ABSTRACT

V. Byers. Non-Archimedian Norms and Bounds. Department of

Mathematics. Ph.D,. Thesis.

This thesis deals primarily with matrix norms. The preliminary
general treatment iz largely confined to non-Archimedian norms, i.e.,
norms which satisfy the strong triangle inequality. It includes the
establishment of a corregpondence between a class of such norms and
certain submodules of a vector space over a non-Archimedian field as
well as a discusslon of the propertles of bounds (special norms on
spaces of linear transformations) and of unit spheres in normed
spaces and algebras. Iinite dimensional vector spaces over an
arbitrary valuated field are considered next. Duality is discussed
and a new necessary and sufficient condition fdr a matrix norm to be
a bound established as well as a relatlon between non-Archimedian
matrix norms and the "natural" bound. There follow results concerning
"ég ~unitary" matrix groups, spectral radii, convergence, and methods

of successive approximation over the field of p-adic numbers.
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§ 0, Introduction

Non-Archimedian normed spaces have been studied by I,S. Cohen,
I. Fleischer, A.F. Monna, J.~P. Serre, T.A. Springer and others. The
concept of K-convexity which leads to the investigation of R~submodules of
a vector space over a non-Archimedian valuated field is due to A.F. Monna
([18]). This concept is employed by J. van Tiel for the study of certain
topologlcal spaces In a dissertation which also contains a summary of
previous work ([297).

The study of matrix norms has a fairly long history but non-
Archimedian matrix norms do not appear to have been considered. The
association of norms with convex bodies has been gystematically exploited
by A.S. Householder (see [9]). Ju.7. Ljubié in [13] established a
necessary and sufficient condition for a matrix norm to be a bound. The
first systematic treatment of the use of norms in convergence proofs of
numerical analysis was given by V.N. Fadeeva in [7].

Chapter I of the present thesls contains a general treatment
of norms, mainly non-Archimedian. In §1 we prove the existence of a
cannonical pseudonorm on a quotient module of a pseudonormed module over
a valuated ring. In §2 with the help of an algebraic definition of
boundedness we establish an association between a class of non-Archimedian
norms on a vector space E over a non-Archimedian field and certain R-
submodules of E. In §3 we prove that the open unit gsphere of a complete
non-Archimedian algebra A is an ideal contained in the Jacobson radical
of the closed unit sphere of A with resultant effects on convergence and
invertibility,

Chapter 2 deals with finite dimensional vector spaces over a valuated

field X and particularly with K™ and Kh, In §) we show that, although
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duality in such a space need not be an involutory relation, the dual
norm has useful properties. In particular, we obtain a new proof of
Ljubi;’s theorem. We investigate the properties of the matural norm
and bound for a non-Archimedian K. We prove an inequality satlsfled
by non-Archimedian matrix norms and establish a necessary and sufficient
condition for such a norm being a natural bound. In § 5 we consider
duality for norms determined by R—~submodules of Km and prove a new
necessary and sufficient condition for a matrix norm over a valuated
field to be a bound. We also investigate the relatlon between non-
Archimedian bounds and spectral radii and use the concept of an fg -
unitary matrix to establish the non-singularity of a class of matrices
over a non-Archimedian field as well as certain properties of thelr
inverses and spectra. § 6 contains estimates for the rate of
convergence of certain ilteratlve processes over a non-Archimedian
field and examples of the use of methods of successive approximation
for the solution of systems of linear equations and for the inversion
of matrices over the field of p-adic numbers.

We shall use the following notation:

Implication will be denoted by = . @ will stand for the
empty set. N, Z , Z-7, IR , IR *, ana € will denote the
natural numbers, the integers, non-negative integers, the reals, non-
negative reals, and the complex numbers respectively. For sets A and
B, A ¢ B will mean x € A » x € B,

A1l rings and algebras will contain the identity usually
denoted by 1 and all modules will be unital. If R is a ring
@R = {(a;) l a; € R} will stand for the restricted external direct sum
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of a number of copies of Ry when thils number is countable ®R will be
the R-module of sequences in R with a finite number of non-zero terms.

Km and Kﬁ will denote respectively the space of m-dimensional
column vectors and the algebra of m x m matrices over the field K. If

X, y € Km, A € K, then

X = gl » y = Yzl and -A. = (a(ij) = 0<11 ) a(lm

o "m

odn «-mm
The transpoge of a vector x or a matrix A will be denoted by x’ and A’
regpectively. Thus x’y will be the scalar product of x and y while xy’

will be a matrix cf rank < 1., I will stand for the ldentity matrix and

e; for the i’th column of I.



CHAPTER I

Non-Archimedian Normed Spaces

§ 1. Normed and Pseudonormed Modules.

A valuation on a ring D is a function a - [a| from D to ”?+
which satisfles the following conditions: |
(1) |Ja] =0 & a=o0,
(2) lab] = |a} |b| for all a, b€ D,
(3) la+b| <]a| +|b] foralla, beD .
A valuation defineé a topology on D under which D is a topological ring

([11], p.329). The couple (D, [ |) is called a valuated ring. Since ”Q

is a field, a valuated ring cannot have any divisors of zero (ibid, p.29lL).
A valuation is said to be non-Archimedian if, ingtead of the
triangle inequality (3), it satisfies the stronger condition:
(3*) |la + v| <max (|a], [b]) for all a, b € D.
If D is a nonaAfchimédian valuated ring, then
R={a€eD]| |a] <1}

is a subring of D called the valuatlon ring of D, The set

P={ach l ]a, < 1}

is a prime ideal of R called the valuation ideal,

If D is a valuated ring and M a torsion-free D-module, a norm
may be defined on D entirely amalogous to a norm on a vector space over
a valuated field (see [4], p.65). The resultant definition of a module

norm must be distinguished from the one used by Monna and Springer (see

[22]3 Po613)°



Definition
Let D be a valuated ring and M a torsion-free D-module. A
norm on M is a function x - |jx| from M tolR* which satisfies the

following conditions:
(1) I« =0 & x=0,
(2) [Ixxl| = |A] |} for all A €D, x € M,

(3) llx + vl < i liyll £or a11 x, y € M .

The couple (M, || ||) is a normed module which is said so be non-Archimedian

if || || satisfies the strong triangle inequality:
(37) I + ¥l <max (fl=fl, lIyll) for all x, y € u .

A valuated ring D may be regarded as a normed D-module. If M
is a normed D-module and C is a subring of D then every submodule of M
is a normed C-module ([2], p.L9) under the norm defined on M,

Since for A, } €D, O0fxeM, A < = [adl < |Mx| ,
a non-Archimedian norm on M implies a non-Archimedian valuation on D
(cf [15], p.1046), but the converse statement is false. In this comnection
Monna considered the spaces of sequences (')\i), A€ K , K a non-Archimedian
valuated field, for which the series Z l7\1|p is convergent (see [16],

=1
p.1B0). We prove a general result:

Theorem 1,1

If D ig a valvated ring and M a free D-module, then each
monetonic norm on @® lR determines a norm on M,

Proof':

Lyt

Note first that M is torsion-free ([12], p.13hL).

Establish a partial order on @ [R by setting x <y if f: < e

for all i, where x=(§\i), vy=(1) € @ IR,
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A nomm on @ IR is monotonic if x| < |yl = = <l¥l,
where |x| = <|§i I )s Igil denoting the ordinary ébsolute value on IR,

It -[t,ti } ig a bagis for M define a map

M > @lR
ox=) g fxl = (), A eD .
We have |x| =0 <« x=0,

]xxl = |\l |x| forall A €D, x€elM,

|x + y| < |x|>+ ly| for all x, y € M.

Define ||| = || IXI_ |

Then || || 1s a norm on M,

Corollary 1.
If D is a valuated ring, then for 1 <p <

1
P fod
oI = () hl” P
is a norm on ®D , which may be called a HBlder norm,

Corollary 2,

[ttt LSS

A Hblder norm on a free D-module whose dimension is greater
than 1 igs non-Archimedian if and only if the wvaluation on D is non-

Archimedian and p =« .

Remarks

1. More generally, if M is a free D-module with basis {ui} then

“'Z?‘i uiH = max |nq| [hoyll, where {lly I} is an arbitrary set of
positive reals, is a norm on M, which is non-Archimedian if and only if

the valuation on D is non-Archimedian,

2. The proof of theorem 1.1 will apply to the subspaces of K

discussed by Monna.
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3. If ea’fe is ordered lexicogréphically, the function x - |x|
becomes a non-real-valued norm on the free D-module M. This norm will
be non-Archimedian if the valuation on D is non-Archimedian.

