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Abstract

In this thesis, we explore the development of methods for efficient continual learning,

to enable the sequential acquisition of knowledge by artificial intelligence (AI) sys-

tems as they adapt to new information over time. In the first chapters, we investigate

approaches to address challenges posed by rehearsal-based methods in overcoming

catastrophic forgetting, a major obstacle faced by deep neural networks when learning

sequentially. We propose a Maximally Interfered Retrieval (MIR) method to optimize

the efficiency of the replay step, which retrieves samples from the replay buffer whose

prediction will be the most impacted by the foreseen parameter update on the newly

received data. We then introduce Adaptive Quantization Modules (AQMs) for efficient

memory storage in online settings. AQM leverages discrete auto-encoders to control

variation in the compression ability of the module at any given stage of learning, while

ensuring that representations derived from earlier encoder states are usable by later

decoder states. Next, we attempt to gain a deeper understanding on what causes catas-

trophic forgetting in standard online class-incremental settings. We show that replay

methods cause the newly added classes’ representations to overlap significantly with

the previous classes, leading to highly disruptive parameter updates, and propose so-

lutions to mitigate this. The second part of the thesis examines strategies for enabling

forward transfer while minimizing the compute cost of adapting models in sequen-

tial settings. We first formalize this setting, and tackle the question of when a model

should be retrained upon receiving new data, and what architectural and optimiza-

tion choices are best suited for this setting. We conclude by investigating the use of

modular methods in natural language tasks to enable sample-efficient generalization,

while remaining highly parameter efficient during transfer to new tasks. In summary,

this thesis contributes to the ongoing efforts to develop versatile and efficient machine

learning models for sequential adaptation and highlights the importance of addressing

various aspects of efficiency in continual learning.
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Résumé

Dans cette thèse, nous explorons le développement de méthodes d’apprentissage con-

tinu efficaces, permettant l’acquisition séquentielle de connaissances par des systèmes

d’intelligence artificielle (IA) lorsqu’ils sont confrontés à de nouvelles informations au

fil du temps. Dans les premiers chapitres, nous étudions des approches addressant les

défis posés par les méthodes basées sur la répétition d’anciennes données pour sur-

monter l’oubli catastrophique, un obstacle majeur rencontré par les réseaux de neu-

rones profonds lors de l’apprentissage séquentiel. Nous proposons une méthode de

Récupération Maximale des données interférées (MIR) pour optimiser l’efficacité de

l’étape de relecture, qui récupère des échantillons de la mémoire externe dont la pré-

diction sera la plus impactée par la mise à jour des paramètres prévue sur les nouvelles

données reçues. Nous introduisons ensuite des Modules de Quantification Adaptative

(AQM) pour un stockage efficace de la mémoire dans des contextes d’apprentissage en

ligne. AQM utilise des auto-encodeurs discrets pour contrôler la variation de la capac-

ité de compression du module à n’importe quel stade de l’apprentissage, tout en garan-

tissant que les représentations dérivées des états précédents de l’encodeur sont réutil-

isables par les états ultérieurs du décodeur. Ensuite, nous cherchons à mieux compren-

dre les causes de l’oubli catastrophique dans les contextes standard d’apprentissage en

ligne avec ajout de classes. Nous montrons que les méthodes de répétition de données

provoquent un chevauchement important des représentations des nouvelles classes

avec celles des classes précédentes, conduisant à des mises à jour de paramètres très

perturbatrices, et proposons des solutions pour atténuer ce problème. La deuxième

partie de la thèse examine des stratégies pour permettre un transfert de connaissances

vers des tâches futures, tout en minimisant le coût de calcul de l’adaptation de grands

modèles dans des contextes séquentiels. Nous formalisons d’abord ce contexte et abor-

dons la question de savoir quand un modèle doit être réentraîné lors de la réception de

nouvelles données, et quelles sont les choix architecturaux et d’optimisation les mieux
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adaptés pour ce contexte. Nous étudions ensuite l’utilisation de méthodes modulaires

dans les tâches de traitement du langage naturel pour permettre une généralisation

efficace en termes de données, tout en restant très efficace en termes de paramètres

lors du transfert à de nouvelles tâches. En résumé, cette thèse contribue aux efforts en

cours pour développer des modèles d’apprentissage automatique polyvalents et effi-

caces pour l’adaptation séquentielle, et souligne l’importance de traiter divers aspects

de l’efficacité dans l’apprentissage continu.
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Contributions to Original Knowledge

The following thesis makes several contributions towards understanding and improv-

ing the efficiency of continual learning methods. Specifically, we investigate several

facets of efficiency in sequential knowledge acquisition, and make the following con-

tributions :

1. A sample retrieval method for replay-based methods, designed to select data-

points most likely to be forgotten by the model (Chapter 4).

2. An online learned compression algorithm for non-stationary distributions, re-

ducing the memory footprint of replay-based CL algorithms (Chapter 5).

3. An original analysis on the underlying causes of forgetting in class-incremental

CL settings, and efficient solutions (Chapter 6).

4. A comprehensive study examining the effects of design decisions on efficiency

and performance within sequential learning settings (Chapter 7).

5. A novel routing mechanism for modular networks, enabling highly parameter

efficient transfer to new tasks (Chapter 8).

For all the contributions above, we release the code to reproduce our results. 1 2 3 4 5

1https://github.com/optimass/Maximally_Interfered_Retrieval
2https://github.com/pclucas14/adaptive-quantization-modules
3https://github.com/pclucas14/aml
4https://github.com/facebookresearch/alma
5https://github.com/microsoft/mttl/

https://github.com/optimass/Maximally_Interfered_Retrieval
https://github.com/pclucas14/adaptive-quantization-modules
https://github.com/pclucas14/aml
https://github.com/facebookresearch/alma
https://github.com/microsoft/mttl/
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and Min Lin provided guidance on the direction and writing of the paper.
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Chapter 1

Introduction

1.1 Motivation

In today’s rapidly evolving world, the importance of developing adaptable artificial

intelligence (AI) systems cannot be overstated. Our environment is characterized by

constant change, driven by technological advancements [Bubeck et al., 2023], economic

shifts, and social transformations [Osofsky et al., 2020]. These changes necessitate the

creation of AI systems that can effectively process and adapt to new information and

circumstances, akin to the adaptability displayed by humans.

Current AI systems have made remarkable progress and demonstrated high per-

formance on various well-defined tasks, including image recognition [Wortsman et al.,

2022a] and generation [Saharia et al., 2022], natural language understanding [Chowd-

hery et al., 2022], and reinforcement learning [Reed et al., 2022]. However, despite

their success in these specific applications, they struggle to achieve robust, continual

adaptation in open-ended settings [Hadsell et al., 2020], where humans excel. Human

adaptability allows for seamless adjustments to new situations, learning from novel ex-

periences, and modifying their behavior to suit the ever-changing environment. This

level of adaptability is a critical aspect that current AI systems, particularly deep neu-
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ral networks (DNNs), need to develop in order to expand their utility in real-world

applications that demand constant adaptation [Huyen, 2022a].

A major challenge faced by DNNs when learning sequentially is the phenomenon

of catastrophic forgetting [French, 1999, McCloskey and Cohen, 1989]. In this scenario,

DNNs quickly lose previously learned information when beginning to learn new tasks

or data. This loss of knowledge significantly hampers their ability to learn and adapt

over time, as they are unable to retain and build upon prior knowledge when con-

fronted with new challenges [Kirkpatrick et al., 2017].

Currently, the de-facto solution in many real use cases is to train a new model from

scratch on both the old and the new data, and to repeat this process whenever new

data or information is made available [Huyen, 2022b, Shyam et al., 2019, Sener and

Savarese, 2017]. This approach, however, is extremely inefficient as the dataset grows

over time. Moreover, as the field is shifting towards larger foundation models [Bom-

masani et al., 2021] where a single training run incurs a substantial financial and envi-

ronmental cost [Strubell et al., 2020, Schwartz et al., 2020], repeating this process is not

a viable solution. To this end, enabling continual optimization of such large models

can not only lead to models which can be efficiently adapted, it can also empower a

wider portion of the research community to contribute to the active development of

foundation models, as fewer resources are needed.

Moreover, Continual Learning can improve the robustness of currently deployed

AI systems, by equipping them with the ability to learn from novel and unexpected

situations. For instance, smart cars would be able to adapt to new traffic scenarios,

from changing vehicle dynamics to new obstacles [Verwimp et al., 2022]. In AI-assisted

healthcare, existing systems must adapt to new diseases or patient populations, and do

so without regressing on previous standard of care. Given that sharing medical data is

limited due to privacy concerns [Murdoch, 2021], simply re-training on the aggregated

data may not be a feasible option.
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Given these scenarios, it is evident that a solution should not only account for ro-

bustness against forgetting and scalability, but also provide a path for cumulative and

iterative knowledge acquisition, a principle human learners employ naturally.

1.2 A Two Pronged Solution

Addressing the challenge of efficient sequential knowledge acquisition requires us to

consider two integral facets of this complex issue. First, a learning episode should

have backward compatibility [Shen et al., 2020], i.e. it should not inadvertently remove

an ability which the model previously had. In other words, a viable solution must

address the issue of catastrophic forgetting. A standard approach towards this goal is

experience replay (ER) [French, 1999, Rolnick et al., 2018]. When learning a new task,

data from previous tasks is interleaved with the new data. This incentivizes the model

to adapt its internal knowledge to learn the new task, while keeping its current abil-

ity to handle previous tasks. This has been shown to be a reliable approach in many

settings where the data distribution changes over time [Chaudhry et al., 2019b, Balaji

et al., 2020]. However, replay-based solutions scale suboptimally as a function of the

number of tasks. Indeed, since they must store data from previous learning iterations,

the storage requirements must scale accordingly and this can be prohibitive, especially

when dealing with high-dimensional data [Wang et al., 2022a]. Thus, how can we de-

sign new storage algorithms to minimize the memory footprint of replay? Moreover, as

the model accumulates knowledge, the amount of replay steps to ensure knowledge

preservation increases, along with its computational footprint [LESORT et al., 2023].

Therefore, how can we maximize the impact of each replay step given a fixed budget?

In short, there remains significant progress to be made for ER to become an efficient

long-term solution to learning without forgetting.

Second, Continual Learning can be seen through the lens of sequential forward
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transfer. In other words, for an agent to perform optimally in a CL setting, it must be-

come increasingly data and compute efficient over time. To do so, it must first achieve

transfer learning, leveraging its existing capabilities that are relevant to a new task to

aid learning, a behavior intrinsic to humans. In recent years, the go-to transfer learning

paradigm is to first pretrain a model on large amounts of diverse data, before finetun-

ing on a downstream task of interest [Brown et al., 2020a, Radford et al., 2019, Raffel

et al., 2020]. Within this paradigm, how can we best adapt these pretrained models to

incorporate new knowledge ? Given that standard fine-tuning may be vulnerable to

forgetting [Ye et al., 2021], encapsulating new knowledge in external components, or

modular learning [Ponti et al., 2023], is a good starting point. Then, how can we perform

this transfer procedure iteratively to refine our pretrained model over time ? More gen-

erally, what challenges are intrinsic to learning in a sequential fashion, irrespective of

a potential distribution shift from one learning episode to another, and what practical

design choices can overcome these challenges?

1.3 Thesis Overview

This dissertation systematically addresses the research questions outlined earlier through

five significant studies, divided across chapters 4 to 8. The initial chapters (4, 5, 6) focus

on overcoming the challenges posed by rehearsal-based methods, whereas the latter

sections (7, 8) delve into the nuances of transfer learning.

Chapter §4 investigates which samples should be selected for a given replay step

[Aljundi et al., 2019d]. We first show that a training step on a given mini-batch does

not cause uniform forgetting across all previous knowledge. We then propose a replay

sample criterion selecting points that maximally interfere with the current mini-batch.

We observe that this approach both limits forgetting while maximizing performance,

making a better use of each replay step.
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In Chapter §5, we tackle the storage bottleneck in rehearsal based methods, by

learning a model which compresses data and stores the compressed encodings [Caccia

et al., 2020a]. This is achieved by inserting a quantization bottleneck [Van Den Oord

et al., 2017] in a standard autoencoder, which not only enables high compression rates,

but enables us to regularize the encoded representations to maintain backwards com-

patibility, where the current decoder can still reconstruct representations from earlier

encoder states.

Chapter §6 takes a step back and investigates why we observe a sudden decrease in

performance in sequential classification settings where new classes are introduced over

time [Caccia et al., 2022a]. We show that ER causes the newly added classes’ represen-

tations to overlap significantly with the previous classes, leading to highly disruptive

parameter updates. To counteract this, propose a new method which mitigates this is-

sue by shielding the learned representations from drastic adaptation to accommodate

new classes, effectively removing the sudden dip in performance at the introduction

of new classes.

In Chapter §7, we shift our focus towards enabling forward transfer in settings

where data arrive in large chunks over time. We first formalize this setting, Anytime

Learning at Macroscale [Caccia et al., 2022c], primarily focusing on how best to allo-

cate a compute budget over time. We empirically explore answers to critical questions

within this framework, such as optimal wait times before training on newly arrived

data, the most suitable model size and architecture, and methods for adapting the

model’s capacity throughout the learning process.

Finally, Chapter §8 explores how to maximize the efficiency of transfer to new tasks

using pretrained language models and additional multi-task data [Caccia et al., 2022b].

We examine modular methods that simultaneously learn an inventory of modules and

a routing function to select a subset of modules for each task. Our research suggests

that such methods are effective due to their ability to mitigate interference and promote
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transfer during multi-task training. Additionally, we propose a novel routing function

to further enhance this optimization capability.
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Chapter 2

Machine Learning Background

In this chapter, we provide a concise overview of the foundational concepts relevant

to the research in this manuscript. We begin by introducing Machine Learning (ML)

in the supervised learning setting, followed by Maximum Likelihood Estimation, and

finally, artificial neural networks.

2.1 Supervised Learning

Supervised learning seeks to approximate an unknown target function f ∗ : X → Y

using a labeled dataset D. This dataset consists of n input-output pairs, i.e. D =

{(xi, yi)}ni=1. In this context, each input xi belongs to the input space X and each out-

put yi to the output space Y . It is important to note that the samples in dataset D are

drawn independently and identically distributed (i.i.d) from a joint probability distri-

bution P (X,Y ). This critical assumption implies that each sample in the dataset is

drawn independently of previous samples, from the same underlying distribution.

In the process of supervised learning, the goal is to learn a predictor f(x; θ), param-

eterized by θ, which will approximate the unknown target function f ∗. The learning al-

gorithm accomplishes this by minimizing a scalar loss function L : Y × Y → R+, which
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quantifies the discrepancy between the predicted output f(xi; θ) and the true output yi

for each sample in the dataset.

Supervised learning primarily finds application in two settings: classification and

regression. In classification, the target function f ∗ : Rd → {1, ..., k} maps a real-valued

vector x ∈X to a set of k discrete categories y ∈ Y . For instance, in medical diagnostics,

the input x could be a patient’s medical imaging, and the output y would be a categor-

ical disease diagnosis [Cohen et al., 2020, Meedeniya et al., 2022]. On the other hand,

in regression, the target function f ∗ : Rd→ R maps a real-valued vector x ∈X to a real-

valued output. An example of this is predicting house prices based on various features

such as size, age, and location [Truong et al., 2020], where the output is a continuous

value. Through these settings, supervised learning enables the generation of informed

predictions and data-driven decision making.

2.2 Parameter Estimation

Parameter estimation in supervised learning involves finding a set of parameters θ that

best explain the observed data. It is through this optimization procedure that learning

occurs.

2.2.1 Maximum Likelihood Estimation

A fundamental approach to parameter estimation is Maximum Likelihood Estimation

(MLE). MLE seeks to determine the parameters θ that maximize the likelihood of the

observed data given the parameters, i.e. L(θ;D) = P (D|θ). Formally, it is defined as

θMLE = argmax
θ

P (D|θ). (2.1)

In practice, we typically maximize the log-likelihood for computational convenience.

Moreover, given that standard practice in optimization is to minimize a loss function,
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the MLE objective is reformulated as the negative log-likelihood

θMLE = argmin
θ
− log (P (D|θ)). (2.2)

2.2.2 Regularization

However, MLE can lead to overfitting if the model is too complex. To prevent this, reg-

ularization techniques [Tibshirani, 1996] are used. Regularization introduces a penalty

term λ to the loss function to constrain the magnitude of the parameters, promoting

model simplicity and generalization. A common example of this is l2 regularization,

also known as weight decay, which penalizes the l2 norm of the parameters θ. The

regularized MLE objective then becomes

θMLE = argmin
θ
− log (P (D|θ)) + λ||θ||2. (2.3)

2.2.3 Maximum a Posteriori Estimation

Another method of parameter estimation is Maximum a Posteriori (MAP) estimation.

MAP introduces prior knowledge about the distribution of parameters through a prior

distribution P (θ). It then optimizes the posterior probability P (θ|D), which we can

relate to the likelihood term P (D|θ) via Bayes’ Theorem,

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (2.4)

Given that the marginal likelihood P (D) does not depend on the parameters, the MAP

estimate can be written as

θMAP = argmin
θ
− [log (P (D|θ)) + logP (θ)]. (2.5)
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Interestingly, the MAP estimation can be viewed as a form of regularized MLE where

the regularization term is determined by the choice of the prior distribution of the

parameters. For example, choosing a Gaussian prior over θ renders equations 2.3 and

2.5 equivalent.

2.3 Neural Networks

2.3.1 Feed-forward Neural Networks

Feed-forward Neural Networks, also known as Multi-Layer Perceptrons (MLP) [Rosen-

blatt, 1958, Rumelhart et al., 1986, Goodfellow et al., 2016, Yan et al., 2015] are a family

of highly expressive functions, which can capture non-linear relationships between X

and Y . MLPs chain multiple fully-connected layers. Each layer first linearly transforms

an input, then applies a differentiable non-linear activation function a(·):

hl = a(hl−1 ·W l + bl), (2.6)

where hl is the output of layer l, with W l ∈ Rdin×dout , bl ∈ Rdout as learnable parameters.

As its name suggests, each layer computes its hidden output then forwards it to the

next layer, until the last layer is reached. Given an MLP with L layers, we can express

the full function as

f(x; θ) = (hL ◦ hL−1 ◦ ... ◦ h1)(x), (2.7)

where θ = {(W i, bi)}Li=1.

The choice of activation function a(·) for the last layer will depend on the setting at

hand. For classification tasks, the softmax activation is the de-facto approach to turn

unnormalized logits into a proper probability distribution, with softmax(x) = exi∑
j e

xj . In

other words, softmax(x)i represents the probability that the input belongs to i-th class.

In regression settings, if the target values are unnormalized real-values outcomes, one
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can omit the activation function. For intermediate, or hidden layers, several activation

functions have been proposed over the years, including the sigmoid function σ(x) =

1
1+e−x and the rectified linear unit ReLU(x) = max(x,0) [Glorot et al., 2011].

2.3.2 Architectures

In the realm of deep learning, various architectures have been developed to handle

different types of data and tasks. These architectures reflect the need to encode differ-

ent forms of structural priors and inductive biases into the model design to effectively

learn from data.

Convolutional Neural Networks (CNNs) [Krizhevsky et al., 2017, He et al., 2016] are

specialized for processing grid-like data such as images. Such objects introduce a height

and width dimension, with each point on this grid containing a vector in Rdin . Given

as input a tensor of shape (H,W,D), CNNs share parameters across different regions

of the (H,W ) axis. In other words, for a given layer, each image patch is processed by

the same feature extractor, and the outputs are combined such that the 2D structure is

preserved. This allows the network to reuse the same weights to detect similar features

across different regions of the input, giving layers that are more parameter efficient

than their fully connected counterpart, and equivariant to translations. Formally, for a

convolutional layer with input hl−1 , we can express its output at pixel location [i, j] as

hl[i, j] = a

(∑
m

∑
n

hl−1
[i−m,j−n] ·W

l
[m,n] + bl

)
, (2.8)

where bl ∈Rdout and W l
[m,n] ∈Rdin×dout , and (m,n) the patch size. As with fully-connected

layers, convolutional layers can also be composed one after the other to build a full net-

work. CNNs are a good example on how Deep NNs build hierarchical representations,

where early layers respond to basic edge patterns, while intermediate and end layers

can detect object parts and objects respectively [Katole et al., 2015].
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Recurrent Neural Networks (RNNs) [Elman, 1990, Jordan, 1986] [Hochreiter and

Schmidhuber, 1997] are particularly well-suited to sequence-like data such as natural

language, where sentences are encoded as sequences of words. RNNs have an inher-

ent loop structure that enables them to process one element of the sequence at a time

while maintaining a hidden state that encapsulates the information from previous el-

ements. This approach enables RNNs to process input sequences of varying length,

unlike previous architectures. Similar to how CNNs share weights across different im-

age patches, in RNNs this sharing is enabled across different tokens in the sequence.

The forward propagation step for RNNs can be instantiated in many ways [Goodfel-

low et al., 2016]. In one such instantiation for a recurrent layer with h(t−1) denoting the

previous hidden state, omitting the superscript l we can express its hidden state h(t) as

h(t) = a
(
h(t−1) ·W h + x(t) ·W x + b

)
, (2.9)

where b ∈ Rd, W h ∈ Rd×d and W x ∈ Rdin×d are the bias and weight matrices, respec-

tively, and a is an activation function. The power of RNNs lies in their ability to learn

temporal dependencies and build up complex temporal structures over time.

Autoencoders [LeCun, 1987, Hinton and Zemel, 1993] are unsupervised learning

models that aim to learn a compact, efficient representation of the input data, typically

for the purpose of dimensionality reduction or denoising. They consist of two parts:

an encoder enc(·), which transforms the input into a hidden representation, and a de-

coder dec(·), which reconstructs the input from this representation. The autoencoder

tries to minimize the reconstruction error:

L(x,dec(enc(x))) = ||x− dec(enc(x))||22. (2.10)
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In denoising autoencoders [Vincent et al., 2008], the input is intentionally corrupted

with noise before being fed into the autoencoder, encouraging the model to learn to re-

construct the original, noise-free data. These models are effective for feature extraction

and data compression tasks.

2.3.3 Training via backpropagation

The backpropagation algorithm [Rumelhart et al., 1985] is a critical component in train-

ing neural networks, allowing for efficient computation of gradients of the loss func-

tion L with respect to the model’s parameters θ. It exploits the structure of the com-

putational graph of a neural network and the chain rule from calculus to propagate

errors backward through the layers of the network. For each forward computation

hl = a(hl−1 ·W l + bl) in a given layer l, we first compute the gradient w.r.t hl. Then

taking the gradient of the output hl w.r.t to the layer parameters θl = (W l, bl), and ap-

plying the chain rule we obtain the desired derivative of the loss w.r.t to the model

parameters:

∂L
∂hl

=
∂L

∂hl+1
· ∂h

l+1

∂hl
,

∂L
∂θl

=
∂L
∂hl
· ∂h

l

∂θl
. (2.11)

The backward pass is executed by unrolling the computation graph from the last layer

to the first one, l = L, ...,1, executing in a sequential fashion Eq. 2.11. Backpropagation

efficiently computes these derivatives by caching intermediate outputs in the forward

pass and using them in the computation of gradients (backward pass). This reuse of

computed values greatly enhances computational efficiency, making backpropagation

a practical method for training deep neural networks. Once the gradients have been

computed, the model parameters are updated by taking a step in the direction of the

negative gradient, the step size determined by the learning rate α
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θl← θl − α
∂L
∂θl

. (2.12)

Several variants of this gradient descent approach are used in practice, namely the

using of a momentum term [Polyak, 1964, Rumelhart et al., 1985], and per-parameter

learning rates [Kingma and Ba, 2015] for better convergence.
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Chapter 3

Continual Learning

In the previous Chapter, we discussed how the i.i.d. assumption plays a crucial role

in deriving the Maximum Likelihood Estimation (MLE) estimator. It provides a the-

oretical basis for MLE, ensuring that the learned model captures the underlying data

distribution effectively. However, in practical scenarios, this assumption does not al-

ways hold. Real-world data often exhibit non-stationary distributions, where changes

in the environment lead to new patterns or trends over time. For instance, in the case

of an object detector, we would like the model to adapt to and recognize novel items

as they are introduced. Similarly, a streaming platform’s recommender system should

be able to accommodate users’ evolving preferences and consider new releases in its

predictions. In both examples, the distribution of data changes dynamically, violating

the i.i.d. assumption. Continual Learning emerges as a promising solution for such sit-

uations, as it addresses the challenge of enabling models to adapt efficiently and effec-

tively to the changing data distribution. By relaxing the i.i.d. assumption and allowing

for distribution shifts over time, Continual Learning empowers models to evolve and

refine their knowledge in accordance with the dynamic nature of real-world data.
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3.1 Problem Formulation

Continual Learning considers a never-ending stream of data. At each time step t, the

learner receives a data sample (xt, yt) or a set of such data samples, where xt ∈ X and

yt ∈ Y . It is important to note that these samples are drawn non-i.i.d. from a target

distribution Pt(X,Y ), which itself is time-dependent. As the environment changes

over time, the underlying distribution Pt(X,Y ) evolves, violating the i.i.d. assumption.

The objective of CL is to learn a predictor f(x; θt) parameterized by θt, that minimizes

the loss on the current data (xt, yt). However, the optimization procedure must be

constrained to ensure the retention of previously learned knowledge, as the model

adapts to new data samples. Formally, the CL objective can be written as

argmin
θ,ξ
L(f(xt; θ), yt) +

∑
i

ξi (3.1)

s.t. L(f(xi; θ), yi) ≤ L(f(xi; θ(t−1)), yi) + ξi (3.2)

ξi ≥ 0; ∀i ∈ {1, ..., t− 1}.

In equation 3.2, the slack variables ξ = {ξ1, ..., ξt} provide a flexible margin for con-

straint satisfaction. In other words, this formulation can model settings where some

forgetting on a subset of data is permitted to enable a strong performance boost over

other, potentially more relevant parts of the data distribution.

3.1.1 Continual Learning Desiderata

In this section, we list multiple key characteristics that are required for a Continual

Learner to solve equation 3.1 in a tractable manner.
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1. Constant Memory In a real-world setting, data arrive continuously, and the vol-

ume of data may grow indefinitely over time. It is neither practical nor efficient to store

all the incoming data indefinitely. This desideratum ensures that the memory footprint

of the learning system stays fixed, irrespective of the amount of seen data. Optimally,

the learner should operate without storing any past data [De Lange et al., 2021].

2. Bounded Compute Another essential requirement for Continual Learning is the

ability to operate under bounded compute constraints. As the model encounters new

information and tasks over time, its computation footprint to learn a new task should

not grow over time. For example, retraining from scratch on all the data accumulated

does not satisfy this constraint. In general, operating under bounded compute con-

straints ensures that the learning system remains practical in real-world applications,

where computational resources are often limited.

3. Online or Anytime Learning Continual Learning should enable models to learn

and adapt to new information on-the-fly, without the need for periodic offline retrain-

ing. Online or Anytime Learning allows models to incorporate new information and

update their knowledge as soon as it becomes available. This ability is particularly

crucial in dynamic environments where the data distribution changes rapidly, and the

model’s predictions must remain valid and up-to-date at all times. Online or Anytime

Learning ensures that the Continual Learning system remains responsive and adaptive

in the face of evolving data patterns and challenges.

4. Forward and Backward Transfer A key aspect of Continual Learning is the ability

to transfer knowledge from previously learned tasks to new tasks (forward transfer)

and vice versa (backward transfer). Forward transfer enables models to leverage previ-

ously acquired knowledge to learn new tasks more efficiently, while backward transfer

allows models to improve their performance on previous tasks as they encounter new
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information. This bidirectional transfer of knowledge is a crucial component of human

learning and is essential for artificial learning systems to achieve robust adaptation to

new tasks and challenges.

5. Task Agnostic In many real-world applications, task identifiers or explicit task

boundaries may not be available. Continual Learning algorithms should be designed

to operate in a task-agnostic manner, meaning that they should not rely on task iden-

tifiers to make valid predictions or guide learning. Instead, models should be able

to autonomously identify and adapt to changes in the data distribution, without the

need for explicit task information. This task-agnostic approach ensures that Continual

Learning algorithms can be applied effectively in diverse real-world scenarios, where

task boundaries or identifiers might not be readily accessible.

