
ABSTRACT 

Vo Byers. N,on-Archimedian Norms and B01U1ds. Department of 

Mathematics. Ph.D. Thesis. 

This thesis deals primari~ with matrix norms. The preliminary 

general treatment is large~ confined to non-Archimedian norms, i.e., 

norms which satisf'y the strong triangle ine quaI it y • It includes the 

establishment of a correspondence between a class of such norms and 

certain submodules of a vector space over a non-Archimedian field as 

weIl as a discussion of the properties of bounds (special nOl~S on 

spaces of linear transformations) and of 1U1it spheres in normed 

spaces and algebras. Finite dimensional vector spaces over an 

arbitrary valuated field are considered next o Duality is discussed 

and a new necessary and sufficient condition for a matrix norm to be 

a b01U1d established as weIl as a relation between non-Archimedian 

matrix norms and the IInaturalll b01U1d. There follow results concerning 

1I·t) -unitaryll matrix groups, spectral radii, convergence, and methods 

of successive approximation over the field of p-adic numbers. 
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§ O. Introduction 

Non-Archimedian normed spaces have been studied qy I.S. Cohen, 

I. FJ.eis cher" A. FI. Monna, J .-P. Serre, T.A. Springer and others. The 

concept of K-convexity which leads to the investigation of R-submodules of 

a vector space over a non-Archimedian valuated field is due to A.F. Monna 

([ 18] ) • This concept is employed qy J. van Tiel for the study of certain 

topological spaces in a dissertation which also contains a summary of 

previous work ([29]). 

The study of matrix norms has a fair~ long history but non-

Archimedian matrix norms do not appear to have b6en considered. The 

association of norms wit.h convex bodies has been systematically expJ.oited 

qy A.S. Householder (see [9]). Ju.I. Ljubi~ in [13] established a 

necessary and sufficiGnt condition for a m=ttrix norm to be a bound. The 

first systen~tic treatment of the use of norms in convergence proofs of 

numerical ana~sis was given by V.N. li'adeeva in [?]. 

Chapter l of the present thesis contains a general treatment 

of nonns, mainly 110n-Archimedian. In §l we prove the existence of a 

cannonical pseudonorm on a quotient module of a pseudonormed module over 

a valuated r:l.ng. In §2 with the help of an algebraic definition of 

boundedness we establish an association between a class of non-Archimedian 

norms on a vector space E over a non~rchimedian field and certain R-

submodules of E. In §3 we prove that the open unit sphere of a complete 

non-Archimeàian algebra A is an ideal contained in the Jacobson radical 

of the closed unit sphere of A with resultant effects on convergence and 

invertibility. 

Chapter 2 deals with finite dimensional vector spaces over a valuated 

field K and particular~ with Km and K. In §4 we show that, although 
m 
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duality in such a space need not be an involutory relation, the dual 

norm has useful properties. In particular, we obtain a new proof of 
J 

Ljubic's theorem. We investigate the properties of the natural norm 

and b01U1d for a non-Arcltilnedian K. We prove an inequality satisfied 

qy non-Archimedian Inatrix norms and establish a necessary and sufficient 

condition for such a norm being a natural b01U1d. In § 5 we consider 

duality for norms determined qy R-submodules of Km and prove a new 

necessary and sufficient condition for a matrix norm over a valuated 

field to be a b01U1d. We also investigate the relation between non ... 

Archimedian b01U1ds and spectral radii and use the concept of an!S -

1U1itary matrix to establish the non-singularity of a class of matrices 

over a non-Archimedian field as weIl as certain properties of their 

inverses and spectra. § 6 contains estimates for the rate of 

convergence of certain iterative processes over a non-Archimedian 

field and examples of the use of methods of successive approximation 

for the solution of systems of linear equations and for the inversion 

of matrices over the field of p-adic numbers. 

We shall use the follawing notation: 

Implication will be denoted qy *. ~ will stand for the 

empty set. ~ !I ~ !I 2 +, IR , IR +, and ([ will denote the 

natural numbers, the integers, non-negative integers, the reals, non-

negative reals, and the complex numbers respective~. For sets A and 

B, A c B will me an x <E A =:> x E B. 

AlI rings and algebras will contain the identity usual~ 

denoted qy l and aIl modules will be uni.tal. If R is a ring 

ŒlR::: {( a.) [ a. E R} will stand for the restricted external direct sum 
1 1 
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of a number of copies of R.; lvhen this number is countable ®R will be 

the R-module of sequences in R with a finite number of non-zero terms. 
m 

K and K will denote respectiveJy the space of m-dimensional 
m 

column vectors and the algebra of m x m matrices over the field K. If 

x.'l Y E ~, thon 

x = , y = 

7m .,(·mm 

The transpose of a vector x or a matrix A will be denoted by x' and A' 

respectively. Thus x'y will be the scalar product of x and y while xy' 

will be a matrix cf ranIe < 1. l will stand for the identity matrix and 

ei for the i'th column of l. 
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1. 

CHAPTm l 

Non-Archimedian Normed Spaces 

§ 10 Normed and Pseudonormed Modules. 
-j

A valua tion or~ a ring D is a function a -+ 1 a 1 from D to IR 
which satisfies the following conditions: 

(1) lai = 0 Ç:::> a = 0 , 

(2) labl = lall Ibl for all a, b E D , 

(3) la + bl < [al + lb! for aIl a, b E D • 

A valuation defines a topology on D under which D is a topological ring 

([11], p.329). The couple (D, f 1) is called a valuated ring. Since ff< 
is a field, a valuated ring cannot have any divisors of zero (ibid, p.294). 

A valuation is said to be non-Archimedian if, instead of the 

triangle inequality (3), it satisfies the strongel' condition: 

(3') la + bl <;; max (lai, rbl) for all a, b E D. 

If D is a non-Archimedian valuated ring, then 

R = {a E D liai <;; l} 

is a subring of D called the valuation ring of Do The set 

P = {a E D lia 1 < l} 

is a prime ideal of R called the valuation ideal. 

If D is a valuated ring and M a torsion-free D-module, a norm 

may be defined on D entirely analogous to a norm on a vector space over 

a valuated field (see [4], p.65)~ The resultant definition of a module 

ilorm must be distinguished from the one used by Monna and Springer (see 
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Definition 

Let D be a valuated ring and M a torsion-free D-module. A 

norm on M is a function x -+ "'xii from M to rR+ which sa tisfies the 

follŒving conditions: 

(1) /lxl/ = 0 ~ x::: 0 , 

(2) !/À.XII = IÀl I/.xJli for aIl "li. E D, x E M , 

(3) /Ix + ylL ~ /lx/l+/lyl/ for aIl x, y E M • 

The couple (M, Il Il) is a normed module which is said so be non-Archimedian 

if /1 Il satisfies the strong triangle inequality: 

(3') /Ix + y/l ~ max (/lx/l, /ly/l) for aIl x, y E M • 

A valuated ring D may be regarded as a normed D .... moduleo If M 

is a normed D-module and C is a subring of D then ever,y Bubmodule of M 

is a normed C-module ([2J, po49) under the norm defined on M. 

a non-Archimedian nOrm on M implies a non-Archimedian valuation on D 

(cf [15], polO1-t.6), but the converse statement is false. In this connection 

Monna considered the spaces of sequences (Ài), "li. lE K , K a non-Archimedian 
CIO 

valuated field, for which the series .L IÀïIP 
is convergent (see [16J, 

l=l 
p0480)0 We prove a general result: 

Theorem 101 

If D is a valuated ring and M a free D-module, then each 

monotonie norm on <El tR de termines a norm on M. 

Proof: --
Note first that M is torsion-free ([12J, p.134)0 

Establish a partial arder on <El (R by setting x ~ y if l: ~ 1( ~ 

for aIl i, where x::: (~i)' y::: (li) E <El IR 1 



A norm on @ IR is monotonie if Ixl < Iyl => Il xii < IIyll', 

where Ixl:: (11 il), 1 § il denoting the ordinary absolute value on IR. 

If {ui } is a basis for M define a map 

M -t- @ IR 

by x:: ~ "-i lA ~ -+ 1 xl:: (1 "-ili ); "-i E D • 

We have Ixl :: 0 ~ x:: 0 , 

1 !IX 1 :: 1"-1 Ixl for aIl "- E D, x E M , 

lx + yi < Ixl + Iyl for aIl x, y E M • 

Define Il xli :: I~ 1 xl Il 0 

Then Il Il is a norm on M. 

Co,rollary 10 

If D is a valuated ring, then for 1 < p < "" 
:l 

Il ("-i) IIp :: ( L l "-il
IP )p 

is a norm on @D , whieh may be called a HBlder norm o 

Corolla:ry 2. 

A HBlder norm on a free D-module whose dimension is greater 

than l is non-Arehimedian if and only if the valuation on D is non-

Arehiil1edian and p:: ex> 0 

Remarks 

1. More generally, if M is a free D .... module with basis {ui} then 

Il. L 1-'1 uill :: max l"-il IIuil/, where {llui ll }; is an arbitrary set of 

positive reals, is a norm on M, whieh is non-Arehimedian if and only if 

the valuation on D is non-Arehimedian. 

ex> 

2. The proof of theorem 1.1 will apply to the subspaees of K 

diseuS8ed by Monna. 



3. If El:> IR is ordered lexicographically, the function x -+ Ixll 

becomes a non-real-valued norm on the free D-module M. This norm will 

be non-.A.rchimedian if the valuation on D is non-Archimedian. 

