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ABSTRACT 

This thesis investigates the effect of randomly varying added 
mass on the dynamics of a flexible cylinder in an external axial two-phase 
flow, bounded by a rigid immobile channel. 

The behaviour of a cylinder in two-phase flow has been found to 
be very different and less predictable than in single-phase flow. Experi­
ments have shown that damping is significantly higher in simulated two-phase 
flows, depending on the flow regime, and that the hydrodynamic or added mass 
decreases with increasing void fraction, but at a higher rate than that of 
the mixture density. 

The hypothesis is made that these effects might arise from random 
fluctuations of the hydrodynamic mass. 

After an attempt to find a theoretical formulation of this proba­
bilistic problem, based on a model of the fluid-structure interaction at the 
molecular level, a numerical approach is adopted. This simulation consists 
in applying random perturbations on the added mass coefficient of a one­
degree-of-freedom system, and investigating their effect on the response 
frequency and damping. 

A first digital analysis of the free vibrations of this system is 
conducted in the time domain. A second digital analysis of the free v·ibra­
tions is also undertaken, but this time in the frequency domain. Finally, 
an analog simulation of both free and forced vibrations of the system is 
carried out by means of an analog computer and a FFT electronic frequency 
analyser. 

All three studies exhibit a behaviour in agreement with the effects 
sought, but occurring with a magnitude much lower than expected. 
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0 SOMMAIRE 

L'EFFET DE FLUCTUATIONS ALEATOIRES 

DE LA MASSE AJOUTEE SUR LE 

COMPORTEMENT DYNAMIQUE D'UN CYLINDRE 

FLEXIBLE DANS UN ECOULEMENT 

FLUIDE DIPHASIQUE ET AXIAL 

Cette these traite de 1 'effet de fluctuations aleatoires de la 

masse ajoutee sur le comportement dyna~ique d'un cylindre flexible soumis 

~ un ecoulement externe, axial et diphasique, limite par un conduit rigide 

et immobile. 

Il a ete etabli que le comportement d'un cylindre dans un 

ecoulement diphasique est tres different et mains previsible que dans un 

ecoulement monophasique. Des experiences ant montre que 1 'amortissement 

est nettement plus eleve dans des ecoulements diphasiques simules, suivant 

le regime d'ecoulement, et que la masse hydrodynamique, ou masse ajoutee, 

decrott lorsque le pourcentage de vapeur s'accrott, mais ceci plus rapidement 

que ne le fait la densite du melange. 

On emet 1 'hypothese que ces effets proviendraient de fluctuations 

aleatoires affectant la masse hydrodynamique. 

Apres une tentative de formulation theorique de ce probleme proba­

biliste basee sur un modele a 1 'echelle moleculaire de l'interaction entre 

fluide et solide, on a choisi une approche numerique. Cette simulation con­

siste a appliquer des perturbations aleatoires sur le coefficient de masse 

ajoutee d'un systeme ~ un degre de liberte, et ~ etudier leur action sur la 

frequence et 1 'amortissement de la reponse. 

i i 
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On entreprend une premi~re analyse digitale des vibrations libres 

de ce systeme, dans le domaine temporel. Puiston entreprend une· seconde 

analyse digitale, ~galement des vibrations libres, mais cette fois il s'agit 

d'une ~tude fr~quentielle. Finalement on m~ne ~ bien une analyse analogue, 

~ la fois des vibrations libres et forc~es du systeme, au moyen d'un calcu­

lateur analogique et d•un analyseur de fr~quences FFT ~lectronique. 

Ces etudes aboutissent toutes trois ~ la mise en ~vidence 

des effets recherch~s, mais avec une amplitude beaucoup plus faible que 

souhaitee. 

1 i i 
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CHAPTER I 

INTRODUCTION 

l. 

The study of flow-induced vibrations of structural components has 

been greatly intensified in recent years [1]. 

Some spectacular failures come indeed to mind to point out how 

important these vibrations may become in some cases. One exciting example 

is the famous oscillation in November 1940 of the Tacoma Narrows Bridge in 

Washington State; four months after its opening, the fine suspension bridge 

swayed violently in a steady wind of about 42 miles per hour and was ulti­

mately destroyed. But the worst accident to be quoted here occurred on 

March 27, 1980 in the North Sea, when the Alexander L. Keilland semi-sub­

mersible oil platform capsized in heavy seas, after one of its five suppor­

ting legs had buckled and then fractured; a total of 123 oil workers and 

engineers perished in the disaster, most of them trapped in near-freezing 

waters 80 metres deep. 

Undoubtedly the greatest amount of research has been performed 

in the aeroelasticity field, since the criterion of minimizing the dead­

weight compared to vehicle performance characteristics is of utmost impor­

tance in the aerospace industry. Some useful information on plate and shell 

problems can be found in Refs. [2-4]. 

Other problems have also been investigated as for instance the 

behaviour of urban winds between high skyscrapers or, especially in Canada, 

the galloping of ice-coated transmission lines in a steady wind. In the 

early 1960's it has also been attempted to transport oil cheaply by sea in 

a nylon-rubber oil barge or 11 dracone 11
; although this was a commercially 

acceptable proposition, Hawthorne [5] and Paidoussis [6] showed that rigid 
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2. 

body oscillations occur at low towing speeds, whilst flexural instabilities 

of buckling and flutter type occur at higher towing speeds. 

Our interest in this thesis is in the dynamics of flexible slender 

cylinders immersed in external two-phase axially flowing fluid. 

The topic of flow-induced vibrations of cylinders has received 

growing attention from researchers because of repeated and sometimes very 

costly equipment failures in the power generating industry, having even led 

to some complete plant stoppages. As a matter of fact, such devices as 

boilers, heat exchangers, steam generators and nuclear reactors have prima-

rily been designed for heat transfer or other specific purposes, whereas 

flow-induced vibrations used to be considered, not so long ago, as a secon­

dary design parameter. 
. 

Unlike the case of cross-flow-induced vibrations where large 

amplitude oscillations develop even at moderate flow velocities, the sub­

ject of parallel-flow-induced vibrations is rather new. The first experi­

mental study was reported by Burgreen et al. [7] in the late 1950 1s. Later 

Paidoussis [8] formulated an equation of motion and performed the first 

stability analysis of a solitary cylinder in unconfined steady incompressible 

axial flow. He showed that small flow velocities damp free motions of the 

cylinder and diminish its natural frequencies, whereas increasing flow velo­

cities eventually destabilize the system, first by buckling (divergence) 

and finally by flutter. It is these instabilities which have been given 

the name of fluidelastic instabilities - fluidelastic being a generic word 

for both aeroelastic and hydroelastic. A number of refinements wer~ included 

in subsequent work [9,10] and, among others, the study was extended to the 

case of several cylinders arranged in a cluster [10]. At this stage, the 



0 expression of the hydrodynamic or 11 added 11 mass was refined in order to 

take into account the effect of confinement of the flow either by a narrow 

3. 

channel or by surrounding but still immobile cylinders. The next important 

step was to include the fact that adjacent cylinders do not remain passive, 

but on the contrary undergo complex hydrodynamically coupled motions; this 

was first achieved by Chen [11] and has since then been extended and also 

verified by a whole set of experiments [12]. One of the main effects of 

flow channel confinement and of hydrodynamic coupling to neighbouring 

cylinders is to severely lower the stability threshold. It was also observed 

that, once the system becomes unstable, it is subjected to a succession of 

buckling and flutter instabilities with increasing flow, of progressively 

more complex modal shape. 

Nevertheless, the critical flow speeds leading to fluidelastic 

instabilities remain still higher than the flow velocity ranges usually 

encountered in industrial applications, that is why only the small-amplitude 

or 11 SUb-critical'' vibrations are of current interest. Normally such small 

. b . . 11 1 - 3 - 1 d v1 rat1ons, typ1ca y 0 to 10 cm, woul be neglected, were it not for 

the often extremely close spacing of the cylinders in the array, with inter­

cylinder gap-to-radius ratios of the order of 10-1. [A bundle of nuclear­

reactor fuel elements is reproduced in Fig. 1]. Hence, although very small, 

these vibrations may cause intercylinder impact, which may result in fret­

ting-wear damage. Several mechanisms of sub-critical vibrations have been 

proposed and they have been reviewed in Refs. [13,14]; it is now widely 

accepted that these vibrations are a random response to the random fluid 

pressure forces developed in the flow field. 



On the whole, several review papers are available in the litera­

tur~ on vibrations of cylinders induced by axial (and cross) flow [15-19, 

21,22]. 

4. 

A new classification of these vibrations has been proposed very 

recently by Paidoussis [21], distinguishing between three main types of 

behaviour: (i) response to pressure fluctuations in the flow at all flow 

velocities; {ii) parametric resonances at specific flow speeds or excitation 

frequencies; (iii) fluidelastic instabilities for very high flow velocities 

[see Fig. 2]. 

Unfortunately most studies deal with single-phase flows, and 

relatively little has been done on two-phase flows [22]. Moreover, no sub­

stantial research has yet been conducted on one of the key issues of the 

problem, namely the quite complex fluid-structure interaction in two-phase 

flows [22,23,26]. Generally speaking, the presence of the second phase 

induces a randomly varying fluid density and introduces two major aspects 

to the problem: {i) a much altered pressure field exhibiting a drastic 

shift, depending on the flow regime, of the frequency distribution of the 

pressure force, and also bringing a higher susceptibility to subcritical 

vibration; (ii) parametric excitation due to the periodicity existing in 

the distribution of the virtual mass and which has been studied extensively 

by Hara [24-26]. Actual systems often involve high temperature and high 

pressure stream-water mixtures, with the steam quality varying along the rods 

due to surface boiling; Pettigrew and Gorman [27] report the only experiment 

with such a heated system. As a matter of fact, simulations involving boil­

ing systems are costly and difficult to instrument, hence simulation experi­

ments using non-condensable gases have commonly been conducted -the most 
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<:;~ popular mixture being the air-water mixture [28-33]. In these experiments, 

various parameterf have been found to be of interest, such as void fraction, 

fluid density, average flow velocity, etc. Paidoussis and Pettigrew [31] 

have conducted some experiments on confined cylinders in both liquid and 

two-phase flows, to test the validity of the aforementioned theory, e.g. 

[12] or [21], predicting the onset of fluidelastic instabilities and the 

succession, with increasing flow, of buckling and flutter instabilities of 

progressively more complex modal shape. In the case of liquid flow, agree­

ment between theory and experiment was found to be qualitatively good and 

quantitatively fair - taking the experimental difficulties into account. 

But as far as the two-phase flow is concerned, theory completely failed to 

predict the lack of noticeable instabilities which has been observed in 

the experiments. 

More recently Carlucci [32,33] has investigated experimentally 

the behaviour of fluid damping and hydrodynamic mass of a cylinder in 

simulated two-phase flow (also an air-water mixture). He has found that 

damping in two-phase flow is significantly higher than in single-phase flow, 

whereas the hydrodynamic mass decreases with increasing void fraction,but 

at a higher rate than that of the mixture density. 

A first attempt has been made by Ostoja-Starzewski [34,35] to find 

out whether these discoveries can be attributed to the compressibility of 

the two-phase fluid stream. Of course, two-phase flow is anything but incom­

pressible, hence the motivation for that investigation. Another starting 

point of that study was the fact that the speed of sound in two-phase mix­

tures can be much lower than in either of its two constituents (easily one 

~ tenth, and even l/SQth at low pressures: cf. Fig. 3), which allows the 
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* Mach number M to reach values close to l for operational values of the flow 

velocity. Using a homogeneous-flow model of the two-phase flow, Ostoja­

Starzewski found, by means of three different mathematical models, that the 

effect of compressibility is in qualitative agreement with Carlucci•s results, 

but nevertheless quantitatively seriously underestimates the observed be-

haviour. 

Even more recently Schumann [36] conducted a theoretical research 

on a somewhat related problem: the fact that the effective density of a 

two-phase mixture of solid particles and inviscid compressible fluid differs 

from the average density, due to relative accelerations between the phases. 

His study on virtual density and speed of sound in a fluid-solid mixture 

is based on Hamilton•s principle and a general homogenization method. 

This research represents in fact a second attempt to discover the 

underlying mechanism of the two effects observed by Carlucci. The basic 

hypothesis made here is that these effects could be attributed to random 

fluctuations of the hydrodynamic mass of the cylinder, this randomness 

arising from the highly non-homogeneous nature of two-phase flow. A funda­

mental approach was first envisaged, which would have led to a completely 

probabilistic description of the fluid-structure interaction. The principle 

of such an approach would be to first consider the coupled motion of the 

structure and the two-phase flowing fluid from a microdynamic point of view, 

i.e. at the molecular level, and then to develop a statistical method by 

which a transition to the global hydrodynamic formulation could be achieved. 

(Some elements of this approach will be found in Appendix B.) But such a 

task being beyond the scope of a M.Eng. thesis, it was decided to limit the 

* This arises since M=U/c, where U is the flow velocity and c the sonic 
speed [34]. 
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work to a purely numerical simulation, with the aim of studying mainly the 

effect of a randomly varying virtual mass on the response of a one-degree-of­

freedom oscillator. A digital study of the free vibrations of this system 

is first conducted in the time domain and is given in Chapter III. A second 

digital analysis of the same free vibrations is also undertaken, but this 

time in the frequency domain, and is presented in Chapter IV. Finally, an 

analog simulation of both free and forced vibrations of this system is 

carried out, in the frequency domain, by means of an analog computer; this · 

last analysis is the topic of Chapter V. 



CHAPTER II 

PROBLEM FORMULATION 

2.1 Fluid Damping and Hydrodynamic Mass in Two-Phase Flow 

2.1.1 I~2:E~~~~-El~~-~~~~lliD~ 

As the random pressure fluctuations in the turbulent boundary 

layer are considered to be the main forcing mechanism exciting the struc­

tural component vibrations, it may be worthwhile to see under which condi­

tions the pressure disturbances are transmitted in two-phase flow. Phase 

distribution (flow regime) has for instance been shown to strongly influ­

ence the frequency distribution of the pressure force [22]. 

Modelling of two-phase flow and of the continuous heat and mass 

transfer occurring between the phases is an extremely important subject 

for the design of many major items of equipment found in chemical and 

8. 

power plants. But due to the continuous variation of all the thermal and 

hydraulic properties of the flowing fluid, the mechanisms of phase changes 

in channel flow remain a poorly understood phenomenon; this is so despite 

the efforts of many investigators for more than a century, which have 

resulted in more than 10,000 papers published on boiling and two-phase flow. 

A general review on convective boiling and condensation, i.e. in the pre­

sence of a forced flow, has been given by Collier [37], mostly for single­

component systems, i.e. a pure liquid and its vapour, and more particularly 

the water/steam system. The methods used to analyse a two-phase flow are 

based on those already validated for single-phase flows, and the general 

procedure consists in writing down the basic equations governing the con­

servation of mass, energy and momentum, and then in seeking to solve them 
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by means of various simplifying assumptions. Three main types of assump­

tions have been made, as follows. 

(i) The "homogeneous" flow model, in which the two-phase flow is assumed 

to be a single-phase flow having pseudo-properties obtained by suitably 

averaging the properties of the individual phases. This is the simplest 

model and has for instance been adopted by Ostoja-Starzewski [34]. 

9. 

(ii) The "separated 11 flow model, ·in which the two phases are artificially 

separated, and two sets of basic equations are written, one for each phase. 

(iii) The "flow pattern" models, which represent the most sophisticated 

approach and in which the two phases are considered to be arranged in one of 

several prescribed geometries. These geometries are based on the various configu­

rations or flow patterns observed when a gas and a liquid flow together 

in a channel. Commonly, six main flow regimes are distinguished in verti­

cal flow: (1) bubbly flow, (2) slug flow, (3) churn flow, (4) wispy-annular 

flow, (5) annular flow, and (6) drop or mist flow. Churn and wispy-annular 

flows are included by some authors, respectively, into the categories of 

slug and annular flows [cf. Fig. 4]. Transitional flows are also noted 

[Fig. 5] and often exact characterization is quite difficult. 

Fig. 6 shows the flow pattern map of Hewitt and Roberts [38] as 

given by Collier [37], on which the range of test conditions investigated 

by Carlucci [33] have been superimposed. This map has been obtained [38] 

from observations on low-pressure air-water and high-pressure steam-water 

flow in small diameter vertical tubes, and should be regarded no more than 

a rough guide. 

It should also be mentioned here that in horizontal flow, the flow 

patterns are complicated by asymmetry of the phases resulting from the 
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influence of gravity. The different flow patterns are illustrated in Fig. 7 

and a map of them byiBaker [39] is also given. 

2.1.2 ~~~~!~~-Q~~!i~~~-~l-~!rl~~~! 

With the vertical flow pattern map [Fig. 6] in mind, let us now 

review Carlucci's results [33] in more detail. His visual observation of 

the slug, churn and low velocity bubbly flow patterns coincided reasonably 

well with those indicated on the map, but at higher mixture velocities the 

true flow pattern became increasingly more difficult to be visually identi­

fied. In particular the distinction between high velocity bubbly flow and 

annular or wispy annular flow was not possible, all three flow patterns 

appearing frothy or foamy on the flow tube surface. 

Fig. 8 gives typical results show·ing the variation of the com­

pliance magnitude with void fraction, and indicates the respective changes 

in damping and resonance frequency. Fig. 9 gives more information on the 

variation of the total fluid damping ratio ~t with void fraction, and for 

different values of the mass flux. From both Figs. 8 and 9, it may be seen 

that maximum values of ~t are obtained for void fractions ranging from 30 

to 60 percent, whereas ~t becomes minimal at void fractions of zero value 

and between 80 and lOO percent. Comparison between Figs. 9(a) and 9{b) 

shows that ~t is higher in the smaller diameter flow tube, indicating a 

confinement effect. But, on the contrary, the mass flux does not appear to 

greatly affect the magnitude of st; however, because of the wide range of 

mass flux studied, the functional dependance of ~t on void fraction is 

affected by the various flow patterns encountered [Fig. 6]. Total fluid 

~ damping ratio ~t can be decomposed in three different components: a viscous 
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~ damping ratio ~v• a flow-dependent damping ratio ~f' and a two-phase damping 

rat.i o ~tp. Thus we have 

~t = ~V + ~f + ~tp • (2-1) 

Their variation with void fraction is given in Fig. 10. To sum up, fluid 

damping has been found to be significantly higher in two-phase flow than in 

single-phase flow, and a maximum or maxima have been exhibited at void 

fractions of 30% to 60%. 

The variation of hydrodynamic mass with void fraction is shown in 

Fig. 11. Clearly, the hydrodynamic mass appears to decrease linearly with 

void fraction but at a greater rate than the mixture density line. It 

can also be noticed that it approaches a value of essentially zero at void 

fractions of 70% to 80%. This illustrates the fact that in annular flow 

the cylinder is dynamically decoupled from the flow tube wall since, in this 

flow pattern, most of the liquid flows as a thin film on the flow tube and 

cylinder surfaces. It might be useful to recall here the origin of the 

concept of hydrodynamic mass: when a structure vibrates in a fluid, the 

fluid gives rise to a two-part fluid-reaction force, one part of which may 

be interpreted as a flow-induced damping, whereas the other part is an 

acceleration-dependent, inertial force which may be thought to be associ­

ated with an "added" mass, as far as the dynamic response of the structure 

is concerned. Generally the hydrodynamic, or added, mass of a cylindrical 

rod is assumed to be equal to the mass of fluid displaced by the rod [40]. 

This is only true when the rod is submerged in an infinite fluid; however, 

for a confined cylinder, or one belonging to a fuel bundle, the added mass 

~ is affected by the duct wall and, for the cluster, by adjacent rods. Chen 
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form 

12. 

(2-2) 

where mh and mf are respectively the hydrodynamic mass and the mass of · 

fluid displaced by unit length of the cylinder, and x is an expression 

equal to 1 for unconfined flow and greater than 1 otherwise, increasing 

when the flow channel decreases. Carlucci [33] uses the same expression 

and in his case x depends on the ratio of the flow tube inside diameter o1 

to the cylinder diameter 0: 

X = 
(Oi/0} 2 + 1 

(Oi/0) 2 - l 
(2-3) 

This expression which has been derived for homogeneous inviscid flow may not be 

well suited to describe the complex reality hidden behind the notion of 

hydrodynamic mass in two-phase flow. 

2.2 Equation of Small Lateral Motions 

Our very first approach to the problem intended to start from 

the formulations obtained by Paidoussis and other investigators for the 

motion of a cylinder immersed in single-phase axially flowing fluid. We 

then hoped to be able to extend it to two~phase flow while incorporating a 

randomly varying added mass. 

The system under consideration consists of a solitary flexible 

slender cylinder in external axial two-phase flow contained by a rigid 

~ channel, as depicted in Fig. 12. The cylinder, considered to be an Euler-



c Bernoulli beam, is of finite length l, mass m per unit length, uniform 

cylin~er crosr section of diameter D and area A, flexural rigidity El and 

internal damping of the Kelvin-Voigt type. Moreover, the cylinder is sup­

posed to be pinned-pinned with the downstream end free to slide axially. 

As far as the two-phase fluid flow is concerned, it is modelled 

13. 

by a macroscopically homogeneous flow, of mean flow velocity U and of fluid 

density p. Oh is the hydraulic diameter and is equal to 4Ach/Stot' Ach 

being the channel flow area and Stot being the total surface area in channel, 

per unit length. It is also assumed that the flow over the beam is not 

affected by the supports, as if the finite length cylinder were a portion 

of an infinitely long beam, the remainder of which is perfectly rigid. 

The derivation of the equation of small lateral motions for a 

cylinder in external axial flow is not presented here and may be found in 

[10]. To obtain it, a force balance was taken for a small element of the 

cylinder,considering the various forces applied to this element. 

Since we chose the homogeneous flow model, there is no difference 

between vertical and horizontal flow, except that for the latter confi­

guration gravity effects may be neglected. 

The equation of motion of a horizontal cylinder in a single plane 

[{x,y)-plane of Fig. 12] immersed in axial flow then reads 

(2-4) 
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where y = y(x, t), cf is the frictional coefficient and cb is the form drag 

coefficient at the end x = L. The boundary conditions may be taken as 

y{O,t) = ay~~,t} = y(L,t) = ay(~~t) = o. (2-5) 

For a two-phase flow, this equation will have some stochastic 

coefficients. We assume that El, ~I, L, D, oh, Cf, Cb and m will remain 

constant, and express mh as 

(2-2 1
) 

We then identify the stochastically varying quantities as p, U, and com­

binations of these ten11s (such as pU, pU 2
, ••• ), as well as their derivatives. 

Expressing p and U as 

p = p(x, t), U = U(x,t), 

we obtain 

(2-6) 

This equation is then rendered nondimensional,since nondimensional quantities 

are familiar to all researchers in the field and allow comparison between 
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various systems. 

This is carried out by setting 

I; X n=Y.. EI ~ t 
= [' L' 

't' = [m+ M] LT ' 

D 
- ;,; I ~ Jl pA 2 -

ho = D' u = {IT) UL, a = {E{pA +m}} P' 0 h 

= pA 4 4 L (2-7) 8o pA +m cf = :rr cf' c = - c E = o· b 1T b' 

We also introduce the mean values of p, U, pU and pU 2
: 

P = psl, pU = pUsa, {2-8) 

Having done all this, and assuming, moreover, that n(i;,'t') ~ O(E), 

and s;{~,'t') ~ O{E) for all i, we finally end up with an equation of the 

form: 

(2-9) 

where A1 to A10 are constants. The expressions of these constants will be 

found in Appendix A. The boundary conditions may be taken as 

n( O,'t') = an(O,'t') = 0 (l ) = an(l ,1') = 0 a; ' n '-r a; . {2-10) 
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Several solution schemes were then considered to find some statis-

tical solution to this equation. The most elaborate of these will be 

found in Appendix A. It consisted first in expressing all the stochasti­

cally varying quantities in terms of only one of them, chosen to be the 

principal random variable. Then the goal was to transform the equation of 

motion into an equation of the type: 

d
2
w(t) + A dw(t) + ,,, (t) = f(t) 

dt2 dt '~'w ' 
( 2- 11) 

where A is a constant and w is a function of time to be found, on which a 

Fokker-Planck formulation should be tried out, following Morton and Corrsin 

[41]. Obtaining such a type of equation was attempted by means of the 

Galerkin discretization method. Unfortunately we had to realize that we 

could not obtain, by this method, a solution in the form of a probability 

distribution of the fluid density or of its velocity. Moreover, the whole 

procedure seemed contradictory since it was hoped to obtain a probabilistic 

solution of an equation which is basically deterministic. It was therefore 

decided to try a new approach and look into a purely probabilistic formula­

tion of the fluid-structure interaction. 

2.3 Probabilistic Formulation Attemet 

The usual phenomenological laws of matter, like equations of 

state or transport equations, are deterministic laws. They are also aver­

age laws since they deal in macroscopic variables like pressure, tempera­

ture and electrical current, which represent the aggregate effect of mil­

lions of molecular interactions. But in many cases, even a simplified 
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deterministic model becomes intractable, either because the equations 

governing the system are too complex, or because they cannot even be derived. 

This occurs for a rolling die or for thermal agitation of molecules in a 

gas. Hence comes the need for a theory of stochastic processes, based on 

the mathematical tools developed by the probability theory. These tools 

have first been widely used by engineers in the field of telecommunications, 

since very often the signals to be dealt with are actually of random nature. 

In the same way, a control systems engineer can no longer neglect the sta­

tistical properties of the perturbations applied to the system he is optimi­

zing. But in the past decades, the theory of stochastic processes has 

played an increasingly important role in nearly all the fields of science: 

physics, biology, medicine, economics, etc. In the physical sciences, this 

theory arose out of the study initiated by Einstein [42] in 1905 on the 

erratic movement (Brownianmotion) of small particles suspended in a liquid. 

Major contributions to the problem of Brownian motion have been given by 

Uhlenbeck and Ornstein [43], Chandrasekhar [44], and Wang and Uhlenbeck [45]. 

A more recent mathematical critical review on the subject may also be found 

in Ref. [47]. More generally speaking, a great amount of literature has 

already been published on stochastic processes, and two fundamental books 

by Doob [48] and Feller [49] should be cited here. Other pieces of work 

might also be mentioned here, such as these of Papoulis [50], Stern et a1.[51], 

Yaglom [52] more precisely on stationary random functions, Beran [53] and 

Samuels [54] on statistical continuum theories, Bharucha-Reid [55] mainly 

on Markov processes, and more recently Montroll and Lebowitz [56] on fluctua­

tion phenomena (selected papers), and Axelrad [57] on micromechanics of 

solids. 



c To come back to the problem of a flexible slender cylinder im­

mersed in axially flowing two-phase fluid, let us attempt to approach the 

coupled motion of the structure and the fluid from a local point of view, 

i.e. molecular level. By a corresponding statistical method, a transition 

to the global hydrodynamic formulation can be achieved. 

