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A new method for solving two-dimensional saturable magnetic field pro­

blems, such as are encountered in the abalysis of electric machines, is presented. 

Fu" account is taken of saturation of the iron parts, c~mplic::ted geometry of the 

region, distribution of current sources and the presence of slots. The new technique 

is based on a general variational formulation of the field problem ln terms of an 

energy functional, which is discretised by first order triangular finite elements. By 

minimising the functional by, a set of trial functions defined in the discretised region, 

a unique solution to the magnetic field problem is obtained. This process results in 

a set of nonlinear algebraic equations which is solved iteratively by a multi-dimensional 

Newton-Raphson scheme. The field analysis is applied to a transformer, a turbo­

generator and a D.C. generator, and their performance characteristics are predicted, 

neglecting eddy-current and hysteresis effects. Comparison of the computed values 

and test results shows satisfactory agreement, thus demonstrating the efficacy of the 

method and its generalapplicability to electric machines. In developin!~ the computer 

algorithm, emphasis was laid on fast execution and utmost economy with the degree of 

accuracy desired. 
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ABSTRACT 

A new method for solving two-dimensional saturable magnetic field pro­

blems, such as are encountered in the analysis of electric machines, is presented. Fu" 

account is taken of saturation of the iron parts, complicated geometry of the region, dis-

. tribution of current sources and the presence of slots. The new technique is based on a 

general variational formulation of the field problem in terms of an energy functional, 

which is discretised by first order triangular finite elements. By minimising the functional 

bya set of trial functions defined in the discretised region, a unique solution to the mag­

netic field problem is obtained. This process results in a set of nonlinear algebraic 

equations which is solved iteratively by a multi -dimensional Newton-Raphson scheme. ~. 

This field analysis is applied to a transformer, a turbogenerator and a D.C. generator, 

and their performance characteristics are predicted, neglecting eddy-current and hysteresis 

effects. Comparison of the computed values and test· results shows satisfactory agreement, 

thus demonstrating the efficacy of the method and its general applicability to electric 

machines. In developing the computer algorithm, emphasis was laid on fast execution and 

utmost economy consistent with the degree of accuracy desired. 
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l • l General Background 

CHAPTER 1 

INTRODUCTION 

The present decade has witnessed phenomenal growth in electrical power 

systems and sizes of electrical plant such as transformers, turbo-generators, salient pole 

alternators, direct current machines and other devices. An accurate prediction of their 

performance has, therefore, become increasingly important in order to meet stringent 

specifications, to effect economy in design and to ensure reliability of operation. Some 

of the performance indicators that machine designers and power systems engir.eers are 

vitally concerned with are the excitation requirements under open-circuit, short-circuit 

and full load conditions, sequence reactances, transient characteristics, short-circuit 

ratio, iron and stray load losses, end-field and eddy current effects in the case of A.C. 

machines; load regulation and commutation characteristics in D.C. machines and 

others. 

Saturation of the iron parts considerably affects ail of these quantities, by 

introducing nonlinearities in the magnetic field. Until recently, the magnetic field dis­

tribution in electrical machines was explored by linear analytical techniques [1.1 J , 

application of conformai and other transformatiof'l methods [l.2] and magnetic circuit 

analysis [1.3] based on linear the ory ; the results thus obtail1ed were modified by in­

troducing empirical design constants to account for nonlinear effects. Simplicity of such 

methods coupled with the superposition principle [1.4J so widely used in machine analysis, 

had paid off weli on small and medium size machines. However, with growing complexity 
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of ele.~tro-mechanical devices, a rigorous nonlinear analysis of the field problem has be­

come increasingly important. 

Nonlinear solutions of the magnetic field problem byanalytical methods 

[1.5J or transformation techniques [2.1] for linearising the nonlinearities have been 

used, but are limited to cases w.ith idealised magnetisation characteristics and simplified 

geometryof the region. Measurement techniques by analogue models [1.6] have been 

employed for two dimensional problems and in some cases nomographic methods [2.3J 

were also applied. In view of the limitations and inadequacies of ail the earlier methods, 

the need for numerical solutions was recognised even in the early stages of the design art. 

Nevertheless, only with the advent of large scale digital computers could such methods 

be developed and extensively used for solving the field distribution in electrical machines 

in the presence of magnetic saturation. 

Ail of the numerical methods in present day use fall under three principal 

headings : 

(a) divided difference schemes, 

(b) integral equation techniques and 

(c) variational formulations. 

ln one case, besides the aforesaid, a nonlinear magnetic circuit analysis 

[2.4] was carried out based on a circuit representation of the magnetic characteristics 

of the media, fluxes and mmfs, and an unaccelerated relaxation technique was adopted 

for obtaining a solution to the fjeld problem. Its chief limitation is that the circuit re-



e 
3 

presentati,," is not of general application and its usefulness for solving the field problem 

under different conditions of machine operation has not been established. 

A vast majority of the numerical methcds in use belong to the divided 

difference class [1.7 - 1.9] wherein the partial differential equations are replaced by 

a set of difference equations and a solution is obtained satisfying the specified boundary 

conditions. The discretisation process by finite differences yields a large number of 

equations. Invariably, many redundant nodes are required which enormous.ly increase the 

computational work. In this method, the boundary conditions have to be explicitly speci­

Fied at material interfaces and outside boundaries bya set of equations, therebyenhancing 

the complexity of the problem. Further since the permeabilities of the different regions 

often differ considerably, the convergence of the iteration scheme is necessarily slow des­

pite the use of acceleration techniques [2.11]. 

Very recently an integral equation approach to MO and three dimensional 

field problems has been proposed [1.10]. In this method the material inhomogeneity in 

the region of interest is replaced by an equivalent distribution of sources in free space, 

resulting in a field distribution which corresponds to the magnetic field in the original 

problem. The contribution of each of these sources is then considered as a solution of 

Maxwell's equations in free space and the summation of such contributions from ail the 

sources yields'the required solution. The method is attractive, since it purports to solve 

end-field problems of finite length, and the boundary conditions are implicit in the inte­

gral formulation. However, it has so far been applied to very simple cases and the con­

vergence scheme used does not seem to have been optimised. It is therefore difficult to 

assess the computational advantage of this method and the accuracies that would result in 
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solving practical field problems in electrical machines with a high degree of satura­

tion. 

A third possibility which is coming into the fore is the variational method. 

It consists of formulating the partial differential equations of the field problem in terms 

of an integral expression called the energy functional. In most engineering applications, 

this expression can be identified with stored energy in the system. In general, the Euler 

equation of th is functional will yield the original differential equation. The solution to 

the field problem is th en obtained by choosing a function amongst a set of triai functions 

which minimises the energy functional satisfying the specified boundary conditions. 

The method was first used for analysing saturation effects in accelerator 

magnets [2.12 J, for which a restricted functional formulation based on the assumption of 

fixed reciprocal permeability was used. Further the set of trial functions was defined in 

a discretised region consisting of finite rectangular meshes or triangular elements of 

variable geometry, but fixed topology. This restriction coupled with the slow convergence 

of the iteration method used did not result in any computational gain over the divided 

difference approach • 

ln this thesis, a general nonlinear variational formulation is presented with a 

view to overcoming some of the shortcomings of the earl ier methods and ach ieving economy, 

efficiency and fast programming of the field problem. Triangular finite elements of un­

restricted geometry, topology and containing material inhomogeneities are used for discre­

tising the field region. The finite element method is weil known in the field of elasticity 

and structural mechanics. The type of nonlinearities generally met with in such problems 

are in the main caused by iarge dispiacements end are therefore termed geometrical non-
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linearities [J .11 J. Material nonlinearities encountered in elasto-plastic analysis have 

been dealt with mu ch in the same way as the restricted variational method for magneto­

static problems' described earl ier. Only in one case of a homogeneous medium, a 

nonlinear variational formulation WQS derived by Kachanov [1.12J which is comparable 

to the general variationaf "formulation presented in this thesis, for inhomogeneous and 

nonlinear media. 

1.2 Present Work 

To the best of the author's knowledge, this is the first time thata method 

of solving the two-dimensional nonlinear field problem in electrical machines bya 

variational method using finite elements, is presented. 

The main objectives of the present study are 

(a) Formulation of the nonlinear electro-magnetic field problem 

in electrical machines in ge ne ra 1 variational terms and obtain­

ing a solution by minimising the resulting energy functional, 

by finite element analysis. 

(b) Derivation of a practical, efficient and economical algorithm 

for determining the magnetic field distribution in a transformer, 

turbo-generator and a direct current generator. 

(c) Prediction of the performance characteristics of these machines 

under open-circuit, short-circuit and full load conditions and 

the determination of other steady state machine parameters. 



(d) Verification of the efficacy of the method by experiment and 

by comparison with factory testresults. 

The aforesaid objectives were accompl ished as follows. 

6 

ln Chapter Il, the variational method is presented in detail and the general 

energy functional is derived from Maxwell's equations for the field problem. The con­

ditions for functional minimisation are described and applied to the nonlinear energy 

functional to ascertain minimality. The criteria for a unique solution are discussed and 

the basis of constructing a minimising sequence of trial solutions is presented. 

A theoretical analysis of the general order finite element method is presented 

in Chapter III and it is specialised to obtain a first order solution to the magnetic field 

problem. The test for functional minimisation is carried out in the discretised region 

and proof of the validity of the finite element method as a minimising sequence is furnished. 

The methods used in this study for solving nonlinear algebraic equations are 

described in Chapter IV with particular reference to the first order chord method and the 

quadratically convergent Newton-Raphson scheme. Existence and uniqueness of the 

solution obtained are ensured by reference to weil known theorems of numerical analysis 

and the rate of convergence of the iteration schemes is established. The Newton-Raphson 

scheme is formulated for a case of N independent variables and the necessary equations 

are derived for the recursion algorithm. Methods for solving linear equations are briefly 

discussed and their merits and limitations are stated. 

ln Chapter V, the practical computational aspects of the field solution are 

discussed in detail with reference to a flow chart for the computer program. The solu­

tion algorithm suitable for sparse band-structured matrices and the necessary indexing 
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scheme are fully described. The rate of convergence of the iteration process is illustrated 

by the reduction in the error norm for a transformer problem. An automatic flux-plotting 

routine by means of a digital x - y piotter is fully described. 

The application of the finite element method for solving field problems in 

a transformer,. a 30 MW turbogenerator and a 5 kW direct current mach ine is described 

in Chapter VI. Using the material characteristics obtained from core sampi es or manufac­

turers' catalogues, extensive field analysis is carried out on the se machines. An improved 

algorithm for compact storage of sparse matrices and an efficient· and economical routine 

for solving algebraic equations are·used. For the load analysis of the D.C. machine, a 

new connection matrix is derived to include the so-called periodicity condition, which 

permits field representation of the region under one pole pitch only instead of the entire 

problem. In ail these cases, the computed performance characteristics and parameters are 

compared w ith test resu 1 ts. 

To summarise the aforesaid, a new technique for solving two-dimensional 

nonlinear field problems in elactrical machines in an efficient and economical manner 

compared to other existing methods is presented in this thesis. The algorithms developed, 

it Îs hoped, will assistmachine designers in predicting the steady state performance 

characteristics of various types of electrical machines at the design stage accurately. 

Some of the areas that may yet be explored using the variational method are 

(a) field solution of machines under transient conditions, 

(b) eddy current effects in solid iron parts and 

(c) end~ield problems. 



8 

REFERENCES 

[J .1 J G. W. Carter, The Electro-magnetic Field in its Engineering Aspects, 

Longmans Green & Co., London, 1954. 

[1.2J W.J. Gibbs, Conformai Tcansformations in Electrical Engineering, Chapman 

and Hall Ltd., London, 1958. 

[J .3J A. Gray, Electrical Machine Design, McGraw-Hill, New York, pp. 45 - 56, 

. 1926. 

[J .4 J B. Adkins, The Generalised Theory of Electrical Machi~ Chapman and 

Hall Ltd., London, p. 22, 1964. 

[J .5J H.M. McConnell, "Polyphase Induction Machine with Solid Rotor", AIEE 

Trans., Vol. 72, Part III, pp. 343 - 349, 1953. 

[J .6J O. V. Tozoni, Mathematical Models for the Evaluation of Electric and 

Magnetic Fields, lliffe Books Ltd., London, 1968. 

[1.7J F.C. Trutt, E.A. Erde1 yi and R.F. Jackson, "The Nonlinear Potential 

Equation and Numerical Solution for Highly Saturated Machines"," 

IEEE Trans. Aerospace, Vol. 1, No. 2, pp. 430-440, August 1963. 

[J .8J M. Ivanes and J.C. Sabonnadière, "Calcul du champ d'induction magnétique 

dans un angle de transformateur compte tenu de la saturation", REVUE 

GÉNÉRALE DE L'ÉLECTRICITÉ, Vol. 1, No. 2, pp. 206 - 212, February 

1967. 

[J .9J K. Reichert, "Ein numerisches Verfahren zur Berechnung magnetischer Felder 
•• insbesondere in Anordnungen mit Permanentmagneten", ARCHIV FUR 

ELECTROTECHNIK, Vol. 52, No. 3, pp. 176 -195, February 1968. 



[1.10J 

[1.11] 

[1.12] 

9 

S.G. Zaky, IIAn Integral Equation Approach to the Solution of the Three­

Dimensional Magnetic Field Problems ll
, Ph.D. Thesis, University of 

Toronto, 1969. 

C. Brebbia and J. Connor, IIGeometrically Nonlinear Finite-Element 

Analysis ll
, Journal of the Enginèering Mech. Div., Proc. ASME, EM2, 

pp. 463 - 481, April 1969. 

LM. Kachanov, "Variational Methods of Solution of Plasticity Problems ll
, 

Applied Mech. and Math., Vol. 23, pp. 880 - 883, 1959. 



10 

CHAPTER Il 

THE NONLINEAR ELLIPTIC PROBLEM 

2.1 Introduction 

ln this chapter, the nonlinear Poisson's equation is derived for a quasi-

stationary field in a two dimensional continuum satisfying specified boundary conditions. 

Various past methods for solving the field equations based on analytical and numerical 

techniques such as transformation methods, magnetic circuit analysis, finite difference 

methods and restricted variational formulation, are discussed and their merits and short-

comings are stated. A theoretical analysis of the general variational method and its 

application to the solution of nonlinear field equations are presented covering the follow-

ing aspects : 

1 • The necessary and sufficient conditions for a functional 

minimum. 

2. Extremum, Euler equation, self-sufficiency_and covariance. 

3. The derivation of the nonlinear energy functional for the 

two dimensional electro-magnetic field problem and its 

minimisation. 

2.2 Statement of the Problem 

Consider a two dimensional finite region R of the (x, y) plane bounded 

by S (see Fi gure 2.1) containing some prescribed distribution of current sources, combi-

nation of material inhomogeneities and nonlinearities. In the air and iron regions, since 
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~------------------------~~x 

FIGURE 2.1. TWO DIMENSIONAL REGION R. 

(1) Current Region. 

(2) Iron Region. 

(3) Air and Other Non-Iron Current Free Region. 



there are no current sources, Laplace's equation holds. If we assume that 

(a) The electro-magnetic field is quasi-stationary Q.e., 

displacement currents can be neglected at power­

frequencies) • 

(b) Time-harmonic effects are absent. 

(c) That the dimension along the Z direction is very large 

so that the magnetic vector potential and the current 

density vector have components only along the Z direc­

tion and are invariant in that direction, then the following 

field equations apply 

curl Fi = ]" 

div i = o 

The constitutive relations are 

i = 

Fi = 

curl A 

v.B 

12 

where v, the reciprocal of the permeability termed the reluctivity of the medium, is 

(2. 1) 

(2.2) 

(2.3) 

(2.4) 

assumed single valued and is both position and field dependent ~ It is this latter property 

of field dependence that gives rise to the nonlinearity of the field problem. 

By Coulomb's convention, if we assume 

div A o (2.5) 

and substituting for Fi in Equation (2.1) from Equations (2.3) and (2.4), one obtains 
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curl (II curl A) = - T (2.6) 

Since A has only a Z directed compone nt A (x, y) , the fol/owing further 
z 

re lation is obtained. 

A 

curl· A t '- (2.7) 

Using Equation (2.7) in Equation (2.6) and expanding the result, there is 

-Jk (2.8) 

which reduces to 

(2.9) 

For the different regions shown in Figure 2.1, the field problem can be 'expressed 

by the fol/owing partial differential equations, which have been combined in Equation 

(2.9) • 

For Region 1 (current carrying zone) 

Il 
o = -J (2.10) 

ln Region 2 Oron parts, where saturation is present but there are no current sources), 

the pseudo-Laplacian 
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Curl (&1 Curl A ) = 0 (2.11) 

ln Region 3 (air and other non-iron current-free zones) 

= 0 (2.12) 

Equations (2.10) to (2.12) are the required field equations for the nonlinear 

problem of the two dimensional region R satisfying the boundary conditions defined by 

àA" èA" 
C = Cl (A) + C3 (ax + Ty i) = 0 (2.13) 

(x, y) E R 

2.3 Past Methods for Solving the Electro-Magnetic Field Problem 

ln order to solve the respective fjeld equations in the various sections of the 

two-dimensional region, certain analytical and numerical methods were developed in the 

past, whose merits and limitations will now be discussed. 

2.3.1 Transformation Methods 

Unlike in the case of linear partial differential equations, the principle of super-

position does not apply to nonlinear equations and, therefore, they must be linearized or 
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solved insome other way. Methods used for this purpose are known as transformations, 

which are powerful analytical tools for solving nonlinear equations in general. Typically 

these techniques linearize the system of equations (for example the Kirchhoff and Hodo-

graph transformations), reduce the partial differential equations to nonlinear ordinary 

differential equations (e.g. the similarity transformation), transform the system to one 

already solved or perform sorne other reduction of complexity. 

ln general these transformations can be classified into three groups: 

(a) change of the dependent variables, 

(b) change of the independent variables, 

(c) change of both the dependent and independent variables. 

ln the Kirchhoff transformation, a new dependent variable is introduced so as to 

linearize the nonlinear equations. 

let us consider the pseudo-laplacian which occurs in diffusion, heat-conduction 

and magnetic field problems. 

'V [f (t,e) 'V tp ] = 0 (2.14) 

Introducing a new dependent variable such that 

(2.15) 

Equation (2.14) reduces to the linear laplace's equation 

(2.16) 
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The boundary conditions are also changed likewise and it can be shown thai for 

the Dirichlet problem, the boundary conditions transform to yet another Dirichlet form. 

For the Neumann type boundary conditions, however, the Kirchhoff transformation intro­

duces nonlinearities 1:2.1, p. 22J , resultlng in complicated boundary conditions. This 

transformation on the dependent variable has the feature that the physical range of the in-

de pende nt variable is unchanged, but the method is limited in its application to very simple 

geometries and boundaries. 

An illustration of the transformation of the independent variable is the "5imilarity 

transformation" due to Boltzmann 1:2.2J ,which transforms thé inde~ndent variabte su ch "that 

the partial differential equation is changed into an ordinary differential equation. The 

technique was applied to a one dimensional diffusion equation of the form 

(2.17) 

Choosing a function of the independent variables x and t given by 

n = xc( t J3 

where a and J3 are to be determined, Equation (2.17) is modified as an ordinary 

differential equation in fi free of x and t so that 

d dC 17 dC 
d 17 [ D (C) ërij J + "2 ërij = 0 (2,18) 

This transformation can be used effectively only if the boundary and initial con-

ditions are consolidated, the medium is homogeneous and the geometry of the region and 

boundary is a simple one. 
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The Hodograph transformation so named by Hamilton in 1869 [2.1, p. 171 ] 

is a typical example of the mixed method and it permits a certain amount of flexibility in 

the geometry of the field region. A set of quasi-Iinear equations of the form 

F1 
ou 

F2 
ou 

F3 
ov 011 

F (u, v, x, y) -ax+ oy + -ax + F4 ay = 

(2.19) 

G 1 
ou 
rx+ G2 

Ou 
dy+ G 3 

ov 
rx+ 

ov 
G4 dy = G (u, v, x, y) 

where F., G. are functions of u, v, x and y, together representing second order 
1 1 

equations, are transformed by changing the independent variables x and y as functions 

of u and v, 50 that 

(2.20) 

Hence the solution of the modified set of Equations (2.20) leads to the solution of (2.19) 

provided the Jacobian j = x y - x y i o. This transformation has been success-
u v v u 

fully applied in fluid mechanics problems where the geometry of the region of interest may 

not be simple or regular. The advantage of linearity gained by this hodograph is, however, 

paid for by complicated boundary conditions. 

The above examples of transformations are but a few of a large number of such 

techniques in use and illustrate their usefulness for solving quasi-Iinear partial differential 
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equations. There is no ge ne ra 1 way of obtaining the required transformation, and imagina­

tion, ingenuity and good fortune play a major role in their choice. The chief limitations 

of the methods are that, in general, they lead tocomplexity of boundary conditions and are 

really suitable only for cases wherein thèmaterial medium is homogeneous and the boundaries 

and geometry are simple. 

