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ABSTRACT

This thesis investigates the effect of randomly varying added
mass on the dynamics of a flexible cylinder in an external axial two-phase
flow, bounded by a rigid immobile channel.

The behaviour of a cylinder in two-phase flow has been found to
be very different and less predictable than in single-phase flow. Experi-
ments have shown that damping is significantly higher in simulated two-phase
flows, depending on the flow regime, and that the hydrodynamic or added mass
decreases with increasing void fraction, but at a higher rate than that of
the mixture density.

The hypothesis is made that these effects might arise from random
fluctuations of the hydrodynamic mass.

After an attempt to find a theoretical formulation of this proba-
bilistic problem, based on a model of the fluid-structure interaction at the
molecular level, a numerical approach is adopted. This simulation consists
in applying random perturbations on the added mass coefficient of a one-
degree-of-freedom system, and investigating their effect on the response
frequency and damping.

A first digital analysis of the free vibrations of this system is
conducted in the time domain. A second digital analysis of the free vibra-
tions is also undertaken, but this time in the frequency domain. Finally,
an analog simulation of both free and forced vibrations of the system is
carried out by means of an analog computer and a FFT electronic frequency
analyser.

A1l three studies exhibit a behaviour in agreement with the effects
sought, but occurring with a magnitude much lower than expected.



ii

SOMMATIRE

L'EFFET DE FLUCTUATIONS ALEATOIRES
DE LA MASSE AJOUTEE SUR LE
COMPORTEMENT DYNAMIQUE D'UN CYLINDRE
FLEXIBLE DANS UN ECOULEMENT

FLUIDE DIPHASIQUE ET AXIAL

Cette th&se traite de 1'effet de fluctuations aléatoires de la
masse ajoutée sur le comportement dynamique d'un cylindre flexible soumis
3 un écoulement externe, axial et diphasique, 1imité par un conduit rigide
et immobile. ‘

I1 a été établi que le comportement d'un cylindre dans un
écoulement diphasique est trés différent et moins prévisible que dans un
écoulement monophasique. Des expériences ont montré que 1'amortissement
est nettement plus élevé dans des écoulements diphasiques simulés, suivant
le régime d'écoulement, et que 1a masse hydrodynamique, ou masse ajoutée,
décroit Torsque le pourcentage de vapeur s'accroit, mais ceci plus rapidement
que ne le fait la densité du mélange.

On émet 1fhypothése que ces effets proviendraient de fluctuations
a]éatoires affectant 1a masse hydrodynamique.

Aprés une tentative de formulation théorique de ce probléme proba-
biliste basée sur un modeéle & 1'échelle moléculaire de 1'interaction entre
fluide et solide, on a choisi une approche numérique. Cette simulation con-
siste a appliquer des perturbations aléatoires sur le coefficient de masse
ajoutée d'un systéme a un degré de liberté, et a étudier leur action sur la

fréquence et 1'amortissement de la réponse.
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On entreprend une premigre analyse digitale des vibrations libres
de ce systeme, dans le domaine temporel. Puis%on entreprend une seconde
analyse digitale, également des vibrations 1ibres, mais cette fois i1 s'agit
d'une étude fréquentielle. Finalement on m2ne 3 bien une analyse analogue,
a la fois des vibrations libres et forcées du systeme, au moyen d'un calcu-

lateur analogique et d'un analyseur de fréquences FFT électronique.

Ces études aboutissent toutes trois a la mise en évidence
des effets recherchés, mais avec une amplitude beaucoup plus faible que

souhaitée.
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CHAPTER I
INTRODUCTION

The study of flow-induced vibrations of structural components has
been greatly intensified in recent years [1].

Some spectacular failures come indeed to mind to point out how
important these vibrations may become in some cases. One exciting example
is the famous oscillation in November 1940 of the Tacoma Narrows Bridge in
Washington State; four months after its opening, the fine suspension bridge
swayed violently in a steady wind of about 42 miles per hour and was ulti-
mately destroyed. But the worst accident to be quoted here occurred on
March 27, 1980 in the North Sea, when the Alexander L. Keilland semi-sub-
mersible o0il platform capsized in heavy seas, after one of its five suppor-
ting legs had buckled and then fractured; a total of 123 0il workers and
engineers perished in the disaster, most of them trapped in near-freezing
waters 80 metres deep.

Undoubtedly the greatest amount of research has been performed
in the aeroelasticity field, since the criterion of minimizing the dead-
weight compared to vehicle performance characteristics is of utmost impor-
tance in the aerospace industry. Some useful information on plate and shell
problems can be found in Refs. [2-4]. |

Other problems have also been investigated as for instance the
behaviour of urban winds between high skyscrapers or, especially in Canada,
the galloping of ice-coated transmission lines in a steady wind. In the
early 1960's it has also been attempted to transport oil cheaply by sea in
a nylon-rubber 0il barge or “dracone"; although this was a commercially

acceptable proposition, Hawthorne [5] and Paidoussis [6] showed that rigid



body oscillations occur at low towing speeds, whilst flexural instabilities
of buckling and flutter type occur at higher towing speeds.

Our interest in this thesis is in the dynamics of flexible slender
cylinders immersed in external two-phase axially flowing fluid.

The topic of flow-induced vibrations of cylinders has received
growing attention from researchers because of repeated and sometimes very
costly equipment failures in the power generating industry, having even led
to some complete plant stoppages. As a matter of fact, such devices as
boilers, heat exchangers, steam generators and nuclear reactors have prima-
rily been designed for heat transfer or other specific purposes, whereas
flow-induced vibrations used to be considered, not so long ago, as a secon-
dary design parameter, |

Unlike the case of cross-flow-induced vibrations where large
amplitude oscillations develop even at moderate flow velocities, the sub-
ject of parailel-flow-induced vibrations is rather new. The first experi-
mental study was reported by Burgreen et al. [7] in the late 1950's. Later
Paidoussis [8] formulated an equation of motion and performed the first
stability analysis of a solitary cylinder in unconfined steady incompressible
axial flow. He showed that small flow velocities damp free motions of the
cylinder and diminish its natural frequencies, whereas increasing flow velo-
cities eventually destabilize the system, first by buckling (divergence)
and finally by flutter. It is these instabilities which have been given
the name of fluidelastic instabilities - fluidelastic being a generic word
for both aeroelastic and hydroelastic. A number of refinements were included
in subsequent work [9,10] and, among others, the study was extended to the

case of several cylinders arranged in a cluster [10]. At this stage, the



expression of the hydrodynamic or "added" mass was refined in order to
take into account the effect of confinement of the flow either by a narrow
channel or by surrounding but still immobile cylinders. The next important
step was to include the fact that adjacent cylinders do not remain passive,
but on the contrary undergo complex hydrodynamically coupled motions; this
was first achieved by Chen [11] and has since then been extended and also
verified by a whole set of experiments [12]. One of the main effects of
flow channel confinement and of hydrodynamic coupling to neighbouring
cylinders is to severely lower the stability threshold. It was also observed
that, once the system becomes unstable, it is subjected to a succession of
buckling and flutter instabilities with increasing flow, of progressively
more complex modal shape.

| Nevertheless, the critical flow speeds ledding to fluidelastic
instabilities remain still higher than the flow velocity ranges usually
encountered in industrial applications, that is why only the small-ampiitude
or "sub-critical" vibrations are of current interest. Normally such small
vibrations, typically 10-3 to 10'1 cm, would be neglected, were it not for
the often extremely close spacing of the cylinders in the array, with inter-
cylinder gap-to-radius ratios of the order of 10']. [A bundle of nuclear-
reactor fuel elements is reproduced in Fig. 1]. Hence, although very small,
these vibrations may cause intercylinder impact, which may result in fret-
ting-wear damage. Several mechanisms of sub-critical vibrations have been
proposed and they have been reviewed in Refs. [13,14]; it is now widely
accepted that these vibrations are a random response to the random fluid

pressure forces developed in the flow field.
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On the whole, several review papers are available in the litera-
ture on vibrations of cylinders induced by axial (and cross) flow [15-19,
21,22]. |

A new classification of these vibrations has been proposed very
recently by Paidoussis [21], distinguishing between three main types of
behaviour: (i) response té pressure fluctuations in the flow at all flow
velocities; (ii) parametric resonances at specific flow speeds or excitation
frequencies; (iii) fluidelastic instabilities for very high flow velocities
[see Fig. 2].

Unfortunately most studies deal with single-phase flows, and
relatively 1ittle has been done on two-phase flows [22]. Moreover, no sub-
stantial research has yet been conducted on one of the key issues of the
problem, namely the quite complex fluid-structure interaction in two-phase
flows [22,23,26]. Generally speaking, the presence of the second phase
induces a randomly varying fluid density and introduces two major aspects
to the problem: (i) a much altered pressure field exhibiting a drastic
shift, depending on the flow regime, of the frequency distribution of the
pressure force, and also bringing a higher susceptibility to subcritical
vibration; (ii) parametric excitation due to the periodicity existing in
the distribution of the virtual mass and which has been studied extensively
by Hara [24-26]. Actual systems often involve high temperature and high
pressure stream-water mixtures, with the steam quality varying along the rods
due to surface boiling; Pettigrew and Gorman [27] report the only experiment
with such a heated system. As a matter of fact, simulations involving boil-
ing systems are costly and difficult to instrument, hence simulation experi-

ments using non-condensable gases have commonly been conducted — the most



popular mixture being the air-water mixture [28-33]. In these experiments,
various parameter% have been found to be of interest, such as void fraction,
fluid density, average flow velocity, etc. Paidoussis and Pettigrew [31]
have conducted some experiments on confined cylinders in both liquid and
two-phase flows, to test the validity of the aforementioned theory, e.g.
[12] or [21], predicting the onset of fluidelastic instabilities and the
succession, with increasing flow, of buckling and flutter instabilities of
progressively more complex modal shape. In the case of liquid flow, agree-
ment between theory and experiment was found to be qualitatively good and
quantitatively fair — taking the experimental difficulties into account.
But as far as the two-phase flow is concerned, theory completely failed to
predict the lack of noticeable instabilities which has been observed in

the experiments.

More recently Carlucci [32,33] has investigated experimentally
the behaviour of fluid damping and hydrodynamic mass of a cylinder in |
simulated two-phase flow (also an air-water mixture). He has found that
damping in two-phase flow is significantly higher than in single-phase flow,

whereas the hydrodynamic mass decreases with increasing void fraction,but

at a higher rate than that of the mixture density.

A first attempt has been made by Ostoja-Starzewski [34,35] to find
out whether these discoveries can be attributed to the compressibility of
the two-phase fluid stream. Of course, two-phase flow is anything but incom-
pressible, hence the motivation for that investigation. Another starting
point of that study was the fact that the speed of sound in two-phase mix-
tures can be much lTower than in either of its two constituents (easily one

tenth, and even 1/50th at low pressures: cf. Fig. 3), which allows the



’ Mach number M to reach values close to 1* for operational values of the flow

e:; velocity. Using a homogeneous-flow model of the two-phase flow, Ostoja-
Starzewski found, by means of three different mathematical models, that the
effect of compressibility is in qualitative agreement with Carlucci's results,
but nevertheless quantitatively seriously underestimates the observed be-
havidur. |

Even more recently Schumann [36] conducted a theoretical research
on a somewhat related problem: the fact that the effectfve density of a‘
two-phase mixture of solid particles and inviscid compressible fluid differs
from the average density, due to relative accelerations between the phases.
His study on virtual density and speed of sound in a fluid-solid mixture
js based on Hamilton's principle and a general homogenization method.

This research represents in fact a second attempt to discover the
underlying mechanism of the two effects observed by Carlucci. The basic
hypothesis made here is that these effects could be attributed to random
fluctuations of the hydrodynamic mass of the cylinder, this randomness
arising from the highly non-homogeneous nature of two-phase flow. A funda-
mental approach was first envisaged, which would have led to a completely
probabilistic description of the fluid-structure interaction. The principle
of such an approach would be to first consider the coupled motion of the
structure and the two-phase flowing fluid from a microdynamic point of view,
i.e. at the molecular level, and then to develop a statistical method by
which a transition to the global hydrodynamic formulation could be achieved.
(Some elements of this approach will be found in Appendix B.) But such a

task being beyond the scope of a M.Eng. thesis, it was decided to limit the

* .
‘:; This arises since M=U/c, where U is the fiow velocity and ¢ the sonic
speed [34].



work to a purely numerical simulation, with the aim of studying mainly the
effect of a randomly varying virtual mass on the response of a one-degree-of-
freedom oscillator. A digital study of the free vibrations of this system

is first conducted in the time domain and is given in Chapter III. A second
digital analysis of the same free vibrations is also undertaken, but this
time in the frequency domain, and is presented in Chapter IV. Finally, an
analog simulation of both free and forced vibrations of this system is
carried out, in the frequency domain, by means of an analog computer; this -

last analysis is the topic of Chapter V.-



CHAPTER II
PROBLEM FORMULATION

2.1 Fluid Damping and Hydrodynamic Mass in Two-Phase Flow

2.1.1 Two-Phase Flow Modelling

As the random pressure fluctuations in the turbulent boundary
layer are considered to be the main forcing mechanism exciting the struc-
tural component vibrations, it may be worthwhile to see under which condi-
tions the pressure disturbances are transmitted in two-phase flow. Phase
distribution (flow regime) has for instance been shown to strongly influ-
ence the frequency distribution of the pressure force [22].

Modelling of two-phase flow and of the continuous heat and mass
transfer occurring between the phases is an extremely important sUbject
for the design of many major items of equipment found in chemical and
power plants. But due to the continuous variation of all the thermal and
hydraulic properties of the flowing fluid, the mechanisms of phase changes
in channel flow remain a poorly understood phenomenon; this is so despite
the efforts of many investigators for more than a century, which have
resulted in more than 10,000 papers published on boiling and two-phase flow.
A general review on convective boiling and condensation, i.e. in the pre-
sence of a forced flow, has been given by Collier [37], mostly for single-
component systems, i.e. a pure liquid and its vapour, and more particularly
the water/steam system. The methods used to analyse a two-phase flow are
based on those already validated for single-phase flows, and the general

procedure consists in writing down the basic equations governing the con-

servation of mass, energy and momentum, and then in seeking to solve them



by means of various simplifying assumptions. Three main types of assump-
tions have been made, as follows.
(i) The "homogeneous" flow model, in which the two-phase flow is assumed
to be a single-phase flow having pseudo-properties obtained by suitably
averaging the properties of the individual phases. This is the simplest
model and has for instance been adopted by Ostoja-Starzewski [34].
(i1) The "separated" flow model, in which the two phases. are artificially
separated, and two sets of basic equations are written, one for each phase.
(iii) The "flow pattern" models, which represent the most sophisticated
approach and in which the two phases are considered to be arranged in one of
several prescribed geometries. These geometries are based on the various configu-
rations or flow patterns observed when a gas and a liquid flow together
in a channel. Commonly, six main flow regimes are distinguished in verti-
cal flow: (1) bubbly flow, (2) slug flow, (3) churn flow, (4) wispy-annular
flow, (5) annular flow, and (6) drop or mist flow. Churn and wispy-annular
flows are included by some authors, respectively, into the categories of
slug and annular flows [cf. Fig. 4]. Transitional flows are also noted
[Fig. 5] and often exact characterization is quite difficult.

Fig. 6 shows the flow pattern map of Hewitt and Roberts [38] as
given by Collier [37], on which the range of test conditions investigated
by Carlucci [33] have been superimposed. This map has been obtained [38]
from observations on low-pressure air-water and high-pressure steam-water
flow in small diameter vertical tubes, and should be regarded no more than
a rough guide.

It should also be mentioned here that in horizontal flow, the flow

patterns are complicated by asymmetry of the phases resulting from the
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influence of gravity. The different flow patterns are illustrated in Fig. 7

and a map of them by (Baker [39] is also given.

With the vertical flow pattern map [Fig. 6] in mind, let us now
review Carlucci's results [33] in more detail. His visuaT observation of
the slug, churn and Tow velocity bubbly flow patterns coincided reasonably
well with those indicated on the map, but at higher mixture velocities the
true flow pattern became increasingly more difficult to be visually identi-
fied. In particular the distinction between high velocity bubbly flow and
annular or wispy annular flow was not possible, all three flow patterns
appearing frothy or foamy on the flow tube surface.

Fig. 8 gives typical results showing the variation of the com--
pliance magnitude with void fraction, and indicates the respective changes
in damping and resonance frequency. Fig. 9 gives more information on the
variation of the total fluid damping ratio Ty with void fraction, and for
different values of the mass flux. From both Figs. 8 and 9, it may be seen
that maximum values of gy are obtained for void fractions ranging from 30
to 60 percent, whereas Tt becomes mfnima] at void fractions of zero value
and between 80 and 100 percent. Comparison between Figs. 9(a) and 9(b)
shows that Ty is higher in the smaller diameter flow tube, indicating a
confinement effect. But, on the contrary, the mass flux does not appear to
greatly affect the magnitude of [ however, because of the wide range of
mass flux studied, the functional dependance of Ty ON void fraction is
affected by the various flow patterns encountered [Fig. 6]. Total fluid

damping ratio Zy can be decomposed in three different components: a viscous



11.

damping ratio Zy» @ flow-dependent damping ratio Leo and a two-phase damping

ratio Ctp‘ Thus we have
Ct = CV + C‘f + z';tp . (2'])

Their variation with void fraction is given in Fig. 10. To sum up, fluid
damping has been found to be significantly higher in two-phase flow than in
single-phase flow, and a maximum or maxima have been exhibited at void
fractions of 30% to 60%.

The variation of hydrodynamic mass with void fraction is shown in
Fig. 11. Clearly, the hydrodynamic mass appears to decrease linearly with
void fraction but at a greater rate than the mixture density line. It
can also be noticed that it approaches a value of essentially zero at void
fractions of 70% to 80%. This illustrates the fact that in annular flow
the cylinder is dynamically decoupled from the flow tube wall since, in this
flow pattern, most of the liquid flows as a thin film on the flow tube and
cylinder surfaces. It might be useful to recall here the origin of the
concept of hydrodynamic mass: when a structure vibrates in a fluid, the
fluid gives rise to a two-part fluid-reaction force, one part of which may
be interpreted as a flow-induced damping, whereas the other part is an
acceleration-dependent, inertial force which may be thought to be associ-
ated with an "added" mass, as far as the dynamic response of the structure
is concerned. Generally the hydrodynamic, or added, mass of a cylindrical
rod is assumed to be equal to the mass of fluid displaced by the rod [40].
This is only true when the rod is submerged in an infinite fluid; however,
for a confined cylinder, or one belonging to a fué1 bundle, the added mass

is affected by the duct wall and, for the cluster, by adjacent rods. Chen



and Wambsganss [9] and Paidoussis [10] have used an expression of the

form
mh = me, (2"2)

where my, and me are respectively the hydrodynamic mass and the mass of
fluid displaced by unit length of the cylinder, and x is an expression
equal to 1 for unconfined flow and greater than 1 otherwise, increasing
when the flow channel decreases. Carlucci [33] uses the same expression
and in his case x depends on the ratio of the flow tube inside diameter Di

to the cylinder diameter D:

_(D/D)2 +1

=1 2-3
X (D.i/D)Z 1 ( )

This expression which has been derived for homogeneous inviscid flow may not be
well suited to describe the complex reality hidden behind the notion of

hydrodynamic mass in two-phase flow.

2.2 Equation of Small Lateral Motions

Qur very first approach to the problem intended to start from
the formulations obtained by Paidoussis and other investigators for the
motion of a cylinder immersed in single-phase axially flowing fluid. We
then hoped to be able to extend it to two-phase flow while incorporating a
randomly varying added mass.

The system under consideration consists of a solitary flexible
slender cylinder in external axial two-phase flow contained by a rigid

channel, as depicted in Fig. 12. The cylinder, considered to be an Euler-
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Bernoulli beam, is of finite length L, mass m per unit length, uniform
cy]i@der crosf section of diameter D and area A, flexural rigidity EI and
internal dampﬁng of the'Kelvin-Voigt type. Moreover, the cylinder is sup-
posed to be pinned-binned with the downstream end free to slide axially.

As far as the two-phase fluid flow is concerned, it is modelled
by a macroscopically homogeneous flow, of mean flow velocity U and of fluid
density p. Dh is the hydraulic diameter and is equal to 4Ach/5tot’ ACh
being the channel flow area and Stot being the total surface area in channel,
per unit length. It is also assumed that the flow over the beam is not
affected by the supports, as if the finite length cylinder were a portion
of an infinitely long beam, the remainder of which is perfectly rigid.

The derivation of the equation of small lateral motions for a
cylinder in external axial flow is not presented here and may be found in
[10]. To obtain it, a force balance was taken for a small element of the
cylinder, considering the various forces applied to this element.

Since we chose the homogeneous flow model, there is no difference
between vertical and horizontal flow, except that for the latter confi-
guration gravity effects may be neglected.

The equation of motion of a horizontal cylinder in a single plane

[(x,y)-plane of Fig. 12] immersed in axial flow then reads

%y Ay, ra K 3y oy
Hl ax*at +El ax* * [Bt U Bx][mh(at tu ax)]

2 - .
=% PDUPCE(T + g (L-x) + Dy} L e pnuch(,f—h) Y

2
+y pDUCf(%%- +U ) 4 g—t§ = 0, (2-4)
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where y = y(x,t), Co is the frictional coefficient and C, is the form drag

coefficient at the end x=L. The boundary conditions may be taken as

v(0,t) = —-M y(L,t) = éi%x—ﬂ = 0. (2-5)

For a two-phase flow, this equation will have some stochastic
coefficients. We assume that EI, ul, L, D, Dy, Cf, Cb and m will remain

constant, and express m, as
mh = XDA. (2'2‘)

We then identify the stochastically varying quantities as p, U, and com-
binations of these terms (such as pU, pU%,...), as well as their derivatives.

Expressing p and U as
p = p(x,t), U= U(x,t),
we obtain

3° ot 3%y
“I&JW+ EIE)—;{L+ YA [p <X v 2pU—X—+ oU? —X]

(QU) (pU) 1 D )
+ {xA[ +U 1+% pDUZCf(] +DF)} 53(1

2
+ {XA[S + U ap] + 35 oDUC) %% g -g-Egi - 0. (2-6)

This equation is then rendered nondimensional,since nondimensional quantities

are familiar to all researchers in the field and allow comparison between
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various systems.

This is carried out by setting

X ) Bl %t
E = |'_"’ n-= L T= [m+§A] Lz s
- 1 L
=0 = (PA - I u
= __SLA_. = i = i 13 = L‘. -
We also introduce the mean values of p, U, pU and pU?:
o=ps, U=1Us,, pU= pUss, oU? = pUs,,. (2-8)

1

Having done all this, and assuming, moreover, that n(g,t) = 0(¢),
and si(&,7) = 0(e) for all i, we finally end up with an equation of the

form:

9°n(g,1) 3*n(g,1) 3%n(&,1)
. +A, T A, s, (g,7) e?

3 s
P A, sy(e,) 208D, _g_l A s, (6,1)] ———Mggﬂ

3g0T
+[A, ——léé;jl- A,] —*%%3Il'+ [Ag + Ay 5,(857)] éig%%ill =0,

(2-9)

where A, to A,, are constants. The expressions of these constants will be

found in Appendix A. The boundary conditions may be taken as

n(0,t) = éﬂ%gill =0, n(l,t) = gﬂ%%ill = 0. (2-10)
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Several solution schemes were then considered to find some statis-
tical solution to this equation. The most elaborate of these will be
found in Appendix A. It consisted first in expressing all the stochasti-
cally varying quantities in terms of only one of them, chosen‘fo be the
principal random variable. Then the goal was to transform the equation of

motion into an equation of the type:

dw(f)

Cult) o o) 4y (1) = £(1), (2-11)

dt?

where )\ is a constant and w is a function of time to be found, on which a
Fokker-Planck formulation should be tried out, following Morton and Corrsin
[41]. Obtaining such a type of equation was attempted by means of the
Galerkin discretization method. Unfortunately we had to realize that we
could not obtain, by this method, a solution in the form of a probability
distribution of the fluid density or of its ve]ocity. Moreover, the whole
procedure seemed contradictory since it was hoped to obtain a probabilistic
solution of an equation which is basically deterministic. It was therefore
decided to try a new approach and look into a purely probabilistic formula-

tion of the fluid-structure interaction.

2.3 Probabilistic Formulation Attempt

The usual phenomenological laws of matter, like equations of
state or transport equations, are deterministic laws. They are also aver-
age laws since they deal in macroscopic variables like pressure, tempera-
tufe and electrical current, which represent the aggregate effect of mil-

lions of molecular interactions. But in many cases, even a simplified
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deterministic model becomes intractable, either because the equations
governing the system are too complex, or because they cannot even be derived.
This occurs for a rolling die or for thermal agitation of molecules in a

gas. Hence comes the need for a theory of stochastic processes, based on
the mathematical tools developed by the probability theory. These tools

have first been widely used by engineers in the field of telecommunications,

since very often the signals to be dealt with are actually of random nature.

~ In the same way, a control systems engineer can no longer neglect the sta-

tistical properties of the perturbations applied to the system he is optimi-
zing. But in the past decades, the theory of stochastic processes has

played an increasingly important role in nearly all the fields of science:
physics, biology, medicine, economics, etc. In the physical sciences, this
theory arose out of the study initiated by Einstein [42] in 1905 on the
erratic movement (Brownian motion) of small particles suspended in a 1iquid.
Major contributions to the problem of Brownian motion have been given by
Uhlenbeck and Ornstein [43], Chandrasekhar [44], and Wang and Uhlenbeck [45].
A more recent mathematical critical review on the subject may also be found
in Ref. [47]. More generally speaking, a great amount of literature has
already been published on stochastic processes, and two fundamental books

by Doob [48] and Feller [49] should be cited here. Other pieces of work
might also be mentioned here, such as these of Papoulis [50], Stern et al.[51],
Yaglom [52] more precisely on stationary random functions, Beran [53] and
Samuels [54] on statistical continuum theories, Bharucha - Reid [55] mainly

on Markov processes, and more recently Montroll and Lebowitz [56] on fluctua-
tion phenomena (selected papers), and Axelrad [57] on micromechanics of

solids.
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To come back to the problem of a flexible slender cylinder im-
mersed in axially flowing two-phase fluid, let us attempt to approach the
coupled motion of the structure and the fluid from a local point of view,
i.e. molecular level. By a corresponding statistical method, a transition
to the global hydrodynamic formulation can be achieved.

With this aim in mind, a model is adopted, according to which
the individual fluid particles moving along the boundary of the structure
(see Appendix B and Figs. 13) have a behaviour represented by a "generalized

Langevin equation" expressed by

d2
mat—2+ B +wor‘"A( ) (2-]2)

where T denotes the random position vector of the molecule: v = ?(x,y)
and in which:
m is the fluid particle mass;
B is the Stokes' drag denoting the interaction between
the fluid particle and the surface of the solid body
(this friction exists in the x-direction only);
-wg? is a harmonic-type attraction between the considered
particle and its neighbours;
R(t) is the random loading force (equivalent to the random
pressure on the structural member).
This equation may be split into a set of two equations accounting
for the longitudinal and transverse components in the velocity field ﬁ¥=ﬁ(F,t)
(see Appendix B). This model incorporates the friction effects in the longi-

tudinal direction only, whilst the transverse force is coupled to the local

inertia of the structure in the unstable mode of motion. Hence the dynamics
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of the system is assumed, for simplicity, to be two-dimeﬁsiona1.

The solution of the generalized Langevin equation in terms of

the excitation force K(t) accounts for the perturbation of the otherwise

undisturbed lattice — structure of the fluid flow. Furthermore, this solu-

tion leads to a velocity distribution P(U) at a given instant of time for

a prescribed mode of surface motion of the solid in the flow field.

At this stage of investigation, one can consider two different
studies, namely:

a) If the velocity distribution P(ﬁ) or the Tinear momentum distribution
P(ou) only, is sought, one can define the respective probability dis-
tribution and obtain its evo]uiion with time in form of a set of Fokker-
Planck equations. Their solutions have to satisfy the given boundary
and initial conditions, which also serve to determine the constants in
the evolution equations.

b) If, however, the density fluctuations in the fluid are of main interest,
it would be better to use the Chapman-Kolmogorov evolution relation for
the probability of the density distribution functions, for example

d P(p)
———af—zi- = @ Plo), » (2-13)

where Qp is the probability transition matrix (two-dimensional).