With this aim in mind, a model is adopted, according to which 

18. 

the individual fluid particles moving along the boundary of the structure 

(see Appendix B and Figs. 13) have a behaviour represented by a "generalized 

Langevin equation 11 expressed by 

d 2~ dr ~ ~ 
m dt~ + S dt + w~r = A{t), (2-12) 

where r denotes the random position vector of the molecule: r = r(x,y) 

and in which: 

m is the fluid particle mass; 

S is the Stokes' drag denoting the interaction between 

the fluid particle and the surface of the solid body 

(this friction exists in the x-direction only); 

-w~r is a harmonic-type attraction between the considered 

particle and its neighbours; 

A(t) is the random loading force {equivalent to the random 

pressure on the structural member). 

This equation may be split into a set of two equations accounting 

for the longitudinal and transverse components in the velocity field u = u(r,t) 

(see Appendix B). This model incorporates the friction effects in the longi­

tudinal direction only, whilst the transverse force is coupled to the local 

inertia of the structure in the unstable mode of motion. Hence the dynamics 
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of the system is assumed, for simplicity, to be two-dimensional. 

The solution of the generalized Langevin equation in terms of 
-+ 

the excitation force A(t) accounts for the perturbation of the otherwise 

undisturbed lattice -structure of the fluid flow. Fur~hermore, this solu­

tion leads to a velocity distribution P(~) at a given instant of time for 

a prescribed mode of surface motion of the solid in the flow field. 

At this stage of investigation, one can consider two different 

studies, namely: 

a) If the velocity distribution P(~) or the linear momentum distribution 

P(pu) only, is sought, one can define the respective probability dis­

tribution and obtain its evolution with time in form of a set of Fokker-

Planck equations. Their solutions have to satisfy the given boundary 

and initial conditions, which also serve to determine the constants in 

the evolution equations. 

b) If, however, the density fluctuations in the fluid are of main interest, 

it would be better to use the Chapman-Kolmogorov evolution relation for 

the probability of the density distribution functions, for example 

d P(p) 
--;d-:-t _.;;t..:..l = qP p ( p ) t (2-13) 

where QP is the probability transition matrix (two-dimensional). 

More information on the whole procedure up to the derivation of 

the set of the two coupled Fokker-Planck equations (cf. point a) above} 

can be found in Appendix B. But completing the whole probabilistic study 

described above has proved to be beyond the scope of a M.Eng. thesis, even 

though from this first attempt, it is strongly felt that, in order to 

achieve a proper formulation with respect to the random pressure and/or 
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* density fields, one has to use the molecular-hydrodynamic approach as pro-

posed, for examp 1 e, by Hansen and McDona 1 d [58], Boon and Yi p [59] and 

others. 

2.4 One-Degree-of-Freedom Model Finally Adopted 

It was finally decided to dwell on a numerical simulation of a 

one-degree-of-freedom system, in which a randomly-varying added mass is 

incorporated. The purpose of this study is to investigate the effects of 

these random fluctuations of the hydrodynamic mass on the response of 

the system. More particularly, our attention is focused on the comparison 

between the cases with and without these fluctuations, in order to see 

whether our results are in agreement with the ones obtained by Carlucci 

[33] and presented above in Section 2.1.2. If this is the case, then a 

good chance exists that the key of the mechanism, affecting the damping 

and the hydrodynamic mass in two-phase flow, 1 i es actually in the hypo­

thesis made, namely that the observed behaviour is due to random variations 

affecting the added mass. It is also supposed that our system is rather 
11 Static 11 in the sense that it is assumed that, with this model, we are 

placed at a given void fraction which remains constant all over the experi­

ments (the void fraction is not taken into account explicitly in the model, 

but it is supposed to be somewhere in the 11 interesting 11 range, i.e. between 

30 and 60 percent}. Hence the only parameter investigated here will be the 

random fluctuations of the hydrodynamic mass. It is finally supposed that, 

* However, not all the investigators in the field agree on whether analysis 
of the fluid-structure interaction should be studied by the probabilistic 
approach. For instance Schlechtendahl argues against this direction, as 
quoted on page 193 of Ref. [23]. 



c at this stage, it is sufficient to investigate a one-degree-of-freedom 

system, and that, if the desired effects do not prove to be significant, 

there is relatively little chance to see them occur for a higher degree­

of-freedom system. 

The system studied is 

21. 

[M + mh(t)]X + CX + Kx = { ~o(t) , (2-14) 

in which x is the response of the structural system and M, C, K are res­

pectively its mass, coefficient of viscous damping and spring constant. 

mh(t) is its hydrodynamic mass and is composed of two terms, viz. 

{2-15) 

where mh is the mean value and is assumed to be constant and ~(t) are the 

fluctuations of mh(t} about mh. 

Hence, the total mass appearing in equation (2-14), sometimes 

called 11 Virtual mass 11 by some authors (e.g. [9] or [16]), reads 

in which M + mh is constant. 

Dividing all the terms of equation (2-14) by M+ mh, we obtain 

[1 + n( t)]X + 2l;wnX + w~x = { ~( t) , {2-16) 

where 

(2-16 1 ,a) 
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is the circular {undamped) natural frequency, including mh; 

(2-16 1 ,b) 

is the viscous damping factor; 

f(t) 

is the forcing function (if considered); and 

a.{t) (2-16',d) 

is the dimensionless fluctuating part of the hydrodynamic mass which fs the 

parameter of interest in this study. 

When a.(t) = 0, the treatment of this equation is classical and 

the analytical solution is easily obtained. Let us seize here the oppor­

tunity to mention two good textbooks on vibration analysis by Meirovitch 

[60] and Thomson [61]. 

For the unforced case, for an underdamped system, the solution 

is 

(2-17) 

in which B and ~ are constants depending on the initial conditions, and 

(2-18) 

For the forced case, the general solution is a superposition 

of a transient response (general solution of the equation without forcing 
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function) and of a steady-state response (particular solution of the com­

plete equation~. If the forcing-function is 

where wf is hence the circular forcing frequency, then the general solu­

tion reads 

(w~ - wf) COSWft + 2I:;WfWnS i nwft 

(w~- w.f) 
2 

+ (2r;w~n) 2 {2-19) 

After a certain time, the transient response (first term) damps out and 

there remains only the steady state response {second term). 

For a(t) I 0, the equation can hardly be solved analytically 

if at all; that is why we resort to numerical methods to achieve this pur­

pose. A Runge-Kutta iteration method is used in the case of the digital 

computation (Chapters Ill and IV), whereas the equation is solved directly 

on the analog computer in the case of the analog computation (Chapter V). 

Various schemes are considered for generating both deterministic 

and random a(t), the main interest relating, of course, to the latter case. 

This random a(t) should more properly be denoted as 11 pseudo-random11 since 

in the digital simulation, the series of random variates are obtained by 

means of a Monte-Carlo random number generating technique, while in the analog 

simulation, a(t) is produced by a noise generator incorporated to the fre­

quency analyser available for the study. Having generated a(t), the res­

ponse of the system is then investigated as will be described in detail in 

the chapters that follow. 



. 0 CHAPTER III 

DIGITAL ANALYSIS OF THE FREE 
VIBRATIONS IN THE TIME DOMAIN 

3.1 Method of Analysis 

The first numerical analysis undertaken was performed in the 

time domain, since it was the easiest to implement. As a matter of fact, 

it simply consists in plotting the solution of equation (2-16), obtained 

by means of the Runge-Kutta scheme {presented in detail in Appendix C.l), 

versus time, which is one of the variables of the scheme, the variates of 

which are separated by a constant step-size h. 

This digital analysis is cDnducted on the Amdahl V7 digital com­

puter of McGill University. In the beginning of the study, the digital 

solution obtained is plotted directly by the printer at the same time as 

the numerical output is released. These plots are obtained by using a 

* subroutine from the International Mathematical and Statistical Libraries 

(IMSL), namely the subroutine USPLTD. These printer plots are discrete, 

and the characters used for each data point are numerals, each specific to 

each function plotted (up to ten functions can thus be superimposed upon 

the same plot). For multiple plots, the character M is used in the event 
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of coincidence by two or more functions. A typical plot is shown in Fig. 14. 

More complete information on the USPLTD and all other IMSL subroutines that 

will be used later on may be found in Ref. [62]. The use of IMSL subroutines 

allows the whole program to be written in Fortran WATFIV language, a.nd more­

over in double precision since all those subroutines at McGill University 

* An extensive collection of mathematical and statistical subroutines writ-
ten in Fortran. 
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are available in that precision. Later in the study, the functions will 

be plotted in a smooth ·and nicer form by using a Calcomp 663 digital incre­

mental plotter (for more information, see Ref. [63]). In this case, the 

program will undergo minor changes in order to be run in Fortran IV language 

(compiler H) and the points to be plotted will have to be given in single 

precision. The programs considered here could therefore also be run on 

the IBM 360/370 Series computers. 

Nevertheless, the results discussed in this chapter are those 

obtained from the discrete USPLTD plots. Four different solutions are 

calculated and printed out. The numbers 1, 2, 3, 4 appearing on the plots 

(cf. Fig. 14)- to be referred to as Curves 1, 2, 3, 4- are identified 

below. 

Curve 1 is the control curve corresponding to the analytical 

solution of equation (2-16) with a(t) =0 and without forcing function, i.e. 

this solution is simply given by equation (2-17) for free motions of a 

damped oscillator. 

Curve 2 corresponds exactly to the same equation, but this time 

the numerical solution (obtained by the Runge-Kutta method) is considered. 

Curve 3 denotes the numerical solution to equation (2-16) still 

without forcing function but with a deterministic a(t); 0; this determinis­

tic a(t) is chosen to be equal to 

5 
a(t) = ~ a. sin(w.t + $.). 

i=l 1 1 1 
(3-1) 

The values of the parameters a1, w1 and $i' as well as these of wn and s 

will be specified in the second part of this chapter, when the results are 

discussed. Let us just indicate here that in all cases we finally took 
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4>; = 0 for a 11 i, 

and 

(3-2) 

the parameter 

5 -a. = L: a1 i =1 
(3-3) 

being thus introduced. 

Curve 4 represents the random case, i.e. a random a.{t) is used, 

and is the case of main interest here. The equation considered is the 

same as for Curve 3, except that a.(t) is now obtained by a Monte-Carlo 

pseudo-random algorithm, assuming a normal, i.e. Gaussian, probability den­

sity distribution. The method used to generate the random variates of 

a.(t) is explained in Appendix C.2. Moreover, the mean ~ and variance cr2 

of the pseudo-random a.(t) are assumed to be the same as those of the deter­

ministic a.(t) described by equation (3-1} [on this, see Appendix C.3]. To 

give an idea on the signal generated, Figs. 15(a),(b) and 16{a),(b) show 

respectively time records and histograms of the random perturbation a.(t) 

obtained. 

Initial sets of results were obtained by using 300 calculation 

points per 3 cycles of oscillation, which corresponds to the time length 

chosen to be printed on one page of USPLTD plot. A study of convergence, 

which may be found in Appendix C.4, indicated that 500 points is more 

accurate and this value has thus been adopted for subsequent runs. This study 

of convergence is mainly based an analysing the discrepancies between the 
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two reference curves (i.e., those obtained for a(t)=O), namely Curve 1 

(analytical solution) and Curve 2 (numerical solution). Comparison between 

these two solutions gives a measure of the lack of precision originating 

from the use of the numerical integration scheme. One interesting item to 

note is that there seems to be a very slight systematic shift towards lower 

frequencies. By using 500 calculation points per 3 cycles, the frequency of 

Curve l was found to be exactly the value chosen, i.e. fn= 15Hz, whereas the 

frequency of Curve 2 was 14.97 Hz*. If the hypothesis is made that this 

systematic shift is nearly constant, then all the frequencies that will be 

obtained from the USPLTD plots should be all increased by 0.03 Hz. 

Finally, a listing of the whole program may be found in Appendix 

c.s. 

3.2 Results and Discussion 

The ranges of the parameters of practical interest [cf. equations 

(2-16) and {3-1), (3-2), (3-3}] are taken to be as follows- as recommended 

by CRNL~ who sponsored part of this work: 

(i) natural frequency: fn = 15 to 60Hz; (3-4,a) 

(ii) perturbation frequencies: f; = w;/2n = 5 to 25Hz; {3-4,b) 

(iii) damping factor: ~ = 0.005 to 0.1; 

(iv) perturbation amplitudes: ±0.01 ~a~ 0.2. 

(3-4,c) 

(3-4,d) 

These conditions will henceforth, for convenience, be referred to 

as 11 realistic 11
• 

* These two frequencies (of Curves 1 and 2) were found by three measurements, 
over 15, 30 and 45 cycles of oscillation, which gave the same results. 

tChalk River Nuclear Laboratories -more specifically by Messrs L.N. Carlucci 
and M.J. Pettigrew of CRNL. 



0 In most cases, for convenience, the ratio of f; and fn was taken 

to be an integer. Also, in all cases, the initial conditions are taken to 

be 
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x(O) = 1, xco> = o. (3-5) 

However, as rather "uninteresting'' results are obtained for para­

meters in the ranges as defined by (i)- (iv) above, other ranges are also 

investigated, which give more 11 interesting 11 results, albeit of possibly 

limited practical value. One of the main changes introduced is to look 

into higher values of&, up to & = 1, in order to allow clearer identifi­

cation of the weak effect observed for a small &. 
Eight series of calculations have been conducted, each consisting 

in three or four computer runs. To recognize them, they have been denoted 

by the letters A to H and are presented in Appendix C.6. In fact, two 

main categories are to be distinguished. 

- The first one (Series A, B and C) considers the ranges of parameters 

described in (i)- (iv) above (except for higher & in some cases) and is 

discussed in Section 3.2.3 below. 

- The second one (Series D to H) considers also the ranges of parameters 

{i), (iii) and {iv) above (also higher & in some cases), but replaces 

the perturbation frequencies range (ii) mostly by: 

(ii)': fi = wi/2rr = 30, 150, 240, 300, 450Hz. (3-6) 

This case is more concerned with the occurrence of a parametric reson­

ance, and it is discussed in Section 3.2.4 below. 
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But first is discussed, in Section 3.2.1, ~he numerical importance 

of the two effects observed by Carlucci. Then are given, in Section 3.2.2r 

the results concerning Curve 4, since they are of main interest. As a matter 

of fact, Curve 4 does not differ between the two categories distinguished 

above (and discussed in Sections 3.2.3 and 3.2.4). This is so because, due 

to the method adopted to generate the random variates (given in Appendix C.2), 

Curve 4 does not depend on the perturbation frequencies fi, but only on the 

value of the mean ~ and the variance cr 2 of the distribution considered. It 

is shown in Appendix C.3 that 

~ = 0, (3-7,a) 

-
cr = __!:!__ ; 

110 
{3-7,b} 

hence Curve 4 depends on a only. 

The results discussed below are obtained from the series which 

have been run with 500 points of calculation per 3 cycles and with r; = 0.005 

{Series B, C, G) or r; = 0 {Series H). These series are also those which 

have been run over the largest number of cycles. 
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Q~~~rY~~-~~-~~rl~££1 
Before giving our own results, it is of interest to indicate the 

order of magnitude of the two effects shown by Carlucci's experiments, and 

which it is intended to verify on the one-degree-of-freedom model. 

Let us first show how a frequency increase can be interpreted in 

terms of a hydrodynamic mass decrease. For this, the system is considered 

to stay at a given void fraction of v percent, for which the mean value of 

the added mass is denoted by mh,v· It is about this mean value that the 

fluctuations ~{t) are considered, according to equation (2-15). The cir­

cular natural frequency whom,v' for the homogeneous model (with the hydro­

dynamic mass proportional to the mixture density), is obtained from equa­

tion (2-16',a) as 

(3-B,a) 

In case the added mass perturbations are included, we obtain a new circular 

natural frequency wre~p,v given by 

wresp,v = {3-B,b) 

in which o=.+l or -1, according to whether a hydrodynamic mass increase 

or decrease is considered. 

If we observe a frequency increase, i.e., 

wresp,v > whom,v ' 

this implies that 
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w resp,v = M+mh ,v 1 > • 
M+ nlh,v + 0llrms whom,v 

hence 

M+ mh > M+ mh + OlJrms , , V ,V 

from which we finally get 

llrms being always a positive quantity, this implies that o=-1 has to be 

taken. 

We effectively see that, according to the one-degree-of-freedom model, a 

frequency increase is equivalent to a hydrodynamic mass decrease, if all 

other parameters are kept constant. 
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Let us now quantify the clear hydrodynamic mass decrease appearing on 

Fig. 11, with the aim in mind to express it in terms of a frequency increase. 

As already stressed, the hydrodynamic mass decreases with increasing void 

fraction, but at a higher rate than that of the mixture density. The hydro­

dynamic mass line proportio~al to the mixture density appears on Fig. 11 in 

form of a straight 1 i ne (rather a dashed line) extending from mh /mh . = 1 
'() '0 

for a zero void fraction to mh /mh ~ 0 for a void fraction of 100%. 
,100 ,o 

The experimental values of the added mass lie below this line, and an experi­

mental straight line can also be drawn according to these points {it is not 

shown on Fig. 11). The experimental values (divided by mh ) thus decrease ,o 

from 1 for a zero void fraction and approach a value of zero at a void 

fraction of about 66 to 70%. We intend to place ourselves at a given void 



fraction that we assume to remain constant. Since the interesting void 

fraction range extends between 30 and 60~, we adopt the value of 50~. 
I 

At this void fraction are obtained the values mh /mlh = 0.50 (from ,so ,o 
the dashed line proportional to the mixture density) and <in'h,so +11)/mh,o 

~ 0.28 {from the experimental line). 

32. 

It is now necessary to translate this hydrodynamic mass decrease 

in terms of a frequency increase. Let us first start from Fig. 8. At 

a zero void fraction, fhom,o is equal to 32 Hz*, whereas for a void frac­

* tion of lOO%, we read fhom, 100 = 40 Hz • From this, using also equation 

{3-8,a), we obtain the following relations: 

fhom,o = 2~ J M +Kmh, o = 32 {3-9,a) 

f - 1 hom,1oo - 2'IT = 40. (3-9,b) 

We also know (from considerationsaboveon Fig. 11) that mh,Ioo ~ 0, hence 

40/32 = ~ v~-. 

Squaring this equation. we obtain 

M+mh 
(5/4)2 = M ,o 

from which we finally get 

mh = [(5/4) 2 
- l]M = 0.5625 M. ,o 

* These experimental values of the oscillation frequency are between twice 
and thrice the numerical values used in the following sections and chapters. 



. ~ Coming back to our point at 50% void fraction, we have~, 50/~,o = 0.50. 

From this, we easily obtain [using equation (3-S,a)] 

f =-1 ~ hom, so 2n M+ mh ,so 

_ 1 K 
- 2n M x 0. 5 x 0. 5625M • 

From (3-9,b), using mh, 100 = 0, we get 

hence 

From this, 

f _ 80n M 
hom,so - 2n M(l + 0.5 x 0.5625) 

= 40 /, + 0. 5 ! 0. 5625 

We finally obtain 
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fhom,so = 35.3 Hz. (3-lO,a) 

This is the value calculated for the homogeneous mixture. For 

the actual two-phase flow, we can extrapolate the two compliance curve 

plots of Fig. 8 closest to the void fraction of 50% (those for void frac-

~ tions of 40 and 54%), and thus we approximate the value of fresp,so to 

37.4 Hz. 
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We could equally use the result obtained from Fig. 11, namely 

mh + lJ = 0.28 mh , 
t 50 '0 

and plug it into equation (3-8,b), which gives us 

f - 1 
resp, so - 2rr 

K 
M+ mh + lJ 

'50 

= 40 1 
1 + 0.28 X 0.5625 

= 37.2 Hz. 

We thus have the following estimation: 

fresp,so = 37.3 Hz. {3-lO,b) 

From (3-lO,a) and (3-lO,b), we obtain the relative amplitude of the hydro-

dynamic mass decrease effect, at a 50% void fraction, expressed in terms 

of a frequency increase. It is 

fresp,so - fhom,so = 

fhom, so 
37.3 - 35.3 = 

35.3 5.7%. 

Thus the frequency increase effect we wish to observe should be of the 

order of about 6%. 
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As far as the second effect found by Carlucci is concerned, namely 

the important increase in damping, an examination of Figs. 8 and 9 shows 

us that, at a void fraction of 50%, damping is at least 100% higher than 

its value at a zero void fraction. 

It is these two effects that we now wish to verify on our one­

degree-of-freedom system. 

3.2.2. ~~~~~~~~-g!_E~~-~~~!~~-!~-~~~~~~=~~~2~~-~~2~9-~~~~-~~~~~~~~!1~~~ 
This response is obtained for four different values of a, namely: 

0.25, 0.50, 0.75 and 1. Curve 4 is best examined 

* -- on run Gl for a = 0.25, and this over 60 cycles of oscillation; 

* * - on runs C2 and C3 , respectively for & = 0.50 and & = 0.75, over 30 

* 

cycles only (as a matter of fact Curve 4 cannot be observed with accuracy 

over more than 30 cycles on runs G2 and G3, because of the parametric 

See Appendix C.6. 
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resonance affecting Curve 3, which renders Curve 4 indistinguishable on 

the USPLTD plots usedt); 

-on run G4 for a= 1, again over 60 cycles of oscillation (in G4, Curve 4 

exhibits higher values than Curve 3, hence this plot can be used here). 

36. 

As far as the general behaviour of Curve 4 is concerned, Curve 4 

behaves almost l·ike the "control" Curve l for the three first values &=0.25, 

0.50 and 0.75, that is to say it shows vibration with about the same, if 

not slightly higher amplitude, as may be seen on the xrms values below 

(see also Figs. 17, 18 and 19). It nevertheless exhibits a certain shift 

towards higher frequencies. However, when a= 1, the behaviour of Curve 4 

deviates from the typical oscillation of a sinusoid, i.e. it begins to dis­

play some random excursions starting from the 20th cycle, and finally becomes 

unbounded (unstable), reaching a value of about 11 after 60 cycles (see 

Figs. 20 or 21); it is recalled here that the initial conditions are given 

by equation (3-5). 

To illustrate more completely what has just been said above, we 

shall give the values of both xrms and the effective frequency of oscil-

lation. Actually, two sets of xrms values are given: xrms(l) has been 

calculated over 30 cycles of oscillation with 1;; = 0 (Series H) and should be 

tThis is due to a property of the USPLTD plots which has not yet been men­
tioned here. The range of the y-axis is indeed constant on the output 
page (51 print positions) and adjusts automatically in order to extend 
fully from the minimum value Ymin to the maximum value Ymax of the func­
tion y to be plotted. In our program, we have specified (on the 11 Control" 
Curve 1) a maximum of +1 and a minimum of -1, so that the plots of the 
decaying cases have all their y-axis of the same scale. However, when 
Curves 3 or 4 become unbounded, the range of they-axis is determined 

by the extremum value(s) Yextr such as !Yextrl > 1. 
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compared to xrms(Curve 1) = 0.707 obtained with exactly the same condition, 

whereas xrms(2) has been calculated over 60 cycles with z;; = 0.005 (Series G) 

and should be compared with xrms(Curve 1) =0.360. As far as the effective 

frequency of Curve 4 is concerned, the number of cycles chosen for the 

measurement is divided by the corresponding total time of oscillation. A 

mean value of the frequency is thus obtained, and it can be added that, 

qualitatively, this frequency seems to be constant; hence, it is believed 

that the mean values below are given to a good approx·imation. For &=0.25, 

the number of eye 1 es considered is 60 (run Gl) , for Ci = 0. 50 and 0. 75, it 

is 30 (runs C2 and C3), whereas for Ci = 1 it is only 20 {runs C4 or G4) since, 

as already mentioned, the sinusoidal behaviour is disturbed just after that, 

hence a measurementovermore cycles would be meaningless. 

The results obtained are given in the table below. 

- § § 
feff(Hz) a. a xrms (1} . xrms( 2) 

0.25 0.079 0.715 0.364 15. 02* 
0.50 0.158 0.752 0.377 15. 18* 
0.75 0.237 0.743 0.362 15.47* 
1.00 0.316 0.980t 2.22 16. 16* 

§It is recalled that the Xrms(l) values are obtained over 30 cycles with 
~=0 (compare to xrms(Curve 1}=0.707), whereas the Xrms(2) values are cal­
culated over 60 cycles with z;; = 0.005 (compare to Xrms(Curve 1) = 0.360). 

tThis will become much larger if xrms were taken over more than 30 cycles 
(see for instance Xrms(2)). 

* If the hypothesis is made that the very slight shift to lower frequencies 
due to the use of the Runge-Kutta scheme (cf. the remarks on the study of 
convergence, made at the end of Section 3.1 or in Appendix C.4), is constant, 
then all the frequencies obtained should be increased by 0.03 Hz and the 
actual frequencies would respectively read: 15.05, 15,21, 15.50 and 16.19 Hz. 



The results of xrms(l} indicate that, unless a is large (1.00), 

the xrms lie in the vicinity of 1212 which is the classical value for a 

sinusoid, as obtained by Curve 1. The results of xrms(2) show more sig­

nificantly the fact that Curve 4 becomes essentially unbounded for a= 1. 

From all considerations on amplitude and xrms values of the response, it 

is deduced that a critical standard deviation crcrit exists for instability 

and lies somewhere between 0.237 < crcrit < 0.316. 
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But the most interesting item to be discussed here is the effec­

tive (or average) frequency, in view of its importance vis-a-vis the ob­

served added mass coefficients in two-phase flow; these were found to be 

lower than those calculated on the basis of homogeneous models of the two­

phase medium. We observe indeed a clear shift to higher effective fre­

quencies as the amplitude of perturbations increases. This translates, of 

course, to lower added mass coefficients (as compared to homogeneous model, 

where effectively mh(t) = mh is taken, i.e. a(t} = 0); this agrees qualita­

tively with the observations made by Carlucci (see Section 2.1.2). However 

by examining our values§ given in the table above, we obtain a frequency 

shift of (15.05 -15)/15 ~ 0.3% for the upper suggested 11 realistic" value 

of a (i.e., a= 0.25). This is undoubtedly a very weak effect, when com­

pared to the experimentally observed 6% frequency shift (see previous 

Section 3.2.1). For the higher "unrealistic" values, we obtain of course 

a more significant frequency shift, albeit of only 1.4% for a= 0.50 

and 3.3% for &=0.75. It is only for the highly unrealistic value of 

§We use the corrected values, obtained by addition of 0.03 Hz- see last 
footnote on p.37. 
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0 &= 1 that we obtain a shift of 7.9%. 
I 

As far as damping is concerned, unfortunately no important damp-

ing effect could be found in this attempt. 