2.3.2 Magnetic Circuit Analysis 

This is a forerunner of numerical methods and uses a relaxation technique for the 

solution of the field problem. In this method, a magnetic circuit is developed with lumped 

reluctances representing various parts of the field region and the flux densities and mmf 

drops are determined for an initial estimate of core flux. With the values of flux density 

obtained, the appropria te permeabilities are determined from the B-H curve and the new 

reluctances are estimated. The iterative cycle is continued until the total mmf drops over 

a pole pitch (in the case of an electrical machine) attain an acceptable minimum. 

The merits of the method are that it is an advance over nomographic techniques 

of field plotting [2.3J and with the aid of digital computers, the field region can be faith­

fully represented by an equivalent magnetic circuit. The technique was employed by 

Binns [2.4 J for the estimation of the open-circuit saturation curve of a turbo-alternator 

and it is claimed that only 6 to 8 iterations are required to obtain a solution of an accept­

able degree of accuracy. 

The chief limitation of the method, however, is that the circuit represGntation of 

the region is a unique one for each problem and cannot, th,erefore, be generalised. Further, 
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since the flux paths arerestricted to the branches containing lumpedreluctances, the net­

work representation should be sufficiently fine in order _to ,obtain a useful flux-plot. k 

such, the computational advantage gained by the small number of iterations is offset by the 

large number of branches of the magnetic circuit and the corresponding number of equations 

to be solved. Lastly, load analysis of an electrical machine cannot be effectively carried 

out by this method except, perhaps, by the use of innumerable number of branches cover­

ing the entire machine region, and not- just the region over a pole-pitch. 

2.3.3 Finite Difference Methods 

Historically these methods can be traœd back to Gauss [2.5], and one of the 

oldest iterative schemes "the Gauss-Seidel method" dates back to 1873 [2.6]. The 

word "relaxation" was introduced by Southwell [2.7], who described a method of solv­

ing stresses in jointed frames by the systemati c re laxation of the strains. k the name 

implies, the finite difference method is based on replacing the partial differential equations 

of the field problem by a number of difference approximations and then solving the -resulting 

large number of algebraic equations. The solutions to the approximate system represent solu­

tion values at discrete points in the region of interest. The continuous differential operator 

is replaced, or approximated by, a matrix operator. The necessary and sufficient condi­

tions for this approximation may be found in text books on linear spaces [2.8]. The 

elliptic operators under consideration here conform to these conditions and, therefore, may 

be approximated by matrices. 

ln this method, regular rectangular meshes are super-imposed on the continuous 

plane so that the function values ~ at the nodes of each mesh represent the continuous 
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function A at that point in the continuous plane. Also the current densities, flux densi-

ties and reluctivities are assumed to have a constant value in the respective meshes. A 

five pointregular star is defined in each mesh as shown in Figure 2.2 and approximations 

to the partial derivatives are obtained. As an illustration, the difference formulation of 

the Laplacian is derived as 

(2.21 ) 

If this process is continued over ail nodes of the various meshes, a large number of equations 

are obtained which must be solved simultaneously. Written in matrix form, theresulting 

system is of a very high order, but spar~, i.e., the coefficient matrix contains a large 

number of zero elements. Direct methods, such as inversion of the large matrix are, as a 

rule, inconvenient and make extensive demands on computer storage. Iterative solution of 

such a system of equations is more common since the coefficient matrix need not be stored, 

but generated as and whenrequired •. One_such scheme known as "alternating relaxation" 

was used by Erdelyi and Ah:med [2.9J for solving the electro-magnetic field problem in a 

D.C. machine on no load. In this scheme, as a first step, the·reluctivities are assumed 

constant and the vector potentials are relaxed. Subsequently the reluctivities arerecalcu-

lated from the ~IS and the process is continued until the vector potentials converge suffi-

ciently. 

The advantage of this technique lies in its ge ne ra 1 applicability to different 

geometries, inhomogeneous media and nonlinear problems. The more recent versions of 

this method [2.lOJ accommodate different co-ordinate systems,varying mesh sizes and 

use of improved iterative techniques [2.11 ] • 



The chief disadvantages of the finite difference schemes, however, are 

(a) the mesh sub-clivisions, despite care and diligence of the user, 

result in a large number of numbe"r of nodes and enhance the 

number of equations to be solved and computational time, 

(b) the matching of different co-ordinate systems and specification 

of boundary conditions are complex and cumbersome, 

(c) the convergence process is highly sensitive to the correct 

choice of under-relaxation factors and to the path of line in­

tegration used, and 

(d) slow convergence of the iterations despite the use of an 

accelerated block relaxation technique. 

2.3.4 Restricted Variational Formulation 

21 

This method was first used by Winslow [2.12] and Concus [2.13] for solving 

saturable magnetic-field problems in accelerator magnets, and it consists of formulating 

the problem in variational terms by an integral expression known as a functional. A solu­

tion A (x, y) differentiable in R is sought such that it minimises the functional satisfying 

the required boundary conditions. The integral formulation of the functional is then dis­

cretised by finite difference methods either by the use of regular rectangular meshes or a 

set of six trianguler meshes of variable geometry but fixed topology meeting at each node. 

The difference formulation of the variational problem is then minimised by setting its first 
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derivative to zero for each of the nodal values of A. The.resulting set of equations is 

then solved either by linearised over-relaxation [2.12, p. 172J or non-linear over­

relaxation schemes [2.14J. 

Although this method provides a concise alternative formulation to the divided 

difference schemes, the restricted variational formulation [2.15J, wherein the·recipro­

cal permeability is held fixed, does not lead to a true energy functional for the nonlinear 

Poisson's equation. Further the finite difference discretisation of the functional either by 

the use of rectangular meshes or a set of triangular meshes of fixed topology results in a 

large nuniber of nodes and equations. Consequently, the method suffers from 

the same drew-backs of excessive computational work and convergence difficulties as the 

earlier finite ·difference schemes. 

2.4 The General Variational Formulation 

ln view of the limitations of the foregoing schemes, a general variational ap­

proach is developed herein for obtaining numerical solutions to the field problem, which 

is free of topological and geometrical restrictions. Also inhomogeneities and nonlinearities 

of the field region do not pose difficulties in any way and the iterative methods employed 

are not plagued by convergence problems common to ail finite difference schemes. The 

present work differs from the earlier methods reported, in the following principal aspects. 

(i) A general unrestricted nonlinear functional formulation is derived 

which eliminates the need for special equations to represent boun­

dary conditions. 



(ii) Triangular finite elements of variable geometry, topo 1 ogy 

and material parameters are employed for appro..ximating 

the fie Id solution. 

(iii) A multi-dimensional Newton-'Raphson formulation is de­

veloped for obtaining nearly quadratic convergençe of the 

iteration process. 

ln addition to the above, the presentwork includes : 

Rigorous solution of the nonlinear field problem without alter­

ing the geometry or approximating the current density in the 

conductors by current sheets is carried out for a transformer, 

a turbo-generator and a direct-current machine. 

Formulation of the problem su ch that standard iteration methods 

may be applied for its solution and the proof of convergenoe and 

uniqueness of solution obtained~presented. 

Development of a practical algorithm, using the band and sym­

metry properties of the coefficient matrix including acceleration 

techniques for the iteration process. 

Complete analysis of the no-load operation of a transformer, 

evaluation of the open-circuit, short-circuit, zero-power 

factor and wave-form characteristics of a large turbo-alternator 

are carried out. Field requirements, iron-Iosses, sequence­

reactances and the harmonie components of the voltage wave are 

23 



2.4.1 

predicted accurately and in an economical way From outline 

drawings at the design stage. 

The 50 .called 'periodicity condition 1 is described and the 

necessary connection matrix is derived for analysing the on­

load operation of rotating electrical-machines. The method 

is applied for evaluating the load characteristics of a D.C. 

machine. 

ln ail the above cases, the computed and test results are 

compared. 

Discussion of the Variational Methoci 
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By using variational methods, it has been shown in text books of mathemati­

cal physics [2.16J that a unique solution for Poisson's, Laplace's or Helmholz's equation 

can be obtained by minimising the appropriate energy functional. Since man y of the pro­

blems are usually linear, the operators are positive definite and the functionals of the 

variational problem are quadratic. In such cases, it is shown in Reference [2.17, p.16-6J 

that any trial function which sets the first variation of the fùnctional to zero, or in other 

words, makes it attain a stationary value, also minimises the functional. However, in the 

case of nonlinear operators, the functional is not always quadratic and, therefore, other 

criteria must be found for ensuring the minimisation of the functional. 

ln a two dimensional continuum R bounded by 5, if we define a set of ail 

functions .~ (x, y), subject to the boundary conditions f/J = f (5) on 5, then any quantity 
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which takes a specifie numerical value corresponding to each function in the set is said to 

be a functional on the set of ail ",. In illustration (Reference 18) 

:J (<a' ) = l J f (x, y, "" 'fi' ,t,é ) d x d y 
x y 

(2.22) 

R 

where ", ='o",/dx and fi' = o.",/oy. 
'x y 

If we now change the function ~ (x, y) into a new function 

lfJ (x, y) + E 17 (x, y), the change E'" (x, y) in ~ (x, y) is called the variation of 

", and i s denoted by 

5 ~ = E17 (X, y) (2.23) 

Here 17 (x, y) is also a function of the same set. Corresponding to this change in lfJ 

and sufficiently small E, the functional will change by the amount 

= J l 
R 

[f (x, y, tp + E 17, fljx + E 11. , ~ '+ E 17 ) . x y y 
(2.24) 

- f (x, y, tfJ, ~ x ' tfJ y) ] d x d Y 

Expanding the right hand member by Taylor expansion in powers of E, there follows 

S :J = f l 
R 

+ 

(2.25) 

(terms including higher powers of E ) J d x d Y 
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ln analogy with thedefinition of the differential, the first three terms in the 

right-hand side member are defined to be the first variation of the functional for ail suffi-

ciently small E, 50 that after substituting for E 11 From (2-25) and sorne algebra 

"% J J [of HO of ëH, ] 6 a = - ,6 ~ + - 6 ~ +~' 6 ~ d X d Y 
o tfJ 0 'Px X crp y y 

R 

2.4.2 Conditions for Extremum of the Functional, the Euler Equation, 
Covariance and Self-Sufficiency Property 

If'fJ in Equ~tio'ri (2":22) is a continuously differentiable function of (x, y) 

(2.26) 

and the integral is carried over the two dimensional region, then the necessary condition 

for an extremum is given by setting the first variation to zero, 50 that Equation :(2':26) 

becomes 

6 ;; = 0 (2.27) 

, 
Here the variation 6 'fJ is to be continuously differentiable over Rand is to vanish on 

the boundary S, when tfJ is prescribed on 5, but is otherwise completely arbitrary. Under 

these conditions 6 tfJ is termed an admissible variation of ~. 

The second and third terms ofEq~ation(2.27) can be expanded using Greenls 

theorem [2.19J and by substituting the resulting values for these terms in Equation (2.27» 

it is shown in [2.18, p. 136, line 5], that 
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, 3 = 0 = ri (of 9 3f 9) Stp -Is + Jr l [ëH 0 (of) ~s otP cos + o1i sin CIl ~ - ax a~ 
x y R x 

o o~ -a-y ( o~ ) J St,Gdx dy 
y 

(2.28) 

where 9 ·represents the angle between the positive x - axis and the outward normal at a 

point on the boundary 5 of R, and s is the arc length along 5 as shown in Figure 2.3. 

The closed integral term of (2.28) vanishes when ~ is prescribed on S. (Dirichlet 

boundary condition). Otherwise the natural boundary condition (Neumann type) must be 

assumed to be satisfied 50 that the term becomes zero. Aiso the integrand of the double 

integral must vanish in R giving the weil known Euler Equation. 

o (of) 0 of) of=O ax o~ + d"Vy (Oti - d~ 
x 'y 

(2.29) 

ln order that variational methods can be applied to the solution of field 

problems without the introduction of additional functions, it is necessary to obtain a func-

tional that yields the differential equation of the field problem as its Euler equation. If 

such a functional exists, then the equation is termed self-sufficient [2.20J, analogous 

to the self-adjointness property in the case of linear problems. 

One further property of interest associated with the Euler equation is covariance, 

by virtue of which its farm remains unchanged when the co-ordinates are changed. For 

example if we introduce new independent variables, 1 and 17 then the Euler equation 

(2.29) can be written as [Reference 2.17, p. 16-4, Equation (16.23)J , 
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FIGURE 2.2. REGULAR FIVE-POINT STAR. 

y 

R 

----------------------~~' X 

FIGURE 2.3. NORMAL DERIVATIVE ACROSS THE BOUNDARY OF REGION R. 
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(2.30) 

where 

f (x, y, .,p, ~I) = ,p( ~,'7, 1fJ, t,al) [~t + HJ (2.31) 

This property is of value, in case we wish to use other co-ordinate systems such as polar 

co-ordinates, or change the frame of referen~e in any other way. 

2.4.3 The Second Variation of the Functional and Sufficient 
Coriditions for its Minimisation 

If :J is the functional, tP an admissible function and 6 lfJan admissible 

variation, then :J (~+ E 6~) is a function of E. If we expand this functional by 

Taylorls expansion as before, the coefficient of E will be the first variation S 3 (1fJ, Sep) • 

The coefficient of E 2 /2 is called the second variation of :J and is denoted by 
2 . 

S :J [tP 1 SIfJ J, so that 

(2.32) 

or 

(2.33) 

E=O 
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The second variation is analogous to the second derivative. Supposing:J has a minimum 

value at ", then 

so that from Equation (2.32) we have 

1 2 
~S :J[~,s~J + •••• = :J[~+ES~J-tJ[qJJ ~o 

2 
E 

(2.34) 

(2.35) 

where the omitted terms on the le·ft vanish, when E = O. letting E = 0, we conclude 

for ail admissible variations S ~. If we now substitute for 

:J = J J f (x, y, f/J, tfil 'f6.;t.tAy in Equation (2.36) , then 

by setting f/J. = f/J + E S ~, and expanding the whole by Taylor's theorem, there is 

obtained [Reference 2.17, p. 16-5. (16.33) ] 

(2.37) 

The sufficient condition for minimising the functional, therefore, is 

(2.38) 
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i.e., the second variation is non-negative. A functional which satisfies inequal ity 

(2.38), for ail admissible functions tp and admissible variations s'Ii is called convex. 

If strict inequality of the second variation holds, then the functional is termed strictly 

convex. 

2.4.4 Legendre Condition for Functional Minimum 

ff-we add to the second variation the integral 

where w is an arbitrary function of x, y of c1ass C
l

in (x 0 ' Xl ' Y 0 ' y 1)' it is 

shown in [2.21, p. 46] that S 
2 

3 reduce~ to the form 

+ f tf)1 qJ Tl
I2 

] d x d y 
(2.40) 

since the integrand of (2.39) is equal to zero for ail admissible variations 1'/ = S ~ that 

vanish on the boundary. This can be readily seen by re-writing Equation (2.39) and 

setting E TI = 0, so that 

d 2 d 2 
d'X (TI w) d x + d Y (TI w) d y = E 2 [ Tl 2 w ] = 0 (2.41 ) 
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The arbitrary function w is determined by the condition that the discri-

mmantof the quadratic form in 11, 111 under the integral shall vanish, so that 

f 1.-' • ff + w
l

) = 0 
CfJ 'II fP 'fi 

which ·reduces 8
2 

; to the form 

82; = 2 ff ffPtfI +w '2. 
E f~",,[ 11

1 + f '?J d x d y 
tdtd 

The above transformation is due to Legendre [2.22], who inferred that 

f td t(J must not change sign in (x 0 xl ' y 0 y 1) and that 8
2 

; has always the same 

sign as f tf/ fPl. Thus the necessary condmon· ·for th.-functional minimum becomes 

Accordi ng to Lagrange [2.23], th is is true if and on Iy if 

2 
(a) the differential equation ff ffJtf/ + w) - f", td ff fP fi' + vi) = 0 

has an integral which is finite and continuous in the interval 

The Legendre condition provides a weak minimum to the functional which 

will mean that the minimum is obtained for local variations of 8'fJ which differ from 

(2.42) 

(2.43) 

(2.44) 



zero in a small neighbourhood of an arbitrary point (x , y) E S. In Reference 
o 0 
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[2.24, p. 60] it is shown that if the Legendre condition holds, the runctional attains 

a value 

(2.45) 

where a > 0 • 

For a strong minimum, however, Equation (2.38) must be satisfied, which 

according to Berg [2.17, p. 16-5, (16.35)] yields 

(2.46) 

ln conclusion, it may be stated that if the strong minimum condition is 

satisfied and strict inequality of (2.38) holds, then the solution to the differential 

-equation is unique. On the other hand, if only the weak minimum condition is satisfied, 

then the solution obtained by solving the field problem, according to Ladyzhenskaya and 

Ural1tseva [2.24, p. 61] is not necessarily unique. If, however, a minimising sequence 

of trial functions is set up for minim:sing the functional, known as 'the direct method ' of 

solving the variational problem, a unique solution will be obtained, even though the func-

tional atteins only a weak minimum [2.24, p. 61] •. 

Ali such functions are called generalized solutions of the variational problem. 

The existence of such functions ïs assured by simple assumptions of boundedness of :; From 

below (true for e minimising sequence which has a limit, see Ref' .ence [2.24, pp. 59-62 J) 
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and the convexity of 3 with respect to Pk' which are defined byequations (6) and 

(7) of Reference [2.24, p .22]. However, to answer the question whether the trial 

functions are sufficiently smooth to ensure the minimization of the nonlinear functional, 

further discussion is necessary. 

2.5 The Energy Functional for the Nonlinear Poisson's Equation 

ln nearly every engineering application, there exists a vari . ional formula-

tion corresponding to the partial differential equations of the field problem ; that is to say 

there exist certain scalar quantities, e .g. energy which must be minimised if a given 

field is to exist, and the field differential equations are the conditions for minimisation. 

The process of obtaining such an energy functional can be easily compre-

hended for a linear case, and, therefore, the variational formulation of the linear electro-

magnetic field problem will be considered first and will be later extended to the nonlinear 

case. 

Let us consider the linear Poisson's equation obtained from Equation(2·g)of 

Section 2.2, by assuming the reluctivity to be a constant single-valued quantity, so that 

(2.47) 

satisfying mixed homogeneous boundary conditions on some closed surface or set of sur-

faces. 
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Supposing an approximate solution to the problem is given by sorne function 

~ , we may differentiate this approximate solution and construct a corresponding source 

function J soas to arrive ot a consistent solution to th3 boundary value problem 

Il .. it/J = -J (2.48) 

This, of course, is not the true solution since J 1 J ,unless the opproximate solution 
o 

just happens to be the right one. Taking the difference between the two equations (2.47) 

and (2.48), it is seen that the error in the magnetic vector potentiol satisfies the Poisson's 

equation whose source function is the error in the current density distribution. 

- (J - J ) o 
(2.49) 

The electromagnetic energy associated with the potential and current density errors is 

given by [Reference 2.25J 

F = } l (~ - .t/J 0) (J - Jo) d U (2.50) 

This integral is obviously zero if the correct solution has been found. Aiso ifs va lue must 

be positive, since in physical terms it equals the stored energy for a null solution, 

= J o = 0 (2.51) 

This latter observation implies tnot the zero value associated with the correct solution is not 
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merelya zero, but is also a true minimum value. Therefore, of any two given approxi-

mate solutions, that which yields a lower value of F is always the better one. 

lUs not possible to form F unless the correct answer is already known. 

However, therequirement that F be a minimum may be used tochoose the best from 

among several trial solutions even if the actual values of F cannot be evaluated, since 

it is sufficient to know its relative magnitude for the several approximations. Rewriting 

F and expanding in detai!, 

F = ~ J ~ J d U -} J tfJ Jo d U - } J ~ 0 J d U + i J ~ 0 J od U 

(2.52) 

Since J appears as the source term in the Poisson's equation, and using suitable vector 
o 

identities [2.26, p.804J one obtains 

-J ~ Jo d U = Il J lfJ .v
2 

.tfJ 0 d U 

= Il J div (1fJ grad .t,Oo) d U - .11 J grad .t,O grad ·t,Ood U (2.53) 

= Il f tp gradtp 0 ds -II J grad .tp. gradtfJ 0 d U 

For homogeneous boundory conditions, the surface integral vanishes, leaving 

-J lfJ Jo dU = - Il J grad . tp. grad lfJ 0 d U 

= - J tpo J dU 
(2.54) 
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Hence 

F =~ f fIIJdU - J COJodU +} J 'Po Jo dU (2.55) 

The third term represents the energy associated with the correct solution and is indepen-

dent of the choice of approximate solution to be tried. This cannot· be evaluated unless 

the exact solution is already known, but since it is a fixed quantity, we may de fi ne 

a = F - ~ J tp Jd U 
o 0 

(2.56) 

and seek the minimum of a. The minimum value will now not be zero, but it is clear 

tnat the minimum value of . a (equal to the stored energy associated with the correct 

solution) will correspond to ~ = ~ . 
o 

Also from (2.55) and (2.56) we have 

a = } J ~ J d U - J co Jo d U (2.57) 

This expression can be made useful for solvil'lg a variety of electromagnetic 

field problems, by re-writing the first term as 

} J coJdU = .11 J 2 d - "2 fIl'V .,tp U (2.58) 

= - ~ 9' CO grad tp. d; + f JI grad CO , 2 d U 

and since the boundary conditions are homogeneous, this reduces to 



} r t,O J d U = ; J 1 gradt,O -1 2 d U 

Thereresults, finally, 

:J = ] l 1 grad ,tt' ,2 d U - J ,14 Jo d U 

For a two-dimensional field problem, since tfJ = th' (x, y), it can be shown that 
'z 

8 = Icurl ~'I = , grad·~ 1 

so that the first term of Equation (2.5~ can be re-written as 

8 

. ;. J" grad ~ 1 2 d U = ~ l Il 8
2 

d U = l [ l H d b J d U 
o 
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(2.59) 

(2.60) 

(2.61) 

(2.62) 

which is the stored energy in the magnetic field under linear conditions (Figure 2.40). 