The requirement that a norﬁed module be torsion-free ceases to
be necessary if condition (2) in the definition of a norm is replaced

by a sultable weaker condition. In particular, we have the following

(cf [22], p.613):

Definition
Let D be a valvated ring and M an arbitrary D-module. A
non-Archimedian pseudonorm on D 1is a function x - Il from D o IR*
which satisfies the following conditions:
(1) |« =0 & x=0,
(27) x| < |Al x| for a1l A €D, xecM,
(3%) Ibx + yll < max ([}, lyll) for all x, y e .
We obgerve that a non-Archimedian pseudonofm on M does not
imply a non-Archimedian valuation én D.
4 pseudonorm on a vector space E over a field with a non-
trivial valuation (see § 2) is KBthe’s "I -~ norm" (see [10], p.167)
under which E is a topological vector suace (cf [20], p.357). In the

general cagse, a non-Archimedian pseudonorm on M defines a non-Archimedian

metric d(x,y) = ||x = y]| under which M is at least a topological group.
Certain properties of non-Archimedian valuated fields and
normed vector spaces are the direct consequences of the strong triangle
inequality and the resulting non-Archimedian metric. These will hold
for non-Archimedian pseudonormed D-modules (see [2L], p.763 [20], p.353).

In the list below we assume in item 7 that the valuation on D is non-

Archimedian,
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1. It follows from the strong triangle inequality that x, y € M
with | > llyll = llx 2y, = =] ([2L1, p.73; [20], p.353).

2. Hence, x »x#0 » 3n € N such that || =[x for
n>n_ ([15], p.1015; [20], p.353).

3, If Z x, converges, then || Z x, || < max x4 ([81, p.165).
n=1 n=1
A
o  Tor every M there exists a completion M ([L], p.68) such
that W

M
for the extension of || || to M ([1L], p.d1).

= Wﬁ, where WM = { ”X” h 0 % X EM} and Wﬁ has a simllar meaning

5. If M ig complete, then the series x, couverges T and

~1s

o]
i
-t

0 ([2L], ».75).

i

only if 1im x
n-+eo I

6, Tor a € M and real L > 0 the setsa {x € M h ”x - a” <sp},

xeM| [x - all <:/o} are called respectively the closed and open spheres

with ceﬁter a and radius /0 . However, all spheres are both open and
closed in the topology determined by the mseudonorm. Further, each point
of a sphere is its center and two spheres are either disjoint or one is
contained in the other ([2l4], p.7h).

T If R is the valuation ring of D, a sphere S ¢ M is an R-sub-

module of M if and only if O € S (cf [18], p.532).

Remark

The R-submodules of a wvector space E over a non-Archimedian
valuated field K are precisely those non-empty sets in E which Monna

described as having property C and von Tiel calls K-convex (see [29],p.253).
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The "K-convex null of a set S ¢ E" (p.25L) is simply the R-gubmodule of
E generated by S. Monna called K-convex sets of the form X, * S, where
S has property C and x, is a fixed vector in E ([18], p.532).

If N is a closed subspace of a vector space E. over the real
or complex field it is known that an F-norm of E determines an F-norm on
the quotient space E/N (see [10], p.167). We prove an analogous result |

for non-Archimedian pseudonormed moduleg.

Theorem 1.2
Let D be a valuated ring, M a non-Archimedian pseudonormed
D-module, and N a closed submodule of M, Then

| x + ]| =inf [x + n
néeN

defines a non-Archimedian pseudonorm on the quotient module M/N. If M is
complete so is M/N.

Proof':

We verify the three properties of a non-Archimedian pseudonorm.
(1) follows from the fact that N is closed (see [27], p.213).
(27) We note that for all A € D N c N. Hence

IMx+M) [ =+ W = nf [[ax+nf <inf || &+ anf=
neN neN

IEER
(3*) Let [x + M| > [y + ™

, °
Then Yn €N 3 n” €N such that [|x + nf = |ly + n.

Hence, [|x + n +y + n’]| < [lx + n]| so that

[+ M) + (r + W) = flx + 5y + N = inf [x+y+n =
n’eN

inf [lx+n+y +n’| < inf [x+n)| =]x+N
neN nelN

o

TFor proof of the last assertion see [27].



Corollary 1.

If M is a non-Archimedian pseudonormed D-module, R the
valuation ring of D, and S a sphere in M, O c S, then
ISl =0, = + sl = llxll, x¢s,

i1s a non-Archimedian pseudonorm on the R-module M/s.

C orollagz 2o

If E is a non-Archimedian normed vector space over a
valuated field K and N is a closed subspace of E, then

l= + M| = dnf Jlx +
nen

defines a non-Archimedian norm on the quotient space E/N.

Remarks
1. An Archimedian pseudonorm on I also induces a pseudonorm on M/N,

which may be non-Archimedian,

2. Corollary 2 is false for normed modules.

Examgle

Congider Z as a normed Z ~module under ordinary absolute value
or diadic valuation,
2Z is a closed submodule of Z o In fact, in the latter case
2Z 1s a sphere in Z_ centered at the origin., In elther case the
induced pseudonorm on Z /27 1s given by
ol =0 [T]=1.
| || is a non-Archimedian valuation on the field K = 4 /24 and

hence a non-Archimedian norm on the vector space K over K. But ” ” is not
a norm on the Z ~module Z/QZZ_ , for

l2 <3 =fo | =o<]2 1] £o.



§ 2. Non-Archimedian Norms and R—submodules of a Vector Space.

Let K be a non-Archimedian valuated field. Then K is the
field of quotients of its valuation ring R = {« € K | |«| <1}, while
the valuation ideal P = {x € K | |« <1} is a unique maximal ideal of
R. The set -

U={c€eK]| J«gf =1}

is the group of units of R, usually called the group of unita of K, and

K = R/P
ig a field, called the residue field of X ([8], p.81).

The set
We = {]«] | 0/4«<eK}

ig a mulbiplicative group, called the value group of XK. Moreover, for

real e > 1 the map |.,<| - —1oge [4] is an isomorphism of WK onto a sub-~
group of ([R s +)e Aécordingly, the valuation on K is called triyvial

if WK = {1}, dense if Wy 1s everywhere dense in IR +, and discrete in the
remaining casge, i.e., if WK is discrete in IR+ . {0} or, equivalently,
if 0 ig the only limit point of Wie The valuation on X is discrete if

and only if there exists = € K such that |n| = max [« ([25], p.9).
. 4€P

Then W, is the infinite cyclic group {ln[ii | 1 eZ }. In fact, if
0#« €K, then « = Vz/ni, n €U, i€ Z , so that n is a prime element
of R ([14], p.107).

The topology of K is discrete if and only 1f its valuation
is trivial ([L4], p.62). Tor a fleld with a non-trivial valuation to be
locally compact 1t is necessary and sufficient that it be complete with

respect to a discrete valuation and have a finite residue field ([29,p.251).



Let E be a non-Archimedian normed vector space over K.

The unit sphere in E is the R-module
S={xek| [x] <1}.
W= (x| 0 fx € B
will be called the value set of the norm on E,
It may happen that WE c Wk and even WE = Wk. This 19 the
case, for example, with the norm || ||~ on @ K defined by
”(‘41)”(» = max I"‘i, s («4g) € @K,
If Wy c W then Vx € E x =4x,, <€K, lx,ll = 1, so that the norm is
completely determined by the set {x € E | [x]| = 1} (ef [15], p.10L5).
On the other hand, every non-Archimedian normed space

contains a set of non-zero vectors {x;} such that Willxg| n Wk”xj” = f)

for 1 # j. The strong triangle inequality gives

lli;_§LXi [ =1Za§c<n” S;Xills éj_ € K,

go that {x4} 1s an orthogonal family of vectors (see [22], p.603). It is

clear that every orthogonal family is linearly independent. If such a

family forms a bagls for E, then Wy = t; WKHxi . In particular, if the

valuation on X is trivial, then |lusll # Jlusl for 1 # J on a basis {u.}
Al 3 r 1

for B implies that

n
1) <oy = mex gl % € X

1=1

WE does not possess properties comparable to the trichotomy

for Wk. We shall say that a norm on E is dense or discrete if Wﬁ is

respectively denge in ”? T or discrete in ”? . {0} (Monna and Springer
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in [22], p.606, adopt a more general definition of a discrete norm).
A denge valuation on K implies a dense norm on E, so that a discrete
norm on L implies a discrete valuation on X whenever it is known that
the latter is non-trivial ([15], p.1049). The converse’statements
hold if E is finite dimensional. |

When E 1s finite dimenslonal, E is complete with respect
to its norm if K is complete with respect to its valuation ([1], p.98)
but this implication is not true in general. Nor does completeness of
E imply completeness of K. However, when E is complete the scalar
multiplication in E over K may be extended to scalar multiplication in
the normed space E over ﬁ, where & is the completion of K ([15], p.l05L).