3.2 Problem Instantiations

In practice, solving the general Continual Learning problem, while respecting all the

desiderata stated above, is very challenging. Indeed, given that each desideratum adds

a level of complexity to the solution, there exists many CL settings where some of the

constraints above are relaxed. Here, we present some of the CL settings which will be

discussed throughout this thesis. For a more in-depth categorization of CL settings,

we refer the reader to van de Ven et al. [2022], Normandin et al. [2021].

3.2.1 Task-Incremental Learning (TIL)

In this simplified setting [Kirkpatrick et al., 2017], we assume that there exists a notion

of task T , each with a fixed target distribution PT (X,Y ). The learner then obtains access

to each task sequentially, one task at a time. Crucially, while the learner is training

on data from task T , it has access to i.i.d samples from PT (X,Y ). Typically, when
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transitioning to a new task G, the learner relinquishes access to data from T , unless

explicitly leveraging an external bounded memory to store seen samples of said task.

Online TIL In Online Task-Incremental Learning settings [Lopez-Paz and Ranzato,

2017], the agent again learns online from a stream of data. Crucially, datapoints from

two consecutive timesteps (xt, yt) and (xt+1, yt+1) are i.i.d samples from the same un-

derlying task distribution PT (X,Y ), unless a task switch has occured. When task

switch occurs, the new task G and its underlying distribution PG(X,Y ) will yield con-

secutive i.i.d samples in the stream, until the next task switch. The data stream can be

seen as being locally stationary. During learning, the agent does not know when the

next task switch will occur. Unless explicitly stored in an external memory, the online

nature of this setting prohibits data from previous timesteps to be accessed (even ones

from the same task).

Offline TIL In Offline Task-Incremental Learning [Rebuffi et al., 2017], at every learn-

ing step the learner is provided with a task specific dataset DT = {(xi, yi)}NT
i=1. The

learner can then perform offline updates to its parameters, incorporating information

contained in DT with potentially multiple passes over the dataset. In such a setting, the

agent is always task-aware during training, and does not face the challenges related to

online optimization.

In this thesis, for both settings, we typically assume that the learner is task agnostic

at evaluation time. In other words, when querying the model, no task information is

given to the agent. For example, if every task is a binary classification problem, the

learner trained on T tasks must perform (T × 2)-way classification at test time.



3 Continual Learning 20

3.2.2 Online Class-Incremental Learning (CIL)

In this work, we mainly focus on the online class-incremental setting [Aljundi et al.,

2019c], an instantiation of online TIL. Here, the learner must classify images as belong-

ing to an increasing set of candidate classes. That is, each task is a K−way classification

task, and by construction (x, y) pairs in task T contain labels that are distinct from seen

classes in previous tasks. In other words, new classes are incrementally added to the

set of candidate classes. Depending on the setting, the task boundary may or may not

be given explicitly to the learner during training. This setting is depicted in figure 3.1.

Task 1 Task 2 Task T
...

... ... ...

Figure 3.1 Online Class Incremental Setup. In this example, the learner
is presented two new classes at every task. Task boundaries are denoted by
lightning bolts. Each column of data represents the incoming batch received
by the learner at every timestep.

3.2.3 Terminology and Evaluation

In the supervised setting, a continual learner should perform well across all tasks seen

so far. Specifically, we want to maximize the Average Accuracy [Lopez-Paz and Ran-

zato, 2017, Chaudhry et al.] across all tasks seen in the data stream so far. For each

task T , a held-out set of samples D(eval)
T is used for evaluation purposes. Let ak,j ∈ [0,1]

denote the accuracy measured on D
(eval)
j after training on task k (it follows that k ≥ j).

We denote the average accuracy after k tasks by
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Ak =
1

k

k∑
t=1

ak,t . (3.3)

We also keep track of how much the model forgets at it learns new tasks. We define

the forgetting [Chaudhry et al.] for a given task as the difference between the best

performance obtained over time by the model and the final performance on said task.

After training on k tasks, forgetting is defined as

Fk =
1

k− 1

k−1∑
t=1

fk
j , (3.4)

where fk
j denotes the forgetting on the j-th task occuring after training on task k has

completed. This value is computed as

fk
j = max

l∈{1,...,k−1}
al,j − ak,j. (3.5)

Naturally, a good agent should obtain both high accuracy and low forgetting, how-

ever there is often a trade-off between these two metrics. We typically report the final

average accuracy and forgetting after the last task (T ), namely AT and FT .

3.3 Continual Learning Approaches

Early work in the field connectionism [McCloskey and Cohen, 1989, French, 1999] had

already observed catastrophic forgetting when using small artificial neural networks

in memorization tasks. Several prior works in the literature attributed representation

overlap [French, 1994, 1999, Kruschke, 1992, 1993, Rumelhart, 1992] as the key factor

behind catastrophic interference. Other methods have been proposed that explicitly

minimize overlap by encouraging the learning of sparser, orthogonal representations.

For example, methods such as Activation Sharpening [French, 1991] would push the
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top-k hidden units towards 1, and the remaining to 0. In the early years of CL research

was also studied the use of replaying patterns seen in the past to mitigate forgetting.

Originally proposed in Ratcliff [1990], the use of recency rehearsal, where the last p pat-

terns were kept for replay, was shown to partly remedy forgetting. Explored in more

depth in Robins [1995], it was shown that selecting a more representative set of replay

samples (via random selection of past patterns) was more effective, and that one could

also replay all previous samples to fully mitigate any loss in performance, albeit at an

increased computational cost. Interestingly, the concept of pseudo-rehearsal, where

random data was generated and labelled with the model itself, before being used as

valid rehearsal data was proposed. In a similar vein, it was also shown that labelling

new data with networks trained on previous tasks [Silver and Mercer, 2002] could cre-

ate useful virtual samples for replay. These works can be seen through the lens of dis-

tillation [Hinton et al., 2015], and would inspire more recent methods [Li and Hoiem,

2018]. However, early works in the field mainly tackled very small and synthetic se-

quences of memorization tasks, not focusing on generalization to new samples from

the same distribution.

After the emergence of Deep Neural Networks and the significant increase in com-

putation afforded by GPUs, the study of catastrophic forgetting in DNNs when sub-

jected to sequential optimization surfaced again as a prominent issue. It was shown

in Goodfellow et al. [2013] that the choice of activation function and regularization

techniques used during training can impact forgetting in sequential learning, and sub-

sequently that architecture [Mirzadeh et al., 2022] and optimization [Mirzadeh et al.,

2020] choices also come into play.

In recent years, many methods have been proposed for Continual Learning. They

can be broadly grouped in three categories, each approaching the problem of how to

store, re-use and consolidate old knowledge with new one. Firstly, replay based meth-

ods store externally previously seen patterns which are then interleaved alongside new
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ones to effectively remind the network and ensure knowledge preservation. Second,

regularization based methods enforce constraints (in parameter of functional space) dis-

couraging the model to overwrite useful parts of the network when consolidating new

knowledge. Lastly, architectural based approaches allocate different subsets of parame-

ters, or modules, to different tasks to ensure that no overwriting of important informa-

tion occurs. We refer the reader to De Lange et al. [2021] for a more detailed overview

of CL methods.

3.3.1 Replay Based Methods

Algorithm 1 EXPERIENCE REPLAY (ER)
Input: Learning rate α, Number of iterations Niter

1 Initialize: MemoryM; Parameters θ do

2 Receive Xin,Yin // Receive from Stream

3 for n ∈ 1 . . .Niter do

4 Xbf ,Ybf ∼ SAMPLE(M) // Sample from Buffer

5 Linc = L( fθ(Xin),Yin ) // Compute incoming loss

6 Lbf = L( fθ(Xbf ),Ybf ) // Compute replay loss

7 θ := SGD(∇(Linc +Lbf ), θ,α) // Update model parameters

8 UPDATEMEMORY(M,Xin) // Update Buffer Memory

9 while The stream has not ended

Replay has been a consistent and effective approach in various continual learning set-

tings and is extensively used in Reinforcement Learning to decorrelate samples within

a trajectory [Mnih et al., 2013, Schaul et al., 2015]. Numerous forms of replay exist, with

Algorithm 1 representing the general form in an online setting. Over the years, sev-

eral variants have been proposed, leveraging the stored data for different purposes. In
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classification settings, Rebuffi et al. [2017] use stored samples to compute average em-

beddings for each class and make predictions through a nearest-class-mean approach.

Alternatively, stored samples can be used for distillation, ensuring the new model’s

output on old samples remains close to previous predictions [Buzzega et al., 2020, Bos-

chini et al., 2022, Castro et al., 2018, Douillard et al., 2020]. In class-incremental settings,

prototypes in the last linear layer are known to be biased towards more recent classes,

and methods have been proposed to alleviate the issue [Hou et al., 2019, Ahn et al.,

2021]. Moreover, Replay with small buffers can lead to overfitting, and explicit regu-

larization can help counter this [Bonicelli et al., 2022]. To address the computational

and memory cost of rehearsal, instead of using raw samples, replay can also be per-

formed in feature space [Pellegrini et al., 2020, Hayes et al., 2020, Ostapenko et al.,

2022]. Replay can also be performed with generated data. Although pseudo-rehearsal

with random vectors and pseudo labels does not work with DNNs, generative models

can be used instead for continual training [Atkinson et al., 2018, Shin et al., 2017, Van de

Ven et al., 2020]. While current generative models can produce highly realistic data

[Saharia et al., 2022], training them in a continual setting remains challenging [Lesort

et al., 2019a]. To increase storage efficiency, compressed samples can be obtained via

an autoencoder [Riemer et al., 2019] or via standard compression algorithms [Wang

et al., 2022a]. Regarding buffer management techniques related to sample selection, a

de-facto approach is Reservoir Sampling [Vitter, 1985, Rolnick et al., 2018, Riemer et al.,

2018], which ensures a representative subset of the full data stream is kept in memory.

Sample selection can also be formulated as a constrained optimization procedure for

promoting diversity [Aljundi et al., 2019c], which can be useful in settings where the

data stream is unbalanced. When additional task or class information is available, it

can be leveraged for more balanced sample selection [Yoon et al., 2022, Shim et al.,

2021, Rebuffi et al., 2017]. Lastly, samples in the memory can also be used to perform

constrained optimization, where gradients from different tasks do not interfere with
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each other. In Gradient Episodic Memory (GEM) Lopez-Paz and Ranzato [2017], the

authors propose to formulate this constraint by enforcing that the dot product of task

gradients to be non-negative, which is achieved by projecting the estimated gradient

direction of the new tasks in the feasible region determined by previous task gradients.

AGEM [Chaudhry et al.] proposes to relax this constraint, projecting the new task gra-

dient on the average gradient direction determined over a randomly sampled subset

of previous tasks. In summary, replay based approaches are the most robust and best

performing methods among the three categories, but performing the rehearsal step

increases the computational and memory cost.

3.3.2 Regularization based Methods

Regularization-based methods for Continual Learning can be broadly categorized into

two groups: data-focused methods and prior-focused methods.

Prior-focused methods focus on constraining the model’s parameter updates to pre-

serve important parameters from previous tasks. This is done via a Bayesian approach,

where we aim to learn the posterior probability of our parameters given the data. Let

us consider a TIL scenario with two tasks and their respective datasets D1 and D2.

When presented with the second task, the Bayesian learning objective is to find pa-

rameters θ maximizing the log posterior log p(θ|D1,D2). Prior-based methods rely on

Bayes’ Rule to rewrite this term without requiring access to the previous dataset :

log p(θ|D1,D2) = log p(D2,D1, θ)− log p(D1,D2)

= log p(D2|θ,D1) + log p(θ|D1) + log p(D1)− log p(D1,D2)

= log p(D2|θ) + log p(θ|D1)− log p(D2|D1)),
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with the last line leveraging the conditional independence of D1 and D2 given θ. Here,

the first term is the log-likelihood of the new task, i.e. the standard MLE objective

computed on D2. The last term does not depend on θ and can be ignored during opti-

mization, and can be dropped. Importantly, the middle term p(θ|D1) is the posterior in

which all the information from the first task is encoded. Prior-focused methods lever-

age the posterior of the first task as a prior for the second task, which constrains the

optimization procedure from erasing knowledge from Task 1 by discouraging param-

eters that are unlikely under the prior.

Unfortunately, estimating the true posterior distribution is intractable, therefore ap-

proximations are used instead. Elastic Weight Consolidation (EWC) [Kirkpatrick et al.,

2017] uses the Laplace approximation [MacKay, 1992], which assumes the posterior

follows a Gaussian distribution centered on θ1 (the MLE estimate obtained by training

on D1) with diagonal covariance. This results in a quadratic penalty on the change of

model parameters, with a weighting proportional to the Empirical Fisher Information

Matrix (EFIM) of the previously learned tasks. Synaptic Intelligence (SI) [Zenke et al.,

2017], interprets the prior term in EWC as a regularizer, and proposes a new one which

approximates the contribution of each parameter to the overall loss. They then use

this information to regularize the updates, preventing critical parameters from being

changed drastically. Riemannian Walk [Chaudhry et al., 2018], draws keys concepts

from EWC and SI, and combines the use of the EFIM, as well as a per-parameter im-

portance score to constrain the optimization process, resulting in a more stable learn-

ing trajectory. Similarly, Memory Aware Synapses [Aljundi et al.] proposes a way to

estimate the importance of each parameter for the past tasks in a fully unsupervised

and online manner. To ensure that the diagonal EFIM approximation of the posterior

in EWC is closer to the true posterior, Liu et al. [2018] learn a reparameterization of

the parameters which minimizes this approximation error. Lastly, Variational Contin-

ual Learning (VCL) [Nguyen et al., 2018] employs variational inference [Kingma and
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Welling, 2014] to approximate the posterior distribution of model parameters given the

data and regularizing the model by minimizing the Kullback-Leibler (KL) divergence

between the prior and posterior distributions.

Data-focused methods all leverage a form of knowledge distillation, typically be-

tween a previous version of the model and the current one being optimized, effectively

grounding the model close to previous task solutions. One such example is Learning

without Forgetting (LwF) [Li and Hoiem, 2017], which uses knowledge distillation, en-

suring that the current model’s output on previous tasks remains close to its previous

predictions while learning the new task. Less-forgetting Learning in Deep Neural Net-

works [Jung et al., 2016] matches features at the network’s penultimate layer between

old and current model via an l2 loss. Encoder Based Lifelong Learning [Rannen et al.,

2017] trains task-specific autoencoders on the hidden features of a shared classifier.

These autoencoders are then used to regularize training on a new task, via an aux-

iliary loss preventing the reconstructed features from changing significantly. Finally,

Class-incremental learning via deep model consolidation [Zhang et al., 2020] uses a

two-stage learning process that first learns a separate model on the new task, and then

consolidates their knowledge using distillation, yielding back a single model.

To summarize, regularization based approaches are a solution to Continual Learn-

ing without storing past data, and prior based methods are well grounded in Bayesian

Theory. While this family of methods might be effective in the task incremental set-

ting with a small number of disjoint tasks, this family often shows poor performance

when tasks are similar and training models are faced with long sequences as shown

in Farquhar and Gal [2018]. In such settings, replay-based methods are preferred.
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3.3.3 Architecture based Methods

This family of methods leverages the task-identifier during training to explicitly al-

locate subsets of parameters which are only modified during a single task. In other

words, when a new task is encountered, previous parameters are kept frozen, while

additional ones are optimized on the given task. At inference, these methods require

either the task identifier of the data given to the model, or an explicit mechanism to

infer the task id from the data. Such methods are by design immune to catastrophic

forgetting, as the task-specific model can be retrieved exactly, by discarding parame-

ters specific to other tasks. Progressive Neural Networks [Rusu et al., 2016] instantiates

a new set of weights for each task, which are connected to the - frozen - weights of pre-

vious tasks belonging to the same layer, similar to Xu and Zhu [2018]. ExpertGate

[Aljundi et al., 2017] trains a disjoint expert and an autoencoder for each task. At in-

ference time, the autoencoders are used as a routing mechanism, weighting the output

of each expert proportionally to their ability to reconstruct the input data. [Gaya et al.,

2023] learns a set of anchor weights for each layer and learns task-specific mixture coef-

ficients used to average said weights. When a new task is given, previous anchors are

frozen, and a new anchor is dynamically added if a weighted average of existing an-

chors performs suboptimally. [Wortsman et al., 2020] learns a binary mask activating

only a subset of weights. The authors also propose a task inference mechanism, which

performs gradient-based search over possible task-specific masks. Other approaches

operate under a fixed architecture, and rather than adding new parameters for each,

a parameter (or activation) subset of the existing model is identified as belonging to

a specific task, and is only updated during said task [Mallya and Lazebnik, 2018, Fer-

nando et al., 2017, Serra et al., 2018]. Overall, these methods shine in settings where

task inference is achievable. The main drawback of these methods is that the number

of parameters usually increases when learning new tasks, which can be unfeasible in

some cases.
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3.4 Relation To Other Fields

Continual Learning, while a distinct field, shares many connections and similarities

with other areas of research in machine learning. In this section, we briefly discuss

the relationships between Continual Learning and other related fields such as Transfer

Learning, Multi-Task Learning, Meta-Learning, and Online Learning.

3.4.1 Transfer Learning

Transfer Learning [Zhuang et al., 2020, Pan and Yang, 2010, Weiss et al., 2016] is the

process of leveraging knowledge acquired from a source task or domain to improve

learning in a related target task or domain. The core idea in Transfer Learning is that,

instead of learning from scratch, models can benefit from previously acquired knowl-

edge to achieve better performance or learn more efficiently. Continual Learning shares

similarities with Transfer Learning in that both fields are concerned with learning from

multiple tasks or domains. However, the key difference lies in the sequential nature

of learning in Continual Learning, where models must adapt to new tasks over time

while retaining knowledge of previous tasks, whereas Transfer Learning typically fo-

cuses on transferring knowledge from a single source task to a single target task, irre-

spective of a potential performance decrease on the source task. In recent years, the

"pretrain and finetune" paradigm [Brown et al., 2020a, Radford et al., 2019, Raffel et al.,

2020] has emerged as a powerful transfer learning approach, where a model is first

pretrained without supervision on large amounts of data, before being finetuned on a

downstream task of interest. A similar approach is also seen in Continual Learning,

where the initial model prior to sequence learning is a foundation model [Ostapenko

et al., 2022].
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3.4.2 Multi-Task Learning

Multi-Task Learning (MTL) [Caruana, 1997, Ruder, 2017] is a learning paradigm where

models are trained on multiple tasks simultaneously, with the goal of improving gen-

eralization performance on each task. MTL is based on the assumption that solving

multiple tasks jointly can lead to the discovery of shared representations or structures,

resulting in better performance compared to learning each task independently. Con-

tinual Learning and MTL share the common objective of learning from multiple tasks.

However, in Continual Learning, tasks are encountered sequentially, whereas MTL

focuses on learning tasks concurrently. Moreover, Continual Learning faces the ad-

ditional challenge of mitigating catastrophic forgetting as the model encounters new

tasks, which is not a concern in MTL.

3.4.3 Meta-Learning

Meta-Learning, or "learning to learn" [Thrun and Pratt, 1998, Finn et al., 2017], fo-

cuses on designing learning algorithms that can adapt quickly to new tasks by lever-

aging prior experience or knowledge. The primary aim of Meta-Learning is to enable

models to learn new tasks or concepts with minimal supervision and few examples.

While Continual Learning and Meta-Learning both deal with learning from multiple

tasks or domains, Meta-Learning performs offline training, assuming that all training

data is available at once. Moreover, Meta-Learning often emphasizes the ability to

rapidly adapt to new tasks irrespective of performance degradation on earlier tasks,

while Continual Learning is concerned with the long-term adaptation and retention

of knowledge across a sequence of tasks. Lastly, combining key concepts of Meta-

Learning and Continual Learning is an active area of research and has shown promis-

ing results [Javed and White, 2019, Beaulieu et al., 2020, He et al., 2016].
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3.4.4 Online Learning

In Online Learning [Cesa-Bianchi and Lugosi, 2006, Hazan et al., 2016], models are up-

dated incrementally as data samples become available, typically in a streaming fashion.

That is, the learner must make predictions or decisions for each incoming data sample

before receiving feedback. Continual Learning is closely related to Online Learning,

as both fields address the challenge of learning from a stream of data. However, Con-

tinual Learning focuses on the adaptation to non-stationary data distributions and the

retention of knowledge across tasks, whereas Online Learning primarily deals with the

optimization of learning in a streaming data setting.



32

Chapter 4

Replay Sample Selection through

Maximally Interfered Retrieval

So far, we have established that replay based methods are a robust approach to con-

tinual learning, outperforming regularization based approaches. This gain, however,

comes at an increased cost in computation, which is required to perform the rehearsal

step. In this chapter, we investigate whether current standard practices during the

replay step are optimal. Specifically, we direct our attention towards answering the

question of what samples should be replayed from the previous history when new samples are

received. Indeed, the standard approach of randomly selecting rehearsal data indepen-

dently of the current task being learned [Chaudhry et al., 2019b, Aljundi et al., 2019c],

implicitly assumes that all prior knowledge is impacted uniformly when acquiring

new knowledge. Intuitively, learning a new task should result in limited interference

with a previous task if the two map to very orthogonal hidden representations under

the model. Thus, replaying data from the previous task may not be necessary. Alter-

natively, if a new task maps to similar features as a previous task, then the model’s in-

ternal knowledge of this older task is more likely to be impacted if the current shared

representation changes significantly to accommodate the new task. In this situation,
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replaying data from the previous task is crucial to mitigate forgetting.

The contribution proposed in this chapter leverages this intuition, and formalizes

into an objective that is used to select samples for rehearsal. The proposed approach,

Maximally Interfered Retrieval (MIR), favors rehearsal data whose prediction under

the model will be the most negatively impacted from training on the incoming data.

MIR also takes some motivation from neuroscience where replay of previous memories

is hypothesized to be present in the mammalian brain [McClelland, 1998, Rolnick et al.,

2018], but likely not random. For example it is hypothesized in Honey et al. [2017],

Long NM that similar mechanisms might occur to accommodate recent events while

preserving old memories. Our proposed approach works with both standard replay

and rehearsal with generative models (§ 4.1), enabling gradient based search of these

interfered points in the latter. We evaluate our approach in an online continual learning

setting, where the data is seen only once and is not iid. We show that MIR not only

reduces forgetting, but also leads to consistent gains in accuracy (§ 4.2).

4.1 Methods

We consider a (potentially infinite) stream of data where at each time step t, the system

receives a new set of samples Xt,Yt drawn non i.i.d from a current distribution Dt

that could itself experience sudden changes corresponding to task switching from Dt

to Dt+1.

We aim to learn a classifier f parameterized by θ that minimizes a predefined loss

L on new sample(s) from the data stream without interfering, or increasing the loss, on

previously observed samples. One way to encourage this is by performing updates on

old samples from a stored history, or from a generative model trained on the previous

data. The principle idea of our proposal is that instead of using randomly selected or

generated samples from the previous history [Chaudhry et al., Shin et al., 2017], we
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Incoming Batch

Find Likely 
Interfered 
Samples
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Update

Update on Augmented Batch
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Memories
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Update on Augmented Batch

Stream of Non-iid Samples
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Orange v AppleWolf vs Car

Lion vs Zebra Dog vs. Horse

Naive Approach Maximally Interfered

Figure 4.1 High-level illustration of a standard rehearsal method (left)
such as generative replay or experience replay which selects samples ran-
domly. This is contrasted with selecting samples based on interferences with
the estimated update (right).

find samples that would be (maximally) interfered by the new incoming sample(s),

had they been learned in isolation (Figure 4.1). This is motivated by the observation

that the loss of some previous samples may be unaffected or even improved, thus

retraining on them is wasteful. We formulate this first in the context of a small storage

of past samples and subsequently using a latent variable generative model.

4.1.1 Maximally Interfered Sampling from a Replay Memory

We first instantiate our method in the context of experience replay (ER), a recent and

successful rehearsal method [Chaudhry et al., 2019a], which stores a small subset of

previous samples and uses them to augment the incoming data. In this approach the

learner is allocated a memory M of finite size, which is updated by the use of reser-

voir sampling [Aljundi et al., 2019c, Chaudhry et al., 2019a] as the stream of samples

arrives. Typically samples are drawn randomly from memory and concatenated with
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the incoming batch.

Given a standard objective min
θ
L(fθ(Xt),Yt), when receiving sample(s) Xt we es-

timate the would-be parameters update from the incoming batch as

θv = θ− α∇L(fθ(Xt),Yt),

with learning rate α. We can now search for the top-k values x ∈M using the criterion

sMI-1(x) = l(fθv(x), y)− l(fθ(x), y),

where l is the sample loss. We may also augment the memory to additionally store the

best l(fθ(x), y) observed so far for that sample, denoted l(fθ∗(x), y). Thus instead we

can evaluate sMI-2(x) = l(fθv(x), y)−min (l(fθ(x), y), l(fθ∗(x), y)). We will consider both

versions of this criterion in the sequel.

We denote the budget of samples to retrieve, B. To encourage diversity we apply

a simple strategy of performing an initial random sampling of the memory, selecting

C samples where C > B before applying the search criterion. This also reduces the

compute cost of the search. The ER algorithm with MIR is shown in Algorithm 2. We

note that for the case of sMI-2 the loss of the C selected samples at line 14 is tracked and

stored as well.

4.1.2 Maximally Interfered Sampling from a Generative Model

We now consider the case of replay from a generative model. Assume a function f

parameterized by θ (e.g. a classifier) and an encoder qϕ and decoder gγ model param-

eterized by ϕ and γ, respectively. We can compute the would-be parameter update θv

as in the previous section. We want to find in the given feature space data points that

maximize the difference between their loss before and after the estimated parameters
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Algorithm 2 Experience MIR (ER-MIR)
Input: Learning rate α, Subset size C; Budget B

10 Initialize: MemoryM; θ for t ∈ 1..T do

11 for Bn ∼ Dt do

12 θv ← SGD(Bn, α) // Virtual Update

13 BC ∼M // Select C samples

14 S ← sort(sMI(BC)) // Select based on score

15 BMC ← {Si}Bi=1 // Aggregate interefered data

16 θ← SGD(Bn ∪BMC , α) // Gradient Descent Step

17 M← UpdateMemory(Bn) // Add samples to memory

update:

max
Z
L(fθv(gγ(Z)),Y ∗)−L(fθ′ (gγ(Z)),Y ∗) (4.1)

s.t. ||zi − zj||22> ϵ ∀zi, zj ∈ Z with zi ̸= zj

with Z ∈ RB×K, K the feature space dimension, and ϵ a threshold to encourage the

diversity of the retrieved points. Here θ
′ can correspond to the current model param-

eters or a historical model as in Shin et al. [2017]. Furthermore, y∗ denotes the true

label i.e. the one given to the generated sample by the real data distribution. We

will explain how to approximate this value shortly. We convert the constraint into a

regularizer and optimize the Equation 4.1 with stochastic gradient descent denoting

the strength of the diversity term as λ. From these points we reconstruct the full cor-

responding input samples X
′
= gγ(Z) and use them to estimate the new parameters

update min
θ
L(fθ(Xt ∪X

′
)).
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Algorithm 3 Generative-MIR (GEN-MIR)
Input: Learning rate α

18 Initialize: MemoryM; θ, ϕ,γ

for t ∈ 1..T do

19 θ
′
, ϕ

′
, γ

′ ← θ,ϕ, γ

for Bn ∼ Dt do

20 θv ← SGD(Bn, α) // Virtual Update

21 BC ← Retrieve samples as per Eq (4.2)

BG← Retrieve samples as per Eq (4.3)

θ← SGD(Bn ∪BC , α) // Update Classifier

22 ϕ,γ ← SGD(Bn ∪BG, α) // Update Generative Model

Figure 4.2 Most interfered retrieval
from VAE on MNIST. Top row shows
incoming data from a final task (8 v 9).
The next rows show the samples caus-
ing most interference for the classifier
(Eq. 4.1)

Using the encoder encourages a

better representation of the input sam-

ples where similar samples lie close.