The formulation 3 which is an energy expression for the given source function and must 

be minimised for obtaining the true solution of the field problem is termed the energy 

functional. 

For the nonlinear case, the energy stored in the magnetic field is obtained 

by reference to Figure 2.4b as 

8 8 W=I[I HdbJdU= I[IlIbdbJdU (2.63) 
o 0 

since H = Il 8 
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B B 

-----

H H 
(a) Linear Conditions. (b) Nonlinear Conditions. 

FIGURE 2.4. ENERGY STORED IN THE MAGNETIC FIELD. 
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Therefore, the energy functional to be used for the nonlinear field problem can, bya 

similar analysis to the linear case, be expressed as 

B 
~ = I [ I V b db] d U - I ", Jo d U 

o 

For a two-dimensional bounded region, this expression reduces to the form 

B 

~ = J l [ I vb db J d x d y - II,,, 
R 0 . R 

J d x d y 
o 

(2.64) 

(2.65) 

where ttJ and J have components only in the Z direction and V is a single-valued 
o 

function of B. It is shown in the appendix of Reference [2.27] that Equation (9) is the 

Euler equation of (2.65), which is a necessary condition for ~ to have an extremum. 

For a local minimum, by Legendre transformation, 

2 0
2 

f II 0 0 B 
S ~ = -2= T- l vb db-Jt.O ] d x d y 

ott! oql o tlJl 0 
(2.66) 

V + Id • oV 
(2.67) = ~I 

Since B = 1 V tIJ 1, Equation (2.66) can be re-written as 

o 
o B (V B) 

oH 
= oB (2.68) 

It is readily seen that its value will be equal to V. 
InC , the incre-

mental permeability (slope of the B-H curve) which is always positive, since the 
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magnetisation characteristic is monotonically increasing. 

Let us now examine if a strong minimum exists. Evaluating Equation (2.38) 

for the functional of (2.65), oneobtains by using the expression of (2.46) 

.a2 f o~ f 0
2 

f )2 0 (2.69) 
ofd2· -2 ( = 

o~ o f/)o td 

since 

tf 
0 

of 
-J 0

2 
f 

0 :--:2 = , -= , - = 
Of/) 01lJ '0 tp 0'" 

This indicates that the second variation of the functional is zero ,and the 

functional is a minimum ; but since strict inequality of (2.46) does not hold in (2.69), 

it cannot be asserted that the solution obtained is unique. Having thus proved conclusively 

that the nonlinear functional formulation in (2.64) attains a local as weil as a general 

minimum, it only remains for us to constructa minimising sequence of trial functions which 

will ensure a unique convergent solution. 

Mikhlin [2.28] has shown that a Rayleigh-Ritz approximation to the solu-

tion of the nonlinear functional 

K 
".2 (IIJ) 

1 

èJ (IIJ) = fs f I 
i=l 

[ Pi( () d« dx dy - <f, tp> (2.70) 

can be constructed, which will minimise the functional and attain a limit if the number of 

terms of the sequence tend to infinity. By a simple substitution for ~, f (<<) and f 

such that 
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À
2 

~ , J f and = = 
0 

(2.71 ) 

P (~) 1 
I/J ( .; ~ ) = 2" 

it can be shown that Equations (2.70') and (2.65) are identical to one another and 

therefore, one 'may conclude that the R - R type approximation would ensure a unique 

solutionof (2.64). The trial functions in this case will be of the form 

n 

~n i = L ak 9k 
k=l 

From which the ais are eva!uated by setting 

a;J = 0 aa: 
1 

(2.72) 

(2.73) 
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CHAPTER III 

FINITE ELEMENT FORMULATION 

3.1 Description of Direct Methods 

If a differential equation is foulid to be the Euler equation of some functional, 

and if a direct method is used to establish that the functional has an extremum in aclass of 

functions differentiable a sufficient number of tîmes, then the différentiai equation has a 

solution for the specified boundary conditions. A direct method, as described in Reference 

[2.24 J consists of constructing a sequence of functions that converges tothe desired solu­

tion function. Thus, the method establishes the existence of a solution and provides a 

way of constructing an approximate solution. The principal constituents of a direct method 

are (see Reference [3.1, pp. 130-131 J) • 

(a) The construction of a minimising sequence. 

(b) Proof of the existence of a Iimit for this sequence. 

(c) Proof of the semi-continuity [3.1, p. 130] of the functional 

at the Iimit. 

The Rayleigh-Ritz method is shown to belong to this c1ass of direct methods 

in References [2.28, pp. 256-57, Theorem 32J and [3.2J, satisfying the requirements 

above. De Arantes [3.3, p. 942 J has shown that the Finite Element method becomes a 

special case of the R-R method, provided certain conformity and completeness conditions 

are satisfied by the elements and their interfaces. Some of these aspects will be discussed 

in this chapter to demonstrate the validity of the technique as a direct method of functional 



47 

minimisation, and its applicability to .the solution of two-dimensional nonlinear elliptic 

boundary value problems. For detailed theoretical analysis, however, thereader is 
\ 

. referred to.Pianand Pin Tong [3.4 J and de Arantes C3.3J. 

3.2.1 Finite Element Method 

The finite element method is a general technique of numerical analysis which 

belongs to the dass of direct me.thods and provides an approximate solution for the field 

problem. In this method, the continuous region R is subdividedinto·afinitenumber of 

sub .. regions, in each of which families of functions having different analytical expressions 

are defined. 

A finite element may be described as a c10sed sub-region with a·family of 

functions prescribed within it. This family is a Iinear combination of theprescribed values 

of the fieldat discrete points called nodes on the boundary and in the interior of the ele-

me.nt. The type of an elementrefers to ·its general shape, nodal point specification and 

to the functions analytically defined in it in terms of their nodal values and the co-ordinate 

system chosen. 

ln the presentanalysis, the twcxlimensional region R bounded by $, is re-

presented bya finite number of triangles and the field inside each triangle is specified as 

a function of its nodal values. The nodal vector potentials thus defined will constitute a 

matrix, the element functions of which will be assumed to be continuous and to have con-

tinuous principal derivatives of order (p. - 1) or less in the closed sub-region of the 
1 



48 

finïte element. Here p. is used to denote the order of the differential operatl)r of tha 
1 . 

field problem. 

Having thus defined the approximate function in each e lement in terms of 

the nodal values, the problem now reduces to one of minimising the functional of the 

variational problem with respect to each of the nodal values of the field. This results 

in a set of nonlinear algebraic equations which are solved iteratively to obtain the appro-

priate solution to the problem. 

3.2.2 Discrete Representation of the Nonlinear Energy Functional 
by Finite Elements and D~rivation of the Coefficient Matrix 

The method used in·this analysis is based on the·higher order finite elements 

described by Silvester [3.5], and it is specialised to the first order element for the mini-

misation of the nonlinear energy functional defined by Equation (2.65) of Chapter Il, 

Section 2.5. 

The two dimensional region R is subdivided into triangles in an arbitrary 

manner as shown in Figure 3.1, ensuring only that material interfaces and other physical 

boundaries coincide with triangle edges-. The vector potential tp in each triangular 

element will be assumed to be a complete polynomial in x and y, 50 that the orientation 

of the element is of no importance [3.6]. The number of terms in a complete polynomial 

of degree N is given by 

n = . (N + 1) (N + 2) /2 (3.1) 
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~--------------------~X 

FIGURE 3.1. CONTINUOUS REGION R DISCRETISED BV FINITE ELEMENTS. 

and, therefore, each element must have n degrees of freedom, i.e., n independently 

specified parameters. Further, if the functional :J is to be evaluated without additional 

assumptions, the first derivatives of ffJ must be finite everywhere. Consequently ffJ 

must be continuous and this requirement is met by defining ttJ along any triangle edge as 

a polynomial function of order N olong the edge. The number of coefficients of the 

polynomial must depend on the values of ffj along the edge, if continuity with the adjoin­

ing triangle is to be assured. In Reference [3.5J it is shown that it is necessary and 

sufficient to specify ffj at the triangle vertices and N - l other points along each edge. 
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ln order to define a complete polynomial expression of order greater than 2, more 

information is necessary, su ch as f~r example specification of interior points. 

ln order to facilitate analysis, the so-called area co-ordinates (vide Appen-

dix 1) will be used. In this system, the position of any point within the triangle is given 

by the distance measured along the perpendicular to each of the sides passtng throughthe 

point, distances being expressed as fractions of the triangle altitude. The numerical 

valuesofthe area co-ordinates range from 0 to 1 in every triangle. Thearea co-ordinates 

areconveniently specified as C'l' C'2' ~3' the lines of constant C'n beingparallel 

to side n of the triangle. Only two of these co-ordinates are independent, since they 

ore re lated by 

(3.2) 

A regularly spaced set of points Pt may be defined in a triangle by the 
su 

area co-ordinate values 

s t u 
( N' N' N)' 0 ~ s, t, u ~ N , (3.3) 

where s, t, u are nonnegative integers satisfying the relation s+t+u=N. Such a set of 

points is shown in Figure 3.2 for a first order element and it is evident that the number of 

points specified is 

} (N + 1) • (N + 2) = 3 (3.4) 



which is the total number of independent coefficients of the polynomial expression of 

order N. There are nointermediate points along each edge, since (N - 1) = O. 

FIGURE 3.2. TRIPLE AND SINGLE SUBSCRIPT NOTATION 

OF FINITE ELEMENTS. 

Polynomial Approximation to Functional Minimisation 

We shall now specify the potential at each of these points as ~s,t,u ' 

51 

50 that the function f/J will be defined throughout the triangular element by the polyno-

mial 

N N-s 

= l. L 
s=o t=o 

a 
5,t,u (~1 ' ~2' ~3 ) fi 5, t, u 

(3.5) 

where a are polynomials of order N in ~1' ~2' ~'3' which are independent s,t,u 
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of fi) and triangle size and shape. The polynomials defined by Equation (3.5) are 

complete and satisfy the continuity requirements. Since u depends on sand t, the 

summation over u is not required. 

The forcing function J is not expressed as a polynomial, since it is constant 

over each triangle. 

For the two dimensional case, where the dimension along the Z direction 

is large and the vector potential is defined by 

. fi' z = f/J (x, y) , 

the magnetic induction B is given by 

1 B 1 = 1 curl ~ = 1 grad f/J 1 z 

(3.6) 

The necessary condition for minimising the functional defined by Equation 

(2.65) of Chapter ", Section 2.5 is that its first variation withrespect to each of 

the point values of potential in each triangle must be set to zero, so that 

03 = 0 
o""k 

for ail k 

To perform this minimisation,. and thereby obtain an approximate solution 

(3.7) 

for f/J everywhere, it is convenient to.rewrite the surface integrals of Equation (2.65) 

Chapter Il, in such a way as to permit evaluation over one triangle at a time, so that 
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B 
3 = 2: (J J [ Lllb'db,] dx dy -J J J ~ dx dy') (3.8) 

The typical term of the above series, say the t'th term will be 

B 

:ft = 'J J [ J IIbdb- J tP] dx dy 
t 0 

Equation (3.7) may now be written as 

a:f _ \' a èJ.f = 0 
~k - L a~k 

triangles 

(3.9) 

(3.10) 

where the summation is carried over ail triangles in the sub-division. Substituting for 

3 in Equation (3:-1.0) From Equation- (3.8) and differentiating one obtains 

a 3 a B a 
~k = J J ~ [ J lib db J d x d Y - J J a" [J ".] d x d Y 

-R k 0 R k (3.11) 

aB] a~ = l J [ Il B ~ d x d Y - J J J ( di:"") d x d Y = 0 
R k k 

(3.12) 

where the index k ranges over the points defined by (s, t, u) in the triangle. 

Differentiation with respect tOtJ'k clellrly produces a zero, unless k is 

one of the points defined on the edges of the triangle, as appropriate to the order of the 

element chosen. Therefore, Equation (3.5) is an expression in a number of independent 

variables ~k' the number being defined by Equation (3.1). For the first order case, the 

above differentiation yields an equation in three variables only. 
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Substituting for B from Equation (3.6) in the first term of the energy 

functional expression above, Equation (3.12) reduces to the form 

l f Il -[ :: • a! ( ~) + ~. a! ( ~tfJy) ] d x d y = l f J (~:) dx dy 
. R x y...,-y 'k 

(3.13) 

Substituting for fP from Equation (3.5) in Equation (3.13), one obtains the result, after 

repeated differentiation 

n 

J f ~ 
R q=l 

aa 
Il r ---f.. ax 

aa aa 
--.9... + p 
dX ay 

aa 
'--.9. ] tfJ oy q 

n 

dx dy 

(3.14) 

To convert to triangle area coordinates, the relations of Equation (A.1.3) of Appendix 1 

are used, namely 

~. = 
(a. + b.X + c;.y) 

1 1 1 

1 2 A 

a. = - (x y. - x. y ) 
1 m 1 1 m 

where b. = y. - Ym andso on 
1 1 

c. = x - X. 
1 m 1 

and Il represents the triangle area. The index i ranges over the triangle vertices and 

not the points Pt. The derivatives in Equation (3.14) can then be transformed in s, ,u 



terms of area coordinates as follows. For a typical partial derivative 

aa 
a! = L 

aa 
p 

dt:- . 
1 

and using Equation (A.l.3), this reduces to the form 

aa 
p 

ax 
oa b. 

= \' P 1 
L ar.. fi 

1 
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(3.15) 

(3.16) 

Similarly the other partial derivatives can be evaluatedand substituting 

these values in Equation (3.14) above, there is obtained 

n m m 
oa oa 

f f f; I [ I L (b. b. + Co. c:.) P ~] t.Oq • d s 
1 1 1 1 or.- (3.17) 

q=l 
1 1 

n 

f 1 I Ja ds = -
2Â q 

q=l 

Here the indices i, ;, m range over the triangle vertices, while indices 

p, q assume values 1, 2, •••••• n corresponding to the points P
stu

• It is worth not­

ing that the bracketed expression is symmetric in p and q • 

From the geometric properties of a triangle, it can be shown as in Appendix 

Il that 

b. b. + c. è. 
1 1 1 1 

= i :1 ; 

2 2 
b. + c. 

1 1 

(3.18) 
= 2 â (Cot 9; + Cot 9k ) 



56 

where 9
k 

denotes the includedangle at vertex k. Substituting equations (3.18) into 

(3.17), expanding and collecting the respective terms, Equation (3.17) is transformed 

as 

n m aa aa èa aa 

l In L [ L ( of- - r!:) (Tt - of) Cot9. J .f/J ds 
1 q 

q=l 1 k 1 k 

n (3.19) 

II 1 L = 2 Il 
Ja ds 

q 
R q=l 

where i, i, k assume values 1, 2, 3 cyclically. 

If we define the typical elements of the above Equation (3.19) 50 that 

m 

S 
1 L Cot 9. I" (~ 

aa aa 
= - of) Tf mq 2 Il 1 ( 

1 k 1 

èa 
Tt) ds 

k (3.20) 
n 

and R 
1 L l J ds = n a 

mq q 
(3.21) 

q=l 

then (3. 19) mey be written in matrix form as 

S f/J = R (3.22) 

The matrix R is seen to be independent of the triangle shape. S may be 

written as 

m 

S = Q. Cot 9. 
1 1 

(3.23) 
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where Q. is independent of the shape of the triangle, but is dependent on therelucti-
1 

. yity function. We shall now derive the element coefficient matrices. 

Evaluation of the Polynomial Coefficients 

ln order to evaluate the matrices Rand Q, above, the polynomials 

a of Equation (3.3) are required. Itis, therefore, necessary to define an auxiliary 
stu 

function P (z) such that 
m 

m 

P (z) TI = m i=l 
= 1 

(Nz -i + 1 
~ 1 ) , m (3.24) 

m = 0 

where P (z) is a polynomial of order m in z. let a polynomial a of order N . m ~ 

be defined over the triangle su ch that 

(3.25) 

These polynomials satisfy ail the conditions necessary to qualify as the re-

quired polynomials of Equation (3.5) ; and since there are as Many distinct IinE*Ylly inde-

pendent polynomials a t as there are terms in a complete polynomial of order N, the s u 

use of these expressions makes the polynomial of Equation (3.5) complete. let us con-

sider the values of the area coordinates at one of the points given by (3.3), i.e. at the 

typical point IP / N, q / N,r / N). From Equation (3.24), one finds that for s, p 

integers 
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p (.1...) = 0 
s N 

s > p 
(3.26) 

= , s = p 

" 

Therefore, at the typical point ail a t given by (3.25)' are identically zero, except su 

. for a , which assumes the value unity. Equations (3.5) becomes a simple identity 
pqr . 

at the points where ,t!' arespecified. 

Calculation of the Element Matrices for First Order Elements 

The triangular element is subscripted as shown in Figure 3.2. Since there 

are no intermediate points along the edges of the triangle, one obtains by using Equation 

(3.24) 

P (C.) '~i - 1 + 1 
= 

S 1 

Pt ( Ci) = 

P" ( Ck) = 

Hence a t for the vertex 
su 

Similarly 

a for the vertex 
stu 

1 • 

= 

= 

a 
stu for the vertex k = 

= ~. 1 

e. 
1 

C. 
1 

and so on for other vertices (3.27) 

(3.28) 
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Substituting the values of 0 t from Equations (3.28) in the integral of Equation (3.20), 
su 

its value is obtained as 

a (C.) 

= ( aC .1 
1 

a (Ck) 
~-)--1 aC

k 
-

(3.29) 

Using Equation (3.29) above and the value of cot9. from Equation (3. Hi) 
'1 

in Equation (3.20), there is 

S =..!..w-. (b. b. + c;;. c.) JI., d s 
mq 414~ 1 1 1 1 

(3.30) 

The value of l Ids is A, and therefore, matrix S reduces to 

(h. b. + c. c.) 
1 1 1 1 f,O 

44 i 
(3.31) 

Now for a first order element, using Equations (3.5) and (3.28) 

~= 0t fP = (C.~.+C.fP.+C fP k ) 
su q 1 1 1 1 K 

(3.32) 

Differentiating the above expression for tfJ with respect to x and y partiolly and sub-

stituting the results in Equation (3.6), the magnetic induction B is evaluoted as 

8 = ~j( b. /(J. + b. fil. + b
k 

tfJ
k
)2 + (c:. f,O. + c.~. + c

K 
fP", ) 2 (3.33) 

~Q 1 1 1 1 1 1 1 1 " 
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The value of B is seen to be independent of the coordinate system, .and is 

therefore, a constant in each triangle. Thereluctivity, Il, which is a function of B 

is likewise a constant in each triangle and can therefore be taken outside of Equation 

(3.31). Thus the final expression for the coefficient matrix is given by 

Il 
S = TA 

k 

L L 
i i 

(h. b. + co. ~.) f(). 
1 1 1 1 1 

(3.34) 

By a procedure similar to the derivation of the matrix S, theright hand 

side of Equation (3.19) is evaluated as (See Appendix 1) 

n 

R=II-hL J a d s = 2A. J I·I e. d e. d e. q . 1 1 1 (3.35) 

R q=l 

since J, the current density is constant in each triangle. 

A$ shown in Appendix 1, the value of this integrCIII will be equal to J A/3 , 

50 that the final field equation in discretised variational form can be written as 

k 

\' (h. b. + c .. c .. ) f/J. = J A/3 
/..., 1 1 1 1 1 

(3.36) 

Expanding this expression in detail, the complete matrix equation representing the non-

linear field problem is obtained as 



Il • 
4A 

~. b. + c'. è.) 
.. 1 1 1 

~. b. + ~. c;.) 
1 1 1 1 

(h. b. + c. c.) 
1 1 1 1 

(h. b. + c.. ~.) 
1 . 1 1 1 

(hk bi + c'k c'i) (hk bj + Gk 'C;i 

(hi bk + ci ~k) 

(hj bk + ç. C
k
) 

1 

(hk bk + Gk 'c:k) 

~. 
1 

fP. , 
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1/.3 

1/3 

(3.37) 

For only one triangle in the field region, a suitablediscrete ·representation 

of the energy functional (3.8) is given by the above matrix Equation (3.37). To obtain 

a corresponding discrete representation for the entire problem region, it is only necessary 

to write one equation similar to (3.37) for each and every triangle in the sub-division, 

just'as it is necessary in finite difference methods to write the finite difference expressions 

anew at each mesh point. It should be noted, however, that the variational expression 

(3.8) need not be modified for triangles near the boundaries, since natural boundary con-

ditions (Dirichlet or homogeneous Neumann boundary) are implicit in the functional formu-

lation. 

