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Abstract 

 

Many real-world multi-objective optimization problems found in the disciplines of engineering 

and design have objectives, decision variables, and constraints that dynamically change during the 

optimization process. Dynamic multi-objective evolutionary algorithms (DMOEAs) provide an 

efficient and effective means to address these problems, but the majority of research in this area 

has focused on theoretical problems in which the user has a limited role and the changes to the 

problem involve time-dependent objective functions (i.e., where the objective functions have time 

as an input in addition to other input parameters).  In contrast, there has been little research on 

problems where the number of objectives changes, and no research that considers strategies for 

problems in which the decision variables and objectives change simultaneously.  Further, there has 

been no research examining how the user might be brought into the DMOEA optimization process 

in a progressive fashion to guide the process in situations where user interactivity is crucial (e.g., 

when the number of objectives becomes larger than three).  This thesis addresses these issues and 

proposes a new modification to the popular nondominated sorting genetic algorithm II (NSGA-II), 

that we call the dynamic progressive NSGA-II (DP-NSGA-II). The algorithm addresses the dual 

problems of convergence and diversity of solutions when changes occur. It accomplishes this 

through a combination of memory-based and prediction approaches.  When the number of 

objectives changes, DP-NSGA-II uses a memory-based approach and samples from novelty and 

Pareto archives to aid diversity and convergence respectively.  A user defined global reference 

direction can also be used to direct the search in circumstances where the number of objectives 

increases and the objective space goes beyond three dimensions.  To deal with changes in the 

number of decision variables, or time-dependent objective functions, the type and severity of the 

change is first computed.  If the change is small, a prediction-based approach is applied in which 

already calculated objective values in the Pareto archive are scaled by a computed scale factor, 

sampled, and used to replace half of the current population.  This aids convergence by using values 

that were known to have performed well previous to the change.  The other half of the population 

is then replaced with random samples from the novelty archive to aid diversity.  If the change is 

big, the Pareto archive is completely emptied, and the current population of solutions is 

repopulated with samples from the novelty archive.  DP-NSGA-II integrates user preferences in a 

progressive fashion through the application of both a reference direction and solution ranking 

approach.  This allows the user to guide the search at the global and local scales.  DP-NSGA-II is 

applied to a real-world optimization problem and tested against the NSGA-II and dynamic NSGA-

II (D-NSGA-II) based on its ability to find optimal and diverse solutions.  We show that DP-

NSGA-II outperforms NSGA-II in average Pareto rank when the number of objectives change.  It 

also outperforms D-NSGA-II when the number of decision variables change.  Further, DP-NSGA-

II outperforms both algorithms in novelty for 75% of the test cases. 
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Abrégé 

 

Dans les disciplines de l'ingénierie et de la conception architecturale, de nombreux problèmes 

d'optimisation multi-objectifs ont des objectifs, des variables de décision ainsi que des contraintes 

qui changent de façon dynamique au cours du processus d'optimisation. Pour résoudre ces 

problèmes, les algorithmes évolutifs multi-objectifs dynamiques (DMOEA) fournissent un moyen 

efficace et efficient.  Par contre, la majorité des recherches dans ce domaine ont porté sur des 

problèmes théoriques dans lesquels l'utilisateur a un rôle limité et les changements au problème 

dépendent du temps (c'est-à-dire, lorsque les fonctions de l'objectif ont le temps comme variable, 

en plus de ces autres paramètres d'entrée). En revanche, il y a eu peu de recherches sur des 

problèmes où le nombre d'objectifs change, et aucune recherche qui considère des stratégies pour 

des problèmes dans lesquels les variables de décision et les objectifs changent en nombre. De plus, 

aucune recherche n'a examiné comment l'utilisateur pourrait être amené à progressivement guider 

le processus d'optimisation DMOEA lorsque l'interactivité avec l'utilisateur est cruciale (par 

exemple, lorsque le nombre d'objectifs devient supérieur à trois). Cette thèse aborde ces questions 

et propose une nouvelle modification de l'algorithme génétique de tri non-populaire II (NSGA-II), 

que nous appelons le NSGA-II Dynamique Progressif (DP-NSGA-II). DP-NSGA-II intègre 

progressivement les préférences de l'utilisateur grâce à l'application d'une approche de la direction 

de référence. La direction de référence guide la recherche à l'échelle globale, tandis que l'approche 

de classement des solutions guide la recherche à l'échelle locale. L'algorithme aborde le double 

problème de la convergence et de la diversité des solutions lorsque surviennent des changements 

dans le nombre de fonctions objectives. Il accomplit ceci à travers une direction de référence 

globale définie par l'utilisateur et une archive de nouveauté. Lorsque le nombre d'objectifs change, 

DP-NSGA-II utilise une approche basée sur la mémoire et des échantillons provenant des archives 

de nouveauté et de Pareto pour favoriser la diversité et la convergence, respectivement. Une 

direction de référence globale définie par l'utilisateur peut également être utilisée pour diriger la 

recherche dans des circonstances où le nombre d'objectifs augmente et où l'espace objectif dépasse 

trois dimensions. Pour gérer les changements dans le nombre de variables de décision ou de 

fonctions objectives dépendant du temps, le type et la gravité du changement sont d'abord calculés. 

Si le changement est petit, une approche basée sur la prédiction est appliquée dans laquelle les 

valeurs objectives déjà calculées dans l'archive de Pareto sont mises à l'échelle par un facteur 

d'échelle calculé, échantillonné, et utilisé pour remplacer la moitié de la population actuelle. Cela 

favorise la convergence en utilisant des valeurs qui ont bien fonctionné avant le changement. 

L'autre moitié de la population est ensuite remplacée par des échantillons aléatoires provenant des 

archives de la nouveauté pour favoriser la diversité. Si le changement est important, l'archive de 

Pareto est complètement vidée et la population de solutions actuelle est repeuplée avec des 

échantillons provenant des archives de nouveauté. DP-NSGA-II intègre les préférences des 

utilisateurs de manière progressive en appliquant à la fois une direction de référence et une 

approche de classement des solutions. Cela permet à l'utilisateur de guider la recherche à l'échelle 

globale et locale. Le DP-NSGA-II est appliqué à un problème d'optimisation du monde réel et testé 

contre le NSGA-II et le NSGA-II dynamique (D-NSGA-II) en fonction de sa capacité à trouver 

des solutions optimales et variées.  Nous montrons que DP-NSGA-II surpasse NSGA-II dans le 
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rang moyen de Pareto quand le nombre d'objectifs change. Il surpasse également D-NSGA-II 

lorsque le nombre de variables de décision change. En outre, DP-NSGA-II surpasse les deux 

algorithmes de nouveauté pour 75% des cas de test. 
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Chapter 1. Introduction 

Many fields face challenging optimization problems in which there are multiple and often 

conflicting objectives that must be simultaneously satisfied. These multi-objective problems 

(MOPs) are particularly prevalent in real-world design and engineering problems in fields such as 

architectural, urban, landscape, and industrial design, as well as, civil, industrial, automotive, and 

aerospace engineering.  Research on the process of design suggests that the basic activities and the 

essential stages of a design process are similar across these disciplines (Archer 1968, Gregory 

2013). Research has also shown that the initial phase of a design process, the “conceptual design” 

phase, has the most impact on the cost of the final design as well as its performance (Duffy, 

Andreasen et al. 1993, Wang 2001, Wang 2002, Chong, Chen et al. 2009).  Therefore, the 

development of heuristics and tools that can aid in the solution of MOPs for the conceptual phase 

of design will have a large impact across multiple disciplines.   

The conceptual design phase involves the open-ended exploration of a design space (i.e., a space 

of all possible design solutions).  The goal is to find a set of decision variables (i.e., input 

parameters) that map to a diverse but equivalent set of optimal performing solutions located within 

the objective space defined by the objectives of the optimization problem.  This optimal set, 

referred to as the Pareto optimal set (POS), is located on an n-dimensional manifold referred to as 

the Pareto front (PF).  MOPs present several challenges for researchers developing algorithms to 

meet this goal, and these have been well documented by other researchers (Coello, Van Veldhuizen 

et al. 2002, Deb 2014, Datta and Gupta 2016).  Five challenges stand out and are the focus of this 

thesis:  

1. Exploration: A significant stumbling block in developing algorithms to deal with MOPs is 

ensuring adequate exploration of an objective space as well as diversity in the solutions 

uncovered (Deb, Pratap et al. 2002).  This is especially crucial for the conceptual design 

phase. 

2. User preference-integration: Many algorithms used to solve MOPs require interaction with 

a decision maker, but how and when the decision maker should be involved in the process 

is an open problem (Bechikh, Kessentini et al. 2015). 

3. Dimensionality: MOPs that have more than three objectives, known as many-objective 

MOPs can pose major challenges to the computability of the PF due to the curse of 

dimensionality - once objectives increase past three, the size of the PF can quickly become 

too large for many algorithms to cover effectively (Bechikh, Elarbi et al. 2017). 

4. Dynamics: Many real-world MOPs involved in the conceptual design phase are dynamic 

and may have objectives, design parameters, and constraints that may change during the 

optimization process (Azzouz, Bechikh et al. 2017).  These problems are known as 

dynamic MOPs (DMOPs).  
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5. Deception: A final complication is that MOPs and DMOPs can often be deceptive in nature 

– meaning they may be prone to leading decision makers down the wrong path in a design 

space (Goldberg 1987).   

There is a broad range of optimization algorithms that have been applied to address these stated 

problems, for instance enumerative, deterministic, and stochastic algorithms.  Of these approaches, 

multi-objective evolutionary algorithms (MOEAs) have emerged as one of the most widely studied 

and successful (Coello, Van Veldhuizen et al. 2002).  The field of MOEA research can be divided 

into five categories: Pareto dominance-based methods; indicator-based methods; reference point-

based methods; grid-based methods; and decomposition-based methods.  Further, because MOEAs 

require feedback from a decision maker, each of these categories can be divided into three sub 

groups based on whether a decision maker’s preferences are integrated before, during, or after the 

optimization process.  We refer to these variants as a priori, progressive, and a posteriori processes.  

Progressive MOEAs demonstrate the best performance when dealing with optimization problems 

with more than three objectives (i.e., many-objective problems).  Li, Deb et al. (2017) propose a 

progressive decomposition-based algorithm that requires the decision maker to interactively define 

multiple regions of interest (ROIs) throughout the optimization process.  These ROIs then allow 

the optimization algorithm to focus on exploring a smaller hyper-volume of the objective space, 

making what would otherwise be a computationally expensive search less costly.  Progressive 

Pareto dominance-based methods have shown significant effectiveness in addressing the 

challenges posed by many-objective problems.  Deb and Kumar (2007) propose R-NSGA-II 

(Reference-point Nondominated Sorting Genetic Algorithm II), which uses a reference point 

method to define a single ROI to direct the search.  Said, Bechikh et al. (2010) propose r-NSGA-

II (Reference-direction Nondominated Sorting Genetic Algorithm II), which uses an aspirational 

level vector supplied by the decision maker.  They demonstrate that progressive MOEAs 

significantly outperform non-progressive approaches when dealing with many-objective 

problems. Despite the promise of progressive techniques, there has been relatively little research 

on progressive MOEAs in comparison to non-progressive variants.   

In order to address the challenges posed by dynamic MOPs (DMOPs), dynamic multi-objective 

evolutionary algorithms (DMOEAs) are currently being studied in the fields of optimization, 

operations research, and computer science (Azzouz, Bechikh et al. 2017).  Research on DMOEAs 

has mostly looked at cases where the objective function changes with time (i.e., where the objective 

functions have time as an input in addition to other input parameters) (Azzouz, Bechikh et al. 

2017).  Some examples include route optimization problems according to real-time traffic (Wahle, 

Annen et al. 2001); scheduling problems (Deb, Rao N et al. 2007); real-time resource allocation 

(Palaniappan, Zein-Sabatto et al. 2001); and control problems such as the optimization of indoor 

heating (Hämäläinen and Mäntysaari 2002).  Only one paper has looked at the problem of a 

changing number of objective functions (Chen, Li et al. 2016) and, to the best of our knowledge, 

no work addresses the situation where the number of input parameters is changing (dynamic 

decision space) in addition to a changing number of objectives (dynamic objective space).  Further, 
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previous work does not show how user preferences might be integrated in a progressive fashion in 

such a situation.     

This thesis addresses these understudied areas through the development, implementation, and 

testing of a unique modification to the popular nondominated sorting genetic algorithm II (NSGA-

II) (Deb, Pratap et al. 2002).  The algorithm developed for this thesis is called the dynamic 

progressive NSGA-II (DP-NSGA-II).  DP-NSGA-II integrates user preferences in a progressive 

fashion through the application of a hybrid approach.  This is done through a reference-direction 

approach to guide the search at the global scale, and a solution ranking approach to guide the 

search at the local scale.  This hybrid approach works especially well in high dimensional objective 

spaces where tradeoffs may change drastically at a global scale, but only moderately at a local 

scale. This interaction engages the decision maker in a manner that requires a level of comparative 

thought that other approaches involving a reference point, direction, or weighting may not provide. 