If both K and E are complete, then E is known as a non-Archimedian

Banach space.

When the valuation on K is non-trivial, the unit sphere
in E is compact or, equivalently, E is locally compact if and only if
K is locally compact and E 1s finite dimensional ([15], pp.LlOL8-1053;
(5], p.695), implying a complete and discrete valuation on K.

Let E be a vector space over a field K with a non-trivial
non-Archimedian valuation. Monna ([18]) investigated the relationship
between K-convex subsets of E and non-Archimedian seminorms on E, l.e.,
real valued functions p such that p(ax) = |Alp(x) and p(x + y) <
max (p(x), p(y)) for all x, y € E, A € K. TFor this purpose he chose
a definition of a K-convex body in E independent of the topology on E
(see [20], p.357). He also proved Kolmogorov?s Criterion for non-

Archimedian normed spaces (ibid, p.360). Here, however, he adopted
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a topological definition of boundedness (p.353). We shall establish

a relation between non-Archimedian norms and R-submodules of E using

algebraic concepts only,
For the remainder of this section (with the exception of

the last two paragraphs) K will denote a fileld with a non~trivial non-
Archimedian valuation and E a vector space over K which may or may not

be normed. We shall need the following result of Monna’s:

Lemma 2.1

Let S be an R-submodule of E. Then for «, B € K with
<] =|B] «S is an R~submodule of E and «S= «S+ BS. Conversely,
0€S and «S=«S+ pS for <, B €K with |« > |B] imply that

S is an H-~submodule of E,

Proof':

See [20], p. 35k.

Definition

A get S c E is said to be equilibrated if Ax € S for

all Xx € S, N € Ry i.6., if A €R = AS c S.

Lemma, 2,2

S ¢ E is equilibrated if and only if for «£, B € K

with |«| = [B]. (<« +B)S < «S.

Proof s
ILet S be equilibrated and x € S,

Then (£ + B)x = (1 + £ B)x with |1 + £18] < max (1, |<8]) = 1.
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Hence (1 + «*B)x € S and inclusion follows.

Conversely, lét A€ R.
Put s=2A ~ 1 so that I~ < |1].
Therefore AS = (1 +/M)S c 1.8 = 8.
Definition
A set S ¢ E is abgorbant if for each x € E there exists a real
« > 0 guch that x € AS for all A € K with [A] > «.
Lemma 2.3
If S is an R-submodule of E, then the following statements are
equivalent:
(é) S is absorbant.
(b) Tor each x € E there exists 0 #/u € K such that x E/MS.
(c) S contains a basis for E.

Proof:

ettt

(a) < (b). See [3], p.6, remembering that S is an equilibrated set.

(a) = (c) because an absorbant set in E generates E (ibid., p.7).

n
(¢) = (b). Let {u;} c S be a bagig for E, x = 3 «yuy € E, and
1=1
l4] = max |<4].
- l<i<n

If || = 0, then «; = O for all i, and x € S = 1.5,
If || # 0, then ) # 0 and x = Ak(igixk"¥xiui)e We have
|~tui| <1 for all 1, X txuy € S, and x € ;ks, |
Cordllary |
An R-submodule of I which contains an absorbant submodule is
itself absorbant.
Definition

We shall say that a set S ¢ E is bounded if for each O #x €L
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there exilsts a real « > 0 such that Ax ¢ 8 for all A € K with |A| > «.
Clearly every subset of a bounded set 1s bounded. fufther,
boundedness wlth respect to any norm on E (possibly Archimedian) implies
boundedness In the above gense (but not conversely; see example on p.ll).
Lemma 2.l
Let E be a non-Archimedian normed space over K and S a sphere

In E centered at the origin. Then S is an absorbant and bounded R-sub—

module of E,
Clear.
Corollary

Every R-submodule of E which is contained in a sphere and
contains a sphere centered at the origin 1s absorbant and bounded.
When a normed space E 1s infinite dimensional an absorbant and
bounded R-submodule of E need not be contained in a sphere, i.e., it may
be unbounded with respect to the norm on E. Nor does it have to contain a

sphere. In fact, its interior may be empty.
Example (cf [29], p.25l).

Let E = @K be the space of sequences in K with a finite number
of non-zerc terms. If the valuation on X is dense choose(ﬁ € K such that
Ip] > 1; 1f the valuation is discrete put p = n~*. Then
| 5, ={(«0) € B [ |yl < Jpl®, 2 €N} ana

5o ={(«a) € B | [<g] <ol 1en}

are absorbant and bounded R;submodulés.éf E. But S; is unbounded and S, has
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an empty interior with respect to the topology defined on E by the non-
Archimedian noxm [|(<; ) = max [«].
(%} 1 ' ‘

Theorem 2,1

Let E be a vector space over K and S an absorbant and bounded
R-gubmodule of E. Define || [[g on E by [x|g = infs |A| for all x € E. Then:

(a) |l llg is 2 non-Archimedian norm on E.e M

(b) {xeE | fxlg<1}cSci{xer| [xlg <1l

(¢) If the valuation on K is discrete, then Wp ¢ Wy and
S={xek | [xl|g<1}

(a) The first norm property (§1, p.2) is an lmmediate consequence
of the boundedness of S. The second property is evident. It remains to
prove the strong triangle inequality.

Let x, y € E with [|x|g > Il7llg.

Then for all A € K with x € AS there exists/ﬂke K with y E/WS
and |A| = v%l.

o .Ndw, X +y €AS +/MS = AS by lemma 2.1,

S0 |lx + yllg < Ixllg = max (=g, Iyls) (et [18], p 53h).

(b) Since || [|g 18 a seminorm, see [18], p 535,

(¢c) The first result follows from the propertles of Wk, for the
gecond, see [29], p 256,

An Archimedian norm on E cannot be defined in the above manner
by any subset of E. For, if S is to define a norm on E, we should have at
leasbs

(1) 8 is equilibrated.

(ii) (4 + B)S = «S + BS for all «, B € K.
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The first condition glves for |[<| > |B|
(£ + B)S c xS c S+ BS,

while the second forces equalibty. Hence S 1g an R-module in B so that
any norm defined by S will be non-Archimedian,

Every non-Archimedian norm on a vector space E over K
determines a unit sphere which is an absorbant and bounded R—~gubmodule
of E. Conversely, every absorbant and bounded R-submodule S of E defines
a non-Archimedian norm || ”S on E. Turther, if the valuation on K is
discrete, then S is the unit sphere for || ”S' It does not follow, however,
that if S is the unit sphere for a non-Archimedian norm || | on E then ”x”s=
%] for all x € E. In fact, we already know that this cannot happen in
the discrete case unless the value set of the norm on E is contained in the
value group of K. The actual state of affalrs resembles closely the

situation described by Momna for seminorms (see [18], p.531).

Lemma 2.5
Let || || be a non-Archimedian norm on E, S the corresponding
unit sphere, and || ”S the norm on E determined by S. Then:
(a) If the valuation of K is dense, ||x|| = HxHS V x € E.
(b) If the valuation of K is discrete, ,n] ”x”s < Idl < ”x”s, X € E,
(c) In the discrete case |[x]| = ”x”s v i € E if and only if the

value set of H ” is contained in the value group of K.

Proof':
We have for x € B, A € K

Il < [l < xens sothat ] < inf 2] = [ld],.
XENS
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If the valuation of X 1s dense,
= < [lxl. = 3 # € X such that |[x] < [u] < 4nf |2].
S /W /llL XENS

Then x E/ﬂbS and x ﬁ//ASL Hence (a).
If the valuation of X 1lg discrete,

inf |A] = ’ﬂ]n for some n € 2.
X ENS

1e x| < [x|™7F , then x € n®*s with [ < ine |2,
. X €NS

which is a contradiction. Thus
n+1 n
In]" " < [l < |n]

and both (b) and (c) follow immediately.