When an equation corresponding to (3.37) has been written for each of the 

triangles in the sub-division, theresulting assembly of algebraic equations may be combined 

immediately into a single matrix equation given by 

[5]. [~.] = 1/3. [R] (3.38) 

where ~is the column vector of vertex values of ~, R the corresponding column vector 

of currents and 5 is the matrix ~htained by adding the individual element matrices. It is 
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at once clear that this problem 1s in facta nonlinear algebraic one, since S depends not 

only on the shape and size of each triangle, but also on the reluctivities, which depend on 

ft'. The nonlinear continuum problem of Equation (2.65) of Chapte.r Il, Section 2.5 has 

thus been represented bya set of nonlinear algebraic equations. Matrix S, it should be 

noted, is of order equal to the number of vertex potentials, and itcorresponds tothe ·stiff-

ness matrices encountered in structural finite element analysis. 

3.3 80undary Conditions and their Effect on the Variational Formulation 

The energy ::unctional defined by Equation (2,65), Chapte.r" yields the non-

linear Poisson's equation as its Euler equation satisfying Dirichlet and natural Neumann type 

boundary conditions. Therefore, homogeneous boundary conditions are implicit· in the 

variational formulation. In such cases the functional does not requireany modifications, 

since it· is self-sufficient. In the case of loaded boundaries, however, expressed by the 

relation (see (3.7J, p. 149, Equation 10.3) on the boundary by 

(3.39) 

wher 1 ,lare the direction cosines of the outward normal to the boundary surface, 
x y 

further consideration of the variational formulation is necessary. 

ln an ellectrical machine, usually the external boundaries of the region coin-

cide with symmetry lines and, therefore, the quantity q which represents net flow of flux 

across the boundary will be zero. The term a tfJ in Equation (3.39) represents power loss 
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per unit area across the boundary. This is a more complex type of boundary condition 

than the natural boundary conditions defined earlier. While it is quite feasible to satisfy 

the same by directly imposing constraints on the boundary elernents, such an approach is 

inelegant and suffers From the draw-bock that the physical prpblem becomes obscured. 

Consequently it is advantageous to modify the variational problem so that the value of ~ 

on the boundary can take up any value without constraint. This is easily accomplished 

by adding appropriate terms to the functional which is to be minimised, and the·resulting 

expression for the energy functional becomes 

B 

:J = II [ J Il b db - J ~ ] dS + l q. fi' dg + l } a~2 dS 

o c (3.40) 

ln Equation (3.40), the last two integrals are taken along the boundary 

subject to the boundary conditions of Equation (3.39) and along which ~ is not con-

strained. 

The minimisation of the energy functional will now result in adding the 

derivatives of the last two terms with respect to ·the nodal values of ~, to the Equation 

(3.11) of Section 3.2.2. Such derivatives will exist only for elements which actually 

form the boundary, as for example the element r, s, k illustrated in Figure 3.3. The 

values of these additional terms will now be evaluated. If ~ and.~ are the poten-
r s 

tials at thevertices rand s respectivelyand L is the length of the facer - s, then 

the expression for a minimum value of the functional can be shown, by using Equations (A·a·3)1c 

(A.3.S) of Appendix III, as 

~J = 0 = r 5 ] • r\O] - [T ] + l bL +~ (\Or - ; \Os] (3.41) 
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FIGURE 3.3. DETAILS OF FINITE TRIANGULAR ELEMENT ON THE 

BOUNDARY OF THE FIELD REGION R. 

For an unloaded boundary q = a = 0, sa that the additional terms 

vanish. As already described, symmetry lines fa" into this category. If neither the 

potential ,.., nor its normal derivative is prescribedon the boundary, the variational 

formulation will imply homogeneous Neumann or Dirichlet boundaries automatica"y. 

3.4 Continuity of the Magnetic Field Across the Interface 
Between Finite Elements 

For the present two-dimensional continuum problem, the magnetic vector 

potential has only a component along the Z direction and is invariant in that direction, 

sa that the magnetic induction B is given by 

(3.42) 
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ln Cartesian co-ordinates, the following relations hold 

....... 
V x.tp = 

....... o tfJ ,; 
-1 -oy 

(3.43) 

Since .f,tS has only a compone nt ·tfJ , it is seen that the curl of the vector 
z 

potential and the gradient of tfJ have the samemagnitude, but are orthogonal to each 
z 

other. Hence, the tangentia 1 component of themagnetising force H can be expressed 

as 

(3.44) 

and from Equation (3.43), this relation reduces to 

~ 
&1 (VtfJ) 

n 
(3.45) 

Using Equations (3.43), the normal compone nt of themagnetic induction 

B is obtained as 

-+ B = 
n 

~ -. 
(V x tfJ) = 

n 

~ 
( V tfJ) 

t 
(3.46) 

Since the vector potential is continuous, the tangential compone nt of its 

derivatives will also be continuous, resulting in the continuity of B • As regards the 
n 

tangential component of H, conti nuit y wi Il be ensured 50 long as the product Il (~tp ) 
n 
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is continuous. This requirement is met by defining the <re-l uctivit y function in such a way 

that in association with the normal derivative of ~, it will result in the continuity of 

the tangential magnetising force H, although " and ofP may not necessarily be continu-

ous across the interfaces of every element. 

3.5 Minimisation of the Functional in the Discretised Region and 
Uniqueness of the Approximate Solution 

The criterion for a strong minimum of the functional is defined bythe dif-

ferential equation (2.37), Chapter Il, Section 2.4.3. We shall now determine the value 

of this expression using the approximate trial functions defined in the finite element dis-

cretisation by Equation (3.32), Section 3.2.2. 

Since grad ~ is non-zero in each triangular element and the oreluctivity 
z 

Il is differentiable with respect to the magnetic induction B, by substituting for f in 

Equation (2.46)1.0 Chapter Il, Section 2.2.4 for a strong minimum, one obtains for the 

second variation of the nonlinear functional, the value 

1jI' + ,,} x 0 - 0 = a (3.47) 

Obviously the energy functional attains a minimum value in the discretised 

case just as it attains a minimum in the continuum problem. Nevertheless, as before, 

strict inequality of {2.38),Chapter Il,Section2.4.3 does not hold and hence the solution 

to the field problem cannot be asserted as being unique. Further the contributions, if any, 
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of the element boundaries will have to be considered. The uniqueness of the solution 

can only be ensured by appeal to a minimising sequence su ch as the R -Rmethod. It 

was shown by de Arantes [3.3J that the finite elementmethod is a specialisation of the 

R -·R method provided, of course, conformity and completeness conditions are satisfied. 

Conformity is said to obtai,n, if the piecewise defined fields in the elements have con­

tinuity of the field and its principal derivatives across the element boundaries. The 

completeness criterion, however, is satisfied if the minimising sequence has a limit and 

is bounded (see [3.3J, pp. 944 - 45, Equations 81 and 82), although the principal 

derivatives of the functions may not be continuous. Further, the completeness require­

ment overrides the conformity condition'and the derivatives across the elernent boundaries 

need not be continuous in order to ensure that the finite element method belongs to the 

R - R class of a minimising sequence. 

As an alternative method of proving that the functional attains a minimum 

in the bounded region R, we may for the present neglect the elementboundaries. Then 

we can show that the minimisation process is satisfied in each element by recourse to 

Equation (3.47). It is then only required to show that the interfaces do not affect the 

problem in any way for the type of element chosen and the conditions of the problem. It 

has already been shown in Section 3.4 of this chapter that the tangential compone nt of the 

magnetising force H and the normal compone nt of the magnetic induction B are continu­

ous at element interfaces. Therefore, if we take a line integral around the element 

boundary as shown in Figure 3.4, its value will be zero, indicating that the interface makes 

no contribution to the functional in any way. Thus the minimisation of the functional is 

valid whether or not the interfaces are considered. 
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~----------------~x 
FIGURE 3.4. LINE INTEGRAL OF THE TANGENTIAL COMPONENT OF 

MAGNETISING FORCE AT THE ELt:MENT BOUNDARY. 
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Having thus satisfied the conditions for the second variation of the func-

tional and having set up a sequence by the method of finite elements, it is necessary to 

show that the sequence is a minimising one. In other words the set of nonlinear algebraic 

equations defined by (3.38) , Section 3.2.2. 

[sJ . ["a] = 1/3 • CR] 

mustyield a solution which converges toa limit. This is best achieved by solving the 

given set of equations iteratively, starting from an initial guess, such that the sequence 

of approximate solutiom in successive iterates satisfies the Lipsch itz condition 

1 1 G (x) - G (Xl) 1 1 ~ À 1 1 x - xiii (3.48) 

for ail values of x, Xl in the closed interval [x - p, x + P ] where the Lipschitz 
o 0 
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constant has a value 0 $ À < 1, and the sequence converges to an acceptable unique 

solution. The advantages of this method are 

(a) that the nonlinear equations arerecursively solved by a 

set of 1 i near equations, and 

(b) if the process converges, it will do sorapidly to the unique 

solution of the original equations. 

However, since the princip le of superposition has to be used in setting up the recursive 

·relation (see [3.8, p.2 ]), ill conditioning of the linear algebraic equations may present 

. convergence difficulties. Nevertheless, such quasilinearisation techniques have been 

effectively used resulting in rapid convergence of the iteration process. Twosuch methods, 

the chord method and the Newton-Raphson iterative scheme, have been successfully em­

ployed for solving field problems in the present analysis. The chord method provides 

linear convergence; while the generalised Newton-Raphson method yields a quadratically 

convergent sequence to the solution of the problem. In both these cases, the approxi­

mate solution obtained is unique. These techniques will be discussed in greater detail in 

the following chapter along with other schemes for solving nonlinear algebraic equations. 

.. 
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CHAPTER IV 

rTERATrVE SOLUTION OF NONUNEAR ALGEBRAIC EQUATIONS 

4.1 Introduction 

ln the preceding chapters, the nonlinear field problem was formulated in 

terms of variational calculus and the resulting continuum problem was discretised by the 

method of finite elements for obtaining a unique approximate solution. Other numerical 

methods discussed were finite difference schemes which were either based on a divided 

differenceapproach or on a restricted functional formulation. Reference was also made 

to the Rayleigh-Ritz methodas a technique of functional minimisation. A factor common 

to ail these methods is that the continuous nonlinear problem is finally transformed into a 

set of nonlinear algebraic equations. Therefore, the solution of the field problem reduces 

to one of obtaining a solution to the set of nonlinear algebraic equations, represented in 

matrix form or in any other manner. 

Severa 1 methods currently in use for solving nonlinear equations will be dis­

cussed in this chapter, in particular the chord method and the Newton-Raphson iteration 

scheme, and proof of existence, convergence and uniqueness of the solutions obtained will 

be furnished wherever applicable. The generalised Newton-Raphson method will be pre­

sented in a multi-dimensional form and applied to the system of matrix equations (3.38), 

Chapter "l, Section 3.2.2 representing the nonlinear field problem. 

Various methods of solving the resulting set of linear equations are also 

discussed, . such as Gaussian elimination and other techniques and a 
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brief reference is made to the condition of the matrices, accuracy of solutions obtained 

and the computational work involved in employing these methods. 

4.1 .1 Functional Iteration Method 

The methods of solving nonlinear algebraic equations discussed in the 

following sections belong to the group of methods called functional iteration, as distinct 

from direct methods, for ~xample the method of successive bisection, inverse linear inter-

polation etc. [4. J, Chap.'3, pp. 72-82] • 

Let us suppose that the system of equations to be solved can be expressed 

as 

f (x) = 0 (4.1) 

where f and x are vectors of the same dimension k. When k = 1, we have a single 

equation and if k = n, we have a system of n equations. If we now define a new 

function G (x) such that 

G (x) = x - f (x) 

then most of the iteration methods can be written in the form 

for sorne suitable function G and initial approximation x • 
o 

(4.2) 

(4.3) 

The convergence of the 

iteration process is assured if the mapping G (x) carries a closed and bounded set 
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SE C
k 

into itse If and if the mapping is contracting [4.2 1 P .85 J, i.e. if 

t 1 G (x) - G (y) 1 1 ~ M , 1 x - y '1 (4.4) 

for sorne .norm, for ail x, y in S and for M < 1, known as the Lipschitz constant. 

Such an iteration scheme is sometimes called the Picardmethod. As an example, a 

first order unaccelerated scheme is illustrated by the following flow chart (Figure 4.1) 

ESTIMATE INITIAL X = x 
n 0 

, 

FIND RESIDUAL = f (x ) 
. 0 

-
DETERMINE 

IS 

1 1 < E ? . -x 
n 

WRITE 

THE SOLUTION a =='.n+1 

FIGURE 4.1. DESCRIP.TION OF FUNCTIONAL ITERATIONS. 
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Here E = Mil x - xlI 1. ~ a sma Il number n n-

and M < 1 

Isaacson and Keller [4.2, pp. 86 - 88J state the criteria for convergence 

of the iteration method and the existence of a unique solution in the form of the following 

theorems. 

Theorem 1 

Let G (x) defined by Equation (4.2) satisfy the Lipschitz condition 

1 1 G (x) - G (Xl) 1 1 ~ ~ 1 1 x - xiii (4.5) 

for ail values of x, Xl in the closed interval [x - e, x + e J , where the Lip-o 0 

sch itz constant satisfies 0 ~ ~ < 1 • 

then 

(1) 

If the initial estimate x is such that 
o 

1 1 x - G (x) 1 1 ~ (1 -~) ~ 
o 0 

ail the iterates x defined by the foregoing iteration 
n 

sequence lie within the intervar 

x -C~x ~x +e 
o n 0 

(Ii) (existence), the iterates converge to some point say a, 

(4.6) 

(4.7) 
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lim x
n 

= a Onfact, Il x
n 

- a Il ~Àn p) (4.8) 
~ 

which is a root of the equation 

x - G (x) = 0 (4.9) 

and 

(iii) (uniqueness) a is the only root in the interval [x ,- t , x + e] • 
o 0 

The abovetheorem holds equally weil for a multi-dimensional case, pro-

vided vector norms are used in place of absolute values. 

Theorem 2 

If x = G (x) has a root a and if the components G. (x) have first partial 
1 

derivatives and satisfy 

a G. (x) 
À 

1 1 
1 1 , ~ , À < i êS x. -n 

(4.10) 

1 

for ail x in , 1 x - a 
" ~ p 

CD 
(4.11) 

then 

i. f~r 'an~· x (0) satisfying Equation (4.11), ail the iterates x 
(n) 

of the sequence (4.3) 0150 satisfy (4.11) " 

ii. for any x (0) satisfying (4.11), the iterates (4.3) converge 

to the root a of (4.9) which is unique in the interval (4.11). 



76 

Pïoofs of these theorems are given in Reference [4.2, Chapter 3, pp. 110-111 ] 

4.2 "Explicit Iteration Scheme or the Chord Method 

Let us consider the general case of a system of equations of the form 

where 

f (x) = 0 

f (x) T = [fi (x), f
2 

(x), f3 (x) ••• f
n 

(x) ] 

(4.12) 

(4.13) 

is an n - compone nt vector. Su ch a system can be written in the form x = G (x) 

in a variety of ways. We can examine the choice 

G (x) = x - A (x) • f (x) (4.14) 

where A (x) is an nth order matrix with components a •. (x). "Equations (4.9) and 
JI 

(4.12) will have the same set of solutions if A (x) is non-singular (since in that case 

A (x) • f (x) = 0 implies f (x) = 0). 

The simplest choice for A (x) is 

A (x) = A (4.15) 

a constant non-singular matrix. If we introduce a matrix 

J (x) 
of. (x) 

1 
= ( 0 x. ) 

1 

(4.16) 
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whose determinant·is the Jacobianof the functions f. (x), then From Equations (4.14) and 
1 

(4.16), we have by differentiation and substitution 

F (x) = ( 
Cl G. (x) 

1 
êlix. ) = 1 -A J (x) (4.17) 

1 

By Theorem 2, the iteration determined by using 

.n+1n n 
x = x - A f (x·) (4.18) 

will converge, for x(o) sufficiently close to a, if the elements of the matrix (4.15) 

are sufficiently small, for example, as in the case that J (a) is non-singular and A is 

approximately the inverse of J (a). This procedure is the n-dimensional analogue of 

the chord method. This iteration scheme has a geometric meaning as shown in Figure 

4.2 for the one dimensional case in which the value x 1 is the x interceptof the 
n+ 

line with slope l/m through (x , f (x ». The inequality implies that this slope should 
n n 

be between • and ~ fi (a), i.e., half the slope of the tangent of the curve y = f (x) at 

the· root • Hence the name 1 chord method 1 • 

y 

Xo x 
FIGURE 4.2. CHORD METHOD. 
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4.3 Second Order Methods [Reference 4.2, pp. 112-113J 

If the function G (x) is such that at a root the matrix 

a G. (x) 
G "x) - , - 0, i, 1· = 1, 2, ••• , n •• Il - ':::. -

'1 1;1 x. 
1 

(4.19) 

and these derivatives Cifëcontinuous near the root, then 

G G. (x) 
<~ (a) , , , , , for À < 1 ô x. n (4.20) 

1 

n 

(h) max L , 1 G •. (x) 
" ~À <1 '1 

(4.21) 

i=1 

for ail , , x - a , '00 <p (4.22) 

cf G. (x) 
will be satisfied for sorne .p > o. If in addition the second derivatives ' a xi G xk 
.a/l existin a neighbourhood of theroot, then it con be shown as in Reference [4.2, pp. 112] 

that 

, , x (n) - a , , ~ M , 1 x (n-1) _ a , ,2 

co CD 

where M is such that 

max' 1 
i,. i, k 

0
2 

G. (x) 
, 1 1 a x. ô x

k 1 

~2M 
--"2 • 

n 

(4.23) 

This shows that quadratic convergence can occur in solving a system of equations by iteration, 

j .e ., the error in any iterate is proportional to the square of the previous error and hence if 
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G" (a) ri 0, this procedure wiii be called a second arder method. IIlustrative second 

order schemes are described in the following sections. 

4.3.1 The Generalised Newton-Raphson Method 

The ~neralised Newton-Raphson method also known as the Newton method 

for functional iteration is a quasi-linearisation technique for solving nonlinear algebraic 

equations. This is also ·called the method of tangents, since in this scheme the function 

f (x) , whose solution is required, is approximated by the tangents drawn at the respective 

points to the function·curve. The intersection of the tangents with the axis successively 

leads to the true solution as illustrated in Figure 4.3 for the one djmensional case. Here 

the function consiclered is convex and the root a is simple. Aiso itis assumed that 

fI (x) < 0 

Suppose we are given an estimate x. of a real root of the equation 
1 

f (x) = 0 

the equation of the tangent to f (x) at x = x. can be expressed as 
1 

y (x) = f (x.) + fI (x.) • (x - x.) 
1 1 1 

(4.24) 

(4.25) 

(4.26) 

Let (x. l' 1 0) denote the intersection of this tangent line with the x 
1+ 

axis. This point is found by setting y (x) equal to zero in Equation (4.26). Then this 
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FIGURE 4.3. NEWTON -RAPHSON METHOD. 

equation reduces to 

o = f (x.) + fi (x.) • (x. 1 - x.) 
1 1 1+ 1 

Solving the above Equation (4.27) for x. 1 ' we obtain 
1+ 

x. -
1 

f (x.) 
1 

fi (x.) 
1 

80 

(4.27) 

(4.28) 

which is the c1assical Newton-Raphson iterative scheme. In effect, we are obtaining a 

refined approximation x. 1 of a root a of f (x) = 0 by approximating the graph of 
1+ 

f (x) by the line tangent of f (x) at x = x •• 
1 
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Newton~Raphson Method for a System of Equations 

The rnethod described above for a single equation can he extended to a system t 

of équctions as follows. Let us consider the following equations in thetwo independent 

. variables x and y • 

f (x, y) = 0 
(4.29) 

9 (x, y) = 0 

If an initial estimate of the solution namely (x ., y ) . is available and that 
o 0 

this is incremented by changes S x, S y, then the functions can be expanded by Taylor's 

theorem as 

f (x + S x, y + Sy) = f (x , y ) + f (x, y ) • S x + f (x , y) • S y 
o 0 00 xo 0 yo 0 

+ (higher order terms) (4.30) 

9 (x + S x, y + S y) = 9 (x , y ) + 9 (x , y) • S x + 9 (x , y ) • S y 
o 0 00 xo 0 yo 0 

+ (higher order terms) (4.31) 

where the subscripts x , y denote partial derivatives of the functions. 

If we now truncate the series after terms of the first degree, we wi Il obtain 

first order approxfmations of the resulting changes in f (x, y) and 9 (x, y) as the total 

differentials 
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8f = f (x , y) • 8 x + f (x , y ) 8 Y 
x 0 0 y 0 0 

(4.32) 

8g = 9 (x , y) • 8 x + 9 (x , y) 8 Y x 0 0 y 0 0 
(4.33) 

A solution. of system (4.29) can be obtained by determining 8 x, 8 y 

su ch that the total differentials 8 f, 8 9 satisfy the constraints 

8f = -f(x ,y) o 0 

(4.34) 

Substituting the values of these con'straints in (4.32) and solving the 

resulting set of linear equations namely 

-f(x ,y) = f (x ,y).8x + f (x ,y). 8y 
00 xo 0 yo 0 

(4.35) 

9 (x ,y).8x + 9 (x ,y).8y 
x 0 0 y 0 0 

the values of 8 x and 8 y are det'ermined. 

