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Abstract

vVhen the relative velocity between the different objects in a scene and the camera is

relative large - compared with the camera's exposure time - in the resulting image

we have a distortion called motion blur. In the past, a lot of algorithms have been

proposed for estimating the relative velocity from one or. most of the time, more

images. The motion blur is generally considered an extra source of noise anà is

eliminated. or is assumed nonexistent. Unlike most of these approaches. it is feasible

ta estimate the Optical Flow map using only the information encoded in the motion

blur. This thesis presents an algorithm that estimates the velocity vector of an

image patch using the motion blur ooly, in two steps. The information used for

the estimation of the velocity vectors is extracted from the frequency domain, and

the most computationally expensive operation is the Fast Fourier Transform that

transforms the image from the spatial to the frequency domain. Consequently, the

complexity of the algorithm is bound by this operation iuto O(nLog(n)). The first

step consists of using the response of a family of steerable filters applied on the log of

the Power Spectrum in arder to calculate the orientation of the velocity vector. The

second step uses a technique called Cepstral Analysis. More precisely, the log power

spectrum is treated as another signal and we examine the Inverse Fourier Transform

of it in arder ta estimate the magnitude of the velocity vector. Experiments have

been conducted on artificially blurred images and with real world data, and an error

analysis on these results is also presented.
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Résumé

Lorsque la vitesse relative entre plusieurs objets dans une scène et la caméra est

élevée - en comparaison avec le temps de pose - nous retrouvons dans l'image une

distorsion communément appelée "'Flou de Mouvement". Plusieurs algorithmes ont

été créés afin d'estimer la vitesse relative à partir d'une ou de plusieurs images.

Génèralement le "Flou de ~Iouvement" est considéré comme une source de bruit que

nous devons éliminer ou ignorer. Il est possible d'estimer le carte du Flot optique

en utilisant seulement l'information contenue dans le ~Flou de Nlouvement~. Cette

thèse présente un algorithme qui détermine le vecteur vitesse d'une partie d'image

en utilisant le "Flou de ~Iouvement" en deux étapes. L'information fréquentielle

est obtenue par une transformée de Fourier rapide. Ceci limite la complexité de

l'algorithme à O(nlog(n)). La première étape consiste à utiliser le résultat d'une

famille de filtres adaptatifs sur le logarithme du spectre de puissance afin de calculer

l'orientation du vecteur de vitesse. La deuxième étape utilise une technique nommée

analyse "cepstrale". Dans ce cas le logarithme du spectre de puissance est considéré

comme un signal que nous analysons par le biais d'une transformée de Fourier inverse

pour déterminer l'amplitude du vecteur de vitesse. Des expériences ont été réalisées

sur des images synthétiques et sur des images réelles. Une analyse de l'erreur des

résultats obtenus est présentée.
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Chapter 1

Introduction

One of the fundamental problems in early Computer Vision is the measurement of

motion in an image. frequently called optical Bow. In many cases when a scene is

observed by a camera there exists motion, created either by the movement of the

camera or by the independent movement of objects in the scene. [n both cases~ the

goal is ta assign a :30 velocity vector to each visible point in the scene; such an

assignment is called the L'eiocity map. In general it is impossible ta infer from one

view the 3D velocity map; however, most motion estimation algorithms calculate the

projection of the velocity map ooto the imaging surface. A large number of different

algorithms have been developed in order to solve this problem.

The problem of estimating the optical flow has received much attention because

of its many different applications. Tasks such as passive scene interpretation~ image

segmentation, surface structure reconstruction, inference of egomotion, and active

navigation, all use optical flow as input information.

Uotil DOW, most motion estimation algorithms considered optical flow with dis­

placements of only a few pixels per frame. This approach limits the applications to

slower motions and fails to seriously address the issue of motion bIur; moreover, it

works on images that are considered to be taken with infinitely small exposure time,

1
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more or less in a "'stop and shoot" approach, which limits the real time applications.

AIso, most of these algorithms work on a series of images by calculating the displace­

ment of every pixel from image to image, ignoring any information about motion that

exists within each single image.

In this thesis we have developed and evaluated a new approach to the problem of

visual motion estimation. The algorithm we have developed is based on interpreting

the cue of motion blur to estimate the optical flow field in a single image. A key

observation is that motion biur introduces a certain structure. a ripple, in the Fourier

transform that can be detected and quantified using a modified form of ce.pstra/ anal­

ysis. Unlike classical approaches ta visual motion analysis that rely upon operators

tuned to specifie spatial and temporal frequencies at specifie orientations. our new

approach making use of all the information that can be gathered from a patch of the

image and is thus quite robust.

The first step in our motion biur analysis is to compute the log power spectrum of

a local image patch. Motion blur leads to a tell-tale ripple, centred at the origin. with

orientation perpendieular to the orientation of the velocity vector. This orientation

can he reliably determined. even in the presence of noise, using a steerable second

Gaussian derivative filter. The magnitude of the velocity, which is related to the

period of the ripple, can then he determined by first collapsing the log speetrum

data ioto a L-D veetor. and then performing a second Fourier transform, to yield the

cepstrum, in which the magnitude of the velocity is dearly identified by a negative

peak. The eomputational complexity of this algorithm is bounded by the Fast Fourier

Transform operation, whieh is O(n log n ), where n is the number of pixels in the image

patch. Applying this analysis throughout the image provides an estimation of the

complete optical flow field.

The structure of this thesis is as follows. In Chapter 2 we describe the problem of

motion estimation in general; review the work that has already been done, along with

a brief description of the major existing algorithms; then we analyse the problem
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as it exists with the appearance of motion blut. The solution to the optical Bow

estimation problem under the occurrence of blur is described in Chapter 3. In addition

to the basic algorithm we analyse how the technique of :zero padding can provide

more detailed information, and how we can eliminate the ringing effect by masking

the original image with a Gaussian window. In Chapter 4 we demonstrate results

from both artificially simulated motion and from rea! images~ and we evaluate the

robustness of the aIgorithm. Finally, in Chapter 5~ conclusions and suggestions for

future deveIopments are presented.

~Iore concisely, the objective of this thesis is to develop a new algorithm that

produces the Optical Flow map of the scene using only the information that exist in

the motion bIur of the image.
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Chapter 2

Background: Optical Flow and

Motion Blur

When a visual observer moves through an environment, or when abjects move in front

of a stationary observer, the visual image of the scene changes over time. Analysis of

the movement or flow of image structure on the image plane provides a cue to allow

the inference of observer or object motion.

This optical flow problem is described below, along with the traditionai approaches

to solving it. The importance of motion blur is aiso introduced. Although it has been

treated as noise by most optical flow algorithms, it in fact carries information that

cao be exploited.

2.1 Optical f10w

When Heraclitus said, 2600 years ago, that: ~EverythingBows, everything moves, and

nothing stays" l , he made an observation on the tendency for change in nature. That

tendency refiects aIso in the visual domain - if a visual system observes a scene for a

l ITOVTO PeL, ITOVTO .'(WpEl., "OL OVdêV M ellêL

4
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long enough period of time, there are going to he notable changes. In most biological

visual systems, the analysis of motion is critical; interesting experiments have been

made with the visual system of the pigeon, rabbit, frog, fly, and more. Many insights

for machine vision have carne out of these experiments. The psychophysical aspects

of motion information bas been demonstrated by Ulhnan [22] and Marr [13], and

the use of this information has been demonstrated in computer vision by Horn and

Schunck [2]. A lot of work has been done and different approaches have been taken

in order to extract tbis information.

2.1.1 Definition of the problem

First we are going ta set the framework for the study of motion in a visual system.

\Vben there exists relative motion between the camera and abjects in the scene, there

appears corresponding changes in the received image.

lmaging

Pt3l'le
Object Motion

0: 0
1

~----,,,,,,,,,,,,,,,,,
1'.

•
Figure 2.1: Motion correspondence - An abject at point 0 1 moves with velocity Va to

point O2 • The corresponding image point Pl moves on the image plane with velocity

Vp ta point P2 .
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The Motion Field is defined by assigning a 2D vector to every point in the

image, corresponding to the projection of the equivalent velocity vector in the scene

[5]. If a point 0 1 in the scene moves with a velocity ~ (see figure 2.1) in time

dt is moving to the position O2 • The equivalent image point Pl is moving with a

proportional velocity Vp to the point P2. That means that we can have an image

Ir taken at time to and a different image /2 taken at to + Ôt .. the motion field of the

image consists of the velocity vectors V;I that exist for every point Pi of the image.

Now the relation between these factors are given in Horn [5] in equation 2.1 where

\!~ =~ and ~ =~ and f' is the distance between the focal point and the image

plane.

1 l
-xr =--xrf' P r ù x Z 0

(2.1 )

•

During a period of time.. the brightness of a specifie pixel Pi,j could change. the

most obvious reason is the relative motion between the camera and the scene; al-

though changes in the shadows and in lighting could also be responsible. As Optical

Flow we define that variation of the brightness patterns in the image [5]. The prob­

lem of estimating the relative motion between the camera and the objects in the scene

is generally complex. The first step of reconstructing the 3D veloci ty vectors is ta

derive the Motion Field from the Optical Flow. Note that there exist other cases, as

mentioned earlier. when the change in the image brightness is Dot due to the relative

motion. but due to other causes such as the situation when a light source is moving

changing the shadows in the image and the reflectance from different surfaces. In

such a case of course the Optîcal flow is quite different from the Motion field (see for

l fi oJoJ)examp e gure _._ .
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Figure 2.2: Optical Flow due ta motion of the light source.

2.1.2 Previons work on traditional algorithms

Nlany algorithms have been developed since 1980 when Horn and Schunck published

their weil known paper [2]. The different algorithms can be divided into different

groups according the principles of the method they use~ the results they seek to get,

and the available input data. In this section 1am going to give a brief overview for

the most commonly used algorithms.

Among the first papers on machine motion estimation is the paper of Horn and

Schunck in 1980 [2]. The algorithm in this paper can be defined as a differential

method; it assumes that the brightness in any particular point in the scene is constant.

That shows in equation 2.2, where 1 is the image intensity.

dl
-=0
dt

(2.2)

By taking the first arder differentiation of equation 2.2 we have equation 2.3 where

V - dx and v - 4Jlr - dt 11 - dt

•
(2.3)
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From this equation is clear that we have two unknowns Ur, Uy and only one

constraint. In order to solve the problem, we need one more equation, which we

get by making one more assumption - the smoothness constraint - which is actually

used in most of the algorithms with sorne variations. If every pixel in the scene was

moving with its own velocity, the problem could prove almost unsolvable. but, as most

of the motion happens among rigid abjects. there exists a set of pixels (belonging to

the same object) that have a smoothly varying velocity. Therefore, one additional

constraint can be round by minimising the differences among the velocities in a srnall

patch of the image. In Hom and Schunck's paper this is done by minimising the sum

of the squares of the Laplacian of Ur, Vy as given in equation 2.4.

(2.4)

The quantity that we have to minimise is given in 2.5.

(2.5)

•

This paper started a whole category of algorithms named differential algorithms~

which are based on the concept of taking the derivative (first or second order) of

the image intensity, and use one more constraint. Next 1 am going to present a few

survey papers that group together different approaches to the optical flow problem.

ln 1988.. Aggarwal and Nandhakumar [7] present a review paper on the calculation

of the motion. In this paper they divide the methods used to solve the problem, ioto

two different categories: the feature based methods and the optical flow methods.

The feature based methods compute the velocities in the scene ooly in sorne areas

of the image where features (Hnes, points, edges) have already been found. Although

this kind of method doesn't give a continuous field of the velocities in the scene it is

faster and can define the velocity of an object by extrapolating from the velocities at

its boundary. In general, this approach assumes that that all the objects in the scene
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are rigid and their movement consists of a translation and a rotation. The algorithms

in this class try ta define the 3D motion that exist in the scene based on a set of

features, therefore they use a set of lines and/or points that match during the series

of images and calculate the 3D velocities. Variations exist considering the number of

features. and the number of consecutive images used. Usually, by solving the velocity

problem. this approach aIso computes the 3D structure in the scene. There is aIso an

extension on this a class of algorithms that work with a series of binocular images.

Optical flow rnethods deal with velocities over the whole image. Many existing

methods are differential in nature, based on the work of Horn and Schunck. These

approaches usually have one of the fol1owing constraints: the smoothness constraint

(see earlier), the restricted motion constraint (the change in brightness is a result of a

constrained motion), or a homogeneity constraint (all the pixels in a specifie region,

belonging in the same object, move with the same velocity). Sorne algorithms use the

second order derivatives of the image, and others use iterative methods that moves

from a coarser estimation of the optical flow ta a finer one. There also exist algorithms

that use binocular image series in order to extract the 3D structure and the 3D

velocity field of the scene, but they assume that the correspondence problem among

every stereo pair in the sequence is solved. In the absence of binocular correspondence,

other constraints can be used in order ta compute the 3D structure and velocity field

of a scene from the optical flow field.