More information on the whole procedure up to the derivation of
the set of the two coupled Fokker-Planck equations (cf. point a) above)
can be found in Appendix B. But completing the whole probabilistic study
described above has proved to be beyond the scope of a M.Eng. thesis, even
though from this first attempt, it is strongly felt that, in order to

achieve a proper formulation with respect to the random pressure and/or
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density fields, one has to use the molecular-hydrodynamic approach* as pro-
posed, for example, by Hansen and McDonald [58], Boon and Yip [59] and

others.

2.4 One-Degree-of-Freedom Model Finally Adopted

It was finally decided to dwell on a numerical simulation of a
one-degree-of-freedom system, in which a randomly-varying added mass is
incorporated. The purpose of this study is to investigate the effects of
these random fluctuations of the hydrodynamic mass on the response of
the system. More particularly, our attention is focused on the comparison
between the cases with and without these fluctuations, in order to see
whether our results are in agreement with the ones obtained by Carlucci
[33] and presented above in Section 2.1.2. If this is the case, then a
good chance exists that the key of the mechanism, affecting the damping
and the hydrodynamic mass in two-phase flow, lies actually in the hypo-
thesis made, namely that the observed behaviour is due to random variations
affecting the added mass. It is also supposed that our system is rather
"static" in the sense that it is assumed that, with this model, we are
placed at a given void fraction which remains constant all over the experi-
ments (the void fraction is not taken into account explicitly in the model,
but it is supposed to be somewhere in the "interesting" range, i.e. between
30 and 60 percent). Hence the only parameter investigated here will be the

random fluctuations of the hydrodynamic mass. It is finally supposed that,

*However, not all the investigators in the field agree on whether aﬁa]ysis
of the fluid-structure interaction should be studied by the probabilistic
approach. For instance Schlechtendahl argues against this direction, as
quoted on page 193 of Ref. [23].
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e:; at this stage, it is sufficient to investigate a one-degree-of-freedom
system, and that, if the desired effects do not prove to be significant,
there is relatively 1little chance to see them occur for a higher degree-
of-freedom system.

The system studied is

M+ mh(t)]i + Cx + Kx = {:go(t) R (2-14)

in which x is the response of the structural system and M, C, K are res-
pectively its mass, coefficient of viscous damping and spring constant.

mh(t) is its hydrodynamic mass and is composed of two terms, viz.

m (t) =m +u(t), , (2-15)

where?ﬁ; is the mean value and is assumed to be constant and u(t) are the
fluctuations of mh(t) aboutTﬁ;.
Hence, the total mass appearing in equation (2-14), sometimes

called "virtual mass" by some authors (e.g. [9] or [16]), reads
M+ mh(t) =M +Th + U(t):

in which M +'ﬁ; is constant.

Dividing all the terms of equation (2-14) by M +TER, we obtain

[1+a(t)IR + 2Tu % + wix = {gm : (2-16)
where
K
wn = M +-ﬁ;l (2"']6‘,a\)
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is the circular (undamped) natural frequency, including F@;

c c .
©Tamem e, T 2k(em) (z-167.0)

is the viscous damping factor;

F (t
f(t) = —0‘-_—’ (2-16',c)
M+mh

js the forcing function (if considered); and

u(t)

a(t) = Mfm—)h (216" ,d)

is the dimensionless fluctuating part of the hydrodynamic mass which is the
parameter of interest in this study.

When a(t) = 0, the treatment of this equation is classical and
the analytical solution is easily obtained. Let us seize here the oppor-
tunity to mention two good textbooks on vibration analysis by Meirovitch
[60] and Thomson [61].

For the unforced case, for an underdamped system, the solution

is
- -Zwpt
x =B e ~n" cos(wgt + @), (2-17)
in which B and ¢ are constants depending on the initial conditions, and
wd = wn ‘/]-—-—c—-z- . (2']8)

For the forced case, the general solution is a superposition

of a transient response (general solution of the equation without forcing
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function) and of a steady-state response (particular solution of the com-

plete equation). If the forcing function is
f(t) = F cos wft.

where We is hence the circular forcing frequency, then the general solu-

tion reads

F (- w})coswst + 2zwpw,sinust
M+m,

x = Be~%unt cos(uwgt + @) + (2-19)

(w7 -o)" + (2sugn,)’
After a certain time, the transient response (first term) damps out and
there remains only the steady state response (second term).

For a(t) # 0, the equation can hardly be solved analytically
if at all; that is why we resort to numerical methods to achieve this pur-
pose. A Runge-Kutta iteration method is used in the case of the digital
computation (Chapters III and IV), whereas the equation is solved directly
on the analog computer in the case of the analog computation (Chapter V).
Various schemes are considered for generating both deterministic
and random a(t), the main interest relating, of course, to the latter case.
This random a(t) should more properly be denoted as "pseudo-random" since
in the digital simulation, the series of random variates are obtained by
means of a Monte-Carlo random number generating technique, while in the analog
simulation, a(t) is produced by a noise generator incorporated to the fre-
quency analyser available for the study. Having generated a(t), the res-
ponse of the system is then investigated as will be described in detail in

the chapters that follow.



C

24.

CHAPTER III

DIGITAL ANALYSIS OF THE FREE
VIBRATIONS IN THE TIME DOMAIN

3.1 Method of Analysis

The first numerical analysis undertaken was performed in the
time domain, since it was the easiest to implement. As a matter of fact,
it simply consists in plotting the solution of equation (2-16), obtained
by means of the Runge-Kutta scheme (presented in detail in Appendix C.1),
versus time, which is one of the variables of the scheme, the variates of
which are separated by a constant step-size h.

This digital analysis is conducted on the Amdahl V7 digital com-
puter of McGill University. In the beginning of the study, the digital
solution obtained is plotted directly by the printer at the same time as
the numerical output is released. These plots are obtained by using a
subroutine from the International Mathematical and Statistical Libraries*
(IMSL), namely the subroutine USPLTD. These printer plots are discrete,
and the characters used for each data point are numerals, each specific to
each function plotted (up to ten functions can thus be superimposed upon
the same plot). For multiple plots, the character M is used in the event
of coincidence by two or more functions. A typical plot is shown in Fig. 14.
More complete information on the USPLTD and all other IMSL subroutines that
will be used later on may be found in Ref. [62]. The use of IMSL subroutines
allows the whole progrém to be written in Fortran WATFIV language, and more-

over in double precision since all those subroutines at McGill University

*
An extensive collection of mathematical and statistical subroutines writ-
ten in Fortran.
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are available in that precision. Later in the study, the functions will

be plotted in a smooth and nicer form by using a Calcomp 663 digital incre-
mental plotter (for more information, see Ref. [63]). In this case, the
program will undergo minor changes in order to be run in Fortran IV language
(compiler H) and the points to be plotted will have to be given in single
precision. The programs considered here could therefore also be run on

the IBM 360/370 Series computers.

Nevertheless, the results discussed in this chapter are those
obtained from the discrete USPLTD plots. Four different solutions are
calculated and printed out. The numbers 1, 2, 3, 4 appearing on the plots
(cf. Fig. 14) — to be referred to as Curves 1, 2, 3, 4 — are identified
below.

Curve 1 is the control curve corresponding to the analytical
solution of equation (2-16) with a(t) =0 and without forcing function, i.e.
this solution is simply given by equation (2-17) for free motions of a
damped oscillator.

Curve 2 corresponds exactly to the same equation, but this time
the numerical solution (obtained by the Runge-Kutta method) is considered.

Curve 3 denotes the numerical solution to equation (2-16) still
without»forcing function but with a deterministic a(t) #0; this determinis-

tic a(t) is chosen to be equal to
5
a(t) = T a. sin(wit + ¢i)' (3-1)

The values of the parameters a5, Wy and $;5 aS well as these of W, and

will be specified in the second part of this chapter, when the results are

discussed. Let us just indicate here that in all cases we finally took
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o5 = 0 for all i,
and

a, =a, =a, =a, =a, = %-, (3-2)
the parameter

_ 5

o= Z da. (3-3)

being thus introduced.

Curve 4 represents the random case, i.e. a random a(t) is used,
and is the case of main interest here. The equation considered is the
same as for Curve 3, except that o(t) is now obtained by a Monte-Carlo
pseudo-random algorithm, assuming a normal,i.e. Gaussian, probability den-
sity distribution. The method used to generate the random variates of
a(t) is explained in Appendix C.2. Moreover, the mean y and variance o2
of the pseudo-random a(t) are assumed to be the same as those of the deter-
ministic a(t) described by equation (3-1) [on this, see Appendix C.3]. To
give an idea on the signal generated, Figs. 15(a),(b) and 16(a),(b) show
respectively time records and histograms of the random perturbation a(t)
obtained.

Initial sets of results were obtained by using 300 calculation
points per 3 cycles of oscillation, which corresponds to the time length
chosen to be printed on one page of USPLTD plot. A study of convergence,
which may be found in Appendix C.4, indicated that 500 points is more
accurate and this value has thus been adopted for subsequent runs. Thfsstudy

of convergence is mainly based on analysing the discrepancies between the
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two reference curves (i.e., those obtained for a(t)=0), namely Curve 1
(analytical solution) and Curve 2 (numerical solution). Comparison between
these two solutions gives a measure of the lack of precision originating
from the use of the numerical integration scheme. One interesting item to
note is that there seems to be a very slight systematic shift towards lower
frequencies. By using 500 calculation points per 3 cycles, the frequency of
Curve 1 was found to be exactly the value chosen,i.e. fn= 15 Hz, whereas the
frequency of Curve 2 was 14.97 Hz*. If the hypothesis is made that this
systematic shift is nearly constant, then all the frequencies that will be
obtained from the USPLTD plots should be all increased by 0.03 Hz.

Finally, a Tisting of the whole program may be found in Appendix

C.5.

3.2 Results and Discussion

The ranges of the parameters of practical interest [cf. equations
(2-16) and (3-1), (3-2), (3-3)] are taken to be as follows — as recommended

by CRNLT who sponsored part of this work:

(i) natural frequency: fn = 15 to 60 Hz; (3-4,a)
(i1) perturbation frequencies: fi = wj/2m = 5 to 25 Hz; (3-4,b)
(iii) damping factor: ¢ = 0.005 to 0.1; (3-4,c)
(iv) perturbation amplitudes: +0.01 < a < 0.2. (3-4,d)

These conditions will henceforth, for convenience, be referred to

as "realistic".

*
These two frequencies (of Curves 1 and 2) were found by three measurements,
over 15, 30 and 45 cycles of oscillation, which gave the same results.

1”Cha]k River Nuclear Laboratories — more specifically by Messrs L.N. Carlucci
and M.J. Pettigrew of CRNL.
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In most cases, for convenience, the ratio of fi and fn was taken
to be an integer. Also, in all cases, the initial conditions are taken to

be
x(0) =1, x(0) = 0. (3-5)

However, as rather "uninteresting" results are obtained for para-
meters in the ranges as defined by (i) - (iv) above, other ranges are also
investigated, which give more "interesting" results, albeit of possibly
limited practical value. One of the main changes introduced is to look
into higher values of a, up to o = 1, in order to allow clearer identifi-
cation of the weak effect observed for a small a. |

Eight series of calculations have been conducted, each consisting
in three or four computer runs. To recognize them, they have been denoted
by the letters A to H and are presented in Appendix C.6. In fact, two
main categories are to be distinguished.

- The first one (Series A, B and C) considers the ranges of parameters
described in (i) - (iv) above (except for higher o in some cases) and is
discussed in Section 3.2.3 below.

- The second one (Series D to H) considers also the ranges of parameters
(i), (iii) and (iv) above (also higher & in some cases), but replaces

the perturbation frequencies range (ii) mostly by:

(i)' fi = wi/2ﬂ = 30, 150, 240, 300, 450 Hz. (3-6)

This case is more concerned with the occurrence of a parametric reson-

ance, and it is discussed in Section 3.2.4 below.
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But first is discussed, in Section 3.2.1, the numerical importance
of the two effects observed by Carlucci. Then are given, in Section 3.2.2
the results concerning Curve 4, since they are of main interest. As a matter
of fact, Curve 4 does not differ between the two categories distinguished
above (and discussed in Sections 3.2.3 and 3.2.4). This is so because, due
to the method adopted to generate the random variates (given in Appendix C.2),
Curve 4 does not depend on the perturbation frequencies f;, but only on the
value of the mean n and the variance o? of the distribution considered. It

is shown in Appendix C.3 that

u = 0, (3'733)
o=, (3-7,b)
/0

hence Curve 4 depends on o only.

The results discussed below are obtained from the series which
have been run with 500 points of calculation per 3 cycles and with £ =0.005
(Series B, C, G) or £=0 (Series H). These series are also those which

have been run over the largest number of cycles.
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3.2.1 Numerical _Importance of the Hydrodynamic Mass_and_Damping Effects

| Observed by Carlucc

Before giving our own results, it is of interest to indicate the
order of magnitude of the two effects shown by Carlucci's experiments, and
which it is intended to verify on the one-degree-of-freedom model.

Let us first show how a frequency increase can be interpreted in
terms of a hydrodynamic mass decrease. For this, the system is considered
to stay at a given void fraction of v percent, for which the mean vé]ue of
the added mass is denoted by-ﬁ;,v' It is about this mean value that the
fluctuations u(t) are considered, according to equation (2-15). The cir-

cular natural frequency w for the homogeneous model (with the hydro-

hom,v’
dynamic mass proportional to the mixture density), is obtained from equa-
tion (2-16',a) as

“hom,v EFIﬁﬁ:__ (3-8,a)

In case the added mass perturbations are iﬁc]uded, we obtain a new circular

natural frequency w v given by

resp

- K
“resp,v /M+ﬁ;] . > (3-8,b)

in which §=+1 or -1, according to whether a hydrodynamic mass increase

or decrease is considered.

If we observe a frequency increase, i.e.,

>
}wresp,v “hom,v *

this implies that

30.
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(:esg,v - +v >1,
hom, v M+mp v Sy

hence
— A 6 »
M+mh,v > M+mh’v+ Urms
from which we finally get

Shpms < 0,

Hyms being always a positive quantity, this implies that §=-1 has to be

taken.

‘We effectively see that, according to the one-degree-of-freedom model, a

frequency increase is equivalent to a hydrodynamic mass decrease, if all
other parameters are kept constant.

Let us now quantify the clear hydrodynamic mass decrease appearing on
Fig. 11, with the aim in mind to express it in terms of a frequency increase.
As ajready stressed, the hydrodynamic mass decreases with increasing void
fraction, but at a higher rate than that of the mixture density. The hydro-
dynamic mass line proportional to the mixture density appears on Fig. 11 in
form of a straight line (rather a dashed 1ine) extending from'ﬁa’o/ﬁ;’b=1
for a zero void fraction to'ﬁ;’loo/ﬁ;’o = 0 for a void fraction of 100%.
The experimental values of the added mass lie below this line, and an experi-
mental straight line can also be drawn according to these points (it is not
shown on Fig. 11). The experimental values (divided by'ﬁ;’o) thus decrease

from 1 for a zero void fraction and approach a value of zero at a void

fraction of about 66 to 70%. We intend to place ourselves at a given void
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fraction that we assume to remain constant. Since the interesting void
fraction range extends be%ween 30 and 60%, we adopt the value of 50%.
At this void fraction are obtained the values ﬁ;’so/ﬁa’o = 0.50 (from
the dashed 1ine proportional to the mixture density) and (ﬁ;’so-Fu)/ﬁ;,o
~ 0.28 (from the experimental Tine).

It is now necessary to translate this hydrodynamic mass decrease
in terms of a frequency increase. Let us first start from Fig. 8. At

a zero void fraction, f is equal to 32 Hz*, whereas for a void frac-

hom, o
tion of 100%, we read fhom,loo = 40 Hz*. From this, using also equation

(3-8,a), we obtain the following relations:

_ / K -
fhom,o = 2—“ W = 32 (3-9,&)
h:O
1 K
£ <1 K . (3-9,b)
h [ ’
OMm,100 2T M+ Lo

We also know (from considerations above on Fig. 11) that'ﬁ; Too = 0, hence
]

M+mh’o

40/32 = M

Squaring this equation, we obtain

from which we finally get

Fm 0 " [(5/4)% - 1]M = 0.5625 M.

*
These experimental values of the oscillation frequency are between twice
and thrice the numerical values used in the following sections and chapters.
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Coming back to our point at 50% void fraction, we have'ﬁg’solﬁ;’o = 0.50.

From this, we easily obtain [using equation (3-8,a)]

] 1k
hom,so 2w M+_I-I‘I;, 5o
*

_1 K
2m YMx0.5x0,5625M

From (3-9,b), using Eﬁ,loo = 0, we get

K .
M'—SOTT

hence

/K = 80m/M .

From this,

£ - 80m M
hom, 5o 2r \UM(T+0.5x0.5625)

i} 1
= 40 \/1 ¥0.5%0.5625

We finally obtain

fhom,so 35.3 Hz. (3-10,a)

This is the value calculated for the homogeneous mixture. For
the actual two-phase flow, we can extrapolate the two compliance curve
plots of Fig. 8 closest to the void fraction of 50% (those for void frac-

tions of 40 and 54%), and thus we approximate the value of fresp so to

37.4 Hz.
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We could equally use the result obtained from Fig. 11, namely

mh’50 +u=0.28 mh’o,

and plug it into equation (3-8,b), which gives us

f"'eSP,so 2m M+m_h +u

) 1
= 40 \/1 ¥0.28%0.5625

37.2 Hz.
We thus have the following estimation:

fresp,so = 37.3 Hz. (3-10,b)

From (3-10,a) and (3-10,b), we obtain the relative amplitude of the hydro-
dynamic mass decrease effect, at a 50% void fraction, expressed in terms

of a frequency increase. It is

fresp,so ™ Thom, s _ 37.3-35.3

35.3

= 5.7%.
fhom,so

Thus the frequency increase effect we wish to observe should be of the

order of about 6%.
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As far as the second effect found by Carlucci is concerned, namely
the important increase in damping, an examination of Figs. 8 and 9 shows
us that, at a void fraction of 50%, damping is at least 100% higher than

its value at a zero void fraction.

It is these two effects that we now wish to verify on our one-

degree-of-freedom system.

3.2.2. Response of the System to Pseudo-Random Added Mass Perturbations
This response is obtained for four different values of o, namely:
0.25, 0.50, 0.75 and 1. Curve 4 is best examined

on run G1* for o = 0.25, and this over 60 cycles of oscillation;

on runs €2 and C3*, respectively for a = 0.50 and o = 0.75, over 30

cycles only (as a matter of fact Curve 4 cannot be observed with accuracy

over more than 30 cycles on runs G2 and G3, because of the parametric

*See Appendix C.6.
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resonance affecting Curve 3, which renders Curve 4 indistinguishable on
the USPLTD plots used*);
- on run G4 for o =1, again over 60 cycles of osci]Tation (in G4, Curve 4
exhibits higher values than Curve 3, hence this plot can be used here).
As far as the general behaviour of Curve 4 is concerned, Curve 4
behaves almost T1ike the "control" Curve 1 for the three first values o =0.25,
0.50 and 0.75, that is to say it shows vibration with about the same, if
not slightly higher amplitude, as may be seen on the X s values below
(see also Figs. 17, 18 and 19). It nevertheless exhibits a certain shift
towards higher frequencies. However, when a=1, the behaviour of Curve 4
deviates from the typical oscillation of a sinusoid, i.e. it begins to dis-

h

play some random excursions starting from the 20t cycle, and finally becomes

unbounded (unstable), reaching a value of about 11 after 60 cycles (see
Figs. 20 or 21); it is recalled here that the initial conditions are given
by equation (3-5).

To illustrate more completely what has just been said above, we

shall give the values of both X s and the effective frequency of oscil-

values are given: x___(1) has been

lation. Actually, two sets of X, s

ms
calculated over 30 cycles of oscillation with =0 (Series H) and should be

+This is due to a property of the USPLTD plots which has not yet been men-
tioned here. The range of the y-axis is indeed constant on the output
page (51 print positions) and adjusts automatically in order to extend
fully from the minimum value ypj, to the maximum value yp,, of the func-
tion y to be plotted. In our program, we have specified (on the "control"
Curve 1) a maximum of +1 and a minimum of -1, so that the plots of the
decaying cases have all their y-axis of the same scale. However, when
Curves 3 or 4 become unbounded, the range of the y-axis is determined

by the extremum value(s) yoytp SUcCh as |y, ¢pl > 1.
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compared to x___(Curve 1) =0.707 obtained with exactly the same condition,

rms
whereas ers(z) has been calculated over 60 cycles with z=0.005 (Series G)

and should be compared with xrmS(CUrve 1) =0.360. As far as the effective
frequency of Curve 4 is concerned, the number of cycles chosen for the
measurement is divided by the corresponding total time of oscillation. A
mean value of the frequency is thus obtained, and it can be added that,
qualitatively, this frequency seems to be constant; hence, it is believed
that the mean values below are given to a good approximation. For a=0.25,
the number of cycles considered is 60 (run G1), for a=0.50 and 0.75, it

is 30 (runs C2 and C3), whereas for a=1 it is only 20 (runs C4 or G4) since,
as already mentioned, the sinusoidal behaviour is disturbed just after that,
hence a measurement over more cycles would be meaningless.

The results obtained are given in the table below.

& o x o (1 x . (2)° fer(H2)
0.25 0.079 0.715 . 0.364 15.02*
0.50 0.158 0.752 0.377 15.18%
0.75 0.237 0.743 0.362 15.47%
1.00  0.316 0.980" 2.22 16.16*

SIt is recalled that the Xpms (1) values are obtained over 30 cycles with

z=0 (compare to Xpms (Curve 1) =0.707), whereas the x,pg(2) values are cal-
culated over 60 cycles with £=0.005 (compare to X,ng(Curve 1) =0.360).

.f.

This will become much larger if x,... were taken over more than 30 cycles

(see for instance xpps(2)). S

*If the hypothesis is made that the very slight shift to lower frequencies

due to the use of the Runge-Kutta scheme (cf. the remarks on the study of
convergence, made at the end of Section 3.1 or in Appendix C.4), is constant,

” then all the frequencies obtained should be increased by 0.03 Hz and the
e:; actual frequencies would respectively read: 15.05, 15,21, 15.50 and 16.19 Hz.
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The results of xrms(]) indicate that, unless a is large (1.00),

the x . 1ie in the vicinity of v2/2 which is the classical value for a

sinusoid, as obtained by Curve 1. The results of x 2) show more sig-

rms(
nificantly the fact that Curve 4 becomes essentially unbounded for a=1.

From all considerations on amplitude and X values of the response, it

ms

is deduced that a critical standard deviation Oerit

< 0.316.

exists for instability
and lies somewhere between 0.237 < Oepit
But the most interesting item to be discussed here is the effec-
tive (or average) frequency, in view of its importance vis-a-vis the ob-
served added mass coefficients in two-phase flow; these were found to be
lower than those calculated on the basis of homogeneous models of the two-
phase medium. We observe indeed a clear shift to higher effective fre-
quencies as the amplitude of perturbations increases. This translates, of
course, to lower added mass coefficients (as compared to homogeneous model,
where effectively mh(t) ='ﬁa is taken, i.e. o(t)=0); this agrees qualita-
tively with the observations made by Carlucci (see Section 2.1.2). However
by examining our va1ues§ given in the table above, we obtain a frequency
shift of (15.05-15)/15 =~ 0.3% for the upper suggested "realistic" value
of a (i.e., a=0.25). This is undoubtedly a very weak effect, when com-
pared to the experimentally observed 6% frequency shift (see previous
Section 3.2.1). For the higher "unrealistic" values, we obtain of course

a more significant frequency shift, albeit of only 1.4% for a=0.50

and 3.3% for a=0.75. It is only for the highly unrealistic value of

§We use the corrected values, obtained by addition of 0.03 Hz— see last

footnote on p.37.
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a=1 that we obtain a shift of 7.9%.
As far as damping is conce¢ned, unfortunately no important damp-

ing effect could be found in this attempt.

In this section, Curve 3 is examined as the response of the sys-
tem to a deterministic perturbation a(t) defined by equation (3-1) and

characterized by the "realistic" range of perturbation frequencies
fy =5, 10, 15, 20, 25 Hz. (3-11)

This means that the computer runs to be investigated here belong to
Series A, B, C (see Appendix C.6).

For a small a (6. =0.25), it is seen in Fig. 17 that for f (fn=
15 Hz) lying within the range of the fi (run B1 or C1), Curve 3 is essen-
tially coincident with Curve 1; i.e. the deterministic case for "small"
perturbation amplitudes is Tittle different from the deterministic case

with zero mass perturbation. Moreover, x ms for Curve 3 is very little

r
different than that of Curve 1 (it is smaller by 2%).

In Fig. 22 is shown a case with the same a (a=0.25) but with f,
(fn= 60 Hz) higher than any of the fi (run B3). The results of Curve 3 are
somewhat different from those obtained above. Even if the amplitude is about
the same, with a X rms of Curve 3 also little different than that of Curve 1
(larger by 1%), on the contrary, for the first few cycles of oscillation,

the effective frequency diminishes to about 58 Hz, rather than remaining

at 60 Hz, but later this effect appears to diminish, even though the fre-
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quency continues to fluctuate slightly about 60 Hz. When fn= 30 Hz (run B2),
this effect (lower frequency) is not -yet noticeable and the response is
similar to that obtained for f =15 Hz. It could be mentioned here that,
as far as Curve 4 is concerned in the three runs of Series B, its behaviour
is not affectedJr by the relative position of fn compared to the fi’ and
that is why this question was not examined in Section 3.2.2. The reason
for this lies naturally in the method (presented in Appendix C.2) used for
generating the pseudo-random variates of a(t), which does not take the per-
turbation frequencies fi into account. Since the same number of discreti-
zation points is used per 3 cycles (500), exactly the same random variates
are used at the respective stages of integration; this accounts for the
identical results.

Let us now come back to the other cases (Series C) computed for
fn='15 Hz, and stick to this value for the rest of this chapter. The cases
with added mass perturbations of larger amplitudes are considered, namely
a=0.50, 0.75 and 1 (respectively runs C2, C3 and C4). Figs. 19 and 20
show the response for a=0.75 and a=1, respectively. Curve 3 displays an
unusual beating phenomenon (especially in Fig. 20), its amplitude being
sometimes higher and sometimes lower than that of “control® Curve 1. Curve
3 also displays an increased frequency of oscillation, which nevertheless
remains smaller than the frequency shift observed for Curve 4 (see Section
3.2.2).

To conclude this section, let us give the x values of Curve 3

rms

(which should be compared with x___(Curve 1) =0.474) and its effective

rms
frequency, both calculated over 30 cycles of oscillation, with z =0.005.

1LExcept that its frequency will be 15, 30 or 60 Hz according to fn.
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- +
o X rms forsHz)
0.25 0.465 15.01
0.50 0.502 15.08
0.75 0.541 15.23
1.00 0.494 ~15.60

We can see very clearly that, as far as the effective frequency
is concerned, the deterministic effect is in the same direction as the
random effect (it indicates a decrease of the added mass), but its magni-

tude is smaller.

- e e - - v s v S T T e e . T G D S D e o G G - o

- - — - - -

The perturbation frequencies mostly considered in this last section

of Chapter III are given by equation (3-6),
f; = 30, 150, 240, 300, 450 Hz.

They are beyond the recommended "realistic" range for two-phase flow as
measured by Carlucci et al. and given by equation (3-4,b). Nevertheless,
we shall examine this case for it gives rise to the fundamentally interes-
ting phenomenon of parametric resonance. Series D to H are considered for
that purpose (see Appendix C.6).

Whenever harmonic perturbations are present in the axial flow
about cylindrical structures, there exists the distinct possibility that

they may cause parametric resonances, otherwise known as parametric insta-

+The same remark given in footnote * concerning the frequencies of the pre-
vious table (in Section 3.2.2) also applies to the frequencies given in
this table.
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bilities [64]. It has been shown that such resonances may occur if the

circular frequency of the periodic flow component, wp’ lies in the vicinity

of a fractional multiple of one of the natural frequencies of the cylinder,
w;, i.e. if mp =~ Zw;/ K, where K=1,2,3.... The most important of these
resonances, the so-called principal primary parametric resonance, occurs

when K=1, so that w_ = ZwL — a well-established result from the analogous

p
problem of a column subjected to a harmonically perturbed axial load [65].
In cases where f, =2f , irrespective to the other frequencies f,,
parametric resonance oscillations were observed (Curve 3) for all a tested,
however with an unusual behaviour occurring for o.=1. A typical case is
shown in Fig. 18, for o =0.50 (run G2). It is interesting to note that
Curve 3, in the first few cycles, is diminished in amplitude vis-a-vis

Curve 1 and then, after N cycles, reaches a minimum characterized by the

min
ratio Rmin = [amplitude Curve 3]/ [amplitude Curve 1]. Then Curve 3 in-
creases again, equals Curve 1 in amplitude after N, cycles, and finally
continues to increase steadily (the system is highly unstable, in the sense

that is displays amplified oscillations). The values of Nmin’ R in and N,

mi
are given in the table in the next page.