From Equations (4.30) and (4.31), it is evident that if f and gare 

evaluated at (x + 8 x , y + 8 y) and expressed in a Taylor expansion truncated after 
o 0 

the first-order terms, the following relations hold. 

f (x + 8 x, y + 8 y) = f (x , y ) + f (x ,y). 8 x + f ex , y ) • 8 y = 0 
o 0 00 xo 0 yo 0 

(4.36) 

9 (x + 8 x, y + 8 y) = 9 (x , y ) + 9 (x , y ) • 8 x + 9 (x , y ) • 8 y = 0 
o 0 00 xo 0 yo 0 
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If these linear expansions are sufficiently accurate, then (x + ô x, y + S y) 
o 0 

are fairly good approximations of the solution of Equation (4.29). If 1 Sx 1 > E or 

if 1 S yi> E , where E is a small positive quantity, it is necessary to ·replacex 
o 

by x + S x and y by Y + S y and repeat the entire process. Usuallya few 
000 

iterates of the process will produce accurate values of the root, provided that the original 

estimates (x , y ) are sufficiently close tothe true solution. 
o 0 . 

Existence and Convergence 

The Newton-Raphson method has two important properties namely monotone. 

convergence and quadratic convergence. From Figure 4.3 for the one dimensional case, 

the intercepts on the axis increase successively from an initial approximation x towards 
o 

theroot a such that 

(4.37) 

The property expressed by Equation (4.37) is known as monotone conver-

gence, by virtue of which the value of the sequence x increases monotonically tothe 
n 

root a. This property provides an upper or lower bound for the convergent interval 

(see [4.3, Chapter 1, Section 7, p. 20J), and ensures automatic improvement of the 

initial approximation after each iteration. The monotone convergence property is assured 

for the Newton-Raphson iteration formula only if the function f (x) is a monotone de-

creasing or monotone increasing function and it is strictly convex or concave. In the 

present analysis, sÎnce the magnetisation characteristic of the iron is monotonic, the 
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solution sequence of the resulting matrix equation 

[ vS] [~'] = [R] (4.38) 

will be monotonie and therefore monotone convergence of the Newton-Raphson method 

is assured for this application. 

ln general, the Newton method always yields quadratic convergence, even 

in such cases when the function is not monotonie. The quadratic convergence is a con-

sequence of using the first and second terms in the Taylor series expansion. One other 

important fa ct about the Newton-Raphson formula is that the resulting equations are always 

linear although the original function may be nonlinear. 

For the present application of this technique to the solution of the above 

matrix Equation (4.38), existence of a solution is assured since the iteration sequence 

G(f,&} = [vsJ ["e] - [R] (4.39) 

is monotonie. The convergence and uniqueness of the solution obtained for a single 

equation is described by McCalla [4.1 r pp. 84-86 J and for a system of equations is 

concisely presented by Henrici [4.4, p. 106] • 

Rate of Convergence of the Newt()n Method 

Let the error term of the ith iterate be expressed as 

s. = x. - a 
1 1 . 

(4.40) 
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By finding a relation between S. 1 and S., wecan estimate how rapidly 
1+ 1 

(or how slowly), the. algorithm converges to a root a of the equation f (x) = 0, provided 

·the· algorithm converges. Such a relationcan be determined by expanding the iteration 

function G (x) in a Taylor series about x = a 50 that 

G (x) = G (a) + G I (a) • (x - a) + G" (a) 2 (x _a)2 ••••••• 

For the Newton~Raphson algorithm, the iteration function G (x) and 

its first two derivatives are 

G (x) = x - f (x) / fi (x) 

f lX) • f Il (x) 
G I (x) = li 

fi (x)2 

G Il (x) = (fI (x»2 • (f .f" + fi. fil) - (f .f") • 2fl • fil 

(fi (x) )4 

and G (a) = a, G I (a) = 0, G" (a) = fil (a) / fi (a) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

Substituting the values of (4.45) into (4.41) and truncating the series 

after t~.!'"ms of the 2nd degree and evaluating at 

G (x.) = 
1 

fil (a) • (x. - a)2 
1 

a +-------
2 fi (a) 

x. we obtain 
1 

Using the relation x
i
+

1 
= G (Xi) and the definition (4.40), we find that 

S. 1 = 1+ 

fil (a) • S~ 
1 

2 fi (a) 

(4.46) 

(4.47) 
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From theabove·relation (4.47), the Newton-Raphson method is said toyield quadratic 

convergence [4.1, p. 87J • 

4.3.2 Some Modifications of the Newton Method 

The evaluationof the derivative G l
o of the given iteration function G may 

not be a trivial problem in manypractical situations especiallyif G is itself theresult of 

a complicated computation. Hence a variety of methods have been devised by different 

authors to obviate the need for calculating G I
• Some of the methods in common use are 

presented below. 

i. Whittaker's MethoeJ [4.5J 

ln this method, the derivative G I (x ) is simply replaced by a constant 
n 

and the resulting iteration formula given by 

x 1 = x - G (x) lm n+ n n 
(4.48) 

defines for a certain range of values of m, a linearly converging sequence, unless we 

happen to pick m = G I (a). If m = 1, the simple unaccelerated functional iteration 

results. If the estimate of m is good, convergence will be rapide Further in the initial 

stages of the Newton's process, it is usually not necessary to recompute G I at each step. 

ii. Regula Falsi [4.4, p.87J 

Here the value of the derivative fi (x ) is approximated by the difference 
n 
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. quotient 

x - x n n-1 
(4.49) 

formed with Iwo preceding approximations. Theresulting iteration formula is given as 

= x 
n 

(x - x 1) • f (x ) n n- n 

f (x ) - f (x 1) n n-

(4.50) 

The algorithm suggested above is termed regula falsi, defined bya difference 

equation of order 2. Ostrowski [4.6] has shown that the degree of convergence of the 

method lies somewhere between that of Newton's and the ordinary functional iteration. 

iii • Muller's Method 

Regula Falsi can be obtained by approximating the graph of the function f 

by the straight line passing through the peints (x l' G (x 1» and (x , G (x » . n- n- n n 

The point of intersection of this line with the x - axis defines the new approximation 

x 1. Instead of approximating f by a linear function, more rapid convergence can be 
n+ 

obtained byapproximating f by a polynomial p of degree k ~ 1 coinciding with f at 

the points x , x 1' ••••••••• x k and determining x 1 as one of the zero's of p. n n- n- n+ 

Muller's study [4.7] reveals that the choice of k = 2 yields very satisfactory results. 

Since the construction of p depends on the the ory of interpolation polynomials, the matter 

will not be pursued any further herein. 
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iv. Accelerated Iteration Method 

This modification of Newton's method is the nonlinear analogue of the 

linear over-relaxation scheme [4.8, p. 102] and can bedescribed as follows. Con-

sider the system of equations 

fi (xl ' x2 ' x3 ••• x ) = 0, i= 1, 2, .••• n 
n 

Let 

f •• = ëH. / aXe 
Il 1 1 

and assumethat 

f.. ~ 0 , 
Il 

= l, 2, . e.. n 

Then for m a fixed non-zeroreal constant, and for initial vector, 

x (0) = 

a sequence of vectors 

is defined by the following iteration process. 

• 

x(k) - m 
1 

k=1,2 •• n 

(k) 
• • • x ) 

n 

x(k) 
n 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 
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f /. (k+l) (k+l) 
m n,xl ,x2 .... (k+l) . (k» x , x nn 

(4.~ . . . (1<+1) (1<» 
xl' x n" n 

Where the double subscript notation denotes partial derivatives, m is the over-relaxation 

factor, and k = 1, 2, .••••• n,. Then x (k) is a solution of (4.57) if and only if 

x(k+l) = x(k). If the system of Equations (4.57) is linear, themethod described above 

will become identical to the llnear over-relaxation process .: 'ml is chosen to . lie some-

where between 1 and 2 .[4.9, p. 234J • 

4.3.3 Application of the Generalised Newton~Raphson Method to the Multi­
Oimensidnal Nonlinear Field Prôblem Using First Order Fini.te EJements 

Of the various methods available, the generalised Newton~Raphson method 

was found to be most suitable for solving the system of nonlinear algebraic equations re-

sulting from the variational analysis of the field problem. However, since the functions 

approximating the solutions are defined in each sub-region, the matrix Equation (3.38) of 

Chapter III, Section 3.2.2 must be .recast for obtaining a recursion formula for the iterative 

scheme. 

ln the finite element method, the vector potentials, reluctivity and magnetic 

induction are defined piecewise in eachtriangular element and, therefore, it is sufficient 

to construct the Newton-Raphson iteration formula in each triangle separately and assemble 

the overall coefficient matrix with like elements for each triangle. Thus, the multi-
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dimensional problem, in effect, reduces to one in three independent variables only namely 

the vertex values of potential for eachtriangle. 

For the nonlinear field problem discretised by finite elements, thematrix 

equation can bere-written as three separate iteration functions for each triangle as 

follows. 

f (x, y, z) = 0 

9 (x, y, z) = 0 (4.58) 

h (X, y, z) = 0 

If (x , y , z) are the initial approximate values, themethod seeks to 
000 

obtain a correction Âx, Ây, Âz on x , 
o 

zso that the corrected values will o 

be 

x = x + 4x 
0 

y = Yo + 4y (4.59) 

z = z + 4z 
0 

for which 

f (x + âx, y + ây, z + âz) = 0 
0 0 0 

9 (x + 4)~, Yo + Ay, z + Az) = 0 (4.60) 
0 0 

h (x + Ax, y + Ay, z + Az) = 0 
0 0 0 
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Expanding the above equations byTaylor's theorem for a function of three 

variables, one obtains 

f (x + .lx, y + Ay, z + ~z;) = f (x , y :z) + f (X, y , z ) • J)x 
000 xo 00 

+ f (x , y z). Ay + f . (x ., y , z ) • Az + highei' order terms = 0 
yo 00 zo 0 0 

9 (x + Ax, y + Ay, z + Az) = g(x ,y,z)+g (x ,y,z)Ax 
000 xo 00 

(4.61 ) 

+ 9 (x, y , z ) .ly + 9 (x, y , z ) • Âz + higher order terms = 0 
yo 0 0 zo 0 0 

h(x+Ax,y+Ay,z+Az) = h(x,y,z)+h (x,y,z)Ax 
000 xo 0 0 

+ h (x, y , z ) Ay + h (x, y , z ) + higher order terms = 0 
yo 0 0 ZO 0 0 

where the suffixes x, y, z denote the partial derivatives of the functions f, gond i h. 

If we ignore 011 terms of order higher thon the first, we are left with a system of three 

linear equations, in the three unknowns Ax, ~y, /lz,i .e., 

f (x, y , z ) /lx + f (x, y , z ) /ly + f (x, y , z ) /lz = - f (xo' yo' zo) xo 0 0 yo 0 0 zo 0 0 

9 (x, y , z ) ~x + 9 (x, Y 1 Z ) ~y + 9 (x, y , z ) Il.z = - 9 (xo ' Yo' zo) xo 00 yo 0 0 zo 0 0 

(4.62) 

h (x, y , z ) /lx + h (x , y , z ) Ây + h (x, y , z ) Il.z = - h (x , y , z ) 
xo 0 0 yo 00 zo 00 000 

The process may now be repeated by using Equation (4.59) and the true 

solution obtained. 
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Let us, now, consider the matrix Equation (3.37) of Chapter III for the 

nonlinear field problem represented by finite elements in each triangle of the region. 

B •• .. B •.• 
Il 

B. lm tfJ. 
1 

J. 
1 

B •• , Il B •• 
Il 

B. 
lm 

• C!'. 
1 

(4.63) 
/}. 

:: -,.-. J. 
.) . .,' 

,fI)i ,. tfJi ' (,Om 

B· • 
ml 

B • 
ml 

B mm ~m J 
m 

Differentiating the above Equation (4.63) partially with respect to 

etc. , and substituting the result in Equation (4.62), one obtains the 

following iteration formula (vide Appendix IV) • 

011 
0 0 

B .. B •• B. S CD. r B •• CP. r B •• CP. r B •• tfJ. OC!'. .. 1 .. 1 .. 1 .. Il lm 1 1 

1 0 
011 

0 S CD. r B •• cp. r B •• cp. r B .. tf). o tf). B •• B •• B. +n Il Il lm Î Il 1 Il 1 1/ 1 
1 

011 

S ~i 

. S 0. 
1 

0 0 SC!' B • B B St,O r B 0. r B CD. r B ~. otf) 
mi mm 1 mm 1 mm 1 m 

mm m ml m 

B •• B •• B. tfJ. J. .. Il lm 1 1 

11 
B .. B •• B. ~. J. (4.64) = - TI • 'P. + 

JI Il lm 1 3 1 

B 
mi 

B 
mi 

B tfJ J 
mm m m 

where B •• 1 B .. , B. etc. are defined in terms of the geometric constants 
.. Il lm 

b. 1 b. , b , C., c,
' 

c as 
1 1 m 1 "1 m 
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B •• ~ = b. b. + c. c. r B •• = b. b. ({J. + b. b. ({J. + b. b tfJ + .•. Il 1 1 1 1 Il 1 1 1 1 J J 1 m m 

B •• = b. b. + c. c. r B •• = b. b. CP. + b. b. CP. + b. b cO + ••• 
'I 1 J 1 1 Il 1 1 1 J 1 J J m' m 

B. b. b + r B = b. b. cp. + b b. CfJ. + b. b tp + ... = c. c mm m' 1 1 m 1 J 1 m m lm 1 m 1 m 

b b 
(4.65) 

B = + c c 
mm m m m m 

.' 

An equation similar to the above is derived for each triangle and the over-

ail Newton-Raphson iteration formula is cOnstructed by adding the corresponding elements 

of each of the triangles. The set of Iinear equations is then solved and the approximation 

to the solution is improved by using Equation (4.59), so that 

'P. = 'P. + /J tfJ. 
1 10 1 

'P. = f/J. + A f/J. (4.66) 
1 10 1 

'Pm = tpmo + Ilf/J m 

4.4 Solution of Linear Algebraic Equations 

Solutions of linear equations fall into two principal categories, 0). direct 

. methods n 3] and Qi) iterative techniques [JO, 11, 12J. The Iinear algebraic 

equations in this present analysis are solved conveniently by Gaussian elimination, since 

it is a simple technique and requires less computational work than any other direct method 

and is free of the instability and errors that occur in 1 inear iterative schemes. 
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The Gaussian m~thod is fully df'l~cribed in mathematical literature [4.14J 

and consists of successive elimination of the elements of the lower triangle of the coeffi­

cientmatrix, with the ·result the latter is completely transformed into an upper triangular 

one. This process is called triangular decomposition. The transformation of theright 

hand vector is termed forward modification. From the decomposéd matrix and the moeJi­

fied forcing function, the solution vector is obtained bya process of back substitution. 

The solution of the linear equations obtained by theabove method is appli­

cable tosymmetric complete matrices as weil as sparse banded ma.trices. In the case of 

band-matrices, however, only the lower or the upper half of the original coefficient matrix 

along with the principal diagonal elements need to be known for obtaining the solution by 

this method. The 'method uses the diagonal terms as the pivots in the elimination process, 

and therefore it is necessary to ensure that they are non-zero and preferably large. It is 

shown in Reference [4.13, p. 80J that if the coefficientmatrix is positive definite, then 

the solution is assured, although certain semi-definite or negative definite 'matrices may weil 

yierd good results by this method. 

If for any reason the diagona 1 terms are found to be zero, then the method has 

to be modified by pivotai condensation or other techniques, with the result the band property 

of the coefficient matrix may be entirely lost and the computational time enhanced con­

siderably. 

4.4.1 Conditioning of the Matrix and Accuracy of the Solutions Obtained 

The Gaussian method described above is a direct method which givas explicit 

solutions to the simultaneous equations. Provided the pivots are non-zero and are not very 
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small, the accurac)' of the method is assured subiect to the conditions 

i. the dnta of the problem is accurate, 

ii . there are no ,round off errors. 

However neither of the above conditions· can be fully met· in practicewith 

theresult-that there will always be some errors included in the solutions. 

The conditioning of the matrix has a great bearing on the accuracy of the 

solutions obtained and the subjectis fully discussed in·Reference.- [4.13~ pp • .136-174J. 

If the coefficient matrix is an ill-conditioned·one or, inother words, it is nearly singular, 

an iterative improvement of the·solution obtained by the direct methods is warranted. 

Such a scheme is fully described by Fox [4.13, pp. 143 - 145]. For the present'problem 

of solvingthe set· of nonlinear algebraic equations defined by Equation (4.63), numerical 

experiments with Gaussian elimination have indicated that no such iterative improvement 

is reallynecessary, although the coefficient matrix is an ill-conditioned one. 



96 

REFERENCES 

[4.1] T .R. McCalla, ~rical Methods and Fortran Programming, Chapter 3, 

John Wi ley, New York, 1967. 

[4.2] E. Isaacson and Keller, Analysis of Numerical Methods, Chapter 3, John Wiley, 

New York, 1966. 

[4.3] E.S. Lee, Quasilinearization and Invariant Imbedding, Academic Press, New 

York, 1968, p.20. 

[4.4J P. Henrici, Elements of Numerical Analysis, John Wiley, New York, 1964. 

1A.5J E. T. Whittaker and G. Robinson, The Calculus of Observations, Blackie, 

London; 1924. 

[4.6J A. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, 

New York, 1960. 

[4.7] D.E. Muller, "A Method for Solving Algebraic Equations Using an Automatic 

Computer", Math. Tables, Aids Comput., Vol. 10, pp. 208-215, 1956. 

[4.8 J D. Greenspan, liOn Approximating Extremals of Functiona:s", Bulletin of 

International Computer Centre, Vol. 4, p.l02, 1965. 

[4.9] G.E. Forsythe and C.B. Moler, Computer Solution of Linear Algebraic Systems, 

p. 234, Prentice Hall, Englewood Cliffs, New Jersey, 1967. 

[4.10J D.W. Martin and G.J. Tee, IIlterative Methods for Linear Equations with 

Symmetric Positive Definite Matrix ll
, Computer JOl.'rnal, Vol. 4, 1961, 

pp. 242 - 248. 

[4.11] I.M. Khabaza, IIAn Iterative Least Square Method Suitable for Solving Large 

Sparse Matrices ll
, The Computer Journal, Vol. 6, 1963, pp. 202 - 206. 



[4.12J 

[4.13J 

[4.14J 

R.P. Tewarson, "Projection Methods for Solving Sparse Linear Systems", 

Computer Journal, Vol. 12. No. l, February 1969, pp. 77 - 80. 

L. Fox, An Introduction to· Numerical Analysis, Clarendon Press, 

England, 19'64. 

F.B. Hilderbrand, "Modern Mathematics for Engineers and Physicists", 

Prenti ce Hall, Englewood Cliffs, New Jersey, 1962. 



5. 1 Introduction 

CHAPTER V 

PRACTICAL COMPUTATIONAL ASPECTS 

OF THE FINITE ELEMENT METHOD 
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Solution of the nonlinear Poisson1s equation by the finite element scheme is 

best accompl ished in three stages : 

Q) Generation of the matrices of geometrical coefficients and 

the formation of the current vector contributions for each 

triangu lar e lement • 

Qi) Calculation of the reluctivities from the potential vector and 

construction of the total coefficient matrixand the total cur­

rent vector. 

Oii) Solution of the matrix equation. 

The steps in computation are illustrated by the flow diagram of Figure 5.1. 

For an efficient and economical program, ail the geometrical coefficients, material 

characteristics and current vectors which are repeatedly used in the iterative scheme, are 

best evaluated in the beginning and stored for subsequent use. The method of evaluating 

these parameteis and the indexing algorithm for their compact' storage will be discussed in 

the following sections. 



NO 

READ 
CO-ORDINATES, VERTEX NUMBERS, 

CURRENT DENSITlES, 
MATERIAL CHARACTERISTICS 

NO. OF CHORD ITERATIONS ICH 

TOTAL NO. OF ITERATIONS ITMX 

SET 

ttI = 0, . R ,= 0, ITER = 0 

FIND 
BAN DW.lDTH , INDICES OF 
VERTfCES FOR COMPACT 

STORAGE, TRIANGLE. AREAS, 

GEOMETRICAL CONSTANTS, 

CURRENT VECTOR. 

FIND 

. B, . è ZI 
ZI, TI 

SET S = 0 ' 

ASSEMBLE 
S & R MATRICES EQ. (3~38) : 

MODIFY 

S & R FOR 

NEWTON-RAPHSON SCHEME 

99 
REDUCE S & R 

CORRESPONOING TO NUMBER OF 
SPECIFIED POTENTIALS 

SOLVE THE' 
LlNEAR EQUATIONS 
CS] [~] = [R ) 

EVALUATE 

RESIDUAL NORM 

ITER = ITER + 

WRITE 

EXIT 

FIGURE 5.1. FLOW-CHART FOR THE NONLINEAR FIELD SOLUTION. 
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5.2.1 Calculation of the Geometrical Coefficients and Current Vectors 

The triangle co-ordinates, vertex numbers, current densities, material 

characteristics for the iron and non-iron regions, the number of specified potentials and 

the iterations to be carried out form the input data for the program. The following 

geometrical constants and other parameters are then obtained : 

(.;2) the area of each triangle, 

(b) the coefficients defined by 

B •• = b. b. + c .• c,. B •• = b. b. + c. c .. 
Il 1 1 1 1 " 1 1 1 1 

B •• = b. b. + c,. c,. B. = b. b + c. C 
Il 1 1 1 1 lm 1 m 1 m 

B = b b. + c c B = b b + c c, 
mi m 1 m ï mm m m m m 

where i, j, m are the vertices of the individual triangles and 

b. = y. - Ym 1 1 
and so on 

c .• = x - X. 
1 m 1 

(c) the current vector contributions J. ~/ 3, where J' is the 

the current density and ~ the triangle area. 

