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Résumé

Les résultats presentés dans le mémoire montrent comment on peut convertir

une mise en gage de bit quantique statistiquement liante et calculatoirement

camouflante en une mise en gage de bit quantique calculatoirement liante et

statistiquement camouflante. Pour un paramètre de sécurité n, la construc­

tion de la mise en gage statistiquement camouflante requiert O(n2
) appels à

la mise en gage statistiquement liante. Une conséquence de la réduction est

qu'une mise en gage de bit quantique calculatoirement liante et statistique­

ment camouflante peut se baser sur l'existence de n'importe quelle famille

de fonctions à sens unique quantiques. On a découvert aucune réduction

équivalente dans le monde classique.

Mots-clés: cryptographie quantique, mise en gage de bit, transfert incon­

scient, fonction à sens unique.
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Abstract

The results presented in the thesis show how to convert a statistically bind­

ing but computationally concealing quantum bit commitment scheme into a

computationally binding but statistically concealing scheme. For a security

parameter n, the construction of the statistically concealing scheme requires

O(n2
) executions of the statistically binding scheme. As a consequence of the

reduction, statistically concealing but computationally binding quantum bit

commitments can be based upon any family of quantum one-way functions.

Such a construction is not known to exist in the classical world.

Keywords: quantum cryptography, bit commitment, oblivious transfer,

one-way function.
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Chapter 1

Introduction

Throughout human history, groups of individuals have tried to protect in­

formation while others have tried to gain access to it. These two oppos­

ing behaviors define the essence of cryptology and relate to cryptography

and cryptanalysis respectively. More formally, cryptography is the study of

mathematical techniques used to enforee information security. On the other

hand, cryptanalysis is the study of mathematical techniques used to defeat

cryptographie techniques and, more generally, information security services.

Cryptology is simply the combination of both disciplines.

In 1969, for the first time quantum information processing was foreseen as

a possible way to better accomplish cryptologie tasks [24]. It was the birth of

quantum cryptology. Since then, outstanding contributions from quantum

physics were made to both cryptography and cryptanalysis. Probably the
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most illustrious achievement in quantum cryptography was the discovery of

a quantum key distribution protocoI [2]. Using quantum infonnation we can

achieve an efficient QKD with unconditional security (i.e. do not depend

on any computational assumption). On the other, quantum computation

provided cryptanalysts with powerful tools sucb as an algorithm to factor

or compute discrete logarithm efficiently [23]. Another remarkable result for

quantum cryptanalysis was the quadratic speed-up for database search [13].

Researchers learned the hard way that quantum cryptography had also

its limitations. In the beginning of the 90s, the scientific community was con­

vince that bit commitment could he achieved with security relying solely on

laws of quantum mechanics [5]. A bit commitment scheme is a cryptographic

task involving two participants Alice and Bob. Alice wants to commit to a

bit b but without Bob knowing the bit until she decides ta open the com­

mitment. We say a bit commitment protocol is binding if Alice is unable to

change her mind and concealing if Bob cannot determine b before the open­

ing of the commitment. A cold rain feIl on the scientific community when

uDconditional security for quantum bit commitment was proven impossible

[19, 20, 18].

Though unconditional security was impossible, one could still hope to

2
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base the security of quantum bit commitment on a computational assump­

tian. A quantum one-way function must be easy to compute with a quantum

computer but hard ta invert even using quantum computations. Since there

is a difference of power between c1assical and quantum computers, we do

not have direct inclusion between the two respective sets of one-way func­

tions. In computationaIly secure bit commitment, we have to sacrifice the

unconditional security of only one of the two participants. Hence, there are

two possible flavors: unconditionaIly binding and computationally concealing

or computationally binding and uneonditionaIly concealing. The two flavors

aIlow different cryptographie applications. For example, computational zero­

knowledge praofs [Il, 12] can he constructed frOID unconditionally binding

commitments whereas perfect zero-knowledge arguments [4] require uneon­

ditionally coneealing commitments. Arguments ean be used whenever the

verifier is not restrieted in eomputing power and proofs can be usoo when­

ever the prover bas unlimited computing power. Arguments are preferable

in sorne settings, sinee a dishonest proyer for an argument must break the

complexity assumption on-Hne in order to prove a faIse theorem, whereas

a dishonest verifier involved in a computational zero-knowledge praof can

spend unlimited time after the end of the protocol in order ta extract 00-

3



•

•

•

ditional knowledge. Classically, the two Havors seem to require different

computational assumptions.

In the case of unconditionally binding commitments, the existence of a

family of c1assical one-way function is sufficient. The reduction is divided

into two parts: the existence of a one-way function implies the existence

of a pseudo-random bit generator {15, 14] and the existence of a pseudo­

random generator implies the e..'CÎstence of a unconditionally binding and

computationally concealing bit commitment [21]. The two part proof also

holds in the quantum setting.

For unconditionally concealing commitments, the weakest computational

assumption for which a reduction was found is the existence of a family of

classical one-way permutations [22]. However, the proof is not extendable

to the quantum world [9]. Nevertheless, it was proven that computationally

binding and unconditionally concealing quantum bit commitment cao be

based on any family of quantum one-way permutations [9J. Unfortunately,

although we have candidates for quantum one-way functions [10}, none of

them is a permutation. It was still to be establish whether computationally

binding and unconditionally concealing quantum bit commitment could rely

on a weaker computational assumption, that is quantum one-way function.

4
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New Results. Our main contribution consists in showing how any statis­

tically binding quantum bit commitment scheme can be transformed into a

statistically concealing one. Infonnally, statistical security is defined as un­

conditional security where an adversary is allowed a negligible probability of

cheating (as opposition to perfect security). Our result relies heavily upon

the QOT protocol for quantum 1-out-of-2 oblivious transfer [7, 6]. The QOT

protocol can be seen as a construction of a secure quantum oblivious transfer

from a black-box for bit commitment [7, 6, 25]. Therefore, unlike the classi­

cal case, there exists a black-box reduction of quantum oblivious transfer to

bit commitment. The construction of a statistically concealing quantum bit

commitment scheme is obtained by using the QOT protocol together with a

statistically binding but otherwise computationally concealing commitment

scheme (this commitment will be called initial commitment in the following).

