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neglecting eddy-current and hysteresis effects. Comparison of the computed values
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ABSTRACT

A new method for solving two=dimensional saturable magnetic field pro-
blems, such as are encountered in the analysis of electric machines, is presented. Full

account is taken of saturation of the iron parts, complicated geometry of the region, dis-

-tribution of current sources and the presence of slots. The new technique is based on a

general variational formulation of the field problem in terms of an energy functional,
which is discretised b;' firsf order triangular finite elements. By minimising the functioﬁul
by a set of trial functions defined in the discretised region, a unique solution fé the mag-
netic field problem.is obtained. This process results in a set of nonlinear algebraic
equations which is solved iteratively by a multi-dimensional Newfon-R;:phs'on scheme, ¢
This field analysis is applied to a transformer, a turbogenerator and a D. C. generator,
and their performance characfensncs are predicted, neglecting eddy-current and hysteresis
effects.  Comparison of the computed values and test results shows satisfactory agreement,
thus demonstrating the efficacy of the method and its general applicability to electric
machines. In developing the computer algorithm, emphasis was laid on fast execution and

utmost economy consistent with the degree of accuracy desired.
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CHAPTER |

INTRODUCTION

1.1 General Background

The present decade has witnessed phenomenal growth in electrical power
systems and sizes of electrical plant such as transformers, turbo-generators, salient pole
alternators, direct current machines and other devices. An accurate prediction of their
perforﬁance has, therefore, become increasingly important in order to meet stringent
specifications, to effect economy in design and to ensure reliability of operation. Some
of the performance indicators that machine designers and power systems engineers are
vitally concerned with are the excitation requirements under open=-circuit, short-circuit
and full load conditions, sequence reactances, transient characteristics, short-circuit
ratio, iron and stray load losses, end-field and eddy current effects in the case of A.C.
machines ; load regulation and commutation characteristics in D.C. machines and

others.

Saturation of the iron parts considerably affects all of these quantities, by
introducing nonlinearities in the magnetic field. Until recently, the magnetic field dis-
tribution in electrical machines was explored by linear analytical techniques [1.1],
| application of conformal and other transformation methods [1.2] and magnetic circuit
analysis [1.3] based on linear theory ; the results thus obtained were modified by in-
troducing empirical design constants to account for nonlinear effects. Simplicity of such
methods coupled with the superpos‘ifion principle [1.4] so widely used in machine analysis,

had paid off weli on small and medium size machines. However, with growing complexity



of ele~iro-mechanical devices, a rigorous nonlinear analysis of the field problem has be-

come increasingly important.

Nonlinear solutions of the magnetic field problem by analytical methods
[1.5] or transformation techniques [2.1] for linearising the nonlinearities have been
used, but are limited to cases with idealised magnetisation characteristics and simplified
geometry of the region. Measurement techniques by analogue models [1.6] have been
employed for two dimensional problems and in some cases nomographic methods [2.3]
were also applied. In view of the limitations and inadequacies of all the earlier methods,
the need for numerical solutions was. recognised even in the early stages of the design art.
Nevertheless, only with the advent of large scale digital computers could such methods
be developed and extensively used for solving the field distribution in electrical machines

in the presence of magnetic saturation.
All of the numerical methods in present day use fall under three principal
headings :
(@) divided difference schemes,
(b) integral equation techniques and
(c) variational formulations.
In one case, besides the aforesaid, a nonlinear magnetic circuit analysis
[2.4] was carried out based on a circuit representation of the magnetic characteristics

of the media, fluxes and mmfs, and an unaccelerated relaxation technique was adopted

for obtaining a solution to the field problem. Its chief limitation is that the circuit re-



presentation is not of general application and its usefulness for solving the field problem

under different conditions of machine operation has not been established.

A vast majority of the numerical metheds in use belong to the divided

difference class [1.7 - 1.9] wherein the partial differential equations are replaced by

a set of difference equations and a solution is obtained satisfying the specified boundary
conditions. The discretisation process by finite differences yields a large number of
equations. Invariably, many redundant nodes are required which enormously increase the
computational work. In this method, the boundary conditions have to be explicitly speci-
fied ot material interfaces and outside boundaries by a set of equations, thereby enhancing
the complexify of the problem. Further since the permeabilities of the different regions
often differ considerably, the convergence of the iteration scheme is necessarily slow des-

pite the use of acceleration techniques [2.111].

Very recently an integral equation approach to two and three dimensional
field problems has been proposed [1.10]. In this method the material inhomogeneity in
the region of interest is replaced by an equivalent distribution of sources in free space,
resulting in a field distribution which corresponds to the magnetic field in the original
problem. The contribution of each of these sources is then considered as a solution of
Maxwell's equations in free space and the summation of such contributions from all the
sources yields the required solution. The method is attractive, since it purports to solve
end-field problems of finite length, and the boundary conditions are implicit in the inte-
gral formulation. However, it has so far been applied to very simple cases and the con-
vergence scheme used does not seem to have beeniopfimised. It is therefore difficult to

assess the computational advantage of this method and the accuracies that would result in
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solving practical field problems in electrical machines with a high degree of satura-
tion.

A third possibility which is coming into the fore is the variational method.
It consists of formulating the partial differential equations of the field problem in terms
of an integral expression called the energy functional. In most engineering applications,
this expression can be identified with stored energy in the system. In general, the Euler
equation of this functional will yield the original differential equation. The solution to
the field problem is then obtained by choosing a function amongst a set of triai functions

which minimises the energy functional satisfying the specified boundary conditions.

The method was first used for analysing saturation effects in accelerator
magnets [2.12], for which a restricted functional formulation based on the assumption of
fixed reciprocal permeability was used. Further the set of trial functions was defined in
a discretised region consisting of finite rectangular meshes or triangular elements of
variable geometry, but fixed topology. This restriction coupled with the slow convergence

of the iteration method used did not result in any computational gain over the divided

difference approach.

In this thesis, a general nonlinear variational formulation is presented with a
view to overcoming some of the shortcomings of the earlier methods and achieving economy,
efficiency and fast prog}amming of the field problem. Triangular finite elements of un-
restricted geometry, topology and containing material inhomogeneities are used for discre-
tising the field region. The finite element method is well known in the field of elasticity
and structural mechanics. The type of nonlinearities generally met with insuch problems

are in the main caused by iarge dispiacements and are therefore termed geometrical non-



linearities [1.11], Material nonlinearities encountered in elasto-plastic analysis have

been dealt with much in the same way as the restricted variational method for magneto-

static problems described earlier. Only in one case of a homogeneous medium, a
nonlinear variational formulation was derived by Kachanov .[1.12] which is comparable

to the general variational formulation presented in this thesis, for inhomogeneous and

nonlinear media.

1.2 Present Work

To the best of the author's knowledge, this is the first time that a method )
of solving the two-dimensional nonlinear field problem in electrical machines by a

variational method using finite elements, is presented.
The main objectives of the present study are

(@  Formulation of the nonlinear electro~magnetic field problem
in electrical machines in general variational terms and obtain-
ing a solution by minimising the resulting energy functional,

by finite element analysis.

(b) Derivation of a practical, efficient and economical algorithm
for determining the magnetic field distribution in a transformer,

turbo-generator and a direct current generator,

()  Prediction of the performance characteristics of these machines
under open-circuit, short-circuit and full load conditions and

the determination of other steady state machine parameters.



(d)  Verification of the efficacy of the method by experiment and

by comparison with factory test results.

The aforesaid objectives were accomplished as follows.

In Chapter I, the variational mefhéd is presented in detail and the general
energy functional is derived from Maxwell's equations for the field problem. The con-
ditions for functional minimisation are described and applied to the nonlinear energy
functional to ascertain minimality. The criteria for a unique solution are discussed and

the basis of constructing a minimising sequence of trial solutions is presented.

A theoretical analysis of the general order finite element method is presented
in Chapter Il and it is specialised to obtain a first order solution to the magnetic field
problem. The test for functional minimisation is carried out in the discretised region

and proof of the validity of the finite element method as a minimising sequence is furnished.

The methods used in this study for solving nonlinear algebraic équations are
described in Chapter IV with particular reference to the first order chord method and the
quadratically convergent Newton-Raphson scheme. Existence and uniqugness of the
solution obtained are ensured by reference to well known theorems of numerical analysis
and the rate of convergence of the iteration schemes is established. The Newton-Raphson
scheme is formulated for a case of N independent variables and the necessary equations
are derived for the recursion algorithm. Methods for solving linear equations are briefly

discussed and their merits and limitations are stated.

In Chapter V, the practical computational aspects of the field solution are
discussed in detail with reference to a flow chart for the computer program. The solu-

tion algorithm suitable for sparse band-structured matrices and the necessary indexing
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scheme are fully described. The rate of convergence of the iteration process is illustrated
by the reduction in the error norm for a transformer problem. An automatic flux-plotting

routine by means of a digital x -y plotter is fully described.

The application of the finite element method for solving field problems in
a transformer,.a 30 MW turBogenerafor and a 5 kW direct current machine is described
in Chapter VI. Using the material characteristics obtained from core samples or manufac-
turers' catalogues, extensive field analysis is carried out on these machines. An improved
algorithm for compact storage of sparse matrices and an efficient and economical routine
for solving algebraic equations are-used. For the load analysis of the D.C. machine, a
new connection matrix is derived to include the so-called periodicity condition, which
permits field representation of the region under one pole pitch only instead of the entire

problem. In all these cases, the computed performance characteristics and parameters are
compared with test results.

To summarise the aforesaid, a new technique for solving two~dimensional
nonlinear field problems in electrical machines in an efficient and economical manner
compared to other existing methods is presented in this thesis. The al-gorifhms developed,
it is hoped, will assist- machine designers in predicting the steady state performance
characteristics of various types of electrical machines at the design stage accurately.

Some of the areas that may yet be explored using the variational method are
(@) field solution of machines under transient conditions,
(b) eddy current effects in solid iron parts and

(c) end-field problems.
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CHAPTER i

THE NONLINEAR ELLIPTIC PROBLEM

2.1 Introduction

In this chapter, the nonlinear Poisson's equation is derived for a quasi-
stationary field in a two dimensional continuum satisfying specified boundary conditions.
Various past methods for solving the field equations based on analytical and numerical
techniques such as transformation methods, magnetic circuit analysis, finite difference
methods and restricted variational formulation , are discussed and their merits and short-
coﬁings are stated. A theoretical analysis of the general variational method and its

| application to the solution of nonlinear field equations are presented covering the follow-

ing aspects :

1. The necessary and sufficient conditions for a functional
minimum.

2. Extremum, Euler equation, self-sufficiency and covariance.

3. The derivation of the nonlinear energy functional for the

two dimensional electro-magnetic field problem and its

minimisation.

2.2 Statement of the Problem

Consider a two dimensional finite region R of the (x, y) plane bounded
by S (see Figure 2.1) containing some prescribed distribution of current sources, combi-

nation of material inhomogeneities and nonlinearities. In the air and iron regions, since



FIGURE 2.1.

TWO DIMENSIONAL REGION R..

(1)  Current Region.

(2) Iron Region.

(3)  Air and Other Non-Iron Current Free Region.

—»X
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there are no current sources, Laplace's equation holds.  If we assume that

@) The electro-magnetic field is quasi-stationary (i.e.,

displacement currents can be neglected at power-

frequencies).
®b) Time~-harmonic effects are absent.
(c) That the dimension along the Z direction is very large

so that the magnetic vector potential and the current
density vector have components only along the Z direc-

tion and are invariant in that direction, then the following

field equations apply

cul H = J @.1)
div B = 0 2.2)
The constitutive relations are

B = curl A .3)
H = v.B (2.4)

where v, the reciprocal of the permeability termed the reluctivity of the medium, is
assumed single valued and is both position and field dependent. |t is this latter property

of field dependence that gives rise to the nonlinearity of the field problem.
By Coulomb's convention, if we assume

div A

0 @2.5)

and substituting for H in Equation (2.1) from Equations (2.3) and (2.4), one obtains
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curl (Vcurl A) = -7 (2.6)

Since A has only a Z directed component Az (x, y) , the following further

relation is obtained.

| . QA ¢ d3A 7
curl- A = ( ; T - s ) 2.7)
Using Equation (2.7) in Equation (2.6) and expanding the result, there is
a aA - a aA "~ "
(Vax) k5, (V) k= - ak 2.8)
which reduces to
3 QA ) dA
sx (V3 Y 3y (V) <o @.9)

For the different regions shown in Figure 2.1, the field problem can be expressed

by the following partial differential equations, which have been combined in Equation
2.9).
For Region 1 (current carrying zone)
2
v (“ + BZA) = - @.10)

° 9 x oy

In Region 2 (iron parts, where saturation is present but there are no current sources),

the pseudo-Laplacian
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Curl (¥ Curl A ) = 0 2.11)

In Region 3 (air and other non=-iron current-free zones)

2 2
3 A Al _

v <_2. + —%] =0 2.12)
dx oy

Equations (2.10) to (2.12) are the required field equations for the nonlinear

problem of the two dimensional region R satisfying the boundary conditions defined by

+% i) =0 @13
<, y) eR

N

2.3  Past Methods for Solving the Electro-Magnetic Field Problem

In order to solve the respective field equations in the various sections of the
two-dimensional region, certain analytical and numerical methods were developed in the

past, whose merits and limitations will now be discussed.

2.3.1 Transformation Methods

Unlike in the case of linear partial differential equations, the principle of super-

position does not apply to nonlinear equations and, therefore, they must be linearized or
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solved in-some other way. Methods used for this purpose are known as transformations,
which are powerful analytical tools for solving nonlinear equations in general. Typically
these techniques linearize the system of equations (for example the Kirchhoff and Hodo-
graph transformations), reduce the partial differential equations to nonlinear ordinary
differential equations (e.g. the similarity transformation), transform the system to one

already solved or perform some other reduction of complexity.

In general these transformations can be classified into three groups :

@@ change of the dependent variables,
®) change of the independent variables,

) change of both the dependent and independent variables.

In the Kirchhoff transformation, a new dependent variable is introduced so as to

linearize the nonlinear equations.

Let us consider the pseudo-Laplacian which occurs in diffusion, heat-conduction

and magnetic field problems.

vif(evel=0 (2.14)

Introducing a new dependent variable such that

» o= b (@
2.15
e= @

Equation (2.14) reduces to the linear Laplace's equation

v Y =0 (2.16)
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The b§undary conditions are also changed likewise and it can be shown that for
the Dirichlet problem, the boundary conditions transform to yet another Dirichlet form.
For the Neumann type boundary conditions, however, the Kirchhoff transformation intro-
duces nonlinearities [2.1, p. 22], resulting in complicated boundary conditions. This
transformation on the dependent variable has the feature that the physical range of the in-
dependent variable is unchanged, but the method is limited in its application to very simple

geometries and boundaries.

An illustration of the transformation of the independent variable is the "Similarit
P 2imitarity

transformation" due to Boltzmann [2.2] ,which transforms the independent variable such ‘that

the partial differential equation is changed into an ordinary differential equation. The

technique was applied to a one dimensional diffusion equation of the form

Yo 3 . oy BC
57 = 3% (D) 5% ] 2.17)

Choosing a function of the independent variables x and t given by

where a and B are to be determined, Equation (2.17) is modified as an ordinary

differential equation in n free of x and t so that

d d n dC _
'ﬁ[D(C)E—nJ*z—Tﬁ'O 2,18)

This transformation can be used effectively only if the boundary and initial con-

ditions are consolidated, the medium is homogeneous and the geometry of the region and

boundary is a simple one.
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The Hodograph transformation so named by Hamilton in 1869 [2.1 , pe 171 ]

is a typical example of the mixed method and it permits a certain amount of flexibility in

the geometry of the field region. A set of quasi-linear equations of the form

du du dv v _ .
Fl -5;+F2 3—y+ F3-5;+F4 '5-)'," Fu, v, xy)

2.19)
du du dv + G dv

13t C2 3yt Cax TG Ty = Cviny
where Fi ’ Gi are functions of v, v, x and y: together representing second order

equations, are transformed by changing the independent variables x and y as functions

of u and v, so that

Fpy -F2xv-F3yu+F4xu=0
(2.20)

- G2xv-'G3yu+G4xu=0

\4

Hence the solution of the modified set of Equations (2.20) leads to the solution of 2.19)

provided the Jacobian | = X, Y, T XY, # 0. This transformation has been success-
fully applied in fluid mechanics problems where the geometry of the region of interest may

not be simple or regular. The advantage of linearity gained by this hodograph is, however,

paid for by complicated boundary conditions.

The above examples of transformations are but a few of a large number of such

techniques in use and illustrate their usefulness for solving quasi-linear partial differential
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equations. There is no general way of oBfaining the required transformation, and imagina-
tion, ingenuity and good fortune play a major role in their choice. The chief limitations
of the methods are that, in general, they lead to complexity of boundary conditions and are

really suitable only for cases wherein the material medium is homogeneous and the boundaries

and geometry are simple.

2.3.2  Magnetic Circuit Analysis

This is a forerunner of numerical methods and uses a relaxation technique for the
solution of the field problem. In this method, a magnetic circuit is developed with lumped
reluctances representing various parts of the field region and the flux densities and mmf
drops are determined for an initial estimate of core flux. With the values of flux density
obtained, the appropriate permeabilities are determined from the B=-H curve and the new
reluctances are estimated. The iterative cycle is continued until the total mmf drops over

a pole pitch (in the case of an electrical machine) attain an acceptable minimum.

The merits of the method are that it is an advance over nomographic techniques
of field plotting [2.3] and with the aid of digital computers, the field region can be faith-
fully represented by an equivalent magnetic circuit. The technique was employed by
Binns [2.4] for the estimation of the open-circuit saturation curve of a turbo-alternator

and it is claimed that only 6 to 8 iterations are required to obtain a solution of an accept-

able degree of accuracy.

