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Abstract 

We describe a general method for producing computer images of botanical 
trees. We use techniques from probabilistic analysis to generate random com­
binatorial trees and then model them as three dimensional geometric trees. We 
choose modelling functions that are based on results from theoretical biology. 
By changing the underlying distribution used to generate the random com­
binatorial trees, we are able to produce images of a wide variety of botanical 
trees. The bifurcation ratio of Horton's first law has been calculated for several 
tree species by previous researchers. A new result on the HORTON-STRAHLER 
number for random binary tries (also presented here) allows the generation of 
random combinatorial trees with the appropriate bifurcation ratios. We exper­
iment with generating images of several different tree species. We implement 
our algorithm in both L-systems and PostScript. 

Keywords: botanical tree modelling, random binary trees, branching pat­
terns, bifurcation ratio, Horton's law, random tries, HORTON-STRAHLER num­
ber, L-systems, PostScript. 

iii 



0 

IV 

Resume 

On presente une methode generale pour produire a l'ordinateur des images 
des arbres botaniques. On utilise des techniques probabilistiques pour con­
struire des arbres aleatoires randomises qui sont modeles comme des arbres 
geometriques a trois dimensions. On choisit des fonctions de modelage qui 
sont bases sur la biologie theoretique. En changeant la distribution des arbres 
aleatoires, on est capable de produire des images de plusieurs types d'arbres 
botaniques. La proportion de Horton a ete deja calculee par des autres sci­
entifiques pour plusieur especes d'arbres. On presente un nouveau resultat 
pour le nombre de HORTON-STRAHLER qui permet la generation des arbres 
aleatoires randomises avec la proportion de Horton desiree. On fait des ex­
periences pour produire des images de plusieurs especes d'arbres differentes. 
Notre algorithme est realise en "L-systems" et PostScript. 
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Overview 

... the entire [botanical] tree is a pure mathematical function ... [but] I 
have never had the opportunity to prove it. (LE CORBUSIER) 1 

This thesis is about trees, many different kinds of trees. It can be seen as 
an attempt to explore LE CORBUSIER's observation. More specifically, this 
thesis concerns itself with generating realistic-looking images of botanical trees 
by computer. Our method is first to generate random combinatorial trees; 
then to model them as geometric trees that are unions of cylinders; and finally 
to render these geometric trees by computer imagery techniques to produce 
realistic-looking images of botanical trees (e.g., ~- -y. ). 

By the nature of the approach taken, this thesis is rather interdisciplinary 
and attempts to synthesize results from the seemingly disjoint fields of proba­
bilistic analysis, computer graphics, and theoretical biology. It is organized in 
the following way. In Chapter 1 we introduce the problem by way of its motiva­
tions and general approaches. In Chapter 2 we explain our basic model and our 
choice of modelling functions. In Chapter 3 we show how to combinatorially 
and visually model several species of botanical trees. In Chapter 4 we review 
previous work and try to show how many of these techniques can be seen as 
special cases of our general technique. In Chapter 5 we discuss our contribu­
tions and propose further work. In Appendix A we discuss the implementation 
details of our algorithm. In Appendix B we prove a tight asymptotical bound 
on the Horton-Strahler number for random binary tries, which we used in 
Chapter 3. A glossary and a table of symbols are also provided. 

This thesis contributes to the state-of-the-art in the following ways. In 
terms of computer graphics, we present a simple yet powerful algorithm that 
is capable of producing a wide variety of tree-like images. Furthermore, we 
have consciously postponed the review of previous work until after the presen­
tation of our general model so that the previous work in Chapter 4-the first 
comprehensive and unified survey-could be presented in a consistent man­
ner. In terms of biology, we uncover the only known technique that allows 
for the simulation of the combinatorial structure of many natural branching 

1As reported on p. 178 in LIONNAIS (1971). 
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patterns such as botanical trees. Finally, we derive the first known results on 
the HORTON-STRAHLER number for random binary tries. 
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Chapter 1 

Introduction 

Long before CAYLEY coined the term tree in 1889 to denote a connected, 
acyclic graph, people have been intrigued by the mathematical structure of 
botanical trees. 

Figure 1.1: Taken from (KNUTH 1973A). 

Our goal is to provide a simple and general method for generating realistic­
looking images of botanical trees. Our method is first to generate random 
combinatorial trees (e.g., ~),and next to model them as geometric trees 
that are unions of cylinders (e.g., Y ); finally these geometric trees are ren­
dered by computer imagery techniques to produce natural-looking images of 
botanical trees (e.g., "V). 

We use the term tree in the following four distinct ways. A botanical tree 
is defined by the Concise Oxford Dictionary as 

a perennial plant with a single woody self-supporting stem or trunk 
usually unbranched for some distance above ground. 

A combinatorial tree is a connected, acyclic graph. A geometric tree consists 
of simple three dimensional objects such as cylinders connected together in an 
acyclic fashion. A rendered tree is a two dimensional image intended to look 
like a botanical tree. 

3 
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4 CHAPTER 1. INTRODUCTION 

We are not the first to take this basic approach. In 1966, ULAM was the first 
to attempt to describe tree growth via random branching patterns. In 1971, 
LEOPOLD simulated random three-dimensional tree branching with "Tinker­
Toys" and various production rules (randomized by a deck of playing cards). In 
1971, HoNDA produced the first computer images of botanical trees. STEVENS 

( 197 4) was the first to interpret random binary trees as drawings of botanical 
trees. Motivated by the similarity of trees and river networks, VIENNOT ET AL. 

(1989) used the HORTON-STRAHLER number to generate random drawings of 
trees. Our present approach is an extension and refinement of the probabilistic 
techniques of KRUSZEWSKI (1994) and DEVROYE AND KRUSZEWSKI (1995). 

The synthetic imagery of botanical trees has applications in many diverse 
fields such as: 

• flight and scene simulation (e.g., BROOKS ET AL. 1974; GARDNER 

1984; WEBER AND PENN 1995); 

• computerized landscaping (e.g., AONO AND KUNII 1984; DANAHY 1987; 
DANAHY AND WRIGHT 1988; AGUI ET AL. 1991; LITTLEHALES 1992; 
PRUSINKIEWICZ ET AL. 1994); 

• film production (e.g., LUCASFILMLTD 1984; REEVES AND BLAU 1985); 

• graphics experimentation (e.g., BLOOMENTHAL 1985; 0PPENHEIMER 

1986; 

• biologic modelling (e.g., HONDA 1971; HONDA ET AL. 1981; BORCHET 

AND HONDA 1984, NIKLAS 1986; DE REFFYE ET AL. 1988; PRUSIN­

KIEWICZ AND LINDENMAYER 1990; PRUSINKIEWICZ ET AL. 1996); 

• combinatorial visualization (e.g., VIENNOT ET AL. 1989; KRUSZEWSKI 

1993; KRUSZEWSKI 1994; DEVROYE AND KRUSZEWSKI 1995). 
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Chapter 2 

Our Basic Methodology 

We first describe a general model of a geometric tree. We then describe our 
choices of modelling functions. In Chapter 4, we will show how many previous 
techniques can be viewed as special cases of this general model. 

2.1 A general geometric model 

As previously mentioned, we model botanical trees as combinatorial trees 
which in turn are visualized as geometric trees whose renderings resemble 
botanical trees. We now give the main details of our algorithm but first we 
need to introduce some more terminology. 

A combinatorial tree is a rooted binary tree consisting of nodes connected 
by edges such that each node has at most one left and at most one right child 
node. A geometric tree is a three dimensional object consisting of cylinders 
(of varying radii and lengths) attached together in ·an acyclic fashion. Two 
cylinders are attached together by identifying center points of their end disks. 
To fully describe a geometric tree, the dimensions of the cylinders, the attach­
ment information which center points to identify and the angles determined 
by the long axes of the cylinders must be given. 

2.1.1 From botanical trees to combinatorial trees 

For our purposes, a botanical tree consists of branch segments and sometimes 
leaves. A branch segment is a section of the tree between two consecutive 
bifurcations. In addition, the base of the tree, which starts at the ground and 
ends at the first bifurcation, is also a branch segment. Thus, underground 
structures such as roots will not be considered. For example, Figure 2.1 shows 
a photo of a tree taken in front of the McConnell Engineering Building at 
McGill University, Montreal in the late spring of 1996. 

The combinatorial representation of a botanical tree is typically obtained 
as follows (e.g., see MAcDoNALD 1983 for an overview). Following HONDA 

5 
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6 CHAPTER 2. OUR BASIC METHODOLOGY 

Figure 2.1: Sections of a botanical tree. 

(1971), all pieces of the tree such as twigs, boughs and trunk are abstracted 
to straight branches of zero width. The base of the tree is mapped to the root 
of a combinatorial tree. The branch segments originating from the base are 
mapped to children of the root of the combinatorial tree, and so forth. Thus 
far in our research, we consider only the case of a branch segment splitting 
into exactly two subsequent branch segments and consequently we work with 
rooted binary trees. This common technique in biology arose from hydrology 
where river systems are mapped to combinatorial trees (e.g., see HORTON 

1945). For example, Figure 2.2 shows a combinatorial representation of part 
of the botanical tree from Figure 2.1. 

Figure 2.2: A combinatorial representation of the botanical tree in Figure 2.1. 

In our work, we use the following restricted set of combinatorial trees. For 
us, a combinatorial tree is a rooted tree such that each node in the tree has 



0 
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either zero or two child nodes. Nodes with two children are called internal 
nodes (denoted by 0 ) and nodes with zero children are called external nodes 
(denoted by D ) For example, Figure 2.3 shows the five possible rooted trees 
with exactly three internal and four external nodes. These external nodes can 

Figure 2.3: All possible rooted binary trees with three internal nodes and four 
external nodes. 

be seen to correspond to the ends of the "working pipes" in the pipe model 
proposed by 8HINOZAKI ET AL. (1964A) (and extended by 8HINOZAKI ET AL. 
1964B-see also Chapter 16 of MAcDONALD 1983). Each unit pipe supports 
a "unit amount of photosynthetic organs," e.g., a constant number of leaves. 
For us, each pipe connects a leaf to the tree's trunk, i.e., the pipe starts at 
a corresponding leaf and goes down the entire length of the tree to its trunk. 
Thus, internal cylinders can be seen as bundles of corresponding pipes, much 
like individual wires in a thick communications cable. We reserve the word 
root for combinatorial meaning, i.e., the only node with no parent. 

Let T be a combinatorial tree of this type. For a node u E T, we denote 
by lul the number of nodes in the subtree rooted at u. For example, if u is 
an external node then lul = 1; if u is an internal node then !ul ~ 3. This is 
similar to the ordering scheme by SHREVE (1966) in which only the number 
of external nodes in the subtrees are counted. Let both liT! I and n denote the 
number of internal nodes in T. It is easy to see the following well-known fact. 

FACT 2.1 Any binary tree T with n internal nodes has exactly n + 1 external 
nodes. 

PROOF. We argue by induction on n. 
BASIS. For n = 0, T is by definition, a single external node D. 
INDUCTIVE STEP. We assume that the hypothesis is true for all trees with 
fewer than n internal nodes and proceed to prove it for each tree T with exactly 
n internal nodes. Let TL and TR be the left and right subtrees of the root ofT. 
By the inductive hypothesis, TL and TR have IITLII + 1 and !ITR!I + 1 external 
nodes, respectively. Thus, the number of external nodes in T is 

IITLII + 1 + IITRII + 1 
(IITtll + IITRID + 2 

n-1+2 
n+1. 



0 

8 CHAPTER 2. OUR BASIC METHODOLOGY 

Therefore, as the hypothesis holds for a tree consisting of a single external node 
and for all trees with less than n internal nodes, we conclude by induction that 
it holds for all trees with n internal nodes. 0 

We denote by d( u) the depth of u, that is, the number of nodes on the path 
in T from the root to u (including the root and u). For example, Figure 2.4 
shows the tree from Figure 2.2 with the node depths added. We note that this 

Figure 2.4: Nodes are labelled by depth. 

is identical to the botanical tree ordering scheme proposed by W EIBEL ( 1963). 
The height H(T) of the tree T is the maximum node depth in T. For example, 
the tree in Figure 2.4 has height nine. For any node u, H(T)- d(u) + 1 gives 
the Horsfield ordering scheme (HoRSFIELD ET AL. 1971). A complete tree 
with k levels (and thus height k) is a combinatorial tree such that all internal 
nodes u, with depth d(u) < k- 1, have two internal nodes as children and all 
internal nodes u with depth d( u) = k - 1 have two external nodes as children 
(e.g., ). 

2.1.2 Geometric trees 

In 1971, HONDA introduced the following geometric model which all subse­
quent research essentially either explicitly or implicitly adhere to (Honda's 
model lacks only non-zero cylinder radii). We will use this geometric model 
together with our combinatorial model as a general model of botanical trees. 

Let a geometric tree T consist of n internal cylinders each having two child 
cylinders and n + 1 external cylinders each having no children. Two cylinders 
are attached together by identifying the center points of their end disks. A 
cylinder J.L has a radius R(J.L) and a length L(J.L) (e.g., see Figure 2.5).1 

1 N .B. Cylinders can also be tapered; however, for simplicity we choose to view this as a 
rendering issue. 
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V 

f-R(J.LH 

!l 
Figure 2.5: Layout of parent cylinder fJ. with child cylinders v and w. 

9 
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10 CHAPTER 2. OUR BASIC METHODOLOGY 

Each internal cylinder p, with child cylinders v and w is associated with 
a plane IT"', namely the plane that contains the axis of the cylinder and the 
axes of its child cylinders. According to Honda (and simple observation), these 
three axes should generally be coplanar in geometric models. The plane to be 
associated with the root cylinder is arbitrarily ~hosen. Once the plane II"' has 
been chosen, the axes of the child cylinders of p, can be specified by giving the 
angles they form in II11 with the axis of the parent. The axis of v deviates 
from the axis of p, by a deviation angle of 8(v) degrees. The plane IIv (to 
be associated with v) is obtained from the plane II"' by rotating IIv about the 
axis of v by a divergence angle of a(v) degrees (e.g., Figure 2.6). 

nv 
Figure 2.6: Plane IIv diverges from parent plane II11 by angle a(v). 

2.1.3 From combinatorial trees to geometric trees 

Each node u in combinatorial tree T is represented as a cylinder p, in geometric 
tree 7 (e.g., see Figure 2.7). To fully specify a geometric tree arising from 
a combinatorial tree, for each node one must give modelling functions that 
compute the corresponding cylinder's dimensions and location in space. 

Thus, most methods can be seen to differ only in how the underlying com­
binatorial trees are generated and what modelling functions are used. We 
will compare our method to others in Chapter 4. Accordingly, there are two 
problems to solve: how to generate the combinatorial tree and how to de­
velop modelling functions to produce the geometric trees. As artists have been 
studying these same problems for centuries, we feel it useful to first examine 
some of their ideas. 
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ll 
Figure 2. 7: Nodes u, v, and w are modelled as cylinders p,, v, and w. 

2.2 Modelling heuristics 

Painters and biologists have been modelling botanical trees for centuries. In 
this section, we examine several references which have indirectly influenced our 
choice of modelling functions. 

2.2.1 From painting 

In his book Botany for Painters (circa 1513), LEONARDO DA VINCI established 
rules to guide artists in representing trees. Although DA VINCI attempted to 
give scientific explanations as to why things look as they do, his observations 
are first and foremost concerned with how things should look. This is often 
the approach of computer graphics. That is, often one is concerned with 
developing a model which produces convincing synthetic images rather than 
actually articulating how nature works. 

The following is a collection of DA VINCI's maxims (numbered NOTES) on 
drawing trees taken from his book Botany for Painters. As we will be referring 
to them from time to time, we list them here. We have placed our own titles 
(in SMALL CAPS) on how the notes relate to botanical tree drawing. 

394 RADIUS AS RECURSIVE FUNCTION 
All the branches of a tree at every stage of its height when put together are 
!Jqual in thickness to the trunk. 

396 RELATIONSHIP OF CYLINDER SIZE AND DEVIATION ANGLE 
. . . The branches of trees or plants have a twist wherever a minor branch is 
given off; and this giving off the branch forms a fork; this said fork occurs 
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between two angles, of which the largest will be that which is on the side of 
the larger branch, and in proportion, unless accident has spoilt it. 

397 RELATIONSHIP BETWEEN CYLINDER SIZE AND NODE DEPTH 

. . . The lower shoots on the branches of trees grow more than the upper ones 
and this occurs only because the sap that nourishes them, being heavy, tends 
downwards more than upwards; ... 

400 CYLINDER LAYOUT 

The beginning of the ramification {the shoot] always has the central line [axis] 
of its thickness directed to the central line [axis] of the plant itsel£ 

403 DEVIATION ANGLE AS FUNCTION OF NODE DEPTH 

The plants which spread very much have the angles of the spaces which 
divide their branches more obtuse in proportion as their point of origin is 
lower down; that is, nearer to the thickest and oldest portion of the tree. 
Therefore in the youngest portions of the tree the angles of ramification are 
more acute. 

404 HELIOTROPISM 

The tips of the boughs of plants {and trees], unless they are borne down by 
the weight of their fruits, turn towards the sky as much as possible .. .. 