3.2.3 ~~~e~~~~-~f-~b~-?~~~~~-~~-Q~~~r~!~!~~!£_~~~~~-~~~~-~~r~~r~~~!~~~ 

In this section, Curve 3 is examined as the response of the sys-

tem to a deterministic perturbation a(t) defined by equation (3-1) and 

characterized by the 11 realistic 11 range of perturbation frequencies 

f i = 5, 1 0, 15, 20, 25 Hz. (3-11) 

This means that the computer runs to be investigated here belong to 

Series A, B, C (see Appendix C.6}. 

For a small & (&=0.25), it is seen in Fig. 17 that for fn (fn= 

15Hz) lying within the range of the fi (run Bl or Cl), Curve 3 is essen­

tially coincident with Curve l; i.e. the deterministic case for 11 Sma11 11 

perturbation amplitudes is little different from the deterministic case 

with zero mass perturbation. Moreover, xrms for Curve 3 is very little 

different than that of Curve 1 (it is smaller by 2%). 

In Fig. 22 is shown a case with the same & (a= 0.25) but with fn 

( f n = 60 Hz) higher than any of the f i (run B3). The results of Curve 3 are 

somewhat different from those obtained above. Even iftheamplitude is about 

the same, with a xrms of Curve 3 also little different than that of Curve 1 

(larger by 1%), on the contrary, for the first few cycles of oscillation, 

the effective frequency diminishes to about 58 Hz, rather than remaining 

at 60 Hz, but later this effect appears to diminish, even though the fre-



0 

40. 

quency continues to fluctuate slightly about 60Hz. When fn=30 Hz (run 82), 

this effect (lower frequency) is not ~et noticeable and the response is 

similar to that obtained for fn = 15 Hz. It could be mentioned here that, 

as far as Curve 4 is concerned in the three runs of Series B, its behaviour 

is not affectedt by the relative position of fn compared to the f 1, and 

that is why this question was not examined in Section 3.2.2. The reason 

for this lies naturally in the method (presented in Appendix C.2} used for 

generating the pseudo-random variates of a(t}, which does not take the per­

turbation frequencies f; into account. Since the same number of discreti­

zation points is used per 3 cycles (500), exactly the same random variates 

are used at the respective stages of integration; this accounts for the 

identical results. 

Let us now come back to the o'ther cases (Series C) computed for 

fn =15Hz, and stick to this value for the rest of this chapter. The cases 

with added mass perturbations of larger amplitudes are considered, namely 

&=0.50, 0.75 and 1 (respectively runs C2, C3 and C4). Figs. 19 and 20 

show the response for &=0.75 and a=l, respectively. Curve 3 displays an 

unusual beating phenomenon (especially in Fig. 20), its amplitude being 

sometimes higher and somet·imes 1 ower than that of "control 11 Curve 1. Curve 

3 also displays an increased frequency of oscillation, which nevertheless 

remains smaller than the frequency shift observed for Curve 4 (see Section 

3.2.2). 

To conclude this section, let us give the xrms values of Curve 3 

(which should be compared with xrms(Curve 1) = 0.474) and its effective 

frequency, both calculated over 30 cycles of oscillation, with z; = 0.005. 

tExcept that its frequency will be 15, 30 or 60Hz according to fn. 
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- t a xrms feff(Hz) 

0.25 0.465 15.01 
0.50 0.502 15.08 
0.75 0.541 15.23 
1.00 0.494 ~15.60 

We can see very clearly that, as far as the effective frequency 

is concerned, the deterministic effect is in the same direction as the 

random effect (it indicates a decrease of the added mass), but its magni-

tude is smaller. 

3.2.4 B~~E~~~~-~!_!~~-~l~!~~-!~-Q~!~~~!~!~!!~-~~~~~-~~~~-~~r!~r~~!!~~~; 
Parametric Resonances 

The perturbation frequencies mostly considered in this last section 

of Chapter Ill are given by equation (3-6), 

f; = 30, 150, 240, 300, 450 Hz. 

They are beyond the recommended 11 realistic 11 range for two-phase flow as 

measured by Carlucci et al. and given by equation (3-4,b}. Nevertheless, 

we shall examine this case for it gives rise to the fundamentally interes­

ting phenomenon of parametric resonance. Series D to H are considered for 

that purpose (see Appendix C.6). 

Whenever harmonic perturbations are present in the axial flow 

about cylindrical structures, there exists the distinct possibility that 

they may cause parametric resonances, otherwise known as parametric insta-

+The same remark given in footnote * concerning the frequencies of the pre­
vious table (in Section 3.2.2) also applies to the frequencies given in 
this table. 
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bilities [64]. It has been shown that such resonances may occur if the 

circular frequency of the periodic flow component, wp, lies in the vicinity 

of a fractional multiple of one of the natural frequencies of the cylinder, 

w~, i.e. if wp!:: 2w~/ K, where K= 1,2,3 •••. The most important of these 

resonances, the so-called principal primary parametric resonance, occurs 

when K= 1, so that wp ~ 2w~- a well-established result from the analogous 

problem of a column subjected to a harmonically perturbed axial load [65]. 

In cases where f 1 =2fn, irrespective to the other frequencies fi' 

parametric resonance oscillations were observed (Curve 3) for all a tested, 

however vlith an unusual behaviour occurring for 0. = 1. A typical case is 

shown in Fig. 18, for a= 0.50 (run G2). It is interesting to note that 

Curve 3, in the first few cycles, is diminished in amplitude vis-a-vis 

Curve 1 and then, after Nmin cycles, reaches a minimum characterized by the 

ratio Rmin =[amplitude Curve 3]/ [amplitude Curve 1]. Then Curve 3 in­

creases again, equals Curve 1 in amplitude after N1 cycles, and finally 

continues to increase steadily {the system is highly unstable, in the sense 

that is displays amplified oscillations). The values of Nmin' Rmin and N
1 

are given in the table in the next page. 

It is also noted that the frequency finitial in the first few 

cycles becomes larger, but later this effect evaporates after a sufficient 

number of cycles (after the amplitude has 11 taken off 11
). The values of 

finitial are calculated over Nmin cycles of oscillation and are also given 

in the next page. 

It is most interesting to notice that if 0. = 1 (run G4), i.e. the 

higher parametric amplitude envisaged here, Curve 3 is no longer unbounded! 

Instead, it displays some k·ind of amplitude and frequency quasi-periodic 



variations, similar to beating (see Fig. 21). This does not follow the 

conventional pattern for parametric resonance oscillations. 
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The table giving the parameters described above is now presented, 

with an addition of two sets of xrms values, exactly the same as for Curve 4 

in Section 3.2.2. xrms(l) has been calculated over 30 cycles of oscillation 

with r,; = 0 (Series H) and should be compared to xrms (Curve 1) = 0.707, whereas 

xrms(2) has been calculated over 60 cycles with r,; = 0.005 (Series G) and 

should be compared with xrms {Curve 1 ) = 0. 360. 

-
Nmin Rmin Nl xrms(l) xrms(2) finitial (Hz) a. 

0.25 27 0.29 45 0.336 0.244 15.09 
0.50 6 0.48 12 3.93 39.79 15.32 
0.75 3 0.55 6 22.2 516.6 15.66 
1.00 1~ 0.58 3~ 1. 52 0.679 16.25 

The frequency shift observed is higher than any other observed 

before, i.e. of Curve 3 (in Section 3.2.3} and even of Curve 4 (in Section 

3.2.2). But it should not be forgotten that this is only an initial fre­

quency measured over a small number of cycles (Nmin) and that after, let 

us say, N1 cycles, the frequency remains sensibly constant at about 15 Hz. 

The results for the sets of xrms values are indicative of the 

peculiar behaviour relating to parametric resonance instabilities described 

earlier in this section. Thus, for Ci= 0.25, one obtains xrms(l) < 12!2, 

which is the classical value for a sinusoid as obtained by Curve l; this 

displays the initial reduction in amplitude referred to earlier; if more 

cycles had been taken, then xrms(l) ~ 12!2 would have been obtained. For 

Q a=0.50 and 0.75, we note that xrms(l) is very large, reflecting parametric 



c 

44. 

resonances, but for a= 1 , a much sma 11 er xrms ( 1) is obtained, reflecting 

the beating phenomenon described earlier, rather than a monotonic increase 

of amplitude (after an initial decrease) characteristic of a= 0.50 and 0.75 

(and also of a= 0.25 if a large enough number of cycles were investigated). 

The cases tested ·in Series F, where f n = f 1' at 1 east for the l;; 

and a involved, displayed no parametric resonance. Hence, within the 

ranges tested, it is obvious that principal primary resonant oscillations 

do occur, but secondary resonances do not (see Refs. [64] and [65]). 
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4.1 Introduction 

CHAPTER IV 

DIGITAL ANALYSIS OF THE FREE 
VIBRATIONS IN THE FREQUENCY DOMAIN 

45. 

The results obtained in Chapter Ill (for Curve 4) agree quali­

tatively with Carlucci's observations, at least as far as the shift towards 

higher frequencies is concerned. This shift means indeed that the observed 

added mass is lower than that calculated on the basis of the homogeneous 

model of two-phase flow, for which mh(t) = mh is taken. However, quanti­

tatively speaking, the effect that we observed remains weak, compared to 

what Carlucci reported. On the other hand, damping has not been found to 

be higher, and on the contrary it even seemedtobe a little lower, as the 

xrms values given in Section 3.2.2 indicate it {for &=0.25, these values 

are higher by 1% than those found for a=O). This obviously does not accord 

with the observation of a significantly higher damping reported by Carlucci. 

Thus, the study in the time domain conducted in Chapter III has proven not 

to be quite conclusive. 

One reason for this relative failure is thought to lie in the way 

the pseudo-random added mass perturbations, i.e. a(t), are generated (cf. 

Appendix C.2). As a matter of fact, no restriction on frequency content 

was included in the Monte-Carlo method used to generate the random variates 

of a(t), as has already been mentioned in Section 3.2.3 when Series B were 

examined. In Fig. 23, the power spectrum of this pseudo-random a(t) is 

shown, and it may be seen that it effectively contains all frequencies and 

could be considered as an approximate white noise. This is by far not the 
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case of the deterministic a(t), used for Curve 3 of Chapter III, which includes 

specifically five frequencies fi, thus favouring certain predominant fre-

* quencies to perturb the added mass. Studies being conducted by AECL , sub-

sequent to Carlucci's work, suggest that the random perturbations a(t) should 

actually be of narrow frequency band. Hence two new aspects must be added 

to the present analysis. On the one hand, new schemes for generating random 

perturbations of the hydrodynamic mass have to be developed, capable of pro­

ducing a narrow-banded a{t}, or rather a(f) where f stands for the frequency. 

On the other hand, to enable such a study in the frequency domain, the fre­

quencies themselves must appear explicitly in the analysis. The whole study 

must therefore be transferred from the time domain into the frequency domain. 

Since we have already implemented the Monte-Carlo method (for generating 

the random perturbations) and the Runge-Kutta scheme (for solving the dif­

ferential equation), it was decided to undertake this frequency analysis on 

the same digital computer used before (Amdahl V7 of McGill University). 

To carry out the study in the frequency domain, we want to calculate 

the power spectra of both the added mass perturbations a(t) and the system 

response x(t). This leads us to introduce the Fourier transform, since the 

power spectrum Gxx(f) of a time function x(t) is defined as the Fourier 

transform of its autocorrelation Rxx(T), i.e. 

Gxx(f) = !
00 

e-i 2rrf Rxx(T} dT. (4-1) 
-00 

The autocorrelation function itself is a time average (for an ergodic process) 

defined by 

* Atomic Energy of Canada Limited. 
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RxxCr) = lim 
r~ 

1 T 
2T f _ T X ( t ) X ( t + T ) d t . (4-2) 

Much has been written on the Fourier transform, but we shall only quote 

the book by Bracewell [66]. However, calculating numerically a Fourier 

transform, as the one given by equation(4-l) for instance, is not an easy 

task, and, anyway, the Fourier transform cannot be integrated in its con­

tinuous form, but has to be discretized and truncated. Fortunately, a 

very efficient algorithm for calculating this discrete Fourier transform 

(OFT) was 11 rediscovered 11 in 1965 by Cooley and Tukey [67], after the results 

of the mathematicians C.C. Oanielson and Cornelius Lanczos which were 11 lOSt 11 

in 1942. This powerful algorithm is called fast Fourier transform (FFT) 

and reduces significantly computing time and cost, making thus possible 

rapid transformations between time and frequency domains. Calculations 

that once took minutes and cost dollars can now be done in seconds for a 

few cents. The Cooley-Tukey algorithm takes advantage of the redundancy 

in the nested multiplications to reduce the number of transform qperations 

to NoFT log 2 (NoFT) rather than the traditional NDFT operations of the discrete 

F.ourier transform in.'order to realize this speed-up; NOFT denotes the number of 

samples of the time function used for the OFT. More information may be 

found in Brigham [68], in Bergland [69] and also in Appendix 0.1, on the 

OFT and on the FFT a 1 gorithm, as we 11 as on three problems or 11 pitfalls 11 

encountered in using them, namely aliasing, leakage and the picket-fence 

effect. A program for computing the FFT algorithm is given on page 164 of 

Ref. [68] and another one on page 184 of Ref. [70], but in this study we 

shall use a subroutine taken from the IMSL Library [62]. This subprogram 

computes directly the power spectrum and is therefore called FTFPS (Fast 
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Fourier transform estimates of power spectra and cross spectra of time 

series). During its run, the FTFPS subroutine calls the FFTRC subroutine 

(also taken from the IMSL Library) which computes the fast Fourier trans­

form of a real valued sequence. But before calling FFTRC, the FTFPS routine 

uses a symmetric data window which is approximately the Parzen spectral 

window. Let Nt be the number of input samples of the time domain (i.e. the 

number of data to be transformed). We also introduce L, which is an input 

parameter used to segment the time series. L must be a power of two, and 

Nt must be evenly divisible by L. The number Nps of sampled frequencies 

obtained by calling FTFPS is equal to Nps = (L/2) + 1. Those spectral esti­

mates are taken at frequencies 

ps i - 1 
f i = L6t ' {4-3) 

where i=l,2, •.. ,(L/2) + 1 and 6t is the period of sampling of the time series. 

As a final remark on the FTFPS sub-program, let us mention that the output 

(power spectrum) is returned into units which are the square of the input 

data. 

To come back to the random perturbations of the added mass, two 

main ranges of FTFPS parameters have been chosen, and they help to distin­

guish the two following sections. In Section 4.2, the frequency range (0-

* 160 Hz) with Nps = 1025 (i.e. L = 2048) and 1; = 0.005 is mainly considered, 

whereas in Section 4.3 this range is reduced to (0- 40 Hz) with Nps = 513 

(i.e. L = 1024} and 1; = 0.02. As for the various schemes of a(t) generated 

in this chapter, they are classified in Appendix 0.2. For the sake of 

* It might be wondered why such a large range is adopted for studying a much 
smaller range: (5- 25 Hz). This is merely to make sure that we will not 
miss any effect below 160 Hz. 



completeness, the cases studied in Chapter III are also mentioned, and on 

the whole eleven schemes are distinguished. Each particular scheme has 

been denoted by a small letter from a to k given in brackets (e.g. [a], 

[b], ... ). To indicate whether the scheme is considered in Section 4.2 or 

4.3, this small letter within brackets is preceded respectively by the 

capital letter A or B (e.g. A[a] stands for scheme [a] considered in Sec­

tion 4.2, and B[i] denotes scheme [i] of Section 4.3). 
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In the previous chapter, the deterministic a{t) {scheme [b] lead­

ing to former Curve 3) was taken as a sum of five sine functions. In this 

chapter, it will be a function of N sine functions, with nevertheless mostly 

N = 5 in Section 4.2, but with mostly N = 33 in Section 4.3. Hence & is 

defined more generally than in equation (3-3} by 

N -a= ~ a1 = Nai. 
i=l 

(4-4) 

The results are both printed on the computer output and plotted 

by means of the Calcomp 663 digital incremental plotter. On the legend 

of these plots may be read the parameters ALPHA and SIGMA which stand res­

pectively for a and a. Finally, a typical listing of the program used may 

be found in Appendix 0.3. 

4.2 Results Obtained in the Frequency Range (0- 160 Hz) 

Most of the results given here are indeed obtained, unless other­

wise specified, in the frequency range { 0 - 160 Hz) with the number of power 

spectral estimates Nps equal to 1025. Using these values means that 6.4 

spectral samples are obtained per Hertz or, said in an equivalent way, that 
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consecutive spectral estimates). 

In this section, damping is generally taken as s; = 0.005, as it 
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was suggested and chosen in Chapter Ill. The natural frequency of the sys­

tem is typically taken as 12, 13, 14 or 15 Hz. Moreover, the number Nt of 

samples of the time function is chosen to be 4096 {at least when the fre­

quency range and Nps are those indicated above). Nt is thus effectively 

evenly divisible by L as it should, since L = 2048 (see at the end of the pre­

vious section). On the other hand, the step-size h = ~t, which is the per­

iod of sampling of the time function, is determined by using equation (4-3). 

We have 

and also 

where FR stands for the frequency range. Hence 

Nps- 1 = 
L~t 

from which we get 

_ _ Nps - 1 
h - ~t - L·FR . 

Numerically speaking, we obtain 

. ( 4-5) 
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1024 1 
ll.t = 2048 x 160 = 320 = 3·125 ms. (4-6) 

The total sampling time Tt is then 

Tt = Nt · ll.t = 4096/320 = 12.8s. 

Hence the total number of cycles Nc(f) investigated for a signal of fre­

quency f is 

(4-7) 

where T = 1/f. 

We thus notice, since the natural frequency fn lies between 12 

and 15 Hz, that the time signal will be analysed over approximately its 

170 first cyclest. This is about two and half times the highest number of 

cycles considered in the time domain study conducted in Chapter III. 

This also means that a signal of frequency 5 Hz will be considered 

over 64 cycles, whereas over 320 cycles for a frequency of 25 Hz. Hence 

we obtain 64 time samples over one period of a signal of frequency 5 Hz, 

about 24 samples for a signal of frequency fn, and 12.8 samples when the 

frequency is 25Hz (5 and 25Hz are respectively the lower and upper limits 

of the frequency band desired for the pseudo-random a(t)). 

We will now discuss the results obtained, first for the deter­

ministic perturbations a{t) (Schemes [b] and [a]) in Section 4.2.1, and 

then for the pseudo-random a{t) (Schemes [c], [d], [e] and [f]) in Sec­

tion 4.2.2. 

tover 150 cycles if fn = 12 Hz, and 190 cycles if fn = 15 Hz. 
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Parametric Resonance 

* Only considered with N = 5, Case A[b] has been run for two values 

of a: a=0.25 and a=0.75. For a=0.25, the natural frequencies .fn=12 Hz 

and fn= 15Hz were considered (in Chapter III, only fn= 15Hz was envisaged). 

For a= 0.75, the study was extended to five values of fn: 11, 12, 13, 14 

and 15Hz. Let us now give the numerical results of the runs in which fn= 

12 Hz and f n = 15 Hz. 

_____________ !~e~!----------------------------~~§~1~~------------------
Scheme - fn(Hz} [a(w) ]max fresp Llf Aresp of a(t) a cr Japp 

[a] 0 12 0 12.03 0.125 20.69 
[b] 0.25 12 0.96 12.03 0.12 24.19 
[b] 0.75 12 8.65, 12.5 0.254 7.9x1019 

[a] 0 15 0 15.0 0.12 13.63 
[b] 0.25 15 0.96 15.0 a. 125 14.41 
[b] 0.75 15 8.65 15.31 0.12 13.7 

=Main table= 

In this table as well as in the next ones, [a(w)]max is the amplitude of 

the highest peak in the power spectrum of a(t), fresp is the frequency at 

which the peak in the power spectrum of system response occurred, Llf, 
-'2PP 

is the frequency interval at the half-power point, and Aresp is the ampli-

tude of the response peak. 

It is seen, especially when ii=0.75, that parametric resonance 

occurs when f n = 12 Hz, but does not occur when f n = 15 Hz. The other· runs 

done for a=0.75 show that for the other values of fn, this parametric 

* See Appendix 0.2. 
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resonance does not occurt as can be seen in the additional table below. 

fn fresp 6fl p "2P Aresp 

11 11 . 25 0.13 26.98 
13 13. 125 0.12 13.67 
14 14.22 0.154 8.915 

=Additional table= 
In common: Scheme [b]; Ci=0.75; [a(w)]max=8.65. 

In fact, the result for f
0 

= 12 Hz and a= 0.75 is very clear since 

it indicates that the frequency at which the resonance occurs is actually 

12.5 Hz. This proves that we are dealing with the primary resonance asso­

ciated to the frequency f
5 

=25Hz (since 25/12.5= 2). Actually, the power 

spectrum of the system response for f
0 

=12Hz and a= 0.75 displays even 

more interesting features as far as parametric resonance is concerned (see 

Fig. 24). Four smaller peaks can be seen, but in reality they are not so 

small, since the scale of they-axis is determined by the peak at 12.5 Hz 

with an amplitude of nearly 1020 • The next peak in importance after the 

one at 12.5 Hz is found for a frequency of 7.5 Hz. Visibly this is the pri­

mary parametric resonance due to f 3 = 15 Hz ( 15/7. 5 = 2) . The third interest­

ing peak is found for a frequency of 2.5 Hz and is the primary resonance 

associated to f
1 

= 5 Hz (5/2.5 = 2). Hence three primary parametric resonances 

have been displayed. The two smaller remaining peaks occur at frequencies 

of 17.5 Hz and 22.5 Hzt but it is not exactly known to which combination 

of perturbation frequencies f; they are theresoonse. It is however felt 

that they represent secondary parametric resonances responding respectively 

to frequencies of17.5Hz{l7.5/17.5= 1) and22.5 Hz {22.5/22.5= l). These two 



0 frequencies of 17.5 Hz and 22.5 Hz can possibly be present in a(t) by some 

addition of certain frequencies fi according to the trigonometrical for­

mula 

sin p + sin q = 2 sin ~ cos ~ 

(we have 1 + 25 = 15 + 20 = 17.5 and 20 ~ 25 = 22.5). 

It is recalled that in Chapter Ill (Section 3.2.4), only one 

principal parametric resonance (for fn = 15 Hz: 30/15 = 2) and no secondary 

resonance were found. But fn = 12 Hz was not envisaged at that time. 

Coming back to the main table above, it is seen that, contrary 

to intuition, the absolute value of the response when fn = 12 Hz is higher 

than when fn =15Hz. However, this is not a conventional forced-vibration 

system; hence, this should not be interpreted as an ordinary resonance 

effect. 
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The results concerning ~f~pp are not significant, but as for the 

frequency, it is seen that for fn=15 Hz and &=0.75, we have fresp=l5.31 Hz, 

whereas in Chapter Ill (end of Section 3.2.3) it was found to be 15.23 Hz, 

all the input parameters being the same. Taking the resolution of the 

spectral solution into consideration (t:..f=O.l56 Hz}, this is a good result. 

Another observation is that even in this deterministic case, there 

are variations in Aresp as a changes, as seen when fn= 15Hz; however, the 

effect is not systematic. 

Finally to illustrate these results, the power spectra for &=0.25 

are shown in Figs. 25(a), (b) and {c). In Fig. 25(a) may be seen the five 

deterministic peaks, exactly equal; next to the ordinate showing the relative 

amplitude is indicated the absolute value- in this example 0.96. The sharp 
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peak of the system response is shown in Figs. 25(b} and (c) for fn =15Hz 

and 12Hz, respectively. When fn=l2 Hz, a very small peak appears justtothe 

right of the main peak and denotes theiMpending rise of the parametric 

resonance. 

4.2.2 8~~e~~~~-~f-~~~-~~~!~~-!~-~~~~~9:8~~99~-~99~2-~~~~-~~r!~r~~!1~~~ 
The purpose of this set of calculations, as already explained 

in the introduction to this chapter, is to study the effect of random added 

mass perturbations ~(t} of narrow frequency band. It is for this reason 

that various models have been developed for ~(t), starting from the less 

elaborate scheme [c] which was investigated in Chapter III and is completely 

pseudo-random. With scheme [d] the effect of having pseudo-random ampli­

tudes is of interest, whereas schemes [e] and [f] consider pseudo-random 

frequencies, in the hope that one might thus be able to "broaden" the N 

sharp response peaks obtained for the deterministic scheme [b] (cf. Fig. 

25(a}). Finally it is hoped that if we can 11 broaden" these deterministic 

peaks enough, they will 11 join" and form one quasi-continuous frequency 

band (eventually the number N of peaks will have to be increased within 

the range considered- between 5 Hz and 25 Hz- in order to "help" them 

to "join" up more easily). 

Quantitative comparisons of the results are also made, in order 

to examine the following specific questions: 

(i} how do the actual frequencies of oscillation compare to the natural 

frequencies of the system; 

(ii) whether the width of the response peak broadens with more random per­

turbations in the added mass; 

(iii) whether the vibration amplitude changes systematically with increasing 

randomness in the added mass. 
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It is reasonable to expect that if the hydrodynamic mass should 

decrease and the effective damping should increase with increasing random­

ness in the added mass, one would expect to see (a) an increase of the effec­

tive oscillation frequency, (b) a broadening of the vibration amplitude peak 

in the power spectrum of the system response, and (c) a reduced amplitude 

of the vibration peak. 

We shall now examine the results obtained with these different 

models. 

Scheme [c]: This is the random scheme which has been adopted in the previous 

chapter (Section 3.2.2), and on which all the random discussion was con­

ducted. The values of & and a are related by 

a = a/12N • (4-8,b) 

and we also have 

ll = 0, (4-8,a) 

as may be seen in Appendix 0.2. 

* As for Case A[b] in the previous Section 4.2.1, Case A[c] 

has only been run for N=5, and for &=0.25 and 0.75 (hence cr=0.25/If0 

and 0.75//10, respectively). 

Fig .. 23 shows the power spectrum of a(t) for &=0.25 (and cr= 

0.25//fO). As may be seen, the form of a(t) is really wide-band random, 

the energy being distributed on all frequencies (and this probably goes 

far beyond 160Hz}. However, the response of the system is of narrow band, 

displaying a sharp peak at f= fn exactly as on Fig. 25(b). For fn= 12Hz, 

* See Appendix 0.2. 
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the parametric resonance which appeared.in Case A[b] does not occur at all. 

In this sense, the random a(t) actually has a damping effect. 

Let us now view the results obtained. 

Input Results 
-----------------------------------------------------------------Scheme - fn(Hz) [a(w)]max fresp Aresp of a(t) a cr 

(a] 0 12 0 12.03 20.69 
[c] 0.25 0.25/lfO 12 0.0326 12.03 20.66 
[c] 0.75 0.75/ITO 12 0.2938 12.34 17.79 

[a] 0 15 0 15.0 13.63 
[c] 0.25 0.25/110 15 0.0326 15.0 12.60 
[c] 0.75 0.75/lfO 15 0.2938 15.47 9.22 

We see that the frequency of the response increases with a, which goes in 

the direction sought and agrees with what was found in Chapter III. In 

Section 3.2.2, we found indeed that,for <i=0.75 (and f
11

=15 Hz),fresp= 

15.47 Hz, and here we get the same value, which proves that there is good 

agreement between the two methods. However, we obtain also an interesting 

result that we could not get previously, i.e., we see that Aresp decreases 

when & increases, both for f n = 12 Hz and f n = 15 Hz. Hence, a certain damping 

effect appears here. 

