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Abstract

Piezoelectric materials offer an alternative method for active control of aeroelastic oscilla-
tions, that is potentially cheaper, lighter, and more effective than conventional control
methods. In this thesis, the aeroelastic oscillations of a delta wing under the combined
effects of unsteady, supersonic aerodynamic loading and bonded piezoelectric strips are
studied.

The delta wing is modelled as a cantilevered triangular plate undergoing small transverse
oscillations. Using the structural model developed here, the natural frequencies of the wing
are obtained. A hybrid analytical-numerical method is developed for the unsteady super-
sonic aerodynamics of the wing, in order to determine the unsteady pressure distribution
and the generalized aerodynamic forces on the wing. It is shown that the method adopted
here to obtain the pressure distribution is more accurate than the analytical method based
on frequency expansion, and computationally more efficient than the numerical methods
using the Mach Box approach. Finally, in the presence of bonded piezoelectric strips, the
transient and dynamic responses of the wing are studied without and with aerodynamic

loading, respectively.

It is found that with particular combinations of voltages and the number of piezoelectric
strips, the amplitude of the aeroelastic oscillations can be reduced. These required combi-
nations change as the periodic frequency of wing oscillation is varied. Additionally, the
piezoelectric actuators aligned with the span are more effective than the chord-aligned pie-
zoelectric actuators, which produce little or no reduction in the oscillations. It is further
found that even a small number of strips can effectively reduce the magnitude of the oscil-

lations.



Sommaire

Les matériaux piézo-électriques offrent une méthode alternative pour la commande active
des oscillations aéroélastiques. Cette méthode est potentiellement moins coliteuse, plus
simple, et plus efficace que les méthodes de commande conventionnelles. Dans cette thése,
les oscillations aéroélastiques d'une aile delta sous les effets combinés des charges
aérodynamiques non-stationnaires supersoniques et des bandes piézo-€lectriques sont

étudiées.

L'aile delta est modélisée comme une plaque triangulaire en porte-a-faux soumise a des
petites oscillations transversales. En utilisant le modéle structural développé ici, les
fréquences naturelles de l'aile sont obtenues. Une méthode hybride analytique—numérique
est développée pour l'aérodynamique supersonique non-stationnaire de l'aile, dans le but de
calculer la distribution des pressions non-stationnaires, ainsi que les forces aérodynamiques
généralisées sur l'aile. Il est montré que la méthode adoptée ici pour obtenir la distribution
des pressions est plus exacte que la méthode analytique basée sur l'expansion des
fréquences, et plus efficace du point du vue des calculs numériques que les méthodes Mach
Box. Finalement, en présence des bandes pi¢zo-€lectriques, les réponses dynamiques et
transitoires de l'aile sont étudiées, sans et respectivement, avec les charges

aérodynamiques.

On a trouvé qu'avec certaines combinaisons des voltages et des bandes piézo-€lectriques,
I'amplitude des oscillations aéroélastiques peut étre réduite. Ces combinaisons changent
quand la fréquence périodique de l'oscillation de l'aile varie. De plus, les bandes piézo-
électriques alignées dans la direction de l'envergure sont plus efficaces que celles alignées
avec la corde, qui produisent trés peu ou pas de réduction dans les oscillations. On trouve
que méme un trés petit nombre des bandes pi¢zo-€lectriques peut effectivement réduire

I’amplitude des oscillations.
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Nomenclature

a = speed of sound

a; = width of ith piezoelectric strip polarized in y-direction
b; = width of ith piezoelectric strip polarized in x-direction
¢ = chord of delta wing

[C] = structural damping matrix

C_ = coefficient of pressure

r
C, = reduced coefficient of pressure
d3, = piezoelectric constant relating voltage to strain for x-aligned PVDF strips

d3> = piezoelectric constant relating voltage to strain for y-aligned PVDF strips
D = flexular rigidity

E = Young’s Modulus

/= shape function of PVDF strip polarized in x-direction
g = shape function of PVDF strip polarized in y-direction
h = small transverse motion of wing

h; = thickness of the ith piezoelectric strip

hy, = thickness of the wing

h = small reduced transverse motion of wing

[/] = unit matrix

k = non-dimensional frequency

K; = gain

[K] = stiffness matrix

[ = length of semi-span of delta wing

L = Lagrangian

m = mass per unit area

M = number of clamped-free shape functions

M = Moment

M . = free-stream Mach number

[M] = mass matrix

N = number of free-free shape functions
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Nomenclature

p = pressure
P = power
{q} = generalized displacements
{q} = complex generalized displacements
{4} = generalized velocities
{3} = generalized accelerations
{q;,} = cosine component of the generalized displacements
{q.,} = sine component of the generalized displacements
{Qaero} = generalized forces due to aerodynamic loading
{0 p iezo} = generalized forces due to the presence of piezoelectric strips
R, = total number of PVDF strips
R, = number of PVDF strips aligned in the x-direction
R, = number of PVDF strips aligned in the y-direction
t = time
T = kinetic energy
u = pertubation velocity
= reduced pertubation velocity

i
U = stream velocity

V = potential energy

V. = voltage applied across the thickness of the ith strip oriented in the x-direction
Vi = voltage applied across the thickness of the ith strip oriented in the y-direction
V. = cosine component of V;,

V>, = sine component of ¥V,

Vi, = cosine component of Viy

Vi, = sine component of Viy

w = transverse displacement of the wing

w = vertical pertubation velocity or upwash

w = reduced vertical pertubation velocity

W = reduced vertical velocity

y =X31x)

(x, y) = coordinate-system used for structural modelling and dynamic analysis

xii



Nomenclature

(x,, x,) = coordinate-system used for acrodynamic analysis

(xy,» X,5) = source point

(x;, y;) = location of the bottom left corner of the ith PVDF strip

(X, Y) = non-dimensional coordinate-system used for acrodynamic analysis

a , p = plate material constants for damping
€, = longitudinal strain in the plate

€, = longitudinal strain in the piezoelectric strip
1N = non-dimensional y-coordinate

v = Poisson’s ratio

®,, = natural frequency

o = frequency of periodic motion

¢ = pertubation velocity potential

¢ = reduced pertubation velocity potential
D, = i clamped-free shape function

p = plate material density

¢ = small rolling rotation

¥, = "M free-free shape function

¢ = non-dimensional x-coordinate

6 = angular deflection

6 = small pitching rotation

Subscripts
i = ith piezoelectric strip
p = plate
= identifies shape function in the clamped-free direction
s = identifies shape function in the free-free direction

«© = free airstream



Chapter 1

Introduction

Aeroelastic wing oscillations represent a major concern to the aircraft engineer. Vibrations
from instabilities, such as flutter of wings, affect the maximum flight speed and the integ-
rity of the aircraft. Flutter suppression is especially critical for supersonic wings and is a
subject that has been studied extensively. At high speeds, flutter of the wings is greatly
increased thereby increasing the risk of failure of the structure. Hence, control of this insta-
bility is very important in order to increase the flight envelope and improve the safety of
the structure. Also, controlling aeroelastic oscillations helps provide smoother rides, and

lower root loads.

Aeroelastic wing vibration can be controlled by both passive and active means. Passive
control methods include: static and dynamic mass balancing on manual aircraft which
involve use of high weight, low volume material placed in or on the control surfaces such
as ailerons and elevators; use of more than two power control units on the control surfaces
to provide stiffness; use of flutter dampers which involves a piston moving in hydraulic
fluid to provide stiffness to the control surface; and structural tailoring of the wings, such
as adjusting the geometric sweep. The problems associated with passive methods include
added weight, hydraulic lags and cost. Conventional active control methods use the control
surfaces of the wing as actuators. For example, advanced tailless fighter aircraft use ailer-
ons as actuators. There are problems, however, associated with these active control meth-
ods. As the control surfaces are hydraulically operated, there is a hydraulic lag associated

with conventional active control.
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Present day researchers are looking at smart materials as an altemative to the conventional
control surface actuation. These smart materials can control the oscillations due to flutter
in supersonic wings by strain actuation. Smart materials like piezoelectric and piezocer-
amic materials are examples of strain actuators. These smart materials can easily be
mechanically integrated on the surface of the wing in the form of thin layers or individual
strips. They are lightweight, cheap, and easy to manufacture. Structures that incorporate

these smart materials are called smart structures or adaptive structures.

As the title of the thesis suggests, the work presented herein is multi-disciplinary involving
structural analysis of a delta wing, aerodynamic modelling, and lastly a combination of the
two models to study the response of the delta wing under the combined aerodynamic and

piezoelectric forces.

A survey of the available literature shows that work has been done around the world by
researchers in one or more of the disciplines involved, namely, oscillations of wings,
unsteady supersonic aerodynamics and active control of structures using piezoelectric
materials. The available literature also shows that some work has been done in the field of
flutter control of wings (for example swept-back wings) by means of smart materials using
simple aerodynamic models. The author is unaware, however, of any literature on the sub-

ject of control of aeroelastic oscillations of a delta wing using smart materials.

In this thesis, the dynamic response of a delta wing under unsteady supersonic loading and
in the presence of piezoelectric materials known as PVDF (polyvinylidene fluoride) is stud-
ied. Delta wings are wings of symmetrical triangular form used ordinarily on supersonic
aircraft. For example, variations of the deita wing are found on the Concorde; military air-
craft such as the Dassault-Breguet Mirage series, the Eurofighter; North American XB-70,
MIG-21, SAAB 35 Draken; and also the Space Shuttle.

Due to the aeroelastic oscillations of the wing, there exists a danger of structural failure in
flight at supersonic speeds. It is therefore imperative to find a way to actively control the

aeroelastic oscillations in this type of a wing. Hence, the choice of the subject of research.

(§8 ]



Chapter [: Introduction

1.1 Literature Review

Following is the literature review on which the present work is based. The literature review
is divided into four parts: the first part briefly discusses the available relevant literature on
structural analysis of cantilevered triangular plates alone; the second highlights two meth-
ods available for solving for oscillatory flows on delta wings; the third section is more
detailed as it introduces work done in the field of active control of structures using smart
materials; and lastly some of the literature on active control of aeroelastic oscillations for

various wing planforms and panels. is discussed.

Gustafson et al. (1953) carried out an experimental study of natural vibrations of cantilev-
ered triangular plates of uniform thickness. They obtained experimental results for the
lowest six trequencies of the delta wing planform of fixed span with increasing aspect
ratios. They found that increasing the aspect ratio increased the frequency of each of the
six modes of vibration. Andersen (1954) compared his numerical results to those obtained
by Gustafson et al. (1953). Andersen (1954) used the Ritz Approximate method to approx-
imate the deflection of symmetric (isosceles triangles) and unsymmetric (right-angle trian-
gles) cantilevered plates. He determined the natural frequencies for the lowest two modes

of the cantilevered unsymmetric plate.

Pines et al. (1955) developed a numerical approach based on the Mach Box method to
obtain generalized forces on an oscillating flexible wing in supersonic flow with both
supersonic and subsonic edges. Their procedure is limited to Mach numbers of 1.414 and
higher. Improving on the work done by Pines et al. (1955), Chipman (1976) analytically
refined the Mach Box approach, greatly increasing the accuracy of the supersonic oscilla-
tory pressure-distribution. An analytical approach based on the Frequency Expansion
method has been developed by Carafoli et al. (1969), Mateescu (1969,1970), and Carafoli
and Mateescu (1970). This method determines the pressure distribution along the delta
wing with subsonic or supersonic leading edges executing oscillations in a uniform flow.
However this method based on the Frequency Expansion approach can be accurately

applied only for the case of very low oscillation frequencies. The hybrid analytical-



Chapter I: Introduction

numerical method developed in this work for the unsteady aerodynamics of oscillating

delta wing eliminates this restriction.

Extensive work — analytical and experimental — has already been done in the field of
active control using smart materials. Work on structural vibration control using piezoelec-
tric films or piezoceramic strips bonded to beams, plates and shells is found in the literature.

Only some of this available literature on structural vibration control is discussed here.

Early studies carried out by Bailey and Hubbard (1985), Burke and Hubbard (1987),
Crawley and de Luis (1987), and Miller and Hubbard (1988) demonstrated the feasibility
of providing modal damping using smart materials to beam-like structures. They also dis-
cussed the effects of various PVDF strip shapes on the modal control generated.

Studies have been carried out on plate-like structures as well. The active damping control
of structural vibration of a one-dimensional plate was analysed and tested by Chiang and
Lee (1989). They showed experimentally that the critical first mode can be damped out
successfully using smart materials. Lee et al. (1989) incorporated the piezoelectric effects
into laminated plates and showed that critical damping of a one-dimensional cantilevered
plate can be achieved theoretically using a sensor/actuator combination. Venneri and Wada
(1993) studied the effect on the robustness of the structures when adaptive structures are
introduced into the structural design. Shen (1994) applied intelligent constrained layers to
control bending vibration of composite and isotropic plates. He showed that the vibration
amplitude of controllable modes can be reduced significantly for simply-supported iso-
tropic plates. Van Poppel and Misra (1992) successfully developed a state-space feedback
control law using piezoelectric film actuators for large structures modelled as cantilevered
rectangular plates. They also used the pole-placement technique to calculate the required

gains.

Active control using smart materials has been extended to flutter suppression for panels and
certain wing planforms as well. Paige et al. (1993) examined an analytical model of a

square anisotropic panel accommodating the effects of strain actuators, supersonic aerody-
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namics, and gust. They found that a small number of actuators can provide flutter suppres-
sion and that increasing the number beyond a certain level produces little improvement.
They also demonstrated that actively controlled panels can exhibit superior flutter perform-
ance as compared to passively controlled panels. Reich et al. (1994) described the func-
tional requirements and design of an aeroelastic model for wind tunnel investigations of
vibration and flutter suppression using piezoelectric actuation. Lin et al. (1995) conducted
experiments on both open-loop and closed-loop control of an active flexible wing. The
wing planform chosen by them resembled that of a military transport aircraft. Suleman and
Venkayya (1996) studied a finite element formulation of flutter control of laminated com-
posite panels with piezoelectric sensors and actuators. Nam et al. (1996) showed that pie-
zoelectric actuators can passively control the flutter of a composite swept wing model by

stiffening the model.

1.2 Scope of the Investigation

While considerable research work exists regarding active control of other wing planforms
using piezoelectric materials, to the best of the author’s knowledge, there is no published
literature dealing with suppression of delta wing oscillations using piezoelectric materials.
An active control model for a delta wing is needed to extend this promising new approach
for aeroelastic flutter suppression to a wing planform that is commonly-used for supersonic
aircraft. The development of an active control model necessitates a convenient, efficient,
and accurate aerodynamic model that can be easily combined with the structural-
piezoelectric model of the delta wing. The aerodynamic and structural-piezoelectric

models are developed in this investigation.

Specifically, the objective of this thesis is to study the aeroelastic oscillations of a delta
wing in the presence of bonded piezoelectric strips. The dynamic response of the delta
wing in the presence of these strips is found using a combination of analytical and numer-
ical techniques. To find the dynamic response of the delta wing, the research was carried

out in three major steps:
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e modelling of the uncontrolled, unloaded structure:
« modelling of the uncontrolled but aerodynamically loaded structure; and

« modelling of the structure in the presence of aerodynamic and piezoelectric loading.

The present thesis consists of a full exposition of the three modelling steps, plus a presen-

tation of the results. The following paragraphs summarize the five remaining chapters:

Chapter 2 starts with the system description of the delta wing and lists assumptions made
in the structural analysis. In this chapter, the wing is modelled as an unloaded, undamped,
and uncontrolled cantilevered triangular plate and the formulations expressing the dynam-
ics of this plate are written using an energy approach. These formulations appear in the
form of mass and stiffness matrices. The natural frequencies of the free system are obtained

and the state-space equation for the system is introduced.

In Chapter 3 a hybrid analytical-numerical aerodynamic model to determine the unsteady
pressure distribution over the delta wing is developed. It is shown that the method adopted
here to obtain the pressure distribution is more accurate than the Frequency Expansion
method. As well, a solution under steady flow is obtained and validated against published
results to gain confidence in the methodology adopted. The coupling between the structural
model of the wing and the unsteady supersonic aerodynamic loading is carried out to obtain

generalized forces due to this aerodynamic loading.