The requirement that a normed module be torsion-free ceases to 

be necessar,y if condition (2) in the definition of a norm is replaced 

by a suitable weaker condition. In particular" we have the follmving 

(cf [22J, p.613): 

Definition 

Let D be a valuated ring and M an arbitrary D-module. A 

non-Arch:imedian Eseudonorm on D is a function x -+ /lx/l from D to IR + 

which satisfies the follmving conditions: 

(1) /Ix":: 0 ~ X = 0 , 

(2') Il,,,,"'{II < lÀ/: /Ix" for aIl À E D , x E M , 

(J') "x + y/l . ~ max (1Ix/l, /lyll) for aIl x, y E M • 

We observe that a non-Archimedian pseudonorm on M does not 

impl;r a non-Archimedian valuation on Do 

A pseudonorm on a vector space E over a field with a non-

trivial valuation (see § 2) is rcBthe's IIF - norm ll (see [10], p.167) 

under which E is a topological vector S~a0e (cf [20], p.357). In the 

general case, a non-Archimedian pseudonorm on M defines a non-.A.rchimedian 

~~ d(x,y) :: /Ix - yll under which M is at least a topological group. 

Certain properties of non-Archimedian valuated fields and 

normed vector spaces are the direct consequences of the strong triangle 

inequality and the resulting non-Archimedian metric. These l'lill hold 

for non-.A.rchimedian pseudonormed D-modules (see [24], po76; [20], p.353). 

In the list belmv we assume in item 7 that the valuation on D is non-

Archimediano 
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1. It follaws from the strong triangle inequality that x, y E M 

with /lx/I > /lyll => /Ix ± yi!: = /lx/l ([24J, p073; [20J, po353). 

2. Hence, x -+ x 1- 0 => 3 n E N such that. /lx--II = Ilx/l for n 0 -.1 

i1 > no ([15J, pol045l [20J, p0353)0 

3. 
00 

If L xn converges, then 

n=l 

00 

1/ I Xn /1 < m~x /1 xnil ( [ 8 J, p .165 ) • 

n=l 

1\ 
40 For ever,r M there exists R completion M ([4], p068) such 

that wM ::= w~, where wM = { "xII Il 0 1- x E M } and WM has a similar meaning 

for the extension of /1 /1 to M ([14J, poôl). 

If M is complete, then the series converges if and 

n=l 

only if lim x = 0 ([2h], p075). 
n-+ oo n 

6 0 For a E M and real f > 0 the sets {x EMil Ilx - ail < 1(.> } , 

{x E M 1 /lx - ail < f} are called respoctively the closed and open spheres 

vlith center a and radius f' However, aIl spheres are both open and 

closed in the topology determined by the pseudonorm. Further, flach point 

of a sphere is its center and two spheres are sither disjoint or one is 

contained in the other ([ 2)~.], p. '74). 

7. If R is thû valuation ring of D, a spher6 S c 11 is an R-sub-

module of M if and only if 0 E S (cf [18], p.532). 

Remark 

The R-submodules of a vector space E over a non-Archimedian 

valuat.ed field K are precisely those non-empty sets in E which Monna 

described as having property C and von Tiel calls K-convex (see [29],p.253). 

() 

() 
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The "K-convex null of a set S c E" (p.254) is simply the R-submodule of 

E generated by S. Monna called K-convex sets of the form x -1- S, where o 
S has property C and x is a fixed vector in E ([18J, p.532). o 

If N is a closed subspace of a vector space E.over the real 

or complex field it is 'lmown that an F-norm of E determines an F-norm on 

the quotient space E/N (see [10], p.167). We prove an analogous result 

for non-Archimedian pseudonormed modules. 

Theorem 1.2 

Let D be a valuated ring, M a non-Archimedian pseudonormed 

D-module, and N a closed submodule of M. Then 

Il x + Nfi = inf Ilx + nfl 
nEN 

defines a non-Archimedian pseudonorm on the quotient module MIN. If M is 

complete so is MIN. 

Proof: 

We verify the three properties of a non-Archimedian pseudonorm. 

(1) follows from the fact that N is closed (see [27], p.213). 

(2') We note that for all À E D AN eN. Hence 

Il À(x + N) fi "" Il À)C + N Il 

/À/llx + Nfi 

(3') Let flx + Nil > Ily + Nil. 

= inf Il ÀX + n Il 
nEN 

"inf IIIix+Ànfl= 
nEN 

Then 'tJ n E N 3 n' E N such that IIx + nll > lIy + n'II. 

Hence, Ilx + n + y + n'fi" /Ix + nll so that 

lI(x+ N) + (y + N)/I = Ilx + y + Nil = inf /Ix + Y + nI/II = 
nI/EN 

inf Ilx + n + y + n'fi" inf flx + nll = flx + Nil. 
nEN nEN 

For proof of the last assertion see [27]. 
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Corollar,v 1. 

If M is a non-Archimedian pseudonormed D-module, R the 

valuation rjng of D, and S a sphere in M, ° c S, then 

/ls/I ::; 0, /Ix + s/l ::; /lx/l, xl. S, 

is a non-Archimedian pseudonorm on the R-module MiS. 

p orollag 2. 

If E is a non-Archimedian normed vector space over a 

valuated field K and N is a closed subspace of E, then 

/Ix + N/I::; inf Ilx + n/l 
nEN 

defines a non-Archimedian norm on the quotient space EIN. 

RemarIes 

1. An Archimedian pseudonorm on M also induces a pseudonorm on MIN, 
which may be non-Archimedian 0 

2. Corollar,y 2 is false for normed modules œ 

Examp~ 

Consider ~ as a normed ~ -module under ordinar,y absolute value 

or diadic valuation. 

2 2Z is a closed submodule of ~. In fact, in the latter case 

27L is a sphere in L centered at the origine In either case the 

induced pseudonorm on 7Z.. 12 7L- is gi'ven by 

/1 0 /1 ::; 0, /1 ï /1 ::; 1. 

/1 /1 is a non-Archimedian valuation on the field K ::: Z 12 IL. and 

hence a non-Archimedian norm on the vector space K over K. But /1 Il is not 

a norm on the 7Z -module 7Z. /2lL , for 

/12 • 1/1 ::; /1'0 /1 ::; ° < /2/ /Il /1 f o. 
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§ 2. ~,on--Archim,edian Norms a;nd R-submodules ,O,f a Vector Space. 

Let IC be a non-Archimedian valuated field. Then IC is the 

field of quotients of its valuation ring R := {..< E IC Il 1..<1 < l~, while 

the valuation ideal P := {..< E IC li I~r < l} is a unique maximal ideal of 

Ro The set 

is the group of units of R, usualJ.y called the group of lillits of IC, and 

-IC := R/P 

is a field, called the residue field of IC ([ 8], po 81) • 

The set 

WIC ::: {I~ 1 lOf 0( E ICl 

is a multiplicative group, called the value group of K. Moreover, for 

real e > l the map I:~I -r -loge 1.,.(.1 .is an isomorphism of WIC onto a sub

group of (IR.'> +). Accordingly, the valuation on IC is called trivial 

if WIC = {l}, dense if WIC is everywhere dense in IR +, and dis crete in the 

remaining case, i.e., if W
IC 

is discrete in IR + ... {O} or, equivalently, 

if 0 is the only limit point of WICo The valuation on IC is dis crete if 

and only if there exists Tt E IC such that In,1 := max 1.,(li ([25], po9) • 
...tEP 

Then W
IC 

is -t.he infini te cyclic group { 1 n li i 1 i E 7L }, 0 In fact, if 

o f ..< E IC.') then ..{:= ~ni, Il E U, i E 7l , so that 1t is a prime element 

of R ([14], p.I07). 

The topology of IC is discrete if and only if its valuation 

is trivial ([ 4], P .62). For a field with a non-trivial valuation ta be 

locally compact it is necessar,y and sufficient that it be complete with 

respect to a dis crete valuation and have a finite residue field ([29,p.251)o 
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Let E be a non-Archimedian normed vector space over K. 

The un~~ sphere in E is the R-module 

S ::; {x E E 1 /lx/l < l} • 

WE::; {"xII 1 0 -1 x E E} 

will be called the value set of the norm on Eo 

It may happen that WE c V'lK and even l'ifE = WK" Thisis the 

case, for example, with the norm /1 /1 on Ei1 K defined by 
<li) 

II(~)IIQ)::; m~ loZil, ("<'i) E @ K. 
~ 

If WE c WK then V x E E x = -«X:o' .,( E K, /Jxo/l = l, so that the norm is 

completely determined by the set {x E E 1 /lx/l = l} (cf [15], p.1045). 

On the other hand, every non-Archimedian normed space 

contains a set of non-zero vectors {xi} such that WK/lxi/l n wK/lxjll = yJ 

for i f j 0 The strong triangle inequality gives 

n 

Il L .t xi Il! = max /1 ~ ~ XiII, 1 i E K, 
i=l l<i<n 

so that {Xi} is an orthogonal family of vectors (see [22], p o 603)o It is 

clear that every orthogonal family is linearly independent o If such a 

family forms a basis for E, th en WE ::; ~ w1dlxi/lo In particular, if the 

valuation on K is trivial, then lIui/f f IIuj/l for i f j on a basis {ui} 

for E implies that 

WE does not possess properties comparable to the trichotomy 

for WKo We shall say that a norm on E is dense or dis crete if WE is 

respectively dense in IR + or discrewin IR + - {O} (Monna and Springer 
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in [22], p.606, a.dopt a more general definition of a dis crete norm). 

A dense valuation on K implies a dense norm on E, so that a dis crete 

norm on E implies a dis crete valuation on K whenever it is Imown that 

the latter is non-trivial ([15], p.lO!.t.9). The converse statements 

hold if E is iinite dimensional. 