The main differences between these two types of approaches is that, the feature

based methods require the existence of a match of features among consecutive images

before the aJgorithm is applied - up to now, most of the algorithms have only give

partial solutions to this problem - while, the optical Bow methods don't need any

feature correspondence to be established. Another difference is that optical fiow

techniques are very sensitive to noise and this make their application to the real

world situation difficult.

The same division can be made in both biological and computer visual systems;
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experiments on biological systems have been shown by Ullman (23}. Again the meth­

ods are divided into intensity based, or otherwise called Optical Flow methods, and

feature based, or otherwise called Token Matching methods. For the optical flow

methods two different kinds of approaches have been proposed: Correlation schemes

and Gradient schemes. In the first case, the input of the two consecutive images is

compared after the first image have been translated by d = udt: different variations

of this method have been proposed. The second case, called Gradient scheme, has

been round implemented in the retina. In that case, research from Hartline, Bar­

low and Kumer have shown that the retina cells behave like the difference of two

Gaussians. In other words the input image is convolved by the Laplacian of a Gaus­

sian and the response to that operation point out zero-crossings that corresponds ta

sharp changes. This Gaussian behaves like a srnoothing fil ter, and controis the size

of the operation. Consequently, at the position where an edge exists, the values of

the convolution increase according ta the direction of the movernent of the edge. The

output of a second biological filter that provides the tirne derivative on the results of

that convolution is going to provide aiso the direction and magnitude of the motion

[23]. Feature based approaches have been aiso proposed. From the experiments up to

now it seems that these approaches are valid and most probably coexist in biological

visual systems.

Vega-Riveros and Jabbour in 1989 [6] take a similar approach into dividing the

algorithms. They consider two general categories, the first one that calculates the

optical flow based on a differential kind of algorithrn, and the second which is more

general than the feature based approach and is based on pattern matching.

The differentiaI methods are essentially based on the same idea as Hom and

Schunck's paper [2]; the optical field is considered smooth and the same is assumed

for the motion, and the calculations are done by differentiating the images spatially

or according ta time. There exists variations mainly in the constraints that are used

in order to solve the problem. In this category there exist aIsa algorithms that are
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using the second derivative; this is done by extending the basic equation 2.6 into a

Taylor series up to the second order terms. This equation assures that a pixel fr.y,t

at time t and position x, y after time dt in its new position have the same intensity.

l(x, y, t) = l(x + vrdt, y + vydt, t +dt) (2.6)

•

The feature identification methods cao he subdivided iota more categories. mainly

according ta what kind of features we are using and how we match them from frame

ta frame. ~lethods that are using cross correlation are quite cornmon in the literature

- this approach is using cross-correlation hetween two consecutive images in order ta

find the best match that gives the movement of a certain patch of the image. Other

algorithms detect the match that occurs for the biggest moving object ignoring the

motion af srnaller abjects. Another interesting but specialised kind of methad is when

there exist a mathematical fuoction that descrihes sorne aspects of the abject and

then the algorithm tries to match that function into different images and calculate

the displacement. In the category of feature identification methods exists of course

the feature correspondence methods that appear in the Aggarwal and Nandhakumar

[il paper.

[n 1992. Barron, Fleet and Beauchemin [9] made a quantitative analysis of the

different cornmon algorithms that exist for solving the aptical flow problem. There are

four different categories according to this analysis: one is the differential methods,

which starts with the Horn and Schunck algorithm, and continues with the Lucas

and Kanade algorithm and then the Uras, Girosi, Verri and Torre (which is a second

order derivative method). The other category is the region based method where

a correlation type algorithm of Anandan is used which is iterative and calculates

the optical flow from a coarser to a finer result. The third category is the energy­

based approach, which is using the output of special velocity tuned filters, usually

the calculations being transformed in the frequency space by the Fourier transform;
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•

these methods are also called frequency based - for example the algorithm of Heeger.

The last type of algorithm is based on the phase-based method, which calculates the

velocity by the behaviour of the phase of band-pass filter outputs, like the algorithm

presented by Fleet and Jepson.

In the next part l am going to present different papers that explain more a certain

approach. or give better results than a previous algorithm due to a new idea..

In the differential framework, there is an approach that follows the same method

for solving a series of problems in vision [8].This approach has been already used in

stereopsis and texture and is now applied into the optical Bow problem. The series

of images is convolved with a set of linear, separable, spatiotemporal filters similar

to those used in the previous vision problems, then the usual brightness constancy

constraint is applied and we get an over-determined system of equations from where

we can estimate the optical flow using a robust total least square method. The

advantages of this approach are: firstly the ability to use the same set of filters

(applied only once) and solve a series of problems - approach that seems compatible

with what happening in the biological visual systems; secondly the fact that the

application of the filters can be done in paraIlel and, therefore, have a fast solution.

In the differential approach the smoothness constraint presents a problem at the

boundary areas. This is due to the assumption that every pixel has a velocity similar

to its neighbours, assumption that hoIds only if aIl the pixels belong to the same

abject. Also, the assumption that every point maintains the same brightness can

generate problems. Therefore, a study has heen done by Black and Anandan [14]

especially in order to deal with this outliers. In pursuing this goal they use a robust

statistical method, where different kind of estimators are used in arder to minimise

the errar that outliers introduce.

Sometimes we need to calculate the aptical Bow in a specifie direction; in this

case a faster approach can he taken in arder ta calculate ID optical flow. Although

the results are qualitative, this cau be enough for primitive tasks as a time to crash
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•

detector [17]. One method is to use a correlation scheme in one direction only.

Consequently, if the optical flow is estimated along the horizontal and vertical a..xis,

then an approximation of the real motion can he extracted.

2.2 Motion Blur

In aIl the previously described approaches, a set of conditions have been assumed ta

be true. Although statistical methods have been used in arder ta minimise the error

that is caused when these conditions fail, the algorithms are based on the assumption

that in general these conditions hold. Among these conditions are the assumption

that the pixels keep their brightness from one frame ta the other having changed

their position only, also they consider every pixel to refer to a unique point in the

scene. [n addition, the previously mentioned methods work on a series of consecutive

images (at least two) in order to calculate the optical flow. In the next section l am

going ta analyse what happens when the motion is faster than a pixel per frame, and

what has already been done in using the motion blur.

2.2.1 Motion blur definition

When a changing scene is observed by a camera, aIl the classical algorithms assume

that it is possible ta take pictures every dt instantly, that means that every picture

is taken with a dt ~ 0 exposure time. If that is not the case, then the exposure time

(dt = T) is large enough that different points in the scene are moving far enough

and consequently their corresponding projections on the image plane travel severa!

pixels. Therefore, during the capture of an image, at any single image point, a certain

number of scene points is projected during the exposure time, each one contributing

ta the final brightness of the image point; this effect is clearly demonstrated in figure

2.3. More formally, during the exposure time T in front of the pixel Pi,i we could
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assume that they pass k scene points with brightness (Cl ... Ck ) respectively, then

the resulting brightness value for pixel Pi,j is given in equation 2.7, in the case of

continues movement the summation is replaced by integration. This holds in general

for every pixel that can see moving points in the scene. 1t is clear that the blurring

of the image exists only across the direction of the motion, this one dimensional bIur

is called klotion Blur.

1 Il:
~.. = - ~Cl (2.7)c,; k L..J

l=l

The result of mG~ion biur is more obvious in the figure 2.3 where an image con-

sistent of random value pixels is shown in figure 2.3a and then the blurred image is

shown in figure 2.3b.

(a) (b)

•

Figure 2.3: Random noise image, and the same image blurred due to motion.

The motion biur can be described mathematically as the result of a linear filter

b(x, y) = i(x, y) * h( x, y) where i is the theoretical image taken with an exposure

time Te =0, b the real blurred image and h the point spread function (PSF). Given

an angle= a and the length d = li;, x Te, which is the number of scene points that
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(2.8)

•

affect a specifie pixel, the point spread function of motion blur is given in equation

2.8.

{
i, 0 $ 1x 1 $ d * cos(a ) y = sin(Q) * d

h(x, y) =
0, otherwise

The focus of this thesis research is to formulate and evaluate methods for recover-

ing and interpreting motion blur. In praetical terms, this mean computing accurate

estimates for the two parameters of the motion blur PSF, namely the length, d, and

the angle. â. From these quantities, the relative velocity at this point cao be easiIy

recovered knowing the exposure time. Moreover, in a lot of applications we simply

need this qualitative measure and not its exact value when, for example, we waot to

deblur the image, or infer the egomotion.

2.2.2 Interpretation of the motion blur and previous work

Up to now, blurring due to motion Was considered an additional source of noise.

Usually the traditional algorithms for motion estimation tried ta ignore it, or recover

from it. Also, in many applications the blur in an image is a source of noise, and

techniques have been developed in order to remove it [19], [12]. But, in the other

side, the motion blur is a structured noise and contains information that can be used.

Psychophysical experiments have been done in order to analyse the use of motion

blur by the human visual system and sorne approaches have been taken in arder to

use it in machine vision systems. Moreover, by using the motion biur we can estimate

the optical flow using only one image. In general, the use of motion blur belongs to

a group of methods that try to extract information from biurred images in arder ta

estimate the 3D structure of the scene from out of focus blur or the optieal flow from

motion biur.

The experiments that have been done for the human visual system in order ta

determine the influence of motion blur in human perception conclude that a deblur-
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•

ring mechanism must exist in arder ta distinguish features in a specifie image [1 1.
The human visual system can identify motions that vary from less than one ta more

than 100,000 minutes of arc per second; apparently, it has been demonstrated that

not the same mechanism is used for all this broad spectrum of motions. For slower

motions, where the shapes barely moye from cone to cone the model of Bonnet [31,

"Displacement Analysing System" is used: as the motion become faster Bonnet's

"~,'1ovingness Analyzing System" is stimulated. Finally at high speed motions where

the motion biur is more obyious, a third mechanism is used in parallel with the other

two. [n high speed flights for example, where jet pilots flew just aboye the ground,

the motion blur is forming patterns that could be analysed in order to produce useful

information; in such cases a pattern recognition mechanism is activatecl. Experiments

have been done [21] that estimate the importance of different parameters of motion

blur patterns in identifying the motion and aspects of the 3D structure of the view­

ing surface. The parameters that were used in the experiments were: blur pattern

divergence, where the observers have ta use the divergence in the blur Hnes in order

to extract the tilt of the viewed surface, and blur pattern curvature which appears

when there is a change in direction of moye. The other parameter that is important

in the motion biur patterns is the "blur pattern divergence change" which appears

when the observer change his velocity of climb or descent. The Iast parameter that

have been studied was "'blur pattern curvature change" .

The issue of estimating the biur parameters has aIso been studied by the machine

vision community; usually, there exist two kinds of bIur, the out of focus biur and the

motion biur. Nlore specifically, the motion biur identification, and consequently the

extraction of the motion biur parameters, has been studied mainly in order to debiur

the images for a series of applications. AIso, most of the image restoration algorithms

of motion biurred images assume that the parameters of the PSF are already known,

and therefore there is no need for estimating them. UsualIy, in addition to the

motion bIur, there are aIso other kinds of noise present in the image, so a more
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robust estimation of the motion biuT parameters is needed. One approach, [20] which

is working for bath motion and out-of-focus bIur, is to proceed in two stages. First.

the degraded image is processed in order to improve the SNR and then the algorithm

that extracts the biur parameters is applied. This approach assumes a model for the

degraded image as given in equation 2.9 where g(i,j) is the degraded image. f(i,j)

is the ideal image, h(i,j) the P5F, and n(i,j) additionai noise.

g(i,j) == fCi,j) *h(i,j) +n(i,j) (2.9)

The h(i, j) for the case of motion biur created by uniform motion across the .\'

axis is given in equation 2.10. The algorithm in [20] is developed only for this specifie

case and therefore it is clear that equation 2.10 is just a sub-case of equation 2.8 that

we analyse at the definition of motion biur.

h(i.j) == { ~,
0,

-d/2 $ i $ d/2; j == 0

otherwise
(2.10 )

At this point we have ta define two toois that are essential for the further analysis

of the algorithms. The Fourier Transform 2 (FT) F(u. v) = F{f(x,y)} of a function

f(x,y) is defined in equation 2.11 together with the Inverse Fourier Transform (1FT)

F-l {F(u, v)} = f(x. y) (see [19}, [12]). The Fourier transform of hU,j) from equation

2.10 is shown in equation 2.12.

