that patients can switch dialysis modes.
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Figure 4–13: Facility Locations for Optimal Solution (base budget + 4%)

Our future research includes the development of a queueing network model to account for

the changes in requirements due to switching dialysis modes or for new patients based on

ESRD incidence and reductions in dialysis needs due to transplant or death. However, in the

mean time, the current model can be used if run multiple times to test out various scenarios

with different patient sets. For example, a set of patient addresses could be generated as we

have done in the case study, and then some of those patients could be randomly removed

from the set and additional patients could be added. For each generated potential patient

set, the DFNDP could be run to gain an understanding on the impact that such changes

would have on the optimal dialysis facility network.
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Figure 4–14: Facility Locations for Optimal Solution (base budget + 6%)

Figure 4–15: Facility Locations for Optimal Solution (base budget + 8%)
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Figure 4–16: Facility Locations for Optimal Solution (base budget + 10%)
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Chapter 5
Concluding Remarks and Future Research

Specialist Care is an understudied area of healthcare operations research, and rural

healthcare has also received little research attention. In the research projects presented in

this thesis, operations management challenges for specialist care in rural areas have been

considered for both acute and chronic care processes. Studying the acute care topic of ED

to ward patient flow from the specialist’s perspective helps bring insight into the interde-

partmental challenges of the ED boarding problem beyond bed-based capacity management.

Specialists workload includes the challenge of managing the inflow of potential inpatients

through ED consultations, taking care of inpatients after admission to hospital wards, and

managing the outflow of inpatients through inpatient discharges. This interdepartmental

process is challenging in any setting, but the rural case is more complex for the Internists

who manage ICU care on top of Internal Medicine care responsibilites. This thesis also

considers the challenging chronic dialysis facility network design problem, where long travel

times impact patient welfare, particular for those who live in rural areas. The DFNDP

model proposed can help identify the best network of dialysis facilities with consideration

for budget and capacity management constraints as well as patient preferences for facility or

home dialysis.

For the first project, I obtained the consent of every Internist in two regional hospitals

to participate and observed their work on call in the hospital. These collaborations allowed

for successful data collection efforts from both Internists and hospital information systems

analysts. Our proposed dynamic programming framework for Specialist Care includes both

Single Role and Dual Role models. We avoided the need for approximation methods due to

our modeling approach which includes novel elements and appropriate assumptions that we

observed in practice. As a result, we were able to illustrate the application of our models
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with two corresponding case studies. We found that an early inpatient discharge strategy

(i.e. discharge patients by 11:00AM) is generally not a good strategy. Instead, specialists

should sometimes give priority for ED consultations and other times give priority to inpatient

discharges. We found that optimal policies include boarding thresholds and end-of-horizon

effects.

With the second project, I developed an optimization model for dialysis services planning

that incorporates patient choice for dialysis mode. A feasible solution is always possible with

the model formulation so that patient welfare can be maximized to the extent possible given

budget and capacity constraints and patient preferences. Our proposed model is a mixed

integer program (MIP) that can be solved with a standard commercial MIP solver such as

CPLEX. To the best of our knowledge, the proposed model is the first optimization model

for dialysis facility network design that incorporates patient choice for facility-based or home

dialysis. To apply the model to the province of Nova Scotia, I used data from the patient

survey, cost information that we obtained from Nova Scotia Renal Program management,

and I generated realistic patient location data using public information including census

data from Statistics Canada. We found that with the same budget as the cost to build and

operate the existing facility network, considerable reductions of maximum and mean travel

times are possible along with less variability. Furthermore, I demonstrated how the model

can also help determing the best use of additional funding by determining optimal location

and capacity expansion decisions.

This thesis sets the stage for further healthcare operations research in both rural and

urban contexts. The literature review on Emergency Care in Chapter 2 revealed that there

is a lack of Emergency Care studies in rural hospitals. While many aspects of medical

procedures are standard in rural and urban hospitals alike, further research in rural EDs

is needed to determine exactly how similar these processes are compared to urban EDs.

Chapter 2 also identified that the ED operations management literature includes some studies

that incorporate unique features of ED patient flow such as triage and lab tests, but ED
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consultations from specialists had not been studied in the operations management literature

before the project undertaken for Chapter 3 of this thesis. It will be interesting to determine

if the proposed Single Role model is appropriate for urban hospitals. The Single Role case

that we found in one of our rural study hospitals is similar to the situation in urban hospitals.

However, in the case of Internal Medicine, there is usually a team of Internists working on

call in urban hospitals rather than a single Internist as we observed in rural hospitals. In

urban hospitals where one specialist acts as a lead specialist responsible for the decisions

for ED consultation and inpatient discharge timing, then the proposed Single Role model

should be adequate. However, when multiple specialists are working on call at the same

time, there is opportunity to consider different management approaches for Specialist Care,

which to our knowledge, has not yet been studied.

From a methodological perspective, our future research includes examining continuous

time models for the workflow decisions of specialists rather than the discrete time models

proposed in Chapter 3. We observe a quasi-birth-and-death (QBD) structure which may be

best analyzed in continuous time as an extension to the models proposed in this thesis. It

will be interesting to know if the models presented in this thesis and/or extensions completed

in future research are applicable to both rural and urban hospitals. If there are significant

differences, further study on the workflow decisions of specialists in urban hospitals will also

be needed.

As there are many different medical specialties required to support the needs of different

chronic conditions, great opportunity exists to develop a variety of new models to help

manage chronic care. In this thesis, we focus on dialysis for patients with ESRD. Note

however, that chronic conditions usually require care from specialists, so additional studies

on the role of specialists in supporting other chronic conditions is another possible research

direction.