When E is iinite dimensional, E is complete with respect 

to its norm if K is complete with respect to its valuation ([1], p .. 98) 

but this implication is not true in general. Nor does completeness of 

E imply completeness of K. However, wh en E is complete the scalar 

multiplication in E over K may be extended to scalar multiplication in 

A " the normed space E over K, where K is the completion of K ([ 15], p.l054). 

If both K and E are complete, th en E is Imown as a non-.Archimedian 

Banach space. 

Hhen the valuation on K is non-trivial, the unit sphere 

in E is compact or, equivalently, E is locally compact if and only if 

K is locally compact and E is iinite dimensional ([15], PP ol048-1053.; 

[5J, p.695), implying a complete and dis crete valuation on K. 

Let E be a vector space over a field K with a non-trivial 

non-Archimedian valuation. Monna ([18]) investigated the relationship 

between K-convex subsets of E and non-.Archimedian seminorms on E, i.e., 

real valued functions p such that p()vc) = /À./p(x) and p(x + y) .::( 

max (p(x), p(y)) for aIl x, y E E, À. E K. For this purpose he chose 

a definition of a K-convex body in E independent of the topology on E 

(see [20], p.35?). He also proved Kolmogorov's Criterion for non

Archimedian normed spaces (ibid, p. 360) • Here, hOlvever.., he adopted 
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a topological definition of boundedness (p.353). We shall establish 

a relation between non-Archimedian norms and R-submadules of E using 

algebraic concepts on~. 

For the remainder of this section (with the exception of 

the last two paragraphs) K will denote a field with a non-trivial non

Archimedian valuation and E a vector space over K which may or may not 

be normed. We shall need the following result of Monna's: 

Lemma 2.1 

Let 8 be an R-submadule of E. Then for ./.., ~ E K with 

Il,,,,1 ;;:;, 1 ~ 1 <>< 8 is an R-submadule of E and ~8:::..(8 + 13 8. Canverse~, 

o E 8 and <>< 8 ::: ",,8 + ~ 8 for "", 13 E K with 1<><1 ;;:;, 1 I31 imp~ that 

8 is an R-submodule of E. 

Proof: 

8ee [20], p. 354. 

Definition 

A set S c E is said ta be equilibrated if ÀX E 8 for 

all x E 8, À.. ER, i. e ., if À.. E R * À. 8 c 8. 

Lemma. 202 

8 c E is equilibrated if and on~ if for .4.., I3 E K 

with 1a<1!;;:;, 1 ~I" (a< + 13)8 c .,(8. 

Proof: 

Let 8 be equilibrated and x E 8. 

Then (a< + ~)x ;:: ""(1 + ",,-~~)x with Il + c(-~131 ~ max (l, 1""-~13I)·;:: 1. 
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Hence (1 + ~-~~)x E 8 and inclusion follows. 

Conversely, let À E R. 

Put /\.= À - l so that tr-I < Ill. 

Therefore À8 = (1 +;M)8 c 1.8 = 8. 

Definition 

A set 8 c E is absorbant if for each x E Ethere exists a real 

~ > 0 such that x E À8 for aIl À E K with IÀI >..<. 

Lemma 2.3 

If 8 is an R-submodule of E, then the following statements are 

equivalent: 

Proof: 

(a) 8 is absorbant. 

(b) For each x E Ethere exists 0 :j; / E K such tha t x E 1\8. 
(c) 8 contains a basis for E. 

(a) ~ (b). 8ee [3], p.6, remembering that 8 is an equilibrated set. 

(a) * (c) because an absorbant set in E generates E (ibid., p.7). 
n 

(c) * (b). Let {ui} c 8 be a basis for E, x = ~ ~iui E E, 
i=l 

and 

= max I~il. 
Id.<n 

If I~kl = 0, 

IS 1 <><k 1 :j; 0, 

I<><k-~<><il < l for aIl i, 

Corollar;v, 

then <><i = 0 for aIl i, and x E 8 = 1.8. 
n 

then <><k :j; 0 and x = <><k( Z <><k -~ ~i ui.). We have 
'i=l . 

:E<><k-~~~ E S, and x E <><k8 • 

An R-submodule of E which contaj~s an absorbant submodule is 

itself absorbant. 

Definition 

We shall say that a set 8 c E is ~unded if for each 0 :j; x E E 
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there exists a real ~ > 0 such that ÀX ~ 3 for aIl À E K with IÀI >~. 
Olear~ every subset of a bounded set is bounded. Further, 

boundedness with respect to any norm on E (possib~ Archimedian) implies 

boundedness in the above sense (but TIot converse~; see example on p.14). 

Lemma 2.4 

Let E be a non-Archimedian normed space over K and 3 a sphere 

in E centered at the origine Then 3 is an absorbant and bounded R-sub-

module of E. 

Proof: 

Olear. 

Oorollary 

Every R-submodule of E which is contained in a sphere and 

contains a sphere centered at the origin is absorbant and bounded. 

RemarIe 

When a nonned space E is infinite dimensional an absorbant and 

bounded R-submodule of E need not be contained in a sphere, i.e., it may 

be unbounded with respect to the norm on E. Nor does it have to con'bain a 

sphere. In fact, its interior may be empty. 

Example (cf [29J, p.254). 

Let E ::: @K be the space of sequences in K "I-lith a finite number 

of non-zero terms. If the valuation on K is dense choose f E K such that 

Ifl > 1; if the valuation is discrete put f ::: n-1 • Then 

31 ::: { (~i) E E 1 I~il < 1,0 li, i E ~.J} and 

32 ::: {(~i) E E 1 I~il < Ipl-i, i E~} 

are absorbant and bounded R-submodules of E. But 31 is unbounded and 32 has 
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an empty interior with respect to the topology defined on E b.w the non

Archimedian norm /1 ("<i)rr~:= m~~ l''<i!' 

Theorem 2.1 - -
Let E be a vector space over K and S an absorbant and bounded 

R-submodule of E. Define II Il s on E by IIx/I s;:: inf 1 ÀI for aIl x E E. Then: 
xE ÀS ' , 

(a) II /ls is a non-Archimedian norm on E. 

(b) {x E E I IIxlIs < l} c S c {x E E I /lxH s < l}o 

(c) If the valuation on K is discrete" then WE c WK and 

S ;:: {x E E I IIx/l s < l}" 

Proof: 

(a) The first nOrm property (§l, po2) is an bmnediate consequence 

of the boundedness of S. The second property is evident. It remains to 

prove the strong triangle inequalityo 

Let x, y E E with IlxlIs ~ IIyIIS-

Then for aIl À E K with x E ÀS there exists lA. E K with y EfS 

and IÀI ~ I(I. 

No~" x + y E ÀS +~S ;:: ÀS by lemma 2.1. 

So IIx + ylIs < /lx/ls := max (lIx/ls, /lylIs) (cf [18J, p 53l.~). 

(b) Since /1 /ls is a seminorm, see [18J, p 535. 

(c) The first result follaws from the properties of WK, for the 

second, see [29J, p 256. 

Remark 

An Archimedian nOrm on E cannat be defined in the above manner 

by any subset of E. For, if S is to define a nOrm on E, we should have at 

least~ 

(i) S is equilibrated. 

(ii) (..< + ~)S :=..<S + ~S for aIl 0<, ~ E K. 
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The first condition gives for 1",1;;;.. 1 ~ 1 

(~+ ~)S c",S c",S+ ~S, 
while the second forces equalit,y. Renee S is an R-module in E so that 

any norm defined qy S will be non-Archimedian. 

Every non-Archimedian norm on a vector space E over K 

determines a unit sphere which is an absorbant and bounded R-submodule 

of E. Converse~, every absorbant and bounded R-submodule S of E defines 

a non-Archimedian norm If I/s on E. Further, if the valuation on K is 

discrete, then S is the unit sphere for 1/ I/S. It does not follow, however, 

that if S is the unit sphere for a non-Archjllledian norm 1/ Il on E then I/xll S= 
I/xll for aIl x E E. In fact, we already ImOloJ that this cannot happen in 

the discrete case unless the value set of the norm on E is contained in the 

value group of K. The actual state of affairs resembles close~ the 

situation described by Monna for seminorms (see [18J, p.53l). 

Lemma 2.5 

Let Il /1 be a non-Archimedian norm on E, S the corresponding 

unit sphere, 

(a) 

(b) 

and /1 1/ S the norm on E determined qy S. Then : 

If the valuation of K is dense, Ilxll = I/xl/ 'rJ x E E. 
S 

If the valuation of K is discrete, Inl I/xll S < /1 xli < Il xl/ S' x (E E. 

(c) In the discrete case I/xll = IIxllS 'rJ x E E if and only if the 

value set of 1/ Il is contained in the value group of K. 

Proof: 

l'Je have for x E E, À E K 

I/x/l < /À/ ~ x E ÀS so that I/xl/ < inf /À/ = I/xl/s. 
xEÀ.8 
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If the valuation of K is dense." 

IIxil < I/xlls ~ 3;- E K such that IIxll < I~/ < inf ./11./. 
1 x EÀS 

Then x 'EjS and x ~ jS!: Hence Ca). 

If the valuation of K is discrete, 

inf 111.1:= Inln for sorne n E 72-. 
xEÀ.8 

If I/xl/ < Inl n+l , then x E nn+l S with Inn+l[ < inf 
xE À.8 

Which is a contradiction. Thus 

Inln+l < IIxil < Inln 

and bath Cb) and (c) follow immediately. 

Remark 

Instead of the unit sphere the open sphere S 0 := {x E E 1 Il:xII < 1} 

may be used to establish the norm 1/ "S on E (cf [18J, p.530). We then 
o 

have: 

Ca r) Ilxll:= Ilxll S V x E E, if the valuation of K is dense. 