It is also noted that the frequency finitia

1 in the first few
cycles becomes larger, but later this effect evaporates after a sufficient
number of cycles (after the amplitude has "taken off"). The values of

f are calculated over Nmin cycles of oscillation and are also given

initial
in the next page.
It is most interesting to notice that if a=1 (run G4), i.e. the

higher parametric amplitude envisaged here, Curve 3 is no longer unbounded!

Instead, it displays some kind of amplitude and frequency quasi-periodic
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variations, similar to beating (see Fig. 21); This does not follow the
conventional pattern for parametric resonance oscillations.
The table giving the'parameteks described above is now presented,

with an addition of two sets of X values, exactly the same as for Curve 4

s
in Section 3.2.2. xrms(1) has been calculated over 30 cycles of oscillation

with =0 (Series H) and should be compared to x.._ .(Curve 1) =0.707, whereas

rms

xrms(z) has been calculated over 60 cycles with £=0.005 (Series G) and
should be compared with xrmS(Curve 1) = 0.360.
o Noin®~ Rpin Nu Xems (1) Xpms(2) 0 F4p44449(H2)
0.25 27 0.29 45 0.336 0.244 15.09
0.50 6 0.48 12 3.93 39.79 15.32
0.75 3 0.55 6 22.2 516.6 15.66
1.00 1% 0.58 34 1.52 0.679 16.25

The frequency shift observed is higher than any other observed
before, i.e. of Curve 3 (in Section 3.2,3) and even of Curve 4 (in Section
3.2.2). But it should not be forgotten that this is only an initial fre-

quency measured over a small number of cycles (N . ) and that after, let

min
us say, N, cycles, the frequency remains sensibly constant at about 15 Hz.

The results for the sets of Xpm values are indicative of the

3
peculiar behaviour relating to parametric resonance instabilities described

ms(1) < 212,

which is the classical value for a sinusoid as obtained by Curve 1; this

earlier in this section. Thus, for o =0.25, one obtains x

displays the initial reduction in amplitude referred to earlier; if more

cycles had been taken, then x__ (1) > /2/2 would have been obtained. For

rms
o =0.50 and 0.75, we note that xrms(]) is very large, reflecting parametric
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resonances, but for a=1, a much smaller ers(]) is obtained, reflecting

the beating phenomenon described earlier, rather than a monotonic increase

of amplitude (after an initial decrease) characteristic of a = 0.50 and 0.75

(and also of a=0.25 if a large enough number of cycles were investigated).
The cases tested in Series F, where f =f,, at least for the g

and a involved, displayed no parametric resonance. Hence, within the

ranges tested, it is obvious that principal primary resonant oscillations

do occur, but secondary resonances do not (see Refs. [64] and [65]).
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CHAPTER IV

DIGITAL ANALYSIS OF THE FREE
VIBRATIONS IN THE FREQUENCY DOMAIN

4.1 Introduction

The results obtained in Chapter III (for Curve 4) agree quali-
tatively with Carlucci's observations, at least as far as the shift towards
higher frequencies is concerned. This shift means indeed that the observed
added mass is lower than that calculated on the basis of the homogeneous
model of two-phase flow, for which mh(t) ='ﬁg js taken. However, quanti-
tatively speaking, the effect that we observed remains weak, compared to
what Carlucci reported. On the other hand, damping has not been found to
be higher, and on the contrary it even seemed tobe a 1ittle lower, as the
Xyms values given in Section 3.2.2 indicate it (for a=0.25, these values
are higher by 1% than those found for a=0). This obviously does not accord
with the observation of a significantly higher damping reporfed by Carlucci.
Thus, the study in the time domain conducted in Chapter III has proven not
to be quite conclusive.

One reason for this relative failure is thought to 1ie in the Way
the pseudo-random added mass perturbations, i.e. a(t), are generated (cf.
Appendix C.2). As a matter of fact, no restriction on frequency content
was included in the Monte-Carlo method used to generate the random variates
of a(t), as has already been mentioned in Section 3.2.3 when Series B were
examined. In Fig. 23, the power spectrum of this pseudo-random a(t) is

shown, and it may be seen that it effectively contains all frequencies and

could be considered as an approximate white noise. This is by far not the
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case of the deterministic a(t), used fof Curve 3 of Chapter III, which includes
specifically five frequencies fi’ thus favouring certain predominant fre-
quencies to perturb the added mass. Studies being conducted by AECL*, sub-
sequent to Carlucci's work, suggest that the random perturbations a(t) should
actually be of narrow frequency band. Hence two new aspects must be added

to the present analysis. On the one hand, new schemes for generating random
perturbations of the hydrodynamic mass have to be deve]bped, capable of pro-
ducing a narrow-banded a(t), or rather a(f) where f stands for the frequency.
On the other hand, to enable such a study in the frequency domain, the fre-
quencies themselves must appear explicitly in the analysis. The whole study
must therefore be transferred from the time domain into the frequency domain.
Since we have already implemented the Monte-Carlo method (for generating

the random perturbations) and the Runge-Kutta scheme (for solving the dif-
ferential equation), it was decided to undertake this frequency analysis on
the same digital computer used before (Amdahl V7 of McGill University).

To carry out the study in the frequency domain, we want to calculate
the power spectra of both the added mass perturbations a(t) and the system
response x(t). This leads us to introduce the Fourier transform, since the
power spectrum Gyy(f) of a time function x(t) is defined as the Fourier
transform of its autocorrelation Ryy(t), i.e.

-i2nf

Gyx(f) = f” e Ryx(1) dr. (4-1)

The autocorrelation function itself is a time average (for an ergodic process)

defined by

*
Atomic Energy of Canada Limited.
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Ryx(T) = Tim 5t/ x(t) x(t+1) dt. (4-2)

Much has been written on the Fourier transform, but we shall only quote

the book by Bracewell [66]. However, calculating numerically a Fourier
transform, as the one given by equation(4-1) for instance, is not an easy
task, and, anyway, the Fourier transform cannot be integrated in its con-
tinuous form, but has to be discretized and truncated. Fortunately, a

very efficient algorithm for calculating this discrete Fourier transform
(DFT) was "rediscovered" in 1965 by Cooley and Tukey [67], after the results
of the mathematicians C.C. Danielson and Cornelius Lanczos which were "Tost"
in 1942. This powerful algorithm is called fast Fourier transform (FFT)

and reduces significantly computing time and cost, making thus possible
rapid transformations between time and frequency domains. Calculations

that once took minutes and cost dollars can now be done in seconds for a

few cents. The Cooley-Tukey algorithm takes advantage of the redundancy

in the nested multiplications to reduce the number of transform operations
to Nppr 1og, (Nppp) rather than the traditional NBFT operations of the discrete
Fourier transform in order to realize this speed-up; NDFT denotes the number of
samples of the time function used for the DFT. More information may be
found in Brigham [68], in Bergland [69] and also in Appendix D.1, on the

DFT and on the FFT algorithm, as well as on three problems or "pitfalls"
encountered in using them, namely aliasing, leakage and the picket-fence
effect. A program for computing the FFT algorithm is given on page 164 of
Ref. [68] and another one on page 184 of Ref. [70], but in this study we
shall use a subroutine taken from the IMSL Library [62]. This subprogram

computes directly the power spectrum and is therefore called FTFPS (Fast
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Fourier transform estimates of power spectra and cross spectra of time
series). During its run, the FTFPS subroutine calls the FFTRC subroutine
(also taken from the IMSL Library) which computes the fast Fourier trans-
form of a real valued sequence. But before calling FFTRC, the FTFPS routine
uses a symmetric data window which is approximately the Parzen spectral
window, Let Nt be the number of input samples of the time domain (i.e. the
number of data to be transformed). We also introduce L, which is an input
parameter used to segment the time series. L must be a power of two, and

Nt must be evenly divisible by L. The number N__ of sampled frequencies

ps
obtained by calling FTFPS is equal to Nps = (L/2)+1. Those spectral esti-

mates are taken at frequencies

S = (4-3)

LAt
where i=1,2,...,(L/2) +1 and At is the period of sampling of the time series.
As a final remark on the FTFPS sub-program, let us mention that the output
(power spectrum) is returned into units which are the square of the input
data.

To come back to the random perturbations of the added mass, two
main ranges of FTFPS parameters have been chosen, and they help to distin-
guish the two following sections. In Section 4.2, the frequency range (0 -
160 Hz)™ with N__=1025 (i.e. L=2048) and ¢ =0.005 is mainly considered,

ps

whereas in Section 4.3 this range is reduced to (0-40 Hz) with N = 513

p
(i.e. L=1024) and £=0.02. As for the various schemes of a(t) generated

in this chapter, they are classified in Appendix D.2. For the sake of

*
It might be wondered why such a large range is adopted for studying a much
smaller range: (5-25 Hz). This is merely to make sure that we will not
miss any effect below 160 Hz.
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completeness, the cases studied in Chapter III are also mentioned, and on
the whole eleven schemes are distinguished. Each particular scheme has
been denoted by a small letter from a to k given in brackets (e.g. [a],
[b],...). To indicate whether the scheme is considered in Section 4.2 or
4.3, this small Tetter within brackets is preceded respectively by the
capital letter A or B (e.g. A[a] stands for scheme [a] considered in Sec-
tion 4.2, and B[i] denotes scheme [i] of Section 4.3).

In the previous chapter, the deterministic a(t) (scheme [b] lead-
ing to former Curve 3) was taken as a sum of five sine functions. In this
chapter, it will be a function of N sine functions, with nevertheless mostly
N=5 in Section 4.2, but with mostly N=33 in Section 4.3. Hence a is

defined more generally than in equation (3-3) by
_ N
a= I a, = Na,. (4-4)

The results are both printed on the computer output and plotted
by means of the Calcomp 663 digital incremental plotter. On the legend
of fhese plots may be read the parameters ALPHA and SIGMA which stand res-
pectively for a and o. Finally, a typical listing of the program used may

be found in Appendix D.3.

4.2 Results Obtained in the Frequency Range (0 - 160 Hz)

Most of the results given here are indeed obtained, unless other-
wise specified, in the frequency range (0- 160 Hz)with the number of power
spectral estimates Nps equal to 1025. Using these values means that 6.4

spectral samples are obtained per Hertz or, said in an equivalent way, that
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the resolution obtained is Af=0.156 Hz (frequency interval between two
consecutive spectral estimates).

In this section, damping is generally taken as ¢ =0.005, as it
was suggested and chosen in Chapter III. The natural frequency of the sys-
tem is typically taken as 12, 13, 14 or 15 Hz. Moreover, the number Nt of
samples of the time function is chosen to be 4096 (at least when the fre-

quency range and N__ are those indicated above). N, is thus effectively

ps t
evenly divisible by L as it should, since L =2048 (see at the end of the pre-
vious section). On the other hand, the step-size h=At, which is the per-

jod of sampling of the time function, is determined by using equation (4-3).

We have
25 = 0
1
: N._~1
fPs . ps
Nps LAt

and also

RS - 5 =,
Nps 1

where FR stands for the frequency range. Hence

NES-] - FR
LAt ?
from which we get
h _ _ N S"]
= At = -P-—L_FR . - (4-5)

Numerically speaking, we obtain



_ 1024 1
At = 5048 < 160 - 320 - 3.125 ms. (4-6)

The total sampling time Tt is then

T, = N_. - At = 4096/320 = 12.8s.

t t

Hence the total number of cycles Nc(f) investigated for a signal of fre-

quency f is
T
Ne(F) = 5= Ty f, (4-7)
where T = 1/f. .

We thus notice, since the natural frequency fn lTies between 12
and 15 Hz, that the time signal will be analysed over qpproximate]y its
170 first cyc]esT. This is about two and half times the highest number of
cycles considered in the time domain study conducted in Chapter III.

This also means that a signal of frequency 5 Hz will be considered
over 64 cycles, whereas over 320 cycles for a frequency of 25 Hz. Hence
we obtain 64 time samples o?er one period of a signal of frequency 5 Hz,
about 24 samples for a signal of frequency fn, and 12.8 samples when the
frequency is 25 Hz (5 and 25 Hz are respectively the Tower and upper Timits
of the frequency band desired for the pseudo-random a(t)).

We will now discuss the results obtained, first for the deter-
ministic perturbations a(t) (Schemes [b] and [a]) in Section 4.2.1, and
then for the pseudo-random a(t) (Schemes [c], [d], [e] and [f]) in Sec-
tion 4.2.2.

1uOve\r 150 cycles if fn=12 Hz, and 190 cycles if fn= 15 Hz.
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4.2.1 Response of the System to Deterministic_Added Mass_Perturbations;

- - -

Only considered with N=5, Case A[b]* has been run for two values
of a: a=0.25 and a=0.75. For a=0.25, the natural frequencies f =12 Hz
and f,, =15 Hz were considered (in Chapter III, only fn= 15 Hz was envisaged).
For a=0.75, the study was extended to five values of fn: 11, 12, 13, 14
and 15 Hz. Let us now give the numerical results of the runs in which fn=

12 Hz and fn= 15 Hz.

oo dnPUY .. Results .
Scheme -
of a(t) ¢ o folHz)  [ow)]psy fresp  2fipp  Aresp
[a] 0 - 12 0 12.03 0.125 20.69
[b] 0.2 - 12 0.96 12.03 0.12 24.19
[b] 0.7 - 12 8.65, 12.5 0.254 7.9x10!°
[a] 0 - 15 0 15.0 0.12 13.63
[b] 0.25 - 15 0.96 15.0 0.125 14.41
[b] 0.75 - 15 8.65 15.31 0.12 13.7

=Main table=

In this table as well as in the next ones, [a(w)]max is the amplitude of

the highest peak in the power spectrum of a(t), f is the frequency at

resp

which the peak in the power spectrum of system response occurred, Af;pp
2

is the frequency interval at the half-power point, and A is the ampli-

resp
tude of the response peak.

It is seen, especially when a=0.75, that parametric resonance
occurs when fn= 12 Hz, but does not occur when fn= 15 Hz. The other runs

done for a=0.75 show that for the other values of T this parametric

*See Appendix D.2.
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‘:} resonance does not occur, as can be seen in the additional table below.
fn fresp Af1/2pp Aresp
11 11.25 0.13 26.98 -
13 13.125 0.12 13.67
14 14.22 0.154 8.915

=Additional table=
In common: Scheme [b]; & =0.75; [a(w)]max==8.65.

In fact, the result for fn= 12 Hz and a.=0.75 is very clear since
it indicates that the frequency at which the resonance occurs is actually
12.5 Hz. This proves that we are dealing with the primary resonance asso-
ciated to the frequency f_ =25 Hz (since 25/12.5=2). Actually, the power
spectrum of the system response for fn= 12 Hz and a.=0.75 displays even
more interesting features as far as parametric resonance is concerned (see
Fig. 24). Four smaller peaks can be seen, but in reality they are not so
small, since the scale of'the y-axis is determined by the peak at 12.5 Hz
with an amplitude of nearly 10%°. The next peak in importance after the
one at 12.5 Hz is found for a frequency of 7.5 Hz. Visibly this is the pri-
mary parametric resonance due to f, =15 Hz (15/7.5=2). The third interest-
ing peak is found for a frequency of 2.5 Hz and is the primary resonance
associated to f =5 Hz (5/2.5=2). Hence three primary parametric resonances
have been displayed. The two smaller remaining peaks occur at frequencies
of 17.5 Hz and 22.5 Hz, but it is not exactly known to which combination
of perturbation frequencies fi they are therespdnse. It is however felt
that they represent secondary parametric resonances responding respectively

to frequencies of 17.5Hz(17.5/17.5=1) and22.5 Hz (22.5/22.5=1). These two
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frequencies of 17.5 Hz and 22.5 Hz can possibly be present in a(t) by some

addition of certain frequencies fi according to the trigonometrical for-

mula
sin p + sin q = 2 sin Eigg- cos E%Fl
(we have 10320 - 15220 - 475 apq 2022 = 22.5).

It is recalled that in Chapter III (Section 3.2.4), only one
principal parametric resonance (for fn= 15 Hz: 30/15=2) and no secondary
resonance were found. But fn= 12 Hz was not envisaged at that time.

Coming back to the main table above, it is seen that, contrary
to intuition, the abso]ute.value of the response when fn= 12 Hz is higher
than when fn= 15 Hz. However, this is not a conventional forced-vibration

system; hence, this should not be interpreted as an ordinary resonance

effect.
The results concerning Afbpp are not significant, but as for the
2]
frequency, it is seen that for fn= 15 Hz and o =0.75, we have fresp= 15.31 Hz,

whereas in Chapter III (end of Section 3.2.3) it was found to be 15.23 Hz,
all the input parameters being the same. Taking the resolution of the
spectral solutjon into consideration (Af=0.156 Hz), this is a good result.

Another observation is that even in this deterministic case, there
are variations in Aresp as a changes, as seen when fn= 15 Hz; however, the
effect is not systematic.

Finally to illustrate these results, the power spectra for & =0.25
are shown in Figs. 25(a), (b) and (c¢). In Fig. 25ka) may be seen the five

deterministic peaks, exactly equal; next to the ordinate showing the relative

amplitude is indicated the absolute value — in this example 0.96. The sharp
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peak of the system response is shown in Figs. 25(b) and (c) for f, =15 Hz
and 12 Hz, respectively. When fn= 12 Hz,-a very small peak appears justto the
right of the main peak and denotes theifpending rise of the parametric

resonance.

The purpose of this set of calculations, as already explained
in the introduction to this chapter, is to study the effect of random added
mass perturbations a(t) of narrow frequency band. It is for this reason
that various models have been developed for a(t), starting from the less
elaborate scheme [c] which was investigated in Chapter III and is completely
pseudo-random. With scheme [d] the effect of having pseudo-random ampli-
tudes is of interest, whereas schemes [e] and [f] consider pseudo-random
frequencies, in the hope that one might thus be able to "broaden" the N
sharp response peaks obtained for the deterministic scheme [b] (cf. Fig.
25(a)). Finally it is hoped that if we can "broaden" these deterministic
peaks enough, they will "join" and form one quasi-continuous frequency
band (eventually the number N of peaks will have to be increased within
the range considered — between 5 Hz and 25 Hz — in order to "help" them
to "join" up more easily).

Quantitative comparisons of the results are also made, in order
to examine the following specific questions:

(i) how do the actual frequencies of oscillation compare to the natural
frequencies of the system;
(ii) whether the width of the response peak broadens with more random per-
turbations in the added mass;

(i1i1) whether the vibration amplitude changes systematically with increasing

randomness in the added mass.
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It is reasonable to expect that if the hydrodynamic mass should.
decrease and the effective damping should increase with increasing random-
ness fn the added mass, one would expect to see (a) an increase of the effec-
tive oscillation frequency, (b) a broadening of the vibration amplitude peak
in the power spectrum of the system response, and (c) a reduced amplitude
of the vibration peak.

We shall now examine the results obtained with these different
models.

Scheme [c]: This is the random scheme which has been adopted in the previous
chapter (Section 3.2.2), and on which all the random discussion was con-

ducted. The values of o and ¢ are related by

o=a/vN , (4-8,b)
and we also have

u =0, (4-8,a)

as may be seen in Appendix D.2.

As for Case A[b] 1in the previous Section 4.2.1, Case A[c]*
has only been run for N=5, and for a=0.25 and 0.75 (hence o=0.25//10
and 0.75//10, respectively).

Fig.. 23 shows the power spectrum of a(t) for a=0.25 (and o=
0.25//10). As may be seen, the form of a(t) is really wide-band random,
the energy being distributed on all frequencies (and this probably goes
far beyond 160 Hz). However, the response of the system is of narrow band,

displaying a sharp peak at f= fn exactly as on Fig. 25(b). For fn= 12 Hz,

*
See Appendix D.2.
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the parametric resonance which appeared in Case A[b] does not occur at all.
In this sense, the random a{t) actually has a damping effect.

Let us now view the results obtained.

Input Results

Scheme -

of al(t) e 9 fn(HZ) [a(w)]max fresp Aresp
[a] 0 - 12 0 12.03  20.69
[c] 0.25 0.25//10 12 0.0326 12.03  20.66
[c] 0.75 0.75//10 12 0.2938 12.34 17.79
[a] 0 - 15 0 15.0 13.63
[c] 0.25 0.25//10 15 0.0326 15.0 12.60
Lc] 0.75 0.75//10 15 0.2938 15.47 9.22

We see that the frequency of the response increases with a, which goes in
the direction sought and agrees with what was found in Chapter III. In
Section 3.2.2, we found indeed that,for a=0.75 (and fn= 15 HZ)’fresp=
15.47 Hz, and here we get the same value, which proves that there is good
agreement between the two methods. However, we obtain also an interesting
result that we could not get previously, i.e., we see that Aresp decreases
when o increases, both for fn= 12 Hz and fn= 15 Hz. Hence, a certain damping
effect appears here.

As in the previous Case A[b], the amplitude when £ =12 Hz is
higher than when fn= 15 Hz,
Scheme [d]: 1In this case, pseudo-random amplitudes are considered. Fig. 26
shows the power spectrum of o(t) for N=5 and 0.=0.25. The five peaks still

appear very distinctly, and the power spectra of the response, which were

obtained for the same parameters (fn= 12 and 15 Hz; a=0.25 and 0.75) dis-
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play, as might have been foreseen, the same behaviour as for the determin-
jstic case A[b]. No "broadening" of the deterministic peaks can be obtained

with scheme [d]. This is clearly not a useful model.

Scheme [e]: A great deal of work has been done with this model, for which

the deterministic frequencies fi are perturbed by a random fluctuater.

Now, the two parameters a and o can be chosen to vary independently; hence,
in Figs. 27(a) - (c) is shown the power spectrum of a(t) for a given a (a=
0.25) but for increasing o (o=0.25, 0.50 and 1). As may be seen, we

are still considering the value N=5. It is seen that when o is small

(Fig. 27(a)) the dominant frequencies stand out clearly, in a background of
"noise". However, with increasing o, the "noise" becomes more pronounced,
so that in Fig. 27(c) it is difficult to pick out the predominant freguen-
cies — although, on closer examination, it may be established that they are
still there. Actually, the amplitudes of Figs. 27(a) - (c) indicate that it
is not the "noise" which increases in such a proportion, but that rather the
amplitudes of the deterministic peaks progressively decrease, until they are

"swallowed" by the "noise". Unfortunately, the establishment of this fact

indicates that the desired effect of a broadening of the peaks is much

less important than the observed effect of the peaks vanishing in the gener-
al "noise".

As far as the response is concerned, it cannot be said to change
very much when the system is subjected to any of the a{t) considered above
and seen in Figs. 27(a) - (c). It consists of one sharp peak at f= fn’ simi-
lar to the one shown in Fig. 25(b). Nevertheless, it should be mentioned
that for a=0.75 and fn= 12 Hz the parametric resonance, which was observed

in Case A[b] at a frequency of 12.5 Hz, still appears but at a much reduced
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level (since with scheme [e], an amplitude of the order of only 107 to 102 —
decreasing when o increases — is obtained, whereas for scheme [b], it reached
10%7).

Let us now give the quantitative results obtained for a=0.25,

fn= 14 Hz and N=5 (these are the runs for which a(t) is shown in Figs.

27(a)-(c)).

Input Results
TScheme = Lo\ a4 LT T T
of a(t) o fn(HZ) [u(m)]max fresp Aflzpp Aresp
[a] 0 0 14 0 14.06 0.216 12.45
Le] 0.25 0.25 14 0.298 14.06 0.13 14.11
[e] 0.25 0.50 14 0.0782 14.06 0.125 13.43
[e] 0.25 1.00 14 0.0285 14,06 0.128 12.65

It is noted that with increasing o, [a(w)] decreases (what has already

max
been explained by the vanishing of the five deterministic peaks), and so

does A However, there is no significant broadening of the response,

resp’
nor a significant frequency shift.

Although promising, the desired goal of achieving narrow banded
a(t) has really not been achieved. Therefore, two further attempts were
undertaken. The first consists in increasing the number of predominant
frequencies from N=5 to N=17. Fig. 28 shows the power spectrum of a(t)
for this new value of N, and for a=0.25 and 0=0.50. As it may be noticed,
increasing N has not changed things very much. (The value of [a(m)]max
is 0.0133 in Fig. 28, which is smaller than 0.0782 in Fig. 27(b), also
obtained for a=0.25 and 0=0.50, but with N=5. This is due to the fact

that the amplitude %3 common to all sine functions of scheme [e], is now
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2 instead of ¥ previously [cf. equation (4-4)]. The other parameters

17 5

obtained are: f =14.06 Hz, Af, _=0.177 Hz, and A =13.47.)
resp *spp resp

The second attempt made amounts to decreasing the discrimina-
tion of the calculation — which means reducing the resolution Af in the
power spectrum calculations. It should be stressed that this is the only

part of Section 4.2 in which the range (0-160 Hz) and N . 1025 are not

P
adopted. In fact we consider here the range (0-80 Hz) and Nps= 129, which
gives us 1.6 spectral samples per Hertz,or a resolution of Af=0.625 Hz.
Decreasing the discrimination of the calculation makes actually things
"Jook" a great deal more successful [Figs. 29(a) and (b)]; the response
displays also a broader peak [Fig. 29(c)]. But we know that in fact this
is artificial and that things are not really better. We now indicate the

quantitative results obtained with these range and value of Nps’ and for

N=17 and fn= 13 Hz.

Input Results

[e] 0.25 0.25 13 0.0111 13.12 0.50 14.45
[e] 0.75 0.25 13 0.10 13.12 0.46 13.76
[e] 0.25 0.50 13 0.0072 13.12  0.51 14.50
[e] 0.75 0.50 13 0.0646 13.12 0.47 13.36

Range = (0, 80 Hz) and Nps= 129.

It is seen that, as o increases, A decreases very slightly and Af,
3

resp PP

remains almost the same. However, these results are not very reliable,

because of the small number of points in the spectrum.
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:D Scheme [f]: The results of this case are very similar to those obtained
wifh scheme [e]; as a matter of fact, both schemes consider pseudo-random
perturbations on the frequencies. It was noted,nevertheless, that for a
given a the "broad-banded" form of a(t) emerges at higher values of o than
was the case with scheme [e]. Also, for a.=0.75 and fn= 12 Hz, the remain-
ing effect of parametric resonance displays higher amplitudes (from 10!'?
to 103, decreasing with increasing o) than it did with scheme [e]. Hence
schemes [e] and [f] display the same qualitative results, but the effective

damping is lower for the latter scheme.

4.3 Results Obtained in the Frequency Range (0 -40 Hz)

The first part of the frequency domain analysis (Section 4.2)
has proved to be a relative success, since good agreement with the time
domain results (Chapter III) could be reached for the common schemes [b]
and [c], especially as far as the effective frequency of oscillation is
concerned. Moreover, it was possible to observe a more conclusive damping
effect due to the random added mass perturbations, in the case where para-
metric resonance occurs (what was already found in Chapter III), as well
as in the case of the completely pseudo-random scheme [c] (what could not
have been displayed previously).

Nevertheless, the desired goal of generating a narrow-banded

pseudo-random a(t) could not be achieved with any of the three new schemes

introduced, namely scheme [d] (with randomly perturbed amplitudes ai) and

*
When f_=12 Hz and with large amplitudes of a(t). This was observed for
‘:D schemes [e] and [f], where f, =12 Hz displays a much reduced parametric
resonance compared to scheme [b].
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[e] and [f] (with randomly perturbed frequencies fi)' In fact, instead of
observing a broadening of the sharp peaks corresponding to the N frequen-
cies fi’ with increasing o [cf. Figs. 27(a) - (c)], it was noticed that

the peaks — still very sharp — decrease in amplitude until they become no

longer distinguishable from the surrounding "noise". Increasing the num-

ber N of perturbation frequencies fi did not alter this pattern of behaviour.

In this section, another digital attempt will be undertaken to
come closer to the aim or producing such an a(t) of narrow frequency band.

Therefore two improvements are introduced; the first one consists in choos-

ing certain better system and analysis parameters, and the second one in

testing more sophisticated models of the added mass perturbations a(t).