Our intuition is that the most inter-

fered samples share features with new

one(s) but have different labels. For

example, in handwritten digit recog-

nition, the digit 9 might be written

similarly to some examples from dig-

its {4,7}, hence learning 9 alone may result in confusing similar 4(s) and 7(s) with 9

(Fig. 4.2). The retrieval is initialized with Z ∼ qϕ(Xt) and limited to a few gradient

updates, limiting its footprint.

To estimate the loss in Eq. 4.1 we also need an estimate of y∗ i.e. the label when using

a generator. A straightforward approach for is based on the generative replay ideas

[Shin et al., 2017] of storing the predictions of a prior model. We thus suggest to use the
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predicted labels given by fθ′ as pseudo labels to estimate y∗. Denoting ypre = fθ′ (gγ(z))

and ŷ = fθv(gγ(z)) we compute the KL divergence, DKL(ypre ∥ ŷ), as a proxy for the

interference.

Generative models such as VAEs Kingma and Welling [2014] are known to generate

blurry images and images with mix of categories. To avoid such a source of noise

in the optimization, we minimize an entropy penalty to encourage generating points

for which the previous model is confident. The final objective of the generator based

retrieval is

max
Z

∑
z∈Z

[DKL(ypre ∥ ŷ)− αH(ypre)] (4.2)

s.t. ||zi − zj||22> ϵ ∀zi, zj ∈ Z with zi ̸= zj,

with the entropy H and a hyperparameter α to weight the contribution of each term.

So far we have assumed having a perfect encoder/decoder that we use to retrieve

the interfered samples from the previous history for the function being learned. Since

we assume an online continual learning setting, we need to address learning the en-

coder/decoder continually as well. We could use a variational autoencoder (VAE) with

pγ(X | z) = N (X | gγ(z), σ2I) with mean gγ(z) and covariance σ2I .

As for the classifier we can also update the VAE based on incoming samples and the

replayed samples. In Eq. 4.1 we only retrieve samples that are going to be interfered

given the classifier update, assuming a good feature representation. We can also use

the same strategy to mitigate catastrophic forgetting in the generator by retrieving the

most interfered samples given an estimated update of both parameters (ϕ,γ). In this

case, the intereference is with respect to the VAE’s loss, the evidence lower bound

(ELBO). Let us denote γv, ϕv the virtual updates for the encoder and decoder given
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the incoming batch. We consider the following criterion for retrieving samples for the

generator:

max
Zgen

E
z∼qϕv

[−log(pγv(gγv(Zgen)|z))]− E
z∼qϕ′

[−log(pγ′(gγ′(Zgen)|z))]

+DKL(qϕv(z|gγv(Zgen))||p(z))−DKL(qϕ′(z|gγ′(Zgen))||p(z)) (4.3)

s.t. ||zi − zj||22> ϵ ∀zi, zj ∈ Zgen s.t. zi ̸= zj

Here (ϕ′, γ′) can be the current VAE or stored from the end of the previous task. Similar

to Z, Zgen is initialized with Zgen ∼ qϕ(Xt) and limited to few gradient updates.

4.1.3 A Hybrid Approach

Training generative models in the continual learning setting on more challenging datasets

like CIFAR-10 remains an open research problem Lesort et al. [2019a]. Storing samples

for replay is also problematic as it is constrained by storage costs and very-large mem-

ories can become difficult to search. To leverage the benefits of both worlds while

avoiding training the complication of noisy generation, similar to Riemer et al. [2019]

we use a hybrid approach where an autoencoder is first trained offline to store and

compress incoming memories. Differently, in our approach, we perform MIR search

in the latent space of the autoencoder using Eq. 4.1. We then select nearest neighbors

from stored compressed memories to ensure realistic samples. Our strategy has sev-

eral benefits: by storing lightweight representations, the buffer can store more data for

the same fixed amount of memory. Moreover, the feature space in which encoded sam-

ples lie is fully differentiable. This enables the use of gradient methods to search for

most interfered samples. We note that this is not the case for the discrete autoencoder

proposed in Riemer et al. [2019]. Finally, the autoencoder with its simpler objective is

easier to train in the online setting than a variational autoencoder.
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4.2 Experiments

We now evaluate the proposed method under the generative and experience replay

settings. We use three standard datasets and the shared classifier setting described

below.

• MNIST Split splits MNIST data to create 5 different tasks with non-overlapping

classes. We consider the setting with 1000 samples per task as in Aljundi et al.

[2019b], Lopez-Paz and Ranzato [2017].

• Permuted MNIST permutes MNIST to create 10 different tasks. We consider the

setting with 1000 samples per task as in Aljundi et al. [2019b], Lopez-Paz and

Ranzato [2017].

• CIFAR-10 Split splits CIFAR-10 dataset into 5 disjoint tasks as in Aljundi et al.

[2019c]. However, we use a more challenging setting, with all 9,750 samples per

task and 250 retained for validation.

• MiniImagenet Split splits MiniImagenet Vinyals et al. [2016] dataset into 20 dis-

joint tasks as in Chaudhry et al. [2019a] with 5 classes each.

In our evaluations we focus the comparisons of MIR to random sampling in the expe-

rience replay (ER) [Aljundi et al., 2019c, Chaudhry et al., 2019a] and generative replay

[Shin et al., 2017, Lavda et al., 2018] approaches which our method directly modifies.

We also consider the following reference baselines:

• fine-tuning trains continuously upon arrival of new tasks without any forgetting

avoidance strategy.

• iid online (upper-bound) considers training the model with a single-pass through

the data on the same set of samples, but sampled iid.
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• iid offline (upper-bound) evaluates the model using multiple passes through the

data, sampled iid. We use 5 epochs in all the experiments for this baseline.

• GEM Lopez-Paz and Ranzato [2017] is another method that relies on storing sam-

ples and has been shown to be a strong baseline in the online setting. It gives

similar results to the recent A-GEM Chaudhry et al..

We do not consider prior-based baselines such as Kirkpatrick et al. [2017] as they

have been shown to work poorly in the online setting as compared to GEM and ER

[Chaudhry et al., 2019a, Lopez-Paz and Ranzato, 2017]. For evaluation we primarily

use the accuracy as well as forgetting [Chaudhry et al., 2019a].

Shared Classifier A common setting for continual learning applies a separate classi-

fier for each task. This does not cover some of the potentially more interesting contin-

ual learning scenarios where task metadata is not available at inference time and the

model must decide which classes correspond to the input from all possible outputs. As

in Aljundi et al. [2019c] we adopt a shared-classifier setup for our experiments where

the model can potentially predict all classes from all tasks. This sort of setup is more

challenging, yet can apply to many realistic scenarios.

Multiple Updates for Incoming Samples In the one-pass through the data continual

learning setup, previous work has been largely restricted to performing only a single

gradient update on incoming samples. However, as in Aljundi et al. [2019c] we argue

this is not a necessary constraint as the prescribed scenario should permit maximally

using the current sample. In particular for replay methods, performing additional gra-

dient updates with additional replay samples can improve performance. In the sequel

we will refer to this as performing more iterations.
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Comparisons to Reported Results Comparing reported results in Continual Learn-

ing requires great diligence because of the plethora of experimental settings. We re-

mind the reader that our setting, i.e. shared-classifier, online and (in some cases) lower

amount of training data, is more challenging than many of the other reported contin-

ual learning settings. Therefore, the reader must be vigilant in comparing results across

equivalent settings.

4.2.1 Experience Replay

Here we evaluate experience replay with MIR comparing it to standard experience re-

play [Chaudhry et al., 2019a, Aljundi et al., 2019c] on a number of shared classifier

settings. In all cases we use a single update for each incoming batch, multiple itera-

tions/updates are evaluated in a final ablation study. We restrict ourselves to the use

of reservoir sampling for deciding which samples to store. We first evaluate using the

MNIST Split and Permuted MNIST (Table 4.1). We use the same learning rate, 0.05,

used in Aljundi et al. [2019c]. The number of samples from the replay buffer is always

fixed to the same amount as the incoming samples, 10, as in Chaudhry et al. [2019a].

For MIR we select by validation C = 50 and the sMI-2 criterion for both MNIST datasets.

ER-MIR performs well and improves over (standard) ER in both accuracy and forget-

ting. We also show the accuracy on seen tasks after each task sequence is completed in

Figure 4.7.

We now consider the more complex setting of CIFAR-10 and use a larger number

of samples than in prior work Aljundi et al. [2019c]. We study the performance for

different memory sizes (Table 4.2). For MIR we select by validation at M = 50, C = 50

and the sMI-1 criterion. We observe that the performance gap increases when more

memories are used. We find that the GEM method does not perform well in this setting.

We also consider another baseline iCarl Rebuffi et al. [2017]. Here we boost the iCarl

method permitting it to perform 5 iterations for each incoming sample to maximize its
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performance. Even in this setting it is only able to match the experience replay baseline

and is outperformed by ER-MIR for larger buffers.

method Split MNIST Permuted MNIST
Accuracy (↑) Forgetting (↓) Accuracy (↑) Forgetting (↓)

iid online 86.8± 1.1 N/A 73.8± 1.2 N/A
iid offline 92.3± 0.5 N/A 86.6± 0.5 N/A

fine-tuning 19.0± 0.2 97.8± 0.2 64.6± 1.7 15.2± 1.9
GEN 79.3± 0.6 19.5± 0.8 79.7± 0.1 5.8± 0.2

GEN-MIR 82.1± 0.3 17.0± 0.4 80.4± 0.2 4.8± 0.2

GEM 86.3± 1.4 11.2± 1.2 78.8± 0.4 3.1± 0.5
ER 82.1± 1.5 15.0± 2.1 78.9± 0.6 3.8± 0.6

ER-MIR 87.6± 0.7 7.0± 0.9 80.1± 0.4 3.9± 0.3

Table 4.1 Results for MNIST SPLIT (left) and Permuted MNIST (right).
We report the Average Accuracy (higher is better) and Average Forgetting
(lower is better) after the final task, along with the standard error. We split
results into privileged baselines, methods that don’t use a memory storage,
and those that store memories. For the ER methods, 50 memories per class
are allowed. Each approach is run 20 times.

Increased iterations We evaluate the use of additional iterations on incoming batches

by comparing the 1 iteration results above to running 5 iterations. Results are shown

in Table 4.3. We use ER an and at each iteration we either re-sample randomly or using

the MIR criterion. We observe that increasing the number of updates for an incoming

sample can improve results on both methods.

Longer Tasks Sequence Next, we want to test how our strategy performs on longer

sequences of tasks. For this we consider the 20 tasks sequence of MiniImagenet Split.

Note that this dataset is very challenging in our setting given the shared classifier and

the online training. A naive experience replay with 100 memories per class obtains

only 17% accuracy at the end of the task sequence. To overcome this difficulty, we allow

more iterations per incoming batch. Table 4.4 compares ER and ER-MIR accuracy and



4 Replay Sample Selection through Maximally Interfered Retrieval 44

Accuracy (↑) Forgetting ↓
M = 20 M = 50 M = 100 M = 20 M = 50 M = 100

iid online 60.8±1.0 60.8±1.0 60.8±1.0 N/A N/A N/A
iid offline 79.2±0.4 79.2±0.4 79.2±0.4 N/A N/A N/A

GEM 16.8±1.1 17.1±1.0 17.5±1.6 73.5±1.7 70.7±4.5 71.7±1.3

iCarl (5 iter) 28.6±1.2 33.7±1.6 32.4±2.1 49±2.4 40.6±1.1 40±1.8

fine-tuning 18.4±0.3 18.4±0.3 18.4±0.3 85.4±0.7 85.4±0.7 85.4±0.7

ER 27.5±1.2 33.1±1.7 41.3±1.9 50.5±2.4 35.4±2.0 23.3±2.9

ER-MIR 29.8±1.1 40.0±1.1 47.6±1.1 50.2±2.0 30.2±2.3 17.4±2.1

Table 4.2 CIFAR-10 results. Memories per class M , we report (a) Accuracy,
(b) Forgetting (lower is better) and their corresponding standard error. For
larger sizes of memory ER-MIR has better accuracy and improved forgetting
metric. Each approach is run 15 times.

Number of iterations
1 5

iid online 60.8± 1.0 62.0± 0.9

ER 41.3± 1.9 42.4± 1.1
ER-MIR 47.6± 1.1 49.3± 0.1

Table 4.3 CIFAR-10 accuracy (↑) re-
sults for increased iterations and 100
memories per class. Each approach
is run 15 times, standard erorr is re-
ported.

Accuracy ↑ Forgetting ↓

ER 24.7± 0.7 23.5± 1.0
ER-MIR 25.2±0.6 18.0±0.8

Table 4.4 MinImagenet results.
100 memories per class and using
3 updates per incoming batch, ac-
curacy is slightly better and for-
getting is greatly improved. Each
approach is run 15 times, stan-
dard error is reported.

forgetting at the end of the sequence. It can be seen how our strategy continues to

outperform, in particular we achieve over 5% decrease in forgetting.

4.2.2 Generative Replay

We now study the effect of our proposed retrieval mechanism in the generative replay

setting (Alg. 3). Recall that online continual generative modeling is particularly chal-

lenging and to the best of our knowledge has never been attempted. This is further
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exacerbated by the low data regime we consider.

Results for the MNIST datasets are presented in Table 4.1. To maximally use the

incoming samples, we (hyper)-parameter searched the amount of additional iterations

for both GEN and GEN-MIR. In that way, both methodologies are allowed their op-

timal performance. More hyperarameter details are provided in the Appendix. On

MNIST Split, MIR outperforms the baseline by 2.8% and 2.5% on accuracy and for-

getting respectively. Methods using stored memory show improved performance, but

with greater storage overhead. We provide further insight into theses results with

a generation comparison (Figure 4.3). Complications arising from online generative

modeling combined with the low data regime cause blurry and/or fading digits (Fig-

ure 4.3a) in the VAE baseline (GEN). In line with the reported results, the most in-

terfered retrievals seem qualitatively superior (see Figure 4.3b where the GEN-MIR

generation retrievals is demonstrated). We note that the quality of the samples causing

most interference on the VAE seems higher than those on the classifier.

(a) Generation with the best VAE
baseline. Complications arising from
both properties leave the VAE gener-
ating blurry and/or fading digits.

(b) Most interfered samples while
learning the last task (8 vs 9). Top
row is the incoming batch. Rows 2
and 3 show the most interfered sam-
ples for the classifier, Row 4 and 5 for
the VAE. We observe retrieved sam-
ples look similar but belong to differ-
ent category.

Figure 4.3 Online and low data regime MNIST Split generation. Qualita-
tively speaking, most interfered samples are superior to baseline’s.

For the Permuted MNIST dataset, GEN-MIR not only outperforms the baselines,

but it achieves the best performance over all models. This result is quite interesting, as
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generative replay methods can’t store past data and require much more tuning.

The results discussed thus far concern classification. Nevertheless, GEN-MIR alle-

viates catastrophic forgetting in the generator as well. Table 4.5 shows results for the

online continual generative modeling. The loss of the generator is significantly lower

on both datasets when it rehearses on maximally interfered samples versus on random

samples. This result suggests that our method is not only viable in supervised learning,

but in generative modeling as well.

MNIST Split Permuted MNIST

GEN 107.2± 0.2 196.7± 0.7

GEN-MIR 102.5± 0.2 193.7± 1.0

Table 4.5 Generator’s loss (↓), i.e. negative
ELBO, on the MNIST datasets. Our method-
ology outperforms the baseline in online con-
tinual generative modeling as well. We report
standard error.

Our last generative replay ex-

periment is an ablation study.

The results are presented in

Table 4.6. All facets of our

proposed methodology seem to

help in achieving the best pos-

sible results. It seems however

that the minimization of the la-

bel entropy, i.e. H(ypre), which

ensures that the previous classi-

fier is confident about the retrieved sample’s class, is most important and is essential

to outperform the baseline.

As noted in Lesort et al. [2019a], training generative models in the continual learn-

ing setting on more challenging datasets remains an open research problem. Lesort

et al. [2019a] found that generative replay is not yet a viable strategy for CIFAR-10

given the current state of the generative modeling1. We too arrived at the same conclu-

sion, which led us to design the hybrid approach presented next.

4.2.3 Hybrid Approach

1this paper was published in 2019. See section 4.5 for relation to the more recent literature.
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Accuracy
GEN-MIR 83.0
ablate MIR on generator 82.7
ablate MIR on classifier 81.7
ablate DKL(ypre ∥ ŷ) 80.7
ablate H(ypre) 78.3
ablate diversity constraint 80.7
GEN 80.0

Table 4.6 Ablation study of GEN-
MIR on the MNIST Split dataset. The
H(ypre) term in the MIR loss function
seems to play an important role in the
success of our method.
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Table 4.7 Permuted MNIST test ac-
curacy on tasks seen so far for re-
hearsal methods. Error bars denote
standard error.

100 / 1k 500 / 5k 1k / 10k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Accuracy ( )

100 / 1k 500 / 5k 1k / 10k
0.0

0.1

0.2

0.3

0.4

0.5

Forgetting ( )
AE-Random
AE-MIR

Real Memory Slots / Compressed Memory Slots

Figure 4.4 Results for the Hy-
brid Approach. Error bars denote
standard error.

In this section, we evaluate the hybrid ap-

proach proposed in Sec 4.1.3 on the CIFAR-10

dataset. We use an autoencoder to compress

the data stream and simplify MIR search.

We first identify an important failure

mode arising from the use of reconstructions

which may also apply to generative replay.

During training, the classifier sees real im-

ages, from the current task, from the data

stream, along with reconstructions from the

buffer, which belong to old tasks. In the shared classifier setting, this discrepancy can

be leveraged by the classifier as a discriminative feature. The classifier will tend to

classify all real samples as belonging to the classes of the last task, yielding low test

accuracy. To address this problem, we first autoencode the incoming data with the

generator before passing it to the classifier. This way, the classifier cannot leverage the
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distribution shift. We found that this simple correction led to a significant performance

increase. We perform an ablation experiment to validate this claim, which can be found

in the Appendix , along with further details about the training procedure.

In practice, we store a latent representation of size 4 × 4 × 20 = 320, giving us a

compression factor of 32×32×3
320

= 9.6 (putting aside the size of the autoencoder, which

is less than 2% of total parameters for large buffer size). We therefore look at buffer

size which are 10 times as big i.e. which can contain 1k, 5k, 10k compressed images,

while holding memory equivalent to storing 100 / 5000 / 1k real images. Results are

shown in Figure 4.4. We first note that as the number of compressed samples increases

we continue to see performance improvement, suggesting the increased storage capac-

ity gained from the autoencoder can be leveraged. We next observe that even though

AE-MIR obtains almost the same average accuracies as AE-Random, it achieved a big

decrease in the forgetting metric, indicating a better trade-offs in the performance of

the learned tasks. Finally we note a gap still exists between the performance of re-

constructions from incrementally learned AE or VAE models and real images, further

work is needed to close it.

4.3 Discussion

In this chapter, we have proposed and studied a criterion for retrieving relevant memo-

ries in an online continual learning setting. We have shown in a number of settings that

retrieving interfered samples reduces forgetting and significantly improves on random

sampling and standard baselines. Our results and analysis also shed light on the fea-

sibility and challenges of using generative modeling in the online continual learning

setting. We have also shown a first result in leveraging encoded memories for more

compact memory and more efficient retrieval.

A first drawback of the analysis presented in this chapter is the lack of proper mon-
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itoring of computation during training. Indeed, the MIR selection criterion requires

additional forward-backward passes through the model, which amounts to a 2× in-

crease of FLOPs during training, as we will see in chapter 6. Nevertheless, we have

shown that increasing the number of training iterations of standard replay, effectively

giving ER a compute budget superior to MIR, does not enable it to surpass our pro-

posed method.

Moreover, given the limited scope of the evaluation setup, which primarily concen-

trated on online, image-based class-incremental learning scenarios with small memory

requirements, it remains uncertain how MIR would perform in more diverse and re-

alistic settings (such as starting from a pretrained model). Consequently, readers are

advised to exercise caution when extrapolating these results to broader contexts.

4.4 Follow-up findings in the community

Subsequent to the publishing of this paper, Shim et al. [2021] conducted an in-depth

survey of several Continual Learning methods, including MIR, in both class-incremental

and domain-incremental settings. In the latter, the marginal distribution p(y) is fixed,

i.e. the same classes are observed across tasks, however p(x|y) changes for each task.

The authors also evaluated on additional datasets, and found that "MIR performs the

best in larger-scale datasets, [...] is overall a strong and versatile online continual learn-

ing method across a wide variety of settings", and that "[...] MIR produces performance

levels that bring online continual learning much closer to its ultimate goal of matching

offline training." These findings suggest that in larger-scale settings, where agents can

potentially afford to store all previously seen data, MIR could be an effective strategy

to carefully choose rehearsal samples. On the other hand, it was shown in Masana et al.

[2022] that applying MIR to offline class-incremental learning scenarios does not yield

any gains w.r.t to standard replay, suggesting that MIR’s use may be limited to online
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settings.

Finally, several works have also investigated the question of what samples should

be used for replay. Shim et al. [2021] proposed an Adversarial Shapley Value scoring

method which can be used to select which samples to store in the buffer, as well as

which ones to rehearse on. They showed that this approach leads to more diverse

sample selection than MIR. Nisar et al. [2023] extended the MIR approach to retrieved

samples whose gradients interfere the most with the gradient of the loss computed on

the incoming data.
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Chapter 5

Online Continual Compression via

Adaptive Quantization Modules

This chapter focuses on the following familiar setting: new training data arrives contin-

uously for a learning algorithm to exploit, however this data might not be iid, and fur-

thermore there is insufficient storage capacity to preserve all the data uncompressed.

We may want to train classifiers, reinforcement learning policies, or other models con-

tinuously from this data as it’s being collected, or use samples randomly drawn from

it at a later point for a downstream task. For example, an autonomous vehicle (with

bounded memory) collects large amounts of high-dimensional training data (video,

3D lidar) in a non-stationary environment (e.g. changing weather conditions), and

over time applies an ML algorithm to improve its behavior using this data. This data

might be transferred at a later point for use in downstream learning. Current learned

compression algorithms, e.g. Torfason et al. [2018], are not well designed to deal with

this case, as their convergence speed is too slow to be usable in an online setting.

In the previous chapter, we have shown that for Continual Learning approaches

based on storing memories for later use have emerged as some of the most effec-

tive in online settings [Lopez-Paz and Ranzato, 2017, Aljundi et al., 2019c, Chaudhry
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et al., 2019a, Aljundi et al., 2019a]. We saw that these memories can be stored as is,

or via a generative model [Shin et al., 2017]. Indeed, many continual learning ap-

plications would be greatly improved with replay approaches if one could afford to

store all samples. These approaches are however inherently limited by the amount of

data that can be stored. Learning a generative model to compress the previous data

stream thus seems like an appealing idea. However, as demonstrated in the previous

chapter, training generative models in the online and non-stationary setting contin-

ues to be challenging, and can greatly increase the complexity of the continual learn-

ing task. Furthermore, such models are susceptible to catastrophic forgetting. This

led us to propose a hybrid solution, where a compressed representation of the data

is learned, which can be more stable than learning generative models. While the ap-

proach showed some promise, several limitations need to be addressed for the hybrid

method to be a viable alternative to standard replay. Specifically, (i) offline pretraining

of the compressor was required, (ii) there was a clear distribution shift between raw

and reconstructed images, and (iii) overall this approach underperformed standard

replay in online class-incremental settings for the same memory budget.

In the following chapter, we propose a new approach for online continual com-

pression, which addresses all three challenges above. Moreover, we show that when

dealing with long sequences, learned compression in the online and non-stationary

setting itself introduces new challenge, illustrated in Fig 5.2. Firstly the learned com-

pression module must be able to decode representations encoded by earlier versions

of itself, introducing a problem we refer to as representation drift. Secondly, the learned

compressor is itself susceptible to catastrophic forgetting. Finally, the learned compres-

sion needs to be adaptive to maintain a prescribed level of reconstruction quality even

if it has not fully adapted to the current state of the distribution.

In this work we demonstrate that the VQ-VAE framework [Van Den Oord et al.,

2017, Razavi et al., 2019], originally introduced in the context of generative model-
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ing and density estimation, can be used online to effectively address representation

drift while achieving high compression. Furthermore, when augmented with an inter-

nal replay mechanism it can overcome forgetting. Finally we propose to use multiple

gradient-isolated compression levels to allow the compressor to adaptively store sam-

ples at different compression scales, based on the amount of data, storage capacity, and

effectiveness of the model in compressing samples.

Thus, in this chapter, I discuss our contributions in Caccia et al. [2020a], which are

as follows: (i) we introduce and highlight the online learned continual compression

(OCC) problem and its challenges. (ii) We show how representation drift, one of the

key challenges, can be tackled by effective use of codebooks in the VQ-VAE frame-

work. (iii) We propose an architecture using multiple VQ-VAEs, adaptive compres-

sion scheme, stream sampling scheme, and self-replay mechanism that work together

to effectively tackle the OCC problem. (iv) We demonstrate this can yield state-of-

the-art performance in standard online continual image classification benchmarks and

demonstrate the applications of our OCC solution in a variety of other contexts.

5.1 Technical Background

5.1.1 Vector Quantized Variational Autoencoder

Variational Autoencoders (VAE) [Kingma and Welling, 2014] can be seen as a regu-

larized version of the standard autoencoder, making VAEs valid generative models.

They consist of two parts: the encoder network parameterizes the posterior distribu-

tion q(z|x) and the decoder network p(x|z) aims to reconstruct the original input x

from the inferred latent variables z. In a standard VAE, the prior and posterior are

modeled as an isotropic Gaussian distribution. On the other hand, Vector Quantized

Autoencoders (VQ-VAE) use a discrete latent representation instead [Van Den Oord

et al., 2017]. The VQ-VAE is a discrete auto-encoder which relies on a vector quanti-
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Figure 5.1 left : VQ-VAE workflow, taken from Van Den Oord et al. [2017].
The red arrow denotes the use of the straight-through estimator. right : Vi-
sualisation of the embedding space, with the green dot denoting the encoder
output and e2 denoting its quantized representation.

zation step to obtain discrete latent representations. An embedding table, E ∈ RK×D

consisting of K vectors of size D, is used to quantize encoder outputs. Given an in-

put (e.g. an RGB image), the encoder first encodes it as a Hh ×Wh ×D tensor, where

Hh and Wh denote the height and width of the latent representation. Then, every D

dimensional vector is quantized using a nearest-neighbor lookup on the embedding

table. Specifically,

zij = argmin
e∈E

||enc(x)ij − e||2,

where i, j refers to a spatial location. The output of the quantization step is then fed

through the decoder. The gradient of this non-differentiable step is approximated us-

ing the straight-through estimator. An important property to notice is that to recon-

struct the input, only the Hh×Wh indices are required, thus yielding high compression

[Van Den Oord et al., 2017].

Critically, the embedding tables are updated independently from the encoder and

decoder, namely by minimizing mine||sg[enc(x)ij]− e||, where sg is the stop gradient

operator.
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5.1.2 LiDAR data in autonomous driving

LiDAR (Light Detection and Ranging) is a remote sensing technology that uses laser

light to measure distances and generate detailed, accurate maps of the environment. In

the context of autonomous driving, LiDAR sensors are mounted on top of vehicles to

provide high-resolution 3D point clouds, which can be used for object detection, local-

ization, and mapping. LiDAR data is particularly valuable for autonomous vehicles,

as it can provide accurate depth information, allowing the vehicles to safely navigate

their surroundings. We follow our previous work in Caccia et al. [2019], and encode

lidar scans in a 2D grid, which can then be processed using standard convolutional

neural networks.

5.2 Methodology

In this section we outline our approach to the online continual compression problem.

First we review the VQ-VAE and highlight the properties making it effective for rep-

resentational drift. Then we describe our adaptive architecture, storage, and sampling

scheme.