Remark

Instead of the unit sphere the open sphere So = {x €E| [ld <1}
may be used to establish the norm || ”S on & (cf [18], p.530). We then
o .

have:

(a=) x| = ”x”s V x € E, if the valuation of K is dense.
(b’) |n] ”x”s < % < ”x”s s 1f the valuation of K is discrete.
) o)
(c’) In the latter case, W_cW <« |n| [x. =1.
E X Sq
We recall that two norms || || and || || on a vector space E are
gsaid to be equivalent 1f there exist two pogitive reals a and b such that

allxly <|lxll, <vlf«dly v x =L,

Lemma 2.6

Let || ||, and || | be a norm on E determined by the absorbant
and bounded R-submoduleg S; and S5 of B such that S; ¢ «£5; , £« € XK. Then

Idl, < 1< lIxfl., v x € E,
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f”) Proof's
- We have
X €Ny >XE NSy AEK,
Hence
lxlle = inf |4 < dnf [M| = |«| dnf o] = [<] [x];.
ngAsz- . XEMAS5 . - . XEAS, - - .
Corollarz

Sy € £S5 c.PSy, BE€ K= | [l and || ||; are equivalent.

Theorem 2.2

Let || || be a non-Archimedian norm on E and M an R-gubmadule

of E such that {x € E | [lx] <1} cMc {x€E| ||z <1}. Then¥M
| In fact, if the

determines a non-Archimedian norm on T equivalént to |[
valuation on X is dense, [[x[l, = [x]] for all x € E; if the valuation of X
is discrete, then vx € B [n|[x[l; < =] < ”xHM.

Proof:

The given inclusion relation implies that M is absorbant and
bounded so that || ”M is a non-Archimedian norm on E.

Thus the equality in the dense cage and the inequality in the
discrete case follows from Monna’s results (see [18], p 537).
Remarks
1. Equivalence in both cases may also be proved as follows:

With the notation of lemma 2.5 and the remark which follows
1t, we have/A&S c Sy LM] < 1, In the case of discrete valuation and
S = S, when the valuafién on K ig discrete. Thus, the given inclusion
and the corollary to lemma 2.6 imply that || [y is equivalent to || s
which is equivalent to || || by Lemma 2.5.

24 The equivalence of || |[ and || US in the case of discrete valuation
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(ag well as the equality of S and the wnit shere of I ”S) has been mentioned
by Fleischer ([8], p 168). Serre’s equlvalent norm for the same cagse defined
by [lxl* = dnt (A € Wy | =l < [Al} ([26]1, p 69) 15 our | .

Wé éoncludé this gection with some remarks concernming the

cage of triyial valuatlon on the field K. Obylously the definitions of

absorbant and bounded sets may be extended to a vector space E over such

a field. However, since now the R-submodules of E are precilsely the sub-

spaces of E, the only abgorbant R-submodule of E is E itgelf. Since E is

bounded 1t defines a non-Archimedian norm [| [, whose value set is clearly

{1}. Convergely, if E is a noxmed space with Wy = {1}, then E is its own
unit shere and x| = ||lxl|g for all x € E.

With the help of a concept of Serre’s (ibid.) these
observations may be combined with previous results (lemma 2.5) to obtain
the following theorem:

Theorem 2.3

If E 1s a non-Archimedian normed space over a valuated field
K and S is the unit shere in E, then [[x]| = [[x||g for all x € B if and only

if W c ﬁk,'where‘ﬁk 1s the closure of Wy.

§3. Iinear Transformatlons and Normed Algebras.

Let K be a non-Archimedian valuated field, E; and E; vector
spaces over K, and T a linear transformation from E; to E,. Since a
linear transformation 1z an R-module homomorphism, the image T(Sl) of an

R-module S; c E; and the inverse image of an R-module S; c E; are also

R~modules (cf [18], p 5335 [20], p 355).
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Let norms || ||, and || ||, be defined on E, and E; respectively.
T is sald to be bounded if there exists a real ¢ > O such that [[T(x)[, < ol x|,
for every x € Ey. The following theorem is an exact counterpart of a well

kmown result for normed spaces over IR or € (see [27], p.219):

Theorem 3,1

Let E, be a non-Archimedian normed gpace over a field X with
a non~trivial valuation. Let E, be an arbitrary normed space over K, T a
linear transformation from E;, to E,, and S the unit sphere in E,. Then
the following statements are equivalent:
(a) T is bounded.
(b) T is continuous.

(e) T(8) is bounded with respect to the norm on E;.

(a) = (b) and (c).

Clear.

(b) = (e).

Since the valuation on K is non~trivial, there exists P € K with
’[3, > 1,

If T(S) is unbounded, then for each n € N there exists x, € 8 with
Il > ol™ |

tet 7, =o". Then = Pole < L o at 3 00 as

’P’n el

n->o,

But HT(yn)Hg = ﬂ%SFﬁﬂbi >1 foralln ¢ N.

Thus T(yh)-f#- 0, contradicting the continuity of T,

(c) = (a).
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Suppose T(S) is contained in a closed sphere centered at the
origin with radius k.
Clearly the result holds if x = 0,
For 0#x€E, x€AS, N€EK = [x, <A, so that A" x € 8.
Hence, u?_g_\}i_”la <k and [[T(x)]z <Xkx]|r]. | |

Therefore, |[T(x)]lz < k inf [A] =k [|x4
X ENS ‘

The required result follows from the equivalence of || [l and || ,S'

In fact, ||T(x)||z <c |4y for all x € & where ¢ =k if W, © Wk
1

and ¢ < TET In the remaining casge.

The equivalence of (a) and (b) was proved by Monna without the
assumption that || [l is non-Archimedian ([15], pp 113L4-1135). The
equivalence of (b) and (c) is essentially a special case of a theorem

proved by van Tilel for certain clagsses of K-convex topological spaces

(see [29], p.269).

Letlﬁg (E&, E%) be the gpace of bounded linear transformations
from E, to E,, where for the moment we permit the valuation on K to be

trivial, Then »
Iy, = oo LEGla = e (o | 20, <o fxluds T € B,

Ofxel ||x|;, x € By
defines a norm on¥D(E,, E,), called the bound of T, such that
I7GMs < 1T,z %l for all x € B .

Tf W. c W, then for all T € D
B, <"k

It s = sme G0

sl =2
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Another norm on 63 ia given by

lal = o [2Glls = mt | EGOll, <30, T e B e nave

Ilg < Il ,s for a1n T3,
If the valuation on X is non-trivial, then‘&B(El, E;) 1is
the space of continuous linear transformations from E; to E; and the two
norms on 6% are equivalent. In fact,
Wy cWg » lftlg =1,z for a1l T e0B (of [26], p.71), so
that
T(x)l; < ”T“S Ixly for all x € By (ef [21], p.12L).
Both nowms on 3D will be non-Archimedian if || ||, is non-
Archimedlan. If the valuation on K is non-trivial and WEl C-Wk B Tﬁ%
will be a complete normed space whenever E; 1is complete, for the proof
in [27], p.221, will hold in this case (cf [26]). Finally, if the
norm on L is discrete, then there exists 0 #x €S such that
2ol = ol -
Since a discrete norm on E; implies W

KX
agsertions yield the following result (cf [21], [26]):

e

K 2 the above

il

Theorem 3,2

Let E; and E; be non-Archimedian normed spaces over a field
K with non-trivial valuwation such that WE1 chﬁk .
Letwgb(Elg Es) be the space of contimuous linear transforma—
tiong from E, to E;., Then
I = s 2l , e @,

llll ;< 1
defines a non-Archimedian norm on 6%>(El, Ey) such that

TGl < Tl [|=]ly for all x € E,.

If E, is a Banach space, so is I (E;, E5). If the norm on E, is discrete,
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then ||Tf = =up [|T(x)]s5 T € -&5’
Il =2
and there exists x, € By with [[xJ} =1 such that
G0, = 171«

Remark

Since Theorem 3.1 i1s trivially true if WE ='WE = {1}, Theorem 3.2
2, 2

wlll also hold in thils case.

Corollagz 1.

Let K be a field with a non-dense valuation, E a non-Archimedian

normed space over K such that WE C WK, and £ a continuous functlonal on E.

Then
I£] = sup | £(x)]

[hefl= 1 |
is a non-Archimedian bound for £ so that
[£(x)] < |[£]] x| for all x € E.

Further, there exists x, € B with [x || = 1 such that |£(xg)]=|1].