The chief limitation of the method, however, is that the circuit representation of

the region is a unique one for each problem and cannot, therefore, be generalised. Further,
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since the flux paths are restricted to the branches containing lumped reluctances, the net-
work representation should be sufficiently fine in order to obtain a useful flux-plot. As
such, the computational advantage gained by the small number of iterations is offset by the
large number of branches of the magnetic circuit and the corresponding number of equations
to be solved. Lastly, load analysis of an electrical machine cannot be effectively carried
out by this method except, perhaps, by the use of innumerable number of branches cover-

ing the entire machine region, and not just the region over a pole-pitch.

2.3.3 Finite Difference Methods

Historically these methods can be traced back to Gauss [2.5], and one of the
oldest iterative schemes "the Gauss-Seidel method” dates back to 1873 [2.6]. The
word "relaxation" was introduced by Southwell [2.7] , who described a methed of solv-
ing stresses in jointed frames by the systematic relaxation of the strains. As the name
implies, the finite difference method is based on replacing the parfidl differential equations
of the field problem by a number of difference approximations and then solving the resulting
large number of algebraic equations. The solutions to the approximate system represent solu-
tion values at discrete points in the region of interest. The continuous differential operator
is replaced, or approximated by, a matrix operator. The necessary and sufficient condi-
tions for this approximation may be found in text books on linear spaces [2.8] . The
elliptic operators under consideration here conform to these conditions and, therefore, may

be approximated by matrices.

In this method, regular rectangular meshes are super-imposed on the continuous

plane so that the function values ¢ at the nodes of each mesh represent the continuous
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function A at that'point in the continuous plane. Also the current densities, flux densi-
ties and reluctivities are assumed to have a constant value in the respective meshes. A
five point regular star is defined in each mesh as shown in Figure 2.2 and approximations
to the partial derivatives are obtained. As an illustration, the difference formulation of

the Laplacian is derived as

>
>

- -
= ::r (¢N+\¢PE + ¢PS +¢W 4 -tpo) 2.21)

If this process is continued over all nodes of the various meshes, a Iafge number of equations
are obtained which must be solved simultaneously. Written in matrix form, the resulting
s&sfem is of a very high order, but sparsz, i.e., the coefficient matrix contains a large
number of zero elements. Direct methods, such as inversion of the large matrix are, as a
rule, inconvenient and make extensive demands on computer storage. lIterative solution of
such a system of equations is more common since the coefficient matrix need not be stored,
but generated as and when required. - One.such scheme known as ‘"alternating relaxation”
was used by Erdelyi and Alfr'ned [2.9] for solving the electro-magnetic field problem in a
D.C. machine on no load. In this scheme, as a first step, the.reluctivities are assumed
constant and the vector potentials are relaxed. Subsequently the reluctivities are recalcu-

lated from the ¢'s and the process is continued until the vector potentials converge suffi-
ciently.

The advantage of this technique lies in its general applicability to different
geometries, inhomogeneous media and nonlinear problems. The more recent versions of
this method [2.10] accommodate different co-ordinate systems, varying mesh sizes and

use of improved iterative techniques [2.11].
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The chief disadvantages of the finite difference schemes, however, are

(@) the mesh sub-divisions, despite care and diligence of the user,

result in a large number of number of nodes and enhance the

number of equations to be solved and computational time,

®) the matching of different co-ordinate systems and specification

of boundary conditions are complex and cumbersome,

(c) the convergence process is highly sensitive to the correct
choice of under-relaxation factors and to the path of line in~

tegration used, and

d) slow convergence of the iterations despite the use of an

accelerated block relaxation technique.

2,3.4 Restricted Variational Formulation

This method was first used by Winslow [2.12] and Concus [2.13] for solving
saturable magnetic-field problems in accelerator magnets, and it consists of farmulating
the problem in variational terms by an integral expression known as a functional. A solu-
tion A (x, y) differentiable in R is sought such that it minimises the functional satisfying
the required boundary conditions. The integral formulation of the functional is then dis-
cretised by finite difference methods either by the use of regular rectangular meshes or a
set of six triangular meshes of variable geometry but fixed topology meeting at each node.

The difference formulation of the variational problem is then minimised by setting its first
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derivative to zero for each of the nodal values of A. The resulting set of equations is
then solved either by linearised over-relaxation [2.12, p. 172] or non-linear over-

relaxation schemes [2.14] .

Although this method provides a concise alternative formulation to the divided
difference schemes, the_ restricted variational formulation [2.15], wherein the recipro-
cal permeability is held fixed, does not lead to a true energy functional for the nonlinear
Poisson's equation. Further the finite difference discretisation of the functional either by
the use of rectangular meshes or a set of triangular meshes of fixed topology results in a
large number of nodes and equations. . Consequently, the method suffers from
the same draw-backs of excessive computational work and convergence difficulties as the

earlier finite difference schemes.

2.4 The General Variational Formulation

In view of the limitations of the foregoing schemes, a general variational ap-
proach is developed herein for obtaining numerical solutions to the field problem, which
is free of topological and geometrical restrictions. Also inhomogeneities and nonlinearities
of the field region do not pose difficulties in any way and the iterative methods employed
are not plagued by convergence problems common to all finite difference schemes. The

present work differs from the earlier methods reported, in the following principal aspects.

(i) A general unrestricted nonlinear functional formulation is derived
which eliminates the need for special equations to represent boun-

dary conditions.
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@) Triangular finite elements of variable geometry, topology
and material parameters are employed for approximating
the field solution. |

@iii) A multi-dimensional Newton-Raphson formulation is de-

veloped for obtaining nearly quadratic convergence of the

iteration process.

In addition to the above, the present work includes :

- Rigorous solution of the nonlinear field problem without alter-
ing the geometry or approximating the current- density in the
conductors by current sheets is carried out for a transformer,

a turbo-generator and a direct-current machine.

-  Formulation of the problem such that standard iteration methods
may be applied for its solution and the proof of convergence and

uniqueness of solution obfained;fpresenfed.

- Development of a practical algorithm, using the band and sym-

metry properties of the coefficient matrix including acceleration

techniques for the iteration process.

- Complete analysis of the no~load operation of a transformer,
evaluation of the open-circuit, short-circuit, zero-power
factor and wave ~form characteristics of a large turbo-alternator
are carried out. Field requirements, iron-losses, sequence-

reactances and the harmonic components of the voltage wave are



24

predicted accurately and in an economical way from outline

drawings at the design stage.

-~ The so.called 'periodicity condition' is described and the
necessary- connection matrix is derived for analysing the on-
load operation of rotating electrical-machines. The method
is applied for evaluating the load characteristics of a D.C.

machine.

- Inall the above cases, the computed and test results are

compared.

2.4.1 Discussion of the Variational Method

By using variational methods, it has been shown in text books of mathemati-
cal physics [2.16] that a unique solution for Poisson's, Laplace's or Helmholz's equation
can be obtained by minimising the appropriate energy functional. Since many of the pro-
blems are usually linear, the operators are positive definite and the functionals of the
variational problem are quadratic. In such cases, it is shown in Reference [2.17, p.16-41
that any trial function which sets the first variation of the functional to zero, or in other
words, makes it attain a stationary value, also minimises the functional. However, in the
case of nonlinear operators, the functional is not always quadrdtic and, therefore, other

criteria must be found for ensuring the minimisation of the functional.

In a two dimensional continuum R bounded by S, if we define a set of all

functions @ (x, y), subject to the boundary conditions @ = f (S) on S, then any quantity
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which takes a specific numerical value corresponding to each function in the set is said to

be a functional on the set of all @ . In illustration (Reference 18)

F (V) = J‘.J.f x, vy, @, ¢'x,¢y) dx dy (2.22)
R

where 'Px ="3® /dx and ¢)’ = 3@/ dy.

If we now change the function @ (x, y) into a new function

M (x,y) + €n(x,y), thechange en(x,y) in @, y) is called the variation of
# and is denoted by

§0 = enix,y) 2.23)

Here 7 (x, y) is also a function of the same set. Corresponding to this change in ¢

and sufficiently small e, the functional will change by the amount

AF = jRI [f(xl YI¢+ en, ¢x+ _€nxl ¢Y"+ Eny)

(2.24)
“fhy e, 0 0)] dxdy
Expanding the right hand member by Taylor expansion in powers of ¢ , there follows
_ of of df
83—II [Ep”’*'a'?p‘"x*a‘?p‘"y*'
R x Y
(2.25)

{terms including higher powers of ¢ ) 1 dx d y



26

In analogy with the definition of the differential, the first three terms in the
right~hand side member are defined to be the first variation of the functional for all suffi-

ciently small ¢, so that after substituting for ¢ 7 from (2,28) and some algebra

ff[ +§;s¢ gascnldxdy 2.26)

2.4,2 Cohdiﬁons for Extremum of the Functional, the Euler Equation,
Covariance and Self-Sufficiency Property

If @ in Equationn (2.22) is a continuously differentiable function of (x,.y)
and the integral is carried over the two dimensional region, then the necessary condition
for an extremum is given by setting the first variation to zero, so that Equation '(2.26)

becomes
df df
II[%S"“’S&”’ +a—¢8¢3dxdy 2.27)

Here the variation § @ is to be continuously differentiable over R and is to vanish on
the boundary S, when ¢ is prescribed on S, but is otherwise completely arbitrary. Under

these conditions & ¢ is termed an admissible variation of @ .

The second and third terms of Equation (2.27) can be expanded using Green's
theorem [2.19] and by substituting the resulting values for these terms in Equation @2.27),

it is shown in [2.18, p. 136, line 5], that
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8§ F=0= §S (awcose+ —G-sme) &% ds+JI[a—¢ 'g;((a¢)

2.28)
3y My)] 5odx dy

where © represents the angle between the positive x - axis and the outward normal at a
point on the boundary S of R, and s is the arc length along S as shown in Figure 2.3.
The closed integral term of (2.28) vanishes when @ is prescribed on S. (Dirichlet
boundary condition). Otherwise the natural bou;udary condition (Neumann type) must be
assumed to be satisfied so that the term becomes zero. Also the integrand of the double

integral must vanish in R giving the well known Euler Equation.

3
=% (s@) * —ry<r)'s7,a @.29)

In order that variational methods can be applied to the solution of field
problems without the introduction of additional functions, it is necessary to obtain a func-
tional that yields the differential equation of the field problem as its Euler equation. If
such a functional exists, then the equation is termed self-sufficient [2.20], analogous

to the self-adjointness property in the case of linear problems.

One further property of interest associated with the Euler equation is covariance,
by virtue of which its form remains unchanged when the co-ordinates are changed. For
example if we introduce new independent variables, 'g and 7 then the Euler equation

(2.29) can be written as [Reference 2.17, p. 16-4, Equation (16.23)] 3
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_a_(_ag) 2 (3, af 1 [.2 aw
5 3e) * 37 (3w, T RV 73E T 3% 3,
2.30)
3 , 3 X
(3% 3% !
where
fox,y, 0,8 =9 &E,m, 0, @) [ d—%] 2.31)

This property is of value, in case we wish to use other co-ordinate systems such as polar

co-ordinates, or change the frame of referencz in any other way.

2.4.3 The Second Variation of the Functional and Sufficient
Conditions for its Minimisation

If 3 is the functional, ¢ an admissible function and & ¢ -an admissible
variation, then & (& + ¢ 8.¢p') is a function of € . If we expand this functional by
Taylor's expansion as before, the coefficient of 4e will be the first variation & & (@, §¢).
The coefficient of 52 / 2 is called the second variation of & and is denoted by
82 & [¢,.8.¢] , so that

. 2
3lep+cb0]=3[wl+cs5F[m, 601+ ;Tsza [o,50] (.32

or

2 &
8 3[¢,8m]=——28[¢p+58¢]| 2.33)

€E=0
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The second variation is analogous to the second derivative. Supposing & has a minimum

value at ® , then

§ F[e, 661=0 2.34)

so that from Equation (2.32) we have

;-823[¢,8¢]+....= 3[“’”8,‘;]'“‘” 20 2.35)

€

where the omitted terms on the left vanish s when ¢=0. Letting ¢e=0, we conclude

§23 (e, 501 2 0 @2.36)

for all admissible variations 6§ . If we now substitute for

[ ¢ &,y @, @)¥xdy  in Equation 2.36) , then

by setting @ = @ + ¢85 ¢, and expanding the whole by Taylor's theorem, there is

obtained [ Reference 2.17, p. 16-5. (16.33) ]

32 2.

2 f d
§"3[o,80] = Ej(w) +2-——swsw' +—(5cp) ldx d
” 31 3¢’ 32 -

2.37)

The sufficient condition for minimising the functional, therefore, is

§23 2 o 2.38)
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i.e., the second variation is non-negative. A functional which satisfies inequality
(2.38), for all admissible functions ® and admissible variations & ¥ is called convex.

If strict inequality of the second variation holds, then the functional is termed sirictly

convex,

2.4.4 Legendre Condition for Functional Minimum

1f-we add to the second variation the integral

¢ 2 fj(znn'w'+ n2wh dx dy 2.39)

where w is an arbitrary function of x, y of class C] in (xo PX Y y]) , itis

shown in [2.21, p. 46 ] that 82 & reduces to the form

2 2 " L2 .
§ F = ¢ ff[f«m+w)n +2(f¢‘¢,+w) nn

(2.40)

2
f ]
+‘p,¢,ﬂ]dxdy

since the integrand of (2.39) is equal to zero for all admissible variations 7=6 ® that

vanish on the boundary. This can be readily seen by re-writing Equation (2.39) and

setting e M = 0, so that

& ”;-x(nzvv)dX+gd7(n2w)dy=e2[n2w3=o 2.41)
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The arbitrary function w is determined by the condition that the discri-
minant of the quadratic form in 7, 1" under the integral shall vanish, so that

. wh - forg ~ Cpp W) =0 . 2.42)

¢ L

oy
which reduces 82 & to the form

f¢¢ﬂ'+w 2

§23 = 2 ”fw.[n' + T;;__'?] dx dy 2.43)

The above transformation is due to Legendre [2.22], who inferred that

must not change sign in (xc> SRR yl) and that 82 & has always the same

o o
signas f oo Thus the necessary condition for the-functional minimum becomes
2
o~ f
f =21 20 (2.44)
e 3 ¢.2

According to Lagrange [2.23], this is true if and only if

. . . 2 N
(@) the differential equation (fgpzp' + w) f¢, " (f(P‘P +w) =0

has an integral which is finite and continuous in the interval

(xo x] ’ Yo Y]) '
does not vanish in (xo SRR y]) .

The Legendre condition provides a weak minimum to the functional which

will mean that the minimum is obtained for local variations of 8§ ® which differ from
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zero in a small neighbourhood of an arbitrary point (xo ’ yo) € S. In Reference

[2.24, p. 60] it is shown that if the Legendre condition holds, the functional attains

a value

ff% G ®')2 dS (2.45)
s

where a > 0,

For a strong minimum, however, Equation (2.38) must be satisfied, which

according to Berg [2.17, p. 16-5, (16.35) ] yields

2 2 2
3f  3f 2 -

5. —o= (— )7 20 (2.46)
3¢”  3¢'°  dpdy

In conclusion, it may be stated that if the strong minimum condition is
satisfied and strict inequality of (2.38) holds, then the solution to the differential
-equation is unique. On the other hand, if only the weak minimum condition is satisfied,
then the solution obtained by solving the field problem, according to Ladyzhenskaya and
Ural'tseva [2.24, p. 61] is not necessarily unique. If, however, a minimising sequence
of trial functions is set up for minimising the functional, known as 'the direct method' of
solving the variational problem, a unique solution will be obtained, even though the func-

tional attains only a weak minimum [2.24, p. 61]. .

All such functions are called generalized solutions of the variational problem.
The existence of such functions is assured by simple assumptions of boundedness of & from

below (true for a minimising sequence which has a limit, see Ref .ence [2.24, pp. 59-62 1)
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and the convexity of & with respect to Py 7 which are defined by equations (6) and
7) of Reference [2.24, p.22] . However, to answer the question whether the trial

functions are sufficiently smooth to ensure the minimization of the nonlinear functional,

further discussion is necessary.

2.5 The Energy Functional for the Nonlinear Poisson’s Equation

In nearly every engineering application, there exists a vari . jonal formula=-
tion corresponding to the partial differential equations of the field problem ; that is to say
there exist certain scalar quantities, e.g. energy which must be minimised if a given

field is to exist, and the field differential equations are the conditions for minimisation.

The process of obtaining such an energy functional can be easily compre-
hended for a linear case, and, therefore, the variational formulation of the linear electro-

magnetic field problem will be considered first and will be later extended to the nonlinear

case.

Let us consider the linear Poisson's equation obtained from Equation(2-9)of

Section 2.2, by assuming the reluctivity to be a constant single-valued quantity, so that

v v2 o = - 2.47)

satisfying mixed homogeneous boundary conditions on some closed surface or set of sur-

faces.
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Supposing an approximate solution to the problem is given by some function
¢ , we may differentiate this approximate solution and construct a corresponding source

function J so as to arrive at a consistent solution to the boundary value problem
9 .
v VYo = - 2.48)

This, of course, is not the true solution since J # Jo , unless the approximate solution
-just happens to be the right one. Taking the difference between the two equations 2.47)
and (2.48), it is seen that the error in the magnetic vector potential satisfies the Poisson's

equation whose source function is the error in the current density distribution.
vl @-e)=-0-J) 2.49)
@ =9y = o :

The electromagnetic energy associated with the potential and current density errors is

given by [ Reference 2.25]

F=g[@-0)u-1)du @-50)

This integral is obviously zero if the correct solution has been found. Also its value must

be positive, since in physical terms it equals the stored energy for a null solution,
6 -4 =0 2.51)

This latter observation implies that the zero value associated with the correct solution is not
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merely a zero, but is also a frue minimum valve. Therefore, of any two given approxi-

mate solutions, that which yields a lower value of F is always the better one.