•

F(u, v) = F{f(x,y)} = LOO LOO f(x,y)e-·(ur+VY)dxdy

1 100 LOCf(x,y) = ,r--l{F(u, v)} =- F(u,'v)el(W:+VY)dudv
411"2 oc 00

sin(1idu) .
H(u, v) = d = s-znc(rrdu)

'Ir u

2For a more detailed analysis see section 3.2

(2.11 )

(2.12)
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Another transform that can he used in analysing one image is the Cepstrum3
•

The definition is given by equation 2.13, where F-L is the Inverse Fourier Transforrn

(usually using the fast version of IFFT), and F(u,v) == F{f(x,y)} is the Fourier

Transform of f(x,y) (as in equation 2.11). The Cepstrum is the Fourier transforma­

tion of the log spectrum of an image; it is therefore a tool for analysing the frequency

domain of an image.

(2.13)

0.1~
1

i
0.11-

-0.2~ 1
i 1

-o.4Q~:~'Q~lO----]Q-'O---50-eo-""'70-IO-""tQ~t~
l00"-'1Iam-~ 11111 200 III

IU~
1

!
Q

Figure 2.4: The Graphical representation of the sine function

•

As from the Fourier Transform of the blur PSF h(u.v) in equation 2.12 and its

graphical representation in figure 2.4. it is clear that H(u, v) = sinc(1rdu) is a periodic

function with period T = ~, therefore every ~ there exist a zero crossing. The

convolution operation in the frequency damain is transformed into the multiplication

of the two matrices. as a result the periodic function that is the Power Spectrum of

the biur PSF appears as a ripple in the Power Spectrum of the blurred image, this

ripple can be identified hy a negative peak in the Cepstrum domain. For a more

in-depth explanation rerer to Chapter 3.

3For a more detailed analysis see section 3.5
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Most recent work dealing with blur in images focuses on the problem of extract­

ing the blur parameters from a Doisy image [20]. The stage of noise reduction is

accomplished with a technique called Spectral Subtraction, which can he used com­

plementary to the divide and averaging technique. The main technique is to take

an estimation of the Fourier Transform of the noise and subtract it from the Fourier

Transform of the blurred image; sometimes different estimations can exist for differ­

ent parts of the image. As these algorithms deal only with uniform motion across

the .X'-axis only the Line Cb(p, O) is used, where Cb is the Cepstrum of the enhanced

image. In order to improve the robustness of the algorithm one more stage of filtering

is used ta the lD signal Cb(p, 0). As only the negative candidates count. and they

are repeated periodically, a comb like filter is employed. This approach divides every

negative pulse with the root mean square (RMS) of aU the negative terms except the

ones that are in multiples of the index of this pulse.

The frequency domain also is used in another method [15]. In that case the

bispectrum is used in arder to find the parameters of the blur PSF. Like in the

previous case, uniform motion across the ~\'-axis is assumed and thus the problem is

restrained in the one dimension. In an other approach the Discrete Cosine Transform

DCT is used [25]. In this case the same kind of movernent is assumed and the use of

DCT instead of FT is preferred because of the assumption the DCT makes that the

signal is assumed to be at the boundaries even symmetric, instead of periodic as in

Fourier transforme



•

•

Chapter 3

Algorithm for Analysis of Motion

Blur

[n this chapter a new algorithm for extracting the parameters of motion blur in an

image is presented and analysed. The method that is developed here calculates the

optical flow from independent relative motion between the camera and different ob­

jects at the scene. For example. a situation as in figure :3.1, where three abjects

:\. B. D move with different velocities VA, Va, VD and a camera C moves with a ve­

locity Çc, is handied by assigning different velocities in different parts of the image.

In section 3.1 a brief outline of the algorithm is given. In the next section (3.2)

the application of the Fast Fourier Transform and different techniques ta improve

the results is going ta be analysed. ConsequenUy the raIe of the Steerable Filters

in feature extraction from the spatial frequency domain is discussed in section 3.3.

The next section 3.4 deals with the transform of the 2D signal ta ID with the proper

normalisation. In section 3.5 the use of Cepstrum and the extraction of the length of

the velocity vector are demonstrated. Finally in section 3.6 a complexity analysis of

the algorithm is done.

20
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A

•

~L__-,,/
Figure 3.1: Independeut motion between the camera and the abjects in the scene

3.1 Outline of the algorithm

[n order to calculate the optical flow for a certain point we make use of an area

around it - this method needs only one frame taken with an exposure time dl where

the motion blur spans for more than a couple of pixels, as is the situation in a series of

applications. Therefore, in order ta calculate the optical flow of the whole image we

run the fol1owing described algorithm for a series of overlapping image segments. The

algorithm can be divided in two stages: first there is the extraction of the orientation

of the velocity vector, and second the calculation of the magnitude of it.

[n the first stage there exists an optional step of preprocessing in order to have

better results with the initial Fourier Transform. Two methods can be used in this

step either separately or at the same time - zero padding, and masking with a Gaus­

sian window. The second step is the extraction of the orientation of the velocity

vector; this is done from the power spectrum of the image (taken by the Fourier

Transform) by finding the maximum response in a set of Steerable Filters.

The second stage has aIso two steps: a preprocessing step where the 2D Power

Spectrum of the image is collapsed in 10 (at that point aIso a. normalisation is per­

formed in arder for the collapsed ID signal to have the format of a Power Spectrum),
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Figure 3.2: The outline of the algorithm for calculating the Velocity Vector of a image

segment

and the second step where the application of the Cepstrum provides us with the

magnitude of the velacity vectar.

The algorithm in figure 3.2 calculates the velocity vector for the pixel that is at

the middle of Image Segment. It could he ron in parallel in arder to calculate the

optical flow in the whole image.
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3.2 Fourier Transform

23

The identification of the direction of the motion biur is calculated in the frequency

domain. The first step is the transformation of the image from the spatial to the

frequency domain through the Fourier Transform. In order to have Iower computation

time the Fast Fourier Transform algorithm is applied, and for enhancing the feat ures

the logarithm of the Power Spectrum is used.

3.2.1 FT definition and properties

One of the most used common transforms in Computer Vision and [mage Processing

is the Fourier Transform (FT). 1t is a weB defined and a popular tool, as it has a lot of

useful properties. and is relatively quick to compute (see [19], [12], [16]). In equations

3.1 ta 3.4 we have the continuous 2D FT, the Discrete 2D DFT and their Inverses

1FT, IDFT. The J(x,y) represents a function in the Spatial domain (an image), and

the Fourier Transform (F) transfer it to the Spatial Frequency domain.

1
+00 1+00

F(u, v) = F{f(x,y)} = -00 -00 f(x,y)e-&(uz+VYldxdy (3.1 )

F(h,j) = :F{f(k,l)} = .!. ï: ï: f(k, l)e-'2~(kh+lj)/n 0 ~ h,j ~ n - l (3.2)
n k=O 1=0

1 1+00 1+00

J(x, y) = F-1{F(u, v)} = :---2 F(u, v)e'(W:+Vl/)dudv
41r -00 -00

(3.3)

•

f(k,l) = .r-1{F(h,j)} = .!. ï: ï: F(h,j)e&21r(kh+li)/n 0 $ k,l ~ n -1 (3.4)
n h=O i=O

As it is obvious from the equations, the FT is almost symmetrical with its inverse

1FT. In order for the transformations to be possible a few conditions must apply:

for the continues case, f(x, y) must be a piecewise continue function of real variables
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x, y, and having the left and right hand derivatives; in the discrete case, the main

assumption is that f(k, l) is periodic. 1 Although an image f(x, y) is a real function,

its transformation F( u, v) is, in general, a complex one; consequently, we can define

the Real and the Imaginary part of the FT as in equation 3.5. In a lot of situations

it is useful to have the FT expressed in terms of an exponential as in equation 3.6

with the magnitude IFI and the phase d> defined in equations 3.7. 3.8 with the help of

the Real and Imaginary part. The magnitude 1F(w.v) 1 is commonly called Fourier

spectru'm and its square P(w,v) = IF(w,v)j2 is called Power spectrum or Spectral

Density. The <i>(w, v) is called the phase function.

F{f(x. y)} = F(w, v) = R(w, v) + t/(w. v)

F(w, v) = IF(w, v)le&q,(~·tI)

IF(w, v)1 = JR2(W, v) + /2(W,v)

, _l{l(w,v)}
ep(w, v) = tan R(w, v)

(3.5 )

(3.6)

(3.7)

(3.8)

ln a number of applications the Power Spectrum is used in order ta identify

different features. [n a lot of images though, the Fourier Spectra decreases rapidly

and the features are not recognisable; therefore, another function is used in order

to amplify the signal - the logarithm of the Fourier Spectrum plus one (see equation

3.9). This function have the property of keeping the zero values of the Fourier Spectra

zero, and at the same time magnify small differences.

L(w, v) = log (1 + 1F(w, v) 1) (3.9)

•
One of the most common properties of FT is known as the convolution theorem

(see equation 3.10). This theorem shows that the FT of a convolution of two functions

lThis condition is responsible for the effects discussed in 3.2.3
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is equal ta the product of the FT of the two functions; therefore a lot of functions that

are represented by a convolution in the spatial domain can be transformed to a simple

product of their FT in the frequency domain. AIso, another of the basic properties of

FT that cornes directly from its definition is linearity (see equation 3.11).2 Linearity

enables us to break down a complicated function into simple ones, with a weIl known

FT.

F{f(x~y) * h(x,y)} = F(f(x,y))F(h(x,y)) = F(w,v)H(w.v) (3.10)

•

F{af(x, y) +,Bh(x~ y)} = a:F(f(x, y)) + j3:F(h(x, y)) = aF(w, v) +t3 H(w, v) (3.11)

The computational cost of the Fourier Transform or its inverse in the discrete

case is O(n2). Taking advantage of the separability property - which states that

in the 2D FT we can perform first the summation (or integration in the continues

case) over the first variable and then over the other independently - an algorithm

has been developed called Fast Fourier Transform FFT which calculates the FT (or

ifs inverse) in time O(n log2 n) [19]. For the rest of thesis the FFT and its inverse

IFFT are used.3

3.2.2 FFT of a Blurred Image

An image blurred due ta motion is usually represented by a linear system of a convo­

lution: g(x,y) = f(x,y) * h(x,y) with h(x,y) the convolution kemei that cause the

biur. Alreadyat [20} the FFT of the blur PSF is defined for uniformal motion across

the x - axis (see equation 2.12). In general, for an arbitrary direction of the motion

:1 For a proof of these two properties see [12}.
JThe presentation of the Fourier Transform and its properties here was rather simple, and mainly

focused on the aspects that were used in this thesis. There exist a lot more properties of the Fourier

Transform, for a more extended analysis see the references.
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the FFT of the PSF is a ripple as shown in figure 3.3, clear in the case of horizontal

or vertical motion (see figure 3.3a) or distorted slightly"' - as is the case for a blur at

the 45° angle (see figure 3.3b) where it is more the shape of an ellipse with the long

axis perpendicular to the direction of motion. In any case the Power Spectra of the

PSF of the motion blur is a ripple along the direction of the motion.

(a) (b)

•

Figure :3.3: The Power Spectrum of the PSF of horizontal (a) and at 45° angle (b)

motion blur

[n a motion blurred image, the PFT highlights sorne features in a way that makes

the extraction of the direction of the motion easier. This is mainly accomplished be­

cause of the convolution theorem (see equation 3.10) which transfonn the convolution

of the image with the PSF of the motion blur into a simple product of their FT. For

example, if we have a random dot picture (see figure 3.4a) blurred by a horizontal

motion (see figure 3.4b), then the transformation into the frequency domain is going

4Maioly because of numerical erfors and the windowing effect. We have to take ioto account aIso

the Cact that FT is a complex transformation and thereCore it exist an imagioary part that is not

displayed here.
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to enhance sorne features, shaping the result mainly according to the FFT of the

motion blur PSF.

(a) (h)

Figure 3.4: Random Dot Image, and the same image blurred due to horizontal motion.

(a) (h)

•

Figure 3.5: Power Spectrum of the random image, and the PS of the blurred one.