Chapter 4 introduces the piezoelectric control action into the structural model. Analytical
expressions for interaction between the delta wing modelled as a triangular cantilevered
plate and the piezoelectric material are obtained. A finite number of these strain actuators
are bonded to the wing as trapezoidal strips. The generalized forces due to the interaction
of the piezoelectric strips with the delta wing are determined in this chapter. At the end of
the chapter, a concise state-space expression is obtained for the controlled dynamics of the

unloaded delta wing using the PVDF actuators.

Chapter 5 consists of two main parts. The first part is an analysis of the dynamic system.
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In this section, the methodology to obtain the transient response of the delta wing in the
presence of the PVDF actuators alone is discussed. The aerodynamic loading is introduced
on the structural-piezoelectric model to study the dynamic response of the wing under their

combined forces. The second section presents and discusses the results.

In the final chapter, a summary of results and conclusions is given. Also, a brief discussion

on the limitations of this study and recommendations for future work are presented.



Chapter 2

Structural Modelling of the
Uncontrolled Wing

This chapter describes the numerical structural modelling of the delta wing without aero-
dynamic loading or piezoelectric damping. The chapter starts with a description of the
physical model of the wing. The undamped, uncontrolled structural model of the delta
wing is developed using the energy approach, starting from first principles, in the second
section of this chapter. In the third section, the eigenvalue problem of this free system is
solved. The final section contains an introduction to the external forces acting on the wing

that are considered in this thesis.

2.1 System Description

The delta wing is assumed to be a plate because its length and width are much greater than
its thickness. Hence, the problem is a two-dimensional one and the delta wing is modelled
as a triangular plate in this thesis. Furthermore, it is assumed that the fuselage is rigid and
the wing is rigidly clamped to the fuselage. The width of the fuselage is assumed to be
small compared to the length of the plate and therefore the effects of the fuselage on the

flow can be neglected. The wing is symmetrical on either side of the fuselage.

The (x, y) coordinate system is defined as shown in Figure 1. The undeformed plate has the
x-axis along the trailing edge of the wing and the y-axis is along the width of the wing. The
semi-span of the wing, /, is along the x-axis and the chord, c, is measured along the y-axis.

The z-axis is taken to be positive downward.
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Figure 2.1: Delta Wing Modelled as a Triangular Plate

2.2 The Structural Model

The structural model of the delta wing is developed in this section. Due to symmetry, only
one side of the delta wing is modelled for structural analysis. Hence a cantilevered trian-

gular plate is modelled in this chapter and the following assumptions are made:

1. The plate is thin and of uniform thickness, A.

2. For a thin plate, the following well-known approximations called the Kirchoff's
approximations (Meirovitch, 1967) are made:

e Normals to the undeformed middle plane remain straight, normal, and inextensible
during the deformation, so that transverse normal and shearing strains may be
neglected in deriving the plate kinematic relations.

e Transverse normal stresses are small compared with the other normal stress
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components. so that they may be neglected in the stress-strain relations.

* Only small transverse displacements w (in the z-direction) exist. This deflection,
w, of the plate is small compared with the plate thickness A.

3. The plate is composed of a homogenous, isotropic material.

The case of an unloaded, uncontrolled, undamped cantilevered triangular plate is consid-
ered first. This case will be referred to as a “free-system’ in this thesis. To derive the mass
and stiffness matrices of the system using the energy approach. we start with the general
expressions for the kinetic and potential energies obtained using Assumption 2 (also called

the thin-plate theory) which are respectively given by Meirovitch (1967) as:

1 ow\ >
T = Ej'm(a) dA 2.1)
A
2
DJ’ 3w  32w\2 { Fwdtw 3w }
v=2 (el _201-v aw) _ dA 2.2
2A [:(sz ayz) ) 6x? 6y2) (axa)) )

where w is the transverse displacement of an arbitrary point of the cantilevered plate; m is
the mass per unit area; and v is Poisson’s ratio. The flexular rigidity of the plate, D, is

given by

3
Ephﬂ
12(1 - v?)

(2.3)

where £, is the Young’s modulus of the plate material and 4, is the thickness of the plate.

The two energy expressions can be used to obtain a boundary value problem that describes

the free vibration of the plate.

10
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2.2.1 Discretization of the Wing

A closed-form solution of the free (or forced) vibration problem may not exist owing to the
non-uniform mass and stiffness distribution of a triangular plate. Therefore an approximate
solution of the eigenvalue problem of the plate is obtained here. The approximate method
used is a scheme for replacing the continuous system by an equivalent discrete one. We
will use the Assumed Modes Method to generate the mass and stiffness matrices of the dis-

cretized system.

As stated by Meirovitch (1967), the Assumed Modes Method assumes a solution of

boundary-value problems in the form of the following equation:

M N

wny, ) = Y Y 0,0%0)4,.(0) (2.4)

r=1s=1

where w is the transverse displacement expanded in terms of a set of shape functions; ¢,
is the generalized displacement; ®, and ‘¥, are shape functions in clamped-free and free-
free directions, respectively; and M and N are the number of clamped-free and free-free
shape functions, respectively. Since this is an energy-based formulation, the shape func-
tions need to satisfy only the geometric boundary conditions and not necessarily all the
dynamic boundary conditions. In other words, the chosen shape functions are admissible
functions. The Assumed Modes Method uses equation (2.4) in conjunction with Lagrange’s
equations of motion to obtain a formulation leading to an approximate solution of the asso-
ciated eigenvalue problem. Equation (2.4) can be substituted in the kinetic and potential
energy equations to generate approximate mass and stiffness matrices. As a first step, the

mass and stiffness matrices for the free-system will be determined.

In non-dimensional form, equation (2.4) can be written as,

M N

w&n, 0 = Y Y O, ()4, 2.5)

r=1 s=1

11
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where the non-dimensional coordinates. £ and n. in x- and y-directions respectively are

VAL

defined as

5
n = —2 (2.6)
{(1-3)
where / and ¢ have been detined previously.
The clamped-free shape functions for the plate are chosen in the form
®,g) =& 2.7
The free-free shape functions for the plate are of the form
¥om) = [(1-8)*(-n+1/2))" 2.8)
When s = 1, the shape function is the translational rigid body mode and is equal to,
¥ (n) = 1.0 2.9)
The rotational free-free rigid body mode corresponds to s = 2 and reads.
Y,(m) = (1-8)*(-n+ 1/2) (2.10)
Our goal is to write the kinetic and potential energies in matrix form respectively as
T = 3(417IMI{g} @.11)

and,
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v = 3{a}"IK){a} (212)

where {G} are the generalized velocities, [M] is the mass matrix, and [K] is the stiffness

matrix.
We now substitute equations (2.5)-(2.8) in the kinetic and potential energy expressions

(equations (2.1) and (2.2)). The kinetic energy expression becomes,

11
4y [ [0 -0, ¥.MOQY,VEM  @13)

o0

where p is the plate material density.
Only a finite number of modes are modelled and, thus, the summations in equation (2.13)
are carried out for only a finite number of terms. The [M] and [K] matrices will now be

square matrices of size (M x N) by (M x N).

The generalized velocity vector is written as

T

t4r5} = { 91 912 - i~ -+ 921 922 -+ Gon - Am1 9m2 - MK } (2.14)

Leti=1,2,....., MN, where MN = M x N; then the generalized velocity vector can also be

written as

T
{q:} = { qy dy e e dun } (2.15)

Equations (2.14) and (2.15) are related via the following change of indices:

13
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=(r=1)xN+s (2.16)

This relationship is also used by van Poppel and Misra (1992). Similarly, the change of
indices for the generalized velocity Gip in equation (2.13) is given by

q.kp -> qj
where
J=((k-1)xN+p .17

Therefore, any ‘rs’ pair in equation (2.13) corresponds to “;” and any ‘kp’ pair corresponds
to °/°. This transforms a 4-dimensional system into a 2-dimensional system, so that equation

(2.13) is rewritten as,

11

q.q, (1 —E)D(E) ¥, ()DL (E)F,(n)dEdn (2.18)

M§

ohyel 3

i=ly

bdh—
.Il

or,

l'AlVAlV
= 5 Z Z quiq.j (2'19)
i=1j=1

where m ;j are the elements of the mass matrix and are defined as

Il
= phyel [ [(1 - OO, EIF,(MOE) ¥, (M) (2.20)
co

Thus, the mass matrix of a cantilevered triangular plate is determined by expanding the dis-
placement function in terms of the generalized displacements, {gq,,}, and then by setting
equations (2.1) and (2.11) equal.

14



Chapter 2: Structural Modelling of the Uncontrolled Wing

The stiffness matrix is determined by a similar procedure: the displacement function, w, is
expanded in terms of generalized displacements, substituted into the potential energy
expressions and then (2.2) and (2.12) are equated. We get an expression for the potential

energy, V, which can be written as,

D o’w &*w.
V= J- j((l -8 agz ag 3Edn

2 2 201 w2 2 2 *wdtw azwa_w
+(—1 _é){[Zn + k(1 v)](aga +(M°+vk )652 P +2n a§2 am
4 2, 42 ow dw k*n a_z_w o°w
+(1_§)2{[2n + k(1 - V)]a _aga (n’ )aﬂ a—gan}
1 2,2 ow\ 2 3 2 awa w
+(1-§)3{2[2n +k (l—v)](ﬁ) +400 - (-2
&w)’
s+t 200 - v)kznz)[—“z’) }]%dgdn
on l
2.21)
or,
| M
V=33 3 ks, 222)

where k;; are the elements of the stiffness matrix which are given in Appendix A.

Hence, both the mass matrix, [M], and the stiffness matrix, (K], for the cantilevered trian-
gular plate have been obtained.

15
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2.3 Natural Frequencies of the Wing

In this section, the eigenvalue problem of the free vibrating plate is solved. In other words,
the plate is assumed to have no external forces present. Solving the eigenvalue problem is

synonymous with obtaining its natural frequencies.

We start with Lagrange’s equations for a conservative system to evaluate the plate frequen-

cies. These equations are

d(oLY oL .
—— | e— — e T —3 7
dr( az;) 5 0, i=1,2,.,MN (2.23)
where the Lagrangian, L, is defined by
L=T-V (2.24)

and g, are the generalized displacements. Inserting equations (2.19) and (2.22) into this
equation and simplifying we get the equation of motion of a free vibrating system which is

of the form
(M]{g} +[K]l{q} = O (2.25)

This yields an eigenvalue problem which can be written as

AM]{q} = [K]{q} (2.26)

where
A=o 2.27)
and where o, is the natural frequency of the delta wing.

A simple program can be written in MATLAB to determine the natural frequencies of the

16
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free-system as described by equation (2.26) using the mass and stiffness matrices. The
eigenvalues for various modes of vibration of the free-system are obtained and validated
against published results in Chapter 5.

For later reference, equation (2.25) can be written in its state-space form, namely,

{x} = [Al{x} (2.28)

where the state vector is constructed from the generalized displacements and their first

derivatives as

{x} = {{q}} (2.29)

Also, the matrix [A] is of size 2MN x 2MN and is written as

(4] = [ [(i]l [1]] (2.30)
—-iM] [K] [O]

where []] is the identity matrix of size MN x MN.

The structural model for the delta wing has now been formulated using the energy

approach. The next section introduces the external forces that are considered to act on the
wing.
2.4 Generalized Forces

When the system is subjected to external forces that do not have an associated potential
energy it is called a non-conservative system. The Lagrange’s equations for this non-

conservative system are

[7
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oL oL aa .
37 st = % =12,...,MN .
\3q, 3q,- 33, Q; i 2 (2.31)
where L is again the Lagrangian and is defined by equation (2.24), Q, are called general-
ized forces associated with the generalized displacements g;, and <& is the Rayleigh's dis-
sipation function. This function takes into account the energy dissipation in the structure

with the assumption that it can be modelled through viscous damping.

The general expression for the dynamics of a plate can now be obtained from equation

(2.31) in the following matrix form:

M){q(D} +[CH{4q(D} + [K]{q()} = {Q} (2.32)

where [M], [C] and [K] are the mass, structural damping and stiffness matrices, respec-
tively, and {Q} is the generalized force action vector. It should be noted that this equation
is similar to equation (2.25). All the matrices of the above equation, which are generated
analytically and eventually evaluated numerically, must represent as closely as possible the
actual dynamics of the cantilevered triangular plate and hence the delta wing. The mass

and stiffness matrices were generated in section 2.2.

The structural damping is written as
[C] = a[M]+B[K] (2.33)

where o and P are plate material constants. This model corresponds to Rayleigh damping.

Matrix [4] from equation (2.30) now becomes

[A] ={ (ol U J 234)
—-[(M] [K] -[M] [C

18
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The external forcing action vector consists of two components: the unsteady, supersonic
aerodynamic loading and the controlling action of the piezoelectric strips. This combina-

tion is represented mathematically as
{ Q } = { Qaero} + {Qpigzo} (2-35)

where {Q,.,,} and {Q,,,,,} are the generalized forces due to the supersonic, unsteady

aerodynamic loading and the controlling action of the PVDF strips, respectively.

Substituting equation (2.35) in equation (2.32), the final equation for the dynamic system

becomes

[M]{q} + [Cl{q} + [K1{q} = {Qurro} +{Cpiczo} (2.36)

Thus, the mathematical model for the delta wing in supersonic flow under the influence of
piezoelectric material is given by equation (2.36). The expressions for {Q, ..} and

{Qpiezo} are derived in Chapters 3 and 4 respectively.

The unsteady, supersonic aerodynamic loading will be introduced on the delta wing and
{Q,ero1 Will be obtained in the next chapter.

19
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Aerodynamic Modelling

In the first section of this chapter, the Basic Linearized Theory for supersonic potential flow
is presented as the basis for determining the pressure distribution on the delta wing in
unsteady supersonic flow. In the second section, steady flow over the wing is introduced
to gain confidence in the developed methodology. In the third section, the pressure distri-
butions calculated using the method developed in this research and using an existing
method are compared. In the final section, the generalized forces due to this unsteady
supersonic aerodynamic loading are derived.

3.1 Basis for Aerodynamic Modelling

As discussed in Chapter 2, the delta wing is assumed to be a triangular plate and the wing
is symmetric with respect to the centreline. To simplify the aerodynamic analysis, the
(x;. x5) coordinate system shown in Figure 3.1 is used. The following simple conversion

from the (x, y) coordinate system described in Chapter 2 to the (x,, x5) coordinate system is

made:
(3.1

where c is the central chord of the wing. The following conical coordinates y and z will

also be used for convenience:

y=—, Z=; (32)

20
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v

X

Figure 3.1: System Description for Aerodynamic Modelling

where the coordinate x; is normal to the plane Ox x,.

As seen in Figure 3.1, the semi-span of the wing, /, is along the y-axis and the chord, c, is
along the x,-axis. Also, the air flow velocity is denoted by U . The subscript « is used to

denote the undisturbed free airstream.

3.1.1 Basic Linearized Theory

The airstream in which the wing is situated is initially assumed to be uniform and charac-
terized by the airspeed U_, with small time-dependent pertubations generated by the wing
oscillations around its mean position. Effects of viscosity and heat conduction are
neglected. The air however is assumed to be compressible. Any shock waves formed by
the motion are assumed to be weak so that the flow may be considered as irrotational and

isentropic.
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With the assumptions stated above, the unsteady motion of the wing is defined by the fol-

lowing general expression of the basic unsteady linearized equation for a 3-D case

2 M2 32 M2 2
(1- )—“’ Yo, de Mag'e  Ma ' (3.3)

oxl ox: axt ULerr  Us0xot

where @ is the pertubation velocity potential and is a function of space and time; ¢ is time;
and M, is the free airstream Mach number which is defined as

The derivation of equation (3.3) is given in Carafoli et al. (1969) and Doe (1985). Equation

(3.3) becomes

(1-M )a"’ a‘g a“’ =0 G.4)

when the flow is steady and then ¢ is a function of space alone.

With the present approximations, the expression for the coefficient of pressure, C,, is
given in Carafoli et al. (1969) as

2
- Um
c - PPe 2 5¢+_92J (35)
1 2 U ot c Ox
5P=Ux

where p is pressure and p_, is free airstream density. This expression is used in the present

study as well.

22



Chapter 3: Aerodynamic Modelling
3.1.2 Problem Formulation and Solutions

The delta wing with supersonic leading edges is assumed to execute harmonic oscillations

of low frequency defined by the equation of the unsteady wing surface
x3 = x P(x, xz)eim (3.6)

where o is the frequency of periodic motion and P(x, x,) is a function of the space coor-
dinates, which can be represented as a sum of homogenous polynomials P,(x,, x,) of var-

ious orders in x; and x5.