The parameter improvements are the following:

(i) we increase the value of ¢ from 0.005 to 0.02, in order to obtain a
broader peak for the system response, which will make it easier to
measure Af%pp;

(i1) we choose the value f, =14 Hz for the natural frequency of the system,
to avoid any effect of the parametric resonance observed at fn= 12 Hz
(this parametric resonance occurringactually at 12.5 Hz); we also
discard fn= 13 Hz for the same reason, even though no really impor-
tant effect of this parametric resonance has been observed at that
frequency; furthermore, we do not choose fn= 15 Hz, since 15 Hz is
precisely one of the deterministic frequencies involved in a(t);

(iii) we reduce the frequency range studied from (0 - 160 Hz) down to (0- 40
Hz), and this is sufficient since we want the frequency band of a(t)
to spread between 5 and 25 Hz, and also since we have not discovered
any unsuspected effect above 40 Hz affecting the system response (in

Section 4.2);
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(iv) we also reduce the number N__ of points used to calculate the power

s
* *p .’.
spectra of a(f) and x(f) from 1025 down to 513" (hence L =1024);

U

this is possible since we reduce the frequency range by four times.
Thanks to all this, our results on the three parameters of inter-
est (response frequency, frequency interval at the half-power point, and
amplitude of the response peak) will be of much better comparative value.
Having chosen these frequency ranges (iii) and number of calcula-
tion points (iv), we obtain 12.8 calculated points per Hertz or, in other words,
the width of one calculated frequency interval or resolution Af is equal
to 0.078 Hz approximately. This means that the accuracy of the power
spectra obtained is twice better as it was in Section 4.2.

Having done (i), (iii) and (iv), we notice on the output data
that, since the response peak is broader, we obtain about 20 significant
points to plot this peak, whereas only 3 such points were available for
the very sharp peaks of Section 4.2. This is quite an appreciable improve-
ment.

However, one question might give some trouble and stems from the
choice of N, L and N (here Nt= 2048). 1In fact, equation (4-5) gives a

ps
period of sampling of the time record At equal to

At = s557 -7/ = af = 12.5 ms.

The value is four times bigger thanbefore. Hence there will be four times

*
Where f stands for the frequency.

TLWith 513 points, the computing time is half of what it would be with 1025
points; moreover the program can be run in CLASS 2, whilst a 1025 points
‘ program requires CLASS 3.
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less sampling points per cycle of oscillation, i.e. 16 samples per cycie
if f=5 Hz, about 6 samples if f= fn, and only 3.2 samples if‘f= 25 Hz.
As we can see it, there exists a conflict between accuracy in the time
domain of the input and accuracy in the frequency domain of the output.

The total sampling time is

T, =N

t -At = 2048/80 = 25.6 s.

t

This is twice the time length covered before, hence the number of cycles
considered will also double, which represents about 340 cycles of the res-
ponse (128 cycles of a signal of 5 Hz and 640 cycles if f=25 Hz).

As for the models of a{t) to be tested, they include three former
ones, namely schemes [a] (reference with o(t)=0), [b] (deterministic refer-
ence = sum of N sine functions) and [e] (pseudo-random perturbations of the
frequencies fi)' The new schemes introduced here are denoted from [g] to
[k], and consist mainly of more refined deterministic variations of the
frequencies f; (schemes [g], [h] and [j]) on which pseudo-random pertur-
bations may also be added (schemes [i] and [k]). For further information
on these schemes, see Appendix D.2.

Let us finally note that in every run with non-null a(t),
the value o0.=0.25 is used. Also, in every run in which pseudo-random RO{r
sequences are generated and used, the mean “i::O and standard deviation
oi==0.25 are used.

We now review the different schemes and examine the power spectrum
of a(f),as well as the results concerning the response x(f).

Scheme [a]: This is the reference case with a(t)=0. Two runs are con-

ducted, the first one being the only run of this Section 4.3 which is not

*Roi is defined in Appendix D.2.
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considering N__=513. The results obtained are given below.

pS
Input Results
T e el IR P
[a] 1025 0-40 25.6 13.87 0.520 1.81
[a] 513 0-40 12.8 13.9 0.524 14.36

a(t)=0

This Case B[a] is interesting mostly because it allows comparison of
the results for the two different values of Nps' The damping being more
important now (z=0.02), the response x(t) will decay rapidly and we notice
actually that the response amplitude of the first run (1.81 x 107*;
for Nps= 1025) is eight times smailer than for the second run (14.36x107"%;
for N S=?513). This example shows us one limitation of the FTFPS method,

P
since we are limited by the time span studied, and maybe in Section 4.2
we did not go far enough in time to obtain some expected results. We also
understand that this method would not be well suited for the study of the
forced vibrations of the system, since in that case a much bigger number
of cycles should be investigated.

Another limitation lies in the discreteness of the method itself,
and this is illustrated by the results concerning the effective response
frequency. For the first run the response peak, or more exactly the maximum
frequency estimate obtained, is Tocated at the discrete frequency abscissa
fr]= 13.8671875 Hz, whilst for the second run, this frequency point is not
present and the peak is obtained for fr2= 13.90625 Hz (see Fig. 30).' But

this problem is inherent to any digital method, and the results have to be
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given with an indication of the resolution of the method. One thing is sure

\

from both runs, it is that the response frequency is smaller than the nat-
ural frequency of the system (14 Hz), but it is not known exactly where

it occurs. (There might however exist a very slight difference between

fr‘1 and frz’ due to the Runge-Kutta method used over different time lengths.)
The unexpected lower frequency found may be due partially to the higher
damping used (z=0.02 instead of 0.005).

From now on, all subsequent runs will have in common: Nps= 513,
range = (0,40 Hz), fn= 14 Hz, £=0.02 and 0.=0.25. Moreover, for all pseudo-
random runs, the value 0=0.25 is adopted (only the "realistic" value is
considered).

Scheme [b]: This is the deterministic reference case and consists simply
of a sum of N sine functions. In Case B[b], four values of N are considered:
N=5, 9, 17, 33. The perturbation frequencies fi stretch between 5 and 25

Hz and their respective values may be found in Appendix D.2.

Let us give the results right now.

Input Results
Scheme Ayes
of a(t) N [a(w)]max fr‘esp Af%pp » ]0?“
[b] 5 0.4809 . 13.9 0.531 13.63
[b] 9 0.1484 13.9 0.529 14.39
[b] 17 0.0416 13.9 0.520 14.43
[b] 33 0.01104 13.9 0.524 14.44 [Fig. 31]

a=0.25and c=0

The most visible, and also expected affect is the strong decrease

of [a(w)] as N increases. This comes simply from the choice of a; as

max

C
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a; = %-for all i (equation (4-4)), hence since we want o to be constant, a;
decreases as N increases.

We also notice a slight increase of A » which is only certain

resp
when passing from N=5 to N=9. To be complete, we should compare these
amplitude values with the one obtained from the second run of Case B[a],
and then we see that this conclusion does not hold since Aresp of Case

B[a] is even smaller than Aresp of the second run of this case (14.36 <

14.39). The imprecision on A does not allow us to conclude anything

resp

else but that Aresp is constant. The same conclusion can be made about fresp

and Af%pp.
From this point on, we could continue to give in a similar way

the results for the other schemes considered, since in fact schemes [e]

and [g] have also be run for the same four values of N. But it is believed

that a comparative discussion is more interesting, and for this purpose,

we shall only consider the runs for which N=33 has been adopted. As a

matter of fact, it is with this highest value of N that the chance is the

biggest to obtain a narrow-banded o(t).

But before giving the results for N=33, let us have a qualita-
tive review of the power spectrum of a(t) obtained with the different schemes
(also for N=33). In Fig. 31(a) are seen the 33 deterministic peaks charac-
teristic of the reference case [b] (already discussed above), whereas Fig.
31(b) displays the associate system response. This will be the only res-
ponse peak shown in this section, since for all the other schemes investi-
gated, the shape of the response peak was found to be similar.

In Fig. 32 is given the power spectrum of o(t) corresponding to

scheme [e]. It exhibits a wide-band spectrum, very different from the sharp
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peaks obtained for N=5 in Section 4.2.2 [cf. Fig. 27(a)]. It is more simi-
lar to what is obtained for the completely pseudo-random scheme [c] (cf. Fig.
23). Unfortunately, the same kind of behaviour is observed in Figs. 33,

34, 35 (scheme [g]) and in Fig. 36 (scheme [h]).

However, a better result 1is achieved in Fig. 37, actually the
first good result up to now, as far as the aim of generating a narrow-banded
a(t) is concerned. This relative success is found for scheme [h] with
Wi = 0.2 for all i and x=2 (cf. Appendix D.2), which means that the exact

scheme considered is

33
£ sinfw,(1+0.2 sin(20mt))t],
=1

o

a(t) = 3

w

;
for which the values of w; may also be found in Appendix D.2.

This result is considered to be a success because the "bel1"-
shape of a narrow frequency band appears, but this success is only relative
since the broadening of the outstanding peaks (corresponding to the fre-
quencies fi) is not sufficient to give us a real frequency band.

We have mentioned before that this is the first case displaying
a good result, but unfortunately it is also the last. Another problem
seen indeed in Fig. 37 is that the potential narrow frequency band does not
spread exactly between 5 and 25 Hz, but rather between 12 and 28 Hz, which
is a little too far from the suggested “realistic" conditions desired [cf.
equation (3-4,b)]. To obtain the same kind of spectrum, but shifted to the
"left" on the frequency abscissa, we proceed to a systematic shift of the
perturbation frequencies fi and therefore reduce all of them by 3 Hz. In
other words, we replace the frehuencies (5, 5.625, ..., 25 Hz) by (2, 2.625,

...» 22 Hz). However, this does not produce the expected result as we may
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notice it in Fig. 38 (scheme [j]) and in Fig. 39 (scheme [k]). The desired

shape of Fig. 37 has actually disappeared, and there only remains a wide

band spectrum, as found in Figs. 32 to 36.

We are thus forced to recognize

that there is little hope in obtaining a narrow-banded a(t) by means of

such a digital method.

However, it may still

be interesting to give the quantitative

resuits obtained for all these runs, conducted with N=33 (except for scheme

[a], of course, since a(t)=0).

—

Input Results
Scheme Nature TP Eaggzgmax fresp Af%pp ﬁ¥8§ Figure

[a] d - - - - 13.9  0.524 14.36 -

[b] d - - - 110.4 13.9  0.524 14.44 Figs. 31
[e] pr - - 0.25| 38.62 13.9 0.520 14.54 Fig. 32
[g] d 0.2 5 - 41.89  13.9 0.533 12.75 Fig. 33
[g] d 0.2 2 - 79.97  13.9 0.519 13.60 Fig. 34
[q] d 0.1 5 - 45.28  13.9 0.513 13.37 Fig. 35
[h] d 0.2 5 - 41.71  13.9 0.533 14.34 Fig. 36
[h] d 0.2 2 - 77.55  13.9 0.525 12.94 Fig. 37
[3] d 0.2 1 - 64.18  13.9 0.519 14.57 Fig. 38
[k] pr 0.2 1 0.25| 33.25 13.9 0.512 14.51 Fig. 39

The general observation is that, as well as being unable to obtain

good results from the qualitative point of view, these results are also not

very en]ightening§. It is true that most of these schemes are deterministic

and that the deterministic scheme [b] has been found in Chapter III, for

*
Nature:

§The results of f
this.

d denotes a deterministic scheme, and pr a pseudo-random one.

resp

» which seems to be constant, are a good example of
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instance, to display less important effects (e.g. effective frequency) than
the pseudo-random scheme [c]. Another reason is that here we took o =0.25,
which is the lowest value of o studied, and the effects have always proved
to remain weak for such a Tow a.

It could be mentioned here that the two lowest values of [u(m)]max

are found precisely for the two pseudo-random cases (schemes [e] and [k]).
Comparison between schemes [j] and [k] is also interesting, since the latter

is the pseudo-random perturbed version of the former. According to Aresp’

damping seems to be higher (14.51x107"* < 14.57x10~") but not according

to Af, (0.512<0.519) since for higher damping, Af would increase.
2

Lpp
Another reason for the lack of significant results of this section

pp

may be the small number per cycle of discrete data taken from the time domain

signal, at least for the highest frequencies considered.
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CHAPTER V

ANALOG ANALYSIS OF THE FREE AND
FORCED VIBRATIONS IN THE FREQUENCY DOMAIN

S.i Description of Equipment and Method

5.1.1 Digital 3ignal Analyser and Analog Computer

The motivation for this last analysis lies in the failure of the
digital methods to generate pseudo-random added mass perturbations of nar-
row frequency band. Of course, we could still improve these methods by
introducing digital filters. But this is considered to be too complicated,
especially when considering a certain rigidity inherent in the FTFPS
power spectrum sub-program as for the choice of the parameters of interest.
High computer times (up to $160 CPU charge occurred for certain digital
runs) are also a factor to be taken into account against the digital
methods.

This is why we decided to switch from the Amdhal V7 computer to
our Hewlett-Packard vibration analysis equipment. The main piece of this
equipment consists of a HP 5420A Digital Signal Analyser. This electronic
device performs a variety of time domain and frequency domain measurements.
To Tink the time domain to the frequency domain, it also makes use of the
FFT algorithm, described in Appendix D.1 and used in Chapter IV. One
valuable advantage of the analyser is the possibility of processing not
only one ensemble of Nt time domain samples — as it was done previously
with the FTFPS sub-program — but on the contrary a whole series of them.

A very important number of these ensembles (up to 32,767) can be processed
one after the other, as soon as Nt time data have been sampled. The
process used to obtain the final result is a signal averaging which,

in this case, is an overlapped processing. Although time windowing of

measured data records is a necessity when using digital processors — and
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this is in order to avoid aliasing (cf. Appendix D.1) — one of the dele-
terious effects of‘windowing is the loss of the information contqined in
the original data. Much of the coherent information buried in noise can
thus be recovered by using time records that overlap one another, resulting
in variance reduction that depends upon the window shape. Hence over 1000
oscillation cycles can be analysed-which is very interesting for the forced
case. Several windowing functions are available according to the nature
of the input signal. We choose to enter a randomly varying signal, hence
the Hanning window is selected and the result obtained is actually a power
spectral density (p.s.d.) which is given in volts?/Hz. Additional informa-
tion on the measurement characteristics of this frequency analyser may be
found in Appendix E.1, and even more in Chapter 5 of the analyser manual [71].

Paradoxically, this digital signal analyser accepts only analog
signals as input. As a matter of fact, since we have already solved the
differential equation (2-16) on the digital computer, it would be desirable
to analyse thesedigital solution data on the HP 5420A analyser. But this is
not possible because, even'though the analyser processes digital numbers,
it is not designed to accept digital input. The sglution of storing the
digital response obtained previously, and transforming it into an analog
signal was first considered, but could not be implemented because of both
hardware and software incompatibilities between the IBM and HP systems.

For this reason, it is decided to solve equation (2-16) on an
analog computer, namely the EAI 1000 Analog Computer. More information
on this computer may be found in Appendix E.2, as well as in its reference
and maintenance manual [72]. More general information on analog computers
may also be found in Refs. [73] and [74]. A practical advantage of using
an analog computer lies in the fact that, once the equation has been

scaled and plugged on the EAI 1000, it becomes much easier to change the
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parameters of interest than in a deck of computer cards.

In this approach, we no longer use a Monte-Carlo method to
geherate the pseudo-random o(w), but simply pick up the signal obtained
from the Noise Source incorporated in the ADC element of the analyser
(Analog/Digital Converter HP 54410A). Then this noise, whose spectrum
is flat (wide-band) in the frequency range considered for analysis, is
filtered to the desired frequency band by means of the Krohn-Hite filter
model 3323. 1In Figs. 40(a)-(c) is shown the power spectral density of
a(w) for three different values of averages obtained by overlapped process-
ing (this number of averages is noted #A on the display of the analyser).
For only one average taken [Fig. 40(a)], the narrow band is not yet very
good, still exhibiting sharp peaks as was found in the digital analysis
of Chapter IV. However, when the number of averages is increased, the
narrow band is much more marked, as may be seen in Fig. 40(b) [#A=100]
and especially in Fig. 40(c) [#A=1000]. This is in agreement with what
was stressed earlier, namely that overlapped processing recovers coherent
signals buried in noise. As far as the forcing function is concerned,
it is obtained, when considered, from the HP 3300A Function Generator.

In Fig. 41 may be found the schematic description of the experiment.

5.1.2 Machine Equation on Analog Computer

. - 4 D - o ——

In actual magnitude and time scales, equation (2-16) may be

written
. . 2. _ 0
[] +0L(t):|X + chnx + wnX - { w;fosinwft H (5'])

in which f° is constant.



This equation must undergo some changes in order to fit the
analog computer requirements (maximum voltage = #5 volts), as described

below.

a) Magnitude scaling

The maxima are calculated in the unforced case with no damping.

This means that the solution given by equation (2-17) now reads
x(t) = B cos(wnt + ¢).
Its first and second derivatives with respect to time are

x(t)

-w, B s1n(wnt + ¢),

X(t) -w; B cos(wnt +¢).

By introducing the initial conditions*, x(0) = XIc and x(0) = 0, we find

that B=xIC and ¢=0.

Hence,

x(t) XIC'COS(wnt)
x(t) = -xpcu, sin(wt)

x(t) = -xICw; cos(wnt)

from where we get

max

74.

|x(t)] = Xc (5-2,a)

|
><

l).<(t)|max B

*Slightly different from initial conditions (3-5).

ICwn (5'2 ’b)
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R(E)] oy = Xpowl- | (5-2,¢)

max

For the forced case, it is just necessary to lower the initial
va]uetJFxIC in order to avoid overflow when increasing f°.

Let us now introduce the machine variables:

Actual variable Expected maximum Computer variable
X
X X [ =]
IC X1c
. X
X w. X [ ]
n"IC WpX1e
X w2x [ X ]
n"IC wﬁXIC

Having done this and dividing by w;xIC’ equation (5-1)

becomes

(1+a(t)) [52—] +2c [-X—] + [2] =4 O :

WX1e “n*1C *1c Fosinuct

where

fo
IC

Fo =

b) Time scaling

The typical value that we choose for the natural frequency of

our system is fn= 14 Hz for reasons previously explained (cf. Section 4.3).

With the magnitude-scaled equation above, we have to set two

potentiometers at the value w,» One to pass from [wzi 1to[ X

‘:> n"IC “n*1C

], another
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X X 4. Wp .
wnXIC] to [;EEJ, or we could at least use the value 1o Since

the integrators are equipped with one input of gain 10.

to pass from [

Calculating w, We find
fn= 14 Hz ~ w, = wan = 87.965 rad/s,

hence

e

T% = 8.796 ~ 8.80 rad/s.

But it is impossible to set any potentiometer to the latter
value 8.80, even more to the value 88, since potentiometers can only
vary between 0 and +1. Hence we have to reduce the gain around the pro-
gram loops (which remained constant in the magnitude scaling). By chang-
ing the gain of all integrators by the same amount, we do what is called
time scaling.

For reasons of convenience, we adopt a time scaling coefficient

of 10. Hence the machine time will be
T = 10t, (5-4)

which means that everything occurs ten times slower, and so all the fre-
quencies are ten times smaller, as shown below on a given problem fre-

quency fa and machine frequency Fa'
Problem frequency: fa = wa/2n

Computer frequency: Fa = Qa/2w
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We have
fa = l/ta and Fa = 1/Ta,

in which ty and Ta are obviously the periods associated respectively to
fa and Fa'

According to equation (5-4), we obtain
Ta = 10ta,
from which we get

f |
F=o -1 _la, (5-5)

so we actually proved that the computer frequencies are 10 times smaller
than the problem frequencies.

Hence our new natural frequency is
Fp = 1.4 Hz, (5-6)

and the values of the two potentiometers placed before the two integrators
are 0.880. The advantage of studying ten times slower motions is the

fact that they can be followed much easier on the oscilloscope and, more-
over, their time records can be plotted directly by an analog plotter

(a frequency of 14 Hz would be too fast to be followed by such a plotter).
This possibility allows time record comparison between the reference
solutions obtained for a(t) =0. Thus the comparison between Curve 1 of
Chapter III and the analog solution (for a(t)=0), carried out for the

same natural frequency and value of ¢, gave a very good result.
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However, there is a disadvantage in working with such low fre-
quencies namely, along with the fact of encountering some drifts in the
electronic components of the analog computer, the Tong time necessary to
conduct the measurements. Thus it takes, for example, about twelve hours
to obtain one complete resonance curve for the forced vibrations.

Finally, the magnitude- and time-scaled equation reads

[ch] - gi—;—% - by ) [gﬁzicj +<0 , (5-7)

F°S1anT
in which it is remembered that

=10t; Qn=Tﬁ' and Qf=W.

The circuit diagram finally adopted may be found in Fig. 42.

5.2 Free Vibration Results

In this case, we examine the response frequency as a function of

the magnitude of a The study is conducted for different values of X1ce

rms*
namely Xie = 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 (in machine-units, which means
that actual voltages are obtained by multiplying these figures by 5).

For each value of X1c different values of a(t) are applied and
the response frequency is measured. For each such point, a set of 10 or
more measurements is conducted over different lengths of time'(#A==1 and
#A =250 or 300) in order to take the randomness of a(t) into account.

The system is "restarted" every time it damps out (or, quite seldom, when

it overflows too much), then averages of Qe and fresponse are calculated,



C

79.

and in the case of O ® they are transformed into "a equivalents", which

m
means that the given a(t) has the same r.m.s. value as a deterministic

a(t), typically a(t) = asinQr. In fact,

"a equiv." V2 x scale factor depending on X1c

X
%rms

The results are then given in the form of rectangles of uncertainty,

in terms of "a equiv." and f The average value is roughly in the

resp’
center of the rectangle, the bounds of whfch are obtained from the maximum
and minimum values measured. These results are plotted in Fig. 43. It

is quite interesting to notice that a general trend appears from data which
primarily seem to be rather unexploitable.

The shift which is observed between the curves corresponding to
different values of X1c is thought to be due to a lower accuracy of the
analog computer when operating within smaller voltage ranges®, which
actually occurs when X1c is decreased.

It could be that our method of calculation of "a equiv.", which
seems quite logical (by imposing equality of pseudo-random and determinis-
tic r.m.s. values), is not valid, in which case s should be calculated
as it is done for the forced cases (see Section 5.3 below).

The preceding remarks deal with the relative position of the
curves corresponding to different values of X1ce Nevertheless, the general
effect is clear and consists of an increase of the osci11atiqn frequency,

corresponding to an increase in a This effect, which is evident and

rms
is in agreement with our previous results, remains however low:

*
The best results are obtained indeed when the analog computer is used
in its full range, i.e. between -5V and +5V.
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(1.402-1.4)/1.4 = 0.15% for — 0.1, and

S

0.5% for — 0.2.

For the higher “unrealistic" values of o _, one finds about 1.5% for

rms

Qs = 0.5 and about 3.5% for . 0.8 (or more than 3.5%, since the

rm m

curves are interrupted due to overflow).

This is- the same behaviour pattern that we observed previously
with the digital computer approaches of Chapters II1 and 1IV.

Let us finally mention that all free vibration experiments have

been conducted with the usual small value of z, i.e. £ =0.005,

5.3 Forced Vibration Results

These runs are some of the most interesting in this thesis, since
the forced vibration response curve gives direct access to the resonance
frequency, as well as to the response damping which can be measured at
the half-power points. On the whole, ten response curves x/F, = f(Q/Qn)
have been plotted and one of them may be found in Fig. 44. Each such plot
consists of about fifteen measurement points, calculated for a number of
averages #A equal to 300, in order to take the random fluctuations of the
response into accounf. Working on the frequency range (0 -4 Hz) and
with this value of #A, it takes more than ten minutes to obtain one res-
ponse measurement. In fact, the whole procedure to obtain one point in-
cludes (a) a measurement of the forcing function (with #A=1), (b) for the
sake of comparison, a measurement of the deterministic response with a(t)=0
(also with #A=1), (c) the measurement of the pseudo-random response (with
#A=300), (d) again a deterministic measurement (#A=1) in order to check

eventual drifts in the analog computer, and finally (e) a measurement of
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‘;; the forcing function (#A=1) in order to check eventual drifts in the func-
tion generator. The whole procedure, including handling and reading the
resonance frequency and r.m.s. value (POWER key), takes about forty min-

utes to obtain one measurement point.

The results obtained are shown below; before discussing them,
let us give just a few words on how the value of s is determined. Since
we take here xIC==0, we can no longer proceed as for free vibration, and
now we have to measure both a(r)[i/ﬂﬁxIC] depicted on Fig. 45(a) and [X/Qﬁxlc]
shown on Fig. 45(b). The ratio of their r.m.s. values gives us the value of
e Unfortunately a(T)[X/QéXIC] has some power above 4 Hz, as may clearly
be seen on Fig. 45(a). The value of 4 Hz being our upper analysis limit,

the values of %ns indicated here are therefore minimum values.

The results below have been obtained by using equation (5-7)-—
which is equivalent to the circuit diagram given in Fig. 42 — of course
including the forcing function. It should also be mentioned that, in
order to have a broader peak and not too high a resonance peak, the value

of ¢ has been increased to 0.02 and also 0.05.

§
& o ¢ measured Q
(;Tzimum at_half-power (5;) resonance
value) point
0.02 0 0.0205 1.0005
" 0.10 0.022 1.002
0.056 0 0.05 0.998
" 0.10 0.0515 0.998
! 0.32 0.059 1.032

©

§Here "z measured" is calculated as z=AR/2, where AQ is the frequency

interval between the two points located at xmax//?.
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Again, we obtain results which are coincident with those already

found in the free vibration cases. As a matter of fact, the shift towards

higher frequencies is very weak, only of 0.2% for arms==0.10 (when £=0.02;

even Tess when ¢z = 0.05), and of 3.2% for « ms==0.32. It is simply recalled

r
that the effect sought is of the order of 6%, and should occur below

the upper "realistic" bound of “rms:=0'20' Nevertheless, the effect sought

appears and, moreover, occurs in the desired direction and this, by itself,

can be considered as a positive result.

Fortunately, this also occurs for damping, and it may be worth
mentioning that it is the first time that this effect appears so signifi-
cantly (in the previous free vibration studies it was never very evident);
However, we remain far from the desired effect of 100%, since for —
0.10 the effect is of 10% (when £=0.02) or only 3% (when z=0.05), and
only 18% (when z=0.05) for O‘rms=0‘32‘

Another finding can be presented here: mostly when (Q/Qn) > 1.3,
and even below when arms==0.32, the power spectral density of the response
exhibits not only the sharp peak at f=f, (forcing frequency), but also
a broader peak about the natural frequency fn= 1.4 Hz [see Figs. 46(a)
and (b), and equally Fig. 44 on which it clearly appears that the pseudo-
random response is above the deterministic response — i.e., when a(t) =0].
This, of course, does not occur for a classical oscillator. For Qs =
0.32, this broad peak contains much more power than the sharp peak at the
forcing frequency. But nevertheless this unexpected effect is not important
as far as the determination of the damping is concerned, since it becomes

significant far enough from the resonance region, even though it already

appears with a very small peak when ff is below fn.
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Finally, in the hope of discovering a more important effect, an

attempt is made to apply pseudo-random perturbations, not only on the mass

coefficient, but also on the damping coefficient. Equation (5-7) 1is thus

modified, for the forced case of course, into equation (5-8):

X(1) 7 = o x{z) 7 _ x(0)7 _ X(1)
[ﬁﬁggg] 2z [QnXIC] [XIC 1 = a (1) [QﬁXIC]

- 2z8a. (1) [Eijl—-] + F°sinQt.
2 finX1C f

Two cases are distinguished:

§ =1 Equation (5-8,a)
§ = -1 Equation (5-8,b).

The procedure is exactly similar to the one used previously (for §=0).

The results obtained are shown in the table below.

§ ¢ % yms %2 rms gtmﬁgigred (él) resonance
(minimum  (minimum ower point n
value) value) power p

+] 0.05 0.32 0.032 0.058 1.024

" " 0.32 0.32 0.047 1.029

" " 0.032 0.32 0.049 0.997

-1 0.05 0.32 0.032 0.0565 1.03

" " 0.32 0.32 0.059 1.03

(5-8)

The effect of applying such random perturbations on the damping

coefficient ¢ is not very evident and, anyway, generates no important new

kind of behaviour of the system. Adding the perturbations a,(t), however,
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seems to lower the effective damping, whereas substracting it increases
the response damping.

We could also consider applying such pseudo-random perturba-
tions on the last coefficient of the second-order differential equation
envisaged, namely the stiffness coefficient, but no interesting effect is
suspected, at least from the hydrodynamic mass point of view.