It is obvious from figure 3.5, that the logarithm of the Power Spectrum of the

blurred image (see figure 3.5b) has an easily recognisable shape of a ripple located

at the centre with its axis perpendicular to the direction of the blur. In the other

sicle the Power Spectra of the random dot image is completely unstructured, as can
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be seen in figure 3.5a. One more source of information that exists in the ripple is

the width of it. From the equation 2.12 the period of the ripple is equivalent to the

length of the motion blur PSF which is equivalent to the velocity of the motion for a

given exposure time.

3.2.3 Windowing effect

One of the properties of discrete Fourier Transform is that the signal is considered to

extend periodically to infinity in each side. In the case where we have a finite signal

the FT assumes an infinite periodic signal which consists of copies of the original

signal shifted. Another property is that any sudden change in the spatial domain

creates a response in the frequency domain. For example, assume that we have an

image (figure 3.6a) which is artificial1y blurred due to motion at 70° angle with the y­

axis (figure 3.6b), and we want to caIculate the velocity at the point P(32,32) using a

64 x 64 window. In that case, we take the image patch around P(32,32) (figure 3.Sb),

and apply the FFT, which as is considering the signal ta be periodic and infinite, and

it is going to repeat the 64 x 64 patch one next ta the other (in figure 3.6c we could

see the repetition). But, by doing this it is going to cause a sudden change at the

boundaries, which is going to appear in the FT later.

Another way to approach the problem is ta consider what does it mean to take

only a patch of the image; this is equivalent to taking the whole image and masking

it with a window that has the value one at the 64 x 64 area of interest and zero

everywhere else (see equation 3.12). As it is clear from the convolution theorem, such

an operation is going ta transform into the frequency domain and the result is going

ta he affected by the FT of the masking function.

•
{

l,
m(x, y) =

0,

1 ~ x,y < 64

otherwise
(3.12)
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(a) (b) (c)

(3.13)

•

Figure 3.6: An image, the result of the motion blur, and a 64 x 64 patch repeated

periodically.

{

e(-zl-r), -32 :5 x,y $ 32
m(x, y) =

0, otherwise

ln order to extract ooly one part of the image different masking functions can

be used [10]. The more abrupt the change ioto the zero level, the more severe the

artifacts that are going to appear in the frequency domain. Aiso by masking the

original signal we want ta keep it as much as possible unchanged. There exist a

lot of research in signal processing for the best masking function. Among the most

commonly used are the functions showing in table 3.14, the function f(n) has the

illustrated type in the space [0, M - 1], and 0 everywhere else (the functions are one

dimensional but they are easily transferred into two dimensions, as have been done for

the Gaussian in equation 3.13). The graphical representation of the masking functions

and their Fourier Transform are shown in the graphs 3.7: the dense dots represents

the Rectangular windowing function, the continues line the Gaussian function, the

dot and dash is the graph of the Blackman function, the sparse dots display the

Hamming one, and the dashed Hne the Hanning function .
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1 Rectangular
n_ M - 1 2

e-( (M-l~''') • Gaussian

30

0.42 - 0.5 cos( ;;~l) +0.08 cos( tt1r~l)' Blackman

f(n) =
0.54 - 0.46 cos ( ,;:~l)'

W here 0 $ n $ lvl - 1

Hamming

Hanning

(3.14 )

•

.,.
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(a) (b)

Figure 3.7: Different masking functions (a), and their Fourier Transform (h)

As is clear from figure 3.7b, the Rectangular function has a very strong artifact

which, because of its shape is called ringing effect, where all the remaining windowing

functions have approximately minimum ringing. In the algorithm that we use for

calculating the FFT, the 2D Gaussian function is applied as can he seen in figure

3.Sa. If we mask a 64 x 64 patch of the image (figure 3.Sb) with the Gaussian window

the result is shown in figure 3.Sc. Using this Gaussian masked window we have

the Power Spectrum as it appears in figure 3.9b. 1t is clear that when the Power
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Spectrum of the image is taken by using the Gaussian instead of the Rectangular

window masking (as in figure 3.9a) most of the artifacts disappear.

(a) (h) (c)

Figure 3.8: A Gaussian Window (a), a 64 x 64 patch of the blurred image (b), the
same patch masked with the Gaussian function (c).

(a) (b)

•

Figure 3.9: The Fourier Transform of the image patch with the Square windowing
function (a), and with the Gaussian one.

3.2.4 Zero padding

Another technique used to improve the efficiency of the FFT is called Zero Padding

[101. In the continues case, (see equation 3.1) the FT covers continuously all the
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(3.15 )

(3.16)

•

2D space; in the discrete case although, (see equation 3.2) the FT of a function is

having as many samples as the function that it transforms. For example if we have

an 128 x 128 image and we take its FT, then the result is going to be also 128 x 128.

In order to get a more (optically) detailed frequency image, we could add zeros at

the end of the signal, in both dimensions, (see equation 3.15), and take the Fourier

Transform after. This increases the sampling rate of the FT: at the same time as the

size of the signal increases the computation time is aIso increases, therefore although

we could add as many zeros as we want at the end of the signal we always have ta

take into account the time canstraint.

{

lmg(x, y), 1 ~ x, y ~ 128
Paddedlmg(x, y) =

0, 129 $ x, y ~ 256

We have to mention that the addition of zeros at the end of the signal does not

add any extra information and therefore the FFT of the zero padded image does not

carry more information. But as there are more samples, the features in the frequency

domain are more c1ear, and their interpolation is much easier. As in most of the

natural images the De response is much larger than the rest [4], this rises sorne

additional problems in the application of the zero padding technique, because the

De value introduce a sinc like ripple quite strong that make the identification of the

motion blur direction harder. One way to reduce that artifact is to zero the mean

of the image. If the mean value of the image is zero we get much more presentable

results, therefore in the algorithm we subtract each pixel by the mean value of the

image and then we zero padd the image (see equation 3.16).

{

Img(x,y) - i\tlean(lmg), 1 ::; x,y $ 128
PaddedImg(x, y) =

0, 129 ::; x, y ::; 256

In the Figure 3.10 we have the Fourier Transforms of the same part of a blurred

image with and without the zero padding. In figure 3.10a. the FFT of a 64 x 64 part



• CHAPTER 3. ALGORITH~l FOR A.NALYSIS OF A!lOTION BLUR 33

(a) (b) (c)

•

Figure 3.10: The Fourier Trans/orm of, (a) an image patch, (b) an Zero Padded

image patch, (c) a Zero Padded, Caussian ~Iasked, image patch

of a blurred image is displayed; in 3.10a the same patch has been zero padded up to

128 x 128, and it is quite clear that a lot more detaiis can be seen. Unfortunately, the

ringing effect is aiso magnified by the zero padding. In arder ta get better results.

first we mask the 64 x 64 part with a Gaussian window of the sarne size. and then

we zero padd it into 128 x 128; the FFTof the Gaussian masked, zero padded image

can he seen in image 3.10c. In order ta compare it, the FFT of the Gaussian masked

image patch is presented in figure 3.9b.

3.3 Steerable Filters

The next step in the algorithm is to extract the direction of the motion. As we have

seen in the previous section, the Power Spectrum of the blurred image is characterised

by a central ripple that goes across the direction of the motion. In order ta extract

this orientation a linear filter is applied; more specifically the second derivative of a

two dimensional Gaussian is used. In figure 3.11a we could see the second derivative



of the Gaussian along the x-axis (~ = ~:~)5 if we fUter the Power Spectrum of a

blurred image with ~ we are going ta get maximum response when the ripple is

across the x-axis as it is in figure 3.5b. Therefore, in arder ta extract the orientation

of the ripple, we have ta find the angle 8 in which the filter of the second derivative

of a Gaussian - oriented at that angle (cg) - is going ta give the highest response.

The calculation of oriented filters has been a field of interest in Computer Vision

and Image Processing research [24]. In a lot of cases it is necessary to know the

orientation at which a filter is going to give maximum response, or ta be able to

construct a filter at a specifie angle; it has been proven that there exist families of

filters that are possible ta be constructed based ooly on the responses of a minimum

set of basic filters. In order to find the highest response of an oriented filter we could

apply the same fil ter at different angles, changing the orientation by a dO up until

all possible angles are covered, unfortunately, this is going ta be time consuming,

because every time we apply a filter n x n it costs O(n2 ) computations. Another way

is to construct the response at every possible angle based on the response of a small

set of orientations. This can be done for certain types of filters by applying them in a

few selected angles and then take the responses and interpolate among them in order

to get the wanted angle. Filters that can be constructed as a linear combination of a

few basis filters are called steerable. The functions that combine the basis filters are

called interpolation functions.

Fortunately the second derivative of the Gaussian G~ belongs ta such a family

[24], and we can calculate its response at any angle 9 based on the responses of the

three basis fllters as shawn in the left column of the table 3.1, in equation 3.17 we

could see the calculation; in table 3.1 at the right we could see the three interpolation

functions that are used.
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•
5The dark area has the highest value and the bright the lowest
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G?a = O.9213(2x2 - l )e-(r
2
+y2

) ka(IJ) = cos2(8)

G?b = 1.843xye-(r2+yl
) kb(lJ) = -2cos(8) sin(8)

G1.c = O.9213(2y2 - l )e-(r2+yl ) kc((J) = sin2(8)

Table 3.1: The three basis fllters and their interpolation functions

35

(3.17)

(a) (b) (c)

•

Figure 3.11: The three masks used in the Steerable Filter calculation.

In figure 3.11 we have the pictures of the three basis fl/ters as we use them in the

algorithm for processing a 64 x 64 patch of the Power Spectrum. They are 64 x 64

windows centred at zero with values at [-2,2}.

Assuming a. 64 x 64 patch of the image, we take the logarithm of the Fourier Spec­

trum (F1mg)6; then we calculate the response for each of the basis fi/ters G2a , G2b, G2c

6If we have use zero padding then the size of the Fourier Spectrum is larger.
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with the F [mg (see equations 3.18, 3.19, 3.20), and after that we use these responses

RG2a , RG2b, RG2c to calculate the responses for aIl the different orientation in the

space [00 ,180°] with a step of 10 using the equation 3.17, finding the maximum that

corresponds ta the correct orientation. The computation cost in this stage for an

n x n image patch is O(n2
).

64

RG2a = L G2a(x,y)Flmg(x~y)
r,y=l

64

RG2a = L G2b(x,y)Flmg(x~y)
r,y=l

64

RG2c = L G2c(x, y)Flmg(x. y)
r.y=l

(3.18 )

(3.19 )

(3.20)

(a) (b) (c)

•

Figure 3.12: A zero padded image patch, its Fourier Spectrum, and then the Fourier
Spectrum coIlapsed

To sum up, assume we have a random dot picture, artificially blurred at a 45°

angle with a magnitude of 10 pixels; this is a quite simple situation and without the

presence of any noise. If we take an image patch 64 x 64 and we try ta calculate

the optical flow vector we have seen up to now the following steps: first we zero

padd the image (up ta 128 x 128, figure 3.12a) then we take the logarithm of the

Fourier Spectrum (figure 3.12b) on which we apply the steerable filters to extract the
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•

orientation of the hlur, which turns ta he 45°; in arder ta avoid distortions at the

border values we take ooly the central 64 x 64 part of the Fourier Spectrum. In the

next section we are going ta see how and why we have to preprocess the signal in

order to extract the magnitude of the optical flow vector.

3.4 Transform the Fourier Spectrum into ID

After we have calculated the orientation of the optical flow vector, the next step is

to extract its magnitude. Unfortunately, the different artifacts that appear in the

Fourier Spectrum of the blurred image make it really difficult ta distinguish the size

of the ripple and consequently the length of the blur. The artifacts are due to two

reasons: one is the windowing effect, which exist even after the use of a Gaussian

masking window, and the second is that the Fourier Transform of an unblurred image

has already a certain structure that in a lot of cases changes the appearance of the

motion blur ripple. Moreover, the magnitude is a scalar value. therefore it can be

extracted by an 10 signal. The main idea is to create an 10 signal that is an

approximation of the FO'urier Spectrum transformed from 2D into 10.

3.4.1 Collapse the Fo'uner Spectrum

In arder to collapse the Fourier Spectrum we have to project every pixel inta the

line that passes through the origin with the same orientation as the motion blur. As

can be seen in figure 3.13a a pixel P(x,y) in the image is going to he orthogonally

projected into the Hne f - that passes through the origin 0 at an angle 9 with the

x-axis - at the point p((x, y) at distance d from the ongin. The main ta.sk here is to

calculate the distance d from the origin O. By applying the definition of the sin and

cos in the figure 3.13a we have that the distance d = x cos(6) + y sin(8) .
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d = x cos(0) + y sin( fJ)
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(3.21 )

(a) (b)

•

Figure 3.13: Collapsing the 20 data into 10 along the orientation of the bIur, and
the Fourier Spectrum of picture 3.11a

Since we work in the discrete space, the distance d has to be digitised. That means

that every pixel P( x, y) as it is mapped into a position Pl (d) along the direction of

the bIur, it is going ta affect in fact two values into the ID signal Pl ( LdJ), Pl ( LdJ +1).