This progressive approach narrows the scope of the search in high-dimensional objective spaces 

and makes the optimization tractable, while engaging the user’s abilities to help search a complex 

multi-dimensional space.  

DP-NSGA-II includes procedures to help maintain diversity when simultaneous changes occur in 

the objectives and decision variables, something which no previous research has dealt with.  The 

algorithm addresses the dual problems of convergence and diversity of solutions when changes 

occur through a combination of memory-based and prediction approaches.  When the number of 

objectives changes, DP-NSGA-II uses a memory-based approach and samples from novelty and 

Pareto archives to aid diversity and convergence respectively.  To deal with changes in the number 

of decision variables, or time-dependent objective functions, the type and severity of the change is 

first computed.  If the change is small, a prediction-based approach is applied in which already 

calculated objective values in the Pareto archive are scaled by a computed scale factor, sampled, 

and used to replace half of the current population.  This aids convergence by using values that 

were known to have performed well previous to the change.  The other half of the population is 

then replaced with random samples from the novelty archive to aid diversity.  If the change is big, 

the Pareto archive is completely emptied and the current population of solutions is repopulated 

with samples from the novelty archive.  When simultaneous changes occur (e.g., when the number 

of decision variables and objective functions change) these methods are used in combination.   

DMOEA research has been mostly done using theoretical toy optimization problems.  There is 

little research on how these algorithms should be designed and adapted within the context of real-

world problems.  Researchers in the field have noted that this lack of real-world testing may be 

severely biasing our understanding of these optimization algorithms (Coello, Van Veldhuizen et 

al. 2002, Datta and Gupta 2016).  This research attempts to address this deficit by developing and 

testing a unique progressive DMOEA within the context of a real-world design problem involving 

geometric optimization.  Specifically, DP-NSGA-II is tested against NSGA-II and D-NSGA-II 

based on its ability to find optimum and diverse solutions.  We show that DP-NSGA-II 

outperforms NSGA-II in average Pareto rank when the number of objectives change.  It also 
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outperforms D-NSGA-II when the number of decision variables change.  Further, DP-NSGA-II 

outperforms both algorithms in novelty for 75% of the test cases. 

The overwhelming use of toy problems for DMOEA research has meant that most progressive 

(user-in-the-loop) approaches have tended to be similar in the ways the user interacts with the 

search process.  For example, most progressive processes involve a single monotonous interaction 

in which the user is asked to supply a weight vector for the objective functions that is used to 

define a region of interest for the search.  This may be sufficient for a toy problem involving 

generic objective function sets, but for real problems it may not be sufficient.  Our approach uses 

a visual programming interface to enhance user interactivity.  Specifically, it allows users to 

dynamically define and modify both decision variables and objective functions at any time during 

the optimization process.  This allows for an open-ended search process, and reduces user fatigue 

through interactions that involve comparative thought and active design decisions.     

1.1 Contributions 

This research is cross-disciplinary in nature, engaging the fields of computer science and those 

dealing with real-world dynamic MOPs related to the design of physical objects (e.g., civil, 

industrial, automotive, and aerospace engineering; architectural, urban, landscape, and industrial 

design), which will be referred to as the fields of design. 

This research makes the following contributions to the field of computer science:  

• DP-NSGA-II proposes a unique approach to help maintain diversity and provide 

convergence when the number of objectives and decision variables change simultaneously.  

• DP-NSGA-II integrates user preferences in a progressive fashion through a reference-

direction approach to guide the search at the global scale, and a solution ranking approach 

to guide the search at the local scale.  Further, it represents the first DMOEA to integrate 

the user during the optimization process.    

• DP-NSGA-II provides a user interface that allows users to interact in unique ways with the 

optimization process.  
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Chapter 2. Background 

This chapter begins with a review of research related to the field of computational optimization 

for single and multi-objective problems.  The topics of deceptive problems and exploration are 

then discussed as challenges in the field.  Research in Multi-Objective Evolutionary Algorithms 

(MOEAs) is then categorized and the topic of progressive MOEAs introduced.  This leads to a 

review of research related to the problem of user preference-integration.  Then the topic of 

Dynamic Multi-Objective Evolutionary Algorithms (DMOEAs) is discussed.  Lastly, a review of 

research on the application of MOEAs to the conceptual design phase of engineering and design 

projects is discussed.  

2.1 Computational Optimization 

There is a broad spectrum of approaches to the problem of single and multiple objective 

optimization in the field of computational optimization (Wright and Nocedal 1999, Boyd and 

Vandenberghe 2004).  The central goal of these approaches is to efficiently find the global 

maximum, or global minimum, of an objective function, or functions, subject to constraints.  These 

approaches can be divided into three categories.  Random walk algorithms randomly sample a 

search space to find optimum solutions, while gradient descent approaches use derivatives.  

Population-based approaches use a population of solutions to converge on optimal solutions 

(Coello, Van Veldhuizen et al. 2002).  
 

Random walk approaches have shown some potential with problems that have a relatively small 

decision space, but fail when that space is large and the probability of finding a global optimum 

through random selection becomes low (Coello, Van Veldhuizen et al. 2002).  Gradient descent 

methods offer the advantage of speed and guaranteed convergence, but are relegated to design 

problems that have a continuous and differentiable objective space, or design space.  They also 

tend to prematurely converge on local maxima, or, minima.  This approach therefore is very 

limited, because most practical design problems do not have such mathematically well behaved 

design spaces.  

Population-based approaches, in contrast, generally perform better than random walk approaches 

and can be applied to a wide array of problems in which gradient descent approaches are not 

suitable.  Population-based approaches have been applied to a wide variety of real-world design 

problems during various stages of the design process (e.g.,, conceptual design phase; detail 

development phase) with significant success (Datta and Gupta 2016).  Population-based 

approaches cannot, however, guarantee convergence to a global optimum, and therefore premature 

convergence is a major problem in the field.  It is also worth noting that premature convergence is 

a problem for all listed techniques. 

Evolutionary algorithms (EA) are a popular and widely used population-based approach that uses 

special operators (e.g., crossover; mutation; replacement) inspired by Darwinian evolutionary 

theory to successively adapt generations of solutions in a directed fashion with the use of an 
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objective function (Bäck, Fogel et al. 1997).  The careful use and modification of these operators 

has demonstrated success in addressing the problem of premature convergence (Pelikan and 

Goldberg 2001).  Due to their ability to be applied to many different types of problems and the 

potential of these algorithms to adjust their local and global search capabilities through the 

adjustment of operator parameters, EAs have been chosen as the principle search approach in this 

research.     

2.2 Deceptive Problems 

There has been extensive research on the topic of why EAs sometimes fail and how to improve 

their failure rates through better design of their components (e.g., the genetic representation; the 

selection, reproduction, replacement, and mutation operators; the fitness functions) (Goldberg and 

Richardson 1987, Hu, Goodman et al. 2005, Hornby 2006, Hutter and Legg 2006).  There are 

many reasons why an EA might fail in a particular problem, but the case of so-called deceptive 

problems is perhaps the most relevant for the fields of design and the task of conceptual design, 

because research suggests that many real-world MOPs might be deceptive in nature (Whitley 1991, 

Goldberg 2013).  It is therefore necessary to develop search algorithms for the conceptual phase 

of design that can address deceptive problems.     

Deceptive design problems have been defined as problems where the objective function, or 

functions, involved actively lead the search in a wrong direction, leading to premature convergence 

on a local maximum or minimum (Deb, Horn et al. 1993).  The key principle with deceptive 

problems is the idea that sometimes to reach a goal you must take a path that has lower fitness 

initially than other available paths.  In this scenario, some solutions with lower fitness become key 

stepping stones through the objective space to better solutions approaching the global optimum, 

but the EA’s objective function will miss them because it rewards only individuals with high 

fitness.  There has been much research on the topic of deception and approaches that have shown 

promise in addressing the problem (Goldberg 1987, Whitley 1991, Deb, Horn et al. 1993, De Jong, 

Watson et al. 2001, Pelikan and Goldberg 2001).  Specifically, progressive (i.e., user-in-the-loop) 

MOEAs show promise in addressing this issue (Branke, Deb et al. 2008, Christman and Woolley 

2015).  This research therefore uses progressive MOEAs to address deceptive problems for the 

conceptual design phase.  

2.3 Exploration Algorithms 

Optimization algorithms are used to find the highest performing solutions in an objective space as 

quickly as possible.  When the objective space is complex and has many local minima, or maxima, 

these algorithms can converge on solutions that are not optimal.  To address the challenges posed 

by such deceptive problems it is desirable to balance global exploration with local optimization. 

One approach to this problem involves the use of algorithms whose focus is on exploring the full 

extent of an objective space and not just finding a global optimum solution.  Such algorithms put 

exploration as the main objective and have demonstrated an ability to outperform traditional 
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optimization problems with problems that are highly deceptive (Lehman and Stanley 2011, 

Gomes, Mariano et al. 2015). 

Lehman and Stanley (2008) propose Novelty Search (NS) as a means of addressing deceptive 

problems by doing away with the traditional use of objective functions to reward a solution and 

instead selecting individual solutions based on their degree of novelty, as expressed in objective 

space.  NS rewards novelty through the calculation of a sparseness metric 𝜌 defined as 

𝜌(𝒚) = 1/𝑘 ∑ 𝑑(𝒚, 𝒚𝑖
𝒚𝑖 ∈ 𝐾𝑁𝑁(𝒚)

) (1) 

where 𝜌 is the average Euclidean distance between a vector of objective values 𝒚 and its 𝑘 nearest 

neighbors 𝒚𝑖 in objective space.  It is important to note here that the objective values are all 

normalized for this calculation.  The nearest neighbors are selected from an archive which stores 

all the history of the novelty search.  Calculating the novelty metric in objective space, instead of 

decision space, has the advantage of more directly tailoring the search to the unique properties of 

a problem’s objective space, and it can help NS work in very large search spaces in situations 

where multiple decision vectors map to one objective vector.  NS has been demonstrated to 

outperform EAs significantly in maze navigation problems and has shown effectiveness in 

evolving novel 2D images in the field of art (Gomes, Mariano et al. 2015, Nguyen, Yosinski et al. 

2015).  NS, however, has been shown to fail in situations where the design space is large and it 

also lacks an ability to refine solutions through a local search technique (Mouret 2011).  Mouret 

(2011) and Gomes, Mariano et al. (2015) show that principles from NS can be applied to the design 

of MOEAs to address the first problem effectively and can even outperform other MOEAs (NS 

included) in deceptive problem domains.   

NS with Local Competition (NSLC) was proposed as a way of improving NS's local optimization 

ability (Lehman and Stanley 2011) by adding a second objective beyond novelty to help drive a 

local search. Grid-based approaches such as MAP-Elites (Mouret and Clune 2015), CVT-MAP 

Elites (Vassiliades, Chatzilygeroudis et al. 2017), and Expansive MAP-Elites dispense with a 

novelty measure and instead divide the objective space into a discrete set of hypervolumes and 

then attempts to find the highest performing solution within each hypervolume based on a selected 

set of objectives.  In contrast to these methods, Minimal Criterion Coevolution (MCC) (Brant and 

Stanley 2017) does not use an archive, but instead depends on two co-evolving populations of 

solutions along with a minimal criterion objective function to produce an open-ended exploration 

of the objective space.   

The ability to compare and benchmark the exploration capabilities of these exploration-focused 

algorithms, also known as “illumination algorithms” (Mouret and Clune 2015), is key and 

currently an open research question.  Gomes, Mariano et al. (2015) propose the use of the Jensen-

Shannon distance (Endres and Schindelin 2003) to measure the explorative capacity of NS.  Wang, 

Jin et al. (2017) note the difficulty of making such measures in the context of MOPs with more 

than three objectives and proposed a new metric referred to as pure diversity.         
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In order to deal with complex objective spaces and also promote exploration, our proposed 

algorithm calculates the novelty score of each generated solution using Equation 1.  The most 

novel solutions are kept in a novelty archive and used to help promote diversity and exploration 

when dealing with DMOPs.  The injection of novel solutions may negatively affect convergence, 

and so must be balanced with strategies to promote convergence.  To aid convergence, we maintain 

an archive of high-performing solutions to help generate new solutions. 