As in the previous Case A[b], the amplitude when fn=12 Hz is 

higher than when f 
11 

= 15 Hz. 

Scheme [d]: In this case, pseudo-random amplitudes are considered. Fig. 26 

shows the power spectrum of a(t) for N = 5 and & = 0.25. The five peaks sti11 

appear very distinctly, and the power spectra of the response, which were 

obtained for the same parameters (fn = 12 and 15Hz; <i= 0.25 and 0.75) dis-
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play, as might have been foreseen, the sam~ behaviour as for the determin­

istic case A[b]. No "broadening" of the deterministic peaks can be obtained 

with scheme [d]. This is clearly not a useful model. 

Scheme [e]: A great deal of work has been done with this model, for which 

the deterministic frequencies fi are perturbed by a random fluctuater. 

Now, the two parameters & and cr can be chosen to vary independently; hence, 

in Figs. 27(a)- (c) is shown the power spectrum of a(t) for a given & (&= 

0.25) but for increasing cr (cr= 0.25, 0.50 and 1). As may be seen, we 

are still considering the value N = 5. It is seen that when cr is small 

(Fig. 27(a)) the dominant frequencies stand out clearly, in a background of 

11 noise". However, with increasing cr, the 11 noise 11 becomes more pronounced, 

so that in Fig. 27(c) it is difficult to pick out the. predominant frequen­

cies- although, on closer examination, it may be established that they are 

still there. Actually, the amplitudes of Figs. 27(a)- (c) indicate that it 

is not the ''noise 11 which increases in such a proportion, but that rather the 

amplitudes of the deterministic peaks progressively decrease, until they are 

"swallowed11 by the 11 noise 11
• Unfortunately, the establishment of this fact 

indicates that the desired effect of a broadening of the peaks is much 

less important than the observed effect of the peaks vanishing in the gener-

al "noise". 

As far as the response is concerned, it cannot be said to change 

very much when the system is subjected to any of the a(t) considered above 

and seen in Figs. 27{a)-(c). It consists of one sharp peak at f=fn, simi­

lar to the one shown in Fig. 25(b). Nevertheless, it should be mentioned 

that for &=0.75 and fn=l2 Hz the parametric resonance, which was observed 

in Case A[b] at a frequency of 12.5 Hz, still appears but at a much reduced 
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level (since with scheme [e], an amplitude of the order of only 107 to 102
-

decreasing when cr increases -is obtained, whereas for scheme [b], it reached 

Let us now give the quantitative results obtained for ii=0.25, 

fn = 14 Hz and N = 5 (these are the runs for which a.(t) is shown in Figs. 

27(a}-(c)). 

Scheme 
of a.(t) 

Input 

-a. 

Results 

cr 

[a] 0 0 14 0 14.06 0.216 12.45 
---------------------------------------------------------------------

[e] 0.25 0.25 14 0.298 14.06 0.13 14.11 
[e] 0.25 0.50 14 0.0782 14.06 0.125 13.43 
[e] 0.25 1.00 14 0.0285 14.06 0.128 12.65 

It is noted that with increasing cr, [a.(w)]max decreases (what has already 

been explained by the vanishing of the five deterministic peaks), and so 

does Aresp' However, there is no significant broadening of the response, 

nor a significant frequency shift. 

Although promising, the desired goal of achieving narrow banded 

a.(t) has really not been achieved. Therefore, two further attempts were 

undertaken. The first consists in increasing the number of predominant 

frequencies from N = 5 to N = 17. Fig. 28 shows the power spectrum of a.( t) 

for this new value of N, and for ii = 0.25 and cr = 0.50. As it may be noticed, 

increasing N has not changed things very much. (The value of [a.(w)]max 

is 0.0133 in Fig. 28, which is smaller than 0.0782 in Fig. 27(b), also 

obtained for ii=0.25 and cr=D.50, but with N=5. This is due to the fact 
-

that the amplitude N' common to all sine functions of scheme [e], is now 
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- -f7 instead of! previously [cf. equation (4-4)]. The other parameters 

obtained are: f = 14.06 Hz, ~f1 =0.177 Hz, and Aresp= 13.47.) resp ~PP 

The second attempt made amounts to decreasing the discrimina­

tion of the calculation -which means reducing the resolution ~f in the 

power spectrum calculations. It should be stressed that this is the only 

part of Section 4.2 in which the range (0- 160 Hz) and Nps = 1025 are not 

adopted. In fact we consider here the range (0- 80 Hz) and Nps = 129, which 

gives us 1.6 spectral samples per Hertz~or a resolution of ~f = 0.625 Hz. 

Decreasing the discrimination of the calculation makes actually things 

11 look 11 a great deal more successful [Figs. 29(a) and (b)]; the response 

displays also a broader peak [Fig. 29(c)]. But we know that in fact this 

is artificial and that things are not really better. We now indicate the 

quantitative results obtained with these range and value of N , and for ps 
N = 17 and f n = 13 Hz. 

____________ !~e~!------------------------~~~~!!~------------------
Scheme 
of a(t) 

[e] 

[e] 

[e] 

[e] 

-a 

0.25 
0.75 
0.25 
0.75 

a 

0.25 
0.25 
0.50 
0.50 

13 
13 
13 
13 

Range= (0, 80 Hz) and Nps = 129. 

0. 0111 
0.10 
0.0072 
0.0646 

13.12 
13.12 
13.12 
13.12 

~f~pp 

0.50 
0.46 
0. 51 
0.47 

14.45 
13.76 
14.50 
13.36 

It is seen that, as & increases, Aresp decreases very slightly and ~f~PP 

remains almost the same. However, these results are not very reliable, 

because of the small number of points in the spectrum. 



Scheme [f]: The results of this case are very similar to those obtained 

with scheme [e]; as a matter of fact, both schemes consider pseudo-random 

perturbations on the frequencies. It was noted,nevertheless, that for a 

given & the 11 broad-banded" form of a(t) emerges at higher values of a than 

was the case with scheme [e]. A 1 so, for & = 0. 75 and f n = 12 Hz, the remain­

ing effect of parametric resonance displays higher amplitudes (from 1012 

to 10 3
, decreasing with increasing cr) than it did with scheme [e]. Hence 

schemes [e] and [f] display the same qualitative results, but the effective 

damping is lower for the latter scheme. 

4.3 Results Obtained in the Frequency Range (0- 40 Hz} 

The first part of the frequency domain analysis (Section 4.2) 

has proved to be a relative success, since good agreement with the time 

domain results (Chapter III) could be reached for the common schemes [b] 

and [c], especially as far as the effective frequency of oscillation is 

concerned. Moreover, it was possible to observe a more conclusive damping 

effect due to the random added mass perturbations, in the case where para-

* metric resonance occurs (what was already found in Chapter III}, as well 

as in the case of the completely pseudo-random scheme [c] {what could not 

have been displayed previously). 

Nevertheless, the desired goal of generating a narrow-banded 

pseudo-random a(t} could not be achieved with any of the three new schemes 

introduced, namely scheme [d] (with randomly perturbed amplitudes a;) and 

* When fn= 12Hz and with large amplitudes of a(t}. This was observed for 
schemes [e] and [f], where fn= 12Hz displays a much reduced parametric 
resonance compared to scheme [b]. 
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[e] and [f] (with randomly perturbed frequencies f;). In fact, instead of 

observing a broadening of the sharp peaks corresponding to the N frequen­

cies f;, with increasing a [cf. Figs. 27(a)- (c)], it was noticed that 

the peaks still very sharp -decrease in amplitude until they become no 

longer distinguishable from the surrounding 11 noise 11
• Increasing the num-
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ber N of perturbation frequencies fi did not alter this pattern of behaviour. 

In this section, another digital attempt will be undertaken to 

come closer to the aim or producing such an a(t) of narrow frequency band. 

Therefore two improvements are introduced; the first one consists in choos­

ing certain better system and analysis parameters, and the second one in 

testing more sophisticated models of the added mass perturbations a{t). 

The parameter improvements are the following: 

(i) we increase the value of~ from 0.005 to 0.02, in order to obtain a 

broader peak for the system response, which will make it easier to 

measure ~f1 p ; 
'2 p 

(ii) we choose the value fn= 14Hz for the natural frequency of the system, 

to avoid any effect of the parametric resonance observed at fn= 12Hz 

(this parametric resonance occurring actually at 12.5 Hz); we also 

discard f n = 13 Hz for the same reason, even though no really impor­

tant effect of this parametric resonance has been observed at that 

frequency; furthermore, we do not choose f n = 15 Hz, si nee 15 Hz is 

precisely one of the deterministic frequencies involved in a(t); 

(iii) we reduce the frequency range studied from (0- 160 Hz) down to (0- 40 

Hz), and this is sufficient since we want the frequency band of a(t) 

to spread between 5 and 25 Hz, and also since we have not discovered 

any unsuspected effect above 40 Hz affecting the system response (in 

Section 4.2); 
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(iv) we also reduce the number Nps of points used to calculate the power 

* * t spectra of a( f) and x(f) from 1025 down to 513 (hence L = 1024); 

this is possible since we reduce the frequency range by four times. 

Thanks to all this, our results on the three parameters of inter­

est (response frequency, frequency interval at the half-power point, and 

amplitude of the response peak) will be of much better comparative value. 

Having chosen these frequency ranges (iii) and number of calcula­

tion points (iv), we obtain 12.8 calculated points per Hertz or, in other \•lords, 

the width of one calculated frequency interval or resolution ~f is equal 

to 0.078 Hz approximately. This means that the accuracy of the power 

spectra obtained is twice better as it was in Section 4.2. 

Having done (i), (iii) and (iv), we notice on the output data 

that, since the response peak is broader, we obtain about 20 significant 

points to plot this peak, whereas only 3 such points were available for 

the very sharp peaks of Section 4.2. This is quite an appreciable improve-

ment. 

However, one question might give some trouble and stems from the 

choice of Nps' Land Nt (here Nt=2048). In fact, equation (4-5) gives a 

period of sampling of the time record ~t equal to 

At = 512 - 1 - 12 5 ms 
t..::. 1 024 X 4Q - 80 - • • 

The value is four times biggerthanbefore. Hence there will be four times 

* Where f stands for the frequency. 

tWith 513 points, the computing time is half of what it would be with 1025 

points; moreover the program can be run in CLASS2, whilst a 1025 points 
program requires CLASS 3. 



less sampling points per cycle of oscillation, i.e. 16 samples per cycle 

if f=5 Hz, about 6 samples if f=fn, and only 3.2 samples if f=25 Hz. 

As we can see it, there exists a conflict between accuracy in the time 

domain of the input and accuracy in the frequency domain of the output. 

The total sampling time is 

Tt = Nt·6t = 2048/80 = 25.6 s. 

This is twice the time length covered before, hence the number of cycles 

considered will also double, which represents about 340 cycles of the res­

ponse ( 128 eye 1 es of a signa 1 of 5 Hz and 640 eye 1 es if f = 25 Hz). 
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As for the models of a(t) to be tested, they include three former 

ones, namely schemes [a] (reference with a.(t) = 0), [b] (deterministic refer­

ence= sum of N sine functions) and [e] (pseudo-random perturbations of the 

frequencies fi). The new schemes introduced here are denoted from [g] to 

[k], and consist mainly of more refined deterministic variations of the 

frequencies f; (schemes [g], [h] and [j]) on which pseudo-random pertur­

bations may also be added (schemes [i] and [k]). For further information 

on these schemes, see Appendix 0.2. 

Let us finally _note that in every run with non-null a.(t). 

the value &=0.25 is used. Also, in every run in which pseudo-random ROit 

sequences are generated and used, the mean l-l; = 0 and standard deviation 

a; = 0. 2 5 a re used. 

We now review the different schemes and examine the power spectrum 

of a(f),as well as the results concerning the response x(f). 

Scheme [a]: This is the reference case with a.(t) = 0. Two runs are con­

ducted, the first one being the only run of this Section 4.3 which is not 

tRO; is defined in Appendix 0.2. 
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considering Nps = 513. The results obtained are given below. 

Input Results 
Scheme 

Nps 
Frequency # points fresp llf~)P Aresp 

of a(t) Range (Hz) I Hz (Hz) (Hz X 10-lt 

[a] 1025 0-40 25.6 13.87 0.520 1.81 

[a] 513 0-40 12.8 13.9 0.524 14.36 

a( t) = 0 

This Case B[a] is interesting mostly because it allows comparison of 

the results for the two different values of Nps· The damping being more 

important now (?; = 0.02), the response x(t) will decay rapidly and we notice 

actually that the response amplitude of the first run (1.81 x 10- 4 ; 

for Nps = 1025) is eight times smaller than for the second run {14.36x 10-~+; 

for Nps = 513). This example shows us one limitation of the FTFPS method, 

since we are limited by the time span studied, and maybe in Section 4.2 

we did not go far enough in time to obtain some expected results. We also 

understand that this method would not be well suited for the study of the 

forced vibrations of the system, since in that case a much bigger number 

of cycles should be investigated. 

Another limitation lies in the discreteness of the method itself, 

and this is illustrated by the results concerning the effective response 

frequency. For the first run the response peak, or more exactly the maximum 

frequency estimate obtained, is located at the discrete frequency abscissa 

frl = 13.8671875 Hz, whilst for the second run, this frequency point is not 

present and the peak is obtained for fr2 = 13.90625 Hz (see Fig. 30). But 

this problem is inherent to any digital method, and the results have to be 
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given with an indication of the resolution of the method. One thing is sure 

from both runs, it is that the response frequency is smaller than the nat­

ural frequency of the system (14Hz), but it is not known exactly where 

it occurs. (There might however exist a very slight difference between 

fr and f , due to the Runge-Kutta method used over different time lengths.) 
1 r2 

The unexpected lower frequency found may be due partially to the higher 

damping used (1;; = 0.02 instead of 0.005). 

From now on, a 11 subsequent runs wi 11 have in common: Nps = 513, 

range= (0,40 Hz), fn=14 Hz, z;;=0.02 and ii=0.25. Moreover, for all pseudo­

random runs, the value er= 0.25 is adopted (only the 11 realistic 11 value is 

considered). 

Scheme [b]: This is the deterministic reference case and consists simply 

of a sum of N sine functions. In Case B[b], four values of N are considered: 

N = 5, 9, 17, 33. The perturbation frequencies fi stretch between 5 and 25 

Hz and their respective values may be found in Appendix D.2. 

Let us give the results right now. 

Input Results 
Scheme N [et(w)]max fresp llf Aresp 
of et(t) Japp X lQ-Lf 

[b] 5 0.4809 13.9 0.531 13.63 
[b] 9 0.1484 13.9 0.529 14.39 
[b] 17 0.0416 13.9 0.520 14.43 
[b] 33 0.01104 13.9 0.524 14.44 [Fig. 31] 

-
Ct 0.25 and cr=O 

The most visible, and also expected affect is the strong decrease 

of [et(w)]max as N increases. This comes simply from the choice of a1 as 
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a; = N- for an ; (equation (4-4)), hence since we want & to be constant, a; 

decreases as N increases. 

We also notice a slight increase of Aresp' which is only certain 

when passing from N = 5 to N = 9. To be complete, we should compare these 

amplitude values with the one obtained from the second run of Case B[a], 

and then we see that this conclusion does not hold since Aresp of Case 

B[a] is even smaller than Aresp of the second run of this case (14.36 < 

14.39). The imprecision on Aresp does not allow us to conclude anything 
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else but that Aresp is constant. The same conclusion can be made about fresp 

and l'lf~PP 

From this point on, we could continue to give in a similar way 

the results for the other schemes considered, since in fact schemes [e] 

and [g] have also be run for the same four values of N. But it is believed 

that a comparative discussion is more interesting, and for this purpose, 

we shall only consider the runs for which N = 33 has been adopted. As a 

matter of fact, it is with this highest value of N that the chance is the 

biggest to obtain a narrow-banded a(t). 

But before giving the results for N = 33, let us have a qualita­

tive review of the power spectrum of a(t) obtained with the different schemes 

(also for N = 33). In Fig. 31 (a) are seen the 33 deterministic peaks charac-

teristic of the reference case [b] (already discussed above), whereas Fig. 

3l(b) displays the associate system response. This will be the only res-

ponse peak shown in this section, since for all the other schemes investi-

gated, the shape of the response peak was found to be similar. 

In Fig. 32 is given the power spectrum of a(t) corresponding to 

scheme [e]. It exhibits a wide-band spectrum, very different from the sharp 
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peaks obtained for N = 5 in Section 4.2.2 [cf. Fig. 27(a)]. It is more simi­

lar to what is obtained for the completely pseudo-random scheme [c] (cf. Fig. 

23). Unfortunately, the same kind of behaviour is observed in Figs. 33, 

34, 35 (scheme [g]) and in Fig. 36 (scheme [h]). 

However, a better result is achieved in Fig. 37, actually the 

first good result up to now, as far as the aim of generating a narrow-banded 

a(t) is concerned. This relative success is found for scheme [h] with 

lli=0.2 for all i and A.=2 (cf. Appendix D.2), which means that the exact 

scheme considered is 

- 33 
a(t) = ;3 .r sin[wi(l +0.2 sin(20rrt))t], 

1 = 1 

for which the values of wi may also be found in Appendix D.2. 

This result is considered to be a success because the 11 bell 11
-

shape of a narrow frequency band appears, but this success is only relative 

since the broadening of the outstanding peaks (corresponding to the fre­

quencies fi) is not sufficient to give us a real frequency band. 

We have mentioned before that this is the first case displaying 

a good result, but unfortunately it is also the last. Another problem 

seen indeed in Fig. 37 is that the potential narrow frequency band does not 

spread exactly between 5 and 25 Hz, but rather between 12 and 28 Hz, which 

is a little too far from the suggested 11 realistic 11 conditions desired [cf. 

equation (3-4,b)]. To obtain the same kind of spectrum, but shifted to the 

11 1eft 11 on the frequency abscissa, we proceed to a systematic shift of the 

perturbation frequencies f; and therefore reduce all of them by 3 Hz. In 

other words, we replace the frequencies (5, 5.625, ... ,25Hz) by (2, 2.625, 

... , 22Hz). However, this does not produce the expected result as we may 
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notice it in Fig. 38 (scheme [j]) and in Fig. 39 (scheme [k]). The desired 

shape of Fig. 37 has actually disappeared~ and there only remains a wide 

band spectrum, as found in Figs. 32 to 36. We are thus forced to recognize 

that there is little hope in obtaining a narrow-banded a(t) by means of 

such a digital method. 

However, it may sti 11 be interesting to give the quantitative 

results obtained for all these runs, conducted with N = 33 (except for scheme 

[a], of course, since a(t) = 0). 

Input Results 

Scheme Nature * [a(w) Jmax 
fresp ~fl p Ares~ Figure 

lli A (J 
x lo- 4 

~p xlo-

[a] d 13.9 0.524 14.36 
[b] d 110.4 13.9 0.524 14.44 Figs. 31 
[e] pr - 0.25 38.62 13.9 0.520 14.54 Fig. 32 
[g] d 0.2 5 41.89 13.9 0.533 12.75 Fig. 33 
[g] d 0.2 2 79.97 13.9 0.519 13.60 Fig. 34 
[g] d 0. l 5 45.28 13.9 0.513 13.37 Fig. 35 
[h] d 0.2 5 41.71 13.9 0.533 14.34 Fig. 36 
[h] d 0.2 2 77.55 13.9 0.525 12.94 Fig. 37 
[j] d 0.2 1 64.18 13.9 0.519 14.57 Fig. 38 
[k] pr 0.2 1 0.25 33.25 13.9 0.512 14.51 Fig. 39 

The general observation is that, as well as being unable to obtain 

good results from the qualitative point of view, these results are also not 

very enlightening§. It is true that most of these schemes are deterministic 

and that the deterministic scheme [b] has been found in Chapter Ill, for 

* Nature: d denotes a deterministic scheme, and pr a pseudo-random one. 

§The results of fresp' which seems to be constant, are a good example of 
this. 
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instance, to display less important effects (e.g. effective frequency) than 

the pseudo-random scheme [c]. Another reason is that here we took &=0.25, 

which is the lowest value of & studied, and the effects have always proved 

to remain weak for such a low &. 
It could be mentioned here that the two lowest values of [a(w)]max 

are found precisely for the two pseudo-random cases (schemes [e] and [k]). 

Comparison between schemes [j] and [k] is also interesting, since the latter 

is the pseudo-random perturbed version of the former. According to Aresp' 

damping seems to be higher (14.51 x 10-4 < 14.57 x 10- 4
) but not according 

to flf~PP (0.512<0.519) since for higher damping, flf~PP would increase. 

Another reason for the lack of significant results of this section 

may be the small number per cycle of discrete data taken from the time domain 

signal, at least for the highest frequencies considered. 



5. 1 

5.1. 1 

CHAPTER V 

ANALOG ANALYSIS OF THE FREE AND 
FORCED VIBRATIONS IN THE FREQUENCY DOMAIN 

Description of Equipment and Method 

~!~i!~!-~!2~~!-~~~!~~~~-~~~-~~~!~~-f~~E~!~~ 
The motivation for this last analysis lies in the failure of the 

digital methods to generate pseudo-random added mass perturbations of nar-
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row frequency band. Of course, we could still improve these methods by 

introducing digital filters. But this is considered to be too complicated, 

especially when considering a certain rigidity inherent in the FTFPS 

power spectrum sub-program as for the choice of the parameters of interest. 

High computer times (up to $160 CPU charge occurred for certain digital 

runs) are also a factor to be taken into account against the digital 

methods. 

This is why we decided to switch from the Amdha 1 V7 computer to 

our Hewlett-Packard vibration analysis equipment. The main piece of this 

equipment consists of a HP 5420A Digital Signa1 Analyser. This electronic 

device performs a variety of time domain and frequency domain measurements. 

To link the time domain to the frequency domain, it also makes use of the 

FFT algorithm, described in Appendix D.l and used in Chapter IV. One 

valuable advantage of the analyser is the possibility of processing not 

only one ensemble of Nt time domain samples- as it was done previously 

with the FTFPS sub-program- but on the contrary a whole series of them. 

A very important number of these ensembles (up to 32,767) can be processed 

one after the other, as soon as Nt time data have been sampled. The 

process used to obtain the final result is a signal averaging which, 

in this case, is an overlapped processing. Although time windowing of 

measured data records is a necessity when using digital processors -and 



c 
this is in order to avoid aliasing (cf. Appendix D.l)- one of the dele­

terious effects of windowing is the loss of the information contained in 

the original data. Much. of the coherent information buried in noise can 

thus be recovered by using time records that overlap one another, resulting 

in variance reduction that depends upon the window shape. Hence over 1000 

oscillation cycles can be analysed-which is very interesting for the forced 

case. Several windowing functions are available according to the nature 

of the input signal. We choose to enter a randomly varying signal, hence 
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the Hanning window is selected and the result obtained is actually a power 

spectral density (p.s.d.) which is given in volts 2/Hz. Additional informa­

tion on the measurement characteristics of this frequency analyser may be 

found in Appendix E.l, and even more in Chapter 5 of the analyser manual [71]. 

Paradoxically, this digital signal analyser accepts only analog 

signals as input. As a matter of fact, since we have already solved the 

differential equation (2-16) on the digital computer, it would be desirable 

to analyse these digital solution data on the HP 5420A analyser. But this is 

not possible because, even though the analyser processes digital numbers, 

it is not designed to accept digital input. The solution of storing the 

digital response obtained previously, and transforming it into an analog 

signal was first considered, but could not be implemented because of both 

hardware and software incompatibilities between the IBM and HP systems. 

For this reason, it is decided to solve equation (2-16) on an 

analog computer, namely the EAI 1000 Analog Computer. More information 

on this computer may be found in Appendix E.2, as well as in its reference 

and maintenance manual [72]. More general information on analog computers 

may also be found in Refs. [73] and [74]. A practical advantage of using 

an analog computer lies in the fact that, once the eq1Jation has been 

sea 1 ed and p 1 ugged on the EAI 1000, it becomes much eas.i er to change the 



parameters of interest than in a deck of computer cards. 

In this approach, we no longer use a Monte-Carlo method to 

generate the pseudo-random a(w), but simply pick up the signal obtained 

from the Noise Source incorporated in the ADC element of the analyser 

(Analog/Digital Converter HP 54410A). Then this noise, whose spectrum 
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is flat (wide-band) in the frequency range considered for analysis, is 

filtered to the desired frequency band by means of the Krohn-Hite filter 

model 3323. In Figs. 40(a)-(c) is shown the power spectral density of 

a(w) for three different values of averages obtained by overlapped process­

ing (this number of averages is noted #A on the display of the analyser). 

For only one average taken [Fig. 40(a)], the narrow band is not yet very 

good, still exhibiting sharp peaks as was found in the digital analysis 

of Chapter IV. However, when the number of averages is increased, the 

narrow band is much more marked, as may be seen in Fig. 40{b) [#A= lOO] 

and especially in Fig. 40(c) [#A= 1000]. This is in agreement with what 

was stressed earlier, namely that overlapped processing recovers coherent 

signals buried in noise. As far as the forcing function is concerned, 

it is obtained, when considered, from the HP 3300A Function Generator. 

In Fig. 41 may be found the schematic description of the experiment. 

s.1.2 ~~£b!~~_gg~~!!2~-2~-~~~!29_£2~E~!~r 

In actual magnitude and time scales, equation (2-16) may be 

written 

[1 +a( t) ]X + 2r;w0X + w~x = { ~~f'si nwft , 

in which f 0 is constant. 

(5-1) 



This equation must undergo some changes in order to fit the 

analog computer requirements (maximum voltage= ±5 volts), as described 

below. 

a) Magnitude scaling 

The maxima are calculated in the unforced case with no damping. 

This means that the solution given by equation (2-17) now reads 

x(t) = B cos{wnt + ~}. 

Its first and second derivatives with respect to time are 

x(t) = -w~ B cos(wnt + ~). 

* By introducing the initial conditions , x(O) = x1C and x(O) = 0, we find 

that B=x1C and ~=0. 

Hence, 

from where we get 
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lx(t) lmax = xiC (5-2,a) 

(5-2,b) 

* Slightly different from initial conditions (3-5). 
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(5-2,c) 

For the forced case, it is just necessary to lower the initial 

value of x1C in order to avoid overflow when increasing f 0
• 

let us now introduce the machine variables: 

Actual variable Expected maximum Computer variable 

X 

. 
X [ J 

Having done this and dividing by w~xiC' equation (5-l) 

becomes 

where 

b) Time scaling 

The typical value that we choose for the natural frequency of 

our system is fn=l4 Hz for reasons previously explained (cf. Section 4.3). 