More specifically, assume that the pixel P( x, y) is mapped at the distance d = .5.6 50

it is going to contribute 40% of its value at Pf (5) and 60% at P!(6). That way the

mapping is much more accurate than by simply assigning the whole value of each pixel

inta one position in the ID signal. Another issue that we have to take into account

is the distribution of the pixels along the Hne. The Fourier spectrum is calculated in

a square window, therefore the number of pixels that affect the central part is much

larger than the number of pixels that affect the two ends. [n order to have a uniform

distribution, when we do the mapping of the pixels we assign in each position of the



• CHAPTER 3. ALGORITH~[ FOR ANALYSIS OF lvrOTION BLUR 39

signal two values: the pixel value and a weight depending on the amount this pixel is

contributing. In the end we normalise the ID signal by dividing it by its accumulated

weight. The collapse of the 128 x 128 Fourier spectrum of figure 3.12b is a 128, ID

signal and cao be seen in figure 3.13b.

3.4.2 Normalisation of the data

One of the properties of Fourier Transforrn is syrnmetry~ that meaos that a signal of

n sampIes7 is syrnmetrical around ~ + 1. For exampie. for a signal P that has values

at [1 ... 128], the value P(l) and P(65) are unique and then P(65 - i) = P(65 + i)

for i in [1 ... 63]. Unfortunately when we collapse the 2D Fourier spectrum ioto ID

this condition does not hold. First of all small numerical and round off errors appear~

second. the different artifacts that are due to the ringing effect and aIso due to the

features of the Fourier spectrum of the unbIurred image aren 't syrnrnetrical around

the direction of the motion bIur; third, the weighting process contributes sorne more

round off errors into the newly created 10 signal. In order to achieve better results

we average the values of the l D signal with respect to the symmetry property. Nlore

specificalIy, the value Pt: (1) and p~ (~ + 1) are kept the same, and then for the rest of

the values the equation 3.22 is used.

p(( i- + 1 + i) = P~( i- + 1 - i)

_ Pt(i + 1 + i) + p( (i + 1 -i)
- 2

. n
l<z<--l- - 2 (3.22)

•

As can be seen in figure 3.14a the values at the borders are not as important as

in the middle, therefore in order to achieve better results we keep only the central

part of the signal. The next step is to shift in time in order to have the exact shape

of the Fourier Transform. The result cao been seen in figure 3.14b.

1n is usually a power of 2.
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(a)

Î

(b)

•

Figure 3.14: The collapsed Fourier Spectrum normalised, and then shifted only the
central part.

3.5 Cepstrum

In order ta proceed to the next step, which is the calculation of the magnitude. a

new tool needs to be defined. The power spectrum of an image is a signal by itself.

therefore different features that appear in it can he extracted using classical signal

processing techniques, such as edge extraction, Fourier Transform filtering, and so on.

In arder ta identify the ripple that appears in the image a technique called cepstrai

analysis is used.

3.5.1 Definition of the Cepstrum

Different definitions have been given for the Cepstrum depending on the different

application that was used. The most common definition of the Cepstrum 8 can be

seen at equation 3.23, where F(w, v) is the Fourier Transform of a function J(x, y)

[10},[18}. In other words, it is the Inverse Fourier TransJorm of the logarithm of

the Fourier TransJoTm of the signal. The Cepstrum calculated by equation 3.23 is a

8 Cepstrum is a juxtaposition of letters for the word Spectrum
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complex function; if we want to have ooly the real part then instead of the F(w, 'V) we

take its magnitude IF(w, v)l (which is the case in this a!gorithm) as in equation 3.24.

For the sake of simplicity, a more general definition is given in Eqn. 3.25 [10] where

the Z-transform is used. In this case the Cepstrum of an ID signal is the Z-transform

of the natura! logarithm of the Z-transform of the original ID signal9

Cep{f(x, y)} = F- 1{log (F(w. v))}

Cep{f(x,y)} = F-1{log (1 + IF(w, u)l)}

(3.23 )

(3.24 )

•

cr(n) = ~flnX(z)zn-ldz (3.25)
21rJ

The cepstrum has been found useful in a whole set of different applications. In

one dimensional signal processing it has been used in speech recognition for echo

detection; aIso early in image processing it has been used in nonlinear filtering for

image enhancement [18], where the logarithm of the Fourier Transform is amplifying

the information in the Frequency domain and the inverse Fourier Transform is used

to filter certain features. Another application in which it has heen used is passive

Stereopsis [11]. More specifical1y, in ~Ionocular Stereopsis we take a picture with a

camera with two pinholes, creating therefore an Echo in the image: as the echo is

extended across the x-axis we could process each line as an 1D signal and detect the

echo - which is equivalent to the disparity - using the Cepstrum. Finally another

area where the Cepstrai analysis has been used is in Optical Flow estimation when

the motion is known to he uniform across the X-axis and the ooly unknown is the

magnitude of the velocity vector [201. As we have see in section 2.2.2 the Fourier

transform of the motion blur PSF is of the form of a sinc ripple therefore it can he

easily identified by the ID Cepstrum.

9This definition can he also easily extended into 2D.
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3.5.2 Calculation of the Cepstrum
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As we see in the previous sections we have transformed the logarithm of the Power

Spectrum of the blurred image into an ID signal. This new signal has approximately

the shape of a sine ripple - distortions exist due to noise, windowing effect, and

the proeess of eollapsing the signal itself. The real part of the Cepstrum is used

in order to estimate the length of the ripple, whieh is in faet the magnitude of the

velocity veetor. The signal we have is an artificial average signal of the logarithm of

the Power Spectrum of the image. This has the advantage that the features in the

Power Spectrum that were there due to the unblurred image have been eaneelled out,

Ieaving as a prominent eharacteristie the effect of the motion bIur. As the 20 signal

is eollapsed aeross the direction of the motion it simulates a motion biur created by

uniform movement across the x-axis and has the appearanee of the sinc= IIlnr, as can
.r

be seen easily by cornparing the figures 3.l4a - the eollapsed signal, and figure 3.15

- the graphical representation of the sine function.

1

a..~

~ ~ ~ ~ ~ ~ ~ c ~ ~

tOO'--IIllIII-aoD1II1lI2CI01II

•

Figure 3.15: The Graphical representation of the sine function
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3.5.3 Information extraction from the Cepstrum

43

•

In this algorithm we assume that the velocities are bounded between 5 to 35 pixels

per frame. Such an upper limit is logical as the ripple can not be identified if is

larger, with the use of a window as small as 64 x 64. After the calculation of the ID

Cepstrum we search for a negative peak among the values in the interval [5...35].

70
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Figure :3.16: The Cepstrum of the image patch of image 3.lIa

As can he seen from the plot in image 3.16, the first five values are heavily

influenced by the DC value of the cepstrum and therefore unable ta give us a robust

answer; consequently this method works for exposure times that produce a blurred

image. There is no noise reduction or validation at this point, although different

techniques have been proposed in arder to make more robust the magnitude extraction

[20].

3.6 Complexity analysis of the algorithm

The previously described algorithm calculates the velocity vector for a point l(x, y)

making use of the information at the n x n image patch around it; usually, the size

of the image segment n is a power of two, the most common sizes being n = 64



or n = 128. Therefore, for an N = n x n image segment the algorithm works in

the stages: The Gaussian Nfasking which is O(iV), and the Zero Paddinflo wruch

is O(~V), by just creating the new image patch. Then the most computationally

expensive part is the Fourier Transform, which takes O( LV log iV) 11. The next step is

the calculatian of the maximum response far the steerable filters this is three times

the application of the basis filters O( LV) and then O( 1) far calculating the correct

angle. The callapsing of the Power Spectrum from 2D inta 1D is linear, therefore the

cast is again O( LV) and the normalisation is O( n). The last step of the calculation

of the magnitude of the velocity vector is the Inverse Fourier Transform of the 10

signal which has O(n log n) computational cost. Finding the negative peak in the

space [5...35] is again constant.

As cao be seen from the previous analysis for an image patch with a size iV = n x n

the computational cost is O( LV log (LV)). In order to calculate the optical flow of

a motion blurred image m x m in grid every ~ pixels with a window n x n we

have ta apply the algorithm l\t/ = m;n X min times~ therefare, the general cost is

O( ~\t/ {~V log (iV)}). One of the advantages is that the algorithm could be run in

paraUel for every velocity vector as there is no need of sharing intermediate results.

:\lso it is easy to develop a hardware implementation of the algorithm, as the most

complicated step is the calculation of the Fourier Transform.
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lOusually doubles the size from N = n x n to N' =2n x 2n

IIFrom now on we assume N ta he the size of the zero padded segment.
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Chapter 4

Experimental Results

In this chapter, the new motion blur algorithm developed in Chapter :3 will be anal­

ysed by evaluating its performance on several experiments involving blurred images

of various kinds. There exist two categories of input data that we are using. The

first category consists of stationary images, natura! or artificially created, that we

artificially blur by simulating the results of motion blur; in the second category, are

real images taken by a camera with the existence of relative motion between the

camera and the scene. The data from the first category give us the ability to check

the validity of our results and perform error measurements, while the images from

the second category are ensuring that the algorithm is working on real world data. In

the last part of this chapter an error analysis is performed, on the artificially blurred

images for which the exact results are already known. For the images from the real

world ooly a qualitative analysis is possible as we don't know the correct values before

hand.

45
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4.1 Artiftcial data
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Two images have been used in this section, each one of them having different prop­

erties. The first one (figure 4.1a) is a real image taken hy a stationary camera, which

has a whole set of different features such as smooth surfaces, edges, and highly tex­

tured areas, with size 256 x 256 pixels. The second one (figure 4.1h) is a random noise

picture, having the same size with the previous one. This image is rich in texture.

As we discussed in the previous chapter the algorithm is more effective when there

exist a lot of texture. this is quite obvious in the results we get, where there exist

more incorrect estimations at the places where there are smooth surfaces.

(a) (b)

•

Figure 4.1: Two artificially blurred images (a) a natural image (b) a random noise
image.

Both images have been blurred with the same kernel. The motion is assumed ta

be at a direction of +125° angle with the x-axis (or -55°) and with a length of 13

pixels. ln order to create the artificial biur we convoive the image with a kernel as

in table 4.1. In real world the blur is created before the digitisation, therefore the

points that contribute to the final value of the pixel exist in a straight tine. When
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we try ta reproduce the same results in the discrete space and we use an arbitrary

angle, we have similar results ta the aliasing. In other words, if we digitise the !ine

into discrete steps with sudden changes, then we have a stair-case effect. In order to

avoid that, the table is created by using the technique of antialiasing lines, as can

be seen in table 4.1 where the pixels are weighted according to their distance to the

~abstract" Hne.

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.5 1 0.5 0 0 0 0 0 0 0 0 0

0 0 0.5 1 O.S 0 0 0 a 0 0 0 0

0 0 0.5 1 o.s 0 0 0 a 0 a 0 0

0 0 0 0.5 1 0.5 0 0 a 0 0 0 0

0 0 0 0 o.s 1 0.5 0 0 0 0 0 0

0 0 0 0 0 O.S 1 O.S 0 0 0 0 0

0 0 0 0 0 0.5 1 O.S 0 0 0 0 0

0 0 0 0 0 0 O.s 1 o.s 0 0 0 0

0 0 0 0 0 0 0 0.5 1 0.5 0 0 0

0 0 0 0 0 0 0 O.S 1 o.s 0 0 0

0 0 0 0 0 0 0 0 0.5 1 0.5 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.1: The convolution matrix for the motion blur, using antialising lines.

In the next pages we are going to present the Optical Flow maps for the previous

two images (figure 4.1 a and b), using different configurations for the calculations;

in the fol1owing set of images the left one (a) represents the natural image, and the

right one (b) represents the random noise image. In the first set of images (figure 4.2)

we use a 64 x 64 window for every velocity vector we calculate - leaving therefore a

32 pixel border around the image where we can not estimate the Optical Flow. We

calculate the Optical Flow in a grid that has a density of ten pixels, and we zero pad

every window up to 128 x 128. As can he seen in image 4.2a, the orientation of the
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velocity is calculated correctly in most of the places; there exist of set of incorrect

estimations in the area of the lower rows especially between 80 to 200 at the x-axis,

corresponding to the presence of the areas that are characterised as smooth surfaces.