2.4    Multi-Objective Evolutionary Algorithms 

MOEAs are a special class of EAs dedicated to solving optimization problems with multiple 

objective functions, which are often found in the field of design. MOEAs optimize multiple 

objective functions and consequently are less susceptible to deceptive problems than single 

objective EAs (De Jong, Watson et al. 2001, Toffolo and Benini 2003, Mouret 2011).  This also 

means that in most cases there will be multiple solutions to a problem.  MOEAs therefore work 

towards finding a set of optimal solutions, or designs.  In certain types of MOEAs, this set is 

referred to as the Pareto optimal set (POS), and the solutions in this set offer different trade-offs 

between the objectives.  MOEAs therefore require interaction with a decision maker to select 

which designs in the POS should be examined further, or used as the final solution to the 

optimization problem.   

2.4.1 Basic Definitions  

Definition 1. Decision variables are the numerical values which satisfy constraints and are used to 

optimize a vector function in a MOP. These quantities can be represented as a vector x in a vector 

space of size n as 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑛).  The decision variables xi from some universe Ω can be 

continuous or discrete.   In dynamic problems, the size n of 𝒙 can change during the optimization 

process.  

Definition 2. Constraints are restrictions imposed by specific characteristics of the environment 

that shape the solution space. Usually, they can be expressed in terms of decision variables (xi’s) 

and problem parameters in the form of mathematical expressions as follows:  

𝑔𝑖(𝒙)  ≤  0, 𝑖 =  1, . . . , 𝑚 (2) 

or equalities 

ℎ𝑗(𝒙) =  0, 𝑗 =  1, . . . , 𝑝 (3) 

where m represents the number of inequality constraints and p represents the number of equality 

constraints.  If p ≥ n (i.e., the number of decision variables) and the constraints are independent, 

the problem is said to be over-constrained, because there would be more unknowns than equations 

with no degrees of freedom (n - p) left for optimizing (Coello, Van Veldhuizen et al. 2002).  In 

this thesis, constraints are implicitly used to bound decision variables.  In dynamic problems, the 

number and mathematical definition of constraints can change with time.  

Definition 3. Objectives are various goals for the MOP expressed in terms of distinct mathematical 

functions that need to be optimized. The term objective space refers to the coordinate space 
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containing the resultant vectors from evaluating a MOP’s solutions.  The objective values are 

normalized.   

The objective functions can be represented as 

𝑭(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙), … 𝑓𝑘(𝒙)) (4) 

where k represents the number of objective functions in the MOP.  The universe of all possible 

output vectors is represented by 𝛬.  The function 𝑓𝑘(𝒙) can be continuous or discreet.  This thesis 

only considers continuous functions.   

Definition 4. A MOP consists of k objectives represented by their objective functions, m + p 

constraints on the objective functions and n decision variables. A general MOP is defined as 

minimizing (or maximizing) the objective space F(x) subject to the constraints, gi(x) and hj(x) and 

xi from Ω, which contains all possible x values that satisfy an evaluation of F(x). 

The k objective functions may be linear or nonlinear and continuous or discrete in nature. The 

evaluation function,  

𝑭: Ω → 𝛬 (5) 

is a mapping from the vector of decision variables 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑛) to output vectors F(x) (Eq. 

(4)). 

Definition 5. Pareto Dominance A vector 𝒖 = (𝑢𝑙 , . . . , 𝑢𝑘) is said to dominate another vector 

𝒗 = (𝑣𝑙 , . . . , 𝑣𝑘) (denoted by  𝒖 ≤ 𝒗 ) if and only if u is partially less than v, i.e.,  

∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. (6) 

Definition 6. Pareto Optimality A solution x ∈ Ω is said to be pareto-optimal w. r. t. Ω if and 
only if there is no 𝒙′ ∈ Ω for which 𝒗 dominates 𝒖, where 

𝒗 = 𝑭(𝒙′ ) (7) 

𝒖 =  𝑭(𝒙) (8) 

in the entire decision variable space.  In other words, this definition says that the vector x is Pareto 

optimal if there exists no other feasible vector 𝒙′ which would decrease some criterion without 

causing a simultaneous increase in at least one other criterion (assuming minimization). 

Definition 7. Pareto Optimal Set For a given MOP, F(x), the Pareto Optimal Set, P*, is defined 

as:  

𝑃∗ = { 𝒙 ∈  𝛀 | ￢∃ 𝒙’ ∈ 𝛀, 𝑭(𝒙’) ≤ 𝑭(𝒙)}.  (9) 

Pareto optimal set (denoted by P*) is the set of all solutions within the decision space whose 

corresponding objective vector components cannot be all simultaneously improved. They form the 

set of all solutions whose associated vectors are non-dominated and are classified as such based 

on their evaluated functional values.  

Definition 8. Pareto Front The Pareto front PF for a given MOP with objective function F(x), 

and Pareto Optimal Set, P*, is defined as: 

𝑷𝑭 = {𝑭(𝒙)| 𝒙 ∈  𝑃∗}. (10) 
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When plotted in objective space, the non-dominated vectors are collectively known as the Pareto 

front.  PF is formed from evaluated objective vectors from P*, of which each is non-dominated 

with respect to all objective vectors produced by evaluating every possible solution in Ω. The 

normal procedure to generate the Pareto front is to compute a number of points in Ω and their 

corresponding 𝛬 and determine the non-dominated points to produce the Pareto front. MOPs 

usually have an uncountable set of solutions on a Pareto front.  Each solution associated with a 

point on the Pareto front is a vector whose components represent trade-offs in the decision space. 

2.4.2 MOEA Categories 

The field of MOEA research can be divided into five categories (Zhang, Tan et al. 2017): Pareto 

dominance; indicator-based; reference-point; grid-based; and decomposition-based approaches.  

Pareto dominance based methods comprise the first and most popular category of approaches.  

These approaches rank solutions through comparing solutions on an objective by objective basis. 

Any solution that has no objective values lower than any other solution is said to be Pareto-

dominant and is a part of the PF.  Horn, Nafpliotis et al. (1994) use Pareto domination tournaments 

for selecting solutions within a genetic algorithm.  Srinivas and Deb (1994) propose the 

Nondominated Sorting Genetic Algorithm (NSGA) which compares all solutions and ranks them 

into dominated and nondominated categories.  Deb, Pratap et al. (2002) propose a more efficient 

version of the NSGA called NSGA-II which uses an archive of elite solutions to improve diversity.  

The NSGA-II has become the most popular and explored MOEA to date, although it has been 

found to perform poorly when the number of objectives goes above three.  This is mainly due to 

the fact that the Pareto ranking operation fails to be selective enough when the number of 

objectives goes above three. 

The second category of MOEAs are known as indicator-based methods.  Zadeh (1963) show that 

a limited set of solutions in the POS could be found with a weighted sum approach, in which each 

objective is given a weight and summed to create one objective function.  Das and Dennis (1997) 

demonstrate the limitations of weighted sum approaches to find solutions in the POS.   Zitzler and 

Künzli (2004) propose an indicator-based MOEA (IBEA) which uses preference information from 

a decision maker in the form of a binary function to direct the search towards particular areas of 

the ROI. Phan and Suzuki (2013) propose an improved version of IBEA called R2-IBEA which 

eliminates dominance ranking and performs selection by uniformly distributing weight vectors 

within a desired hyper-volume. 

The third category known as reference-point MOEAs focus the search on an ROI of the PF based 

on a user selected reference point.  Deb and Jain (2014) propose an updated version of the NSGA-

II called the NSGA-III that uses a user defined reference point to guide the search when dealing 

with many-objective problems (i.e., MOPs with greater than three objectives).  Defining the 

reference point is not trivial and the NSGA-III does not allow for precise control of the boundary 

of the ROI.  
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Grid-based approaches comprise the fourth category.  Deb, Mohan et al. (2005) propose -MOEA 

which divides the objective space into a grid of hypervolumes, which are then used to create a grid 

of well distributed solutions on the PF based on an  spacing.  Yang, Li et al. (2013) propose a 

grid-based genetic algorithm to solve many objective problems which uses grid dominance and 

difference to determine the relationship between individual solutions. 

The fifth category of MOEAs are decomposition-based approaches.  These MOEAs work by 

optimizing a population of evenly distributed weight vectors in the objective space.  This has the 

effect of changing the multi-objective optimization problem to a population of single objective 

optimization problems.  Zhang and Li (2007) propose a decomposition MOEA called MOEA/D 

that uses a Tchebycheff approach to optimize a set of evenly distributed weight vectors (i.e., 

meaning that weight vectors are evenly spaced in objective space).  Each weight vector represents 

a specific trade-off of objectives.  MOEA/D has been shown to outperform several competing 

algorithms (e.g., NSGA-II) and has become the most popular decomposition-based approach.  Li, 

Deb et al. (2017) propose a progressive version of MOEA/D using a non-uniform mapping 

scheme, which requires the decision maker to interactively define ROIs throughout the 

optimization process.  Decomposition-based MOEAs have been shown to outperform competing 

algorithms and have demonstrated the ability to address both standard MOPs, as well as, many 

objective MOPs with similar levels of effectiveness.     

MOEAs can further be categorized based on how user preferences are integrated into the algorithm 

(Cohon and Marks 1975).  A priori MOEAs, involve articulating user preferences through 

surrogate functions before the search begins. They have the drawback of unnecessarily limiting 

the search space, because designer preferences (based on limited information) are encoded before 

the search.  A posteriori MOEAs integrate user preferences after the search is finished. Because 

they do not have the burden of encoding designer preferences, as with priori techniques, they are 

the most widely studied.  There are several prominent MOEAs in this category:  Multi-Objective 

Genetic Algorithm (MOGA); NSGA I and NSGA II; Pareto Archived Evolutionary Strategy 

(PAES); Strength Pareto Evolutionary Algorithm (SPEA). 

Progressive MOEAs allow the search and decision making to occur simultaneously.  These are the 

most interactive of the techniques and consequently have the drawback of being more labor 

intensive for the decision maker.  These techniques use the decision maker’s preferences 

throughout the search process to help guide the MOEA through an objective space, therefore, 

offering the ability of navigating much more complex objective spaces than the other techniques 

mentioned.  Research has also shown that progressive techniques can be more effective at solving 

deceptive design problems than a priori, or a posteriori, methods (Christman and Woolley 2015).   

The distinction between global and local search, or exploration verses exploitation, is important in 

the study of MOEAs.  Global search implies a more explorative and less precise search of the 

global objective space.  Local search implies a narrower and more precise search of a portion of 

an objective space.  Global search techniques are less prone than local search techniques to 
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prematurely converge on suboptimal local maxima, or minima, but such convergence is still a 

major problem.  MOEAs are considered a global search technique and, consequently, premature 

convergence and maintaining diversity in the solutions contained in the POS are significant 

problems for the field (Coello, Van Veldhuizen et al. 2002).  In addition, there has been much 

work to improve the local search ability of MOEAs by hybridizing them with local search 

algorithms (e.g., simulated annealing; hill climbing) to create so-called “mimetic algorithms” 

(Goh, Ong et al. 2009).  Balancing exploration and exploitation in these algorithms, and in MOEAs 

in general, is an important problem in the field.  Too much solution diversity leads to poor 

convergence, and too little leads to premature convergence.  

Progressive MOEA techniques have shown success in addressing both deceptive and many-

objective design problems, and are therefore explored in this research.  Specifically, the NSGA-II 

has been demonstrated to be one of the most effective MOEAs for addressing deceptive problems 

(Deb, Pratap et al. 2002).  The development of more robust global and local search capabilities for 

the NSGA-II are still pressing problems in the field.  In addition, the problem of when and how 

the decision maker should interact with the MOEA is one that is still unresolved and understudied.  

The development of the NSGA-III attempted to address this issue, but only interacts with the user 

to define a global search direction.  This research proposes a unique MOEA implementation that 

is a modification of the NSGA-II algorithm.  Our algorithm called the dynamic progressive NSGA-

II (DP-NSGA-II) is a mimetic algorithm that allows for user-guided global and local searches. 

2.5 Preference-Integration 

Research into the incorporation of user preferences can be divided into six categories as listed in 

Table 2-1: weights; ranking solutions; ranking objectives; trade-off; reference point; reference 

direction approaches.  The first category uses a weight-based approach in which the decision maker 

supplies weight information relative to each objective either a priori or progressively.  Deb (2003) 

proposes the use of weighted objective functions and a modified sharing mechanism for the 

Nondominated Sorting Genetic Algorithm (NSGA) to bias the distribution of the search towards a 

preferred area of the Pareto front.  Branke and Deb (2005) use a user defined weight vector to 

modify the crowding distance calculation in NSGA-II.  Jin, Okabe, & Sendho (2001) convert 

linguistic terms via fuzzy logic given by a decision maker into a weighting scheme that redefined 

the objective functions as a series of single-objective weighted sums, which could guide the search 

towards a ROI. Wagner & Trautmann (2010) propose the use of desirability functions defined by 

the decision maker to replace objective functions in the optimization process.  An important 

drawback of weight-based approaches, is that they do not scale effectively when the number of 

objective becomes large.  Specifically, it becomes difficult for the decision maker to supply 

weights for each objective.  It is also difficult to control the spread of the ROI and define multiple 

ROIs.   
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Table 2-1 Comparison of preference-based MOEA methodologies.  This table has been adapted 

from the classification proposed by Bechikh, Kessentini et al. (2015).   