It-is not possible to form F unless the correct answer is already known.
However, the requirement that F be a minimum may be used to choose the best from
among several trial solutions even if the actual values of F cannot be evaluated, since
it is sufficient to know its relativé magnitude for the several approximations. Rewriting

F and expanding in detail,

F=-'2f¢Jdu - 5 _ranodU-;- f¢°JdU+;-f¢°J°-dU
2.52)

Since Jo appears as the source term in the Poisson's equation, and using suitable vector

identities [ 2.26, p.804.] one obtains

-I¢Jodu=VI¢~v2.¢°du

v ‘f div (e grad.tpo)d u -v f grad @ grad @, dU (2.53)

v é“cp grad ,tpo ds - v j grad .. grad ,tpo dU

For homogeneous boundary conditions, the surface integral vanishes, leaving

-fcpJodu -v [ gad 0. grad e du

2.54)

-jcpo Jdu
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Hence

F=;— f e JdUu - f ¢Jodu+,:],- f o, J, dU (2.55)

The third term represents the energy associated with the correct solution and is indepen-
dent of the choice of approximate solution to be tried. This cannot-be evaluated unless

the exact solution is already known, but since it is a fixed quantity, we may define
= ]
3=F -5 o 1 du 2.56)

and seek the minimum of &. The minimum value will now not be zero, but it is clear

that the minimum value of - & (equal to the stored energy associated with the correct

-solution) will correspond to @ = ¢° . Also from 2.55) and (2.56) we have

s:,}f«udu-feuodu 2.57)

This expression can be made useful for solving a variety of electromagnetic

field problems, by re-writing the first term as

y | esdu --';-f-tp-vzchdu @. 58)
= -;é'tpgradtp‘.cT;+;—J~»|grad¢,2dU

and since the boundary conditions are homogeneous, this reduces to



;_jcdeu ='2—” -flgrad,wlzdu 2.59)

There results, finally,

v 2
3=5 [lowo |"du-[eJ du 2.60)

For a two-dimensional field problem, since ©® = 90;_: (x, y), it can be shown that

B =|cur| E|= | grad o | 2.61)

so that the first term of Equation (2.59) can be re-written as

B
- [ 1gad e |?du- ’Iz fus2du= Jt[HdbTau
° 2.62)

which is the stored energy in the magnetic field under linear conditions (Figure 2.4a).
The formulation & which is an energy expression for the given source function and must

be minimised for obtaining the true solution of the field problem is termed the energy

functional.

For the nonlinear case, the energy stored in the magnetic field is obtained

by reference to Figure 2.4b as

w=f[foBHdb,Jdu= j[j:ubdbjdu (2.63)

since H = VE
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@) Linear Conditions. (b) Nonlinear Conditions.

FIGURE 2.4. ENERGY STORED IN THE MAGNETIC FIELD.

H
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Therefore, the energy functional to be used for the nonlinear field problem can, by a

similar analysis to the linear case, be expressed as
B -
3=j[j°ubded-u-ijodu @2.64)

For a two-dimensional bounded region, this expression reduces to the form

B
3 - IRJ-[foubdedxdy-_fRfepJodxdy (2.65)

where ¢ and -Jo have components only in the Z direction and v is a single-valued
function of B. It is shown in the appendix of Reference [2.27] that Equation (9) is the

Euler equation of (2.65), which is a necessary condition for & to have an extremum.

For a local minimum, by Legendre transformation,

B
)
s2a-2Ft-[[ 212 [vbdb-Je ldxdy
2 ¢ 3 3¢ ‘o 2.66)
oV
= V + Cp' o -gal (2.67)
Since B = | V¢ |, Equation 2.66) can be re-written as
2, oV _ 3 _ OH
8 3=v+B 3= 38 (VD= 35 @.68)
It is readily seen that its value will be equal to ¥ , the incre-

mental permeability (slope of the B-H curve) which is always positive, since the
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magnetisation characteristic is monotonically increasing.

Let us now examine if a strong minimum exists. Evaluating Equation (2.38)

for the functional of (2.65), one obtains by using the expression of (2.46)

2 ? 2
3 2) .
- () -0 2.69)
¢ Y] dpdyg
since
£ ¢ af X,
_7 = 0 ; — = - ’ —_— =0
-17.) -Y:] ¢ o

This indicates that the second veriation of the functional is zero.and the
functional is a-minimum ; but since strict inequality of (2.46) does not hold in (2.69),
it cannot be asserted that the solution obtained is unique. Having thus proved conclusively
that the nonlinear functional formulation in (2.64) attains a local as well as a general
minimum, it only remains for us to construct a minimising sequence of trial functions which

will ensure a unique convergent solution.

Mikhlin [2.28] has shown that a Rayleigh-Ritz approximation to the solu-
tion of the nonlinear functional

K 'ri2 (o)

s =J] 7 ;f,,i(g)dg dxdy - <f, 0> @70
i=1

can be constructed, which will minimise the functional and attain a limit if the number of
terms of the sequence tend to infinity. By a simple substiiution for &, P (€) ond f

such that
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)\2=€, J°=fand
2.71)
pE) = 5 ¥ (V &)

it can be shown that Equations (2.70) and (2.65) are identical to one another and
therefore, one may conclude that the R =R type approximation would ensure a unique

solution of (2.64). The trial functions in this case will be of the form

© . = z a, O 2.72)

2.73)
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CHAPTER 111

FINITE ELEMENT FORMULATION

3.1  Description of Direct Methods

If a differential equation is fourd to be the Euler equation of some functional,
and if a direct method is used to establish that the functional has an extremum in a class of
functions differentiable a sufficient number of times, then the différential equation has a
solution for the specified boundary conditions. A direct method, as described in Reference
[2.24] consists of constructing a sequence of functions that converges to the desired solu-
tion function, Thus, the method establishes the existence of a solution and provides a
way of constructing an approximate solution. The principal constituents of a direct method

are (see Reference [3.1, pp. 130-131])) .

(@) The construction of a minimising sequence .
b) Proof of the existence of a limit for this sequence.
(c) Proof of the semi-continuity [3.1, p. 130] of the functional

at the limit.

The Rayleigh-Ritz method is shown to belong to this class of direct methods
in References [2.28, pp. 256-57, Theorem 327 and [3.2], satisfying the requirements
above. De Arantes [3.3, p. 9427 has shown that the Finite Element method becomes a
special case of the R-R method, provided certain conformity and completeness conditions
are satisfied by the elements and their interfaces. Some of these aspects will be discussed

in this chapter to demonstrate the validity of the technique as a direct method of functional
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minimisation, and its applicability to the solution of two-dimensional nonlinear elliptic
boundary value problems. For detailed theoretical analysis, however, the reader is

.referred to .Pian and Pin Tong [3.4] and de Arantes [3.317.

3.2.1 Finite Element Method

The finite element method is a general technique of numerical analysis which
belongs to the class of direct methods and provides an approximate solution for the field
problem. In this method, the continuous region R is subdivided into a finite number of

sub-regions, in each of which families of functions having different analytical expressions

are -defined .

A finite element may be described as a closed sub-region with a-family of
functions prescribed within it. This family is a linear combination of the prescribed values
of the field at discrete points called nodes on the boundary and in the interior of the ele-
ment. The type of an element refers to its general shape, nodal point specification and

to the functions analytically defined in it in terms of their nodal values and the co-ordinate

system chosen.

In the present analysis, the two-dimensional region R bounded by S, isre-
presented by a finite number of triangles and the field inside each triangle is specified as
a function of its nodal values. The nodal vector potentials thus defined will constitute a
matrix, the element functions of which will be assumed to be continuous and to have con-

tinuous principal derivatives of order ’(pi = 1) or less in the closed sub-region of the
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finite element. Here P; is used to denote the order of the differential operatar of the
field problem.

'Having thus defined the approximate function in each element in terms of
the nodal values, the problem now reduces to one of minimising the functional of the

variational problem with respect to each of the nodal values of the field. This results

in a set of nonlinear algebraic equations which are solved iteratively to obtain the appro-

priate solution to the problem.

3.2.2 Discrete Representation of the Nonlinear Energy Functional
by Finite Elements and Derivation of the Coefficient Matrix

The method used in this analysis is based on the -higher order finite elements
described by Silvester [3.5], and it is specialised to the first order element for the mini-
misation of the nonlinear energy functional defined by Equation ( 2.65) of Chapter II,

Section 2.5.

The two dimensional region R is subdivided into triangles in an arbitrary
manner as shown in Figure 3.1, ensuring only that material interfaces and other physical
boundaries coincide with triangle edges. The vector potential ¢ in each triangular
element will be assumed to be a complete polynomial in x and 'y, so that the orientation
of the element is of no importance [3.6]. The number of terms in a complete polynomial

of degree N is given by

n=(N+1) . (N+2)/2 @3.1)
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FIGURE 3.1. CONTINUOUS REGION R DISCRETISED BY FINITE ELEMENTS.

and, therefore, each element must have n degrees of freedom, i.e., n independently
specified parameters. Further, if the functional & is to be evaluated without additional
assumptions, the first derivatives of ¢ must be finite everywhere. Consequently ¢
must be continuous and this requirement is met by defining ¢ along any triangle edge as

a polynomial function of order N along the edge. The number of coefficients of the
polynomial must depend on the values of @ along the edge, if continuity with the adjoin-
ing triangle is to be assured. In Reference [3.5] it is shown that it is necessary and

sufficient to specify @ at the triangle vertices and N -1 other points along each edge.
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In order to define a complete polynomial expression of order greater than 2, more

information is necessary, such as for example specification of interior points.

In order to facilitate analysis, the so-called area co-ordinates (vide- Appen-
dix 1) will be used. In this system, the position of any point within the triangle is given
by the distance measured along the perpendicular to each of the sides passing through the
point, distances being expressed as fractions of the triangle altitude. The numerical
values of the area co-ordinates range from O to 1 in every triangle. The area co-ordinates
are -conveniently specified as t-l ’ c'2 ’ C3 , the lines of constant c'n being parallel

to side n of the triangle. Only two of these co-ordinates are independent, since they

are related by
El’ + §2 + 53 = 1 3.2)

A regularly spaced set of points Pstu may be defined in a triangle by the

area co-ordinate values

IEN)I osslfrU‘Nl (303)

pd

5
( N ’
where s, t, u are nonnegative integers satisfying the relation s+t+u=N . Such a set of

points is shown in Figure 3.2 for a first order element and it is evident that the number of

points specified is

2N+ . (N+2) = 3 (3.4)
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which is the total number of independent coefficients of the polynomial expression of

order N. There are no intermediate points along each edge, since (N -1) = 0,

100
0]

o,
o1 001

FIGURE 3.2. TRIPLE AND SINGLE SUBSCRIPT NOTATION
OF FINITE ELEMENTS.

Polynomial Approximation to Functional Minimisation

We shall now specify the potential at each of these points as L.
%7

so that the function @ will be defined throughout the triangular element by the polyno-

mial

N N-s
o (5.5, =2 ) e %o (f17 520 By @.3)
_ 5o t=o

where a ., 9re polynomials of order N in I;] Y ,0;3 ; which are independent
%7
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of ¢ and triangle size and shape. The polynomials defined by Equation (3.5) are
complete and satisfy the continuity requirements. Since u dependson s and t, the

summation over u is not required.

The forcing function J is not expressed as a polynomial, since it is constant .

over each triangle.

For the two dimensional case, where the dimension along the Z direction

is large and the vector potential is defined by

"pz = o (x, Y)l

the magnetic induction B is given by

| B |=]crl @] = Igradmz,

G Gy

The necessary condition for minimising the functional defined by Equation

(2.45) of Chapter i1, Section 2.5 is that its first variation with respect to each of
the point values of potential in each triangle must be set to zero, so that

o

'pk: 0: for all k @.7)

To perform this minimisation, and thereby obtain an approximate solution

for e everywhere, it is convenient to rewrite the syrface integrals of Equation ( 2.65 )

Chapter 11, in such a way as to permit evaluation over one triangle at a time, so that
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3=5(f J‘[Levbzdb.]dx dy = [ [1@dx dy) (3.8)

The typical term of the above series, say the t'th term will be
' B
3, = J’J[ [ vbdb- 30l dxdy 3.9)
o

Equation (3.7) may now be written as
&
0F _ ¥
%, ) s = O (3.10)
triangles

where the summation is carried over all triangles in the sub-division. Substituting for

& in Equation (3:10) from Equation (3.8) and differentiating one obtains

23 2 B 2
sz = a.._[ vbdbldxdy - =—[Joldx dy
%k ’rkf %k JQo ’rR‘f *%% @.11)

- J‘J‘[VB%—?D—k]dxdy -fjJ(%)dxdy=0 (3.12)
R

where the index k ranges over the points defined by (, t, u) in the triangle.

Differentiation with respect to @, clearly produces a zero, unless k is
one of the points defined on the edges of the triangle, as appropriate to the order of the
element chosen. Therefore, Equation (3.5) is an expression in a number of independent
variables qak , the number being defined by Equation (3.1). For the first order case, the

above differentiation yields an equation in three variables only.



Substituting for B from Equation (3.6) in the first term of the energy

functional expression above, Equation (3.12) reduces to the form

ffu[a‘ﬁ _a__(r)+3r;°’.-aaﬁ;-(%%)]dxdy=ffJ(%:—;-()dxdy

3.13)

Substituting for @ from Equation (3.5) in Equation (3.13), one obtains the result, after

repeated differentiation

0 Ba au aq
jj z v ( axp . 3: + ayp . ‘ayq J‘Pq = J'j Z J C(q' dx dy
R g=1 .

To convert to triangle area coordinates, the relations of Equation (A.1.3) of Appendix 1

are used, namely

((:i + bix + C.'i‘/)

£ =
: 2 A
o ==l - %y,
where bi = yi " Y andso on
c = x_ = x

and A represents the triangle area. The index i ranges over the triangle vertices and

not the points P — The derivatives in Equation (3.14) can then be transformed in
’ ’
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terms of area coordinates as follows. For a typical partial derivative

CIP 9 o ;
x Z , o x 3.15)
i
and using Equation (A.1.3), this reduces to the form
_5_2 = Z 3.16)
: ‘

Similarly the other partial derivatives can be evaluated and substituting

these values in Equation (3.14) above, there is obtained

n [m m au au
b,
ff4 2_,] Izg(b +GC)H— g-z—]nlﬁ .ds @.17)
= f 2]A ZJa ds
g=1

Here the indices i, j, m range over the triangle vertices, while indices
P, q assume values 1, 2, ......n corresponding to the points Psfu . It is worth not-

ing that the bracketed expression is symmetric in p and q -

From the geometric properties of a triangle, it can be shown as in Appendix

Il that

bi b.+ci c‘i -2 A Cot Gk i #i

!
2 2 3.18)
2 A (Cot ei + Cot ek)

o

+

0.
]
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where Gk denotes the included-angle at vertex k . Substituting equations (3.18) into

(3.17), expanding and collecting the respective terms, Equation (3.17) is transformed

as

n

=1

- m da da da da
fjn [Z(%-ﬂ%)'(}'g‘ ?ga-)Cof-Oi].!pqu
=1 i ! |
1
2 A

_ “, "g e, 3.19)

R

where i, j, k assume values 1, 2, 3 cyclically,

If we define the typical elements of the above Equation (3.19) so that

m
1 da da da da
S =S — t 9 v
YR AR 3T - ) ( T aT) ¢
' i k k' 3.20)
n
and R = Y [ sa ds (3.21)
q=1
then (3.19) may be written in matrix form as
S = R (3.22)

The matrix R is seen to be independent of the triangle shape. S may be
written as

m

s = Z Q; Cot 6, (3.23)
]
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where Qi is independent of the shape of the triangle, but is dependent on the relucti-

_vity function. We shall now derive the element coefficient matrices.

Evaluation of the Polynomial Coefficients

In order to evaluate the matrices R and Q, above, the polynomials

o of Equation (3.3) are required. Itis, therefore, necessary to define an auxiliary

function Pm (z) such that

m
poe = | ] (NEirh sy 3.24)
i=1

i
=1 m=20

where P (z) is a polynomial of order m in z. Let a polynomial L of order N

be defined over the triangle such that

a = P (t]) P, (Cz) Pu (t3), s+t+u = N (3.25)
These polynomials satisfy all the conditions necessary to qualify as the re-
quired polynomials of Equation (3.5) ; and since there are as many distinct lineavly inde~
pendent polynomials o, 9 there are terms in a complete polynomial of order N, the
use of these expressions makes the polynomial of Equation (3.5) complete. Let us con=-
sider the values of the area coordinates at one of the points given by (3.3), i.e. at the
typical point @ /N, q/N, r/N). From Equation (3.24), one finds that for s, p

integers



s N (3.26)

Therefore, at the typical poi;\f all a given by (3.25) -are identically zero, except

tu

for % ar * which assumes the value unity. Equations (3.5) becomes a simple identity

at the points where 4 are specified.

Calculation of the Element Matrices for First Order Elements

The triangular element is subscripted as shown in Figure 3.2. Since there

are no intermediate points along the edges of the triangle, one obtains by using Equation

3.24)

ri -1+1
Ps (ci) - — T =%
P, (¢ i) = 1 and so on for other vertices (3.27)
Py(8) = 1
Hence asw for the vertex i = Ci
Similarly
L for the vertex | = Ci (3.28)
%tu for the vertex k = £ k
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Substituting the values of a, from Equations (3.28) in the integral of Equation ’(3.20),

stu
its value is obtained as
da da da da a(c) B(C) d(8,) 3(8,)
(5¢ - 3T (5T - O (TL'_ Tr)"a':k— -a-:h)‘"
i |
(3.29)

Using Equation (3.29) above and the value of coni from Equation (3.18)

in Equation (3.20), there is

o T
v g (b b+ < ¢) [ [ vds (3.30)

The value of f I ds is A, andtherefore, matrix S reduces to

ik
ZZu(bb+cc)¢i - @.31)
i i

Now for a first order element, using Equations (3.5) and (3.28)

0 = a, @ = (Ci @, + Ci tpi + :K <pk) (3.32)

Differentiating the above expression for @ with respect to x and y partially and sub-

stituting the results in Equation (3.6), the magnetic induction B is evaluated as

B = QJZ/(bi"i + bicpi + bktpk)2 + (c:..cpi + cicpi + cK¢K)2 (3.33)
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The value of B is seen to be independent of the coordinate system, and is
therefore, a constant in each triangle. The reluctivity, ¥, which is a function of B
is likewise a constant in each triangle and can therefore be taken outside of Equation

(3.31). Thus the final expression for the coefficient matrix is given by
k

: |
s = IZA' .z .Z b b + o <) @ (3.34)

By a procedure similar to the derivation of the matrix ‘S, the right hand

side of Equation (3.19) is evaluated as (See Appendix I)

n
v = [ o ) e ds= 2800 [[ragae e

since J, the current density is constant in each triangle.