(b') Inl Il xli < Il xli < Ilx/l , if the valuation of K is discrete. 
So So 

(c' ) In the latter case, W c W ~ Inl I/xll := IIxll. 
E K Sa 

We recall tha t twa no:::ms Il 1/1 and 1/ /12 on a vector space E are 

said to be equ~valent if there exist two positive reals a and b such that 

al/xl/1 < //X/l2 < brrxll1 V x 1: E. 

Lemma 2.6 

Let /1 /1.1 and /1 /12 be a norm on E determined by the absorbant 

and bounded R-subrnadules Sl and S2 of E such that Sl. C 0< S2 , .te. E K. Then 



"") .. 
'-"-,~ 

) 

17. 

Proof: 

We have 

Renee 

Ilxl/2 = inf IJAI < inf 1 MI 
Corollarl, 

XE~ S2 . xEMS2 ' 

Theorem 2 .. 2 
~ , 

Let Il /l be a non-Arehimedian norm on E and M an R-submodule 

of' E sueh that {x E E 1 fi xII < l} c M c {x E E 1 /lx/! < l}. Then M 

determines a non .... Archimedian norm on E equivalent to If /1. In fact,:. fi the 

valuation on K is dense, f/x/lM = /lxll for aIl x E E; if the valuation of K 

is dis crete, then 'r/X. E E 1 rrll/xllM ~ Ilxll < /lx/l
M

• 

Proof: 

The given inclusion relation implies that M i8 absorbant and 

bounded s 0 tha t /1 fi M is a non-Archimedian norm on E. 

Thus the equality in the dense case and the inequali"ty in the 

discrete case follaws from Monna/s results (see [18J, p 537). 

RemarIes 1. 

10 Equivalence in both cases may also be proved as follows: 

With the notation of lemma 2.5 and the remark which follaws 

it, we have jA.S c Sa' Irl < l, in the case of di8crete valuation and 

rrS = So when the valuation on K is discrete 0 Thus, the given inclusion 

and the corollary ta lemma 2 0 6 impJy that /1 /lM i8 equivalent ta /1 /ls 

which is equivalent ta Il 1/ by lemma 2.5 0 

2 Q The equivalence of Il. Il and Il. Il. s in the case of dis crete valuation 
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(as well as the equali ty of S and the unit shere of Il Il S) has been mentioned 

by Fleischer ([8], p 168). Serre/s equivalent norm for the same case defined 

by IIxll" ::: inf {i/d E WK 1 Il xII < IÀI} ([26], P 69) is our Il Ils. 
We conclude this section with some remarIes coneerning the 

case of trivial valuation on the field K. Obviously the definitions of 

absorbant and bounded sets may be erlended to a veetor spaee E over sueh 

a field. However, sinee now the R-submodules of E are preeisely the sub~ 

spaces of E, the only absorbant R-submodule of E is E itself. Sinee E is 

bounded it defines a non-Arehimedian norm Il liE whose value set is elearly 

{l}. Conversely, if E is a nOlmed space with WE ::: {l}., then E is its own 

unit shere and IIxl! ::: IlxllE for ail x E E. 

With the help of a concept of Serre 1 S (ibid .. ) these 

observations may be combined with previous results (lemma 2.5) to obtain 

the following theorem: 

Ii' E is a non-Archimedian Ilormed space over a valuated field 

K and S is the unit shere jn E, then IIxll ::0 IIxlls for all x E E if and only 

if WE C W}<) where WK is the elosure of WK• 

§3. Linear Trans,formation,s and Normed Algebras. 

Let K be a non-Archimedian valuated field, E~ and E2 vector 

spaces over K, and T a linear transformation from E~ to E2• Since a 

linear transformation is an R-module homomorphism, ·~he image T(S~) of an 

R-module S~ C E~ and the inverse image of an R-module S2 C E2 are also 

R-modules (cf [18], p 533~ [20], p 355). 
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Let norms Il II~ and Il 112 be defined on E~ and E2 respectively. 

T is said to be p,o:unded if there exists a real c > ° such that fIT(x)1I2 < cllxl/~ 

for every x E ~ 0 The follow:lng theorem is an exact counterpart of a weIl 

lcnown result for normed spaces over IR. or ct (see [27], p .219): 

Theorem 3.1 
• 1 

Let E~ be a non-Archimedian normed space over a field K with 

a non-trivial valuation. Let Ez be an arbitrary normed space over K, T a 

linear transformation from El to E2' and S the unit sphere in El. Then 

the following statements are equivalent: 

?roof: 

(a) T is bounded. 

(b) T is continuous. 

(c) T(S) is bounded with respect to the norm on Ezo 

(a) ~ (b) and (c). 

Clear. 

(b) ~ (c). 

Since the valuation on K is non-trivial, there exists f E K with 

Ifl > 10 

If T(S) is unbounded, then for each n E ~ there exists x E S with 
n 

n 
fIT(~)1I2 > If 1 0 

or t -.L_ .!.Je y =.0 -x • 
n j n 

Then so that Yn ~ ° as 

= ff T(;x,,)lIg > 1 for aIl n E ~. 
Ifln 

Thus T(y );-.... 0, contradicting the continuity of T. 
n 

(c) ~ (a). 
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Suppose T(S) is contained in a closed sphere centered at the 

origin with radius k. 

Clearly the result holds if x ~ O~ 

For 0 f x E E, x E ÀS, À E K => rlxlll. < IÀ/, so that À-l.x E S. 

Hence, IIT(x)1I2 <k and IIT(x)112 <kIÀI .. 
lÀ 1 

Therefore, IIT(x)1I2 < k inf IÀI = le IIxllc 
ù xEÀ8 . 

The required result follows from the equivalence of Il IIi:!. and Il IlS. 

In fact.; IIT(x)rl2 < c rlxl/J. for aIl x E E where c "" k if WE c WK 1. 
k 

and c < R in the remaining case .. 

Remark 

The equivalence of (a) and (b) was proved by Monna without the 

as sumption tha t Il /1 1. is non-Archimedian ([ 15 J.9 pp 1134-1135).. The 

equivalence of (b) and (c) is essentially a special case of a theorem 

proved by van Tiel for certain classes of K-convex topologi'cal spaces 

(see [29J, p.269). 

Let ~ (El., E2 ) be the space of bounded linear transformations 

from El. to E2' where for the moment we permit the valuation on K to be 

trivial. Then 

IIT/I Jl 2::: sup /1 Tex) /12' ~ inf {c 1 IIT(x)/l2 < c /lxIIJ.};' T E '@, 
., Cl FX€ EJ./I X /Il. x E Eloi. 

defines a norm on S (Eu E2 ), called the :!?E.und of T, such that 

I/T(x)1I2 < IITlIl. 2 Ilxlll. for aIl x E El.. , 
If WEJ. c WK, then for aIl T E (}3 

I/T111.,2 :; 1I~1~-::l/lT(x)112 .. 
J. 
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Another nom on ~ ia given by 

IITI/S:= sup I/T(X)1/2= inf {le 1 I/T(x)//z < le}, T E Ga We have 
xES xES 

//TI/S < //TI/:n. ~z for aIl T E B. 
If the valuation on K is non-trivial, then OB (Eu Ez) is 

the space of continuous linear transformations from E~ to Ez and the two 

norms on 53 are equivalent. In fac"t, 

WEJ. c WK =:> IIT//s = I/TI/~,2 for aIl T E 63 (cf [26J, p.71), so 

that 

I/T(x)//z < II T// s I/xll~ for aIl x E El. (cf [21J, p.124). 

Both norms on L2:> will be non......Archimedian if 1/ //2 is non

Archimedian. If the valuation on K is non-trivial and WEl. c"Wi:( , "ZÇC3 

will be a complete normed space whenever Ez is complete,for the proof 

in [27], po 221, will hold in this cas e (cf [26 J ) • Fïnally, if the 

norm on Ez la discrete, then there exists 0 1 x E S sueh that 

//T(x)l/z = I/TI/S • 

Since a dis crete norm on Ez implies WK = ~( , the above 

assertions yield the following result (cf [21J, [26J): 

,Theorem 302 

Let El. and Ez be non......Archimedian normed spaces over a field 

K with non-trivial valuation such that WE:t C -w;( . 
Let ~ (El., Ez) be the space of continuous linear transforma-

tions from E:t to Ezo Then 

I/TI/ = sup //T(x)//z, T E -~) 
I/xl/l.<l 

defines a non-Archimedian norm on 0 (El' Ez) such that 

I/T(x)//z < Il Til I/xl/ l. for aIl x E E:t. 

If Ez is a Banach space, so is 1@> (Ev Ez). If the norm on Ez is discrete, 
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th en Il Til == !:IUp IIT(x)//2' T E8, 
IIx//J.==l 

and there exists Xo E Er. wi th // xoli: = l such tha t 

IIT(Xo)//2 = //TII 0 

Remé'.rlc 

Since Theorem 3.1 is trivial~ true if WE = WE == {l}, Theorem 302 
J. 2 

will also hold L~ this case. 

Corollary 1. 

Let K be a field with a non-dense valuation, E a non-Archimedian 

normed space over K such that WE IC WK, and f a continuous functional on E. 

Then 

/If Il :=: sup 1 f (x) 1 

IPc/l =: l 

is a non-Archimedian bound for f so that 

1 f(x) 1 ~ Ilfll /lx/l for all x E E. 

Further, there exists Xo E E with /lxoll = l such that 1 f(~) [= /lf/l .. 

Definition , 

Let A be an algebra over K. A non-Archimedian vector norm 

/1 Il on A will be called a non-Archim,edian algebra norm if it satisfies 

the additional conditions: 

(4) //xy/l ~ /lx/l I/y/l for all x, y E A, 

(5) //1/1 = l • 

A is Imown as a non-Archimedian Banach algebra if it is a non-Archimedian 

Banach space. 