With the magnitude-scaled equation above, we have to set two 

potentiometers at the value wn' one to pass from [w2 ~ ]to[w ~ ], another 
n re n IC 
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to pass from [ ~ ] to [~]; or we could at least use the value wlOn since 

Wn IC xrc 
the integrators are equipped with one input of gain 10. 

Calculating wn we find 

f n = 14 Hz + wn = 2Tif n = 87. 965 rad/ s, 

hence 

wn 
TO= 8.796 ~ 8.80 rad/s. 

But it is impossible to set any potentiometer to the latter 

value 8.80, even more to the value 88, since potentiometers can only 

vary between 0 and +1. Hence we have to reduce the gain around the pro­

gram loops (which remained constant in the magnitude scaling). By chang­

ing the gain of all integrators by the same amount, we do what is called 

time scaling. 

For reasons of convenience, we adopt a time scaling coefficient 

of 10. Hence the machine time will be 

T = 1 Ot' (5-4) 

which means that everything occurs ten times slower, and so all the fre-

quencies are ten times smaller, as shown below on a given problem fre-

quency fa and machine frequency Fa. 

Problem frequency: fa = w/2TI 

Computer frequency: Fa = Qa/2TI 
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We have 

in which ta and Ta are obviously the periods associated respectively to 

fa and Fa. 

According to equation (5-4), we obtain 

from which we get 

(5-5) 

so we actually proved that the computer frequencies are 10 times smaller 

than the problem frequencies. 

Hence our new natural frequency is 

Fn = 1.4 Hz, (5-6) 

and the values of the two potentiometers placed before the two integrators 

are 0.880. The advantage of studying ten times slower motions is the 

fact that they can be followed much easier on the oscilloscope and, more­

over, their time records can be plotted directly by an analog plotter 

(a frequency of 14 Hz would be too fast to be followed by such a plotter). 

This possibility allows time record comparison between the reference 

solutions obtained for a(t)=O. Thus the comparison between Curve 1 of 

Chapter III and the analog solution {for a{t) = 0), carried out for the 

same natural frequency and value of s, gave a very good result. 
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However, there is a disadvantage in working with such low fre-

quencies namely, along with the fact of encountering some drifts in the 

electronic components of the analog computer, the long time necessary to 

conduct the measurements. Thus it takes, for example, about twelve hours 

to obtain one complete resonance curve for the forced vibrations. 

Finally, the magnitude- and time-scaled equation reads 

in which it is remembered that 

T = lOt; 

The ~ircuit diagram finally adopted may be found in Fig. 42. 

5.2 Free Vibration Results 
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In this case, we examine the response frequency as a function of 

the magnitude of arms· The study is conducted for different values of xiC' 

namely x1c = 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 {in machine-units, which means 

that actual voltages are obtained by multiplying these figures by 5). 

For each value of xiC' different values of a(T) are applied and 

the response frequency is measured. For each such point, a set of 10 or 

more measurements is conducted over different lengths of time (#A= 1 and 

#A= 250 or 300) in order to take the randomness of a{T) into account. 

The system is 11 restarted 11 every time it damps out (or, quite seldom, when 

it overflows too much), then averages of arms and fresponse are calculated, 



and in the case of arms' they are transformed into "a equivalents", which 

means that the given a(T) has the same r.m.s. value as a deterministic 

a(T), typically a(T) =a sinnT. In fact, 

11 a equi v." = arms x 12 x sea 1 e factor depending on x1C. 
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The results are then given in the form of rectangles of uncertainty, 

in terms of "a equiv." and fresp· The average value is roughly in the 

center of the rectangle, the bounds of which are obtained from the maximum 

and minimum values measured. These results are plotted in Fig. 43. It 

is quite interesting to notice that a general trend appears from data which 

primarily seem to be rather unexploitable. 

The shift which is observed between the curves corresponding to 

different values of x1C is thought to be due to a lower accuracy of the 

analog computer when operating within smaller voltage ranges*, which 

actually occurs when x1C is decreased. 

It could be that our method of calculation of "a equiv. 11
, which 

seems quite logical (by imposing equality of pseudo-random and determinis­

tic r.m.s. values), is not valid, in which case arms should be calculated 

as it is done for the forced cases (see Section 5.3 below). 

The preceding remarks deal with the relative position of the 

curves corresponding to different values of xrc· Nevertheless, the general 

effect is clear and consists of an increase of the oscillation frequency, 

corresponding to an increase in arms· This effect, which is evident and 

is in agreement with our previous results, remains however low: 

* The be~t results are obtained indeed when the analog computer is used 
in its full range, i.e. between -5V and +5V. 



{1.402- 1.4)/1.4 = 0.15% for arms = 0.1, and 

0.5% for arms = 0.2. 

For the higher "unrealistic 11 values of arms' one finds about 1.5% for 

arms = 0.5 and about 3.5% for arms = 0.8 {or more than 3.5%, since the 

curves are interrupted due to overflow). 

This is· the same behaviour pattern that we observed previously 

with the digital computer approaches of Chapters Ill and IV. 

Let us finally mention that all free vibration experiments have 

been conducted with the usua 1 sma 11 va 1 ue of r;, i.e. r; = 0. 005. 

5.3 Forced Vibration Results 
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These runs are some of the most interesting in this thesis, since 

the forced vibration response curve gives direct access to the resonance 

frequency, as we 11 as to the response darnpi ng whi eh can be measured at 

the half-power points. On the whole, ten response curves x/F0 = f(Q/nn) 

have been plotted and one of them may be found in Fig. 44. Each such plot 

consists of about fifteen measurement points, calculated for a number of 

averages #A equal to 300, in order to take the random fluctuations of the 

response into account. Working on the frequency range (0- 4 Hz) and 

with this value of #A, it takes more than ten minutes to obtain one res­

ponse measurement. In fact, the whole procedure to obtain one point in-

c 1 udes {a) a measurement of the forcing function (with #A= l), (b) for the 

sake of comparison, a measurement of the determi ni sti c response with· a( T) = 0 

{a 1 so with #A= 1), (c) the measurement of the pseudo-random response (with 

#A= 300), (d) again a determi ni sti c measurement (#A= 1) ·in order to check 

eventual drifts in the analog computer, and finally (e) a measurement of 
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the forcing function (#A= 1 ) in order to check eventua 1 drifts in the func­

tion generator. The whole procedure, including handling and reading the 

resonance frequency and r.m.s. value (POWER key), takes about forty min­

utes to obtain one measurement point. 

The results obtained are shown below; before discussing them, 

let us give just a few words on how the value of arms is determined. Since 

we take here x1C = 0, we can no longer proceed as for free vibration, and 

now we have to measure both a(T)[x/n~x 1 cJ depicted on Fig. 45(a) and [x/n~x 1 cJ 
shown on Fig. 45(b). The ratio of their r.m.s. values gives us the value of 

arms· Unfortunately a(T)[x/n~xiC] has some power above 4 Hz, as may clearly 

be seen on Fig. 45(a). The value of 4 Hz being our upper analysis limit, 

the values of arms indicated here are therefore minimum values. 

The results below have been obtained by using equation (5-7) -

which is equivalent to the circuit diagram given in Fig. 42 -of course 

including the forcing function. It should also be mentioned that, in 

order to have a broader peak and not too high a resonance peak, the value 

of ~ has been increased to 0.02 and also 0.05. 

arms s measured§ (_g_) resonance 
(minimum at half-power nn 
value) point 

0.02 0 0.0205 1.0005 
11 0.10 0.022 1 .002 

0.05 0 0.05 0.998 
11 0.10 0.0515 0.998 
11 0.32 0.059 1. 032 

§Here~~~ measured 11 is calculated as s=/JJ?./2, where t::.n is the frequency 
interval between the two points located at xmax//2. 
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Again, we obtain results which are coincident with those already 

found in the free vibration cases. As a matter of fact, the shift towards 

higher frequencies is very weak, only of 0.2% for arms= 0.10 (when z; = 0.02; 

even less when z; = 0.05), and of 3.2% for arms= 0.32. It is simply recalled 

that the effect sought is of the order of 6%, and should occur below 

the upper "realistic 11 bound of arms= 0.20. Nevertheless, the effect sought 

appears and, moreover, occurs in the desired direction and this, by itself, 

can be considered as a positive result. 

Fortunately, this also occurs for damping, and it may be worth 

mentioning that it is the first time that this effect appears so signifi­

cantly (in the previous free vibration studies it was never very evident). 

However, we remain far from the desired effect of 100%, since for arms= 

0.10 the effect is of 10% (when z; = 0.02) or only 3% (when t; = 0.05), and 

only 18% (when ~:;=0.05) for arms=0.32. 

Another finding can be presented here: mostly when (n/nn) > 1.3, 

and even be 1 ow when arms = 0. 32, the power spectra 1 density of the response 

exhibits not only the sharp peak at f=ff (forcing frequency), but also 

a broader peak about the natural frequency fn = 1.4 Hz [see Figs. 46(a) 

and (b), and equally Fig. 44 on which it clearly appears that the pseudo­

random response is above the deterministic response- i.e., when a(T) =0]. 

This, of course, does not occur for a classical oscillator. For arms= 

0.32, this broad peak contains much more power than the sharp peak at the 

forcing frequency. But nevertheless this unexpected effect is not important 

as far as the determination of the damping is concerned, since it becomes 

significant far enough from the resonance region, even though it already 

appears with a very small peak when ff is below fn. 



0 Finally, in the hope of discovering a more important effect, an 

attempt is made to apply pseudo-random perturbations, not only on the mass 

coefficient, but also on the damping coefficient. Equation (5-7) is thus 

modified, for the forced case of course, into equation (5-8): 
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(5-8) 

Two cases are distinguished: 

0 = 
0 = -1 

Equation (5-8,a) 

Equation (5-S,b). 

The procedure is exactly s·imilar to the one used previously (for o = 0). 

The results obtained are shown in the table below. 

a.1rms a.2rms c;; measured (_Q_) resonance 
(minimum (minimum at half- nn 
value) value) power point 

+1 0.05 0.32 0.032 0.058 1.024 
11 11 0.32 0.32 0.047 1.029 
11 11 0.032 0.32 0.049 0.997 

-1 0.05 0.32 0.032 0.0565 1.03 
11 11 0.32 0.32 0.059 1.03 

The effect of applying such random perturbations on the damping 

coefficient c;; is not very evident and, anyway, generates no important new 

kind of behaviour of the system. Adding the perturbations a.2(r), however, 



seems to lower the effective damping, whereas substracting it increases 

the response damping. 

We could also consider applying such pseudo-random perturba­

tions on the last coefficient of the second-order differential equation 

envisaged, namely the stiffness coefficient, but no interesting effect is 

suspected, at least from the hydrodynamic mass point of view. 

Therefore, the first results obtained in this Section 5.3 with 

a 2{T) =0 are the most significant found with the one-degree-of-freedom 

model and agree, at least qualitatively, with Carlucci's experimental 

discoveries. 
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CHAPTER VI 

CONCLUSION 

85. 

The behaviour of the hydrodynamic mass and damping of a flexible 

cylinder immersed in two-phase axial flow was investigated in this research. 

It was in fact attempted to explain the two effects observed by Carlucci 

in simulated two-phase flow, namely a significant increase of damping, 

depending on the flow regime, and a decrease of the hydrodynamic mass 

occurring at a higher rate than that of the mixture density. The basic 

hypothesis made is that these two effects arise from random perturbations 

affecting the hydrodynamic mass. In fact this question brings us to the 

very nature of the fluid-structure coupling, this interaction being 

essentially probabilistic due to the presence of two-phase flow. 

After a too involved theoretical attempt, aiming at obtaining 

a general model of the fluid-structure interaction by starting from a 

molecular level, it was decided to dwell on a numerical simulation of a 

one-degree-of-freedom system. The purpose was then to verify whether 

the fact of applying pseudo-random perturbations (pseudo-random because 

they are generated artificially) can account for the two effects described 

by Carlucci. With this model, three studies have been conducted in which 

both the response frequency and damping were the parameters of interest. 

The two first studies were digital, whereas the last was analog (the first 

was conducted in the time domain, and the two others in the frequency 

domain). 

The results of these three approaches are consistent~ the last, 

however, being the most explicit. Agreement is best, as far as the response 



frequency is concerned. As a matter of fact~ a shift towards higher fre­

quencies is exhibited in all three studies, and this is in agreement with 

a decrease of the hydrodynamic mass. The magnitude of this effect is, 

however, found to remain weak, namely less than 1% for 11 realistic 11 values 

of perturbation amplitudes. This is low, when compared to the 6% effect 

found by Carlucci. (On the other hand, for highly 11 Unrealistic 11 values 

of the perturbation amplitudes, this value of 6% can be reached, but has 

not much physical meaning and, moreover, already occurs in the region of 

perturbation amplitudes which could give rise to instabilities.) 

The damping effect does not appear significantly in the two 

digital approaches, but in the last analog simulation (forced case) a 

higher damping is exhibited, however, not exceeding 15% (for 11 realistic 11 

values of the perturbation amplitudes). This is still small when compared 

to the 100% expected, which corresponds to Carlucci's observations. 
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It is true that the model investigated is not very sophisticated, 

especially for such a complex system. This could explain why the expected 

magnitude for the effects involved was not obtained. Nevertheless, the 

fact of having obtained similar results by the three approaches implemented 

can by itself be considered as a partial success. 

It could also simply be that the two effects sought are not,or 

are not mainly, the consequence of random fluctuations of the added mass, 

but are due to another, still unknown, cause. 

We do not think that one should expect much more from such a 

type of numerical simulation, for,example by increasing the number of 

degrees-of-freedom. The only remaining aspect which could have been 

interesting to investigate would have been the introduction of a time 



0 delay between two pseudo-random added mass perturbations a{T) applied to 

the two mass coefficients of a two-degree-of-freedom system. This would 

have modelled the propagation of the flow disturbances on the surface of 

the cylinder, along the axis of the cylinder. 

However, it will be very interesting to develop fundamental 

research on the fluid-solid interaction, in the future, by starting at 

the molecular level and implementing the transition to the macroscopic 

level by use of the theory of stochastic processes. Proper modelling of 

two-phase flow is in itself still a challenge for science. A good under­

standing of the fluid-structure interaction would finally provide a con­

tinuous passage between solid and fluid mechanics and a general theory of 

flow-induced vibrations. 
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Fig.l3{a). Strip of membrane adopted as model of the 
structure for the probabilistic approach. 
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Fig.17(a). Time record of system response, for Run Cl 
with a.=0.25 (see Appendix C.6). Considered 
for cycles #1,2,3 of Curve 1. 
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the Monte-Carlo algorithm. 
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0 APPENDIX A 

Oiscretization of the Equation of Small 
Lateral Motions in an Attempt to Obtain 

a Fokker-Planck Equation 

Let us first give the values of the coefficients A1 to A
10 

of 

equation (2-9): 

Al = a 0 

A2 = l 

A3 = u2[x - ~E:cf(l-~)(1 + h0) - ~cb] 

k 
A4 = 2xso2 u 

k 
As = xS 2 u = A /2 0 4 

AG = ~U 2 E:Cf( 1 + h
0

) 

(A-1) 

The first question arising now is to decide which stochastically 

varying quantity - U, p or even the momentum pU - is to be chosen as the 

principal random variable. We finally choose the density p (or s
1

) as 

the main random input and express all the other random variables in terms 

of s 1 • To do so, we assume that: pU = pU and pU 2 = pU 2 so that 

(A-2) 

Al 



0 We also assume that continuity is preserved at every cross-section at all 

times, i.e. 

pUA = constant. (A-3) 

-
Since A is constant, this yields: pU = constant, hence pU = pU and 

s2 = s 1-
1 • Finally we have 

52 = 54 = s -l 
1 

(A-4) 
53 = l ; 

s 3 = 1 implies that 3s 3 /aT = 0. If we furthermore assume that incompres­

sibility is also preserved at every cross-section at all times (a strong 

assumption), we also have 3s 1 /dT = 0. 

The cylinder in axial flow may be subjected to an arbitrary 

force field f(~,T); hence, the dimensionless equation of small lateral 

motions reads 

(A-5) 

A2 

Our goal now is to transform equation (A-5) into an equation of the type of 

(2-11) in order to apply to it a procedure similar to that of Morton and 

Corrsin [41]. 

This transformation is done by the Galerkin approximation tech­

nique, which means that our continuous system is approximated by a ri-degree­

of-freedom discrete system, the accuracy of the method increasing with n. 



c To do this, we apply solutions of the type 

n 
n(~,T) = E ~;(~) q;(T), 

i=l 
(A-6) 

where q;(T) are the generalized coordinates and~;(~) are eigenfunctions 

{at zero-flow velocity) of a beam with the same boundary conditions as the 

cylinder. 

Due to the boundary conditions, the eigenfunctions ~;(~) are 

orthonormal, i.e. 

{A-7) 

where oij is the Kronecker symbol. 

A3 

Substituting (A-6) into (A-5), multiplying by ~r(tJ, r=l,2, ... ,n, 

and integrating over the domain (0,1} yields an equation of the type 

[M]{q} + [C]{q} + [K]{q} = {Q}, (A-8) 

in which dots denote differentiation with respect toT. 

Here {q} stands for the vector of the generalized coordinates: 

{q} = {q , q , ... , qn}T, T denoting the transpose. 
1 2 

[Q] is also a column-matrix: [Q] = [Q1], whereas [M], [C] and 

[K] are nxn square matrices: 

We have 

[M] = [m .. ] 
1J 

[C] = [c .. ] 
1J 

[K] = [k .. ]. 
1J 



k;j(t:•r) = A. •4 o .. 
1 lJ 

+ A3 1
1 <Pj(t:)<P;(t:) 

o s
1 
(l;,-r) dt,: 

+ As / <Pj(t;)<P;(s) 
ds, 

0 sl(t,;,-r) 

(A-9) 

A.; are the beam eigenvalues corresponding to the eigenfunctions <P;,and 

primes denote differentiation with respect to l;. 

Unfortunately we are still far from being able to follow a pro­

cedure similar to that of Morton and Corrsin [41], even in the first-mode 

approximation. The same holds for the procedure followed by Parthasarathy 

[79]. 

A4 



c APPENDIX B 

Some Elements on the Probabilistic 
Formulation of the Fluid-Structure Interaction 

We could undertake this study by considering the structural 

member to be a flexible cylinder, part of an infinitely long rigid beam, 

as described in Section 2.2 of Chapter II and as shown in Fig. 12. The 

cylinder would then undergo lateral motions in the (x,y)-plane, as assumed 

in Section 2.2, the equation of which would be 

M ~ + EI n = F(x t) ae ax 4 
' ' 

Bl 

in which y(x,t) is the cylinder deformation and M, EI and F(x,t) are, respec­

tively, the mass of the cylinder, its, flexural rigidity, and the hydrodynamic 

force in the (x,y)-plane, per unit length. 

But, for simplicity, let us assume that the member consists of a 

membrane, or rather a strip of membrane, of width oz and extending from x=O 

to x=L [see Fig. l3(a)]. The membrane undergoes motion in the vertical 

plane (x,y), and the fluid-solid interaction is assumed to be exactly 

the same at each instant in each plane parallel to the (x,y)-plane. This 

means that we deal with a purely two-dimensional phenomenon. Moreover, 

the whole system is assumed to extend laterally to infinity (-oo < z < +oo) 

and the fluid flow is unbounded. Actually, due to this configuration, 

we choose to work only on a str·ip of membrane, or even a string, by letting 

oz + 0. 



B2 

As far as the fluid flow is concerned, we consider the flow above 

this string, in the particular (x,y)-plane chosen as reference. We regard the 

fluid as a discrete medium made up of particles of same size, mass and all 

other physical characteristics. Thus, we still deal with a homogeneous 

model of the fluid. The fluid flow is supposed to enter the string region 

and pass over it in the form of a lattice-like structure, with the velocity 

U parallel to x [see Fig. l3(b)]. 

We focus our attention on a single fluid particle P, which 

enters the string region sliding on the string, at the instant t = 0. Its 

initial position (x0 ,y0 ) is thence the origin (0,0) of the (x,y) reference 

plane, whilst its initial velocity is (vx
0

,vy
0

) = (U,O). It is then 

assumed that this particle will continue to slide on the surface of the 

string during its entire passage over the string, and will not "take off" 

from it. Our approach to the problem is inspired by the studies conducted 

on the Brownian motion, a good selection of which may be found in Ref. [46]. 

The dynamics of this fluid particle is described by a "generalized Langevin 

equation 11
, expressed by equation (2-12). This two-dimensional Langevin 

equation can also be written in matricial form, as 

[
Ax ( t)] 

, (B-1) 
Ay(t) 

or explicitly, 

d2 x dx in the x-direction: -+ S -+ 2 x = Ax(t), dt 2 dt WO 
(B-2,a) 



0 

B3 

(B-2,b) 

In the above, x and y are the co-ordinates of the fluid particle P considered, 

whereas 8 is the Stokes' drag denoting the interaction between the particle 

P and the string (membrane) surface. Usually 8 is taken to be equal to 

f/m where f is the friction coefficient and m is the mass of P (another 

expression of 8 has been adopted by Chandrasekhar and may be found as 

equation {133) of Ref. [44]). This friction exists here in the x-direction 

only, i.e. along the string surface. K(x) = -w~ x and K{y) = -w~ y are 

the two components of a harmonic-type force denoting the attraction of 

the particle P to its neighbours. Finally, Ax(t) and AY(t) are the compo­

nents of a randomly fluctuating loading force representing the hydrodyna­

mic disturbing force due to the surrounding particles. 

The motion of.this particle P is coupled with the motion of 

the string by the following two relations: 

(i) the equation of lateral motions of the string 

(B-3) 

in which f(x,t) is the string deformation, T is the constant tension in 

the string, whereas M and -AY(t) are respectively the mass of the string 

and the vertical hydrodynamic force per particle length dx; this last 

term is identical with the loading in equation (B-2). 

(ii) the kinematic boundary condition 

v = af(x,t) + af(x,t) 
y vx ax at (B-4) 



which arises from the assumption that the particle of co-ordinates (x,y) 

slides continuously on the string. (vx,vy) are the components of the 

particle velocity and are equal to (~~' f.r) . 

..;. 

A(t), and in particular its component AY(t), is the looked-for 
..;. 

solution to the problem. We cannot assume \•thite noise for A(t), not even 

for Ax(t), because we know from theoretical continuum studies, as well 

as from experiments, that the system (beam+ fluid) vibrates at certain 

discrete frequencies. These are macroscopic waves in the fluid, propaga-
..;. 

ting radially as well as axially. It is therefore proposed to regard A(t} 

as a superposition of two kinds of perturbation: 

..;. 

(a) Am(t) stemming from molecular hydrodynamics. This part is white 

noise since a Brownian particle under normal conditions in liquid 

will suffer about 1021 collisions per second and its motion can be 

assumed to be purely random on the macroscopic scale . 

..;. 

(b) AC(t) stemming from flow-elastic coupled motions, where c stands for 

coupling. This term is the unknown. 

We hence have 

(B-5) 

which can be written down more precisely by rendering explicit its 

components, 

84 

in the x-direction: Ax(t) = A~(t) + A~(t) (B-5' ,a) 
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in they-direction: AY(t) = A~{t) + A~(t). (B-5' ,b) 

We now make some assumptions on the microscopic randomly fluctua­

ting components Am(t) and Am(t), in a procedure similar to the one fal-x y 

lowed by Wang and Uhlenbeck (equations (4la) and (4lb) of Ref. [45]). 

In the x-direction, we assume that 

(B-6,a) 

{B-6,b) 

where < > represents the average value and is defined as 

1 T 
< u ( t) > = 1 i m 2T ! u ( t) dt, 

T4<X> -T 

and 
1 T 

< u(t) u(t+T) > = lim 2T ! u(t) u{t+T) dt 
T4<X> -T 

{thus <>denotes a long time-average). o is the Dirac delta function, 

and we also have 

D = SkT 
m ' 

in which k is the Boltzmann constant and T is the absolute temperature. 

In the y-direction, we assume that 

< Am(t) > = 0, 
y 

< A~(t 1 ) A~(t2 ) > = 0, 

since we have assumed there is no friction in they-direction. 

(B-7,a) 

(B-7,b) 



0 
time interval ~T 

+ 
Having given these details on A(t), we are now able to integrate 

the generalized Langevin equation over a specific time interval ~t which 

first needs to be rendered more precise. It is the essence of Brownian 

motion that there exist time intervals ~T during which the physical para­

meters (such as position or velocity of the particle) change only by 

11 infinitesimal 11 amounts, i.e. they remain nearly constant, whilst there 

occur a very large number of fluctuations of the two microscopic fluctua­

tors A~(t) and A;(t). We can say furthermore that the variations of A~(t) 

and A~{t), which would be in synchronism with the vibrating string, will 

be slower than the variations of the position or velocity of P. 

86 

Three time scales of vibration have thus been identified, and we 

choose ~T such that it be still very long compared to the longest charac­

teristic times in A~(t) and A;(t), but very short compared with the shortest 

characteristic times in x, y, vx, vy, A~(t) and A~(t), which can thus be 

considered as essentially constant. The existence of such a doubly asymp­

totic time interval is crucial to the standard Fokker-Planck formulation. 

Let us now start the integration. In the x-direction, we obtain 

from (B-2,a) and (B-5',a): 

which can be written as 



0 

B7 

Integrating over the afore-defined time interval ~T, we get 

(B-8,a) 

(B-B, b) 

in which 6x = x(t+6t) -x(t), and~ is a dummy variable. 

Having done this, it is easy to obtain the coefficients of the 

two-dimensional Fokker-Planck equation, following a procedure similar to 

those of Wang and Uhlenbeck (page 334 of Ref.[45]), or Morton and Corrsin 

[41]. 

This equation, in the x-direction, reads 

+ 1 (..£.:_ [Bx p J + a2 [Bx p J + ..£.:_ [Bx p J). (8-9) 
· 2 ax 2 11 x axavx 12 x av~ 22 x 

To obtain the Fokker-Planck equation in the y-direction, one has to replace 

x by y, vx by vy, the A~ and B~j coefficients by A{ and s{j respectively, 

and Px by Py are conditional probabilities which will be specified later on. 

We have 

Ax 1 • <~x> 
= 1m --

1 ~t-+0 ~t 

Ax = lim <D.vx> 
2 ~t-+0 D.t 

(B-lO,a) 

(B-lO,b) 

(B-lO,c) 
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(B-lO,d) 

(B-lO,e) 

The relations for obtaining the Ar and srj are quite similar, 

and one merely needs to replace the letter x by the letter y, as appropriate. 

Let us now calculate these coefficients. 