404 DIVERGENCE ANGLE AND LEAF ORIENTATION 

. . . The rule of the leaves produced on the last shoot of the year will be that 
they will grow in a contrary direction on the twin branches; that is, that the 
insertion of the leaves turns round each branch in such a way as the sixth 
leaf above is produced over the sixth leaf below, and the way they turn is 
that if one turns towards its companion to the right, the other turns to the 
left ... 

405 TROPISM AS A FUNCTION OF NODE DEPTH 

The lowest branches of those trees which have large leaves and heavy fruits, 
such as nut-trees, B.g-trees, and the like, always droop towards the ground .. .. 

407 DEVIATION ANGLE 

The lowest branches, after they have formed the angle of their separation 
from the parent stem, always bend downwards so as not to crowd against 
the other branches which follow them on the same stem ... 

408 DEVIATION ANGLE 

. . . The main branches of the lower part bend down more than those above, 
so as to be more oblique than those upper ones, and also because they are 
larger and older, and to seek light and flee shadow. 

409 HELIOTROPISM 

In general almost all the upright portions of trees curve somewhat turning 
the convexity towards the south; and their branches are longer and thicker 
and more abundant towards the south than towards the north. . .. 

410 OVERALL TREE SHAPE 

The cherry-tree is of the character of the fir-tree as regards its ramification 
which is placed in stages round its main stem; and its branches spring, four 



0 

2.3. OUR PARAMETERIZATION 

or Jive or six (together), opposite each other; and the tips of the topmost 
shoots form a pyramid from the middle upwards; and the walnut and oak 
form a hemisphere from the middle upwards. 

417 LEAF SIZE 

. . . its largest leaves are on the thickness part of the stem and the smallest 
on the slenderest part, that is, towards the top . .. 

13 

These notes are very insightful. For example, NOTE 400 already reaffirms 
the choice of coplanar parent and sibling axes and NOTE 404 anticipates the 
deviation angle. For a more modern reference we have found COLE's book The 
artistic anatomy of trees to be an informative guide. 

2.2.2 From biology 

SuGDEN (1984) provides a good introduction to the biology of trees. Biolo­
gists, HORN (1971), HALLE ET AL. (1978), and WILSON (1984) explained 
how the overall shape of a tree is a function of its biology in terms of over­
all tree architecture. MATTHECK (1991) and (NIKLAS 1992) both explained 
tree growth from a mechanical perspective. Finally, FARRAR (1995) is a good 
guide for identifying trees in Canada. 

2.3 Our parameterization 

We now present our choice of modelling functions. Whenever possible, we rely 
on results from theoretical biology. 

2.3.1 Radius 

In NoTE 394, LEONARDO DA VINCI suggested that the cross-sectional area 
of the parent cylinder is equal to the sum of the cross-sectional areas of its 
child cylinders. That is, the radius of cylinder J1, with children v and w is: 

DA VINCI's intuition is essentially correct; however, physical measurements by 
MURRAY (1927) showed that in practice the correct exponent in the formula 
is about 2.49 for large trees (rather than 2) and about 3 for small trees.2 As the 
majority of our trees are "small," we currently use value 3 for our exponent. 

2 According to MURRAY (1926A), blood arteries in cats can also be formulized with 
exponent 3. Cf. SUWA ET AL. (1963) and MACDONALD (1983). 
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That is, we assign constant radius eR> 0 to each external cylinder and derive 
the following recursive formula for the radius of cylinder J.L: 

R( ) _ {eR if lul = 1; 
J.L - (R(v) 3 + R(w)3) 113 otherwise. 

Figure 2.8 plots the range of values of R(J.L) if we set R(w) - cR(v), for 
0 :::; c :::; 1 and R(v) = 1 for various exponents. 

2.3.2 Length 

1. 

radiu~·. 
1. 

Figure 2.8: The effect of exponent on radius. 

Based on findings by SuwA ET AL. (1963) for arterial systems, we propose 
length as a function of radius, i.e., 

where C£1 and C£2 > 0 are constants. For simplicity, we currently let C£2 = 1. 

2.3.3 Deviation angle 

In a botanical tree it is a common observation (e.g., NOTE 396 of DA VINCI) 

that for two sibling branch segments the larger sibling deviates less from the 
parent branch than its smaller sibling; i.e., 8(v) :::; 8(w) if R(v) 2: R(w). In 
1926, MURRAY formalized this observation for blood vessels by applying the 
physiological principle of minimum work to determine a mathematical formula 
for the deviation angles of arteries.3 In 1927, he extended this theory to 
botanical trees. We use his formula for deviation angle: 

(
R(J.L) 4 + R(v)4

- R(w)4
) 

8(v) = arccos 2R(J.L)2R(v)2 • 

3This is also reported on pp. 948-957 by THOMPSON (1942) and on pp. 116-123 by 
STEVENS (1974). See MACDONALD (1983) for a more up to date survey of similar results. 
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It is interesting to note that in this formula the deviation angle does not depend 
on cylinder length. 

Figure 2.9 shows the range of 8(v). The horizontal axis shows the ratio 
0 s; c s; 1. The bottom plot shows for R(v) = cR(J.£) and the top show shows 
for R(J.£) = cR(v). 

angle 

Figure 2.9: Radius ratio versus deviation angle. 

2.3.4 Divergence angle 

The late nineteenth century Schimper-Braun law states that the divergence 
angle a for any botanical plant must be one of the following angles: 

0 { 1 1 2 3 5 8 13 } 360 
X 2'3'5'S' 13' 21' 34'··· 

(JEAN 1978). 

The numerators and denominators of the fractions form two Fibonacci se­
quences, as each new numerator and denominator is created by adding the 
two previous numerators and denominators respectively. The limit of this 

sequence of fractions is ( J£+1 ) 
2

. For simplicity, we also let 

for all J1 E /. In Chapter 4, we will see that almost all other techniques also 
use this limit. 

2.4 Rendering geometric trees 

Once the geometric tree has been constructed, it must be rendered to better 
resemble a botanical tree. First, environmental influences called tropisms de­
form the layout of the original geometric tree. Next, the three dimensional 
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object must be projected onto a particular two dimensional plane whose sil­
houette must somehow be created. That is, the cylinders must be drawn as 
to resemble branch segments. For added realism bark is simulated by texture 
maps and finally, leaves are added. 

In 1985, BLOOMENTHAL addressed this specific problem. That is, he as­
sumed that someone else would invent an algorithm which produces acceptable 
geometric trees and thus concerned himself with how to render these geometric 
trees as convincing images.4 The computer program vlab (see Appendix A for 
a complete description) utilizes many of his techniques. Whereas most previ-

Figure 2.10: A smooth ramiform (BLOOMENTHAL 1985). 

ous approaches represent branches as polygons or simple cylinders, he formed 
sophisticated model of the physical branches as generalized cylinders, (i.e., a 
spline with disks, e.g., the human backbone) with very smooth joins at the 
ramiforms (where the branches meet, e.g., see Figure 2.10). BLOOMENTHAL 

applied tensions to these splines to simulate twisted and gnarled tree branches. 
He drew very realistic-looking maple trees in part by texture mapping the bark 
from a "bump map" which comes from an actual tree. Finally, the leaves were 
drawn according to a simple hinged polygon that is texture mapped with a 
photograph of an actual leaf. For other sophisticated models of leaves, see 
0PPENHEIMER (1986); DEMKO ET AL. (1985); VIENNOT ET AL. (1989); 
PRUSINKIEWICZ AND LINDENMAYER (1990); NORTON ET AL. {1990); WE­

JCHERT AND HAUMANN (1991); and HAUMANN ET AL. (1991). 
Figure 2.11 shows a two dimensional rendering of the geometric tree which 

results from the combinatorial tree in Figure 2.2. Here, we render the in­
ternal cylinders as branch segments and the external cylinders as leaves (the 
actual rendering is done in PostScript). From now on in this chapter external 
cylinders will not be rendered. Hence, images for the most part will be leafiess. 

4 N.B. See also FOLEY ET AL. (1996) for a general survey of computer graphic techniques. 
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Figure 2.11: A two dimensional rendered tree. 

2.5 Combinatorial split trees 

The previous section described how we model combinatorial trees as geometric 
trees. We presented an example of a combinatorial tree that was generated by 
examining an actual botanical tree. In this section, we discuss our method of 
generating combinatorial trees. 

2.5.1 Generating split trees 

DEVROYE (1986B) introduced random split trees as a probabilistic model of 
random binary search trees. A split tree T(n) with exactly n internal nodes 
and n + 1 external nodes, for 0 < X < 1, is recursively defined as follows: 

{ 
o, if n = 0; 

T(n) = 1 0 \ , otherwise. 
T(lnXj) T(n-1- lnXJ) 

At each recursive call, X may or may not maintain its previous value (e.g., in 
Chapter 2.5.2, we discuss X as a random variable). 

A split tree with n = 2k- 1 internal nodes and X fixed at 0.5 produces a 
perfectly balanced tree (i.e., complete binary tree) with exactly k + 1 levels 
as in Figure 2.12. We call this complete tree a deterministic symmetric tree. 

Choosing constant X# 0.5 results in a deterministic asymmetric tree (e.g., 
see Figure 2.13). Again, this model can be thought of as a variation of the 
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Figure 2.12: A deterministic symmetric combinatorial tree. 

Figure 2.13: A deterministic asymmetric combinatorial tree with X= 0.25 and 
n= 15. 

pipe model where the resources are deterministically partitioned. 
Table 2.1 shows the result of decreasing X (cf. the renderings shown on 

pages 146-147 of MACDONALD 1983). Each tree consists of 2000 internal 
cylinders. Note however that all rendered trees have been scaled to fit into the 
same-sized bounding box. 
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X -l -2 

X-l -6 

X-l -3 

X-l -7 

X -l -4 

X-l -8 

X -!. -5 

X -!. -9 

Table 2.1: Renderings of deterministic asymmetric trees for decreasing but 
constant X. 

19 

We note that for these rendered trees neither the modelling functions nor 
the rendering method from the previous section have been changed-only the 
underlying combinatorial trees have been changed. Thus it is int-eresting how 
the model goes from dichotomous branching (the parent. segment splits into 
two more or less equal sibling segments) to monopodial branching (one sibling 
is seen to be an extension of the parent branch whereas the other sibling is 
seen to be an offshoot of the parent branch). 

As this is a three dimensional model, we note that various viewpoints can 
be chosen for the rendering. For example, Table 2.2 shows the tree with X == ~ 
from Table 2.1 from various viewpoints. 

Furthermore, we note that the different flow rate model by HoNDA ET AL. 

(1981) can be simulated in the following way. Let N be the time variable; 
let n = 2N be the number of internal nodes; let X = 2~ where 0 :5 f :5 1 is 
the "flow rate"; and let T be the resulting split tree. Let T' be the tree that 
remains after all nodes u ET whose depth d(u) > N from T. The resulting 
combinatorial tree T' is now a "flow rate tree". 
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top left 

bottom right 

Table 2.2: The same tree viewed from various spatial orientations. 

c 
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2.5.2 Randomization techniques 

By considering X to be a (0, 1]-valued random variable (and by generating a 
new value at each stage in the construction ofT), we can produce a richer set of 
combinatorial trees. The beta distribution beta( a,b) is an ideal choice for the 
distribution of X (as explained below). Formally, the beta(a,b) distribution 
has density 

) r(a +b) a-1( b-1 
f(x = r(a)r(b) x 1- x) , 0 <X< 1, 

where a, b > 0 are parameters and r is the gamma function (see DEVROYE 

1986A on how to generate this random variable by computer). The expected 
value (MENDENHALL ET AL. 1986) of random variable X is then 

and its variance is 

EX=-a­
a+b 

ab 
VarX = ( ). a+b)2(a+b+1 

For example, Figure 2.14 shows the first few levels in a random split tree with 
15 internal nodes produced by choosing X to be a random variable having a 

Figure 2.14: The first few levels in the split tree. 

beta(l,l) distribution. Figure 2.15 shows the resulting combinatorial tree. 

Figure 2.15: A random symmetric combinatorial tree. 

If we continue to follow the pipe model of SHINOZAKI ET AL. (1964A) we 
can now think of the resources being randomly partitioned. That is, for each 
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internal cylinder, a certain random portion of the pipes goes through the left 
and right child cylinder. 

For our purposes of synthetic imagery, the beta distribution has several 
advantages: its range is from 0 to 1; its expected value and variance can be 
chosen independently; and the expected height and depth of the resulting split 
trees are highly predictable. That is, the bushiness and elongation of the trees 
can be controlled by varying the parameters. More formally DEVROYE (1996) 
showed the following theorems for random split trees in general. 

THEOREM 2.1 Let Dn be the depth of the last node in a random split tree 
with n nodes. Then 

Dn 1 
---r­
logn p, 

in probability as n -r oo, 

and E{Dn}/Iogn tends to the same limit, where p, = 2E {Ylog(1/Y)}, 
YE [0, 1] is X and 1- X with equal probability, and X is the branch-splitting 
random variable introduced earlier. 

THEOREM 2.2 Let Hn be the height of a random split tree with n nodes. 
Then 

Hn 
-- -r 'Y in probability as n -r oo, 
logn 

where 'Y = inf { c: et• (2m(t*)Y < 1}, m(t) = E {Yt}, t 2: 0, t* is the unique 
solution ofm'(t)jm(t) = -1/c, and Y is as in Theorem 2.1. 

With random beta trees, one can choose the desired expected depth and height 
and solve the above formulas to determine explicit values for a and b. Note 
for example that 1/p, can take any value between 1/log2 and oo. 

2.5.3 Random "families" 

Roughly speaking the varying of a and b in the choice of the beta( a,b) distri­
bution (to be used in the random generation of the underlying combinatorial 
trees) controls the overall shape of the corresponding geometric trees. Recall 
that as Table 2.1 shows, varying the shape of the combinatorial trees varies the 
appearance of the rendered trees. Table 2.3 shows how randomization allows 
the creation of random "families" of trees. These families can be thought to 
intuitively correspond to species of botanical trees. In each column, EX is 
constant while VarX increases from left to right. For each row, EX increases 
from the top to the bottom columns. 
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beta(80,80) 
EX= 0.5 

VarX = 0.001 

beta(80,40) 
EX =0.6 

VarX = 0.002 

beta(80,10) 
EX=0.9 

VarX = 0.001 

beta( 40,40) 
EX=0.5 

VarX = 0.003 

beta(20,10) 
EX= 0.6 

VarX = 0.011 

beta(40,5) 
EX= 0.9 

VarX = 0.002 

beta(10,10) 
EX= 0.5 

VarX = 0.012 

beta(8,4) 
EX= 0.6 

VarX = 0.017 

beta(8,1) 
EX= 0.9 

VarX = 0.010 

23 

beta(1,1) 
EX =0.5 

VarX = 0.083 

beta(4,2) 
EX=0.6 

VarX = 0.032 

beta(4,0.5) 
EX =0.9 

VarX = 0.018 

Table 2.3: Random symmetrical and asymmetrical trees. 
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As before with the deterministic case (e.g., Table 2.2), this is a three di­
mensional model. Thus, we note that various viewpoints can be chosen for 
the rendering. For example, Table 2.4 shows the tree with beta(lO,lO) from 
Table 2.1 from various viewpoints. 

top left 

bottom right 

Table 2.4: The same tree viewed from various spatial orientations. 
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2.5.4 Random "individuals" 

If a and b are fixed and n is large, the resulting renderings are similar without 
being identical in appearance. That is, one can generate random "individuals" 
from within a certain "family." Table 2.5 shows the rendered trees result­
ing from eight random combinatorial trees whose X is a beta(10,80) random 
variable. 

i ! ! -J 
t ~ 

I 

J -# ' 

Table 2.5: Eight "individuals" from the beta(10,80) "family." 

2.5.5 Variable distributions 

In Chapter 2.5.3, the distribution of the splitting variable is fixed throughout 
the entire tree. However we are not limited to this. Table 2.6 shows the effect 
of making the splitting variable a function of the node u. 

For example in the first figure, random variable X is distributed as beta(d(u),d(u)) 
where d(u) is the depth of u in the tree. As discussed in Chapter 2.5.2, 

Ex ~ 1 d Y. X d(u)
2 

,...., 1 0 d Th = 2d(u) = 2 an ar = 2d(u)2(2d(u)+l) - 4d(u) -4 as -4 00· us 
the splits become more and more balanced higher up in the tree. In the sec-
ond figure, 

1
:

1 
increases as lul decreases and thus the splits become more and 

more symmetric and stable deeper in the tree. In the third figure, the splits 
become more and more lopsided however the divergence angle helps the tree 
to spiral upwards. In the final figure, at each split for node u, X is distributed 
as beta(l,l) if lul 2:: ~ and as beta(lO,lO) otherwise. 
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beta( d( u) ,d( u)) beta( fur, fur) 

beta(d,l) beta(l,l) or beta(10,10) 

Table 2.6: Variable distributions. 

0 
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2.5.6 A large example 

Finally, we end this chapter with a large example. 

Figure 2.16: A tree with 10000 nodes from the beta(10,10) family. 