We note that property (5) implies WK c WA• 
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, If -oj (E) i8 the algebra of bounded linear operators on a 

non-Archimedian nOl~ed space E, then 

"TIIJ. J.:=: sup "T(x)// , T E -,0\ 
, " 0 f xE E /1 x 1/ ' 

defines a non-Archimedian algebra norm on B (E) (for proof of (h) see [23], 

p. 76) • We thus have an addi tional corollary to theorem 3.2 

Corollary 2. 

Let E be a non-Archimedian vector space over a field K such 

that WE c WKo Let 1Y'6 (E) be the algebl'a of continuous linear operators 

on E. Then 
.. " ... '- '" ..... . 

IIT/I == sup /lT(x)/I , ,T E 72>, 
/lx/l<l 

-; .. 

defines a non-Archimedian algebra norm on 0:) (E) such that 1'J;13 c W
K 

and 

/lT(x)/I < /lT/I /lx/l for ail x E Eo 

ù'":) (E) i8 a 'non-:Arch:iJn~dian Banach algebra if E is a non-Archimedian 

Bana,ch space. If the nom on E i8 discrete,. then 

/lT/I == sup /lT(x)/I, T E ù3, 
/lxll== 1 ' 

and there exists Xc E E ~ith /lxoll == l such that 

/lT(xo)/I == /11'/1. 
" In this case, 'Wo1 == Wi( 

We shall see that an algebra over a :non-Arch:l.median valuated 

field maylvell have an Archimedian norm o This cannot happen, hOHever, if 

the algebra. is commutative and its norm is multiplicative.. In fact, we 

have a somewhat stronger result: 

l'heorem 3.3 

Let A be a commutat:l.ve algebra over a non-Archimedian valuated 

field and /1 Il a norm on A such that I/x2 /1 == Il xII 2 for aIl x E A. Then 1/ 1/ is 

no:p-Archimedian. 
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Proof: 

2n 2n 
By induction, IIx Il::; 1Ix/1 for every n E ~. 

Let a, b E A with Ilall > IIbll. Then 
n n n n 

lia + b/l~ ::; lI(a + b)2 1/. = Il ,[ (in) a 2. -~ill 
n i::;O 

.o;;;i~lI( f) a 2n_~j-u., by property (3), 

= [, l(in)llIa2I\.~i/l, by property (2), 

.0;;;[ /la2n_~ill, sinoe 1 1 is non-Archimedian, 
, " 

n 

.0;;; [llall2
n
- i ll bll\ by property (4), 

i::;O 
0n 

.0;;; (2n + l)/lal/ c 
0 

Henee, lia + bll .0;;; (2n + 1)1/2TIllall for every n E N. 
Letting n ~ 00 we get 

lia + bll .0;;; lIa/l ::; max (lla/l, Ilbll). 

Lemma 3.1 

If A is a non-Archimedian normed K-algebra and S is the unit 

sphere in A, then S 1s an R-subalgebra of A, where R is the valuation 

ring of K. The set. 

Q =: {x E AlI/xII < 1} 

is an algebra ideal cf S. 

Proof: , 

Clear. 

,Theorem 3,.4 

With the notation of lemma 3.1, let'<f.t (S) be the Jacobson 

radical of S. Then: 
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(a) If X E A and [:x? ls convergent, 

n=O 
of l - x and 1/ (1 - x)-J./1 ~ max I/:x?/I • 

n 
è:l 

00 

then l:x? is the inverse 
n=O 

(b) If x E Q n O'i,(S), then L x? converges -to (1 - x)-J. E S. In 

fact.'! III - x/l = Il (1 _ x)-J./I = 1. n=O 

(c) If A is complete, then Q c ~ (8) .. 

Proof: 

AlI the assertions are immediate consequences of lemma 3.1, 

item 3 of §l,; and the following lmown results 1 
co 

1. If A is a normed algebra over a valuated field~ x E A, and n~:x? 
converges, then l - x i8 invertible and (; - x)-J. = n~:x? Converse~, 

if /lx/l < land l - x is invertible, then n~ xn converges to (1 - x)-J.. If 

A ia complete and /lxll < l, then l - x has an inverse in A ([ 4], pp 75-76). 

2. The radical of a ring S is the largest ideal l .such that, for aIl 

x E l, l - x is a unit (1;.12], p 57) .. 
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CHA.PTER 2 

Norms and Bounds on Finite Dimensional Spaces 

§ 4. m N orms on K .• Dùali ty • 

Let K be a valuated field and E a finite dimensional vector 

space over K. If K is complete, then aIl norms on E are equivalent ([1], 

p.95). If in addition the valuation of K is non-trivial, then aIl m

diemns ional normed spaces over K are topologically is omorphic (E3], p. 27 ; 

for non-Archimedian spaces see [5], p.695). For each is topologically 

is omorphic to Km normed wi th ri 1100 and hence to If! wi th the product 

topology ([4], pp 67, 69). 

On the other hand, without special assumptions about K, aIl 

the Hglder norms on E are equivalent to Il 1100. So is any non-Archimedian 

norm for which E has an orthogonal basis {UÛJ.~ i ~ m ([17], p.464). For 

then 

If 

m 

x = L d'iui => Ilxl/ = mp: I/~uil/' 
i=l 

I/xl/ 00 =: mrc 100il 

I/xii C1J mtn iluill ~ 1.4 1 I/ull/ ~ max Il,,{. uill ~ I/xl/ max I/uil'. 
l( Ci]. OOi 

Again, when E is finite diemnsional over a valuated field K, 

convergence to zero with respect to any norm on E is equivalent ta 

coordinatewise convergence, for the prQof referred to in [28], p.253, will 

hold herse Hence aIl linear transformations from E to an arbitrary normed 

space over K are continuaus and bounded. The baundedness is obvious "t-lhen 

the valuation on K is trivial and follows from the remarIe after theorem 

3.1 in the non-trivial case. We calculate the baund of a linear 
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transformation between finite dimensioral non-Archimedian normed spaces 

with orthogonal bases. 

Theorem 4.1 
Let E~ and E2 be finite dimensional non-Archimedian normed 

spaces over K with orthogonal bases {uj}l<j<n and {vi}l<i<m • Let 

T be a linear transformation from ~ to E2 • 'rhen the bound of T is given 

by 

where (~j) is the matrix of T with respect to the given bases. 

Proof: 

Then 

Let 0 1 x = l § jU j , I/xl/~ = mjx 1/ ~ jUjl/ = 1/ ~ kUkl/ • 

j 

T(x) = L ~j ~ j vi and 

i,j 

I/T(x)1/ 2 = max II~ij~jVill = [~ql l~qll/vpI/2' say. 
i,;j 

We have 

I/T(X)1/2 = 1"1> qll~ql I/vp l/ 2 

1/:xJ/ ~ 1/ 1 kUld/~ 

= 
1 ~q 1 Il g qUqllJo • I/ Vp l/ 2 

1/ 1 kUk"~ f1 uqlll. 

I~l I/ Vpl/ 2 
< pq 

Iluqll~ 

Thus 

sup 1/ T(x)1/ 2 <:; max 1 <><i,i Illv il12 = / ~rsl I/ vr l/ 2 , 
O·lxEE I/Xl/l. i,j 

lIujl/~ I/usl/~ r ~ 

Now put x = Us • 

say. 
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Then, 

/lT(u )//2 /1 ï <><isVi 16 mrc /I<><isvi/l 2 l "'rs 1 /Iv rll:a s 
== == = -

/lus/lJ. IlusllJ. Ilus/lJ. /lusll'J. 

So, 

/1 Tif J. 2 == 
l.t!:rs 1 /1 v r/l:a = max f~;ll /lvil/:a , 

/luslf J. i,j Iluj/lJ. 

Coro~I.la!Z 

Let E be a non-Arehimedian nonned vector spaee over K with an 

orthogonal basis {ui } . 0 Let T be a. linear operator on E. Then the 
l<J.<m 

bound of T is given by 

/1 Til =max 
J.,J. i, j 

l''<ij 1 I/~II 

Il u j Il 

where (<><ij) is the matrix of T with respeo"[; to "the given basis. If also 
... 

WE c: WK, then 

Let K be a valuated field. An algebra norm on K will be 
m 

called a ~t;rix norm 0 We note tha t this defini tion implies t.ha t Il l Il = 1. 

Sinee I~ may be identified with the algebra of linear operators" on Km, 

"every veetor norm on Km in determining an operator bound also determines 

a matrix nOI1n 

lub (A) = sJP IIfx1f.., A E I~.? 
x r 0 I/xii 

whieh may be ealled a matrix boundo 
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From now on we talce E:: lcffi. Lower case Latin letters will 

denote column vectors while ordinar,y capitals will stand for matrices. 

If a vector and a matrix norm satisfy the condition 

/lAx/l < /lAII /lx/l 
for ever,y x and A, t.hen the wo norms a.re said to be consistent. A bound 

is of course consistent wi'(jh the corresponding vector normo The following 

reslllts lcnown for IR and ([;. remain valid for K 1 

For any matrix norm and for the bound associated with a 

consistent vector norm 

r(A) < lub CA) < /lA/I, 
where r(A) i8 the spectral radius of the matrix A ([9J, p.45)n If y is a 

fixed non-zero vector, then for any matrix norm 

/lxll ;= /I:xy' /1 

defines a consistent vector norm ([13J; in [9J the Hermitian transpose is 

used throughout). If follows tha t for a ma trix norm to be a bound it is 

sufficient that the norm be minimal (cf [13J). The converse has been 

proved by Ljubi~ for real matrices (ibid). The follmving theorem is 

weaker than the corresponding results in IR m 
• 

Let K be a valua ted field and /1 " a norm on KT For all x E lm 
let 

/1 x//' .... :: sup 1 x'y 1 

y.?O /ly/l 

Then: 

(a) "" .... is a norm on lm . 
(b) Il 11''( is non-Archimedian if and only if the valuation of K is 

non-Archimedian. 