Using the QOT protocol that way, we construct a simple quantum commit­

ment scheme that we show statistically concealing and computationally bind­

ing. The construction requires O(n2 ) executions of the initial commitment

scheme for n a security parameter. As a by-product, we show that the QOT

protocol is an oblivious transfer that statistically hides one out of the two bits

sent and computationally conceals the receiver's selection bit whenever it is

5
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used together with statistically binding but computationally concealing com­

mitments instead ofperfect commitments given as black-boxes. This extends

the security result for the QOT protocol of [7, 6, 25] to this case. Our reduc­

tion of an adversary for the concealing condition of the initial commitment

scheme to an adversary for the binding condition of the resulting commit­

ment scheme is an expected polynomial-time black-box reduction. Although

quantum information has peculiar behaviors adding complexity to the se­

curity proofs of cryptographie protocols, we shall see that using quantum

oblivious transfer as a primitive allows to retum to an essentially c1assical

situation. This might be of independent interest for the construction and

analysis of complex quantum protocols.

One consequence of our result is that statistically concealing but computa­

tionally binding quantum commitment scheme can he based upon any quan­

tum one-way function using Naor's construction [21] from pseudo-random

generators. Only the ability to send and receive BB84 qubits [2] is required

in order to get the new fiavor. The scheme can therefore be implemented

using current technology. Our result gives more evidence that computational

security in 2-party quantum cryptography enjoys different properties than

its c1assical counterpart [16].

6
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The work presented in the thesis largely overlaps the content of a paper

written in collaboration with Claude Crépeau and Louis Salvail and accepted

for Eurocrypt 2001. Although the original ideas for the security proofs are

mine, Claude Crépeau and Louis Salvail greatly contributed in developing

and fonnalizing the reasoning.
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Chapter 2

Preliminaries

2.1 Notations and Model of Computation

For simplicity, we shaH often drop the security parameters associated with

protocol executions. When protocols and adversaries are modeled as circuits

they should be understood as infinite families of circuits, one circuit for each

possible values of the security parameters. We define poly(n) = Uk~O O(nk
)

as the set of ail functions upper bounded by a positive polynomial. We say a

positive function f(n) is negligible if for ail p(n) E poly(n) and n sufficiently

large we have f(n) < p(~r Accordingly, we say that a function g(n) is

overwhelming if 1 - g(n) is negligible.

Let 1in denote a n-dimensional Hilbert space, that is a complete inner

product vector space over the complex numbers. The basis {ID), Il)} denotes

the computational or rectilinear or H+" basis for 'H.2 • When the context

8
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requires, we write lb)+ to denote the bit b in the rectilinear basis. The

diagonal basis, denoted "x", is defined as {IO)x, Il)x} where IO)x = ~(IO) +

Il)) and Il)x = ~(IO) - Il)). The states [0), Il), 10}x and Il)x are the

four 8884 states. For any x E {O,l}R and () E {+, X}R, the state Ix)o is

defined as ®?=llxi)Oi where ® denotes the tensor product. An orthogonal

(or von Neumann) measurement of a quantum state in llm is described by

a set of m orthogonal projections M = {Pi}~l acting in llm thus satisfying

Li Pi = lm for lm denoting the identity operator in llm . Each projection

or equivalently each index i E {l, ... ,m} is a possible classical outcome for

M .

We modei quantum algorithms by quantum circuits built out of a uni­

versaI set of quantum gates ug = {CNot, H, 1tQ}, where CNot denotes the

controlled-NoT, H the one qubit Hadamard gate, and BQ is an arbitrary one

qubit non-trivial rotation specified by a matrix containing only rational num­

bers (1]. The time-complexity of a quantum circuit C is the number of ele­

mentary gates IICIlug in C. In addition to the set of gates UQ, a quantum

circuit is allowed to perfonn one kind of von Neumann measurement: M+ =

{IFt t pt} where pt = 10)(01 and pt = Il)(11 are the two orthogonal projec­

tions of the computational basis. M+ is sometimes called the measurement in

9
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the rectilinear or computational basis. Another von Neumann measurement

use<! by the receiver in the BB84 quantum carling scheme is the measure­

ment in the diagonal basis Mx ={IP;, IPr} for I?: = ~(Ia) + Il))t(IO) + Il))

and lPr = ~(IO) - Il))t(la) - Il)) where t denotes the transposed-complex

conjugate operator. The Hadamard gate His sufficient ta build measurement

Mx E Ug from M+ since Mx = {HfJPtH, HtIPtH}. If l'II) E HA ® HB is a

composite quantum state, we write lP:lw) (Le. IP: ® tBlw)) for the projec­

tor applied to the registers in HA along the state lx) for x E {a, 1}Dim(HA).

The cIassical output L(lllf)) of circuit L is the classical outcomes of all von

Neumann measurements M+ taking place during the computation Llw). If

the circuit L accepts two input states of the fonn 1'1'0) ® l'11L) we may write

similarly L(I'11o), l'Il L)) for the c1assical output.

A 2-party quantum protocol is a pair of interactive quantum circuits

(A, B) applied to sorne initial product state IXA)A ® IXB) B representing A's

and B's inputs to the protocol neglecting to write explicitly the states of A's

and B's registers that do not encode their respective input to the protocol

(thus aIl in initial states 10)). AIso, we shaH often write IXA)A IXB)B for the

product state without explicitly writing the tensor product ®. Since commu­

nication takes place between A and B, the complete circuit representing one

10
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protocol execution may have quantum gates in A and B acting upon the same

quantum registers. We write A G B for the complete quantum circuit when

A is interacting with B. The final composite state 1\lifinal) obtained after

the execution is written IW/inal) = (AG B)lxA)AlxB)B. Protocols are to he

understood, although not explicitly stated, as specified by famiIies of circuits,

one for each possible value of the security parameter n. If for a participant

(adversary) P given ln as input there exists a cIassical Turing machine that

efficient1y computes the description of the circuit Pn to he run for security

parameter n then P is said to he a uniform participant (adversary); that is

P is modeled by a uniform family of quantum circuits. Otherwise, P is said

to be non-uniform.

2.2 Cryptographie Primitives

~he two relevant quantum primitives we shall use heavily in the following are

quantum bit commitment and quantum oblivious transfer. They are defined

as straightforward quantum generalizations of their cIassicaI counterparts.

2.2.1 Quantum Bit Commitment

A quantum bit commitment scheme is defined by two quantum protocols

((CA,CB ), (OA, OB)) where (CA,CB) is a pair of interactive quantum cir-

Il
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cuits for the committing stage and (OA, OB) is a pair of interactive quantum

circuits for the opening stage (Le. A being the committer and B the re-

ceiver). The committingstage generates the state IWb) =(CA0CB )lb)AIO)B

upon which the opening stage is executed: IW/in4l) = (OA 0 OB)lwb). The

binding condition of a quantum bit commitment is slightly more general

than the usuaI classical definition. An adversary A = (CÀ, OA) is such that

/lÎt) = (CA0CB )IO)À[O)B is generated during the committingstage. The dis-

honest opening circuit OÀ tries to open b E {D, 1} given as an extra input bit

probability to open b with success. More precisely, sb(n) = lI1PgK bl\Ït/in4l) 11 2
1

where 1Pg K b is Bob's projection operator on the subspace leading to accept
1

the opening of b. An adversary A of the binding condition who can open

b = 0 with probability at least so(n) and open b = 1 with probability at least

S1 (n) will be called a (so(n), S1 (n))-adversary against the binding condition.