The magnitude of the velocity is more or less uniform. The Optical Flow of the

random noise image (figure 4.2b) presents a uniform orientation estimation; there are

not any areas where we have results that deviate from the correct direction. However.

the magnitude estimation is not satisfactory, a fact which is mainly due to the size of

the window, which is Dot big enough so we could have enough data at the frequency

domain in order to calculate the cepstrum.
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Figure 4.2: The Optical Flow of the two artificially blurred images using a 64 x 64
window with a step of 10 pixels, only with zero padding

For the next pair of figures (4.3) a bigger window is used, in this case a 128 x 128

window. The same conditions as in the previous experiment were kept - a 10 pixel

dense grid is used and the transformation to the frequency domain in done by using

simple zero padding that transforms the window from 128 x 128 into 256 x 256.

That way, although a big part of the image stays unfortunately without any velocity
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estimations, a more robust Optical Flow map is calculated. In the left map (figure

4.3a) that represents the Optical Flow of the natural image, the estimation of the

orientation is mostly accurate, and there are only a few incorrect estimations for the

magnitude; this is mainly due to the bigger size which gives us much more data to

extrapolate the results. In the velocity map of the random noise image (figure 4.3b)

we could see that the orientation is aiso correctIy calculated aithough sorne incorrect

results exists in the magnitude estimation.
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Figure 4.3: The Optical Flow of the two artificially blurred images using a 128 x 128
window with a step of 10 pixels, only with zero padding

In order to get better results and to eliminate the ringing effect, a Gaussian

window is used for masking before we proceed into the velocity vector estimation.

The next figure (4.4) presents the Optical Flow maps created by using a 64 x 64

window which is masked with a 2D Gaussian window (of the same size) and then zero

padded up to 128 x 128. As can be seen in figure 4.4a, the Gaussian masking causes

an improvement into the orientation estimation by eliminating the ringing effect,

but it interferes with the magnitude extraction from the cepstrum. Considering the
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random noise image, the Optical Flow estimation is robust as far as it concerns the

orientation but in the magnitude estimation sorne incorrect results are still present.

The estimations are improved considerably by using an even bigger window. As it

is obvions from figure 4.5 the results are much more accurate. In the Optical Flow

map of figure 4.5a the orientation is correct and there is ooly a small neighbourhood

where there is a miscalculation of the magnitude. Almost the sarne is true for the

random noise image which its Optical Flow map is presented in 4.5b.
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Figure 4.4: The Optical Flow of the two artificially blurred images using a 64 x 64
window with a step of la pixels, with zero padding and Gaussian masking

To sum up the results from the simulated blurred images, we have to highlight

sorne points. First of all the blur that was chosen was completely random; a biur

at 55° with length 13 pixels has no regularity and therefore the construction of it

creates sorne numerical errors. As it is going to be clear from Optical Flow maps of

the natura! images, the results are more robust. Secondly, different areas of the image

respond better in different approaches, for example in certain areas the ringing effect

is dominant compared to the blurred image signal, and in others simply the zero
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Figure 4.5: The Optical Flow of the two artificial1y blurred images using a 128 x 128
window with a step of 10 pixels, with zero padding and Gaussian masking

pad is enough. In the next section we are going to demonstrate how the algorithm

works on data taken with a camera from the real world. We are going ta come back to

artificially blurred images in the third section where we are going to do a quantitative

error analysis of the results.

4.2 Natural data

The images in this case have been taken by a camera and immediately digitised into

the computer. In order to have controlled motion between the camera and the scene

the fol1owing setup was used: a camera was mounted on a base painting downwards,

and a plane (created by cardboard) with random dots on top of it was used as the

main object in the scene. We moved the plane in different directions, sometimes

having small objects on it, with a speed high enough ta produce motion biur with

the preset exposure time of the camera. The setup can be seen at the drawing in

figure 4.6; in this case the plane is falling simply by its weight. During the different
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motions a frame grabber has been used ta freeze the image into the computer; the

speed was fast enough 50 that the picture is blurred and the Optical Flow map can

be calculated. In the following part we are going to see blurred images created by

different motions and their equivalent Optical Flow map. The format, for economy

of space, consists of three different blurred images, labelled (A), (8), (C) in one

figure. and their respectively Optical Flow maps in a second figure, following the

same labelling. [n aU the experiments the same configurations have been used: we

calculate the Optical Flow on a grid which was dense 10 x 10, using a 64 x 64 window.

The patch of the blurred image was masked first with a Gaussian window (ta avoid

the ringing effect) and then zero padded up to 128 x 128.

Figure 4.6: The camera setup with the plane falling downwards.

The first set of images is shawn in figure 4.7. The first image 4.7A has been

created by moving the plane in parallel with the y-axis with a steady and relative

small velocity; the algorithm has correctly estimated the orientation of the velocity

almost everywhere, as can he seen in the Optical Flow ma.p in figure 4.8A. The

accuracy of the magnitude estimation is not clear, although if we compare it with the
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next image sorne qualitative results can be drawn. The second image, 4.7B~ is created

again with a steady velocity parallel to the y-axis, this time at a higher speed, fact

which is easily noticeable by the length of the biur. Again the Optical Flow map, in

figure 4.8B, has an accurate estimation of the orientation and aIso gives an average

bigger magnitude for the velocity vectors. By comparing these two cases it is obvious

that the orientation estimation is correct and also the magnitude estimation shows

the difference between different speeds. The third image 4.7e is created completely

differently; the random-dot decorated plane is left to faH free under the camera and

during that faH we take a snapshot. As can he seen from the blur Hnes the focus

of expansion is at the middle of the left side, and indeed the algorithm gives the

same results. In the Optical Flow map (figure 4.8C) we could see the velocity vectors

pointing at the point of expansion and have a gradually decreasing magnitude as they

reach that point.

The next set of images, created with free fall away from the camera, appears in

figure 4.9. The first image 4.9A is taken very shortly after the fall begun, with the

focus of expansion at the centre of the image; this is easily identified by the pixels

at the centre where there is almost no blur at all and the size of the random dots

relatively big compared with the dots in the other images. Accurately enough. the

map of the Optical Flow in figure 4.10A shows the velocity vectors to converge in the

middle where again their magnitude decreases. The middle image (4.9B) was also

created by a falling plane, but this time the centre of expansion is at the left side in the

lower part, and the blur is not big as the random dots are almost distinguishable. In

fact, the velocity vectors in figure 4.10B are not very big and they correctly show the

point of expansion. The third image is created differently; it involves again uniform

motion across a tine, although this time the angle with x-axis is almost at 45°. This

image shows us that the algoritlun can calculate the velocity vectors at an arbitrary

angle. The Optical Flow map as presented in figure 4.10C describes correctly the

orientation with correct magnitude in majority.
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Figure 4.7: Three Images with motion blur

550 1 1

! 1 1
1 1

500 Il 1 1 ,
450

1 1, . 1

Il1

1
400 l,
350

\ 1

1 1
; 1

300 l' 1J 1 1

250
1 1 1

1

1

! 1
1

200 1
1

150
1 1 l'

: 1100 1

50 (A)

l' l, 1

! 1 i ; Il i
1 l' 1 1

!:! Il 1

f'l
1

1 1

(8)

• 1 1 1 •
1 1 •• 1 1 1
1 • 1 1 1 , •.. / ' /

, / ' , 1

1 1 l , , , ,

1 1 1 , , "/

1 1 , , / / '

1 , , '" '" '" ,
II'·~'/;

, 1 l "" , - ""

\ .. ----
\ " , " .. .... -, ' \ , ' , .....
\ , ' , , .... "
.,\", ....,,", .. ,. \ \ \ ' " "
\\\\''''. \ \ , ' " ", \ ' " "
\ , \ . , " "

(C)

•
50 100 150 200 2SO 300 350 400 450 500 550

Figure 4.8: The Optical Flow map of the previous images using a 64 x 64 window
with a step of 20 pixels, with zero padding and Gaussian masking
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Figure 4.9: Three Images with motion blur
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Figure 4.10: The Optical Flow map of the previous images using a 64 x 64 window
with a step of 20 pixels, with zero padding and Gaussian masking
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In the next set of images, sorne objects are placed on top of the random dot plane.

Again uniform motion paraIlel to the y-axis was used, but this time four small abjects

were placed onto the plane, in arder to see how they are going to affect the estimation

of the velocity map. In figure 4.11A we could see the first image, where two circular

pieces of cork appear in the upper part, the corner of a rectangle at the middle of

the right sicle. and a small box in the middle of the lower part. In the Optical Flow

map in figure 4.12A we could see the disturbance in the estimation that was caused

by the lack of texture in these places, especially in the lower middle part. Exactly

where the small box is in the hlurred image, the velocity map shows a deviation

at the orientation towards the right and the magnitude is incorrectly srnall: sirnilar

but srnaller disturbance exist at the right side at the middle where the corner of the

rectangle appears. The reason of this disturbance is aIso the lack of texture at these

points. The same results appear also in the second image (figure 4.118) where the

snapshot was taken when the objects were translated towards the low left part of the

image compared with the 4.11A. Again in the Optical Flow map (figure 4.12B) the

velocity vectors are correctly calculated, except of the lower-Ieft part of the image

where the small box appears. The third image of this set presents a different kind

of motion. In this case (figure 4.11C) the random dot plane was rotated bellow the

camera creating a "galaxy" like pattern. The centre of rotation is located at the

right side of the image sIightly lower than the middle. The Optical Flow map (figure

4.12C) presents these results locating correctly the centre of rotation, assigning a very

smalI magnitude to it, and arranging the velocity vectors circularly around it.

The third set of images have two more images created by rotational motion, but

aIso an image created with a completely different setup. The first image (figure

4.13A) was created by moving the camera by hand horizontally across a self full of

books and binders. The image is rotated by 90° due ta the way Mat/ab is handling

the images; taking that into account, the spiral binding of sorne of the books is quite

obvious. Also the lighting of the scene was low and therefore sorne of the features
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didn't appear; in addition it is quite notable the lack of texture in a lot of the areas.

In spite of these problems the velocity vectors in majority have the correct orientation

and approximately the same magnitude, (figure 4.14A) results that agree with the

blurred image. The last two images are created as before by rotating the random-dot

plane under the camera. The middle image (figure 4.13B) is created by spinning

the plane in high speed and that's how we get sorne almost continues biur lines: the

centre of rotation is at the upper right part. In figure 4.14B we could see the velocity

vectors having the proper orientation, and a rather big magnitude. The last instance,

4.13C, is taken with the plane considerably close to the camera and with a smaller

rotation speed; the centre of rotation is at the upper Left corner, and at that point the

pixels are rather discrete. A smooth Optical Flow map is presented in figure 4.14C

with the vectors having the correct orientation, circular around the upper left corner

where the centre of rotation is, and with an almost constant magnitude.

There is a need to see the restrictions of this algorithm as weIl as its advantages.

As we have already seen, the more information we have, e.g. more texture, or bigger

window. the better the results; this introduces sorne constraÎnts. First of aIl in a real

world application, the texture we have in a certain image is given; this can change

by examining the image at different scales, as for example, a carpet could he seen as

a smooth gray surface, but if we zoom in we could have a very intricate pattern. In

any case. if the texture is not enough we could not detect the motion; this is to he

expected as any biological system has the same limitations. For example. if a uniform

surface is moving and we could not detect any features then we could not infer the

motion.

