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Abstract

Piezoelectrle materials offer an alternative method for active control ofaeroelastic oscilla­

tions, that is potentially cheaper, lighter, and more effective than conventional control

methods. In this thesis, the aeroelastic oscillations of a delta wing under the eombined

effects of unsteady, supersonic aerodYDaIDic loading and bonded piezoelectric strips are

studied.

The delta wing is modelied as a cantilevered triangular plate undergoing small transverse

oscillations. Using the structural model developed here, the natural frequeneies ofthe wing

are obtained. A hybrid analytical-numerical method is developed for the unsteady super­

sonie aerodynamics of the wing, in order ta determine the unsteady pressure distribution

and the generalized aerodYDaIDic forces on the wing. It is shawn that the method adopted

here to obtain the pressure distribution is more accurate than the analytical method based

on frequency expansion, and computationally more efficient than the numerical methods

using the Mach Box approach. Finally, in the presence ofbonded piezoelectric strips, the

transient and dynamic responses of the wing are studied without and with aerodynamic

loading, respectively.

It is found that with particular eombinations of voltages and the number of piezoelectrie

strips, the amplitude of the aeroelastic oscillations cao he reduced. These required combi­

nations change as the periodic frequency of wing oscillation is varied. Additionally, the

piezoeleetric aetuators aligned with the span are more effective than the chord-aligned pie­

zoelectric actuators, which produce little or no reduction in the oscillations. It is further

found that even a small number ofstrips can effectively reduce the magnitude of the oscil­

lations.
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Sommaire

Les matériaux piézo-électriques offrent une méthode alternative pour la commande active

des oscillations aéroélastiques. Cette méthode est potentiellement moins coûteuse, plus

simple, et plus efficace que les méthodes de commande conventionnelles. Dans cette thèse,

les oscillations aéroélastiques d'une aile delta sous les effets combinés des charges

aérodynamiques non-stationnaires supersoniques et des bandes piézo-électriques sont

étudiées.

L'aile delta est modélisée comme une plaque triangulaire en porte-à-faux soumise à des

petites oscillations transversales. En utilisant le modèle structural développé ici, les

fréquences naturelles de l'aile sont obtenues. Une méthode hybride anaIytique-numérique

est développée pour l'aérodynamique supersonique non-stationnaire de l'aile, dans le but de

calculer la distribution des pressions non-stationnaires, ainsi que les forces aérodynamiques

généralisées sur l'aile. Il est montré que la méthode adoptée ici pour obtenir la distribution

des pressions est plus exacte que la méthode analytique basée sur l'expansion des

fréquences, et plus efficace du point du vue des calculs numériques que les méthodes Mach

Box. Finalemen~ en présence des bandes piézo-électriques, les réponses dynamiques et

transitoires de l'aile sont étudiées, sans et respectivement, avec les charges

aérodynamiques.

On a trouvé qu'avec certaines combinaisons des voltages et des bandes piézo-électriques,

l'amplitude des oscillations aéroélastiques peut être réduite. Ces combinaisons changent

quand la fréquence périodique de l'oscillation de l'aile varie. De plus, les bandes piézo­

électriques alignées dans la direction de l'envergure sont plus efficaces que celles alignées

avec la corde, qui produisent très peu ou pas de réduction dans les oscillations. On trouve

que même un très petit nombre des bandes piézo-électriques peut effectivement réduire

l'amplitude des oscillations.
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Nomenclature
a = speed of sound

ai = width of ith piezoelectric strip polarized in y-direction

hi = width of ith piezoelectric strip polarized in x-direction

c = chord ofdelta wing

[C] = structural damping matrix

Cp = coefficient of pressure

ê p = reduced coefficient of pressure

d31 = piezoelectric constant relating voltage to straÎn for x-aligned PVDF strips

d3:! = piezoelectric constant relating voltage to strain for y-aligned PVDF strips

D = flexular rigidity

E = Young~s Modulus

f= shape function ofPVDF strip polarized in x-direction

g = shape function of PVDF strip polarized in y-direction

h = small transverse motion of wing

hi = thickness of the ith piezoelectric strip

hp = thickness of the wing

h = small reduced transverse motion of wing

[1] = unit matrix

k = non-dimensional frequency

Ki = gain

[A.l = stitlness matrix

1= length of semi-span of delta wing

L = Lagrangian

m = mass per unit area

.M= number of clamped-free shape functions

M = Moment

Moc = free-stream Mach number

[A1] = mass matrix

N = number of free-free shape functions
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Nomenclature

p = pressure

P=power

{ q} = generalized displacements

{q} = complex generalized displacements

{ q} = generalized velocities

{li} = generalized accelerations

{q~s} = cosine component of the generalized displacements

{q;s} = sine component of the generalized displacements

{Qaero} = generalized forces due to aerodynamic loading

{Qpiezo} = generalized forces due to the presence ofpiezoelectric strips

RI = total number ofPVDF strips

Rx = number ofPVDF strips aligned in the x-direction

Ry = number of PVDF strips aligned in the y-direction

t = time

T = kinetic energy

u = pertubation velocity

û = reduced pertubation velocity

U = stream velocity

V = potential energy

Vix = voltage applied across the thickness of the ith strip oriented in the x-direction

Viy = voltage applied across the thickness of the ith strip oriented in the y.mrection
... C •
Vix = cosme component of V;x
... s .
Vix = sme component of Vir
... C •
Viy = COSIDe component of Viy
... s
Viy = sine component of Viy

w = transverse displacement of the wing

Ki = vertical pertubation velocity or upwash

w = reduced vertical pertubation velocity

W = reduced vertical velocity

fi = x2 / Xl

(x, y) =coordinate-system used for structural modelling and dynamic analysis

xii
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(Xl' X2) = coordinate-system used for aerodynamic analysis

(x Is' x2s) =source point

(xi' Yi) = location of the bonom left corner of the ith PVDF strip

(X, Y) = non-dimensional coordinate-system used for aerodynamic analysis

a, J3 = plate material constants for damping

El = longitudinal strain in the plate

Es = longitudinal strain in the piezoelectrlc strip

11 = non-dimensional y-eoordinate

v = Poisson's ratio

(0n = natural frequency

(0 = frequency of periodic motion

cp = pertubation velocity potential

cP = reduced pertubation velocity potential

<J> i = ith clamped-free shape function

p = plate materia! density

\Î1 = small rolting rotation

qJ i = i th free-free shape function

ç = non-dimensional x-coordinate

e = angular deflection

ê = small pitching rotation

Subscripts

i = ith piezoelectric strip

p = plate

r = identifies shape function in the clamped-free direction

s = identifies shape function in the free-free direction

00 = free airstream

xili
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Chapter 1

Introduction

Aeroelastic wing oscillations represent a major concem ta the aircraft engineer. Vibrations

from instabilities, such as flutter ofwing~ affect the maximum tlight speed and the integ­

rity of the aircraft. Flutter suppression is especially critical for supersonic wings and is a

subject that has been studied extensively. At high speeds, flutter of the wings is greatly

increased thereby increasing the risk offailure ofthe structure. Hence, control ofthis insta­

bility is very important in order to increase the flight envelope and improve the safety of

the structure. Also, controlling aeroelastic oscillations helps provide smoother rides, and

lower root loads.

Aeroelastic wing vibration can he controUed by both passive and active means. Passive

control methods include: staric and dynamic mass balancing on manuaI aircraft which

involve use ofhigh weight, low volume material placed in or on the control surfaces such

as ailerons and elevators; use ofmore than !Wo power control units on the control surfaces

to provide stiffness; use offlutter dampers which involves a piston moving in hydraulic

fluid ta provide stiffness ta the control surface; and structural tai/oring of the wings, sucb

as adjusting the geometric sweep. The problems associated with passive methods include

added weight, hydraulic lags and cost. Conventional active control methods use the control

surfaces of the wing as actuators. For example, advanced tailless fighter aircraft use ailer­

ons as actuators. There are problems, however, associated with these active control metb­

ods. As the control surfaces are hydraulically operated, there is a hydraulic lag associated

with conventional active control.
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Present clay researchers are looking at smart materials as an alternative to the conventional

control surface actuation. These smart materials can control the oscillations due to flutter

in supersonic wings by strain actuation. Smart materials like piezoelectric and piezocer­

amic materials are examples of strain actuators. These smart materials can easily he

mechanically integrated on the surface of the wing in the form of thin layers or individual

strips. They are lightweight, cheap, and easy to manufacture. Structures that incorporate

these smart materials are called smart structures or adaptive structures.

As the title of the thesis suggests, the work presented herein is multi-disciplinary involving

structural analysis ofa delta wing, aerodynamic modelling, and lastly a combination of the

two models to study the response of the delta wing under the combined aerodynamic and

piezoelectric forces.

A survey of the available literature shows that work has been done around the world by

researchers in one or more of the disciplines involved, namely, oscillations of wings,

unsteady supersonic aerodynamics and active control of structures using piezoelectric

materials. The available literature also shows that sorne work has been done in the field of

flutter control ofwings (for example swept-back wings) by means ofsmart materials using

simple aerodynamic models. The author is unaware, however, ofany literature on the sub­

ject of control of aeroelastic oscillations of a delta wing using smart materials.

In this thesis, the dynamic response of a delta wing under unsteady supersonic loading and

in the presence ofpiezoelectric materials known as PVDF (polyvinylidene fluoride) is stud·

ied. Delta wings are wings of symmetrical triangular form used ordinarily on supersonic

aircraft. For example, variations of the delta wing are found on the Concorde; military air­

craft such as the Dassault-Breguet Mirage series, the Eurofighter; North Arnerican XB-70,

MIG-21, SAAB 35 Draken; and also the Space Shunle.

Due ta the aeroelastic oscillations of the wing, there exists a danger of structural failure in

flight at supersonic speeds. It is therefore imperative ta find a way to actively control the

aeroelastic oscillations in this type ofa wing. Hence, the choice ofthe subject ofresearch.

2
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1.1 Literature Review

Following is the literature review on which the present work is based. The literature review

is divided into four parts: the tirst part briefly discusses the available relevant literature on

structural analysis of cantilevered triangular plates alone; the second highlights two meth­

ods available for solving for oscillatory flows on delta wings; the third section is more

detailed as it introduces work done in the field of active control of structures using smart

materials: and lastly sorne of the literature on active control of aeroelastic oscillations for

various wing planfonns and panels. is discussed.

Gustafson et al. (1953) carried out an experimental study of natural vibrations ofcantilev­

ered triangular plates of unifonn thickness. They obtained experimental results for the

lowest six frequencies of the delta wing plantonn of tixed span with increasing aspect

ratios. They found that increasing the aspect ratio increased the frequency of each of the

six modes ofvibration. Andersen (1954) compared his numerical results to those obtained

by Gustafson et al. (1953). Andersen (1954) used the Ritz Approximate method to approx­

imate the deflection of symmetric (isosceles triangles) and unsymmetric (right-angle trian­

gles) cantilevered plates. He determined the natma! frequencies for the lowest two modes

of the cantilevered unsymmetric plate.

Pines et al. (1955) developed a numerical approach based on the Mach Box method to

ohtain generalized forces on an oscillating flexible wing in supersonic flow with both

supersonic and subsonic edges. Their procedure is limited to Mach numbers of 1.414 and

higher. Improving on the work done by Pines et al. (1955), Chipman (1976) analytically

refmed the l\tfach Box approach, greatly increasing the accuracy of the supersonic oscilla­

tory pressure-distribution. An analytical approach based on the Frequency Expansion

method has been developed by Carafoli et al. (1969), Mateescu (1969,1970), and Carafoli

and Mateescu (1970). This method detennines the pressure distribution along the delta

\\'Îng with subsonic or supersonic leading edges executing oscillations in a uniform flow.

However this method based on the Frequency Expansion approach cao be accurately

applied only for the case of very low oscillation frequencies. The hybrid analytical-

3
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numerical method developed in this work for the unsteady aerodynamics of oscillating

delta wing eliminates this restriction.

Extensive work - analytical and experimental - has already been done in the field of

active control using smart materials. Work on structural vibration control using piezoelec­

tric films or piezoceramic strips bonded to beams, plates and shells is found in the literature.

Only sorne of this available literature on structural vibration control is discussed here.

Early studies carried out by Bailey and Hubbard (1985), Burke and Hubbard (1987),

Crawley and de Luis (1987), and Miller and Hubbard (1988) demonstrated the feasibility

of providing modal damping using smart materials ta heam-like structures. They also dis­

cussed the effects of various PVDF strip shapes on the modal control generated.

Studies have been carried out on plate-like structures as weil. The aetive damping control

of structural vibration of a one-dimensional plate was analysed and tested by Chiang and

Lee (1989). They showed experimentally that the critical frrst mode can he damped out

successfully using smart materials. Lee et al. (1989) incorporated the piezoelectrie effects

into laminated plates and showed that critical damping of a one-dimensional cantilevered

plate can he achieved theoretically using a sensor/actuator combination. Venneri and Wada

(1 993) studied the effect on the robustness of the structures when adaptive structures are

introduced into the structural design. Shen (1994) applied intelligent constrained layers to

control bending vibration of composite and isotropic plates. He showed that the vibration

amplitude of controllable modes cao he redueed signifieantly for simply-supported iso­

tropie plates. Van Poppel and Misra (1992) successfully developed a state-space feedbaek

control law using piezoelectric film actuators for large structures modelled as cantilevered

rectangular plates. They also used the pole-placement technique to calculate the required

gains.

Active control using smart materials has been extended to flutter suppression for panels and

certain wing planfonns as weil. Paige et al. (1993) examined an analytical model of a

square anisotropie panel accommodating the effeets ofstrain aetuators, supersonic aerody-

4
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namies, and gust. They found that a small number ofactuators can provide flutter suppres­

sion and that increasing the number beyond a certain level produees little improvement.

They also demonstrated that aetively controlled panels cao exhibit superior flutter perform­

ance as compared to passively controlled panels. Reich et al. (1 994) described the fune­

tional requirements and design of an aeroelastic model for wind tunnel investigations of

vibration and flutter suppression using piezoelectric actuation. Lin et al. (1995) eonducted

experiments on both open-loop and closed-Ioop control of an active flexible winge The

wing planform ehosen by them resembled that ofa military transport aireraft. Suleman and

Venkayya (1996) studied a fmite element formulation offlutter control oflaminated com­

posite panels with piezoelectric sensors and actuators. Nam et al. (1996) showed that pie­

zoelectric aetuators can passively control the flutter of a composite swept wing model by

stiffening the model.

1.2 Scope of the Investigation

While considerable research work exists regarding active control of other wing planforms

using piezoelectric materials, to the best of the author's knowledge, there is no published

literature dealing with suppression ofdelta wing oscillations using piezoelectric materials.

An aetive control model for a delta wing is needed to extend this promising new approach

for aeroelastic flutter suppression to a wing planform that is eommonly-used for supersonie

aircraft. The development of an active control model necessitates a convenient, efficient,

and aceurate aerodYDamic mode1 that cao be easily combined with the structural­

piezoelectric model of the delta winge The aerodynamic and structural-piezoelectrie

models are developed in this investigation.

Specifieally, the objective of this thesis is to study the aeroelastic oscillations of a delta

wing in the presence of bonded piezoelectric strips. The dynamic response of the delta

wing in the presence of these strips is found using a combination of analytical and numer­

ical techniques. To find the dynamic response of the delta wing, the research was carried

out in three major steps:

5
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Chapler 1: Introduction

• modelling of the uncontrolled, unloaded structure:

• modelling of the uncontrolled but aerodynamically loaded structure; and

• modeIIing of the structure in the presence of aerodynarnic and piezoelectric loarling.