Therefore, the first results obtained in this Section 5.3 with
aZ(T)’=0 are the most significant found with the one-degree-of-freedom
model and agree, at least qualitatively, with Carlucci's experimental

discoveries.
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CHAPTER VI
CONCLUSION

The behaviour of the hydrodynamic mass and damping of a flexible
cylinder immersed in two-phase axial flow was investigated in this research.
It was in fact attempted to explain the two effects observed by Carlucci
in simulated two-phase flow, namely a significant increase of damping,
depending on the flow regime, and a decrease of the hydrodynamic mass
occurring at a higher rate than that of the mixture density. The basic
hypothesis made is that these two effects arise from random perturbations
affecting the hydrodynamic mass. In fact this question brings us to the
very nature of the fluid-structure coupling, this interaction being
essentially probabilistic due to the presence of two-phase flow.

After a too involved theoretical attempt, aiming at obtaining
a general model of the fluid-structure interaction by starting from a
molecular level, it was decided to dwell on a numerical simulation of a
one-degree-of-freedom system. The purpose was then to verify whether
the fact of applying pseudo-random perturbations (pseudo-random because
they are generated artificially) can account for the two effects described
by Carlucci. With this model, three studies have been conducted in which
both the response frequency and damping were the parameters of interest.
The two first studies were digital, whereas the last was analog (the first
was conducted in the time domain, and the two others in the frequency
domain).

The results of these three approaches are consistent, the—1ast,

however, being the most explicit. Agreement is best, as far as the response
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frequency is concerned. As a matter of fact, a shift towards higher fre-
quencies is exhibited in all three studies, and this is in agreement with
a decrease of the hydrodynamic mass. The magnitude of this effect is,
however, found to remain weak, namely less than 1% for "realistic" values
of perturbation amplitudes. This is low, when compared to the 6% effect
found by Carlucci. (On the other hand, for highly "unrealistic" values
of the perturbation amplitudes, this value of 6% can be reached, but hask
not much physical meaning and, moreover, already occurs in the region of
perturbation amplitudes which could give rise to instabilities.)

The damping effect does not appear significantly in the two
digital approaches, but in the last analog simulation (forced case) a
higher damping is exhibited, however, not exceeding 15% (for "realistic"
values of the perturbation amplitudes). This is still small when compared
to the 100% expected, which corresponds to Carlucci's observations.

It is true that the model investigated is not very sophisticated,
especially for such a complex system. This could explain why the expected
magnitude for the effects involved was not obtained. Nevertheless, the
fact of having obtained similar results by the three approaches implemented
can by itself be considered as a partial success.

It could also simply be that the two effécts sought are not,or
are not mainly, the consequence of random fluctuations of the added mass,
but are due to another, still unknown, cause.

We do not think that one should expect much more from such a
type of numerical simulation, for example by increasing the number of
degrees-of-freedom. The only remaining aspect which could have been

interesting to investigate would have been the introduction of a time



delay between two pseudo-random added mass perturbations a(t) applied to
the two mass coefficients of a two-degree-of-freedom system. This would
have modelled the propagation of the flow disturbances on the surface of
the cylinder, along the axis of the cylinder.

However, it will be very interesting to develop fundamental
research on the fluid-solid interaction, in the future, by starting at
the molecular level and implementing the transition to the macroscopic
level by use of the theory of stochastic processes. Proper modelling of
two-phase flow is in itself still a challenge for science. A good under-
standing of the fluid-structure interaction would finally provide a con-
tinuous passage between solid and fluid mechanics and a general theory of

flow-induced vibrations.

87.



10.

11.

12.

88.

REFERENCES

Blevins, R.D., "Flow-Induced Vibration", Van Nostrand Rheinhold Co.,
New York, 1977.

Bisplinghoff, R.L., Ashley, H., & Halfman, R.L., "Aeroelasticity",
Addison-Wesley Publishing Company, Reading, Mass., 1955.

Dowell, E.H., "Panel Flutter: A Review of the Aeroelastic Stability
of Plates and Shells", AIAA Journal, Vol.8, 1970, pp.385-399.

Dowell, E.H., "Aeroelasticity of Plates and Shells", Noordhoff Inter-
national Publishing, Leyden, 1975.

Hawthorne, W.R., "The Early Development of the Dracone Flexible
Barge", Proceedings of the Institution of Mechanical Engineers,
Vol.175, 1961, pp.52-83.

Paidoussis, M.P., "Stability of Towed, Totally Submerged Flexible
Cylinders", Journal of Fluid Mechanics, Vol.34, 1968, pp.273-297.

Burgreen, D., Byrnes, J.J., & Benforado, D.M., "Vibration of Rods
Induced by Water in Parallel Flow", Transactions of the ASME, Vol.
80, 1958, pp.991-1003.

Paidoussis, M.P., "Dynamics of Flexible Slender Cylinders in Axial
Flow. Part 1: Theory; Part 2: Experiments", Journal of Fluid
Mechanics, Vol.26, 1966, pp.717-736 and 737-751.

Chen, S.-S., & Wambsganss, M.W., "Parallel-Flow-Induced Vibration
of Fuel Rods", Nuclear Engineering & Design, Vol.18, 1972, pp.253-278.

Paidoussis, M.P., "Dynamics of Cylindrical Structures Subjected to
Axial Flow", Journal of Sound & Vibration, Vo1.29, 1973, pp.365-385.

Chen, S.-S., "Vibration of Nuclear Fuel Bundles", Nuclear Engineering
& Design, Vol.35, 1975, pp.399-422.

Paidoussis, M.P., "The Dynamics of Clusters of Flexible Cylinders
in Axial Flow: Theory and Experiments", Journal of Sound & Vibration,
Vol.65, 1979, pp.391-417.



13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

89.

Paidoussis, M.P., "Vibration of Cylindrical Structures Induced by
Axial Flow", Transactions of the ASME, Journal of Engineering for
Industry, Vol.96, 1974, pp.547-552.

Paidoussis, M.P., "The Dynamical Behaviour of Cylindrical Structures
in Axial Flow", Annals of Nuclear Science & Engineering (Annals of
Nuclear Energy), Vol.1l, 1974, pp.83-106.

Chen, S.-S., "Parallel Flow-Induced Vibrations and Instabilities
of Cylindrical Structures”, Shock & Vibration Digest, Vol.6, 1974,
pp.2-12. ’

Shin, Y.S., & Wambsganss, M.W., "Flow-Induced Vibration in LMFBR
Steam Generators: A State-of-the-Art Review", Nuclear Engineering &
Design, Vol1.40, 1977, pp.235-284.

Lane, A.D., et al., "The Measurement and Prediction of Vibration in
CANDU-PHW Fuel and Channel Assemblies", Paper 1.1, Proc. Int'l Conf.
on Vibration in Nuclear Plant (ViNP), Keswick, May 1978.

Pettigrew, M.J., Sylvestre, Y., & Campagna, A.0., "Vibration Analysis
of Heat Exchanger and Steam Generator Designs", Nuclear Engineering

-Design, Vol.48, 1978, pp.97-115.

Paidoussis, M.P., "Flow-Induced Vibrations in Nuclear Reactors and
Heat Exchangers: Practical Experiences and State of Knowledge", in
[20], pp.1-81.

"Practical Experiences with Flow-Induced Vibrations", Proceedings of
IAHR/IUTAM Symposium, Karlsruhe, Sept. 1979, ed. E. Naudascher and
D. Rockwell; Springer-Verlag, Berlin, 1980.

Paidoussis, M.P., "Fluidelastic Vibration of Cylinder Arrays in Axial
and Cross Flow: State of the Art", Journal of Sound & Vibration,
Vol.76, 1981, pp.329-360.

Shin, Y.W., "Two-Phase Flow-Induced Vibrations of Rods In Parallel
Flow: A State-of-the-Art Review", General Electric Report GEAP-24148,
Oct. 1978.



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

90.

Belytschko, T., & Schumann, U., "Fluid-Structure Interactions in
Light Water Reactor Systems", Nuclear Engineering & Design, Vol.60,
1980, pp.173-195.

Hara, F., "A Theory on the Vibrations of a Fuel Pin Model in Parallel
Two-Phase Flow", Paper D2/4, Trans. 3rd Int'l Conf. on Structural
Mechanics in Reactor Technology (SMiRT), London, Sept. 1975.

Hara, F., "Experimental Study of the Vibrations of a Fuel Pin Model
in Parallel Two-Phase Flow", Paper D2/3, 3rd SMiRT, London, Sept. 1975.

Hara, F., & Yamashita, T., "Parallel Two-Phase-Flow-Induced Vibrations
in Fuel Pin Model", Journal of Nuclear Science and Technology, Vol.15,
1978, pp.346-354.

Pettigrew, M.J., & Gorman, D.J., "Experimental Studies on Flow Induced
Vibration to Support Steam Generator Design, Part I: Vibration of a
Heated Cylinder in Two-Phase Axial Flow", Paper 424, Proc. Int'l
Symp. on Vibration Problems in Industry (VPil), Keswick, April 1973.

Gorman, D.J., “An Analytical and Experimental Investigation of the
Vibration of Cylindrical Reactor Fuel Elements in Two-Phase Parallel
Flow", Nuclear Science & Engineering, Vol.44, 1971, pp.277-290.

Cedolin, L., Hassid, A., Rossini, T., & Solieri, R., "Vibrations
Induced by the Two-Phase (Gas and Liquid) Coolant Flow in the Power
Channels of a Pressure Tube Type Nuclear Reactor", Paper E4/5, Ist
SMiRT, Berlin, Sept. 1971.

Pettigrew, M.J., & Paidoussis, M.P.,"Dynamics and Stability of Flexible
Cylinders Subjected to Liquid and Two-Phase Axial Flow in Confined
Annuli", Paper D2/6, 3rd SMiRT, London, Sept. 1975.

Paidoussis, M.P., & Pettigrew, M.J., "Dynamics of Flexible Cylinders in
Axisymmetrically Confined Flow", Journal of Applied Mechanics, Vol.46,
1979, pp.37-44.

Carlucci, L.N., "Hydrodynamic Mass and Fluid Damping of Rod Bundles
Vibrating in Confined Water and Air-Water Mixtures", Paper D3/11,
4th SMiRT, San Francisco, August 1977.



33.

34.

35.

36.

37.

38.

39.
40.

41,

42.

91.

Carlucci, L.N., "Damping and Hydrodynamic Mass of a Cylinder in
Simulated Two-Phase Flow", Transactions of the ASME, Journal of Mech-
anical Design, Vol.102, 1980, pp.597-602.

Ostoja-Starzewski, M., “Dynamics of a Single Flexible Cylinder in
External Axial Compressible Fluid Flow", M.Eng. Thesis, Dept. Mech.
Eng., McGill University, May 1980.

Paidoussis, M.P., & Ostoja-Starzewski, M., "Dynamics of a Flexible
Cylinder in Subsonic Axial Flow", Paper 81-0605-CP, AIAA/ASME/ASCE/

AHS 22nd Structures, Structural Dynamics & Materials Conference,
Atlanta, April 1981, published as AIAA Publication CP812, AIAA Journal,
Vo1.19, 1981, pp.1467-1475.

Schumann, U., "Virtual Density and Speed of Sound in Fluid-Solid
Mixture with Periodic Structure”, to be published in the Int. Journal
of Multiphase Flow.

Collier, J.G., "Convective Boiling and Condensation", McGraw-Hill,
London, 1972.

Hewitt, G.F., & Roberts, D.N., "Studies of Two-Phase Flow Patterns
by Simultaneous X-Ray and Flash Photography", AERE-M2159, H.M.S.0.,
1969.

Baker, 0., "Design of Pipe Lines for Simultaneous Flow of 0il and Gas",
0i1 and Gas Journal, 26 July, 1954,

Milne-Thomson, L.M., "Theoretical Hydrodynamics", Chapter IX, The
MacMillan Company, London, 1968 (5th edition).

Morton, J.B., & Corrsin, S., "Experimental Confirmation of the Applica-
bi]ity of the Fokker-Planck Equation to a Nonlinear QOscillator",
Journal of Mathematical Physics, Vol.10, 1969, pp.361-368.

Einstein, A., Annalen der Physik, Vol.17, 1905, p.549, translated in:
Einstein, A., "Investigations on the Theory of Brownian Motion",
edited with notes by Fiirth, R., Dover Publications, Inc., New York,
1956  (unabridged and unaltered republication of the translation
originally published in 1926).



43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

92.

Uhlenbeck, G.E., & Ornstein, L.S., "On the Theory of Brownian Motion",
Physical Review, Vol1.36, 1930, pp.823-841; reprinted in [46].

Chandrasekhar, S., "Stochastic Problems in Physics and Astronomy",
Chapter II, Reviews of Modern Physics, Vol.15, 1943, pp.20-44;
reprinted in [46].

Wang, M.C., & Uhlenbeck, G.E., "On the Theory of Brownian Motion II",
Reviews of Modern Physics, Vol.17, 1945, pp.323-342; reprinted in [46].

Wax, N., "Selected Papers on Noise and Stochastic Processes", Dover
Publications, Inc., New York, 1954,

Nelson, E., "Dynamical Theories of Brownian Motion", Princeton Univer-
sity Press, Princeton, New Jersey, 1967.

Doob, J.L., "Stochastic Processes"”, John Wiley & Sons, Inc., New York,
1953.

Feller, W., "An Introduction to Probability Theory and Its Applications",
Vol.I, John Wiley & Sons, Inc., New York, 1950 (3rd edition: 1968).

Papoulis, A., "Probability, Random Variables, and Stochastic Processes",
McGraw-Hi11 Book Company, New York, 1965.

Stern, J., de Barbeyrac, J., & Poggi, R., "Méthodes Pratiques d'Etudes
des Fonctions Aléatoires", Dunod, Paris, 1967.

Yaglom, A.M., "An Introduction to the Theory of Stationary Random
Functions", Prentice-Hall, Inc., Englewood Cl1iffs, New Jersey, 1962.

Beran, M.J., "Statistical Continuum Theories", John Wiley & Sons, Inc.,
New York, 1968.

Samuels, J.C., "Elements of Stochastic Processes", Part VI in:
Eringen, A.C., "Continuum Physics", Vol.I, Academic Press, Inc., New
York, 1971, pp.605-663.

Bharucha-Reid, A.T., "Elements of the Theory of Markov Processes and
Their Applications", McGraw-Hill Book Company, New York, 1960. °

Montroll, E.W., & Lebowitz, J.L., "Fluctuation Phenomena", North-
Holland Publishing Company, Amsterdam, 1979.



57.

58.
59.
60.
61.
62.
63.

64.

65.
66.

67.

68.

69.

93.

Axelrad, D.R., "Micromechanics of Solids", PWN-Polish Scientific
Publishers, Warshaw,and Elsevier Scientific Publishing Company,
Amsterdam, 1978.

Hansen, J.P.,& McDonald, I.R., "Theory of Simple Liquids", Academic
Press, Inc. (London) Ltd., London, 1976.

Boon, J.P.,& Yip, S., "Molecular Hydrodynamics", McGraw-Hi1l Advanced
Series, New York, 1980.

Meirovitch, L., "Analytical Methods in Vibrations", The MacMillan
Company, New York, 1967.

Thomson, W.T., "Theory of Vibration with Applications", Prentice-Hall,
Inc., Englewcod Cl1iffs, New Jersey, 1972.

"IMSL Library Reference Manual", 8th edition, IMSL, Inc., Houston,
Texas, June 1980.

“Calcomp Digital Plotter — User's Manual", 6th edition, McGill University
Computing Centre, Montreal, Quebec, May 1978,

Paidoussis, M.P., Issid, N.T., & Tsui, M., "Parametric Resonance Qscilla-
tions of Flexible Slender Cylinders in Harmonically Perturbed Axial
Flow. Part 1: Theory", Journal of Applied Mechanics, Vol,47, 1980,
pp.709-714,

Bolotin, V.V., "The Dynamic Stability of Elastic Systems", Holden-Day,
Inc., San Francisco, 1964.

Bracewell, R.N., "The Fourier Transform and Its Applications", McGraw-
Hill, Inc., New York, 1965.

Cooley, J.W.,& Tukey, J.W., "An Algorithm for the Machine Calculation
of Complex Fourier Series", Journal of Mathematical Computation,
Vol.19, 1965, pp.297-301.

Brigham, E.0., "The Fast Fourier Transform", Prentice Hall, Inc.,
New York, 1974.

Bergland, G.D., "A Guided Tour of the Fast Fourier Transform", IEEE
Spectrum, July 1969, pp.41-52,



70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

94.

Collacott, R.A., "Vibration Monitoring and Diagnosis", George Godwin
Limited, London, 1979.

"Digital Signal Analyzer HP 5420A: User's Guide", Hewlett-Packard,
Palo Alto, California, 1978.

"EAI 1000: Reference and Maintenance Manual", EAI-Electronic Associates
Pty. Ltd., Sydney, Australia, 1978.

Korn, G.A.,& Korn, T.M., "Electronic Analog Computers", McGraw-Hill,
New York, 1956.

Bennett, A.W., "Introduction to Computer Simulation", West Publishing
Company, St. Paul, 1974.

Pettigrew, M.J., "Flow Induced Vibration of Nuclear Power Station
Components", Atomic Energy of Canada Limited Report AECL - 5852,
Sept. 1977.

Proceedings, Symposium on Two-Phase Flow Dynamics, Session V - Propa-
gation Phenomena, B., Eindhoven, Sept. 1967.

Yih, T.S.,& Griffith, P., "Unsteady Momentum Fluxes in Two-Phase Flow
and the Vibration of Nuclear System Components", ANL - 7685, Proc.
Conf. on Flow-Induced Vibrations in Reactor System Components, Argonne
National Laboratories, Argonne, I1linois, May 1970, pp.91-111.

Wallis, G.B., "One Dimensional Two-Phase Flow", McGraw-Hil1l Book Co.,
1969.

Parthasarathy, A., "Deterministic and Stochastic Stability of a
Nonautonomous Circulatory System", Ph.D. Thesis, Syracuse University,
Syracuse, N.Y., 1972.



GENTILLY 1

WNO L —

ONOULAawN ™

Fig.1.

CENTRALIZING PADS
SPACERS

BEARING PADS

UQ; FUEL PELLETS
ZIRCALOY 4 SHEATH
DELINEATING DISC
END CAP

END PLATE

PATTES DE CENTRAGE
CALES D'ECARTEMENT
PATTES D'APPUI
PASTILLES DE UO;
GAINE EN ZIRCALOY 4
DISQUES DE SEPARATION
BOUCHON D'EXTREMITE
PLAQUE D'EXTREMITE

SECTION THROUGH CENTRE OF FUEL BUNDLE

COUPE TRANSVERSALE DE LA
GRAPPE COMBUSTIBLE

Bundle of nuclear - reactor fuel elements

as repraduced in Ref.[75].



yrn1s

Fluidelastic Instability —

Parametric
Resonance —

Response to
Pressure Fluctuations ‘]

Fig.2. Idealized response of a cylinder, in an array of

cylinders subjected to axial flow.

(From Ref.[21]).



104
pressure
- (Ib/in2 ABS)
3 \ 2000l |
10 S 00|+
~~————_ 500
100
102 \ 4.7
Ft 10
sec
10!
10°
107!
00 0.2 0.4 06 08 10
. . _ steam volume
void fraction = o ire volume
Fig.3. Sonic speed variation with void fraction and

according to pressure in a mixture of steam
and water. No mass transfer assumed.

(From Ref.[767, as reproduced in [34]).



(a)

(b)

{a)
BUBBLY
FLOW

Fig.4.

: é :
0

(b) (c) (d) (e)

SLUG FLOW ANNULAR FLOW MIST
FLOW

Sketches of flow regime geometries in two-
phase vertical upflow.

{(a) from Ref.[37]; (b) from Ref.[77]
as reproduced in Ref.[22]}.



—~ VA¢0R

!
DROPS
K

|

DR?P-ANNULAR

ANNULAR
i

T

SLUG-ANNULAR
y
!

SLUG

{
!
BUBBLY SLUG

{
)

BUBBLY

3

!
LIQUID

DD
s .\h‘;:.:..: tr

- Fig.5. Approximate sequence of flow
patterns in a vertical tube
evaporator.

(From Ref.[78], as reproduced
in [22]).



.s-l

. kg.m’z

(eX)¥/p

lo* ] T ]
| ' —
s
ANNUL AR / WISPY-ANNULAR
/
104 | — / —]
//' _
B /
/
/
G =1000 / G =3000
10° ] — [ —
|
- | |
[
|
| G = 5000
|o’—£=5w_-._l___r_ _________ —
CHURN
| - —
N P I
-~
- |
P | |
10’ B l BUBBLY
' BUBBLY- |
- SLUG -
\\
SLUG ‘\
\
10° I LN L]
1o’ lo? 10* 10 10°
[GH-X]’/pL, kg-m-2.s°!
Fig.6. Flow pattern map for vertical upflow [38] as repro-

duced in [37], on which test conditions covered in

[33] are shown as vertical bars.

Mass flux, G, is in kg. m 2. s”1; v is the void

fraction, pgq is the density of the gaseous phase

and Pp that of the liquid phase.



ra rad b !
ST

P

e 39 Sy . -
gl 7% g

(a)

Dispersed

-
- -
il

Annular

Bubbly
Stratified

Plug

}

10
1

20 50 100 2200 500 1000 2000 5000 0000 20000
1 ] — R ;) 1

Fig.7.

1
2

T
S

T
S0

L T
100 200 500

6¥

L S |

w2 1000 2000 5000

Horizontal flow: (a) Flow regime geometries,
and (b) Flow pattern map [39] as reproduced
in Ref.[37].



COMPLIANCE., um/N

300 —

200 -

100 —

a= 0%

R

501
0
300 —

200

100 —

32 34

a=61%

I

5

L
-

500
400

300 —

200 —

100 —

4 1 |

37

Fig.8.

39 41

300~ a= 40%
200 —
100 .
50 f 1 1 1N
34 36 38
3001
a = 66%
200 —
100 —
50 | I R
37 39 41
500 —
400 J— a = 81%
300 [—
200 —
100~
50 I N
37 39 41

FREQUENCY. Hz

300

200

100

50
300

200

100

500 —

400

300

200

100

50

Typical response curves; mass flux =

and flow tube inside diameter =31.5 mm,

[33]).

1000 Kg. m-2+s7!,

(From Ref,



TOTAL FLUID DAMPING RATIO §,. %

G. kg-m=2.g"! (a)
0o

<> 500 —
O 1000

A 3000
J 5000

80 100
1
(b)
-
o) —
! ! ] 1 ,
0 20 40 60 80 100
VOID FRACTION a. 7
Variation of the total fluid damping

Fig.9.

ratio with void fraction in flow tubes
of inside diameter (a) 40.0 mm and
(b) 31.5 mm.

(From Ref.[33]).



%

DAMPING RATIO.

fluid damping ratio with void fraction;
mass flux = 3000 kg. m~2. s~!, flow tube
inside diameter = 31.5 mm.

(From Ref.[33]).

\
\
\

\ —

\

\

\
\
\
\
\
\ —
\
\
I W
< ~.
~
¢ f RN \

>N
- I | | N
0 20 40 60 80 10

VOID FRACTIONa. %

Fig.10. Variation of the components of the total



HYDRODYNAMIC MASS RATIO. mh/mh-a

100

80

60

40

20

| | | ] | | | { |
b 0/ ¢

— AN a G. kg.m 2s™ [ 157 11 24 —

AN 0 T o

2\ 500 - o
— N 1000 ° o —

N 3000 a a
| \ 5000 - o _

a o
\
- AN PROPORTIONAL TO MIXTURE  _
g\ DENSITY:
[y
— 4 </ ™ . gp-a —
€ N Mp,a=0
AAO N
u AN
° N\
- a® © AN -
Ca \
B o N B
Pa¥ 4 o \
L o N\ ]
Fa
a AN
e o o
1 | | | | ® "o 3 |
0 20 40 60 80

VOID FRACTION a. 2

Fig.11. Variation of hydrodynamic mass with void fraction.
(from Ref.[33]).

100



y M

Fig.12.

A flexible slender cylinder subjected to
bounded axial flow.

| => :
] /__ﬂ/’—————_"\\ X\
< — a B
! , i



r?szd
surface Z

Fig.13(a). Strip of membrane adopted as model of the
structure for the probabilistic approach.

Y A

© 0o 9

0 0 g

r?sid

surface

0 I
£=0 E-at

Fig.13(b). Lattice model adopted for the fluid flowing
over the membrane (or string) in the
probabilistic approach.

x\/



[l

w »

w2

V10737

QeB374r

JeDHRENID

Qe 25«06 T

Oeli327

~Del2c2"

Qe IWGHT

~Us£ 1107

~QedH2eN

~CelT4D

~Nel 2357

00

a0

00

0o

oo

a0

00

co

21

[£R1
Qs

FN=15HZ

UZETA= 4005 Fil= SHL & FOR J=1.5 & FUSJ&F1 o AJZ420 » PHIU=0

#*tt‘tt#¢#+Vl‘##ﬂlt*f#*#**t##ttttl*‘#i&t#“#*tt#‘#i“#t##‘QaQ*#####*t*ft#F#‘#*#‘*lfttlt#9"'&#'.‘*“0

* 44 44 44 *
PR2rER222222:N23222222222222222222222222222_2222222222222M222MM22222244 22222228 R_2E222222NM21A222222222
x 4 G4 & 4 *
* 4 4 & 4 &
+ 46 4 4 4 +
¥ 333 4 4 44 44 x
¢« 333 33 4 4 4 4 ¥
* 33 3 4 4 4 4 *
v 3 3 4 4 G4 4 ¥
3 33 3333 4 4 4 4 +
il 33 111 33 53 4 4 11a 4 “ »
311 3 1, 34 33 44 Mmil 11 “ 4 MM
¥ 11 33 4444 1 11 3 33 4 114 11 3333 4 4 1M3*
¥ 1 3 44 43 11 13 3 4 1 4 11 3 33 & 4iv3 %
+ 1 3344 4 11 31 3 4 1 4 13 33 % 113 +
* 1 My 4% i 311 3 4 11 4 £} 33 “ »33
* 3 3 44 11 33 1 3 % i 4 3il 3 4 1M3 &
* 1 4 3 4 1 3 il 3 4 11 aq 3 1 S 4 LW &
* 1 44 3 “all 3 1 3 4 1 4 33 11 334 1130 +
* 1 4 33 41 3 1! 334 11 4 J 1 34 1 34 +
* 1 a4 3 18 3 1 M 1 4335 1 M3 i1 34 €
L il et Bl D B B R el O B e e B R e B Rt 4 gm——————— 1=3~— 4%
* 1144 3 1 4 3 1 43 ) 33 11 433 11 3 & &
- 16 3 1 44 33 1l 43 11 I i 4 3 1 3 4 =
+ ¥i 33 1 4 3 1 4 3 1 oM 11 4 ) 11 3 4+
& 41 3 1 Gt 3 1 @« 3 1 3 4 1 “ 3 1 3 4 %
& 4 11 3 1 4 3 i 4 31 23 4 i1 4 3 11 53 4 %
* 44 H 3 1 4 3 11 4 31 3 4 1 & 331 3 4 =
G4 44 11 3 1 43 1 44 1 33 “ ilse 21 33 4 ¥
+4 4 4 1 31 M 4 1 B8 4 M3 3 % 14 1M333 4 +
* 4444 1 Mi 3 a4haso 1} 4 11 3 3 4 i, 11 33 4 %
* 4 11 113 33 L 1 4 1 3 33 “ 11 13 od
* 11 11 53 3 4 i1 11 33333 4 44 LilL1 4%
* 111 33 33 “ 4111 4 4 4%
+ 33 33 4 4 4 4 4
* 332 & 4 b 4 “*
+ 4 4 o4 4 *
» % 4 “ & ®
* 4 4 < “ x
+ “ 4 44 @ -+
* 4 4 “@ + *
% @ 4 44 44 *
222222222222222222222222222222222222222Me222282M2222222222222 22222222225 22MaMiN22422222228222224 2222222
* 4 4 “h 4
+ w49 4 +
* @ 4 *
* % 4 13
* 4 44 &
* 44 & *
FEGI LR EIEF AR R NN E LR L XN R TP LK F AR ERRE RV R P R QGG AR e N BT LU MBERER C BN AN FE LT F R L URP ER LG HEEUX T Y BTN LT % &
1 200C Ot Js 12490 04 Vel1ZBU0 01 Ce 13400 01 JelJ00d G} UelavOd C1
T 1 ME t I N S &t C o)
XEuS1 = 0.52703452> 00 3 X3AMS2 = Ve100000000 01 H XKME3 = 0557511140 0OV . XAMS4 = 044953365610 0C

Fig.14,

Typical time record plot obtained by means of the USPLTD subroutine.

The case depicted here is the same as in Fig.20(c).
sents the y=+1 and y=-1 axes.

Curve 2 repre-



AMPLITUDE

RESPONSE

1.00

0.00 —

—

- Sty
e

@7

S

-1.00

Fig.15(a).