27 
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Chapter 3 

Modelling accordin·g to Horton's 
first law 

In Chapter 2 we introduced a general combinatorial-geometric model of botan­
ical trees. We generate combinatorial trees according to a splitting algorithm. 
Each node in a combinatorial tree is modelled as a cylinder in the correspond­
ing geometric tree. Cylinders are rendered to resemble branches in botanical 
trees. We now examine a combinatorial method to model actual species of 
botanical trees according to Horton's first law. 

The rest of this chapter is organized as follows. In Chapter 3.1 we explain 
the origins and applications of the HORTON-STRAHLER ordering and bifurca­
tion ratios. In Chapter 3.2 we explain how to generate random combinatorial 
trees for specific expected bifurcation ratios. In Chapter 3.3 we attempt to 
model specific species based on known bifurcation ratios. 

3.1 HORTON-STRAHLER orderings/bifurcation ratios 

We present a method for modelling particular botanical species according to 
their respective HoRTON-STRAHLER numbers. Accordingly, we first introduce 
the notation of the HORTON-STRAHLER number. 

3.1.1 Definition 

For a node u in a binary (combinatorial) tree T, let the HORTON-STRAHLER 

order S ( u) be defined as 

{ 

0 if lul = 1 , 
S(u)= max{S(v),S(w)}+I[s(v)=S(w)] if lul23 and 

u has children v and w, 

where lA is the indicator of the event A (i.e, lA= 1 if A is true and 0 otherwise). 
We define S(T) as the HORTON-STRAHLER number of the root of tree T. 

29 
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That is, we use the word order for nodes and the word number for trees. For 
example, Figure 3.1 shows the HORTON-STRAHLER ordering for the tree from 
Figure 2.2. Note that all external nodes have order zero. 

Figure 3.1: The HORTON-STRAHLER ordering of a binary tree. 

The two extreme values for the HORTON-STRAHLER number are immedi­
ately apparent. At the one extreme is a single chain of n nodes. Let T be a 
chain of nodes such that each internal node (except the deepest one) has ex­
actly one internal node and one external node as children (e.g., see Figure 3.2). 
A chain is also called a "gourmand de la vigne" by VIENNOT (1990) and a 
"herringbone tree" by FITTER (1985). At the other extreme is the complete 

Figure 3.2: A "gourmand de la vigne" with HORTON-STRAHLER number one. 

tree with k levels, 2k- 1 nodes and HORTON-STRAHLER number k- 1 (e.g., 
see Figure 3.3). Generalizing this, it is clear that for each binary tree T with 
n internal nodes, S(T) :::; log2 n + 2 (e.g., KRUSZEWSKI 1993). For a more 
detailed combinatorial discussion, see Appendix B. 

3.1.2 Bifurcation ratios-Horton's first law 

The HoRTON-STRAHLER number arises from geography where it has been 
successfully used as a metric of flow in river networks (e.g., see HORTON 1945 
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Figure 3.3: A complete tree with HORTON-STRAHLER number two. 

and STRAHLER 1952). The classification goes as follows. For a combinatorial 
tree T with HORTON-STRAHLER number S(T), let Nm be the number of order 
m nodes. Thus, N0 = n + 1 for all T. For example, in Figure 3.1, N0 = 23, 
N1 = 15, N2 = 5 and N3 = 2; in a chain, N0 = n + 1 and N1 = n; and in a 
complete tree Ni = 2k-i for 0 2:: i 2:: k. Let the order ratio be defined as 

N:· 
14+1 = 1\r t • 

Hi+ I 

For example, in a chain R2 = n!l and 14 = 0 fori > 2 and in a complete tree 
14 = 2 for 1 < i s; k. Let the bifurcation ratio R be the average of the /4, i.e., 

Horton 's first law of hydrology estimates Ni as 

Ni = RS(T)-i. 

In 1971, LEOPOLD and 00HATA AND SHIDEI were concurrently the first 
to use the HORTON-STRAHLER ordering on botanical trees. They, along with 
BARKER ET AL. (1973), McMAHON AND KRONAUER (1976), WHITNEY 
(1976), TOMLINSON (1978), HONDA ET AL. (1981) and others, have mea­
sured the bifurcation ratio for various species of botanical trees (see Chapter 13 
of MACDONALD 1983 for a comprehensive listing of these results.) Table 3.1 
lists the results that we will use. 
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common Iatin researchers max R CL (~~) l name name order (mm) 
apple malus BARKER 5 4.35 22 2.9 

ET AL. (1973) 
white oak Quercus alba MCMAHON AND 6 4.11 25 1 

KRONAUER (1976) 
white fir Abies concolor LEOPOLD (1971) 5 4.8 16 3.5 

sugar maple Acer saccharum STEINGRAEBER 4-7 3.19 17 2.1 
(forest grown) ET AL. (1979) 
sugar maple Acer saccharum STEINGRAEBER 3-5 7.05 17 2.1 

(in open ground) ET AL. (1979) 

Table 3.1: Parameterization data for various species. 

3.1.3 Relationship between the HORTON-STRAHLER number and 
bifurcation ratios 

Horton showed that for large enough n, 

S(T) S(T) 

LNi - L RS(T)-i 

i=l i::::l 

S(T)-1 

- L: Ri 

i=O 
RS(T) -1 

- R-1 

Thus, taking logarithms, we have the following fact. 

FACT 3.1 IfT obeys Horton's first law, 

3.1.4 The HoRTON-STRAHLER number for deterministic trees 

Let IITII be the number of internal nodes in tree T. We mimic a proof by 
KRUSZEWSKI (1993) to show the following fact. 

FACT 3.2 For any deterministic split binary tree T with constant X::; !, 
S(T) ::; log:k IITII + 1 . 

I 
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PROOF. We argue by induction on n, the number of internal nodes in T. 

BASIS. For n = liT!!= 1, thus S(T) = 1 ~ log.1. 1 + 1 = 1. 
X 

INDUCTIVE STEP. We assume that the hypothesis is true for all trees with 
fewer than n internal nodes and proceed to prove it for each tree T with n 
internal nodes. Let TL and TR be the subtrees ofT. Without loss of generality, 
we assume S(TL) ~ S(TR)· 

If S(TL) > S(TR) then S(T) = S(TL) and by the inductive hypothesis S(T) ~ 
log.1. IITL 11 + 1 ~ log.1. n + 1. 

X X 

If S(TL) = S(TR) then, again without loss of generality, we assume I!TLII ~ 
IITRII so that IITLII:::; Xn. Thus, 

S(T) - 1 + S(TL) 
< 1 + log.!.IITLII + 1 

X 

< 2+(logf-(n)-1) 

< log* n+ 1. 

(by the inductive hypothesis) 

Therefore, as the hypothesis holds for both the single-internal node tree and 
for all trees with less than n internal nodes, we conclude by induction that it 
holds for all trees with n internal nodes. D 

Thus, logR n "'-' S(T) :::; log.1. n implies that following fact. 
X 

FACT 3.3 For any each deterministic split binary tree T with constant X :::; ! 
and bifurcation ratio R, 

1 
R"'-'x· 

It is interesting to compare this to the experimental result by OOHATA 

AND SHIDEI (1971) that 

3.1.5 A deterministic example 

Thus, the deterministic split tree algorithm with X = 1/ R produces com­
binatorial trees with bifurcation ratios of approximately R. This allows us 
to model combinatorially specific species of botanical trees. For example, 
BARKER ET AL. (1973) measured an apple tree with 579 branches and cal­
culated its bifurcation ratio as 4.35. Figure 3.4 shows the visualization of a 
deterministic split tree with X= 1/4.35 and 579 internal nodes. 
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Figure 3.4: A deterministic apple tree based on constant X = 0.23. 

We base the length and radius functions on the data in BARKER ET AL. 

(1973) in the following way. They reported that an order one branch segment 
has an average radius of r = 1.45 mm. We solve for eR, the value of an order 
zero branch, as 

1 

r - (cR3+cR3)3 

r 
1 

2scR 
r 

CR - 2i 
CR rv 1.15 mm 

Similarly, an order one branch segment has average length l = 22.0 mm. We 
currently let CL2 = 1 and thus for an order zero branch we have 

l CL1 rcL2 

l 
CL 

r 

CL rv 19.1 mm 

We note that this method of generating trees however is not limited to that 
of the measured data. If we assume that Horton's law holds for a particular 
species, then we can generate trees with as many branches as we like. For 
example, Table 3.2 shows the resulting trees for an increasing series of nodes. 
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n = 1000 n = 2000 

n = 4000 n = 8000 

Table 3.2: A series of deterministic "apple" trees with an increasing number of 
nodes. 
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3.2 Expected bifurcation ratios 

The chief limitation of this technique is that the trees produced are determin­
istic. That is, only one individual of a particular family for a fixed n can be 
generated. For image synthesis and other purposes this is very undesirable. 
We now rely on a result from probabilistic analysis to provide a method of 
generating combinatorial trees with specific expected bifurcation ratios. 

3.2.1 Expected HORTON-STRAHLER number 

DEVROYE AND KRUSZEWSKI (1996) 1 showed for the random tries constructed 
from n independent identically distributed (i.i.d.) sequences of independent 
Bernoulli (p) random variables 0 < p ::::; ~ that for the HORTON-STRAHLER 
number Sn, 

Bn 1 ---+ 
logn log P 

in probability as n -+ oo. From this, we have the following fact. 

FACT 3.4 For a random PATRICIA tree with n-1 internal nodes and n external 
nodes and HoRTON-STRAHLER number Bn, 

3.2.2 Binomial distribution 

In Chapter 2.5.2 we used the beta distribution as the basis of our random 
split variables. We now use the binomial distribution which in the following 
way is a restricted set of the beta( a,b), since if a and b tend to infinity such 
that a~b = p, the L nbeta( a, b) J behaves like binomial( n,p). Formally, the 
binomial(n,p) distribution has probability density 

0 ::::; y ::::; n, 

where n,p ~ 0 are parameters (again, see DEVROYE 1986A on how to generate 
this random binomial variable by computer). The expected value of random 
binomial(n,p) variable X is then 

EX=np 

(e.g., see MENDENHALL ET AL. 1986) and its variance is 

VarX = np(1- p). 

1 For completeness, this paper reappears as Appendix B in this thesis. 
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As X is now a discrete random variable depending on n, we modify our splitting 
algorithm T(n) for generating a tree with n internal nodes in the appropriate 
way: 

{ 

D if n-O· 
T(n) = ' 1 0 \ , othe~wi~e. 

T(X) T(n-1-X) 

If we continue to follow the pipe model of SHINOZAKI ET AL. (1964A), we 
can now think of each resource as being somehow randomly and independently 
allocated. That is, for each internal cylinder, each pipe going through that 
cylinder flips a biased coin to decide whether it goes through the left or right 
child cylinder. 

We have chosen the binomial distribution because for this style of split tree 
the resulting trees are random PATRICIA trees on n + 1 strings. Thus, we can 
make use of Fact 3.4 to combinatorially model botanical trees. 

Table 3.3 shows how each value of p determines a new "family" of tree. As 
before, each tree has 2000 internal nodes. It is useful to compare this table 
with Tables 2.1 and 2.3. Table 3.3 can be seen as a randomization of Table 2.1 
and as a restriction on the variance of Table 2.3. 

P-l -2 

P -1 -6 

P-l -3 

P -1 -7 

P-l -4 

p=k 

Table 3.3: Trees from the binomial distribution. 

P-l -5 

P -1 -9 

However, it is important not to make the tempting generalization that 

ES(T) = log_1 n, 
EX 
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for any X. For example, beta(l,l) provides a counter-example, since EX = 

1! 1 =~but ES(T) ~ log3 n (e.g., Theorem C.3 in Appendix C). 

3.3 Combinatorial and visual modelling of specific trees 

In Section 3.1.2 we explained how researchers have calculated the bifurcation 
ratios of various species of botanical trees. We used one bifurcation ratio to 
generate deterministic "apple" trees. In Section 3.2.2 we showed how to gener­
ate trees according to specific expected bifurcation ratios. We now attempt to 
combinatorially and visually model particular species of botanical trees. We 
can do this by using the binomial distribution along with Fact 3.4 and the 
bifurcation ratios from Table 3.1. We have chosen these particular trees due 
to the availability of their data and their suitability for landscaping purposes. 

3.3.1 Apple 

We now present a randomized version of the apple tree model (e.g., Figure 3.4) 
from Chapter 3.1.5. The only parameter which we change in the first figure 
from Table 3.4 is X which is now a binomial random variable with p = 0.23. 
The second figure shows the tree from the first figure now with leaves. That 
is, each external node is modelled as a leaf. In the third figure each internal 
cylinder with exactly two external child cylinders is modelled as a blossom 
(the corresponding external child cylinders are dropped). Finally, in the fourth 
figure each blossom gives rise to a fruit. 

As before with Tables 2.2 and 2.4, Table 3.5 shows the first figure from 
Table 3.4 from various viewpoints. 

Since we are now using random split trees, we can now generate different 
individuals of a particular species for a particular size. For example, Table 3.6 
shows four different apple trees, each with 1000 internal nodes. 
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no leaves leaves 

leaves and blossoms leaves and fruit 

Table 3.4: The life of an apple tree. 

0 
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top left 

bottom right 

Table 3.5: Various view points of an apple tree. 

0 
Table 3.6: A series of 11random" apple trees. 
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3.3.2 White oak 

White oak trees are commonly found in Montreal as popular landscaping trees. 
The first figure in Table 3. 7 shows the result of our model being parameterized 
according to Table 3.1. The radius and length constants were derived from 
measurements taken from a white oak tree outside the McConnell Engineering 
building at McGill University in the spring of 1996. We have observed that in 
many small white oak trees the main branch is often shorter than its sibling 
branch. We model this by setting C£2 < 1 in our length function. For example, 
the second figure in Table 3. 7 shows the result of C£2 = 0.25. In this figure, we 
note that the secondary branches spread out too far and in real white oak trees 
that the branches tend to bend towards the sky. We simulate this heliotropism 
by deflecting the axis of each geometric cylinder by a vector c[O, 1, OJ where c 
is a constant. The third figure shows the result of our simulated tropism. 
Finally, the fourth figure shows the result of modelling each external cylinder 
as a simple oak leaf. 
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basic tree changed power law 

with heliotropism with leaves 

Table 3. 7: An increasingly more realistic looking white oak tree. 

0 
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3.3.3 White fir 

We are unsure how researchers such as LEOPOLD (1971) calculated the HORTON­
STRAHLER orders for white firs since these trees are rarely binary trees. Rather, 
they are ternary trees, that is, a node u has three children: one main node VI 

and two secondary nodes v2 , v3 (e.g., see Figure 3.5). 

fu) 

~ 
/ ~~ ' 

0 8J 'B 
Figure 3.5: A ternary tree. 

We propose the following extension of our model to include these trees. 
The first problem is to generate a ternary combinatorial tree which maintains 
the correct bifurcation ratio. Let X be distributed as binomial(n,p) where 
p:::; ~ (here p = 1/4.8). For a node u such that lul = n ~ 1, we propose the 
following. Let lv31 =X; lv2l = max (lv31-1, 0); and lv1l = n- 1 -lv21-lv31· 

We now alter our geometric modelling functions in the appropriate way. 
We use results from MURRAY (1926B) for cylinder radi1-2 as: 

The length function remains unchanged. 
For fir trees, we suppose that the three sibling cylinders are coplanar with 

the main cylinder v3 in between the other two v1 and v2 • That is, 8(v3) = 0. 
For vi and V2, 

e( ·) = (R(J..t)- R(vi)) 
v~ ce R(p) , 

where ee = 90. The first figure in Table 3.8 shows a rendering of a white fir 
tree with 1000 nodes. The second figure shows the result of rendering each 
cylinder with its needles. · 

2Cf. For another species of conifer, the Scots pine, PERRTUNEN ET AL. (1996) also used 
this formula but with exponent 2 rather than 3. 
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a simple fir tree with needles 

Table 3.8: An increasingly more realistic looking white fir tree. 

3.3.4 Sugar maple 

Sugar maples are deciduous ternary trees. We model them in a similar way 
to white firs. However, although all three child buds begin their development 
coplanar, for larger branches the three child axes are not coplanar. Instead, for 
our purposes each child plane differs from the parent plane II~t by divergence 
angle 36t = 120°. We modify the deviation angle in the following way: 

8 ( ·) = (R(p,)- R(vi)) 
v~ ea R(p,) , 

where ea = 90. 
STEINGRAEBER ET AL. (1979) reported that the ratio changes consid­

erably for sugar maples depending on whether they grow in the open ground 
(R = 7.05) or in a shady forest (R = 3.19) (cf. WHITNEY 1976). Table 3.9 
shows two trees which differ only in bifurcation ratio. 

Furthermore, STEINGRAEBER (1982) reported that theRm for sugar maples 
varied significantly in the lower orders and thus are partial exceptions to Hor­
ton's first law. That is, order ratios Rt, R2 and R3 differ for the leader shoots 
and the lower branches. For i > 3, ~ do not differ greatly. 