The present thesis consists of a full exposition of the three modelling steps, plus a presen­

tation of the results. The following paragraphs summarize the five remaining chapters:

Chapter 2 starts with the system description of the delta wing and lists assumptions made

in the structural analysis. In this chapter, the wing is modelled as an unloaded, undamped,

and uncontrolled cantilevered triangular plate and the fonnulations expressing the dynam­

ics of this plate are written using an energy approach. These fonnulations appear in the

fonu ofmass and stiffness matrices. The natural frequencies ofthe free system are obtained

anJ th~ stat~-spaceequation for the system is inlroJu~eJ.

In Chapter 3 a hybrid analytical-numerical aerodynamic model to determine the unsteady

pressure distribution over the delta wing is developed. It is shown that the method adopted

here to obtain the pressure distribution is more accurate than the Frequency Expansion

method. As weIl, a solution under steady flow is obtained and validated against published

results to gain confidence in the methodology adopted. The coupling between the structural

model ofthe wing and the unsteady supersonic aerodynamic loading is carried out to obtain

generalized forces due to this aerodynamic loading.

Chapter 4 introduces the piezoelectric control action into the structural model. Analytical

expressions for interaction between the delta wing modelled as a triangular cantilevered

plate and the piezoelectric matenal are obtained. A finite number of these strain actuators

are bonded to the wing as trapezoidal strips. The generalized forces due to the interaction

of the piezoelectric strips with the delta wing are determined in this chapter. At the end of

the chapter, a concise state-space expression is obtained for the controlled dynamics of the

unloaded delta wing using the PVDF actuators.

Chapter 5 consists of two main parts. The first part is an analysis of the dynamic system.

6
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Chapter 1: Inlroduction

In this section, the methodology to obtain the transient response of the delta wing in the

presence of the PVDF actuators alone is discussed. The aerodynamic loading is introduced

on the structural-piezoelectric model to study the dynamic response of the wing under their

combined forces. The second section presents and discusses the results.

In the fmal chapter, a sllmmary ofresults and conclusions is given. AIso, a briefdiscussion

on the limitations of this study and recommendations for future work are presented.

7
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Chapter 2

.Structural Modelling of the
UncontroUed Wing

This chapter describes the numerical structural modelling of the delta wing without aero­

dynamic loading or piezoelectric damping. The chapter starts with a description of the

physical model of the wing. The undamped~ uncontrolled structural model of the delta

wing is developed using the energy approach~ starting from tirst principles~ in the second

section of this chapter. ln the third section~ the eigenvalue problem of this free system is

solved. The final section contains an introduction to the external forces acting on the wing

that are considered in this thesis.

2.1 System Description

The delta wing is assumed to be a plate because its length and width are much greater than

its thickness. Hence, the problem is a two-dimensional one and the delta wing is modelied

as a triangular plate in this thesis. Furthennore, it is assumed that the fuselage is rigid and

the wing is rigidly clamped to the fuselage. The width of the fuselage is assumed to be

small compared to the length of the plate and therefore the effects of the fuselage on the

flow can be neglected. The wing is symmetrical on either side of the fuselage.

The (x,y) coordinate system is defined as shown in Figure 1. The undefonned plate has the

x-axis along the trailing edge of the wing and the y-axis is along the width ofthe wing. The

semi-span of the wing, l~ is along the x-axis and the chord~ c, is measured along the y-axis.

The z-axis is taken to be positive downward.

8
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y

y=c(l-xll)
/,/./

'--!'

1......-----------i+t---------~·I
1 1

Figure 2.1: Delta Wing Modelled as a Triangular Plate

2.2 The Structural Model

x

•

The structwal model of the delta wing is developed in this section. Due to symmetry, only

one side of the delta wing is modelled for structural analysis. Hence a cantilevered trian­

gular plate is modelled in this chapter and the fol1owing assumptions are made:

1. The plate is thin and of uniform thickness, h.

2. For a thin plate, the fol1owing well-known approximations called the Kirchoff's

approximations (Meirovitch, 1967) are made:

• Normals to the undeformed middle plane remain straight, normal, and inextensible

during the deformation, so that transverse normal and shearing strains may he

neglected in deriving the plate kinematic relations.

• Transverse normal stresses are small compared with the other normal stress

9
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components. so that they may be neglected in the stress-strain relations.

• Only small transverse displacements w (in the z-direction) existe This deflection,

W, of the plate is small compared with the plate thickness h.

3. The plate is composed of a homogenous, isotropic material.

The case of an unloaded, uncontrolled, undamped cantilevered triangular plate is consid­

ered first. This case will he referred to as a ~free-system' in this thesis. To derive the mass

and stiffness matrices of the system using the energy approach. we start with the general

expressions for the kinetic and potential energies obtained using Assumption 2 (aIso caIled

the thin-plate theory) which are respectively given by Meirovitch (1967) as:

1f (aw) 2

T = 1 m èr dA
A

(2.1)

(2.2)

where w is the transverse displacement ofan arbitrary point of the cantilevered plate; m is

the mass per unit area; and v is Poisson's ratio. The flexular rigidity of the plate, D, is

given by

(2.3)

•

where Ep is the Young's modulus of the plate material and hp is the thickness of the plate.

The two energy expressions can be used to obtain a boundary value problem that describes

the free vibration of the plate.

10
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2.2.1 Discretization of the Wing

A closed-fonn solution ofthe Cree (or forced) vibration problem may not exist owing to the

non-unifonn mass and stiffness distribution ofa triangular plate. Therefore an approximate

solution of the eigenvalue problem of the plate is obtained here. The approximate method

used is a scheme for replacing the continuous system by an equivalent discrete one. We

will use the Assumed Modes Method to generate the mass and stiffness matrices of the dis­

cretized system.

As stated by Meirovitch (1967), the Assumed Modes Method assumes a solution of

boundary-value problems in the fonn of the following equation:

M N

w(x, y, t) = L L <lJr(x)~(y)qrs(t)

r=ls=l

(2.4)

where w is the transverse displacement expanded in tenns of a set of shape functions; q rs

is the generalized displacement; <lJr and \f's are shape functions in clamped-free and free­

free directions, respectively; and M and N are the number of clamped-free and free-Cree

shape functions, respectively. Since this is an energy-based fonnulation, the shape fonc­

tions need to satisfy only the geometric boundary conditions and not necessarily all the

dynamic boundary conditions. In other words, the chosen shape fonctions are admissible

functions. The AssumedModes Methoduses equation (2.4) in conjunction with Lagrange's

equations ofmotion to obtain a fonnulation leading to an approximate solution ofthe asso­

ciated eigenvalue problem. Equation (2.4) can he substituted in the kinetic and potential

energy equations to generate approximate mass and stiffness matrices. As a fust step, the

mass and stiffness matrices for the free-system will he determined.

In non-dimensional fonn, equation (2.4) can he written as,

•
M N

w(~, tl, t) = L L <l>r(~)'I's(tl)qrs(t)
r= 1 s= 1

Il

(2.5)
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where the non-dimensional coordinates. ; and Tl. in x- and y-directions respectively are

defined as

ç x= -
1

Tl = Y

c( 1 -7)
(2.6)

where 1and c have been detined previously.

The clamped-free shape functions for the plate are chosen in the fonn

•

cil (t) = é. r + 1
r - -

The free-free shape functions for the plate are of the fonn

., s- 1
lJ's(ll) = [(l-ç)-(-ll + 1/2)]

When s = 1~ the shape function is the translational rigid body mode and is equal to~

The rotational free-free rigid body mode corresponds to s = 2 and reads.

Our goal is to write the kinetic and potential energies in matrix fonn respectively as

and,

12
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(2.12)

where {il} are the generalized velocities, [Ml is the mass matrix, and [K] is the stifIness

matrix.

We DOW substitute equations (2.5)-(2.8) in the kinetic and potential energy expressions

(equations (2.1) and (2.2». The kinetic energy expression becomes,

M N K plI

T = ~phpcl ~ ~ ~ p~ <lrs<l/cp ff(l- ~)cI>r(~)'I's(ll)cI>k(~)'I'p(ll)dÇdTJ (2.13)

00

where p is the plate materia! density.

Only a finite number of modes are modelled and, thus, the summations in equation (2.13)

are carried out for only a finite number of tenns. The [M] and [K] matrices will now he

square matrices of size (M x N) by (M x N).

The generalized velocity vector is written as

T

{<lrs} ={ <lu <l12 .•• <lIN ... <l21 <l22 ... <l2N ... <lMI <lM2 ... I[MN } (2.14)

Let i = 1,2,....., MN, where MN = Mx N; then the generalized velocity vector can aIso he

written as

•

T

{qj} = { 1[1 1[2 ...... <lMN}

Equations (2.14) and (2.15) are related via the following change of indices:

13
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This relationship is also used by van Poppel and Misra (1992). Similarly, the change of

indices for the generalized velocity q/cp in equation (2.13) is given by

•
where

i = (r-l)xN+s

i = (k-l)xN+p

(2.16)

(2.17)

Therefore, any 4rs' pair in equation (2.13) corresponds to 4 i' and any 4lep' pair corresponds

to 4j' . This transfonns a 4-dimensional system into a 2·dimensional system, 50 that equation

(2.13) is rewritten as,

Ht/ !rN 1 1

T = ~Phpcli~ft; q/ljJJ(l -1;)CJ),(I;)'l's(T1)CJ)k(I;)'l'p(T1)dÇdT]
00

or,

where mij are the elements of the mass matrix and are defined as

1 1

mij = phpcl J J(l - ;)<I»r(;)'fIs(ll)<J)/c(;)'fIp(l1)d;drt
00

(2.18)

(2.19)

(2.20)

•
Thus, the mass matrix ofa cantilevered triangular plate is determined by expanding the dis­

placement function in terms of the generalized displacements, {qrs} , and then by setting

equations (2.1) and (2.11) equal.

14
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The stiffness matrix is detennined by a similar procedure: the displacement functioD, w, is

expanded in terms of generalized displacements, substituted into the potential energy

expressions and then (2.2) and (2.12) are equated. We get an expression for the potential

energy, V, which can he written as,

(2.21)

or,

(2.22)

•

where kU are the elements of the stiffness matrix which are given in Appendix A.

Hence, both the mass matrix, [M], and the stiffness matrix, [K], for the cantilevered trian·

gular plate have been obtained.

IS
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2.3 Natural Frequencies of the Wing

In this section~ the eigenvalue problem of the free vibrating plate is solved. In other words,

the plate is assumed to have no external forces present. Solving the eigenvalue problem is

synonymous with obtaining its natural frequencies.

We start with Lagrange~s equations for a conservative system to evaluate the plate frequen­

cies. These equations are

i= 1,2, ...,MN (2.23)

where the Lagrangian, L, is defined by

L = T-V (2.24)

and q i are the generalized displacements. Inserting equations (2.19) and (2.22) into this

equation and simplifying we get the equation ofmotion of a free vibrating system which is

of the form

[M]{q} + [K]{q} = 0

This yields an eigenvalue problem which cao be written as

Â [Ml{ q} = [K]{ q }

where

2
À=ûln

(2.25)

(2.26)

(2.27)

•
and where ûln is the natural frequency of the delta winge

A simple program cao he written in MATLAB to detennine the naturaI frequencies of the

16
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free-system as described by equation (2.26) using the mass and stiffness matrices. The

eigenvalues for various modes of vibration of the free-system are obtained and validated

against published results in Chapter 5.

For later reference, equation (2.25) cao he written in its state-space fonn, namely,

{x} = [A]{x} (2.28)

where the state vector is constructed from the generalized displacements and their first

derivatives as

{x} = {{q}}
{q}

Also, the matrix [A] is of size 2MN x 2MN and is written as

(2.29)

[A] = [ [0]
_[M]-l [K]

where [1] is the identity matrix ofsize MNx MN.

[I] ]
[0]

(2.30)

•

The structural model for the delta wing has now been fonnulated using the energy

approach. The next section introduces the extemal forces that are considered to act on the

wing.

2.4 Generalized Forces

When the system is subjected to extemal forces that do not have an associated potential

energy it is called a non-conservative system. The Lagrange's equations for this non­

conservative system are

17
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• i= 1,2, ...,MN (2.31)

where L is again the Lagrangian and is defined by equation (2.24), Qi are called general­

ized forces associated with the generalized displacements qi ' and cSE is the Rayleigh 's dis­

sipationfunetion. This function takes into account the energy dissipation in the structure

with the assumption that it cao he modelied through viscous damping.

The general expression for the dynamics of a plate can now he obtained from equation

(2.3 1) in the following matrix fonn:

[M] {qU) } + [Cl{ q(t) } + [K] {q(t)} = {Q} (2.32)

where [M], [Cl and [K] are the mass, structural damping and stiffness matrices, respec­

tively, and {Q} is the generalized force action vector. It should he noted that this equation

is similar to equation (2.25). AlI the matrices of the above equatio~ which are generated

analytically and eventually evaluated numerically, must represent as c10sely as possible the

actual dynamics of the cantilevered triangular plate and hence the delta wing. The mass

and stiffness matrices were generated in section 2.2.

The structural damping is written as

[Cl = ulM] + J3[K] (2.33)

where a and J3 are plate material constants. This model corresponds to Rayleigh damping.

Matrix [A] from equation (2.30) now becomes

•
[A] = [ [0 ] [1] J

_[M]-l [K] -[Mfl [c

18
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The external forcing action vector consists of two components: the unsteady, supersonic

aerodynamic loading and the controlling action of the piezoelectric strips. This combina­

tion is represented mathematically as

{Q} = {Qaero} + {Qpiezo} (2.35)

where {Qaero} and {Qpiezo} are the generalized forces due to the supersonic, unsteady

aerodynamic loading and the controlling action of the PVDF strips, respectively.

Substituting equation (2.35) in equation (2.32), the final equation for the dynamic system

becomes

[M]{q} + [C]{q} + [K]{q} = {Qaero} + {Qp;ezo} (2.36)

•

Thus, the mathematical model for the delta wing in supersonic tlow under the influence of

piezoelectric material is given by equation (2.36). The expressions for {Qaero} and

{Qpiezo} are derived in Chapters 3 and 4 respectively.

The unsteady, supersonic aerodynamic loading will he introduced on the delta wing and

{Qaero} will he obtained in the next chapter.
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Aerodynamic Modelling

In the tirst section ofthis chapter, the Basic Linearized Theory for supersonic potential flow

is presented as the basis for determining the pressure distribution on the delta wing in

unsteady supersonic tlow. In the second section, steady flow over the wing is introduced

to gain confidence in the developed methodology. In the third sectio~ the pressure distri­

butions calculated using the method developed in this research and using an existing

method are compared. In the final section, the generalized forces due to this unsteady

supersonic aerodynamic loading are derived.

3.1 Basis for Aerodynamic ModeliiDg

As discussed in Chapter 2, the delta wing is assumed to he a triangular plate and the wing

is symmetric with respect to the centreline. To simplify the aerodynamic analysis, the

(XI, Xv coordinate system shown in Figure 3.1 is used. The following simple conversion

from the (x, y) coordinate system described in Chapter 2 to the (XI'X~ coordinate system is

made:

where c is the central chord of the winge The following conical coordinates '1 and z will

also be used for convenience:

•

(3.1)

(3.2)
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•

Figure 3.1: System Description for Aerodynamic Modelling

where the coordinate x3 is normal to the plane Ox1x 2 .

As seen in Figure 3.1~ the semi-span of the wing, /, is along the V-axis and the chard, c~ is

along the x l-axis. Also~ the air flow velocity is denoted by Ua:J. The subscript ex> is used to

denote the undisturhed free aïrstream.

3.1.1 Basic Linearized Theory

The airstream in which the wing is situated is initially assumed to he uniform and charac­

terized by the airspeed Ua:J with small time-dependent pertubations generated by the wing

oscillations around its mean position. Effects of viscosity and heat conduction are

neglected. The air however is assumed to he compressible. Any shock waves formed by

the motion are assumed to he weak 50 that the flow May he considered as irrotational and

isentropic.
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With the assumptions stated above, the unsteady motion of the wing is defmed by the fol­

lowing general expression of the basic unsteady linearized equation for a 3·D case

M2 2 M22
«J ô <p «J a <p=--+2--a2 al U«J ax} ÔI
«J

(3.3)

where cp is the pertubation velocity POtential and is a function ofspace and time; t is time;

and M 00 is the free airstream Mach number which is defined as

UaJ
M=­

c.e a
aJ

The derivation ofequation (3.3) is given in Carafoli et al. (1969) and Doe (1985). Equation

(3.3) becomes

(3.4)

when the flow is steady and then cp is a function of space atone.