The second condition refers to the window size and has two side effects that ask for

contradicting solutions. First, of all if the orientation of the velocity vector changes

- as it is the case in rotation or free falI in the previously described exarnples, or in

the simple case that inside the same window we have two or more objects moving to

different directions - then there isn't one unique blur pattern to dominate the shape
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Figure 4.11: Three Images with motion blur
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Figure 4.12: The Optical Flow map of the previous images using a 64 x 64 window
with a step of 20 pixels, with zero padding and Gaussian masking



• CHAPTER 4. EXPERIMENTAL RESULTS 59

Figure 4.14: The Optical Flow map of the previous images using a 64 x 64 window
with a. step of 20 pixels, with zero padding and Gaussian masking
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Figure 4.13: Three Images with motion blur

550

1
, , f 1 \ ' 1 ,

t 1 1 / / .. / 1 1 1 1

1 1 ,
1

\ 1 1 , / . , -/, ~ 1 1 1

500 , ,. / 1 , . 1 1 , / ,
1 1 1

1
1 t t , , . 1 _.;' 1 , , , 1

1
1 , , 1 1 1

1

, f .... .."./,/ , /
450 1 1 , 1 ,

1

1

1 - ..... / / / 1 1

1 \ 1 \ t

1

1 .... ;" ,. / ' 1 ,

400 1 1 1 \

l
1 - , ./ ' , 1 1

l 1 1 1 \ , , - // / , ,. 1

{ 1 1 .. 1 , \ \ 1 ,
- ... / 1

, ,. 1
350 1 1 1 -/ 1 1 \ \ \ \ .... ,..."/1 1

1 r 1 1 1 , \ \ 1 \ , \ , ...,. ,. ,. ,
300 1 , ,

1 1
1 \ 1 · \ \ , - , / '

1 f

1 , 1 · , \ \ \ ... " ..... /, , , ,

\ 1 1 \ \ · \
\ \ ' - " ". , , ,. ,

r 1 1 \ . 1 \ \
... " ' .. , , , 1 1

1 1 \ \ \ 1 \ 1 \ ... , , --/,,., 1

1

1

\ · \ \ \ \ .... .. -"" , 1

1 1 , \ \ \ \ ... " ... ... , ", ,. ". , 1,
1

\ , \ \ \ ... .... " _.... , ,. , , ,

1

,
f

\ \ · \ , " " ., , ,. , ,. , 1

/ · \ \ \ .... .... " -""//'~
100 , ... - \ \ ... ... , .... ... --//".'/

50 (A) (8) (C)

50 100 150 200 250 300 350 400 450 500 550

•



• CH;\PTER 4. EXPERIMENTA.L RESULTS 60

•

of the Power Spectrum. For such a case we have to use an appropriate window size,

that assures approximately the same orientation of the motion blur for the entire

window. In such a case the window size has an upper limit. This condition cornes

in contrast with the second side-effect. If the motion blur length is big enough theo

it is not possible ta have an approximate representation of the motion blur ripple in

the frequency demain, as we couid see at Most one or two periods of the ripple. and

therefore it would not he possible to iufer accurately the magnitude of the motion

blur. The previously described problems show that the algorithm can not be used

blindly. Aiso in a lot of cases, aithough an approximation of the Opticai Flow map

is obtained, we couid oot have accuracy; this makes the algorithm unsuitable for

applications such as complete deblurring, which needs an accurate estimation of the

motion blur PSF in order ta restore the image, but it couid still work on partial

recovery of the image and also in a series of other applications such as inference of

egomotion, time ta crash estimation, moving obstacle detections and 50 on. where a

sparser set of estimations is needed. In the next section we are going to use sorne

artificially blurred images in order to measure the error in the estimated Optical Flow

map.

4.3 Error analysis

Every velocity vector (in the Optical Flow map) consists of two numbers, the ori­

entation which is given as the angle with the x-axis in degrees, and the magnitude

measured in pixels. Therefore, the error analysis we are going to do, measures the

errors created in these two estimations. The magnitude estimation follows the orien­

tation estimation, using the calculated angle in order to compress the Power Spectrum

from 2D into 1D, consequently if there exist an errar in the orientation of the vector,

this is going to propagate into the measurement of the magnitude; in order to avoid

that, we also calculate the errors of the magnitude assuming a correct angle estima-
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tion. The error estimations that are presented in the fol1owing pages were created

using the fol1owing methods: the Optical Flow maps were created on a grid with a

density of ten pixels, and every velocity vector was created using two different sizes

for the processing window, (50, we could see the improvement when we use more

information -larger window size- for the calculations). The first colurnn in every

different method represents a window size of 64 x 64 pixels and the second 128 x 128

pixels. There were five different variations of the algorithm that were applied. The

first variation (columns one and two) makes use of the complete aigorithm with all

the preprocessing stages. (Gaussian ~Iasking and Zero Padding), and it is the most

computationally expensive. The second variation (columns three and four) i5 using

only Zero Padding, while the third one (columns five and six) is using only Gaussian

~lasking for the ringing effect. The fourth method (columns seven and eight) has no

preprocessing at aIl, and all the calculations were applied at the raw data from the

blurred image. FinaIly the last two columns present error estimations for the magni­

tude assuming correct orientation calculation. For every experiment (each variation

with each size) there exist ten error measurements that are presented l in different

rows. The first five error estimations measure deviations from the correct angle; the

first is the mean value of the total number of errors in the angle estimation, which

helps us to see how far from the correct orientation the general estimation points.

As the mean vaIue sum up the errors, negative and positive errors average into zero,

therefore the mean of the absolute error is estimated in the second row, and gives

a measure of the absolute error. The third row presents the Standard Deviation,

and the fourth and fifth rows the maximum and minimum error respectively; as the

error measurements are positive and negative these two estimations present the two

larger errors in each direction (clackwise and counter-clockwise). AIl the angle error

measurements are estimated in degrees. The fol1owing five rows have the same errar

IThe last variation with given orientation naturally doesn't have any angle error estimation.
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estimations but this time for the magnitude of the velocity vectars measured in pixels.

The first twa tables 4.2, 4.3 have the error estimations for the blurred images

presented in figure 4.1a,b. In order to examine the influence of numerical errors

inserted by the blurring processes (the use of an antialiasing Une) the twa images ­

the natural image and the random noise pattern - are blurred with a diagonal line

(the 16 x 16 identity matrix) and an errar analysis is presented in tables 4.4. 4.5.

ERRDR Gauuian Padded Zero Padding Gaunian Masking No Preproce86ing Knoum angle

EstimatioDs 64p 128p 64p 128p 64p 128p 64p 128p 64p 128p

"'tean angle 0.60 -0.1 0 2.00 0.20 0.1 0 -0.50 1.70 0.20 - -

Mean lIangleU 3.60 1.6° 4 -0 2.4 0 4.1 0 2.1 ° 5.50 2.60 - -.1

S. Dell. angle 2.1 ° 0.80 1.2° 0.80 2.1 0 0.9° 1.4° 0.5° - -

Mar angle 15° 6° 190 90 150 60 23° i O - -

.\.fin angle _34 0 _6° -130 _10 -35° -io -180 _8° - -

Mean length •...2 -5.9 -6.6 -7.3 ·4.0 -5.2 ·5.1 -6.8 •...8 ·6.2

Mean IIlengthll 5.2 6.4 7.2 7.3 5.5 5.9 6.8 7.4 5.6 6.4

S. Dell. length 1.1 1.5 1.6 1.2 1.3 1.4 1.2 2.2 1.1 1.2

Mar length 15 15 15 1 11 12 15 13 12 9

Min length -8 -8 -8 -8 -8 -8 -8 -8 -8 ·8

Table 4.2: Error Estimation far the blurred image of figure 4.1a, the vectors were

estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section

The errar estimations of the figure 4.1a are given in table 4.2. The qualitative
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observations that were made in section 4.1 can be verified here. As can be seen,

in general the orientation is estimated much more robustly than the magnitude. In

average, the error is as small as one tenth of a degree (not possible to detect) and at

most two degrees, when a small window 64 x 64 with only zero padding was used; an

improvement is aIso dearly detectable when we use a bigger window in every method.

The same results hold when we take the average of the absolute error: this time. as

we take into account every deviation from the correct orientation, the average error

is higher but it still stays in acceptable levels having as maximum error 5.5 degrees,

with no preprocessing and a relative small window. The standard deviation is small

in almost aH the cases. As far as it concerns extreme values of error. we have a

positive deviation up ta twenty three degrees (large number but rather rare as can

be seen from the Optical flow maps in section 4.1; which is also appears in the worst

situation of no preprocessing and with the use of a small window.) Rather interesting

in the table is the decrease of extreme errors with the use of a larger window. for

example the complete algorithm goes from -340 for a 64 x 64 window to _6° for

a 128 x 128 window, and similar results hold for the rest of the variations. The

magnitude errors are higher, but that is ta be expected from the Optical Flow maps

presented in the section 4.1. When we couId not find a negative peak that signals the

length of the ripple usually the algorithm picks the lowest value, which is the starting

value (5 pixels in this configuration); that way the minimum length error is -8 pixels

for all the cases. Although in average we don't have a major improvement when the

orientation is given (this is due to the lowest possible estimation of -8 pixels that

still exist) the maximum error decreases from 15 pixels to 9 pixels for a 128 x 128

window, and from 15 pixels to 12 pixels for a 64 x 64 window.

Another way ta see the distribution of errors is presented in figure 4.15. We ha.ve

created the error maps for different cases by displaying the error estimations that

were used to construct table 4.2. The images 4.15a,b,c were created with a 64 x 64

window, where the images 4.15d,e,f were created with a 128 x 128 window. The first
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Figure 4.15: The Error ~Iap for the image 4.1a for the orientation (a,d), the magni­
tude (b,e), and the magnitude with given the orientation (c,e); with a 64 x 64 window
(a,b,c) and with a 128 x 128 window (d,e,f). Darker areas indicate larger relative error

•

column (4.15a,d) has the errors in the orientation calculated with using the complete

algorithm, the middle images (4.15b,e) display the magnitude error estimated by the

same algorithm; while the last column (4.15c,f) presents the magnitude errors when

the orientation is given. The absolute value of the errors was used, with white for

zero error, and black for the highest error value; also we have to mention that the

black represents a different error value for each image and therefore, comparisons

hetween different images based on the gray values can not he done. In order to

analyse the error results we have to compare the areas in the error maps with the

hlurred images presented in 4.1a. In the first image we could see that the general

error level is low with a high peak in two neighbouring areas, and by comparing
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these areas to the blurred image it is obvious that they are the places with minimum

texture and therefore not enough information; the same holds for the error map of the

larger window figure 4.15d. The magnitude error maps that are presented next have

a more random distribution of errors, mainly gray (by checking the table with the

average values,) due to the inability to estimate the magnitude in sorne positions and

assigning the minimum value -5 to them; sorne peak results appear here also, and

it is easily distinguishable where there are due to an orientation-estimation failure

(by comparing with the error map in next column) and where there are not. An

improvement is obvious from the small ta the large window, where in the 128 x 128

window the bigger error is due ta the error in the orientation estimation.

The error estimations for the random noise image (figure 4.1b) are given in table

4.3. Once again an analysis of the table confirms the observations from the Optical

Flow maps in section 4.1 for the 4.1b blurred image. Also. a comparison between

table 4.2 and table 4.3 highlights the importance of texture in the extraction of opticai

flow from the motion biur. In calculating the orientation of the motion biur the same

improvement as before cao be seen with the use of a bigger window, although, as

the image is full of texture (random values), there is not much improvement with

the use of different preprocessing techniques. In general the average error (absolute)

holds about 2.50 to 30 for the small wiodaw and from 20 to 2.50 for the large; such

error values are not optically detectable in the image. However, wheo it cornes ta

the extreme values, we have a rather big improvement as they decrease from 230 for

the image in figure 4.1a with 00 preprocessing and with the small window, down ta

140 maximum when we use only zero padding and the 64 x 64 window; cansiderably

more is the improvement far the negative differences, where from -350 far the natural

image as worst case we imprave to -100 for the random noise one. In general the

extreme errors are radically reduced in the textured image because there exist no

places with uniform surfaces and not enough information. In the calculation of the

magnitude again we have sorne improvement, but not as much as in the orientation.
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ERROR GaU.!.fian Padd~d Zero Padding Gaunian .\fasking .'Va Pn:proceuing Known .mgle

EstimatioDs 64p 128p 64p 128p 64p 128p 64p 128p 64p 128p

Mean angle 2.40 2.1 0 L.8° 2.00 2.00 1.60 1.60 1.90 - -

Mean lIangleU 3.00 2.2 0 2.80 2.50 3.00 2.00 2.50 2.00 - -

S. Dell. angle 0.50 0.40 0.20 0.2° 0.60 0.50 0.3° 0.20 - -

Meu angle 10° 5° 14° 100 11 0 5° 120 "'0 - -,

Min angle _80 _2° _9° _5° _10° _3° -io _'2 0 - -

.Welln length -2.i -L.5 -1.3 -0.2 -2.2 -3.1 -1.5 0.5 -3.2 -5.2

.Wean IIlengthll ".1 5.1 -t.i 6.6 5.0 6.0 5.6 6.3 4.6 6.2

S. Dell. length 0.8 1.1 1.0 Li 1.2 1.4 1.0 1.4 1.1 2.1

Meu length 16 14 li li 11 12 13 li 15 15

Min length -8 -8 -8 -8 -8 -8 -8 -8 -8 ·8

Table 4.3: Error Estimation for the blurred image of figure 4.1 b, the vectors were

estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section
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This is most probably due ta numerical errors like the ones that have been analysed

in chapter three. In general the absolute error is smaller compared ta the natura!

image in figure 4.1b. The results can be better if we use sorne methods to discard

estimations that are not valid, which is here the major cause of error.