Preference-

Integration 

Technique 

Modification  Preference-

Integration 

Spread 

Control 

Scalability Diversity 

Problems 

MROI Supports 

Dynamic 

Changes  

Weights        

Deb (2003) Biased Distribution A Priori N N Y N N 

Branke and Deb 

(2005) 

Crowding Operator A Priori Y Y N N N 

Jin, Okabe et al. 

(2001) 

Objective 

Aggregation 

A Priori N N Y N N 

Wagner and 

Trautmann (2010) 

Objective Functions A Priori N Y N Y N 

Ranking 

Solutions 

       

Deb, Sinha et al. 

(2010) 

Dominance Progressive N Y N N N 

Koksalan and 

Karahan (2010) 

Dominance Progressive N N N N N 

Ranking 

Objectives 

       

Jin and Sendhoff 

(2002) 

Objectives 

Aggregation 

A Priori N N Y N N 

Cvetkovic and 

Parmee (2002) 

Dominance A Priori Y N N N N 

Rachmawati and 

Srinivasan (2010) 

Dominance A Priori N Y N N N 

Trade-offs        

Branke, Kaußler et 

al. (2001) 

Objective Functions A Priori N N Y N N 

Reference Point        

Deb and Sundar 

(2006) 

Crowding Operator A Priori / 

Progressive 

Y Y Y Y N 

Allmendinger, Li 

et al. (2008) 

Leader Selection 

Strategy 

A Priori / 

Progressive 

Y N Y Y N 

Thiele, Miettinen 

et al. (2009) 

Quality Indicator A Priori / 

Progressive 

N Y N Y N 

Reference 

Direction 

       

Deb and Kumar 

(2007) 

Solution Sorting 

Mechanism 

A Priori / 

Progressive 

Y Y Y Y N 

Deb and Kumar 

(2007) 

Crowding Operator A Priori / 

Progressive 

Y Y Y Y Y 

 

The second category of approaches integrates the decision maker’s preferences by having them 

rank given solutions during a progressive process.  This ranking is then used to define a weighting 

vector for the objective functions.  Deb, Sinha, Korhonen, & Wallenius (2010) propose a 

progressively interactive MOEA that presents the decision maker with a sample of solutions every 

n generations, which the decision maker then ranks from best to worst.  A value function is then 
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derived from this ranking and used to drive the search.  Koksalan & Karahan (2010) use an 

interactive Territory Defining Algorithm (iTDEA), which progressively elicits and uses a ranking 

of solutions by the decision maker to adaptively adjust the density of solutions in specific territories 

along the PF.  Solution ranking has major drawbacks when the number of objectives becomes large 

due to the increased burden placed on the decision maker to provide ranking information.  Further, 

solution ranking can be complicated when decision makers give inconsistent and conflicting 

rankings. 

The third category is objective ranking-based approaches in which the decision maker ranks the 

objective either a priori, or progressively, and this ranking is used to create a weight vector that 

will bias the search.  Jin and Sendhoff (2002) ask the decision maker to make pair-wise 

comparisons between a set of objectives by using linguistic statements.  These preferences are 

converted into interval-based weights to drive the search process.  Cvetkovic & Parmee (2002) use 

linguistic terms as well given by the decision maker to rank and compare objectives in a pair-wise 

manner as more or less important.  As the number of objectives increases, objective ranking can 

run into problems because of the increased burden on the decision maker and the difficulty of pair-

wise comparisons when the number of objectives goes over three.  In addition, it can be difficult 

to control the spread of the ROI and to explore multiple ROIs at once. 

The fourth category of preference-integration involves the decision maker defining intervals of 

acceptable and non-acceptable trade-offs between objective functions.  For example, for a bi-

objective case the decision maker could specify that one unit of improvement in objective one is 

worth a degradation in objective two by three units.  Branke, Kaußler, & Schmeck (2001) follow 

this process to quantify acceptable tradeoffs which are then used to modify the dominance relation 

in a NSGA.  This approach is limited to a bi-objective case and also may not be able to effectively 

explore non-linear objective spaces.  Controlling spread and the ability to explore multiple ROIs 

is also limited. 

The fifth category involves the use of a decision maker provided reference point in objective space 

to focus the search on a specific ROI, or multiple ROIs.  Deb & Sundar (2006) propose a modified 

version of the NSGA-II called R-NSGA-II which uses a user defined reference point to modify 

the crowding distance calculation.  Solutions closer to the chosen reference point are ranked higher 

and assigned a lower crowding distance and given preference during the selection process.  

Allmendinger, Li, & Branke (2008) use a reference point approach with a particle swarm process 

in which the decision maker can define multiple reference points and the algorithm can then 

converge on multiple ROIs.  Because reference point approaches ask the decision maker to 

designate a single point of interest instead of providing multiple weighting, ranking, or trade-off 

values, they offer an advantage over other approaches when it comes to scalability to more than 

three objectives.  In addition, they also provide for a greater ability to define and search multiple 

ROIs simultaneously and to control the spread of the ROIs.  Their drawbacks include a tendency 

to lose diversity in the solution set and also defining a proper reference point is not trivial.  
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The last category of preference-integration requires a decision maker to specify a reference 

direction for the search.  Deb & Kumar (2007) use a reference method with NSGA-II in which the 

decision maker is asked to set a starting point and also a reference point.  A vector is then created 

between these two points which is then used to drive the search towards a specific ROI.  In another 

paper by Deb & Kumar (2007), the decision maker is asked to define an aspiration point and a 

reservation point, which is then used as the direction for the search.  This direction represents the 

aspirational objective values for the search as defined by the decision maker.  Solutions closer to 

this vector are rewarded more.  Li, Deb et al. (2017) demonstrate the ability to precisely control 

the spread of the ROI by using a decomposition-based MOEA and a biased distribution to control 

the extent of multiple ROIs.  Reference direction approaches have been shown to scale well to 

problems with many objectives and they have also demonstrated an ability to provide control of 

the spread of the ROI.  These approaches, however, can suffer from diversity problems and can 

give poor results when a direction is chosen in a portion of the objective space that is discontinuous.   

These preference-integration strategies can further be divided by two criteria: 1. those that promote 

active learning of the trade-offs possible within a particular objective space by the decision maker 

and those that are less effective in this respect; 2. those that allow for greater exploration and 

diversity of solutions and those that tend toward convergence.  In terms of the first criteria, solution 

ranking stands out as an approach that encourages the decision maker to actively look at potential 

solutions, view the trade-offs between solutions, and then provide a ranking that points towards 

the best trade-off direction to explore.  In effect, the decision maker is defining a reference 

direction based on the comparison and contrast of real-time information about the objective space 

provided by the search.  This interaction engages the decision maker in a manner that requires a 

level of comparative thought that other approaches involving a reference point, direction, or 

weighting may not provide.  

In terms of exploration, the following features listed in Table 2-1 have the most impact: ability to 

maintain diversity; control of the spread of the ROI; scalability; ability to search multiple ROIs.  

Reference direction approaches score well in almost all these areas except in maintaining diversity.  

Solution ranking on the other hand performs more poorly in these areas.   

In order to address these weak areas and to combine the best of both approaches, a hybrid strategy 

called enhanced solution ranking is proposed.  In this process reference directions are used at the 

global scale to narrow the search to a few ROIs and solution ranking is then used at the local level 

in the area around each ROI to allow the decision maker to guide the search locally.  This approach 

works especially well in high dimensional objective spaces where tradeoffs may change drastically 

and non-linearly at a global scale, but may change less drastically at a local scale. 

2.6 Dynamic Multi-Objective Evolutionary Algorithms  

Many real-world multi-objective problems are dynamic and have objectives, design parameters, 

and constraints that change during the optimization process.  This is especially true for the 

conceptual design phase of the design process in which goals, parameters, and constraints may 
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change often and unexpectedly.  These problems are known as dynamic multi-objective problems 

(DMOPs) and can be defined more formally for a minimization problem as follows: 

𝑚𝑖𝑛
𝒙

𝑭(𝒙, 𝑡) = {𝑓1(𝒙, 𝑡), 𝑓2(𝒙, 𝑡), … , 𝑓𝑚(𝒙, 𝑡)}\𝒙 ∈ Ω𝑛 𝑠. 𝑡.  𝑔(𝒙, 𝑡) > 0, ℎ(𝒙, 𝑡)  =  0 (11) 

where x is a vector of decision variables; t represents time and the dynamic nature of the problem; 

F is the set of objective functions; 𝑓𝑚 is a particular objective function; m is the number of 

objectives to be minimized; the functions g and h represent the set of inequality and quality 

constraints respectively.  The min operator is returning the PF for a specified time step t.  The PF 

is therefore a function of t, and t is held constant as the PF is solved for.  This produces a sequence 

of PF’s through time.  DMOPs may change continuously or in discreet time steps.  DMOPs pose 

different challenges for optimization approaches depending on the type of change (i.e., depending 

on whether x, f, g and h, or m change).      

In order to address these problems, evolutionary algorithms have generally demonstrated the 

highest performance due to their inherent adaptability (Chen, Li et al. 2016).  These algorithms are 

referred to as dynamic multi-objective evolutionary algorithms (DMOEAs) and following Table 

2-2 can be categorized by three types of approach: diversity approaches; memory mechanism; and 

predictive.  

When objectives change, solutions that were converging towards the PF can become irrelevant 

and can create a lack of diversity needed to find the PF of the new objectives.  Diversity approaches 

attempt to deal with this problem by adding diversity into a solution population when changes to 

the objective functions occur.  Deb, Rao N et al. (2007) propose a modified NSGA-II algorithm 

called D-NSGA-II that detects changes in the objective function and then randomly replaces a 

portion of the population to increase diversity.  Azzouz, Bechikh et al. (2015)  propose the 

individual diversity multi-objective optimization EA (IDMOEA) that maintains diversity by 

making diversity an objective and by storing diverse individuals in an archive that is draws from 

when a change is detected. 

Memory-based approaches use an archive to store useful solutions from the history of the search.  

These solutions can be used when there is a detected change in the objective functions, constraints, 

or decision variables.  Maintaining diversity is therefore a critical issue for these approaches.  Goh 

and Tan (2009) propose competitive-cooperative EA which uses a population dedicated to 

diversity and several sub-populations focused on a different objective, or sub-problem, in the 

optimization in order to maintain diversity when an objective is changed.  The approach has been 

shown to be effective, but the computational cost is high.  Azzouz, Bechikh et al. (2017) propose 

a dynamic version of NSGA-II, called Dy-NSGA-II, which detects the severity and frequency of 

a change and then adaptively applies memory, local search, and random strategies to help 

convergence.  This use of several strategies that adaptively react to the type of change is unique 

and the algorithm has been demonstrated to outperform many competing algorithms for changes 

that are both large and small.  Chen, Li et al. (2016) deal with the problem of a changing number 

of objectives and use of a second population dedicated to diversity to add diversity to a current  
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Table 2-2. Comparison of DMOEAs categorized by diversity, memory mechanisms, and 

prediction approaches. 

DMOEA 

Approaches 

Modification Scalability MROI Dynamic 

Objectives 

Changing 

# of 

objectives 

Dynamic 

Decision 

Variables 

Dynamic 

Constraints 

Handle 

Severe 

Changes 

Diversity          

Deb, Rao N et 

al. (2007) 

Detection & 

creation of 

random 

solutions 

N N Y N N N Y 

Azzouz, 

Bechikh et al. 

(2015) 

Use of diversity 

objective and 

novelty archive 

N N Y N N N Y 

Memory 

Mechanisms 

        

Goh and Tan 

(2009) 

Use of multiple 

sub-populations 

and a diversity 

population 

N N Y N N N Y 

Azzouz, 

Bechikh et al. 

(2017) 

Adaptively 

applies 

memory, LS, 

and random 

search   

N N Y N N N Y 

Chen, Li et al. 

(2016) 

Use of a 

diversity 

population 

Y N Y Y N N Y 

Prediction         

Hatzakis and 

Wallace 

(2006) 

Use of 

feedforward 

prediction to 

predict PF 

N N Y N N N N 

Koo, Goh et 

al. (2010) 

Use of 

predictive 

vectors to guide 

search 

N N Y N N N N 

 

population when objectives increase.  When objectives decrease, they propose a density measure 

to help reduce duplicate solutions and increase diversity.       