The magnetic characteristics of the iron parts are stored as point values of 

the magnetic intensity vector H corresponding to successive values of the magnetic in-
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duction B. A linear interpolation routine was developed for determining the reluctivity 

and its derivative with respect to the magnetic induction B in each triangular element. 

5.2.2 Special Indexing Routine 

ln the triangular sub-division of the field region as described in earlier 

chapters, if is seen that no one node is connected to ail of the other nodes. Consequently 

the total coefficient matrix assembled from the elements for the individual triangles is 

always sparse, but symmetric and can be arranged to have a band structure. It would be 

not only uneconomical, but weil nigh impossible to store ail the elements of a large matrix 

arising in practical machine problems. However, it is only necessary to store the lower 

or the upper triangular matrix along with those on the principal diagonal. The elements 

of the coefficient matrix are best stored as a vector, consisting of either the row elements 

in succession or the column elements. Figures 5.2 and 5.3 illustrate two alternative 

schemes of matrix storage, both of which use a single subscript indexing procedure, since 

double subscripting would require a large memory. 

Any of the above methods would facilitate compact storage of large sparse 

matrices. Since the number of multiplications involved in the solution of such matrix 

equations increases with the band-width; it would be ideal if one could somehow compact 

the matrix such that only non-zero elements populate the band area. However, much 

economy can still be achieved even if the band area does include some zero elements 

provided, of course, the band-width itself is sufficiently small. A skillful numbering 



FIGURE 5.2. LOWER TRIANGULAR 

MATRIX ELEME.NTS STOREO 

COLUMN WISE. 

.. FIGURE 5.3 •• LOWER TRIANGULAR· 

MA TRIX ELEMENTS STOREO 

ROW WISE. 
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system of the triangle vertices does lead to a small band~idth and for the present, the 

task of achieving an optimum band~idth În the finite element methocl rests largely on 

the diligence and ingenuity of the engineer. 

For an economical storage, therefore, the vertices of the triangles must be 

transformed to a single index notation in order to locate the respective matrix elements 

of individual triangies in the over-all coefficientmatrix. This is best illustrated by con-

sidering two finite triangular elements as shown in Figure 5.4 (a). The double index 

scheme for the total coefficient matrix and its single index equivalent are illustrated in 

Figure 5.4(b). The indexing for the constituent matrices is shown in Figure 5.4 (c). 
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2 ~ __________________ ~ 3 

FIGURE 5.4 (a). TRIANGULAR FINITE ELEMENT5. 

5
11 5' (1) 

5
21 

522 5 (2) S (4) 

531 
5

32 
5
33 

, - S (3) S (5) 5(7) 

542 
543 544 S (6) S (8) 5 (9) 

FIGURE' 5A (b). 

S (1) 0 

-
S (2) S (4) 

5 (3) S (5) S (7) + 0 5' (4) 

0 S'(5) S'(7) 
-

o. 0 0 0 0 5'(6) 5'(8) 5'(9) 
, 

FIGURE 5.4 (c). INDEXING OF THE TOTAL COEFFICIENT MATRIX FOR TWO FINITE 
. ELEM~NTS AND THE CONSTITUENT MATRICES. 

The following algorithm describes one method of achieving the required 

index transformation. If i, i, m are the vertices of a triangular element, ", U, 

lM, JJ, JM, MM are the single subscript indices for the matrix elements 5 •. , 
1,1 

S. ., S. ,S.., S. and S . then the following relations hold. 
l" I,m 'd "m m,m 

Defining a term X ca lied pivot, 

X = N-B+2 (5.1) 
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where N is the order of the total coefficient matrix, and B = (Bandwidth + 1) /2. 

The index of the last term wi Il be 

y = (5.2) 

The following further relations hold 

" = + (B-l)(i-l) , i < X 
(5.3) 

i + [2 (B - 1) (X - 1) + (i - X) (2 B + X ~ i - 3) J / 2, i > X 

IJ = + (B-l)(i-l) , < x , or <x 

.- + (B - 1) (j - 1) , > i. and . 

< x or i <x 

= j + [2 (B-l) (x-l) + (i - x) (2 B + x - i - 3) J / 2 

for i >x and i >x (5.4) 

and < i 

= i + [2 (B - 1) (x - 1) + (i - x) (2 B + x - i - 3) J /2 

for > x and i > x 

> i 

JJ = + (B - 1) (; - 1), j < x 

= i + [2(B-l}(x-l} + (j-x}(2B+x-j-3)J/2 (5.5) 

1 > x 



JM = n, + (8 - 1) Û - 1) , 

= + (B - 1) (m - 1) , 

j <xorm <x 

and i < m 

j <xorm <x 

and i > m 
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= m + [2(B-l)(x-l) + (j-x)(2B+x-j-3)J/2 (5.6) 

forj >x and m >x 

and j < m 

= + [2 (B - 1) (x - 1) + (m - x) (tB + x - m - 3) J / 2 

for > x and m > x 

and > m 

MM = m + (B - 1) (m - 1) , m < x 
(5.7) 

= m + (2 (B .. 1) (x - 1) + (m - x) (2B + x - m - 3» /2 

lM = + (B-l)(m-l), m < x or < x 

and m < i 

= m + (B - 1) (i - 1), m < x or < x 

and m > i (5.8) 

= + (2(B-l)(x-l) + (m - x) (2B + x - m - 3» /2 

m > x and i > x 

m < i 

= m + (2 (B - 1) ex - 1) + (i - x) (2B + x - i - 3» /2 
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5.3.1 Assembly of the Total Coefficient Matrix and the Current Vector 

Having thus evaluated ail the geometrical coefficients for each individual 

triangle and the current vectors and having transformed the indices of the element vertices, 

we proceed to assemble the total coefficient matrix S and the current vector R. Assum-

ing an initial value of the vector potential f.G, normally zero ·v.alue for most purposes, the 

magnetic induction· Bis evaluated from the relation 

1 2 2 
B = w-r J (b. ~ .• + b. f/J .• + b 'P) + (c. 'P. + c. fP.

i 
+ c f/J ) (5.8) 

~ Q 1 1 1 l 'm m" 1 1 1 m m 

The· corresponding reluctivities and their derivatives with respect to ·the magnetic induc-

tion are obtained from the B-H characteristic;·for the iron parts, while for other regions· 

v has a constant value equal to the 'reciprocal permeability of free space. The Sand 

R matrices are now easily assembled from their respective compone nt values for each of . 

'the triangular elements as 

v S (1 J) , •• 
1,J,m 

R (1) ,. • 
1,I,m 

where [R. Jis the current vector. 
1 

= \' [vB •. ] 
L Il i, j,m 

(5.9) 

= ] , 
i,j,m 
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5.3.2 Chord and Newton,-Raphson Iteration Schemes 

For the first few iterations, the reluctivities are transformed by the chord 
, 

method defined by the relation 

II. new = II. old ( .1J.
0Id) 

i+l i + ~ "i+l - 1", (5.10) 

Almost similar results were obtained by transforming the vector potentials 

instead of thereluctivities and, therefore, either alternative is considered satisfactory. 

The value of the constant·~ was chosen as 0.1, since it gave good linear convergence 

without causinginstability of the iteration cycle. A lower value is also found to be 

satisfactory, but requires more iterations, since the step size is smaller. However, since 

the solution obtoi'led by thechord method is only being used as an initial estimate for ·the 

quadratically convergent Newton-Raphson scheme, no further experiments for optimising 

the value of pare considered necessary. 

As ail the parameters for eac~ triangle have already been calculated and 

stored, the implementation of the Newton-Raphson algorithm becomes an easy matter. 

Th is can be expressed as 

(over ail triangles) (over ail triangles) 

1 '\ '\ 3Ri 
= - 4-A L (B •. tp.) • Il + L 1 Il 1 • • 1,I,m 

(over ail triangles) (over ail triangles) 

(5.11) 
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5.3.3 Matrix Reduction 

It'is weil known that Laplace's and Poisson's equations have unique solutions 

for Dirichlet or mixed boundary conditions, but the solutions for the Neumann problem 

differ by an arbitrary constant. Since Neumann boundary conditions are implicit, in the 

variational formulation, at least one potential needs to be specified for obtaining a,uni­

que solution. This is conveniently carried out by specifying a flux line boundary wherever 

convenient, or by someother means. Since the number of unknown variables of the 

potential vector is reduced by the number of specified potentials, the coefficient'matrix 

and the current vector must be correspondingly transformed. This is accomplished by 

either of the following methods : 

(a) By a row and column reduction of the coefficient matrix corres­

ponding to the potentials specified and a row reduction of the 

current vector. 

(b) By introducing zeroes in the rows and columns, and a value of 

unit y in the diagonal terms of the coefficient matrix corres­

ponding to the potentials specified as constants in the ,right hand 

current vector (see Reference [5.1 ]).. These schemes are il­

lustrated by Figures 5.5, 5.6(a) and 5.6(b). 

Alternative (b) is weil suited for matrices with a band structure, since the 

transformation preserves the band property of the coefficient matrix, thereby permitting 

the use of an equation solving routine suitable for band matrices. 
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e 51 <0 1 R
l 

52 54 .<0
2 R2 

-
53 55 57 <03 R3 

56 5a 59 <04 ·R4 

FIGURE 5.5. ORIGINAL MATRIX EQUATION. 

51 

52 54 

_a 

56 . 59 

FIGURE 5.6 (a). REDUCED MATRIX EQUATION (Alternative (a». 

51 f,e1 Rl 53 

52 54 <02 R
2 -0< 

55 

0 0 1 ,<0
3 a 0 

56 0 59 f,e4 R4 5a 

FIGURE 5.6 (b). TRAN5FORMED MATRIX EQUATION (Alternative (b». 



5.3.4 Solution of Linear Equations for.a Coefficient Matrix 
with a Band Structure 
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The two principal objectives in developing an algorithm for solving linear 

equations are that it must ensu.re compact and economical storage by a sui table indexing 

system and must facilitate fast computation by reducing the number of arithmetic opera-

tions toa minimum. 

The first of these objectives is accomplished by using an indexing routine 

described in Section 5.2.2, which leads to a numbering scheme of the coefficientmatrix 

as shown in Figure 5.4(b). Further indexing is, however nece55ary, in order to execute 

the linear eql9ation solving routine, which in the present case is the Gaussian elimination 

process. Referring to Figure 5 A(b), the lower triangle of this band-structured matrix can 

be conveniently divided up into a parallelogram and a triangle as shown in Figure 5.7. It 

FIGURE 5.7. SUBDIVISION OF COEFFICIENT MATRIX INTO A 

TRIANGLE AND A PARALLELOGRAM. 
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is observed that the number of columns containing M elements below the principal dia-

gonal is only two (where M is band-width + 1 ). The remaining three columns consist 

2 
of elements whose indices decrease successively from M - 1 to 1. The determination 

of the indices of the elements Ss and 59' therefore, is of vital significance. Oenoting 

2 
the index of 5

S 
by IX, it can be shown that IX = (M * N - M + 1), where 

N is the order of thematrix, and M is defined as before. Once the indices of these 

two elements are determined, the indexing of the rest of the elements of the respective 

columns is a simple matter, since they increase by 1 ata time. Aiso the indices of the 

diagonal terms increase by M at a time from 1 until the SIX + M element· is reached. 

Thereafter the diagonal indices increase successively by M - 1 , M - 2, etc. 

Using this special indexing scheme, the elements of the lower triangular 

band-structured matrix are modified by Gaussian elimination. This is accomplished in 

the innermost DO loop·of the program. The multiplying factors required for the modifi-

cation of the matrix elements are determined in the outer loop. The forward modification 

of theright hand vector is likewise carried out in the outer DO loop. The al lied in-

dexing schemes and arithmetic such as additions and subtractions are relegated to the 

outermost DO loop to keep the computation to a minimum. The details of this scheme 

are shown in the flow chart of Figure S.8. 

5.3.S Formula for the Total Number of Arithmetic Operations Required 

If N is the order of the matrix and 2M - 1 the band-width, then the 

following arithmetic operations are required. Ali the operations are evaluated in terms 

of mu!tipiications for estimating the work to be done. 
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MATRIX ELEMENTS NX, 
AND IX, IX + M 

FIND 
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~ (J) = FACTOR / S (NX) 

PRINT ~ 

FIGURE 5.8. FLOW-CHART FOR SOLUTION OF EQUATIONS WITH 

BAND-STRUCTURED MATRICES. 
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'ndexing 

Number of multiplications and additions = 3.15 + 0.3 (N -1) 

Forward Modification 

Number of multiplications 

and divisions 

Number of additions 

Hence,"the total number 

of multiplications, 

additions, etc. 

Triangular DecompositiC?n 

Number of multiplications 

Beck Substitution 

Number of multiplications 

Therefore, the total number of 

M-1 

= [( N - M + 1) (M - 1) + L (M - KJ • 2 

2 

= (2 N - M) (M -1) 

= 0.15 (2N - M) (M -1) 

= 1.15 (2N - M) (M - 1) 

= (M - 1)2 (N - M + 1) + (M-2)(M-1)(2M-3) 
6 

M-1 

= (M - 1) (N - M + 1) + L (M - K) + 0.25 N 

k=l 

Arithmetic operations required ~ (M ~ 1). (1 N - 5 M + 6 MN - 4 M
2 + 6) 

will be 

~ M
2 

(3N - 2M) ..... 3 . . . (multiplications) 



5.3.6 Comparison of the Arithmetic Operations Required by the Triangular 
Decomposition Method and byan Inverse Routine for a Band Matrix 
and also for a Full Matrix 

Arithmetic Required to Solve N Simultaneous Equations 

Method Band-Matrix Full-Matrix 

Simultaneous M
2 

(3 N - 2 M) N
3 

2 

Equation Solution 
3 "3 + N 

Inverse and Post 3 
M N

2 
N

3 
2" . 

Multiplications 

5.4.1 Convergence Criteria and Rate of Convergence 
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The computational work increases with the number of iterations of the matrix 

equation solution, and therefore, some criteria must be applied for terminating the iterative 

sequence, in order to achieve efficiency and economy of programming. An error norm would 

be the ideal basis for determining whether or not the number of iterations are adequate for 

obtaining a solution of acceptable accuracy. Since there is no easy way of determining 

the true error for a nonlinear problem discretised by finite elements, it is necessary to adopt 

other norms as the bases of terminating the iteration process. Following are some of the 

norms used in the present analysis : 

(a) infinity norm of the displacement vector, 

(b) Euclidean norm of the displacement vector, 

(c) infinity norm of the residual vector, 

(d) Euclidean norm of the residual vector. 
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Ali these norms are evaluated by the computer program, and a value of 

10-
6 

or less for the Euclidean norm of the residual vector is used as the basis for stopping 

the iterative sequence. 

The convergence rates for the chord and Newton-Raphson iterations are 

shown in Figure 5.9 for a transformer problem. In this case, however, an error norm was 

used as the criterion, assuming the solution achieved after 25 iterations to be the true 

solution of the problem. It is evident that between six and eight iterations are adequate 

for achieving an acceptable minimum value of the norm, and this has been further con­

firmed by later numerical experiments on larger matrices. In ail these cases of field 

analysis the initial approximation to the solution vector was taken to be zero and conver­

gence to therequired solution was achieved in a few iterations, owing to the quadratic­

convergence property of the Newton-Raphson method. If more than one evaluation of 

the field solution ïs required for a given problem,for example, if the applied current 

density is varied in steps then the computation could be considerably reduced by using the 

vector potential solution corresponding to one value of current density as the initial value 

for the next. One such scheme is used in the latest versions of the computer program. 

5.5 Flux Plotting Routine 

An automatic flux plotting routine has been developed, which in conjunction 

with a digital X - Y piotter, produces flux plots directly from the input data of co-ordincte 

values, vertex numbers of triangles and the potential values obtained from the finite ele­

ment analysis. The steps in the plotting routine are as follows : 
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(1) Determination of the maximum and minimum values of vertex 

potentials, and a suitable sub-division of their range. 

Oi) Scanning of the triangle edges to check whether each of the 

sub-divisions of potential as described in (i) lies along the 

sides. 

(Iii) Evaluation of the X and Y co-ordinates of the points corres­

ponding to the potential sub-division, by Unear interpolation. 

(Iv) Drawing the flux lines for each potential sub-division by 

joining the co-ordinates obtained from (Iii), bya line plotting 

routine • 
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The flux plots executed by the above routine are sectionally straight and 

truly represent the field solution obtained by first order finite elements. Examples of 

such plots will be found in Chapter VI. 
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CHAPTER VI 

APPLICATION OF THE METHOD TO ELECTRICAL MACHINES 

ln order to ascertain the efficacy of the finite element method for solving 

practical nonlinear field problems occurring in electrical machinery, three distinct appli­

cations were considered, namely 

(a) a transforme r , 

(b) a large turbo-generator and 

(c) a direct current generator. 

These machines are representative of the wide range of electrical machines in present day 

use and possess ail the complexity of geometry, materia 1 characteristics and mode of energy 

conversion. The diversity that these devices presentin~respect of constructional details 

and electrical performance poses :an interesting challenge to currentLy available field so­

lution techniques and, therefore, any new method that endeavours to solve the field 

problem efficiently should be of general application and yet be flexible enough to suit 

particular needs. One of the considerations for the choice of these applications besides 

the above, is that the computed field solutions could be verified bylaboratory experiments 

or by factory test results that areteadily available. 

6.1-' The Transformer Problem 

A three limbed transformer core was assembled out of transformer steel and 

a small winding was placed on the central limb as shown in Figure 6.1. A number of 
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small holes were drilled through the ~ore in order topermit insertion of search coils, so 

that the flux distribution in the core could be measured directly. The Mean magnetisation 

curve for this steel was determined by punching ci ring sample out of randomJy seJected 

stampings. Measurements weremade with a fluxmeter, eliminating any possible eddy­

current effects by avoidance of alternating current testing, The measured Magnetisation 

curve is shown in Figure 6.2. 

For the finite element analysis, the core (Jnd surrounding air space, were 

subdivided into triangles in a variety of ways. Figure 6.3 shows qne of the subdivisions 

used, wherein the iron and the immediately surrounding air are modelled, with large tri­

angles in the latter where the solution is expected to have little importance. A flux-Iine 

boundary is assumed around the outer edge of the air-space mode lied • It has been found, 

in fact, that leakage flux at reasonable distances is smalt enough that such detailed re­

presentation, in the majority of cases, adds little to the analysis, and can occasionally be 

ignored altogether without loss of accuracy. Figure 6.4 shows a predicted flux distribution 

in the transformer, the external air spa ce not being drawn in. A noteworthy point is that 

the flux lines obtained by this method are sectionally straight. As described earlier, this 

is a consequence of the linear interpolation of the potential in each triangle in terms of 

its vertex values. The flux plot is deliberately shown without aliy smoothing so as to il-

lustrate the essential characteristics of the first order finite element Methode Onlyone 

such distribution is shown, since it is more or less the same for other current values. It 

might be added that the leakage flux lines shown crossing the transformer window are not 

equally spaced with the lines shown in the iron, but are additional lines drawn in for ex­

planatory purposes. 
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FIGURE 6.3. SECTIONAL· VIEW OF A TRANSFORMER SHOWING 
IRREGULAR TRIANGULAR SUBDIVISIONS. 
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FIGURE 6.4. PLOT OF THE PREDICTED FLUX DISTRIBUTION IN THE 
TRANSFORMER WITH A MAXIMUM FLUX DENSITY OF 
1.5 Wb/m2

'N THE CORE AND 2.1 Wb/m
2 Ar THE CORNERS. 
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A direct comparison of experimental and predictedresults is shown in 

Figure 6,5, which shows the fluxes linked by search coils placed in the central Iimb of 

the transformer. These coils were placed in small drilled holes located as indicated by 

the heavy dots in Figure 6.6. The agreement is extremely good, particularly in viewof 

the very considerable degree of saturation at the higher current levels. Figure 6.7 

similarly exhibits the predicted and measured fluxes for the search coils in the Immediate 

vicinity of the corner region of the core, where high local flux densities and rapid varia­

tion in flux density are to be anticipated. Agaln, the experiment amply justifies the 

theoreti cal treatment. 

6.1.2 Determination of the Magnetising Current 

ln order to indicate the manner in which the calculated flux distribution might 

be employed directly for the solution of practical problems, predictIon of the magnetising 

current waveform for the core at hand was attempted. Although approximate calculations 

of this quantity are easily made, accurate predictionrequires considerable care. For this 

analysis, the following method was used. 