5.2.1 Problem Setting: Online Continual Compression

We consider the problem setting where a stream of samples x ∼Dt arrives from differ-

ent distributions Dt changing over time t = 1 . . . T . We have a fixed storage capacity of

C bytes where we would like to store the most representative information from all data

distributions D1, ...DT . There is notably a trade-off in quality of information versus the

amount of samples stored. We propose to use a learned compression model, and most

crucially, this model must also be stored within the C bytes, to encode and decode

the data samples. Another critical requirement is that at anytime t the content of the

storage (data and/or compression model) be usable for downstream applications. An
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Online Continual Compression
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Figure 5.2 Illustration of the challenges in the Online Continual Compres-
sion problem. A model must be able to decode representations encoded by
previous versions of the autoencoder, permitting anytime access to data for
the learner. This must be accomplished while dealing with a time-varying
data distribution and fixed memory constraints

important challenge, illustrated in Figure 5.2, is that the learned compression module

will change over time, while we still need to be able to decode the memories in storage.

5.2.2 Vector Quantized VAE for Online Compression

Encoder
    t=1
    

Encoder
    t=3
    

same after VQ

Vector Quantization

different

codebook

Figure 5.3 Illustration of reduced rep-
resentation drift from Vector Quantiza-
tion

Observe in the case of online compres-

sion, if the embedding table of the

VQ VAE is fixed, then a change in

the encoder parameters and therefore

a change in the encoder output for a

given input will not change the final

quantized representation z, unless it

is sufficiently large, thus we can ob-

serve that if the embeddings change

slowly or are fixed we can greatly im-

prove our control of the representa-
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Algorithm 4 AQM LEARNING WITH SELF-REPLAY

Input: Learning rate α, EXTERNALLEARNER

23 Initialize: AQM MemoryM; AQM Parameters θaqm
for t ∈ 1..T do

24 for Binc ∼ Dt do
25 for n ∈ 1..N do
26 B ← Binc // Fetch data from current task

27 if t > 1 then
28 Bre ∼ SAMPLE(M,θaqm) // Fetch data from buffer

29 B ← (Binc,Bre)

30 θaqm← ADAM(θaqm,B,α) // Update AQM

31 EXTERNALLEARNER(B) // Send data to external learner

32 if t > 1 then UPDATEBUFFERREP(M,θaqm)
33 ADDTOMEMORY(M,Binc, θaqm) // Save current indices

tional drift. This effect is illustrated in Figure 5.3. On the other hand we do need

to adapt the embedding table, since randomly selected embeddings would not cover

well the space of encoder outputs.

5.2.3 Adaptive Quantization Modules

To address issues of how to optimize storage and sampling in the context of Online

Continual Compression we introduce Adaptive Quantization Modules (AQM). We use

AQM to collectively describe the architecture, adaptive multi-level storage mechanism,

and data sampling method used. Together they allow effectively constraining individ-

ual sample quality and memory usage while keeping in storage a faithful representa-

tion of the overall distribution.

AQM uses an architecture consisting of a sequence of VQ-VAEs, each with a buffer.

The AQM approach to online continual compression is overall summarized in Algo-

rithm 4 (note ADDTOMEMORY is described in the appendix). Incoming data is added
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to storage using an adaptive compression scheme described in Algorithm 5. Incom-

ing data is also used along with randomly sampled data from storage (self-replay) to

update the current AQM model. The randomly sampled data also updates its repre-

sentation in storage as per Algorithm 6. As illustrated by the optional lines in blue, Al-

gorithm 4 can run concurrently with a downstream learning task (e.g. online continual

classification) which would use the same batch order. It can also be run independently

as part of a data collection. In the sequel we give further details on all these elements

Architecture and Training

Figure 5.4 Architecture of Adaptive
Quantization Modules. Each level
uses its own loss and maintains its
own replay buffer. Yello dotted lines
indicate gradient isolation between
modules

Each AQM module contains a VQ-VAE

and a corresponding buffer of adaptive

capacity. A diagram of the architecture

is given in Figure 5.4. We will denote the

output after quantization of each module

i as ziq and the set of codebook indexes

used to obtain ziq as ai. Note that ai are

the discrete representations we actually

store. Each subsequent module produces

and stores an ai requiring fewer bits to

represent.

For RGB images, the compression

rate at a given level is given by
H×W×3×log2(256)

Nc×Hhi×Whi×⌈log2 (Ki)⌉ . Here Ki is the num-

ber of embeddings in the codebooks,

(Hhi, Whi) the spatial dimension of the la-

tent representation and Nci the number of

codebooks.
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Algorithm 5 ADAPTIVECOMPRESS

Input: datapoint x, AQM with L modules, threshold dth

34 {ziq, ai}i=1..L= ENCODE(x) // Forward all modules, store encodings

35 for i ∈ L...1 do

36 x̂ = DECODE(ziq) // Decode from level i to output space

37 if MSE(x̂, x) < dth then // Check reconstruction error

38 return ai, i

39 return x,0 // Otherwise, return original input

VQVAE-2 [Razavi et al., 2019] also uses a multi-scale hierarchical organization,

where unlike our AQM, the top level models global information such as shape, while

the bottom level, conditioned on the top one, models local information. While this

architecture is tailored for generative modeling, it is less attractive for compression,

as both the bottom and top quantized representations must be stored for high qual-

ity reconstructions. Furthermore in AQM each module is learned in a greedy manner

using the current estimate of z(i−1)
q without passing gradients between modules sim-

ilar to Belilovsky et al. [2019], Nøkland and Eidnes [2019]. A subsequent module is

not required to build representations which account for all levels of compression, thus

minimizing interference across resolutions. This allows the modules to each converge

as quickly as possible with minimal drift at their respective resolution, particularly

important in the online continual learning case.

Multi-Level Storage

Our aim is to store the maximum number of samples in an allotted C bytes of stor-

age, while assuring their quality, and our ability to reconstruct them. Samples are thus

stored at different levels based on the compressors’ current ability. The process is sum-
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Algorithm 6 UpdateBufferRep
Input: MemoryM, AQM with L levels, data D, distortion threshold dth

40 for x ∈ D do

41 hidx, blockid = ADAPTIVECOMPRESS(x, AQM, dth)

DELETE(M[x]) // Delete Old Representation

42 ADD(M, hidx) // Add new one

marized in Algorithm 5.

Such an approach is particularly helpful in the online non-stationary setting, allow-

ing knowledge retention before the compressor network has learned well the current

distribution. Note in Alg. 5 samples can be completely uncompressed until the first

module is able to effectively encode them. This can be crucial in some cases, if the

compressor has not yet converged, to avoid storing poorly compressed representa-

tions. Further taking into account that compression difficulty is not the same for all

datapoints, this allows use of more capacity for harder data, and fewer for easier.

We also note, since we maintain stored samples at each module and the modules

are decoupled, that such an approach allows to easily distribute training in an asyn-

chronous manner as per Belilovsky et al. [2019].

Self-Replay and Stream Sampling

As shown in Alg. 4 our AQM is equipped with an internal experience replay mecha-

nism [Mnih et al., 2013], which reconstructs a random sample from storage and uses

it to perform an update to the AQM modules, while simultaneously freeing up over-

all memory if the sample can now be compressed at a later AQM module. This has

the effect of both reducing forgetting and freeing memory. In practice we replay at

the same rate as incoming samples arrive and thus replay will not increase asymptotic
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complexity of the online learning. Finally, for efficiency the replay can be coupled to

an external online learner querying for random samples from the overall memory.

Since we would like the AQM to work in cases of a fixed memory capacity it must

also be equipped with a mechanism for selecting which samples from the stream to

store and which to delete from memory. Reservoir Sampling (RS) is a simple yet power-

ful approach to this problem, used successfully in continual learning [Chaudhry et al.,

2019a]. It adds a sample from the stream with prob. p =
buffer capacity

points seen so far while re-

moving a random sample. However, RS is not directly compatible with AQM primar-

ily because the amount of samples that can be stored varies over time. This is because

samples at different levels have different memory usage and memory can be freed by

replay. We thus propose an alternative scheme, which maximally fills available mem-

ory and selects non-uniformly samples for deletion. Specifically when a larger amount

of samples are added at one point in the stream, they become more likely to be re-

moved. The details of this stream sampling method are provided in the appendix.

Drift Control via Codebook Stabilization

As mentioned previously, a good online compressor must control its representational

drift, which occurs when updates in the auto-encoder parameters creates a mismatch

with the static representations in the buffer. Throughout this chapter we measure rep-

resentational drift by comparing the following time varying quantity: DRIFTt(z) =

RECON ERR(Decode(θt; z), x) where θt the model parameters at time t and (z, x) is

a stored compressed representation and its original uncompressed datapoint respec-

tively. For all experiments on images, RECON ERR is simply the mean squared error.

As illustrated in Sec 5.2.2 a slow changing codebook can allow to control drifting

representations. This can be in part accomplished by updating the codebook with an

exponential moving average as described in [Van Den Oord et al., 2017, Appendix A],

where it was used to reduce the variance of codebook updates. This alone is insuffi-
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cient to fully control drift, thus once a given module yields satisfactory compressions

on the data stream, we freeze the module’s embedding matrix but leave encoder and

decoder parameters free to change and adapt to new data. Moreover, we note that fix-

ing the codebook for a given module does not affect the reconstruction performance of

subsequent modules, as they only need access to the current module’s decoder which

can still freely change.

5.3 Experiments

We evaluate the efficacy of the proposed methods on a suite of canonical and new ex-

periments. In Section 5.3.1 we present results on standard supervised continual learn-

ing benchmarks on CIFAR-10. In Section 5.3.2 we evaluate other downstream tasks

such as standard iid training applied on the storage at the end of online continual com-

pression. For this evaluation we consider larger images from Imagenet, as well as on

lidar data. Finally we apply AQM on observations of an agent in an RL environment.

5.3.1 Online Continual Classification

Although CL has been studied in generative modeling [Ramapuram et al., 2017, Lesort

et al., 2019a, Zhai et al., 2019, Lesort et al., 2019b] and reinforcement learning [Kirk-

patrick et al., 2017, Fernando et al., 2017, Riemer et al., 2018], supervised learning is still

the standard for evaluation of new methods. Thus, we focus on the online continual

classification of images for which our approach can provide a complement to experi-

ence replay. In this setting, a new task consists of new image classes that the classifier

must learn, while not forgetting the previous ones. The model is only allowed one pass

through the data [Lopez-Paz and Ranzato, 2017, Chaudhry et al., Aljundi et al., 2019a,

Chaudhry et al., 2019a]. The online compression here takes the role of replay buffer

in replay based methods such as Chaudhry et al. [2019a], Aljundi et al. [2019a]. We

thus run Algorithm 4, with an additional online classifier being updated performed at
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method Accuracy (↑) Forgetting (↓)
M=20 M = 50 M=20 M=50

iid online 60.8± 1.0 60.8± 1.0 N/A N/A
iid offline 79.2± 0.4 79.2± 0.4 N/A N/A

GEM [Lopez-Paz and Ranzato, 2017] 16.8± 1.1 17.1± 1.0 73.5± 1.7 70.7± 4.5
iCarl (5 iter) [Rebuffi et al., 2017] 28.6± 1.2 33.7± 1.6 49± 2.4 40.6± 1.1

fine-tuning 18.4± 0.3 18.4± 0.3 85.4± 0.7 85.4± 0.7
ER 27.5± 1.2 33.1± 1.7 50.5± 2.4 35.4± 2.0

ER-MIR [Aljundi et al., 2019a] 29.8± 1.1 40.0± 1.1 50.2± 2.0 30.2± 2.3

ER-JPEG 33.9± 1.0 43.1± 0.6 54.8± 1.2 44.3± 0.9
Gumbel AE [Riemer et al., 2018] 25.5± 2.0 28.8± 2.9 71.5± 2.8 67.2± 3.9

AQM (ours) 43.5± 0.7 47.0± 0.8 23.0± 1.0 19.0± 1.4

Table 5.1 Shared head results on disjoint CIFAR-10. Total memory per
class M measured in sample memory size. We report (a) Accuracy, (b) For-
getting (lower is better). Standard error is reported.

line 15. Here we consider the more challenging continual classification setting often

referred to as using a shared-head [Aljundi et al., 2019a, Farquhar and Gal, 2018, Aljundi

et al., 2019c]. Here the model is not informed of the task (and thereby the subset of

classes within it) at test time. This is in contrast to other (less realistic) CL classification

scenarios where the task, and therefore subset of classes, is provided explicitly to the

learner [Farquhar and Gal, 2018, Aljundi et al., 2019a].

For this set of experiments, we report accuracy, i.e. 1
T

∑T
i=1RT,i, and forgetting, i.e.

1
T−1

∑T−1
i=1 max(R:,i)−RT,i with R ∈ RT×T representing the accuracy matrix where Ri,j

is the test classification accuracy on task j when task i is completed.

Baselines A basic baseline for continual supervised learning is Experience Replay

(ER). It consists of storing old data in a buffer to replay old memories. Although rel-

atively simple recent research has shown it is a critical baseline to consider, and in

some settings is actually state-of-the-art [Chaudhry et al., 2019a, Aljundi et al., 2019a,
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Rolnick et al., 2018]. AQM can be used as an add-on to ER that incorporates online

continual compression. We also compare against ER with standard JPEG compression.

In addition we consider the following baselines. iid online (upper-bound) trains the

model with a single-pass through the data on the same set of samples, but sampled

iid. iid offline (upper-bound) evaluates the model using multiple passes through the

data, sampled iid. We use 5 epochs in all the experiments for this baseline. fine-tuning

trains continuously upon arrival of new tasks without any forgetting avoidance strat-

egy. iCarl [Rebuffi et al., 2017] incrementally classifies using a nearest neighbor algo-

rithm, and prevents catastrophic forgetting by using stored samples. GEM [Lopez-Paz

and Ranzato, 2017] uses stored samples to avoid increasing the loss on previous task

through constrained optimization. It has been shown to be a strong baseline in the

online setting. It gives similar results to the recent A-GEM Chaudhry et al.. ER-MIR

[Aljundi et al., 2019a] controls the sampling of the replays to bias sampling towards

samples that will be forgotten. We note that the ER-MIR critera is orthogonal to AQM,

and both can be applied jointly. Gumbel AE Riemer et al. [2018] learns an autoencoder

for ER using the Gumbel softmax to obtain discrete representations.

We evaluate with the standard CIFAR-10 split [Aljundi et al., 2019c], where 5 tasks

are presented sequentially, each adding two new classes. Evaluations are shown in Ta-

ble 5.1. Due to our improved storage of previous data, we observe significant improve-

ment over other baselines at various memory sizes. We can contrast AQM’s perfor-

mance with ER’s to understand the net impact of our compression scheme. Specifically,

AQM improves over ER by 16.0% and 13.9% in the M=20 and M=50 case, highlighting

the effectiveness of online compression. Our approach is also superior in forgetting by

a significant margin in both memory settings.

To compare directly to reporting in Riemer et al. [2018] we also benchmarked our

implementation on the Incremental CIFAR-100 multi-head experiment [Lopez-Paz and

Ranzato, 2017] with the same settings as in Riemer et al. [2018]. By using AQM we were
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able to get 65.3 vs the reported 43.7 using a buffer of size 200. To specifically isolate

the advantage of gumbel softmax versus the vector quantization for drift, we replaced

the vector quantization approach with gumbel softmax in an AQM. We observed sign-

ficantly less drift in the case where vector quantization is used. Full details of this

experiment are described in the supplementary materials along with visualizations.

The CIFAR-10 dataset has a low resolution (3× 32× 32) and uses a lot of data per

task (10K samples). These two characteristics might leave the online compression prob-

lem easier than in a real-life scenario. Specifically, if the first tasks are long enough and

the compression rate is not too large, the model can quickly converge and thus not

incur too much representation drift. Indeed, we found that using a single module is

already sufficient for this task. For these reasons, we now study the AQM in more

challenging settings presented in the next section.

5.3.2 Offline Evaluation on Larger Images

Besides the standard continual classification setup, we propose several other evalua-

tions to determine the effectiveness of the stored data and compression module after

learning online compression. We also perform a detailed ablation to study the efficacy

of each component in AQM.

Offline training on Imagenet We compare the effectiveness of the stored memories

of AQM after a certain amount of online continual compression. We do this by train-

ing in a standard iid way an offline classification model using only reconstructions

obtained from the storage sampled after online continual compression has progressed

for a period of time. In each case we would have the same sized storage available. We

note that simply having more stored memories does not amount to better performance

as their quality may be severely degraded and affected by drift.
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Method Accuracy

RS 5.2± 0.2

2 Module AQM (ours) 23.2± 1.1

Ablate 2nd Module 20.5± 1.3

Ablate Fixing Codebook 19.2± 0.6

Ablate Decoupled Training 16.5± 0.7

Ablate Adaptive Compression 13.1± 3.2

Table 5.2 Imagenet offline training eval-
uation from online continual compres-
sion. We see a clear gain over a stan-
dard Reservoir sampling approach. We
then ablate each component of our pro-
posal showing each component is impor-
tant. Note storage used in each exper-
iment is identical (including accounting
for model sizes). Standard error is re-
ported.

Using this evaluation we first

compare a standard reservoir sam-

pling approach on uncompressed

data to a 2 module AQM using the

same size storage. We observe that

performance is drastically increased

using the compressed samples. We

then use this to perform a series of

ablations to demonstrate each com-

ponent of our proposal is important.

Specifically (a) we restrict AQM to

have only one module, (b) instead

of decoupled training we train mod-

ules end-to-end, (c) we remove adap-

tive compression, thus all samples

are stored in the most compressed block, regardless of quality, and (d) we do not stabi-

lize the codebook, the embedding matrices of every block are never fixed. We observe

that all these elements contribute to successfully storing a representative set of data for

the distribution online.

Drift Ablation We have seen the importance of codebook freezing when dealing with

high dimensional datasets. However, judging solely from the final downstream task

performance it’s difficult to see if the model continues adapting after freezing. As

alluded in Sec 5.2.2 there is a tradeoff between keeping recoverable representations

and a model’s ability to continue to adapt. To shed some light on this, we run the

following experiment: we run a vanilla VQ-VAE on the same 20 task mini-imagenet

stream, without storing any samples. When it reaches a pre-specified performance
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threshold, we fix the codebook, and store compressed held-out data from the first task.

We then continue to update the VQ-VAE parameters, and the memory is kept fixed for

the rest of the stream. We apply self-replay but no other AQM mechanisms (e.g. no

sampling from the input stream and no adaptive compression).

Figure 5.5 Impact of codebook freezing.
Vertical black line indicates freezing point.
We see that AQM is still able to adapt and re-
duce its reconstruction loss, while having sta-
ble compressed representations. Results av-
eraged over 5 runs, shading represents one
standard deviation.

We monitor how well the

VQ-VAE can adapt by looking

at the streaming reconstruction

cost, measured on the incom-

ing data before an update. We

also monitor the drift of samples

stored in the buffer. Results are

presented in Figure 5.5. They

demonstrate that drift is con-

trolled by stabilizing the code-

book, while the model can still

improve at nearly the same rate.

Further analysis, along with an additional experiment showcasing the robustness of

vector quantization to small perturbations is included in the appendix.

LiDAR Range data enables autonomous vehicles to scan the topography of their sur-

rounding, giving precise measurements of an obstacle’s relative location. In its raw

form, range data can be very large, making it costly to transmit in real time, or for long

term storage. Equipping self-driving cars with a good lidar compressor can enable fast

vehicle-to-vehicle (V2V) communication, leading to safer driving Eckelmann [2017].

Moreover, since data collected by autonomous vehicles can be highly non-stationary

(new objects on the road, changing weather or traffic conditions), having a compressor

which can quickly adapt to this distribution change will reduce the required memory
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Figure 5.6 Top: Sample decoded from the buffer at the end of training from
scratch (32x compression rate). Bottom: Original lidar

for storage (or bandwidth for real time transmission).

We proceed to train AQM on the Kitti Dataset [Geiger et al., 2013], which contains

61 LiDAR scan recordings, each belonging to either the “residential", “road", “city"

environments. The data is processed as in Caccia et al. [2019], where points from the

same elevation angle are sorted in increasing order of azimuth angle along the same

row. This yield a 2D grid, making it compatible with the same architecture used in the

previous experiments. As in [Caccia et al., 2019, Tu et al., 2019], we report the recon-

struction cost in Symmetric Nearest Neighbor Root Mean Squared Error (SNNRMSE)

which allows to compare two point clouds. Note AQM can also be adapted to use task

relevant criteria besides MSE.

We consider two settings. In the first, we train AQM from scratch on a data stream

consisting of recordings from all three environments. We present (once) all the record-

ings of an environment before moving on to another, in order to maximise the dis-

tribution shift. We show qualitative results in Figure 5.6 and in the supplementary

materials. Observe that we are able to effectively reconstruct the LiDAR samples and

can easily tradeoff quality with compression. Overall we obtain 18.8 cm SNNRMSE

with 32× compression, which lies in a range that has been shown in [Tu et al., 2019]

to be sufficient to enable SLAM localization with very minimal error. In the second

setting, we wish to simulate a scenario where some data is available a priori for the

model to leverage. However, this data is limited and does not cover all the possi-
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ble modalities to which an autonomous vehicle could be exposed. To this end, we

pretrain AQM in a fully offline iid manner on the road and residential recordings.

Method Size in Mb

Raw 1326.8

Gzip 823.0

AQM 35.5± .06

AQM + finetune 33.0± .07

AQM + finetune + PNG 27.9± .01

Table 5.3 Compression results for
the data transmission of the city lidar
recordings. We require that each com-
pressed scan has an SNNRMSE under
15 cm. We report standard error.

We then simulate the deployment of the

compressor on a vehicle, where it must

compress and transmit in real time the

lidar data feed from a new distribution.

We therefore stream the held-out city

recordings and show that AQM can be

fine-tuned on the fly to reduce the re-

quired bandwidth for data transmission.

Quantitative results are presented in ta-

ble 5.3. We ensure that the reconstructed

lidar scans have a SNNRMSE smaller

than 15.0 cm. Moreover, since the stored

representations in AQM are 2D and discrete, we can apply lossless compression

schemes such as Portable Network Graphics (PNG).

5.3.3 Atari RL Environments

Another application of online continual compression is for preserving the states of an

reinforcement learning agent operating online. These agents may often learn new tasks

or enter new rooms thus the observations will often be highly non-iid. Furthermore

many existing reinforcement learning algorithms already rely on potentially large re-

play buffers which can be prohibitive [Mnih et al., 2014, Rolnick et al., 2018] to run

and may greatly benefit from an approach such as the AQM to run concurrently with

reinforcement learning algorithms. We thus perform a proof of concept for the AQM

for storing the state sequence encountered by an RL learner in the atari environment

[Bellemare et al., 2013]. We use the dataset and tasks introduced in Anand et al. [2019],
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which runs a random or learned policy in the atari environments and provides a set of

classification tasks to evaluate whether key information about the state is preserved.

Results are shown Table 5.8. We run the online learning with the AQM on the data

stream observed by the random agent. We use the same observations and optimiza-

tion as in Anand et al. [2019] and report the F1 results of a linear probe directly on

states for our reconstructions after online compression and the originals. Results for

3 environments are shown in Table 5.8 and examples in in Fig 5.7 and the Appendix.

We find that AQM can well preserve the critical information while compressing the

state by 16x. The reference accuracies achieved by our classifier are similar to those

in Anand et al. [2019]. However, we do not control for the representation size unlike

those evaluations of various unsupervised models.

Figure 5.7 Top: original. Bot-
tom: reconstructed from AQM

Game Cls Input F1

Pong Orig. State 86.7
AQM Recon 86.8

Ms Pacman Orig. State 89.4
AQM Recon 88.3

Pitfall Orig. State 68.2
AQM Recon 66.7

Figure 5.8 Results on RL probing tasks
from Anand et al. [2019] with linear probe
applied to original observation and to
reconstructions from AQM after online
compression. Acc is averaged for each
game over game specific prediction.

5.4 Related Work

Learned compression has been recently studied for the case of image compression.

For lossy compression, Theis et al. [2017], Ballé et al. [2016], Johnston et al. [2018] have
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shown that DNNs trained to compress images can outperform standard algorithms

like JPEG. Deep Generative Models can also be used to perform lossless compression.

This approach is based on the idea of using a probabilistic model to capture the struc-

ture and dependencies in the data, and then using entropy coding to encode the data in

a compressed form [Townsend et al., 2019]. However, for both compression settings,

these methods are difficult to adapt for online settings as they do not directly address

the challenges of the OCC problem (e.g. representation drift).

Continual Learning For a more in-depth survey of CL methods, we refer the reader

to chapter 3. Most closely related to the work presented in this chapter, Riemer

et al. [2017] consider compressing memories for use in the continual classification task.

They also employ a discrete latent variable model but with the Gumbel approximation,

which shows to be less effective than our approach. Furthermore a separate offline iid

pre-training step for the learned compression is required in order to surpass the ER

baseline, distinctly different from the online continual compression we consider.

Lidar compression is considered in Tu et al. [2019] and Caccia et al. [2019]. Both ap-

proaches use a similar projection from 3D (x, y, z) coordinates to 2D cylindrical coor-

dinates, and leverage deep generative models to compress the data. However, neither

accounts for potential distribution shift, nor for online learning. In this work we show

that using this 2D projection in conjunction with our model allows us to mitigate the

two issues above for lidar data.

5.5 Discussion

In this chapter, we introduced the problem of online continual compression. We demon-

strated that vector quantization can be used to control drift, and we showed how to cre-

ate mechanisms that allow maintaining compression quality while maximizing mem-
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ory usage. These allowed learning compression while compressing, and removed the

need for a separate pretraining step. We have shown effectiveness of this online com-

pression approach on standard continual classification benchmarks, as well as for com-

pressing larger images, lidar, and atari data.

The main limitation of the work presented in this chapter is the underlying premise

that storage, and not computation, is an important bottleneck when developing con-

tinual learning algorithms. With the benefit of hindsight, it has become clear that the

field of machine learning is shifting towards large, general-purpose foundation models

[Bommasani et al., 2021]. When utilizing such models, the cost of training far surpasses

the expenses related to storing the data and model parameters. That being said, I be-

lieve the insight developed in this work still has several relevant applications. These

applications revolve around AQM’s solution to the representation drift problem, which

is also encountered in other scenarios. Within the field of Continual Learning, the ap-

proach of latent replay [Pellegrini et al., 2020, Ostapenko et al., 2022, Hayes et al., 2020],

where intermediate representations rather than raw data is replayed, is an effective

way to reduce the computation cost. Indeed, given a network with L layers, if latent

representations are stored for the K-th layer, when performing the rehearsal step, only

the last L−K layers are used. This approach, however, suffers from representation

drift, as the representations from the first K layers change over time. Hayes et al.

[2020] address this by freezing the first K layers, which limits the model’s ability to

adapt to changes in the data distribution. Pellegrini et al. [2020] also freeze parts of the

network, only adapting the batch normalization statistics in the first K layers, and yet

still observe a performance decrease in later stages, likely attributable to representation

drift. The use of a vector quantization bottleneck and codebook freezing could be in-

tegrated in latent replay, addressing representation drift without significantly hinder-

ing the model’s plasticity. Lastly, in self-supervised learning of image representations

[Chen et al., 2020b, Caron et al., 2021], contrastive methods like MoCo [He et al., 2020]
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compare old encodings with newer ones during training. To ensure that the represen-

tations remain consistent (i.e. that there is no significant drift), the older features are

obtained from a slow moving encoder, updated via an exponential moving average.

The use of quantization as proposed in AQM could be a cheaper alternative to this

approach, both in memory and computation.

5.6 Follow-up findings in the community

The role played by compression in rehearsal based CL approaches has been further

explored after the publishing of this paper. Wang et al. [2022a] investigate in more de-

tail the trade-off between the reconstruction quality and the amount of samples stored,

and further propose an approach to determine the optimal trade-off. Ayub and Wag-

ner [2021] propose an approach to encode and regenerate pseudo-images, retaining

the key characterics for a rehearsal-based classifier to maintain a stable performance.