We can interpret these results in the following combinatorial way. The dis­
tribution of the splitting variable is a function of the node's depth and subtree 
size. Since p = 1/ R, and R seems to increase with depth for nodes of a certain 
size, we propose the following possible "parameterization" of STEINGRAEBER's 
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grown in forest grown on open ground 

Table 3.9: Different bifurcation ratios. 

observation. Figure 3.6 shows a tree based on varying bifurcation ratio such 
that the split variable X for node u is distributed as binomial(lul,p(u)) where 

{ 

1 

p(u) = m 1 
3.19+log(d(u)) 

if !ui > 100; 
otherwise. 

According to KOIKE (1990), "[l]ittle is known about the relationship be­
tween growth characteristics of deciduous broad-leaved trees and their pattern 
of autumn coloring." KOIKE ( 1987) reported that for another maple Acer 
mono that the autumn colouring of the leaves began at the outer part of the 
tree crown. In Figure 3. 7, we make the leaf colour a function of combina­
torial depth such that the leaves become lighter in colour the deeper their 
corresponding external nodes are located in the combinatorial tree. 
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Figure 3.6: Bifurcation ratio as a function of depth and subtree size. 

Figure 3. 7: Leaf colour as function of depth. 

0 
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Chapter 4 

Related work 

In Chapter 2 we laid out our basic model together with our general parame­
terization. In Chapter 3 we showed how to use the probabilistic trie model as 
a combinatorial model of several species of botanical trees. In this chapter, we 
review previous techniques for visually simulating botanical trees. We divide 
the previous work into two basic categories: simple and complex geometric 
models. In a simple geometric model the general silhouette of the botanical 
tree is modelled as a single geometric object. In a complex geometric model 
individual branch segments are modelled as cylindrical geometric objects. For 
example, our basic model is a complex geometric model. In fact, we hope to 
show that many of the previous techniques can be viewed as special cases of 
our general model. 

4.1 Simple Geometric Models 

Simple geometric models have the chief advantage of being computationally 
simple (and therefore fast) and are accordingly used in many real-time ap­
plications such as flight simulation where impressionistic painting-like images 
suffice. That is, when viewed from a distance a simple representation is often 
sufficient. 

4.1.1 Billboarding 

For our purposes, a billboard is a two dimensional geometric tree usually in the 
shape of a simple polygonal (e.g., a triangle for a conifer) that is rendered using 
texture mapping to appear as a painting of a botanical tree. This billboard 
is made three dimensional (more properly two and one half dimensional) by 
always rotating it around a fixed vertical axis so that it always faces the viewer 
(e.g., PITT 1995; RATZER 1995). This technique is so popular that computer 
graphics vendors such as Silicon Graphics now include built-in billboarding 

47 
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functions (e.g., pfBillboard described on p. 386 of RoHLF AND HELMAN 
1994). 

4.1.2 Textured quadratic surfaces 

G ARDNER ( 1984) makes this technique fully three dimensional by taking 
quadratic surfaces such as ellipsoids (e.g., see NOTE 394 of Chapter 2.2) and 
"painting" them to resemble botanical trees. By adding a mixture of natural 
light and transparency textures, he produces trees that appear realistic when 
viewed from a great distance such as from an aircraft. 

4.2 Complex Geometric Models 

As already mentioned, a complex geometric tree is a two or three dimensional 
object consisting of cylinders which represent individual branch segments. We 
now describe previous techniques to produce combinatorial trees and their 
modelling functions. 

4.2.1 Handcrafted trees 

Computer aided design (CAD) systems provide a convenient method for con­
structing geometric trees (e.g., HOINKES 1995). The trunk of the geometric 
tree consists of a cylinder created by the designer using the CAD system who 
then creates the corresponding child cylinders that are connected to the par­
ent cylinder in a manner that is pleasing to the designer's eye. Obviously, this 
technique severely limits the number of cylinders in a particular tree as well 
as the overall number of possible geometric trees actually produced. 

4.2.2 Fractal techniques 

Simple fractals 

In 1957, BosMAN described how to draw tree-like shapes called Pythagoras 
trees by using a compass, a straight-edge and a drafting board. 1 The construc­
tion is as follows. First, draw a square o and attach a right-sided triangle 
(whence the name Pythagoras tree) to the top of the square t:J so that the hy­
potenuse borders the square. Now, take the remaining two sides of the triangle 
and attach two separate squares IT . Repeat the above process on the two new 
squares. Continue the entire construction in parallel until either the figures 
are too small to be seen or the pencil wears out (e.g., see Figure 4.1). Now of 

1This is also described on pp. 67-74 of (LAUWERIER 1991) and on pp. 126-131 of (PEIT­
GEN ET AL. 1992). 
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Figure 4.1: A Pythagoras tree with twelve levels (BosMAN 1957). 

Figure 4.2: A non-isosceles Pythagoras tree (BoSMAN 1957). 

course as Figure 4.2 shows, the triangle does not necessarily have to be isosce­
les. Flipping the angles of the triangle at every even level (e.g., see Figure 4.3) 
produces the surprising result that trees which have seemingly different ap­
pearances (such as the bush-like Figure 4.2 and the pine-like Figure 4.3) have 
very similar underlying structures. Figure 4.4 shows how non-right-sided 
isosceles triangles produce broccoli-like trees. LAUWERIER (1991) random­
izes the angles by perturbing them slightly to produce more realistic looking 
trees. 
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Figure 4.3: The previous tree now perturbed by flipping angles (BosMAN 1957). 

Figure 4.4: A broccoli-like Pythagoras tree (PEITGEN ET AL. 1992). 

0 
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A pythagoras tree is an example of a fractal. In 1977, MANDELBROT coined 
the term "fractal" to refer to a geometric object which consists of identical pat­
terns that repeat themselves on an ever-reducing scale, i.e., "a shape made of 
parts similar to the whole in some way" (MANDELBROT 1977B; MANDELBROT 

1982). For example, Figure 4.5 is constructed by starting with an initial I 

Figure 4.5: A simple fractal tree (Mandelbrot 1977b). 

branch. Two scaled copies are added to the end of the parent to form children 
branches. Under infinite recursion, all fractals share the characteristic that at 
whatever level it is examined, the viewed portion has a similar appearance, i.e. 
every part (no matter how small) is representative of the whole. 

Fractals have been enormously popular in modelling natural phenomena 
such as trees. Figure 4.6 shows a space filling tree based on I; the fractal 

Figure 4.6: A space filling tree intended to model the lung {MANDELBROT 1982). 

grows to fill in the entire rectangle. 2 Such a fractal has been thought to model 
the space filling capacities of the lung (e.g., see pp. 140-150 of MACDONALD 

1983). FUrthermore, the two-dimensional version has been used to describe 
the layout of certain leaves. 

2N .B. For example, according to our definition the H-tree drawings in VLSI layout of 
MEAD AND REM (1979) and LEISERSON (1980) are classified as fractals. 
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McGUIRE (1991) provides a graphic and photographic essay about the 
relationship between fractals and nature which presents breath-taking pho­
tographs of fractal-like structures such as trees. 

Complete combinatorial trees 

Simple inspection of the renderings from Figures 4.1 to 4.6 reveals that in 
each case that the underlying combinatorial tree is a complete tree (e.g., 

) on k levels with 2k - 1 internal nodes and 2k external nodes. 
For example, the two dimensional rendering in Figure 4.6 can essentially be 
described as a complete tree T with k = 10 that is interpretated under the 
following modelling functions: 

and 

L(p,) = rf(u), 

R(p,) = r~(u), 

e(p,) = ee, 

a(p,) = Ca, 

where rL = rR = 0.686 (the scaling ratios), ce = 90° and ea= oo are constants. 

Honda 

In 1971, HONDA was the first to use computers to generate images of botanical 
trees. Under the rubric of geometric trees, HONDA's simplest model can be 
described in the following way. 3 The underlying combinatorial tree T is a 
complete tree with k levels. For each pair of sibling nodes v, wET, one (say 
v) is deemed the main child node (i.e., the continuation of the parent) and 
the other (say w) is deemed the secondary child node (i.e., an offshoot of the 
parent). Let m(u) be the number of main nodes on the path from the root of 
T to node u (the root is a main node). Let s(u) be the number of secondary 
nodes on the path from the root to u. Thus, d(u) = m(u) + s(u). Each node 
u E T is modelled as a cylinder p, in the geometric tree 7 according to the 
following functions: 

if u is a main node, 
if u is a secondary node, 

3 As already noted in Chapter 2.1.2, HONDA's model has had a fundamental influence on 
almost all complex geometric models including our own. 
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and 

where cL, 1 2:: rtm 2:: rLs 2:: 0, CR = 0, Cem ::; ce. are constants. For example, 
Figure 4.7 shows a rendering of a tree parameterized as k = 9, rLm = rL. = 
0.85, Cem = 16.7°, and ee. = 33.3°. Figure 4.8 shows a projection of this tree 

Figure 4. 7: A simple botanical tree {HONDA 1971). 

onto the horizontal plane. 

Figure 4.8: The previous figure viewed from above (HoNDA 1971). 

Strict monopodia] branching can be modelled by letting cem = oo. For 
example, Figure 4.9 shows an rendering of a tree parameterizes as k = 9, 
rLm = 0.9, rL. = 0.8 and ce. = 45°. 
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Figure 4.9: A monopodia] tree {HONDA 1971). 

Aono and Kunii 

AONO AND KUNII (1984) developed HoNDA's work by introducting of cylin­
der radii and tropisms (environmental influences). They presented four differ­
ent geometric models (GMT). GMTl is a basic model, similar to HoNDA's (e.g., 
a(J-t) 140°) however A-systems4 are used to generate the combinatorial trees 
and the cylinders have non-zero radii, i.e., 

R(J-t) = cRr~u)r~~u), 

where rRm ~ rR
8 

are constants. For example, Figure 4.10 shows a rendering 
based on GMTl parameterized as k = 9. 

GMT2 is an extension of GMT1 with the addition of various tropisms: wind, 
sunlight and gravity. That is, branch positions are influenced by various at­
tractors which simulate various tropisms. In addition, branch positions are 
now slightly randomized. 

GMT3 is the ternary version of GMTl. Each internal cylinder 11 now has 
three child cylinders, one main child and two secondary children (placed on 
opposite sides of 11's axis in plane IIJ.t). Accordingly, the underlying combina­
torial tree is now a complete ternary tree on k levels with 3k-l 1 internal 
nodes and 3k-I external nodes. For example, Figure 4.11 shows a rendering of 
GMT3 parameterized as k 9, rLm = 0.9, rL. = 0.6, cem = 0° and ce. = 60°. 
Figure 4.12 shows the previous figure from above. 

DA VINCI, among others (e.g., see NOTE 403 in Chapter 2.2), remarked 
that the deviation angle in botanical trees typically decreases higher up in the 
tree. Thus, under our general geometric model, 

8(J-t) = f(d(u)) 
4 A-systems are essentially parametric L-systems. 
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Figure 4.10: An example of GMT1 (AONO AND KUNII 1984). 

Figure 4.11: An example of GMT3 (AONO AND KUNII 1984). 

0 
Figure 4.12: The previous figure viewed from above (AONO AND KUNII 1984). 
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where f(x) is a decreasing function. GMT4 (e.g., see Figure 4.13) implements 
this for secondary nodes u as 

8(~-t) = rnax(llO- 20 * d(u), Ot. 

Figure 4.13: An example of GMT4 (AONO AND KUNII 1984). 

Oppenheimer 

The basic method of OPPENHEIMER (1986) can be seen as an extension of 
GMT3 from AONO AND KUNII (1984) where TL= = 0.8, TLs = 0.4, Ce= = 0° 
and ces = 60°. OPPENHEIMER creates realistic-looking twisted and gnarled 
branches by carefully pruning branch segments. That is, for a particular sec­
tion of the tree, the side branches are removed to leave only the stern. 

For consistency we view pruning as an action on the underlying combinato­
rial tree. Let T be a chain of nodes as defined in Chapter 3.1.1. By rendering 
only the corresponding internal cylinders in 7, OPPENHEIMER generates four 
different effects (e.g., see Table 4.1). A tapered cylinder results from c9 = = oo 
and a(p,) = 0°; a Spiral results from Cem =/= 0° and a(p,) = 0°; a helix results 
from c9 m =f:. 0° and a(t-t) =/= oo. Finally a "squiggle" results from randomly 
choosing between a tapered cylinder, a spiral, and a helix for each node in the 
chain.5 

A random instance of a particular "species" is generated by slightly ran­
dornizing the parameters of the DNA (cf. REEVES AND BLAU 1985). There­
fore, since the underlying topology is never changed, these are not stochastic 

5 Although seemingly unaware of the fractal nature of his work, KAWAGUCHI (1982) 
essentially uses fractal techniques (e.g., cf. BOSMAN 1957) to simulate the growth of shells, 
horns, tusks, and spiral plants (cf. THOMPSON 1942). 
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tapered cylinder helix "squiggle" 

Table 4.1: Progressively more and more twisted branches (OPPENHEIMER 1986). 

fractals. Each instantiation of a particular species has the same topology; dif­
ferent trees are the result of different geometric interpretations. So rather than 
being strictly self-similar, the trees are statistically self-similar. 

Realistic-looking bark is textured mapped from sawtooth waves modulated 
by Brownian fractal noise to form squiggly waves (cf. BLOOMENTHAL 1985) 
so that when closely examined, the bark resembles a series of mountain ranges 
viewed from an airplane. 

L-systems 

In 1968, LINDENMAYER developed string rewriting grammars called L-systems 
to model plant growth mathematically. For our purposes, a grammar G (e.g., 
see LINZ 1990 for a more formal and general explanation) is defined as a 
quadruple 

G= (S,P,I,N) 

where S is a set of objects called symbols, P is a finite ordered set of produc­
tions, I is the initial string (a string is an ordered set of symbols), and N is 
the limit on the number of iterations (during which a string is rewritten). An 
L-system is a string rewriting grammar in which all symbols of the string are 
replaced at the same time (during the same iteration).6 

For example, suppose that S ={A}, P ={PI: A->AA}, and I= A. During 
the first iteration the production PI rewrites instances of string A in I as AA. 
Thus after the first iteration, I is rewritten by output string OI = AA. After the 
second iteration 0 1 is rewritten as output string 0 2 = AAAA. After iteration 
i, Oi consists of a string of 2i A's. The rewriting terminates after the Nth 
iteration. 

Suppose that S = {A,B,C}, P = {p1 : A->B; p2 : B->AC}, and I = A. 
During the first iteration the symbol A is rewritten by symbol B according to 
production P1 to result in output string 0 1 = B. During the second iteration 

6 N.B. This parallelism is felt to more closely reflect how plants grow. 
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each symbol in string 0 1 is replaced according to a production rule and thus 
0 1 is replaced by string 0 2 = AC. A third iteration results in 03 = BC. We 
note that symbol C is rewritten since there is no production rule which matches 
it. As in the first example, string rewriting is terminated after iteration N. 

PRUSINKIEWICZ AND LINDENMAYER (1990) provided a detailed survey 
and explanation of the use of L-systems for modelling plants (see PRUSINKIE­
WICZ ET AL. 1996 for an updated report). The elegance ofL-systems becomes 
apparent when the strings are interpreted as drawings. PRUSINKIEWICZ AND 
LINDENMAYER (1990) (see also SMITH 1984 who did this implicitly) used 
the following system turtle interpretation of strings (e.g., see ABELSON AND 
DISESSA 1982): 

• F move forward and draw a line of length d, 

• + turn the turtle to the left by angle (), 

• - turn the turtle to the right by angle(), 

where d and () are constants. The additional symbols 

• [ save current graphics state, 

• ] restore previous graphics state, 

form bracketed OL-systems (cf. AONO AND KUNII 1984 who do this implicitly 
and cf. LEOPOLD 1971 whose simulation technique is essentially grammar­
based). 

Under this scheme, S = {F, +, -, [,] }. Suppose, for example, 

P = {Pl : F ~ FF-[-F+F+F]+(+F-F-F]} 

and I= F. After the first iteration, we have the string FF- [-F+F+F] + [ +F-F-F] 
which under turtle graphic interpretation looks like Y. Figure 4.14 shows the 
result of five iterations. This style of production is called an edge-rewriting 
system. 

Typically each iteration grows the combinatorial tree one additional level. 
As Figure 4.15 shows, drawings of successive iterations can be used to form 
an animation of plant growth (see also SMITH 1984; NIKLAS 1986; PRUSIN­
KIEWICZ ET AL. 1988; DE REFFYE ET AL. 1988; PRUSINKIEWICZ ET AL. 
1993). As a biological necessity the filming of actual plant's growth must take 
place over a long period of time during which many environmental factors may 
interfere. The use of artificial animation according to accurate development 
models avoids these problems. 
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Figure 4.14: An example of an L-system under turtle interpretation (0 = 22.5° ). 

By using an intermediary symbol, say X, a node-rewriting system is cre­
ated (e.g. S = {F, +, -, [,],X}. For example, Figure 4.16 shows the grammar 
starting with string I = X and production rules 

P = {PI : X -+ F [+X] [-X] FX; P2 : F -t FF}. 

An advantage of node-rewriting systems is that the branches can have variable 
lengths in a manner similar to HONDA. 