(c) 
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Proof: 
l' 

AlI the assertions follow from the fact that 1/ I/'-..'r is the bound 

of a linear functional generated Qy x. 

Corcllar.r 1. (see [13]). 

For the·boIDld associated with 1/ 1/ 

lub (:xy') = I/xJ/· I/yl/"\ 

,Proof: (cf [13]): 

lub (:xy') = sup 
zr 0 

I/:xy'zl/ = 

1/ zl/ 

Corollar.r 20 (cf [9], p.43). 

I/xl/ sup [y/zr = 
zr 0 I/zl/ 

For aIl x, y E lm , A E K 
m 

/x'Ayl < I/xl/ ..... I/yl/ lub (A) = lub (yx') lub (A). 

Definition 

I/xll I/yl/* • 

Since 1/ 1/-«( is a norm on the dual space of lm it will be ca lIed 

the dual n~ of 1/ Il;. 

Remarks 

1. As d~tinct from the situation· in IR m in general duality 

i8 not an involutory relation. Ta see this we need onJy consider an 

Archimedian norm on lm when K is non-Archimedian. 

contradicts (b). 

It follows from (c) tha t Il eil/ 1/ e~r\'( ;;, 1. 

are the unit spheres for 1/ 1/ and 1/ 1/\'( respectiveJy, 

eiE S n S\'( ~ lI ei l/ = 1/ e~/\" = 1. 

,~ 

Thus, if S and S' 

If this condition is fulfilled for aIl i, then for aIl i, j 

lub (eiej") = 1 and /..<ijl < lub (A). 
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Lemma 4.1 (cf [13]) 

Let le be a valuated field. If norms /1 Ill. and Il /12 are 

defined on lm, then for the corresponding bounds 

lubl. (A) = lUb2 (A) ~ /lx/ll. = allxll2 for some a > OG 

Prooft 

One implication is obvious and the other follows from corollary l 

to theorem l.t..2. 

Lemma 4.2 

Let le be a valua ted field. lJet /1 /1; be a norm on le and 
m 

suppose that for each matrix A there exist vectors x and y with /ly:;.;:'11 = l 

such that [x'Ayl = /lA/I. Then /1 /1 is minimal. In fact, /1 1/ is a bound. 

Prooft 

Let.1/ Ill. be a matrix norm such that /lAl/l. < /lA/I for aIl A. Then 

for the bound associated with a vector norm consistent with H/ll. we 

have 

lUb(yx') < /lyx'/Il. < /lyx'.11 = 1. 

Hence by corollary 2 to theorem 4.2, 

lx' Ayl < lub (yx') lub CA) < lub (A) < IIAII l. < /lAI/" 

and the given condition forces 

lub (A) = /lAlll. = IIAII for aIl A. 

It is Imotm that when K = IR or K = <G non-zero vectors 

may be found for which equality holds in corollary 2 to theorem 4.2 

(see [9])n If these are suitably normalized, then the conditions of 

lemma 402 are satisfied and we obtain an alternative proof of Ljubi~'s 

theorem: 
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When IC = IR or IC ::: ([, , a ma trix norm on IC is a bound if and 
m 

onJ.y if it is minimal. 

I"~ is lmown that every Archimedian valuated field is 

topologicalJ.y isomorphic to a subfield of ([ valuated with the ordinary 

absolute value ([28], po246). AccordL~gJ.y in this case it is customary 

to take IC = IR or IC::: <L.. 0 Further, ENery norm on IR m or ([. m is 

d8termined by its unit sphere which is an equilibrated convex boqy ([6], 

pol08,; [9], p.41). Theorem 2,,3 shows that this statement remains true 

for certain norms on Km wh en K is non~Archimedian, where however S is an 

absorbant and bounded R-module. Writing Il Il ::: Il Ils we have in aIl cases 

lub CA) = sup Il.kx11s = lubS CA) • 
xES 

We also have (cf [9]): 

Lemma 4.;3, 

Let K be a non-Archimedian valuated field, K ::: IR or K::: ([,. 

Let S~ c Km be an absorbant and bounded R-module if IC is non-Archimedian 

and an equilibrated convex boqy in the other cases. If the matrix P i8 

non-singular, th en for x E lm, A E Km 

S2 ::: PSJ. => IIxJl s ::: 1IP"'J.x ll s and lub
S 

(A) ::: lub
S 

(p-1L.Ap). 
2 J. 2 J. 

Proof: 

We may assume that IC i8 non-Archimedian. Then S2 is an absorbant 

and bounded R-submodule of I~. Fur'ther, 

'ri "- E K, x E ,,-Sz Ç:=> p-J.x E"ASJ. • 

Renee, inf l "-/ ::: inf / "-1 0 

x lE "AS 2 p-J. x lE "-SJ. 
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Alsa, sup 
xfo 

::: sup 
xfo 

33. 

/lP-~/ls 
~ 

The required results are now abtained by a reference ta definitians. 

Cal'alla:r:v 
l, 

S2 ::: ~ Sl. , ~ lE K => /lx/l S ::: Il''<1 /lxll and lub
S 

(A) ::: lubS (A). 
1. S2 1. 2 

Let K be a nan-Archimedian valuated field. Consider the nan-Archimedian 

norm an I~ defined by 

!lxlLx> ::: mïx ~ g i ! . 
The unit sphere of If /100 is the cube N ::: {x E I~ 1 ~ il < l, l < i < m}. 

We have WKm = W
K 

so that by thearem 2.3 

/lxI/ oo ::. /lx/lN for aIl x E Km • 

It follows from § 3 that 

while theorem 401 gives 

Definition 
,., -

When the valuation of K is non-Archimedian we shall describe 

as natural the norm and bound defined above. 

The natural norm is self-dual. For, if /lyllN = l, then 

Ix'yl < max I~i~i 1 <max I~il ::: I~kl say, 
i . , 

and equality is attained for y = ek " Since 

W m ::: W => I/x/I""(::: sup Ix'yl, 
K K l/yllN::: l 

we have 



Further, 

indieates that for eaeh x and for eaeh y there exists a non-z~ro veetor 

sueh that equality holds in (c) of theorem 4.2. 

Again, if ~a: I~ijl ::; I~ l, then 
~,J . rs 

so that qy lemma 4.2 the natural bound is minimal. 

Final1J", l' liN is the only non-Arehimedian norrn on Km for 

whieh (with the notation of the remark after theorem 4.2) ei ES n S* 

for aIl io For, if IlL~ 1 ::; max Il 'li l , 
. i 

'·'le 1 ::; 'et/yi ~ 1/ ~~ Il''( llyll ::; l'yI/ < m~x I/Yli 8il/ ::; max ''l?,il. 
~ i 

Henee I/yl/ :=: max l"lil ::; 'Iyl/N for aIl y E Km 0 

GN :=: {x E Km 1 1 à i 1 ~ 1 i' il, l ~ i ~ m} 

. m 
also defines a norrn on K and a eorresponding bopnd on ~, whieh may be 

ealled a g-norrn and a g-bound respeetively (see [9], p 45). Blf lemma 4.3 ,. 

we have 

I/xl/GN :=: m~x IYi-~~il and IUbON(A):=: max Ii'i-~.,(iji'jl. 
~ i,j 

It may be shawn that the dual of 1/ Il GN is given by 
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Remark 

The non-Archimedian bound which corresponds to -t,he natural norm 

should be compared with the cubic bound for real matrices (see [6], p 108). 

On the other hand, a slight modification of the calculation in [6] shows 

that, even wh en K is non-Archimedian, the bound associated with the 

m 
Archimedian norm Ilxfl = l 1 § i 1 on lm is given by the same formula as in 

i=l· . 

the real case. For its dual, however, we have 

verifying that duality need not be involutory. 

Let K be a valuated field. If fi 1/ is a matrix norm, then 

for the bound associated with a consistent vector norm we have 

so that 

l ~ max /1 ei ej/l := n(J) say (theorem 4.2). 
i,j 

Further, for aIl i, j 

Therefore, 

~. !IAII. 
n(J) 

If /1 /1 is non-Archimedian, then 

/lA/I ~ max flo<i.e.e~1I ~ n(J) lub (A) 
i,j J 1. J N 

We have proved the following theorem: 
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Theor,em 4.4 

If Il Il is a non-Archimedian matrix norm, then 

lu~(A) < IIAII < n(J) lu~(A) 
n(J) 

where n(J) = max lIeiejll. 
i,j 

Corolla:r;v 

A non-Archimedian matrix norm is the natural bound if and 

only if max lIei ej/I = 1. 
i,j 

§ 5. The Polar"Norms and Bounds on K 0 

m 

Let K be a valuated field. m The pol~ of a set S c K is 

defined by 

S' = {x E Km [. u E S ~ Ix'ul < l}. 

The follO't1ing lemma is analogous to a resul t in [9], P .L~2. 

Lemma 5.1 

If the valuation of K is non-Archimedian and S is an absorbant 

set in lm, then S~ is an absorbant and bounded R-submodule of Km. 

Proof: 

Let u E S. 

Then for x, y E S' and À, /~ E R 
.1 

1 (ÀX +/y)'u/ < max (lÀ/ Ix'u~, ytl Iy/ul) < l 

so that ÀX +/y E S' and S'is an R-submodule of lm. 
To show that S' is absorbant, let x E Km and x/u == / E K. 