Predicative approaches use knowledge about the previous states of the PF to predict the likely state 

of the new PF.  These approaches therefore only work for problems where the objective functions 

are changing in a predictable and incremental fashion.  Hatzakis and Wallace (2006) propose the 

use of a feed-forward prediction strategy to predict changes in the PF and to create a population of 

solutions in the forecasted area.  If the prediction is correct then convergence to the new PF will 

be fast and if the prediction is not correct random solutions are added to the population to help 

converge to the new PF.  They combine this approach with an evolutionary algorithm to create 

Dynamic Queuing Multi-objective Optimizer (D-QMOO).  Koo, Goh et al. (2010) propose a 

dynamic variant of the Multi-Objective Evolutionary Gradient Search (DMO-EGS) in which a set 

of predictive vectors are created based on the positions of previous PF solutions.  These vectors 

are used to guide a current population of solutions on the PF to the new predicted PF.  
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The majority of the research on DMOEAs has been toward looking at problems where the 

objective functions themselves change through time.  There has been very little research looking 

at the case when the number of objectives change through time.  In fact, to our knowledge there 

have only been two papers addressing this issue (Guan, Chen et al. 2005, Chen, Li et al. 2016).  

There has also been little research looking at problems where the number of decision variables 

change through the optimization process (Ripon, Tsang et al. 2006, Kleeman and Lamont 2007, 

Ting, Lee et al. 2009)  and no research looking at situations where both the number of objectives 

and the number of input parameters change simultaneously.  To address this unstudied area, this 

research proposes a unique DMOEA implementation that is derived from the NSGA-II algorithm 

and following (Azzouz, Bechikh et al. 2017) uses an adaptive approach in which the type of change 

(e.g., change in objectives; changing number of objectives; change in decision space) and severity 

of the change is first detected and then a mixture of memory and prediction approaches is used.    

There has also been very limited research on how user preferences might be integrated into 

DMOEAs.  Deb, Rao N et al. (2007) propose an adapted a priori-based NSGA-II algorithm which 

encodes user preferences into a utility function that allows for automatic solution selection within 

the context of problems that have a constant number of objectives, but the objective function itself 

changes.  Shen and Yao (2015) propose -MOEA that uses an a priori user defined weight function 

to guide the optimization of a DMOP that has a constant number of objectives, but changing 

objective functions.  Research on preference-integration for DMOEAs has been done primarily 

with a priori approaches and to our knowledge no research has been done looking at how 

progressive approaches might be applied to DMOEAs.  To fill this gap, this research proposes a 

progressive DMOEA which adaptively integrates user preference information in response to the 

type and level of severity of change.  Depending on the severity of change, users will be prompted 

to either do nothing (e.g., changes in decision variables or objective functions that have small 

effects) or define a new global reference direction (e.g., number of objective functions increase; 

or if severe change in objective functions). 

2.7 Progressive MOEAs in the Design, Engineering, and the Arts 

In addition to the benefits offered by progressive MOEAs, there are also some important 

drawbacks that must be considered.  According to Takagi (2001), user-fatigue is one major 

drawback.  User fatigue begins to set-in at between 10-20 generations (assuming users are 

evaluating between 5-10 designs per generation).  Another drawback is the lack of interactivity 

present in most progressive approaches.  For example, in most implementations the decision maker 

is relegated to only interacting with the search during the selection stage of the algorithm.  This 

limited interactivity keeps the decision maker only partially engaged and fails to make full use of 

their expertise to guide the search.  

Progressive processes have been used extensively in problem domains involving MOPs and also 

those requiring qualitative assessments (e.g., beauty).  They have been used in the arts (Sims 1992), 

music (Marques, Reis et al. 2010), fashion (Kim and Cho 2000), and multiple design fields as 

shown by Takagi’s comprehensive review (Takagi 2001).  In the design fields, they have been 
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used for the conceptual design phase mostly.  Mueller and Ochsendorf (2015) use a Pareto-based 

progressive MOEA to evolve truss designs and attempt to address the user-fatigue problem by 

showing only designs contained in the POS to the decision maker for selection.  Mueller attempts 

to expand the interactivity of the MOEA by allowing the decision maker to interactively change 

the population size and mutation rate. Von Buelow (2012) follows the same approach to reduce 

user-fatigue, but also includes an ability for multiple users to evaluate designs at the same time.  

Von Buelow attempts to address the interactivity problem by allowing users to interactively 

navigate and select designs for breeding from a database of all created solutions during the search. 

Ohsaki and Takagi (1998) use user-trained surrogate models to represent user evaluations to reduce 

user fatigue and increase the size of the search space explored.   

This precedent research addresses user fatigue through a spectrum of useful approaches, but still 

offers a very limited set of possibilities for interaction with a decision maker.  In all these examples, 

the decision space being explored is fixed and the decision maker is relegated to picking designs 

during the selection phase or changing evolutionary parameters (e.g., population, generation, or 

mutation) during the search.  In contrast, this research proposes the use of a unique progressive 

DMOEA that allows decision makers to interactively modify the decision space (by adding and 

subtracting design features) and the objective space (by adding and subtracting objective 

functions) during the optimization process.  This engages the decision maker by allowing them the 

ability to actively design during the search process and to dynamically adjust the goals of the 

search as new information is gained.  This combination of features allows for an open-ended 

evolutionary search process to occur, which has the potential to uncover a much greater variety of 

solutions than traditional EAs.  In addition, interacting with the decision maker in this way may 

help to limit user fatigue by making the process more engaging. 

2.8 MOEAs in the Conceptual Design Phase 

The field of MOEA research is quite broad with a large variety of algorithms that have been 

developed and tested for multiple types of design problems and in multiple fields for the conceptual 

phase of design (e.g., architecture, aerospace, automotive, civil engineering).  In the field of 

architectural design, Von Buelow (2012) uses a MOEA with a parametric Computer Aided Design 

(CAD) system to evolve building designs with several quantitative and qualitative objective 

functions relating to daylighting, energy, and aesthetic criteria. Turrin, von Buelow et al. (2012) 

demonstrate their use in the design of roof structures that are optimized for daylighting, energy, 

structural load, and aesthetics. Mueller and Ochsendorf (2015) use them in the field of structural 

engineering to evolve truss designs relative to mass, volume, structural, and aesthetic objective 

functions. Obayashi, Sasaki et al. (2000) use a MOGA to optimize the shape of aircraft wings. 

Muyl, Dumas et al. (2004) use a hybrid MOEA to explore the aerodynamic performance of car 

shapes. Brintrup, Ramsden et al. (2008) use quantitative and qualitative objective functions to 

evolve ergonomic chair designs. 

There are also several commercial CAD packages that feature various MOEA implementations, 

but all have significant drawbacks.  Dassault Systems offers several different parametric CAD 
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packages (e.g., SolidWorks, Catia, and Digital Project) that feature MOEA-based optimization 

tools for the fields of mechanical, aerospace, automotive, and architectural design.  Autodesk 

currently offers cloud-based optimization tools for their structural, mechanical, and architectural 

CAD products.  Autodesk’s parametric CAD plugin Dynamo can be used to optimize designs in 

Revitt with a plugin called Optimo.  McNeel’s Rhinoceros 3D includes a single objective EA 

called Galapagos with its parametric modeling plugin Grasshopper, and there is also a MOEA 

plugin available called Octopus (Vierlinger and Bollinger 2014).  Ansys’s suite of engineering 

design softwares have a MOEA-based optimization platform as well as other optimization plugins 

available like DesignXplorer.  Bentley System’s SITEOPS is a tool to explore the configuration 

possibilities of building sites optimized for geotechnical, hydrological, topographical, legal, and 

architectural objectives.  ESTECO offers an optimization software called modeFrontier which 

contains implementations of several standard MOEAs for design problems.   

The commercial tools and previous research discussed share several drawbacks.  The MOEAs 

implemented in these various works have no design features that specifically help to deal with 

DMOPs.  They also have no features that help to drive a more explorative and open-ended global 

search.  Further, they all have a very limited capacity to interact with the user.  The research 

presented in Chapter 3 directly addresses these issues through the description of a unique 

progressive DMOEA.   
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Chapter 3. DP-NSGA-II Algorithm and Implementation 

In this chapter, a new modification to NSGA-II is described.  The resultant algorithm is called the 

dynamic progressive NSGA-II (DP-NSGA-II).  The DP-NSGA-II is the first DMOEA to deal with 

the problem of a changing number of objective functions and decision variables simultaneously.  

The algorithm addresses the dual problems of convergence and diversity of solutions when 

changes occur through a combination of memory-based and prediction approaches.  Further, it 

represents the first DMOEA to integrate the user during the optimization process.  The DP-NSGA-

II integrates user preferences in a progressive fashion through a reference-direction approach to 

guide the search at the global scale, and a solution ranking approach to guide the search at the local 

scale.  This combined global and local approach is also unique.    

3.1 DP-NSGA-II Algorithm Overview  

Figure 3-1 shows a diagram of a typical Pareto selected based DMOEA, while Figure 3-2 shows 

in comparison the changes we propose for our algorithm.  One important difference is that user 

preference information is integrated into the search both in an apriori and progressive fashion 

through the use of a user-defined reference direction at the global scale and a solution ranking 

approach at the local scale as described in Section 2.5.  User preference information is also 

integrated adaptively in response to the type and level of severity of change in the objectives and 

decision variables as described Sections 2.6.  The other key difference is that the DP-NSGA-II is 

designed with unique procedures to deal with time-dependent changes in objective functions, 

changes in the number of objective functions, changes in the number of decision variables, and 

combinations of these changes that occur simultaneously. 

The pseudo code of the DP-NSGA-II is shown in Figure 3-3.  DP-NSGA-II uses a Pareto selection 

approach based on dominance depth (Coello, Van Veldhuizen et al. 2002) and the system only 

enforces boundary constraints on its decision variables.  DP-NSGA-II uses a real number 

representation of decision variables instead of a binary representation.  This approach reduces the 

degree to which child solutions differ from parents after applying crossover operations, and allows 

the algorithm to perform a more fine-grained search in high dimensional objective spaces.  
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Figure 3-1. Diagram of a standard Pareto selection-based MOEA. 

 

 

Figure 3-2. Diagram of the proposed DP-NSGA-II algorithm. 
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Figure 3-3.  Pseudo code of DP-NSGA-II algorithm. 
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3.2 Objective and Novelty Evaluation   

As Figure 3-3 shows, the algorithm starts with the following input parameters: S (population size); 

Gmax (maximum number of generations); 𝑹𝒈 (user defined global reference direction); 𝑹𝒍 (user 

defined local reference direction); F (array of objective functions); D (array of decision variables).  

The vector 𝑹𝒈 represents a user defined global reference direction to guide the search and is given 

before the optimization process starts (i.e., a priori).  This reference direction is especially useful 

to guide the search when the number of objectives is greater than three.  The optimization process 

then starts with a population of solutions being randomly initialized by sampling a uniform random 

distribution.  Then the local reference direction used to direct the search at a local scale Rl is 

initialized with the same direction as the global reference direction.  The generated solutions are 

then evaluated based on the given objective functions.   

The population is then ranked into a series of fronts based on the Pareto dominance measure 

defined in Definition 7 and the global reference direction Rg.  A well-known problem with Pareto 

ranking is that it can fail when the number of objectives goes above three (Deb and Sundar 2006, 

Bechikh, Elarbi et al. 2017).  To address this issue, DP-NSGA-II uses a reference direction-based 

approach as described in Section 2.5.  To define Rg, the user chooses a weight vector for the 

objectives.  This weight vector is used to define a single objective optimization problem that is 

iteratively solved with each generation to find an optimum point 𝑷𝑖𝑑𝑒𝑎𝑙 in objective space located 

along the direction defined by Rg.  This process runs parallel with the MOP optimization.  The 

𝑃𝑖𝑑𝑒𝑎𝑙 point is then used to modify the dominance ranking process.  Solution X now dominates 

solution Y if one of the following criteria are met: 

1. X is Pareto dominant to Y 

2. X and Y are the same rank, but X is closer to 𝑷𝑖𝑑𝑒𝑎𝑙 based on Euclidean distance. 

After ranking, a novelty score is then calculated for each solution to promote exploration and 

encourage diversity.  Precedent research has shown that incorporating a novelty score can 

dramatically improve the explorative capacity of MOEAs (Lehman and Stanley 2011).  DP-

NSGA-II calculates novelty based on Equation 1 listed in Chapter 2. Solutions are randomly 

sampled from the generational archive G, which holds all past solutions created during the search.  

For each solution in the current population, the distances in objective space of its k nearest 

neighbors of these samples of G are calculated and then averaged.  This value is used as the novelty 

score for the solution.  This random sample-based approach saves evaluation time, and research 

by Gomes, Mariano et al. (2015) demonstrates that using such an approach is just as effective as 

using the entire population of previous solutions for the novelty calculation.    

3.3 Selection and Reproduction 

Binary tournament selection is then run on the ranked population to select candidates for 

reproduction.  The process works by randomly picking two individuals from the ranked population.  