Lastly, [Balaji et al., 2020] show that ER can be performant in large scale CL settings

using compressed intermediate activations.
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Chapter 6

Reducing Abrupt Representation

Change in Online Continual Learning

In Chapters 4 and 5, we explored ways to tackle some of the inefficiencies associated

with replay approaches. Although these methods demonstrate robust performance in

the continual learning scenarios examined thus far, we will illustrate in this chapter

that Experience Replay (ER) remains highly unstable at task boundaries. This is a

critical point during learning where catastrophic forgetting is observed. Notably, this

issue arises regardless of the buffer size and therefore cannot be easily resolved by

simply allocating more resources.

Consider the time point in a stream when a new class is introduced after previous

classes have been well learned. If we consider the representation being learned, incom-

ing samples from new classes are likely to be dispersed, potentially near and between

representations of previous classes, while the representations of previous classes will

typically cluster according to their class. Indeed, one might expect minimal changes

to the learned representation of the previous classes, while the new class samples are

pushed away from the clusters of old class data. However, with a standard ER algo-

rithm [Chaudhry et al., 2019a], we observe that it is the representations of older classes
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TSNE plot of the penultimate layer at the first task boundary
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Figure 6.1 (left) Analysis of representations with the first task’s class pro-
totypes at a task boundary. Under ER when Task 2 begins, class 1 & 2 proto-
types experience a large gradient and subsequent displacement caused by
the close location of the unobserved sample representations, this leads to a
significant drop in performance (right). Our proposed method (ACE) mit-
igates the representation drift issue and observes no performance decrease
on a task switch.

that is heavily perturbed after just a few update steps when training on the new class

samples. We hypothesize that the fundamental issue arises from the combination of:

new class samples representations lying close to older classes and the loss structure of

the standard cross entropy applied on a mix of seen and unseen classes. We illustrate

the observed effect in Fig. 6.1 (left).

This behavior is exacerbated especially in the regime of low buffer size. With larger

replay buffers, the learner can recover knowledge about the prior classes over time,

while with smaller buffers the initial disruptive changes in representations are chal-

lenging to correct. Indeed we illustrate this effect in Fig. 6.1 (right), we see that ER

only recovers from the initial displacement given a much larger buffer size.

In standard continual learning with replay [Aljundi et al., 2019a, Chaudhry et al.,

2019a] the same loss function is usually employed on both the newly received samples

and the replayed samples. In contrast, we propose a simple and efficient solution to

mitigate this representation drift by using separate losses on the incoming stream and

buffered data. The key idea is to allow the representations of samples from new classes
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to be learned in isolation of the older ones first, by excluding the previously learned

classes from the incoming data loss. The discrimination between the new classes and

the older ones is learned through the replayed batches, but only after incoming data

has been learned, added to the buffer, and made available for replay.

To allow more direct control of the structure in representations we first consider

a metric learning based loss for the incoming data, proposed in Khosla et al. [2020],

where we propose to exclude samples of previously learned classes from the negative

samples. We show that this type of negative selection is critical, and in contrast issues

arise when negative examples are sampled uniformly from the buffer. These issues

mimic those seen with standard losses in experience replay (ER) [Aljundi et al., 2019a].

On the other hand, we use a different loss on replay buffer data that is allowed to

consider new and old classes, thereby consolidating knowledge across current and

previous tasks. We call this overall approach ER with asymmetric metric learning (ER-

AML).

Since cross entropy losses can be more efficient in training for classification than

metric learning and contrastive losses (avoiding positive and negative selection) and

are widely used in incremental and continual learning, we also propose an alternative

cross entropy solution that similarly applies an asymmetric loss between incoming and

replay data. Notably, the cross entropy applied to the incoming data only considers log-

its of classes of the incoming data. This variant, named ER with asymmetric cross-entropy

(ER-ACE), along with ER-AML show strong performance, with little disruption at task

boundaries Fig. 6.1 (right). We achieve state-of-the-art results in existing benchmarks

while beating different existing methods including the traditional ER solution with an

average relative gain of 36% in accuracy. Our improvements are especially high in

the small buffer regime. We also show that the mitigation of the old representation

drift does not hinder the ability to learn and discriminate the new classes from the old

ones. This property emerges from only learning the incoming data in isolation; as we will
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see, also isolating the rehearsal step (as in Ahn et al. [2021]) leads to poor knowledge

acquisition on the current task. Furthermore, we show our ER-ACE objective can be

combined with existing methods, leading to additional gains. Finally, we take a closer

look at the computation cost of various existing methods. We show that some meth-

ods, while obtaining good performance under standard evaluation protocols, fail to

meet the computational constraints required in online CL. We provide an extensive

evaluation of computational and memory costs across several baselines and metrics.

To summarize, the contributions presented in this chapter are as follows. We first

highlight the problem of representation drift in the online continual learning setting.

We identify a root cause of this issue through an extensive empirical analysis (Sec.

6.2.2). Second, we propose a new family of methods addressing this issue by treating

incoming and past data asymmetrically (Sec. 6.2.1, 6.2.3). Finally, we show strong

gains over replay baselines in a new evaluation framework designed to monitor real

world constraints (Sec. 6.3). To the best of our knowledge, at the time of the original

publication, we were the first to report the computation costs of different methods in

our setting, revealing new insights.

6.1 Learning Setting and Notation

We consider the setting where a learner is faced with a possibly never-ending stream of

data. At every time step, a labelled set of examples (Xin,Yin) drawn from a distribu-

tion Dt is received. However, the distribution Dt itself is sampled at each timestep and

can suddenly change to Dt+1, when a task switch occurs. The learner is not explicitly

told when a task switch happens, nor can it leverage a task identifier during training or

evaluation. We note that this definition generalizes task-incremental learning, where

each task is seen one after the other. In this scenario, given T tasks to learn, Dt changes

T − 1 times over the full steam, yielding T locally i.i.d learning phases. We also ex-
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plore in this section a more general setting without the notion of clearly delineated

tasks [Aljundi et al., 2019b, Chen et al., 2020a], where the data distribution gradually

changes over time.

Given a model fθ(x) representing a neural network architecture with parameters θ,

we want to minimize the classification loss L on the newly arriving data batch while

not negatively interfering with the previously learned classes (i.e. increasing the clas-

sification loss). A simple and efficient approach to achieve this is to replay stored sam-

ples from a fixed size memory,M, in conjunction with the incoming data [Chaudhry

et al., 2019a, Rolnick et al., 2018]. The core of our approach is that instead of treating

the replayed batch and the incoming one similarly and naively minimizing the same

loss, we opt for a specific loss structure on the incoming batch that would limit the interfer-

ence with the previously well learned classes. We approach this by allowing the features

of the newly received classes in the incoming data to be initially learned in isolation

of the older classes. We first present our idea based on a metric learning loss and then

generalize to the widely deployed cross-entropy loss.

6.2 Methods

6.2.1 A Distance Metric Learning Approach for Reducing Drift (ER-AML)

In order to allow fine-grained control of which samples will be pushed away from

other samples given an incoming batch, we propose to apply, on the incoming data,

a metric learning based loss from Khosla et al. [2020]. Related loss functions have

recently popularized in the self supervised learning literature [Chen et al., 2020b]. We

combine this in a holistic way with a cross-entropy type loss on the replay data. This

allows us to control the representation drift of old classes while maintaining strong

classification performance. Note that if a metric learning loss is used alone we need to

perform predictions using a Nearest Class Means Rebuffi et al. [2017] approach, which
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Algorithm 7 ER-AML
Input: Learning rate α

43 Initialize: MemoryM; Model Params θ
do

44 Receive Xin // Receive from stream

45 Xpos,Xneg ∼ FETCHPOSNEG(Xin,M)

Xbf ∼ SAMPLE(M) // Sample buffer

46 L = γL1(Xin,Xpos,Xneg) +L2(Xbf )

SGD(∇L, θ,α) // Param Update

47 RESERVOIRUPDATE(M,Xin) // Save

48 while The stream has not ended

we show is computationally expensive in the online setting.

Given an input data point x, we consider the function fθ(x) mapping x to its hidden

representation before the final linear projection. We denote the incoming N datapoints

by Xin and data replayed from the buffer by Xbf . We use the following loss, denoted

SupCon [Khosla et al., 2020], on the incoming data Xin,

L1(X
in) = −

∑
xi∈Xin

1

|P (xi)|
∑

xp∈P (xi)

log
sim(fθ(xp), fθ(xi))∑

xn∈N∪P (xi)
sim(fθ(xn), fθ(xi))

, (6.1)

where sim(a, b) = exp( aT b
τ∥a∥∥b∥) computes the exponential cosine similarity between two

vectors, with scaling factor τ [Qi et al., 2018, He et al., 2020].

Here we denote the incoming data xi ∈ Xin. We use the P and N to denote the set

of positive and negatives with respect to xi and the positive examples xp are selected

from the examples in Xin ∪M, which are from the same classes as xi. In the sequel, we

will consider xn selected from Xin ∪M in two distinct ways: (a) from a mix of current

and previous classes and (b) only from classes of the Xin. Note that this implicitly

learns a distance metric where samples of the same class lie close by. For the rehearsal

step, we apply a modified cross-entropy objective as per Qi et al. [2018] which allows
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us to link the similarity metric from above to the logits.

L2(X
bf ) = −

∑
x∈Xbf

log
sim(wc(x), fθ(x))∑
c∈Call

sim(wc, fθ(x))
(6.2)

where Call the set of all classes observed, and c(x) denotes the label of x. The above

formulation allows us to interpret the rows of the final projection {wc}c∈Call
as class

prototypes and inference to be performed without need for nearest neighbor search.

We combine the loss functions on the incoming and replay data

L(Xin ∪Xbf ) = γL1(X
in) +L2(X

bf ) (6.3)

We refer to this approach as Experience Replay with Asymmetric Metric Learning (ER-

AML). We describe the full rehearsal procedure with ER-AML in Algo 7. Note the

buffer may contain samples with the same classes as the incoming data stream. The

subroutine FetchPosNeg is used to find one positive and negative sample per incom-

ing datapoint in Xin, which can reside in either the buffer memoryM or in Xin.

6.2.2 Negative Selection Affects Representation Drift

The selection of negatives for the proposed loss L can heavily influence the representa-

tion of previously learned classes and is analogous to the key issues faced in the regular

replay methods where cross entropy loss is applied to both incoming and replay data.

A typical approach in this loss for classification may be to select the negatives from any

other class [Hoffer and Ailon, 2015]. However, this becomes problematic in the con-

tinual learning setting as the old samples will be too heavily influenced by the poorly

embedded new samples that lie close to the old sample representations. To illustrate

what is going on in the feature space, consider the case of a ER-AML’s L1 term, which

explicitly controls distances between sample representations. L1 considers the incom-

ing batch samples (containing new classes) as anchors. As the representations from
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these classes haven’t been learned, anchors may end up placed near or in-between

points from previous classes (analogous to the illustration in Figure 6.1). Since the pre-

vious classes samples will be clustered together, if we use them as negatives for the

incoming sample anchors, the gradients’ magnitude of the positive term will be out-

weighted by the negative terms coming from the new class samples, similar to what is

observed in Figure 6.1.
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Figure 6.2 Buffer displacement in a
5 task stream. Background shading
denotes different tasks.

In this case there is a sharp change in

gradients norms of the loss w.r.t. the fea-

tures of previous classes, as we illustrate

in the appendix, which leads to a large

change in the representation at the task

boundary (and subsequently poor per-

formance). On the other hand, if we use

only incoming batch examples as nega-

tives we can avoid this excessive repre-

sentation drift. We illustrate this in Fig-

ure 6.2 by showing the representations drift at the task boundaries for ER-AML when

using negative samples from all classes and when using only classes in the incoming

batch. In the context of the model under consideration we measure the one iteration

representation drift of a sample x as |fθt(x)− fθt+1(x)|, the output of the network be-

ing normalized. We observe that naively applying the proposed loss results in large

changes of the learned representation. On the other hand, when allowing only nega-

tives from classes in the incoming batch, we see a reduction in this representation drift.

In the appendix we further demonstrate that the accuracy of models trained using ER-

AML with only incoming batch negatives can improve the continual learning system

performance by a large margin. We emphasize that ER-AML with all negatives and the

regular ER method used for online continual learning suffer from a similar issue and
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thus lead to similar poor performances, with appropriate negative selection resolving

the problem. This is further emphasized in the appendix , where we observe similar

poor drift behavior for ER.

6.2.3 Cross-entropy Based Alternative (ER-ACE)

Having demonstrated the effect of controlling the incoming batch loss in avoiding a

drastic representation drift, we now extend it to be applicable to the standard cross-

entropy loss typically studied in ER [Aljundi et al., 2019a, Chaudhry et al., 2019a].

Given an incoming data batch, consider Cold the set of previously learned classes and

Ccurr the set of classes observed in the current incoming mini-batch. Denoting C the set

of classes included in the cross-entropy loss, we define the Lce(X,C) cross-entropy loss

as: Lce(X,C) =−
∑

x∈X log
sim(wc(x),fθ(x))∑
c∈Csim(wc,fθ(x))

where C ⊂ Call denotes the classes used to

compute the denominator. We note that restricting the classes used in the denominator

has an analogous effect to restricting the negatives in the contrastive loss. Consider

the gradient for a single datapoint x, ∂Lce(x,C)
∂fn

θ
= W((⃗p − y⃗) ⊙ 1y⃗∈C). Here p⃗ denotes

the softmax output of the network, y⃗ a one-hot target, 1y⃗∈C a binary vector masking

out classes not in C, and W the matrix with all class prototypes {wc}c∈Call
. When

the loss is applied in the batch setting, it follows that only prototypes whose labels

are in C will serve roles analogous to positives and negatives in the contrastive loss.

We can then achieve a similar control as the metric learning approach on the learned

representations.

Now, our loss applied at each step would be:

Lace(X
bf ∪Xin) = Lce(X

bf , Cold ∪Ccurr) +Lce(X
in,Ccurr)

where Ccurr denotes the set of the classes represented in the incoming batch and Cold

denotes previously seen classes that are not presented in the incoming batch, those that
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we want to preserve their representation. Note that this is a straightforward procedure

and induces no additional computational overhead. We refer to it as Experience Replay

with Asymmetric Cross-Entropy (ER-ACE).

6.3 Experiments

We have highlighted the issue of abrupt representation change when new classes are

introduced, and propose two methods that address this issue. We now demonstrate

that mitigating drift directly leads to better performance on standard online contin-

ual learning benchmarks. As in Lopez-Paz and Ranzato [2017], Aljundi et al. [2019a],

Chaudhry et al. [2019a] we use a reduced Resnet-18 for our experiments, and leave

the batch size and the rehearsal batch size fixed at 10. This allows us to fairly compare

different approaches, as these parameters have a direct impact on the computational

cost of processing a given stream.

6.3.1 Datasets

All benchmarks are evaluated in the single-head setting, i.e. task descriptors are not

provided to the model at test time, hence the model performs N -way classification

where N is the total amount of classes seen.

Split CIFAR-10 partitions the dataset into 5 disjoint tasks containing two classes

each (as in Aljundi et al. [2019a], Shim et al. [2021])

Split CIFAR-100 comprises 20 tasks, each containing a disjoint set of 5 labels. We

follow the split in Chaudhry et al. [2019a]. All CIFAR experiments process 32 × 32

images.

Split MiniImagenet splits the MiniImagenet dataset into 20 disjoint tasks of 5 la-

bels each. Images are 84× 84.
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6.3.2 Baselines

We focus our evaluation on replay-based methods, as they have been shown to outper-

form other approaches in the online continual learning setting Chaudhry et al. [2019a],

Aljundi et al. [2019a], Ji et al. [2020]. We keep buffer management constant across meth-

ods : all samples are kept or discarded according to Reservoir Sampling Vitter [1985].

We consider the following state-of-the-art baselines:

ER: Experience Replay with a buffer of a fixed size. Unlike Aljundi et al. [2019a],

we do not leverage the task identifier during training to ensure that rehearsal samples

belong to previous classes.

iCaRL Rebuffi et al. [2017] A distillation loss alongside binary cross-entropy is used

during training. Samples are classified based on closest class prototypes, obtained from

recomputing and averaging buffered data representations.

MIR Aljundi et al. [2019a] selects for replay samples interfering the most with the

incoming data batch.

DER++ Buzzega et al. [2020] uses a distillation loss on the logits to ensure consis-

tency over time.

SS-IL Ahn et al. [2021] learns both the current task loss and the replay loss in iso-

lation of each other. An additional task-specific distillation is used on the rehearsal

data.

GDUMB Prabhu et al. [2020] performs offline training on the buffer with unlimited

computation and unrestricted use of data augmentation at the end of the task sequence.

iid: The learner is trained with a single pass on the data, in a single task containing

all the classes. We also consider a version of this baseline using a similar compute

budget as replay methods (iid++)

We note additional baselines such as Lopez-Paz and Ranzato [2017], Chaudhry et al.
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were shown to perform poorly in this setting by prior work Buzzega et al. [2020] and

are thus left out for clarity.

6.3.3 Evaluation Metrics and Considerations

Our evaluation includes the metrics and experimental settings used in previous works

on online continual learning with a single-head [Aljundi et al., 2019a, Ji et al., 2020,

Shim et al., 2021]. We provide extra emphasis on anytime evaluation and comparisons

of the computation time per incoming batch. We also consider several additional set-

tings in terms of computation and use of image priors.

Anytime evaluation A critical component of online learning is the ability to use the

learner at any point De Lange et al. [2019]. Although most works in the online (one-

pass through the data) setting report results throughout the stream [Lopez-Paz and

Ranzato, 2017, Chaudhry et al., Aljundi et al., 2019c], several prior works have reported

the final accuracy as a proxy [Aljundi et al., 2019a, Shim et al., 2021]. However, a lack

of anytime evaluation opens the possibility to exploit the metrics by proposing offline

learning baselines that are inherently incompatible with anytime evaluation [Prabhu

et al., 2020].

In order to make sure that learners are indeed online learners, we evaluate them through-

out the stream. We define the Anytime Accuracy at time k (AAk) as the average accu-

racy on the test sets of all distributions seen up to time k. If the learning experience

lasts T steps, then AAT is equivalent to the final accuracy. Finally, we report the Av-

eraged Anytime Accuracy (AAA) [Caccia et al., 2020b], which measures how well the

model performed over the learning experience

AAA =
1

T

T∑
t=1

(AA)t. (6.4)
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Computation and Memory Constraints While memory constraints are well doc-

umented in previous work, careful monitoring of computation is often overlooked;

some methods can indeed hide considerable overhead which can make the compari-

son across methods unfair. On the other hand, this is critical to the use cases of online

continual learning. To remedy this, we report for each method the total number of

FLOPs used for training. While we cannot fix this quantity as we can for memory

(since different methods require different computations), this will shed some light on

how different methods compare. Note that we also include in this total any inference

overhead required by the models; Nearest Class Mean (NCM) classifiers must compute

class prototypes before inference for example. We add this cost every time the model

is queried to measure its Anytime Accuracy. Let

Mem =
1

T

T∑
t=1

|θt|+|Mt|, Comp =
T∑
t=1

O(m(·; θt)), (6.5)

whereO(m(·; θt)) and |Mt| denote the number of FLOPs and the size of the buffer used

at time t. Since the same backbone and buffer is used for all methods in this chapter,

we will focus our constraint analysis on computation.

Data Augmentation In the settings of Aljundi et al. [2019a], Lopez-Paz and Ranzato

[2017], Ji et al. [2020], Shim et al. [2021], Chaudhry et al. [2019a] data augmentation is

not used. However, this is a standard practice for improving the performance on small

datasets and can thus naturally complement most methods utilizing replay buffers.

Notably, Prabhu et al. [2020], the offline learning method, utilizes data augmentation

when comparing to the above online learners. To avoid unfair comparisons, in our

experiments we indicate when a method uses augmentation. When not specified, we

treat it as a hyperparameter and report the best performance.
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Hyperparameter selection For all datasets considered, we withhold 5 % of the train-

ing data for validation. For each method, optimal hyperparameters were selected via

a grid search performed on a validation set. The selection process was done on a per

dataset basis, that is we picked the configuration which maximized the accuracy aver-

aged over different memory settings. We found that for both ER-AML and ER-ACE,

the same hyperparameter configuration worked across all settings and datasets. All

necessary details to reproduce our experiments can be found in the appendix.

6.3.4 Standard Online Continual Learning Settings

We evaluate on Split CIFAR-10, Split CIFAR-100 and Split MiniImagenet using the pro-

tocol and constraints from Aljundi et al. [2019a], Ji et al. [2020], Shim et al. [2021] . We

note in all results each method is run 10 times, and we report the mean and standard

error. We first discuss dataset specific results, before analysing the computation cost of

each method.

CIFAR-10 results are found in Table 6.1 using a variety of buffer sizes. In this set-

ting, we see that both the methods we propose, ER-AML and ER-ACE consistently out-

perform other methods by a significant margin. This result holds in both settings where

data augmentation is (or not) used, outperforming previous state-of-the-art methods

MIR and DER++. Shifting our attention to SS-IL, its underperformance w.r.t to ER-

ACE highlights the importance of having a rehearsal objective that considers the new

classes. In the appendix , we observe that when applying SS-IL in the online setting:

(1) the method performs poorly on the current task, as is it unable to consolidate old

and new knowledge, (2) yet mitigates representation drift even on a perfectly balanced

stream. The latter is surprising, as the method was designed specifically to address

stream imbalance. Finally, we note the offline training baseline G-DUMB cannot sat-

isfy the anytime evaluation criteria.
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Method Data M = 5 M = 20 M = 100 Train Mem.
Aug. AAA Acc AAA Acc AAA Acc TFLOPs (Mb)

iid - 62.7±0.7 - 62.7±0.7 - 62.7±0.7 8 4
iid++ - 72.9±0.7 - 72.9±0.7 - 72.9±0.7 16 4
DER++ ✓ 50.7±1.1 31.8±0.9 55.6±1.2 39.3±1.0 60.1±1.3 52.3±1.1 24 (4, 7)

ER 40.0±0.8 19.7±0.3 45.2±1.3 26.7±1.0 55.4±1.4 38.7±0.8 17 (4, 7)✓ 45.6±1.1 28.4±1.0 55.9±1.2 40.3±0.6 60.3±1.3 49.4±1.3

iCaRL† 47.0±0.8 30.6±0.8 55.1±0.7 41.7±0.6 59.3±0.6 45.1±0.6 (21, 47) (8, 11)✓ 49.1±1.0 33.4±1.0 54.4±0.7 39.2±0.8 56.9±0.7 42.3±0.8

MIR† 39.3±1.0 19.7±0.5 44.7±1.1 29.7±0.6 53.8±1.7 43.3±1.0 41 (4, 7)✓ 44.9±0.9 29.8±0.8 49.7±1.0 41.8±0.6 54.6±1.4 49.3±0.6

SS-IL† 42.6±1.7 29.6±0.4 44.8±1.8 35.1±0.9 48.1±2.2 41.1±0.4 19 (8, 11)✓ 41.1±1.6 31.6±0.5 47.0±1.2 38.3±0.4 48.1±1.7 47.5±0.7

ER-ACE 53.1±1.0 35.6±1.0 58.0±0.7 42.6±0.7 61.9±0.9 52.2±0.7 17 (4, 7)(ours) ✓ 52.6±0.9 35.1±0.8 56.4±1.0 43.4±1.6 61.7±0.9 53.7±1.1

ER-AML 49.4±1.0 30.9±0.8 57.0±1.0 39.2±1.0 63.3±1.0 52.2±1.1 17 (4, 7)(ours) ✓ 50.4±1.3 36.4±1.4 56.8±1.0 47.7±0.7 62.0±0.9 55.7±1.3

GDUMB ✓ 0±0.0 35.0±0.6 0±0.0 45.8±0.9 0±0.0 61.3±1.7 (43, 853) (11, 14)

Table 6.1 split CIFAR-10 results. † indicates the method is leveraging a
task identifier at training time. For methods whose compute depend on the
buffer size, we report min and max values. We evaluate the models every 10
updates. Results within error margin of the best result are bolded, we report
standard error.

Method AAA Acc. Train Mem.
TFLOPs (Mb.)

iid - 19.8±0.3 9 4
iid++ - 28.3±0.3 17 4
DER++ 23.3±0.5 15.1±0.4 25 36
ER 24.2±0.6 19.8±0.4 17 35
iCaRL† 26.3±0.3 17.3±0.2 294 39
MIR† 23.6±0.8 20.6±0.5 41 35
SS-IL† 31.5±0.5 25.0±0.3 19 39
ER-ACE (ours) 32.7±0.5 25.8±0.4 17 35
ER-AML (ours) 30.2±0.6 24.3±0.4 28 35

AAA Acc. Train Mem.
TFLOPs (Mb.)

- 16.7±0.5 59 4
- 25.0±0.8 118 4

21.7±0.6 12.9±0.3 176 217
26.2±0.8 18.2±0.5 118 216
24.4±0.4 17.1±0.1 2097 220
27.2±0.7 20.2±0.8 294 216
29.7±0.6 23.5±0.5 137 220
30.2±0.6 22.7±0.6 118 216
27.0±0.7 19.3±0.6 200 216

Table 6.2 Split CIFAR-100 (left) and Mini-Imagenet (right) results with
M = 100. For each method, we report the best result between using (or not)
data augmentations. Standard error is reported.
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Longer Task Sequence results are shown in Table 6.2 with CIFAR-100 on the left

and MiniImagenet on the right. On both datasets similar findings are observed, our

proposed methods match or outperform strong existing baselines. SS-IL performs sim-

ilarly to our method on mini-imagenet hile having a higher computational and mem-

ory cost. As mentioned above, the method struggles to learn the current task, however

here the “weight" of the current task is small in the final acc. of the 20-task regime. We

see that average anytime accuracy is higher for ER-ACE and indeed the anytime curves

in the appendix further illustrate this. Finally, ER-ACE shows relative gains of 35% in

accuracy over ER, without any additional computation cost. For Mini-Imagenet, ER-

ACE outperforms the single-pass iid baseline, and nearly reaches the performance of

the equal-compute iid baseline.
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Figure 6.3 Total Accuracy as a function
of TeraFLOPs spent. Here the models are
evaluated on all 10 classes, to ensure con-
sistency across timesteps.

Computation Budget To provide

another view of the computational

advantages of our proposal, we re-

port the accuracy given compute

budget over the length of the se-

quence in Fig 6.3. When monitor-

ing the computation performed by

each baseline, we notice that several

methods do not compete on equal

footing. First, the use of Nearest

Class Mean (NCM) classifiers leads

to a significant compute cost, as

shown for iCaRL. For our experiments, we evaluate the model after 10 mini-batches

(100 total samples), where NCM classifier must forward the whole buffer to get class

prototypes. We argue that such an approach has disadvantages in the online setting

due to poor computational trade-offs. Second, MIR Aljundi et al. [2019a] has an ex-
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pensive sample retrieval cost. It remains to be shown if this step can be approximated

more efficiently. Finally, we note that our method, ER-AML has varying compute: for

streams with a small number of classes per task (CIFAR10), it can compute the in-

coming loss leveraging only the incoming data. In other datasets, where an incoming

batch may not have at least two samples of each class, an additional cost to forward a

buffered point is incurred.

Evaluation with augmentation The use of augmentations also permits extra bene-

fits of replay methods particularly in settings where buffer overfitting is more present,

e.g. in the small buffer regime. From the results in Table 6.1, we see that augmentations

provides significant gains for a large set of methods. It is therefore crucial to compare

methods on equal footing, where they can all leverage (or not) data augmentation. For

example, gains reported in Prabhu et al. [2020] over ER completely vanish when ER is given

the same access to augmented data. We note that for Mini-Imagenet, augmentations

did not help. We hypothesize that since this is the hardest task the risk of overfitting

on the buffer is less severe.