With the present approximations, the expression for the coefficient of pressure, Cp, is

given in Carafoli et al. (1969) as

(3.5)

•
where pis pressure and Poo is free airstream density. This expression is used in the present

study as weIl.
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3.1.2 Problem Formulation and Solutions

The delta wing with supersonic leading edges is assumed to execute hannonic oscillations

of low frequency defined by the equation of the unsteady wing surface

(3.6)

where 0> is the frequency ofperiodic motion and P(x" x2 ) is a function ofthe space coor­

dinates, which can be represented as a SUffi ofhomogenous polynomials Pn(x I , x 2 ) ofvar­

ious orders in Xl and X2.

As a resu14 the velocity potential CP(x.,x2,x3' 1) ofthis unsteady flow is also a periodic

function with the same frequency 0> , which has to satisfy the potential equation (3.3). By

using the reduced potential cP defmed by the potential transfonnation as given in Carafoli

et al. (1969), we can write

where c is the wing chord, k is given as

2
o>cMoo

k =----
U

., ,
00 B-

and where B is defmed as

B = JM~-l

(3.7)

(3.8)

(3.9)

•
The unsteady potential equation (3.3) is reduced to the following differential equation inde­

pendent of lime,
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(3.10)

where <Px r , q,x..t' and q,..t':r are second-order derivatives ofthe reduced potential, q" with
1"'1 2 2 3 3

respect ta Xl' x2 and x3, respectively, and where

I\. = (3.11 )

The coefficient of pressure for an oscillatory flow over the delta wing is DOW writteD in

terms of the reduced potential as

(3.12)

where

(3.13)

êp is referred to as the reduced coefficient ofpressure over the wing. When <p is differen­

tiated with respect ta xl, we get

(3.14)

and when q> is differentiated with respect ta time, we get

(3.15)

•
The boundary conditions on the oscillatory wing cao he expressed taking into account

equation (3.6), as

(3.16)

24



•
Chapter 3: Aerodynamic Modelling

where w represents the vertical pertubation velocity, or upwash. The bar over w is to dis­

tinguish this notation ofthe upwash from that ofthe wing displacement, w, as used in Coop­

ter 2. A reduced upwash (as given in Carafoli et al., 1969) is now introduced. This upwash

is defined on the plane wing, that is x3 = 0, as

(3.17)

where W(x I, x2) is the reduced vertical velocity on the wing, defined by

(3.18)

In Carafoli et al. (1969), it is assumed that k is small and e±iu. in equation (3.17) is approx­

imately written as

In other words, in the expansion of e±iut
, k2 and higher order terms are neglected. But in

the present work the higher order terms in the expansion of e±iu. are not neglected. Hence

more accurate results can he expected.

Consider the case of the wing executing harmonie oscillations in translation and rotation

defined as

... imt
h(t) = che t

... imt
9(t) = Se t

(
... ;0)1

\II t) = \Ile

(3.19)

•
where h(t) denotes small vertical translational oscillations, 9(t) denotes small pitching rota­

tion about the xraxis, and 'V(t) denotes small rolling rotation about the xI-axis. In this case

the equation of the wing surface can he expressed as
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(3.20)

and therefore,

(3.21)

Substituting equation (3.21) into (3.18), the reduced vertical velocity on the wing hecomes

(3.22)

where Î.. is defined in equation (3.11).

The next step is to detennine the supersonic pulsating source for the system as shown by

Mateescu (1989). For this let (xl' X~ he the receiving point and (xIS' x2s) he the sending

point as shO"ll in Figure 3.2.

o

,"'"'' ~
,'- Forward Mach Cone, ,,,,,,,

Î

i .
1 1
~i

;X2-~

,,,,
~ .,

lIB : - 1 lIB ' ,
'-:---------..;_~-------__?l_. ,!' ,

------/------;:1,,...::'----- /--------o+i't

• Figure 3.1: Sending and Receiving Points Inside the Mach Cone for a Plane Flow.
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The potential of the reduced pulsating source placed al (XloP X2s) is of the fonn

(3.23)

where

(3.24)

Substituting equation (3.24) into equation (3.23) and in tum substituting the result into

equation (3.1 0), we get

where

(3.25)

A solution ta this equation is

Therefore, the supersonic pulsating source potential for the delta wing is

•
where K is related to k by the fol1owing equation

M~
k=-K­

B

27
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Hence the potential ofthe source distribution on the plane of the wing, X3 = 0, becomes

(3.28)

where W(xl s' x2s) is the vertical velocity at any point on the plane of the wing and is also

given by equation (3.22) in the case ofoscillatory translation and rotation.

As a reminder, equation (3.13) which is the equation for the reduced coefficient ofpressure

can aIso be expressed as

To solve equation (3.28) a new coordinate system (x: Y) is defmed where

y = x_2_-_x_2_s
xl -x1s

For a plane wing, Z= O. Substituting the above into equation (3.24) we get

R = XR

where

(3.29)

(3.30)

(3.31)

(3.32)

•
for a plane wing. Also using the ]acobi~ dxlsdx2s becomes XdXdY. Rewriting equations

(3.28) in tenns of the new coordinate system and simplifying, we get
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(3.33)

The next step is to determine the limits ofintegration (please refer to Figure 3.2). The limits

of integration in X inside the Mach cone are

• 0 to Xl where the limits of integration in Y are -~ S Ys IJ

• 0 to Xz where the limits of integration in Yare IJ S y ~ ~

where

(3.34)

•

Please refer to Appendix 8 for the derivation ofequation (3.34). Integration inXis carried

out analytically and the lirnits over X as defmed in equation (3.34) are substituted in the

result to give

(3.35)

Differentiating this equation of the reduced potential with respect to xl' we get
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(3.36)

where R, Xl and X2 are defined by equations (3.32) and (3.34) respectively.

Unfortunately, at Y = - ~ and at Y = ~ a singularity exists and equations (3.35) and

(3.36) cannot he solved purely numerically in the present forme To resolve this problem,

the integration in Y is solved semi-analytically. The semi-analytical solution involves ana­

lytically integrating the two equations by parts, then solving the simplified equation using

a 10-point Gaussian quadrature scheme.

The semi-analytical integration over Y of equations (3.35) and (3.36) involves the use of

the following general form:

• when - ~ ~ y ~ !l' use the following:

(3.37a)

• when!l ~ Y ~ i, use the following:

(3.37b)

•
A

From equation (3.29), the final expression for Cp inside the Mach cone is written in com-

plex form as:
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... .. ..
Cp = Real Cp + i Imag Cp

ChaplU 3: Aerodynamic Mode/Jing

(3.38)

... 2
Real Cp =-;{ [Real F]cos(kxl)-[/mag F] sin (kx} )}

.. 2
Imag Cp = -;t{ [/mag F]cos(kx l ) + [Real F] sin(kx l ) }

III equation (3.39)~

F = i(k + À)«p + ôÔcP
xI

The above equation is a1so written in complex form as defined below:

F = RealF+i ImagF

where

Real F = Realll+ Reall2

lmag F = Imag 1) + Imag /2

(3.39)

(3.40)

(3.41)

(3.42)

•

In equation (3.42)~ we obtain Real Il and Imag /1 from equations (3.35), (3.36), (3.37a),

and (3.38) to (3.40) for _! ~ y ~ y; and Real 12 and /mag /2 from equations (3.35),
B 1

(3.36), (3.37b) and (3.38) to (3.40) for fI:S; Y:S; B' Please see sections 3.3.2 and 3.4 for

more details.

The analytieally simplified expressions of equations (3.35) and (3.36), as given in section

3.3, are solved numerically using a lG-point Gaussian quadrature scheme written in the

FORTRAN. The result is then substituted into equation (3.38) to find the reduced coeffi­

cient ofpressure~êP' Renee the reduced pressure distribution on the delta wing for super­

sonie flow inside the Mach cone is obtained. Results of this method are eompared against

the method developed in Carafoli etaI. (1969) in section 3.3. Equations (3.37a) and (3.3Th)
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are also used for simplifying the expressions for outside the Mach cone as will he seen later.

First~ however~ to gain confidence in the Present Method~ we will apply this method to the

simpler case of steady flow in the following section.

3.2 Steady Flows

Steady flows are studied in the present research to gain confidence in the methodology

adopted for dealing with oscillatory flows over the delta winge These flows have a linear,

simpler solution and the results cao he validated using existing solutions (Carafoli et al.,

1969).

When velocity and pressure do not vary with time, the flow is said to he steady. There are

ofcourse no hannonic oscillations present either (fi) = 0). Therefore, in this case equation

(3.4) is satisfied. Again the wing is assumed to be al zero incidence and the air assumed to

be compressible.

Let us consider the supersonic flow past a delta winge The coefficient of pressure for this

flow over the wing is given as

•

u
C = -2-

P U
~

The supersonic source for this steady plane flow is

where R is given by equation (3.24).

The source distribution for tbis flow over the entire delta wing is

32
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(3.45)

where W(Xls' x2s) is again the vertical velocity on the winge Note that equation (3.45) can

be obtained from equation (3.28) by introducing ro =0 and k = o.

As was done in the unsteady case, a new coordinate system (x: Y) is introduced to solve for

cp • The transformation from the (x loS' X2r) coordinate system to (x: n coordinate system is

again given by equation (3.30). AIse, the limits of integration over X and Yare the same as

that used in section 3.1.

Now let x2s he written as the following

1
• when -'8 S YS!I:

(3.46)

1
• and when y S YS B:

(3.47)

Equations (3.46) and (3.47) are substituted into equation (3.45) to give

(3.48)

•

Equation (3.48) is now integrated analytically over X as was done in the unsteady case.

Therefore the velocity potential for a steady flow over the delta wing now hecomes
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(3.49)

where

(3.50)

Again, as seen in the unsteady case, there exists a singularity at Y =-~ and at Y = ~.

Therefore, equation (3.48) is differentiated with respect to xJ using Lebnilz's Rule and

solved semi-analytically by parts using equation (3.37a) and (3.37b) as was done in the

unsteady case. Thus the velocity is given as

(3.51)

•

where u~ ,u; ,and u; are the components of the velocity given as

• 2xlyl [ -1 (I-By)(l +Bl) -1 (1 +By)(1 + Bl)]
ul = cos -cos

1tJB2l2 _ 1 2B(I- !I) 2B(l + fi)

u· = (l- l){ l' [ y + B ] dY _ B (Sin- 1(By) +~'}
2 !I~ (l- Y)2 (BI + 1)2 JI _B2y2 (Bl + 1)2 2)

(3.52)

34



•

•

Chapler J: Aerodynamic Mode/Jing

As was done in the previous sectio~ the final integration in Y is solved numerically using

a lü-point Gaussian quadrature scheme. The result is then suhstituted into equation (3.43)

to obtain the coefficient of pressure distribution along the wing under steady tlow.

In the next section, the values of Cp obtained from this section are compared ta the values

of Cp obtained under sunilar tlow conditions by Carafoli et al. (1969). The data is given

in tabular form in Appendix B.

3.3 Method Validation

The results obtained for the pressure distribution over the delta wing for steady and

unsteady sUPersonic flow, as derived in the previous sections are compared with the results

of Carafoli et al. (1969) inside the Mach cone under the following conditions:

• 1=2 m and c = 1 m;

• M a::J = J2.0, therefore, B = 1.0.

3.3.1 Results of Steady Supenonic Flow

Consider steady tlow over the delta wing. Let the vertical velocity he

W(X 1s' x2s) = -aUfZ)

Substituting this vertical velocity in equation (3.45) and rewriting the result in the ex: Y)

coordinate system we can solve for the coefficient of pressure distribution along the wing

as discussed above. The results are shown in Table 1 ofAppendix B and the graphical com-
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parison is given in Figure 3.3. The results shown are for various points along the wing, that

is, for various values of y = X2, along the delta wing keeping xI = c.
xI

1.5 ,------------r--------------,

0.5~.5

0.5 I"..- --'- .l...- ......L.. ---J

-1

Figure 3.3: Comparison of Cp : Steady Flow

As seen from Figure 3.3 the two methods give identical results. As expected, the pressure

distribution is symmetrical on eitber side of the central chord because of the symmetty of

the winge The coefficient of pressure is lowest at the fuselage, that is, when !I = 0 and

increases towards the leading edge. Hence, the Present Method when applied to a simple

case like steady flows gives very good results for the pressure distributio~ Cp, a10ng the

delta wing.

•
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3.3.2 Results of Unsteady Supersonic Flow

The wing is assumed to have translational oscillations defmed as

A iWI
h(t) = che

Thus, equation (3.22) becomes

(3.53)

where

• h = 0.1;

• ro = 10 rads/sec; and

• À. = roc
U'

00

The results obtained from the Frequency Expansion Method and the Present Method differ

due to differences in the expansion of e-ikx
l

• To gain confidence in the pressure coefficient

results obtained by the Present Method~ as a frrst step, only the reduced axial velocity, û,

from both methods are compared because the velocity is independent of the expansion of
-ih,

e

The reduced velocity, û or BB4> , in Carafoli et al. (1969) (equation 10.61 b) is written as:
xI

u = ( 2hl ) {[cos- I (l-By)(l +Bl)J_[cos-1 (1 +By)(l + Bl)J} (3.54)
rr.JB2P_1 2B(I- y) 2B(l + y)

•
The above equation is compared to the following:

.. 04>u = = Real û + i Imag Û
8xI
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• where

Real û = Real Û1 + Real û2

Imag û = Imag û1 + lmag û2
(3.56)

The components ofequation (3.56) are obtained using equations (3.8), (3.32), and (3.36) to

give:

= [ [ISin(kXl)COS(~RXl) _ BIsin(kX tB)] dY

_! (l-Y) (Bl+1) JI_B2 y2
B

BlSiD(kX1B)( . -1 1tl
+ (Bl + 1) Sln (By) + 2J

__ ' [lCOS(kXl)COS(~RX1) _ BICOS(kX1B>] dY
lmagûl l

.-.!. (l - Y) (B1+ 1) JI _ B2 y2
B

BlCOS(kX1B)( . -1 ~l
+ (BI + 1) Sln (By) + 2J

(3.57)

•

Real û2 and lmag û2 can he similarly obtained. The real and imaginary expressions

given above are substituted into equation (3.56) to obtain Real û and lmag û. These are

then substituted into equation (3.55) to obtain velocity, û.

As seen in Figure 3.4(a), the imaginary part ofthe reduced velocity, Imag Û, obtained from

the Present Method and the Frequency Expansion Method are identical (a1so see Table 2,

Appendix B). Hence, it can he said that the methodology adopted in this study is accepta­

ble. The real part ofthe reduced velocity, Real û, obtained from the Present Method is pre­

sented in Figure 3.4(b). We cannot obtain Real û for the Frequency Expansion Method

because as discussed earlier, this method is an approximate one which ignores the higher

orders ofk in the expansion of e-Ual , unlike the Present Method. Therefore, Real û does

not exist in the Frequency Expansion Method but exists for the Present Method.
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-'l.75 _--------__--------......

.~
-'l.8

~..
>
i
u
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-'l.9

- carafoi et al.