Definition
Let A be an algebra over K. A non-Archimedian vector norm

| | on A will be called a non-Archimedian algebra norm if it satisfies

the additional conditiong:
(L) =yl < 1=l flyll for all x, y € 4,

) Il =1.

A is known as a non-Archimedian Banach algebra if it is a non-Archimedian

Banach gpace.

We note that property (5) implies W cW,.
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CIf %3(E) is the algebra of bounded linear operators on a

non-Archimedian normed space E, then

sy TGN g e @
_ ”'-_P”J.’J. O,‘ZXI;EW Te )

defines a non-Archimedian algebra norm on & (E) (for proof of (L) see [23],

p.76). We thus have an additional corollary to theorem 3.2 :

Corollary 2.
Let E be a non-Archimedian vector space over a field X such

that Wy, chﬁk. Let ¥ (E) be the algebra of conbinuous linear operators

I = s GOl , me B,
[} < .

defines a non-Archimedian algebra norm on Bﬁ’(E) such thét Vb3(:WEK' and

2ol < 7 =]l for ail x € E.

¥ (E) is a hbanrchimedian Banach algebra if E is a non-Archimedian

-~ Banach space., If the norm on E i$ discrete,.then

] Wi TG, T e dd,
and there exisfs— X, €T with ”xo” = 1 sguch that
Jee )l = .

~In this case, 'V%3 =W .

We shall see that an algebra over a non-Archimedian valuated
field hay‘Well have an Archimedian norm. This Qannot happen, however, if

the algebra is commutative and its norm is multiplicative. In fact, we
have a somewhat strongéf result:

Theorem 3.3

Let A be a commutative algebra over a non-Archimedian valuated

field and || | a norm on A such that |[x®]] = ||x]|® for all x € A, Then || || is

non-Archimedian,
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Proof':

2h.

n n
By induction, ”x2 | = ”x”2 for every n € N,

Let a, b € A with [af > ||b

|+ Then
o+ o7 = e+ 02 = 7 (27) 20

n n 1 1=0
i;ma>¥“%ﬂ,twwwww(ﬁ,
=) l(in)l”azn"ibiﬂs by property (2),
S;z:”azn"ibiﬂ, since | | is non-Archimedian,
. !
< ) IalZ45l, by property (1),
=0

< (2" + 1)) %"

Hence, [la + b] < (2% + 1)1/2n“a” for every n ¢ 0N

Letting n + = we get

Lemma. 3.1

la + ol < llall = max (flall, o).

If A is a non-Archimedian normed K-algebra and S is the umit

sphere in A, then S ig an R-subalgebra of A, where R is the valuation

ring of X, The get

is an algebra ideal

Proof':
Clear,

Theorem 3.l

radical of S,

Q={xed| x| <1}

(]

f S\I

With the notation of Lemma 3.1, Teb 0 (S) be bhe Jacobson

Then:
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(o]

(a) Ifx€ A and an is convergent, then an is the inverse

of1-xand”(l-x
n
&0

(b) IfxeQni(s), then an converges t6 (1L - x)™* € S. Im
fact, |1-xf = [|(1 = %)% =1, OO |

(c) If A is compiete, then Q ¢ Q(S).

All the agsertions are immediate congequences of lemma 3.1,

item 3 of §1, and the following known results:
1. If A is a normed algebra over a valuated fleld, x € A, and Z;xn
converges, then 1 ~ x is invertible and (Olo - x)™t = 3 . Conversely,
if [x] <1 and 1 - x is invertible, then ) x" cdnverg;s to (1 - x)™, 1If
A is complete and |[x| < 1, then 1 — x has an inverse in A ([L], pp 75~76).

2, The radical of a ring S is the largest ideal I such that s for all

x € I, 1 ~x is a wnit ([12], p 57).
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CHAPTIR 2

Normsg_and Bounds on Finite Dimensional Spaces

§ Lo Norms on K™, Duality.

Let X be a valuated field and E a finite dimensional vector
gpace over K., If K is complete, then all norms on E are equivalent ([1],
p.95). If in addition the valuation of X is non~trivial, then all m-
diemnsional normed spaces over K are topologically isomorphic ([3], P.273
for non-Archimedian spaces see [5], p.695). Tor each is topologically
isomorphlc to Km normed with || ”m and hence to K with the product
topology ([L], pp 67, 69).

On the other hand, without special assumptions about K, all
the Hblder norms on I are equivalent to I ”w. So is any non-Archimedian

norm for which E has an orthogonal basis {ui}réi-< m ([171, p.LéL). For

then -
x= ) g » = mge fagu
i=1
I = = max [<;] = |4], we have

I, g g < g ) < mae oy < ], ma -
Again, when E 1s finite diemnsional over a valuated field K,
convergence to zero with respect to any norm on E is equivalent to
coordinatewise convergence, for the proof referred to in [28], p.253, will
hold here, Hence all Ilinear itransformations from E to an arbitrary normed
gpace over K are continuous and bounded. The boundedness is obvious when
the valuation on X is trivial and follows from the remark after theorem

3.1 in the non-trivial case. We calculate the bound of a linear
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transformation between finite dimensioral non-Archimedian ncrmed spaces

with orthogonal bases.

Theorem li.1

Let Ey and Ly be finite dimensional non-Archimedian normed

gpaces over K with orthogonal bases {uj}1<j<n and {vi}1<i<m

T be a linear transformation from E, to E,. Then the bound of T

Iy, = max [%1d lvalle
L) T

where (£ is the matrix of T with respect to the given bases.
1)

Proof:
Let 0 # x = Z gjuj s =lla = max I8 gusll = 1 gl
J
Then T(x) = i; <3857y and
12 = nex EmnAE 4o q | lygl Ivplla 5 say.
We have
12l _ 1o gl 1§l ¥l
EN I8 sed],
l"‘pql It quqlls “Vp”z
T YRR
_ gl Il
ol
Thus
™x - ALs IVl 2 A V.l e
ofn, TS T L *,',’lg,,f” - e rﬁis,','f” ’

Now put x = ug «

. Let

ig given

gay.
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Then,
R e e I PR )
(WP (e3P} Il [l2 lFugll2
So,
I, 5 = 1~4&1s' ”Vr”z = max [-’41-1' ”Vi”z
’ ”usﬂl 1sd ”ujﬂl
Corollary

Let E be a non-Archimedian normed vechor space over K with an

orthogonal basis {u Let T be a linear operator on E. Then the

i}1<i<m
bound of T is given by

351 Iyl
(/I e
Y (LW
J
where (Aij) is the matrix of T with respect to the given basis. If also
WE c ﬁk, then
Il . = max ]..,(ij] ”ui”
S . T
By
J
Let X be a valuated field. An algebra norm on Km will be
called a matrix norm. We note that this definition implies that ”Z[” =1,

Since Kﬁ may be identified with the algebra of linear operators on Km,

‘every vector norm on K" in determining an operator bound also determines

a matrix norm

AXA.
Iub (A) =x§,218 i}@“ s LEK,

which may be called a matrix bound,
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From now on we take R = K. Loﬁer cage Latin letters will
denote column vectors while ordinary capitals will stand for matrices.
If a vector and a matrix norm satisfy the condition
lad] < [l <]
for every x and A, then the two norms are said to be consistent. A bound
ig of course congilstent with the corresponding vector norm. The following
results known for |R and € remain valid for X :
For any matrix norm and for the bound associated with a
conglstent vector norm
r(A) < lub (&) < [[4],
where r(A) is the spectral radius of the matrix A ([9], p.l5). Ify is a
fixed non-zero vector, then for any matrix norm
=l = fl=y?l
defines a conslstent vector norm ([13]3 in [9] the Hermitian transpose is

used throughout). If follows that for a matrix norm to be a bound it is

sufficient that the norm be minimal (cf [13]). The converse has been

proved by Ljﬂbig for real matrices (ibid). The following theorem is

m
weaker than the corregponding results in IR™ .

Theorem l.2
Let K be a valuated field and H ” a norm on K% For all x € K"

let
b = s B
YAO sl
Then:
(a) || ™ 4s a norm on <"
(v) | ”* is non-Archimedian if and only if the valuation of K is
non-Archimedian.

() |xy = l<l™ iyl
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Proof':

A1l the assertlons follow from the fact that || HJ* 1s the bound

of a linear functional generated by x.

Corcllary 1. (aee [13]).
For the bound associated with | ||

b (xy?) = =) [l ™.