As shown in Appendix I, the value of this integral will be equal to J A/3,

so that the final field equation in discretised variational form can be written as

k
TZA_ . z (bi bi + <, c.i) o, = J A/ 3 (3.36)
i

Expanding this expression in detail, the complete matrix equation representing the non-

linear field problem is obtained as



bibi+ei) | Bib+eie) | &b+ 8 @ 1/3

1!_!3. (bi loi +_-ci c.i) (bi bi + C.i qi) (bi bk + &'i Ck). cpi = JA-}1/3
bebi+ e )| b+ | b+ < 4 R
) EE—— b -

8.37)

For only one triangle in the field region, a suitable discrete representation
of the energy functional (3.8) is given by the above matrix Equation (3.37). To obtain
a corresponding discrete representation for the entire problem region, it is only necessary
fo write one equation similar to (3.37) for each and every triangle in the sub=division,
just-as it is necessary in finite difference methods to write the finite difference expressions
anew at each mesh point. It should be noted, however, that the variational expression
(3.8) need n.ol' be modified for triangles near the boundaries, since natural boundary con-

ditions (Dirichlet or homogeneous Neumann boundary) are implicit in the functional formu-

lation.

When an equation corresponding to (3.37) has been written for each of the
triangles in the sub-division, the resulting assembly of algebraic equations may be combined

immediately into a single matrix equation given by

[s] . [el = 1/3. [R] (3.38)

where @ is the column vector of vertex values of e + R the corresponding column vector

of currents and § is the matrix obtained by adding the individual element matrices. It is
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at once clear that this problem is in fact a nonlinear algebraic one, since § depends not
‘only on the shape andsize of each triangle, but also on the-reluctivities, which depend on
@ . The nonlinear continuum problem of Equation (2.65) of Chapter |l, Section 2.5 has
thus been represented by a set of nonlinear algebraic equations. Matrix S, it should be
‘noted, is of order equal to the number of vertex potentials, and it corresponds to the stiff-

ness matrices encountered in structural finite element analysis.

3.3  Boundary Conditions and their Effect on the Variational Formulation

The energy functional defined by Equation (2, 65), Chapter || yields the non-
linear Poisson's equation as its Euler equation satisfying Dirichlet and natural Neumann type
boundary conditions. Therefore, homogeneous boundary conditions are implicit-in the
veriational formulation. In such cases the functional does not require any modifications,
since it is self-sufficient. In the case of loaded boundaries, however, expressed by the

relation (ee [3.7], p. 149, Equation 10.3) on the boundary by

o dep
U-a—x—'lx+v-w1y+q+a¢p=0 (3.39)

wher 1 , 1 are the direction cosines of the outward normal to the boundary surface,
x

further consideration of the variational formulation is necessary.

In an electrical machine, usually the external boundaries of the region coin-

cide with symmetry lines and, therefore, the quantity q which represents net flow of flux

across the boundary will be zero. The term a ¢ in Equation (3.39) represents power loss
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per unit area across the boundary. This is a more complex type of boundary condition
‘than the natural boundary conditions defined earlier. While it is quite feasible to satisfy
the same by directly imposing constraints on the boundary elements, such an approach is
inelegant and suffers from the draw=-back that the physical problem becomes obscured.
Consequently it is advantageous to modify the variational problem so that the value of €@
on the boundary can take up any value without constraint. This is easily accomplished
by adding appropriate terms to the functional which is to be minimised » and the resulting

expression for the energy functional becomes

B
=[] [Iubdb-J¢Jd$+jq,cpd3+f%-q¢2ds
) c (3.40)

In Equation (3.40), the last two integrals are taken along the boundary
subject to the boundary conditions of Equation (3.39) and along which ¢ is not con-
strained.

The minimisation of the energy functional will now result in adding the
derivatives of the last two terms with respect to-the nodal values of ¢, to the Equation
@-11) of Section 3.2.2. Such derivatives will exist only for elements which actually
form the boundary, as for example the element r, s, k illustrated in Figure 3.3. The
values of these additional terms will now be evaluated. If e and @ are the poten-
tials at the vertices r and s respectively and L is the length of the face - s, then
the expression for a minimum value of the functional can-be shown, by using Equations (A3:3) &
(A.3.5) of Appendix Ill, as

§§]= 0 =[s]. [el-[T]+Y 12L_+_°3_L(¢r-‘§¢s-)l (3.41)
r

iy
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FIGURE 3.3. DETAILS OF FINITE TRIANGULAR ELEMENT ON THE
BOUNDARY OF THE FIELD REGION R.

For an unloaded boundary q = a = 0, so that the additional terms
vanish.  As already described, symmetry lines fall into this category. [f neither the
potential @ nor its normal derivative is prescribed on the boundary, the variational

formulation will imply homogeneous Neumann or Dirichlet boundaries automatically.

3.4 Continuity of the Magnetic Field Across the Interface
Between Finite Elements

For the present two-dimensional continuum problem, the magnetic vector

potential has only a component along the Z direction and is invariant in that direction,

so that the magnetic induction B is given by

lBl=IVx6!=IV¢Zl 3.42)
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In Cartesian co-ordinates, the following relations hold

3 2_ 238 232
e = dy ! 9 x !
(3.43)
9 . 0 .
?tp = Z i+ z i
z 3 x 5y

Since ¢ has only a component '¢pz , it is seen that the curl of the vector
potential and the gradient of ® have the same magnitude, but are orthogonal to each

other. Hence, the tangential component of the magnetising force H can be expressed

as

2 - u?f:u(?xik)f (3.44)

and from Equation (3.43), this relation reduces to

?T = V('v'cp)n (3.45)

;=

Using Equations (3.43), the normal component of the magnetic induction

B is obtained as
- >
B~ (Vx® = (T, (3.46)

Since the vector potential is continuous, the tangential component of its
derivatives will also be continuous, resulting in the continuity of B - As regards the

tangential component of H, continuity will be ensured so long as the product v (?(o)n
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is continuous.  This requirement- is met by defining the-reluctivity function in such a way
that in association with the normal derivative of ©, it will result in the continuity of
the tangential magnetising force H, although v and ¢ may not necessarily be continu-

ous across the interfaces of every element.

3.5 Minimisation of the Functional in the Discretised Region and
Uniqueness of the Approximate Solution

The criterion for a strong minimum of the functional is defined by the dif-
ferential equation (2.37), Chapter I, Section 2.4.3. We shall now determine the value
of this expression using the approximate trial functions defined in the finite element dis-

cretisation by Equation (3.32), Section 3.2.2.

Since grad e, is non-zero in each triangular element and the reluctivity

V is differentiable with respect to the magnetic induction B, by substituting for f in

Equation (2.46), Chapter II, Section 2.2.4 for a strong minimum, one obtains for the

second variation of the nonlinear functional, the value

2 2 2 '
B_iz.a_;_(_a_L)2= -a—".¢'+v}xo-o=o (3.47)
e d¢p des ' o

Obviously the energy functional attains a minimum value in the discretised
case just as it attains a minimum in the continuum problem. Nevertheless, as before,
strict inequality of (2.38), Chapter II,Section2.4.3 does not kold and hence the solution

to the field problem cannot be asserted as being unique. Further the contributions, if any,
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of the element boundaries will have to be considered. The uniqueness of the solution
can only be ensured by appeal to a minimising sequence such as the R =R method. It
was shown by de Arantes [3.3] that the finite element method is a specialisation of the
R =R method provided, of course, conformity and completeness conditions are satisfied.
Conformity is said to obtain, if the piecewise defined fields in the elements have con-
tinvity of the field and its principal derivatives across the element boundaries. The
completeness criterion, however, is satisfied if the minimising sequence has a limit and
is bounded (see [3.3], pp. 944 - 45, Equations 81 and 82), although the principal
derivatives of the functions may not be continuous. Further, the completeness require-
ment overrides the conformity condition-and the derivatives across the element boundaries

need not be continuous in order to ensure that the finite element method belongs to the

R =R class of a minimising sequence.

As an alternative method of proving that the functional attains @ minimum
in the bounded region R, we may for the present neglect the element boundaries. Then
we can show that the minimisation process is satisfied in each element by recourse to
Equation (3.47). It is then only required to show that the interfaces do not affect the
problem in any way for the type of element chosen and the conditions of the problem. [t
has already been shown in Section 3.4 of this chapter that the tangential component of the
magnetising force H and the normal component of the magnetic induction B are continu-
ous at element interfaces. Therefore, if we take a line integral around the element
boundary as shown in Figure 3.4, its value will be zero, indicating that the interface makes
no contribution to the functional in any way. Thus the minimisation of the functional is

valid whether or not the interfaces are considered.
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FIGURE 3.4. LINE INTEGRAL OF THE TANGENTIAL COMPONENT OF
MAGNETISING FORCE AT THE ELEMENT BOUNDARY.

Having thus satisfied the conditions for the second variation of the func-

tional and having set up a sequence by the method of finite elements, it is necessary to

show that the sequence is a minimising one. In other words the set of nonlinear algebraic

equations defined by (3.38), Section 3.2.2,
(s]. [el=1/3 ., [R]

must yield a solution which converges to a limit. This is best achieved by solving the
given set of equations iteratively, starting from an initial guess, such that the sequence

of approximate solutions in successive iterates satisfies the Lipschitz condition

16 -G&) Il sx ] x-x ]I (3.48)

for all values of x, x' in the closed interval [xo “Ps X *+P J where the Lipschitz
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constant has a value 0 < A < 1, and the sequence converges to an acceptable unique

solution. The advantages of this method are

(@) that the nonlinear equations are recursively solved by a

set of linear equations, and

®) if the process converges, it will do so rapidly to the unique

solution of the original equations.

However, since the principle of superposition has to be used in setting up the recursive
relation (see [3.8, p.2]), ill conditioning of the linear algebraic equations may present
-convergence difficulties. Nevertheless, such quasilinearisation techniques have been
effectively used resulting in rapid convergence of the iteration process. Two such methods,
the chord method and the Newton-Raphson iterative scheme, have been successfully em-
ployed for solving field problems in the present analysis. The chord method provides

linear convergence; while the generalised Newton-Raphson method yields a quadratically
convergent sequence to the solution of the problem. In both these cases, the approxi-
mate solution obtained is unique. These techniques will be discussed in greater detail in

the following chapter along with other schemes for solving nonlinear algebraic equations.
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CHAPTER IV

ITERATIVE SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS

4,1 Introduction

In the preceding chapters, the nonlinear field problem was formulated in
terms of variational calculus and the resulting continuum problem was discretised by the
method of finite elements for obtaining a unique approximate solution. Other numerical
methods discussed were finite difference schemes which were either based on a divided
difference approach or on a restricted functional formulation. Reference was also made
to the Rayleigh-Ritz method as a technique of functional minimisation. A factor common
to all these methods is that the continuous nonlinear problem is finally transformed into a
set of nonlinear algebraic equations. Therefore, the solution of the field problem reduces
to one of obtaining a solution to the set of nonlinear algebraic equations, represented in

matrix form or in any other manner.

Several methods currently in use for solving nonlinear equations will be dis-
cussed in this chapter, in particular the chord method and the Newton-Raphson iteration
scheme, and proof of existence, convergence and uniqueness of the solutions obtained will
be furnished wherever applicable. The generalised Newton-Raphson method will be pre-
sented in a multi-dimensional form and applied to the system of matrix equations (3.38),

Chapter [Il, Section 3.2.2 representing the nonlinear field problem.

Various methods of solving the resulting set of linear equations are also

discussed, such as Gaussian elimination and other techniques and a
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brief reference is made to the condition of the matrices, accuracy of solutions obtained

and the computational work involved in employing these methods.

4.1.1 Functional Iteration Method

The methods of solving nonlinear algebraic equations discussed in the
following sections belong to the group of methods called functional iteration, as distinct

from direct methods, for example the method of successive bisection, inverse linear inter-
polation etc. [4.], Chap.3, pp. 72-821] .
Let us suppose that the system of equations to be solved can be expressed

as

fx) =0 @.n
where f and x are vectors of the same dimension k. When k=1, we have a single
equation and if k=n, we have a system of n equations. If we now define a new

function G (x) such that
G X =x - f((x) @4.2)

then most of the iteration methods can be written in the form

X

il G(xn) @4.3)

for some suitable function G and initial approximation X, . The convergence of the

iteration process is assured if the mapping G (x) carries a closed and bounded set
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Se€ C|< into itself-and if the mapping is contracting [4.2, p.85], i.e. if

Jlew -6 || sm|]x-y ]| @.4)

for some norm, forall x, y in S andfor M < 1, known as the Lipschitz constant.
Such an iteration scheme is sometimes called the Picard method. As an example, a

first order unaccelerated scheme is illustrated by the following flow chart (Figure 4.1)

ESTIMATE INITIAL X =X

:ﬁ

FIND RESIDUAL = fix)

}

DETERMINE

xn-i-] = xn - f (xh)

WRITE

THE SOLUTION a=x
~Tn+l

FIGURE 4.1. DESCRIPTION OF FUNCTIONAL ITERATIONS.
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Here ¢ = M || x - x | | = asmall number
n n-1
and M <1

Isaacson and Keller [4.2, pp. 86 - 88] state the criteria for convergence

of the iteration method and the existence of a unique solution in the form of the following

theorems.

Theorem 1

Let G (x) defined by Equation (4.2) satisfy the Lipschitz condition

[l -6« || s a]]x-x1]] @4.5)

for all values of x, x' in the closed interval [xo -g, x + € 1, where the Lip-

schitz constant satisfies 0 = A <1,

If the initial estimate xo is such that

[Ix, ~6&) Ils@-n¢ .6)

then

(@}  all the iterates x defined by the foregoing iteration

sequence lie within the interval

;(O-CanSxo+C @4.7)

(ii)  (existence), the iterates converge to some point say a,
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lim x = d (in fact, ' | x - a l | < A" P) 4.8)
NHo

which is a root of the equation

x=Gx =0 4.9)

and

(iii) (uniqueness) a is the only root in the interval [xo-- ¢, X+ g],

The above theorem holds equally well for a multi-dimensional case, pro-

'vided vector norms are used in place of absolute values.

Theorem 2

If x = G (x) hos aroot a and if the components Gi (x) have first partial

derivatives and satisfy

3G, (x)
! ['sz‘.

| L =, A< o *.10)

forallxin,lx-a”msp  ? @4.11)

then
i. for ‘an'y'x(o) satisfying Equation (4.11), all the iterates x(n)

of the sequence (4.3) also satisfy 4.11),

i, for any x(o) satisfying (4.11), the iterates (4.3) converge

to the root a of (4.9) which is unique in the interval 4.11).
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Frcofs of these theorems are given in Reference [4.2, Chapter 3, pp. 110-1111]

4.2  Explicit Iteration Scheme or the Chord Method

Let us consider the general case of a system of equations of the form

4.12)

i
o

f (x)

where

00 = [£60, 0, F300 -0 f 17 4.13)

isan n - component vector. Such a system can be written in the form x= G (x)

in a variety of ways. We can examine the choice

GX) =x-AK . fx “4.14)

where A (x) is an nth order matrix with components aii (x). Equations (4.9?) and
4.12) will have the same set of solutions if A (x) is non=singular Gince in that case

AKX . f(x) =0 implies f (x) = 0).
The simplest choice for A (x) is
AWK = A (4.15)

a constant non-singular matrix. If we introduce a matrix

afi (x)
S0 = () @.16)
|
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whose determinant-is the Jacobian of the functions fi (x), then from Equations (4.14) and

@4.16), we have by differentiation and substitution

26, &)
F (X) = ( —5-;‘7—) = |=-AJ (X) (4.]7)
|
By Theorem 2, the iteration determined by using
S N T @.18)

will converge, for x(o) sufficiently close to a , if the elements of the matrix (4.15)

are sufficiently small, for example, as in the case that J (a) is non-singular and A is

approximately the inverse of J (@). This procedure is the n-dimensional analogue of

the chord method. This iteration scheme has a geometric meaning as shown in Figure
4.2 for the one dimensional case in which the value X i is the x intercept of the
line with slope 1/m through (xn , f (xn)). The inequality implies that this slope should
be between €9 and ;-f' (@), i.e., half the slope of the tangent of the curve y =f (x) at

the root. Hence the name 'chord method'.

e FIGURE 4.2. CHORD METHOD.
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4.3  Second Order Methods [ Reference 4.2, pp. 112-113]

If the function G (x) is such that at a root the matrix

aG.
G.. (x) = ! (X) = o 7 i, i = l’ 2, ccey n (4.19)
i ax_i

and these derivatives are continuous near the root, then

26, &) \
(@) l,—a—x——ll<7‘-for)\<l 4.20)
i )
n
® max ) 16,60 [1=x <1 4.21)
i =l
for all |l x = a | lm <p “4.22)
% 6, ()
will be satisfied for some P > 0. Ifinaddition the second derivatives S5

all exist in a neighbourhood of the root, then it can be shown as in Reference [4.2, pp.112]

that
1 x® ca ] sm [1x0Doa )2 @.23)
. ‘®
where M is such that
2
¥ G & 2 M
max 'l S | < —5 -
i, x'i K n

This shows that quadratic convergence can occur in solving a system of equations by iteration,

i.e., the error in any iterate is proportional to the square of the previous error and hence if
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G" (o) # 0, this procedure wiii be called a second order method. Illustrative second

order schemes are described in the following sections.