In arder to analyse the error estimations of the algorithm without the complication

of the numerical errors that occur during the simulation of the motion blur (as much

as possible), and under good conditions, we create two more blurred images. This

time the orientation of the biur is at a -450 angle with the x-a..xis and it has a

magnitude of 16 pixels; this way we don't use a simulation of antialiasing Hnes but

the 16 x 16 identity matrix which is a matrix 16 x 16, with zero everywhere. except

at the diagonal where it has the value 1~ = 0.0625. In figure 4.16a. b. we present

these two blurred images; they are produced by the same original images as the ones

used for the images in figure 4.1a,b but this time we use a different blur kernel.

(a) (h)

•
Figure 4.16: Two artificially motion-blurred images (a) a natural image (b) a random
noise image; with the motion biur diagonal and with a magnitude of 16 pixels.

For the first image 4.16a, the error estimations are presented in table 4.4. Doing
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ERROR Gau,lIian Padded Zu'O PaJding Gau.uian MIJ.-king No Preprocc.uin!l I{nlJlJJn IJng/e.

Estimations 64p 128p 64p 128p 64p 128p 64p 128p 64p 128p

Jfean angle _0..1 0 _1.3° -0.9° ·1.9° _0..&° -1.20 -1.40 -2.1 ° - -

Jfeem Ilemglell 2.50 1 -0 3.10 2.10 2.90 1.90 4.8° 3.1 0 - -.,

S. Dev. angle 0.90 0.60 0.90 0.5 0 1.0° 0.6° 1.30 0.50 - -

Mu angle 10° 3° llo 50 10° 3° 110 4° - -

Min angle -150 -So -130 ·9° _16° _6° -190 _10° - -

,\tfeon length -2.0 -0.5 -3.3 -2.6 2.6 -0.8 -0.9 -2.4 2.0 0

,\.o/eon IIlengthll 3.2 0.9 4.8 3.2 8.8 1.3 8.9 3.1 2.0 0

S. Dev. length 1.1 lA 0.9 0.1 0.6 1.0 0.8 1.3 2.2 0

Mar length 13 13 14 6 1" 11 14 11 11 0

Min length -11 .. -11 -Il -11 -8 -11 -lI 0 0-,

Table 4.4: Error Estimation for the blurred image of figure 4.16a, the vectors were

estimated every 10 pixels. For a more detailed description of the table refer ta the

beginning of the section
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a crude comparison with the error estimations for the blurred image at figure 4.1a~

sorne interesting results for the algorithm can be extracted. The estimation of the

orientation does not present any major improvement mainly because the average error

is rather small; but almost everywhere there exist a small improvement. There exists

a noticeable improvement at the extreme error values especially for the use of the

small window (64 x 64), where we have an improvement from -340 clown to -150

for the use of the complete algorithm and from -350 down to -160 for Gaussian

Masking only. 1t is clear that the Gaussian Masking is not as important as the zero

padding for the calculation of the orientation for the small window. Overall, with

no preprocessing at aIl, the estimation of the angle is worse than in any other case,

but it is still at an acceptable error level. The magnitude estimation, which is much

more sensitive to additive errors, presents a much more remarkable improvement ­

here the need for enough information and for the use of filtering in arder to suppress

the ringing effect are obvious. The average absolute error diminishes from 3.2 to 0.9

with the use of a 128 x 128 window instead of a 64 x 64. For the complete algorithm,

if we use a smali window and no zero padding, the results are compietely wrong, with

an average absolute error of 8.8 pixels. Extreme values are Iower bounded by -11

when no negative peak is found, and it is remarkable that with the use of a large

window and Gaussian ~[asking we don't reach this boundary and we get a minimum

of -8. Finally when the orientation is known for a large window, we have an absolute

success, which shows that the compression and the use of the cepstrum calculate the

correct answer.

Comparing the error results for this image with the error estimation we got for

the image 4.1a, help us to highlight sorne points. First, as noted earlier, the im­

provement is obvious from 6.4 pixels for a large window and the application of the

complete algorithm we decreases to 0.9 pixels for the same setting, and also, even

without that for the same setting. AIso, even when we used zero padding only, the

maximum absolute error we get is 4.8 for a 64 x 64 window. Second, the size of
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the window is important, because when there isn't enough information, even if we

know exactly the direction on which we need to compress the Power Spectrum, it

is rather difficult to get completely correct answers. Third, if the artifacts from the

simulation are stronger than the blur rippIe, even with given the orientation, the

magnitude estimation is not error free. Finally, in arder ta improve the results, an

iterative algorithm that estimates the value of the orientation by taking into account

the value of the neighbours can he used, and if there exists a minimum error for the

orientation an improvement to the magnitude estimation would be aiso achieved.

The last table~ 4.5, contains the error estimations for the random noise image

blurred across the diagonal, with a magnitude of 16 pixels as presented in figure

4.16b. The conditions in this case are rather good, as the image is full of texture and

the artificial blur has minimum side effects. As can he seen from a simple comparison

with the previous tables, we have the best results as far as it concerns the estimation

of the orientation of the motion biur. The average absolute error in orientation is

2.30 at worst, which is as lowas the best in every other case. Where the best result in

average error is 0.90
, which is unnoticeable. If we check the average error, which gives

us an estimation on how weB the resulting motion vectors approximate the general

motion, we see an error of 0.50 which is simply unnoticeable. wloreover, when we

check the extreme error values, they are also much lower than the previous ones: with

an average _60 (counterclockwise) and as small as _20 for the complete algorithm

and the use of a large window; for the positive values (clockwise) the smallest is 3°

with at most a 100 for small window and no Gaussian masking to control the ringing

effect. Overall, we could say that the full algorithm with a proper window size gives

minimal errors when enough information is given. The improvement continues aIso in

the magnitude estimation. With a 128 x 128 window size the average ahsolute error

stays close to zero 0.1 - 0.2 pixels, while for a small window and zero padding (so

enough information can he used) it is 2.3 pixels. The extreme values are accordingly

small, -4, 4 pixels for the complete algorithm and a large window and similar values
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ERROR Gau."an Padded Zero Paddmg ùau....an Ma6icmg No Prr:proceumg Known angte

Estimations 64p 128p 64p 12Sp 64p 128p t34p 128p 64p 128p

Mean angle 0.50 0.50 0.4° 0.50 0.60 0.5° 0.20 0.40 - -

Mean lIanglel! 1.90 0.90 2.30 1.30 2.2 0 1.10 2.1 0 l.00 - -

S. Dell. angle 0.5 0 0.20 0.20 0.1 0 0.50 0.30 0.40 0.2 0 - -

Mar angle 6° 3° 100 6° 8° 4° 8° 5° - -

.Uin angle _6° _2° _9° _6° _7° _2 0 _So _5° - -

Mean length -1.9 0.0 -1.6 -0.7 4.1 -0.1 5.2 0.0 0 0

Mean IIlengthll 2.3 O.l 2.3 0.8 8.9 0.2 9.1 0.2 0 0

S. Dev. length 0.6 0.5 0.5 l.6 0.7 0.7 0.7 0.4 0 0

Mar length 9 " 14 9 14 2 l4 6 0 0

Min length -10 -4 -11 -10 -lO -5 -11 -3 0 0

Table 4.5: Error Estimation for the blurred image of figure 4.16b, the vectors were

estimated every 10 pixels. For a more detailed description of the table refer to the

beginning of the section
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for the rest of the cases. 1t is worth ncting that, given the correct orientation, even

the 64 x 64 window gives completely correct results.

To sum up, the results from the error analysis demonstrate the major properties

of the algorithm developed. When it is used with the appropriate data, the algorithrn

estimates the Optical Flow map quite accurately. To get meaningful results certain

conditions have to be true: in the window that is used there must exist enough

information in the blur in order to produce the characteristic ripple in the frequency

domain, and the size of the window must be large enough 50 a few periods of the

ripple appear and not just one, which would make the ripple undetectable.
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Chapter 5

Conclusions

Whenever there is relative motion between a camera and objects in a visual scene.. the

camera's image of the scene is blurred. When the relative velocity is large enough,

this motion biur can be quite significant.

NIost visual motion estimation algorithms developed up to now treat motion blur

as just one more source of noise. Niost typically, these approaches either ignore

motion blur.. or assume a restricted situation in which camera and object velocities

are relatively small.

In this thesis, a new approach to dealing with motion blur is formulated and

evaIuated experimentally. An aIgorithm is presented for computing the optical flow

from a single motion-blurred image. The algorithm makes use of the information

present in the structure imposed on the image by the motion blur.

The algorithm can be considered as operating in two steps. For each patch of the

image, the direction of motion is first determined and then the speed in that direction

is recovered. The algorithm operates in the frequency domain where it exploits the

fact that motion bIur introduces a characteristic rippte in the power spectrum. The

orientation of these ripples in the 2D power spectrum is perpendicular to the direction

of the motion bIur. A key element of the algorithm developed in this thesis is the

73
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robust and efficient identification of the orientation of these ripples by making use

of steerable filters. In experimentai results, the orientation of motion blur is often

recovered to within just a few degrees.

Once an accurate estimate of the oriention of the motion biur is known, the speed

of motion, or the spatial extent of the bIur, can he computed using a modified farm

of cepstral ana/ysis. The first step in this procedure is ta collapse the 2D log power

spectrum into a l D signal along the Hne indicating the direction of motion. The

frequency of the ripple in the resuiting lD signal can he identified by taking a further

Fourier Transform and Iocating a negative peak.

This algorithm has been implemented and evaluated experimentally using artifi­

cial and natural images. [t has the advantage of exploiting information in a motion­

biurred image that traditional motion analysis methods have tended ta ignore. It has

the added advantage of providing an optical fiow map from a single image, instead

of a sequence of images. The algorithm aIso lends itself easily to efficient parallel

implementation.

There are sorne limitations for the applicability of this algorithm that are worth

ooting. NIost importantly, the algorithm depends on the presence of texture in the

image, sinee the blur in a region with homogenous brightness is undetectabie. The

magnitude of motion biur that can he detected is limited by the size of the image

patch being anaIyzed. AIso, if the motion biur is too small, on the order of just a few

pixels, it beeomes indistinguishable from other small-seale features, such as texture,

noise, or out-of-focus biur.

In the following section, suggestions are made for application of this work, along

with directions for future research in this area.
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There are a number of directions that future developments could follow. Among the

most obvious ones is the extension of the algorithm to deal with true colour pictures.

Another is a parallel implementation of the algorithm which would improve its speed

up to a point that it would he possible ta run in almost real time for a whole image.

That would make possible the use of the algorithm for extracting the Optical Flow

from a moving camera on the tiy, for navigational pllrposes.

Nlore research on the windowing effect and the artifacts that it produces could lead

iota the application of knowledge intensive filters in order ta reduce its side-effects.

Also. the assumption that the image is noise free was made throughout this thesis. but

future developments of the algorithm will have to take into account the noise factor

and ensure the robustness of the algorithm in a noisy environment. One possible

solution could he to prefilter the image in arder ta eliminate the noise. Another is ta

take into account the characteristic of the noise in the frequency domain and adapt

the steerable filters and the cepstral analysis accardingly.

An open field of research is the adaptation of the algorithm according ta the

applications in which it could be used. Application specifie issues should he addressed

such as speed versus accuracy, acceptable error levels. and others. [ncorporating

the algorithm into a mobile robot architecture for self navigationaI purposes is one

application: in that case it is important to update the optical flow field fast in arder

ta get a general idea of the egomotion and also to identify moving abjects that could

present a threat for the robot, while the accuracy is not as important. Another

application, with the opposite requirements, is the restoration of an image carrupted

by motion biur. The image is taken with an inappropriate large exposure time, far

example a security camera takes a shot of a speeding car, and the goal is ta clean the

picture. In that case there is no time canstraint, but we need ta find precisely the

motion blur parameters in arder ta reconstruct the motion blur convolution matrix
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and perform a deconvolution to restore the image.

In conclusion, the algorithm developed could he useful in a wide range of appli­

cations, providing the Optical Flow map where traditional algorithms fail.
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List of Abbreviations

DCT: Discrete Cosine Transform

DFT: Discrete Fourier Transform

FT: Fourier Transform

FFT: Fast Fourier Transform

1FT: Inverse Fourier Transform

[FFT: Inverse Fast Fourier Transform

PSF: Point Spred Function

RtvIS: Root ~Iean Square

SNR: Signal to Noise Ratio
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