We define the concealing and binding criteria similarly to [9]:

(computationally) binding: There exists no quantum (so(n), St (n))-ad-

versary Ji and positive polynomialp(n) such that sO(n)+s1(n) ~ 1+p(~)

for n sufficiently large. The scheme is computationally binding if we add

the restriction that IIAlluG E poly(n).

12
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(computationally) concealing: For every interactive quantum circuit ëB

for the committing stage, aIl quantum circuits LB acting only upon

B's registers, all positive polynomials p(n) and n sufficiently large,

P (L Ï1 ((CA
<:) C Ï1 )lb)AIO)B) = b) < ~ + p(~) where the probabilities are

taken over b ER {O, 1}. The scheme is computationally concealing if we

add the restriction IICBlluç + IILBlluG E poly(n).

What we caB concealing and binding is in fact statistically concealing and

statistically binding respectively and Dot perfectIy concealing and perfectIy

binding.

2.2.2 Quantum Oblivious Transfer

In the following, we shall restrict our attention to 1-2 quantum oblivious

transfer (Le. one-out-of-two oblivious transfer) [6, 8]. A 1-2 quantum oblivi­

OUS transfer protocol involves a sender Alice holding input bits (bo, bl ) and a

receiver Bob holding input c E {O,I}. Alice sends (bo,bd to Bob in such a

way that Bob receives only he and Alice does not get to know c. The receiver

must not be able to find be for at at least one ë E {D, 1} and even given

be • More precisely, a protocol (A, B) for 1-2 quantum oblivious is such that

Illt(bo, bL, c)) = (A <:) B)lbobl)Alc)B aIlows Bob to recover be from applying

13
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M+ upon one ofhis registers. A protocol for 1-2 quantum oblivious transfer

is (computationally) secure if it is both

(computationallyJ secure against the Bender: For aIl quantum sender

A, all quantum circuit LA acting only on A's registers, aIl positive poly­

nomials p(n) and n sufficiently large, P (LA((A 0 B)IOO)Alc)B) = c) <

~ + p(~} where the probabilities are taken over c ER {O, 1}. The security

is computational if we add the restriction I/LA llug + IIAI/ug E poly(n).

(computationallyJ secure against the receiver: Forevery quantum re­

ceiver B, all quantum circuits LB acting only on B's registers, aIl pos­

itive polynomials p(n) and n sufficiently large, there exists a random

variable c with possible outcome 0 or 1 depending on (A0Ë)lbobl )AIO)B

satisfying P (LB((A 0 Ë)lbobl)AIO)B, Ibc)B) = bë ) < ~ + p(~) where the

probabilities are taken over bo, bl ER {a,I}. The security is computa­

tional if we add the restriction IIBllug + IILBI/ug E poly(n).

As for bit commitment, the security against the sender and the security

against the receiver is not perfect but statistical.

14
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Let X rv B(P) be a Bernoulli random variable with probability of suceess p

(when X = 1). The following tools are used on multiple occasions in the

security proofs presented in chapter 4.

2.3.1 Hybrid Argument

Let X = {Xo, X h ... ,Xn } be a set of independent random variables Xi rv

B(Pi) for 0 ~ i ~ n. Then, there exist 0 ~ k < n sueh that,

The result also holds without the absolute values, but is non-trivial only if•
1 1

IPn - Pol
Pk+L - Pk ~ .

n
(2.1)

•

Pn > PL· This simple argument is also used in other cryptographie proofs

[14].

2.3.2 Bernshtein's Law of Large Numbers

Theorem 2.3.1 (Bernshtein) Let XL, X 2 , ••• ,Xn l'V B(P) he independent

random variables following a Bernoulli distribution with P as the probability

parameter. Then for any 0 < € ~ p(l - pl,

15
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In particular, Bernshtein's law of large numbers ensures us that we can

estimate the probability of an event with an error bounded by any polynomial

except with negligible probability using a polynomial number of random

variables. For example, if we want to estimate p with an error bounded by

€ = p(~) then with n = rmp(m)21 random variables we obtain a correctly

bounded estimate with probability at least 1 - 2e-m .

2.3.3 Estimating Polynomial Variation

Suppose we have a quantum circuit Rn aIlowing to sample from a Bernoulli

distribution with unknown parameter Pn = q + p(~) where 0 =::; q < 1 is a

known constant and p(n) is sorne positive polynomial. That is P (Rn = 1) =

Pn and P (Rn = 0) = I-Pn independently for each execution of Rn. The fol1ow-

ing cIassicaI procedure uses the quantum sampling circuit Rn as a black-box

to provide a lower bound ...L for _(1) with overwhelming probabiIity:
9n P n

LowBound(Rn,q,n)

1. Pn = 0; 9n = 1;

2. While Pn < q + .1.. Do
- 9n

(a) 9n = 9nn ;

16
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(b) sampling = ng~;

(c) success = 0;

(d) For 1 ~ i ~ sampling Do success = success + Rn;

(e) p- - succeu .
n - sampling'

3. Return: ..l.
gn

Lemma 2.3.2 For n sufficiently large, LogBound(Rn, q, n) returns ..l. such
gn

that ~() < ..l. < _(L) except with probability 2-an for a > 0 constant andn p n gn - P n

after calling Rn an expected O(nSp(n)2) times.

Proof: For n sufliciently large, there exist a constant c sucb that

1 1 1
--<--<-.
nc+L p(n) - nC

(2.2)

Hence, there exists at least one constant k sucb that for all i ~ k + 2 and

3 1 1
ni < p(n) ~ ni'

Let k' he the smallest constant satisfying (2.3).