-From (B-8,a): 

and 

hence, 

<~x> = <v ~t> = v <~t> = v ~t; X X X 

Ax = lim <~x> = v . 
1 ~t~o ~t x 

- From (B-8,b): 

Averaging and taking (B-6,a) into account, 

hence, 

(B-ll,a) 

(B-ll,b) 



0 
hence, 

<llxllv > = v (-Bv -w2 x+Ac)(!lt)2 + v llt. <A(!;)> ds Jt+Llt m 
X X X 0 X X t X 

because of {B-6,a); hence, 

where t
1 

and t
2 

are dummy variables. The limit of the first term is 

zero because of the factor (llt) 2 ; the limit of the second term is also 

zero, because of (B-6,a);hence, we are left with the third term which, 

due to (B-6,b), becomes 

+tlt Jt+Llt 
<(llv )2> = 20 o(t - t ) dt dt

2
, 

X t t 1 2 1 

and finally 

89 

( B-11 ,c) 

(B-ll,d) 
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( B- 11 , e) 

The same type of procedure can be pursued on the Langevin equation 

in they-direction (equation B-2,b), and we finally end up with a set of 

two coupled Fokker-Planck (or Kramers) equations 

(B-12,a) 

(B-12,b) 

where 

and 

are conditional probability density functions, defined by the statement 

that if the system is at x
0 

and vx
0 

at time zero, then P{x,vx,tl x0 ,vx
0

) x 

dx dvx is the probability that it will be between x and x + dx and have a 

velocity between vx and vx+dvx at timet. The definition of PY is quite 

similar. 
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APPENDIX C 

Complements to the Digital 
Time Domain Analysis of Chapter III 

The Runge-Kutta {4-point) scheme is used here to solve the differen­

tial equation (2-16) representing the system finally adopted. Actually, we 

use form (2-14) of this equation, but this does not matter at all since 

the two forms are equivalent. We also take equation (2-15) into account 

and introduce CM which stands for the constant {time-invariant) mass and 

is equal to 

CM = M + mh. 

By introducing the time derivative of x with respect to time, 

Y 
_ x· _ dx 
- - df ' 

equation (2-14), which is a second-order differential equation,can be 

written as a set of two first-order differential equation as follows: 

dx _ ( ) dt - f t ,X ,y = y 

_gy__ _ K C fo(t) 
Cit- g(t,x,y)- -CM+lJ(t) x- CM+lJ(t) y + CM+lJ(t) 

(C-1) 

(C-2,a) 

(C-2,b) 

To solve this, we then apply the Runge-Kutta iteration formulae, 

namely 

X =X + -6
1(k + 2k + 2k + k) 

1 0 1 2 3 '+ (C-3,a) 
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(C-3,b) 

in which 

f and g being respectively the functions defined in (C-2,a} and (C-2,b), 

whereas h is the step-size chosen. 

The very first pair (x 0 ,y 0 ) is obtained from the initial conditions 

applied to the system. 

The perturbations a(t) of the hydrodynamic mass are obtained 

in two steps. 

First pseudo-random numbers are generated according to the uni­

form probability distribution 

O<x<l. (C-4) 

This is classically achieved by the following sub-program (given in Fortran): 

Initial values (in main program): 

IR = 1 

J = 5 * 13 



0 Iteration scheme (in sub-program): 

DOl I = 1 ,N 

IR = IR*J 

IF {IR.LT .0) IR = IR+2*(2**30-l )+2 

R=DFLOAT (IR)/2.00**31 

1 RU( I) = R 

RU(I) denotes the ith uniform random vari ate. 

The next step is now to transform these numbers into another 

set of random numbers according to another probability distribution p(x). 

It may be mentioned here that, according to exact terminology, we should 

call p(x) a probability density rather than a probability distribution 

since the latter is defined as F(x) = f+oo p(x) dx, but such a distinction 
-oo 

is not fundamental at this stage and the vocabulary confusion may be con­

sidered permissible. 

If we call r; the ith random variate accord·ing to the uniform 

distribution (C-4) generated by the subroutine above, then x;, the ith 

variate according to the new distribution p(x), is obtained as solution 

to the equation 

C3 

J:i p(x) dx = r;. (C-5) 

In our case we consider the Gaussian distribution, i.e. we have 

{C-6) 

in which ~ and cr 2 are respectively the mean and variance of the Gaussian 

distribution (the square root a of the variance is called the standard 

deviation). 
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Hence, the pseudo-random number X; is obtained by solving 

Jx; _ (x-J.l) 2 

e 2a2 dx = I2TI a r i . (C-5') 
a 

Before solving this equation, the constants a, J.l and a have to be known; 

a can be chosen to be equal to J.l - 3a, and a few words on the determination 

of J.l and a will be given in Appendix C.3. Having specified that, we can 

now indicate the numerical method used to solve equation (C-5'). The 

secant method is chosen to solve it, whereas Simpson's method is adopted 

to evaluate the numerous integrals required by the use of the secant 

method. But such a procedure is obviously very long, requiring a great 

number of calculations (and, hence computer time} to obtain merely one 

random number x;. Moreover, when considering that only for one oscillation 

cycle, we need 300 or 500 (cf. Appendix C.3) such random variates, it 

becomes clear enough that a simpler procedure has to be found to generate 

the normal (Gaussian) variates. An~~ay, an approximately Gaussian a(t) 

is sufficient for our purpose. 

The new procedure which was actually adopted is a consequence 

of the Central Limit Theorem [50], which states that 

11 if y1 ,y2 , •• ,yn are independant random samples of a 
stochastic event following a certain distribution 
characterized by its mean J.l* and variance a* 2

, and 
if we consider the change of variable 

z = [l ~ Y· - J.l*] In ' 
ni=l 1 cr* 

then z follows a standard normal distribution as 

(C-7) 
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In our case, we start from the uniform distribution defined by relation 

(C-4) and intend to calculate its mean ~u and variance a~. But before 

doing this, let us shortly remind the definition of the moment of a func­

tion H(x), in case of a continuous probability density f(x). This moment 

is given by 

CS 

Jb . 
<H(x)> = a H{x) f{x) dx, {C-8) 

where a and b are the limits of the domain of validity of H(x) and f(x). 

We now apply this to the calculation of ~u and o~, associated 

to the uniform probability density (C-4). Here we have (a,b) = (0,1). 

Hence, 

• ~u = <x> (C-9,a) 

~ = Jl X 
u 0 Jl 1 

pu{x) dx = 
0 

x dx = 2 

• a~ = <(x- <x> )2>. (C-9,b) 

By using the definition (C-8) and carrying out the calculation, we obtain 

(C-9,b') 

= Jl x2 dx - l 
0 4 

Summing up, we have found that 

(C-10) 
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All the details of the demonstration leading to the fast technique 

of generation of a normal distribution will not be given here. Suffice 

it to say that by introducing the change of variables 

and 

y = Ax + B 

n 
z = 1: yi 

i=l 

and using relations {C-10) and some consequences of the Central Limit 

Theorem, we obtain 

A 
~ = n~ = n(-2 + B) z y 

{ C-11) 

(C-12) 

( C-13 ,a) 

(C-13,b) 

in which (~Y'cry) and (~z,crz) respectively denote the mean and standard 

deviation associated to the distributions applied toy and z, the latter 

being a normal (Gaussian) distribution. The greater n is taken, the better 

the approximation of a normal distribution will be. For reasons of sim­

plicity in equation (C-13,b) and since such an approximation is sufficient 

[see the histograms in Figs. 16(a) and (b)], the truncation ton= 12 is 

chosen. Equations {C-13,a) and {C-13,b) then become 

~ = 6A + 128 z 

Hence we can solve for A and B in terms of ~z and crz, which gives 
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(C-14,a) 

(C-14,b) 

These results allow us now to indicate the various steps of the 

fast technique used in Chapters III and IV to generate pseudo-random num­

bers from a Gaussian distribution of mean ~and variance a2
• 

(i) We first have to obtain~ and a- or ~z and az in equations (C-14,a) 

and (C-l4,b) -which stem from the deterministic a(t) given in 

equation (3-1) adopted for Curve 3 {see Appendix C.3). 

(ii) We then select a random number r; from the uniform distribution (C-4). 

{iii) This ri is then multiplied by a. 

(iv) To this product is then added the expression f2 - ~{or B, according 

to equation (C-14,b)). This means that we have now obtained a 

variate of the variable y, following equation (C-11). 

(v) We finally add up twelve of these variates yi, and obtain one variate 

of the variable z which follows a normal distribution (equation 

(C-12) in which n= 12). 

This procedure may still seem rather long, but it is nevertheless 

much more efficient than solving equation (c-5•). The output may be observed 

in Figs. 15 and 16, the latter being a histogram obtained by means of the 

IMSL subroutine USHIST. 

According to the definition of the moment of a function H(x), 

given by equation (C-8), and to equations (C-9,a) and (C-9,b'}, we have 

J+oo 
~ = <a> = -oo ap(a) da 



0 
and 

= Jl:: a 2p(a)da- ~ 2 , 

in which a=a(t) and p(a) is the normal probability density given by 

equation (C-6) . Making the hypothesis of ergodicity, we can identify 

ensemble and time averages. Hence, we also have 

C8 

1 JT ~ = lim 2T a(t) dt (C-15,a) 

and 

T-+«> -T 

cr 2 = lim -1 JT a 2 (t) dt- ~ 2 
T-+«> 2T -T 

(C-15,b) 

It is now desired that the pseudo-random a(t) of Curve 4 and the 

deterministic a(t) of Curve 3 have the same mean and variance, in order 

to allow comparison between the two responses. The deterministic a(t) of 

Curve 3 is given by equation (3-1) and since in all cases <Pi= 0, it can be 

written, taking also (3-2) and (3-3) into account, 

5 - 5 
a(t) = ~ a; sin(w;t) = ~.,.r=l sin(wit). 

i =1 

• From (C-15,a) and (C-16), we have 

- 1 IT 5 ~ = l~ Tl~ T -T E sin(w;t) dt. 
~ i=l 

Due to periodicity of the five sine functions, this can be written as 

(C-16) 



1-1 = 1&0 ~ i. JTi sin(wit) dt, 
i=l 1 -T. , 

in which T; is the period of the oscillation of circular frequency wi' 

2'lf T.-­, W· 1 

For a given i, we have 

JT [ ] T· i . cos(wit) 1 
Sln(w;t) dt = - w. = 0, 

-T· 1 -T· 1 1 

hence 

l-1 = 0. 

C9 

i.e. 

( C-17) 

(3-7,a) 

e Let us now calculate the variance. From (C-15,b), (C-16) and 

(3-7 ,a),we have 

5 
[ r sin(w;t)] 2 dt. 
i=l 

Due to the periodicity of the sine function, this can also be written 

5 2 

[ r sin(w;t)] dt, 
i=l 
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in which Tm is a time duration defined as the least common multiple of 

all the periods Ti' T(i+j) and T(i-j)' associated resoectively to the 

oscillations of circular frequencies wi' wi +wj and wi -wj. The need to 

integrate over such a period Tm will become evident very soon. By con­

ducting the calculation, the variance becomes 

ClO 

&2 ~~1 rm 5 5 rm s1nw1t sinwjt d~ a2 
- 50Tm sin 2w;t dt + 2 l: l: 

-Tm i=l j=l -T 
jri m 

(C-18) 

Let us analyse separately the two kinds of integrals appearing here. 

* 

sin 2w;t] 
1
m 

- = T 
2w; -T m 

m. 

(C-19,a) 

* J
T111 JTm 

[cos(w.-w. )t- cos(w.+w. }t] dt. 
-T 1 J 1 J -T Ill 

Due to the choice of Tm, it follows that 

m 
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(C-19,b) 

Plugging (C-19,a) and {C-19,b) into (C-18), we finally obtain 

2 (i2 5 - -2 5Tm - (i2. 
0 = -- E Tm - CL SOT - -1 0' 50Tm i=l m 

hence, 

(3-7,b) 

which can also be written as 

because of equation (3-2). 

This short study is mainly concerned with the comparison between 

the two reference cases ·j n wh i eh CL ( t) = 0, i . e. Curves 1 and 2 ot Chapter I I I. 

Nevertheless, Curves 3 and 4 are also considered. The parameter of interest 

here is n, the number of discretization points used to conduct the Runge­

Kutta iteration scheme, or, what is equivalent, the size of the constant 

step-size h. The number n envisaged is considered over one page of USPLTD 

plot, which was chosen to be 3 cycles of the reference curve, i.e. Curve 1. 

If Tn is the natural period of equation (2-16) with CL{t) = 0 and without 

forcing function, the step-size h is therefore equal to 

3Tn 
h = n-1 · 
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The study was conducted for the following values of n: 100, 200, 300, 400, 

500, 600. The values of the responses were taken at the following instants 

of time: t = 3Tn, 6Tn, 9Tn, i.e. after 3, 6 and 9 cycles. 

The case envisaged here is for parameters 

f = -1 = 15 Hz, 
n Tn 

w 
f = - 1 = 30 Hz, f = 150 Hz, f

3 
= 

1 2~ 2 

~=0.01, -a= 1. 

240 Hz, f 
4 

= 300 Hz, f 
5 
= 450 Hz , 

The results of the comparison between responses of Curves 1 and 2 are given 

·in the table below. 

[x(Curve 2)- x(Curve 1)]/[x{Curve 1)] 
n at t = 3Tn at t = 6T n at t = 9T n 

100 -3.42x10- 5 -1.86x10"' 2 -7.32 X lQ- 2 

200 -1 . oo x 1 o-s -4.69x10- 3 -1.85x10- 2 

300 -9.54x10- 6 -2.13x10- 3 -8.33x10- 3 

400 -9.42 X 10- 6 -1.22 x 1 o-a -4.76 X 10- 3 

500 -9.42 X 10- 6 -8.04 X 10-t; -3.10x10- 3 

600 -9.42 x 1o-s -5.73xlo- 4 -2.19 X 10- 3 

It may be noticed here that a systematical error is introduced by the use 

of the Runge-Kutta method, which is 9.42 x 10- 6 after 3 cycles (after 6 and 

9 cycles, the limit is not yet reached for n = 600}. Fortunately this error 

remains small, at least as long as the number of cycles considered does not 



c become too large. The first runs were conducted with n = 300; after this 

study of convergence, n = 500 was preferred (an even higher va 1 ue of n was 

not envisaged because of increasing computer costs). 

As far as the frequency is concerned, there seems to occur a 

very slight systematic shift towards lower frequencies, of the order of 

0.2%. In fact, for fn = 15 Hz, the frequency of Curve 1 is effectively 15 

C13 

Hz (which is expected from the analytical solution), whereas the frequency 

of Curve 2, measured over 15, 30 or 45 cycles, is found to be only 14.97 Hz. 

If this effect is supposed to occur for Curves 3 and 4 within the same order 

of magnitude, then the frequencies measured from these curves (if they are 

about 15 Hz) should all be increased by 0.03 Hz. 

The results for Curves 3 and 4 were also obtained during this 

study, but need not be given here. The response for n = 600 was compared 

to the response obtained for the other values of n. At least when starting 

from n = 300, convergence was observed for Curve 3. To give an idea, at 

t = 9Tn, the ratio [x(Curve 3)n=300 - x(Curve 3)n=GOO]/[x(Curve 3)n=fiOO] 

is equal to 1.03xlo- 1
, whereas the ratio [x(Curve 3}n=500 - x(Curve 3)n=GOO]/ 

[x(Curve 3)n=fiOO] is equal to 1.60 x 10- 2
• For Curve 4, no such convergence· 

is observed, which is expected. since using a different value of n actually 

means that a different number of random numbers (which is precisely n, since 
' 

each integration point requires the generation of one pseudo-random number) 

is used in the scheme. 

A typical listing of the program is given in the five following 

pages. The case considered is Run 2 of Series E (see Appendix C.6). 



.... () -:;-~"i· ...... , ~ -.~,.· ..:.:. ·,,.;.:,.. ...... ;.~ 

$WATFIV .TIME=99.PAGES=40.~0EXT 
I~PLICIT REAL*8CA-H.K-L.O-Z) 

t' '• • ··~ 

C*************************** PART ONE OF PL01Tl NG PROGRAM : 

.. , . .i.o·. 

<:? 1 N TEGER I Y tN • M • I NC • I CPT • [M AG4 ( 5151 ) • I ER • IT I TLE ( 144) • I CHAR( 10) 
3 REAL RANGE(4) 
4 DOUBLE PRECISION X(300).Y(300,4) 
5 DATA ICHAIHU/lH /.,RANGE/4*0.0/ 
6 CALL UGETIOCltNIN.NOUT) 
7 RE AD ( NI N • 5 ) ( l T IT LE ( I) • I = 1 • 1 44 ) 
8 5 FORMAT(72Al) 
9 PI = 3.141592653600 

C*************************** PARAMETERS TO BE CHANGED IN STUDY 
10 FN = 15 .DO 
11 DZET A = 0 .o 1 DO 
12 F 1 = 30. D 0 
1 3 F 2 = 1 50 • DO 
14 F3 = 240.00 
15 F4 = 300.00 
16 FS = 450.00 
1 7 0 1 = 2 • DO * P I* F 1 
1 8 0 2 = 2 • DC *P 1 *F 2 
1 9 03 = 2 • DO *PI *F3 
20 04 = 2eDO*PI*F4 
2 1 0 5 = 2 • DC *P I *F 5 
4:?2 A l = O. 150 0 
23 A2 = Al 
24 A 3 = A 1 
25 A4 = Al 
26 AS = Al 
27 PHil = 0.00 
28 PH12 = PHil 
2 9 PH I 3 = PH I 1 
30 PH14 = PHll 
..3 1 PH 1 5 = PH 11 

.. 

C*************************** FROM TH:SE PARAMETERS • WE NOW DEFINE 
32 TN = 1.00/FN 
33 T1 = leOO/Fl 
34 H = TN/299 .00 *3.DO 
35 ON= 2eDO*PI*FN 
36 ALPHA = A 1 + A2 + A3 + A4 + AS 

37 
38 

39 
40 
41 

C************~************** EXACT SOLUTION 1~ CASE M(T) = C : 
C ----------> CO URBE NO 1 ( 2 CARTES 

OD = ON*DSQRT( 1.00 - DZETA*DZETA ) 
PHI = ':: • 0( 

C************~**********~*~* 
C MASS = le DO 
KA = CMASS*ON*ON 
C = 2.0~_DZETAt;O~CMAS~_ 

() 

('") _. 
~ 



j .. -.. () 

42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

54 
55 
56 
57 
58 

59 
60 

61 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

72 
73 

74 
75 

76 
77 

L ~):1. 4:,,. 

C*************************** 
T = 0 eOO 
XO= 1 .00 
YO= O.DO 
Xl-= leDO 
Yl= O.DO 
x2= t.oo 
Y2= 0.00 
X( l) = T 
y ( 1 tl ) = xo 
y ( 1. 2) = xo 
Y(1,3) = XO 
Y{l,4) = XO 

.~ ............ ,,, -.!.!0 .: .. ;, ~: 

IN I T 1 AL I Z AT I ON 

C*************************** c ELEMENTS FOR TrlE GAUSSIAN DISTRIBUTION 
AND MONTE-CARLO : 

c 
A = O. DO 
TM IV : 0 .oo 
SI GM A = ALPHA ID SORT( tO. J)O) 
I R = 1 
JJ= 5** 13 

C*************************** 
J = l 

4 I = 2 
C*************************** 

1 CONTINUE 
C*************************** c 

CALL F(H, Yl , P 

----------> COURSE NO 4 

KEEP THIS : 

R UNGE- KUTTA ME T-t OD : 

CASE 1 : Wl TH M( T) = 0 ----------> CJURBE ND 2 
) 

CALL GZ ER 0( Ht K~, C, C MASS • X 1 • Yl 
CALL F (H, Y 1 + a /2 • DO , PP ) 

• a 
CALL GZERO(H,KAtCtCMASS , Xl+ P /2.00 t Yl+ Q /2.00 t aa 
CALL F(Ht Yl+ aa/2.00 , PPP ) 
CALL GZERC(H,KA,C,Ct.IASS , Xl+ PP/2.00, Yl+ aa/2.00 t QQQ 
CALL F{ Ht Yl+ QQa t PPPP ) 
CALL GZERO(H,KA,C,CMASS , Xl+ PPP , Yl+ aoa 
XXX= Xl+ (P + 2.00*PP + 2.DO*PPF + PPPP)/6e00 
vvv= v1 + ea + 2.Do•aa + 2.oo•aaa + aaaa) /6. oo 

• aaaa 

) 

0 

C*************************** CASE 2: FOR M(T) =SUM OF AI*SIN(OI*T + PHI) 
C ----------> COURSE NO 3 

CALL F( H, YO 
CALL G(H,KAtCtT 

*•Pl,FltAl,PHlltCMASS, 

• K 
• xo 

) 

• YO 

* 01,02,03,04 t05 tA2 tA3 tA4 tAS tPH12tPHl3t PH14t PHIS) 
CALL F( H, YO+ L /2.DO , KK ) 
CALL G(HtKA,C,T+ H/2.DO , XO+ K /2e00 , YO+ L /2.!)0 

¥,PI ,Fl ,A l.PHil ,CMASS. 
* Dlt02t03tD4,Q5,A2tA3tA4tA5,PHI2,PHI3,PHI4,PHI5) 

CALL F(H, YO+ LL/2.00 , KKK ) 
CALL G(H,KA.C.T+ H/2eDO , XO+ KK/2e00 t YO+ LL/2eDO * t P lt F 1 t A 1 , PH 11 , CM ASS, 

* Olt02.D3,Q4,D5tA2,A3tA4-eA5,PH12tPHl3tPHI4tPHl5) 

t L 

t LL 

• LLL 
n ...... 
<.11 



i 
'" j.;..;i, .... 0 

liJ 
79 

80 
81 

82 
83 

84 
85 

S6 
87 

88 
d9 

90 
91 

92. 
93 
94 
95 
9o 
97 
98 
99 

100 
101 
102 
10 3 
104 
105 
too 
107 
1C8 
109 

ll'J 
lll 
112 
11 3 
114 
115 

116 
11 7 
118 

.. .~ .. a:c:. -~.,:... ,,.::...'~,,• ', •• :., .. ~,..;:t.;,~;A,(:; ,, .. ,_ 3: ...... i .~o .•• - ... i:', 

CALL F( H, YO+ LLL 
CALL G(H,KA,C,T+ H * tPI ,FltAl tPHiltCMASS, 

t KKKK J 
t XO+ KKK , YO+ LLL 

* Olt02,Q3,04,05tA2tA3tA4,A5,PHI2,PHI3tPHI4,PHl5) 
XX = XO t (K + 2.DO*KK + 2eOO*KKK + KKKK )1'6.00 
YY = YO+ (L + 2.00t:LL + 2.00*LLL + LLLL)I'6e00 

• LLLL 

C*************************** CASE 3: FOR M(TJ IN ~ACT GIVEN BY MCNTE-CARLO C ----------> CQURBE NO 4 CALL F ( H t Y 2 t U ) 
CALL CARLO(H,KAtCtCMASS , X2 

*, TMIUtSIGMA,,JJ,IR) 
CALL F(H, Y2+ V 1'2.00 , UU ) 

, V2 ' V 

CALL CARLO(H,KAtCtC~ASS , X2+ U 1'2.00 , Y2+ V 1'2e)0 , VV *, TM I U, SI G !¥A, .JJ tl R) 
CALL F( H, Y2+ VVI'2.00 t UUU ) 
CALL CARLOCHtKAtCtCMASS , X2+ UU1'2e00 , V2+ VV/2.00 , VVV * , T M I U , SI G MA , J J, I R) 
CALL F(H, Y2+ VVV , 
CALL CARLO(H,KAtCtC~ASS 

*•TMIU,SlGMA,JJ,IR) 
XXXX=X2+ (U + 2eOO*UU + 
YYYY=Y2+ (V + 2. 0 Oft VV + 

C*************************** 
T = T + H 

uuuu ) 
, X2+- UULJ , Y2+ VVV 

2.DO*UUU +- UJUU)/6.00 
2.00*VV\I + VVVV)/6.00 

SUITE : 

X( I ) = T 
V( ltl) = CEXP( -DZETA*DN*T J * OCOS( OD*T + PHI ) 
Y(l,2) = XXX 
Y( 1,3) = XX 
V (I ,4 ) = XXXX 
IF( I eGE. 300) 
XO= XX 
YO= YY 
X 1 = XXX 
y 1= YYV 
X2= XXXX 
Y2= YYYV 
I = I +- 1 
GO TO 1 

GO TO 2 

C*************************** 
2 CONTINUE 

Y ( 7 5 , 1 ) = 1 • DO 
Y C 7 6 , 1 ) = - t • DO 

END OF RUNGE-KUTTA USES : 

• vvvv 

C*************************** 
INC = t PART TWO OF PLomNG PROGRAM : 

N = 300 
M = 4 
I OPT = 1 
I Y = 300 
CA_ L U SP L TO ( X, y, I y , N , M , I NC , I TI T LE , RA NG E , I CHAR , I OPT • 1 M A G4 • I ER ) 

C*************************** TRACER 0 1 AUTRES TABLEAUX : 
IF ( J.GE.12.) GO TO 3 
WRITE(6,77) J 

77 FORMAT( 1 0 1 t5X,•TABLEAU NO '•11) 

0 

(J __. 
0"1 



,...._.J.;.;.:, 

0 

119 
12C 
121 
122 
123 
124 
125 
126 
127 
128 
129 

130 
131 
132 
133 

134 
135 
136 
137 
138 

139 
140 
141 
142 
143 

... _..-: 

J = J + 1 
X(l) = X(300) 
Y(ltlJ = YC300.1} 
Y(1,2) = Y(3C0.2) 
Y(l,3) = Y(300,3) 
Y(1,4) = Y(3Q0,4) 
GO TO 4 

3 WRITE(6 ,78) J 

:ibi ..... ~.: ri. .........: 

78 FORMAl( 1 1 t5X ,• TABLEAU t>.iO 1 , I 1 ) 
WRITE(6,88) TMIU,SIGMA,ALPHA 

, ; t~ •• i , ,:,- . -,. r 

88 FORMAT(' '•2X, 1 GAUSSIAN DISTRIBUTION: MIU = •,020.13,• 
*GMA = 1 .. o 20. 13t' ; *** ALPHA :.::: t tD12 .s) 

WRITE(6.,333) 
333 FORMAT(lHl) 

STOP 
END 

SUBROUTINe F(H.,Y,K) 
IMPLICIT REAL*SIA-Z) 
K : H*Y 
RETURN 
END 

SLSROUTINE GlERO(H,KA,C.CMASStX,Y,Q) 
IMPLICIT REAL*B(A-Z) 
Q = H*( - KA/CMASS *X - C/CMASS *Y ) 
RETURN 
END 

& 

; . 
-~ ·i 

SI 

0 

(.""') 
........ 
....... 



d 
""' 0 

144 

1'+5 
146 

147 
148 
149 

150 

151 
152 
153 
154 
155 
156 
157 
158 
159 
16:) 
161 
162 
163 

164 

165 
166 

167 
168 

,_ ,',:.:~ ,·: ~· .. •·.-,< ~l<.~~ ..;~·~ ~ .. 