As a result, the velocity potential ¢(x,, x,, x3, f) of this unsteady flow is also a periodic
function with the same frequency w , which has to satisfy the potential equation (3.3). By
using the reduced potential ¢ defined by the potential transformation as given in Carafoli

et al. (1969), we can write

. ix) .
Pxy, X3, 23,1) = Upce ™ " i(x, 22, x5) 3.7
where c¢ is the wing chord, & is given as
2
M
OC"o
k=—-me— (3.8)
U, 32
and where B is defined as
B = M:-1 (3.9)

The unsteady potential equation (3.3) is reduced to the following differential equation inde-

pendent of time,
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24 o -~ 2 a A
—BTQ o+ P, ¥ —A B—cp =0 (3.10)

where ¢, , , ¢, ,, and ¢ x,x, are second-order derivatives of the reduced potential, ¢, with

respect to x;, x5 and x3, respectively, and where

2 = 8¢ (3.1D

The coefficient of pressure for an oscillatory flow over the delta wing is now written in

terms of the reduced potential as

Cp(xpy Xg, X3, 1) = ép(xl, X5, x3)e‘w (3.12)
where
C(xps %3 53) = — 2e”‘"[i(k +0)+ gxi] (3.13)
1

C‘p is referred to as the reduced coefficient of pressure over the wing. When ¢ is differen-

tiated with respect to x|, we get

1o ke, . . 0Q(xy, X5, X3)7
u = E-;(% = Uwel '[zk(p(xl,xz, X3) + -——:—ax—lz—i:'e‘m 3.19)
and when ¢ is differentiated with respect to time, we get
9@ = U2ine™ o(x,, xq x5)e™ (3.15)

t

The boundary conditions on the oscillatory wing can be expressed taking into account

equation (3.6), as

=29 -y 2R, e
"= 32 = U (ax,+UmP) (3.16)
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where w represents the vertical pertubation velocity, or upwash. The bar over w is to dis-
tinguish this notation of the upwash from that of the wing displacement, w, as used in Chap-
ter 2. A reduced upwash (as given in Carafoli et al., 1969) is now introduced. This upwash
is defined on the plane wing, thatis x; = 0, as

9%

W x) = 22 = & W, xy) (.17)
3

where W(x,, x,) is the reduced vertical velocity on the wing, defined by

W(x,, xp) = g—: +iAP (3.18)

kx,

In Carafoli et al. (1969), itis assumed that k is small and eti in equation (3.17) is approx-

imately written as

ikx
e M 2 | tikx,

In other words, in the expansion of eﬂkxl , k* and higher order terms are neglected. But in

kex,

. . . +i
the present work the higher order terms in the expansion of e are not neglected. Hence

more accurate results can be expected.

Consider the case of the wing executing harmonic oscillations in translation and rotation

defined as

h(t) = che™,

0(r) = 6™, (3.19)
w() = g’

where h(f) denotes small vertical translational oscillations, 8(r) denotes small pitching rota-

tion about the x,-axis, and y(#) denotes small rolling rotation about the x-axis. In this case

the equation of the wing surface can be expressed as
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X3 = h=x0+xy = e (ch —xlé +X,) (3.20)

and therefore,

P(x,x,) = ch—x,0 +x,¥ (3.21)

Substituting equation (3.21) into (3.18), the reduced vertical velocity on the wing becomes
W(x;, x;) = [-0 +ir(ch-Bx, +{x,)] (3.22)

where 2 is defined in equation (3.11).

The next step is to determine the supersonic pulsating source for the system as shown by
Mateescu (1989). For this let (x;, x;) be the receiving point and (x|, x»,) be the sending

point as shown in Figure 3.2.

Forward Mach Cone

. 1/B = uB N

Figure 3.2: Sending and Receiving Points Inside the Mach Cone for a Plane Flow.
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The potential of the reduced pulsating source placed at (x;, x,,) is of the form

@(xl, xz) = ‘i’l(R)

where

R = '\/(xl —xls)z - B¥(x, - x,,)°

(3.23)

(3.24)

Substituting equation (3.24) into equation (3.23) and in turn substituting the result into

equation (3.10), we get

52@’1 200, K2

oR* ROR pg?
where
K = 7\.-3-

A solution to this equation is

o 1 K
¢,(R) = Ecos ER)

Therefore, the supersonic pulsating source potential for the delta wing is

( ,_(R)e,-(x%xl)eim

1
@(xy, x5, 1) = —COS 3

R
where X is related to & by the following equation

M,
k=-K—g

27
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Hence the potential of the source distribution on the plane of the wing, x; =0, becomes

. 1 ([ —ik(x, - x1,) k ) 4% sdx
Q(xy, xp) = —;ij(xls,xz_‘)e e cos(MmR) ;i 2 (3.28)

where W(x, ,, x,,) is the vertical velocity at any point on the plane of the wing and is also
given by equation (3.22) in the case of oscillatory translation and rotation.

As a reminder, equation (3.13) which is the equation for the reduced coeffictent of pressure

can also be expressed as
E,xiuxy) = - 2[cos(hx,) + isinCex] ik + R)p + aa—)‘c‘:] (3.29)

To solve equation (3.28) a new coordinate system (X, Y) is defined where

X= X=X

T (3.30)
X —Xs

For a plane wing, Z = 0. Substituting the above into equation (3.24) we get
R = XR (3.31)
where

R = J1-B*Y (3.32)

for a plane wing. Also using the Jacobian, dx, dx,  becomes XdXdY. Rewriting equations
(3.28) in terms of the new coordinate system and simplifying, we get
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—ikX k
b = = 1 [ W mae™ cos (o xR) B (3.33)

The next step is to determine the limits of integration (please refer to Figure 3.2). The limits

of integration in X inside the Mach cone are

+ 0 to X| where the limits of integration in Y are -[.1; <Y<y

* 0to X5 where the limits of integration in Yare y < Y <

ol—

where

>
"
b
~~
L
L
<

(3.34)

I

»
=
:
<

Please refer to Appendix B for the derivation of equation (3.34). Integration in X is carried
out analytically and the limits over X as defined in equation (3.34) are substituted in the

result to give

’-ikcos((ﬁkxl) +(XR) sin(KRx,))|-=2

. 1 {7 -
¢ = nJ- W(x;, x, ( )_k_ B B B -ﬁ

-2 J‘ W(x,, xz;)ﬁ ——ikcos((gﬁxz) + (gﬁ) Si“(gkxz))- l :ﬂ;zyz

(3.35)

Differentiating this equation of the reduced potential with respect to x;, we get
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-

l —ikX

1 5 t K5 dY
5;1 = —- r W(xls, xzs)(l—y)e COS(ERXI)J—I__.—_—B_Z_Y; (336)
_1 j' LGN :Y)e“"x os(BRx,) —£— m

where R, X, and X, are defined by equations (3.32) and (3.34) respectively.

Unfortunately, at ¥ = -ﬁ and at Y = % a singularity exists and equations (3.35) and
(3.36) cannot be solved purely numerically in the present form. To resolve this problem,
the integration in Y is solved semi-analytically. The semi-analytical solution involves ana-
lytically integrating the two equations by parts, then solving the simplified equation using
a 10-point Gaussian quadrature scheme.

The semi-analytical integration over Y of equations (3.35) and (3.36) involves the use of
the following general form:

. when -é <Y<y, use the following:

J’” 2Y) dY _rxj(n :7(—1/3) J‘” F(-1/B) 4y (3.372)

e L e ey

 when y<Y< l-l?’ use the following:

i
I -I(1/B) 40, IEMdY (3.37b)

_B
Y= er =

J' Fn—=2L_

From equation (3.29), the final expression for ¢ » inside the Mach cone is written in com-

plex form as:
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Cp = Real Cp +iImag Cp (3.38)
where
Real ép = - % {{Real F)cos(kx,;)-[Imag F]sin(kx;)}
(3.39)
Imag C, = -%{ [Imag Flcos(kx,) + [Real F]sin(kx,)}
In equation (3.39),
F = itk+0)p+ 22 (3.40)
ox,
The above equation is also written in complex form as defined below:
F = RealF+ilmagF (3.41)
where
Real F = Reall;+ Reall,
(3.42)

ImagF = Imagl,+Imagl,

In equation (3.42), we obtain Real I, and Imag I, from equations (3.35), (3.36), (3.37a),
and (3.38) to (3.40) for —é <Y<y;and Real I, and Imag I, from equations (3.35),
(3.36), (3.37b) and (3.38) to (3.40) for y<Y< é Please see sections 3.3.2 and 3.4 for

more details.

The analytically simplified expressions of equations (3.35) and (3.36), as given in section
3.3, are solved numerically using a 10-point Gaussian quadrature scheme written in the
FORTRAN. The result is then substituted into equation (3.38) to find the reduced coeffi-
cient of pressure, ép . Hence the reduced pressure distribution on the delta wing for super-
sonic flow inside the Mach cone is obtained. Results of this method are compared against
the method developed in Carafoli et al. (1969) in section 3.3. Equations (3.37a)and (3.37b)
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are also used for simplifying the expressions for outside the Mach cone as will be seen later.
First, however, to gain confidence in the Present Method, we will apply this method to the

simpler case of steady flow in the following section.

3.2 Steady Flows

Steady flows are studied in the present research to gain confidence in the methodology
adopted for dealing with oscillatory flows over the delta wing. These flows have a linear,
simpler solution and the results can be validated using existing solutions (Carafoli et al.,
1969).

When velocity and pressure do not vary with time, the flow is said to be steady. There are
of course no harmonic oscillations present either (o = 0). Therefore, in this case equation
(3.4) is satisfied. Again the wing is assumed to be at zero incidence and the air assumed to

be compressible.

Let us consider the supersonic flow past a deita wing. The coefficient of pressure for this

flow over the wing is given as

u
C, = —ZU—x (3.43)
The supersonic source for this steady plane flow is
1
@ (x,x) = = (3.44)

P

where R is given by equation (3.24).

The source distribution for this flow over the entire delta wing is
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1 d"ud‘z:
o(x,x,y) = - W(x, Xp5) R (3.45)

where W(x,,, x,,) is again the vertical velocity on the wing. Note that equation (3.45) can
be obtained from equation (3.28) by introducing @ = 0 and k = 0.

As was done in the unsteady case, a new coordinate system (X, Y) is introduced to solve for
¢ . The transformation from the (x;, x5;) coordinate system to (X, Y) coordinate system is
again given by equation (3.30). Also, the limits of integration over X and Y are the same as

that used in section 3.1.

Now let x, be written as the following
. when-+<Y< y:
B

Xy, = X9 — XY (3.46)

S

IA

Y<

Qi

 and when ¥

Equations (3.46) and (3.47) are substituted into equation (3.45) to give
0 = J_rfltjj'(xz-n)“i;! (3.48)

Equation (3.48) is now integrated analytically over X as was done in the unsteady case.

Therefore the velocity potential for a steady flow over the delta wing now becomes
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2
X, xi(l—y) Y dY

= +=I(x,, -&[ I’ ) (3.49)

¢ —~1(x}, xp) o _.‘.(I—Y)zm

+[xf(t+y) By )

2t Ja+n A/l— o

where
l
I(x), %) = x,(I—y) +xl(l+ ) (3.50)
l '[ (l-Y)J y(l+Y)Jl—B'

Again, as seen in the unsteady case, there exists a singularity at ¥ = —é andat Y = %
Therefore, equation (3.48) is differentiated with respect to x; using Lebnitz’s Rule and
solved semi-analytically by parts using equation (3.37a) and (3.37b) as was done in the

unsteady case. Thus the velocity is given as
« Xl
u = u —-nl—(u2+u3) (3.51)

L 4 . .
where u;, u,, and u; are the components of the velocity given as

. 2xyl -1 [(A1=By)(1 +BJ) -1 [(1+By)(1+BD
“T TR [“’s 2B(-y) 2B(I + y) ]

8 dy B in-1 m
-, B %
B "’“—; T al T a0
1

Bl B dy B -l
= —( ' B
4= ey ; Y)2 (Bl+1)2] I _B?y? (Bl+1)2( st (y)))

(3.52)
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As was done in the previous section, the final integration in Y is solved numerically using
a 10-point Gaussian quadrature scheme. The result is then substituted into equation (3.43)
to obtain the coefficient of pressure distribution along the wing under steady flow.

In the next section, the values of Cp obtained from this section are compared to the values
of C, obtained under similar flow conditions by Carafoli et al. (1969). The data is given
in tabular form in Appendix B.

3.3 Method Validation

The results obtained for the pressure distribution over the delta wing for steady and
unsteady supersonic flow, as derived in the previous sections are compared with the results
of Carafoli et al. (1969) inside the Mach cone under the following conditions:

e [=2mandc=1m;

1 1
- = —_-— K -
X1 cand B_xz-B,and

s M_ = .J2.0, therefore, B = 1.0.

3.3.1 Results of Steady Supersonic Flow

Consider steady flow over the delta wing. Let the vertical velocity be
W(xls’ x2s) =-a Ucn

Substituting this vertical velocity in equation (3.45) and rewriting the result in the (X, ¥)
coordinate system we can solve for the coefficient of pressure distribution along the wing

as discussed above. The results are shown in Table 1 of Appendix B and the graphical com-
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parison is given in Figure 3.3. The results shown are for various points along the wing, that

x
. is, for various values of y = ;—2 , along the delta wing keeping x; = c.
1

1.5

13 @ present method
— Carafoliet al.

o
2
2 1.1
x
s
z
2
& 09 |
07 |
05 L L
-1 0.5 0 0.5 1

y =x2/x1

Figure 3.3: Comparison of C,: Steady Flow

As seen from Figure 3.3 the two methods give identical results. As expected, the pressure
distribution is symmetrical on either side of the central chord because of the symmetry of
the wing. The coefficient of pressure is lowest at the fuselage, that is, when 4 = 0 and
increases towards the leading edge. Hence, the Present Method when applied to a simple
case like steady flows gives very good results for the pressure distribution, C iy along the
delta wing.
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3.3.2 Results of Unsteady Supersonic Flow

The wing is assumed to have translational oscillations defined as

it

h(t) = che
Thus, equation (3.22) becomes
W(x,,, x,,) = irh (3.53)
where
« h=o01,

The results obtained from the Frequency Expansion Method and the Present Method differ
—ikx . . .

due to differences in the expansion of e ' To gain confidence in the pressure coefficient

results obtained by the Present Method, as a first step, only the reduced axial velocity, &,

from both methods are compared because the velocity is independent of the expansion of
-ikx,
e .

The reduced velocity, & or g}(g , in Carafoli et al. (1969) (equation 10.61b) is written as:
|

-1 (1—By)(l+31):]_|:cos-l (1+By)(1+Bl)}} (3.54)

. 2hi ){
( n /lez _1 { 2B(l-y) 2B(l+Yy)

The above equation is compared to the following:

u = BT(p = Realu+ilmagi (3.55)
1
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where

Realu = Real iy + Real s,
. . . (3.56)
Imagiu = Imag u; +Imag i,

The components of equation (3.56) are obtained using equations (3.8), (3.32), and (3.36) to

give:

3 K-
Isin(kX|)cos (;;'RX 1) Blsin(kX,B) dy

Realu, = r -
1 (- Bl+1 / 22
-5 Y) ( ) 1 — B%Y

Blsin(kX,B)
T (Bl+1)

sin“(By)+9
(3.57)
K=
. . lcos(le)cos(ERX,) Blcos(kX,B) 4y
magi = (-1 TTGIYD | gip

1
B

Blcos(kX,B)
(Bl+1)

sin‘l(By) + %t)

Real @, and Imag i, can be similarly obtained. The real and imaginary expressions
given above are substituted into equation (3.56) to obtain Real & and Imag . These are

then substituted into equation (3.55) to obtain velocity, i .