(2.3)

•
By Bemshtein's law of large numbers, the obtained estimate Pn(t) in the

t-th repetition of step 2 has a bounded error gn(t} = ~t with probability at

17



• least 1 - 2e-n • So, for j < k' we have with probability at least 1 - 2e-n

_ ( ') 1 1 < 2 _ 2
Pn J ~ q + -() + -. _ q + -:- - q +-(')

P n nJ nJ Yn J
(2.4)

and the number of repetition of step 2 is greater than k' with probability at

least (1 - 2e-n )k'. Moreover, for i ~ k' + 2 we have again with probability

at least 1 - 2e-n

_ (') 1 1 2 2
Pn ~ 2 q + -() - --"'7 > q + --: = q + -(')P n nI nI Yn ~

(2.5)

•
and 50 the probability of executing more than k' + 2 repetitions of step 2

is lower then 2e-n . Hence the procedure will repeat step 2 either k' + 1 or

k' +2 and respectively output n,)+l or nr.J+2 except with negligible probability

smaller than 2-an for sorne a > O. By definition of k' we have that

111 1

()
<-kt2'_k'l <-().n2p n - n + n + P n

(2.6)

Hence, the numher of caUs to Rn in any of the first k' + 2 rounds is at

most n5p(n)2 and since (2.5) the expected total number of caUs to Rn is in

o

•

2.3.4 Finding a Polynomial Drop Between Neighbors

Let Vm(p(~) = {Pi}~o he a family of Bernoulli distributions with unknown

parameters 0 ~ Pi ~ 1 for every 0 ~ i ~ m and sucb that Pk· - Pk-+l ;?: p(~)

18



• for some 0 ~ k· < m. Let S he a quantum circuit sucb that P (Sil) = 1) = Pl

and P (Sil) = 0) = 1 - Pl for all 0 ~ l ~ m. That is, S is a quantum circuit

allowing to sample from the Bernoulli distribution B(PI) given c1assical input

Il). We would like to find '" that exhibits a polynomial drop PIC - PIC+l similar

to Pk- - Pk-. Algorithm FindDrop finds Il. using the sampling circuit S as a

black-box but is otherwise c1assical:

FindDrop(S'p(~),n)

1. P-l = O;k = -1;

k = k + 1; success = 0;

For i = 1 to f64mnp(n)21 Do success = success + Slk};

Pk = success/f64mnp(n)21;

3. Until (flk-l - Pk ~ 4P~n)) or (k = m)

4. Return K.=k - 1.

• 2. Loop:

(a)

(b)

(c)

•

The retumed value Il. can now be shown to satisfy PIC - PIC+l ~ ~(Pk- - Pk·+l)

r.xcept with negligible prohability. The algorithm is efficient in terms of

IISllug, and parameters m and n.
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• Lemma 2.3.3 Given a family of Bernoulli distributions 'Dm(p(~») = {pd~l

with sarnpling circuit S such that Pk- - Pk·+l ~ p(~) for sorne 0 < k* ~ m -1,

algorithm FindDrop(S, p(~)' n) returns K. such that P" - P"+l ~ 2p(n) except

with negligible probability 2-an for Ct > 0 constant and after calling S at most

Proof: By Bernshtein's law of large numbers, Pk as a bounded error 8P(n)

with probability at least 1 - 2e-mn . So, with probability at least (1 -

2e-mn)m+l the estimate Pk is within bounded errors 8P(n) of Pk for all 0 ~

k ~ m. In that case, we have for 0 ~ i ~ m - 1 such that Pi - Pi+l < 2p(n)

• _ _ 2 3
Pi - Pi+l ~ Pi - Pi+l + 8p(n) < 4p(n)

and aIso for 0 ~ j ~ m - 1 sucb that Pi - Pi+L ~ p(~)

Pi - Pi+! ~ Pi - Pi+l - 8P~n) > 4P~n)'

(2.7)

(2.8)

The algorithm FindDrop returns a bad '" whenever P" - P"+l < 2p(n) but

Pk-P"+L ~ 4P~n) or whenever k* could not be recognized. By equation 2.7 and

2.8, the probability Pe that FindDrop makes a mistake in the output satisfies

Pe ~ 1 - (1 - 2e-mn)m+l ::; 2-an for sorne cr > O. The second inequality

is easily obtained by expanding with the Newton's binomial theorem and

•
bounding terms.
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Chapter 3

Protocols

3.1 The QOT Protocol

The QOT protocol [7, 6] is based upon the BB84 quantum coding scheme [2].

If the receiver (Bob) of a random BB84 qubit Is}p, S ER {D, 1},,B ER {+, x}

measures it in basis fi ER {+, x} upon reception, then a noisy classical

communication of bit s from Alice to Bob is implemented. Moreover, if later

on Alice announces fi, then Bob knows that he received s whenever fi = ~

and an uncorrelated bit whenever f3 1= fi. The QOT protocol amplifies this

process in arder to get a secure 1-2 oblivious transfer. In order to ensure that

Bob measures the BB84 qubits upon reception, bit commitments are used.

Bob commits upon each measurement basis1 and measurement outcome right

arter the quantum transmission. Alice then verifies in random positions that

IThe bases {+, x} are encoded in {D, 1}.
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Bob has really rneasured the transrnitted qubits by testing that whenever

(3 = pthen Bob's classical outcome r E {D, I} is sucb that T = s.

In the following, we assume that Alice and Bob have access to sorne bit

commitment scheme BBC in order for Bob to commit upon the measure­

ment bases of the received qubits together with the outcomes. Since the

two cornmitments are made together, we write BBC(x, y) where x E {+, x}

and y E {O, I} for the commitments of both the measurement basis and the

measurement outcome. This simply means 2 sequential executions of BBC,

one for the commitment of x and the other the commitment of y. BBC may

be given as a black-box for bit commitment or may be provided from sorne

computational assumption. We denote by the Open-BBC(x, y) the opening

stage of BBC(x, y). Protocol QOT(bo, bd(c) acbieves the oblivious transfer of

bit bc•
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Protocoll ( QOT(bo, bd(c) )

1: For I ~ i ~ 2n

• Alice picks Si En {n, i}, Pi En {+, x}

• Alice sends to Bob a qubit 1ri in state 1Si) {3i

• Bob picks a basis Pi En {+, x}, measures 1ri in basis Pi, and obtains
the outcome Ti E {D, I}

2: For 1 ~ i ~ n

• Bob runs BBC(Pi, Ti) and BBC(Pn+i' Tn+i) with Alice

• Alice picks li ER {D, I} and announces it to Bob

• Bob runs Open-BBC(Pnfi+i' Tnfi+i)

• Alice verifies that f3nfi+i = ~nli+i => snfi+i = Tn/i+i, otherwise she
rejects the current execution

• i/ li = 0 then Alice sets Pi f- Pn+i and Si f- Sn+i and Bob sets
Pi f- Pn+i and ri f- Tn+i

3: Alice announces her choices 0/ bases Pl, P2,· .. ,/3n to Bob

4: Bob chooses at random and announces two subsets of positions Jo, J l C

{l, 2, ... ,n}, ]Joi = IJtI = j, Jo n J l = 0, and Vi E Je, (3i = Pi-

5: Alice computes and announces bo = e Sj œbo and bl = Et) Si œbl
iEJo iEJ,

6: Bob receives (bo, bl ) and computes bc = EB ri œbc
iEJc

Known Security Results. The correctness and the security of the QOT

protocol against the sender (Alice) has been reduced to the concealing prop-

erty ofBBC in [3, 6]. The security against the receiver (Bob) has been provided

by Yao in [25] given the commitment scheme BBC is binding. That is, given
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BBC is a perfect black-box for bit commitment then QOT is secure agaïnst

any dishonest Bob irrespectively of his computing power.