Proof: (cf [13]):

u ’) = gu ”xy’z“ = qu Tzl . Py
m (1) = e e H»dlz%g%f_ Il N

Corollary 2. (ef [9], p.lh3).

For all x, y € X' , A € K

|7 ay] < [l Iyl 1ub (4) = Tub (yx*) 1wb (A).

Definition

Since || | is a norm on the dual space of K it will be called

the dual norm of ||

1.  As distinet from the situation -in [R ™ in general duality
is not an involutory relation. To see this we need only consider an
Archimedian norm on X' when K is non-Archimedian. Tor then (l ”*)* = | |
contradicts (b).

2. It follows from (c) that |ley [le i”* > 1. Thus, if S and S*
are the unit spheres for | || and || ||* respectively,

e, €508 o oyl = e = 1.
If this condition is fulfilled for all i, then for all i, j

lub (eieg') =1 and jxij[ < lub (4).



Lemma L.l (cf [13])
Let X be a valuated field. If norms || ||, and || |5 are

defined on Km, then for the corregponding bounds

lub, (A) = luby(A) <« |x|y = afx]l, for some a > 0.

Proof:

One implication is obvlous and the other follows from corollary 1

to theorem .2,

TLemma 1.2

Let K be a valuated field. ILet || || be a2 norm on K and |
suppose that for each matrix A there exist vectors x and y with [lyx‘|| =1
such that |[x’Ay| = ||A]]. Then || || is minimal. In fact, || || is a bound.

Proof':

Let || Jlz be a matrix norm such that [|All; < [|4] for all A. Then
for the bound associated with a vector norm consistent with || ||, we
have

Tub(yx?) < lyx"llz < Jy=?]l = 1.

Hence by corollary 2 to theorem L.2,

|xfAy| < 1ub (yx’) Iub (&) <Iub (4) <[4, <[4l

and the giveh condition forces

lub (A) = ||ally = [|A] for all A.

Tt is known that when XK = (R or X = € non-zero vectors
may be found for which equality holds in corollary 2 to theorem b2
(see [9])., If these are sultably normalized, then the conditions of

lemma l.2 are satisfied and we obtain an alternmative proof of Ljubié’s

theorem:

s
)
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Theorem 1.3

when X = Ror X = € , a matrix nom on K i1s a bound if and
only i1f it 1s minimal,

It 1s known that every Archimedian valuated field is
topologically isomorphic to a subfield of C valuated with the ordinary
abgolute value ([28], p.2L6). Accordingly in this case it ia customary
to take X = [R or X = € . Further, every norm on }Rln or @Zm ig
determined by its unit sphere which ls an equilibrated convex body ([6],
p.1083 [9], p.ll). Theorem 2.3 shows that this statement remaing true
for certain norms on K" when K is non-Archimedian, where however S 1s an
absorbant and bounded R-module., Writing || || = || ”S we have in all cases

Tub (A) ixi?g ”Ax”s = Tubg (4) .

We also have (cf [9]):

Lemma .3

Let XK be a non~Archimedian valuated field, K = Rorx = C.
Let S, c K™ be an absorbant and bounded R-module if K is non-Archimedian
and an equilibrated convex body in the other cases. If the mabrix P is
non-gingular, then for x € Km, A€ Kﬁ
. = 1 - -1
S, = PS; = ”x”sz |7 xHS:L and 1ubsz(A) 111bsl(P AP).

Proof:

We may assume that K is non-Archimedian. Then S, 1s an absorbant
and bounded R-submodule of K. Further,
VAEK, x €Ay & P'x ¢ A5, .

Hence, inf |A] = dinf || .
x € NSp P~lx€ns,
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Also, S}lp ”Ax”Sz - gup ”P—IAx”Sl = Sup ”'P-'lAP'y”S‘l
O g, O e, T T,

The required results are now obtained by a reference to definitions.

Corollary
Sg =4S, , L €K = ”X”sl = |« ”xHﬁS2 and 1ubsl(A) = lubsz(A).
Let X be a non-Archimedian valuated field. Congider the non-Archimedian
norm on K" defined by
Il = max |41
The unit sphere of || || is the cube N = {x € K" [ 144] <1, 1 <1 <m}.

We have WKm = WK so that by theorem 2.3

=l = HXHN for all x € X .
It follows from § 3 that

ub (A) = su -
) A el

while theorem L.l gives

Luby(A) = I:Lla:::]c l.xijl‘.

Definition
When the valuation of X is non-Archimedian we shall describe

as natural the norm and bound defined above.

The natural norm is self-dual. For, if ”yHN = 1, then

[x’y] < mix lgi‘li ] <max f&i’ = "Ekl say,

and equality 1ls attained for y = S Since
Wp=W = Hx”"" = sup |x%y| ,
" Il =1

we have

™ = 15l = Dy
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Farther,
¥
I = Joryxl = Iaey| = Il
indicates that for each x and for each y there exists a non-zero vector
such that equality holds in (c) of theorem l.2,.

Again, if max |«,,| = |« |, then
? i,j ) ij rg ?

’ — —
lerAesl = '*rsl = 1ubN(A)
so that by lemma lj.2 the natural bound is minimal.
Finally, || ”N 15 the only non-Archimedian norm on K" for

which (with the notation of the remark after theorem L.2) e; € 5N s¥

for all 1, TFor, if || = max vyl s

el = legyl < lle I™ il = llyll < max Ingedl = e gl

Hence Iyl = max [y;] = llylly for all y € K",
If G = diag (y1s7zseees¥yl)s 71 # 0, then
= fxeX" | [y4] <lyil, 1<ism
also defines a norm on K" and a corresponding bound on Kﬁ, which may be

called a g-norm and a g-bound respectively (see [9], p L5). By lemma L.3

we have

Il gy = max ]yi"lgil and lubgy(A) = max lyi“lxijyjl.
i . i S .

2d

It may be shown that the dual of || |5 is given by

g2y = max l7ids
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) —
The non-Archimedian bound which corresponds to the natural norm
should be compared with the cublc bound for real matrices (see [6], p 108).
On the other hand, a slight modification of the calculation in [6] shows
that, even when K is non-Archimedian, the bound assoclated with the

Archimedian norm ||x] = EZIELI on K" is glven by the same formula as in
1=1"

the real case, For its dual, however, we have

™ = e 8] = el

verifying that duality need not be involutory.

Let K be a valuated field. If || || is a matrix norm, then
for the bound associated wlth a congistent vector norm we have
1 < lub (esef) < “e H for all i,
go that

1< mex ”eie | =n(J) say (theorem L.2).
1,

Further, for ail i, J
l& l < lub (e ef) lub (1) < |le; ei” 1Al < n(J3) A

Therefore,
max ,°<i,j|
Ld T < Al
n(J)
If || || is non-Archimedian, then

- la] < max [« 13°1% e’l| < n(J) lubN(A)

We have proved the following theorem:



36.

Theorem L.l
If || || is a non-Archimedian matrix norm, then

EE_N.(&Z < [laf] < n(3) 1upy(a)
n(J)

B

where n(J) = max [lese’

Corollary

A non-Archimedian matrix norm is the natural bound if and

only‘if max |le,e’|[= 1.
oo

3

§ 5. The Polar,Norms and Bounds on Km“

Let K be a valuated field., The polar of a set S « K" g
defined by
St = {xeX"| uess |xul <1}.

The following lemma is analogous to a result in [9], p.kh2.

Lemma 5.1

If the valvation of K is non-Archimedian and S is an absorbant

mn
get in Km, then 5% is an absorbant and bounded R-gubmodule of X .

Let u € S.
Then for x, y € S8/ and x,//ﬂ €R
[ (Ax f/Ay)’u] <max ([A] [x"u], Lml ly'u]) <1
so that Ax +//&y € S’ and S;is an R-submodﬁle of K",
To show that 3/ is absorbant, let x € X" and x’u = m € K,

If/ﬁm =0, x € S* = 1.3, otherwise x §/AAS' (see lemma 2.3).
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Again, let O # x € K". Since S is absorbant there exlsts w € S

such that x’u £ 0. Let « = T;C%J . Then for all A € K with |[A| >«

[u)al = ][] = Bl

so that Ax ¢ 5S¢ and S’ is bounded.
Now suppose that S itself is an absorbant and bounded R-module and

that a non-Archimedian norm || || = || ”S is defined on K". Then Wem < W

and

I ™ = suwp |xy[, x € K™,
yES |

Moreover, S/ is the unit sphere for || |* and the set of values of | || is
contained in ﬁk, Hence

[|=|* = ”xHS, for all x € K"

If the valuation of K is non-dense, then by corollary 1 to
theorem 3.2

Il . =”§h115; 1! x|

and for each x € K" there exists a vector ¥, with ”yOHS = 1 such that
%3] = =g, gl -
In this case duality is an involutory relation, for we also have

71l =”Xﬁ1811:=1IX’YI .