The solution with the lowest rank is added to the mating pool.  If the solutions have the same rank, 

the solution with the highest novelty measure is chosen.  This is done n times.   
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For the first generation, this process is run without Rl, but in the proceeding generations if there is 

a value for Rl, then it is used to bias the selection process.  This means that if two solutions of the 

same rank are chosen, then the solution closer to Rl will be selected for reproduction.  The binary 

tournament selection process produces a set of solutions that are then used for reproduction.   

DP-NSGA-II randomly samples from the selected solutions in the previous step and alternates 

between the use of midpoint crossover and averaging as its reproduction operators.  In midpoint 

crossover, the decision variables of a parent chosen is split down the middle and half of it is copied 

to its offspring.  The other half of the child’s decision variables are then contributed by the second 

parent through the same operation.  In averaging, both genes of parents are averaged together after 

selection.  Alternating between both approaches allows for more diversity in the solutions.  

Mutation is then randomly applied to the decision variables of newly produced child solutions to 

promote diversity and exploration based on a probability that is adjustable by the decision maker.   

The resultant population of solutions, Pt, are then brought into the main optimization loop where 

procedures for dealing with dynamic changes to the objectives and decision variables are used to 

aid convergence and diversity.  Solutions are then evaluated, ranked, selected, reproduced and 

mutated as before.     

3.4 The Nondominated, Novelty, and Generational Archives 

The nondominated archive A and the novelty archive N are used in the optimization process to aid 

convergence and exploration when objectives or decision variables change.  The A archive stores 

all nondominated solutions found during the optimization process and the N archive stores the 

most novel solutions found.  Theses archives are used in a memory mechanism-based approach 

(defined in Section 2.6) to respond to dynamic changes in objectives and decision variables.  The 

details of their application are discussed in Section 3.6. 

The generational archive G stores all the solutions generated by the search process and is used by 

the decision maker to interactively explore the history of the search process.  The decision maker 

can choose to move the search back to any point in the history of the process, modify decision 

variables or objectives, and then continue searching from that modified historical point. The ability 

to review this search history allows the decision maker to identify trends and areas in the objective 

space that might be underexplored.   

3.5 User-Defined Local Search through Solution Ranking  

During each iteration of the main loop of the algorithm a convergence check is made by comparing 

the values in the nondominated archive A with previous states of the archive.  If the new values 

added to the A archive have not changed over the previous three generations, then convergence is 

assumed around the region of interest defined by 𝑹𝒈, and the user is prompted to rank a uniform 

sampling of nondominated solutions from the A archive.  This ranking is used to create a weight 

vector Rl that biases the binary tournament selection process, so that solutions close to this weight 

vector are preferred over solutions of the same rank but further away.  The local reference direction 

Rl, therefore, works in combination with the global reference direction Rg to guide the search.  
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This hybrid global-local approach is unique to the DP-NSGA-II and encourages the decision maker 

to actively look at potential solutions, view the trade-offs between them, and then steer the search 

towards the most promising regions.  This interaction engages the decision maker in a manner that 

requires a level of comparative thought that other approaches involving just a single global 

reference point, reference direction, or weighting function may not provide.  

3.6 Change Detection and Response 

In order to ensure that a design space is being adequately explored, maintaining a high level of 

diversity in an evolving population of candidate solutions is essential. A well-known problem with 

DMOEAs is that they can suffer from a lack of diversity when constraints, objectives, or decision 

variables change (Datta and Gupta 2016), which can cause the search to prematurely converge.  

Specifically, as the underlying search space changes, the existing solutions are unable to span the 

new search space effectively.  To address this issue, DP-NSGA-II uses a unique procedure which 

allows it to adaptively detect and respond to seven different cases in which objectives and decision 

variables may change individually or simultaneously.  Specifically, the algorithm looks to detect 

and respond to the following: changes in the number of objective functions; time-dependent 

changes in the objective functions; changes in the number of decision variables; and all possible 

combinations of these cases.  Because each of these types of changes effects the convergence and 

diversity of the optimization process in unique ways, specific mechanisms are tailored and 

employed to address each type of change.  These mechanisms will be summarized in this section 

and described in more detail in the following sections. 

The pseudo code for the algorithm can be seen in Figure 3-4.  The first step in the algorithm is to 

compute if a change has occurred and to determine what the change is.  If a change has occurred 

it will fit into one of seven possibilities:  

• Case 1: The number of objectives has increased or decreased.  Algorithm 3 shown in Figure 

3-7 and detailed in Section 3.6.1 is called when a change of this type occurs.  

• Case 2: Time-dependent changes in objective functions.  Algorithm 4 shown in Figure 3-8, 

and detailed in Section 3.6.2 is called when a change of this type occurs.  

• Case 3: The number of decision variables has changed.  Algorithm 5, which is detailed in 

Section 3.6.3 and in Figure 3-9 is called when a change of this type occurs.  

• Case 4: Both Case 1 and Case 2.  Algorithm 4 and 3 are called in the given order when a 

change of this type occurs. 

• Case 5: Both Case 2 and Case 3.  Algorithm 5 is applied. 

• Case 6: Both Case 1 and Case 3.  Algorithm 5 and 3 are called in the given order when a 

change of this type occurs. 

• Case 7: Cases 1 through 3 are all true.  Algorithm 5 and 3 are called in the given order 

when a change of this type occurs.  
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Figure 3-4. Pseudo Code for the change detection and response algorithm for DP-NSGA-II. 

 

 

Figure 3-5.  The left image shows distribution of nondominated solutions for DTLZ2 for two 

objectives.  The right image shows the distribution of solutions after an objective is added. 
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3.6.1 Changing Number of Objectives 

When the number of objectives increases, the problems posed to convergence and diversity can be 

clearly seen in Figure 3-5.  After the change, the image on the right of the figure shows that the 

nondominated solutions that spanned the previous objective space are now spanning only a tiny 

area of the true Pareto front indicated with the red dashed-lines.  The result is that both diversity 

and convergence are negatively affected.  To address this issue, the DP-NSGA-II uses the 

procedure outlined in Figure 3-7.  When the objectives increase in number a memory-mechanism 

approach is taken in which the current population Pt is replaced by 50% random samples from the 

nondominated archive A and 50% random samples from the novelty archive N.  This approach 

allows some non-dominated solutions to remain a part of the current population to aid 

convergence.  By sampling from the novelty archive, diversity is then promoted.  The last step 

involves prompting the user to redefine a global reference direction Rg to help steer the search and 

then setting this equal to the local reference direction Rl.  This last step is run if user interaction is 

enabled.  

When the number of objectives decreases, diversity becomes a major problem for MOEA 

optimization processes.  Figure 3-6 shows an example of this situation for a distribution of 

nondominated solutions found after 300 generations on the dynamic benchmarking problem set 

DTLZ2.  The left side of the figure shows the distribution found for three objectives and the right 

side of the figure shows how the distribution changes when the number of objectives decreases 

from three to two.  After the change, solutions are very close to one another and there are many 

duplicates.  This lack of diversity can cause the optimization process to converge prematurely and 

to miss nondominated solutions.  DP-NSGA-II addresses this problem by using the A archive of 

nondominated solutions to ensure convergence, while pruning it for duplicate solutions to help 

diversity.  Diversity is further addressed by the algorithm through sampling form the N archive.  

The algorithm shown in Figure 3-7 outlines this procedure.  

3.6.2 Time-Dependent Objective Functions 

When the objective values themselves change in a time-dependent manner, the severity of the 

change in the objective functions is first determined, as shown in Figure 3-8.  This is done by first 

taking a random sample of solutions from the A archive and comparing their objective values 

before and after a potential change. The average difference between old and new values for each 

objective is calculated and an average scaling factor computed.  A new group of random samples 

is then taken from the A archive, and the scaling factor found in the previous step is applied to 

their values from before the change.  This creates a set of estimated objective values that can be 

compared against a second set of objective values produced after the time-dependent change.  If 

the predicted values are within an error threshold  of the real objective values after the change, 

then the change is considered minor.  To save computational time, the objective values for the 

solutions in the A archive are scaled instead of recomputed and used in the optimization process.  

The A archive is then randomly sampled to create the current population Pt.  The error threshold 

 needs to be adjusted according to the specific optimization problem being addressed. 
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Figure 3-6.  The left image shows distribution of nondominated solutions for DTLZ2 for three 

objectives.  The right image shows the distribution of solutions after an objective has been 

subtracted. 

 

 

Figure 3-7. Pseudo Code for dealing with a changing number of objectives for DP-NSGA-II.  

If the changes are larger than , then the change is considered severe and Pt is populated with 

random samples from the N archive.  The N archive contains the most diverse solutions found so 

far in the search, and in a situation where the objective space changes dramatically, these diverse 

solutions can help ensure a well spread search for new nondominated solutions.  In the last step of 

the procedure, the A archive is then emptied because its solutions can no longer be guaranteed to 

be nondominated.  
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Figure 3-8. Pseudo Code for dealing with time-dependent objective functions for DP-NSGA-II. 

 

 

Figure 3-9. Pseudo Code for dealing with changing number of decision variables for DP-NSGA-

II. 
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3.6.3 Changing Number of Decision Variables 

Indicated in Figure 3-9 is the procedure that is followed when the decision variables increase or 

decrease in number.  The first step in the process involves applying the ChangeDimension routine 

to change the dimension of the novelty archive N.  In the case of an increase in the number of 

decision variables, the ChangeDimension routine adds a new parameter to each solution in N and 

randomly initializes it based on a uniform distribution from the domain of the new input parameter.  

If the number of decision variables has reduced, then the ChangeDimension routine simply deletes 

the selected decision variable from each solution in N.  Next, a random sample of solutions from 

the non-dominated archive A is taken and their dimension changed with the ChangeDimension 

routine.  That sample is then re-evaluated and the new objective values are compared to the old 

values before the change.  Similar to Algorithm 4, if there is a small change, the non-dominated 

values in archive A are scaled by a factor consistent with the amount of the change and then those 

values are randomly sampled to create the current population Pt for the optimization process.  If 

the change is large, the Pt is populated from random samples taken from the novelty archive N.  

The A archive is then emptied, because none of the non-dominated solutions are viable anymore.  

3.6.4 Simultaneously Changing Objectives and Decision Variables  

When simultaneous changes occur various combinations of Algorithms 3, 4, and 5 are employed 

by the DP-NSGA-II to aid in the dual goals of convergence and diversity.  Specifically, when the 

number of objectives change and the objective functions themselves change (e.g., case 4 in Figure 

3-4), then Algorithm 4 (i.e., used for time-depended objective functions) is run first to detect the 

severity of the change in the objective functions.  If the change is small, the A archive will be 

scaled accordingly and if it is large the current population Pt and the A archive will be reset.  Then 

Algorithm 3 (i.e., used for changing number of objective functions) is applied in a successive 

manner to deal with the change in the number of objective functions. 

When the objectives change in a time-dependent manner and the number of decision variables 

change (e.g., case 5 in Figure 3-4), then only Algorithm 5 (i.e., used for changes in decision 

variables) is applied.  As Figure 3-9 indicates, Algorithm 5 is very similar to Algorithm 4, and so 

can be used by itself to address this situation by detecting the severity of the change and then 

scaling the solutions in the A archive, and reusing them in the case of small changes, or completely 

reinitializing the current population Pt and the A archive if the change is big. 

When the number of objectives and decision variables change simultaneously (e.g., case 6 in 

Figure 3-4), then the change in the number of decision variables is dealt with first through the 

application of Algorithm 5. This allows the A archive to be scaled and reused if possible.  

Algorithm 3 is then applied to increase, or decrease, the dimension of the objective space.  

Solutions are then sampled from a scaled A archive to aid in convergence.  If the A archive is 

empty, randomly sampled solutions from the novelty archive N are used for the new population.    

The final case to be dealt with involves all three types of changes (e.g., changing number of 

objectives; time-dependent objective functions; changing number of decision variables) occurring 

at once (e.g., case 7 in Figure 3-4).  When this occurs, just as in case 6, the first algorithm to be 
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run is Algorithm 5, because it can handle both time-dependent objective functions and changes in 

the number of decision variables at once.  Further, it can detect the severity of the change and scale 

the non-dominated solutions in the A archive for continued use to help convergence if the change 

is not too severe.  After Algorithm 5 is applied, Algorithm 3 is then applied to change the 

dimension of the objective space to the desired number.      

3.7 Implementation and User Interface 

DP-NSGA-II was designed and developed as a plug-in for the parametric design environment 

called Grasshopper 3D, which is a part of McNeel’s Rhinoceros 3D CAD environment.  This 

environment was chosen because of its popularity among multiple design and engineering fields 

for the conceptual design phase and because of its use of a visual programming environment that 

allows for flexibility in developing interactive graphical user interfaces.  As mentioned previously, 

a key objective for the research was developing unique ways that users could interact with the DP-

NSGA-II. In Figure 3-10, the software architecture for the implementation can be seen.   