0.0%

TIME in seconds

Time record of the pseudo-random Gaussian variates generated by
the Monte-Carlo method (Appendix C.2), stretching between -1 and

+1. These variates are compared to the deterministic a(t) =

5
(L, sin(2nfit), in which f;=5,10,15,20,25 Hz.



AMPLITUDE

RESPONSE

1.00 M

0.00

-1.00

TIME in seconds

Fig.15(b). Same comparison as in Fig.15(a) between the time records of the pseudo-
random and deterministic added mass perturbations, but measured over a
Tonger interval of time (0.2s instead of 0.04s).



L

TP BTN CY mmm mmom = = ot om m me e e o 1 e e o e o = " " 7 A = = = o 2 = = £ = = o " T 2 T e > > i e A o

i

>

L EE X R REE XN R AR R R EIE EYE R R R R R R R R R SR X R

-
—

ety

Pt b gt o St nt ot

b b o e et ot o o d B B ot

[ P U U S

e et Bt bt Pt g oy ot o g Pt Pt P St ot it Pt ok Do et Bt g B0 P g Pt St

St bttt ik bkt Bt bt B B bt ek s ol St 2ot ok Dok ot P Bt g (et B 8 o Pt

ek Btk Ot bt Btk (et bt i kO Pt Dot B Pt bt Tt o I et Bod 0t D B od St d d Bd et d ot Bt o 2k
e L T R e L e L e L T e R
U L T B R Py R

it e b bt Yt bt Tt bt Bt bt et et Sk St (g bt bt ot ot bk et Dt et St it mf bt it bk Bt b bt itk Ot pd et et Yot ok et Bt Bt e et
A P ot A Tt 0t et ot 4 F ot ot Bt 3 Bt b b Pl bk ot bt Bk Bt b G Pt ot B 2t Pt
bt 1 et Y S bk b Yt Bt Pt ik B Vb B bt Bt o o 2 Bk Bt bt B g ot b ik Dt bt med at S

T s ik bt Bt et bt 0 0 e s it o et S bt Pt g ot Pt b et o g e

ettt bt 0 e Pl Pt g g 4 g Bt b bt ey e bt e

P e e R R e R e )

-ttt

—

S

——

—

1

X LRy bR e ke PR LR il dbe S d N e BY P RPN Fe M s g

DL AN TL AT = TN OO MO =l AN I =0 NS0 T
S C AT TN OO N OIN U OO SN M DAL NI N D YOS N 3P
Wy QA d It BTN NG 0G0 T, DO N ot ot ot vt ot vt vt gt

S0

85

8¢

Hi—— o

7e

65

40 45

3

30

1 ——

38 o

Histogram of the pseudo-random Gaussian number generated by the Monte-Carlo

(o
o
-
.
o —~
- [1+]
~—
h(e}
r —
.
o
o
—_— [F S
1
" Y
g -
« <
~ L

-~

algorithm (given in Appendix C.2 and called scheme [c] of a(t) in Appendix D.2).

For a = 0.25.
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Fig.17(a). Time record of system response, for Run C1
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Fig.19(a). Time record of system response, for Run C3
with 3=0.75 (see Appendix C.6). Considered
for cycles #1,2,3 of Curve 1.

Fig.19(b). Run C3, considered for cycles #13,14,15 of
Curve 1.
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Fig.19(d)}. Run C3, considered for cycles #28,29,30 of
Curve 1.



Fig.20(a). Time record of system response, for Run C4
with a=1 (see Appendix C.6). Considered for
cycles #1,2,3 of Curve 1.
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APPENDIX A

Discretization of the Equation of Small
Lateral Motions in an Attempt to Obtain
a Fokker-Planck Equation

Let us first give the values of the coefficients A, to A10 of

equation (2-9):

A, = o,

A, =1

Ay = WPl - Bec (1-8)(1+h)) - ;]
A, = 2xBu

1
As = XByou = A,/2

Ae = tuZec (1+h.)
A7 = XBO

A, = %uB%ec
8 o °f

>
w
1]
—
1
»

Ay = XBy = A (A-1)

The first question arising now is to decide which stochastically
varying quantity — U, p or even the momentum pU — is to be chosen as the
principal random variable. We finally choose the density o (or 51) as
" the main random input and express all the other random variables in terms

of s,. To do so, we assume that: pU = pU and pU? = pU? so that

Sy = 5,5, and s, =s;57 . (A-2)

Al



A2

We also assume that continuity is preserved at every cross-section at all

times, i.e.
pUA = constant. (A-3)

Since A is constant, this yields: pU = constant, hence pU = 56 and

s, = s, ' . Finally we have

(A-4)

1]

s 1 implies that 3s,/3t = 0. If we furthermore assume that incompres-

3
sibility is also preserved at every cross-section at all times (a strong
assumption), we also have 9s,/d1=0.

The cylinder in axial flow may be subjected to an arbitrary

force field f(£,t); hence, the dimensionless equation of small lateral

motions reads

I>

350 , d'n , A, d%n 92 6 N an
L 3g*at e +?1'ag2 * A e +§3€+Ae 2T
+ A, + As, ] 20 (g0 (A-5)
9 7714 52 SeT) . :

Our goal now is to transform equation (A-5) into an equation of the type of
(2-11) in order to apply to it a procedure similar to that of Morton and
Corrsin [41].

This transformation is done by the Galerkin approximation tech-
nique, which means that our continuous system is approximated by a n-degree-

of-freedom discrete system, the accuracy of the method increasing with n.



A3

To do this, we apply solutions of the type

n
n(g,t) = & ¢:(8) q;(1), - (A-6)
where qi(r) are the generalized coordinates and ¢i(g) are eigenfunctions
(at zero-flow velocity) of a beam with the same boundary conditions as the
cylinder.

Due to the boundary conditions, the eigenfunctions ¢i(€) are

orthonormal, i.e.

5 03(8) 05(2) de = & (A-7)

ij?

where 61.

j is the Kronecker symbol.

Substituting (A-6) into (A-5), multiplying by ¢r(€)’ r=1,2,...,n,

and integrating over the domain (0,1) yields an equation of the type
[MI{g} + [C1{q} + [Kl{q} = {Q}, (A-8)

in which dots denote differentiation with respect to T.

Here {q} stands for the vector of the generalized coordinates:
{9} = {a,5 q,, ..., qn}T, T denoting the transpose.

[Q] is also a column-matrix: [Q] = [Qi]’ whereas [M], [C] and

[K] are nxn square matrices: [M] = [mij]

[C] = [Cij]

[K] = [kij]'
We have
mij(EaT) = A961j + A7 f:Sl(E,T> ¢1(€) ¢j(£) dg,
ci3(61) = TAD + AJ8;5 + A, S101(E) o;(E) de,



O

A4

(g,7) = £1 f(E,1)0;(8) de. (A-9)

0

Ai are the beam eigenvalues corresponding to the eigenfunctions ¢1,and

primes denote differentiation with respect to &.

Unfortunately we are still far from being able to follow a pro-

cedure similar to that of Morton and Corrsin [41], even in the first-mode

approximation. The same holds for the procedure followed by Parthasarathy

[79].
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APPENDIX B

Some Elements on the Probabilistic
Formulation of the Fluid-Structure Interaction

B.1 Membrane in planar turbulent flow

We could undertake this study by considering the structural
member to be a flexible cylinder, part of an infinitely long rigid beam,
as described in Section 2.2 of Chapter II and as shown in Fig. 12. The
cylinder would then undergo. lateral motions in the (x,y)-plane, as assumed
in Section 2.2, the equation of which would be

M 33%-+ EI §i¥-= F(x,t),

ot ax
in which y(x,t) is the cylinder deformation and M, EI and F(x,t) are, respec-
tfve]y, the mass of the cylinder, its flexural rigidity, and the hydrodynamic
force in the (x,y)-plane, per unit length,

But, for simplicity, let us assume that the member consists of a
membfane, or rather a strip of membrane, of width 6z and extending from x=0
to x=L [see Fig. 13(a)]. The membrane undergoes motion in the vertical
plane (x,y), and the fluid-solid interaction is assumed to be exactly

the same at each instant in each plane parallel to the (x,y)-plane. This

means that we deal with a purely two-dimensional phenomenon. Moreover,

the whole system is assumed to extend laterally to infinity (-« < z < +w)
and the fluid flow is unbounded. Actually, due to this configuration,
we choose to work only on a strip of membrane, or even a string, by letting

§z » 0.
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As far as the fluid flow is concerned, we consider the flow above
this string, in the particular (x,y)-plane chosen as reference. We regard the
fluid as a discrete medium made up of particles of same size, mass and all
other physical characteristics. Thus, we still deal with a homogeneous
model of the fluid. The fluid flow is supposed to enter the string region
and pass over it in the form of a lattice-like structure, with the velocity
U parallel to x [see Fig. 13(b}].

We focus our attention on a single fluid particle P, which
enters the string region sliding on the string, at the instant t=0. Its
initial position (xq,yg) is thence the origin (0,0) of the (x,y) reference
plane, whilst its initial velocity is (VXO’VYO) = (U,0). It is tHen
assumed that this particle will continue to slide on the surface of the
string during its entire passage over the string, and will not "take off"
from it. Our approach to the problem is inspired by the studies conducted
on the Brownian motion, a good selection of which may be found in Ref. [46].
The dynamics of this fluid particle is described by a "generalized Langevin
equation", expressed by equation (2-12). This two-dimensional Langevin

equation can also be written in matricial form, as

or explicitly,

in the x-direction: §f§_+ B dx w?2x =A(t) . (B-2,a)
Todt? dt 0 X ? ?
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2

&y wd = At) . (B-2,b)

in the y-direction: s

In the above, x and y are the co-ordinates of the fluid particle P considered,
whereas B is the Stokes' drag-denoting thé interaction between the particle
P and the string (membrane) surface. Usually B is taken to be equal to

f/m where f is the friction coefficient and m is the mass of P (another
expression of B has been adopted by Chandrasekhar and may be found as
equation (133) of Ref. [44]). This friction exists here in the x-direction
only, i.e. along the string surface. K(x) = —wgzx and K(y) = -mé*y are
the two components of a harmonic-type force denoting the attraction of

the particle P to its neighbours. Finally, AX(t) and Ay(t) are the compo-
nents of a randomly fluctuating loading force representing the hydrodyna-
mic disturbing force due to the surrounding particles.

The motion of this particle P is coupled with the motion of

the string by the following two relations:

(i) the equation of lateral motions of the string

32fF(x,t) f(x,t) -
M e T e Ay(t) , (B-3)

in which f(x,t) is the string deformation, T is the constant tension in
the string, whereas M and -Ay(t) are respectively the mass of the string
and the vertical hydrodynamic force per particle length dx; this last

term is identical with the loading in equation (B-2).
(1) the kinematic boundary condition

_ af (x,t) , af(x,t)
y X X T > (B-4)

v
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which arises from the assumption that the particle of co-ordinates (x,y)

slides continuously on the string. (Vx’vy) are the components of the

particle velocity and are equal to (%%3 g%).

- - T R - e e B e - -

K(t), and in particular its component Ay(t), is the Tooked-for

) >
solution to the problem. We cannot assume white noise for A(t), not even

for Ax(t), because we know from theoretical continuum studies, as well

as from experiments, that the system (beam + fluid) vibrates at certain
discrete frequencies. These are macroscopic waves in the fluid, propaga-
ting radially as well as axially. It is therefore proposed to regard K(t)

as a superposition of two kinds of perturbation:

-
(a) AM(t) stemming from molecular hydrodynamics. This part is white

noise since a Brownian particle under normal conditions in Tiquid
will suffer about 10%! collisions per second and its motion can be

assumed to be purely random on the macroscopic scale.

.
(b) AC(t) stemming from flow-elastic coupled motions, where ¢ stands for

coupling. This term is the unknown.

We hence have
N > -
A(t) = AT(t) + AS(t) , (B-5)

which can be written down more precisely by rendering explicit its

components,

in the x-direction: A (t) = AT(t)’+ Ai(t) (B-5',a)
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in the y-direction: Ay(,t) = A?(t) + A;(t). (B-5',b)

We now make some assumptions on the microscopic randomly fluctua-
ting components Az(t) and Az(t), in a procedure similar to the one fol-
lowed by Wang and Uhlenbeck (equations (41a) and (41b) of Ref. [45]).

In the x-direction, we assume that -

<Al(E) > = o0, C (B-6.a)
< AJ(t,) AT(t,) > = 2Ds(t, - t,), (B-6,b)

where < > represents the average value and is defined as

.
<u(t)> = lim o= £ u(t) dt,
To0 -T
.1 T
and < u(t) u(t+t) > = lim 5/ u(t) u(t+r) dt
T =T

(thus < > denotes a long time-average). & is the Dirac delta function,

and we also have

D:ikl,
m

in which k is the Boltzmann constant and T is the absolute temperature.

In the y-direction, we assume that

< A?(t) > =0, (B-7,a)
< Aj(t,) AJ(t,) > = 0, ~ (B-7,b)

since we have assumed there is no friction in the y-direction.
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Having given these details on K(t), we are now able to integrate
the generalized Langevin equation over a specific time interval At which
first needs to be rendered more precise. It is the essence of Brownian
motion that there exist time intervals AT during which the physical para-
meters (such as position or velocity of the particle) change only by
"infinitesimal" amounts, i.e. they remain nearly constant, whilst there
occur a very large number of fluctuations of the two microscopic fluctua-
tors Ag(t) and Ay(t). We can say furthermore that the variations of Ai(t)
and A§(t), which would be in synchronism with the vibrating string, will
be slower than the variations of the position or velocity of P.

Three time scales of vibration have thus been identified, and we
choose AT such that it be still very long compared to the longest charac-
teristic times in Ag(t) and Ag(t), but very short compared with the shorte
characteristic times in x, y, Voo Vy’ Ai(t) and A§(t), which can thus be
considered as essentially constant. The existence of such a doubly asymp-
totic time interval is crucial to the standard Fokker-Planck formulation.

Let us now start the integration. In the x-direction, we obtain

from (B-2,a) and (B-5',a):

d?x dx 2 . _ aC m
a‘t—z—"' Bﬁ"‘ Wy X = Ax(t) + Ax(t),

which can be written as

—2 = Ry - wozx + A)C((t) + A?(‘(t)

B6

st



Integrating over the afore-defined time interval AT, we get

AX = vx At

t+At

m
AT(e) de, .

vy ( BV, - wex * Ax)At + k[

t

in which Ax = x(t+At) - x(t), and £ is a dummy variable.

B7

(B-8,a)

(B-8,b)

Having done this, it is easy to obtain the coefficients of the

two-dimensional Fokker-Planck equation, following a procedure similar to

those of Wang and Uhlenbeck (page 334 of Ref.[45]), or Morton and Corrsin

[a1].

This equation, in the x-direction, reads

oP
X _ (0 rpX 9 raX
at '(Bx [AIPXJ * v, [Asz])

1,92 rpX 52 X
- ?'(§§7 [811Px] * X3V, [B1sz

92 X
1+ SVE'EBZZPX])-

(B-9)

To obtain the Fokker-Planck equatijon in the y-direction, one has to replace

X X . . y y .
x by y, Vy by vy, the Ai and Bij coefficients by Ai and Bij respectively,

and Px by Py are conditional probabilities which will be specified later on.
We have
X _ qs <AX>
A1 = A%TO X (B-10,a)
Ay = Tin 200 (8-10,b)
At-0 At
2
BY, = 1im 0x)7 (B-10,c)
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X <AxAvx>
B , = T1im X (B-10,d)
12 A0
<{av,)?>
B>2(2 = Tim —At)'(—— (B-]O,E)
At>0

The relations for obtaining the A{ and B¥j are quite similar,
and one merely needs to replace the letter x by the letter y, as appropriate.

Let us now calculate these coefficients.

- From (B-8,a):

AX = vx At,
and
<AX> = <vat> = vX<At> = vX At
hence,
RS = lim B2 oy (8-11,a)
At->0

- From (B-8,b):
t+At

- c m
Av, = (-BVX-wéx-+AX)At + \rt Ax(g) dg

Averaging and taking (B-6,a) into account,

<Av,> = (-Bv -t»zx*-Ai)At;

x " %o
hence,
X _ e AV 2. 4 2C
A lLEO i -Bvx-wox-+Ax. (B-11,b)
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- <(Ax)?> = <v§(At)2> = vi(At)Z;

hence,
X = 1im SBX®> Lo veat = 0 (B-11,c¢)
at-0  BY A0 X
2 C 2 tit m
- <pxbv > = v, (-Bv, -wix +AT)(AL)? + v At . . <A (£)> de

1]

2 c 2
"x(’B"x - wix + Ax)(At) R

because of (B-6,a); hence,

<AXAvV>
BY, = Tim —7C = Tim v, (v, - WX +AT)AL = 0 (B-11,d)
a0 AP a0
2y = 2 Cy2 2
- <(bv,)?> = (-Bv, ~wix+Al)*(At)
c t+At m
+ 2(-Bv, - wix+AZ)AL . . <A (£)> dg
t+AL t+At m m
+ <A (t,) A (t,))> dt dt,,
¢ ¢ X X

where t, and t  are dummy variables. The limit of the first term is
zero because of the factor (At)2; the limit of the second term is also
zero, because of (B-6,a);hence, we are left with the third term which,

due to (B-6,b), becomes

, t+At t+At
(v)>=20 | R R

and finally
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<(avy) >

X = 1im —2L " = 2p. (B-11,e)
o \ 2 aep A

The same type of procedure can be pursued on the Langevin equation
in the y-direction (equation B-2,b), and we finally end up with a set of

two coupled Fokker-Planck (or Kramers) equations

Z:—X = -V, gxi + 5—3; [(Bvx+wéx-A§)Px] +D ::2’( , (B-12,a)
'251 = Yy ;;l * 53; [(wpy - ADIP T, (B-12,b)
where
P = P(x,v,,t lxo,vxo)
and
Py = Plysvyst [ yg.vy )

are conditional probability density functions, defined by the statement
that if the system is at x, and Vx, at time zero, then P(x,vx,tlxo,vxo)x
dx dvx is the probability that it will be between x and x+ dx and have a

velocity between v_ and vx-l-dvx at time t. The definition of P, is quite

X y

similar.
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APPENDIX C

Complements to the Digital
Time Domain Analysis of Chapter III

C.1T Runge-Kutta method

The Runge-Kutta (4-point) scheme is used here to solve the differen-
tial equation (2-16) representing the system final]y adopted. Actually, we
use form (2-14) of this equation, but this does not matter at all since
the two forms are equivalent. We also take equation (2-15) into account
and introduce CM which stands for the constant (time-invariant) mass and

is equal to
tM=M +'ﬁ;. (C-1)

By introducing the time derivative of x with respect to time,

equation (2-14), which is a second-order differential equation,can be

written as a set of two first-order differential equation as follows:

dx

Et_= f(taxsy) = (C'Z’a)

|
<

f (t)
dy _ _ K C . €-2,b)
@ = 9(tx.y) = Mru(t) * "M+ ¥ * cm+°ﬂt) (

To solve this, we then apply the Runge-Kutta jteration formulae,

namely

1
X, =X, + g(k1 + 2k, + 2k, + kh) (C-3,a)
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Y, =y, tgle, v2e, v2e +g,), (C-3,b)
in which
k, = h f(t,, x5 ¥,) £, = hglt,, x;5 ¥,)
k, = h f(t +—2h—, x°+'—(él—, y0+£2—1) £, =h g(to+%, x0+k2—1, yﬁ%)
k, = h f(t, +'2‘,x +k2 y0+£2—2) £, = hg(t +g,7x +k2 y0+£2—2)‘
k, = h f(t +h, x, +k,, y, +£,) £, =hg(t +h, x +k,, y +£,)>

f and g being respectively the functions defined in (C-2,a) and (C-2,b),
whereas h is the step-size chosen.
The very first pair (x,,y,) is obtained from the initial conditions

applied to the system.

- - O o e S S v fn T G O S A A v M0

The perturbations a(t) of the hydrodynamic mass are obtained
in two steps.
First pseudo-random numbers are generated according to the uni-

form probability distribution
Py{x) = 13 0<x<1. (C-4)
This is classically achieved by the following sub-program (given in Fortran):

Initial values (in main program):

IR = 1
Jd=5%13
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Iteration scheme (in sub-program):

D01 I=1,N

IR;IR*J
IF (IR.LT.0) IR=IR+2x(2%x30-1)+2
R=DFLOAT (IR)/2.D0x*31

1 RU(I)=R

RU(I) denotes the ith uniform random variate.

The next step is now to transform these numbers into another
set of random numbers according to another probability distribution p(x).
It may be mentioned here that, according to exact terminology, we should
call p(x) a probability density rather than a probability distribution

since the latter is defined as F(x) = {:f

p(x) dx, but such a distinction
is not fundamental at this stage and the vocabulary confusion may be con-
sidered permissible.

If we call rs the ith random variate according to the uniform
distribution (C-4) generated by the subroutine above, then X;» the ith

variate according to the new distribution p(x), is obtained as solution

to the equation

X4
(r p(x) dx = rs. (C-5)

a

In our case we consider the Gaussian distribution, i.e. we have

1 _(X‘U)Z
= o e 20%2 |, (C-6)

p(x)

in which u and o2 are respectively the mean and variance of the Gaussian
distribution (the square root o of the variance is called the standard

deviation).
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Hence, the pseudo-random number X; is obtained by solving

xj . (x-u)®
e 202 dx=V2mor;. (C-5")

a

Before solving this equation, the constants a, y and o have to be known;
‘a can be chosen to be equal to u - 30, and a few words on the determination
of u and o will be given in Appendix C.3. Having specified that, we can
now indicate the numerical method used to solve equatioh (C-5'). The
secant method is chosen to solve it, whereas Simpson's method is adopted
to evaluate the numerous integrals required by the use of the secant
method. But such a procedure is obviously very long, requiring a great
number of calculations (and, hence computer time) to obtain merely one
random number X Moreover, when considering that only for one oscillation
cycle, we need 300 or 500 (cf. Appendix C.3) such random variates, it
becomes clear enough that a simpler procedure has to be found to generate
the normal (Gaussian) variates. Anyway, an approximately Gaussian a(t)
is sufficient for our purpose.

The new procedure which was actually adopted is a consequence

of the Central Limit Theorem [501, which states that

“if Y13Y¥asersYy, are independant random samples of a
stochastic event following a certain distribution
characterized by its mean u* and variance o*?, and
if we consider the change of variable

B I (c-7)
IRE RS o*

then z follows a standard normal distribution as

n > ",
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In our case, we start from the uniform distribution defined by relation
(C-4) and intend to calculate its mean My and variance ca. But before
doing this, let us shortly remind the definition of the moment of a func-
tion H(x), in case of a continuous probability density f(x). This moment

is given by

b .
<H(x)> = Lr H(x) f(x) dx, (c-8)

a

where a and b are the 1imits of the domain of validity of H(x) and f(x).
We now apply this to the calculation of My and oa, associated
to the uniform probability density (C-4). Here we have (a,b)=(0,1).

Hence,

¢ U = <> (C-9,a)

b o
o
Hi
O p—
>
'U
[ -
——
>
p —
Q.
>
i
D
>
Q.
>
H
l\)l f—

<(x - <x>)2>, (C-9,b)

By using the definition (C-8) and carrying out the calculation, we obtain

2

= <x?> ~ <x>? (C-9,b")

it
O —
x
N
(=1
>
1
o|—

i
—
I><

Summing up, we have found that

21 | -
by =7 and o, = 2/3 ~ /12 (C-10)
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A11 the details of the demonstration leading to the fast technique
of generation of a normal distribution will not be given here. Suffice

it to say that by introducing the change of variables

y=Ax +B (C-11)
and
n -
z= L Y; 4 (C-12)

i=1

and using relations (C-10) and some consequences of the Central Limit

Theorem, we obtain

W, = nu, = n(z + B) (C-13,a)

o, /n oy = A JQE: > (C-13,b)

in which (uy,cy) and (uz,cz) respectively denote the mean and standard

deviation associated to the distributions applied to y and z, the latter

being a normal (Gaussian) distribution. The greater n is taken, the better
the approximation of a normal distribution will be. For reasons of sim-
plicity in equation (C-13,b) and since such an approximation is sufficient
[see the histograms in Figs. 16(a) and (b)], the truncation to n=12 is

chosen. Equations (C-13,a) and (C-13,b) then become

6A + 12B

jod
1]

Hence we can solve for A and B in terms of M, and o_, which gives

z
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A= o (C-14,a)
_Hz 0Oz
B = VI (C-14,b)

These results allow us now to indicate the various steps of the
fast technique used in Chapters III and IV to generate pseudo-random num-
bers from a Gaussian distribution of mean uy and variance oZ.

(i) We first have to obtain u and o — or M, and g, in equations (C-14,a)
and (C-14,b) — which stem from the deterministic a(t) given in
equation (3-1) adopted for Curve 3 (see Appendix C.3).

(ii) We then select a random number rs from the uniform distribution (C-4).

(iii) This ry is then multiplied by o.

(iv) To this product is then added the expression %%—- %-(or B, according
to equation (C-14,b)). This means that we have now obtained a
variate of the variable y, following equation (C-11).

(v) We finally add up twelve of these variates Y;» and obtain one variate
of the variable z which follows a normal distribution (equation
(C-12) inwhich n=12).

This procedure may still seem rather long, but it is nevertheless
much more efficient than solving equation (C-5'). The output may be observed
in Figs. 15 and 16, the latter being a histogram obtained by means of the
IMSL subroutine USHIST.

.t S P " S e B o S e e - R N S G e TS A e e T S W P e e AR e e M Ry G E T G R A dme W A o T = e e = we e

According to the definition of the moment of a function H(x),

given by equation (C-8), and to equations (C-9,a) and (C-9,b'), we have

R oY)
= <a> = jq ap(a) do
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and

= <g?> - <?

+co
a?p(a)da - u?,

in which a=a(t) and p(a) is the normal probability density given by

equation (C-6) . Making the hypothesis of ergodicity, we can identify

ensemble and time averages. Hence, we also have

;
L= Tim ;—T a(t) dt (C-15,a)
Too T
and
LT
c? = 1im 7 a?(t) dt - p? (C-15,b)
Toxo T

It is now desired that the pseudo-random a(t) of Curve 4 and the
deterministic o(t) of Curve 3 have the same mean and variance, in order
to allow comparison between the two responses. The deterministic a(t) of
Curve 3 is given by equation (3-1) and since in all cases ¢;=0, it can be

written, taking also (3-2) and (3-3) into account,

5
pX sin(wit). (C-16)
i=1

(&) [eF]

5
a(t) = T a, sin(wit) =

® From (C-15,a) and (C-16), we have

IT
=T

Due to periodicity of the five sine functions, this can be written as

O s
U= == lim
10 T

i~

sin(wit) dt.

—jj—=

1
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s 2 1 '
W= 15 E T - s1n(wit) dt,

_ 2
Ti = (C-17)
i

For a given i, we have

T, cos(wst) | 11

Sin(wit) dt = --——7§?l—l = 0,

-T'I 1 -T'I

hence
u=20 (3-7,a)

@ Let us now calculate the variance. From (C-15,b), (C-16) and

(3-7,a),we have

U‘I|Ql
[«s] RN

: T 5
T [ = sin(wit)]2 dt.
T =1

Due to the periodicity of the sine function, this can also be written

Tim
T

5201 Tn 5 2
O'2 = 50 T [ z S‘ln(wit)] dt,
m -Tm i=1
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in which Tm is a time duration defined as the Teast common multiple of

all the periods Ti’ T( ) and T(i-j)’ associated respectively to the

i+]
oscillations of circular frequencies Ws s wi-kwj and wi"wj‘ The need to

integrate over such a period Tm will become evident very soon. By con-

ducting the calculation, the variance becomes

=2 [ 5 ['Tm 5 5 Tm
o = 50T z sinw,t dt +2 I I sinwst sinwjt dt
m =1 |-Ty i=1 j=1 -Tm
j#i
(C-18)
Let us analyse separately the two kinds of integrals appearing here.
T 1 T
* sinzwit dt = > (1-cos 2w:t) dt
-T T !
m m
1 sin 2wgt |'M
= 5|t - o =T (C-19,a)
-T
m
TI'I] 1 TITI
* . sinw,t s1nwjt dt = 5 . [cos(wi-wj)t-cos(w1+wj)t] dt.
“'m “'m

Due to the choice of Tm, it follows that
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sin wst sin wit dt = 0. (C-19,b)

J
-Tn

Plugging (C-19,a) and (C-19,b) into (C-18), we finally obtain

=2 5 5T =2
62 = > r T =0a?2 m -2,
50T, s=1 M 50T, 10
hence,
G = ——/C]"— , (3-7,b)

which can also be written as

_ 5
G—éiJ—:,

because of equation (3-2).