To see this put ||y]|*¥ = sup [y’x| = sup [x%|. Then by (c) of
o

'S° Further, there exists x, € K™ with ”X°”8’= 1

theorem 1,2 ”y”*< |

such that [|y||™ = |x%y|. Therefore,
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], Y

lzoll Joll™ = gyl < llxgll sl

and 7] = Iyl

We have proved the following theorem (cf [9]):

Theorem 5,1 '
Let X be a non-Archimedian wvaluated field and S an absorbant
and bounded R-submodule of K. Let

gup ]x’yﬁ, x € XK',

I#lg, = =

Then:

(a) | ”S' is a non-Archimedian norm on K" such that

[xy] < ”:dls,lly”s for all x, y € K,

(b) If the valuation on K is non-dense, then

I, =

|%*y| and ”y”s = sup |x"y|.

Il e

Further, for each x € g there exists a vector Yo with ”yOHS = 1 and

for each y € K" there exlsts a vector x with [lxflg, =1 such that

equality is attained in (a),

Gorollary 1
If the valuation of K is non-dense, then the bound determined
by S 1z minimal. In fact, for each matrix A there exist vectors x and y
with 1ubS(yx’ ) = 1 such that
|x’Ay| = Tub (A).

Proofs

By (b), for each y € K" there exists a vector x_ with ”Xo”s’ =1

such that |x{Ay| = “Ay”is., By corollary 1 to theorem 3.2 there exists y
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with [y g =1 such that ”AyOHS = 1ubS(A). Further, 1ubs(yox(’)) = llyollsux'o”

by corollary 1 to theorem 4.2,

Corollary 2

If the valuation of K is non-dense, then the bound of A with

regpect to S 1s the bound of A’ with respect to S’.

Proof s

See [9].

We observe that it has been possible not only to extend the
area of application of Ljubié’s theorem but also to obtain different

necegsary and sufficient conditions. These may be summarized as follows:

Theorem 5,2
Let K be a valuated field, TFor a matrix norm on Km to be a

bound it is sufficlent that for each A € K, there exist vectors x and y

with [Jyx?|| = 1 such that

|’y | = [la].
This condition is necessary in the following cases: (a) K =R

(v) X=C , (¢) K is non-Archimedian and ‘the matrix bound is natural,

(d) X is non-Archimedian with a non-dense valuation and the bound is

assoclated with a non-Archimedian norm on K for which ka c'Wk R

Remark
For complex matrices |x"Ay| may be replaced by [xﬁﬁy[ or Re xhy

while yx* becomes nyc

The next theorem should be compared with weaker results for complex

matrices (see [9], p.Lb).
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Theorem 5.3
Tet K be a field with a non-trivial non-Archimedian valuation

and let K contain all the characteristic roots of A € Km. Then there
exlsts an absorbant and bounded R~gubmodule S c K" such that if r(A) = O

1ubS(A) is arbitrarily small and if r(A) # 0 lubS(A) = r(A).

Proof:

In view of lemma .3 we need consider only the Jordan connonical
form of A and in fact only the Jordan block belonging to A, where A is
a characteristic root of A such that [A] = r(4). Let W(e) = diag(l,c,6%.04),
where 0 < |e| < |A] £ A # 0 and |e|] > O otherwise. Then

W(e) fA 0 ... OO We) = A O .. O O

1 ’A. coo O O [ ?\ aoe O O

© o . °

[ [ o L

®
.
3

0 0 ... 1 A 0 0 +o0 & A
The natural bound of this matrix is equal to Isl if A = 0 and to |A| if
A A O |
Let K be a valuated field. Tu preserve uniformity of
terminology we shall call
Us={<xek| |« =|LH =1}

the group of units of K. For any norm on Kh the condiltion number of a

non-singular matrix A will be defined by

c(a) = [|a] [la~

Definition

tet & be the unit sphere of a nom on K . AmatrixBe g
will be calledﬂg —unitary if it has an inverse in ig °

It is clear that B is 8 ~unitary if and only if ||B| = [[B~Y| =1

F-t

and that ég —unitary matrices form a multiplicative group l/t which may be
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called the Cg—unitary group of the norm on K,o If Be€ \/(, then

o(B) =1 and |[Bx]| = [
for every consistent vector norm on K", Conversely, if B 1s non-singular

and ||Bx| = ||x]] for all x, then B belongs to the ‘5% ~unitary group of the

aggsociated bound.

Lemma 5.2
Let the matrix B be non-singular and have a non-empty spectrum,

Then B € \/Lfor a norm on K, if and only if c(B) = 1 and the spectrum of

B is contained in U,

Proof:
Let A € K be a characteristic root of B.

B € Ll implies that

1 )
1= < Al <||B] =1 so that A € U,
5]
Conversely we have
1
”B” > l)\, =1 and ”B-l” > = 1

R

so that c(B) = 1 forces equality.

Lemma 5.3
Let C be a non-singular matrix with a non-empty spectrum.

Then for anmy norm on K, ¢(C) = 1 if and only if C = 4B for some 0 # «x € K

and B € ]/(.

Proof:

Let {)g} be the spectrum of C such that [N ] < ... < [A].

1<i<k



L2,

c(C) = 1 implies that

llell =

< nl <o < ] <l

1
[~
forcing equality.

Let £ € K such that ]« = ']7\11 for 1< 1<k. Then by lemma 5.1

B =% e UL,

Since the converse is obvious, the result follows.

Theorem 5.l

Leb K be a non-Archimedian valuated field, X = JR orx = €.
Let || || be a norm on K" with the proviso in the first case thab | || be
non-Archimedian with ka c Wk . Then a non-gingular matrix C = B,
0#«e€k, BeWsor the associated bound on K if and only if

Tub (C"*AC) = 1ub (A) for all A € K,

Proof:

Since the conclusion is obvious when C has the required form, it
suffices to prove the converse.

Let S be the unit sphere in X", Then in all cases ||x]| = ”x”s and
Tub (A) = lubg(4) for all x € K", A€ K . By lemma 4.3 and similar
results in the other cases, we have

1ubS(A) = lubGS(A) .

Hence by lemma L.l
g = alllgg 5 2 > O
Further, when X 1s non-Archimedian lemma 1.3 shows that the value set of

, 1s contained in W ., Hence in all cases, a = A for some £ € K.
oS K 9 &

Thus

CS = «£53.
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It follows that

i

Tub (C) sup_ il = l*!xs:élg Il = 1l

Hence c¢(C) = 1 and the result follows from

JH

Similarly 1ubB(c*1) W
A

lemma 5.3 (it is easy to see that the constant involved is actually «).

Lemma. 5.

Let K be a complete non-Archimedian field, || || a non-
Archimedian norm on K and Q ={A €K | I1Al <1}. Then
“gf = {A € K |A=I-H He A} is a.normal subgroup of W,

Proof':
K, is complete and so gy c W vy theorem 3.l.
Let By, By € é%—. Then:
BiBg = (I ~H{)(I~Hp)=1I-H —-H, +HH,
with iy + Hy = BH < max ()], o)) < 1.
Again, Bt =I~0, where C = I ~(I - H;)™* and

(o]

' HT - < o
ui};l s ma EY = ] <21

1

llcl
The normality of é% is clear.

Remark

With an obvious extension of the definitions this lemma will hold

in any complete non-Archimedian algebra,

Theorem 5.5
Let X be a complete non-Archimedian field with R, P and U as

defined in § 2. Tet A be a matrix in K and I - A = (pij) with pij € P for
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~all 1, j. Then A is non-gingular with a spectrum contained in U,
Further, all the entries of A™ are in R and A™* = I -~ C with the

gpectrum of C contained in P,

Proof':
If the natural bound 1ubN((xij)) = gag lxij, ig defined on K s
<& 2
then (Bij) € &l and A € 1/{_by the previous lemma,

This proves the assertion concerning the entries of A%, while
an application of lemma 5.2 ylelds the spectral property of A (as well as
of A™1),

Again, G € igl and so r(C) < 1ubN(C) <1,

§ 6. p-Adic Numerical Analysis,

Let the field K be complete with respect to a non-trivial
non-Archimedian valuation and let A be a matrix over K. By § 1 the

o)
geometric series at converges with respect to a non-Archimedian norm

1=0
if and only if Al 5 0, Since convergence in Km 1s equivalent to coordinate-

wise convergence, the situmation is exactly the same as for real matrices
(see [6], p.113). Here too At 5 0 4f and only if r(A) <1 in the algebraic
closure of K. Further, if r(4) < 1, then there exists a non-Archimedian
norm on K such that [[A] <1 (%heorem 5.3). In this event, by theorem

3.4 T~ A is non-gingular and (I - A)™% = }: Al . Put
=

so that
1 (I - A)~* An+l .