6.3.5 Blurry Task Boundaries

Table 6.3 CIFAR-10 Blurry
Task Boundary Experiments

Method M = 20 M = 100

ER 32.1±1.5 42.7±2.2

DER++ 31.0±1.4 41.7±1.4

ER-AML 45.6±1.2 55.2±1.1

ER-ACE 44.5±0.5 50.2±1.1

Next, we explore a setting where the distribution

is continuously evolving, rather than clearly delin-

eated by task boundaries (similar to settings con-

sidered in Aljundi et al. [2019c]). To do this, we

linearly interpolate between tasks over time, result-

ing in new classes being slowly mixed into the data

stream. This experiment is done on Split-CIFAR10,

and the interpolation is such that at every timestep, the incoming data batch has on

average 2 unique labels (as in the original experiment). We only evaluate task-free
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methods in this setting: methods like MIR and SS-IL cannot be used in such setting.

Results in table 6.3 report the final accuracy, averaged over 5 runs, we report the stan-

dard error. We observe our ER-AML and ER-ACE methods perform well in this setting.

More details provided in the appendix.

6.4 Related Work

For a more complete picture of the standard methods in Continual Learning, we refer

the reader to chapter 3. In this section, we focus on work in offline CL designed to

address the overestimation of recent classes in the last layer, as these methods share

similarities with the ones proposed in this chapter.

6.4.1 Class imbalance in Continual Learning

In this chapter, we investigated the underlying causes for performance degradation in

replay-based methods. Related to this study are works in the class incremental set-

ting, where similar to our case a shared output layer is used, but classes are learned

offline. Works in this area address the implicit class imbalance issue occurring when

new classes are learned alongside replayed data. Zhao et al. [2019] propose to correct

last layer weights after a group of classes is learned via adjusting the weights norm.

Wu et al. [2019] suggest deploying additional parameters in order to linearly correct

the “bias” in the shared output layer. Those parameters are learned at the end of each

training phase. Hou et al. [2019] consider addressing this imbalance through applying

cosine similarity based loss as opposed to the typical cross entropy loss along with a

distillation loss and a margin based loss with negatives mining to preserve the feature

of previous classes. Recently, Ahn et al. [2021] propose to learn the incoming tasks

and the previous tasks separately. They use a masked softmax loss for the incom-

ing and rehearsal data, to counter the class imbalance. All the methods highlighted
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above operate in the offline setting, where data from the current task can be revisited as

needed, making the disruptive issues emphasized at the task boundary less critical. In

this chapter, we focus on the online setting, with potentially overlapping tasks. As we

show in the appendix, work by Ahn et al. [2021] developed to counter class imbalance

can inhibit learning of the current task in the online setting. Lastly, Zeno et al. [2018]

uses a logit masking related to our method, but their context is based on the multi-

head setting, and does not consider replay based methods, where learning across tasks

occurs. Their goal is to activate only the head of which the samples within the new

batch belong to. However, our approach is more general, and it applies to the single

head setting (where we have a single output layer for all classes, and no task oracle.)

6.5 Discussion

In this chapter, we have demonstrated how the standard loss function in online contin-

ual learning settings places excessive pressure on representations of previous classes.

We introduced two modifications to the loss function, both of which involve treating

incoming and replay data asymmetrically. Our suggested approach does not necessi-

tate knowledge of the current task and has been proven effective in handling long task

sequences, delivering high performance with minimal or no additional cost.

Furthermore, we have raised the bar for high-quality evaluation in online continual

learning by examining a wide array of baselines and metrics. For the first time in this

thesis, we conducted a comprehensive analysis of the computational cost of various

methods. Interestingly, we discovered that several approaches previously compared to

Experience Replay on equal footing actually have a significantly larger computational

footprint. Similarly, we emphasized the importance of anytime evaluation for accu-

rately assessing the performance of methods in an online setting. Relying solely on

final average performance fails to distinguish between inherently offline approaches
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like GDUMB [Prabhu et al., 2020] and practical online solutions. In short, proper eval-

uation of methods is critical for a clear understanding of how different approaches

compare.

In conclusion, this chapter’s findings indicate that abrupt representation drift is the

primary cause of catastrophic forgetting in online class-incremental learning settings.

It is important to note that this phenomenon is highly specific to the benchmarks and

settings used in the previous chapters, and its relevance in realistic CL scenarios re-

mains uncertain. In fact, it has been shown that pretrained model representations are

more stable than those initialized randomly [Ramasesh et al., 2022]. Moreover, other

tasks, such as generative modeling, may not be affected by a similar phenomenon. In

the case of online compression discussed in chapter 5, forgetting in the auto-encoder

was gradual rather than "catastrophic." A similar observation was made in Masarczyk

et al. [2021], indicating that discriminative models are more susceptible to catastrophic

forgetting. This growing body of evidence suggests that benchmarks and metrics used

in Continual Learning research may not accurately reflect real-world CL use-cases. In

the following chapters, we will deviate from standard evaluation protocols and at-

tempt to identify and address actual challenges faced by practitioners.

6.6 Follow-up findings in the community

The initial motivation which led to the work presented in this chapter was the insta-

bility phase seen at task boundaries (Fig. 6.1). A year later, work in Lange et al. [2023]

have confirmed our initial findings, and named this phenomenon the "stability gap".

Again, it was argued that anytime evaluation is required to properly access perfor-

mance in CL, so that instability around task boundaries can be detected and addressed.

The authors extended our findings, showing that regularization and distillation meth-

ods also suffer from instability at task boundaries. Additionally, the authors observed a
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similar behavior in domain incremental learning, where p(y) is fixed but p(x|y) changes

over time. Thankfully, research in CL is starting to use anytime metrics, and already we

have seen work focusing on directly addressing the stability gap [Harun and Kanan,

2023].

In follow-up work, I along with co-authors at MILA have investigated whether

a similar phenomenon occurs in Federated Learning (FL). FL is a machine learning

approach where multiple devices collaboratively train a model while keeping their

data locally, thus improving privacy and reducing the need for data centralization. We

discovered in Legate et al. that when the data distribution is highly heterogeneous

across clients, a similar behavior to representation shift occurs, and that a modified

cross-entropy loss can mitigate this problem, leading to better and faster convergence.
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Chapter 7

On Anytime Learning at Macroscale

So far, the earlier chapters have primarily focused on online learning scenarios where

the data distribution evolved over time, typically through the introduction of new

classes to be learned and discriminated. In these benchmarks, memory consumption

was carefully monitored, restricting the size of the replay method’s memory buffer,

while less attention was given to the computational costs. This chapter takes a different

approach, centering the evaluation of methods around their computational footprint.

More importantly, we investigate the question of how to best allocate compute resources

in sequential learning settings, as data is made available over time.

Indeed, in many practical applications of machine learning, data is not static but

arrives sequentially in large chunks (or mega-batches). For instance, deployed lan-

guage modeling systems need to be updated every few months to accommodate new

snapshots of the Common Crawl dataset1. Similarly, visual object recognition systems

need to be updated as new labeled data is gathered thanks to users interacting with

the system. Moreover, as computing clusters are equipped with more memory and

compute, machine learning practitioners would like to train bigger and bigger models

1https://commoncrawl.org/the-data/

https://commoncrawl.org/the-data/
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on the ever increasing amount of data, since bigger models are often more accurate. In

this setting, they face a dilemma: How to maximize the performance of the system at

any point in time while satisfying a certain computational budget?

This question has certainly been studied before, most notably in the online learning

literature [Cesa-Bianchi and Lugosi, 2006]. For instance, in a contextual bandit setting

the learner observes one example at the time and receives a reward after making a

prediction. Of course, this can be extended to the case where the input is not just a

single example but a set of examples (hereinafter referred to as mega-batch).

While prior works on online learning set a sound theoretical framework, there are

some subtle issues that make it not quite applicable to the practical setting described

above. First, computation is seldom explicitly taken into account, while in practice

algorithms that are too computationally intensive cannot be considered at scale. Sec-

ond, the vast majority of these works assumes linearity of predictors and convexity

of optimization problems, whereby the order of examples does not change the opti-

mum solution. Instead, in many practical applications (like language modeling) we

are interested in using deep neural networks which are highly non-linear and which

map to non-convex optimization problems. The lack of linearity hinders theoretical

analysis, and it has profound practical implications. For instance, according to online

learning theory the best case scenario is achieved when there are no delays [Joulani

et al., 2016, Flaspohler et al., 2021], meaning that examples and their error signal are

best to be consumed right away without any staleness in the model parameters. To use

the language of the practitioner training a language model, this means that according

to convex online learning the best strategy is to train one mega-batch at the time. This

however might not be a good strategy.

Consider what would happen if the deep neural network does multiple passes over

each mega-batch before processing the next, and compare its performance to the one

of a learner that waits for all the mega-batches to arrive before shuffling all data and
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applying the same stochastic gradient descent optimization algorithm as shown on the

right part of Fig. 7.1. The latter setting is the standard procedure used in supervised

learning (green curve): the learning algorithm optimizes a fixed objective (i.e the em-

pirical risk over the entire training dataset) that is known to produce good predictors.

While this predictor obtains the best final performance, it also attains the worst any-

time performance since its predictions were random throughout the learning experi-

ence. In the former setting, by updating after each new mega-batch (purple curve), we

can expect to maintain a good predictor all along the training experience, overcoming

the problem described previously. However in this case, the learner is facing a chang-

ing learning objective, since each new mega-batch defines a slightly different empirical

risk [Jothimurugesan et al., 2018]. While we can expect this effect to be negligible when

using linear models which eventually will converge to the same global optimum when

all mega-batches are available, this is not the case when using non-linear predictors

like deep neural networks. In that case, the sequence of optimization problems gener-

ated by the sequence of mega-batches may lead the learner to a completely different

(local) optimum than the supervised learning setting, and thus to a completely differ-

ent predictor. There is thus an open question about how different models behave when

performing sequential learning over a stream of mega-batches.

In this chapter, we empirically analyze several deep learning models (§7.2) under

the assumption that data comes as a sequence of mega-batches, all drawn from the

same distribution for simplicity. Since we are interested in models that attain good

performance at any point in time and since we evaluate only after learning on each

mega-batch but not during the learning of each individual mega-batch, we dub this

learning setting Anytime Learning at MAcroscale (ALMA) (§7.1).

Through extensive empirical analysis (§7.3) we provide supporting evidence that

waiting for a few mega-batches before updating the model is often the best strategy,

although how long to wait depends on several factors such as the time horizon and
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ALMA, mega-batches of data are drawn from the same distribution (no
drift) and arrive sequentially, but the learner can decide how long to wait
before training on them. In the limit, if the learner waits till the end of the
stream then learning reduces to standard batch supervised learning. Right:
Examples of CIFAR 10 learning curves varying how long to wait before up-
dating the model. Waiting for a small number of mega-batches before up-
dating the parameters results in lower anytime error rate (smaller area un-
der the learning curve).

model size relative to the amount of data in each mega-batch. Second, bigger models

are more statistically efficient and generalize better. Third, none of the approaches we

tried for growing the architecture were more effective than simpler alternatives which

used fixed architectures, like ensembling. Overall, this study provides clear directions

of future research, and also a platform for benchmarking new approaches against well

tuned baselines.

7.1 Learning Setting

In anytime learning at macroscale (ALMA), we assume that there exists an underlying

data distribution p(x, y) with input x ∈RD and desired label y ∈ {1, . . . ,C}. For the sake

of simplicity of exposition, in this work we restrict ourselves to classification problems,

but similar arguments can be made for regression. The key property of ALMA is that

data is presented to the learner as a stream SB of B consecutive batches of examples.

Let Di be a collection of N ≫ 0 i.i.d. samples randomly drawn from p(x, y), for i ∈
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{1, . . . ,B}. The stream is then defined as the ordered sequence SB = {D1, . . . ,DB}. We

refer to each datasetDi as mega-batch, as it is composed by a large number of examples.

Typically a learner m :RD→{1, . . . ,C} updates its parameters by processing a mini-

batch of n≪ N examples at the time from each mega-batch Di in such a way to min-

imize its objective function. Since the data is observed as a stream of mega-batches,

the learner cannot have access to future mega-batches, and cross-validation of model

hyper-parameters can only be performed using a subset of the current mega-batch. In

other words, the learner can only do one pass over the stream. However, the learner

typically does multiple passes over the current mega-batch if this improves its gener-

alization ability. In fact, the learner might make several passes over the current and

some previous mega-batches, although replaying too much might eventually deplete

its computational budget.

Either way, since the learner makes several passes over each mega-batch, the overall

data distribution observed by the learner by the end of the stream is not i.i.d., even

though mega-batches are drawn from the same underlying distribution p(x, y) and

samples drawn from each mega-batch are i.i.d.. For instance, in the limit case where

each mega-batch consists of a single example from a set of n examples and a learner

performing k passes over each mega-batch, the stream will consist of a sequence of

examples (in a certain order) each replicated k times, which is different from drawing

uniformly at random k ∗ n examples from the original set of n examples. This implies

a trade-off between fitting the current data well versus generalizing well by the end of

the stream.

In ALMA, the learner has an additional hyper-parameter compared to other learn-

ing frameworks: It can decide how long to wait before updating its parameters. We

measure such waiting time in terms of number of consecutive mega-batches. For in-

stance, a model with a waiting time equal to k, aggregates k consecutive mega-batches

before updating its parameters. This will sacrifice a bit its performance during the
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waiting period, but might ultimately yield better generalization since the model can

better shuffle the data and get closer to the ideal i.i.d. data distribution required by

stochastic gradient descent optimization.

7.1.1 Metrics

We evaluate learners in the ALMA setting across three axes, namely: error rate, mem-

ory and computation. Let t be the time at which the t-th mega-batch arrives; this data

can be used by the model to update its parameters or it is simply aggregated to previ-

ous mega-batches for later use.

We compute the error rate of model m at time t (after the arrival and potential up-

date over the t-th mega-batch) and compute the area under the curve obtained varying

t from 0 till the total number of mega-batches B; the resulting cumulative error rate

(CER) is:

CER =
B∑
t=1

1

|DTs|
∑

(x,y)∈DTs

|m(x; θt) ̸= y|, (7.1)

where m(x; θt) is the model at time t equipped with parameters θt, DTs is the test set

(common for all mega-batches in the stream), |DTs| is the number of examples in the test

set, and |m(x; θt) ̸= y| is one if the model prediction does not match the ground truth

label and zero otherwise. The outer sum computes the discrete integral of the error

rate over time. CER is going to be small only when the error rate is small throughout

the entire stream. CER is instead large for a tardy model that waits till the very last

mega-batch to update the model, even though eventually this may obtain a very low

final error rate.

Similarly, we compute the cumulative memory and compute usage as:

Mem =
B∑
t=0

|θt|, Comp =
B∑
t=0

O(m(·; θt)), (7.2)
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where |θt| is the number of free parameters of the model at time t, and O(m(·; θt)) is

the number of flops used by the model to process the t-th mega-batch. Notice that the

above metrics are measured by the environment as training progresses, and will be

used in our empirical assessment (§7.3). However, the learner does not have access to

the test set. The learner has only access to the validation set of the current mega-batch,

and can only use that to select its own hyper-parameters.

7.2 Learning Algorithms

In this section, we describe the methods we tested in the ALMA setting. They generally

follow the learning procedure shown in Algorithm 1. At a high level, we consider two

families of models, those with a monolithic architecture and those with a modular

architecture (e.g. ensembling). The latter are amenable to grow over time by adding

new modules to the existing set. We will start by describing fixed architectures (§7.2.1)

and then conclude with growing architectures (§7.2.2). We also evaluate models in the

setting where they can replay previous mega-batches.
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7.2.1 Fixed Architectures

The first family of methods trains models with a fixed architecture. These models are

sequentially trained over new mega-batches and exhibit a fixed memory footprint. We

consider three models:

Single Model (SM): This is a standard multi-layer neural network (e.g., fully con-

nected neural network or transformer) trained by stochastic gradient descent and ini-

tialized from the parameters of the model trained on the previous mega-batch, unless

otherwise specified.

Ensemble of Models (Ens): The second approach is the simplest modular approach,

consisting of an ensemble of N neural networks with the same architecture but dif-

ferent random initialization seed, each being trained independently on the same data.

The output of the overall model at test time is the average probability distribution pro-

duced by each component2. The advantage of Ens is that training and inference can

be trivially parallelized, enabling to scale up model parameters very easily. The dis-

advantange is that inference requires N times more compute than what is required by

each component.

Uniform Mixture of Models (UMix): A potential drawback of Ens is that evaluation

and training are inconsistent, meaning that training and testing use different model

predictors. UMix addresses this by training a model whose prediction is the average

(in logit space) of the predictions produced by N networks. While this requires syn-

chronization during training, now both training and evaluation use the same model.

2Classical bagging approaches and majority vote strategies have been also explored without signifi-
cant difference.
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7.2.2 Growing Architectures

In the previous section, the number of parameters and the architecture of the model

are fixed throughout the model’s lifetime. However, as more data is observed, it is

interesting to consider dynamic architectures that grow over time, because these may

save compute and memory during the earlier stages of learning while providing more

predictive power during the later stages. We consider three growing approaches:

Growing Ensemble (gEns): Like the Ens model, gEns is also a combination of neural

networks trained independently. While Ens considers a fixed number of networks that

are, at each stage, trained over the new chunck of data, gEns replaces this step by a

growing step where k new neural networks are added. In our implementation, only

these k neural networks are trained over the new data, while the other neural networks

(trained on previous mega-batches) are kept fixed. Therefore, when starting with a

single component and until the next growing step, the cost of training gEns is equal to

SM for the same model architecture. Unless otherwise specified, we use k = 1 for the

experiments in the chapter.

Growing Mixture of Experts (gMoE): A hierarchical mixture of experts models (MoE)

is an architecture where at layer l the output representation is zl =
∑k

j=1 g(j|zl−1)h(zl−1|j),

where g is the gating or routing function and h(·|j) is the j-th expert. Compared to Ens,

MoE has exponentially many more components albeit with a lot of parameter sharing.

Another advantage is that when selecting only one (or a few) experts, the computa-

tional cost is independent of the number of experts, assuming the cost of gating is neg-

ligible compared to the cost or executing the experts. The main issue is that MoE are

notoriously harder to train [Eigen et al., 2014, Denoyer and Gallinari, 2015, Lepikhin

et al., 2020]. In this work, we consider a growing version of MoE, which we denote

with gMoE, whereby experts are added gradually over time. This has a tree structured
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gating function where leaves correspond to experts. At each layer, we calculate each

expert’s contribution to the total loss by summing the losses of the examples routed

through that expert. We then "split" the expert responsible for the largest contribution

to the loss. The split is performed by adding an expert with the same parameters, and

turning the corresponding leaf node of the gate into a binary internal node with a child

leaf for the old and new expert. This process guarantees that right before and right

after a growth step the loss is the same. See the appendix for further details.

Firefly [Wu et al., 2020] (FF): FF is a method which progressively grows neural net-

works, jointly optimizing both the model architecture and parameters. Growth in-

cludes both a width expansion by adding new hidden units (or feature maps) as well

as a depth expansion by adding new layers. Importantly, this is an example of non-

modular method unlike Ens or gMoE, which is potentially more expressive but also

more inefficient at inference time because there is no structured sparsity that can be

leveraged to speed up computation.

7.3 Experiments

In this section we first describe how standard benchmarks can be repurposed for ALMA,

we then provide the details of the models we tested, and we finally conclude with an

analysis of the results we obtained, aiming to understand which method attains the

best trade-off between time, accuracy, compute and memory usage.

Datasets We consider a variety of datasets. The first dataset is CIFAR 10 [Krizhevsky,

2009] that has a training set with 50,000 images of size 32x32 pixels belonging to 10

classes such as bird, car, horse, ship, truck, etc. The second dataset is MNIST [LeCun

et al., 1998], which consists of a training set with 60,000 quasi-binary handwritten digits

of size 28x28 pixels, and a test set with 10,000 examples. The third dataset, used for our
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large-scale language modeling evaluation, is a portion of the collection of English lan-

guage text introduced in Liu et al. [2019], consisting of Books, Wikipedia and Common

Crawl. We consider 4 (large) mega-batches for training and one additional mega-batch

for evaluation, each consisting of approximately 440M words; we also hold out a vali-

dation set with approximately 0.5M words of Common Crawl for model selection. We

use a byte-pair encoding (BPE) [Sennrich et al., 2016] vocabulary with 50,000 units, fol-

lowing Radford et al. [2019]. This dataset is fairly representative of what practitioners

might face when maintaining a deployed system with new data arriving every few

months.

Given a dataset like any of the above, we construct a benchmark for ALMA eval-

uation as follows: 1) we randomly partition the training set into B mega-batches with

equal number of training examples (B = 100 for CIFAR, B = 500 for MNIST and B = 4

for the text dataset), 2) from each mega-batch we extract 10% of the data to build the

mega-batch validation set (except for the large scale language modeling dataset where

we use the provided validation set), and 3) we create a learning experience by doing

one pass over the sequence of mega-batches. For each mega-batch, the learner can

query as many mini-batches as desired. The learner can also decide not to train on the

data of a mega-batch right away but instead to wait and accumulate data across a few

consecutive mega-batches. While the learner observes data, it is also tested on the test

set. This is not used for validation purposes, but only for final reporting as shown in

§7.4.

Models We evaluate the six approaches presented in §7.2, and for each of them we

consider various waiting times, a version with and without replay, and at least four

model sizes. For methods with expanding architectures, we try different configura-

tions of hyper-parameters controlling when to grow, and how much to grow. For sim-

plicity, we limit expansion phases to occur in between megabatches. Next, we describe
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in detail the architecture used on each dataset. Further experimental details to aide re-

producibility are reported in the appendix. On MNIST the backbone architecture of SM

is a three layer fully connected neural network with ReLU units. We considered var-

ious hidden units size, ranging from 4 to 64 (which we refer to as [small] and [large],

respectively), which let us simulate the regime of big data relative to the size of the

network and explore how to grow architectures without worrying about overfitting.

Similarly, the components of Ens, gEns and UMix are SM networks of the same size as

stated above; gMoE also starts off as SM and adds modules (at the first two layers) that

have the same size as the original layer of SM.

On CIFAR 10, the methods and notations are the same as in MNIST. The only dif-

ference is that the backbone architecture is a scaled down version of a VGG19 convo-

lutional neural network [Simonyan and Zisserman, 2015] as in [Wu et al., 2020], where

the number of intermediate feature maps is the same for each layer, ranging from 4 to

64. On this dataset, we also consider FF starting off from the same VGG19 backbone.

For the language modeling task SM is a Switch Transformer [Fedus et al., 2021],

which is a hard mixture of experts model with an additional load balancing loss term

and hard capacity constraint applied during training to prevent uneven expert utiliza-

tion. Following Fedus et al. [2021], we fix the weight of the balancing loss term to

0.01 and use a capacity factor of 1, ensuring relatively uniform expert utilization. We

train the model using Adam [Kingma and Ba, 2015] and tune the learning rate and

dropout on the validation set. In the growing setting we copy the expert weights and

gating network weights corresponding to the top-k experts incurring the largest loss,

where k is typically between 2 and 4. This growing procedure preserves a flat mixture

and adds multiple experts at the time. While this approach performs slightly worse

than the one described in §7.2.2, it is easier to implement at scale. We consider two

model sizes: a base model with 6 layers and model dimension of 512, for a total of 40M

shared parameters and 6M additional parameters per expert; and a large model with
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Figure 7.2 CIFAR 10 results: Cumulative error rate versus cumulative
flops and number of parameters without replay. For the same model type
we vary the size of the backbone architecture and the waiting time.

12 layers and model dimension of 768, for a total of 96M shared parameters and 28M

additional parameters per expert. We use an input sequence length of 512 tokens and

we do not use replay given the large mega-batch sizes. During each mega-batch, we

train all language models for exactly 120000 gradient steps (results in Fig. 7.5) unless

otherwise specified (e.g. Tab. 7.1). This makes it easier to compare models for the same

computational budget at the mega-batch level.

7.4 Results

7.4.1 Visual Recognition

Since conclusions are rather similar, we focus our analysis on the more challenging

CIFAR 10 dataset, and report results also on MNIST in the appendix.

Smallest waiting time might not be optimal: We begin our analysis in the set-

ting without replay, shown in Fig. 7.2. We first observe that an intermediate waiting

time (in this case equal to 10) strikes the best trade-off between Cumulative Error Rate

(CER) and both training cost (left) and memory cost (right). As shown in Fig. 7.3-top,

where the test error rate is plotted as a function of the number of mega-batches re-

ceived, greedy methods using waiting time equal to 2 achieve a lower error rate only
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during the very beginning of the stream, but are outperformed later on. Tardy predic-

tors waiting for all 100 mega-batches before training obtain the best final accuracy, but

have no predictive capabilities throughout the first 99 mega-batches. Instead, methods

with an intermediate waiting time (shown in orange) can quickly deliver a reasonable

predictor early in the stream, and obtain a final error rate that is very close to the lower

bound obtained by tardy methods. Thus, a waiting time of 10 yields the lowest area

under the curve (or CER) on CIFAR 10.

On MNIST however, an intermediate waiting time is best only for small models,

as shown in Fig. 7.3-bottom. Very greedy models do not converge as well in this set-

ting, which leads to a significant penalty in terms of CER. However, bigger networks

converge very fast in just a few megabatches, making smaller waiting times more de-

sirable. To summarize, we can break down the relative loss encountered by different

waiting times in two phases, before and after training on the first mega-batch. For easy

settings (e.g. MNIST with a large model), most of the error is accumulated before the

first training phase, therefore smaller wait times are preferred. For harder settings (e.g.

CIFAR), because models trained prematurely underperform in the limit, given a long

enough stream, a small wait time will be suboptimal. Therefore, the optimal waiting

time depends on several factors, namely the time horizon and how quickly the model

learns, which is itself a function of design choices such as the model size. We expect

these findings to generalize to other tasks (beyond supervised learning) and modali-

ties (beyond images) in the ALMA setting. In any case, in such non-convex setting, it

is certainly not true that learning on the data as soon as it becomes available always

attains the best trade-off between error rate and compute.

Larger models are more statistically efficient: It was shown in Kaplan et al. [2020]

that for transformer models trained on natural language, bigger models need fewer

samples to reach a given performance. We confirm that a similar trend is also observed

in the ALMA setting, and that statistical efficiency of larger models is also true for



7 On Anytime Learning at Macroscale 109

0 20 40 60 80 100
number of mega-batches

0.4

0.6

0.8

Er
ro

r R
at

e

Small Models (4 channels)
SM
Ens

wait 100
wait 10
wait 2

0 20 40 60 80 100
number of mega-batches

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Large Models (64 channels)

0 100 200 300 400 500
number of mega-batches

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Small Models (H=4)
wait 10
wait 1

wait 10 
is better
wait 1  
is better

0 100 200 300 400 500
number of mega-batches

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Large Models (H=64)

Figure 7.3 Error rate over time of small models (left) and large models
(right) on CIFAR 10 (top) and MNIST (bottom).

other modalities (images) and architectures (CNNs, MLPs). Indeed, we observe that

bigger models, SM and Ens, not only generalize better but they are also statistically

more efficient: on the small Ens obtained almost 40% error rate by the end of its learn-

ing experience (Fig. 7.3-top left), which is worse than the error rate obtained by the

large Ens just after having observed one tenth of the entire stream. We obtained sim-

ilar results on MNIST (see Fig. 7.3-bottom) and convolutional models, showing that

MLPs and CNNs also benefit from the same statistical efficiency gains when scaling

the parameter count. Overall, we expect that this finding, stating that the statistical ef-

ficiency of large models applies beyond NLP and transformers, to generalize to other

tasks and domains in the ALMA setting.

Growing does not improve: We first investigate the efficiency of growing, since

in principle, we would expect that adapting model capacity with the amount of data

should strike a better trade-off between accuracy and memory/compute usage. Grow-

ing has been explored in Continual Learning as a means to mitigate forgetting; by

adding new parameters and keeping old ones fixed, there would be no knowledge

erasure (see sec 3.3.3). The question of whether growing over time is a better allocation
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of a computation budget has not been studied previously, to the best or our knowl-

edge. We find that for a fixed computation or memory budget, it is always better to

start with a larger model, rather than growing it over time. Indeed, we find that on

both graphs of Fig. 7.2, SM almost always outperforms gMoE and FF, a trend that is es-

pecially visible for higher budgets of TFLOPS and parameters. In other words, a gMoE

or FF that starts small and finishes big will typically be outperformed by a SM model

of average size.