0.5o
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Figure 3.4(a): Comparison ofImaginary û: Unsteady Flow

•
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~ .Q.025 ~ • •~

>
i~ .Q.025 ~

!
111 .Q.026 ~

c!
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• •
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-1 .Q.5 0 0.5

Y =x2Ix1

Figure 3.4(b): Real û Using Present Method: Unsteady Flow
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The coefficient of pressure distribution alODg the delta wing is DOW obtained usÏDg bath

methods. To obtain this distributio~ first substitute equatioD (3.53) iota the equation for the

reduced potential, cP, and the reduced velocity, û. Next expand e-ikX
1

• FinaUy, separate

the real and imaginary parts of the result to get

(3.58a)

Imag Il =

•

[( K BI ) J( . -1 1t\+ BMŒ)k + BI + 1 cos(X1B) sm (By) + ïJ

(3.58b)
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Real /2 and Imag /2 are similarly obtained. The real and imaginary expressions given

above are substituted ioto equation (3.42) to obtain Real F and /mag F. These are then sub­

stituted ioto equation (3.39) to obtain Real êp and Imag êp •

A ~
The real and imaginary parts of Cp are listed in Table B.3 for various values of !I = -

A Xl
The solution for Cp is obtained with the Present Methodequation (3.29) and with the Fre-

quency Expansion Method ofCarafoli et al. (1969: equation 10.64). The results obtained

by the two methods are shawn in Figure 3.5(a).

0.008 r-----------'""T"""-----------,

• Present Mathod

- Carafoli et al

!
~
1ft

=~ 0.0075
~

j
J.Z

~ 0.007

1
~
2:' 0.0065
CD
~

f

•
•

• • • •
•

•

0.5o
y =x21x1

~.5

0.006 '---------"'-----.-...----...-------'
-1

A

Figure 3.5(a): Comparison of Imaginary Cp: Unsteady Flow

•

As seen from Figure 3.S(a), the expected trend for the pressure distribution along the wing
..

in the unsteady case is obtained. Again, Real Cp does not exist in the Frequency Expansion

Method but exists for the Present Method. The real part of êp is hence only obtained for

the Present Methodwhich is presented in Figure 3.S(b) (a1so see Table 8.3). However, the

magnitudes ofReal êp obtained using the Present Melhod are seen ta he smalt.

41



•
Chapler 3: Aerodymunic Model/ing
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• •
•

•
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•

0.5o
y =x2lx1

~.5
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....
Figure 3.S(b): Real Cp Using Present Method: Unsteady Flow

...
Therefore, the coefficient ofpressure, Cp' for an unsteady supersonic flow along the wing

obtained from the Present Method is acceptable and, due to its handling of the expansion

term, e-ilu., more aceurate. Renee the hybrid analytical-numerical method developed in

this section to determine the coefficient of pressure distribution along the delta wing will

he used to determine the aerodYDamie loading on the wing and the resultant generalized

forces in the next section.

•
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3.4 Generalized Forces due to Aerodyuamie Loading

In the previous section a method to determine the pressure distribution for an unsteady tlow

over the wing was developed. In this section the generalized force~ {Qat!ro}' due to

unsteady supersonic aerodynamic loading on the delta wing will he determined.

It is assumed that a tlexular oscillation of the plane wing exists. The reduced potential of

the source distribution on the plane of the wing is again given by equation (3.28) and the

coefficient ofpressure and the reduced coefficient ofpressure are given by equations (3.12)

and (3.29) respectively.

Now, h is the small transverse motion of the wing. The small transverse structural dis­

placement, w, is in the z -axis (or in this case the x3 -axis) as defmed in Chapter 2 and given

by equation (2.4). A coordinate transformation from the (x9 y) coordinate system to the

(xl, x~ coordinate system on equation (2.4) is made and then 11 is set equal to w to get

M N

h(xl , x2' t) = L L «I>r(x2)~(xl )qrs(l)

r=ls=l

(3.59)

The reduced small transverse motion cao DOW he denoted as h. Let h he placed at a pul­

sating source point (Xls' x2s) to give

M N

h = L L <Dr(x2s)~(xls)qrs
r=1 s=1

(3.60)

where cI>r and 'Ils are the chosen shaPe functions as defined in Chapter 2 by equations (2.7)

and (2.8) respectively. Also, ilrs are the reduced generalized displacements defmed as

•
.. qrs
qrs = t;;

e
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where CJ) is the frequency ofoscillation of the wing over time, t .

Therefore, for this case, the reduced vertical velocity from equation (3.18) can he written as

(3.62)

where Â. is defined by equation (3.11) and h is the small transverse motion of the wing

given by equation (3.60).

The chosen shape functions are now rewritten in the new coordinate system as the follow­

ing

(3.63)

(3.64)

where l is the semi-span and c is the chord.

As was done in the previous section, the (xlS' x2s) coordinate system is transformed to the

(~ Y) coordinate system using equation (3.30). Also, the reduced potential is again given

by equation (3.33) and is rewritten belowas a reminder

(3.65)

•
where W(x 1s' x2s) is the vertical velocity, k is the reduced frequency defmed by equation

(3.8), and R is defined by equation (3.32).
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Equations (3.63) and (3.64) are now respectively written in the (X Y) coordinate system as

where

(
X" - XY) r+ 1

<1>r(x2 - XY) = - 1

2 ., ., s- 1
__ [a + 21(x2 -1)X + 2(lx1 - ~X2)XY - 2lX y + cX-r]

'Ps(X. -X) 1

2re

(3.66)

(3.67)

The vertical velocity is expanded in terms ofthe modes ofvibration. As seen from equation

(3.67), expanding the free-free shape functions for more than two modes, that is s> 2, gives

an extremely complicated expression for the same. Therefore, as a simplification we will

consider expanding the vertical velocity in only two modes for both the clarnped-free and

free-free directions. As a result we get the following concise forms for equations (3.66) and

(3.67):

r+ 1 r+ 1

<1>r(x2 -Xy) = L L Amh.npxnhy"P
mh = 0 "p = 0

s s

lPs<x 1-X) = L L Bki.mpx"iynP

ki = 0 mp = 0

(3.68)

(3.69)

•

where Amh• np and Bkit mp are the coefficients ofX and Y in the expansion of the vertical

velocity in terms of modes. These coefficients and their derivatives are listed in Tables

4(a)-4(d) of Appendix B for r = 1, r = 2, s = 1 and s = 2 respectively.

The vertical velocity from equations (3.60), (3.62), (3.68) and (3.69) of a plane wing for

which a flexular oscillation exists is finally written as
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(3.70)

M N r+ 1 r+ 1 s s

Su = L L L L ~ ~
r = 1 s = 1 mh = 0 np = 0 ki =0 mp = 0

_ A ôBki• mp
B21 - mh. np ÔX

1

mhk = mh +ki

mhp = np+mp

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

where A. is defined by equation (3.11) and qrs are the reduced generaJized displacements

given by equation (3.61).

Substituting (3.70) in (3.65), we get the reduced potential as

Equation (3.76) is valid both inside and outside the Machcone. We will tirst detennine the•

where

K­
a = k+-R

B

K­
b = k--R

B

(3.76)

(3.77)
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reduced potential and reduced velocity inside the Mach cone. As was done in Chapter 2,

only one side of the wing is modelled, due to symmetry. However, inside the Mach cone,

the source distribution on one side of the delta wing has an effect on the other side of the

wing. Therefore~ the limits of integration over X and Y, inside the Mach cane, are again

given by equation (3.34).

To integrate over X we will use the following standard integral as given by Gradshteyn and

Ryzhik (1994)

(3.78)

(3.79)

Therefore,

(

1 hk mhk (mhk){X1(l- f/)}mhk-m
j

1 ( m'n)xn sinaxdX = - ~ mj! mj (l- Y) mj-+- 1cos aX l + -+- (3.80)
o ~=o a

(
\,mhk ~k .,(mhk){X1(l- !/)}mhk.-m

j
1 . ( ~) (3.81)

o A. cosaxdX = mf: 0 ml· mj (l- Y) amj+ 1sm aX1 + 2

The other integrals in X in equation (3.76) are similarly solved using equations (3.78) and

(3.79). The semi-analytical expression in Yis now determined using equations (3.37a) and

(3.37b) as was done in section 3.2. Let

•

mjn
Al = aX t +2

mjn
A2 = bXt +T

mjn
A 3 = aX2 + 2

mjn
A4 = bX2 + T
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where Xl and X2 are given by equation (3.34), and a and b are given by equation (3.77).

On evaluation and simplification ofthese equations, we cao now write equation (3.76) as

where

mhk - mjl'{ y'"hp ( sinA1 SinA2J }dY
/1 = {x 1(1-y)} -! (l_y)mhk-mj a mj + 1 + bmj + 1 -al R

B

mhk - mj19 { ynhp (COSA1 COSA2J }dY
/3 = -{Xl (I-!l)} -!. (1- y)mhk-mj amj + 1 + bmj + 1 - Q3 R

B

(3.84a)

(3.84b)

(3.84c)

(3.84d)

• where / is again the semi-span of the wing; the constants a and b are given by equation
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(3.77); B and R are defined by equations (3.9) and (3.32) respectively; and where

. -1 ( 1t
QI = sm B!I) + ï

Q 1t . -1 (
2 = - - sm By)

2

The constants al' a 2 , a3 and a4 in equations (3.84a) to (3.84d) are defined below

(3.85)

a = 2 (_l)mhP( B )mhlr.-mj sin (Bkx1(1- !I) + mi 1t)
1 kmj + • B Bl + l Bl + l 2

2 (l)mhP( B )mhlr.-mj • (Bkxl(l+!I) mj 1t)
a = - - sm +-

2 kmj+. B BI + l B1+ l 2

2 ( l)mhP( B )mhlr.-mj (BkX 1(l- 9) mj 1t)
a3 = - -- cos + -

kmj + 1 B Bl + l Bl + 1 2

= --L(!)mhP( B )mhlr.-mj (BkX 1(l + 9) ... mj 1t)
a4 kmj +. B BI + l cos Bl + 1 2

(3.86a)

(3.86b)

(3.86c)

(3.86d)

Differentiate the fmal equation for reduced potential, equation (3.83), to obtain û. There­

fore,

(3.87)

•
where

ôB2 ôAmh,nPB. +A oBlci• mp

ôX1 = ôx. lu, mp mh. np ôx.
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(3.89)

In equation (3.87), Il' 12 , 13 and 14 are given by equations (3.84a), (3.84b), (3.84c) and
ô/l ô/2 al3 ô/4

(3.84d) respectively. Expressions for ô-, ~, ~ and -;- can he found in Appendix
xl uX I uX l uXt A

B. Hence, the reduced potential, cP, and the reduced velocity, aÔCP
, inside the Mach cone

xI

have been determined. The same cao he similarly detennined outside the Mach cone.

Outside the Mach cane, the source distribution on one side of the wing has no effect on the

other side. The limits of integration outside the Mach cone therefore are

-l/B to l/B

Hence the equations for the reduced potential and the reduced velocity, equations (3.76)

and (3.87), for outside the Mach cone respectively become

and

Ôci> 1 {(ÔB2l . ôB2) mhk mhk! .-=--5 -+IÂ.- ~ . [/11-1/12]
ôX I 21t u ôX l ôXl ~ (mhk- mj)!

mJ=O

• mhk mhk! [Ô/Il .Ô/12J}A
+ (B21 + lÂB2) ~ (mhk-mj)! ôX

l
-, àX

I
qrs

mj=O

(3.90)

(3.91)

•

ôB2 8B21 . .
where B2 , B2l , -ô ' and -ô are glven by equattons (3.72), (3.73), (3.88), and (3.89),

xI xI
respectively. The values for the same for various modes are listed in Table 4 of Appendix

B. Additionally, Â is given by equation (3.11), and

so
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• mhk - mj i~ { y'lIhp ( sinA 1 sinA2J }dY
III = {x 1(l - !I) } 1 mhk - mj mj + 1 + mj + 1 - al - as R

-8 (1- Y) a b

mhk-mji~ { ynhp (casAI COSA 2J }dY
/12 = -{xl(l-y)} 1 mhk-mj ~+ mj+1 -a3 -a6 R-

-Ëi (1- Y) a b

(3.92a)

(3.92b)

where A 1 and A 2 are given by equation (3.82), and the constants al and Q3 are defined by

equations (3.86a) and (3.86c). AIso,

__2_(.!.lmhP( B )mhk-mj . (Bkxl(l-!/) mi1t)
as - kmj + 1 BJ Bl- 1 sm Bl- 1 + 2

2 (~mhP( B )mhk-mj (BkXI(l-!/) mi 1t)
a= - cos +--

6 kmj + 1 Bl- 1 Bl- 1 2

(3.93a)

(3.93b)

•

al al
Equations (3.92a) and (3.92b) are differentiated with respect ta XI to yield -aIl and a 12 .

XI XI
Please see Appendix B for these expressions.

Now that the equations of the reduced potential and reduced velacity both inside and out­

side the Mach cone have been determined, the reduced coefficient of pressure distribution,

êp , on the entite wing cao he obtained. Substituting equations (3.83) and (3.87) into equa­

tian (3.29), êp is obtained inside the Mach cone. Similarly, by substituting equations

(3.90) and (3.91) into (3.29), êp is obtained outside the Mach cone. The reduced coeffi­

cient ofpressure both inside and outside the Mach cone cao again be written in the complex

form given by equation (3.38). The steps needed to solve this complex form of the reduced

coefficient of pressure are described in section 3.1 .
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The pressure distribution for the upper surface of the wing, in dimensional fonn, is given

by the following

where p CX) is the density of the free stream, Pcc is the free stream pressure, UCX) is the free

stream velocity and Cp(Xl' x2' t) is given by equation (3.12). As the reduced coefficient

of pressure for the delta wing bas already been determined, the dimensional pressure dis­

tribution for one side the upper surface is now written as

(3.94)

Sînce êp,lower =- êp, uppen the net pressure on the wing is written as,

where êp(x1, x2) is given by equation (3.38), and CJ) is the frequency ofperiodic motion

over time, t.

The pressure distribution given by equation (3.94) is nothing but the aerodynamic loading

on the wing. Therefore, the generalized forces due to this aerodynamic loading can he writ-

ten as

where m and n identitY the shape functions in the clamped-free and free-free directions•
{Qaero} = (3.95)
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respectiveIy. In a non-dimensionai form the above equation hecomes

(3.96)

where q,m(ç) and '1'11(11) are defined by equations (2.7) and (2.8) respectively. The pres­

sure distribution is calculated as shown earlier al various receiving points on the wing

defmed by (x l' X2). Now the shape functions are calculated on the same points as the pres­

sure in order to couple the equations.

Ta solve equation (3.96), a numerical integration over the triangular element has to he car­

ried out. The following general formula for numerical integration of a function G over a

triangle area, as shown in both Cowper(1972) and Reddy (1993), is used to integrate equa­

tion (3.96):

(3.97)

which can he approximated by the Gaussian quadrature fannula as

(3.98)

•

where (LI' L2, L3) is the transfonned coordinate system known as the area coordinate

system (see Reddy (1993) for details); NIP are the total number ofintegration points; and

W/ and S[ denote the weights and integration points of the quadrature rule respectively.

On transfonning the non-dimensionai coordinate system (ç, Tl) to the area coordinate

system (L}, L 2, L3 ), we get
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• ç = L2

11 = L3

LI = l-L2 -L3

Hence, equation (3.96) remains unchanged as

Chapler 3: Auodynamic Model/ing

(3.99)

(3.100)

Rewriting equation (3.100) using the quadrature fonnul~we get

(3.101)

where

(3.102)

•

Cp(X 1, x2' t) is calculated using the lO-point Gaussian quadrature as was discussed earlier.

The pressure calculated at various points (xl' X2) on the wing is multiplied by the shape

functions calculated at the same points. The overall numerical integration is then canied

out using a 13-point (and degree ofprecision 7) Gaussian quadrature fonnula for triangular

areas as shown in Cowper (1972). The list of weights, W/, and the location of the area

coordinates (LI' L 2, L 3) for this 13-point Gaussian quadrature can he found in Cowper

(1972). This list is valid for triangles ofany shape.