3.2 QBC Protocol using QOT

Given a binding but computationally concealing bit commitment scheme

BBC in QOT the following commitment scheme will be shown concealing and

computationally binding.

Protoco12 ( QBc(b) )

1: QBC-COMMIT(b)

• For 1 ~ j ~ n

• Alice prepares aOj En {O,I} and alj = aOj œb

• Bob prepares Cj ER {D, I}
• Alice and Bob execute QOT(aoj,alj)(Cj) and Bob receitJes the

result dj

2: QBC-OPEN(b)

• Alice announces b

• For 1 ~ j ~ n

• Alice announces aOj and a lj

• Bob tJerifies that b = aOj œalj and dj = acii

A commitment to bit b is done by sending through 1-2 oblivious transfers

npairsofbits {(aOj,alj)}j=l sucb that CZOjEBaLj = b. Theconcealingcondition

depends on the security of the oblivious transfer against the receiver and the
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binding condition depends on the security against the sender. IntuitiveIy,

the QBC protocol appears concealing since for I ~ j ~ n Bob cannot obtain

information on more than one of the two bits (aoj, alj) input in the j-th QOT

and 50, cannot determine b = aOj EBalj. Similarly, the QBC should be binding

since for aIlI ~ j < n Alice needs to change the bit adjj not selected by Bob

in order to change her commitment.

3.3 More Notation

ln the following we shall have to identify the variables generated during aIl

caUs to QOT in QBC. For that purpose, we use the following notation:

• -rr{ is the i-th qubit sent in the j-th calI to QOT in QBC.

• [3t E {+, x} is the basis f3i announced by Alice during the j-th execu-

tion of QOT in QBC. Note that sinee Alice is not necessarily honest, 7r{

can be different from IO)p~ and Il)pf'
l l

• pl E {+, x} is the basis used by Bob to measure 7r{ in the j-th calI to

QOT.

• ri E {a, I} is the outeome of Bob's measurement of n1 in basis pt.

• Tf E {a, I} is Carl's outcome for measurement of nt in basis f3l.
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• Ji = (Jj, JI) is the two sets of positions announced by Bob in the j-th

execution of QOT.

We denote by bold lowercases the values for all executions at one glance:

{3 = {/#h,j, ~ = {~lhJ' r = {rthJ' and r = {rf}i.j. We denote by ho =

bA, ... ,b~ and b1 = bL ... ,bî the bits announced by Alice at step 5 of each

caU to QOT. Similarly, we denote by a = (ao, ad = (aOb au), (ao2' al2), ... ,

(aon, aln) E {a, 1}2n Alice's announcements during the opening stage. We

also denote Jo = JJ,... ,J(f and JI = Jt, ... ,Jf all sets announced by

Bob and we write J = (Jo, Jd. Let c = Cll .. ' ,en be aIl selection bits

used by Bob and let d = db . .. ,dn be aIl bits received by QOT. We write

Je = J~l ' J;.2' ... ,J~ for all set of positions corresponding to qubits measured

by Bob in bases announced by Alice.
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Chapter 4

Security Proofs

4.1 The Binding Condition

In the following section, we show that QBC is secure against any Alice (the

sender) who cannat break the concealing condition of the inner commitment

scheme BBC. BBC is used in the caUs to QOT in arder for Bob to commit on

his measurements and outcomes.

Simplified Version of QOT. In our analysis of the binding condition of

QBC, we shaH assume that the opening of half of the commitments in step

2 of QOT doesn't occur. The opening of the commitments allows Alice to

make sure that Bob measured the qubits received in QOT upon reception.

This test is not relevant to the binding condition of QBC.
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Protocol 3 ( QOT-Cbo, bd(c) )

1: ...step 1 of protocol 9.1

2: For l ~ i ~ n

• Bob runs BBc(.Bi' Ti) and BBC(,Bn+i' Tn+i) with Alice

• Alice picks fi En {D, 1} and announces it to Bob

• if fi = 0 then Alice sets {li ~ fin+i and Si +- Sn+i and Bob sets
,Bi +- .Bn+i and Ti +- Tn+i

3-6: ... as steps :J to 6 in protocol 3.1

We omit the proof of the following simple lemma:

Lemma 4.1.1 I!QOT- is secure against the sender then QOT is secure against

the sender.

Throughout section 4.1, we shaB assume tacitly caBs to QOT· in QBC instead

of caBs to QOT. This simplifies the analysis and according to lemma 4.1.1, it

can be done without loss of generality.

4.1.1 How to Prove the Binding Condition

In order to show that QBC is computationally binding, we introduce interme-

diary protocols that will allow us to bridge the security of the QBC protocol

with the known security of QOT given black-boxes for bit commitments. Let's

consider the following four modified protocols:
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U-QOT: Protocol QOT except that in step 2, Bob commits to random values.

In other words, for 1 ~ i ~ n, Bob runs BBC(UOi, Uli) and BBC(U2i, U3i)

with UOi,U2i En {+, x} and Uli,u3i ER {D, I}.

M-QOT: The same as U-QOT but a third party named Carl, for 1 < i ~ n,

intercepts the i-th qubit 1ri sent by Alice in step 1, measures in basis /3i

(announced by Alice in step 3) and sends the resulting state to Bob.

U-QBC: Protocol QBC using U-QOT.

M-QBC: Protocol QBC using M-QOT.

The security against any dishonest sender in U-QOT and M-QOT is a direct

consequence of the analysis provided in [6]. Since the commitments upon

measurements do not carry any infonnation about Bob's measurement, Alice

cannot obtain any infonnation about his selection bit c. The security is

information-theoretic, DO complexity assumptioD on Alice's computing power

is required.

We reduce the security of the binding condition of QBC to the security of

the concealing candition of BBC in two steps:

1. Using Lemmas 4.1.2 and 4.1.3, we conclude in Lemma 4.1.4 that U­

QBC is binding. The modified protocol M-QBC is used for reducing
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the security of U-QBC to the security of U-QOT. Carl's presence allows

one ta reduce the analysis to an essentially classical argument which

hecomes simpler than working from U-QBC directIy.