As seen in Figure 3.4(a), the imaginary part of the reduced velocity, Imag i, obtained from
the Present Method and the Frequency Expansion Method are identical (also see Table 2,
Appendix B). Hence, it can be said that the methodology adopted in this study is accepta-
ble. The real part of the reduced velocity, Real i, obtained from the Present Method is pre-
sented in Figure 3.4(b). We cannot obtain Real & for the Frequency Expansion Method
because as discussed earlier, this method is an approximate one which ignores the higher
orders of k in the expansion of P , unlike the Present Method. Therefore, Real &t does
not exist in the Frequency Expansion Method but exists for the Present Method.
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Figure 3.4(b): Real & Using Present Method: Unsteady Flow

39



Chapter 3: Aerodynamic Modelling

The coefficient of pressure distribution along the delta wing is now obtained using both
methods. To obtain this distribution, first substitute equation (3.53) into the equation for the
reduced potential, ¢, and the reduced velocity, iz. Next expand e Finally, separate
the real and imaginary parts of the result to get

y — - -
Reall, = J‘ 1 kB _ [gncos(kx,)sin(gkx,) — ksin(kX, )cos(gkxl)]
= | M (KR -k*B%)
zsin(kxl)cos(%'kxl)
-1 BM_k  Bl+1 [ Br
K Bl . . 1 n
+ [(BMmk+ Blx 1) sm(XlB):I(sm (By) +;)
(3.58a)
y —_ _ -
Imagl, = J' , Kg [—kcos(kX l)cos(gkxl) —(gR) sin(kX ,)sin(gRXl)
-3 | M (K*R°-k*B%)
Icos(kX,)cos (gﬁX ,)
+ _[( K + Bl )COS(XlB):I .__ﬂz._.
-9 BM_k = Bl+1 i _Br

* [(anmk * BIB 4{ 1) cos(X,B) ](Sin"(By) + ’_D

(3.58b)
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Real I, and Imag I, are similarly obtained. The real and imaginary expressions given
above are substituted into equation (3.42) to obtain Real F and Imag F. These are then sub-
stituted into equation (3.39) to obtain Rea! C, and ImagC, .

The real and imaginary parts of C are listed in Table B.3 for various values of y =
The solution for C is obtained with the Present Method equation (3.29) and with the F re-

quency Expansion Method of Carafoli et al. (1969: equation 10.64). The results obtained
by the two methods are shown in Figure 3.5(a).

0.008

0.0075

o Present Method
— Carafolietal

imaginary Reduced Coefficient of Pressure

0.007
®
0.0065
°
® °
° + °
0.006 —L L
-1 0.5 0 0.5 1
y = x2/x1

Figure 3.5(a): Comparison of Imaginary ¢ ' Unsteady Flow

As seen from Figure 3.5(a), the expected trend for the pressure distribution along the wing
in the unsteady case is obtained. Again, Real C'p does not exist in the Frequency Expansion
Method but exists for the Present Method. The real part of c, is hence only obtained for
the Present Method which is presented in Figure 3.5(b) (also see Table B.3). However, the
magnitudes of Real ép obtained using the Present Method are seen to be small.
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Figure 3.5(b): Real (':'p Using Present Method: Unsteady Flow

Therefore, the coefficient of pressure, ¢ i for an unsteady supersonic flow along the wing
obtained from the Present Method is acceptable and, due to its handling of the expansion
term, e—”a' , more accurate. Hence the hybrid analytical-numerical method developed in
this section to determine the coefficient of pressure distribution along the delta wing will
be used to determine the aerodynamic loading on the wing and the resultant generalized

forces in the next section.
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3.4 Generalized Forces due to Aerodynamic Loading

In the previous section a method to determine the pressure distribution for an unsteady flow
over the wing was developed. In this section the generalized force, {Q,,,,}, due to
unsteady supersonic aerodynamic loading on the delta wing will be determined.

It is assumed that a flexular oscillation of the plane wing exists. The reduced potential of
the source distribution on the plane of the wing is again given by equation (3.28) and the
coefficient of pressure and the reduced coefficient of pressure are given by equations (3.12)

and (3.29) respectively.

Now, h is the small transverse motion of the wing. The small transverse structural dis-
placement, w, is in the z -axis (or in this case the x; -axis) as defined in Chapter 2 and given
by equation (2.4). A coordinate transformation from the (x, y) coordinate system to the
(x1, x2) coordinate system on equation (2.4) is made and then 4 is set equal to w to get

M N
h(xp g 1) = 3 T @) (x,)q,,(0 (3.59)

r=1s=1

The reduced small transverse motion can now be denoted as 4. Let A be placed at a pul-

sating source point (x, X5) to give

:—»
Mz
™M=z

q)r(xls)\{{g(xl;)érs (3'60)
1

b
"
—
4
"

where @, and ‘¥ are the chosen shape functions as defined in Chapter 2 by equations (2.7)
and (2.8) respectively. Also, q,, are the reduced generalized displacements defined as

. _ 4
Qs = = (3.61)
e
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where ® is the frequency of oscillation of the wing over time, 7.

Therefore, for this case, the reduced vertical velocity from equation (3.18) can be written as

Wxy, xp) = g—:nxﬁ (3.62)

where A is defined by equation (3.11) and 4 is the small transverse motion of the wing
given by equation (3.60).

The chosen shape functions are now rewritten in the new coordinate system as the follow-

ing
X r+l
D, (x,) = %‘) (3.63)
s—-1
N\l c-x
Y(x,) = (l—%) 5———% (3.64)

where / is the semi-span and c is the chord.

As was done in the previous section, the (x|, x5;) coordinate system is transformed to the
(X, Y) coordinate system using equation (3.30). Also, the reduced potential is again given

by equation (3.33) and is rewritten below as a reminder

bCxp, ) = -2 J' IW(x,,, xp.0€ ¥ cos -’E-XR)@%’ (3.65)

where W(xl 5 X5,) is the vertical velocity, k is the reduced frequency defined by equation
(3.8), and R is defined by equation (3.32).
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‘ Equations (3.63) and (3.64) are now respectively written in the (X.Y) coordinate system as
®,(x, - X (x:’_xy)rH 3.66
r(‘tz - Y) - l ( . )
a+21(x, — )X +2(Ix; —cx,)XY = 2IX°Y + cX°¥* 7!
Y.(x,-X) = = (3.67)
2l%¢c
where

2 2 2
a=-Uc+cxy+2x,-2Ixx,

The vertical velocity is expanded in terms of the modes of vibration. As seen from equation
(3.67), expanding the free-free shape functions for more than two modes, thatis s > 2, gives
an extremely complicated expression for the same. Therefore, as a simplification we will
consider expanding the vertical velocity in only two modes for both the clamped-free and

free-free directions. As a result we get the following concise forms for equations (3.66) and

(3.67):
r+l r+l
O, x-XN = 3 Y Ay XYY (3.68)
mh=0 np=0
Y5 -0 = 3 Y By mpX Y7 (3.69)
ki=0 mp=0

where A, ., and B, ., are the coefficients of X'and Y in the expansion of the vertical
velocity in terms of modes. These coefficients and their derivatives are listed in Tables

4(a)-4(d) of Appendix B forr=1,r =2,s5 =1 and s = 2 respectively.

The vertical velocity from equations (3.60), (3.62), (3.68) and (3.69) of a plane wing for

which a flexular oscillation exists is finally written as
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W(x,, x5,) = S, {By +irB,} X" Y™g (3.70)

where

Z Z 3.71)

BZ = Amh,np Bki, mp (372)
8B,

By, = A, ——omp (3.73)
21 mh, np axl

mhk = mh + ki (3.74)

mhp = np+mp (3.79)

where A is defined by equation (3.11) and g, are the reduced generalized displacements
given by equation (3.61).

Substituting (3.70) in (3.65), we get the reduced potential as

¢(x;, x5) = =S, gBZ'_Zgﬁz_)[IIX'"MY'"hp{(cosaX+ cosbX) (3.76)
dXdn .

—isin(aX + sian)}T q,,

where

3.77)

S
]
=~
(
|
=

Equation (3.76) is valid both inside and outside the Mach cone. We will first determine the
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reduced potential and reduced velocity inside the Mach cone. As was done in Chapter 2,
only one side of the wing is modelled, due to symmetry. However, inside the Mach cone,
the source distribution on one side of the delta wing has an effect on the other side of the
wing. Therefore, the limits of integration over X and Y, inside the Mach cone, are again

given by equation (3.34).

To integrate over X we will use the following standard integral as given by Gradshteyn and
Ryzhik (1994)

n n-k
n . _ nyx ktt
J.x sinaxdx = -kgok!(k)ak+lcos(ax+—2-) (3.78)
i m "k kr
jx cosaxde = 3 k!(k) kHsm(ax+—2-) (3.79)
k=0 a
Therefore,
l mhk i [ x (l—l) mhk —mj .
X" sinaxdX = - m'!( Al 4 l cos(aX +M) 3.80

1 mhk NG (1 ) mhk —mj 1 .

ek dX = (™ ) Uy L mpt) .

,0 cosax mjz=:om ( mi | U= 1 sm(a)(l += (3.81)
The other integrals in X in equation (3.76) are similarly solved using equations (3.78) and

(3.79). The semi-analytical expression in Y is now determined using equations (3.37a) and

(3.37b) as was done in section 3.2. Let

>
0
S
+
|

>
N
!
S
2
+

(3.82)

>
(9% )
[
8
S
[ V]
+

>
'S
]
N
K2
+
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where X| and X, are given by equation (3.34), and a and b are given by equation (3.77).

On evaluation and simplification of these equations, we can now write equation (3.76) as

mhk

(B + l;».Bz) mhk! ) R
- 2n jz—o(mhk_ mj)! [, +1)-i(I3+14)]q,, (3.83)

(b(xl’XZ) = -Su

where

—mj [ hp inA, sinA
I = {xl(l_y)}mhk m;J' { Y"mhk_m_(sm_ 11*' sm}zJ_al}d?Y (3.84a)
1 (I_Y) Jka"‘]‘" bml R

B

+a,0,

1

. B hp i i
I, = {xl(l+y)}mhk-mj J‘B{(l Y™ (smA3 . suuh) -—az}é_! (3.84b)

mhk - mj f+ 1 i+ 1
; +7) j am1+ bm;+

. h
I = _{xl(l_y)}mhk—mj J"l {(I Y™’ (cosAl +COSA2] _a3}-d% (3.84¢)

mhk - mj j+1 i+ 1
1 Y) J a"'l b’".l

B

1

I, = —txy(l+ gy B X (cosdy cosAg) 1Y jeup
4 1 4 \ (I+Y)mhk-mjkamj+l pm 1 4R :

+ a4Q2

where / is again the semi-span of the wing; the constants a and b are given by equation

48



Chapter 3: Aerodynamic Modelling

(3.77); B and R are defined by equations (3.9) and (3.32) respectively; and where

Q,

sin” (By) +’§‘
(3.85)

0, g-sin'l (By)

The constants a,, a,, a; and g, in equations (3.84a) to (3.84d) are defined below

TN
oo R 2 ) s
A S =
e ) B2 ) s

Differentiate the final equation for reduced potential, equation (3.83), to obtain &. There-

fore,
hk
00 _ _ 1 )(%Bu "' mhk _
mhk
mhk! ol, 6!2 [el; oly
+(By, + iAB,) Z o (mhk= mJ)'[(axl axl)"(ax, axl)} 4rs
where

(3.88)
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0By _ 9Amn np9Biimp +A ‘328“.”.2 (3.89)
ox, ox,  0x, mhop 52 '

In equation (3.87), I,, I,, I; and I, are given by equations (3.84a), (3.84b), (3.84c) and

oI, 612 613 ol, . .
(3.84d) respectively. Expressions for — a 3% Be and Eroy can be found in Appendix
X 1 a0 WP

B. Hence, the reduced potential, ¢, and the reduced velocity, g , inside the Mach cone
1

have been determined. The same can be similarly determined outside the Mach cone.

Outside the Mach cone, the source distribution on one side of the wing has no effect on the

other side. The limits of integration outside the Mach cone therefore are
~-1/B to 1/B

Hence the equations for the reduced potential and the reduced velocity, equations (3.76)
and (3.87), for outside the Mach cone respectively become

a (B +l)~B ) hk! . )
é(xy, Xp) = -5, —= 2 Z (mh'z_mj)![ln—du]q,s (3.90)
and
2 _ _Llg (6821 aBz)  _mhkl | 101
-67,- 21 u|\ Ox, Z(mhk mj)y[ll t2 (3.91)
mhk
: mhk! 01, 06,7,
+(By +irBy) ¥ (mhk_mj)![axl =axl] .
MJ=O
oB, éB
where B,, B,,;, 5— and _6x2 are given by equations (3.72), (3.73), (3.88), and (3.89),
1 1

respectively. The values for the same for various modes are listed in Table 4 of Appendix

B. Additionally, A is given by equation (3.11), and
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1
- nh . :
hk—mi (B y" sinA sinA dY
Iy = {x (-} "”J. { m,,,c_m( —L+—2|_q,-a; /= (392a)
_ (I—Y) L/ a ) b L/ R

1
L

+(a; + a5)1t

1

(B hp A A
[1" = —{xl(l—y)}mhk_mjj‘B{ Y" (COS ]+ COS 2) _a3_a6}d_:), (3‘92b)

é (I_Y)mhk-mj amj+1 bmj+1 R

+(a; +ag)n

where A and A, are given by equation (3.82), and the constants ¢, and a, are defined by
equations (3.86a) and (3.86¢). Also,

_ 2 (1mw( B )'""k-'"i : (ka,(l -y) mjn
as = kmjn(ﬂ (ET:'I 7 Dy ) ) (3.93a)
2 (n\mher B \mhk-mj  Bkx\(I-y) mjn
ag = kmjﬂ(é) ( Tt 1) cos( AL ) (3.93b)
. . . . . alll 6112
quatons .J24a) an . are airierentuatea with respect to x; to yie an .
Equations (3.92a) and (3.92b) are differentiated with tto.x; 1o yield 7 and

Please see Appendix B for these expressions.

Now that the equations of the reduced potential and reduced velocity both inside and out-
side the Mach cone have been determined, the reduced coefficient of pressure distribution,
C »» on the entire wing can be obtained. Substituting equations (3.83) and (3.87) into equa-
tion (3.29), Cp is obtained inside the Mach cone. Similarly, by substituting equations
(3.90) and (3.91) into (3.29), C‘p is obtained outside the Mach cone. The reduced coeffi-
cient of pressure both inside and outside the Mach cone can again be written in the complex
form given by equation (3.38). The steps needed to solve this complex form of the reduced

coefficient of pressure are described in section 3.1.
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The pressure distribution for the upper surface of the wing, in dimensional form, is given
by the following

1 .2
P(x1:%3) = 5PuUxCp(xy, X5 1) + Py

where p,, is the density of the free stream, p_, is the free stream pressure, U is the free
stream velocity and C,(x,, x5, ¢) is given by equation (3.12). As the reduced coefficient
of pressure for the delta wing has already been determined, the dimensional pressure dis-

tribution for one side the upper surface is now written as

1 2 2 i
p(xy,xp) = §p°° UoCp(xys xz)em" +Ps (3.94)
Since C p, lower = — Cp, upper » the net pressure on the wing is written as,

1 25 :
Ap(x;, x;) = 2[§pm U2 E,(x, xz)em"]

where C‘,,(xl, x,) is given by equation (3.38), and o is the frequency of periodic motion

over time, ¢.
The pressure distribution given by equation (3.94) is nothing but the aerodynamic loading

on the wing. Therefore, the generalized forces due to this aerodynamic loading can be writ-

ten as

M N c(l—‘; )
Cut = T 3 [[7 "eutiiquumneov,osdy 399
0 Y0

m=1n=1

where m and n identify the shape functions in the clamped-free and free-free directions
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respectively. In a non-dimensional form the above equation becomes

M N al a(1-8)
(Qurod = 2 3 [ [ PalaColxr 13 00, @)%, ()ledidn  (3.96)
0

m=1ln=1 0

where @ (£) and ‘¥, (1) are defined by equations (2.7) and (2.8) respectively. The pres-
sure distribution is calculated as shown earlier at various receiving points on the wing
defined by (x, x,) . Now the shape functions are calculated on the same points as the pres-

sure in order to couple the equations.

To solve equation (3.96), a numerical integration over the triangular element has to be car-
ried out. The following general formula for numerical integration of a function G over a
triangle area, as shown in both Cowper(1972) and Reddy (1993), is used to integrate equa-
tion (3.96):

I G(E, n)dEdn = J G(Ly, Ly, Ly)dLdL, (3.97)
o o,

which can be approximated by the Gaussian quadrature formula as

NipP
A 1 -
I G(Ly, Ly, Ly)dL,dLy = 5 > W,G(S) (3.98)
Ql I=1

where (L;, L,, L,) is the transformed coordinate system known as the area coordinate
system (see Reddy (1993) for details); NIP are the total number of integration points; and

W, and S, denote the weights and integration points of the quadrature rule respectively.