4.3.1 The Generalised Newton-Raphson Method

The generalised Newton-Raphson method also known as the Newton method
for functional iteration is a quasi-linearisation technique for solving nonlinear algebraic
equations. This is also-called the method of tangents, since in this scheme the function
f (x) , whose solution is required, is approximated by the tangents drawn at the respective
points to the function.curve. The intersection of the tangents with the axis successively
leads to the true solution as illustrated in Figure 4.3 for the one djmensional case. Here

the function considered is convex and the root a issimple. Also it is assumed that

f'x) <0 (4.24)

Suppose we are given an estimate X, of a real root of the equation

fx) =0 4.25)
the equation of the tangent to f (x) at x = x, can be expressed as

y &) = f (xi) + f (xi) . (x -xi) 4.26)

Let (xi R 0) denote the intersection of this tangent line with the x

axis. This point is found by setting y (x) equal to zero in Equation (4.26). Then this
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f)

\

I
\!
\

% X
FIGURE 4.3. NEWTON =-RAPHSON METHOD.
equation reduces to
0 = f(xi) + f' (xi) . (x - xi) 4.27)

i+l

Solving the above Equation (4.27) for X:,1 7 We obtain

f (xi)

f' (xi)

X, = x, -
i+1 i

(4.28)

which is the classical Newton=-Raphson iterative scheme. In effect, we are obtaining a
refined approximation Xl of aroot a of f (x) = 0 by approximating the graph of

f (x) by the line tangent of f (x) at x = X, .



81

Newton=-Raphson Method for a System of Equations

The method described above for a single equation can be extended to a system "
of equctions as follows. Let us consider the following equations in the two independent

‘variables x and y.

|
o

f (x, Y)
4.29)

i
o

g (x, Y)

If an initial estimate of the solution namely (xo » yo) "is available and that
“this is incremented by changes § x, 8§y , then the functions can be expanded by Taylor's

theorem as

Fl, +8x, y +8) = Flx ,y)+f ., y)- 8x+fy &, ryg) -8y

+ (higher order terms) (4.30)

90y t8x y +8y) = gl V) +g, Ky - Bxtg & sy )-8y

+ (higher order terms) @4.31)

where the subscripts x , y denote partial derivatives of the functions.

If we now truncate the series after terms of the first degree, we will obtain
first order approximations of the resulting changes in f (x, y) and g (x, y) as the total

differentials
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5f

fx (xo ’ yo) . &x + fy (xo ' yo) Sy @4.32)

g g, (xo ’ yo) . &x + gy (xo ,-yd) Sy “.33)
A solution of system (4.29) can be obtained by determining § x, &y
such that the total differentials §f , & g satisfy the constraints

§f = -f(xo,y)

o
4.34)
g = -9k ,v)

Substituting the values of these constraints in  (4.32) and solving the

resulting set of linear equations namely

I

-f(xo,yo) fx(xo,yo).8x+fy(x°,y°) . 8y

(4.35)

"9k, Y = g &k osy)-8x 4+ 9, &, y,) -8y
the values of §x and &y are determined.

From Equations (4.30) and (4.31), it is evident that if f and g are

evaluated at (xo + &6x, Y, * 8 y) and expressed in a Taylor expansion truncated after

the first-order terms, the following relations hold.

f(x°+8x, y°+8y) f(xo'yo)+fx (xo,yo) .8x+fy (xo,yo) .8y=0

4.36)
gk, sy )+a, Ko7 Vo)« 8x+g (x s y).8y=0

g(xo+8x, y°+8y)
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If these linear expansions are sufficiently accurate, then (xo +8 %, Y, +5 y)
are fairly good approximations of the solution of Equation 4.29). If |&x | > ¢ or
|f | I‘S y |1‘> e , where ¢ is asmall positive quantity, it is necessary to replace X,
'by x, +8x and Yq by y, + 8y andrepeat the entire process.  Usually a few
iterates of the process will produce accurate values of the root, provided that the original

estimates (xo ’ yo) are sufficiently close to the true solution.

Existence and Convergence

The Newton-Raphson method has two important properties namely monotone .
convergence and quadratic convergence. From Figure 4.3 for the one dimensional case,
the intercepts on the axis increase successively from an initial approximation X towards

the root a such that

x <x]<x2.....<°‘ “.37)

The property expressed by Equation (4.37) is known as monotone conver-
gence, by virtue of which the value of the sequence x_ increases monotonically to the
root a . This property provides an upper or lower bound for the convergent interval
(see [4.3, Chapter 1, Section 7, p. 20]), and ensures automatic improvement of the
initial approximation after each iteration. The monotone convergence property is assured
for the Newton-Raphson iteration formula only if the function f (x) is a monotone de-
creasing or monotone increasing function and it is strictly convex or concave. In the

present analysis, since the magnetisation characteristic of the iron is monotonic, the
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solution sequence of the resulting matrix equation

[vs][ea]l=1[R] (4.38)

will be monotonic and therefore monotone convergence of the Newton-Raphson method

is assured for this application.

In general, the Newton method always yields quadratic convergence, even
in such cases when the function is not monotonic. The quadratic convergence is a con-
sequence of using the first and second terms in the Taylor series expansion., One other
important fact about the Newton-Raphson formula is that the resulting equations are always

linear although the original function may be nonlinear.

For the present application of this technique to the solution of the above

matrix Equation (4.38), existence of a solution is assured since the iteration sequence

G(e)= [vs][el-([R] 4.39)

is monotonic. The convergence and uniqueness of the solution obtained for a single
equation is described by McCalla [4.1, pp. 84-86 ] and for a system of equations is

concisely presented by Henrici [4.4, p. 106] .

Rate of Convergence of the Newton Method

Let the error term of the ith iterate be expressed as

8. = x. -a 4.40)
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By finding a relation between 8i+l and 8i , we can estimate how rapidly
(or how slowly), the.algorithm converges to a root a of the equation f (x) =0, provided
‘the: algorithm converges. Such a relation can be determined by expanding the iteration

function G (x) in a Taylor series about x = a so that

’ 2
GK) =G + G @.k-a) + 2 (G)é‘(x-a) @.41)

For the Newton=Raphson algorithm, the iteration function G (x) and

its first two derivatives are

GK = x = fx)/f () 4.42)
G' ) = f ). f" &) (4.43)
f' (x) A
H 2 n 1 [1) - 1" [} n
G" &) = ¢ x)) . Ff" + f'. f4) F.f" . 2F , f @.44)
' &)
and G @ = a,G' @ =0, G" @ = f" (@ /f (@) (4.45)

Substituting the values of (4.45) into (4.41) and truncating the series

after terms of the 2nd degree and evaluating at x, we obtain

f" (@) . (xi - 0)2
G () = a + @.46)
! 2§ ()

Using the relation X = G (xi) and the definition (4.40), we find that

f" @ . 8i2

5, = —— @.47)
i+l 2§ ()
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From the above relation (4.47), the Newton-Raphson method is said to yield quadratic

convergence [4.1, p. 87].

4,3.2 Some Modifications of the Newton Method

The evaluation of the derivative G' of the given iteration function G may
not be a trivial problem in many practical situations especially if G is itself the result of
a complicated computation. Hence a variety of methods have been devised by different

‘authors to obviate the need for calculating G' . Some of the methods in common use are

presented below.

ie Whittaker's Method [4.5]

In this method, the derivative G' (xn) is simply replaced by a constant

and the resulting iteration formula given by

X =% -6 (xn)/m (4.48)

defines for a certain range of values of m, a linearly converging sequence, unless we

happen to pick m= G' (@) . If m=1, the simple unaccelerated functional iteration
results. If the estimate of m is good, convergence will be rapid. Further in the initial

stages of the Newton's process, it is usually not necessary to recompute G' at each step.

ii. Regula Falsi [4.4, p.87]

Here the value of the derivative f' (xn) is approximated by the difference
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. quotient

Fee) - fFx o)
n “n-1 4.49)

formed with two preceding approximations. The resulting iteration formula is given as

- ) < fix)
SN Wl = UL | .50)

" k) - f )

The algorithm suggested above is termed regula falsi, defined by a difference
equation of order 2, Ostrowski [4.6] has shown that the degree of convergence of the

method lies somewhere between that of Newton's and the ordinary functional iteration.

iti. Muller's Method

Regula Falsi can be obtained by approximating the graph of the function f
by the straight line passing through the pcints (xn_] r G (xn_])) and (xn p G(xn) ) .
The point of intersection of this line with the x - axis defines the new approximation
X o1 Instead of approximating f by a linear function, more rapid convergence can be
obtained by approximating f by a polynomial p of degree k 2 1 coinciding with f at

the points X 0 X s eeeeeenas X g and determining x as one of the zero's of p.

n+l
Muller's study [4.7] reveals that the choice of k = 2 yields very satisfactory results,
Since the construction of p depends on the theory of interpolation polynomials, the matter

will not be pursued any further herein.



iv. Accelerated Iteration Method

This modification of Newton's method is the nonlinear analogue of the
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linear over-relaxation scheme [4.8, p. 102] and can be described as follows. Con-

sider the system of equations

fi(xl,xz,x3 ...xn) =0, i=1,2, ...n

Let

and assume that

fii £0, i=1,2, ... n
Then for m a fixed non-zero real constant, and for initial vector,
o o () C)
x() = (x](), xé), oo e e er))
a sequence of vectors
k
x

& & &) -
Xo ' e e e X ), k=1,2 . .n

= (x] ’ =

is defined by the following iteration process.

& &) k)

x(k+])=x(k)_m f](x] ' 2 '°°xn)
1 1 ; (x(k) ) M)
]] ] 7 2 - L . n

.51

4.52)

4.53)

4.54)

(4.55)

(4.56)
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), )

m fn (x]

k+1) (k+1).
fnn (x] )

8

) x(k+]) )
n n

PRI

@4.57)

ANLE

Where the double subscript notation denotes partial derivatives m is the over-relaxation
factor,and k = 1,2, ......n.. Then x(k) is a solution of (4.57) if and only if
x(kH) = x(k) . If the system of Equations (4.57) is linear, the method described above
will become identical to the linear over-relaxation process .’ 'm' is chosen to lie some-

where between 1 and 2 [4.9, p. 234] .

4,3.3 Application of the Generalised Newton=Raphson Method to the Multi-
Dimensional Nonlinear Field Problem Using First Order Finite Elements

Of the various methods available, the generalised Newton-Raphson method
was found to be most suitable for solving the system of nonlinear algebraic equations re-
sulting from the variational analysis of the field problem. However, since the functions
approximating the solutions are defined in each sub-region, the matrix Equation (3.38) of

Chapter 111, Section 3.2.2 must be recast for obtaining a recursion formula for the iterative

scheme.

In the finite element method, the vector potentials, reluctivity and magnetic

induction are defined piecewise in each triangular element and, therefore, it is sufficient
to construct the Newton-Raphson iteration formula in each triangle separately and assemble

the overall coefficient matrix with like elements for each triangle. Thus, the multi-



dimensional problem, in effect, reduces to one in three independent variables only namely

the vertex values of potential for each triangle.

For the nonlinear field problem discretised by finite elements, the matrix
equation can be re-written as three separate iteration functions for each triangle as

follows .

f (x, y, z) = 0
g (x, y, z) = 0 4.58)
h x, y, 2) = 0

If (xo ' Yo zo) are the initial approximate values, the method seeks to

.obtain a correction Ax, Ay, Az on Xy 1 Yo 1 Z, 50 that the corrected valuves wiil

be
x = X + Ax
o
y = Yo + Ay 4.59)
z = z + Az
o
for which

f (xo + Ax, Y, + Ay, z + Az) = 0
g (xo + Ax, Yo * Ay, z + az) = 0 (4.60)
h (xo + Ax, Yy * Ay, z + Az) = 0
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Expanding the above equations by Taylor's theorem for a function of three

variables, one obtains

FotBx,y+By, z+8z) =Ffl 1y, 2)+f &y, z) . &x

+f o + highei rms =
y (Xo A zo) . Ay + fz (xo, Y zo) . Az + highet order terms = 0

gx+Ax,y+AQy,z+Az) = g (xo ' Yo za)+gx (xo, Yor zo) Ax
4.61)

+ 9), (xo' Yo zo) Ay +gz (xo, Yo zo) . Az + higher order terms = 0

h(x+8x,y+Ay, z+Az) = h (xo, Yor zo) +hx (xo, Yo zo) Ax
+ hy (xo, Yor zo) Ay + hz (xo, Yor zo) + higher order terms = 0

where the suffixes x, y, z denote the partial derivatives of the functions f, g and ‘'h.
If we ignore all terms of order higher than the first, we are left with a system of three
linear equations, in the three unknowns Ax , by, Az, i.e.,

f (xo, Yor zo) Ax +fy (xo, Yo zo) Ay +fz (xo, Yor zo) Az = ~f (xo, Yor zo)

I (xo' Yo! zo) Bx + 9 (xo’ Yo! zo) by + o (xo’ Yo zo) Az= -g (xo' Yo’ zo)

@4.62)

hx (xo, Yo zo) Ax + hy (xo 'Yy zo) Ay + hz (xo, Yo zo) Az= -h (xo, Yor zo)

The process may now be repeated by using Equation (4.59) and the true

solution obtained.
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Let us, now, consider the matrix Eébaﬁon (3.37) of Chapter Ill for the

nonlinear field problem represented by finite elements in each triangle of the region.

.¢pi ’.

B,
[

Differentiating the above Equation (4.63) partially with respect to

im

im

(4.63)

, tpm etc., and subsfifufing. the result in Equation (4.62), one obtains the

— - following iteration formula (vide Appendix 1V) .

-I-“~|t
>

B.. B 5o, LB, ®
i ifj im i i
. 150 |+ L B.. o,
T T B R Y el
IB o
I!'mi mj Bmm 9 mm i
— B B S -
— -
B.. B.. B.
ii im
vV
= -7a °* Bl' B.. Bim .
B . B . B
mi mj mm
where B,., B., B,
il i im
b,, b, b

m

- - -

Cc, c,, ¢
’ Il ,lr M

as

o

B IB | —au
% %% 1] Se
..®. L B..o, 0

z BIl ¢' 1 w'
z .Bmm ‘Di L Bmm ‘Di Lo
— — —_
o | 5]
] i
A
. + =] J.
‘pl 3 i
¢m Jm
o — N

So.
I

5o

(4.64)

etc. are defined in terms of the geometric constants
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B = bibi + ¢ ¢ IB. = bibi'pi+bibi¢i+bibm'pm+"'

.. = bb +coec, - |

B'l i O + e <=l ):Bii bibi¢i+bibi¢i+bibmqom+...

= bi bm e ZBmm = bm-bi_‘pi*'bm biwi%bi bmtpm+...
. | (4.65)

B = b b +c¢ ¢

An equation similar to the above is derived for each triangle and the over-

all Newton=Raphson iteration formula is constructed by adding the corresponding elements

of each of the triangles. The set of linear equations is then solved and the dpproximation

to the solution is improved by using Equation (4.59), so that

A, = @B, + Do

] 10 [

., = ©, + Ae. 4,66
4 = g+ Ao et
‘pm = qpmo + A"om

4.4  Solution of Linear Algebraic Equations

Solutions of linear equations fall into two principal categories, @) direct
‘methods [13] and (i) iterative techniques [10, 11, 12]. The linear algebraic
‘equations in fhfg present analysis are solved conveniently by Gaussian elimination, since
it is a simple technique and requires less computational work than any other direct method

and is free of the instability and errors that occur in linear iterative schemes.
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The Gaussian method is fully described in mathematical literature [4.14]
and consists of successive elimination of the elements of the lower triangle of the coeffi-
cient matrix, with the result the latter is completely transformed into an upper triangular

one. This process is called triangular decomposition. The transformation of the right

hand vector is termed forward modification. From the decomposéd matrix and the modi-

fied forcing function, the solution vector is obtained by a process of back substitution.

The solution of the linear equations obtained by the above method is appli-
cable to symmetric complete matrices as well as sparse banded matrices. In the case of
band-matrices, however, only the lower or the upper half of the original coefficient rr:afrix
along with the principal diagonal elements need to be known for obtaining the solution by
this method. The method uses the dia.gonal terms as the pivots in the elimination process,
and therefore it is necessary to ensure that they are non-zero and preferably large. It is
shown in Reference [4.13, p. 80] that if the coefficient matrix is positive definite, then

the solution is assured, although certain semi-definite or negative definite matrices may well

yield good results by this method.

If for any reason the diagonal terms are found to be zero, then the method has
to be modified by pivotal condensation or other techniques, with the result the band property

of the coefficient matrix may be entirely lost and the computational time enhanced con-

siderably.

4.4.1  Conditioning of the Matrix and Accuracy of the Solutions Obtained

The Gaussian method described above is a direct method which gives explicit

solutions to the simultaneous equations. Provided the pivots are non-zero and are not very
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small, the accuracy of the method is assured subject to the conditions

i.  the data of the problem is accurate,

ii. there are no round off errors.,

-However neither of the above conditions. can be fully met-in practice with

the result that there will always be some errors included in the selutions.

The: conditioning of the matrix has a great bearing on the accuracy of the
solutions obtained and the subject is fully discussed inbl Reference: [4.13, pp. 136-174].
If the coefficient matrix is an ill-conditioned one or, in-other wards, it is nearly singular,
an iterative improvement of the-solution obtained by the direct methods is V\;arranfed.
Such a scheme is fully described by Fox [4.13,.pp. 143 - 145]. For the present-problem
of solving the set-of nonlinear algebraic equations defined by Equation (4.63), numerical
experiments with Gaussian elimination have indicated that no such iterative improvement

is really necessary, although the coefficient matrix is an ill-conditioned one.
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CHAPTER V

PRACTICAL COMPUTATIONAL ASPECTS

OF THE FINITE ELEMENT METHOD

5.1 Introduction

Solution of the nonlinear Poisson's equation by the finite element scheme is

best accomplished in three stages :

@) Generation of the matrices of geometrical coefficients and
the formation of the current vector contributions for each

triangular element.

@(ii) Calculation of the reluctivities from the potential vector and
construction of the total coefficient matrix.and the total cur~

rent vector.

(iii) Solution of the matrix equation.