This short study is mainly concerned with the comparison between
the two reference cases in which a(t) =0, i.e. Curves 1 and 2 qf Chapter III.
Nevertheless, Curves 3 and 4 are also considered. The parameter of interest
here is n, the number of discretization points used to conduct the Runge-
Kutta iteration scheme, or, what is equivalent, the size of the constant
step-size h. The number n envisaged is considered over one page of USPLTD
plot, which was chosen to be 3 cycles of the reference curve, i.e. Curve 1.
If T, is the natural period of equation (2-16) with o{t) =0 and without

forcing function, the step-size h is therefore equal to
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The study was conducted for the following values of n: 100, 200, 300, 400,
500, 600. The values of the responses were taken at the following instants

of time: t=3T,, 6T, 9T, i.e. after 3, 6 and 9 cycles.

n!

The case envisaged here is for parameters

1
fo=d =15 4z,
n Tn
f =oL=30Hz, f =150 Hz, f, =240 Hz, f, = 300 Hz, f_ =450 Hz,
i 2 3 4 5

The results of the comparison between responses of Curves 1 and 2 are given

in the table below.

[x(Curve 2) - x(Curve 1)]/[x(Curve 1)]
at t=3T, at t=6T, at t=9T,

100 -3.42x10"° -1.86 x 10~ -7.32x1072
200 -1.00x 10-% -4.69x1073 -1.85x10°2
300 -9.54 x107° -2.13x10"3 -8.33x 1073
400 -9.42 x 1078 -1.22x10"3 -4.76 x 1073
500 -9.42x10°°® -8.04 x 107" -3.10x 1073
600 -9.42 x10"® -5.73x10"" -2.19x10-3

It may be noticed here that a systematical error is introduced by the use
of the Runge-Kutta method, which is 9.42 x107° after 3 cycles (after 6 and
9 cycles, the 1imit is not yet reached for n = 600). Fortunately this error

remains small, at least as long as the number of cycles considered does not
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become too large. The first runs were conducted with n=300; after this
study of convergence, n=500 was preferred (an even higher value of n was
not envisaged because of increasing computer costs).

As far és the frequency is concerned, there seems to occur a
very slight systematic shift towards lower frequencies, of the order of
0.2%. In fact, for fn= 15 Hz, the frequency of Curve 1 is effectively 15
Hz (which is expected from the analytical solution), whereas the frequency
of Curve 2, measured over 15, 30 or 45 cycles, is found to be only 14.97 Hz.
If this effect is supposed to occur for Curves 3 and 4 within the same order
of magnitude, then the frequencies measured from these curves (if they are
about 15 Hz) should all be increased by 0.03 Hz.

The results for Curves 3 and 4 were also obtained during this
study, but need not be given here. The response for n=600 was compared
to the response obtained for the other values of n. At least when starting
from n =300, convergence was observed for Curve 3. To give an idea, at
t=9T,, the ratio [x(Curve 3)n=300 - x{Curve 3)n=600]/[x(Curve 3)n=600]
is equal to 1.03x10"!, whereas the ratio [x(Curve 3)n=500 - x(Curve 3)n=600]/
[x(Curve 3)n=GOO] is equal to 1.60x10"2. For Curve 4, no such convergence -
is observed, which is expected, since using a different value of n actually
means that a different number of random numbers (which is precisely n, since
each integration point requires the generation of one pseudo—réndom number)

is used in the scheme.

- - - -

A typical Tisting of the program is given in the five following

pages. The case considered is Run 2 of Series E (see Appendix C.6).
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BWATF IV +»TIME=99 ,PAGES =40+ NOEXT
IMPLICIT REAL¥8(A-H.K~-L,0~-2)

C koK 3k 2k ok 5k 3% 3k ok koK 3k ok ok K ko ok ok skok koo % PART ONE OF PLOTIING PROGRAM @
INTEGER I YsNsMsINCSICPT sIMAG4(5151 ) IERVITITLE(144)+ ICHAR(10)
REAL RANGE(4)
DOUBLE PRECISION X(300)sY(300+4)
DATA ICHAR(1)/71H /+sRANGE/4%0.0/
CALL UGETIO(1,NINSNOUT)
READ(NINsS) (ITITLE(I)s I = 14144 )

5 FORMAT(72A1)
P1I = 341415926536D0
© Ck ok kK Kk Ak ok dkok ok ke d ok akok &R koK ok e ok K okok PARAMETERS TO BE CHANGED IN STUDY @

FN = 15.DC
DZETA = 040100
Fl1 = 3000

PUNOYONOUIRFUN~O YENOUISUWN

NNNNNA-—‘»F-;-N—-,..»-—

25

F2 = 150400
F3 = 240 .D0
F4 = 30000
FS5 = 450.D0
01l = 2.00%PI%F1
02 = 2.DC*P [%F 2
03 = 2.00%PI%F3
04 = 2 .00 %P 1*F4
05 = 2.DC*PI*F S
Al = 0.,15D00
A2 = Al
A3 = Al
A4 = Al
AS = A1l
PHI1 = 0.DO
PHI2 = PHIL
PHI3 = PHI1
PHI4 = PHII1
PHIS = PHI1L
C % %k gk ok ok ok ok 3k o okook sk 3k o ok ok ok o ok ok ok ke ok FROM THZISE PARAMETERS WE NOW DEFINE
TN = 1.DO/FN
Tl = 1.D0/F L
H = TN/299 .D0 %3 .D0
CN = 2.DO%PIX*FN
ALPHA = Al + A2 + A3 + A4 + A5
C kA& kK Aok $ 8k k ock koK K Rok Kok Kk & Rk Kk EXACT SOLUTICON I N CASE M(T) ¢ 3
c | ee-m—- - > COURBE NO 1 ( 2 CARTES )

80 = ON*DSQRT( 1.D0 - DZETA*DZETA )

PHI = 7 +0C
C*t*tt***t***;t****tttt*t*t*

CMASS = 1.D0

KA = CMASS*0ON*0ON

C = 2D 0%DZE TAK ONk CMASS_

¥LI
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43
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45
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54
55
56
57
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S9
60

61

62
63
64
65
66
67
68

70
71

72
73

74

76
77

3

C %k K Kok ok 3k 3k koK 3k s ko ok 3k koK skok ok ¥
T = 000
X0= 1 .D0
YO0= 0.D0
X1= 1.00
Yi= 0.D0
X2= 1.,D0
Y2= 0.DO

INITIALIZATION 3

X0
X0
X0

XTI LTI

#=< =<
o~ ~

X0 i

CHk k% ¥ % ko ok ok ok ok ok K ELEMENTS FOR THE GAUSSIAN
¢ AND MONTE~CARLO 3

c ATy MON e > CCURBE NO 4

« D0

A = ALPHA £DSQRT(10, DO)
1

S%% 13

* %

|

* .
S TTTE sk ok ok ok ok ook ke ok ok KEEP THIS 3

4
C ok ok ok dkakokok 3k ook ok 3 ok ok ko ol koK kK
1 CONTINUE

RUNGE-KUTTA METHOD 3

C ¥k ok ok ok ook ok K ok Kok e ok CASE 1 = WITH M(T) = ©

c . ees~aacac-o- > CIOURBE N3 2
CALL F(H, Y1 s P )
CALL GZERO( HsKALCsCMASS , X1 s Y1 .

CALL F(H, Y1+ Q 724,00 » PP ) :
CALL GZERO(HKAsCsCMASS 4 X1+ P /2.D0 » Y1+ G /2.D0
CALL F(Hs Y1+ QQ/72.D0 +» PPP )

CALL GZERC{H sKA+sCsCNASS s X1+ PP/2.D0 s Y1+ QQ/2.D0 »
CALL fFf(H, Y1+ QQQ s PPPP ) (
CALL GZERO(HsKAsCy CMASS 4 X1+ PPP s Y1+ QQQ ’

XXX= X1+ (P + 2.D0%PP + 2.D0%PPF + PPPP)/6.D0
YYY= Y14 (Q + 2.00%QQ + 2.D0%QQAC + QQQQ)/6.0D0

CoR oK Kk ok KKk ok 3ok K o ok K KK CASE 2 ¢ FOR M(T) = SUM OF
C ——————————— COURBE NO 3
CALL F(H, YO s K )
CALL G(HsKALC,T + XO » YO ’

*¥9sPI1sF19A1,PHI1,CMASS,
X 01+02+03,06 305 +A2 sA39A4 4A5 sPHI2,PHI3, PHI4s PHIS)

CALL F{(Hs, YO+ L /2D0 » KK )

CALL G{HIKA CoTH+ H/2eD0 s X0+ K /7 2eD0 s YO+ L /2e¢D0 o
¥oP1 sF1 Al PHIL1 CMASS,

¥ 01902s03+¢04+4055 A2+ A30A43A5,PHI2.PHI3PHI4,,PHIS)

CALL F(H, YO+ LL/72.00 +» KKK

CALL G(HsKA3Csy T+ H/72eD0 s X0+ KK/2:DO o YO+ LL/72«D0
*9sPlyFle Al +PHI1,CMASS,
¥ 01402903404 +05+A29A39A4 A5 +PHI2PHI3,PHIGs PHIS)

DISTRIBUTICN

aQ
QQa
QQaaQ

AT*SIN(OI*T + PHI)

L

LL

LLu

)
)
)
)

GLI
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CALL F(H,

XX = X0+

C

CALL F{(Hy» U

CALL CARLD(H.KAOC’CMASS s
*¥s TMIUsSIGMALJJHIR)

CALL F(H,

CALL CARLO(H+KAsC,y»CMASS
s TMIUSSIGMA 3 JJIR)

CALL F(H,

YYYY=Y2+ (V + 2.D0&kVV +

Y2+ VVV

Y

Y

Y2+ V /2.D0 o UU

Y

RN TCRRIEN $31 : . PR

0+ LLL y» KKKK )
CALL G(HyKA,Co T+ H .
*2sPI +F1 Al 3PHI1 sCMASS,
*¥ 0Ol 202+03404+s050A23A33A44,A5,PHI 2, PHI 3,PHI4+PHIS)
(K + 2.D0%KK + 2,DORKK + KKKK )/6.D0
YY = YO+ (L + 2¢D0FLL + 2.
C 3k 3 3k 3 Ak ko ok 3k ak ok ok ok 3k 3 ok ok ak 3k 3k ok sk % ok ok

2

X0+ KKK s YO+ LLL

DO*LLL + LLLL)/6.D0

CASE 3 : FOR M(T) IN FACT GIVEN BY MCNTE-CARLD
COURBE NO 4

---------- >
X2 v Y2

)
X2+ U /72eD0 & Y2+ V /2400

2+ VW/2.00 » UUU )
CALL CARLO(HsKA,CyCMASS ,
*¥s TMIUVSIGMA S JJsIR)
CALL F(H,
CALL CARLC(H;KA;C-CNASS ’
s TMIUsSIGMA4JJUsIR)
XXXX=X2+ (U + 2.D0%UU + 2.

ChkkkkhhkkkkkkkkkkbdkrkkkRkik
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CEXP{ —DZETA*ONXT
XXX
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E«300)

GO TOo 2

1
C ok 3k %k 3 3% 3k ok d ok okok 0Kk 3k ok koK ok ok ok ok

2 CONTIN
Y{(75,1
Y(76s1

UE
)
)

1

«D0
100

CHERKRE XS K KRR KRR Rk Rk &  kkokokk

INC =
N = 30

3
V]
CEEREXEREERK
IF (
WRITE(
77 FORMAT

1
0

1
00
sp
L ¥ 4
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[
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E
7
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x
1
)
.
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J
SX »'T ABLEAU NO

X2+ UU/2.D0 s Y24 VV/2.00

uuUuuy )

X2+ Ulu ¢« Y2+ VVV
DO*UUU + UJUU)I/6.D0

2.D0%¥VVV + VVVV)/6.D0

SUITE 2

) * DCOS( OO*T + PHI )

END OF RUNGE~KUTTA USES
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PART TWO OF FLOWING PROGRAM

TRACER D'AUTRES TABLEAUX
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STOP
END

SUBROUT
IMPLICI
K = HXY
RE TURN
END

0o X

e
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g O

)

Os 135!
)
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»SX,»* TABLEAU NO ’
) TMIU.SIGMA, AL
22X »* GAUSSIAN DIST

’

" 9I1)
PHA
R

* kK

IBUTION @

ALPHA

SLBROUTINE GZERO(Hs KAy Cs CMASS, XsY »Q)
IMPLICIT RCAL*3(A~Z)

Q = Hx(
RE TURN
END

KA/ CMASS *X

C/ CMASS *Y

)

MIU
F2 |

= 1,020413,°
2D1245)

S1

L1d
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145
146

147
148
149
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151
152
153
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155
156
157
158
159
163
161
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164
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167
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SUBROUT INE G(HsKAsCsTeXsYsLlo
* 014025039046 405,A2:A3,A4,A5,
IMPL ICIT REAL*8{A~-Z)
CALL MOFT (P11 +F1 Al s PHI1 s Ty MM,
*¥ 01+02,03504+051A29A3,A44A5,PHI2 PHI3 ,PHI4 s PHIS)
L = H¥{ -KA/( CMASS + MM ) #%X = C/{ CMASS + MM ) %Y )
RETURN
END

PlsF Als,PHI1.C
PHI2 +PHI3, PHI%,

SUBROUT INE CARLO(H;KAgCoCMASS-X:Y
Chdkkk Kk kkk kR kK kKKK KK MCNT E
IMPL ICIT REAL %8( A-H.K—L +»0-2)

RRR = 0.D0

&SAR-'TMIU’SIGMA.J v IR)

Do 7 ITl = 1,12

IR = IR*J

IF(IReLTeO) IR = IR + 2%{2%%30 - 1) + 2
R = DFLOAT(IR)/2.D0%%3}

RR = R®SICMA + TMIU/12.D0 -~ SIGMA/2.D0

RRR = RKR + RR
7 CONT INUE
RN = RRR
CARL = H*%( =-KA/( CMASS + RN ) *X = C/( CMASS + RN ) 2y )
RETURN
END

SUBROUTINE MOFT (PIsF1l Al +PHI1s ToMM01+02:33+4045,05:A29A35A45A5,
¥PHI 2sPHI 3+PHIG,PHIS)
INMPLICIT REAL*8(A-2Z)

MM = AL1*DSIN(O1*T + PHI1 ) + A2#DSIN{ Q2*T +PHIZ2 ) + A3FDSIN{ 2347

% + PHI3 ) + A4%DSIN( O4%T + PHI4 ) + AS¥DSIN( 0S5%T + PHIS )
RETURN
END

$DATA

813
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Series A,B,C

Curve 3 of these series is discussed in Section 3.2.3 (and Curve
4 in Section 3.2.2).
These three series consist of ten computer runs which have in

common the perturbation frequencies
fi = wi/Zﬁ = 5, 10, 15, 20, 25 Hz.

The other parameters of each run are detailed in the table below (when no
value is given for a parameter for a second, third or fourth run, it means
that the parameter in qUestion has the same value as for the first run of

the series considered).

Series & Run fn(Hz) z a n N¢ Remarks
A 1 15 0.01 0.50 300 15 Large amplitudes
0.75
1
B 1 15 0.005 0.25 500 45 Small amplitudes
30 and ¢ — test on
f
60 n
C 1 15 0.005 0.25 500 30 Basically the
2 0.50 same as Series
’ A, but £=0.005
3 0.75 instead of 0.01
4 1

In all series: fi = 5, 10, 15, 20, 25 Hz.
fn is the natural frequency of the system and is equal to wn/Zn, in which

w, 1s defined by equation (2-16',a). <z and a are respectively defined by



equations (2-16',b) and (3-3).

cz0

n is the number of calculation points used

over three cycles (cf. Appendix C.4), whereas Nc is the number of cycles

computed.

Series D to H

Curve 3 of these series is discussed in Section 3.2.4 (and Curve

4 in Section 3.2.2).

These five series consist of seventeen computer runs which have

in common the natural frequency f,, = 15 Hz.

below.

The other parameters are given

Series & Run z a n N, Remarks
i=1tob
D 1 0.01 30,123,263,333,543 0.50 300 15 Large amplitudes
0.75 — to test for
- ’ parametric
(y, = 15Hz) 1 resonance; f, =
2y
E 1 0.01 30,150,240,300,450 0.50 300 15 Large amplitudes
— to test for
(f. = 15Hz) 0.75 36 parametric
n 36 resonance;
f, = 2f,
F 1 0.01 15,150,240,300,450 0.50 300 15 Large amplitudes
0.75 —to test for
- ’ parametric
(fn 15Hz) 1 resonance;
f,=f,
G 1 0.005 30,150,240,300,450 0.25 500 60 Same as Series E,
. but £=0.005 in-
2 é:i?gsaz)1n 0.50 stead of 0.01
3 0.75
4 1
H 1 0 30,150,240,300,450 0.25 500 30 To measure ers
2 (same as in 0.50 when z =0
3 Series E) 0.75
4 1
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APPENDIX D

Complements to the Digital

Frequency Domain Analysis of Chapter IV

D.1 Fast Fourier transform

The fast Fourier transform can reduce the time involved in finding
a discrete Fourier transform from several minutes to less than a second
and, consequently, lower the computer cost. THe Fourier transform, of
course, is used to identify the frequency components making up a continuous
waveform. For sampled data, as is the case in this digital analysis, the
discrete Fourier transform (DFT) is used and the fast Fourier transform
(FFT) is precisely an efficient algorithm to determine the DFT.

The Fourier transform for continuous signals and its inverse

transform can be written in the form

f} +oo .

X(f) = x(t) e 12T gt (D-1,a)
U -00
40 .

x(t) = U x(f) o127t 4t (D-1,b)

for o < f < © and -© < t < o,

In these equations x(t) represents the function considered in the time
domain while X(f) is its representation in the frequency domain (also
called its Tinear spectrum).

The analogous discrete Fourier transform pair that applies to

sampled versions of these functions can be written in the form
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N-1 en .
K@) = 5 5 x(k) e TEWKN (0-2,2)
k=0
N-1 n
x(k) = £ X(j) el2mIk/N (D-2,b)
j=0

for j=0,1,..,N-1; k=0,1,...,N-1; and N is the number of real sampled
points used for the DFT (we called it NDFT in Section 4.1). Both X(j) and

x(k) are, in general, complex series.

If we replace eZHi/N by the term wn,the DFT becomes
N-1 .
. 1 -jk
X(3) =5 = x(k) W
N k=0 f
N-1 .
. +jk
x(k) = £ X(3) W, o% .
J=0

Each j is a harmonic number; that is, the true frequency is the
product jfo where fo is the fundamental frequency and the true time is
the product kAt where At is the sample period. The real part of X(j) is
an even function and the imaginary part of X(j) is an odd function which
implies that the Fourier coefficients N/2 and N-1 can be viewed as "nega-
tive frequency" harmonics between -N/2 and -1. Furthermore, the last
half of the time series can be interpreted as negative time (that is, as
occurring before £==0).

The Cooley-Tukey FFT algorithm was developed in 1965 [67] and
led to all the numerous subsequent publications on this topic. Using the

notation of Cooley, the FFT algorithm involves evaluating the expression
. N-1

X(j) = =
k=0

A(k) wik (D-3)

for j:O,],...,N-]; k=0,1,...,N-1; and W=82ﬂi/N.
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We will take the case for N=8, and then it is convenient to

represent j and k as binary numbers. This is to say that for

we can write
j=4j,+2j, +J, and k =4k, + 2k + Kk, .

In these expressions, j,»Jj,»J,sk,.k, and k, can take on a value of either
0orl.

Therefore, equation (D-3) becomes

~ 1 1 1 . . s
X(3,,d,53,) = = z 5 A(kz,kl,ko)w(432+231+3o)(4kg+2k1+ko) .

k, =0 k,=0 k,=0
(D-4)

Since W™ = M - W", we have
w(83,%23,+3 ) (8k,+2k vk ) (45,25 ,43 )4k,
w (432723, 43 )2k, (43,%23,+3, )k,
The two first factors can be written in the form
W (832723145 008k, - 823,43, )Ka7 4ok,
W(43:4200%30)2ky | 83,k 7 2023, 43, )k,
However,

W = (e21T1'/8)8 _ 2mi
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Hence the terms in brackets above equal 1 and equation (D-4) becomes

R 1 1 1 4 K
X(3,:d,5d,) = Z T £ A(k,,k, k) Woot2
k,=0 k,=0 k,=0

x 2023 %3 )k, (43,723 43 )k, (D-5)

It is most convenient to perform the summations separately and label the
intermediate results where only the latest set needs to be saved (each
set contains only eight terms). Thus the equations can be rewritten in

the form

A g0k, ky) = Ak, K, ok,) whokz

0

i
N
y 01—

k

1 L
Ay(dgsdisko) LA (3,.ky0K,) W2(231430)k,

1 ims s
s s s .. +23 +
A (3,53,53,) = kzo B, (3453, 5K,) (43 .+23,43,)k,
0:

and finally
R(3553,534) = Ayl3gsdyadsy)- (D-6)

In this case (N=8) a direct evaluation requires 64 complex
multiply-and-add operations. Using the FFT equation and noting that the
bracketed terms in the previous equations equal 1 and that W® = -W*,

W! = -W5, etc., only 12 operations are needed. More generally, for N==2n,
the reduction is from N2 to-%NlogzN complex multiplications, as many

complex additions and also as many subtractions. For N=1024 for example,

this represents a computational reduction of more than 200 to 1.
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The three most often encountered problems (or pitfalls) in using
the discrete Fourier transform appear to be aliasing, leakage, and the
picket-fence effect.

The term "aliasing" refers to the fact that high-frequency com-
ponents of a time function can impersonate low frequencies if the sampling
rate is too low. This problem can be removed by making certain that the
sampling rate is at least twice as high as the highest frequency in the
signal (this minimum sample rate is known as the Nyquist Criterion). If
there is a large amount of high frequency noise present, it is best to
pass the signal through a Tow pass filter and to sample at a rate twice
the frequency at which the signal is being filtered.

"Leakage" is an effect which is inherent in the DFT because of
the required time domain truncation. The time domain truncation may be
thought of as multiplying the signal by a unit-amplitude data window, w(t),
which has a Fourier transform sin(f)/f, where f is the value of the fre-
quency in the frequency domain. Therefore, the truncation of a sampled
wave form results in a frequency domain convolution of the signal with
the sin(f)/f function. This convolution introduces additional components
in the frequency domain, because of the side-lobe characteristic of the
sin(f)/f function, unless the truncation interval is chosen to be equal
to a multiple of the period. To reduce leakage, it is necessary to employ
a time domain truncation function, which has side-lobe characteristics which
are smaller in magnitude than that of sin(f)/f. A good truncation function

is the Hamming window,

(1-b) +b cos (Ty) for -m+1 <1 <m-1

0 m< |t
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where Tt is the length of the time record in seconds. If we Tet b=0.46,
then this is the Hamming window. If we let b=0.5, then this is the Hanning
window of the Hamming window class. Actually, we chose the FTFPS routine
(from the IMSL Library) to obtain the power spectrum of a time function.

This routine uses the symmetric window
W(J) =1 - —L+] . for J=0,],-..,L‘1 - (D"S)

which is approximately the Parzen window. (L is an input parameter to the
FTFPS routine used to segment the time series, and must be a power of two.)
In order to understand the "picket-fence effect", it is necessary
to understand the nature of the results of the FFT. The FFT produces a
spectrum of Nf frequency components spaced at intervals of Af= 1/Tt. If
a unit frequency component occurs at fc, such that f. is an integer mul-
tiple of Af, then its magnitude will be expressed as unity. If, however,
fc does not occur with such an integral relationship, then it will appear
in the surrounding frequency components n-f and (n+1).f. Its amplitude
jn this case will be sin(f)/f, where f=fc-f, énd f= fn+]-fc. In the
worst case when f. is located half-way between n-Af and (n+1).Af, it will
be seen as 0.637 of the amplitude at both of these frequencies. Therefore,
the FFT could result in an error of 27.3% in the value of the amplitude.
This effect is referred to as the picket-fence effect. A possible cure
to this problem is to double the record length with a set of samples which
are all zero. This would cause the FFT to calculate a redundant set of

terms which would be between the original terms. Now, the maximum error
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would occur when fc is 1/4 of the way between successive frequency com-
ponents, and would then reach 10%. However, in prattice the picket-fence

problem is not as great as this discussion implies.

The following schemes of a(t) have been generated in Chapters III
and IV. They are presented in a discretized form, their general variate
being given at a specific instant of time ty- Each model of a(t) thus
characterized is denoted by a small bracketed letter, i.e., [a], [b],...,
[k]. Besides the schemes of o(t) are indicated the names of the cases under
which the scheme in question has been considered in the various chapters
or sections. Not all schemes have been used in Chapter III or in one of
the two sections of Chapter IV considered, as can be seen below. In Chap-
ter III, the cases envisaged have previously been called Curve 1,..., up
to Curve 4. For Chapter IV, they are called A[v] or B[w] where the capital
letters A and B show that the cases considered belong, respectively, to
Section 4.2 or Section 4.3, whereas the small letters inside brackets
(hypothetic [v] and [w] used here) indicate which model of a(t) is taken.

The various schemes of a(t) are presented in the table on the next page.
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Scheme considered Cases examined
Name a(tk) = Chapter III Section4.2 Section4.3
[a] 0 Curve 2 Ala] B[a]
(Curve 1)
- N
[b] ﬁ- r sin(w;ty) Curve 3 Alb] B[b]
i=1
[c] RO, Curve 4 Alc]
N
[d] izl RAiks1n(w1tk) A[d]
3 N
[e] N-iE] sinl(w;+R0; )t ] Ale] B[e]
a N
[f] N-izl sinfw;t, +R0, ] ALf]
g N .
[g] N_1§1 s1n[w1(1+pis1n(xwitk))tk] BLg]
i N .
[h] N'1§1 s1n[mi(1+uis1n(1OAwtk))tk] B[h]
Lo N .
(] N-i§1 S1n[w1(1+uis1n(Kwitk))+R01k)tk] B[]
Loa N
Ll § 151 sinfw (1+u;sin(10amt, )t ] BLi]
g N . |
[k] N-1§] s1n[{m1new(1+uis1n(10Xﬂtk)) B[k]
+ Roik}tk]

For the values of fi and the methods of generation of ROi for each scheme,

see Remark 3 below.
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@ Remarks

1. As a first remark, let us notice that not all these schemes are random;
in fact we have:
pseudo-random schemes: [c],[d],[el,[f],[i],[k]
deterministic schemes: [a],[b],[q],[h],[]]

2. It may also be noticed that, similarly to equation (3-2), all amplitudes
a; of the individual sine functions are being taken to be equal, hence

a is again defined, similarly to equation (3-3), as

N -
a= I a; = Na1 . (4-4) or
i=1 (D-9)
hence the amplitude of one sine function is equal to
- a o

and appears under the latter form as a common factor in most schemes
of a(t). The only difference between equations (3-2) and (3-3), and
(D-9) and (D-9') is that the latter ones are generalized for any N.

3. After these two global remarks, we still have to examine the schemes
one by one in order to specify some characteristics, especially the
different methods used to generate the random variates Roik which have
all been noted in the same way for simplicity.

Scheme [a]: This the fundamental reference case since it represents
the homogeneous model of two-phase flow for which mh(t) ='ﬁa (it is
recalled that in Chapter III, Curves 1 and 2 denote, respectively, the
analytical and numerical solution).

Scheme [b]: This is the deterministic reference case and consists of

‘:; the sum of N sine functions in the time domain, or a juxtaposition of
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N identical peaks in the frequency domain [see Fig. 25(a)]. Tomake these

peaks equidistant, we choose equidistant frequencies, according to N, as

follows:
N= Values of fj = wij/2rm
5 Hz
A
5 5, 10, 15, 20, 25
2.5 Hz
—*
9 5, 7.5, 10, 12.5 15, 17.5 20, 22.5, 25
1.25 Hz
—*— :

17 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5, 13.75, 15,
16.25, 17.5, 18.75, 20, 21.25, 22.5, 23.75, 25
0.625Hz
r—J\—\

33 5, 5.625, 6.25, 6.875, 7.5, 8.125, 8.75, 9.375, 10, 10.625,

11.25, 11.875, 12.5, 13.125, 13.75, 14.375, 15, 15.625, 16.25,
16.875, 17.5, 18.125, 18.75, 19.375, 20, 20.625, 21.25, 21.875,
22.5, 23.125, 23.75, 24.375, 25

Let us specify that these values of the perturbation frequencies, f.

i’ are

also those for schemes [d] to [i], in case the corresponding value of N is
used.