On transforming the non-dimensional coordinate system (€,1n) to the area coordinate

system (L, L,, L;), we get
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g =1L,
n =1L

Hence, equation (3.96) remains unchanged as

M N I a(1-8) »
Qo) = 3 3 I _[ Do U2 C,(xy, g0 YD, (E)F (n)cdEdn
0

m=1ln=1 0

Rewriting equation (3.100) using the quadrature formula, we get
MN ) NIP
{Qaero} = z [:E Z WIG(SI)}
i=1l =1
where

G = lep UL C (%), 0 D () ¥ (M)

(3.99)

(3.100)

(3.101)

(3.102)

C,(x), x5, 1) is calculated using the 10-point Gaussian quadrature as was discussed earlier.

The pressure calculated at various points (x;, x;)on the wing is multiplied by the shape
functions calculated at the same points. The overall numerical integration is then carried

out using a 13-point (and degree of precision 7) Gaussian quadrature formula for triangular
areas as shown in Cowper (1972). The list of weights, W,, and the location of the area
coordinates (L,, L,, L;) for this 13-point Gaussian quadrature can be found in Cowper

(1972). This list is valid for triangles of any shape.

{Qero} is a complicated function of @ and time r. Hence it cannot be broken down into

simple coefficientsof 1, ® and ®®. Inother words, the matrix [4] in the state-space equa-

tion for the present case is extremely complicated. However, we can still solve these gen-

eralized forces by first defining the generalized displacements using equation (3.61) as

54



Chapter 3: Aerodynamic Modelling
{3,:} = ({4;s}coswr+{q, }sinor) +i({q)}sinor-{q, }cosar)  (3.103)

where ‘~’ above {q,.} denotes that both the real and imaginary components of the gener-
alized displacements are present, and { qf,} and {qis} are the components of the vector,

{3,.}. Also let
D = Real(C,(x), x,)) (3.104)
where

Real(C,(x,, x,)) = —’lt[cos(kxl)(Real & + Real i) (3.105)

- sin(kx,)(Imag ¢ + Imag )]

and where k is the reduced frequency. For convenience, we write the real and imaginary

components of the reduced potential and velocity in the following format:

M N M N
Real $ = 3 > ¥pq,, Realis = Y Y g,

r=1s=1 r=1s=1

M N M N
Imag @ = 3 > &4, Imaga =Y 3 &4,

r=1s=1 r=1s=1

where the equations for @z, @, , g and i, are given below for both inside and outside the

Mach cone.

 Inside the Mach cone, the following equations are valid:

mhk mhk

. K

bk = Sugar [821 S GU;+1)-AB, 3 G, + IZ)J (3.106a)
mj=0 mj=0
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mhk

mj=

mhk
G +1 4)]
mj=0
mhk ol 614
Ox, 6xl ]}

mj=0

mhk

0

0B,, oB,
iy = 5,,1{[ 2y G(I3+I4)+l— > G(Il+12)]

mhk
+ [—le

» For points outside the Mach cone, the following equations must be used:

ox,

- K
Pr = sulBM

K
(P[ = SulBM
i =

o
~—

Sul{[
!V mj

+ l:—BZl

mj=0
o5
axl

ax,) AB, Z G(

mhk

mj=0

mhk

mj=0

mhk

mhk

0

m;O

mhk P Il

ox,

mhk

[821 Z G I,-AB, Z Glu:l

MJ=

0

mhk

|:B21 S G141, 3 azl,]

mj =

mhk

m;-—O

ZGJ szG

mj=0

mhk

2z

mj=0
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ax‘

612
ax,

ox,

hk mhk
0B,
> Gllz+x— Y Glu]
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5112 mhk
G?T ;\.82 2 G —
mj=0
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(3.106¢)
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where
r+l r+l1 s s
Su1 = Z Z > Z
mh=0np=0ki=0mp=0
and
_ mhk!
G_(mhk—mj)!

As seen in equation (3.105), Real(ép(xl,xz)) depends on both the real and imaginary
} be
written in terms of the real and imaginary parts of the reduced potential and reduced veloc-

parts of the reduced potential, ¢ , and the reduced velocity, 4. Therefore, let {Q

aero

ity. Hence the equation for generalized forces, equation (3.100), is rewritten as the follow-

ing:

{Quero} = Real ([Zp(w)){q,,} +ilZ(0)){q,}) (3-108)

In the above equation, [Z4(w)] is of size MN x MN and is of the form

1 p(1-8)
Zg,,,. = I I PmUiDR,}D,,.(E..)‘P,,(n)lcd&dn (3.109)
’ 070

where

Dy

rs

1 a -
= -z cos(kx|)[@g + ig]
Similarly, [Z,(0)] is also of size MN x MN and is defined as

1p(1-8)
Z,..= I PmUiD,,,¢,,,(§)‘P,.(n)lcd§dn (3.110)
0 “0
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where

| - -
D, = - sin(kx, )@, + ;]

rs

The solution of equations (3.109) and (3.110) involves the use of the quadrature formula

shown in equation (3.101).

On substituting equation (3.103) in equation (3.108), we get

{Quero} = [Zp(0)]({ g7} coswit + {q;} sinwr) (3.111)
- [Z,(m)]({qfs} sino? - {qis} cosw’)

Hence the generalized forces due to aerodynamic loading have been obtained. The

dynamic response of the delta wing due to these forces will be determined in Chapter 5.

In the following chapter the generalized forces due to piezoelectric strips will also be deter-

mined.
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Chapter 4

Modelling of Piezoelectric Actuators

In the previous chapter a model of the uncontrolled delta wing under supersonic aerody-
namic loading was formulated. In principle, piezoelectric actuators can be introduced on
the wing in order to control the aeroelastic oscillations of the wing. However, the goal of
the present research is only to study the response of the wing in the presence of these actu-
ators but not to develop control schemes. Hence, the study is limited to the examination of
the effects of introducing the piezoelectric actuators on the aeroelastic oscillations of the

delta wing.

In this chapter, a mathematical model of the PVDF strips distributed on the surface of the
wing is developed. The resulting model is appended to equation (2.28) in order to produce

a state-space matrix equation of the well-known form,

{x} = [Al{x} + [BI{F} 4.1)

where [B] depends on both the locations and geometric characteristics of the PVDF actu-
ators while { F'} is the force input vector. Here { F'} depends on the voltage applied across

the thickness of the piezoelectric actuators.

4.1. System Description

The piezoelectric actuators are modelled as PVDF strips bonded to the surface of the wing.

The model contains the following assumptions:

 the PVDF strips are homogeneous and isotropic;
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« the strips are polarized so as to produce uni-directional strains, i.e., if the
piezoelectric constant d5, # 0, then d;, and d,4 must be zero for that strip;

» the strips are perfectly bonded to the structure; and

« the thicknesses of all the PVDF strips are constant.

The assumptions listed above are the same as those given by van Poppel and Misra (1992).
Figure 4.1 shows the approximate distribution of the five PVDF strips on the cantilevered

triangular plate as used in the present study. Note that the axis convention is the same as

Figure 4.1: Distribution of PVDF Strips on Cantilevered Triangular Plate

that used for the structural analysis in Chapter 2. Also, note that the locations, sizes and
number of PVDF strips can be varied so as to attain maximum control of the flutter. In the
present study the shape of the strip was chosen to be trapezoidal because it is simpler to
manufacture than a more irregular geometry. Also, the trapezoidal shape gives better flex-
ibility in covering a triangular plate as opposed to a rectangular shape for the strips. As
shown in Figure 4.2(a), the bottom left corner of the /th strip is located at (x;, y;) and the
width of the PVDF strip, if polarized in the x-direction, is assumed to be a function of x,
namely b,(x). Similarly, if the strip is polarized in the y-direction, the width of the strip is
assumed to be a function of y, namely, a,(y) as shown in Figure 4.2(b).
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(x, b4 yl+bl (xi))

|
|
i
!
[

\Qw (x))

(xl+al ’ y :+b: (x,+al) )

b,(x)

(x,,¥)

(=, ) (x¥a.. )

a,

Figure 4.2(a): Shape of PVDF Strip Polarized in the x-direction
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Figure 4.2(b): Shape of PVDF Strip Polarized in the y-direction

A strip aligned in the x-direction, for example strip 1 in Figure 4.1, is described by a shape

function, f{(x), and is polarized to expand and contract in the x-direction. In our case, f(x)

represents the fraction of the maximum width of the strip at any location along the x-axis

(refer to Figure 4.2(a)). The shape distribution function, f(x), is hence mathematically

defined as
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b(x)

= Bl “-2)

Ax)

where b,(x) is the width of the PVDF strip at any location along the x-axis and [b,(x)],

is the maximum width of the same strip. Now b,(x) from Figure 4.2(a) can be written as

bi(x) = b,.(x,.)[l - (f;—x)] +by(x; + a,.)[x . x"] 4.3)

i i

where the constant a; equals the length of the ith strip polarized in the x-direction, x; is the
x-coordinate of the bottom left corner of the strip, b,(x; + a;) is the minimum width of the

PVDF strip, and b;(x;) is the maximum width of the PVDF strip.

Substituting equation (4.3) into equation (4.2) and simplifying, we get

b(x;+a;)-b(x;)
fx) = 1+ [ e ][x—x,.] (4.4)

Differentiating equation (4.4) with respect to x, we get

: bi(x;+a;) - by(x)

£ 0D 4.5

Similarly, a strip aligned in the y-direction, for example strip 2, is polarized to expand and
contract in the y-direction. The shape distribution function, g(y), for strips polarized in the

y-direction is defined as

a‘-(y)

- 77 4,
eI (4.6)

g(y)

where a,(y) is the width of the PVDF strip at any location along the y-axis and [a;(y)],,,,

is the maximum width of the same strip. Similar to the derivation of equation (4.4), we can

obtain a modified expression for g(y):
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a(y; +b;)-a(y;)
bia;(y;)

80) = 1+] Jty-»a @4.7)

Differentiating the result with respect to y, we get

a(y;+b;)—a,(y;)

g0 = B0

(4.8)

4.2. Generalized Forces due to the Interaction between PVDF Strips and
the Structure

Consider a composite element, that is, a plate element of width b,(x) covered with a pie-

zoelectric strip of width b;(x) polarized in the x-direction. When a voltage is applied

midplane of the PVDF layer

-
-
-

=~ 7 T(x) + dT(x)

dw(x) — ~—

neutral axis of the
plate/PVDF structure

Figure 4.3: Cross-section of an Infinitesimal Plate Element of Area dxdy
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across the thickness, k;, of the ith PVDF strip, it introduces a strain, €, in the PVDF strip.
This strain is given by

g, = V,.(:)% (4.9)

where V(1) is the voltage applied across the thickness of the ith strip and 45, is a piezoe-
lectric constant for the PVDF strip polarized in x-direction (see Table 5.1 for its value). €,
in turn induces a longitudinal strain, €;, in the plate to insure a force equilibrium in the x-
direction. To calculate the expression for g,;, a force balance on the composite element is

performed to obtain

E,&/h,b,(x) + E(e, +€)hb(x) = 0 (4.10)

where the subscript ‘p’ refers to the plate and the subscript ‘i” refers to the ith strip respec-
tively. In the above equation, E is Young’s Modulus of the material, 5 is the width, and 4
is the thickness. Writing equation (4.10) in terms of €, , we get

Eh;b(x)

_ c (4.11)
E h,b,(x) + Ehb(x)

8[=

Consider an elemental area, dxdy, of the composite element shown in Figure 4.3. When the

force, i.e. the polarization, is in the x-direction, the tension per unit width is

T(x) < V() - f(x) (4.12)

where f(x) is given by equation (4.4) and V,, (¢) is the voltage applied across the thickness
of the ith strip polarized in the x-direction. Similarly, when the force is in the y-direction,

the tension per unit width is

T(y) < V(1) - 8(9) (4.13)
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where g(y) is given by equation (4.7) and V;,(r) is the voltage applied across the thickness

of the ith strip polarized in the y-direction.
The differential tension acting on the elemental area, dxdy, can be written as

dT(x) c V. (1) - f'(x)dx 4.14)

where f'(x) is given by equation (4.5).

The tensions, T(x) and T{y) induce moments M(x) and M(y) respectively. The differential
tension per unit width, d7(x), acts through the moment arm %, as shown in Figure 4.3, to

create a net moment, dM,, for width dy which can be written as,
aMm, = h - dT(x)dy
or,
dM, < h- V. (1) f(x)dxdy (4.15)

Now the strains, €, and €,, are constant throughout the element. Thus, from Figure 4.3 and
equations (4.10) and (4.15), the bending moment acting on the elemental area about +y-axis

is further written as,

dM.(x x)--‘Z[Ehb(x)e(’ﬂ—D ) + Eshibx)(e, +£) (4.16)
y\ K - oxl p'PTP l 2 NA Yy s { °

(’-;5 + hp - DNA) ]dxdy

where D, is the distance to the neutral axis of the composite plate (from AB to EF as

shown in Figure 4.3).
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In practice, hpbp(x) » h;b(x). Using this fact along with equation (4.11), we get,
€, +€ =€ 4.17)

Using equations (4.2) and (4.9) and substituting equation (4.17) into equation (4.16), the

expression for the bending moment about the y-axis in the elemental area becomes,

dM, = _V, (0)f'(x)dxdy (4.18)
where
h,+h;
2, = E(25—)dy, (4.19)

where d is the piezoelectric constant for PVDF strips are polarized in the x-direction. Cy

is referred to as the equivalent stiffness coefficient. It is a constant per unit width whose
units are N/volt. This constant is based on the information taken from Bailey and Hubbard
(1985) and from van Poppel and Misra (1992). It depends on the material properties and
dimensions of the strip. This constant is similar to that given in Bailey and Hubbard (1985)
for the beam because the small Poisson effect present for a plate has been neglected in this
derivation. The difference is that here the constant is per unit width. In Bailey and Hubbard
(1985), the width of the PVDF strip was assumed equal to the width of the beam and hence

¢, was the same for all strips. Their units for the constant read Nm/volt.

Similarly, the bending moment about the x-axis is given by,

M, = -2, V, (g’ (y)dxdy (4.20)
where
h,+h;
e, = E(L5—)ds 4.21)
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is again a constant per unit width and d;, is the piezoelectric constant for PVDF strips are
polarized in the y-direction. The constant, ¢, , also has the units of N/voit.