The steps in computation are illustrated by the flow diagram of Figure 5.1.
For an efficient and economical program, all the geometrical coefficients, material
characteristics and current vectors which are repeatedly used in the iterative scheme, are
best evaluated in the beginning and stored for subsequent use. The method of evaluating
these parameters and the indexing algorithm for their compact storage will be discussed in

the following sections.
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FIGURE 5.1. FLOW-CHART FOR THE NONLINEAR FIELD SOLUTION.
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5.2.1  Calculation of the Geometrical Coefficients and Current Vectors

The triangle co-ordinates, vertex numbers, current densities, material
characteristics for the iron and non-iron regions, the number of specified potentials and
the iterations to be carried out form the input data for the program. The following

geometrical constants and other parameters are then obtained :

(@) the area of each triangle,

(b) the coefficients defined by

B.. = b, b, + c c, B., = b.b, + c, c,
1] ] ] ] ! " | l | |
B.. = b, b, + c,c, B. = b.b + ¢, c
n | 1 | 1 |m f m ] m
B. = b b +c¢c c, B = b b +c¢ c
mi m 1 m ] mm m m m m

where i, j, m are the vertices of the individual triangles and

and so on

(c) the current vector contributions J . A/ 3, where J:is the

the current density and A the triangle area.

The magnetic characteristics of the iron parts are stored as point values of

the magnetic intensity vector H corresponding to successive values of the magnetic in-
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duction B. A linear inferpolation.routine was developed for determining the reluctivity

and its derivative with respect to the magnetic induction B in each triangular element.

5.2,2 Special Indexing Routine

In the triangular sub-division of the field region as described in earlier
chapters, if is seen that no one node is connected to all of the other nodes. Consequently
the total coefficient matrix assembled from the elements for the individual triangles is
always sparse, but symmetric and can be arranged to have a band structure. It would be
not only uneconomical, but well nigh impossible to store all the elements of a large matrix
arising in practical machine problems. However, it is only necessary to store the lower
or the upper triangular matrix along with those on the principal diagonal. The elements
of the coefficient matrix are best stored as a vector, consisting of either the row elements
in succession or the column elements. Figures 5.2 and 5.3 illustrate two alternative
schemes of matrix storage, both of which use a single subscript indexing procedure, since

double subscripting would require a large memory.

Any of the above methods would facilitate compact storage of large sparse
matrices. Since the number of multiplications involved in the solution of such matrix
equations increases with the band-width; it would be ideal if one could somehow compact
the matrix such that only non-zero elements populate the band area. However, much
economy can still be achieved even if the band area does include some zero elements

provided, of course, the band-width itself is sufficiently small. A skillful numbering
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FIGURE 5.2. LOWER TRIANGULAR " "~ FIGURE 5.3. .LOWER TRIANGULAR"

MATRIX ELEMENTS STORED MATRIX ELEMENTS STORED
COLUMN WISE. ROW WISE.

system of the triangle vertices does lead to a small band-width and for the present, the

task of achieving an optimum band-width in the finite element method rests largely on

the diligence and ingenuity of the engineer.

For an economical storage, therefore, the vertices of the triangles must be
transformed to a single index notation in order to locate the respective matrix elements
of individual triangles in the over-all coefficient matrix. This is best illustrated by con-
sidering two finite triangular elements as shown in Figure 5.4 (@). The double index
scheme for the total coefficient matrix and its single index equivalent are illustrated in

Figure 5.4(b). The indexing for the constituent matrices is shown in Figure 5.4 {c).
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FIGURE 5.4 (c). INDEXING OF THE TOTAL COEFFICIENT MATRIX FOR TWO FINITE

- ELEMENTS AND THE CONSTITUENT MATRICES.

The following algorithm describes one method of achieving the required

index transformation.

IM, JJ, JM, MM are the single subscript indices for the matrix elements Si o

r S. . S,

Irl ’

If i, i, m are the vertices of a triangular element, I, 1J,

and Sm . then the following relations hold.

4

Defining a term X called pivot,

X

= N=-B+2

[4

6.1
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where N is the order of the total coefficient matrix, and B = (Bandwidth + 1) /2.

The index of the last term will be

Y = @BN -B2+p)/2 5.2)

. The following further relations hold

1 = i+ @B-N(i-1) |, i < X
6.3

P+ RE-1X-1)+(-X) @B+X-i-31/2, i >X

J = i+ @B-0¢G=-1), i <x, or j <x
= |+(B-l)(i-l)‘, i >j.and
i <x orj <x
= i +[2@-1)&-1)+ (-x)@B+x-1-3)1/2
for i >x and | > x (5.4
and i < j
= '+[2(3'1)(X'1)+(i'X)(23+x'i'3)J/2
for i > x and | > «x
i > j
o= i+ @B-1G-1), | < x

= i+ [2@-D(x-D+ (-x)@B+x-i-31/2 (5.5

i > x



JM

MM

m4+ B-1G=-1) , i €< x or m < x
and | < m

i+ @=1)m-1), i < x or m < x

and | > m

m+ [2@-1)(x-1) + i-x)@B+x=-]=3)1/2
| for | > x and m > x

ond | < m
i+ [2(8-1)(x-l)+(m-x)(2'B+x-m-3)J/2
for | > x and m > x

and | > m

m+ B-1)m-1) , m < x

m + @@B=1)(x=1) + Mm=-x) @B+x~-m =3)) /2

i+ B-Dm-1), m <x or i <x
and m < i

m+ B-1)(i-1), m < x o i < x
and m > i

P+ RB-1)k=1) + (m-x) @B+x-m-3) /2
m > x ond | > x

m < j

m+ @@B-1)&=-1) + (i-x) @B+x=-i=-3))/2
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(5.6)

6.7)

6.8)
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5.3.1  Assembly of the Total Coefficient Matrix and the Current Vector

Having thus evaluated.all the geometrical coefficients for each individual
triangle and the current vectors and having transformed the indices of the element vertices,
we proceed to assemble the total coefficient matrix S and the current vector R. Assum-
ing an initial value of the vector potential @, normally zero value for most purposes, the

magnetic induction B is evaluated from the relation
B= g5 Vb +bo+b 0)2 + cotcptc 8)’ (.8
2A P i mom iF ] mTm ‘

The corresponding reluctivities and their derivatives with respect to-the magnetic induc-
tion are obtained from the B-H characteristic:for the iron parts, while for other regions-
V has a. constant value equal to the reciprocal permeability of free space. The S and

R matrices are now easily assembled from their respective component values for each of -

the triangular elements as

vsady = 7LA' Zf"‘%m..
rariy Iyl m
. R. (5'9)
ROy - LU 1
ylrm Ieirm

where [Ri ] is the current vector.
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5.3.2 Chord and Newton ~Raphson [teration Schemes

For the first few iterations, the reluctivities are transformed by the chord

-method defined by the re lation

= Vidd * B (V- '”iOId) | (-10)

Almost similar results were obtained by transforming the vector potentials
instead of the reluctivities and, therefore, either alternative is considered satisfactory.
The value of the constant ‘B was chosen as 0.1, since it gave good linear convergence
without causing instability of the iteration cycle. A lower value is also found to be
satisfactory, but requires more iterations, since the step size is smaller. However, since
the solution obtaiined by the chord method is only being used as an initial estimate for the
quadratically convergent Newton-Raphson scheme, no further experiments for opfimisiné

the value of P are considered necessary.

As all the parameters for each triangle have already been calculated and
stored, the implementation of the Newton~Raphson algorithm becomes an easy matter.

This can be expressed as

I

)

G.11)

' 1
T-‘&ZvBﬂ |, . +R Z(Bii"i)(sim“’m)l . '(E%'A

I,]j,m I,],M

(over all triangles) (over all triangles)

R,
= _Z—]A_Z(Bii'pi)'v+z3'l |

(over all triangles) (over all triangles)

t,],m
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5.3.3 Matrix Reduction

It is well known that Laplace's and Poisson's equations have unique solutions
for Dirichlet or mixed boundary conditions, but the solutions for the Neumann problem
differ by an arbitrary constant. Since Neumann boundary conditions are implicit in the
variational formulation, at least one potential needs to be specified for obtaining a.uni~-
que solution, This is conveniently carried out by specifying a flux line boundary wherever
convenient, or by some other means. Since the number of unknown variables of the
potential vector is reduced by the number of specified potentials, the coefficient matrix
and the current vector must be correspondingly transformed. This is accomplished by

either of the following methods :

(@) By arow and column reduction of the coefficient matrix corres=

ponding to the potentials specified and a row reduction of the

. current vector.

®) By introducing zeroes in the rows and columns, and a value of
unity in the diagonal terms of the coefficient matrix corres~-
ponding to the potentials specified as constants in the right hand
_ current vector (see Reference [5.1]). These schemes are il-

lustrated by Figures 5.5, 5.6(a) and 5.6(b).

Alternative () is well suited for matrices with a band structure, since the
transformation preserves the band property of the coefficient matrix, thereby permitting

the use of an equation solving routine suitable for band matrices.
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5.3.4  Solution of Linear Equations for.a Coefficient Matrix
with a Band Structure

The two principal objectives in developing an algorithm for solving linear
equations are that it must ensure compact and economical storage by a suitable indexing

system and must facilitate fast computation by reducing the number of arithmetic opera-

tions to.a minimum.

The first of these objectives is accomplished by using an indexing routine
described in Section 5.2.2, which leads to a numbering scheme of the coefficient matrix
as shown in Figure 5.4(b). Further indexing is, however necessary, in order to execute
the linear equation salving routine, which in the present case is the Gaussian elimination
process. Referring fo Figure 5.4(b), the lower triangle of this band-structured mairix can

be conveniently divided up into a parallelogram and a triangle as shown in Figure 5.7. It

FIGURE 5.7. SUBDIVISION OF COEFFICIENT MATRIX INTO A
TRIANGLE AND A PARALLELOGRAM.
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is observed that the number of columns containing M elements below the principal dia-

gonal is only two (where M is band-width + 1). The remaining three columns consist

of elements whose indices decrease successively from M =1 to 1. The determination

of the indices of the elements 55 and S9 , therefore, is of vital significance. Denoting
the index of 55 by IX, it can be shownthat IX = (M* N - M2 +1), where

N is the order of the matrix, and M is defined as before. Once the indices of these
two elements are determined, the indexing of the rest of the elements of the respective
-columns is a simple matter, since they increase by 1 atatime. Also the indices of the

diagonal terms increase by M at atime from 1 until the SIx M element- is reached.

Thereafter the diagonal indices increase successively by M-1, M =~ 2, etc.

Using this special indexing scheme, the elements of the lower triangular
band-structured matrix are modified by Gaussian elimination. This is accomplished in
the innermost DO loop of the program. The multiplying fac*ors required for the modifi-
cation of the matrix elements ar’e determined in the outer I’oop. :I'he forward modification
of the right hand vector is likewise carried out in the outer DO loop. The allied in-
dexing schemes and arithmetic such as additions and subtractions are relegated to the
outermost DO loop to keep the computation to a minimum. The details of this scheme

are shown in the flow chart of Figure 5.8.

5.3.5 Formula for the Total Number of Arithmetic Operations Required

If N is the order of the matrix and 2M - 1 the band-width, then the
following arithmetic operations are required. All the operations are evaluated in terms

of multipiications for estimating the work to be done.
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Indexing

Number of multiplications and additions =

Forward Modification

Number of multiplications

and divisions

Number of additions
Hence, the total number

of multiplications,

additions, etc.

Triangular Decomposition

Number of multiplications

Back Substitution

Number of multiplications

Therefore, the total number of
Arithmetic operations required

will be

[
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3.15 + 0.3 (N - I)

M-1
[(N-M+1) M=-1) +'Z M-K].2
2

@N-M) M-1)

0.152N-M) M =1)

1.I5@N=-M) M- 1)

M-12 (N -Mr) ¢ MDD

M-1
M=1) (N-M+1)+ ) M=K +0.25N
k=1

(MT-D' 7N=-5M+6MN -4 M +6)

2
M_GN -2M) . . . (multiplications)

3
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5.3.6  Comparison of the Arithmetic Operations Required by the Triangular
Decomposition Method and by an Inverse. Routine for a Band Matrix
and also for a Full Matrix

Arithmetic Required to Solve N Simultaneous Equations

Method Band-Matrix Full=Matrix
Simultaneous M2 BN -2 M) N3 2
3 -3—' + N

Equation Solution

Inverse and Post % M N2 N3

Multiplications

5.4.1  Convergence Criteria and Rate of Convergence

The computational work increases with the number of iterations of the matrix
equation solution, and therefore, some criteria must be applied for terminating the iterative
sequence, in order to achieve efficiency and economy of programming. An error norm would
be the ideal basis for determining whether or not the number of iterations are adequate for
obtaining a solution of acceptable accuracy. Since there is no easy way of determining
the true error for a nonlinear problem discretised by finite elements, it is necessary to adopt
other norms as the bases of terminating the iteration process. Following are some of the

norms used in the present analysis :

(@ infinity norm of the displacement vector,
®) Euclidean norm of the displacement vector,
(c) infinity norm of the residual vector,

(d)  Euclidean norm of the residual vector.
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All these norms are evaluated by the computer program, and a value of

10-6 or less for the Euclidean norm of the residual vector is used as the basis for stopping

the iterative sequence.

The convergence rates for the chord and Newton-Raphson iterations are
shown in Figure 5.9 for a transformer problem. In this case, however, an error norm was
used as the criterion, assuming the solution achieved after 25 iterations fo be the true
solution of the problem. It is evident that between six and eight iterations are adequate
for achieving an acceptable minimum value of the norm, and this has been further con-
firmed by later numerical experiments on larger matrices. In all these cases of field
analysis the initial approximation to the solution vector was taken to be zero and conver-
gence to the required solution was achieved in a few iterations, owing to the quadratic-
convergence property of the Newton-Raphson method. If more than one evaluation of
the field solution is required for a given problem,for example, if the applied current
density is varied in steps then the computation could be considerably reduced by using the
vector potential solution corresponding to one value of current density as the initial value

for the next. One such scheme is used in the latest versions of the computer program.

5.5  Flux Plotting Routine

An automatic flux plotting routine has been developed, which in conjunction
with a digital X - Y plotter, produces flux plots directly from the input data of co-ordincte
values, vertex numbers of triangles and the potential values obtained from the finite ele-

ment analysis. The steps in the plotting routine are as follows :
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@

(i)

@iv)

Nz

Determination of the maximum and minimum values of vertex

potentials, and a suitable sub-division of their range.

Scanning of the triangle edges to check whether each of the
sub-divisions of potential as described in (i) lies along the
sides.

Evaluation of the X and Y co-ordinates of the points corres-

ponding to the potential sub-division, by linear interpolation.

Drawing the flux lines for each potential sub-division by
joining the co-ordinates obtained from (iii), by a line plotting

routine ..

The flux plots executed by the above routine are sectionally straight and

truly represent the field solution obtained by first order finite elements. Examples of

such plots will be found in Chapter VI.



118

REFERENCES

[5.1] W.Y.J. Shieh, S.L. Lee and R.A. Parmalee, "Analysis of Plate bending
by triangular elements”, Journal of the Engineering Mechanics Division,
Proc. ASCE, EMS5, p. 1095, October 1968.



119
CHAPTER VI

APPLICATION OF THE METHOD TO ELECTRICAL MACHINES

In order to ascertain the efficacy of the finite element method for solving
practical nonlinear field problems occurring in electrical machinery, three distinct appli-

cations were considered, namely

@ a transformer,
(b) a large turbo-generator and

() a direct current generator.

These machines are representative of the wide range of electrical machines in present day
use and possess all the complexity of geometry, material characteristics and mode of energy
conversion. The diversity that these devices present in‘respect of constructional details
and electrical performance poses an interesting challenge to currently available field so-
lution techniques and, therefore, any new method that endeavours to solve the field
problem efficiently should be of general application and yet be flexible enough to suit

. particular needs. One of the considerations for the choice of these applications besides
the above, is that the computed field solutions could be verified by laboratory experiments

or by factory test results that are readily available.

6.1 The Transformer Problem

‘A three limbed transformer core was assembled out of transformer steel and

a small winding was placed on the central limb as shown in Figure 6.1. A number of
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FIGURE 6.1. LOCATION OF SEARCH COILS IN THE TRANSFORMER CORE, USED

FOR FLUX MEASUREMENTS. THE MAXIMUM DIMENSION OF THE
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small holes were drilled through the core in order to permit insertion of search coils, so
that the flux distribution in the core could be measured directly. The mean magnetisation
curve for this steel was determined by punching a ring sampie out of randomly selected
stampings. Measurements were made with a fluxmeter, eliminating any possible eddy-
current effects by avoidance of alternating current testing, The measured magnetisation

curve is shown in Figure 6.2,

For the finite element analysis, the core and surrounding air space, were
subdivided into triangles in a variety of ways. Figure 6.3 shows gne of the subdivisions
used, wherein the iron and the immediately surrounding air are modelled, with large tri-
angles in the latter where the solution is expected to have little importance. A flux-line
boundary is assumed around the outer edge of the air-space modelled. It has been found,
in fact, that leakage flux at reasonable distances is small enough that such detailed re-
presentation, in the majority of cases, adds little to the analysis, and can occasionally be
ignored altogether without loss of accuracy. Figure 6.4 shows a predicted flux distribution
in the transformer, the external air space not being drawn in. A noteworthy point is that
the flux lines obtained by this method are sectionally straight. As described earlier, this
is a consequence of the linear interpolation of the potential in each triangle in terms of
its vertex values.  The flux plot is deliberately shown withéut any smoothing so as to il -
lustrate the essential characteristics of the first order finite element method. Only one
such distribution is shown, since it is more or less the same for other current values. It
might be added that the leakage flux lines shown crossing the transformer window are nof

equally spaced with the lines shown in the iron, but are additional lines drawn in for ex-

planatory purposes.
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FIGURE 6.3.