SMITH ( 1984) calls these images created by L-systems graftals as they are 
fractal-like but strictly speaking they are not fractals (e.g., see pp. 152-3 of 
MANDELBROT 1982). Smith also introduces the important idea of database 
amplification, i.e., the ability to generate complex images from small databases 
(collections of rules). This characteristic is considered very important by many 
researchers (e.g., BLOOMENTHAL 1985; REEVES AND BLAU 1985; 0PPEN­
HEIMER 1986; PRUSINKIEWICZ AND LINDENMAYER 1990). 

Finally, the assignment of probabilities to the production rules introduces a 
specific kind of randomness into L-systems. For example, Figure 4.17 shows a 
series of branching structures produced by the same stochastic L-system where 

P = {Pl: F~F[+F]F[-F]F; P2: F
0

'
3
'\F[+F]F; P3: F 0

'
3'\F[-FJF}. 

That is, production P1 is applied to string F with probability 0.33. 
The extension of L-systems to parametric £-systems by PRUSINKIEWICZ 

AND HANAN {1990) renders L-systems as a complete programming language. 
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f 
N=l· N=2 N=3 N=4 N=5 

Figure 4.15: Using L-systems to animate plant growth {PRUSINKIEWICZ AND 

LINDENMAYER 1990). 
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Figure 4.16: An example of node-rewriting (N = 61 0 = 25.7°) (PRUSINKIEWICZ 

AND LINDENMAYER 1990). 

Figure 4.17: An example of stochastic L-systems (PRUSINKIEWICZ AND 

LINDENMAYER 1990 ). 
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That is, if a standard L-system can be thought of as a simple recursive program, 
then a parametric L-system can be thought of as a recursive program which 
allows parameter passing. For example, the symbol F(a) now means step 
forward a distance of length a. This is a very powerful extension. For example, 
the models of AONO AND KUNII (1984) and REEVES AND BLAU (1985) can 
now be modelled by L-systems (e.g., 0RTH 1993). 

4.2.3 Particle systems 

REEVES AND BLAU (1985) utilized particle systems to create large, complex 
landscapes populated by various species of trees. Under their model, each tree 
starts as a single particle which carves out the trunk. Each particle moves in a 
fixed direction, velocity and direction, etc., according to a set of stochastic laws 
based upon the modelled species. After a particle dies, it gives birth to new 

Figure 4.18: A simple 2D particle system (REEVES AND BLAU 1985). 

particles which may inherit all or only some of its characteristics. Overall tree 
shape, either triangular or elliptic, is controlled by carefully choosing particle 
movement. Each particle is seen to be the base of its own tree. REEVES AND 

BLAU (1985) produced one of the most complete and comprehensive uses of 
randomization: including a fully randomized particle system, planting follows 
a random distribution according to terrain (e.g., evergreen are more likely than 
populars to be on hills) and the branching patterns (e.g., length, width, angles) 
are taken from distributions of real trees. 

GREEN AND SUN (1988) created a special language for procedural mod­
elling and motion. For example, with this new language they implemented a 
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particle system for tree drawing; they draw the trees and then add tropisms 
such as wind to form an animation of a tree swaying back and forth in the 
wind. 

ORTH (1993) compared particle systems and L-systems with regards to 
tree and grass drawing and concluded that ultimately the differences between 
them are more syntatic than semantic. 

WEBER AND PENN (1995) provided a particle system-like method for 
rendering realistic images at any distance in real-time. They followed REEVES 
AND BLAU but specified for a much wider variety of plants. Furthermore, the 
recursive structure need not remain constant, i.e., it can change with levels. 
This is akin to the changing distributions in Chapter 2.5.5. 

4.2.4 Combinatorial methods 

As already mentioned in the introduction from Chapter 1, we are not the first 
to use combinatorial trees to generate images of botanical trees. 

Ramification matrices 

VIENNOT ET AL. (1989) were the first to use the HORTON-8TRAHLER number 
to draw botanical trees.7 VIENNOT ET AL. used the following analogy of flow 
in a river and sap flow in a tree. As there is a relationship between the size 
of a river segment and its corresponding HoRTON-STRAHLER value in the 
rivers underlying binary tree, VIENNOT ET AL. took binary trees and used 
HORTON-STRAHLER orders as a gauge of sap flow to determine branch layout. 
What separates this technique from previous ones is the ability to separate 
shape from development, i.e., direct control over the combinatorial tree. This 
control is provided by a ramification matrix which is used to generate the 
underlying combinatorial tree. The underlying combinatorial tree is generated 
in the following way. As each node with HORTON-STRAHLER order k has hi­
order either ( k, j) when k > j or (k - 1, k - 1). Let Pi,J be the probability of 
a node with order k having hi-order (i,j). For example, consider the matrix 

0.4 0.6 
0.2 0.3 0.5 
0.1 0.2 0.3 0.4 
0.05 0.1 0.2 0.3 0.35 
0.025 0.05 0.1 0.2 0.3 0.325 

Starting at the root node with order k, one uses the above matrix to randomly 
select its hi-order ( i, j) (and thus generate the root's corresponding children 

7This is also reported in EYROLLES (1986), VIENNOT (1990), LE MEHAUTE (1991) and 
ALONSO AND SCHOTT (1995). 
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nodes with orders i and j). One recurses on these children until the nodes with 
order one (i.e., the external nodes) are reached. By shuffling matrices together 
(e.g., by swapping rows), hybrid combinatorial trees can be generated (cf. the 
varying distribution technique from Chapter 2.5.5 and WEBER AND PENN 

1995). 
These combinatorial trees are modelled as geometric trees according to the 

following functions. For cylinder J.L corresponding to node u with order S(u), 
the length function is 

and the radius function is 

where cL, cR1 , and cR2 are constants. The deviation angle for cylinder v with 
sibling cylinder w and parent cylinder J.L is: 

{
~ 

Ce,. S(v)-1' 
8(v) = C S(w)-S(v) 

e. S(w)-1 ' 

ce,, 

if S(v) > S(w); 

if S(v) < S(w); 
if S(v) = S(w); 

where cem, ce. and ce 1 (the forking angle) are constants typically 10°, 30°, 
and 30° respectively. As these geometric trees are two dimensional, a(J.L) = 
0°. For example, Figure 4.19 shows a drawing of a tree (generated by the 
above ramification matrix) whose root has HORTON-STRAHLER order six. By 
drawing the child cylinders as rectangles that touch along the sides rather than 
along the axis, they are able to fill in the resulting notches with small triangles 
'«. 
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Figure 4.19: A binary tree drawn according to tbe HORTON-STRAHLER number 
{VIENNOT ET AL. 1989). 
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Random binary trees 

As already shown in Chapter 2.5.2, a ramification matrix is not the only way to 
generate random combinatorial trees. Probabilistic analysis techniques (e.g., 
see DEVROYE 1994 or MAHMOUD 1992) provide algorithms for randomly 
generating many distributions of computer science trees (e.g., binary search 
trees, tries and PATRICIA trees). KRUSZEWSKI (1994) used these algorithms 
to generate random binary trees and then applied the modelling rules from 
VIENNOT ET AL. to produce geometric trees (see also KRUSZEWSKI 1993).8 

For example, one way of generating a random binary search tree is to use ran­
dom split trees such that X is a a [0, 1 ]-value uniform random. Similarly, as 
already discussed in Chapter 3, random PATRICIAs follow the binomial distri­
bution. 

Once T has been generated, the HORTON-STRAHLER orders are recursively 
calculated. Finally, T is traversed in preorder during which the corresponding 
geometric tree is created from the modelling rule of VIENNOT ET AL. For 
example, Figure 4.20 shows a rendering of a random binary search with 500 
internal nodes. Figures 4.20 and 4.19 are similar in appearance because the 
ramification matrix used to generate Figure 4.19 was based on experimen­
tal HORTON-STRAHLER orders for random binary search trees and the same 
modelling rules were applied. 

DEVROYE AND KRUSZEWSKI (1995) generalize the technique by KRU­
SZEWSKI (1994) both combinatorially and geometrically. They introduced 
the beta trees which we used in 2.5.2. In terms of modelling functions, DE­
VROYE AND KRUSZEWSKI ( 1995) can be seen as the most general technique, 
since any function is now permissible, particularly, functions based on subtree 
size. This strategy arises from the results in probabilistic analysis (e.g., DE­
VROYE AND KRUSZEWSKI 1994 and DEVROYE AND KRUSZEWSKI 1996) that 
for many families of random binary trees, the expected HORTON-STRAHLER 
number is logarithmic with respect to the number of nodes in the tree. Thus, 
DEVROYE AND KRUSZEWSKI (1995) proposed to use clog !ui as a replace­
ment for S(u). Experimentation showed that the resthetically most pleasing 
results for length and radius functions are 

and 
R(p,) =eR~· 

However as Table 4.2 shows, many length and radius functions are possible 
(note: in the bottom row, the radius function is fixed). 

8N.B. ARQUES ET AL. (1991) also visualized random tries with these modelling rules, 
however, the combinatorial trees were generated according to a technique by FLAJOLET 

ET AL. (1985). 
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Figure 4.20: A random binary search tree with 500 internal nodes (KRUSZEWSKI 

1994). 
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L(J-t) =CL log lul 
R(J-t) = CR log lul 
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L(J-t) =cL log lul 
R(J-t) = CR~ 

L(J-t) =cL/ log lul 
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L(J-t) =CL~ 
R(J-t) = cRlog lul 

L(J-t) = cL/d(u) L(J-t) =eLl sin lull 

Table 4.2: Various length and radius functions for the same tree {DEVROYE AND 

KRUSZEWSKI 1995 ). 
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As with the length and radius functions, any deviation function is possible. 
For example, the first figure in Table 4.3 shows the effect of the following 
function for cylinder v 

{ 

Cem, if lvl > lwl; 
e(v) = ee., ~f lvl < lwl; 

ce1 , If lvl = lwl; 

where cem, ce. and ce 1 (the forking angle) are constants typically 10°, 25°, 
and 30° respectively. This function is clearly inspired by the one by VIENNOT 
ET AL. The second figure shows the following choice of deviation angle 

23° 
8(M) = d(u) 

which is similar to GMT4 from AONO AND KUNII (1984). However, DEVROYE 
AND KRUSZEWSKI (1995) find the following ratio (based on Da Vinci's NOTE 
396) produces the most pleasing results 

lwl 
e(v) = lvl + lwl' 

This can be seen as an intuitive version of Murray's deviation angle function 
described in Chapter 2.3.3. 

27° 
(d(v)+l) 

Table 4.3: Various deviation angle functions for the same tree (DEVROYE AND 

KRUSZEWSKI 1995). 

This technique has the advantage over the original one by VIENNOT ET AL. 
(1989) in that the HORTON-STRAHLER number distribution need not bees­
tablished before generating the tree. KRUSZEWSKI ( 1993) avoided notches 
completely by drawing the branches as quadrilaterals whose bases are attached 
directly to the tops of the corresponding parents 'ff . KRUSZEWSKI (1994) 
padded the joint between the parent-child quadrilateral pair with Bezier curves 
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for smoother branches 'If . However, whereas VIENNOT ET AL. have exact 
control over the tree order, KRUSZEWSKI has exact control over the number 
of branches. VIENNOT ET AL. can generate the tree in one pass whereas 
KRUSZEWSKI must first construct the tree in order to calculate the HORTON­

STRAHLER numbering and then draw the tree, thus requiring two passes. 
As this is a two dimensional model, a(p,) = oo. Three dimensionality is 

simulated by multiplying 8(p,) by cos(2nU) where U is a uniform random 
variable (e.g., see Figure 4.21). 

Figure 4.21: A simulated 3D tree (DEVROYE AND KRUSZEWSKI 1995). 

Tropism is the property by which an organism turns in a certain direction 
in response to external stimulus. In plants, this stimulus is primarily the 
sun and hence heliotropism has been incorporated into many models (e.g., 
CHIBA ET AL. 1994). We simulate heliotropism according to sun position 
and intensity. With respect to intensity, we use the admittedly naive idea that 
the larger the branch the more light it receives over its lifetime and thus the 
more it reacts by changing its angle. That is, for node u after Ou is determined, 
Ou is multiplied by an intensity factor (based on lul) which pulls branch u 
closer to the sun. In Table 4.4, we take the beta(1,5) tree with 500 nodes and 
subject it to increasing sun intensity with the sun directly overhead. However, 
as Table 4.4 shows, we neglect to consider that leaves tend to spread out to 
maximize coverage. 

Wind is also an important environmental factor. Both VIENNOT ET AL. 

1989 and KRUSZEWSKI (1994) simulate wind by changing the underlying 
structure; the former always flips the larger branch to one side while the latter 
uses asymmetric tries. As Table 4.5 shows, by placing the sun directly overhead 
(i.e., perpendicular to the ground) and inverting the intensity function (i.e., 
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Table 4.4: A tree under increasingly intense sun (DEVROYE AND KRUSZEWSKI 

1995). 

larger branches should bend less than smaller ones), wind can be reasonably 
simulated. 

Table 4.5: A tree under increasingly intense wind (DEVROYE AND KRUSZEWSKI 

1995). 

Finally, if we set the wind to blow from above, we can simulate the effect 
of droughts or flexible branches such as those found in weeping willows. 
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Figure 4.22: A weeping wiliow (DEVROYE AND KRUSZEWSKI 1995). 

4.2.5 Branching processes 

Split trees are not the only way to generate combinatorial trees: branching 
processes are another (e.g., see DEVROYE 1994). For our purposes, we limit 
our definition of a branching process to the following. A node gives birth to 
a number of children according to a fixed probability distribution where Pi is 
the probability of giving birth to exactly i children (all nodes follow the same 
distribution). Thus, Po + P1 + P2 = 1 and Pi = 0 for all i > 2. We start with 
a single node-the root, the first generation and let it reproduce. We then let 
the nodes of the second generation (the nodes at depth two) to reproduce. If 
p2 = 1, then an infinite tree is produced such that if we stop after k generations, 
a complete tree with exactly 2k 1 nodes results. If the expected number of 
children per node m = p1 + 2p2 < 1 then the branching process dies out with 
probability one and if m > 1 it will live forever. Hence, the necessity to limit 
the branching process to k generations. 

Computer-simulated plant evolution 

NIKLAS (1986) used genetic-like algorithms to model the evolution of plants 
based on fossils (see also NIKLAS AND KERCHNER 1984; cf. MACKENZIE 

1993 who used L-systems to model plant evolution). As an evolutionary bi­
ologist, he desired to test various theories of plant development. Although 
computer simulations do not "prove" theories in the sense of a rigorous math­
ematical proof, they do facilitate the hypothetic-deductive method. That is, 
once a hypothesis is formed, its consequences are deduced and compared with 
the observed phenomena. If they are similar, the hypothesis is said to be 
"confirmed." As an unexpected bonus, his incremental growth model allows 
the creation of animations of the growth of plants which have been extinct for 
millions of years. 
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NIKLAS started with a simple plant model based on HONDA ( 1971) and 
parameterized it to correspond to a fossil approximately 410 million years 
old. There are three parameters: deviation angle, divergence angle and P2 the 
probability of giving birth to exactly two children. The first two parameters 
correspond to those in HoNDA. Growth is terminated after k = 10 generations. 
Finally, L(JL) =cL and R(J-t) =cR. 

For each simulation he began with one plant and by generating random 
variations on the values of the three parameters, he produced a series of "mu­
tations." He calculated the amount of sunlight each plant received and allowed 
the one plant which received the most sunlight to reproduce again (leaving the 
others to die out). By starting with a plant based on a fossil approximately 
410 million years old, the sequence of plants generated by these simulations 
resemble actual fossils over a 60 million year period. 

Stochastic Modelling 

As the title Plant Models Faithful to Botanical Structure and Development 
suggests, DE REFFYE ET AL. (1988) tried to model plant growth as accu­
rately as possible. With the goal of creating a simulation tool for agronomy 
and botany researchers, they tried to incorporate as much current biological 
information from these fields as possible (e.g., see HALLE ET AL. 1978). For 
example, they modelled seasonal tree-aging and the effects of the physical world 
such as wind, pestilence, fertilizer. Plant simulation is based on stochastic bud 
metamorphisms (thereby allowing such events as producing fruit and aging). 
The simulation starts with a single bud. At each time unit, each existing bud 
can undergo one of the following transformations: 

• become a flower and die (and thus disappear); 

• become dormant; 

• become an internode (a branch with one or more new buds); 

• simply die (and disappear). 

These events occur with probabilities based on known stochastic laws for each 
species. Furthermore, the geometric parameters for the branch layout, such 
as length, width, deviation and divergence angles, are calculated according to 
specific and known stochastic laws (cf. REEVES AND BLAU 1985). The bend­
ing of branches by gravity is simulated according to known material strength 
laws (e.g., McMAHON AND KRONAUER 1976; MATTHECK 1991). It should 
be noted that this approach to tropisms is much more sophisticated than the 
approaches such as AoNo AND KuNn (1984) where simple attractors are 
used. 
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4.2.6 Environmental Modelling 

PRUSINKIEWICZ (1993) divided visual plant models into two types: structure­
oriented and space-oriented. In a structure-oriented model, a plant grows 
according to specific rules which do not directly take the environment into ac­
count. For example, most of the models presented in the chapter, along with 
our own model, are structure-oriented. In a space-oriented model, the environ­
ment surrounding the plant takes on importance in its development. Thus, for 
structure-oriented models tropisms are seen to influence the final arrangement 
of the geometric cylinders while for space-oriented models, tropisms directly 
affect and determine the underlying combinatorial trees. Indeed, it is difficult 
to separate the combinatorial from the geometric trees. Finally, we note that 
since this method implies relatively sophisticated simulations, we restrict our 
attention to only visual plant models. Consequently, we ignore biologically 
intricate work such as the LIGNUM model by PERRTUNEN ET AL. (1996). 