The power acting on the elemental area covered by the strips is given as

dP = d(M - ) (4.22)
where
M=Mi+M,j (4.23)
and
& =6;i+6,j (4.24)

Hence, power on an elemental area of the wing covered by the strips can be expanded and

written as

dP = ¢, V. (Of'(x)8ydxdy - ¢, V, (g (y)6.dxdy (4.25)

where ¢, is given by equation (4.19), gy, is given by equation (4.21), and

6, = {%@—‘;-) and @, = 56;(- '653") (4.26)

Recall that the transverse displacement, w, can be expressed as
M N
w(x,y, 1) = 3 Y ®(x)B0)G,() (2.4)

r=1ls=1

Consider that the strips are unipolar. That is, at any given time a strip is polarized either in
the x-direction or in the y-direction but not both. Let R, be the total number of strips polar-
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ized to expand and contract in the x-direction and R,, be the total number of strips polarized

in the y-direction. Also, let
R, = R +R,

Hence, the total power acting on the total area covered by the strips, in non-dimensional

form. can be written as

5“’& +b,(8)
R ' n( ;

! (P
_[ f £, Vil F 2 '@a)g e () _gyazan

*‘ g +a(n,)
0D (E)¥Y,(M)
f I Vpg =R dna
(4.27)
where
- bAx: - y-:
biE) = ‘(Cx‘) and  a,n,) = “‘(Iy‘) (4.28)

In these equations, / and ¢ are the semi-span and the chord of the wing respectively, b;(x;)
and a;(y;) are defined in Figures 4.2(a) and 4.2(b) respectively, ®(£) and ‘¥'(n) are the
shape functions described in Chapter 2, and V, (r) and V, (¢) are the voltages applied
across the thickness of the ith strip aligned in the x-direction and y-direction respectively.
Thus, the total power acting on the entire area of the wing by all the strips present is the
summation of the power acting on the wing by the individual PVDF strips as seen in equa-
tion (4.27).
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The total power can also be written as

P = {1}7{P}

where {1} isa (R, x 1) unity vector and

{P} = [PI{V (D)} +[P{V,(0)}

The power components in equation (4.29) are defined as

where

crs -

irs —

P, =c¢ ‘_Q-

rs

Yirs = é)ig"'-‘

e, ® (E)¥ (1))
j jf'(é)( L1 -8)dedn

5%
&g
b
Ve A 2@,
n )
I an -5 Mb

Writing the matrices [P, ] and [P,] in terms of their components, we obtain

(7] =

[ Cx, 111
Cx, L2112

Cx S mn €, SQomn

- - T
y,S2211 : . . Cxp S2R11

Cx,'QR,MI\ﬂ
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and

M i i
Cylc-'l 1 Cyzcﬂl . . . CyR'GR,ll

Cy G2 8212
p1=] - : : : : : (4.34)

¢, Cimn €y,Gomn ' : - c y,rCR,MI\:J

where MN is the total number of modes. The dimensions of the matrices on the right-hand-

side of equation (4.29) are

dim[P.] = MN x R,
dim[P,] = MN x R,

. (4.35)

dim{V, ()} = R, x |

dim{V, ()} = R, x 1

Substituting equation (4.29) into equation (4.1), we get
{x} = [AH{x} +[B . H Vi ()} +[B]{V, (1)} (4.36)

where the state vector {x} and matrix [4] have been previously defined in equations (2.29)

and (2.30) respectively. The [B,] and [By] matrices are written as

[B.] = [[0]" (4.37)

= [P,]] '
[0},

B.1= 4.38

- [ o

where [0], is an (MN x R,) null matrix and (0], is an (MN x R,) null matrix.
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The generalized forces due to the interaction of the PVDF strips with the delta wing can

now be written as
{Qiczo} = BV (D} +[B,1{V,()} (4.39)
Also, equation (4.36) can be further written as
(£} = [AN{x} + {Qpiezo) (4.40)

Now that the generalized forces, {Q

piezo
have been obtained, the transient response of the wing can be determined using equation

} , due to the presence of the piezoelectric strips
(4.40) as will be shown in the next chapter. Furthermore, the dynamic response of the deita

wing under unsteady, supersonic loading in the presence of these piezoelectric strips will

be presented in the following chapter.
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Chapter 5

Analysis of the Dynamics of
the Wing under the Combined
Piezoelectric and Aerodynamic
Forces

This chapter is divided into two main sections. In the first section, a procedure to obtain
the response of the deita wing, with and without aerodynamic loading, in the presence of
PVDF actuators is discussed. To start with, we consider the wing under the influence of
the piezoelectric strips alone. Following that the unsteady supersonic aerodynamic loading
is introduced on the wing with piezoelectric strips present. The expressions for the gener-
alized forces due to aerodynamic loading and the presence of piezoelectric strips are intro-
duced into the general equation of motion for a dynamic system. These expressions are

used to analyse the dynamic response of the system.

The second section presents and discusses the final results of the work presented in this the-
sis. This section is divided into three subsections. In the first subsection, the eigenvalues
of a free-system are compared to existing results. The control effect of introducing piezo-
electric strips at various locations on the delta wing, without aerodynamic loading, is stud-
ied in the second subsection. The dynamic responses of the wing, with and without
unsteady supersonic aerodynamic loading, in the presence of piezoelectric strips are com-

pared in the last subsection.
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5.1 Dynamics of the System Under Piezoelectric and Aerodynamic
Forces

The dynamics of the system under the combined piezoelectric and aerodynamic forces are

analysed considering three locations on the delta wing shown in Figure 5.1.

Point 3
{£=0.45, n=0.45)

Point 2
(£=0.45, =0)

Figure 5.1: Locations of Points 1, 2 and 3 on the Delta Wing

The first location, Point 1, is placed at the tip, thatis, £ = | and n = O; Point 2 is on the
trailing edge of the wing at £ = 0.45 and = O; and the third location, Point 3, is on the
leading edge of the wing, placed at £ = 0.45 and n = 0.45.

The plate is assumed to be made of aluminium alloy. The material properties of the plate

as well as of the piezoelectric strips are listed in Table 5.1.

The response of the system under the influence of the piezoelectric strips, with and without

aerodynamic loading, is now analysed.
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Table 5.1: Physical Characteristics of the System

Physical Parameters Value
Length of semi-span, / 20m
Length of chord, ¢ 1.0m
Plate thickness, h, 00lm
Density of Aluminium Alloy, p 2823.0 kg/m’
Elastic modulus of the plate, Ep 70.0 x 109 Pa
Poisson’s ratio, v 0.334
PVDF film thickness, 50x 10 m
Elastic modulqs of piezoelectric strips, E; 60.0 x 10° Pa
Piezoelectric constant, ds, 250 x 10™'> m/volt

5.1.1 Transient Response of the Deita Wing

Piezoelectric strips, or PVDF strips, were introduced on the delta wing modelled as a can-
tilevered triangular plate in Chapter 4. The generalized forces, {Q,,,.,, } , produced due to
the interaction of these PVDF strips with the delta wing are given by equation (4.39). The
equation of motion for this PVDF-wing combination was written in a state-space form and

is given by equation (4.40).

[n this subsection, the PVDF strips are activated to damp out the oscillations of an unloaded
delta wing. In other words, equation (4.40) is solved. The structural damping, namely
Rayleigh’s damping, C, given by equation (2.33) is also present. Once the generalized dis-
placements and the generalized velocities for this forced system have been determined, the

response of the plate at the point under consideration can be easily determined.

The equation for the generalized forces due to interaction of the PVDF strips with the plate

is repeated below:

{Qpiczot = [B IV, (D} +[B, {1V, (D)} .1
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where V, (1) and V, (1) are the voltages introduced across the thickness of the ith strip
oriented in x- and y-directions respectively, and the matrices {B,] and [By] are obtained
by placing the five PVDF strips as shown in Figure 4.1 and using equations (4.37) and
(4.38) respectively. The size, location, and orientation of each strip is given in Table 1 of
Appendix C. As shown in Figure 4.1, strips 1, 3 and 5 are assumed to be oriented in the
x-direction and strips 2 and 4 are assumed to be oriented in the y-direction. The matrices
[B.] and [By] can now be easily generated by writing a program in FORTRAN. The volt-

age is selected as the following

V'(x or y)(t) = —K‘-W“P (5.2)

!

where K; is a constant and w,;, is the tip velocity.

Now that {Q } has been determined, the state-space equation, equation (4.40), can be

piezo
solved. As seen in equation (4.40), the equation for % is a first-order ordinary differential
equation. This equation has to be integrated in order to determine both {q,.} and {q, .} .
The Runge-Kutta method for integrating ordinary differential equations can be used for this

purpose. A simple program is written in MATLAB to solve the state-space equations.

Having determined the generalized displacements and velocities, the transverse displace-
ments, due to this tip velocity, at the three locations shown in Figure 5.1 can be determined

for the following three conditions:

* Only x-aligned PVDF strips are active (only strips 1, 3 and S are active);
* Only y-aligned PVDF strips are active (only strips 2 and 4 are active); and
+ All PVDF strips are active.

The results of this subsection are discussed in section 5.2.

5.1.2 Dynamic Response of the Delta Wing

In this subsection, the procedure to obtain the dynamic response of the wing under the com-

bined forces of the unsteady supersonic aerodynamic loading and in the presence of the
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piezoelectric strips will be discussed. The dynamic response of the delta wing is compared
for the following two cases:

« Without aerodynamic loading, that is, {Q,,,,} = {0};and
+ With aerodynamic loading, that is, {Q_,,,} = {0} .

In both cases the piezoelectric strips are active, {Qpiew} #{0}. When {Q_,,.,} = {0},
the only external force applied to the delta wing is the force generated by the PVDF strips.
The forces generated by activating the PVDF strips are solely responsible for activating the

wing oscillations. But when {Q } # {0}, the piezoelectric and aerodynamic forces are

aero
simultaneously acting on the wing. The aim of this comparison is to determine whether or
not the PVDF strips can counter the wing oscillations caused by the aerodynamic loading.
Specifically, it has to be demonstrated that the forces due to the piezoelectric strips can
effectively oppose the aerodynamic forces, thereby reducing the aeroelastic oscillations.
The appropriate combination of PVDF strips and voltages applied across the individual
strips has to be determined to obtain effective control of the wing oscillations when the
unsteady supersonic aerodynamic loading is present. It should be noted that the magnitude
of displacement of the wing has to be smaller when {Q,,, } # {0} as compared to when
{Qerot = {0}, in order to conclude that the PVDF strips are effective in controlling the
aeroelastic oscillations of the delta wing. The appropriate combinations of active PVDF
strips and the magnitudes of the voltages applied across these strips are determined by trial

and error.

We start with the equation of motion for the dynamic system given by equation (2.36)

which is repeated below:

M1{G,;} +[CUHq,} + [KH{q,} = {Querot + {Qpiez0} (5.3)
where r and s identify the shape functions in the clamped-free and free-free directions
respectively, [M] is the mass matrix, [C] is the structural damping matrix, [K] is the stiff-

ness matrix, {q,,} are the generalized displacements, {4} are the generalized velocities,

and {g,,} are the generalized accelerations. The equation for the complex generalized
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displacements defined by equation (3.103) is repeated below:

{3,s} = ({g5,}cosot+{q, }sinot) +i ({q,,}sinor—-{q}}cosor) (5.4)

where {q,,} and {qis} are unique for each frequency and will be determined here. And,

for convenience, {Q,,,,} isrepeated below

{Qaero} = [Zg(0)1({q,,}cost+ {q;,}sinwr) (5.5)
~[Z(=)]({q},}sinor - {q, }coswr)

where o is the frequency of oscillation of the plate, while [Zz(w)] and [Z,(w)] are
defined by equations (3.109) and (3.110), respectively.

In equation (5.1), let

A C ASs .
= Vicosot + V;sinwt

Vi (5.6)
iy = f/,;cosmt«l- f’,-“;.sinmt

where Vi, Vi, Vi, and V;, are the constant voltage amplitudes introduced across the

thickness of the individual piezoelectric strips. Note that in equation (5.6), superscript ‘c’

is used to denote that the voltage is a coefficient of cosw? and superscript ‘s’ denotes that

the voltage is a coefficient of sinwt. Thus, in equation (5.6), V,-i and f’,-; are called the

. s ~ 8 .
cosine components and V;; and V;, are called the sine components.

As discussed in Chapter 3, the aerodynamic components of {Q,.. .}, [Zg(®w)] and
[Z,(®)], are complicated functions of frequency, ® . Hence they cannot be broken down
into simple coefficients of 1, ® and ®” as was done when solving for {Q,,,..,,} in the
previous section. In other words, the matrix [4] for the state-space equation for the present
case is extremely complicated. Thus, for this case, we will not be able to use the Runge-

Kutta formulas for integrating ordinary differential equations. This is one of the limitations
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of the present work. A feedback control law cannot be developed for the dynamic system
under the combined forces of the piezoelectric and aerodynamic forces using the present
model. The problem of complicated aerodynamic functions of frequency, namely [Z4(®)]
and [Z,(®)], was encountered during the development process. Modifications to the aer-
odynamic analysis have to be made starting from first principles in order to develop an effi-
cient feedback control law of the system, but such modifications are left to future

investigations.

We can still, however, determine the transverse displacement of the delta wing by solving
for the generalized displacements. These generalized displacements are assumed to be
defined by equation (3.103). We are interested only in the real part of the generalized dis-

placements which is given by
{q,,} = Real {§,,} = {q,,}cosot+{q,,}sinar 5.7
Hence, the generalized velocities become
{4,:} = m(—{qfs}sincot-b- {qfs}cosco:) (5.%)
and the generalized accelerations become
. 2 .
{d,} = -0°({q.}cosat+ {q, }sinor) (5.9)

Substituting equations (5.1), (5.5), (5.7), (5.8), and (5.9) in equation (5.3) and then combin-
ing coefficients of cos®? and sinw¢ from the left-hand-side and the right-hand-side of the
resultant equation, one gets:

» coefficients of cos®?:

~ 0’ [M1{q};} +0[Cl{q},} + [K]{q},} - [Zp(®)}{ar} - [Z(@)){q}}  (5.10)
= [P {Vi} + [P){Vy}

where [P,] and [P,] are defined by equations (4.33) and (4.34) respectively.
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» coefficients of sinwt:

~0’[M1{q},} - o[CY g5} + [K1{q)} - [Zp(@)1{ g} + [Z,(0)] {5}
= [P J{Vi} +[P,){Vy}

} (5.12)

Now equations (5.10) and (5.11) are expressed in matrix form as

(A, +B] (A +Bp)| || _ [[P.] [0]
[Ag + By ] [Ap + Bplj|g), (01 (7]
where

Ay = -’ [M]+(K]
A, = 0[C]
B\ = ~[Zg(w0)]
B, = ~[Z(w)]

Ay = -0[C]

Ay = -0 [M]+[K]
le = [21((9)]
By, = -[Zx(0)]

Equation (5.12) can be written more compactly as

1

q:s = [AB}-I {Qvoll}
4rs

where
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[AB] = [A,+B;1] [A)2+By,) (5.16)
[Az; + Byy] [Ag + By,]
and
P o1]|Vie|  [tr,3 101 ¥4
(0o} = | oA O] ) A (5.17)
(o1 te | vz| 101 A1 ¥
When {Q,,,,} is zero, equations (5.15) and (5.17) still hold, however equation (5.16)
becomes

[AB] = (A1) [Ar] (5.18)
[A2|] [A22]

A program written in MATLARB is used to solve for {qfs} and { qis} . The results are sub-
stituted back into equation (5.7) to determine the generalized displacements, {g, .} . Once
the generalized displacements have been determined, these are in turn substituted into the
equation for the non-dimensional transverse displacement, equation (2.5). The transverse

displacements, w, are determined at the various locations shown in Figure 5.1.

The magnitude of the voltage applied across the thickness of the piezoelectric strips is
varied to achieve maximum control of the aeroelastic oscillations. The results are discussed

in section 5.2.4.

5.2 Results

This section presents the final results of the work presented in the thesis. The calculated
eigenvalues of the free-system are compared to those obtained by an existing method in the

first subsection, and the response of the free-system is discussed subsequently. Then, struc-

80



Chapter 5: Analysis of the Dynamics of the Wing under the Combined Piezoelectric and Aerodynamic Forces

tural damping is introduced and the response of the delta wing again determined. Next the
piezoelectric strips are introduced and the transient response of the delta wing is obtained
and compared to the response when only structural damping is present. Finally, the
response of the dynamic system when both the piezoelectric strips and aerodynamic load-

ing are present is discussed.

5.2.1 Eigenvalues of the Free-System

The deita wing was modelled as a triangular cantilevered plate in Chapter 2. The eigen-
value probiem for the free vibrating cantilevered triangular plate was formulated in section
2.3 of Chapter 2 and is given by equation (2.26). The mass and stiffness matrices were also
derived in Chapter 2. In this section, the natural frequencies of the plate are compared to
those given by Andersen (1954) for various modes of vibration to validate the structural
model developed here. Andersen obtains the natural frequencies of a triangular plate using

the Ritz Approximation method.

As a first step towards determining the eigenvalues of the free-system, the mass and stiff-
ness matrices are generated by a program written in FORTRAN. For example, consider the
matrices generated for two shape functions in the clamped-free direction, (M = 2); and three
shape functions in the free-free direction, (N = 3). Hence, MN = 6. These matrices are

imported into a simple program written in MATLAB to solve the eigenvalue problem.

Andersen (1954) non-dimensionalized the frequencies so that they would be independent
of the size of the chosen plate but dependent on its shape. To compare the results obtained
in the present study to those obtained by Andersen, we too non-dimensionalize the natural
frequencies obtained here. Table 5.2 compares the non-dimensional natural frequencies for
the free-system obtained by the Present Method to those obtained by Andersen (1954) for
an unsymmetric cantilevered triangular plate. The results for ®;, i > 3, are not available in
Andersen (1954) for the unsymmetric plate. Hence only the first two natural frequencies

are compared to the Present Method for Zl- of 2,4 and 7.
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Table 5.2(a): Comparison of Frequencies of the Free-System: Unsymmetric Plates

2 (ph l 2 [Ph l 2 /ph /
I =9 L - = Y 24 s =
©,! D for - =2 o,l 5 for : 4 ,! D for p 7
Mode
Present Present Present
Method Andersen Method Andersen Method Andersen
M=3,N=2 M=3,N=2 M=3,N=2

1 7.16 5.88 7.16 6.61 7.16 6.90
2 31.32 25.40 31.90 28.80 31.26 30.28
3 72.83 NA 103.63 NA 102.18 NA
4 111.71 NA 105.45 NA 155.38 NA
5 175.96 NA 311.09 NA 521.54 NA
6 302.51 NA 554.60 NA 906.26 NA

Table 5.2(b): Comparison of Frequencies for various values of MN: Present Method

Mode | MN=4 MN=6 MN=6 MN=9
M=2N=2 | M=2,N=3 | M=3,N=2 | M=3,N=3
1 7.16 7.16 7.16 7.16
2 37.04 37.04 31.32 31.82
3 87.84 78.73 72.83 47.37
4 185.80 206.77 111.71 109.90
5 - 239.90 175.96 166.03
6 - 564.98 302.51 318.71
7 - - -- 441.96
8 - - - 849.00
9 - - - 109341

In Table 5.2(a), o, is the calculated natural frequency of the wing, / is the semi-span of the
wing, D is flexular rigidity given by equation (2.3), p is the density of the plate material
(in this case Aluminium Alloy), and h,, is the plate thickness. The values of the physical

characteristics are listed in Table 5.1.