2. Theorem 4.1.5 establishes the desired result using the fact that an 00­

versary for the binding condition of QBC cannot he an adversary of

U-QBC (Lemma 4.1.4). It is shown how to construct an adversary for

the concealing condition of BBC given an adversary for the binding con­

dition of QBC.

4.1.2 U-QBC is binding

In this section, we show that U-QBC is hinding (Lemma 4.1.4) using Lemmas

4.1.2 and 4.1.3 as intermediary steps.

First, we show that an adversary against the binding condition of U-QBC

can be transformed into an adversary against the binding condition of M-QBC.

Lemma 4.1.2 If there exists a (so (n), St (n)) -adversary A against the bind­

ing condition ofu-QBC there also exists a (so(n), St (n))-adversary A· against

the binding condition 0/ M-QBC.

Proof: We observe first that À's announcement of {j at step 3 of V-QOT

commutes with step 2. That is, since only commitments to random values
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are received, A can detennine {j without Bob's commitments. Moreover, Ji

could simulate the commitments on her own and then detennine {j before

the qubits are sent to Bob at step 1. Let A* he the quantum adversary that

does that. li Ji provides a (so(n), Si (n))-advantage in U-QBC then 50 it is for

A·. We DOW show that A· is also an adversary for the binding condition of

M-QBC.

Now assume for simplicity and without 1055 of generality that, Bob in U­

QBC or Bob and Carl in M-QBC wait until after Alice announces a = (ao, al)

before measuring all qubits received. It is easy to verify that this can always

be done since nothing in the committing stage of U-QBC or M-QBC relies

on those measurements' outcomes (i.e. since the commitments are made to

random values). Clearly, postponing measurements do not influence Alice's

probability of success at the opening stage.

Let V = ({3, J, bo,bL, c, a) be the partial view in U-QBC or in M-QBC up

to Alice's announcement of a (and b since for aIl 1 < j $ n, ajO œajl = b)

in the opening stage. Let Vu and V M be the random variable for the partial

view in U-QBC and M-QBC respectively. By construction we have that for aIl

V = ({3,J, bo, lh, c, a), P (Vu = V) = P (VM = V). Moreover, we have that

for aIl partial views V, the joint states Iwu(V)) for U-QBC and IWK(V)) for
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n)[ajO Er) ajl = b]} be the set of partial views corresponding for Alice to open

bit b. Given V, Bob's test will succeed if he gets d = Oc = alc1 , a2C2' •.. ,ancn

after measuring the qubits in positions in Je using Alice's bases !31 for all i E

. . { v 1 vJ{ and J E {l, ... ,n}. Let Mte"t(V) = ~k' - ((tk} be the measurement
1

allowing Bob to test Alice's announcement when she unveils b given partial

view V E Vb• ~ is the projection for the state of all qubits received in

positions in J cinto the subspace corresponding to parity dj = ajCj for all j E

{l, ... ,n}. More precisely, ~ = ®j=l LXET(Vj) ~(V,j) where T(V,j) =

{x E {a, l}/Jtjll Er)i Xi = ajCj Er) bt} and I3(V,j) = {,Blli E Jgj } for all j E

{l, ... ,n}. Let sb(n) he the probability of success when A* opens b in M-

QBC. We get that

Sb(n) - E P (Vu = V) II~ Iwu(V)} 11 2

VeVb

- E P(VM = V) 11~~lwH(V))112
VEVb

- s~(n) (4.1)

•

since the only difference between U-QBC and M-QBC is that in the former

case both Carl and Bob measure the qubits in positions in J c with the same

measurement M teJt (this is why we have ~~ = ~ in (4.1)). Carl's
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• measurements for positions in Je are irrelevant to the success probability.

The result follows. o

•

•

Next, we reduce the binding condition of M-QBC to the security against

the sender in M-QOT. We show that from any successful adversary against

the binding condition of M-QBC one cao construct an adversary able to ex­

tract non-negligible information about Bob's selection bit in M-QOT. Carl's

measurements in M-QBC allows one ta use a classical argument for most of

the reduction thus simplifying the praof that U-QBC is binding.

Lemma 4.1.3 If there exists a (so(n), S1 (n»-adversary il = (CA, OA) for

the binding condition of M-QBC with So (n) + s 1(n) ~ 1+ p(~) for sorne positive

polynomial p(n), then there also exists a cheating sender A· for M-QOT.

Proof: Let ajo and ajl be the two input bits for the j-th caU to M-QOT

computed according to Carl's outcomes r. Let V be the random variable

for the joint view (a, a', d, c) for an execution of the committing and the

apening stages of M-QBC between ri and an honest receiver B and where ri

is opening a random bit b ER {O,I}. Without loss of generality, we assume

the announcements made by .ri to be consistent, that is aQi œaH = b for

1 ~ i ~ n when she opens bit b. Given V = (a, a', d, c), we define the
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ordered set S(V) = {jlajoEBajl f:. ajoEBajl} ç {l, ... ,n} ofcaUs to M-QOT for

which given view V Alice's announcement of a disagree with Carl's outcomes

a'. Given the ordered set S(V) = {al, 0"2, ••• ,as}, let Xj(V) E {D, I} for

I $; j $; s he defined as

Xj(V) = {Ol if dtrj =1= atrjCaj

if dtrj = atrjCaj •

We let X(V) = X1(V), ... ,X1(V)(V) for l(V) = min (IS(V)I, r~l). Clearly,

for Ji to open with success given V, we must have X(V) = 11(V). Note that

p ([S(V)I ~ ~) ~ ~ since for at least one choice of b, IS(V)I ;;::: ~ given that

V always describes a consistent opening. We easily get that

p (X(V) = Irr1) - p (X(V) = 11(V)) - p (X(V) = II(V) 1\ l(V) < i)
> ~(so(n) + Sl (n)) - ~p (X (V) = l/(V) [1(V) < ~)

1
> 2p(n) . (4.2)

Since L XE {o,1} r lt1 P (X(V) = x) ~ 1, for n sufficiently large there exists a

string fio E {O,I}ril sncb that P (X(V) = -gO) $; 4P~n). Let p he the number

of zeros in yO and R(fjO) = {rh r2, .. . l rp } C {l, ... , r~l} he the ordered set

of positions I ~ r $; r~l where y~ = o. We DOW define for 1 $; j ~ p the

hyhrid strings ijÏ = ii1.ii4 ... Yf~l hetween -go and 1r~l:

... . {1 if i = Tk for k $; j
Yf = "0Yi Otherwise.
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• Hence, P (X(V) = fjP = ln) - P (X(V) = yO) ~ 4P~n) and we conclude by an

hybrid argument that there exist 1 ~ k· ~ p such that

( ) ~k-) (() ~k* -1) 1 1
P XCV = y - P X V = Y ~ p4p(n) ~ 2(n + l)p(n) (4.3)

•

•

Note that yk- and fjk*-l differs only by the bit in position rk- where they

respectively have a 1 and a a.