SUBROUTINE G(HtKAtCtTtXtYtLtPI,Ft,At,PHiltCMASS, * 0 1 , 02 , 03 , 04 , 05 t A 2, A .3 , A 4 , A 5 , PH I 2 , PHI 3 , PH I 4 , PH I 5 ) 
IMPLICIT REAL*8(A-Z) 
CALL MOFT(Pl,Fl,A1,PHI1,T,MM, * Ol,02,Q3,04e05,A2tA3tA4,A5tPHI2,PHI3,PHI4,PHI5) 

,[ 

L = H* ( -KA/ ( CM ASS + MM ) *X - C /( C MASS + MM ) * Y ) 
RETURN 
END 

SUBROUTINE CARLO(H,KAtCtCMASs,x,v,CAR-tTMIUtSIGMA,J,IR) 
C*************************** MONTE CARLO : IMPLICIT REAL*8(A-H,K-L,O-Z) 

RRR = 0.00 
DO 7 I I I = 1, 1 2 
IR = IR*J 
IFCIR.LT.O) IR = IR + 2*C2**30 - 1) + 2 
R = OFLOA TC IR) /2 ,D 0**31 
RF< = R*SIGMA + TMIU/12.00- SIGMA/2.00 
RRR = RRR + RR 

7 CONTINUE 
RN = RRR 

.. ~·!:.....~--· 

CARL = H*( -KA/( CMASS + RN) *X - C/( CMASS +RN ) *Y ) 
RETURN 

$DATA 

END 

SUBROUTINE MOFT (PleFltA1,PHil,T,MMt01t02tiJ3,Q4,05,A2tA3tA4,A5t 
*PHI2,PHI3,PHI4tPHI5) 

1 NPL lC IT RE~L *8( A-Z) 
M"" = A 1 * D SI N ( 01 * T + PH I 1 ) + A 2 *D S 1 N ( 0 2 *T +PH I 2 ) + A 3 :+ D S I N ( J 3 4< T * + PHI3) + A4*DSIN( 04*T + PHI4) + AS*DSII\( 05*T +PHIS) 
RETURN 
END 

_, 0 

("'") 
---' 
(X) 



Series A,B,C 

Curve 3 of these series is discussed in Section 3.2.3 (and Curve 

4 in Section 3.2.2). 

These three series consist of ten computer runs which have in 

common the perturbation frequencies 

f; = wi/2~ = 5, 10, 15, 20, 25 Hz. 

The other parameters of each run are detailed in the table below (when no 

value is given for a parameter for a second, third or fourth run, it means 

that the parameter in question has the same value as for the first run of 

the series considered). 

Series & Run fn(Hz) -
Ne Remarks (l n 

A 1 15 0.01 0.50 300 15 Large amplitudes 
2 0.75 
3 1 

B 1 15 0.005 0.25 500 45 Small amplitudes 
2 30 and s - test on 

fn 
3 60 

c 1 15 0.005 0.25 500 30 Basically the 
2 0.50 same as Series 

A, but c,; = 0. 005 
3 0.75 instead of 0.01 
4 1 

In all series: fi = 5, 10, 15, 20, 25 Hz. 

fn is the natural frequency of the system and is equal to wn/2n, in which 

wn is defined by equation (2-l6',a). c,; and & are respectively defined by 

C19 
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equations (2-16',b) and (3-3). n is the number of calculation points used 

over three cycles (cf. Appendix C.4), whereas Ne is the number of cycles 

computed. 

Series D to H 

Curve 3 of these series is discussed in Section 3.2.4 (and Curve 

4 in Section 3.2.2). 

These five series consist of seventeen computer runs which have 

in common the natural frequency fn = 15 Hz. The other parameters are given 

below. 

Series & Run fi (in Hz) - Ne Remarks a n 
i = 1 to 5 

D 1 0.01 30,123,263,333,543 0.50 300 15 Large amplitudes 
2 0.75 - to test for 

{ f n =15Hz) parametric 
3 1 resonance; f = 1 

2fn 

E 1 0.01 30,150,240,300,450 0.50 300 15 Large amplitudes 
2 0.75 36 - to test for 

(fn =15Hz) parametric 
3 1 36 resonance; 

f 1 = 2f n 

F l 0.01 15,150,240,300,450 0.50 300 15 Large amplitudes 
2 0.75 -to test for 

( f n =15Hz) parametric 
3 1 resonance; 

fl = fn 

G 1 0.005 30,150,240,300,450 0.25 500 60 Same as Series E, 
2 (same as in 0.50 but z;; = 0.005 in-

Series E) stead of 0.01 
3 0.75 
4 1 

H 1 0 30,150,240,300,450 0.25 500 30 To measure x 
when z:: = 0 rms 

2 (same as in 0.50 
3 Series E) 0.75 
4 1 



0 APPENDIX 0 

Complements to the Digital 
Frequency Domain Analysis of Chapter IV 

D.l Fast Fourier transform 

01 

The fast Fourier transform can reduce the time involved in finding 

a discrete Fourier transform from several minutes to less than a second 

and, consequently, lower the computer cost. THe Fourier transform, of 

course, is used to identify the frequency components making up a continuous 

waveform. For sampled data, as is the case in this digital analysis, the 

discrete Fourier transform (OFT) is used and the fast Fourier transform 

(FFT) is precisely an efficient algorithm to determine the OFT. 

The Fourier transform for continuous signals and its inverse 

transform can be written in the form 

X(f) = J: x(t) e-i 2nft dt (0-l,a) 

x(t) = Jr: X(f) eiZnft dt ( D-1 , b) 

for -oo < f < 00 and -oo < t < oo, 

In these equations x(t) represents the function considered in the time 

domain while X(f) is its representation in the frequency domain (also 

called its linear spectrum). 

The analogous discrete Fourier transform pair that applies to 

sampled versions of these functions can be written in the form 
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1 N-l '2 'k/N X(j) = N r x(k) e-1 nJ (0-2,a) 
k=O . 

N-1 
x(k) = r X(j) ei2njk/N {0-2,b) 

j=O 

for j=O,l, .. ,N-1; k=O,l, •.. ,N-1; and N is the number of real sampled 

points used for the OFT (we called it NDFT in Section 4.1). Both X(j) and 

x(k) are, in general, complex series. 

If we replace e2ni/N by the term Wn,the OFT becomes 

- l N-1 'k 
X(j) - N E x(k) Wn-J 

k=O 

N-1 
x(k) = E X(j) Wn+jk 

j=O 

Each j is a harmonic number; that is, the true frequency is the 

product jf
0 

where f
0 

is the fundamental frequency and the true time is 

the product kflt where t;t is the sample period. The real part of X(j) is 

an even function and the imaginary part of X(j) is an odd function which 

implies that the Fourier coefficients N/2 and N- 1 can be viewed as "nega-

tive frequency" harmonics between -N/2 and -1. Furthermore, the last 

half of the time series can be interpreted as negative time (that is, as 

occurring before t = 0). 

The Cooley-Tukey FFT algorithm was developed in 1965 [67] and 

led to all the numerous subsequent publications on this topic. Using the 

notation of Cooley, the FFT algorithm involves evaluating the expression 

N-1 
X{j) = r A(k) wjk 

k=O 

for j =O,l, ... ,N-1; k=O,l, .•. ,N-1; and W=e2ni/N. 

{D-3) 
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c We wi 11 take the case for N = 8, and then it is convenient to 

represent j and k as binary numbers. This is to say that for 

j=0,1, ... ,7 and k = 0, 1 , ... , 7 

we can write 

0 or 1. 

Therefore, equation (D-3) becomes 

(D-4) 

Since wm+n = Wm · Wn, we have 

The two first factors can be written in the form 

However, 
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Hence the terms in brackets above equal and equation (D-4} becomes 

A 

X(jz,jl'jo) = 

(D-5) 

It is most convenient to perform the summations separately and label the 

intermediate results where only the latest set needs to be saved (each 

set contains only eight terms). Thus the equations can be rewritten in 

the form 

and finally 

(D-6) 

In this case (N = 8) a direct evaluation requires 64 complex 

multiply-and-add operations. Using the FFT equation and noting that the 

bracketed terms in the previous equations equal 1 and that W0 = -W 4 , 

W1 = -W 5
, etc., only 12 operations are needed. More generally, for N=2n, 

1 the reduction is from N2 to 2 Nlog 2 N complex multiplications, as many 

complex additions and also as many subtractions. For N= 1024 for example, 

this represents a computational reduction of more than 200 to 1. 



0 

05 

The three most often encountered problems (or pitfalls) in using 

the discrete Fourier transform appea.r to be aliasing, leakage, and the 

picket-fence effect. 

The term "aliasing 11 refers to the fact that high-frequency com­

ponents of a time function can impersonate low frequencies if the sampling 

rate is too low. This problem can be removed by making certain that the 

sampling rate is at least twice as high as the highest frequency in the 

signal (this minimum sample rate is known as the Nyquist Criterion). If 

there is a large amount of high frequency noise present, it is best to 

pass the signal through a low pass filter and to sample at a rate twice 

the frequency at which the signal is being filtered. 

"Leakage 11 is an effect which is inherent in the DFT because of 

the required time domain truncation. The time domain truncation may be 

thought of as multiplying the signal by a unit-amplitude data window, w(t), 

which has a Fourier transform sin(f)/f, where f is the value of the fre­

quency in the frequency domain. Therefore, the truncation of a sampled 

wave form results in a frequency domain convolution of the signal with 

the sin(f)/f function. This convolution introduces additional components 

in the frequency domain, because of the side-lobe characteristic of the 

sin{f)/f function, unless the truncation interval is chosen to be equal 

to a multiple of the period. To reduce leakage, it is necessary to employ 

a time domain truncation function, which has side-lobe characteristics which 

are smaller in magnitude than that of sin(f)/f. A good truncation function 

is the Hamming window, 

{ 

(1-b) + b cos (Tt~) 
w(t) = 

0 

for -m+ 1 < T < m-1 
(D-7) 
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where Tt is the length of the time record in seconds. If we let b = 0.46, 

then this is the Hamming window. If we let b=0.5, then this is the Hanning 

window of the Hamming window class. Actually, we chose the FTFPS routine 

(from the IMSL Library) to obtain the power spectrum of a time function. 

This routine uses the symmetric window 

. L-1 
w(j) = 1 - J - - 2-

L+l for j =O,l, ..• ,L-1 (D-8) 

which is approximately the Parzen window. (L is an input parameter to the 

FTFPS routine used to segment the time series, and must be a power of two.) 

In order to understand the 11 picket-fence effect", it is necessary 

to understand the nature of the results of the FFT. The FFT produces a 

spectrum of Nf frequency components spaced at intervals of ~f= 1/Tt. If 

a unit frequency component occurs at fc, such that fc is an integer mul­

tiple of ~f, then its magnitude will be expressed as unity. If, however, 

fc does not occur with such an integral relationship, then it will appear 

in the surrounding frequency components n · f and ( n+ 1). f. Its amp 1 itude 

in this case will be sin(f)/f, where f=fc-fn and f=fn+l-fC' In the 

worst case when fc is located half-way between n·~f and (n+l)·6f, it will 

be seen as 0.637 of the amplitude at both of these frequencies. Therefore, 

the FFT could result in an error of 27.3% in the value of the amplitude. 

This effect is referred to as the picket-fence effect. A possible cure 

to this problem is to double the record length with a set of samples which 

are all zero. This would cause the FFT to calculate a redundant set of 

terms which would be between the original terms. Now, the maximum error 



c would occur when fc is l/4 of the way between successive frequency com­

ponents, and would then reach 10%. However, in practice the picket-fence 

problem is not as great as this discussion implies. 

07 

The following schemes of a(t) have been generated in Chapters Ill 

and IV. They are presented in a discretized form, their general variate 

being given at a specific instant of time tk. Each model of a(t) thus 

characterized is denoted by a small bracketed letter, i.e., [a], [b], ... , 

[k]. Besides the schemes of a(t) are indicated the names of the cases under 

which the scheme in question has been considered in the various chapters 

or sections. Not all schemes have been used in Chapter III or in one of 

the two sections of Chapter IV considered, as can be seen below. In Chap­

ter III, the cases envisaged have previously been called Curve 1, .•• , up 

to Curve 4. For Chapter IV, they are called A[v] or B[w] where the capital 

letters A and B show that the cases considered belong, respectively, to 

Section 4.2 or Section 4.3, whereas the small letters inside brackets 

(hypothetic [v] and [w] used here) indicate which model of a(t) is taken. 

The various schemes of a(t) are presented in the table on the next page. 
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Scheme considered Cases examined 

Name Chapteriii Section4.2 Section4.3 

[a] 0 

- N 
[b] aN E sin{w

1
.tk) 

i=l 

[f] 

[g] 

[h] 

[i] 

[j] 

- N 
[k] ~ E sin[{w; (1+~ 1.sin(l0ATitk)) N i=l new 

+ RO;k}tk] 

Curve 2 
(Curve 1) 

Curve 3 

Curve 4 

A[a] 

A[b] 

A[c] 

A[d] 

A[e] 

A[f] 

B[a] 

B[b] 

B[e] 

B[g] 

B[h] 

B[i] 

B[j] 

B[k] 

For the values of f; and the methods of generation of RO; for each scheme, 

see Remark 3 below. 
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Remarks 

1. As a first remark, let us notice that not all these schemes are r~ndom; 

in fact we have: 

pseudo-random schemes: [c],[d],[e],[f],[i],[k] 

deterministic schemes: [a],[b],[g],[h],[j] 

2. It may also be noticed that, similarly to equation (3-2), all amplitudes 

a1 of the individual sine functions are being taken to be equal, hence 

a is again defined, similarly to equation (3-3), as 

N -a = l: 
i=l 

a. = Na. , 
1 1 

hence the amplitude of one sine function is equal to 

-a a. =-
1 N 

(4-4) or 
(0-9) 

( 0-9 I ) 

and appears under the latter form as a common factor in most schemes 

of a(t). The only difference between equations (3-2) and (3-3), and 

(0-9) and (0-9') is that the latter ones are generalized for any N. 

3. After these two global remarks, we still have to examine the schemes 

one by one in order to specify some characteristics, especially the 

different methods used to generate the random variates RO;k which have 

all been noted in the same way for simplicity. 

Scheme [a]: This the fundamental reference case since it represents 

the homogeneous model of two-phase flow for which mh(t) = mh (it is 

recalled that in Chapter III, Curves 1 and 2 denote, respectively, the 

analytical and numerical solution). 

Scheme [b]: This is the deterministic reference case and consists of 

the sum of N sine functions in the time domain, or a juxtaposition of 



0 N identical peaks in the frequency domain [see Fig. 25(a)]. Tomake these 

peaks equidistant, we choose equidistant frequencies, according to N, as 

follows: 

N= Values of f; = wi/2~ 

5 Hz 
r-"--t 

5 5, 10, 15, 20, 25 

2.5 Hz 
,--A---.. 

9 5, 7.5, 10, 12.5 15, 17.5 20, 22.5, 25 

1.25 Hz 
,...-A--, 

17 5' 6. 25' 7. 5' 8. 75' 10' 11 . 25' 12. 5' 13. 75' 15' 

16.25, 17.5, 18.75, 20, 21.25, 22.5, 23.75, 25 

0.625Hz 
,..---A---, 

33 5, 5.625, 6.25, 6.875, 7.5, 8.125, 8.75, 9.375, 10, 10.625, 

11.25, 11.875, 12.5, 13.125, 13.75, 14.375, 15, 15.625, 16.25, 

16.875, 17.5, 18.125, 18.75, 19.375, 20, 20.625, 21.25, 21.875, 

22.5, 23.125, 23.75, 24.375, 25 

010 

Let us specify that these values of the perturbation frequencies, f;, are 

also those for schemes [d] to [i], in case the corresponding value of N is 

used. 

Scheme [c]: This is the random reference case (completely pseudo-random 

without favouring any specific frequency). Its generation by a normal 

Monte-Carlo technique is given in Appendix C.2. As far as its mean ~ and 

standard deviation cr are concerned, it was found in Appendix C.3 that for 

N=5 we have ~=0 and cr=&/lfO. By a similar demonstration, it is estab­

lished that for any N, we have 
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011 

1J = 0 {4-S,a) 

and 

cr = &!12N . (4-S,b) 

Scheme [d]: In this case, the amplitudes of scheme [b] are made random. 

To see this better, scheme [b] has to be written again in its initial form 

using (0-9'), 

By replacing a1 by the pseudo-random sequences RA;k (RA standing for "Random 

Amplitude"), we obtain scheme [d]. The new subscript k stems from the fact 

that the random variates are different for each instant of time tk. De-
-

fining a1 = a <= N) -the common value of all the amplitudes a; of scheme 

[b] -the N sequences RA;k at a given instant tk are all chosen to have 

the same mean 1-1i=a, and also standard deviation cr;=a/12Nwhich distributes 

their deviates from 0 to 2a about the mean a. To obtain given deviates of 

the random sequences RAik' the N associate deviates of the pseudo-random 

Monte-Carlo sequence (as for scheme [c]) are generated by assigning the 

first one to RA 1 k' the second to RA 2 k, and so forth to RANk. It was verified 

for N = 5 that, by doing so, one still obtains normal {Gaussian) sequences 

for each RA;k -provided, of course, that a sufficient number of deviates 

has been generated. 

Scheme [e]: Here the amplitudes a; remain constant as in scheme [b] {hence 
-

the common amplitude ~ can aga·in be written outside the summing operator L:), 

but the frequencies are randomly perturbed. In this case RO;k are random 

sequences of mean ll; = 0 and of variable standard deviation cr (now being 



0 used as a parameter independent of&). The wi are constants as in scheme 

[b]- so that RO;k acts as a fluctuator to wi. As already mentioned, the 

values of fi are the same as for scheme [b]. 

Dl2 

Scheme [f]: In this case it is attempted to achieve the same goal as above 

(scheme [e]) by randomly perturbing the phase between the frequency com­

ponents of a(t), rather than the ''predominant" frequencies themselves. 

ROik are pseudo-randomnumbers defined as for scheme [e], hence a can again 

be chosen independently of a. 
Scheme [g]: This is a new deterministic case in which the circular fre­

quencies wi are deterministically perturbed by the factor 1 +ll;Sin(A.w1tk). 

Scheme [h]: This is the same deterministic case as scheme [g], but in the 

aforementioned factor, all the frequencies wi of the term sin{A.witk) are 

replaced by the lowest of them, w
1 

= 21rf 1 = l01r {since f 1 =5Hz). 

Scheme [i]: This is again a pseudo-random scheme. In fact, the determinis­

tically varying frequencies of scheme [g] are further disturbed randomly 

by pseudo-random deviates ROik defined as for scheme [e]. 

Scheme [j]: This case is the same as the deterministic scheme [h] with, 

in addition, a systematic frequency shift of -3 Hz, translating thus all 

the frequencies f i from the range ( 5 - 25 Hz) down to the new range ( 2 -

22 Hz). 

Scheme [k]: This is a pseudo-random scheme with the new range of frequen­

cies (2- 22 Hz) obtained by randomly perturbing the already deterministi­

cally varying frequencies of scheme [j]. As a matter of fact, going from 

scheme [j] to scheme [k] is exactly similar to going from scheme (g] to 

scheme [ i]. 
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The listing given below corresponds to run A[e], for which the 

deterministic frequencies fi are perturbed by a pseudo-random fluctuator. 

The parameters considered here are N = 5, fn = 14 Hz, &= 0.25 and a= 0.50. 

013 

The listing may be found in the following pages, as well as the 161 first 

digital output data, i.e. up to the frequency of 25Hz. Both power spectra 

of the fluctuator a(t) and of the response x(t) are given. 
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FORTRAN IV Gl RCLEAS~ 2•0 MAIN 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
oooa 
0009 
0010 
0011 
0012 
0013 
00 11~ 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 

00.39 
0040 
0041 
0042 

0043 
0044 
004,5 

0046 
0047 
0048 
0049 
0050 

r *** ~UN Ate] f t.GE 0001 
IMPLICIT REAL*B(A-H,K-L,O-RoT-Z) 
INTEGEP IYtNtMtiNCoJCPTo!MAG4(515l)o!ER,ITITLE(144loiCHAR(l0) 
!NTEGE~ NN oLoiND,IWK(ll) 
REAL RANGE ( 4) 
~-.EAL ~='X , FXINC , PS( 1025) o RBIG , ODD o FLOAT 
LOUBLE PRECISION X(1025),Y(1025,t) , SIGMA, S!GMA2 
C:OUBI E PRECISION XX(4096).PSXtl025),\VKC 1024) 
DOUBLE PRECISION YY(4096),PSY(1025),XPS(2050) 
COMPLEX*l6 CWK{2050) 
CAT,.~ I CHAR ( 1 ) / 1 H / , RANGE/ 4 * 0 • 0/ 
CALL UGET!C(1,NIN,NOUT) 
F.EA.D(NlN,5) (lTITLf::(l), I= 1,144 

5 FORMAT( 72Al) 
L = 2048 
,_.:N = 4096 
I ND ::: 1 
PI = 3.1415926536DC 
Fl = S.DO 
FN = Fl 
TN = t.DO/FN 
Tl = 1.00 / Fl 
H = TN/64e00 
0 1 = 2 • D 0 * P I *F 1 
C2 = 01*2.00 
03 = 01\'<3.00 
•J4 = 01*4.00 
rs = ot•s.co 
).LPH.A. = 0 • 2500 
Al = ALPHA / 5.00 
A2 ::: At 
A3 = Al 
A4 = Al 
A5 = Al 
PHil=O.DO 
PHI2.= PHil 
PHI3 = PH!l 
PHI4 = PHil 
PH I 5 = Ptll 1 

~*************************** ELEMENTS =oR THE GAUSS!AN DISTRIBUTION 
SJG(I;1A = O.SODO 
T~>1 I U = 0 .DO 

WP!TE(6,88) TMIU.SIGMA,ALPHA 
f38 FORMAT( 1 1',2X,•GAUSSIAN DISTRIAUTION: MIU = '•020.13, 1 

*GMA = 1 tD20.13, 1 ; *** ALPHA= 1 tD12.5) 
IR = 1 
IR 1 = 1 
J = 5**13 

(*************************** INITIALIZATION 
FNN= 14 .DO 
ON = 2.DO*~I*FNN 
D Z S TA = 0 • C 0 5D 0 
CMASS = 1.00 
KA = CMASS*O~*ON 

,! SI 

0 ..... 
~ 
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0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 

0069 
0070 

0071 
0072 

0073 
0074 

0075 
0076 

0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
ooe6 
ooe7 
0088 
OOA9 
00<:10 
0091 
00<:12 
0093 
0094 
0095 

-·' ,..,, .. (~;; _- ·-.""'/) . -;: . ::)[!i'> 
.,_,d.B2 t~ •.. •f,, . ·"' • :~.: • ' :t ~ .. ·,,~~ -, '1 ·.lt 

.\ . ···--· . 0 

~ =_ 2.~0*DZ~TA*0Nt~~;SS PAG~ 0002 
,.F - o.oo 
OM:.:.GA = O.CO 
T = 0.00 
.XO= t.DO 
YO= O.DO 
Xl= l.DO 
Yl= o.::>o 
X2= 1 .DO 
V2= O.i:l 0 
XX( 1) = 0 • DO 

YV ( 1) = 1 .DO 
XXSUM = O.DO 
YYSUI\' = 0.00 
XX2SUM = O.DO 
YY2SUM = O.DO 
[•0 1 I = 2, NN 
CALL ALEPH(!RltTMIU,SIGNA,T,Ql,02,03t04t05,PHiltPHI2,PHI3,PHI4tPHI5 
$5,ALPH,JoAltA2,A3,A4~A5} 

CALL FF(H, Y2 t U 
CALL PFRTU(H,KAtCtC~ASS , X2 , Y2 t V 

*•TMIU,S IGMA,J , IRtRF,Ofv'EGAtT , 
*Ol,02,03t04oC5tPHll~PH12,PHI3tPHI4,PHI5,AltA2tA3tA4,A5) 

CALL FF(H, Y2+ V /2.00 , UU ) 
CALL PERTU(H,KAtCtCMASS , X2+ U /2.00 t Y2+ V /2.00 , VV 

*•HHU,SIGMA,J .. H<,RF,OMEGA.T + tV2.DO t 

*Olt02t03,04,Q5,PHil,PHt2,PHI3,PHI4,PHI5tAltA2tA3tA4,A5) 
CALL FF(H, Y2+ VV/2.CO t UUU l 
CALL PERTU(H,KA,C,CWASS , X2+ UU/2eDO , Y2+ VV/2eDO ' VVV 

*•TMIU.SIGMA,J ,IR,RF,OMEGA,T + H/2.DO, 
*Clt02,QJ,04,C5,PHJl,PHI2,PHI3,PHI4,PHI5,AltA2,A3tA4,~5J 

CALL FF(H, Y2+ VVV , UUUU ) 
CALL PERTU(H,KA,C,CWAS3 , X2+ UUU , Y2+ VVV , VVVV 

*•TMIU,SIGMAtJ tiR,RF,Q~EGA,T + H , 
*Olt02,Q3,Q4,Q5,PHlltPHI2tPHI3,PHI4,PHI5,Al,A2,A3tA4tA5) 

XXXX=X2+ (U + 2.DO*UU + 2.DO*UUU + UUUU)/6.00 
YYYY=Y2+ (V+ 2.DO*VV + 2eDO*VVV + VVVV)/6.00 
T = T + H 
XX( t) = ALPH 

YY(l) = XXXX 
X2: XXXX 
Y2= YYYY 
XXSUM = XXSUM +XX(!) 
YV~UM = YYSUM + VY(I) 
XX2SUM = XX2SUM + XX(l)*XXCI) 
YY2SU~ = YY2SUM + YY{I)* YY(lJ 

1 CONTINUE 
XXSU~ = XXSUM / NN 
YYSU~ = VYSU~ / NN 
XXRMS = CSQRT( XX2SLM / NN 
YY~MS = DSCRT( YY2SUM / NN 
~P!TF(6,7) XXSUM, XXRMS 
WFIT~{6,8) YYSU~, YYRMS 

7 FOPMAT(//////'0', SX,'XXSUM = 1 or'20el3t6X,'XXRMS = 1 tD20.13) 

0 _, 
01 
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0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
OIOb 

0107 
0108 
0109 
0 110 
0 111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 

01.36 
0137 

0138 
0139 

0140 

."·' ;·l ~.:' I• ~. ' .• , , ·•'*·" ;:,;..~' . ;·~'·.·/r. ·.,, \.~:'Cl .. ~ ~ L 

a ;:- o•.- M~ r { • o • , 8Xt 1 YYSUt·<l = •, .20 .t3. 6x. • YYRMS = 1 tD20.13) 
006 I= t,NN 
XX(!)= XX(!) -XXSUM 

YY(!) = YY(!) -YYSUM 
6 rC1NT!tJUF. 