As seen from Tables 5.2(a) and 5.2(b), the frequencies (for MN = 6) are slightly different
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when M =2, N =3 from when M = 3, N =2 because there is one more clamped-free mode
and there are no free modes active in the free-free direction in the latter case. As seen from
Tables 5.2(a) and 5.2(b), the frequencies obtained using the Present Method have con-
verged for the first two modes when MN =4 and MN = 6.

As seen in Table 5.2(a), for larger £ ratios the values of the natural frequencies from the
two methods are in good agreement. However, for smaller EI' ratios the differences in the
values of the natural frequencies are somewhat larger; this may be due to the deflection
shapes chosen by Andersen (1954) for the Ritz method which may not give accurate results

for small é . Barton (1951) made similar observations about his own implementation of the

Ritz method.

Andersen’s analysis is more reliable for symmetric plate cases. When the frequencies for
the first two modes generated by the Present Method were compared to the first two modes
for symmetric plate frequencies of Andersen (1954), it was found that the results were in

very good agreement. The comparison is shown in Table 5.3.

Table 5.3: Comparison of Frequencies of the Present Method to Symmetric Plates

I; h h
colz}g—lefor£=2 mlzfp—zfor£=8 colz/-p—efor-[=l4
n D c n D c n D c
Mode
Present Andersen Present Andersen Present Andersen
Method Symmetric Method | Symmetric | Method | Symmetric
1 7.16 7.149 7.16 7.08 7.16 7.08
2 31.32 30.80 31.28 30.65 31.24 30.64

Thus, the structural dynamics model developed in this thesis can be used further with con-
fidence. Now that the eigenvalues of a free-system have been determined, the response of

this system can be obtained in the next subsection.
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5.2.2 Response of the Undamped, Unforced Delta Wing

In this subsection, the structural damping, C, is assumed to be zero and the PVDF strips are
deactivated. Hence, in this case, the state-space equation (2.28) representing the free-
system holds well.

As a first step, the Runge-Kutta method is used to solve equation (2.28) in order to deter-
mine the generalized displacements, {q,,}, and the generalized velocities, {4, } , of the
undamped, unforced cantilevered triangular plate.

Let us consider two modes of vibration each in the clamped-free and free-free directions.
Hence MN = 4. Initial conditions for {q,,} and {4,,} for all four modes of vibration are

given as an input to excite the system. These initial conditions are listed in Table 5.4.

Table 5.4: Initial Inputs to the System

£4,,(0)} 0.01 0.003 0.003 0.001
14,,(0)} 0 0 0 0

In reality, the system will damp out eventually because of inherent material damping prop-
erties. However, in this subsection, it is assumed that there is no material damping present
and matrix [4] is given by equation (2.30). Thus, the oscillations of the plate will never

damp out.

Once the generalized displacements, {q,,} , have been determined for the system they are
placed in the equation for transverse displacement for the plate, equation (2.5). The shape
functions, ® (£) and ¥ (n), are given by equations (2.7) and (2.8) respectively. To deter-
mine the transverse displacement at any location, replace £ and n by appropriate values
for that location shown in Figure 5.1. All the components of equation (2.5) are now known

and the transverse displacement can be determined easily.
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The results of the undamped, unforced case for the three positions are shown in Figures
5.2(a), 5.3(a) and 5.4(a) respectively. Note that the scale is different for Point 1 as com-
pared to Points 2 and 3 in all figures. As seen from the figures, the wing oscillations do not
decay in the absence of damping, as expected. Also, the wing oscillations are largest at the

wing tip as expected for a cantilever plate.

5.2.3 Structural Damping Alone Acting on the Delta Wing

In the previous subsection, the transverse displacement of an undamped free vibrating plate
was determined. In this subsection, the structural damping given by equation (2.33) is
introduced into the system. The corresponding matrix [4] from equation (2.34) involving
structural damping is used for solving the state-space equation, equation (2.28). In equation
(2.33), let the damping material constants for the platebe a = 0 and B = 0.001. Allsteps
to determine the response of the plate are as described in section 5.2.2 using the initial con-

ditions listed in Table 5.4.

The results from introducing the structural damping are shown for the three points in Fig-
ures 5.2(b), 5.3(b) and 5.4(b) respectively. As seen in the figures. the wing oscillations

indeed damp out over time.

5.2.4 Results for the Transient Response of the Delta Wing under the Effect of
Piezoelectric Forces

In the previous subsection, an acceptable response was obtained for an inherently damped
system. The PVDF strips are now activated to obtain the transient response of the delta
wing. Also, it is assumed that the system has an inherent damping.

In the first case, only the strips oriented in the x-direction, that is strips 1, 3 and 5, are acti-

vated. For this let K;_, = 1000; K; _ ; = 700; and K; _ 5 = 800. The results for all three
positions are shown in Figures 5.2(c), 5.3(c) and 5.4(c) respectively.
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As seen in the figures, activating the strips oriented in the x-direction has a significant effect
on the damping out of the oscillations. The system damps out faster when the PVDF strips
aligned in the x-direction are active as compared to the case when only structural damping
is present, as seen in Figures 5.2(b), 5.3(b) and 5.4(b). Also, as seen in Figures 5.2(f), 5.3(f)
and 5.4(f), the magnitude of damping due to the strip nearest the root, that is strip 1, is larger
than that when structural damping alone is present. In other words, even one strip at the
root (and aligned in the x-direction) has a significant contribution in damping out of the

delta wing oscillations.

Next only the strips oriented in the y-direction, that is strips 2 and 4, are activated. For this
let K; _, =1000; and K; _ , =700. The results for all three positions are shown in Figures
5.2(d), 5.3(d) and 5.4(d). Comparing with Figures 5.2(b), 5.3(b) and 5.4(b) one notes that
activating the strips oriented in the y-direction does not have a significant effect on the
damping out of the oscillations. The magnitude of the wing oscillations are comparable to
that of the case when only structural damping is present. Hence it can be said that the PVDF
strips aligned in the y-direction have little or no effect on reducing the oscillations over
time.

Finally, the strips aligned in both x- and y-directions are activated simultaneously. The
values of K; are the same as those used above. The results are shown in Figures 5.2(e),
5.3(e) and 5.4(e) for the three positions. As seen, the results are comparable to the case of
activating the strips aligned in the x-direction only. Hence, it can be safely said that acti-
vating the x-direction strips alone has the most contribution in damping out the oscillations

of the wing.

Thus by introducing the piezoelectric strips on the wing one can damp out the oscillations
faster than by just having the structural damping present.
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5.2.5 Results for the Dynamic Response of the Delta Wing under the Combined
Effect of the Piezoelectric and Unsteady Aerodynamic Forces

In the preceding subsection, the response of the delta wing in the presence of PVDF strips
alone was studied. It was concluded that the application of appropriate voltages to the
PVDF strips effectively damps out the wing oscillations. The unsteady supersonic aerody-
namic loading is now introduced on this structural-piezoelectric model to study the effects
of the PVDF strips when the aerodynamic loading is present.

To obtain the response of this dynamic system, equation (5.15) is solved as discussed in
section 5.1 for the three locations shown in Figure 5.1 using a periodic frequency,
® = 70 rads/sec. As a reminder, equation (5.16) is used in equation (5.15) when
{Q,er0} * {0} and equation (5.18) is used when {Q,,,,} = O.Two admissible functions
considered in both the clamped-free and free-free directions. Thus, MN = 4 again. The
values of the components of the generalized displacements, {q,} and {q,.}, are substi-
tuted back into the equation for the transverse displacement, w, as discussed in section 5.1.

Hence the dynamic response is obtained for all locations shown in Figure 5.1.

A large number of numerical simulations were carried out to determine the best combina-
tions of voltages applied across the various PVDF strips for effective reduction of the

aeroelastic oscillations. However, only a handful of results are presented herein for brevity.

We will start by activating the PVDF strips one-by-one. To find the best combination of
strips, the amplitudes of the oscillatory voltages introduced across the thickness of the indi-
vidual piezoelectric strips, f/’,i, f/,-i, V,; and \7,-; in equation (5.6), are varied. In some
cases the signs of Vi, etc. are also changed to determine whether or not the strips provide
more control. As a reminder, the PVDF strips are deemed useful only if the wing oscilla-
tions are smaller in magnitude when {Q,,,,}#{0} as compared to when
{Q.ero} = {0} in equation (5.15) (implying that the aerodynamic and piezoelectric
effects are opposing each other).



Chapter 5: Analysis of the Dynamics of the Wing under the Combined Piezoelectric and Aerodynamic Forces

Cases Analysed

The following is a brief description of five of the cases considered in studying the dynamic

response of the system:

Case I: The root strip aligned in the x-direction, strip 1, is activated alone.

Case 2: Strips 1 and 3 are activated while the y-direction strips are deactivated, that is
Viyand V;, are zero for all strips aligned in the y-direction. Also, ¥, is varied.
In this case, the combinations listed in Table 5.5 are compared.

Case 3: The third strip aligned in the x-direction, strip $, is activated. This strip is intro-
duced into the best PVDF combination obtained from Case 2. The applied volt-
ages are listed in Table 5.6.

Case 4: The y-direction strips are activated and are placed in the best PVDF combination
obtained so far. The voltages, f’,f; and f/,-sy , across strips 2 and 4 are varied.

Case 5: A different periodic frequency, @ = 150 rads/sec, is chosen to study the effects
of varying the frequency on the combinations of piezoelectric strips required to
reduce the aeroelastic oscillations. The aerodynamic matrices represented by
[Zg(®)] and [Z,(®)] are recalculated for this frequency.

Results obtained for Cases 1 and 2

Case 1: The magnitude of the oscillations is larger at all three locations when {Q_, } is
zero, that is, aeroelastic and piezoelectric loading do not oppose each other. The same
behaviour is seen when V‘; was increased or decreased. As this is not acceptable behav-

iour, more strips have to activated.

Case 2: Please refer to Figures 5.5 to 5.11 for the results of the test conditions listed in
Table 5.5. Figures 5.5, 5.6 and 5.7 show the response of the wing for case 2(i) at locations
1,2 and 3 respectively. As seen from the results, the combination is effective only for Point
1, that is the magnitude of oscillation is smaller when aerodynamic loading is present as

compared to when it is not. But this is not true for Points 2 and 3.

Figures 5.8, 5.9 and 5.10 represent case 2(ii) for the three locations on the wing. As seen
from the figures, the magnitude of wing oscillation is smaller when {Q,,,,} # {0} as
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Table 5.5: Amplitude of Voltage Applied across each PVDF Strip: Case 2

Case Figure no. Strip
no. 1 2 3 4 5
2() | 55-57:(@) | V. =-500 | - | Vi =-400V,=+200| -- -
55-57:(b) | V=-500 | - Vi =-400, V=0 - -
55-57:() | Vi.=-500 | - | V.=-400,V, =-200| -- -
2(ii) | 5.8-5.10:(@) | V;=-500 | - | Vi =-600, Vi ,=+200 | -- -
58-5.10:(b) | Vi, =-500 | - Vie =-600, V;y =0 -- -
58-5.10:(c) | Vi =-500 | -— | Vi=-600¥;,=-200 - -
23iii) | 5.11: @)-(c) | V, =-500, | - Vi = -400 - -

Vie = -200

Note: Voltage components not mentioned above are set tozero.

compared to when {Q {0} provided that f’is, is zero for all strips. Thus, the pie-

} =
aero

zoelectric strips are beneficial under these conditions. Though the magnitude of oscillation
when {Q_, .} # {0} atPoint 1 is slightly larger for case 2(ii) as compared to case 2(i), it

is smaller for Points 2 and 3. Hence, overall case 2(ii) represents a better combination.

Figure 5.11 represents case 2(iii) and shows the response of the plate at Points 1, 2 and 3
when V., of strip 1 is non-zero. Here again the results for Points 2 and 3 are not good

whereas for Point 1 the results are satisfactory.

Thus, we can say that only the cosine component of the voltage, f’,;, is effective in con-

trolling the wing oscillations when only two x-direction strips are active.

The best results obtained for cases 2(i) and 2(ii), that is when \7}; = 0 for all strips, are com-
piled and shown in Figures 5.12 and 5.13 respectively. From these figures, we conclude
that the magnitude of the voltage applied across strip 3 has to be greater than that applied
to strip 1 when only two strips are active and the periodic frequency is 70 rads/sec. Hence
the results from case 2(ii), presented in Figure 5.13, are the best.
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Results obtained for Case 3
Strip § is introduced into both case 2(i) and case 2(ii). The results for all three locations are

shown in Figures 5.14 and 5.15.

Table 5.6: Amplitude of Voltage Applied across each PVDF Strip: Case 3

Case . Strip
Figure no.
no. | 2 3 4 5
3(G) | S.14:(a)y(c) | Vi, =-500 | ~-- V. =-400 | -- Ve =-300
i) | S15:(a-c) | V=500 | - | Vi=-600| - | V. =-300

Note: Voltage components not mentioned above are set to zero.

As shown in Figure 5.14, when strip 5 is activated, the wing oscillations with aerodynamic
loading present are smaller than when the loading is absent. In other words, our goal is
achieved. Hence, to make the PVDF strip combination of case 2(i) work, strip 5 has to be
activated. When Figure 5.12 is compared to Figure 5.14, we see that the magnitudes of the

oscillations for {Q .} # {0} are comparable. When strip § is activated in addition to the

aero
voltages applied in case 2(ii), we see from Figure 5.15 that the results are worse as com-
pared to cases 2(ii) and 3(i). Therefore, for future test cases the PVDF strip combinations

of either case 2(ii) or case 3(i) can be used as both give good results.

Results obtained for Case 4

The PVDF strips aligned in the y-direction are placed in one of the two best combinations
obtained so far, namely, case 2(ii). By varying the voltages across strips 2 and 4, it was
seen that either there was little or no effect in certain cases, while in some other cases the
wing oscillations were increased. In other words, by introducing the strips aligned in the
y-direction the response either changed very little or worsened. One set of results repre-
senting active y-direction PVDF strips is shown in Figure 5.16, for the voltage combina-

tions given in Table 5.7.

Figure 5.16(a) refers to Point 1 on the wing. It is seen that the magnitude of oscillations
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Table 5.7: Amplitude of Voltage Applied across each PVDF Strip: Case 4

Strip

Case Figure no.
no. 1 2 3 4 5

) 316:@H0) | pe 500 | 7F =+100 | V5 =-600

Note: Voltage components not mentioned above are set to zero.

when both aerodynamic and piezoelectric loading are present is the least for this combina-
tion. However, the combination is not suitable for Points 2 and 3 as seen in Figures 5.16(b)
and 5.16(c) respectively. Please note that in the previous subsection it was found that the

strips aligned in the y-direction have little or no effect as well.

As seen from the results obtained so far, locations 2 and 3 do not have a good response for
most of the combinations of voltages that have been tried. The only way to ascertain the
appropriate frequency magnitude for which all locations on the delta wing will respond
well is by trial and error. This is one of the limitations of the present study. More work is
required to find an efficient way to determine the appropriate periodic frequency. Due to
the limitations of the scope of this thesis, this problem will not be dealt with here. However
to demonstrate that a change in the magnitude of the chosen periodic frequency changes the

response of the system, the following final test case is presented.