If Î == 0, x E S' =: l·S' ~ otherwise XE/S' (see lemma 2.3) .. 
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m 
Again, let 0 f: x E K. Sinee S is absorbant there exists u E S 

sueh that x'u f: O. Let ..( = Ix;ul • Then for aIl A E K with IAI>..( 

1 (Ax)'ul = lAI 1 x'u /: = 

so that Ax ~ S'and S' is bounded o 

Now suppose that S itself is an absorbant and bounded R-module and 

that a non-Arehimedian norm /1 Il = Il /ls is defined on Km Il Then '''Km c WK 

and 

IjxJl''o = sup 1 x'yf, x E lm. 
yES 

Moreover, S' is the unit sphere for /1 "if and the set of valu.es of /1 /1;'( is 

-eontained in WKo Renee 

/lx/l;'( = Ilxll S' for aIl x (E Km 0 

If the valuation of K is non-dense; then by eorollary l to 

theorem 3.2 

IIxJl s ' = sup Ix'yl 
Ilyll~l 

and for eaeh x (E Km there exists a vector y 0 l-1ith /Iy 011 S = l sueh that 

Ix'Yol = IIxlls,I/~ls • 

In this case duality is an involutory relation, for we also have 

To see this put I/yl/;'( = sup Iy'xl 
/lxll =1 

S' 

theorem 4.2 /lyll* ~ /lyllso Further, there exists Xo E Km with /lxol/s,= l 

sut;h tha t /lyll .. l( = 1 xbJr 1. Therefore, 



I/xoii s.,//Yll-tr = ~x6Y1 ~ Ilxolls,l/yj/s 

and I/yll* = I/yl/s. 

We have proved the following theorem C cf [9]): 

Theorem 5.1 

Let K be a non-Archimedian valuated field and S an absorbant 

and bounded R-submodule of lm. Let 

Then: 

Ca) Il Il is a non .... Archimedian norm on Km such tha t 
S' 

Cb) If the valuation on K is non-dense, then 

Ilxll , = sup Ix'yl 
s /ly/l =1 

S 

and Ily/l = sup Ix/yl. 
s /lx/l =1 

S' 

Further, for each x E lm there exists a vector Yo with /ly Il = land 
o S 

for each y if Km there exists a vector Xo with Ilxolls .. = l such that 

equality is attained in Ca). 

Q.2rollar.v l 

If the valuation of K is non-dense, then the bound determined 

b,y S i8 minimal. In fact, for each matrix A there exist vectors x and y 

with lubS(YX.:f) = l such that 

Ix'Ayl = lUbSCA). 

Proof: 

By Cb), for each y E Km there exists a vector x with Ilx /1 , = l 
o 0 S 

such that 1 x~AYI = Il AyIIS • By corollary l to theorem 3.2 there exists y 0 
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qy corollar,y l to theorem 4.2. 

Corolla!7 2 

If' the valuation of K is non-dense, then the b01md of A with 

respect to S is the bound of A' with respect to S'. 

Proof 1 

See [9.]. 

We observe that it has been possible not on~ to extend the 

area of application of Ljubi~'s theorem but also to obtain different 

necessar,y and sufficient'conditions. These may be summarized as follows: 

Theorem 5.2 

Let K be a valuated field o For a matrix norm on I<"m to be a 

bound it is sufficient that for each A E ISn there exist vectors x and y 

with /Iyx'/I ::: l such that 

Ix'Ayl :::: /lAII. 

This condition is necessary in the following cases: (a) K ::: IR 

(b) K;: (C. , (c) K is non-Archimedian and the ma trix bound is na tural, 

(d) K is non-Archimedian with a non-dense valuation and the bound is 

associated with a non-Archimedian nom on I~ for which WKm c WI( • 

RemarIe 

For complex matrices Ix'Ayl may be replaced by [xHAyl or Re xHAy 
H' 

while yx' becomes yx • 
The next theorem should be compared with weaIeer results for complex 

matrices (see [9], p.46) • 
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Theorem 5.3 

Let K be a field lvith a non-trivial non-Archimedian valuation 

and let K conta:in aIl the characteristic roots of A E I<"m. Then there 

exists an absorbant and bounded R-submodule Self! such that if r(A) ::: 0 

lubS(A) is arbitrarily small and if r(A) f 0 IUbS(A) = r(A). 

Proof: 

In vieH of lemma 4.3 1-1e need consider only the Jordan connonical 

form of A and :in fact only the Jordan black belonging to À, where À is 

a characteristic root of A such that lÀ! = r(A). Let W(e) ::: diag(l,e,e2 , ••• ), 

where 0 < ! e! < 1 ÀI if À f 0 and 1 el> 0 otherl-1ise. Then 

IV( e) ... o 0 À 0 o 0 

l À o •• o 0 e À o 0 

o 0 l À o 0 e À 

The natural bound of this matrix is equal to lei if À = 0 and ta IÀI if 

À f O. 

Let K be a valuated field.. T(J preserve un if a rmity of 

terminology He shall calI 

U ::: {.,< <E K 1 1"<1 ::: 1 c>('~1 ::: l} 

the grouEr of units of K. For any norm on I<"m the condition number of a 

non-s :ingular ma trix A will be defined by 

c(A) = /lA/I /lA"'~/I. 

Definition 

will be 

and that 

Let 8 be the unit sphere oi' a norm on I<"m. A ma trix B E 8 ' 
called 3 -illlitary if it has an inverse in 3 . 

It is clear tha t B i8 8 -uni tary if and only if /1 B/I = /1 B-~/I :=: 1 

8 -unitary matrices form a multiplicative group 1L which may be 
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called the S .... Ullitary group of the nOIm on I<)n0 If B (E LA., then 

c(B) ::: 1 and IIBxll ::: "xiI 

for every consistent vector norrn on I~. Conversely, if B is non-singular 

and IIBxlI == 1Ix/1 for all x; then B belongs to the .~ -unitary group of the 

associated bound. 

Lemma 502 

Let the matrix B be non-singular and have a non-emp~ spectrum. 

Then B <E Ufor a nom on I<"m if and only if c(B) ::: l and the spectrum of 

B is contained in U. 

Proof: 

Let À E K be a characteristic root of B. 

B <E L-l implies that 

1 ::: 

Conversely we have 

::: l 

sa that c(B) ::: l forces equality. 

Lemma 503 

Let C be a non-singular matrix with a non-emp~ spectrum. 

Then for any norm CtU I<1n cC C) ::: l if and only if C :::..Œ for some 0 f .J( E K 

and B rE U. 

Proof: 

Let {Ài}l;" i l be the spectrum of C such that 1 À11 ~ ••• ~ 1 À/. 
~ ~< < 
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cCC) == l implies that 

forcing equality. 

Let"" (E K such that 1""/ _. / "'i/ for l < i < k. Then by lemma 5.1 

B == "" .... J.c (E LA- ~ 
Since the converse is obvious, the result follows. 

,!heorem 2.4 
Let K be a non-Archimedian valuated field, K == IR or K == ([. 

Let Il Il be a norm on lm with the proviso in the first case that Il Il be 

non-Archimedian with W
lcID 

c W
K 

0 Then a non-singular matrix C = .,(8, 

o f ..( E K, B 'E lA for the associated bound on K if and on~ if m 

lub (C ... J.AC) = lub (A) for all A E l~ 0 

Proof: 

Since the conclusion is obvious when C has the required form, it 

suffices to prove the converse. 

Let S be the unit sphere in Km. Then in all cases IIxll = IIxlls and 

m 
lub (A) = lUbS(A) for all x E K, A € Km. By lemma 4.3 and similar 

results in the other cases, we have 

Hence qy lemma 4.1 

Ilxll S = ail xli CS' a > o. 

Further, when K is non-Archimedian lemma 1.\.03 shows that the value set of 

Il Il,CS is contained in WIC Hence in all cases, a = 1 ~ for some ..( E K. 

Thus 

cs = ..( S • 
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It follows that 

lub (e) == Sup /I,exjl == /..</ sup /Ix/! = /..</ 
S xES S x(ES S 

Similar~ lubB(e-~) = /~I e Hence cee) = l and the result follows from 

lemma 5 .. "3 (it is easy to see that the constant involved is actual~ ..<). 

Lemma 5.4 
Let K be a complete non-Archimedian field, Il If a non

Archimedian norm on I~ and Q = {A E Km 1 /lA/! < l}. Then 

~ = {A E Km ! A = l - H, H CE ~} is a normal subgroup of U. 

Proof: 

I~ is complete and so ~ c lJl by theorem 3.4. 

Let Bl.' B2 E ~,. Then: 

Bl. B:a = (I - Hl) (I - H2) ::: l - Hl. - H2 + Hl H:a 

with /lHl. + H:a - Hl.H:a1l < max (/lHJ.II" IIH2/1) < 1. 

Again, 
00 

/le/l :::: Il l H~ Il < max /lHi/l = /lHII < l 0 

i=l i 

The normality of ~ is clear 0 

RemarIe 

With an obvious extension of the definitions this lemma will hold 

in any complete non-Archimedian algebra. 

Theorem 5.!) 

Let K be a complete non-Archimedian field with R, P and U as 

defined in § 2. Let A be a matrix in I~ and l - A :::: (~ij) with ~ij E P for 



: ... J 

44. 

aIl i, j. Then A i8 non~.singular with a spectrum contained in U 0 

Further, aIl the entries of A-~ are in R and A-~ = l - G with the 

spectrum of G contained in P. 

Proof: 

then 

If the natural bound lUbN«~j)) = max I~jl is defined 
Gj "\ 1 i,j 

(~ij) E Of... and A cE VL by the previous lemma. 

on IC , 
m 

This proves the assertionconcerning the entries of A-~, while 

an application of lemma 502 yields the spectral property of A (as well as 

of A-~). 