Next, if we focus our attention on the three approaches with growing architectures,

namely gMoE, gEns, and FF, we find that there is no clear winner among them. When

comparing across a fixed computational budget (Fig. 7.2 left), gEns overall performs

better than gMoE and FF. However, when we fix the memory budget instead (Fig. 7.2

right), gEns is, on average the worst performing method. Finally, Ens is more efficient

than gEns in terms of memory, but vice versa in terms of training compute. However,

should we look at the inference cost of both methods, we would find that Ens outper-

forms its growing counterpart, whose inference cost grows over time while it is fixed

for Ens. Once again, the best strategy is to pick the largest fixed-capacity model for

a given computational budget. Notice that these conclusions apply to the methods

considered in this study, and improving approaches that dynamically adapt their ar-

chitecture over time is clearly a worthwhile avenue of future research. Whether this

finding generalizes to sequential learning settings with distribution shifts is beyond

the scope of this paper.

Ens strikes the best trade-off: More generally, Ens is the best performing method

for larger models across all our experiments, including the language models reported

in §7.4.2. This is a remarkable finding given the simplicity of the approach and how

easy it is to parallelize their training process. Ensembling makes it very easy to increase

model capacity early on, and it is so far the best way to utilize compute at scale, a possi-

ble indication of the inefficiency of training large models using alternative approaches,
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which highlights yet another worthwhile avenue of future research.
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Figure 7.4 Impact of replay on the
CIFAR-10 dataset with a wait time of
10. For each method we show a line
from the result without replay (left)
and with replay (right).

Replaying past mega-batches does

not improve: We now consider the same

approaches as before but with models

trained on all megabatches seen so far.

Therefore, at the very last training step,

models are trained on the entire dataset

(concatenation of all megabatches). In

Fig. 7.4 we report the results when the

waiting time is equal to 10. In all cases,

replaying data gives better results at the

expense of an increase in compute. Ex-

cept for gEns, these gains are roughly the same for all methods, as all segments are

parallel to each other. gEns gains less as the last component which is trained on the

full dataset has disproportionate influence in the model average which includes com-

ponents trained on fewer megabatches. However, this last component essentially co-

incides with SM trained on the full dataset. Hence the two methods converge to the

same performance when using replay. We provide additional results with replay in the

appendix, which shows that there are benefits from replaying only at higher computa-

tional budgets where also the optimal waiting time reduces to 1.

More importantly, we observe that replay does not yield a significantly better

trade-off between CER and compute. For the same computational budget, methods

using replay attain similar CER of methods that do not use replay. Other factors such

as the size of the backbone architecture or the waiting time matter more.
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7.4.2 Language Modeling Experiments

For the large-scale language modeling experiments, we consider two model sizes (base

and large, see §7.3), with an inference cost per input of 42 and 126 GFLOPS, respec-

tively. The number of experts is set to 4, 8 and 12 for SM, and it does not affect the

inference cost since only one expert per input is selected regardless of the total number

of experts. Due to the computational burden of these experiments (in total more than

200 GPU days), we limit our analysis to four mega-batches. Nevertheless, this scale (of

model and data) and type of application are rather representative of a typical ALMA

setting.

The main results are presented in Fig. 7.5. Each line is a trajectory with four points,

one for each mega-batch in the stream, as we report average as opposed to cumulative

perplexity. For a given model size and for a given computational budget, there are

three SM models, one for each number of experts we consider, namely 4, 8 and 12.

Larger models are more efficient: In agreement with our results on computer

vision tasks, we observe that bigger models tend to generalize better and are more

sample efficient. For instance, the large model after a single mega-batch outperforms

all base models, including base models after four mega-batches which have seen four

times more data. This finding is consistent across all methods tried for this experiment,

and with prior scaling law results [Kaplan et al., 2020].

Growing does not improve: Once again, there is no clear winner among growing

methods. For larger models, gEns outperforms gMoE for the same compute, and per-

form similarly for base models. However, for all model sizes, gMoE is more memory

efficient, therefore the optimal approach among them will depend on both compute

and memory budget. More importantly, we observe that models with fixed capacity

are more compute and memory efficient than models that grow over time. Looking

at the average perplexity as a function of the number of experts, we see that methods
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Figure 7.5 Language modeling trade-offs: average perplexity (PPL) versus
cumulative compute, number of parameters and number of experts. Num-
bers in red refer to the number of experts in the corresponding SM runs.

which start with a small number of experts and later grow are outperformed by similar

fixed architectures which have an intermediate number of experts. This highlights the

importance of having more capacity at the start of training, rather than at the end.

Ensembles perform the best: Third, Ens thrives in the larger capacity setting.

Looking at the orange markers in the graph, we see that for equal computation budget,

Ens methods outperform all other methods, which is consistent with the computer

vision results. In the base setting instead, versions of SM (see the lowest blue points)

strike a better tradeoff in both compute and memory.

Learning sequentially is harder: We argued initially that once the learner makes

several passes over each megabatch, the data distribution cannot be considered i.i.d.

anymore, relative to the empirical distribution of the union of all megabatches. It is

however unclear how much this issue has a practical impact in the performance of the

model. In order to assess this we run one last experiment using our best performing

approach, namely Ens. We compare a model trained on k mega-batches sequentially

with the same model trained all at once on the aggregation of the same k mega-batches.

Since both approaches have the same computation budget, the same architecture and

are fed with the same data, we can disentangle the effect of the non-i.i.d nature of the

data in ALMA. The results shown in Tab. 7.1 confirm that ALMA’s sequential (seq.)

training is indeed more challenging. Across all four configurations, models incur a
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Method PPL k = 3, iid PPL k = 3, seq. PPL k = 4, iid PPL k = 4, seq.

Small Ens 4@2 24.30 24.57 24.13 24.35
Big Ens 4@2 18.04 19.14 17.88 18.92

Table 7.1 Ablation on the effect of learning sequentially (seq.) as opposed
to learning with fully i.i.d. data, for the same amount of data and compute.
The model is an ensemble with 2 components each of which with 4 experts
per block.

drop in performance when compared to regular i.i.d training, and even more so when

the model is larger. This gap offers another opportunity of future research on ways to

make sequential training more effective when using deep non-linear neural networks.

7.5 Related Work

ALMA relates to several other learning frameworks as illustrated on the left of Fig-

ure 7.1. i) It shares the same assumptions of classical batch supervised learning [Vap-

nik, 1998] at the level of each mega-batch. However, it overall violates the assump-

tions of i.i.d. observations, because data points come in a stream of mega-batches and

because the learner typically makes several passes over each mega-batch. Moreover,

in ALMA the learner can choose how long to wait before training. In this sense, batch

supervised learning can be thought of as an extreme case of ALMA (single mega-batch

because learner waited till the end of the stream to train). ii) As mentioned in the

previous section, ALMA relates to online learning [Bottou, 1998] because data comes

sequentially and because in both cases we measure performance in terms of regret (al-

though in §7.1.1 our cumulative error lacks a reference oracle since this is not known in

our setting). However, in ALMA we are also explicit about the computational budget

used by the model and aim at striking a good trade-off between regret and computa-

tional cost. In our current work, we restrict ALMA to stationary distributions, while

online learning is more general and encompasses also non-stationary distributions. Fi-
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nally and most importantly, in ALMA we focus on non-linear predictors while typical

literature on online learning considers linear predictors. iii) Similarly, ALMA relates

to concept drift [Lu et al., 2018] because of the sequential nature of the observations.

However, literature on concept drift often focuses on linear predictors. iv) ALMA can

be seen as a degenerate case of supervised continual learning, where the task distri-

bution is stationary. However, in supervised continual learning there is often a focus

on attaining a predictor that represents the entire distribution of tasks by the end of

learning, while in ALMA we measure cumulative error like in prequential learning.

v) ALMA relates more broadly to transfer learning [Pan and Yang, 2010], as the prob-

lem of adapting to a new batch of data can be interpreted as leveraging knowledge

acquired on previous batches to more effciently learn from the new batch of data. vi)

Finally, ALMA relates to anytime learning [Grefenstette and Ramsey, 1992, Ramsey

and Grefenstette, 1994], which has been recently applied to compare various autoML

frameworks [Liu et al., 2020]. However, unlike traditional anytime learning, in this

work we are not interested in assessing the anytime learning ability at the level of each

mega-batch, but only at a coarser granularity, at the level of the entire stream of mega-

batches. Lastly, we note that while anytime learning operates in a similar setting as

online learning (see Fig. 7.1), it is often used with non-linear predictors in a supervised

learning setting.

To the best of our knowledge, the most relevant prior work is by Sahoo et al. [2018]

which considers a setting similar to ours, except that their stream is composed by in-

dividual examples and in their setting there is no concept of waiting time nor revis-

iting data points several times. However, they also benchmark against methods that

increase capacity over time, although their analysis was limited to fully connected net-

works.
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7.6 Discussion

In the first part of the chapter, we promised the reader to provide an empirical answer

to several questions:

1) How long should the learner wait before training on the newly arrived mega-batches?

There is no single answer to this question. We have seen that on CIFAR 10 but also on

MNIST when using smaller architectures and when using replay with smaller compute

budgets, an intermediate waiting time strike the best trade-off. However, there is no

known formula for deriving the waiting time, as it depends on several factors such as

the time horizon, the initial performance of the model and how quickly a model learns,

to name a few. The firm conclusion is that greedily updating the model as soon as data

becomes available, as advocated by literature on convex online learning, might not

always be the best strategy when using deep neural networks, In practice, also waiting

too long, to the point that the learner does not even have time to perform a single pass

over the aggregated mega-batches, might be suboptimal.

2) What architecture should the learner adopt? Our study indicates that, among all

methods we tested, ensembling strikes the best trade-off in general. Ensembling is

simple and easily parallelizable, and it offers a straightforward way to increase capac-

ity. Starting off with a larger model, for instance via ensembling, is an excellent way to

obtain good anytime performance.

3) Should the learner increase capacity over time as more data is observed? The answer

is negative, currently. It is better to start off with the largest architecture fitting into

memory and keeping that fixed. A cynical interpretation of this conclusion could make

the reader believe that growing the architecture size should not be a topic of interest.

However, as data is added over time so is computation and memory. It is often the

case that researchers working on large-scale learning instantiate (rightly so) the biggest

possible model to train on their task, but few months later they can manage to launch
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even bigger models thanks to compute and engineering advances. How can the larger

model leverage what has been learned from the previously trained model? Is there

a modeling choice that strikes a better trade-off than retraining from scratch? More

generally, what are good approaches to extract information from a new batch of data

to integrate it into an existing model? We believe these are great avenues of future

research, and that our ALMA framework (learning and evaluation protocol, codebase,

baselines) provides a good abstraction of the practical setting, and a sound tool to

pursue such investigation.

In conclusion, this chapter takes a step towards solving a more realistic continual

learning problem and its corresponding constraints. Nevertheless, I would like to point

out several limitations of the analysis presented in this chapter. Firstly, as we have seen

in the experiments (e.g. Fig. 7.3), the first training run, starting from a randomly ini-

tialized model, has a disproportionate impact on the cumulative error rate. Indeed,

because the model outputs random predictions before initial training, there is a strong

incentive to use a smaller waiting time. Given that across many modalities there exists

foundation models which can serve as a good initialization, leveraging such pretrained

weights could enable practitioners to use longer wait times. Second, the analysis in the

chapter focused on settings where mega-batches are drawn from the same underlying

distribution. How would our findings change should if we were to introduce a dis-

tribution shift over the mega-batches ? We know that this chapter’s finding stating

that replay is not generally helpful in ALMA does not hold in non-stationary settings.

We therefore caution the reader in extrapolating the presented results to other learning

settings.
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Chapter 8

Multi-Head Adapter Routing for

Cross-Task Generalization

In the first chapter of this thesis, we proposed a two pronged solution to build efficient

continual learners. In chapters 4, 5, 6, we focused on improving the first component,

backward compatible learning, by designing more efficient replay-based methods. In the

previous chapter, we shifted our attention towards the second component, forward

transfer, and performed an extensive empirical evaluation of several strategies under

sequential learning benchmarks. However, in most of the results presented so far, the

learning settings and solutions were still somewhat detached from realistic use cases.

Indeed, the benchmarks, while interesting, were artificially adapted to sequential set-

tings, and the starting models were usually initialized randomly. In this penultimate

chapter, we continue towards enabling better forward transfer, and tackle a challeng-

ing realization of continual learning which does not suffer from the prior drawbacks:

cross-task generalization. This setup works as follows : we are given a pretrained model,

and additional multi-task training data, and the goal is to leverage both model and data

for few-shot adaptation to new tasks. Indeed, the ability to train effective models with a
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relatively small number of training data is of paramount importance due to the paucity

of annotated examples for most tasks. One effective few-shot learning approach is to

leverage large models pre-trained on a vast amount of unlabelled data and fine-tune

them on the few examples available for each downstream task. Consider the following

example of cross-task generalization. You have access to a generalist model, such as

GPT-4, and data collected from several thousands of users (tasks) interacting via text

on social media, or sequential gaming data from online gaming platforms. How can

we build a system which is not only efficient, but can also quickly adapt to new users

for whom very little data is collected ?

To reduce the memory cost of duplicating the entire array of parameters for each

downstream task, recent approaches resort to parameter-efficient fine-tuning (PEFT)

methods, such as LoRA [Hu et al., 2022], SFT [Ansell et al., 2022], or (IA)3 [Liu et al.,

2022]. These only fine-tune adapters while leaving the pre-trained model "frozen".

From a continual learning perspective, because new parameters are trained and old

ones frozen, there is no risk of catastrophic forgetting. This is only achievable because

at inference time, we know which PEFT adapters to retrieve for a given task or user.

Nevertheless, it remains unclear how to best exploit a set of training tasks to better

generalize to a set of unseen test tasks in a sample-efficient fashion, based on just a few

examples. One straightforward solution is to perform multi-task pre-training, i.e. first

train the large model on the union of the examples from the training tasks, then fine-

tune the obtained model to the test task [Liu et al., 2022, Ye et al., 2021]. However, this

solution does not take into account that test tasks may require solving different com-

binations of sub-problems compared to training tasks [Vu et al., 2020], thus failing to

achieve compositional generalization [Rosenbaum et al., 2019, Ponti, 2021]. Moreover,

specializing the model towards different tasks during training may result in negative

transfer, due to their corresponding gradients being misaligned [Wang et al., 2021].

Several PEFT approaches have been proposed to enable better cross-task gener-
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alization by training adapters (or soft prompts) on each task independently [Pfeiffer

et al., 2021, Vu et al., 2021, Asai et al., 2022, Chronopoulou et al., 2023]. Given a new

test task, parameters from similar training tasks are aggregated, which enables trans-

fer. While solely having task-specific parameters is an effective strategy to mitigate

interference across training tasks, it also inhibits any positive transfer within the same

task pool. Polytropon (Poly) was recently proposed by Ponti et al. [2023] to address

these issues: the model assumes that task-specific adapters are learned combinations

of a reusable inventory of basis adapters or modules. In practice, each module is imple-

mented as a LoRA [Hu et al., 2022] adapter, which modifies a large pre-trained model,

such as T5 [Raffel et al., 2020]. During both multi-task pre-training and few-shot adap-

tation, Poly learns both the inventory of adapters and a (continuously relaxed) bi-

nary task–module routing matrix, which determines which module is active for each

task. While Poly shows promising results, several questions remain unanswered: 1)

Does the expressivity of the routing function matter? 2) Why do routing-based PEFT

methods yield superior performance? 3) Is routing useful during both multi-task pre-

training and few-shot adaptation?

To answer the first question, we propose a new routing function, MHR, that mixes

adapters at a more granular level. Differently from Poly, where routing decisions are

made for each adapter as a whole, in MHR we linearly combine subsets of the adapter

dimensions (i.e. heads), each with different combination coefficients. We evaluate MHR

and a series of competitive baselines for few-shot task adaptation on the T0 task suite

[Sanh et al., 2022] and Super-Natural Instructions [SuperNI; Wang et al., 2022c]. Based

on our results, we report that MHR outperforms Poly and single adapter baselines. Ad-

ditionally, we show that, thanks to the increased expressivity of the routing function, it

becomes possible to fine-tune only the parameters of the routing function (and not the

adapters) during few-shot adaptation: the resulting method, MHR-z, yields competitive

performance while requiring orders of magnitude fewer parameters.
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Figure 8.1 Left: A LoRA adapter with weight AB⊤ is trained on top of a
frozen, pre-trained linear layer W . Our method MHR partitions the A,B pa-
rameter indexes into h subsets (or heads). For each subset, a separate routing
function selects the active modules for the current task among m copies with
different parameter values, and combines them via averaging to form a task-
specific head. The heads are then concatenated to form the LoRA adapter.
Using multiple heads allows for more fine-grained mixing of task param-
eters with a negligible increase in overall parameter count. Right: During
few-shot adaptation, one can fine-tune only the multi-head routing param-
eters (MHR-z), keeping the modules frozen, resulting in highly parameter-
efficient adaptation.

Regarding the second and third questions, we uncover that optimization during

multitask pretraining plays a key role in explaining the downstream performance of

routing-based PEFT approaches. Specifically, we find that MHR exhibits a higher co-

sine similarity between gradients from different tasks than Poly and single-adapter

multi-task training. Hence, routing enables more knowledge transfer and less inter-

ference across tasks during multi-task pre-training. This finding led us to investigate

whether routing is useful also during few-shot adaptation. It has been hypothesized

[Ponti et al., 2023] that one of the reasons behind Poly’s performance resides in the

inductive bias of the modular architecture, which allows test tasks to recombine and

locally adapt the most relevant modules. To test this hypothesis, we propose MHR-µ,

where the routing function is discarded and all available adapter parameters are aver-

aged before few-shot adaptation. We find that MHR-µ can recover the performance of
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MHR, hinting that Poly/MHR gains are only a result of better multi-task optimization.

Finally, we show that MHR-µ can also be used as an effective zero-shot transfer method

by training the average of the pre-trained adapters for a few additional steps on the

multi-task training set. This yields gains up to 3% on absolute accuracy w.r.t. to strong

baselines such as T0-11B.

8.1 Technical Background

8.1.1 Transformer Models

Introduced by Vaswani et al. [2017], Transformers are a type of neural network archi-

tecture that has been highly successful in natural language processing tasks. One of

the key components in the Transformer architecture is the self-attention mechanism,

which allows the model to weigh and aggregate information from different parts of

the input sequence. This removes the need for recurrent connections, making training

fully parallelizeable across the sequence.

Self-Attention The self-attention mechanism can be described as follows: Given a

sequence of input vectors X = (x1,x2, ...,xn), the self-attention mechanism computes

a weighted sum of these vectors for each position in the sequence. The weights for

each position are determined by the compatibility between the input vectors, which is

calculated using the dot product of the query, key, and value vectors. First, the input

vectors are linearly transformed into query Q, key K, and value V matrices:

Q = XWQ, K = XWK , V = XWV (8.1)

where WQ, WK , and WV are learnable weight matrices. Next, the compatibility scores

between each pair of positions in the sequence are calculated using the dot product of
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the corresponding query and key vectors, followed by scaling with a factor
√
dk, where

dk is the dimension of the key vectors:

S =
QKT

√
dk

. (8.2)

In the case of autoregressive modelling, one can enforce temporal consistency by en-

suring that Sij =−∞∀j > i, i.e. disabling tokens from attending future positions in the

sequence. The compatibility scores are then transformed into a probability distribution

using the softmax function: A = softmax(S).

Figure 8.2 A Trans-
former Block. "Add and
Norm" represent a skip
connection followed by
a layer normalization
operation.

Transformer Block Finally, the self-attention output

is computed as the weighted sum of the value vec-

tors, with the weights given by the attention probabil-

ities: Y = AV. In the multi-head attention mechanism,

the input vectors are split into multiple heads, each

of which applies the self-attention mechanism inde-

pendently. The resulting output vectors are then con-

catenated and linearly transformed to obtain the final

multi-head attention output.

In order to build a full Transformer Model, the

attention layers can be stacked on top of each other

to emulate a multi-layer neural network. Typically,

a feed-forward layer, layer normalization [Ba et al.,

2016] and residual connections are used after one at-

tention layer, referred to as a transformer block, as de-

picted in Fig. 8.2.
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8.1.2 Adapters: LoRA & (IA)3

LoRA [Hu et al., 2022] and (IA)3 [Liu et al., 2022] are two recently proposed adapter

architectures that achieve competitive trade-offs between performance and parameter

efficiency [Karimi Mahabadi et al., 2021, Liu et al., 2022]. For each linear transformation

corresponding to the query (q), key (k), value (v) and output (o) of the self-attention

layers, LoRA modifies the base model parameters as follows:

hq,k,v,o =W q,k,v,o
0 x+ s ·Aq,k,v,o(Bq,k,v,o)⊤x, (LoRA)

where W0 are the (frozen) weights of the pre-trained model (e.g. T5 [Raffel et al.,

2020]). A,B ∈ Rd×r are low-rank learnable parameters and s ≥ 1 is a tunable scalar

hyperparameter. (IA)3, on the other hand, modifies key and value representations in

self-attention element-wise, and also modifies the feed-forward MLP (f ):

hk,v = lk,v ⊙ (W k,v
0 x); hf = (lf ⊙ γ(W f

1 x))W
f
2 , ((IA)3)

where lk,v,f ∈ Rd are learnable parameters , W f
1,2 the frozen parameters of the feed-

forward layer in the backbone, and γ a non-linearity. For clarity, we will drop the

superscripts q, k, v, o in the rest of the chapter.

8.1.3 Polytropon: Adapter Routing

Typical adapter methods either fully share adapters across tasks or train individual

adapters for each task. Poly addresses the multi-task problem by softly sharing adapter

parameters across tasks. Each Poly layer contains 1) an inventory of adapter modules

M = {ϕ1, . . . , ϕm} with |M|≪ |T |; 2) a routing function r(·) that chooses which subset

of the modules to combine for each task.

Each module corresponds to a LoRA adapter, where ϕi are its associated parame-
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ters A(i),B(i) ∈Rd×r. r(·) is implemented as a task–module routing matrix Z ∈R|T |×|M|.

zτ = Zτ,: ∈ R|M| is a routing vector of task Tτ , with cell Zτ,j being the probability log-

its of using module ϕj for task Tτ in the current layer. Differently from mixture-of-

experts [Fedus et al., 2021], which perform token-level top-k routing, Z converges to

a binary matrix, defining a soft partition over modules. This is achieved by using a

Gumbel-sigmoid distribution [Jang et al., 2017] during training, with Ẑτ,j ∼ Gumbel(Zτ,j).

At each forward pass, Poly can be defined as :

Aτ =
∑
i

αiA
(i); Bτ =

∑
i

αiB
(i), (Poly)

where αi =
Ẑτ,i∑
j Ẑτ,j

, and A(i),B(i),Aτ ,Bτ ∈ Rd×r. We normalize the mixing coefficients

Ẑτ,i for each task to ensure that the number of active modules does not affect the norm

of Aτ ,Bτ . Overall, this approach enables different subsets of modules to be activated

for the current layer and combined in a task-specific way. Following LoRA, the output

of the Poly layer is added to the output of the original layer of the frozen backbone:

h = W0x+ sAτ (Bτ )⊤x.

During multi-task pre-training, for each query, key, value, and output projection

in self-attention layers, the parameters learned by Poly are the adapter parameters,

{Ai,Bi}|M|
i=1 , and the routing matrices Z. During fine-tuning, for each test task τ , Poly

randomly initializes the routing vector zτ ∈ R1×|M| and fine-tunes both zτ and all the

modules parametersM.

8.2 Learning Setting

In cross-task generalization, we are given a set of tasks T = {T1, ..,T|T |}, with each task

Ti dataset containing a set of samples Di = {(x1, y1), ..., (xn, yn)}. The set of all tasks is

partitioned into training and test tasks, T = Ttrain ∪ Teval, and the objective is to lever-
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Method Pre-Training Fine-Tuning Inference

Full FT d× d d× d d× d

LoRA d× 2r d× 2r d× 2r
Poly d× 2r× |M|+|T |×|M| d× 2r× |M|+|M| d× 2r
Poly-z d× 2r× |M|+|T |×|M| |M| |M|

MHR-µ d× 2r× |M|+|T |×|M| d× 2r d× 2r
MHR-z d× 2r× |M|+|T |×|M|×h |M|×h |M|×h
MHR d× 2r× |M|+|T |×|M|×h d× 2r× |M|+|M|×h d× 2r

Table 8.1 Number of parameters (per layer) used for each method. The
calculation uses LoRA as the base adapter, modifying a linear transform in
Rd×d. Note that the total number of parameters changed by Full FT is
larger, given that the method also changes parameters for layers not modi-
fied by LoRA.

age data in Ttrain and transfer knowledge to facilitate learning of the test tasks Teval.

For all the methods discussed, learning takes place in two phases, excluding the orig-

inal unsupervised pre-training of the language model backbone on a separate corpus.

The first phase consists of multi-task pre-training, in which either an adapter, such as

LoRA or (IA)3, or the full backbone is trained on the set of training tasks Ttrain. The sec-

ond phase consists in few-shot adaptation, where the learned adapters are fine-tuned

independently on each test task in Teval. We follow the procedure from [Raffel et al.,

2020] and formulate each task as a text-to-text problem, enabling standard maximum-

likelihood training with teacher forcing [Bengio et al., 2015] and a cross-entropy loss.

8.3 Multi-Head Adapter Routing (MHR)

In Poly, module combination remains coarse: only linear combinations of modules are

possible, and thus the resulting aggregated adapter remains a linear function of the

modules. We propose to augment the expressivity of the module combination while

keeping the parameter count similar. MHR (Fig. 8.1) takes inspiration from multi-head

attention [Vaswani et al., 2017]: it partitions the input dimensions into h different dis-
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joint subsets, performs a separate Poly-style combination for each of them, and finally

concatenates them. This corresponds to learning a different routing matrix Z for each

subset of input features, therefore enabling the model to select different adapters for

different subsets of the input dimensions. This aggregation approach is piecewise linear

(i.e., linear within disjoint intervals), which allows for more expressive combinations

of modules.

In each MHR layer, the routing function is a third-order tensor Z ∈ R|T |×|M|×h, where

Z:,:,h ∈ R|T |×|M| is a 2D slice of the tensor Z. A slice represents the routing matrix for

each of the h heads. Let us denote with W [k] ∈ R d
h
×r the k-th partition along the rows

of the matrix W ∈ Rd×r. The adapter parameters Aτ ∈ Rd×r for task τ , and for each

adapter layer, are computed as (similarly for Bτ ):

Aτ
k =

∑
j

Aj[k] ·
Ẑτ,j,k∑
j Ẑτ,j,k

with Aτ
k ∈ R

d
h
×r, (MHR)

Aτ = concat(Aτ
1, . . . ,A

τ
h)

where concat concatenates along the first dimension. Multi-task pre-training and

fine-tuning are similar to Poly. Note that MHR results in only a negligible increase

in the total amount of parameters, since most of the parameters are contained in the

LoRA weights A,B (Tab. 8.1).

Routing-Only Fine-Tuning (MHR-z) Prior work [Shao et al., 2023, inter alia] has shown

that compositional generalization can be achieved by learning to (re-)combine in novel

ways pre-existing modules. We investigate whether fine-tuning the module param-

eters is really needed for few-shot adaptation in the context of both Poly and MHR.

Therefore, we name Poly-z and MHR-z the variants that, during few-shot adaptation,

keep the parameters of the modules learned during multi-task pre-training fixed and

just update the routing parameters Z. Crucially, this enables highly parameter-efficient
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adaptation: for LoRA adapters, A and B matrices constitute the overwhelming major-

ity of parameters. Therefore, by freezing the A,B matrices and only updating Z, we

can significantly reduce the parameter cost when transferring knowledge to a new

task.