Voxel space automata 

GREENE (1989) used volume elements called voxels to generate realistic­
looking vegetation that is capable of reacting to its environment~ Voxels allow 
efficient ray-casting which in turn allows a simple method of determining how 
much light hits an object. In terms of plants, this allows sophisticated simu­
lation of heliotropism. Via various growth rules, heliotropism allow vines to 
creep over three dimensional surfaces such as walls and houses. 

L-systems 

PRUSINKIEWICZ ET AL. (1994) introduced an "environmentally-sensitive" 
extension to 1-systems in which a plant can grow within the limits of a geo­
metric shape. This can simulate the pruning of a human gardener to create a 
"synthetic topiary." 

PRUSINKIEWICZ ET AL. (1996) proposed a framework to study the com­
petition of plants for land and light and the interaction of roots with water in 
the soil. 

Imaginary plant hormones as growth regulators 

Rather than using a centralized control, CHIBA ET AL. (1994) regulated tree 
growth by simulating imaginary plant hormones. In botany various plant hor­
mones are believed to control plant growth (e.g., see WAREING AND PHILLIPS 
1978 for an introduction to the pertinent biology). However, according to 
CHIBA ET AL. these mechanisms are not exactly understood so they invented 
their own virtual plant hormone. This "hormone" is produced by active buds 
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and is transmitted throughout the entire tree (this is perhaps analogous to 
idea of the flow of Chi throughout the human body.) At each growth step, the 
hormone is redistributed until a new equilibrium is obtained (via an iterative 
technique). Under this model heliotropi.sm affects not only the branch position 
but also branch life. For example, if a leaf does not receive enough sunlight, 
it dies and its corresponding branch withers. The amount of hormone that a 
branch receives affects its ability to reproduce. Thus, the "hormone" controls 
the bushiness of the tree. 
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Chapter 5 

Conclusion 

In this thesis, we have proposed a general combinatorial-geometric model for 
creating synthetic images of botanical trees. In Chapter 2 we explained our 
basic model and showed how to parameterize it for specific modelling functions 
and split distributions (both deterministic and random beta). In Chapter 3 
we reviewed the biological research on the bifurcation ratios for specific species 
of botanical trees. Here (and in Appendix B), we showed how random com­
binatorial trees with specific expected bifurcation ratios can be generated by 
choosing the corresponding p from the binomial distribution for the split trees. 
This allows us to model combinatorially several species of botanical trees. 
Finally, we explored geometric functions and modelling techniques to model 
these trees better. In Chapter 4 we reviewed previous techniques in the field 
from the perspective of our general model. Under our model almost all of the 
stru~ture-oriented models can be seen as specific parameterizations of our gen­
eral model. Before evaluating the significance of this thesis, we will examine 
future work and applications, as these influence the evaluation. 

5.1 Future work 

In this section, we outline possible directions for further research that arise 
from work presented in this thesis. 

5.1.1 A tool for architects and artists 

As mentioned in Chapter 1, trees form a significant part of most scene ani­
mations. Our model provides an effective way of generating a wide variety of 
tree-like shapes. As it is highly parameterizable, we feel that it will provide a 
solid basis for a highly interactive editor that could allow users such as artists 
and architects to design interesting looking trees quickly. Not only can three 
dimensional objects be generated but their two dimensional renderings can 
also be used as texture for billboarding techniques. 

77 
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5.1.2 A modelling tool 

Our approach to modelling specific species of botanical trees is admittedly sim­
ple. It would be interesting to take our basic model and to attempt a detailed 
parameterization of it for a particular species of botanical tree. Furthermore, 
not only would the visual aspects of the tree be modelled but also it would 
be important to generate data on the geometric aspects of it, e.g., average 
geometric height, volume, etc. 

If one assumes that Horton's first law holds for certain species of botan­
ical trees1 then we have presented a method which models these botanical 
trees combinatorially. A more rigorous combinatorial test would be to find a 
branching pattern that would simultaneously produce, for example, both the 
correct HORTON-STRAHLER and Horsfield orderings. 

As we have not gathered physical statistics from our simulations, we can 
only judge the validity of our physical modelling functions on a visual basis. It 
would be interesting to explore Horton's second law, that cylinder radius and 
length also obey geometric laws (e.g. see PARK 1985) with this model. In 
terms of geometric trees, it would be interesting to calculate the average values 
such as cylinder length and radius and compare them with known data. For 
example, with regard to cylinder radius we currently use the exponent 3, but 
when should we use 2.49? Our current length function produces good visual 
results but we would like to know the reasons why. 

Finally, as many botanical trees are not strictly k-ary, it is important to 
extend this (or any model) to model trees whose branches have an arbitrary 
number of child branches. 

5.1.3 Animation of tree growth 

Our current method of generating combinatorial trees does not facilitate the 
animation of tree development. However, we could animate the development 
by building up our combinatorial trees node by node. It is well-known (e.g., see 
DEVROYE 1994) that PATRICIA trees can also be built in the following way. We 
start with an initial random string that corresponds to an external node. We 
build up the tree one node at a time by inserting random strings consecutively. 
For example, ARQUES ET AL. (1991) followed a similar approach to animate 
the development of the trees in VIENNOT ET AL. (1989). 

1This is still an unresolved matter (e.g., see BERNTSON 1995, p. 280), since it remains un­
clear which ordering system (i.e, Horton, Horsfield or Wiebel) is more accurate biologically. 



- 5.1. FUTURE WORK 79 

5.1.4 Combinatorial visualization 

LE MEHAUTE (1991) reported that the botanical tree drawing technique of 
VIENNOT ET AL. (1989) has been used as a tool for speech analysis. The 
possible pronunciations of a particular word are modelled by a Markov chain 
(e.g., see FOURNOT ET AL. 1989 or 8ABAH 1989) which can in turn be 
represented as a stochastic matrix of transition probabilities. By using this 
matrix as input to the algorithm, a possible pronunciation can be visualized. 
Physical simulation techniques such as simulated annealing (e.g., CRUZ AND 
TWAROG 1995) and spring algorithms (e.g., EADES 1984) have already been 
successfully applied to graph drawing. Furthermore, we note the similarity 
between MANDELBROT's fractal model of the lung and the space-filling H­
trees of VLSI layout. Due to the biological necessity of seeking out sunlight, 
the growth of botanical trees can be regarded as nature's way of laying out 
combinatorial trees. It would be interesting to explore the idea of whether or 
not it is sometimes helpful to visualize a combinatorial tree as a botanical one. 

We propose a novel method of visualizing massive combinatorial trees. We 
envision two different types of applications: animation of algorithms and nav­
igation of large hierarchies such as file systems. 

For the first type of application, the idea is to provide some kind of shape 
analysis. Researchers working with large combinatorial trees are often con­
cerned about tree shape and how the shape changes over time (e.g., over a 
sequence of insertions and deletions). Typically, one is concerned whether or 
not a tree is bushy or sparse, e.g., bushy implies more balanced and a shorter 
height. Another interest is in the changes in the tree's bushiness. For example, 
in some search problems a bushy search tree is less desirable than a sparse one. 
Perhaps this technique can be used as a tool to remark visually how changing 
the search algorithm results in a better tree. 

A second type of application would be to use the layout as a navigation tool 
that aids the user to better understand the tree by providing an informative 
layout (e.g., see REISS 1994 or the cone trees of RoBERTSON ET AL. 1991). 
Unlike simple balanced search trees, many rooted combinatorial trees such as 
file system hierarchies have nodes with arbitrary fan-out, i.e., k child nodes 
where k :2:: 0. We propose the following generalization. An internal node u 
now has k child nodes v1 to vk. Correspondingly, an internal cylinder f.t now 
has k child cylinders v1 to vk. We generalize Murray's results for cylinder radii 
as: 

{ 

CR1 if lul = 1; 
R(J.t) = ( k )lfcR2 

Ei=l R(viYR2 otherwise. 

We can think of the axis layout of the two children in terms of a spring al­
gorithm. Place the children on a circle with equal repulsive force between 
children. The two children end up at opposite sides of the circle, which is 
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equivalent to being coplanar. We now generalize this circle for k children so 
that each child is !~~ away from its two consecutive siblings. We now apply 
the following deviation angle to it: 

a( ) L:~=l R(vi) - R(vj) 
o Vj = Ce X k 

L:i=l R(vi) 

The length and divergence functions remain unchanged. 

5.1.5 Lightning 

As noted by REED AND WYVILL (1994), the synthetic2 reproduction of light­
ning for visual purposes has been overlooked by the computer graphics com­
munity. This lack of work is particularly curious given the relatively large 
amount of work in the field of image synthesis of botanical trees. REED AND 

WYVILL (1994) were the first to generate synthetic images of lightning. A 
particle system was used to generate the geometric structure of the lightning 
bolts. We propose a synthesis and extension of this work with our own. 

We first show how the model by REED AND WYVILL can be parameterized 
according to our model. For lightning segment J.L, the radius function is 

R(J.L) = CRr~u)r~~u) 

where eR ;:::: 0 (initially chosen at random), rRm = 0.95, rRs = 0.5 are constants. 
The length function is 

L(J.L) = C£1 * U(cL2 , C£3 ), 

where c~, C£2 :::; 1 :::; C£3 are constants and U(x, y) is a uniform random variable 
ranging from x to y. The deviation angle is 

8(J.L) = N(16, 1t, 

where N(16, 1) is a normal random variable with mean 16 and standard de­
viation 1. The divergence angle is mentioned but unspecified. They used a 
branching process to generate the underlying combinatorial tree which they 
found to be very sensitive to the seed selected for the number generator and 
therefore they wanted to formalize the branching algorithm used to generate 
lightning channels. These two points can be addressed by using random split 
trees. Furthermore, REED AND WYVILL (1994) also mentioned that in actual 
lightning branching is frequently near the ground. This could be modelled by 
making a and b of the beta distribution a function of node depth such as Ta­
ble 2.6. Finally, for our own simple rendering in Figure 5.1 we replace straight 
branch segments with random walks. 

2 By synthetic, we mean that the method used did not necessarily follow known physical 
laws of lightning but rather were aimed at producing convincing images. 
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Figure 5.1: A simple lightning bolt. 

5.1.6 Modelling the lung 

In 1970, GUMMING ET AL. applied the HORTON-STRAHLER ordering to the 
pulmonary artery and the bronchial tree in the human (e.g., see Table 5.1). 

Pulmonary Artery 
Bronchial Tree 

Max 
Order 

17 
17 

Branching 
Ratio 
3.39 
2.74 

Diameter 
Ratio 
1.71 
1.40 

D11 

(ems) 
1.86 
1.61 

Length 
Ratio 
1.80 
1.49 

£17 
(ems) 
12.2 
5.0 

Table 5.1: HORTON-STRAHLER data on tbe buman lung (CUMMING ET AL. 

1970). 

Many researchers have experimented with random branching patterns in 
the hope of finding a method of generating random combinatorial trees with 
a specific expected bifurcation ratio (e.g., BERRY ET AL. 1975, HOLLING­

WORTH AND BERRY 1975, BERRY AND BRADLEY 1976, HORSFIELD 1980, 

PELT AND VERWER 1983, PELT AND VERWER 1984, HORSFIELD AND 

WOLDENBERG 1986A, HORSFIELD AND WOLDENBERG 1986B) 

As described in HORSFIELD AND WOLDENBERG (1986A), attempts have 
been made to simulate the corresponding combinatorial trees of the bronchial 
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tree by random segmental and random terminal growth. In both cases, the 
experimental work showed that neither of these two methods produced the 
correct expected bifurcation ratios. From a probabilistic analysis perspective, 
it is clear why. 

HORSFIELD AND WOLDENBERG (1986A) (and others before them) de­
termined that segmental branching produces an expected bifurcation ratio 
ER = 4.0. As segmental branching produces equiprobable binary trees, this 
agrees with the theoretical results reviewed in Appendix B.l.2. 

For terminal branching, they and others show that ER = 3. As termi­
nal branching can be shown to be equivalent to generating random binary 
search trees, this can be partially explained by Theorem C.3 in Appendix C 
which states that for a random binary search tree with n nodes and HORTON­

STRAHLER number Sn, 

lim P {sn 2:: (~ + ;) logn} = 0, 
n-+oo og 

for all E > 0. 
HORSFIELD AND WOLDENBERG (1986A) concluded that "some other growth 

process must therefore be operative in the bronchial tree." From Fact 3.4, we 
now propose to combinatorially model the bronchial tree as a random patricia 
tree with p = 2.~4 • 

The alveoli are arbitrarily defined as of HORTON-STRAHLER order one and 
it is known that there are approximately 3 x 108 alveoli. Therefore, for our 
purposes, it is impractical to model each alveolus. We propose the follow­
ing approximation. We generate a combinatorial tree with 1000 nodes that 
represents the bronchial tree from the largest segment downward. 

GuMMING ET AL. (1970) found that not only did Horton's first law apply 
to the human lung but also Horton's second law. Horton 's second law states 
that a segment (originally river segments but here artery and lung segments) 
with order k has expected diameter (cD)k where cD is the diameter of an order 
one segment and expect length (cL)k where cL is the length of an order one 
segment. Thus, for lung segment J.L, 

R(J.L) = (1.~1 ) X 1.40S(u) 

and 
L(J.L) = 5 X 1.49S(u). 

Beginning with the work of MURRAY (1926A,B;1927), many researchers 
have suggested different models for deviation angle in natural branching struc­
tures such as arteries (e.g., RoY AND WOLDENBERG 1982, WOLDENBERG 

AND HORSFIELD 1983, WOLDENBERG AND HORSFIELD 1986). However, 
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for the time being, we continue to use our deviation angle function. As we 
could not find information on the divergence angle for either lungs or arteries, 
we use our constant of 137.5°. Barring this, we can simulate the lung both 
co_mbinatorially and geometrically. Figure 5.2 shows an image of one half of a 
bronchial tree. Figure 5.3 shows a corresponding image of the artery system 
configured in a similar manner. 

Figure 5.2: A portion of the bronchial tree. 
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Figure 5.3: A portion of the pulmonary artery. 

5.2 Contributions of this thesis 

Here we summarize by application area what we view are the main contribu­
tions of this thesis. 

Graphics: We have described a method to generate three dimensional mod­
els of botanical trees that is simple to understand and implement, fast 
running, and with high database amplification. Apart from brief treat­
ment in PRUSINKIEWICZ AND LINDENMAYER (1990) and Chapter 20 
of FOLEY ET AL. (1996) on Advanced Modelling Techniques, there has 
been little unifying work in this field. By using the rubic of our basic 
combinatorial-geometri model from Chapter 2, Chapter 4 can be seen as 
one of the most comprehensive listings so far. Furthermore, our basic 
model from Chapter 2 facilitates the comparison and understanding of 
many previous techniques. Thus, this thesis has introduced an important 
technique; furthermore, as Chapter 5.1.5 suggests, this technique can be 
applied to branching phenomena such as lightning. 

Biology: The generation of random binary trees with specific expected bifur­
cation ratios has been an open problem in many fields of theoretical biol­
ogy ranging from botany to physiology. Not only does our method of bi­
nomial split trees provide such a technique but it also corresponds nicely 
with the biologic-theoretic pipe model of (SHINOZAKI ET AL. 1964A). 
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Finally, we have expressed the ordering systems of biologists in terms of 
combinatorics. 

Probability: Although the HORTON-STRAHLER number has been well stud­
ied for the equiprobable binary tree model, there has been little theoret­
ical work on other models. Our result for random tries from Appendix 
B is the first for other random data structures. 

L-systems: We have demonstrated in Appendix A that 1-systems can model 
split trees. 
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Appendix A 

Implementation Deta i Is 

A.l L-systems 

As mentioned in Sections 4.2.2 and 4.2.6, L-systems have been extended into a 
powerful modelling language. The majority of the original images in this the­
sis were produced using The Virtual Laboratory Environment. This software 
package, called vlab, is an interactive environment for creating and conducting 
simulated experiments using L-systems. vlab is an on-going research project 
by PRUSINKIEWICZ's team (e.g., see MERCER ET AL. 1990) at the University 
of Calgary. It runs on Silicon Graphics workstations and is available by anony­
mous ftp (see http: I /www. cpsc. ucalgary. ea/pro j ects/bmv I- index. htlm). 
For a more detailed description, see Appendix A of PRUSINKIEWICZ AND LIN­
DENMAYER (1990). 