This architecture allows users to interact with the optimization process in unique ways: existing 

decision variables and objective functions can be modified during the search process; new decision 

variables and objectives can be added; or existing variables and objectives can be deleted.  The 

decision maker can also add qualitative evaluations during the evaluation phase and intervene in 

the selection, recombination, and mutation stages at any time during the running of the algorithm.  

These features allow for an open-ended evolutionary search of a design space and increased 

designer engagement. 

In Figure 3-11 and Figure 3-12 an image of the DP-NSGA-II interface as implemented is shown.  

The user interacts with the interface in the following ways in order to address the cases described 

in 3.6 :  

• Case 1: To add objectives, the user presses the “Create Function” button in the “Fitness 

Evaluation” area.  This brings up a window in which the function can be named and defined 

as a quantitative function or a qualitative function.  To delete an objective, the user can 

select the objective given in the list box in the “Fitness Evaluation” area and press the 

“delete” key. 

• Case 2: Time-dependent objective functions can be added using the same process described 

above. 

• Case 3: To add a decision variable, the user must select a parameter in the parametric 

modeling environment and press the “Create Gene” button in the “Gene List” area.  To 

delete a decision variable, the user selects a decision variable given in the list box located 

in the “Gene List” area and presses the “delete” key. 

• Cases 4-7: The user can institute combinations of changes by following the procedures 

above.  
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Figure 3-10.  DP-NSGA-II integrates into the Grasshopper visual programmig environment. 

 

 

Figure 3-11. (1) An image of the Rhinoceros 3D Interface.  (2) An image of the visual 

programing environment in Grasshopper, which is a plugin for Rhinoceros 3D. 
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Figure 3-12. An image of the DP-NSGA-II interface. 
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Chapter 4. Case Study Application of DP-NSGA-II 

MOEAs are typically performance tested through the use of artificial problem sets developed by 

the research community. The two main sets are a) the bi-objective ZDT (Zitzler-Deb-Thiele) 

(Zitzler, Deb et al. 2000) and b) the scalable DTLZ (Deb-Thiele-Laumans-Ziztler) test suites (Deb, 

Thiele et al. 2002).  These problem sets have analytical solutions and lack the complexity of real-

world MOPs.  For DIMOEAs, a set of benchmark problems different from the two listed above 

are used.  The FDA problem set is currently the most widely cited (Farina, Deb et al. 2004).  Other 

problem sets often cited include: type I DMOP; type II DMOP; and DCTPs (Goh and Tan 2009).  

Finally, real-world applications of DMOEAs can be found in the literature for different areas of 

study, such as route optimization for traffic, mechanical design problems, or scheduling problems 

(Azzouz, Bechikh et al. 2017). 

Progressive MOEAs and DMOEAs are more difficult to test because of the user-interaction 

involved.  Currently, there are no standard problem sets specifically designed to benchmark such 

algorithms.  Instead, problem sets from standard MOEAs and DMOEAs are adapted and used (Li, 

Deb et al. 2017).  These problem sets are generally considered to be useful analogs of some real-

world MOPs, but they are still toy problems that can only give limited insights into the 

performance of these algorithms (Jiang, Ong et al. 2014).  The use of real-world problems can 

therefore be invaluable.   

In this thesis, DP-NSGA-II is applied to a real-world MOP in the domain of architectural design.  

DP-NSGA-II is tested for its capacity to deal with dynamic changes in the number of objectives, 

the number of decision variables, and time-dependent changes in objective functions.  DP-NSGA-

II is tested against two state-of-the-art algorithms.  Specifically, NSGA-II, as well as, the dynamic 

version of this algorithm called D-NSGA-II. 

The progressive aspects of the algorithm that integrate user preference information are not tested 

in this setup.  This allows the tests to focus exclusively on how the algorithm’s procedures for 

convergence and diversity preservation perform without human interaction.  Future tests will look 

at how human interaction affects the performance of the algorithm.     

4.1 MOP Description  

The MOP developed to test the DP-NSGA-II algorithm involves the optimization of an exterior 

solar shading facade system located in Kuwait City, Kuwait.  For the optimization, a south facing 

10’x10’ section of the facade is explored.  The facade system is composed of computer numerically 

controlled (CNC) bent steel pipes connected into an assembly.  Cool seawater is circulated in these 

pipes to collect condensation from the air and also cool exterior spaces.  A diagram of the system 

can be seen in Figure 4-1 and a rendered image of the facade can be seen in Figure 4-2. 

The objectives for the optimization are all continuous and each is normalized:  

1. Maximizing the amount of condensation harvesting per year.   

2. Maximizing useful daylighting levels on the interior of the facade.   

3. Minimizing the temperature in the exterior balcony space between the facade and the 



36 

 

building envelope.  

4. Minimizing the cost of the fabrication of the CNC folded facade modules. 

Diva is a solar analysis plugin for Rhinoceros 3D and it was used for the useful daylight measure, 

which gives the percentage of time throughout the year where illumination levels are between 100-

2000 lux. Autodesk’s Computational Fluid Dynamics software was used for air flow and thermal 

analysis.  The amount of condensation harvested was estimated following Bryant and Ahmed 

(2008).   

In order to speed-up the evaluation of designs, a surrogate model for thermal analysis was 

developed by taking 200 sample simulations throughout the design space.  These samples were 

then used to create a degree three polynomial regression model to predict temperature values 

based on two parameters: the amount of surface area of the facade and the spacing of the pipes.  

Images of some of the sample simulations for thermal performance can be seen in Figure 4-3 and 

images from the solar analysis can be seen in Figure 4-4.  

4.1.1 Decision Variables  

The decision variables for the optimization process are based on the geometric parameters of the 

pipe assembly.  The pipe spacing, number of folds, and depth of system variables are all continuous 

and can be seen in Figure 4-5.  The regional fold pattern variable is discreet and contains options 

for a limited number of fold patterns that can be applied to the facade.  The decision variables are 

subject to the following constraints: 

a) 1" ≤ 𝑝𝑖𝑝𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 ≤ 30";  

b) 0" ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑙𝑑𝑠 ≤ 20";  

c) 1" ≤ 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 12". 

4.2 Test Scenarios and Evaluation 

The performance of the three chosen algorithms (e.g., NSGA-II, D-NSGA-II, DP-NSGA-II) are 

measured and compared with four different tests: 

1. Test one studies the impact of changing the number of objectives, while all other 

features of the problem stay constant (e.g., decision variables and constraints are 

constant; there are no time-dependent changes to existing objective functions).  The 

details of the test can be seen in Table 4-1.  

2. The second test described in Table 4-2 explores the result of changing the number of 

decision variables, while keeping all other parameters constant.   

3. The third test described in Table 4-3 looks at how time-dependent objective functions 

might affect each algorithm. 

4. The last test studies the result of simultaneous changes in all three areas (i.e., decision 

variables, objective functions, time-dependent objective functions).  The details of the 

test can be seen in Table 4-4. 
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Figure 4-1. A section and axonometric drawing of the facade system that is optimized.  

 

Figure 4-2. Two samples from the optimization process. 
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Figure 4-3. Thermal simulations for 10 different samples in the decision space during the 

summer.  Each column of images represents solutions with the same number of folds, while 

each row represents solutions with a different spacing for the pipes.  These samples are used to 

create a surrogate model to speed-up the evaluation of designs.  

 

 

Figure 4-4. Image of useful daylight simulation during optimization. 
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Figure 4-5. The decision variables for the optimization involve exploring the depth, the fold 

pattern, the spacing, and the regional pattern of the CNC bent pipe assembly. 

 

Each test is run for 25 generations, with changes to the MOP occurring every five generations. 

Each test is then run four times. A population of 25 solutions is used for each generation. A 

mutation rate of 0.10 is used by all algorithms. The global 𝑹𝒈 and local Rl reference vectors are 

set to a null value because the user does not provide a reference direction nor solution ranking in 

these tests. Equation 1 is used for the novelty calculation and the k parameter (i.e., number of 

nearest neighbors) is set to be 30% of the population size. These numbers are chosen through 

experimentation, and represent a reasonable trade-off in keeping computation time low, while 

getting enough results to compare the algorithms. 

The evaluation of each algorithm will be done based on two metrics.  The first metric involves the 

calculation of the average novelty per generation of each algorithm.  This metric is calculated by 

averaging the novelty scores for each solution in a generation.  This metric is used to give a sense 

of how diverse the solutions are.  

The second metric used to evaluate the algorithms is the average rank per generation.  To calculate 

this metric, the PF of each algorithm is combined into one global set of PF solutions for each 

generation.  This combined global set is then re-ranked to find the nondominated solutions across 

all three algorithms for each generation.  The average rank per generation is then calculated for 

each algorithm by averaging the new rank values of their respective PFs.  This metric indicates 

which algorithm is producing better solutions per generation. 
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Table 4-1. Summary of facade optimization test #1, with the number of objectives changing over 

time. 

Generations 

Number of Objectives 

Time-dependent 

objective changes 
Decision variables Total 

number 
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1-5 2 X X   

No, for all 

generations 

 

3, for all 

generations (coil 

spacing, number of 

folds, and coil 

depth) 

6-10 3 X X X  

11-15 4 X X X X 

16-20 2 X   X 

22-25 3 X X  X 

 

 

Table 4-2. Summary of facade optimization test #2, with the number of decision variables 

changing over time. 

Generations 
Number of 

Objectives 

Decision variables 

Time-dependent 

objective functions 
Total 

number 
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1-5 3, for all 

generations 

(condensation, 

temperature, 

and useful 

daylight) 

1 X    

No, for all 

generations 

 

6-10 2 X X   

11-15 3 X X X  

16-20 4 X X X X 

21-25 2 X X   
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Table 4-3. Summary of facade optimization test #3, with time-dependent objective functions. 

Generations 

Number of 

Objectives 

Time-dependent 

objective functions 

(e.g. cost(t)) 
Decision variables 
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1-5 3, for all generations 

(temperature, cost, and 

useful daylight) 

  X 

3, for all generations (coil 

spacing, number of folds, 

and coil depth) 

6-10 X   

11-15  X  

16-20   X 

21-25 X   

 

 

Table 4-4. Summary of facade optimization test #4, with simultaneous changes. 

Generation

s 
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1-5 2 X X   2 X X     X 

6-10 3 X X  X 3 X X X  X   

11-15 4 X X X X 4 X X X X  X  

16-20 3 X X X  4 X X X X   X 

21-25 3 X X X  2 X X   X   

 

4.3 Results and Discussion 

The tests described in Section 4.2 were run on NSGA-II, D-NSGA-II, and DP-NSGA-II.  The full 

data sets can be found in Appendix A.  The results for the first test in which the number of 

objectives change is shown in Figure 4-6, Figure 4-7, and also Table 4-5. The data shows that DP-

NSGA-II had higher average novelty values than NSGA-II for nearly every generation.  The 

algorithm was, however, much closer to D-NSGA-II in terms of this metric.  On the average Pareto 

rank metric, the data shows that DP-NSGA-II outperforms the NSGA-II consistently but is very 

close to the performance of D-NSGA-II.   
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The data in Table 4-5 offers another view of the results of the first test.  It shows the percentage 

of time DP-NSGA-II outperforms the other algorithms for all generations run (e.g., 4 runs x 25 

generations = 100 generations).  It shows that DP-NSGA-II outperforms NSGA-II 80% of the 

time in relation to novelty and 67% of the time for Pareto rank.  Consequently, our algorithm is 

outperformed by NSGA-II 20% and 33% of the time by these metrics.  DP-NSGA-II beats D-

NSGA-II 65% of the time in novelty and 49% in Pareto rank.  These results indicate that the 

memory mechanism used by DP-NSGA-II, in which it samples from a novelty archive N to aid 

diversity after a change, provides the needed level of diversity and also allows for efficient 

convergence. 

The results for the second test in which the number of decision variables change with time can be 

seen in Figure 4-8 and Figure 4-9.  The plots show that DP-NSGA-II on average outperforms 

NSGA-II in terms of novelty and is almost equivalent in terms of Pareto rank.  DP-NSGA-II 

performs equivalently to D-NSGA-II in novelty, but narrowly outperforms it in Pareto rank.  The 

more granular view of the data in Table 4-5 indicates that DP-NSGA-II outperforms NSGA-II 

86% of the time in novelty and 39% of the time in Pareto rank.  While outperforming D-NSGA-

II 50% and 70% in terms of these two metrics.  This data indicates that DP-NSGA-II converges 

better than D-NSGA-II by having a better average Pareto rank per generation.  This is because 

DP-NSGA-II can compute the severity of the impact of a change in the number of decision 

variables and act accordingly.  In contrast, D-NSGA-II always performs the same random 

initialization procedure on 50% of the population if it detects a change.  This boosts diversity but 

throws-out good solutions unnecessarily at times.   