{Qaero} is a complicated function of co and time t. Hence it cannot he broken down into

simple coefficients of 1 , CJ) and 0)
2

• In other words, the matrix [A] in the state-space equa­

tion for the present case is extremely complicated. However, we cao still solve these gen­

eralized forces by fust defining the generalized displacements using equation (3.61) as
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• {qrs} = ({ q~s}coscot + {q:s} sincot) + i( {q~s} sincot - {q:s} coscot) (3.103)

where ~- ~ above {qrs} denotes that bath the real and imaginary components of the gener­

alized displacements are present, and {q~s} and {q~s} are the components of the vector,

{cirs}· AIso let

where

Real(êp(Xl' x2» = -;[cos (kx1)(Real 4» + Real û)

- sin(kxl)(lmag 4» + Imag û)]

(3.104)

(3.105)

and where k is the reduced frequency. For convenience, we write the real and imaginary

components of the reduced potential and velocity in the following format:

M N M N

Real cP = L L cPR tirs Real û = L L ûRqrs
r= 1 s= 1 r= 1 s= 1

M N M N

lmag cP = L L cPl tirs lmag û = L L ûlqrs
r= 1 s= 1 r= 1 s= 1

where the equations for 4»R' cP/' ûR and ûr are given below for both inside and outside the

Mach cone.

• Inside the Mach cone, the foUowing equations are valid:

•
(3.106a)
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(3.I06b)

•

• For points outside the Mach cone, the following equations must he used:

{[

aB mhk aB mhk ]

ÛR = Sul ôx
21 L GIll +À ax

2 L G 1[2
1 mj =0 [mj =0

[

mhk al mhk al]}
+ B 21 ~ G a~ [1 + À,B2 ~ G â~~

ml = 0 ml =0

{[
ôB mhk aB mhk ]

Û/ = Sul - ax21 L Gl[2+ À ax2 L GIll
1 mj = 0 1mj =0

[

mhk al mhlc al]}
+ -B21 L G ô~2+À,B2 L G â~1

mj = 0 1 mj = 0 1
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where

• r+1 r+ 1 s s

Sul = L L L L
mh =0 np =0 ki = 0 mp = 0

and

G = mhk!
(mhk-mj)!

A

As seen in equation (3.10S), Real(Cp(x1,x2» depends on both the real and imaginaly

parts of the reduced potential, <P , and the reduced velocity, û. Therefore, let {Qat!ro} he

written in tenns ofthe real and imaginary parts of the reduced potential and reduced veloc­

ity. Hence the equation for generalized forces, equation (3.100), is rewritten as the follow­

ing:

(3.10S)

In the above equation, [ZR(ro») is ofsize MNx MN and is of the Conn

(3.109)

where

Similarly, [Z/«(O)] is also of size MN x MN and is defmed as

•
(3.110)
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where

The solution ofequations (3.109) and (3.110) involves the use of the quadrature fonnula

shown in equation (3.101).

On substituting equation (3.103) in equation (3.108), we get

{Qaero} = [ZR(ro)]({q~s}cosrot+ {q;s}sinrot)

- [Z,(O) l( {q~s} sinrot - {q;s} cosrot)

(3.111)

•

Hence the generalized forces due to aerodynamic loading have been obtained. The

dynamic response of the delta wing due to these forces will be determined in Chapter 5.

In the following chapter the generalized forces due to piezoelectric strips will also he deter­

mined.
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Modelling of Piezoelectric Actuators

In the previous ehapter a model of the uneontrolled delta wing under supersonic aerody­

namie loading was formwated. In prineiple~ piezoelectric aetuators can he introduced on

the wing in order to control the aeroelastic oscillations of the winge However, the goal of

the present research is only to study the response of the wing in the presence of these actu­

ators but not to develop control schemes. Hence, the study is limited to the examination of

the effects of introducing the piezoelectric actuators on the aeroelastic oscillations of the

delta winge

In this chapter, a mathematical model of the PVDF strips distributed on the surfaee of the

wing is developed. The resulting model is appended to equation (2.28) in order to produce

a state-space matrix equation of the well-known form,

{il = [A]{x} + [B]{F} (4.1)

•

where [8] depends on both the locations and geometric characteristics of the PVDF actu­

ators while {F} is the force input vector. Here {F} depends on the voltage applied across

the thickness of the piezoelectric actuators.

4.1. System Description

The piezoelectric actuators are modelied as PVDF strips bonded to the surface ofthe winge

The model contains the following assumptions:

• the PVDF strips are homogeneous and isotropie;
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• the strips are polarized so as to produce uni-directional straîns, Le., if the

piezoelectric constant d31 :1: 0, then d32 and d36 must he zero for that strip;

• the strips are perfectly bonded to the structure; and

• the thicknesses ofail the PVDF strips are constant.

The assumptions listed above are the same as those given by van Poppel and Misra (1992).

Figure 4.1 shows the approximate distribution of the five PVDF strips on the cantilevered

triangular plate as used in the present study. Note that the axis convention is the same as

Â
Y

....-------/ -------.....

Figure 4.1: Distribution ofPVDF Strips on Cantilevered Triangular Plate

that used for the structural analysis in Chapter 2. Also, note that the locations, sizes and

number ofPVDF strips can he varied so as to attain maximum control of the flutter. In the

present study the shape of the strip was chosen to he trapezoidal hecause it is simpler to

manufacture than a more irregular geometry. Also, the trapezoidal shape gives hetter flex­

ibility in covering a triangular plate as opposed to a rectangular shape for the strips. As

shown in Figure 4.2(a), the bottom left corner ofthe ith strip is located at (Xi' Yi) and the

width of the PVDF strip, if polarized in the x-direction, is assumed to he a function ofx.,

namely bi(x). Similarly, if the strip is polarized in they-direction, the width of the strip is

assumed to he a function ofy, namely, Qi(Y> as shown in Figure 4.2(b).
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(x" y,+b, (x;»

b,(x)

(x, ,y,) (x, y,)

~I·-------Q, ---------

(x,+a, ,y,)

Figure 4.2(a): Shape of PVDF Strip Polarized in the x·direction

(x"y,+b,)
(x,+a, (y,+h,), y,+h;)

h,

:(x"y)
1
i
!

a,CY)
., (x,+o,CY), y)

\

\
\

•

\
~---------_\ (x,+a, CY,), y,)

(x, ,Yi)

Figure 4.2(b): Shape ofPVDF Strip Polarized in they.direction

A strip aligned in the x·direction, for example strip 1 in Figure 4.1, is described by a shape

function, f{x), and is polarized to expand and contract in the x·direction. In our case, f(x)

represents the fraction of the maximum width of the strip at any location along the x-axis

(refer to Figure 4.2(a». The shape distribution function, f(x), is hence mathematically

defined as
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• bj(x)
f(x) =--­

[bj(x)]max
(4.2)

where bi(x) is the width ofthe PVDF strip at any location along the x-axis and [b i(x) ]max

is the maximwn width of the same strip. Now bi(x) from Figure 4.2(a) can he written as

[ (X-X)] [X-X']b.(x) = b.(x.) 1- --' +b.(x.+a.) --'
, , , a· '" a·, , (4.3)

where the constant ai equals the length of the ith strip polarlzed in the x-direction, xi is the

x-coordinate of the bottom left corner of the strip, bi(x; + aï> is the minimum width of the

PVDF strip, and bj(xi ) is the maximum width of the PVDF strip.

Substituting equation (4.3) into equation (4.2) and simplif)ring, we get

_ [bj(X j + aï> - b;(Xj)]
[(x) - 1 + a.b.(x.) [x-x;]

" ,

Differentiating equation (4.4) with respect to x, we get

b.(x. + a.) - b·(x.)
f '( ) " , "x =

a.b.(x.)" ,

(4.4)

(4.5)

Similarly, a strip aligned in the y-direction, for example strip 2, is polarized to expand and

contract in the y-direction. The shape distribution function, g(y), for strips polarized in the

y-direction is defined as

( )
aj(Y)

gy=---­
[aj(y)]max

(4.6)

•
where a;(y) is the width ofthe PVDF strip at any location along they-axis and [aj(Y)]max

is the maximum width ofthe same strip. Similar to the derivation ofequation (4.4), we cao

obtain a modified expression for g(y) :
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(4.7)

Differentiating the result with respect to y, we get

a·(y·+ b·) -a.(y.)g'(y) = 1 1 1 1 1

b.a.(y.)
1 1 1

(4.8)

4.2. Generalized Forces due to the Interaction benveen PVDF Strips and
the Structure

Consider a composite elemen~ that is, a plate element ofwidth bp(x) covered with a pie­

zoelectric strip of width bi(x) polarized in the x-direction. When a voltage is applied

~~dplane of the PVDF layer

~
/

/

/
1-'- /F{ -/1 ~~

I DNA neutral axis of the
platelPVDF structure

dx
A

x

A Z

T~

~F::':"---­
_____ ~E

~W ~ !\ h
dx = 8(x) i \ P

1 \.

!
1

1
1

1·

•
Figure 4.3: Cross-section ofan Infinitesimal Plate Element ofArea dxdy
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across the thickness, hi' ofthe ith PVDF strlp, it introduces a~ &s' in the PVDF strip.

This strain is given by

d 31
E = V.(t)-

S 1 h.
1

(4.9)

where Vi(t) is the voltage applied across the thickness of the ith strip and d 31 is a piezoe­

lectric constant for the PVDF strip polarized inx-direction (see Table 5.1 for its value). f:s

in turn induces a longitudinal~ El' in the plate ta insure a force equilibrium in the x­

direction. To calculate the expression for &1' a force balance on the composite element is

perfonned ta obtain

(4.10)

where the subscript 'p' refers ta the plate and the subscript 'f refers to the ;th strip respec­

tively. In the above equation, E is Young's Modulus of the material, b is the width, and h

is the thickness. Writing equation (4.10) in terms of &1' we get

E.h.b.(x)
1 1 1 (4.11)

Consider an elemental area, dxdy, ofthe composite element shawn in Figure 4.3. When the

force, Le. the polarization, is in the x-direction, the tension per unit width is

where J(x) is given by equation (4.4) and Vi.r( t) is the voltage applied across the thickness

of the ith strip polarized in the x-direction. Similarly, when the force is in the y-direction,

the tension per unit width is

•

T(x) oc Vi.r(t) . f(x)

T(y) oc Viy(t) . g(y)
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where g(y) is given by equation (4.1) and Viy(t) is the voltage applied across the thickness

of the ith strip polarized in the y-direction.

The differential tension acting on the elemental area, dxdy, can be written as

dT(x) ex: Vi.r(t) . f'(x)dx

whereJ'(x) is given by equation (4.5).

(4.14)

The tensions, T(x) and 1{y) induce moments M(x) and M(y) respectively. The differential

tension per unit width, dT(x), acts through the moment arm li, as shown in Figure 4.3, to

create a net moment, dMy' for width dy which can he written as,

dMy = Ta· dT(x)dy

or,

dMy ex: li . Vi.r(t) j'(x)dxdy (4.1S)

Now the strains, Es and El' are constant throughout the element. Thus, from Figure 4.3 and

equations (4.10) and (4.1 S), the bending moment acting on the elemental area about +y-axis

is further written as,

dMy(x, t) = ;x[Ephpbp(X)81(~1- D NA) + Ej hi bi(x)(8. + 81)

(i + hp - D NA) ]dxdy

(4.16)

•
where DNA is the distance ta the neutral axis of the composite plate (from AB ta EF as

shown in Figure 4.3).
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In practice, hpbp(x») hibi(x). Using this fact along with equation (4.11), we get,

(4.17)

Using equations (4.2) and (4.9) and substituting equation (4.17) into equation (4.16), the

expression for the bending moment about the y-axis in the elemental area becomes,

(4.18)

where

(4.19)

where d 31 is the piezoelectric constant for PVDF strips are polarized in the x-direction. ë~

is referred to as the equivalent stiffness coefficient. It is a constant per unit width whose

units are N/volt. This constant is based on the information taken from Bailey and Hubbard

(1985) and from van Poppel and Misra (1992). It depends on the material properties and

dimensions ofthe strip. This constant is sunilar to that given in Bailey and Hubbard (1985)

for the beam because the small Poisson effect present for a plate has been neglected in this

derivation. The difference is that here the constant is per unit width. In Bailey and Hubbard

(1985), the width ofthe PVDF strip was assumed equal to the width of the beam and hence

ëx was the same for aIl strips. Their units for the constant read Nm/volt.
1

Similarly, the bending moment about the x-axis is given by,

(4.20)

where

•
(4.21)
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is again a constant per unit width and d32 is the piezoelectric constant for PVDF strips are

polarized in the y-direction. The constant, ëy, , also bas the units ofN/volt.

The power acting on the elemental area covered by the strips is given as

dP = d(M· 00)

where

and

(4.22)

(4.23)

(4.24)

Hence, power on an elemental area of the wing covered by the strips can he expanded and

written as

where ëXi is given by equation (4.19), ë
Yi

is given by equation (4.21), and

. a(aw) . ô ( aw)
ex = at ôy and ey = at - ôx

Recall that the transverse displacement, w, can he expressed as

M N

w(x, y, t) = L L <1>r(x)~(y)qrs(t)

r=ls=1

(4.25)

(4.26)

(2.4)

•
Consider that the strips are unipolar. Thal is, al any given time a strip is polarized either in

the x-direction or in the y-direction but not bath. Let Rx he the total number ofstrips polar-
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ized to expand and contract in the x-direction and Ry he the total number ofstrips polarized

in the y-direction. AIso, let

Hence, the total power acting on the total area covered by the strips, in non-dimensional

fonn, can be written as

M N R,

P=-LLL
r=1 s=1 i=l

11i

+

(4.27)

where

b.(ç.) = bi(x)
l l C

and (4.28)

•

In these equations, / and c are the semi-span and the chord ofthe wing respectively, bj(xi )

and Qi(Yi) are defined in Figures 4.2(a) and 4.2(b) respectively, <I>(ç) and '11(11) are the

shape functions described in Chapter 2, and Vix(t) and Viy(t) are the voltages applied

across the thickness of the ith strip aligned in the x-direction and y-direction respectively.

Thus, the total power acting on the entire area of the wing by aIl the strips present is the

summation of the power acting on the wing by the individual PVDF strips as seen in equa­

tion (4.27).
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The total power can also he written as

where { l} is a (RI xl) unity vector and

The power components in equation (4.29) are defined as

P = ë Q.
:Cjr~ X j ,rs

P = ë ç.
Yir8 )i .rs

where

a·
~+i 11;+bi(~)

Qirs = - J Jf'(I;)éJ(lJ)r(~;s('l»I(l_l;)dÇd'l

ç; Tl;

Writing the matrices [Pxl and [Pyl in tenns oftheir components, we obtain

(4.29)

(4.30)

(4.31)

(4.32)

ë:c.OUl ëx20 211

ë:c.0 112 ëX20212

•
[P:cl = (4.33)
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and

ëy.ÇIII ëy2Ç211

ëy .Ç112 ëy2Ç212

where MN is the total number of modes. The dimensions ofthe matrices on the right-hand­

side of equation (4.29) are

dim[Pxl = MN x R,

dim[Py] = MN x RI

dim{ Vix(t)} = R, x 1

dim{ Viy(t)} = R, x 1

Substituting equation (4.29) into equation (4.1), we get

(4.35)

(4.36)

where the state vector {x} and matrix [Al have been previously defined in equations (2.29)

and (2.30) respectively. The [Bx ] and [By ] matrices are written as

(4.37)

•
(4.38)

where [OlT is an (MN x Rf) null matrix and [O]y is an (MN x R,) nult matrix.
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The generalized forces due to the interaction of the PVDF strips with the delta wing cao

now he written as

AIso, equation (4.36) cao he further written as

{i} = [A] {x} + { Qpi~zo}

(4.39)

(4.40)

•

Now that the generalized forces, {Qpi~40}' due 10 the presence of the piezoelectric strips

have been obtained, the transient response of the wing cao he detennined using equation

(4.40) as will he shown in the nextchapter. Furthennore, the dynamic response of the delta

wing under unsteady, supersonic loading in the presence of these piezoelectric strips will

be presented in the following chapter.
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Chapter 5

Analysis of the Dynamics of
the Wing under the Combined
Piezoeiectric and Aerodynamic
Forces

This chapter is divided into two main sections. In the lITst section~ a procedure to obtain

the response of the delta wing, with and without aerodynamic loading, in the presence of

PVDF actuators is discussed. To start with, we consider the wing under the influence of

the piezoelectric strips alone. Following that the unsteady supersonic aerodynamic loading

is introduced on the wing with piezoelectric strips present. The expressions for the gener­

alized forces due to aerodynamic loading and the presence of piezoelectric strips are intro­

duced into the general equation of motion for a dynamic system. These expressions are

used ta analyse the dynamic response of the system.