An L-system typically consists of two parts: a series of definitions (con­
stants and external procedure calls) and a series of production rules. We now 
explain the basic L-system used in our thesis. Table A.l shows the necessary 
definitions which, although technically not part of the L-system language al­
low for efficient external function calls. This is a variation of the development 
controlled by resource allocation in Section 7.3.3 of PRUSINKIEWICZ ET AL. 
(1996). 

Definition d1 declares the number of internal cylinders. Definition d2 is the 
limit on the number of derivations. Definition d3 is the random variable func­
tion. For example, for deterministic trees, we define it as #define RAND 0. 5. 
Definitions d5 to d11 define our geometric functions. 

Table A.2 shows the productions. A geometric tree is built in the follow­
ing way. We start with the axiom CYLINDER (N, 0, 0, 0, 0, 0). Production p1 

expands this axiom. That is, p1 generates the combinatorial tree from string 
CYLINDER (n, m, r, t, a, b) where n is the number of internal cylinders at this 
subtree; m is a message marker; r is the radius of this cylinder; t denotes 
whether the cylinder is the left or right child of its parent; a and b are the 
deviation angles for the cylinder's children. Production p2 stops the growth 
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dl 
d2 
ds 
d4 
ds 
d6 
d7 
ds 
dg 
dlO 
dn 

APPENDIX A. IMPLEMENTATION DETAILS 

#define N 100 
#define STEPS 1300 
#define RAND bran(10,10) 
#define SPLIT(n) (floor(n*RAND)) 
#define unit_radius 1 
#define RADIUS(r1,r2) ((r1A3+r2~3)A(1/3)) 

#define LENGTH(r) (2*(r~1.2)) 

#define DEVIATION(t,a1,a2) (t>O ? t*a1 : t*a2) 
#define left_theta 1 
#define right_theta -1 
#define THETA(r,r1,r2) (acos((rA4+r1A4-r2-4)/(2*r-2*r1-2))) 

Table A.l: Definitions for our generic tree L-system. 

of the combinatorial subtree when an external node is created. Production 
p3 collects the child cylinders' radii and uses them to calculate the parent 
cylinder's own radius and the child cylinders' deviation angles. Production p4 

passes the deviation angles from the parent cylinders to their child cylinders. 
Production p5 signals to the node that all information has been processed for 
its subtree and hence it is ready to be rendered. Production p6 renders the 
internal cylinder, here as a simple column of radius r and length LENGTH (r). 
Production p7 renders the external cylinder, which in this case means simply 
eliminating the corresponding string. 
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Pl CYLINDER(n,m,r,t,a,b) : m==O ll n>O 
{ni=SPLIT(n); n2=n-1-n1;}--> 
CYLINDER(n,i,r,t,a,b) 
[CYLINDER(ni,O,O,left_theta,O,O)] 
[CYLINDER(n2,0,0,right_theta,O,O)] 

P2 CYLINDER(n,m,r,t,a,b) : m==O tt n==O --> 
CYLINDER(n,2,unit_radius,t,a,b) 

P3 CYLINDER(n,m,r,t,a,b) > 

89 

[CYLINDER(n1,m1,r1,t1,a1,b1)][CYLINDER(n2,m2,r2,t2,a2,b2)] 
m==1 tt m1==2 tl m2==2 
{r=RADIUS(r1,r2); a=THETA(r,r1,r2); b=THETA(r,r2,r1);} --> 
CYLINDER(n,2,r,t,a,b) 

p4 CYLINDER(n,m,r,t,a,b) < CYLINDER(n1,m1,r1,t1,a1,b1) : 
m==3 tt m1==2 --> CYLINDER(n1,3,r1,DEVIATION(t1,a,b),a1,b1) 

Ps CYLINDER(n,m,r,t,a,b) : m==2 tt n==N --> 
CYLINDER(n,3,r,t,a,b) 

P6 CYLINDER(n,m,r,t,a,b) : m==3 && n>O --> 
!(2*r)+(t)/(137.5);F(LENGTH(r)) 

P7 CYLINDER(n,m,r,t,a,b) : m==3 && n==O --> 

Table A.2: Productions of our generic tree L-system. 

A.2 PostScript 

Many of the figures from Chapter 4 were generated with the PostScript lan­
guage. The basic program botanical. tree. ps is available by anonymous ftp 
at ftp. cs .mcgill. ea in the directory pub/tech-reports/libarary/botanical. trees/. 
lGA AND MoNSARRAT (1991) provide a full set of PostScript macros for 
drawing in three dimensions. We used them early in our research; however, we 
stopped using them for several reasons, primarily because the linmap macros 
for mapping 2D planes onto 3D which we used for leaves in DEVROYE AND 
KRUSZEWSKI (1995) did not work when the PostScript file was incorporated 
into a 'lEX document using any known macro such as \psfig, etc. Moreover, 
the IGA AND MONSARRAT (1991) macro set did not allow us to either make 
our own 3D curves or to have control over the Bezier curves. 

Originally we implemented a set of macros like IGA AND MoNSARRAT 
(1991) following the scheme described on pp. 245-258 of FoLEY ET AL. 
(1996) and MONSARRAT (1994). This code, 3D.matrices. ps, is also avail­
able by ftp at the same location as above. A.3 lists the implemented com­
mands. 

However, as PRUSINKIEWICZ AND LINDENMAYER (1990) showed, most 
styles of tree drawing, including our own, lend themselves nicely to the turtle 
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inpu~ 

matrix 
matrix 
matrix 
matrix 

tx ty tz 
sx sy $Z 

angle 
angle 
angle 

matrix 
matrixl matri:r2 matzn3 

xyz 

xlyl x2y2x3y3 

ma.trix3 
initlllltrix3 

identmatrix3 
defaultmatrix3 
currentmatrixa 

sat:matrix3 
translate3 

scaleS 
rota.tex3 
rotatey3 
rotatez3 
concat3 

concatmatrixS 
newpath3 

currentpoint3 
mov.to3 

closepath3 
strokepath3 

eurveto3 

APPENDIX A. IMPLEMENTATION DETAILS 

output 
matrix 

matrix 
matrix 
matrix 

matrix3 

xyz 

description 
create a 4 by 4 1denbty matnx 
set CTM3 to device default 
fill matrix with identity transform 
fill matrix with device default matrix 
fill matrix with CTM3 
replace CTM3 by matrix 
translate user space by (tx, ty, tz) 
scale utser space by sx, sy and z 
rotate user space about the x-axis by angle degrees 
rotate user space about the y-axis by angle degrees 
rotate user space about the x-axis by angle degrees 
replace CTM3 by matrix X CTM 
fill matrixS with matn:i1 X matrix2 
initialize current path to be empty 
return current point coordinate 
set current point to (x,y,z) 
connect$ projected sub path back to its starting point 
strokes the projection of the current path 
appends a. Bezier curve in the xy-plane 

Table A.3: Matrix based 3D macros for PostScript. 

graphics approach as described by ABELSON AND DISESSA (1982). Tables AA 
and A.5 list the respective two and three dimensional turtle commands. These 
macros are contained in turtle. ps and are available by ftp at the same 
location as above. 

inputs 
diStauce 
distance 

angle 
angle 

distance 

command 
FORWARJJ2 

GOT02 
LEFT2 

I\IGHT2 
CURlU!IIT ..POIIIT2 

GSJ.Vl!2 
GRESTOIIE2 

MOVET02 
LINET02 

output 

xy 

movehe turtle forward by diStance umts and draw a hne 
move the turtle forward by distance units without dra.wing a line 
rotate the turtle to the left by angle degrees 
rotate the turtle to the right by angle degrees 
return the current point coordinate of the turtle 
save current graphics state of turtle 
restore previous graphics sta.te of turtle 
set current point to turtle's location 
draw a. line of length distance without moving the turtle 

Table A.4: Two-dimensional turtle commands for PostScript. 

ROTAn!...X 
ROTATE..Y 
RIJTATE-Z 

CURlU!IIT..PDIIIT3..2 X y 
GSAV1!3 

GRESTORES 
MOVET03 

distance LINET03 

move e u e orwar y a.nce untts an raw a tne 
move the turtle forward by distance units without drawing a Hne 
rotate the turtle about the tc-wtis by augfe degrees 
rotate the turtle about the y-axis by angle degrees 
rotate the turtle about the z-axis by angle degrees 
return the current point coordinate of the turtle 
save current graphics state oi turtle 
restore previous graphics state of turtle 
set current point to turtle's location 
draw a line of length distance without moving the turtle 

Table A.5: Three-dimensional turtle commands for PostScript. 
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Appendix B 

The Horton-Strahler number for 
random binary tries 

In this appendix we prove the necessary theorems that imply Fact 3.4 from 
Chapter 3.2 that allowed us to model combinatorially specific species of botan­
ical trees. We note that this appendix is joint work with Luc Devroye and 
appears in DEVROYE AND KRUSZEWSKI (1996). 

8.1 Introduction 

B.l.l The trie model 

In 1960, FREDKIN coined the term trie for an efficient data structure to store 
and retrieve strings. This concept was further developed and modified by 
KNUTH (1973B), LARSON (1978), FAGIN ET AL. (1979), LITWIN (1981), 
AHo ET AL. (1983) and others. The tries considered here are constructed 
from n independent infinite binary strings X~, ... , Xn. Each string defines an 
infinite path in a binary tree: a 0 forces a move to the left, and a 1 forces a move 
to the right. An infinite p-trie is a random binary tree obtained by highlighting 
n infinite paths (from the root down). These paths are .independent and are 
described by independent, identically distributed (i.i.d.) sequences of Bernoulli 
(p) random variables, 0 < p < 1. For example, Figure B.l shows an infinite 
p-trie built from the infinite strings 01001 ... , 01011 ... , 10011 ... , 10100 ... 
and 11100.. .. The tree is now pruned so that it has just n leaves1 at 
the n representative nodes (e.g., see Figure B.2). That is, the finite p-trie 
is the infinite p-trie maximally trimmed so that each of the n infinite paths 
is finite and visits at least one node not visited by any other path (that node 
is necessarily a leaf of the future p-trie). Observe that no representative node 
is allowed to be an ancestor of any other representative node. This implies 

1 N .B. Here in this appendix only, leaf refers to a node with no children. 
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01001... 01011... 

. . . 
1001 L 10100 ... 

Figure B .1: An infinite p-trie. 

' ' . 
11100 .•• 

that every internal (non-leaf) node has at least two leaves in its collection of 
descendants. 

01001... 01011... 

Figure B.2: The p-trie is a trimmed-down version of the infinite p-trie in which 
the strings are associated with the leaves. 

8.1.2 The HORTON-STRAHLER number 

We refer to Chapter 3.1.1 for the definition of the HORTON-STRAHLER number. 
Figure B.3 shows the HoRTON-STRAHLER labelling of the trie from Figure B.2. 
The HORTON-STRAHLER number arises in computer science because of its re­
lationship to expression evaluation. In a computer, an arithmetic expression 
is evaluated by micro-operations using registers. To facilitate this process the 
expression is stored as an expression tree with the operators in the internal 
nodes and the operands in the external nodes. The arithmetic expression is 
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Figure B.3: The binary trie with the HORTON-STRAHLER labelling. 

evaluated by traversing the corresponding tree. In 1958, ERSHOV showed that 
by always traversing the child node with the lower HORTON-STRAHLER num­
ber first, the corresponding register use is minimal (note however that this does 
not minimize time). Furthermore, the minimum number of registers required 
to evaluate an expression tree T is exactly S(T) + 1. As expression evaluation 
is a special type of postorder traversal, the same paradigm shows that the 
minimum stack size required for a postorder traversal of a binary tree T is 
S(T) + 1 (e.g., see FRANQON 1984). In fact, the HORTON-STRAHLER number 
occurs in almost every field involving some kind of natural branching pattern. 
For example, VAUCHAUSSADE DE CHAUMONT AND VIENNOT (1985) studied 
it for RNA structures and VANNIMENUS AND VIENNOT (1989) experimen­
tally studied the ramification matrix of injection patterns. VIENNOT (1990) 
provides a thorough overview. 

The properties of the HORTON-STRAHLER number have only been studied 
for one model of random binary trees, equiprobable binary trees. These are 
random binary trees with n nodes drawn uniformly and at random from all 
possible rooted binary trees with n nodes. Let Sn be the HORTON-STRAHLER 
number of a random equiprobable binary tree with n nodes so that ESn 
and VarSn are the corresponding expected value and variance. It is well­
known (e.g., FLAJOLET ET AL. 1979, KEMP 1979, MEIR AND MOON 1980, 
MEIR ET AL. 1980, MOON 1980, DEVROYE AND KRUSZEWSKI 1994, and 
PRODINGER 1995) that 

ESn ""log4 n and VarSn 0(1) . 

PENAUD (1991) proved the conjecture by VIENNOTET AL. (1989) on the 
structure of the ramification matrix for EBTs. 
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B.l.3 Our approach 

We first define two tree metrics, the BALANCE number and the FILL LEVEL, 
which serve as deterministic upper and lower bounds for the HORTON-STRAHLER 
number. We then derive the upper and lower bounds respectively of these two 
metrics and show that they converge to the same value, thereby squeezing the 
HORTON-STRAHLER number between them. 

8.2 The BALANCE number 

We first define an infinite trie T* as the infinite complete binary tree. A 
position of a node in T* is addressed by two integers, (i, l), where lis the level 
number (l 2::: 0), and 0 ::; i ::; 2r- 1 is an integer indicating the node at level 
l. For example, the root is at level 0, so i = l 0 for the root. The integer 
i, when expanded into l bits, describes the path from the root to the node (0 
forces a left turn, 1 forces a right turn). Let lilt denote the number of one bits 
in the last l bits of i. 

If we take an i.i.d. sequence of Bernoulli (p) random variables, say Zb Z2, 

Z3 , ••• , and write the bits backwards to form integers, then we obtain the 
integers 

Z1 + 21 z2 + 22 z2 + . · . . 
These are precisely the integers visited on the path from the root by our 
sequence. At level 0, we visit 0. At level 1, Zll at level 2, Z1 + 21 Z2 , and 
so forth. When we refer to node ( i, l), and i 2::: 21, we are in fact referring to 
(i mod 21, l). Therefore, we allow such references modulo 21• 

The probability that a random i.i.d. sequence of Bernoulli (p) random vari­
ables carves out a path that reaches ( i, l) is qi,l = plilt (1 p )Hilt. We call this 
the probability of node (i, l). For every node (i, l) we record its cardinality Ci,l, 
the number of the n strings X1, ... , Xn that go through it, i.e., those strings 
that have in their first l bits the integer i written backwards. If lil1 = k, then 
Ci,l is binomial ( n, pk (1 - p )1-k). The sibling of a node ( i, l) is ( i', l) where i' 
and i differ in the last bit only. We define the BALANCE number of ( i, l) as 

l 

Bi,l = L I[l~CiJ~Ci,,j] 
j=l 

where (i,j) denotes (i mod 2j,j). The BALANCE number Bn of the p-trie is 

Bn = sup Bi,l , 
( i,l) 

where the supremum is only over those nodes ( i, l) that are in the p-trie. For 
example, Figure B.4 shows our trie with the edges labelled by the indicator 
function I[I~C,,J~ci,,JJ and the nodes labelled by BALANCE number. 
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Figure B.4: The trie with BALANCE number labelling. 

We note that since nodes with no siblings have the same BALANCE numbers 
as their parents, the finite and infinite p-tries (and the corresponding PATRICIA 

tree-a PATRICIA tree is a trie in which all internal nodes with one child are 
removed and recursively replaced by that sole child, e.g., see Figure B.5) all 
have the same BALANCE number. 

10011... 10100 ... 
Figure B.5: The p-trie is compressed into a PATRICIA tree. 

We now show the following upper bound on Bn. 

THEOREM B.l For 0 < p <~and E > 0, 

lim P { Bn > ( 1 + E) log1 n} = 0 . 
n-too p 
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PROOF. The nodes are separated into three categories (e.g. see Figure B.6): 

A {(i, l) : nqi,l ~nE}, 

B {(i, l) : n-€ < nqi,l < n€}, 

Let A0 be the event that for all (i, l) E A, l ~ 1, Ci,l < Ci',l if and only if 
qi,l < qi',l· For p < !, we will see in Lemma B.l that, if Ag is the complement 
of Ao, 

P{Ag}-+ 0. 

Figure B.6: An abstract trie. 

On any path, the number of nodes that belong to B is not more than 
2 2€ log_t n (assuming still p < 1/2, then paths of the form ( ... 000 ... ) 

1-p 

maximize the path length). Finally, let B* be the subset of nodes in B with 
at least one child in C. We show in Lemma B.2 that 

P {3( i, l) E B* : Ci,l > M} -+ 0 if M ~ 1 
1 

€ 
(B.1) 

Collecting all this, we note that for any (i, l), with probability tending to one, 

Bi,t ~ M+(2 2€ log_
1 

n) + { (m,~) on path from ( i, l) to root, } (B.2) 
1-p (m, J) EA, qm,j < qm',j 

As any path visits B*, and every node of B* has cardinality ~ M with prob­
ability tending to one, the contribution to Bi,l from all nodes below that node 
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of B* is :::; M. Observe .that the last quantity of Equation B.2 is maximized 
by choosing i with binary expansion (111 ... ). 