Adapter Average Fine-Tuning (MHR-µ) To assess the importance of the routing pa-

rameters during few-shot adaptation, we propose an additional variant of MHR, MHR-µ,

which shares the same multi-task pre-training procedure as MHR, but for each test task

τ , fixes zτ = (1/|M|, . . . ,1/|M|) during few-shot adaptation. This is equivalent to dis-

carding the routing parameters and averaging the module parameters into a single one

before fine-tuning. Specifically, the adapter used during fine-tuning is initialized with

(similarly for Bτ ):

Aτ =
1

|M|
∑
i

A∗
i ; A

τ ∈ Rd×r (MHR-µ)

where A∗
i are the parameters of the adapters after MHR multi-task pre-training. Note

that, differently from MHR, MHR-µ fine-tunes the same amount of parameters as the sin-

gle adapter baseline. Thus, any difference in performance between the single adapter

baseline and MHR-µ comes from differences in the adapter initialization and must be

due to the optimization process taking place in the multi-task pre-training, before few-

shot adaptation.

Routing Granularity In the original Poly, Ponti et al. [2023] showed that learning a

routing matrix Z for each model layer gave better performance than sharing a single

Z matrix across all layers. We therefore investigate whether this holds true also for

its multi-head counterpart, MHR. In addition, we explore intermediate approaches be-

tween one Z per layer and a single one shared for the entire model. In particular, we
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consider sharing Z 1) for the adapter layers belonging to the same Transformer block;

or 2) for every block of l layers, which enables us to easily trade off expressivity for

parameter efficiency. As we will demonstrate in section 8.5.1, this is an efficient mech-

anism to navigate this Pareto front in regimes of very small budgets of parameters per

task.

8.4 Experiments

Our experimental evaluation aims to answer three research questions: 1) Does the ex-

pressivity of the routing function matter? 2) Why do routing-based PEFT methods

yield superior performance? 3) Is routing useful during both multi-task pre-training

and few-shot adaptation? We first present the baselines and datasets used in our eval-

uation and then discuss each question in turn.1

8.4.1 Baselines

In addition to Poly, we compare MHR to the following baselines for task-level general-

ization.

LoRA/(IA)3 trains a single adapter common to all pre-training tasks, which is then

fine-tuned on each test task separately. This is arguably the most widespread approach

for parameter-efficient cross-task generalization [Liu et al., 2022, Pfeiffer et al., 2023].

AdapterSoup Chronopoulou et al. [2023] trains a different adapter for each task.

The method only averages the adapter weights of the training tasks most similar to

a given test task, before proceeding with few-shot adaptation. To compute task relat-

edness, we measure the cosine similarity of sentence embeddings for each task aver-

aged over their training dataset. Notably, unlike the methods proposed in this chapter,

1We note that all experiments were run on a single NVIDIA A100 GPU.
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there is no knowledge sharing (nor interference) during multi-task pre-training as task

adapters are trained independently.

8.4.2 Datasets

We test our methods on the T0 Sanh et al. [2022] evaluation suite, following the same

setup as Liu et al. [2022], and SuperNI Wang et al. [2022c], a large-scale dataset with

more than 1,600 training tasks.

T0 Tasks We follow the pre-training and fine-tuning procedure discussed in Liu et al.

[2022], using hyper-parameters and losses suggested in the public codebase for T-Few.2

All methods were tested with T5-XL Raffel et al. [2020] and T0-3B Sanh et al. [2022] as

the backbone model. Crucially, T5 is simply pre-trained on (masked) language mod-

elling, whereas T0 is further instruction tuned: in particular, the full model is fine-

tuned on examples from multiple training tasks that have been augmented with task

instructions. To ensure fairness for all methods, we report the median and standard

deviation of the best validation accuracy for each test task across 3 seeds, when eval-

uated every 50 training epochs. We treat each data subset–template pair as a unique

task, yielding a total of 313 tasks.

SuperNI To limit computational costs, we report the result on 20 out of 119 test tasks.

Tasks were chosen at random, with the requirement that at least 300 examples were

available, and were equally split into 100 training, 100 validation and 100 test exam-

ples. For every method, we perform early stopping on the validation set. We report

results with Rouge-L averaged across 3 seeds. All methods use T5-XL [Raffel et al.,

2020] as the backbone and not T0, as T0 training tasks and SuperNI test tasks may

overlap.

2https://github.com/r-three/t-few

https://github.com/r-three/t-few
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T0 Dataset Avg. Test

Backbone T5-XL
(IA)3 62.40.4

AdapterSoup 62.11.0

LoRA 66.01.6

LoRA-big 65.40.9

Poly-z 66.40.3

Poly 68.01.0

MHR-z 68.30.8

MHR 69.11.0

Backbone T0-3B
T-Few Liu et al. [2022] 66.20.5

AdapterSoup 66.10.6

LoRA 67.40.8

Poly-z 65.31.0

Poly 69.00.8

MHR-z 68.41.2

MHR 69.31.2
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Figure 8.3 Left: Results of few-shot adaptation on T0 dataset Sanh et al.
[2022]. We report the mean of the best validation accuracy for each test
task. Subscripts correspond to standard deviation. Right: Accuracy of PEFT
methods on the T0 dataset when applied on top of T5-XL. The x-axis shows
the parameter count during the fine-tuning process.

8.5 Results and Discussion

8.5.1 Does the expressivity of the routing function matter?

MHR outperforms PEFT approaches We start our analysis by evaluating the effective-

ness of our proposed technique when applied over a backbone that has not undergone

prior training on instruction-following data (T5-XL). As indicated in the T0 benchmark

results in the top table of Fig. 8.3, it is clear that multi-head routing techniques have

a distinct advantage, outperforming both single-head routing Poly by 1.1%, and sur-

passing standard LoRA approaches by an impressive 3.1%. We also study the impact of

performing instruction tuning of the full backbone before adapter training. To this end,
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we also experiment with T0-3B as a backbone. In the bottom table of Fig. 8.3, we can ob-

serve that while the relative gap between MHR and baselines is smaller, multi-head rout-

ing still manages to yield favourable results. Hence, the gains of MHR compound with

other multi-task methods such as instruction tuning. Finally, we turn our attention to-

wards the SuperNI dataset (Tab. 8.2). Here, MHR continues to surpass analogous base-

lines.

SuperNI Dataset Rouge-L

LoRA 67.60.8

LoRA-big 67.20.7

Poly-z 64.60.3

Poly 67.80.8

MHR-z 68.00.2

MHR 68.50.3

Table 8.2 Results on SuperNI
dataset. Subscripts are standard
deviation.

MHR-z facilitates extreme parameter effi-

ciency Fig. 8.3 (right) reveals intriguing

findings regarding MHR-z. When we re-

strict training to only the routing param-

eters Z in the original Poly, the results

are unfortunately not up to par with its

version where both routing and adapters

are updated. However, when we apply

the same constraint to MHR, the perfor-

mance is significantly closer to the optimum achieved in this setting. In fact, MHR-z

surpasses prior baselines while simultaneously necessitating fewer parameters for ef-

fective adaptation to new tasks. Moreover, by controlling the number of layers which

share the same Z allocation (see sec. 8.3), MHR-z is able to trade-off performance for

parameter efficiency, even surpassing Poly-z in settings with only 3K trainable pa-

rameters per test task. This trend is similarly observed in the SuperNI benchmark

(Tab. 8.2), where updates restricted to the routing parameters yield performance on

par with standard fine-tuning. We therefore conclude that the MHR-z represents a ro-

bust approach for achieving extreme parameter efficiency in adaptation.
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Additional routing heads is more beneficial than extra modules In the original

Poly approach, a tradeoff between capacity and parameter efficiency can be achieved

by adding extra modules for each adapter layer. However, this results in a linear in-

crease in the number of multi-task parameters, which can become impractical. To ex-

plore a more effective tradeoff, we investigate the option of adding additional routing

heads instead of extra modules. Fig 8.4 (right) presents the comparison between the

two approaches. It demonstrates that increasing the number of routing heads leads

to better performance compared to adding more modules. Importantly, the benefit of

multi-head routing is twofold: it provides increased expressivity for the model, while

also maintaining parameter efficiency. This finding highlights the advantage of multi-

head routing as a more effective approach for balancing expressivity and parameter

count in few-shot adaptation scenarios.

T0 Dataset Avg. Test

Backbone T0-11B
T-Few Liu et al. [2022] 72.50.9

LoRA 72.31.0

Poly-z 70.00.6

Poly 74.90.6

MHR-z 72.90.8

MHR 74.70.6

Table 8.3 Few-shot results
over 11B parameter back-
bones.

Routing-based methods also excel at the 11B

scale We proceed to evaluate if Poly and

MHR surpass established PEFT approaches when

trained over a larger model backbone. To ac-

complish this, we employ the 11B version of T0.

As depicted in Tab. 8.3, routing-based methods

once again outshine standard adapter training,

surpassing our reproduction of the previous state-

of-the-art in Liu et al. [2022] by over 2%. We

observe that Poly and MHR show similar perfor-

mance in standard fine-tuning, but MHR z-tuning remains more performant in routing-

only fine-tuning. Indeed, MHR-z (221K params) outperforms Poly-z (3.5K params)

by 2.9%, while still remaining more parameter efficient than Liu et al. [2022] (1.1M

params).
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8.5.2 Why do routing-based PEFT methods yield superior performance?

While our proposed methods have demonstrated promising results across a broad

spectrum of datasets and varying adaptation parameter budgets, the question of why

routing-based PEFT exhibits superior performance remains unanswered. In this sec-

tion, we aim to uncover the key components that drive MHR’s superior performance.

Learning the Routing Function is essential Given that Poly and MHR have access to

more parameters than standard adapters during multi-task pretraining, we investigate

whether this, and not the routing mechanism, is responsible for their superior perfor-

mance. To do so, we compare them to a baseline approach. Instead of learning the

routing function, we randomly assign a binary module allocation to each data point

in a minibatch, disregarding task information. This random routing approach, akin

to Wang et al. [2022b], allows us to directly assess the influence of additional parame-

ters during multi-task training. At test time, the learned modules are averaged into a

single one before fine-tuning; we therefore refer to this baseline as Random-µ. On the

T0 benchmark with the T5-XL backbone, Random-µ performs similarly to a standard

LoRA adapter (66.0%), while Poly and MHR outperform it by 2% and 3.1% respec-

tively. Therefore, we conclude that learning a routing function is crucial, and merely

increasing capacity during training does not directly lead to improvements.

MHR fosters transfer and mitigates interference across pretraining tasks Recogniz-

ing the pivotal role of the multi-task pretraining step in bolstering Poly’s performance,

we explore the extent of transfer and interference across training tasks. By monitor-

ing the average gradient alignment for each task pair (in terms of cosine similarity)

throughout the training process, we are able to gauge the level of positive transfer.

As Fig. 8.4 (left) shows, MHR displays a greater degree of gradient cosine similarity

across tasks compared to other PEFT alternatives, including Poly. This finding sug-
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Figure 8.4 Left: Gradient alignment between tasks during multi-task pre-
training. Right: Increasing the number of heads offer better scaling proper-
ties than increasing the number of modules.

gests that the enhanced flexibility offered by multi-head routing may serve to mitigate

interference across tasks to a larger extent than standard routing while simultaneously

promoting positive transfer.

8.5.3 Is routing important for task generalization?

T0 Dataset Test Acc.

LoRA 66.01.6

AdapterSoup 62.11.0

Poly 68.00.8

Poly-µ 67.80.6

MHR 69.11.1

MHR-µ 69.10.9

SuperNI Rouge-L

LoRA 67.60.8

Poly 67.80.8

Poly-µ 68.30.5

MHR 68.50.6

MHR-µ 68.50.8

Table 8.4 Evaluating the impact
of modular adaptation at test
time.

We assessed the importance of routing dur-

ing pre-training. We now proceed to verify

whether it is important to learn routing dur-

ing few-shot adaptation, too. We observe that

Poly-µ and MHR-µ consistently outperform

LoRA, and match the performance of Poly

/ MHR (Tab. 8.4). This demonstrates that, for

few-shot adaptation, the average of the pre-

trained modules provides a better initializa-

tion than learning an adapter shared across

all the tasks during pre-training. The consis-

tently superior performance of Poly-µ with
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respect to Random-µ and AdapterSoup stresses the importance of routing dur-

ing multi-task pre-training (but not during adaptation), which provides an effective

adapter initialization for few-shot learning. This finding could potentially inspire fu-

ture work for improving meta-learning and weight-averaging approaches [Izmailov

et al., 2018].

MHR-µ excels at zero-shot learning For many downstream tasks of interest, addi-

tional labelled data may not be available. In such settings, it is unclear how to leverage

MHR-µ and Poly-µ methods. To address this, we fine-tune the average of the multi-task

trained adapters on the multi-task pre-training data (instead of using the downstream

few-shot data), for an additional k steps. The results are presented in Table 8.5. We

find that without any additional fine-tuning (k = 0), averaging the adapters does not

yield good results. This is due to a potential mismatch between adapters learned via

task-specific routing, and the uniform routing strategy. We can observe that when fine-

tuning the average of the adapters on the multi-task pre-training data for an additional

k steps, MHR-µ show strong performance when evaluated in a zero-shot manner. For

a fair comparison, we also additionally fine-tune LoRA for the same number of addi-

tional steps. Our best model achieves a zero-shot performance of 64.5 on top of T0-11B,

achieving an absolute gain of 3.5% accuracy points.

8.6 Related Work

Multi-task learning is effective for low-resource tasks [Wei et al., 2022, Aribandi et al.,

2022, Sanh et al., 2022], as knowledge can be borrowed from similar tasks by sharing

the model parameters. Multi-task learning has also been applied across languages and

modalities [Ponti et al., 2019, Bugliarello et al., 2022]. In the context of NLP, several

families of methods enable learning new tasks from a limited set of labelled exam-
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Method Zero-Shot Test with k-shot Extra Training
k = 0 k = 1000 k = 5000 k = 10000

Backbone T5-XL-LM 43.2
LoRA 56.5 56.0 56.1 55.7
Poly-µ 46.0 53.0 56.8 56.3
MHR-µ 48.0 58.0 57.1 56.3

Backbone T0-11B [Sanh et al., 2022] 61.0
LoRA 61.2 61.6 61.5 61.5
Poly-µ 62.1 63.6 63.9 64.4
MHR-µ 63.5 64.5 64.5 64.4

Table 8.5 Zero-shot performance for MHR and the baselines, reported as
the average over the 11 evaluation datasets from Sanh et al. [2022]. To ob-
tain these zero-shot results, we average the learnt Poly/MHR adapters be-
fore performing k additional fine-tuning steps on the multi-task pretraining
data. This effectively enables zero-shot transfer to downstream tasks using
the same amount of parameters/flops as the baseline LoRA. MHR outper-
form baseline LoRA by up to 3% absolute accuracy points on T0-11B.

ples. Few-shot in-context learning [ICL; Brown et al., 2020b], where examples of a new

task are concatenated into an input prompt, enables models to generalize to unseen

tasks without any gradient-based training. Such approaches are however sensitive to

the prompt format and example ordering [Zhao et al., 2021]. More importantly, ICL

methods incur a significant compute overhead, as for every prediction, the full set of

examples must be processed by the model [Liu et al., 2022]. To remedy this, many

parameter-efficient fine-tuning (PEFT) methods have been proposed as an alternative

to ICL, where a small number of new parameters are added over the frozen pretrained

network. To name a few, LoRA [Hu et al., 2022] injects learnable low-rank matrices

into each Transformer layer. Alternatively, the learnable matrix can be sparse, select-

ing nonzero shifts via the Lottery-Ticket hypothesis [Ansell et al., 2021] or via their

approximate Fisher information [Sung et al., 2021]. Finally, prefix-tuning methods [Li

and Liang, 2021] prepend learnable embeddings to the input or intermediate represen-

tations to specialize the model towards a downstream task.
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Modular networks partition their parameters into several expert modules, each of

them specialized to handle specific sub-tasks [Jacobs et al., 1991, Kirsch et al., 2018].

Modular networks are an appealing solution to the problem of adapting to unseen

tasks [Corona et al., 2021], as the model can leverage its existing modules and recom-

bine them in a novel way, thus achieving systematic generalization [Bahdanau et al.,

2019]. They have also been tested in learning scenarios with data presented sequen-

tially [Ostapenko et al., 2021], and with changing environments Goyal et al. [2021]. In

NLP, mixture-of-experts (MoE) models [Shazeer et al., 2017, Fedus et al., 2021], where a

learned gating mechanism routes token representations to appropriate experts (Feed-

Forward layers), have shown success in scaling the number of parameters while retain-

ing time efficiency. This results in higher performance when compared to their dense

counterparts using a similar compute budget.

8.7 Discussion

In this chapter, we tackled the challenge of generalizing to new tasks based on a few

examples after multi-task pre-training. Specifically, we focused on Polytropon [Ponti

et al., 2023], a model where each task is associated with a subset of adapters by a rout-

ing function. We investigated how varying the level of control afforded by the rout-

ing function impacts performance on two comprehensive benchmarks for multi-task

learning, T0 and Super-Natural Instructions. First, a newly proposed variant of the

routing function, where multiple heads are responsible for different subsets of input

dimensions, improves consistently over all other baselines, including LoRA and (IA)3

adapters. Second, we identified the cause of the success of routing in its ability to

prevent interference between tasks, as it yields a better alignment between their gra-

dients. Third, we found that simple averaging of all multi-task pre-trained adapters

before few-shot adaptation to new tasks provides comparable performance, thus offer-
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ing state-of-the-art performance for single-adapter few-shot learning. Multi-head rout-

ing demonstrates the importance of fine-grained adapter selection for sample-efficient

generalization and holds promise to improve other modular methods, such as Mix-

tures of Experts [MoEs; Fedus et al., 2021] in future research.

This work in this chapter, however, is limited in scope. First, the experimental

procedure only considered natural language tasks. Given that adapters are also used

in vision tasks for parameter efficient adaptation [He et al., 2022], an interesting fu-

ture direction would be to explore whether routing based methods behave similarly

in such settings. Moreover, a similar argument can be made for DNN architectural di-

versity; in the paper only encoder-decoder transformer model were used as backbone.

Given that a considerable amount of pretrained models use decoder-only architectures

[Zhang et al., 2022, Radford et al., 2019], confirming these findings with such archi-

tectures would strengthen the presented analysis. Lastly, there have been many works

using PEFT adapters for continual learning [Wang et al., 2022d, Ermis et al., 2022, Smith

et al., 2023]. While the work presented in this chapter did not tackle long sequences

of adaptation phases, interesting follow-up work could see how to adapt MHR to such

settings.
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Chapter 9

Conclusion

In this thesis, we investigate the many facets of efficiency in Continual Learning. As

early work in the field used replay-based methods to mitigate catastrophic forgetting,

in the first chapters we optimize the sample efficiency of the replay step, as well as the

memory efficiency of the replay storage. We further explore the underlying causes of

forgetting, enabling us to prevent disruptive updates. Next, we shed light on the com-

pute (in-)efficiency of previously proposed methods, and design new compute aware

methods for forgetting prevention. In the second part of this thesis, we double down

our focus on sequential knowledge acquisition under strict compute budgets, inves-

tigating how, and when to (re-)train models. Lastly, we focus on parameter efficient

adaptation from pretrained models, enabling sample efficient learning to new tasks

through recomposition of existing skills. In essence, my work attempts to highlight

the vast array of continual learning settings, ensuring that their respective constraints

and objectives are met.
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9.1 Summary of Contributions

To summarize the major findings in this thesis:

• Previous knowledge is not forgotten equally when learning new concepts. In

Chapter 4, we question whether randomly selecting points for replay is optimal.

We propose a new replay sample selection criteria, which retrieves points (stored

in a buffer or generated) that will be most negatively impacted by the foreseen

parameter update on the incoming data. We show that it produces consistent

gains in performance and greatly reduces forgetting under bounded compute

constraints. Finally, we investigate the use of autoencoders to enable more effi-

cient storage in online settings.

• Quantization enables robust, backward-compatible representations. In Chap-

ter 5, we continue our investigation for more efficient storage in online settings

via autoencoders. We highlight the need for backward-compatible storage of rep-

resentations, to ensure that future decoder states can reconstruct representations

from earlier encoder states. We show that a quantization bottleneck enables this,

without removing the autoencoders’s ability to adapt to changing distributions.

By progressively increasing the compression rate over time through architectural

changes, we can enable fully online training in a robust manner. We show that

for a fixed memory budget, this yields significant gains compared to standard

compression algorithms across many settings and data modalities.

• Abrupt representation shifts cause significant forgetting. In Chapter 6, we

highlight a failure mode of replay methods in online class-incremental settings.

When new classes are introduced, a sudden drop in performance is observed, ir-

respective of the buffer size, from which the model may or may not recover. We

show that this phenomenon is caused by class prototypes of older classes being
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abruptly shifted, due to newer class representations severely overlapping with

older ones. Armed with this insight, we propose a new asymmetrical update

rule, whereby new classes are learned in isolation, shielding previously learned

representations from disruptive updates. Finally, we propose a new evaluation

protocol which monitors anytime performance, as well as computation cost, and

show that our methods significantly outperforms prior work, for the same com-

pute budget.

• When to adapt a model is setting dependent. In Chapter 7, we depart from

the class-incremental setup from previous chapters, and investigate the setting

where data arrives sequentially over time in large chunks. Practitioners then

have to decide how to allocate their computational budget in order to obtain the

best performance at any point in time. We first formalize this learning setting

in which each data chunk is drawn from the same underlying distribution, al-

lowing us to disentangle the challenges induced by a changing distribution from

the ones of learning sequentially. Central to our investigation is the question of

when to retrain a model; fine-tuning it as soon as new data arrive improves per-

formance in the short term, but converges to a suboptimal solution over time.

Through an extensive empirical evaluation, we find that the optimal wait time

depends on the difficulty of the problem and the time horizon of the full stream.

Moreover, we find that having more capacity in the initial training phases, rather

than increasing capacity over time as more data is observed, yields better results.

Overall, we confirm that even without distribution shifts, sequential learning still

poses several unaddressed challenges.

• Expressiveness of routing functions in modular methods aids transfer. Finally,

in Chapter 8 of this thesis, we explore how to adapt LLMs to new tasks in a pa-

rameter and sample efficient way. We show that modular methods excel at this
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task, by re-combining previously learned modules and fine-tuning them. We fur-

ther investigate the role of the routing function in such settings. We propose a

more expressive router, enabling module recomposition at a more fine-grained

level. This not only yields better few-shot adaptation performance, but also en-

ables extreme parameter efficiency by freezing the existing modules and learning

only the routing function for a new task. Lastly, we show that the performance

gains are due to easier optimization during the initial learning of the modules,

and that one can collapse the learned modules prior to few-shot adaptation with-

out any performance loss.

9.2 Perspective

In this section, we begin by addressing the overall limitations of the research con-

ducted in this thesis. The goal of this thesis is to make progress towards enabling

sequential knowledge acquisition in models, such that they can be reliably deployed

and autonomously acquire new skills. So far, the results presented assume that the

evaluation protocols, from the benchmarks to the metrics used, are a good proxy for

this long-term goal. Unfortunately, the tools for evaluation at our disposal are not per-

fect, and limit the reach of the proposed methods. Specifically, in the first chapters, we

heavily rely on class-incremental learning benchmarks as a mean for evaluating con-

tinual learning algorithms. There are indeed many aspects of these benchmarks which

raise questions on whether our best performing algorithms can generalize to more di-

verse and realistic settings, e.g. beyond images or supervised learning. In Chapter 4,

the main limitation of the proposed Maximally Interfered Retrieval (MIR) method is

the lack of proper monitoring of computation during training. While it was shown

that the reported gains hold even when increasing the compute budget of baselines,

MIR requires additional forward-backward passes through the model, which increases
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the computational cost. In Chapter 5, the primary limitation is the assumption that

storage, rather than computation, is an essential bottleneck in developing Continual

Learning algorithms. With the rise of large, general-purpose foundation models, the

cost of training has become more significant than the expenses related to storing data

and model parameters. In Chapter 6, the main limitation is that the findings on abrupt

representation drift are specific to the benchmarks and settings used in the previous

chapters. The relevance of this phenomenon in realistic continual learning scenarios

remains uncertain. Moreover, other tasks, such as generative modeling, may not be

affected by a similar phenomenon. For example, in the case of online compression

discussed in Chapter 5, forgetting in the auto-encoder was gradual rather than "catas-

trophic." This growing body of evidence suggests that benchmarks and metrics used in

Continual Learning research may not accurately reflect real-world CL use-cases, high-

lighting the need for more diverse and realistic evaluation methods. In Chapter 7, the

primary limitations of the analysis are the significant impact of the first training run

on the cumulative error rate and the focus on settings where mega-batches are drawn

from the same underlying distribution. Given that across many modalities, there exist

foundation models which can serve as a good initialization, leveraging such pretrained

weights could enable practitioners to use longer wait times and potentially improve

results. Moreover, the analysis in this chapter did not explore the impact of distribu-

tion shifts over the mega-batches, which is an important consideration in real-world

scenarios. As a result, the findings may not be directly applicable to other learning

settings with non-stationary distributions. Finally, in Chapter 8, the main limitation

is the scope of the experimental procedure, which only considered natural language

tasks. Investigating routing-based methods in vision tasks and diverse deep neural

network architectures would strengthen the analysis. Furthermore, the work did not

tackle long sequences of adaptation phases, which could be an interesting direction for

future research.
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Despite the limitations mentioned above, the research conducted in this thesis has

provided valuable insights into various aspects of efficiency in continual learning. The

findings can serve as a foundation for future research and development of more robust

and efficient sequential learners. As the field of continual learning continues to evolve,

addressing the limitations and exploring new research directions will be crucial for

advancing our understanding of how AI systems can adapt and learn efficiently in

dynamic environments.

9.3 Future Work

9.3.1 Merging model updates for sequential knowledge acquisition

In order to design models that can continually improve, we can greatly benefit from the

ability to combine two models into a single one possessing the abilities of both models.

Doing so effectively makes any transfer learning also backward compatible; merge the

pretrained and finetuned model into a single, versatile one. Recent work has shown

this to be possible by simply averaging parameters [Wortsman et al., 2022b]. Follow-up

has shown that one can repeat this process for short task sequences with little perfor-

mance degradation [Ilharco et al., 2022]. These results raise several promising research

questions. What is the best representation for merging models ? Is parameter (as op-

posed to e.g. model activations) the right level of abstraction for model merging ?

Moreover, under which conditions does model merging work (or fail) ? Can we mod-

ify the learning procedure to obtain models that are easier to merge ? One way to do

so could be via meta-learning [Javed and White, 2019], which has been used to learn

representations less prone to forgetting when updated sequentially. When inspecting

the representations, it was found that they were highly sparse and orthogonal. Can

we adapt this line of work to come up with sparse model updates which can be more

easily merged without interference ? Lastly, work in model merging has mostly looked
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at merging two models which lie in the same linear basin (as is often the case for mul-

tiple runs finetuned from the same checkpoint). How could one merge models which

are not linearly connected ? Can the recent work in [Ainsworth et al., 2023], which

proposes an algorithm that permutes activations at each layer to align two models, be

used for model merging ? Lastly, can we design merging algorithms for models with

different architectures ? Again, merging in the activation space could be a potential

solution to this question, as it relaxes the need for identical architectures.

9.3.2 Addressing the loss of plasticity in sequential optimization

Plasticity, the ability of a model to absorb new knowledge, has been shown to degrade

as training progresses [Ash and Adams, 2020]. In standard DNN training, where there

is only a single training phase comprising i.i.d data, this is not a significant issue be-

cause the model can access the full data distribution at initialization, when it is plas-

tic. On the other hand, in Continual Learning, because new data is made available

over time, each learning episode becomes more challenging because of this lack of

plasticity [Dohare et al., 2021]. This is issue is also prevalent in Reinforcement Learn-

ing [Lyle et al., 2023], where the data distribution naturally evolves during training

from the agent’s changing policy. While some progress has been made in understand-

ing this phenomenon and designing architectures which are more robust to this issue

[Sokar et al., 2023], a rigorous analysis of the significance of this phenomenon in stan-

dard transfer learning scenarios remains to be done. Specifically, when starting from

pretrained models, how does the size of the backbone influence plasticity ? Can we

design better pretraining (or finetuning) methods which conserve plasticity ? Leverag-

ing meta-learning approaches to learn an update rule which favors plasticity retention

could be a promising direction.
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