The second section presents and discusses the final results ofthe work presented in this the­

sis. This section is divided ioto three subsections. In the first subsection, the eigenvalues

of a free-system are compared to existing results. The control effect of introducing piezo­

electric strips at various locations on the delta wing, without aerodynamic loading, is stud­

ied in the second subsection. The dynamic responses of the wing, with and without

unsteady supersonic aerodynamic loading, in the presence of piezoelectric strips are com­

pared in the last subsection.
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5.1 Dynamics of the System Under Piezoelectric and Aerodynamic
Forces

The dynamics of the system under the combined piezoelectric and aerodynamic forces are

analysed considering three locations on the delta wing shown in Figure 5.1.

y ,

x

4

Point 3
(;=0.45, '1=0.45)

Point 2
(;=0.45.11=0)

~--~
1 ..

________ / .........i
1

T
1

c
1

1_L IL. .........._~;;;;;;;;;;;;;;;;;;;;;;;;;;~..:::::.. -

Figure S.l: Locations of Points 1,2 and 3 on the Delta Wmg

The first location, Point l, is placed al the tip, that is, ç = 1 and 11 = 0; Point 2 is on the

trailing edge of the wing at ç = 0.45 and II = 0; and the third location, Point 3, is on the

leading edge of the wing, placed at ç = 0.45 and 11 = 0.45.

The plate is assumed to he made of aluminium alloy. The material properties of the plate

as weIl as of the piezoelectric strips are listed in Table 5.1.

•
The response of the system under the influence ofthe piezoelectric strips, with and without

aerodynamic loading, is now analysed.
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Table S.l: Physical Characteristics of the System

Physical Pllrameters Vaille

Length of semi-span, 1 2.0m

Length ofchord, c 1.Om

Plate thickness, hp 0.01 m

Density of Aluminium Alloy, p 2823.0 kglm3

Elastic modulus of the plate, Ep
9

70.0 x 10 Pa

Poisson's ratio, v 0.334

PVDF film thickness, hi
-4

5.0 x 10 m

Elastic modul~ of piezoelectric strips, Ej
960.0 x 10 Pa

Piezoelectric constant, d31
-12 1250 x 10 mlvo t

5.1.1 Transient Response of the Delta Wing

Piezoelectric strips, or PVDF strips, were introduced on the delta wing modelled as a can­

tilevered triangular plate in Chapter 4. The generalized forces, {Qpi~Zo} , produced due to

the interaction ofthese PVDF strips with the delta wing are given by equation (4.39). The

equation of motion for titis PVDF-wing combination was written in a state-space fonn and

is given by equation (4.40).

In this subsection, the PVDF strips are activated to damp out the oscillations ofan unloaded

delta wing. In otlter words, equation (4.40) is solved. The structural damping, namely

Rayleigh 's damping, C, given by equation (2.33) is also present. Once the generalized dis­

placements and the generalized velocities for this forced system have heen detennined, the

response of the plate at the point under consideration cao he easily determined.

The equation for the generalized forces due to interaction ofthe PVDF strips with the plate

is repeated below:

(5.1)
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where Vi.it) and Viy(t) are the voltages introduced across the thickness of the ith strip

oriented in x- and y-directions respectively, and the matrices [Bx] and [By ] are obtained

by placing the five PVDF strips as shown in Figure 4.1 and using equations (4.31) and

(4.38) respectively. The size, location, and orientation ofeach strip is given in Table 1 of

Appendix C. As shown in Figure 4.1, strips 1, 3 and 5 are assumed to he oriented in the

x-direction and strips 2 and 4 are assumed to he oriented in the y-direction. The matrices

[Bxl and [Byl can now be easily generated by writing a program in FORTRAN. The volt­

age is selected as the fol1owing

(5.2)

•

where Ki is a constant and "'lip is the tip velocity.

Now that {Qpiezo} bas been detennined, the state-space equation, equation (4.40), can he

solved. As seen in equation (4.40), the equation for i is a flfSt-order ordinary differential

equation. This equation has to be integrated in order to detennine both {qrs} and {ilrs} .

The Runge-Kutta method for integrating ordinary differential equations can he used for this

purpose. A simple program is written in MATLAB to solve the state-space equations.

Having detennined the generalized displacements and velocities, the transverse displace­

ments, due to this tip velocity, at the three locations shown in Figure 5.1 can be detennined

for the following three conditions:

• Only x-aligned PVDF strips are active (only strips 1, 3 and 5 are active);

• Only y-aligned PVDF strips are active (only strips 2 and 4 are active); and

• AIl PVDF strips are active.

The results ofthis subsection are discussed in section 5.2.

5.1.2 Dynamic Response of the Delta WiDg

In this subsection, the procedure to obtain the dynamic response ofthe wing under the com­

bined forces of the unsteady supersonic aerodynamic loading and in the presence of the
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piezoelectric strips will he discussed. The dynamic response ofthe delta wing is compared

for the following two cases:

• Without aerodynamic loading, that is, {Qaero} = {O}; and

• With aerodynamic loading, that is, {Qaero} * {O} .

In both cases the piezoelectric strips are active, {Qpiezo} * {O }. When {Qaero} = {O},

the ooly external force applied to the delta wing is the force generated by the PVDF strips.

The forces generated by activating the PVDF strips are solely responsible for activating the

wing oscillations. But when {Qaero} *- {O} , the piezoelectric and aerodynamic forces are

simultaneously acting on the winge The aim of this comparison is to determine whether or

not the PVDF strips cao counter the wing oscillations caused by the aerodynamic loading.

Specifically, it has to he demonstrated that the forces due to the piezoelectric strips cao

effectively oppose the aerodynamic forces, thereby reducing the aeroelastic oscillations.

The appropriate combination of PVDF strips and voltages applied across the individual

strips has to he determined to obtain effective control of the wing oscillations when the

unsteady supersonic aerodynamic loading is present. It should he noted that the magnitude

of displacement of the wing has to be smaller when {Qaero} * {O} as compared to when

{Qaero} = {O}, in order to conclude that the PVDF strips are effective in controlling the

aeroelastic oscillations of the delta winge The appropriate combinations of active PVDF

strips and the magnitudes of the voltages applied across these strips are detennined by trial

and error.

We start with the equation of motion for the dynamic system given by equation (2.36)

which is repeated below:

(5.3)

•
where r and s identify the shape functions in the clamped-free and free-free directions

respectively, [Ml is the mass matrix, [Cl is the structurai damping matrix, [K] is the stiff­

ness matrix, {qrs} are the generalized displacements, {ilrs} are the generalized velocities,

and {q rs} are the generalized accelerations. The equation for the complex generalized
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displacements defined by equation (3.103) is repeated helow:

where {q~s} and {q~s} are unique for each frequency and will he detennined here. And,

for convenience, {Qaero} is repeated below

{Qaero} = [ZR(CO)]({q~s}cosrot+ {q:s} sin ro t)

- [Z/(ID)]( {q~s} sinrot - {q;s} COSIDt)

(5.5)

where ro is the frequency of oscillation of the plate, while [ZR(ro)] and [Z[{ro)] are

defined by equations (3.109) and (3.110), respectively.

In equation (5.1), let

... c .. s
Vix = Vixcoscot + Vi.xsinrot

(5.6)

•

"C "'S AC AS

where Vix, Vix, Viy and Viy are the constant voltage amplitudes introduced across the

thickness of the individual piezoelectric strips. Note that in equation (5.6), superscript •c'

is used to denote that the voltage is a coefficient of COSIDt and superscript ·s' denotes that

the voltage is a coefficient of sinrot. Thus, in equation (5.6), Vi: and Vi~ are called the
... s .. S

cosine components and Vix and Viy are called the sine components.

As discussed in Chapter 3, the aerodynamic components of {Qaero}' [ZR{ (J) )] and

[ZI( (ü )] , are complicated functions of frequency, ro. Hence they cannot he broken down

into simple coefficients of 1 , ID and ID 2 as was done when solving for {Qpiezo} in the

previous section. In other words, the matrix [Al for the state-space equation for the present

case is extremely complicated. Thus, for this case, we will not he able to use the Runge­

Kutta fonnulas for integrating ordinary differential equations. This is one ofthe limitations
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of the present work. A feedhack controllaw cannat he developed for the dynamic system

under the combined forces of the piezoelectric and aerodynamic forces using the present

model. The problem ofcomplicated aerodynamic functions offrequency, rJ3Jl1ely [ZR(ID)1
and [ZI(CJ) ) ] , was encountered during the development process. Modifications to the aer­

odynamic analysis have ta he made starting from tirst principles in order to develop an effi­

cient feedback control law of the system, but such modifications are left to future

investigations.

We can still, however, detennine the transverse displacement of the delta wing by solving

for the generalized displacements. These generalized displacements are assumed to he

defined by equation (3.103). We are interested ooly in the real part of the generalized dis­

placements which is given by

(5.7)

Hence, the generalized velocities become

(5.8)

and the generalized accelerations become

(5.9)

Substituting equations (5.1), (5.5), (5.7), (5.8), and (5.9) in equation (5.3) and then combin­

ing coefficients of COSIDt and sinCJ)t from the left-hand-side and the right-hand-side ofthe

resultant equation, one gets:

• coefficients of cos CJ) t :

•
-CJ)2[M]{q~s} + ID[Cl{q~s} + [Kl{q~s} - [ZR(CJ)l{q~s} - [Z/(CJ)]{q~s}

= [Pzl{ V~J + [PyH î1y}

where [Px] and [Pyl are defmed by equations (4.33) and (4.34) reSPectively.
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• coefficients of sinCl)t :

Now equations (5.10) and (5.11) are expressed in matrix form as

(5.11)

where

•

2
Au = - CI) [M] + [K]

A l2 = Cl)[C)

Bu = -[ZR(Cs)]

B I2 =-[Z/(Cs))

A 21 = -Cl) [C]

2
A22 = - Cl) [M] + [K]

B21 = [Z/(Cs))

B22 =-[ZR(Cl))

Equation (5.12) can he written more compactly as

where
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(5.16)

and

= r[px] [0]J(v~1 + r[py ] [o]J(Vi~1
[0] [Px] V~ 1 [0] [Py ] V~

IX J 'Y

(5.17)

When {Qaero} is zero~ equations (5.15) and (5.17) still hold~ however equation (5.16)

becomes

(5.18)

•

A program written in MATLAB is used to solve for {q~s} and {q:s} . The results are sub­

stituted back into equation (5.7) to detennine the generalized displacements~ {qrs}' Once

the generalized displacements have been determine<L these are in tum substituted into the

equation for the non-dimensional transverse displacemen~ equation (2.5). The transverse

displacements~ w~ are determined at the various locations shown in Figure 5.1.

The magnitude of the voltage applied across the thickness of the piezoelectric strips is

varied ta achieve maximum control ofthe aeroelastic oscillations. The results are discussed

in section 5.2.4.

5.2 Results

This section presents the final results of the work presented in the thesis. The calculated

eigenvalues ofthe free-system are compared to those obtained by an existing method in the

first subsection, and the response ofthe free-system is discussed subsequently. Then, struc-
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tural damping is introduced and the response of the delta wing again detennined. Next the

piezoelectric strips are introduced and the transient response of the delta wing is obtained

and compared to the response when only structural damping is present. Finally, the

response of the dynamic system when both the piezoelectric strips and aerodynamic load­

ing are present is discussed.

S.2.1 Eigenvalues of the Free-System

The delta wing was modelIed as a trian~.J1ar cantilevered plate in Chapter 2. The eigen­

value problem for the free vibrating cantilevered triangular plate was fonnulated in section

2.3 ofChapter 2 and is given by equation (2.26). The mass and stiffness matrices were also

derived in Chapter 2. In this sectio~ the natura! frequencies of the plate are compared to

those given by Andersen (1954) for various modes of vibration ta validate the structural

model developed here. Andersen obtains the natura! frequencies ofa triangular plate using

the Ritz Approximation method.

As a fcrst step towards determining the eigenvalues of the free-system, the mass and stiff­

ness matrices are generated by a program written in FORTRAN. For example, consider the

matrices generated for two shape functions in the clamped-free direction, CM=2); and three

shape functions in the free-free direction, (N = 3). Hence, MN = 6. These matrices are

imported into a simple program written in MATLAB to solve the eigenvalue problem.

Andersen (1954) non-dimensionalized the frequencies 50 that they would he independent

of the size of the chosen plate but dependent on its shape. Ta compare the results obtained

in the present study to those obtained by Andersen, we too non-dimensionalize the natura!

frequencies obtained here. Table 5.2 compares the non-dimensional natural frequencies for

the free-system obtained by the Present Method to those obtained by Andersen (1954) for

an unsymmetric cantilevered triangular plate. The results for CI) i' i> 3, are not available in

Andersen (1954) for the unsymmetric plate. Hence only the tirst two natura! frequencies
lare compared to the Present Method for - of 2, 4 and 7.
c
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Table 5.2(a): Comparison of Frequencies of the Free-System: Unsymmetric Plates

2~ 1 'J~ 1 "~ 1ûlnl D
P for ~ = 2 ûl r ':...:..:.E. for - = 4 ûl r ----E. for - = 7

n D c n D c
Mode

Present Present Present
Method Andersen Method Andersen Method Andersen

A1= 3, N=2 M=3,N=2 M=3,N=2

1 7.16 5.88 7.16 6.61 7.16 6.90
2 31.32 25.40 31.90 28.80 31.26 30.28

3 72.83 NA 103.63 NA 102.18 NA
4 111.71 NA 105.45 NA 155.38 NA

5 175.96 NA 311.09 NA 521.54 NA

6 302.51 NA 554.60 NA 906.26 NA

Table 5.2(b): Comparison of Frequencies for various values of MN: Present Method

Mode
MN=4 MN=6 MN=6 MN=9

M=2,N=2 M=2,N=3 M=3,N=2 M=3,N=3

1 7.16 7.16 7.16 7.16

2 37.04 37.04 31.32 31.82

3 87.84 78.73 72.83 47.37

4 185.80 206.77 111.71 109.90

5 -- 239.90 175.96 166.03

6 -- 564.98 302.51 318.71

7 -- -- -- 441.96

8 -- -- -- 849.00

9 -- -- -- 1093.41

In Table 5.2(a), ûln is the calculated natural frequency of the wing, 1is the semi-span ofthe

wing, D is flexular rigidity given by equation (2.3), p is the density of the plate material

(in this case Aluminium Alloy), and hp is the plate thickness. The values of the physical

characteristics are listed in Table 5.1.

As seen from Tables 5.2(a) and 5.2(b), the frequencies (for MN = 6) are slightly different
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when M= 2, N= 3 from when M= 3, N= 2 because there is one more clamped-free mode

and there are no free modes active in the free-free direction in the latter case. As seen from

Tables 5.2(a) and 5.2(b), the frequencies obtained using the Present Method have COD­

verged for the first two modes when MN = 4 and MN = 6.

ratios the values of the natural frequencies from the

However, for smaller! ratios the differences in the
c

values of the natural frequencies are somewhat larger; this May he due to the deflection

shapes chosen by Andersen (1954) for the Ritz method which May not give accurate results

for small ! . Barton (1951) made sirnilar observations about his own implementation ofthe
c

Rilz method.