Scheme [c]: This is the random reference case (completely pseudo-random
without favouring any specific frequency). Its generation by a normal
Monte-Carlo technique is given in Appendix C.2. As far as its mean u and
standard deviation o are concerned, it was found in Appendix C.3 that for
N=5 we have u=0 and 0=0a//10. By a similar demonstration, it is estab-

lished that for any N, we have
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U= 0 (4'8,3)

and

Q
1

a/VoN . (4-8,b)

Scheme [d]: In this case,vthe amplitudes of scheme [b] are made random.

To see this better, scheme [b] has to be written again in its initial form

using (D-9'),

H ™M=

S'in(w_itk) =

I aj sin(witk).
1 i

1 1

Hno~M=

alty) =
1

By replacing a; by the pseudo-random sequences RAik (RA standing for "Random
Amplitude"), we obtain scheme [d]. The new subscript k stems from the fact
that the random variates are different for each instant of time t . De-
fining a; = a (= %) — the common value of all the amp]itUdes a; of scheme
[b] — the N sequences RAik at a given instant tk are all chosen to have

. =3/V/2N which distributes

the same mean M =3, and also standard deviation oF

their deviates from 0 to 2d@ about the mean d@. To obtain given deviates of
the random sequences RAik’ the N associate deviates of the pseudo-random
Monte-Carlo sequence (as for scheme [c]) are generated by assigning the

first one to RAlk’ the second to RA k> and so forth to RANk' It was verified
for N=5 that, by doing so, one still obtains normal (Gaussian) sequences

fbr each RA1.k — provided, of course, that a sufficient number of deviates

has been generated.

Scheme [e]: Here the amplitudes a; remain constant as in scheme [b] (hence
the common amplitude %-can again be written outside the summing operator %),

but the frequencies are randomly perturbed. In this case R01-k are random

sequences of mean u1==0 and of variable standard deviation o (now being
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used as a parameter independent of a). The w; are constants as in scheme

[b] — so that RO, acts as a fluctuator to w As already mentioned, the

i
values of fi are the same as for scheme [b].
Scheme [f]: 1In this case it is attempted to achieve the same goal as above
(scheme [e]) by randomly perturbing the phase between the frequency com-
ponents of a(t), rather than the "predominant" frequencies themselves.

Roik are pseudo-randomnumbers defined as for scheme [e], hence o can again
be chosen independently of a.

Scheme [g]: This is a new deterministic case in which the circular fre-
quencies w; are deterministically perturbed by the factor 1-+uisin(xwitk).
Scheme [h]: This is the same deterministic case as scheme [g], but in the
aforementioned factor, all the frequencies Wy of the term sin(kwitk) are
replaced by the Towest of them, w, = 2nf, = 107 (since f, =5 Hz).

Scheme [i]: This is again a pseudo-random scheme. In fact, the determinis-
tically varying frequencies of scheme [g] are further disturbed randomly

by pseudo-random deviates Roik defined as for scheme [e].

Scheme [j]: This case is the same as the deterministic scheme [h] with,.

in addition, a systematic frequency shift of -3 Hz, translating thus all

‘the frequencies fi from the range (5-25 Hz) down to the new range (2 -

22 Hz).

Scheme [k]: This is a pseudo-random scheme with the new range of frequen-
cies (2 ~22 Hz) obtained by randomly perturbing the already deterministi-
cally varying frequencies of scheme [j]. As a matter of fact, going from
scheme [j] to scheme [k] is exactly similar to going from scheme [g] to

scheme [i].
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The 1isting given below corresponds to run Ale], for which the
deterministic frequencies fi are perturbed by a pseudo-random fluctuator.
The parameters considered here are N=5, fn= 14 Hz, 0 =0.25 and o =0.50.

The Tisting may be found in the following pages, as wei] as the 161 first
digital output data, i.e. up to the frequency of 25 Hz. Both power spectra

of the fluctuator a(t) and of the response x(t) are given.
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0141 cnat I = 1, 1L PAGE 0004
0142 CALL PLOT(FX+PS(I),2)

0143 41 FX = FX + FXINC

0144 CALL PLOT(FXy=145,=3)

0145 IF(ITEST  NE o1) GC TO 24

0146 ITEST = 2

0147 GO TO 22

0148 72 WRITE(6,20)

0149 20 FORMATI'O0' ,8X, 'RBIG IS EQUAL TO ZERO')
0150 24 CONTINUZ

0151 CALL EMDRLT

0152 sTOP

0153 £ND

¥CPTICNS IN EFFECT*% NCTERM, ID»EBCDICsSCGURCEZNCLIST,NCDECK,,LOAD+NOMAPNOTEST

*CPTIONS IN EFFECT*®  NAME = MAILIN s LINECNT = 56
*¥STATISTICSE* SCURCE STATEMENTS = 153,PROGRAM SIZE = 186328
*STATISTICS* NGO CIAGNDSTICS GENERATED
FORTRAN IV G1 FELEASE 240 LARGE
0001 SUBFROUTINE LARGE{(E+N,BIG)
0002 IMPLICIT REAL¥8(A-HK—L,0~2)
0003 CGUBLE PRECISION E(N)
0004 BIG=0.00
0005 0O 40 I=1sN
0006 IF{(BIG«GETCABS(E{I))) GOTO 40
ooo7 BIG=DABS(E(I))
0008 40 CONTINUE
0009 F=TURN
0010 = ND
*¥0PT IONS IN ESFECT#  NOTERM, IDyEBCDIC,SCURCE,NOL ISTy NCDECKSLOAD S NOMAP SNOTEST
¥OPTIONS IN EFFECT%  NAME = LARGE s LINECNT = 56
*¥STATIST. CS* SILRCE STATEMENTS = 10+ PROGRAM SIZIZI = 448

¥STATISTICS* NO CTAGMNOSTICS GENERATED
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FORTRAN IV G1 RELEASE 2.0 FF

0001 SUBFOUTINE FF{HsYsK)

0002 - IMPLICIT REAL*x8(A-Z)

0003 K = H*}Y

0004 FETURN

000S END

¥OPTIONS IN EFFECT* NOTERM,IDEBCDIC,SOURCEWNDLISTINCDECK L ODAD s NOMARPJNOTEST

¥CPTICNS IN EFFECT* NAME = FF » LINECNT = 56

¥CSTATISTICS* SOURCE STATEMENTS = S+PROGRAM SIZE = 344

*STATISTICS%® NGO DIAGMGSTICS GENERATED
FCRTRAN IV G1 RELEASE 2.0 PERTU

0001 SUBROUT INE PERTU(HyKASCsCMASS )X s YsCARLyTMIUSSIGMAy Js IRy FyOMEGA,T,

*¥019 0250390405 3PHIL JPHIZ2»PHI3ZPHI4PHISA1+A2:A3,44,A5)

0002 IMPLICIT REAL¥8{A—H K=L 0-2)

0003 CALL ALEPH(IRy TMIU,SIGMAs T,01,02,03y04,05+sPHI1+sPHI2,PHI3,PHI4,PHIS

S 2ALPHsJ A1 2A2,A34A4,A5)

0004 CARL = H¥x( —KA%X — Cx%xY + F¥DSIN(OMEGAXT) ) 7 { CMASS + ALPH )
0005 FETURN
0006 END

*CPTICONS IN EFFECT%  NOTERMy ID2EBCDIC, SOURCESNOL ISTys NODECK L CAD»NOMAP JNCTEST
*OPTICNS IN EFFECT%X®  NAME = PERTU » LINECNT = 56

*STATISTICS* SOURCE STATEMENTS = 6+ PROGRAM SIZE = 1260
*¥STATISTICS%  NO DIAGNOSTICS GENERATED

¥STATISTICS* NO DIAGNOSTICS THIS STEP
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C VARETANTE 1

0002 IMPLICIT REAL¥B{A-~H K~-L,0-2)

0003 COUBLE PRECISION RJO{(5) s RRO(S)

0004 RO(1) = 01

0005 00351 I = 2,5

0006 381 RO(I) = RO(1-1) + Ro{1)

0007 0O 44 I = 1,5

00C8 FRE = 0.00

0009 Co 7 II1 = 14,12

0010 IR = [R%J

0011 . IF(IFR L Te0) IR = IR + 2%{(2%%30 - 1) + 2

0012 R = DFLOAT(IR)/2.D0%%31

0013 FR = RXSIGMA + TMIU/12.C0 — SIGMA/2.D0

0014 FRR = RRR 4+ RR

0015 7 CONTINUE

0016 44 RRO(1) = RRR

0017 ALPH = 0.DO

0018 PC4sS I = 1,5

0019 45 ALPH = ALPH + ALXDSIN({RO(I) + RRO(TI) ) T )
0020 KETURN

0021 ' END

*¥*DPTIONS IN EFFECTX NOTERPM, IDJEBCDIC+SOURCEJNOLISTINIDZICKHLOAD s NOMAP JNCTEST

*¥CPTIONS IN EFFECT % NAME = ALEFH s LINECNT = 56

*STATISTICSE* SOQURCE STATZIMENTS = 21+ PRAGRAM SIZE = 1434

*STATISTICS* NO DIAGNOSTICS GENERATED
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XXSUM = 0.10804485280830-02 XXRMS = 0.81301857799950-01
YYSUM = 0. 2254633933068D-03 YYRMS = 0.2045174642750D0+00
IER = 0

FREQUENZY POWER SPECTRUM CF X PCWER SPECTRUM OF Y

1 0.0 041153654668890D0-02 0.10898171775850~-03
2 0«15625000€000CC+00 0.1269820182186D-01 02245525513456D-04
3 031250000000000+400 0+56496467663220-02 0.17739765780990~-05
4 0.46875000L0000D+00 0626194392832720-02 046835311131540-04
5 0.62500C0000000C+00 01036025464383D-01 0.49467082457250-04
6 0781250000000CC+00 0+1366929024661D0-01 0.90823624634460—-03
7 0e9327E000C000000+00 0«49717835486020-02 0.24351002434760-02
8 0.1093750000000D+01 0.725363C1G€079D~-02 0.,1010712565139D0-02
9 0.1250000000000D+01 0.18030810682350-01 02179581533239C—-03
10 01406250000000D+01 0120414368S600D0-01 0e7146601697157D0-04
11 0415625000000000+401 0.4856117023344D-02 048776220311942-05
12 0.1718750CC000000+01 0.2688561309063D0-02 0.3384158038688D0-04
13 01E75000000000C+01 0.2676563711132D—-02 022590691689670-04
14 0+20312500CC0000+01 064192573047166D0-02 0:56987894564910-04
15 0+21875000000000+01 0363213911 4023D-02 038952532610190~-04
16 02343750CC0000D+01 0.44564171774482D-02 03086222957834D-04
17 0425C0000000000D+01 0.,1311262861889D-02 0.14296154585020~-05
18 026562500C000CC+01 0413736459557920-01 02707600632907D-04
19 0.2812500000000C+01 0.€605431475156C-02 0.25950980160900-04
20 029€87500CC0000+01 0e3340321027528D0-02 072040049126660-05
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0.31250000000000+401
0.328125C0000000+01
034375000000000:+01
0.359375C0C00000+01
0437500000000000+01
0.356062500000000+01
0.40625C00000000401-
0+42187500000000+01
04375000C00000C+01
0.458312500C0000C+01
04468750CC000000+01
0.48437500C0000C+01
0.5000000000000C+01
051E62500000000+01
05312500000000D+01
0+546E750CC0000D+01
N.5625000000000C+01
0.57812500C000CD+01
059375000000000+01
0.60837500C00000+01
06250000000000D+401
0.64C62500C00000+01
0.£5625000000000401
0.67187500C0000C+0 Y
0.6875000000000C4+401
0.70312500C0000C4+01
D71875000000000+01
0473437500C0000D0401
0.75000000000000+01
0.7656250000000C+01
0.7812500000000D+01
06 756E8750CC0000D+01
0.8125000000000D+01
0.82812500C00000D+01
ND.8437500C0000000+01
0.85937500000000+01
0.8750000C000000401
0.8506250CC00000+01
09062500000000D+01
03218750C000000C0+01
0.9375000000000D+401
0.953212500000000+401
0.96875000000000401
0.98437500C00000+01
0.1000000000000D402
0.1015625C000000+02
0.10312500000000+02
01046875CC0000C+02
0.1062500000000D+02
0.107€1250000000+02

0.86771557627220-02
0.37865902692450~02
0«4051100598587D-02
0£295954418046D0—-02
0.9387140563432D~02
02727078767759D—-02
0. 7302009638813D-02-
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0«4581301035856D-C2
0.24653805700680~02
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D277538376232920-01
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0¢144481218€453D~-01
04863093956142D-02
02121594110321D-02
0.42852396757600-02
010661636367140~01
0.10330534924399D-01
0.73878418449860~-02
0e7564679113684D-02
0.80807E8918951D~-02
0+2084966715553D-02
0.8£46452868772D-02
03340723924597D0-02
0«46698354320890-02
06 £3237550817610—-02
01074€428907430-01
0.69676034228130-02
0+1036133945409D0-01
058110022541520-02
0«7786463305998D-02
024S90712106746D—02
0.2115188516085D-02
0e24€70099464640—-02
0.2789170895197D-02
043567440374840-02
01023990416020D0—-02
Ce13350310058960L-02
0.2276071818668C-02
0.£84183845080900-02
0€3534514777410-02
0e464G2717845586D~-02
024552340235740~-01
0.€056368368276D-01
0.2103916116518D-01
0+4052604853133C-02
0e7€74535636749D-03
025672€1016311D0-02
055118029981990-02

0+2594750412594D~04
0.72283016088220-04
0.£6270263589938D0-04
0.710985195514 0D-04
0.43013857207560~-03
013439972131390~-02

D+ 2845902727582 2D>—-0L
0.80917308628990-03

0.3019103771048D0~-04
0.2084214713052D-04
0.22497186543930-04
058724872490320~-05
026996512006080-04
0430111208346530—-04
0e647228431031180-04
0.13893160132330-04
0.3772556603897~-04
01277513542805D0-02
0.33545687943850~-02
0+18476112690860-02
0426493507661970—-03
0.11887614969680—-03
0.3148034056722D-04
05960399521 058D-04
05123686464202D-04
0¢13948511562540-03
0459969215551 92-04
0.90836302863850~-04
0.5952096188095C~-04
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0.10891141609670-04
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0.76761231395460-04
0.56384800210270~-04
0.1900855109735C-04
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0222544300061 40-03
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71 0.10937500000000+02 CeS734770068231D~02 0.1721081546667C~01
72 0+110G3750000000+02 0.2235463578493D-02 0,10319664702330~01
73 0«11280000000000+02 0e¢S462304965018D-02 0.1636217051289C—~-02
74 0«11406250000000+02 0.2230000362696D~01 0457761201294 90~03
75 0.11562500000000+02 05999933374036D-02 0.,18990674307250~04
76 0¢11718750000000+402 0+1097024150004D-02 0e45425000924760~03
77 D.11875000000000402 0+4638603484695D-02 0.58155240905360~03
78 0.12031250000000+02 0.16852738333830-02 0+9854356203265D0~04
76 0+12187500000000402 0,5989083872975D-02 034323488737410~03
80 0.12343750000000+02 0e32655814265246D-02 0.17628764006180~03
81 0+12509000000000+02 0e7329923197110D-02 0.26803878866400~-03
82 0«1 2E56250000000+02 0«7824017034056D—-C2 0.43514693908500~-03
873 0.1281250000000D+02 0.71950149953020~-02 0.1001987588993D-02
84 041296875060000004+02 0,1320552126506D-01 0.1393086228825D0-02
85 0.1312500000000D+02 0eS4958306811567D-02 0.33762746210970~-02
86 0413281250000000+402 0.5449254810821D0~-02 0.11498835017500~-01
37 0+13437500600000+02 0e42603546876270—-02 0.11588093375150~02
88 0+13€93750000000+02 0e29€35531965930—-02 0635521094162 70~-01
89 5.1375000C000000+02 Cel1561430234707D-01 0014859265211520400
90 0e139062500C000D+02 0.S407847280259D-02 047673736681440+01
91 041406250000000D+02 0e25273346117640—-02 «134284%0862940+02 €§—
92 2.142183750000000+02 0.1626184069326D-02 0.1948008036776D+01
93 D14375000000000+02 0.,1628001498310D-02 0.14213838769990-02
94 T T041453125C00000D402 7 0.9958424086619D-02 05378710617470D0-01
25 Del468758000000C¢+02 G134 9155+280280—-01—— 04091433594 6622H0—03
96 0.1484375000000D+02 0.1446309406090D-01 0.1184279073447D0-01
97 01500000000000D4+02 0.39870886548900-01 0.1636069735093D-03
.98 T T0.1515625C000000402 7 0.2106304005228D-01 0.15966377330040-02
99 0.15312500000000+02 0.1405080516111D-01 0.10533669789490-02
100 0.1546875000000D+02 0s213672044C6940~02 0.11855854680580-02
101 0415625000000000:+02 0.5049416400197D-03 05231350733003D0-04
102 0, 15781250000000+02 0+ 14656559032990-01 0042216442982490-03
103 0.15S3750000000D0+02 0.7522786063046D~02 0.86305903323230-03
104 0.15093750000000+402 043C473062662670~02 0.17314871954970-02
105 0.1625000000000C+02 0+€291 864665659D—~02 Ce67185584772470-03
106 0.16406250000000+02 21556%27701610~02 01138840334576D-02
107 D.1656250000000D+02 0.5361164314883D~02 0.1208830394641C—-03
108 0.1671875000000D+02 0.1C46626904283D~01 0+77344119127870-04
109 0.16875000000000+02 0.7039222050789D0~02 0.65640599087190-04
110 0.1703125000000D+02 0.5953675969060D-02 0+96356679163610-04
111 J.17187500000000+02 0.73334833306220~-02 0.6256892424323L~05
112 0.17343750000000+02 07696G402440940~02 0365259714942 10~-04
113 0.17500000000000+02 0e1180707074049D~01 0.21444455866270-04
114 0.1765625C000000+02 0.6523820€606560D-02 0.3204239651491D0-03
115 0.1781250300000D+02 0.1884245356787D0-02 0.12953400778130-03
116 0.17668750C00000+02 0.1040845448587D~02 0.85535471411360-04
117 0.18125C00000000+4+02 0+4323297€5276506D~-02 0.2085772537835)-03
118 0.,1828125000000D0+02 0.1017058957473D—-01 0694409089447590~04
119 0.1843750000000C+02 0.12831467885280~-01 02185907157340D—-03
120 0.18593750000000+02 0.2239643090917D-02 043901203414342C-04
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APPENDIX E

Complements to the Analog

Frequency Domain Analysis of Chapter V

E.1 Measurement characteristics of the HP 5420A Digital Signal Analyser

The HP 5420A Digital Signal Analyser performs a variety of time
domain and frequency domain measurements. The input signal is a continuous
waveform which is filtered, sampled (or discretized) and analysed using
digital signal processing techniques. The process of the analysis involves

the following steps:

analog low-pass filter,

analog-to-digital converter,

digital filter,

digital processor, and finally

display of the result.
The analog low-pass filter is used to prevent aliasing. Iﬁ fact, according
to the Nyquist criterion given in Appendix D.1, when a signal is sampled,
frequencies above one half of the sampling frequency will fold back into
the analysis range, causing aliasing errors. The use of the anti-aliasing
filters in the analyser allows alias-free measurements at frequencies below
one fourth of the sampling frequency.

The analog-to-digital converter (ADC) converts voltages into num-
bers, namely the input waveform 1nto the discrete input samples required
by the analyser. The converter used is the HP 54410A ADC converter. The
sampling is conducted at given intervals of time tn==nAt, in which At is
the constant sample period. Its inverse 1/At is the sample rate FS (or

frequency of sampling).
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The digital filter produces bandwidths that are powers of two

O

sub-multiples of one quarter of the sample rate, e.g., fs/z, fs/4, fs/8,...
in which fs==FS/4. This is so because the analyser uses only two sampie
rates, requiring two anti-aliasing filter cutoffs per input channel (there
are two input channels available). Hence, all other bandwidths are pro-
duced by digitally filtering the ADC output with the hardware digital filter.
Usually Fourjer analysis produces a baseband (dc to BW) spectrum; here BW
stands for bandwidth. In our study, a baseband spectrum“is effectively
considered. However, the digital filter makes it possible to implement a
band selectable analysis (BSA), allowing the full resolution of the analyser
to be focused in a narrow band, by specifying a non-zero center frequency
as well as the desired bandwidth.

As far as the digital processor — in fact the analyser itself —
is concerned, it manipulates the discrete data obtained through the three
previous devices presented above. The continuous stream of samples are
grouped into ensembles, or arrays, of Nt samples each. These ensembles
may or may not overlap but, of course, overlapped processing is preferable
since in this case,.more data are processed, thus enhancing statistical
confidence.

The relations between the time domain and frequency domain para-

meters are related (for baseband) by the following expressions:

Ty = Neot
Af = /T,
BW = (N/4)af,

‘:> in which Tt is the length of one time ensemble, Nt is the number of samples
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in the input ensemble, BW is the frequency bandwidth of the measurement,

At and Af are the time and frequency sample spacings. It may be noticed
that the result of the Fourier transform is one ensemble of uniformly spaced
frequency domain samples, whereas the time domain data are in the form of
several ensembles of uniformly spaced time samples.

The process used to take into account the individual results
obtained for each ensemble in order to obtain a single ensemble of results
in the frequency domain is a process of averaging. Signal averaging also
reduces variance when analysing random data and recovers coherent signails
buried in noise.

The simplest form of averaging is the summation averaging. The

summation average of N ensembles, AN, is given by

—

where the ith ensemble is Zi' But summation averaging does not produce a
calibrated result until all N ensembles are averaged, and this is why it is
not used in the analyser.

Two main types of averaging are used in the HP 5420A analyser,
namely stable averaging and exponential decay averaging. Stable averaging
gives an equal weight to all data, being thus most useful when the charac-
teristics of the signal to be measured are not changing — except for noise —
during the averaging process. On the contrary, exponential averaging dis-
counts old data more and more as the averaging process continues, giving
added weight to new data as it comes in; it is thus most useful when the

characteristics of the signal being measured change significantly during
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the averaging process (e.g. changes in the frequency of vibration components
of a rotating machine as a function of machine speed, or optimization of
the transfer function of control systems).

In our study, stable averaging is adopted, for obvious reasons.
It produces the same result as summation averaging; however, the stable
average is always calibrated properly. The equation for stable averaging is

4 I AN-T

Av=Aat—w >

N

where AN is the average after N ensembles. Stable averaging terminates
after the specified "number of averages" (noted #A on the plots, as may be
seen in Figs.40) has been performed. With the analyser in the stable
averaging mode, any number of averages up to 32,767 may be specified. The
measurement can be stopped before this specified number has been taken and
the result will still be calibrated.

The analyser has two methods of initiating a measurement once
the START button has been pushed. One method uses the internal clock and
is referred to as "free run" mode; the other method uses a trigger condition,
either internal or external. We chose to use the free run mode, for which
the ADC never waits for a trigger of any kind to start sampling. The
samples are stored in a buffer and the instrument controller is free to ask
for a new record whenever it has finished processing the previous one.
If the processing time is Tower than the time record length, as it occurs
in our case, the controller comes back for another record before the ADC
has all new samples. Then the latter of the former samples are processed

again. This is referred to as overlap processing, and has already been
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mentioned above. The amount of overlap will depend on the bandwidth selected,
whether the display is active or not, and on what coordinates have been
selected if the display is active. Overlap processing has the benefit of
greater variance reduction per unit time, i.e., as already mentioned,

better statistical confidence can be achieved in any given analysis time.

On the analyser, there also exists the possibility of specifying
the type of signal being processed in terms of three different signal types:
sinusoidal, random or transient (or impact). It may be made clear that
signal type has meaning only for frequency domain measurements, where it
affects data processing and specifies the calibration applied to auto- and
cross-spectrum measurements. Since we consider auto spectra, we effectively
have to choose the signal type. Selecting sinusoidal signal type allows
the analyser to make the most accurate amplitude measurements on signals
that contain spectral components that are separated by at least 5Af.
Transient signal type is used when an integer number of periods of the time
waveform are included in the analyser time record or when the time waveform
is short-Tived and decays to zero before the end of the time record; it
has the best frequency resolution characteristics (it allows signals as
close as 1 Af to be resolved) but also the poorest accuracy (-4dB for the
worst case).

7 But in our case, the random signal type is adopted, because of
the pseudo-random nature of the added mass perturbations a(t). This signal
type allows the analyser to resolve frequencies more closely spaced (2Af)
than for the sinusoidal signal type; however, absolute amplitude accuracy
with this type is less than with sinusoidal (in the worst case, signal

amplitude can be off by as much as -3dB). The result obtained is in fact
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a spectra1 density and is expressed in (volts)?/Hz. The dimension associated

with the random signal type and the auto spectrum measurement is (K.V _ _)?/Hz,

rms
where K represents a calibration factor in terms of engineering units/volt.

The type of window used for random signal is the Hanning window,
given in Appendix D.1 (it is a variant of the Hamming window). This is
one of the differences between the two frequency analysis methods of Chapters
IV and V.

To read the value of the response amplitude, there is the POWER
key which, among others in the case of auto spectrum measured with the
random signal type, gives the r.m.s. power (Vims). The range on which this
power is measured may include the entire data block (no cursors), the por-
tion of the data between the two cursors when used, or a single cursor
location.

Another difference between the two frequency analysis methods

lies in the numbers Nt and N __ of time domain and frequency domain samples.

ps
In the FTFPS sub-program (Chapter IV), these parameters could be chosen as

powers of two (at least for Nt) and different values were adopted during

the study: mainly Nt==4096 and N S==1025 in Section 4.2 (at the end of that

P

section, the values Nt==512 and Nps==129 were also taken), and Nt= 2048

and Nps= 513 in Section 4.3. On the contrary, in the program used by the

HP 5420A analyser, the values of Nt and N__ are fixed and are respectively

ps
equal to 512 and 256. These values are lower than the ones used in Chapter
IV, but, due to the possibility of using ensemble averaging with overlapped

processing, the capacity of the analyser is much greater.
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The EAI 1000 Analog Computer is microprocessor controlled and is
composed ofsd11d~statecomput1ng elements. It allows the rapid solution of
scientific and engineering problems. It is basically a set of mathematical
building blocks, or computing components, each able to perform specific
mathematical operations on direct voltages (between -5 and +5 volts). The
input and output terminations of the computing components are brought out
to a patch panel, and can be easily interconnected with wires called patch
cords. By appropriately interconnecting these building blocks, an electrical
model is produced in which the voltages at the outputs of the blocks obey
the relations given in the mathematical description of a physica] problem.
This is done on a removable patch panel which is then fitted to the computer
and the initial problem parameters are set by adjusting the coefficient
potentiometers to their appropriate values. The EAI 1000 is constructed
» with a modular housing system. These modules are fitted together, and
interconneétions between trays made with standard flat strip cables. The
modules included in a basic system are

(i) Analog module — Containing analog and digital computer elements.
Amongst the analog elements are four integrators, six summers, two
multipliers, ten grouded and two ungrounded potentiometers. (Up to
three analog modules may be accommodated in any one system).

(ii) Display module — Containing all necessary displays for value readout,
function addressing and overload.

(ii1) Control module — Containing power supplies, microprocessor control
system multiplexor, mode control and keyboard. The control module

can support up to three analog modules.
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Expansion modules are

(i') Analog modules — As previously described. Two expansion trays can be
added to a basic system.

(iv) Digital module — Containing additional digital computing elements plus
facilities for hybridisation. One digital tray can be fitted to a
basic system.

The fundamental components of the analog computer is the operational
amplifier. It is an inverting amplifier of very high gain (typically -107,
where the negative sign indicates inversion), high input impedance (several
megaohms), low output impedance (less than 100 ohms), and it is direct-
coupled. It is the operational amplifier which, when connected to different
types of its input and feedback impedances, enables the computer to sum,
differentiate, integrate, invert and multiply by a constant.

We now indicate the various symbols used in Chapter V for a summer,

an integrator, a multiplier and a potentiometer.
Summer:

X —t

y 10

Z = -(X+loy)

This is obtained when an output point is connected with an input point of
gain 1, by means of a patch cord. However, when an output point is con-
nected to an input point of gain 10, then the gain 1/10 is obtained for

the summer:
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>

Integrator: '
Z. = z ('Co)

X —'] z
Z = -\ [x®+ioy@®ldt - Z,
)’ —to Co

Multiplier:

Potentiometer:

X —(k) Z = kX

These analog computing elements are used to solve equation (5-7)

and the circuit diagram may be found in Fig. 42.