A· uses À and B = (C B , OB) in the following way: after choosing h ER

{l, ... ,n}, it makes À interact with a simulated honest receiver B for M-

QBC except for the h-th execution of M-QOT for which À interacts with the

targeted receiver for M-QOT. Let V = (B, a', d, c) be the view generated

during the execution. Given A·'s view, algorithm LA- produces a guess ë for

Bob's selection bit C = Ch in M-QOT as follows:

then ë E {a, 1} is defined snch that ahè = ahè (which necessarily exists

since h E S(V»),

• Otherwise, ë ER {a, 1}.

Let T(V) he the event of a successful test in the previous computation.

Since independently IS(V) 1 ~ ~ with probability at least ~, h = qr/c* with
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probability ~, and Vi E {l, ... , r~l} \ {rA;-}, Xi(V) = lif- with probability

P (X(V) = 'Ok-) + P (X(V) = yA;--l), we have that

Given T(V), the guess ë is the only value for Bob's selection bit c that would

Iead to X(V) = yk- instead of X(V) = yk--l (the two strings are the only

possible given T(V)). We get

Following, (A*, L A-) is a cheating sender for M-QOT since

P (ë = c) - ~(1- P (T(V))) + P (T(V)) P (ë = cIT(V))

1 1
> 2+ 8n(n + l)p(n)" (4.6)

o

Using Lemmas 4.1.1, 4.1.2 and 4.1.3 together with the fact that M-QOT is

unconditionally secure against the sender [6], we get the desired result:

Lemma 4.1.4 Protocol U-QBC is binding.

As we shaH see next, Lemma 4.1.4 helps a great deal in proving that QBC is

computationally binding.
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4.1.3 QBC is Binding when BBC is Concealing

In the following, we conclude that QBC is computationally binding whenever

BBC is computationally concealing. We use the fact that U-QBC is binding

(Lemrna 4.1.4) in order to use any adversary against the binding condition

of QBC as a distinguisher between random (U-QBC) and real (QBC) cornmit­

ments for sorne hybrids between U-QBC and QBC.

Theorem 4.1.5 If there exists a (so (n), SI (n)) -adversary À - (CA, DA)

against the binding condition ofQBc with sO(n)+sl(n) > 1+ p(~) for positive

polynomial pen), then there exists a quantum receiver C B in BBC and a quan­

tum algorithm LB such that P (LiJ(CCA0 CB)lb)AIO}B) = b) 2: ~+n(n4~(n»)

whenever b En {D, I} and where C B calls A an expected O(n5p(n)2) tîmes.

Proof: Let B = (C B , OB) be the circuits for the honest receiver in QBC

and let A be an honest committer in BBC. Given À, we construct a receiver

C B in BBC from which a bias for A's committed bit can he extracted. Re-

member that the only difference between U-QBC and QBC is that a honest

receiver commits to random bits instead of his measurernents and outcomes.

There are 4n calls to Commit-BBC per QOT (U-QOT) for a total of 4n2 during

the comrnitting stage of QBC (U-QBC). Let's note as significant the com-
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mitted bits specified by the protocol QOT (to measurements and outcomes)

and as random the ones specified by the protocol U-QOT (to random bits).

We describe hybrids in between QBC and U-QBC by letting the number of

significant and random commitments vary. Let QBCk be protocol QBC but

where the first k commitments out of 4n2 are made to random values. We

have that U-QBC =QBC4n2 is binding whereas À is a (so(n), S[ (n))-adversary

for the binding condition of QBCo =QBC. Let s~(n) be the probability that

Â succeeds when opening b E {O,I} in QBCk for 0 $ k < 4n2
• Defining

sk(n) = sa(n)+st(n) we get that §O(n) > .!. + _L_ and §4n
2 (n) < ! + _1_ for

2 ' - 2 2p(n) 2 q(n)

any q(n) E poly(n) (from Lemma 4.1.4), given n sufficiently large. By the

hybrid argument, there exists 0 ~ k· ~ 4n2
- 1 sucb that for n sufficiently

large,

(4.7)

•

Hence, V4n2(9n2~(n)) = {si(n)}t~~ is a family of Bernoulli distributions that

satisfies the condition of Lemma 2.3.3. The sampling circuit S is easy to

construct given Ji and B. Upon classical input Il) for 0 ~ l ~ 4n2
, S mns À

and B except that the first l commitments sent from B to Â (using BaC) are

made to random values instead of the measurements ~ and the outcomes r.

Ji then opens a random bit b ER {O,I}. If B accepts the opening of b then
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s(ll)) = 1 otherwise it returns S(ll)) = O. Circuit S is therefore a sampling

circuit for 'D4n2(9n2~(n») sucb that IISlIu{; E O(IIÀlIug) assuming without loss

of generality that IIBllug E O(IIAllu,).

We now construct the adversary CB for the concealing condition of BBC

given A. In order to use aIgorithm FindDrop presented in section 2.3.4,

CB must first determine a lower bound P'tn) for the drop 9n2~(n). This is

done by finding a lower bound p(n) for 2p~n) and then setting rJ(n) = :r:).
C B computes p(n) = LowBound(So,~, n) where LogBound is the procedure

described in section 2.3.3 and Sa is the circuit S with the input bits fixed to

10). According to Lemma 2.3.2, when n is sufficiently large LowBound retums

p(n) sucb that 2n2~(n) ~ p(n) ~ 2p~n) except with negligible probability and

after an expected O(n5p(n)2) caUs to 50'

Now CB can use FindDrop(S, plln) , n) with the family of distributions

V 4n2(p,ln») = {si(n)}t~~ which exhibits a drop pltn) except with negligible

probability. From Lemma 2.3.3, C B gets 0 ~ fi. ~ 4n2 - 1 such that

(4.8)

•

except with negligible probability. The value of fi. is obtained after calling 5

(including the cal1s to 50 in LowBound) an expected O(n5p(n)2) times.

c B then uses fi. for attacking the concealing condition of BBC in the fol-
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lowing way: It makes Â and B interact (where Â opens bER {O, 1}) as in

QBCIC+1 except that the (K: + l)-th random commitment is provided by the

committer A in BBC. Let b E {O,I} be the bit committed by A. Let V be

the random variable for the view generated during the interaction between

Â and B when À opens the random bit. Let CIC+l(V) E {a, I} be the bit that

B would have committed if the (K: + I)-th commitment was significant. The

distinguisher LB (which is classical given the view V) returns the guess bfor

b the following way:

• H V is a successful opening then b= CIC+ l (V),

• Otherwise, bER {O, I}.