The data shows that NSGA-II outperforms DP-NSGA-II in average Pareto rank for test 2.  This 

result is surprising because the addition of added decision variables causes NSGA-II to have a lack 

of novel solutions, and this should mean the algorithm cannot effectively find the new optimums 

of the problem.  We hypothesize that the reason we are not seeing this response is that some of the 

added decision variables are redundant in nature.  Future implementations of NSGA-II will address 

the issue of identifying redundant decision variables to improve its performance in this area.     

The results for the third test, in which the objective functions are time-dependent, can be seen in 

Figure 4-10 and Figure 4-11.  These plots indicate that DP-NSGA-II narrowly outperforms both 

baseline algorithms in Pareto ranking just after a small change in the objective functions in 

generation 5 and a big change in generation 10.  At generation 15, there is no change and D-NSGA-

II starts to narrowly outperform DP-NSGA-II.  In generation 20, when a small change is instituted 

in the objective functions, both NSGA-II and D-NSGA-II jump ahead of our algorithm in average 

Pareto ranking.   This indicates that the procedures employed by DP-NSGA-II to detect and react 

to the degree of change in an objective function has success in the early generations.  It is only 

when there is a small change at generation 20 when the influx of diverse solutions causes it to 

perform below the two other algorithms.  We hypothesize that running the test for more generations 

beyond 25 might show DP-NSGA-II begin to converge back to the high average Pareto ranking it 

demonstrated in the early generations.   
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For the third test case, Table 4-5 indicates that DP-NSGA-II outperforms NSGA-II 47% and 49% 

of the time in novelty and Pareto rank respectively.  It outperforms D-NSGA-II 35% and 31% of 

the time for the same two metrics.  DP-NSGA-II shows lower performance overall for this test 

case against both algorithms as compared to the previous two test cases.  We hypothesize that DP-

NSGA-II may be too sensitive to change in the objective functions and may be over-correcting.  

To address this issue, we propose setting a threshold for severity of change in which no corrective 

action is taken unless that threshold is exceeded.  The difficulty with this approach is the setting 

of the threshold, which may be a unique to each dynamic situation.         

The final test focuses on simultaneous changes in the number of objective functions, number of 

decision variables, and time-dependent changes in objective functions.  The results can be seen in 

Figure 4-12 and Figure 4-13.  The plot in Figure 4-12 indicates that DP-NSGA-II maintains high 

average novelty levels above those of NSGA-II and almost equivalent to those of D-NSGA-II for 

all generations.  In generations 6 and 11 there are large spikes in novelty in response to 

simultaneous changes.  The plot in Figure 4-13 indicates that DP-NSGA-II is equivalent to the 

other algorithms during the simultaneous changes in the early generations involving increasing the 

number of objectives functions, the number of decision variables, and making small and large 

time-dependent changes in objective functions.  DP-NSGA-II starts to fall behind in the later 

generations when the simultaneous changes involve decreasing the number of objectives and 

decision variables.  We hypothesize that this is due to the features of DP-NSGA-II that increase 

novelty when changes occur.  This boost of novelty may temporarily affect convergence, but 

provides the benefit of more diverse solutions.  In the long run, we hypothesize that DP-NSGA-II 

would converge and outperform the other two algorithms, but further tests need to be done to verify 

this assertion.  

In Table 4-5 a comparison of algorithms on a generation by generation basis reveals that DP-

NSGA-II outperforms NSGA-II 96% and 38% percent of the time in novelty and Pareto rank.  It 

outperforms D-NSGA-II 53% and 32% of the time in the same two metrics.  These numbers 

indicate that DP-NSGA-II is outperforming NSGA-II in novelty, but is almost tied with D-NSGA-

II in this regard.  D-NSGA-II, however, outperforms DP-NSGA-II almost 68% of the time in 

Pareto rank.  We hypothesize that this may be due to the slightly higher level of novelty that DP-

NSGA-II demonstrates on average.  This allows it to have more diverse solutions and affects its 

convergence rate.  In addition, we hypothesize that the over-correction in dealing with small 

changes to objective functions, noted earlier, may also be causing the lower Pareto performance. 

An image of the interface of DP-NSGA-II can be seen in Figure 4-14.  Some samples of the non-

dominated solutions at various stages during the testing can be seen in Figure 4-15.  The results 

from all four tests in Table 4-5 indicate that DP-NSGA-II outperforms, or is equivalent to NSGA-

II and D-NSGA-II, in novelty for the majority of test cases.  The only exception is when the 

objectives are time-dependent (i.e., test 3).  The results show that DP-NSGA-II outperforms 

NSGA-II in average Pareto rank when the number of objectives change.  It also outperforms D-

NSGA-II when the number of decision variables change.  The test case in which it underperforms 
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is that of test 4 dealing with simultaneous changes.  These results indicate that DP-NSGA-II offers 

advantages over the other algorithms in terms of novelty and that it also offers advantage in Pareto 

rank for some scenarios of dynamic change.  
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Figure 4-6. Average novelty for test #1 in which the number of objectives change.  Each symbol 

represents the average of four runs.  

 

 

 

Figure 4-7. Pareto rank average for test #1 in which the number of objectives change.  Each 

symbol represents the average of four runs. 
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Figure 4-8 Average novelty for test #2 in which the number of decision variables change.  Each 

symbol represents the average of four runs.  

 

 

 

Figure 4-9. Pareto rank average for test #2 in which the number of decision variables change.   

Each symbol represents the average of four runs. 
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Figure 4-10 Average novelty for test #3 in which the objective functions are time-dependent.  

Each symbol represents the average of four runs.  

 

 

Figure 4-11. Pareto rank average for test #3 in which the objective functions are time-

dependent.  Each symbol represents the average of four runs. 
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Figure 4-12 Average novelty for test #4 in which the objective functions are time-dependent.  

Each symbol represents the average of four runs. 

 

 

Figure 4-13. Pareto rank average for test #4 in which the objective functions are time-

dependent.  Each symbol represents the average of four runs. 
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Table 4-5. Performance of DP-NSGA-II against NSGA-II and D-NSGA-II for the four test 

cases studied here.  Shows the percentage of times that DP-NSGA-II outperformed the other 

algorithms.  

 Against NSGA-II Against D-NSGA-II 

 Novelty 

average 

Pareto rank 

average 

Novelty 

average 

Pareto rank 

average 

Test 1 80% 67% 65% 49% 

Test 2 86% 39% 50% 70% 

Test 3 47% 49% 35% 31% 

Test 4 96% 38% 53% 32% 

 

 

 

Figure 4-14. (1) The Rhinoceros 3D interface that the geometry for the facade is created in.  (2) 

An image of the visual programming environment provided by Grasshopper that allows users 

to interact with the optimization by adding or subtracting design features as the optimization 

runs. (3) An image of the DP-NSGA-II graphical user interface as the optimization runs. 
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Figure 4-15. Some samples of the non-dominated solutions at various stages during the testing 

can be seen.  

  



51 

 

Chapter 5. Conclusions 

The research presented in this thesis addressees a gap in the current research literature related to 

progressive dynamic multi-objective evolutionary algorithms.  The thesis proposes a unique 

modification to the NSGA-II, which we call DP-NSGA-II. DP-NSGA-II is designed to address 

dynamic MOPs that previous work has not dealt with.  Specifically, situations where the number 

of objectives, the objectives themselves (i.e., time-dependent functions), and the number of 

decision variables change simultaneously.   

DP-NSGA-II uses a memory-based approach, which samples from novelty and Pareto archives, to 

aid diversity and convergence when the number of objectives change.  A user defined global 

reference direction can also be used to direct the search in circumstances where the number of 

objectives increases and the objective space goes beyond three dimensions.  To deal with changes 

in the number of decision variables, or time-dependent objective functions, the type and severity 

of the change is first computed.  If the change is small, a prediction-based approach is applied in 

which already calculated objective values in the Pareto archive are scaled by a computed scale 

factor, sampled, and used to replace half of the current population.  This aids convergence by using 

values that were known to have performed well previous to the change.  The other half of the 

population is then replaced with random samples from the novelty archive to aid diversity.  If the 

change is big, the Pareto archive is completely emptied, and the current population of solutions is 

repopulated with samples from the novelty archive. 

DP-NSGA-II integrates user preferences in a progressive fashion through the application of a 

hybrid approach.  This is done through a reference-direction approach to guide the search at the 

global scale, and a solution ranking approach to guide the search at the local scale. This progressive 

approach narrows the scope of the search in high-dimensional objective spaces and makes the 

optimization tractable, while engaging the user’s abilities to help search a complex multi-

dimensional space. 

DP-NSGA-II is applied to a real-world MOP in the problem domain of architectural design in 

Section 4.  The tests specifically focus on the ability of the algorithm to deal with dynamic changes 

to the given MOP without human interaction.  The progressive features of the algorithm are left 

for future testing.  DP-NSGA-II is tested against two state-of-the-art evolutionary MOP 

algorithms: NSGA-II and D-NSGA-II.  These algorithms are compared based on two metrics: 

average novelty and average rank per generation.  The results show that DP-NSGA-II outperforms 

NSGA-II in average Pareto rank when the number of objectives change.  It also outperforms D-

NSGA-II when the number of decision variables change.  Further, DP-NSGA-II outperforms both 

algorithms in novelty for 75% of the test cases. 

5.1 Future Work 

Areas of future development in the research will address the following topics: benchmarking with 

additional real-world MOPs as well as standard MOEA and DMOEA problem sets; benchmarking 

against additional DMOEAs; and testing the progressive features of the algorithm.  In terms of the 
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first issue, the tests used for this research were limited to one MOP from the problem domain of 

architecture.  Future research on DP-NSGA-II will involve testing it with some of the standard 

MOEA problem sets.  Specifically, dynamic versions of the ZDT and DTLZ problem sets 

described by Chen, Li et al. (2016), in addition to the FDA problem sets, will be used.  It is also 

necessary to benchmark the user preference-integration features of the algorithm.  Specifically, 

benchmarking those progressive features related to solution ranking and the definition of a global 

reference direction to direct the search.  There are currently no problem sets to benchmark 

progressive DMOEAs.  Future research will therefore develop these problems and then use them 

to test DP-NSGA-II.   

There are additional progressive features of the algorithm that need more exploration and testing 

as well.  DP-NSAG-II allows users to interact with the optimization process in ways previous work 

has not explored.  Specifically, users can dynamically change the decision and objective spaces as 

the optimization is in progress.  This allows for an open-ended evolutionary search to occur, which 

no previous MOEAs or DMOEAs allow.  The hypothesized benefits of this type of interaction is 

that it addresses the issue of user fatigue, while also allowing the decision maker to be more 

engaged in the optimization process.  Future research will test this hypothesis and explore other 

opportunities to allow users to interact with the algorithm to improve the capabilities of the 

optimization process.   

Another important direction for the research involves benchmarking against additional DMOEAs 

beyond NSGA-II and D-NSGA-II.  Testing the algorithm against non-Pareto based techniques, 

such as decomposition-based DMOEAs, would provide a greater understanding of its overall 

capabilities. In addition, testing the algorithm against progressive decomposition-based 

approaches, such as those proposed by Li, Deb et al. (2017), would indicate whether the 

progressive features of the algorithm are providing any benefit. 

The problem of developing dynamic multi-objective optimization tools that integrate the user in 

ways that allow an intractable search to become tractable presents a lot of challenges.  The future 

development discussed in this section is a shortlist of the challenges of highest priority moving 

forward.  It is early days in the study of progressive DMOEAs and there is much for the research 

community to learn. 
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Chapter 6. Appendix A 

 

Complete results from test problem sets  

The following pages show the detailed results from the four test cases.  Each test is run for 25 

generations, with changes to the MOP occurring every five generations. Each test is then run four 

times. A population of 25 solutions is used for each generation.  A mutation rate of 0.10 is used 

by all algorithms. The global 𝑹𝒈 and local Rl reference vectors are set to a null value because the 

user does not provide a reference direction nor solution ranking in these tests. Equation 1 is used 

for the novelty calculation and the k parameter (i.e., number of nearest neighbors) is set to be 30% 

of the population size. 
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Table 6-1. Novelty values for test problem 1. Complete data from Figure 4-6 
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Table 6-2. Pareto average rank for test problem 1. Complete data from Figure 4-7. 
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Table 6-3. Novelty values for test problem 2. Complete data from Figure 4-8 
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Table 6-4. Pareto average rank for test problem 2. Complete data from Figure 4-9. 
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Table 6-5. Novelty values for test problem 3. Complete data from Figure 4-10 
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Table 6-6. Pareto average rank for test problem 3. Complete data from Figure 4-11. 
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Table 6-7. Novelty values for test problem 4. Complete data from Figure 4-12 
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Table 6-8. Pareto average rank for test problem 4. Complete data from Figure 4-13. 
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