SECTIONAL VIEW OF A TRANSFORMER SHOWING
IRREGULAR TRIANGULAR SUBDIVISIONS.
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FIGURE 6.4. PLOT OF THE PREDICTED FLUX DISTRIBUTION IN THE
TRANSFORMER WITH A MAXIMUM FLUX DENSITY OF
1 5Wb/m IN THE CORE AND 2.1 Wb/m AT THE CORNERS.
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A direct comparison of experimental and predicted. results is shown in
Figure 6,5, which shows the fluxes linked by search coils placed in the central limb of
the transformer. These coils were placed in small drilled holes located as indicated by
the heavy dots in Figure 6.6. The agreement is extremely good, particularly in view of
the very considerable degree of saturation at the higher current levels. Figure 6.7
similarly exhibits the predicted and measured fluxes for the search coils in the immediate
vicinity of the corner region of the core, where high local flux densities and rapid varia-
tion in flux density are to be anticipated. Again, the experiment amply justifies the

theoretical treatment.

6.1.2  Determination of the Magnetising Current

In order to indicate the manner in which the calculated flux distribution might
be employed directly for the solution of practical problems, prediction of the magnetising
current waveform for the core at hand was attempted. Although approximate calculations
of this quantity are easily made, accurate prediction requires considerable care. For this

analysis, the following method was used.

Let us suppose that at a particular instant the current density in the trans-
fromer winding has a certain known value J. Using the finite~element technique, the
corresponding magnetic vector potential ¢p mdy be determined everywhere in and around
the transformer, and the total instantaneous stored energy W calculated by using the ex-

pression [2.25, p. 152] Equation 5.37.

w=21 [[[&. Tdxdyd: 6.1
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It will be assumed that the winding terminal e.m.f. is sinusoidal expressed by the

relation
e = E cos wt 6.2)
The total flux linkages A\ for any coil are given by

b s
A= [ edt 6.3)
o

and the coil stored energy may be stated in terms of flux linkages and coil current ‘i as

Ai (6.4)

1
W= 3

Combining Equations (6.1) to (6.4), one obtains

l-Esinc.:i'= J‘IJ‘E.dedydz 6.5)
¢ J ]y dxdy

where the current i is expressed as

i= [[ 1 dxdy 6.6)

In this formulation, it is not required to associate any particular flux lines,
nor any particular fraction of the total flux, with all or part of the total winding. This
point is essential, for as the iron saturates, the flux distribution in the core alters consider-
ably - - for example, the relative amount of leakage flux rises rapidly = = so that one

cannot easily specify what part of the total flux is linked by any one turn. However, the
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integrals in (6.5) are easily evaluated numerically as part of the computer program. By
repeating the solution for various current values, it is possible to find the- correspanding

instantaneous voltages. In this way, the magnetizing current waveform for a given

sinusoidal terminal voltage is constructed easily.

The computed magnetizing current waveshape for one value of terminal
voltage is compared with the characteristic determined experimentally as shown in Figure
6.8. During the tests, care was taken to ensure that no external resistances were in-
<cluded in the primary circuit of the transformer, lest the input voltage waveform should
be distorted and differ appreciably from a sinusoid. A slight discrepancy, most probably
arising from the mean magnetisation curve rather than a true hysteresis loop, is discernible.
However, the correlation of experiment with prediction is very satisfactory. In this
analysis of the transformer, 64 triangles with 51 vertex potentials were used to repre-
sent a quarter section of the transformer, and the initial computer program developed
could produce a complete solution for one value of current density at a cost of $6.00 on
an {BM 360 /75 computer. The later programs using an improved algorithm for a band-

structured coefficient matrix solve the same problem under two dollars per current value.

6.2.1  Evaluation of Turbogenerator Performance

A 30 MW, 2 pole, 3000r.p.m. turbogenerator operating at 11 KV,
0.8 p.f. was chosen for predicting its performance under various conditions by field analy-
sis as described in earlier chapters, since the computed values could be compared with

available factory test results.  As shown in Figure 6.9, the rotor and stator slots are fully
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FIGURE 6.9. SUBDIVISION OF A QUARTER MACHINE CROSS-SECTION
INTO TRIANGLES.
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represented, except for wedge grooves, which could easily be accommodated in the pro-
gram if they are especially required. Only a quarter of the machine is considered owing
to symmetry. The B-H characteristics for the stator and rotor iron are shown in Figure

6.10.

In determining the magnetic field distribution in the machine by finite ele-
ments, the following assumptions are made in addition to those already stated in Chapters

Il and IV for the two-dimensional field problem.

(1)  The individual currents in the straps forming the stator and rotor
conductors are replaced by a uniform current density field over

the cross-section of the armature and field coils.

(2)  The magnetic field outside the machine is assumed negligible and
the machine contour is treated as a line of constant vector potential

(@ flux line).

(3) At no-load and purely reactive loads, the direct axis is also a

line of constant vector potential.

The flux distribution in the turbogenerator is obtained by solving Equation
(3.38) of Chapter Ill, satisfying the aforesaid conditions and the natural boundary condi-
tions implicit in the variational formulation. The result, of course, appears merely as a
listing of the values of vector potential at the various triangle vertices. For further com-
putations, this is entirely sufficient. However, the flux distribution pattern itself is often
thought to be informative for the designer, and it is, therefore, on occasion desirable to

plot it in detail. Figures 6.11 and 6.12 show typical flux plots obtained. It will be
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noted that the total lack of restriction on triangle size and shape has permitted using a
crude approximation in regions where low accuracy is acceptable, while in the region of the

slots and air-gap, where improved accuracy is desired, much smaller triangles have been

used.

6.2.2 No-Load Saturation Curve and Iron Losses

Different values of current density were used in the rotor slots and the vector
potentials were evaluated by the field solution method described above. The flux linkages
¥ of the different stator conductors were calculated using the following relations [2.25,

p. 165, Equation 5-10]

b= fp.dz ©.7)

b= (g -p) -1 LN (6.8)

where i and | are the vertices bounding the individual coils, | the axial length of the
coil and N is the number of turns. The computed and test results of the no load voltage
for different excitation currents are found to agree exceedingly well as shown in Figure
6.13. The iron losses were computed from manufacturer's curves of magnetic induction

B vs. watts loss /kg of the silicon iron stampings and vent plates used for the stator

core. Even here, the agreement between test and computed values is good, as in Figure

6.14,
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6.2,.3 Short-circuit and Zero Power Factor Characteristics

Under these conditions, both armature and field are magnetized along the
direct or pole axis. Further, the armature reaction is entirely demagnetizing, since the
effect of the resistance of its windings is negligibly small for generators such as the 30 MW

unit being analyzed.

The process of computation here is similar to the open-circuit case, except
for the fact that armature as well as the field coils carry current. The computed values

compare well with test results, as shown in Figures 6.15 and 6. 16,

The short circuit ratio (SCR) is a parameter often required in the stability
analysis of machines and power systems, and is used in estimating the reactive volt-ampere

capability of the generator. It is defined as

SCR _ Field current for rated open-circyit voltage
Field current for rated short=circuit current

The value. of SCR obtained from the computed open and short~circuit curves

is 0.829 which agrees well with the test value of 0.827.

6.2.4  Waveform Analysis of the No-Load Voltage

The wave-form of the flux linking the stator slots, Figure 6.17, was analyzed
and the harmonic coefficients were computed by a suitable Fourier analysis program, It was

noted that all even harmonics were practically nonexistent and also the odd harmonics were
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of small magnitude. A comparison of the computed values and test results of wave-form

analysis of the phase-to-neutral voltage of the turboalternator is shown in Table |l.

6.2.5 Evaluation of Sequence Reactances

If the generator is run at rated speed with the field excited to circulate
rated current in the Y - B phases, according to the circuit diagram of Figure 6.18
[see 6.1, pp. 169 = 1707, the negative sequence reactance will be proportional to the
ratio of the line voltage to the current circulating ‘in fi'le sHort-c‘:i.r_cuif phases (see
Appendix V), so that
Xp = Eg/ /3.1 ohms 6.9)

To achieve this condition in the computer program, only the Y - B phase
armature coils are made to carry current and the resulting voltage is computed for any
fixed value of field current. From a plot of armature current against line voltage, the

value of voltage corresponding to rated current is obtained. Then the negative sequence

reactance is given by

_ Line voltage
X3 @.v) = Rated voltage (6.10)

The zero power factor test is carried out as described in Refetence [6.1,
pp. 170 = 173] with the terminal connections of Figure 6.19. The zero sequence re-

actance is then obtained, as shown in the Appendix, from the relation
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Z = E/3.1 ohms 6.11)

its per unit value being

y4 = E/ «/3. Rated volts 6.12)

A comparison of test results and computed values is shown in Table I,

which is good for most practical purposes at the design stage.

In the finite element analysis of the turbogenerator field problem, 273
triangles with 151 values of potentials were used to represent a quarter section of the
machine. The cost of programming of the entire series of tests was aground $60, with a

computation time of less than 10 mirutes on an 1BM 360 /75 computer.

6.3.1 Determination of the Performance Characteristics of a D.C. Generator

For defermining the no-load and on-load characteristics by this method, a
5 KW, 4pole, 1750 r.p.m., 200 - 220 volts , separately excited DC generator

with interpoles and compensating windings was used.

As before, the currents in the individual straps of the main field, interpole
compensating and armature windings are replaced by a uniform current density, and the
outside of the machine yoke is considered a flux line boundary. Since the load charac-
teristics are required as well as the open-circuit performance, it is necessary to represent

the field region over one pole pitch for obtaining a general computer program, although
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TABLE 1.

COMPARISON OF ESTIMATED NEGATIVE AND ZERO

SEQUENCE PERFORMANCE WITH TEST RESULTS

Stator Volts Stator Amps, P. U. Reactance
Type of Test -Com- Test Com~ Test Com-
Test puted puted puted
Negative
Sequence 1760 1740 1968 1968 0.160 0.158
Test
Zero
Sequence 1550 1500 1968 1968 0,0788 0.081
TABLE II.
HARMONIC ANALYSIS OF THE OPEN - CIRCUIT
VOLTAGE WAVE - FORM

Order of the Har- Computed

monic Component Values Test Results

Fundamental 1.03 1.0

Third 0.001595 0.001649

Fifth 0.000268 0.0000535
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for determining the no-load characteristic of the machine, the region over half a pole
pitch would suffice. The triangular sub-divisions used in this analysis are shown in
Figure 6.20. Two different B = H characteristics are used ; one for the main-pole

and armature laminations and another for the remaining iron parts of the machine.

6.3.2 Open-Circuit Characteristics of the DC Generator

The analysis for the no-load case of the DC machine is identical to that of
the turbogenerator, and from the listing of the nodal potentials obtained ; the air-gap flux

is evaluated and the armature voltage is determined using the relation
E = ® Z N volts 6.13)

where ¢ is the flux per pole in webers, Z the number of armature conductors and N

the speed in r.p.s. In the alternative, the method described by Equations (6.7) and

(6.8) of Section 6.2 are used to calculate the flux linkages and the resulting induced
voltage in the machine. A comparison of the predicted values and test results of the no-
load characterisitcs are shown in Figure 6.21, and the correlation is obviously very good
considering the fact that a two dimensional analysis has been used for a finite-length machine
witha L /D ratio of less than unity and the B - H- characteristics have been considered as

single-valued, ignoring hysteresis effects.
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6.3.3 Voltage Regulation On-Load

When a rotfating electrical machine is delivering power to a load, the axes
of symmetry of the magnetic field depart considerably from the polar or interpolar axes
as shown in Figure 6.22, and the latter cannot serve as a flux line boundary for the
field problem. However, for the field pattern sho/n, it will be noted that the potential
at any point is related to that of the corresponding point one pole-pitch away, so that the
two potentials are equal in magnitude but of opposite sign. This is commonly known as
the periodicity condition. The potentials on either side of the origin along the y*' axis
of Figure 6.22 are likewise subject to this additional boundary condition. Using the
periodicity condition, the coefficient matrix is modified and the resuliing set of equations
similar to (3.37) of Chapter lll, are solved to obtain the field solution. The modification
of the coefficient matrix and the forcing function are accomplished by the use of a special

connection matrix as shown in Appendix VI.

From the vector potential solutions obtained for three different values of ex-
citing current and different armature currents, the induced e.m.f. in the armature is
evaluated by either of two methods described for the no-load case. Figure 6.23 shows
the comparison of the voltage regulation obtained by computation with experimental results
on the 5Kw D.C. generator with the main field Winding separately excited. Even here,

the correlation is very good, indicating the validity of the finite element method for solv-
ing practical nonlinear field problems.
In this analysis, the fieid region is subdivided into 490 triangles and 266

nodes and the flux plots obtained for the no-load and full~load conditions are illustra-

ted in Figures 6.24, 6.25 and 6.26. The use of the periodicity condition has
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made a detailed representation of the DC generator and its solution under load condi-
tions possible, which could not be accomplished otherwise in view of the limitation on
storage of large matrices in the computer, However, the band~-width of the modified
coefficient matrix is larger than for the no-load case, since nedes a pole-pitch away are
connected to each other electrically. A careful re -numbering of the triangle vertices in
the first instance leads to a small band-width and economy in storage. This is not always
possible and, perhaps, in future work on the subject a method for compacting band-
structured matrices may be developed as a separate algorithm for effecting further economy
and efficiency in programming. However, despite this limitation in the present analysis,
the cost per solution for each field and armature current value is still far more economical

than any field solution obtained on a simila( problem by currently available finite difference

schemes and others.

6.3.4. Flux Distribution

From the values of flux densities predicted, it is observed that @ much higher
degree of saturation occurs in the rotor body of the turbo-generator and the field of the
D.C. machine than has been assumed in conventional design practice, Consequently the
design constants which are based on an average value of flux density require considerable

modification.
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CHAPTER VII

CONCLUSIONS

A general variational approach has been presented in this thesis for solving
twodimensional nonlinear electromagnetic field problems. The finite element method
has been applied for the first time to electric machines for evaluating their performance

under conditions of magnetic saturation.

The method developed in this analysis consists of deriving the true energy
functional for nonlinear conditions and replacing the continuum problem by a set of finite
triangular elements which represent the geometry and material characteristics of the
medium and define the approximation to the magnetic field in the region. Minimisation
of the enérgy funcﬁonal.by a set of approximate functions thus defined yields the.re-
quired field solution, This process results in a set of nonlinear algebraic equations, which

are solved by a rapidly convergent iterative scheme.

The following conclusions are drawn from the foregoing analysis.

(1) The variational formulation of the field problem yields a general
nonlinear energy functional which satisfies Dirichlet and homo-
geneous Neumann boundary conditions, Since the natural
boundary conditions are implicit in the functional formulation , the
complexity of boundary specifications encountered in divided dif~

ference schemes is entirely avoided.
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The energy functional is not restrcited in any way since the
reciprocal permeability of the medium which causes the non-
linearity is not held fixed, although it is assumed single valued
by neglecting hysteresis effects. Therefore, the Euler equation
is found to be the partial differential equation of the original
field problem. As a result, no approximation is made in formu=

lating the variational expression or in its minimisation.

The finite element representation of the field region including
current sources, inhomogeneities and nonlinearities leads to far
fewer nodes and equations than the finite difference schemes.
Further, the triangular elements can be of arbitrary shape, number

and unrestricted topology.

The set of nonlinear algebraic equations resulting from setting
the first variation of the functional to zero is solved by the

generalised Newton-Raphson scheme, which assures nearly quad-

ratic convergence of the iteration process, starting from an initial

estimate of the solution obtained by the first order chord method.
In this scheme, the convergence of the iterations is not seriously
affected by an arbitrary choice of the initial value of the poten-
tials or reluctivities. From the potential solution obtained, the
magnetic induction is evaluated and from the B - H characteristic
of the medium, the reluctivity is determined. The set of nonlinear

equations is thereby modified in each iterative pass. The linear
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equations in every iteration are solved by direct Gaussian elimi-
nation thus avoiding the slow convergence and instability en-
countered in iterative solution methods common to most finite

difference schemes.

The correct choice of an under-relaxation factor for modifying
the reluctivities or the potentials is not a critical requirement
for the iteration algorithm developed in this analysis. Since

the B - H characteristic is monotonic, a solution is always

assured even starting from an initial potential value of zero.

The use of the periodfcify condition in addition to the natural
boundary conditions for evaluating the load cl"nclracferisfics of
rotating electrical machinery, and the necessary connection
matrix derived for the purpose have permitted the field represen-

tation over one pole pitch only instead of the entire region, with

“the result that large practical magnetic field problems can be solved

without exceeding the limits of computer memory.

A comparison of the computed values and test results of the steady
state characteristics of a transformer, a turbogenerator and a D.C.
generator amply demonstrates the efficacy of the finite element
method and its practical applicability to the determination of field
distribution in electric machines in the presence of magnetic satura~

fion.
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The programs developed to date yield results which are accurate
within limits of experimental errors and are computationally
cheaper thar any of the finite difference schemes of nonlinear

field analysis.

The Contributions of this Thesis can be summarised as follows :

(a)

)

@)

The derivation of a general unrestricted nonlinear energy func-
tional by ‘variational methods for the two dimensional field
problem in electric machines and proof of its minimality at the

solution point..

The application of the first order finite elements. for the dis-

crete representation of electric machines including complex

geometrical shapes of the different regions, current sources and

widely differing material characteristics.

The problem is formulated in such a way as to permit the appli-

cation of the generalised Newton-Raphson method to first order

triangular finite elements.

Derivation of a suitable connection matrix for the periodicity con-
dition used in the evaluation of load performance of rotating

electrical machinery.
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Prediction of the flux distribution and steady state performance
characteristics of a transformer, turbogeneratoriand a direct
current generator by computation, and proof of their accuracy

by comparison with test results.

Development of a general computer algorithm for electric machine
appiication capable of yielding results of the same accuracy as

ecriier numerical methods, but at-a much reduced cost.
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APPENDIX |

SURFACE INTEGRALS IN AREA CO-ORDINATES

We can evaluate surface integrals conveniently in terms of area co-

ordinates ( Reference [3.7, pp. 99 - 100]), which are presented here for completeness.