Let V~+
l be the set of views for QBCIC+l resulting in a successful opening

and let g be the set of values K. for which (4.8) holds. We have slC(n) =

P (V E V:k+1
ICIC+l (V) = b) and slC+l(n) = 4P (V E V::1IclC+1(V) #: b) +

4P (V E V:k+1IclC+1(V) = b) which, using (4.8), leads to

P (V E V:: 1
A C"+l(V) f. b) ::; P (V E V:: 1

A C"+l(V) = b) - 2P'~n)'
(4.9)

Since we also have that P (V E V:t 1
) = P (V E V:: l

/\ CIC+l(V) #= b) +
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- P (V E V:: 1
1\ CIt+l(V) = b) + 2 (1 - P (V E V:k+1

))

2: ~ (1 + 2P'~n)) . (4.10)

Since P (b = b) ~ P (~ E Q) P (b = bl~ E g) and P (Il: E Q) ~ 1 - 2-cm for

sorne 0: > 0 (Lemrna 2.3.2) we finally get that (CfJ
t LB) is an adversary for

the concealing condition of BBC providing a bias in n(p'[n)) = n(n4~(n)) after

calling Â an expected O(n5p(n)2) times. o

•

•

4.2 The Concealing Condition

In the following section, we show that QBC is concealing for any Bob (the

receiver) who cannot break the binding condition of the inner commitment

scheme BBC. BBC is used in the caUs to QOT in arder for Bob to commit on

his measurements and outcomes.

4.2.1 QBC is Concealing when QOT is secure against
the Receiver

We DOW reduce the concealing condition of QBC to the security of QOT against

the receiver.
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Lemma 4.2.1 Ifthere exists an interacting quantum circuit C B receiving for

Commit-QBC and a quantum algorithm LB acting only on Ë 's registers such

that P (LB((CA <:) CB)lb)AIO)B) = b) ~ ~+ p(~) for sorne positive polynomial

p(n) and an honest committing circuit CA for b ER {O,I}, then there also

exists a cheating receiver (B*, LB-) for QOT.

Proof: For the receiver C B and CA described in the statement, we have

Let's define a modification of an honest committing circuit for QBC, notOO

CA, whicb is the same as CA but takes a string Î E {D, 1}n instead of a bit

b and sends in the i-th caB to QOT the bits CZOi ER {D, 1} and ali = aoi EB Îï

for 1 ~ i ~ n. The circuit CA with input b is equivalent to CA with input

bn . Once again, by an hybrid argument, there exists 1 ~ k* ~ n sncb that

P (LB((CA0 C B)llk-on-k-)AIO)B) = 1) -

P (LÏJ((CA0 CB)llk--lon-k-+L)AIO)B) = 1) ~ _2_ (4.11)
np(n)

With sucb a value k-, B- cheats an honest sender A' for QOT(eo, el)(O) in

the following way: it makes C B interact with CÀ with input (lk--l?on-k-)

for Commit-QBc except for the k--th calI to QOT where it makes C ÉJ interact

with the targeted sender A' with inputs eo, el ER {D, 1}.
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Then, knowing ec for c E {O, 1}, we take the output of LB, b' say, and

compute a guess ec E9 1/ for eë. For this algorithm LB- we have

P (LB-((A' <:) B*)leoel}AIO}B-, lec}B-) = eë) - P (b' =eo œel)

1 1
> 2+ np(n) (4.12)

where the probabilities are taken over eo, el ER {D, 1}. 0

4.2_2 QBC is Concealing when BBC is Binding

From Yao's result [25] and Lemma 4.2.1 it is straightforward to conclude

that:

Theorem 4.2.2 If BBC is binding then QBC is concealing.
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Chapter 5

Conclusion and Open Questions

Having shawn in Theorem 4.1.5, that a computationally concealing BBC re­

sults in a computationally binding QBC and, in Theorem 4.2.2, that no 00­

versary against the concealing condition of QBC exists, we conclude with our

main result:

Theorem 5.0.3 If BBC is binding and computationally concealing then QBC

is concealing and computationally binding.

For security parameter n, the reduction of an adversary (C~, L~) for the

concealing condition of BBC to an adversary An for the binding condition of

QBC is expected polynomial-time black-box. If Àn breaks the binding con­

dition of QBC with so(n) + sl(n) ~ 1 + p(~) then the circuit C: is specified

by a classical Turing machine calling Àn at most n5p(n)2 times except with

negligible probability. L: then provides a polynomial bias on the committed

44



•

•

•

bit through an almost trivial classical computation given as input C 8 's view.

(using standard simulation techniques) thus breaking the concealing condi-

tion of BBC as defined in Sect. 2.2. The adversary {(C:, L:)}n>O is specified

by a unifonn family of quantum circuits whenever {Àn}n>O is a unifonn fam-

Hyl. Our reduction is therefore unifonnity preserving [22}. It is an interesting

open problem to find an exact polynomial-time black-box reduction.

One consequence ofTheorem 5.0.3 is that concealing commitment schemes

can be built from any quantum one-way function. We first observe that

Naor's commitment scheme [21} is also secure against the quantum com-

puter if the pseudo-random bit generator (PRBG) it is based upon is secure

against the quantum computer. This follows from the fact that any quantum

circuit able to distinguish between commitments to 0 and 1 is also able to

distinguish a truly random sequence from a pseudo-random one. To complete

the argument, we must make sure that given a quantum one-way function one

can construct a PRBG resistant to quantum distinguishers. A tedious but

not difficult exercise allows to verify that the classical construction of [14}

results in a PRBG secure against quantum distinguishers given it is built

lGiven ln, there exists a poly-time Turing machine that outputs the description of
(C~, L~), namely one knowing pen).
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from quantum one-way functions. We get the following corollary which is

not known to hold in the classical case:

Corollary 5.0.4 Both binding but computationally concealing and conceal­

ing but computationally biding quantum bit commitments can he constructed

from quantum one-way functions.

It would be interesting to find a concealing quantum bit commitment scheme

directIy constructed from one-way functions which improves the complexity

of our construction. Is it possible to find a non-interactive concealing commit­

ment scheme from the same complexity assumption or are such constructions

inherently interactive? It is also unclear whether or not perfectIy concealing

schemes can he based upon any quantum one-way function?

Although we assumed in this thesis a perfect quantum channel, our con­

struction should also work with Doisy quantum transmission [3]. It would be

Dice to provide the analysis for this general case.
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