Let us suppose that at a particular instant the current density in the trans­

fromer winding has a certain known value J. Using the finite .. element technique, the 

corresponding magnetic vector potential f/J may be determined everywhere in and around 

the transformer, and the total instantaneous stored energy W calculated by using the ex­

pression [2.25, p. 152J Equation 5.37. 

W = ~ J Jf i$. :r d x d y d z (6.1 ) 
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It will be assumed that the winding terminal e.m.f. is sinusoidal expressed by the 

relation 

e = Ecos",t 

The total flux linkages ~ for any coil are given by 

t 
~ = l e d t 

o 

and the coil stored energy May be stated in terms of flux linkages and coti current 

w = 1 >'i "2 

Combining Equations (6.1) to (6.4), one obtains 

1 

where the current 

E sin", t = JIJiP.Jdxdy 

JJJdxdy 

is expressed as 

= II J dx dy 

dz 

(6.2) 

(6.3) 

as 

(6.4) 

(6.5) 

(6.6) 

ln this formulation, it is not required to associate any particular flux lines, 

nor any particular fraction of the total flux, with ail or part of the total winding. This 

point is essential, for as the iron saturates, the flux distribution in the core alters consider-

ably - - for example, the relative amount of leakage flux rises rapidly - - so that one 

cannot eosily specify what part of the total flux is linked by any one turn. However, the 
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integrals in (6.5) are easily evaluated numerically as part of the computer program. By 

repeating the solution for various current values, it is possible to find the correspc)nding 

instantaneous voltages. In this way, the magnetizing current waveform for a given 

sinusoidal terminal voltage is constructed easily. 

The computed magnetizing currentwavesh~pe for one value of terminal 

voltage is compared with the characteristic determined experimenta"y as shown in Figure 

6.8. During the tests, care was taken to ensure thatno external resistances were in­

cluded in the primary circuit of the transformer, lest the input voltage waveform should 

bedistorted and differ appreciably from a sinusoid. A slight discrepancy, most probably 

arising from the mean magnetisation curve rather than a true hysteresis loop, is discernible. 

However, the correlation of experiment with prediction is very satisfactory. In this 

analysis of the transformer, 64 triangles with 51 vertex potentials were used to repre­

sent a quarter section of the transformer, and the initial computer program developed 

could produce a complete solution for one value of current density at a cost of $6.00 on 

an IBM 360 /75 computer. The later programs using an improved algorithm for a band­

structured coefficient matrix solve the same problem under two dollars per current value. 

6.2.1 Evaluation of Turbogenerator Performance 

A 30 MW, 2 pole, 3000 r.p.m. turbogenerator operating at 11 KV, 

0.8 p.f. was chosen for predicting its performance under various conditions by fieldanoly­

sis as described in earlier chapters, since the computed values could be compared with 

avoilable factory test results. As shown in Figure 6.9, the rotor and stator slots are fully 
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FIGURE 6.9. SUBDIVISiON OF A QUARTER MACHINE CROSS-SECTION 
INTO TRIANGLES. 
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represented, except for wedge grooves, which could easily be accommodated in the pro-

gram if the y are especially required. Only a quarter of the machine is considered owing 

to symmetry. The B-H characteristics for the stator and rotor iron are shown in Figure 

6.10. 

ln determining the magnetic field distribution in the machine by finite ele-

ments, the following assumptions are made in addition to those already stated in Chapters 

III and IV for the two-climensional field problem. 

(1) The individual currents in the straps forming the stator and rotor 

conductors are replaced bya uniform current density field over 

the cross-section of the armature and field coi Is. 

(2) The magnetic field outside the machine is assumed negligible and 

the machine contour is treated as a line of constant vector potential 

(a fi ux 1 i ne ) • 

(3) At no-Ioad and purely reactive loads, the direct axis is also a 

line of constant vector potential. 

The flux distribution in the turbogenerator is obtained by solving Equation 

(3.38) of Chapter III, satisfying the aforesaid conditions and the natural boundary condi-

tions implicit in the variational formulation. The result, of course, appears merely as a 

listing of the values of vector potential at the various triangle vertices. For further com-

putations, this is entirely sufficient. However, the flux distribution pattern itself is often 

thought to be informative for the designer, and it is, therefore, on occasion desirable to 
~ 

plot it in detai 1. Figures 6. Il and 6.12 show t)'piCal flux plots obtained. It wi 1/ be 
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FIGURE .6.12. FLUX DISTRIBUTION IN TURBOAlTERNATOR AT NO lOAD. 
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noted that the total lack of restriction on triangle size and shape has permitted using a 

crude approximation in regions where low accuracy is acceptable, while in the region of the 

slots and air-gap, where improved accuracy is desired, much smaller tr;'ngles have been 

used. 

6.2.2 No-Load Saturation Curve and Iron Losses 

Different values of current density were used in the rotor slots and the vector 

potentials were evaluated by the fie Id solution method described above. The flux linkages 

I/J of the different stator conductors were calculated using the follQwing relations [2.25, 

p. 165, Equation 5-10] 

I/J = y". dz (6.7) 

I/J = (fa. - ".) • 1 • N 
ri J 

(6.8) 

where i and i are the vertices bounding the individual coils, 1 the axial length of the 

coil and N is the number of turns. The computed and test results of the no load voltage 

for different excitation currents are found to agree exceedingly weil as shown in Figure 

6.13. The iron losses were computed from manufacturer's curves of magnetic induction 

B vs. watts loss / kg of the si licon iron stampings and vent plates used for the stator 

core. Even here, the agreement between test and computed values is good, as in Figure 

6.14. 
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6.2.3 Short-circuit and Zero Power Factor Characteristfcs 

Under these conditions, both armature and field are magnetized along the 

direct or pole axis. Further, the armature reaction is entirely demagnetizing, since the 

effect of the resistance of its windings is negligibly small far ~nerQtor. such as the 30 MW 

unit being analyzed. 

The process of computation here is similÇlr to the open-circuit case, except 

for the fact that armature as weil as the fjeld coils carry current. The computed values 

compare weil with test results, as shown in Figures 6.15 and 6.16. 

The short circuit ratio (SCR) is a parameter often required in the stability 

analysis of machines and power systems, and is used in estimating the reactive volt-ampere 

capability of the generator. It is defined as 

SCR = Field current for rated open-circL,lit voltage 
Field current for rated short-circuit current 

The value. of SCR obtained from the computed open and short-circuit curves 

is 0.829 which agrees weil with the test value of 0.827. 

6.2.4 Waveform Analysis of the No-Load Voltage 

The wave-form of the flux linking the stator slots, Figure 6.17, was analyzed 

and the harmonie coefficients were computed by a suitable Fourier analysis program. It was 

noted that ail even harmonics were practically nonexistent and also the odd harmonies were 
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of small magnitude. A comparison of the computed values Qnd test results of wave-form 

analysis of the phase-to-neutral voltage of the turboalternator fs shown in Table JI. 

6.2.5 Evaluation of Sequence Reactances 

If the generator is run at rated speed with the field excited to circulate 

rated current in the Y - 8 phases, according to the circuit diagram of Figure 6.18 

[see 6.1, pp. 169 -170], the negative sequence reactance will be proportional to the 

ratio of the line voltage to the current circulating ,in the sHort .. ç~rcuit phases (see 

Appendix V), 50 that 

X2 = E3/ J3. 1 ohms (6.9) 

To achieve this condition in tl,e computer program, only the Y - 8 phase 

armature coils are made to carry current and the resulting voltage is computed for any 

fixed value of field current. From a plot of armature current Qgainst line voltage, flle 

value of voltage corresponding to rated current is obtained. Then the negative sequence 

reactance is given by 

= Line voltage 
Rated voltage (6.10) 

The zero power factor test is carrie'd out as described in Reference [6.1, 

pp. 170 .:. 173J with the terminal connections of Figure 6.19. The zero sequence re-

actance is then obtained, as shown in the Appendix, from the relation 
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= E /3. 1 ohms (6. 11) 

its per unit value being 

z 
o = E / J 3. Rated volts (6.12) 

A comparison of test results and computed values is shown in Table Il, 

which is good for Most practical purposes at the design stage. 

ln the finite ele~ent analysis of the turbogenerC;ltor fielc:f problem, 273 

triangles with 151 values of potentials were used to represent a quarter section of the 

machine. The cost of programming of the entire series of tests was qround $60, with a 

computation time of less than 10 mir,lutes on an IBM 360 /75 computer. 

6.3.1 Determination of the Performance Characteristics of aD. C. Generator 

For determining the no-load and on-Ioad characteristics by this method, a 

5 KW, 4 pole, 1750 r.p.m., 200 - 220 volts , separatelyexcited OC generator 

with interpoles and compensating windings was used. 

As before, the currents in the individual straps of the main field~ interpole 

compensating and armature windings are replaced by a uniform current density, and the 

outside of the machine yoke is considered a flux line boundary. Since the load charac-

teristics are required as weil as the open-circuit performance, it is necessary to represent 

the field region over one pole pitch for obtaining a general computer program, although 



Type of 

Test 

Negative 

Sequence 

Test 

Zero 

Sequence 

TABLE 1. 

COMPARISON OF ESTIMATEO NEGATIVEANO ZERO 

SEQUENCE PERFORMANCE WITH TEST RESUL 1S 

Stator Volts Stator Amps. P. U. Reactance 
Test Com- Test Com- Test Com-

puted puted puted 

1760 1740 1968 1968 0.160 0.158 

1550 1500 1968 1968 

TABLE ". 

HARMONIC ANAL YSIS OF THE OPEN .. CIRCUIT 
i ; 

VOLTAGE WAVE - FORM 

Order of the Har- Computed 
monic Component Values Test Results 

Fundamental 1.03 1.0 

Third 0.001595 0.001649 

Fifth 0.000268 0.0000535 
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for determining the no-load characteristic of the machine, the region over half a pole 

pitch would suffi ce. The triangular sub-divisions used in this analysis are shown in 

Figure 6.20. Two different B - H characterif>tics are used ; one for the main-pole 

and armature laminations and another for the remaining iron parts of the machine. 

6.3.2 Open-Circuit Characteristics of the OC Ge ne rator 

The analysis for the no-Ioad case of the OC machine is identical to that of 

the turbogene rator , and from the listing of the nodal potentials obtained, the air-gap flux 

is evaluated and the armature voltage is determined using the relation 

E = t,t) Z N volts (6.13) 

where tp is the flux per pole in webers, Z the number of armature conductors and N 

the speed in r.p .s. In the alternative, the method described by Equations (6.7) and 

(6.8) of Section 6.2 are used to calculate the flux linkages and the resulting induced 

voltage in the machine. A comparison of the predicted values and test results of the no­

load characterisitcs are shown in Figure 6.21, and the correlation is obviously very good 

considering the fact that a two dimensional analysis has been used for a finite-Iength machine 

with a L /0 ratio of less than unit y and the B - H- characteristics have been considered as 

single-valued, ignoring hysteresis effects. 



FIGURE 6.20. SUBDIVISION OF D C GENERATOR OVER A POLE 

PITCH INTO TRIANGLES. 
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6.3.·3 Voltage Regu latiôn· On-load 

When a rotating electrical machine is delivering power to a load, the axes 

of symmetry of the magnetic field depart considerably from the polar or interpolar axes 

as shown in Figure 6.22, and the latter cannot serve as a flux line boundary for the 

fie Id problem. However, for the field pattern sho, 'n, it will be noted that the potential 

atany point is related to that of the corresponding point one poleoopitch away, so that the 

two potentials are equal in magnitude but of opposite signe This is commonly known as 

the periodicity condition. The potentials on either side of th~ origin along the yy' axis 

of figure 6.22 are likewise subject to this additional boundary condition. Using the 

periodicity condition, the coefficient matrix is modified and the resulHng set of equations 

similar to (3.37) of Chapter "1, are solved to obtain the field solution. The modification 

of the coefficient matrix and the forcing function are accompllshed by the use of a special 

connection matrix as shown in Appendix VI. 

From the vector potential solutions obtained for three different values of ex­

citing current and different armature currents, the induced e.m.f. in the armature is 

evaluated by either of two methods described for the no-lood case. Figure 6.23 shows 

the comparison of the voltageregulation obtained by computation with experimental results 

on the 5 Kw D.C. generator with the main field winding separately excited. Even here, 

the correlation is very good, indicating the validity of the finite element method for solv­

ing practical nonlinear field problems. 

ln this analysis, the fieid region is subdivided into 490 triangles and 266 

nodes and the flux plots obtained for the no-Ioad and full-load conditions are illustra­

ted in Figures 6.24, 6.25 and 6.26. The use of the periodicity condition has 



152 

/ 

_/--~ 
1 

x~_--+ 

1 

/ 

........... 

. .... -

y 

FIGURE 6.22. LOADED D C MACHINE. 



e e 

X10 

(J) 

~20 
~ t • œ ID œ 

.r.\ w' 6r- \:J ~112 ~ e ~ ; 
:2: 
~18 

LOAD C URRENI 
1_ 1 _ _ _ _ _ _ _ ____ .J o 10 15 20 AMPS -~ 5 . 

TEST FIGURE 6.23. LOAD CHARACTERISTIC OF OC GENERATOR. 
G 0 0 COMPUTED 



154 

FIGURE 6.24. flUX DISTRIBUTION OF D C MACHINE ON NO-LOAD. 
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made a detai/ed representation of the DC generator and its solution un.r load condi-

tions possible, which could not be accomplished otherwise in ~iew of the limitation on 

storageof large matrices in the computer. However, the band-width en the modified 

coefficient matrix is larger than for the no-load case, since nNies a pole-pitc;h awayare 

connected to each other electrically. A careful re-numbering of th. trlClngl~ vertices in 

the first instance leads to a small band-width and economy in~ $torage. This i, not always 

possible and, perhaps, in future work on the subject a method for compacting band-

structured matrices may be developed as a separate algorithm for effecting further economy 

and efficiency in programming. However, despite this limitation in the pr4p$ent analysis, 

the cost per solution for each field and armature current value is still far more economical 

than any field solution obtained on a similar problem by currently avallab'e finite difference \ 

schemes and others. 

6.3.4.· Flux Distribution 

From the values of flux densities predicted, it is observed that a much higher 

degree of saturation occurs in the rotor body of the turbo-generator and the field of the' 

D.C. machine than has been assumed in conventional design praetrce~ Consequently the 

design constants which are based on an average value of flux denstty require considerable 

modifi cation. 



CHAPTER VII 

CONCLUSIONS 

.l~ 

A general variational approach has been presented in this thesis for solving 

two-dimensional nonlinear electromagnetic field problems. The finite element method 

has been applied for the first time to electricmachines for evaluatfng their performance 

under conditions of magnetic saturation. 

The method developed in this analysis conslsts of dertving the true energy 

fl.lnctional for nonlinear conditions andreplacing the continuum problem bya set of finite 

triangular elements which represent the geometry and material characteristics of the 

medium and define the approximation to the magnetic field in the region. Minimisation 

of the energy functional bya set of approximate functions thus defined yields the re­

quired field solution. This process results in a set of nonlinear algebraic equations, which 

are solved by a rapidly convergent iterative sche~e. 

The following conclusions are drawn From the foregoing analysis. 

(l) The variational formulation of the field problem yields a general 

nonlinear energy functional which satisfies Dirichlet and homo­

geneous Neumann boundary conditions. Since the natural 

boundary conditions are implicit in the functional formulation, the 

complexity of boundary specifications encountered in divided dif­

ference schemes is entirely avoided. 



(2) The energy functional is not restrcited in any way since the 

reciprocal permeability of the medium which causes the non­

linearity is not held fixed, although it is assumed single valued 

by neglecting hysteresis effects. Therefore, the Euler equation 

is found to be the partial differential equatioii of the original 

field problem. As a result, no approximation is made in formu­

lating the variational expression or in its minimisation. 

(3) The finite elementrepresentation of the field region including 

current sources, inhomogeneities and nonlinearities leads to far 

fewer nodes and equations than the finite difference schemes. 

Further, the tr:angular elements can be of arbitrary shape, number 

and unrestricted topo 1 ogy • 

(4) The set of nonlinear algebraic equations resulting From setting 

the first variation of the functional to zero is solved by the 

generalised Newton-Raphson scheme, which assures nearly quad­

ratic convergence of the iteration process, starting From an initial 

estimate of the solution obtained by the first order chard method. 

ln this scheme, the convergence of the iterations is not seriously 

affected by an arbitrary choice of the initial value of the poten­

tials or reluctivities. From the potential solution obtained, the 

magnetic induction is evaluated and from the B - H characteristic 

of the medium, the reluctivity is determined. The set of nonlinear 

equations is thereby modified in each iterative pasSe The linear 

1.59 
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equations in every iteration are solved by direct Gaussian elimi-

nation thus avoiding the slow convergence and instability en-

-
countered in iterative solution methods common to most finite 

difference schemes. 

(5) The correct choice of an under-relaxation factor for modifying 

the reluctivities or the potentials is not a critical requirement 

for the iteration Cligorithm developed in this analysis. Since 

the B - H characteristic is monotonic, a solution is always 

assured even starting from an initial potential value of zero. 

(6) The use of the periodicity condition in addition to the natural 

boundary conditions forevaluating the load characteristics of 

rotating electrical machinery, and the necessary connection 

matrix derived for the purpose have permitted the field represen-

tation over one pole pitch only instead of the entire region, with 

-theresult that large practical magnetic field problems can be solved 

without exceeding the limits of computer memory. 

(7) A comparison of the computed values and test results of the steady 

state characteristi cs of a transformer, a turbogenerator and aD. C. 

generator amply demonstrates the efficacy of the finite element 

method and its practical applicability to the determination of field 

distribution in electric machines in the presence of magnetic satura-

Hon. 



(8) The programs developed to date yield results which are accurate 

within limits of experimental errors and are computationally 

cheaper thon any of the finite difference schemes of nonlinear 

field analysis. 

The Contributions of this Thesis can be summarised' as follows : 

(a) The derivation of a general unrestricted nonllnear energy func:­

fionaf bY'variational methods for the two dimensional field 

problem in electric machines and proof of its minimality at the 

solution point.· 

(b) The application of the first order fi.,Îte ele.ments for the dis­

creterepresentation of electric machines including complex 

geometrical shapes of the different regions, current sources and 

widely differing material characteristics. 

(c) The problem is formulated in such a way as to permit the appli­

cation of the generalised Newton-Rcphson method to first order 

triangular finite elements. 

(d) Derivation of a suitable connection matrix for the periodicity con­

dition used in the evaluation of load performance of rotating 

electrical machinery. 

161 



(e) Prediction of the flux distribution and steady state performance 

characteristics of a transformer, turbogeneratorl'and a direct 

current generator by computation, and proof of their accuracy 

by comparison with test results. 

(f) Development of ct general computer algorithm for electric machine 

appÎlcotion capable of yielding results of the some accuracy as 

earlit,\r numerical methods, butata mu ch reduced cost. 

162 
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APPENDIX 1 

SURFACE INTEGRALS IN AREA CO-ORD/NATES 

We can evaluate surface integrals conlVeniently in terms of area co-

ordinates (Reference '[3 .. 7, pp. 99 - l00J), which are pr~sented here for completeness. 

Consider the triangle ABC divided up into three distinct areas as shown in 

Figure A. 1.1 

FIGURE A.l .1. SUBDIVISIONS OF TRIANGLE. 

x. y. 
1 1 

Area of Triangle ( 1 ) 
1 

Al = 2" . x. Y: = 
J 1 

X Y 

x y 

Area of Triangle (2 ) 1 
A2 

= ~ . x. Y· = J J 

x Ym m 
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x. y. 
1 1 

Area of Triangle (3) = 
1 
2 

x y = 

so that Il= 

~ al: 
m 

obtains 

1 

1 
( 4 1 + 4 2 +:43) = 2' • 1 

1 

x 
m 

x. 
1 

x. 
1 

x 
m 

y. 
1 

y. 
1 

Ym 

We shall now define certain ratios called 'area co-ordinates', t., e., 
1 1 

e. 
1 

~. 
1 

~m 

= 

= (A.lo1) 

= 

Expanding the second of the Equations (A.].l) and re-arranging one 

(x. y-y. x ) + (y. - y.) x + (x - x.) y 
lm lm Il ml 

2 a (A, 1 .2} 

Reducing the above equation in terms of the geometrical constants 

a. = x.y - x m Yi 1 1 m 

b. = y. - Ym 1 1 

c. = x - x. 
1 m 1 
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and so on, one obtains 

(a. + b.x + c. y) 
~. 

1 1 1 = 
1 2A 

(a. + b.x + c. y) 
= 1 1 1 

~. (A.1.3) 
1 2A 

(a + b x + c y) 

~m 
m m m = 

2,A 

The magnitude of these area co-ordinates varies from zero at the sides to a maximum of 

unît y at the opposite triangle vertices along the altitudes, and they satisfy the relation 

c. + ~. + C = l 
1 1 m 

(A.1.4) 

It is, therefore, only necessary to consider two of the area co-ordinates 

for any given problem. We shall now evaluate the surface integral of Equation (3.19), 

Chapter III, Section 3.2.2, given by 

n 

II~AIJaqds=~ Jf' J J (a. + b. x + c. y) d s 
1 1 1 

(A.l.5) 

R i=l R 

Consider an area element defined by the small parallelogram shown shaded 

in Figure A.l.2. 