In the case of the Dialysis Facility Network Design Probelm (DFNDP), the model pro-

posed in Chapter 4 does not consider the fact that patients can switch back and forth from
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home dialysis to facility-based dialysis. We also considered a static model which does not

account for the changes in the number and location of dialysis patients over time. Although

the proposed DFNDP model could be run multiple times to consider different numbers of

patients at different locations, our future research may tackle additional complexity in plan-

ning a network of dialysis facilities. In particular, we have started to develop a queueing

network model to account for the changes in requirements due to switching dialysis modes or

for new patients based on ESRD incidence and reductions in dialysis needs due to transplant

or death.

Overall, although general models can be developed for some Specialist Care processes,

there are also specific opportunities for Applied Operations Research in specific areas includ-

ing Cardiology, Gastroenterology, and Nephrology. I also look forward to further studies on

Rural and Urban Health Services Management, including Emergency Department Crowding

and other important research topics.
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Appendix - Dialysis Patient Survey
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Please ask the research team to clarify anything you do not understand or would like to know 

more about.   

Thank you very much for agreeing to participate in this study. 
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NAME:       ________________________________________ DATE: _______________________ 

                    (DD / MM / YYYY) 

ADDRESS: ____________________________________________________________________ 

                   ____________________________________________________________________ 

AGE:           _________________    GENDER:     ☐ MALE  ☐ FEMALE 

 

WORK STATUS:   ☐ EMPLOYED    ☐ RETIRED    ☐ OTHER: _______________ 

 

1A. Which of the following choices were presented to you as possible methods of treatment for 

your kidney failure? (check all that apply) 

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility (check all that apply)   

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at a satellite dialysis facility (check all that apply)   

☐ Inverness  ☐ Antigonish  ☐ Pictou  ☐ Springhill  ☐ Liverpool 

☐ Cleveland ☐ Sherbrooke   ☐ Truro ☐ Berwick  

3. ☐ Hemodialysis (HD) at home, after training in Halifax 

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 

5. ☐ Kidney Transplant 

______________________________________________________________________________

2A. What form of dialysis are you currently receiving for your kidney failure? 

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility    

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at a satellite dialysis facility   

☐ Inverness  ☐ Antigonish  ☐ Pictou  ☐ Springhill  ☐ Liverpool 

☐ Cleveland ☐ Sherbrooke   ☐ Truro ☐ Berwick  

3. ☐ Hemodialysis (HD) at home, after training in Halifax   

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 
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2B. If you are receiving hemodialysis (HD) at an in‐centre or satellite dialysis facility, you do not 

use home dialysis because:  

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

2C. Is your current form of treatment the same as the one you started on? 

☐ YES    ☐ NO 

 

2D. If NO, the type of treatment was changed from ____________________________________ 

 

because: ______________________________________________________________________ 

  

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 
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3A. If the closest dialysis facility was a satellite facility within a 15 minute drive from your home, 

what form of treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 15 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training in Halifax    

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 

 

3B. If the closest dialysis facility was a satellite facility within a 30 minute drive from your home, 

what form of treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 30 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training in Halifax 

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 

 

3C. If the closest dialysis facility was a satellite facility within a 45 minute drive from your home, 

what form of treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 45 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training in Halifax    

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 
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3D. If the closest dialysis facility was a satellite facility within a 60 minute drive from your 

home, what form of treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 60 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training in Halifax    

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 

 

3E. If the closest dialysis facility was a satellite facility within a 90 minute drive from your home, 

what form of treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 90 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training in Halifax    

4. ☐ Peritoneal Dialysis (PD) at home, after training in Halifax 

______________________________________________________________________________ 

4A. If training for home dialysis was available at all in‐centre dialysis facilities and the closest 

dialysis facility was a satellite facility within a 15 minute drive from your home, what form of 

treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 15 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training at an in‐centre dialysis facility    

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

4. ☐ Peritoneal Dialysis (PD) at home, after training at an in‐centre dialysis facility 

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 
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4B. If training for home dialysis was available at all in‐centre dialysis facilities and the closest 

dialysis facility was a satellite facility within a 30 minute drive from your home, what form of 

treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 30 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training at an in‐centre dialysis facility    

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

4. ☐ Peritoneal Dialysis (PD) at home, after training at an in‐centre dialysis facility 

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

 

4C. If training for home dialysis was available at all in‐centre dialysis facilities and the closest 

dialysis facility was a satellite facility within a 45 minute drive from your home, what form of 

treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 45 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training at an in‐centre dialysis facility    

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

4. ☐ Peritoneal Dialysis (PD) at home, after training at an in‐centre dialysis facility 

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 
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4D. If training for home dialysis was available at all in‐centre dialysis facilities and the closest 

dialysis facility was a satellite facility within a 60 minute drive from your home, what form of 

treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 60 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training at an in‐centre dialysis facility    

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

4. ☐ Peritoneal Dialysis (PD) at home, after training at an in‐centre dialysis facility 

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

 

4E. If training for home dialysis was available at all in‐centre dialysis facilities and the closest 

dialysis facility was a satellite facility within a 90 minute drive from your home, what form of 

treatment would you choose for your kidney failure?  

1. ☐ Hemodialysis (HD) at an in‐centre dialysis facility      

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

2. ☐ Hemodialysis (HD) at the closest satellite dialysis facility (within a 90 minute drive) 

3. ☐ Hemodialysis (HD) at home, after training at an in‐centre dialysis facility    

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

4. ☐ Peritoneal Dialysis (PD) at home, after training at an in‐centre dialysis facility 

☐ Sydney  ☐ North Sydney  ☐ Halifax  ☐ Dartmouth  ☐ Yarmouth 

 

 

Thank you very much for participating in this study. 
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