Results obtained for Case 5

Let the voltage magnitudes applied across the thickness of the PVDF strips be the same as
those given in case 2(i). The results are shown in Figure 5.17. As seen from the figure, the
magnitude of aeroelastic oscillation is smaller when {Q,,,,} = {0} as compared to when
{Qero) # {0} for all three locations, which is what we are aiming for. Comparing the
results shown in Figure 5.17 to those in Figures 5.12, we see that the results for
150 rads/sec are quite good as opposed to those when the frequency is 70 rads/sec .
Hence, it has been demonstrated that changing the periodic frequency can significantly
affect the performance of the piezoelectric strips.
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Chapter 6

Conclusions and Recommendations
for Future Work

A study of the aeroelastic oscillations of a delta wing under unsteady supersonic aerody-
namic loading in the presence of bonded piezoelectric strips has been presented in this the-
sis. The research work involved three major steps: development of an analytical-numerical
model for structural analysis; aerodynamic modelling; and study of the system response in
the presence of piezoelectric strips, with and without aerodynamic loading.

The natural frequencies for a free delta wing were compared to those published by
Andersen (1954) in order to validate the structural dynamics model used in this work. It
was found that the agreement between the results was good. In developing the aerody-
namic model, a hybrid analytical-numerical method was developed to calculate the
unsteady pressure distribution along the delta wing. The results obtained with this new
hybrid method were found to be more accurate than those of the Frequency Expansion
method. The computational efficiency of this hybrid method was found to be superior to
that of the numerical methods based on the Mach Box approach. When the flow along the
wing was made steady, the pressure distribution obtained by this method was a perfect
match to that obtained by Carafoli et al. (1969) under the same conditions.

The response of the delta wing at three locations in the presence of piezoelectric strips with
and without aerodynamic loading were studied. These strips were activated when an oscil-
latory voltage was applied across their thicknesses. Both transient and steady state

response were obtained for the cases when no aerodynamic loading was present, while only
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steady state response was obtained for the acrodynamic loading case under the assumption
of small transverse wing displacements in an unsteady supersonic flow.

In the transient case, it was concluded that the wing oscillations damped out faster when
the span-aligned piezoelectric strips were present. It was also found that the chord-aligned

actuators had little or no effect.

While studying the dynamic response, it was implied that the aerodynamic and piezoelec-
tric effects should oppose each other. In other words, the piezoelectric strips were deemed
useful only if the delta wing oscillations were smaller when aerodynamic loading was
present as compared to when it was absent. The number of strips and the voltage ampli-
tudes required to achieve this goal were determined by trial and error. It was again con-
cluded that the spanwise strips were more effective than the chordwise strips, which had
little or no effect in reducing the amplitude of wing oscillations. Voltage amplitudes of the
order of 10° volts were adequate to give acceptable reduction in the wing oscillations when
aerodynamic loading was present as compared to when it was absent. In certain cases, with
appropriate combinations of the piezoelectric strips, the amplitudes of delta wing oscilla-
tions were reduced by as much as half when aerodynamic loading was present as compared
to when it was absent. It was found that only a small number of strips are needed to reduce
the wing oscillations and that increasing the number of piezoelectric strips beyond this
number does not produce further reductions. Paige et al. (1993) came to this conclusion as
well when they studied square anisotropic panels. Under certain conditions (for the peri-
odic frequency chosen), it was found that some of the piezoelectric combinations were able
to reduce the wing oscillations at certain locations on the wing while these combinations
were ineffective at other locations. Changing the periodic frequency altered this require-
ment. Hence, it was also established that changing the periodic frequency of the delta wing

alters the response characteristics of the wing at the different locations.
A velocity feedback control scheme was developed in the present thesis for the structural-

piezoelectric model. However, no feedback control scheme was developed in the presence

of aerodynamic loading. This is because the generalized displacements for control must be
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arbitrary functions of time whereas the displacements for the aerodynamics analysis are
presently expressed as harmonic functions of time. To develop a control scheme for this
case, one has to modify the aerodynamic analysis so that the equations can be expressed as
arbitrary functions of time. Alternately, one can numerically expand the generalized aero-
dynamic forces as rational forces of ® and develop control laws in the Laplace Transform

domain.

6.1 Recommendations for Future Work

* Modify the aerodynamic analysis to make the transverse displacement an arbitrary
function of time so that one can express the structural-aerodynamic-piezoelectric
equations of motion as state-space equations. This will enable the development of a

feedback control law.

« Use other feedback control schemes, such as the pole-placement technique or LQR, to

analyse the response of the delta wing with and without aerodynamic loading.

» Perform flutter analysis of the wing with and without the PVDF strips to see if they are

capable of increasing the flutter speed.

« Carry out experiments to validate the analytical findings.
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Appendix A

Elements of the Stiffness Matrix: ki 3

The elements of the stiffness matrix as defined in Chapter 2, equation (2.22) are ;. The

following gives the expressions of these elements as used in this thesis.

Let the elements of the stiffness matrix be written as

11
c
ki = 3 [ [tk + Ky, + ke, + ky, + Ky YdEa (A.1)
00

The elements k;; are extracted from the equation for the potential energy given by equation
(2.21). To do this we have to start with the non-dimensional transverse displacement given
by equation (2.5) which is repeated below

M N

wE 0 = Y Y O Mg, 0 (A2)

r=1ls=1

where @, and ‘¥, are the shape functions given by equations (2.7) and (2.8) respectively.
The transverse displacement is similarly written for the ‘kp’ pair. Expanding equation

(A.2) in equation (2.21), we get

2 2
2w 0D, _000¥, O,

PR i +@ (A3
1 52 6§2 s ag ag ’a§2 )

_ Ow _ 0¥,
a, = Eﬁ =, on (A4)

2 2

o oY

a; = 28 = o, —* (A.5)
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(A.6)

(A7)

(A.8)

(A.9)

(A.10)

Substituting equations (A.3) to (A.10) in the equation for potential energy. equation (2.21),

the individual components of equation (A.1) can be written as the following:

kj = (1-&)ab,
kijz = 4na,b,
ky, = (—1-3—5{[211%1:’-(1 —V)lagby + (% +vk¥a by + 2na,b,}
i = (1_5)2{[211 24+ K2(1 - v)lab, + (’ + kK*n)azb, )}
ky, = (l—i) s{2[2n 24 K2(1 = v)]ayby +4(n® + (1 - v)K21)a,b,

+(* + K4+ 2(1 - E*nD)a;bs}

Equations (A.11) to (A.15) are substituted into equation (A.1) to obtain ki;.
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Appendix B

Aerodynamic Model Details
This appendix contains additional details and results pertaining to the Aerodynamic Model.

B.1 Limits of Integration Inside the Mach Cone-Derivation of Equation (3.34)
Please refer to Figure 3.2. Let us start from the coordinate transformation which is given as
X =x -xg

Xa — X.
Y = 2 2s
X = X5

As seen in the figure, (x, x,) is the receiving point and (x;s, x5,) is the source point.

Now from equation (3.2),

x2
y = ==
Y x
x
and hence, y, = Z2s
Xyis

Substituting in Y we get,

X y—X
Y = ¥4 1s¥s
X —Xs

Solving for x,;, we get,

Substituting in X we get,
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X=x-x,= XIZ::K;;
But on line OA, of Figure 3.2:
Ys = :—:—j =1
Hence,
X1 = "l::Y
Similarly on line OA5:
X, = xI:—I"Z,

This completes the derivation of equation (3.34).

B.2 Results of Chapter 3 (Section 3.3) in Tabular Format

Tables B.1 to B.3 list the numeric results which were presented graphically in Chapter 3
(Section 3.3) for the Delta Wing under steady and unsteady flow. These results compare
the pressure distributions found using the Present Method and the method developed by
Carafoli et al.(1969). The values in Tables B.1 to B.3 were used to produce Figures 3.3 to
3.5 respectively.

B.3 Coefficients A and B, ., and their Derivatives

mh, np

Tables B.4 to B.7 list the coefficients A, .,
forthe modesr=1,r=2,s=1 and s =2 as derived in Chapter 3.

and By; ,,, and their derivatives respectively
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Table B.1: Comparison of u and C P Steady Flow

Appendix B

X5 Present Method | Carafoli et al. Present Method | Carafoli et al.
y = x—; uor ‘%EI uor g_;p; Imaginary C, Imaginary C,
-0.8 -.574980D+00 -.574980D+00 | .114996D+01 .114996D+01
-0.6 -.460067D+00 -.460067D+00 | .920176D+00 .920176D+00
-0.4 -.388353D+00 -.388353D+00 | .776750D+00 .776750D+00
-0.2 -.348466D+00 -.348466D+00 | .696932D+00 .696932D+00
0.0 -.335626D+00 -.335626D+00 | .671252D+00 .671252D+00
0.2 -.348466D+00 -.348466D+00 | .696932D+00 .696932D+00
04 -.388353D+00 -.388353D+00 | .776750D+00 .776750D+00
0.6 -.460067D+00 -.460067D+00 | .920176D+00 .920176D+00
0.8 -.574980D+00 -.574980D+00 | .114996D+01 .114996D+01
Table B.2: Comparison of & : Unsteady Flow
5 Present A;ethd Frequency Ii;x{)ansion
¥ = x—l a or 6_.: u or a—;pl

-0.8 -.909563D+00 -.909563D+00

-0.6 -.836628D+00 -.836628D+00

-0.4 -.796929D+00 -.796929D+00

-0.2 -.776264D+00 -.776264D+00

0.0 -.769800D+00 -.769800D+00

0.2 -.776264D+00 -.776264D+00

04 -.796929D+00 -.796929D+00

0.6 -.836628D+00 -.836628D+00

0.8 -.909563D+00 -.909563D+00
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Table B.3: Comparison of C, : Unsteady Flow

Appendix B

X, Present Method Present Method Frequency Expansion
7= 5 Real C, Imaginary C, Imaginary C,,
-0.8 -.115130D-03 .672151D-02 .756656D-02
-0.6 -.100685D-03 .641814D-02 .695983D-02
-0.4 -.915219D-04 .625307D-02 .662957D-02
-0.2 -.863804D-04 .616727D-02 .645767D-02
0.0 -.847247D-04 .614060D-02 .640389D-02
0.2 -.863804D-04 .616727D-02 .645767D-02
0.4 -.915219D-04 .625307D-02 .662957D-02
0.6 -.100685D-03 .641814D-02 .695983D-02
0.8 -.115130D-03 .672151D-02 .756656D-02
Table B.4: For 7 = 1: Coefficient A, ,, and its Derivatives

mh np A, np aAanjth; * 62?3:%@

0 0 (x,y/ E! 0 0

1 0 0 0 0

2 0 0 0 0

0 1 0 0 0

1 1 —2x,y/ P 0 0

2 1 0 0 0

0 2 0 0 0

1 2 0 0 0

2 2 1/ 0 0
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Table B.5: For r = 2: Coefficient A, ,, and its Derivatives
mh np Ak, np i‘%m?g Qiﬂ__'ztne
1 Ox]
0 0 (xy/ 1)3 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
0 1 0 0 0
1 1 “3(x, )2/ 0 0
2 1 0 0 0
3 1 0 0 0
0 2 0 0 0
1 2 0 0 0
2 2 I y/ P 0 0
3 2 0 0 0
0 3 0 0 0
1 3 0 0 0
2 3 0 0 0
3 3 -1/P 0 0
Table B.6: For s = 1: Coefficient B, ,,, and its Derivatives
ki mp Bi,mp aBa%e 62' Bk;m
1 ox)
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
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Table B.7: For s = 2: Coefficient B,; ,,, and its Derivatives

2
; o Bk. aB,“; mp 0 Bki. mp
i, mp axl ax2
1
2 22 2 2
. o (- Pc+exty” + 2%, - 2lx,yg (-x,)/cl 0
/2cl
1 5 (xy -0/l 0 0
2 0 0 0 0
0 1 0 ° 0
1 . (- cy)/cl 1/cl 0
5 " —1/¢l 0 0
0 2 0 0 °
1 2 0 0 °
5 > 1721 0 2

B.4 Derivatives of I}, I, I, and I

The derivatives listed below are supplemental to the derivation for the reduced velocity pre-

sented in section 3.4 for inside the Mach cone.

. h :
oh _ {x,(I—y)}™ ! J’ 4 {L_[!(mhk—mj)[smAl (B.1a)

Ox; _% - Y)milk—nu amj + 1
. sin.A2 . Ix,(I-y) cosz?l . coséz _b, ¢g+le1
b”'] +1 (l - Y) amf b""l R
1
ol, mhk-mj-1 (B Y™ [ sinA;
5 = ==y} J; Ty Hmhk = mj)| —= (B.1b)
sinA Ix, (I + y)[ cosA; cosA
+ — 4}-&- 1 y)( 24 ,4) -b, g+b2Q2
p™ ! (d+) \ ™ " R
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ol mhk—mj—1 ¥ Y™ [cosA,
B
COSAz le(l_ y) SinAl SiﬂAz dY
+bmj+1)— -7 amj + b”'j - b, i + b0,

) 1 h
31‘: - (x (U gy} IB{__”_".ﬁ__[z(mhk-mj)(°°5A3 (B.1d)

gx_ y (I_Y)mhk-InJ a’"j*’l

A Ix,(l+ sinA, sinA
e 4J+ *1 ( "/)( 1,2 _2) -b, ‘.’_Z_,.b4Q2
bm_[+l (+y a™ p™ R

where A, A,, A; and A, are given by equation (3.82), and Q, and @, are given by equa-
tion (3.85). Also,

2 I\mhpr B \mhk-mj| ~ . (Bkx (I-y) mjm
g -1:'71'(‘3) (314-1) {l'c('"hk"'"’)s‘“( Bl+1 7) (B.22)

kal(l-y)c (kal([_.’/)+mj1t)
Bi+1 Bl+1 2

by = A(B}.)'"“P(Eg_l)'"“*“f{é(mhk_mj)sin(w+m) ®.21)

P Bl+1

Bklx\(I+y) (Bkx;(I+y) mjn
Bl+1 °°S( Bl+1 2)

-
w
]

Bl+1 Bl+1 2

~ Bkx (I-y) | (kal(l- %) . mjft)
Bl+1 Bl+1 2

l:i_j(_i)’""”( B )th—'"j{i(mhk—mj)cos(ka](l—"/)+mjn) (B2¢)
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B 2 [ 1\mhp B mhk—mj| s . kal(l+y) mjm
by = ﬁ(ﬁ) (BH- l) {Z(mhk—mj)cos( TS ) (B.2d)

_kal(l+y) ) (kal(l,-}-/) mj )
Bl+1

B.S Derivatives of I;; and I,

The derivatives listed below are supplemental to the derivation for the reduced velocity pre-

sented in section 3.4 for outside the Mach cone.

A 1 A
ol _ mhk-mj—1 (B y" [ sinA |
=— = {x;({-nt I-_{th(mhk mj) oY (B.3a)
sind,) Ix;(I-y)fcosA; cosA, dy
+ . = + . + . _bl bs
bm1+ 1 (- Y) am; bm; R
+(by +bs)m

1
I . = hp
%{‘-I% = —{x,(I- ,)}'"""'"'J‘IJ‘B {—_—Ym_—__[l(mhk—mj)(cos.Al (B.3b)

mj+ 1
—— a!

[]; (1_ Y)mhk—MJ

. cosAz)_lxl(l - :/)(sinAl . sinAzJ by b, dY
pmit! (- ™ ™ 3” R

+ (b3 + bg)m

where b, and b, are given by equations (B.2a) and (B.2c) respectively, and
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;2"71'(7{3')“?(31_ )Mk m{-(mhk "")S"’( kxla:/)+mén) (B4a)

Bkx\(I-y) (Bkx\(I-y) mjn
Bli-1 °°S( BI-1 2)

,,., 2 ()™ ,..,{ Lk - mj)cos( =2, mim) (g4

BI—1 2
Bkx\(I-y) . (Bkx;(I~y) mjn
T T BI-1 s‘“( BI-1 ' 2)
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Appendix C

Locations and Sizes of the Bonded Piezoelectric Strips
The following is a listing of the piezoelectric strip data used to generate the [P,] and [P ]

matrices derived in Chapter 4. It describes the polarization direction, location and dimen-

sions of the ith piezoelectric strip.

Table C.1: Polarization, Location, and Size of the Bonded Piezoelectric Strips

Location of Length of strip
. . bottom left corner
Strip | Polarization of strip x-direction | y-direction
no. along
X Yi a; b;
1 x-direction 0.1 0.1 0.3 0.1
2 y-direction 0.1 0.5 0.1 0.3
3 x-direction 0.5 04 0.3 0.1
4 y-direction 0.7 0.1 0.1 0.2
5 x-direction I.10 0.1 0.3 0.1
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