Again, G E ~ a.nd so reG) < lu~(G) < 1. 

§ 6. p'.....A.dic Numerical Ana;hysis. 

Let the field IC be complete with respect to a non-trivial 

non-Archimedian valuation and let A be a matrix over K.o By § l the 
00 

geometric series ~ Ai converges with respect to a non~Archimedian norm 

i:=:O 
if and only if Ai -+ O. Since convergence in ~ is equivalent to coordinate-

wise convergence, the situation is exactly the same as for real matrices 

(see [6], pol13). Here too Ai -;.;. 0 if and only if r(A) < l in the algebraic 

closure of Ko l~rther, if r(A) < l, then there exists a non.....A.rchimedian 

norm on I~ su.co. that lIAI! < l (theorem 5.3). 

3.4 l - A is non-.singular and (I - A)-~ :=: 

i:::O 

so that 
00 

In this event, by theorem 

Put 

(I - A) .... ~ - Sn::: L Ai ::: CI .... A)-~ An+l • 
i==n+l 
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Since /lAi+l/l .,;; /lA/I /lAi/l < /lAill" Il ~ Ai /1 := max /I~i/l := IIAn+l/l • 
i=n+l i>n+l 

In fact, we have obtained the following estimate for the rate of 

convergence of a geometric series: 

Theorem 6.1 

If' 1/ /1 is a non-Archimedian matrix norm and I/AII < l , th en 
n 

/1 (I ... il)-l - l Ai/l := I/An+l/l .,;; IIA/ln+l • 

i=O 

RemarIe 

The above estjmate is sharper than the corresponding estimate 

for l'eal or complex matrices ([6].; [9], p054) .. ActualJ.y we are dealing 
n+l 

with a special case,9 for we also have /1 (I _A)-l - snl/ .,;; /1 (I - A)-l/l /1 Ail 

(see [9])0 In our case,9 however, II(I - A)-l/l := 10 The same observation 

applies to the next theorem. 

Theorem 6.2 (cf [9], p.55). 

Let A be a non-singular matrix and C an approximation to A-~o. 

Let H := l - AC" Il H/I < l, where /1 1/ is non .... Archimediano. Then: 

Proof: 

and 

(a) /lA-l/l = Ilcli 

(b) IIA-:!. - CI/ .,;; /lcHII 

(c) /lA - c-J./I .,;; IrHA.11 

l - H is non ..... singular and /II ..... H/I. = /1 (I - H)-~I := l • 

Now, (a) follotvs from A- l = CCI - H)-\ 

Cb) from 

(c) from 

C = A-l(I ... H)3 

A-l := C + CHCI _ H)-l ; 

C-l := A + (I _ H)-lHA. 
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Methods of Successive AEProximation 

Let x* be an approximate solution for a system of linear 

equations 

Ax = h, A non-singular. 

Define the error and residualvectors respectively by 

s = x - x* and r = h - Ax~' = As. 

For any consistent non-Archimedian vector and matrix norms 

we haV'e 

/ls/l < /10/1 /lrl/, 
where C is an approximation to A-~ such '[jhat IIHI/ < 1. 

In a method of successive approximation for the solution of 

such a system, given an initial approximation xo' a sequence of 

approximating vectors is formed by the recursion formula 

:x l=x +Cr ~ n+ n n n 

where Co' C~, ••• is a certain sequence of matrices. We note that 

If 

then 

Hence, 

and a suificient condition for convergence is 1/ Hnll < l 'ri n • 
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For non-Archimedian norms 'I:,his condition implies that 

so that 

In the ~lassical method of successive approximation 

Cn ~ l, Hn ~ l - A ~ H for aIl n. 

xn+l = Hxn + h 

i=O 

If I/HII < l , we have in the non-Archimedian case 

n L Hih -- Hn+IXo 1/ 

i=O 

00 

= 1/ L Hih - Hn+lxo 1/ 

i=n+l 

If Xo ~ h, then 

n 

:xn = l Hih (p.IB5), and 

i=O 

00 

1/ sni/ ~ 1/ L Hih 1/ :=: //Hn+lhl/I <;; //HI/n+l I/hl/ 0 

i=n+l 

.Again, consider methods of successive approximation for 

finding the inverse of a non-singular matrix. If A is such a matrix 

and Xo is an initial approximation to A-~, e,rror and r,esidual matrices 

are defined by 

S = A-~ - X and R :=: AS ::: l _ AY • n n n n ._~ 
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All such methods depend on the possibility of finding a sequence of 

matrices Cn such that the sequence (Xn ) tends to A-k as a limit, where 

~+l = ~ + CnRn • 

If Cn :::~, we have 

R ::: R2 and 
n+l n ' 

Rence for any norm, 

and the process converges quadratically if either IIRnll < l or IIsnll < l 

'rj n ([ 9], p .95) • 

In fact, since 
n n 

Rn ::: R~ and Sn::: A'",kRn ::: Xo (1 - Ro )-J.R~ , we have, if Il Roll < l 

IIsnll ::: IIxoR~nll ~ IIxolI /lRo11 dl (cf [6J, p. 159). 

Let K = Qp be the field of p-adic numbers with the usual p-adie 

valuation. We shall Gxpress the elements of Qp in decimal notation ([1],p.J6) 

and note that for a (E Qp with lai < l the number of zeros aft.er the 
,P 

decimal point equals ûrd a - l, where 

ord a ::: -log lai 
p p 

is the ordinal of a 0 As vector and matrix norms we shall use the natural 

norm Il xii = max 1 ~ il and the corresponding natural bound IIAII = max 1 ~j 1 _ 
i P i,j P 

We shall eXGend the concept of the ordinal function to these norms and 

observe that for any method of succe~sive approximation 
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gives the number of correct decimal places in approximating vector ~ 

and that a similar statement applies to matrices. To fix our ideas 

we shall talce p = 5. 

Example 1 

Consider the following ~stem of 5-adic equations: 

.02 S 2 - .12 ~ 3 = .43 

-.02 ~ 3 = .03 

-.12 1 2 + 1.304444 ~ 3 "" 1.12 

It will be seen that the coefficient matrix of the ~stem satisfies the 
hypothesis of theorem 5.5 and is therefore non-singular. The table bel~~ 
presents the solution of this system by Gaussian elimination (see [6], 
p.130). 

Single - Division Sche!f1e 

'. 

1.324444 -002 -012 .43 

-.02 10404444 -.04 .03 

-012 -.04 1. 3 04h44 1.12 

~ l ..--

1 -0024244 -.140024 .L~12310 1 
1.40~.014 -.O~.2310 .033341 

-.042310 1.342032 1.110133 

.- = 

1 -0041102 .031231 

1.3ü2421 1.110300 

P"' 

1 1.322413 

1 .020241 

1 .042020 



() Example 2 

form: 

The equa'tion in examp1e 1 may be written in the following 

§ l..= o22SJ. + .02k 2 + .12~:3 + .43 

S 2 = .02! J. + .14 t 2 + • 04 ~:3 + 003 

~ :3 :::: 0 12 ~ J. + • 04 ~ 2 + .24!:3 + 1.12 • 

The solution by the classical method of successive 

approximation may be arranged as fol1ows ([7J, p.125): 

H 

x :::: h 
0 

xl. 

x z 

x:3 

x4 

X 6 

Method of Successive Approximation 

Formula: ~+1 = Hxn + h. 

.22 .02 .12 

.02 .14 .04 

.12 .04 .24 

043 003 1.12 

.001040 .021401 1.321011 

.044233 0020034 1.323244 

0042013 .020201 1.322334 

.042013 .020243 1.3221~ 

.042021 .020241 1.322413 



() We note that 

so that x5 must be correct to 5 decima1 places at 1east o A glance at 

the previous result shows that this is indeed the caseo An alternative 

method of successive approximation (ibid, p.124) yie1ds an exact measure 

of the accuxacy of each approximating vector. 

h 

Hh 

H2 h 

H'b 

H4h 

H5 h 

H6 h 

X 5 

xe 

Method of Success:lve,AEProximation 

n 

Formula : ~ == I H~ 
i=O 

.43 .03 

.110040 .040401 

.043242 .004023 

.003224 .000220 

0000000 .000043 

.000013 .000003 

.000004 0000000 

.042021 .020241 

.042020 .020241 

1012 

.201011 

0002233 

.004044 

0000112 

.000021 

.000000 

10322413 

10322413 



52. 

Here, 

while 

ord Se > -loge IIHII7 11h11 :::: 70 

Thus Xe and xe' must be correct to 5 and 6 decimal places respectively 0 

The latter is preciseJy the accuracy of example l, for rounding errora 

do not occur in arithmetical operations with p-adic numbers. 

E;xample 3 

The coefficient matrix A of example 1 may be inverted 0' 

Gaussian elimination. To 6 decimals we get 

shô'll talce 

Xo 

sa that 

R 
0 

Thus 

1.222421 

.020320 

.113120 

.020320 

1.100110 

.044002 

.113120 

.044002 

1.240130 

As the initial approx:l.mation for an iterative 301utton 1')8 

1022 .02 .11 

,- 002 1010 .04 

.11 .oh 1024 

0003224 .000124 0002404) 
=- .000214 0000404 .001323 

.002114 0001204 .000223 

ord S~ ;;" -loge I/xoll IIRol/2 == 6 , 
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C·\ and 
'./ 
"' 

X~ =: Xo + XaRo 

1.222423 0020323 

:::: 0020323 1.100114 .044002 

ol1312!~ o04~.002 1.240130 

la correct te 5 decima1 places (cf [6 J; p .160) 0 
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