Then we must have, for any (m, j) E A on the path to ( i, l), npm ~ n€, or 
m:::; (1- c) log1 n. Therefore, as we may take M= 1 + ~' 

p 

Bi,l :::; 1 + ! + (2 2c
1
log f log1 n) (1- c) log1 n 

E og l-p P ~> 

< 3 + 1 + (1 + 2c
1
log f ) log1 n. 

E og l-p ~> 

Thus we will have shown that 

P {sup Bi,l > (1 
(i,l) 

log! ) } 2€
1 

i log1 n -+ 0 , 
og- p 

1-p 

for all € > 0. D 

We are left with two technical lemmas. 
LEMMA B.l 

P {AQ}-+ 0. 

PROOF. Take (i,l) EA and let (i*,l*) denote its parent (note: l* = l- 1, 
i* = i mod 21*). Given Ci·,c·, we know that Ci,l is binomial (Ci•,c•, 1- p) or 
binomial ( Ci* ,l*, p) depending upon whether its is left or right child. Now, if 
qi,l < qi' ,l 

[Ci,t ~ Ci' ,c] - [Ci,t ~ Ci* ,c• - Ci,c] 

[c. l > !c.. l·] ~. - 2 ~, 

- [ci,l pCi•,c• ~ (~- p) Ci·,t·] 

Thus, by Hoeffding's inequality (HOEFFDING 1963), 

P { Ci,l ~ Ci',cl Ci*,l*} ::5 exp { -2 (~- p) 
2 

Ci·,c·} 

We argue similarly for qi,c > qi',h [Ci,l :::; Ci',c], and note that 

P 
{ [ 

Ci,t ~ Ci'
0
,tr, qi,l < qi' ,c l } 

ci,c :::; ci' ,c, Qi,l > qi' ,c 

< 2E { e-2(~-p)2C;•,z•} 

def 2E { OC;• ,!* } (where 0 < o < 1) 

- 2 (1 - Qi• ,t• + qi• ,c•ot 
< 2e-{1-o)q;•,1·n 

< 2e-(1-o)n• 
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as nqi• ,t• ~ n .. because ( i, l) E A. Thus, by Boole's inequality, 

(B.3) 

Clearly, IAI is not more than the number of leaves in the tree pruned to A 
times the height of A. But as the leaves are disjoint, their probabilities cannot 
sum to more than one, and each individual probability is at least n-(1-€), the 
number is not more than n1

-€. The height of A is not more than 1 + log_t n, 
1-p 

by a trivial argument. Thus, Equation B.3 is not larger than 

2 (1 + log_t n) n1-€e-<1-o)n• -+ 0 . 0 
1-p 

LEMMA B.2 

P { sup Ci,l >M}-+ 0 for M~ 1 + 
1 

. 
«~eB• E 

PROOF. First we count the number of nodes in B*. Clearly, for any node in 
B*, nqi,l > n-€ and nqi,lP:::; n-< because one of its children must be in C. Let 
C* be the collection of all the rightmost ( "p") children of nodes in B* (i.e., all 
nodes in C* have probability p times that of their parent in B*). Note that 
the nodes in C* are disjoint, hence their probabilities sum to at most one. But 
for ( i, l) E C*, 

> -€ 
nqi,l = nqi• ,l• P n P , 

or qi,l > pjnl+... Therefore, IO*In-(l+€)p < 1. Thus, IB*I < nl+ejp. Fix 
( i, l) E B*. Recall that qi,l :::; 1/ pn 1 +€. Then 

P {Ci,l >M} < t (~) (qi,t)i (1- qi,tt-i 
j>M J 

< (:) (qi,l)m (1 + nqi,l + (nqi,t)
2 + · · ·) 

(where m= lM + lj) 

_1 
pn• 
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for n large enough. Thus 

for all n large enough. This tends to zero if Em> 1 E. That is, if m> 1 + 1/E. 
This holds if M= 1 1/t. 0 

We can now derive the result in Theorem B.1 for all p E (0, 1). 

CoROLLARY B.l For all E > 0, 0 < p < 1, 

lim P {En> (1 + t) log 1 n} = 0 . 
n-+oo min(p,l-p) 

PROOF. We note that for p = 1/2, the same proof works throughout, except 
for the following. From Equation B.2, regardless of whether Lemma B.1 holds 
or not, 

Ei,l < M+2+2Elog2 n+(1-E)log2 n 
1 < 1 +- + (1 +E) log2 n. 
E 

So, we need not bother with Equation B.2 nor an extension of Lemma B.l. In 
the proof of Lemma B.2, the fact that p < 1/2 was not used. We thus see that 
for all E > 0, 0 < p < 1, 

lim P {En> (1 + t) log 1 n} = 0 . 0 
n-+oo min(p,l p) 

8.3 The FILL LEVEL 

The FILL LEVEL or saturation level of a binary tree is the deepest levell in the 
tree such that all possible 21 nodes at that level exist. For example, the trie 
of Figure B.2 has FILL LEVEL 2. In 1992, DEVROYE showed that for random 
PATRICIA trees constructed from n i.i.d. sequences of independent equiprobable 
bits and FILL LEVEL Fn that 

Fn -log2 n 
1 ----"--- ~-

log2 logn 

almost surely. We let Fn be the FILL LEVEL of a p-trie with n strings and show 
the following lower bound-the short proof is included here for completeness. 
For a much larger class of random tries, Fn was studied by PITTEL (1985), 
whose results imply the bound given below (KRUSZEWSKI 1993). 
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THEOREM B.2 For € > 0 and 0 < p < 1, 

lim P {Fn < (1- €) log 1 n} = 0 . 
n-+oo min(p,l p) 

PROOF. Without loss of generality, we assume that p::; 1/2. We note that 

[Fn < l] = [ min Ci 1 = o] . 
0:5:i$2Ll ' 

Equivalently, by Bonferroni's inequality, we have 

P{Fn < l} 

This tends towards 0 with n if we take l""' (1-t:) lognjlog(1/p) for any € > 0. 
0 

It is equally easy to show that in fact Fn/log . 1 n-+ 1 in probability 
mm(p,l p) 

(see KRUSZEWSKI 1993 and Corollary B.2 below). 

8.4 The HORTON-STRAHLER number 

We introduce another metric related to the BALANCE number. For a node u 
in a binary tree, we set 

{ 

0 if lul = 0, 

n: = max ( B; + I[ivlslwl], B:V + I[lwlslviJ) if lul :2: 1 and 
u has children v and w , 

(see Figure B.7). We call B; the alternate BALANCE number of u. It is easy to 
see that B~ = 1 for all leaves u. If Bn is the BALANCE number of any binary 
tree with root u, then Bn = n: because B~ is the maximum number of l's 
(from the Io's) along any path in the tree. Note however that the BALANCE 
number of individual nodes-the Bi,!'s in the second section-are not equal to 
the quantities B~. 

We note that the BALANCE number provides an upper bound on the 
HORTON-STRAHLER number. 
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Figure B. 7: Alternate BALANCE number labelling. 

LEMMA B.3 For each binary trie with root u, S(u)::::; B~. 

PROOF. For a particular tree, this follows by induction on h, the height of a 
node (distance from its furthest descendant leaf). At leaves u, S(u) = B~ = 1. 
Assume that the assertion holds for all nodes of height less than h. At height 
h we take a node u with children v and w. We have S(v) ::::; B;, S(w) ::::; B:V 
by assumption. If S(v) = S(w), then, assuming lvl ::::; lwl, we have B~ ;::: 
B; + 1 ;::: S ( v) + 1 S ( u). If S ( v) S ( w), then S ( u) max ( S ( v), S ( w)) $ 
max (B;, B:V) ::::; B~, and we are done. D 

We observe that the FILL LEVEL provides a lower bound for the HORTON­
STRAHLER number. 

LEMMA B.4 For each binary tree with root u, S(u);::: Fu. 

PROOF. Straightforward. D 

We conclude the following tight bound on the HORTON-STRAHLER number 
Sn for p-tries. 

THEOREM B.3 For a p-trie with n strings, 

Sn 1 
-- -t :----.--
log n log min~,I-p) 

in probability. 

PROOF. The upper bound follows from Lemma B.3 and Corollary B.l. The 
lower bound follows from Lemma BA and Theorem B.2. D 

This theorem together with Lemmas B.3 and B.4 allow us to conclude the 
following. 



0 

102 APPENDIX B. RANDOM BINARY TRIES 

COROLLARY B.2 For a p-trie with n strings, 

Bn 1 
--~---:;--

log n log min(;,l-p) 
in probability 

and 
Fn 1 -- ~ ----,.--

log n log min(;,l-p) 
in probability. 

Finally, we note that asp-tries and their corresponding PATRICIA trees have 
the same HORTON-STRAHLER numbers, our bound also holds for PATRICIA 

trees, hence Fact 3.4. 
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Appendix C 

The Horton-Strahler number for 
random binary search trees 

In this appendix, we derive an upper bound (believed to be tight) on the 
HORTON-STRAHLER number for random binary search trees (BSTs). This 
result implies that the random binary search tree model is incorrect as a com­
binatorial model of human lung as described in Chapter 5.1.6. We note that 
this appendix is joint work with Luc Devroye. 

C.l Introduction 

C.l.l The binary search tree model 

According to KNUTH (1973B) (pp. 446-7), binary search trees were inde­
pendently discovered by several researchers during the 1950's. As with tries, 
BSTs provide a method for storing and retrieving (i.e. searching for) unique 
elements. Whereas tries are more suitable for static data sets, BSTs lend them­
selves to dynamic deletion and insertion of elements. An element e is inserted 
into a BST by searching the tree for that element. First, e is compared to r, 
the value stored at the root. If e :5 r then the search continues down the 
left subtree, otherwise it continues down the right subtree et cetera, until the 
current subtree is empty where e is inserted. Thus, given a list of elements the 
corresponding BST is built by repeated insertion on an initially empty tree. 
For example, the list (b e f h a g c d) results in the tree in Figure C.l. 

From a theoretical viewpoint, random binary search trees can be simu­
lated by random split trees with [0, 1] uniform (or equivalently beta(l,l)) split 
distribution (e.g., see DEVROYE 1986B). 
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Figure C.l: A BST build by insertions. 

C.l.2 The HORTON-STRAHLER number 

Unlike equiprobable binary trees, the HORTON-STRAHLER number for ran­
dom binary search trees has never been studied from a theoretical viewpoint. 
However as mentioned in Chapter 5.1.6, the HORTON-STRAHLER number has 
been examined from an experimental viewpoint. For example, HORSFIELD 
AND WOLDENBERG (1986A) and others concluded that the expected bifurca­
tion ratio R was 

ER"' 3. 

That is, given Fact 3.1 we have 

1 
ESn "' log3 n "' log 

3 
log n, 

where Sn is the HORTON-STRAHLER number for a random BST with n nodes. 
(This experimental result was also calculated by KRUSZEWSKI 1993). 

C.l.3 Our approach 

We would like to take an approach similar to the one taken in Appendix B in 
which we squeezed the HORTON-STRAHLER number between the BALANCE 
number and the FILL LEVEL. However; the following theorem by DEVROYE 
(1986B) shows why this does not work for random BSTs. 

THEOREM C .1 For a random binary search tree with n nodes and FILL LEVEL 

P { lim lFn = 0.3733 .. ·} = 1. 
n-too ogn 
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Nonetheless, the upper bound provided by the BALANCE number is sufficient 
to show that random BSTs are unsuitable for simulating the combinatorial 
structure of human lungs. 

C.2 The BALANCE number 

In this section, we show the following upper bound on Bn, the BALANCE 

number for a random BST with n nodes. 

THEOREM C.2 For a random binary search tree with n nodes and BALANCE 

number Bn, 

lim P {En 2 
1
1 
+

3
t: log n} = 0, 

n-+oo og 

for all E > 0. 

PROOF. Let T be a random BST. Let node (i,k, l) be defined as the i-th node 
at level l in T that has exactly k ones (according to its BALANCE number 
labelling) on the path from the root of T to that node. Let I ( i, k, l) l be the 
size of the subtree rooted at ( i, k, l). We observe that if Bn 2 k +m then there 
exists at least one node (i, k, l) with l(i, k, l)l 2 2m. Summing over all possible 
levels gives us 

P{Bn 2 k+m} < 

where the U/s are i.i.d. uniform [0, 1] random variables. We need to find the 
smallest k such that this probability approaches zero as n -+ oo. Markov's 
inequality gives us 

: E {n IT 1 - UJ IT 1 + ui } 
2 j=l 2 j=k+l 2 

: ITEl-Uj IT El+Uj 
2 j=l 2 j=k+l 2 

(by independence) 

_ 
2
: (El~ u) k (El~ uy-k 

(identical distribution) 
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Appendix D 

Glossary 

BALANCE number A deterministic upper bound on the HORTON-STRAHLER 

number for any tree T. 

base The branch segment of a botanical tree that starts at the ground 
and ends at the first bifurcation. 

Bernoulli (p) variable A random variable that takes value 1 with probabil­
ity p and value 0 with probability 1 - p. 

bifurcation The point at which a branch segment splits into two child 
branch segments. 

bifurcation ratio The average order ratio for a binary tree. 

billboard A two dimensional simple geometric tree that is made to appear 
three dimensional by rotating it around a fixed vertical axis so that it 
always faces the viewer. 

botanical tree A perennial plant with a single woody self-supporting stem 
or trunk usually unbranched for some distance above ground. For our 
purposes, a botanical tree consists of branch segments and sometimes 
leaves. 

branching process A method of generating combinatorial trees by which 
nodes give birth to child nodes according to a fixed probability distri­
bution. 

branch segment A section of the botanical tree between two consecutive 
bifurcations. In addition, the base of a tree is also a branch segment. 

combinatorial tree A connected, acyclic graph. A rooted binary tree 
consists of nodes connected by edges such that each node has at most 
one left and at most one right child node. 

109 
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pipe A theoretical connection in a botanical tree from the base to a con-
stant number of leaves. · 

production A rule in a grammar for replacing one string with another. 

p-trie A trie whose random strings are sequences of Bernoulli (p) vari­
ables. 

ramiform A smooth join where the parent and child cylinders meet. 

root A node in a tree that has no parent. 

Schimper-Braun law A botanical law which states that the divergence 
angle for plants and trees follows a specific Fibonacci-like sequence. 

Shreve order The number of external nodes in a node's subtree. 

size The number of nodes in a combinatorial tree. 

split distribution The probabilistic distribution that determines the par­
tioning of nodes into two subtrees. 

split tree A combinatorial tree generated by recursive allocation of nodes 
according to a split distribution. 

string A sequence of symbols. 

structure-oriented model A model that grows a tree according to specific 
rules which do not directly take in account environmental factors. 

space-oriented model A model that grows a tree according to environmen­
tal influences. 

subtree of a node The tree rooted at particular node. 

tree - see botanical tree, combinatorial tree, complete tree, geomet­
ric tree or split tree. 

trie An efficient data structure to store and retrieve strings. More specifi­
cally, it is combinatorial tree constructed from a sequence of strings 
of bits. 

tropism An environment influence on the growth of a botanical tree. 

Weibel order(ing) The depth of a node. 
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Table of Symbols 

juj The number of nodes in the subtree rooted at u, i.e., the subtree size. 

( i, l) The position of a node in T*. 

lilt The number of one bits in the last l bits of integer i. 

(X] The event X. 

a(tt) The divergence angle function of cylinder J-L· 

J-t A cylinder. 

IT#-' The plane that contains the axis of internal cylinder tt and the axes of tt's 
child cylinders. 

6(tt) The deviation angle function of cylinder tt· 

Bn The BALANCE number of a random p-trie. 

Bi,l The BALANCE number of node (i, l). 

c0 The constant for the divergence angle function, typically 137.5°. 

ce The constant for deviation angle function. 

ce1 The constant for the deviation angle function for forking cylinders. 

cem The constant for the deviation angle function for main cylinders. 

ce. The constant for the deviation angle function for secondary cylinders. 

CL The constant for the length function. 

CR The constant for the radius function. 

Ci,l The number of strings that pass through node (i, l). 

d( u) The depth of node u. 
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EX The expected value of random variable X. 

H(T) The height of tree T. 

Io The indicator function. 

L(JL) The length function for cylinder JL. 

m( u) The number of main nodes on the path from the root to the node u. 

n The number of internal nodes in a combinatorial tree. 

Ni The number of nodes of order i. 

P {X} The probability of event X occuring. 

Qi,l The probability that node ( i, l) exists in a random trie. 

r L The scaling ratio for the length function. 

rR The scaling ratio for the radius function. 

R(JL) The radius function for cylinder JL· 

R The bifurcation ratio. 

~ The order ratio. 

s( u) The number of secondary nodes on the path from the root to the node u. 

S(u) The HORTON-STRAHLER order of node u. 

Sn The HoRTON-STRAHLER number for a random binary tree with n nodes. 

T A combinatorial tree. 

'T A geometric tree. 

T* The infinite complete binary tree. 

T(n) The split tree algorithm. 

u A node. 

VarX The variance of random variable X. 

X The splitting variable. 

Xi An infinite binary string. 

Zi A Bernoulli (p) random variable. 
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