The parallelogram elementary area is given by 

d s = (A.l.6) 
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FIGURE A.1.2. ELEMENTARY AREA PARALLELOGRAM. 

From trigonometry, it is evident that 

sin ~ = m 
(A.l.7) 

so that the area element is expressed as 

d s = al a2 cose c t,tt de. d ~. 
m 1 J 

(A.1.B) 

The sides of the elementary area parallelogram run parallel to two of the 

sides of the triangle and, theref~re, rit is similar to the parallelogram constructed by the 

corresponding sidesof the entire triangle. Also if we bisect the elementary area, it would 

yield a small triangle similar to the large one. Thus we can derive the area of the large 

triangle as 

(A.1 .9) 

since d ~. and d ~. attain a value of unit y • 
1 J 
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The area of the elementary parallelogram can now be written as 

ds = 24 d('. d ('. 
1 1 (A. 1. lO) 

Substituting for d s from Equation (A.l.10) in Equation (A.l.S) and 

using the value of ('~ from Equation (A.l.3), the surface integral of Equation (A.l.S) 1 

becomes 

h J J . J (ai + bi x + ci y) d s 

P. 

1 1-(. 
1 

= 2 4 J l J ~i d ('; d (' i {A. 1.11) 

o 0 

where the limits of integration range from zero to a maximum value of (1 - ('.) or unity 
1 

as shown. 

After performing the double integration in the usual manner, the surface in-

tesral reduces to the value 

~ f f J (ai + bi x + Ci y) d s = .d/­
R 

(A.1.12) 
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APPENDIX Il 

COTANGENT /DENTITY FOR TRIANGULAR FINITE ELEMENTS 

Let us consider the triangle of Figure A.2·1Jwhose area is denoted by A 

and the' vertices i, j, k • 
• 
~ 

, 
t -----=.::A. 

It is evident that 

-1 '1. -1 y. 
9

k 
tan 1 tan 1 (A.2.1) = -- - ---

x. x. 
r 1 

where 

y. = (y. - Yk) , x. = (x. - x
k
) (A.2.2) 

1 1 1 1 

Hence -
-1 y. -1 y. 

cot 9
k = cot (tan -1 - tan _1 ) -x. x. 

1 1 

- -
-1 y. -1 y. 

cot tan _1 cot tan -.!.. + 
x. x. 

1 1 (A.2.3) = 
-1 y. -1 y. 

_1 1 cot tan - cot tan 
x. x. 

1 1 

But 
-1 

l/J 
1 

50 that cot tan = - , 
'1' 
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x. x. 
.....l.. 1 

• - + 1 - -y. y. 
9' 1 1 

(A.2.4) cot = 
k - -x. x. _, 1 

- -y. 
1 

y. 
1 

-- -. _ .... __ .. ~_._ ... 
x.' x. + Yi' Yf"-" 

= 1 1 (A.2.5) 
x. y. - x. y. 

1 1 1 1 

which finally becomes after substituting (A.2.2) in Equation (A.2.5). 

(x. - xk) (x. - xk) + ( ,y. - Yk) (y. - Yk) 
1 l , 1 (A.2.6) 

-2 A 

We shall now consider the factor (Il. b. + c. ë.) which cQn be expressed as 
1 1 1 1 

(1). b. + c. ë.) = (y. - Yk) (y. - Yk) + (xk - x.) (xk - x.) 
1 1 1 1 1 1 1 1 

(A.2.7) 

and so on 

From Equations (A.2.6) and (A.2.7) one obtàins 

(1). b. + ë: c.) = 2 A cot 9k ' il= (A.2.8) 
1 1 1 1 

2 2 2 2 = 1 jk , i = i (i .e. o. + c. = 1 jk) (A.2.9) 
1 1 



Here, as previously, I
jk 

denotes the lengths of the side sponning nodes j - k. The 

following further relation can be obtained easily 

, 2 2 
2 2 ~ 1 jk 

2 A • l 1 ik = = 
2~ h. I.k l , 

I.k = 2 Il. -'-
h. 

1 
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= 2 A (cot 9
i 

+ cot 9
k

) (A.2.10) 

where h. is the triangle altitude through vertex i. Thus we finally hove 
1 

b. 6': + c. c. = - 2 ~cet 9k ' l' l' 
2 

r -2 
Di + Ci = 2 ~ ( cet 9i + cot 9k ) • 

li 

(A.2.11) 
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APPENDIX III 

EVALUATION OF THE CHANGES TO THE DIFFERENTIAL 
i 1 

OF THE FUNCTIONAL DUE TO A LOADED BOUNDARY 

FIGURE A.3.1. ELEMENT OF A LOADED BOUNDARY. 

At a point p as shown in Figure A.3.1, the vector potential Îs assumed to 

be a linear interpolate of ", rand ", s so that 

(t.e - lfJ ) r s 
t.e p = "'s + 

L 
(A.3.1) 

l 

r J q [t,e + (t,e - t,e ) 
1 Hence q tfJ = . T ] dl u ds s r s c 0 

12 t,e 12 
L 

= [ttt (1 --) + ...!...- ] 
s 2 L 2 L 0 

(A.3.2) 

We can, therefore, evaluate the derivative as 
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~[ Jq ffjdsJ= qL (A.3.3) offj 2 r 

L 

J 
1 2 J 1 1 2 

Similarly 2' a ffj ds = 2 a [ffj +~ - .f(J s "[ J d 1 (A. 3.4) 
s r 

0 

which after some algebra 

= i [ ffj~ L + ffj s L (tf'J r - ffj s) + (ffj r - ffj s) 2 ~ J 

The differential of Equation (A.3.4) is then obtained as 

(A.3.5) 
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APPENDIX IV 

THE NEWTON-RAPHSON FORMULATION FOR FIRST OROER 

TRIANGULAR FINITE ELEMENTS 

Let us define functions f, g, h such that 

f = ..:-. [ B •• t,a. + B •• ~. + B. t,am] - J 3/J 
~ Q Il 1. If 1 lm 

11 J J /1 9 = 4A[ B •• t/J. + B •• ttt j + B. ~ - ,--. Il 1 Il lm m 
(A.4.1) 

h 
11 J J/1 

= 4T[B. fP. + B • fP. + B ttt --. ml 1 ml 1 mm m 3 

The partial derivatives of f, g, h are given by 

Il B •• B •• 0. 011 B •• fP. 
011 

B. t/J 011 
f. __ II + Il 1 Il 1 lm m = -+ -+ 

1 4 Il 4 /J a tfJ. 4/1 ofP. 4~ ot/J. 
1 1 1 

B •• ~. Il B •• 
ft B. t/J 011 D •• ifJ. 011 011 

f. 
Il 1 --.!! + IJ 1 lm m = -+ -+ , 
4 A ofP. 4~ 4/1 a t/J. 4A a <O. , , , 
B •• t/J. 011 B •• 011 Il B. B. t/J 011 

f Il 1 IJ lm lm m = -+- tfJ. -+ + m 4/J otfJ 4/J , 
otfJ 4/1 4~ 00 

m m m 

Il B •• B •• ~. 011 B •• tfJ. 011 B. t/J 011 = __ " + _'_'_1 Il , ,m m 
(A.4.2) 9. -+ . -+ 

1 
4~ 4.:1 o~. 4/1 of,t). 4/1 o~. 

1 1 1 



Hence 

as 

g. = 
1 

h. = 
1 

h. = 
1 

h = m 

B •• ~. 
Il 1 

4A 

B •• '/J. 
l' 1 

44 

1.1 B • ml 

8 • 'P. ml 1 

4 4 

8 • 'P. ml 1 

44 

011 Il B •• B •• ~. 011 B. '/J 011 ---.il + Il 1 lm m 
- + -+ 
0". 4-4 4-4 Oill. 4A o fP. 

1 1 

011 
-+ 
O'P 

m 

B •• 'P. 
Il 1 

4â 

01.1 
-+ 
o~ 

m 

8 • fI). '::. B • fI). ml 1 01.1 ml 1 + _ + __ .a.._---=-
4 /:, 0 .tt! • 4 Â 

·1 

011 Il B. .8 . 'P .• 
ml ml 1 -+ + 

o~. 4A 4 4 
1 

011 8 . 'P. 011 ml 1 -+ -+ 
0'P 4A o'P m m 

1 

8. 'P 
lm m 

8 o Il mm 
- + ---- fi) 
o'Pf 4 ~ m 

011 B mm 
-+-
o 'P. 

1 
4~ 

'Pm 

IJB 8 'P mm 
+ 

mm m 

4~ 4 A 
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ail . 
ofl). 

1 

0·11 

a~ m 

f. A ~. + f. IJ 'P. +. f 4tfJ; = -f (~. , ~ . , 'Pm) can be evaluated 
1 1 1 1 1 

1.1 8 •• 
[ Il = 

4 ~ 

+-
o~. 

1 

1 m 

4 'P. + . 
1 

011 
A tfJ. + 

1 

m 

Il B •• 1.1 B. __ II 
4 'P. + 

lm 
4~m ] . 

44 1 4~ 

(A.4.3) 



Similarly 

The above equation can be recast in the-form 

\' f. Il~. L 1 1 

v = -[B .. , 
41l. JI 

B .. , 
IJ 

B. ]. /j ". 
lm 1 

= -.:..r [ B.., B.., B. ] 
... ,Q JI l' lm 

ffJ. 
1 

~. 
1 

" m 

~ [ B.., B.., B. ] 
4A Il " lm 

6,,_ 
1 

IlffJ 
m 

+ J Il -r 

Il. ffJ. 
1 

Il ffJ. + 
1 

~ffJ 
m 

1 \' oV 
""TT. [ LB.. f/). • ~, 

... Q Il 1 o~. 
\' B •• L fi 

~. . 
1 

1 

] 
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Il. t,8. , 

(A.4.4) 

Il. ". 1 



fI!'. 
1 

= - -!!-r- [ 8.., 8.., 8. ] • fi!' • 
... ~ Il Il lm 1 

"m 

J Il 
+ -r 

A (,D. 
1 

\' h. Il (,D. = L 1 1 

&1 
"'7'""r-[ 8 ., 8 ., 8 ] • 
... ~ ml ml mm 

~. 
1 

= - 4 &Ill [ 8 mi' 8 mi' 8 mm] •. "i 
J Il 

+ --3 
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(A.4.5) 

(A.4.6) 

Adding the like elements of the above matrix equations one obtains the complete matrix 

equation (4.64) of Chapter IV. 

We shall now evaluate the Second Set of matrices on the L.H.S •. of Equation 

(4.64) of Chapter IV. 

(A.4.7) 

Substituting for B in terms of the derivatives of ffj and after some algebra 

l IB .. fI!'. 
Il 1 

-= • \' 2 \' 2 
2 I:J J ( L bi 'Pi) + ( L ci ffj i ) 

(A.4.8) 
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Similarly 

~8 1 
l 8 •. t,e. . , • = - 2 2 

o ~'i 2A .; (L b
i 

f,&. ) + (L ci t,e. ) 
• • 

(A.4.9) 

08 1 
L 8. t,e. 

.m • -= -,. L 2 f.G. ) 
2 of,& 2 A J ( b., fP.) + ( L ci m • • • 

(A.4.10) 

Therefore 

l 011 1 011 l 8.. f.G. 
8 •• L 8 •• 

., . 
fP. -= -. fP. - . L 2 l 2 Il • o t,e. 24 Il • 08 .; ( b. t,e.) + ( c. 1,&.) , . " .. 

(A.4.11 ) 

.--.. 

011 1 ') 8 .. 
011 L 8.. ca. I 8 .. 

Il • 'P. -= 'P. • \' 2 \' 2 ,. 1 2â t...... '1 1 08 o~. J (L b. ,fP.) + ( L c. t,e.) 
1 1 1 • 1 

(A.4.12) 

By ~he above procedure ail the element:; of the second term of Equation (4.64) can be 

obtained from which it is seen that 

l 8 .• f!!I. 
011 L 8 .. 

011 
o~. = fIJ. ~. Il 1 fi 1 , 1 

(A.4.13) 

L 8 •• 
011 l 8 . 

011 
f,&. - = 'P. 

Il 1 ott! ml 1 ofP. m 1 
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APPENDIX V 

EXPRESSIONS FOR THE NEGATIVE AND ZERO SEQUENCE 

REACTANCES OF A TURBOGENERATOR 
i 

Zero Sequence Reactance 

If the three phase windings of a generator are connected in series and a 

single phase voltage E is impressed across the windings, as in Figure 6.18, while the 

rotor is unexcited and stationary, then the following relations hold ; 

= (A.5.1) 

= (A.5.2) 

= 

where '1' '2 and '0 are sequence components of current and Zl' Z2 and Zo the 

sequence reactances; a = - 0.5 + i 0.366 

Adding (A.5.1), (A.5.2) and (A.5.3), there is obtained 

(A.5.4) 

Also 
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'R = '1 + '2 + '0 

'y 
2 

+ a '2 + '0 (A.5.5) = a '1 

a '1 
2 

+ '0 'B = + a '2 

Sinc~ 'R = 'y = 'B ' there results from (A.5.5) 

'0 
'R + 'y + 'B 

(A.5.6) = = 
3 

Substituting for '0 from (A.5.6) in (A.5A) one obtains 

Zo = E /3.' (A.5.7) 

'n order to perform the field analysis for predicting the results of the above 

test, it is necessary to convert ail electrical quantities of the circuit of Figure 6.1C based 

on a voltage source to that of an equivalent currenr source. The criterion of equivalence 

of the above two circuits is that the voltage must be the same in both cases. 't is evident, 

therefore, that 

E = ,1 z/3 (A.5.S) 

= 3' Z (A.5.9) 
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From equations (A.5.8) and (A.5.9), the two çurrents are related by 

= "/9 (A.5.10) 

If the new current is impressedon the stator in the present field analysis, then 

the correct flux will be obtained from which the required voltage can be evaluated. Using 

Equation (A.5.7), one can then compute ZO. 

Negative Sequence Reactance 

Using Equations (A.5.1) to (A.5.3) and the additional relations applicable 

to the circuit of Figure 6.17, 

Iy = - 1 B 
(A.5.11) 

'0 = o (A.5.12) 

one obtains the expression for the negative sequence re<Jctqnce, of ter some algebra, as 

= E / J 3.1 (A.5.13) 

If now the circuit with the voltage source is converted to that of a current 

source as before for the field problem, it is found that the equivalent current to be impressed 
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is given by 

= 21' /9 (A.5.14) 

The negative sequence reactance can then be computed by using Equation 

(A.5.13) • 



APPENDIX VI 

PERIODICITY CONDITION FOR ROTATING ELECTRICAL MACHINERY 

1 • Invariance ·of Energy and Formulation of the Connection Matrix 
'for Symmetry Conditions 
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Let us for example consider a 2 pole 0 C machine as in Figure A.6.1 (a) 

operating on no-foad. 

_ _ _ '---JL--__ -Ç 

FIGURE A.6.1 (a) FIGURE A.6.1 (b) 

The shaded region alone need be considered owing to the symmetry of the problem, and in 

view of the fact that no even harmonies are generated by rotating machines. This region is 

now divided up into a number of triangles as shown in Figure A.6.1 (b). For simplicity we 

shall consider only two triangles as in Figure A.6.2 • 



----/ 
/ , 

1 

FIGURE A.6.2. 

The individual triangular coefficient matrices will be 

and 

SI : 
22 

SI 
32 

Also the potential matrices and forcing functions will be respectively 

~1 

~3 and 

f,t)3 

SI 
34 

SI 
44 
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(A.6.1 ) 

J3 1l/3 (A.6.2) 
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It is now required to form the total S matrix and the vectors of potentials 

and forcing functions. If the total potential vector for the connected triangles is re-

presented by 'fP 1 and the sum of the individual potential vectors, for the unconnected 

triangles by ffj, then the following relations'hold, where C is th~ connection matrix 

[6.2, p. 206, Eq. (8) J • 

= c. ffjl 

or 

ffj1 1 1 

ffJ2 
2 0 

ffj3 3 0 
= 

ffj2 2 0 

ffj3 3 0 

fP4 4 0 

2 3 

0 0 

1 0 ... 

0 1 

1 0 

0 1 

0 0 

4 

0 

0 

0 

0 

0 

1 

ffj' 
1 

(A.6.3) 

(A.6.4) 

Note that the connection matrix has entries 1 or 0 depending on whether 

or not anode is connected to another. 

Similarly the forcing functions are also related. If Fil and F correspond 

to the total connec'ted and the sum of the individual unconnected vectors respectively, then 

Fil = (A.6.5) 



1 

or 0 

0 

0 

0 0 0 0 

1 0 1 0 

0 1 0 1 

0 0 0 0 

0 

0 

0 

1 FI 
2 

F. I 

3 

FI 
4 

= 
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FI 

F2 + FI 
2 

F3 + FI 
3 

(A.6.6) 

F4 

. Now since the energy in the magnetic field·or in a conservatice system is 

invariant with respect to the method of evaluating the energy [6.3, pp. 30 - 34J, the 

sum of the energies calculated one triangle at a time will be the same as the energy of the 

entire field calculated cill at once~ Therefore, if we define the sum of the individual 

energy densities as J • ~ and the total energy density as J". 'PI , we have tlle following 

relation, 

III J.~ dU = II I JII' ~I ~u, so that the inte-

grands are equal. Therefore 

J • t,O = J" • ~I (A.6.7) 

or 

F. ~ = Fil • t,Ol (A.6.8) 

The left hand side of Equation (A.6.6) can be rewritten as 
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F • ., = F. C. t,e '. = Fil • ",,' 

or Fil = Cr .. F (as already stated in (A.6.S» 

Further F = 5 • ~ (A.6.9) 

Fil = 5 Il • t,e' (A.6.10) 

5ubstituting for t,O from Equation (A.6.3) in Equation (A.6.8), there is 

5 • -"" = 5. C. t,O' = F (A.6.11) 

From Equation (A.6.S) we have 

Cr.F = Fil = [C
r

.5.C. J •• ': = 5".",,' (A.6.12) 

Here 5 is the block diagonal matrix 

511 
512 513 

521 522 
523 

531 
532 

533 

5'22 523 5'24-

532 5'33 5' 34-

542 5
43 

5' 44 
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2. Load Analysis and Periodicity Condition 

y' 
i 

x x' 

FIGURE A.6.3. OC MACHINE. 

For the on load condition of the OC generator, the field pattern will be 

as shown in Figure A.6.3. It is seen that the pole axis is no longer the axis of symmetry 

and ·cannot serve as a flux line boundary. Therefore the periodicity condition will have 

to be used in solvingthe problem .• 

If we now consider the 2 triangle problem in the illustration as in Figure 

(A.6.2) and assume that the nodes 1 and 4 lie on either side of ~e origin along yy' , 

i.e., theyare 180
0 

(elecfrical degrees) away, th~ potential vector can be written as 

f,Ol 

",,' = (A.6.14) 

which is obtained from the vector of the primitives based on the relation 
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= C • ft" or 

""'1 1 0 0 

""2 0 1 0 

""3 = 0 0 1 ~3 (A.6.15) 

~2 0 1 0 

~3 0 0 1 

-"" 1 
-1 0 0 

Itmay be noted that in Equation (A.6.15) above, the connection matrix 

Chas been altered 50 that the problem now reduces to one of determining only ""1 ' ftS
2

' 

ft'3 which are the three independent unknown variables. 

Using the relation of EC;uation (A.6.15) and the new connection matrix, 

we have 

1 0 0 0 0 -1 
S11 S12 Sl~ 1 0 

S" = 0 1 0 l 0 0 S21 S22 S2~ 0 1 

0 0 1 0 1 0 S31 S32 S33 0 0 

S22 S23 S24 0 1 

5'32 S'33 S' 34 0 0 

S'42 S' 43 S44 -1 0 

0 

0 

1 

0 

1 

0 

(A.6.16) 
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x X' 

FIGURE A.6.4. 

which reduces to 

Sll 512 513 
, 

1 0 0 0 0 -1 521 522 523: 
, 

Sil = 0 1 0 1 0 0 
531 532 533 

(A.6.1 

0 0 1 0 1 0 
-

-51
24 51

22 523 

-51 
34 

SI
32 51

33 

-544 S42 543 

---
S11 + SI 

44 
512 - S42 S13 - SI 

43 

= S21 - SI 
24 S22 + S22 S23 + S23 {A.6. H 

S31 - SI 
34 S32 + S32 S33 + S33 

which can be split up as 
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511 512 513 
SI 

44 
-S1

42 - SI 43 

5" = 521 522 523 + -S24 522 51
23 (A.6.19) 

531 532 S33 - SI 
34 51

32 
SI

33 

It is apparent that the sub-matrix for triangle 2 is modified such that the 

tèrms of the rows and columns involving the point for which the periodicity condition 

applies, are changed in sign exceptilng the diagonal term. 

The forcing function has to be likewise modified 50 that 

Fil 
1 1 0 0 0 0 -1 F1 F1 - FI 

4 

Fil 
2 = 0 1 0 1 0 0 F2 = F2 + FI 

2 (A.6.20) 

Fil 
3 0 0 1 0 1 0 F3 F3 + F.I 3 

F,I 
2 

FI 
3 

FI 
4 
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