CALL FTFPS{XX,YY,NN,LtiND,~SX,PSYtXPStiWK,WK,CWK,IER) 
~RITE(6,66) IER 

6 6 F 0 R MAT ( /// // t 0 I • 6 X • I I ER = •• I 4. I • ///// , 

8ENOI-~ = L*t-i 
W R I TE ( 6 , 3 3 3 ) 

333 FORMAT{/////// 1 0 1 tlOX,• FREQUENCY * 'POWER SPECTRUM OF X * 1 POWER SPECTRUM OF Y * 1 MAGN. 0~ X-SPSCTRUM * 'PHASE o~ X-SPECTRUM 
I L = L/2 + 1 
002 I = 1, IL 
X( I): DFLCAT(l- 1) / DENOM 

1 , 3X t 

• • 3X, 
1 t 3X, 
I. 3X. 
'//////) 

2 WRITEC6,3} ItX(!) , PSX(l), PSY(l), XPS(!) • XPS{l + IL) 
:J FORMAT(' 1 t2X.t4,5(3X,D20.13)} 

!N( :::.: 1 
!--; = I L 
M = 1 
IQPT = 1 
IY = IL 
X(l) = O.DO 
! TEST = 1 
CALL PLOTOf', 
GQ TO 11 

22 0055 I = ltiL 
55 PSX(l) = PSY(l) 
11 C04 I = ltlL 

4 Y(!tl) = PSX(!) 
CALL USPLTD(X,Y,[Y,NtMtlNC,ITITLE,RANGE,ICHAR,IOPT,IMAG4.1ER) 
CALL L~RGECPSX,IL,BIG) 
ROIG = SNGL(BIG) 
IF(PBIG.EO.O.O) 
C042 I= ltiL 

GO TO 72 

42 PS{ I) = SNGL( PSX( I) ) * 8.0 / RBIG 
FX = 0.0 
DDD = FLOAT( L/2 ) 
FXINC = 16.0/DDD 
CALL PLOT(4.0,t.S,-3) 

0 

PAGE. 0003 

CALL AXIS(C.o,o.0, 1 FRACTION o~ PEAK AMPLITUDE 1 t26,8.0,90.0.o.o,0.125 
¥25) 

IF( lTEST.NE.l) GO TO 90 
C~Ll AXIS(O.o,o.o, 

*4-1 ! ALPHA ( T) WITH 
$tv' . .!l. = o.so 

1 CASE 
PSEUDO-RANDOM FR~OUENCIES / ALPHA = 0.25 & StGM~ = 1 

FR~QUENCY(HZ) 1 ,-llltl6.o.o.o.O.Ot10.0) 
GO TO 91 

90 CALL AX(S(O.O,Q.O, 
*4-1 : ASSOCIATE SYSTEM 
$= 0.50 

91 CALL PLOT ( F X t PS ( 1 ) t 3 ) 

'C~SE 
RESPONSE CUNFORCEJ, / ALPHA = 0.25 & SIGMA 

FQEQUE~CY(HZ) 1 ,-lll,l6e0e0•0t0•0t10.0) 

c 

" 
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0141 
0142 
0143 
0144 
0145 
0146 
0147 
Ol4fl 
0149 
0150 
0151 
0152 
0153 

.,.:,-~_ .. : ~d-~ ;·,.--.~{._ :,.::· . , ;$· .;. .. ~·-·> .;.~'• £;;.:.•;:""' 

t-041 I = 1, l L 
CALL PLOT(FX.PS(I),2) 

41 FX = FX + FXINC 
CALL PLOT(~X,-1.5,-3) 
IF(ITEST.NF..t) GC TO 24 
IT:?.ST = 2 
GO TO 22 

72 V.RITE(6,20) 
20 FOR~~AT{ 1 0't8X,'RBIG IS EQUAL TO ZERO') 
24 CONT!NU2 

CALL ENDPL T 
STOP 
ENIJ 

·' ;:,< ";·~ ; ' ' .h •. ~ •. ~. 

*CPTICNS IN EFFECT* NO~~RMoiO,EBCOIC~SOURCE,NOLIST,NODECK,LOAO,NQMAPtNOTEST 
*CPTIONS IN EFFECT* ~AM~ = MAIN t LINECNT = 56 
*STATISTICS* S~URCE STATEMENTS = 153,PROGRAM SIZE = 186328 
*STATISTICS* NO DIAGNOSTICS GENERATED 

FORTRAN IV Gl ~ELEASE 2.J LARGE 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 

SUBt.OUTINE LARGE{E,N,BIG) 
IMPLICIT REAL*8(A-H,K-L,O-Z) 
DOUBLE PRECISION E(N) 
BIG=O.DO 
GO 40 I=ltN 
IF(BIG.GE.CABS(E(l))) GOTO 40 
EliG=CARS(E (!)) 

40 CONTINUE 
F;: TURN 

NO 

*OP~lONS IN £CFEC7* ~OTERM,ID,EDCDICtSGURCE.NOLISTtNCDCCKtLOAD,NOMAP.NOTEST 
*OP~IONS IN EFF~C-* ~AME = LARGE • LINECNT = 56 
*STATIST:CS* ::rt...RCf STATIOCMENTS = lOtPROGRAM SIZS = 448 
*STATISTICS* NO l)IAG~!OSTICS GENERATFO 

.} '·, '" ~ ·) 0· 

PAGE 0004 

0 __, 
'-I 
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FORTRAN IV Gl RELEAS~ 2.0 FF 

0001 
0002 
0003 
0004 
0005 

~UB~OUTINE FF(H,Y,K) 
t~PLICIT REAL*S(A-Z) 
K = H*Y 
FETUt;·N 
FND 

~;·.L4 

*OPTIONS IN EFFECT* ~OTERM,ID,fBCDIC,SOURCE,NOLIST,NCOECK,LOAD,NOMAP,NOTEST 
*Cr>TIC·NS IN EFFfCT* t.A'-1E = FF , LINECNT = 56 
*STATISTICS* SOURCE STATE~ENTS = 5,PROGRAM SIZ~ = 344 
*STATISTICS* NO OIAGNOSTICS GENERATED 

FORTRAN IV Gl RELEASE 2.0 PER TU 

l ' 

0001 SUBROUTINE PERTU(H,KA,C,CMASS,XtYtCARLtTMIU,SIGMA,J,IR,F,QMEGA,T, 
*C1,Q2,03,Q4,0S,PHiltPHI2,PHI3tPHI4,PHIS,AloA2,A3,A4,A5) 

0002 
0003 

0004 
0005 
0006 

IMPLICIT REAL*S{A-H,K-L,O-Z) 
CALL ALEPH(lRtTMIU,StGMA,T,Ql,02,Q3,04,Q5,PHI1tPHI2,PHI3,PHI4,PHI5 

$,ALPH,J,AltA2,A3tA4,A5) 
CARL = H*( -KA*X- C*Y + F*DSIN(OMEGA*T) ) / ( CMASS + ALPH ) 
RETURN 
END 

*CPTIONS IN EFFECT* ~OTERM,IDtEBCDICtSOURCE,NOLIST,NODECKtLOAD,NOMAP,NCTEST 
*OPTIONS IN EFFECT* NAME= DERTU , LINECNT = 56 
*STATI3TIC!* S~URCF STATEMENTS = 6.PROGRAM SIZE = 1260 
*ST-TISTICS* NO DIAGNOSTICS GENERATED 

*STATISTICS* NO DIAGNOSTICS THIS STEP 

0· 

0 ...... 
CO 
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FORTRAN IV Gl RELEASE 2.0 ALE PH 

0001 S UHRCUT I NE ft LEPH( I R, TM IU, SI GM At T, 01 , 02 t 03, 04, 05, PHI 1, PH I 2, PH I 3, PHI 4, PH If, 
*4,PHI5,ALPH,J,AltA2tA3tA4tA5) 

0002 
0003 
0004 
0005 
0006 
0007 
OOCB 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 

C VAFIANTE 1 
IMPLICIT REAL*B(A-H,K-L,O-Z) 
COUBLE PRECISION R0(5) , RR0(5) 
RO(l) : 01 
00351 I = 2, 5 

351 RO(l) = RO(l-1) + RO(lJ 
DO 44 I = lt5 
RRR = 0.00 
CO 7 III = lt12 
IP. = It;;*J 
IFCIR.LT.O) IR = IR + 2*(2**30- 1) + 2 
R = DFLOAT(IR)/2.00**31 
RR = R*SIG~A + TMIU/12eDO - S!GMA/2.DO 
RRR = RRR + RR 

7 CONTINU'.:: 
44 RRO(l) = RRR 

ALPH = O.DO 
DC45 I = 1,5 

45 ALPH = ALPH + Al*DSIN((RO(!) + RRO(!) )* T) 
RETURN 
END 

*OPTIONS IN 2F~ECT* NOTERM,ID,EBCDIC,SOURCF,NOLISTtNCD~CK,LOADtNDMAP,NCTEST 
*CPTIONS IN EFFFCT* NAME = ALEFH , LINECNT = 56 
*STATISTICS* SOUP~E STATEMENTS= 2ltPR~GRA~ SIZE= 1434 
*STATISTICS* NO DIAGNOSTICS GENERATED 

1..0 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 

,• ~"-~~·~~~'. . ~'i . . :!.t~ ' ~ii...: ' 

XXSUM = o.t080448528083D-02 XXPMS = 0.81B0185779995D-Ol 

YYSUM = 0.32546339330680-03 YYRMS = 0.20451746427500+00 

IER = 0 

Fr.EOUENCY 

o.o 
0.15625000COOOCC~OO 
0.31250000000000+00 
0.46875000COOOOO~OO 
0.6250000000000C+OO 
0.7Bt250000000CC~OO 
Oe9375000COOOOOD+OO 
o.t09375oooooooo+ot 
0.12500000000000~01 
Oe1406250000000D~Ot 
o.t5625ooooooooo~ot 
0.1718750COOOOO~+Ol 
O.lS75000000000C~Ol 
0.20312500COOOOD+Ol 
O.?l87500000000D~Ol 
0.2343750CCOOOOD+Ol 
0.25COOOOOOOOOOD+Ol 
Oe265625000000CD+Ol 
0.2812500000000C+Ol 
0.296S7500CCOOOC+Ol 

POwER SPECTRUM OF X 

0.11536546688900-02 
Oel269820182186D-Ol 
0.56496467663220-02 
o.2619439283272C-o2 
o.1036025464383D-ot 
0.13669290246610-01 
o.4971783548602D-02 
0.72536301960790-02 
0.18030810682350-01 
0.1204143689600D-Ol 
0.48561170233440-02 
0.26885613090630-02 
0.26765637111320-02 
0.41925730471660-02 
o.3632t39ll40230-02 
0.45641717744820-02 
0.13112628618890-02 
0.137364~9557920-01 
o.6~05431475156C-o2 
0.33403210275280-02 

PCWER SPECTRUM OF Y 

o.tOB9817177585D-03 
0.2245525513456~-04 
o.t773976578099D-os 
0.4683531113154D-04 
0.49467082457250-04 
0.90823624634460-03 
0.24351002434760-02 
0.1010712565139~-02 
0.21795B1533239D-03 
o.7146601697157D-04 
0.4R77622031l94J-05 
o.33B415803BoaaD-o4 
0.22590691689670-04 
0.56987894564910-04 
o.38952532otot9D-04 
0.3086222957834D-04 
o.l429615458502D-05 
o.2707b00632907D-04 
0.25950980160900-04 
0.72040049126660-05 

i'·t .. '~ 'i .; o-

0 
N 
0 
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21 
22 
23 
24 
25 
26 
27 
28 
29 
3o--· 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

. {. ~~: ' . ~. ·' i.i.' . .il-· ~ .:,;· ·,£~\ .. 

o.3t2soooooooooD+ot 
Oe3281250000000D+Ol 
Oe3437500000000D+01 
0.359375COCOOOOr+Ol 
0.37500000000000+01 
Oe3906250000000C+Ol 
o ... 4 0-6.25 coo oo~u.oc .... o t-
0.4218750000000D+Ot 
0.4375000COOOOOD+Ol 
Oe45312500COOOOC+Ol 
Oe468750CCOOOOOD+01 
0.48437500COOOOD+Ol 
o.5oooooooooooor+ot 
Oe5156250000000D+Ol 
o.53125ooooooooD+01 
Oe546f750000000D+01 
Q.5625000000000C+Ol 
0.57812500COOOOD+Ol 
Oe5937500000000D+Ol 
0.6093750000000D+Ot 
Oe6250000000000D+Ol 
0.64C62500COOOOC+Ol 
O.L562500000000D+Ol 
Oe67187500COOOOC+01 
0.6875000000000C+Ol 
0.70312500COOOOD+01 
Oe7187500000000D+Ol 
0.73437500000000+01 
0.75000000000000+01 
0.7656250000000C+Ol 
o.78I25oooaooooo+ot 
0.796e750CCOOOO~+Ol 
0.81250000000000+01 
0.82812500000000+01 
OeB437500COOOOOD+Ol 
0.85937500000000+01 
0.8750000COOOOOD+Ol 
0.8906250000000D+01 
0.9062500000000D+01 
0.9218750COOOOOC+01 
0.93750000000000+01 
0.95312500000000+01 
0.96875000000000+01 
0.98437500000000+01 
0.)0000000000000+02 
Oel015625COOOOOC+02 
0.10312500000000+02 
Oel0468750COOOOC+02 
o.t0625ooaoooooo+o2 
Oel07€1250000000+02 

-~ '· ~~~~~-- '·u· 

o.s677155762722o-oz 
0.37865902992450-02 
Oe405110059U587D-02 
0.52959544180460-02 
0.93871405634320-02 
0.27270787677590-02 

----~ o. 7.'3020096388130-02-
0.19305206492830-01 
0.49818010358590-02 
0·2465380570068D-02 
0.48300245292340-03 
0.27753837623920-01 
0.~3949599874010-01 
Oel44481218f4530-0l 
0.48630939561420-02 
0.2121594ll0321D-02 
0.42852396757600-02 
0.10661636367140-01 
0.10330539243990-01 
0.73578418449860-02 
Oe7964679113684D-02 
o.90907f891895to-o2 
0.20849667155530-02 
o.se46452868772D-02 
0.33407239245970-02 
0.46698354320890-02 
0.53237550817610-02 
0.10746428907430-01 
0.69676034228130-02 
Oe1036133945409D-01 
0.581l002254152D-02 
0.77864633059980-02 
Oe2490712106746D-02 
Oe2115188516085D-02 
Oe2467009946464D-02 
0.27891708951970-02 
Oe43567440374840-02 
o.ta239904160200-o2 
o.l33503t005896D-o2 
0.2276071818668C-02 
Oe84183845080900-02 
0.63534514777410-02 
0.46927178495860-02 
0.24552340235740-01 
o.c056368368276D-Ot 
0.210391611651RD-Ol 
o.405?60485Jl33C-02 
o. 76745359367490-03 
0 • 256726101 Q3ll0- 02 
Oe551t802998199D-02 

.;_.; .. , .. ~t .. 

0.25947504125940-04 
Oe7228301608822D-04 
0.62702635899380-04 
o.7t09B5t955t40D-04 
0. 430138572 07560-03 
Oel943997213139D-02 
o. 2-945927.:::!7582 70-0<..; 
0.80917308628990-03 
o.30l910377t048D-o4 
0·20842147130520-04 
o.2249718654393D-04 
0.58724872490320-05 
o.269965t2oo6oaD-o4 
Oe3011120834653D-04 
Oe4722843103118D-04 
0.13893160132330-04 
0.37725566038970-04 
Oel277513542805D-02 
0.33545687943850-02 
Oel847611269086D-02 
0.26493507661970-03 
o.1188761496968D-03 
o.3t4B0340S6722D-04 
0.59603995210580-04 
0.51236864642020-04 
o.t394851156254D-o3 
Oa4599692155519D-04 
0.90836302R6385D-04 
o.5952096tBB095D-04 
0.37552169897560-04 
o.1o89tl4160967D-04 
0.39476957557230-04 
o.7676123t39546D-04 
o.563848002l027D-o4 
o.t900B55t09735D-04 
o.ta4t34896t062D-03 
0.65345974862550-03 
0.35038492589290-02 
0. 56 1148843 908 70-02 
Oe2572880276739D-02 
Oe1161777238814D-03 
0. 10 4 732 3746926['!-03 
0.69943709790940-04 
0.99457115823640-04 
Oe2225443000614D-03 
o.3to4oo5703442D-a3 
0.33181521531930-03 
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0 APPENDIX E 

Complements to the Analog 
Frequency Domain Analysis of Chapter V 

The HP 5420A Digital Signal Analyser performs a variety of time 

El 

domain and frequency domain measurements. The input signal is a continuous 

waveform which is filtered, sampled (or discretized) and analysed using 

digital signal processing techniques. The process of the analysis involves 

the following steps: 

- analog low-pass filter, 

- analog-to-digital converter, 

- digital filter, 

- digital processor, and finally 

- display of the result. 

The analog low-pass filter is used to prevent aliasing. In fact, according 

to the Nyquist criterion given in Appendix D.l, when a signal is sampled, 

frequencies above one half of the sampling frequency will fold back into 

the analysis range, causing aliasing errors. The use of the anti-aliasing 

filters in the analyser allows alias-free measurements at frequencies below 

one fourth of the sampling frequency. 

The analog-to-digital converter (ADC) converts voltages into num­

bers, namely the input waveform into the discrete input samples required 

by the analyser. The converter used is the HP 54410A ADC converter. The 

sampling is conducted at given intervals of time tn=n~t, in which ~t is 

the constant sample period. Its inverse 1/~t is the sample rate FS (or 

frequency of sampling). 
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The digital filter produces bandwidths that are powers of two 

sub-multiples of one quarter of the sample rate, e.g., fs/2, fs/4, fs/8, ... 

in which fs= FS/4. This is so because the analyser uses only two sample 

rates, requiring two anti-aliasing filter cutoffs per input channel (there 

are two input channels available). Hence, all other bandwidths are pro­

duced by digitally filtering the ADC output with the hardware digital filter. 

Usually Fourier analysis produces a baseband (de to BW) spectrum; here BW 

stands for bandwidth. In our study, a baseband spectrum is effectively 

considered. However, the digital filter makes it possible to implement a 

band selectable analysis (BSA), allowing the full resolution of the analyser 

to be focused in a narrow band, by specifying a non-zero center frequency 

as well as the desired bandwidth. 

As far as the digital processor- in fact the analyser itself­

is concerned, it manipulates the discrete data obtained through the three 

previous devices presented above. The continuous stream of samples are 

grouped into ensembles, or arrays, of Nt samples each. These ensembles 

may or may not overlap but, of course, overlapped processing is preferable 

since in this case,.more data are processed, thus enhancing statistical 

confidence. 

The relations between the time domain and frequency domain para­

meters are related (for baseband) by the following expressions: 

Tt = Nt~t 

~f = 1/Tt 

BW = (N/4)~f, 

in which Tt is the length of one time ensemble, Nt is the number of samples 
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in the input ensemble, BW is the frequency bandwidth of the measurement, 

~t and ~f are the time and frequency sample spacings. It may be noticed 

that the result of the Fourier transform is one ensemble of uniformly spaced 

frequency domain samples, whereas the time domain data are in the form of 

several ensembles of uniformly spaced time samples. 

The process used to take into account the individual results 

obtained for each ensemble in order to obtain a single ensemble of results 

in the frequency domain is a process of averaging. Signal averaging also 

reduces variance when analysing random data and recovers coherent signals 

buried in noise. 

The simplest form of averaging is the summation averaging. The 

summation average of N ensembles, AN, is given by 

1 N 
A = - r z 
N N i=l i ' 

where the ith ensemble is z1. But summation averaging does not produce a 

calibrated result until all N ensembles are averaged, and this is why it is 

not used in the analyser. 

Two main types of averaging are used in the HP 5420A analyser, 

namely stable averaging and exponential decay averaging. Stable averaging 

gives an equal weight to all data, being thus most useful when the charac­

teristics of the signal to be measured are not changing -except for noise -

during the averaging process. On the contrary, exponential averaging dis­

counts old data more and more as the averaging process continues, giving 

added weight to new data as it comes in; it is thus most useful when the 

characteristics of the signal being measured change significantly during 
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the averaging process (e.g. changes in the frequency of vibration components 

of a rotating machine as a function of machine speed, or optimization of 

the transfer function of control systems). 

In our study, stable averaging is adopted, for obvious reasons. 

It produces the same result as summation averaging; however, the stable 

average is always calibrated properly. The equation for stable averaging is 

where AN is the average after N ensembles. Stable averaging terminates 

after the specified 11 number of averages11 (noted #A on the plots, as may be 

seen in Figs.40) has been performed. With the analyser in the stable 

averaging mode, any number of averages up to 32,767 may be specified. The 

measurement can be stopped before this specified number has been taken and 

the result will still be calibrated. 

The analyser has two methods of initiating a measurement once 

the START button has been pushed. One method uses the internal clock and 

is referred to as 11 free run 11 mode; the other method uses a trigger condition, 

either internal or external. We chose to use the free run mode, for which 

the ADC never waits for a trigger of any kind to start sampling. The 

samples are stored in a buffer and the instrument controller is free to ask 

for a new record whenever it has finished processing the previous one. 

If the processing time is lower than the time record length, as it occurs 

in our case, the controller comes back for another record before the ADC 

has all new samples. Then the latter of the former samples are processed 

again. This is referred to as overlap processing, and has already been 
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mentioned above. The amount of overlap will depend on the bandwidth selected, 

whether the display is active or not, and on what coordinates have been 

selected if the display is active. Overlap processing has the benefit of 

greater variance reduction per unit time, i.e., as already mentioned, 

better statistical confidence can be achieved in any given analysis_time. 

On the analyser, there also exists the possibility of specifying 

the type of signal being processed in terms of three different signal types: 

sinusoida·l, random or transient (or impact). It may be made clear that 

signal type has meaning only for frequency domain measurements, where it 

affects data processing and specifies the calibration applied to auto- and 

cross-spectrum measurements. Since we consider auto spectra, we effectively 

have to choose the signal type. Selecting sinusoidal signal type allows 

the analyser to make the most accurate amplitude measurements on signals 

that contain spectral components that are separated by at least 5nf. 

Transient signal type is used when an integer number of periods of the time 

waveform are included in the analyser time record or when the time waveform 

is short-lived and decays to zero before the end of the ti.me record; it 

has the best frequency resolution characteristics (it allows signals as 

close as 1 6f to be resolved) but also the poorest accuracy (-4dB for the 

worst case). 

But in our case, the random signal type is adopted, because of 

the pseudo-random nature of the added mass perturbations a(t). This signal 

type allows the analyser to resolve frequencies more closely spaced {2nf) 

than for the sinusoidal signal type·; however, absolute amplitude accuracy 

with this type is less than with sinusoidal (in the worst case, signal 

amplitude can be off by as much as -3dB). The result obtained is in fact 
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a spectral density and is expressed in (volts) 2/Hz. The dimension associated 

with the random signal type and the auto spectrum measurement is (K·Vrms) 2/Hz, 

where K represents a calibration factor in terms of engineering units/volt. 

The type of window used for random signal is the Hanning window, 

given in Appendix 0.1 (it is a variant of the Hamming window). This is 

one of the differences between the two frequency analysis methods of Chapters 

IV and V. 

To read the value of the response amplitude, there is the POWER 

key which, among others in the case of auto spectrum measured with the 

random signal type, gives the r.m.s. power {v:ms). The range on which this 

power is measured may include the entire data block {no cursors), the por­

tion of the data between the two cursors when used, or a s ·j ngl e cursor 

location. 

Another difference between the two frequency analysis methods 

lies in the numbers Nt and Nps of time domain and frequency domain samples. 

In the FTFPS sub-program (Chapter IV), these parameters could be chosen as 

powers of two (at least for Nt) and different values were adopted during 

the study: mainly Nt = 4096 and Nps = 1025 in Section 4.2 (at the end of that 

section, the va 1 ues Nt = 512 and Nps = 129 were a 1 so taken). and Nt = 2048 

and Nps=513 in Section 4.3. On the contrary, in the program used by the 

HP 5420A analyser, the values of Nt and Nps are fixed and are respectively 

equal to 512 and 256. These values are lower than the ones used in Chapter 

IV, but, due to the possibility of using ensemble averaging with overlapped 

processing, the capacity of the analyser is much greater. 
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The EAI 1000 Analog Computer is microprocessor controlled and is 

composed ofsolid-statecomputing elements. It allows the rapid solution of 

scientific and engineering problems. It is basically a set of mathematical 

building blocks, or computing components, each able to perform specific 

mathematical operations on direct voltages (between -5 and +5 volts). The 

input and output terminations of the computing components are brought out 

to a patch panel, and can be easily interconnected with wires called patch 

cords. By appropriately interconnecting these building blocks, an electrical 

model is produced in which the voltages at the outputs of the blocks obey 

the relations given in the mathematical description of a physical problem. 

This is done on a removable patch panel which is then fitted to the computer 

and the initial problem parameters are set by adjusting the coefficient 

potentiometers to their appropriate values. The EAI 1000 is constructed 

, with a modular housing system. These modules are fitted together, and 

interconnections between trays made with standard flat strip cables. The 

modules included in a basic system are 

(i) Analog module- Containing analog and digital computer elements. 

Amongst the analog elements are four integrators, six summers, two 

multipliers, ten grouded and two ungrounded potentiometers. (Up to 

three analog modules may be accommodated in any one system). 

(ii) Display module- Containing all necessary displays for value readout, 

function addressing and overload. 

(iii) Control module- Containing power supplies, microprocessor control 

system multiplexer, mode control and keyboard. The control module 

can support up to three analog modules. 
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Expansion modules are 

(i') Analog modules- As previously described. Two expansion trays can be 

added to a basic system. 

(iv) Digital module -Containing additional digital computing elements plus 

facilities for hybridisation. One digital tray can be fitted to a 

basic system. 

The fundamental components of the analog computer is the operational 

amplifier. It is an inverting amplifier of very high gain (typically -10 7 , 

where the negative sign indicates inversion), high input impedance (several 

megaohms), low output impedance (less than lOO ohms), and it is direct­

coupled. It is the operational amplifier which, when connected to different 

types of its input and feedback impedances, enables the computer to sum, 

differentiate, integrate, invert and multiply by a constant. 

We now indicate the various symbols used in Chapter V for a summer, 

an integrator, a multiplier and a potentiometer. 

Summer: 

-- - (X+ IOY) 

This is obtained when an output point is connected with an input point of 

gain 1, by means of a patch cord. However, when an output point is con­

nected to an input point of gain 10, then the gain 1/10 is obtained for 

the summer: 
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Integrator: 

X 
y 

Multiplier: 

X 
y 

Potentiometer: 

X 

{;gJ) 
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l = - X I \0 

2 = -5 z[X(t) + IOY(tl] Jt - io 
Z'o 

l X.Y --

2 kX --
These analog computing elements are used to solve equation (5-7) 

and the circuit diagram may be found in Fig. 42. 