P
=
1
.
g
1
R
}
n
!
.
I
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since WY < [lall 2} < [1aY), ui A s max Y - ™Y .
1=n+1 1>n+l

In fact, we have obtained the following estimate for the rate of

convergence of a geometric series:

Theorem 6 .1

= %S a non-Archimedian matrix norm and |[A <1 , then
L s I Ui I e
i=0

Remark

The above estimate is sharper than the corresponding estimate
for real or complex matrices ([6]; '[9], p.5li). Actually we are dealing
with a special case, for we also have |[(I - A)~% - Syl < (T = 4)~%| “A”n+1
(see [9]). In our case, however, |[(I = A)™%| = 1. The same observation

applies to the next theorem.

Theorem 6.2 (cf [9], p.55).

Let A be a non-singular matrix and C an approximation to A™%.
Let H=1I~AC, [H| <1, where || | is non-Archimedian. Then:
(a)  [la~H = lcf
(0)  [la=* - ¢ < [|cH]
(e) fla = <|[ual

Proof':

I ~ H is non~singular and ||[I ~ H| = [[(I - H)-Y =1 .

I

Wow, (a) follows from A~ = C(I - H)™,

C

il

A™H(I - H);

(b) from A7t = C 4 CH(T - H)™

it

and (c) from C™t = A + (I - H)"Mm,

I
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Methods of Successive Approximation

Let x* be an approximate solution for a system of linear
equations
Ax = h, A non-gingular,

Define the error and regidual vectors respectively by

S =x-x% and r = h ~ Ax¥ = Ag,

For any consistent non-Archimedian vector and matrix norms

we have
Il < llll NIl
where C is an approximation to A™ such that ||H[| < 1.

In a method of successive approximation for the solution of
such a system, given an Initial approximation Xqs @ sequence of
approximating vectors is formed by the recursion formula

Yl S X Tt Cnrn P

where Cg, Oy, ... 1s a certain sequence of matrices. We note that

o4l ™ *Fn T %n 7 Fnel
If
Hn = I - unA
then
g = = -1
Spa = HpSpn 0 Ty T AR AT
Hence,

ol < Il sl

and a sufficient condition for convergence is “HnH< 1l vn.
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(:) For non-Archimedian norms this condition impliies that
% = %l = ey
so that
loneall < MLl flzgyg = x0l et [91, pogh).

In the classical method of successive approximation

Cp = I, Hn =I1—~A=H for all n,

Xl = Hxn + h N
= HLy Z #hn .
i=0
I 1| <1 s We have in the non-Archimedian case
n
lopall = I =myn = )l o Ey |
i=0
= Z mh - Hn+1xo I
1=n+1
< max (JE™ ol J™ ) (et 16], pass).
If x5, =h, then
n -
x, = Z H'h (p.185), and
i=0
Il = 1) wnl = ), < ™ ).

i=n+1
Again, consider methods of successive approximation for
finding the inverse of a non-gingular matrix, If A is such a matrix

and X, is an initlal approximation to A‘l, error and residual matrices

are defined by
= .—l = = —
Sn = A7~ Xn and R, = ASn I-AX .



®

L8.

/
All such methods depend on the possibility of finding a sequence of
matrices C, such that the sequence (Xn) tends to A™* ag a limit, where

a1 = En *+ Only

If Cn = X,s We have

S Xn(I * Rh)°
= R~

R, =R, and

Sn+l = SnASn °

Hence for any norm,

PRpall < IRAI® and [Is 4]l < 4] Is,I2,
and the process comverges quadratically if either R [l <1 or s ] <1
vn ([9], p.95).

In fact, since

n n
R, =RZ and S, = AR =X (I-R)RZ , wehave, if [Ry <1

sl = X220 < %ol B2 (ot [61, o. 159).

Let X = Qp be the field of p-adic numbers with the wsual p-adic

valuation. We shall express the elements of Qp in decimal notation ([1]1,p.36)

and note that for a « Qp with ]alp <1l the number of zeros after the
decimal point equals ord a — 1, where

da=-1
ord a ogp]a[p

is the ordinal of a. As vector and matrix norms we shall use the natural

no?m I« = mix l§:l‘p and the corresponding natural bound ||4] = ?3§ [A&jlp .

We shall extend the concept of the ordinal function to these norms and

obgerve that for any method of successive approximation

ord s, -1, n>mng,
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(T) glves the number of correct decimal places in approximating vector Xy

and that a gimilar statement applies to matrices, To fix our ideas

we ghall take p =5,

Ixample 1
Consider the following system of 5-adic equations:
L32udhg, - w02 Y, o 12 b, = .03
=02 Y}, o+ L1.ollt, - oL ¥ = .03

-.12 b1 - .04 Yo o+ L30MMML Y, = 1.12
It will be seen that the coefficient matrix of the system satisfies the
hypothesls of theorem 5.5 and is therefore non-gingular. The table below

presents the solution of this gystem by Gaussian elimination (see [6],

p.130).
Single — Division Scheme

Lo32hh), ~,02 —-,12 A3

.02 L.hohlhh ~.0l .03

—.12 ~.0l 1.30400) 1,12
1 - 0212)), —»11,002); 112310
1.0h01) —~.042310 .033341
~.0l2310 1.342032 1.110133
1 ~o 01102 .031231
1.342421 1.110300

J

1 1.322)413
1 .0202)1
1 .02020
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(f> Example 2
The equation in example 1 may be written in the following

form:
Y, = .228, + 028 o+ 128, + U3
yo=.028, + Ikt + 0485 + .03
bo= 128, +.0uk, + 208, + 102,

it

The solution by the classical method of guccessive

approximation may be arranged as follows ([7], p.125):

Method of Successive Approximation

Formulas Xal = Hxn + ha

.22 .02 .12
H .02 o1l 0L

.12 0l 2L
X, = h 43 .03 1.12
Xy 001040 021401 1.321011
Xg .0lili233 .02003) 1.32320h
X .042013 020201 1.32233L
X, .0L2013 .0202)43 1.32200
Xg .0l2021 020211 1.322)413




51,

( ) We note that

ord 55 > ~Logs [1H]® [[n] = 6

so that xg must be correct to 5 decimal places at least. A glance at
the previous result shows that this is indeed the case. An alternmative
method of successive approximation (ibid, p.12)) ylelds an exact measure

of the accuracy of each approximating wvector.

Method of Succegaglve Approximation

n
Formulas X, = Z Hih

,,,,,

1=0
h .13 .03 1,12

Hh .11.0040 .0L0)401 .201011
H*h 0322 .00),023 ,002233
H% .00322] .000220 .00L0l)y
H*h .000000 .00001;3 .000112
H®h .000013 .000003 .000021.
H®h .00000), .000000 .000000
Xg .0l12021 .0202)1 1.322413
Xg .0112020 .0202111 1.322413
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ff) Here,

ord sz = ord H°h = 6,
while

ord sg > ~logg [|H|7 [|n] = 7.
Thus x5 and xg must be correct to 5 and 6 decimal places respectively.
The Jatter is precisely the accuracy of example 1, for rounding errors

do not occur in arithmetical operations with p-adic numbers.

Example 3
The coeffilcient matrix A of example 1 may be inverted by

Gaussian elimination. To 6 decimals we get

1.222121 .020320 .113120
AT = .020320 1,100110 014002
»113120 041,002 1.210130

As the initial approximation for an iterative solution we

ghall take

go that
.00322] .00012}, .002L0l,
R = ~{.00021L 00040l .001323
.00211), 00120l .000223

Thus

ord S, > ~logg ”Xo” ”Ro”z =6,
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o, and
(.J
Xy = XO + XORO

1.222)23 .020323 11312}
= .020323 1.10011) .01411,002
.11312), 0141002 1.240130

ig correct to 5 decimal places (cf [6], p.160).

()
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