Andersen' s analysis is more reliable for symmetric plate cases. When the frequencies for

the first two modes generated by the Present Method were compared to the first two modes

for symmetric plate frequencies of Andersen (1954), it was found that the results were in

very good agreement. The comparison is shown in Table 5.3.

Table 5.3: Comparison of Frequencies of the Present Method to Symmetric Plates

2R 1 2R 1 2~ 1Cü 1 ::.:J!. for - = 2 Cü 1 ~ for - = 8 ID 1 ~ for - = 14
n D c n D c n D c

Mode
Present Andersen Present Andersen Present Andersen
Method Symmetric Method Symmetric Method Symmetric

1 7.16 7.149 7.16 7.08 7.16 7.08

2 31.32 30.80 31.28 30.65 31.24 30.64

Thus, the structural dynamics model developed in this thesis can he used further with con­

fidence. Now that the eigenvalues ofa free-system have been determined~ the response of

this system can be obtained in the next subsection.
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5.2.2 Response of the Undamped, Uaforced Delta WiDC

In this subsectio~ the structural damping, C, is assumed to he zero and the PVDF strips are

deactivated. Hence, in this case, the state·space equation (2.28) representing the free­

system holds well.

As a tirst step, the Runge-Kutta method is used ta solve equation (2.28) in order to deter­

mine the generalized displacements, {qrs} , and the generalized velocities, {ilrs} , of the

undamped, unforced cantilevered triangular plate.

Let us consider two modes of vibration each in the clamped-free and free-free directions.

Hence MN = 4. Initial conditions for {qrs} and {fi,s} for all four modes of vibration are

given as an input ta excite the system. These initial conditions are listed in Table 5.4.

Table 5.4: Initial Inputs ta the System

{qrs(O) } 0.01 0.003 0.003 0.001

{iJrs(O) } 0 0 0 0

In reality, the system will damp out eventually because ofinherent material damping prop­

erties. However, in this subsection, it is assumed that there is no material damping present

and rnatrix [Al is given by equation (2.30). Thus, the oscillations of the plate will never

damp out.

Once the generalized displacements, {qrs} , have heen detennined for the system they are

placed in the equation for transverse displacement for the plate, equation (2.5). The shaPe

functions, c1>r(ç) and 'JIs(TI) , are given by equations (2.7) and (2.8) respectively. To deter­

mine the transverse displacement at any locatio~ replace ç and 11 by appropriate values

for that location shown in Figure 5.1. Ali the components ofequation (2.5) are now known

and the transverse displacement can he detennined easily.
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The results of the undamped, unforced case for the three positions are shown in Figures

5.2(a), 5.3(a) and S.4(a) respectively. Note that the scale is different for Point 1 as com­

pared to Points 2 and 3 in ail figures. As seen from the figures, the wing oscillations do not

decay in the absence ofdamping, as expected. Also, the wing oscillations are largest at the

wing tip as expected for a cantilever plate.

5.2.3 Structural DampiDg Alone ActiDg on the Delta WiDg

In the previous subsection, the transverse displacement ofan undamped free vibrating plate

was detennined. In this subsection, the structural damping given by equation (2.33) is

introduced ioto the system. The corresponding matrix [Al from equation (2.34) involving

structural damping is used for solving the state-space equation, equation (2.28). In equation

(2.33), let the damping material constants for the plate he a = 0 and p = 0.00 l . Ali steps

to detennine the response ofthe plate are as described in section 5.2.2 using the initial con­

ditions listed in Table 5.4.

The results from introducing the structural damping are shown for the: three points in Fig­

ures 5.2(b), 5.3(b) and 5.4(b) respectively. As seen in the figures. the: wing oscillations

indeed damp out over time.

5.2.4 Results for the Transient Response of the Delta Wing under the EfJect of
Piezoelectric Forees

In the previous subsection, an acceptable response was obtained for an inherently damped

system. The PVDF strips are now activated to obtain the transient response of the delta

winge AIso, it is assumed that the system has an inherent damping.

In the flfst case, ooly the strips oriented in the x-direction, that is strips 1, 3 and 5, are acti­

vated. For this let Ki = 1 = 1000; Ki:: 3 = 700; and Ki = 5 = 800. The results for all three

positions are shOMl in Figures 5.2(c), 5.3(c) and 5.4(c) respectively.
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As seen in the figures, activating the strips oriented in the x-direction has a significant effect

on the damping out ofthe oscillations. The system damps out faster when the PVDF strips

aIigned in the x-direction are active as compared to the case when only structural damping

is presen~ as seen in Figures 5.2(b), 5.3(b) and 5.4(b). AIso, as seen in Figures 5.2(f), 5.3(1)

and 5.4(f), the magnitude ofdamping due to the sttip nearest the root, that is strip 1, is larger

than that when structural damping aIone is present. In other words, even one strip at the

root (and aligned in the x-direction) bas a significant contribution in damping out of the

delta wing oscillations.

Next ooly the strips oriented in the y-directio~ that is strips 2 and 4, are activated. For this

let Ki = 2 = 1000; and Ki =4 = 700. The results for ail three positions are shown in Figures

5.2(d), 5.3(d) and 5.4(d). Comparing with Figures 5.2(b), 5.3(b) and 5.4(b) one notes that

activating the strips oriented in the y-direction does not have a significant effect on the

damping out of the oscillations. The magnitude of the wing oscillations are comparable to

that ofthe case when ooly structural damping is present. Hence it can be said that the PVDF

strips aIigned in the y-direction have little or no effect on reducing the oscillations over

rime.

Finally, the strips aIigned in both x- and y-directions are activated simultaneously. The

values of Ki are the same as those used above. The results are shown in Figures 5.2(e),

5.3(e) and 5.4(e) for the tbree positions. As seen, the results are comparable to the case of

activating the strips aligned in the x-direction ooly. Hence, it can he safely said that acti­

vating the x-direction strips aIone bas the most contribution in damping out the oscillations

of the winge

Thus by introducing the piezoelectric strips on the wing one can damp out the oscillations

faster than by just having the structural damping present.
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Figure 5.2: Transient Response of the Delta Wing at ç = 1.0 and 1')
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Figure 5.3: Transient Response of the Delta Wing al ç =0.45 and II =0 (M = 2 and N = 2)
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5.2.5 Results for the Dyaamic KapoDse of the Delta Wmg under the CODibiDed
Effeet of the Piezoeleetrie aad Uasteady Aerodynamic Forces

In the preceding subsection, the response of the delta wing in the presence of PVDF strips

alone was studied. It was concluded that the application of appropriate voltages to the

PVDF strips effectively damps out the wing oscillations. The unsteady supersonic aerody­

namic loading is now introduced on this structural-piezoelectric model to study the effects

of the PVDF strips when the aerodynamic loading is present.

Ta obtain the response ofthis dynamic system, equation (s.lS) is solved as discussed in

section 5.1 for the three locations shown in Figure 5.1 using a periodic frequency,

0) = 70 rads/sec. As a reminder, equation (5.16) is used in equation (5.15) when

{Qaero } ;1; {O} and equatioD (5.18) is used when {Qaero} = o. Two admissible functions

considered in both the clamPed-free and free-free directions. Thus, MN = 4 again. The

values of the components of the generalized displacements, {q~s} and {q;s}' are substi­

tuted back into the equation for the transverse displacement, w, as discussed in section 5.1.

Hence the dynamic response is obtained for alilocations shown in Figure 5.1.

A large number of numerical simulations were carried out to determine the best combina­

tians of voltages applied across the various PVDF strips for effective reduction of the

aeroelastic oscillations. However, ooly a handful ofresults are presented herein for brevity.

We will start by activating the PVDF strips one-by-one. To find the best combination of

strips, the amplitudes ofthe oscillatory voltages introduced across the thickness ofthe indi­

vidual piezoelectric strips, V~, vtx, V~and V~ in equation (5.6), are varied. In sorne

cases the signs of V~, etc. are also changed to detennine whether or not the strips provide

more control. As a reminder, the PVDF strips are deemed useful only if the wing oscilla­

tions are smaller in magnitude when {Qauo} ;1; {O} as compared to when

{Qaero} = {O} in equation (5.15) (implying that the aerodynamic and piezoelectric

effects are opposing each other).
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Cases Analysed

The following is a briefdescription of five ofthe cases considered in studying the dynamic

response of the system:

Case 1: The root strip aligned in the x-direction, strip 1, is activated a1one.

Case 2: Strips 1 and 3 are activated while the y-direction strips are deactivated~ that is

Vi~ and Vi~ are zero for all strips aligned in the y-direction. Also~ V:x is varied.

In this case, the combinations listed in Table 5.5 are compared.

Case 3: The third strip aligned in the x-direction, strip 5, is activated. This strip is intro­

duced into the best PVOF combination obtained from Case 2. The applied volt­

ages are listed in Table 5.6.

Case 4: The y--direction strips are activated and are placed in the best PVDF combination

obtained 50 far. The voltages, Vi~ and V~, across strips 2 and 4 are varied.

Case 5: A different periodic frequency, 0) = 150 rads/sec, is chosen to study the effects

of varying the frequency on the combinations of piezoelectric strips required to

reduce the aeroelastic oscillations. The aerodynamic matrices represented by

[ZR(ro)] and (Z/(ro)] are recalculated for this frequency.

Results obtainedfo, eues 1 and 2

Case 1: The magnitude of the oscillations is larger at ail three locations when {Qaero} is

zero, that is, aeroelastic and piezoelectric loading do not oppose each other. The same

behaviour is seen when V~ was increased or decreasec1. As this is not acceptable behav­

iour, more strips have to activated.

Case 2: Please refer to Figures 5.5 to 5.11 for the results of the test conditions listed in

Table 5.5. Figures 5.5, 5.6 and 5.7 show the response ofthe wing for case 2(i) at locations

1,2 and 3 respectively. As seen from the results, the combination is effective only for Point

l, that is the magnitude of oscillation is smailer when aerodynamic loading is present as

compared to when it is note But this is not true for Points 2 and 3.

Figures 5.8, 5.9 and 5.10 represent case 2(ii) for the three locations on the winge As seen

from the figures, the magnitude of wing oscillation is smaller when {Qauo} *- {O} as
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Table 5.5: Amplitude ofVoltage Applied across each PVDF Strip: Case 2

Case
Figmeno.

Strïp
no. 1 2 3 4 5

2(i) 5.5 - 5.7: (a)
... c ... c ... s
Vix =-500 - Vix =-400, Vix = +200 -- -

5.5 - 5.7: (h)
... c .. c .. s
Vix = -500 - VIX =-400, Vi,r =0 -- -

5.5 - 5.7: (c)
AC .. C ... s
Vix = -500 - Vix =-400, Vu = -200 -- -

2(ii) 5.8 - 5.10: (a)
A C AC "'s
Vix = -500 - Vix = -600, Vix = +200 -- -

S.8 - 5.10: (h)
AC .. CAS

Vix =-500 - Vi,r = -600, Vix =0 -- --
S.8 - 5.10: (c)

... C ... c ... s
Vix =-500 - Vu =-600, Vix = -200 - -

2(iii) 5.11: (a)-(c) ... c ... c
Vi,r = -500, - Vi,r =-400 -- -
AC
Vix = -200

Note: Voltage components not mentioned above are set tozero.

compared to when {Qauo} = {O} provided that v!.x is zero for all strips. Thus, the pie­

zoelectric strips are beneficial under these conditions. Though the magnitude ofoscillation

when {Qaero} * {O} at Point 1 is slightly larger for case 2(ii) as compared to case 2(i), it

is smaller for Points 2 and 3. Hence, overall case 2(ii) represents a bener combination.

Figure S.ll represents case 2(iii) and shows the response of the plate al Points 1, 2 and 3

when v:X of strip 1 is non-zero. Here again the results for Points 2 and 3 are not good

whereas for Point 1 the results are satisfactory.

Thus, we can say that only the cosine component of the voltage, V:=X, is effective in con­

trolling the wing oscillations when only two x-direction strips are active.

The best results obtained for cases 2(i) and 2(ii), that is when V!x = 0 for all strips, are com­

piled and shown in Figures 5.12 and S.13 respectively. From these figures, we conclude

that the magnitude of the voltage applied across strip 3 bas ta be greater than that applied

to strip 1 when only two strips are active and the periodic frequency is 70 rads/sec. Hence

the results from case 2(ii), presented in Figure S.13, are the best.
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Results obtainedfor Case 3

Strip 5 is introduced into both case 2(i) and case 2(ii). The results for aH three locations are

shawn in Figures 5.14 and 5.15.

Table 5.6: Amplitude of Voltage Applied across each PVDF Strip: Case 3

Case Strïp

no.
Figure no.

1 2 3 4 S

3(i) 5.14: (a)-(c)
.. c .. c ... c
Vix = -SOO -- Vix = -400 -- Vix = -300

3(ii) 5. 15: (a)-(c)
.. c .. c ... c
Vix = -SOO -- Vix = -600 - Vix = -300

Note: Voltage components not mentioned above are set to zero.

As shown in Figure 5.14, when strip 5 is a.ctivated, the wing oscillations with aerodynamic

loading present are smaller than when the loading is absent. In other words, our goal is

achieved. Hence, to make the PVDF strip combination ofcase 2(i) work, strip 5 has to be

activated. When Figure 5.12 is compared to Figure 5.14, we see that the magnitudes of the

oscillations for {Qaero} ;#: {O} are comparable. When strip 5 is activated in addition to the

voltages applied in case 2(ii), we see from Figure 5.15 that the results are worse as com­

pared to cases 2(ii) and 3(i). Therefore, for future test cases the PVDF strip combinations

ofeither case 2(ii) or case 3(i) can be used as both give good results.

Results obtainedfot' Case 4

The PVDF strips aligned in the y-direction are placed in one of the two best combinations

obtained so far, namely, case 2(ii). By varying the voltages across strips 2 and 4, it was

seen that either there was little or no effect in certain cases, while in sorne other cases the

wing oscillations were increased. In other words, by introducing the strips aligned in the

y-direction the response either changed very little or worsened. One set of results repre­

senting active y-direction PVDF strips is shown in Figure 5.16, for the voltage combina­

tions given in Table 5.7.

Figure S.16(a) refers to Point 1 on the winge It is seen that the magnitude of oscillations
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Table 5.7: Amplitude ofVoltage Applied across each PVDF Strip: Case 4

Case Strïp

no.
Figure no.

1 2 3 4 5

4(i) 5.16: (a)-(c) .. c .. c "c - -Vu =-500 ~. =+100 Vix = -600'Y

Note: Voltage components not mentioned above are set to zero.

when both aerodynamic and piezoelectric loading are present is the least for this combina­

tion. However, the combination is not suitable for Points 2 and 3 as seen in Figures 5.16(b)

and 5.16(c) respectively. Please note that in the previous subsection it was found that the

strips aligned in the y-direction have little or no effect as weIl.

As seen from the results obtained 50 far, locations 2 and 3 do not have a good response for

most of the combinations of voltages that have been tried. The only way to ascertain the

appropriate frequency magnitude for which all locations on the delta wing will respond

weIl is by trial and error. This is one of the limitations ofthe present study. More work is

required to fmd an efficient way to determine the appropriate periodic frequency. Due to

the limitations ofthe scope ofthis thesis, this problem will not he dealt with here. However

to demonstrate that a change in the magnitude ofthe chosen periodic frequency changes the

response of the system, the following final test case is presented.

Results obtainedfor Case 5

Let the voltage magnitudes applied across the thickness ofthe PVDF strips he the same as

those given in case 2(i). The results are shown in Figure 5.17. As seen from the figure, the

magnitude ofaeroelastic oscillation is smaller when {Qaero} = {O} as compared to when

{Qaero} * {O} for all three locations, which is what we are aiming for. Comparing the

results shown in Figure 5.17 to those in Figures 5.12, we see that the results for

150 rads/sec are quite good as opposed to thase when the frequency is 70 rads/sec.