Consider the triangle ABC divided up into three distinct areas as shown in

Figure A.1.1 A
X5Ye

|

Fox oy

Area of Triangle (1) = ;— . 1 X, Y. = A

[ i 1
1 x y
1 x y
. _ 1 _

Area of Triangle (2) = 5 . 1 X; y' = A2

1 x Y
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] % Y;
. 1
Area of Triangle (3) = 5 - 1 x y = A3
] X Yo
oy
1
so that A= (A] + A2+1A3)=7-. 1 xi yi
1 x Ym

We shall now define certain ratios called ‘area co-ordinates’ ' :i ’ Ci ’

:m as
e - 22
i A
A3
tl = T (A. 1. ])
Al
Z =
m A
Expanding the second of the Equations (A.1.1) and re-arranging one
obtains

A2 _ (xiym-Yixm) + (yi-yi)x+(xm-xi)y

& =2 A (A,1.2)

Reducing the above equation in terms of the geometrical constants

% B xi Y'm T *m y|
b, = YT Y
c = x_=-x
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and so on, one obtains

(c:i + bix + ciy)

g =
! 2A
| (cli+bix+ciy)
e, (A.1.3)
| 2 A
. ) (um+bmx+cmy)
m 2A

The magnitude of these area co-ordinates varies from zero at the sides to a maximum of

unity at the opposite triangle vertices along the altitudes, and they satisfy the relation
E +2 +8 =1 (A.1.4)
i i m

It is, therefore, only necessary to consider two of the area co-ordinates
for any given problem. We shall now evaluate the surface integral of Equation (3.19),

Chapter 111, Section 3.2.2, given by

-1 3

] 1 :
Ijﬂ ) Jaqds= 53 J[ J(°i+bix+CEY)ds (A.1.5)

R i=1 R

Consider an area element defined by the small parallelogram shown shaded

in Figure A.1.2,

The parallelogram elementary area is given by

ds = dg, dl (A.1.6)

99
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FIGURE A.1.2. ELEMENTARY AREA PARALLELOGRAM.
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From trigonometry, it is evident that

a, d Ci
sin@@ = —g7— - A.1.7)
so that the area element is expressed as
ds = a, a, cosec @ d ti d Ci (A.1.8)

The sides of the elementary area parallelogram run parallel to two of the
sides of the triangle and, therefore, ‘it is similar to the parallelogram constructed by the
co?responding sidesof the entire triangle. Also if we bisect the elementary area, it would
yield a small triangle similar to the large one. Thus we can derive the area of the large

triangle as

A = a, d, cosec @ A.1.9)

1
2

since d Ci and d Ci attain a value of unity.



167

The area of the elementary parallelogram can now be written as

ds==2AdCidEi (A.1.10)

Substituting for d's from Equation (A.1.10) in Equation (A.1.5) and

using the value of £: from Equation (A.1.3), the surface integral of E vation (A,1.5)
: ; q g q

becomes

1 1=-8

%foJw“$ﬁ+%ﬁds=2AffJﬁthti (A.1.11)

P o o

where the limits of integration range from zero to a maximum value of (1

- L'i) or unity

as shown.

After performing the double integration in the usual manner, the surface in-

tegral reduces to the value

Q'II IIJ(Oi +bix+ciy) ds=%é_ (A.1.12)
R
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APPENDIX I

COTANGENT IDENTITY FOR TRIANGULAR FINITE ELEMENTS

Let us consider the triangle of Figure A.2-4 ywhose area is denoted by A

and the vertices i, j, k .

v
‘ Ox
¥ — K
FIG: A*2-4
It is evident that
Y Y
Gk = tan ]:-_-_I—,- tan ] :'— (A.2.1)
x, X,
i i
where
-y-l = (yi - Yk) ’ ;.l = (x = xk) (A.202)
Hence _ _
_ -1 Y -1 %
cot Gk = cot(tan = — - tan = —)
X, X,
i i
Ly 7
cot tan _-—' cot tan —_+ 1
x x,
= L L (A.2.3)
_] yl - yi
cot tan — = cof tan

X.
| 1

-1
But cottan Y = , so that

1
Y
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X, X,
L . - + 1
Y: Y;
cot 8 = ——0© (A.2.4)

X, X,
—l- - _I

-~ Yi yl

= 41 11 (A.2.5)
FRARE

which finally becomes after substituting (A.2.2) in Equation (A.2.5) .

(xi - xk) (xi - xk) + (Yi - Yk) (Yi - yk)

cot Ok = (A.2.6)
-2 A
We shall now consider the factor ('E'i E'i + El Ei) which can be expressed as
6igi + <, cl) = ()'i -Yk) ()" 'Yk) + (xk -xi) (xk "xi) (A.2.7)
since bi = yi " Y
and so on
¢, = x - x;
From Equations (A.2.6) and (A.2.7) one obtains
BB +5e) = -28cot @, 1A] . (A.2.8)
2 2
= 2 i=t (e B+ = |fk) (A.2.9)
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Here, as previously, Iik denotes the lengths of the side spanning nodes i -k. The

following further relation can be obtained easily

, 2A“i2.k I2.k
Iik = & _ gp. A
2 A hi |ik
l,
= 2 A. _ik
h,
- ]
= 2 A (cot Qi + cot Ok) (A.2.10)

where hi is the triangle altitude through vertex i. Thus we finally have

E.Fi+cici=-2 Acoka ’ i # i

2 A.2.11)
b, + ;'2 = 2A(coi'9i + cot Gk) .
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APPENDIX il

EVALUATION OF THE CHANGES TO THE DIFFERENTIAL

OF THE FUNCTIONAL DUE TO A LOADED BOUNDARY

%

FIGURE A.3.1. ELEMENT OF A LOADED BOUNDARY.

At a point p as shown in Figure A.3.1, the vector potential is assumed to

be a linear interpolate of o and qas so that

(I
v = @& + o (A.3.1)
P s L
L
Hence r 7 = I [ea + (o -@) L]dl
v q ds A y s L
2 e’ L
= [ ]“"—— —— A-3.2
o0 -57) * 57 Jo (A.3.2)

We can, therefore, evaluate the derivative as



5 A _ qlL
a_mrtjq«pdsJ_T

L
Similarly J. %— a¢2 ds = J ;— a [ws +¢ﬁr -0
o

—i—

S

‘which after some algebra

_ G 2 - a2 L
—§E¢SL+¢SL(¢r w) + (o, -®8) —53

The differential of Equation (A.3.4) is then obtained as
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(A.3.3)

(A.3.4)

(A.3.5)
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APPENDIX IV

THE NEWTON-RAPHSON FORMULATION FOR FIRST ORDER

TRIANGULAR FINITE ELEMENTS

Let us define functions f, g, h such that

_ v Y
F=galB;® +8,e +B o ]-r

_ v _JaA
g = TK[Bii @i + B“ %i + Bim ¢Pm ] -3 (A.4.1)
v _Ja
R LN R e

The partial derivatives of f, g, h are given by

VB, B.. o, dv Bii <pi 3y . B. o Sy

4 A 44 20, 4A°a¢pi 48 2

fo= Bn @ oV v Bii n|| ¢| oV Bim Pm dv
= + + +

! 4 A de. 40 44 20 4 A o
fo= i @ aw Bii " 3_V+ VBim im®m  av

m 4 A 3p 44 I 3p 44 44 do

g =—L + A1 2% i 2y imTm (A.4.2)
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B.. . vV B.. B..a. B. o
g =M L 3%, i, i 3w m'm 23w

| 4 A a¢i 4A 4A a¢i 4 A a'p‘i

N LI dv B“wi dv + uBim + B|m<pm -R7
m L] L]
4A acpm 4 A Bcpm 4 A 4.A e
h = v Bml + Bmi‘p .V Bmi('o'i AV Bmm " v
' 44 44 deo. 42 20; 44 " 3,
B .o, VB . B .o 8
b= mii Qv 4+ o mimi 3V mm dv

I 44 'a¢i 44 448 20 48 " 20,

h = mi i 14 + Bmi i 2_'_ vBmm Bmm‘om oV

4 A awm 4 A a(pm 4 A 4 A dea

Hence fi Aqai + fi A <pi + fm Awm =

as

1 Qv
LN L AN (A.4.3)

e, ' de m
m



The above equation can be recast in the form
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) -
Z f A'P-:_[B /B IB. J’ A”-
[ 4A ! ] im [
A”o
i
| #
1 v dv oV A o |
iy RPN 3 L 0 % g 2 B E I Bl
Ao
|4 ]
- -
R J A
- Z‘E[Bi ! B.,' BimJ A 3 (A.4.4)
®.
i
gdm
Similarly
, -
. A . = ——"[ YR B..' B. A”.
Zgl ¢| 4 A B|| ] {m [
Aqoi +
Ao
b— m—
' ) B o . 2 JBow .2 Ve 2 0 LT
75 - L ii a_cpi’ ji i'ﬁi' ji in =
Ami
Aqam
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o,
i
v J A
= - H[Bﬁ, B“, Bm] . ”i + = (A.4.5)
P —
Afﬂi
Yh do =%l8.,8.,8 1. |ae
A " mi’ "mj’ “mm i
4%
1 VY oV ov
+TT.[ZBm|¢i'§j¢—i,ZBml¢r 'a—¢i, ZBmiﬁin]
vrwi—
v J A
= = z_A[ Bml' i’ Bmmj . ‘Pi + o3 (A.4.6)
Pm

Adding the like elements of the above matrix equations one obtains the complete matrix

equation (4.64) of Chapter IV.

We shall now evaluate the Second Set of matrices on the L.H.S. of Equation

(4.64) of Chapter IV.
v 2 28
) B.o . T, ) B.w .o 7%, (A.4.7)

Substituting for B in terms of the derivatives of ¢ and after some algebra

38 _ 1 zBii*’i

. (A.4.8)
aﬁi 2A t\/(zbi 'pi)2+ (Z ci qai)z
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Similarly
\ s o
B 1 if i
S5 _ A.4.9)
o 28 V()b e)’ s ()c w)
Lo
3B = 1 . m l2 5 (A.4.10)
de. 24 V()b o) +()e ®,)
Therefore
Lo e
Bwa—'i=-—]—-.ZB¢3£. I
"l 3e, 24 " W) b oe) () ¢ om)
(A.4.11)
dv 1 T dv Z'Bii °
ZB o, = ) L0 — . —= 5 = -
1" 2m 24 : 3B W() b.0)" + () c @)

(A.4.12)

By the above procedure all the elements of the second term of Equation (4.64) can be

obtained from which it is seen that

dv dv
) B e 38, ). % ® ve.
(A.4.13)
3 oV
2B _a: T L i oo
i
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APPENDIX V

EXPRESSIONS FOR THE NEGATIVE AND ZERO SEQUENCE

REACTANCES OF A TURBOGENERATOR

Zero Sequence Reactance

If the three phase windings of a generatfor are connected in series and a
single phase voltage E is impressed across the windings, as in Figure 6.18, while the

rotor is unexcited and stationary, then the following relations hold ;

= hZ v 1,2, + 157, (A.5.1)
E = 2IZ +al,Z, + 1.2 (A.5.2)
2 ~ T hagtrtabhL + 17 )
E = L Z, + 2IZ + 1. Z A.5.3
3 T ahg ralyZy)+ 17, (A.5.3)

where ly + Iy and lg are sequence components of current and Z,, Z, and Z, the

sequence reactances ; a = -0,5 + | 0.366

Adding (A.5.1), (A.5.2) and (A.5.3), there is obtained

E] + E2 + E3 = E = 3 l0 ZO (A.5.4)

Also
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lR = II + 12 + l0
| = o Iy +al, + 1 A.5.5)
y = 9o al, 0 (A.5.
2
lB = a Il + a l2 + '0
Since lR = IY = 'B' there results from (A.5.5)
L+ 1, + |
_ R Y B _

Substituting for l0 from (A.5.6) in (A.5.4) one obtains
Z, = E /3.1 4 (A.5.7)

In order to perform the field analysis for predicting the results of the above
test, it is necessary to-convert all electrical quantities of the circuit of Figure 6.1€ based
on a voltage source to that of an equivalent current source. The criterion of equivalence

of the above two circuits is that the voltage must be the same in both cases. |t is evident,

. therefore, that

1'Z2/3 ’ (A.5.8)

m
|

= 312 (A.5.9)
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From equations (A.5.8) and (A.5.9), the two currents are related by
1 = 1'/9 (A.5.10)

If the new current is impressed on the stator in the present field analysis, then
the correct flux will be obtained from which the required voltage can be evaluated. Using

Equation (A.5.7), one can then compute ZO .

Negative Sequence Reactance

Using Equations (A.5.1) to (A.5.3) and the additional relations applicable

to the circuit of Figure 6.17,

I, = -1 (A.5.11)

i = 0 | (A.5.12)

one obtains the expression for the negative sequence reactance, after some algebra, as

X, = E/ /3.1 (A.5.13)

If now the circuit with the voltage source is converted to that of a current

source as before for the field problem, it is found that the equivalent current to be impressed
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is given by

I = 21'/9 (A.5.14)

The negative sequence reactance can then be computed by using Equation

(A.5.13),
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APPENDIX VI

PERIODICITY CONDITION FOR ROTATING ELECTRICAL MACHINERY

1. Invariance of Energy and Formulation of the Connection Matrix
- for Symmetry Conditions

Let us for example consider a 2 pole DC machine as in Figure A.6.1(a)

operating on no-load.

FIGURE A.6.1 (o) FIGURE A.6.1 (b)

The shaded region alone need be considered owing to the symmetry of the problem, and in
view of the fact that no even harmonics are generated by rotating machines. This region is
now divided up into a number of triangles as shown in Figure A.6.1(). For simplicity we

shall consider only two triangles as in Figure A.6.2 .



2 4
FIGURE A.6.2.
The individual triangular coefficient matrices will be
S Si2 513 S22 Sz Sy
] ] ]
S Sy 523 and 2 S Sy
531 2 533 2 Sz Su
Also the potential matrices and forcing functions will be respectively
— - — = — — —_— -
@, @, J, 8/3 J, 8/3
@, . ®, and J2 A/3 ; J3 A/3
®, 0, J3 A/3 s A/3
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(A.6.1)

(A.6.2)
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It is now required to form the total S matrix and the vectors of potentials
and forcing functions. If the total potential vector for the connected triangles is re-
presented by .@' and the sum of the individual potential vectors for the unconnected
triangles by @, then the following relations hold, where C is the connection matrix

(6.2, p. 206, Eq. B) ] .

@ = C.ao (A.6.3)
or o 1 2 3 4 .

o, 111 o 0 0 o

®, 21}0 1 ] O 0 0,

ey | 3]0 [0 1 o |’ ®, (A.6.4)

o, 2 lo |1 o |o L? 4

@, 3lo|o 1 0 -

_Ep4- 410 0 0 1

Note that the connection matrix has entries 1 or 0 depending on whether

or not a node is connected to another.

Similarly the forcing functions are also related. If F" and F correspond

to the total connectedand the sum of the individual unconnected vectors respectively, then

F* = C..F (A.6.5)



or 0

| F4_
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(A.6.6)

_ Now since the energy in the magnetic field-or in a conservatice system is

invariant with respect to the method of evaluating the energy [6.3, pp. 30 - 341, the

sum of the energies calculated one triangle at a time will be the same as the energy of the

entire field calculated dll at once.

Therefore, if we define the sum of the jndividual

energy densities as J . ® and the total energy density as J" . &', we have the following

relation,

grands are equal.

or

errfJ,go du

1w

so that the inte-

The left hand side of Equation (A.6.6) can be rewritten as

(A.6.7)

(A.6.8)



or

Further

Fll

Here S is the block diagonal matrix

[c.,.5.C.]. 0"

T

= S", ¢

Sl J S12 13
S1 | S22 523 )
R 533
22 523 S'24
S32 S'a3 Sy
Sa2 S43 S44
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(A.6.9)

(A.6.10)

(A.6.11)

(A.6.12)
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2, Load Analysis and Periodicity Condition

FIGURE A.6.3. LOADED DC MACHINE.

For the on load condition of the DC generator, the field pattern will be
as shown in Figure A.6.3. [t is seen that the pole axis is no longer the axis of symmetry

and-cannot serve as a flux line boundary. Therefore the periodicity condition will have

to be used in solving the problem.

If we now consider the 2 triangle problem in the illustration as in Figure
(A.6.2) and assume that the nodes 1 and 4 lie on either side of the origin along yy',

i.e., they are 180° (electrical degrees) away, the potential vector can be written as

o' = @, (A.6.14)

which is obtained from the vector of the primitives based on the relation
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0 = C. e or

qa] 1 0 0 :ﬁ]—

o, 0 1 o| [e,

o, | =] 0o |o 1] e, | (A.6.15)
"’2 0 1 0

2, o |o 1
-o;aI -1 0 0

It may be noted that in Equation (A.6.15) above, the connection matrix
C has been altered so that the problemnow reduces to one of determining only @, )

B, which are the three independent unknown variables.

Using the relation of Equation (A.6.15) and the new connection matrix,

we have
s.. Is.. |s 1100
o ToTo o 15 111214
sv= ol 1 ]lofl1}o]o So1 1322 152 ojtrfo
ololilol 1 1]o S1 | 532 | 524 olols
[ [}
[ [} []
sy |Sas | sadlo o]
sl Sia | S| 1] 0 0

(A.6.16)




which reduces to

Sll =

FIGURE A.6.4.

S 512 513
0 -1 Sa1 S22 S23:
] 0
S31 S32 333
0 0
-Q! Q! ]
S24 | S22 23
=Q! ' 1
Su | S S33
Su | S S43
S " | Sz T S
= Sp4 * Sy S03 + 533
- 534 + 532 533 + 553

which can be split up as
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(A.6.1

(A.6.1¢



QN =

terms of the rows and columns involving the point for which the periodicity condition

Sno | S 13
So1 | 322 393
531 | S 333

Su | Sa =543
=S | S 93
- cl. ' '

Sy | S S'33
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(A.6.19)

It is apparent that the sub-matrix for triangle 2 is modified such that the

applies, are changed in sign excepting the diagonal term,

The forcing function has to be likewise modified so that

-F'

]
F, + F

F, + R

3

(A.6.20)
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