Hence, it has heen demonstrated that changing the periodic frequency cao significantly

affect the performance of the piezoelectric strips.
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Figure 5.10: Dynanllc Response at Pomt 3: Vix = -500; 0; -600; 0; 0; Viy = 0; 0; 0; 0; 0; Vi)' = 0; 0; 0; 0; 0
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Figure 5.13: Dynanuc Response: Vix = -500; 0; -600; 0; 0; Vix = 0; 0; 0; 0; 0; Vi)' =0; 0; 0; 0; 0; V iy = 0; 0; 0; 0; 0
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Chapter 6

Conclusions and Recommendations
for Future Work

A study of the aeroelastic oscillations of a delta wing under unsteady supersonic aerody­

namic loading in the presence ofbonded piezoelectric strips bas been presented in this the­

sis. The research work involved three major steps: development ofan analytical-numerical

model for structural analysis; aerodynamic modelling; and study of the system response in

the presence ofpiezoelectric strips, with and without aerodynamic loading.

The natura! frequencies for a free delta wing were compared to those published by

Andersen (1954) in arder ta validate the structural dynamics model used in this work. It

was found that the agreement hetween the results was good. ln developing the aerody­

namic model, a hybrid analytical-numerical method was developed to calculate the

unsteady pressure distribution along the delta winge The results obtained with this new

hybrid method were found ta he more accurate than those of the Frequency Expansion

method. The computational efficiency of this hybrid method was found ta be superior to

that of the numerical methods based on the Mach Box approach. When the flow along the

wing was made steady, the pressure distribution obtained by this method was a perfect

match to that obtained by Carafoli et al. (1969) under the same conditions.

The response of the delta wing at three locations in the presence of piezoelectric strips with

and without aerodYl1alllÏc loading were studied. These strips were activated when an oscil­

latory voltage was applied across their thicknesses. Bath transient and steady state

response were obtained for the cases when no aerodynamic loading was present, while ooly
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steady state response was obtained for the aerodynamic loading case under the assumption

of small transverse wing displacements in an unsteady supersonic flow.

In the traDSient case, it was concluded that the wing oscillations damped out faster when

the span-aligned piezoelectric strips were present. It was also found that the chord-aligned

actuators had little or no effect.

While studying the dynamic response, it was implied that the aerodynamic and piezoelec­

tric effects should oppose each other. In other words, the piezoelectric strips were deemed

useful only if the delta wing oscillations were smaller when aerodynamic loading was

present as compared to when it was absent. The number of strips and the voltage ampli­

tudes required to achieve this goal were determined by trial and error. It was again con­

cluded that the spanwise strips were more effective than the chordwise strips, which had

little or no effect in reducing the amplitude ofwing oscillations. Voltage amplitudes ofthe

order of 102 volts were adequate to give acceptable reduction in the wing oscil1ations when

aerodynamic loading was present as compared to when it was absent. In certain cases, with

appropriate combinations of the piezoelectric strips, the amplitudes of delta wing oscilla­

tions were reduced by as much as halfwhen aerodynamic loading was present as compared

to when it was absent. It was found that only a smaU number of strips are needed to reduce

the wing oscillations and that increasing the number of piezoelectric strips beyond this

number does not produce further reductions. Paige et al. (1993) came to this conclusion as

well when they stlldied square anisotropie panels. Under certain conditions (for the peri­

odic frequency chosen), it was found that sorne ofthe piezoelectric combinations were able

to reduce the wing oscillations at certain locations on the wing while these combinations

were ineffective at other locations. Changing the periodic frequency altered this require­

ment. Hence, it was also established that changing the periodic frequency of the delta wing

alters the response characteristics of the wing at the difIerent locations.

A velocity feedback control scheme was developed in the present thesis for the structural­

piezoelectric Madel. However, no feedback control scheme was developed in the presence

ofaerodynamic loading. This is because the generalized displacements for control must he
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arbitrary functions of lime whereas the displaeements for the aerodynamies analysis are

presently expressed as harmonie funclions oftime. To develop a control scheme for this

case, one has to modify the aerodynamic analysis so that the equations ean he expressed as

arbitrary functions of time. Altemately, one ean numerieally expand the generalized aero­

dynamic forces as rational forces of ro and develop control Iaws in the Laplace Transform

domain.

6.1 Recommendations for Future Work

• Modify the aerodynamic analysis to make the transverse displacement an arbitrary

function of time so that one can express the struetural-aerodynamie-piezoelectric

equations of motion as state-space equations. This will enable the development of a

feedback controllaw.

• Use other feedback control schemes, such as the pole-placement technique or LQR to

analyse the response of the delta wing with and without aerodynamic loading.

• Perform flutter analysis of the wing with and without the PVDF strips 10 see if they are

capable of increasing the flutter speed.

• Carry out experiments to validate the analytical findings.
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Elements of the Stiffness Matrix: k ij

The elements of the stiffiless matrix as defined in Chapter 2, equation (2.22) are kij. The

following gives the expressions ofthese elements as used in this thesis.

Let the elements of the stiffness matrix be written as

1 1

k·· = E. JJ{k .. + k·· + k·· + k·· + k .. }dÇA..'l 3 'h 'h 'h 'J4 'l! ~·I
1 00

(A.t)

The elements kij are extracted from the equation for the potential energy given by equation

(2.21). To do this we have to start with the non-dimensional transverse displacement given

by equation (2.5) which is repeated below

M N

w(ç, TI, t) = L L <l»r(ç)'I's(Tl)qrs(t)
r=ls=l

(A.2)

where C1Jr and \fis are the shape functions given by equations (2.7) and (2.8) respectively.

The transverse displacement is similarly written for the 'lep' pair. Expanding equation

(A.2) in equation (2.21), we get

•
aw ô'l's

Q2 = - = <1»-al1 r Ôl1

Ils

(A.3)

(A.4)

(A.5)
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(A.6)

OW o'fi
b2 = - = <l>k~

011 011

(A.?)

(A.8)

(A.9)

(A. 10)

Substituting equations (A.3) to (A. 10) in the equation for potential energy. equation (2.21),

the individual components ofequation (A. 1) can he written as the following:

k·· = (1- ç)a.b.
IJI

(A. 11)

(A.12)

(A.13)

(A. 14)

Equations (A. 11) to (A.15) are substituted into equation (A.t) to obtain kij "•

k .. =
'ls

1 3 {2[211
2 + k2(1 - v)]a2b2 + 4(11 3 + (1 - v)k211)a2b3

(l-ç)

+ (..,
4 + k4 + 2(1- v)k2..,2)a3b3}
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Aerodynamic Model Details

This appendix contains additional details and results pertaining to the Aerodynamic Model.

B.l Limits of Integration Inside the Mach Cone-DerivatioD of Equation (3.34)

Please refer to Figure 3.2. Let us start from the coordinate transformation which is given as

x = xl -Xls

y = X2 -X2s

Xl -Xls

As seen in the figure, (X., x:z) is the receiving point and (xIs, x2J is the source point.

Now from equation (3.2),

and hence,

•

Substituting in Ywe gel,

Solving for x ls we gel,

Substituting in X we gel,
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But on line OA t ofFigure 3.2:

Hence~

Similarly on line OA2:

This completes the derivation of equation (3.34).

B.2 Results ofChapter 3 (Section 3.3) in Tabular Format

Tables B.1 to B.3 list the numeric results which were presented graphically in Chapter 3

(Section 3.3) for the Delta Wing under steady and unsteady flow. These results compare

the pressure distributions found using the Present Method and the method developed by

Carafoli et a1.(1969). The values in Tables B.1 to B.3 were used 10 produce Figures 3.3 to

3.5 respectively.

8.3 Coefficients Amh. np and B Ici. mp and their Derivatives

Tables B.4 to B.7 list the coefficients Amh, np and B ki, trip and their derivatives regpectively

for the modes r = 1, r =2, s = 1 and s =2 as derived in Chapter 3.
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Table B.l: Comparison of u and Cp : Steady Flow

Present Method Carafoli et al.
Present Method Carafoli et al.x.,

u or a<p u or aq>!I = ~ Imaginary Cp Imaginary Cpxl aXl aX I

-0.8 -.574980D+00 -.5749800+00 .1149960+01 .1149960+01

-0.6 -.4600670+00 -.4600670+00 .9201760+00 .920176D+00

-0.4 -.3883530+00 -.3883530+00 .7767500+00 .7767500+00

-0.2 -.3484660+00 -.348466D+OO .6969320+00 .696932D+00

0.0 -.3356260+00 -.3356260+00 .6712520+00 .6712520+00

0.2 -.3484660+00 -.3484660+00 .6969320+00 .696932D+00

0.4 -.3883530+00 -.3883530+00 .7767500+00 .7767500+00

0.6 -.4600670+00 -.4600670+00 .9201760+00 .9201760+00

0.8 -.574980D+00 -.5749800+00 .1149960+01 .1149960+01

Table B.2: Comparison of û : Unsteady Flow

Present Method Frequency Expansion
x2 al' al'

'1 = - û or~ Û or~xl aX I aX I

-0.8 -.9095630+00 -.9095630+00

-0.6 -.8366280+00 -.836628D+OO

-0.4 -.796929D+00 -.7969290+00

-0.2 -.7762640+00 -.7762640+00

0.0 -.7698000+00 -.7698000+00

0.2 -.7762640+00 -.7762640+00

0.4 -.7969290+00 -.7969290+00

0.6 -.8366280+00 -.8366280+00

0.8 -.909563D+00 -.909563D+00
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...
Table B.3: Comparison of Cp : Unsteady Flow

X2 Present Method Present Method Frequency Expansion
11 =- ... - ...

xl Real Cp Imaginary Cp Imaginary Cp

-0.8 -.1151300-03 .6721510-02 .7566560-02

-0.6 -.1006850-03 .6418140-02 .6959830-02

-0.4 -.9152190-04 .6253070-02 .6629570-02

-0.2 -.863804D-04 .616727D-02 .6457670-02

0.0 -.8472470-04 .614060D-02 .6403890-02

0.2 -.863804D-04 .6167270-02 .6457670-02

0.4 -.9152190-04 .6253070-02 .6629570-02

0.6 -.100685D-03 .6418140-02 .6959830-02

0.8 -.115130D-03 .6721510-02 .7566560-02

Table B.4: For r = 1: Coefficient A mh• np and its Derivatives

aAm~np
2

mh np A mh• np
a Am~ne

aXI
2

aXI

0 0 (x l y/l)2 0 0

1 0 0 0 0

2 0 0 0 0

0 1 0 0 0

1 1 2 0 0-2x(y/l

2 1 0 0 0

0 2 0 0 0

1 2 0 0 0

2 2 l/P 0 0
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Table 8.5: For r = 2: Coefficient Amh, np and its Derivatives

àAlnh, ne
2

mh np Amh,ne
a Amh.ne

8X1
2

ax}

0 0 (x}y/l)3 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 1 0 0 0

1 1 2 3 0 0-3(x}y) /1

2 1 0 0 0

3 1 0 0 0

0 2 0 0 0

1 2 0 0 0

2 2 3 0 03x l y/l

3 2 0 0 0

0 3 0 0 0

1 3 0 0 0

2 3 0 0 0

3 3 -l/P 0 0

Table 8 ..6: For s = 1: Coefficient Bki, mp and its Derivatives

aBki• me
2

kt mp Bki,mp
a Bki• me

ôx} 28x1

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0
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Table B.7: For s = 2: Coefficient BIc~mp and its Derivatives

ÔBIc~mp
2

Ici mp B lci, mp
Ô B lci, mp

ÔXI 2
ÔXI

2 2 2 2 2

0 0
(-l c+cxIY +2l x l -21x ty)

(l-x2)/cl 0
/2cP

1 0 (xtY -l)/cl 0 0

2 0 0 0 0

0 1 0 0 0

1 1 2 l/cl 0Xl (1- cy)/cl

2 1 -l/cl 0 0

0 2 0 0 0

1 2 0 0 0

2 2 1/2P 0 0

The derivatives listed below are supplemental 10 the derivation for the reduced velocity pre­

sented in section 3.4 for inside the Mach cone.

•

(B. la)

(B. lb)
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(B.le)

(B.ld)

where Al' A2 , A3 and A 4 are given by equation(3.82), and QI and Q2 are given by equa­

tion (3.85). Also,

•

b
l

= 2.(_I,mhP
( B )mhk-mi{!(mhk_ mi)Sin(Bkxl(l- !I) + mj 1t)

kmi BJ Bl + 1 k Bl + 1 2

BkxI(l- y) (Bkxl(l- !I) mj 1t)}
+ BI + 1 cos Bl + 1 + 2

2(1) mhP( B ) mhk - mi{ 1 . . (BkX 1(l + fi) 'Ei!:.)
b2 = kmj B Bl + l 'k(mhk-mj)sID Bl + 1 + 2

Bklxl(l + '1) (BkxI(l + fi) mi1t)}
+ Bl + 1 eos BI + 1 + 2

2 (~mhP( B )mhk-mi{ 1 . (BkXI(l- fi) mi 1t)b3 = - -- -(mhk-mj)cos +-
kmj Bl + 1 k BI + 1 2

Bkx I (1- fi) . (Bla l (1- fi) mj 1t)}
- BI + 1 sm Bl + 1 + 2
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• _ 2.(l)mIlP( B )mlrk-mj{~ _. (Bkx1(l + 1/) mi 1t)
b4 - kmj B BI + 1 k(mhk mJ)cos BI + l + 2

Bo1(l+1/) . (BkX1(l+!I) mj 1t)}
- Bl + 1 sm Bl + 1 + 2

B.S Derivatives of I I1 and lu

Appendix B

(B.2d)

The derivatives listed below are supplemental to the derivation for the reduced velocity pre­

sented in section 3.4 for outside the Mach cone.

•

mhk-mj-l f~ { ynhp r .(sinA I= {xI(l- !I)} 1 I.k_ "ll(mhk - ml) "1-8 (l- Y)mn ml am) +

sinA2) LXI (1- !I)(COSA I COSA2)] }dY
+ . 1 + (1 Y) . + . -bl -bs ~bm)+ - am) bm) R

al ! { 'Y.flIhp [ (COsA---l3 = _{ x (l- 1 ) } mlak - mj - 1 fB r . l(mhk _ m ") . l
8x I I!I _~ (1- y)mhk-m) 'J am) + l

COSA 2) lx l (l - fi)(sinA 1 sinA2)] }dY+ -+-- -b3 -b -
bmj + 1 (1 - Y) amj bmj 6 R

where b l and b3 are given by equations (B.2a) and (B.2e) respectively, and
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2 (!lmhP( B )mhk-mj { 1 . . (Shi (1- V) mi 1t)
bs = kmj BJ BI- 1 k(mhk-mj)slD BI-l + 2'

Bla l (/- g) (Bh l (/- !I) mi1t)}
+ BI-l cos BI-l +2'

2 (!lmhP( B )mhlc-mi{1 . (BkXl(1-!l)~)
b6 = kmi BJ BI- 1 k(mhk-mJ)cos BI- 1 + 2

Bkx1(1- !I) . (Bkxl(/- y) min)}
- BI-l sm BI-l +2
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Locations and Sizes of the Bonded Piezoeleetrie Strips

The following is a listing ofthe piezoelectric strip data used to generate the [Pxl and [Pyl
matrices derived in Chapter 4. Il describes the polarization direction, location and dimen­

sions of the ith piezoelectric strip.

Table C.l: Polarization, Location, and Size of the Bonded Piezoelectric Strïps

Location of Length of strip
bottom left corner

Strip Polarization ofstrip x-direction y-direction
no. along

x· Yi a· b·1 1 1

1 x-direction 0.1 0.1 0.3 0.1

2 y-direction 0.1 0.5 0.1 0.3

3 x-direction 0.5 0.4 0.3 0.1

4 y-direction 0.7 0.1 0.1 0.2

5 x-direction LlO 0.1 0.3 0.1
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